xref: /linux/kernel/events/core.c (revision af8e51644a70f612974a6e767fa7d896d3c23f88)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	/*
1951 	 * When creating a new group leader, group_leader->ctx is initialized
1952 	 * after the size has been validated, but we cannot safely use
1953 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 	 * leader cannot have any siblings yet, so we can safely skip checking
1955 	 * the non-existent siblings.
1956 	 */
1957 	if (event == group_leader)
1958 		return true;
1959 
1960 	for_each_sibling_event(sibling, group_leader) {
1961 		if (__perf_event_read_size(sibling->attr.read_format,
1962 					   group_leader->nr_siblings + 1) > 16*1024)
1963 			return false;
1964 	}
1965 
1966 	return true;
1967 }
1968 
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 	struct perf_event *group_leader = event->group_leader, *pos;
1972 
1973 	lockdep_assert_held(&event->ctx->lock);
1974 
1975 	/*
1976 	 * We can have double attach due to group movement (move_group) in
1977 	 * perf_event_open().
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 	group_leader->group_generation++;
1994 
1995 	perf_event__header_size(group_leader);
1996 
1997 	for_each_sibling_event(pos, group_leader)
1998 		perf_event__header_size(pos);
1999 }
2000 
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 	WARN_ON_ONCE(event->ctx != ctx);
2009 	lockdep_assert_held(&ctx->lock);
2010 
2011 	/*
2012 	 * We can have double detach due to exit/hot-unplug + close.
2013 	 */
2014 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 		return;
2016 
2017 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018 
2019 	ctx->nr_events--;
2020 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 		ctx->nr_user--;
2022 	if (event->attr.inherit_stat)
2023 		ctx->nr_stat--;
2024 
2025 	list_del_rcu(&event->event_entry);
2026 
2027 	if (event->group_leader == event)
2028 		del_event_from_groups(event, ctx);
2029 
2030 	/*
2031 	 * If event was in error state, then keep it
2032 	 * that way, otherwise bogus counts will be
2033 	 * returned on read(). The only way to get out
2034 	 * of error state is by explicit re-enabling
2035 	 * of the event
2036 	 */
2037 	if (event->state > PERF_EVENT_STATE_OFF) {
2038 		perf_cgroup_event_disable(event, ctx);
2039 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 	}
2041 
2042 	ctx->generation++;
2043 	event->pmu_ctx->nr_events--;
2044 }
2045 
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 	if (!has_aux(aux_event))
2050 		return 0;
2051 
2052 	if (!event->pmu->aux_output_match)
2053 		return 0;
2054 
2055 	return event->pmu->aux_output_match(aux_event);
2056 }
2057 
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 			    struct perf_event_context *ctx);
2061 
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 	struct perf_event_context *ctx = event->ctx;
2065 	struct perf_event *iter;
2066 
2067 	/*
2068 	 * If event uses aux_event tear down the link
2069 	 */
2070 	if (event->aux_event) {
2071 		iter = event->aux_event;
2072 		event->aux_event = NULL;
2073 		put_event(iter);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * If the event is an aux_event, tear down all links to
2079 	 * it from other events.
2080 	 */
2081 	for_each_sibling_event(iter, event->group_leader) {
2082 		if (iter->aux_event != event)
2083 			continue;
2084 
2085 		iter->aux_event = NULL;
2086 		put_event(event);
2087 
2088 		/*
2089 		 * If it's ACTIVE, schedule it out and put it into ERROR
2090 		 * state so that we don't try to schedule it again. Note
2091 		 * that perf_event_enable() will clear the ERROR status.
2092 		 */
2093 		event_sched_out(iter, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 	}
2096 }
2097 
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102 
2103 static int perf_get_aux_event(struct perf_event *event,
2104 			      struct perf_event *group_leader)
2105 {
2106 	/*
2107 	 * Our group leader must be an aux event if we want to be
2108 	 * an aux_output. This way, the aux event will precede its
2109 	 * aux_output events in the group, and therefore will always
2110 	 * schedule first.
2111 	 */
2112 	if (!group_leader)
2113 		return 0;
2114 
2115 	/*
2116 	 * aux_output and aux_sample_size are mutually exclusive.
2117 	 */
2118 	if (event->attr.aux_output && event->attr.aux_sample_size)
2119 		return 0;
2120 
2121 	if (event->attr.aux_output &&
2122 	    !perf_aux_output_match(event, group_leader))
2123 		return 0;
2124 
2125 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 		return 0;
2127 
2128 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 		return 0;
2130 
2131 	/*
2132 	 * Link aux_outputs to their aux event; this is undone in
2133 	 * perf_group_detach() by perf_put_aux_event(). When the
2134 	 * group in torn down, the aux_output events loose their
2135 	 * link to the aux_event and can't schedule any more.
2136 	 */
2137 	event->aux_event = group_leader;
2138 
2139 	return 1;
2140 }
2141 
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 				    &event->pmu_ctx->flexible_active;
2146 }
2147 
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 	event_sched_out(event, event->ctx);
2157 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159 
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 	struct perf_event *leader = event->group_leader;
2163 	struct perf_event *sibling, *tmp;
2164 	struct perf_event_context *ctx = event->ctx;
2165 
2166 	lockdep_assert_held(&ctx->lock);
2167 
2168 	/*
2169 	 * We can have double detach due to exit/hot-unplug + close.
2170 	 */
2171 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 		return;
2173 
2174 	event->attach_state &= ~PERF_ATTACH_GROUP;
2175 
2176 	perf_put_aux_event(event);
2177 
2178 	/*
2179 	 * If this is a sibling, remove it from its group.
2180 	 */
2181 	if (leader != event) {
2182 		list_del_init(&event->sibling_list);
2183 		event->group_leader->nr_siblings--;
2184 		event->group_leader->group_generation++;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static void sync_child_event(struct perf_event *child_event);
2222 
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 	struct perf_event *parent_event = event->parent;
2226 
2227 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 		return;
2229 
2230 	event->attach_state &= ~PERF_ATTACH_CHILD;
2231 
2232 	if (WARN_ON_ONCE(!parent_event))
2233 		return;
2234 
2235 	lockdep_assert_held(&parent_event->child_mutex);
2236 
2237 	sync_child_event(event);
2238 	list_del_init(&event->child_list);
2239 }
2240 
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 	return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245 
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 	       perf_cgroup_match(event);
2251 }
2252 
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259 
2260 	// XXX cpc serialization, probably per-cpu IRQ disabled
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	if (event->pending_sigtrap) {
2287 		bool dec = true;
2288 
2289 		event->pending_sigtrap = 0;
2290 		if (state != PERF_EVENT_STATE_OFF &&
2291 		    !event->pending_work) {
2292 			event->pending_work = 1;
2293 			dec = false;
2294 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295 			task_work_add(current, &event->pending_task, TWA_RESUME);
2296 		}
2297 		if (dec)
2298 			local_dec(&event->ctx->nr_pending);
2299 	}
2300 
2301 	perf_event_set_state(event, state);
2302 
2303 	if (!is_software_event(event))
2304 		cpc->active_oncpu--;
2305 	if (event->attr.freq && event->attr.sample_freq) {
2306 		ctx->nr_freq--;
2307 		epc->nr_freq--;
2308 	}
2309 	if (event->attr.exclusive || !cpc->active_oncpu)
2310 		cpc->exclusive = 0;
2311 
2312 	perf_pmu_enable(event->pmu);
2313 }
2314 
2315 static void
2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2317 {
2318 	struct perf_event *event;
2319 
2320 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321 		return;
2322 
2323 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2324 
2325 	event_sched_out(group_event, ctx);
2326 
2327 	/*
2328 	 * Schedule out siblings (if any):
2329 	 */
2330 	for_each_sibling_event(event, group_event)
2331 		event_sched_out(event, ctx);
2332 }
2333 
2334 #define DETACH_GROUP	0x01UL
2335 #define DETACH_CHILD	0x02UL
2336 #define DETACH_DEAD	0x04UL
2337 
2338 /*
2339  * Cross CPU call to remove a performance event
2340  *
2341  * We disable the event on the hardware level first. After that we
2342  * remove it from the context list.
2343  */
2344 static void
2345 __perf_remove_from_context(struct perf_event *event,
2346 			   struct perf_cpu_context *cpuctx,
2347 			   struct perf_event_context *ctx,
2348 			   void *info)
2349 {
2350 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2351 	unsigned long flags = (unsigned long)info;
2352 
2353 	if (ctx->is_active & EVENT_TIME) {
2354 		update_context_time(ctx);
2355 		update_cgrp_time_from_cpuctx(cpuctx, false);
2356 	}
2357 
2358 	/*
2359 	 * Ensure event_sched_out() switches to OFF, at the very least
2360 	 * this avoids raising perf_pending_task() at this time.
2361 	 */
2362 	if (flags & DETACH_DEAD)
2363 		event->pending_disable = 1;
2364 	event_sched_out(event, ctx);
2365 	if (flags & DETACH_GROUP)
2366 		perf_group_detach(event);
2367 	if (flags & DETACH_CHILD)
2368 		perf_child_detach(event);
2369 	list_del_event(event, ctx);
2370 	if (flags & DETACH_DEAD)
2371 		event->state = PERF_EVENT_STATE_DEAD;
2372 
2373 	if (!pmu_ctx->nr_events) {
2374 		pmu_ctx->rotate_necessary = 0;
2375 
2376 		if (ctx->task && ctx->is_active) {
2377 			struct perf_cpu_pmu_context *cpc;
2378 
2379 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2380 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2381 			cpc->task_epc = NULL;
2382 		}
2383 	}
2384 
2385 	if (!ctx->nr_events && ctx->is_active) {
2386 		if (ctx == &cpuctx->ctx)
2387 			update_cgrp_time_from_cpuctx(cpuctx, true);
2388 
2389 		ctx->is_active = 0;
2390 		if (ctx->task) {
2391 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2392 			cpuctx->task_ctx = NULL;
2393 		}
2394 	}
2395 }
2396 
2397 /*
2398  * Remove the event from a task's (or a CPU's) list of events.
2399  *
2400  * If event->ctx is a cloned context, callers must make sure that
2401  * every task struct that event->ctx->task could possibly point to
2402  * remains valid.  This is OK when called from perf_release since
2403  * that only calls us on the top-level context, which can't be a clone.
2404  * When called from perf_event_exit_task, it's OK because the
2405  * context has been detached from its task.
2406  */
2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2408 {
2409 	struct perf_event_context *ctx = event->ctx;
2410 
2411 	lockdep_assert_held(&ctx->mutex);
2412 
2413 	/*
2414 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2415 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2416 	 * event_function_call() user.
2417 	 */
2418 	raw_spin_lock_irq(&ctx->lock);
2419 	if (!ctx->is_active) {
2420 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2421 					   ctx, (void *)flags);
2422 		raw_spin_unlock_irq(&ctx->lock);
2423 		return;
2424 	}
2425 	raw_spin_unlock_irq(&ctx->lock);
2426 
2427 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2428 }
2429 
2430 /*
2431  * Cross CPU call to disable a performance event
2432  */
2433 static void __perf_event_disable(struct perf_event *event,
2434 				 struct perf_cpu_context *cpuctx,
2435 				 struct perf_event_context *ctx,
2436 				 void *info)
2437 {
2438 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2439 		return;
2440 
2441 	if (ctx->is_active & EVENT_TIME) {
2442 		update_context_time(ctx);
2443 		update_cgrp_time_from_event(event);
2444 	}
2445 
2446 	perf_pmu_disable(event->pmu_ctx->pmu);
2447 
2448 	if (event == event->group_leader)
2449 		group_sched_out(event, ctx);
2450 	else
2451 		event_sched_out(event, ctx);
2452 
2453 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2454 	perf_cgroup_event_disable(event, ctx);
2455 
2456 	perf_pmu_enable(event->pmu_ctx->pmu);
2457 }
2458 
2459 /*
2460  * Disable an event.
2461  *
2462  * If event->ctx is a cloned context, callers must make sure that
2463  * every task struct that event->ctx->task could possibly point to
2464  * remains valid.  This condition is satisfied when called through
2465  * perf_event_for_each_child or perf_event_for_each because they
2466  * hold the top-level event's child_mutex, so any descendant that
2467  * goes to exit will block in perf_event_exit_event().
2468  *
2469  * When called from perf_pending_irq it's OK because event->ctx
2470  * is the current context on this CPU and preemption is disabled,
2471  * hence we can't get into perf_event_task_sched_out for this context.
2472  */
2473 static void _perf_event_disable(struct perf_event *event)
2474 {
2475 	struct perf_event_context *ctx = event->ctx;
2476 
2477 	raw_spin_lock_irq(&ctx->lock);
2478 	if (event->state <= PERF_EVENT_STATE_OFF) {
2479 		raw_spin_unlock_irq(&ctx->lock);
2480 		return;
2481 	}
2482 	raw_spin_unlock_irq(&ctx->lock);
2483 
2484 	event_function_call(event, __perf_event_disable, NULL);
2485 }
2486 
2487 void perf_event_disable_local(struct perf_event *event)
2488 {
2489 	event_function_local(event, __perf_event_disable, NULL);
2490 }
2491 
2492 /*
2493  * Strictly speaking kernel users cannot create groups and therefore this
2494  * interface does not need the perf_event_ctx_lock() magic.
2495  */
2496 void perf_event_disable(struct perf_event *event)
2497 {
2498 	struct perf_event_context *ctx;
2499 
2500 	ctx = perf_event_ctx_lock(event);
2501 	_perf_event_disable(event);
2502 	perf_event_ctx_unlock(event, ctx);
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_disable);
2505 
2506 void perf_event_disable_inatomic(struct perf_event *event)
2507 {
2508 	event->pending_disable = 1;
2509 	irq_work_queue(&event->pending_irq);
2510 }
2511 
2512 #define MAX_INTERRUPTS (~0ULL)
2513 
2514 static void perf_log_throttle(struct perf_event *event, int enable);
2515 static void perf_log_itrace_start(struct perf_event *event);
2516 
2517 static int
2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2519 {
2520 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2521 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2522 	int ret = 0;
2523 
2524 	WARN_ON_ONCE(event->ctx != ctx);
2525 
2526 	lockdep_assert_held(&ctx->lock);
2527 
2528 	if (event->state <= PERF_EVENT_STATE_OFF)
2529 		return 0;
2530 
2531 	WRITE_ONCE(event->oncpu, smp_processor_id());
2532 	/*
2533 	 * Order event::oncpu write to happen before the ACTIVE state is
2534 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2535 	 * ->oncpu if it sees ACTIVE.
2536 	 */
2537 	smp_wmb();
2538 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2539 
2540 	/*
2541 	 * Unthrottle events, since we scheduled we might have missed several
2542 	 * ticks already, also for a heavily scheduling task there is little
2543 	 * guarantee it'll get a tick in a timely manner.
2544 	 */
2545 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2546 		perf_log_throttle(event, 1);
2547 		event->hw.interrupts = 0;
2548 	}
2549 
2550 	perf_pmu_disable(event->pmu);
2551 
2552 	perf_log_itrace_start(event);
2553 
2554 	if (event->pmu->add(event, PERF_EF_START)) {
2555 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2556 		event->oncpu = -1;
2557 		ret = -EAGAIN;
2558 		goto out;
2559 	}
2560 
2561 	if (!is_software_event(event))
2562 		cpc->active_oncpu++;
2563 	if (event->attr.freq && event->attr.sample_freq) {
2564 		ctx->nr_freq++;
2565 		epc->nr_freq++;
2566 	}
2567 	if (event->attr.exclusive)
2568 		cpc->exclusive = 1;
2569 
2570 out:
2571 	perf_pmu_enable(event->pmu);
2572 
2573 	return ret;
2574 }
2575 
2576 static int
2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2578 {
2579 	struct perf_event *event, *partial_group = NULL;
2580 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2581 
2582 	if (group_event->state == PERF_EVENT_STATE_OFF)
2583 		return 0;
2584 
2585 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2586 
2587 	if (event_sched_in(group_event, ctx))
2588 		goto error;
2589 
2590 	/*
2591 	 * Schedule in siblings as one group (if any):
2592 	 */
2593 	for_each_sibling_event(event, group_event) {
2594 		if (event_sched_in(event, ctx)) {
2595 			partial_group = event;
2596 			goto group_error;
2597 		}
2598 	}
2599 
2600 	if (!pmu->commit_txn(pmu))
2601 		return 0;
2602 
2603 group_error:
2604 	/*
2605 	 * Groups can be scheduled in as one unit only, so undo any
2606 	 * partial group before returning:
2607 	 * The events up to the failed event are scheduled out normally.
2608 	 */
2609 	for_each_sibling_event(event, group_event) {
2610 		if (event == partial_group)
2611 			break;
2612 
2613 		event_sched_out(event, ctx);
2614 	}
2615 	event_sched_out(group_event, ctx);
2616 
2617 error:
2618 	pmu->cancel_txn(pmu);
2619 	return -EAGAIN;
2620 }
2621 
2622 /*
2623  * Work out whether we can put this event group on the CPU now.
2624  */
2625 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2626 {
2627 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2628 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2629 
2630 	/*
2631 	 * Groups consisting entirely of software events can always go on.
2632 	 */
2633 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2634 		return 1;
2635 	/*
2636 	 * If an exclusive group is already on, no other hardware
2637 	 * events can go on.
2638 	 */
2639 	if (cpc->exclusive)
2640 		return 0;
2641 	/*
2642 	 * If this group is exclusive and there are already
2643 	 * events on the CPU, it can't go on.
2644 	 */
2645 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2646 		return 0;
2647 	/*
2648 	 * Otherwise, try to add it if all previous groups were able
2649 	 * to go on.
2650 	 */
2651 	return can_add_hw;
2652 }
2653 
2654 static void add_event_to_ctx(struct perf_event *event,
2655 			       struct perf_event_context *ctx)
2656 {
2657 	list_add_event(event, ctx);
2658 	perf_group_attach(event);
2659 }
2660 
2661 static void task_ctx_sched_out(struct perf_event_context *ctx,
2662 				enum event_type_t event_type)
2663 {
2664 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2665 
2666 	if (!cpuctx->task_ctx)
2667 		return;
2668 
2669 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2670 		return;
2671 
2672 	ctx_sched_out(ctx, event_type);
2673 }
2674 
2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2676 				struct perf_event_context *ctx)
2677 {
2678 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2679 	if (ctx)
2680 		 ctx_sched_in(ctx, EVENT_PINNED);
2681 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2682 	if (ctx)
2683 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2684 }
2685 
2686 /*
2687  * We want to maintain the following priority of scheduling:
2688  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689  *  - task pinned (EVENT_PINNED)
2690  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691  *  - task flexible (EVENT_FLEXIBLE).
2692  *
2693  * In order to avoid unscheduling and scheduling back in everything every
2694  * time an event is added, only do it for the groups of equal priority and
2695  * below.
2696  *
2697  * This can be called after a batch operation on task events, in which case
2698  * event_type is a bit mask of the types of events involved. For CPU events,
2699  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700  */
2701 /*
2702  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2703  * event to the context or enabling existing event in the context. We can
2704  * probably optimize it by rescheduling only affected pmu_ctx.
2705  */
2706 static void ctx_resched(struct perf_cpu_context *cpuctx,
2707 			struct perf_event_context *task_ctx,
2708 			enum event_type_t event_type)
2709 {
2710 	bool cpu_event = !!(event_type & EVENT_CPU);
2711 
2712 	/*
2713 	 * If pinned groups are involved, flexible groups also need to be
2714 	 * scheduled out.
2715 	 */
2716 	if (event_type & EVENT_PINNED)
2717 		event_type |= EVENT_FLEXIBLE;
2718 
2719 	event_type &= EVENT_ALL;
2720 
2721 	perf_ctx_disable(&cpuctx->ctx, false);
2722 	if (task_ctx) {
2723 		perf_ctx_disable(task_ctx, false);
2724 		task_ctx_sched_out(task_ctx, event_type);
2725 	}
2726 
2727 	/*
2728 	 * Decide which cpu ctx groups to schedule out based on the types
2729 	 * of events that caused rescheduling:
2730 	 *  - EVENT_CPU: schedule out corresponding groups;
2731 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2732 	 *  - otherwise, do nothing more.
2733 	 */
2734 	if (cpu_event)
2735 		ctx_sched_out(&cpuctx->ctx, event_type);
2736 	else if (event_type & EVENT_PINNED)
2737 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2738 
2739 	perf_event_sched_in(cpuctx, task_ctx);
2740 
2741 	perf_ctx_enable(&cpuctx->ctx, false);
2742 	if (task_ctx)
2743 		perf_ctx_enable(task_ctx, false);
2744 }
2745 
2746 void perf_pmu_resched(struct pmu *pmu)
2747 {
2748 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2749 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750 
2751 	perf_ctx_lock(cpuctx, task_ctx);
2752 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2753 	perf_ctx_unlock(cpuctx, task_ctx);
2754 }
2755 
2756 /*
2757  * Cross CPU call to install and enable a performance event
2758  *
2759  * Very similar to remote_function() + event_function() but cannot assume that
2760  * things like ctx->is_active and cpuctx->task_ctx are set.
2761  */
2762 static int  __perf_install_in_context(void *info)
2763 {
2764 	struct perf_event *event = info;
2765 	struct perf_event_context *ctx = event->ctx;
2766 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2767 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2768 	bool reprogram = true;
2769 	int ret = 0;
2770 
2771 	raw_spin_lock(&cpuctx->ctx.lock);
2772 	if (ctx->task) {
2773 		raw_spin_lock(&ctx->lock);
2774 		task_ctx = ctx;
2775 
2776 		reprogram = (ctx->task == current);
2777 
2778 		/*
2779 		 * If the task is running, it must be running on this CPU,
2780 		 * otherwise we cannot reprogram things.
2781 		 *
2782 		 * If its not running, we don't care, ctx->lock will
2783 		 * serialize against it becoming runnable.
2784 		 */
2785 		if (task_curr(ctx->task) && !reprogram) {
2786 			ret = -ESRCH;
2787 			goto unlock;
2788 		}
2789 
2790 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2791 	} else if (task_ctx) {
2792 		raw_spin_lock(&task_ctx->lock);
2793 	}
2794 
2795 #ifdef CONFIG_CGROUP_PERF
2796 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2797 		/*
2798 		 * If the current cgroup doesn't match the event's
2799 		 * cgroup, we should not try to schedule it.
2800 		 */
2801 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2802 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2803 					event->cgrp->css.cgroup);
2804 	}
2805 #endif
2806 
2807 	if (reprogram) {
2808 		ctx_sched_out(ctx, EVENT_TIME);
2809 		add_event_to_ctx(event, ctx);
2810 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2811 	} else {
2812 		add_event_to_ctx(event, ctx);
2813 	}
2814 
2815 unlock:
2816 	perf_ctx_unlock(cpuctx, task_ctx);
2817 
2818 	return ret;
2819 }
2820 
2821 static bool exclusive_event_installable(struct perf_event *event,
2822 					struct perf_event_context *ctx);
2823 
2824 /*
2825  * Attach a performance event to a context.
2826  *
2827  * Very similar to event_function_call, see comment there.
2828  */
2829 static void
2830 perf_install_in_context(struct perf_event_context *ctx,
2831 			struct perf_event *event,
2832 			int cpu)
2833 {
2834 	struct task_struct *task = READ_ONCE(ctx->task);
2835 
2836 	lockdep_assert_held(&ctx->mutex);
2837 
2838 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2839 
2840 	if (event->cpu != -1)
2841 		WARN_ON_ONCE(event->cpu != cpu);
2842 
2843 	/*
2844 	 * Ensures that if we can observe event->ctx, both the event and ctx
2845 	 * will be 'complete'. See perf_iterate_sb_cpu().
2846 	 */
2847 	smp_store_release(&event->ctx, ctx);
2848 
2849 	/*
2850 	 * perf_event_attr::disabled events will not run and can be initialized
2851 	 * without IPI. Except when this is the first event for the context, in
2852 	 * that case we need the magic of the IPI to set ctx->is_active.
2853 	 *
2854 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2855 	 * event will issue the IPI and reprogram the hardware.
2856 	 */
2857 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2858 	    ctx->nr_events && !is_cgroup_event(event)) {
2859 		raw_spin_lock_irq(&ctx->lock);
2860 		if (ctx->task == TASK_TOMBSTONE) {
2861 			raw_spin_unlock_irq(&ctx->lock);
2862 			return;
2863 		}
2864 		add_event_to_ctx(event, ctx);
2865 		raw_spin_unlock_irq(&ctx->lock);
2866 		return;
2867 	}
2868 
2869 	if (!task) {
2870 		cpu_function_call(cpu, __perf_install_in_context, event);
2871 		return;
2872 	}
2873 
2874 	/*
2875 	 * Should not happen, we validate the ctx is still alive before calling.
2876 	 */
2877 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2878 		return;
2879 
2880 	/*
2881 	 * Installing events is tricky because we cannot rely on ctx->is_active
2882 	 * to be set in case this is the nr_events 0 -> 1 transition.
2883 	 *
2884 	 * Instead we use task_curr(), which tells us if the task is running.
2885 	 * However, since we use task_curr() outside of rq::lock, we can race
2886 	 * against the actual state. This means the result can be wrong.
2887 	 *
2888 	 * If we get a false positive, we retry, this is harmless.
2889 	 *
2890 	 * If we get a false negative, things are complicated. If we are after
2891 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2892 	 * value must be correct. If we're before, it doesn't matter since
2893 	 * perf_event_context_sched_in() will program the counter.
2894 	 *
2895 	 * However, this hinges on the remote context switch having observed
2896 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2897 	 * ctx::lock in perf_event_context_sched_in().
2898 	 *
2899 	 * We do this by task_function_call(), if the IPI fails to hit the task
2900 	 * we know any future context switch of task must see the
2901 	 * perf_event_ctpx[] store.
2902 	 */
2903 
2904 	/*
2905 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2906 	 * task_cpu() load, such that if the IPI then does not find the task
2907 	 * running, a future context switch of that task must observe the
2908 	 * store.
2909 	 */
2910 	smp_mb();
2911 again:
2912 	if (!task_function_call(task, __perf_install_in_context, event))
2913 		return;
2914 
2915 	raw_spin_lock_irq(&ctx->lock);
2916 	task = ctx->task;
2917 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2918 		/*
2919 		 * Cannot happen because we already checked above (which also
2920 		 * cannot happen), and we hold ctx->mutex, which serializes us
2921 		 * against perf_event_exit_task_context().
2922 		 */
2923 		raw_spin_unlock_irq(&ctx->lock);
2924 		return;
2925 	}
2926 	/*
2927 	 * If the task is not running, ctx->lock will avoid it becoming so,
2928 	 * thus we can safely install the event.
2929 	 */
2930 	if (task_curr(task)) {
2931 		raw_spin_unlock_irq(&ctx->lock);
2932 		goto again;
2933 	}
2934 	add_event_to_ctx(event, ctx);
2935 	raw_spin_unlock_irq(&ctx->lock);
2936 }
2937 
2938 /*
2939  * Cross CPU call to enable a performance event
2940  */
2941 static void __perf_event_enable(struct perf_event *event,
2942 				struct perf_cpu_context *cpuctx,
2943 				struct perf_event_context *ctx,
2944 				void *info)
2945 {
2946 	struct perf_event *leader = event->group_leader;
2947 	struct perf_event_context *task_ctx;
2948 
2949 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2950 	    event->state <= PERF_EVENT_STATE_ERROR)
2951 		return;
2952 
2953 	if (ctx->is_active)
2954 		ctx_sched_out(ctx, EVENT_TIME);
2955 
2956 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2957 	perf_cgroup_event_enable(event, ctx);
2958 
2959 	if (!ctx->is_active)
2960 		return;
2961 
2962 	if (!event_filter_match(event)) {
2963 		ctx_sched_in(ctx, EVENT_TIME);
2964 		return;
2965 	}
2966 
2967 	/*
2968 	 * If the event is in a group and isn't the group leader,
2969 	 * then don't put it on unless the group is on.
2970 	 */
2971 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2972 		ctx_sched_in(ctx, EVENT_TIME);
2973 		return;
2974 	}
2975 
2976 	task_ctx = cpuctx->task_ctx;
2977 	if (ctx->task)
2978 		WARN_ON_ONCE(task_ctx != ctx);
2979 
2980 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2981 }
2982 
2983 /*
2984  * Enable an event.
2985  *
2986  * If event->ctx is a cloned context, callers must make sure that
2987  * every task struct that event->ctx->task could possibly point to
2988  * remains valid.  This condition is satisfied when called through
2989  * perf_event_for_each_child or perf_event_for_each as described
2990  * for perf_event_disable.
2991  */
2992 static void _perf_event_enable(struct perf_event *event)
2993 {
2994 	struct perf_event_context *ctx = event->ctx;
2995 
2996 	raw_spin_lock_irq(&ctx->lock);
2997 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2998 	    event->state <  PERF_EVENT_STATE_ERROR) {
2999 out:
3000 		raw_spin_unlock_irq(&ctx->lock);
3001 		return;
3002 	}
3003 
3004 	/*
3005 	 * If the event is in error state, clear that first.
3006 	 *
3007 	 * That way, if we see the event in error state below, we know that it
3008 	 * has gone back into error state, as distinct from the task having
3009 	 * been scheduled away before the cross-call arrived.
3010 	 */
3011 	if (event->state == PERF_EVENT_STATE_ERROR) {
3012 		/*
3013 		 * Detached SIBLING events cannot leave ERROR state.
3014 		 */
3015 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3016 		    event->group_leader == event)
3017 			goto out;
3018 
3019 		event->state = PERF_EVENT_STATE_OFF;
3020 	}
3021 	raw_spin_unlock_irq(&ctx->lock);
3022 
3023 	event_function_call(event, __perf_event_enable, NULL);
3024 }
3025 
3026 /*
3027  * See perf_event_disable();
3028  */
3029 void perf_event_enable(struct perf_event *event)
3030 {
3031 	struct perf_event_context *ctx;
3032 
3033 	ctx = perf_event_ctx_lock(event);
3034 	_perf_event_enable(event);
3035 	perf_event_ctx_unlock(event, ctx);
3036 }
3037 EXPORT_SYMBOL_GPL(perf_event_enable);
3038 
3039 struct stop_event_data {
3040 	struct perf_event	*event;
3041 	unsigned int		restart;
3042 };
3043 
3044 static int __perf_event_stop(void *info)
3045 {
3046 	struct stop_event_data *sd = info;
3047 	struct perf_event *event = sd->event;
3048 
3049 	/* if it's already INACTIVE, do nothing */
3050 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 		return 0;
3052 
3053 	/* matches smp_wmb() in event_sched_in() */
3054 	smp_rmb();
3055 
3056 	/*
3057 	 * There is a window with interrupts enabled before we get here,
3058 	 * so we need to check again lest we try to stop another CPU's event.
3059 	 */
3060 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3061 		return -EAGAIN;
3062 
3063 	event->pmu->stop(event, PERF_EF_UPDATE);
3064 
3065 	/*
3066 	 * May race with the actual stop (through perf_pmu_output_stop()),
3067 	 * but it is only used for events with AUX ring buffer, and such
3068 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3069 	 * see comments in perf_aux_output_begin().
3070 	 *
3071 	 * Since this is happening on an event-local CPU, no trace is lost
3072 	 * while restarting.
3073 	 */
3074 	if (sd->restart)
3075 		event->pmu->start(event, 0);
3076 
3077 	return 0;
3078 }
3079 
3080 static int perf_event_stop(struct perf_event *event, int restart)
3081 {
3082 	struct stop_event_data sd = {
3083 		.event		= event,
3084 		.restart	= restart,
3085 	};
3086 	int ret = 0;
3087 
3088 	do {
3089 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3090 			return 0;
3091 
3092 		/* matches smp_wmb() in event_sched_in() */
3093 		smp_rmb();
3094 
3095 		/*
3096 		 * We only want to restart ACTIVE events, so if the event goes
3097 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3098 		 * fall through with ret==-ENXIO.
3099 		 */
3100 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3101 					__perf_event_stop, &sd);
3102 	} while (ret == -EAGAIN);
3103 
3104 	return ret;
3105 }
3106 
3107 /*
3108  * In order to contain the amount of racy and tricky in the address filter
3109  * configuration management, it is a two part process:
3110  *
3111  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3112  *      we update the addresses of corresponding vmas in
3113  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3114  * (p2) when an event is scheduled in (pmu::add), it calls
3115  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3116  *      if the generation has changed since the previous call.
3117  *
3118  * If (p1) happens while the event is active, we restart it to force (p2).
3119  *
3120  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3121  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3122  *     ioctl;
3123  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3124  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3125  *     for reading;
3126  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3127  *     of exec.
3128  */
3129 void perf_event_addr_filters_sync(struct perf_event *event)
3130 {
3131 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3132 
3133 	if (!has_addr_filter(event))
3134 		return;
3135 
3136 	raw_spin_lock(&ifh->lock);
3137 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3138 		event->pmu->addr_filters_sync(event);
3139 		event->hw.addr_filters_gen = event->addr_filters_gen;
3140 	}
3141 	raw_spin_unlock(&ifh->lock);
3142 }
3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3144 
3145 static int _perf_event_refresh(struct perf_event *event, int refresh)
3146 {
3147 	/*
3148 	 * not supported on inherited events
3149 	 */
3150 	if (event->attr.inherit || !is_sampling_event(event))
3151 		return -EINVAL;
3152 
3153 	atomic_add(refresh, &event->event_limit);
3154 	_perf_event_enable(event);
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  * See perf_event_disable()
3161  */
3162 int perf_event_refresh(struct perf_event *event, int refresh)
3163 {
3164 	struct perf_event_context *ctx;
3165 	int ret;
3166 
3167 	ctx = perf_event_ctx_lock(event);
3168 	ret = _perf_event_refresh(event, refresh);
3169 	perf_event_ctx_unlock(event, ctx);
3170 
3171 	return ret;
3172 }
3173 EXPORT_SYMBOL_GPL(perf_event_refresh);
3174 
3175 static int perf_event_modify_breakpoint(struct perf_event *bp,
3176 					 struct perf_event_attr *attr)
3177 {
3178 	int err;
3179 
3180 	_perf_event_disable(bp);
3181 
3182 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3183 
3184 	if (!bp->attr.disabled)
3185 		_perf_event_enable(bp);
3186 
3187 	return err;
3188 }
3189 
3190 /*
3191  * Copy event-type-independent attributes that may be modified.
3192  */
3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3194 					const struct perf_event_attr *from)
3195 {
3196 	to->sig_data = from->sig_data;
3197 }
3198 
3199 static int perf_event_modify_attr(struct perf_event *event,
3200 				  struct perf_event_attr *attr)
3201 {
3202 	int (*func)(struct perf_event *, struct perf_event_attr *);
3203 	struct perf_event *child;
3204 	int err;
3205 
3206 	if (event->attr.type != attr->type)
3207 		return -EINVAL;
3208 
3209 	switch (event->attr.type) {
3210 	case PERF_TYPE_BREAKPOINT:
3211 		func = perf_event_modify_breakpoint;
3212 		break;
3213 	default:
3214 		/* Place holder for future additions. */
3215 		return -EOPNOTSUPP;
3216 	}
3217 
3218 	WARN_ON_ONCE(event->ctx->parent_ctx);
3219 
3220 	mutex_lock(&event->child_mutex);
3221 	/*
3222 	 * Event-type-independent attributes must be copied before event-type
3223 	 * modification, which will validate that final attributes match the
3224 	 * source attributes after all relevant attributes have been copied.
3225 	 */
3226 	perf_event_modify_copy_attr(&event->attr, attr);
3227 	err = func(event, attr);
3228 	if (err)
3229 		goto out;
3230 	list_for_each_entry(child, &event->child_list, child_list) {
3231 		perf_event_modify_copy_attr(&child->attr, attr);
3232 		err = func(child, attr);
3233 		if (err)
3234 			goto out;
3235 	}
3236 out:
3237 	mutex_unlock(&event->child_mutex);
3238 	return err;
3239 }
3240 
3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3242 				enum event_type_t event_type)
3243 {
3244 	struct perf_event_context *ctx = pmu_ctx->ctx;
3245 	struct perf_event *event, *tmp;
3246 	struct pmu *pmu = pmu_ctx->pmu;
3247 
3248 	if (ctx->task && !ctx->is_active) {
3249 		struct perf_cpu_pmu_context *cpc;
3250 
3251 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3252 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3253 		cpc->task_epc = NULL;
3254 	}
3255 
3256 	if (!event_type)
3257 		return;
3258 
3259 	perf_pmu_disable(pmu);
3260 	if (event_type & EVENT_PINNED) {
3261 		list_for_each_entry_safe(event, tmp,
3262 					 &pmu_ctx->pinned_active,
3263 					 active_list)
3264 			group_sched_out(event, ctx);
3265 	}
3266 
3267 	if (event_type & EVENT_FLEXIBLE) {
3268 		list_for_each_entry_safe(event, tmp,
3269 					 &pmu_ctx->flexible_active,
3270 					 active_list)
3271 			group_sched_out(event, ctx);
3272 		/*
3273 		 * Since we cleared EVENT_FLEXIBLE, also clear
3274 		 * rotate_necessary, is will be reset by
3275 		 * ctx_flexible_sched_in() when needed.
3276 		 */
3277 		pmu_ctx->rotate_necessary = 0;
3278 	}
3279 	perf_pmu_enable(pmu);
3280 }
3281 
3282 static void
3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3284 {
3285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3286 	struct perf_event_pmu_context *pmu_ctx;
3287 	int is_active = ctx->is_active;
3288 	bool cgroup = event_type & EVENT_CGROUP;
3289 
3290 	event_type &= ~EVENT_CGROUP;
3291 
3292 	lockdep_assert_held(&ctx->lock);
3293 
3294 	if (likely(!ctx->nr_events)) {
3295 		/*
3296 		 * See __perf_remove_from_context().
3297 		 */
3298 		WARN_ON_ONCE(ctx->is_active);
3299 		if (ctx->task)
3300 			WARN_ON_ONCE(cpuctx->task_ctx);
3301 		return;
3302 	}
3303 
3304 	/*
3305 	 * Always update time if it was set; not only when it changes.
3306 	 * Otherwise we can 'forget' to update time for any but the last
3307 	 * context we sched out. For example:
3308 	 *
3309 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3310 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3311 	 *
3312 	 * would only update time for the pinned events.
3313 	 */
3314 	if (is_active & EVENT_TIME) {
3315 		/* update (and stop) ctx time */
3316 		update_context_time(ctx);
3317 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3318 		/*
3319 		 * CPU-release for the below ->is_active store,
3320 		 * see __load_acquire() in perf_event_time_now()
3321 		 */
3322 		barrier();
3323 	}
3324 
3325 	ctx->is_active &= ~event_type;
3326 	if (!(ctx->is_active & EVENT_ALL))
3327 		ctx->is_active = 0;
3328 
3329 	if (ctx->task) {
3330 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3331 		if (!ctx->is_active)
3332 			cpuctx->task_ctx = NULL;
3333 	}
3334 
3335 	is_active ^= ctx->is_active; /* changed bits */
3336 
3337 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3338 		if (cgroup && !pmu_ctx->nr_cgroups)
3339 			continue;
3340 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3341 	}
3342 }
3343 
3344 /*
3345  * Test whether two contexts are equivalent, i.e. whether they have both been
3346  * cloned from the same version of the same context.
3347  *
3348  * Equivalence is measured using a generation number in the context that is
3349  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350  * and list_del_event().
3351  */
3352 static int context_equiv(struct perf_event_context *ctx1,
3353 			 struct perf_event_context *ctx2)
3354 {
3355 	lockdep_assert_held(&ctx1->lock);
3356 	lockdep_assert_held(&ctx2->lock);
3357 
3358 	/* Pinning disables the swap optimization */
3359 	if (ctx1->pin_count || ctx2->pin_count)
3360 		return 0;
3361 
3362 	/* If ctx1 is the parent of ctx2 */
3363 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364 		return 1;
3365 
3366 	/* If ctx2 is the parent of ctx1 */
3367 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368 		return 1;
3369 
3370 	/*
3371 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3372 	 * hierarchy, see perf_event_init_context().
3373 	 */
3374 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375 			ctx1->parent_gen == ctx2->parent_gen)
3376 		return 1;
3377 
3378 	/* Unmatched */
3379 	return 0;
3380 }
3381 
3382 static void __perf_event_sync_stat(struct perf_event *event,
3383 				     struct perf_event *next_event)
3384 {
3385 	u64 value;
3386 
3387 	if (!event->attr.inherit_stat)
3388 		return;
3389 
3390 	/*
3391 	 * Update the event value, we cannot use perf_event_read()
3392 	 * because we're in the middle of a context switch and have IRQs
3393 	 * disabled, which upsets smp_call_function_single(), however
3394 	 * we know the event must be on the current CPU, therefore we
3395 	 * don't need to use it.
3396 	 */
3397 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3398 		event->pmu->read(event);
3399 
3400 	perf_event_update_time(event);
3401 
3402 	/*
3403 	 * In order to keep per-task stats reliable we need to flip the event
3404 	 * values when we flip the contexts.
3405 	 */
3406 	value = local64_read(&next_event->count);
3407 	value = local64_xchg(&event->count, value);
3408 	local64_set(&next_event->count, value);
3409 
3410 	swap(event->total_time_enabled, next_event->total_time_enabled);
3411 	swap(event->total_time_running, next_event->total_time_running);
3412 
3413 	/*
3414 	 * Since we swizzled the values, update the user visible data too.
3415 	 */
3416 	perf_event_update_userpage(event);
3417 	perf_event_update_userpage(next_event);
3418 }
3419 
3420 static void perf_event_sync_stat(struct perf_event_context *ctx,
3421 				   struct perf_event_context *next_ctx)
3422 {
3423 	struct perf_event *event, *next_event;
3424 
3425 	if (!ctx->nr_stat)
3426 		return;
3427 
3428 	update_context_time(ctx);
3429 
3430 	event = list_first_entry(&ctx->event_list,
3431 				   struct perf_event, event_entry);
3432 
3433 	next_event = list_first_entry(&next_ctx->event_list,
3434 					struct perf_event, event_entry);
3435 
3436 	while (&event->event_entry != &ctx->event_list &&
3437 	       &next_event->event_entry != &next_ctx->event_list) {
3438 
3439 		__perf_event_sync_stat(event, next_event);
3440 
3441 		event = list_next_entry(event, event_entry);
3442 		next_event = list_next_entry(next_event, event_entry);
3443 	}
3444 }
3445 
3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3447 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3448 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3449 	     !list_entry_is_head(pos1, head1, member) &&		\
3450 	     !list_entry_is_head(pos2, head2, member);			\
3451 	     pos1 = list_next_entry(pos1, member),			\
3452 	     pos2 = list_next_entry(pos2, member))
3453 
3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3455 					  struct perf_event_context *next_ctx)
3456 {
3457 	struct perf_event_pmu_context *prev_epc, *next_epc;
3458 
3459 	if (!prev_ctx->nr_task_data)
3460 		return;
3461 
3462 	double_list_for_each_entry(prev_epc, next_epc,
3463 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3464 				   pmu_ctx_entry) {
3465 
3466 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3467 			continue;
3468 
3469 		/*
3470 		 * PMU specific parts of task perf context can require
3471 		 * additional synchronization. As an example of such
3472 		 * synchronization see implementation details of Intel
3473 		 * LBR call stack data profiling;
3474 		 */
3475 		if (prev_epc->pmu->swap_task_ctx)
3476 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3477 		else
3478 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3479 	}
3480 }
3481 
3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3483 {
3484 	struct perf_event_pmu_context *pmu_ctx;
3485 	struct perf_cpu_pmu_context *cpc;
3486 
3487 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3488 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3489 
3490 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3491 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3492 	}
3493 }
3494 
3495 static void
3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3497 {
3498 	struct perf_event_context *ctx = task->perf_event_ctxp;
3499 	struct perf_event_context *next_ctx;
3500 	struct perf_event_context *parent, *next_parent;
3501 	int do_switch = 1;
3502 
3503 	if (likely(!ctx))
3504 		return;
3505 
3506 	rcu_read_lock();
3507 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3508 	if (!next_ctx)
3509 		goto unlock;
3510 
3511 	parent = rcu_dereference(ctx->parent_ctx);
3512 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3513 
3514 	/* If neither context have a parent context; they cannot be clones. */
3515 	if (!parent && !next_parent)
3516 		goto unlock;
3517 
3518 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3519 		/*
3520 		 * Looks like the two contexts are clones, so we might be
3521 		 * able to optimize the context switch.  We lock both
3522 		 * contexts and check that they are clones under the
3523 		 * lock (including re-checking that neither has been
3524 		 * uncloned in the meantime).  It doesn't matter which
3525 		 * order we take the locks because no other cpu could
3526 		 * be trying to lock both of these tasks.
3527 		 */
3528 		raw_spin_lock(&ctx->lock);
3529 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3530 		if (context_equiv(ctx, next_ctx)) {
3531 
3532 			perf_ctx_disable(ctx, false);
3533 
3534 			/* PMIs are disabled; ctx->nr_pending is stable. */
3535 			if (local_read(&ctx->nr_pending) ||
3536 			    local_read(&next_ctx->nr_pending)) {
3537 				/*
3538 				 * Must not swap out ctx when there's pending
3539 				 * events that rely on the ctx->task relation.
3540 				 */
3541 				raw_spin_unlock(&next_ctx->lock);
3542 				rcu_read_unlock();
3543 				goto inside_switch;
3544 			}
3545 
3546 			WRITE_ONCE(ctx->task, next);
3547 			WRITE_ONCE(next_ctx->task, task);
3548 
3549 			perf_ctx_sched_task_cb(ctx, false);
3550 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3551 
3552 			perf_ctx_enable(ctx, false);
3553 
3554 			/*
3555 			 * RCU_INIT_POINTER here is safe because we've not
3556 			 * modified the ctx and the above modification of
3557 			 * ctx->task and ctx->task_ctx_data are immaterial
3558 			 * since those values are always verified under
3559 			 * ctx->lock which we're now holding.
3560 			 */
3561 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3562 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3563 
3564 			do_switch = 0;
3565 
3566 			perf_event_sync_stat(ctx, next_ctx);
3567 		}
3568 		raw_spin_unlock(&next_ctx->lock);
3569 		raw_spin_unlock(&ctx->lock);
3570 	}
3571 unlock:
3572 	rcu_read_unlock();
3573 
3574 	if (do_switch) {
3575 		raw_spin_lock(&ctx->lock);
3576 		perf_ctx_disable(ctx, false);
3577 
3578 inside_switch:
3579 		perf_ctx_sched_task_cb(ctx, false);
3580 		task_ctx_sched_out(ctx, EVENT_ALL);
3581 
3582 		perf_ctx_enable(ctx, false);
3583 		raw_spin_unlock(&ctx->lock);
3584 	}
3585 }
3586 
3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3589 
3590 void perf_sched_cb_dec(struct pmu *pmu)
3591 {
3592 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3593 
3594 	this_cpu_dec(perf_sched_cb_usages);
3595 	barrier();
3596 
3597 	if (!--cpc->sched_cb_usage)
3598 		list_del(&cpc->sched_cb_entry);
3599 }
3600 
3601 
3602 void perf_sched_cb_inc(struct pmu *pmu)
3603 {
3604 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3605 
3606 	if (!cpc->sched_cb_usage++)
3607 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3608 
3609 	barrier();
3610 	this_cpu_inc(perf_sched_cb_usages);
3611 }
3612 
3613 /*
3614  * This function provides the context switch callback to the lower code
3615  * layer. It is invoked ONLY when the context switch callback is enabled.
3616  *
3617  * This callback is relevant even to per-cpu events; for example multi event
3618  * PEBS requires this to provide PID/TID information. This requires we flush
3619  * all queued PEBS records before we context switch to a new task.
3620  */
3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3622 {
3623 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3624 	struct pmu *pmu;
3625 
3626 	pmu = cpc->epc.pmu;
3627 
3628 	/* software PMUs will not have sched_task */
3629 	if (WARN_ON_ONCE(!pmu->sched_task))
3630 		return;
3631 
3632 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3633 	perf_pmu_disable(pmu);
3634 
3635 	pmu->sched_task(cpc->task_epc, sched_in);
3636 
3637 	perf_pmu_enable(pmu);
3638 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3639 }
3640 
3641 static void perf_pmu_sched_task(struct task_struct *prev,
3642 				struct task_struct *next,
3643 				bool sched_in)
3644 {
3645 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3646 	struct perf_cpu_pmu_context *cpc;
3647 
3648 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3649 	if (prev == next || cpuctx->task_ctx)
3650 		return;
3651 
3652 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3653 		__perf_pmu_sched_task(cpc, sched_in);
3654 }
3655 
3656 static void perf_event_switch(struct task_struct *task,
3657 			      struct task_struct *next_prev, bool sched_in);
3658 
3659 /*
3660  * Called from scheduler to remove the events of the current task,
3661  * with interrupts disabled.
3662  *
3663  * We stop each event and update the event value in event->count.
3664  *
3665  * This does not protect us against NMI, but disable()
3666  * sets the disabled bit in the control field of event _before_
3667  * accessing the event control register. If a NMI hits, then it will
3668  * not restart the event.
3669  */
3670 void __perf_event_task_sched_out(struct task_struct *task,
3671 				 struct task_struct *next)
3672 {
3673 	if (__this_cpu_read(perf_sched_cb_usages))
3674 		perf_pmu_sched_task(task, next, false);
3675 
3676 	if (atomic_read(&nr_switch_events))
3677 		perf_event_switch(task, next, false);
3678 
3679 	perf_event_context_sched_out(task, next);
3680 
3681 	/*
3682 	 * if cgroup events exist on this CPU, then we need
3683 	 * to check if we have to switch out PMU state.
3684 	 * cgroup event are system-wide mode only
3685 	 */
3686 	perf_cgroup_switch(next);
3687 }
3688 
3689 static bool perf_less_group_idx(const void *l, const void *r)
3690 {
3691 	const struct perf_event *le = *(const struct perf_event **)l;
3692 	const struct perf_event *re = *(const struct perf_event **)r;
3693 
3694 	return le->group_index < re->group_index;
3695 }
3696 
3697 static void swap_ptr(void *l, void *r)
3698 {
3699 	void **lp = l, **rp = r;
3700 
3701 	swap(*lp, *rp);
3702 }
3703 
3704 static const struct min_heap_callbacks perf_min_heap = {
3705 	.elem_size = sizeof(struct perf_event *),
3706 	.less = perf_less_group_idx,
3707 	.swp = swap_ptr,
3708 };
3709 
3710 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3711 {
3712 	struct perf_event **itrs = heap->data;
3713 
3714 	if (event) {
3715 		itrs[heap->nr] = event;
3716 		heap->nr++;
3717 	}
3718 }
3719 
3720 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3721 {
3722 	struct perf_cpu_pmu_context *cpc;
3723 
3724 	if (!pmu_ctx->ctx->task)
3725 		return;
3726 
3727 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3728 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3729 	cpc->task_epc = pmu_ctx;
3730 }
3731 
3732 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3733 				struct perf_event_groups *groups, int cpu,
3734 				struct pmu *pmu,
3735 				int (*func)(struct perf_event *, void *),
3736 				void *data)
3737 {
3738 #ifdef CONFIG_CGROUP_PERF
3739 	struct cgroup_subsys_state *css = NULL;
3740 #endif
3741 	struct perf_cpu_context *cpuctx = NULL;
3742 	/* Space for per CPU and/or any CPU event iterators. */
3743 	struct perf_event *itrs[2];
3744 	struct min_heap event_heap;
3745 	struct perf_event **evt;
3746 	int ret;
3747 
3748 	if (pmu->filter && pmu->filter(pmu, cpu))
3749 		return 0;
3750 
3751 	if (!ctx->task) {
3752 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3753 		event_heap = (struct min_heap){
3754 			.data = cpuctx->heap,
3755 			.nr = 0,
3756 			.size = cpuctx->heap_size,
3757 		};
3758 
3759 		lockdep_assert_held(&cpuctx->ctx.lock);
3760 
3761 #ifdef CONFIG_CGROUP_PERF
3762 		if (cpuctx->cgrp)
3763 			css = &cpuctx->cgrp->css;
3764 #endif
3765 	} else {
3766 		event_heap = (struct min_heap){
3767 			.data = itrs,
3768 			.nr = 0,
3769 			.size = ARRAY_SIZE(itrs),
3770 		};
3771 		/* Events not within a CPU context may be on any CPU. */
3772 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3773 	}
3774 	evt = event_heap.data;
3775 
3776 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3777 
3778 #ifdef CONFIG_CGROUP_PERF
3779 	for (; css; css = css->parent)
3780 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3781 #endif
3782 
3783 	if (event_heap.nr) {
3784 		__link_epc((*evt)->pmu_ctx);
3785 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3786 	}
3787 
3788 	min_heapify_all(&event_heap, &perf_min_heap);
3789 
3790 	while (event_heap.nr) {
3791 		ret = func(*evt, data);
3792 		if (ret)
3793 			return ret;
3794 
3795 		*evt = perf_event_groups_next(*evt, pmu);
3796 		if (*evt)
3797 			min_heapify(&event_heap, 0, &perf_min_heap);
3798 		else
3799 			min_heap_pop(&event_heap, &perf_min_heap);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 /*
3806  * Because the userpage is strictly per-event (there is no concept of context,
3807  * so there cannot be a context indirection), every userpage must be updated
3808  * when context time starts :-(
3809  *
3810  * IOW, we must not miss EVENT_TIME edges.
3811  */
3812 static inline bool event_update_userpage(struct perf_event *event)
3813 {
3814 	if (likely(!atomic_read(&event->mmap_count)))
3815 		return false;
3816 
3817 	perf_event_update_time(event);
3818 	perf_event_update_userpage(event);
3819 
3820 	return true;
3821 }
3822 
3823 static inline void group_update_userpage(struct perf_event *group_event)
3824 {
3825 	struct perf_event *event;
3826 
3827 	if (!event_update_userpage(group_event))
3828 		return;
3829 
3830 	for_each_sibling_event(event, group_event)
3831 		event_update_userpage(event);
3832 }
3833 
3834 static int merge_sched_in(struct perf_event *event, void *data)
3835 {
3836 	struct perf_event_context *ctx = event->ctx;
3837 	int *can_add_hw = data;
3838 
3839 	if (event->state <= PERF_EVENT_STATE_OFF)
3840 		return 0;
3841 
3842 	if (!event_filter_match(event))
3843 		return 0;
3844 
3845 	if (group_can_go_on(event, *can_add_hw)) {
3846 		if (!group_sched_in(event, ctx))
3847 			list_add_tail(&event->active_list, get_event_list(event));
3848 	}
3849 
3850 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3851 		*can_add_hw = 0;
3852 		if (event->attr.pinned) {
3853 			perf_cgroup_event_disable(event, ctx);
3854 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3855 		} else {
3856 			struct perf_cpu_pmu_context *cpc;
3857 
3858 			event->pmu_ctx->rotate_necessary = 1;
3859 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3860 			perf_mux_hrtimer_restart(cpc);
3861 			group_update_userpage(event);
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3869 				struct perf_event_groups *groups,
3870 				struct pmu *pmu)
3871 {
3872 	int can_add_hw = 1;
3873 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3874 			   merge_sched_in, &can_add_hw);
3875 }
3876 
3877 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3878 				struct perf_event_groups *groups,
3879 				bool cgroup)
3880 {
3881 	struct perf_event_pmu_context *pmu_ctx;
3882 
3883 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3884 		if (cgroup && !pmu_ctx->nr_cgroups)
3885 			continue;
3886 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3887 	}
3888 }
3889 
3890 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3891 			       struct pmu *pmu)
3892 {
3893 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3894 }
3895 
3896 static void
3897 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3898 {
3899 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3900 	int is_active = ctx->is_active;
3901 	bool cgroup = event_type & EVENT_CGROUP;
3902 
3903 	event_type &= ~EVENT_CGROUP;
3904 
3905 	lockdep_assert_held(&ctx->lock);
3906 
3907 	if (likely(!ctx->nr_events))
3908 		return;
3909 
3910 	if (!(is_active & EVENT_TIME)) {
3911 		/* start ctx time */
3912 		__update_context_time(ctx, false);
3913 		perf_cgroup_set_timestamp(cpuctx);
3914 		/*
3915 		 * CPU-release for the below ->is_active store,
3916 		 * see __load_acquire() in perf_event_time_now()
3917 		 */
3918 		barrier();
3919 	}
3920 
3921 	ctx->is_active |= (event_type | EVENT_TIME);
3922 	if (ctx->task) {
3923 		if (!is_active)
3924 			cpuctx->task_ctx = ctx;
3925 		else
3926 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3927 	}
3928 
3929 	is_active ^= ctx->is_active; /* changed bits */
3930 
3931 	/*
3932 	 * First go through the list and put on any pinned groups
3933 	 * in order to give them the best chance of going on.
3934 	 */
3935 	if (is_active & EVENT_PINNED)
3936 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3937 
3938 	/* Then walk through the lower prio flexible groups */
3939 	if (is_active & EVENT_FLEXIBLE)
3940 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3941 }
3942 
3943 static void perf_event_context_sched_in(struct task_struct *task)
3944 {
3945 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3946 	struct perf_event_context *ctx;
3947 
3948 	rcu_read_lock();
3949 	ctx = rcu_dereference(task->perf_event_ctxp);
3950 	if (!ctx)
3951 		goto rcu_unlock;
3952 
3953 	if (cpuctx->task_ctx == ctx) {
3954 		perf_ctx_lock(cpuctx, ctx);
3955 		perf_ctx_disable(ctx, false);
3956 
3957 		perf_ctx_sched_task_cb(ctx, true);
3958 
3959 		perf_ctx_enable(ctx, false);
3960 		perf_ctx_unlock(cpuctx, ctx);
3961 		goto rcu_unlock;
3962 	}
3963 
3964 	perf_ctx_lock(cpuctx, ctx);
3965 	/*
3966 	 * We must check ctx->nr_events while holding ctx->lock, such
3967 	 * that we serialize against perf_install_in_context().
3968 	 */
3969 	if (!ctx->nr_events)
3970 		goto unlock;
3971 
3972 	perf_ctx_disable(ctx, false);
3973 	/*
3974 	 * We want to keep the following priority order:
3975 	 * cpu pinned (that don't need to move), task pinned,
3976 	 * cpu flexible, task flexible.
3977 	 *
3978 	 * However, if task's ctx is not carrying any pinned
3979 	 * events, no need to flip the cpuctx's events around.
3980 	 */
3981 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3982 		perf_ctx_disable(&cpuctx->ctx, false);
3983 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3984 	}
3985 
3986 	perf_event_sched_in(cpuctx, ctx);
3987 
3988 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3989 
3990 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3991 		perf_ctx_enable(&cpuctx->ctx, false);
3992 
3993 	perf_ctx_enable(ctx, false);
3994 
3995 unlock:
3996 	perf_ctx_unlock(cpuctx, ctx);
3997 rcu_unlock:
3998 	rcu_read_unlock();
3999 }
4000 
4001 /*
4002  * Called from scheduler to add the events of the current task
4003  * with interrupts disabled.
4004  *
4005  * We restore the event value and then enable it.
4006  *
4007  * This does not protect us against NMI, but enable()
4008  * sets the enabled bit in the control field of event _before_
4009  * accessing the event control register. If a NMI hits, then it will
4010  * keep the event running.
4011  */
4012 void __perf_event_task_sched_in(struct task_struct *prev,
4013 				struct task_struct *task)
4014 {
4015 	perf_event_context_sched_in(task);
4016 
4017 	if (atomic_read(&nr_switch_events))
4018 		perf_event_switch(task, prev, true);
4019 
4020 	if (__this_cpu_read(perf_sched_cb_usages))
4021 		perf_pmu_sched_task(prev, task, true);
4022 }
4023 
4024 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4025 {
4026 	u64 frequency = event->attr.sample_freq;
4027 	u64 sec = NSEC_PER_SEC;
4028 	u64 divisor, dividend;
4029 
4030 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4031 
4032 	count_fls = fls64(count);
4033 	nsec_fls = fls64(nsec);
4034 	frequency_fls = fls64(frequency);
4035 	sec_fls = 30;
4036 
4037 	/*
4038 	 * We got @count in @nsec, with a target of sample_freq HZ
4039 	 * the target period becomes:
4040 	 *
4041 	 *             @count * 10^9
4042 	 * period = -------------------
4043 	 *          @nsec * sample_freq
4044 	 *
4045 	 */
4046 
4047 	/*
4048 	 * Reduce accuracy by one bit such that @a and @b converge
4049 	 * to a similar magnitude.
4050 	 */
4051 #define REDUCE_FLS(a, b)		\
4052 do {					\
4053 	if (a##_fls > b##_fls) {	\
4054 		a >>= 1;		\
4055 		a##_fls--;		\
4056 	} else {			\
4057 		b >>= 1;		\
4058 		b##_fls--;		\
4059 	}				\
4060 } while (0)
4061 
4062 	/*
4063 	 * Reduce accuracy until either term fits in a u64, then proceed with
4064 	 * the other, so that finally we can do a u64/u64 division.
4065 	 */
4066 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4067 		REDUCE_FLS(nsec, frequency);
4068 		REDUCE_FLS(sec, count);
4069 	}
4070 
4071 	if (count_fls + sec_fls > 64) {
4072 		divisor = nsec * frequency;
4073 
4074 		while (count_fls + sec_fls > 64) {
4075 			REDUCE_FLS(count, sec);
4076 			divisor >>= 1;
4077 		}
4078 
4079 		dividend = count * sec;
4080 	} else {
4081 		dividend = count * sec;
4082 
4083 		while (nsec_fls + frequency_fls > 64) {
4084 			REDUCE_FLS(nsec, frequency);
4085 			dividend >>= 1;
4086 		}
4087 
4088 		divisor = nsec * frequency;
4089 	}
4090 
4091 	if (!divisor)
4092 		return dividend;
4093 
4094 	return div64_u64(dividend, divisor);
4095 }
4096 
4097 static DEFINE_PER_CPU(int, perf_throttled_count);
4098 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4099 
4100 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4101 {
4102 	struct hw_perf_event *hwc = &event->hw;
4103 	s64 period, sample_period;
4104 	s64 delta;
4105 
4106 	period = perf_calculate_period(event, nsec, count);
4107 
4108 	delta = (s64)(period - hwc->sample_period);
4109 	delta = (delta + 7) / 8; /* low pass filter */
4110 
4111 	sample_period = hwc->sample_period + delta;
4112 
4113 	if (!sample_period)
4114 		sample_period = 1;
4115 
4116 	hwc->sample_period = sample_period;
4117 
4118 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4119 		if (disable)
4120 			event->pmu->stop(event, PERF_EF_UPDATE);
4121 
4122 		local64_set(&hwc->period_left, 0);
4123 
4124 		if (disable)
4125 			event->pmu->start(event, PERF_EF_RELOAD);
4126 	}
4127 }
4128 
4129 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4130 {
4131 	struct perf_event *event;
4132 	struct hw_perf_event *hwc;
4133 	u64 now, period = TICK_NSEC;
4134 	s64 delta;
4135 
4136 	list_for_each_entry(event, event_list, active_list) {
4137 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4138 			continue;
4139 
4140 		// XXX use visit thingy to avoid the -1,cpu match
4141 		if (!event_filter_match(event))
4142 			continue;
4143 
4144 		hwc = &event->hw;
4145 
4146 		if (hwc->interrupts == MAX_INTERRUPTS) {
4147 			hwc->interrupts = 0;
4148 			perf_log_throttle(event, 1);
4149 			if (!event->attr.freq || !event->attr.sample_freq)
4150 				event->pmu->start(event, 0);
4151 		}
4152 
4153 		if (!event->attr.freq || !event->attr.sample_freq)
4154 			continue;
4155 
4156 		/*
4157 		 * stop the event and update event->count
4158 		 */
4159 		event->pmu->stop(event, PERF_EF_UPDATE);
4160 
4161 		now = local64_read(&event->count);
4162 		delta = now - hwc->freq_count_stamp;
4163 		hwc->freq_count_stamp = now;
4164 
4165 		/*
4166 		 * restart the event
4167 		 * reload only if value has changed
4168 		 * we have stopped the event so tell that
4169 		 * to perf_adjust_period() to avoid stopping it
4170 		 * twice.
4171 		 */
4172 		if (delta > 0)
4173 			perf_adjust_period(event, period, delta, false);
4174 
4175 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4176 	}
4177 }
4178 
4179 /*
4180  * combine freq adjustment with unthrottling to avoid two passes over the
4181  * events. At the same time, make sure, having freq events does not change
4182  * the rate of unthrottling as that would introduce bias.
4183  */
4184 static void
4185 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4186 {
4187 	struct perf_event_pmu_context *pmu_ctx;
4188 
4189 	/*
4190 	 * only need to iterate over all events iff:
4191 	 * - context have events in frequency mode (needs freq adjust)
4192 	 * - there are events to unthrottle on this cpu
4193 	 */
4194 	if (!(ctx->nr_freq || unthrottle))
4195 		return;
4196 
4197 	raw_spin_lock(&ctx->lock);
4198 
4199 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4200 		if (!(pmu_ctx->nr_freq || unthrottle))
4201 			continue;
4202 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4203 			continue;
4204 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4205 			continue;
4206 
4207 		perf_pmu_disable(pmu_ctx->pmu);
4208 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4209 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4210 		perf_pmu_enable(pmu_ctx->pmu);
4211 	}
4212 
4213 	raw_spin_unlock(&ctx->lock);
4214 }
4215 
4216 /*
4217  * Move @event to the tail of the @ctx's elegible events.
4218  */
4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4220 {
4221 	/*
4222 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4223 	 * disabled by the inheritance code.
4224 	 */
4225 	if (ctx->rotate_disable)
4226 		return;
4227 
4228 	perf_event_groups_delete(&ctx->flexible_groups, event);
4229 	perf_event_groups_insert(&ctx->flexible_groups, event);
4230 }
4231 
4232 /* pick an event from the flexible_groups to rotate */
4233 static inline struct perf_event *
4234 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4235 {
4236 	struct perf_event *event;
4237 	struct rb_node *node;
4238 	struct rb_root *tree;
4239 	struct __group_key key = {
4240 		.pmu = pmu_ctx->pmu,
4241 	};
4242 
4243 	/* pick the first active flexible event */
4244 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4245 					 struct perf_event, active_list);
4246 	if (event)
4247 		goto out;
4248 
4249 	/* if no active flexible event, pick the first event */
4250 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4251 
4252 	if (!pmu_ctx->ctx->task) {
4253 		key.cpu = smp_processor_id();
4254 
4255 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 		if (node)
4257 			event = __node_2_pe(node);
4258 		goto out;
4259 	}
4260 
4261 	key.cpu = -1;
4262 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4263 	if (node) {
4264 		event = __node_2_pe(node);
4265 		goto out;
4266 	}
4267 
4268 	key.cpu = smp_processor_id();
4269 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4270 	if (node)
4271 		event = __node_2_pe(node);
4272 
4273 out:
4274 	/*
4275 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4276 	 * finds there are unschedulable events, it will set it again.
4277 	 */
4278 	pmu_ctx->rotate_necessary = 0;
4279 
4280 	return event;
4281 }
4282 
4283 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4284 {
4285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4286 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4287 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4288 	int cpu_rotate, task_rotate;
4289 	struct pmu *pmu;
4290 
4291 	/*
4292 	 * Since we run this from IRQ context, nobody can install new
4293 	 * events, thus the event count values are stable.
4294 	 */
4295 
4296 	cpu_epc = &cpc->epc;
4297 	pmu = cpu_epc->pmu;
4298 	task_epc = cpc->task_epc;
4299 
4300 	cpu_rotate = cpu_epc->rotate_necessary;
4301 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4302 
4303 	if (!(cpu_rotate || task_rotate))
4304 		return false;
4305 
4306 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4307 	perf_pmu_disable(pmu);
4308 
4309 	if (task_rotate)
4310 		task_event = ctx_event_to_rotate(task_epc);
4311 	if (cpu_rotate)
4312 		cpu_event = ctx_event_to_rotate(cpu_epc);
4313 
4314 	/*
4315 	 * As per the order given at ctx_resched() first 'pop' task flexible
4316 	 * and then, if needed CPU flexible.
4317 	 */
4318 	if (task_event || (task_epc && cpu_event)) {
4319 		update_context_time(task_epc->ctx);
4320 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4321 	}
4322 
4323 	if (cpu_event) {
4324 		update_context_time(&cpuctx->ctx);
4325 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4326 		rotate_ctx(&cpuctx->ctx, cpu_event);
4327 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4328 	}
4329 
4330 	if (task_event)
4331 		rotate_ctx(task_epc->ctx, task_event);
4332 
4333 	if (task_event || (task_epc && cpu_event))
4334 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4335 
4336 	perf_pmu_enable(pmu);
4337 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4338 
4339 	return true;
4340 }
4341 
4342 void perf_event_task_tick(void)
4343 {
4344 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4345 	struct perf_event_context *ctx;
4346 	int throttled;
4347 
4348 	lockdep_assert_irqs_disabled();
4349 
4350 	__this_cpu_inc(perf_throttled_seq);
4351 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4352 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4353 
4354 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4355 
4356 	rcu_read_lock();
4357 	ctx = rcu_dereference(current->perf_event_ctxp);
4358 	if (ctx)
4359 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4360 	rcu_read_unlock();
4361 }
4362 
4363 static int event_enable_on_exec(struct perf_event *event,
4364 				struct perf_event_context *ctx)
4365 {
4366 	if (!event->attr.enable_on_exec)
4367 		return 0;
4368 
4369 	event->attr.enable_on_exec = 0;
4370 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4371 		return 0;
4372 
4373 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4374 
4375 	return 1;
4376 }
4377 
4378 /*
4379  * Enable all of a task's events that have been marked enable-on-exec.
4380  * This expects task == current.
4381  */
4382 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4383 {
4384 	struct perf_event_context *clone_ctx = NULL;
4385 	enum event_type_t event_type = 0;
4386 	struct perf_cpu_context *cpuctx;
4387 	struct perf_event *event;
4388 	unsigned long flags;
4389 	int enabled = 0;
4390 
4391 	local_irq_save(flags);
4392 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4393 		goto out;
4394 
4395 	if (!ctx->nr_events)
4396 		goto out;
4397 
4398 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4399 	perf_ctx_lock(cpuctx, ctx);
4400 	ctx_sched_out(ctx, EVENT_TIME);
4401 
4402 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4403 		enabled |= event_enable_on_exec(event, ctx);
4404 		event_type |= get_event_type(event);
4405 	}
4406 
4407 	/*
4408 	 * Unclone and reschedule this context if we enabled any event.
4409 	 */
4410 	if (enabled) {
4411 		clone_ctx = unclone_ctx(ctx);
4412 		ctx_resched(cpuctx, ctx, event_type);
4413 	} else {
4414 		ctx_sched_in(ctx, EVENT_TIME);
4415 	}
4416 	perf_ctx_unlock(cpuctx, ctx);
4417 
4418 out:
4419 	local_irq_restore(flags);
4420 
4421 	if (clone_ctx)
4422 		put_ctx(clone_ctx);
4423 }
4424 
4425 static void perf_remove_from_owner(struct perf_event *event);
4426 static void perf_event_exit_event(struct perf_event *event,
4427 				  struct perf_event_context *ctx);
4428 
4429 /*
4430  * Removes all events from the current task that have been marked
4431  * remove-on-exec, and feeds their values back to parent events.
4432  */
4433 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4434 {
4435 	struct perf_event_context *clone_ctx = NULL;
4436 	struct perf_event *event, *next;
4437 	unsigned long flags;
4438 	bool modified = false;
4439 
4440 	mutex_lock(&ctx->mutex);
4441 
4442 	if (WARN_ON_ONCE(ctx->task != current))
4443 		goto unlock;
4444 
4445 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4446 		if (!event->attr.remove_on_exec)
4447 			continue;
4448 
4449 		if (!is_kernel_event(event))
4450 			perf_remove_from_owner(event);
4451 
4452 		modified = true;
4453 
4454 		perf_event_exit_event(event, ctx);
4455 	}
4456 
4457 	raw_spin_lock_irqsave(&ctx->lock, flags);
4458 	if (modified)
4459 		clone_ctx = unclone_ctx(ctx);
4460 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4461 
4462 unlock:
4463 	mutex_unlock(&ctx->mutex);
4464 
4465 	if (clone_ctx)
4466 		put_ctx(clone_ctx);
4467 }
4468 
4469 struct perf_read_data {
4470 	struct perf_event *event;
4471 	bool group;
4472 	int ret;
4473 };
4474 
4475 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4476 {
4477 	u16 local_pkg, event_pkg;
4478 
4479 	if ((unsigned)event_cpu >= nr_cpu_ids)
4480 		return event_cpu;
4481 
4482 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4483 		int local_cpu = smp_processor_id();
4484 
4485 		event_pkg = topology_physical_package_id(event_cpu);
4486 		local_pkg = topology_physical_package_id(local_cpu);
4487 
4488 		if (event_pkg == local_pkg)
4489 			return local_cpu;
4490 	}
4491 
4492 	return event_cpu;
4493 }
4494 
4495 /*
4496  * Cross CPU call to read the hardware event
4497  */
4498 static void __perf_event_read(void *info)
4499 {
4500 	struct perf_read_data *data = info;
4501 	struct perf_event *sub, *event = data->event;
4502 	struct perf_event_context *ctx = event->ctx;
4503 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4504 	struct pmu *pmu = event->pmu;
4505 
4506 	/*
4507 	 * If this is a task context, we need to check whether it is
4508 	 * the current task context of this cpu.  If not it has been
4509 	 * scheduled out before the smp call arrived.  In that case
4510 	 * event->count would have been updated to a recent sample
4511 	 * when the event was scheduled out.
4512 	 */
4513 	if (ctx->task && cpuctx->task_ctx != ctx)
4514 		return;
4515 
4516 	raw_spin_lock(&ctx->lock);
4517 	if (ctx->is_active & EVENT_TIME) {
4518 		update_context_time(ctx);
4519 		update_cgrp_time_from_event(event);
4520 	}
4521 
4522 	perf_event_update_time(event);
4523 	if (data->group)
4524 		perf_event_update_sibling_time(event);
4525 
4526 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4527 		goto unlock;
4528 
4529 	if (!data->group) {
4530 		pmu->read(event);
4531 		data->ret = 0;
4532 		goto unlock;
4533 	}
4534 
4535 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4536 
4537 	pmu->read(event);
4538 
4539 	for_each_sibling_event(sub, event) {
4540 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4541 			/*
4542 			 * Use sibling's PMU rather than @event's since
4543 			 * sibling could be on different (eg: software) PMU.
4544 			 */
4545 			sub->pmu->read(sub);
4546 		}
4547 	}
4548 
4549 	data->ret = pmu->commit_txn(pmu);
4550 
4551 unlock:
4552 	raw_spin_unlock(&ctx->lock);
4553 }
4554 
4555 static inline u64 perf_event_count(struct perf_event *event)
4556 {
4557 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4558 }
4559 
4560 static void calc_timer_values(struct perf_event *event,
4561 				u64 *now,
4562 				u64 *enabled,
4563 				u64 *running)
4564 {
4565 	u64 ctx_time;
4566 
4567 	*now = perf_clock();
4568 	ctx_time = perf_event_time_now(event, *now);
4569 	__perf_update_times(event, ctx_time, enabled, running);
4570 }
4571 
4572 /*
4573  * NMI-safe method to read a local event, that is an event that
4574  * is:
4575  *   - either for the current task, or for this CPU
4576  *   - does not have inherit set, for inherited task events
4577  *     will not be local and we cannot read them atomically
4578  *   - must not have a pmu::count method
4579  */
4580 int perf_event_read_local(struct perf_event *event, u64 *value,
4581 			  u64 *enabled, u64 *running)
4582 {
4583 	unsigned long flags;
4584 	int event_oncpu;
4585 	int event_cpu;
4586 	int ret = 0;
4587 
4588 	/*
4589 	 * Disabling interrupts avoids all counter scheduling (context
4590 	 * switches, timer based rotation and IPIs).
4591 	 */
4592 	local_irq_save(flags);
4593 
4594 	/*
4595 	 * It must not be an event with inherit set, we cannot read
4596 	 * all child counters from atomic context.
4597 	 */
4598 	if (event->attr.inherit) {
4599 		ret = -EOPNOTSUPP;
4600 		goto out;
4601 	}
4602 
4603 	/* If this is a per-task event, it must be for current */
4604 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4605 	    event->hw.target != current) {
4606 		ret = -EINVAL;
4607 		goto out;
4608 	}
4609 
4610 	/*
4611 	 * Get the event CPU numbers, and adjust them to local if the event is
4612 	 * a per-package event that can be read locally
4613 	 */
4614 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4615 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4616 
4617 	/* If this is a per-CPU event, it must be for this CPU */
4618 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4619 	    event_cpu != smp_processor_id()) {
4620 		ret = -EINVAL;
4621 		goto out;
4622 	}
4623 
4624 	/* If this is a pinned event it must be running on this CPU */
4625 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4626 		ret = -EBUSY;
4627 		goto out;
4628 	}
4629 
4630 	/*
4631 	 * If the event is currently on this CPU, its either a per-task event,
4632 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4633 	 * oncpu == -1).
4634 	 */
4635 	if (event_oncpu == smp_processor_id())
4636 		event->pmu->read(event);
4637 
4638 	*value = local64_read(&event->count);
4639 	if (enabled || running) {
4640 		u64 __enabled, __running, __now;
4641 
4642 		calc_timer_values(event, &__now, &__enabled, &__running);
4643 		if (enabled)
4644 			*enabled = __enabled;
4645 		if (running)
4646 			*running = __running;
4647 	}
4648 out:
4649 	local_irq_restore(flags);
4650 
4651 	return ret;
4652 }
4653 
4654 static int perf_event_read(struct perf_event *event, bool group)
4655 {
4656 	enum perf_event_state state = READ_ONCE(event->state);
4657 	int event_cpu, ret = 0;
4658 
4659 	/*
4660 	 * If event is enabled and currently active on a CPU, update the
4661 	 * value in the event structure:
4662 	 */
4663 again:
4664 	if (state == PERF_EVENT_STATE_ACTIVE) {
4665 		struct perf_read_data data;
4666 
4667 		/*
4668 		 * Orders the ->state and ->oncpu loads such that if we see
4669 		 * ACTIVE we must also see the right ->oncpu.
4670 		 *
4671 		 * Matches the smp_wmb() from event_sched_in().
4672 		 */
4673 		smp_rmb();
4674 
4675 		event_cpu = READ_ONCE(event->oncpu);
4676 		if ((unsigned)event_cpu >= nr_cpu_ids)
4677 			return 0;
4678 
4679 		data = (struct perf_read_data){
4680 			.event = event,
4681 			.group = group,
4682 			.ret = 0,
4683 		};
4684 
4685 		preempt_disable();
4686 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4687 
4688 		/*
4689 		 * Purposely ignore the smp_call_function_single() return
4690 		 * value.
4691 		 *
4692 		 * If event_cpu isn't a valid CPU it means the event got
4693 		 * scheduled out and that will have updated the event count.
4694 		 *
4695 		 * Therefore, either way, we'll have an up-to-date event count
4696 		 * after this.
4697 		 */
4698 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4699 		preempt_enable();
4700 		ret = data.ret;
4701 
4702 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4703 		struct perf_event_context *ctx = event->ctx;
4704 		unsigned long flags;
4705 
4706 		raw_spin_lock_irqsave(&ctx->lock, flags);
4707 		state = event->state;
4708 		if (state != PERF_EVENT_STATE_INACTIVE) {
4709 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710 			goto again;
4711 		}
4712 
4713 		/*
4714 		 * May read while context is not active (e.g., thread is
4715 		 * blocked), in that case we cannot update context time
4716 		 */
4717 		if (ctx->is_active & EVENT_TIME) {
4718 			update_context_time(ctx);
4719 			update_cgrp_time_from_event(event);
4720 		}
4721 
4722 		perf_event_update_time(event);
4723 		if (group)
4724 			perf_event_update_sibling_time(event);
4725 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4726 	}
4727 
4728 	return ret;
4729 }
4730 
4731 /*
4732  * Initialize the perf_event context in a task_struct:
4733  */
4734 static void __perf_event_init_context(struct perf_event_context *ctx)
4735 {
4736 	raw_spin_lock_init(&ctx->lock);
4737 	mutex_init(&ctx->mutex);
4738 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4739 	perf_event_groups_init(&ctx->pinned_groups);
4740 	perf_event_groups_init(&ctx->flexible_groups);
4741 	INIT_LIST_HEAD(&ctx->event_list);
4742 	refcount_set(&ctx->refcount, 1);
4743 }
4744 
4745 static void
4746 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4747 {
4748 	epc->pmu = pmu;
4749 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4750 	INIT_LIST_HEAD(&epc->pinned_active);
4751 	INIT_LIST_HEAD(&epc->flexible_active);
4752 	atomic_set(&epc->refcount, 1);
4753 }
4754 
4755 static struct perf_event_context *
4756 alloc_perf_context(struct task_struct *task)
4757 {
4758 	struct perf_event_context *ctx;
4759 
4760 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4761 	if (!ctx)
4762 		return NULL;
4763 
4764 	__perf_event_init_context(ctx);
4765 	if (task)
4766 		ctx->task = get_task_struct(task);
4767 
4768 	return ctx;
4769 }
4770 
4771 static struct task_struct *
4772 find_lively_task_by_vpid(pid_t vpid)
4773 {
4774 	struct task_struct *task;
4775 
4776 	rcu_read_lock();
4777 	if (!vpid)
4778 		task = current;
4779 	else
4780 		task = find_task_by_vpid(vpid);
4781 	if (task)
4782 		get_task_struct(task);
4783 	rcu_read_unlock();
4784 
4785 	if (!task)
4786 		return ERR_PTR(-ESRCH);
4787 
4788 	return task;
4789 }
4790 
4791 /*
4792  * Returns a matching context with refcount and pincount.
4793  */
4794 static struct perf_event_context *
4795 find_get_context(struct task_struct *task, struct perf_event *event)
4796 {
4797 	struct perf_event_context *ctx, *clone_ctx = NULL;
4798 	struct perf_cpu_context *cpuctx;
4799 	unsigned long flags;
4800 	int err;
4801 
4802 	if (!task) {
4803 		/* Must be root to operate on a CPU event: */
4804 		err = perf_allow_cpu(&event->attr);
4805 		if (err)
4806 			return ERR_PTR(err);
4807 
4808 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4809 		ctx = &cpuctx->ctx;
4810 		get_ctx(ctx);
4811 		raw_spin_lock_irqsave(&ctx->lock, flags);
4812 		++ctx->pin_count;
4813 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4814 
4815 		return ctx;
4816 	}
4817 
4818 	err = -EINVAL;
4819 retry:
4820 	ctx = perf_lock_task_context(task, &flags);
4821 	if (ctx) {
4822 		clone_ctx = unclone_ctx(ctx);
4823 		++ctx->pin_count;
4824 
4825 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4826 
4827 		if (clone_ctx)
4828 			put_ctx(clone_ctx);
4829 	} else {
4830 		ctx = alloc_perf_context(task);
4831 		err = -ENOMEM;
4832 		if (!ctx)
4833 			goto errout;
4834 
4835 		err = 0;
4836 		mutex_lock(&task->perf_event_mutex);
4837 		/*
4838 		 * If it has already passed perf_event_exit_task().
4839 		 * we must see PF_EXITING, it takes this mutex too.
4840 		 */
4841 		if (task->flags & PF_EXITING)
4842 			err = -ESRCH;
4843 		else if (task->perf_event_ctxp)
4844 			err = -EAGAIN;
4845 		else {
4846 			get_ctx(ctx);
4847 			++ctx->pin_count;
4848 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4849 		}
4850 		mutex_unlock(&task->perf_event_mutex);
4851 
4852 		if (unlikely(err)) {
4853 			put_ctx(ctx);
4854 
4855 			if (err == -EAGAIN)
4856 				goto retry;
4857 			goto errout;
4858 		}
4859 	}
4860 
4861 	return ctx;
4862 
4863 errout:
4864 	return ERR_PTR(err);
4865 }
4866 
4867 static struct perf_event_pmu_context *
4868 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4869 		     struct perf_event *event)
4870 {
4871 	struct perf_event_pmu_context *new = NULL, *epc;
4872 	void *task_ctx_data = NULL;
4873 
4874 	if (!ctx->task) {
4875 		/*
4876 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4877 		 * relies on the fact that find_get_pmu_context() cannot fail
4878 		 * for CPU contexts.
4879 		 */
4880 		struct perf_cpu_pmu_context *cpc;
4881 
4882 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4883 		epc = &cpc->epc;
4884 		raw_spin_lock_irq(&ctx->lock);
4885 		if (!epc->ctx) {
4886 			atomic_set(&epc->refcount, 1);
4887 			epc->embedded = 1;
4888 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4889 			epc->ctx = ctx;
4890 		} else {
4891 			WARN_ON_ONCE(epc->ctx != ctx);
4892 			atomic_inc(&epc->refcount);
4893 		}
4894 		raw_spin_unlock_irq(&ctx->lock);
4895 		return epc;
4896 	}
4897 
4898 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4899 	if (!new)
4900 		return ERR_PTR(-ENOMEM);
4901 
4902 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4903 		task_ctx_data = alloc_task_ctx_data(pmu);
4904 		if (!task_ctx_data) {
4905 			kfree(new);
4906 			return ERR_PTR(-ENOMEM);
4907 		}
4908 	}
4909 
4910 	__perf_init_event_pmu_context(new, pmu);
4911 
4912 	/*
4913 	 * XXX
4914 	 *
4915 	 * lockdep_assert_held(&ctx->mutex);
4916 	 *
4917 	 * can't because perf_event_init_task() doesn't actually hold the
4918 	 * child_ctx->mutex.
4919 	 */
4920 
4921 	raw_spin_lock_irq(&ctx->lock);
4922 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4923 		if (epc->pmu == pmu) {
4924 			WARN_ON_ONCE(epc->ctx != ctx);
4925 			atomic_inc(&epc->refcount);
4926 			goto found_epc;
4927 		}
4928 	}
4929 
4930 	epc = new;
4931 	new = NULL;
4932 
4933 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4934 	epc->ctx = ctx;
4935 
4936 found_epc:
4937 	if (task_ctx_data && !epc->task_ctx_data) {
4938 		epc->task_ctx_data = task_ctx_data;
4939 		task_ctx_data = NULL;
4940 		ctx->nr_task_data++;
4941 	}
4942 	raw_spin_unlock_irq(&ctx->lock);
4943 
4944 	free_task_ctx_data(pmu, task_ctx_data);
4945 	kfree(new);
4946 
4947 	return epc;
4948 }
4949 
4950 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4951 {
4952 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4953 }
4954 
4955 static void free_epc_rcu(struct rcu_head *head)
4956 {
4957 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4958 
4959 	kfree(epc->task_ctx_data);
4960 	kfree(epc);
4961 }
4962 
4963 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4964 {
4965 	struct perf_event_context *ctx = epc->ctx;
4966 	unsigned long flags;
4967 
4968 	/*
4969 	 * XXX
4970 	 *
4971 	 * lockdep_assert_held(&ctx->mutex);
4972 	 *
4973 	 * can't because of the call-site in _free_event()/put_event()
4974 	 * which isn't always called under ctx->mutex.
4975 	 */
4976 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4977 		return;
4978 
4979 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4980 
4981 	list_del_init(&epc->pmu_ctx_entry);
4982 	epc->ctx = NULL;
4983 
4984 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4985 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4986 
4987 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988 
4989 	if (epc->embedded)
4990 		return;
4991 
4992 	call_rcu(&epc->rcu_head, free_epc_rcu);
4993 }
4994 
4995 static void perf_event_free_filter(struct perf_event *event);
4996 
4997 static void free_event_rcu(struct rcu_head *head)
4998 {
4999 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5000 
5001 	if (event->ns)
5002 		put_pid_ns(event->ns);
5003 	perf_event_free_filter(event);
5004 	kmem_cache_free(perf_event_cache, event);
5005 }
5006 
5007 static void ring_buffer_attach(struct perf_event *event,
5008 			       struct perf_buffer *rb);
5009 
5010 static void detach_sb_event(struct perf_event *event)
5011 {
5012 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5013 
5014 	raw_spin_lock(&pel->lock);
5015 	list_del_rcu(&event->sb_list);
5016 	raw_spin_unlock(&pel->lock);
5017 }
5018 
5019 static bool is_sb_event(struct perf_event *event)
5020 {
5021 	struct perf_event_attr *attr = &event->attr;
5022 
5023 	if (event->parent)
5024 		return false;
5025 
5026 	if (event->attach_state & PERF_ATTACH_TASK)
5027 		return false;
5028 
5029 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5030 	    attr->comm || attr->comm_exec ||
5031 	    attr->task || attr->ksymbol ||
5032 	    attr->context_switch || attr->text_poke ||
5033 	    attr->bpf_event)
5034 		return true;
5035 	return false;
5036 }
5037 
5038 static void unaccount_pmu_sb_event(struct perf_event *event)
5039 {
5040 	if (is_sb_event(event))
5041 		detach_sb_event(event);
5042 }
5043 
5044 #ifdef CONFIG_NO_HZ_FULL
5045 static DEFINE_SPINLOCK(nr_freq_lock);
5046 #endif
5047 
5048 static void unaccount_freq_event_nohz(void)
5049 {
5050 #ifdef CONFIG_NO_HZ_FULL
5051 	spin_lock(&nr_freq_lock);
5052 	if (atomic_dec_and_test(&nr_freq_events))
5053 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5054 	spin_unlock(&nr_freq_lock);
5055 #endif
5056 }
5057 
5058 static void unaccount_freq_event(void)
5059 {
5060 	if (tick_nohz_full_enabled())
5061 		unaccount_freq_event_nohz();
5062 	else
5063 		atomic_dec(&nr_freq_events);
5064 }
5065 
5066 static void unaccount_event(struct perf_event *event)
5067 {
5068 	bool dec = false;
5069 
5070 	if (event->parent)
5071 		return;
5072 
5073 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5074 		dec = true;
5075 	if (event->attr.mmap || event->attr.mmap_data)
5076 		atomic_dec(&nr_mmap_events);
5077 	if (event->attr.build_id)
5078 		atomic_dec(&nr_build_id_events);
5079 	if (event->attr.comm)
5080 		atomic_dec(&nr_comm_events);
5081 	if (event->attr.namespaces)
5082 		atomic_dec(&nr_namespaces_events);
5083 	if (event->attr.cgroup)
5084 		atomic_dec(&nr_cgroup_events);
5085 	if (event->attr.task)
5086 		atomic_dec(&nr_task_events);
5087 	if (event->attr.freq)
5088 		unaccount_freq_event();
5089 	if (event->attr.context_switch) {
5090 		dec = true;
5091 		atomic_dec(&nr_switch_events);
5092 	}
5093 	if (is_cgroup_event(event))
5094 		dec = true;
5095 	if (has_branch_stack(event))
5096 		dec = true;
5097 	if (event->attr.ksymbol)
5098 		atomic_dec(&nr_ksymbol_events);
5099 	if (event->attr.bpf_event)
5100 		atomic_dec(&nr_bpf_events);
5101 	if (event->attr.text_poke)
5102 		atomic_dec(&nr_text_poke_events);
5103 
5104 	if (dec) {
5105 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5106 			schedule_delayed_work(&perf_sched_work, HZ);
5107 	}
5108 
5109 	unaccount_pmu_sb_event(event);
5110 }
5111 
5112 static void perf_sched_delayed(struct work_struct *work)
5113 {
5114 	mutex_lock(&perf_sched_mutex);
5115 	if (atomic_dec_and_test(&perf_sched_count))
5116 		static_branch_disable(&perf_sched_events);
5117 	mutex_unlock(&perf_sched_mutex);
5118 }
5119 
5120 /*
5121  * The following implement mutual exclusion of events on "exclusive" pmus
5122  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5123  * at a time, so we disallow creating events that might conflict, namely:
5124  *
5125  *  1) cpu-wide events in the presence of per-task events,
5126  *  2) per-task events in the presence of cpu-wide events,
5127  *  3) two matching events on the same perf_event_context.
5128  *
5129  * The former two cases are handled in the allocation path (perf_event_alloc(),
5130  * _free_event()), the latter -- before the first perf_install_in_context().
5131  */
5132 static int exclusive_event_init(struct perf_event *event)
5133 {
5134 	struct pmu *pmu = event->pmu;
5135 
5136 	if (!is_exclusive_pmu(pmu))
5137 		return 0;
5138 
5139 	/*
5140 	 * Prevent co-existence of per-task and cpu-wide events on the
5141 	 * same exclusive pmu.
5142 	 *
5143 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5144 	 * events on this "exclusive" pmu, positive means there are
5145 	 * per-task events.
5146 	 *
5147 	 * Since this is called in perf_event_alloc() path, event::ctx
5148 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5149 	 * to mean "per-task event", because unlike other attach states it
5150 	 * never gets cleared.
5151 	 */
5152 	if (event->attach_state & PERF_ATTACH_TASK) {
5153 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5154 			return -EBUSY;
5155 	} else {
5156 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5157 			return -EBUSY;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 static void exclusive_event_destroy(struct perf_event *event)
5164 {
5165 	struct pmu *pmu = event->pmu;
5166 
5167 	if (!is_exclusive_pmu(pmu))
5168 		return;
5169 
5170 	/* see comment in exclusive_event_init() */
5171 	if (event->attach_state & PERF_ATTACH_TASK)
5172 		atomic_dec(&pmu->exclusive_cnt);
5173 	else
5174 		atomic_inc(&pmu->exclusive_cnt);
5175 }
5176 
5177 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5178 {
5179 	if ((e1->pmu == e2->pmu) &&
5180 	    (e1->cpu == e2->cpu ||
5181 	     e1->cpu == -1 ||
5182 	     e2->cpu == -1))
5183 		return true;
5184 	return false;
5185 }
5186 
5187 static bool exclusive_event_installable(struct perf_event *event,
5188 					struct perf_event_context *ctx)
5189 {
5190 	struct perf_event *iter_event;
5191 	struct pmu *pmu = event->pmu;
5192 
5193 	lockdep_assert_held(&ctx->mutex);
5194 
5195 	if (!is_exclusive_pmu(pmu))
5196 		return true;
5197 
5198 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5199 		if (exclusive_event_match(iter_event, event))
5200 			return false;
5201 	}
5202 
5203 	return true;
5204 }
5205 
5206 static void perf_addr_filters_splice(struct perf_event *event,
5207 				       struct list_head *head);
5208 
5209 static void _free_event(struct perf_event *event)
5210 {
5211 	irq_work_sync(&event->pending_irq);
5212 
5213 	unaccount_event(event);
5214 
5215 	security_perf_event_free(event);
5216 
5217 	if (event->rb) {
5218 		/*
5219 		 * Can happen when we close an event with re-directed output.
5220 		 *
5221 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5222 		 * over us; possibly making our ring_buffer_put() the last.
5223 		 */
5224 		mutex_lock(&event->mmap_mutex);
5225 		ring_buffer_attach(event, NULL);
5226 		mutex_unlock(&event->mmap_mutex);
5227 	}
5228 
5229 	if (is_cgroup_event(event))
5230 		perf_detach_cgroup(event);
5231 
5232 	if (!event->parent) {
5233 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234 			put_callchain_buffers();
5235 	}
5236 
5237 	perf_event_free_bpf_prog(event);
5238 	perf_addr_filters_splice(event, NULL);
5239 	kfree(event->addr_filter_ranges);
5240 
5241 	if (event->destroy)
5242 		event->destroy(event);
5243 
5244 	/*
5245 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5246 	 * hw.target.
5247 	 */
5248 	if (event->hw.target)
5249 		put_task_struct(event->hw.target);
5250 
5251 	if (event->pmu_ctx)
5252 		put_pmu_ctx(event->pmu_ctx);
5253 
5254 	/*
5255 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256 	 * all task references must be cleaned up.
5257 	 */
5258 	if (event->ctx)
5259 		put_ctx(event->ctx);
5260 
5261 	exclusive_event_destroy(event);
5262 	module_put(event->pmu->module);
5263 
5264 	call_rcu(&event->rcu_head, free_event_rcu);
5265 }
5266 
5267 /*
5268  * Used to free events which have a known refcount of 1, such as in error paths
5269  * where the event isn't exposed yet and inherited events.
5270  */
5271 static void free_event(struct perf_event *event)
5272 {
5273 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274 				"unexpected event refcount: %ld; ptr=%p\n",
5275 				atomic_long_read(&event->refcount), event)) {
5276 		/* leak to avoid use-after-free */
5277 		return;
5278 	}
5279 
5280 	_free_event(event);
5281 }
5282 
5283 /*
5284  * Remove user event from the owner task.
5285  */
5286 static void perf_remove_from_owner(struct perf_event *event)
5287 {
5288 	struct task_struct *owner;
5289 
5290 	rcu_read_lock();
5291 	/*
5292 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5293 	 * observe !owner it means the list deletion is complete and we can
5294 	 * indeed free this event, otherwise we need to serialize on
5295 	 * owner->perf_event_mutex.
5296 	 */
5297 	owner = READ_ONCE(event->owner);
5298 	if (owner) {
5299 		/*
5300 		 * Since delayed_put_task_struct() also drops the last
5301 		 * task reference we can safely take a new reference
5302 		 * while holding the rcu_read_lock().
5303 		 */
5304 		get_task_struct(owner);
5305 	}
5306 	rcu_read_unlock();
5307 
5308 	if (owner) {
5309 		/*
5310 		 * If we're here through perf_event_exit_task() we're already
5311 		 * holding ctx->mutex which would be an inversion wrt. the
5312 		 * normal lock order.
5313 		 *
5314 		 * However we can safely take this lock because its the child
5315 		 * ctx->mutex.
5316 		 */
5317 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318 
5319 		/*
5320 		 * We have to re-check the event->owner field, if it is cleared
5321 		 * we raced with perf_event_exit_task(), acquiring the mutex
5322 		 * ensured they're done, and we can proceed with freeing the
5323 		 * event.
5324 		 */
5325 		if (event->owner) {
5326 			list_del_init(&event->owner_entry);
5327 			smp_store_release(&event->owner, NULL);
5328 		}
5329 		mutex_unlock(&owner->perf_event_mutex);
5330 		put_task_struct(owner);
5331 	}
5332 }
5333 
5334 static void put_event(struct perf_event *event)
5335 {
5336 	if (!atomic_long_dec_and_test(&event->refcount))
5337 		return;
5338 
5339 	_free_event(event);
5340 }
5341 
5342 /*
5343  * Kill an event dead; while event:refcount will preserve the event
5344  * object, it will not preserve its functionality. Once the last 'user'
5345  * gives up the object, we'll destroy the thing.
5346  */
5347 int perf_event_release_kernel(struct perf_event *event)
5348 {
5349 	struct perf_event_context *ctx = event->ctx;
5350 	struct perf_event *child, *tmp;
5351 	LIST_HEAD(free_list);
5352 
5353 	/*
5354 	 * If we got here through err_alloc: free_event(event); we will not
5355 	 * have attached to a context yet.
5356 	 */
5357 	if (!ctx) {
5358 		WARN_ON_ONCE(event->attach_state &
5359 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360 		goto no_ctx;
5361 	}
5362 
5363 	if (!is_kernel_event(event))
5364 		perf_remove_from_owner(event);
5365 
5366 	ctx = perf_event_ctx_lock(event);
5367 	WARN_ON_ONCE(ctx->parent_ctx);
5368 
5369 	/*
5370 	 * Mark this event as STATE_DEAD, there is no external reference to it
5371 	 * anymore.
5372 	 *
5373 	 * Anybody acquiring event->child_mutex after the below loop _must_
5374 	 * also see this, most importantly inherit_event() which will avoid
5375 	 * placing more children on the list.
5376 	 *
5377 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5378 	 * child events.
5379 	 */
5380 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5381 
5382 	perf_event_ctx_unlock(event, ctx);
5383 
5384 again:
5385 	mutex_lock(&event->child_mutex);
5386 	list_for_each_entry(child, &event->child_list, child_list) {
5387 		void *var = NULL;
5388 
5389 		/*
5390 		 * Cannot change, child events are not migrated, see the
5391 		 * comment with perf_event_ctx_lock_nested().
5392 		 */
5393 		ctx = READ_ONCE(child->ctx);
5394 		/*
5395 		 * Since child_mutex nests inside ctx::mutex, we must jump
5396 		 * through hoops. We start by grabbing a reference on the ctx.
5397 		 *
5398 		 * Since the event cannot get freed while we hold the
5399 		 * child_mutex, the context must also exist and have a !0
5400 		 * reference count.
5401 		 */
5402 		get_ctx(ctx);
5403 
5404 		/*
5405 		 * Now that we have a ctx ref, we can drop child_mutex, and
5406 		 * acquire ctx::mutex without fear of it going away. Then we
5407 		 * can re-acquire child_mutex.
5408 		 */
5409 		mutex_unlock(&event->child_mutex);
5410 		mutex_lock(&ctx->mutex);
5411 		mutex_lock(&event->child_mutex);
5412 
5413 		/*
5414 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5415 		 * state, if child is still the first entry, it didn't get freed
5416 		 * and we can continue doing so.
5417 		 */
5418 		tmp = list_first_entry_or_null(&event->child_list,
5419 					       struct perf_event, child_list);
5420 		if (tmp == child) {
5421 			perf_remove_from_context(child, DETACH_GROUP);
5422 			list_move(&child->child_list, &free_list);
5423 			/*
5424 			 * This matches the refcount bump in inherit_event();
5425 			 * this can't be the last reference.
5426 			 */
5427 			put_event(event);
5428 		} else {
5429 			var = &ctx->refcount;
5430 		}
5431 
5432 		mutex_unlock(&event->child_mutex);
5433 		mutex_unlock(&ctx->mutex);
5434 		put_ctx(ctx);
5435 
5436 		if (var) {
5437 			/*
5438 			 * If perf_event_free_task() has deleted all events from the
5439 			 * ctx while the child_mutex got released above, make sure to
5440 			 * notify about the preceding put_ctx().
5441 			 */
5442 			smp_mb(); /* pairs with wait_var_event() */
5443 			wake_up_var(var);
5444 		}
5445 		goto again;
5446 	}
5447 	mutex_unlock(&event->child_mutex);
5448 
5449 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5450 		void *var = &child->ctx->refcount;
5451 
5452 		list_del(&child->child_list);
5453 		free_event(child);
5454 
5455 		/*
5456 		 * Wake any perf_event_free_task() waiting for this event to be
5457 		 * freed.
5458 		 */
5459 		smp_mb(); /* pairs with wait_var_event() */
5460 		wake_up_var(var);
5461 	}
5462 
5463 no_ctx:
5464 	put_event(event); /* Must be the 'last' reference */
5465 	return 0;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5468 
5469 /*
5470  * Called when the last reference to the file is gone.
5471  */
5472 static int perf_release(struct inode *inode, struct file *file)
5473 {
5474 	perf_event_release_kernel(file->private_data);
5475 	return 0;
5476 }
5477 
5478 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5479 {
5480 	struct perf_event *child;
5481 	u64 total = 0;
5482 
5483 	*enabled = 0;
5484 	*running = 0;
5485 
5486 	mutex_lock(&event->child_mutex);
5487 
5488 	(void)perf_event_read(event, false);
5489 	total += perf_event_count(event);
5490 
5491 	*enabled += event->total_time_enabled +
5492 			atomic64_read(&event->child_total_time_enabled);
5493 	*running += event->total_time_running +
5494 			atomic64_read(&event->child_total_time_running);
5495 
5496 	list_for_each_entry(child, &event->child_list, child_list) {
5497 		(void)perf_event_read(child, false);
5498 		total += perf_event_count(child);
5499 		*enabled += child->total_time_enabled;
5500 		*running += child->total_time_running;
5501 	}
5502 	mutex_unlock(&event->child_mutex);
5503 
5504 	return total;
5505 }
5506 
5507 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5508 {
5509 	struct perf_event_context *ctx;
5510 	u64 count;
5511 
5512 	ctx = perf_event_ctx_lock(event);
5513 	count = __perf_event_read_value(event, enabled, running);
5514 	perf_event_ctx_unlock(event, ctx);
5515 
5516 	return count;
5517 }
5518 EXPORT_SYMBOL_GPL(perf_event_read_value);
5519 
5520 static int __perf_read_group_add(struct perf_event *leader,
5521 					u64 read_format, u64 *values)
5522 {
5523 	struct perf_event_context *ctx = leader->ctx;
5524 	struct perf_event *sub, *parent;
5525 	unsigned long flags;
5526 	int n = 1; /* skip @nr */
5527 	int ret;
5528 
5529 	ret = perf_event_read(leader, true);
5530 	if (ret)
5531 		return ret;
5532 
5533 	raw_spin_lock_irqsave(&ctx->lock, flags);
5534 	/*
5535 	 * Verify the grouping between the parent and child (inherited)
5536 	 * events is still in tact.
5537 	 *
5538 	 * Specifically:
5539 	 *  - leader->ctx->lock pins leader->sibling_list
5540 	 *  - parent->child_mutex pins parent->child_list
5541 	 *  - parent->ctx->mutex pins parent->sibling_list
5542 	 *
5543 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5544 	 * ctx->mutex), group destruction is not atomic between children, also
5545 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5546 	 * group.
5547 	 *
5548 	 * Therefore it is possible to have parent and child groups in a
5549 	 * different configuration and summing over such a beast makes no sense
5550 	 * what so ever.
5551 	 *
5552 	 * Reject this.
5553 	 */
5554 	parent = leader->parent;
5555 	if (parent &&
5556 	    (parent->group_generation != leader->group_generation ||
5557 	     parent->nr_siblings != leader->nr_siblings)) {
5558 		ret = -ECHILD;
5559 		goto unlock;
5560 	}
5561 
5562 	/*
5563 	 * Since we co-schedule groups, {enabled,running} times of siblings
5564 	 * will be identical to those of the leader, so we only publish one
5565 	 * set.
5566 	 */
5567 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5568 		values[n++] += leader->total_time_enabled +
5569 			atomic64_read(&leader->child_total_time_enabled);
5570 	}
5571 
5572 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5573 		values[n++] += leader->total_time_running +
5574 			atomic64_read(&leader->child_total_time_running);
5575 	}
5576 
5577 	/*
5578 	 * Write {count,id} tuples for every sibling.
5579 	 */
5580 	values[n++] += perf_event_count(leader);
5581 	if (read_format & PERF_FORMAT_ID)
5582 		values[n++] = primary_event_id(leader);
5583 	if (read_format & PERF_FORMAT_LOST)
5584 		values[n++] = atomic64_read(&leader->lost_samples);
5585 
5586 	for_each_sibling_event(sub, leader) {
5587 		values[n++] += perf_event_count(sub);
5588 		if (read_format & PERF_FORMAT_ID)
5589 			values[n++] = primary_event_id(sub);
5590 		if (read_format & PERF_FORMAT_LOST)
5591 			values[n++] = atomic64_read(&sub->lost_samples);
5592 	}
5593 
5594 unlock:
5595 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5596 	return ret;
5597 }
5598 
5599 static int perf_read_group(struct perf_event *event,
5600 				   u64 read_format, char __user *buf)
5601 {
5602 	struct perf_event *leader = event->group_leader, *child;
5603 	struct perf_event_context *ctx = leader->ctx;
5604 	int ret;
5605 	u64 *values;
5606 
5607 	lockdep_assert_held(&ctx->mutex);
5608 
5609 	values = kzalloc(event->read_size, GFP_KERNEL);
5610 	if (!values)
5611 		return -ENOMEM;
5612 
5613 	values[0] = 1 + leader->nr_siblings;
5614 
5615 	mutex_lock(&leader->child_mutex);
5616 
5617 	ret = __perf_read_group_add(leader, read_format, values);
5618 	if (ret)
5619 		goto unlock;
5620 
5621 	list_for_each_entry(child, &leader->child_list, child_list) {
5622 		ret = __perf_read_group_add(child, read_format, values);
5623 		if (ret)
5624 			goto unlock;
5625 	}
5626 
5627 	mutex_unlock(&leader->child_mutex);
5628 
5629 	ret = event->read_size;
5630 	if (copy_to_user(buf, values, event->read_size))
5631 		ret = -EFAULT;
5632 	goto out;
5633 
5634 unlock:
5635 	mutex_unlock(&leader->child_mutex);
5636 out:
5637 	kfree(values);
5638 	return ret;
5639 }
5640 
5641 static int perf_read_one(struct perf_event *event,
5642 				 u64 read_format, char __user *buf)
5643 {
5644 	u64 enabled, running;
5645 	u64 values[5];
5646 	int n = 0;
5647 
5648 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5649 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5650 		values[n++] = enabled;
5651 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5652 		values[n++] = running;
5653 	if (read_format & PERF_FORMAT_ID)
5654 		values[n++] = primary_event_id(event);
5655 	if (read_format & PERF_FORMAT_LOST)
5656 		values[n++] = atomic64_read(&event->lost_samples);
5657 
5658 	if (copy_to_user(buf, values, n * sizeof(u64)))
5659 		return -EFAULT;
5660 
5661 	return n * sizeof(u64);
5662 }
5663 
5664 static bool is_event_hup(struct perf_event *event)
5665 {
5666 	bool no_children;
5667 
5668 	if (event->state > PERF_EVENT_STATE_EXIT)
5669 		return false;
5670 
5671 	mutex_lock(&event->child_mutex);
5672 	no_children = list_empty(&event->child_list);
5673 	mutex_unlock(&event->child_mutex);
5674 	return no_children;
5675 }
5676 
5677 /*
5678  * Read the performance event - simple non blocking version for now
5679  */
5680 static ssize_t
5681 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5682 {
5683 	u64 read_format = event->attr.read_format;
5684 	int ret;
5685 
5686 	/*
5687 	 * Return end-of-file for a read on an event that is in
5688 	 * error state (i.e. because it was pinned but it couldn't be
5689 	 * scheduled on to the CPU at some point).
5690 	 */
5691 	if (event->state == PERF_EVENT_STATE_ERROR)
5692 		return 0;
5693 
5694 	if (count < event->read_size)
5695 		return -ENOSPC;
5696 
5697 	WARN_ON_ONCE(event->ctx->parent_ctx);
5698 	if (read_format & PERF_FORMAT_GROUP)
5699 		ret = perf_read_group(event, read_format, buf);
5700 	else
5701 		ret = perf_read_one(event, read_format, buf);
5702 
5703 	return ret;
5704 }
5705 
5706 static ssize_t
5707 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5708 {
5709 	struct perf_event *event = file->private_data;
5710 	struct perf_event_context *ctx;
5711 	int ret;
5712 
5713 	ret = security_perf_event_read(event);
5714 	if (ret)
5715 		return ret;
5716 
5717 	ctx = perf_event_ctx_lock(event);
5718 	ret = __perf_read(event, buf, count);
5719 	perf_event_ctx_unlock(event, ctx);
5720 
5721 	return ret;
5722 }
5723 
5724 static __poll_t perf_poll(struct file *file, poll_table *wait)
5725 {
5726 	struct perf_event *event = file->private_data;
5727 	struct perf_buffer *rb;
5728 	__poll_t events = EPOLLHUP;
5729 
5730 	poll_wait(file, &event->waitq, wait);
5731 
5732 	if (is_event_hup(event))
5733 		return events;
5734 
5735 	/*
5736 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5737 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5738 	 */
5739 	mutex_lock(&event->mmap_mutex);
5740 	rb = event->rb;
5741 	if (rb)
5742 		events = atomic_xchg(&rb->poll, 0);
5743 	mutex_unlock(&event->mmap_mutex);
5744 	return events;
5745 }
5746 
5747 static void _perf_event_reset(struct perf_event *event)
5748 {
5749 	(void)perf_event_read(event, false);
5750 	local64_set(&event->count, 0);
5751 	perf_event_update_userpage(event);
5752 }
5753 
5754 /* Assume it's not an event with inherit set. */
5755 u64 perf_event_pause(struct perf_event *event, bool reset)
5756 {
5757 	struct perf_event_context *ctx;
5758 	u64 count;
5759 
5760 	ctx = perf_event_ctx_lock(event);
5761 	WARN_ON_ONCE(event->attr.inherit);
5762 	_perf_event_disable(event);
5763 	count = local64_read(&event->count);
5764 	if (reset)
5765 		local64_set(&event->count, 0);
5766 	perf_event_ctx_unlock(event, ctx);
5767 
5768 	return count;
5769 }
5770 EXPORT_SYMBOL_GPL(perf_event_pause);
5771 
5772 /*
5773  * Holding the top-level event's child_mutex means that any
5774  * descendant process that has inherited this event will block
5775  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5776  * task existence requirements of perf_event_enable/disable.
5777  */
5778 static void perf_event_for_each_child(struct perf_event *event,
5779 					void (*func)(struct perf_event *))
5780 {
5781 	struct perf_event *child;
5782 
5783 	WARN_ON_ONCE(event->ctx->parent_ctx);
5784 
5785 	mutex_lock(&event->child_mutex);
5786 	func(event);
5787 	list_for_each_entry(child, &event->child_list, child_list)
5788 		func(child);
5789 	mutex_unlock(&event->child_mutex);
5790 }
5791 
5792 static void perf_event_for_each(struct perf_event *event,
5793 				  void (*func)(struct perf_event *))
5794 {
5795 	struct perf_event_context *ctx = event->ctx;
5796 	struct perf_event *sibling;
5797 
5798 	lockdep_assert_held(&ctx->mutex);
5799 
5800 	event = event->group_leader;
5801 
5802 	perf_event_for_each_child(event, func);
5803 	for_each_sibling_event(sibling, event)
5804 		perf_event_for_each_child(sibling, func);
5805 }
5806 
5807 static void __perf_event_period(struct perf_event *event,
5808 				struct perf_cpu_context *cpuctx,
5809 				struct perf_event_context *ctx,
5810 				void *info)
5811 {
5812 	u64 value = *((u64 *)info);
5813 	bool active;
5814 
5815 	if (event->attr.freq) {
5816 		event->attr.sample_freq = value;
5817 	} else {
5818 		event->attr.sample_period = value;
5819 		event->hw.sample_period = value;
5820 	}
5821 
5822 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5823 	if (active) {
5824 		perf_pmu_disable(event->pmu);
5825 		/*
5826 		 * We could be throttled; unthrottle now to avoid the tick
5827 		 * trying to unthrottle while we already re-started the event.
5828 		 */
5829 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5830 			event->hw.interrupts = 0;
5831 			perf_log_throttle(event, 1);
5832 		}
5833 		event->pmu->stop(event, PERF_EF_UPDATE);
5834 	}
5835 
5836 	local64_set(&event->hw.period_left, 0);
5837 
5838 	if (active) {
5839 		event->pmu->start(event, PERF_EF_RELOAD);
5840 		perf_pmu_enable(event->pmu);
5841 	}
5842 }
5843 
5844 static int perf_event_check_period(struct perf_event *event, u64 value)
5845 {
5846 	return event->pmu->check_period(event, value);
5847 }
5848 
5849 static int _perf_event_period(struct perf_event *event, u64 value)
5850 {
5851 	if (!is_sampling_event(event))
5852 		return -EINVAL;
5853 
5854 	if (!value)
5855 		return -EINVAL;
5856 
5857 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5858 		return -EINVAL;
5859 
5860 	if (perf_event_check_period(event, value))
5861 		return -EINVAL;
5862 
5863 	if (!event->attr.freq && (value & (1ULL << 63)))
5864 		return -EINVAL;
5865 
5866 	event_function_call(event, __perf_event_period, &value);
5867 
5868 	return 0;
5869 }
5870 
5871 int perf_event_period(struct perf_event *event, u64 value)
5872 {
5873 	struct perf_event_context *ctx;
5874 	int ret;
5875 
5876 	ctx = perf_event_ctx_lock(event);
5877 	ret = _perf_event_period(event, value);
5878 	perf_event_ctx_unlock(event, ctx);
5879 
5880 	return ret;
5881 }
5882 EXPORT_SYMBOL_GPL(perf_event_period);
5883 
5884 static const struct file_operations perf_fops;
5885 
5886 static inline int perf_fget_light(int fd, struct fd *p)
5887 {
5888 	struct fd f = fdget(fd);
5889 	if (!f.file)
5890 		return -EBADF;
5891 
5892 	if (f.file->f_op != &perf_fops) {
5893 		fdput(f);
5894 		return -EBADF;
5895 	}
5896 	*p = f;
5897 	return 0;
5898 }
5899 
5900 static int perf_event_set_output(struct perf_event *event,
5901 				 struct perf_event *output_event);
5902 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5903 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5904 			  struct perf_event_attr *attr);
5905 
5906 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5907 {
5908 	void (*func)(struct perf_event *);
5909 	u32 flags = arg;
5910 
5911 	switch (cmd) {
5912 	case PERF_EVENT_IOC_ENABLE:
5913 		func = _perf_event_enable;
5914 		break;
5915 	case PERF_EVENT_IOC_DISABLE:
5916 		func = _perf_event_disable;
5917 		break;
5918 	case PERF_EVENT_IOC_RESET:
5919 		func = _perf_event_reset;
5920 		break;
5921 
5922 	case PERF_EVENT_IOC_REFRESH:
5923 		return _perf_event_refresh(event, arg);
5924 
5925 	case PERF_EVENT_IOC_PERIOD:
5926 	{
5927 		u64 value;
5928 
5929 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5930 			return -EFAULT;
5931 
5932 		return _perf_event_period(event, value);
5933 	}
5934 	case PERF_EVENT_IOC_ID:
5935 	{
5936 		u64 id = primary_event_id(event);
5937 
5938 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5939 			return -EFAULT;
5940 		return 0;
5941 	}
5942 
5943 	case PERF_EVENT_IOC_SET_OUTPUT:
5944 	{
5945 		int ret;
5946 		if (arg != -1) {
5947 			struct perf_event *output_event;
5948 			struct fd output;
5949 			ret = perf_fget_light(arg, &output);
5950 			if (ret)
5951 				return ret;
5952 			output_event = output.file->private_data;
5953 			ret = perf_event_set_output(event, output_event);
5954 			fdput(output);
5955 		} else {
5956 			ret = perf_event_set_output(event, NULL);
5957 		}
5958 		return ret;
5959 	}
5960 
5961 	case PERF_EVENT_IOC_SET_FILTER:
5962 		return perf_event_set_filter(event, (void __user *)arg);
5963 
5964 	case PERF_EVENT_IOC_SET_BPF:
5965 	{
5966 		struct bpf_prog *prog;
5967 		int err;
5968 
5969 		prog = bpf_prog_get(arg);
5970 		if (IS_ERR(prog))
5971 			return PTR_ERR(prog);
5972 
5973 		err = perf_event_set_bpf_prog(event, prog, 0);
5974 		if (err) {
5975 			bpf_prog_put(prog);
5976 			return err;
5977 		}
5978 
5979 		return 0;
5980 	}
5981 
5982 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5983 		struct perf_buffer *rb;
5984 
5985 		rcu_read_lock();
5986 		rb = rcu_dereference(event->rb);
5987 		if (!rb || !rb->nr_pages) {
5988 			rcu_read_unlock();
5989 			return -EINVAL;
5990 		}
5991 		rb_toggle_paused(rb, !!arg);
5992 		rcu_read_unlock();
5993 		return 0;
5994 	}
5995 
5996 	case PERF_EVENT_IOC_QUERY_BPF:
5997 		return perf_event_query_prog_array(event, (void __user *)arg);
5998 
5999 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6000 		struct perf_event_attr new_attr;
6001 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6002 					 &new_attr);
6003 
6004 		if (err)
6005 			return err;
6006 
6007 		return perf_event_modify_attr(event,  &new_attr);
6008 	}
6009 	default:
6010 		return -ENOTTY;
6011 	}
6012 
6013 	if (flags & PERF_IOC_FLAG_GROUP)
6014 		perf_event_for_each(event, func);
6015 	else
6016 		perf_event_for_each_child(event, func);
6017 
6018 	return 0;
6019 }
6020 
6021 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6022 {
6023 	struct perf_event *event = file->private_data;
6024 	struct perf_event_context *ctx;
6025 	long ret;
6026 
6027 	/* Treat ioctl like writes as it is likely a mutating operation. */
6028 	ret = security_perf_event_write(event);
6029 	if (ret)
6030 		return ret;
6031 
6032 	ctx = perf_event_ctx_lock(event);
6033 	ret = _perf_ioctl(event, cmd, arg);
6034 	perf_event_ctx_unlock(event, ctx);
6035 
6036 	return ret;
6037 }
6038 
6039 #ifdef CONFIG_COMPAT
6040 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6041 				unsigned long arg)
6042 {
6043 	switch (_IOC_NR(cmd)) {
6044 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6045 	case _IOC_NR(PERF_EVENT_IOC_ID):
6046 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6047 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6048 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6049 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6050 			cmd &= ~IOCSIZE_MASK;
6051 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6052 		}
6053 		break;
6054 	}
6055 	return perf_ioctl(file, cmd, arg);
6056 }
6057 #else
6058 # define perf_compat_ioctl NULL
6059 #endif
6060 
6061 int perf_event_task_enable(void)
6062 {
6063 	struct perf_event_context *ctx;
6064 	struct perf_event *event;
6065 
6066 	mutex_lock(&current->perf_event_mutex);
6067 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6068 		ctx = perf_event_ctx_lock(event);
6069 		perf_event_for_each_child(event, _perf_event_enable);
6070 		perf_event_ctx_unlock(event, ctx);
6071 	}
6072 	mutex_unlock(&current->perf_event_mutex);
6073 
6074 	return 0;
6075 }
6076 
6077 int perf_event_task_disable(void)
6078 {
6079 	struct perf_event_context *ctx;
6080 	struct perf_event *event;
6081 
6082 	mutex_lock(&current->perf_event_mutex);
6083 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6084 		ctx = perf_event_ctx_lock(event);
6085 		perf_event_for_each_child(event, _perf_event_disable);
6086 		perf_event_ctx_unlock(event, ctx);
6087 	}
6088 	mutex_unlock(&current->perf_event_mutex);
6089 
6090 	return 0;
6091 }
6092 
6093 static int perf_event_index(struct perf_event *event)
6094 {
6095 	if (event->hw.state & PERF_HES_STOPPED)
6096 		return 0;
6097 
6098 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6099 		return 0;
6100 
6101 	return event->pmu->event_idx(event);
6102 }
6103 
6104 static void perf_event_init_userpage(struct perf_event *event)
6105 {
6106 	struct perf_event_mmap_page *userpg;
6107 	struct perf_buffer *rb;
6108 
6109 	rcu_read_lock();
6110 	rb = rcu_dereference(event->rb);
6111 	if (!rb)
6112 		goto unlock;
6113 
6114 	userpg = rb->user_page;
6115 
6116 	/* Allow new userspace to detect that bit 0 is deprecated */
6117 	userpg->cap_bit0_is_deprecated = 1;
6118 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6119 	userpg->data_offset = PAGE_SIZE;
6120 	userpg->data_size = perf_data_size(rb);
6121 
6122 unlock:
6123 	rcu_read_unlock();
6124 }
6125 
6126 void __weak arch_perf_update_userpage(
6127 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6128 {
6129 }
6130 
6131 /*
6132  * Callers need to ensure there can be no nesting of this function, otherwise
6133  * the seqlock logic goes bad. We can not serialize this because the arch
6134  * code calls this from NMI context.
6135  */
6136 void perf_event_update_userpage(struct perf_event *event)
6137 {
6138 	struct perf_event_mmap_page *userpg;
6139 	struct perf_buffer *rb;
6140 	u64 enabled, running, now;
6141 
6142 	rcu_read_lock();
6143 	rb = rcu_dereference(event->rb);
6144 	if (!rb)
6145 		goto unlock;
6146 
6147 	/*
6148 	 * compute total_time_enabled, total_time_running
6149 	 * based on snapshot values taken when the event
6150 	 * was last scheduled in.
6151 	 *
6152 	 * we cannot simply called update_context_time()
6153 	 * because of locking issue as we can be called in
6154 	 * NMI context
6155 	 */
6156 	calc_timer_values(event, &now, &enabled, &running);
6157 
6158 	userpg = rb->user_page;
6159 	/*
6160 	 * Disable preemption to guarantee consistent time stamps are stored to
6161 	 * the user page.
6162 	 */
6163 	preempt_disable();
6164 	++userpg->lock;
6165 	barrier();
6166 	userpg->index = perf_event_index(event);
6167 	userpg->offset = perf_event_count(event);
6168 	if (userpg->index)
6169 		userpg->offset -= local64_read(&event->hw.prev_count);
6170 
6171 	userpg->time_enabled = enabled +
6172 			atomic64_read(&event->child_total_time_enabled);
6173 
6174 	userpg->time_running = running +
6175 			atomic64_read(&event->child_total_time_running);
6176 
6177 	arch_perf_update_userpage(event, userpg, now);
6178 
6179 	barrier();
6180 	++userpg->lock;
6181 	preempt_enable();
6182 unlock:
6183 	rcu_read_unlock();
6184 }
6185 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6186 
6187 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6188 {
6189 	struct perf_event *event = vmf->vma->vm_file->private_data;
6190 	struct perf_buffer *rb;
6191 	vm_fault_t ret = VM_FAULT_SIGBUS;
6192 
6193 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6194 		if (vmf->pgoff == 0)
6195 			ret = 0;
6196 		return ret;
6197 	}
6198 
6199 	rcu_read_lock();
6200 	rb = rcu_dereference(event->rb);
6201 	if (!rb)
6202 		goto unlock;
6203 
6204 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6205 		goto unlock;
6206 
6207 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6208 	if (!vmf->page)
6209 		goto unlock;
6210 
6211 	get_page(vmf->page);
6212 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6213 	vmf->page->index   = vmf->pgoff;
6214 
6215 	ret = 0;
6216 unlock:
6217 	rcu_read_unlock();
6218 
6219 	return ret;
6220 }
6221 
6222 static void ring_buffer_attach(struct perf_event *event,
6223 			       struct perf_buffer *rb)
6224 {
6225 	struct perf_buffer *old_rb = NULL;
6226 	unsigned long flags;
6227 
6228 	WARN_ON_ONCE(event->parent);
6229 
6230 	if (event->rb) {
6231 		/*
6232 		 * Should be impossible, we set this when removing
6233 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6234 		 */
6235 		WARN_ON_ONCE(event->rcu_pending);
6236 
6237 		old_rb = event->rb;
6238 		spin_lock_irqsave(&old_rb->event_lock, flags);
6239 		list_del_rcu(&event->rb_entry);
6240 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6241 
6242 		event->rcu_batches = get_state_synchronize_rcu();
6243 		event->rcu_pending = 1;
6244 	}
6245 
6246 	if (rb) {
6247 		if (event->rcu_pending) {
6248 			cond_synchronize_rcu(event->rcu_batches);
6249 			event->rcu_pending = 0;
6250 		}
6251 
6252 		spin_lock_irqsave(&rb->event_lock, flags);
6253 		list_add_rcu(&event->rb_entry, &rb->event_list);
6254 		spin_unlock_irqrestore(&rb->event_lock, flags);
6255 	}
6256 
6257 	/*
6258 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6259 	 * before swizzling the event::rb pointer; if it's getting
6260 	 * unmapped, its aux_mmap_count will be 0 and it won't
6261 	 * restart. See the comment in __perf_pmu_output_stop().
6262 	 *
6263 	 * Data will inevitably be lost when set_output is done in
6264 	 * mid-air, but then again, whoever does it like this is
6265 	 * not in for the data anyway.
6266 	 */
6267 	if (has_aux(event))
6268 		perf_event_stop(event, 0);
6269 
6270 	rcu_assign_pointer(event->rb, rb);
6271 
6272 	if (old_rb) {
6273 		ring_buffer_put(old_rb);
6274 		/*
6275 		 * Since we detached before setting the new rb, so that we
6276 		 * could attach the new rb, we could have missed a wakeup.
6277 		 * Provide it now.
6278 		 */
6279 		wake_up_all(&event->waitq);
6280 	}
6281 }
6282 
6283 static void ring_buffer_wakeup(struct perf_event *event)
6284 {
6285 	struct perf_buffer *rb;
6286 
6287 	if (event->parent)
6288 		event = event->parent;
6289 
6290 	rcu_read_lock();
6291 	rb = rcu_dereference(event->rb);
6292 	if (rb) {
6293 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6294 			wake_up_all(&event->waitq);
6295 	}
6296 	rcu_read_unlock();
6297 }
6298 
6299 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6300 {
6301 	struct perf_buffer *rb;
6302 
6303 	if (event->parent)
6304 		event = event->parent;
6305 
6306 	rcu_read_lock();
6307 	rb = rcu_dereference(event->rb);
6308 	if (rb) {
6309 		if (!refcount_inc_not_zero(&rb->refcount))
6310 			rb = NULL;
6311 	}
6312 	rcu_read_unlock();
6313 
6314 	return rb;
6315 }
6316 
6317 void ring_buffer_put(struct perf_buffer *rb)
6318 {
6319 	if (!refcount_dec_and_test(&rb->refcount))
6320 		return;
6321 
6322 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6323 
6324 	call_rcu(&rb->rcu_head, rb_free_rcu);
6325 }
6326 
6327 static void perf_mmap_open(struct vm_area_struct *vma)
6328 {
6329 	struct perf_event *event = vma->vm_file->private_data;
6330 
6331 	atomic_inc(&event->mmap_count);
6332 	atomic_inc(&event->rb->mmap_count);
6333 
6334 	if (vma->vm_pgoff)
6335 		atomic_inc(&event->rb->aux_mmap_count);
6336 
6337 	if (event->pmu->event_mapped)
6338 		event->pmu->event_mapped(event, vma->vm_mm);
6339 }
6340 
6341 static void perf_pmu_output_stop(struct perf_event *event);
6342 
6343 /*
6344  * A buffer can be mmap()ed multiple times; either directly through the same
6345  * event, or through other events by use of perf_event_set_output().
6346  *
6347  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6348  * the buffer here, where we still have a VM context. This means we need
6349  * to detach all events redirecting to us.
6350  */
6351 static void perf_mmap_close(struct vm_area_struct *vma)
6352 {
6353 	struct perf_event *event = vma->vm_file->private_data;
6354 	struct perf_buffer *rb = ring_buffer_get(event);
6355 	struct user_struct *mmap_user = rb->mmap_user;
6356 	int mmap_locked = rb->mmap_locked;
6357 	unsigned long size = perf_data_size(rb);
6358 	bool detach_rest = false;
6359 
6360 	if (event->pmu->event_unmapped)
6361 		event->pmu->event_unmapped(event, vma->vm_mm);
6362 
6363 	/*
6364 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6365 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6366 	 * serialize with perf_mmap here.
6367 	 */
6368 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6369 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6370 		/*
6371 		 * Stop all AUX events that are writing to this buffer,
6372 		 * so that we can free its AUX pages and corresponding PMU
6373 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6374 		 * they won't start any more (see perf_aux_output_begin()).
6375 		 */
6376 		perf_pmu_output_stop(event);
6377 
6378 		/* now it's safe to free the pages */
6379 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6380 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6381 
6382 		/* this has to be the last one */
6383 		rb_free_aux(rb);
6384 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6385 
6386 		mutex_unlock(&event->mmap_mutex);
6387 	}
6388 
6389 	if (atomic_dec_and_test(&rb->mmap_count))
6390 		detach_rest = true;
6391 
6392 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6393 		goto out_put;
6394 
6395 	ring_buffer_attach(event, NULL);
6396 	mutex_unlock(&event->mmap_mutex);
6397 
6398 	/* If there's still other mmap()s of this buffer, we're done. */
6399 	if (!detach_rest)
6400 		goto out_put;
6401 
6402 	/*
6403 	 * No other mmap()s, detach from all other events that might redirect
6404 	 * into the now unreachable buffer. Somewhat complicated by the
6405 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6406 	 */
6407 again:
6408 	rcu_read_lock();
6409 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6410 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6411 			/*
6412 			 * This event is en-route to free_event() which will
6413 			 * detach it and remove it from the list.
6414 			 */
6415 			continue;
6416 		}
6417 		rcu_read_unlock();
6418 
6419 		mutex_lock(&event->mmap_mutex);
6420 		/*
6421 		 * Check we didn't race with perf_event_set_output() which can
6422 		 * swizzle the rb from under us while we were waiting to
6423 		 * acquire mmap_mutex.
6424 		 *
6425 		 * If we find a different rb; ignore this event, a next
6426 		 * iteration will no longer find it on the list. We have to
6427 		 * still restart the iteration to make sure we're not now
6428 		 * iterating the wrong list.
6429 		 */
6430 		if (event->rb == rb)
6431 			ring_buffer_attach(event, NULL);
6432 
6433 		mutex_unlock(&event->mmap_mutex);
6434 		put_event(event);
6435 
6436 		/*
6437 		 * Restart the iteration; either we're on the wrong list or
6438 		 * destroyed its integrity by doing a deletion.
6439 		 */
6440 		goto again;
6441 	}
6442 	rcu_read_unlock();
6443 
6444 	/*
6445 	 * It could be there's still a few 0-ref events on the list; they'll
6446 	 * get cleaned up by free_event() -- they'll also still have their
6447 	 * ref on the rb and will free it whenever they are done with it.
6448 	 *
6449 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6450 	 * undo the VM accounting.
6451 	 */
6452 
6453 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6454 			&mmap_user->locked_vm);
6455 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6456 	free_uid(mmap_user);
6457 
6458 out_put:
6459 	ring_buffer_put(rb); /* could be last */
6460 }
6461 
6462 static const struct vm_operations_struct perf_mmap_vmops = {
6463 	.open		= perf_mmap_open,
6464 	.close		= perf_mmap_close, /* non mergeable */
6465 	.fault		= perf_mmap_fault,
6466 	.page_mkwrite	= perf_mmap_fault,
6467 };
6468 
6469 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6470 {
6471 	struct perf_event *event = file->private_data;
6472 	unsigned long user_locked, user_lock_limit;
6473 	struct user_struct *user = current_user();
6474 	struct perf_buffer *rb = NULL;
6475 	unsigned long locked, lock_limit;
6476 	unsigned long vma_size;
6477 	unsigned long nr_pages;
6478 	long user_extra = 0, extra = 0;
6479 	int ret = 0, flags = 0;
6480 
6481 	/*
6482 	 * Don't allow mmap() of inherited per-task counters. This would
6483 	 * create a performance issue due to all children writing to the
6484 	 * same rb.
6485 	 */
6486 	if (event->cpu == -1 && event->attr.inherit)
6487 		return -EINVAL;
6488 
6489 	if (!(vma->vm_flags & VM_SHARED))
6490 		return -EINVAL;
6491 
6492 	ret = security_perf_event_read(event);
6493 	if (ret)
6494 		return ret;
6495 
6496 	vma_size = vma->vm_end - vma->vm_start;
6497 
6498 	if (vma->vm_pgoff == 0) {
6499 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6500 	} else {
6501 		/*
6502 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6503 		 * mapped, all subsequent mappings should have the same size
6504 		 * and offset. Must be above the normal perf buffer.
6505 		 */
6506 		u64 aux_offset, aux_size;
6507 
6508 		if (!event->rb)
6509 			return -EINVAL;
6510 
6511 		nr_pages = vma_size / PAGE_SIZE;
6512 
6513 		mutex_lock(&event->mmap_mutex);
6514 		ret = -EINVAL;
6515 
6516 		rb = event->rb;
6517 		if (!rb)
6518 			goto aux_unlock;
6519 
6520 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6521 		aux_size = READ_ONCE(rb->user_page->aux_size);
6522 
6523 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6524 			goto aux_unlock;
6525 
6526 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6527 			goto aux_unlock;
6528 
6529 		/* already mapped with a different offset */
6530 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6531 			goto aux_unlock;
6532 
6533 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6534 			goto aux_unlock;
6535 
6536 		/* already mapped with a different size */
6537 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6538 			goto aux_unlock;
6539 
6540 		if (!is_power_of_2(nr_pages))
6541 			goto aux_unlock;
6542 
6543 		if (!atomic_inc_not_zero(&rb->mmap_count))
6544 			goto aux_unlock;
6545 
6546 		if (rb_has_aux(rb)) {
6547 			atomic_inc(&rb->aux_mmap_count);
6548 			ret = 0;
6549 			goto unlock;
6550 		}
6551 
6552 		atomic_set(&rb->aux_mmap_count, 1);
6553 		user_extra = nr_pages;
6554 
6555 		goto accounting;
6556 	}
6557 
6558 	/*
6559 	 * If we have rb pages ensure they're a power-of-two number, so we
6560 	 * can do bitmasks instead of modulo.
6561 	 */
6562 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6563 		return -EINVAL;
6564 
6565 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6566 		return -EINVAL;
6567 
6568 	WARN_ON_ONCE(event->ctx->parent_ctx);
6569 again:
6570 	mutex_lock(&event->mmap_mutex);
6571 	if (event->rb) {
6572 		if (data_page_nr(event->rb) != nr_pages) {
6573 			ret = -EINVAL;
6574 			goto unlock;
6575 		}
6576 
6577 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6578 			/*
6579 			 * Raced against perf_mmap_close(); remove the
6580 			 * event and try again.
6581 			 */
6582 			ring_buffer_attach(event, NULL);
6583 			mutex_unlock(&event->mmap_mutex);
6584 			goto again;
6585 		}
6586 
6587 		goto unlock;
6588 	}
6589 
6590 	user_extra = nr_pages + 1;
6591 
6592 accounting:
6593 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6594 
6595 	/*
6596 	 * Increase the limit linearly with more CPUs:
6597 	 */
6598 	user_lock_limit *= num_online_cpus();
6599 
6600 	user_locked = atomic_long_read(&user->locked_vm);
6601 
6602 	/*
6603 	 * sysctl_perf_event_mlock may have changed, so that
6604 	 *     user->locked_vm > user_lock_limit
6605 	 */
6606 	if (user_locked > user_lock_limit)
6607 		user_locked = user_lock_limit;
6608 	user_locked += user_extra;
6609 
6610 	if (user_locked > user_lock_limit) {
6611 		/*
6612 		 * charge locked_vm until it hits user_lock_limit;
6613 		 * charge the rest from pinned_vm
6614 		 */
6615 		extra = user_locked - user_lock_limit;
6616 		user_extra -= extra;
6617 	}
6618 
6619 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6620 	lock_limit >>= PAGE_SHIFT;
6621 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6622 
6623 	if ((locked > lock_limit) && perf_is_paranoid() &&
6624 		!capable(CAP_IPC_LOCK)) {
6625 		ret = -EPERM;
6626 		goto unlock;
6627 	}
6628 
6629 	WARN_ON(!rb && event->rb);
6630 
6631 	if (vma->vm_flags & VM_WRITE)
6632 		flags |= RING_BUFFER_WRITABLE;
6633 
6634 	if (!rb) {
6635 		rb = rb_alloc(nr_pages,
6636 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6637 			      event->cpu, flags);
6638 
6639 		if (!rb) {
6640 			ret = -ENOMEM;
6641 			goto unlock;
6642 		}
6643 
6644 		atomic_set(&rb->mmap_count, 1);
6645 		rb->mmap_user = get_current_user();
6646 		rb->mmap_locked = extra;
6647 
6648 		ring_buffer_attach(event, rb);
6649 
6650 		perf_event_update_time(event);
6651 		perf_event_init_userpage(event);
6652 		perf_event_update_userpage(event);
6653 	} else {
6654 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6655 				   event->attr.aux_watermark, flags);
6656 		if (!ret)
6657 			rb->aux_mmap_locked = extra;
6658 	}
6659 
6660 unlock:
6661 	if (!ret) {
6662 		atomic_long_add(user_extra, &user->locked_vm);
6663 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6664 
6665 		atomic_inc(&event->mmap_count);
6666 	} else if (rb) {
6667 		atomic_dec(&rb->mmap_count);
6668 	}
6669 aux_unlock:
6670 	mutex_unlock(&event->mmap_mutex);
6671 
6672 	/*
6673 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6674 	 * vma.
6675 	 */
6676 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6677 	vma->vm_ops = &perf_mmap_vmops;
6678 
6679 	if (event->pmu->event_mapped)
6680 		event->pmu->event_mapped(event, vma->vm_mm);
6681 
6682 	return ret;
6683 }
6684 
6685 static int perf_fasync(int fd, struct file *filp, int on)
6686 {
6687 	struct inode *inode = file_inode(filp);
6688 	struct perf_event *event = filp->private_data;
6689 	int retval;
6690 
6691 	inode_lock(inode);
6692 	retval = fasync_helper(fd, filp, on, &event->fasync);
6693 	inode_unlock(inode);
6694 
6695 	if (retval < 0)
6696 		return retval;
6697 
6698 	return 0;
6699 }
6700 
6701 static const struct file_operations perf_fops = {
6702 	.llseek			= no_llseek,
6703 	.release		= perf_release,
6704 	.read			= perf_read,
6705 	.poll			= perf_poll,
6706 	.unlocked_ioctl		= perf_ioctl,
6707 	.compat_ioctl		= perf_compat_ioctl,
6708 	.mmap			= perf_mmap,
6709 	.fasync			= perf_fasync,
6710 };
6711 
6712 /*
6713  * Perf event wakeup
6714  *
6715  * If there's data, ensure we set the poll() state and publish everything
6716  * to user-space before waking everybody up.
6717  */
6718 
6719 void perf_event_wakeup(struct perf_event *event)
6720 {
6721 	ring_buffer_wakeup(event);
6722 
6723 	if (event->pending_kill) {
6724 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6725 		event->pending_kill = 0;
6726 	}
6727 }
6728 
6729 static void perf_sigtrap(struct perf_event *event)
6730 {
6731 	/*
6732 	 * We'd expect this to only occur if the irq_work is delayed and either
6733 	 * ctx->task or current has changed in the meantime. This can be the
6734 	 * case on architectures that do not implement arch_irq_work_raise().
6735 	 */
6736 	if (WARN_ON_ONCE(event->ctx->task != current))
6737 		return;
6738 
6739 	/*
6740 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6741 	 * task exiting.
6742 	 */
6743 	if (current->flags & PF_EXITING)
6744 		return;
6745 
6746 	send_sig_perf((void __user *)event->pending_addr,
6747 		      event->orig_type, event->attr.sig_data);
6748 }
6749 
6750 /*
6751  * Deliver the pending work in-event-context or follow the context.
6752  */
6753 static void __perf_pending_irq(struct perf_event *event)
6754 {
6755 	int cpu = READ_ONCE(event->oncpu);
6756 
6757 	/*
6758 	 * If the event isn't running; we done. event_sched_out() will have
6759 	 * taken care of things.
6760 	 */
6761 	if (cpu < 0)
6762 		return;
6763 
6764 	/*
6765 	 * Yay, we hit home and are in the context of the event.
6766 	 */
6767 	if (cpu == smp_processor_id()) {
6768 		if (event->pending_sigtrap) {
6769 			event->pending_sigtrap = 0;
6770 			perf_sigtrap(event);
6771 			local_dec(&event->ctx->nr_pending);
6772 		}
6773 		if (event->pending_disable) {
6774 			event->pending_disable = 0;
6775 			perf_event_disable_local(event);
6776 		}
6777 		return;
6778 	}
6779 
6780 	/*
6781 	 *  CPU-A			CPU-B
6782 	 *
6783 	 *  perf_event_disable_inatomic()
6784 	 *    @pending_disable = CPU-A;
6785 	 *    irq_work_queue();
6786 	 *
6787 	 *  sched-out
6788 	 *    @pending_disable = -1;
6789 	 *
6790 	 *				sched-in
6791 	 *				perf_event_disable_inatomic()
6792 	 *				  @pending_disable = CPU-B;
6793 	 *				  irq_work_queue(); // FAILS
6794 	 *
6795 	 *  irq_work_run()
6796 	 *    perf_pending_irq()
6797 	 *
6798 	 * But the event runs on CPU-B and wants disabling there.
6799 	 */
6800 	irq_work_queue_on(&event->pending_irq, cpu);
6801 }
6802 
6803 static void perf_pending_irq(struct irq_work *entry)
6804 {
6805 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6806 	int rctx;
6807 
6808 	/*
6809 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6810 	 * and we won't recurse 'further'.
6811 	 */
6812 	rctx = perf_swevent_get_recursion_context();
6813 
6814 	/*
6815 	 * The wakeup isn't bound to the context of the event -- it can happen
6816 	 * irrespective of where the event is.
6817 	 */
6818 	if (event->pending_wakeup) {
6819 		event->pending_wakeup = 0;
6820 		perf_event_wakeup(event);
6821 	}
6822 
6823 	__perf_pending_irq(event);
6824 
6825 	if (rctx >= 0)
6826 		perf_swevent_put_recursion_context(rctx);
6827 }
6828 
6829 static void perf_pending_task(struct callback_head *head)
6830 {
6831 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6832 	int rctx;
6833 
6834 	/*
6835 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6836 	 * and we won't recurse 'further'.
6837 	 */
6838 	preempt_disable_notrace();
6839 	rctx = perf_swevent_get_recursion_context();
6840 
6841 	if (event->pending_work) {
6842 		event->pending_work = 0;
6843 		perf_sigtrap(event);
6844 		local_dec(&event->ctx->nr_pending);
6845 	}
6846 
6847 	if (rctx >= 0)
6848 		perf_swevent_put_recursion_context(rctx);
6849 	preempt_enable_notrace();
6850 
6851 	put_event(event);
6852 }
6853 
6854 #ifdef CONFIG_GUEST_PERF_EVENTS
6855 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6856 
6857 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6858 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6859 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6860 
6861 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6862 {
6863 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6864 		return;
6865 
6866 	rcu_assign_pointer(perf_guest_cbs, cbs);
6867 	static_call_update(__perf_guest_state, cbs->state);
6868 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6869 
6870 	/* Implementing ->handle_intel_pt_intr is optional. */
6871 	if (cbs->handle_intel_pt_intr)
6872 		static_call_update(__perf_guest_handle_intel_pt_intr,
6873 				   cbs->handle_intel_pt_intr);
6874 }
6875 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6876 
6877 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6878 {
6879 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6880 		return;
6881 
6882 	rcu_assign_pointer(perf_guest_cbs, NULL);
6883 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6884 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6885 	static_call_update(__perf_guest_handle_intel_pt_intr,
6886 			   (void *)&__static_call_return0);
6887 	synchronize_rcu();
6888 }
6889 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6890 #endif
6891 
6892 static void
6893 perf_output_sample_regs(struct perf_output_handle *handle,
6894 			struct pt_regs *regs, u64 mask)
6895 {
6896 	int bit;
6897 	DECLARE_BITMAP(_mask, 64);
6898 
6899 	bitmap_from_u64(_mask, mask);
6900 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6901 		u64 val;
6902 
6903 		val = perf_reg_value(regs, bit);
6904 		perf_output_put(handle, val);
6905 	}
6906 }
6907 
6908 static void perf_sample_regs_user(struct perf_regs *regs_user,
6909 				  struct pt_regs *regs)
6910 {
6911 	if (user_mode(regs)) {
6912 		regs_user->abi = perf_reg_abi(current);
6913 		regs_user->regs = regs;
6914 	} else if (!(current->flags & PF_KTHREAD)) {
6915 		perf_get_regs_user(regs_user, regs);
6916 	} else {
6917 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6918 		regs_user->regs = NULL;
6919 	}
6920 }
6921 
6922 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6923 				  struct pt_regs *regs)
6924 {
6925 	regs_intr->regs = regs;
6926 	regs_intr->abi  = perf_reg_abi(current);
6927 }
6928 
6929 
6930 /*
6931  * Get remaining task size from user stack pointer.
6932  *
6933  * It'd be better to take stack vma map and limit this more
6934  * precisely, but there's no way to get it safely under interrupt,
6935  * so using TASK_SIZE as limit.
6936  */
6937 static u64 perf_ustack_task_size(struct pt_regs *regs)
6938 {
6939 	unsigned long addr = perf_user_stack_pointer(regs);
6940 
6941 	if (!addr || addr >= TASK_SIZE)
6942 		return 0;
6943 
6944 	return TASK_SIZE - addr;
6945 }
6946 
6947 static u16
6948 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6949 			struct pt_regs *regs)
6950 {
6951 	u64 task_size;
6952 
6953 	/* No regs, no stack pointer, no dump. */
6954 	if (!regs)
6955 		return 0;
6956 
6957 	/*
6958 	 * Check if we fit in with the requested stack size into the:
6959 	 * - TASK_SIZE
6960 	 *   If we don't, we limit the size to the TASK_SIZE.
6961 	 *
6962 	 * - remaining sample size
6963 	 *   If we don't, we customize the stack size to
6964 	 *   fit in to the remaining sample size.
6965 	 */
6966 
6967 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6968 	stack_size = min(stack_size, (u16) task_size);
6969 
6970 	/* Current header size plus static size and dynamic size. */
6971 	header_size += 2 * sizeof(u64);
6972 
6973 	/* Do we fit in with the current stack dump size? */
6974 	if ((u16) (header_size + stack_size) < header_size) {
6975 		/*
6976 		 * If we overflow the maximum size for the sample,
6977 		 * we customize the stack dump size to fit in.
6978 		 */
6979 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6980 		stack_size = round_up(stack_size, sizeof(u64));
6981 	}
6982 
6983 	return stack_size;
6984 }
6985 
6986 static void
6987 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6988 			  struct pt_regs *regs)
6989 {
6990 	/* Case of a kernel thread, nothing to dump */
6991 	if (!regs) {
6992 		u64 size = 0;
6993 		perf_output_put(handle, size);
6994 	} else {
6995 		unsigned long sp;
6996 		unsigned int rem;
6997 		u64 dyn_size;
6998 
6999 		/*
7000 		 * We dump:
7001 		 * static size
7002 		 *   - the size requested by user or the best one we can fit
7003 		 *     in to the sample max size
7004 		 * data
7005 		 *   - user stack dump data
7006 		 * dynamic size
7007 		 *   - the actual dumped size
7008 		 */
7009 
7010 		/* Static size. */
7011 		perf_output_put(handle, dump_size);
7012 
7013 		/* Data. */
7014 		sp = perf_user_stack_pointer(regs);
7015 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7016 		dyn_size = dump_size - rem;
7017 
7018 		perf_output_skip(handle, rem);
7019 
7020 		/* Dynamic size. */
7021 		perf_output_put(handle, dyn_size);
7022 	}
7023 }
7024 
7025 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7026 					  struct perf_sample_data *data,
7027 					  size_t size)
7028 {
7029 	struct perf_event *sampler = event->aux_event;
7030 	struct perf_buffer *rb;
7031 
7032 	data->aux_size = 0;
7033 
7034 	if (!sampler)
7035 		goto out;
7036 
7037 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7038 		goto out;
7039 
7040 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7041 		goto out;
7042 
7043 	rb = ring_buffer_get(sampler);
7044 	if (!rb)
7045 		goto out;
7046 
7047 	/*
7048 	 * If this is an NMI hit inside sampling code, don't take
7049 	 * the sample. See also perf_aux_sample_output().
7050 	 */
7051 	if (READ_ONCE(rb->aux_in_sampling)) {
7052 		data->aux_size = 0;
7053 	} else {
7054 		size = min_t(size_t, size, perf_aux_size(rb));
7055 		data->aux_size = ALIGN(size, sizeof(u64));
7056 	}
7057 	ring_buffer_put(rb);
7058 
7059 out:
7060 	return data->aux_size;
7061 }
7062 
7063 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7064                                  struct perf_event *event,
7065                                  struct perf_output_handle *handle,
7066                                  unsigned long size)
7067 {
7068 	unsigned long flags;
7069 	long ret;
7070 
7071 	/*
7072 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7073 	 * paths. If we start calling them in NMI context, they may race with
7074 	 * the IRQ ones, that is, for example, re-starting an event that's just
7075 	 * been stopped, which is why we're using a separate callback that
7076 	 * doesn't change the event state.
7077 	 *
7078 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7079 	 */
7080 	local_irq_save(flags);
7081 	/*
7082 	 * Guard against NMI hits inside the critical section;
7083 	 * see also perf_prepare_sample_aux().
7084 	 */
7085 	WRITE_ONCE(rb->aux_in_sampling, 1);
7086 	barrier();
7087 
7088 	ret = event->pmu->snapshot_aux(event, handle, size);
7089 
7090 	barrier();
7091 	WRITE_ONCE(rb->aux_in_sampling, 0);
7092 	local_irq_restore(flags);
7093 
7094 	return ret;
7095 }
7096 
7097 static void perf_aux_sample_output(struct perf_event *event,
7098 				   struct perf_output_handle *handle,
7099 				   struct perf_sample_data *data)
7100 {
7101 	struct perf_event *sampler = event->aux_event;
7102 	struct perf_buffer *rb;
7103 	unsigned long pad;
7104 	long size;
7105 
7106 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7107 		return;
7108 
7109 	rb = ring_buffer_get(sampler);
7110 	if (!rb)
7111 		return;
7112 
7113 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7114 
7115 	/*
7116 	 * An error here means that perf_output_copy() failed (returned a
7117 	 * non-zero surplus that it didn't copy), which in its current
7118 	 * enlightened implementation is not possible. If that changes, we'd
7119 	 * like to know.
7120 	 */
7121 	if (WARN_ON_ONCE(size < 0))
7122 		goto out_put;
7123 
7124 	/*
7125 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7126 	 * perf_prepare_sample_aux(), so should not be more than that.
7127 	 */
7128 	pad = data->aux_size - size;
7129 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7130 		pad = 8;
7131 
7132 	if (pad) {
7133 		u64 zero = 0;
7134 		perf_output_copy(handle, &zero, pad);
7135 	}
7136 
7137 out_put:
7138 	ring_buffer_put(rb);
7139 }
7140 
7141 /*
7142  * A set of common sample data types saved even for non-sample records
7143  * when event->attr.sample_id_all is set.
7144  */
7145 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7146 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7147 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7148 
7149 static void __perf_event_header__init_id(struct perf_sample_data *data,
7150 					 struct perf_event *event,
7151 					 u64 sample_type)
7152 {
7153 	data->type = event->attr.sample_type;
7154 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7155 
7156 	if (sample_type & PERF_SAMPLE_TID) {
7157 		/* namespace issues */
7158 		data->tid_entry.pid = perf_event_pid(event, current);
7159 		data->tid_entry.tid = perf_event_tid(event, current);
7160 	}
7161 
7162 	if (sample_type & PERF_SAMPLE_TIME)
7163 		data->time = perf_event_clock(event);
7164 
7165 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7166 		data->id = primary_event_id(event);
7167 
7168 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7169 		data->stream_id = event->id;
7170 
7171 	if (sample_type & PERF_SAMPLE_CPU) {
7172 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7173 		data->cpu_entry.reserved = 0;
7174 	}
7175 }
7176 
7177 void perf_event_header__init_id(struct perf_event_header *header,
7178 				struct perf_sample_data *data,
7179 				struct perf_event *event)
7180 {
7181 	if (event->attr.sample_id_all) {
7182 		header->size += event->id_header_size;
7183 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7184 	}
7185 }
7186 
7187 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7188 					   struct perf_sample_data *data)
7189 {
7190 	u64 sample_type = data->type;
7191 
7192 	if (sample_type & PERF_SAMPLE_TID)
7193 		perf_output_put(handle, data->tid_entry);
7194 
7195 	if (sample_type & PERF_SAMPLE_TIME)
7196 		perf_output_put(handle, data->time);
7197 
7198 	if (sample_type & PERF_SAMPLE_ID)
7199 		perf_output_put(handle, data->id);
7200 
7201 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7202 		perf_output_put(handle, data->stream_id);
7203 
7204 	if (sample_type & PERF_SAMPLE_CPU)
7205 		perf_output_put(handle, data->cpu_entry);
7206 
7207 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7208 		perf_output_put(handle, data->id);
7209 }
7210 
7211 void perf_event__output_id_sample(struct perf_event *event,
7212 				  struct perf_output_handle *handle,
7213 				  struct perf_sample_data *sample)
7214 {
7215 	if (event->attr.sample_id_all)
7216 		__perf_event__output_id_sample(handle, sample);
7217 }
7218 
7219 static void perf_output_read_one(struct perf_output_handle *handle,
7220 				 struct perf_event *event,
7221 				 u64 enabled, u64 running)
7222 {
7223 	u64 read_format = event->attr.read_format;
7224 	u64 values[5];
7225 	int n = 0;
7226 
7227 	values[n++] = perf_event_count(event);
7228 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7229 		values[n++] = enabled +
7230 			atomic64_read(&event->child_total_time_enabled);
7231 	}
7232 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7233 		values[n++] = running +
7234 			atomic64_read(&event->child_total_time_running);
7235 	}
7236 	if (read_format & PERF_FORMAT_ID)
7237 		values[n++] = primary_event_id(event);
7238 	if (read_format & PERF_FORMAT_LOST)
7239 		values[n++] = atomic64_read(&event->lost_samples);
7240 
7241 	__output_copy(handle, values, n * sizeof(u64));
7242 }
7243 
7244 static void perf_output_read_group(struct perf_output_handle *handle,
7245 			    struct perf_event *event,
7246 			    u64 enabled, u64 running)
7247 {
7248 	struct perf_event *leader = event->group_leader, *sub;
7249 	u64 read_format = event->attr.read_format;
7250 	unsigned long flags;
7251 	u64 values[6];
7252 	int n = 0;
7253 
7254 	/*
7255 	 * Disabling interrupts avoids all counter scheduling
7256 	 * (context switches, timer based rotation and IPIs).
7257 	 */
7258 	local_irq_save(flags);
7259 
7260 	values[n++] = 1 + leader->nr_siblings;
7261 
7262 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7263 		values[n++] = enabled;
7264 
7265 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7266 		values[n++] = running;
7267 
7268 	if ((leader != event) &&
7269 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7270 		leader->pmu->read(leader);
7271 
7272 	values[n++] = perf_event_count(leader);
7273 	if (read_format & PERF_FORMAT_ID)
7274 		values[n++] = primary_event_id(leader);
7275 	if (read_format & PERF_FORMAT_LOST)
7276 		values[n++] = atomic64_read(&leader->lost_samples);
7277 
7278 	__output_copy(handle, values, n * sizeof(u64));
7279 
7280 	for_each_sibling_event(sub, leader) {
7281 		n = 0;
7282 
7283 		if ((sub != event) &&
7284 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7285 			sub->pmu->read(sub);
7286 
7287 		values[n++] = perf_event_count(sub);
7288 		if (read_format & PERF_FORMAT_ID)
7289 			values[n++] = primary_event_id(sub);
7290 		if (read_format & PERF_FORMAT_LOST)
7291 			values[n++] = atomic64_read(&sub->lost_samples);
7292 
7293 		__output_copy(handle, values, n * sizeof(u64));
7294 	}
7295 
7296 	local_irq_restore(flags);
7297 }
7298 
7299 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7300 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7301 
7302 /*
7303  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7304  *
7305  * The problem is that its both hard and excessively expensive to iterate the
7306  * child list, not to mention that its impossible to IPI the children running
7307  * on another CPU, from interrupt/NMI context.
7308  */
7309 static void perf_output_read(struct perf_output_handle *handle,
7310 			     struct perf_event *event)
7311 {
7312 	u64 enabled = 0, running = 0, now;
7313 	u64 read_format = event->attr.read_format;
7314 
7315 	/*
7316 	 * compute total_time_enabled, total_time_running
7317 	 * based on snapshot values taken when the event
7318 	 * was last scheduled in.
7319 	 *
7320 	 * we cannot simply called update_context_time()
7321 	 * because of locking issue as we are called in
7322 	 * NMI context
7323 	 */
7324 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7325 		calc_timer_values(event, &now, &enabled, &running);
7326 
7327 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7328 		perf_output_read_group(handle, event, enabled, running);
7329 	else
7330 		perf_output_read_one(handle, event, enabled, running);
7331 }
7332 
7333 void perf_output_sample(struct perf_output_handle *handle,
7334 			struct perf_event_header *header,
7335 			struct perf_sample_data *data,
7336 			struct perf_event *event)
7337 {
7338 	u64 sample_type = data->type;
7339 
7340 	perf_output_put(handle, *header);
7341 
7342 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7343 		perf_output_put(handle, data->id);
7344 
7345 	if (sample_type & PERF_SAMPLE_IP)
7346 		perf_output_put(handle, data->ip);
7347 
7348 	if (sample_type & PERF_SAMPLE_TID)
7349 		perf_output_put(handle, data->tid_entry);
7350 
7351 	if (sample_type & PERF_SAMPLE_TIME)
7352 		perf_output_put(handle, data->time);
7353 
7354 	if (sample_type & PERF_SAMPLE_ADDR)
7355 		perf_output_put(handle, data->addr);
7356 
7357 	if (sample_type & PERF_SAMPLE_ID)
7358 		perf_output_put(handle, data->id);
7359 
7360 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7361 		perf_output_put(handle, data->stream_id);
7362 
7363 	if (sample_type & PERF_SAMPLE_CPU)
7364 		perf_output_put(handle, data->cpu_entry);
7365 
7366 	if (sample_type & PERF_SAMPLE_PERIOD)
7367 		perf_output_put(handle, data->period);
7368 
7369 	if (sample_type & PERF_SAMPLE_READ)
7370 		perf_output_read(handle, event);
7371 
7372 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7373 		int size = 1;
7374 
7375 		size += data->callchain->nr;
7376 		size *= sizeof(u64);
7377 		__output_copy(handle, data->callchain, size);
7378 	}
7379 
7380 	if (sample_type & PERF_SAMPLE_RAW) {
7381 		struct perf_raw_record *raw = data->raw;
7382 
7383 		if (raw) {
7384 			struct perf_raw_frag *frag = &raw->frag;
7385 
7386 			perf_output_put(handle, raw->size);
7387 			do {
7388 				if (frag->copy) {
7389 					__output_custom(handle, frag->copy,
7390 							frag->data, frag->size);
7391 				} else {
7392 					__output_copy(handle, frag->data,
7393 						      frag->size);
7394 				}
7395 				if (perf_raw_frag_last(frag))
7396 					break;
7397 				frag = frag->next;
7398 			} while (1);
7399 			if (frag->pad)
7400 				__output_skip(handle, NULL, frag->pad);
7401 		} else {
7402 			struct {
7403 				u32	size;
7404 				u32	data;
7405 			} raw = {
7406 				.size = sizeof(u32),
7407 				.data = 0,
7408 			};
7409 			perf_output_put(handle, raw);
7410 		}
7411 	}
7412 
7413 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7414 		if (data->br_stack) {
7415 			size_t size;
7416 
7417 			size = data->br_stack->nr
7418 			     * sizeof(struct perf_branch_entry);
7419 
7420 			perf_output_put(handle, data->br_stack->nr);
7421 			if (branch_sample_hw_index(event))
7422 				perf_output_put(handle, data->br_stack->hw_idx);
7423 			perf_output_copy(handle, data->br_stack->entries, size);
7424 			/*
7425 			 * Add the extension space which is appended
7426 			 * right after the struct perf_branch_stack.
7427 			 */
7428 			if (data->br_stack_cntr) {
7429 				size = data->br_stack->nr * sizeof(u64);
7430 				perf_output_copy(handle, data->br_stack_cntr, size);
7431 			}
7432 		} else {
7433 			/*
7434 			 * we always store at least the value of nr
7435 			 */
7436 			u64 nr = 0;
7437 			perf_output_put(handle, nr);
7438 		}
7439 	}
7440 
7441 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7442 		u64 abi = data->regs_user.abi;
7443 
7444 		/*
7445 		 * If there are no regs to dump, notice it through
7446 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7447 		 */
7448 		perf_output_put(handle, abi);
7449 
7450 		if (abi) {
7451 			u64 mask = event->attr.sample_regs_user;
7452 			perf_output_sample_regs(handle,
7453 						data->regs_user.regs,
7454 						mask);
7455 		}
7456 	}
7457 
7458 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7459 		perf_output_sample_ustack(handle,
7460 					  data->stack_user_size,
7461 					  data->regs_user.regs);
7462 	}
7463 
7464 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7465 		perf_output_put(handle, data->weight.full);
7466 
7467 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7468 		perf_output_put(handle, data->data_src.val);
7469 
7470 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7471 		perf_output_put(handle, data->txn);
7472 
7473 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7474 		u64 abi = data->regs_intr.abi;
7475 		/*
7476 		 * If there are no regs to dump, notice it through
7477 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7478 		 */
7479 		perf_output_put(handle, abi);
7480 
7481 		if (abi) {
7482 			u64 mask = event->attr.sample_regs_intr;
7483 
7484 			perf_output_sample_regs(handle,
7485 						data->regs_intr.regs,
7486 						mask);
7487 		}
7488 	}
7489 
7490 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7491 		perf_output_put(handle, data->phys_addr);
7492 
7493 	if (sample_type & PERF_SAMPLE_CGROUP)
7494 		perf_output_put(handle, data->cgroup);
7495 
7496 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7497 		perf_output_put(handle, data->data_page_size);
7498 
7499 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7500 		perf_output_put(handle, data->code_page_size);
7501 
7502 	if (sample_type & PERF_SAMPLE_AUX) {
7503 		perf_output_put(handle, data->aux_size);
7504 
7505 		if (data->aux_size)
7506 			perf_aux_sample_output(event, handle, data);
7507 	}
7508 
7509 	if (!event->attr.watermark) {
7510 		int wakeup_events = event->attr.wakeup_events;
7511 
7512 		if (wakeup_events) {
7513 			struct perf_buffer *rb = handle->rb;
7514 			int events = local_inc_return(&rb->events);
7515 
7516 			if (events >= wakeup_events) {
7517 				local_sub(wakeup_events, &rb->events);
7518 				local_inc(&rb->wakeup);
7519 			}
7520 		}
7521 	}
7522 }
7523 
7524 static u64 perf_virt_to_phys(u64 virt)
7525 {
7526 	u64 phys_addr = 0;
7527 
7528 	if (!virt)
7529 		return 0;
7530 
7531 	if (virt >= TASK_SIZE) {
7532 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7533 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7534 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7535 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7536 	} else {
7537 		/*
7538 		 * Walking the pages tables for user address.
7539 		 * Interrupts are disabled, so it prevents any tear down
7540 		 * of the page tables.
7541 		 * Try IRQ-safe get_user_page_fast_only first.
7542 		 * If failed, leave phys_addr as 0.
7543 		 */
7544 		if (current->mm != NULL) {
7545 			struct page *p;
7546 
7547 			pagefault_disable();
7548 			if (get_user_page_fast_only(virt, 0, &p)) {
7549 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7550 				put_page(p);
7551 			}
7552 			pagefault_enable();
7553 		}
7554 	}
7555 
7556 	return phys_addr;
7557 }
7558 
7559 /*
7560  * Return the pagetable size of a given virtual address.
7561  */
7562 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7563 {
7564 	u64 size = 0;
7565 
7566 #ifdef CONFIG_HAVE_GUP_FAST
7567 	pgd_t *pgdp, pgd;
7568 	p4d_t *p4dp, p4d;
7569 	pud_t *pudp, pud;
7570 	pmd_t *pmdp, pmd;
7571 	pte_t *ptep, pte;
7572 
7573 	pgdp = pgd_offset(mm, addr);
7574 	pgd = READ_ONCE(*pgdp);
7575 	if (pgd_none(pgd))
7576 		return 0;
7577 
7578 	if (pgd_leaf(pgd))
7579 		return pgd_leaf_size(pgd);
7580 
7581 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7582 	p4d = READ_ONCE(*p4dp);
7583 	if (!p4d_present(p4d))
7584 		return 0;
7585 
7586 	if (p4d_leaf(p4d))
7587 		return p4d_leaf_size(p4d);
7588 
7589 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7590 	pud = READ_ONCE(*pudp);
7591 	if (!pud_present(pud))
7592 		return 0;
7593 
7594 	if (pud_leaf(pud))
7595 		return pud_leaf_size(pud);
7596 
7597 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7598 again:
7599 	pmd = pmdp_get_lockless(pmdp);
7600 	if (!pmd_present(pmd))
7601 		return 0;
7602 
7603 	if (pmd_leaf(pmd))
7604 		return pmd_leaf_size(pmd);
7605 
7606 	ptep = pte_offset_map(&pmd, addr);
7607 	if (!ptep)
7608 		goto again;
7609 
7610 	pte = ptep_get_lockless(ptep);
7611 	if (pte_present(pte))
7612 		size = pte_leaf_size(pte);
7613 	pte_unmap(ptep);
7614 #endif /* CONFIG_HAVE_GUP_FAST */
7615 
7616 	return size;
7617 }
7618 
7619 static u64 perf_get_page_size(unsigned long addr)
7620 {
7621 	struct mm_struct *mm;
7622 	unsigned long flags;
7623 	u64 size;
7624 
7625 	if (!addr)
7626 		return 0;
7627 
7628 	/*
7629 	 * Software page-table walkers must disable IRQs,
7630 	 * which prevents any tear down of the page tables.
7631 	 */
7632 	local_irq_save(flags);
7633 
7634 	mm = current->mm;
7635 	if (!mm) {
7636 		/*
7637 		 * For kernel threads and the like, use init_mm so that
7638 		 * we can find kernel memory.
7639 		 */
7640 		mm = &init_mm;
7641 	}
7642 
7643 	size = perf_get_pgtable_size(mm, addr);
7644 
7645 	local_irq_restore(flags);
7646 
7647 	return size;
7648 }
7649 
7650 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7651 
7652 struct perf_callchain_entry *
7653 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7654 {
7655 	bool kernel = !event->attr.exclude_callchain_kernel;
7656 	bool user   = !event->attr.exclude_callchain_user;
7657 	/* Disallow cross-task user callchains. */
7658 	bool crosstask = event->ctx->task && event->ctx->task != current;
7659 	const u32 max_stack = event->attr.sample_max_stack;
7660 	struct perf_callchain_entry *callchain;
7661 
7662 	if (!kernel && !user)
7663 		return &__empty_callchain;
7664 
7665 	callchain = get_perf_callchain(regs, 0, kernel, user,
7666 				       max_stack, crosstask, true);
7667 	return callchain ?: &__empty_callchain;
7668 }
7669 
7670 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7671 {
7672 	return d * !!(flags & s);
7673 }
7674 
7675 void perf_prepare_sample(struct perf_sample_data *data,
7676 			 struct perf_event *event,
7677 			 struct pt_regs *regs)
7678 {
7679 	u64 sample_type = event->attr.sample_type;
7680 	u64 filtered_sample_type;
7681 
7682 	/*
7683 	 * Add the sample flags that are dependent to others.  And clear the
7684 	 * sample flags that have already been done by the PMU driver.
7685 	 */
7686 	filtered_sample_type = sample_type;
7687 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7688 					   PERF_SAMPLE_IP);
7689 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7690 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7691 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7692 					   PERF_SAMPLE_REGS_USER);
7693 	filtered_sample_type &= ~data->sample_flags;
7694 
7695 	if (filtered_sample_type == 0) {
7696 		/* Make sure it has the correct data->type for output */
7697 		data->type = event->attr.sample_type;
7698 		return;
7699 	}
7700 
7701 	__perf_event_header__init_id(data, event, filtered_sample_type);
7702 
7703 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7704 		data->ip = perf_instruction_pointer(regs);
7705 		data->sample_flags |= PERF_SAMPLE_IP;
7706 	}
7707 
7708 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7709 		perf_sample_save_callchain(data, event, regs);
7710 
7711 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7712 		data->raw = NULL;
7713 		data->dyn_size += sizeof(u64);
7714 		data->sample_flags |= PERF_SAMPLE_RAW;
7715 	}
7716 
7717 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7718 		data->br_stack = NULL;
7719 		data->dyn_size += sizeof(u64);
7720 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7721 	}
7722 
7723 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7724 		perf_sample_regs_user(&data->regs_user, regs);
7725 
7726 	/*
7727 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7728 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7729 	 * the dyn_size if it's not requested by users.
7730 	 */
7731 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7732 		/* regs dump ABI info */
7733 		int size = sizeof(u64);
7734 
7735 		if (data->regs_user.regs) {
7736 			u64 mask = event->attr.sample_regs_user;
7737 			size += hweight64(mask) * sizeof(u64);
7738 		}
7739 
7740 		data->dyn_size += size;
7741 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7742 	}
7743 
7744 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7745 		/*
7746 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7747 		 * processed as the last one or have additional check added
7748 		 * in case new sample type is added, because we could eat
7749 		 * up the rest of the sample size.
7750 		 */
7751 		u16 stack_size = event->attr.sample_stack_user;
7752 		u16 header_size = perf_sample_data_size(data, event);
7753 		u16 size = sizeof(u64);
7754 
7755 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7756 						     data->regs_user.regs);
7757 
7758 		/*
7759 		 * If there is something to dump, add space for the dump
7760 		 * itself and for the field that tells the dynamic size,
7761 		 * which is how many have been actually dumped.
7762 		 */
7763 		if (stack_size)
7764 			size += sizeof(u64) + stack_size;
7765 
7766 		data->stack_user_size = stack_size;
7767 		data->dyn_size += size;
7768 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7769 	}
7770 
7771 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7772 		data->weight.full = 0;
7773 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7774 	}
7775 
7776 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7777 		data->data_src.val = PERF_MEM_NA;
7778 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7779 	}
7780 
7781 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7782 		data->txn = 0;
7783 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7784 	}
7785 
7786 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7787 		data->addr = 0;
7788 		data->sample_flags |= PERF_SAMPLE_ADDR;
7789 	}
7790 
7791 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7792 		/* regs dump ABI info */
7793 		int size = sizeof(u64);
7794 
7795 		perf_sample_regs_intr(&data->regs_intr, regs);
7796 
7797 		if (data->regs_intr.regs) {
7798 			u64 mask = event->attr.sample_regs_intr;
7799 
7800 			size += hweight64(mask) * sizeof(u64);
7801 		}
7802 
7803 		data->dyn_size += size;
7804 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7805 	}
7806 
7807 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7808 		data->phys_addr = perf_virt_to_phys(data->addr);
7809 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7810 	}
7811 
7812 #ifdef CONFIG_CGROUP_PERF
7813 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7814 		struct cgroup *cgrp;
7815 
7816 		/* protected by RCU */
7817 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7818 		data->cgroup = cgroup_id(cgrp);
7819 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7820 	}
7821 #endif
7822 
7823 	/*
7824 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7825 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7826 	 * but the value will not dump to the userspace.
7827 	 */
7828 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7829 		data->data_page_size = perf_get_page_size(data->addr);
7830 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7831 	}
7832 
7833 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7834 		data->code_page_size = perf_get_page_size(data->ip);
7835 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7836 	}
7837 
7838 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7839 		u64 size;
7840 		u16 header_size = perf_sample_data_size(data, event);
7841 
7842 		header_size += sizeof(u64); /* size */
7843 
7844 		/*
7845 		 * Given the 16bit nature of header::size, an AUX sample can
7846 		 * easily overflow it, what with all the preceding sample bits.
7847 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7848 		 * per sample in total (rounded down to 8 byte boundary).
7849 		 */
7850 		size = min_t(size_t, U16_MAX - header_size,
7851 			     event->attr.aux_sample_size);
7852 		size = rounddown(size, 8);
7853 		size = perf_prepare_sample_aux(event, data, size);
7854 
7855 		WARN_ON_ONCE(size + header_size > U16_MAX);
7856 		data->dyn_size += size + sizeof(u64); /* size above */
7857 		data->sample_flags |= PERF_SAMPLE_AUX;
7858 	}
7859 }
7860 
7861 void perf_prepare_header(struct perf_event_header *header,
7862 			 struct perf_sample_data *data,
7863 			 struct perf_event *event,
7864 			 struct pt_regs *regs)
7865 {
7866 	header->type = PERF_RECORD_SAMPLE;
7867 	header->size = perf_sample_data_size(data, event);
7868 	header->misc = perf_misc_flags(regs);
7869 
7870 	/*
7871 	 * If you're adding more sample types here, you likely need to do
7872 	 * something about the overflowing header::size, like repurpose the
7873 	 * lowest 3 bits of size, which should be always zero at the moment.
7874 	 * This raises a more important question, do we really need 512k sized
7875 	 * samples and why, so good argumentation is in order for whatever you
7876 	 * do here next.
7877 	 */
7878 	WARN_ON_ONCE(header->size & 7);
7879 }
7880 
7881 static __always_inline int
7882 __perf_event_output(struct perf_event *event,
7883 		    struct perf_sample_data *data,
7884 		    struct pt_regs *regs,
7885 		    int (*output_begin)(struct perf_output_handle *,
7886 					struct perf_sample_data *,
7887 					struct perf_event *,
7888 					unsigned int))
7889 {
7890 	struct perf_output_handle handle;
7891 	struct perf_event_header header;
7892 	int err;
7893 
7894 	/* protect the callchain buffers */
7895 	rcu_read_lock();
7896 
7897 	perf_prepare_sample(data, event, regs);
7898 	perf_prepare_header(&header, data, event, regs);
7899 
7900 	err = output_begin(&handle, data, event, header.size);
7901 	if (err)
7902 		goto exit;
7903 
7904 	perf_output_sample(&handle, &header, data, event);
7905 
7906 	perf_output_end(&handle);
7907 
7908 exit:
7909 	rcu_read_unlock();
7910 	return err;
7911 }
7912 
7913 void
7914 perf_event_output_forward(struct perf_event *event,
7915 			 struct perf_sample_data *data,
7916 			 struct pt_regs *regs)
7917 {
7918 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7919 }
7920 
7921 void
7922 perf_event_output_backward(struct perf_event *event,
7923 			   struct perf_sample_data *data,
7924 			   struct pt_regs *regs)
7925 {
7926 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7927 }
7928 
7929 int
7930 perf_event_output(struct perf_event *event,
7931 		  struct perf_sample_data *data,
7932 		  struct pt_regs *regs)
7933 {
7934 	return __perf_event_output(event, data, regs, perf_output_begin);
7935 }
7936 
7937 /*
7938  * read event_id
7939  */
7940 
7941 struct perf_read_event {
7942 	struct perf_event_header	header;
7943 
7944 	u32				pid;
7945 	u32				tid;
7946 };
7947 
7948 static void
7949 perf_event_read_event(struct perf_event *event,
7950 			struct task_struct *task)
7951 {
7952 	struct perf_output_handle handle;
7953 	struct perf_sample_data sample;
7954 	struct perf_read_event read_event = {
7955 		.header = {
7956 			.type = PERF_RECORD_READ,
7957 			.misc = 0,
7958 			.size = sizeof(read_event) + event->read_size,
7959 		},
7960 		.pid = perf_event_pid(event, task),
7961 		.tid = perf_event_tid(event, task),
7962 	};
7963 	int ret;
7964 
7965 	perf_event_header__init_id(&read_event.header, &sample, event);
7966 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7967 	if (ret)
7968 		return;
7969 
7970 	perf_output_put(&handle, read_event);
7971 	perf_output_read(&handle, event);
7972 	perf_event__output_id_sample(event, &handle, &sample);
7973 
7974 	perf_output_end(&handle);
7975 }
7976 
7977 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7978 
7979 static void
7980 perf_iterate_ctx(struct perf_event_context *ctx,
7981 		   perf_iterate_f output,
7982 		   void *data, bool all)
7983 {
7984 	struct perf_event *event;
7985 
7986 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7987 		if (!all) {
7988 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7989 				continue;
7990 			if (!event_filter_match(event))
7991 				continue;
7992 		}
7993 
7994 		output(event, data);
7995 	}
7996 }
7997 
7998 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7999 {
8000 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8001 	struct perf_event *event;
8002 
8003 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8004 		/*
8005 		 * Skip events that are not fully formed yet; ensure that
8006 		 * if we observe event->ctx, both event and ctx will be
8007 		 * complete enough. See perf_install_in_context().
8008 		 */
8009 		if (!smp_load_acquire(&event->ctx))
8010 			continue;
8011 
8012 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8013 			continue;
8014 		if (!event_filter_match(event))
8015 			continue;
8016 		output(event, data);
8017 	}
8018 }
8019 
8020 /*
8021  * Iterate all events that need to receive side-band events.
8022  *
8023  * For new callers; ensure that account_pmu_sb_event() includes
8024  * your event, otherwise it might not get delivered.
8025  */
8026 static void
8027 perf_iterate_sb(perf_iterate_f output, void *data,
8028 	       struct perf_event_context *task_ctx)
8029 {
8030 	struct perf_event_context *ctx;
8031 
8032 	rcu_read_lock();
8033 	preempt_disable();
8034 
8035 	/*
8036 	 * If we have task_ctx != NULL we only notify the task context itself.
8037 	 * The task_ctx is set only for EXIT events before releasing task
8038 	 * context.
8039 	 */
8040 	if (task_ctx) {
8041 		perf_iterate_ctx(task_ctx, output, data, false);
8042 		goto done;
8043 	}
8044 
8045 	perf_iterate_sb_cpu(output, data);
8046 
8047 	ctx = rcu_dereference(current->perf_event_ctxp);
8048 	if (ctx)
8049 		perf_iterate_ctx(ctx, output, data, false);
8050 done:
8051 	preempt_enable();
8052 	rcu_read_unlock();
8053 }
8054 
8055 /*
8056  * Clear all file-based filters at exec, they'll have to be
8057  * re-instated when/if these objects are mmapped again.
8058  */
8059 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8060 {
8061 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8062 	struct perf_addr_filter *filter;
8063 	unsigned int restart = 0, count = 0;
8064 	unsigned long flags;
8065 
8066 	if (!has_addr_filter(event))
8067 		return;
8068 
8069 	raw_spin_lock_irqsave(&ifh->lock, flags);
8070 	list_for_each_entry(filter, &ifh->list, entry) {
8071 		if (filter->path.dentry) {
8072 			event->addr_filter_ranges[count].start = 0;
8073 			event->addr_filter_ranges[count].size = 0;
8074 			restart++;
8075 		}
8076 
8077 		count++;
8078 	}
8079 
8080 	if (restart)
8081 		event->addr_filters_gen++;
8082 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8083 
8084 	if (restart)
8085 		perf_event_stop(event, 1);
8086 }
8087 
8088 void perf_event_exec(void)
8089 {
8090 	struct perf_event_context *ctx;
8091 
8092 	ctx = perf_pin_task_context(current);
8093 	if (!ctx)
8094 		return;
8095 
8096 	perf_event_enable_on_exec(ctx);
8097 	perf_event_remove_on_exec(ctx);
8098 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8099 
8100 	perf_unpin_context(ctx);
8101 	put_ctx(ctx);
8102 }
8103 
8104 struct remote_output {
8105 	struct perf_buffer	*rb;
8106 	int			err;
8107 };
8108 
8109 static void __perf_event_output_stop(struct perf_event *event, void *data)
8110 {
8111 	struct perf_event *parent = event->parent;
8112 	struct remote_output *ro = data;
8113 	struct perf_buffer *rb = ro->rb;
8114 	struct stop_event_data sd = {
8115 		.event	= event,
8116 	};
8117 
8118 	if (!has_aux(event))
8119 		return;
8120 
8121 	if (!parent)
8122 		parent = event;
8123 
8124 	/*
8125 	 * In case of inheritance, it will be the parent that links to the
8126 	 * ring-buffer, but it will be the child that's actually using it.
8127 	 *
8128 	 * We are using event::rb to determine if the event should be stopped,
8129 	 * however this may race with ring_buffer_attach() (through set_output),
8130 	 * which will make us skip the event that actually needs to be stopped.
8131 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8132 	 * its rb pointer.
8133 	 */
8134 	if (rcu_dereference(parent->rb) == rb)
8135 		ro->err = __perf_event_stop(&sd);
8136 }
8137 
8138 static int __perf_pmu_output_stop(void *info)
8139 {
8140 	struct perf_event *event = info;
8141 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8142 	struct remote_output ro = {
8143 		.rb	= event->rb,
8144 	};
8145 
8146 	rcu_read_lock();
8147 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8148 	if (cpuctx->task_ctx)
8149 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8150 				   &ro, false);
8151 	rcu_read_unlock();
8152 
8153 	return ro.err;
8154 }
8155 
8156 static void perf_pmu_output_stop(struct perf_event *event)
8157 {
8158 	struct perf_event *iter;
8159 	int err, cpu;
8160 
8161 restart:
8162 	rcu_read_lock();
8163 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8164 		/*
8165 		 * For per-CPU events, we need to make sure that neither they
8166 		 * nor their children are running; for cpu==-1 events it's
8167 		 * sufficient to stop the event itself if it's active, since
8168 		 * it can't have children.
8169 		 */
8170 		cpu = iter->cpu;
8171 		if (cpu == -1)
8172 			cpu = READ_ONCE(iter->oncpu);
8173 
8174 		if (cpu == -1)
8175 			continue;
8176 
8177 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8178 		if (err == -EAGAIN) {
8179 			rcu_read_unlock();
8180 			goto restart;
8181 		}
8182 	}
8183 	rcu_read_unlock();
8184 }
8185 
8186 /*
8187  * task tracking -- fork/exit
8188  *
8189  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8190  */
8191 
8192 struct perf_task_event {
8193 	struct task_struct		*task;
8194 	struct perf_event_context	*task_ctx;
8195 
8196 	struct {
8197 		struct perf_event_header	header;
8198 
8199 		u32				pid;
8200 		u32				ppid;
8201 		u32				tid;
8202 		u32				ptid;
8203 		u64				time;
8204 	} event_id;
8205 };
8206 
8207 static int perf_event_task_match(struct perf_event *event)
8208 {
8209 	return event->attr.comm  || event->attr.mmap ||
8210 	       event->attr.mmap2 || event->attr.mmap_data ||
8211 	       event->attr.task;
8212 }
8213 
8214 static void perf_event_task_output(struct perf_event *event,
8215 				   void *data)
8216 {
8217 	struct perf_task_event *task_event = data;
8218 	struct perf_output_handle handle;
8219 	struct perf_sample_data	sample;
8220 	struct task_struct *task = task_event->task;
8221 	int ret, size = task_event->event_id.header.size;
8222 
8223 	if (!perf_event_task_match(event))
8224 		return;
8225 
8226 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8227 
8228 	ret = perf_output_begin(&handle, &sample, event,
8229 				task_event->event_id.header.size);
8230 	if (ret)
8231 		goto out;
8232 
8233 	task_event->event_id.pid = perf_event_pid(event, task);
8234 	task_event->event_id.tid = perf_event_tid(event, task);
8235 
8236 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8237 		task_event->event_id.ppid = perf_event_pid(event,
8238 							task->real_parent);
8239 		task_event->event_id.ptid = perf_event_pid(event,
8240 							task->real_parent);
8241 	} else {  /* PERF_RECORD_FORK */
8242 		task_event->event_id.ppid = perf_event_pid(event, current);
8243 		task_event->event_id.ptid = perf_event_tid(event, current);
8244 	}
8245 
8246 	task_event->event_id.time = perf_event_clock(event);
8247 
8248 	perf_output_put(&handle, task_event->event_id);
8249 
8250 	perf_event__output_id_sample(event, &handle, &sample);
8251 
8252 	perf_output_end(&handle);
8253 out:
8254 	task_event->event_id.header.size = size;
8255 }
8256 
8257 static void perf_event_task(struct task_struct *task,
8258 			      struct perf_event_context *task_ctx,
8259 			      int new)
8260 {
8261 	struct perf_task_event task_event;
8262 
8263 	if (!atomic_read(&nr_comm_events) &&
8264 	    !atomic_read(&nr_mmap_events) &&
8265 	    !atomic_read(&nr_task_events))
8266 		return;
8267 
8268 	task_event = (struct perf_task_event){
8269 		.task	  = task,
8270 		.task_ctx = task_ctx,
8271 		.event_id    = {
8272 			.header = {
8273 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8274 				.misc = 0,
8275 				.size = sizeof(task_event.event_id),
8276 			},
8277 			/* .pid  */
8278 			/* .ppid */
8279 			/* .tid  */
8280 			/* .ptid */
8281 			/* .time */
8282 		},
8283 	};
8284 
8285 	perf_iterate_sb(perf_event_task_output,
8286 		       &task_event,
8287 		       task_ctx);
8288 }
8289 
8290 void perf_event_fork(struct task_struct *task)
8291 {
8292 	perf_event_task(task, NULL, 1);
8293 	perf_event_namespaces(task);
8294 }
8295 
8296 /*
8297  * comm tracking
8298  */
8299 
8300 struct perf_comm_event {
8301 	struct task_struct	*task;
8302 	char			*comm;
8303 	int			comm_size;
8304 
8305 	struct {
8306 		struct perf_event_header	header;
8307 
8308 		u32				pid;
8309 		u32				tid;
8310 	} event_id;
8311 };
8312 
8313 static int perf_event_comm_match(struct perf_event *event)
8314 {
8315 	return event->attr.comm;
8316 }
8317 
8318 static void perf_event_comm_output(struct perf_event *event,
8319 				   void *data)
8320 {
8321 	struct perf_comm_event *comm_event = data;
8322 	struct perf_output_handle handle;
8323 	struct perf_sample_data sample;
8324 	int size = comm_event->event_id.header.size;
8325 	int ret;
8326 
8327 	if (!perf_event_comm_match(event))
8328 		return;
8329 
8330 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8331 	ret = perf_output_begin(&handle, &sample, event,
8332 				comm_event->event_id.header.size);
8333 
8334 	if (ret)
8335 		goto out;
8336 
8337 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8338 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8339 
8340 	perf_output_put(&handle, comm_event->event_id);
8341 	__output_copy(&handle, comm_event->comm,
8342 				   comm_event->comm_size);
8343 
8344 	perf_event__output_id_sample(event, &handle, &sample);
8345 
8346 	perf_output_end(&handle);
8347 out:
8348 	comm_event->event_id.header.size = size;
8349 }
8350 
8351 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8352 {
8353 	char comm[TASK_COMM_LEN];
8354 	unsigned int size;
8355 
8356 	memset(comm, 0, sizeof(comm));
8357 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8358 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8359 
8360 	comm_event->comm = comm;
8361 	comm_event->comm_size = size;
8362 
8363 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8364 
8365 	perf_iterate_sb(perf_event_comm_output,
8366 		       comm_event,
8367 		       NULL);
8368 }
8369 
8370 void perf_event_comm(struct task_struct *task, bool exec)
8371 {
8372 	struct perf_comm_event comm_event;
8373 
8374 	if (!atomic_read(&nr_comm_events))
8375 		return;
8376 
8377 	comm_event = (struct perf_comm_event){
8378 		.task	= task,
8379 		/* .comm      */
8380 		/* .comm_size */
8381 		.event_id  = {
8382 			.header = {
8383 				.type = PERF_RECORD_COMM,
8384 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8385 				/* .size */
8386 			},
8387 			/* .pid */
8388 			/* .tid */
8389 		},
8390 	};
8391 
8392 	perf_event_comm_event(&comm_event);
8393 }
8394 
8395 /*
8396  * namespaces tracking
8397  */
8398 
8399 struct perf_namespaces_event {
8400 	struct task_struct		*task;
8401 
8402 	struct {
8403 		struct perf_event_header	header;
8404 
8405 		u32				pid;
8406 		u32				tid;
8407 		u64				nr_namespaces;
8408 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8409 	} event_id;
8410 };
8411 
8412 static int perf_event_namespaces_match(struct perf_event *event)
8413 {
8414 	return event->attr.namespaces;
8415 }
8416 
8417 static void perf_event_namespaces_output(struct perf_event *event,
8418 					 void *data)
8419 {
8420 	struct perf_namespaces_event *namespaces_event = data;
8421 	struct perf_output_handle handle;
8422 	struct perf_sample_data sample;
8423 	u16 header_size = namespaces_event->event_id.header.size;
8424 	int ret;
8425 
8426 	if (!perf_event_namespaces_match(event))
8427 		return;
8428 
8429 	perf_event_header__init_id(&namespaces_event->event_id.header,
8430 				   &sample, event);
8431 	ret = perf_output_begin(&handle, &sample, event,
8432 				namespaces_event->event_id.header.size);
8433 	if (ret)
8434 		goto out;
8435 
8436 	namespaces_event->event_id.pid = perf_event_pid(event,
8437 							namespaces_event->task);
8438 	namespaces_event->event_id.tid = perf_event_tid(event,
8439 							namespaces_event->task);
8440 
8441 	perf_output_put(&handle, namespaces_event->event_id);
8442 
8443 	perf_event__output_id_sample(event, &handle, &sample);
8444 
8445 	perf_output_end(&handle);
8446 out:
8447 	namespaces_event->event_id.header.size = header_size;
8448 }
8449 
8450 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8451 				   struct task_struct *task,
8452 				   const struct proc_ns_operations *ns_ops)
8453 {
8454 	struct path ns_path;
8455 	struct inode *ns_inode;
8456 	int error;
8457 
8458 	error = ns_get_path(&ns_path, task, ns_ops);
8459 	if (!error) {
8460 		ns_inode = ns_path.dentry->d_inode;
8461 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8462 		ns_link_info->ino = ns_inode->i_ino;
8463 		path_put(&ns_path);
8464 	}
8465 }
8466 
8467 void perf_event_namespaces(struct task_struct *task)
8468 {
8469 	struct perf_namespaces_event namespaces_event;
8470 	struct perf_ns_link_info *ns_link_info;
8471 
8472 	if (!atomic_read(&nr_namespaces_events))
8473 		return;
8474 
8475 	namespaces_event = (struct perf_namespaces_event){
8476 		.task	= task,
8477 		.event_id  = {
8478 			.header = {
8479 				.type = PERF_RECORD_NAMESPACES,
8480 				.misc = 0,
8481 				.size = sizeof(namespaces_event.event_id),
8482 			},
8483 			/* .pid */
8484 			/* .tid */
8485 			.nr_namespaces = NR_NAMESPACES,
8486 			/* .link_info[NR_NAMESPACES] */
8487 		},
8488 	};
8489 
8490 	ns_link_info = namespaces_event.event_id.link_info;
8491 
8492 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8493 			       task, &mntns_operations);
8494 
8495 #ifdef CONFIG_USER_NS
8496 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8497 			       task, &userns_operations);
8498 #endif
8499 #ifdef CONFIG_NET_NS
8500 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8501 			       task, &netns_operations);
8502 #endif
8503 #ifdef CONFIG_UTS_NS
8504 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8505 			       task, &utsns_operations);
8506 #endif
8507 #ifdef CONFIG_IPC_NS
8508 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8509 			       task, &ipcns_operations);
8510 #endif
8511 #ifdef CONFIG_PID_NS
8512 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8513 			       task, &pidns_operations);
8514 #endif
8515 #ifdef CONFIG_CGROUPS
8516 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8517 			       task, &cgroupns_operations);
8518 #endif
8519 
8520 	perf_iterate_sb(perf_event_namespaces_output,
8521 			&namespaces_event,
8522 			NULL);
8523 }
8524 
8525 /*
8526  * cgroup tracking
8527  */
8528 #ifdef CONFIG_CGROUP_PERF
8529 
8530 struct perf_cgroup_event {
8531 	char				*path;
8532 	int				path_size;
8533 	struct {
8534 		struct perf_event_header	header;
8535 		u64				id;
8536 		char				path[];
8537 	} event_id;
8538 };
8539 
8540 static int perf_event_cgroup_match(struct perf_event *event)
8541 {
8542 	return event->attr.cgroup;
8543 }
8544 
8545 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8546 {
8547 	struct perf_cgroup_event *cgroup_event = data;
8548 	struct perf_output_handle handle;
8549 	struct perf_sample_data sample;
8550 	u16 header_size = cgroup_event->event_id.header.size;
8551 	int ret;
8552 
8553 	if (!perf_event_cgroup_match(event))
8554 		return;
8555 
8556 	perf_event_header__init_id(&cgroup_event->event_id.header,
8557 				   &sample, event);
8558 	ret = perf_output_begin(&handle, &sample, event,
8559 				cgroup_event->event_id.header.size);
8560 	if (ret)
8561 		goto out;
8562 
8563 	perf_output_put(&handle, cgroup_event->event_id);
8564 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8565 
8566 	perf_event__output_id_sample(event, &handle, &sample);
8567 
8568 	perf_output_end(&handle);
8569 out:
8570 	cgroup_event->event_id.header.size = header_size;
8571 }
8572 
8573 static void perf_event_cgroup(struct cgroup *cgrp)
8574 {
8575 	struct perf_cgroup_event cgroup_event;
8576 	char path_enomem[16] = "//enomem";
8577 	char *pathname;
8578 	size_t size;
8579 
8580 	if (!atomic_read(&nr_cgroup_events))
8581 		return;
8582 
8583 	cgroup_event = (struct perf_cgroup_event){
8584 		.event_id  = {
8585 			.header = {
8586 				.type = PERF_RECORD_CGROUP,
8587 				.misc = 0,
8588 				.size = sizeof(cgroup_event.event_id),
8589 			},
8590 			.id = cgroup_id(cgrp),
8591 		},
8592 	};
8593 
8594 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8595 	if (pathname == NULL) {
8596 		cgroup_event.path = path_enomem;
8597 	} else {
8598 		/* just to be sure to have enough space for alignment */
8599 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8600 		cgroup_event.path = pathname;
8601 	}
8602 
8603 	/*
8604 	 * Since our buffer works in 8 byte units we need to align our string
8605 	 * size to a multiple of 8. However, we must guarantee the tail end is
8606 	 * zero'd out to avoid leaking random bits to userspace.
8607 	 */
8608 	size = strlen(cgroup_event.path) + 1;
8609 	while (!IS_ALIGNED(size, sizeof(u64)))
8610 		cgroup_event.path[size++] = '\0';
8611 
8612 	cgroup_event.event_id.header.size += size;
8613 	cgroup_event.path_size = size;
8614 
8615 	perf_iterate_sb(perf_event_cgroup_output,
8616 			&cgroup_event,
8617 			NULL);
8618 
8619 	kfree(pathname);
8620 }
8621 
8622 #endif
8623 
8624 /*
8625  * mmap tracking
8626  */
8627 
8628 struct perf_mmap_event {
8629 	struct vm_area_struct	*vma;
8630 
8631 	const char		*file_name;
8632 	int			file_size;
8633 	int			maj, min;
8634 	u64			ino;
8635 	u64			ino_generation;
8636 	u32			prot, flags;
8637 	u8			build_id[BUILD_ID_SIZE_MAX];
8638 	u32			build_id_size;
8639 
8640 	struct {
8641 		struct perf_event_header	header;
8642 
8643 		u32				pid;
8644 		u32				tid;
8645 		u64				start;
8646 		u64				len;
8647 		u64				pgoff;
8648 	} event_id;
8649 };
8650 
8651 static int perf_event_mmap_match(struct perf_event *event,
8652 				 void *data)
8653 {
8654 	struct perf_mmap_event *mmap_event = data;
8655 	struct vm_area_struct *vma = mmap_event->vma;
8656 	int executable = vma->vm_flags & VM_EXEC;
8657 
8658 	return (!executable && event->attr.mmap_data) ||
8659 	       (executable && (event->attr.mmap || event->attr.mmap2));
8660 }
8661 
8662 static void perf_event_mmap_output(struct perf_event *event,
8663 				   void *data)
8664 {
8665 	struct perf_mmap_event *mmap_event = data;
8666 	struct perf_output_handle handle;
8667 	struct perf_sample_data sample;
8668 	int size = mmap_event->event_id.header.size;
8669 	u32 type = mmap_event->event_id.header.type;
8670 	bool use_build_id;
8671 	int ret;
8672 
8673 	if (!perf_event_mmap_match(event, data))
8674 		return;
8675 
8676 	if (event->attr.mmap2) {
8677 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8678 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8679 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8680 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8681 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8682 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8683 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8684 	}
8685 
8686 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8687 	ret = perf_output_begin(&handle, &sample, event,
8688 				mmap_event->event_id.header.size);
8689 	if (ret)
8690 		goto out;
8691 
8692 	mmap_event->event_id.pid = perf_event_pid(event, current);
8693 	mmap_event->event_id.tid = perf_event_tid(event, current);
8694 
8695 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8696 
8697 	if (event->attr.mmap2 && use_build_id)
8698 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8699 
8700 	perf_output_put(&handle, mmap_event->event_id);
8701 
8702 	if (event->attr.mmap2) {
8703 		if (use_build_id) {
8704 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8705 
8706 			__output_copy(&handle, size, 4);
8707 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8708 		} else {
8709 			perf_output_put(&handle, mmap_event->maj);
8710 			perf_output_put(&handle, mmap_event->min);
8711 			perf_output_put(&handle, mmap_event->ino);
8712 			perf_output_put(&handle, mmap_event->ino_generation);
8713 		}
8714 		perf_output_put(&handle, mmap_event->prot);
8715 		perf_output_put(&handle, mmap_event->flags);
8716 	}
8717 
8718 	__output_copy(&handle, mmap_event->file_name,
8719 				   mmap_event->file_size);
8720 
8721 	perf_event__output_id_sample(event, &handle, &sample);
8722 
8723 	perf_output_end(&handle);
8724 out:
8725 	mmap_event->event_id.header.size = size;
8726 	mmap_event->event_id.header.type = type;
8727 }
8728 
8729 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8730 {
8731 	struct vm_area_struct *vma = mmap_event->vma;
8732 	struct file *file = vma->vm_file;
8733 	int maj = 0, min = 0;
8734 	u64 ino = 0, gen = 0;
8735 	u32 prot = 0, flags = 0;
8736 	unsigned int size;
8737 	char tmp[16];
8738 	char *buf = NULL;
8739 	char *name = NULL;
8740 
8741 	if (vma->vm_flags & VM_READ)
8742 		prot |= PROT_READ;
8743 	if (vma->vm_flags & VM_WRITE)
8744 		prot |= PROT_WRITE;
8745 	if (vma->vm_flags & VM_EXEC)
8746 		prot |= PROT_EXEC;
8747 
8748 	if (vma->vm_flags & VM_MAYSHARE)
8749 		flags = MAP_SHARED;
8750 	else
8751 		flags = MAP_PRIVATE;
8752 
8753 	if (vma->vm_flags & VM_LOCKED)
8754 		flags |= MAP_LOCKED;
8755 	if (is_vm_hugetlb_page(vma))
8756 		flags |= MAP_HUGETLB;
8757 
8758 	if (file) {
8759 		struct inode *inode;
8760 		dev_t dev;
8761 
8762 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8763 		if (!buf) {
8764 			name = "//enomem";
8765 			goto cpy_name;
8766 		}
8767 		/*
8768 		 * d_path() works from the end of the rb backwards, so we
8769 		 * need to add enough zero bytes after the string to handle
8770 		 * the 64bit alignment we do later.
8771 		 */
8772 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8773 		if (IS_ERR(name)) {
8774 			name = "//toolong";
8775 			goto cpy_name;
8776 		}
8777 		inode = file_inode(vma->vm_file);
8778 		dev = inode->i_sb->s_dev;
8779 		ino = inode->i_ino;
8780 		gen = inode->i_generation;
8781 		maj = MAJOR(dev);
8782 		min = MINOR(dev);
8783 
8784 		goto got_name;
8785 	} else {
8786 		if (vma->vm_ops && vma->vm_ops->name)
8787 			name = (char *) vma->vm_ops->name(vma);
8788 		if (!name)
8789 			name = (char *)arch_vma_name(vma);
8790 		if (!name) {
8791 			if (vma_is_initial_heap(vma))
8792 				name = "[heap]";
8793 			else if (vma_is_initial_stack(vma))
8794 				name = "[stack]";
8795 			else
8796 				name = "//anon";
8797 		}
8798 	}
8799 
8800 cpy_name:
8801 	strscpy(tmp, name, sizeof(tmp));
8802 	name = tmp;
8803 got_name:
8804 	/*
8805 	 * Since our buffer works in 8 byte units we need to align our string
8806 	 * size to a multiple of 8. However, we must guarantee the tail end is
8807 	 * zero'd out to avoid leaking random bits to userspace.
8808 	 */
8809 	size = strlen(name)+1;
8810 	while (!IS_ALIGNED(size, sizeof(u64)))
8811 		name[size++] = '\0';
8812 
8813 	mmap_event->file_name = name;
8814 	mmap_event->file_size = size;
8815 	mmap_event->maj = maj;
8816 	mmap_event->min = min;
8817 	mmap_event->ino = ino;
8818 	mmap_event->ino_generation = gen;
8819 	mmap_event->prot = prot;
8820 	mmap_event->flags = flags;
8821 
8822 	if (!(vma->vm_flags & VM_EXEC))
8823 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8824 
8825 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8826 
8827 	if (atomic_read(&nr_build_id_events))
8828 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8829 
8830 	perf_iterate_sb(perf_event_mmap_output,
8831 		       mmap_event,
8832 		       NULL);
8833 
8834 	kfree(buf);
8835 }
8836 
8837 /*
8838  * Check whether inode and address range match filter criteria.
8839  */
8840 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8841 				     struct file *file, unsigned long offset,
8842 				     unsigned long size)
8843 {
8844 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8845 	if (!filter->path.dentry)
8846 		return false;
8847 
8848 	if (d_inode(filter->path.dentry) != file_inode(file))
8849 		return false;
8850 
8851 	if (filter->offset > offset + size)
8852 		return false;
8853 
8854 	if (filter->offset + filter->size < offset)
8855 		return false;
8856 
8857 	return true;
8858 }
8859 
8860 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8861 					struct vm_area_struct *vma,
8862 					struct perf_addr_filter_range *fr)
8863 {
8864 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8865 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8866 	struct file *file = vma->vm_file;
8867 
8868 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8869 		return false;
8870 
8871 	if (filter->offset < off) {
8872 		fr->start = vma->vm_start;
8873 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8874 	} else {
8875 		fr->start = vma->vm_start + filter->offset - off;
8876 		fr->size = min(vma->vm_end - fr->start, filter->size);
8877 	}
8878 
8879 	return true;
8880 }
8881 
8882 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8883 {
8884 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8885 	struct vm_area_struct *vma = data;
8886 	struct perf_addr_filter *filter;
8887 	unsigned int restart = 0, count = 0;
8888 	unsigned long flags;
8889 
8890 	if (!has_addr_filter(event))
8891 		return;
8892 
8893 	if (!vma->vm_file)
8894 		return;
8895 
8896 	raw_spin_lock_irqsave(&ifh->lock, flags);
8897 	list_for_each_entry(filter, &ifh->list, entry) {
8898 		if (perf_addr_filter_vma_adjust(filter, vma,
8899 						&event->addr_filter_ranges[count]))
8900 			restart++;
8901 
8902 		count++;
8903 	}
8904 
8905 	if (restart)
8906 		event->addr_filters_gen++;
8907 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8908 
8909 	if (restart)
8910 		perf_event_stop(event, 1);
8911 }
8912 
8913 /*
8914  * Adjust all task's events' filters to the new vma
8915  */
8916 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8917 {
8918 	struct perf_event_context *ctx;
8919 
8920 	/*
8921 	 * Data tracing isn't supported yet and as such there is no need
8922 	 * to keep track of anything that isn't related to executable code:
8923 	 */
8924 	if (!(vma->vm_flags & VM_EXEC))
8925 		return;
8926 
8927 	rcu_read_lock();
8928 	ctx = rcu_dereference(current->perf_event_ctxp);
8929 	if (ctx)
8930 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8931 	rcu_read_unlock();
8932 }
8933 
8934 void perf_event_mmap(struct vm_area_struct *vma)
8935 {
8936 	struct perf_mmap_event mmap_event;
8937 
8938 	if (!atomic_read(&nr_mmap_events))
8939 		return;
8940 
8941 	mmap_event = (struct perf_mmap_event){
8942 		.vma	= vma,
8943 		/* .file_name */
8944 		/* .file_size */
8945 		.event_id  = {
8946 			.header = {
8947 				.type = PERF_RECORD_MMAP,
8948 				.misc = PERF_RECORD_MISC_USER,
8949 				/* .size */
8950 			},
8951 			/* .pid */
8952 			/* .tid */
8953 			.start  = vma->vm_start,
8954 			.len    = vma->vm_end - vma->vm_start,
8955 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8956 		},
8957 		/* .maj (attr_mmap2 only) */
8958 		/* .min (attr_mmap2 only) */
8959 		/* .ino (attr_mmap2 only) */
8960 		/* .ino_generation (attr_mmap2 only) */
8961 		/* .prot (attr_mmap2 only) */
8962 		/* .flags (attr_mmap2 only) */
8963 	};
8964 
8965 	perf_addr_filters_adjust(vma);
8966 	perf_event_mmap_event(&mmap_event);
8967 }
8968 
8969 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8970 			  unsigned long size, u64 flags)
8971 {
8972 	struct perf_output_handle handle;
8973 	struct perf_sample_data sample;
8974 	struct perf_aux_event {
8975 		struct perf_event_header	header;
8976 		u64				offset;
8977 		u64				size;
8978 		u64				flags;
8979 	} rec = {
8980 		.header = {
8981 			.type = PERF_RECORD_AUX,
8982 			.misc = 0,
8983 			.size = sizeof(rec),
8984 		},
8985 		.offset		= head,
8986 		.size		= size,
8987 		.flags		= flags,
8988 	};
8989 	int ret;
8990 
8991 	perf_event_header__init_id(&rec.header, &sample, event);
8992 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8993 
8994 	if (ret)
8995 		return;
8996 
8997 	perf_output_put(&handle, rec);
8998 	perf_event__output_id_sample(event, &handle, &sample);
8999 
9000 	perf_output_end(&handle);
9001 }
9002 
9003 /*
9004  * Lost/dropped samples logging
9005  */
9006 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9007 {
9008 	struct perf_output_handle handle;
9009 	struct perf_sample_data sample;
9010 	int ret;
9011 
9012 	struct {
9013 		struct perf_event_header	header;
9014 		u64				lost;
9015 	} lost_samples_event = {
9016 		.header = {
9017 			.type = PERF_RECORD_LOST_SAMPLES,
9018 			.misc = 0,
9019 			.size = sizeof(lost_samples_event),
9020 		},
9021 		.lost		= lost,
9022 	};
9023 
9024 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9025 
9026 	ret = perf_output_begin(&handle, &sample, event,
9027 				lost_samples_event.header.size);
9028 	if (ret)
9029 		return;
9030 
9031 	perf_output_put(&handle, lost_samples_event);
9032 	perf_event__output_id_sample(event, &handle, &sample);
9033 	perf_output_end(&handle);
9034 }
9035 
9036 /*
9037  * context_switch tracking
9038  */
9039 
9040 struct perf_switch_event {
9041 	struct task_struct	*task;
9042 	struct task_struct	*next_prev;
9043 
9044 	struct {
9045 		struct perf_event_header	header;
9046 		u32				next_prev_pid;
9047 		u32				next_prev_tid;
9048 	} event_id;
9049 };
9050 
9051 static int perf_event_switch_match(struct perf_event *event)
9052 {
9053 	return event->attr.context_switch;
9054 }
9055 
9056 static void perf_event_switch_output(struct perf_event *event, void *data)
9057 {
9058 	struct perf_switch_event *se = data;
9059 	struct perf_output_handle handle;
9060 	struct perf_sample_data sample;
9061 	int ret;
9062 
9063 	if (!perf_event_switch_match(event))
9064 		return;
9065 
9066 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9067 	if (event->ctx->task) {
9068 		se->event_id.header.type = PERF_RECORD_SWITCH;
9069 		se->event_id.header.size = sizeof(se->event_id.header);
9070 	} else {
9071 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9072 		se->event_id.header.size = sizeof(se->event_id);
9073 		se->event_id.next_prev_pid =
9074 					perf_event_pid(event, se->next_prev);
9075 		se->event_id.next_prev_tid =
9076 					perf_event_tid(event, se->next_prev);
9077 	}
9078 
9079 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9080 
9081 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9082 	if (ret)
9083 		return;
9084 
9085 	if (event->ctx->task)
9086 		perf_output_put(&handle, se->event_id.header);
9087 	else
9088 		perf_output_put(&handle, se->event_id);
9089 
9090 	perf_event__output_id_sample(event, &handle, &sample);
9091 
9092 	perf_output_end(&handle);
9093 }
9094 
9095 static void perf_event_switch(struct task_struct *task,
9096 			      struct task_struct *next_prev, bool sched_in)
9097 {
9098 	struct perf_switch_event switch_event;
9099 
9100 	/* N.B. caller checks nr_switch_events != 0 */
9101 
9102 	switch_event = (struct perf_switch_event){
9103 		.task		= task,
9104 		.next_prev	= next_prev,
9105 		.event_id	= {
9106 			.header = {
9107 				/* .type */
9108 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9109 				/* .size */
9110 			},
9111 			/* .next_prev_pid */
9112 			/* .next_prev_tid */
9113 		},
9114 	};
9115 
9116 	if (!sched_in && task->on_rq) {
9117 		switch_event.event_id.header.misc |=
9118 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9119 	}
9120 
9121 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9122 }
9123 
9124 /*
9125  * IRQ throttle logging
9126  */
9127 
9128 static void perf_log_throttle(struct perf_event *event, int enable)
9129 {
9130 	struct perf_output_handle handle;
9131 	struct perf_sample_data sample;
9132 	int ret;
9133 
9134 	struct {
9135 		struct perf_event_header	header;
9136 		u64				time;
9137 		u64				id;
9138 		u64				stream_id;
9139 	} throttle_event = {
9140 		.header = {
9141 			.type = PERF_RECORD_THROTTLE,
9142 			.misc = 0,
9143 			.size = sizeof(throttle_event),
9144 		},
9145 		.time		= perf_event_clock(event),
9146 		.id		= primary_event_id(event),
9147 		.stream_id	= event->id,
9148 	};
9149 
9150 	if (enable)
9151 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9152 
9153 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9154 
9155 	ret = perf_output_begin(&handle, &sample, event,
9156 				throttle_event.header.size);
9157 	if (ret)
9158 		return;
9159 
9160 	perf_output_put(&handle, throttle_event);
9161 	perf_event__output_id_sample(event, &handle, &sample);
9162 	perf_output_end(&handle);
9163 }
9164 
9165 /*
9166  * ksymbol register/unregister tracking
9167  */
9168 
9169 struct perf_ksymbol_event {
9170 	const char	*name;
9171 	int		name_len;
9172 	struct {
9173 		struct perf_event_header        header;
9174 		u64				addr;
9175 		u32				len;
9176 		u16				ksym_type;
9177 		u16				flags;
9178 	} event_id;
9179 };
9180 
9181 static int perf_event_ksymbol_match(struct perf_event *event)
9182 {
9183 	return event->attr.ksymbol;
9184 }
9185 
9186 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9187 {
9188 	struct perf_ksymbol_event *ksymbol_event = data;
9189 	struct perf_output_handle handle;
9190 	struct perf_sample_data sample;
9191 	int ret;
9192 
9193 	if (!perf_event_ksymbol_match(event))
9194 		return;
9195 
9196 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9197 				   &sample, event);
9198 	ret = perf_output_begin(&handle, &sample, event,
9199 				ksymbol_event->event_id.header.size);
9200 	if (ret)
9201 		return;
9202 
9203 	perf_output_put(&handle, ksymbol_event->event_id);
9204 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9205 	perf_event__output_id_sample(event, &handle, &sample);
9206 
9207 	perf_output_end(&handle);
9208 }
9209 
9210 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9211 			const char *sym)
9212 {
9213 	struct perf_ksymbol_event ksymbol_event;
9214 	char name[KSYM_NAME_LEN];
9215 	u16 flags = 0;
9216 	int name_len;
9217 
9218 	if (!atomic_read(&nr_ksymbol_events))
9219 		return;
9220 
9221 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9222 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9223 		goto err;
9224 
9225 	strscpy(name, sym, KSYM_NAME_LEN);
9226 	name_len = strlen(name) + 1;
9227 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9228 		name[name_len++] = '\0';
9229 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9230 
9231 	if (unregister)
9232 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9233 
9234 	ksymbol_event = (struct perf_ksymbol_event){
9235 		.name = name,
9236 		.name_len = name_len,
9237 		.event_id = {
9238 			.header = {
9239 				.type = PERF_RECORD_KSYMBOL,
9240 				.size = sizeof(ksymbol_event.event_id) +
9241 					name_len,
9242 			},
9243 			.addr = addr,
9244 			.len = len,
9245 			.ksym_type = ksym_type,
9246 			.flags = flags,
9247 		},
9248 	};
9249 
9250 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9251 	return;
9252 err:
9253 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9254 }
9255 
9256 /*
9257  * bpf program load/unload tracking
9258  */
9259 
9260 struct perf_bpf_event {
9261 	struct bpf_prog	*prog;
9262 	struct {
9263 		struct perf_event_header        header;
9264 		u16				type;
9265 		u16				flags;
9266 		u32				id;
9267 		u8				tag[BPF_TAG_SIZE];
9268 	} event_id;
9269 };
9270 
9271 static int perf_event_bpf_match(struct perf_event *event)
9272 {
9273 	return event->attr.bpf_event;
9274 }
9275 
9276 static void perf_event_bpf_output(struct perf_event *event, void *data)
9277 {
9278 	struct perf_bpf_event *bpf_event = data;
9279 	struct perf_output_handle handle;
9280 	struct perf_sample_data sample;
9281 	int ret;
9282 
9283 	if (!perf_event_bpf_match(event))
9284 		return;
9285 
9286 	perf_event_header__init_id(&bpf_event->event_id.header,
9287 				   &sample, event);
9288 	ret = perf_output_begin(&handle, &sample, event,
9289 				bpf_event->event_id.header.size);
9290 	if (ret)
9291 		return;
9292 
9293 	perf_output_put(&handle, bpf_event->event_id);
9294 	perf_event__output_id_sample(event, &handle, &sample);
9295 
9296 	perf_output_end(&handle);
9297 }
9298 
9299 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9300 					 enum perf_bpf_event_type type)
9301 {
9302 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9303 	int i;
9304 
9305 	if (prog->aux->func_cnt == 0) {
9306 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9307 				   (u64)(unsigned long)prog->bpf_func,
9308 				   prog->jited_len, unregister,
9309 				   prog->aux->ksym.name);
9310 	} else {
9311 		for (i = 0; i < prog->aux->func_cnt; i++) {
9312 			struct bpf_prog *subprog = prog->aux->func[i];
9313 
9314 			perf_event_ksymbol(
9315 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9316 				(u64)(unsigned long)subprog->bpf_func,
9317 				subprog->jited_len, unregister,
9318 				subprog->aux->ksym.name);
9319 		}
9320 	}
9321 }
9322 
9323 void perf_event_bpf_event(struct bpf_prog *prog,
9324 			  enum perf_bpf_event_type type,
9325 			  u16 flags)
9326 {
9327 	struct perf_bpf_event bpf_event;
9328 
9329 	switch (type) {
9330 	case PERF_BPF_EVENT_PROG_LOAD:
9331 	case PERF_BPF_EVENT_PROG_UNLOAD:
9332 		if (atomic_read(&nr_ksymbol_events))
9333 			perf_event_bpf_emit_ksymbols(prog, type);
9334 		break;
9335 	default:
9336 		return;
9337 	}
9338 
9339 	if (!atomic_read(&nr_bpf_events))
9340 		return;
9341 
9342 	bpf_event = (struct perf_bpf_event){
9343 		.prog = prog,
9344 		.event_id = {
9345 			.header = {
9346 				.type = PERF_RECORD_BPF_EVENT,
9347 				.size = sizeof(bpf_event.event_id),
9348 			},
9349 			.type = type,
9350 			.flags = flags,
9351 			.id = prog->aux->id,
9352 		},
9353 	};
9354 
9355 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9356 
9357 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9358 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9359 }
9360 
9361 struct perf_text_poke_event {
9362 	const void		*old_bytes;
9363 	const void		*new_bytes;
9364 	size_t			pad;
9365 	u16			old_len;
9366 	u16			new_len;
9367 
9368 	struct {
9369 		struct perf_event_header	header;
9370 
9371 		u64				addr;
9372 	} event_id;
9373 };
9374 
9375 static int perf_event_text_poke_match(struct perf_event *event)
9376 {
9377 	return event->attr.text_poke;
9378 }
9379 
9380 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9381 {
9382 	struct perf_text_poke_event *text_poke_event = data;
9383 	struct perf_output_handle handle;
9384 	struct perf_sample_data sample;
9385 	u64 padding = 0;
9386 	int ret;
9387 
9388 	if (!perf_event_text_poke_match(event))
9389 		return;
9390 
9391 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9392 
9393 	ret = perf_output_begin(&handle, &sample, event,
9394 				text_poke_event->event_id.header.size);
9395 	if (ret)
9396 		return;
9397 
9398 	perf_output_put(&handle, text_poke_event->event_id);
9399 	perf_output_put(&handle, text_poke_event->old_len);
9400 	perf_output_put(&handle, text_poke_event->new_len);
9401 
9402 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9403 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9404 
9405 	if (text_poke_event->pad)
9406 		__output_copy(&handle, &padding, text_poke_event->pad);
9407 
9408 	perf_event__output_id_sample(event, &handle, &sample);
9409 
9410 	perf_output_end(&handle);
9411 }
9412 
9413 void perf_event_text_poke(const void *addr, const void *old_bytes,
9414 			  size_t old_len, const void *new_bytes, size_t new_len)
9415 {
9416 	struct perf_text_poke_event text_poke_event;
9417 	size_t tot, pad;
9418 
9419 	if (!atomic_read(&nr_text_poke_events))
9420 		return;
9421 
9422 	tot  = sizeof(text_poke_event.old_len) + old_len;
9423 	tot += sizeof(text_poke_event.new_len) + new_len;
9424 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9425 
9426 	text_poke_event = (struct perf_text_poke_event){
9427 		.old_bytes    = old_bytes,
9428 		.new_bytes    = new_bytes,
9429 		.pad          = pad,
9430 		.old_len      = old_len,
9431 		.new_len      = new_len,
9432 		.event_id  = {
9433 			.header = {
9434 				.type = PERF_RECORD_TEXT_POKE,
9435 				.misc = PERF_RECORD_MISC_KERNEL,
9436 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9437 			},
9438 			.addr = (unsigned long)addr,
9439 		},
9440 	};
9441 
9442 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9443 }
9444 
9445 void perf_event_itrace_started(struct perf_event *event)
9446 {
9447 	event->attach_state |= PERF_ATTACH_ITRACE;
9448 }
9449 
9450 static void perf_log_itrace_start(struct perf_event *event)
9451 {
9452 	struct perf_output_handle handle;
9453 	struct perf_sample_data sample;
9454 	struct perf_aux_event {
9455 		struct perf_event_header        header;
9456 		u32				pid;
9457 		u32				tid;
9458 	} rec;
9459 	int ret;
9460 
9461 	if (event->parent)
9462 		event = event->parent;
9463 
9464 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9465 	    event->attach_state & PERF_ATTACH_ITRACE)
9466 		return;
9467 
9468 	rec.header.type	= PERF_RECORD_ITRACE_START;
9469 	rec.header.misc	= 0;
9470 	rec.header.size	= sizeof(rec);
9471 	rec.pid	= perf_event_pid(event, current);
9472 	rec.tid	= perf_event_tid(event, current);
9473 
9474 	perf_event_header__init_id(&rec.header, &sample, event);
9475 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9476 
9477 	if (ret)
9478 		return;
9479 
9480 	perf_output_put(&handle, rec);
9481 	perf_event__output_id_sample(event, &handle, &sample);
9482 
9483 	perf_output_end(&handle);
9484 }
9485 
9486 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9487 {
9488 	struct perf_output_handle handle;
9489 	struct perf_sample_data sample;
9490 	struct perf_aux_event {
9491 		struct perf_event_header        header;
9492 		u64				hw_id;
9493 	} rec;
9494 	int ret;
9495 
9496 	if (event->parent)
9497 		event = event->parent;
9498 
9499 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9500 	rec.header.misc	= 0;
9501 	rec.header.size	= sizeof(rec);
9502 	rec.hw_id	= hw_id;
9503 
9504 	perf_event_header__init_id(&rec.header, &sample, event);
9505 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9506 
9507 	if (ret)
9508 		return;
9509 
9510 	perf_output_put(&handle, rec);
9511 	perf_event__output_id_sample(event, &handle, &sample);
9512 
9513 	perf_output_end(&handle);
9514 }
9515 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9516 
9517 static int
9518 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9519 {
9520 	struct hw_perf_event *hwc = &event->hw;
9521 	int ret = 0;
9522 	u64 seq;
9523 
9524 	seq = __this_cpu_read(perf_throttled_seq);
9525 	if (seq != hwc->interrupts_seq) {
9526 		hwc->interrupts_seq = seq;
9527 		hwc->interrupts = 1;
9528 	} else {
9529 		hwc->interrupts++;
9530 		if (unlikely(throttle &&
9531 			     hwc->interrupts > max_samples_per_tick)) {
9532 			__this_cpu_inc(perf_throttled_count);
9533 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9534 			hwc->interrupts = MAX_INTERRUPTS;
9535 			perf_log_throttle(event, 0);
9536 			ret = 1;
9537 		}
9538 	}
9539 
9540 	if (event->attr.freq) {
9541 		u64 now = perf_clock();
9542 		s64 delta = now - hwc->freq_time_stamp;
9543 
9544 		hwc->freq_time_stamp = now;
9545 
9546 		if (delta > 0 && delta < 2*TICK_NSEC)
9547 			perf_adjust_period(event, delta, hwc->last_period, true);
9548 	}
9549 
9550 	return ret;
9551 }
9552 
9553 int perf_event_account_interrupt(struct perf_event *event)
9554 {
9555 	return __perf_event_account_interrupt(event, 1);
9556 }
9557 
9558 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9559 {
9560 	/*
9561 	 * Due to interrupt latency (AKA "skid"), we may enter the
9562 	 * kernel before taking an overflow, even if the PMU is only
9563 	 * counting user events.
9564 	 */
9565 	if (event->attr.exclude_kernel && !user_mode(regs))
9566 		return false;
9567 
9568 	return true;
9569 }
9570 
9571 #ifdef CONFIG_BPF_SYSCALL
9572 static int bpf_overflow_handler(struct perf_event *event,
9573 				struct perf_sample_data *data,
9574 				struct pt_regs *regs)
9575 {
9576 	struct bpf_perf_event_data_kern ctx = {
9577 		.data = data,
9578 		.event = event,
9579 	};
9580 	struct bpf_prog *prog;
9581 	int ret = 0;
9582 
9583 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9584 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9585 		goto out;
9586 	rcu_read_lock();
9587 	prog = READ_ONCE(event->prog);
9588 	if (prog) {
9589 		perf_prepare_sample(data, event, regs);
9590 		ret = bpf_prog_run(prog, &ctx);
9591 	}
9592 	rcu_read_unlock();
9593 out:
9594 	__this_cpu_dec(bpf_prog_active);
9595 
9596 	return ret;
9597 }
9598 
9599 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9600 					     struct bpf_prog *prog,
9601 					     u64 bpf_cookie)
9602 {
9603 	if (event->overflow_handler_context)
9604 		/* hw breakpoint or kernel counter */
9605 		return -EINVAL;
9606 
9607 	if (event->prog)
9608 		return -EEXIST;
9609 
9610 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9611 		return -EINVAL;
9612 
9613 	if (event->attr.precise_ip &&
9614 	    prog->call_get_stack &&
9615 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9616 	     event->attr.exclude_callchain_kernel ||
9617 	     event->attr.exclude_callchain_user)) {
9618 		/*
9619 		 * On perf_event with precise_ip, calling bpf_get_stack()
9620 		 * may trigger unwinder warnings and occasional crashes.
9621 		 * bpf_get_[stack|stackid] works around this issue by using
9622 		 * callchain attached to perf_sample_data. If the
9623 		 * perf_event does not full (kernel and user) callchain
9624 		 * attached to perf_sample_data, do not allow attaching BPF
9625 		 * program that calls bpf_get_[stack|stackid].
9626 		 */
9627 		return -EPROTO;
9628 	}
9629 
9630 	event->prog = prog;
9631 	event->bpf_cookie = bpf_cookie;
9632 	return 0;
9633 }
9634 
9635 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9636 {
9637 	struct bpf_prog *prog = event->prog;
9638 
9639 	if (!prog)
9640 		return;
9641 
9642 	event->prog = NULL;
9643 	bpf_prog_put(prog);
9644 }
9645 #else
9646 static inline int bpf_overflow_handler(struct perf_event *event,
9647 				       struct perf_sample_data *data,
9648 				       struct pt_regs *regs)
9649 {
9650 	return 1;
9651 }
9652 
9653 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9654 					     struct bpf_prog *prog,
9655 					     u64 bpf_cookie)
9656 {
9657 	return -EOPNOTSUPP;
9658 }
9659 
9660 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9661 {
9662 }
9663 #endif
9664 
9665 /*
9666  * Generic event overflow handling, sampling.
9667  */
9668 
9669 static int __perf_event_overflow(struct perf_event *event,
9670 				 int throttle, struct perf_sample_data *data,
9671 				 struct pt_regs *regs)
9672 {
9673 	int events = atomic_read(&event->event_limit);
9674 	int ret = 0;
9675 
9676 	/*
9677 	 * Non-sampling counters might still use the PMI to fold short
9678 	 * hardware counters, ignore those.
9679 	 */
9680 	if (unlikely(!is_sampling_event(event)))
9681 		return 0;
9682 
9683 	ret = __perf_event_account_interrupt(event, throttle);
9684 
9685 	if (event->prog && !bpf_overflow_handler(event, data, regs))
9686 		return ret;
9687 
9688 	/*
9689 	 * XXX event_limit might not quite work as expected on inherited
9690 	 * events
9691 	 */
9692 
9693 	event->pending_kill = POLL_IN;
9694 	if (events && atomic_dec_and_test(&event->event_limit)) {
9695 		ret = 1;
9696 		event->pending_kill = POLL_HUP;
9697 		perf_event_disable_inatomic(event);
9698 	}
9699 
9700 	if (event->attr.sigtrap) {
9701 		/*
9702 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9703 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9704 		 * it is the first event, on the other hand, we should also not
9705 		 * trigger the WARN or override the data address.
9706 		 */
9707 		bool valid_sample = sample_is_allowed(event, regs);
9708 		unsigned int pending_id = 1;
9709 
9710 		if (regs)
9711 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9712 		if (!event->pending_sigtrap) {
9713 			event->pending_sigtrap = pending_id;
9714 			local_inc(&event->ctx->nr_pending);
9715 		} else if (event->attr.exclude_kernel && valid_sample) {
9716 			/*
9717 			 * Should not be able to return to user space without
9718 			 * consuming pending_sigtrap; with exceptions:
9719 			 *
9720 			 *  1. Where !exclude_kernel, events can overflow again
9721 			 *     in the kernel without returning to user space.
9722 			 *
9723 			 *  2. Events that can overflow again before the IRQ-
9724 			 *     work without user space progress (e.g. hrtimer).
9725 			 *     To approximate progress (with false negatives),
9726 			 *     check 32-bit hash of the current IP.
9727 			 */
9728 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9729 		}
9730 
9731 		event->pending_addr = 0;
9732 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9733 			event->pending_addr = data->addr;
9734 		irq_work_queue(&event->pending_irq);
9735 	}
9736 
9737 	READ_ONCE(event->overflow_handler)(event, data, regs);
9738 
9739 	if (*perf_event_fasync(event) && event->pending_kill) {
9740 		event->pending_wakeup = 1;
9741 		irq_work_queue(&event->pending_irq);
9742 	}
9743 
9744 	return ret;
9745 }
9746 
9747 int perf_event_overflow(struct perf_event *event,
9748 			struct perf_sample_data *data,
9749 			struct pt_regs *regs)
9750 {
9751 	return __perf_event_overflow(event, 1, data, regs);
9752 }
9753 
9754 /*
9755  * Generic software event infrastructure
9756  */
9757 
9758 struct swevent_htable {
9759 	struct swevent_hlist		*swevent_hlist;
9760 	struct mutex			hlist_mutex;
9761 	int				hlist_refcount;
9762 
9763 	/* Recursion avoidance in each contexts */
9764 	int				recursion[PERF_NR_CONTEXTS];
9765 };
9766 
9767 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9768 
9769 /*
9770  * We directly increment event->count and keep a second value in
9771  * event->hw.period_left to count intervals. This period event
9772  * is kept in the range [-sample_period, 0] so that we can use the
9773  * sign as trigger.
9774  */
9775 
9776 u64 perf_swevent_set_period(struct perf_event *event)
9777 {
9778 	struct hw_perf_event *hwc = &event->hw;
9779 	u64 period = hwc->last_period;
9780 	u64 nr, offset;
9781 	s64 old, val;
9782 
9783 	hwc->last_period = hwc->sample_period;
9784 
9785 	old = local64_read(&hwc->period_left);
9786 	do {
9787 		val = old;
9788 		if (val < 0)
9789 			return 0;
9790 
9791 		nr = div64_u64(period + val, period);
9792 		offset = nr * period;
9793 		val -= offset;
9794 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9795 
9796 	return nr;
9797 }
9798 
9799 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9800 				    struct perf_sample_data *data,
9801 				    struct pt_regs *regs)
9802 {
9803 	struct hw_perf_event *hwc = &event->hw;
9804 	int throttle = 0;
9805 
9806 	if (!overflow)
9807 		overflow = perf_swevent_set_period(event);
9808 
9809 	if (hwc->interrupts == MAX_INTERRUPTS)
9810 		return;
9811 
9812 	for (; overflow; overflow--) {
9813 		if (__perf_event_overflow(event, throttle,
9814 					    data, regs)) {
9815 			/*
9816 			 * We inhibit the overflow from happening when
9817 			 * hwc->interrupts == MAX_INTERRUPTS.
9818 			 */
9819 			break;
9820 		}
9821 		throttle = 1;
9822 	}
9823 }
9824 
9825 static void perf_swevent_event(struct perf_event *event, u64 nr,
9826 			       struct perf_sample_data *data,
9827 			       struct pt_regs *regs)
9828 {
9829 	struct hw_perf_event *hwc = &event->hw;
9830 
9831 	local64_add(nr, &event->count);
9832 
9833 	if (!regs)
9834 		return;
9835 
9836 	if (!is_sampling_event(event))
9837 		return;
9838 
9839 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9840 		data->period = nr;
9841 		return perf_swevent_overflow(event, 1, data, regs);
9842 	} else
9843 		data->period = event->hw.last_period;
9844 
9845 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9846 		return perf_swevent_overflow(event, 1, data, regs);
9847 
9848 	if (local64_add_negative(nr, &hwc->period_left))
9849 		return;
9850 
9851 	perf_swevent_overflow(event, 0, data, regs);
9852 }
9853 
9854 static int perf_exclude_event(struct perf_event *event,
9855 			      struct pt_regs *regs)
9856 {
9857 	if (event->hw.state & PERF_HES_STOPPED)
9858 		return 1;
9859 
9860 	if (regs) {
9861 		if (event->attr.exclude_user && user_mode(regs))
9862 			return 1;
9863 
9864 		if (event->attr.exclude_kernel && !user_mode(regs))
9865 			return 1;
9866 	}
9867 
9868 	return 0;
9869 }
9870 
9871 static int perf_swevent_match(struct perf_event *event,
9872 				enum perf_type_id type,
9873 				u32 event_id,
9874 				struct perf_sample_data *data,
9875 				struct pt_regs *regs)
9876 {
9877 	if (event->attr.type != type)
9878 		return 0;
9879 
9880 	if (event->attr.config != event_id)
9881 		return 0;
9882 
9883 	if (perf_exclude_event(event, regs))
9884 		return 0;
9885 
9886 	return 1;
9887 }
9888 
9889 static inline u64 swevent_hash(u64 type, u32 event_id)
9890 {
9891 	u64 val = event_id | (type << 32);
9892 
9893 	return hash_64(val, SWEVENT_HLIST_BITS);
9894 }
9895 
9896 static inline struct hlist_head *
9897 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9898 {
9899 	u64 hash = swevent_hash(type, event_id);
9900 
9901 	return &hlist->heads[hash];
9902 }
9903 
9904 /* For the read side: events when they trigger */
9905 static inline struct hlist_head *
9906 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9907 {
9908 	struct swevent_hlist *hlist;
9909 
9910 	hlist = rcu_dereference(swhash->swevent_hlist);
9911 	if (!hlist)
9912 		return NULL;
9913 
9914 	return __find_swevent_head(hlist, type, event_id);
9915 }
9916 
9917 /* For the event head insertion and removal in the hlist */
9918 static inline struct hlist_head *
9919 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9920 {
9921 	struct swevent_hlist *hlist;
9922 	u32 event_id = event->attr.config;
9923 	u64 type = event->attr.type;
9924 
9925 	/*
9926 	 * Event scheduling is always serialized against hlist allocation
9927 	 * and release. Which makes the protected version suitable here.
9928 	 * The context lock guarantees that.
9929 	 */
9930 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9931 					  lockdep_is_held(&event->ctx->lock));
9932 	if (!hlist)
9933 		return NULL;
9934 
9935 	return __find_swevent_head(hlist, type, event_id);
9936 }
9937 
9938 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9939 				    u64 nr,
9940 				    struct perf_sample_data *data,
9941 				    struct pt_regs *regs)
9942 {
9943 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9944 	struct perf_event *event;
9945 	struct hlist_head *head;
9946 
9947 	rcu_read_lock();
9948 	head = find_swevent_head_rcu(swhash, type, event_id);
9949 	if (!head)
9950 		goto end;
9951 
9952 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9953 		if (perf_swevent_match(event, type, event_id, data, regs))
9954 			perf_swevent_event(event, nr, data, regs);
9955 	}
9956 end:
9957 	rcu_read_unlock();
9958 }
9959 
9960 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9961 
9962 int perf_swevent_get_recursion_context(void)
9963 {
9964 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9965 
9966 	return get_recursion_context(swhash->recursion);
9967 }
9968 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9969 
9970 void perf_swevent_put_recursion_context(int rctx)
9971 {
9972 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9973 
9974 	put_recursion_context(swhash->recursion, rctx);
9975 }
9976 
9977 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9978 {
9979 	struct perf_sample_data data;
9980 
9981 	if (WARN_ON_ONCE(!regs))
9982 		return;
9983 
9984 	perf_sample_data_init(&data, addr, 0);
9985 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9986 }
9987 
9988 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9989 {
9990 	int rctx;
9991 
9992 	preempt_disable_notrace();
9993 	rctx = perf_swevent_get_recursion_context();
9994 	if (unlikely(rctx < 0))
9995 		goto fail;
9996 
9997 	___perf_sw_event(event_id, nr, regs, addr);
9998 
9999 	perf_swevent_put_recursion_context(rctx);
10000 fail:
10001 	preempt_enable_notrace();
10002 }
10003 
10004 static void perf_swevent_read(struct perf_event *event)
10005 {
10006 }
10007 
10008 static int perf_swevent_add(struct perf_event *event, int flags)
10009 {
10010 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10011 	struct hw_perf_event *hwc = &event->hw;
10012 	struct hlist_head *head;
10013 
10014 	if (is_sampling_event(event)) {
10015 		hwc->last_period = hwc->sample_period;
10016 		perf_swevent_set_period(event);
10017 	}
10018 
10019 	hwc->state = !(flags & PERF_EF_START);
10020 
10021 	head = find_swevent_head(swhash, event);
10022 	if (WARN_ON_ONCE(!head))
10023 		return -EINVAL;
10024 
10025 	hlist_add_head_rcu(&event->hlist_entry, head);
10026 	perf_event_update_userpage(event);
10027 
10028 	return 0;
10029 }
10030 
10031 static void perf_swevent_del(struct perf_event *event, int flags)
10032 {
10033 	hlist_del_rcu(&event->hlist_entry);
10034 }
10035 
10036 static void perf_swevent_start(struct perf_event *event, int flags)
10037 {
10038 	event->hw.state = 0;
10039 }
10040 
10041 static void perf_swevent_stop(struct perf_event *event, int flags)
10042 {
10043 	event->hw.state = PERF_HES_STOPPED;
10044 }
10045 
10046 /* Deref the hlist from the update side */
10047 static inline struct swevent_hlist *
10048 swevent_hlist_deref(struct swevent_htable *swhash)
10049 {
10050 	return rcu_dereference_protected(swhash->swevent_hlist,
10051 					 lockdep_is_held(&swhash->hlist_mutex));
10052 }
10053 
10054 static void swevent_hlist_release(struct swevent_htable *swhash)
10055 {
10056 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10057 
10058 	if (!hlist)
10059 		return;
10060 
10061 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10062 	kfree_rcu(hlist, rcu_head);
10063 }
10064 
10065 static void swevent_hlist_put_cpu(int cpu)
10066 {
10067 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10068 
10069 	mutex_lock(&swhash->hlist_mutex);
10070 
10071 	if (!--swhash->hlist_refcount)
10072 		swevent_hlist_release(swhash);
10073 
10074 	mutex_unlock(&swhash->hlist_mutex);
10075 }
10076 
10077 static void swevent_hlist_put(void)
10078 {
10079 	int cpu;
10080 
10081 	for_each_possible_cpu(cpu)
10082 		swevent_hlist_put_cpu(cpu);
10083 }
10084 
10085 static int swevent_hlist_get_cpu(int cpu)
10086 {
10087 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10088 	int err = 0;
10089 
10090 	mutex_lock(&swhash->hlist_mutex);
10091 	if (!swevent_hlist_deref(swhash) &&
10092 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10093 		struct swevent_hlist *hlist;
10094 
10095 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10096 		if (!hlist) {
10097 			err = -ENOMEM;
10098 			goto exit;
10099 		}
10100 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10101 	}
10102 	swhash->hlist_refcount++;
10103 exit:
10104 	mutex_unlock(&swhash->hlist_mutex);
10105 
10106 	return err;
10107 }
10108 
10109 static int swevent_hlist_get(void)
10110 {
10111 	int err, cpu, failed_cpu;
10112 
10113 	mutex_lock(&pmus_lock);
10114 	for_each_possible_cpu(cpu) {
10115 		err = swevent_hlist_get_cpu(cpu);
10116 		if (err) {
10117 			failed_cpu = cpu;
10118 			goto fail;
10119 		}
10120 	}
10121 	mutex_unlock(&pmus_lock);
10122 	return 0;
10123 fail:
10124 	for_each_possible_cpu(cpu) {
10125 		if (cpu == failed_cpu)
10126 			break;
10127 		swevent_hlist_put_cpu(cpu);
10128 	}
10129 	mutex_unlock(&pmus_lock);
10130 	return err;
10131 }
10132 
10133 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10134 
10135 static void sw_perf_event_destroy(struct perf_event *event)
10136 {
10137 	u64 event_id = event->attr.config;
10138 
10139 	WARN_ON(event->parent);
10140 
10141 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10142 	swevent_hlist_put();
10143 }
10144 
10145 static struct pmu perf_cpu_clock; /* fwd declaration */
10146 static struct pmu perf_task_clock;
10147 
10148 static int perf_swevent_init(struct perf_event *event)
10149 {
10150 	u64 event_id = event->attr.config;
10151 
10152 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10153 		return -ENOENT;
10154 
10155 	/*
10156 	 * no branch sampling for software events
10157 	 */
10158 	if (has_branch_stack(event))
10159 		return -EOPNOTSUPP;
10160 
10161 	switch (event_id) {
10162 	case PERF_COUNT_SW_CPU_CLOCK:
10163 		event->attr.type = perf_cpu_clock.type;
10164 		return -ENOENT;
10165 	case PERF_COUNT_SW_TASK_CLOCK:
10166 		event->attr.type = perf_task_clock.type;
10167 		return -ENOENT;
10168 
10169 	default:
10170 		break;
10171 	}
10172 
10173 	if (event_id >= PERF_COUNT_SW_MAX)
10174 		return -ENOENT;
10175 
10176 	if (!event->parent) {
10177 		int err;
10178 
10179 		err = swevent_hlist_get();
10180 		if (err)
10181 			return err;
10182 
10183 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10184 		event->destroy = sw_perf_event_destroy;
10185 	}
10186 
10187 	return 0;
10188 }
10189 
10190 static struct pmu perf_swevent = {
10191 	.task_ctx_nr	= perf_sw_context,
10192 
10193 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10194 
10195 	.event_init	= perf_swevent_init,
10196 	.add		= perf_swevent_add,
10197 	.del		= perf_swevent_del,
10198 	.start		= perf_swevent_start,
10199 	.stop		= perf_swevent_stop,
10200 	.read		= perf_swevent_read,
10201 };
10202 
10203 #ifdef CONFIG_EVENT_TRACING
10204 
10205 static void tp_perf_event_destroy(struct perf_event *event)
10206 {
10207 	perf_trace_destroy(event);
10208 }
10209 
10210 static int perf_tp_event_init(struct perf_event *event)
10211 {
10212 	int err;
10213 
10214 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10215 		return -ENOENT;
10216 
10217 	/*
10218 	 * no branch sampling for tracepoint events
10219 	 */
10220 	if (has_branch_stack(event))
10221 		return -EOPNOTSUPP;
10222 
10223 	err = perf_trace_init(event);
10224 	if (err)
10225 		return err;
10226 
10227 	event->destroy = tp_perf_event_destroy;
10228 
10229 	return 0;
10230 }
10231 
10232 static struct pmu perf_tracepoint = {
10233 	.task_ctx_nr	= perf_sw_context,
10234 
10235 	.event_init	= perf_tp_event_init,
10236 	.add		= perf_trace_add,
10237 	.del		= perf_trace_del,
10238 	.start		= perf_swevent_start,
10239 	.stop		= perf_swevent_stop,
10240 	.read		= perf_swevent_read,
10241 };
10242 
10243 static int perf_tp_filter_match(struct perf_event *event,
10244 				struct perf_sample_data *data)
10245 {
10246 	void *record = data->raw->frag.data;
10247 
10248 	/* only top level events have filters set */
10249 	if (event->parent)
10250 		event = event->parent;
10251 
10252 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10253 		return 1;
10254 	return 0;
10255 }
10256 
10257 static int perf_tp_event_match(struct perf_event *event,
10258 				struct perf_sample_data *data,
10259 				struct pt_regs *regs)
10260 {
10261 	if (event->hw.state & PERF_HES_STOPPED)
10262 		return 0;
10263 	/*
10264 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10265 	 */
10266 	if (event->attr.exclude_kernel && !user_mode(regs))
10267 		return 0;
10268 
10269 	if (!perf_tp_filter_match(event, data))
10270 		return 0;
10271 
10272 	return 1;
10273 }
10274 
10275 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10276 			       struct trace_event_call *call, u64 count,
10277 			       struct pt_regs *regs, struct hlist_head *head,
10278 			       struct task_struct *task)
10279 {
10280 	if (bpf_prog_array_valid(call)) {
10281 		*(struct pt_regs **)raw_data = regs;
10282 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10283 			perf_swevent_put_recursion_context(rctx);
10284 			return;
10285 		}
10286 	}
10287 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10288 		      rctx, task);
10289 }
10290 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10291 
10292 static void __perf_tp_event_target_task(u64 count, void *record,
10293 					struct pt_regs *regs,
10294 					struct perf_sample_data *data,
10295 					struct perf_event *event)
10296 {
10297 	struct trace_entry *entry = record;
10298 
10299 	if (event->attr.config != entry->type)
10300 		return;
10301 	/* Cannot deliver synchronous signal to other task. */
10302 	if (event->attr.sigtrap)
10303 		return;
10304 	if (perf_tp_event_match(event, data, regs))
10305 		perf_swevent_event(event, count, data, regs);
10306 }
10307 
10308 static void perf_tp_event_target_task(u64 count, void *record,
10309 				      struct pt_regs *regs,
10310 				      struct perf_sample_data *data,
10311 				      struct perf_event_context *ctx)
10312 {
10313 	unsigned int cpu = smp_processor_id();
10314 	struct pmu *pmu = &perf_tracepoint;
10315 	struct perf_event *event, *sibling;
10316 
10317 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10318 		__perf_tp_event_target_task(count, record, regs, data, event);
10319 		for_each_sibling_event(sibling, event)
10320 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10321 	}
10322 
10323 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10324 		__perf_tp_event_target_task(count, record, regs, data, event);
10325 		for_each_sibling_event(sibling, event)
10326 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10327 	}
10328 }
10329 
10330 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10331 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10332 		   struct task_struct *task)
10333 {
10334 	struct perf_sample_data data;
10335 	struct perf_event *event;
10336 
10337 	struct perf_raw_record raw = {
10338 		.frag = {
10339 			.size = entry_size,
10340 			.data = record,
10341 		},
10342 	};
10343 
10344 	perf_sample_data_init(&data, 0, 0);
10345 	perf_sample_save_raw_data(&data, &raw);
10346 
10347 	perf_trace_buf_update(record, event_type);
10348 
10349 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10350 		if (perf_tp_event_match(event, &data, regs)) {
10351 			perf_swevent_event(event, count, &data, regs);
10352 
10353 			/*
10354 			 * Here use the same on-stack perf_sample_data,
10355 			 * some members in data are event-specific and
10356 			 * need to be re-computed for different sweveents.
10357 			 * Re-initialize data->sample_flags safely to avoid
10358 			 * the problem that next event skips preparing data
10359 			 * because data->sample_flags is set.
10360 			 */
10361 			perf_sample_data_init(&data, 0, 0);
10362 			perf_sample_save_raw_data(&data, &raw);
10363 		}
10364 	}
10365 
10366 	/*
10367 	 * If we got specified a target task, also iterate its context and
10368 	 * deliver this event there too.
10369 	 */
10370 	if (task && task != current) {
10371 		struct perf_event_context *ctx;
10372 
10373 		rcu_read_lock();
10374 		ctx = rcu_dereference(task->perf_event_ctxp);
10375 		if (!ctx)
10376 			goto unlock;
10377 
10378 		raw_spin_lock(&ctx->lock);
10379 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10380 		raw_spin_unlock(&ctx->lock);
10381 unlock:
10382 		rcu_read_unlock();
10383 	}
10384 
10385 	perf_swevent_put_recursion_context(rctx);
10386 }
10387 EXPORT_SYMBOL_GPL(perf_tp_event);
10388 
10389 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10390 /*
10391  * Flags in config, used by dynamic PMU kprobe and uprobe
10392  * The flags should match following PMU_FORMAT_ATTR().
10393  *
10394  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10395  *                               if not set, create kprobe/uprobe
10396  *
10397  * The following values specify a reference counter (or semaphore in the
10398  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10399  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10400  *
10401  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10402  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10403  */
10404 enum perf_probe_config {
10405 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10406 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10407 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10408 };
10409 
10410 PMU_FORMAT_ATTR(retprobe, "config:0");
10411 #endif
10412 
10413 #ifdef CONFIG_KPROBE_EVENTS
10414 static struct attribute *kprobe_attrs[] = {
10415 	&format_attr_retprobe.attr,
10416 	NULL,
10417 };
10418 
10419 static struct attribute_group kprobe_format_group = {
10420 	.name = "format",
10421 	.attrs = kprobe_attrs,
10422 };
10423 
10424 static const struct attribute_group *kprobe_attr_groups[] = {
10425 	&kprobe_format_group,
10426 	NULL,
10427 };
10428 
10429 static int perf_kprobe_event_init(struct perf_event *event);
10430 static struct pmu perf_kprobe = {
10431 	.task_ctx_nr	= perf_sw_context,
10432 	.event_init	= perf_kprobe_event_init,
10433 	.add		= perf_trace_add,
10434 	.del		= perf_trace_del,
10435 	.start		= perf_swevent_start,
10436 	.stop		= perf_swevent_stop,
10437 	.read		= perf_swevent_read,
10438 	.attr_groups	= kprobe_attr_groups,
10439 };
10440 
10441 static int perf_kprobe_event_init(struct perf_event *event)
10442 {
10443 	int err;
10444 	bool is_retprobe;
10445 
10446 	if (event->attr.type != perf_kprobe.type)
10447 		return -ENOENT;
10448 
10449 	if (!perfmon_capable())
10450 		return -EACCES;
10451 
10452 	/*
10453 	 * no branch sampling for probe events
10454 	 */
10455 	if (has_branch_stack(event))
10456 		return -EOPNOTSUPP;
10457 
10458 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10459 	err = perf_kprobe_init(event, is_retprobe);
10460 	if (err)
10461 		return err;
10462 
10463 	event->destroy = perf_kprobe_destroy;
10464 
10465 	return 0;
10466 }
10467 #endif /* CONFIG_KPROBE_EVENTS */
10468 
10469 #ifdef CONFIG_UPROBE_EVENTS
10470 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10471 
10472 static struct attribute *uprobe_attrs[] = {
10473 	&format_attr_retprobe.attr,
10474 	&format_attr_ref_ctr_offset.attr,
10475 	NULL,
10476 };
10477 
10478 static struct attribute_group uprobe_format_group = {
10479 	.name = "format",
10480 	.attrs = uprobe_attrs,
10481 };
10482 
10483 static const struct attribute_group *uprobe_attr_groups[] = {
10484 	&uprobe_format_group,
10485 	NULL,
10486 };
10487 
10488 static int perf_uprobe_event_init(struct perf_event *event);
10489 static struct pmu perf_uprobe = {
10490 	.task_ctx_nr	= perf_sw_context,
10491 	.event_init	= perf_uprobe_event_init,
10492 	.add		= perf_trace_add,
10493 	.del		= perf_trace_del,
10494 	.start		= perf_swevent_start,
10495 	.stop		= perf_swevent_stop,
10496 	.read		= perf_swevent_read,
10497 	.attr_groups	= uprobe_attr_groups,
10498 };
10499 
10500 static int perf_uprobe_event_init(struct perf_event *event)
10501 {
10502 	int err;
10503 	unsigned long ref_ctr_offset;
10504 	bool is_retprobe;
10505 
10506 	if (event->attr.type != perf_uprobe.type)
10507 		return -ENOENT;
10508 
10509 	if (!perfmon_capable())
10510 		return -EACCES;
10511 
10512 	/*
10513 	 * no branch sampling for probe events
10514 	 */
10515 	if (has_branch_stack(event))
10516 		return -EOPNOTSUPP;
10517 
10518 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10519 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10520 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10521 	if (err)
10522 		return err;
10523 
10524 	event->destroy = perf_uprobe_destroy;
10525 
10526 	return 0;
10527 }
10528 #endif /* CONFIG_UPROBE_EVENTS */
10529 
10530 static inline void perf_tp_register(void)
10531 {
10532 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10533 #ifdef CONFIG_KPROBE_EVENTS
10534 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10535 #endif
10536 #ifdef CONFIG_UPROBE_EVENTS
10537 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10538 #endif
10539 }
10540 
10541 static void perf_event_free_filter(struct perf_event *event)
10542 {
10543 	ftrace_profile_free_filter(event);
10544 }
10545 
10546 /*
10547  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10548  * with perf_event_open()
10549  */
10550 static inline bool perf_event_is_tracing(struct perf_event *event)
10551 {
10552 	if (event->pmu == &perf_tracepoint)
10553 		return true;
10554 #ifdef CONFIG_KPROBE_EVENTS
10555 	if (event->pmu == &perf_kprobe)
10556 		return true;
10557 #endif
10558 #ifdef CONFIG_UPROBE_EVENTS
10559 	if (event->pmu == &perf_uprobe)
10560 		return true;
10561 #endif
10562 	return false;
10563 }
10564 
10565 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10566 			    u64 bpf_cookie)
10567 {
10568 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10569 
10570 	if (!perf_event_is_tracing(event))
10571 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10572 
10573 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10574 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10575 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10576 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10577 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10578 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10579 		return -EINVAL;
10580 
10581 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10582 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10583 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10584 		return -EINVAL;
10585 
10586 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10587 		/* only uprobe programs are allowed to be sleepable */
10588 		return -EINVAL;
10589 
10590 	/* Kprobe override only works for kprobes, not uprobes. */
10591 	if (prog->kprobe_override && !is_kprobe)
10592 		return -EINVAL;
10593 
10594 	if (is_tracepoint || is_syscall_tp) {
10595 		int off = trace_event_get_offsets(event->tp_event);
10596 
10597 		if (prog->aux->max_ctx_offset > off)
10598 			return -EACCES;
10599 	}
10600 
10601 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10602 }
10603 
10604 void perf_event_free_bpf_prog(struct perf_event *event)
10605 {
10606 	if (!perf_event_is_tracing(event)) {
10607 		perf_event_free_bpf_handler(event);
10608 		return;
10609 	}
10610 	perf_event_detach_bpf_prog(event);
10611 }
10612 
10613 #else
10614 
10615 static inline void perf_tp_register(void)
10616 {
10617 }
10618 
10619 static void perf_event_free_filter(struct perf_event *event)
10620 {
10621 }
10622 
10623 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10624 			    u64 bpf_cookie)
10625 {
10626 	return -ENOENT;
10627 }
10628 
10629 void perf_event_free_bpf_prog(struct perf_event *event)
10630 {
10631 }
10632 #endif /* CONFIG_EVENT_TRACING */
10633 
10634 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10635 void perf_bp_event(struct perf_event *bp, void *data)
10636 {
10637 	struct perf_sample_data sample;
10638 	struct pt_regs *regs = data;
10639 
10640 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10641 
10642 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10643 		perf_swevent_event(bp, 1, &sample, regs);
10644 }
10645 #endif
10646 
10647 /*
10648  * Allocate a new address filter
10649  */
10650 static struct perf_addr_filter *
10651 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10652 {
10653 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10654 	struct perf_addr_filter *filter;
10655 
10656 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10657 	if (!filter)
10658 		return NULL;
10659 
10660 	INIT_LIST_HEAD(&filter->entry);
10661 	list_add_tail(&filter->entry, filters);
10662 
10663 	return filter;
10664 }
10665 
10666 static void free_filters_list(struct list_head *filters)
10667 {
10668 	struct perf_addr_filter *filter, *iter;
10669 
10670 	list_for_each_entry_safe(filter, iter, filters, entry) {
10671 		path_put(&filter->path);
10672 		list_del(&filter->entry);
10673 		kfree(filter);
10674 	}
10675 }
10676 
10677 /*
10678  * Free existing address filters and optionally install new ones
10679  */
10680 static void perf_addr_filters_splice(struct perf_event *event,
10681 				     struct list_head *head)
10682 {
10683 	unsigned long flags;
10684 	LIST_HEAD(list);
10685 
10686 	if (!has_addr_filter(event))
10687 		return;
10688 
10689 	/* don't bother with children, they don't have their own filters */
10690 	if (event->parent)
10691 		return;
10692 
10693 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10694 
10695 	list_splice_init(&event->addr_filters.list, &list);
10696 	if (head)
10697 		list_splice(head, &event->addr_filters.list);
10698 
10699 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10700 
10701 	free_filters_list(&list);
10702 }
10703 
10704 /*
10705  * Scan through mm's vmas and see if one of them matches the
10706  * @filter; if so, adjust filter's address range.
10707  * Called with mm::mmap_lock down for reading.
10708  */
10709 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10710 				   struct mm_struct *mm,
10711 				   struct perf_addr_filter_range *fr)
10712 {
10713 	struct vm_area_struct *vma;
10714 	VMA_ITERATOR(vmi, mm, 0);
10715 
10716 	for_each_vma(vmi, vma) {
10717 		if (!vma->vm_file)
10718 			continue;
10719 
10720 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10721 			return;
10722 	}
10723 }
10724 
10725 /*
10726  * Update event's address range filters based on the
10727  * task's existing mappings, if any.
10728  */
10729 static void perf_event_addr_filters_apply(struct perf_event *event)
10730 {
10731 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10732 	struct task_struct *task = READ_ONCE(event->ctx->task);
10733 	struct perf_addr_filter *filter;
10734 	struct mm_struct *mm = NULL;
10735 	unsigned int count = 0;
10736 	unsigned long flags;
10737 
10738 	/*
10739 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10740 	 * will stop on the parent's child_mutex that our caller is also holding
10741 	 */
10742 	if (task == TASK_TOMBSTONE)
10743 		return;
10744 
10745 	if (ifh->nr_file_filters) {
10746 		mm = get_task_mm(task);
10747 		if (!mm)
10748 			goto restart;
10749 
10750 		mmap_read_lock(mm);
10751 	}
10752 
10753 	raw_spin_lock_irqsave(&ifh->lock, flags);
10754 	list_for_each_entry(filter, &ifh->list, entry) {
10755 		if (filter->path.dentry) {
10756 			/*
10757 			 * Adjust base offset if the filter is associated to a
10758 			 * binary that needs to be mapped:
10759 			 */
10760 			event->addr_filter_ranges[count].start = 0;
10761 			event->addr_filter_ranges[count].size = 0;
10762 
10763 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10764 		} else {
10765 			event->addr_filter_ranges[count].start = filter->offset;
10766 			event->addr_filter_ranges[count].size  = filter->size;
10767 		}
10768 
10769 		count++;
10770 	}
10771 
10772 	event->addr_filters_gen++;
10773 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10774 
10775 	if (ifh->nr_file_filters) {
10776 		mmap_read_unlock(mm);
10777 
10778 		mmput(mm);
10779 	}
10780 
10781 restart:
10782 	perf_event_stop(event, 1);
10783 }
10784 
10785 /*
10786  * Address range filtering: limiting the data to certain
10787  * instruction address ranges. Filters are ioctl()ed to us from
10788  * userspace as ascii strings.
10789  *
10790  * Filter string format:
10791  *
10792  * ACTION RANGE_SPEC
10793  * where ACTION is one of the
10794  *  * "filter": limit the trace to this region
10795  *  * "start": start tracing from this address
10796  *  * "stop": stop tracing at this address/region;
10797  * RANGE_SPEC is
10798  *  * for kernel addresses: <start address>[/<size>]
10799  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10800  *
10801  * if <size> is not specified or is zero, the range is treated as a single
10802  * address; not valid for ACTION=="filter".
10803  */
10804 enum {
10805 	IF_ACT_NONE = -1,
10806 	IF_ACT_FILTER,
10807 	IF_ACT_START,
10808 	IF_ACT_STOP,
10809 	IF_SRC_FILE,
10810 	IF_SRC_KERNEL,
10811 	IF_SRC_FILEADDR,
10812 	IF_SRC_KERNELADDR,
10813 };
10814 
10815 enum {
10816 	IF_STATE_ACTION = 0,
10817 	IF_STATE_SOURCE,
10818 	IF_STATE_END,
10819 };
10820 
10821 static const match_table_t if_tokens = {
10822 	{ IF_ACT_FILTER,	"filter" },
10823 	{ IF_ACT_START,		"start" },
10824 	{ IF_ACT_STOP,		"stop" },
10825 	{ IF_SRC_FILE,		"%u/%u@%s" },
10826 	{ IF_SRC_KERNEL,	"%u/%u" },
10827 	{ IF_SRC_FILEADDR,	"%u@%s" },
10828 	{ IF_SRC_KERNELADDR,	"%u" },
10829 	{ IF_ACT_NONE,		NULL },
10830 };
10831 
10832 /*
10833  * Address filter string parser
10834  */
10835 static int
10836 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10837 			     struct list_head *filters)
10838 {
10839 	struct perf_addr_filter *filter = NULL;
10840 	char *start, *orig, *filename = NULL;
10841 	substring_t args[MAX_OPT_ARGS];
10842 	int state = IF_STATE_ACTION, token;
10843 	unsigned int kernel = 0;
10844 	int ret = -EINVAL;
10845 
10846 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10847 	if (!fstr)
10848 		return -ENOMEM;
10849 
10850 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10851 		static const enum perf_addr_filter_action_t actions[] = {
10852 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10853 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10854 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10855 		};
10856 		ret = -EINVAL;
10857 
10858 		if (!*start)
10859 			continue;
10860 
10861 		/* filter definition begins */
10862 		if (state == IF_STATE_ACTION) {
10863 			filter = perf_addr_filter_new(event, filters);
10864 			if (!filter)
10865 				goto fail;
10866 		}
10867 
10868 		token = match_token(start, if_tokens, args);
10869 		switch (token) {
10870 		case IF_ACT_FILTER:
10871 		case IF_ACT_START:
10872 		case IF_ACT_STOP:
10873 			if (state != IF_STATE_ACTION)
10874 				goto fail;
10875 
10876 			filter->action = actions[token];
10877 			state = IF_STATE_SOURCE;
10878 			break;
10879 
10880 		case IF_SRC_KERNELADDR:
10881 		case IF_SRC_KERNEL:
10882 			kernel = 1;
10883 			fallthrough;
10884 
10885 		case IF_SRC_FILEADDR:
10886 		case IF_SRC_FILE:
10887 			if (state != IF_STATE_SOURCE)
10888 				goto fail;
10889 
10890 			*args[0].to = 0;
10891 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10892 			if (ret)
10893 				goto fail;
10894 
10895 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10896 				*args[1].to = 0;
10897 				ret = kstrtoul(args[1].from, 0, &filter->size);
10898 				if (ret)
10899 					goto fail;
10900 			}
10901 
10902 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10903 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10904 
10905 				kfree(filename);
10906 				filename = match_strdup(&args[fpos]);
10907 				if (!filename) {
10908 					ret = -ENOMEM;
10909 					goto fail;
10910 				}
10911 			}
10912 
10913 			state = IF_STATE_END;
10914 			break;
10915 
10916 		default:
10917 			goto fail;
10918 		}
10919 
10920 		/*
10921 		 * Filter definition is fully parsed, validate and install it.
10922 		 * Make sure that it doesn't contradict itself or the event's
10923 		 * attribute.
10924 		 */
10925 		if (state == IF_STATE_END) {
10926 			ret = -EINVAL;
10927 
10928 			/*
10929 			 * ACTION "filter" must have a non-zero length region
10930 			 * specified.
10931 			 */
10932 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10933 			    !filter->size)
10934 				goto fail;
10935 
10936 			if (!kernel) {
10937 				if (!filename)
10938 					goto fail;
10939 
10940 				/*
10941 				 * For now, we only support file-based filters
10942 				 * in per-task events; doing so for CPU-wide
10943 				 * events requires additional context switching
10944 				 * trickery, since same object code will be
10945 				 * mapped at different virtual addresses in
10946 				 * different processes.
10947 				 */
10948 				ret = -EOPNOTSUPP;
10949 				if (!event->ctx->task)
10950 					goto fail;
10951 
10952 				/* look up the path and grab its inode */
10953 				ret = kern_path(filename, LOOKUP_FOLLOW,
10954 						&filter->path);
10955 				if (ret)
10956 					goto fail;
10957 
10958 				ret = -EINVAL;
10959 				if (!filter->path.dentry ||
10960 				    !S_ISREG(d_inode(filter->path.dentry)
10961 					     ->i_mode))
10962 					goto fail;
10963 
10964 				event->addr_filters.nr_file_filters++;
10965 			}
10966 
10967 			/* ready to consume more filters */
10968 			kfree(filename);
10969 			filename = NULL;
10970 			state = IF_STATE_ACTION;
10971 			filter = NULL;
10972 			kernel = 0;
10973 		}
10974 	}
10975 
10976 	if (state != IF_STATE_ACTION)
10977 		goto fail;
10978 
10979 	kfree(filename);
10980 	kfree(orig);
10981 
10982 	return 0;
10983 
10984 fail:
10985 	kfree(filename);
10986 	free_filters_list(filters);
10987 	kfree(orig);
10988 
10989 	return ret;
10990 }
10991 
10992 static int
10993 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10994 {
10995 	LIST_HEAD(filters);
10996 	int ret;
10997 
10998 	/*
10999 	 * Since this is called in perf_ioctl() path, we're already holding
11000 	 * ctx::mutex.
11001 	 */
11002 	lockdep_assert_held(&event->ctx->mutex);
11003 
11004 	if (WARN_ON_ONCE(event->parent))
11005 		return -EINVAL;
11006 
11007 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11008 	if (ret)
11009 		goto fail_clear_files;
11010 
11011 	ret = event->pmu->addr_filters_validate(&filters);
11012 	if (ret)
11013 		goto fail_free_filters;
11014 
11015 	/* remove existing filters, if any */
11016 	perf_addr_filters_splice(event, &filters);
11017 
11018 	/* install new filters */
11019 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11020 
11021 	return ret;
11022 
11023 fail_free_filters:
11024 	free_filters_list(&filters);
11025 
11026 fail_clear_files:
11027 	event->addr_filters.nr_file_filters = 0;
11028 
11029 	return ret;
11030 }
11031 
11032 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11033 {
11034 	int ret = -EINVAL;
11035 	char *filter_str;
11036 
11037 	filter_str = strndup_user(arg, PAGE_SIZE);
11038 	if (IS_ERR(filter_str))
11039 		return PTR_ERR(filter_str);
11040 
11041 #ifdef CONFIG_EVENT_TRACING
11042 	if (perf_event_is_tracing(event)) {
11043 		struct perf_event_context *ctx = event->ctx;
11044 
11045 		/*
11046 		 * Beware, here be dragons!!
11047 		 *
11048 		 * the tracepoint muck will deadlock against ctx->mutex, but
11049 		 * the tracepoint stuff does not actually need it. So
11050 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11051 		 * already have a reference on ctx.
11052 		 *
11053 		 * This can result in event getting moved to a different ctx,
11054 		 * but that does not affect the tracepoint state.
11055 		 */
11056 		mutex_unlock(&ctx->mutex);
11057 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11058 		mutex_lock(&ctx->mutex);
11059 	} else
11060 #endif
11061 	if (has_addr_filter(event))
11062 		ret = perf_event_set_addr_filter(event, filter_str);
11063 
11064 	kfree(filter_str);
11065 	return ret;
11066 }
11067 
11068 /*
11069  * hrtimer based swevent callback
11070  */
11071 
11072 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11073 {
11074 	enum hrtimer_restart ret = HRTIMER_RESTART;
11075 	struct perf_sample_data data;
11076 	struct pt_regs *regs;
11077 	struct perf_event *event;
11078 	u64 period;
11079 
11080 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11081 
11082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11083 		return HRTIMER_NORESTART;
11084 
11085 	event->pmu->read(event);
11086 
11087 	perf_sample_data_init(&data, 0, event->hw.last_period);
11088 	regs = get_irq_regs();
11089 
11090 	if (regs && !perf_exclude_event(event, regs)) {
11091 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11092 			if (__perf_event_overflow(event, 1, &data, regs))
11093 				ret = HRTIMER_NORESTART;
11094 	}
11095 
11096 	period = max_t(u64, 10000, event->hw.sample_period);
11097 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11098 
11099 	return ret;
11100 }
11101 
11102 static void perf_swevent_start_hrtimer(struct perf_event *event)
11103 {
11104 	struct hw_perf_event *hwc = &event->hw;
11105 	s64 period;
11106 
11107 	if (!is_sampling_event(event))
11108 		return;
11109 
11110 	period = local64_read(&hwc->period_left);
11111 	if (period) {
11112 		if (period < 0)
11113 			period = 10000;
11114 
11115 		local64_set(&hwc->period_left, 0);
11116 	} else {
11117 		period = max_t(u64, 10000, hwc->sample_period);
11118 	}
11119 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11120 		      HRTIMER_MODE_REL_PINNED_HARD);
11121 }
11122 
11123 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11124 {
11125 	struct hw_perf_event *hwc = &event->hw;
11126 
11127 	if (is_sampling_event(event)) {
11128 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11129 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11130 
11131 		hrtimer_cancel(&hwc->hrtimer);
11132 	}
11133 }
11134 
11135 static void perf_swevent_init_hrtimer(struct perf_event *event)
11136 {
11137 	struct hw_perf_event *hwc = &event->hw;
11138 
11139 	if (!is_sampling_event(event))
11140 		return;
11141 
11142 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11143 	hwc->hrtimer.function = perf_swevent_hrtimer;
11144 
11145 	/*
11146 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11147 	 * mapping and avoid the whole period adjust feedback stuff.
11148 	 */
11149 	if (event->attr.freq) {
11150 		long freq = event->attr.sample_freq;
11151 
11152 		event->attr.sample_period = NSEC_PER_SEC / freq;
11153 		hwc->sample_period = event->attr.sample_period;
11154 		local64_set(&hwc->period_left, hwc->sample_period);
11155 		hwc->last_period = hwc->sample_period;
11156 		event->attr.freq = 0;
11157 	}
11158 }
11159 
11160 /*
11161  * Software event: cpu wall time clock
11162  */
11163 
11164 static void cpu_clock_event_update(struct perf_event *event)
11165 {
11166 	s64 prev;
11167 	u64 now;
11168 
11169 	now = local_clock();
11170 	prev = local64_xchg(&event->hw.prev_count, now);
11171 	local64_add(now - prev, &event->count);
11172 }
11173 
11174 static void cpu_clock_event_start(struct perf_event *event, int flags)
11175 {
11176 	local64_set(&event->hw.prev_count, local_clock());
11177 	perf_swevent_start_hrtimer(event);
11178 }
11179 
11180 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11181 {
11182 	perf_swevent_cancel_hrtimer(event);
11183 	cpu_clock_event_update(event);
11184 }
11185 
11186 static int cpu_clock_event_add(struct perf_event *event, int flags)
11187 {
11188 	if (flags & PERF_EF_START)
11189 		cpu_clock_event_start(event, flags);
11190 	perf_event_update_userpage(event);
11191 
11192 	return 0;
11193 }
11194 
11195 static void cpu_clock_event_del(struct perf_event *event, int flags)
11196 {
11197 	cpu_clock_event_stop(event, flags);
11198 }
11199 
11200 static void cpu_clock_event_read(struct perf_event *event)
11201 {
11202 	cpu_clock_event_update(event);
11203 }
11204 
11205 static int cpu_clock_event_init(struct perf_event *event)
11206 {
11207 	if (event->attr.type != perf_cpu_clock.type)
11208 		return -ENOENT;
11209 
11210 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11211 		return -ENOENT;
11212 
11213 	/*
11214 	 * no branch sampling for software events
11215 	 */
11216 	if (has_branch_stack(event))
11217 		return -EOPNOTSUPP;
11218 
11219 	perf_swevent_init_hrtimer(event);
11220 
11221 	return 0;
11222 }
11223 
11224 static struct pmu perf_cpu_clock = {
11225 	.task_ctx_nr	= perf_sw_context,
11226 
11227 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11228 	.dev		= PMU_NULL_DEV,
11229 
11230 	.event_init	= cpu_clock_event_init,
11231 	.add		= cpu_clock_event_add,
11232 	.del		= cpu_clock_event_del,
11233 	.start		= cpu_clock_event_start,
11234 	.stop		= cpu_clock_event_stop,
11235 	.read		= cpu_clock_event_read,
11236 };
11237 
11238 /*
11239  * Software event: task time clock
11240  */
11241 
11242 static void task_clock_event_update(struct perf_event *event, u64 now)
11243 {
11244 	u64 prev;
11245 	s64 delta;
11246 
11247 	prev = local64_xchg(&event->hw.prev_count, now);
11248 	delta = now - prev;
11249 	local64_add(delta, &event->count);
11250 }
11251 
11252 static void task_clock_event_start(struct perf_event *event, int flags)
11253 {
11254 	local64_set(&event->hw.prev_count, event->ctx->time);
11255 	perf_swevent_start_hrtimer(event);
11256 }
11257 
11258 static void task_clock_event_stop(struct perf_event *event, int flags)
11259 {
11260 	perf_swevent_cancel_hrtimer(event);
11261 	task_clock_event_update(event, event->ctx->time);
11262 }
11263 
11264 static int task_clock_event_add(struct perf_event *event, int flags)
11265 {
11266 	if (flags & PERF_EF_START)
11267 		task_clock_event_start(event, flags);
11268 	perf_event_update_userpage(event);
11269 
11270 	return 0;
11271 }
11272 
11273 static void task_clock_event_del(struct perf_event *event, int flags)
11274 {
11275 	task_clock_event_stop(event, PERF_EF_UPDATE);
11276 }
11277 
11278 static void task_clock_event_read(struct perf_event *event)
11279 {
11280 	u64 now = perf_clock();
11281 	u64 delta = now - event->ctx->timestamp;
11282 	u64 time = event->ctx->time + delta;
11283 
11284 	task_clock_event_update(event, time);
11285 }
11286 
11287 static int task_clock_event_init(struct perf_event *event)
11288 {
11289 	if (event->attr.type != perf_task_clock.type)
11290 		return -ENOENT;
11291 
11292 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11293 		return -ENOENT;
11294 
11295 	/*
11296 	 * no branch sampling for software events
11297 	 */
11298 	if (has_branch_stack(event))
11299 		return -EOPNOTSUPP;
11300 
11301 	perf_swevent_init_hrtimer(event);
11302 
11303 	return 0;
11304 }
11305 
11306 static struct pmu perf_task_clock = {
11307 	.task_ctx_nr	= perf_sw_context,
11308 
11309 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11310 	.dev		= PMU_NULL_DEV,
11311 
11312 	.event_init	= task_clock_event_init,
11313 	.add		= task_clock_event_add,
11314 	.del		= task_clock_event_del,
11315 	.start		= task_clock_event_start,
11316 	.stop		= task_clock_event_stop,
11317 	.read		= task_clock_event_read,
11318 };
11319 
11320 static void perf_pmu_nop_void(struct pmu *pmu)
11321 {
11322 }
11323 
11324 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11325 {
11326 }
11327 
11328 static int perf_pmu_nop_int(struct pmu *pmu)
11329 {
11330 	return 0;
11331 }
11332 
11333 static int perf_event_nop_int(struct perf_event *event, u64 value)
11334 {
11335 	return 0;
11336 }
11337 
11338 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11339 
11340 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11341 {
11342 	__this_cpu_write(nop_txn_flags, flags);
11343 
11344 	if (flags & ~PERF_PMU_TXN_ADD)
11345 		return;
11346 
11347 	perf_pmu_disable(pmu);
11348 }
11349 
11350 static int perf_pmu_commit_txn(struct pmu *pmu)
11351 {
11352 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11353 
11354 	__this_cpu_write(nop_txn_flags, 0);
11355 
11356 	if (flags & ~PERF_PMU_TXN_ADD)
11357 		return 0;
11358 
11359 	perf_pmu_enable(pmu);
11360 	return 0;
11361 }
11362 
11363 static void perf_pmu_cancel_txn(struct pmu *pmu)
11364 {
11365 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11366 
11367 	__this_cpu_write(nop_txn_flags, 0);
11368 
11369 	if (flags & ~PERF_PMU_TXN_ADD)
11370 		return;
11371 
11372 	perf_pmu_enable(pmu);
11373 }
11374 
11375 static int perf_event_idx_default(struct perf_event *event)
11376 {
11377 	return 0;
11378 }
11379 
11380 static void free_pmu_context(struct pmu *pmu)
11381 {
11382 	free_percpu(pmu->cpu_pmu_context);
11383 }
11384 
11385 /*
11386  * Let userspace know that this PMU supports address range filtering:
11387  */
11388 static ssize_t nr_addr_filters_show(struct device *dev,
11389 				    struct device_attribute *attr,
11390 				    char *page)
11391 {
11392 	struct pmu *pmu = dev_get_drvdata(dev);
11393 
11394 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11395 }
11396 DEVICE_ATTR_RO(nr_addr_filters);
11397 
11398 static struct idr pmu_idr;
11399 
11400 static ssize_t
11401 type_show(struct device *dev, struct device_attribute *attr, char *page)
11402 {
11403 	struct pmu *pmu = dev_get_drvdata(dev);
11404 
11405 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11406 }
11407 static DEVICE_ATTR_RO(type);
11408 
11409 static ssize_t
11410 perf_event_mux_interval_ms_show(struct device *dev,
11411 				struct device_attribute *attr,
11412 				char *page)
11413 {
11414 	struct pmu *pmu = dev_get_drvdata(dev);
11415 
11416 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11417 }
11418 
11419 static DEFINE_MUTEX(mux_interval_mutex);
11420 
11421 static ssize_t
11422 perf_event_mux_interval_ms_store(struct device *dev,
11423 				 struct device_attribute *attr,
11424 				 const char *buf, size_t count)
11425 {
11426 	struct pmu *pmu = dev_get_drvdata(dev);
11427 	int timer, cpu, ret;
11428 
11429 	ret = kstrtoint(buf, 0, &timer);
11430 	if (ret)
11431 		return ret;
11432 
11433 	if (timer < 1)
11434 		return -EINVAL;
11435 
11436 	/* same value, noting to do */
11437 	if (timer == pmu->hrtimer_interval_ms)
11438 		return count;
11439 
11440 	mutex_lock(&mux_interval_mutex);
11441 	pmu->hrtimer_interval_ms = timer;
11442 
11443 	/* update all cpuctx for this PMU */
11444 	cpus_read_lock();
11445 	for_each_online_cpu(cpu) {
11446 		struct perf_cpu_pmu_context *cpc;
11447 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11448 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11449 
11450 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11451 	}
11452 	cpus_read_unlock();
11453 	mutex_unlock(&mux_interval_mutex);
11454 
11455 	return count;
11456 }
11457 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11458 
11459 static struct attribute *pmu_dev_attrs[] = {
11460 	&dev_attr_type.attr,
11461 	&dev_attr_perf_event_mux_interval_ms.attr,
11462 	&dev_attr_nr_addr_filters.attr,
11463 	NULL,
11464 };
11465 
11466 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11467 {
11468 	struct device *dev = kobj_to_dev(kobj);
11469 	struct pmu *pmu = dev_get_drvdata(dev);
11470 
11471 	if (n == 2 && !pmu->nr_addr_filters)
11472 		return 0;
11473 
11474 	return a->mode;
11475 }
11476 
11477 static struct attribute_group pmu_dev_attr_group = {
11478 	.is_visible = pmu_dev_is_visible,
11479 	.attrs = pmu_dev_attrs,
11480 };
11481 
11482 static const struct attribute_group *pmu_dev_groups[] = {
11483 	&pmu_dev_attr_group,
11484 	NULL,
11485 };
11486 
11487 static int pmu_bus_running;
11488 static struct bus_type pmu_bus = {
11489 	.name		= "event_source",
11490 	.dev_groups	= pmu_dev_groups,
11491 };
11492 
11493 static void pmu_dev_release(struct device *dev)
11494 {
11495 	kfree(dev);
11496 }
11497 
11498 static int pmu_dev_alloc(struct pmu *pmu)
11499 {
11500 	int ret = -ENOMEM;
11501 
11502 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11503 	if (!pmu->dev)
11504 		goto out;
11505 
11506 	pmu->dev->groups = pmu->attr_groups;
11507 	device_initialize(pmu->dev);
11508 
11509 	dev_set_drvdata(pmu->dev, pmu);
11510 	pmu->dev->bus = &pmu_bus;
11511 	pmu->dev->parent = pmu->parent;
11512 	pmu->dev->release = pmu_dev_release;
11513 
11514 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11515 	if (ret)
11516 		goto free_dev;
11517 
11518 	ret = device_add(pmu->dev);
11519 	if (ret)
11520 		goto free_dev;
11521 
11522 	if (pmu->attr_update) {
11523 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11524 		if (ret)
11525 			goto del_dev;
11526 	}
11527 
11528 out:
11529 	return ret;
11530 
11531 del_dev:
11532 	device_del(pmu->dev);
11533 
11534 free_dev:
11535 	put_device(pmu->dev);
11536 	goto out;
11537 }
11538 
11539 static struct lock_class_key cpuctx_mutex;
11540 static struct lock_class_key cpuctx_lock;
11541 
11542 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11543 {
11544 	int cpu, ret, max = PERF_TYPE_MAX;
11545 
11546 	mutex_lock(&pmus_lock);
11547 	ret = -ENOMEM;
11548 	pmu->pmu_disable_count = alloc_percpu(int);
11549 	if (!pmu->pmu_disable_count)
11550 		goto unlock;
11551 
11552 	pmu->type = -1;
11553 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11554 		ret = -EINVAL;
11555 		goto free_pdc;
11556 	}
11557 
11558 	pmu->name = name;
11559 
11560 	if (type >= 0)
11561 		max = type;
11562 
11563 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11564 	if (ret < 0)
11565 		goto free_pdc;
11566 
11567 	WARN_ON(type >= 0 && ret != type);
11568 
11569 	type = ret;
11570 	pmu->type = type;
11571 
11572 	if (pmu_bus_running && !pmu->dev) {
11573 		ret = pmu_dev_alloc(pmu);
11574 		if (ret)
11575 			goto free_idr;
11576 	}
11577 
11578 	ret = -ENOMEM;
11579 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11580 	if (!pmu->cpu_pmu_context)
11581 		goto free_dev;
11582 
11583 	for_each_possible_cpu(cpu) {
11584 		struct perf_cpu_pmu_context *cpc;
11585 
11586 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11587 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11588 		__perf_mux_hrtimer_init(cpc, cpu);
11589 	}
11590 
11591 	if (!pmu->start_txn) {
11592 		if (pmu->pmu_enable) {
11593 			/*
11594 			 * If we have pmu_enable/pmu_disable calls, install
11595 			 * transaction stubs that use that to try and batch
11596 			 * hardware accesses.
11597 			 */
11598 			pmu->start_txn  = perf_pmu_start_txn;
11599 			pmu->commit_txn = perf_pmu_commit_txn;
11600 			pmu->cancel_txn = perf_pmu_cancel_txn;
11601 		} else {
11602 			pmu->start_txn  = perf_pmu_nop_txn;
11603 			pmu->commit_txn = perf_pmu_nop_int;
11604 			pmu->cancel_txn = perf_pmu_nop_void;
11605 		}
11606 	}
11607 
11608 	if (!pmu->pmu_enable) {
11609 		pmu->pmu_enable  = perf_pmu_nop_void;
11610 		pmu->pmu_disable = perf_pmu_nop_void;
11611 	}
11612 
11613 	if (!pmu->check_period)
11614 		pmu->check_period = perf_event_nop_int;
11615 
11616 	if (!pmu->event_idx)
11617 		pmu->event_idx = perf_event_idx_default;
11618 
11619 	list_add_rcu(&pmu->entry, &pmus);
11620 	atomic_set(&pmu->exclusive_cnt, 0);
11621 	ret = 0;
11622 unlock:
11623 	mutex_unlock(&pmus_lock);
11624 
11625 	return ret;
11626 
11627 free_dev:
11628 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11629 		device_del(pmu->dev);
11630 		put_device(pmu->dev);
11631 	}
11632 
11633 free_idr:
11634 	idr_remove(&pmu_idr, pmu->type);
11635 
11636 free_pdc:
11637 	free_percpu(pmu->pmu_disable_count);
11638 	goto unlock;
11639 }
11640 EXPORT_SYMBOL_GPL(perf_pmu_register);
11641 
11642 void perf_pmu_unregister(struct pmu *pmu)
11643 {
11644 	mutex_lock(&pmus_lock);
11645 	list_del_rcu(&pmu->entry);
11646 
11647 	/*
11648 	 * We dereference the pmu list under both SRCU and regular RCU, so
11649 	 * synchronize against both of those.
11650 	 */
11651 	synchronize_srcu(&pmus_srcu);
11652 	synchronize_rcu();
11653 
11654 	free_percpu(pmu->pmu_disable_count);
11655 	idr_remove(&pmu_idr, pmu->type);
11656 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11657 		if (pmu->nr_addr_filters)
11658 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11659 		device_del(pmu->dev);
11660 		put_device(pmu->dev);
11661 	}
11662 	free_pmu_context(pmu);
11663 	mutex_unlock(&pmus_lock);
11664 }
11665 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11666 
11667 static inline bool has_extended_regs(struct perf_event *event)
11668 {
11669 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11670 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11671 }
11672 
11673 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11674 {
11675 	struct perf_event_context *ctx = NULL;
11676 	int ret;
11677 
11678 	if (!try_module_get(pmu->module))
11679 		return -ENODEV;
11680 
11681 	/*
11682 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11683 	 * for example, validate if the group fits on the PMU. Therefore,
11684 	 * if this is a sibling event, acquire the ctx->mutex to protect
11685 	 * the sibling_list.
11686 	 */
11687 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11688 		/*
11689 		 * This ctx->mutex can nest when we're called through
11690 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11691 		 */
11692 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11693 						 SINGLE_DEPTH_NESTING);
11694 		BUG_ON(!ctx);
11695 	}
11696 
11697 	event->pmu = pmu;
11698 	ret = pmu->event_init(event);
11699 
11700 	if (ctx)
11701 		perf_event_ctx_unlock(event->group_leader, ctx);
11702 
11703 	if (!ret) {
11704 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11705 		    has_extended_regs(event))
11706 			ret = -EOPNOTSUPP;
11707 
11708 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11709 		    event_has_any_exclude_flag(event))
11710 			ret = -EINVAL;
11711 
11712 		if (ret && event->destroy)
11713 			event->destroy(event);
11714 	}
11715 
11716 	if (ret)
11717 		module_put(pmu->module);
11718 
11719 	return ret;
11720 }
11721 
11722 static struct pmu *perf_init_event(struct perf_event *event)
11723 {
11724 	bool extended_type = false;
11725 	int idx, type, ret;
11726 	struct pmu *pmu;
11727 
11728 	idx = srcu_read_lock(&pmus_srcu);
11729 
11730 	/*
11731 	 * Save original type before calling pmu->event_init() since certain
11732 	 * pmus overwrites event->attr.type to forward event to another pmu.
11733 	 */
11734 	event->orig_type = event->attr.type;
11735 
11736 	/* Try parent's PMU first: */
11737 	if (event->parent && event->parent->pmu) {
11738 		pmu = event->parent->pmu;
11739 		ret = perf_try_init_event(pmu, event);
11740 		if (!ret)
11741 			goto unlock;
11742 	}
11743 
11744 	/*
11745 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11746 	 * are often aliases for PERF_TYPE_RAW.
11747 	 */
11748 	type = event->attr.type;
11749 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11750 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11751 		if (!type) {
11752 			type = PERF_TYPE_RAW;
11753 		} else {
11754 			extended_type = true;
11755 			event->attr.config &= PERF_HW_EVENT_MASK;
11756 		}
11757 	}
11758 
11759 again:
11760 	rcu_read_lock();
11761 	pmu = idr_find(&pmu_idr, type);
11762 	rcu_read_unlock();
11763 	if (pmu) {
11764 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11765 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11766 			goto fail;
11767 
11768 		ret = perf_try_init_event(pmu, event);
11769 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11770 			type = event->attr.type;
11771 			goto again;
11772 		}
11773 
11774 		if (ret)
11775 			pmu = ERR_PTR(ret);
11776 
11777 		goto unlock;
11778 	}
11779 
11780 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11781 		ret = perf_try_init_event(pmu, event);
11782 		if (!ret)
11783 			goto unlock;
11784 
11785 		if (ret != -ENOENT) {
11786 			pmu = ERR_PTR(ret);
11787 			goto unlock;
11788 		}
11789 	}
11790 fail:
11791 	pmu = ERR_PTR(-ENOENT);
11792 unlock:
11793 	srcu_read_unlock(&pmus_srcu, idx);
11794 
11795 	return pmu;
11796 }
11797 
11798 static void attach_sb_event(struct perf_event *event)
11799 {
11800 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11801 
11802 	raw_spin_lock(&pel->lock);
11803 	list_add_rcu(&event->sb_list, &pel->list);
11804 	raw_spin_unlock(&pel->lock);
11805 }
11806 
11807 /*
11808  * We keep a list of all !task (and therefore per-cpu) events
11809  * that need to receive side-band records.
11810  *
11811  * This avoids having to scan all the various PMU per-cpu contexts
11812  * looking for them.
11813  */
11814 static void account_pmu_sb_event(struct perf_event *event)
11815 {
11816 	if (is_sb_event(event))
11817 		attach_sb_event(event);
11818 }
11819 
11820 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11821 static void account_freq_event_nohz(void)
11822 {
11823 #ifdef CONFIG_NO_HZ_FULL
11824 	/* Lock so we don't race with concurrent unaccount */
11825 	spin_lock(&nr_freq_lock);
11826 	if (atomic_inc_return(&nr_freq_events) == 1)
11827 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11828 	spin_unlock(&nr_freq_lock);
11829 #endif
11830 }
11831 
11832 static void account_freq_event(void)
11833 {
11834 	if (tick_nohz_full_enabled())
11835 		account_freq_event_nohz();
11836 	else
11837 		atomic_inc(&nr_freq_events);
11838 }
11839 
11840 
11841 static void account_event(struct perf_event *event)
11842 {
11843 	bool inc = false;
11844 
11845 	if (event->parent)
11846 		return;
11847 
11848 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11849 		inc = true;
11850 	if (event->attr.mmap || event->attr.mmap_data)
11851 		atomic_inc(&nr_mmap_events);
11852 	if (event->attr.build_id)
11853 		atomic_inc(&nr_build_id_events);
11854 	if (event->attr.comm)
11855 		atomic_inc(&nr_comm_events);
11856 	if (event->attr.namespaces)
11857 		atomic_inc(&nr_namespaces_events);
11858 	if (event->attr.cgroup)
11859 		atomic_inc(&nr_cgroup_events);
11860 	if (event->attr.task)
11861 		atomic_inc(&nr_task_events);
11862 	if (event->attr.freq)
11863 		account_freq_event();
11864 	if (event->attr.context_switch) {
11865 		atomic_inc(&nr_switch_events);
11866 		inc = true;
11867 	}
11868 	if (has_branch_stack(event))
11869 		inc = true;
11870 	if (is_cgroup_event(event))
11871 		inc = true;
11872 	if (event->attr.ksymbol)
11873 		atomic_inc(&nr_ksymbol_events);
11874 	if (event->attr.bpf_event)
11875 		atomic_inc(&nr_bpf_events);
11876 	if (event->attr.text_poke)
11877 		atomic_inc(&nr_text_poke_events);
11878 
11879 	if (inc) {
11880 		/*
11881 		 * We need the mutex here because static_branch_enable()
11882 		 * must complete *before* the perf_sched_count increment
11883 		 * becomes visible.
11884 		 */
11885 		if (atomic_inc_not_zero(&perf_sched_count))
11886 			goto enabled;
11887 
11888 		mutex_lock(&perf_sched_mutex);
11889 		if (!atomic_read(&perf_sched_count)) {
11890 			static_branch_enable(&perf_sched_events);
11891 			/*
11892 			 * Guarantee that all CPUs observe they key change and
11893 			 * call the perf scheduling hooks before proceeding to
11894 			 * install events that need them.
11895 			 */
11896 			synchronize_rcu();
11897 		}
11898 		/*
11899 		 * Now that we have waited for the sync_sched(), allow further
11900 		 * increments to by-pass the mutex.
11901 		 */
11902 		atomic_inc(&perf_sched_count);
11903 		mutex_unlock(&perf_sched_mutex);
11904 	}
11905 enabled:
11906 
11907 	account_pmu_sb_event(event);
11908 }
11909 
11910 /*
11911  * Allocate and initialize an event structure
11912  */
11913 static struct perf_event *
11914 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11915 		 struct task_struct *task,
11916 		 struct perf_event *group_leader,
11917 		 struct perf_event *parent_event,
11918 		 perf_overflow_handler_t overflow_handler,
11919 		 void *context, int cgroup_fd)
11920 {
11921 	struct pmu *pmu;
11922 	struct perf_event *event;
11923 	struct hw_perf_event *hwc;
11924 	long err = -EINVAL;
11925 	int node;
11926 
11927 	if ((unsigned)cpu >= nr_cpu_ids) {
11928 		if (!task || cpu != -1)
11929 			return ERR_PTR(-EINVAL);
11930 	}
11931 	if (attr->sigtrap && !task) {
11932 		/* Requires a task: avoid signalling random tasks. */
11933 		return ERR_PTR(-EINVAL);
11934 	}
11935 
11936 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11937 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11938 				      node);
11939 	if (!event)
11940 		return ERR_PTR(-ENOMEM);
11941 
11942 	/*
11943 	 * Single events are their own group leaders, with an
11944 	 * empty sibling list:
11945 	 */
11946 	if (!group_leader)
11947 		group_leader = event;
11948 
11949 	mutex_init(&event->child_mutex);
11950 	INIT_LIST_HEAD(&event->child_list);
11951 
11952 	INIT_LIST_HEAD(&event->event_entry);
11953 	INIT_LIST_HEAD(&event->sibling_list);
11954 	INIT_LIST_HEAD(&event->active_list);
11955 	init_event_group(event);
11956 	INIT_LIST_HEAD(&event->rb_entry);
11957 	INIT_LIST_HEAD(&event->active_entry);
11958 	INIT_LIST_HEAD(&event->addr_filters.list);
11959 	INIT_HLIST_NODE(&event->hlist_entry);
11960 
11961 
11962 	init_waitqueue_head(&event->waitq);
11963 	init_irq_work(&event->pending_irq, perf_pending_irq);
11964 	init_task_work(&event->pending_task, perf_pending_task);
11965 
11966 	mutex_init(&event->mmap_mutex);
11967 	raw_spin_lock_init(&event->addr_filters.lock);
11968 
11969 	atomic_long_set(&event->refcount, 1);
11970 	event->cpu		= cpu;
11971 	event->attr		= *attr;
11972 	event->group_leader	= group_leader;
11973 	event->pmu		= NULL;
11974 	event->oncpu		= -1;
11975 
11976 	event->parent		= parent_event;
11977 
11978 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11979 	event->id		= atomic64_inc_return(&perf_event_id);
11980 
11981 	event->state		= PERF_EVENT_STATE_INACTIVE;
11982 
11983 	if (parent_event)
11984 		event->event_caps = parent_event->event_caps;
11985 
11986 	if (task) {
11987 		event->attach_state = PERF_ATTACH_TASK;
11988 		/*
11989 		 * XXX pmu::event_init needs to know what task to account to
11990 		 * and we cannot use the ctx information because we need the
11991 		 * pmu before we get a ctx.
11992 		 */
11993 		event->hw.target = get_task_struct(task);
11994 	}
11995 
11996 	event->clock = &local_clock;
11997 	if (parent_event)
11998 		event->clock = parent_event->clock;
11999 
12000 	if (!overflow_handler && parent_event) {
12001 		overflow_handler = parent_event->overflow_handler;
12002 		context = parent_event->overflow_handler_context;
12003 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12004 		if (parent_event->prog) {
12005 			struct bpf_prog *prog = parent_event->prog;
12006 
12007 			bpf_prog_inc(prog);
12008 			event->prog = prog;
12009 		}
12010 #endif
12011 	}
12012 
12013 	if (overflow_handler) {
12014 		event->overflow_handler	= overflow_handler;
12015 		event->overflow_handler_context = context;
12016 	} else if (is_write_backward(event)){
12017 		event->overflow_handler = perf_event_output_backward;
12018 		event->overflow_handler_context = NULL;
12019 	} else {
12020 		event->overflow_handler = perf_event_output_forward;
12021 		event->overflow_handler_context = NULL;
12022 	}
12023 
12024 	perf_event__state_init(event);
12025 
12026 	pmu = NULL;
12027 
12028 	hwc = &event->hw;
12029 	hwc->sample_period = attr->sample_period;
12030 	if (attr->freq && attr->sample_freq)
12031 		hwc->sample_period = 1;
12032 	hwc->last_period = hwc->sample_period;
12033 
12034 	local64_set(&hwc->period_left, hwc->sample_period);
12035 
12036 	/*
12037 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12038 	 * See perf_output_read().
12039 	 */
12040 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12041 		goto err_ns;
12042 
12043 	if (!has_branch_stack(event))
12044 		event->attr.branch_sample_type = 0;
12045 
12046 	pmu = perf_init_event(event);
12047 	if (IS_ERR(pmu)) {
12048 		err = PTR_ERR(pmu);
12049 		goto err_ns;
12050 	}
12051 
12052 	/*
12053 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12054 	 * events (they don't make sense as the cgroup will be different
12055 	 * on other CPUs in the uncore mask).
12056 	 */
12057 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12058 		err = -EINVAL;
12059 		goto err_pmu;
12060 	}
12061 
12062 	if (event->attr.aux_output &&
12063 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12064 		err = -EOPNOTSUPP;
12065 		goto err_pmu;
12066 	}
12067 
12068 	if (cgroup_fd != -1) {
12069 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12070 		if (err)
12071 			goto err_pmu;
12072 	}
12073 
12074 	err = exclusive_event_init(event);
12075 	if (err)
12076 		goto err_pmu;
12077 
12078 	if (has_addr_filter(event)) {
12079 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12080 						    sizeof(struct perf_addr_filter_range),
12081 						    GFP_KERNEL);
12082 		if (!event->addr_filter_ranges) {
12083 			err = -ENOMEM;
12084 			goto err_per_task;
12085 		}
12086 
12087 		/*
12088 		 * Clone the parent's vma offsets: they are valid until exec()
12089 		 * even if the mm is not shared with the parent.
12090 		 */
12091 		if (event->parent) {
12092 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12093 
12094 			raw_spin_lock_irq(&ifh->lock);
12095 			memcpy(event->addr_filter_ranges,
12096 			       event->parent->addr_filter_ranges,
12097 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12098 			raw_spin_unlock_irq(&ifh->lock);
12099 		}
12100 
12101 		/* force hw sync on the address filters */
12102 		event->addr_filters_gen = 1;
12103 	}
12104 
12105 	if (!event->parent) {
12106 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12107 			err = get_callchain_buffers(attr->sample_max_stack);
12108 			if (err)
12109 				goto err_addr_filters;
12110 		}
12111 	}
12112 
12113 	err = security_perf_event_alloc(event);
12114 	if (err)
12115 		goto err_callchain_buffer;
12116 
12117 	/* symmetric to unaccount_event() in _free_event() */
12118 	account_event(event);
12119 
12120 	return event;
12121 
12122 err_callchain_buffer:
12123 	if (!event->parent) {
12124 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12125 			put_callchain_buffers();
12126 	}
12127 err_addr_filters:
12128 	kfree(event->addr_filter_ranges);
12129 
12130 err_per_task:
12131 	exclusive_event_destroy(event);
12132 
12133 err_pmu:
12134 	if (is_cgroup_event(event))
12135 		perf_detach_cgroup(event);
12136 	if (event->destroy)
12137 		event->destroy(event);
12138 	module_put(pmu->module);
12139 err_ns:
12140 	if (event->hw.target)
12141 		put_task_struct(event->hw.target);
12142 	call_rcu(&event->rcu_head, free_event_rcu);
12143 
12144 	return ERR_PTR(err);
12145 }
12146 
12147 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12148 			  struct perf_event_attr *attr)
12149 {
12150 	u32 size;
12151 	int ret;
12152 
12153 	/* Zero the full structure, so that a short copy will be nice. */
12154 	memset(attr, 0, sizeof(*attr));
12155 
12156 	ret = get_user(size, &uattr->size);
12157 	if (ret)
12158 		return ret;
12159 
12160 	/* ABI compatibility quirk: */
12161 	if (!size)
12162 		size = PERF_ATTR_SIZE_VER0;
12163 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12164 		goto err_size;
12165 
12166 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12167 	if (ret) {
12168 		if (ret == -E2BIG)
12169 			goto err_size;
12170 		return ret;
12171 	}
12172 
12173 	attr->size = size;
12174 
12175 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12176 		return -EINVAL;
12177 
12178 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12179 		return -EINVAL;
12180 
12181 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12182 		return -EINVAL;
12183 
12184 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12185 		u64 mask = attr->branch_sample_type;
12186 
12187 		/* only using defined bits */
12188 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12189 			return -EINVAL;
12190 
12191 		/* at least one branch bit must be set */
12192 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12193 			return -EINVAL;
12194 
12195 		/* propagate priv level, when not set for branch */
12196 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12197 
12198 			/* exclude_kernel checked on syscall entry */
12199 			if (!attr->exclude_kernel)
12200 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12201 
12202 			if (!attr->exclude_user)
12203 				mask |= PERF_SAMPLE_BRANCH_USER;
12204 
12205 			if (!attr->exclude_hv)
12206 				mask |= PERF_SAMPLE_BRANCH_HV;
12207 			/*
12208 			 * adjust user setting (for HW filter setup)
12209 			 */
12210 			attr->branch_sample_type = mask;
12211 		}
12212 		/* privileged levels capture (kernel, hv): check permissions */
12213 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12214 			ret = perf_allow_kernel(attr);
12215 			if (ret)
12216 				return ret;
12217 		}
12218 	}
12219 
12220 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12221 		ret = perf_reg_validate(attr->sample_regs_user);
12222 		if (ret)
12223 			return ret;
12224 	}
12225 
12226 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12227 		if (!arch_perf_have_user_stack_dump())
12228 			return -ENOSYS;
12229 
12230 		/*
12231 		 * We have __u32 type for the size, but so far
12232 		 * we can only use __u16 as maximum due to the
12233 		 * __u16 sample size limit.
12234 		 */
12235 		if (attr->sample_stack_user >= USHRT_MAX)
12236 			return -EINVAL;
12237 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12238 			return -EINVAL;
12239 	}
12240 
12241 	if (!attr->sample_max_stack)
12242 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12243 
12244 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12245 		ret = perf_reg_validate(attr->sample_regs_intr);
12246 
12247 #ifndef CONFIG_CGROUP_PERF
12248 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12249 		return -EINVAL;
12250 #endif
12251 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12252 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12253 		return -EINVAL;
12254 
12255 	if (!attr->inherit && attr->inherit_thread)
12256 		return -EINVAL;
12257 
12258 	if (attr->remove_on_exec && attr->enable_on_exec)
12259 		return -EINVAL;
12260 
12261 	if (attr->sigtrap && !attr->remove_on_exec)
12262 		return -EINVAL;
12263 
12264 out:
12265 	return ret;
12266 
12267 err_size:
12268 	put_user(sizeof(*attr), &uattr->size);
12269 	ret = -E2BIG;
12270 	goto out;
12271 }
12272 
12273 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12274 {
12275 	if (b < a)
12276 		swap(a, b);
12277 
12278 	mutex_lock(a);
12279 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12280 }
12281 
12282 static int
12283 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12284 {
12285 	struct perf_buffer *rb = NULL;
12286 	int ret = -EINVAL;
12287 
12288 	if (!output_event) {
12289 		mutex_lock(&event->mmap_mutex);
12290 		goto set;
12291 	}
12292 
12293 	/* don't allow circular references */
12294 	if (event == output_event)
12295 		goto out;
12296 
12297 	/*
12298 	 * Don't allow cross-cpu buffers
12299 	 */
12300 	if (output_event->cpu != event->cpu)
12301 		goto out;
12302 
12303 	/*
12304 	 * If its not a per-cpu rb, it must be the same task.
12305 	 */
12306 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12307 		goto out;
12308 
12309 	/*
12310 	 * Mixing clocks in the same buffer is trouble you don't need.
12311 	 */
12312 	if (output_event->clock != event->clock)
12313 		goto out;
12314 
12315 	/*
12316 	 * Either writing ring buffer from beginning or from end.
12317 	 * Mixing is not allowed.
12318 	 */
12319 	if (is_write_backward(output_event) != is_write_backward(event))
12320 		goto out;
12321 
12322 	/*
12323 	 * If both events generate aux data, they must be on the same PMU
12324 	 */
12325 	if (has_aux(event) && has_aux(output_event) &&
12326 	    event->pmu != output_event->pmu)
12327 		goto out;
12328 
12329 	/*
12330 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12331 	 * output_event is already on rb->event_list, and the list iteration
12332 	 * restarts after every removal, it is guaranteed this new event is
12333 	 * observed *OR* if output_event is already removed, it's guaranteed we
12334 	 * observe !rb->mmap_count.
12335 	 */
12336 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12337 set:
12338 	/* Can't redirect output if we've got an active mmap() */
12339 	if (atomic_read(&event->mmap_count))
12340 		goto unlock;
12341 
12342 	if (output_event) {
12343 		/* get the rb we want to redirect to */
12344 		rb = ring_buffer_get(output_event);
12345 		if (!rb)
12346 			goto unlock;
12347 
12348 		/* did we race against perf_mmap_close() */
12349 		if (!atomic_read(&rb->mmap_count)) {
12350 			ring_buffer_put(rb);
12351 			goto unlock;
12352 		}
12353 	}
12354 
12355 	ring_buffer_attach(event, rb);
12356 
12357 	ret = 0;
12358 unlock:
12359 	mutex_unlock(&event->mmap_mutex);
12360 	if (output_event)
12361 		mutex_unlock(&output_event->mmap_mutex);
12362 
12363 out:
12364 	return ret;
12365 }
12366 
12367 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12368 {
12369 	bool nmi_safe = false;
12370 
12371 	switch (clk_id) {
12372 	case CLOCK_MONOTONIC:
12373 		event->clock = &ktime_get_mono_fast_ns;
12374 		nmi_safe = true;
12375 		break;
12376 
12377 	case CLOCK_MONOTONIC_RAW:
12378 		event->clock = &ktime_get_raw_fast_ns;
12379 		nmi_safe = true;
12380 		break;
12381 
12382 	case CLOCK_REALTIME:
12383 		event->clock = &ktime_get_real_ns;
12384 		break;
12385 
12386 	case CLOCK_BOOTTIME:
12387 		event->clock = &ktime_get_boottime_ns;
12388 		break;
12389 
12390 	case CLOCK_TAI:
12391 		event->clock = &ktime_get_clocktai_ns;
12392 		break;
12393 
12394 	default:
12395 		return -EINVAL;
12396 	}
12397 
12398 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12399 		return -EINVAL;
12400 
12401 	return 0;
12402 }
12403 
12404 static bool
12405 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12406 {
12407 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12408 	bool is_capable = perfmon_capable();
12409 
12410 	if (attr->sigtrap) {
12411 		/*
12412 		 * perf_event_attr::sigtrap sends signals to the other task.
12413 		 * Require the current task to also have CAP_KILL.
12414 		 */
12415 		rcu_read_lock();
12416 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12417 		rcu_read_unlock();
12418 
12419 		/*
12420 		 * If the required capabilities aren't available, checks for
12421 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12422 		 * can effectively change the target task.
12423 		 */
12424 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12425 	}
12426 
12427 	/*
12428 	 * Preserve ptrace permission check for backwards compatibility. The
12429 	 * ptrace check also includes checks that the current task and other
12430 	 * task have matching uids, and is therefore not done here explicitly.
12431 	 */
12432 	return is_capable || ptrace_may_access(task, ptrace_mode);
12433 }
12434 
12435 /**
12436  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12437  *
12438  * @attr_uptr:	event_id type attributes for monitoring/sampling
12439  * @pid:		target pid
12440  * @cpu:		target cpu
12441  * @group_fd:		group leader event fd
12442  * @flags:		perf event open flags
12443  */
12444 SYSCALL_DEFINE5(perf_event_open,
12445 		struct perf_event_attr __user *, attr_uptr,
12446 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12447 {
12448 	struct perf_event *group_leader = NULL, *output_event = NULL;
12449 	struct perf_event_pmu_context *pmu_ctx;
12450 	struct perf_event *event, *sibling;
12451 	struct perf_event_attr attr;
12452 	struct perf_event_context *ctx;
12453 	struct file *event_file = NULL;
12454 	struct fd group = {NULL, 0};
12455 	struct task_struct *task = NULL;
12456 	struct pmu *pmu;
12457 	int event_fd;
12458 	int move_group = 0;
12459 	int err;
12460 	int f_flags = O_RDWR;
12461 	int cgroup_fd = -1;
12462 
12463 	/* for future expandability... */
12464 	if (flags & ~PERF_FLAG_ALL)
12465 		return -EINVAL;
12466 
12467 	err = perf_copy_attr(attr_uptr, &attr);
12468 	if (err)
12469 		return err;
12470 
12471 	/* Do we allow access to perf_event_open(2) ? */
12472 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12473 	if (err)
12474 		return err;
12475 
12476 	if (!attr.exclude_kernel) {
12477 		err = perf_allow_kernel(&attr);
12478 		if (err)
12479 			return err;
12480 	}
12481 
12482 	if (attr.namespaces) {
12483 		if (!perfmon_capable())
12484 			return -EACCES;
12485 	}
12486 
12487 	if (attr.freq) {
12488 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12489 			return -EINVAL;
12490 	} else {
12491 		if (attr.sample_period & (1ULL << 63))
12492 			return -EINVAL;
12493 	}
12494 
12495 	/* Only privileged users can get physical addresses */
12496 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12497 		err = perf_allow_kernel(&attr);
12498 		if (err)
12499 			return err;
12500 	}
12501 
12502 	/* REGS_INTR can leak data, lockdown must prevent this */
12503 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12504 		err = security_locked_down(LOCKDOWN_PERF);
12505 		if (err)
12506 			return err;
12507 	}
12508 
12509 	/*
12510 	 * In cgroup mode, the pid argument is used to pass the fd
12511 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12512 	 * designates the cpu on which to monitor threads from that
12513 	 * cgroup.
12514 	 */
12515 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12516 		return -EINVAL;
12517 
12518 	if (flags & PERF_FLAG_FD_CLOEXEC)
12519 		f_flags |= O_CLOEXEC;
12520 
12521 	event_fd = get_unused_fd_flags(f_flags);
12522 	if (event_fd < 0)
12523 		return event_fd;
12524 
12525 	if (group_fd != -1) {
12526 		err = perf_fget_light(group_fd, &group);
12527 		if (err)
12528 			goto err_fd;
12529 		group_leader = group.file->private_data;
12530 		if (flags & PERF_FLAG_FD_OUTPUT)
12531 			output_event = group_leader;
12532 		if (flags & PERF_FLAG_FD_NO_GROUP)
12533 			group_leader = NULL;
12534 	}
12535 
12536 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12537 		task = find_lively_task_by_vpid(pid);
12538 		if (IS_ERR(task)) {
12539 			err = PTR_ERR(task);
12540 			goto err_group_fd;
12541 		}
12542 	}
12543 
12544 	if (task && group_leader &&
12545 	    group_leader->attr.inherit != attr.inherit) {
12546 		err = -EINVAL;
12547 		goto err_task;
12548 	}
12549 
12550 	if (flags & PERF_FLAG_PID_CGROUP)
12551 		cgroup_fd = pid;
12552 
12553 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12554 				 NULL, NULL, cgroup_fd);
12555 	if (IS_ERR(event)) {
12556 		err = PTR_ERR(event);
12557 		goto err_task;
12558 	}
12559 
12560 	if (is_sampling_event(event)) {
12561 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12562 			err = -EOPNOTSUPP;
12563 			goto err_alloc;
12564 		}
12565 	}
12566 
12567 	/*
12568 	 * Special case software events and allow them to be part of
12569 	 * any hardware group.
12570 	 */
12571 	pmu = event->pmu;
12572 
12573 	if (attr.use_clockid) {
12574 		err = perf_event_set_clock(event, attr.clockid);
12575 		if (err)
12576 			goto err_alloc;
12577 	}
12578 
12579 	if (pmu->task_ctx_nr == perf_sw_context)
12580 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12581 
12582 	if (task) {
12583 		err = down_read_interruptible(&task->signal->exec_update_lock);
12584 		if (err)
12585 			goto err_alloc;
12586 
12587 		/*
12588 		 * We must hold exec_update_lock across this and any potential
12589 		 * perf_install_in_context() call for this new event to
12590 		 * serialize against exec() altering our credentials (and the
12591 		 * perf_event_exit_task() that could imply).
12592 		 */
12593 		err = -EACCES;
12594 		if (!perf_check_permission(&attr, task))
12595 			goto err_cred;
12596 	}
12597 
12598 	/*
12599 	 * Get the target context (task or percpu):
12600 	 */
12601 	ctx = find_get_context(task, event);
12602 	if (IS_ERR(ctx)) {
12603 		err = PTR_ERR(ctx);
12604 		goto err_cred;
12605 	}
12606 
12607 	mutex_lock(&ctx->mutex);
12608 
12609 	if (ctx->task == TASK_TOMBSTONE) {
12610 		err = -ESRCH;
12611 		goto err_locked;
12612 	}
12613 
12614 	if (!task) {
12615 		/*
12616 		 * Check if the @cpu we're creating an event for is online.
12617 		 *
12618 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12619 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12620 		 */
12621 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12622 
12623 		if (!cpuctx->online) {
12624 			err = -ENODEV;
12625 			goto err_locked;
12626 		}
12627 	}
12628 
12629 	if (group_leader) {
12630 		err = -EINVAL;
12631 
12632 		/*
12633 		 * Do not allow a recursive hierarchy (this new sibling
12634 		 * becoming part of another group-sibling):
12635 		 */
12636 		if (group_leader->group_leader != group_leader)
12637 			goto err_locked;
12638 
12639 		/* All events in a group should have the same clock */
12640 		if (group_leader->clock != event->clock)
12641 			goto err_locked;
12642 
12643 		/*
12644 		 * Make sure we're both events for the same CPU;
12645 		 * grouping events for different CPUs is broken; since
12646 		 * you can never concurrently schedule them anyhow.
12647 		 */
12648 		if (group_leader->cpu != event->cpu)
12649 			goto err_locked;
12650 
12651 		/*
12652 		 * Make sure we're both on the same context; either task or cpu.
12653 		 */
12654 		if (group_leader->ctx != ctx)
12655 			goto err_locked;
12656 
12657 		/*
12658 		 * Only a group leader can be exclusive or pinned
12659 		 */
12660 		if (attr.exclusive || attr.pinned)
12661 			goto err_locked;
12662 
12663 		if (is_software_event(event) &&
12664 		    !in_software_context(group_leader)) {
12665 			/*
12666 			 * If the event is a sw event, but the group_leader
12667 			 * is on hw context.
12668 			 *
12669 			 * Allow the addition of software events to hw
12670 			 * groups, this is safe because software events
12671 			 * never fail to schedule.
12672 			 *
12673 			 * Note the comment that goes with struct
12674 			 * perf_event_pmu_context.
12675 			 */
12676 			pmu = group_leader->pmu_ctx->pmu;
12677 		} else if (!is_software_event(event)) {
12678 			if (is_software_event(group_leader) &&
12679 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12680 				/*
12681 				 * In case the group is a pure software group, and we
12682 				 * try to add a hardware event, move the whole group to
12683 				 * the hardware context.
12684 				 */
12685 				move_group = 1;
12686 			}
12687 
12688 			/* Don't allow group of multiple hw events from different pmus */
12689 			if (!in_software_context(group_leader) &&
12690 			    group_leader->pmu_ctx->pmu != pmu)
12691 				goto err_locked;
12692 		}
12693 	}
12694 
12695 	/*
12696 	 * Now that we're certain of the pmu; find the pmu_ctx.
12697 	 */
12698 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12699 	if (IS_ERR(pmu_ctx)) {
12700 		err = PTR_ERR(pmu_ctx);
12701 		goto err_locked;
12702 	}
12703 	event->pmu_ctx = pmu_ctx;
12704 
12705 	if (output_event) {
12706 		err = perf_event_set_output(event, output_event);
12707 		if (err)
12708 			goto err_context;
12709 	}
12710 
12711 	if (!perf_event_validate_size(event)) {
12712 		err = -E2BIG;
12713 		goto err_context;
12714 	}
12715 
12716 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12717 		err = -EINVAL;
12718 		goto err_context;
12719 	}
12720 
12721 	/*
12722 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12723 	 * because we need to serialize with concurrent event creation.
12724 	 */
12725 	if (!exclusive_event_installable(event, ctx)) {
12726 		err = -EBUSY;
12727 		goto err_context;
12728 	}
12729 
12730 	WARN_ON_ONCE(ctx->parent_ctx);
12731 
12732 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12733 	if (IS_ERR(event_file)) {
12734 		err = PTR_ERR(event_file);
12735 		event_file = NULL;
12736 		goto err_context;
12737 	}
12738 
12739 	/*
12740 	 * This is the point on no return; we cannot fail hereafter. This is
12741 	 * where we start modifying current state.
12742 	 */
12743 
12744 	if (move_group) {
12745 		perf_remove_from_context(group_leader, 0);
12746 		put_pmu_ctx(group_leader->pmu_ctx);
12747 
12748 		for_each_sibling_event(sibling, group_leader) {
12749 			perf_remove_from_context(sibling, 0);
12750 			put_pmu_ctx(sibling->pmu_ctx);
12751 		}
12752 
12753 		/*
12754 		 * Install the group siblings before the group leader.
12755 		 *
12756 		 * Because a group leader will try and install the entire group
12757 		 * (through the sibling list, which is still in-tact), we can
12758 		 * end up with siblings installed in the wrong context.
12759 		 *
12760 		 * By installing siblings first we NO-OP because they're not
12761 		 * reachable through the group lists.
12762 		 */
12763 		for_each_sibling_event(sibling, group_leader) {
12764 			sibling->pmu_ctx = pmu_ctx;
12765 			get_pmu_ctx(pmu_ctx);
12766 			perf_event__state_init(sibling);
12767 			perf_install_in_context(ctx, sibling, sibling->cpu);
12768 		}
12769 
12770 		/*
12771 		 * Removing from the context ends up with disabled
12772 		 * event. What we want here is event in the initial
12773 		 * startup state, ready to be add into new context.
12774 		 */
12775 		group_leader->pmu_ctx = pmu_ctx;
12776 		get_pmu_ctx(pmu_ctx);
12777 		perf_event__state_init(group_leader);
12778 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12779 	}
12780 
12781 	/*
12782 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12783 	 * that we're serialized against further additions and before
12784 	 * perf_install_in_context() which is the point the event is active and
12785 	 * can use these values.
12786 	 */
12787 	perf_event__header_size(event);
12788 	perf_event__id_header_size(event);
12789 
12790 	event->owner = current;
12791 
12792 	perf_install_in_context(ctx, event, event->cpu);
12793 	perf_unpin_context(ctx);
12794 
12795 	mutex_unlock(&ctx->mutex);
12796 
12797 	if (task) {
12798 		up_read(&task->signal->exec_update_lock);
12799 		put_task_struct(task);
12800 	}
12801 
12802 	mutex_lock(&current->perf_event_mutex);
12803 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12804 	mutex_unlock(&current->perf_event_mutex);
12805 
12806 	/*
12807 	 * Drop the reference on the group_event after placing the
12808 	 * new event on the sibling_list. This ensures destruction
12809 	 * of the group leader will find the pointer to itself in
12810 	 * perf_group_detach().
12811 	 */
12812 	fdput(group);
12813 	fd_install(event_fd, event_file);
12814 	return event_fd;
12815 
12816 err_context:
12817 	put_pmu_ctx(event->pmu_ctx);
12818 	event->pmu_ctx = NULL; /* _free_event() */
12819 err_locked:
12820 	mutex_unlock(&ctx->mutex);
12821 	perf_unpin_context(ctx);
12822 	put_ctx(ctx);
12823 err_cred:
12824 	if (task)
12825 		up_read(&task->signal->exec_update_lock);
12826 err_alloc:
12827 	free_event(event);
12828 err_task:
12829 	if (task)
12830 		put_task_struct(task);
12831 err_group_fd:
12832 	fdput(group);
12833 err_fd:
12834 	put_unused_fd(event_fd);
12835 	return err;
12836 }
12837 
12838 /**
12839  * perf_event_create_kernel_counter
12840  *
12841  * @attr: attributes of the counter to create
12842  * @cpu: cpu in which the counter is bound
12843  * @task: task to profile (NULL for percpu)
12844  * @overflow_handler: callback to trigger when we hit the event
12845  * @context: context data could be used in overflow_handler callback
12846  */
12847 struct perf_event *
12848 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12849 				 struct task_struct *task,
12850 				 perf_overflow_handler_t overflow_handler,
12851 				 void *context)
12852 {
12853 	struct perf_event_pmu_context *pmu_ctx;
12854 	struct perf_event_context *ctx;
12855 	struct perf_event *event;
12856 	struct pmu *pmu;
12857 	int err;
12858 
12859 	/*
12860 	 * Grouping is not supported for kernel events, neither is 'AUX',
12861 	 * make sure the caller's intentions are adjusted.
12862 	 */
12863 	if (attr->aux_output)
12864 		return ERR_PTR(-EINVAL);
12865 
12866 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12867 				 overflow_handler, context, -1);
12868 	if (IS_ERR(event)) {
12869 		err = PTR_ERR(event);
12870 		goto err;
12871 	}
12872 
12873 	/* Mark owner so we could distinguish it from user events. */
12874 	event->owner = TASK_TOMBSTONE;
12875 	pmu = event->pmu;
12876 
12877 	if (pmu->task_ctx_nr == perf_sw_context)
12878 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12879 
12880 	/*
12881 	 * Get the target context (task or percpu):
12882 	 */
12883 	ctx = find_get_context(task, event);
12884 	if (IS_ERR(ctx)) {
12885 		err = PTR_ERR(ctx);
12886 		goto err_alloc;
12887 	}
12888 
12889 	WARN_ON_ONCE(ctx->parent_ctx);
12890 	mutex_lock(&ctx->mutex);
12891 	if (ctx->task == TASK_TOMBSTONE) {
12892 		err = -ESRCH;
12893 		goto err_unlock;
12894 	}
12895 
12896 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12897 	if (IS_ERR(pmu_ctx)) {
12898 		err = PTR_ERR(pmu_ctx);
12899 		goto err_unlock;
12900 	}
12901 	event->pmu_ctx = pmu_ctx;
12902 
12903 	if (!task) {
12904 		/*
12905 		 * Check if the @cpu we're creating an event for is online.
12906 		 *
12907 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12908 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12909 		 */
12910 		struct perf_cpu_context *cpuctx =
12911 			container_of(ctx, struct perf_cpu_context, ctx);
12912 		if (!cpuctx->online) {
12913 			err = -ENODEV;
12914 			goto err_pmu_ctx;
12915 		}
12916 	}
12917 
12918 	if (!exclusive_event_installable(event, ctx)) {
12919 		err = -EBUSY;
12920 		goto err_pmu_ctx;
12921 	}
12922 
12923 	perf_install_in_context(ctx, event, event->cpu);
12924 	perf_unpin_context(ctx);
12925 	mutex_unlock(&ctx->mutex);
12926 
12927 	return event;
12928 
12929 err_pmu_ctx:
12930 	put_pmu_ctx(pmu_ctx);
12931 	event->pmu_ctx = NULL; /* _free_event() */
12932 err_unlock:
12933 	mutex_unlock(&ctx->mutex);
12934 	perf_unpin_context(ctx);
12935 	put_ctx(ctx);
12936 err_alloc:
12937 	free_event(event);
12938 err:
12939 	return ERR_PTR(err);
12940 }
12941 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12942 
12943 static void __perf_pmu_remove(struct perf_event_context *ctx,
12944 			      int cpu, struct pmu *pmu,
12945 			      struct perf_event_groups *groups,
12946 			      struct list_head *events)
12947 {
12948 	struct perf_event *event, *sibling;
12949 
12950 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12951 		perf_remove_from_context(event, 0);
12952 		put_pmu_ctx(event->pmu_ctx);
12953 		list_add(&event->migrate_entry, events);
12954 
12955 		for_each_sibling_event(sibling, event) {
12956 			perf_remove_from_context(sibling, 0);
12957 			put_pmu_ctx(sibling->pmu_ctx);
12958 			list_add(&sibling->migrate_entry, events);
12959 		}
12960 	}
12961 }
12962 
12963 static void __perf_pmu_install_event(struct pmu *pmu,
12964 				     struct perf_event_context *ctx,
12965 				     int cpu, struct perf_event *event)
12966 {
12967 	struct perf_event_pmu_context *epc;
12968 	struct perf_event_context *old_ctx = event->ctx;
12969 
12970 	get_ctx(ctx); /* normally find_get_context() */
12971 
12972 	event->cpu = cpu;
12973 	epc = find_get_pmu_context(pmu, ctx, event);
12974 	event->pmu_ctx = epc;
12975 
12976 	if (event->state >= PERF_EVENT_STATE_OFF)
12977 		event->state = PERF_EVENT_STATE_INACTIVE;
12978 	perf_install_in_context(ctx, event, cpu);
12979 
12980 	/*
12981 	 * Now that event->ctx is updated and visible, put the old ctx.
12982 	 */
12983 	put_ctx(old_ctx);
12984 }
12985 
12986 static void __perf_pmu_install(struct perf_event_context *ctx,
12987 			       int cpu, struct pmu *pmu, struct list_head *events)
12988 {
12989 	struct perf_event *event, *tmp;
12990 
12991 	/*
12992 	 * Re-instate events in 2 passes.
12993 	 *
12994 	 * Skip over group leaders and only install siblings on this first
12995 	 * pass, siblings will not get enabled without a leader, however a
12996 	 * leader will enable its siblings, even if those are still on the old
12997 	 * context.
12998 	 */
12999 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13000 		if (event->group_leader == event)
13001 			continue;
13002 
13003 		list_del(&event->migrate_entry);
13004 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13005 	}
13006 
13007 	/*
13008 	 * Once all the siblings are setup properly, install the group leaders
13009 	 * to make it go.
13010 	 */
13011 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13012 		list_del(&event->migrate_entry);
13013 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13014 	}
13015 }
13016 
13017 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13018 {
13019 	struct perf_event_context *src_ctx, *dst_ctx;
13020 	LIST_HEAD(events);
13021 
13022 	/*
13023 	 * Since per-cpu context is persistent, no need to grab an extra
13024 	 * reference.
13025 	 */
13026 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13027 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13028 
13029 	/*
13030 	 * See perf_event_ctx_lock() for comments on the details
13031 	 * of swizzling perf_event::ctx.
13032 	 */
13033 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13034 
13035 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13036 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13037 
13038 	if (!list_empty(&events)) {
13039 		/*
13040 		 * Wait for the events to quiesce before re-instating them.
13041 		 */
13042 		synchronize_rcu();
13043 
13044 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13045 	}
13046 
13047 	mutex_unlock(&dst_ctx->mutex);
13048 	mutex_unlock(&src_ctx->mutex);
13049 }
13050 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13051 
13052 static void sync_child_event(struct perf_event *child_event)
13053 {
13054 	struct perf_event *parent_event = child_event->parent;
13055 	u64 child_val;
13056 
13057 	if (child_event->attr.inherit_stat) {
13058 		struct task_struct *task = child_event->ctx->task;
13059 
13060 		if (task && task != TASK_TOMBSTONE)
13061 			perf_event_read_event(child_event, task);
13062 	}
13063 
13064 	child_val = perf_event_count(child_event);
13065 
13066 	/*
13067 	 * Add back the child's count to the parent's count:
13068 	 */
13069 	atomic64_add(child_val, &parent_event->child_count);
13070 	atomic64_add(child_event->total_time_enabled,
13071 		     &parent_event->child_total_time_enabled);
13072 	atomic64_add(child_event->total_time_running,
13073 		     &parent_event->child_total_time_running);
13074 }
13075 
13076 static void
13077 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13078 {
13079 	struct perf_event *parent_event = event->parent;
13080 	unsigned long detach_flags = 0;
13081 
13082 	if (parent_event) {
13083 		/*
13084 		 * Do not destroy the 'original' grouping; because of the
13085 		 * context switch optimization the original events could've
13086 		 * ended up in a random child task.
13087 		 *
13088 		 * If we were to destroy the original group, all group related
13089 		 * operations would cease to function properly after this
13090 		 * random child dies.
13091 		 *
13092 		 * Do destroy all inherited groups, we don't care about those
13093 		 * and being thorough is better.
13094 		 */
13095 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13096 		mutex_lock(&parent_event->child_mutex);
13097 	}
13098 
13099 	perf_remove_from_context(event, detach_flags);
13100 
13101 	raw_spin_lock_irq(&ctx->lock);
13102 	if (event->state > PERF_EVENT_STATE_EXIT)
13103 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13104 	raw_spin_unlock_irq(&ctx->lock);
13105 
13106 	/*
13107 	 * Child events can be freed.
13108 	 */
13109 	if (parent_event) {
13110 		mutex_unlock(&parent_event->child_mutex);
13111 		/*
13112 		 * Kick perf_poll() for is_event_hup();
13113 		 */
13114 		perf_event_wakeup(parent_event);
13115 		free_event(event);
13116 		put_event(parent_event);
13117 		return;
13118 	}
13119 
13120 	/*
13121 	 * Parent events are governed by their filedesc, retain them.
13122 	 */
13123 	perf_event_wakeup(event);
13124 }
13125 
13126 static void perf_event_exit_task_context(struct task_struct *child)
13127 {
13128 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13129 	struct perf_event *child_event, *next;
13130 
13131 	WARN_ON_ONCE(child != current);
13132 
13133 	child_ctx = perf_pin_task_context(child);
13134 	if (!child_ctx)
13135 		return;
13136 
13137 	/*
13138 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13139 	 * ctx::mutex over the entire thing. This serializes against almost
13140 	 * everything that wants to access the ctx.
13141 	 *
13142 	 * The exception is sys_perf_event_open() /
13143 	 * perf_event_create_kernel_count() which does find_get_context()
13144 	 * without ctx::mutex (it cannot because of the move_group double mutex
13145 	 * lock thing). See the comments in perf_install_in_context().
13146 	 */
13147 	mutex_lock(&child_ctx->mutex);
13148 
13149 	/*
13150 	 * In a single ctx::lock section, de-schedule the events and detach the
13151 	 * context from the task such that we cannot ever get it scheduled back
13152 	 * in.
13153 	 */
13154 	raw_spin_lock_irq(&child_ctx->lock);
13155 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13156 
13157 	/*
13158 	 * Now that the context is inactive, destroy the task <-> ctx relation
13159 	 * and mark the context dead.
13160 	 */
13161 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13162 	put_ctx(child_ctx); /* cannot be last */
13163 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13164 	put_task_struct(current); /* cannot be last */
13165 
13166 	clone_ctx = unclone_ctx(child_ctx);
13167 	raw_spin_unlock_irq(&child_ctx->lock);
13168 
13169 	if (clone_ctx)
13170 		put_ctx(clone_ctx);
13171 
13172 	/*
13173 	 * Report the task dead after unscheduling the events so that we
13174 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13175 	 * get a few PERF_RECORD_READ events.
13176 	 */
13177 	perf_event_task(child, child_ctx, 0);
13178 
13179 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13180 		perf_event_exit_event(child_event, child_ctx);
13181 
13182 	mutex_unlock(&child_ctx->mutex);
13183 
13184 	put_ctx(child_ctx);
13185 }
13186 
13187 /*
13188  * When a child task exits, feed back event values to parent events.
13189  *
13190  * Can be called with exec_update_lock held when called from
13191  * setup_new_exec().
13192  */
13193 void perf_event_exit_task(struct task_struct *child)
13194 {
13195 	struct perf_event *event, *tmp;
13196 
13197 	mutex_lock(&child->perf_event_mutex);
13198 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13199 				 owner_entry) {
13200 		list_del_init(&event->owner_entry);
13201 
13202 		/*
13203 		 * Ensure the list deletion is visible before we clear
13204 		 * the owner, closes a race against perf_release() where
13205 		 * we need to serialize on the owner->perf_event_mutex.
13206 		 */
13207 		smp_store_release(&event->owner, NULL);
13208 	}
13209 	mutex_unlock(&child->perf_event_mutex);
13210 
13211 	perf_event_exit_task_context(child);
13212 
13213 	/*
13214 	 * The perf_event_exit_task_context calls perf_event_task
13215 	 * with child's task_ctx, which generates EXIT events for
13216 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13217 	 * At this point we need to send EXIT events to cpu contexts.
13218 	 */
13219 	perf_event_task(child, NULL, 0);
13220 }
13221 
13222 static void perf_free_event(struct perf_event *event,
13223 			    struct perf_event_context *ctx)
13224 {
13225 	struct perf_event *parent = event->parent;
13226 
13227 	if (WARN_ON_ONCE(!parent))
13228 		return;
13229 
13230 	mutex_lock(&parent->child_mutex);
13231 	list_del_init(&event->child_list);
13232 	mutex_unlock(&parent->child_mutex);
13233 
13234 	put_event(parent);
13235 
13236 	raw_spin_lock_irq(&ctx->lock);
13237 	perf_group_detach(event);
13238 	list_del_event(event, ctx);
13239 	raw_spin_unlock_irq(&ctx->lock);
13240 	free_event(event);
13241 }
13242 
13243 /*
13244  * Free a context as created by inheritance by perf_event_init_task() below,
13245  * used by fork() in case of fail.
13246  *
13247  * Even though the task has never lived, the context and events have been
13248  * exposed through the child_list, so we must take care tearing it all down.
13249  */
13250 void perf_event_free_task(struct task_struct *task)
13251 {
13252 	struct perf_event_context *ctx;
13253 	struct perf_event *event, *tmp;
13254 
13255 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13256 	if (!ctx)
13257 		return;
13258 
13259 	mutex_lock(&ctx->mutex);
13260 	raw_spin_lock_irq(&ctx->lock);
13261 	/*
13262 	 * Destroy the task <-> ctx relation and mark the context dead.
13263 	 *
13264 	 * This is important because even though the task hasn't been
13265 	 * exposed yet the context has been (through child_list).
13266 	 */
13267 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13268 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13269 	put_task_struct(task); /* cannot be last */
13270 	raw_spin_unlock_irq(&ctx->lock);
13271 
13272 
13273 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13274 		perf_free_event(event, ctx);
13275 
13276 	mutex_unlock(&ctx->mutex);
13277 
13278 	/*
13279 	 * perf_event_release_kernel() could've stolen some of our
13280 	 * child events and still have them on its free_list. In that
13281 	 * case we must wait for these events to have been freed (in
13282 	 * particular all their references to this task must've been
13283 	 * dropped).
13284 	 *
13285 	 * Without this copy_process() will unconditionally free this
13286 	 * task (irrespective of its reference count) and
13287 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13288 	 * use-after-free.
13289 	 *
13290 	 * Wait for all events to drop their context reference.
13291 	 */
13292 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13293 	put_ctx(ctx); /* must be last */
13294 }
13295 
13296 void perf_event_delayed_put(struct task_struct *task)
13297 {
13298 	WARN_ON_ONCE(task->perf_event_ctxp);
13299 }
13300 
13301 struct file *perf_event_get(unsigned int fd)
13302 {
13303 	struct file *file = fget(fd);
13304 	if (!file)
13305 		return ERR_PTR(-EBADF);
13306 
13307 	if (file->f_op != &perf_fops) {
13308 		fput(file);
13309 		return ERR_PTR(-EBADF);
13310 	}
13311 
13312 	return file;
13313 }
13314 
13315 const struct perf_event *perf_get_event(struct file *file)
13316 {
13317 	if (file->f_op != &perf_fops)
13318 		return ERR_PTR(-EINVAL);
13319 
13320 	return file->private_data;
13321 }
13322 
13323 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13324 {
13325 	if (!event)
13326 		return ERR_PTR(-EINVAL);
13327 
13328 	return &event->attr;
13329 }
13330 
13331 /*
13332  * Inherit an event from parent task to child task.
13333  *
13334  * Returns:
13335  *  - valid pointer on success
13336  *  - NULL for orphaned events
13337  *  - IS_ERR() on error
13338  */
13339 static struct perf_event *
13340 inherit_event(struct perf_event *parent_event,
13341 	      struct task_struct *parent,
13342 	      struct perf_event_context *parent_ctx,
13343 	      struct task_struct *child,
13344 	      struct perf_event *group_leader,
13345 	      struct perf_event_context *child_ctx)
13346 {
13347 	enum perf_event_state parent_state = parent_event->state;
13348 	struct perf_event_pmu_context *pmu_ctx;
13349 	struct perf_event *child_event;
13350 	unsigned long flags;
13351 
13352 	/*
13353 	 * Instead of creating recursive hierarchies of events,
13354 	 * we link inherited events back to the original parent,
13355 	 * which has a filp for sure, which we use as the reference
13356 	 * count:
13357 	 */
13358 	if (parent_event->parent)
13359 		parent_event = parent_event->parent;
13360 
13361 	child_event = perf_event_alloc(&parent_event->attr,
13362 					   parent_event->cpu,
13363 					   child,
13364 					   group_leader, parent_event,
13365 					   NULL, NULL, -1);
13366 	if (IS_ERR(child_event))
13367 		return child_event;
13368 
13369 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13370 	if (IS_ERR(pmu_ctx)) {
13371 		free_event(child_event);
13372 		return ERR_CAST(pmu_ctx);
13373 	}
13374 	child_event->pmu_ctx = pmu_ctx;
13375 
13376 	/*
13377 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13378 	 * must be under the same lock in order to serialize against
13379 	 * perf_event_release_kernel(), such that either we must observe
13380 	 * is_orphaned_event() or they will observe us on the child_list.
13381 	 */
13382 	mutex_lock(&parent_event->child_mutex);
13383 	if (is_orphaned_event(parent_event) ||
13384 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13385 		mutex_unlock(&parent_event->child_mutex);
13386 		/* task_ctx_data is freed with child_ctx */
13387 		free_event(child_event);
13388 		return NULL;
13389 	}
13390 
13391 	get_ctx(child_ctx);
13392 
13393 	/*
13394 	 * Make the child state follow the state of the parent event,
13395 	 * not its attr.disabled bit.  We hold the parent's mutex,
13396 	 * so we won't race with perf_event_{en, dis}able_family.
13397 	 */
13398 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13399 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13400 	else
13401 		child_event->state = PERF_EVENT_STATE_OFF;
13402 
13403 	if (parent_event->attr.freq) {
13404 		u64 sample_period = parent_event->hw.sample_period;
13405 		struct hw_perf_event *hwc = &child_event->hw;
13406 
13407 		hwc->sample_period = sample_period;
13408 		hwc->last_period   = sample_period;
13409 
13410 		local64_set(&hwc->period_left, sample_period);
13411 	}
13412 
13413 	child_event->ctx = child_ctx;
13414 	child_event->overflow_handler = parent_event->overflow_handler;
13415 	child_event->overflow_handler_context
13416 		= parent_event->overflow_handler_context;
13417 
13418 	/*
13419 	 * Precalculate sample_data sizes
13420 	 */
13421 	perf_event__header_size(child_event);
13422 	perf_event__id_header_size(child_event);
13423 
13424 	/*
13425 	 * Link it up in the child's context:
13426 	 */
13427 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13428 	add_event_to_ctx(child_event, child_ctx);
13429 	child_event->attach_state |= PERF_ATTACH_CHILD;
13430 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13431 
13432 	/*
13433 	 * Link this into the parent event's child list
13434 	 */
13435 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13436 	mutex_unlock(&parent_event->child_mutex);
13437 
13438 	return child_event;
13439 }
13440 
13441 /*
13442  * Inherits an event group.
13443  *
13444  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13445  * This matches with perf_event_release_kernel() removing all child events.
13446  *
13447  * Returns:
13448  *  - 0 on success
13449  *  - <0 on error
13450  */
13451 static int inherit_group(struct perf_event *parent_event,
13452 	      struct task_struct *parent,
13453 	      struct perf_event_context *parent_ctx,
13454 	      struct task_struct *child,
13455 	      struct perf_event_context *child_ctx)
13456 {
13457 	struct perf_event *leader;
13458 	struct perf_event *sub;
13459 	struct perf_event *child_ctr;
13460 
13461 	leader = inherit_event(parent_event, parent, parent_ctx,
13462 				 child, NULL, child_ctx);
13463 	if (IS_ERR(leader))
13464 		return PTR_ERR(leader);
13465 	/*
13466 	 * @leader can be NULL here because of is_orphaned_event(). In this
13467 	 * case inherit_event() will create individual events, similar to what
13468 	 * perf_group_detach() would do anyway.
13469 	 */
13470 	for_each_sibling_event(sub, parent_event) {
13471 		child_ctr = inherit_event(sub, parent, parent_ctx,
13472 					    child, leader, child_ctx);
13473 		if (IS_ERR(child_ctr))
13474 			return PTR_ERR(child_ctr);
13475 
13476 		if (sub->aux_event == parent_event && child_ctr &&
13477 		    !perf_get_aux_event(child_ctr, leader))
13478 			return -EINVAL;
13479 	}
13480 	if (leader)
13481 		leader->group_generation = parent_event->group_generation;
13482 	return 0;
13483 }
13484 
13485 /*
13486  * Creates the child task context and tries to inherit the event-group.
13487  *
13488  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13489  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13490  * consistent with perf_event_release_kernel() removing all child events.
13491  *
13492  * Returns:
13493  *  - 0 on success
13494  *  - <0 on error
13495  */
13496 static int
13497 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13498 		   struct perf_event_context *parent_ctx,
13499 		   struct task_struct *child,
13500 		   u64 clone_flags, int *inherited_all)
13501 {
13502 	struct perf_event_context *child_ctx;
13503 	int ret;
13504 
13505 	if (!event->attr.inherit ||
13506 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13507 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13508 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13509 		*inherited_all = 0;
13510 		return 0;
13511 	}
13512 
13513 	child_ctx = child->perf_event_ctxp;
13514 	if (!child_ctx) {
13515 		/*
13516 		 * This is executed from the parent task context, so
13517 		 * inherit events that have been marked for cloning.
13518 		 * First allocate and initialize a context for the
13519 		 * child.
13520 		 */
13521 		child_ctx = alloc_perf_context(child);
13522 		if (!child_ctx)
13523 			return -ENOMEM;
13524 
13525 		child->perf_event_ctxp = child_ctx;
13526 	}
13527 
13528 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13529 	if (ret)
13530 		*inherited_all = 0;
13531 
13532 	return ret;
13533 }
13534 
13535 /*
13536  * Initialize the perf_event context in task_struct
13537  */
13538 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13539 {
13540 	struct perf_event_context *child_ctx, *parent_ctx;
13541 	struct perf_event_context *cloned_ctx;
13542 	struct perf_event *event;
13543 	struct task_struct *parent = current;
13544 	int inherited_all = 1;
13545 	unsigned long flags;
13546 	int ret = 0;
13547 
13548 	if (likely(!parent->perf_event_ctxp))
13549 		return 0;
13550 
13551 	/*
13552 	 * If the parent's context is a clone, pin it so it won't get
13553 	 * swapped under us.
13554 	 */
13555 	parent_ctx = perf_pin_task_context(parent);
13556 	if (!parent_ctx)
13557 		return 0;
13558 
13559 	/*
13560 	 * No need to check if parent_ctx != NULL here; since we saw
13561 	 * it non-NULL earlier, the only reason for it to become NULL
13562 	 * is if we exit, and since we're currently in the middle of
13563 	 * a fork we can't be exiting at the same time.
13564 	 */
13565 
13566 	/*
13567 	 * Lock the parent list. No need to lock the child - not PID
13568 	 * hashed yet and not running, so nobody can access it.
13569 	 */
13570 	mutex_lock(&parent_ctx->mutex);
13571 
13572 	/*
13573 	 * We dont have to disable NMIs - we are only looking at
13574 	 * the list, not manipulating it:
13575 	 */
13576 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13577 		ret = inherit_task_group(event, parent, parent_ctx,
13578 					 child, clone_flags, &inherited_all);
13579 		if (ret)
13580 			goto out_unlock;
13581 	}
13582 
13583 	/*
13584 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13585 	 * to allocations, but we need to prevent rotation because
13586 	 * rotate_ctx() will change the list from interrupt context.
13587 	 */
13588 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13589 	parent_ctx->rotate_disable = 1;
13590 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13591 
13592 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13593 		ret = inherit_task_group(event, parent, parent_ctx,
13594 					 child, clone_flags, &inherited_all);
13595 		if (ret)
13596 			goto out_unlock;
13597 	}
13598 
13599 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13600 	parent_ctx->rotate_disable = 0;
13601 
13602 	child_ctx = child->perf_event_ctxp;
13603 
13604 	if (child_ctx && inherited_all) {
13605 		/*
13606 		 * Mark the child context as a clone of the parent
13607 		 * context, or of whatever the parent is a clone of.
13608 		 *
13609 		 * Note that if the parent is a clone, the holding of
13610 		 * parent_ctx->lock avoids it from being uncloned.
13611 		 */
13612 		cloned_ctx = parent_ctx->parent_ctx;
13613 		if (cloned_ctx) {
13614 			child_ctx->parent_ctx = cloned_ctx;
13615 			child_ctx->parent_gen = parent_ctx->parent_gen;
13616 		} else {
13617 			child_ctx->parent_ctx = parent_ctx;
13618 			child_ctx->parent_gen = parent_ctx->generation;
13619 		}
13620 		get_ctx(child_ctx->parent_ctx);
13621 	}
13622 
13623 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13624 out_unlock:
13625 	mutex_unlock(&parent_ctx->mutex);
13626 
13627 	perf_unpin_context(parent_ctx);
13628 	put_ctx(parent_ctx);
13629 
13630 	return ret;
13631 }
13632 
13633 /*
13634  * Initialize the perf_event context in task_struct
13635  */
13636 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13637 {
13638 	int ret;
13639 
13640 	child->perf_event_ctxp = NULL;
13641 	mutex_init(&child->perf_event_mutex);
13642 	INIT_LIST_HEAD(&child->perf_event_list);
13643 
13644 	ret = perf_event_init_context(child, clone_flags);
13645 	if (ret) {
13646 		perf_event_free_task(child);
13647 		return ret;
13648 	}
13649 
13650 	return 0;
13651 }
13652 
13653 static void __init perf_event_init_all_cpus(void)
13654 {
13655 	struct swevent_htable *swhash;
13656 	struct perf_cpu_context *cpuctx;
13657 	int cpu;
13658 
13659 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13660 
13661 	for_each_possible_cpu(cpu) {
13662 		swhash = &per_cpu(swevent_htable, cpu);
13663 		mutex_init(&swhash->hlist_mutex);
13664 
13665 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13666 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13667 
13668 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13669 
13670 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13671 		__perf_event_init_context(&cpuctx->ctx);
13672 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13673 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13674 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13675 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13676 		cpuctx->heap = cpuctx->heap_default;
13677 	}
13678 }
13679 
13680 static void perf_swevent_init_cpu(unsigned int cpu)
13681 {
13682 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13683 
13684 	mutex_lock(&swhash->hlist_mutex);
13685 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13686 		struct swevent_hlist *hlist;
13687 
13688 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13689 		WARN_ON(!hlist);
13690 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13691 	}
13692 	mutex_unlock(&swhash->hlist_mutex);
13693 }
13694 
13695 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13696 static void __perf_event_exit_context(void *__info)
13697 {
13698 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13699 	struct perf_event_context *ctx = __info;
13700 	struct perf_event *event;
13701 
13702 	raw_spin_lock(&ctx->lock);
13703 	ctx_sched_out(ctx, EVENT_TIME);
13704 	list_for_each_entry(event, &ctx->event_list, event_entry)
13705 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13706 	raw_spin_unlock(&ctx->lock);
13707 }
13708 
13709 static void perf_event_exit_cpu_context(int cpu)
13710 {
13711 	struct perf_cpu_context *cpuctx;
13712 	struct perf_event_context *ctx;
13713 
13714 	// XXX simplify cpuctx->online
13715 	mutex_lock(&pmus_lock);
13716 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13717 	ctx = &cpuctx->ctx;
13718 
13719 	mutex_lock(&ctx->mutex);
13720 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13721 	cpuctx->online = 0;
13722 	mutex_unlock(&ctx->mutex);
13723 	cpumask_clear_cpu(cpu, perf_online_mask);
13724 	mutex_unlock(&pmus_lock);
13725 }
13726 #else
13727 
13728 static void perf_event_exit_cpu_context(int cpu) { }
13729 
13730 #endif
13731 
13732 int perf_event_init_cpu(unsigned int cpu)
13733 {
13734 	struct perf_cpu_context *cpuctx;
13735 	struct perf_event_context *ctx;
13736 
13737 	perf_swevent_init_cpu(cpu);
13738 
13739 	mutex_lock(&pmus_lock);
13740 	cpumask_set_cpu(cpu, perf_online_mask);
13741 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13742 	ctx = &cpuctx->ctx;
13743 
13744 	mutex_lock(&ctx->mutex);
13745 	cpuctx->online = 1;
13746 	mutex_unlock(&ctx->mutex);
13747 	mutex_unlock(&pmus_lock);
13748 
13749 	return 0;
13750 }
13751 
13752 int perf_event_exit_cpu(unsigned int cpu)
13753 {
13754 	perf_event_exit_cpu_context(cpu);
13755 	return 0;
13756 }
13757 
13758 static int
13759 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13760 {
13761 	int cpu;
13762 
13763 	for_each_online_cpu(cpu)
13764 		perf_event_exit_cpu(cpu);
13765 
13766 	return NOTIFY_OK;
13767 }
13768 
13769 /*
13770  * Run the perf reboot notifier at the very last possible moment so that
13771  * the generic watchdog code runs as long as possible.
13772  */
13773 static struct notifier_block perf_reboot_notifier = {
13774 	.notifier_call = perf_reboot,
13775 	.priority = INT_MIN,
13776 };
13777 
13778 void __init perf_event_init(void)
13779 {
13780 	int ret;
13781 
13782 	idr_init(&pmu_idr);
13783 
13784 	perf_event_init_all_cpus();
13785 	init_srcu_struct(&pmus_srcu);
13786 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13787 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13788 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13789 	perf_tp_register();
13790 	perf_event_init_cpu(smp_processor_id());
13791 	register_reboot_notifier(&perf_reboot_notifier);
13792 
13793 	ret = init_hw_breakpoint();
13794 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13795 
13796 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13797 
13798 	/*
13799 	 * Build time assertion that we keep the data_head at the intended
13800 	 * location.  IOW, validation we got the __reserved[] size right.
13801 	 */
13802 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13803 		     != 1024);
13804 }
13805 
13806 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13807 			      char *page)
13808 {
13809 	struct perf_pmu_events_attr *pmu_attr =
13810 		container_of(attr, struct perf_pmu_events_attr, attr);
13811 
13812 	if (pmu_attr->event_str)
13813 		return sprintf(page, "%s\n", pmu_attr->event_str);
13814 
13815 	return 0;
13816 }
13817 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13818 
13819 static int __init perf_event_sysfs_init(void)
13820 {
13821 	struct pmu *pmu;
13822 	int ret;
13823 
13824 	mutex_lock(&pmus_lock);
13825 
13826 	ret = bus_register(&pmu_bus);
13827 	if (ret)
13828 		goto unlock;
13829 
13830 	list_for_each_entry(pmu, &pmus, entry) {
13831 		if (pmu->dev)
13832 			continue;
13833 
13834 		ret = pmu_dev_alloc(pmu);
13835 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13836 	}
13837 	pmu_bus_running = 1;
13838 	ret = 0;
13839 
13840 unlock:
13841 	mutex_unlock(&pmus_lock);
13842 
13843 	return ret;
13844 }
13845 device_initcall(perf_event_sysfs_init);
13846 
13847 #ifdef CONFIG_CGROUP_PERF
13848 static struct cgroup_subsys_state *
13849 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13850 {
13851 	struct perf_cgroup *jc;
13852 
13853 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13854 	if (!jc)
13855 		return ERR_PTR(-ENOMEM);
13856 
13857 	jc->info = alloc_percpu(struct perf_cgroup_info);
13858 	if (!jc->info) {
13859 		kfree(jc);
13860 		return ERR_PTR(-ENOMEM);
13861 	}
13862 
13863 	return &jc->css;
13864 }
13865 
13866 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13867 {
13868 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13869 
13870 	free_percpu(jc->info);
13871 	kfree(jc);
13872 }
13873 
13874 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13875 {
13876 	perf_event_cgroup(css->cgroup);
13877 	return 0;
13878 }
13879 
13880 static int __perf_cgroup_move(void *info)
13881 {
13882 	struct task_struct *task = info;
13883 
13884 	preempt_disable();
13885 	perf_cgroup_switch(task);
13886 	preempt_enable();
13887 
13888 	return 0;
13889 }
13890 
13891 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13892 {
13893 	struct task_struct *task;
13894 	struct cgroup_subsys_state *css;
13895 
13896 	cgroup_taskset_for_each(task, css, tset)
13897 		task_function_call(task, __perf_cgroup_move, task);
13898 }
13899 
13900 struct cgroup_subsys perf_event_cgrp_subsys = {
13901 	.css_alloc	= perf_cgroup_css_alloc,
13902 	.css_free	= perf_cgroup_css_free,
13903 	.css_online	= perf_cgroup_css_online,
13904 	.attach		= perf_cgroup_attach,
13905 	/*
13906 	 * Implicitly enable on dfl hierarchy so that perf events can
13907 	 * always be filtered by cgroup2 path as long as perf_event
13908 	 * controller is not mounted on a legacy hierarchy.
13909 	 */
13910 	.implicit_on_dfl = true,
13911 	.threaded	= true,
13912 };
13913 #endif /* CONFIG_CGROUP_PERF */
13914 
13915 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13916