1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) { 2306 ctx->nr_freq--; 2307 epc->nr_freq--; 2308 } 2309 if (event->attr.exclusive || !cpc->active_oncpu) 2310 cpc->exclusive = 0; 2311 2312 perf_pmu_enable(event->pmu); 2313 } 2314 2315 static void 2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2317 { 2318 struct perf_event *event; 2319 2320 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2321 return; 2322 2323 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2324 2325 event_sched_out(group_event, ctx); 2326 2327 /* 2328 * Schedule out siblings (if any): 2329 */ 2330 for_each_sibling_event(event, group_event) 2331 event_sched_out(event, ctx); 2332 } 2333 2334 #define DETACH_GROUP 0x01UL 2335 #define DETACH_CHILD 0x02UL 2336 #define DETACH_DEAD 0x04UL 2337 2338 /* 2339 * Cross CPU call to remove a performance event 2340 * 2341 * We disable the event on the hardware level first. After that we 2342 * remove it from the context list. 2343 */ 2344 static void 2345 __perf_remove_from_context(struct perf_event *event, 2346 struct perf_cpu_context *cpuctx, 2347 struct perf_event_context *ctx, 2348 void *info) 2349 { 2350 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2351 unsigned long flags = (unsigned long)info; 2352 2353 if (ctx->is_active & EVENT_TIME) { 2354 update_context_time(ctx); 2355 update_cgrp_time_from_cpuctx(cpuctx, false); 2356 } 2357 2358 /* 2359 * Ensure event_sched_out() switches to OFF, at the very least 2360 * this avoids raising perf_pending_task() at this time. 2361 */ 2362 if (flags & DETACH_DEAD) 2363 event->pending_disable = 1; 2364 event_sched_out(event, ctx); 2365 if (flags & DETACH_GROUP) 2366 perf_group_detach(event); 2367 if (flags & DETACH_CHILD) 2368 perf_child_detach(event); 2369 list_del_event(event, ctx); 2370 if (flags & DETACH_DEAD) 2371 event->state = PERF_EVENT_STATE_DEAD; 2372 2373 if (!pmu_ctx->nr_events) { 2374 pmu_ctx->rotate_necessary = 0; 2375 2376 if (ctx->task && ctx->is_active) { 2377 struct perf_cpu_pmu_context *cpc; 2378 2379 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2380 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2381 cpc->task_epc = NULL; 2382 } 2383 } 2384 2385 if (!ctx->nr_events && ctx->is_active) { 2386 if (ctx == &cpuctx->ctx) 2387 update_cgrp_time_from_cpuctx(cpuctx, true); 2388 2389 ctx->is_active = 0; 2390 if (ctx->task) { 2391 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2392 cpuctx->task_ctx = NULL; 2393 } 2394 } 2395 } 2396 2397 /* 2398 * Remove the event from a task's (or a CPU's) list of events. 2399 * 2400 * If event->ctx is a cloned context, callers must make sure that 2401 * every task struct that event->ctx->task could possibly point to 2402 * remains valid. This is OK when called from perf_release since 2403 * that only calls us on the top-level context, which can't be a clone. 2404 * When called from perf_event_exit_task, it's OK because the 2405 * context has been detached from its task. 2406 */ 2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2408 { 2409 struct perf_event_context *ctx = event->ctx; 2410 2411 lockdep_assert_held(&ctx->mutex); 2412 2413 /* 2414 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2415 * to work in the face of TASK_TOMBSTONE, unlike every other 2416 * event_function_call() user. 2417 */ 2418 raw_spin_lock_irq(&ctx->lock); 2419 if (!ctx->is_active) { 2420 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2421 ctx, (void *)flags); 2422 raw_spin_unlock_irq(&ctx->lock); 2423 return; 2424 } 2425 raw_spin_unlock_irq(&ctx->lock); 2426 2427 event_function_call(event, __perf_remove_from_context, (void *)flags); 2428 } 2429 2430 /* 2431 * Cross CPU call to disable a performance event 2432 */ 2433 static void __perf_event_disable(struct perf_event *event, 2434 struct perf_cpu_context *cpuctx, 2435 struct perf_event_context *ctx, 2436 void *info) 2437 { 2438 if (event->state < PERF_EVENT_STATE_INACTIVE) 2439 return; 2440 2441 if (ctx->is_active & EVENT_TIME) { 2442 update_context_time(ctx); 2443 update_cgrp_time_from_event(event); 2444 } 2445 2446 perf_pmu_disable(event->pmu_ctx->pmu); 2447 2448 if (event == event->group_leader) 2449 group_sched_out(event, ctx); 2450 else 2451 event_sched_out(event, ctx); 2452 2453 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2454 perf_cgroup_event_disable(event, ctx); 2455 2456 perf_pmu_enable(event->pmu_ctx->pmu); 2457 } 2458 2459 /* 2460 * Disable an event. 2461 * 2462 * If event->ctx is a cloned context, callers must make sure that 2463 * every task struct that event->ctx->task could possibly point to 2464 * remains valid. This condition is satisfied when called through 2465 * perf_event_for_each_child or perf_event_for_each because they 2466 * hold the top-level event's child_mutex, so any descendant that 2467 * goes to exit will block in perf_event_exit_event(). 2468 * 2469 * When called from perf_pending_irq it's OK because event->ctx 2470 * is the current context on this CPU and preemption is disabled, 2471 * hence we can't get into perf_event_task_sched_out for this context. 2472 */ 2473 static void _perf_event_disable(struct perf_event *event) 2474 { 2475 struct perf_event_context *ctx = event->ctx; 2476 2477 raw_spin_lock_irq(&ctx->lock); 2478 if (event->state <= PERF_EVENT_STATE_OFF) { 2479 raw_spin_unlock_irq(&ctx->lock); 2480 return; 2481 } 2482 raw_spin_unlock_irq(&ctx->lock); 2483 2484 event_function_call(event, __perf_event_disable, NULL); 2485 } 2486 2487 void perf_event_disable_local(struct perf_event *event) 2488 { 2489 event_function_local(event, __perf_event_disable, NULL); 2490 } 2491 2492 /* 2493 * Strictly speaking kernel users cannot create groups and therefore this 2494 * interface does not need the perf_event_ctx_lock() magic. 2495 */ 2496 void perf_event_disable(struct perf_event *event) 2497 { 2498 struct perf_event_context *ctx; 2499 2500 ctx = perf_event_ctx_lock(event); 2501 _perf_event_disable(event); 2502 perf_event_ctx_unlock(event, ctx); 2503 } 2504 EXPORT_SYMBOL_GPL(perf_event_disable); 2505 2506 void perf_event_disable_inatomic(struct perf_event *event) 2507 { 2508 event->pending_disable = 1; 2509 irq_work_queue(&event->pending_irq); 2510 } 2511 2512 #define MAX_INTERRUPTS (~0ULL) 2513 2514 static void perf_log_throttle(struct perf_event *event, int enable); 2515 static void perf_log_itrace_start(struct perf_event *event); 2516 2517 static int 2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2519 { 2520 struct perf_event_pmu_context *epc = event->pmu_ctx; 2521 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2522 int ret = 0; 2523 2524 WARN_ON_ONCE(event->ctx != ctx); 2525 2526 lockdep_assert_held(&ctx->lock); 2527 2528 if (event->state <= PERF_EVENT_STATE_OFF) 2529 return 0; 2530 2531 WRITE_ONCE(event->oncpu, smp_processor_id()); 2532 /* 2533 * Order event::oncpu write to happen before the ACTIVE state is 2534 * visible. This allows perf_event_{stop,read}() to observe the correct 2535 * ->oncpu if it sees ACTIVE. 2536 */ 2537 smp_wmb(); 2538 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2539 2540 /* 2541 * Unthrottle events, since we scheduled we might have missed several 2542 * ticks already, also for a heavily scheduling task there is little 2543 * guarantee it'll get a tick in a timely manner. 2544 */ 2545 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2546 perf_log_throttle(event, 1); 2547 event->hw.interrupts = 0; 2548 } 2549 2550 perf_pmu_disable(event->pmu); 2551 2552 perf_log_itrace_start(event); 2553 2554 if (event->pmu->add(event, PERF_EF_START)) { 2555 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2556 event->oncpu = -1; 2557 ret = -EAGAIN; 2558 goto out; 2559 } 2560 2561 if (!is_software_event(event)) 2562 cpc->active_oncpu++; 2563 if (event->attr.freq && event->attr.sample_freq) { 2564 ctx->nr_freq++; 2565 epc->nr_freq++; 2566 } 2567 if (event->attr.exclusive) 2568 cpc->exclusive = 1; 2569 2570 out: 2571 perf_pmu_enable(event->pmu); 2572 2573 return ret; 2574 } 2575 2576 static int 2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2578 { 2579 struct perf_event *event, *partial_group = NULL; 2580 struct pmu *pmu = group_event->pmu_ctx->pmu; 2581 2582 if (group_event->state == PERF_EVENT_STATE_OFF) 2583 return 0; 2584 2585 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2586 2587 if (event_sched_in(group_event, ctx)) 2588 goto error; 2589 2590 /* 2591 * Schedule in siblings as one group (if any): 2592 */ 2593 for_each_sibling_event(event, group_event) { 2594 if (event_sched_in(event, ctx)) { 2595 partial_group = event; 2596 goto group_error; 2597 } 2598 } 2599 2600 if (!pmu->commit_txn(pmu)) 2601 return 0; 2602 2603 group_error: 2604 /* 2605 * Groups can be scheduled in as one unit only, so undo any 2606 * partial group before returning: 2607 * The events up to the failed event are scheduled out normally. 2608 */ 2609 for_each_sibling_event(event, group_event) { 2610 if (event == partial_group) 2611 break; 2612 2613 event_sched_out(event, ctx); 2614 } 2615 event_sched_out(group_event, ctx); 2616 2617 error: 2618 pmu->cancel_txn(pmu); 2619 return -EAGAIN; 2620 } 2621 2622 /* 2623 * Work out whether we can put this event group on the CPU now. 2624 */ 2625 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2626 { 2627 struct perf_event_pmu_context *epc = event->pmu_ctx; 2628 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2629 2630 /* 2631 * Groups consisting entirely of software events can always go on. 2632 */ 2633 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2634 return 1; 2635 /* 2636 * If an exclusive group is already on, no other hardware 2637 * events can go on. 2638 */ 2639 if (cpc->exclusive) 2640 return 0; 2641 /* 2642 * If this group is exclusive and there are already 2643 * events on the CPU, it can't go on. 2644 */ 2645 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2646 return 0; 2647 /* 2648 * Otherwise, try to add it if all previous groups were able 2649 * to go on. 2650 */ 2651 return can_add_hw; 2652 } 2653 2654 static void add_event_to_ctx(struct perf_event *event, 2655 struct perf_event_context *ctx) 2656 { 2657 list_add_event(event, ctx); 2658 perf_group_attach(event); 2659 } 2660 2661 static void task_ctx_sched_out(struct perf_event_context *ctx, 2662 enum event_type_t event_type) 2663 { 2664 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2665 2666 if (!cpuctx->task_ctx) 2667 return; 2668 2669 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2670 return; 2671 2672 ctx_sched_out(ctx, event_type); 2673 } 2674 2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2676 struct perf_event_context *ctx) 2677 { 2678 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_PINNED); 2681 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2682 if (ctx) 2683 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2684 } 2685 2686 /* 2687 * We want to maintain the following priority of scheduling: 2688 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2689 * - task pinned (EVENT_PINNED) 2690 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2691 * - task flexible (EVENT_FLEXIBLE). 2692 * 2693 * In order to avoid unscheduling and scheduling back in everything every 2694 * time an event is added, only do it for the groups of equal priority and 2695 * below. 2696 * 2697 * This can be called after a batch operation on task events, in which case 2698 * event_type is a bit mask of the types of events involved. For CPU events, 2699 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2700 */ 2701 /* 2702 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2703 * event to the context or enabling existing event in the context. We can 2704 * probably optimize it by rescheduling only affected pmu_ctx. 2705 */ 2706 static void ctx_resched(struct perf_cpu_context *cpuctx, 2707 struct perf_event_context *task_ctx, 2708 enum event_type_t event_type) 2709 { 2710 bool cpu_event = !!(event_type & EVENT_CPU); 2711 2712 /* 2713 * If pinned groups are involved, flexible groups also need to be 2714 * scheduled out. 2715 */ 2716 if (event_type & EVENT_PINNED) 2717 event_type |= EVENT_FLEXIBLE; 2718 2719 event_type &= EVENT_ALL; 2720 2721 perf_ctx_disable(&cpuctx->ctx, false); 2722 if (task_ctx) { 2723 perf_ctx_disable(task_ctx, false); 2724 task_ctx_sched_out(task_ctx, event_type); 2725 } 2726 2727 /* 2728 * Decide which cpu ctx groups to schedule out based on the types 2729 * of events that caused rescheduling: 2730 * - EVENT_CPU: schedule out corresponding groups; 2731 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2732 * - otherwise, do nothing more. 2733 */ 2734 if (cpu_event) 2735 ctx_sched_out(&cpuctx->ctx, event_type); 2736 else if (event_type & EVENT_PINNED) 2737 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2738 2739 perf_event_sched_in(cpuctx, task_ctx); 2740 2741 perf_ctx_enable(&cpuctx->ctx, false); 2742 if (task_ctx) 2743 perf_ctx_enable(task_ctx, false); 2744 } 2745 2746 void perf_pmu_resched(struct pmu *pmu) 2747 { 2748 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2749 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2750 2751 perf_ctx_lock(cpuctx, task_ctx); 2752 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2753 perf_ctx_unlock(cpuctx, task_ctx); 2754 } 2755 2756 /* 2757 * Cross CPU call to install and enable a performance event 2758 * 2759 * Very similar to remote_function() + event_function() but cannot assume that 2760 * things like ctx->is_active and cpuctx->task_ctx are set. 2761 */ 2762 static int __perf_install_in_context(void *info) 2763 { 2764 struct perf_event *event = info; 2765 struct perf_event_context *ctx = event->ctx; 2766 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2767 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2768 bool reprogram = true; 2769 int ret = 0; 2770 2771 raw_spin_lock(&cpuctx->ctx.lock); 2772 if (ctx->task) { 2773 raw_spin_lock(&ctx->lock); 2774 task_ctx = ctx; 2775 2776 reprogram = (ctx->task == current); 2777 2778 /* 2779 * If the task is running, it must be running on this CPU, 2780 * otherwise we cannot reprogram things. 2781 * 2782 * If its not running, we don't care, ctx->lock will 2783 * serialize against it becoming runnable. 2784 */ 2785 if (task_curr(ctx->task) && !reprogram) { 2786 ret = -ESRCH; 2787 goto unlock; 2788 } 2789 2790 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2791 } else if (task_ctx) { 2792 raw_spin_lock(&task_ctx->lock); 2793 } 2794 2795 #ifdef CONFIG_CGROUP_PERF 2796 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2797 /* 2798 * If the current cgroup doesn't match the event's 2799 * cgroup, we should not try to schedule it. 2800 */ 2801 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2802 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2803 event->cgrp->css.cgroup); 2804 } 2805 #endif 2806 2807 if (reprogram) { 2808 ctx_sched_out(ctx, EVENT_TIME); 2809 add_event_to_ctx(event, ctx); 2810 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2811 } else { 2812 add_event_to_ctx(event, ctx); 2813 } 2814 2815 unlock: 2816 perf_ctx_unlock(cpuctx, task_ctx); 2817 2818 return ret; 2819 } 2820 2821 static bool exclusive_event_installable(struct perf_event *event, 2822 struct perf_event_context *ctx); 2823 2824 /* 2825 * Attach a performance event to a context. 2826 * 2827 * Very similar to event_function_call, see comment there. 2828 */ 2829 static void 2830 perf_install_in_context(struct perf_event_context *ctx, 2831 struct perf_event *event, 2832 int cpu) 2833 { 2834 struct task_struct *task = READ_ONCE(ctx->task); 2835 2836 lockdep_assert_held(&ctx->mutex); 2837 2838 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2839 2840 if (event->cpu != -1) 2841 WARN_ON_ONCE(event->cpu != cpu); 2842 2843 /* 2844 * Ensures that if we can observe event->ctx, both the event and ctx 2845 * will be 'complete'. See perf_iterate_sb_cpu(). 2846 */ 2847 smp_store_release(&event->ctx, ctx); 2848 2849 /* 2850 * perf_event_attr::disabled events will not run and can be initialized 2851 * without IPI. Except when this is the first event for the context, in 2852 * that case we need the magic of the IPI to set ctx->is_active. 2853 * 2854 * The IOC_ENABLE that is sure to follow the creation of a disabled 2855 * event will issue the IPI and reprogram the hardware. 2856 */ 2857 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2858 ctx->nr_events && !is_cgroup_event(event)) { 2859 raw_spin_lock_irq(&ctx->lock); 2860 if (ctx->task == TASK_TOMBSTONE) { 2861 raw_spin_unlock_irq(&ctx->lock); 2862 return; 2863 } 2864 add_event_to_ctx(event, ctx); 2865 raw_spin_unlock_irq(&ctx->lock); 2866 return; 2867 } 2868 2869 if (!task) { 2870 cpu_function_call(cpu, __perf_install_in_context, event); 2871 return; 2872 } 2873 2874 /* 2875 * Should not happen, we validate the ctx is still alive before calling. 2876 */ 2877 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2878 return; 2879 2880 /* 2881 * Installing events is tricky because we cannot rely on ctx->is_active 2882 * to be set in case this is the nr_events 0 -> 1 transition. 2883 * 2884 * Instead we use task_curr(), which tells us if the task is running. 2885 * However, since we use task_curr() outside of rq::lock, we can race 2886 * against the actual state. This means the result can be wrong. 2887 * 2888 * If we get a false positive, we retry, this is harmless. 2889 * 2890 * If we get a false negative, things are complicated. If we are after 2891 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2892 * value must be correct. If we're before, it doesn't matter since 2893 * perf_event_context_sched_in() will program the counter. 2894 * 2895 * However, this hinges on the remote context switch having observed 2896 * our task->perf_event_ctxp[] store, such that it will in fact take 2897 * ctx::lock in perf_event_context_sched_in(). 2898 * 2899 * We do this by task_function_call(), if the IPI fails to hit the task 2900 * we know any future context switch of task must see the 2901 * perf_event_ctpx[] store. 2902 */ 2903 2904 /* 2905 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2906 * task_cpu() load, such that if the IPI then does not find the task 2907 * running, a future context switch of that task must observe the 2908 * store. 2909 */ 2910 smp_mb(); 2911 again: 2912 if (!task_function_call(task, __perf_install_in_context, event)) 2913 return; 2914 2915 raw_spin_lock_irq(&ctx->lock); 2916 task = ctx->task; 2917 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2918 /* 2919 * Cannot happen because we already checked above (which also 2920 * cannot happen), and we hold ctx->mutex, which serializes us 2921 * against perf_event_exit_task_context(). 2922 */ 2923 raw_spin_unlock_irq(&ctx->lock); 2924 return; 2925 } 2926 /* 2927 * If the task is not running, ctx->lock will avoid it becoming so, 2928 * thus we can safely install the event. 2929 */ 2930 if (task_curr(task)) { 2931 raw_spin_unlock_irq(&ctx->lock); 2932 goto again; 2933 } 2934 add_event_to_ctx(event, ctx); 2935 raw_spin_unlock_irq(&ctx->lock); 2936 } 2937 2938 /* 2939 * Cross CPU call to enable a performance event 2940 */ 2941 static void __perf_event_enable(struct perf_event *event, 2942 struct perf_cpu_context *cpuctx, 2943 struct perf_event_context *ctx, 2944 void *info) 2945 { 2946 struct perf_event *leader = event->group_leader; 2947 struct perf_event_context *task_ctx; 2948 2949 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2950 event->state <= PERF_EVENT_STATE_ERROR) 2951 return; 2952 2953 if (ctx->is_active) 2954 ctx_sched_out(ctx, EVENT_TIME); 2955 2956 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2957 perf_cgroup_event_enable(event, ctx); 2958 2959 if (!ctx->is_active) 2960 return; 2961 2962 if (!event_filter_match(event)) { 2963 ctx_sched_in(ctx, EVENT_TIME); 2964 return; 2965 } 2966 2967 /* 2968 * If the event is in a group and isn't the group leader, 2969 * then don't put it on unless the group is on. 2970 */ 2971 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2972 ctx_sched_in(ctx, EVENT_TIME); 2973 return; 2974 } 2975 2976 task_ctx = cpuctx->task_ctx; 2977 if (ctx->task) 2978 WARN_ON_ONCE(task_ctx != ctx); 2979 2980 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2981 } 2982 2983 /* 2984 * Enable an event. 2985 * 2986 * If event->ctx is a cloned context, callers must make sure that 2987 * every task struct that event->ctx->task could possibly point to 2988 * remains valid. This condition is satisfied when called through 2989 * perf_event_for_each_child or perf_event_for_each as described 2990 * for perf_event_disable. 2991 */ 2992 static void _perf_event_enable(struct perf_event *event) 2993 { 2994 struct perf_event_context *ctx = event->ctx; 2995 2996 raw_spin_lock_irq(&ctx->lock); 2997 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2998 event->state < PERF_EVENT_STATE_ERROR) { 2999 out: 3000 raw_spin_unlock_irq(&ctx->lock); 3001 return; 3002 } 3003 3004 /* 3005 * If the event is in error state, clear that first. 3006 * 3007 * That way, if we see the event in error state below, we know that it 3008 * has gone back into error state, as distinct from the task having 3009 * been scheduled away before the cross-call arrived. 3010 */ 3011 if (event->state == PERF_EVENT_STATE_ERROR) { 3012 /* 3013 * Detached SIBLING events cannot leave ERROR state. 3014 */ 3015 if (event->event_caps & PERF_EV_CAP_SIBLING && 3016 event->group_leader == event) 3017 goto out; 3018 3019 event->state = PERF_EVENT_STATE_OFF; 3020 } 3021 raw_spin_unlock_irq(&ctx->lock); 3022 3023 event_function_call(event, __perf_event_enable, NULL); 3024 } 3025 3026 /* 3027 * See perf_event_disable(); 3028 */ 3029 void perf_event_enable(struct perf_event *event) 3030 { 3031 struct perf_event_context *ctx; 3032 3033 ctx = perf_event_ctx_lock(event); 3034 _perf_event_enable(event); 3035 perf_event_ctx_unlock(event, ctx); 3036 } 3037 EXPORT_SYMBOL_GPL(perf_event_enable); 3038 3039 struct stop_event_data { 3040 struct perf_event *event; 3041 unsigned int restart; 3042 }; 3043 3044 static int __perf_event_stop(void *info) 3045 { 3046 struct stop_event_data *sd = info; 3047 struct perf_event *event = sd->event; 3048 3049 /* if it's already INACTIVE, do nothing */ 3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3051 return 0; 3052 3053 /* matches smp_wmb() in event_sched_in() */ 3054 smp_rmb(); 3055 3056 /* 3057 * There is a window with interrupts enabled before we get here, 3058 * so we need to check again lest we try to stop another CPU's event. 3059 */ 3060 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3061 return -EAGAIN; 3062 3063 event->pmu->stop(event, PERF_EF_UPDATE); 3064 3065 /* 3066 * May race with the actual stop (through perf_pmu_output_stop()), 3067 * but it is only used for events with AUX ring buffer, and such 3068 * events will refuse to restart because of rb::aux_mmap_count==0, 3069 * see comments in perf_aux_output_begin(). 3070 * 3071 * Since this is happening on an event-local CPU, no trace is lost 3072 * while restarting. 3073 */ 3074 if (sd->restart) 3075 event->pmu->start(event, 0); 3076 3077 return 0; 3078 } 3079 3080 static int perf_event_stop(struct perf_event *event, int restart) 3081 { 3082 struct stop_event_data sd = { 3083 .event = event, 3084 .restart = restart, 3085 }; 3086 int ret = 0; 3087 3088 do { 3089 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3090 return 0; 3091 3092 /* matches smp_wmb() in event_sched_in() */ 3093 smp_rmb(); 3094 3095 /* 3096 * We only want to restart ACTIVE events, so if the event goes 3097 * inactive here (event->oncpu==-1), there's nothing more to do; 3098 * fall through with ret==-ENXIO. 3099 */ 3100 ret = cpu_function_call(READ_ONCE(event->oncpu), 3101 __perf_event_stop, &sd); 3102 } while (ret == -EAGAIN); 3103 3104 return ret; 3105 } 3106 3107 /* 3108 * In order to contain the amount of racy and tricky in the address filter 3109 * configuration management, it is a two part process: 3110 * 3111 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3112 * we update the addresses of corresponding vmas in 3113 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3114 * (p2) when an event is scheduled in (pmu::add), it calls 3115 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3116 * if the generation has changed since the previous call. 3117 * 3118 * If (p1) happens while the event is active, we restart it to force (p2). 3119 * 3120 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3121 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3122 * ioctl; 3123 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3124 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3125 * for reading; 3126 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3127 * of exec. 3128 */ 3129 void perf_event_addr_filters_sync(struct perf_event *event) 3130 { 3131 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3132 3133 if (!has_addr_filter(event)) 3134 return; 3135 3136 raw_spin_lock(&ifh->lock); 3137 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3138 event->pmu->addr_filters_sync(event); 3139 event->hw.addr_filters_gen = event->addr_filters_gen; 3140 } 3141 raw_spin_unlock(&ifh->lock); 3142 } 3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3144 3145 static int _perf_event_refresh(struct perf_event *event, int refresh) 3146 { 3147 /* 3148 * not supported on inherited events 3149 */ 3150 if (event->attr.inherit || !is_sampling_event(event)) 3151 return -EINVAL; 3152 3153 atomic_add(refresh, &event->event_limit); 3154 _perf_event_enable(event); 3155 3156 return 0; 3157 } 3158 3159 /* 3160 * See perf_event_disable() 3161 */ 3162 int perf_event_refresh(struct perf_event *event, int refresh) 3163 { 3164 struct perf_event_context *ctx; 3165 int ret; 3166 3167 ctx = perf_event_ctx_lock(event); 3168 ret = _perf_event_refresh(event, refresh); 3169 perf_event_ctx_unlock(event, ctx); 3170 3171 return ret; 3172 } 3173 EXPORT_SYMBOL_GPL(perf_event_refresh); 3174 3175 static int perf_event_modify_breakpoint(struct perf_event *bp, 3176 struct perf_event_attr *attr) 3177 { 3178 int err; 3179 3180 _perf_event_disable(bp); 3181 3182 err = modify_user_hw_breakpoint_check(bp, attr, true); 3183 3184 if (!bp->attr.disabled) 3185 _perf_event_enable(bp); 3186 3187 return err; 3188 } 3189 3190 /* 3191 * Copy event-type-independent attributes that may be modified. 3192 */ 3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3194 const struct perf_event_attr *from) 3195 { 3196 to->sig_data = from->sig_data; 3197 } 3198 3199 static int perf_event_modify_attr(struct perf_event *event, 3200 struct perf_event_attr *attr) 3201 { 3202 int (*func)(struct perf_event *, struct perf_event_attr *); 3203 struct perf_event *child; 3204 int err; 3205 3206 if (event->attr.type != attr->type) 3207 return -EINVAL; 3208 3209 switch (event->attr.type) { 3210 case PERF_TYPE_BREAKPOINT: 3211 func = perf_event_modify_breakpoint; 3212 break; 3213 default: 3214 /* Place holder for future additions. */ 3215 return -EOPNOTSUPP; 3216 } 3217 3218 WARN_ON_ONCE(event->ctx->parent_ctx); 3219 3220 mutex_lock(&event->child_mutex); 3221 /* 3222 * Event-type-independent attributes must be copied before event-type 3223 * modification, which will validate that final attributes match the 3224 * source attributes after all relevant attributes have been copied. 3225 */ 3226 perf_event_modify_copy_attr(&event->attr, attr); 3227 err = func(event, attr); 3228 if (err) 3229 goto out; 3230 list_for_each_entry(child, &event->child_list, child_list) { 3231 perf_event_modify_copy_attr(&child->attr, attr); 3232 err = func(child, attr); 3233 if (err) 3234 goto out; 3235 } 3236 out: 3237 mutex_unlock(&event->child_mutex); 3238 return err; 3239 } 3240 3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3242 enum event_type_t event_type) 3243 { 3244 struct perf_event_context *ctx = pmu_ctx->ctx; 3245 struct perf_event *event, *tmp; 3246 struct pmu *pmu = pmu_ctx->pmu; 3247 3248 if (ctx->task && !ctx->is_active) { 3249 struct perf_cpu_pmu_context *cpc; 3250 3251 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3252 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3253 cpc->task_epc = NULL; 3254 } 3255 3256 if (!event_type) 3257 return; 3258 3259 perf_pmu_disable(pmu); 3260 if (event_type & EVENT_PINNED) { 3261 list_for_each_entry_safe(event, tmp, 3262 &pmu_ctx->pinned_active, 3263 active_list) 3264 group_sched_out(event, ctx); 3265 } 3266 3267 if (event_type & EVENT_FLEXIBLE) { 3268 list_for_each_entry_safe(event, tmp, 3269 &pmu_ctx->flexible_active, 3270 active_list) 3271 group_sched_out(event, ctx); 3272 /* 3273 * Since we cleared EVENT_FLEXIBLE, also clear 3274 * rotate_necessary, is will be reset by 3275 * ctx_flexible_sched_in() when needed. 3276 */ 3277 pmu_ctx->rotate_necessary = 0; 3278 } 3279 perf_pmu_enable(pmu); 3280 } 3281 3282 static void 3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3284 { 3285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3286 struct perf_event_pmu_context *pmu_ctx; 3287 int is_active = ctx->is_active; 3288 bool cgroup = event_type & EVENT_CGROUP; 3289 3290 event_type &= ~EVENT_CGROUP; 3291 3292 lockdep_assert_held(&ctx->lock); 3293 3294 if (likely(!ctx->nr_events)) { 3295 /* 3296 * See __perf_remove_from_context(). 3297 */ 3298 WARN_ON_ONCE(ctx->is_active); 3299 if (ctx->task) 3300 WARN_ON_ONCE(cpuctx->task_ctx); 3301 return; 3302 } 3303 3304 /* 3305 * Always update time if it was set; not only when it changes. 3306 * Otherwise we can 'forget' to update time for any but the last 3307 * context we sched out. For example: 3308 * 3309 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3310 * ctx_sched_out(.event_type = EVENT_PINNED) 3311 * 3312 * would only update time for the pinned events. 3313 */ 3314 if (is_active & EVENT_TIME) { 3315 /* update (and stop) ctx time */ 3316 update_context_time(ctx); 3317 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3318 /* 3319 * CPU-release for the below ->is_active store, 3320 * see __load_acquire() in perf_event_time_now() 3321 */ 3322 barrier(); 3323 } 3324 3325 ctx->is_active &= ~event_type; 3326 if (!(ctx->is_active & EVENT_ALL)) 3327 ctx->is_active = 0; 3328 3329 if (ctx->task) { 3330 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3331 if (!ctx->is_active) 3332 cpuctx->task_ctx = NULL; 3333 } 3334 3335 is_active ^= ctx->is_active; /* changed bits */ 3336 3337 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3338 if (cgroup && !pmu_ctx->nr_cgroups) 3339 continue; 3340 __pmu_ctx_sched_out(pmu_ctx, is_active); 3341 } 3342 } 3343 3344 /* 3345 * Test whether two contexts are equivalent, i.e. whether they have both been 3346 * cloned from the same version of the same context. 3347 * 3348 * Equivalence is measured using a generation number in the context that is 3349 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3350 * and list_del_event(). 3351 */ 3352 static int context_equiv(struct perf_event_context *ctx1, 3353 struct perf_event_context *ctx2) 3354 { 3355 lockdep_assert_held(&ctx1->lock); 3356 lockdep_assert_held(&ctx2->lock); 3357 3358 /* Pinning disables the swap optimization */ 3359 if (ctx1->pin_count || ctx2->pin_count) 3360 return 0; 3361 3362 /* If ctx1 is the parent of ctx2 */ 3363 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3364 return 1; 3365 3366 /* If ctx2 is the parent of ctx1 */ 3367 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3368 return 1; 3369 3370 /* 3371 * If ctx1 and ctx2 have the same parent; we flatten the parent 3372 * hierarchy, see perf_event_init_context(). 3373 */ 3374 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3375 ctx1->parent_gen == ctx2->parent_gen) 3376 return 1; 3377 3378 /* Unmatched */ 3379 return 0; 3380 } 3381 3382 static void __perf_event_sync_stat(struct perf_event *event, 3383 struct perf_event *next_event) 3384 { 3385 u64 value; 3386 3387 if (!event->attr.inherit_stat) 3388 return; 3389 3390 /* 3391 * Update the event value, we cannot use perf_event_read() 3392 * because we're in the middle of a context switch and have IRQs 3393 * disabled, which upsets smp_call_function_single(), however 3394 * we know the event must be on the current CPU, therefore we 3395 * don't need to use it. 3396 */ 3397 if (event->state == PERF_EVENT_STATE_ACTIVE) 3398 event->pmu->read(event); 3399 3400 perf_event_update_time(event); 3401 3402 /* 3403 * In order to keep per-task stats reliable we need to flip the event 3404 * values when we flip the contexts. 3405 */ 3406 value = local64_read(&next_event->count); 3407 value = local64_xchg(&event->count, value); 3408 local64_set(&next_event->count, value); 3409 3410 swap(event->total_time_enabled, next_event->total_time_enabled); 3411 swap(event->total_time_running, next_event->total_time_running); 3412 3413 /* 3414 * Since we swizzled the values, update the user visible data too. 3415 */ 3416 perf_event_update_userpage(event); 3417 perf_event_update_userpage(next_event); 3418 } 3419 3420 static void perf_event_sync_stat(struct perf_event_context *ctx, 3421 struct perf_event_context *next_ctx) 3422 { 3423 struct perf_event *event, *next_event; 3424 3425 if (!ctx->nr_stat) 3426 return; 3427 3428 update_context_time(ctx); 3429 3430 event = list_first_entry(&ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 next_event = list_first_entry(&next_ctx->event_list, 3434 struct perf_event, event_entry); 3435 3436 while (&event->event_entry != &ctx->event_list && 3437 &next_event->event_entry != &next_ctx->event_list) { 3438 3439 __perf_event_sync_stat(event, next_event); 3440 3441 event = list_next_entry(event, event_entry); 3442 next_event = list_next_entry(next_event, event_entry); 3443 } 3444 } 3445 3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3447 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3448 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3449 !list_entry_is_head(pos1, head1, member) && \ 3450 !list_entry_is_head(pos2, head2, member); \ 3451 pos1 = list_next_entry(pos1, member), \ 3452 pos2 = list_next_entry(pos2, member)) 3453 3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3455 struct perf_event_context *next_ctx) 3456 { 3457 struct perf_event_pmu_context *prev_epc, *next_epc; 3458 3459 if (!prev_ctx->nr_task_data) 3460 return; 3461 3462 double_list_for_each_entry(prev_epc, next_epc, 3463 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3464 pmu_ctx_entry) { 3465 3466 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3467 continue; 3468 3469 /* 3470 * PMU specific parts of task perf context can require 3471 * additional synchronization. As an example of such 3472 * synchronization see implementation details of Intel 3473 * LBR call stack data profiling; 3474 */ 3475 if (prev_epc->pmu->swap_task_ctx) 3476 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3477 else 3478 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3479 } 3480 } 3481 3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3483 { 3484 struct perf_event_pmu_context *pmu_ctx; 3485 struct perf_cpu_pmu_context *cpc; 3486 3487 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3488 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3489 3490 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3491 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3492 } 3493 } 3494 3495 static void 3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3497 { 3498 struct perf_event_context *ctx = task->perf_event_ctxp; 3499 struct perf_event_context *next_ctx; 3500 struct perf_event_context *parent, *next_parent; 3501 int do_switch = 1; 3502 3503 if (likely(!ctx)) 3504 return; 3505 3506 rcu_read_lock(); 3507 next_ctx = rcu_dereference(next->perf_event_ctxp); 3508 if (!next_ctx) 3509 goto unlock; 3510 3511 parent = rcu_dereference(ctx->parent_ctx); 3512 next_parent = rcu_dereference(next_ctx->parent_ctx); 3513 3514 /* If neither context have a parent context; they cannot be clones. */ 3515 if (!parent && !next_parent) 3516 goto unlock; 3517 3518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3519 /* 3520 * Looks like the two contexts are clones, so we might be 3521 * able to optimize the context switch. We lock both 3522 * contexts and check that they are clones under the 3523 * lock (including re-checking that neither has been 3524 * uncloned in the meantime). It doesn't matter which 3525 * order we take the locks because no other cpu could 3526 * be trying to lock both of these tasks. 3527 */ 3528 raw_spin_lock(&ctx->lock); 3529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3530 if (context_equiv(ctx, next_ctx)) { 3531 3532 perf_ctx_disable(ctx, false); 3533 3534 /* PMIs are disabled; ctx->nr_pending is stable. */ 3535 if (local_read(&ctx->nr_pending) || 3536 local_read(&next_ctx->nr_pending)) { 3537 /* 3538 * Must not swap out ctx when there's pending 3539 * events that rely on the ctx->task relation. 3540 */ 3541 raw_spin_unlock(&next_ctx->lock); 3542 rcu_read_unlock(); 3543 goto inside_switch; 3544 } 3545 3546 WRITE_ONCE(ctx->task, next); 3547 WRITE_ONCE(next_ctx->task, task); 3548 3549 perf_ctx_sched_task_cb(ctx, false); 3550 perf_event_swap_task_ctx_data(ctx, next_ctx); 3551 3552 perf_ctx_enable(ctx, false); 3553 3554 /* 3555 * RCU_INIT_POINTER here is safe because we've not 3556 * modified the ctx and the above modification of 3557 * ctx->task and ctx->task_ctx_data are immaterial 3558 * since those values are always verified under 3559 * ctx->lock which we're now holding. 3560 */ 3561 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3562 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3563 3564 do_switch = 0; 3565 3566 perf_event_sync_stat(ctx, next_ctx); 3567 } 3568 raw_spin_unlock(&next_ctx->lock); 3569 raw_spin_unlock(&ctx->lock); 3570 } 3571 unlock: 3572 rcu_read_unlock(); 3573 3574 if (do_switch) { 3575 raw_spin_lock(&ctx->lock); 3576 perf_ctx_disable(ctx, false); 3577 3578 inside_switch: 3579 perf_ctx_sched_task_cb(ctx, false); 3580 task_ctx_sched_out(ctx, EVENT_ALL); 3581 3582 perf_ctx_enable(ctx, false); 3583 raw_spin_unlock(&ctx->lock); 3584 } 3585 } 3586 3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3589 3590 void perf_sched_cb_dec(struct pmu *pmu) 3591 { 3592 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3593 3594 this_cpu_dec(perf_sched_cb_usages); 3595 barrier(); 3596 3597 if (!--cpc->sched_cb_usage) 3598 list_del(&cpc->sched_cb_entry); 3599 } 3600 3601 3602 void perf_sched_cb_inc(struct pmu *pmu) 3603 { 3604 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3605 3606 if (!cpc->sched_cb_usage++) 3607 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3608 3609 barrier(); 3610 this_cpu_inc(perf_sched_cb_usages); 3611 } 3612 3613 /* 3614 * This function provides the context switch callback to the lower code 3615 * layer. It is invoked ONLY when the context switch callback is enabled. 3616 * 3617 * This callback is relevant even to per-cpu events; for example multi event 3618 * PEBS requires this to provide PID/TID information. This requires we flush 3619 * all queued PEBS records before we context switch to a new task. 3620 */ 3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3622 { 3623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3624 struct pmu *pmu; 3625 3626 pmu = cpc->epc.pmu; 3627 3628 /* software PMUs will not have sched_task */ 3629 if (WARN_ON_ONCE(!pmu->sched_task)) 3630 return; 3631 3632 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3633 perf_pmu_disable(pmu); 3634 3635 pmu->sched_task(cpc->task_epc, sched_in); 3636 3637 perf_pmu_enable(pmu); 3638 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3639 } 3640 3641 static void perf_pmu_sched_task(struct task_struct *prev, 3642 struct task_struct *next, 3643 bool sched_in) 3644 { 3645 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3646 struct perf_cpu_pmu_context *cpc; 3647 3648 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3649 if (prev == next || cpuctx->task_ctx) 3650 return; 3651 3652 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3653 __perf_pmu_sched_task(cpc, sched_in); 3654 } 3655 3656 static void perf_event_switch(struct task_struct *task, 3657 struct task_struct *next_prev, bool sched_in); 3658 3659 /* 3660 * Called from scheduler to remove the events of the current task, 3661 * with interrupts disabled. 3662 * 3663 * We stop each event and update the event value in event->count. 3664 * 3665 * This does not protect us against NMI, but disable() 3666 * sets the disabled bit in the control field of event _before_ 3667 * accessing the event control register. If a NMI hits, then it will 3668 * not restart the event. 3669 */ 3670 void __perf_event_task_sched_out(struct task_struct *task, 3671 struct task_struct *next) 3672 { 3673 if (__this_cpu_read(perf_sched_cb_usages)) 3674 perf_pmu_sched_task(task, next, false); 3675 3676 if (atomic_read(&nr_switch_events)) 3677 perf_event_switch(task, next, false); 3678 3679 perf_event_context_sched_out(task, next); 3680 3681 /* 3682 * if cgroup events exist on this CPU, then we need 3683 * to check if we have to switch out PMU state. 3684 * cgroup event are system-wide mode only 3685 */ 3686 perf_cgroup_switch(next); 3687 } 3688 3689 static bool perf_less_group_idx(const void *l, const void *r) 3690 { 3691 const struct perf_event *le = *(const struct perf_event **)l; 3692 const struct perf_event *re = *(const struct perf_event **)r; 3693 3694 return le->group_index < re->group_index; 3695 } 3696 3697 static void swap_ptr(void *l, void *r) 3698 { 3699 void **lp = l, **rp = r; 3700 3701 swap(*lp, *rp); 3702 } 3703 3704 static const struct min_heap_callbacks perf_min_heap = { 3705 .elem_size = sizeof(struct perf_event *), 3706 .less = perf_less_group_idx, 3707 .swp = swap_ptr, 3708 }; 3709 3710 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3711 { 3712 struct perf_event **itrs = heap->data; 3713 3714 if (event) { 3715 itrs[heap->nr] = event; 3716 heap->nr++; 3717 } 3718 } 3719 3720 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3721 { 3722 struct perf_cpu_pmu_context *cpc; 3723 3724 if (!pmu_ctx->ctx->task) 3725 return; 3726 3727 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3728 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3729 cpc->task_epc = pmu_ctx; 3730 } 3731 3732 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3733 struct perf_event_groups *groups, int cpu, 3734 struct pmu *pmu, 3735 int (*func)(struct perf_event *, void *), 3736 void *data) 3737 { 3738 #ifdef CONFIG_CGROUP_PERF 3739 struct cgroup_subsys_state *css = NULL; 3740 #endif 3741 struct perf_cpu_context *cpuctx = NULL; 3742 /* Space for per CPU and/or any CPU event iterators. */ 3743 struct perf_event *itrs[2]; 3744 struct min_heap event_heap; 3745 struct perf_event **evt; 3746 int ret; 3747 3748 if (pmu->filter && pmu->filter(pmu, cpu)) 3749 return 0; 3750 3751 if (!ctx->task) { 3752 cpuctx = this_cpu_ptr(&perf_cpu_context); 3753 event_heap = (struct min_heap){ 3754 .data = cpuctx->heap, 3755 .nr = 0, 3756 .size = cpuctx->heap_size, 3757 }; 3758 3759 lockdep_assert_held(&cpuctx->ctx.lock); 3760 3761 #ifdef CONFIG_CGROUP_PERF 3762 if (cpuctx->cgrp) 3763 css = &cpuctx->cgrp->css; 3764 #endif 3765 } else { 3766 event_heap = (struct min_heap){ 3767 .data = itrs, 3768 .nr = 0, 3769 .size = ARRAY_SIZE(itrs), 3770 }; 3771 /* Events not within a CPU context may be on any CPU. */ 3772 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3773 } 3774 evt = event_heap.data; 3775 3776 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3777 3778 #ifdef CONFIG_CGROUP_PERF 3779 for (; css; css = css->parent) 3780 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3781 #endif 3782 3783 if (event_heap.nr) { 3784 __link_epc((*evt)->pmu_ctx); 3785 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3786 } 3787 3788 min_heapify_all(&event_heap, &perf_min_heap); 3789 3790 while (event_heap.nr) { 3791 ret = func(*evt, data); 3792 if (ret) 3793 return ret; 3794 3795 *evt = perf_event_groups_next(*evt, pmu); 3796 if (*evt) 3797 min_heapify(&event_heap, 0, &perf_min_heap); 3798 else 3799 min_heap_pop(&event_heap, &perf_min_heap); 3800 } 3801 3802 return 0; 3803 } 3804 3805 /* 3806 * Because the userpage is strictly per-event (there is no concept of context, 3807 * so there cannot be a context indirection), every userpage must be updated 3808 * when context time starts :-( 3809 * 3810 * IOW, we must not miss EVENT_TIME edges. 3811 */ 3812 static inline bool event_update_userpage(struct perf_event *event) 3813 { 3814 if (likely(!atomic_read(&event->mmap_count))) 3815 return false; 3816 3817 perf_event_update_time(event); 3818 perf_event_update_userpage(event); 3819 3820 return true; 3821 } 3822 3823 static inline void group_update_userpage(struct perf_event *group_event) 3824 { 3825 struct perf_event *event; 3826 3827 if (!event_update_userpage(group_event)) 3828 return; 3829 3830 for_each_sibling_event(event, group_event) 3831 event_update_userpage(event); 3832 } 3833 3834 static int merge_sched_in(struct perf_event *event, void *data) 3835 { 3836 struct perf_event_context *ctx = event->ctx; 3837 int *can_add_hw = data; 3838 3839 if (event->state <= PERF_EVENT_STATE_OFF) 3840 return 0; 3841 3842 if (!event_filter_match(event)) 3843 return 0; 3844 3845 if (group_can_go_on(event, *can_add_hw)) { 3846 if (!group_sched_in(event, ctx)) 3847 list_add_tail(&event->active_list, get_event_list(event)); 3848 } 3849 3850 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3851 *can_add_hw = 0; 3852 if (event->attr.pinned) { 3853 perf_cgroup_event_disable(event, ctx); 3854 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3855 } else { 3856 struct perf_cpu_pmu_context *cpc; 3857 3858 event->pmu_ctx->rotate_necessary = 1; 3859 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3860 perf_mux_hrtimer_restart(cpc); 3861 group_update_userpage(event); 3862 } 3863 } 3864 3865 return 0; 3866 } 3867 3868 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3869 struct perf_event_groups *groups, 3870 struct pmu *pmu) 3871 { 3872 int can_add_hw = 1; 3873 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3874 merge_sched_in, &can_add_hw); 3875 } 3876 3877 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3878 struct perf_event_groups *groups, 3879 bool cgroup) 3880 { 3881 struct perf_event_pmu_context *pmu_ctx; 3882 3883 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3884 if (cgroup && !pmu_ctx->nr_cgroups) 3885 continue; 3886 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3887 } 3888 } 3889 3890 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3891 struct pmu *pmu) 3892 { 3893 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3894 } 3895 3896 static void 3897 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3898 { 3899 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3900 int is_active = ctx->is_active; 3901 bool cgroup = event_type & EVENT_CGROUP; 3902 3903 event_type &= ~EVENT_CGROUP; 3904 3905 lockdep_assert_held(&ctx->lock); 3906 3907 if (likely(!ctx->nr_events)) 3908 return; 3909 3910 if (!(is_active & EVENT_TIME)) { 3911 /* start ctx time */ 3912 __update_context_time(ctx, false); 3913 perf_cgroup_set_timestamp(cpuctx); 3914 /* 3915 * CPU-release for the below ->is_active store, 3916 * see __load_acquire() in perf_event_time_now() 3917 */ 3918 barrier(); 3919 } 3920 3921 ctx->is_active |= (event_type | EVENT_TIME); 3922 if (ctx->task) { 3923 if (!is_active) 3924 cpuctx->task_ctx = ctx; 3925 else 3926 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3927 } 3928 3929 is_active ^= ctx->is_active; /* changed bits */ 3930 3931 /* 3932 * First go through the list and put on any pinned groups 3933 * in order to give them the best chance of going on. 3934 */ 3935 if (is_active & EVENT_PINNED) 3936 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3937 3938 /* Then walk through the lower prio flexible groups */ 3939 if (is_active & EVENT_FLEXIBLE) 3940 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3941 } 3942 3943 static void perf_event_context_sched_in(struct task_struct *task) 3944 { 3945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3946 struct perf_event_context *ctx; 3947 3948 rcu_read_lock(); 3949 ctx = rcu_dereference(task->perf_event_ctxp); 3950 if (!ctx) 3951 goto rcu_unlock; 3952 3953 if (cpuctx->task_ctx == ctx) { 3954 perf_ctx_lock(cpuctx, ctx); 3955 perf_ctx_disable(ctx, false); 3956 3957 perf_ctx_sched_task_cb(ctx, true); 3958 3959 perf_ctx_enable(ctx, false); 3960 perf_ctx_unlock(cpuctx, ctx); 3961 goto rcu_unlock; 3962 } 3963 3964 perf_ctx_lock(cpuctx, ctx); 3965 /* 3966 * We must check ctx->nr_events while holding ctx->lock, such 3967 * that we serialize against perf_install_in_context(). 3968 */ 3969 if (!ctx->nr_events) 3970 goto unlock; 3971 3972 perf_ctx_disable(ctx, false); 3973 /* 3974 * We want to keep the following priority order: 3975 * cpu pinned (that don't need to move), task pinned, 3976 * cpu flexible, task flexible. 3977 * 3978 * However, if task's ctx is not carrying any pinned 3979 * events, no need to flip the cpuctx's events around. 3980 */ 3981 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3982 perf_ctx_disable(&cpuctx->ctx, false); 3983 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3984 } 3985 3986 perf_event_sched_in(cpuctx, ctx); 3987 3988 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3989 3990 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3991 perf_ctx_enable(&cpuctx->ctx, false); 3992 3993 perf_ctx_enable(ctx, false); 3994 3995 unlock: 3996 perf_ctx_unlock(cpuctx, ctx); 3997 rcu_unlock: 3998 rcu_read_unlock(); 3999 } 4000 4001 /* 4002 * Called from scheduler to add the events of the current task 4003 * with interrupts disabled. 4004 * 4005 * We restore the event value and then enable it. 4006 * 4007 * This does not protect us against NMI, but enable() 4008 * sets the enabled bit in the control field of event _before_ 4009 * accessing the event control register. If a NMI hits, then it will 4010 * keep the event running. 4011 */ 4012 void __perf_event_task_sched_in(struct task_struct *prev, 4013 struct task_struct *task) 4014 { 4015 perf_event_context_sched_in(task); 4016 4017 if (atomic_read(&nr_switch_events)) 4018 perf_event_switch(task, prev, true); 4019 4020 if (__this_cpu_read(perf_sched_cb_usages)) 4021 perf_pmu_sched_task(prev, task, true); 4022 } 4023 4024 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4025 { 4026 u64 frequency = event->attr.sample_freq; 4027 u64 sec = NSEC_PER_SEC; 4028 u64 divisor, dividend; 4029 4030 int count_fls, nsec_fls, frequency_fls, sec_fls; 4031 4032 count_fls = fls64(count); 4033 nsec_fls = fls64(nsec); 4034 frequency_fls = fls64(frequency); 4035 sec_fls = 30; 4036 4037 /* 4038 * We got @count in @nsec, with a target of sample_freq HZ 4039 * the target period becomes: 4040 * 4041 * @count * 10^9 4042 * period = ------------------- 4043 * @nsec * sample_freq 4044 * 4045 */ 4046 4047 /* 4048 * Reduce accuracy by one bit such that @a and @b converge 4049 * to a similar magnitude. 4050 */ 4051 #define REDUCE_FLS(a, b) \ 4052 do { \ 4053 if (a##_fls > b##_fls) { \ 4054 a >>= 1; \ 4055 a##_fls--; \ 4056 } else { \ 4057 b >>= 1; \ 4058 b##_fls--; \ 4059 } \ 4060 } while (0) 4061 4062 /* 4063 * Reduce accuracy until either term fits in a u64, then proceed with 4064 * the other, so that finally we can do a u64/u64 division. 4065 */ 4066 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4067 REDUCE_FLS(nsec, frequency); 4068 REDUCE_FLS(sec, count); 4069 } 4070 4071 if (count_fls + sec_fls > 64) { 4072 divisor = nsec * frequency; 4073 4074 while (count_fls + sec_fls > 64) { 4075 REDUCE_FLS(count, sec); 4076 divisor >>= 1; 4077 } 4078 4079 dividend = count * sec; 4080 } else { 4081 dividend = count * sec; 4082 4083 while (nsec_fls + frequency_fls > 64) { 4084 REDUCE_FLS(nsec, frequency); 4085 dividend >>= 1; 4086 } 4087 4088 divisor = nsec * frequency; 4089 } 4090 4091 if (!divisor) 4092 return dividend; 4093 4094 return div64_u64(dividend, divisor); 4095 } 4096 4097 static DEFINE_PER_CPU(int, perf_throttled_count); 4098 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4099 4100 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4101 { 4102 struct hw_perf_event *hwc = &event->hw; 4103 s64 period, sample_period; 4104 s64 delta; 4105 4106 period = perf_calculate_period(event, nsec, count); 4107 4108 delta = (s64)(period - hwc->sample_period); 4109 delta = (delta + 7) / 8; /* low pass filter */ 4110 4111 sample_period = hwc->sample_period + delta; 4112 4113 if (!sample_period) 4114 sample_period = 1; 4115 4116 hwc->sample_period = sample_period; 4117 4118 if (local64_read(&hwc->period_left) > 8*sample_period) { 4119 if (disable) 4120 event->pmu->stop(event, PERF_EF_UPDATE); 4121 4122 local64_set(&hwc->period_left, 0); 4123 4124 if (disable) 4125 event->pmu->start(event, PERF_EF_RELOAD); 4126 } 4127 } 4128 4129 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4130 { 4131 struct perf_event *event; 4132 struct hw_perf_event *hwc; 4133 u64 now, period = TICK_NSEC; 4134 s64 delta; 4135 4136 list_for_each_entry(event, event_list, active_list) { 4137 if (event->state != PERF_EVENT_STATE_ACTIVE) 4138 continue; 4139 4140 // XXX use visit thingy to avoid the -1,cpu match 4141 if (!event_filter_match(event)) 4142 continue; 4143 4144 hwc = &event->hw; 4145 4146 if (hwc->interrupts == MAX_INTERRUPTS) { 4147 hwc->interrupts = 0; 4148 perf_log_throttle(event, 1); 4149 if (!event->attr.freq || !event->attr.sample_freq) 4150 event->pmu->start(event, 0); 4151 } 4152 4153 if (!event->attr.freq || !event->attr.sample_freq) 4154 continue; 4155 4156 /* 4157 * stop the event and update event->count 4158 */ 4159 event->pmu->stop(event, PERF_EF_UPDATE); 4160 4161 now = local64_read(&event->count); 4162 delta = now - hwc->freq_count_stamp; 4163 hwc->freq_count_stamp = now; 4164 4165 /* 4166 * restart the event 4167 * reload only if value has changed 4168 * we have stopped the event so tell that 4169 * to perf_adjust_period() to avoid stopping it 4170 * twice. 4171 */ 4172 if (delta > 0) 4173 perf_adjust_period(event, period, delta, false); 4174 4175 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4176 } 4177 } 4178 4179 /* 4180 * combine freq adjustment with unthrottling to avoid two passes over the 4181 * events. At the same time, make sure, having freq events does not change 4182 * the rate of unthrottling as that would introduce bias. 4183 */ 4184 static void 4185 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4186 { 4187 struct perf_event_pmu_context *pmu_ctx; 4188 4189 /* 4190 * only need to iterate over all events iff: 4191 * - context have events in frequency mode (needs freq adjust) 4192 * - there are events to unthrottle on this cpu 4193 */ 4194 if (!(ctx->nr_freq || unthrottle)) 4195 return; 4196 4197 raw_spin_lock(&ctx->lock); 4198 4199 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4200 if (!(pmu_ctx->nr_freq || unthrottle)) 4201 continue; 4202 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4203 continue; 4204 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4205 continue; 4206 4207 perf_pmu_disable(pmu_ctx->pmu); 4208 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4209 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4210 perf_pmu_enable(pmu_ctx->pmu); 4211 } 4212 4213 raw_spin_unlock(&ctx->lock); 4214 } 4215 4216 /* 4217 * Move @event to the tail of the @ctx's elegible events. 4218 */ 4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4220 { 4221 /* 4222 * Rotate the first entry last of non-pinned groups. Rotation might be 4223 * disabled by the inheritance code. 4224 */ 4225 if (ctx->rotate_disable) 4226 return; 4227 4228 perf_event_groups_delete(&ctx->flexible_groups, event); 4229 perf_event_groups_insert(&ctx->flexible_groups, event); 4230 } 4231 4232 /* pick an event from the flexible_groups to rotate */ 4233 static inline struct perf_event * 4234 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4235 { 4236 struct perf_event *event; 4237 struct rb_node *node; 4238 struct rb_root *tree; 4239 struct __group_key key = { 4240 .pmu = pmu_ctx->pmu, 4241 }; 4242 4243 /* pick the first active flexible event */ 4244 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4245 struct perf_event, active_list); 4246 if (event) 4247 goto out; 4248 4249 /* if no active flexible event, pick the first event */ 4250 tree = &pmu_ctx->ctx->flexible_groups.tree; 4251 4252 if (!pmu_ctx->ctx->task) { 4253 key.cpu = smp_processor_id(); 4254 4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4256 if (node) 4257 event = __node_2_pe(node); 4258 goto out; 4259 } 4260 4261 key.cpu = -1; 4262 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4263 if (node) { 4264 event = __node_2_pe(node); 4265 goto out; 4266 } 4267 4268 key.cpu = smp_processor_id(); 4269 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4270 if (node) 4271 event = __node_2_pe(node); 4272 4273 out: 4274 /* 4275 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4276 * finds there are unschedulable events, it will set it again. 4277 */ 4278 pmu_ctx->rotate_necessary = 0; 4279 4280 return event; 4281 } 4282 4283 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4284 { 4285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4286 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4287 struct perf_event *cpu_event = NULL, *task_event = NULL; 4288 int cpu_rotate, task_rotate; 4289 struct pmu *pmu; 4290 4291 /* 4292 * Since we run this from IRQ context, nobody can install new 4293 * events, thus the event count values are stable. 4294 */ 4295 4296 cpu_epc = &cpc->epc; 4297 pmu = cpu_epc->pmu; 4298 task_epc = cpc->task_epc; 4299 4300 cpu_rotate = cpu_epc->rotate_necessary; 4301 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4302 4303 if (!(cpu_rotate || task_rotate)) 4304 return false; 4305 4306 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4307 perf_pmu_disable(pmu); 4308 4309 if (task_rotate) 4310 task_event = ctx_event_to_rotate(task_epc); 4311 if (cpu_rotate) 4312 cpu_event = ctx_event_to_rotate(cpu_epc); 4313 4314 /* 4315 * As per the order given at ctx_resched() first 'pop' task flexible 4316 * and then, if needed CPU flexible. 4317 */ 4318 if (task_event || (task_epc && cpu_event)) { 4319 update_context_time(task_epc->ctx); 4320 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4321 } 4322 4323 if (cpu_event) { 4324 update_context_time(&cpuctx->ctx); 4325 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4326 rotate_ctx(&cpuctx->ctx, cpu_event); 4327 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4328 } 4329 4330 if (task_event) 4331 rotate_ctx(task_epc->ctx, task_event); 4332 4333 if (task_event || (task_epc && cpu_event)) 4334 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4335 4336 perf_pmu_enable(pmu); 4337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4338 4339 return true; 4340 } 4341 4342 void perf_event_task_tick(void) 4343 { 4344 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4345 struct perf_event_context *ctx; 4346 int throttled; 4347 4348 lockdep_assert_irqs_disabled(); 4349 4350 __this_cpu_inc(perf_throttled_seq); 4351 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4352 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4353 4354 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4355 4356 rcu_read_lock(); 4357 ctx = rcu_dereference(current->perf_event_ctxp); 4358 if (ctx) 4359 perf_adjust_freq_unthr_context(ctx, !!throttled); 4360 rcu_read_unlock(); 4361 } 4362 4363 static int event_enable_on_exec(struct perf_event *event, 4364 struct perf_event_context *ctx) 4365 { 4366 if (!event->attr.enable_on_exec) 4367 return 0; 4368 4369 event->attr.enable_on_exec = 0; 4370 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4371 return 0; 4372 4373 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4374 4375 return 1; 4376 } 4377 4378 /* 4379 * Enable all of a task's events that have been marked enable-on-exec. 4380 * This expects task == current. 4381 */ 4382 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4383 { 4384 struct perf_event_context *clone_ctx = NULL; 4385 enum event_type_t event_type = 0; 4386 struct perf_cpu_context *cpuctx; 4387 struct perf_event *event; 4388 unsigned long flags; 4389 int enabled = 0; 4390 4391 local_irq_save(flags); 4392 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4393 goto out; 4394 4395 if (!ctx->nr_events) 4396 goto out; 4397 4398 cpuctx = this_cpu_ptr(&perf_cpu_context); 4399 perf_ctx_lock(cpuctx, ctx); 4400 ctx_sched_out(ctx, EVENT_TIME); 4401 4402 list_for_each_entry(event, &ctx->event_list, event_entry) { 4403 enabled |= event_enable_on_exec(event, ctx); 4404 event_type |= get_event_type(event); 4405 } 4406 4407 /* 4408 * Unclone and reschedule this context if we enabled any event. 4409 */ 4410 if (enabled) { 4411 clone_ctx = unclone_ctx(ctx); 4412 ctx_resched(cpuctx, ctx, event_type); 4413 } else { 4414 ctx_sched_in(ctx, EVENT_TIME); 4415 } 4416 perf_ctx_unlock(cpuctx, ctx); 4417 4418 out: 4419 local_irq_restore(flags); 4420 4421 if (clone_ctx) 4422 put_ctx(clone_ctx); 4423 } 4424 4425 static void perf_remove_from_owner(struct perf_event *event); 4426 static void perf_event_exit_event(struct perf_event *event, 4427 struct perf_event_context *ctx); 4428 4429 /* 4430 * Removes all events from the current task that have been marked 4431 * remove-on-exec, and feeds their values back to parent events. 4432 */ 4433 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4434 { 4435 struct perf_event_context *clone_ctx = NULL; 4436 struct perf_event *event, *next; 4437 unsigned long flags; 4438 bool modified = false; 4439 4440 mutex_lock(&ctx->mutex); 4441 4442 if (WARN_ON_ONCE(ctx->task != current)) 4443 goto unlock; 4444 4445 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4446 if (!event->attr.remove_on_exec) 4447 continue; 4448 4449 if (!is_kernel_event(event)) 4450 perf_remove_from_owner(event); 4451 4452 modified = true; 4453 4454 perf_event_exit_event(event, ctx); 4455 } 4456 4457 raw_spin_lock_irqsave(&ctx->lock, flags); 4458 if (modified) 4459 clone_ctx = unclone_ctx(ctx); 4460 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4461 4462 unlock: 4463 mutex_unlock(&ctx->mutex); 4464 4465 if (clone_ctx) 4466 put_ctx(clone_ctx); 4467 } 4468 4469 struct perf_read_data { 4470 struct perf_event *event; 4471 bool group; 4472 int ret; 4473 }; 4474 4475 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4476 { 4477 u16 local_pkg, event_pkg; 4478 4479 if ((unsigned)event_cpu >= nr_cpu_ids) 4480 return event_cpu; 4481 4482 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4483 int local_cpu = smp_processor_id(); 4484 4485 event_pkg = topology_physical_package_id(event_cpu); 4486 local_pkg = topology_physical_package_id(local_cpu); 4487 4488 if (event_pkg == local_pkg) 4489 return local_cpu; 4490 } 4491 4492 return event_cpu; 4493 } 4494 4495 /* 4496 * Cross CPU call to read the hardware event 4497 */ 4498 static void __perf_event_read(void *info) 4499 { 4500 struct perf_read_data *data = info; 4501 struct perf_event *sub, *event = data->event; 4502 struct perf_event_context *ctx = event->ctx; 4503 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4504 struct pmu *pmu = event->pmu; 4505 4506 /* 4507 * If this is a task context, we need to check whether it is 4508 * the current task context of this cpu. If not it has been 4509 * scheduled out before the smp call arrived. In that case 4510 * event->count would have been updated to a recent sample 4511 * when the event was scheduled out. 4512 */ 4513 if (ctx->task && cpuctx->task_ctx != ctx) 4514 return; 4515 4516 raw_spin_lock(&ctx->lock); 4517 if (ctx->is_active & EVENT_TIME) { 4518 update_context_time(ctx); 4519 update_cgrp_time_from_event(event); 4520 } 4521 4522 perf_event_update_time(event); 4523 if (data->group) 4524 perf_event_update_sibling_time(event); 4525 4526 if (event->state != PERF_EVENT_STATE_ACTIVE) 4527 goto unlock; 4528 4529 if (!data->group) { 4530 pmu->read(event); 4531 data->ret = 0; 4532 goto unlock; 4533 } 4534 4535 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4536 4537 pmu->read(event); 4538 4539 for_each_sibling_event(sub, event) { 4540 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4541 /* 4542 * Use sibling's PMU rather than @event's since 4543 * sibling could be on different (eg: software) PMU. 4544 */ 4545 sub->pmu->read(sub); 4546 } 4547 } 4548 4549 data->ret = pmu->commit_txn(pmu); 4550 4551 unlock: 4552 raw_spin_unlock(&ctx->lock); 4553 } 4554 4555 static inline u64 perf_event_count(struct perf_event *event) 4556 { 4557 return local64_read(&event->count) + atomic64_read(&event->child_count); 4558 } 4559 4560 static void calc_timer_values(struct perf_event *event, 4561 u64 *now, 4562 u64 *enabled, 4563 u64 *running) 4564 { 4565 u64 ctx_time; 4566 4567 *now = perf_clock(); 4568 ctx_time = perf_event_time_now(event, *now); 4569 __perf_update_times(event, ctx_time, enabled, running); 4570 } 4571 4572 /* 4573 * NMI-safe method to read a local event, that is an event that 4574 * is: 4575 * - either for the current task, or for this CPU 4576 * - does not have inherit set, for inherited task events 4577 * will not be local and we cannot read them atomically 4578 * - must not have a pmu::count method 4579 */ 4580 int perf_event_read_local(struct perf_event *event, u64 *value, 4581 u64 *enabled, u64 *running) 4582 { 4583 unsigned long flags; 4584 int event_oncpu; 4585 int event_cpu; 4586 int ret = 0; 4587 4588 /* 4589 * Disabling interrupts avoids all counter scheduling (context 4590 * switches, timer based rotation and IPIs). 4591 */ 4592 local_irq_save(flags); 4593 4594 /* 4595 * It must not be an event with inherit set, we cannot read 4596 * all child counters from atomic context. 4597 */ 4598 if (event->attr.inherit) { 4599 ret = -EOPNOTSUPP; 4600 goto out; 4601 } 4602 4603 /* If this is a per-task event, it must be for current */ 4604 if ((event->attach_state & PERF_ATTACH_TASK) && 4605 event->hw.target != current) { 4606 ret = -EINVAL; 4607 goto out; 4608 } 4609 4610 /* 4611 * Get the event CPU numbers, and adjust them to local if the event is 4612 * a per-package event that can be read locally 4613 */ 4614 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4615 event_cpu = __perf_event_read_cpu(event, event->cpu); 4616 4617 /* If this is a per-CPU event, it must be for this CPU */ 4618 if (!(event->attach_state & PERF_ATTACH_TASK) && 4619 event_cpu != smp_processor_id()) { 4620 ret = -EINVAL; 4621 goto out; 4622 } 4623 4624 /* If this is a pinned event it must be running on this CPU */ 4625 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4626 ret = -EBUSY; 4627 goto out; 4628 } 4629 4630 /* 4631 * If the event is currently on this CPU, its either a per-task event, 4632 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4633 * oncpu == -1). 4634 */ 4635 if (event_oncpu == smp_processor_id()) 4636 event->pmu->read(event); 4637 4638 *value = local64_read(&event->count); 4639 if (enabled || running) { 4640 u64 __enabled, __running, __now; 4641 4642 calc_timer_values(event, &__now, &__enabled, &__running); 4643 if (enabled) 4644 *enabled = __enabled; 4645 if (running) 4646 *running = __running; 4647 } 4648 out: 4649 local_irq_restore(flags); 4650 4651 return ret; 4652 } 4653 4654 static int perf_event_read(struct perf_event *event, bool group) 4655 { 4656 enum perf_event_state state = READ_ONCE(event->state); 4657 int event_cpu, ret = 0; 4658 4659 /* 4660 * If event is enabled and currently active on a CPU, update the 4661 * value in the event structure: 4662 */ 4663 again: 4664 if (state == PERF_EVENT_STATE_ACTIVE) { 4665 struct perf_read_data data; 4666 4667 /* 4668 * Orders the ->state and ->oncpu loads such that if we see 4669 * ACTIVE we must also see the right ->oncpu. 4670 * 4671 * Matches the smp_wmb() from event_sched_in(). 4672 */ 4673 smp_rmb(); 4674 4675 event_cpu = READ_ONCE(event->oncpu); 4676 if ((unsigned)event_cpu >= nr_cpu_ids) 4677 return 0; 4678 4679 data = (struct perf_read_data){ 4680 .event = event, 4681 .group = group, 4682 .ret = 0, 4683 }; 4684 4685 preempt_disable(); 4686 event_cpu = __perf_event_read_cpu(event, event_cpu); 4687 4688 /* 4689 * Purposely ignore the smp_call_function_single() return 4690 * value. 4691 * 4692 * If event_cpu isn't a valid CPU it means the event got 4693 * scheduled out and that will have updated the event count. 4694 * 4695 * Therefore, either way, we'll have an up-to-date event count 4696 * after this. 4697 */ 4698 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4699 preempt_enable(); 4700 ret = data.ret; 4701 4702 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4703 struct perf_event_context *ctx = event->ctx; 4704 unsigned long flags; 4705 4706 raw_spin_lock_irqsave(&ctx->lock, flags); 4707 state = event->state; 4708 if (state != PERF_EVENT_STATE_INACTIVE) { 4709 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4710 goto again; 4711 } 4712 4713 /* 4714 * May read while context is not active (e.g., thread is 4715 * blocked), in that case we cannot update context time 4716 */ 4717 if (ctx->is_active & EVENT_TIME) { 4718 update_context_time(ctx); 4719 update_cgrp_time_from_event(event); 4720 } 4721 4722 perf_event_update_time(event); 4723 if (group) 4724 perf_event_update_sibling_time(event); 4725 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4726 } 4727 4728 return ret; 4729 } 4730 4731 /* 4732 * Initialize the perf_event context in a task_struct: 4733 */ 4734 static void __perf_event_init_context(struct perf_event_context *ctx) 4735 { 4736 raw_spin_lock_init(&ctx->lock); 4737 mutex_init(&ctx->mutex); 4738 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4739 perf_event_groups_init(&ctx->pinned_groups); 4740 perf_event_groups_init(&ctx->flexible_groups); 4741 INIT_LIST_HEAD(&ctx->event_list); 4742 refcount_set(&ctx->refcount, 1); 4743 } 4744 4745 static void 4746 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4747 { 4748 epc->pmu = pmu; 4749 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4750 INIT_LIST_HEAD(&epc->pinned_active); 4751 INIT_LIST_HEAD(&epc->flexible_active); 4752 atomic_set(&epc->refcount, 1); 4753 } 4754 4755 static struct perf_event_context * 4756 alloc_perf_context(struct task_struct *task) 4757 { 4758 struct perf_event_context *ctx; 4759 4760 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4761 if (!ctx) 4762 return NULL; 4763 4764 __perf_event_init_context(ctx); 4765 if (task) 4766 ctx->task = get_task_struct(task); 4767 4768 return ctx; 4769 } 4770 4771 static struct task_struct * 4772 find_lively_task_by_vpid(pid_t vpid) 4773 { 4774 struct task_struct *task; 4775 4776 rcu_read_lock(); 4777 if (!vpid) 4778 task = current; 4779 else 4780 task = find_task_by_vpid(vpid); 4781 if (task) 4782 get_task_struct(task); 4783 rcu_read_unlock(); 4784 4785 if (!task) 4786 return ERR_PTR(-ESRCH); 4787 4788 return task; 4789 } 4790 4791 /* 4792 * Returns a matching context with refcount and pincount. 4793 */ 4794 static struct perf_event_context * 4795 find_get_context(struct task_struct *task, struct perf_event *event) 4796 { 4797 struct perf_event_context *ctx, *clone_ctx = NULL; 4798 struct perf_cpu_context *cpuctx; 4799 unsigned long flags; 4800 int err; 4801 4802 if (!task) { 4803 /* Must be root to operate on a CPU event: */ 4804 err = perf_allow_cpu(&event->attr); 4805 if (err) 4806 return ERR_PTR(err); 4807 4808 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4809 ctx = &cpuctx->ctx; 4810 get_ctx(ctx); 4811 raw_spin_lock_irqsave(&ctx->lock, flags); 4812 ++ctx->pin_count; 4813 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4814 4815 return ctx; 4816 } 4817 4818 err = -EINVAL; 4819 retry: 4820 ctx = perf_lock_task_context(task, &flags); 4821 if (ctx) { 4822 clone_ctx = unclone_ctx(ctx); 4823 ++ctx->pin_count; 4824 4825 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4826 4827 if (clone_ctx) 4828 put_ctx(clone_ctx); 4829 } else { 4830 ctx = alloc_perf_context(task); 4831 err = -ENOMEM; 4832 if (!ctx) 4833 goto errout; 4834 4835 err = 0; 4836 mutex_lock(&task->perf_event_mutex); 4837 /* 4838 * If it has already passed perf_event_exit_task(). 4839 * we must see PF_EXITING, it takes this mutex too. 4840 */ 4841 if (task->flags & PF_EXITING) 4842 err = -ESRCH; 4843 else if (task->perf_event_ctxp) 4844 err = -EAGAIN; 4845 else { 4846 get_ctx(ctx); 4847 ++ctx->pin_count; 4848 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4849 } 4850 mutex_unlock(&task->perf_event_mutex); 4851 4852 if (unlikely(err)) { 4853 put_ctx(ctx); 4854 4855 if (err == -EAGAIN) 4856 goto retry; 4857 goto errout; 4858 } 4859 } 4860 4861 return ctx; 4862 4863 errout: 4864 return ERR_PTR(err); 4865 } 4866 4867 static struct perf_event_pmu_context * 4868 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4869 struct perf_event *event) 4870 { 4871 struct perf_event_pmu_context *new = NULL, *epc; 4872 void *task_ctx_data = NULL; 4873 4874 if (!ctx->task) { 4875 /* 4876 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4877 * relies on the fact that find_get_pmu_context() cannot fail 4878 * for CPU contexts. 4879 */ 4880 struct perf_cpu_pmu_context *cpc; 4881 4882 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4883 epc = &cpc->epc; 4884 raw_spin_lock_irq(&ctx->lock); 4885 if (!epc->ctx) { 4886 atomic_set(&epc->refcount, 1); 4887 epc->embedded = 1; 4888 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4889 epc->ctx = ctx; 4890 } else { 4891 WARN_ON_ONCE(epc->ctx != ctx); 4892 atomic_inc(&epc->refcount); 4893 } 4894 raw_spin_unlock_irq(&ctx->lock); 4895 return epc; 4896 } 4897 4898 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4899 if (!new) 4900 return ERR_PTR(-ENOMEM); 4901 4902 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4903 task_ctx_data = alloc_task_ctx_data(pmu); 4904 if (!task_ctx_data) { 4905 kfree(new); 4906 return ERR_PTR(-ENOMEM); 4907 } 4908 } 4909 4910 __perf_init_event_pmu_context(new, pmu); 4911 4912 /* 4913 * XXX 4914 * 4915 * lockdep_assert_held(&ctx->mutex); 4916 * 4917 * can't because perf_event_init_task() doesn't actually hold the 4918 * child_ctx->mutex. 4919 */ 4920 4921 raw_spin_lock_irq(&ctx->lock); 4922 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4923 if (epc->pmu == pmu) { 4924 WARN_ON_ONCE(epc->ctx != ctx); 4925 atomic_inc(&epc->refcount); 4926 goto found_epc; 4927 } 4928 } 4929 4930 epc = new; 4931 new = NULL; 4932 4933 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4934 epc->ctx = ctx; 4935 4936 found_epc: 4937 if (task_ctx_data && !epc->task_ctx_data) { 4938 epc->task_ctx_data = task_ctx_data; 4939 task_ctx_data = NULL; 4940 ctx->nr_task_data++; 4941 } 4942 raw_spin_unlock_irq(&ctx->lock); 4943 4944 free_task_ctx_data(pmu, task_ctx_data); 4945 kfree(new); 4946 4947 return epc; 4948 } 4949 4950 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4951 { 4952 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4953 } 4954 4955 static void free_epc_rcu(struct rcu_head *head) 4956 { 4957 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4958 4959 kfree(epc->task_ctx_data); 4960 kfree(epc); 4961 } 4962 4963 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4964 { 4965 struct perf_event_context *ctx = epc->ctx; 4966 unsigned long flags; 4967 4968 /* 4969 * XXX 4970 * 4971 * lockdep_assert_held(&ctx->mutex); 4972 * 4973 * can't because of the call-site in _free_event()/put_event() 4974 * which isn't always called under ctx->mutex. 4975 */ 4976 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4977 return; 4978 4979 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4980 4981 list_del_init(&epc->pmu_ctx_entry); 4982 epc->ctx = NULL; 4983 4984 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4985 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4986 4987 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4988 4989 if (epc->embedded) 4990 return; 4991 4992 call_rcu(&epc->rcu_head, free_epc_rcu); 4993 } 4994 4995 static void perf_event_free_filter(struct perf_event *event); 4996 4997 static void free_event_rcu(struct rcu_head *head) 4998 { 4999 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5000 5001 if (event->ns) 5002 put_pid_ns(event->ns); 5003 perf_event_free_filter(event); 5004 kmem_cache_free(perf_event_cache, event); 5005 } 5006 5007 static void ring_buffer_attach(struct perf_event *event, 5008 struct perf_buffer *rb); 5009 5010 static void detach_sb_event(struct perf_event *event) 5011 { 5012 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5013 5014 raw_spin_lock(&pel->lock); 5015 list_del_rcu(&event->sb_list); 5016 raw_spin_unlock(&pel->lock); 5017 } 5018 5019 static bool is_sb_event(struct perf_event *event) 5020 { 5021 struct perf_event_attr *attr = &event->attr; 5022 5023 if (event->parent) 5024 return false; 5025 5026 if (event->attach_state & PERF_ATTACH_TASK) 5027 return false; 5028 5029 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5030 attr->comm || attr->comm_exec || 5031 attr->task || attr->ksymbol || 5032 attr->context_switch || attr->text_poke || 5033 attr->bpf_event) 5034 return true; 5035 return false; 5036 } 5037 5038 static void unaccount_pmu_sb_event(struct perf_event *event) 5039 { 5040 if (is_sb_event(event)) 5041 detach_sb_event(event); 5042 } 5043 5044 #ifdef CONFIG_NO_HZ_FULL 5045 static DEFINE_SPINLOCK(nr_freq_lock); 5046 #endif 5047 5048 static void unaccount_freq_event_nohz(void) 5049 { 5050 #ifdef CONFIG_NO_HZ_FULL 5051 spin_lock(&nr_freq_lock); 5052 if (atomic_dec_and_test(&nr_freq_events)) 5053 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5054 spin_unlock(&nr_freq_lock); 5055 #endif 5056 } 5057 5058 static void unaccount_freq_event(void) 5059 { 5060 if (tick_nohz_full_enabled()) 5061 unaccount_freq_event_nohz(); 5062 else 5063 atomic_dec(&nr_freq_events); 5064 } 5065 5066 static void unaccount_event(struct perf_event *event) 5067 { 5068 bool dec = false; 5069 5070 if (event->parent) 5071 return; 5072 5073 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5074 dec = true; 5075 if (event->attr.mmap || event->attr.mmap_data) 5076 atomic_dec(&nr_mmap_events); 5077 if (event->attr.build_id) 5078 atomic_dec(&nr_build_id_events); 5079 if (event->attr.comm) 5080 atomic_dec(&nr_comm_events); 5081 if (event->attr.namespaces) 5082 atomic_dec(&nr_namespaces_events); 5083 if (event->attr.cgroup) 5084 atomic_dec(&nr_cgroup_events); 5085 if (event->attr.task) 5086 atomic_dec(&nr_task_events); 5087 if (event->attr.freq) 5088 unaccount_freq_event(); 5089 if (event->attr.context_switch) { 5090 dec = true; 5091 atomic_dec(&nr_switch_events); 5092 } 5093 if (is_cgroup_event(event)) 5094 dec = true; 5095 if (has_branch_stack(event)) 5096 dec = true; 5097 if (event->attr.ksymbol) 5098 atomic_dec(&nr_ksymbol_events); 5099 if (event->attr.bpf_event) 5100 atomic_dec(&nr_bpf_events); 5101 if (event->attr.text_poke) 5102 atomic_dec(&nr_text_poke_events); 5103 5104 if (dec) { 5105 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5106 schedule_delayed_work(&perf_sched_work, HZ); 5107 } 5108 5109 unaccount_pmu_sb_event(event); 5110 } 5111 5112 static void perf_sched_delayed(struct work_struct *work) 5113 { 5114 mutex_lock(&perf_sched_mutex); 5115 if (atomic_dec_and_test(&perf_sched_count)) 5116 static_branch_disable(&perf_sched_events); 5117 mutex_unlock(&perf_sched_mutex); 5118 } 5119 5120 /* 5121 * The following implement mutual exclusion of events on "exclusive" pmus 5122 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5123 * at a time, so we disallow creating events that might conflict, namely: 5124 * 5125 * 1) cpu-wide events in the presence of per-task events, 5126 * 2) per-task events in the presence of cpu-wide events, 5127 * 3) two matching events on the same perf_event_context. 5128 * 5129 * The former two cases are handled in the allocation path (perf_event_alloc(), 5130 * _free_event()), the latter -- before the first perf_install_in_context(). 5131 */ 5132 static int exclusive_event_init(struct perf_event *event) 5133 { 5134 struct pmu *pmu = event->pmu; 5135 5136 if (!is_exclusive_pmu(pmu)) 5137 return 0; 5138 5139 /* 5140 * Prevent co-existence of per-task and cpu-wide events on the 5141 * same exclusive pmu. 5142 * 5143 * Negative pmu::exclusive_cnt means there are cpu-wide 5144 * events on this "exclusive" pmu, positive means there are 5145 * per-task events. 5146 * 5147 * Since this is called in perf_event_alloc() path, event::ctx 5148 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5149 * to mean "per-task event", because unlike other attach states it 5150 * never gets cleared. 5151 */ 5152 if (event->attach_state & PERF_ATTACH_TASK) { 5153 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5154 return -EBUSY; 5155 } else { 5156 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5157 return -EBUSY; 5158 } 5159 5160 return 0; 5161 } 5162 5163 static void exclusive_event_destroy(struct perf_event *event) 5164 { 5165 struct pmu *pmu = event->pmu; 5166 5167 if (!is_exclusive_pmu(pmu)) 5168 return; 5169 5170 /* see comment in exclusive_event_init() */ 5171 if (event->attach_state & PERF_ATTACH_TASK) 5172 atomic_dec(&pmu->exclusive_cnt); 5173 else 5174 atomic_inc(&pmu->exclusive_cnt); 5175 } 5176 5177 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5178 { 5179 if ((e1->pmu == e2->pmu) && 5180 (e1->cpu == e2->cpu || 5181 e1->cpu == -1 || 5182 e2->cpu == -1)) 5183 return true; 5184 return false; 5185 } 5186 5187 static bool exclusive_event_installable(struct perf_event *event, 5188 struct perf_event_context *ctx) 5189 { 5190 struct perf_event *iter_event; 5191 struct pmu *pmu = event->pmu; 5192 5193 lockdep_assert_held(&ctx->mutex); 5194 5195 if (!is_exclusive_pmu(pmu)) 5196 return true; 5197 5198 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5199 if (exclusive_event_match(iter_event, event)) 5200 return false; 5201 } 5202 5203 return true; 5204 } 5205 5206 static void perf_addr_filters_splice(struct perf_event *event, 5207 struct list_head *head); 5208 5209 static void _free_event(struct perf_event *event) 5210 { 5211 irq_work_sync(&event->pending_irq); 5212 5213 unaccount_event(event); 5214 5215 security_perf_event_free(event); 5216 5217 if (event->rb) { 5218 /* 5219 * Can happen when we close an event with re-directed output. 5220 * 5221 * Since we have a 0 refcount, perf_mmap_close() will skip 5222 * over us; possibly making our ring_buffer_put() the last. 5223 */ 5224 mutex_lock(&event->mmap_mutex); 5225 ring_buffer_attach(event, NULL); 5226 mutex_unlock(&event->mmap_mutex); 5227 } 5228 5229 if (is_cgroup_event(event)) 5230 perf_detach_cgroup(event); 5231 5232 if (!event->parent) { 5233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5234 put_callchain_buffers(); 5235 } 5236 5237 perf_event_free_bpf_prog(event); 5238 perf_addr_filters_splice(event, NULL); 5239 kfree(event->addr_filter_ranges); 5240 5241 if (event->destroy) 5242 event->destroy(event); 5243 5244 /* 5245 * Must be after ->destroy(), due to uprobe_perf_close() using 5246 * hw.target. 5247 */ 5248 if (event->hw.target) 5249 put_task_struct(event->hw.target); 5250 5251 if (event->pmu_ctx) 5252 put_pmu_ctx(event->pmu_ctx); 5253 5254 /* 5255 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5256 * all task references must be cleaned up. 5257 */ 5258 if (event->ctx) 5259 put_ctx(event->ctx); 5260 5261 exclusive_event_destroy(event); 5262 module_put(event->pmu->module); 5263 5264 call_rcu(&event->rcu_head, free_event_rcu); 5265 } 5266 5267 /* 5268 * Used to free events which have a known refcount of 1, such as in error paths 5269 * where the event isn't exposed yet and inherited events. 5270 */ 5271 static void free_event(struct perf_event *event) 5272 { 5273 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5274 "unexpected event refcount: %ld; ptr=%p\n", 5275 atomic_long_read(&event->refcount), event)) { 5276 /* leak to avoid use-after-free */ 5277 return; 5278 } 5279 5280 _free_event(event); 5281 } 5282 5283 /* 5284 * Remove user event from the owner task. 5285 */ 5286 static void perf_remove_from_owner(struct perf_event *event) 5287 { 5288 struct task_struct *owner; 5289 5290 rcu_read_lock(); 5291 /* 5292 * Matches the smp_store_release() in perf_event_exit_task(). If we 5293 * observe !owner it means the list deletion is complete and we can 5294 * indeed free this event, otherwise we need to serialize on 5295 * owner->perf_event_mutex. 5296 */ 5297 owner = READ_ONCE(event->owner); 5298 if (owner) { 5299 /* 5300 * Since delayed_put_task_struct() also drops the last 5301 * task reference we can safely take a new reference 5302 * while holding the rcu_read_lock(). 5303 */ 5304 get_task_struct(owner); 5305 } 5306 rcu_read_unlock(); 5307 5308 if (owner) { 5309 /* 5310 * If we're here through perf_event_exit_task() we're already 5311 * holding ctx->mutex which would be an inversion wrt. the 5312 * normal lock order. 5313 * 5314 * However we can safely take this lock because its the child 5315 * ctx->mutex. 5316 */ 5317 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5318 5319 /* 5320 * We have to re-check the event->owner field, if it is cleared 5321 * we raced with perf_event_exit_task(), acquiring the mutex 5322 * ensured they're done, and we can proceed with freeing the 5323 * event. 5324 */ 5325 if (event->owner) { 5326 list_del_init(&event->owner_entry); 5327 smp_store_release(&event->owner, NULL); 5328 } 5329 mutex_unlock(&owner->perf_event_mutex); 5330 put_task_struct(owner); 5331 } 5332 } 5333 5334 static void put_event(struct perf_event *event) 5335 { 5336 if (!atomic_long_dec_and_test(&event->refcount)) 5337 return; 5338 5339 _free_event(event); 5340 } 5341 5342 /* 5343 * Kill an event dead; while event:refcount will preserve the event 5344 * object, it will not preserve its functionality. Once the last 'user' 5345 * gives up the object, we'll destroy the thing. 5346 */ 5347 int perf_event_release_kernel(struct perf_event *event) 5348 { 5349 struct perf_event_context *ctx = event->ctx; 5350 struct perf_event *child, *tmp; 5351 LIST_HEAD(free_list); 5352 5353 /* 5354 * If we got here through err_alloc: free_event(event); we will not 5355 * have attached to a context yet. 5356 */ 5357 if (!ctx) { 5358 WARN_ON_ONCE(event->attach_state & 5359 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5360 goto no_ctx; 5361 } 5362 5363 if (!is_kernel_event(event)) 5364 perf_remove_from_owner(event); 5365 5366 ctx = perf_event_ctx_lock(event); 5367 WARN_ON_ONCE(ctx->parent_ctx); 5368 5369 /* 5370 * Mark this event as STATE_DEAD, there is no external reference to it 5371 * anymore. 5372 * 5373 * Anybody acquiring event->child_mutex after the below loop _must_ 5374 * also see this, most importantly inherit_event() which will avoid 5375 * placing more children on the list. 5376 * 5377 * Thus this guarantees that we will in fact observe and kill _ALL_ 5378 * child events. 5379 */ 5380 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5381 5382 perf_event_ctx_unlock(event, ctx); 5383 5384 again: 5385 mutex_lock(&event->child_mutex); 5386 list_for_each_entry(child, &event->child_list, child_list) { 5387 void *var = NULL; 5388 5389 /* 5390 * Cannot change, child events are not migrated, see the 5391 * comment with perf_event_ctx_lock_nested(). 5392 */ 5393 ctx = READ_ONCE(child->ctx); 5394 /* 5395 * Since child_mutex nests inside ctx::mutex, we must jump 5396 * through hoops. We start by grabbing a reference on the ctx. 5397 * 5398 * Since the event cannot get freed while we hold the 5399 * child_mutex, the context must also exist and have a !0 5400 * reference count. 5401 */ 5402 get_ctx(ctx); 5403 5404 /* 5405 * Now that we have a ctx ref, we can drop child_mutex, and 5406 * acquire ctx::mutex without fear of it going away. Then we 5407 * can re-acquire child_mutex. 5408 */ 5409 mutex_unlock(&event->child_mutex); 5410 mutex_lock(&ctx->mutex); 5411 mutex_lock(&event->child_mutex); 5412 5413 /* 5414 * Now that we hold ctx::mutex and child_mutex, revalidate our 5415 * state, if child is still the first entry, it didn't get freed 5416 * and we can continue doing so. 5417 */ 5418 tmp = list_first_entry_or_null(&event->child_list, 5419 struct perf_event, child_list); 5420 if (tmp == child) { 5421 perf_remove_from_context(child, DETACH_GROUP); 5422 list_move(&child->child_list, &free_list); 5423 /* 5424 * This matches the refcount bump in inherit_event(); 5425 * this can't be the last reference. 5426 */ 5427 put_event(event); 5428 } else { 5429 var = &ctx->refcount; 5430 } 5431 5432 mutex_unlock(&event->child_mutex); 5433 mutex_unlock(&ctx->mutex); 5434 put_ctx(ctx); 5435 5436 if (var) { 5437 /* 5438 * If perf_event_free_task() has deleted all events from the 5439 * ctx while the child_mutex got released above, make sure to 5440 * notify about the preceding put_ctx(). 5441 */ 5442 smp_mb(); /* pairs with wait_var_event() */ 5443 wake_up_var(var); 5444 } 5445 goto again; 5446 } 5447 mutex_unlock(&event->child_mutex); 5448 5449 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5450 void *var = &child->ctx->refcount; 5451 5452 list_del(&child->child_list); 5453 free_event(child); 5454 5455 /* 5456 * Wake any perf_event_free_task() waiting for this event to be 5457 * freed. 5458 */ 5459 smp_mb(); /* pairs with wait_var_event() */ 5460 wake_up_var(var); 5461 } 5462 5463 no_ctx: 5464 put_event(event); /* Must be the 'last' reference */ 5465 return 0; 5466 } 5467 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5468 5469 /* 5470 * Called when the last reference to the file is gone. 5471 */ 5472 static int perf_release(struct inode *inode, struct file *file) 5473 { 5474 perf_event_release_kernel(file->private_data); 5475 return 0; 5476 } 5477 5478 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5479 { 5480 struct perf_event *child; 5481 u64 total = 0; 5482 5483 *enabled = 0; 5484 *running = 0; 5485 5486 mutex_lock(&event->child_mutex); 5487 5488 (void)perf_event_read(event, false); 5489 total += perf_event_count(event); 5490 5491 *enabled += event->total_time_enabled + 5492 atomic64_read(&event->child_total_time_enabled); 5493 *running += event->total_time_running + 5494 atomic64_read(&event->child_total_time_running); 5495 5496 list_for_each_entry(child, &event->child_list, child_list) { 5497 (void)perf_event_read(child, false); 5498 total += perf_event_count(child); 5499 *enabled += child->total_time_enabled; 5500 *running += child->total_time_running; 5501 } 5502 mutex_unlock(&event->child_mutex); 5503 5504 return total; 5505 } 5506 5507 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5508 { 5509 struct perf_event_context *ctx; 5510 u64 count; 5511 5512 ctx = perf_event_ctx_lock(event); 5513 count = __perf_event_read_value(event, enabled, running); 5514 perf_event_ctx_unlock(event, ctx); 5515 5516 return count; 5517 } 5518 EXPORT_SYMBOL_GPL(perf_event_read_value); 5519 5520 static int __perf_read_group_add(struct perf_event *leader, 5521 u64 read_format, u64 *values) 5522 { 5523 struct perf_event_context *ctx = leader->ctx; 5524 struct perf_event *sub, *parent; 5525 unsigned long flags; 5526 int n = 1; /* skip @nr */ 5527 int ret; 5528 5529 ret = perf_event_read(leader, true); 5530 if (ret) 5531 return ret; 5532 5533 raw_spin_lock_irqsave(&ctx->lock, flags); 5534 /* 5535 * Verify the grouping between the parent and child (inherited) 5536 * events is still in tact. 5537 * 5538 * Specifically: 5539 * - leader->ctx->lock pins leader->sibling_list 5540 * - parent->child_mutex pins parent->child_list 5541 * - parent->ctx->mutex pins parent->sibling_list 5542 * 5543 * Because parent->ctx != leader->ctx (and child_list nests inside 5544 * ctx->mutex), group destruction is not atomic between children, also 5545 * see perf_event_release_kernel(). Additionally, parent can grow the 5546 * group. 5547 * 5548 * Therefore it is possible to have parent and child groups in a 5549 * different configuration and summing over such a beast makes no sense 5550 * what so ever. 5551 * 5552 * Reject this. 5553 */ 5554 parent = leader->parent; 5555 if (parent && 5556 (parent->group_generation != leader->group_generation || 5557 parent->nr_siblings != leader->nr_siblings)) { 5558 ret = -ECHILD; 5559 goto unlock; 5560 } 5561 5562 /* 5563 * Since we co-schedule groups, {enabled,running} times of siblings 5564 * will be identical to those of the leader, so we only publish one 5565 * set. 5566 */ 5567 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5568 values[n++] += leader->total_time_enabled + 5569 atomic64_read(&leader->child_total_time_enabled); 5570 } 5571 5572 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5573 values[n++] += leader->total_time_running + 5574 atomic64_read(&leader->child_total_time_running); 5575 } 5576 5577 /* 5578 * Write {count,id} tuples for every sibling. 5579 */ 5580 values[n++] += perf_event_count(leader); 5581 if (read_format & PERF_FORMAT_ID) 5582 values[n++] = primary_event_id(leader); 5583 if (read_format & PERF_FORMAT_LOST) 5584 values[n++] = atomic64_read(&leader->lost_samples); 5585 5586 for_each_sibling_event(sub, leader) { 5587 values[n++] += perf_event_count(sub); 5588 if (read_format & PERF_FORMAT_ID) 5589 values[n++] = primary_event_id(sub); 5590 if (read_format & PERF_FORMAT_LOST) 5591 values[n++] = atomic64_read(&sub->lost_samples); 5592 } 5593 5594 unlock: 5595 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5596 return ret; 5597 } 5598 5599 static int perf_read_group(struct perf_event *event, 5600 u64 read_format, char __user *buf) 5601 { 5602 struct perf_event *leader = event->group_leader, *child; 5603 struct perf_event_context *ctx = leader->ctx; 5604 int ret; 5605 u64 *values; 5606 5607 lockdep_assert_held(&ctx->mutex); 5608 5609 values = kzalloc(event->read_size, GFP_KERNEL); 5610 if (!values) 5611 return -ENOMEM; 5612 5613 values[0] = 1 + leader->nr_siblings; 5614 5615 mutex_lock(&leader->child_mutex); 5616 5617 ret = __perf_read_group_add(leader, read_format, values); 5618 if (ret) 5619 goto unlock; 5620 5621 list_for_each_entry(child, &leader->child_list, child_list) { 5622 ret = __perf_read_group_add(child, read_format, values); 5623 if (ret) 5624 goto unlock; 5625 } 5626 5627 mutex_unlock(&leader->child_mutex); 5628 5629 ret = event->read_size; 5630 if (copy_to_user(buf, values, event->read_size)) 5631 ret = -EFAULT; 5632 goto out; 5633 5634 unlock: 5635 mutex_unlock(&leader->child_mutex); 5636 out: 5637 kfree(values); 5638 return ret; 5639 } 5640 5641 static int perf_read_one(struct perf_event *event, 5642 u64 read_format, char __user *buf) 5643 { 5644 u64 enabled, running; 5645 u64 values[5]; 5646 int n = 0; 5647 5648 values[n++] = __perf_event_read_value(event, &enabled, &running); 5649 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5650 values[n++] = enabled; 5651 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5652 values[n++] = running; 5653 if (read_format & PERF_FORMAT_ID) 5654 values[n++] = primary_event_id(event); 5655 if (read_format & PERF_FORMAT_LOST) 5656 values[n++] = atomic64_read(&event->lost_samples); 5657 5658 if (copy_to_user(buf, values, n * sizeof(u64))) 5659 return -EFAULT; 5660 5661 return n * sizeof(u64); 5662 } 5663 5664 static bool is_event_hup(struct perf_event *event) 5665 { 5666 bool no_children; 5667 5668 if (event->state > PERF_EVENT_STATE_EXIT) 5669 return false; 5670 5671 mutex_lock(&event->child_mutex); 5672 no_children = list_empty(&event->child_list); 5673 mutex_unlock(&event->child_mutex); 5674 return no_children; 5675 } 5676 5677 /* 5678 * Read the performance event - simple non blocking version for now 5679 */ 5680 static ssize_t 5681 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5682 { 5683 u64 read_format = event->attr.read_format; 5684 int ret; 5685 5686 /* 5687 * Return end-of-file for a read on an event that is in 5688 * error state (i.e. because it was pinned but it couldn't be 5689 * scheduled on to the CPU at some point). 5690 */ 5691 if (event->state == PERF_EVENT_STATE_ERROR) 5692 return 0; 5693 5694 if (count < event->read_size) 5695 return -ENOSPC; 5696 5697 WARN_ON_ONCE(event->ctx->parent_ctx); 5698 if (read_format & PERF_FORMAT_GROUP) 5699 ret = perf_read_group(event, read_format, buf); 5700 else 5701 ret = perf_read_one(event, read_format, buf); 5702 5703 return ret; 5704 } 5705 5706 static ssize_t 5707 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5708 { 5709 struct perf_event *event = file->private_data; 5710 struct perf_event_context *ctx; 5711 int ret; 5712 5713 ret = security_perf_event_read(event); 5714 if (ret) 5715 return ret; 5716 5717 ctx = perf_event_ctx_lock(event); 5718 ret = __perf_read(event, buf, count); 5719 perf_event_ctx_unlock(event, ctx); 5720 5721 return ret; 5722 } 5723 5724 static __poll_t perf_poll(struct file *file, poll_table *wait) 5725 { 5726 struct perf_event *event = file->private_data; 5727 struct perf_buffer *rb; 5728 __poll_t events = EPOLLHUP; 5729 5730 poll_wait(file, &event->waitq, wait); 5731 5732 if (is_event_hup(event)) 5733 return events; 5734 5735 /* 5736 * Pin the event->rb by taking event->mmap_mutex; otherwise 5737 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5738 */ 5739 mutex_lock(&event->mmap_mutex); 5740 rb = event->rb; 5741 if (rb) 5742 events = atomic_xchg(&rb->poll, 0); 5743 mutex_unlock(&event->mmap_mutex); 5744 return events; 5745 } 5746 5747 static void _perf_event_reset(struct perf_event *event) 5748 { 5749 (void)perf_event_read(event, false); 5750 local64_set(&event->count, 0); 5751 perf_event_update_userpage(event); 5752 } 5753 5754 /* Assume it's not an event with inherit set. */ 5755 u64 perf_event_pause(struct perf_event *event, bool reset) 5756 { 5757 struct perf_event_context *ctx; 5758 u64 count; 5759 5760 ctx = perf_event_ctx_lock(event); 5761 WARN_ON_ONCE(event->attr.inherit); 5762 _perf_event_disable(event); 5763 count = local64_read(&event->count); 5764 if (reset) 5765 local64_set(&event->count, 0); 5766 perf_event_ctx_unlock(event, ctx); 5767 5768 return count; 5769 } 5770 EXPORT_SYMBOL_GPL(perf_event_pause); 5771 5772 /* 5773 * Holding the top-level event's child_mutex means that any 5774 * descendant process that has inherited this event will block 5775 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5776 * task existence requirements of perf_event_enable/disable. 5777 */ 5778 static void perf_event_for_each_child(struct perf_event *event, 5779 void (*func)(struct perf_event *)) 5780 { 5781 struct perf_event *child; 5782 5783 WARN_ON_ONCE(event->ctx->parent_ctx); 5784 5785 mutex_lock(&event->child_mutex); 5786 func(event); 5787 list_for_each_entry(child, &event->child_list, child_list) 5788 func(child); 5789 mutex_unlock(&event->child_mutex); 5790 } 5791 5792 static void perf_event_for_each(struct perf_event *event, 5793 void (*func)(struct perf_event *)) 5794 { 5795 struct perf_event_context *ctx = event->ctx; 5796 struct perf_event *sibling; 5797 5798 lockdep_assert_held(&ctx->mutex); 5799 5800 event = event->group_leader; 5801 5802 perf_event_for_each_child(event, func); 5803 for_each_sibling_event(sibling, event) 5804 perf_event_for_each_child(sibling, func); 5805 } 5806 5807 static void __perf_event_period(struct perf_event *event, 5808 struct perf_cpu_context *cpuctx, 5809 struct perf_event_context *ctx, 5810 void *info) 5811 { 5812 u64 value = *((u64 *)info); 5813 bool active; 5814 5815 if (event->attr.freq) { 5816 event->attr.sample_freq = value; 5817 } else { 5818 event->attr.sample_period = value; 5819 event->hw.sample_period = value; 5820 } 5821 5822 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5823 if (active) { 5824 perf_pmu_disable(event->pmu); 5825 /* 5826 * We could be throttled; unthrottle now to avoid the tick 5827 * trying to unthrottle while we already re-started the event. 5828 */ 5829 if (event->hw.interrupts == MAX_INTERRUPTS) { 5830 event->hw.interrupts = 0; 5831 perf_log_throttle(event, 1); 5832 } 5833 event->pmu->stop(event, PERF_EF_UPDATE); 5834 } 5835 5836 local64_set(&event->hw.period_left, 0); 5837 5838 if (active) { 5839 event->pmu->start(event, PERF_EF_RELOAD); 5840 perf_pmu_enable(event->pmu); 5841 } 5842 } 5843 5844 static int perf_event_check_period(struct perf_event *event, u64 value) 5845 { 5846 return event->pmu->check_period(event, value); 5847 } 5848 5849 static int _perf_event_period(struct perf_event *event, u64 value) 5850 { 5851 if (!is_sampling_event(event)) 5852 return -EINVAL; 5853 5854 if (!value) 5855 return -EINVAL; 5856 5857 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5858 return -EINVAL; 5859 5860 if (perf_event_check_period(event, value)) 5861 return -EINVAL; 5862 5863 if (!event->attr.freq && (value & (1ULL << 63))) 5864 return -EINVAL; 5865 5866 event_function_call(event, __perf_event_period, &value); 5867 5868 return 0; 5869 } 5870 5871 int perf_event_period(struct perf_event *event, u64 value) 5872 { 5873 struct perf_event_context *ctx; 5874 int ret; 5875 5876 ctx = perf_event_ctx_lock(event); 5877 ret = _perf_event_period(event, value); 5878 perf_event_ctx_unlock(event, ctx); 5879 5880 return ret; 5881 } 5882 EXPORT_SYMBOL_GPL(perf_event_period); 5883 5884 static const struct file_operations perf_fops; 5885 5886 static inline int perf_fget_light(int fd, struct fd *p) 5887 { 5888 struct fd f = fdget(fd); 5889 if (!f.file) 5890 return -EBADF; 5891 5892 if (f.file->f_op != &perf_fops) { 5893 fdput(f); 5894 return -EBADF; 5895 } 5896 *p = f; 5897 return 0; 5898 } 5899 5900 static int perf_event_set_output(struct perf_event *event, 5901 struct perf_event *output_event); 5902 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5903 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5904 struct perf_event_attr *attr); 5905 5906 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5907 { 5908 void (*func)(struct perf_event *); 5909 u32 flags = arg; 5910 5911 switch (cmd) { 5912 case PERF_EVENT_IOC_ENABLE: 5913 func = _perf_event_enable; 5914 break; 5915 case PERF_EVENT_IOC_DISABLE: 5916 func = _perf_event_disable; 5917 break; 5918 case PERF_EVENT_IOC_RESET: 5919 func = _perf_event_reset; 5920 break; 5921 5922 case PERF_EVENT_IOC_REFRESH: 5923 return _perf_event_refresh(event, arg); 5924 5925 case PERF_EVENT_IOC_PERIOD: 5926 { 5927 u64 value; 5928 5929 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5930 return -EFAULT; 5931 5932 return _perf_event_period(event, value); 5933 } 5934 case PERF_EVENT_IOC_ID: 5935 { 5936 u64 id = primary_event_id(event); 5937 5938 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5939 return -EFAULT; 5940 return 0; 5941 } 5942 5943 case PERF_EVENT_IOC_SET_OUTPUT: 5944 { 5945 int ret; 5946 if (arg != -1) { 5947 struct perf_event *output_event; 5948 struct fd output; 5949 ret = perf_fget_light(arg, &output); 5950 if (ret) 5951 return ret; 5952 output_event = output.file->private_data; 5953 ret = perf_event_set_output(event, output_event); 5954 fdput(output); 5955 } else { 5956 ret = perf_event_set_output(event, NULL); 5957 } 5958 return ret; 5959 } 5960 5961 case PERF_EVENT_IOC_SET_FILTER: 5962 return perf_event_set_filter(event, (void __user *)arg); 5963 5964 case PERF_EVENT_IOC_SET_BPF: 5965 { 5966 struct bpf_prog *prog; 5967 int err; 5968 5969 prog = bpf_prog_get(arg); 5970 if (IS_ERR(prog)) 5971 return PTR_ERR(prog); 5972 5973 err = perf_event_set_bpf_prog(event, prog, 0); 5974 if (err) { 5975 bpf_prog_put(prog); 5976 return err; 5977 } 5978 5979 return 0; 5980 } 5981 5982 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5983 struct perf_buffer *rb; 5984 5985 rcu_read_lock(); 5986 rb = rcu_dereference(event->rb); 5987 if (!rb || !rb->nr_pages) { 5988 rcu_read_unlock(); 5989 return -EINVAL; 5990 } 5991 rb_toggle_paused(rb, !!arg); 5992 rcu_read_unlock(); 5993 return 0; 5994 } 5995 5996 case PERF_EVENT_IOC_QUERY_BPF: 5997 return perf_event_query_prog_array(event, (void __user *)arg); 5998 5999 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6000 struct perf_event_attr new_attr; 6001 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6002 &new_attr); 6003 6004 if (err) 6005 return err; 6006 6007 return perf_event_modify_attr(event, &new_attr); 6008 } 6009 default: 6010 return -ENOTTY; 6011 } 6012 6013 if (flags & PERF_IOC_FLAG_GROUP) 6014 perf_event_for_each(event, func); 6015 else 6016 perf_event_for_each_child(event, func); 6017 6018 return 0; 6019 } 6020 6021 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6022 { 6023 struct perf_event *event = file->private_data; 6024 struct perf_event_context *ctx; 6025 long ret; 6026 6027 /* Treat ioctl like writes as it is likely a mutating operation. */ 6028 ret = security_perf_event_write(event); 6029 if (ret) 6030 return ret; 6031 6032 ctx = perf_event_ctx_lock(event); 6033 ret = _perf_ioctl(event, cmd, arg); 6034 perf_event_ctx_unlock(event, ctx); 6035 6036 return ret; 6037 } 6038 6039 #ifdef CONFIG_COMPAT 6040 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6041 unsigned long arg) 6042 { 6043 switch (_IOC_NR(cmd)) { 6044 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6045 case _IOC_NR(PERF_EVENT_IOC_ID): 6046 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6047 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6048 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6049 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6050 cmd &= ~IOCSIZE_MASK; 6051 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6052 } 6053 break; 6054 } 6055 return perf_ioctl(file, cmd, arg); 6056 } 6057 #else 6058 # define perf_compat_ioctl NULL 6059 #endif 6060 6061 int perf_event_task_enable(void) 6062 { 6063 struct perf_event_context *ctx; 6064 struct perf_event *event; 6065 6066 mutex_lock(¤t->perf_event_mutex); 6067 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6068 ctx = perf_event_ctx_lock(event); 6069 perf_event_for_each_child(event, _perf_event_enable); 6070 perf_event_ctx_unlock(event, ctx); 6071 } 6072 mutex_unlock(¤t->perf_event_mutex); 6073 6074 return 0; 6075 } 6076 6077 int perf_event_task_disable(void) 6078 { 6079 struct perf_event_context *ctx; 6080 struct perf_event *event; 6081 6082 mutex_lock(¤t->perf_event_mutex); 6083 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6084 ctx = perf_event_ctx_lock(event); 6085 perf_event_for_each_child(event, _perf_event_disable); 6086 perf_event_ctx_unlock(event, ctx); 6087 } 6088 mutex_unlock(¤t->perf_event_mutex); 6089 6090 return 0; 6091 } 6092 6093 static int perf_event_index(struct perf_event *event) 6094 { 6095 if (event->hw.state & PERF_HES_STOPPED) 6096 return 0; 6097 6098 if (event->state != PERF_EVENT_STATE_ACTIVE) 6099 return 0; 6100 6101 return event->pmu->event_idx(event); 6102 } 6103 6104 static void perf_event_init_userpage(struct perf_event *event) 6105 { 6106 struct perf_event_mmap_page *userpg; 6107 struct perf_buffer *rb; 6108 6109 rcu_read_lock(); 6110 rb = rcu_dereference(event->rb); 6111 if (!rb) 6112 goto unlock; 6113 6114 userpg = rb->user_page; 6115 6116 /* Allow new userspace to detect that bit 0 is deprecated */ 6117 userpg->cap_bit0_is_deprecated = 1; 6118 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6119 userpg->data_offset = PAGE_SIZE; 6120 userpg->data_size = perf_data_size(rb); 6121 6122 unlock: 6123 rcu_read_unlock(); 6124 } 6125 6126 void __weak arch_perf_update_userpage( 6127 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6128 { 6129 } 6130 6131 /* 6132 * Callers need to ensure there can be no nesting of this function, otherwise 6133 * the seqlock logic goes bad. We can not serialize this because the arch 6134 * code calls this from NMI context. 6135 */ 6136 void perf_event_update_userpage(struct perf_event *event) 6137 { 6138 struct perf_event_mmap_page *userpg; 6139 struct perf_buffer *rb; 6140 u64 enabled, running, now; 6141 6142 rcu_read_lock(); 6143 rb = rcu_dereference(event->rb); 6144 if (!rb) 6145 goto unlock; 6146 6147 /* 6148 * compute total_time_enabled, total_time_running 6149 * based on snapshot values taken when the event 6150 * was last scheduled in. 6151 * 6152 * we cannot simply called update_context_time() 6153 * because of locking issue as we can be called in 6154 * NMI context 6155 */ 6156 calc_timer_values(event, &now, &enabled, &running); 6157 6158 userpg = rb->user_page; 6159 /* 6160 * Disable preemption to guarantee consistent time stamps are stored to 6161 * the user page. 6162 */ 6163 preempt_disable(); 6164 ++userpg->lock; 6165 barrier(); 6166 userpg->index = perf_event_index(event); 6167 userpg->offset = perf_event_count(event); 6168 if (userpg->index) 6169 userpg->offset -= local64_read(&event->hw.prev_count); 6170 6171 userpg->time_enabled = enabled + 6172 atomic64_read(&event->child_total_time_enabled); 6173 6174 userpg->time_running = running + 6175 atomic64_read(&event->child_total_time_running); 6176 6177 arch_perf_update_userpage(event, userpg, now); 6178 6179 barrier(); 6180 ++userpg->lock; 6181 preempt_enable(); 6182 unlock: 6183 rcu_read_unlock(); 6184 } 6185 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6186 6187 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6188 { 6189 struct perf_event *event = vmf->vma->vm_file->private_data; 6190 struct perf_buffer *rb; 6191 vm_fault_t ret = VM_FAULT_SIGBUS; 6192 6193 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6194 if (vmf->pgoff == 0) 6195 ret = 0; 6196 return ret; 6197 } 6198 6199 rcu_read_lock(); 6200 rb = rcu_dereference(event->rb); 6201 if (!rb) 6202 goto unlock; 6203 6204 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6205 goto unlock; 6206 6207 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6208 if (!vmf->page) 6209 goto unlock; 6210 6211 get_page(vmf->page); 6212 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6213 vmf->page->index = vmf->pgoff; 6214 6215 ret = 0; 6216 unlock: 6217 rcu_read_unlock(); 6218 6219 return ret; 6220 } 6221 6222 static void ring_buffer_attach(struct perf_event *event, 6223 struct perf_buffer *rb) 6224 { 6225 struct perf_buffer *old_rb = NULL; 6226 unsigned long flags; 6227 6228 WARN_ON_ONCE(event->parent); 6229 6230 if (event->rb) { 6231 /* 6232 * Should be impossible, we set this when removing 6233 * event->rb_entry and wait/clear when adding event->rb_entry. 6234 */ 6235 WARN_ON_ONCE(event->rcu_pending); 6236 6237 old_rb = event->rb; 6238 spin_lock_irqsave(&old_rb->event_lock, flags); 6239 list_del_rcu(&event->rb_entry); 6240 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6241 6242 event->rcu_batches = get_state_synchronize_rcu(); 6243 event->rcu_pending = 1; 6244 } 6245 6246 if (rb) { 6247 if (event->rcu_pending) { 6248 cond_synchronize_rcu(event->rcu_batches); 6249 event->rcu_pending = 0; 6250 } 6251 6252 spin_lock_irqsave(&rb->event_lock, flags); 6253 list_add_rcu(&event->rb_entry, &rb->event_list); 6254 spin_unlock_irqrestore(&rb->event_lock, flags); 6255 } 6256 6257 /* 6258 * Avoid racing with perf_mmap_close(AUX): stop the event 6259 * before swizzling the event::rb pointer; if it's getting 6260 * unmapped, its aux_mmap_count will be 0 and it won't 6261 * restart. See the comment in __perf_pmu_output_stop(). 6262 * 6263 * Data will inevitably be lost when set_output is done in 6264 * mid-air, but then again, whoever does it like this is 6265 * not in for the data anyway. 6266 */ 6267 if (has_aux(event)) 6268 perf_event_stop(event, 0); 6269 6270 rcu_assign_pointer(event->rb, rb); 6271 6272 if (old_rb) { 6273 ring_buffer_put(old_rb); 6274 /* 6275 * Since we detached before setting the new rb, so that we 6276 * could attach the new rb, we could have missed a wakeup. 6277 * Provide it now. 6278 */ 6279 wake_up_all(&event->waitq); 6280 } 6281 } 6282 6283 static void ring_buffer_wakeup(struct perf_event *event) 6284 { 6285 struct perf_buffer *rb; 6286 6287 if (event->parent) 6288 event = event->parent; 6289 6290 rcu_read_lock(); 6291 rb = rcu_dereference(event->rb); 6292 if (rb) { 6293 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6294 wake_up_all(&event->waitq); 6295 } 6296 rcu_read_unlock(); 6297 } 6298 6299 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6300 { 6301 struct perf_buffer *rb; 6302 6303 if (event->parent) 6304 event = event->parent; 6305 6306 rcu_read_lock(); 6307 rb = rcu_dereference(event->rb); 6308 if (rb) { 6309 if (!refcount_inc_not_zero(&rb->refcount)) 6310 rb = NULL; 6311 } 6312 rcu_read_unlock(); 6313 6314 return rb; 6315 } 6316 6317 void ring_buffer_put(struct perf_buffer *rb) 6318 { 6319 if (!refcount_dec_and_test(&rb->refcount)) 6320 return; 6321 6322 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6323 6324 call_rcu(&rb->rcu_head, rb_free_rcu); 6325 } 6326 6327 static void perf_mmap_open(struct vm_area_struct *vma) 6328 { 6329 struct perf_event *event = vma->vm_file->private_data; 6330 6331 atomic_inc(&event->mmap_count); 6332 atomic_inc(&event->rb->mmap_count); 6333 6334 if (vma->vm_pgoff) 6335 atomic_inc(&event->rb->aux_mmap_count); 6336 6337 if (event->pmu->event_mapped) 6338 event->pmu->event_mapped(event, vma->vm_mm); 6339 } 6340 6341 static void perf_pmu_output_stop(struct perf_event *event); 6342 6343 /* 6344 * A buffer can be mmap()ed multiple times; either directly through the same 6345 * event, or through other events by use of perf_event_set_output(). 6346 * 6347 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6348 * the buffer here, where we still have a VM context. This means we need 6349 * to detach all events redirecting to us. 6350 */ 6351 static void perf_mmap_close(struct vm_area_struct *vma) 6352 { 6353 struct perf_event *event = vma->vm_file->private_data; 6354 struct perf_buffer *rb = ring_buffer_get(event); 6355 struct user_struct *mmap_user = rb->mmap_user; 6356 int mmap_locked = rb->mmap_locked; 6357 unsigned long size = perf_data_size(rb); 6358 bool detach_rest = false; 6359 6360 if (event->pmu->event_unmapped) 6361 event->pmu->event_unmapped(event, vma->vm_mm); 6362 6363 /* 6364 * rb->aux_mmap_count will always drop before rb->mmap_count and 6365 * event->mmap_count, so it is ok to use event->mmap_mutex to 6366 * serialize with perf_mmap here. 6367 */ 6368 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6369 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6370 /* 6371 * Stop all AUX events that are writing to this buffer, 6372 * so that we can free its AUX pages and corresponding PMU 6373 * data. Note that after rb::aux_mmap_count dropped to zero, 6374 * they won't start any more (see perf_aux_output_begin()). 6375 */ 6376 perf_pmu_output_stop(event); 6377 6378 /* now it's safe to free the pages */ 6379 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6380 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6381 6382 /* this has to be the last one */ 6383 rb_free_aux(rb); 6384 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6385 6386 mutex_unlock(&event->mmap_mutex); 6387 } 6388 6389 if (atomic_dec_and_test(&rb->mmap_count)) 6390 detach_rest = true; 6391 6392 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6393 goto out_put; 6394 6395 ring_buffer_attach(event, NULL); 6396 mutex_unlock(&event->mmap_mutex); 6397 6398 /* If there's still other mmap()s of this buffer, we're done. */ 6399 if (!detach_rest) 6400 goto out_put; 6401 6402 /* 6403 * No other mmap()s, detach from all other events that might redirect 6404 * into the now unreachable buffer. Somewhat complicated by the 6405 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6406 */ 6407 again: 6408 rcu_read_lock(); 6409 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6410 if (!atomic_long_inc_not_zero(&event->refcount)) { 6411 /* 6412 * This event is en-route to free_event() which will 6413 * detach it and remove it from the list. 6414 */ 6415 continue; 6416 } 6417 rcu_read_unlock(); 6418 6419 mutex_lock(&event->mmap_mutex); 6420 /* 6421 * Check we didn't race with perf_event_set_output() which can 6422 * swizzle the rb from under us while we were waiting to 6423 * acquire mmap_mutex. 6424 * 6425 * If we find a different rb; ignore this event, a next 6426 * iteration will no longer find it on the list. We have to 6427 * still restart the iteration to make sure we're not now 6428 * iterating the wrong list. 6429 */ 6430 if (event->rb == rb) 6431 ring_buffer_attach(event, NULL); 6432 6433 mutex_unlock(&event->mmap_mutex); 6434 put_event(event); 6435 6436 /* 6437 * Restart the iteration; either we're on the wrong list or 6438 * destroyed its integrity by doing a deletion. 6439 */ 6440 goto again; 6441 } 6442 rcu_read_unlock(); 6443 6444 /* 6445 * It could be there's still a few 0-ref events on the list; they'll 6446 * get cleaned up by free_event() -- they'll also still have their 6447 * ref on the rb and will free it whenever they are done with it. 6448 * 6449 * Aside from that, this buffer is 'fully' detached and unmapped, 6450 * undo the VM accounting. 6451 */ 6452 6453 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6454 &mmap_user->locked_vm); 6455 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6456 free_uid(mmap_user); 6457 6458 out_put: 6459 ring_buffer_put(rb); /* could be last */ 6460 } 6461 6462 static const struct vm_operations_struct perf_mmap_vmops = { 6463 .open = perf_mmap_open, 6464 .close = perf_mmap_close, /* non mergeable */ 6465 .fault = perf_mmap_fault, 6466 .page_mkwrite = perf_mmap_fault, 6467 }; 6468 6469 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6470 { 6471 struct perf_event *event = file->private_data; 6472 unsigned long user_locked, user_lock_limit; 6473 struct user_struct *user = current_user(); 6474 struct perf_buffer *rb = NULL; 6475 unsigned long locked, lock_limit; 6476 unsigned long vma_size; 6477 unsigned long nr_pages; 6478 long user_extra = 0, extra = 0; 6479 int ret = 0, flags = 0; 6480 6481 /* 6482 * Don't allow mmap() of inherited per-task counters. This would 6483 * create a performance issue due to all children writing to the 6484 * same rb. 6485 */ 6486 if (event->cpu == -1 && event->attr.inherit) 6487 return -EINVAL; 6488 6489 if (!(vma->vm_flags & VM_SHARED)) 6490 return -EINVAL; 6491 6492 ret = security_perf_event_read(event); 6493 if (ret) 6494 return ret; 6495 6496 vma_size = vma->vm_end - vma->vm_start; 6497 6498 if (vma->vm_pgoff == 0) { 6499 nr_pages = (vma_size / PAGE_SIZE) - 1; 6500 } else { 6501 /* 6502 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6503 * mapped, all subsequent mappings should have the same size 6504 * and offset. Must be above the normal perf buffer. 6505 */ 6506 u64 aux_offset, aux_size; 6507 6508 if (!event->rb) 6509 return -EINVAL; 6510 6511 nr_pages = vma_size / PAGE_SIZE; 6512 6513 mutex_lock(&event->mmap_mutex); 6514 ret = -EINVAL; 6515 6516 rb = event->rb; 6517 if (!rb) 6518 goto aux_unlock; 6519 6520 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6521 aux_size = READ_ONCE(rb->user_page->aux_size); 6522 6523 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6524 goto aux_unlock; 6525 6526 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6527 goto aux_unlock; 6528 6529 /* already mapped with a different offset */ 6530 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6531 goto aux_unlock; 6532 6533 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6534 goto aux_unlock; 6535 6536 /* already mapped with a different size */ 6537 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6538 goto aux_unlock; 6539 6540 if (!is_power_of_2(nr_pages)) 6541 goto aux_unlock; 6542 6543 if (!atomic_inc_not_zero(&rb->mmap_count)) 6544 goto aux_unlock; 6545 6546 if (rb_has_aux(rb)) { 6547 atomic_inc(&rb->aux_mmap_count); 6548 ret = 0; 6549 goto unlock; 6550 } 6551 6552 atomic_set(&rb->aux_mmap_count, 1); 6553 user_extra = nr_pages; 6554 6555 goto accounting; 6556 } 6557 6558 /* 6559 * If we have rb pages ensure they're a power-of-two number, so we 6560 * can do bitmasks instead of modulo. 6561 */ 6562 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6563 return -EINVAL; 6564 6565 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6566 return -EINVAL; 6567 6568 WARN_ON_ONCE(event->ctx->parent_ctx); 6569 again: 6570 mutex_lock(&event->mmap_mutex); 6571 if (event->rb) { 6572 if (data_page_nr(event->rb) != nr_pages) { 6573 ret = -EINVAL; 6574 goto unlock; 6575 } 6576 6577 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6578 /* 6579 * Raced against perf_mmap_close(); remove the 6580 * event and try again. 6581 */ 6582 ring_buffer_attach(event, NULL); 6583 mutex_unlock(&event->mmap_mutex); 6584 goto again; 6585 } 6586 6587 goto unlock; 6588 } 6589 6590 user_extra = nr_pages + 1; 6591 6592 accounting: 6593 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6594 6595 /* 6596 * Increase the limit linearly with more CPUs: 6597 */ 6598 user_lock_limit *= num_online_cpus(); 6599 6600 user_locked = atomic_long_read(&user->locked_vm); 6601 6602 /* 6603 * sysctl_perf_event_mlock may have changed, so that 6604 * user->locked_vm > user_lock_limit 6605 */ 6606 if (user_locked > user_lock_limit) 6607 user_locked = user_lock_limit; 6608 user_locked += user_extra; 6609 6610 if (user_locked > user_lock_limit) { 6611 /* 6612 * charge locked_vm until it hits user_lock_limit; 6613 * charge the rest from pinned_vm 6614 */ 6615 extra = user_locked - user_lock_limit; 6616 user_extra -= extra; 6617 } 6618 6619 lock_limit = rlimit(RLIMIT_MEMLOCK); 6620 lock_limit >>= PAGE_SHIFT; 6621 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6622 6623 if ((locked > lock_limit) && perf_is_paranoid() && 6624 !capable(CAP_IPC_LOCK)) { 6625 ret = -EPERM; 6626 goto unlock; 6627 } 6628 6629 WARN_ON(!rb && event->rb); 6630 6631 if (vma->vm_flags & VM_WRITE) 6632 flags |= RING_BUFFER_WRITABLE; 6633 6634 if (!rb) { 6635 rb = rb_alloc(nr_pages, 6636 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6637 event->cpu, flags); 6638 6639 if (!rb) { 6640 ret = -ENOMEM; 6641 goto unlock; 6642 } 6643 6644 atomic_set(&rb->mmap_count, 1); 6645 rb->mmap_user = get_current_user(); 6646 rb->mmap_locked = extra; 6647 6648 ring_buffer_attach(event, rb); 6649 6650 perf_event_update_time(event); 6651 perf_event_init_userpage(event); 6652 perf_event_update_userpage(event); 6653 } else { 6654 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6655 event->attr.aux_watermark, flags); 6656 if (!ret) 6657 rb->aux_mmap_locked = extra; 6658 } 6659 6660 unlock: 6661 if (!ret) { 6662 atomic_long_add(user_extra, &user->locked_vm); 6663 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6664 6665 atomic_inc(&event->mmap_count); 6666 } else if (rb) { 6667 atomic_dec(&rb->mmap_count); 6668 } 6669 aux_unlock: 6670 mutex_unlock(&event->mmap_mutex); 6671 6672 /* 6673 * Since pinned accounting is per vm we cannot allow fork() to copy our 6674 * vma. 6675 */ 6676 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6677 vma->vm_ops = &perf_mmap_vmops; 6678 6679 if (event->pmu->event_mapped) 6680 event->pmu->event_mapped(event, vma->vm_mm); 6681 6682 return ret; 6683 } 6684 6685 static int perf_fasync(int fd, struct file *filp, int on) 6686 { 6687 struct inode *inode = file_inode(filp); 6688 struct perf_event *event = filp->private_data; 6689 int retval; 6690 6691 inode_lock(inode); 6692 retval = fasync_helper(fd, filp, on, &event->fasync); 6693 inode_unlock(inode); 6694 6695 if (retval < 0) 6696 return retval; 6697 6698 return 0; 6699 } 6700 6701 static const struct file_operations perf_fops = { 6702 .llseek = no_llseek, 6703 .release = perf_release, 6704 .read = perf_read, 6705 .poll = perf_poll, 6706 .unlocked_ioctl = perf_ioctl, 6707 .compat_ioctl = perf_compat_ioctl, 6708 .mmap = perf_mmap, 6709 .fasync = perf_fasync, 6710 }; 6711 6712 /* 6713 * Perf event wakeup 6714 * 6715 * If there's data, ensure we set the poll() state and publish everything 6716 * to user-space before waking everybody up. 6717 */ 6718 6719 void perf_event_wakeup(struct perf_event *event) 6720 { 6721 ring_buffer_wakeup(event); 6722 6723 if (event->pending_kill) { 6724 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6725 event->pending_kill = 0; 6726 } 6727 } 6728 6729 static void perf_sigtrap(struct perf_event *event) 6730 { 6731 /* 6732 * We'd expect this to only occur if the irq_work is delayed and either 6733 * ctx->task or current has changed in the meantime. This can be the 6734 * case on architectures that do not implement arch_irq_work_raise(). 6735 */ 6736 if (WARN_ON_ONCE(event->ctx->task != current)) 6737 return; 6738 6739 /* 6740 * Both perf_pending_task() and perf_pending_irq() can race with the 6741 * task exiting. 6742 */ 6743 if (current->flags & PF_EXITING) 6744 return; 6745 6746 send_sig_perf((void __user *)event->pending_addr, 6747 event->orig_type, event->attr.sig_data); 6748 } 6749 6750 /* 6751 * Deliver the pending work in-event-context or follow the context. 6752 */ 6753 static void __perf_pending_irq(struct perf_event *event) 6754 { 6755 int cpu = READ_ONCE(event->oncpu); 6756 6757 /* 6758 * If the event isn't running; we done. event_sched_out() will have 6759 * taken care of things. 6760 */ 6761 if (cpu < 0) 6762 return; 6763 6764 /* 6765 * Yay, we hit home and are in the context of the event. 6766 */ 6767 if (cpu == smp_processor_id()) { 6768 if (event->pending_sigtrap) { 6769 event->pending_sigtrap = 0; 6770 perf_sigtrap(event); 6771 local_dec(&event->ctx->nr_pending); 6772 } 6773 if (event->pending_disable) { 6774 event->pending_disable = 0; 6775 perf_event_disable_local(event); 6776 } 6777 return; 6778 } 6779 6780 /* 6781 * CPU-A CPU-B 6782 * 6783 * perf_event_disable_inatomic() 6784 * @pending_disable = CPU-A; 6785 * irq_work_queue(); 6786 * 6787 * sched-out 6788 * @pending_disable = -1; 6789 * 6790 * sched-in 6791 * perf_event_disable_inatomic() 6792 * @pending_disable = CPU-B; 6793 * irq_work_queue(); // FAILS 6794 * 6795 * irq_work_run() 6796 * perf_pending_irq() 6797 * 6798 * But the event runs on CPU-B and wants disabling there. 6799 */ 6800 irq_work_queue_on(&event->pending_irq, cpu); 6801 } 6802 6803 static void perf_pending_irq(struct irq_work *entry) 6804 { 6805 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6806 int rctx; 6807 6808 /* 6809 * If we 'fail' here, that's OK, it means recursion is already disabled 6810 * and we won't recurse 'further'. 6811 */ 6812 rctx = perf_swevent_get_recursion_context(); 6813 6814 /* 6815 * The wakeup isn't bound to the context of the event -- it can happen 6816 * irrespective of where the event is. 6817 */ 6818 if (event->pending_wakeup) { 6819 event->pending_wakeup = 0; 6820 perf_event_wakeup(event); 6821 } 6822 6823 __perf_pending_irq(event); 6824 6825 if (rctx >= 0) 6826 perf_swevent_put_recursion_context(rctx); 6827 } 6828 6829 static void perf_pending_task(struct callback_head *head) 6830 { 6831 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6832 int rctx; 6833 6834 /* 6835 * If we 'fail' here, that's OK, it means recursion is already disabled 6836 * and we won't recurse 'further'. 6837 */ 6838 preempt_disable_notrace(); 6839 rctx = perf_swevent_get_recursion_context(); 6840 6841 if (event->pending_work) { 6842 event->pending_work = 0; 6843 perf_sigtrap(event); 6844 local_dec(&event->ctx->nr_pending); 6845 } 6846 6847 if (rctx >= 0) 6848 perf_swevent_put_recursion_context(rctx); 6849 preempt_enable_notrace(); 6850 6851 put_event(event); 6852 } 6853 6854 #ifdef CONFIG_GUEST_PERF_EVENTS 6855 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6856 6857 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6858 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6859 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6860 6861 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6862 { 6863 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6864 return; 6865 6866 rcu_assign_pointer(perf_guest_cbs, cbs); 6867 static_call_update(__perf_guest_state, cbs->state); 6868 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6869 6870 /* Implementing ->handle_intel_pt_intr is optional. */ 6871 if (cbs->handle_intel_pt_intr) 6872 static_call_update(__perf_guest_handle_intel_pt_intr, 6873 cbs->handle_intel_pt_intr); 6874 } 6875 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6876 6877 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6878 { 6879 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6880 return; 6881 6882 rcu_assign_pointer(perf_guest_cbs, NULL); 6883 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6884 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6885 static_call_update(__perf_guest_handle_intel_pt_intr, 6886 (void *)&__static_call_return0); 6887 synchronize_rcu(); 6888 } 6889 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6890 #endif 6891 6892 static void 6893 perf_output_sample_regs(struct perf_output_handle *handle, 6894 struct pt_regs *regs, u64 mask) 6895 { 6896 int bit; 6897 DECLARE_BITMAP(_mask, 64); 6898 6899 bitmap_from_u64(_mask, mask); 6900 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6901 u64 val; 6902 6903 val = perf_reg_value(regs, bit); 6904 perf_output_put(handle, val); 6905 } 6906 } 6907 6908 static void perf_sample_regs_user(struct perf_regs *regs_user, 6909 struct pt_regs *regs) 6910 { 6911 if (user_mode(regs)) { 6912 regs_user->abi = perf_reg_abi(current); 6913 regs_user->regs = regs; 6914 } else if (!(current->flags & PF_KTHREAD)) { 6915 perf_get_regs_user(regs_user, regs); 6916 } else { 6917 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6918 regs_user->regs = NULL; 6919 } 6920 } 6921 6922 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6923 struct pt_regs *regs) 6924 { 6925 regs_intr->regs = regs; 6926 regs_intr->abi = perf_reg_abi(current); 6927 } 6928 6929 6930 /* 6931 * Get remaining task size from user stack pointer. 6932 * 6933 * It'd be better to take stack vma map and limit this more 6934 * precisely, but there's no way to get it safely under interrupt, 6935 * so using TASK_SIZE as limit. 6936 */ 6937 static u64 perf_ustack_task_size(struct pt_regs *regs) 6938 { 6939 unsigned long addr = perf_user_stack_pointer(regs); 6940 6941 if (!addr || addr >= TASK_SIZE) 6942 return 0; 6943 6944 return TASK_SIZE - addr; 6945 } 6946 6947 static u16 6948 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6949 struct pt_regs *regs) 6950 { 6951 u64 task_size; 6952 6953 /* No regs, no stack pointer, no dump. */ 6954 if (!regs) 6955 return 0; 6956 6957 /* 6958 * Check if we fit in with the requested stack size into the: 6959 * - TASK_SIZE 6960 * If we don't, we limit the size to the TASK_SIZE. 6961 * 6962 * - remaining sample size 6963 * If we don't, we customize the stack size to 6964 * fit in to the remaining sample size. 6965 */ 6966 6967 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6968 stack_size = min(stack_size, (u16) task_size); 6969 6970 /* Current header size plus static size and dynamic size. */ 6971 header_size += 2 * sizeof(u64); 6972 6973 /* Do we fit in with the current stack dump size? */ 6974 if ((u16) (header_size + stack_size) < header_size) { 6975 /* 6976 * If we overflow the maximum size for the sample, 6977 * we customize the stack dump size to fit in. 6978 */ 6979 stack_size = USHRT_MAX - header_size - sizeof(u64); 6980 stack_size = round_up(stack_size, sizeof(u64)); 6981 } 6982 6983 return stack_size; 6984 } 6985 6986 static void 6987 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6988 struct pt_regs *regs) 6989 { 6990 /* Case of a kernel thread, nothing to dump */ 6991 if (!regs) { 6992 u64 size = 0; 6993 perf_output_put(handle, size); 6994 } else { 6995 unsigned long sp; 6996 unsigned int rem; 6997 u64 dyn_size; 6998 6999 /* 7000 * We dump: 7001 * static size 7002 * - the size requested by user or the best one we can fit 7003 * in to the sample max size 7004 * data 7005 * - user stack dump data 7006 * dynamic size 7007 * - the actual dumped size 7008 */ 7009 7010 /* Static size. */ 7011 perf_output_put(handle, dump_size); 7012 7013 /* Data. */ 7014 sp = perf_user_stack_pointer(regs); 7015 rem = __output_copy_user(handle, (void *) sp, dump_size); 7016 dyn_size = dump_size - rem; 7017 7018 perf_output_skip(handle, rem); 7019 7020 /* Dynamic size. */ 7021 perf_output_put(handle, dyn_size); 7022 } 7023 } 7024 7025 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7026 struct perf_sample_data *data, 7027 size_t size) 7028 { 7029 struct perf_event *sampler = event->aux_event; 7030 struct perf_buffer *rb; 7031 7032 data->aux_size = 0; 7033 7034 if (!sampler) 7035 goto out; 7036 7037 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7038 goto out; 7039 7040 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7041 goto out; 7042 7043 rb = ring_buffer_get(sampler); 7044 if (!rb) 7045 goto out; 7046 7047 /* 7048 * If this is an NMI hit inside sampling code, don't take 7049 * the sample. See also perf_aux_sample_output(). 7050 */ 7051 if (READ_ONCE(rb->aux_in_sampling)) { 7052 data->aux_size = 0; 7053 } else { 7054 size = min_t(size_t, size, perf_aux_size(rb)); 7055 data->aux_size = ALIGN(size, sizeof(u64)); 7056 } 7057 ring_buffer_put(rb); 7058 7059 out: 7060 return data->aux_size; 7061 } 7062 7063 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7064 struct perf_event *event, 7065 struct perf_output_handle *handle, 7066 unsigned long size) 7067 { 7068 unsigned long flags; 7069 long ret; 7070 7071 /* 7072 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7073 * paths. If we start calling them in NMI context, they may race with 7074 * the IRQ ones, that is, for example, re-starting an event that's just 7075 * been stopped, which is why we're using a separate callback that 7076 * doesn't change the event state. 7077 * 7078 * IRQs need to be disabled to prevent IPIs from racing with us. 7079 */ 7080 local_irq_save(flags); 7081 /* 7082 * Guard against NMI hits inside the critical section; 7083 * see also perf_prepare_sample_aux(). 7084 */ 7085 WRITE_ONCE(rb->aux_in_sampling, 1); 7086 barrier(); 7087 7088 ret = event->pmu->snapshot_aux(event, handle, size); 7089 7090 barrier(); 7091 WRITE_ONCE(rb->aux_in_sampling, 0); 7092 local_irq_restore(flags); 7093 7094 return ret; 7095 } 7096 7097 static void perf_aux_sample_output(struct perf_event *event, 7098 struct perf_output_handle *handle, 7099 struct perf_sample_data *data) 7100 { 7101 struct perf_event *sampler = event->aux_event; 7102 struct perf_buffer *rb; 7103 unsigned long pad; 7104 long size; 7105 7106 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7107 return; 7108 7109 rb = ring_buffer_get(sampler); 7110 if (!rb) 7111 return; 7112 7113 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7114 7115 /* 7116 * An error here means that perf_output_copy() failed (returned a 7117 * non-zero surplus that it didn't copy), which in its current 7118 * enlightened implementation is not possible. If that changes, we'd 7119 * like to know. 7120 */ 7121 if (WARN_ON_ONCE(size < 0)) 7122 goto out_put; 7123 7124 /* 7125 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7126 * perf_prepare_sample_aux(), so should not be more than that. 7127 */ 7128 pad = data->aux_size - size; 7129 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7130 pad = 8; 7131 7132 if (pad) { 7133 u64 zero = 0; 7134 perf_output_copy(handle, &zero, pad); 7135 } 7136 7137 out_put: 7138 ring_buffer_put(rb); 7139 } 7140 7141 /* 7142 * A set of common sample data types saved even for non-sample records 7143 * when event->attr.sample_id_all is set. 7144 */ 7145 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7146 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7147 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7148 7149 static void __perf_event_header__init_id(struct perf_sample_data *data, 7150 struct perf_event *event, 7151 u64 sample_type) 7152 { 7153 data->type = event->attr.sample_type; 7154 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7155 7156 if (sample_type & PERF_SAMPLE_TID) { 7157 /* namespace issues */ 7158 data->tid_entry.pid = perf_event_pid(event, current); 7159 data->tid_entry.tid = perf_event_tid(event, current); 7160 } 7161 7162 if (sample_type & PERF_SAMPLE_TIME) 7163 data->time = perf_event_clock(event); 7164 7165 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7166 data->id = primary_event_id(event); 7167 7168 if (sample_type & PERF_SAMPLE_STREAM_ID) 7169 data->stream_id = event->id; 7170 7171 if (sample_type & PERF_SAMPLE_CPU) { 7172 data->cpu_entry.cpu = raw_smp_processor_id(); 7173 data->cpu_entry.reserved = 0; 7174 } 7175 } 7176 7177 void perf_event_header__init_id(struct perf_event_header *header, 7178 struct perf_sample_data *data, 7179 struct perf_event *event) 7180 { 7181 if (event->attr.sample_id_all) { 7182 header->size += event->id_header_size; 7183 __perf_event_header__init_id(data, event, event->attr.sample_type); 7184 } 7185 } 7186 7187 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7188 struct perf_sample_data *data) 7189 { 7190 u64 sample_type = data->type; 7191 7192 if (sample_type & PERF_SAMPLE_TID) 7193 perf_output_put(handle, data->tid_entry); 7194 7195 if (sample_type & PERF_SAMPLE_TIME) 7196 perf_output_put(handle, data->time); 7197 7198 if (sample_type & PERF_SAMPLE_ID) 7199 perf_output_put(handle, data->id); 7200 7201 if (sample_type & PERF_SAMPLE_STREAM_ID) 7202 perf_output_put(handle, data->stream_id); 7203 7204 if (sample_type & PERF_SAMPLE_CPU) 7205 perf_output_put(handle, data->cpu_entry); 7206 7207 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7208 perf_output_put(handle, data->id); 7209 } 7210 7211 void perf_event__output_id_sample(struct perf_event *event, 7212 struct perf_output_handle *handle, 7213 struct perf_sample_data *sample) 7214 { 7215 if (event->attr.sample_id_all) 7216 __perf_event__output_id_sample(handle, sample); 7217 } 7218 7219 static void perf_output_read_one(struct perf_output_handle *handle, 7220 struct perf_event *event, 7221 u64 enabled, u64 running) 7222 { 7223 u64 read_format = event->attr.read_format; 7224 u64 values[5]; 7225 int n = 0; 7226 7227 values[n++] = perf_event_count(event); 7228 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7229 values[n++] = enabled + 7230 atomic64_read(&event->child_total_time_enabled); 7231 } 7232 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7233 values[n++] = running + 7234 atomic64_read(&event->child_total_time_running); 7235 } 7236 if (read_format & PERF_FORMAT_ID) 7237 values[n++] = primary_event_id(event); 7238 if (read_format & PERF_FORMAT_LOST) 7239 values[n++] = atomic64_read(&event->lost_samples); 7240 7241 __output_copy(handle, values, n * sizeof(u64)); 7242 } 7243 7244 static void perf_output_read_group(struct perf_output_handle *handle, 7245 struct perf_event *event, 7246 u64 enabled, u64 running) 7247 { 7248 struct perf_event *leader = event->group_leader, *sub; 7249 u64 read_format = event->attr.read_format; 7250 unsigned long flags; 7251 u64 values[6]; 7252 int n = 0; 7253 7254 /* 7255 * Disabling interrupts avoids all counter scheduling 7256 * (context switches, timer based rotation and IPIs). 7257 */ 7258 local_irq_save(flags); 7259 7260 values[n++] = 1 + leader->nr_siblings; 7261 7262 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7263 values[n++] = enabled; 7264 7265 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7266 values[n++] = running; 7267 7268 if ((leader != event) && 7269 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7270 leader->pmu->read(leader); 7271 7272 values[n++] = perf_event_count(leader); 7273 if (read_format & PERF_FORMAT_ID) 7274 values[n++] = primary_event_id(leader); 7275 if (read_format & PERF_FORMAT_LOST) 7276 values[n++] = atomic64_read(&leader->lost_samples); 7277 7278 __output_copy(handle, values, n * sizeof(u64)); 7279 7280 for_each_sibling_event(sub, leader) { 7281 n = 0; 7282 7283 if ((sub != event) && 7284 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7285 sub->pmu->read(sub); 7286 7287 values[n++] = perf_event_count(sub); 7288 if (read_format & PERF_FORMAT_ID) 7289 values[n++] = primary_event_id(sub); 7290 if (read_format & PERF_FORMAT_LOST) 7291 values[n++] = atomic64_read(&sub->lost_samples); 7292 7293 __output_copy(handle, values, n * sizeof(u64)); 7294 } 7295 7296 local_irq_restore(flags); 7297 } 7298 7299 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7300 PERF_FORMAT_TOTAL_TIME_RUNNING) 7301 7302 /* 7303 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7304 * 7305 * The problem is that its both hard and excessively expensive to iterate the 7306 * child list, not to mention that its impossible to IPI the children running 7307 * on another CPU, from interrupt/NMI context. 7308 */ 7309 static void perf_output_read(struct perf_output_handle *handle, 7310 struct perf_event *event) 7311 { 7312 u64 enabled = 0, running = 0, now; 7313 u64 read_format = event->attr.read_format; 7314 7315 /* 7316 * compute total_time_enabled, total_time_running 7317 * based on snapshot values taken when the event 7318 * was last scheduled in. 7319 * 7320 * we cannot simply called update_context_time() 7321 * because of locking issue as we are called in 7322 * NMI context 7323 */ 7324 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7325 calc_timer_values(event, &now, &enabled, &running); 7326 7327 if (event->attr.read_format & PERF_FORMAT_GROUP) 7328 perf_output_read_group(handle, event, enabled, running); 7329 else 7330 perf_output_read_one(handle, event, enabled, running); 7331 } 7332 7333 void perf_output_sample(struct perf_output_handle *handle, 7334 struct perf_event_header *header, 7335 struct perf_sample_data *data, 7336 struct perf_event *event) 7337 { 7338 u64 sample_type = data->type; 7339 7340 perf_output_put(handle, *header); 7341 7342 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7343 perf_output_put(handle, data->id); 7344 7345 if (sample_type & PERF_SAMPLE_IP) 7346 perf_output_put(handle, data->ip); 7347 7348 if (sample_type & PERF_SAMPLE_TID) 7349 perf_output_put(handle, data->tid_entry); 7350 7351 if (sample_type & PERF_SAMPLE_TIME) 7352 perf_output_put(handle, data->time); 7353 7354 if (sample_type & PERF_SAMPLE_ADDR) 7355 perf_output_put(handle, data->addr); 7356 7357 if (sample_type & PERF_SAMPLE_ID) 7358 perf_output_put(handle, data->id); 7359 7360 if (sample_type & PERF_SAMPLE_STREAM_ID) 7361 perf_output_put(handle, data->stream_id); 7362 7363 if (sample_type & PERF_SAMPLE_CPU) 7364 perf_output_put(handle, data->cpu_entry); 7365 7366 if (sample_type & PERF_SAMPLE_PERIOD) 7367 perf_output_put(handle, data->period); 7368 7369 if (sample_type & PERF_SAMPLE_READ) 7370 perf_output_read(handle, event); 7371 7372 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7373 int size = 1; 7374 7375 size += data->callchain->nr; 7376 size *= sizeof(u64); 7377 __output_copy(handle, data->callchain, size); 7378 } 7379 7380 if (sample_type & PERF_SAMPLE_RAW) { 7381 struct perf_raw_record *raw = data->raw; 7382 7383 if (raw) { 7384 struct perf_raw_frag *frag = &raw->frag; 7385 7386 perf_output_put(handle, raw->size); 7387 do { 7388 if (frag->copy) { 7389 __output_custom(handle, frag->copy, 7390 frag->data, frag->size); 7391 } else { 7392 __output_copy(handle, frag->data, 7393 frag->size); 7394 } 7395 if (perf_raw_frag_last(frag)) 7396 break; 7397 frag = frag->next; 7398 } while (1); 7399 if (frag->pad) 7400 __output_skip(handle, NULL, frag->pad); 7401 } else { 7402 struct { 7403 u32 size; 7404 u32 data; 7405 } raw = { 7406 .size = sizeof(u32), 7407 .data = 0, 7408 }; 7409 perf_output_put(handle, raw); 7410 } 7411 } 7412 7413 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7414 if (data->br_stack) { 7415 size_t size; 7416 7417 size = data->br_stack->nr 7418 * sizeof(struct perf_branch_entry); 7419 7420 perf_output_put(handle, data->br_stack->nr); 7421 if (branch_sample_hw_index(event)) 7422 perf_output_put(handle, data->br_stack->hw_idx); 7423 perf_output_copy(handle, data->br_stack->entries, size); 7424 /* 7425 * Add the extension space which is appended 7426 * right after the struct perf_branch_stack. 7427 */ 7428 if (data->br_stack_cntr) { 7429 size = data->br_stack->nr * sizeof(u64); 7430 perf_output_copy(handle, data->br_stack_cntr, size); 7431 } 7432 } else { 7433 /* 7434 * we always store at least the value of nr 7435 */ 7436 u64 nr = 0; 7437 perf_output_put(handle, nr); 7438 } 7439 } 7440 7441 if (sample_type & PERF_SAMPLE_REGS_USER) { 7442 u64 abi = data->regs_user.abi; 7443 7444 /* 7445 * If there are no regs to dump, notice it through 7446 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7447 */ 7448 perf_output_put(handle, abi); 7449 7450 if (abi) { 7451 u64 mask = event->attr.sample_regs_user; 7452 perf_output_sample_regs(handle, 7453 data->regs_user.regs, 7454 mask); 7455 } 7456 } 7457 7458 if (sample_type & PERF_SAMPLE_STACK_USER) { 7459 perf_output_sample_ustack(handle, 7460 data->stack_user_size, 7461 data->regs_user.regs); 7462 } 7463 7464 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7465 perf_output_put(handle, data->weight.full); 7466 7467 if (sample_type & PERF_SAMPLE_DATA_SRC) 7468 perf_output_put(handle, data->data_src.val); 7469 7470 if (sample_type & PERF_SAMPLE_TRANSACTION) 7471 perf_output_put(handle, data->txn); 7472 7473 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7474 u64 abi = data->regs_intr.abi; 7475 /* 7476 * If there are no regs to dump, notice it through 7477 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7478 */ 7479 perf_output_put(handle, abi); 7480 7481 if (abi) { 7482 u64 mask = event->attr.sample_regs_intr; 7483 7484 perf_output_sample_regs(handle, 7485 data->regs_intr.regs, 7486 mask); 7487 } 7488 } 7489 7490 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7491 perf_output_put(handle, data->phys_addr); 7492 7493 if (sample_type & PERF_SAMPLE_CGROUP) 7494 perf_output_put(handle, data->cgroup); 7495 7496 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7497 perf_output_put(handle, data->data_page_size); 7498 7499 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7500 perf_output_put(handle, data->code_page_size); 7501 7502 if (sample_type & PERF_SAMPLE_AUX) { 7503 perf_output_put(handle, data->aux_size); 7504 7505 if (data->aux_size) 7506 perf_aux_sample_output(event, handle, data); 7507 } 7508 7509 if (!event->attr.watermark) { 7510 int wakeup_events = event->attr.wakeup_events; 7511 7512 if (wakeup_events) { 7513 struct perf_buffer *rb = handle->rb; 7514 int events = local_inc_return(&rb->events); 7515 7516 if (events >= wakeup_events) { 7517 local_sub(wakeup_events, &rb->events); 7518 local_inc(&rb->wakeup); 7519 } 7520 } 7521 } 7522 } 7523 7524 static u64 perf_virt_to_phys(u64 virt) 7525 { 7526 u64 phys_addr = 0; 7527 7528 if (!virt) 7529 return 0; 7530 7531 if (virt >= TASK_SIZE) { 7532 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7533 if (virt_addr_valid((void *)(uintptr_t)virt) && 7534 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7535 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7536 } else { 7537 /* 7538 * Walking the pages tables for user address. 7539 * Interrupts are disabled, so it prevents any tear down 7540 * of the page tables. 7541 * Try IRQ-safe get_user_page_fast_only first. 7542 * If failed, leave phys_addr as 0. 7543 */ 7544 if (current->mm != NULL) { 7545 struct page *p; 7546 7547 pagefault_disable(); 7548 if (get_user_page_fast_only(virt, 0, &p)) { 7549 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7550 put_page(p); 7551 } 7552 pagefault_enable(); 7553 } 7554 } 7555 7556 return phys_addr; 7557 } 7558 7559 /* 7560 * Return the pagetable size of a given virtual address. 7561 */ 7562 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7563 { 7564 u64 size = 0; 7565 7566 #ifdef CONFIG_HAVE_GUP_FAST 7567 pgd_t *pgdp, pgd; 7568 p4d_t *p4dp, p4d; 7569 pud_t *pudp, pud; 7570 pmd_t *pmdp, pmd; 7571 pte_t *ptep, pte; 7572 7573 pgdp = pgd_offset(mm, addr); 7574 pgd = READ_ONCE(*pgdp); 7575 if (pgd_none(pgd)) 7576 return 0; 7577 7578 if (pgd_leaf(pgd)) 7579 return pgd_leaf_size(pgd); 7580 7581 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7582 p4d = READ_ONCE(*p4dp); 7583 if (!p4d_present(p4d)) 7584 return 0; 7585 7586 if (p4d_leaf(p4d)) 7587 return p4d_leaf_size(p4d); 7588 7589 pudp = pud_offset_lockless(p4dp, p4d, addr); 7590 pud = READ_ONCE(*pudp); 7591 if (!pud_present(pud)) 7592 return 0; 7593 7594 if (pud_leaf(pud)) 7595 return pud_leaf_size(pud); 7596 7597 pmdp = pmd_offset_lockless(pudp, pud, addr); 7598 again: 7599 pmd = pmdp_get_lockless(pmdp); 7600 if (!pmd_present(pmd)) 7601 return 0; 7602 7603 if (pmd_leaf(pmd)) 7604 return pmd_leaf_size(pmd); 7605 7606 ptep = pte_offset_map(&pmd, addr); 7607 if (!ptep) 7608 goto again; 7609 7610 pte = ptep_get_lockless(ptep); 7611 if (pte_present(pte)) 7612 size = pte_leaf_size(pte); 7613 pte_unmap(ptep); 7614 #endif /* CONFIG_HAVE_GUP_FAST */ 7615 7616 return size; 7617 } 7618 7619 static u64 perf_get_page_size(unsigned long addr) 7620 { 7621 struct mm_struct *mm; 7622 unsigned long flags; 7623 u64 size; 7624 7625 if (!addr) 7626 return 0; 7627 7628 /* 7629 * Software page-table walkers must disable IRQs, 7630 * which prevents any tear down of the page tables. 7631 */ 7632 local_irq_save(flags); 7633 7634 mm = current->mm; 7635 if (!mm) { 7636 /* 7637 * For kernel threads and the like, use init_mm so that 7638 * we can find kernel memory. 7639 */ 7640 mm = &init_mm; 7641 } 7642 7643 size = perf_get_pgtable_size(mm, addr); 7644 7645 local_irq_restore(flags); 7646 7647 return size; 7648 } 7649 7650 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7651 7652 struct perf_callchain_entry * 7653 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7654 { 7655 bool kernel = !event->attr.exclude_callchain_kernel; 7656 bool user = !event->attr.exclude_callchain_user; 7657 /* Disallow cross-task user callchains. */ 7658 bool crosstask = event->ctx->task && event->ctx->task != current; 7659 const u32 max_stack = event->attr.sample_max_stack; 7660 struct perf_callchain_entry *callchain; 7661 7662 if (!kernel && !user) 7663 return &__empty_callchain; 7664 7665 callchain = get_perf_callchain(regs, 0, kernel, user, 7666 max_stack, crosstask, true); 7667 return callchain ?: &__empty_callchain; 7668 } 7669 7670 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7671 { 7672 return d * !!(flags & s); 7673 } 7674 7675 void perf_prepare_sample(struct perf_sample_data *data, 7676 struct perf_event *event, 7677 struct pt_regs *regs) 7678 { 7679 u64 sample_type = event->attr.sample_type; 7680 u64 filtered_sample_type; 7681 7682 /* 7683 * Add the sample flags that are dependent to others. And clear the 7684 * sample flags that have already been done by the PMU driver. 7685 */ 7686 filtered_sample_type = sample_type; 7687 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7688 PERF_SAMPLE_IP); 7689 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7690 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7691 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7692 PERF_SAMPLE_REGS_USER); 7693 filtered_sample_type &= ~data->sample_flags; 7694 7695 if (filtered_sample_type == 0) { 7696 /* Make sure it has the correct data->type for output */ 7697 data->type = event->attr.sample_type; 7698 return; 7699 } 7700 7701 __perf_event_header__init_id(data, event, filtered_sample_type); 7702 7703 if (filtered_sample_type & PERF_SAMPLE_IP) { 7704 data->ip = perf_instruction_pointer(regs); 7705 data->sample_flags |= PERF_SAMPLE_IP; 7706 } 7707 7708 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7709 perf_sample_save_callchain(data, event, regs); 7710 7711 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7712 data->raw = NULL; 7713 data->dyn_size += sizeof(u64); 7714 data->sample_flags |= PERF_SAMPLE_RAW; 7715 } 7716 7717 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7718 data->br_stack = NULL; 7719 data->dyn_size += sizeof(u64); 7720 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7721 } 7722 7723 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7724 perf_sample_regs_user(&data->regs_user, regs); 7725 7726 /* 7727 * It cannot use the filtered_sample_type here as REGS_USER can be set 7728 * by STACK_USER (using __cond_set() above) and we don't want to update 7729 * the dyn_size if it's not requested by users. 7730 */ 7731 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7732 /* regs dump ABI info */ 7733 int size = sizeof(u64); 7734 7735 if (data->regs_user.regs) { 7736 u64 mask = event->attr.sample_regs_user; 7737 size += hweight64(mask) * sizeof(u64); 7738 } 7739 7740 data->dyn_size += size; 7741 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7742 } 7743 7744 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7745 /* 7746 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7747 * processed as the last one or have additional check added 7748 * in case new sample type is added, because we could eat 7749 * up the rest of the sample size. 7750 */ 7751 u16 stack_size = event->attr.sample_stack_user; 7752 u16 header_size = perf_sample_data_size(data, event); 7753 u16 size = sizeof(u64); 7754 7755 stack_size = perf_sample_ustack_size(stack_size, header_size, 7756 data->regs_user.regs); 7757 7758 /* 7759 * If there is something to dump, add space for the dump 7760 * itself and for the field that tells the dynamic size, 7761 * which is how many have been actually dumped. 7762 */ 7763 if (stack_size) 7764 size += sizeof(u64) + stack_size; 7765 7766 data->stack_user_size = stack_size; 7767 data->dyn_size += size; 7768 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7769 } 7770 7771 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7772 data->weight.full = 0; 7773 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7774 } 7775 7776 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7777 data->data_src.val = PERF_MEM_NA; 7778 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7779 } 7780 7781 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7782 data->txn = 0; 7783 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7784 } 7785 7786 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7787 data->addr = 0; 7788 data->sample_flags |= PERF_SAMPLE_ADDR; 7789 } 7790 7791 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7792 /* regs dump ABI info */ 7793 int size = sizeof(u64); 7794 7795 perf_sample_regs_intr(&data->regs_intr, regs); 7796 7797 if (data->regs_intr.regs) { 7798 u64 mask = event->attr.sample_regs_intr; 7799 7800 size += hweight64(mask) * sizeof(u64); 7801 } 7802 7803 data->dyn_size += size; 7804 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7805 } 7806 7807 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7808 data->phys_addr = perf_virt_to_phys(data->addr); 7809 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7810 } 7811 7812 #ifdef CONFIG_CGROUP_PERF 7813 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7814 struct cgroup *cgrp; 7815 7816 /* protected by RCU */ 7817 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7818 data->cgroup = cgroup_id(cgrp); 7819 data->sample_flags |= PERF_SAMPLE_CGROUP; 7820 } 7821 #endif 7822 7823 /* 7824 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7825 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7826 * but the value will not dump to the userspace. 7827 */ 7828 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7829 data->data_page_size = perf_get_page_size(data->addr); 7830 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7831 } 7832 7833 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7834 data->code_page_size = perf_get_page_size(data->ip); 7835 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7836 } 7837 7838 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7839 u64 size; 7840 u16 header_size = perf_sample_data_size(data, event); 7841 7842 header_size += sizeof(u64); /* size */ 7843 7844 /* 7845 * Given the 16bit nature of header::size, an AUX sample can 7846 * easily overflow it, what with all the preceding sample bits. 7847 * Make sure this doesn't happen by using up to U16_MAX bytes 7848 * per sample in total (rounded down to 8 byte boundary). 7849 */ 7850 size = min_t(size_t, U16_MAX - header_size, 7851 event->attr.aux_sample_size); 7852 size = rounddown(size, 8); 7853 size = perf_prepare_sample_aux(event, data, size); 7854 7855 WARN_ON_ONCE(size + header_size > U16_MAX); 7856 data->dyn_size += size + sizeof(u64); /* size above */ 7857 data->sample_flags |= PERF_SAMPLE_AUX; 7858 } 7859 } 7860 7861 void perf_prepare_header(struct perf_event_header *header, 7862 struct perf_sample_data *data, 7863 struct perf_event *event, 7864 struct pt_regs *regs) 7865 { 7866 header->type = PERF_RECORD_SAMPLE; 7867 header->size = perf_sample_data_size(data, event); 7868 header->misc = perf_misc_flags(regs); 7869 7870 /* 7871 * If you're adding more sample types here, you likely need to do 7872 * something about the overflowing header::size, like repurpose the 7873 * lowest 3 bits of size, which should be always zero at the moment. 7874 * This raises a more important question, do we really need 512k sized 7875 * samples and why, so good argumentation is in order for whatever you 7876 * do here next. 7877 */ 7878 WARN_ON_ONCE(header->size & 7); 7879 } 7880 7881 static __always_inline int 7882 __perf_event_output(struct perf_event *event, 7883 struct perf_sample_data *data, 7884 struct pt_regs *regs, 7885 int (*output_begin)(struct perf_output_handle *, 7886 struct perf_sample_data *, 7887 struct perf_event *, 7888 unsigned int)) 7889 { 7890 struct perf_output_handle handle; 7891 struct perf_event_header header; 7892 int err; 7893 7894 /* protect the callchain buffers */ 7895 rcu_read_lock(); 7896 7897 perf_prepare_sample(data, event, regs); 7898 perf_prepare_header(&header, data, event, regs); 7899 7900 err = output_begin(&handle, data, event, header.size); 7901 if (err) 7902 goto exit; 7903 7904 perf_output_sample(&handle, &header, data, event); 7905 7906 perf_output_end(&handle); 7907 7908 exit: 7909 rcu_read_unlock(); 7910 return err; 7911 } 7912 7913 void 7914 perf_event_output_forward(struct perf_event *event, 7915 struct perf_sample_data *data, 7916 struct pt_regs *regs) 7917 { 7918 __perf_event_output(event, data, regs, perf_output_begin_forward); 7919 } 7920 7921 void 7922 perf_event_output_backward(struct perf_event *event, 7923 struct perf_sample_data *data, 7924 struct pt_regs *regs) 7925 { 7926 __perf_event_output(event, data, regs, perf_output_begin_backward); 7927 } 7928 7929 int 7930 perf_event_output(struct perf_event *event, 7931 struct perf_sample_data *data, 7932 struct pt_regs *regs) 7933 { 7934 return __perf_event_output(event, data, regs, perf_output_begin); 7935 } 7936 7937 /* 7938 * read event_id 7939 */ 7940 7941 struct perf_read_event { 7942 struct perf_event_header header; 7943 7944 u32 pid; 7945 u32 tid; 7946 }; 7947 7948 static void 7949 perf_event_read_event(struct perf_event *event, 7950 struct task_struct *task) 7951 { 7952 struct perf_output_handle handle; 7953 struct perf_sample_data sample; 7954 struct perf_read_event read_event = { 7955 .header = { 7956 .type = PERF_RECORD_READ, 7957 .misc = 0, 7958 .size = sizeof(read_event) + event->read_size, 7959 }, 7960 .pid = perf_event_pid(event, task), 7961 .tid = perf_event_tid(event, task), 7962 }; 7963 int ret; 7964 7965 perf_event_header__init_id(&read_event.header, &sample, event); 7966 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7967 if (ret) 7968 return; 7969 7970 perf_output_put(&handle, read_event); 7971 perf_output_read(&handle, event); 7972 perf_event__output_id_sample(event, &handle, &sample); 7973 7974 perf_output_end(&handle); 7975 } 7976 7977 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7978 7979 static void 7980 perf_iterate_ctx(struct perf_event_context *ctx, 7981 perf_iterate_f output, 7982 void *data, bool all) 7983 { 7984 struct perf_event *event; 7985 7986 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7987 if (!all) { 7988 if (event->state < PERF_EVENT_STATE_INACTIVE) 7989 continue; 7990 if (!event_filter_match(event)) 7991 continue; 7992 } 7993 7994 output(event, data); 7995 } 7996 } 7997 7998 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7999 { 8000 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8001 struct perf_event *event; 8002 8003 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8004 /* 8005 * Skip events that are not fully formed yet; ensure that 8006 * if we observe event->ctx, both event and ctx will be 8007 * complete enough. See perf_install_in_context(). 8008 */ 8009 if (!smp_load_acquire(&event->ctx)) 8010 continue; 8011 8012 if (event->state < PERF_EVENT_STATE_INACTIVE) 8013 continue; 8014 if (!event_filter_match(event)) 8015 continue; 8016 output(event, data); 8017 } 8018 } 8019 8020 /* 8021 * Iterate all events that need to receive side-band events. 8022 * 8023 * For new callers; ensure that account_pmu_sb_event() includes 8024 * your event, otherwise it might not get delivered. 8025 */ 8026 static void 8027 perf_iterate_sb(perf_iterate_f output, void *data, 8028 struct perf_event_context *task_ctx) 8029 { 8030 struct perf_event_context *ctx; 8031 8032 rcu_read_lock(); 8033 preempt_disable(); 8034 8035 /* 8036 * If we have task_ctx != NULL we only notify the task context itself. 8037 * The task_ctx is set only for EXIT events before releasing task 8038 * context. 8039 */ 8040 if (task_ctx) { 8041 perf_iterate_ctx(task_ctx, output, data, false); 8042 goto done; 8043 } 8044 8045 perf_iterate_sb_cpu(output, data); 8046 8047 ctx = rcu_dereference(current->perf_event_ctxp); 8048 if (ctx) 8049 perf_iterate_ctx(ctx, output, data, false); 8050 done: 8051 preempt_enable(); 8052 rcu_read_unlock(); 8053 } 8054 8055 /* 8056 * Clear all file-based filters at exec, they'll have to be 8057 * re-instated when/if these objects are mmapped again. 8058 */ 8059 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8060 { 8061 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8062 struct perf_addr_filter *filter; 8063 unsigned int restart = 0, count = 0; 8064 unsigned long flags; 8065 8066 if (!has_addr_filter(event)) 8067 return; 8068 8069 raw_spin_lock_irqsave(&ifh->lock, flags); 8070 list_for_each_entry(filter, &ifh->list, entry) { 8071 if (filter->path.dentry) { 8072 event->addr_filter_ranges[count].start = 0; 8073 event->addr_filter_ranges[count].size = 0; 8074 restart++; 8075 } 8076 8077 count++; 8078 } 8079 8080 if (restart) 8081 event->addr_filters_gen++; 8082 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8083 8084 if (restart) 8085 perf_event_stop(event, 1); 8086 } 8087 8088 void perf_event_exec(void) 8089 { 8090 struct perf_event_context *ctx; 8091 8092 ctx = perf_pin_task_context(current); 8093 if (!ctx) 8094 return; 8095 8096 perf_event_enable_on_exec(ctx); 8097 perf_event_remove_on_exec(ctx); 8098 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8099 8100 perf_unpin_context(ctx); 8101 put_ctx(ctx); 8102 } 8103 8104 struct remote_output { 8105 struct perf_buffer *rb; 8106 int err; 8107 }; 8108 8109 static void __perf_event_output_stop(struct perf_event *event, void *data) 8110 { 8111 struct perf_event *parent = event->parent; 8112 struct remote_output *ro = data; 8113 struct perf_buffer *rb = ro->rb; 8114 struct stop_event_data sd = { 8115 .event = event, 8116 }; 8117 8118 if (!has_aux(event)) 8119 return; 8120 8121 if (!parent) 8122 parent = event; 8123 8124 /* 8125 * In case of inheritance, it will be the parent that links to the 8126 * ring-buffer, but it will be the child that's actually using it. 8127 * 8128 * We are using event::rb to determine if the event should be stopped, 8129 * however this may race with ring_buffer_attach() (through set_output), 8130 * which will make us skip the event that actually needs to be stopped. 8131 * So ring_buffer_attach() has to stop an aux event before re-assigning 8132 * its rb pointer. 8133 */ 8134 if (rcu_dereference(parent->rb) == rb) 8135 ro->err = __perf_event_stop(&sd); 8136 } 8137 8138 static int __perf_pmu_output_stop(void *info) 8139 { 8140 struct perf_event *event = info; 8141 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8142 struct remote_output ro = { 8143 .rb = event->rb, 8144 }; 8145 8146 rcu_read_lock(); 8147 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8148 if (cpuctx->task_ctx) 8149 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8150 &ro, false); 8151 rcu_read_unlock(); 8152 8153 return ro.err; 8154 } 8155 8156 static void perf_pmu_output_stop(struct perf_event *event) 8157 { 8158 struct perf_event *iter; 8159 int err, cpu; 8160 8161 restart: 8162 rcu_read_lock(); 8163 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8164 /* 8165 * For per-CPU events, we need to make sure that neither they 8166 * nor their children are running; for cpu==-1 events it's 8167 * sufficient to stop the event itself if it's active, since 8168 * it can't have children. 8169 */ 8170 cpu = iter->cpu; 8171 if (cpu == -1) 8172 cpu = READ_ONCE(iter->oncpu); 8173 8174 if (cpu == -1) 8175 continue; 8176 8177 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8178 if (err == -EAGAIN) { 8179 rcu_read_unlock(); 8180 goto restart; 8181 } 8182 } 8183 rcu_read_unlock(); 8184 } 8185 8186 /* 8187 * task tracking -- fork/exit 8188 * 8189 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8190 */ 8191 8192 struct perf_task_event { 8193 struct task_struct *task; 8194 struct perf_event_context *task_ctx; 8195 8196 struct { 8197 struct perf_event_header header; 8198 8199 u32 pid; 8200 u32 ppid; 8201 u32 tid; 8202 u32 ptid; 8203 u64 time; 8204 } event_id; 8205 }; 8206 8207 static int perf_event_task_match(struct perf_event *event) 8208 { 8209 return event->attr.comm || event->attr.mmap || 8210 event->attr.mmap2 || event->attr.mmap_data || 8211 event->attr.task; 8212 } 8213 8214 static void perf_event_task_output(struct perf_event *event, 8215 void *data) 8216 { 8217 struct perf_task_event *task_event = data; 8218 struct perf_output_handle handle; 8219 struct perf_sample_data sample; 8220 struct task_struct *task = task_event->task; 8221 int ret, size = task_event->event_id.header.size; 8222 8223 if (!perf_event_task_match(event)) 8224 return; 8225 8226 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8227 8228 ret = perf_output_begin(&handle, &sample, event, 8229 task_event->event_id.header.size); 8230 if (ret) 8231 goto out; 8232 8233 task_event->event_id.pid = perf_event_pid(event, task); 8234 task_event->event_id.tid = perf_event_tid(event, task); 8235 8236 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8237 task_event->event_id.ppid = perf_event_pid(event, 8238 task->real_parent); 8239 task_event->event_id.ptid = perf_event_pid(event, 8240 task->real_parent); 8241 } else { /* PERF_RECORD_FORK */ 8242 task_event->event_id.ppid = perf_event_pid(event, current); 8243 task_event->event_id.ptid = perf_event_tid(event, current); 8244 } 8245 8246 task_event->event_id.time = perf_event_clock(event); 8247 8248 perf_output_put(&handle, task_event->event_id); 8249 8250 perf_event__output_id_sample(event, &handle, &sample); 8251 8252 perf_output_end(&handle); 8253 out: 8254 task_event->event_id.header.size = size; 8255 } 8256 8257 static void perf_event_task(struct task_struct *task, 8258 struct perf_event_context *task_ctx, 8259 int new) 8260 { 8261 struct perf_task_event task_event; 8262 8263 if (!atomic_read(&nr_comm_events) && 8264 !atomic_read(&nr_mmap_events) && 8265 !atomic_read(&nr_task_events)) 8266 return; 8267 8268 task_event = (struct perf_task_event){ 8269 .task = task, 8270 .task_ctx = task_ctx, 8271 .event_id = { 8272 .header = { 8273 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8274 .misc = 0, 8275 .size = sizeof(task_event.event_id), 8276 }, 8277 /* .pid */ 8278 /* .ppid */ 8279 /* .tid */ 8280 /* .ptid */ 8281 /* .time */ 8282 }, 8283 }; 8284 8285 perf_iterate_sb(perf_event_task_output, 8286 &task_event, 8287 task_ctx); 8288 } 8289 8290 void perf_event_fork(struct task_struct *task) 8291 { 8292 perf_event_task(task, NULL, 1); 8293 perf_event_namespaces(task); 8294 } 8295 8296 /* 8297 * comm tracking 8298 */ 8299 8300 struct perf_comm_event { 8301 struct task_struct *task; 8302 char *comm; 8303 int comm_size; 8304 8305 struct { 8306 struct perf_event_header header; 8307 8308 u32 pid; 8309 u32 tid; 8310 } event_id; 8311 }; 8312 8313 static int perf_event_comm_match(struct perf_event *event) 8314 { 8315 return event->attr.comm; 8316 } 8317 8318 static void perf_event_comm_output(struct perf_event *event, 8319 void *data) 8320 { 8321 struct perf_comm_event *comm_event = data; 8322 struct perf_output_handle handle; 8323 struct perf_sample_data sample; 8324 int size = comm_event->event_id.header.size; 8325 int ret; 8326 8327 if (!perf_event_comm_match(event)) 8328 return; 8329 8330 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8331 ret = perf_output_begin(&handle, &sample, event, 8332 comm_event->event_id.header.size); 8333 8334 if (ret) 8335 goto out; 8336 8337 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8338 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8339 8340 perf_output_put(&handle, comm_event->event_id); 8341 __output_copy(&handle, comm_event->comm, 8342 comm_event->comm_size); 8343 8344 perf_event__output_id_sample(event, &handle, &sample); 8345 8346 perf_output_end(&handle); 8347 out: 8348 comm_event->event_id.header.size = size; 8349 } 8350 8351 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8352 { 8353 char comm[TASK_COMM_LEN]; 8354 unsigned int size; 8355 8356 memset(comm, 0, sizeof(comm)); 8357 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8358 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8359 8360 comm_event->comm = comm; 8361 comm_event->comm_size = size; 8362 8363 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8364 8365 perf_iterate_sb(perf_event_comm_output, 8366 comm_event, 8367 NULL); 8368 } 8369 8370 void perf_event_comm(struct task_struct *task, bool exec) 8371 { 8372 struct perf_comm_event comm_event; 8373 8374 if (!atomic_read(&nr_comm_events)) 8375 return; 8376 8377 comm_event = (struct perf_comm_event){ 8378 .task = task, 8379 /* .comm */ 8380 /* .comm_size */ 8381 .event_id = { 8382 .header = { 8383 .type = PERF_RECORD_COMM, 8384 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8385 /* .size */ 8386 }, 8387 /* .pid */ 8388 /* .tid */ 8389 }, 8390 }; 8391 8392 perf_event_comm_event(&comm_event); 8393 } 8394 8395 /* 8396 * namespaces tracking 8397 */ 8398 8399 struct perf_namespaces_event { 8400 struct task_struct *task; 8401 8402 struct { 8403 struct perf_event_header header; 8404 8405 u32 pid; 8406 u32 tid; 8407 u64 nr_namespaces; 8408 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8409 } event_id; 8410 }; 8411 8412 static int perf_event_namespaces_match(struct perf_event *event) 8413 { 8414 return event->attr.namespaces; 8415 } 8416 8417 static void perf_event_namespaces_output(struct perf_event *event, 8418 void *data) 8419 { 8420 struct perf_namespaces_event *namespaces_event = data; 8421 struct perf_output_handle handle; 8422 struct perf_sample_data sample; 8423 u16 header_size = namespaces_event->event_id.header.size; 8424 int ret; 8425 8426 if (!perf_event_namespaces_match(event)) 8427 return; 8428 8429 perf_event_header__init_id(&namespaces_event->event_id.header, 8430 &sample, event); 8431 ret = perf_output_begin(&handle, &sample, event, 8432 namespaces_event->event_id.header.size); 8433 if (ret) 8434 goto out; 8435 8436 namespaces_event->event_id.pid = perf_event_pid(event, 8437 namespaces_event->task); 8438 namespaces_event->event_id.tid = perf_event_tid(event, 8439 namespaces_event->task); 8440 8441 perf_output_put(&handle, namespaces_event->event_id); 8442 8443 perf_event__output_id_sample(event, &handle, &sample); 8444 8445 perf_output_end(&handle); 8446 out: 8447 namespaces_event->event_id.header.size = header_size; 8448 } 8449 8450 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8451 struct task_struct *task, 8452 const struct proc_ns_operations *ns_ops) 8453 { 8454 struct path ns_path; 8455 struct inode *ns_inode; 8456 int error; 8457 8458 error = ns_get_path(&ns_path, task, ns_ops); 8459 if (!error) { 8460 ns_inode = ns_path.dentry->d_inode; 8461 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8462 ns_link_info->ino = ns_inode->i_ino; 8463 path_put(&ns_path); 8464 } 8465 } 8466 8467 void perf_event_namespaces(struct task_struct *task) 8468 { 8469 struct perf_namespaces_event namespaces_event; 8470 struct perf_ns_link_info *ns_link_info; 8471 8472 if (!atomic_read(&nr_namespaces_events)) 8473 return; 8474 8475 namespaces_event = (struct perf_namespaces_event){ 8476 .task = task, 8477 .event_id = { 8478 .header = { 8479 .type = PERF_RECORD_NAMESPACES, 8480 .misc = 0, 8481 .size = sizeof(namespaces_event.event_id), 8482 }, 8483 /* .pid */ 8484 /* .tid */ 8485 .nr_namespaces = NR_NAMESPACES, 8486 /* .link_info[NR_NAMESPACES] */ 8487 }, 8488 }; 8489 8490 ns_link_info = namespaces_event.event_id.link_info; 8491 8492 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8493 task, &mntns_operations); 8494 8495 #ifdef CONFIG_USER_NS 8496 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8497 task, &userns_operations); 8498 #endif 8499 #ifdef CONFIG_NET_NS 8500 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8501 task, &netns_operations); 8502 #endif 8503 #ifdef CONFIG_UTS_NS 8504 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8505 task, &utsns_operations); 8506 #endif 8507 #ifdef CONFIG_IPC_NS 8508 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8509 task, &ipcns_operations); 8510 #endif 8511 #ifdef CONFIG_PID_NS 8512 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8513 task, &pidns_operations); 8514 #endif 8515 #ifdef CONFIG_CGROUPS 8516 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8517 task, &cgroupns_operations); 8518 #endif 8519 8520 perf_iterate_sb(perf_event_namespaces_output, 8521 &namespaces_event, 8522 NULL); 8523 } 8524 8525 /* 8526 * cgroup tracking 8527 */ 8528 #ifdef CONFIG_CGROUP_PERF 8529 8530 struct perf_cgroup_event { 8531 char *path; 8532 int path_size; 8533 struct { 8534 struct perf_event_header header; 8535 u64 id; 8536 char path[]; 8537 } event_id; 8538 }; 8539 8540 static int perf_event_cgroup_match(struct perf_event *event) 8541 { 8542 return event->attr.cgroup; 8543 } 8544 8545 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8546 { 8547 struct perf_cgroup_event *cgroup_event = data; 8548 struct perf_output_handle handle; 8549 struct perf_sample_data sample; 8550 u16 header_size = cgroup_event->event_id.header.size; 8551 int ret; 8552 8553 if (!perf_event_cgroup_match(event)) 8554 return; 8555 8556 perf_event_header__init_id(&cgroup_event->event_id.header, 8557 &sample, event); 8558 ret = perf_output_begin(&handle, &sample, event, 8559 cgroup_event->event_id.header.size); 8560 if (ret) 8561 goto out; 8562 8563 perf_output_put(&handle, cgroup_event->event_id); 8564 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8565 8566 perf_event__output_id_sample(event, &handle, &sample); 8567 8568 perf_output_end(&handle); 8569 out: 8570 cgroup_event->event_id.header.size = header_size; 8571 } 8572 8573 static void perf_event_cgroup(struct cgroup *cgrp) 8574 { 8575 struct perf_cgroup_event cgroup_event; 8576 char path_enomem[16] = "//enomem"; 8577 char *pathname; 8578 size_t size; 8579 8580 if (!atomic_read(&nr_cgroup_events)) 8581 return; 8582 8583 cgroup_event = (struct perf_cgroup_event){ 8584 .event_id = { 8585 .header = { 8586 .type = PERF_RECORD_CGROUP, 8587 .misc = 0, 8588 .size = sizeof(cgroup_event.event_id), 8589 }, 8590 .id = cgroup_id(cgrp), 8591 }, 8592 }; 8593 8594 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8595 if (pathname == NULL) { 8596 cgroup_event.path = path_enomem; 8597 } else { 8598 /* just to be sure to have enough space for alignment */ 8599 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8600 cgroup_event.path = pathname; 8601 } 8602 8603 /* 8604 * Since our buffer works in 8 byte units we need to align our string 8605 * size to a multiple of 8. However, we must guarantee the tail end is 8606 * zero'd out to avoid leaking random bits to userspace. 8607 */ 8608 size = strlen(cgroup_event.path) + 1; 8609 while (!IS_ALIGNED(size, sizeof(u64))) 8610 cgroup_event.path[size++] = '\0'; 8611 8612 cgroup_event.event_id.header.size += size; 8613 cgroup_event.path_size = size; 8614 8615 perf_iterate_sb(perf_event_cgroup_output, 8616 &cgroup_event, 8617 NULL); 8618 8619 kfree(pathname); 8620 } 8621 8622 #endif 8623 8624 /* 8625 * mmap tracking 8626 */ 8627 8628 struct perf_mmap_event { 8629 struct vm_area_struct *vma; 8630 8631 const char *file_name; 8632 int file_size; 8633 int maj, min; 8634 u64 ino; 8635 u64 ino_generation; 8636 u32 prot, flags; 8637 u8 build_id[BUILD_ID_SIZE_MAX]; 8638 u32 build_id_size; 8639 8640 struct { 8641 struct perf_event_header header; 8642 8643 u32 pid; 8644 u32 tid; 8645 u64 start; 8646 u64 len; 8647 u64 pgoff; 8648 } event_id; 8649 }; 8650 8651 static int perf_event_mmap_match(struct perf_event *event, 8652 void *data) 8653 { 8654 struct perf_mmap_event *mmap_event = data; 8655 struct vm_area_struct *vma = mmap_event->vma; 8656 int executable = vma->vm_flags & VM_EXEC; 8657 8658 return (!executable && event->attr.mmap_data) || 8659 (executable && (event->attr.mmap || event->attr.mmap2)); 8660 } 8661 8662 static void perf_event_mmap_output(struct perf_event *event, 8663 void *data) 8664 { 8665 struct perf_mmap_event *mmap_event = data; 8666 struct perf_output_handle handle; 8667 struct perf_sample_data sample; 8668 int size = mmap_event->event_id.header.size; 8669 u32 type = mmap_event->event_id.header.type; 8670 bool use_build_id; 8671 int ret; 8672 8673 if (!perf_event_mmap_match(event, data)) 8674 return; 8675 8676 if (event->attr.mmap2) { 8677 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8678 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8679 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8680 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8681 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8682 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8683 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8684 } 8685 8686 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8687 ret = perf_output_begin(&handle, &sample, event, 8688 mmap_event->event_id.header.size); 8689 if (ret) 8690 goto out; 8691 8692 mmap_event->event_id.pid = perf_event_pid(event, current); 8693 mmap_event->event_id.tid = perf_event_tid(event, current); 8694 8695 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8696 8697 if (event->attr.mmap2 && use_build_id) 8698 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8699 8700 perf_output_put(&handle, mmap_event->event_id); 8701 8702 if (event->attr.mmap2) { 8703 if (use_build_id) { 8704 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8705 8706 __output_copy(&handle, size, 4); 8707 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8708 } else { 8709 perf_output_put(&handle, mmap_event->maj); 8710 perf_output_put(&handle, mmap_event->min); 8711 perf_output_put(&handle, mmap_event->ino); 8712 perf_output_put(&handle, mmap_event->ino_generation); 8713 } 8714 perf_output_put(&handle, mmap_event->prot); 8715 perf_output_put(&handle, mmap_event->flags); 8716 } 8717 8718 __output_copy(&handle, mmap_event->file_name, 8719 mmap_event->file_size); 8720 8721 perf_event__output_id_sample(event, &handle, &sample); 8722 8723 perf_output_end(&handle); 8724 out: 8725 mmap_event->event_id.header.size = size; 8726 mmap_event->event_id.header.type = type; 8727 } 8728 8729 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8730 { 8731 struct vm_area_struct *vma = mmap_event->vma; 8732 struct file *file = vma->vm_file; 8733 int maj = 0, min = 0; 8734 u64 ino = 0, gen = 0; 8735 u32 prot = 0, flags = 0; 8736 unsigned int size; 8737 char tmp[16]; 8738 char *buf = NULL; 8739 char *name = NULL; 8740 8741 if (vma->vm_flags & VM_READ) 8742 prot |= PROT_READ; 8743 if (vma->vm_flags & VM_WRITE) 8744 prot |= PROT_WRITE; 8745 if (vma->vm_flags & VM_EXEC) 8746 prot |= PROT_EXEC; 8747 8748 if (vma->vm_flags & VM_MAYSHARE) 8749 flags = MAP_SHARED; 8750 else 8751 flags = MAP_PRIVATE; 8752 8753 if (vma->vm_flags & VM_LOCKED) 8754 flags |= MAP_LOCKED; 8755 if (is_vm_hugetlb_page(vma)) 8756 flags |= MAP_HUGETLB; 8757 8758 if (file) { 8759 struct inode *inode; 8760 dev_t dev; 8761 8762 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8763 if (!buf) { 8764 name = "//enomem"; 8765 goto cpy_name; 8766 } 8767 /* 8768 * d_path() works from the end of the rb backwards, so we 8769 * need to add enough zero bytes after the string to handle 8770 * the 64bit alignment we do later. 8771 */ 8772 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8773 if (IS_ERR(name)) { 8774 name = "//toolong"; 8775 goto cpy_name; 8776 } 8777 inode = file_inode(vma->vm_file); 8778 dev = inode->i_sb->s_dev; 8779 ino = inode->i_ino; 8780 gen = inode->i_generation; 8781 maj = MAJOR(dev); 8782 min = MINOR(dev); 8783 8784 goto got_name; 8785 } else { 8786 if (vma->vm_ops && vma->vm_ops->name) 8787 name = (char *) vma->vm_ops->name(vma); 8788 if (!name) 8789 name = (char *)arch_vma_name(vma); 8790 if (!name) { 8791 if (vma_is_initial_heap(vma)) 8792 name = "[heap]"; 8793 else if (vma_is_initial_stack(vma)) 8794 name = "[stack]"; 8795 else 8796 name = "//anon"; 8797 } 8798 } 8799 8800 cpy_name: 8801 strscpy(tmp, name, sizeof(tmp)); 8802 name = tmp; 8803 got_name: 8804 /* 8805 * Since our buffer works in 8 byte units we need to align our string 8806 * size to a multiple of 8. However, we must guarantee the tail end is 8807 * zero'd out to avoid leaking random bits to userspace. 8808 */ 8809 size = strlen(name)+1; 8810 while (!IS_ALIGNED(size, sizeof(u64))) 8811 name[size++] = '\0'; 8812 8813 mmap_event->file_name = name; 8814 mmap_event->file_size = size; 8815 mmap_event->maj = maj; 8816 mmap_event->min = min; 8817 mmap_event->ino = ino; 8818 mmap_event->ino_generation = gen; 8819 mmap_event->prot = prot; 8820 mmap_event->flags = flags; 8821 8822 if (!(vma->vm_flags & VM_EXEC)) 8823 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8824 8825 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8826 8827 if (atomic_read(&nr_build_id_events)) 8828 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8829 8830 perf_iterate_sb(perf_event_mmap_output, 8831 mmap_event, 8832 NULL); 8833 8834 kfree(buf); 8835 } 8836 8837 /* 8838 * Check whether inode and address range match filter criteria. 8839 */ 8840 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8841 struct file *file, unsigned long offset, 8842 unsigned long size) 8843 { 8844 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8845 if (!filter->path.dentry) 8846 return false; 8847 8848 if (d_inode(filter->path.dentry) != file_inode(file)) 8849 return false; 8850 8851 if (filter->offset > offset + size) 8852 return false; 8853 8854 if (filter->offset + filter->size < offset) 8855 return false; 8856 8857 return true; 8858 } 8859 8860 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8861 struct vm_area_struct *vma, 8862 struct perf_addr_filter_range *fr) 8863 { 8864 unsigned long vma_size = vma->vm_end - vma->vm_start; 8865 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8866 struct file *file = vma->vm_file; 8867 8868 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8869 return false; 8870 8871 if (filter->offset < off) { 8872 fr->start = vma->vm_start; 8873 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8874 } else { 8875 fr->start = vma->vm_start + filter->offset - off; 8876 fr->size = min(vma->vm_end - fr->start, filter->size); 8877 } 8878 8879 return true; 8880 } 8881 8882 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8883 { 8884 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8885 struct vm_area_struct *vma = data; 8886 struct perf_addr_filter *filter; 8887 unsigned int restart = 0, count = 0; 8888 unsigned long flags; 8889 8890 if (!has_addr_filter(event)) 8891 return; 8892 8893 if (!vma->vm_file) 8894 return; 8895 8896 raw_spin_lock_irqsave(&ifh->lock, flags); 8897 list_for_each_entry(filter, &ifh->list, entry) { 8898 if (perf_addr_filter_vma_adjust(filter, vma, 8899 &event->addr_filter_ranges[count])) 8900 restart++; 8901 8902 count++; 8903 } 8904 8905 if (restart) 8906 event->addr_filters_gen++; 8907 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8908 8909 if (restart) 8910 perf_event_stop(event, 1); 8911 } 8912 8913 /* 8914 * Adjust all task's events' filters to the new vma 8915 */ 8916 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8917 { 8918 struct perf_event_context *ctx; 8919 8920 /* 8921 * Data tracing isn't supported yet and as such there is no need 8922 * to keep track of anything that isn't related to executable code: 8923 */ 8924 if (!(vma->vm_flags & VM_EXEC)) 8925 return; 8926 8927 rcu_read_lock(); 8928 ctx = rcu_dereference(current->perf_event_ctxp); 8929 if (ctx) 8930 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8931 rcu_read_unlock(); 8932 } 8933 8934 void perf_event_mmap(struct vm_area_struct *vma) 8935 { 8936 struct perf_mmap_event mmap_event; 8937 8938 if (!atomic_read(&nr_mmap_events)) 8939 return; 8940 8941 mmap_event = (struct perf_mmap_event){ 8942 .vma = vma, 8943 /* .file_name */ 8944 /* .file_size */ 8945 .event_id = { 8946 .header = { 8947 .type = PERF_RECORD_MMAP, 8948 .misc = PERF_RECORD_MISC_USER, 8949 /* .size */ 8950 }, 8951 /* .pid */ 8952 /* .tid */ 8953 .start = vma->vm_start, 8954 .len = vma->vm_end - vma->vm_start, 8955 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8956 }, 8957 /* .maj (attr_mmap2 only) */ 8958 /* .min (attr_mmap2 only) */ 8959 /* .ino (attr_mmap2 only) */ 8960 /* .ino_generation (attr_mmap2 only) */ 8961 /* .prot (attr_mmap2 only) */ 8962 /* .flags (attr_mmap2 only) */ 8963 }; 8964 8965 perf_addr_filters_adjust(vma); 8966 perf_event_mmap_event(&mmap_event); 8967 } 8968 8969 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8970 unsigned long size, u64 flags) 8971 { 8972 struct perf_output_handle handle; 8973 struct perf_sample_data sample; 8974 struct perf_aux_event { 8975 struct perf_event_header header; 8976 u64 offset; 8977 u64 size; 8978 u64 flags; 8979 } rec = { 8980 .header = { 8981 .type = PERF_RECORD_AUX, 8982 .misc = 0, 8983 .size = sizeof(rec), 8984 }, 8985 .offset = head, 8986 .size = size, 8987 .flags = flags, 8988 }; 8989 int ret; 8990 8991 perf_event_header__init_id(&rec.header, &sample, event); 8992 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8993 8994 if (ret) 8995 return; 8996 8997 perf_output_put(&handle, rec); 8998 perf_event__output_id_sample(event, &handle, &sample); 8999 9000 perf_output_end(&handle); 9001 } 9002 9003 /* 9004 * Lost/dropped samples logging 9005 */ 9006 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9007 { 9008 struct perf_output_handle handle; 9009 struct perf_sample_data sample; 9010 int ret; 9011 9012 struct { 9013 struct perf_event_header header; 9014 u64 lost; 9015 } lost_samples_event = { 9016 .header = { 9017 .type = PERF_RECORD_LOST_SAMPLES, 9018 .misc = 0, 9019 .size = sizeof(lost_samples_event), 9020 }, 9021 .lost = lost, 9022 }; 9023 9024 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9025 9026 ret = perf_output_begin(&handle, &sample, event, 9027 lost_samples_event.header.size); 9028 if (ret) 9029 return; 9030 9031 perf_output_put(&handle, lost_samples_event); 9032 perf_event__output_id_sample(event, &handle, &sample); 9033 perf_output_end(&handle); 9034 } 9035 9036 /* 9037 * context_switch tracking 9038 */ 9039 9040 struct perf_switch_event { 9041 struct task_struct *task; 9042 struct task_struct *next_prev; 9043 9044 struct { 9045 struct perf_event_header header; 9046 u32 next_prev_pid; 9047 u32 next_prev_tid; 9048 } event_id; 9049 }; 9050 9051 static int perf_event_switch_match(struct perf_event *event) 9052 { 9053 return event->attr.context_switch; 9054 } 9055 9056 static void perf_event_switch_output(struct perf_event *event, void *data) 9057 { 9058 struct perf_switch_event *se = data; 9059 struct perf_output_handle handle; 9060 struct perf_sample_data sample; 9061 int ret; 9062 9063 if (!perf_event_switch_match(event)) 9064 return; 9065 9066 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9067 if (event->ctx->task) { 9068 se->event_id.header.type = PERF_RECORD_SWITCH; 9069 se->event_id.header.size = sizeof(se->event_id.header); 9070 } else { 9071 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9072 se->event_id.header.size = sizeof(se->event_id); 9073 se->event_id.next_prev_pid = 9074 perf_event_pid(event, se->next_prev); 9075 se->event_id.next_prev_tid = 9076 perf_event_tid(event, se->next_prev); 9077 } 9078 9079 perf_event_header__init_id(&se->event_id.header, &sample, event); 9080 9081 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9082 if (ret) 9083 return; 9084 9085 if (event->ctx->task) 9086 perf_output_put(&handle, se->event_id.header); 9087 else 9088 perf_output_put(&handle, se->event_id); 9089 9090 perf_event__output_id_sample(event, &handle, &sample); 9091 9092 perf_output_end(&handle); 9093 } 9094 9095 static void perf_event_switch(struct task_struct *task, 9096 struct task_struct *next_prev, bool sched_in) 9097 { 9098 struct perf_switch_event switch_event; 9099 9100 /* N.B. caller checks nr_switch_events != 0 */ 9101 9102 switch_event = (struct perf_switch_event){ 9103 .task = task, 9104 .next_prev = next_prev, 9105 .event_id = { 9106 .header = { 9107 /* .type */ 9108 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9109 /* .size */ 9110 }, 9111 /* .next_prev_pid */ 9112 /* .next_prev_tid */ 9113 }, 9114 }; 9115 9116 if (!sched_in && task->on_rq) { 9117 switch_event.event_id.header.misc |= 9118 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9119 } 9120 9121 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9122 } 9123 9124 /* 9125 * IRQ throttle logging 9126 */ 9127 9128 static void perf_log_throttle(struct perf_event *event, int enable) 9129 { 9130 struct perf_output_handle handle; 9131 struct perf_sample_data sample; 9132 int ret; 9133 9134 struct { 9135 struct perf_event_header header; 9136 u64 time; 9137 u64 id; 9138 u64 stream_id; 9139 } throttle_event = { 9140 .header = { 9141 .type = PERF_RECORD_THROTTLE, 9142 .misc = 0, 9143 .size = sizeof(throttle_event), 9144 }, 9145 .time = perf_event_clock(event), 9146 .id = primary_event_id(event), 9147 .stream_id = event->id, 9148 }; 9149 9150 if (enable) 9151 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9152 9153 perf_event_header__init_id(&throttle_event.header, &sample, event); 9154 9155 ret = perf_output_begin(&handle, &sample, event, 9156 throttle_event.header.size); 9157 if (ret) 9158 return; 9159 9160 perf_output_put(&handle, throttle_event); 9161 perf_event__output_id_sample(event, &handle, &sample); 9162 perf_output_end(&handle); 9163 } 9164 9165 /* 9166 * ksymbol register/unregister tracking 9167 */ 9168 9169 struct perf_ksymbol_event { 9170 const char *name; 9171 int name_len; 9172 struct { 9173 struct perf_event_header header; 9174 u64 addr; 9175 u32 len; 9176 u16 ksym_type; 9177 u16 flags; 9178 } event_id; 9179 }; 9180 9181 static int perf_event_ksymbol_match(struct perf_event *event) 9182 { 9183 return event->attr.ksymbol; 9184 } 9185 9186 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9187 { 9188 struct perf_ksymbol_event *ksymbol_event = data; 9189 struct perf_output_handle handle; 9190 struct perf_sample_data sample; 9191 int ret; 9192 9193 if (!perf_event_ksymbol_match(event)) 9194 return; 9195 9196 perf_event_header__init_id(&ksymbol_event->event_id.header, 9197 &sample, event); 9198 ret = perf_output_begin(&handle, &sample, event, 9199 ksymbol_event->event_id.header.size); 9200 if (ret) 9201 return; 9202 9203 perf_output_put(&handle, ksymbol_event->event_id); 9204 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9205 perf_event__output_id_sample(event, &handle, &sample); 9206 9207 perf_output_end(&handle); 9208 } 9209 9210 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9211 const char *sym) 9212 { 9213 struct perf_ksymbol_event ksymbol_event; 9214 char name[KSYM_NAME_LEN]; 9215 u16 flags = 0; 9216 int name_len; 9217 9218 if (!atomic_read(&nr_ksymbol_events)) 9219 return; 9220 9221 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9222 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9223 goto err; 9224 9225 strscpy(name, sym, KSYM_NAME_LEN); 9226 name_len = strlen(name) + 1; 9227 while (!IS_ALIGNED(name_len, sizeof(u64))) 9228 name[name_len++] = '\0'; 9229 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9230 9231 if (unregister) 9232 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9233 9234 ksymbol_event = (struct perf_ksymbol_event){ 9235 .name = name, 9236 .name_len = name_len, 9237 .event_id = { 9238 .header = { 9239 .type = PERF_RECORD_KSYMBOL, 9240 .size = sizeof(ksymbol_event.event_id) + 9241 name_len, 9242 }, 9243 .addr = addr, 9244 .len = len, 9245 .ksym_type = ksym_type, 9246 .flags = flags, 9247 }, 9248 }; 9249 9250 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9251 return; 9252 err: 9253 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9254 } 9255 9256 /* 9257 * bpf program load/unload tracking 9258 */ 9259 9260 struct perf_bpf_event { 9261 struct bpf_prog *prog; 9262 struct { 9263 struct perf_event_header header; 9264 u16 type; 9265 u16 flags; 9266 u32 id; 9267 u8 tag[BPF_TAG_SIZE]; 9268 } event_id; 9269 }; 9270 9271 static int perf_event_bpf_match(struct perf_event *event) 9272 { 9273 return event->attr.bpf_event; 9274 } 9275 9276 static void perf_event_bpf_output(struct perf_event *event, void *data) 9277 { 9278 struct perf_bpf_event *bpf_event = data; 9279 struct perf_output_handle handle; 9280 struct perf_sample_data sample; 9281 int ret; 9282 9283 if (!perf_event_bpf_match(event)) 9284 return; 9285 9286 perf_event_header__init_id(&bpf_event->event_id.header, 9287 &sample, event); 9288 ret = perf_output_begin(&handle, &sample, event, 9289 bpf_event->event_id.header.size); 9290 if (ret) 9291 return; 9292 9293 perf_output_put(&handle, bpf_event->event_id); 9294 perf_event__output_id_sample(event, &handle, &sample); 9295 9296 perf_output_end(&handle); 9297 } 9298 9299 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9300 enum perf_bpf_event_type type) 9301 { 9302 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9303 int i; 9304 9305 if (prog->aux->func_cnt == 0) { 9306 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9307 (u64)(unsigned long)prog->bpf_func, 9308 prog->jited_len, unregister, 9309 prog->aux->ksym.name); 9310 } else { 9311 for (i = 0; i < prog->aux->func_cnt; i++) { 9312 struct bpf_prog *subprog = prog->aux->func[i]; 9313 9314 perf_event_ksymbol( 9315 PERF_RECORD_KSYMBOL_TYPE_BPF, 9316 (u64)(unsigned long)subprog->bpf_func, 9317 subprog->jited_len, unregister, 9318 subprog->aux->ksym.name); 9319 } 9320 } 9321 } 9322 9323 void perf_event_bpf_event(struct bpf_prog *prog, 9324 enum perf_bpf_event_type type, 9325 u16 flags) 9326 { 9327 struct perf_bpf_event bpf_event; 9328 9329 switch (type) { 9330 case PERF_BPF_EVENT_PROG_LOAD: 9331 case PERF_BPF_EVENT_PROG_UNLOAD: 9332 if (atomic_read(&nr_ksymbol_events)) 9333 perf_event_bpf_emit_ksymbols(prog, type); 9334 break; 9335 default: 9336 return; 9337 } 9338 9339 if (!atomic_read(&nr_bpf_events)) 9340 return; 9341 9342 bpf_event = (struct perf_bpf_event){ 9343 .prog = prog, 9344 .event_id = { 9345 .header = { 9346 .type = PERF_RECORD_BPF_EVENT, 9347 .size = sizeof(bpf_event.event_id), 9348 }, 9349 .type = type, 9350 .flags = flags, 9351 .id = prog->aux->id, 9352 }, 9353 }; 9354 9355 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9356 9357 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9358 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9359 } 9360 9361 struct perf_text_poke_event { 9362 const void *old_bytes; 9363 const void *new_bytes; 9364 size_t pad; 9365 u16 old_len; 9366 u16 new_len; 9367 9368 struct { 9369 struct perf_event_header header; 9370 9371 u64 addr; 9372 } event_id; 9373 }; 9374 9375 static int perf_event_text_poke_match(struct perf_event *event) 9376 { 9377 return event->attr.text_poke; 9378 } 9379 9380 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9381 { 9382 struct perf_text_poke_event *text_poke_event = data; 9383 struct perf_output_handle handle; 9384 struct perf_sample_data sample; 9385 u64 padding = 0; 9386 int ret; 9387 9388 if (!perf_event_text_poke_match(event)) 9389 return; 9390 9391 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9392 9393 ret = perf_output_begin(&handle, &sample, event, 9394 text_poke_event->event_id.header.size); 9395 if (ret) 9396 return; 9397 9398 perf_output_put(&handle, text_poke_event->event_id); 9399 perf_output_put(&handle, text_poke_event->old_len); 9400 perf_output_put(&handle, text_poke_event->new_len); 9401 9402 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9403 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9404 9405 if (text_poke_event->pad) 9406 __output_copy(&handle, &padding, text_poke_event->pad); 9407 9408 perf_event__output_id_sample(event, &handle, &sample); 9409 9410 perf_output_end(&handle); 9411 } 9412 9413 void perf_event_text_poke(const void *addr, const void *old_bytes, 9414 size_t old_len, const void *new_bytes, size_t new_len) 9415 { 9416 struct perf_text_poke_event text_poke_event; 9417 size_t tot, pad; 9418 9419 if (!atomic_read(&nr_text_poke_events)) 9420 return; 9421 9422 tot = sizeof(text_poke_event.old_len) + old_len; 9423 tot += sizeof(text_poke_event.new_len) + new_len; 9424 pad = ALIGN(tot, sizeof(u64)) - tot; 9425 9426 text_poke_event = (struct perf_text_poke_event){ 9427 .old_bytes = old_bytes, 9428 .new_bytes = new_bytes, 9429 .pad = pad, 9430 .old_len = old_len, 9431 .new_len = new_len, 9432 .event_id = { 9433 .header = { 9434 .type = PERF_RECORD_TEXT_POKE, 9435 .misc = PERF_RECORD_MISC_KERNEL, 9436 .size = sizeof(text_poke_event.event_id) + tot + pad, 9437 }, 9438 .addr = (unsigned long)addr, 9439 }, 9440 }; 9441 9442 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9443 } 9444 9445 void perf_event_itrace_started(struct perf_event *event) 9446 { 9447 event->attach_state |= PERF_ATTACH_ITRACE; 9448 } 9449 9450 static void perf_log_itrace_start(struct perf_event *event) 9451 { 9452 struct perf_output_handle handle; 9453 struct perf_sample_data sample; 9454 struct perf_aux_event { 9455 struct perf_event_header header; 9456 u32 pid; 9457 u32 tid; 9458 } rec; 9459 int ret; 9460 9461 if (event->parent) 9462 event = event->parent; 9463 9464 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9465 event->attach_state & PERF_ATTACH_ITRACE) 9466 return; 9467 9468 rec.header.type = PERF_RECORD_ITRACE_START; 9469 rec.header.misc = 0; 9470 rec.header.size = sizeof(rec); 9471 rec.pid = perf_event_pid(event, current); 9472 rec.tid = perf_event_tid(event, current); 9473 9474 perf_event_header__init_id(&rec.header, &sample, event); 9475 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9476 9477 if (ret) 9478 return; 9479 9480 perf_output_put(&handle, rec); 9481 perf_event__output_id_sample(event, &handle, &sample); 9482 9483 perf_output_end(&handle); 9484 } 9485 9486 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9487 { 9488 struct perf_output_handle handle; 9489 struct perf_sample_data sample; 9490 struct perf_aux_event { 9491 struct perf_event_header header; 9492 u64 hw_id; 9493 } rec; 9494 int ret; 9495 9496 if (event->parent) 9497 event = event->parent; 9498 9499 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9500 rec.header.misc = 0; 9501 rec.header.size = sizeof(rec); 9502 rec.hw_id = hw_id; 9503 9504 perf_event_header__init_id(&rec.header, &sample, event); 9505 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9506 9507 if (ret) 9508 return; 9509 9510 perf_output_put(&handle, rec); 9511 perf_event__output_id_sample(event, &handle, &sample); 9512 9513 perf_output_end(&handle); 9514 } 9515 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9516 9517 static int 9518 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9519 { 9520 struct hw_perf_event *hwc = &event->hw; 9521 int ret = 0; 9522 u64 seq; 9523 9524 seq = __this_cpu_read(perf_throttled_seq); 9525 if (seq != hwc->interrupts_seq) { 9526 hwc->interrupts_seq = seq; 9527 hwc->interrupts = 1; 9528 } else { 9529 hwc->interrupts++; 9530 if (unlikely(throttle && 9531 hwc->interrupts > max_samples_per_tick)) { 9532 __this_cpu_inc(perf_throttled_count); 9533 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9534 hwc->interrupts = MAX_INTERRUPTS; 9535 perf_log_throttle(event, 0); 9536 ret = 1; 9537 } 9538 } 9539 9540 if (event->attr.freq) { 9541 u64 now = perf_clock(); 9542 s64 delta = now - hwc->freq_time_stamp; 9543 9544 hwc->freq_time_stamp = now; 9545 9546 if (delta > 0 && delta < 2*TICK_NSEC) 9547 perf_adjust_period(event, delta, hwc->last_period, true); 9548 } 9549 9550 return ret; 9551 } 9552 9553 int perf_event_account_interrupt(struct perf_event *event) 9554 { 9555 return __perf_event_account_interrupt(event, 1); 9556 } 9557 9558 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9559 { 9560 /* 9561 * Due to interrupt latency (AKA "skid"), we may enter the 9562 * kernel before taking an overflow, even if the PMU is only 9563 * counting user events. 9564 */ 9565 if (event->attr.exclude_kernel && !user_mode(regs)) 9566 return false; 9567 9568 return true; 9569 } 9570 9571 #ifdef CONFIG_BPF_SYSCALL 9572 static int bpf_overflow_handler(struct perf_event *event, 9573 struct perf_sample_data *data, 9574 struct pt_regs *regs) 9575 { 9576 struct bpf_perf_event_data_kern ctx = { 9577 .data = data, 9578 .event = event, 9579 }; 9580 struct bpf_prog *prog; 9581 int ret = 0; 9582 9583 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9584 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9585 goto out; 9586 rcu_read_lock(); 9587 prog = READ_ONCE(event->prog); 9588 if (prog) { 9589 perf_prepare_sample(data, event, regs); 9590 ret = bpf_prog_run(prog, &ctx); 9591 } 9592 rcu_read_unlock(); 9593 out: 9594 __this_cpu_dec(bpf_prog_active); 9595 9596 return ret; 9597 } 9598 9599 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9600 struct bpf_prog *prog, 9601 u64 bpf_cookie) 9602 { 9603 if (event->overflow_handler_context) 9604 /* hw breakpoint or kernel counter */ 9605 return -EINVAL; 9606 9607 if (event->prog) 9608 return -EEXIST; 9609 9610 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9611 return -EINVAL; 9612 9613 if (event->attr.precise_ip && 9614 prog->call_get_stack && 9615 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9616 event->attr.exclude_callchain_kernel || 9617 event->attr.exclude_callchain_user)) { 9618 /* 9619 * On perf_event with precise_ip, calling bpf_get_stack() 9620 * may trigger unwinder warnings and occasional crashes. 9621 * bpf_get_[stack|stackid] works around this issue by using 9622 * callchain attached to perf_sample_data. If the 9623 * perf_event does not full (kernel and user) callchain 9624 * attached to perf_sample_data, do not allow attaching BPF 9625 * program that calls bpf_get_[stack|stackid]. 9626 */ 9627 return -EPROTO; 9628 } 9629 9630 event->prog = prog; 9631 event->bpf_cookie = bpf_cookie; 9632 return 0; 9633 } 9634 9635 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9636 { 9637 struct bpf_prog *prog = event->prog; 9638 9639 if (!prog) 9640 return; 9641 9642 event->prog = NULL; 9643 bpf_prog_put(prog); 9644 } 9645 #else 9646 static inline int bpf_overflow_handler(struct perf_event *event, 9647 struct perf_sample_data *data, 9648 struct pt_regs *regs) 9649 { 9650 return 1; 9651 } 9652 9653 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9654 struct bpf_prog *prog, 9655 u64 bpf_cookie) 9656 { 9657 return -EOPNOTSUPP; 9658 } 9659 9660 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9661 { 9662 } 9663 #endif 9664 9665 /* 9666 * Generic event overflow handling, sampling. 9667 */ 9668 9669 static int __perf_event_overflow(struct perf_event *event, 9670 int throttle, struct perf_sample_data *data, 9671 struct pt_regs *regs) 9672 { 9673 int events = atomic_read(&event->event_limit); 9674 int ret = 0; 9675 9676 /* 9677 * Non-sampling counters might still use the PMI to fold short 9678 * hardware counters, ignore those. 9679 */ 9680 if (unlikely(!is_sampling_event(event))) 9681 return 0; 9682 9683 ret = __perf_event_account_interrupt(event, throttle); 9684 9685 if (event->prog && !bpf_overflow_handler(event, data, regs)) 9686 return ret; 9687 9688 /* 9689 * XXX event_limit might not quite work as expected on inherited 9690 * events 9691 */ 9692 9693 event->pending_kill = POLL_IN; 9694 if (events && atomic_dec_and_test(&event->event_limit)) { 9695 ret = 1; 9696 event->pending_kill = POLL_HUP; 9697 perf_event_disable_inatomic(event); 9698 } 9699 9700 if (event->attr.sigtrap) { 9701 /* 9702 * The desired behaviour of sigtrap vs invalid samples is a bit 9703 * tricky; on the one hand, one should not loose the SIGTRAP if 9704 * it is the first event, on the other hand, we should also not 9705 * trigger the WARN or override the data address. 9706 */ 9707 bool valid_sample = sample_is_allowed(event, regs); 9708 unsigned int pending_id = 1; 9709 9710 if (regs) 9711 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9712 if (!event->pending_sigtrap) { 9713 event->pending_sigtrap = pending_id; 9714 local_inc(&event->ctx->nr_pending); 9715 } else if (event->attr.exclude_kernel && valid_sample) { 9716 /* 9717 * Should not be able to return to user space without 9718 * consuming pending_sigtrap; with exceptions: 9719 * 9720 * 1. Where !exclude_kernel, events can overflow again 9721 * in the kernel without returning to user space. 9722 * 9723 * 2. Events that can overflow again before the IRQ- 9724 * work without user space progress (e.g. hrtimer). 9725 * To approximate progress (with false negatives), 9726 * check 32-bit hash of the current IP. 9727 */ 9728 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9729 } 9730 9731 event->pending_addr = 0; 9732 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9733 event->pending_addr = data->addr; 9734 irq_work_queue(&event->pending_irq); 9735 } 9736 9737 READ_ONCE(event->overflow_handler)(event, data, regs); 9738 9739 if (*perf_event_fasync(event) && event->pending_kill) { 9740 event->pending_wakeup = 1; 9741 irq_work_queue(&event->pending_irq); 9742 } 9743 9744 return ret; 9745 } 9746 9747 int perf_event_overflow(struct perf_event *event, 9748 struct perf_sample_data *data, 9749 struct pt_regs *regs) 9750 { 9751 return __perf_event_overflow(event, 1, data, regs); 9752 } 9753 9754 /* 9755 * Generic software event infrastructure 9756 */ 9757 9758 struct swevent_htable { 9759 struct swevent_hlist *swevent_hlist; 9760 struct mutex hlist_mutex; 9761 int hlist_refcount; 9762 9763 /* Recursion avoidance in each contexts */ 9764 int recursion[PERF_NR_CONTEXTS]; 9765 }; 9766 9767 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9768 9769 /* 9770 * We directly increment event->count and keep a second value in 9771 * event->hw.period_left to count intervals. This period event 9772 * is kept in the range [-sample_period, 0] so that we can use the 9773 * sign as trigger. 9774 */ 9775 9776 u64 perf_swevent_set_period(struct perf_event *event) 9777 { 9778 struct hw_perf_event *hwc = &event->hw; 9779 u64 period = hwc->last_period; 9780 u64 nr, offset; 9781 s64 old, val; 9782 9783 hwc->last_period = hwc->sample_period; 9784 9785 old = local64_read(&hwc->period_left); 9786 do { 9787 val = old; 9788 if (val < 0) 9789 return 0; 9790 9791 nr = div64_u64(period + val, period); 9792 offset = nr * period; 9793 val -= offset; 9794 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9795 9796 return nr; 9797 } 9798 9799 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9800 struct perf_sample_data *data, 9801 struct pt_regs *regs) 9802 { 9803 struct hw_perf_event *hwc = &event->hw; 9804 int throttle = 0; 9805 9806 if (!overflow) 9807 overflow = perf_swevent_set_period(event); 9808 9809 if (hwc->interrupts == MAX_INTERRUPTS) 9810 return; 9811 9812 for (; overflow; overflow--) { 9813 if (__perf_event_overflow(event, throttle, 9814 data, regs)) { 9815 /* 9816 * We inhibit the overflow from happening when 9817 * hwc->interrupts == MAX_INTERRUPTS. 9818 */ 9819 break; 9820 } 9821 throttle = 1; 9822 } 9823 } 9824 9825 static void perf_swevent_event(struct perf_event *event, u64 nr, 9826 struct perf_sample_data *data, 9827 struct pt_regs *regs) 9828 { 9829 struct hw_perf_event *hwc = &event->hw; 9830 9831 local64_add(nr, &event->count); 9832 9833 if (!regs) 9834 return; 9835 9836 if (!is_sampling_event(event)) 9837 return; 9838 9839 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9840 data->period = nr; 9841 return perf_swevent_overflow(event, 1, data, regs); 9842 } else 9843 data->period = event->hw.last_period; 9844 9845 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9846 return perf_swevent_overflow(event, 1, data, regs); 9847 9848 if (local64_add_negative(nr, &hwc->period_left)) 9849 return; 9850 9851 perf_swevent_overflow(event, 0, data, regs); 9852 } 9853 9854 static int perf_exclude_event(struct perf_event *event, 9855 struct pt_regs *regs) 9856 { 9857 if (event->hw.state & PERF_HES_STOPPED) 9858 return 1; 9859 9860 if (regs) { 9861 if (event->attr.exclude_user && user_mode(regs)) 9862 return 1; 9863 9864 if (event->attr.exclude_kernel && !user_mode(regs)) 9865 return 1; 9866 } 9867 9868 return 0; 9869 } 9870 9871 static int perf_swevent_match(struct perf_event *event, 9872 enum perf_type_id type, 9873 u32 event_id, 9874 struct perf_sample_data *data, 9875 struct pt_regs *regs) 9876 { 9877 if (event->attr.type != type) 9878 return 0; 9879 9880 if (event->attr.config != event_id) 9881 return 0; 9882 9883 if (perf_exclude_event(event, regs)) 9884 return 0; 9885 9886 return 1; 9887 } 9888 9889 static inline u64 swevent_hash(u64 type, u32 event_id) 9890 { 9891 u64 val = event_id | (type << 32); 9892 9893 return hash_64(val, SWEVENT_HLIST_BITS); 9894 } 9895 9896 static inline struct hlist_head * 9897 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9898 { 9899 u64 hash = swevent_hash(type, event_id); 9900 9901 return &hlist->heads[hash]; 9902 } 9903 9904 /* For the read side: events when they trigger */ 9905 static inline struct hlist_head * 9906 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9907 { 9908 struct swevent_hlist *hlist; 9909 9910 hlist = rcu_dereference(swhash->swevent_hlist); 9911 if (!hlist) 9912 return NULL; 9913 9914 return __find_swevent_head(hlist, type, event_id); 9915 } 9916 9917 /* For the event head insertion and removal in the hlist */ 9918 static inline struct hlist_head * 9919 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9920 { 9921 struct swevent_hlist *hlist; 9922 u32 event_id = event->attr.config; 9923 u64 type = event->attr.type; 9924 9925 /* 9926 * Event scheduling is always serialized against hlist allocation 9927 * and release. Which makes the protected version suitable here. 9928 * The context lock guarantees that. 9929 */ 9930 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9931 lockdep_is_held(&event->ctx->lock)); 9932 if (!hlist) 9933 return NULL; 9934 9935 return __find_swevent_head(hlist, type, event_id); 9936 } 9937 9938 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9939 u64 nr, 9940 struct perf_sample_data *data, 9941 struct pt_regs *regs) 9942 { 9943 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9944 struct perf_event *event; 9945 struct hlist_head *head; 9946 9947 rcu_read_lock(); 9948 head = find_swevent_head_rcu(swhash, type, event_id); 9949 if (!head) 9950 goto end; 9951 9952 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9953 if (perf_swevent_match(event, type, event_id, data, regs)) 9954 perf_swevent_event(event, nr, data, regs); 9955 } 9956 end: 9957 rcu_read_unlock(); 9958 } 9959 9960 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9961 9962 int perf_swevent_get_recursion_context(void) 9963 { 9964 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9965 9966 return get_recursion_context(swhash->recursion); 9967 } 9968 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9969 9970 void perf_swevent_put_recursion_context(int rctx) 9971 { 9972 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9973 9974 put_recursion_context(swhash->recursion, rctx); 9975 } 9976 9977 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9978 { 9979 struct perf_sample_data data; 9980 9981 if (WARN_ON_ONCE(!regs)) 9982 return; 9983 9984 perf_sample_data_init(&data, addr, 0); 9985 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9986 } 9987 9988 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9989 { 9990 int rctx; 9991 9992 preempt_disable_notrace(); 9993 rctx = perf_swevent_get_recursion_context(); 9994 if (unlikely(rctx < 0)) 9995 goto fail; 9996 9997 ___perf_sw_event(event_id, nr, regs, addr); 9998 9999 perf_swevent_put_recursion_context(rctx); 10000 fail: 10001 preempt_enable_notrace(); 10002 } 10003 10004 static void perf_swevent_read(struct perf_event *event) 10005 { 10006 } 10007 10008 static int perf_swevent_add(struct perf_event *event, int flags) 10009 { 10010 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10011 struct hw_perf_event *hwc = &event->hw; 10012 struct hlist_head *head; 10013 10014 if (is_sampling_event(event)) { 10015 hwc->last_period = hwc->sample_period; 10016 perf_swevent_set_period(event); 10017 } 10018 10019 hwc->state = !(flags & PERF_EF_START); 10020 10021 head = find_swevent_head(swhash, event); 10022 if (WARN_ON_ONCE(!head)) 10023 return -EINVAL; 10024 10025 hlist_add_head_rcu(&event->hlist_entry, head); 10026 perf_event_update_userpage(event); 10027 10028 return 0; 10029 } 10030 10031 static void perf_swevent_del(struct perf_event *event, int flags) 10032 { 10033 hlist_del_rcu(&event->hlist_entry); 10034 } 10035 10036 static void perf_swevent_start(struct perf_event *event, int flags) 10037 { 10038 event->hw.state = 0; 10039 } 10040 10041 static void perf_swevent_stop(struct perf_event *event, int flags) 10042 { 10043 event->hw.state = PERF_HES_STOPPED; 10044 } 10045 10046 /* Deref the hlist from the update side */ 10047 static inline struct swevent_hlist * 10048 swevent_hlist_deref(struct swevent_htable *swhash) 10049 { 10050 return rcu_dereference_protected(swhash->swevent_hlist, 10051 lockdep_is_held(&swhash->hlist_mutex)); 10052 } 10053 10054 static void swevent_hlist_release(struct swevent_htable *swhash) 10055 { 10056 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10057 10058 if (!hlist) 10059 return; 10060 10061 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10062 kfree_rcu(hlist, rcu_head); 10063 } 10064 10065 static void swevent_hlist_put_cpu(int cpu) 10066 { 10067 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10068 10069 mutex_lock(&swhash->hlist_mutex); 10070 10071 if (!--swhash->hlist_refcount) 10072 swevent_hlist_release(swhash); 10073 10074 mutex_unlock(&swhash->hlist_mutex); 10075 } 10076 10077 static void swevent_hlist_put(void) 10078 { 10079 int cpu; 10080 10081 for_each_possible_cpu(cpu) 10082 swevent_hlist_put_cpu(cpu); 10083 } 10084 10085 static int swevent_hlist_get_cpu(int cpu) 10086 { 10087 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10088 int err = 0; 10089 10090 mutex_lock(&swhash->hlist_mutex); 10091 if (!swevent_hlist_deref(swhash) && 10092 cpumask_test_cpu(cpu, perf_online_mask)) { 10093 struct swevent_hlist *hlist; 10094 10095 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10096 if (!hlist) { 10097 err = -ENOMEM; 10098 goto exit; 10099 } 10100 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10101 } 10102 swhash->hlist_refcount++; 10103 exit: 10104 mutex_unlock(&swhash->hlist_mutex); 10105 10106 return err; 10107 } 10108 10109 static int swevent_hlist_get(void) 10110 { 10111 int err, cpu, failed_cpu; 10112 10113 mutex_lock(&pmus_lock); 10114 for_each_possible_cpu(cpu) { 10115 err = swevent_hlist_get_cpu(cpu); 10116 if (err) { 10117 failed_cpu = cpu; 10118 goto fail; 10119 } 10120 } 10121 mutex_unlock(&pmus_lock); 10122 return 0; 10123 fail: 10124 for_each_possible_cpu(cpu) { 10125 if (cpu == failed_cpu) 10126 break; 10127 swevent_hlist_put_cpu(cpu); 10128 } 10129 mutex_unlock(&pmus_lock); 10130 return err; 10131 } 10132 10133 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10134 10135 static void sw_perf_event_destroy(struct perf_event *event) 10136 { 10137 u64 event_id = event->attr.config; 10138 10139 WARN_ON(event->parent); 10140 10141 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10142 swevent_hlist_put(); 10143 } 10144 10145 static struct pmu perf_cpu_clock; /* fwd declaration */ 10146 static struct pmu perf_task_clock; 10147 10148 static int perf_swevent_init(struct perf_event *event) 10149 { 10150 u64 event_id = event->attr.config; 10151 10152 if (event->attr.type != PERF_TYPE_SOFTWARE) 10153 return -ENOENT; 10154 10155 /* 10156 * no branch sampling for software events 10157 */ 10158 if (has_branch_stack(event)) 10159 return -EOPNOTSUPP; 10160 10161 switch (event_id) { 10162 case PERF_COUNT_SW_CPU_CLOCK: 10163 event->attr.type = perf_cpu_clock.type; 10164 return -ENOENT; 10165 case PERF_COUNT_SW_TASK_CLOCK: 10166 event->attr.type = perf_task_clock.type; 10167 return -ENOENT; 10168 10169 default: 10170 break; 10171 } 10172 10173 if (event_id >= PERF_COUNT_SW_MAX) 10174 return -ENOENT; 10175 10176 if (!event->parent) { 10177 int err; 10178 10179 err = swevent_hlist_get(); 10180 if (err) 10181 return err; 10182 10183 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10184 event->destroy = sw_perf_event_destroy; 10185 } 10186 10187 return 0; 10188 } 10189 10190 static struct pmu perf_swevent = { 10191 .task_ctx_nr = perf_sw_context, 10192 10193 .capabilities = PERF_PMU_CAP_NO_NMI, 10194 10195 .event_init = perf_swevent_init, 10196 .add = perf_swevent_add, 10197 .del = perf_swevent_del, 10198 .start = perf_swevent_start, 10199 .stop = perf_swevent_stop, 10200 .read = perf_swevent_read, 10201 }; 10202 10203 #ifdef CONFIG_EVENT_TRACING 10204 10205 static void tp_perf_event_destroy(struct perf_event *event) 10206 { 10207 perf_trace_destroy(event); 10208 } 10209 10210 static int perf_tp_event_init(struct perf_event *event) 10211 { 10212 int err; 10213 10214 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10215 return -ENOENT; 10216 10217 /* 10218 * no branch sampling for tracepoint events 10219 */ 10220 if (has_branch_stack(event)) 10221 return -EOPNOTSUPP; 10222 10223 err = perf_trace_init(event); 10224 if (err) 10225 return err; 10226 10227 event->destroy = tp_perf_event_destroy; 10228 10229 return 0; 10230 } 10231 10232 static struct pmu perf_tracepoint = { 10233 .task_ctx_nr = perf_sw_context, 10234 10235 .event_init = perf_tp_event_init, 10236 .add = perf_trace_add, 10237 .del = perf_trace_del, 10238 .start = perf_swevent_start, 10239 .stop = perf_swevent_stop, 10240 .read = perf_swevent_read, 10241 }; 10242 10243 static int perf_tp_filter_match(struct perf_event *event, 10244 struct perf_sample_data *data) 10245 { 10246 void *record = data->raw->frag.data; 10247 10248 /* only top level events have filters set */ 10249 if (event->parent) 10250 event = event->parent; 10251 10252 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10253 return 1; 10254 return 0; 10255 } 10256 10257 static int perf_tp_event_match(struct perf_event *event, 10258 struct perf_sample_data *data, 10259 struct pt_regs *regs) 10260 { 10261 if (event->hw.state & PERF_HES_STOPPED) 10262 return 0; 10263 /* 10264 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10265 */ 10266 if (event->attr.exclude_kernel && !user_mode(regs)) 10267 return 0; 10268 10269 if (!perf_tp_filter_match(event, data)) 10270 return 0; 10271 10272 return 1; 10273 } 10274 10275 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10276 struct trace_event_call *call, u64 count, 10277 struct pt_regs *regs, struct hlist_head *head, 10278 struct task_struct *task) 10279 { 10280 if (bpf_prog_array_valid(call)) { 10281 *(struct pt_regs **)raw_data = regs; 10282 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10283 perf_swevent_put_recursion_context(rctx); 10284 return; 10285 } 10286 } 10287 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10288 rctx, task); 10289 } 10290 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10291 10292 static void __perf_tp_event_target_task(u64 count, void *record, 10293 struct pt_regs *regs, 10294 struct perf_sample_data *data, 10295 struct perf_event *event) 10296 { 10297 struct trace_entry *entry = record; 10298 10299 if (event->attr.config != entry->type) 10300 return; 10301 /* Cannot deliver synchronous signal to other task. */ 10302 if (event->attr.sigtrap) 10303 return; 10304 if (perf_tp_event_match(event, data, regs)) 10305 perf_swevent_event(event, count, data, regs); 10306 } 10307 10308 static void perf_tp_event_target_task(u64 count, void *record, 10309 struct pt_regs *regs, 10310 struct perf_sample_data *data, 10311 struct perf_event_context *ctx) 10312 { 10313 unsigned int cpu = smp_processor_id(); 10314 struct pmu *pmu = &perf_tracepoint; 10315 struct perf_event *event, *sibling; 10316 10317 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10318 __perf_tp_event_target_task(count, record, regs, data, event); 10319 for_each_sibling_event(sibling, event) 10320 __perf_tp_event_target_task(count, record, regs, data, sibling); 10321 } 10322 10323 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10324 __perf_tp_event_target_task(count, record, regs, data, event); 10325 for_each_sibling_event(sibling, event) 10326 __perf_tp_event_target_task(count, record, regs, data, sibling); 10327 } 10328 } 10329 10330 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10331 struct pt_regs *regs, struct hlist_head *head, int rctx, 10332 struct task_struct *task) 10333 { 10334 struct perf_sample_data data; 10335 struct perf_event *event; 10336 10337 struct perf_raw_record raw = { 10338 .frag = { 10339 .size = entry_size, 10340 .data = record, 10341 }, 10342 }; 10343 10344 perf_sample_data_init(&data, 0, 0); 10345 perf_sample_save_raw_data(&data, &raw); 10346 10347 perf_trace_buf_update(record, event_type); 10348 10349 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10350 if (perf_tp_event_match(event, &data, regs)) { 10351 perf_swevent_event(event, count, &data, regs); 10352 10353 /* 10354 * Here use the same on-stack perf_sample_data, 10355 * some members in data are event-specific and 10356 * need to be re-computed for different sweveents. 10357 * Re-initialize data->sample_flags safely to avoid 10358 * the problem that next event skips preparing data 10359 * because data->sample_flags is set. 10360 */ 10361 perf_sample_data_init(&data, 0, 0); 10362 perf_sample_save_raw_data(&data, &raw); 10363 } 10364 } 10365 10366 /* 10367 * If we got specified a target task, also iterate its context and 10368 * deliver this event there too. 10369 */ 10370 if (task && task != current) { 10371 struct perf_event_context *ctx; 10372 10373 rcu_read_lock(); 10374 ctx = rcu_dereference(task->perf_event_ctxp); 10375 if (!ctx) 10376 goto unlock; 10377 10378 raw_spin_lock(&ctx->lock); 10379 perf_tp_event_target_task(count, record, regs, &data, ctx); 10380 raw_spin_unlock(&ctx->lock); 10381 unlock: 10382 rcu_read_unlock(); 10383 } 10384 10385 perf_swevent_put_recursion_context(rctx); 10386 } 10387 EXPORT_SYMBOL_GPL(perf_tp_event); 10388 10389 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10390 /* 10391 * Flags in config, used by dynamic PMU kprobe and uprobe 10392 * The flags should match following PMU_FORMAT_ATTR(). 10393 * 10394 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10395 * if not set, create kprobe/uprobe 10396 * 10397 * The following values specify a reference counter (or semaphore in the 10398 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10399 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10400 * 10401 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10402 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10403 */ 10404 enum perf_probe_config { 10405 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10406 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10407 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10408 }; 10409 10410 PMU_FORMAT_ATTR(retprobe, "config:0"); 10411 #endif 10412 10413 #ifdef CONFIG_KPROBE_EVENTS 10414 static struct attribute *kprobe_attrs[] = { 10415 &format_attr_retprobe.attr, 10416 NULL, 10417 }; 10418 10419 static struct attribute_group kprobe_format_group = { 10420 .name = "format", 10421 .attrs = kprobe_attrs, 10422 }; 10423 10424 static const struct attribute_group *kprobe_attr_groups[] = { 10425 &kprobe_format_group, 10426 NULL, 10427 }; 10428 10429 static int perf_kprobe_event_init(struct perf_event *event); 10430 static struct pmu perf_kprobe = { 10431 .task_ctx_nr = perf_sw_context, 10432 .event_init = perf_kprobe_event_init, 10433 .add = perf_trace_add, 10434 .del = perf_trace_del, 10435 .start = perf_swevent_start, 10436 .stop = perf_swevent_stop, 10437 .read = perf_swevent_read, 10438 .attr_groups = kprobe_attr_groups, 10439 }; 10440 10441 static int perf_kprobe_event_init(struct perf_event *event) 10442 { 10443 int err; 10444 bool is_retprobe; 10445 10446 if (event->attr.type != perf_kprobe.type) 10447 return -ENOENT; 10448 10449 if (!perfmon_capable()) 10450 return -EACCES; 10451 10452 /* 10453 * no branch sampling for probe events 10454 */ 10455 if (has_branch_stack(event)) 10456 return -EOPNOTSUPP; 10457 10458 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10459 err = perf_kprobe_init(event, is_retprobe); 10460 if (err) 10461 return err; 10462 10463 event->destroy = perf_kprobe_destroy; 10464 10465 return 0; 10466 } 10467 #endif /* CONFIG_KPROBE_EVENTS */ 10468 10469 #ifdef CONFIG_UPROBE_EVENTS 10470 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10471 10472 static struct attribute *uprobe_attrs[] = { 10473 &format_attr_retprobe.attr, 10474 &format_attr_ref_ctr_offset.attr, 10475 NULL, 10476 }; 10477 10478 static struct attribute_group uprobe_format_group = { 10479 .name = "format", 10480 .attrs = uprobe_attrs, 10481 }; 10482 10483 static const struct attribute_group *uprobe_attr_groups[] = { 10484 &uprobe_format_group, 10485 NULL, 10486 }; 10487 10488 static int perf_uprobe_event_init(struct perf_event *event); 10489 static struct pmu perf_uprobe = { 10490 .task_ctx_nr = perf_sw_context, 10491 .event_init = perf_uprobe_event_init, 10492 .add = perf_trace_add, 10493 .del = perf_trace_del, 10494 .start = perf_swevent_start, 10495 .stop = perf_swevent_stop, 10496 .read = perf_swevent_read, 10497 .attr_groups = uprobe_attr_groups, 10498 }; 10499 10500 static int perf_uprobe_event_init(struct perf_event *event) 10501 { 10502 int err; 10503 unsigned long ref_ctr_offset; 10504 bool is_retprobe; 10505 10506 if (event->attr.type != perf_uprobe.type) 10507 return -ENOENT; 10508 10509 if (!perfmon_capable()) 10510 return -EACCES; 10511 10512 /* 10513 * no branch sampling for probe events 10514 */ 10515 if (has_branch_stack(event)) 10516 return -EOPNOTSUPP; 10517 10518 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10519 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10520 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10521 if (err) 10522 return err; 10523 10524 event->destroy = perf_uprobe_destroy; 10525 10526 return 0; 10527 } 10528 #endif /* CONFIG_UPROBE_EVENTS */ 10529 10530 static inline void perf_tp_register(void) 10531 { 10532 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10533 #ifdef CONFIG_KPROBE_EVENTS 10534 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10535 #endif 10536 #ifdef CONFIG_UPROBE_EVENTS 10537 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10538 #endif 10539 } 10540 10541 static void perf_event_free_filter(struct perf_event *event) 10542 { 10543 ftrace_profile_free_filter(event); 10544 } 10545 10546 /* 10547 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10548 * with perf_event_open() 10549 */ 10550 static inline bool perf_event_is_tracing(struct perf_event *event) 10551 { 10552 if (event->pmu == &perf_tracepoint) 10553 return true; 10554 #ifdef CONFIG_KPROBE_EVENTS 10555 if (event->pmu == &perf_kprobe) 10556 return true; 10557 #endif 10558 #ifdef CONFIG_UPROBE_EVENTS 10559 if (event->pmu == &perf_uprobe) 10560 return true; 10561 #endif 10562 return false; 10563 } 10564 10565 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10566 u64 bpf_cookie) 10567 { 10568 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10569 10570 if (!perf_event_is_tracing(event)) 10571 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10572 10573 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10574 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10575 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10576 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10577 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10578 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10579 return -EINVAL; 10580 10581 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10582 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10583 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10584 return -EINVAL; 10585 10586 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10587 /* only uprobe programs are allowed to be sleepable */ 10588 return -EINVAL; 10589 10590 /* Kprobe override only works for kprobes, not uprobes. */ 10591 if (prog->kprobe_override && !is_kprobe) 10592 return -EINVAL; 10593 10594 if (is_tracepoint || is_syscall_tp) { 10595 int off = trace_event_get_offsets(event->tp_event); 10596 10597 if (prog->aux->max_ctx_offset > off) 10598 return -EACCES; 10599 } 10600 10601 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10602 } 10603 10604 void perf_event_free_bpf_prog(struct perf_event *event) 10605 { 10606 if (!perf_event_is_tracing(event)) { 10607 perf_event_free_bpf_handler(event); 10608 return; 10609 } 10610 perf_event_detach_bpf_prog(event); 10611 } 10612 10613 #else 10614 10615 static inline void perf_tp_register(void) 10616 { 10617 } 10618 10619 static void perf_event_free_filter(struct perf_event *event) 10620 { 10621 } 10622 10623 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10624 u64 bpf_cookie) 10625 { 10626 return -ENOENT; 10627 } 10628 10629 void perf_event_free_bpf_prog(struct perf_event *event) 10630 { 10631 } 10632 #endif /* CONFIG_EVENT_TRACING */ 10633 10634 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10635 void perf_bp_event(struct perf_event *bp, void *data) 10636 { 10637 struct perf_sample_data sample; 10638 struct pt_regs *regs = data; 10639 10640 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10641 10642 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10643 perf_swevent_event(bp, 1, &sample, regs); 10644 } 10645 #endif 10646 10647 /* 10648 * Allocate a new address filter 10649 */ 10650 static struct perf_addr_filter * 10651 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10652 { 10653 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10654 struct perf_addr_filter *filter; 10655 10656 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10657 if (!filter) 10658 return NULL; 10659 10660 INIT_LIST_HEAD(&filter->entry); 10661 list_add_tail(&filter->entry, filters); 10662 10663 return filter; 10664 } 10665 10666 static void free_filters_list(struct list_head *filters) 10667 { 10668 struct perf_addr_filter *filter, *iter; 10669 10670 list_for_each_entry_safe(filter, iter, filters, entry) { 10671 path_put(&filter->path); 10672 list_del(&filter->entry); 10673 kfree(filter); 10674 } 10675 } 10676 10677 /* 10678 * Free existing address filters and optionally install new ones 10679 */ 10680 static void perf_addr_filters_splice(struct perf_event *event, 10681 struct list_head *head) 10682 { 10683 unsigned long flags; 10684 LIST_HEAD(list); 10685 10686 if (!has_addr_filter(event)) 10687 return; 10688 10689 /* don't bother with children, they don't have their own filters */ 10690 if (event->parent) 10691 return; 10692 10693 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10694 10695 list_splice_init(&event->addr_filters.list, &list); 10696 if (head) 10697 list_splice(head, &event->addr_filters.list); 10698 10699 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10700 10701 free_filters_list(&list); 10702 } 10703 10704 /* 10705 * Scan through mm's vmas and see if one of them matches the 10706 * @filter; if so, adjust filter's address range. 10707 * Called with mm::mmap_lock down for reading. 10708 */ 10709 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10710 struct mm_struct *mm, 10711 struct perf_addr_filter_range *fr) 10712 { 10713 struct vm_area_struct *vma; 10714 VMA_ITERATOR(vmi, mm, 0); 10715 10716 for_each_vma(vmi, vma) { 10717 if (!vma->vm_file) 10718 continue; 10719 10720 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10721 return; 10722 } 10723 } 10724 10725 /* 10726 * Update event's address range filters based on the 10727 * task's existing mappings, if any. 10728 */ 10729 static void perf_event_addr_filters_apply(struct perf_event *event) 10730 { 10731 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10732 struct task_struct *task = READ_ONCE(event->ctx->task); 10733 struct perf_addr_filter *filter; 10734 struct mm_struct *mm = NULL; 10735 unsigned int count = 0; 10736 unsigned long flags; 10737 10738 /* 10739 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10740 * will stop on the parent's child_mutex that our caller is also holding 10741 */ 10742 if (task == TASK_TOMBSTONE) 10743 return; 10744 10745 if (ifh->nr_file_filters) { 10746 mm = get_task_mm(task); 10747 if (!mm) 10748 goto restart; 10749 10750 mmap_read_lock(mm); 10751 } 10752 10753 raw_spin_lock_irqsave(&ifh->lock, flags); 10754 list_for_each_entry(filter, &ifh->list, entry) { 10755 if (filter->path.dentry) { 10756 /* 10757 * Adjust base offset if the filter is associated to a 10758 * binary that needs to be mapped: 10759 */ 10760 event->addr_filter_ranges[count].start = 0; 10761 event->addr_filter_ranges[count].size = 0; 10762 10763 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10764 } else { 10765 event->addr_filter_ranges[count].start = filter->offset; 10766 event->addr_filter_ranges[count].size = filter->size; 10767 } 10768 10769 count++; 10770 } 10771 10772 event->addr_filters_gen++; 10773 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10774 10775 if (ifh->nr_file_filters) { 10776 mmap_read_unlock(mm); 10777 10778 mmput(mm); 10779 } 10780 10781 restart: 10782 perf_event_stop(event, 1); 10783 } 10784 10785 /* 10786 * Address range filtering: limiting the data to certain 10787 * instruction address ranges. Filters are ioctl()ed to us from 10788 * userspace as ascii strings. 10789 * 10790 * Filter string format: 10791 * 10792 * ACTION RANGE_SPEC 10793 * where ACTION is one of the 10794 * * "filter": limit the trace to this region 10795 * * "start": start tracing from this address 10796 * * "stop": stop tracing at this address/region; 10797 * RANGE_SPEC is 10798 * * for kernel addresses: <start address>[/<size>] 10799 * * for object files: <start address>[/<size>]@</path/to/object/file> 10800 * 10801 * if <size> is not specified or is zero, the range is treated as a single 10802 * address; not valid for ACTION=="filter". 10803 */ 10804 enum { 10805 IF_ACT_NONE = -1, 10806 IF_ACT_FILTER, 10807 IF_ACT_START, 10808 IF_ACT_STOP, 10809 IF_SRC_FILE, 10810 IF_SRC_KERNEL, 10811 IF_SRC_FILEADDR, 10812 IF_SRC_KERNELADDR, 10813 }; 10814 10815 enum { 10816 IF_STATE_ACTION = 0, 10817 IF_STATE_SOURCE, 10818 IF_STATE_END, 10819 }; 10820 10821 static const match_table_t if_tokens = { 10822 { IF_ACT_FILTER, "filter" }, 10823 { IF_ACT_START, "start" }, 10824 { IF_ACT_STOP, "stop" }, 10825 { IF_SRC_FILE, "%u/%u@%s" }, 10826 { IF_SRC_KERNEL, "%u/%u" }, 10827 { IF_SRC_FILEADDR, "%u@%s" }, 10828 { IF_SRC_KERNELADDR, "%u" }, 10829 { IF_ACT_NONE, NULL }, 10830 }; 10831 10832 /* 10833 * Address filter string parser 10834 */ 10835 static int 10836 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10837 struct list_head *filters) 10838 { 10839 struct perf_addr_filter *filter = NULL; 10840 char *start, *orig, *filename = NULL; 10841 substring_t args[MAX_OPT_ARGS]; 10842 int state = IF_STATE_ACTION, token; 10843 unsigned int kernel = 0; 10844 int ret = -EINVAL; 10845 10846 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10847 if (!fstr) 10848 return -ENOMEM; 10849 10850 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10851 static const enum perf_addr_filter_action_t actions[] = { 10852 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10853 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10854 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10855 }; 10856 ret = -EINVAL; 10857 10858 if (!*start) 10859 continue; 10860 10861 /* filter definition begins */ 10862 if (state == IF_STATE_ACTION) { 10863 filter = perf_addr_filter_new(event, filters); 10864 if (!filter) 10865 goto fail; 10866 } 10867 10868 token = match_token(start, if_tokens, args); 10869 switch (token) { 10870 case IF_ACT_FILTER: 10871 case IF_ACT_START: 10872 case IF_ACT_STOP: 10873 if (state != IF_STATE_ACTION) 10874 goto fail; 10875 10876 filter->action = actions[token]; 10877 state = IF_STATE_SOURCE; 10878 break; 10879 10880 case IF_SRC_KERNELADDR: 10881 case IF_SRC_KERNEL: 10882 kernel = 1; 10883 fallthrough; 10884 10885 case IF_SRC_FILEADDR: 10886 case IF_SRC_FILE: 10887 if (state != IF_STATE_SOURCE) 10888 goto fail; 10889 10890 *args[0].to = 0; 10891 ret = kstrtoul(args[0].from, 0, &filter->offset); 10892 if (ret) 10893 goto fail; 10894 10895 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10896 *args[1].to = 0; 10897 ret = kstrtoul(args[1].from, 0, &filter->size); 10898 if (ret) 10899 goto fail; 10900 } 10901 10902 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10903 int fpos = token == IF_SRC_FILE ? 2 : 1; 10904 10905 kfree(filename); 10906 filename = match_strdup(&args[fpos]); 10907 if (!filename) { 10908 ret = -ENOMEM; 10909 goto fail; 10910 } 10911 } 10912 10913 state = IF_STATE_END; 10914 break; 10915 10916 default: 10917 goto fail; 10918 } 10919 10920 /* 10921 * Filter definition is fully parsed, validate and install it. 10922 * Make sure that it doesn't contradict itself or the event's 10923 * attribute. 10924 */ 10925 if (state == IF_STATE_END) { 10926 ret = -EINVAL; 10927 10928 /* 10929 * ACTION "filter" must have a non-zero length region 10930 * specified. 10931 */ 10932 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10933 !filter->size) 10934 goto fail; 10935 10936 if (!kernel) { 10937 if (!filename) 10938 goto fail; 10939 10940 /* 10941 * For now, we only support file-based filters 10942 * in per-task events; doing so for CPU-wide 10943 * events requires additional context switching 10944 * trickery, since same object code will be 10945 * mapped at different virtual addresses in 10946 * different processes. 10947 */ 10948 ret = -EOPNOTSUPP; 10949 if (!event->ctx->task) 10950 goto fail; 10951 10952 /* look up the path and grab its inode */ 10953 ret = kern_path(filename, LOOKUP_FOLLOW, 10954 &filter->path); 10955 if (ret) 10956 goto fail; 10957 10958 ret = -EINVAL; 10959 if (!filter->path.dentry || 10960 !S_ISREG(d_inode(filter->path.dentry) 10961 ->i_mode)) 10962 goto fail; 10963 10964 event->addr_filters.nr_file_filters++; 10965 } 10966 10967 /* ready to consume more filters */ 10968 kfree(filename); 10969 filename = NULL; 10970 state = IF_STATE_ACTION; 10971 filter = NULL; 10972 kernel = 0; 10973 } 10974 } 10975 10976 if (state != IF_STATE_ACTION) 10977 goto fail; 10978 10979 kfree(filename); 10980 kfree(orig); 10981 10982 return 0; 10983 10984 fail: 10985 kfree(filename); 10986 free_filters_list(filters); 10987 kfree(orig); 10988 10989 return ret; 10990 } 10991 10992 static int 10993 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10994 { 10995 LIST_HEAD(filters); 10996 int ret; 10997 10998 /* 10999 * Since this is called in perf_ioctl() path, we're already holding 11000 * ctx::mutex. 11001 */ 11002 lockdep_assert_held(&event->ctx->mutex); 11003 11004 if (WARN_ON_ONCE(event->parent)) 11005 return -EINVAL; 11006 11007 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11008 if (ret) 11009 goto fail_clear_files; 11010 11011 ret = event->pmu->addr_filters_validate(&filters); 11012 if (ret) 11013 goto fail_free_filters; 11014 11015 /* remove existing filters, if any */ 11016 perf_addr_filters_splice(event, &filters); 11017 11018 /* install new filters */ 11019 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11020 11021 return ret; 11022 11023 fail_free_filters: 11024 free_filters_list(&filters); 11025 11026 fail_clear_files: 11027 event->addr_filters.nr_file_filters = 0; 11028 11029 return ret; 11030 } 11031 11032 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11033 { 11034 int ret = -EINVAL; 11035 char *filter_str; 11036 11037 filter_str = strndup_user(arg, PAGE_SIZE); 11038 if (IS_ERR(filter_str)) 11039 return PTR_ERR(filter_str); 11040 11041 #ifdef CONFIG_EVENT_TRACING 11042 if (perf_event_is_tracing(event)) { 11043 struct perf_event_context *ctx = event->ctx; 11044 11045 /* 11046 * Beware, here be dragons!! 11047 * 11048 * the tracepoint muck will deadlock against ctx->mutex, but 11049 * the tracepoint stuff does not actually need it. So 11050 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11051 * already have a reference on ctx. 11052 * 11053 * This can result in event getting moved to a different ctx, 11054 * but that does not affect the tracepoint state. 11055 */ 11056 mutex_unlock(&ctx->mutex); 11057 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11058 mutex_lock(&ctx->mutex); 11059 } else 11060 #endif 11061 if (has_addr_filter(event)) 11062 ret = perf_event_set_addr_filter(event, filter_str); 11063 11064 kfree(filter_str); 11065 return ret; 11066 } 11067 11068 /* 11069 * hrtimer based swevent callback 11070 */ 11071 11072 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11073 { 11074 enum hrtimer_restart ret = HRTIMER_RESTART; 11075 struct perf_sample_data data; 11076 struct pt_regs *regs; 11077 struct perf_event *event; 11078 u64 period; 11079 11080 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11081 11082 if (event->state != PERF_EVENT_STATE_ACTIVE) 11083 return HRTIMER_NORESTART; 11084 11085 event->pmu->read(event); 11086 11087 perf_sample_data_init(&data, 0, event->hw.last_period); 11088 regs = get_irq_regs(); 11089 11090 if (regs && !perf_exclude_event(event, regs)) { 11091 if (!(event->attr.exclude_idle && is_idle_task(current))) 11092 if (__perf_event_overflow(event, 1, &data, regs)) 11093 ret = HRTIMER_NORESTART; 11094 } 11095 11096 period = max_t(u64, 10000, event->hw.sample_period); 11097 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11098 11099 return ret; 11100 } 11101 11102 static void perf_swevent_start_hrtimer(struct perf_event *event) 11103 { 11104 struct hw_perf_event *hwc = &event->hw; 11105 s64 period; 11106 11107 if (!is_sampling_event(event)) 11108 return; 11109 11110 period = local64_read(&hwc->period_left); 11111 if (period) { 11112 if (period < 0) 11113 period = 10000; 11114 11115 local64_set(&hwc->period_left, 0); 11116 } else { 11117 period = max_t(u64, 10000, hwc->sample_period); 11118 } 11119 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11120 HRTIMER_MODE_REL_PINNED_HARD); 11121 } 11122 11123 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11124 { 11125 struct hw_perf_event *hwc = &event->hw; 11126 11127 if (is_sampling_event(event)) { 11128 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11129 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11130 11131 hrtimer_cancel(&hwc->hrtimer); 11132 } 11133 } 11134 11135 static void perf_swevent_init_hrtimer(struct perf_event *event) 11136 { 11137 struct hw_perf_event *hwc = &event->hw; 11138 11139 if (!is_sampling_event(event)) 11140 return; 11141 11142 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11143 hwc->hrtimer.function = perf_swevent_hrtimer; 11144 11145 /* 11146 * Since hrtimers have a fixed rate, we can do a static freq->period 11147 * mapping and avoid the whole period adjust feedback stuff. 11148 */ 11149 if (event->attr.freq) { 11150 long freq = event->attr.sample_freq; 11151 11152 event->attr.sample_period = NSEC_PER_SEC / freq; 11153 hwc->sample_period = event->attr.sample_period; 11154 local64_set(&hwc->period_left, hwc->sample_period); 11155 hwc->last_period = hwc->sample_period; 11156 event->attr.freq = 0; 11157 } 11158 } 11159 11160 /* 11161 * Software event: cpu wall time clock 11162 */ 11163 11164 static void cpu_clock_event_update(struct perf_event *event) 11165 { 11166 s64 prev; 11167 u64 now; 11168 11169 now = local_clock(); 11170 prev = local64_xchg(&event->hw.prev_count, now); 11171 local64_add(now - prev, &event->count); 11172 } 11173 11174 static void cpu_clock_event_start(struct perf_event *event, int flags) 11175 { 11176 local64_set(&event->hw.prev_count, local_clock()); 11177 perf_swevent_start_hrtimer(event); 11178 } 11179 11180 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11181 { 11182 perf_swevent_cancel_hrtimer(event); 11183 cpu_clock_event_update(event); 11184 } 11185 11186 static int cpu_clock_event_add(struct perf_event *event, int flags) 11187 { 11188 if (flags & PERF_EF_START) 11189 cpu_clock_event_start(event, flags); 11190 perf_event_update_userpage(event); 11191 11192 return 0; 11193 } 11194 11195 static void cpu_clock_event_del(struct perf_event *event, int flags) 11196 { 11197 cpu_clock_event_stop(event, flags); 11198 } 11199 11200 static void cpu_clock_event_read(struct perf_event *event) 11201 { 11202 cpu_clock_event_update(event); 11203 } 11204 11205 static int cpu_clock_event_init(struct perf_event *event) 11206 { 11207 if (event->attr.type != perf_cpu_clock.type) 11208 return -ENOENT; 11209 11210 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11211 return -ENOENT; 11212 11213 /* 11214 * no branch sampling for software events 11215 */ 11216 if (has_branch_stack(event)) 11217 return -EOPNOTSUPP; 11218 11219 perf_swevent_init_hrtimer(event); 11220 11221 return 0; 11222 } 11223 11224 static struct pmu perf_cpu_clock = { 11225 .task_ctx_nr = perf_sw_context, 11226 11227 .capabilities = PERF_PMU_CAP_NO_NMI, 11228 .dev = PMU_NULL_DEV, 11229 11230 .event_init = cpu_clock_event_init, 11231 .add = cpu_clock_event_add, 11232 .del = cpu_clock_event_del, 11233 .start = cpu_clock_event_start, 11234 .stop = cpu_clock_event_stop, 11235 .read = cpu_clock_event_read, 11236 }; 11237 11238 /* 11239 * Software event: task time clock 11240 */ 11241 11242 static void task_clock_event_update(struct perf_event *event, u64 now) 11243 { 11244 u64 prev; 11245 s64 delta; 11246 11247 prev = local64_xchg(&event->hw.prev_count, now); 11248 delta = now - prev; 11249 local64_add(delta, &event->count); 11250 } 11251 11252 static void task_clock_event_start(struct perf_event *event, int flags) 11253 { 11254 local64_set(&event->hw.prev_count, event->ctx->time); 11255 perf_swevent_start_hrtimer(event); 11256 } 11257 11258 static void task_clock_event_stop(struct perf_event *event, int flags) 11259 { 11260 perf_swevent_cancel_hrtimer(event); 11261 task_clock_event_update(event, event->ctx->time); 11262 } 11263 11264 static int task_clock_event_add(struct perf_event *event, int flags) 11265 { 11266 if (flags & PERF_EF_START) 11267 task_clock_event_start(event, flags); 11268 perf_event_update_userpage(event); 11269 11270 return 0; 11271 } 11272 11273 static void task_clock_event_del(struct perf_event *event, int flags) 11274 { 11275 task_clock_event_stop(event, PERF_EF_UPDATE); 11276 } 11277 11278 static void task_clock_event_read(struct perf_event *event) 11279 { 11280 u64 now = perf_clock(); 11281 u64 delta = now - event->ctx->timestamp; 11282 u64 time = event->ctx->time + delta; 11283 11284 task_clock_event_update(event, time); 11285 } 11286 11287 static int task_clock_event_init(struct perf_event *event) 11288 { 11289 if (event->attr.type != perf_task_clock.type) 11290 return -ENOENT; 11291 11292 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11293 return -ENOENT; 11294 11295 /* 11296 * no branch sampling for software events 11297 */ 11298 if (has_branch_stack(event)) 11299 return -EOPNOTSUPP; 11300 11301 perf_swevent_init_hrtimer(event); 11302 11303 return 0; 11304 } 11305 11306 static struct pmu perf_task_clock = { 11307 .task_ctx_nr = perf_sw_context, 11308 11309 .capabilities = PERF_PMU_CAP_NO_NMI, 11310 .dev = PMU_NULL_DEV, 11311 11312 .event_init = task_clock_event_init, 11313 .add = task_clock_event_add, 11314 .del = task_clock_event_del, 11315 .start = task_clock_event_start, 11316 .stop = task_clock_event_stop, 11317 .read = task_clock_event_read, 11318 }; 11319 11320 static void perf_pmu_nop_void(struct pmu *pmu) 11321 { 11322 } 11323 11324 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11325 { 11326 } 11327 11328 static int perf_pmu_nop_int(struct pmu *pmu) 11329 { 11330 return 0; 11331 } 11332 11333 static int perf_event_nop_int(struct perf_event *event, u64 value) 11334 { 11335 return 0; 11336 } 11337 11338 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11339 11340 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11341 { 11342 __this_cpu_write(nop_txn_flags, flags); 11343 11344 if (flags & ~PERF_PMU_TXN_ADD) 11345 return; 11346 11347 perf_pmu_disable(pmu); 11348 } 11349 11350 static int perf_pmu_commit_txn(struct pmu *pmu) 11351 { 11352 unsigned int flags = __this_cpu_read(nop_txn_flags); 11353 11354 __this_cpu_write(nop_txn_flags, 0); 11355 11356 if (flags & ~PERF_PMU_TXN_ADD) 11357 return 0; 11358 11359 perf_pmu_enable(pmu); 11360 return 0; 11361 } 11362 11363 static void perf_pmu_cancel_txn(struct pmu *pmu) 11364 { 11365 unsigned int flags = __this_cpu_read(nop_txn_flags); 11366 11367 __this_cpu_write(nop_txn_flags, 0); 11368 11369 if (flags & ~PERF_PMU_TXN_ADD) 11370 return; 11371 11372 perf_pmu_enable(pmu); 11373 } 11374 11375 static int perf_event_idx_default(struct perf_event *event) 11376 { 11377 return 0; 11378 } 11379 11380 static void free_pmu_context(struct pmu *pmu) 11381 { 11382 free_percpu(pmu->cpu_pmu_context); 11383 } 11384 11385 /* 11386 * Let userspace know that this PMU supports address range filtering: 11387 */ 11388 static ssize_t nr_addr_filters_show(struct device *dev, 11389 struct device_attribute *attr, 11390 char *page) 11391 { 11392 struct pmu *pmu = dev_get_drvdata(dev); 11393 11394 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11395 } 11396 DEVICE_ATTR_RO(nr_addr_filters); 11397 11398 static struct idr pmu_idr; 11399 11400 static ssize_t 11401 type_show(struct device *dev, struct device_attribute *attr, char *page) 11402 { 11403 struct pmu *pmu = dev_get_drvdata(dev); 11404 11405 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11406 } 11407 static DEVICE_ATTR_RO(type); 11408 11409 static ssize_t 11410 perf_event_mux_interval_ms_show(struct device *dev, 11411 struct device_attribute *attr, 11412 char *page) 11413 { 11414 struct pmu *pmu = dev_get_drvdata(dev); 11415 11416 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11417 } 11418 11419 static DEFINE_MUTEX(mux_interval_mutex); 11420 11421 static ssize_t 11422 perf_event_mux_interval_ms_store(struct device *dev, 11423 struct device_attribute *attr, 11424 const char *buf, size_t count) 11425 { 11426 struct pmu *pmu = dev_get_drvdata(dev); 11427 int timer, cpu, ret; 11428 11429 ret = kstrtoint(buf, 0, &timer); 11430 if (ret) 11431 return ret; 11432 11433 if (timer < 1) 11434 return -EINVAL; 11435 11436 /* same value, noting to do */ 11437 if (timer == pmu->hrtimer_interval_ms) 11438 return count; 11439 11440 mutex_lock(&mux_interval_mutex); 11441 pmu->hrtimer_interval_ms = timer; 11442 11443 /* update all cpuctx for this PMU */ 11444 cpus_read_lock(); 11445 for_each_online_cpu(cpu) { 11446 struct perf_cpu_pmu_context *cpc; 11447 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11448 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11449 11450 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11451 } 11452 cpus_read_unlock(); 11453 mutex_unlock(&mux_interval_mutex); 11454 11455 return count; 11456 } 11457 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11458 11459 static struct attribute *pmu_dev_attrs[] = { 11460 &dev_attr_type.attr, 11461 &dev_attr_perf_event_mux_interval_ms.attr, 11462 &dev_attr_nr_addr_filters.attr, 11463 NULL, 11464 }; 11465 11466 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11467 { 11468 struct device *dev = kobj_to_dev(kobj); 11469 struct pmu *pmu = dev_get_drvdata(dev); 11470 11471 if (n == 2 && !pmu->nr_addr_filters) 11472 return 0; 11473 11474 return a->mode; 11475 } 11476 11477 static struct attribute_group pmu_dev_attr_group = { 11478 .is_visible = pmu_dev_is_visible, 11479 .attrs = pmu_dev_attrs, 11480 }; 11481 11482 static const struct attribute_group *pmu_dev_groups[] = { 11483 &pmu_dev_attr_group, 11484 NULL, 11485 }; 11486 11487 static int pmu_bus_running; 11488 static struct bus_type pmu_bus = { 11489 .name = "event_source", 11490 .dev_groups = pmu_dev_groups, 11491 }; 11492 11493 static void pmu_dev_release(struct device *dev) 11494 { 11495 kfree(dev); 11496 } 11497 11498 static int pmu_dev_alloc(struct pmu *pmu) 11499 { 11500 int ret = -ENOMEM; 11501 11502 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11503 if (!pmu->dev) 11504 goto out; 11505 11506 pmu->dev->groups = pmu->attr_groups; 11507 device_initialize(pmu->dev); 11508 11509 dev_set_drvdata(pmu->dev, pmu); 11510 pmu->dev->bus = &pmu_bus; 11511 pmu->dev->parent = pmu->parent; 11512 pmu->dev->release = pmu_dev_release; 11513 11514 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11515 if (ret) 11516 goto free_dev; 11517 11518 ret = device_add(pmu->dev); 11519 if (ret) 11520 goto free_dev; 11521 11522 if (pmu->attr_update) { 11523 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11524 if (ret) 11525 goto del_dev; 11526 } 11527 11528 out: 11529 return ret; 11530 11531 del_dev: 11532 device_del(pmu->dev); 11533 11534 free_dev: 11535 put_device(pmu->dev); 11536 goto out; 11537 } 11538 11539 static struct lock_class_key cpuctx_mutex; 11540 static struct lock_class_key cpuctx_lock; 11541 11542 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11543 { 11544 int cpu, ret, max = PERF_TYPE_MAX; 11545 11546 mutex_lock(&pmus_lock); 11547 ret = -ENOMEM; 11548 pmu->pmu_disable_count = alloc_percpu(int); 11549 if (!pmu->pmu_disable_count) 11550 goto unlock; 11551 11552 pmu->type = -1; 11553 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11554 ret = -EINVAL; 11555 goto free_pdc; 11556 } 11557 11558 pmu->name = name; 11559 11560 if (type >= 0) 11561 max = type; 11562 11563 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11564 if (ret < 0) 11565 goto free_pdc; 11566 11567 WARN_ON(type >= 0 && ret != type); 11568 11569 type = ret; 11570 pmu->type = type; 11571 11572 if (pmu_bus_running && !pmu->dev) { 11573 ret = pmu_dev_alloc(pmu); 11574 if (ret) 11575 goto free_idr; 11576 } 11577 11578 ret = -ENOMEM; 11579 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11580 if (!pmu->cpu_pmu_context) 11581 goto free_dev; 11582 11583 for_each_possible_cpu(cpu) { 11584 struct perf_cpu_pmu_context *cpc; 11585 11586 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11587 __perf_init_event_pmu_context(&cpc->epc, pmu); 11588 __perf_mux_hrtimer_init(cpc, cpu); 11589 } 11590 11591 if (!pmu->start_txn) { 11592 if (pmu->pmu_enable) { 11593 /* 11594 * If we have pmu_enable/pmu_disable calls, install 11595 * transaction stubs that use that to try and batch 11596 * hardware accesses. 11597 */ 11598 pmu->start_txn = perf_pmu_start_txn; 11599 pmu->commit_txn = perf_pmu_commit_txn; 11600 pmu->cancel_txn = perf_pmu_cancel_txn; 11601 } else { 11602 pmu->start_txn = perf_pmu_nop_txn; 11603 pmu->commit_txn = perf_pmu_nop_int; 11604 pmu->cancel_txn = perf_pmu_nop_void; 11605 } 11606 } 11607 11608 if (!pmu->pmu_enable) { 11609 pmu->pmu_enable = perf_pmu_nop_void; 11610 pmu->pmu_disable = perf_pmu_nop_void; 11611 } 11612 11613 if (!pmu->check_period) 11614 pmu->check_period = perf_event_nop_int; 11615 11616 if (!pmu->event_idx) 11617 pmu->event_idx = perf_event_idx_default; 11618 11619 list_add_rcu(&pmu->entry, &pmus); 11620 atomic_set(&pmu->exclusive_cnt, 0); 11621 ret = 0; 11622 unlock: 11623 mutex_unlock(&pmus_lock); 11624 11625 return ret; 11626 11627 free_dev: 11628 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11629 device_del(pmu->dev); 11630 put_device(pmu->dev); 11631 } 11632 11633 free_idr: 11634 idr_remove(&pmu_idr, pmu->type); 11635 11636 free_pdc: 11637 free_percpu(pmu->pmu_disable_count); 11638 goto unlock; 11639 } 11640 EXPORT_SYMBOL_GPL(perf_pmu_register); 11641 11642 void perf_pmu_unregister(struct pmu *pmu) 11643 { 11644 mutex_lock(&pmus_lock); 11645 list_del_rcu(&pmu->entry); 11646 11647 /* 11648 * We dereference the pmu list under both SRCU and regular RCU, so 11649 * synchronize against both of those. 11650 */ 11651 synchronize_srcu(&pmus_srcu); 11652 synchronize_rcu(); 11653 11654 free_percpu(pmu->pmu_disable_count); 11655 idr_remove(&pmu_idr, pmu->type); 11656 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11657 if (pmu->nr_addr_filters) 11658 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11659 device_del(pmu->dev); 11660 put_device(pmu->dev); 11661 } 11662 free_pmu_context(pmu); 11663 mutex_unlock(&pmus_lock); 11664 } 11665 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11666 11667 static inline bool has_extended_regs(struct perf_event *event) 11668 { 11669 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11670 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11671 } 11672 11673 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11674 { 11675 struct perf_event_context *ctx = NULL; 11676 int ret; 11677 11678 if (!try_module_get(pmu->module)) 11679 return -ENODEV; 11680 11681 /* 11682 * A number of pmu->event_init() methods iterate the sibling_list to, 11683 * for example, validate if the group fits on the PMU. Therefore, 11684 * if this is a sibling event, acquire the ctx->mutex to protect 11685 * the sibling_list. 11686 */ 11687 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11688 /* 11689 * This ctx->mutex can nest when we're called through 11690 * inheritance. See the perf_event_ctx_lock_nested() comment. 11691 */ 11692 ctx = perf_event_ctx_lock_nested(event->group_leader, 11693 SINGLE_DEPTH_NESTING); 11694 BUG_ON(!ctx); 11695 } 11696 11697 event->pmu = pmu; 11698 ret = pmu->event_init(event); 11699 11700 if (ctx) 11701 perf_event_ctx_unlock(event->group_leader, ctx); 11702 11703 if (!ret) { 11704 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11705 has_extended_regs(event)) 11706 ret = -EOPNOTSUPP; 11707 11708 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11709 event_has_any_exclude_flag(event)) 11710 ret = -EINVAL; 11711 11712 if (ret && event->destroy) 11713 event->destroy(event); 11714 } 11715 11716 if (ret) 11717 module_put(pmu->module); 11718 11719 return ret; 11720 } 11721 11722 static struct pmu *perf_init_event(struct perf_event *event) 11723 { 11724 bool extended_type = false; 11725 int idx, type, ret; 11726 struct pmu *pmu; 11727 11728 idx = srcu_read_lock(&pmus_srcu); 11729 11730 /* 11731 * Save original type before calling pmu->event_init() since certain 11732 * pmus overwrites event->attr.type to forward event to another pmu. 11733 */ 11734 event->orig_type = event->attr.type; 11735 11736 /* Try parent's PMU first: */ 11737 if (event->parent && event->parent->pmu) { 11738 pmu = event->parent->pmu; 11739 ret = perf_try_init_event(pmu, event); 11740 if (!ret) 11741 goto unlock; 11742 } 11743 11744 /* 11745 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11746 * are often aliases for PERF_TYPE_RAW. 11747 */ 11748 type = event->attr.type; 11749 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11750 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11751 if (!type) { 11752 type = PERF_TYPE_RAW; 11753 } else { 11754 extended_type = true; 11755 event->attr.config &= PERF_HW_EVENT_MASK; 11756 } 11757 } 11758 11759 again: 11760 rcu_read_lock(); 11761 pmu = idr_find(&pmu_idr, type); 11762 rcu_read_unlock(); 11763 if (pmu) { 11764 if (event->attr.type != type && type != PERF_TYPE_RAW && 11765 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11766 goto fail; 11767 11768 ret = perf_try_init_event(pmu, event); 11769 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11770 type = event->attr.type; 11771 goto again; 11772 } 11773 11774 if (ret) 11775 pmu = ERR_PTR(ret); 11776 11777 goto unlock; 11778 } 11779 11780 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11781 ret = perf_try_init_event(pmu, event); 11782 if (!ret) 11783 goto unlock; 11784 11785 if (ret != -ENOENT) { 11786 pmu = ERR_PTR(ret); 11787 goto unlock; 11788 } 11789 } 11790 fail: 11791 pmu = ERR_PTR(-ENOENT); 11792 unlock: 11793 srcu_read_unlock(&pmus_srcu, idx); 11794 11795 return pmu; 11796 } 11797 11798 static void attach_sb_event(struct perf_event *event) 11799 { 11800 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11801 11802 raw_spin_lock(&pel->lock); 11803 list_add_rcu(&event->sb_list, &pel->list); 11804 raw_spin_unlock(&pel->lock); 11805 } 11806 11807 /* 11808 * We keep a list of all !task (and therefore per-cpu) events 11809 * that need to receive side-band records. 11810 * 11811 * This avoids having to scan all the various PMU per-cpu contexts 11812 * looking for them. 11813 */ 11814 static void account_pmu_sb_event(struct perf_event *event) 11815 { 11816 if (is_sb_event(event)) 11817 attach_sb_event(event); 11818 } 11819 11820 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11821 static void account_freq_event_nohz(void) 11822 { 11823 #ifdef CONFIG_NO_HZ_FULL 11824 /* Lock so we don't race with concurrent unaccount */ 11825 spin_lock(&nr_freq_lock); 11826 if (atomic_inc_return(&nr_freq_events) == 1) 11827 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11828 spin_unlock(&nr_freq_lock); 11829 #endif 11830 } 11831 11832 static void account_freq_event(void) 11833 { 11834 if (tick_nohz_full_enabled()) 11835 account_freq_event_nohz(); 11836 else 11837 atomic_inc(&nr_freq_events); 11838 } 11839 11840 11841 static void account_event(struct perf_event *event) 11842 { 11843 bool inc = false; 11844 11845 if (event->parent) 11846 return; 11847 11848 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11849 inc = true; 11850 if (event->attr.mmap || event->attr.mmap_data) 11851 atomic_inc(&nr_mmap_events); 11852 if (event->attr.build_id) 11853 atomic_inc(&nr_build_id_events); 11854 if (event->attr.comm) 11855 atomic_inc(&nr_comm_events); 11856 if (event->attr.namespaces) 11857 atomic_inc(&nr_namespaces_events); 11858 if (event->attr.cgroup) 11859 atomic_inc(&nr_cgroup_events); 11860 if (event->attr.task) 11861 atomic_inc(&nr_task_events); 11862 if (event->attr.freq) 11863 account_freq_event(); 11864 if (event->attr.context_switch) { 11865 atomic_inc(&nr_switch_events); 11866 inc = true; 11867 } 11868 if (has_branch_stack(event)) 11869 inc = true; 11870 if (is_cgroup_event(event)) 11871 inc = true; 11872 if (event->attr.ksymbol) 11873 atomic_inc(&nr_ksymbol_events); 11874 if (event->attr.bpf_event) 11875 atomic_inc(&nr_bpf_events); 11876 if (event->attr.text_poke) 11877 atomic_inc(&nr_text_poke_events); 11878 11879 if (inc) { 11880 /* 11881 * We need the mutex here because static_branch_enable() 11882 * must complete *before* the perf_sched_count increment 11883 * becomes visible. 11884 */ 11885 if (atomic_inc_not_zero(&perf_sched_count)) 11886 goto enabled; 11887 11888 mutex_lock(&perf_sched_mutex); 11889 if (!atomic_read(&perf_sched_count)) { 11890 static_branch_enable(&perf_sched_events); 11891 /* 11892 * Guarantee that all CPUs observe they key change and 11893 * call the perf scheduling hooks before proceeding to 11894 * install events that need them. 11895 */ 11896 synchronize_rcu(); 11897 } 11898 /* 11899 * Now that we have waited for the sync_sched(), allow further 11900 * increments to by-pass the mutex. 11901 */ 11902 atomic_inc(&perf_sched_count); 11903 mutex_unlock(&perf_sched_mutex); 11904 } 11905 enabled: 11906 11907 account_pmu_sb_event(event); 11908 } 11909 11910 /* 11911 * Allocate and initialize an event structure 11912 */ 11913 static struct perf_event * 11914 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11915 struct task_struct *task, 11916 struct perf_event *group_leader, 11917 struct perf_event *parent_event, 11918 perf_overflow_handler_t overflow_handler, 11919 void *context, int cgroup_fd) 11920 { 11921 struct pmu *pmu; 11922 struct perf_event *event; 11923 struct hw_perf_event *hwc; 11924 long err = -EINVAL; 11925 int node; 11926 11927 if ((unsigned)cpu >= nr_cpu_ids) { 11928 if (!task || cpu != -1) 11929 return ERR_PTR(-EINVAL); 11930 } 11931 if (attr->sigtrap && !task) { 11932 /* Requires a task: avoid signalling random tasks. */ 11933 return ERR_PTR(-EINVAL); 11934 } 11935 11936 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11937 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11938 node); 11939 if (!event) 11940 return ERR_PTR(-ENOMEM); 11941 11942 /* 11943 * Single events are their own group leaders, with an 11944 * empty sibling list: 11945 */ 11946 if (!group_leader) 11947 group_leader = event; 11948 11949 mutex_init(&event->child_mutex); 11950 INIT_LIST_HEAD(&event->child_list); 11951 11952 INIT_LIST_HEAD(&event->event_entry); 11953 INIT_LIST_HEAD(&event->sibling_list); 11954 INIT_LIST_HEAD(&event->active_list); 11955 init_event_group(event); 11956 INIT_LIST_HEAD(&event->rb_entry); 11957 INIT_LIST_HEAD(&event->active_entry); 11958 INIT_LIST_HEAD(&event->addr_filters.list); 11959 INIT_HLIST_NODE(&event->hlist_entry); 11960 11961 11962 init_waitqueue_head(&event->waitq); 11963 init_irq_work(&event->pending_irq, perf_pending_irq); 11964 init_task_work(&event->pending_task, perf_pending_task); 11965 11966 mutex_init(&event->mmap_mutex); 11967 raw_spin_lock_init(&event->addr_filters.lock); 11968 11969 atomic_long_set(&event->refcount, 1); 11970 event->cpu = cpu; 11971 event->attr = *attr; 11972 event->group_leader = group_leader; 11973 event->pmu = NULL; 11974 event->oncpu = -1; 11975 11976 event->parent = parent_event; 11977 11978 event->ns = get_pid_ns(task_active_pid_ns(current)); 11979 event->id = atomic64_inc_return(&perf_event_id); 11980 11981 event->state = PERF_EVENT_STATE_INACTIVE; 11982 11983 if (parent_event) 11984 event->event_caps = parent_event->event_caps; 11985 11986 if (task) { 11987 event->attach_state = PERF_ATTACH_TASK; 11988 /* 11989 * XXX pmu::event_init needs to know what task to account to 11990 * and we cannot use the ctx information because we need the 11991 * pmu before we get a ctx. 11992 */ 11993 event->hw.target = get_task_struct(task); 11994 } 11995 11996 event->clock = &local_clock; 11997 if (parent_event) 11998 event->clock = parent_event->clock; 11999 12000 if (!overflow_handler && parent_event) { 12001 overflow_handler = parent_event->overflow_handler; 12002 context = parent_event->overflow_handler_context; 12003 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12004 if (parent_event->prog) { 12005 struct bpf_prog *prog = parent_event->prog; 12006 12007 bpf_prog_inc(prog); 12008 event->prog = prog; 12009 } 12010 #endif 12011 } 12012 12013 if (overflow_handler) { 12014 event->overflow_handler = overflow_handler; 12015 event->overflow_handler_context = context; 12016 } else if (is_write_backward(event)){ 12017 event->overflow_handler = perf_event_output_backward; 12018 event->overflow_handler_context = NULL; 12019 } else { 12020 event->overflow_handler = perf_event_output_forward; 12021 event->overflow_handler_context = NULL; 12022 } 12023 12024 perf_event__state_init(event); 12025 12026 pmu = NULL; 12027 12028 hwc = &event->hw; 12029 hwc->sample_period = attr->sample_period; 12030 if (attr->freq && attr->sample_freq) 12031 hwc->sample_period = 1; 12032 hwc->last_period = hwc->sample_period; 12033 12034 local64_set(&hwc->period_left, hwc->sample_period); 12035 12036 /* 12037 * We currently do not support PERF_SAMPLE_READ on inherited events. 12038 * See perf_output_read(). 12039 */ 12040 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12041 goto err_ns; 12042 12043 if (!has_branch_stack(event)) 12044 event->attr.branch_sample_type = 0; 12045 12046 pmu = perf_init_event(event); 12047 if (IS_ERR(pmu)) { 12048 err = PTR_ERR(pmu); 12049 goto err_ns; 12050 } 12051 12052 /* 12053 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12054 * events (they don't make sense as the cgroup will be different 12055 * on other CPUs in the uncore mask). 12056 */ 12057 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12058 err = -EINVAL; 12059 goto err_pmu; 12060 } 12061 12062 if (event->attr.aux_output && 12063 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12064 err = -EOPNOTSUPP; 12065 goto err_pmu; 12066 } 12067 12068 if (cgroup_fd != -1) { 12069 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12070 if (err) 12071 goto err_pmu; 12072 } 12073 12074 err = exclusive_event_init(event); 12075 if (err) 12076 goto err_pmu; 12077 12078 if (has_addr_filter(event)) { 12079 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12080 sizeof(struct perf_addr_filter_range), 12081 GFP_KERNEL); 12082 if (!event->addr_filter_ranges) { 12083 err = -ENOMEM; 12084 goto err_per_task; 12085 } 12086 12087 /* 12088 * Clone the parent's vma offsets: they are valid until exec() 12089 * even if the mm is not shared with the parent. 12090 */ 12091 if (event->parent) { 12092 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12093 12094 raw_spin_lock_irq(&ifh->lock); 12095 memcpy(event->addr_filter_ranges, 12096 event->parent->addr_filter_ranges, 12097 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12098 raw_spin_unlock_irq(&ifh->lock); 12099 } 12100 12101 /* force hw sync on the address filters */ 12102 event->addr_filters_gen = 1; 12103 } 12104 12105 if (!event->parent) { 12106 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12107 err = get_callchain_buffers(attr->sample_max_stack); 12108 if (err) 12109 goto err_addr_filters; 12110 } 12111 } 12112 12113 err = security_perf_event_alloc(event); 12114 if (err) 12115 goto err_callchain_buffer; 12116 12117 /* symmetric to unaccount_event() in _free_event() */ 12118 account_event(event); 12119 12120 return event; 12121 12122 err_callchain_buffer: 12123 if (!event->parent) { 12124 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12125 put_callchain_buffers(); 12126 } 12127 err_addr_filters: 12128 kfree(event->addr_filter_ranges); 12129 12130 err_per_task: 12131 exclusive_event_destroy(event); 12132 12133 err_pmu: 12134 if (is_cgroup_event(event)) 12135 perf_detach_cgroup(event); 12136 if (event->destroy) 12137 event->destroy(event); 12138 module_put(pmu->module); 12139 err_ns: 12140 if (event->hw.target) 12141 put_task_struct(event->hw.target); 12142 call_rcu(&event->rcu_head, free_event_rcu); 12143 12144 return ERR_PTR(err); 12145 } 12146 12147 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12148 struct perf_event_attr *attr) 12149 { 12150 u32 size; 12151 int ret; 12152 12153 /* Zero the full structure, so that a short copy will be nice. */ 12154 memset(attr, 0, sizeof(*attr)); 12155 12156 ret = get_user(size, &uattr->size); 12157 if (ret) 12158 return ret; 12159 12160 /* ABI compatibility quirk: */ 12161 if (!size) 12162 size = PERF_ATTR_SIZE_VER0; 12163 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12164 goto err_size; 12165 12166 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12167 if (ret) { 12168 if (ret == -E2BIG) 12169 goto err_size; 12170 return ret; 12171 } 12172 12173 attr->size = size; 12174 12175 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12176 return -EINVAL; 12177 12178 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12179 return -EINVAL; 12180 12181 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12182 return -EINVAL; 12183 12184 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12185 u64 mask = attr->branch_sample_type; 12186 12187 /* only using defined bits */ 12188 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12189 return -EINVAL; 12190 12191 /* at least one branch bit must be set */ 12192 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12193 return -EINVAL; 12194 12195 /* propagate priv level, when not set for branch */ 12196 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12197 12198 /* exclude_kernel checked on syscall entry */ 12199 if (!attr->exclude_kernel) 12200 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12201 12202 if (!attr->exclude_user) 12203 mask |= PERF_SAMPLE_BRANCH_USER; 12204 12205 if (!attr->exclude_hv) 12206 mask |= PERF_SAMPLE_BRANCH_HV; 12207 /* 12208 * adjust user setting (for HW filter setup) 12209 */ 12210 attr->branch_sample_type = mask; 12211 } 12212 /* privileged levels capture (kernel, hv): check permissions */ 12213 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12214 ret = perf_allow_kernel(attr); 12215 if (ret) 12216 return ret; 12217 } 12218 } 12219 12220 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12221 ret = perf_reg_validate(attr->sample_regs_user); 12222 if (ret) 12223 return ret; 12224 } 12225 12226 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12227 if (!arch_perf_have_user_stack_dump()) 12228 return -ENOSYS; 12229 12230 /* 12231 * We have __u32 type for the size, but so far 12232 * we can only use __u16 as maximum due to the 12233 * __u16 sample size limit. 12234 */ 12235 if (attr->sample_stack_user >= USHRT_MAX) 12236 return -EINVAL; 12237 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12238 return -EINVAL; 12239 } 12240 12241 if (!attr->sample_max_stack) 12242 attr->sample_max_stack = sysctl_perf_event_max_stack; 12243 12244 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12245 ret = perf_reg_validate(attr->sample_regs_intr); 12246 12247 #ifndef CONFIG_CGROUP_PERF 12248 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12249 return -EINVAL; 12250 #endif 12251 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12252 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12253 return -EINVAL; 12254 12255 if (!attr->inherit && attr->inherit_thread) 12256 return -EINVAL; 12257 12258 if (attr->remove_on_exec && attr->enable_on_exec) 12259 return -EINVAL; 12260 12261 if (attr->sigtrap && !attr->remove_on_exec) 12262 return -EINVAL; 12263 12264 out: 12265 return ret; 12266 12267 err_size: 12268 put_user(sizeof(*attr), &uattr->size); 12269 ret = -E2BIG; 12270 goto out; 12271 } 12272 12273 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12274 { 12275 if (b < a) 12276 swap(a, b); 12277 12278 mutex_lock(a); 12279 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12280 } 12281 12282 static int 12283 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12284 { 12285 struct perf_buffer *rb = NULL; 12286 int ret = -EINVAL; 12287 12288 if (!output_event) { 12289 mutex_lock(&event->mmap_mutex); 12290 goto set; 12291 } 12292 12293 /* don't allow circular references */ 12294 if (event == output_event) 12295 goto out; 12296 12297 /* 12298 * Don't allow cross-cpu buffers 12299 */ 12300 if (output_event->cpu != event->cpu) 12301 goto out; 12302 12303 /* 12304 * If its not a per-cpu rb, it must be the same task. 12305 */ 12306 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12307 goto out; 12308 12309 /* 12310 * Mixing clocks in the same buffer is trouble you don't need. 12311 */ 12312 if (output_event->clock != event->clock) 12313 goto out; 12314 12315 /* 12316 * Either writing ring buffer from beginning or from end. 12317 * Mixing is not allowed. 12318 */ 12319 if (is_write_backward(output_event) != is_write_backward(event)) 12320 goto out; 12321 12322 /* 12323 * If both events generate aux data, they must be on the same PMU 12324 */ 12325 if (has_aux(event) && has_aux(output_event) && 12326 event->pmu != output_event->pmu) 12327 goto out; 12328 12329 /* 12330 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12331 * output_event is already on rb->event_list, and the list iteration 12332 * restarts after every removal, it is guaranteed this new event is 12333 * observed *OR* if output_event is already removed, it's guaranteed we 12334 * observe !rb->mmap_count. 12335 */ 12336 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12337 set: 12338 /* Can't redirect output if we've got an active mmap() */ 12339 if (atomic_read(&event->mmap_count)) 12340 goto unlock; 12341 12342 if (output_event) { 12343 /* get the rb we want to redirect to */ 12344 rb = ring_buffer_get(output_event); 12345 if (!rb) 12346 goto unlock; 12347 12348 /* did we race against perf_mmap_close() */ 12349 if (!atomic_read(&rb->mmap_count)) { 12350 ring_buffer_put(rb); 12351 goto unlock; 12352 } 12353 } 12354 12355 ring_buffer_attach(event, rb); 12356 12357 ret = 0; 12358 unlock: 12359 mutex_unlock(&event->mmap_mutex); 12360 if (output_event) 12361 mutex_unlock(&output_event->mmap_mutex); 12362 12363 out: 12364 return ret; 12365 } 12366 12367 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12368 { 12369 bool nmi_safe = false; 12370 12371 switch (clk_id) { 12372 case CLOCK_MONOTONIC: 12373 event->clock = &ktime_get_mono_fast_ns; 12374 nmi_safe = true; 12375 break; 12376 12377 case CLOCK_MONOTONIC_RAW: 12378 event->clock = &ktime_get_raw_fast_ns; 12379 nmi_safe = true; 12380 break; 12381 12382 case CLOCK_REALTIME: 12383 event->clock = &ktime_get_real_ns; 12384 break; 12385 12386 case CLOCK_BOOTTIME: 12387 event->clock = &ktime_get_boottime_ns; 12388 break; 12389 12390 case CLOCK_TAI: 12391 event->clock = &ktime_get_clocktai_ns; 12392 break; 12393 12394 default: 12395 return -EINVAL; 12396 } 12397 12398 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12399 return -EINVAL; 12400 12401 return 0; 12402 } 12403 12404 static bool 12405 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12406 { 12407 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12408 bool is_capable = perfmon_capable(); 12409 12410 if (attr->sigtrap) { 12411 /* 12412 * perf_event_attr::sigtrap sends signals to the other task. 12413 * Require the current task to also have CAP_KILL. 12414 */ 12415 rcu_read_lock(); 12416 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12417 rcu_read_unlock(); 12418 12419 /* 12420 * If the required capabilities aren't available, checks for 12421 * ptrace permissions: upgrade to ATTACH, since sending signals 12422 * can effectively change the target task. 12423 */ 12424 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12425 } 12426 12427 /* 12428 * Preserve ptrace permission check for backwards compatibility. The 12429 * ptrace check also includes checks that the current task and other 12430 * task have matching uids, and is therefore not done here explicitly. 12431 */ 12432 return is_capable || ptrace_may_access(task, ptrace_mode); 12433 } 12434 12435 /** 12436 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12437 * 12438 * @attr_uptr: event_id type attributes for monitoring/sampling 12439 * @pid: target pid 12440 * @cpu: target cpu 12441 * @group_fd: group leader event fd 12442 * @flags: perf event open flags 12443 */ 12444 SYSCALL_DEFINE5(perf_event_open, 12445 struct perf_event_attr __user *, attr_uptr, 12446 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12447 { 12448 struct perf_event *group_leader = NULL, *output_event = NULL; 12449 struct perf_event_pmu_context *pmu_ctx; 12450 struct perf_event *event, *sibling; 12451 struct perf_event_attr attr; 12452 struct perf_event_context *ctx; 12453 struct file *event_file = NULL; 12454 struct fd group = {NULL, 0}; 12455 struct task_struct *task = NULL; 12456 struct pmu *pmu; 12457 int event_fd; 12458 int move_group = 0; 12459 int err; 12460 int f_flags = O_RDWR; 12461 int cgroup_fd = -1; 12462 12463 /* for future expandability... */ 12464 if (flags & ~PERF_FLAG_ALL) 12465 return -EINVAL; 12466 12467 err = perf_copy_attr(attr_uptr, &attr); 12468 if (err) 12469 return err; 12470 12471 /* Do we allow access to perf_event_open(2) ? */ 12472 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12473 if (err) 12474 return err; 12475 12476 if (!attr.exclude_kernel) { 12477 err = perf_allow_kernel(&attr); 12478 if (err) 12479 return err; 12480 } 12481 12482 if (attr.namespaces) { 12483 if (!perfmon_capable()) 12484 return -EACCES; 12485 } 12486 12487 if (attr.freq) { 12488 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12489 return -EINVAL; 12490 } else { 12491 if (attr.sample_period & (1ULL << 63)) 12492 return -EINVAL; 12493 } 12494 12495 /* Only privileged users can get physical addresses */ 12496 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12497 err = perf_allow_kernel(&attr); 12498 if (err) 12499 return err; 12500 } 12501 12502 /* REGS_INTR can leak data, lockdown must prevent this */ 12503 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12504 err = security_locked_down(LOCKDOWN_PERF); 12505 if (err) 12506 return err; 12507 } 12508 12509 /* 12510 * In cgroup mode, the pid argument is used to pass the fd 12511 * opened to the cgroup directory in cgroupfs. The cpu argument 12512 * designates the cpu on which to monitor threads from that 12513 * cgroup. 12514 */ 12515 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12516 return -EINVAL; 12517 12518 if (flags & PERF_FLAG_FD_CLOEXEC) 12519 f_flags |= O_CLOEXEC; 12520 12521 event_fd = get_unused_fd_flags(f_flags); 12522 if (event_fd < 0) 12523 return event_fd; 12524 12525 if (group_fd != -1) { 12526 err = perf_fget_light(group_fd, &group); 12527 if (err) 12528 goto err_fd; 12529 group_leader = group.file->private_data; 12530 if (flags & PERF_FLAG_FD_OUTPUT) 12531 output_event = group_leader; 12532 if (flags & PERF_FLAG_FD_NO_GROUP) 12533 group_leader = NULL; 12534 } 12535 12536 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12537 task = find_lively_task_by_vpid(pid); 12538 if (IS_ERR(task)) { 12539 err = PTR_ERR(task); 12540 goto err_group_fd; 12541 } 12542 } 12543 12544 if (task && group_leader && 12545 group_leader->attr.inherit != attr.inherit) { 12546 err = -EINVAL; 12547 goto err_task; 12548 } 12549 12550 if (flags & PERF_FLAG_PID_CGROUP) 12551 cgroup_fd = pid; 12552 12553 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12554 NULL, NULL, cgroup_fd); 12555 if (IS_ERR(event)) { 12556 err = PTR_ERR(event); 12557 goto err_task; 12558 } 12559 12560 if (is_sampling_event(event)) { 12561 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12562 err = -EOPNOTSUPP; 12563 goto err_alloc; 12564 } 12565 } 12566 12567 /* 12568 * Special case software events and allow them to be part of 12569 * any hardware group. 12570 */ 12571 pmu = event->pmu; 12572 12573 if (attr.use_clockid) { 12574 err = perf_event_set_clock(event, attr.clockid); 12575 if (err) 12576 goto err_alloc; 12577 } 12578 12579 if (pmu->task_ctx_nr == perf_sw_context) 12580 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12581 12582 if (task) { 12583 err = down_read_interruptible(&task->signal->exec_update_lock); 12584 if (err) 12585 goto err_alloc; 12586 12587 /* 12588 * We must hold exec_update_lock across this and any potential 12589 * perf_install_in_context() call for this new event to 12590 * serialize against exec() altering our credentials (and the 12591 * perf_event_exit_task() that could imply). 12592 */ 12593 err = -EACCES; 12594 if (!perf_check_permission(&attr, task)) 12595 goto err_cred; 12596 } 12597 12598 /* 12599 * Get the target context (task or percpu): 12600 */ 12601 ctx = find_get_context(task, event); 12602 if (IS_ERR(ctx)) { 12603 err = PTR_ERR(ctx); 12604 goto err_cred; 12605 } 12606 12607 mutex_lock(&ctx->mutex); 12608 12609 if (ctx->task == TASK_TOMBSTONE) { 12610 err = -ESRCH; 12611 goto err_locked; 12612 } 12613 12614 if (!task) { 12615 /* 12616 * Check if the @cpu we're creating an event for is online. 12617 * 12618 * We use the perf_cpu_context::ctx::mutex to serialize against 12619 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12620 */ 12621 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12622 12623 if (!cpuctx->online) { 12624 err = -ENODEV; 12625 goto err_locked; 12626 } 12627 } 12628 12629 if (group_leader) { 12630 err = -EINVAL; 12631 12632 /* 12633 * Do not allow a recursive hierarchy (this new sibling 12634 * becoming part of another group-sibling): 12635 */ 12636 if (group_leader->group_leader != group_leader) 12637 goto err_locked; 12638 12639 /* All events in a group should have the same clock */ 12640 if (group_leader->clock != event->clock) 12641 goto err_locked; 12642 12643 /* 12644 * Make sure we're both events for the same CPU; 12645 * grouping events for different CPUs is broken; since 12646 * you can never concurrently schedule them anyhow. 12647 */ 12648 if (group_leader->cpu != event->cpu) 12649 goto err_locked; 12650 12651 /* 12652 * Make sure we're both on the same context; either task or cpu. 12653 */ 12654 if (group_leader->ctx != ctx) 12655 goto err_locked; 12656 12657 /* 12658 * Only a group leader can be exclusive or pinned 12659 */ 12660 if (attr.exclusive || attr.pinned) 12661 goto err_locked; 12662 12663 if (is_software_event(event) && 12664 !in_software_context(group_leader)) { 12665 /* 12666 * If the event is a sw event, but the group_leader 12667 * is on hw context. 12668 * 12669 * Allow the addition of software events to hw 12670 * groups, this is safe because software events 12671 * never fail to schedule. 12672 * 12673 * Note the comment that goes with struct 12674 * perf_event_pmu_context. 12675 */ 12676 pmu = group_leader->pmu_ctx->pmu; 12677 } else if (!is_software_event(event)) { 12678 if (is_software_event(group_leader) && 12679 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12680 /* 12681 * In case the group is a pure software group, and we 12682 * try to add a hardware event, move the whole group to 12683 * the hardware context. 12684 */ 12685 move_group = 1; 12686 } 12687 12688 /* Don't allow group of multiple hw events from different pmus */ 12689 if (!in_software_context(group_leader) && 12690 group_leader->pmu_ctx->pmu != pmu) 12691 goto err_locked; 12692 } 12693 } 12694 12695 /* 12696 * Now that we're certain of the pmu; find the pmu_ctx. 12697 */ 12698 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12699 if (IS_ERR(pmu_ctx)) { 12700 err = PTR_ERR(pmu_ctx); 12701 goto err_locked; 12702 } 12703 event->pmu_ctx = pmu_ctx; 12704 12705 if (output_event) { 12706 err = perf_event_set_output(event, output_event); 12707 if (err) 12708 goto err_context; 12709 } 12710 12711 if (!perf_event_validate_size(event)) { 12712 err = -E2BIG; 12713 goto err_context; 12714 } 12715 12716 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12717 err = -EINVAL; 12718 goto err_context; 12719 } 12720 12721 /* 12722 * Must be under the same ctx::mutex as perf_install_in_context(), 12723 * because we need to serialize with concurrent event creation. 12724 */ 12725 if (!exclusive_event_installable(event, ctx)) { 12726 err = -EBUSY; 12727 goto err_context; 12728 } 12729 12730 WARN_ON_ONCE(ctx->parent_ctx); 12731 12732 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12733 if (IS_ERR(event_file)) { 12734 err = PTR_ERR(event_file); 12735 event_file = NULL; 12736 goto err_context; 12737 } 12738 12739 /* 12740 * This is the point on no return; we cannot fail hereafter. This is 12741 * where we start modifying current state. 12742 */ 12743 12744 if (move_group) { 12745 perf_remove_from_context(group_leader, 0); 12746 put_pmu_ctx(group_leader->pmu_ctx); 12747 12748 for_each_sibling_event(sibling, group_leader) { 12749 perf_remove_from_context(sibling, 0); 12750 put_pmu_ctx(sibling->pmu_ctx); 12751 } 12752 12753 /* 12754 * Install the group siblings before the group leader. 12755 * 12756 * Because a group leader will try and install the entire group 12757 * (through the sibling list, which is still in-tact), we can 12758 * end up with siblings installed in the wrong context. 12759 * 12760 * By installing siblings first we NO-OP because they're not 12761 * reachable through the group lists. 12762 */ 12763 for_each_sibling_event(sibling, group_leader) { 12764 sibling->pmu_ctx = pmu_ctx; 12765 get_pmu_ctx(pmu_ctx); 12766 perf_event__state_init(sibling); 12767 perf_install_in_context(ctx, sibling, sibling->cpu); 12768 } 12769 12770 /* 12771 * Removing from the context ends up with disabled 12772 * event. What we want here is event in the initial 12773 * startup state, ready to be add into new context. 12774 */ 12775 group_leader->pmu_ctx = pmu_ctx; 12776 get_pmu_ctx(pmu_ctx); 12777 perf_event__state_init(group_leader); 12778 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12779 } 12780 12781 /* 12782 * Precalculate sample_data sizes; do while holding ctx::mutex such 12783 * that we're serialized against further additions and before 12784 * perf_install_in_context() which is the point the event is active and 12785 * can use these values. 12786 */ 12787 perf_event__header_size(event); 12788 perf_event__id_header_size(event); 12789 12790 event->owner = current; 12791 12792 perf_install_in_context(ctx, event, event->cpu); 12793 perf_unpin_context(ctx); 12794 12795 mutex_unlock(&ctx->mutex); 12796 12797 if (task) { 12798 up_read(&task->signal->exec_update_lock); 12799 put_task_struct(task); 12800 } 12801 12802 mutex_lock(¤t->perf_event_mutex); 12803 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12804 mutex_unlock(¤t->perf_event_mutex); 12805 12806 /* 12807 * Drop the reference on the group_event after placing the 12808 * new event on the sibling_list. This ensures destruction 12809 * of the group leader will find the pointer to itself in 12810 * perf_group_detach(). 12811 */ 12812 fdput(group); 12813 fd_install(event_fd, event_file); 12814 return event_fd; 12815 12816 err_context: 12817 put_pmu_ctx(event->pmu_ctx); 12818 event->pmu_ctx = NULL; /* _free_event() */ 12819 err_locked: 12820 mutex_unlock(&ctx->mutex); 12821 perf_unpin_context(ctx); 12822 put_ctx(ctx); 12823 err_cred: 12824 if (task) 12825 up_read(&task->signal->exec_update_lock); 12826 err_alloc: 12827 free_event(event); 12828 err_task: 12829 if (task) 12830 put_task_struct(task); 12831 err_group_fd: 12832 fdput(group); 12833 err_fd: 12834 put_unused_fd(event_fd); 12835 return err; 12836 } 12837 12838 /** 12839 * perf_event_create_kernel_counter 12840 * 12841 * @attr: attributes of the counter to create 12842 * @cpu: cpu in which the counter is bound 12843 * @task: task to profile (NULL for percpu) 12844 * @overflow_handler: callback to trigger when we hit the event 12845 * @context: context data could be used in overflow_handler callback 12846 */ 12847 struct perf_event * 12848 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12849 struct task_struct *task, 12850 perf_overflow_handler_t overflow_handler, 12851 void *context) 12852 { 12853 struct perf_event_pmu_context *pmu_ctx; 12854 struct perf_event_context *ctx; 12855 struct perf_event *event; 12856 struct pmu *pmu; 12857 int err; 12858 12859 /* 12860 * Grouping is not supported for kernel events, neither is 'AUX', 12861 * make sure the caller's intentions are adjusted. 12862 */ 12863 if (attr->aux_output) 12864 return ERR_PTR(-EINVAL); 12865 12866 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12867 overflow_handler, context, -1); 12868 if (IS_ERR(event)) { 12869 err = PTR_ERR(event); 12870 goto err; 12871 } 12872 12873 /* Mark owner so we could distinguish it from user events. */ 12874 event->owner = TASK_TOMBSTONE; 12875 pmu = event->pmu; 12876 12877 if (pmu->task_ctx_nr == perf_sw_context) 12878 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12879 12880 /* 12881 * Get the target context (task or percpu): 12882 */ 12883 ctx = find_get_context(task, event); 12884 if (IS_ERR(ctx)) { 12885 err = PTR_ERR(ctx); 12886 goto err_alloc; 12887 } 12888 12889 WARN_ON_ONCE(ctx->parent_ctx); 12890 mutex_lock(&ctx->mutex); 12891 if (ctx->task == TASK_TOMBSTONE) { 12892 err = -ESRCH; 12893 goto err_unlock; 12894 } 12895 12896 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12897 if (IS_ERR(pmu_ctx)) { 12898 err = PTR_ERR(pmu_ctx); 12899 goto err_unlock; 12900 } 12901 event->pmu_ctx = pmu_ctx; 12902 12903 if (!task) { 12904 /* 12905 * Check if the @cpu we're creating an event for is online. 12906 * 12907 * We use the perf_cpu_context::ctx::mutex to serialize against 12908 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12909 */ 12910 struct perf_cpu_context *cpuctx = 12911 container_of(ctx, struct perf_cpu_context, ctx); 12912 if (!cpuctx->online) { 12913 err = -ENODEV; 12914 goto err_pmu_ctx; 12915 } 12916 } 12917 12918 if (!exclusive_event_installable(event, ctx)) { 12919 err = -EBUSY; 12920 goto err_pmu_ctx; 12921 } 12922 12923 perf_install_in_context(ctx, event, event->cpu); 12924 perf_unpin_context(ctx); 12925 mutex_unlock(&ctx->mutex); 12926 12927 return event; 12928 12929 err_pmu_ctx: 12930 put_pmu_ctx(pmu_ctx); 12931 event->pmu_ctx = NULL; /* _free_event() */ 12932 err_unlock: 12933 mutex_unlock(&ctx->mutex); 12934 perf_unpin_context(ctx); 12935 put_ctx(ctx); 12936 err_alloc: 12937 free_event(event); 12938 err: 12939 return ERR_PTR(err); 12940 } 12941 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12942 12943 static void __perf_pmu_remove(struct perf_event_context *ctx, 12944 int cpu, struct pmu *pmu, 12945 struct perf_event_groups *groups, 12946 struct list_head *events) 12947 { 12948 struct perf_event *event, *sibling; 12949 12950 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12951 perf_remove_from_context(event, 0); 12952 put_pmu_ctx(event->pmu_ctx); 12953 list_add(&event->migrate_entry, events); 12954 12955 for_each_sibling_event(sibling, event) { 12956 perf_remove_from_context(sibling, 0); 12957 put_pmu_ctx(sibling->pmu_ctx); 12958 list_add(&sibling->migrate_entry, events); 12959 } 12960 } 12961 } 12962 12963 static void __perf_pmu_install_event(struct pmu *pmu, 12964 struct perf_event_context *ctx, 12965 int cpu, struct perf_event *event) 12966 { 12967 struct perf_event_pmu_context *epc; 12968 struct perf_event_context *old_ctx = event->ctx; 12969 12970 get_ctx(ctx); /* normally find_get_context() */ 12971 12972 event->cpu = cpu; 12973 epc = find_get_pmu_context(pmu, ctx, event); 12974 event->pmu_ctx = epc; 12975 12976 if (event->state >= PERF_EVENT_STATE_OFF) 12977 event->state = PERF_EVENT_STATE_INACTIVE; 12978 perf_install_in_context(ctx, event, cpu); 12979 12980 /* 12981 * Now that event->ctx is updated and visible, put the old ctx. 12982 */ 12983 put_ctx(old_ctx); 12984 } 12985 12986 static void __perf_pmu_install(struct perf_event_context *ctx, 12987 int cpu, struct pmu *pmu, struct list_head *events) 12988 { 12989 struct perf_event *event, *tmp; 12990 12991 /* 12992 * Re-instate events in 2 passes. 12993 * 12994 * Skip over group leaders and only install siblings on this first 12995 * pass, siblings will not get enabled without a leader, however a 12996 * leader will enable its siblings, even if those are still on the old 12997 * context. 12998 */ 12999 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13000 if (event->group_leader == event) 13001 continue; 13002 13003 list_del(&event->migrate_entry); 13004 __perf_pmu_install_event(pmu, ctx, cpu, event); 13005 } 13006 13007 /* 13008 * Once all the siblings are setup properly, install the group leaders 13009 * to make it go. 13010 */ 13011 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13012 list_del(&event->migrate_entry); 13013 __perf_pmu_install_event(pmu, ctx, cpu, event); 13014 } 13015 } 13016 13017 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13018 { 13019 struct perf_event_context *src_ctx, *dst_ctx; 13020 LIST_HEAD(events); 13021 13022 /* 13023 * Since per-cpu context is persistent, no need to grab an extra 13024 * reference. 13025 */ 13026 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13027 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13028 13029 /* 13030 * See perf_event_ctx_lock() for comments on the details 13031 * of swizzling perf_event::ctx. 13032 */ 13033 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13034 13035 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13036 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13037 13038 if (!list_empty(&events)) { 13039 /* 13040 * Wait for the events to quiesce before re-instating them. 13041 */ 13042 synchronize_rcu(); 13043 13044 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13045 } 13046 13047 mutex_unlock(&dst_ctx->mutex); 13048 mutex_unlock(&src_ctx->mutex); 13049 } 13050 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13051 13052 static void sync_child_event(struct perf_event *child_event) 13053 { 13054 struct perf_event *parent_event = child_event->parent; 13055 u64 child_val; 13056 13057 if (child_event->attr.inherit_stat) { 13058 struct task_struct *task = child_event->ctx->task; 13059 13060 if (task && task != TASK_TOMBSTONE) 13061 perf_event_read_event(child_event, task); 13062 } 13063 13064 child_val = perf_event_count(child_event); 13065 13066 /* 13067 * Add back the child's count to the parent's count: 13068 */ 13069 atomic64_add(child_val, &parent_event->child_count); 13070 atomic64_add(child_event->total_time_enabled, 13071 &parent_event->child_total_time_enabled); 13072 atomic64_add(child_event->total_time_running, 13073 &parent_event->child_total_time_running); 13074 } 13075 13076 static void 13077 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13078 { 13079 struct perf_event *parent_event = event->parent; 13080 unsigned long detach_flags = 0; 13081 13082 if (parent_event) { 13083 /* 13084 * Do not destroy the 'original' grouping; because of the 13085 * context switch optimization the original events could've 13086 * ended up in a random child task. 13087 * 13088 * If we were to destroy the original group, all group related 13089 * operations would cease to function properly after this 13090 * random child dies. 13091 * 13092 * Do destroy all inherited groups, we don't care about those 13093 * and being thorough is better. 13094 */ 13095 detach_flags = DETACH_GROUP | DETACH_CHILD; 13096 mutex_lock(&parent_event->child_mutex); 13097 } 13098 13099 perf_remove_from_context(event, detach_flags); 13100 13101 raw_spin_lock_irq(&ctx->lock); 13102 if (event->state > PERF_EVENT_STATE_EXIT) 13103 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13104 raw_spin_unlock_irq(&ctx->lock); 13105 13106 /* 13107 * Child events can be freed. 13108 */ 13109 if (parent_event) { 13110 mutex_unlock(&parent_event->child_mutex); 13111 /* 13112 * Kick perf_poll() for is_event_hup(); 13113 */ 13114 perf_event_wakeup(parent_event); 13115 free_event(event); 13116 put_event(parent_event); 13117 return; 13118 } 13119 13120 /* 13121 * Parent events are governed by their filedesc, retain them. 13122 */ 13123 perf_event_wakeup(event); 13124 } 13125 13126 static void perf_event_exit_task_context(struct task_struct *child) 13127 { 13128 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13129 struct perf_event *child_event, *next; 13130 13131 WARN_ON_ONCE(child != current); 13132 13133 child_ctx = perf_pin_task_context(child); 13134 if (!child_ctx) 13135 return; 13136 13137 /* 13138 * In order to reduce the amount of tricky in ctx tear-down, we hold 13139 * ctx::mutex over the entire thing. This serializes against almost 13140 * everything that wants to access the ctx. 13141 * 13142 * The exception is sys_perf_event_open() / 13143 * perf_event_create_kernel_count() which does find_get_context() 13144 * without ctx::mutex (it cannot because of the move_group double mutex 13145 * lock thing). See the comments in perf_install_in_context(). 13146 */ 13147 mutex_lock(&child_ctx->mutex); 13148 13149 /* 13150 * In a single ctx::lock section, de-schedule the events and detach the 13151 * context from the task such that we cannot ever get it scheduled back 13152 * in. 13153 */ 13154 raw_spin_lock_irq(&child_ctx->lock); 13155 task_ctx_sched_out(child_ctx, EVENT_ALL); 13156 13157 /* 13158 * Now that the context is inactive, destroy the task <-> ctx relation 13159 * and mark the context dead. 13160 */ 13161 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13162 put_ctx(child_ctx); /* cannot be last */ 13163 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13164 put_task_struct(current); /* cannot be last */ 13165 13166 clone_ctx = unclone_ctx(child_ctx); 13167 raw_spin_unlock_irq(&child_ctx->lock); 13168 13169 if (clone_ctx) 13170 put_ctx(clone_ctx); 13171 13172 /* 13173 * Report the task dead after unscheduling the events so that we 13174 * won't get any samples after PERF_RECORD_EXIT. We can however still 13175 * get a few PERF_RECORD_READ events. 13176 */ 13177 perf_event_task(child, child_ctx, 0); 13178 13179 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13180 perf_event_exit_event(child_event, child_ctx); 13181 13182 mutex_unlock(&child_ctx->mutex); 13183 13184 put_ctx(child_ctx); 13185 } 13186 13187 /* 13188 * When a child task exits, feed back event values to parent events. 13189 * 13190 * Can be called with exec_update_lock held when called from 13191 * setup_new_exec(). 13192 */ 13193 void perf_event_exit_task(struct task_struct *child) 13194 { 13195 struct perf_event *event, *tmp; 13196 13197 mutex_lock(&child->perf_event_mutex); 13198 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13199 owner_entry) { 13200 list_del_init(&event->owner_entry); 13201 13202 /* 13203 * Ensure the list deletion is visible before we clear 13204 * the owner, closes a race against perf_release() where 13205 * we need to serialize on the owner->perf_event_mutex. 13206 */ 13207 smp_store_release(&event->owner, NULL); 13208 } 13209 mutex_unlock(&child->perf_event_mutex); 13210 13211 perf_event_exit_task_context(child); 13212 13213 /* 13214 * The perf_event_exit_task_context calls perf_event_task 13215 * with child's task_ctx, which generates EXIT events for 13216 * child contexts and sets child->perf_event_ctxp[] to NULL. 13217 * At this point we need to send EXIT events to cpu contexts. 13218 */ 13219 perf_event_task(child, NULL, 0); 13220 } 13221 13222 static void perf_free_event(struct perf_event *event, 13223 struct perf_event_context *ctx) 13224 { 13225 struct perf_event *parent = event->parent; 13226 13227 if (WARN_ON_ONCE(!parent)) 13228 return; 13229 13230 mutex_lock(&parent->child_mutex); 13231 list_del_init(&event->child_list); 13232 mutex_unlock(&parent->child_mutex); 13233 13234 put_event(parent); 13235 13236 raw_spin_lock_irq(&ctx->lock); 13237 perf_group_detach(event); 13238 list_del_event(event, ctx); 13239 raw_spin_unlock_irq(&ctx->lock); 13240 free_event(event); 13241 } 13242 13243 /* 13244 * Free a context as created by inheritance by perf_event_init_task() below, 13245 * used by fork() in case of fail. 13246 * 13247 * Even though the task has never lived, the context and events have been 13248 * exposed through the child_list, so we must take care tearing it all down. 13249 */ 13250 void perf_event_free_task(struct task_struct *task) 13251 { 13252 struct perf_event_context *ctx; 13253 struct perf_event *event, *tmp; 13254 13255 ctx = rcu_access_pointer(task->perf_event_ctxp); 13256 if (!ctx) 13257 return; 13258 13259 mutex_lock(&ctx->mutex); 13260 raw_spin_lock_irq(&ctx->lock); 13261 /* 13262 * Destroy the task <-> ctx relation and mark the context dead. 13263 * 13264 * This is important because even though the task hasn't been 13265 * exposed yet the context has been (through child_list). 13266 */ 13267 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13268 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13269 put_task_struct(task); /* cannot be last */ 13270 raw_spin_unlock_irq(&ctx->lock); 13271 13272 13273 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13274 perf_free_event(event, ctx); 13275 13276 mutex_unlock(&ctx->mutex); 13277 13278 /* 13279 * perf_event_release_kernel() could've stolen some of our 13280 * child events and still have them on its free_list. In that 13281 * case we must wait for these events to have been freed (in 13282 * particular all their references to this task must've been 13283 * dropped). 13284 * 13285 * Without this copy_process() will unconditionally free this 13286 * task (irrespective of its reference count) and 13287 * _free_event()'s put_task_struct(event->hw.target) will be a 13288 * use-after-free. 13289 * 13290 * Wait for all events to drop their context reference. 13291 */ 13292 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13293 put_ctx(ctx); /* must be last */ 13294 } 13295 13296 void perf_event_delayed_put(struct task_struct *task) 13297 { 13298 WARN_ON_ONCE(task->perf_event_ctxp); 13299 } 13300 13301 struct file *perf_event_get(unsigned int fd) 13302 { 13303 struct file *file = fget(fd); 13304 if (!file) 13305 return ERR_PTR(-EBADF); 13306 13307 if (file->f_op != &perf_fops) { 13308 fput(file); 13309 return ERR_PTR(-EBADF); 13310 } 13311 13312 return file; 13313 } 13314 13315 const struct perf_event *perf_get_event(struct file *file) 13316 { 13317 if (file->f_op != &perf_fops) 13318 return ERR_PTR(-EINVAL); 13319 13320 return file->private_data; 13321 } 13322 13323 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13324 { 13325 if (!event) 13326 return ERR_PTR(-EINVAL); 13327 13328 return &event->attr; 13329 } 13330 13331 /* 13332 * Inherit an event from parent task to child task. 13333 * 13334 * Returns: 13335 * - valid pointer on success 13336 * - NULL for orphaned events 13337 * - IS_ERR() on error 13338 */ 13339 static struct perf_event * 13340 inherit_event(struct perf_event *parent_event, 13341 struct task_struct *parent, 13342 struct perf_event_context *parent_ctx, 13343 struct task_struct *child, 13344 struct perf_event *group_leader, 13345 struct perf_event_context *child_ctx) 13346 { 13347 enum perf_event_state parent_state = parent_event->state; 13348 struct perf_event_pmu_context *pmu_ctx; 13349 struct perf_event *child_event; 13350 unsigned long flags; 13351 13352 /* 13353 * Instead of creating recursive hierarchies of events, 13354 * we link inherited events back to the original parent, 13355 * which has a filp for sure, which we use as the reference 13356 * count: 13357 */ 13358 if (parent_event->parent) 13359 parent_event = parent_event->parent; 13360 13361 child_event = perf_event_alloc(&parent_event->attr, 13362 parent_event->cpu, 13363 child, 13364 group_leader, parent_event, 13365 NULL, NULL, -1); 13366 if (IS_ERR(child_event)) 13367 return child_event; 13368 13369 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13370 if (IS_ERR(pmu_ctx)) { 13371 free_event(child_event); 13372 return ERR_CAST(pmu_ctx); 13373 } 13374 child_event->pmu_ctx = pmu_ctx; 13375 13376 /* 13377 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13378 * must be under the same lock in order to serialize against 13379 * perf_event_release_kernel(), such that either we must observe 13380 * is_orphaned_event() or they will observe us on the child_list. 13381 */ 13382 mutex_lock(&parent_event->child_mutex); 13383 if (is_orphaned_event(parent_event) || 13384 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13385 mutex_unlock(&parent_event->child_mutex); 13386 /* task_ctx_data is freed with child_ctx */ 13387 free_event(child_event); 13388 return NULL; 13389 } 13390 13391 get_ctx(child_ctx); 13392 13393 /* 13394 * Make the child state follow the state of the parent event, 13395 * not its attr.disabled bit. We hold the parent's mutex, 13396 * so we won't race with perf_event_{en, dis}able_family. 13397 */ 13398 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13399 child_event->state = PERF_EVENT_STATE_INACTIVE; 13400 else 13401 child_event->state = PERF_EVENT_STATE_OFF; 13402 13403 if (parent_event->attr.freq) { 13404 u64 sample_period = parent_event->hw.sample_period; 13405 struct hw_perf_event *hwc = &child_event->hw; 13406 13407 hwc->sample_period = sample_period; 13408 hwc->last_period = sample_period; 13409 13410 local64_set(&hwc->period_left, sample_period); 13411 } 13412 13413 child_event->ctx = child_ctx; 13414 child_event->overflow_handler = parent_event->overflow_handler; 13415 child_event->overflow_handler_context 13416 = parent_event->overflow_handler_context; 13417 13418 /* 13419 * Precalculate sample_data sizes 13420 */ 13421 perf_event__header_size(child_event); 13422 perf_event__id_header_size(child_event); 13423 13424 /* 13425 * Link it up in the child's context: 13426 */ 13427 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13428 add_event_to_ctx(child_event, child_ctx); 13429 child_event->attach_state |= PERF_ATTACH_CHILD; 13430 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13431 13432 /* 13433 * Link this into the parent event's child list 13434 */ 13435 list_add_tail(&child_event->child_list, &parent_event->child_list); 13436 mutex_unlock(&parent_event->child_mutex); 13437 13438 return child_event; 13439 } 13440 13441 /* 13442 * Inherits an event group. 13443 * 13444 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13445 * This matches with perf_event_release_kernel() removing all child events. 13446 * 13447 * Returns: 13448 * - 0 on success 13449 * - <0 on error 13450 */ 13451 static int inherit_group(struct perf_event *parent_event, 13452 struct task_struct *parent, 13453 struct perf_event_context *parent_ctx, 13454 struct task_struct *child, 13455 struct perf_event_context *child_ctx) 13456 { 13457 struct perf_event *leader; 13458 struct perf_event *sub; 13459 struct perf_event *child_ctr; 13460 13461 leader = inherit_event(parent_event, parent, parent_ctx, 13462 child, NULL, child_ctx); 13463 if (IS_ERR(leader)) 13464 return PTR_ERR(leader); 13465 /* 13466 * @leader can be NULL here because of is_orphaned_event(). In this 13467 * case inherit_event() will create individual events, similar to what 13468 * perf_group_detach() would do anyway. 13469 */ 13470 for_each_sibling_event(sub, parent_event) { 13471 child_ctr = inherit_event(sub, parent, parent_ctx, 13472 child, leader, child_ctx); 13473 if (IS_ERR(child_ctr)) 13474 return PTR_ERR(child_ctr); 13475 13476 if (sub->aux_event == parent_event && child_ctr && 13477 !perf_get_aux_event(child_ctr, leader)) 13478 return -EINVAL; 13479 } 13480 if (leader) 13481 leader->group_generation = parent_event->group_generation; 13482 return 0; 13483 } 13484 13485 /* 13486 * Creates the child task context and tries to inherit the event-group. 13487 * 13488 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13489 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13490 * consistent with perf_event_release_kernel() removing all child events. 13491 * 13492 * Returns: 13493 * - 0 on success 13494 * - <0 on error 13495 */ 13496 static int 13497 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13498 struct perf_event_context *parent_ctx, 13499 struct task_struct *child, 13500 u64 clone_flags, int *inherited_all) 13501 { 13502 struct perf_event_context *child_ctx; 13503 int ret; 13504 13505 if (!event->attr.inherit || 13506 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13507 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13508 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13509 *inherited_all = 0; 13510 return 0; 13511 } 13512 13513 child_ctx = child->perf_event_ctxp; 13514 if (!child_ctx) { 13515 /* 13516 * This is executed from the parent task context, so 13517 * inherit events that have been marked for cloning. 13518 * First allocate and initialize a context for the 13519 * child. 13520 */ 13521 child_ctx = alloc_perf_context(child); 13522 if (!child_ctx) 13523 return -ENOMEM; 13524 13525 child->perf_event_ctxp = child_ctx; 13526 } 13527 13528 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13529 if (ret) 13530 *inherited_all = 0; 13531 13532 return ret; 13533 } 13534 13535 /* 13536 * Initialize the perf_event context in task_struct 13537 */ 13538 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13539 { 13540 struct perf_event_context *child_ctx, *parent_ctx; 13541 struct perf_event_context *cloned_ctx; 13542 struct perf_event *event; 13543 struct task_struct *parent = current; 13544 int inherited_all = 1; 13545 unsigned long flags; 13546 int ret = 0; 13547 13548 if (likely(!parent->perf_event_ctxp)) 13549 return 0; 13550 13551 /* 13552 * If the parent's context is a clone, pin it so it won't get 13553 * swapped under us. 13554 */ 13555 parent_ctx = perf_pin_task_context(parent); 13556 if (!parent_ctx) 13557 return 0; 13558 13559 /* 13560 * No need to check if parent_ctx != NULL here; since we saw 13561 * it non-NULL earlier, the only reason for it to become NULL 13562 * is if we exit, and since we're currently in the middle of 13563 * a fork we can't be exiting at the same time. 13564 */ 13565 13566 /* 13567 * Lock the parent list. No need to lock the child - not PID 13568 * hashed yet and not running, so nobody can access it. 13569 */ 13570 mutex_lock(&parent_ctx->mutex); 13571 13572 /* 13573 * We dont have to disable NMIs - we are only looking at 13574 * the list, not manipulating it: 13575 */ 13576 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13577 ret = inherit_task_group(event, parent, parent_ctx, 13578 child, clone_flags, &inherited_all); 13579 if (ret) 13580 goto out_unlock; 13581 } 13582 13583 /* 13584 * We can't hold ctx->lock when iterating the ->flexible_group list due 13585 * to allocations, but we need to prevent rotation because 13586 * rotate_ctx() will change the list from interrupt context. 13587 */ 13588 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13589 parent_ctx->rotate_disable = 1; 13590 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13591 13592 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13593 ret = inherit_task_group(event, parent, parent_ctx, 13594 child, clone_flags, &inherited_all); 13595 if (ret) 13596 goto out_unlock; 13597 } 13598 13599 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13600 parent_ctx->rotate_disable = 0; 13601 13602 child_ctx = child->perf_event_ctxp; 13603 13604 if (child_ctx && inherited_all) { 13605 /* 13606 * Mark the child context as a clone of the parent 13607 * context, or of whatever the parent is a clone of. 13608 * 13609 * Note that if the parent is a clone, the holding of 13610 * parent_ctx->lock avoids it from being uncloned. 13611 */ 13612 cloned_ctx = parent_ctx->parent_ctx; 13613 if (cloned_ctx) { 13614 child_ctx->parent_ctx = cloned_ctx; 13615 child_ctx->parent_gen = parent_ctx->parent_gen; 13616 } else { 13617 child_ctx->parent_ctx = parent_ctx; 13618 child_ctx->parent_gen = parent_ctx->generation; 13619 } 13620 get_ctx(child_ctx->parent_ctx); 13621 } 13622 13623 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13624 out_unlock: 13625 mutex_unlock(&parent_ctx->mutex); 13626 13627 perf_unpin_context(parent_ctx); 13628 put_ctx(parent_ctx); 13629 13630 return ret; 13631 } 13632 13633 /* 13634 * Initialize the perf_event context in task_struct 13635 */ 13636 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13637 { 13638 int ret; 13639 13640 child->perf_event_ctxp = NULL; 13641 mutex_init(&child->perf_event_mutex); 13642 INIT_LIST_HEAD(&child->perf_event_list); 13643 13644 ret = perf_event_init_context(child, clone_flags); 13645 if (ret) { 13646 perf_event_free_task(child); 13647 return ret; 13648 } 13649 13650 return 0; 13651 } 13652 13653 static void __init perf_event_init_all_cpus(void) 13654 { 13655 struct swevent_htable *swhash; 13656 struct perf_cpu_context *cpuctx; 13657 int cpu; 13658 13659 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13660 13661 for_each_possible_cpu(cpu) { 13662 swhash = &per_cpu(swevent_htable, cpu); 13663 mutex_init(&swhash->hlist_mutex); 13664 13665 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13666 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13667 13668 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13669 13670 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13671 __perf_event_init_context(&cpuctx->ctx); 13672 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13673 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13674 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13675 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13676 cpuctx->heap = cpuctx->heap_default; 13677 } 13678 } 13679 13680 static void perf_swevent_init_cpu(unsigned int cpu) 13681 { 13682 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13683 13684 mutex_lock(&swhash->hlist_mutex); 13685 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13686 struct swevent_hlist *hlist; 13687 13688 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13689 WARN_ON(!hlist); 13690 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13691 } 13692 mutex_unlock(&swhash->hlist_mutex); 13693 } 13694 13695 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13696 static void __perf_event_exit_context(void *__info) 13697 { 13698 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13699 struct perf_event_context *ctx = __info; 13700 struct perf_event *event; 13701 13702 raw_spin_lock(&ctx->lock); 13703 ctx_sched_out(ctx, EVENT_TIME); 13704 list_for_each_entry(event, &ctx->event_list, event_entry) 13705 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13706 raw_spin_unlock(&ctx->lock); 13707 } 13708 13709 static void perf_event_exit_cpu_context(int cpu) 13710 { 13711 struct perf_cpu_context *cpuctx; 13712 struct perf_event_context *ctx; 13713 13714 // XXX simplify cpuctx->online 13715 mutex_lock(&pmus_lock); 13716 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13717 ctx = &cpuctx->ctx; 13718 13719 mutex_lock(&ctx->mutex); 13720 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13721 cpuctx->online = 0; 13722 mutex_unlock(&ctx->mutex); 13723 cpumask_clear_cpu(cpu, perf_online_mask); 13724 mutex_unlock(&pmus_lock); 13725 } 13726 #else 13727 13728 static void perf_event_exit_cpu_context(int cpu) { } 13729 13730 #endif 13731 13732 int perf_event_init_cpu(unsigned int cpu) 13733 { 13734 struct perf_cpu_context *cpuctx; 13735 struct perf_event_context *ctx; 13736 13737 perf_swevent_init_cpu(cpu); 13738 13739 mutex_lock(&pmus_lock); 13740 cpumask_set_cpu(cpu, perf_online_mask); 13741 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13742 ctx = &cpuctx->ctx; 13743 13744 mutex_lock(&ctx->mutex); 13745 cpuctx->online = 1; 13746 mutex_unlock(&ctx->mutex); 13747 mutex_unlock(&pmus_lock); 13748 13749 return 0; 13750 } 13751 13752 int perf_event_exit_cpu(unsigned int cpu) 13753 { 13754 perf_event_exit_cpu_context(cpu); 13755 return 0; 13756 } 13757 13758 static int 13759 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13760 { 13761 int cpu; 13762 13763 for_each_online_cpu(cpu) 13764 perf_event_exit_cpu(cpu); 13765 13766 return NOTIFY_OK; 13767 } 13768 13769 /* 13770 * Run the perf reboot notifier at the very last possible moment so that 13771 * the generic watchdog code runs as long as possible. 13772 */ 13773 static struct notifier_block perf_reboot_notifier = { 13774 .notifier_call = perf_reboot, 13775 .priority = INT_MIN, 13776 }; 13777 13778 void __init perf_event_init(void) 13779 { 13780 int ret; 13781 13782 idr_init(&pmu_idr); 13783 13784 perf_event_init_all_cpus(); 13785 init_srcu_struct(&pmus_srcu); 13786 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13787 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13788 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13789 perf_tp_register(); 13790 perf_event_init_cpu(smp_processor_id()); 13791 register_reboot_notifier(&perf_reboot_notifier); 13792 13793 ret = init_hw_breakpoint(); 13794 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13795 13796 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13797 13798 /* 13799 * Build time assertion that we keep the data_head at the intended 13800 * location. IOW, validation we got the __reserved[] size right. 13801 */ 13802 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13803 != 1024); 13804 } 13805 13806 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13807 char *page) 13808 { 13809 struct perf_pmu_events_attr *pmu_attr = 13810 container_of(attr, struct perf_pmu_events_attr, attr); 13811 13812 if (pmu_attr->event_str) 13813 return sprintf(page, "%s\n", pmu_attr->event_str); 13814 13815 return 0; 13816 } 13817 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13818 13819 static int __init perf_event_sysfs_init(void) 13820 { 13821 struct pmu *pmu; 13822 int ret; 13823 13824 mutex_lock(&pmus_lock); 13825 13826 ret = bus_register(&pmu_bus); 13827 if (ret) 13828 goto unlock; 13829 13830 list_for_each_entry(pmu, &pmus, entry) { 13831 if (pmu->dev) 13832 continue; 13833 13834 ret = pmu_dev_alloc(pmu); 13835 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13836 } 13837 pmu_bus_running = 1; 13838 ret = 0; 13839 13840 unlock: 13841 mutex_unlock(&pmus_lock); 13842 13843 return ret; 13844 } 13845 device_initcall(perf_event_sysfs_init); 13846 13847 #ifdef CONFIG_CGROUP_PERF 13848 static struct cgroup_subsys_state * 13849 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13850 { 13851 struct perf_cgroup *jc; 13852 13853 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13854 if (!jc) 13855 return ERR_PTR(-ENOMEM); 13856 13857 jc->info = alloc_percpu(struct perf_cgroup_info); 13858 if (!jc->info) { 13859 kfree(jc); 13860 return ERR_PTR(-ENOMEM); 13861 } 13862 13863 return &jc->css; 13864 } 13865 13866 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13867 { 13868 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13869 13870 free_percpu(jc->info); 13871 kfree(jc); 13872 } 13873 13874 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13875 { 13876 perf_event_cgroup(css->cgroup); 13877 return 0; 13878 } 13879 13880 static int __perf_cgroup_move(void *info) 13881 { 13882 struct task_struct *task = info; 13883 13884 preempt_disable(); 13885 perf_cgroup_switch(task); 13886 preempt_enable(); 13887 13888 return 0; 13889 } 13890 13891 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13892 { 13893 struct task_struct *task; 13894 struct cgroup_subsys_state *css; 13895 13896 cgroup_taskset_for_each(task, css, tset) 13897 task_function_call(task, __perf_cgroup_move, task); 13898 } 13899 13900 struct cgroup_subsys perf_event_cgrp_subsys = { 13901 .css_alloc = perf_cgroup_css_alloc, 13902 .css_free = perf_cgroup_css_free, 13903 .css_online = perf_cgroup_css_online, 13904 .attach = perf_cgroup_attach, 13905 /* 13906 * Implicitly enable on dfl hierarchy so that perf events can 13907 * always be filtered by cgroup2 path as long as perf_event 13908 * controller is not mounted on a legacy hierarchy. 13909 */ 13910 .implicit_on_dfl = true, 13911 .threaded = true, 13912 }; 13913 #endif /* CONFIG_CGROUP_PERF */ 13914 13915 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13916