1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 #include <linux/percpu-rwsem.h> 59 60 #include "internal.h" 61 62 #include <asm/irq_regs.h> 63 64 typedef int (*remote_function_f)(void *); 65 66 struct remote_function_call { 67 struct task_struct *p; 68 remote_function_f func; 69 void *info; 70 int ret; 71 }; 72 73 static void remote_function(void *data) 74 { 75 struct remote_function_call *tfc = data; 76 struct task_struct *p = tfc->p; 77 78 if (p) { 79 /* -EAGAIN */ 80 if (task_cpu(p) != smp_processor_id()) 81 return; 82 83 /* 84 * Now that we're on right CPU with IRQs disabled, we can test 85 * if we hit the right task without races. 86 */ 87 88 tfc->ret = -ESRCH; /* No such (running) process */ 89 if (p != current) 90 return; 91 } 92 93 tfc->ret = tfc->func(tfc->info); 94 } 95 96 /** 97 * task_function_call - call a function on the cpu on which a task runs 98 * @p: the task to evaluate 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func when the task is currently running. This might 103 * be on the current CPU, which just calls the function directly. This will 104 * retry due to any failures in smp_call_function_single(), such as if the 105 * task_cpu() goes offline concurrently. 106 * 107 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 108 */ 109 static int 110 task_function_call(struct task_struct *p, remote_function_f func, void *info) 111 { 112 struct remote_function_call data = { 113 .p = p, 114 .func = func, 115 .info = info, 116 .ret = -EAGAIN, 117 }; 118 int ret; 119 120 for (;;) { 121 ret = smp_call_function_single(task_cpu(p), remote_function, 122 &data, 1); 123 if (!ret) 124 ret = data.ret; 125 126 if (ret != -EAGAIN) 127 break; 128 129 cond_resched(); 130 } 131 132 return ret; 133 } 134 135 /** 136 * cpu_function_call - call a function on the cpu 137 * @cpu: target cpu to queue this function 138 * @func: the function to be called 139 * @info: the function call argument 140 * 141 * Calls the function @func on the remote cpu. 142 * 143 * returns: @func return value or -ENXIO when the cpu is offline 144 */ 145 static int cpu_function_call(int cpu, remote_function_f func, void *info) 146 { 147 struct remote_function_call data = { 148 .p = NULL, 149 .func = func, 150 .info = info, 151 .ret = -ENXIO, /* No such CPU */ 152 }; 153 154 smp_call_function_single(cpu, remote_function, &data, 1); 155 156 return data.ret; 157 } 158 159 enum event_type_t { 160 EVENT_FLEXIBLE = 0x01, 161 EVENT_PINNED = 0x02, 162 EVENT_TIME = 0x04, 163 EVENT_FROZEN = 0x08, 164 /* see ctx_resched() for details */ 165 EVENT_CPU = 0x10, 166 EVENT_CGROUP = 0x20, 167 168 /* compound helpers */ 169 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 170 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 171 }; 172 173 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 174 { 175 raw_spin_lock(&ctx->lock); 176 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 177 } 178 179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 180 struct perf_event_context *ctx) 181 { 182 __perf_ctx_lock(&cpuctx->ctx); 183 if (ctx) 184 __perf_ctx_lock(ctx); 185 } 186 187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 188 { 189 /* 190 * If ctx_sched_in() didn't again set any ALL flags, clean up 191 * after ctx_sched_out() by clearing is_active. 192 */ 193 if (ctx->is_active & EVENT_FROZEN) { 194 if (!(ctx->is_active & EVENT_ALL)) 195 ctx->is_active = 0; 196 else 197 ctx->is_active &= ~EVENT_FROZEN; 198 } 199 raw_spin_unlock(&ctx->lock); 200 } 201 202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 203 struct perf_event_context *ctx) 204 { 205 if (ctx) 206 __perf_ctx_unlock(ctx); 207 __perf_ctx_unlock(&cpuctx->ctx); 208 } 209 210 #define TASK_TOMBSTONE ((void *)-1L) 211 212 static bool is_kernel_event(struct perf_event *event) 213 { 214 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 215 } 216 217 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 218 219 struct perf_event_context *perf_cpu_task_ctx(void) 220 { 221 lockdep_assert_irqs_disabled(); 222 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 223 } 224 225 /* 226 * On task ctx scheduling... 227 * 228 * When !ctx->nr_events a task context will not be scheduled. This means 229 * we can disable the scheduler hooks (for performance) without leaving 230 * pending task ctx state. 231 * 232 * This however results in two special cases: 233 * 234 * - removing the last event from a task ctx; this is relatively straight 235 * forward and is done in __perf_remove_from_context. 236 * 237 * - adding the first event to a task ctx; this is tricky because we cannot 238 * rely on ctx->is_active and therefore cannot use event_function_call(). 239 * See perf_install_in_context(). 240 * 241 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 242 */ 243 244 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 245 struct perf_event_context *, void *); 246 247 struct event_function_struct { 248 struct perf_event *event; 249 event_f func; 250 void *data; 251 }; 252 253 static int event_function(void *info) 254 { 255 struct event_function_struct *efs = info; 256 struct perf_event *event = efs->event; 257 struct perf_event_context *ctx = event->ctx; 258 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 259 struct perf_event_context *task_ctx = cpuctx->task_ctx; 260 int ret = 0; 261 262 lockdep_assert_irqs_disabled(); 263 264 perf_ctx_lock(cpuctx, task_ctx); 265 /* 266 * Since we do the IPI call without holding ctx->lock things can have 267 * changed, double check we hit the task we set out to hit. 268 */ 269 if (ctx->task) { 270 if (ctx->task != current) { 271 ret = -ESRCH; 272 goto unlock; 273 } 274 275 /* 276 * We only use event_function_call() on established contexts, 277 * and event_function() is only ever called when active (or 278 * rather, we'll have bailed in task_function_call() or the 279 * above ctx->task != current test), therefore we must have 280 * ctx->is_active here. 281 */ 282 WARN_ON_ONCE(!ctx->is_active); 283 /* 284 * And since we have ctx->is_active, cpuctx->task_ctx must 285 * match. 286 */ 287 WARN_ON_ONCE(task_ctx != ctx); 288 } else { 289 WARN_ON_ONCE(&cpuctx->ctx != ctx); 290 } 291 292 efs->func(event, cpuctx, ctx, efs->data); 293 unlock: 294 perf_ctx_unlock(cpuctx, task_ctx); 295 296 return ret; 297 } 298 299 static void event_function_call(struct perf_event *event, event_f func, void *data) 300 { 301 struct perf_event_context *ctx = event->ctx; 302 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 303 struct perf_cpu_context *cpuctx; 304 struct event_function_struct efs = { 305 .event = event, 306 .func = func, 307 .data = data, 308 }; 309 310 if (!event->parent) { 311 /* 312 * If this is a !child event, we must hold ctx::mutex to 313 * stabilize the event->ctx relation. See 314 * perf_event_ctx_lock(). 315 */ 316 lockdep_assert_held(&ctx->mutex); 317 } 318 319 if (!task) { 320 cpu_function_call(event->cpu, event_function, &efs); 321 return; 322 } 323 324 if (task == TASK_TOMBSTONE) 325 return; 326 327 again: 328 if (!task_function_call(task, event_function, &efs)) 329 return; 330 331 local_irq_disable(); 332 cpuctx = this_cpu_ptr(&perf_cpu_context); 333 perf_ctx_lock(cpuctx, ctx); 334 /* 335 * Reload the task pointer, it might have been changed by 336 * a concurrent perf_event_context_sched_out(). 337 */ 338 task = ctx->task; 339 if (task == TASK_TOMBSTONE) 340 goto unlock; 341 if (ctx->is_active) { 342 perf_ctx_unlock(cpuctx, ctx); 343 local_irq_enable(); 344 goto again; 345 } 346 func(event, NULL, ctx, data); 347 unlock: 348 perf_ctx_unlock(cpuctx, ctx); 349 local_irq_enable(); 350 } 351 352 /* 353 * Similar to event_function_call() + event_function(), but hard assumes IRQs 354 * are already disabled and we're on the right CPU. 355 */ 356 static void event_function_local(struct perf_event *event, event_f func, void *data) 357 { 358 struct perf_event_context *ctx = event->ctx; 359 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 360 struct task_struct *task = READ_ONCE(ctx->task); 361 struct perf_event_context *task_ctx = NULL; 362 363 lockdep_assert_irqs_disabled(); 364 365 if (task) { 366 if (task == TASK_TOMBSTONE) 367 return; 368 369 task_ctx = ctx; 370 } 371 372 perf_ctx_lock(cpuctx, task_ctx); 373 374 task = ctx->task; 375 if (task == TASK_TOMBSTONE) 376 goto unlock; 377 378 if (task) { 379 /* 380 * We must be either inactive or active and the right task, 381 * otherwise we're screwed, since we cannot IPI to somewhere 382 * else. 383 */ 384 if (ctx->is_active) { 385 if (WARN_ON_ONCE(task != current)) 386 goto unlock; 387 388 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 389 goto unlock; 390 } 391 } else { 392 WARN_ON_ONCE(&cpuctx->ctx != ctx); 393 } 394 395 func(event, cpuctx, ctx, data); 396 unlock: 397 perf_ctx_unlock(cpuctx, task_ctx); 398 } 399 400 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 401 PERF_FLAG_FD_OUTPUT |\ 402 PERF_FLAG_PID_CGROUP |\ 403 PERF_FLAG_FD_CLOEXEC) 404 405 /* 406 * branch priv levels that need permission checks 407 */ 408 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 409 (PERF_SAMPLE_BRANCH_KERNEL |\ 410 PERF_SAMPLE_BRANCH_HV) 411 412 /* 413 * perf_sched_events : >0 events exist 414 */ 415 416 static void perf_sched_delayed(struct work_struct *work); 417 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 418 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 419 static DEFINE_MUTEX(perf_sched_mutex); 420 static atomic_t perf_sched_count; 421 422 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 423 424 static atomic_t nr_mmap_events __read_mostly; 425 static atomic_t nr_comm_events __read_mostly; 426 static atomic_t nr_namespaces_events __read_mostly; 427 static atomic_t nr_task_events __read_mostly; 428 static atomic_t nr_freq_events __read_mostly; 429 static atomic_t nr_switch_events __read_mostly; 430 static atomic_t nr_ksymbol_events __read_mostly; 431 static atomic_t nr_bpf_events __read_mostly; 432 static atomic_t nr_cgroup_events __read_mostly; 433 static atomic_t nr_text_poke_events __read_mostly; 434 static atomic_t nr_build_id_events __read_mostly; 435 436 static LIST_HEAD(pmus); 437 static DEFINE_MUTEX(pmus_lock); 438 static struct srcu_struct pmus_srcu; 439 static cpumask_var_t perf_online_mask; 440 static cpumask_var_t perf_online_core_mask; 441 static cpumask_var_t perf_online_die_mask; 442 static cpumask_var_t perf_online_cluster_mask; 443 static cpumask_var_t perf_online_pkg_mask; 444 static cpumask_var_t perf_online_sys_mask; 445 static struct kmem_cache *perf_event_cache; 446 447 /* 448 * perf event paranoia level: 449 * -1 - not paranoid at all 450 * 0 - disallow raw tracepoint access for unpriv 451 * 1 - disallow cpu events for unpriv 452 * 2 - disallow kernel profiling for unpriv 453 */ 454 int sysctl_perf_event_paranoid __read_mostly = 2; 455 456 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ 457 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); 458 459 /* 460 * max perf event sample rate 461 */ 462 #define DEFAULT_MAX_SAMPLE_RATE 100000 463 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 464 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 465 466 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 467 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 468 469 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 470 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 471 472 static int perf_sample_allowed_ns __read_mostly = 473 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 474 475 static void update_perf_cpu_limits(void) 476 { 477 u64 tmp = perf_sample_period_ns; 478 479 tmp *= sysctl_perf_cpu_time_max_percent; 480 tmp = div_u64(tmp, 100); 481 if (!tmp) 482 tmp = 1; 483 484 WRITE_ONCE(perf_sample_allowed_ns, tmp); 485 } 486 487 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 488 489 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 490 void *buffer, size_t *lenp, loff_t *ppos) 491 { 492 int ret; 493 int perf_cpu = sysctl_perf_cpu_time_max_percent; 494 /* 495 * If throttling is disabled don't allow the write: 496 */ 497 if (write && (perf_cpu == 100 || perf_cpu == 0)) 498 return -EINVAL; 499 500 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 501 if (ret || !write) 502 return ret; 503 504 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 505 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 506 update_perf_cpu_limits(); 507 508 return 0; 509 } 510 511 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 static const struct ctl_table events_core_sysctl_table[] = { 532 /* 533 * User-space relies on this file as a feature check for 534 * perf_events being enabled. It's an ABI, do not remove! 535 */ 536 { 537 .procname = "perf_event_paranoid", 538 .data = &sysctl_perf_event_paranoid, 539 .maxlen = sizeof(sysctl_perf_event_paranoid), 540 .mode = 0644, 541 .proc_handler = proc_dointvec, 542 }, 543 { 544 .procname = "perf_event_mlock_kb", 545 .data = &sysctl_perf_event_mlock, 546 .maxlen = sizeof(sysctl_perf_event_mlock), 547 .mode = 0644, 548 .proc_handler = proc_dointvec, 549 }, 550 { 551 .procname = "perf_event_max_sample_rate", 552 .data = &sysctl_perf_event_sample_rate, 553 .maxlen = sizeof(sysctl_perf_event_sample_rate), 554 .mode = 0644, 555 .proc_handler = perf_event_max_sample_rate_handler, 556 .extra1 = SYSCTL_ONE, 557 }, 558 { 559 .procname = "perf_cpu_time_max_percent", 560 .data = &sysctl_perf_cpu_time_max_percent, 561 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), 562 .mode = 0644, 563 .proc_handler = perf_cpu_time_max_percent_handler, 564 .extra1 = SYSCTL_ZERO, 565 .extra2 = SYSCTL_ONE_HUNDRED, 566 }, 567 }; 568 569 static int __init init_events_core_sysctls(void) 570 { 571 register_sysctl_init("kernel", events_core_sysctl_table); 572 return 0; 573 } 574 core_initcall(init_events_core_sysctls); 575 576 577 /* 578 * perf samples are done in some very critical code paths (NMIs). 579 * If they take too much CPU time, the system can lock up and not 580 * get any real work done. This will drop the sample rate when 581 * we detect that events are taking too long. 582 */ 583 #define NR_ACCUMULATED_SAMPLES 128 584 static DEFINE_PER_CPU(u64, running_sample_length); 585 586 static u64 __report_avg; 587 static u64 __report_allowed; 588 589 static void perf_duration_warn(struct irq_work *w) 590 { 591 printk_ratelimited(KERN_INFO 592 "perf: interrupt took too long (%lld > %lld), lowering " 593 "kernel.perf_event_max_sample_rate to %d\n", 594 __report_avg, __report_allowed, 595 sysctl_perf_event_sample_rate); 596 } 597 598 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 599 600 void perf_sample_event_took(u64 sample_len_ns) 601 { 602 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 603 u64 running_len; 604 u64 avg_len; 605 u32 max; 606 607 if (max_len == 0) 608 return; 609 610 /* Decay the counter by 1 average sample. */ 611 running_len = __this_cpu_read(running_sample_length); 612 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 613 running_len += sample_len_ns; 614 __this_cpu_write(running_sample_length, running_len); 615 616 /* 617 * Note: this will be biased artificially low until we have 618 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 619 * from having to maintain a count. 620 */ 621 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 622 if (avg_len <= max_len) 623 return; 624 625 __report_avg = avg_len; 626 __report_allowed = max_len; 627 628 /* 629 * Compute a throttle threshold 25% below the current duration. 630 */ 631 avg_len += avg_len / 4; 632 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 633 if (avg_len < max) 634 max /= (u32)avg_len; 635 else 636 max = 1; 637 638 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 639 WRITE_ONCE(max_samples_per_tick, max); 640 641 sysctl_perf_event_sample_rate = max * HZ; 642 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 643 644 if (!irq_work_queue(&perf_duration_work)) { 645 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 646 "kernel.perf_event_max_sample_rate to %d\n", 647 __report_avg, __report_allowed, 648 sysctl_perf_event_sample_rate); 649 } 650 } 651 652 static atomic64_t perf_event_id; 653 654 static void update_context_time(struct perf_event_context *ctx); 655 static u64 perf_event_time(struct perf_event *event); 656 657 void __weak perf_event_print_debug(void) { } 658 659 static inline u64 perf_clock(void) 660 { 661 return local_clock(); 662 } 663 664 static inline u64 perf_event_clock(struct perf_event *event) 665 { 666 return event->clock(); 667 } 668 669 /* 670 * State based event timekeeping... 671 * 672 * The basic idea is to use event->state to determine which (if any) time 673 * fields to increment with the current delta. This means we only need to 674 * update timestamps when we change state or when they are explicitly requested 675 * (read). 676 * 677 * Event groups make things a little more complicated, but not terribly so. The 678 * rules for a group are that if the group leader is OFF the entire group is 679 * OFF, irrespective of what the group member states are. This results in 680 * __perf_effective_state(). 681 * 682 * A further ramification is that when a group leader flips between OFF and 683 * !OFF, we need to update all group member times. 684 * 685 * 686 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 687 * need to make sure the relevant context time is updated before we try and 688 * update our timestamps. 689 */ 690 691 static __always_inline enum perf_event_state 692 __perf_effective_state(struct perf_event *event) 693 { 694 struct perf_event *leader = event->group_leader; 695 696 if (leader->state <= PERF_EVENT_STATE_OFF) 697 return leader->state; 698 699 return event->state; 700 } 701 702 static __always_inline void 703 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 704 { 705 enum perf_event_state state = __perf_effective_state(event); 706 u64 delta = now - event->tstamp; 707 708 *enabled = event->total_time_enabled; 709 if (state >= PERF_EVENT_STATE_INACTIVE) 710 *enabled += delta; 711 712 *running = event->total_time_running; 713 if (state >= PERF_EVENT_STATE_ACTIVE) 714 *running += delta; 715 } 716 717 static void perf_event_update_time(struct perf_event *event) 718 { 719 u64 now = perf_event_time(event); 720 721 __perf_update_times(event, now, &event->total_time_enabled, 722 &event->total_time_running); 723 event->tstamp = now; 724 } 725 726 static void perf_event_update_sibling_time(struct perf_event *leader) 727 { 728 struct perf_event *sibling; 729 730 for_each_sibling_event(sibling, leader) 731 perf_event_update_time(sibling); 732 } 733 734 static void 735 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 736 { 737 if (event->state == state) 738 return; 739 740 perf_event_update_time(event); 741 /* 742 * If a group leader gets enabled/disabled all its siblings 743 * are affected too. 744 */ 745 if ((event->state < 0) ^ (state < 0)) 746 perf_event_update_sibling_time(event); 747 748 WRITE_ONCE(event->state, state); 749 } 750 751 /* 752 * UP store-release, load-acquire 753 */ 754 755 #define __store_release(ptr, val) \ 756 do { \ 757 barrier(); \ 758 WRITE_ONCE(*(ptr), (val)); \ 759 } while (0) 760 761 #define __load_acquire(ptr) \ 762 ({ \ 763 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 764 barrier(); \ 765 ___p; \ 766 }) 767 768 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 769 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 770 if (_cgroup && !_epc->nr_cgroups) \ 771 continue; \ 772 else if (_pmu && _epc->pmu != _pmu) \ 773 continue; \ 774 else 775 776 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 777 { 778 struct perf_event_pmu_context *pmu_ctx; 779 780 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 781 perf_pmu_disable(pmu_ctx->pmu); 782 } 783 784 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 785 { 786 struct perf_event_pmu_context *pmu_ctx; 787 788 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 789 perf_pmu_enable(pmu_ctx->pmu); 790 } 791 792 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 793 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 794 795 #ifdef CONFIG_CGROUP_PERF 796 797 static inline bool 798 perf_cgroup_match(struct perf_event *event) 799 { 800 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 801 802 /* @event doesn't care about cgroup */ 803 if (!event->cgrp) 804 return true; 805 806 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 807 if (!cpuctx->cgrp) 808 return false; 809 810 /* 811 * Cgroup scoping is recursive. An event enabled for a cgroup is 812 * also enabled for all its descendant cgroups. If @cpuctx's 813 * cgroup is a descendant of @event's (the test covers identity 814 * case), it's a match. 815 */ 816 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 817 event->cgrp->css.cgroup); 818 } 819 820 static inline void perf_detach_cgroup(struct perf_event *event) 821 { 822 css_put(&event->cgrp->css); 823 event->cgrp = NULL; 824 } 825 826 static inline int is_cgroup_event(struct perf_event *event) 827 { 828 return event->cgrp != NULL; 829 } 830 831 static inline u64 perf_cgroup_event_time(struct perf_event *event) 832 { 833 struct perf_cgroup_info *t; 834 835 t = per_cpu_ptr(event->cgrp->info, event->cpu); 836 return t->time; 837 } 838 839 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 840 { 841 struct perf_cgroup_info *t; 842 843 t = per_cpu_ptr(event->cgrp->info, event->cpu); 844 if (!__load_acquire(&t->active)) 845 return t->time; 846 now += READ_ONCE(t->timeoffset); 847 return now; 848 } 849 850 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 851 { 852 if (adv) 853 info->time += now - info->timestamp; 854 info->timestamp = now; 855 /* 856 * see update_context_time() 857 */ 858 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 859 } 860 861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 862 { 863 struct perf_cgroup *cgrp = cpuctx->cgrp; 864 struct cgroup_subsys_state *css; 865 struct perf_cgroup_info *info; 866 867 if (cgrp) { 868 u64 now = perf_clock(); 869 870 for (css = &cgrp->css; css; css = css->parent) { 871 cgrp = container_of(css, struct perf_cgroup, css); 872 info = this_cpu_ptr(cgrp->info); 873 874 __update_cgrp_time(info, now, true); 875 if (final) 876 __store_release(&info->active, 0); 877 } 878 } 879 } 880 881 static inline void update_cgrp_time_from_event(struct perf_event *event) 882 { 883 struct perf_cgroup_info *info; 884 885 /* 886 * ensure we access cgroup data only when needed and 887 * when we know the cgroup is pinned (css_get) 888 */ 889 if (!is_cgroup_event(event)) 890 return; 891 892 info = this_cpu_ptr(event->cgrp->info); 893 /* 894 * Do not update time when cgroup is not active 895 */ 896 if (info->active) 897 __update_cgrp_time(info, perf_clock(), true); 898 } 899 900 static inline void 901 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 902 { 903 struct perf_event_context *ctx = &cpuctx->ctx; 904 struct perf_cgroup *cgrp = cpuctx->cgrp; 905 struct perf_cgroup_info *info; 906 struct cgroup_subsys_state *css; 907 908 /* 909 * ctx->lock held by caller 910 * ensure we do not access cgroup data 911 * unless we have the cgroup pinned (css_get) 912 */ 913 if (!cgrp) 914 return; 915 916 WARN_ON_ONCE(!ctx->nr_cgroups); 917 918 for (css = &cgrp->css; css; css = css->parent) { 919 cgrp = container_of(css, struct perf_cgroup, css); 920 info = this_cpu_ptr(cgrp->info); 921 __update_cgrp_time(info, ctx->timestamp, false); 922 __store_release(&info->active, 1); 923 } 924 } 925 926 /* 927 * reschedule events based on the cgroup constraint of task. 928 */ 929 static void perf_cgroup_switch(struct task_struct *task) 930 { 931 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 932 struct perf_cgroup *cgrp; 933 934 /* 935 * cpuctx->cgrp is set when the first cgroup event enabled, 936 * and is cleared when the last cgroup event disabled. 937 */ 938 if (READ_ONCE(cpuctx->cgrp) == NULL) 939 return; 940 941 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 942 943 cgrp = perf_cgroup_from_task(task, NULL); 944 if (READ_ONCE(cpuctx->cgrp) == cgrp) 945 return; 946 947 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 948 perf_ctx_disable(&cpuctx->ctx, true); 949 950 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 951 /* 952 * must not be done before ctxswout due 953 * to update_cgrp_time_from_cpuctx() in 954 * ctx_sched_out() 955 */ 956 cpuctx->cgrp = cgrp; 957 /* 958 * set cgrp before ctxsw in to allow 959 * perf_cgroup_set_timestamp() in ctx_sched_in() 960 * to not have to pass task around 961 */ 962 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 963 964 perf_ctx_enable(&cpuctx->ctx, true); 965 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 966 } 967 968 static int perf_cgroup_ensure_storage(struct perf_event *event, 969 struct cgroup_subsys_state *css) 970 { 971 struct perf_cpu_context *cpuctx; 972 struct perf_event **storage; 973 int cpu, heap_size, ret = 0; 974 975 /* 976 * Allow storage to have sufficient space for an iterator for each 977 * possibly nested cgroup plus an iterator for events with no cgroup. 978 */ 979 for (heap_size = 1; css; css = css->parent) 980 heap_size++; 981 982 for_each_possible_cpu(cpu) { 983 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 984 if (heap_size <= cpuctx->heap_size) 985 continue; 986 987 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 988 GFP_KERNEL, cpu_to_node(cpu)); 989 if (!storage) { 990 ret = -ENOMEM; 991 break; 992 } 993 994 raw_spin_lock_irq(&cpuctx->ctx.lock); 995 if (cpuctx->heap_size < heap_size) { 996 swap(cpuctx->heap, storage); 997 if (storage == cpuctx->heap_default) 998 storage = NULL; 999 cpuctx->heap_size = heap_size; 1000 } 1001 raw_spin_unlock_irq(&cpuctx->ctx.lock); 1002 1003 kfree(storage); 1004 } 1005 1006 return ret; 1007 } 1008 1009 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 1010 struct perf_event_attr *attr, 1011 struct perf_event *group_leader) 1012 { 1013 struct perf_cgroup *cgrp; 1014 struct cgroup_subsys_state *css; 1015 CLASS(fd, f)(fd); 1016 int ret = 0; 1017 1018 if (fd_empty(f)) 1019 return -EBADF; 1020 1021 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 1022 &perf_event_cgrp_subsys); 1023 if (IS_ERR(css)) 1024 return PTR_ERR(css); 1025 1026 ret = perf_cgroup_ensure_storage(event, css); 1027 if (ret) 1028 return ret; 1029 1030 cgrp = container_of(css, struct perf_cgroup, css); 1031 event->cgrp = cgrp; 1032 1033 /* 1034 * all events in a group must monitor 1035 * the same cgroup because a task belongs 1036 * to only one perf cgroup at a time 1037 */ 1038 if (group_leader && group_leader->cgrp != cgrp) { 1039 perf_detach_cgroup(event); 1040 ret = -EINVAL; 1041 } 1042 return ret; 1043 } 1044 1045 static inline void 1046 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1047 { 1048 struct perf_cpu_context *cpuctx; 1049 1050 if (!is_cgroup_event(event)) 1051 return; 1052 1053 event->pmu_ctx->nr_cgroups++; 1054 1055 /* 1056 * Because cgroup events are always per-cpu events, 1057 * @ctx == &cpuctx->ctx. 1058 */ 1059 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1060 1061 if (ctx->nr_cgroups++) 1062 return; 1063 1064 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1065 } 1066 1067 static inline void 1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1069 { 1070 struct perf_cpu_context *cpuctx; 1071 1072 if (!is_cgroup_event(event)) 1073 return; 1074 1075 event->pmu_ctx->nr_cgroups--; 1076 1077 /* 1078 * Because cgroup events are always per-cpu events, 1079 * @ctx == &cpuctx->ctx. 1080 */ 1081 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1082 1083 if (--ctx->nr_cgroups) 1084 return; 1085 1086 cpuctx->cgrp = NULL; 1087 } 1088 1089 #else /* !CONFIG_CGROUP_PERF */ 1090 1091 static inline bool 1092 perf_cgroup_match(struct perf_event *event) 1093 { 1094 return true; 1095 } 1096 1097 static inline void perf_detach_cgroup(struct perf_event *event) 1098 {} 1099 1100 static inline int is_cgroup_event(struct perf_event *event) 1101 { 1102 return 0; 1103 } 1104 1105 static inline void update_cgrp_time_from_event(struct perf_event *event) 1106 { 1107 } 1108 1109 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1110 bool final) 1111 { 1112 } 1113 1114 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1115 struct perf_event_attr *attr, 1116 struct perf_event *group_leader) 1117 { 1118 return -EINVAL; 1119 } 1120 1121 static inline void 1122 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1123 { 1124 } 1125 1126 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1127 { 1128 return 0; 1129 } 1130 1131 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1132 { 1133 return 0; 1134 } 1135 1136 static inline void 1137 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1138 { 1139 } 1140 1141 static inline void 1142 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1143 { 1144 } 1145 1146 static void perf_cgroup_switch(struct task_struct *task) 1147 { 1148 } 1149 #endif 1150 1151 /* 1152 * set default to be dependent on timer tick just 1153 * like original code 1154 */ 1155 #define PERF_CPU_HRTIMER (1000 / HZ) 1156 /* 1157 * function must be called with interrupts disabled 1158 */ 1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1160 { 1161 struct perf_cpu_pmu_context *cpc; 1162 bool rotations; 1163 1164 lockdep_assert_irqs_disabled(); 1165 1166 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1167 rotations = perf_rotate_context(cpc); 1168 1169 raw_spin_lock(&cpc->hrtimer_lock); 1170 if (rotations) 1171 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1172 else 1173 cpc->hrtimer_active = 0; 1174 raw_spin_unlock(&cpc->hrtimer_lock); 1175 1176 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1177 } 1178 1179 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1180 { 1181 struct hrtimer *timer = &cpc->hrtimer; 1182 struct pmu *pmu = cpc->epc.pmu; 1183 u64 interval; 1184 1185 /* 1186 * check default is sane, if not set then force to 1187 * default interval (1/tick) 1188 */ 1189 interval = pmu->hrtimer_interval_ms; 1190 if (interval < 1) 1191 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1192 1193 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1194 1195 raw_spin_lock_init(&cpc->hrtimer_lock); 1196 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, 1197 HRTIMER_MODE_ABS_PINNED_HARD); 1198 } 1199 1200 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1201 { 1202 struct hrtimer *timer = &cpc->hrtimer; 1203 unsigned long flags; 1204 1205 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1206 if (!cpc->hrtimer_active) { 1207 cpc->hrtimer_active = 1; 1208 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1209 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1210 } 1211 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1212 1213 return 0; 1214 } 1215 1216 static int perf_mux_hrtimer_restart_ipi(void *arg) 1217 { 1218 return perf_mux_hrtimer_restart(arg); 1219 } 1220 1221 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) 1222 { 1223 return *this_cpu_ptr(pmu->cpu_pmu_context); 1224 } 1225 1226 void perf_pmu_disable(struct pmu *pmu) 1227 { 1228 int *count = &this_cpc(pmu)->pmu_disable_count; 1229 if (!(*count)++) 1230 pmu->pmu_disable(pmu); 1231 } 1232 1233 void perf_pmu_enable(struct pmu *pmu) 1234 { 1235 int *count = &this_cpc(pmu)->pmu_disable_count; 1236 if (!--(*count)) 1237 pmu->pmu_enable(pmu); 1238 } 1239 1240 static void perf_assert_pmu_disabled(struct pmu *pmu) 1241 { 1242 int *count = &this_cpc(pmu)->pmu_disable_count; 1243 WARN_ON_ONCE(*count == 0); 1244 } 1245 1246 static inline void perf_pmu_read(struct perf_event *event) 1247 { 1248 if (event->state == PERF_EVENT_STATE_ACTIVE) 1249 event->pmu->read(event); 1250 } 1251 1252 static void get_ctx(struct perf_event_context *ctx) 1253 { 1254 refcount_inc(&ctx->refcount); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 kfree(ctx); 1263 } 1264 1265 static void put_ctx(struct perf_event_context *ctx) 1266 { 1267 if (refcount_dec_and_test(&ctx->refcount)) { 1268 if (ctx->parent_ctx) 1269 put_ctx(ctx->parent_ctx); 1270 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1271 put_task_struct(ctx->task); 1272 call_rcu(&ctx->rcu_head, free_ctx); 1273 } 1274 } 1275 1276 /* 1277 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1278 * perf_pmu_migrate_context() we need some magic. 1279 * 1280 * Those places that change perf_event::ctx will hold both 1281 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1282 * 1283 * Lock ordering is by mutex address. There are two other sites where 1284 * perf_event_context::mutex nests and those are: 1285 * 1286 * - perf_event_exit_task_context() [ child , 0 ] 1287 * perf_event_exit_event() 1288 * put_event() [ parent, 1 ] 1289 * 1290 * - perf_event_init_context() [ parent, 0 ] 1291 * inherit_task_group() 1292 * inherit_group() 1293 * inherit_event() 1294 * perf_event_alloc() 1295 * perf_init_event() 1296 * perf_try_init_event() [ child , 1 ] 1297 * 1298 * While it appears there is an obvious deadlock here -- the parent and child 1299 * nesting levels are inverted between the two. This is in fact safe because 1300 * life-time rules separate them. That is an exiting task cannot fork, and a 1301 * spawning task cannot (yet) exit. 1302 * 1303 * But remember that these are parent<->child context relations, and 1304 * migration does not affect children, therefore these two orderings should not 1305 * interact. 1306 * 1307 * The change in perf_event::ctx does not affect children (as claimed above) 1308 * because the sys_perf_event_open() case will install a new event and break 1309 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1310 * concerned with cpuctx and that doesn't have children. 1311 * 1312 * The places that change perf_event::ctx will issue: 1313 * 1314 * perf_remove_from_context(); 1315 * synchronize_rcu(); 1316 * perf_install_in_context(); 1317 * 1318 * to affect the change. The remove_from_context() + synchronize_rcu() should 1319 * quiesce the event, after which we can install it in the new location. This 1320 * means that only external vectors (perf_fops, prctl) can perturb the event 1321 * while in transit. Therefore all such accessors should also acquire 1322 * perf_event_context::mutex to serialize against this. 1323 * 1324 * However; because event->ctx can change while we're waiting to acquire 1325 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1326 * function. 1327 * 1328 * Lock order: 1329 * exec_update_lock 1330 * task_struct::perf_event_mutex 1331 * perf_event_context::mutex 1332 * perf_event::child_mutex; 1333 * perf_event_context::lock 1334 * mmap_lock 1335 * perf_event::mmap_mutex 1336 * perf_buffer::aux_mutex 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1529 { 1530 u64 now = perf_clock(); 1531 1532 lockdep_assert_held(&ctx->lock); 1533 1534 if (adv) 1535 ctx->time += now - ctx->timestamp; 1536 ctx->timestamp = now; 1537 1538 /* 1539 * The above: time' = time + (now - timestamp), can be re-arranged 1540 * into: time` = now + (time - timestamp), which gives a single value 1541 * offset to compute future time without locks on. 1542 * 1543 * See perf_event_time_now(), which can be used from NMI context where 1544 * it's (obviously) not possible to acquire ctx->lock in order to read 1545 * both the above values in a consistent manner. 1546 */ 1547 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1548 } 1549 1550 static void update_context_time(struct perf_event_context *ctx) 1551 { 1552 __update_context_time(ctx, true); 1553 } 1554 1555 static u64 perf_event_time(struct perf_event *event) 1556 { 1557 struct perf_event_context *ctx = event->ctx; 1558 1559 if (unlikely(!ctx)) 1560 return 0; 1561 1562 if (is_cgroup_event(event)) 1563 return perf_cgroup_event_time(event); 1564 1565 return ctx->time; 1566 } 1567 1568 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1569 { 1570 struct perf_event_context *ctx = event->ctx; 1571 1572 if (unlikely(!ctx)) 1573 return 0; 1574 1575 if (is_cgroup_event(event)) 1576 return perf_cgroup_event_time_now(event, now); 1577 1578 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1579 return ctx->time; 1580 1581 now += READ_ONCE(ctx->timeoffset); 1582 return now; 1583 } 1584 1585 static enum event_type_t get_event_type(struct perf_event *event) 1586 { 1587 struct perf_event_context *ctx = event->ctx; 1588 enum event_type_t event_type; 1589 1590 lockdep_assert_held(&ctx->lock); 1591 1592 /* 1593 * It's 'group type', really, because if our group leader is 1594 * pinned, so are we. 1595 */ 1596 if (event->group_leader != event) 1597 event = event->group_leader; 1598 1599 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1600 if (!ctx->task) 1601 event_type |= EVENT_CPU; 1602 1603 return event_type; 1604 } 1605 1606 /* 1607 * Helper function to initialize event group nodes. 1608 */ 1609 static void init_event_group(struct perf_event *event) 1610 { 1611 RB_CLEAR_NODE(&event->group_node); 1612 event->group_index = 0; 1613 } 1614 1615 /* 1616 * Extract pinned or flexible groups from the context 1617 * based on event attrs bits. 1618 */ 1619 static struct perf_event_groups * 1620 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1621 { 1622 if (event->attr.pinned) 1623 return &ctx->pinned_groups; 1624 else 1625 return &ctx->flexible_groups; 1626 } 1627 1628 /* 1629 * Helper function to initializes perf_event_group trees. 1630 */ 1631 static void perf_event_groups_init(struct perf_event_groups *groups) 1632 { 1633 groups->tree = RB_ROOT; 1634 groups->index = 0; 1635 } 1636 1637 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1638 { 1639 struct cgroup *cgroup = NULL; 1640 1641 #ifdef CONFIG_CGROUP_PERF 1642 if (event->cgrp) 1643 cgroup = event->cgrp->css.cgroup; 1644 #endif 1645 1646 return cgroup; 1647 } 1648 1649 /* 1650 * Compare function for event groups; 1651 * 1652 * Implements complex key that first sorts by CPU and then by virtual index 1653 * which provides ordering when rotating groups for the same CPU. 1654 */ 1655 static __always_inline int 1656 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1657 const struct cgroup *left_cgroup, const u64 left_group_index, 1658 const struct perf_event *right) 1659 { 1660 if (left_cpu < right->cpu) 1661 return -1; 1662 if (left_cpu > right->cpu) 1663 return 1; 1664 1665 if (left_pmu) { 1666 if (left_pmu < right->pmu_ctx->pmu) 1667 return -1; 1668 if (left_pmu > right->pmu_ctx->pmu) 1669 return 1; 1670 } 1671 1672 #ifdef CONFIG_CGROUP_PERF 1673 { 1674 const struct cgroup *right_cgroup = event_cgroup(right); 1675 1676 if (left_cgroup != right_cgroup) { 1677 if (!left_cgroup) { 1678 /* 1679 * Left has no cgroup but right does, no 1680 * cgroups come first. 1681 */ 1682 return -1; 1683 } 1684 if (!right_cgroup) { 1685 /* 1686 * Right has no cgroup but left does, no 1687 * cgroups come first. 1688 */ 1689 return 1; 1690 } 1691 /* Two dissimilar cgroups, order by id. */ 1692 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1693 return -1; 1694 1695 return 1; 1696 } 1697 } 1698 #endif 1699 1700 if (left_group_index < right->group_index) 1701 return -1; 1702 if (left_group_index > right->group_index) 1703 return 1; 1704 1705 return 0; 1706 } 1707 1708 #define __node_2_pe(node) \ 1709 rb_entry((node), struct perf_event, group_node) 1710 1711 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1712 { 1713 struct perf_event *e = __node_2_pe(a); 1714 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1715 e->group_index, __node_2_pe(b)) < 0; 1716 } 1717 1718 struct __group_key { 1719 int cpu; 1720 struct pmu *pmu; 1721 struct cgroup *cgroup; 1722 }; 1723 1724 static inline int __group_cmp(const void *key, const struct rb_node *node) 1725 { 1726 const struct __group_key *a = key; 1727 const struct perf_event *b = __node_2_pe(node); 1728 1729 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1730 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1731 } 1732 1733 static inline int 1734 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1735 { 1736 const struct __group_key *a = key; 1737 const struct perf_event *b = __node_2_pe(node); 1738 1739 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1740 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1741 b->group_index, b); 1742 } 1743 1744 /* 1745 * Insert @event into @groups' tree; using 1746 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1747 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1748 */ 1749 static void 1750 perf_event_groups_insert(struct perf_event_groups *groups, 1751 struct perf_event *event) 1752 { 1753 event->group_index = ++groups->index; 1754 1755 rb_add(&event->group_node, &groups->tree, __group_less); 1756 } 1757 1758 /* 1759 * Helper function to insert event into the pinned or flexible groups. 1760 */ 1761 static void 1762 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1763 { 1764 struct perf_event_groups *groups; 1765 1766 groups = get_event_groups(event, ctx); 1767 perf_event_groups_insert(groups, event); 1768 } 1769 1770 /* 1771 * Delete a group from a tree. 1772 */ 1773 static void 1774 perf_event_groups_delete(struct perf_event_groups *groups, 1775 struct perf_event *event) 1776 { 1777 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1778 RB_EMPTY_ROOT(&groups->tree)); 1779 1780 rb_erase(&event->group_node, &groups->tree); 1781 init_event_group(event); 1782 } 1783 1784 /* 1785 * Helper function to delete event from its groups. 1786 */ 1787 static void 1788 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1789 { 1790 struct perf_event_groups *groups; 1791 1792 groups = get_event_groups(event, ctx); 1793 perf_event_groups_delete(groups, event); 1794 } 1795 1796 /* 1797 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1798 */ 1799 static struct perf_event * 1800 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1801 struct pmu *pmu, struct cgroup *cgrp) 1802 { 1803 struct __group_key key = { 1804 .cpu = cpu, 1805 .pmu = pmu, 1806 .cgroup = cgrp, 1807 }; 1808 struct rb_node *node; 1809 1810 node = rb_find_first(&key, &groups->tree, __group_cmp); 1811 if (node) 1812 return __node_2_pe(node); 1813 1814 return NULL; 1815 } 1816 1817 static struct perf_event * 1818 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1819 { 1820 struct __group_key key = { 1821 .cpu = event->cpu, 1822 .pmu = pmu, 1823 .cgroup = event_cgroup(event), 1824 }; 1825 struct rb_node *next; 1826 1827 next = rb_next_match(&key, &event->group_node, __group_cmp); 1828 if (next) 1829 return __node_2_pe(next); 1830 1831 return NULL; 1832 } 1833 1834 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1835 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1836 event; event = perf_event_groups_next(event, pmu)) 1837 1838 /* 1839 * Iterate through the whole groups tree. 1840 */ 1841 #define perf_event_groups_for_each(event, groups) \ 1842 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1843 typeof(*event), group_node); event; \ 1844 event = rb_entry_safe(rb_next(&event->group_node), \ 1845 typeof(*event), group_node)) 1846 1847 /* 1848 * Does the event attribute request inherit with PERF_SAMPLE_READ 1849 */ 1850 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1851 { 1852 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1853 } 1854 1855 /* 1856 * Add an event from the lists for its context. 1857 * Must be called with ctx->mutex and ctx->lock held. 1858 */ 1859 static void 1860 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1861 { 1862 lockdep_assert_held(&ctx->lock); 1863 1864 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1865 event->attach_state |= PERF_ATTACH_CONTEXT; 1866 1867 event->tstamp = perf_event_time(event); 1868 1869 /* 1870 * If we're a stand alone event or group leader, we go to the context 1871 * list, group events are kept attached to the group so that 1872 * perf_group_detach can, at all times, locate all siblings. 1873 */ 1874 if (event->group_leader == event) { 1875 event->group_caps = event->event_caps; 1876 add_event_to_groups(event, ctx); 1877 } 1878 1879 list_add_rcu(&event->event_entry, &ctx->event_list); 1880 ctx->nr_events++; 1881 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1882 ctx->nr_user++; 1883 if (event->attr.inherit_stat) 1884 ctx->nr_stat++; 1885 if (has_inherit_and_sample_read(&event->attr)) 1886 local_inc(&ctx->nr_no_switch_fast); 1887 1888 if (event->state > PERF_EVENT_STATE_OFF) 1889 perf_cgroup_event_enable(event, ctx); 1890 1891 ctx->generation++; 1892 event->pmu_ctx->nr_events++; 1893 } 1894 1895 /* 1896 * Initialize event state based on the perf_event_attr::disabled. 1897 */ 1898 static inline void perf_event__state_init(struct perf_event *event) 1899 { 1900 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1901 PERF_EVENT_STATE_INACTIVE; 1902 } 1903 1904 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1905 { 1906 int entry = sizeof(u64); /* value */ 1907 int size = 0; 1908 int nr = 1; 1909 1910 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1911 size += sizeof(u64); 1912 1913 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1914 size += sizeof(u64); 1915 1916 if (read_format & PERF_FORMAT_ID) 1917 entry += sizeof(u64); 1918 1919 if (read_format & PERF_FORMAT_LOST) 1920 entry += sizeof(u64); 1921 1922 if (read_format & PERF_FORMAT_GROUP) { 1923 nr += nr_siblings; 1924 size += sizeof(u64); 1925 } 1926 1927 /* 1928 * Since perf_event_validate_size() limits this to 16k and inhibits 1929 * adding more siblings, this will never overflow. 1930 */ 1931 return size + nr * entry; 1932 } 1933 1934 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1935 { 1936 struct perf_sample_data *data; 1937 u16 size = 0; 1938 1939 if (sample_type & PERF_SAMPLE_IP) 1940 size += sizeof(data->ip); 1941 1942 if (sample_type & PERF_SAMPLE_ADDR) 1943 size += sizeof(data->addr); 1944 1945 if (sample_type & PERF_SAMPLE_PERIOD) 1946 size += sizeof(data->period); 1947 1948 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1949 size += sizeof(data->weight.full); 1950 1951 if (sample_type & PERF_SAMPLE_READ) 1952 size += event->read_size; 1953 1954 if (sample_type & PERF_SAMPLE_DATA_SRC) 1955 size += sizeof(data->data_src.val); 1956 1957 if (sample_type & PERF_SAMPLE_TRANSACTION) 1958 size += sizeof(data->txn); 1959 1960 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1961 size += sizeof(data->phys_addr); 1962 1963 if (sample_type & PERF_SAMPLE_CGROUP) 1964 size += sizeof(data->cgroup); 1965 1966 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1967 size += sizeof(data->data_page_size); 1968 1969 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1970 size += sizeof(data->code_page_size); 1971 1972 event->header_size = size; 1973 } 1974 1975 /* 1976 * Called at perf_event creation and when events are attached/detached from a 1977 * group. 1978 */ 1979 static void perf_event__header_size(struct perf_event *event) 1980 { 1981 event->read_size = 1982 __perf_event_read_size(event->attr.read_format, 1983 event->group_leader->nr_siblings); 1984 __perf_event_header_size(event, event->attr.sample_type); 1985 } 1986 1987 static void perf_event__id_header_size(struct perf_event *event) 1988 { 1989 struct perf_sample_data *data; 1990 u64 sample_type = event->attr.sample_type; 1991 u16 size = 0; 1992 1993 if (sample_type & PERF_SAMPLE_TID) 1994 size += sizeof(data->tid_entry); 1995 1996 if (sample_type & PERF_SAMPLE_TIME) 1997 size += sizeof(data->time); 1998 1999 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2000 size += sizeof(data->id); 2001 2002 if (sample_type & PERF_SAMPLE_ID) 2003 size += sizeof(data->id); 2004 2005 if (sample_type & PERF_SAMPLE_STREAM_ID) 2006 size += sizeof(data->stream_id); 2007 2008 if (sample_type & PERF_SAMPLE_CPU) 2009 size += sizeof(data->cpu_entry); 2010 2011 event->id_header_size = size; 2012 } 2013 2014 /* 2015 * Check that adding an event to the group does not result in anybody 2016 * overflowing the 64k event limit imposed by the output buffer. 2017 * 2018 * Specifically, check that the read_size for the event does not exceed 16k, 2019 * read_size being the one term that grows with groups size. Since read_size 2020 * depends on per-event read_format, also (re)check the existing events. 2021 * 2022 * This leaves 48k for the constant size fields and things like callchains, 2023 * branch stacks and register sets. 2024 */ 2025 static bool perf_event_validate_size(struct perf_event *event) 2026 { 2027 struct perf_event *sibling, *group_leader = event->group_leader; 2028 2029 if (__perf_event_read_size(event->attr.read_format, 2030 group_leader->nr_siblings + 1) > 16*1024) 2031 return false; 2032 2033 if (__perf_event_read_size(group_leader->attr.read_format, 2034 group_leader->nr_siblings + 1) > 16*1024) 2035 return false; 2036 2037 /* 2038 * When creating a new group leader, group_leader->ctx is initialized 2039 * after the size has been validated, but we cannot safely use 2040 * for_each_sibling_event() until group_leader->ctx is set. A new group 2041 * leader cannot have any siblings yet, so we can safely skip checking 2042 * the non-existent siblings. 2043 */ 2044 if (event == group_leader) 2045 return true; 2046 2047 for_each_sibling_event(sibling, group_leader) { 2048 if (__perf_event_read_size(sibling->attr.read_format, 2049 group_leader->nr_siblings + 1) > 16*1024) 2050 return false; 2051 } 2052 2053 return true; 2054 } 2055 2056 static void perf_group_attach(struct perf_event *event) 2057 { 2058 struct perf_event *group_leader = event->group_leader, *pos; 2059 2060 lockdep_assert_held(&event->ctx->lock); 2061 2062 /* 2063 * We can have double attach due to group movement (move_group) in 2064 * perf_event_open(). 2065 */ 2066 if (event->attach_state & PERF_ATTACH_GROUP) 2067 return; 2068 2069 event->attach_state |= PERF_ATTACH_GROUP; 2070 2071 if (group_leader == event) 2072 return; 2073 2074 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2075 2076 group_leader->group_caps &= event->event_caps; 2077 2078 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2079 group_leader->nr_siblings++; 2080 group_leader->group_generation++; 2081 2082 perf_event__header_size(group_leader); 2083 2084 for_each_sibling_event(pos, group_leader) 2085 perf_event__header_size(pos); 2086 } 2087 2088 /* 2089 * Remove an event from the lists for its context. 2090 * Must be called with ctx->mutex and ctx->lock held. 2091 */ 2092 static void 2093 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2094 { 2095 WARN_ON_ONCE(event->ctx != ctx); 2096 lockdep_assert_held(&ctx->lock); 2097 2098 /* 2099 * We can have double detach due to exit/hot-unplug + close. 2100 */ 2101 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2102 return; 2103 2104 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2105 2106 ctx->nr_events--; 2107 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2108 ctx->nr_user--; 2109 if (event->attr.inherit_stat) 2110 ctx->nr_stat--; 2111 if (has_inherit_and_sample_read(&event->attr)) 2112 local_dec(&ctx->nr_no_switch_fast); 2113 2114 list_del_rcu(&event->event_entry); 2115 2116 if (event->group_leader == event) 2117 del_event_from_groups(event, ctx); 2118 2119 /* 2120 * If event was in error state, then keep it 2121 * that way, otherwise bogus counts will be 2122 * returned on read(). The only way to get out 2123 * of error state is by explicit re-enabling 2124 * of the event 2125 */ 2126 if (event->state > PERF_EVENT_STATE_OFF) { 2127 perf_cgroup_event_disable(event, ctx); 2128 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2129 } 2130 2131 ctx->generation++; 2132 event->pmu_ctx->nr_events--; 2133 } 2134 2135 static int 2136 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2137 { 2138 if (!has_aux(aux_event)) 2139 return 0; 2140 2141 if (!event->pmu->aux_output_match) 2142 return 0; 2143 2144 return event->pmu->aux_output_match(aux_event); 2145 } 2146 2147 static void put_event(struct perf_event *event); 2148 static void event_sched_out(struct perf_event *event, 2149 struct perf_event_context *ctx); 2150 2151 static void perf_put_aux_event(struct perf_event *event) 2152 { 2153 struct perf_event_context *ctx = event->ctx; 2154 struct perf_event *iter; 2155 2156 /* 2157 * If event uses aux_event tear down the link 2158 */ 2159 if (event->aux_event) { 2160 iter = event->aux_event; 2161 event->aux_event = NULL; 2162 put_event(iter); 2163 return; 2164 } 2165 2166 /* 2167 * If the event is an aux_event, tear down all links to 2168 * it from other events. 2169 */ 2170 for_each_sibling_event(iter, event->group_leader) { 2171 if (iter->aux_event != event) 2172 continue; 2173 2174 iter->aux_event = NULL; 2175 put_event(event); 2176 2177 /* 2178 * If it's ACTIVE, schedule it out and put it into ERROR 2179 * state so that we don't try to schedule it again. Note 2180 * that perf_event_enable() will clear the ERROR status. 2181 */ 2182 event_sched_out(iter, ctx); 2183 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2184 } 2185 } 2186 2187 static bool perf_need_aux_event(struct perf_event *event) 2188 { 2189 return event->attr.aux_output || has_aux_action(event); 2190 } 2191 2192 static int perf_get_aux_event(struct perf_event *event, 2193 struct perf_event *group_leader) 2194 { 2195 /* 2196 * Our group leader must be an aux event if we want to be 2197 * an aux_output. This way, the aux event will precede its 2198 * aux_output events in the group, and therefore will always 2199 * schedule first. 2200 */ 2201 if (!group_leader) 2202 return 0; 2203 2204 /* 2205 * aux_output and aux_sample_size are mutually exclusive. 2206 */ 2207 if (event->attr.aux_output && event->attr.aux_sample_size) 2208 return 0; 2209 2210 if (event->attr.aux_output && 2211 !perf_aux_output_match(event, group_leader)) 2212 return 0; 2213 2214 if ((event->attr.aux_pause || event->attr.aux_resume) && 2215 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2216 return 0; 2217 2218 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2219 return 0; 2220 2221 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2222 return 0; 2223 2224 /* 2225 * Link aux_outputs to their aux event; this is undone in 2226 * perf_group_detach() by perf_put_aux_event(). When the 2227 * group in torn down, the aux_output events loose their 2228 * link to the aux_event and can't schedule any more. 2229 */ 2230 event->aux_event = group_leader; 2231 2232 return 1; 2233 } 2234 2235 static inline struct list_head *get_event_list(struct perf_event *event) 2236 { 2237 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2238 &event->pmu_ctx->flexible_active; 2239 } 2240 2241 /* 2242 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2243 * cannot exist on their own, schedule them out and move them into the ERROR 2244 * state. Also see _perf_event_enable(), it will not be able to recover 2245 * this ERROR state. 2246 */ 2247 static inline void perf_remove_sibling_event(struct perf_event *event) 2248 { 2249 event_sched_out(event, event->ctx); 2250 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2251 } 2252 2253 static void perf_group_detach(struct perf_event *event) 2254 { 2255 struct perf_event *leader = event->group_leader; 2256 struct perf_event *sibling, *tmp; 2257 struct perf_event_context *ctx = event->ctx; 2258 2259 lockdep_assert_held(&ctx->lock); 2260 2261 /* 2262 * We can have double detach due to exit/hot-unplug + close. 2263 */ 2264 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2265 return; 2266 2267 event->attach_state &= ~PERF_ATTACH_GROUP; 2268 2269 perf_put_aux_event(event); 2270 2271 /* 2272 * If this is a sibling, remove it from its group. 2273 */ 2274 if (leader != event) { 2275 list_del_init(&event->sibling_list); 2276 event->group_leader->nr_siblings--; 2277 event->group_leader->group_generation++; 2278 goto out; 2279 } 2280 2281 /* 2282 * If this was a group event with sibling events then 2283 * upgrade the siblings to singleton events by adding them 2284 * to whatever list we are on. 2285 */ 2286 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2287 2288 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2289 perf_remove_sibling_event(sibling); 2290 2291 sibling->group_leader = sibling; 2292 list_del_init(&sibling->sibling_list); 2293 2294 /* Inherit group flags from the previous leader */ 2295 sibling->group_caps = event->group_caps; 2296 2297 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2298 add_event_to_groups(sibling, event->ctx); 2299 2300 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2301 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2302 } 2303 2304 WARN_ON_ONCE(sibling->ctx != event->ctx); 2305 } 2306 2307 out: 2308 for_each_sibling_event(tmp, leader) 2309 perf_event__header_size(tmp); 2310 2311 perf_event__header_size(leader); 2312 } 2313 2314 static void sync_child_event(struct perf_event *child_event); 2315 2316 static void perf_child_detach(struct perf_event *event) 2317 { 2318 struct perf_event *parent_event = event->parent; 2319 2320 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2321 return; 2322 2323 event->attach_state &= ~PERF_ATTACH_CHILD; 2324 2325 if (WARN_ON_ONCE(!parent_event)) 2326 return; 2327 2328 lockdep_assert_held(&parent_event->child_mutex); 2329 2330 sync_child_event(event); 2331 list_del_init(&event->child_list); 2332 } 2333 2334 static bool is_orphaned_event(struct perf_event *event) 2335 { 2336 return event->state == PERF_EVENT_STATE_DEAD; 2337 } 2338 2339 static inline int 2340 event_filter_match(struct perf_event *event) 2341 { 2342 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2343 perf_cgroup_match(event); 2344 } 2345 2346 static void 2347 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2348 { 2349 struct perf_event_pmu_context *epc = event->pmu_ctx; 2350 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2351 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2352 2353 // XXX cpc serialization, probably per-cpu IRQ disabled 2354 2355 WARN_ON_ONCE(event->ctx != ctx); 2356 lockdep_assert_held(&ctx->lock); 2357 2358 if (event->state != PERF_EVENT_STATE_ACTIVE) 2359 return; 2360 2361 /* 2362 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2363 * we can schedule events _OUT_ individually through things like 2364 * __perf_remove_from_context(). 2365 */ 2366 list_del_init(&event->active_list); 2367 2368 perf_pmu_disable(event->pmu); 2369 2370 event->pmu->del(event, 0); 2371 event->oncpu = -1; 2372 2373 if (event->pending_disable) { 2374 event->pending_disable = 0; 2375 perf_cgroup_event_disable(event, ctx); 2376 state = PERF_EVENT_STATE_OFF; 2377 } 2378 2379 perf_event_set_state(event, state); 2380 2381 if (!is_software_event(event)) 2382 cpc->active_oncpu--; 2383 if (event->attr.freq && event->attr.sample_freq) { 2384 ctx->nr_freq--; 2385 epc->nr_freq--; 2386 } 2387 if (event->attr.exclusive || !cpc->active_oncpu) 2388 cpc->exclusive = 0; 2389 2390 perf_pmu_enable(event->pmu); 2391 } 2392 2393 static void 2394 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2395 { 2396 struct perf_event *event; 2397 2398 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2399 return; 2400 2401 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2402 2403 event_sched_out(group_event, ctx); 2404 2405 /* 2406 * Schedule out siblings (if any): 2407 */ 2408 for_each_sibling_event(event, group_event) 2409 event_sched_out(event, ctx); 2410 } 2411 2412 static inline void 2413 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2414 { 2415 if (ctx->is_active & EVENT_TIME) { 2416 if (ctx->is_active & EVENT_FROZEN) 2417 return; 2418 update_context_time(ctx); 2419 update_cgrp_time_from_cpuctx(cpuctx, final); 2420 } 2421 } 2422 2423 static inline void 2424 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2425 { 2426 __ctx_time_update(cpuctx, ctx, false); 2427 } 2428 2429 /* 2430 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2431 */ 2432 static inline void 2433 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2434 { 2435 ctx_time_update(cpuctx, ctx); 2436 if (ctx->is_active & EVENT_TIME) 2437 ctx->is_active |= EVENT_FROZEN; 2438 } 2439 2440 static inline void 2441 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2442 { 2443 if (ctx->is_active & EVENT_TIME) { 2444 if (ctx->is_active & EVENT_FROZEN) 2445 return; 2446 update_context_time(ctx); 2447 update_cgrp_time_from_event(event); 2448 } 2449 } 2450 2451 #define DETACH_GROUP 0x01UL 2452 #define DETACH_CHILD 0x02UL 2453 #define DETACH_DEAD 0x04UL 2454 2455 /* 2456 * Cross CPU call to remove a performance event 2457 * 2458 * We disable the event on the hardware level first. After that we 2459 * remove it from the context list. 2460 */ 2461 static void 2462 __perf_remove_from_context(struct perf_event *event, 2463 struct perf_cpu_context *cpuctx, 2464 struct perf_event_context *ctx, 2465 void *info) 2466 { 2467 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2468 unsigned long flags = (unsigned long)info; 2469 2470 ctx_time_update(cpuctx, ctx); 2471 2472 /* 2473 * Ensure event_sched_out() switches to OFF, at the very least 2474 * this avoids raising perf_pending_task() at this time. 2475 */ 2476 if (flags & DETACH_DEAD) 2477 event->pending_disable = 1; 2478 event_sched_out(event, ctx); 2479 if (flags & DETACH_GROUP) 2480 perf_group_detach(event); 2481 if (flags & DETACH_CHILD) 2482 perf_child_detach(event); 2483 list_del_event(event, ctx); 2484 if (flags & DETACH_DEAD) 2485 event->state = PERF_EVENT_STATE_DEAD; 2486 2487 if (!pmu_ctx->nr_events) { 2488 pmu_ctx->rotate_necessary = 0; 2489 2490 if (ctx->task && ctx->is_active) { 2491 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); 2492 2493 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2494 cpc->task_epc = NULL; 2495 } 2496 } 2497 2498 if (!ctx->nr_events && ctx->is_active) { 2499 if (ctx == &cpuctx->ctx) 2500 update_cgrp_time_from_cpuctx(cpuctx, true); 2501 2502 ctx->is_active = 0; 2503 if (ctx->task) { 2504 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2505 cpuctx->task_ctx = NULL; 2506 } 2507 } 2508 } 2509 2510 /* 2511 * Remove the event from a task's (or a CPU's) list of events. 2512 * 2513 * If event->ctx is a cloned context, callers must make sure that 2514 * every task struct that event->ctx->task could possibly point to 2515 * remains valid. This is OK when called from perf_release since 2516 * that only calls us on the top-level context, which can't be a clone. 2517 * When called from perf_event_exit_task, it's OK because the 2518 * context has been detached from its task. 2519 */ 2520 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2521 { 2522 struct perf_event_context *ctx = event->ctx; 2523 2524 lockdep_assert_held(&ctx->mutex); 2525 2526 /* 2527 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2528 * to work in the face of TASK_TOMBSTONE, unlike every other 2529 * event_function_call() user. 2530 */ 2531 raw_spin_lock_irq(&ctx->lock); 2532 if (!ctx->is_active) { 2533 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2534 ctx, (void *)flags); 2535 raw_spin_unlock_irq(&ctx->lock); 2536 return; 2537 } 2538 raw_spin_unlock_irq(&ctx->lock); 2539 2540 event_function_call(event, __perf_remove_from_context, (void *)flags); 2541 } 2542 2543 /* 2544 * Cross CPU call to disable a performance event 2545 */ 2546 static void __perf_event_disable(struct perf_event *event, 2547 struct perf_cpu_context *cpuctx, 2548 struct perf_event_context *ctx, 2549 void *info) 2550 { 2551 if (event->state < PERF_EVENT_STATE_INACTIVE) 2552 return; 2553 2554 perf_pmu_disable(event->pmu_ctx->pmu); 2555 ctx_time_update_event(ctx, event); 2556 2557 if (event == event->group_leader) 2558 group_sched_out(event, ctx); 2559 else 2560 event_sched_out(event, ctx); 2561 2562 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2563 perf_cgroup_event_disable(event, ctx); 2564 2565 perf_pmu_enable(event->pmu_ctx->pmu); 2566 } 2567 2568 /* 2569 * Disable an event. 2570 * 2571 * If event->ctx is a cloned context, callers must make sure that 2572 * every task struct that event->ctx->task could possibly point to 2573 * remains valid. This condition is satisfied when called through 2574 * perf_event_for_each_child or perf_event_for_each because they 2575 * hold the top-level event's child_mutex, so any descendant that 2576 * goes to exit will block in perf_event_exit_event(). 2577 * 2578 * When called from perf_pending_disable it's OK because event->ctx 2579 * is the current context on this CPU and preemption is disabled, 2580 * hence we can't get into perf_event_task_sched_out for this context. 2581 */ 2582 static void _perf_event_disable(struct perf_event *event) 2583 { 2584 struct perf_event_context *ctx = event->ctx; 2585 2586 raw_spin_lock_irq(&ctx->lock); 2587 if (event->state <= PERF_EVENT_STATE_OFF) { 2588 raw_spin_unlock_irq(&ctx->lock); 2589 return; 2590 } 2591 raw_spin_unlock_irq(&ctx->lock); 2592 2593 event_function_call(event, __perf_event_disable, NULL); 2594 } 2595 2596 void perf_event_disable_local(struct perf_event *event) 2597 { 2598 event_function_local(event, __perf_event_disable, NULL); 2599 } 2600 2601 /* 2602 * Strictly speaking kernel users cannot create groups and therefore this 2603 * interface does not need the perf_event_ctx_lock() magic. 2604 */ 2605 void perf_event_disable(struct perf_event *event) 2606 { 2607 struct perf_event_context *ctx; 2608 2609 ctx = perf_event_ctx_lock(event); 2610 _perf_event_disable(event); 2611 perf_event_ctx_unlock(event, ctx); 2612 } 2613 EXPORT_SYMBOL_GPL(perf_event_disable); 2614 2615 void perf_event_disable_inatomic(struct perf_event *event) 2616 { 2617 event->pending_disable = 1; 2618 irq_work_queue(&event->pending_disable_irq); 2619 } 2620 2621 #define MAX_INTERRUPTS (~0ULL) 2622 2623 static void perf_log_throttle(struct perf_event *event, int enable); 2624 static void perf_log_itrace_start(struct perf_event *event); 2625 2626 static int 2627 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2628 { 2629 struct perf_event_pmu_context *epc = event->pmu_ctx; 2630 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2631 int ret = 0; 2632 2633 WARN_ON_ONCE(event->ctx != ctx); 2634 2635 lockdep_assert_held(&ctx->lock); 2636 2637 if (event->state <= PERF_EVENT_STATE_OFF) 2638 return 0; 2639 2640 WRITE_ONCE(event->oncpu, smp_processor_id()); 2641 /* 2642 * Order event::oncpu write to happen before the ACTIVE state is 2643 * visible. This allows perf_event_{stop,read}() to observe the correct 2644 * ->oncpu if it sees ACTIVE. 2645 */ 2646 smp_wmb(); 2647 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2648 2649 /* 2650 * Unthrottle events, since we scheduled we might have missed several 2651 * ticks already, also for a heavily scheduling task there is little 2652 * guarantee it'll get a tick in a timely manner. 2653 */ 2654 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2655 perf_log_throttle(event, 1); 2656 event->hw.interrupts = 0; 2657 } 2658 2659 perf_pmu_disable(event->pmu); 2660 2661 perf_log_itrace_start(event); 2662 2663 if (event->pmu->add(event, PERF_EF_START)) { 2664 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2665 event->oncpu = -1; 2666 ret = -EAGAIN; 2667 goto out; 2668 } 2669 2670 if (!is_software_event(event)) 2671 cpc->active_oncpu++; 2672 if (event->attr.freq && event->attr.sample_freq) { 2673 ctx->nr_freq++; 2674 epc->nr_freq++; 2675 } 2676 if (event->attr.exclusive) 2677 cpc->exclusive = 1; 2678 2679 out: 2680 perf_pmu_enable(event->pmu); 2681 2682 return ret; 2683 } 2684 2685 static int 2686 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2687 { 2688 struct perf_event *event, *partial_group = NULL; 2689 struct pmu *pmu = group_event->pmu_ctx->pmu; 2690 2691 if (group_event->state == PERF_EVENT_STATE_OFF) 2692 return 0; 2693 2694 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2695 2696 if (event_sched_in(group_event, ctx)) 2697 goto error; 2698 2699 /* 2700 * Schedule in siblings as one group (if any): 2701 */ 2702 for_each_sibling_event(event, group_event) { 2703 if (event_sched_in(event, ctx)) { 2704 partial_group = event; 2705 goto group_error; 2706 } 2707 } 2708 2709 if (!pmu->commit_txn(pmu)) 2710 return 0; 2711 2712 group_error: 2713 /* 2714 * Groups can be scheduled in as one unit only, so undo any 2715 * partial group before returning: 2716 * The events up to the failed event are scheduled out normally. 2717 */ 2718 for_each_sibling_event(event, group_event) { 2719 if (event == partial_group) 2720 break; 2721 2722 event_sched_out(event, ctx); 2723 } 2724 event_sched_out(group_event, ctx); 2725 2726 error: 2727 pmu->cancel_txn(pmu); 2728 return -EAGAIN; 2729 } 2730 2731 /* 2732 * Work out whether we can put this event group on the CPU now. 2733 */ 2734 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2735 { 2736 struct perf_event_pmu_context *epc = event->pmu_ctx; 2737 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2738 2739 /* 2740 * Groups consisting entirely of software events can always go on. 2741 */ 2742 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2743 return 1; 2744 /* 2745 * If an exclusive group is already on, no other hardware 2746 * events can go on. 2747 */ 2748 if (cpc->exclusive) 2749 return 0; 2750 /* 2751 * If this group is exclusive and there are already 2752 * events on the CPU, it can't go on. 2753 */ 2754 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2755 return 0; 2756 /* 2757 * Otherwise, try to add it if all previous groups were able 2758 * to go on. 2759 */ 2760 return can_add_hw; 2761 } 2762 2763 static void add_event_to_ctx(struct perf_event *event, 2764 struct perf_event_context *ctx) 2765 { 2766 list_add_event(event, ctx); 2767 perf_group_attach(event); 2768 } 2769 2770 static void task_ctx_sched_out(struct perf_event_context *ctx, 2771 struct pmu *pmu, 2772 enum event_type_t event_type) 2773 { 2774 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2775 2776 if (!cpuctx->task_ctx) 2777 return; 2778 2779 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2780 return; 2781 2782 ctx_sched_out(ctx, pmu, event_type); 2783 } 2784 2785 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2786 struct perf_event_context *ctx, 2787 struct pmu *pmu) 2788 { 2789 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2790 if (ctx) 2791 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2792 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2793 if (ctx) 2794 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2795 } 2796 2797 /* 2798 * We want to maintain the following priority of scheduling: 2799 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2800 * - task pinned (EVENT_PINNED) 2801 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2802 * - task flexible (EVENT_FLEXIBLE). 2803 * 2804 * In order to avoid unscheduling and scheduling back in everything every 2805 * time an event is added, only do it for the groups of equal priority and 2806 * below. 2807 * 2808 * This can be called after a batch operation on task events, in which case 2809 * event_type is a bit mask of the types of events involved. For CPU events, 2810 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2811 */ 2812 static void ctx_resched(struct perf_cpu_context *cpuctx, 2813 struct perf_event_context *task_ctx, 2814 struct pmu *pmu, enum event_type_t event_type) 2815 { 2816 bool cpu_event = !!(event_type & EVENT_CPU); 2817 struct perf_event_pmu_context *epc; 2818 2819 /* 2820 * If pinned groups are involved, flexible groups also need to be 2821 * scheduled out. 2822 */ 2823 if (event_type & EVENT_PINNED) 2824 event_type |= EVENT_FLEXIBLE; 2825 2826 event_type &= EVENT_ALL; 2827 2828 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2829 perf_pmu_disable(epc->pmu); 2830 2831 if (task_ctx) { 2832 for_each_epc(epc, task_ctx, pmu, false) 2833 perf_pmu_disable(epc->pmu); 2834 2835 task_ctx_sched_out(task_ctx, pmu, event_type); 2836 } 2837 2838 /* 2839 * Decide which cpu ctx groups to schedule out based on the types 2840 * of events that caused rescheduling: 2841 * - EVENT_CPU: schedule out corresponding groups; 2842 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2843 * - otherwise, do nothing more. 2844 */ 2845 if (cpu_event) 2846 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2847 else if (event_type & EVENT_PINNED) 2848 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2849 2850 perf_event_sched_in(cpuctx, task_ctx, pmu); 2851 2852 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2853 perf_pmu_enable(epc->pmu); 2854 2855 if (task_ctx) { 2856 for_each_epc(epc, task_ctx, pmu, false) 2857 perf_pmu_enable(epc->pmu); 2858 } 2859 } 2860 2861 void perf_pmu_resched(struct pmu *pmu) 2862 { 2863 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2864 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2865 2866 perf_ctx_lock(cpuctx, task_ctx); 2867 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2868 perf_ctx_unlock(cpuctx, task_ctx); 2869 } 2870 2871 /* 2872 * Cross CPU call to install and enable a performance event 2873 * 2874 * Very similar to remote_function() + event_function() but cannot assume that 2875 * things like ctx->is_active and cpuctx->task_ctx are set. 2876 */ 2877 static int __perf_install_in_context(void *info) 2878 { 2879 struct perf_event *event = info; 2880 struct perf_event_context *ctx = event->ctx; 2881 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2882 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2883 bool reprogram = true; 2884 int ret = 0; 2885 2886 raw_spin_lock(&cpuctx->ctx.lock); 2887 if (ctx->task) { 2888 raw_spin_lock(&ctx->lock); 2889 task_ctx = ctx; 2890 2891 reprogram = (ctx->task == current); 2892 2893 /* 2894 * If the task is running, it must be running on this CPU, 2895 * otherwise we cannot reprogram things. 2896 * 2897 * If its not running, we don't care, ctx->lock will 2898 * serialize against it becoming runnable. 2899 */ 2900 if (task_curr(ctx->task) && !reprogram) { 2901 ret = -ESRCH; 2902 goto unlock; 2903 } 2904 2905 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2906 } else if (task_ctx) { 2907 raw_spin_lock(&task_ctx->lock); 2908 } 2909 2910 #ifdef CONFIG_CGROUP_PERF 2911 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2912 /* 2913 * If the current cgroup doesn't match the event's 2914 * cgroup, we should not try to schedule it. 2915 */ 2916 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2917 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2918 event->cgrp->css.cgroup); 2919 } 2920 #endif 2921 2922 if (reprogram) { 2923 ctx_time_freeze(cpuctx, ctx); 2924 add_event_to_ctx(event, ctx); 2925 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2926 get_event_type(event)); 2927 } else { 2928 add_event_to_ctx(event, ctx); 2929 } 2930 2931 unlock: 2932 perf_ctx_unlock(cpuctx, task_ctx); 2933 2934 return ret; 2935 } 2936 2937 static bool exclusive_event_installable(struct perf_event *event, 2938 struct perf_event_context *ctx); 2939 2940 /* 2941 * Attach a performance event to a context. 2942 * 2943 * Very similar to event_function_call, see comment there. 2944 */ 2945 static void 2946 perf_install_in_context(struct perf_event_context *ctx, 2947 struct perf_event *event, 2948 int cpu) 2949 { 2950 struct task_struct *task = READ_ONCE(ctx->task); 2951 2952 lockdep_assert_held(&ctx->mutex); 2953 2954 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2955 2956 if (event->cpu != -1) 2957 WARN_ON_ONCE(event->cpu != cpu); 2958 2959 /* 2960 * Ensures that if we can observe event->ctx, both the event and ctx 2961 * will be 'complete'. See perf_iterate_sb_cpu(). 2962 */ 2963 smp_store_release(&event->ctx, ctx); 2964 2965 /* 2966 * perf_event_attr::disabled events will not run and can be initialized 2967 * without IPI. Except when this is the first event for the context, in 2968 * that case we need the magic of the IPI to set ctx->is_active. 2969 * 2970 * The IOC_ENABLE that is sure to follow the creation of a disabled 2971 * event will issue the IPI and reprogram the hardware. 2972 */ 2973 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2974 ctx->nr_events && !is_cgroup_event(event)) { 2975 raw_spin_lock_irq(&ctx->lock); 2976 if (ctx->task == TASK_TOMBSTONE) { 2977 raw_spin_unlock_irq(&ctx->lock); 2978 return; 2979 } 2980 add_event_to_ctx(event, ctx); 2981 raw_spin_unlock_irq(&ctx->lock); 2982 return; 2983 } 2984 2985 if (!task) { 2986 cpu_function_call(cpu, __perf_install_in_context, event); 2987 return; 2988 } 2989 2990 /* 2991 * Should not happen, we validate the ctx is still alive before calling. 2992 */ 2993 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2994 return; 2995 2996 /* 2997 * Installing events is tricky because we cannot rely on ctx->is_active 2998 * to be set in case this is the nr_events 0 -> 1 transition. 2999 * 3000 * Instead we use task_curr(), which tells us if the task is running. 3001 * However, since we use task_curr() outside of rq::lock, we can race 3002 * against the actual state. This means the result can be wrong. 3003 * 3004 * If we get a false positive, we retry, this is harmless. 3005 * 3006 * If we get a false negative, things are complicated. If we are after 3007 * perf_event_context_sched_in() ctx::lock will serialize us, and the 3008 * value must be correct. If we're before, it doesn't matter since 3009 * perf_event_context_sched_in() will program the counter. 3010 * 3011 * However, this hinges on the remote context switch having observed 3012 * our task->perf_event_ctxp[] store, such that it will in fact take 3013 * ctx::lock in perf_event_context_sched_in(). 3014 * 3015 * We do this by task_function_call(), if the IPI fails to hit the task 3016 * we know any future context switch of task must see the 3017 * perf_event_ctpx[] store. 3018 */ 3019 3020 /* 3021 * This smp_mb() orders the task->perf_event_ctxp[] store with the 3022 * task_cpu() load, such that if the IPI then does not find the task 3023 * running, a future context switch of that task must observe the 3024 * store. 3025 */ 3026 smp_mb(); 3027 again: 3028 if (!task_function_call(task, __perf_install_in_context, event)) 3029 return; 3030 3031 raw_spin_lock_irq(&ctx->lock); 3032 task = ctx->task; 3033 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 3034 /* 3035 * Cannot happen because we already checked above (which also 3036 * cannot happen), and we hold ctx->mutex, which serializes us 3037 * against perf_event_exit_task_context(). 3038 */ 3039 raw_spin_unlock_irq(&ctx->lock); 3040 return; 3041 } 3042 /* 3043 * If the task is not running, ctx->lock will avoid it becoming so, 3044 * thus we can safely install the event. 3045 */ 3046 if (task_curr(task)) { 3047 raw_spin_unlock_irq(&ctx->lock); 3048 goto again; 3049 } 3050 add_event_to_ctx(event, ctx); 3051 raw_spin_unlock_irq(&ctx->lock); 3052 } 3053 3054 /* 3055 * Cross CPU call to enable a performance event 3056 */ 3057 static void __perf_event_enable(struct perf_event *event, 3058 struct perf_cpu_context *cpuctx, 3059 struct perf_event_context *ctx, 3060 void *info) 3061 { 3062 struct perf_event *leader = event->group_leader; 3063 struct perf_event_context *task_ctx; 3064 3065 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3066 event->state <= PERF_EVENT_STATE_ERROR) 3067 return; 3068 3069 ctx_time_freeze(cpuctx, ctx); 3070 3071 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3072 perf_cgroup_event_enable(event, ctx); 3073 3074 if (!ctx->is_active) 3075 return; 3076 3077 if (!event_filter_match(event)) 3078 return; 3079 3080 /* 3081 * If the event is in a group and isn't the group leader, 3082 * then don't put it on unless the group is on. 3083 */ 3084 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3085 return; 3086 3087 task_ctx = cpuctx->task_ctx; 3088 if (ctx->task) 3089 WARN_ON_ONCE(task_ctx != ctx); 3090 3091 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3092 } 3093 3094 /* 3095 * Enable an event. 3096 * 3097 * If event->ctx is a cloned context, callers must make sure that 3098 * every task struct that event->ctx->task could possibly point to 3099 * remains valid. This condition is satisfied when called through 3100 * perf_event_for_each_child or perf_event_for_each as described 3101 * for perf_event_disable. 3102 */ 3103 static void _perf_event_enable(struct perf_event *event) 3104 { 3105 struct perf_event_context *ctx = event->ctx; 3106 3107 raw_spin_lock_irq(&ctx->lock); 3108 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3109 event->state < PERF_EVENT_STATE_ERROR) { 3110 out: 3111 raw_spin_unlock_irq(&ctx->lock); 3112 return; 3113 } 3114 3115 /* 3116 * If the event is in error state, clear that first. 3117 * 3118 * That way, if we see the event in error state below, we know that it 3119 * has gone back into error state, as distinct from the task having 3120 * been scheduled away before the cross-call arrived. 3121 */ 3122 if (event->state == PERF_EVENT_STATE_ERROR) { 3123 /* 3124 * Detached SIBLING events cannot leave ERROR state. 3125 */ 3126 if (event->event_caps & PERF_EV_CAP_SIBLING && 3127 event->group_leader == event) 3128 goto out; 3129 3130 event->state = PERF_EVENT_STATE_OFF; 3131 } 3132 raw_spin_unlock_irq(&ctx->lock); 3133 3134 event_function_call(event, __perf_event_enable, NULL); 3135 } 3136 3137 /* 3138 * See perf_event_disable(); 3139 */ 3140 void perf_event_enable(struct perf_event *event) 3141 { 3142 struct perf_event_context *ctx; 3143 3144 ctx = perf_event_ctx_lock(event); 3145 _perf_event_enable(event); 3146 perf_event_ctx_unlock(event, ctx); 3147 } 3148 EXPORT_SYMBOL_GPL(perf_event_enable); 3149 3150 struct stop_event_data { 3151 struct perf_event *event; 3152 unsigned int restart; 3153 }; 3154 3155 static int __perf_event_stop(void *info) 3156 { 3157 struct stop_event_data *sd = info; 3158 struct perf_event *event = sd->event; 3159 3160 /* if it's already INACTIVE, do nothing */ 3161 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3162 return 0; 3163 3164 /* matches smp_wmb() in event_sched_in() */ 3165 smp_rmb(); 3166 3167 /* 3168 * There is a window with interrupts enabled before we get here, 3169 * so we need to check again lest we try to stop another CPU's event. 3170 */ 3171 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3172 return -EAGAIN; 3173 3174 event->pmu->stop(event, PERF_EF_UPDATE); 3175 3176 /* 3177 * May race with the actual stop (through perf_pmu_output_stop()), 3178 * but it is only used for events with AUX ring buffer, and such 3179 * events will refuse to restart because of rb::aux_mmap_count==0, 3180 * see comments in perf_aux_output_begin(). 3181 * 3182 * Since this is happening on an event-local CPU, no trace is lost 3183 * while restarting. 3184 */ 3185 if (sd->restart) 3186 event->pmu->start(event, 0); 3187 3188 return 0; 3189 } 3190 3191 static int perf_event_stop(struct perf_event *event, int restart) 3192 { 3193 struct stop_event_data sd = { 3194 .event = event, 3195 .restart = restart, 3196 }; 3197 int ret = 0; 3198 3199 do { 3200 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3201 return 0; 3202 3203 /* matches smp_wmb() in event_sched_in() */ 3204 smp_rmb(); 3205 3206 /* 3207 * We only want to restart ACTIVE events, so if the event goes 3208 * inactive here (event->oncpu==-1), there's nothing more to do; 3209 * fall through with ret==-ENXIO. 3210 */ 3211 ret = cpu_function_call(READ_ONCE(event->oncpu), 3212 __perf_event_stop, &sd); 3213 } while (ret == -EAGAIN); 3214 3215 return ret; 3216 } 3217 3218 /* 3219 * In order to contain the amount of racy and tricky in the address filter 3220 * configuration management, it is a two part process: 3221 * 3222 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3223 * we update the addresses of corresponding vmas in 3224 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3225 * (p2) when an event is scheduled in (pmu::add), it calls 3226 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3227 * if the generation has changed since the previous call. 3228 * 3229 * If (p1) happens while the event is active, we restart it to force (p2). 3230 * 3231 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3232 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3233 * ioctl; 3234 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3235 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3236 * for reading; 3237 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3238 * of exec. 3239 */ 3240 void perf_event_addr_filters_sync(struct perf_event *event) 3241 { 3242 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3243 3244 if (!has_addr_filter(event)) 3245 return; 3246 3247 raw_spin_lock(&ifh->lock); 3248 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3249 event->pmu->addr_filters_sync(event); 3250 event->hw.addr_filters_gen = event->addr_filters_gen; 3251 } 3252 raw_spin_unlock(&ifh->lock); 3253 } 3254 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3255 3256 static int _perf_event_refresh(struct perf_event *event, int refresh) 3257 { 3258 /* 3259 * not supported on inherited events 3260 */ 3261 if (event->attr.inherit || !is_sampling_event(event)) 3262 return -EINVAL; 3263 3264 atomic_add(refresh, &event->event_limit); 3265 _perf_event_enable(event); 3266 3267 return 0; 3268 } 3269 3270 /* 3271 * See perf_event_disable() 3272 */ 3273 int perf_event_refresh(struct perf_event *event, int refresh) 3274 { 3275 struct perf_event_context *ctx; 3276 int ret; 3277 3278 ctx = perf_event_ctx_lock(event); 3279 ret = _perf_event_refresh(event, refresh); 3280 perf_event_ctx_unlock(event, ctx); 3281 3282 return ret; 3283 } 3284 EXPORT_SYMBOL_GPL(perf_event_refresh); 3285 3286 static int perf_event_modify_breakpoint(struct perf_event *bp, 3287 struct perf_event_attr *attr) 3288 { 3289 int err; 3290 3291 _perf_event_disable(bp); 3292 3293 err = modify_user_hw_breakpoint_check(bp, attr, true); 3294 3295 if (!bp->attr.disabled) 3296 _perf_event_enable(bp); 3297 3298 return err; 3299 } 3300 3301 /* 3302 * Copy event-type-independent attributes that may be modified. 3303 */ 3304 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3305 const struct perf_event_attr *from) 3306 { 3307 to->sig_data = from->sig_data; 3308 } 3309 3310 static int perf_event_modify_attr(struct perf_event *event, 3311 struct perf_event_attr *attr) 3312 { 3313 int (*func)(struct perf_event *, struct perf_event_attr *); 3314 struct perf_event *child; 3315 int err; 3316 3317 if (event->attr.type != attr->type) 3318 return -EINVAL; 3319 3320 switch (event->attr.type) { 3321 case PERF_TYPE_BREAKPOINT: 3322 func = perf_event_modify_breakpoint; 3323 break; 3324 default: 3325 /* Place holder for future additions. */ 3326 return -EOPNOTSUPP; 3327 } 3328 3329 WARN_ON_ONCE(event->ctx->parent_ctx); 3330 3331 mutex_lock(&event->child_mutex); 3332 /* 3333 * Event-type-independent attributes must be copied before event-type 3334 * modification, which will validate that final attributes match the 3335 * source attributes after all relevant attributes have been copied. 3336 */ 3337 perf_event_modify_copy_attr(&event->attr, attr); 3338 err = func(event, attr); 3339 if (err) 3340 goto out; 3341 list_for_each_entry(child, &event->child_list, child_list) { 3342 perf_event_modify_copy_attr(&child->attr, attr); 3343 err = func(child, attr); 3344 if (err) 3345 goto out; 3346 } 3347 out: 3348 mutex_unlock(&event->child_mutex); 3349 return err; 3350 } 3351 3352 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3353 enum event_type_t event_type) 3354 { 3355 struct perf_event_context *ctx = pmu_ctx->ctx; 3356 struct perf_event *event, *tmp; 3357 struct pmu *pmu = pmu_ctx->pmu; 3358 3359 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3360 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3361 3362 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3363 cpc->task_epc = NULL; 3364 } 3365 3366 if (!(event_type & EVENT_ALL)) 3367 return; 3368 3369 perf_pmu_disable(pmu); 3370 if (event_type & EVENT_PINNED) { 3371 list_for_each_entry_safe(event, tmp, 3372 &pmu_ctx->pinned_active, 3373 active_list) 3374 group_sched_out(event, ctx); 3375 } 3376 3377 if (event_type & EVENT_FLEXIBLE) { 3378 list_for_each_entry_safe(event, tmp, 3379 &pmu_ctx->flexible_active, 3380 active_list) 3381 group_sched_out(event, ctx); 3382 /* 3383 * Since we cleared EVENT_FLEXIBLE, also clear 3384 * rotate_necessary, is will be reset by 3385 * ctx_flexible_sched_in() when needed. 3386 */ 3387 pmu_ctx->rotate_necessary = 0; 3388 } 3389 perf_pmu_enable(pmu); 3390 } 3391 3392 /* 3393 * Be very careful with the @pmu argument since this will change ctx state. 3394 * The @pmu argument works for ctx_resched(), because that is symmetric in 3395 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3396 * 3397 * However, if you were to be asymmetrical, you could end up with messed up 3398 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3399 * be active. 3400 */ 3401 static void 3402 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3403 { 3404 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3405 struct perf_event_pmu_context *pmu_ctx; 3406 int is_active = ctx->is_active; 3407 bool cgroup = event_type & EVENT_CGROUP; 3408 3409 event_type &= ~EVENT_CGROUP; 3410 3411 lockdep_assert_held(&ctx->lock); 3412 3413 if (likely(!ctx->nr_events)) { 3414 /* 3415 * See __perf_remove_from_context(). 3416 */ 3417 WARN_ON_ONCE(ctx->is_active); 3418 if (ctx->task) 3419 WARN_ON_ONCE(cpuctx->task_ctx); 3420 return; 3421 } 3422 3423 /* 3424 * Always update time if it was set; not only when it changes. 3425 * Otherwise we can 'forget' to update time for any but the last 3426 * context we sched out. For example: 3427 * 3428 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3429 * ctx_sched_out(.event_type = EVENT_PINNED) 3430 * 3431 * would only update time for the pinned events. 3432 */ 3433 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3434 3435 /* 3436 * CPU-release for the below ->is_active store, 3437 * see __load_acquire() in perf_event_time_now() 3438 */ 3439 barrier(); 3440 ctx->is_active &= ~event_type; 3441 3442 if (!(ctx->is_active & EVENT_ALL)) { 3443 /* 3444 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3445 * does not observe a hole. perf_ctx_unlock() will clean up. 3446 */ 3447 if (ctx->is_active & EVENT_FROZEN) 3448 ctx->is_active &= EVENT_TIME_FROZEN; 3449 else 3450 ctx->is_active = 0; 3451 } 3452 3453 if (ctx->task) { 3454 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3455 if (!(ctx->is_active & EVENT_ALL)) 3456 cpuctx->task_ctx = NULL; 3457 } 3458 3459 is_active ^= ctx->is_active; /* changed bits */ 3460 3461 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3462 __pmu_ctx_sched_out(pmu_ctx, is_active); 3463 } 3464 3465 /* 3466 * Test whether two contexts are equivalent, i.e. whether they have both been 3467 * cloned from the same version of the same context. 3468 * 3469 * Equivalence is measured using a generation number in the context that is 3470 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3471 * and list_del_event(). 3472 */ 3473 static int context_equiv(struct perf_event_context *ctx1, 3474 struct perf_event_context *ctx2) 3475 { 3476 lockdep_assert_held(&ctx1->lock); 3477 lockdep_assert_held(&ctx2->lock); 3478 3479 /* Pinning disables the swap optimization */ 3480 if (ctx1->pin_count || ctx2->pin_count) 3481 return 0; 3482 3483 /* If ctx1 is the parent of ctx2 */ 3484 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3485 return 1; 3486 3487 /* If ctx2 is the parent of ctx1 */ 3488 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3489 return 1; 3490 3491 /* 3492 * If ctx1 and ctx2 have the same parent; we flatten the parent 3493 * hierarchy, see perf_event_init_context(). 3494 */ 3495 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3496 ctx1->parent_gen == ctx2->parent_gen) 3497 return 1; 3498 3499 /* Unmatched */ 3500 return 0; 3501 } 3502 3503 static void __perf_event_sync_stat(struct perf_event *event, 3504 struct perf_event *next_event) 3505 { 3506 u64 value; 3507 3508 if (!event->attr.inherit_stat) 3509 return; 3510 3511 /* 3512 * Update the event value, we cannot use perf_event_read() 3513 * because we're in the middle of a context switch and have IRQs 3514 * disabled, which upsets smp_call_function_single(), however 3515 * we know the event must be on the current CPU, therefore we 3516 * don't need to use it. 3517 */ 3518 perf_pmu_read(event); 3519 3520 perf_event_update_time(event); 3521 3522 /* 3523 * In order to keep per-task stats reliable we need to flip the event 3524 * values when we flip the contexts. 3525 */ 3526 value = local64_read(&next_event->count); 3527 value = local64_xchg(&event->count, value); 3528 local64_set(&next_event->count, value); 3529 3530 swap(event->total_time_enabled, next_event->total_time_enabled); 3531 swap(event->total_time_running, next_event->total_time_running); 3532 3533 /* 3534 * Since we swizzled the values, update the user visible data too. 3535 */ 3536 perf_event_update_userpage(event); 3537 perf_event_update_userpage(next_event); 3538 } 3539 3540 static void perf_event_sync_stat(struct perf_event_context *ctx, 3541 struct perf_event_context *next_ctx) 3542 { 3543 struct perf_event *event, *next_event; 3544 3545 if (!ctx->nr_stat) 3546 return; 3547 3548 update_context_time(ctx); 3549 3550 event = list_first_entry(&ctx->event_list, 3551 struct perf_event, event_entry); 3552 3553 next_event = list_first_entry(&next_ctx->event_list, 3554 struct perf_event, event_entry); 3555 3556 while (&event->event_entry != &ctx->event_list && 3557 &next_event->event_entry != &next_ctx->event_list) { 3558 3559 __perf_event_sync_stat(event, next_event); 3560 3561 event = list_next_entry(event, event_entry); 3562 next_event = list_next_entry(next_event, event_entry); 3563 } 3564 } 3565 3566 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, 3567 struct task_struct *task, bool sched_in) 3568 { 3569 struct perf_event_pmu_context *pmu_ctx; 3570 struct perf_cpu_pmu_context *cpc; 3571 3572 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3573 cpc = this_cpc(pmu_ctx->pmu); 3574 3575 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3576 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); 3577 } 3578 } 3579 3580 static void 3581 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3582 { 3583 struct perf_event_context *ctx = task->perf_event_ctxp; 3584 struct perf_event_context *next_ctx; 3585 struct perf_event_context *parent, *next_parent; 3586 int do_switch = 1; 3587 3588 if (likely(!ctx)) 3589 return; 3590 3591 rcu_read_lock(); 3592 next_ctx = rcu_dereference(next->perf_event_ctxp); 3593 if (!next_ctx) 3594 goto unlock; 3595 3596 parent = rcu_dereference(ctx->parent_ctx); 3597 next_parent = rcu_dereference(next_ctx->parent_ctx); 3598 3599 /* If neither context have a parent context; they cannot be clones. */ 3600 if (!parent && !next_parent) 3601 goto unlock; 3602 3603 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3604 /* 3605 * Looks like the two contexts are clones, so we might be 3606 * able to optimize the context switch. We lock both 3607 * contexts and check that they are clones under the 3608 * lock (including re-checking that neither has been 3609 * uncloned in the meantime). It doesn't matter which 3610 * order we take the locks because no other cpu could 3611 * be trying to lock both of these tasks. 3612 */ 3613 raw_spin_lock(&ctx->lock); 3614 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3615 if (context_equiv(ctx, next_ctx)) { 3616 3617 perf_ctx_disable(ctx, false); 3618 3619 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3620 if (local_read(&ctx->nr_no_switch_fast) || 3621 local_read(&next_ctx->nr_no_switch_fast)) { 3622 /* 3623 * Must not swap out ctx when there's pending 3624 * events that rely on the ctx->task relation. 3625 * 3626 * Likewise, when a context contains inherit + 3627 * SAMPLE_READ events they should be switched 3628 * out using the slow path so that they are 3629 * treated as if they were distinct contexts. 3630 */ 3631 raw_spin_unlock(&next_ctx->lock); 3632 rcu_read_unlock(); 3633 goto inside_switch; 3634 } 3635 3636 WRITE_ONCE(ctx->task, next); 3637 WRITE_ONCE(next_ctx->task, task); 3638 3639 perf_ctx_sched_task_cb(ctx, task, false); 3640 3641 perf_ctx_enable(ctx, false); 3642 3643 /* 3644 * RCU_INIT_POINTER here is safe because we've not 3645 * modified the ctx and the above modification of 3646 * ctx->task is immaterial since this value is 3647 * always verified under ctx->lock which we're now 3648 * holding. 3649 */ 3650 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3651 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3652 3653 do_switch = 0; 3654 3655 perf_event_sync_stat(ctx, next_ctx); 3656 } 3657 raw_spin_unlock(&next_ctx->lock); 3658 raw_spin_unlock(&ctx->lock); 3659 } 3660 unlock: 3661 rcu_read_unlock(); 3662 3663 if (do_switch) { 3664 raw_spin_lock(&ctx->lock); 3665 perf_ctx_disable(ctx, false); 3666 3667 inside_switch: 3668 perf_ctx_sched_task_cb(ctx, task, false); 3669 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3670 3671 perf_ctx_enable(ctx, false); 3672 raw_spin_unlock(&ctx->lock); 3673 } 3674 } 3675 3676 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3677 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3678 3679 void perf_sched_cb_dec(struct pmu *pmu) 3680 { 3681 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3682 3683 this_cpu_dec(perf_sched_cb_usages); 3684 barrier(); 3685 3686 if (!--cpc->sched_cb_usage) 3687 list_del(&cpc->sched_cb_entry); 3688 } 3689 3690 3691 void perf_sched_cb_inc(struct pmu *pmu) 3692 { 3693 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3694 3695 if (!cpc->sched_cb_usage++) 3696 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3697 3698 barrier(); 3699 this_cpu_inc(perf_sched_cb_usages); 3700 } 3701 3702 /* 3703 * This function provides the context switch callback to the lower code 3704 * layer. It is invoked ONLY when the context switch callback is enabled. 3705 * 3706 * This callback is relevant even to per-cpu events; for example multi event 3707 * PEBS requires this to provide PID/TID information. This requires we flush 3708 * all queued PEBS records before we context switch to a new task. 3709 */ 3710 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, 3711 struct task_struct *task, bool sched_in) 3712 { 3713 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3714 struct pmu *pmu; 3715 3716 pmu = cpc->epc.pmu; 3717 3718 /* software PMUs will not have sched_task */ 3719 if (WARN_ON_ONCE(!pmu->sched_task)) 3720 return; 3721 3722 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3723 perf_pmu_disable(pmu); 3724 3725 pmu->sched_task(cpc->task_epc, task, sched_in); 3726 3727 perf_pmu_enable(pmu); 3728 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3729 } 3730 3731 static void perf_pmu_sched_task(struct task_struct *prev, 3732 struct task_struct *next, 3733 bool sched_in) 3734 { 3735 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3736 struct perf_cpu_pmu_context *cpc; 3737 3738 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3739 if (prev == next || cpuctx->task_ctx) 3740 return; 3741 3742 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3743 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); 3744 } 3745 3746 static void perf_event_switch(struct task_struct *task, 3747 struct task_struct *next_prev, bool sched_in); 3748 3749 /* 3750 * Called from scheduler to remove the events of the current task, 3751 * with interrupts disabled. 3752 * 3753 * We stop each event and update the event value in event->count. 3754 * 3755 * This does not protect us against NMI, but disable() 3756 * sets the disabled bit in the control field of event _before_ 3757 * accessing the event control register. If a NMI hits, then it will 3758 * not restart the event. 3759 */ 3760 void __perf_event_task_sched_out(struct task_struct *task, 3761 struct task_struct *next) 3762 { 3763 if (__this_cpu_read(perf_sched_cb_usages)) 3764 perf_pmu_sched_task(task, next, false); 3765 3766 if (atomic_read(&nr_switch_events)) 3767 perf_event_switch(task, next, false); 3768 3769 perf_event_context_sched_out(task, next); 3770 3771 /* 3772 * if cgroup events exist on this CPU, then we need 3773 * to check if we have to switch out PMU state. 3774 * cgroup event are system-wide mode only 3775 */ 3776 perf_cgroup_switch(next); 3777 } 3778 3779 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3780 { 3781 const struct perf_event *le = *(const struct perf_event **)l; 3782 const struct perf_event *re = *(const struct perf_event **)r; 3783 3784 return le->group_index < re->group_index; 3785 } 3786 3787 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3788 3789 static const struct min_heap_callbacks perf_min_heap = { 3790 .less = perf_less_group_idx, 3791 .swp = NULL, 3792 }; 3793 3794 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3795 { 3796 struct perf_event **itrs = heap->data; 3797 3798 if (event) { 3799 itrs[heap->nr] = event; 3800 heap->nr++; 3801 } 3802 } 3803 3804 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3805 { 3806 struct perf_cpu_pmu_context *cpc; 3807 3808 if (!pmu_ctx->ctx->task) 3809 return; 3810 3811 cpc = this_cpc(pmu_ctx->pmu); 3812 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3813 cpc->task_epc = pmu_ctx; 3814 } 3815 3816 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3817 struct perf_event_groups *groups, int cpu, 3818 struct pmu *pmu, 3819 int (*func)(struct perf_event *, void *), 3820 void *data) 3821 { 3822 #ifdef CONFIG_CGROUP_PERF 3823 struct cgroup_subsys_state *css = NULL; 3824 #endif 3825 struct perf_cpu_context *cpuctx = NULL; 3826 /* Space for per CPU and/or any CPU event iterators. */ 3827 struct perf_event *itrs[2]; 3828 struct perf_event_min_heap event_heap; 3829 struct perf_event **evt; 3830 int ret; 3831 3832 if (pmu->filter && pmu->filter(pmu, cpu)) 3833 return 0; 3834 3835 if (!ctx->task) { 3836 cpuctx = this_cpu_ptr(&perf_cpu_context); 3837 event_heap = (struct perf_event_min_heap){ 3838 .data = cpuctx->heap, 3839 .nr = 0, 3840 .size = cpuctx->heap_size, 3841 }; 3842 3843 lockdep_assert_held(&cpuctx->ctx.lock); 3844 3845 #ifdef CONFIG_CGROUP_PERF 3846 if (cpuctx->cgrp) 3847 css = &cpuctx->cgrp->css; 3848 #endif 3849 } else { 3850 event_heap = (struct perf_event_min_heap){ 3851 .data = itrs, 3852 .nr = 0, 3853 .size = ARRAY_SIZE(itrs), 3854 }; 3855 /* Events not within a CPU context may be on any CPU. */ 3856 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3857 } 3858 evt = event_heap.data; 3859 3860 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3861 3862 #ifdef CONFIG_CGROUP_PERF 3863 for (; css; css = css->parent) 3864 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3865 #endif 3866 3867 if (event_heap.nr) { 3868 __link_epc((*evt)->pmu_ctx); 3869 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3870 } 3871 3872 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3873 3874 while (event_heap.nr) { 3875 ret = func(*evt, data); 3876 if (ret) 3877 return ret; 3878 3879 *evt = perf_event_groups_next(*evt, pmu); 3880 if (*evt) 3881 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3882 else 3883 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3884 } 3885 3886 return 0; 3887 } 3888 3889 /* 3890 * Because the userpage is strictly per-event (there is no concept of context, 3891 * so there cannot be a context indirection), every userpage must be updated 3892 * when context time starts :-( 3893 * 3894 * IOW, we must not miss EVENT_TIME edges. 3895 */ 3896 static inline bool event_update_userpage(struct perf_event *event) 3897 { 3898 if (likely(!atomic_read(&event->mmap_count))) 3899 return false; 3900 3901 perf_event_update_time(event); 3902 perf_event_update_userpage(event); 3903 3904 return true; 3905 } 3906 3907 static inline void group_update_userpage(struct perf_event *group_event) 3908 { 3909 struct perf_event *event; 3910 3911 if (!event_update_userpage(group_event)) 3912 return; 3913 3914 for_each_sibling_event(event, group_event) 3915 event_update_userpage(event); 3916 } 3917 3918 static int merge_sched_in(struct perf_event *event, void *data) 3919 { 3920 struct perf_event_context *ctx = event->ctx; 3921 int *can_add_hw = data; 3922 3923 if (event->state <= PERF_EVENT_STATE_OFF) 3924 return 0; 3925 3926 if (!event_filter_match(event)) 3927 return 0; 3928 3929 if (group_can_go_on(event, *can_add_hw)) { 3930 if (!group_sched_in(event, ctx)) 3931 list_add_tail(&event->active_list, get_event_list(event)); 3932 } 3933 3934 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3935 *can_add_hw = 0; 3936 if (event->attr.pinned) { 3937 perf_cgroup_event_disable(event, ctx); 3938 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3939 3940 if (*perf_event_fasync(event)) 3941 event->pending_kill = POLL_HUP; 3942 3943 perf_event_wakeup(event); 3944 } else { 3945 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); 3946 3947 event->pmu_ctx->rotate_necessary = 1; 3948 perf_mux_hrtimer_restart(cpc); 3949 group_update_userpage(event); 3950 } 3951 } 3952 3953 return 0; 3954 } 3955 3956 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3957 struct perf_event_groups *groups, 3958 struct pmu *pmu) 3959 { 3960 int can_add_hw = 1; 3961 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3962 merge_sched_in, &can_add_hw); 3963 } 3964 3965 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3966 enum event_type_t event_type) 3967 { 3968 struct perf_event_context *ctx = pmu_ctx->ctx; 3969 3970 if (event_type & EVENT_PINNED) 3971 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3972 if (event_type & EVENT_FLEXIBLE) 3973 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3974 } 3975 3976 static void 3977 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3978 { 3979 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3980 struct perf_event_pmu_context *pmu_ctx; 3981 int is_active = ctx->is_active; 3982 bool cgroup = event_type & EVENT_CGROUP; 3983 3984 event_type &= ~EVENT_CGROUP; 3985 3986 lockdep_assert_held(&ctx->lock); 3987 3988 if (likely(!ctx->nr_events)) 3989 return; 3990 3991 if (!(is_active & EVENT_TIME)) { 3992 /* start ctx time */ 3993 __update_context_time(ctx, false); 3994 perf_cgroup_set_timestamp(cpuctx); 3995 /* 3996 * CPU-release for the below ->is_active store, 3997 * see __load_acquire() in perf_event_time_now() 3998 */ 3999 barrier(); 4000 } 4001 4002 ctx->is_active |= (event_type | EVENT_TIME); 4003 if (ctx->task) { 4004 if (!(is_active & EVENT_ALL)) 4005 cpuctx->task_ctx = ctx; 4006 else 4007 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4008 } 4009 4010 is_active ^= ctx->is_active; /* changed bits */ 4011 4012 /* 4013 * First go through the list and put on any pinned groups 4014 * in order to give them the best chance of going on. 4015 */ 4016 if (is_active & EVENT_PINNED) { 4017 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4018 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4019 } 4020 4021 /* Then walk through the lower prio flexible groups */ 4022 if (is_active & EVENT_FLEXIBLE) { 4023 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4024 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4025 } 4026 } 4027 4028 static void perf_event_context_sched_in(struct task_struct *task) 4029 { 4030 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4031 struct perf_event_context *ctx; 4032 4033 rcu_read_lock(); 4034 ctx = rcu_dereference(task->perf_event_ctxp); 4035 if (!ctx) 4036 goto rcu_unlock; 4037 4038 if (cpuctx->task_ctx == ctx) { 4039 perf_ctx_lock(cpuctx, ctx); 4040 perf_ctx_disable(ctx, false); 4041 4042 perf_ctx_sched_task_cb(ctx, task, true); 4043 4044 perf_ctx_enable(ctx, false); 4045 perf_ctx_unlock(cpuctx, ctx); 4046 goto rcu_unlock; 4047 } 4048 4049 perf_ctx_lock(cpuctx, ctx); 4050 /* 4051 * We must check ctx->nr_events while holding ctx->lock, such 4052 * that we serialize against perf_install_in_context(). 4053 */ 4054 if (!ctx->nr_events) 4055 goto unlock; 4056 4057 perf_ctx_disable(ctx, false); 4058 /* 4059 * We want to keep the following priority order: 4060 * cpu pinned (that don't need to move), task pinned, 4061 * cpu flexible, task flexible. 4062 * 4063 * However, if task's ctx is not carrying any pinned 4064 * events, no need to flip the cpuctx's events around. 4065 */ 4066 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4067 perf_ctx_disable(&cpuctx->ctx, false); 4068 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4069 } 4070 4071 perf_event_sched_in(cpuctx, ctx, NULL); 4072 4073 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); 4074 4075 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4076 perf_ctx_enable(&cpuctx->ctx, false); 4077 4078 perf_ctx_enable(ctx, false); 4079 4080 unlock: 4081 perf_ctx_unlock(cpuctx, ctx); 4082 rcu_unlock: 4083 rcu_read_unlock(); 4084 } 4085 4086 /* 4087 * Called from scheduler to add the events of the current task 4088 * with interrupts disabled. 4089 * 4090 * We restore the event value and then enable it. 4091 * 4092 * This does not protect us against NMI, but enable() 4093 * sets the enabled bit in the control field of event _before_ 4094 * accessing the event control register. If a NMI hits, then it will 4095 * keep the event running. 4096 */ 4097 void __perf_event_task_sched_in(struct task_struct *prev, 4098 struct task_struct *task) 4099 { 4100 perf_event_context_sched_in(task); 4101 4102 if (atomic_read(&nr_switch_events)) 4103 perf_event_switch(task, prev, true); 4104 4105 if (__this_cpu_read(perf_sched_cb_usages)) 4106 perf_pmu_sched_task(prev, task, true); 4107 } 4108 4109 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4110 { 4111 u64 frequency = event->attr.sample_freq; 4112 u64 sec = NSEC_PER_SEC; 4113 u64 divisor, dividend; 4114 4115 int count_fls, nsec_fls, frequency_fls, sec_fls; 4116 4117 count_fls = fls64(count); 4118 nsec_fls = fls64(nsec); 4119 frequency_fls = fls64(frequency); 4120 sec_fls = 30; 4121 4122 /* 4123 * We got @count in @nsec, with a target of sample_freq HZ 4124 * the target period becomes: 4125 * 4126 * @count * 10^9 4127 * period = ------------------- 4128 * @nsec * sample_freq 4129 * 4130 */ 4131 4132 /* 4133 * Reduce accuracy by one bit such that @a and @b converge 4134 * to a similar magnitude. 4135 */ 4136 #define REDUCE_FLS(a, b) \ 4137 do { \ 4138 if (a##_fls > b##_fls) { \ 4139 a >>= 1; \ 4140 a##_fls--; \ 4141 } else { \ 4142 b >>= 1; \ 4143 b##_fls--; \ 4144 } \ 4145 } while (0) 4146 4147 /* 4148 * Reduce accuracy until either term fits in a u64, then proceed with 4149 * the other, so that finally we can do a u64/u64 division. 4150 */ 4151 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4152 REDUCE_FLS(nsec, frequency); 4153 REDUCE_FLS(sec, count); 4154 } 4155 4156 if (count_fls + sec_fls > 64) { 4157 divisor = nsec * frequency; 4158 4159 while (count_fls + sec_fls > 64) { 4160 REDUCE_FLS(count, sec); 4161 divisor >>= 1; 4162 } 4163 4164 dividend = count * sec; 4165 } else { 4166 dividend = count * sec; 4167 4168 while (nsec_fls + frequency_fls > 64) { 4169 REDUCE_FLS(nsec, frequency); 4170 dividend >>= 1; 4171 } 4172 4173 divisor = nsec * frequency; 4174 } 4175 4176 if (!divisor) 4177 return dividend; 4178 4179 return div64_u64(dividend, divisor); 4180 } 4181 4182 static DEFINE_PER_CPU(int, perf_throttled_count); 4183 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4184 4185 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4186 { 4187 struct hw_perf_event *hwc = &event->hw; 4188 s64 period, sample_period; 4189 s64 delta; 4190 4191 period = perf_calculate_period(event, nsec, count); 4192 4193 delta = (s64)(period - hwc->sample_period); 4194 if (delta >= 0) 4195 delta += 7; 4196 else 4197 delta -= 7; 4198 delta /= 8; /* low pass filter */ 4199 4200 sample_period = hwc->sample_period + delta; 4201 4202 if (!sample_period) 4203 sample_period = 1; 4204 4205 hwc->sample_period = sample_period; 4206 4207 if (local64_read(&hwc->period_left) > 8*sample_period) { 4208 if (disable) 4209 event->pmu->stop(event, PERF_EF_UPDATE); 4210 4211 local64_set(&hwc->period_left, 0); 4212 4213 if (disable) 4214 event->pmu->start(event, PERF_EF_RELOAD); 4215 } 4216 } 4217 4218 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4219 { 4220 struct perf_event *event; 4221 struct hw_perf_event *hwc; 4222 u64 now, period = TICK_NSEC; 4223 s64 delta; 4224 4225 list_for_each_entry(event, event_list, active_list) { 4226 if (event->state != PERF_EVENT_STATE_ACTIVE) 4227 continue; 4228 4229 // XXX use visit thingy to avoid the -1,cpu match 4230 if (!event_filter_match(event)) 4231 continue; 4232 4233 hwc = &event->hw; 4234 4235 if (hwc->interrupts == MAX_INTERRUPTS) { 4236 hwc->interrupts = 0; 4237 perf_log_throttle(event, 1); 4238 if (!event->attr.freq || !event->attr.sample_freq) 4239 event->pmu->start(event, 0); 4240 } 4241 4242 if (!event->attr.freq || !event->attr.sample_freq) 4243 continue; 4244 4245 /* 4246 * stop the event and update event->count 4247 */ 4248 event->pmu->stop(event, PERF_EF_UPDATE); 4249 4250 now = local64_read(&event->count); 4251 delta = now - hwc->freq_count_stamp; 4252 hwc->freq_count_stamp = now; 4253 4254 /* 4255 * restart the event 4256 * reload only if value has changed 4257 * we have stopped the event so tell that 4258 * to perf_adjust_period() to avoid stopping it 4259 * twice. 4260 */ 4261 if (delta > 0) 4262 perf_adjust_period(event, period, delta, false); 4263 4264 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4265 } 4266 } 4267 4268 /* 4269 * combine freq adjustment with unthrottling to avoid two passes over the 4270 * events. At the same time, make sure, having freq events does not change 4271 * the rate of unthrottling as that would introduce bias. 4272 */ 4273 static void 4274 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4275 { 4276 struct perf_event_pmu_context *pmu_ctx; 4277 4278 /* 4279 * only need to iterate over all events iff: 4280 * - context have events in frequency mode (needs freq adjust) 4281 * - there are events to unthrottle on this cpu 4282 */ 4283 if (!(ctx->nr_freq || unthrottle)) 4284 return; 4285 4286 raw_spin_lock(&ctx->lock); 4287 4288 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4289 if (!(pmu_ctx->nr_freq || unthrottle)) 4290 continue; 4291 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4292 continue; 4293 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4294 continue; 4295 4296 perf_pmu_disable(pmu_ctx->pmu); 4297 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4298 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4299 perf_pmu_enable(pmu_ctx->pmu); 4300 } 4301 4302 raw_spin_unlock(&ctx->lock); 4303 } 4304 4305 /* 4306 * Move @event to the tail of the @ctx's elegible events. 4307 */ 4308 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4309 { 4310 /* 4311 * Rotate the first entry last of non-pinned groups. Rotation might be 4312 * disabled by the inheritance code. 4313 */ 4314 if (ctx->rotate_disable) 4315 return; 4316 4317 perf_event_groups_delete(&ctx->flexible_groups, event); 4318 perf_event_groups_insert(&ctx->flexible_groups, event); 4319 } 4320 4321 /* pick an event from the flexible_groups to rotate */ 4322 static inline struct perf_event * 4323 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4324 { 4325 struct perf_event *event; 4326 struct rb_node *node; 4327 struct rb_root *tree; 4328 struct __group_key key = { 4329 .pmu = pmu_ctx->pmu, 4330 }; 4331 4332 /* pick the first active flexible event */ 4333 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4334 struct perf_event, active_list); 4335 if (event) 4336 goto out; 4337 4338 /* if no active flexible event, pick the first event */ 4339 tree = &pmu_ctx->ctx->flexible_groups.tree; 4340 4341 if (!pmu_ctx->ctx->task) { 4342 key.cpu = smp_processor_id(); 4343 4344 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4345 if (node) 4346 event = __node_2_pe(node); 4347 goto out; 4348 } 4349 4350 key.cpu = -1; 4351 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4352 if (node) { 4353 event = __node_2_pe(node); 4354 goto out; 4355 } 4356 4357 key.cpu = smp_processor_id(); 4358 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4359 if (node) 4360 event = __node_2_pe(node); 4361 4362 out: 4363 /* 4364 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4365 * finds there are unschedulable events, it will set it again. 4366 */ 4367 pmu_ctx->rotate_necessary = 0; 4368 4369 return event; 4370 } 4371 4372 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4373 { 4374 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4375 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4376 struct perf_event *cpu_event = NULL, *task_event = NULL; 4377 int cpu_rotate, task_rotate; 4378 struct pmu *pmu; 4379 4380 /* 4381 * Since we run this from IRQ context, nobody can install new 4382 * events, thus the event count values are stable. 4383 */ 4384 4385 cpu_epc = &cpc->epc; 4386 pmu = cpu_epc->pmu; 4387 task_epc = cpc->task_epc; 4388 4389 cpu_rotate = cpu_epc->rotate_necessary; 4390 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4391 4392 if (!(cpu_rotate || task_rotate)) 4393 return false; 4394 4395 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4396 perf_pmu_disable(pmu); 4397 4398 if (task_rotate) 4399 task_event = ctx_event_to_rotate(task_epc); 4400 if (cpu_rotate) 4401 cpu_event = ctx_event_to_rotate(cpu_epc); 4402 4403 /* 4404 * As per the order given at ctx_resched() first 'pop' task flexible 4405 * and then, if needed CPU flexible. 4406 */ 4407 if (task_event || (task_epc && cpu_event)) { 4408 update_context_time(task_epc->ctx); 4409 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4410 } 4411 4412 if (cpu_event) { 4413 update_context_time(&cpuctx->ctx); 4414 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4415 rotate_ctx(&cpuctx->ctx, cpu_event); 4416 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4417 } 4418 4419 if (task_event) 4420 rotate_ctx(task_epc->ctx, task_event); 4421 4422 if (task_event || (task_epc && cpu_event)) 4423 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4424 4425 perf_pmu_enable(pmu); 4426 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4427 4428 return true; 4429 } 4430 4431 void perf_event_task_tick(void) 4432 { 4433 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4434 struct perf_event_context *ctx; 4435 int throttled; 4436 4437 lockdep_assert_irqs_disabled(); 4438 4439 __this_cpu_inc(perf_throttled_seq); 4440 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4441 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4442 4443 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4444 4445 rcu_read_lock(); 4446 ctx = rcu_dereference(current->perf_event_ctxp); 4447 if (ctx) 4448 perf_adjust_freq_unthr_context(ctx, !!throttled); 4449 rcu_read_unlock(); 4450 } 4451 4452 static int event_enable_on_exec(struct perf_event *event, 4453 struct perf_event_context *ctx) 4454 { 4455 if (!event->attr.enable_on_exec) 4456 return 0; 4457 4458 event->attr.enable_on_exec = 0; 4459 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4460 return 0; 4461 4462 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4463 4464 return 1; 4465 } 4466 4467 /* 4468 * Enable all of a task's events that have been marked enable-on-exec. 4469 * This expects task == current. 4470 */ 4471 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4472 { 4473 struct perf_event_context *clone_ctx = NULL; 4474 enum event_type_t event_type = 0; 4475 struct perf_cpu_context *cpuctx; 4476 struct perf_event *event; 4477 unsigned long flags; 4478 int enabled = 0; 4479 4480 local_irq_save(flags); 4481 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4482 goto out; 4483 4484 if (!ctx->nr_events) 4485 goto out; 4486 4487 cpuctx = this_cpu_ptr(&perf_cpu_context); 4488 perf_ctx_lock(cpuctx, ctx); 4489 ctx_time_freeze(cpuctx, ctx); 4490 4491 list_for_each_entry(event, &ctx->event_list, event_entry) { 4492 enabled |= event_enable_on_exec(event, ctx); 4493 event_type |= get_event_type(event); 4494 } 4495 4496 /* 4497 * Unclone and reschedule this context if we enabled any event. 4498 */ 4499 if (enabled) { 4500 clone_ctx = unclone_ctx(ctx); 4501 ctx_resched(cpuctx, ctx, NULL, event_type); 4502 } 4503 perf_ctx_unlock(cpuctx, ctx); 4504 4505 out: 4506 local_irq_restore(flags); 4507 4508 if (clone_ctx) 4509 put_ctx(clone_ctx); 4510 } 4511 4512 static void perf_remove_from_owner(struct perf_event *event); 4513 static void perf_event_exit_event(struct perf_event *event, 4514 struct perf_event_context *ctx); 4515 4516 /* 4517 * Removes all events from the current task that have been marked 4518 * remove-on-exec, and feeds their values back to parent events. 4519 */ 4520 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4521 { 4522 struct perf_event_context *clone_ctx = NULL; 4523 struct perf_event *event, *next; 4524 unsigned long flags; 4525 bool modified = false; 4526 4527 mutex_lock(&ctx->mutex); 4528 4529 if (WARN_ON_ONCE(ctx->task != current)) 4530 goto unlock; 4531 4532 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4533 if (!event->attr.remove_on_exec) 4534 continue; 4535 4536 if (!is_kernel_event(event)) 4537 perf_remove_from_owner(event); 4538 4539 modified = true; 4540 4541 perf_event_exit_event(event, ctx); 4542 } 4543 4544 raw_spin_lock_irqsave(&ctx->lock, flags); 4545 if (modified) 4546 clone_ctx = unclone_ctx(ctx); 4547 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4548 4549 unlock: 4550 mutex_unlock(&ctx->mutex); 4551 4552 if (clone_ctx) 4553 put_ctx(clone_ctx); 4554 } 4555 4556 struct perf_read_data { 4557 struct perf_event *event; 4558 bool group; 4559 int ret; 4560 }; 4561 4562 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4563 4564 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4565 { 4566 int local_cpu = smp_processor_id(); 4567 u16 local_pkg, event_pkg; 4568 4569 if ((unsigned)event_cpu >= nr_cpu_ids) 4570 return event_cpu; 4571 4572 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4573 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4574 4575 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4576 return local_cpu; 4577 } 4578 4579 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4580 event_pkg = topology_physical_package_id(event_cpu); 4581 local_pkg = topology_physical_package_id(local_cpu); 4582 4583 if (event_pkg == local_pkg) 4584 return local_cpu; 4585 } 4586 4587 return event_cpu; 4588 } 4589 4590 /* 4591 * Cross CPU call to read the hardware event 4592 */ 4593 static void __perf_event_read(void *info) 4594 { 4595 struct perf_read_data *data = info; 4596 struct perf_event *sub, *event = data->event; 4597 struct perf_event_context *ctx = event->ctx; 4598 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4599 struct pmu *pmu = event->pmu; 4600 4601 /* 4602 * If this is a task context, we need to check whether it is 4603 * the current task context of this cpu. If not it has been 4604 * scheduled out before the smp call arrived. In that case 4605 * event->count would have been updated to a recent sample 4606 * when the event was scheduled out. 4607 */ 4608 if (ctx->task && cpuctx->task_ctx != ctx) 4609 return; 4610 4611 raw_spin_lock(&ctx->lock); 4612 ctx_time_update_event(ctx, event); 4613 4614 perf_event_update_time(event); 4615 if (data->group) 4616 perf_event_update_sibling_time(event); 4617 4618 if (event->state != PERF_EVENT_STATE_ACTIVE) 4619 goto unlock; 4620 4621 if (!data->group) { 4622 pmu->read(event); 4623 data->ret = 0; 4624 goto unlock; 4625 } 4626 4627 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4628 4629 pmu->read(event); 4630 4631 for_each_sibling_event(sub, event) 4632 perf_pmu_read(sub); 4633 4634 data->ret = pmu->commit_txn(pmu); 4635 4636 unlock: 4637 raw_spin_unlock(&ctx->lock); 4638 } 4639 4640 static inline u64 perf_event_count(struct perf_event *event, bool self) 4641 { 4642 if (self) 4643 return local64_read(&event->count); 4644 4645 return local64_read(&event->count) + atomic64_read(&event->child_count); 4646 } 4647 4648 static void calc_timer_values(struct perf_event *event, 4649 u64 *now, 4650 u64 *enabled, 4651 u64 *running) 4652 { 4653 u64 ctx_time; 4654 4655 *now = perf_clock(); 4656 ctx_time = perf_event_time_now(event, *now); 4657 __perf_update_times(event, ctx_time, enabled, running); 4658 } 4659 4660 /* 4661 * NMI-safe method to read a local event, that is an event that 4662 * is: 4663 * - either for the current task, or for this CPU 4664 * - does not have inherit set, for inherited task events 4665 * will not be local and we cannot read them atomically 4666 * - must not have a pmu::count method 4667 */ 4668 int perf_event_read_local(struct perf_event *event, u64 *value, 4669 u64 *enabled, u64 *running) 4670 { 4671 unsigned long flags; 4672 int event_oncpu; 4673 int event_cpu; 4674 int ret = 0; 4675 4676 /* 4677 * Disabling interrupts avoids all counter scheduling (context 4678 * switches, timer based rotation and IPIs). 4679 */ 4680 local_irq_save(flags); 4681 4682 /* 4683 * It must not be an event with inherit set, we cannot read 4684 * all child counters from atomic context. 4685 */ 4686 if (event->attr.inherit) { 4687 ret = -EOPNOTSUPP; 4688 goto out; 4689 } 4690 4691 /* If this is a per-task event, it must be for current */ 4692 if ((event->attach_state & PERF_ATTACH_TASK) && 4693 event->hw.target != current) { 4694 ret = -EINVAL; 4695 goto out; 4696 } 4697 4698 /* 4699 * Get the event CPU numbers, and adjust them to local if the event is 4700 * a per-package event that can be read locally 4701 */ 4702 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4703 event_cpu = __perf_event_read_cpu(event, event->cpu); 4704 4705 /* If this is a per-CPU event, it must be for this CPU */ 4706 if (!(event->attach_state & PERF_ATTACH_TASK) && 4707 event_cpu != smp_processor_id()) { 4708 ret = -EINVAL; 4709 goto out; 4710 } 4711 4712 /* If this is a pinned event it must be running on this CPU */ 4713 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4714 ret = -EBUSY; 4715 goto out; 4716 } 4717 4718 /* 4719 * If the event is currently on this CPU, its either a per-task event, 4720 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4721 * oncpu == -1). 4722 */ 4723 if (event_oncpu == smp_processor_id()) 4724 event->pmu->read(event); 4725 4726 *value = local64_read(&event->count); 4727 if (enabled || running) { 4728 u64 __enabled, __running, __now; 4729 4730 calc_timer_values(event, &__now, &__enabled, &__running); 4731 if (enabled) 4732 *enabled = __enabled; 4733 if (running) 4734 *running = __running; 4735 } 4736 out: 4737 local_irq_restore(flags); 4738 4739 return ret; 4740 } 4741 4742 static int perf_event_read(struct perf_event *event, bool group) 4743 { 4744 enum perf_event_state state = READ_ONCE(event->state); 4745 int event_cpu, ret = 0; 4746 4747 /* 4748 * If event is enabled and currently active on a CPU, update the 4749 * value in the event structure: 4750 */ 4751 again: 4752 if (state == PERF_EVENT_STATE_ACTIVE) { 4753 struct perf_read_data data; 4754 4755 /* 4756 * Orders the ->state and ->oncpu loads such that if we see 4757 * ACTIVE we must also see the right ->oncpu. 4758 * 4759 * Matches the smp_wmb() from event_sched_in(). 4760 */ 4761 smp_rmb(); 4762 4763 event_cpu = READ_ONCE(event->oncpu); 4764 if ((unsigned)event_cpu >= nr_cpu_ids) 4765 return 0; 4766 4767 data = (struct perf_read_data){ 4768 .event = event, 4769 .group = group, 4770 .ret = 0, 4771 }; 4772 4773 preempt_disable(); 4774 event_cpu = __perf_event_read_cpu(event, event_cpu); 4775 4776 /* 4777 * Purposely ignore the smp_call_function_single() return 4778 * value. 4779 * 4780 * If event_cpu isn't a valid CPU it means the event got 4781 * scheduled out and that will have updated the event count. 4782 * 4783 * Therefore, either way, we'll have an up-to-date event count 4784 * after this. 4785 */ 4786 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4787 preempt_enable(); 4788 ret = data.ret; 4789 4790 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4791 struct perf_event_context *ctx = event->ctx; 4792 unsigned long flags; 4793 4794 raw_spin_lock_irqsave(&ctx->lock, flags); 4795 state = event->state; 4796 if (state != PERF_EVENT_STATE_INACTIVE) { 4797 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4798 goto again; 4799 } 4800 4801 /* 4802 * May read while context is not active (e.g., thread is 4803 * blocked), in that case we cannot update context time 4804 */ 4805 ctx_time_update_event(ctx, event); 4806 4807 perf_event_update_time(event); 4808 if (group) 4809 perf_event_update_sibling_time(event); 4810 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4811 } 4812 4813 return ret; 4814 } 4815 4816 /* 4817 * Initialize the perf_event context in a task_struct: 4818 */ 4819 static void __perf_event_init_context(struct perf_event_context *ctx) 4820 { 4821 raw_spin_lock_init(&ctx->lock); 4822 mutex_init(&ctx->mutex); 4823 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4824 perf_event_groups_init(&ctx->pinned_groups); 4825 perf_event_groups_init(&ctx->flexible_groups); 4826 INIT_LIST_HEAD(&ctx->event_list); 4827 refcount_set(&ctx->refcount, 1); 4828 } 4829 4830 static void 4831 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4832 { 4833 epc->pmu = pmu; 4834 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4835 INIT_LIST_HEAD(&epc->pinned_active); 4836 INIT_LIST_HEAD(&epc->flexible_active); 4837 atomic_set(&epc->refcount, 1); 4838 } 4839 4840 static struct perf_event_context * 4841 alloc_perf_context(struct task_struct *task) 4842 { 4843 struct perf_event_context *ctx; 4844 4845 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4846 if (!ctx) 4847 return NULL; 4848 4849 __perf_event_init_context(ctx); 4850 if (task) 4851 ctx->task = get_task_struct(task); 4852 4853 return ctx; 4854 } 4855 4856 static struct task_struct * 4857 find_lively_task_by_vpid(pid_t vpid) 4858 { 4859 struct task_struct *task; 4860 4861 rcu_read_lock(); 4862 if (!vpid) 4863 task = current; 4864 else 4865 task = find_task_by_vpid(vpid); 4866 if (task) 4867 get_task_struct(task); 4868 rcu_read_unlock(); 4869 4870 if (!task) 4871 return ERR_PTR(-ESRCH); 4872 4873 return task; 4874 } 4875 4876 /* 4877 * Returns a matching context with refcount and pincount. 4878 */ 4879 static struct perf_event_context * 4880 find_get_context(struct task_struct *task, struct perf_event *event) 4881 { 4882 struct perf_event_context *ctx, *clone_ctx = NULL; 4883 struct perf_cpu_context *cpuctx; 4884 unsigned long flags; 4885 int err; 4886 4887 if (!task) { 4888 /* Must be root to operate on a CPU event: */ 4889 err = perf_allow_cpu(); 4890 if (err) 4891 return ERR_PTR(err); 4892 4893 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4894 ctx = &cpuctx->ctx; 4895 get_ctx(ctx); 4896 raw_spin_lock_irqsave(&ctx->lock, flags); 4897 ++ctx->pin_count; 4898 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4899 4900 return ctx; 4901 } 4902 4903 err = -EINVAL; 4904 retry: 4905 ctx = perf_lock_task_context(task, &flags); 4906 if (ctx) { 4907 clone_ctx = unclone_ctx(ctx); 4908 ++ctx->pin_count; 4909 4910 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4911 4912 if (clone_ctx) 4913 put_ctx(clone_ctx); 4914 } else { 4915 ctx = alloc_perf_context(task); 4916 err = -ENOMEM; 4917 if (!ctx) 4918 goto errout; 4919 4920 err = 0; 4921 mutex_lock(&task->perf_event_mutex); 4922 /* 4923 * If it has already passed perf_event_exit_task(). 4924 * we must see PF_EXITING, it takes this mutex too. 4925 */ 4926 if (task->flags & PF_EXITING) 4927 err = -ESRCH; 4928 else if (task->perf_event_ctxp) 4929 err = -EAGAIN; 4930 else { 4931 get_ctx(ctx); 4932 ++ctx->pin_count; 4933 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4934 } 4935 mutex_unlock(&task->perf_event_mutex); 4936 4937 if (unlikely(err)) { 4938 put_ctx(ctx); 4939 4940 if (err == -EAGAIN) 4941 goto retry; 4942 goto errout; 4943 } 4944 } 4945 4946 return ctx; 4947 4948 errout: 4949 return ERR_PTR(err); 4950 } 4951 4952 static struct perf_event_pmu_context * 4953 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4954 struct perf_event *event) 4955 { 4956 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 4957 4958 if (!ctx->task) { 4959 /* 4960 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4961 * relies on the fact that find_get_pmu_context() cannot fail 4962 * for CPU contexts. 4963 */ 4964 struct perf_cpu_pmu_context *cpc; 4965 4966 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4967 epc = &cpc->epc; 4968 raw_spin_lock_irq(&ctx->lock); 4969 if (!epc->ctx) { 4970 /* 4971 * One extra reference for the pmu; see perf_pmu_free(). 4972 */ 4973 atomic_set(&epc->refcount, 2); 4974 epc->embedded = 1; 4975 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4976 epc->ctx = ctx; 4977 } else { 4978 WARN_ON_ONCE(epc->ctx != ctx); 4979 atomic_inc(&epc->refcount); 4980 } 4981 raw_spin_unlock_irq(&ctx->lock); 4982 return epc; 4983 } 4984 4985 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4986 if (!new) 4987 return ERR_PTR(-ENOMEM); 4988 4989 __perf_init_event_pmu_context(new, pmu); 4990 4991 /* 4992 * XXX 4993 * 4994 * lockdep_assert_held(&ctx->mutex); 4995 * 4996 * can't because perf_event_init_task() doesn't actually hold the 4997 * child_ctx->mutex. 4998 */ 4999 5000 raw_spin_lock_irq(&ctx->lock); 5001 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5002 if (epc->pmu == pmu) { 5003 WARN_ON_ONCE(epc->ctx != ctx); 5004 atomic_inc(&epc->refcount); 5005 goto found_epc; 5006 } 5007 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5008 if (!pos && epc->pmu->type > pmu->type) 5009 pos = epc; 5010 } 5011 5012 epc = new; 5013 new = NULL; 5014 5015 if (!pos) 5016 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5017 else 5018 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5019 5020 epc->ctx = ctx; 5021 5022 found_epc: 5023 raw_spin_unlock_irq(&ctx->lock); 5024 kfree(new); 5025 5026 return epc; 5027 } 5028 5029 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5030 { 5031 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5032 } 5033 5034 static void free_cpc_rcu(struct rcu_head *head) 5035 { 5036 struct perf_cpu_pmu_context *cpc = 5037 container_of(head, typeof(*cpc), epc.rcu_head); 5038 5039 kfree(cpc); 5040 } 5041 5042 static void free_epc_rcu(struct rcu_head *head) 5043 { 5044 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5045 5046 kfree(epc); 5047 } 5048 5049 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5050 { 5051 struct perf_event_context *ctx = epc->ctx; 5052 unsigned long flags; 5053 5054 /* 5055 * XXX 5056 * 5057 * lockdep_assert_held(&ctx->mutex); 5058 * 5059 * can't because of the call-site in _free_event()/put_event() 5060 * which isn't always called under ctx->mutex. 5061 */ 5062 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5063 return; 5064 5065 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5066 5067 list_del_init(&epc->pmu_ctx_entry); 5068 epc->ctx = NULL; 5069 5070 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5071 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5072 5073 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5074 5075 if (epc->embedded) { 5076 call_rcu(&epc->rcu_head, free_cpc_rcu); 5077 return; 5078 } 5079 5080 call_rcu(&epc->rcu_head, free_epc_rcu); 5081 } 5082 5083 static void perf_event_free_filter(struct perf_event *event); 5084 5085 static void free_event_rcu(struct rcu_head *head) 5086 { 5087 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5088 5089 if (event->ns) 5090 put_pid_ns(event->ns); 5091 perf_event_free_filter(event); 5092 kmem_cache_free(perf_event_cache, event); 5093 } 5094 5095 static void ring_buffer_attach(struct perf_event *event, 5096 struct perf_buffer *rb); 5097 5098 static void detach_sb_event(struct perf_event *event) 5099 { 5100 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5101 5102 raw_spin_lock(&pel->lock); 5103 list_del_rcu(&event->sb_list); 5104 raw_spin_unlock(&pel->lock); 5105 } 5106 5107 static bool is_sb_event(struct perf_event *event) 5108 { 5109 struct perf_event_attr *attr = &event->attr; 5110 5111 if (event->parent) 5112 return false; 5113 5114 if (event->attach_state & PERF_ATTACH_TASK) 5115 return false; 5116 5117 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5118 attr->comm || attr->comm_exec || 5119 attr->task || attr->ksymbol || 5120 attr->context_switch || attr->text_poke || 5121 attr->bpf_event) 5122 return true; 5123 return false; 5124 } 5125 5126 static void unaccount_pmu_sb_event(struct perf_event *event) 5127 { 5128 if (is_sb_event(event)) 5129 detach_sb_event(event); 5130 } 5131 5132 #ifdef CONFIG_NO_HZ_FULL 5133 static DEFINE_SPINLOCK(nr_freq_lock); 5134 #endif 5135 5136 static void unaccount_freq_event_nohz(void) 5137 { 5138 #ifdef CONFIG_NO_HZ_FULL 5139 spin_lock(&nr_freq_lock); 5140 if (atomic_dec_and_test(&nr_freq_events)) 5141 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5142 spin_unlock(&nr_freq_lock); 5143 #endif 5144 } 5145 5146 static void unaccount_freq_event(void) 5147 { 5148 if (tick_nohz_full_enabled()) 5149 unaccount_freq_event_nohz(); 5150 else 5151 atomic_dec(&nr_freq_events); 5152 } 5153 5154 5155 static struct perf_ctx_data * 5156 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) 5157 { 5158 struct perf_ctx_data *cd; 5159 5160 cd = kzalloc(sizeof(*cd), GFP_KERNEL); 5161 if (!cd) 5162 return NULL; 5163 5164 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); 5165 if (!cd->data) { 5166 kfree(cd); 5167 return NULL; 5168 } 5169 5170 cd->global = global; 5171 cd->ctx_cache = ctx_cache; 5172 refcount_set(&cd->refcount, 1); 5173 5174 return cd; 5175 } 5176 5177 static void free_perf_ctx_data(struct perf_ctx_data *cd) 5178 { 5179 kmem_cache_free(cd->ctx_cache, cd->data); 5180 kfree(cd); 5181 } 5182 5183 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) 5184 { 5185 struct perf_ctx_data *cd; 5186 5187 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); 5188 free_perf_ctx_data(cd); 5189 } 5190 5191 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) 5192 { 5193 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); 5194 } 5195 5196 static int 5197 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, 5198 bool global) 5199 { 5200 struct perf_ctx_data *cd, *old = NULL; 5201 5202 cd = alloc_perf_ctx_data(ctx_cache, global); 5203 if (!cd) 5204 return -ENOMEM; 5205 5206 for (;;) { 5207 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) { 5208 if (old) 5209 perf_free_ctx_data_rcu(old); 5210 return 0; 5211 } 5212 5213 if (!old) { 5214 /* 5215 * After seeing a dead @old, we raced with 5216 * removal and lost, try again to install @cd. 5217 */ 5218 continue; 5219 } 5220 5221 if (refcount_inc_not_zero(&old->refcount)) { 5222 free_perf_ctx_data(cd); /* unused */ 5223 return 0; 5224 } 5225 5226 /* 5227 * @old is a dead object, refcount==0 is stable, try and 5228 * replace it with @cd. 5229 */ 5230 } 5231 return 0; 5232 } 5233 5234 static void __detach_global_ctx_data(void); 5235 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); 5236 static refcount_t global_ctx_data_ref; 5237 5238 static int 5239 attach_global_ctx_data(struct kmem_cache *ctx_cache) 5240 { 5241 struct task_struct *g, *p; 5242 struct perf_ctx_data *cd; 5243 int ret; 5244 5245 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5246 return 0; 5247 5248 guard(percpu_write)(&global_ctx_data_rwsem); 5249 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5250 return 0; 5251 again: 5252 /* Allocate everything */ 5253 scoped_guard (rcu) { 5254 for_each_process_thread(g, p) { 5255 cd = rcu_dereference(p->perf_ctx_data); 5256 if (cd && !cd->global) { 5257 cd->global = 1; 5258 if (!refcount_inc_not_zero(&cd->refcount)) 5259 cd = NULL; 5260 } 5261 if (!cd) { 5262 get_task_struct(p); 5263 goto alloc; 5264 } 5265 } 5266 } 5267 5268 refcount_set(&global_ctx_data_ref, 1); 5269 5270 return 0; 5271 alloc: 5272 ret = attach_task_ctx_data(p, ctx_cache, true); 5273 put_task_struct(p); 5274 if (ret) { 5275 __detach_global_ctx_data(); 5276 return ret; 5277 } 5278 goto again; 5279 } 5280 5281 static int 5282 attach_perf_ctx_data(struct perf_event *event) 5283 { 5284 struct task_struct *task = event->hw.target; 5285 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; 5286 int ret; 5287 5288 if (!ctx_cache) 5289 return -ENOMEM; 5290 5291 if (task) 5292 return attach_task_ctx_data(task, ctx_cache, false); 5293 5294 ret = attach_global_ctx_data(ctx_cache); 5295 if (ret) 5296 return ret; 5297 5298 event->attach_state |= PERF_ATTACH_GLOBAL_DATA; 5299 return 0; 5300 } 5301 5302 static void 5303 detach_task_ctx_data(struct task_struct *p) 5304 { 5305 struct perf_ctx_data *cd; 5306 5307 scoped_guard (rcu) { 5308 cd = rcu_dereference(p->perf_ctx_data); 5309 if (!cd || !refcount_dec_and_test(&cd->refcount)) 5310 return; 5311 } 5312 5313 /* 5314 * The old ctx_data may be lost because of the race. 5315 * Nothing is required to do for the case. 5316 * See attach_task_ctx_data(). 5317 */ 5318 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) 5319 perf_free_ctx_data_rcu(cd); 5320 } 5321 5322 static void __detach_global_ctx_data(void) 5323 { 5324 struct task_struct *g, *p; 5325 struct perf_ctx_data *cd; 5326 5327 again: 5328 scoped_guard (rcu) { 5329 for_each_process_thread(g, p) { 5330 cd = rcu_dereference(p->perf_ctx_data); 5331 if (!cd || !cd->global) 5332 continue; 5333 cd->global = 0; 5334 get_task_struct(p); 5335 goto detach; 5336 } 5337 } 5338 return; 5339 detach: 5340 detach_task_ctx_data(p); 5341 put_task_struct(p); 5342 goto again; 5343 } 5344 5345 static void detach_global_ctx_data(void) 5346 { 5347 if (refcount_dec_not_one(&global_ctx_data_ref)) 5348 return; 5349 5350 guard(percpu_write)(&global_ctx_data_rwsem); 5351 if (!refcount_dec_and_test(&global_ctx_data_ref)) 5352 return; 5353 5354 /* remove everything */ 5355 __detach_global_ctx_data(); 5356 } 5357 5358 static void detach_perf_ctx_data(struct perf_event *event) 5359 { 5360 struct task_struct *task = event->hw.target; 5361 5362 event->attach_state &= ~PERF_ATTACH_TASK_DATA; 5363 5364 if (task) 5365 return detach_task_ctx_data(task); 5366 5367 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { 5368 detach_global_ctx_data(); 5369 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; 5370 } 5371 } 5372 5373 static void unaccount_event(struct perf_event *event) 5374 { 5375 bool dec = false; 5376 5377 if (event->parent) 5378 return; 5379 5380 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5381 dec = true; 5382 if (event->attr.mmap || event->attr.mmap_data) 5383 atomic_dec(&nr_mmap_events); 5384 if (event->attr.build_id) 5385 atomic_dec(&nr_build_id_events); 5386 if (event->attr.comm) 5387 atomic_dec(&nr_comm_events); 5388 if (event->attr.namespaces) 5389 atomic_dec(&nr_namespaces_events); 5390 if (event->attr.cgroup) 5391 atomic_dec(&nr_cgroup_events); 5392 if (event->attr.task) 5393 atomic_dec(&nr_task_events); 5394 if (event->attr.freq) 5395 unaccount_freq_event(); 5396 if (event->attr.context_switch) { 5397 dec = true; 5398 atomic_dec(&nr_switch_events); 5399 } 5400 if (is_cgroup_event(event)) 5401 dec = true; 5402 if (has_branch_stack(event)) 5403 dec = true; 5404 if (event->attr.ksymbol) 5405 atomic_dec(&nr_ksymbol_events); 5406 if (event->attr.bpf_event) 5407 atomic_dec(&nr_bpf_events); 5408 if (event->attr.text_poke) 5409 atomic_dec(&nr_text_poke_events); 5410 5411 if (dec) { 5412 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5413 schedule_delayed_work(&perf_sched_work, HZ); 5414 } 5415 5416 unaccount_pmu_sb_event(event); 5417 } 5418 5419 static void perf_sched_delayed(struct work_struct *work) 5420 { 5421 mutex_lock(&perf_sched_mutex); 5422 if (atomic_dec_and_test(&perf_sched_count)) 5423 static_branch_disable(&perf_sched_events); 5424 mutex_unlock(&perf_sched_mutex); 5425 } 5426 5427 /* 5428 * The following implement mutual exclusion of events on "exclusive" pmus 5429 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5430 * at a time, so we disallow creating events that might conflict, namely: 5431 * 5432 * 1) cpu-wide events in the presence of per-task events, 5433 * 2) per-task events in the presence of cpu-wide events, 5434 * 3) two matching events on the same perf_event_context. 5435 * 5436 * The former two cases are handled in the allocation path (perf_event_alloc(), 5437 * _free_event()), the latter -- before the first perf_install_in_context(). 5438 */ 5439 static int exclusive_event_init(struct perf_event *event) 5440 { 5441 struct pmu *pmu = event->pmu; 5442 5443 if (!is_exclusive_pmu(pmu)) 5444 return 0; 5445 5446 /* 5447 * Prevent co-existence of per-task and cpu-wide events on the 5448 * same exclusive pmu. 5449 * 5450 * Negative pmu::exclusive_cnt means there are cpu-wide 5451 * events on this "exclusive" pmu, positive means there are 5452 * per-task events. 5453 * 5454 * Since this is called in perf_event_alloc() path, event::ctx 5455 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5456 * to mean "per-task event", because unlike other attach states it 5457 * never gets cleared. 5458 */ 5459 if (event->attach_state & PERF_ATTACH_TASK) { 5460 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5461 return -EBUSY; 5462 } else { 5463 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5464 return -EBUSY; 5465 } 5466 5467 event->attach_state |= PERF_ATTACH_EXCLUSIVE; 5468 5469 return 0; 5470 } 5471 5472 static void exclusive_event_destroy(struct perf_event *event) 5473 { 5474 struct pmu *pmu = event->pmu; 5475 5476 /* see comment in exclusive_event_init() */ 5477 if (event->attach_state & PERF_ATTACH_TASK) 5478 atomic_dec(&pmu->exclusive_cnt); 5479 else 5480 atomic_inc(&pmu->exclusive_cnt); 5481 5482 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; 5483 } 5484 5485 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5486 { 5487 if ((e1->pmu == e2->pmu) && 5488 (e1->cpu == e2->cpu || 5489 e1->cpu == -1 || 5490 e2->cpu == -1)) 5491 return true; 5492 return false; 5493 } 5494 5495 static bool exclusive_event_installable(struct perf_event *event, 5496 struct perf_event_context *ctx) 5497 { 5498 struct perf_event *iter_event; 5499 struct pmu *pmu = event->pmu; 5500 5501 lockdep_assert_held(&ctx->mutex); 5502 5503 if (!is_exclusive_pmu(pmu)) 5504 return true; 5505 5506 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5507 if (exclusive_event_match(iter_event, event)) 5508 return false; 5509 } 5510 5511 return true; 5512 } 5513 5514 static void perf_free_addr_filters(struct perf_event *event); 5515 5516 static void perf_pending_task_sync(struct perf_event *event) 5517 { 5518 struct callback_head *head = &event->pending_task; 5519 5520 if (!event->pending_work) 5521 return; 5522 /* 5523 * If the task is queued to the current task's queue, we 5524 * obviously can't wait for it to complete. Simply cancel it. 5525 */ 5526 if (task_work_cancel(current, head)) { 5527 event->pending_work = 0; 5528 local_dec(&event->ctx->nr_no_switch_fast); 5529 return; 5530 } 5531 5532 /* 5533 * All accesses related to the event are within the same RCU section in 5534 * perf_pending_task(). The RCU grace period before the event is freed 5535 * will make sure all those accesses are complete by then. 5536 */ 5537 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5538 } 5539 5540 /* vs perf_event_alloc() error */ 5541 static void __free_event(struct perf_event *event) 5542 { 5543 if (event->attach_state & PERF_ATTACH_CALLCHAIN) 5544 put_callchain_buffers(); 5545 5546 kfree(event->addr_filter_ranges); 5547 5548 if (event->attach_state & PERF_ATTACH_EXCLUSIVE) 5549 exclusive_event_destroy(event); 5550 5551 if (is_cgroup_event(event)) 5552 perf_detach_cgroup(event); 5553 5554 if (event->attach_state & PERF_ATTACH_TASK_DATA) 5555 detach_perf_ctx_data(event); 5556 5557 if (event->destroy) 5558 event->destroy(event); 5559 5560 /* 5561 * Must be after ->destroy(), due to uprobe_perf_close() using 5562 * hw.target. 5563 */ 5564 if (event->hw.target) 5565 put_task_struct(event->hw.target); 5566 5567 if (event->pmu_ctx) { 5568 /* 5569 * put_pmu_ctx() needs an event->ctx reference, because of 5570 * epc->ctx. 5571 */ 5572 WARN_ON_ONCE(!event->ctx); 5573 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); 5574 put_pmu_ctx(event->pmu_ctx); 5575 } 5576 5577 /* 5578 * perf_event_free_task() relies on put_ctx() being 'last', in 5579 * particular all task references must be cleaned up. 5580 */ 5581 if (event->ctx) 5582 put_ctx(event->ctx); 5583 5584 if (event->pmu) 5585 module_put(event->pmu->module); 5586 5587 call_rcu(&event->rcu_head, free_event_rcu); 5588 } 5589 5590 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) 5591 5592 /* vs perf_event_alloc() success */ 5593 static void _free_event(struct perf_event *event) 5594 { 5595 irq_work_sync(&event->pending_irq); 5596 irq_work_sync(&event->pending_disable_irq); 5597 perf_pending_task_sync(event); 5598 5599 unaccount_event(event); 5600 5601 security_perf_event_free(event); 5602 5603 if (event->rb) { 5604 /* 5605 * Can happen when we close an event with re-directed output. 5606 * 5607 * Since we have a 0 refcount, perf_mmap_close() will skip 5608 * over us; possibly making our ring_buffer_put() the last. 5609 */ 5610 mutex_lock(&event->mmap_mutex); 5611 ring_buffer_attach(event, NULL); 5612 mutex_unlock(&event->mmap_mutex); 5613 } 5614 5615 perf_event_free_bpf_prog(event); 5616 perf_free_addr_filters(event); 5617 5618 __free_event(event); 5619 } 5620 5621 /* 5622 * Used to free events which have a known refcount of 1, such as in error paths 5623 * where the event isn't exposed yet and inherited events. 5624 */ 5625 static void free_event(struct perf_event *event) 5626 { 5627 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5628 "unexpected event refcount: %ld; ptr=%p\n", 5629 atomic_long_read(&event->refcount), event)) { 5630 /* leak to avoid use-after-free */ 5631 return; 5632 } 5633 5634 _free_event(event); 5635 } 5636 5637 /* 5638 * Remove user event from the owner task. 5639 */ 5640 static void perf_remove_from_owner(struct perf_event *event) 5641 { 5642 struct task_struct *owner; 5643 5644 rcu_read_lock(); 5645 /* 5646 * Matches the smp_store_release() in perf_event_exit_task(). If we 5647 * observe !owner it means the list deletion is complete and we can 5648 * indeed free this event, otherwise we need to serialize on 5649 * owner->perf_event_mutex. 5650 */ 5651 owner = READ_ONCE(event->owner); 5652 if (owner) { 5653 /* 5654 * Since delayed_put_task_struct() also drops the last 5655 * task reference we can safely take a new reference 5656 * while holding the rcu_read_lock(). 5657 */ 5658 get_task_struct(owner); 5659 } 5660 rcu_read_unlock(); 5661 5662 if (owner) { 5663 /* 5664 * If we're here through perf_event_exit_task() we're already 5665 * holding ctx->mutex which would be an inversion wrt. the 5666 * normal lock order. 5667 * 5668 * However we can safely take this lock because its the child 5669 * ctx->mutex. 5670 */ 5671 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5672 5673 /* 5674 * We have to re-check the event->owner field, if it is cleared 5675 * we raced with perf_event_exit_task(), acquiring the mutex 5676 * ensured they're done, and we can proceed with freeing the 5677 * event. 5678 */ 5679 if (event->owner) { 5680 list_del_init(&event->owner_entry); 5681 smp_store_release(&event->owner, NULL); 5682 } 5683 mutex_unlock(&owner->perf_event_mutex); 5684 put_task_struct(owner); 5685 } 5686 } 5687 5688 static void put_event(struct perf_event *event) 5689 { 5690 if (!atomic_long_dec_and_test(&event->refcount)) 5691 return; 5692 5693 _free_event(event); 5694 } 5695 5696 /* 5697 * Kill an event dead; while event:refcount will preserve the event 5698 * object, it will not preserve its functionality. Once the last 'user' 5699 * gives up the object, we'll destroy the thing. 5700 */ 5701 int perf_event_release_kernel(struct perf_event *event) 5702 { 5703 struct perf_event_context *ctx = event->ctx; 5704 struct perf_event *child, *tmp; 5705 LIST_HEAD(free_list); 5706 5707 /* 5708 * If we got here through err_alloc: free_event(event); we will not 5709 * have attached to a context yet. 5710 */ 5711 if (!ctx) { 5712 WARN_ON_ONCE(event->attach_state & 5713 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5714 goto no_ctx; 5715 } 5716 5717 if (!is_kernel_event(event)) 5718 perf_remove_from_owner(event); 5719 5720 ctx = perf_event_ctx_lock(event); 5721 WARN_ON_ONCE(ctx->parent_ctx); 5722 5723 /* 5724 * Mark this event as STATE_DEAD, there is no external reference to it 5725 * anymore. 5726 * 5727 * Anybody acquiring event->child_mutex after the below loop _must_ 5728 * also see this, most importantly inherit_event() which will avoid 5729 * placing more children on the list. 5730 * 5731 * Thus this guarantees that we will in fact observe and kill _ALL_ 5732 * child events. 5733 */ 5734 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5735 5736 perf_event_ctx_unlock(event, ctx); 5737 5738 again: 5739 mutex_lock(&event->child_mutex); 5740 list_for_each_entry(child, &event->child_list, child_list) { 5741 void *var = NULL; 5742 5743 /* 5744 * Cannot change, child events are not migrated, see the 5745 * comment with perf_event_ctx_lock_nested(). 5746 */ 5747 ctx = READ_ONCE(child->ctx); 5748 /* 5749 * Since child_mutex nests inside ctx::mutex, we must jump 5750 * through hoops. We start by grabbing a reference on the ctx. 5751 * 5752 * Since the event cannot get freed while we hold the 5753 * child_mutex, the context must also exist and have a !0 5754 * reference count. 5755 */ 5756 get_ctx(ctx); 5757 5758 /* 5759 * Now that we have a ctx ref, we can drop child_mutex, and 5760 * acquire ctx::mutex without fear of it going away. Then we 5761 * can re-acquire child_mutex. 5762 */ 5763 mutex_unlock(&event->child_mutex); 5764 mutex_lock(&ctx->mutex); 5765 mutex_lock(&event->child_mutex); 5766 5767 /* 5768 * Now that we hold ctx::mutex and child_mutex, revalidate our 5769 * state, if child is still the first entry, it didn't get freed 5770 * and we can continue doing so. 5771 */ 5772 tmp = list_first_entry_or_null(&event->child_list, 5773 struct perf_event, child_list); 5774 if (tmp == child) { 5775 perf_remove_from_context(child, DETACH_GROUP); 5776 list_move(&child->child_list, &free_list); 5777 /* 5778 * This matches the refcount bump in inherit_event(); 5779 * this can't be the last reference. 5780 */ 5781 put_event(event); 5782 } else { 5783 var = &ctx->refcount; 5784 } 5785 5786 mutex_unlock(&event->child_mutex); 5787 mutex_unlock(&ctx->mutex); 5788 put_ctx(ctx); 5789 5790 if (var) { 5791 /* 5792 * If perf_event_free_task() has deleted all events from the 5793 * ctx while the child_mutex got released above, make sure to 5794 * notify about the preceding put_ctx(). 5795 */ 5796 smp_mb(); /* pairs with wait_var_event() */ 5797 wake_up_var(var); 5798 } 5799 goto again; 5800 } 5801 mutex_unlock(&event->child_mutex); 5802 5803 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5804 void *var = &child->ctx->refcount; 5805 5806 list_del(&child->child_list); 5807 free_event(child); 5808 5809 /* 5810 * Wake any perf_event_free_task() waiting for this event to be 5811 * freed. 5812 */ 5813 smp_mb(); /* pairs with wait_var_event() */ 5814 wake_up_var(var); 5815 } 5816 5817 no_ctx: 5818 put_event(event); /* Must be the 'last' reference */ 5819 return 0; 5820 } 5821 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5822 5823 /* 5824 * Called when the last reference to the file is gone. 5825 */ 5826 static int perf_release(struct inode *inode, struct file *file) 5827 { 5828 perf_event_release_kernel(file->private_data); 5829 return 0; 5830 } 5831 5832 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5833 { 5834 struct perf_event *child; 5835 u64 total = 0; 5836 5837 *enabled = 0; 5838 *running = 0; 5839 5840 mutex_lock(&event->child_mutex); 5841 5842 (void)perf_event_read(event, false); 5843 total += perf_event_count(event, false); 5844 5845 *enabled += event->total_time_enabled + 5846 atomic64_read(&event->child_total_time_enabled); 5847 *running += event->total_time_running + 5848 atomic64_read(&event->child_total_time_running); 5849 5850 list_for_each_entry(child, &event->child_list, child_list) { 5851 (void)perf_event_read(child, false); 5852 total += perf_event_count(child, false); 5853 *enabled += child->total_time_enabled; 5854 *running += child->total_time_running; 5855 } 5856 mutex_unlock(&event->child_mutex); 5857 5858 return total; 5859 } 5860 5861 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5862 { 5863 struct perf_event_context *ctx; 5864 u64 count; 5865 5866 ctx = perf_event_ctx_lock(event); 5867 count = __perf_event_read_value(event, enabled, running); 5868 perf_event_ctx_unlock(event, ctx); 5869 5870 return count; 5871 } 5872 EXPORT_SYMBOL_GPL(perf_event_read_value); 5873 5874 static int __perf_read_group_add(struct perf_event *leader, 5875 u64 read_format, u64 *values) 5876 { 5877 struct perf_event_context *ctx = leader->ctx; 5878 struct perf_event *sub, *parent; 5879 unsigned long flags; 5880 int n = 1; /* skip @nr */ 5881 int ret; 5882 5883 ret = perf_event_read(leader, true); 5884 if (ret) 5885 return ret; 5886 5887 raw_spin_lock_irqsave(&ctx->lock, flags); 5888 /* 5889 * Verify the grouping between the parent and child (inherited) 5890 * events is still in tact. 5891 * 5892 * Specifically: 5893 * - leader->ctx->lock pins leader->sibling_list 5894 * - parent->child_mutex pins parent->child_list 5895 * - parent->ctx->mutex pins parent->sibling_list 5896 * 5897 * Because parent->ctx != leader->ctx (and child_list nests inside 5898 * ctx->mutex), group destruction is not atomic between children, also 5899 * see perf_event_release_kernel(). Additionally, parent can grow the 5900 * group. 5901 * 5902 * Therefore it is possible to have parent and child groups in a 5903 * different configuration and summing over such a beast makes no sense 5904 * what so ever. 5905 * 5906 * Reject this. 5907 */ 5908 parent = leader->parent; 5909 if (parent && 5910 (parent->group_generation != leader->group_generation || 5911 parent->nr_siblings != leader->nr_siblings)) { 5912 ret = -ECHILD; 5913 goto unlock; 5914 } 5915 5916 /* 5917 * Since we co-schedule groups, {enabled,running} times of siblings 5918 * will be identical to those of the leader, so we only publish one 5919 * set. 5920 */ 5921 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5922 values[n++] += leader->total_time_enabled + 5923 atomic64_read(&leader->child_total_time_enabled); 5924 } 5925 5926 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5927 values[n++] += leader->total_time_running + 5928 atomic64_read(&leader->child_total_time_running); 5929 } 5930 5931 /* 5932 * Write {count,id} tuples for every sibling. 5933 */ 5934 values[n++] += perf_event_count(leader, false); 5935 if (read_format & PERF_FORMAT_ID) 5936 values[n++] = primary_event_id(leader); 5937 if (read_format & PERF_FORMAT_LOST) 5938 values[n++] = atomic64_read(&leader->lost_samples); 5939 5940 for_each_sibling_event(sub, leader) { 5941 values[n++] += perf_event_count(sub, false); 5942 if (read_format & PERF_FORMAT_ID) 5943 values[n++] = primary_event_id(sub); 5944 if (read_format & PERF_FORMAT_LOST) 5945 values[n++] = atomic64_read(&sub->lost_samples); 5946 } 5947 5948 unlock: 5949 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5950 return ret; 5951 } 5952 5953 static int perf_read_group(struct perf_event *event, 5954 u64 read_format, char __user *buf) 5955 { 5956 struct perf_event *leader = event->group_leader, *child; 5957 struct perf_event_context *ctx = leader->ctx; 5958 int ret; 5959 u64 *values; 5960 5961 lockdep_assert_held(&ctx->mutex); 5962 5963 values = kzalloc(event->read_size, GFP_KERNEL); 5964 if (!values) 5965 return -ENOMEM; 5966 5967 values[0] = 1 + leader->nr_siblings; 5968 5969 mutex_lock(&leader->child_mutex); 5970 5971 ret = __perf_read_group_add(leader, read_format, values); 5972 if (ret) 5973 goto unlock; 5974 5975 list_for_each_entry(child, &leader->child_list, child_list) { 5976 ret = __perf_read_group_add(child, read_format, values); 5977 if (ret) 5978 goto unlock; 5979 } 5980 5981 mutex_unlock(&leader->child_mutex); 5982 5983 ret = event->read_size; 5984 if (copy_to_user(buf, values, event->read_size)) 5985 ret = -EFAULT; 5986 goto out; 5987 5988 unlock: 5989 mutex_unlock(&leader->child_mutex); 5990 out: 5991 kfree(values); 5992 return ret; 5993 } 5994 5995 static int perf_read_one(struct perf_event *event, 5996 u64 read_format, char __user *buf) 5997 { 5998 u64 enabled, running; 5999 u64 values[5]; 6000 int n = 0; 6001 6002 values[n++] = __perf_event_read_value(event, &enabled, &running); 6003 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6004 values[n++] = enabled; 6005 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6006 values[n++] = running; 6007 if (read_format & PERF_FORMAT_ID) 6008 values[n++] = primary_event_id(event); 6009 if (read_format & PERF_FORMAT_LOST) 6010 values[n++] = atomic64_read(&event->lost_samples); 6011 6012 if (copy_to_user(buf, values, n * sizeof(u64))) 6013 return -EFAULT; 6014 6015 return n * sizeof(u64); 6016 } 6017 6018 static bool is_event_hup(struct perf_event *event) 6019 { 6020 bool no_children; 6021 6022 if (event->state > PERF_EVENT_STATE_EXIT) 6023 return false; 6024 6025 mutex_lock(&event->child_mutex); 6026 no_children = list_empty(&event->child_list); 6027 mutex_unlock(&event->child_mutex); 6028 return no_children; 6029 } 6030 6031 /* 6032 * Read the performance event - simple non blocking version for now 6033 */ 6034 static ssize_t 6035 __perf_read(struct perf_event *event, char __user *buf, size_t count) 6036 { 6037 u64 read_format = event->attr.read_format; 6038 int ret; 6039 6040 /* 6041 * Return end-of-file for a read on an event that is in 6042 * error state (i.e. because it was pinned but it couldn't be 6043 * scheduled on to the CPU at some point). 6044 */ 6045 if (event->state == PERF_EVENT_STATE_ERROR) 6046 return 0; 6047 6048 if (count < event->read_size) 6049 return -ENOSPC; 6050 6051 WARN_ON_ONCE(event->ctx->parent_ctx); 6052 if (read_format & PERF_FORMAT_GROUP) 6053 ret = perf_read_group(event, read_format, buf); 6054 else 6055 ret = perf_read_one(event, read_format, buf); 6056 6057 return ret; 6058 } 6059 6060 static ssize_t 6061 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 6062 { 6063 struct perf_event *event = file->private_data; 6064 struct perf_event_context *ctx; 6065 int ret; 6066 6067 ret = security_perf_event_read(event); 6068 if (ret) 6069 return ret; 6070 6071 ctx = perf_event_ctx_lock(event); 6072 ret = __perf_read(event, buf, count); 6073 perf_event_ctx_unlock(event, ctx); 6074 6075 return ret; 6076 } 6077 6078 static __poll_t perf_poll(struct file *file, poll_table *wait) 6079 { 6080 struct perf_event *event = file->private_data; 6081 struct perf_buffer *rb; 6082 __poll_t events = EPOLLHUP; 6083 6084 poll_wait(file, &event->waitq, wait); 6085 6086 if (is_event_hup(event)) 6087 return events; 6088 6089 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && 6090 event->attr.pinned)) 6091 return events; 6092 6093 /* 6094 * Pin the event->rb by taking event->mmap_mutex; otherwise 6095 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 6096 */ 6097 mutex_lock(&event->mmap_mutex); 6098 rb = event->rb; 6099 if (rb) 6100 events = atomic_xchg(&rb->poll, 0); 6101 mutex_unlock(&event->mmap_mutex); 6102 return events; 6103 } 6104 6105 static void _perf_event_reset(struct perf_event *event) 6106 { 6107 (void)perf_event_read(event, false); 6108 local64_set(&event->count, 0); 6109 perf_event_update_userpage(event); 6110 } 6111 6112 /* Assume it's not an event with inherit set. */ 6113 u64 perf_event_pause(struct perf_event *event, bool reset) 6114 { 6115 struct perf_event_context *ctx; 6116 u64 count; 6117 6118 ctx = perf_event_ctx_lock(event); 6119 WARN_ON_ONCE(event->attr.inherit); 6120 _perf_event_disable(event); 6121 count = local64_read(&event->count); 6122 if (reset) 6123 local64_set(&event->count, 0); 6124 perf_event_ctx_unlock(event, ctx); 6125 6126 return count; 6127 } 6128 EXPORT_SYMBOL_GPL(perf_event_pause); 6129 6130 /* 6131 * Holding the top-level event's child_mutex means that any 6132 * descendant process that has inherited this event will block 6133 * in perf_event_exit_event() if it goes to exit, thus satisfying the 6134 * task existence requirements of perf_event_enable/disable. 6135 */ 6136 static void perf_event_for_each_child(struct perf_event *event, 6137 void (*func)(struct perf_event *)) 6138 { 6139 struct perf_event *child; 6140 6141 WARN_ON_ONCE(event->ctx->parent_ctx); 6142 6143 mutex_lock(&event->child_mutex); 6144 func(event); 6145 list_for_each_entry(child, &event->child_list, child_list) 6146 func(child); 6147 mutex_unlock(&event->child_mutex); 6148 } 6149 6150 static void perf_event_for_each(struct perf_event *event, 6151 void (*func)(struct perf_event *)) 6152 { 6153 struct perf_event_context *ctx = event->ctx; 6154 struct perf_event *sibling; 6155 6156 lockdep_assert_held(&ctx->mutex); 6157 6158 event = event->group_leader; 6159 6160 perf_event_for_each_child(event, func); 6161 for_each_sibling_event(sibling, event) 6162 perf_event_for_each_child(sibling, func); 6163 } 6164 6165 static void __perf_event_period(struct perf_event *event, 6166 struct perf_cpu_context *cpuctx, 6167 struct perf_event_context *ctx, 6168 void *info) 6169 { 6170 u64 value = *((u64 *)info); 6171 bool active; 6172 6173 if (event->attr.freq) { 6174 event->attr.sample_freq = value; 6175 } else { 6176 event->attr.sample_period = value; 6177 event->hw.sample_period = value; 6178 } 6179 6180 active = (event->state == PERF_EVENT_STATE_ACTIVE); 6181 if (active) { 6182 perf_pmu_disable(event->pmu); 6183 /* 6184 * We could be throttled; unthrottle now to avoid the tick 6185 * trying to unthrottle while we already re-started the event. 6186 */ 6187 if (event->hw.interrupts == MAX_INTERRUPTS) { 6188 event->hw.interrupts = 0; 6189 perf_log_throttle(event, 1); 6190 } 6191 event->pmu->stop(event, PERF_EF_UPDATE); 6192 } 6193 6194 local64_set(&event->hw.period_left, 0); 6195 6196 if (active) { 6197 event->pmu->start(event, PERF_EF_RELOAD); 6198 perf_pmu_enable(event->pmu); 6199 } 6200 } 6201 6202 static int perf_event_check_period(struct perf_event *event, u64 value) 6203 { 6204 return event->pmu->check_period(event, value); 6205 } 6206 6207 static int _perf_event_period(struct perf_event *event, u64 value) 6208 { 6209 if (!is_sampling_event(event)) 6210 return -EINVAL; 6211 6212 if (!value) 6213 return -EINVAL; 6214 6215 if (event->attr.freq) { 6216 if (value > sysctl_perf_event_sample_rate) 6217 return -EINVAL; 6218 } else { 6219 if (perf_event_check_period(event, value)) 6220 return -EINVAL; 6221 if (value & (1ULL << 63)) 6222 return -EINVAL; 6223 } 6224 6225 event_function_call(event, __perf_event_period, &value); 6226 6227 return 0; 6228 } 6229 6230 int perf_event_period(struct perf_event *event, u64 value) 6231 { 6232 struct perf_event_context *ctx; 6233 int ret; 6234 6235 ctx = perf_event_ctx_lock(event); 6236 ret = _perf_event_period(event, value); 6237 perf_event_ctx_unlock(event, ctx); 6238 6239 return ret; 6240 } 6241 EXPORT_SYMBOL_GPL(perf_event_period); 6242 6243 static const struct file_operations perf_fops; 6244 6245 static inline bool is_perf_file(struct fd f) 6246 { 6247 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6248 } 6249 6250 static int perf_event_set_output(struct perf_event *event, 6251 struct perf_event *output_event); 6252 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6253 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6254 struct perf_event_attr *attr); 6255 6256 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6257 { 6258 void (*func)(struct perf_event *); 6259 u32 flags = arg; 6260 6261 switch (cmd) { 6262 case PERF_EVENT_IOC_ENABLE: 6263 func = _perf_event_enable; 6264 break; 6265 case PERF_EVENT_IOC_DISABLE: 6266 func = _perf_event_disable; 6267 break; 6268 case PERF_EVENT_IOC_RESET: 6269 func = _perf_event_reset; 6270 break; 6271 6272 case PERF_EVENT_IOC_REFRESH: 6273 return _perf_event_refresh(event, arg); 6274 6275 case PERF_EVENT_IOC_PERIOD: 6276 { 6277 u64 value; 6278 6279 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6280 return -EFAULT; 6281 6282 return _perf_event_period(event, value); 6283 } 6284 case PERF_EVENT_IOC_ID: 6285 { 6286 u64 id = primary_event_id(event); 6287 6288 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6289 return -EFAULT; 6290 return 0; 6291 } 6292 6293 case PERF_EVENT_IOC_SET_OUTPUT: 6294 { 6295 CLASS(fd, output)(arg); // arg == -1 => empty 6296 struct perf_event *output_event = NULL; 6297 if (arg != -1) { 6298 if (!is_perf_file(output)) 6299 return -EBADF; 6300 output_event = fd_file(output)->private_data; 6301 } 6302 return perf_event_set_output(event, output_event); 6303 } 6304 6305 case PERF_EVENT_IOC_SET_FILTER: 6306 return perf_event_set_filter(event, (void __user *)arg); 6307 6308 case PERF_EVENT_IOC_SET_BPF: 6309 { 6310 struct bpf_prog *prog; 6311 int err; 6312 6313 prog = bpf_prog_get(arg); 6314 if (IS_ERR(prog)) 6315 return PTR_ERR(prog); 6316 6317 err = perf_event_set_bpf_prog(event, prog, 0); 6318 if (err) { 6319 bpf_prog_put(prog); 6320 return err; 6321 } 6322 6323 return 0; 6324 } 6325 6326 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6327 struct perf_buffer *rb; 6328 6329 rcu_read_lock(); 6330 rb = rcu_dereference(event->rb); 6331 if (!rb || !rb->nr_pages) { 6332 rcu_read_unlock(); 6333 return -EINVAL; 6334 } 6335 rb_toggle_paused(rb, !!arg); 6336 rcu_read_unlock(); 6337 return 0; 6338 } 6339 6340 case PERF_EVENT_IOC_QUERY_BPF: 6341 return perf_event_query_prog_array(event, (void __user *)arg); 6342 6343 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6344 struct perf_event_attr new_attr; 6345 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6346 &new_attr); 6347 6348 if (err) 6349 return err; 6350 6351 return perf_event_modify_attr(event, &new_attr); 6352 } 6353 default: 6354 return -ENOTTY; 6355 } 6356 6357 if (flags & PERF_IOC_FLAG_GROUP) 6358 perf_event_for_each(event, func); 6359 else 6360 perf_event_for_each_child(event, func); 6361 6362 return 0; 6363 } 6364 6365 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6366 { 6367 struct perf_event *event = file->private_data; 6368 struct perf_event_context *ctx; 6369 long ret; 6370 6371 /* Treat ioctl like writes as it is likely a mutating operation. */ 6372 ret = security_perf_event_write(event); 6373 if (ret) 6374 return ret; 6375 6376 ctx = perf_event_ctx_lock(event); 6377 ret = _perf_ioctl(event, cmd, arg); 6378 perf_event_ctx_unlock(event, ctx); 6379 6380 return ret; 6381 } 6382 6383 #ifdef CONFIG_COMPAT 6384 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6385 unsigned long arg) 6386 { 6387 switch (_IOC_NR(cmd)) { 6388 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6389 case _IOC_NR(PERF_EVENT_IOC_ID): 6390 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6391 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6392 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6393 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6394 cmd &= ~IOCSIZE_MASK; 6395 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6396 } 6397 break; 6398 } 6399 return perf_ioctl(file, cmd, arg); 6400 } 6401 #else 6402 # define perf_compat_ioctl NULL 6403 #endif 6404 6405 int perf_event_task_enable(void) 6406 { 6407 struct perf_event_context *ctx; 6408 struct perf_event *event; 6409 6410 mutex_lock(¤t->perf_event_mutex); 6411 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6412 ctx = perf_event_ctx_lock(event); 6413 perf_event_for_each_child(event, _perf_event_enable); 6414 perf_event_ctx_unlock(event, ctx); 6415 } 6416 mutex_unlock(¤t->perf_event_mutex); 6417 6418 return 0; 6419 } 6420 6421 int perf_event_task_disable(void) 6422 { 6423 struct perf_event_context *ctx; 6424 struct perf_event *event; 6425 6426 mutex_lock(¤t->perf_event_mutex); 6427 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6428 ctx = perf_event_ctx_lock(event); 6429 perf_event_for_each_child(event, _perf_event_disable); 6430 perf_event_ctx_unlock(event, ctx); 6431 } 6432 mutex_unlock(¤t->perf_event_mutex); 6433 6434 return 0; 6435 } 6436 6437 static int perf_event_index(struct perf_event *event) 6438 { 6439 if (event->hw.state & PERF_HES_STOPPED) 6440 return 0; 6441 6442 if (event->state != PERF_EVENT_STATE_ACTIVE) 6443 return 0; 6444 6445 return event->pmu->event_idx(event); 6446 } 6447 6448 static void perf_event_init_userpage(struct perf_event *event) 6449 { 6450 struct perf_event_mmap_page *userpg; 6451 struct perf_buffer *rb; 6452 6453 rcu_read_lock(); 6454 rb = rcu_dereference(event->rb); 6455 if (!rb) 6456 goto unlock; 6457 6458 userpg = rb->user_page; 6459 6460 /* Allow new userspace to detect that bit 0 is deprecated */ 6461 userpg->cap_bit0_is_deprecated = 1; 6462 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6463 userpg->data_offset = PAGE_SIZE; 6464 userpg->data_size = perf_data_size(rb); 6465 6466 unlock: 6467 rcu_read_unlock(); 6468 } 6469 6470 void __weak arch_perf_update_userpage( 6471 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6472 { 6473 } 6474 6475 /* 6476 * Callers need to ensure there can be no nesting of this function, otherwise 6477 * the seqlock logic goes bad. We can not serialize this because the arch 6478 * code calls this from NMI context. 6479 */ 6480 void perf_event_update_userpage(struct perf_event *event) 6481 { 6482 struct perf_event_mmap_page *userpg; 6483 struct perf_buffer *rb; 6484 u64 enabled, running, now; 6485 6486 rcu_read_lock(); 6487 rb = rcu_dereference(event->rb); 6488 if (!rb) 6489 goto unlock; 6490 6491 /* 6492 * compute total_time_enabled, total_time_running 6493 * based on snapshot values taken when the event 6494 * was last scheduled in. 6495 * 6496 * we cannot simply called update_context_time() 6497 * because of locking issue as we can be called in 6498 * NMI context 6499 */ 6500 calc_timer_values(event, &now, &enabled, &running); 6501 6502 userpg = rb->user_page; 6503 /* 6504 * Disable preemption to guarantee consistent time stamps are stored to 6505 * the user page. 6506 */ 6507 preempt_disable(); 6508 ++userpg->lock; 6509 barrier(); 6510 userpg->index = perf_event_index(event); 6511 userpg->offset = perf_event_count(event, false); 6512 if (userpg->index) 6513 userpg->offset -= local64_read(&event->hw.prev_count); 6514 6515 userpg->time_enabled = enabled + 6516 atomic64_read(&event->child_total_time_enabled); 6517 6518 userpg->time_running = running + 6519 atomic64_read(&event->child_total_time_running); 6520 6521 arch_perf_update_userpage(event, userpg, now); 6522 6523 barrier(); 6524 ++userpg->lock; 6525 preempt_enable(); 6526 unlock: 6527 rcu_read_unlock(); 6528 } 6529 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6530 6531 static void ring_buffer_attach(struct perf_event *event, 6532 struct perf_buffer *rb) 6533 { 6534 struct perf_buffer *old_rb = NULL; 6535 unsigned long flags; 6536 6537 WARN_ON_ONCE(event->parent); 6538 6539 if (event->rb) { 6540 /* 6541 * Should be impossible, we set this when removing 6542 * event->rb_entry and wait/clear when adding event->rb_entry. 6543 */ 6544 WARN_ON_ONCE(event->rcu_pending); 6545 6546 old_rb = event->rb; 6547 spin_lock_irqsave(&old_rb->event_lock, flags); 6548 list_del_rcu(&event->rb_entry); 6549 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6550 6551 event->rcu_batches = get_state_synchronize_rcu(); 6552 event->rcu_pending = 1; 6553 } 6554 6555 if (rb) { 6556 if (event->rcu_pending) { 6557 cond_synchronize_rcu(event->rcu_batches); 6558 event->rcu_pending = 0; 6559 } 6560 6561 spin_lock_irqsave(&rb->event_lock, flags); 6562 list_add_rcu(&event->rb_entry, &rb->event_list); 6563 spin_unlock_irqrestore(&rb->event_lock, flags); 6564 } 6565 6566 /* 6567 * Avoid racing with perf_mmap_close(AUX): stop the event 6568 * before swizzling the event::rb pointer; if it's getting 6569 * unmapped, its aux_mmap_count will be 0 and it won't 6570 * restart. See the comment in __perf_pmu_output_stop(). 6571 * 6572 * Data will inevitably be lost when set_output is done in 6573 * mid-air, but then again, whoever does it like this is 6574 * not in for the data anyway. 6575 */ 6576 if (has_aux(event)) 6577 perf_event_stop(event, 0); 6578 6579 rcu_assign_pointer(event->rb, rb); 6580 6581 if (old_rb) { 6582 ring_buffer_put(old_rb); 6583 /* 6584 * Since we detached before setting the new rb, so that we 6585 * could attach the new rb, we could have missed a wakeup. 6586 * Provide it now. 6587 */ 6588 wake_up_all(&event->waitq); 6589 } 6590 } 6591 6592 static void ring_buffer_wakeup(struct perf_event *event) 6593 { 6594 struct perf_buffer *rb; 6595 6596 if (event->parent) 6597 event = event->parent; 6598 6599 rcu_read_lock(); 6600 rb = rcu_dereference(event->rb); 6601 if (rb) { 6602 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6603 wake_up_all(&event->waitq); 6604 } 6605 rcu_read_unlock(); 6606 } 6607 6608 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6609 { 6610 struct perf_buffer *rb; 6611 6612 if (event->parent) 6613 event = event->parent; 6614 6615 rcu_read_lock(); 6616 rb = rcu_dereference(event->rb); 6617 if (rb) { 6618 if (!refcount_inc_not_zero(&rb->refcount)) 6619 rb = NULL; 6620 } 6621 rcu_read_unlock(); 6622 6623 return rb; 6624 } 6625 6626 void ring_buffer_put(struct perf_buffer *rb) 6627 { 6628 if (!refcount_dec_and_test(&rb->refcount)) 6629 return; 6630 6631 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6632 6633 call_rcu(&rb->rcu_head, rb_free_rcu); 6634 } 6635 6636 static void perf_mmap_open(struct vm_area_struct *vma) 6637 { 6638 struct perf_event *event = vma->vm_file->private_data; 6639 6640 atomic_inc(&event->mmap_count); 6641 atomic_inc(&event->rb->mmap_count); 6642 6643 if (vma->vm_pgoff) 6644 atomic_inc(&event->rb->aux_mmap_count); 6645 6646 if (event->pmu->event_mapped) 6647 event->pmu->event_mapped(event, vma->vm_mm); 6648 } 6649 6650 static void perf_pmu_output_stop(struct perf_event *event); 6651 6652 /* 6653 * A buffer can be mmap()ed multiple times; either directly through the same 6654 * event, or through other events by use of perf_event_set_output(). 6655 * 6656 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6657 * the buffer here, where we still have a VM context. This means we need 6658 * to detach all events redirecting to us. 6659 */ 6660 static void perf_mmap_close(struct vm_area_struct *vma) 6661 { 6662 struct perf_event *event = vma->vm_file->private_data; 6663 struct perf_buffer *rb = ring_buffer_get(event); 6664 struct user_struct *mmap_user = rb->mmap_user; 6665 int mmap_locked = rb->mmap_locked; 6666 unsigned long size = perf_data_size(rb); 6667 bool detach_rest = false; 6668 6669 if (event->pmu->event_unmapped) 6670 event->pmu->event_unmapped(event, vma->vm_mm); 6671 6672 /* 6673 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6674 * to avoid complications. 6675 */ 6676 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6677 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6678 /* 6679 * Stop all AUX events that are writing to this buffer, 6680 * so that we can free its AUX pages and corresponding PMU 6681 * data. Note that after rb::aux_mmap_count dropped to zero, 6682 * they won't start any more (see perf_aux_output_begin()). 6683 */ 6684 perf_pmu_output_stop(event); 6685 6686 /* now it's safe to free the pages */ 6687 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6688 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6689 6690 /* this has to be the last one */ 6691 rb_free_aux(rb); 6692 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6693 6694 mutex_unlock(&rb->aux_mutex); 6695 } 6696 6697 if (atomic_dec_and_test(&rb->mmap_count)) 6698 detach_rest = true; 6699 6700 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6701 goto out_put; 6702 6703 ring_buffer_attach(event, NULL); 6704 mutex_unlock(&event->mmap_mutex); 6705 6706 /* If there's still other mmap()s of this buffer, we're done. */ 6707 if (!detach_rest) 6708 goto out_put; 6709 6710 /* 6711 * No other mmap()s, detach from all other events that might redirect 6712 * into the now unreachable buffer. Somewhat complicated by the 6713 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6714 */ 6715 again: 6716 rcu_read_lock(); 6717 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6718 if (!atomic_long_inc_not_zero(&event->refcount)) { 6719 /* 6720 * This event is en-route to free_event() which will 6721 * detach it and remove it from the list. 6722 */ 6723 continue; 6724 } 6725 rcu_read_unlock(); 6726 6727 mutex_lock(&event->mmap_mutex); 6728 /* 6729 * Check we didn't race with perf_event_set_output() which can 6730 * swizzle the rb from under us while we were waiting to 6731 * acquire mmap_mutex. 6732 * 6733 * If we find a different rb; ignore this event, a next 6734 * iteration will no longer find it on the list. We have to 6735 * still restart the iteration to make sure we're not now 6736 * iterating the wrong list. 6737 */ 6738 if (event->rb == rb) 6739 ring_buffer_attach(event, NULL); 6740 6741 mutex_unlock(&event->mmap_mutex); 6742 put_event(event); 6743 6744 /* 6745 * Restart the iteration; either we're on the wrong list or 6746 * destroyed its integrity by doing a deletion. 6747 */ 6748 goto again; 6749 } 6750 rcu_read_unlock(); 6751 6752 /* 6753 * It could be there's still a few 0-ref events on the list; they'll 6754 * get cleaned up by free_event() -- they'll also still have their 6755 * ref on the rb and will free it whenever they are done with it. 6756 * 6757 * Aside from that, this buffer is 'fully' detached and unmapped, 6758 * undo the VM accounting. 6759 */ 6760 6761 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6762 &mmap_user->locked_vm); 6763 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6764 free_uid(mmap_user); 6765 6766 out_put: 6767 ring_buffer_put(rb); /* could be last */ 6768 } 6769 6770 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6771 { 6772 /* The first page is the user control page, others are read-only. */ 6773 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6774 } 6775 6776 static const struct vm_operations_struct perf_mmap_vmops = { 6777 .open = perf_mmap_open, 6778 .close = perf_mmap_close, /* non mergeable */ 6779 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6780 }; 6781 6782 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6783 { 6784 unsigned long nr_pages = vma_pages(vma); 6785 int err = 0; 6786 unsigned long pagenum; 6787 6788 /* 6789 * We map this as a VM_PFNMAP VMA. 6790 * 6791 * This is not ideal as this is designed broadly for mappings of PFNs 6792 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6793 * !pfn_valid(pfn). 6794 * 6795 * We are mapping kernel-allocated memory (memory we manage ourselves) 6796 * which would more ideally be mapped using vm_insert_page() or a 6797 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6798 * 6799 * However this won't work here, because: 6800 * 6801 * 1. It uses vma->vm_page_prot, but this field has not been completely 6802 * setup at the point of the f_op->mmp() hook, so we are unable to 6803 * indicate that this should be mapped CoW in order that the 6804 * mkwrite() hook can be invoked to make the first page R/W and the 6805 * rest R/O as desired. 6806 * 6807 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6808 * vm_normal_page() returning a struct page * pointer, which means 6809 * vm_ops->page_mkwrite() will be invoked rather than 6810 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6811 * to work around retry logic in the fault handler, however this 6812 * field is no longer allowed to be used within struct page. 6813 * 6814 * 3. Having a struct page * made available in the fault logic also 6815 * means that the page gets put on the rmap and becomes 6816 * inappropriately accessible and subject to map and ref counting. 6817 * 6818 * Ideally we would have a mechanism that could explicitly express our 6819 * desires, but this is not currently the case, so we instead use 6820 * VM_PFNMAP. 6821 * 6822 * We manage the lifetime of these mappings with internal refcounts (see 6823 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6824 * this mapping is maintained correctly. 6825 */ 6826 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6827 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6828 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6829 6830 if (page == NULL) { 6831 err = -EINVAL; 6832 break; 6833 } 6834 6835 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6836 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6837 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6838 if (err) 6839 break; 6840 } 6841 6842 #ifdef CONFIG_MMU 6843 /* Clear any partial mappings on error. */ 6844 if (err) 6845 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6846 #endif 6847 6848 return err; 6849 } 6850 6851 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6852 { 6853 struct perf_event *event = file->private_data; 6854 unsigned long user_locked, user_lock_limit; 6855 struct user_struct *user = current_user(); 6856 struct mutex *aux_mutex = NULL; 6857 struct perf_buffer *rb = NULL; 6858 unsigned long locked, lock_limit; 6859 unsigned long vma_size; 6860 unsigned long nr_pages; 6861 long user_extra = 0, extra = 0; 6862 int ret, flags = 0; 6863 6864 /* 6865 * Don't allow mmap() of inherited per-task counters. This would 6866 * create a performance issue due to all children writing to the 6867 * same rb. 6868 */ 6869 if (event->cpu == -1 && event->attr.inherit) 6870 return -EINVAL; 6871 6872 if (!(vma->vm_flags & VM_SHARED)) 6873 return -EINVAL; 6874 6875 ret = security_perf_event_read(event); 6876 if (ret) 6877 return ret; 6878 6879 vma_size = vma->vm_end - vma->vm_start; 6880 nr_pages = vma_size / PAGE_SIZE; 6881 6882 if (nr_pages > INT_MAX) 6883 return -ENOMEM; 6884 6885 if (vma_size != PAGE_SIZE * nr_pages) 6886 return -EINVAL; 6887 6888 user_extra = nr_pages; 6889 6890 mutex_lock(&event->mmap_mutex); 6891 ret = -EINVAL; 6892 6893 if (vma->vm_pgoff == 0) { 6894 nr_pages -= 1; 6895 6896 /* 6897 * If we have rb pages ensure they're a power-of-two number, so we 6898 * can do bitmasks instead of modulo. 6899 */ 6900 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6901 goto unlock; 6902 6903 WARN_ON_ONCE(event->ctx->parent_ctx); 6904 6905 if (event->rb) { 6906 if (data_page_nr(event->rb) != nr_pages) 6907 goto unlock; 6908 6909 if (atomic_inc_not_zero(&event->rb->mmap_count)) { 6910 /* 6911 * Success -- managed to mmap() the same buffer 6912 * multiple times. 6913 */ 6914 ret = 0; 6915 /* We need the rb to map pages. */ 6916 rb = event->rb; 6917 goto unlock; 6918 } 6919 6920 /* 6921 * Raced against perf_mmap_close()'s 6922 * atomic_dec_and_mutex_lock() remove the 6923 * event and continue as if !event->rb 6924 */ 6925 ring_buffer_attach(event, NULL); 6926 } 6927 6928 } else { 6929 /* 6930 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6931 * mapped, all subsequent mappings should have the same size 6932 * and offset. Must be above the normal perf buffer. 6933 */ 6934 u64 aux_offset, aux_size; 6935 6936 rb = event->rb; 6937 if (!rb) 6938 goto aux_unlock; 6939 6940 aux_mutex = &rb->aux_mutex; 6941 mutex_lock(aux_mutex); 6942 6943 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6944 aux_size = READ_ONCE(rb->user_page->aux_size); 6945 6946 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6947 goto aux_unlock; 6948 6949 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6950 goto aux_unlock; 6951 6952 /* already mapped with a different offset */ 6953 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6954 goto aux_unlock; 6955 6956 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6957 goto aux_unlock; 6958 6959 /* already mapped with a different size */ 6960 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6961 goto aux_unlock; 6962 6963 if (!is_power_of_2(nr_pages)) 6964 goto aux_unlock; 6965 6966 if (!atomic_inc_not_zero(&rb->mmap_count)) 6967 goto aux_unlock; 6968 6969 if (rb_has_aux(rb)) { 6970 atomic_inc(&rb->aux_mmap_count); 6971 ret = 0; 6972 goto unlock; 6973 } 6974 6975 atomic_set(&rb->aux_mmap_count, 1); 6976 } 6977 6978 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6979 6980 /* 6981 * Increase the limit linearly with more CPUs: 6982 */ 6983 user_lock_limit *= num_online_cpus(); 6984 6985 user_locked = atomic_long_read(&user->locked_vm); 6986 6987 /* 6988 * sysctl_perf_event_mlock may have changed, so that 6989 * user->locked_vm > user_lock_limit 6990 */ 6991 if (user_locked > user_lock_limit) 6992 user_locked = user_lock_limit; 6993 user_locked += user_extra; 6994 6995 if (user_locked > user_lock_limit) { 6996 /* 6997 * charge locked_vm until it hits user_lock_limit; 6998 * charge the rest from pinned_vm 6999 */ 7000 extra = user_locked - user_lock_limit; 7001 user_extra -= extra; 7002 } 7003 7004 lock_limit = rlimit(RLIMIT_MEMLOCK); 7005 lock_limit >>= PAGE_SHIFT; 7006 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 7007 7008 if ((locked > lock_limit) && perf_is_paranoid() && 7009 !capable(CAP_IPC_LOCK)) { 7010 ret = -EPERM; 7011 goto unlock; 7012 } 7013 7014 WARN_ON(!rb && event->rb); 7015 7016 if (vma->vm_flags & VM_WRITE) 7017 flags |= RING_BUFFER_WRITABLE; 7018 7019 if (!rb) { 7020 rb = rb_alloc(nr_pages, 7021 event->attr.watermark ? event->attr.wakeup_watermark : 0, 7022 event->cpu, flags); 7023 7024 if (!rb) { 7025 ret = -ENOMEM; 7026 goto unlock; 7027 } 7028 7029 atomic_set(&rb->mmap_count, 1); 7030 rb->mmap_user = get_current_user(); 7031 rb->mmap_locked = extra; 7032 7033 ring_buffer_attach(event, rb); 7034 7035 perf_event_update_time(event); 7036 perf_event_init_userpage(event); 7037 perf_event_update_userpage(event); 7038 } else { 7039 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 7040 event->attr.aux_watermark, flags); 7041 if (!ret) 7042 rb->aux_mmap_locked = extra; 7043 } 7044 7045 ret = 0; 7046 7047 unlock: 7048 if (!ret) { 7049 atomic_long_add(user_extra, &user->locked_vm); 7050 atomic64_add(extra, &vma->vm_mm->pinned_vm); 7051 7052 atomic_inc(&event->mmap_count); 7053 } else if (rb) { 7054 atomic_dec(&rb->mmap_count); 7055 } 7056 aux_unlock: 7057 if (aux_mutex) 7058 mutex_unlock(aux_mutex); 7059 mutex_unlock(&event->mmap_mutex); 7060 7061 /* 7062 * Since pinned accounting is per vm we cannot allow fork() to copy our 7063 * vma. 7064 */ 7065 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 7066 vma->vm_ops = &perf_mmap_vmops; 7067 7068 if (!ret) 7069 ret = map_range(rb, vma); 7070 7071 if (!ret && event->pmu->event_mapped) 7072 event->pmu->event_mapped(event, vma->vm_mm); 7073 7074 return ret; 7075 } 7076 7077 static int perf_fasync(int fd, struct file *filp, int on) 7078 { 7079 struct inode *inode = file_inode(filp); 7080 struct perf_event *event = filp->private_data; 7081 int retval; 7082 7083 inode_lock(inode); 7084 retval = fasync_helper(fd, filp, on, &event->fasync); 7085 inode_unlock(inode); 7086 7087 if (retval < 0) 7088 return retval; 7089 7090 return 0; 7091 } 7092 7093 static const struct file_operations perf_fops = { 7094 .release = perf_release, 7095 .read = perf_read, 7096 .poll = perf_poll, 7097 .unlocked_ioctl = perf_ioctl, 7098 .compat_ioctl = perf_compat_ioctl, 7099 .mmap = perf_mmap, 7100 .fasync = perf_fasync, 7101 }; 7102 7103 /* 7104 * Perf event wakeup 7105 * 7106 * If there's data, ensure we set the poll() state and publish everything 7107 * to user-space before waking everybody up. 7108 */ 7109 7110 void perf_event_wakeup(struct perf_event *event) 7111 { 7112 ring_buffer_wakeup(event); 7113 7114 if (event->pending_kill) { 7115 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 7116 event->pending_kill = 0; 7117 } 7118 } 7119 7120 static void perf_sigtrap(struct perf_event *event) 7121 { 7122 /* 7123 * We'd expect this to only occur if the irq_work is delayed and either 7124 * ctx->task or current has changed in the meantime. This can be the 7125 * case on architectures that do not implement arch_irq_work_raise(). 7126 */ 7127 if (WARN_ON_ONCE(event->ctx->task != current)) 7128 return; 7129 7130 /* 7131 * Both perf_pending_task() and perf_pending_irq() can race with the 7132 * task exiting. 7133 */ 7134 if (current->flags & PF_EXITING) 7135 return; 7136 7137 send_sig_perf((void __user *)event->pending_addr, 7138 event->orig_type, event->attr.sig_data); 7139 } 7140 7141 /* 7142 * Deliver the pending work in-event-context or follow the context. 7143 */ 7144 static void __perf_pending_disable(struct perf_event *event) 7145 { 7146 int cpu = READ_ONCE(event->oncpu); 7147 7148 /* 7149 * If the event isn't running; we done. event_sched_out() will have 7150 * taken care of things. 7151 */ 7152 if (cpu < 0) 7153 return; 7154 7155 /* 7156 * Yay, we hit home and are in the context of the event. 7157 */ 7158 if (cpu == smp_processor_id()) { 7159 if (event->pending_disable) { 7160 event->pending_disable = 0; 7161 perf_event_disable_local(event); 7162 } 7163 return; 7164 } 7165 7166 /* 7167 * CPU-A CPU-B 7168 * 7169 * perf_event_disable_inatomic() 7170 * @pending_disable = CPU-A; 7171 * irq_work_queue(); 7172 * 7173 * sched-out 7174 * @pending_disable = -1; 7175 * 7176 * sched-in 7177 * perf_event_disable_inatomic() 7178 * @pending_disable = CPU-B; 7179 * irq_work_queue(); // FAILS 7180 * 7181 * irq_work_run() 7182 * perf_pending_disable() 7183 * 7184 * But the event runs on CPU-B and wants disabling there. 7185 */ 7186 irq_work_queue_on(&event->pending_disable_irq, cpu); 7187 } 7188 7189 static void perf_pending_disable(struct irq_work *entry) 7190 { 7191 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 7192 int rctx; 7193 7194 /* 7195 * If we 'fail' here, that's OK, it means recursion is already disabled 7196 * and we won't recurse 'further'. 7197 */ 7198 rctx = perf_swevent_get_recursion_context(); 7199 __perf_pending_disable(event); 7200 if (rctx >= 0) 7201 perf_swevent_put_recursion_context(rctx); 7202 } 7203 7204 static void perf_pending_irq(struct irq_work *entry) 7205 { 7206 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 7207 int rctx; 7208 7209 /* 7210 * If we 'fail' here, that's OK, it means recursion is already disabled 7211 * and we won't recurse 'further'. 7212 */ 7213 rctx = perf_swevent_get_recursion_context(); 7214 7215 /* 7216 * The wakeup isn't bound to the context of the event -- it can happen 7217 * irrespective of where the event is. 7218 */ 7219 if (event->pending_wakeup) { 7220 event->pending_wakeup = 0; 7221 perf_event_wakeup(event); 7222 } 7223 7224 if (rctx >= 0) 7225 perf_swevent_put_recursion_context(rctx); 7226 } 7227 7228 static void perf_pending_task(struct callback_head *head) 7229 { 7230 struct perf_event *event = container_of(head, struct perf_event, pending_task); 7231 int rctx; 7232 7233 /* 7234 * All accesses to the event must belong to the same implicit RCU read-side 7235 * critical section as the ->pending_work reset. See comment in 7236 * perf_pending_task_sync(). 7237 */ 7238 rcu_read_lock(); 7239 /* 7240 * If we 'fail' here, that's OK, it means recursion is already disabled 7241 * and we won't recurse 'further'. 7242 */ 7243 rctx = perf_swevent_get_recursion_context(); 7244 7245 if (event->pending_work) { 7246 event->pending_work = 0; 7247 perf_sigtrap(event); 7248 local_dec(&event->ctx->nr_no_switch_fast); 7249 rcuwait_wake_up(&event->pending_work_wait); 7250 } 7251 rcu_read_unlock(); 7252 7253 if (rctx >= 0) 7254 perf_swevent_put_recursion_context(rctx); 7255 } 7256 7257 #ifdef CONFIG_GUEST_PERF_EVENTS 7258 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7259 7260 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7261 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7262 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7263 7264 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7265 { 7266 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7267 return; 7268 7269 rcu_assign_pointer(perf_guest_cbs, cbs); 7270 static_call_update(__perf_guest_state, cbs->state); 7271 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7272 7273 /* Implementing ->handle_intel_pt_intr is optional. */ 7274 if (cbs->handle_intel_pt_intr) 7275 static_call_update(__perf_guest_handle_intel_pt_intr, 7276 cbs->handle_intel_pt_intr); 7277 } 7278 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7279 7280 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7281 { 7282 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7283 return; 7284 7285 rcu_assign_pointer(perf_guest_cbs, NULL); 7286 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7287 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7288 static_call_update(__perf_guest_handle_intel_pt_intr, 7289 (void *)&__static_call_return0); 7290 synchronize_rcu(); 7291 } 7292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7293 #endif 7294 7295 static bool should_sample_guest(struct perf_event *event) 7296 { 7297 return !event->attr.exclude_guest && perf_guest_state(); 7298 } 7299 7300 unsigned long perf_misc_flags(struct perf_event *event, 7301 struct pt_regs *regs) 7302 { 7303 if (should_sample_guest(event)) 7304 return perf_arch_guest_misc_flags(regs); 7305 7306 return perf_arch_misc_flags(regs); 7307 } 7308 7309 unsigned long perf_instruction_pointer(struct perf_event *event, 7310 struct pt_regs *regs) 7311 { 7312 if (should_sample_guest(event)) 7313 return perf_guest_get_ip(); 7314 7315 return perf_arch_instruction_pointer(regs); 7316 } 7317 7318 static void 7319 perf_output_sample_regs(struct perf_output_handle *handle, 7320 struct pt_regs *regs, u64 mask) 7321 { 7322 int bit; 7323 DECLARE_BITMAP(_mask, 64); 7324 7325 bitmap_from_u64(_mask, mask); 7326 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7327 u64 val; 7328 7329 val = perf_reg_value(regs, bit); 7330 perf_output_put(handle, val); 7331 } 7332 } 7333 7334 static void perf_sample_regs_user(struct perf_regs *regs_user, 7335 struct pt_regs *regs) 7336 { 7337 if (user_mode(regs)) { 7338 regs_user->abi = perf_reg_abi(current); 7339 regs_user->regs = regs; 7340 } else if (!(current->flags & PF_KTHREAD)) { 7341 perf_get_regs_user(regs_user, regs); 7342 } else { 7343 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7344 regs_user->regs = NULL; 7345 } 7346 } 7347 7348 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7349 struct pt_regs *regs) 7350 { 7351 regs_intr->regs = regs; 7352 regs_intr->abi = perf_reg_abi(current); 7353 } 7354 7355 7356 /* 7357 * Get remaining task size from user stack pointer. 7358 * 7359 * It'd be better to take stack vma map and limit this more 7360 * precisely, but there's no way to get it safely under interrupt, 7361 * so using TASK_SIZE as limit. 7362 */ 7363 static u64 perf_ustack_task_size(struct pt_regs *regs) 7364 { 7365 unsigned long addr = perf_user_stack_pointer(regs); 7366 7367 if (!addr || addr >= TASK_SIZE) 7368 return 0; 7369 7370 return TASK_SIZE - addr; 7371 } 7372 7373 static u16 7374 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7375 struct pt_regs *regs) 7376 { 7377 u64 task_size; 7378 7379 /* No regs, no stack pointer, no dump. */ 7380 if (!regs) 7381 return 0; 7382 7383 /* 7384 * Check if we fit in with the requested stack size into the: 7385 * - TASK_SIZE 7386 * If we don't, we limit the size to the TASK_SIZE. 7387 * 7388 * - remaining sample size 7389 * If we don't, we customize the stack size to 7390 * fit in to the remaining sample size. 7391 */ 7392 7393 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7394 stack_size = min(stack_size, (u16) task_size); 7395 7396 /* Current header size plus static size and dynamic size. */ 7397 header_size += 2 * sizeof(u64); 7398 7399 /* Do we fit in with the current stack dump size? */ 7400 if ((u16) (header_size + stack_size) < header_size) { 7401 /* 7402 * If we overflow the maximum size for the sample, 7403 * we customize the stack dump size to fit in. 7404 */ 7405 stack_size = USHRT_MAX - header_size - sizeof(u64); 7406 stack_size = round_up(stack_size, sizeof(u64)); 7407 } 7408 7409 return stack_size; 7410 } 7411 7412 static void 7413 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7414 struct pt_regs *regs) 7415 { 7416 /* Case of a kernel thread, nothing to dump */ 7417 if (!regs) { 7418 u64 size = 0; 7419 perf_output_put(handle, size); 7420 } else { 7421 unsigned long sp; 7422 unsigned int rem; 7423 u64 dyn_size; 7424 7425 /* 7426 * We dump: 7427 * static size 7428 * - the size requested by user or the best one we can fit 7429 * in to the sample max size 7430 * data 7431 * - user stack dump data 7432 * dynamic size 7433 * - the actual dumped size 7434 */ 7435 7436 /* Static size. */ 7437 perf_output_put(handle, dump_size); 7438 7439 /* Data. */ 7440 sp = perf_user_stack_pointer(regs); 7441 rem = __output_copy_user(handle, (void *) sp, dump_size); 7442 dyn_size = dump_size - rem; 7443 7444 perf_output_skip(handle, rem); 7445 7446 /* Dynamic size. */ 7447 perf_output_put(handle, dyn_size); 7448 } 7449 } 7450 7451 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7452 struct perf_sample_data *data, 7453 size_t size) 7454 { 7455 struct perf_event *sampler = event->aux_event; 7456 struct perf_buffer *rb; 7457 7458 data->aux_size = 0; 7459 7460 if (!sampler) 7461 goto out; 7462 7463 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7464 goto out; 7465 7466 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7467 goto out; 7468 7469 rb = ring_buffer_get(sampler); 7470 if (!rb) 7471 goto out; 7472 7473 /* 7474 * If this is an NMI hit inside sampling code, don't take 7475 * the sample. See also perf_aux_sample_output(). 7476 */ 7477 if (READ_ONCE(rb->aux_in_sampling)) { 7478 data->aux_size = 0; 7479 } else { 7480 size = min_t(size_t, size, perf_aux_size(rb)); 7481 data->aux_size = ALIGN(size, sizeof(u64)); 7482 } 7483 ring_buffer_put(rb); 7484 7485 out: 7486 return data->aux_size; 7487 } 7488 7489 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7490 struct perf_event *event, 7491 struct perf_output_handle *handle, 7492 unsigned long size) 7493 { 7494 unsigned long flags; 7495 long ret; 7496 7497 /* 7498 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7499 * paths. If we start calling them in NMI context, they may race with 7500 * the IRQ ones, that is, for example, re-starting an event that's just 7501 * been stopped, which is why we're using a separate callback that 7502 * doesn't change the event state. 7503 * 7504 * IRQs need to be disabled to prevent IPIs from racing with us. 7505 */ 7506 local_irq_save(flags); 7507 /* 7508 * Guard against NMI hits inside the critical section; 7509 * see also perf_prepare_sample_aux(). 7510 */ 7511 WRITE_ONCE(rb->aux_in_sampling, 1); 7512 barrier(); 7513 7514 ret = event->pmu->snapshot_aux(event, handle, size); 7515 7516 barrier(); 7517 WRITE_ONCE(rb->aux_in_sampling, 0); 7518 local_irq_restore(flags); 7519 7520 return ret; 7521 } 7522 7523 static void perf_aux_sample_output(struct perf_event *event, 7524 struct perf_output_handle *handle, 7525 struct perf_sample_data *data) 7526 { 7527 struct perf_event *sampler = event->aux_event; 7528 struct perf_buffer *rb; 7529 unsigned long pad; 7530 long size; 7531 7532 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7533 return; 7534 7535 rb = ring_buffer_get(sampler); 7536 if (!rb) 7537 return; 7538 7539 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7540 7541 /* 7542 * An error here means that perf_output_copy() failed (returned a 7543 * non-zero surplus that it didn't copy), which in its current 7544 * enlightened implementation is not possible. If that changes, we'd 7545 * like to know. 7546 */ 7547 if (WARN_ON_ONCE(size < 0)) 7548 goto out_put; 7549 7550 /* 7551 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7552 * perf_prepare_sample_aux(), so should not be more than that. 7553 */ 7554 pad = data->aux_size - size; 7555 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7556 pad = 8; 7557 7558 if (pad) { 7559 u64 zero = 0; 7560 perf_output_copy(handle, &zero, pad); 7561 } 7562 7563 out_put: 7564 ring_buffer_put(rb); 7565 } 7566 7567 /* 7568 * A set of common sample data types saved even for non-sample records 7569 * when event->attr.sample_id_all is set. 7570 */ 7571 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7572 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7573 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7574 7575 static void __perf_event_header__init_id(struct perf_sample_data *data, 7576 struct perf_event *event, 7577 u64 sample_type) 7578 { 7579 data->type = event->attr.sample_type; 7580 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7581 7582 if (sample_type & PERF_SAMPLE_TID) { 7583 /* namespace issues */ 7584 data->tid_entry.pid = perf_event_pid(event, current); 7585 data->tid_entry.tid = perf_event_tid(event, current); 7586 } 7587 7588 if (sample_type & PERF_SAMPLE_TIME) 7589 data->time = perf_event_clock(event); 7590 7591 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7592 data->id = primary_event_id(event); 7593 7594 if (sample_type & PERF_SAMPLE_STREAM_ID) 7595 data->stream_id = event->id; 7596 7597 if (sample_type & PERF_SAMPLE_CPU) { 7598 data->cpu_entry.cpu = raw_smp_processor_id(); 7599 data->cpu_entry.reserved = 0; 7600 } 7601 } 7602 7603 void perf_event_header__init_id(struct perf_event_header *header, 7604 struct perf_sample_data *data, 7605 struct perf_event *event) 7606 { 7607 if (event->attr.sample_id_all) { 7608 header->size += event->id_header_size; 7609 __perf_event_header__init_id(data, event, event->attr.sample_type); 7610 } 7611 } 7612 7613 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7614 struct perf_sample_data *data) 7615 { 7616 u64 sample_type = data->type; 7617 7618 if (sample_type & PERF_SAMPLE_TID) 7619 perf_output_put(handle, data->tid_entry); 7620 7621 if (sample_type & PERF_SAMPLE_TIME) 7622 perf_output_put(handle, data->time); 7623 7624 if (sample_type & PERF_SAMPLE_ID) 7625 perf_output_put(handle, data->id); 7626 7627 if (sample_type & PERF_SAMPLE_STREAM_ID) 7628 perf_output_put(handle, data->stream_id); 7629 7630 if (sample_type & PERF_SAMPLE_CPU) 7631 perf_output_put(handle, data->cpu_entry); 7632 7633 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7634 perf_output_put(handle, data->id); 7635 } 7636 7637 void perf_event__output_id_sample(struct perf_event *event, 7638 struct perf_output_handle *handle, 7639 struct perf_sample_data *sample) 7640 { 7641 if (event->attr.sample_id_all) 7642 __perf_event__output_id_sample(handle, sample); 7643 } 7644 7645 static void perf_output_read_one(struct perf_output_handle *handle, 7646 struct perf_event *event, 7647 u64 enabled, u64 running) 7648 { 7649 u64 read_format = event->attr.read_format; 7650 u64 values[5]; 7651 int n = 0; 7652 7653 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7654 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7655 values[n++] = enabled + 7656 atomic64_read(&event->child_total_time_enabled); 7657 } 7658 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7659 values[n++] = running + 7660 atomic64_read(&event->child_total_time_running); 7661 } 7662 if (read_format & PERF_FORMAT_ID) 7663 values[n++] = primary_event_id(event); 7664 if (read_format & PERF_FORMAT_LOST) 7665 values[n++] = atomic64_read(&event->lost_samples); 7666 7667 __output_copy(handle, values, n * sizeof(u64)); 7668 } 7669 7670 static void perf_output_read_group(struct perf_output_handle *handle, 7671 struct perf_event *event, 7672 u64 enabled, u64 running) 7673 { 7674 struct perf_event *leader = event->group_leader, *sub; 7675 u64 read_format = event->attr.read_format; 7676 unsigned long flags; 7677 u64 values[6]; 7678 int n = 0; 7679 bool self = has_inherit_and_sample_read(&event->attr); 7680 7681 /* 7682 * Disabling interrupts avoids all counter scheduling 7683 * (context switches, timer based rotation and IPIs). 7684 */ 7685 local_irq_save(flags); 7686 7687 values[n++] = 1 + leader->nr_siblings; 7688 7689 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7690 values[n++] = enabled; 7691 7692 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7693 values[n++] = running; 7694 7695 if ((leader != event) && !handle->skip_read) 7696 perf_pmu_read(leader); 7697 7698 values[n++] = perf_event_count(leader, self); 7699 if (read_format & PERF_FORMAT_ID) 7700 values[n++] = primary_event_id(leader); 7701 if (read_format & PERF_FORMAT_LOST) 7702 values[n++] = atomic64_read(&leader->lost_samples); 7703 7704 __output_copy(handle, values, n * sizeof(u64)); 7705 7706 for_each_sibling_event(sub, leader) { 7707 n = 0; 7708 7709 if ((sub != event) && !handle->skip_read) 7710 perf_pmu_read(sub); 7711 7712 values[n++] = perf_event_count(sub, self); 7713 if (read_format & PERF_FORMAT_ID) 7714 values[n++] = primary_event_id(sub); 7715 if (read_format & PERF_FORMAT_LOST) 7716 values[n++] = atomic64_read(&sub->lost_samples); 7717 7718 __output_copy(handle, values, n * sizeof(u64)); 7719 } 7720 7721 local_irq_restore(flags); 7722 } 7723 7724 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7725 PERF_FORMAT_TOTAL_TIME_RUNNING) 7726 7727 /* 7728 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7729 * 7730 * The problem is that its both hard and excessively expensive to iterate the 7731 * child list, not to mention that its impossible to IPI the children running 7732 * on another CPU, from interrupt/NMI context. 7733 * 7734 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7735 * counts rather than attempting to accumulate some value across all children on 7736 * all cores. 7737 */ 7738 static void perf_output_read(struct perf_output_handle *handle, 7739 struct perf_event *event) 7740 { 7741 u64 enabled = 0, running = 0, now; 7742 u64 read_format = event->attr.read_format; 7743 7744 /* 7745 * compute total_time_enabled, total_time_running 7746 * based on snapshot values taken when the event 7747 * was last scheduled in. 7748 * 7749 * we cannot simply called update_context_time() 7750 * because of locking issue as we are called in 7751 * NMI context 7752 */ 7753 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7754 calc_timer_values(event, &now, &enabled, &running); 7755 7756 if (event->attr.read_format & PERF_FORMAT_GROUP) 7757 perf_output_read_group(handle, event, enabled, running); 7758 else 7759 perf_output_read_one(handle, event, enabled, running); 7760 } 7761 7762 void perf_output_sample(struct perf_output_handle *handle, 7763 struct perf_event_header *header, 7764 struct perf_sample_data *data, 7765 struct perf_event *event) 7766 { 7767 u64 sample_type = data->type; 7768 7769 if (data->sample_flags & PERF_SAMPLE_READ) 7770 handle->skip_read = 1; 7771 7772 perf_output_put(handle, *header); 7773 7774 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7775 perf_output_put(handle, data->id); 7776 7777 if (sample_type & PERF_SAMPLE_IP) 7778 perf_output_put(handle, data->ip); 7779 7780 if (sample_type & PERF_SAMPLE_TID) 7781 perf_output_put(handle, data->tid_entry); 7782 7783 if (sample_type & PERF_SAMPLE_TIME) 7784 perf_output_put(handle, data->time); 7785 7786 if (sample_type & PERF_SAMPLE_ADDR) 7787 perf_output_put(handle, data->addr); 7788 7789 if (sample_type & PERF_SAMPLE_ID) 7790 perf_output_put(handle, data->id); 7791 7792 if (sample_type & PERF_SAMPLE_STREAM_ID) 7793 perf_output_put(handle, data->stream_id); 7794 7795 if (sample_type & PERF_SAMPLE_CPU) 7796 perf_output_put(handle, data->cpu_entry); 7797 7798 if (sample_type & PERF_SAMPLE_PERIOD) 7799 perf_output_put(handle, data->period); 7800 7801 if (sample_type & PERF_SAMPLE_READ) 7802 perf_output_read(handle, event); 7803 7804 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7805 int size = 1; 7806 7807 size += data->callchain->nr; 7808 size *= sizeof(u64); 7809 __output_copy(handle, data->callchain, size); 7810 } 7811 7812 if (sample_type & PERF_SAMPLE_RAW) { 7813 struct perf_raw_record *raw = data->raw; 7814 7815 if (raw) { 7816 struct perf_raw_frag *frag = &raw->frag; 7817 7818 perf_output_put(handle, raw->size); 7819 do { 7820 if (frag->copy) { 7821 __output_custom(handle, frag->copy, 7822 frag->data, frag->size); 7823 } else { 7824 __output_copy(handle, frag->data, 7825 frag->size); 7826 } 7827 if (perf_raw_frag_last(frag)) 7828 break; 7829 frag = frag->next; 7830 } while (1); 7831 if (frag->pad) 7832 __output_skip(handle, NULL, frag->pad); 7833 } else { 7834 struct { 7835 u32 size; 7836 u32 data; 7837 } raw = { 7838 .size = sizeof(u32), 7839 .data = 0, 7840 }; 7841 perf_output_put(handle, raw); 7842 } 7843 } 7844 7845 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7846 if (data->br_stack) { 7847 size_t size; 7848 7849 size = data->br_stack->nr 7850 * sizeof(struct perf_branch_entry); 7851 7852 perf_output_put(handle, data->br_stack->nr); 7853 if (branch_sample_hw_index(event)) 7854 perf_output_put(handle, data->br_stack->hw_idx); 7855 perf_output_copy(handle, data->br_stack->entries, size); 7856 /* 7857 * Add the extension space which is appended 7858 * right after the struct perf_branch_stack. 7859 */ 7860 if (data->br_stack_cntr) { 7861 size = data->br_stack->nr * sizeof(u64); 7862 perf_output_copy(handle, data->br_stack_cntr, size); 7863 } 7864 } else { 7865 /* 7866 * we always store at least the value of nr 7867 */ 7868 u64 nr = 0; 7869 perf_output_put(handle, nr); 7870 } 7871 } 7872 7873 if (sample_type & PERF_SAMPLE_REGS_USER) { 7874 u64 abi = data->regs_user.abi; 7875 7876 /* 7877 * If there are no regs to dump, notice it through 7878 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7879 */ 7880 perf_output_put(handle, abi); 7881 7882 if (abi) { 7883 u64 mask = event->attr.sample_regs_user; 7884 perf_output_sample_regs(handle, 7885 data->regs_user.regs, 7886 mask); 7887 } 7888 } 7889 7890 if (sample_type & PERF_SAMPLE_STACK_USER) { 7891 perf_output_sample_ustack(handle, 7892 data->stack_user_size, 7893 data->regs_user.regs); 7894 } 7895 7896 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7897 perf_output_put(handle, data->weight.full); 7898 7899 if (sample_type & PERF_SAMPLE_DATA_SRC) 7900 perf_output_put(handle, data->data_src.val); 7901 7902 if (sample_type & PERF_SAMPLE_TRANSACTION) 7903 perf_output_put(handle, data->txn); 7904 7905 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7906 u64 abi = data->regs_intr.abi; 7907 /* 7908 * If there are no regs to dump, notice it through 7909 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7910 */ 7911 perf_output_put(handle, abi); 7912 7913 if (abi) { 7914 u64 mask = event->attr.sample_regs_intr; 7915 7916 perf_output_sample_regs(handle, 7917 data->regs_intr.regs, 7918 mask); 7919 } 7920 } 7921 7922 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7923 perf_output_put(handle, data->phys_addr); 7924 7925 if (sample_type & PERF_SAMPLE_CGROUP) 7926 perf_output_put(handle, data->cgroup); 7927 7928 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7929 perf_output_put(handle, data->data_page_size); 7930 7931 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7932 perf_output_put(handle, data->code_page_size); 7933 7934 if (sample_type & PERF_SAMPLE_AUX) { 7935 perf_output_put(handle, data->aux_size); 7936 7937 if (data->aux_size) 7938 perf_aux_sample_output(event, handle, data); 7939 } 7940 7941 if (!event->attr.watermark) { 7942 int wakeup_events = event->attr.wakeup_events; 7943 7944 if (wakeup_events) { 7945 struct perf_buffer *rb = handle->rb; 7946 int events = local_inc_return(&rb->events); 7947 7948 if (events >= wakeup_events) { 7949 local_sub(wakeup_events, &rb->events); 7950 local_inc(&rb->wakeup); 7951 } 7952 } 7953 } 7954 } 7955 7956 static u64 perf_virt_to_phys(u64 virt) 7957 { 7958 u64 phys_addr = 0; 7959 7960 if (!virt) 7961 return 0; 7962 7963 if (virt >= TASK_SIZE) { 7964 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7965 if (virt_addr_valid((void *)(uintptr_t)virt) && 7966 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7967 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7968 } else { 7969 /* 7970 * Walking the pages tables for user address. 7971 * Interrupts are disabled, so it prevents any tear down 7972 * of the page tables. 7973 * Try IRQ-safe get_user_page_fast_only first. 7974 * If failed, leave phys_addr as 0. 7975 */ 7976 if (current->mm != NULL) { 7977 struct page *p; 7978 7979 pagefault_disable(); 7980 if (get_user_page_fast_only(virt, 0, &p)) { 7981 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7982 put_page(p); 7983 } 7984 pagefault_enable(); 7985 } 7986 } 7987 7988 return phys_addr; 7989 } 7990 7991 /* 7992 * Return the pagetable size of a given virtual address. 7993 */ 7994 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7995 { 7996 u64 size = 0; 7997 7998 #ifdef CONFIG_HAVE_GUP_FAST 7999 pgd_t *pgdp, pgd; 8000 p4d_t *p4dp, p4d; 8001 pud_t *pudp, pud; 8002 pmd_t *pmdp, pmd; 8003 pte_t *ptep, pte; 8004 8005 pgdp = pgd_offset(mm, addr); 8006 pgd = READ_ONCE(*pgdp); 8007 if (pgd_none(pgd)) 8008 return 0; 8009 8010 if (pgd_leaf(pgd)) 8011 return pgd_leaf_size(pgd); 8012 8013 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 8014 p4d = READ_ONCE(*p4dp); 8015 if (!p4d_present(p4d)) 8016 return 0; 8017 8018 if (p4d_leaf(p4d)) 8019 return p4d_leaf_size(p4d); 8020 8021 pudp = pud_offset_lockless(p4dp, p4d, addr); 8022 pud = READ_ONCE(*pudp); 8023 if (!pud_present(pud)) 8024 return 0; 8025 8026 if (pud_leaf(pud)) 8027 return pud_leaf_size(pud); 8028 8029 pmdp = pmd_offset_lockless(pudp, pud, addr); 8030 again: 8031 pmd = pmdp_get_lockless(pmdp); 8032 if (!pmd_present(pmd)) 8033 return 0; 8034 8035 if (pmd_leaf(pmd)) 8036 return pmd_leaf_size(pmd); 8037 8038 ptep = pte_offset_map(&pmd, addr); 8039 if (!ptep) 8040 goto again; 8041 8042 pte = ptep_get_lockless(ptep); 8043 if (pte_present(pte)) 8044 size = __pte_leaf_size(pmd, pte); 8045 pte_unmap(ptep); 8046 #endif /* CONFIG_HAVE_GUP_FAST */ 8047 8048 return size; 8049 } 8050 8051 static u64 perf_get_page_size(unsigned long addr) 8052 { 8053 struct mm_struct *mm; 8054 unsigned long flags; 8055 u64 size; 8056 8057 if (!addr) 8058 return 0; 8059 8060 /* 8061 * Software page-table walkers must disable IRQs, 8062 * which prevents any tear down of the page tables. 8063 */ 8064 local_irq_save(flags); 8065 8066 mm = current->mm; 8067 if (!mm) { 8068 /* 8069 * For kernel threads and the like, use init_mm so that 8070 * we can find kernel memory. 8071 */ 8072 mm = &init_mm; 8073 } 8074 8075 size = perf_get_pgtable_size(mm, addr); 8076 8077 local_irq_restore(flags); 8078 8079 return size; 8080 } 8081 8082 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 8083 8084 struct perf_callchain_entry * 8085 perf_callchain(struct perf_event *event, struct pt_regs *regs) 8086 { 8087 bool kernel = !event->attr.exclude_callchain_kernel; 8088 bool user = !event->attr.exclude_callchain_user; 8089 /* Disallow cross-task user callchains. */ 8090 bool crosstask = event->ctx->task && event->ctx->task != current; 8091 const u32 max_stack = event->attr.sample_max_stack; 8092 struct perf_callchain_entry *callchain; 8093 8094 if (!kernel && !user) 8095 return &__empty_callchain; 8096 8097 callchain = get_perf_callchain(regs, 0, kernel, user, 8098 max_stack, crosstask, true); 8099 return callchain ?: &__empty_callchain; 8100 } 8101 8102 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 8103 { 8104 return d * !!(flags & s); 8105 } 8106 8107 void perf_prepare_sample(struct perf_sample_data *data, 8108 struct perf_event *event, 8109 struct pt_regs *regs) 8110 { 8111 u64 sample_type = event->attr.sample_type; 8112 u64 filtered_sample_type; 8113 8114 /* 8115 * Add the sample flags that are dependent to others. And clear the 8116 * sample flags that have already been done by the PMU driver. 8117 */ 8118 filtered_sample_type = sample_type; 8119 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 8120 PERF_SAMPLE_IP); 8121 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 8122 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 8123 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 8124 PERF_SAMPLE_REGS_USER); 8125 filtered_sample_type &= ~data->sample_flags; 8126 8127 if (filtered_sample_type == 0) { 8128 /* Make sure it has the correct data->type for output */ 8129 data->type = event->attr.sample_type; 8130 return; 8131 } 8132 8133 __perf_event_header__init_id(data, event, filtered_sample_type); 8134 8135 if (filtered_sample_type & PERF_SAMPLE_IP) { 8136 data->ip = perf_instruction_pointer(event, regs); 8137 data->sample_flags |= PERF_SAMPLE_IP; 8138 } 8139 8140 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 8141 perf_sample_save_callchain(data, event, regs); 8142 8143 if (filtered_sample_type & PERF_SAMPLE_RAW) { 8144 data->raw = NULL; 8145 data->dyn_size += sizeof(u64); 8146 data->sample_flags |= PERF_SAMPLE_RAW; 8147 } 8148 8149 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 8150 data->br_stack = NULL; 8151 data->dyn_size += sizeof(u64); 8152 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 8153 } 8154 8155 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 8156 perf_sample_regs_user(&data->regs_user, regs); 8157 8158 /* 8159 * It cannot use the filtered_sample_type here as REGS_USER can be set 8160 * by STACK_USER (using __cond_set() above) and we don't want to update 8161 * the dyn_size if it's not requested by users. 8162 */ 8163 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 8164 /* regs dump ABI info */ 8165 int size = sizeof(u64); 8166 8167 if (data->regs_user.regs) { 8168 u64 mask = event->attr.sample_regs_user; 8169 size += hweight64(mask) * sizeof(u64); 8170 } 8171 8172 data->dyn_size += size; 8173 data->sample_flags |= PERF_SAMPLE_REGS_USER; 8174 } 8175 8176 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 8177 /* 8178 * Either we need PERF_SAMPLE_STACK_USER bit to be always 8179 * processed as the last one or have additional check added 8180 * in case new sample type is added, because we could eat 8181 * up the rest of the sample size. 8182 */ 8183 u16 stack_size = event->attr.sample_stack_user; 8184 u16 header_size = perf_sample_data_size(data, event); 8185 u16 size = sizeof(u64); 8186 8187 stack_size = perf_sample_ustack_size(stack_size, header_size, 8188 data->regs_user.regs); 8189 8190 /* 8191 * If there is something to dump, add space for the dump 8192 * itself and for the field that tells the dynamic size, 8193 * which is how many have been actually dumped. 8194 */ 8195 if (stack_size) 8196 size += sizeof(u64) + stack_size; 8197 8198 data->stack_user_size = stack_size; 8199 data->dyn_size += size; 8200 data->sample_flags |= PERF_SAMPLE_STACK_USER; 8201 } 8202 8203 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 8204 data->weight.full = 0; 8205 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 8206 } 8207 8208 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 8209 data->data_src.val = PERF_MEM_NA; 8210 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 8211 } 8212 8213 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 8214 data->txn = 0; 8215 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 8216 } 8217 8218 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 8219 data->addr = 0; 8220 data->sample_flags |= PERF_SAMPLE_ADDR; 8221 } 8222 8223 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 8224 /* regs dump ABI info */ 8225 int size = sizeof(u64); 8226 8227 perf_sample_regs_intr(&data->regs_intr, regs); 8228 8229 if (data->regs_intr.regs) { 8230 u64 mask = event->attr.sample_regs_intr; 8231 8232 size += hweight64(mask) * sizeof(u64); 8233 } 8234 8235 data->dyn_size += size; 8236 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 8237 } 8238 8239 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 8240 data->phys_addr = perf_virt_to_phys(data->addr); 8241 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8242 } 8243 8244 #ifdef CONFIG_CGROUP_PERF 8245 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8246 struct cgroup *cgrp; 8247 8248 /* protected by RCU */ 8249 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8250 data->cgroup = cgroup_id(cgrp); 8251 data->sample_flags |= PERF_SAMPLE_CGROUP; 8252 } 8253 #endif 8254 8255 /* 8256 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8257 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8258 * but the value will not dump to the userspace. 8259 */ 8260 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8261 data->data_page_size = perf_get_page_size(data->addr); 8262 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8263 } 8264 8265 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8266 data->code_page_size = perf_get_page_size(data->ip); 8267 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8268 } 8269 8270 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8271 u64 size; 8272 u16 header_size = perf_sample_data_size(data, event); 8273 8274 header_size += sizeof(u64); /* size */ 8275 8276 /* 8277 * Given the 16bit nature of header::size, an AUX sample can 8278 * easily overflow it, what with all the preceding sample bits. 8279 * Make sure this doesn't happen by using up to U16_MAX bytes 8280 * per sample in total (rounded down to 8 byte boundary). 8281 */ 8282 size = min_t(size_t, U16_MAX - header_size, 8283 event->attr.aux_sample_size); 8284 size = rounddown(size, 8); 8285 size = perf_prepare_sample_aux(event, data, size); 8286 8287 WARN_ON_ONCE(size + header_size > U16_MAX); 8288 data->dyn_size += size + sizeof(u64); /* size above */ 8289 data->sample_flags |= PERF_SAMPLE_AUX; 8290 } 8291 } 8292 8293 void perf_prepare_header(struct perf_event_header *header, 8294 struct perf_sample_data *data, 8295 struct perf_event *event, 8296 struct pt_regs *regs) 8297 { 8298 header->type = PERF_RECORD_SAMPLE; 8299 header->size = perf_sample_data_size(data, event); 8300 header->misc = perf_misc_flags(event, regs); 8301 8302 /* 8303 * If you're adding more sample types here, you likely need to do 8304 * something about the overflowing header::size, like repurpose the 8305 * lowest 3 bits of size, which should be always zero at the moment. 8306 * This raises a more important question, do we really need 512k sized 8307 * samples and why, so good argumentation is in order for whatever you 8308 * do here next. 8309 */ 8310 WARN_ON_ONCE(header->size & 7); 8311 } 8312 8313 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8314 { 8315 if (pause) { 8316 if (!event->hw.aux_paused) { 8317 event->hw.aux_paused = 1; 8318 event->pmu->stop(event, PERF_EF_PAUSE); 8319 } 8320 } else { 8321 if (event->hw.aux_paused) { 8322 event->hw.aux_paused = 0; 8323 event->pmu->start(event, PERF_EF_RESUME); 8324 } 8325 } 8326 } 8327 8328 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8329 { 8330 struct perf_buffer *rb; 8331 8332 if (WARN_ON_ONCE(!event)) 8333 return; 8334 8335 rb = ring_buffer_get(event); 8336 if (!rb) 8337 return; 8338 8339 scoped_guard (irqsave) { 8340 /* 8341 * Guard against self-recursion here. Another event could trip 8342 * this same from NMI context. 8343 */ 8344 if (READ_ONCE(rb->aux_in_pause_resume)) 8345 break; 8346 8347 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8348 barrier(); 8349 __perf_event_aux_pause(event, pause); 8350 barrier(); 8351 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8352 } 8353 ring_buffer_put(rb); 8354 } 8355 8356 static __always_inline int 8357 __perf_event_output(struct perf_event *event, 8358 struct perf_sample_data *data, 8359 struct pt_regs *regs, 8360 int (*output_begin)(struct perf_output_handle *, 8361 struct perf_sample_data *, 8362 struct perf_event *, 8363 unsigned int)) 8364 { 8365 struct perf_output_handle handle; 8366 struct perf_event_header header; 8367 int err; 8368 8369 /* protect the callchain buffers */ 8370 rcu_read_lock(); 8371 8372 perf_prepare_sample(data, event, regs); 8373 perf_prepare_header(&header, data, event, regs); 8374 8375 err = output_begin(&handle, data, event, header.size); 8376 if (err) 8377 goto exit; 8378 8379 perf_output_sample(&handle, &header, data, event); 8380 8381 perf_output_end(&handle); 8382 8383 exit: 8384 rcu_read_unlock(); 8385 return err; 8386 } 8387 8388 void 8389 perf_event_output_forward(struct perf_event *event, 8390 struct perf_sample_data *data, 8391 struct pt_regs *regs) 8392 { 8393 __perf_event_output(event, data, regs, perf_output_begin_forward); 8394 } 8395 8396 void 8397 perf_event_output_backward(struct perf_event *event, 8398 struct perf_sample_data *data, 8399 struct pt_regs *regs) 8400 { 8401 __perf_event_output(event, data, regs, perf_output_begin_backward); 8402 } 8403 8404 int 8405 perf_event_output(struct perf_event *event, 8406 struct perf_sample_data *data, 8407 struct pt_regs *regs) 8408 { 8409 return __perf_event_output(event, data, regs, perf_output_begin); 8410 } 8411 8412 /* 8413 * read event_id 8414 */ 8415 8416 struct perf_read_event { 8417 struct perf_event_header header; 8418 8419 u32 pid; 8420 u32 tid; 8421 }; 8422 8423 static void 8424 perf_event_read_event(struct perf_event *event, 8425 struct task_struct *task) 8426 { 8427 struct perf_output_handle handle; 8428 struct perf_sample_data sample; 8429 struct perf_read_event read_event = { 8430 .header = { 8431 .type = PERF_RECORD_READ, 8432 .misc = 0, 8433 .size = sizeof(read_event) + event->read_size, 8434 }, 8435 .pid = perf_event_pid(event, task), 8436 .tid = perf_event_tid(event, task), 8437 }; 8438 int ret; 8439 8440 perf_event_header__init_id(&read_event.header, &sample, event); 8441 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8442 if (ret) 8443 return; 8444 8445 perf_output_put(&handle, read_event); 8446 perf_output_read(&handle, event); 8447 perf_event__output_id_sample(event, &handle, &sample); 8448 8449 perf_output_end(&handle); 8450 } 8451 8452 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8453 8454 static void 8455 perf_iterate_ctx(struct perf_event_context *ctx, 8456 perf_iterate_f output, 8457 void *data, bool all) 8458 { 8459 struct perf_event *event; 8460 8461 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8462 if (!all) { 8463 if (event->state < PERF_EVENT_STATE_INACTIVE) 8464 continue; 8465 if (!event_filter_match(event)) 8466 continue; 8467 } 8468 8469 output(event, data); 8470 } 8471 } 8472 8473 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8474 { 8475 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8476 struct perf_event *event; 8477 8478 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8479 /* 8480 * Skip events that are not fully formed yet; ensure that 8481 * if we observe event->ctx, both event and ctx will be 8482 * complete enough. See perf_install_in_context(). 8483 */ 8484 if (!smp_load_acquire(&event->ctx)) 8485 continue; 8486 8487 if (event->state < PERF_EVENT_STATE_INACTIVE) 8488 continue; 8489 if (!event_filter_match(event)) 8490 continue; 8491 output(event, data); 8492 } 8493 } 8494 8495 /* 8496 * Iterate all events that need to receive side-band events. 8497 * 8498 * For new callers; ensure that account_pmu_sb_event() includes 8499 * your event, otherwise it might not get delivered. 8500 */ 8501 static void 8502 perf_iterate_sb(perf_iterate_f output, void *data, 8503 struct perf_event_context *task_ctx) 8504 { 8505 struct perf_event_context *ctx; 8506 8507 rcu_read_lock(); 8508 preempt_disable(); 8509 8510 /* 8511 * If we have task_ctx != NULL we only notify the task context itself. 8512 * The task_ctx is set only for EXIT events before releasing task 8513 * context. 8514 */ 8515 if (task_ctx) { 8516 perf_iterate_ctx(task_ctx, output, data, false); 8517 goto done; 8518 } 8519 8520 perf_iterate_sb_cpu(output, data); 8521 8522 ctx = rcu_dereference(current->perf_event_ctxp); 8523 if (ctx) 8524 perf_iterate_ctx(ctx, output, data, false); 8525 done: 8526 preempt_enable(); 8527 rcu_read_unlock(); 8528 } 8529 8530 /* 8531 * Clear all file-based filters at exec, they'll have to be 8532 * re-instated when/if these objects are mmapped again. 8533 */ 8534 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8535 { 8536 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8537 struct perf_addr_filter *filter; 8538 unsigned int restart = 0, count = 0; 8539 unsigned long flags; 8540 8541 if (!has_addr_filter(event)) 8542 return; 8543 8544 raw_spin_lock_irqsave(&ifh->lock, flags); 8545 list_for_each_entry(filter, &ifh->list, entry) { 8546 if (filter->path.dentry) { 8547 event->addr_filter_ranges[count].start = 0; 8548 event->addr_filter_ranges[count].size = 0; 8549 restart++; 8550 } 8551 8552 count++; 8553 } 8554 8555 if (restart) 8556 event->addr_filters_gen++; 8557 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8558 8559 if (restart) 8560 perf_event_stop(event, 1); 8561 } 8562 8563 void perf_event_exec(void) 8564 { 8565 struct perf_event_context *ctx; 8566 8567 ctx = perf_pin_task_context(current); 8568 if (!ctx) 8569 return; 8570 8571 perf_event_enable_on_exec(ctx); 8572 perf_event_remove_on_exec(ctx); 8573 scoped_guard(rcu) 8574 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8575 8576 perf_unpin_context(ctx); 8577 put_ctx(ctx); 8578 } 8579 8580 struct remote_output { 8581 struct perf_buffer *rb; 8582 int err; 8583 }; 8584 8585 static void __perf_event_output_stop(struct perf_event *event, void *data) 8586 { 8587 struct perf_event *parent = event->parent; 8588 struct remote_output *ro = data; 8589 struct perf_buffer *rb = ro->rb; 8590 struct stop_event_data sd = { 8591 .event = event, 8592 }; 8593 8594 if (!has_aux(event)) 8595 return; 8596 8597 if (!parent) 8598 parent = event; 8599 8600 /* 8601 * In case of inheritance, it will be the parent that links to the 8602 * ring-buffer, but it will be the child that's actually using it. 8603 * 8604 * We are using event::rb to determine if the event should be stopped, 8605 * however this may race with ring_buffer_attach() (through set_output), 8606 * which will make us skip the event that actually needs to be stopped. 8607 * So ring_buffer_attach() has to stop an aux event before re-assigning 8608 * its rb pointer. 8609 */ 8610 if (rcu_dereference(parent->rb) == rb) 8611 ro->err = __perf_event_stop(&sd); 8612 } 8613 8614 static int __perf_pmu_output_stop(void *info) 8615 { 8616 struct perf_event *event = info; 8617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8618 struct remote_output ro = { 8619 .rb = event->rb, 8620 }; 8621 8622 rcu_read_lock(); 8623 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8624 if (cpuctx->task_ctx) 8625 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8626 &ro, false); 8627 rcu_read_unlock(); 8628 8629 return ro.err; 8630 } 8631 8632 static void perf_pmu_output_stop(struct perf_event *event) 8633 { 8634 struct perf_event *iter; 8635 int err, cpu; 8636 8637 restart: 8638 rcu_read_lock(); 8639 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8640 /* 8641 * For per-CPU events, we need to make sure that neither they 8642 * nor their children are running; for cpu==-1 events it's 8643 * sufficient to stop the event itself if it's active, since 8644 * it can't have children. 8645 */ 8646 cpu = iter->cpu; 8647 if (cpu == -1) 8648 cpu = READ_ONCE(iter->oncpu); 8649 8650 if (cpu == -1) 8651 continue; 8652 8653 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8654 if (err == -EAGAIN) { 8655 rcu_read_unlock(); 8656 goto restart; 8657 } 8658 } 8659 rcu_read_unlock(); 8660 } 8661 8662 /* 8663 * task tracking -- fork/exit 8664 * 8665 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8666 */ 8667 8668 struct perf_task_event { 8669 struct task_struct *task; 8670 struct perf_event_context *task_ctx; 8671 8672 struct { 8673 struct perf_event_header header; 8674 8675 u32 pid; 8676 u32 ppid; 8677 u32 tid; 8678 u32 ptid; 8679 u64 time; 8680 } event_id; 8681 }; 8682 8683 static int perf_event_task_match(struct perf_event *event) 8684 { 8685 return event->attr.comm || event->attr.mmap || 8686 event->attr.mmap2 || event->attr.mmap_data || 8687 event->attr.task; 8688 } 8689 8690 static void perf_event_task_output(struct perf_event *event, 8691 void *data) 8692 { 8693 struct perf_task_event *task_event = data; 8694 struct perf_output_handle handle; 8695 struct perf_sample_data sample; 8696 struct task_struct *task = task_event->task; 8697 int ret, size = task_event->event_id.header.size; 8698 8699 if (!perf_event_task_match(event)) 8700 return; 8701 8702 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8703 8704 ret = perf_output_begin(&handle, &sample, event, 8705 task_event->event_id.header.size); 8706 if (ret) 8707 goto out; 8708 8709 task_event->event_id.pid = perf_event_pid(event, task); 8710 task_event->event_id.tid = perf_event_tid(event, task); 8711 8712 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8713 task_event->event_id.ppid = perf_event_pid(event, 8714 task->real_parent); 8715 task_event->event_id.ptid = perf_event_pid(event, 8716 task->real_parent); 8717 } else { /* PERF_RECORD_FORK */ 8718 task_event->event_id.ppid = perf_event_pid(event, current); 8719 task_event->event_id.ptid = perf_event_tid(event, current); 8720 } 8721 8722 task_event->event_id.time = perf_event_clock(event); 8723 8724 perf_output_put(&handle, task_event->event_id); 8725 8726 perf_event__output_id_sample(event, &handle, &sample); 8727 8728 perf_output_end(&handle); 8729 out: 8730 task_event->event_id.header.size = size; 8731 } 8732 8733 static void perf_event_task(struct task_struct *task, 8734 struct perf_event_context *task_ctx, 8735 int new) 8736 { 8737 struct perf_task_event task_event; 8738 8739 if (!atomic_read(&nr_comm_events) && 8740 !atomic_read(&nr_mmap_events) && 8741 !atomic_read(&nr_task_events)) 8742 return; 8743 8744 task_event = (struct perf_task_event){ 8745 .task = task, 8746 .task_ctx = task_ctx, 8747 .event_id = { 8748 .header = { 8749 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8750 .misc = 0, 8751 .size = sizeof(task_event.event_id), 8752 }, 8753 /* .pid */ 8754 /* .ppid */ 8755 /* .tid */ 8756 /* .ptid */ 8757 /* .time */ 8758 }, 8759 }; 8760 8761 perf_iterate_sb(perf_event_task_output, 8762 &task_event, 8763 task_ctx); 8764 } 8765 8766 /* 8767 * Allocate data for a new task when profiling system-wide 8768 * events which require PMU specific data 8769 */ 8770 static void 8771 perf_event_alloc_task_data(struct task_struct *child, 8772 struct task_struct *parent) 8773 { 8774 struct kmem_cache *ctx_cache = NULL; 8775 struct perf_ctx_data *cd; 8776 8777 if (!refcount_read(&global_ctx_data_ref)) 8778 return; 8779 8780 scoped_guard (rcu) { 8781 cd = rcu_dereference(parent->perf_ctx_data); 8782 if (cd) 8783 ctx_cache = cd->ctx_cache; 8784 } 8785 8786 if (!ctx_cache) 8787 return; 8788 8789 guard(percpu_read)(&global_ctx_data_rwsem); 8790 scoped_guard (rcu) { 8791 cd = rcu_dereference(child->perf_ctx_data); 8792 if (!cd) { 8793 /* 8794 * A system-wide event may be unaccount, 8795 * when attaching the perf_ctx_data. 8796 */ 8797 if (!refcount_read(&global_ctx_data_ref)) 8798 return; 8799 goto attach; 8800 } 8801 8802 if (!cd->global) { 8803 cd->global = 1; 8804 refcount_inc(&cd->refcount); 8805 } 8806 } 8807 8808 return; 8809 attach: 8810 attach_task_ctx_data(child, ctx_cache, true); 8811 } 8812 8813 void perf_event_fork(struct task_struct *task) 8814 { 8815 perf_event_task(task, NULL, 1); 8816 perf_event_namespaces(task); 8817 perf_event_alloc_task_data(task, current); 8818 } 8819 8820 /* 8821 * comm tracking 8822 */ 8823 8824 struct perf_comm_event { 8825 struct task_struct *task; 8826 char *comm; 8827 int comm_size; 8828 8829 struct { 8830 struct perf_event_header header; 8831 8832 u32 pid; 8833 u32 tid; 8834 } event_id; 8835 }; 8836 8837 static int perf_event_comm_match(struct perf_event *event) 8838 { 8839 return event->attr.comm; 8840 } 8841 8842 static void perf_event_comm_output(struct perf_event *event, 8843 void *data) 8844 { 8845 struct perf_comm_event *comm_event = data; 8846 struct perf_output_handle handle; 8847 struct perf_sample_data sample; 8848 int size = comm_event->event_id.header.size; 8849 int ret; 8850 8851 if (!perf_event_comm_match(event)) 8852 return; 8853 8854 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8855 ret = perf_output_begin(&handle, &sample, event, 8856 comm_event->event_id.header.size); 8857 8858 if (ret) 8859 goto out; 8860 8861 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8862 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8863 8864 perf_output_put(&handle, comm_event->event_id); 8865 __output_copy(&handle, comm_event->comm, 8866 comm_event->comm_size); 8867 8868 perf_event__output_id_sample(event, &handle, &sample); 8869 8870 perf_output_end(&handle); 8871 out: 8872 comm_event->event_id.header.size = size; 8873 } 8874 8875 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8876 { 8877 char comm[TASK_COMM_LEN]; 8878 unsigned int size; 8879 8880 memset(comm, 0, sizeof(comm)); 8881 strscpy(comm, comm_event->task->comm); 8882 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8883 8884 comm_event->comm = comm; 8885 comm_event->comm_size = size; 8886 8887 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8888 8889 perf_iterate_sb(perf_event_comm_output, 8890 comm_event, 8891 NULL); 8892 } 8893 8894 void perf_event_comm(struct task_struct *task, bool exec) 8895 { 8896 struct perf_comm_event comm_event; 8897 8898 if (!atomic_read(&nr_comm_events)) 8899 return; 8900 8901 comm_event = (struct perf_comm_event){ 8902 .task = task, 8903 /* .comm */ 8904 /* .comm_size */ 8905 .event_id = { 8906 .header = { 8907 .type = PERF_RECORD_COMM, 8908 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8909 /* .size */ 8910 }, 8911 /* .pid */ 8912 /* .tid */ 8913 }, 8914 }; 8915 8916 perf_event_comm_event(&comm_event); 8917 } 8918 8919 /* 8920 * namespaces tracking 8921 */ 8922 8923 struct perf_namespaces_event { 8924 struct task_struct *task; 8925 8926 struct { 8927 struct perf_event_header header; 8928 8929 u32 pid; 8930 u32 tid; 8931 u64 nr_namespaces; 8932 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8933 } event_id; 8934 }; 8935 8936 static int perf_event_namespaces_match(struct perf_event *event) 8937 { 8938 return event->attr.namespaces; 8939 } 8940 8941 static void perf_event_namespaces_output(struct perf_event *event, 8942 void *data) 8943 { 8944 struct perf_namespaces_event *namespaces_event = data; 8945 struct perf_output_handle handle; 8946 struct perf_sample_data sample; 8947 u16 header_size = namespaces_event->event_id.header.size; 8948 int ret; 8949 8950 if (!perf_event_namespaces_match(event)) 8951 return; 8952 8953 perf_event_header__init_id(&namespaces_event->event_id.header, 8954 &sample, event); 8955 ret = perf_output_begin(&handle, &sample, event, 8956 namespaces_event->event_id.header.size); 8957 if (ret) 8958 goto out; 8959 8960 namespaces_event->event_id.pid = perf_event_pid(event, 8961 namespaces_event->task); 8962 namespaces_event->event_id.tid = perf_event_tid(event, 8963 namespaces_event->task); 8964 8965 perf_output_put(&handle, namespaces_event->event_id); 8966 8967 perf_event__output_id_sample(event, &handle, &sample); 8968 8969 perf_output_end(&handle); 8970 out: 8971 namespaces_event->event_id.header.size = header_size; 8972 } 8973 8974 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8975 struct task_struct *task, 8976 const struct proc_ns_operations *ns_ops) 8977 { 8978 struct path ns_path; 8979 struct inode *ns_inode; 8980 int error; 8981 8982 error = ns_get_path(&ns_path, task, ns_ops); 8983 if (!error) { 8984 ns_inode = ns_path.dentry->d_inode; 8985 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8986 ns_link_info->ino = ns_inode->i_ino; 8987 path_put(&ns_path); 8988 } 8989 } 8990 8991 void perf_event_namespaces(struct task_struct *task) 8992 { 8993 struct perf_namespaces_event namespaces_event; 8994 struct perf_ns_link_info *ns_link_info; 8995 8996 if (!atomic_read(&nr_namespaces_events)) 8997 return; 8998 8999 namespaces_event = (struct perf_namespaces_event){ 9000 .task = task, 9001 .event_id = { 9002 .header = { 9003 .type = PERF_RECORD_NAMESPACES, 9004 .misc = 0, 9005 .size = sizeof(namespaces_event.event_id), 9006 }, 9007 /* .pid */ 9008 /* .tid */ 9009 .nr_namespaces = NR_NAMESPACES, 9010 /* .link_info[NR_NAMESPACES] */ 9011 }, 9012 }; 9013 9014 ns_link_info = namespaces_event.event_id.link_info; 9015 9016 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 9017 task, &mntns_operations); 9018 9019 #ifdef CONFIG_USER_NS 9020 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 9021 task, &userns_operations); 9022 #endif 9023 #ifdef CONFIG_NET_NS 9024 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 9025 task, &netns_operations); 9026 #endif 9027 #ifdef CONFIG_UTS_NS 9028 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 9029 task, &utsns_operations); 9030 #endif 9031 #ifdef CONFIG_IPC_NS 9032 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 9033 task, &ipcns_operations); 9034 #endif 9035 #ifdef CONFIG_PID_NS 9036 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 9037 task, &pidns_operations); 9038 #endif 9039 #ifdef CONFIG_CGROUPS 9040 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 9041 task, &cgroupns_operations); 9042 #endif 9043 9044 perf_iterate_sb(perf_event_namespaces_output, 9045 &namespaces_event, 9046 NULL); 9047 } 9048 9049 /* 9050 * cgroup tracking 9051 */ 9052 #ifdef CONFIG_CGROUP_PERF 9053 9054 struct perf_cgroup_event { 9055 char *path; 9056 int path_size; 9057 struct { 9058 struct perf_event_header header; 9059 u64 id; 9060 char path[]; 9061 } event_id; 9062 }; 9063 9064 static int perf_event_cgroup_match(struct perf_event *event) 9065 { 9066 return event->attr.cgroup; 9067 } 9068 9069 static void perf_event_cgroup_output(struct perf_event *event, void *data) 9070 { 9071 struct perf_cgroup_event *cgroup_event = data; 9072 struct perf_output_handle handle; 9073 struct perf_sample_data sample; 9074 u16 header_size = cgroup_event->event_id.header.size; 9075 int ret; 9076 9077 if (!perf_event_cgroup_match(event)) 9078 return; 9079 9080 perf_event_header__init_id(&cgroup_event->event_id.header, 9081 &sample, event); 9082 ret = perf_output_begin(&handle, &sample, event, 9083 cgroup_event->event_id.header.size); 9084 if (ret) 9085 goto out; 9086 9087 perf_output_put(&handle, cgroup_event->event_id); 9088 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 9089 9090 perf_event__output_id_sample(event, &handle, &sample); 9091 9092 perf_output_end(&handle); 9093 out: 9094 cgroup_event->event_id.header.size = header_size; 9095 } 9096 9097 static void perf_event_cgroup(struct cgroup *cgrp) 9098 { 9099 struct perf_cgroup_event cgroup_event; 9100 char path_enomem[16] = "//enomem"; 9101 char *pathname; 9102 size_t size; 9103 9104 if (!atomic_read(&nr_cgroup_events)) 9105 return; 9106 9107 cgroup_event = (struct perf_cgroup_event){ 9108 .event_id = { 9109 .header = { 9110 .type = PERF_RECORD_CGROUP, 9111 .misc = 0, 9112 .size = sizeof(cgroup_event.event_id), 9113 }, 9114 .id = cgroup_id(cgrp), 9115 }, 9116 }; 9117 9118 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 9119 if (pathname == NULL) { 9120 cgroup_event.path = path_enomem; 9121 } else { 9122 /* just to be sure to have enough space for alignment */ 9123 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 9124 cgroup_event.path = pathname; 9125 } 9126 9127 /* 9128 * Since our buffer works in 8 byte units we need to align our string 9129 * size to a multiple of 8. However, we must guarantee the tail end is 9130 * zero'd out to avoid leaking random bits to userspace. 9131 */ 9132 size = strlen(cgroup_event.path) + 1; 9133 while (!IS_ALIGNED(size, sizeof(u64))) 9134 cgroup_event.path[size++] = '\0'; 9135 9136 cgroup_event.event_id.header.size += size; 9137 cgroup_event.path_size = size; 9138 9139 perf_iterate_sb(perf_event_cgroup_output, 9140 &cgroup_event, 9141 NULL); 9142 9143 kfree(pathname); 9144 } 9145 9146 #endif 9147 9148 /* 9149 * mmap tracking 9150 */ 9151 9152 struct perf_mmap_event { 9153 struct vm_area_struct *vma; 9154 9155 const char *file_name; 9156 int file_size; 9157 int maj, min; 9158 u64 ino; 9159 u64 ino_generation; 9160 u32 prot, flags; 9161 u8 build_id[BUILD_ID_SIZE_MAX]; 9162 u32 build_id_size; 9163 9164 struct { 9165 struct perf_event_header header; 9166 9167 u32 pid; 9168 u32 tid; 9169 u64 start; 9170 u64 len; 9171 u64 pgoff; 9172 } event_id; 9173 }; 9174 9175 static int perf_event_mmap_match(struct perf_event *event, 9176 void *data) 9177 { 9178 struct perf_mmap_event *mmap_event = data; 9179 struct vm_area_struct *vma = mmap_event->vma; 9180 int executable = vma->vm_flags & VM_EXEC; 9181 9182 return (!executable && event->attr.mmap_data) || 9183 (executable && (event->attr.mmap || event->attr.mmap2)); 9184 } 9185 9186 static void perf_event_mmap_output(struct perf_event *event, 9187 void *data) 9188 { 9189 struct perf_mmap_event *mmap_event = data; 9190 struct perf_output_handle handle; 9191 struct perf_sample_data sample; 9192 int size = mmap_event->event_id.header.size; 9193 u32 type = mmap_event->event_id.header.type; 9194 bool use_build_id; 9195 int ret; 9196 9197 if (!perf_event_mmap_match(event, data)) 9198 return; 9199 9200 if (event->attr.mmap2) { 9201 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 9202 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 9203 mmap_event->event_id.header.size += sizeof(mmap_event->min); 9204 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 9205 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 9206 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 9207 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 9208 } 9209 9210 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 9211 ret = perf_output_begin(&handle, &sample, event, 9212 mmap_event->event_id.header.size); 9213 if (ret) 9214 goto out; 9215 9216 mmap_event->event_id.pid = perf_event_pid(event, current); 9217 mmap_event->event_id.tid = perf_event_tid(event, current); 9218 9219 use_build_id = event->attr.build_id && mmap_event->build_id_size; 9220 9221 if (event->attr.mmap2 && use_build_id) 9222 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 9223 9224 perf_output_put(&handle, mmap_event->event_id); 9225 9226 if (event->attr.mmap2) { 9227 if (use_build_id) { 9228 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 9229 9230 __output_copy(&handle, size, 4); 9231 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 9232 } else { 9233 perf_output_put(&handle, mmap_event->maj); 9234 perf_output_put(&handle, mmap_event->min); 9235 perf_output_put(&handle, mmap_event->ino); 9236 perf_output_put(&handle, mmap_event->ino_generation); 9237 } 9238 perf_output_put(&handle, mmap_event->prot); 9239 perf_output_put(&handle, mmap_event->flags); 9240 } 9241 9242 __output_copy(&handle, mmap_event->file_name, 9243 mmap_event->file_size); 9244 9245 perf_event__output_id_sample(event, &handle, &sample); 9246 9247 perf_output_end(&handle); 9248 out: 9249 mmap_event->event_id.header.size = size; 9250 mmap_event->event_id.header.type = type; 9251 } 9252 9253 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 9254 { 9255 struct vm_area_struct *vma = mmap_event->vma; 9256 struct file *file = vma->vm_file; 9257 int maj = 0, min = 0; 9258 u64 ino = 0, gen = 0; 9259 u32 prot = 0, flags = 0; 9260 unsigned int size; 9261 char tmp[16]; 9262 char *buf = NULL; 9263 char *name = NULL; 9264 9265 if (vma->vm_flags & VM_READ) 9266 prot |= PROT_READ; 9267 if (vma->vm_flags & VM_WRITE) 9268 prot |= PROT_WRITE; 9269 if (vma->vm_flags & VM_EXEC) 9270 prot |= PROT_EXEC; 9271 9272 if (vma->vm_flags & VM_MAYSHARE) 9273 flags = MAP_SHARED; 9274 else 9275 flags = MAP_PRIVATE; 9276 9277 if (vma->vm_flags & VM_LOCKED) 9278 flags |= MAP_LOCKED; 9279 if (is_vm_hugetlb_page(vma)) 9280 flags |= MAP_HUGETLB; 9281 9282 if (file) { 9283 struct inode *inode; 9284 dev_t dev; 9285 9286 buf = kmalloc(PATH_MAX, GFP_KERNEL); 9287 if (!buf) { 9288 name = "//enomem"; 9289 goto cpy_name; 9290 } 9291 /* 9292 * d_path() works from the end of the rb backwards, so we 9293 * need to add enough zero bytes after the string to handle 9294 * the 64bit alignment we do later. 9295 */ 9296 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 9297 if (IS_ERR(name)) { 9298 name = "//toolong"; 9299 goto cpy_name; 9300 } 9301 inode = file_inode(vma->vm_file); 9302 dev = inode->i_sb->s_dev; 9303 ino = inode->i_ino; 9304 gen = inode->i_generation; 9305 maj = MAJOR(dev); 9306 min = MINOR(dev); 9307 9308 goto got_name; 9309 } else { 9310 if (vma->vm_ops && vma->vm_ops->name) 9311 name = (char *) vma->vm_ops->name(vma); 9312 if (!name) 9313 name = (char *)arch_vma_name(vma); 9314 if (!name) { 9315 if (vma_is_initial_heap(vma)) 9316 name = "[heap]"; 9317 else if (vma_is_initial_stack(vma)) 9318 name = "[stack]"; 9319 else 9320 name = "//anon"; 9321 } 9322 } 9323 9324 cpy_name: 9325 strscpy(tmp, name); 9326 name = tmp; 9327 got_name: 9328 /* 9329 * Since our buffer works in 8 byte units we need to align our string 9330 * size to a multiple of 8. However, we must guarantee the tail end is 9331 * zero'd out to avoid leaking random bits to userspace. 9332 */ 9333 size = strlen(name)+1; 9334 while (!IS_ALIGNED(size, sizeof(u64))) 9335 name[size++] = '\0'; 9336 9337 mmap_event->file_name = name; 9338 mmap_event->file_size = size; 9339 mmap_event->maj = maj; 9340 mmap_event->min = min; 9341 mmap_event->ino = ino; 9342 mmap_event->ino_generation = gen; 9343 mmap_event->prot = prot; 9344 mmap_event->flags = flags; 9345 9346 if (!(vma->vm_flags & VM_EXEC)) 9347 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9348 9349 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9350 9351 if (atomic_read(&nr_build_id_events)) 9352 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9353 9354 perf_iterate_sb(perf_event_mmap_output, 9355 mmap_event, 9356 NULL); 9357 9358 kfree(buf); 9359 } 9360 9361 /* 9362 * Check whether inode and address range match filter criteria. 9363 */ 9364 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9365 struct file *file, unsigned long offset, 9366 unsigned long size) 9367 { 9368 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9369 if (!filter->path.dentry) 9370 return false; 9371 9372 if (d_inode(filter->path.dentry) != file_inode(file)) 9373 return false; 9374 9375 if (filter->offset > offset + size) 9376 return false; 9377 9378 if (filter->offset + filter->size < offset) 9379 return false; 9380 9381 return true; 9382 } 9383 9384 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9385 struct vm_area_struct *vma, 9386 struct perf_addr_filter_range *fr) 9387 { 9388 unsigned long vma_size = vma->vm_end - vma->vm_start; 9389 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9390 struct file *file = vma->vm_file; 9391 9392 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9393 return false; 9394 9395 if (filter->offset < off) { 9396 fr->start = vma->vm_start; 9397 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9398 } else { 9399 fr->start = vma->vm_start + filter->offset - off; 9400 fr->size = min(vma->vm_end - fr->start, filter->size); 9401 } 9402 9403 return true; 9404 } 9405 9406 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9407 { 9408 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9409 struct vm_area_struct *vma = data; 9410 struct perf_addr_filter *filter; 9411 unsigned int restart = 0, count = 0; 9412 unsigned long flags; 9413 9414 if (!has_addr_filter(event)) 9415 return; 9416 9417 if (!vma->vm_file) 9418 return; 9419 9420 raw_spin_lock_irqsave(&ifh->lock, flags); 9421 list_for_each_entry(filter, &ifh->list, entry) { 9422 if (perf_addr_filter_vma_adjust(filter, vma, 9423 &event->addr_filter_ranges[count])) 9424 restart++; 9425 9426 count++; 9427 } 9428 9429 if (restart) 9430 event->addr_filters_gen++; 9431 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9432 9433 if (restart) 9434 perf_event_stop(event, 1); 9435 } 9436 9437 /* 9438 * Adjust all task's events' filters to the new vma 9439 */ 9440 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9441 { 9442 struct perf_event_context *ctx; 9443 9444 /* 9445 * Data tracing isn't supported yet and as such there is no need 9446 * to keep track of anything that isn't related to executable code: 9447 */ 9448 if (!(vma->vm_flags & VM_EXEC)) 9449 return; 9450 9451 rcu_read_lock(); 9452 ctx = rcu_dereference(current->perf_event_ctxp); 9453 if (ctx) 9454 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9455 rcu_read_unlock(); 9456 } 9457 9458 void perf_event_mmap(struct vm_area_struct *vma) 9459 { 9460 struct perf_mmap_event mmap_event; 9461 9462 if (!atomic_read(&nr_mmap_events)) 9463 return; 9464 9465 mmap_event = (struct perf_mmap_event){ 9466 .vma = vma, 9467 /* .file_name */ 9468 /* .file_size */ 9469 .event_id = { 9470 .header = { 9471 .type = PERF_RECORD_MMAP, 9472 .misc = PERF_RECORD_MISC_USER, 9473 /* .size */ 9474 }, 9475 /* .pid */ 9476 /* .tid */ 9477 .start = vma->vm_start, 9478 .len = vma->vm_end - vma->vm_start, 9479 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9480 }, 9481 /* .maj (attr_mmap2 only) */ 9482 /* .min (attr_mmap2 only) */ 9483 /* .ino (attr_mmap2 only) */ 9484 /* .ino_generation (attr_mmap2 only) */ 9485 /* .prot (attr_mmap2 only) */ 9486 /* .flags (attr_mmap2 only) */ 9487 }; 9488 9489 perf_addr_filters_adjust(vma); 9490 perf_event_mmap_event(&mmap_event); 9491 } 9492 9493 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9494 unsigned long size, u64 flags) 9495 { 9496 struct perf_output_handle handle; 9497 struct perf_sample_data sample; 9498 struct perf_aux_event { 9499 struct perf_event_header header; 9500 u64 offset; 9501 u64 size; 9502 u64 flags; 9503 } rec = { 9504 .header = { 9505 .type = PERF_RECORD_AUX, 9506 .misc = 0, 9507 .size = sizeof(rec), 9508 }, 9509 .offset = head, 9510 .size = size, 9511 .flags = flags, 9512 }; 9513 int ret; 9514 9515 perf_event_header__init_id(&rec.header, &sample, event); 9516 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9517 9518 if (ret) 9519 return; 9520 9521 perf_output_put(&handle, rec); 9522 perf_event__output_id_sample(event, &handle, &sample); 9523 9524 perf_output_end(&handle); 9525 } 9526 9527 /* 9528 * Lost/dropped samples logging 9529 */ 9530 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9531 { 9532 struct perf_output_handle handle; 9533 struct perf_sample_data sample; 9534 int ret; 9535 9536 struct { 9537 struct perf_event_header header; 9538 u64 lost; 9539 } lost_samples_event = { 9540 .header = { 9541 .type = PERF_RECORD_LOST_SAMPLES, 9542 .misc = 0, 9543 .size = sizeof(lost_samples_event), 9544 }, 9545 .lost = lost, 9546 }; 9547 9548 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9549 9550 ret = perf_output_begin(&handle, &sample, event, 9551 lost_samples_event.header.size); 9552 if (ret) 9553 return; 9554 9555 perf_output_put(&handle, lost_samples_event); 9556 perf_event__output_id_sample(event, &handle, &sample); 9557 perf_output_end(&handle); 9558 } 9559 9560 /* 9561 * context_switch tracking 9562 */ 9563 9564 struct perf_switch_event { 9565 struct task_struct *task; 9566 struct task_struct *next_prev; 9567 9568 struct { 9569 struct perf_event_header header; 9570 u32 next_prev_pid; 9571 u32 next_prev_tid; 9572 } event_id; 9573 }; 9574 9575 static int perf_event_switch_match(struct perf_event *event) 9576 { 9577 return event->attr.context_switch; 9578 } 9579 9580 static void perf_event_switch_output(struct perf_event *event, void *data) 9581 { 9582 struct perf_switch_event *se = data; 9583 struct perf_output_handle handle; 9584 struct perf_sample_data sample; 9585 int ret; 9586 9587 if (!perf_event_switch_match(event)) 9588 return; 9589 9590 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9591 if (event->ctx->task) { 9592 se->event_id.header.type = PERF_RECORD_SWITCH; 9593 se->event_id.header.size = sizeof(se->event_id.header); 9594 } else { 9595 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9596 se->event_id.header.size = sizeof(se->event_id); 9597 se->event_id.next_prev_pid = 9598 perf_event_pid(event, se->next_prev); 9599 se->event_id.next_prev_tid = 9600 perf_event_tid(event, se->next_prev); 9601 } 9602 9603 perf_event_header__init_id(&se->event_id.header, &sample, event); 9604 9605 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9606 if (ret) 9607 return; 9608 9609 if (event->ctx->task) 9610 perf_output_put(&handle, se->event_id.header); 9611 else 9612 perf_output_put(&handle, se->event_id); 9613 9614 perf_event__output_id_sample(event, &handle, &sample); 9615 9616 perf_output_end(&handle); 9617 } 9618 9619 static void perf_event_switch(struct task_struct *task, 9620 struct task_struct *next_prev, bool sched_in) 9621 { 9622 struct perf_switch_event switch_event; 9623 9624 /* N.B. caller checks nr_switch_events != 0 */ 9625 9626 switch_event = (struct perf_switch_event){ 9627 .task = task, 9628 .next_prev = next_prev, 9629 .event_id = { 9630 .header = { 9631 /* .type */ 9632 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9633 /* .size */ 9634 }, 9635 /* .next_prev_pid */ 9636 /* .next_prev_tid */ 9637 }, 9638 }; 9639 9640 if (!sched_in && task_is_runnable(task)) { 9641 switch_event.event_id.header.misc |= 9642 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9643 } 9644 9645 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9646 } 9647 9648 /* 9649 * IRQ throttle logging 9650 */ 9651 9652 static void perf_log_throttle(struct perf_event *event, int enable) 9653 { 9654 struct perf_output_handle handle; 9655 struct perf_sample_data sample; 9656 int ret; 9657 9658 struct { 9659 struct perf_event_header header; 9660 u64 time; 9661 u64 id; 9662 u64 stream_id; 9663 } throttle_event = { 9664 .header = { 9665 .type = PERF_RECORD_THROTTLE, 9666 .misc = 0, 9667 .size = sizeof(throttle_event), 9668 }, 9669 .time = perf_event_clock(event), 9670 .id = primary_event_id(event), 9671 .stream_id = event->id, 9672 }; 9673 9674 if (enable) 9675 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9676 9677 perf_event_header__init_id(&throttle_event.header, &sample, event); 9678 9679 ret = perf_output_begin(&handle, &sample, event, 9680 throttle_event.header.size); 9681 if (ret) 9682 return; 9683 9684 perf_output_put(&handle, throttle_event); 9685 perf_event__output_id_sample(event, &handle, &sample); 9686 perf_output_end(&handle); 9687 } 9688 9689 /* 9690 * ksymbol register/unregister tracking 9691 */ 9692 9693 struct perf_ksymbol_event { 9694 const char *name; 9695 int name_len; 9696 struct { 9697 struct perf_event_header header; 9698 u64 addr; 9699 u32 len; 9700 u16 ksym_type; 9701 u16 flags; 9702 } event_id; 9703 }; 9704 9705 static int perf_event_ksymbol_match(struct perf_event *event) 9706 { 9707 return event->attr.ksymbol; 9708 } 9709 9710 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9711 { 9712 struct perf_ksymbol_event *ksymbol_event = data; 9713 struct perf_output_handle handle; 9714 struct perf_sample_data sample; 9715 int ret; 9716 9717 if (!perf_event_ksymbol_match(event)) 9718 return; 9719 9720 perf_event_header__init_id(&ksymbol_event->event_id.header, 9721 &sample, event); 9722 ret = perf_output_begin(&handle, &sample, event, 9723 ksymbol_event->event_id.header.size); 9724 if (ret) 9725 return; 9726 9727 perf_output_put(&handle, ksymbol_event->event_id); 9728 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9729 perf_event__output_id_sample(event, &handle, &sample); 9730 9731 perf_output_end(&handle); 9732 } 9733 9734 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9735 const char *sym) 9736 { 9737 struct perf_ksymbol_event ksymbol_event; 9738 char name[KSYM_NAME_LEN]; 9739 u16 flags = 0; 9740 int name_len; 9741 9742 if (!atomic_read(&nr_ksymbol_events)) 9743 return; 9744 9745 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9746 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9747 goto err; 9748 9749 strscpy(name, sym); 9750 name_len = strlen(name) + 1; 9751 while (!IS_ALIGNED(name_len, sizeof(u64))) 9752 name[name_len++] = '\0'; 9753 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9754 9755 if (unregister) 9756 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9757 9758 ksymbol_event = (struct perf_ksymbol_event){ 9759 .name = name, 9760 .name_len = name_len, 9761 .event_id = { 9762 .header = { 9763 .type = PERF_RECORD_KSYMBOL, 9764 .size = sizeof(ksymbol_event.event_id) + 9765 name_len, 9766 }, 9767 .addr = addr, 9768 .len = len, 9769 .ksym_type = ksym_type, 9770 .flags = flags, 9771 }, 9772 }; 9773 9774 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9775 return; 9776 err: 9777 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9778 } 9779 9780 /* 9781 * bpf program load/unload tracking 9782 */ 9783 9784 struct perf_bpf_event { 9785 struct bpf_prog *prog; 9786 struct { 9787 struct perf_event_header header; 9788 u16 type; 9789 u16 flags; 9790 u32 id; 9791 u8 tag[BPF_TAG_SIZE]; 9792 } event_id; 9793 }; 9794 9795 static int perf_event_bpf_match(struct perf_event *event) 9796 { 9797 return event->attr.bpf_event; 9798 } 9799 9800 static void perf_event_bpf_output(struct perf_event *event, void *data) 9801 { 9802 struct perf_bpf_event *bpf_event = data; 9803 struct perf_output_handle handle; 9804 struct perf_sample_data sample; 9805 int ret; 9806 9807 if (!perf_event_bpf_match(event)) 9808 return; 9809 9810 perf_event_header__init_id(&bpf_event->event_id.header, 9811 &sample, event); 9812 ret = perf_output_begin(&handle, &sample, event, 9813 bpf_event->event_id.header.size); 9814 if (ret) 9815 return; 9816 9817 perf_output_put(&handle, bpf_event->event_id); 9818 perf_event__output_id_sample(event, &handle, &sample); 9819 9820 perf_output_end(&handle); 9821 } 9822 9823 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9824 enum perf_bpf_event_type type) 9825 { 9826 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9827 int i; 9828 9829 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9830 (u64)(unsigned long)prog->bpf_func, 9831 prog->jited_len, unregister, 9832 prog->aux->ksym.name); 9833 9834 for (i = 1; i < prog->aux->func_cnt; i++) { 9835 struct bpf_prog *subprog = prog->aux->func[i]; 9836 9837 perf_event_ksymbol( 9838 PERF_RECORD_KSYMBOL_TYPE_BPF, 9839 (u64)(unsigned long)subprog->bpf_func, 9840 subprog->jited_len, unregister, 9841 subprog->aux->ksym.name); 9842 } 9843 } 9844 9845 void perf_event_bpf_event(struct bpf_prog *prog, 9846 enum perf_bpf_event_type type, 9847 u16 flags) 9848 { 9849 struct perf_bpf_event bpf_event; 9850 9851 switch (type) { 9852 case PERF_BPF_EVENT_PROG_LOAD: 9853 case PERF_BPF_EVENT_PROG_UNLOAD: 9854 if (atomic_read(&nr_ksymbol_events)) 9855 perf_event_bpf_emit_ksymbols(prog, type); 9856 break; 9857 default: 9858 return; 9859 } 9860 9861 if (!atomic_read(&nr_bpf_events)) 9862 return; 9863 9864 bpf_event = (struct perf_bpf_event){ 9865 .prog = prog, 9866 .event_id = { 9867 .header = { 9868 .type = PERF_RECORD_BPF_EVENT, 9869 .size = sizeof(bpf_event.event_id), 9870 }, 9871 .type = type, 9872 .flags = flags, 9873 .id = prog->aux->id, 9874 }, 9875 }; 9876 9877 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9878 9879 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9880 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9881 } 9882 9883 struct perf_text_poke_event { 9884 const void *old_bytes; 9885 const void *new_bytes; 9886 size_t pad; 9887 u16 old_len; 9888 u16 new_len; 9889 9890 struct { 9891 struct perf_event_header header; 9892 9893 u64 addr; 9894 } event_id; 9895 }; 9896 9897 static int perf_event_text_poke_match(struct perf_event *event) 9898 { 9899 return event->attr.text_poke; 9900 } 9901 9902 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9903 { 9904 struct perf_text_poke_event *text_poke_event = data; 9905 struct perf_output_handle handle; 9906 struct perf_sample_data sample; 9907 u64 padding = 0; 9908 int ret; 9909 9910 if (!perf_event_text_poke_match(event)) 9911 return; 9912 9913 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9914 9915 ret = perf_output_begin(&handle, &sample, event, 9916 text_poke_event->event_id.header.size); 9917 if (ret) 9918 return; 9919 9920 perf_output_put(&handle, text_poke_event->event_id); 9921 perf_output_put(&handle, text_poke_event->old_len); 9922 perf_output_put(&handle, text_poke_event->new_len); 9923 9924 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9925 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9926 9927 if (text_poke_event->pad) 9928 __output_copy(&handle, &padding, text_poke_event->pad); 9929 9930 perf_event__output_id_sample(event, &handle, &sample); 9931 9932 perf_output_end(&handle); 9933 } 9934 9935 void perf_event_text_poke(const void *addr, const void *old_bytes, 9936 size_t old_len, const void *new_bytes, size_t new_len) 9937 { 9938 struct perf_text_poke_event text_poke_event; 9939 size_t tot, pad; 9940 9941 if (!atomic_read(&nr_text_poke_events)) 9942 return; 9943 9944 tot = sizeof(text_poke_event.old_len) + old_len; 9945 tot += sizeof(text_poke_event.new_len) + new_len; 9946 pad = ALIGN(tot, sizeof(u64)) - tot; 9947 9948 text_poke_event = (struct perf_text_poke_event){ 9949 .old_bytes = old_bytes, 9950 .new_bytes = new_bytes, 9951 .pad = pad, 9952 .old_len = old_len, 9953 .new_len = new_len, 9954 .event_id = { 9955 .header = { 9956 .type = PERF_RECORD_TEXT_POKE, 9957 .misc = PERF_RECORD_MISC_KERNEL, 9958 .size = sizeof(text_poke_event.event_id) + tot + pad, 9959 }, 9960 .addr = (unsigned long)addr, 9961 }, 9962 }; 9963 9964 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9965 } 9966 9967 void perf_event_itrace_started(struct perf_event *event) 9968 { 9969 event->attach_state |= PERF_ATTACH_ITRACE; 9970 } 9971 9972 static void perf_log_itrace_start(struct perf_event *event) 9973 { 9974 struct perf_output_handle handle; 9975 struct perf_sample_data sample; 9976 struct perf_aux_event { 9977 struct perf_event_header header; 9978 u32 pid; 9979 u32 tid; 9980 } rec; 9981 int ret; 9982 9983 if (event->parent) 9984 event = event->parent; 9985 9986 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9987 event->attach_state & PERF_ATTACH_ITRACE) 9988 return; 9989 9990 rec.header.type = PERF_RECORD_ITRACE_START; 9991 rec.header.misc = 0; 9992 rec.header.size = sizeof(rec); 9993 rec.pid = perf_event_pid(event, current); 9994 rec.tid = perf_event_tid(event, current); 9995 9996 perf_event_header__init_id(&rec.header, &sample, event); 9997 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9998 9999 if (ret) 10000 return; 10001 10002 perf_output_put(&handle, rec); 10003 perf_event__output_id_sample(event, &handle, &sample); 10004 10005 perf_output_end(&handle); 10006 } 10007 10008 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 10009 { 10010 struct perf_output_handle handle; 10011 struct perf_sample_data sample; 10012 struct perf_aux_event { 10013 struct perf_event_header header; 10014 u64 hw_id; 10015 } rec; 10016 int ret; 10017 10018 if (event->parent) 10019 event = event->parent; 10020 10021 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 10022 rec.header.misc = 0; 10023 rec.header.size = sizeof(rec); 10024 rec.hw_id = hw_id; 10025 10026 perf_event_header__init_id(&rec.header, &sample, event); 10027 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10028 10029 if (ret) 10030 return; 10031 10032 perf_output_put(&handle, rec); 10033 perf_event__output_id_sample(event, &handle, &sample); 10034 10035 perf_output_end(&handle); 10036 } 10037 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 10038 10039 static int 10040 __perf_event_account_interrupt(struct perf_event *event, int throttle) 10041 { 10042 struct hw_perf_event *hwc = &event->hw; 10043 int ret = 0; 10044 u64 seq; 10045 10046 seq = __this_cpu_read(perf_throttled_seq); 10047 if (seq != hwc->interrupts_seq) { 10048 hwc->interrupts_seq = seq; 10049 hwc->interrupts = 1; 10050 } else { 10051 hwc->interrupts++; 10052 if (unlikely(throttle && 10053 hwc->interrupts > max_samples_per_tick)) { 10054 __this_cpu_inc(perf_throttled_count); 10055 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 10056 hwc->interrupts = MAX_INTERRUPTS; 10057 perf_log_throttle(event, 0); 10058 ret = 1; 10059 } 10060 } 10061 10062 if (event->attr.freq) { 10063 u64 now = perf_clock(); 10064 s64 delta = now - hwc->freq_time_stamp; 10065 10066 hwc->freq_time_stamp = now; 10067 10068 if (delta > 0 && delta < 2*TICK_NSEC) 10069 perf_adjust_period(event, delta, hwc->last_period, true); 10070 } 10071 10072 return ret; 10073 } 10074 10075 int perf_event_account_interrupt(struct perf_event *event) 10076 { 10077 return __perf_event_account_interrupt(event, 1); 10078 } 10079 10080 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 10081 { 10082 /* 10083 * Due to interrupt latency (AKA "skid"), we may enter the 10084 * kernel before taking an overflow, even if the PMU is only 10085 * counting user events. 10086 */ 10087 if (event->attr.exclude_kernel && !user_mode(regs)) 10088 return false; 10089 10090 return true; 10091 } 10092 10093 #ifdef CONFIG_BPF_SYSCALL 10094 static int bpf_overflow_handler(struct perf_event *event, 10095 struct perf_sample_data *data, 10096 struct pt_regs *regs) 10097 { 10098 struct bpf_perf_event_data_kern ctx = { 10099 .data = data, 10100 .event = event, 10101 }; 10102 struct bpf_prog *prog; 10103 int ret = 0; 10104 10105 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10106 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10107 goto out; 10108 rcu_read_lock(); 10109 prog = READ_ONCE(event->prog); 10110 if (prog) { 10111 perf_prepare_sample(data, event, regs); 10112 ret = bpf_prog_run(prog, &ctx); 10113 } 10114 rcu_read_unlock(); 10115 out: 10116 __this_cpu_dec(bpf_prog_active); 10117 10118 return ret; 10119 } 10120 10121 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10122 struct bpf_prog *prog, 10123 u64 bpf_cookie) 10124 { 10125 if (event->overflow_handler_context) 10126 /* hw breakpoint or kernel counter */ 10127 return -EINVAL; 10128 10129 if (event->prog) 10130 return -EEXIST; 10131 10132 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10133 return -EINVAL; 10134 10135 if (event->attr.precise_ip && 10136 prog->call_get_stack && 10137 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10138 event->attr.exclude_callchain_kernel || 10139 event->attr.exclude_callchain_user)) { 10140 /* 10141 * On perf_event with precise_ip, calling bpf_get_stack() 10142 * may trigger unwinder warnings and occasional crashes. 10143 * bpf_get_[stack|stackid] works around this issue by using 10144 * callchain attached to perf_sample_data. If the 10145 * perf_event does not full (kernel and user) callchain 10146 * attached to perf_sample_data, do not allow attaching BPF 10147 * program that calls bpf_get_[stack|stackid]. 10148 */ 10149 return -EPROTO; 10150 } 10151 10152 event->prog = prog; 10153 event->bpf_cookie = bpf_cookie; 10154 return 0; 10155 } 10156 10157 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10158 { 10159 struct bpf_prog *prog = event->prog; 10160 10161 if (!prog) 10162 return; 10163 10164 event->prog = NULL; 10165 bpf_prog_put(prog); 10166 } 10167 #else 10168 static inline int bpf_overflow_handler(struct perf_event *event, 10169 struct perf_sample_data *data, 10170 struct pt_regs *regs) 10171 { 10172 return 1; 10173 } 10174 10175 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10176 struct bpf_prog *prog, 10177 u64 bpf_cookie) 10178 { 10179 return -EOPNOTSUPP; 10180 } 10181 10182 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10183 { 10184 } 10185 #endif 10186 10187 /* 10188 * Generic event overflow handling, sampling. 10189 */ 10190 10191 static int __perf_event_overflow(struct perf_event *event, 10192 int throttle, struct perf_sample_data *data, 10193 struct pt_regs *regs) 10194 { 10195 int events = atomic_read(&event->event_limit); 10196 int ret = 0; 10197 10198 /* 10199 * Non-sampling counters might still use the PMI to fold short 10200 * hardware counters, ignore those. 10201 */ 10202 if (unlikely(!is_sampling_event(event))) 10203 return 0; 10204 10205 ret = __perf_event_account_interrupt(event, throttle); 10206 10207 if (event->attr.aux_pause) 10208 perf_event_aux_pause(event->aux_event, true); 10209 10210 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 10211 !bpf_overflow_handler(event, data, regs)) 10212 goto out; 10213 10214 /* 10215 * XXX event_limit might not quite work as expected on inherited 10216 * events 10217 */ 10218 10219 event->pending_kill = POLL_IN; 10220 if (events && atomic_dec_and_test(&event->event_limit)) { 10221 ret = 1; 10222 event->pending_kill = POLL_HUP; 10223 perf_event_disable_inatomic(event); 10224 } 10225 10226 if (event->attr.sigtrap) { 10227 /* 10228 * The desired behaviour of sigtrap vs invalid samples is a bit 10229 * tricky; on the one hand, one should not loose the SIGTRAP if 10230 * it is the first event, on the other hand, we should also not 10231 * trigger the WARN or override the data address. 10232 */ 10233 bool valid_sample = sample_is_allowed(event, regs); 10234 unsigned int pending_id = 1; 10235 enum task_work_notify_mode notify_mode; 10236 10237 if (regs) 10238 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 10239 10240 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 10241 10242 if (!event->pending_work && 10243 !task_work_add(current, &event->pending_task, notify_mode)) { 10244 event->pending_work = pending_id; 10245 local_inc(&event->ctx->nr_no_switch_fast); 10246 10247 event->pending_addr = 0; 10248 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 10249 event->pending_addr = data->addr; 10250 10251 } else if (event->attr.exclude_kernel && valid_sample) { 10252 /* 10253 * Should not be able to return to user space without 10254 * consuming pending_work; with exceptions: 10255 * 10256 * 1. Where !exclude_kernel, events can overflow again 10257 * in the kernel without returning to user space. 10258 * 10259 * 2. Events that can overflow again before the IRQ- 10260 * work without user space progress (e.g. hrtimer). 10261 * To approximate progress (with false negatives), 10262 * check 32-bit hash of the current IP. 10263 */ 10264 WARN_ON_ONCE(event->pending_work != pending_id); 10265 } 10266 } 10267 10268 READ_ONCE(event->overflow_handler)(event, data, regs); 10269 10270 if (*perf_event_fasync(event) && event->pending_kill) { 10271 event->pending_wakeup = 1; 10272 irq_work_queue(&event->pending_irq); 10273 } 10274 out: 10275 if (event->attr.aux_resume) 10276 perf_event_aux_pause(event->aux_event, false); 10277 10278 return ret; 10279 } 10280 10281 int perf_event_overflow(struct perf_event *event, 10282 struct perf_sample_data *data, 10283 struct pt_regs *regs) 10284 { 10285 return __perf_event_overflow(event, 1, data, regs); 10286 } 10287 10288 /* 10289 * Generic software event infrastructure 10290 */ 10291 10292 struct swevent_htable { 10293 struct swevent_hlist *swevent_hlist; 10294 struct mutex hlist_mutex; 10295 int hlist_refcount; 10296 }; 10297 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10298 10299 /* 10300 * We directly increment event->count and keep a second value in 10301 * event->hw.period_left to count intervals. This period event 10302 * is kept in the range [-sample_period, 0] so that we can use the 10303 * sign as trigger. 10304 */ 10305 10306 u64 perf_swevent_set_period(struct perf_event *event) 10307 { 10308 struct hw_perf_event *hwc = &event->hw; 10309 u64 period = hwc->last_period; 10310 u64 nr, offset; 10311 s64 old, val; 10312 10313 hwc->last_period = hwc->sample_period; 10314 10315 old = local64_read(&hwc->period_left); 10316 do { 10317 val = old; 10318 if (val < 0) 10319 return 0; 10320 10321 nr = div64_u64(period + val, period); 10322 offset = nr * period; 10323 val -= offset; 10324 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10325 10326 return nr; 10327 } 10328 10329 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10330 struct perf_sample_data *data, 10331 struct pt_regs *regs) 10332 { 10333 struct hw_perf_event *hwc = &event->hw; 10334 int throttle = 0; 10335 10336 if (!overflow) 10337 overflow = perf_swevent_set_period(event); 10338 10339 if (hwc->interrupts == MAX_INTERRUPTS) 10340 return; 10341 10342 for (; overflow; overflow--) { 10343 if (__perf_event_overflow(event, throttle, 10344 data, regs)) { 10345 /* 10346 * We inhibit the overflow from happening when 10347 * hwc->interrupts == MAX_INTERRUPTS. 10348 */ 10349 break; 10350 } 10351 throttle = 1; 10352 } 10353 } 10354 10355 static void perf_swevent_event(struct perf_event *event, u64 nr, 10356 struct perf_sample_data *data, 10357 struct pt_regs *regs) 10358 { 10359 struct hw_perf_event *hwc = &event->hw; 10360 10361 local64_add(nr, &event->count); 10362 10363 if (!regs) 10364 return; 10365 10366 if (!is_sampling_event(event)) 10367 return; 10368 10369 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10370 data->period = nr; 10371 return perf_swevent_overflow(event, 1, data, regs); 10372 } else 10373 data->period = event->hw.last_period; 10374 10375 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10376 return perf_swevent_overflow(event, 1, data, regs); 10377 10378 if (local64_add_negative(nr, &hwc->period_left)) 10379 return; 10380 10381 perf_swevent_overflow(event, 0, data, regs); 10382 } 10383 10384 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10385 { 10386 if (event->hw.state & PERF_HES_STOPPED) 10387 return 1; 10388 10389 if (regs) { 10390 if (event->attr.exclude_user && user_mode(regs)) 10391 return 1; 10392 10393 if (event->attr.exclude_kernel && !user_mode(regs)) 10394 return 1; 10395 } 10396 10397 return 0; 10398 } 10399 10400 static int perf_swevent_match(struct perf_event *event, 10401 enum perf_type_id type, 10402 u32 event_id, 10403 struct perf_sample_data *data, 10404 struct pt_regs *regs) 10405 { 10406 if (event->attr.type != type) 10407 return 0; 10408 10409 if (event->attr.config != event_id) 10410 return 0; 10411 10412 if (perf_exclude_event(event, regs)) 10413 return 0; 10414 10415 return 1; 10416 } 10417 10418 static inline u64 swevent_hash(u64 type, u32 event_id) 10419 { 10420 u64 val = event_id | (type << 32); 10421 10422 return hash_64(val, SWEVENT_HLIST_BITS); 10423 } 10424 10425 static inline struct hlist_head * 10426 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10427 { 10428 u64 hash = swevent_hash(type, event_id); 10429 10430 return &hlist->heads[hash]; 10431 } 10432 10433 /* For the read side: events when they trigger */ 10434 static inline struct hlist_head * 10435 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10436 { 10437 struct swevent_hlist *hlist; 10438 10439 hlist = rcu_dereference(swhash->swevent_hlist); 10440 if (!hlist) 10441 return NULL; 10442 10443 return __find_swevent_head(hlist, type, event_id); 10444 } 10445 10446 /* For the event head insertion and removal in the hlist */ 10447 static inline struct hlist_head * 10448 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10449 { 10450 struct swevent_hlist *hlist; 10451 u32 event_id = event->attr.config; 10452 u64 type = event->attr.type; 10453 10454 /* 10455 * Event scheduling is always serialized against hlist allocation 10456 * and release. Which makes the protected version suitable here. 10457 * The context lock guarantees that. 10458 */ 10459 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10460 lockdep_is_held(&event->ctx->lock)); 10461 if (!hlist) 10462 return NULL; 10463 10464 return __find_swevent_head(hlist, type, event_id); 10465 } 10466 10467 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10468 u64 nr, 10469 struct perf_sample_data *data, 10470 struct pt_regs *regs) 10471 { 10472 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10473 struct perf_event *event; 10474 struct hlist_head *head; 10475 10476 rcu_read_lock(); 10477 head = find_swevent_head_rcu(swhash, type, event_id); 10478 if (!head) 10479 goto end; 10480 10481 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10482 if (perf_swevent_match(event, type, event_id, data, regs)) 10483 perf_swevent_event(event, nr, data, regs); 10484 } 10485 end: 10486 rcu_read_unlock(); 10487 } 10488 10489 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10490 10491 int perf_swevent_get_recursion_context(void) 10492 { 10493 return get_recursion_context(current->perf_recursion); 10494 } 10495 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10496 10497 void perf_swevent_put_recursion_context(int rctx) 10498 { 10499 put_recursion_context(current->perf_recursion, rctx); 10500 } 10501 10502 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10503 { 10504 struct perf_sample_data data; 10505 10506 if (WARN_ON_ONCE(!regs)) 10507 return; 10508 10509 perf_sample_data_init(&data, addr, 0); 10510 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10511 } 10512 10513 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10514 { 10515 int rctx; 10516 10517 preempt_disable_notrace(); 10518 rctx = perf_swevent_get_recursion_context(); 10519 if (unlikely(rctx < 0)) 10520 goto fail; 10521 10522 ___perf_sw_event(event_id, nr, regs, addr); 10523 10524 perf_swevent_put_recursion_context(rctx); 10525 fail: 10526 preempt_enable_notrace(); 10527 } 10528 10529 static void perf_swevent_read(struct perf_event *event) 10530 { 10531 } 10532 10533 static int perf_swevent_add(struct perf_event *event, int flags) 10534 { 10535 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10536 struct hw_perf_event *hwc = &event->hw; 10537 struct hlist_head *head; 10538 10539 if (is_sampling_event(event)) { 10540 hwc->last_period = hwc->sample_period; 10541 perf_swevent_set_period(event); 10542 } 10543 10544 hwc->state = !(flags & PERF_EF_START); 10545 10546 head = find_swevent_head(swhash, event); 10547 if (WARN_ON_ONCE(!head)) 10548 return -EINVAL; 10549 10550 hlist_add_head_rcu(&event->hlist_entry, head); 10551 perf_event_update_userpage(event); 10552 10553 return 0; 10554 } 10555 10556 static void perf_swevent_del(struct perf_event *event, int flags) 10557 { 10558 hlist_del_rcu(&event->hlist_entry); 10559 } 10560 10561 static void perf_swevent_start(struct perf_event *event, int flags) 10562 { 10563 event->hw.state = 0; 10564 } 10565 10566 static void perf_swevent_stop(struct perf_event *event, int flags) 10567 { 10568 event->hw.state = PERF_HES_STOPPED; 10569 } 10570 10571 /* Deref the hlist from the update side */ 10572 static inline struct swevent_hlist * 10573 swevent_hlist_deref(struct swevent_htable *swhash) 10574 { 10575 return rcu_dereference_protected(swhash->swevent_hlist, 10576 lockdep_is_held(&swhash->hlist_mutex)); 10577 } 10578 10579 static void swevent_hlist_release(struct swevent_htable *swhash) 10580 { 10581 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10582 10583 if (!hlist) 10584 return; 10585 10586 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10587 kfree_rcu(hlist, rcu_head); 10588 } 10589 10590 static void swevent_hlist_put_cpu(int cpu) 10591 { 10592 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10593 10594 mutex_lock(&swhash->hlist_mutex); 10595 10596 if (!--swhash->hlist_refcount) 10597 swevent_hlist_release(swhash); 10598 10599 mutex_unlock(&swhash->hlist_mutex); 10600 } 10601 10602 static void swevent_hlist_put(void) 10603 { 10604 int cpu; 10605 10606 for_each_possible_cpu(cpu) 10607 swevent_hlist_put_cpu(cpu); 10608 } 10609 10610 static int swevent_hlist_get_cpu(int cpu) 10611 { 10612 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10613 int err = 0; 10614 10615 mutex_lock(&swhash->hlist_mutex); 10616 if (!swevent_hlist_deref(swhash) && 10617 cpumask_test_cpu(cpu, perf_online_mask)) { 10618 struct swevent_hlist *hlist; 10619 10620 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10621 if (!hlist) { 10622 err = -ENOMEM; 10623 goto exit; 10624 } 10625 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10626 } 10627 swhash->hlist_refcount++; 10628 exit: 10629 mutex_unlock(&swhash->hlist_mutex); 10630 10631 return err; 10632 } 10633 10634 static int swevent_hlist_get(void) 10635 { 10636 int err, cpu, failed_cpu; 10637 10638 mutex_lock(&pmus_lock); 10639 for_each_possible_cpu(cpu) { 10640 err = swevent_hlist_get_cpu(cpu); 10641 if (err) { 10642 failed_cpu = cpu; 10643 goto fail; 10644 } 10645 } 10646 mutex_unlock(&pmus_lock); 10647 return 0; 10648 fail: 10649 for_each_possible_cpu(cpu) { 10650 if (cpu == failed_cpu) 10651 break; 10652 swevent_hlist_put_cpu(cpu); 10653 } 10654 mutex_unlock(&pmus_lock); 10655 return err; 10656 } 10657 10658 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10659 10660 static void sw_perf_event_destroy(struct perf_event *event) 10661 { 10662 u64 event_id = event->attr.config; 10663 10664 WARN_ON(event->parent); 10665 10666 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10667 swevent_hlist_put(); 10668 } 10669 10670 static struct pmu perf_cpu_clock; /* fwd declaration */ 10671 static struct pmu perf_task_clock; 10672 10673 static int perf_swevent_init(struct perf_event *event) 10674 { 10675 u64 event_id = event->attr.config; 10676 10677 if (event->attr.type != PERF_TYPE_SOFTWARE) 10678 return -ENOENT; 10679 10680 /* 10681 * no branch sampling for software events 10682 */ 10683 if (has_branch_stack(event)) 10684 return -EOPNOTSUPP; 10685 10686 switch (event_id) { 10687 case PERF_COUNT_SW_CPU_CLOCK: 10688 event->attr.type = perf_cpu_clock.type; 10689 return -ENOENT; 10690 case PERF_COUNT_SW_TASK_CLOCK: 10691 event->attr.type = perf_task_clock.type; 10692 return -ENOENT; 10693 10694 default: 10695 break; 10696 } 10697 10698 if (event_id >= PERF_COUNT_SW_MAX) 10699 return -ENOENT; 10700 10701 if (!event->parent) { 10702 int err; 10703 10704 err = swevent_hlist_get(); 10705 if (err) 10706 return err; 10707 10708 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10709 event->destroy = sw_perf_event_destroy; 10710 } 10711 10712 return 0; 10713 } 10714 10715 static struct pmu perf_swevent = { 10716 .task_ctx_nr = perf_sw_context, 10717 10718 .capabilities = PERF_PMU_CAP_NO_NMI, 10719 10720 .event_init = perf_swevent_init, 10721 .add = perf_swevent_add, 10722 .del = perf_swevent_del, 10723 .start = perf_swevent_start, 10724 .stop = perf_swevent_stop, 10725 .read = perf_swevent_read, 10726 }; 10727 10728 #ifdef CONFIG_EVENT_TRACING 10729 10730 static void tp_perf_event_destroy(struct perf_event *event) 10731 { 10732 perf_trace_destroy(event); 10733 } 10734 10735 static int perf_tp_event_init(struct perf_event *event) 10736 { 10737 int err; 10738 10739 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10740 return -ENOENT; 10741 10742 /* 10743 * no branch sampling for tracepoint events 10744 */ 10745 if (has_branch_stack(event)) 10746 return -EOPNOTSUPP; 10747 10748 err = perf_trace_init(event); 10749 if (err) 10750 return err; 10751 10752 event->destroy = tp_perf_event_destroy; 10753 10754 return 0; 10755 } 10756 10757 static struct pmu perf_tracepoint = { 10758 .task_ctx_nr = perf_sw_context, 10759 10760 .event_init = perf_tp_event_init, 10761 .add = perf_trace_add, 10762 .del = perf_trace_del, 10763 .start = perf_swevent_start, 10764 .stop = perf_swevent_stop, 10765 .read = perf_swevent_read, 10766 }; 10767 10768 static int perf_tp_filter_match(struct perf_event *event, 10769 struct perf_raw_record *raw) 10770 { 10771 void *record = raw->frag.data; 10772 10773 /* only top level events have filters set */ 10774 if (event->parent) 10775 event = event->parent; 10776 10777 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10778 return 1; 10779 return 0; 10780 } 10781 10782 static int perf_tp_event_match(struct perf_event *event, 10783 struct perf_raw_record *raw, 10784 struct pt_regs *regs) 10785 { 10786 if (event->hw.state & PERF_HES_STOPPED) 10787 return 0; 10788 /* 10789 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10790 */ 10791 if (event->attr.exclude_kernel && !user_mode(regs)) 10792 return 0; 10793 10794 if (!perf_tp_filter_match(event, raw)) 10795 return 0; 10796 10797 return 1; 10798 } 10799 10800 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10801 struct trace_event_call *call, u64 count, 10802 struct pt_regs *regs, struct hlist_head *head, 10803 struct task_struct *task) 10804 { 10805 if (bpf_prog_array_valid(call)) { 10806 *(struct pt_regs **)raw_data = regs; 10807 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10808 perf_swevent_put_recursion_context(rctx); 10809 return; 10810 } 10811 } 10812 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10813 rctx, task); 10814 } 10815 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10816 10817 static void __perf_tp_event_target_task(u64 count, void *record, 10818 struct pt_regs *regs, 10819 struct perf_sample_data *data, 10820 struct perf_raw_record *raw, 10821 struct perf_event *event) 10822 { 10823 struct trace_entry *entry = record; 10824 10825 if (event->attr.config != entry->type) 10826 return; 10827 /* Cannot deliver synchronous signal to other task. */ 10828 if (event->attr.sigtrap) 10829 return; 10830 if (perf_tp_event_match(event, raw, regs)) { 10831 perf_sample_data_init(data, 0, 0); 10832 perf_sample_save_raw_data(data, event, raw); 10833 perf_swevent_event(event, count, data, regs); 10834 } 10835 } 10836 10837 static void perf_tp_event_target_task(u64 count, void *record, 10838 struct pt_regs *regs, 10839 struct perf_sample_data *data, 10840 struct perf_raw_record *raw, 10841 struct perf_event_context *ctx) 10842 { 10843 unsigned int cpu = smp_processor_id(); 10844 struct pmu *pmu = &perf_tracepoint; 10845 struct perf_event *event, *sibling; 10846 10847 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10848 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10849 for_each_sibling_event(sibling, event) 10850 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10851 } 10852 10853 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10854 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10855 for_each_sibling_event(sibling, event) 10856 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10857 } 10858 } 10859 10860 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10861 struct pt_regs *regs, struct hlist_head *head, int rctx, 10862 struct task_struct *task) 10863 { 10864 struct perf_sample_data data; 10865 struct perf_event *event; 10866 10867 struct perf_raw_record raw = { 10868 .frag = { 10869 .size = entry_size, 10870 .data = record, 10871 }, 10872 }; 10873 10874 perf_trace_buf_update(record, event_type); 10875 10876 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10877 if (perf_tp_event_match(event, &raw, regs)) { 10878 /* 10879 * Here use the same on-stack perf_sample_data, 10880 * some members in data are event-specific and 10881 * need to be re-computed for different sweveents. 10882 * Re-initialize data->sample_flags safely to avoid 10883 * the problem that next event skips preparing data 10884 * because data->sample_flags is set. 10885 */ 10886 perf_sample_data_init(&data, 0, 0); 10887 perf_sample_save_raw_data(&data, event, &raw); 10888 perf_swevent_event(event, count, &data, regs); 10889 } 10890 } 10891 10892 /* 10893 * If we got specified a target task, also iterate its context and 10894 * deliver this event there too. 10895 */ 10896 if (task && task != current) { 10897 struct perf_event_context *ctx; 10898 10899 rcu_read_lock(); 10900 ctx = rcu_dereference(task->perf_event_ctxp); 10901 if (!ctx) 10902 goto unlock; 10903 10904 raw_spin_lock(&ctx->lock); 10905 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 10906 raw_spin_unlock(&ctx->lock); 10907 unlock: 10908 rcu_read_unlock(); 10909 } 10910 10911 perf_swevent_put_recursion_context(rctx); 10912 } 10913 EXPORT_SYMBOL_GPL(perf_tp_event); 10914 10915 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10916 /* 10917 * Flags in config, used by dynamic PMU kprobe and uprobe 10918 * The flags should match following PMU_FORMAT_ATTR(). 10919 * 10920 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10921 * if not set, create kprobe/uprobe 10922 * 10923 * The following values specify a reference counter (or semaphore in the 10924 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10925 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10926 * 10927 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10928 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10929 */ 10930 enum perf_probe_config { 10931 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10932 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10933 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10934 }; 10935 10936 PMU_FORMAT_ATTR(retprobe, "config:0"); 10937 #endif 10938 10939 #ifdef CONFIG_KPROBE_EVENTS 10940 static struct attribute *kprobe_attrs[] = { 10941 &format_attr_retprobe.attr, 10942 NULL, 10943 }; 10944 10945 static struct attribute_group kprobe_format_group = { 10946 .name = "format", 10947 .attrs = kprobe_attrs, 10948 }; 10949 10950 static const struct attribute_group *kprobe_attr_groups[] = { 10951 &kprobe_format_group, 10952 NULL, 10953 }; 10954 10955 static int perf_kprobe_event_init(struct perf_event *event); 10956 static struct pmu perf_kprobe = { 10957 .task_ctx_nr = perf_sw_context, 10958 .event_init = perf_kprobe_event_init, 10959 .add = perf_trace_add, 10960 .del = perf_trace_del, 10961 .start = perf_swevent_start, 10962 .stop = perf_swevent_stop, 10963 .read = perf_swevent_read, 10964 .attr_groups = kprobe_attr_groups, 10965 }; 10966 10967 static int perf_kprobe_event_init(struct perf_event *event) 10968 { 10969 int err; 10970 bool is_retprobe; 10971 10972 if (event->attr.type != perf_kprobe.type) 10973 return -ENOENT; 10974 10975 if (!perfmon_capable()) 10976 return -EACCES; 10977 10978 /* 10979 * no branch sampling for probe events 10980 */ 10981 if (has_branch_stack(event)) 10982 return -EOPNOTSUPP; 10983 10984 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10985 err = perf_kprobe_init(event, is_retprobe); 10986 if (err) 10987 return err; 10988 10989 event->destroy = perf_kprobe_destroy; 10990 10991 return 0; 10992 } 10993 #endif /* CONFIG_KPROBE_EVENTS */ 10994 10995 #ifdef CONFIG_UPROBE_EVENTS 10996 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10997 10998 static struct attribute *uprobe_attrs[] = { 10999 &format_attr_retprobe.attr, 11000 &format_attr_ref_ctr_offset.attr, 11001 NULL, 11002 }; 11003 11004 static struct attribute_group uprobe_format_group = { 11005 .name = "format", 11006 .attrs = uprobe_attrs, 11007 }; 11008 11009 static const struct attribute_group *uprobe_attr_groups[] = { 11010 &uprobe_format_group, 11011 NULL, 11012 }; 11013 11014 static int perf_uprobe_event_init(struct perf_event *event); 11015 static struct pmu perf_uprobe = { 11016 .task_ctx_nr = perf_sw_context, 11017 .event_init = perf_uprobe_event_init, 11018 .add = perf_trace_add, 11019 .del = perf_trace_del, 11020 .start = perf_swevent_start, 11021 .stop = perf_swevent_stop, 11022 .read = perf_swevent_read, 11023 .attr_groups = uprobe_attr_groups, 11024 }; 11025 11026 static int perf_uprobe_event_init(struct perf_event *event) 11027 { 11028 int err; 11029 unsigned long ref_ctr_offset; 11030 bool is_retprobe; 11031 11032 if (event->attr.type != perf_uprobe.type) 11033 return -ENOENT; 11034 11035 if (!perfmon_capable()) 11036 return -EACCES; 11037 11038 /* 11039 * no branch sampling for probe events 11040 */ 11041 if (has_branch_stack(event)) 11042 return -EOPNOTSUPP; 11043 11044 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11045 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11046 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 11047 if (err) 11048 return err; 11049 11050 event->destroy = perf_uprobe_destroy; 11051 11052 return 0; 11053 } 11054 #endif /* CONFIG_UPROBE_EVENTS */ 11055 11056 static inline void perf_tp_register(void) 11057 { 11058 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 11059 #ifdef CONFIG_KPROBE_EVENTS 11060 perf_pmu_register(&perf_kprobe, "kprobe", -1); 11061 #endif 11062 #ifdef CONFIG_UPROBE_EVENTS 11063 perf_pmu_register(&perf_uprobe, "uprobe", -1); 11064 #endif 11065 } 11066 11067 static void perf_event_free_filter(struct perf_event *event) 11068 { 11069 ftrace_profile_free_filter(event); 11070 } 11071 11072 /* 11073 * returns true if the event is a tracepoint, or a kprobe/upprobe created 11074 * with perf_event_open() 11075 */ 11076 static inline bool perf_event_is_tracing(struct perf_event *event) 11077 { 11078 if (event->pmu == &perf_tracepoint) 11079 return true; 11080 #ifdef CONFIG_KPROBE_EVENTS 11081 if (event->pmu == &perf_kprobe) 11082 return true; 11083 #endif 11084 #ifdef CONFIG_UPROBE_EVENTS 11085 if (event->pmu == &perf_uprobe) 11086 return true; 11087 #endif 11088 return false; 11089 } 11090 11091 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 11092 u64 bpf_cookie) 11093 { 11094 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 11095 11096 if (!perf_event_is_tracing(event)) 11097 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 11098 11099 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 11100 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 11101 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 11102 is_syscall_tp = is_syscall_trace_event(event->tp_event); 11103 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 11104 /* bpf programs can only be attached to u/kprobe or tracepoint */ 11105 return -EINVAL; 11106 11107 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 11108 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 11109 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 11110 return -EINVAL; 11111 11112 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 11113 /* only uprobe programs are allowed to be sleepable */ 11114 return -EINVAL; 11115 11116 /* Kprobe override only works for kprobes, not uprobes. */ 11117 if (prog->kprobe_override && !is_kprobe) 11118 return -EINVAL; 11119 11120 if (is_tracepoint || is_syscall_tp) { 11121 int off = trace_event_get_offsets(event->tp_event); 11122 11123 if (prog->aux->max_ctx_offset > off) 11124 return -EACCES; 11125 } 11126 11127 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 11128 } 11129 11130 void perf_event_free_bpf_prog(struct perf_event *event) 11131 { 11132 if (!event->prog) 11133 return; 11134 11135 if (!perf_event_is_tracing(event)) { 11136 perf_event_free_bpf_handler(event); 11137 return; 11138 } 11139 perf_event_detach_bpf_prog(event); 11140 } 11141 11142 #else 11143 11144 static inline void perf_tp_register(void) 11145 { 11146 } 11147 11148 static void perf_event_free_filter(struct perf_event *event) 11149 { 11150 } 11151 11152 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 11153 u64 bpf_cookie) 11154 { 11155 return -ENOENT; 11156 } 11157 11158 void perf_event_free_bpf_prog(struct perf_event *event) 11159 { 11160 } 11161 #endif /* CONFIG_EVENT_TRACING */ 11162 11163 #ifdef CONFIG_HAVE_HW_BREAKPOINT 11164 void perf_bp_event(struct perf_event *bp, void *data) 11165 { 11166 struct perf_sample_data sample; 11167 struct pt_regs *regs = data; 11168 11169 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 11170 11171 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 11172 perf_swevent_event(bp, 1, &sample, regs); 11173 } 11174 #endif 11175 11176 /* 11177 * Allocate a new address filter 11178 */ 11179 static struct perf_addr_filter * 11180 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 11181 { 11182 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 11183 struct perf_addr_filter *filter; 11184 11185 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 11186 if (!filter) 11187 return NULL; 11188 11189 INIT_LIST_HEAD(&filter->entry); 11190 list_add_tail(&filter->entry, filters); 11191 11192 return filter; 11193 } 11194 11195 static void free_filters_list(struct list_head *filters) 11196 { 11197 struct perf_addr_filter *filter, *iter; 11198 11199 list_for_each_entry_safe(filter, iter, filters, entry) { 11200 path_put(&filter->path); 11201 list_del(&filter->entry); 11202 kfree(filter); 11203 } 11204 } 11205 11206 /* 11207 * Free existing address filters and optionally install new ones 11208 */ 11209 static void perf_addr_filters_splice(struct perf_event *event, 11210 struct list_head *head) 11211 { 11212 unsigned long flags; 11213 LIST_HEAD(list); 11214 11215 if (!has_addr_filter(event)) 11216 return; 11217 11218 /* don't bother with children, they don't have their own filters */ 11219 if (event->parent) 11220 return; 11221 11222 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 11223 11224 list_splice_init(&event->addr_filters.list, &list); 11225 if (head) 11226 list_splice(head, &event->addr_filters.list); 11227 11228 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 11229 11230 free_filters_list(&list); 11231 } 11232 11233 static void perf_free_addr_filters(struct perf_event *event) 11234 { 11235 /* 11236 * Used during free paths, there is no concurrency. 11237 */ 11238 if (list_empty(&event->addr_filters.list)) 11239 return; 11240 11241 perf_addr_filters_splice(event, NULL); 11242 } 11243 11244 /* 11245 * Scan through mm's vmas and see if one of them matches the 11246 * @filter; if so, adjust filter's address range. 11247 * Called with mm::mmap_lock down for reading. 11248 */ 11249 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 11250 struct mm_struct *mm, 11251 struct perf_addr_filter_range *fr) 11252 { 11253 struct vm_area_struct *vma; 11254 VMA_ITERATOR(vmi, mm, 0); 11255 11256 for_each_vma(vmi, vma) { 11257 if (!vma->vm_file) 11258 continue; 11259 11260 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 11261 return; 11262 } 11263 } 11264 11265 /* 11266 * Update event's address range filters based on the 11267 * task's existing mappings, if any. 11268 */ 11269 static void perf_event_addr_filters_apply(struct perf_event *event) 11270 { 11271 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11272 struct task_struct *task = READ_ONCE(event->ctx->task); 11273 struct perf_addr_filter *filter; 11274 struct mm_struct *mm = NULL; 11275 unsigned int count = 0; 11276 unsigned long flags; 11277 11278 /* 11279 * We may observe TASK_TOMBSTONE, which means that the event tear-down 11280 * will stop on the parent's child_mutex that our caller is also holding 11281 */ 11282 if (task == TASK_TOMBSTONE) 11283 return; 11284 11285 if (ifh->nr_file_filters) { 11286 mm = get_task_mm(task); 11287 if (!mm) 11288 goto restart; 11289 11290 mmap_read_lock(mm); 11291 } 11292 11293 raw_spin_lock_irqsave(&ifh->lock, flags); 11294 list_for_each_entry(filter, &ifh->list, entry) { 11295 if (filter->path.dentry) { 11296 /* 11297 * Adjust base offset if the filter is associated to a 11298 * binary that needs to be mapped: 11299 */ 11300 event->addr_filter_ranges[count].start = 0; 11301 event->addr_filter_ranges[count].size = 0; 11302 11303 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11304 } else { 11305 event->addr_filter_ranges[count].start = filter->offset; 11306 event->addr_filter_ranges[count].size = filter->size; 11307 } 11308 11309 count++; 11310 } 11311 11312 event->addr_filters_gen++; 11313 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11314 11315 if (ifh->nr_file_filters) { 11316 mmap_read_unlock(mm); 11317 11318 mmput(mm); 11319 } 11320 11321 restart: 11322 perf_event_stop(event, 1); 11323 } 11324 11325 /* 11326 * Address range filtering: limiting the data to certain 11327 * instruction address ranges. Filters are ioctl()ed to us from 11328 * userspace as ascii strings. 11329 * 11330 * Filter string format: 11331 * 11332 * ACTION RANGE_SPEC 11333 * where ACTION is one of the 11334 * * "filter": limit the trace to this region 11335 * * "start": start tracing from this address 11336 * * "stop": stop tracing at this address/region; 11337 * RANGE_SPEC is 11338 * * for kernel addresses: <start address>[/<size>] 11339 * * for object files: <start address>[/<size>]@</path/to/object/file> 11340 * 11341 * if <size> is not specified or is zero, the range is treated as a single 11342 * address; not valid for ACTION=="filter". 11343 */ 11344 enum { 11345 IF_ACT_NONE = -1, 11346 IF_ACT_FILTER, 11347 IF_ACT_START, 11348 IF_ACT_STOP, 11349 IF_SRC_FILE, 11350 IF_SRC_KERNEL, 11351 IF_SRC_FILEADDR, 11352 IF_SRC_KERNELADDR, 11353 }; 11354 11355 enum { 11356 IF_STATE_ACTION = 0, 11357 IF_STATE_SOURCE, 11358 IF_STATE_END, 11359 }; 11360 11361 static const match_table_t if_tokens = { 11362 { IF_ACT_FILTER, "filter" }, 11363 { IF_ACT_START, "start" }, 11364 { IF_ACT_STOP, "stop" }, 11365 { IF_SRC_FILE, "%u/%u@%s" }, 11366 { IF_SRC_KERNEL, "%u/%u" }, 11367 { IF_SRC_FILEADDR, "%u@%s" }, 11368 { IF_SRC_KERNELADDR, "%u" }, 11369 { IF_ACT_NONE, NULL }, 11370 }; 11371 11372 /* 11373 * Address filter string parser 11374 */ 11375 static int 11376 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11377 struct list_head *filters) 11378 { 11379 struct perf_addr_filter *filter = NULL; 11380 char *start, *orig, *filename = NULL; 11381 substring_t args[MAX_OPT_ARGS]; 11382 int state = IF_STATE_ACTION, token; 11383 unsigned int kernel = 0; 11384 int ret = -EINVAL; 11385 11386 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11387 if (!fstr) 11388 return -ENOMEM; 11389 11390 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11391 static const enum perf_addr_filter_action_t actions[] = { 11392 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11393 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11394 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11395 }; 11396 ret = -EINVAL; 11397 11398 if (!*start) 11399 continue; 11400 11401 /* filter definition begins */ 11402 if (state == IF_STATE_ACTION) { 11403 filter = perf_addr_filter_new(event, filters); 11404 if (!filter) 11405 goto fail; 11406 } 11407 11408 token = match_token(start, if_tokens, args); 11409 switch (token) { 11410 case IF_ACT_FILTER: 11411 case IF_ACT_START: 11412 case IF_ACT_STOP: 11413 if (state != IF_STATE_ACTION) 11414 goto fail; 11415 11416 filter->action = actions[token]; 11417 state = IF_STATE_SOURCE; 11418 break; 11419 11420 case IF_SRC_KERNELADDR: 11421 case IF_SRC_KERNEL: 11422 kernel = 1; 11423 fallthrough; 11424 11425 case IF_SRC_FILEADDR: 11426 case IF_SRC_FILE: 11427 if (state != IF_STATE_SOURCE) 11428 goto fail; 11429 11430 *args[0].to = 0; 11431 ret = kstrtoul(args[0].from, 0, &filter->offset); 11432 if (ret) 11433 goto fail; 11434 11435 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11436 *args[1].to = 0; 11437 ret = kstrtoul(args[1].from, 0, &filter->size); 11438 if (ret) 11439 goto fail; 11440 } 11441 11442 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11443 int fpos = token == IF_SRC_FILE ? 2 : 1; 11444 11445 kfree(filename); 11446 filename = match_strdup(&args[fpos]); 11447 if (!filename) { 11448 ret = -ENOMEM; 11449 goto fail; 11450 } 11451 } 11452 11453 state = IF_STATE_END; 11454 break; 11455 11456 default: 11457 goto fail; 11458 } 11459 11460 /* 11461 * Filter definition is fully parsed, validate and install it. 11462 * Make sure that it doesn't contradict itself or the event's 11463 * attribute. 11464 */ 11465 if (state == IF_STATE_END) { 11466 ret = -EINVAL; 11467 11468 /* 11469 * ACTION "filter" must have a non-zero length region 11470 * specified. 11471 */ 11472 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11473 !filter->size) 11474 goto fail; 11475 11476 if (!kernel) { 11477 if (!filename) 11478 goto fail; 11479 11480 /* 11481 * For now, we only support file-based filters 11482 * in per-task events; doing so for CPU-wide 11483 * events requires additional context switching 11484 * trickery, since same object code will be 11485 * mapped at different virtual addresses in 11486 * different processes. 11487 */ 11488 ret = -EOPNOTSUPP; 11489 if (!event->ctx->task) 11490 goto fail; 11491 11492 /* look up the path and grab its inode */ 11493 ret = kern_path(filename, LOOKUP_FOLLOW, 11494 &filter->path); 11495 if (ret) 11496 goto fail; 11497 11498 ret = -EINVAL; 11499 if (!filter->path.dentry || 11500 !S_ISREG(d_inode(filter->path.dentry) 11501 ->i_mode)) 11502 goto fail; 11503 11504 event->addr_filters.nr_file_filters++; 11505 } 11506 11507 /* ready to consume more filters */ 11508 kfree(filename); 11509 filename = NULL; 11510 state = IF_STATE_ACTION; 11511 filter = NULL; 11512 kernel = 0; 11513 } 11514 } 11515 11516 if (state != IF_STATE_ACTION) 11517 goto fail; 11518 11519 kfree(filename); 11520 kfree(orig); 11521 11522 return 0; 11523 11524 fail: 11525 kfree(filename); 11526 free_filters_list(filters); 11527 kfree(orig); 11528 11529 return ret; 11530 } 11531 11532 static int 11533 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11534 { 11535 LIST_HEAD(filters); 11536 int ret; 11537 11538 /* 11539 * Since this is called in perf_ioctl() path, we're already holding 11540 * ctx::mutex. 11541 */ 11542 lockdep_assert_held(&event->ctx->mutex); 11543 11544 if (WARN_ON_ONCE(event->parent)) 11545 return -EINVAL; 11546 11547 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11548 if (ret) 11549 goto fail_clear_files; 11550 11551 ret = event->pmu->addr_filters_validate(&filters); 11552 if (ret) 11553 goto fail_free_filters; 11554 11555 /* remove existing filters, if any */ 11556 perf_addr_filters_splice(event, &filters); 11557 11558 /* install new filters */ 11559 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11560 11561 return ret; 11562 11563 fail_free_filters: 11564 free_filters_list(&filters); 11565 11566 fail_clear_files: 11567 event->addr_filters.nr_file_filters = 0; 11568 11569 return ret; 11570 } 11571 11572 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11573 { 11574 int ret = -EINVAL; 11575 char *filter_str; 11576 11577 filter_str = strndup_user(arg, PAGE_SIZE); 11578 if (IS_ERR(filter_str)) 11579 return PTR_ERR(filter_str); 11580 11581 #ifdef CONFIG_EVENT_TRACING 11582 if (perf_event_is_tracing(event)) { 11583 struct perf_event_context *ctx = event->ctx; 11584 11585 /* 11586 * Beware, here be dragons!! 11587 * 11588 * the tracepoint muck will deadlock against ctx->mutex, but 11589 * the tracepoint stuff does not actually need it. So 11590 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11591 * already have a reference on ctx. 11592 * 11593 * This can result in event getting moved to a different ctx, 11594 * but that does not affect the tracepoint state. 11595 */ 11596 mutex_unlock(&ctx->mutex); 11597 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11598 mutex_lock(&ctx->mutex); 11599 } else 11600 #endif 11601 if (has_addr_filter(event)) 11602 ret = perf_event_set_addr_filter(event, filter_str); 11603 11604 kfree(filter_str); 11605 return ret; 11606 } 11607 11608 /* 11609 * hrtimer based swevent callback 11610 */ 11611 11612 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11613 { 11614 enum hrtimer_restart ret = HRTIMER_RESTART; 11615 struct perf_sample_data data; 11616 struct pt_regs *regs; 11617 struct perf_event *event; 11618 u64 period; 11619 11620 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11621 11622 if (event->state != PERF_EVENT_STATE_ACTIVE) 11623 return HRTIMER_NORESTART; 11624 11625 event->pmu->read(event); 11626 11627 perf_sample_data_init(&data, 0, event->hw.last_period); 11628 regs = get_irq_regs(); 11629 11630 if (regs && !perf_exclude_event(event, regs)) { 11631 if (!(event->attr.exclude_idle && is_idle_task(current))) 11632 if (__perf_event_overflow(event, 1, &data, regs)) 11633 ret = HRTIMER_NORESTART; 11634 } 11635 11636 period = max_t(u64, 10000, event->hw.sample_period); 11637 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11638 11639 return ret; 11640 } 11641 11642 static void perf_swevent_start_hrtimer(struct perf_event *event) 11643 { 11644 struct hw_perf_event *hwc = &event->hw; 11645 s64 period; 11646 11647 if (!is_sampling_event(event)) 11648 return; 11649 11650 period = local64_read(&hwc->period_left); 11651 if (period) { 11652 if (period < 0) 11653 period = 10000; 11654 11655 local64_set(&hwc->period_left, 0); 11656 } else { 11657 period = max_t(u64, 10000, hwc->sample_period); 11658 } 11659 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11660 HRTIMER_MODE_REL_PINNED_HARD); 11661 } 11662 11663 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11664 { 11665 struct hw_perf_event *hwc = &event->hw; 11666 11667 if (is_sampling_event(event)) { 11668 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11669 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11670 11671 hrtimer_cancel(&hwc->hrtimer); 11672 } 11673 } 11674 11675 static void perf_swevent_init_hrtimer(struct perf_event *event) 11676 { 11677 struct hw_perf_event *hwc = &event->hw; 11678 11679 if (!is_sampling_event(event)) 11680 return; 11681 11682 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11683 11684 /* 11685 * Since hrtimers have a fixed rate, we can do a static freq->period 11686 * mapping and avoid the whole period adjust feedback stuff. 11687 */ 11688 if (event->attr.freq) { 11689 long freq = event->attr.sample_freq; 11690 11691 event->attr.sample_period = NSEC_PER_SEC / freq; 11692 hwc->sample_period = event->attr.sample_period; 11693 local64_set(&hwc->period_left, hwc->sample_period); 11694 hwc->last_period = hwc->sample_period; 11695 event->attr.freq = 0; 11696 } 11697 } 11698 11699 /* 11700 * Software event: cpu wall time clock 11701 */ 11702 11703 static void cpu_clock_event_update(struct perf_event *event) 11704 { 11705 s64 prev; 11706 u64 now; 11707 11708 now = local_clock(); 11709 prev = local64_xchg(&event->hw.prev_count, now); 11710 local64_add(now - prev, &event->count); 11711 } 11712 11713 static void cpu_clock_event_start(struct perf_event *event, int flags) 11714 { 11715 local64_set(&event->hw.prev_count, local_clock()); 11716 perf_swevent_start_hrtimer(event); 11717 } 11718 11719 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11720 { 11721 perf_swevent_cancel_hrtimer(event); 11722 cpu_clock_event_update(event); 11723 } 11724 11725 static int cpu_clock_event_add(struct perf_event *event, int flags) 11726 { 11727 if (flags & PERF_EF_START) 11728 cpu_clock_event_start(event, flags); 11729 perf_event_update_userpage(event); 11730 11731 return 0; 11732 } 11733 11734 static void cpu_clock_event_del(struct perf_event *event, int flags) 11735 { 11736 cpu_clock_event_stop(event, flags); 11737 } 11738 11739 static void cpu_clock_event_read(struct perf_event *event) 11740 { 11741 cpu_clock_event_update(event); 11742 } 11743 11744 static int cpu_clock_event_init(struct perf_event *event) 11745 { 11746 if (event->attr.type != perf_cpu_clock.type) 11747 return -ENOENT; 11748 11749 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11750 return -ENOENT; 11751 11752 /* 11753 * no branch sampling for software events 11754 */ 11755 if (has_branch_stack(event)) 11756 return -EOPNOTSUPP; 11757 11758 perf_swevent_init_hrtimer(event); 11759 11760 return 0; 11761 } 11762 11763 static struct pmu perf_cpu_clock = { 11764 .task_ctx_nr = perf_sw_context, 11765 11766 .capabilities = PERF_PMU_CAP_NO_NMI, 11767 .dev = PMU_NULL_DEV, 11768 11769 .event_init = cpu_clock_event_init, 11770 .add = cpu_clock_event_add, 11771 .del = cpu_clock_event_del, 11772 .start = cpu_clock_event_start, 11773 .stop = cpu_clock_event_stop, 11774 .read = cpu_clock_event_read, 11775 }; 11776 11777 /* 11778 * Software event: task time clock 11779 */ 11780 11781 static void task_clock_event_update(struct perf_event *event, u64 now) 11782 { 11783 u64 prev; 11784 s64 delta; 11785 11786 prev = local64_xchg(&event->hw.prev_count, now); 11787 delta = now - prev; 11788 local64_add(delta, &event->count); 11789 } 11790 11791 static void task_clock_event_start(struct perf_event *event, int flags) 11792 { 11793 local64_set(&event->hw.prev_count, event->ctx->time); 11794 perf_swevent_start_hrtimer(event); 11795 } 11796 11797 static void task_clock_event_stop(struct perf_event *event, int flags) 11798 { 11799 perf_swevent_cancel_hrtimer(event); 11800 task_clock_event_update(event, event->ctx->time); 11801 } 11802 11803 static int task_clock_event_add(struct perf_event *event, int flags) 11804 { 11805 if (flags & PERF_EF_START) 11806 task_clock_event_start(event, flags); 11807 perf_event_update_userpage(event); 11808 11809 return 0; 11810 } 11811 11812 static void task_clock_event_del(struct perf_event *event, int flags) 11813 { 11814 task_clock_event_stop(event, PERF_EF_UPDATE); 11815 } 11816 11817 static void task_clock_event_read(struct perf_event *event) 11818 { 11819 u64 now = perf_clock(); 11820 u64 delta = now - event->ctx->timestamp; 11821 u64 time = event->ctx->time + delta; 11822 11823 task_clock_event_update(event, time); 11824 } 11825 11826 static int task_clock_event_init(struct perf_event *event) 11827 { 11828 if (event->attr.type != perf_task_clock.type) 11829 return -ENOENT; 11830 11831 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11832 return -ENOENT; 11833 11834 /* 11835 * no branch sampling for software events 11836 */ 11837 if (has_branch_stack(event)) 11838 return -EOPNOTSUPP; 11839 11840 perf_swevent_init_hrtimer(event); 11841 11842 return 0; 11843 } 11844 11845 static struct pmu perf_task_clock = { 11846 .task_ctx_nr = perf_sw_context, 11847 11848 .capabilities = PERF_PMU_CAP_NO_NMI, 11849 .dev = PMU_NULL_DEV, 11850 11851 .event_init = task_clock_event_init, 11852 .add = task_clock_event_add, 11853 .del = task_clock_event_del, 11854 .start = task_clock_event_start, 11855 .stop = task_clock_event_stop, 11856 .read = task_clock_event_read, 11857 }; 11858 11859 static void perf_pmu_nop_void(struct pmu *pmu) 11860 { 11861 } 11862 11863 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11864 { 11865 } 11866 11867 static int perf_pmu_nop_int(struct pmu *pmu) 11868 { 11869 return 0; 11870 } 11871 11872 static int perf_event_nop_int(struct perf_event *event, u64 value) 11873 { 11874 return 0; 11875 } 11876 11877 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11878 11879 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11880 { 11881 __this_cpu_write(nop_txn_flags, flags); 11882 11883 if (flags & ~PERF_PMU_TXN_ADD) 11884 return; 11885 11886 perf_pmu_disable(pmu); 11887 } 11888 11889 static int perf_pmu_commit_txn(struct pmu *pmu) 11890 { 11891 unsigned int flags = __this_cpu_read(nop_txn_flags); 11892 11893 __this_cpu_write(nop_txn_flags, 0); 11894 11895 if (flags & ~PERF_PMU_TXN_ADD) 11896 return 0; 11897 11898 perf_pmu_enable(pmu); 11899 return 0; 11900 } 11901 11902 static void perf_pmu_cancel_txn(struct pmu *pmu) 11903 { 11904 unsigned int flags = __this_cpu_read(nop_txn_flags); 11905 11906 __this_cpu_write(nop_txn_flags, 0); 11907 11908 if (flags & ~PERF_PMU_TXN_ADD) 11909 return; 11910 11911 perf_pmu_enable(pmu); 11912 } 11913 11914 static int perf_event_idx_default(struct perf_event *event) 11915 { 11916 return 0; 11917 } 11918 11919 /* 11920 * Let userspace know that this PMU supports address range filtering: 11921 */ 11922 static ssize_t nr_addr_filters_show(struct device *dev, 11923 struct device_attribute *attr, 11924 char *page) 11925 { 11926 struct pmu *pmu = dev_get_drvdata(dev); 11927 11928 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); 11929 } 11930 DEVICE_ATTR_RO(nr_addr_filters); 11931 11932 static struct idr pmu_idr; 11933 11934 static ssize_t 11935 type_show(struct device *dev, struct device_attribute *attr, char *page) 11936 { 11937 struct pmu *pmu = dev_get_drvdata(dev); 11938 11939 return sysfs_emit(page, "%d\n", pmu->type); 11940 } 11941 static DEVICE_ATTR_RO(type); 11942 11943 static ssize_t 11944 perf_event_mux_interval_ms_show(struct device *dev, 11945 struct device_attribute *attr, 11946 char *page) 11947 { 11948 struct pmu *pmu = dev_get_drvdata(dev); 11949 11950 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); 11951 } 11952 11953 static DEFINE_MUTEX(mux_interval_mutex); 11954 11955 static ssize_t 11956 perf_event_mux_interval_ms_store(struct device *dev, 11957 struct device_attribute *attr, 11958 const char *buf, size_t count) 11959 { 11960 struct pmu *pmu = dev_get_drvdata(dev); 11961 int timer, cpu, ret; 11962 11963 ret = kstrtoint(buf, 0, &timer); 11964 if (ret) 11965 return ret; 11966 11967 if (timer < 1) 11968 return -EINVAL; 11969 11970 /* same value, noting to do */ 11971 if (timer == pmu->hrtimer_interval_ms) 11972 return count; 11973 11974 mutex_lock(&mux_interval_mutex); 11975 pmu->hrtimer_interval_ms = timer; 11976 11977 /* update all cpuctx for this PMU */ 11978 cpus_read_lock(); 11979 for_each_online_cpu(cpu) { 11980 struct perf_cpu_pmu_context *cpc; 11981 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11982 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11983 11984 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11985 } 11986 cpus_read_unlock(); 11987 mutex_unlock(&mux_interval_mutex); 11988 11989 return count; 11990 } 11991 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11992 11993 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11994 { 11995 switch (scope) { 11996 case PERF_PMU_SCOPE_CORE: 11997 return topology_sibling_cpumask(cpu); 11998 case PERF_PMU_SCOPE_DIE: 11999 return topology_die_cpumask(cpu); 12000 case PERF_PMU_SCOPE_CLUSTER: 12001 return topology_cluster_cpumask(cpu); 12002 case PERF_PMU_SCOPE_PKG: 12003 return topology_core_cpumask(cpu); 12004 case PERF_PMU_SCOPE_SYS_WIDE: 12005 return cpu_online_mask; 12006 } 12007 12008 return NULL; 12009 } 12010 12011 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 12012 { 12013 switch (scope) { 12014 case PERF_PMU_SCOPE_CORE: 12015 return perf_online_core_mask; 12016 case PERF_PMU_SCOPE_DIE: 12017 return perf_online_die_mask; 12018 case PERF_PMU_SCOPE_CLUSTER: 12019 return perf_online_cluster_mask; 12020 case PERF_PMU_SCOPE_PKG: 12021 return perf_online_pkg_mask; 12022 case PERF_PMU_SCOPE_SYS_WIDE: 12023 return perf_online_sys_mask; 12024 } 12025 12026 return NULL; 12027 } 12028 12029 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 12030 char *buf) 12031 { 12032 struct pmu *pmu = dev_get_drvdata(dev); 12033 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 12034 12035 if (mask) 12036 return cpumap_print_to_pagebuf(true, buf, mask); 12037 return 0; 12038 } 12039 12040 static DEVICE_ATTR_RO(cpumask); 12041 12042 static struct attribute *pmu_dev_attrs[] = { 12043 &dev_attr_type.attr, 12044 &dev_attr_perf_event_mux_interval_ms.attr, 12045 &dev_attr_nr_addr_filters.attr, 12046 &dev_attr_cpumask.attr, 12047 NULL, 12048 }; 12049 12050 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 12051 { 12052 struct device *dev = kobj_to_dev(kobj); 12053 struct pmu *pmu = dev_get_drvdata(dev); 12054 12055 if (n == 2 && !pmu->nr_addr_filters) 12056 return 0; 12057 12058 /* cpumask */ 12059 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 12060 return 0; 12061 12062 return a->mode; 12063 } 12064 12065 static struct attribute_group pmu_dev_attr_group = { 12066 .is_visible = pmu_dev_is_visible, 12067 .attrs = pmu_dev_attrs, 12068 }; 12069 12070 static const struct attribute_group *pmu_dev_groups[] = { 12071 &pmu_dev_attr_group, 12072 NULL, 12073 }; 12074 12075 static int pmu_bus_running; 12076 static struct bus_type pmu_bus = { 12077 .name = "event_source", 12078 .dev_groups = pmu_dev_groups, 12079 }; 12080 12081 static void pmu_dev_release(struct device *dev) 12082 { 12083 kfree(dev); 12084 } 12085 12086 static int pmu_dev_alloc(struct pmu *pmu) 12087 { 12088 int ret = -ENOMEM; 12089 12090 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 12091 if (!pmu->dev) 12092 goto out; 12093 12094 pmu->dev->groups = pmu->attr_groups; 12095 device_initialize(pmu->dev); 12096 12097 dev_set_drvdata(pmu->dev, pmu); 12098 pmu->dev->bus = &pmu_bus; 12099 pmu->dev->parent = pmu->parent; 12100 pmu->dev->release = pmu_dev_release; 12101 12102 ret = dev_set_name(pmu->dev, "%s", pmu->name); 12103 if (ret) 12104 goto free_dev; 12105 12106 ret = device_add(pmu->dev); 12107 if (ret) 12108 goto free_dev; 12109 12110 if (pmu->attr_update) { 12111 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 12112 if (ret) 12113 goto del_dev; 12114 } 12115 12116 out: 12117 return ret; 12118 12119 del_dev: 12120 device_del(pmu->dev); 12121 12122 free_dev: 12123 put_device(pmu->dev); 12124 pmu->dev = NULL; 12125 goto out; 12126 } 12127 12128 static struct lock_class_key cpuctx_mutex; 12129 static struct lock_class_key cpuctx_lock; 12130 12131 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 12132 { 12133 void *tmp, *val = idr_find(idr, id); 12134 12135 if (val != old) 12136 return false; 12137 12138 tmp = idr_replace(idr, new, id); 12139 if (IS_ERR(tmp)) 12140 return false; 12141 12142 WARN_ON_ONCE(tmp != val); 12143 return true; 12144 } 12145 12146 static void perf_pmu_free(struct pmu *pmu) 12147 { 12148 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 12149 if (pmu->nr_addr_filters) 12150 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 12151 device_del(pmu->dev); 12152 put_device(pmu->dev); 12153 } 12154 12155 if (pmu->cpu_pmu_context) { 12156 int cpu; 12157 12158 for_each_possible_cpu(cpu) { 12159 struct perf_cpu_pmu_context *cpc; 12160 12161 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12162 if (!cpc) 12163 continue; 12164 if (cpc->epc.embedded) { 12165 /* refcount managed */ 12166 put_pmu_ctx(&cpc->epc); 12167 continue; 12168 } 12169 kfree(cpc); 12170 } 12171 free_percpu(pmu->cpu_pmu_context); 12172 } 12173 } 12174 12175 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) 12176 12177 int perf_pmu_register(struct pmu *_pmu, const char *name, int type) 12178 { 12179 int cpu, max = PERF_TYPE_MAX; 12180 12181 struct pmu *pmu __free(pmu_unregister) = _pmu; 12182 guard(mutex)(&pmus_lock); 12183 12184 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) 12185 return -EINVAL; 12186 12187 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, 12188 "Can not register a pmu with an invalid scope.\n")) 12189 return -EINVAL; 12190 12191 pmu->name = name; 12192 12193 if (type >= 0) 12194 max = type; 12195 12196 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); 12197 if (pmu_type.id < 0) 12198 return pmu_type.id; 12199 12200 WARN_ON(type >= 0 && pmu_type.id != type); 12201 12202 pmu->type = pmu_type.id; 12203 atomic_set(&pmu->exclusive_cnt, 0); 12204 12205 if (pmu_bus_running && !pmu->dev) { 12206 int ret = pmu_dev_alloc(pmu); 12207 if (ret) 12208 return ret; 12209 } 12210 12211 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); 12212 if (!pmu->cpu_pmu_context) 12213 return -ENOMEM; 12214 12215 for_each_possible_cpu(cpu) { 12216 struct perf_cpu_pmu_context *cpc = 12217 kmalloc_node(sizeof(struct perf_cpu_pmu_context), 12218 GFP_KERNEL | __GFP_ZERO, 12219 cpu_to_node(cpu)); 12220 12221 if (!cpc) 12222 return -ENOMEM; 12223 12224 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; 12225 __perf_init_event_pmu_context(&cpc->epc, pmu); 12226 __perf_mux_hrtimer_init(cpc, cpu); 12227 } 12228 12229 if (!pmu->start_txn) { 12230 if (pmu->pmu_enable) { 12231 /* 12232 * If we have pmu_enable/pmu_disable calls, install 12233 * transaction stubs that use that to try and batch 12234 * hardware accesses. 12235 */ 12236 pmu->start_txn = perf_pmu_start_txn; 12237 pmu->commit_txn = perf_pmu_commit_txn; 12238 pmu->cancel_txn = perf_pmu_cancel_txn; 12239 } else { 12240 pmu->start_txn = perf_pmu_nop_txn; 12241 pmu->commit_txn = perf_pmu_nop_int; 12242 pmu->cancel_txn = perf_pmu_nop_void; 12243 } 12244 } 12245 12246 if (!pmu->pmu_enable) { 12247 pmu->pmu_enable = perf_pmu_nop_void; 12248 pmu->pmu_disable = perf_pmu_nop_void; 12249 } 12250 12251 if (!pmu->check_period) 12252 pmu->check_period = perf_event_nop_int; 12253 12254 if (!pmu->event_idx) 12255 pmu->event_idx = perf_event_idx_default; 12256 12257 /* 12258 * Now that the PMU is complete, make it visible to perf_try_init_event(). 12259 */ 12260 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 12261 return -EINVAL; 12262 list_add_rcu(&pmu->entry, &pmus); 12263 12264 take_idr_id(pmu_type); 12265 _pmu = no_free_ptr(pmu); // let it rip 12266 return 0; 12267 } 12268 EXPORT_SYMBOL_GPL(perf_pmu_register); 12269 12270 void perf_pmu_unregister(struct pmu *pmu) 12271 { 12272 scoped_guard (mutex, &pmus_lock) { 12273 list_del_rcu(&pmu->entry); 12274 idr_remove(&pmu_idr, pmu->type); 12275 } 12276 12277 /* 12278 * We dereference the pmu list under both SRCU and regular RCU, so 12279 * synchronize against both of those. 12280 */ 12281 synchronize_srcu(&pmus_srcu); 12282 synchronize_rcu(); 12283 12284 perf_pmu_free(pmu); 12285 } 12286 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 12287 12288 static inline bool has_extended_regs(struct perf_event *event) 12289 { 12290 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 12291 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 12292 } 12293 12294 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 12295 { 12296 struct perf_event_context *ctx = NULL; 12297 int ret; 12298 12299 if (!try_module_get(pmu->module)) 12300 return -ENODEV; 12301 12302 /* 12303 * A number of pmu->event_init() methods iterate the sibling_list to, 12304 * for example, validate if the group fits on the PMU. Therefore, 12305 * if this is a sibling event, acquire the ctx->mutex to protect 12306 * the sibling_list. 12307 */ 12308 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12309 /* 12310 * This ctx->mutex can nest when we're called through 12311 * inheritance. See the perf_event_ctx_lock_nested() comment. 12312 */ 12313 ctx = perf_event_ctx_lock_nested(event->group_leader, 12314 SINGLE_DEPTH_NESTING); 12315 BUG_ON(!ctx); 12316 } 12317 12318 event->pmu = pmu; 12319 ret = pmu->event_init(event); 12320 12321 if (ctx) 12322 perf_event_ctx_unlock(event->group_leader, ctx); 12323 12324 if (ret) 12325 goto err_pmu; 12326 12327 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 12328 has_extended_regs(event)) { 12329 ret = -EOPNOTSUPP; 12330 goto err_destroy; 12331 } 12332 12333 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 12334 event_has_any_exclude_flag(event)) { 12335 ret = -EINVAL; 12336 goto err_destroy; 12337 } 12338 12339 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12340 const struct cpumask *cpumask; 12341 struct cpumask *pmu_cpumask; 12342 int cpu; 12343 12344 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12345 pmu_cpumask = perf_scope_cpumask(pmu->scope); 12346 12347 ret = -ENODEV; 12348 if (!pmu_cpumask || !cpumask) 12349 goto err_destroy; 12350 12351 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12352 if (cpu >= nr_cpu_ids) 12353 goto err_destroy; 12354 12355 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12356 } 12357 12358 return 0; 12359 12360 err_destroy: 12361 if (event->destroy) { 12362 event->destroy(event); 12363 event->destroy = NULL; 12364 } 12365 12366 err_pmu: 12367 event->pmu = NULL; 12368 module_put(pmu->module); 12369 return ret; 12370 } 12371 12372 static struct pmu *perf_init_event(struct perf_event *event) 12373 { 12374 bool extended_type = false; 12375 struct pmu *pmu; 12376 int type, ret; 12377 12378 guard(srcu)(&pmus_srcu); 12379 12380 /* 12381 * Save original type before calling pmu->event_init() since certain 12382 * pmus overwrites event->attr.type to forward event to another pmu. 12383 */ 12384 event->orig_type = event->attr.type; 12385 12386 /* Try parent's PMU first: */ 12387 if (event->parent && event->parent->pmu) { 12388 pmu = event->parent->pmu; 12389 ret = perf_try_init_event(pmu, event); 12390 if (!ret) 12391 return pmu; 12392 } 12393 12394 /* 12395 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12396 * are often aliases for PERF_TYPE_RAW. 12397 */ 12398 type = event->attr.type; 12399 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12400 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12401 if (!type) { 12402 type = PERF_TYPE_RAW; 12403 } else { 12404 extended_type = true; 12405 event->attr.config &= PERF_HW_EVENT_MASK; 12406 } 12407 } 12408 12409 again: 12410 scoped_guard (rcu) 12411 pmu = idr_find(&pmu_idr, type); 12412 if (pmu) { 12413 if (event->attr.type != type && type != PERF_TYPE_RAW && 12414 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12415 return ERR_PTR(-ENOENT); 12416 12417 ret = perf_try_init_event(pmu, event); 12418 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12419 type = event->attr.type; 12420 goto again; 12421 } 12422 12423 if (ret) 12424 return ERR_PTR(ret); 12425 12426 return pmu; 12427 } 12428 12429 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12430 ret = perf_try_init_event(pmu, event); 12431 if (!ret) 12432 return pmu; 12433 12434 if (ret != -ENOENT) 12435 return ERR_PTR(ret); 12436 } 12437 12438 return ERR_PTR(-ENOENT); 12439 } 12440 12441 static void attach_sb_event(struct perf_event *event) 12442 { 12443 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12444 12445 raw_spin_lock(&pel->lock); 12446 list_add_rcu(&event->sb_list, &pel->list); 12447 raw_spin_unlock(&pel->lock); 12448 } 12449 12450 /* 12451 * We keep a list of all !task (and therefore per-cpu) events 12452 * that need to receive side-band records. 12453 * 12454 * This avoids having to scan all the various PMU per-cpu contexts 12455 * looking for them. 12456 */ 12457 static void account_pmu_sb_event(struct perf_event *event) 12458 { 12459 if (is_sb_event(event)) 12460 attach_sb_event(event); 12461 } 12462 12463 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12464 static void account_freq_event_nohz(void) 12465 { 12466 #ifdef CONFIG_NO_HZ_FULL 12467 /* Lock so we don't race with concurrent unaccount */ 12468 spin_lock(&nr_freq_lock); 12469 if (atomic_inc_return(&nr_freq_events) == 1) 12470 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12471 spin_unlock(&nr_freq_lock); 12472 #endif 12473 } 12474 12475 static void account_freq_event(void) 12476 { 12477 if (tick_nohz_full_enabled()) 12478 account_freq_event_nohz(); 12479 else 12480 atomic_inc(&nr_freq_events); 12481 } 12482 12483 12484 static void account_event(struct perf_event *event) 12485 { 12486 bool inc = false; 12487 12488 if (event->parent) 12489 return; 12490 12491 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12492 inc = true; 12493 if (event->attr.mmap || event->attr.mmap_data) 12494 atomic_inc(&nr_mmap_events); 12495 if (event->attr.build_id) 12496 atomic_inc(&nr_build_id_events); 12497 if (event->attr.comm) 12498 atomic_inc(&nr_comm_events); 12499 if (event->attr.namespaces) 12500 atomic_inc(&nr_namespaces_events); 12501 if (event->attr.cgroup) 12502 atomic_inc(&nr_cgroup_events); 12503 if (event->attr.task) 12504 atomic_inc(&nr_task_events); 12505 if (event->attr.freq) 12506 account_freq_event(); 12507 if (event->attr.context_switch) { 12508 atomic_inc(&nr_switch_events); 12509 inc = true; 12510 } 12511 if (has_branch_stack(event)) 12512 inc = true; 12513 if (is_cgroup_event(event)) 12514 inc = true; 12515 if (event->attr.ksymbol) 12516 atomic_inc(&nr_ksymbol_events); 12517 if (event->attr.bpf_event) 12518 atomic_inc(&nr_bpf_events); 12519 if (event->attr.text_poke) 12520 atomic_inc(&nr_text_poke_events); 12521 12522 if (inc) { 12523 /* 12524 * We need the mutex here because static_branch_enable() 12525 * must complete *before* the perf_sched_count increment 12526 * becomes visible. 12527 */ 12528 if (atomic_inc_not_zero(&perf_sched_count)) 12529 goto enabled; 12530 12531 mutex_lock(&perf_sched_mutex); 12532 if (!atomic_read(&perf_sched_count)) { 12533 static_branch_enable(&perf_sched_events); 12534 /* 12535 * Guarantee that all CPUs observe they key change and 12536 * call the perf scheduling hooks before proceeding to 12537 * install events that need them. 12538 */ 12539 synchronize_rcu(); 12540 } 12541 /* 12542 * Now that we have waited for the sync_sched(), allow further 12543 * increments to by-pass the mutex. 12544 */ 12545 atomic_inc(&perf_sched_count); 12546 mutex_unlock(&perf_sched_mutex); 12547 } 12548 enabled: 12549 12550 account_pmu_sb_event(event); 12551 } 12552 12553 /* 12554 * Allocate and initialize an event structure 12555 */ 12556 static struct perf_event * 12557 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12558 struct task_struct *task, 12559 struct perf_event *group_leader, 12560 struct perf_event *parent_event, 12561 perf_overflow_handler_t overflow_handler, 12562 void *context, int cgroup_fd) 12563 { 12564 struct pmu *pmu; 12565 struct hw_perf_event *hwc; 12566 long err = -EINVAL; 12567 int node; 12568 12569 if ((unsigned)cpu >= nr_cpu_ids) { 12570 if (!task || cpu != -1) 12571 return ERR_PTR(-EINVAL); 12572 } 12573 if (attr->sigtrap && !task) { 12574 /* Requires a task: avoid signalling random tasks. */ 12575 return ERR_PTR(-EINVAL); 12576 } 12577 12578 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12579 struct perf_event *event __free(__free_event) = 12580 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); 12581 if (!event) 12582 return ERR_PTR(-ENOMEM); 12583 12584 /* 12585 * Single events are their own group leaders, with an 12586 * empty sibling list: 12587 */ 12588 if (!group_leader) 12589 group_leader = event; 12590 12591 mutex_init(&event->child_mutex); 12592 INIT_LIST_HEAD(&event->child_list); 12593 12594 INIT_LIST_HEAD(&event->event_entry); 12595 INIT_LIST_HEAD(&event->sibling_list); 12596 INIT_LIST_HEAD(&event->active_list); 12597 init_event_group(event); 12598 INIT_LIST_HEAD(&event->rb_entry); 12599 INIT_LIST_HEAD(&event->active_entry); 12600 INIT_LIST_HEAD(&event->addr_filters.list); 12601 INIT_HLIST_NODE(&event->hlist_entry); 12602 12603 12604 init_waitqueue_head(&event->waitq); 12605 init_irq_work(&event->pending_irq, perf_pending_irq); 12606 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12607 init_task_work(&event->pending_task, perf_pending_task); 12608 rcuwait_init(&event->pending_work_wait); 12609 12610 mutex_init(&event->mmap_mutex); 12611 raw_spin_lock_init(&event->addr_filters.lock); 12612 12613 atomic_long_set(&event->refcount, 1); 12614 event->cpu = cpu; 12615 event->attr = *attr; 12616 event->group_leader = group_leader; 12617 event->pmu = NULL; 12618 event->oncpu = -1; 12619 12620 event->parent = parent_event; 12621 12622 event->ns = get_pid_ns(task_active_pid_ns(current)); 12623 event->id = atomic64_inc_return(&perf_event_id); 12624 12625 event->state = PERF_EVENT_STATE_INACTIVE; 12626 12627 if (parent_event) 12628 event->event_caps = parent_event->event_caps; 12629 12630 if (task) { 12631 event->attach_state = PERF_ATTACH_TASK; 12632 /* 12633 * XXX pmu::event_init needs to know what task to account to 12634 * and we cannot use the ctx information because we need the 12635 * pmu before we get a ctx. 12636 */ 12637 event->hw.target = get_task_struct(task); 12638 } 12639 12640 event->clock = &local_clock; 12641 if (parent_event) 12642 event->clock = parent_event->clock; 12643 12644 if (!overflow_handler && parent_event) { 12645 overflow_handler = parent_event->overflow_handler; 12646 context = parent_event->overflow_handler_context; 12647 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12648 if (parent_event->prog) { 12649 struct bpf_prog *prog = parent_event->prog; 12650 12651 bpf_prog_inc(prog); 12652 event->prog = prog; 12653 } 12654 #endif 12655 } 12656 12657 if (overflow_handler) { 12658 event->overflow_handler = overflow_handler; 12659 event->overflow_handler_context = context; 12660 } else if (is_write_backward(event)){ 12661 event->overflow_handler = perf_event_output_backward; 12662 event->overflow_handler_context = NULL; 12663 } else { 12664 event->overflow_handler = perf_event_output_forward; 12665 event->overflow_handler_context = NULL; 12666 } 12667 12668 perf_event__state_init(event); 12669 12670 pmu = NULL; 12671 12672 hwc = &event->hw; 12673 hwc->sample_period = attr->sample_period; 12674 if (attr->freq && attr->sample_freq) 12675 hwc->sample_period = 1; 12676 hwc->last_period = hwc->sample_period; 12677 12678 local64_set(&hwc->period_left, hwc->sample_period); 12679 12680 /* 12681 * We do not support PERF_SAMPLE_READ on inherited events unless 12682 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12683 * collect per-thread samples. 12684 * See perf_output_read(). 12685 */ 12686 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12687 return ERR_PTR(-EINVAL); 12688 12689 if (!has_branch_stack(event)) 12690 event->attr.branch_sample_type = 0; 12691 12692 pmu = perf_init_event(event); 12693 if (IS_ERR(pmu)) 12694 return (void*)pmu; 12695 12696 /* 12697 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). 12698 * The attach should be right after the perf_init_event(). 12699 * Otherwise, the __free_event() would mistakenly detach the non-exist 12700 * perf_ctx_data because of the other errors between them. 12701 */ 12702 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 12703 err = attach_perf_ctx_data(event); 12704 if (err) 12705 return ERR_PTR(err); 12706 } 12707 12708 /* 12709 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12710 * events (they don't make sense as the cgroup will be different 12711 * on other CPUs in the uncore mask). 12712 */ 12713 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) 12714 return ERR_PTR(-EINVAL); 12715 12716 if (event->attr.aux_output && 12717 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 12718 event->attr.aux_pause || event->attr.aux_resume)) 12719 return ERR_PTR(-EOPNOTSUPP); 12720 12721 if (event->attr.aux_pause && event->attr.aux_resume) 12722 return ERR_PTR(-EINVAL); 12723 12724 if (event->attr.aux_start_paused) { 12725 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 12726 return ERR_PTR(-EOPNOTSUPP); 12727 event->hw.aux_paused = 1; 12728 } 12729 12730 if (cgroup_fd != -1) { 12731 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12732 if (err) 12733 return ERR_PTR(err); 12734 } 12735 12736 err = exclusive_event_init(event); 12737 if (err) 12738 return ERR_PTR(err); 12739 12740 if (has_addr_filter(event)) { 12741 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12742 sizeof(struct perf_addr_filter_range), 12743 GFP_KERNEL); 12744 if (!event->addr_filter_ranges) 12745 return ERR_PTR(-ENOMEM); 12746 12747 /* 12748 * Clone the parent's vma offsets: they are valid until exec() 12749 * even if the mm is not shared with the parent. 12750 */ 12751 if (event->parent) { 12752 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12753 12754 raw_spin_lock_irq(&ifh->lock); 12755 memcpy(event->addr_filter_ranges, 12756 event->parent->addr_filter_ranges, 12757 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12758 raw_spin_unlock_irq(&ifh->lock); 12759 } 12760 12761 /* force hw sync on the address filters */ 12762 event->addr_filters_gen = 1; 12763 } 12764 12765 if (!event->parent) { 12766 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12767 err = get_callchain_buffers(attr->sample_max_stack); 12768 if (err) 12769 return ERR_PTR(err); 12770 event->attach_state |= PERF_ATTACH_CALLCHAIN; 12771 } 12772 } 12773 12774 err = security_perf_event_alloc(event); 12775 if (err) 12776 return ERR_PTR(err); 12777 12778 /* symmetric to unaccount_event() in _free_event() */ 12779 account_event(event); 12780 12781 return_ptr(event); 12782 } 12783 12784 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12785 struct perf_event_attr *attr) 12786 { 12787 u32 size; 12788 int ret; 12789 12790 /* Zero the full structure, so that a short copy will be nice. */ 12791 memset(attr, 0, sizeof(*attr)); 12792 12793 ret = get_user(size, &uattr->size); 12794 if (ret) 12795 return ret; 12796 12797 /* ABI compatibility quirk: */ 12798 if (!size) 12799 size = PERF_ATTR_SIZE_VER0; 12800 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12801 goto err_size; 12802 12803 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12804 if (ret) { 12805 if (ret == -E2BIG) 12806 goto err_size; 12807 return ret; 12808 } 12809 12810 attr->size = size; 12811 12812 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12813 return -EINVAL; 12814 12815 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12816 return -EINVAL; 12817 12818 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12819 return -EINVAL; 12820 12821 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12822 u64 mask = attr->branch_sample_type; 12823 12824 /* only using defined bits */ 12825 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12826 return -EINVAL; 12827 12828 /* at least one branch bit must be set */ 12829 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12830 return -EINVAL; 12831 12832 /* propagate priv level, when not set for branch */ 12833 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12834 12835 /* exclude_kernel checked on syscall entry */ 12836 if (!attr->exclude_kernel) 12837 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12838 12839 if (!attr->exclude_user) 12840 mask |= PERF_SAMPLE_BRANCH_USER; 12841 12842 if (!attr->exclude_hv) 12843 mask |= PERF_SAMPLE_BRANCH_HV; 12844 /* 12845 * adjust user setting (for HW filter setup) 12846 */ 12847 attr->branch_sample_type = mask; 12848 } 12849 /* privileged levels capture (kernel, hv): check permissions */ 12850 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12851 ret = perf_allow_kernel(); 12852 if (ret) 12853 return ret; 12854 } 12855 } 12856 12857 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12858 ret = perf_reg_validate(attr->sample_regs_user); 12859 if (ret) 12860 return ret; 12861 } 12862 12863 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12864 if (!arch_perf_have_user_stack_dump()) 12865 return -ENOSYS; 12866 12867 /* 12868 * We have __u32 type for the size, but so far 12869 * we can only use __u16 as maximum due to the 12870 * __u16 sample size limit. 12871 */ 12872 if (attr->sample_stack_user >= USHRT_MAX) 12873 return -EINVAL; 12874 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12875 return -EINVAL; 12876 } 12877 12878 if (!attr->sample_max_stack) 12879 attr->sample_max_stack = sysctl_perf_event_max_stack; 12880 12881 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12882 ret = perf_reg_validate(attr->sample_regs_intr); 12883 12884 #ifndef CONFIG_CGROUP_PERF 12885 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12886 return -EINVAL; 12887 #endif 12888 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12889 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12890 return -EINVAL; 12891 12892 if (!attr->inherit && attr->inherit_thread) 12893 return -EINVAL; 12894 12895 if (attr->remove_on_exec && attr->enable_on_exec) 12896 return -EINVAL; 12897 12898 if (attr->sigtrap && !attr->remove_on_exec) 12899 return -EINVAL; 12900 12901 out: 12902 return ret; 12903 12904 err_size: 12905 put_user(sizeof(*attr), &uattr->size); 12906 ret = -E2BIG; 12907 goto out; 12908 } 12909 12910 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12911 { 12912 if (b < a) 12913 swap(a, b); 12914 12915 mutex_lock(a); 12916 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12917 } 12918 12919 static int 12920 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12921 { 12922 struct perf_buffer *rb = NULL; 12923 int ret = -EINVAL; 12924 12925 if (!output_event) { 12926 mutex_lock(&event->mmap_mutex); 12927 goto set; 12928 } 12929 12930 /* don't allow circular references */ 12931 if (event == output_event) 12932 goto out; 12933 12934 /* 12935 * Don't allow cross-cpu buffers 12936 */ 12937 if (output_event->cpu != event->cpu) 12938 goto out; 12939 12940 /* 12941 * If its not a per-cpu rb, it must be the same task. 12942 */ 12943 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12944 goto out; 12945 12946 /* 12947 * Mixing clocks in the same buffer is trouble you don't need. 12948 */ 12949 if (output_event->clock != event->clock) 12950 goto out; 12951 12952 /* 12953 * Either writing ring buffer from beginning or from end. 12954 * Mixing is not allowed. 12955 */ 12956 if (is_write_backward(output_event) != is_write_backward(event)) 12957 goto out; 12958 12959 /* 12960 * If both events generate aux data, they must be on the same PMU 12961 */ 12962 if (has_aux(event) && has_aux(output_event) && 12963 event->pmu != output_event->pmu) 12964 goto out; 12965 12966 /* 12967 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12968 * output_event is already on rb->event_list, and the list iteration 12969 * restarts after every removal, it is guaranteed this new event is 12970 * observed *OR* if output_event is already removed, it's guaranteed we 12971 * observe !rb->mmap_count. 12972 */ 12973 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12974 set: 12975 /* Can't redirect output if we've got an active mmap() */ 12976 if (atomic_read(&event->mmap_count)) 12977 goto unlock; 12978 12979 if (output_event) { 12980 /* get the rb we want to redirect to */ 12981 rb = ring_buffer_get(output_event); 12982 if (!rb) 12983 goto unlock; 12984 12985 /* did we race against perf_mmap_close() */ 12986 if (!atomic_read(&rb->mmap_count)) { 12987 ring_buffer_put(rb); 12988 goto unlock; 12989 } 12990 } 12991 12992 ring_buffer_attach(event, rb); 12993 12994 ret = 0; 12995 unlock: 12996 mutex_unlock(&event->mmap_mutex); 12997 if (output_event) 12998 mutex_unlock(&output_event->mmap_mutex); 12999 13000 out: 13001 return ret; 13002 } 13003 13004 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 13005 { 13006 bool nmi_safe = false; 13007 13008 switch (clk_id) { 13009 case CLOCK_MONOTONIC: 13010 event->clock = &ktime_get_mono_fast_ns; 13011 nmi_safe = true; 13012 break; 13013 13014 case CLOCK_MONOTONIC_RAW: 13015 event->clock = &ktime_get_raw_fast_ns; 13016 nmi_safe = true; 13017 break; 13018 13019 case CLOCK_REALTIME: 13020 event->clock = &ktime_get_real_ns; 13021 break; 13022 13023 case CLOCK_BOOTTIME: 13024 event->clock = &ktime_get_boottime_ns; 13025 break; 13026 13027 case CLOCK_TAI: 13028 event->clock = &ktime_get_clocktai_ns; 13029 break; 13030 13031 default: 13032 return -EINVAL; 13033 } 13034 13035 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 13036 return -EINVAL; 13037 13038 return 0; 13039 } 13040 13041 static bool 13042 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 13043 { 13044 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 13045 bool is_capable = perfmon_capable(); 13046 13047 if (attr->sigtrap) { 13048 /* 13049 * perf_event_attr::sigtrap sends signals to the other task. 13050 * Require the current task to also have CAP_KILL. 13051 */ 13052 rcu_read_lock(); 13053 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 13054 rcu_read_unlock(); 13055 13056 /* 13057 * If the required capabilities aren't available, checks for 13058 * ptrace permissions: upgrade to ATTACH, since sending signals 13059 * can effectively change the target task. 13060 */ 13061 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 13062 } 13063 13064 /* 13065 * Preserve ptrace permission check for backwards compatibility. The 13066 * ptrace check also includes checks that the current task and other 13067 * task have matching uids, and is therefore not done here explicitly. 13068 */ 13069 return is_capable || ptrace_may_access(task, ptrace_mode); 13070 } 13071 13072 /** 13073 * sys_perf_event_open - open a performance event, associate it to a task/cpu 13074 * 13075 * @attr_uptr: event_id type attributes for monitoring/sampling 13076 * @pid: target pid 13077 * @cpu: target cpu 13078 * @group_fd: group leader event fd 13079 * @flags: perf event open flags 13080 */ 13081 SYSCALL_DEFINE5(perf_event_open, 13082 struct perf_event_attr __user *, attr_uptr, 13083 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 13084 { 13085 struct perf_event *group_leader = NULL, *output_event = NULL; 13086 struct perf_event_pmu_context *pmu_ctx; 13087 struct perf_event *event, *sibling; 13088 struct perf_event_attr attr; 13089 struct perf_event_context *ctx; 13090 struct file *event_file = NULL; 13091 struct task_struct *task = NULL; 13092 struct pmu *pmu; 13093 int event_fd; 13094 int move_group = 0; 13095 int err; 13096 int f_flags = O_RDWR; 13097 int cgroup_fd = -1; 13098 13099 /* for future expandability... */ 13100 if (flags & ~PERF_FLAG_ALL) 13101 return -EINVAL; 13102 13103 err = perf_copy_attr(attr_uptr, &attr); 13104 if (err) 13105 return err; 13106 13107 /* Do we allow access to perf_event_open(2) ? */ 13108 err = security_perf_event_open(PERF_SECURITY_OPEN); 13109 if (err) 13110 return err; 13111 13112 if (!attr.exclude_kernel) { 13113 err = perf_allow_kernel(); 13114 if (err) 13115 return err; 13116 } 13117 13118 if (attr.namespaces) { 13119 if (!perfmon_capable()) 13120 return -EACCES; 13121 } 13122 13123 if (attr.freq) { 13124 if (attr.sample_freq > sysctl_perf_event_sample_rate) 13125 return -EINVAL; 13126 } else { 13127 if (attr.sample_period & (1ULL << 63)) 13128 return -EINVAL; 13129 } 13130 13131 /* Only privileged users can get physical addresses */ 13132 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 13133 err = perf_allow_kernel(); 13134 if (err) 13135 return err; 13136 } 13137 13138 /* REGS_INTR can leak data, lockdown must prevent this */ 13139 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 13140 err = security_locked_down(LOCKDOWN_PERF); 13141 if (err) 13142 return err; 13143 } 13144 13145 /* 13146 * In cgroup mode, the pid argument is used to pass the fd 13147 * opened to the cgroup directory in cgroupfs. The cpu argument 13148 * designates the cpu on which to monitor threads from that 13149 * cgroup. 13150 */ 13151 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 13152 return -EINVAL; 13153 13154 if (flags & PERF_FLAG_FD_CLOEXEC) 13155 f_flags |= O_CLOEXEC; 13156 13157 event_fd = get_unused_fd_flags(f_flags); 13158 if (event_fd < 0) 13159 return event_fd; 13160 13161 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 13162 if (group_fd != -1) { 13163 if (!is_perf_file(group)) { 13164 err = -EBADF; 13165 goto err_fd; 13166 } 13167 group_leader = fd_file(group)->private_data; 13168 if (flags & PERF_FLAG_FD_OUTPUT) 13169 output_event = group_leader; 13170 if (flags & PERF_FLAG_FD_NO_GROUP) 13171 group_leader = NULL; 13172 } 13173 13174 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 13175 task = find_lively_task_by_vpid(pid); 13176 if (IS_ERR(task)) { 13177 err = PTR_ERR(task); 13178 goto err_fd; 13179 } 13180 } 13181 13182 if (task && group_leader && 13183 group_leader->attr.inherit != attr.inherit) { 13184 err = -EINVAL; 13185 goto err_task; 13186 } 13187 13188 if (flags & PERF_FLAG_PID_CGROUP) 13189 cgroup_fd = pid; 13190 13191 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 13192 NULL, NULL, cgroup_fd); 13193 if (IS_ERR(event)) { 13194 err = PTR_ERR(event); 13195 goto err_task; 13196 } 13197 13198 if (is_sampling_event(event)) { 13199 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 13200 err = -EOPNOTSUPP; 13201 goto err_alloc; 13202 } 13203 } 13204 13205 /* 13206 * Special case software events and allow them to be part of 13207 * any hardware group. 13208 */ 13209 pmu = event->pmu; 13210 13211 if (attr.use_clockid) { 13212 err = perf_event_set_clock(event, attr.clockid); 13213 if (err) 13214 goto err_alloc; 13215 } 13216 13217 if (pmu->task_ctx_nr == perf_sw_context) 13218 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13219 13220 if (task) { 13221 err = down_read_interruptible(&task->signal->exec_update_lock); 13222 if (err) 13223 goto err_alloc; 13224 13225 /* 13226 * We must hold exec_update_lock across this and any potential 13227 * perf_install_in_context() call for this new event to 13228 * serialize against exec() altering our credentials (and the 13229 * perf_event_exit_task() that could imply). 13230 */ 13231 err = -EACCES; 13232 if (!perf_check_permission(&attr, task)) 13233 goto err_cred; 13234 } 13235 13236 /* 13237 * Get the target context (task or percpu): 13238 */ 13239 ctx = find_get_context(task, event); 13240 if (IS_ERR(ctx)) { 13241 err = PTR_ERR(ctx); 13242 goto err_cred; 13243 } 13244 13245 mutex_lock(&ctx->mutex); 13246 13247 if (ctx->task == TASK_TOMBSTONE) { 13248 err = -ESRCH; 13249 goto err_locked; 13250 } 13251 13252 if (!task) { 13253 /* 13254 * Check if the @cpu we're creating an event for is online. 13255 * 13256 * We use the perf_cpu_context::ctx::mutex to serialize against 13257 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13258 */ 13259 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 13260 13261 if (!cpuctx->online) { 13262 err = -ENODEV; 13263 goto err_locked; 13264 } 13265 } 13266 13267 if (group_leader) { 13268 err = -EINVAL; 13269 13270 /* 13271 * Do not allow a recursive hierarchy (this new sibling 13272 * becoming part of another group-sibling): 13273 */ 13274 if (group_leader->group_leader != group_leader) 13275 goto err_locked; 13276 13277 /* All events in a group should have the same clock */ 13278 if (group_leader->clock != event->clock) 13279 goto err_locked; 13280 13281 /* 13282 * Make sure we're both events for the same CPU; 13283 * grouping events for different CPUs is broken; since 13284 * you can never concurrently schedule them anyhow. 13285 */ 13286 if (group_leader->cpu != event->cpu) 13287 goto err_locked; 13288 13289 /* 13290 * Make sure we're both on the same context; either task or cpu. 13291 */ 13292 if (group_leader->ctx != ctx) 13293 goto err_locked; 13294 13295 /* 13296 * Only a group leader can be exclusive or pinned 13297 */ 13298 if (attr.exclusive || attr.pinned) 13299 goto err_locked; 13300 13301 if (is_software_event(event) && 13302 !in_software_context(group_leader)) { 13303 /* 13304 * If the event is a sw event, but the group_leader 13305 * is on hw context. 13306 * 13307 * Allow the addition of software events to hw 13308 * groups, this is safe because software events 13309 * never fail to schedule. 13310 * 13311 * Note the comment that goes with struct 13312 * perf_event_pmu_context. 13313 */ 13314 pmu = group_leader->pmu_ctx->pmu; 13315 } else if (!is_software_event(event)) { 13316 if (is_software_event(group_leader) && 13317 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13318 /* 13319 * In case the group is a pure software group, and we 13320 * try to add a hardware event, move the whole group to 13321 * the hardware context. 13322 */ 13323 move_group = 1; 13324 } 13325 13326 /* Don't allow group of multiple hw events from different pmus */ 13327 if (!in_software_context(group_leader) && 13328 group_leader->pmu_ctx->pmu != pmu) 13329 goto err_locked; 13330 } 13331 } 13332 13333 /* 13334 * Now that we're certain of the pmu; find the pmu_ctx. 13335 */ 13336 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13337 if (IS_ERR(pmu_ctx)) { 13338 err = PTR_ERR(pmu_ctx); 13339 goto err_locked; 13340 } 13341 event->pmu_ctx = pmu_ctx; 13342 13343 if (output_event) { 13344 err = perf_event_set_output(event, output_event); 13345 if (err) 13346 goto err_context; 13347 } 13348 13349 if (!perf_event_validate_size(event)) { 13350 err = -E2BIG; 13351 goto err_context; 13352 } 13353 13354 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13355 err = -EINVAL; 13356 goto err_context; 13357 } 13358 13359 /* 13360 * Must be under the same ctx::mutex as perf_install_in_context(), 13361 * because we need to serialize with concurrent event creation. 13362 */ 13363 if (!exclusive_event_installable(event, ctx)) { 13364 err = -EBUSY; 13365 goto err_context; 13366 } 13367 13368 WARN_ON_ONCE(ctx->parent_ctx); 13369 13370 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13371 if (IS_ERR(event_file)) { 13372 err = PTR_ERR(event_file); 13373 event_file = NULL; 13374 goto err_context; 13375 } 13376 13377 /* 13378 * This is the point on no return; we cannot fail hereafter. This is 13379 * where we start modifying current state. 13380 */ 13381 13382 if (move_group) { 13383 perf_remove_from_context(group_leader, 0); 13384 put_pmu_ctx(group_leader->pmu_ctx); 13385 13386 for_each_sibling_event(sibling, group_leader) { 13387 perf_remove_from_context(sibling, 0); 13388 put_pmu_ctx(sibling->pmu_ctx); 13389 } 13390 13391 /* 13392 * Install the group siblings before the group leader. 13393 * 13394 * Because a group leader will try and install the entire group 13395 * (through the sibling list, which is still in-tact), we can 13396 * end up with siblings installed in the wrong context. 13397 * 13398 * By installing siblings first we NO-OP because they're not 13399 * reachable through the group lists. 13400 */ 13401 for_each_sibling_event(sibling, group_leader) { 13402 sibling->pmu_ctx = pmu_ctx; 13403 get_pmu_ctx(pmu_ctx); 13404 perf_event__state_init(sibling); 13405 perf_install_in_context(ctx, sibling, sibling->cpu); 13406 } 13407 13408 /* 13409 * Removing from the context ends up with disabled 13410 * event. What we want here is event in the initial 13411 * startup state, ready to be add into new context. 13412 */ 13413 group_leader->pmu_ctx = pmu_ctx; 13414 get_pmu_ctx(pmu_ctx); 13415 perf_event__state_init(group_leader); 13416 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13417 } 13418 13419 /* 13420 * Precalculate sample_data sizes; do while holding ctx::mutex such 13421 * that we're serialized against further additions and before 13422 * perf_install_in_context() which is the point the event is active and 13423 * can use these values. 13424 */ 13425 perf_event__header_size(event); 13426 perf_event__id_header_size(event); 13427 13428 event->owner = current; 13429 13430 perf_install_in_context(ctx, event, event->cpu); 13431 perf_unpin_context(ctx); 13432 13433 mutex_unlock(&ctx->mutex); 13434 13435 if (task) { 13436 up_read(&task->signal->exec_update_lock); 13437 put_task_struct(task); 13438 } 13439 13440 mutex_lock(¤t->perf_event_mutex); 13441 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13442 mutex_unlock(¤t->perf_event_mutex); 13443 13444 /* 13445 * File reference in group guarantees that group_leader has been 13446 * kept alive until we place the new event on the sibling_list. 13447 * This ensures destruction of the group leader will find 13448 * the pointer to itself in perf_group_detach(). 13449 */ 13450 fd_install(event_fd, event_file); 13451 return event_fd; 13452 13453 err_context: 13454 put_pmu_ctx(event->pmu_ctx); 13455 event->pmu_ctx = NULL; /* _free_event() */ 13456 err_locked: 13457 mutex_unlock(&ctx->mutex); 13458 perf_unpin_context(ctx); 13459 put_ctx(ctx); 13460 err_cred: 13461 if (task) 13462 up_read(&task->signal->exec_update_lock); 13463 err_alloc: 13464 free_event(event); 13465 err_task: 13466 if (task) 13467 put_task_struct(task); 13468 err_fd: 13469 put_unused_fd(event_fd); 13470 return err; 13471 } 13472 13473 /** 13474 * perf_event_create_kernel_counter 13475 * 13476 * @attr: attributes of the counter to create 13477 * @cpu: cpu in which the counter is bound 13478 * @task: task to profile (NULL for percpu) 13479 * @overflow_handler: callback to trigger when we hit the event 13480 * @context: context data could be used in overflow_handler callback 13481 */ 13482 struct perf_event * 13483 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13484 struct task_struct *task, 13485 perf_overflow_handler_t overflow_handler, 13486 void *context) 13487 { 13488 struct perf_event_pmu_context *pmu_ctx; 13489 struct perf_event_context *ctx; 13490 struct perf_event *event; 13491 struct pmu *pmu; 13492 int err; 13493 13494 /* 13495 * Grouping is not supported for kernel events, neither is 'AUX', 13496 * make sure the caller's intentions are adjusted. 13497 */ 13498 if (attr->aux_output || attr->aux_action) 13499 return ERR_PTR(-EINVAL); 13500 13501 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13502 overflow_handler, context, -1); 13503 if (IS_ERR(event)) { 13504 err = PTR_ERR(event); 13505 goto err; 13506 } 13507 13508 /* Mark owner so we could distinguish it from user events. */ 13509 event->owner = TASK_TOMBSTONE; 13510 pmu = event->pmu; 13511 13512 if (pmu->task_ctx_nr == perf_sw_context) 13513 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13514 13515 /* 13516 * Get the target context (task or percpu): 13517 */ 13518 ctx = find_get_context(task, event); 13519 if (IS_ERR(ctx)) { 13520 err = PTR_ERR(ctx); 13521 goto err_alloc; 13522 } 13523 13524 WARN_ON_ONCE(ctx->parent_ctx); 13525 mutex_lock(&ctx->mutex); 13526 if (ctx->task == TASK_TOMBSTONE) { 13527 err = -ESRCH; 13528 goto err_unlock; 13529 } 13530 13531 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13532 if (IS_ERR(pmu_ctx)) { 13533 err = PTR_ERR(pmu_ctx); 13534 goto err_unlock; 13535 } 13536 event->pmu_ctx = pmu_ctx; 13537 13538 if (!task) { 13539 /* 13540 * Check if the @cpu we're creating an event for is online. 13541 * 13542 * We use the perf_cpu_context::ctx::mutex to serialize against 13543 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13544 */ 13545 struct perf_cpu_context *cpuctx = 13546 container_of(ctx, struct perf_cpu_context, ctx); 13547 if (!cpuctx->online) { 13548 err = -ENODEV; 13549 goto err_pmu_ctx; 13550 } 13551 } 13552 13553 if (!exclusive_event_installable(event, ctx)) { 13554 err = -EBUSY; 13555 goto err_pmu_ctx; 13556 } 13557 13558 perf_install_in_context(ctx, event, event->cpu); 13559 perf_unpin_context(ctx); 13560 mutex_unlock(&ctx->mutex); 13561 13562 return event; 13563 13564 err_pmu_ctx: 13565 put_pmu_ctx(pmu_ctx); 13566 event->pmu_ctx = NULL; /* _free_event() */ 13567 err_unlock: 13568 mutex_unlock(&ctx->mutex); 13569 perf_unpin_context(ctx); 13570 put_ctx(ctx); 13571 err_alloc: 13572 free_event(event); 13573 err: 13574 return ERR_PTR(err); 13575 } 13576 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13577 13578 static void __perf_pmu_remove(struct perf_event_context *ctx, 13579 int cpu, struct pmu *pmu, 13580 struct perf_event_groups *groups, 13581 struct list_head *events) 13582 { 13583 struct perf_event *event, *sibling; 13584 13585 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13586 perf_remove_from_context(event, 0); 13587 put_pmu_ctx(event->pmu_ctx); 13588 list_add(&event->migrate_entry, events); 13589 13590 for_each_sibling_event(sibling, event) { 13591 perf_remove_from_context(sibling, 0); 13592 put_pmu_ctx(sibling->pmu_ctx); 13593 list_add(&sibling->migrate_entry, events); 13594 } 13595 } 13596 } 13597 13598 static void __perf_pmu_install_event(struct pmu *pmu, 13599 struct perf_event_context *ctx, 13600 int cpu, struct perf_event *event) 13601 { 13602 struct perf_event_pmu_context *epc; 13603 struct perf_event_context *old_ctx = event->ctx; 13604 13605 get_ctx(ctx); /* normally find_get_context() */ 13606 13607 event->cpu = cpu; 13608 epc = find_get_pmu_context(pmu, ctx, event); 13609 event->pmu_ctx = epc; 13610 13611 if (event->state >= PERF_EVENT_STATE_OFF) 13612 event->state = PERF_EVENT_STATE_INACTIVE; 13613 perf_install_in_context(ctx, event, cpu); 13614 13615 /* 13616 * Now that event->ctx is updated and visible, put the old ctx. 13617 */ 13618 put_ctx(old_ctx); 13619 } 13620 13621 static void __perf_pmu_install(struct perf_event_context *ctx, 13622 int cpu, struct pmu *pmu, struct list_head *events) 13623 { 13624 struct perf_event *event, *tmp; 13625 13626 /* 13627 * Re-instate events in 2 passes. 13628 * 13629 * Skip over group leaders and only install siblings on this first 13630 * pass, siblings will not get enabled without a leader, however a 13631 * leader will enable its siblings, even if those are still on the old 13632 * context. 13633 */ 13634 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13635 if (event->group_leader == event) 13636 continue; 13637 13638 list_del(&event->migrate_entry); 13639 __perf_pmu_install_event(pmu, ctx, cpu, event); 13640 } 13641 13642 /* 13643 * Once all the siblings are setup properly, install the group leaders 13644 * to make it go. 13645 */ 13646 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13647 list_del(&event->migrate_entry); 13648 __perf_pmu_install_event(pmu, ctx, cpu, event); 13649 } 13650 } 13651 13652 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13653 { 13654 struct perf_event_context *src_ctx, *dst_ctx; 13655 LIST_HEAD(events); 13656 13657 /* 13658 * Since per-cpu context is persistent, no need to grab an extra 13659 * reference. 13660 */ 13661 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13662 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13663 13664 /* 13665 * See perf_event_ctx_lock() for comments on the details 13666 * of swizzling perf_event::ctx. 13667 */ 13668 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13669 13670 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13671 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13672 13673 if (!list_empty(&events)) { 13674 /* 13675 * Wait for the events to quiesce before re-instating them. 13676 */ 13677 synchronize_rcu(); 13678 13679 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13680 } 13681 13682 mutex_unlock(&dst_ctx->mutex); 13683 mutex_unlock(&src_ctx->mutex); 13684 } 13685 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13686 13687 static void sync_child_event(struct perf_event *child_event) 13688 { 13689 struct perf_event *parent_event = child_event->parent; 13690 u64 child_val; 13691 13692 if (child_event->attr.inherit_stat) { 13693 struct task_struct *task = child_event->ctx->task; 13694 13695 if (task && task != TASK_TOMBSTONE) 13696 perf_event_read_event(child_event, task); 13697 } 13698 13699 child_val = perf_event_count(child_event, false); 13700 13701 /* 13702 * Add back the child's count to the parent's count: 13703 */ 13704 atomic64_add(child_val, &parent_event->child_count); 13705 atomic64_add(child_event->total_time_enabled, 13706 &parent_event->child_total_time_enabled); 13707 atomic64_add(child_event->total_time_running, 13708 &parent_event->child_total_time_running); 13709 } 13710 13711 static void 13712 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13713 { 13714 struct perf_event *parent_event = event->parent; 13715 unsigned long detach_flags = 0; 13716 13717 if (parent_event) { 13718 /* 13719 * Do not destroy the 'original' grouping; because of the 13720 * context switch optimization the original events could've 13721 * ended up in a random child task. 13722 * 13723 * If we were to destroy the original group, all group related 13724 * operations would cease to function properly after this 13725 * random child dies. 13726 * 13727 * Do destroy all inherited groups, we don't care about those 13728 * and being thorough is better. 13729 */ 13730 detach_flags = DETACH_GROUP | DETACH_CHILD; 13731 mutex_lock(&parent_event->child_mutex); 13732 } 13733 13734 perf_remove_from_context(event, detach_flags); 13735 13736 raw_spin_lock_irq(&ctx->lock); 13737 if (event->state > PERF_EVENT_STATE_EXIT) 13738 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13739 raw_spin_unlock_irq(&ctx->lock); 13740 13741 /* 13742 * Child events can be freed. 13743 */ 13744 if (parent_event) { 13745 mutex_unlock(&parent_event->child_mutex); 13746 /* 13747 * Kick perf_poll() for is_event_hup(); 13748 */ 13749 perf_event_wakeup(parent_event); 13750 free_event(event); 13751 put_event(parent_event); 13752 return; 13753 } 13754 13755 /* 13756 * Parent events are governed by their filedesc, retain them. 13757 */ 13758 perf_event_wakeup(event); 13759 } 13760 13761 static void perf_event_exit_task_context(struct task_struct *child) 13762 { 13763 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13764 struct perf_event *child_event, *next; 13765 13766 WARN_ON_ONCE(child != current); 13767 13768 child_ctx = perf_pin_task_context(child); 13769 if (!child_ctx) 13770 return; 13771 13772 /* 13773 * In order to reduce the amount of tricky in ctx tear-down, we hold 13774 * ctx::mutex over the entire thing. This serializes against almost 13775 * everything that wants to access the ctx. 13776 * 13777 * The exception is sys_perf_event_open() / 13778 * perf_event_create_kernel_count() which does find_get_context() 13779 * without ctx::mutex (it cannot because of the move_group double mutex 13780 * lock thing). See the comments in perf_install_in_context(). 13781 */ 13782 mutex_lock(&child_ctx->mutex); 13783 13784 /* 13785 * In a single ctx::lock section, de-schedule the events and detach the 13786 * context from the task such that we cannot ever get it scheduled back 13787 * in. 13788 */ 13789 raw_spin_lock_irq(&child_ctx->lock); 13790 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13791 13792 /* 13793 * Now that the context is inactive, destroy the task <-> ctx relation 13794 * and mark the context dead. 13795 */ 13796 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13797 put_ctx(child_ctx); /* cannot be last */ 13798 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13799 put_task_struct(current); /* cannot be last */ 13800 13801 clone_ctx = unclone_ctx(child_ctx); 13802 raw_spin_unlock_irq(&child_ctx->lock); 13803 13804 if (clone_ctx) 13805 put_ctx(clone_ctx); 13806 13807 /* 13808 * Report the task dead after unscheduling the events so that we 13809 * won't get any samples after PERF_RECORD_EXIT. We can however still 13810 * get a few PERF_RECORD_READ events. 13811 */ 13812 perf_event_task(child, child_ctx, 0); 13813 13814 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13815 perf_event_exit_event(child_event, child_ctx); 13816 13817 mutex_unlock(&child_ctx->mutex); 13818 13819 put_ctx(child_ctx); 13820 } 13821 13822 /* 13823 * When a child task exits, feed back event values to parent events. 13824 * 13825 * Can be called with exec_update_lock held when called from 13826 * setup_new_exec(). 13827 */ 13828 void perf_event_exit_task(struct task_struct *child) 13829 { 13830 struct perf_event *event, *tmp; 13831 13832 mutex_lock(&child->perf_event_mutex); 13833 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13834 owner_entry) { 13835 list_del_init(&event->owner_entry); 13836 13837 /* 13838 * Ensure the list deletion is visible before we clear 13839 * the owner, closes a race against perf_release() where 13840 * we need to serialize on the owner->perf_event_mutex. 13841 */ 13842 smp_store_release(&event->owner, NULL); 13843 } 13844 mutex_unlock(&child->perf_event_mutex); 13845 13846 perf_event_exit_task_context(child); 13847 13848 /* 13849 * The perf_event_exit_task_context calls perf_event_task 13850 * with child's task_ctx, which generates EXIT events for 13851 * child contexts and sets child->perf_event_ctxp[] to NULL. 13852 * At this point we need to send EXIT events to cpu contexts. 13853 */ 13854 perf_event_task(child, NULL, 0); 13855 13856 /* 13857 * Detach the perf_ctx_data for the system-wide event. 13858 */ 13859 guard(percpu_read)(&global_ctx_data_rwsem); 13860 detach_task_ctx_data(child); 13861 } 13862 13863 static void perf_free_event(struct perf_event *event, 13864 struct perf_event_context *ctx) 13865 { 13866 struct perf_event *parent = event->parent; 13867 13868 if (WARN_ON_ONCE(!parent)) 13869 return; 13870 13871 mutex_lock(&parent->child_mutex); 13872 list_del_init(&event->child_list); 13873 mutex_unlock(&parent->child_mutex); 13874 13875 put_event(parent); 13876 13877 raw_spin_lock_irq(&ctx->lock); 13878 perf_group_detach(event); 13879 list_del_event(event, ctx); 13880 raw_spin_unlock_irq(&ctx->lock); 13881 free_event(event); 13882 } 13883 13884 /* 13885 * Free a context as created by inheritance by perf_event_init_task() below, 13886 * used by fork() in case of fail. 13887 * 13888 * Even though the task has never lived, the context and events have been 13889 * exposed through the child_list, so we must take care tearing it all down. 13890 */ 13891 void perf_event_free_task(struct task_struct *task) 13892 { 13893 struct perf_event_context *ctx; 13894 struct perf_event *event, *tmp; 13895 13896 ctx = rcu_access_pointer(task->perf_event_ctxp); 13897 if (!ctx) 13898 return; 13899 13900 mutex_lock(&ctx->mutex); 13901 raw_spin_lock_irq(&ctx->lock); 13902 /* 13903 * Destroy the task <-> ctx relation and mark the context dead. 13904 * 13905 * This is important because even though the task hasn't been 13906 * exposed yet the context has been (through child_list). 13907 */ 13908 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13909 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13910 put_task_struct(task); /* cannot be last */ 13911 raw_spin_unlock_irq(&ctx->lock); 13912 13913 13914 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13915 perf_free_event(event, ctx); 13916 13917 mutex_unlock(&ctx->mutex); 13918 13919 /* 13920 * perf_event_release_kernel() could've stolen some of our 13921 * child events and still have them on its free_list. In that 13922 * case we must wait for these events to have been freed (in 13923 * particular all their references to this task must've been 13924 * dropped). 13925 * 13926 * Without this copy_process() will unconditionally free this 13927 * task (irrespective of its reference count) and 13928 * _free_event()'s put_task_struct(event->hw.target) will be a 13929 * use-after-free. 13930 * 13931 * Wait for all events to drop their context reference. 13932 */ 13933 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13934 put_ctx(ctx); /* must be last */ 13935 } 13936 13937 void perf_event_delayed_put(struct task_struct *task) 13938 { 13939 WARN_ON_ONCE(task->perf_event_ctxp); 13940 } 13941 13942 struct file *perf_event_get(unsigned int fd) 13943 { 13944 struct file *file = fget(fd); 13945 if (!file) 13946 return ERR_PTR(-EBADF); 13947 13948 if (file->f_op != &perf_fops) { 13949 fput(file); 13950 return ERR_PTR(-EBADF); 13951 } 13952 13953 return file; 13954 } 13955 13956 const struct perf_event *perf_get_event(struct file *file) 13957 { 13958 if (file->f_op != &perf_fops) 13959 return ERR_PTR(-EINVAL); 13960 13961 return file->private_data; 13962 } 13963 13964 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13965 { 13966 if (!event) 13967 return ERR_PTR(-EINVAL); 13968 13969 return &event->attr; 13970 } 13971 13972 int perf_allow_kernel(void) 13973 { 13974 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13975 return -EACCES; 13976 13977 return security_perf_event_open(PERF_SECURITY_KERNEL); 13978 } 13979 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13980 13981 /* 13982 * Inherit an event from parent task to child task. 13983 * 13984 * Returns: 13985 * - valid pointer on success 13986 * - NULL for orphaned events 13987 * - IS_ERR() on error 13988 */ 13989 static struct perf_event * 13990 inherit_event(struct perf_event *parent_event, 13991 struct task_struct *parent, 13992 struct perf_event_context *parent_ctx, 13993 struct task_struct *child, 13994 struct perf_event *group_leader, 13995 struct perf_event_context *child_ctx) 13996 { 13997 enum perf_event_state parent_state = parent_event->state; 13998 struct perf_event_pmu_context *pmu_ctx; 13999 struct perf_event *child_event; 14000 unsigned long flags; 14001 14002 /* 14003 * Instead of creating recursive hierarchies of events, 14004 * we link inherited events back to the original parent, 14005 * which has a filp for sure, which we use as the reference 14006 * count: 14007 */ 14008 if (parent_event->parent) 14009 parent_event = parent_event->parent; 14010 14011 child_event = perf_event_alloc(&parent_event->attr, 14012 parent_event->cpu, 14013 child, 14014 group_leader, parent_event, 14015 NULL, NULL, -1); 14016 if (IS_ERR(child_event)) 14017 return child_event; 14018 14019 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 14020 if (IS_ERR(pmu_ctx)) { 14021 free_event(child_event); 14022 return ERR_CAST(pmu_ctx); 14023 } 14024 child_event->pmu_ctx = pmu_ctx; 14025 14026 /* 14027 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 14028 * must be under the same lock in order to serialize against 14029 * perf_event_release_kernel(), such that either we must observe 14030 * is_orphaned_event() or they will observe us on the child_list. 14031 */ 14032 mutex_lock(&parent_event->child_mutex); 14033 if (is_orphaned_event(parent_event) || 14034 !atomic_long_inc_not_zero(&parent_event->refcount)) { 14035 mutex_unlock(&parent_event->child_mutex); 14036 free_event(child_event); 14037 return NULL; 14038 } 14039 14040 get_ctx(child_ctx); 14041 14042 /* 14043 * Make the child state follow the state of the parent event, 14044 * not its attr.disabled bit. We hold the parent's mutex, 14045 * so we won't race with perf_event_{en, dis}able_family. 14046 */ 14047 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 14048 child_event->state = PERF_EVENT_STATE_INACTIVE; 14049 else 14050 child_event->state = PERF_EVENT_STATE_OFF; 14051 14052 if (parent_event->attr.freq) { 14053 u64 sample_period = parent_event->hw.sample_period; 14054 struct hw_perf_event *hwc = &child_event->hw; 14055 14056 hwc->sample_period = sample_period; 14057 hwc->last_period = sample_period; 14058 14059 local64_set(&hwc->period_left, sample_period); 14060 } 14061 14062 child_event->ctx = child_ctx; 14063 child_event->overflow_handler = parent_event->overflow_handler; 14064 child_event->overflow_handler_context 14065 = parent_event->overflow_handler_context; 14066 14067 /* 14068 * Precalculate sample_data sizes 14069 */ 14070 perf_event__header_size(child_event); 14071 perf_event__id_header_size(child_event); 14072 14073 /* 14074 * Link it up in the child's context: 14075 */ 14076 raw_spin_lock_irqsave(&child_ctx->lock, flags); 14077 add_event_to_ctx(child_event, child_ctx); 14078 child_event->attach_state |= PERF_ATTACH_CHILD; 14079 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 14080 14081 /* 14082 * Link this into the parent event's child list 14083 */ 14084 list_add_tail(&child_event->child_list, &parent_event->child_list); 14085 mutex_unlock(&parent_event->child_mutex); 14086 14087 return child_event; 14088 } 14089 14090 /* 14091 * Inherits an event group. 14092 * 14093 * This will quietly suppress orphaned events; !inherit_event() is not an error. 14094 * This matches with perf_event_release_kernel() removing all child events. 14095 * 14096 * Returns: 14097 * - 0 on success 14098 * - <0 on error 14099 */ 14100 static int inherit_group(struct perf_event *parent_event, 14101 struct task_struct *parent, 14102 struct perf_event_context *parent_ctx, 14103 struct task_struct *child, 14104 struct perf_event_context *child_ctx) 14105 { 14106 struct perf_event *leader; 14107 struct perf_event *sub; 14108 struct perf_event *child_ctr; 14109 14110 leader = inherit_event(parent_event, parent, parent_ctx, 14111 child, NULL, child_ctx); 14112 if (IS_ERR(leader)) 14113 return PTR_ERR(leader); 14114 /* 14115 * @leader can be NULL here because of is_orphaned_event(). In this 14116 * case inherit_event() will create individual events, similar to what 14117 * perf_group_detach() would do anyway. 14118 */ 14119 for_each_sibling_event(sub, parent_event) { 14120 child_ctr = inherit_event(sub, parent, parent_ctx, 14121 child, leader, child_ctx); 14122 if (IS_ERR(child_ctr)) 14123 return PTR_ERR(child_ctr); 14124 14125 if (sub->aux_event == parent_event && child_ctr && 14126 !perf_get_aux_event(child_ctr, leader)) 14127 return -EINVAL; 14128 } 14129 if (leader) 14130 leader->group_generation = parent_event->group_generation; 14131 return 0; 14132 } 14133 14134 /* 14135 * Creates the child task context and tries to inherit the event-group. 14136 * 14137 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 14138 * inherited_all set when we 'fail' to inherit an orphaned event; this is 14139 * consistent with perf_event_release_kernel() removing all child events. 14140 * 14141 * Returns: 14142 * - 0 on success 14143 * - <0 on error 14144 */ 14145 static int 14146 inherit_task_group(struct perf_event *event, struct task_struct *parent, 14147 struct perf_event_context *parent_ctx, 14148 struct task_struct *child, 14149 u64 clone_flags, int *inherited_all) 14150 { 14151 struct perf_event_context *child_ctx; 14152 int ret; 14153 14154 if (!event->attr.inherit || 14155 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 14156 /* Do not inherit if sigtrap and signal handlers were cleared. */ 14157 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 14158 *inherited_all = 0; 14159 return 0; 14160 } 14161 14162 child_ctx = child->perf_event_ctxp; 14163 if (!child_ctx) { 14164 /* 14165 * This is executed from the parent task context, so 14166 * inherit events that have been marked for cloning. 14167 * First allocate and initialize a context for the 14168 * child. 14169 */ 14170 child_ctx = alloc_perf_context(child); 14171 if (!child_ctx) 14172 return -ENOMEM; 14173 14174 child->perf_event_ctxp = child_ctx; 14175 } 14176 14177 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 14178 if (ret) 14179 *inherited_all = 0; 14180 14181 return ret; 14182 } 14183 14184 /* 14185 * Initialize the perf_event context in task_struct 14186 */ 14187 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 14188 { 14189 struct perf_event_context *child_ctx, *parent_ctx; 14190 struct perf_event_context *cloned_ctx; 14191 struct perf_event *event; 14192 struct task_struct *parent = current; 14193 int inherited_all = 1; 14194 unsigned long flags; 14195 int ret = 0; 14196 14197 if (likely(!parent->perf_event_ctxp)) 14198 return 0; 14199 14200 /* 14201 * If the parent's context is a clone, pin it so it won't get 14202 * swapped under us. 14203 */ 14204 parent_ctx = perf_pin_task_context(parent); 14205 if (!parent_ctx) 14206 return 0; 14207 14208 /* 14209 * No need to check if parent_ctx != NULL here; since we saw 14210 * it non-NULL earlier, the only reason for it to become NULL 14211 * is if we exit, and since we're currently in the middle of 14212 * a fork we can't be exiting at the same time. 14213 */ 14214 14215 /* 14216 * Lock the parent list. No need to lock the child - not PID 14217 * hashed yet and not running, so nobody can access it. 14218 */ 14219 mutex_lock(&parent_ctx->mutex); 14220 14221 /* 14222 * We dont have to disable NMIs - we are only looking at 14223 * the list, not manipulating it: 14224 */ 14225 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 14226 ret = inherit_task_group(event, parent, parent_ctx, 14227 child, clone_flags, &inherited_all); 14228 if (ret) 14229 goto out_unlock; 14230 } 14231 14232 /* 14233 * We can't hold ctx->lock when iterating the ->flexible_group list due 14234 * to allocations, but we need to prevent rotation because 14235 * rotate_ctx() will change the list from interrupt context. 14236 */ 14237 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14238 parent_ctx->rotate_disable = 1; 14239 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14240 14241 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 14242 ret = inherit_task_group(event, parent, parent_ctx, 14243 child, clone_flags, &inherited_all); 14244 if (ret) 14245 goto out_unlock; 14246 } 14247 14248 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14249 parent_ctx->rotate_disable = 0; 14250 14251 child_ctx = child->perf_event_ctxp; 14252 14253 if (child_ctx && inherited_all) { 14254 /* 14255 * Mark the child context as a clone of the parent 14256 * context, or of whatever the parent is a clone of. 14257 * 14258 * Note that if the parent is a clone, the holding of 14259 * parent_ctx->lock avoids it from being uncloned. 14260 */ 14261 cloned_ctx = parent_ctx->parent_ctx; 14262 if (cloned_ctx) { 14263 child_ctx->parent_ctx = cloned_ctx; 14264 child_ctx->parent_gen = parent_ctx->parent_gen; 14265 } else { 14266 child_ctx->parent_ctx = parent_ctx; 14267 child_ctx->parent_gen = parent_ctx->generation; 14268 } 14269 get_ctx(child_ctx->parent_ctx); 14270 } 14271 14272 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14273 out_unlock: 14274 mutex_unlock(&parent_ctx->mutex); 14275 14276 perf_unpin_context(parent_ctx); 14277 put_ctx(parent_ctx); 14278 14279 return ret; 14280 } 14281 14282 /* 14283 * Initialize the perf_event context in task_struct 14284 */ 14285 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 14286 { 14287 int ret; 14288 14289 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14290 child->perf_event_ctxp = NULL; 14291 mutex_init(&child->perf_event_mutex); 14292 INIT_LIST_HEAD(&child->perf_event_list); 14293 child->perf_ctx_data = NULL; 14294 14295 ret = perf_event_init_context(child, clone_flags); 14296 if (ret) { 14297 perf_event_free_task(child); 14298 return ret; 14299 } 14300 14301 return 0; 14302 } 14303 14304 static void __init perf_event_init_all_cpus(void) 14305 { 14306 struct swevent_htable *swhash; 14307 struct perf_cpu_context *cpuctx; 14308 int cpu; 14309 14310 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14311 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14312 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14313 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14314 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14315 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 14316 14317 14318 for_each_possible_cpu(cpu) { 14319 swhash = &per_cpu(swevent_htable, cpu); 14320 mutex_init(&swhash->hlist_mutex); 14321 14322 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14323 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14324 14325 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14326 14327 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14328 __perf_event_init_context(&cpuctx->ctx); 14329 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14330 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14331 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14332 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14333 cpuctx->heap = cpuctx->heap_default; 14334 } 14335 } 14336 14337 static void perf_swevent_init_cpu(unsigned int cpu) 14338 { 14339 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14340 14341 mutex_lock(&swhash->hlist_mutex); 14342 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14343 struct swevent_hlist *hlist; 14344 14345 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14346 WARN_ON(!hlist); 14347 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14348 } 14349 mutex_unlock(&swhash->hlist_mutex); 14350 } 14351 14352 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14353 static void __perf_event_exit_context(void *__info) 14354 { 14355 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14356 struct perf_event_context *ctx = __info; 14357 struct perf_event *event; 14358 14359 raw_spin_lock(&ctx->lock); 14360 ctx_sched_out(ctx, NULL, EVENT_TIME); 14361 list_for_each_entry(event, &ctx->event_list, event_entry) 14362 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14363 raw_spin_unlock(&ctx->lock); 14364 } 14365 14366 static void perf_event_clear_cpumask(unsigned int cpu) 14367 { 14368 int target[PERF_PMU_MAX_SCOPE]; 14369 unsigned int scope; 14370 struct pmu *pmu; 14371 14372 cpumask_clear_cpu(cpu, perf_online_mask); 14373 14374 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14375 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14376 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14377 14378 target[scope] = -1; 14379 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14380 continue; 14381 14382 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14383 continue; 14384 target[scope] = cpumask_any_but(cpumask, cpu); 14385 if (target[scope] < nr_cpu_ids) 14386 cpumask_set_cpu(target[scope], pmu_cpumask); 14387 } 14388 14389 /* migrate */ 14390 list_for_each_entry(pmu, &pmus, entry) { 14391 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14392 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14393 continue; 14394 14395 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14396 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14397 } 14398 } 14399 14400 static void perf_event_exit_cpu_context(int cpu) 14401 { 14402 struct perf_cpu_context *cpuctx; 14403 struct perf_event_context *ctx; 14404 14405 // XXX simplify cpuctx->online 14406 mutex_lock(&pmus_lock); 14407 /* 14408 * Clear the cpumasks, and migrate to other CPUs if possible. 14409 * Must be invoked before the __perf_event_exit_context. 14410 */ 14411 perf_event_clear_cpumask(cpu); 14412 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14413 ctx = &cpuctx->ctx; 14414 14415 mutex_lock(&ctx->mutex); 14416 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14417 cpuctx->online = 0; 14418 mutex_unlock(&ctx->mutex); 14419 mutex_unlock(&pmus_lock); 14420 } 14421 #else 14422 14423 static void perf_event_exit_cpu_context(int cpu) { } 14424 14425 #endif 14426 14427 static void perf_event_setup_cpumask(unsigned int cpu) 14428 { 14429 struct cpumask *pmu_cpumask; 14430 unsigned int scope; 14431 14432 /* 14433 * Early boot stage, the cpumask hasn't been set yet. 14434 * The perf_online_<domain>_masks includes the first CPU of each domain. 14435 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14436 */ 14437 if (cpumask_empty(perf_online_mask)) { 14438 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14439 pmu_cpumask = perf_scope_cpumask(scope); 14440 if (WARN_ON_ONCE(!pmu_cpumask)) 14441 continue; 14442 cpumask_set_cpu(cpu, pmu_cpumask); 14443 } 14444 goto end; 14445 } 14446 14447 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14448 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14449 14450 pmu_cpumask = perf_scope_cpumask(scope); 14451 14452 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14453 continue; 14454 14455 if (!cpumask_empty(cpumask) && 14456 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14457 cpumask_set_cpu(cpu, pmu_cpumask); 14458 } 14459 end: 14460 cpumask_set_cpu(cpu, perf_online_mask); 14461 } 14462 14463 int perf_event_init_cpu(unsigned int cpu) 14464 { 14465 struct perf_cpu_context *cpuctx; 14466 struct perf_event_context *ctx; 14467 14468 perf_swevent_init_cpu(cpu); 14469 14470 mutex_lock(&pmus_lock); 14471 perf_event_setup_cpumask(cpu); 14472 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14473 ctx = &cpuctx->ctx; 14474 14475 mutex_lock(&ctx->mutex); 14476 cpuctx->online = 1; 14477 mutex_unlock(&ctx->mutex); 14478 mutex_unlock(&pmus_lock); 14479 14480 return 0; 14481 } 14482 14483 int perf_event_exit_cpu(unsigned int cpu) 14484 { 14485 perf_event_exit_cpu_context(cpu); 14486 return 0; 14487 } 14488 14489 static int 14490 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14491 { 14492 int cpu; 14493 14494 for_each_online_cpu(cpu) 14495 perf_event_exit_cpu(cpu); 14496 14497 return NOTIFY_OK; 14498 } 14499 14500 /* 14501 * Run the perf reboot notifier at the very last possible moment so that 14502 * the generic watchdog code runs as long as possible. 14503 */ 14504 static struct notifier_block perf_reboot_notifier = { 14505 .notifier_call = perf_reboot, 14506 .priority = INT_MIN, 14507 }; 14508 14509 void __init perf_event_init(void) 14510 { 14511 int ret; 14512 14513 idr_init(&pmu_idr); 14514 14515 perf_event_init_all_cpus(); 14516 init_srcu_struct(&pmus_srcu); 14517 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14518 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14519 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14520 perf_tp_register(); 14521 perf_event_init_cpu(smp_processor_id()); 14522 register_reboot_notifier(&perf_reboot_notifier); 14523 14524 ret = init_hw_breakpoint(); 14525 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14526 14527 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14528 14529 /* 14530 * Build time assertion that we keep the data_head at the intended 14531 * location. IOW, validation we got the __reserved[] size right. 14532 */ 14533 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14534 != 1024); 14535 } 14536 14537 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14538 char *page) 14539 { 14540 struct perf_pmu_events_attr *pmu_attr = 14541 container_of(attr, struct perf_pmu_events_attr, attr); 14542 14543 if (pmu_attr->event_str) 14544 return sprintf(page, "%s\n", pmu_attr->event_str); 14545 14546 return 0; 14547 } 14548 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14549 14550 static int __init perf_event_sysfs_init(void) 14551 { 14552 struct pmu *pmu; 14553 int ret; 14554 14555 mutex_lock(&pmus_lock); 14556 14557 ret = bus_register(&pmu_bus); 14558 if (ret) 14559 goto unlock; 14560 14561 list_for_each_entry(pmu, &pmus, entry) { 14562 if (pmu->dev) 14563 continue; 14564 14565 ret = pmu_dev_alloc(pmu); 14566 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14567 } 14568 pmu_bus_running = 1; 14569 ret = 0; 14570 14571 unlock: 14572 mutex_unlock(&pmus_lock); 14573 14574 return ret; 14575 } 14576 device_initcall(perf_event_sysfs_init); 14577 14578 #ifdef CONFIG_CGROUP_PERF 14579 static struct cgroup_subsys_state * 14580 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14581 { 14582 struct perf_cgroup *jc; 14583 14584 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14585 if (!jc) 14586 return ERR_PTR(-ENOMEM); 14587 14588 jc->info = alloc_percpu(struct perf_cgroup_info); 14589 if (!jc->info) { 14590 kfree(jc); 14591 return ERR_PTR(-ENOMEM); 14592 } 14593 14594 return &jc->css; 14595 } 14596 14597 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14598 { 14599 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14600 14601 free_percpu(jc->info); 14602 kfree(jc); 14603 } 14604 14605 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14606 { 14607 perf_event_cgroup(css->cgroup); 14608 return 0; 14609 } 14610 14611 static int __perf_cgroup_move(void *info) 14612 { 14613 struct task_struct *task = info; 14614 14615 preempt_disable(); 14616 perf_cgroup_switch(task); 14617 preempt_enable(); 14618 14619 return 0; 14620 } 14621 14622 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14623 { 14624 struct task_struct *task; 14625 struct cgroup_subsys_state *css; 14626 14627 cgroup_taskset_for_each(task, css, tset) 14628 task_function_call(task, __perf_cgroup_move, task); 14629 } 14630 14631 struct cgroup_subsys perf_event_cgrp_subsys = { 14632 .css_alloc = perf_cgroup_css_alloc, 14633 .css_free = perf_cgroup_css_free, 14634 .css_online = perf_cgroup_css_online, 14635 .attach = perf_cgroup_attach, 14636 /* 14637 * Implicitly enable on dfl hierarchy so that perf events can 14638 * always be filtered by cgroup2 path as long as perf_event 14639 * controller is not mounted on a legacy hierarchy. 14640 */ 14641 .implicit_on_dfl = true, 14642 .threaded = true, 14643 }; 14644 #endif /* CONFIG_CGROUP_PERF */ 14645 14646 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14647