xref: /linux/kernel/events/core.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
1944 static int perf_get_aux_event(struct perf_event *event,
1945 			      struct perf_event *group_leader)
1946 {
1947 	/*
1948 	 * Our group leader must be an aux event if we want to be
1949 	 * an aux_output. This way, the aux event will precede its
1950 	 * aux_output events in the group, and therefore will always
1951 	 * schedule first.
1952 	 */
1953 	if (!group_leader)
1954 		return 0;
1955 
1956 	if (!perf_aux_output_match(event, group_leader))
1957 		return 0;
1958 
1959 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 		return 0;
1961 
1962 	/*
1963 	 * Link aux_outputs to their aux event; this is undone in
1964 	 * perf_group_detach() by perf_put_aux_event(). When the
1965 	 * group in torn down, the aux_output events loose their
1966 	 * link to the aux_event and can't schedule any more.
1967 	 */
1968 	event->aux_event = group_leader;
1969 
1970 	return 1;
1971 }
1972 
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 	struct perf_event *sibling, *tmp;
1976 	struct perf_event_context *ctx = event->ctx;
1977 
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	/*
1981 	 * We can have double detach due to exit/hot-unplug + close.
1982 	 */
1983 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 		return;
1985 
1986 	event->attach_state &= ~PERF_ATTACH_GROUP;
1987 
1988 	perf_put_aux_event(event);
1989 
1990 	/*
1991 	 * If this is a sibling, remove it from its group.
1992 	 */
1993 	if (event->group_leader != event) {
1994 		list_del_init(&event->sibling_list);
1995 		event->group_leader->nr_siblings--;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * If this was a group event with sibling events then
2001 	 * upgrade the siblings to singleton events by adding them
2002 	 * to whatever list we are on.
2003 	 */
2004 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005 
2006 		sibling->group_leader = sibling;
2007 		list_del_init(&sibling->sibling_list);
2008 
2009 		/* Inherit group flags from the previous leader */
2010 		sibling->group_caps = event->group_caps;
2011 
2012 		if (!RB_EMPTY_NODE(&event->group_node)) {
2013 			add_event_to_groups(sibling, event->ctx);
2014 
2015 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 				struct list_head *list = sibling->attr.pinned ?
2017 					&ctx->pinned_active : &ctx->flexible_active;
2018 
2019 				list_add_tail(&sibling->active_list, list);
2020 			}
2021 		}
2022 
2023 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 	}
2025 
2026 out:
2027 	perf_event__header_size(event->group_leader);
2028 
2029 	for_each_sibling_event(tmp, event->group_leader)
2030 		perf_event__header_size(tmp);
2031 }
2032 
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 	return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037 
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 	struct pmu *pmu = event->pmu;
2041 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043 
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 	struct perf_event *sibling;
2053 
2054 	if (!__pmu_filter_match(event))
2055 		return 0;
2056 
2057 	for_each_sibling_event(sibling, event) {
2058 		if (!__pmu_filter_match(sibling))
2059 			return 0;
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 	       perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071 
2072 static void
2073 event_sched_out(struct perf_event *event,
2074 		  struct perf_cpu_context *cpuctx,
2075 		  struct perf_event_context *ctx)
2076 {
2077 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078 
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 		return;
2084 
2085 	/*
2086 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 	 * we can schedule events _OUT_ individually through things like
2088 	 * __perf_remove_from_context().
2089 	 */
2090 	list_del_init(&event->active_list);
2091 
2092 	perf_pmu_disable(event->pmu);
2093 
2094 	event->pmu->del(event, 0);
2095 	event->oncpu = -1;
2096 
2097 	if (READ_ONCE(event->pending_disable) >= 0) {
2098 		WRITE_ONCE(event->pending_disable, -1);
2099 		state = PERF_EVENT_STATE_OFF;
2100 	}
2101 	perf_event_set_state(event, state);
2102 
2103 	if (!is_software_event(event))
2104 		cpuctx->active_oncpu--;
2105 	if (!--ctx->nr_active)
2106 		perf_event_ctx_deactivate(ctx);
2107 	if (event->attr.freq && event->attr.sample_freq)
2108 		ctx->nr_freq--;
2109 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 		cpuctx->exclusive = 0;
2111 
2112 	perf_pmu_enable(event->pmu);
2113 }
2114 
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117 		struct perf_cpu_context *cpuctx,
2118 		struct perf_event_context *ctx)
2119 {
2120 	struct perf_event *event;
2121 
2122 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 		return;
2124 
2125 	perf_pmu_disable(ctx->pmu);
2126 
2127 	event_sched_out(group_event, cpuctx, ctx);
2128 
2129 	/*
2130 	 * Schedule out siblings (if any):
2131 	 */
2132 	for_each_sibling_event(event, group_event)
2133 		event_sched_out(event, cpuctx, ctx);
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 
2137 	if (group_event->attr.exclusive)
2138 		cpuctx->exclusive = 0;
2139 }
2140 
2141 #define DETACH_GROUP	0x01UL
2142 
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151 			   struct perf_cpu_context *cpuctx,
2152 			   struct perf_event_context *ctx,
2153 			   void *info)
2154 {
2155 	unsigned long flags = (unsigned long)info;
2156 
2157 	if (ctx->is_active & EVENT_TIME) {
2158 		update_context_time(ctx);
2159 		update_cgrp_time_from_cpuctx(cpuctx);
2160 	}
2161 
2162 	event_sched_out(event, cpuctx, ctx);
2163 	if (flags & DETACH_GROUP)
2164 		perf_group_detach(event);
2165 	list_del_event(event, ctx);
2166 
2167 	if (!ctx->nr_events && ctx->is_active) {
2168 		ctx->is_active = 0;
2169 		if (ctx->task) {
2170 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 			cpuctx->task_ctx = NULL;
2172 		}
2173 	}
2174 }
2175 
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 	struct perf_event_context *ctx = event->ctx;
2189 
2190 	lockdep_assert_held(&ctx->mutex);
2191 
2192 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2193 
2194 	/*
2195 	 * The above event_function_call() can NO-OP when it hits
2196 	 * TASK_TOMBSTONE. In that case we must already have been detached
2197 	 * from the context (by perf_event_exit_event()) but the grouping
2198 	 * might still be in-tact.
2199 	 */
2200 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 	if ((flags & DETACH_GROUP) &&
2202 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2203 		/*
2204 		 * Since in that case we cannot possibly be scheduled, simply
2205 		 * detach now.
2206 		 */
2207 		raw_spin_lock_irq(&ctx->lock);
2208 		perf_group_detach(event);
2209 		raw_spin_unlock_irq(&ctx->lock);
2210 	}
2211 }
2212 
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217 				 struct perf_cpu_context *cpuctx,
2218 				 struct perf_event_context *ctx,
2219 				 void *info)
2220 {
2221 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 		return;
2223 
2224 	if (ctx->is_active & EVENT_TIME) {
2225 		update_context_time(ctx);
2226 		update_cgrp_time_from_event(event);
2227 	}
2228 
2229 	if (event == event->group_leader)
2230 		group_sched_out(event, cpuctx, ctx);
2231 	else
2232 		event_sched_out(event, cpuctx, ctx);
2233 
2234 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236 
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisfied when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 	struct perf_event_context *ctx = event->ctx;
2254 
2255 	raw_spin_lock_irq(&ctx->lock);
2256 	if (event->state <= PERF_EVENT_STATE_OFF) {
2257 		raw_spin_unlock_irq(&ctx->lock);
2258 		return;
2259 	}
2260 	raw_spin_unlock_irq(&ctx->lock);
2261 
2262 	event_function_call(event, __perf_event_disable, NULL);
2263 }
2264 
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 	event_function_local(event, __perf_event_disable, NULL);
2268 }
2269 
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx;
2277 
2278 	ctx = perf_event_ctx_lock(event);
2279 	_perf_event_disable(event);
2280 	perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283 
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 	/* can fail, see perf_pending_event_disable() */
2288 	irq_work_queue(&event->pending);
2289 }
2290 
2291 static void perf_set_shadow_time(struct perf_event *event,
2292 				 struct perf_event_context *ctx)
2293 {
2294 	/*
2295 	 * use the correct time source for the time snapshot
2296 	 *
2297 	 * We could get by without this by leveraging the
2298 	 * fact that to get to this function, the caller
2299 	 * has most likely already called update_context_time()
2300 	 * and update_cgrp_time_xx() and thus both timestamp
2301 	 * are identical (or very close). Given that tstamp is,
2302 	 * already adjusted for cgroup, we could say that:
2303 	 *    tstamp - ctx->timestamp
2304 	 * is equivalent to
2305 	 *    tstamp - cgrp->timestamp.
2306 	 *
2307 	 * Then, in perf_output_read(), the calculation would
2308 	 * work with no changes because:
2309 	 * - event is guaranteed scheduled in
2310 	 * - no scheduled out in between
2311 	 * - thus the timestamp would be the same
2312 	 *
2313 	 * But this is a bit hairy.
2314 	 *
2315 	 * So instead, we have an explicit cgroup call to remain
2316 	 * within the time time source all along. We believe it
2317 	 * is cleaner and simpler to understand.
2318 	 */
2319 	if (is_cgroup_event(event))
2320 		perf_cgroup_set_shadow_time(event, event->tstamp);
2321 	else
2322 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324 
2325 #define MAX_INTERRUPTS (~0ULL)
2326 
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329 
2330 static int
2331 event_sched_in(struct perf_event *event,
2332 		 struct perf_cpu_context *cpuctx,
2333 		 struct perf_event_context *ctx)
2334 {
2335 	int ret = 0;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	if (event->state <= PERF_EVENT_STATE_OFF)
2340 		return 0;
2341 
2342 	WRITE_ONCE(event->oncpu, smp_processor_id());
2343 	/*
2344 	 * Order event::oncpu write to happen before the ACTIVE state is
2345 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 	 * ->oncpu if it sees ACTIVE.
2347 	 */
2348 	smp_wmb();
2349 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350 
2351 	/*
2352 	 * Unthrottle events, since we scheduled we might have missed several
2353 	 * ticks already, also for a heavily scheduling task there is little
2354 	 * guarantee it'll get a tick in a timely manner.
2355 	 */
2356 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 		perf_log_throttle(event, 1);
2358 		event->hw.interrupts = 0;
2359 	}
2360 
2361 	perf_pmu_disable(event->pmu);
2362 
2363 	perf_set_shadow_time(event, ctx);
2364 
2365 	perf_log_itrace_start(event);
2366 
2367 	if (event->pmu->add(event, PERF_EF_START)) {
2368 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 		event->oncpu = -1;
2370 		ret = -EAGAIN;
2371 		goto out;
2372 	}
2373 
2374 	if (!is_software_event(event))
2375 		cpuctx->active_oncpu++;
2376 	if (!ctx->nr_active++)
2377 		perf_event_ctx_activate(ctx);
2378 	if (event->attr.freq && event->attr.sample_freq)
2379 		ctx->nr_freq++;
2380 
2381 	if (event->attr.exclusive)
2382 		cpuctx->exclusive = 1;
2383 
2384 out:
2385 	perf_pmu_enable(event->pmu);
2386 
2387 	return ret;
2388 }
2389 
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392 	       struct perf_cpu_context *cpuctx,
2393 	       struct perf_event_context *ctx)
2394 {
2395 	struct perf_event *event, *partial_group = NULL;
2396 	struct pmu *pmu = ctx->pmu;
2397 
2398 	if (group_event->state == PERF_EVENT_STATE_OFF)
2399 		return 0;
2400 
2401 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402 
2403 	if (event_sched_in(group_event, cpuctx, ctx)) {
2404 		pmu->cancel_txn(pmu);
2405 		perf_mux_hrtimer_restart(cpuctx);
2406 		return -EAGAIN;
2407 	}
2408 
2409 	/*
2410 	 * Schedule in siblings as one group (if any):
2411 	 */
2412 	for_each_sibling_event(event, group_event) {
2413 		if (event_sched_in(event, cpuctx, ctx)) {
2414 			partial_group = event;
2415 			goto group_error;
2416 		}
2417 	}
2418 
2419 	if (!pmu->commit_txn(pmu))
2420 		return 0;
2421 
2422 group_error:
2423 	/*
2424 	 * Groups can be scheduled in as one unit only, so undo any
2425 	 * partial group before returning:
2426 	 * The events up to the failed event are scheduled out normally.
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event == partial_group)
2430 			break;
2431 
2432 		event_sched_out(event, cpuctx, ctx);
2433 	}
2434 	event_sched_out(group_event, cpuctx, ctx);
2435 
2436 	pmu->cancel_txn(pmu);
2437 
2438 	perf_mux_hrtimer_restart(cpuctx);
2439 
2440 	return -EAGAIN;
2441 }
2442 
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447 			   struct perf_cpu_context *cpuctx,
2448 			   int can_add_hw)
2449 {
2450 	/*
2451 	 * Groups consisting entirely of software events can always go on.
2452 	 */
2453 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 		return 1;
2455 	/*
2456 	 * If an exclusive group is already on, no other hardware
2457 	 * events can go on.
2458 	 */
2459 	if (cpuctx->exclusive)
2460 		return 0;
2461 	/*
2462 	 * If this group is exclusive and there are already
2463 	 * events on the CPU, it can't go on.
2464 	 */
2465 	if (event->attr.exclusive && cpuctx->active_oncpu)
2466 		return 0;
2467 	/*
2468 	 * Otherwise, try to add it if all previous groups were able
2469 	 * to go on.
2470 	 */
2471 	return can_add_hw;
2472 }
2473 
2474 static void add_event_to_ctx(struct perf_event *event,
2475 			       struct perf_event_context *ctx)
2476 {
2477 	list_add_event(event, ctx);
2478 	perf_group_attach(event);
2479 }
2480 
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 			  struct perf_cpu_context *cpuctx,
2483 			  enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 	     struct perf_cpu_context *cpuctx,
2487 	     enum event_type_t event_type,
2488 	     struct task_struct *task);
2489 
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 			       struct perf_event_context *ctx,
2492 			       enum event_type_t event_type)
2493 {
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 		return;
2499 
2500 	ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502 
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 				struct perf_event_context *ctx,
2505 				struct task_struct *task)
2506 {
2507 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 	if (ctx)
2509 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 	if (ctx)
2512 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514 
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 			struct perf_event_context *task_ctx,
2532 			enum event_type_t event_type)
2533 {
2534 	enum event_type_t ctx_event_type;
2535 	bool cpu_event = !!(event_type & EVENT_CPU);
2536 
2537 	/*
2538 	 * If pinned groups are involved, flexible groups also need to be
2539 	 * scheduled out.
2540 	 */
2541 	if (event_type & EVENT_PINNED)
2542 		event_type |= EVENT_FLEXIBLE;
2543 
2544 	ctx_event_type = event_type & EVENT_ALL;
2545 
2546 	perf_pmu_disable(cpuctx->ctx.pmu);
2547 	if (task_ctx)
2548 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549 
2550 	/*
2551 	 * Decide which cpu ctx groups to schedule out based on the types
2552 	 * of events that caused rescheduling:
2553 	 *  - EVENT_CPU: schedule out corresponding groups;
2554 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 	 *  - otherwise, do nothing more.
2556 	 */
2557 	if (cpu_event)
2558 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 	else if (ctx_event_type & EVENT_PINNED)
2560 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561 
2562 	perf_event_sched_in(cpuctx, task_ctx, current);
2563 	perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565 
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570 
2571 	perf_ctx_lock(cpuctx, task_ctx);
2572 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 	perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575 
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584 	struct perf_event *event = info;
2585 	struct perf_event_context *ctx = event->ctx;
2586 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 	bool reprogram = true;
2589 	int ret = 0;
2590 
2591 	raw_spin_lock(&cpuctx->ctx.lock);
2592 	if (ctx->task) {
2593 		raw_spin_lock(&ctx->lock);
2594 		task_ctx = ctx;
2595 
2596 		reprogram = (ctx->task == current);
2597 
2598 		/*
2599 		 * If the task is running, it must be running on this CPU,
2600 		 * otherwise we cannot reprogram things.
2601 		 *
2602 		 * If its not running, we don't care, ctx->lock will
2603 		 * serialize against it becoming runnable.
2604 		 */
2605 		if (task_curr(ctx->task) && !reprogram) {
2606 			ret = -ESRCH;
2607 			goto unlock;
2608 		}
2609 
2610 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 	} else if (task_ctx) {
2612 		raw_spin_lock(&task_ctx->lock);
2613 	}
2614 
2615 #ifdef CONFIG_CGROUP_PERF
2616 	if (is_cgroup_event(event)) {
2617 		/*
2618 		 * If the current cgroup doesn't match the event's
2619 		 * cgroup, we should not try to schedule it.
2620 		 */
2621 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 					event->cgrp->css.cgroup);
2624 	}
2625 #endif
2626 
2627 	if (reprogram) {
2628 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 		add_event_to_ctx(event, ctx);
2630 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 	} else {
2632 		add_event_to_ctx(event, ctx);
2633 	}
2634 
2635 unlock:
2636 	perf_ctx_unlock(cpuctx, task_ctx);
2637 
2638 	return ret;
2639 }
2640 
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 					struct perf_event_context *ctx);
2643 
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651 			struct perf_event *event,
2652 			int cpu)
2653 {
2654 	struct task_struct *task = READ_ONCE(ctx->task);
2655 
2656 	lockdep_assert_held(&ctx->mutex);
2657 
2658 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659 
2660 	if (event->cpu != -1)
2661 		event->cpu = cpu;
2662 
2663 	/*
2664 	 * Ensures that if we can observe event->ctx, both the event and ctx
2665 	 * will be 'complete'. See perf_iterate_sb_cpu().
2666 	 */
2667 	smp_store_release(&event->ctx, ctx);
2668 
2669 	/*
2670 	 * perf_event_attr::disabled events will not run and can be initialized
2671 	 * without IPI. Except when this is the first event for the context, in
2672 	 * that case we need the magic of the IPI to set ctx->is_active.
2673 	 *
2674 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2675 	 * event will issue the IPI and reprogram the hardware.
2676 	 */
2677 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2678 		raw_spin_lock_irq(&ctx->lock);
2679 		if (ctx->task == TASK_TOMBSTONE) {
2680 			raw_spin_unlock_irq(&ctx->lock);
2681 			return;
2682 		}
2683 		add_event_to_ctx(event, ctx);
2684 		raw_spin_unlock_irq(&ctx->lock);
2685 		return;
2686 	}
2687 
2688 	if (!task) {
2689 		cpu_function_call(cpu, __perf_install_in_context, event);
2690 		return;
2691 	}
2692 
2693 	/*
2694 	 * Should not happen, we validate the ctx is still alive before calling.
2695 	 */
2696 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2697 		return;
2698 
2699 	/*
2700 	 * Installing events is tricky because we cannot rely on ctx->is_active
2701 	 * to be set in case this is the nr_events 0 -> 1 transition.
2702 	 *
2703 	 * Instead we use task_curr(), which tells us if the task is running.
2704 	 * However, since we use task_curr() outside of rq::lock, we can race
2705 	 * against the actual state. This means the result can be wrong.
2706 	 *
2707 	 * If we get a false positive, we retry, this is harmless.
2708 	 *
2709 	 * If we get a false negative, things are complicated. If we are after
2710 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2711 	 * value must be correct. If we're before, it doesn't matter since
2712 	 * perf_event_context_sched_in() will program the counter.
2713 	 *
2714 	 * However, this hinges on the remote context switch having observed
2715 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2716 	 * ctx::lock in perf_event_context_sched_in().
2717 	 *
2718 	 * We do this by task_function_call(), if the IPI fails to hit the task
2719 	 * we know any future context switch of task must see the
2720 	 * perf_event_ctpx[] store.
2721 	 */
2722 
2723 	/*
2724 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2725 	 * task_cpu() load, such that if the IPI then does not find the task
2726 	 * running, a future context switch of that task must observe the
2727 	 * store.
2728 	 */
2729 	smp_mb();
2730 again:
2731 	if (!task_function_call(task, __perf_install_in_context, event))
2732 		return;
2733 
2734 	raw_spin_lock_irq(&ctx->lock);
2735 	task = ctx->task;
2736 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2737 		/*
2738 		 * Cannot happen because we already checked above (which also
2739 		 * cannot happen), and we hold ctx->mutex, which serializes us
2740 		 * against perf_event_exit_task_context().
2741 		 */
2742 		raw_spin_unlock_irq(&ctx->lock);
2743 		return;
2744 	}
2745 	/*
2746 	 * If the task is not running, ctx->lock will avoid it becoming so,
2747 	 * thus we can safely install the event.
2748 	 */
2749 	if (task_curr(task)) {
2750 		raw_spin_unlock_irq(&ctx->lock);
2751 		goto again;
2752 	}
2753 	add_event_to_ctx(event, ctx);
2754 	raw_spin_unlock_irq(&ctx->lock);
2755 }
2756 
2757 /*
2758  * Cross CPU call to enable a performance event
2759  */
2760 static void __perf_event_enable(struct perf_event *event,
2761 				struct perf_cpu_context *cpuctx,
2762 				struct perf_event_context *ctx,
2763 				void *info)
2764 {
2765 	struct perf_event *leader = event->group_leader;
2766 	struct perf_event_context *task_ctx;
2767 
2768 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2769 	    event->state <= PERF_EVENT_STATE_ERROR)
2770 		return;
2771 
2772 	if (ctx->is_active)
2773 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2774 
2775 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2776 
2777 	if (!ctx->is_active)
2778 		return;
2779 
2780 	if (!event_filter_match(event)) {
2781 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2782 		return;
2783 	}
2784 
2785 	/*
2786 	 * If the event is in a group and isn't the group leader,
2787 	 * then don't put it on unless the group is on.
2788 	 */
2789 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2790 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2791 		return;
2792 	}
2793 
2794 	task_ctx = cpuctx->task_ctx;
2795 	if (ctx->task)
2796 		WARN_ON_ONCE(task_ctx != ctx);
2797 
2798 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2799 }
2800 
2801 /*
2802  * Enable an event.
2803  *
2804  * If event->ctx is a cloned context, callers must make sure that
2805  * every task struct that event->ctx->task could possibly point to
2806  * remains valid.  This condition is satisfied when called through
2807  * perf_event_for_each_child or perf_event_for_each as described
2808  * for perf_event_disable.
2809  */
2810 static void _perf_event_enable(struct perf_event *event)
2811 {
2812 	struct perf_event_context *ctx = event->ctx;
2813 
2814 	raw_spin_lock_irq(&ctx->lock);
2815 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2816 	    event->state <  PERF_EVENT_STATE_ERROR) {
2817 		raw_spin_unlock_irq(&ctx->lock);
2818 		return;
2819 	}
2820 
2821 	/*
2822 	 * If the event is in error state, clear that first.
2823 	 *
2824 	 * That way, if we see the event in error state below, we know that it
2825 	 * has gone back into error state, as distinct from the task having
2826 	 * been scheduled away before the cross-call arrived.
2827 	 */
2828 	if (event->state == PERF_EVENT_STATE_ERROR)
2829 		event->state = PERF_EVENT_STATE_OFF;
2830 	raw_spin_unlock_irq(&ctx->lock);
2831 
2832 	event_function_call(event, __perf_event_enable, NULL);
2833 }
2834 
2835 /*
2836  * See perf_event_disable();
2837  */
2838 void perf_event_enable(struct perf_event *event)
2839 {
2840 	struct perf_event_context *ctx;
2841 
2842 	ctx = perf_event_ctx_lock(event);
2843 	_perf_event_enable(event);
2844 	perf_event_ctx_unlock(event, ctx);
2845 }
2846 EXPORT_SYMBOL_GPL(perf_event_enable);
2847 
2848 struct stop_event_data {
2849 	struct perf_event	*event;
2850 	unsigned int		restart;
2851 };
2852 
2853 static int __perf_event_stop(void *info)
2854 {
2855 	struct stop_event_data *sd = info;
2856 	struct perf_event *event = sd->event;
2857 
2858 	/* if it's already INACTIVE, do nothing */
2859 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2860 		return 0;
2861 
2862 	/* matches smp_wmb() in event_sched_in() */
2863 	smp_rmb();
2864 
2865 	/*
2866 	 * There is a window with interrupts enabled before we get here,
2867 	 * so we need to check again lest we try to stop another CPU's event.
2868 	 */
2869 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2870 		return -EAGAIN;
2871 
2872 	event->pmu->stop(event, PERF_EF_UPDATE);
2873 
2874 	/*
2875 	 * May race with the actual stop (through perf_pmu_output_stop()),
2876 	 * but it is only used for events with AUX ring buffer, and such
2877 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2878 	 * see comments in perf_aux_output_begin().
2879 	 *
2880 	 * Since this is happening on an event-local CPU, no trace is lost
2881 	 * while restarting.
2882 	 */
2883 	if (sd->restart)
2884 		event->pmu->start(event, 0);
2885 
2886 	return 0;
2887 }
2888 
2889 static int perf_event_stop(struct perf_event *event, int restart)
2890 {
2891 	struct stop_event_data sd = {
2892 		.event		= event,
2893 		.restart	= restart,
2894 	};
2895 	int ret = 0;
2896 
2897 	do {
2898 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2899 			return 0;
2900 
2901 		/* matches smp_wmb() in event_sched_in() */
2902 		smp_rmb();
2903 
2904 		/*
2905 		 * We only want to restart ACTIVE events, so if the event goes
2906 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2907 		 * fall through with ret==-ENXIO.
2908 		 */
2909 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2910 					__perf_event_stop, &sd);
2911 	} while (ret == -EAGAIN);
2912 
2913 	return ret;
2914 }
2915 
2916 /*
2917  * In order to contain the amount of racy and tricky in the address filter
2918  * configuration management, it is a two part process:
2919  *
2920  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2921  *      we update the addresses of corresponding vmas in
2922  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2923  * (p2) when an event is scheduled in (pmu::add), it calls
2924  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2925  *      if the generation has changed since the previous call.
2926  *
2927  * If (p1) happens while the event is active, we restart it to force (p2).
2928  *
2929  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2930  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2931  *     ioctl;
2932  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2933  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2934  *     for reading;
2935  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2936  *     of exec.
2937  */
2938 void perf_event_addr_filters_sync(struct perf_event *event)
2939 {
2940 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2941 
2942 	if (!has_addr_filter(event))
2943 		return;
2944 
2945 	raw_spin_lock(&ifh->lock);
2946 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2947 		event->pmu->addr_filters_sync(event);
2948 		event->hw.addr_filters_gen = event->addr_filters_gen;
2949 	}
2950 	raw_spin_unlock(&ifh->lock);
2951 }
2952 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2953 
2954 static int _perf_event_refresh(struct perf_event *event, int refresh)
2955 {
2956 	/*
2957 	 * not supported on inherited events
2958 	 */
2959 	if (event->attr.inherit || !is_sampling_event(event))
2960 		return -EINVAL;
2961 
2962 	atomic_add(refresh, &event->event_limit);
2963 	_perf_event_enable(event);
2964 
2965 	return 0;
2966 }
2967 
2968 /*
2969  * See perf_event_disable()
2970  */
2971 int perf_event_refresh(struct perf_event *event, int refresh)
2972 {
2973 	struct perf_event_context *ctx;
2974 	int ret;
2975 
2976 	ctx = perf_event_ctx_lock(event);
2977 	ret = _perf_event_refresh(event, refresh);
2978 	perf_event_ctx_unlock(event, ctx);
2979 
2980 	return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(perf_event_refresh);
2983 
2984 static int perf_event_modify_breakpoint(struct perf_event *bp,
2985 					 struct perf_event_attr *attr)
2986 {
2987 	int err;
2988 
2989 	_perf_event_disable(bp);
2990 
2991 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2992 
2993 	if (!bp->attr.disabled)
2994 		_perf_event_enable(bp);
2995 
2996 	return err;
2997 }
2998 
2999 static int perf_event_modify_attr(struct perf_event *event,
3000 				  struct perf_event_attr *attr)
3001 {
3002 	if (event->attr.type != attr->type)
3003 		return -EINVAL;
3004 
3005 	switch (event->attr.type) {
3006 	case PERF_TYPE_BREAKPOINT:
3007 		return perf_event_modify_breakpoint(event, attr);
3008 	default:
3009 		/* Place holder for future additions. */
3010 		return -EOPNOTSUPP;
3011 	}
3012 }
3013 
3014 static void ctx_sched_out(struct perf_event_context *ctx,
3015 			  struct perf_cpu_context *cpuctx,
3016 			  enum event_type_t event_type)
3017 {
3018 	struct perf_event *event, *tmp;
3019 	int is_active = ctx->is_active;
3020 
3021 	lockdep_assert_held(&ctx->lock);
3022 
3023 	if (likely(!ctx->nr_events)) {
3024 		/*
3025 		 * See __perf_remove_from_context().
3026 		 */
3027 		WARN_ON_ONCE(ctx->is_active);
3028 		if (ctx->task)
3029 			WARN_ON_ONCE(cpuctx->task_ctx);
3030 		return;
3031 	}
3032 
3033 	ctx->is_active &= ~event_type;
3034 	if (!(ctx->is_active & EVENT_ALL))
3035 		ctx->is_active = 0;
3036 
3037 	if (ctx->task) {
3038 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3039 		if (!ctx->is_active)
3040 			cpuctx->task_ctx = NULL;
3041 	}
3042 
3043 	/*
3044 	 * Always update time if it was set; not only when it changes.
3045 	 * Otherwise we can 'forget' to update time for any but the last
3046 	 * context we sched out. For example:
3047 	 *
3048 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3049 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3050 	 *
3051 	 * would only update time for the pinned events.
3052 	 */
3053 	if (is_active & EVENT_TIME) {
3054 		/* update (and stop) ctx time */
3055 		update_context_time(ctx);
3056 		update_cgrp_time_from_cpuctx(cpuctx);
3057 	}
3058 
3059 	is_active ^= ctx->is_active; /* changed bits */
3060 
3061 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3062 		return;
3063 
3064 	/*
3065 	 * If we had been multiplexing, no rotations are necessary, now no events
3066 	 * are active.
3067 	 */
3068 	ctx->rotate_necessary = 0;
3069 
3070 	perf_pmu_disable(ctx->pmu);
3071 	if (is_active & EVENT_PINNED) {
3072 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3073 			group_sched_out(event, cpuctx, ctx);
3074 	}
3075 
3076 	if (is_active & EVENT_FLEXIBLE) {
3077 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3078 			group_sched_out(event, cpuctx, ctx);
3079 	}
3080 	perf_pmu_enable(ctx->pmu);
3081 }
3082 
3083 /*
3084  * Test whether two contexts are equivalent, i.e. whether they have both been
3085  * cloned from the same version of the same context.
3086  *
3087  * Equivalence is measured using a generation number in the context that is
3088  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3089  * and list_del_event().
3090  */
3091 static int context_equiv(struct perf_event_context *ctx1,
3092 			 struct perf_event_context *ctx2)
3093 {
3094 	lockdep_assert_held(&ctx1->lock);
3095 	lockdep_assert_held(&ctx2->lock);
3096 
3097 	/* Pinning disables the swap optimization */
3098 	if (ctx1->pin_count || ctx2->pin_count)
3099 		return 0;
3100 
3101 	/* If ctx1 is the parent of ctx2 */
3102 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3103 		return 1;
3104 
3105 	/* If ctx2 is the parent of ctx1 */
3106 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3107 		return 1;
3108 
3109 	/*
3110 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3111 	 * hierarchy, see perf_event_init_context().
3112 	 */
3113 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3114 			ctx1->parent_gen == ctx2->parent_gen)
3115 		return 1;
3116 
3117 	/* Unmatched */
3118 	return 0;
3119 }
3120 
3121 static void __perf_event_sync_stat(struct perf_event *event,
3122 				     struct perf_event *next_event)
3123 {
3124 	u64 value;
3125 
3126 	if (!event->attr.inherit_stat)
3127 		return;
3128 
3129 	/*
3130 	 * Update the event value, we cannot use perf_event_read()
3131 	 * because we're in the middle of a context switch and have IRQs
3132 	 * disabled, which upsets smp_call_function_single(), however
3133 	 * we know the event must be on the current CPU, therefore we
3134 	 * don't need to use it.
3135 	 */
3136 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3137 		event->pmu->read(event);
3138 
3139 	perf_event_update_time(event);
3140 
3141 	/*
3142 	 * In order to keep per-task stats reliable we need to flip the event
3143 	 * values when we flip the contexts.
3144 	 */
3145 	value = local64_read(&next_event->count);
3146 	value = local64_xchg(&event->count, value);
3147 	local64_set(&next_event->count, value);
3148 
3149 	swap(event->total_time_enabled, next_event->total_time_enabled);
3150 	swap(event->total_time_running, next_event->total_time_running);
3151 
3152 	/*
3153 	 * Since we swizzled the values, update the user visible data too.
3154 	 */
3155 	perf_event_update_userpage(event);
3156 	perf_event_update_userpage(next_event);
3157 }
3158 
3159 static void perf_event_sync_stat(struct perf_event_context *ctx,
3160 				   struct perf_event_context *next_ctx)
3161 {
3162 	struct perf_event *event, *next_event;
3163 
3164 	if (!ctx->nr_stat)
3165 		return;
3166 
3167 	update_context_time(ctx);
3168 
3169 	event = list_first_entry(&ctx->event_list,
3170 				   struct perf_event, event_entry);
3171 
3172 	next_event = list_first_entry(&next_ctx->event_list,
3173 					struct perf_event, event_entry);
3174 
3175 	while (&event->event_entry != &ctx->event_list &&
3176 	       &next_event->event_entry != &next_ctx->event_list) {
3177 
3178 		__perf_event_sync_stat(event, next_event);
3179 
3180 		event = list_next_entry(event, event_entry);
3181 		next_event = list_next_entry(next_event, event_entry);
3182 	}
3183 }
3184 
3185 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3186 					 struct task_struct *next)
3187 {
3188 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3189 	struct perf_event_context *next_ctx;
3190 	struct perf_event_context *parent, *next_parent;
3191 	struct perf_cpu_context *cpuctx;
3192 	int do_switch = 1;
3193 
3194 	if (likely(!ctx))
3195 		return;
3196 
3197 	cpuctx = __get_cpu_context(ctx);
3198 	if (!cpuctx->task_ctx)
3199 		return;
3200 
3201 	rcu_read_lock();
3202 	next_ctx = next->perf_event_ctxp[ctxn];
3203 	if (!next_ctx)
3204 		goto unlock;
3205 
3206 	parent = rcu_dereference(ctx->parent_ctx);
3207 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3208 
3209 	/* If neither context have a parent context; they cannot be clones. */
3210 	if (!parent && !next_parent)
3211 		goto unlock;
3212 
3213 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3214 		/*
3215 		 * Looks like the two contexts are clones, so we might be
3216 		 * able to optimize the context switch.  We lock both
3217 		 * contexts and check that they are clones under the
3218 		 * lock (including re-checking that neither has been
3219 		 * uncloned in the meantime).  It doesn't matter which
3220 		 * order we take the locks because no other cpu could
3221 		 * be trying to lock both of these tasks.
3222 		 */
3223 		raw_spin_lock(&ctx->lock);
3224 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3225 		if (context_equiv(ctx, next_ctx)) {
3226 			struct pmu *pmu = ctx->pmu;
3227 
3228 			WRITE_ONCE(ctx->task, next);
3229 			WRITE_ONCE(next_ctx->task, task);
3230 
3231 			/*
3232 			 * PMU specific parts of task perf context can require
3233 			 * additional synchronization. As an example of such
3234 			 * synchronization see implementation details of Intel
3235 			 * LBR call stack data profiling;
3236 			 */
3237 			if (pmu->swap_task_ctx)
3238 				pmu->swap_task_ctx(ctx, next_ctx);
3239 			else
3240 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3241 
3242 			/*
3243 			 * RCU_INIT_POINTER here is safe because we've not
3244 			 * modified the ctx and the above modification of
3245 			 * ctx->task and ctx->task_ctx_data are immaterial
3246 			 * since those values are always verified under
3247 			 * ctx->lock which we're now holding.
3248 			 */
3249 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3250 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3251 
3252 			do_switch = 0;
3253 
3254 			perf_event_sync_stat(ctx, next_ctx);
3255 		}
3256 		raw_spin_unlock(&next_ctx->lock);
3257 		raw_spin_unlock(&ctx->lock);
3258 	}
3259 unlock:
3260 	rcu_read_unlock();
3261 
3262 	if (do_switch) {
3263 		raw_spin_lock(&ctx->lock);
3264 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3265 		raw_spin_unlock(&ctx->lock);
3266 	}
3267 }
3268 
3269 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3270 
3271 void perf_sched_cb_dec(struct pmu *pmu)
3272 {
3273 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3274 
3275 	this_cpu_dec(perf_sched_cb_usages);
3276 
3277 	if (!--cpuctx->sched_cb_usage)
3278 		list_del(&cpuctx->sched_cb_entry);
3279 }
3280 
3281 
3282 void perf_sched_cb_inc(struct pmu *pmu)
3283 {
3284 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3285 
3286 	if (!cpuctx->sched_cb_usage++)
3287 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3288 
3289 	this_cpu_inc(perf_sched_cb_usages);
3290 }
3291 
3292 /*
3293  * This function provides the context switch callback to the lower code
3294  * layer. It is invoked ONLY when the context switch callback is enabled.
3295  *
3296  * This callback is relevant even to per-cpu events; for example multi event
3297  * PEBS requires this to provide PID/TID information. This requires we flush
3298  * all queued PEBS records before we context switch to a new task.
3299  */
3300 static void perf_pmu_sched_task(struct task_struct *prev,
3301 				struct task_struct *next,
3302 				bool sched_in)
3303 {
3304 	struct perf_cpu_context *cpuctx;
3305 	struct pmu *pmu;
3306 
3307 	if (prev == next)
3308 		return;
3309 
3310 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3311 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3312 
3313 		if (WARN_ON_ONCE(!pmu->sched_task))
3314 			continue;
3315 
3316 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3317 		perf_pmu_disable(pmu);
3318 
3319 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3320 
3321 		perf_pmu_enable(pmu);
3322 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3323 	}
3324 }
3325 
3326 static void perf_event_switch(struct task_struct *task,
3327 			      struct task_struct *next_prev, bool sched_in);
3328 
3329 #define for_each_task_context_nr(ctxn)					\
3330 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3331 
3332 /*
3333  * Called from scheduler to remove the events of the current task,
3334  * with interrupts disabled.
3335  *
3336  * We stop each event and update the event value in event->count.
3337  *
3338  * This does not protect us against NMI, but disable()
3339  * sets the disabled bit in the control field of event _before_
3340  * accessing the event control register. If a NMI hits, then it will
3341  * not restart the event.
3342  */
3343 void __perf_event_task_sched_out(struct task_struct *task,
3344 				 struct task_struct *next)
3345 {
3346 	int ctxn;
3347 
3348 	if (__this_cpu_read(perf_sched_cb_usages))
3349 		perf_pmu_sched_task(task, next, false);
3350 
3351 	if (atomic_read(&nr_switch_events))
3352 		perf_event_switch(task, next, false);
3353 
3354 	for_each_task_context_nr(ctxn)
3355 		perf_event_context_sched_out(task, ctxn, next);
3356 
3357 	/*
3358 	 * if cgroup events exist on this CPU, then we need
3359 	 * to check if we have to switch out PMU state.
3360 	 * cgroup event are system-wide mode only
3361 	 */
3362 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3363 		perf_cgroup_sched_out(task, next);
3364 }
3365 
3366 /*
3367  * Called with IRQs disabled
3368  */
3369 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3370 			      enum event_type_t event_type)
3371 {
3372 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3373 }
3374 
3375 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3376 			      int (*func)(struct perf_event *, void *), void *data)
3377 {
3378 	struct perf_event **evt, *evt1, *evt2;
3379 	int ret;
3380 
3381 	evt1 = perf_event_groups_first(groups, -1);
3382 	evt2 = perf_event_groups_first(groups, cpu);
3383 
3384 	while (evt1 || evt2) {
3385 		if (evt1 && evt2) {
3386 			if (evt1->group_index < evt2->group_index)
3387 				evt = &evt1;
3388 			else
3389 				evt = &evt2;
3390 		} else if (evt1) {
3391 			evt = &evt1;
3392 		} else {
3393 			evt = &evt2;
3394 		}
3395 
3396 		ret = func(*evt, data);
3397 		if (ret)
3398 			return ret;
3399 
3400 		*evt = perf_event_groups_next(*evt);
3401 	}
3402 
3403 	return 0;
3404 }
3405 
3406 struct sched_in_data {
3407 	struct perf_event_context *ctx;
3408 	struct perf_cpu_context *cpuctx;
3409 	int can_add_hw;
3410 };
3411 
3412 static int pinned_sched_in(struct perf_event *event, void *data)
3413 {
3414 	struct sched_in_data *sid = data;
3415 
3416 	if (event->state <= PERF_EVENT_STATE_OFF)
3417 		return 0;
3418 
3419 	if (!event_filter_match(event))
3420 		return 0;
3421 
3422 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3423 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3424 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3425 	}
3426 
3427 	/*
3428 	 * If this pinned group hasn't been scheduled,
3429 	 * put it in error state.
3430 	 */
3431 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3432 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3433 
3434 	return 0;
3435 }
3436 
3437 static int flexible_sched_in(struct perf_event *event, void *data)
3438 {
3439 	struct sched_in_data *sid = data;
3440 
3441 	if (event->state <= PERF_EVENT_STATE_OFF)
3442 		return 0;
3443 
3444 	if (!event_filter_match(event))
3445 		return 0;
3446 
3447 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3448 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3449 		if (ret) {
3450 			sid->can_add_hw = 0;
3451 			sid->ctx->rotate_necessary = 1;
3452 			return 0;
3453 		}
3454 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 static void
3461 ctx_pinned_sched_in(struct perf_event_context *ctx,
3462 		    struct perf_cpu_context *cpuctx)
3463 {
3464 	struct sched_in_data sid = {
3465 		.ctx = ctx,
3466 		.cpuctx = cpuctx,
3467 		.can_add_hw = 1,
3468 	};
3469 
3470 	visit_groups_merge(&ctx->pinned_groups,
3471 			   smp_processor_id(),
3472 			   pinned_sched_in, &sid);
3473 }
3474 
3475 static void
3476 ctx_flexible_sched_in(struct perf_event_context *ctx,
3477 		      struct perf_cpu_context *cpuctx)
3478 {
3479 	struct sched_in_data sid = {
3480 		.ctx = ctx,
3481 		.cpuctx = cpuctx,
3482 		.can_add_hw = 1,
3483 	};
3484 
3485 	visit_groups_merge(&ctx->flexible_groups,
3486 			   smp_processor_id(),
3487 			   flexible_sched_in, &sid);
3488 }
3489 
3490 static void
3491 ctx_sched_in(struct perf_event_context *ctx,
3492 	     struct perf_cpu_context *cpuctx,
3493 	     enum event_type_t event_type,
3494 	     struct task_struct *task)
3495 {
3496 	int is_active = ctx->is_active;
3497 	u64 now;
3498 
3499 	lockdep_assert_held(&ctx->lock);
3500 
3501 	if (likely(!ctx->nr_events))
3502 		return;
3503 
3504 	ctx->is_active |= (event_type | EVENT_TIME);
3505 	if (ctx->task) {
3506 		if (!is_active)
3507 			cpuctx->task_ctx = ctx;
3508 		else
3509 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3510 	}
3511 
3512 	is_active ^= ctx->is_active; /* changed bits */
3513 
3514 	if (is_active & EVENT_TIME) {
3515 		/* start ctx time */
3516 		now = perf_clock();
3517 		ctx->timestamp = now;
3518 		perf_cgroup_set_timestamp(task, ctx);
3519 	}
3520 
3521 	/*
3522 	 * First go through the list and put on any pinned groups
3523 	 * in order to give them the best chance of going on.
3524 	 */
3525 	if (is_active & EVENT_PINNED)
3526 		ctx_pinned_sched_in(ctx, cpuctx);
3527 
3528 	/* Then walk through the lower prio flexible groups */
3529 	if (is_active & EVENT_FLEXIBLE)
3530 		ctx_flexible_sched_in(ctx, cpuctx);
3531 }
3532 
3533 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3534 			     enum event_type_t event_type,
3535 			     struct task_struct *task)
3536 {
3537 	struct perf_event_context *ctx = &cpuctx->ctx;
3538 
3539 	ctx_sched_in(ctx, cpuctx, event_type, task);
3540 }
3541 
3542 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3543 					struct task_struct *task)
3544 {
3545 	struct perf_cpu_context *cpuctx;
3546 
3547 	cpuctx = __get_cpu_context(ctx);
3548 	if (cpuctx->task_ctx == ctx)
3549 		return;
3550 
3551 	perf_ctx_lock(cpuctx, ctx);
3552 	/*
3553 	 * We must check ctx->nr_events while holding ctx->lock, such
3554 	 * that we serialize against perf_install_in_context().
3555 	 */
3556 	if (!ctx->nr_events)
3557 		goto unlock;
3558 
3559 	perf_pmu_disable(ctx->pmu);
3560 	/*
3561 	 * We want to keep the following priority order:
3562 	 * cpu pinned (that don't need to move), task pinned,
3563 	 * cpu flexible, task flexible.
3564 	 *
3565 	 * However, if task's ctx is not carrying any pinned
3566 	 * events, no need to flip the cpuctx's events around.
3567 	 */
3568 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3569 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3570 	perf_event_sched_in(cpuctx, ctx, task);
3571 	perf_pmu_enable(ctx->pmu);
3572 
3573 unlock:
3574 	perf_ctx_unlock(cpuctx, ctx);
3575 }
3576 
3577 /*
3578  * Called from scheduler to add the events of the current task
3579  * with interrupts disabled.
3580  *
3581  * We restore the event value and then enable it.
3582  *
3583  * This does not protect us against NMI, but enable()
3584  * sets the enabled bit in the control field of event _before_
3585  * accessing the event control register. If a NMI hits, then it will
3586  * keep the event running.
3587  */
3588 void __perf_event_task_sched_in(struct task_struct *prev,
3589 				struct task_struct *task)
3590 {
3591 	struct perf_event_context *ctx;
3592 	int ctxn;
3593 
3594 	/*
3595 	 * If cgroup events exist on this CPU, then we need to check if we have
3596 	 * to switch in PMU state; cgroup event are system-wide mode only.
3597 	 *
3598 	 * Since cgroup events are CPU events, we must schedule these in before
3599 	 * we schedule in the task events.
3600 	 */
3601 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3602 		perf_cgroup_sched_in(prev, task);
3603 
3604 	for_each_task_context_nr(ctxn) {
3605 		ctx = task->perf_event_ctxp[ctxn];
3606 		if (likely(!ctx))
3607 			continue;
3608 
3609 		perf_event_context_sched_in(ctx, task);
3610 	}
3611 
3612 	if (atomic_read(&nr_switch_events))
3613 		perf_event_switch(task, prev, true);
3614 
3615 	if (__this_cpu_read(perf_sched_cb_usages))
3616 		perf_pmu_sched_task(prev, task, true);
3617 }
3618 
3619 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3620 {
3621 	u64 frequency = event->attr.sample_freq;
3622 	u64 sec = NSEC_PER_SEC;
3623 	u64 divisor, dividend;
3624 
3625 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3626 
3627 	count_fls = fls64(count);
3628 	nsec_fls = fls64(nsec);
3629 	frequency_fls = fls64(frequency);
3630 	sec_fls = 30;
3631 
3632 	/*
3633 	 * We got @count in @nsec, with a target of sample_freq HZ
3634 	 * the target period becomes:
3635 	 *
3636 	 *             @count * 10^9
3637 	 * period = -------------------
3638 	 *          @nsec * sample_freq
3639 	 *
3640 	 */
3641 
3642 	/*
3643 	 * Reduce accuracy by one bit such that @a and @b converge
3644 	 * to a similar magnitude.
3645 	 */
3646 #define REDUCE_FLS(a, b)		\
3647 do {					\
3648 	if (a##_fls > b##_fls) {	\
3649 		a >>= 1;		\
3650 		a##_fls--;		\
3651 	} else {			\
3652 		b >>= 1;		\
3653 		b##_fls--;		\
3654 	}				\
3655 } while (0)
3656 
3657 	/*
3658 	 * Reduce accuracy until either term fits in a u64, then proceed with
3659 	 * the other, so that finally we can do a u64/u64 division.
3660 	 */
3661 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3662 		REDUCE_FLS(nsec, frequency);
3663 		REDUCE_FLS(sec, count);
3664 	}
3665 
3666 	if (count_fls + sec_fls > 64) {
3667 		divisor = nsec * frequency;
3668 
3669 		while (count_fls + sec_fls > 64) {
3670 			REDUCE_FLS(count, sec);
3671 			divisor >>= 1;
3672 		}
3673 
3674 		dividend = count * sec;
3675 	} else {
3676 		dividend = count * sec;
3677 
3678 		while (nsec_fls + frequency_fls > 64) {
3679 			REDUCE_FLS(nsec, frequency);
3680 			dividend >>= 1;
3681 		}
3682 
3683 		divisor = nsec * frequency;
3684 	}
3685 
3686 	if (!divisor)
3687 		return dividend;
3688 
3689 	return div64_u64(dividend, divisor);
3690 }
3691 
3692 static DEFINE_PER_CPU(int, perf_throttled_count);
3693 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3694 
3695 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3696 {
3697 	struct hw_perf_event *hwc = &event->hw;
3698 	s64 period, sample_period;
3699 	s64 delta;
3700 
3701 	period = perf_calculate_period(event, nsec, count);
3702 
3703 	delta = (s64)(period - hwc->sample_period);
3704 	delta = (delta + 7) / 8; /* low pass filter */
3705 
3706 	sample_period = hwc->sample_period + delta;
3707 
3708 	if (!sample_period)
3709 		sample_period = 1;
3710 
3711 	hwc->sample_period = sample_period;
3712 
3713 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3714 		if (disable)
3715 			event->pmu->stop(event, PERF_EF_UPDATE);
3716 
3717 		local64_set(&hwc->period_left, 0);
3718 
3719 		if (disable)
3720 			event->pmu->start(event, PERF_EF_RELOAD);
3721 	}
3722 }
3723 
3724 /*
3725  * combine freq adjustment with unthrottling to avoid two passes over the
3726  * events. At the same time, make sure, having freq events does not change
3727  * the rate of unthrottling as that would introduce bias.
3728  */
3729 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3730 					   int needs_unthr)
3731 {
3732 	struct perf_event *event;
3733 	struct hw_perf_event *hwc;
3734 	u64 now, period = TICK_NSEC;
3735 	s64 delta;
3736 
3737 	/*
3738 	 * only need to iterate over all events iff:
3739 	 * - context have events in frequency mode (needs freq adjust)
3740 	 * - there are events to unthrottle on this cpu
3741 	 */
3742 	if (!(ctx->nr_freq || needs_unthr))
3743 		return;
3744 
3745 	raw_spin_lock(&ctx->lock);
3746 	perf_pmu_disable(ctx->pmu);
3747 
3748 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3749 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3750 			continue;
3751 
3752 		if (!event_filter_match(event))
3753 			continue;
3754 
3755 		perf_pmu_disable(event->pmu);
3756 
3757 		hwc = &event->hw;
3758 
3759 		if (hwc->interrupts == MAX_INTERRUPTS) {
3760 			hwc->interrupts = 0;
3761 			perf_log_throttle(event, 1);
3762 			event->pmu->start(event, 0);
3763 		}
3764 
3765 		if (!event->attr.freq || !event->attr.sample_freq)
3766 			goto next;
3767 
3768 		/*
3769 		 * stop the event and update event->count
3770 		 */
3771 		event->pmu->stop(event, PERF_EF_UPDATE);
3772 
3773 		now = local64_read(&event->count);
3774 		delta = now - hwc->freq_count_stamp;
3775 		hwc->freq_count_stamp = now;
3776 
3777 		/*
3778 		 * restart the event
3779 		 * reload only if value has changed
3780 		 * we have stopped the event so tell that
3781 		 * to perf_adjust_period() to avoid stopping it
3782 		 * twice.
3783 		 */
3784 		if (delta > 0)
3785 			perf_adjust_period(event, period, delta, false);
3786 
3787 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3788 	next:
3789 		perf_pmu_enable(event->pmu);
3790 	}
3791 
3792 	perf_pmu_enable(ctx->pmu);
3793 	raw_spin_unlock(&ctx->lock);
3794 }
3795 
3796 /*
3797  * Move @event to the tail of the @ctx's elegible events.
3798  */
3799 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3800 {
3801 	/*
3802 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3803 	 * disabled by the inheritance code.
3804 	 */
3805 	if (ctx->rotate_disable)
3806 		return;
3807 
3808 	perf_event_groups_delete(&ctx->flexible_groups, event);
3809 	perf_event_groups_insert(&ctx->flexible_groups, event);
3810 }
3811 
3812 /* pick an event from the flexible_groups to rotate */
3813 static inline struct perf_event *
3814 ctx_event_to_rotate(struct perf_event_context *ctx)
3815 {
3816 	struct perf_event *event;
3817 
3818 	/* pick the first active flexible event */
3819 	event = list_first_entry_or_null(&ctx->flexible_active,
3820 					 struct perf_event, active_list);
3821 
3822 	/* if no active flexible event, pick the first event */
3823 	if (!event) {
3824 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3825 				      typeof(*event), group_node);
3826 	}
3827 
3828 	return event;
3829 }
3830 
3831 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3832 {
3833 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3834 	struct perf_event_context *task_ctx = NULL;
3835 	int cpu_rotate, task_rotate;
3836 
3837 	/*
3838 	 * Since we run this from IRQ context, nobody can install new
3839 	 * events, thus the event count values are stable.
3840 	 */
3841 
3842 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3843 	task_ctx = cpuctx->task_ctx;
3844 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3845 
3846 	if (!(cpu_rotate || task_rotate))
3847 		return false;
3848 
3849 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3850 	perf_pmu_disable(cpuctx->ctx.pmu);
3851 
3852 	if (task_rotate)
3853 		task_event = ctx_event_to_rotate(task_ctx);
3854 	if (cpu_rotate)
3855 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3856 
3857 	/*
3858 	 * As per the order given at ctx_resched() first 'pop' task flexible
3859 	 * and then, if needed CPU flexible.
3860 	 */
3861 	if (task_event || (task_ctx && cpu_event))
3862 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3863 	if (cpu_event)
3864 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3865 
3866 	if (task_event)
3867 		rotate_ctx(task_ctx, task_event);
3868 	if (cpu_event)
3869 		rotate_ctx(&cpuctx->ctx, cpu_event);
3870 
3871 	perf_event_sched_in(cpuctx, task_ctx, current);
3872 
3873 	perf_pmu_enable(cpuctx->ctx.pmu);
3874 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3875 
3876 	return true;
3877 }
3878 
3879 void perf_event_task_tick(void)
3880 {
3881 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3882 	struct perf_event_context *ctx, *tmp;
3883 	int throttled;
3884 
3885 	lockdep_assert_irqs_disabled();
3886 
3887 	__this_cpu_inc(perf_throttled_seq);
3888 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3889 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3890 
3891 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3892 		perf_adjust_freq_unthr_context(ctx, throttled);
3893 }
3894 
3895 static int event_enable_on_exec(struct perf_event *event,
3896 				struct perf_event_context *ctx)
3897 {
3898 	if (!event->attr.enable_on_exec)
3899 		return 0;
3900 
3901 	event->attr.enable_on_exec = 0;
3902 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3903 		return 0;
3904 
3905 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3906 
3907 	return 1;
3908 }
3909 
3910 /*
3911  * Enable all of a task's events that have been marked enable-on-exec.
3912  * This expects task == current.
3913  */
3914 static void perf_event_enable_on_exec(int ctxn)
3915 {
3916 	struct perf_event_context *ctx, *clone_ctx = NULL;
3917 	enum event_type_t event_type = 0;
3918 	struct perf_cpu_context *cpuctx;
3919 	struct perf_event *event;
3920 	unsigned long flags;
3921 	int enabled = 0;
3922 
3923 	local_irq_save(flags);
3924 	ctx = current->perf_event_ctxp[ctxn];
3925 	if (!ctx || !ctx->nr_events)
3926 		goto out;
3927 
3928 	cpuctx = __get_cpu_context(ctx);
3929 	perf_ctx_lock(cpuctx, ctx);
3930 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3931 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3932 		enabled |= event_enable_on_exec(event, ctx);
3933 		event_type |= get_event_type(event);
3934 	}
3935 
3936 	/*
3937 	 * Unclone and reschedule this context if we enabled any event.
3938 	 */
3939 	if (enabled) {
3940 		clone_ctx = unclone_ctx(ctx);
3941 		ctx_resched(cpuctx, ctx, event_type);
3942 	} else {
3943 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3944 	}
3945 	perf_ctx_unlock(cpuctx, ctx);
3946 
3947 out:
3948 	local_irq_restore(flags);
3949 
3950 	if (clone_ctx)
3951 		put_ctx(clone_ctx);
3952 }
3953 
3954 struct perf_read_data {
3955 	struct perf_event *event;
3956 	bool group;
3957 	int ret;
3958 };
3959 
3960 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3961 {
3962 	u16 local_pkg, event_pkg;
3963 
3964 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3965 		int local_cpu = smp_processor_id();
3966 
3967 		event_pkg = topology_physical_package_id(event_cpu);
3968 		local_pkg = topology_physical_package_id(local_cpu);
3969 
3970 		if (event_pkg == local_pkg)
3971 			return local_cpu;
3972 	}
3973 
3974 	return event_cpu;
3975 }
3976 
3977 /*
3978  * Cross CPU call to read the hardware event
3979  */
3980 static void __perf_event_read(void *info)
3981 {
3982 	struct perf_read_data *data = info;
3983 	struct perf_event *sub, *event = data->event;
3984 	struct perf_event_context *ctx = event->ctx;
3985 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3986 	struct pmu *pmu = event->pmu;
3987 
3988 	/*
3989 	 * If this is a task context, we need to check whether it is
3990 	 * the current task context of this cpu.  If not it has been
3991 	 * scheduled out before the smp call arrived.  In that case
3992 	 * event->count would have been updated to a recent sample
3993 	 * when the event was scheduled out.
3994 	 */
3995 	if (ctx->task && cpuctx->task_ctx != ctx)
3996 		return;
3997 
3998 	raw_spin_lock(&ctx->lock);
3999 	if (ctx->is_active & EVENT_TIME) {
4000 		update_context_time(ctx);
4001 		update_cgrp_time_from_event(event);
4002 	}
4003 
4004 	perf_event_update_time(event);
4005 	if (data->group)
4006 		perf_event_update_sibling_time(event);
4007 
4008 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4009 		goto unlock;
4010 
4011 	if (!data->group) {
4012 		pmu->read(event);
4013 		data->ret = 0;
4014 		goto unlock;
4015 	}
4016 
4017 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4018 
4019 	pmu->read(event);
4020 
4021 	for_each_sibling_event(sub, event) {
4022 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4023 			/*
4024 			 * Use sibling's PMU rather than @event's since
4025 			 * sibling could be on different (eg: software) PMU.
4026 			 */
4027 			sub->pmu->read(sub);
4028 		}
4029 	}
4030 
4031 	data->ret = pmu->commit_txn(pmu);
4032 
4033 unlock:
4034 	raw_spin_unlock(&ctx->lock);
4035 }
4036 
4037 static inline u64 perf_event_count(struct perf_event *event)
4038 {
4039 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4040 }
4041 
4042 /*
4043  * NMI-safe method to read a local event, that is an event that
4044  * is:
4045  *   - either for the current task, or for this CPU
4046  *   - does not have inherit set, for inherited task events
4047  *     will not be local and we cannot read them atomically
4048  *   - must not have a pmu::count method
4049  */
4050 int perf_event_read_local(struct perf_event *event, u64 *value,
4051 			  u64 *enabled, u64 *running)
4052 {
4053 	unsigned long flags;
4054 	int ret = 0;
4055 
4056 	/*
4057 	 * Disabling interrupts avoids all counter scheduling (context
4058 	 * switches, timer based rotation and IPIs).
4059 	 */
4060 	local_irq_save(flags);
4061 
4062 	/*
4063 	 * It must not be an event with inherit set, we cannot read
4064 	 * all child counters from atomic context.
4065 	 */
4066 	if (event->attr.inherit) {
4067 		ret = -EOPNOTSUPP;
4068 		goto out;
4069 	}
4070 
4071 	/* If this is a per-task event, it must be for current */
4072 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4073 	    event->hw.target != current) {
4074 		ret = -EINVAL;
4075 		goto out;
4076 	}
4077 
4078 	/* If this is a per-CPU event, it must be for this CPU */
4079 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4080 	    event->cpu != smp_processor_id()) {
4081 		ret = -EINVAL;
4082 		goto out;
4083 	}
4084 
4085 	/* If this is a pinned event it must be running on this CPU */
4086 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4087 		ret = -EBUSY;
4088 		goto out;
4089 	}
4090 
4091 	/*
4092 	 * If the event is currently on this CPU, its either a per-task event,
4093 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4094 	 * oncpu == -1).
4095 	 */
4096 	if (event->oncpu == smp_processor_id())
4097 		event->pmu->read(event);
4098 
4099 	*value = local64_read(&event->count);
4100 	if (enabled || running) {
4101 		u64 now = event->shadow_ctx_time + perf_clock();
4102 		u64 __enabled, __running;
4103 
4104 		__perf_update_times(event, now, &__enabled, &__running);
4105 		if (enabled)
4106 			*enabled = __enabled;
4107 		if (running)
4108 			*running = __running;
4109 	}
4110 out:
4111 	local_irq_restore(flags);
4112 
4113 	return ret;
4114 }
4115 
4116 static int perf_event_read(struct perf_event *event, bool group)
4117 {
4118 	enum perf_event_state state = READ_ONCE(event->state);
4119 	int event_cpu, ret = 0;
4120 
4121 	/*
4122 	 * If event is enabled and currently active on a CPU, update the
4123 	 * value in the event structure:
4124 	 */
4125 again:
4126 	if (state == PERF_EVENT_STATE_ACTIVE) {
4127 		struct perf_read_data data;
4128 
4129 		/*
4130 		 * Orders the ->state and ->oncpu loads such that if we see
4131 		 * ACTIVE we must also see the right ->oncpu.
4132 		 *
4133 		 * Matches the smp_wmb() from event_sched_in().
4134 		 */
4135 		smp_rmb();
4136 
4137 		event_cpu = READ_ONCE(event->oncpu);
4138 		if ((unsigned)event_cpu >= nr_cpu_ids)
4139 			return 0;
4140 
4141 		data = (struct perf_read_data){
4142 			.event = event,
4143 			.group = group,
4144 			.ret = 0,
4145 		};
4146 
4147 		preempt_disable();
4148 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4149 
4150 		/*
4151 		 * Purposely ignore the smp_call_function_single() return
4152 		 * value.
4153 		 *
4154 		 * If event_cpu isn't a valid CPU it means the event got
4155 		 * scheduled out and that will have updated the event count.
4156 		 *
4157 		 * Therefore, either way, we'll have an up-to-date event count
4158 		 * after this.
4159 		 */
4160 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4161 		preempt_enable();
4162 		ret = data.ret;
4163 
4164 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4165 		struct perf_event_context *ctx = event->ctx;
4166 		unsigned long flags;
4167 
4168 		raw_spin_lock_irqsave(&ctx->lock, flags);
4169 		state = event->state;
4170 		if (state != PERF_EVENT_STATE_INACTIVE) {
4171 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4172 			goto again;
4173 		}
4174 
4175 		/*
4176 		 * May read while context is not active (e.g., thread is
4177 		 * blocked), in that case we cannot update context time
4178 		 */
4179 		if (ctx->is_active & EVENT_TIME) {
4180 			update_context_time(ctx);
4181 			update_cgrp_time_from_event(event);
4182 		}
4183 
4184 		perf_event_update_time(event);
4185 		if (group)
4186 			perf_event_update_sibling_time(event);
4187 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4188 	}
4189 
4190 	return ret;
4191 }
4192 
4193 /*
4194  * Initialize the perf_event context in a task_struct:
4195  */
4196 static void __perf_event_init_context(struct perf_event_context *ctx)
4197 {
4198 	raw_spin_lock_init(&ctx->lock);
4199 	mutex_init(&ctx->mutex);
4200 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4201 	perf_event_groups_init(&ctx->pinned_groups);
4202 	perf_event_groups_init(&ctx->flexible_groups);
4203 	INIT_LIST_HEAD(&ctx->event_list);
4204 	INIT_LIST_HEAD(&ctx->pinned_active);
4205 	INIT_LIST_HEAD(&ctx->flexible_active);
4206 	refcount_set(&ctx->refcount, 1);
4207 }
4208 
4209 static struct perf_event_context *
4210 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4211 {
4212 	struct perf_event_context *ctx;
4213 
4214 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4215 	if (!ctx)
4216 		return NULL;
4217 
4218 	__perf_event_init_context(ctx);
4219 	if (task)
4220 		ctx->task = get_task_struct(task);
4221 	ctx->pmu = pmu;
4222 
4223 	return ctx;
4224 }
4225 
4226 static struct task_struct *
4227 find_lively_task_by_vpid(pid_t vpid)
4228 {
4229 	struct task_struct *task;
4230 
4231 	rcu_read_lock();
4232 	if (!vpid)
4233 		task = current;
4234 	else
4235 		task = find_task_by_vpid(vpid);
4236 	if (task)
4237 		get_task_struct(task);
4238 	rcu_read_unlock();
4239 
4240 	if (!task)
4241 		return ERR_PTR(-ESRCH);
4242 
4243 	return task;
4244 }
4245 
4246 /*
4247  * Returns a matching context with refcount and pincount.
4248  */
4249 static struct perf_event_context *
4250 find_get_context(struct pmu *pmu, struct task_struct *task,
4251 		struct perf_event *event)
4252 {
4253 	struct perf_event_context *ctx, *clone_ctx = NULL;
4254 	struct perf_cpu_context *cpuctx;
4255 	void *task_ctx_data = NULL;
4256 	unsigned long flags;
4257 	int ctxn, err;
4258 	int cpu = event->cpu;
4259 
4260 	if (!task) {
4261 		/* Must be root to operate on a CPU event: */
4262 		err = perf_allow_cpu(&event->attr);
4263 		if (err)
4264 			return ERR_PTR(err);
4265 
4266 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4267 		ctx = &cpuctx->ctx;
4268 		get_ctx(ctx);
4269 		++ctx->pin_count;
4270 
4271 		return ctx;
4272 	}
4273 
4274 	err = -EINVAL;
4275 	ctxn = pmu->task_ctx_nr;
4276 	if (ctxn < 0)
4277 		goto errout;
4278 
4279 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4280 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4281 		if (!task_ctx_data) {
4282 			err = -ENOMEM;
4283 			goto errout;
4284 		}
4285 	}
4286 
4287 retry:
4288 	ctx = perf_lock_task_context(task, ctxn, &flags);
4289 	if (ctx) {
4290 		clone_ctx = unclone_ctx(ctx);
4291 		++ctx->pin_count;
4292 
4293 		if (task_ctx_data && !ctx->task_ctx_data) {
4294 			ctx->task_ctx_data = task_ctx_data;
4295 			task_ctx_data = NULL;
4296 		}
4297 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4298 
4299 		if (clone_ctx)
4300 			put_ctx(clone_ctx);
4301 	} else {
4302 		ctx = alloc_perf_context(pmu, task);
4303 		err = -ENOMEM;
4304 		if (!ctx)
4305 			goto errout;
4306 
4307 		if (task_ctx_data) {
4308 			ctx->task_ctx_data = task_ctx_data;
4309 			task_ctx_data = NULL;
4310 		}
4311 
4312 		err = 0;
4313 		mutex_lock(&task->perf_event_mutex);
4314 		/*
4315 		 * If it has already passed perf_event_exit_task().
4316 		 * we must see PF_EXITING, it takes this mutex too.
4317 		 */
4318 		if (task->flags & PF_EXITING)
4319 			err = -ESRCH;
4320 		else if (task->perf_event_ctxp[ctxn])
4321 			err = -EAGAIN;
4322 		else {
4323 			get_ctx(ctx);
4324 			++ctx->pin_count;
4325 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4326 		}
4327 		mutex_unlock(&task->perf_event_mutex);
4328 
4329 		if (unlikely(err)) {
4330 			put_ctx(ctx);
4331 
4332 			if (err == -EAGAIN)
4333 				goto retry;
4334 			goto errout;
4335 		}
4336 	}
4337 
4338 	kfree(task_ctx_data);
4339 	return ctx;
4340 
4341 errout:
4342 	kfree(task_ctx_data);
4343 	return ERR_PTR(err);
4344 }
4345 
4346 static void perf_event_free_filter(struct perf_event *event);
4347 static void perf_event_free_bpf_prog(struct perf_event *event);
4348 
4349 static void free_event_rcu(struct rcu_head *head)
4350 {
4351 	struct perf_event *event;
4352 
4353 	event = container_of(head, struct perf_event, rcu_head);
4354 	if (event->ns)
4355 		put_pid_ns(event->ns);
4356 	perf_event_free_filter(event);
4357 	kfree(event);
4358 }
4359 
4360 static void ring_buffer_attach(struct perf_event *event,
4361 			       struct ring_buffer *rb);
4362 
4363 static void detach_sb_event(struct perf_event *event)
4364 {
4365 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4366 
4367 	raw_spin_lock(&pel->lock);
4368 	list_del_rcu(&event->sb_list);
4369 	raw_spin_unlock(&pel->lock);
4370 }
4371 
4372 static bool is_sb_event(struct perf_event *event)
4373 {
4374 	struct perf_event_attr *attr = &event->attr;
4375 
4376 	if (event->parent)
4377 		return false;
4378 
4379 	if (event->attach_state & PERF_ATTACH_TASK)
4380 		return false;
4381 
4382 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4383 	    attr->comm || attr->comm_exec ||
4384 	    attr->task || attr->ksymbol ||
4385 	    attr->context_switch ||
4386 	    attr->bpf_event)
4387 		return true;
4388 	return false;
4389 }
4390 
4391 static void unaccount_pmu_sb_event(struct perf_event *event)
4392 {
4393 	if (is_sb_event(event))
4394 		detach_sb_event(event);
4395 }
4396 
4397 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4398 {
4399 	if (event->parent)
4400 		return;
4401 
4402 	if (is_cgroup_event(event))
4403 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4404 }
4405 
4406 #ifdef CONFIG_NO_HZ_FULL
4407 static DEFINE_SPINLOCK(nr_freq_lock);
4408 #endif
4409 
4410 static void unaccount_freq_event_nohz(void)
4411 {
4412 #ifdef CONFIG_NO_HZ_FULL
4413 	spin_lock(&nr_freq_lock);
4414 	if (atomic_dec_and_test(&nr_freq_events))
4415 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4416 	spin_unlock(&nr_freq_lock);
4417 #endif
4418 }
4419 
4420 static void unaccount_freq_event(void)
4421 {
4422 	if (tick_nohz_full_enabled())
4423 		unaccount_freq_event_nohz();
4424 	else
4425 		atomic_dec(&nr_freq_events);
4426 }
4427 
4428 static void unaccount_event(struct perf_event *event)
4429 {
4430 	bool dec = false;
4431 
4432 	if (event->parent)
4433 		return;
4434 
4435 	if (event->attach_state & PERF_ATTACH_TASK)
4436 		dec = true;
4437 	if (event->attr.mmap || event->attr.mmap_data)
4438 		atomic_dec(&nr_mmap_events);
4439 	if (event->attr.comm)
4440 		atomic_dec(&nr_comm_events);
4441 	if (event->attr.namespaces)
4442 		atomic_dec(&nr_namespaces_events);
4443 	if (event->attr.task)
4444 		atomic_dec(&nr_task_events);
4445 	if (event->attr.freq)
4446 		unaccount_freq_event();
4447 	if (event->attr.context_switch) {
4448 		dec = true;
4449 		atomic_dec(&nr_switch_events);
4450 	}
4451 	if (is_cgroup_event(event))
4452 		dec = true;
4453 	if (has_branch_stack(event))
4454 		dec = true;
4455 	if (event->attr.ksymbol)
4456 		atomic_dec(&nr_ksymbol_events);
4457 	if (event->attr.bpf_event)
4458 		atomic_dec(&nr_bpf_events);
4459 
4460 	if (dec) {
4461 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4462 			schedule_delayed_work(&perf_sched_work, HZ);
4463 	}
4464 
4465 	unaccount_event_cpu(event, event->cpu);
4466 
4467 	unaccount_pmu_sb_event(event);
4468 }
4469 
4470 static void perf_sched_delayed(struct work_struct *work)
4471 {
4472 	mutex_lock(&perf_sched_mutex);
4473 	if (atomic_dec_and_test(&perf_sched_count))
4474 		static_branch_disable(&perf_sched_events);
4475 	mutex_unlock(&perf_sched_mutex);
4476 }
4477 
4478 /*
4479  * The following implement mutual exclusion of events on "exclusive" pmus
4480  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4481  * at a time, so we disallow creating events that might conflict, namely:
4482  *
4483  *  1) cpu-wide events in the presence of per-task events,
4484  *  2) per-task events in the presence of cpu-wide events,
4485  *  3) two matching events on the same context.
4486  *
4487  * The former two cases are handled in the allocation path (perf_event_alloc(),
4488  * _free_event()), the latter -- before the first perf_install_in_context().
4489  */
4490 static int exclusive_event_init(struct perf_event *event)
4491 {
4492 	struct pmu *pmu = event->pmu;
4493 
4494 	if (!is_exclusive_pmu(pmu))
4495 		return 0;
4496 
4497 	/*
4498 	 * Prevent co-existence of per-task and cpu-wide events on the
4499 	 * same exclusive pmu.
4500 	 *
4501 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4502 	 * events on this "exclusive" pmu, positive means there are
4503 	 * per-task events.
4504 	 *
4505 	 * Since this is called in perf_event_alloc() path, event::ctx
4506 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4507 	 * to mean "per-task event", because unlike other attach states it
4508 	 * never gets cleared.
4509 	 */
4510 	if (event->attach_state & PERF_ATTACH_TASK) {
4511 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4512 			return -EBUSY;
4513 	} else {
4514 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4515 			return -EBUSY;
4516 	}
4517 
4518 	return 0;
4519 }
4520 
4521 static void exclusive_event_destroy(struct perf_event *event)
4522 {
4523 	struct pmu *pmu = event->pmu;
4524 
4525 	if (!is_exclusive_pmu(pmu))
4526 		return;
4527 
4528 	/* see comment in exclusive_event_init() */
4529 	if (event->attach_state & PERF_ATTACH_TASK)
4530 		atomic_dec(&pmu->exclusive_cnt);
4531 	else
4532 		atomic_inc(&pmu->exclusive_cnt);
4533 }
4534 
4535 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4536 {
4537 	if ((e1->pmu == e2->pmu) &&
4538 	    (e1->cpu == e2->cpu ||
4539 	     e1->cpu == -1 ||
4540 	     e2->cpu == -1))
4541 		return true;
4542 	return false;
4543 }
4544 
4545 static bool exclusive_event_installable(struct perf_event *event,
4546 					struct perf_event_context *ctx)
4547 {
4548 	struct perf_event *iter_event;
4549 	struct pmu *pmu = event->pmu;
4550 
4551 	lockdep_assert_held(&ctx->mutex);
4552 
4553 	if (!is_exclusive_pmu(pmu))
4554 		return true;
4555 
4556 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4557 		if (exclusive_event_match(iter_event, event))
4558 			return false;
4559 	}
4560 
4561 	return true;
4562 }
4563 
4564 static void perf_addr_filters_splice(struct perf_event *event,
4565 				       struct list_head *head);
4566 
4567 static void _free_event(struct perf_event *event)
4568 {
4569 	irq_work_sync(&event->pending);
4570 
4571 	unaccount_event(event);
4572 
4573 	security_perf_event_free(event);
4574 
4575 	if (event->rb) {
4576 		/*
4577 		 * Can happen when we close an event with re-directed output.
4578 		 *
4579 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4580 		 * over us; possibly making our ring_buffer_put() the last.
4581 		 */
4582 		mutex_lock(&event->mmap_mutex);
4583 		ring_buffer_attach(event, NULL);
4584 		mutex_unlock(&event->mmap_mutex);
4585 	}
4586 
4587 	if (is_cgroup_event(event))
4588 		perf_detach_cgroup(event);
4589 
4590 	if (!event->parent) {
4591 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4592 			put_callchain_buffers();
4593 	}
4594 
4595 	perf_event_free_bpf_prog(event);
4596 	perf_addr_filters_splice(event, NULL);
4597 	kfree(event->addr_filter_ranges);
4598 
4599 	if (event->destroy)
4600 		event->destroy(event);
4601 
4602 	/*
4603 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4604 	 * hw.target.
4605 	 */
4606 	if (event->hw.target)
4607 		put_task_struct(event->hw.target);
4608 
4609 	/*
4610 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4611 	 * all task references must be cleaned up.
4612 	 */
4613 	if (event->ctx)
4614 		put_ctx(event->ctx);
4615 
4616 	exclusive_event_destroy(event);
4617 	module_put(event->pmu->module);
4618 
4619 	call_rcu(&event->rcu_head, free_event_rcu);
4620 }
4621 
4622 /*
4623  * Used to free events which have a known refcount of 1, such as in error paths
4624  * where the event isn't exposed yet and inherited events.
4625  */
4626 static void free_event(struct perf_event *event)
4627 {
4628 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4629 				"unexpected event refcount: %ld; ptr=%p\n",
4630 				atomic_long_read(&event->refcount), event)) {
4631 		/* leak to avoid use-after-free */
4632 		return;
4633 	}
4634 
4635 	_free_event(event);
4636 }
4637 
4638 /*
4639  * Remove user event from the owner task.
4640  */
4641 static void perf_remove_from_owner(struct perf_event *event)
4642 {
4643 	struct task_struct *owner;
4644 
4645 	rcu_read_lock();
4646 	/*
4647 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4648 	 * observe !owner it means the list deletion is complete and we can
4649 	 * indeed free this event, otherwise we need to serialize on
4650 	 * owner->perf_event_mutex.
4651 	 */
4652 	owner = READ_ONCE(event->owner);
4653 	if (owner) {
4654 		/*
4655 		 * Since delayed_put_task_struct() also drops the last
4656 		 * task reference we can safely take a new reference
4657 		 * while holding the rcu_read_lock().
4658 		 */
4659 		get_task_struct(owner);
4660 	}
4661 	rcu_read_unlock();
4662 
4663 	if (owner) {
4664 		/*
4665 		 * If we're here through perf_event_exit_task() we're already
4666 		 * holding ctx->mutex which would be an inversion wrt. the
4667 		 * normal lock order.
4668 		 *
4669 		 * However we can safely take this lock because its the child
4670 		 * ctx->mutex.
4671 		 */
4672 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4673 
4674 		/*
4675 		 * We have to re-check the event->owner field, if it is cleared
4676 		 * we raced with perf_event_exit_task(), acquiring the mutex
4677 		 * ensured they're done, and we can proceed with freeing the
4678 		 * event.
4679 		 */
4680 		if (event->owner) {
4681 			list_del_init(&event->owner_entry);
4682 			smp_store_release(&event->owner, NULL);
4683 		}
4684 		mutex_unlock(&owner->perf_event_mutex);
4685 		put_task_struct(owner);
4686 	}
4687 }
4688 
4689 static void put_event(struct perf_event *event)
4690 {
4691 	if (!atomic_long_dec_and_test(&event->refcount))
4692 		return;
4693 
4694 	_free_event(event);
4695 }
4696 
4697 /*
4698  * Kill an event dead; while event:refcount will preserve the event
4699  * object, it will not preserve its functionality. Once the last 'user'
4700  * gives up the object, we'll destroy the thing.
4701  */
4702 int perf_event_release_kernel(struct perf_event *event)
4703 {
4704 	struct perf_event_context *ctx = event->ctx;
4705 	struct perf_event *child, *tmp;
4706 	LIST_HEAD(free_list);
4707 
4708 	/*
4709 	 * If we got here through err_file: fput(event_file); we will not have
4710 	 * attached to a context yet.
4711 	 */
4712 	if (!ctx) {
4713 		WARN_ON_ONCE(event->attach_state &
4714 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4715 		goto no_ctx;
4716 	}
4717 
4718 	if (!is_kernel_event(event))
4719 		perf_remove_from_owner(event);
4720 
4721 	ctx = perf_event_ctx_lock(event);
4722 	WARN_ON_ONCE(ctx->parent_ctx);
4723 	perf_remove_from_context(event, DETACH_GROUP);
4724 
4725 	raw_spin_lock_irq(&ctx->lock);
4726 	/*
4727 	 * Mark this event as STATE_DEAD, there is no external reference to it
4728 	 * anymore.
4729 	 *
4730 	 * Anybody acquiring event->child_mutex after the below loop _must_
4731 	 * also see this, most importantly inherit_event() which will avoid
4732 	 * placing more children on the list.
4733 	 *
4734 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4735 	 * child events.
4736 	 */
4737 	event->state = PERF_EVENT_STATE_DEAD;
4738 	raw_spin_unlock_irq(&ctx->lock);
4739 
4740 	perf_event_ctx_unlock(event, ctx);
4741 
4742 again:
4743 	mutex_lock(&event->child_mutex);
4744 	list_for_each_entry(child, &event->child_list, child_list) {
4745 
4746 		/*
4747 		 * Cannot change, child events are not migrated, see the
4748 		 * comment with perf_event_ctx_lock_nested().
4749 		 */
4750 		ctx = READ_ONCE(child->ctx);
4751 		/*
4752 		 * Since child_mutex nests inside ctx::mutex, we must jump
4753 		 * through hoops. We start by grabbing a reference on the ctx.
4754 		 *
4755 		 * Since the event cannot get freed while we hold the
4756 		 * child_mutex, the context must also exist and have a !0
4757 		 * reference count.
4758 		 */
4759 		get_ctx(ctx);
4760 
4761 		/*
4762 		 * Now that we have a ctx ref, we can drop child_mutex, and
4763 		 * acquire ctx::mutex without fear of it going away. Then we
4764 		 * can re-acquire child_mutex.
4765 		 */
4766 		mutex_unlock(&event->child_mutex);
4767 		mutex_lock(&ctx->mutex);
4768 		mutex_lock(&event->child_mutex);
4769 
4770 		/*
4771 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4772 		 * state, if child is still the first entry, it didn't get freed
4773 		 * and we can continue doing so.
4774 		 */
4775 		tmp = list_first_entry_or_null(&event->child_list,
4776 					       struct perf_event, child_list);
4777 		if (tmp == child) {
4778 			perf_remove_from_context(child, DETACH_GROUP);
4779 			list_move(&child->child_list, &free_list);
4780 			/*
4781 			 * This matches the refcount bump in inherit_event();
4782 			 * this can't be the last reference.
4783 			 */
4784 			put_event(event);
4785 		}
4786 
4787 		mutex_unlock(&event->child_mutex);
4788 		mutex_unlock(&ctx->mutex);
4789 		put_ctx(ctx);
4790 		goto again;
4791 	}
4792 	mutex_unlock(&event->child_mutex);
4793 
4794 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4795 		void *var = &child->ctx->refcount;
4796 
4797 		list_del(&child->child_list);
4798 		free_event(child);
4799 
4800 		/*
4801 		 * Wake any perf_event_free_task() waiting for this event to be
4802 		 * freed.
4803 		 */
4804 		smp_mb(); /* pairs with wait_var_event() */
4805 		wake_up_var(var);
4806 	}
4807 
4808 no_ctx:
4809 	put_event(event); /* Must be the 'last' reference */
4810 	return 0;
4811 }
4812 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4813 
4814 /*
4815  * Called when the last reference to the file is gone.
4816  */
4817 static int perf_release(struct inode *inode, struct file *file)
4818 {
4819 	perf_event_release_kernel(file->private_data);
4820 	return 0;
4821 }
4822 
4823 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4824 {
4825 	struct perf_event *child;
4826 	u64 total = 0;
4827 
4828 	*enabled = 0;
4829 	*running = 0;
4830 
4831 	mutex_lock(&event->child_mutex);
4832 
4833 	(void)perf_event_read(event, false);
4834 	total += perf_event_count(event);
4835 
4836 	*enabled += event->total_time_enabled +
4837 			atomic64_read(&event->child_total_time_enabled);
4838 	*running += event->total_time_running +
4839 			atomic64_read(&event->child_total_time_running);
4840 
4841 	list_for_each_entry(child, &event->child_list, child_list) {
4842 		(void)perf_event_read(child, false);
4843 		total += perf_event_count(child);
4844 		*enabled += child->total_time_enabled;
4845 		*running += child->total_time_running;
4846 	}
4847 	mutex_unlock(&event->child_mutex);
4848 
4849 	return total;
4850 }
4851 
4852 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4853 {
4854 	struct perf_event_context *ctx;
4855 	u64 count;
4856 
4857 	ctx = perf_event_ctx_lock(event);
4858 	count = __perf_event_read_value(event, enabled, running);
4859 	perf_event_ctx_unlock(event, ctx);
4860 
4861 	return count;
4862 }
4863 EXPORT_SYMBOL_GPL(perf_event_read_value);
4864 
4865 static int __perf_read_group_add(struct perf_event *leader,
4866 					u64 read_format, u64 *values)
4867 {
4868 	struct perf_event_context *ctx = leader->ctx;
4869 	struct perf_event *sub;
4870 	unsigned long flags;
4871 	int n = 1; /* skip @nr */
4872 	int ret;
4873 
4874 	ret = perf_event_read(leader, true);
4875 	if (ret)
4876 		return ret;
4877 
4878 	raw_spin_lock_irqsave(&ctx->lock, flags);
4879 
4880 	/*
4881 	 * Since we co-schedule groups, {enabled,running} times of siblings
4882 	 * will be identical to those of the leader, so we only publish one
4883 	 * set.
4884 	 */
4885 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4886 		values[n++] += leader->total_time_enabled +
4887 			atomic64_read(&leader->child_total_time_enabled);
4888 	}
4889 
4890 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4891 		values[n++] += leader->total_time_running +
4892 			atomic64_read(&leader->child_total_time_running);
4893 	}
4894 
4895 	/*
4896 	 * Write {count,id} tuples for every sibling.
4897 	 */
4898 	values[n++] += perf_event_count(leader);
4899 	if (read_format & PERF_FORMAT_ID)
4900 		values[n++] = primary_event_id(leader);
4901 
4902 	for_each_sibling_event(sub, leader) {
4903 		values[n++] += perf_event_count(sub);
4904 		if (read_format & PERF_FORMAT_ID)
4905 			values[n++] = primary_event_id(sub);
4906 	}
4907 
4908 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4909 	return 0;
4910 }
4911 
4912 static int perf_read_group(struct perf_event *event,
4913 				   u64 read_format, char __user *buf)
4914 {
4915 	struct perf_event *leader = event->group_leader, *child;
4916 	struct perf_event_context *ctx = leader->ctx;
4917 	int ret;
4918 	u64 *values;
4919 
4920 	lockdep_assert_held(&ctx->mutex);
4921 
4922 	values = kzalloc(event->read_size, GFP_KERNEL);
4923 	if (!values)
4924 		return -ENOMEM;
4925 
4926 	values[0] = 1 + leader->nr_siblings;
4927 
4928 	/*
4929 	 * By locking the child_mutex of the leader we effectively
4930 	 * lock the child list of all siblings.. XXX explain how.
4931 	 */
4932 	mutex_lock(&leader->child_mutex);
4933 
4934 	ret = __perf_read_group_add(leader, read_format, values);
4935 	if (ret)
4936 		goto unlock;
4937 
4938 	list_for_each_entry(child, &leader->child_list, child_list) {
4939 		ret = __perf_read_group_add(child, read_format, values);
4940 		if (ret)
4941 			goto unlock;
4942 	}
4943 
4944 	mutex_unlock(&leader->child_mutex);
4945 
4946 	ret = event->read_size;
4947 	if (copy_to_user(buf, values, event->read_size))
4948 		ret = -EFAULT;
4949 	goto out;
4950 
4951 unlock:
4952 	mutex_unlock(&leader->child_mutex);
4953 out:
4954 	kfree(values);
4955 	return ret;
4956 }
4957 
4958 static int perf_read_one(struct perf_event *event,
4959 				 u64 read_format, char __user *buf)
4960 {
4961 	u64 enabled, running;
4962 	u64 values[4];
4963 	int n = 0;
4964 
4965 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4966 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4967 		values[n++] = enabled;
4968 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4969 		values[n++] = running;
4970 	if (read_format & PERF_FORMAT_ID)
4971 		values[n++] = primary_event_id(event);
4972 
4973 	if (copy_to_user(buf, values, n * sizeof(u64)))
4974 		return -EFAULT;
4975 
4976 	return n * sizeof(u64);
4977 }
4978 
4979 static bool is_event_hup(struct perf_event *event)
4980 {
4981 	bool no_children;
4982 
4983 	if (event->state > PERF_EVENT_STATE_EXIT)
4984 		return false;
4985 
4986 	mutex_lock(&event->child_mutex);
4987 	no_children = list_empty(&event->child_list);
4988 	mutex_unlock(&event->child_mutex);
4989 	return no_children;
4990 }
4991 
4992 /*
4993  * Read the performance event - simple non blocking version for now
4994  */
4995 static ssize_t
4996 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4997 {
4998 	u64 read_format = event->attr.read_format;
4999 	int ret;
5000 
5001 	/*
5002 	 * Return end-of-file for a read on an event that is in
5003 	 * error state (i.e. because it was pinned but it couldn't be
5004 	 * scheduled on to the CPU at some point).
5005 	 */
5006 	if (event->state == PERF_EVENT_STATE_ERROR)
5007 		return 0;
5008 
5009 	if (count < event->read_size)
5010 		return -ENOSPC;
5011 
5012 	WARN_ON_ONCE(event->ctx->parent_ctx);
5013 	if (read_format & PERF_FORMAT_GROUP)
5014 		ret = perf_read_group(event, read_format, buf);
5015 	else
5016 		ret = perf_read_one(event, read_format, buf);
5017 
5018 	return ret;
5019 }
5020 
5021 static ssize_t
5022 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5023 {
5024 	struct perf_event *event = file->private_data;
5025 	struct perf_event_context *ctx;
5026 	int ret;
5027 
5028 	ret = security_perf_event_read(event);
5029 	if (ret)
5030 		return ret;
5031 
5032 	ctx = perf_event_ctx_lock(event);
5033 	ret = __perf_read(event, buf, count);
5034 	perf_event_ctx_unlock(event, ctx);
5035 
5036 	return ret;
5037 }
5038 
5039 static __poll_t perf_poll(struct file *file, poll_table *wait)
5040 {
5041 	struct perf_event *event = file->private_data;
5042 	struct ring_buffer *rb;
5043 	__poll_t events = EPOLLHUP;
5044 
5045 	poll_wait(file, &event->waitq, wait);
5046 
5047 	if (is_event_hup(event))
5048 		return events;
5049 
5050 	/*
5051 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5052 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5053 	 */
5054 	mutex_lock(&event->mmap_mutex);
5055 	rb = event->rb;
5056 	if (rb)
5057 		events = atomic_xchg(&rb->poll, 0);
5058 	mutex_unlock(&event->mmap_mutex);
5059 	return events;
5060 }
5061 
5062 static void _perf_event_reset(struct perf_event *event)
5063 {
5064 	(void)perf_event_read(event, false);
5065 	local64_set(&event->count, 0);
5066 	perf_event_update_userpage(event);
5067 }
5068 
5069 /*
5070  * Holding the top-level event's child_mutex means that any
5071  * descendant process that has inherited this event will block
5072  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5073  * task existence requirements of perf_event_enable/disable.
5074  */
5075 static void perf_event_for_each_child(struct perf_event *event,
5076 					void (*func)(struct perf_event *))
5077 {
5078 	struct perf_event *child;
5079 
5080 	WARN_ON_ONCE(event->ctx->parent_ctx);
5081 
5082 	mutex_lock(&event->child_mutex);
5083 	func(event);
5084 	list_for_each_entry(child, &event->child_list, child_list)
5085 		func(child);
5086 	mutex_unlock(&event->child_mutex);
5087 }
5088 
5089 static void perf_event_for_each(struct perf_event *event,
5090 				  void (*func)(struct perf_event *))
5091 {
5092 	struct perf_event_context *ctx = event->ctx;
5093 	struct perf_event *sibling;
5094 
5095 	lockdep_assert_held(&ctx->mutex);
5096 
5097 	event = event->group_leader;
5098 
5099 	perf_event_for_each_child(event, func);
5100 	for_each_sibling_event(sibling, event)
5101 		perf_event_for_each_child(sibling, func);
5102 }
5103 
5104 static void __perf_event_period(struct perf_event *event,
5105 				struct perf_cpu_context *cpuctx,
5106 				struct perf_event_context *ctx,
5107 				void *info)
5108 {
5109 	u64 value = *((u64 *)info);
5110 	bool active;
5111 
5112 	if (event->attr.freq) {
5113 		event->attr.sample_freq = value;
5114 	} else {
5115 		event->attr.sample_period = value;
5116 		event->hw.sample_period = value;
5117 	}
5118 
5119 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5120 	if (active) {
5121 		perf_pmu_disable(ctx->pmu);
5122 		/*
5123 		 * We could be throttled; unthrottle now to avoid the tick
5124 		 * trying to unthrottle while we already re-started the event.
5125 		 */
5126 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5127 			event->hw.interrupts = 0;
5128 			perf_log_throttle(event, 1);
5129 		}
5130 		event->pmu->stop(event, PERF_EF_UPDATE);
5131 	}
5132 
5133 	local64_set(&event->hw.period_left, 0);
5134 
5135 	if (active) {
5136 		event->pmu->start(event, PERF_EF_RELOAD);
5137 		perf_pmu_enable(ctx->pmu);
5138 	}
5139 }
5140 
5141 static int perf_event_check_period(struct perf_event *event, u64 value)
5142 {
5143 	return event->pmu->check_period(event, value);
5144 }
5145 
5146 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5147 {
5148 	u64 value;
5149 
5150 	if (!is_sampling_event(event))
5151 		return -EINVAL;
5152 
5153 	if (copy_from_user(&value, arg, sizeof(value)))
5154 		return -EFAULT;
5155 
5156 	if (!value)
5157 		return -EINVAL;
5158 
5159 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5160 		return -EINVAL;
5161 
5162 	if (perf_event_check_period(event, value))
5163 		return -EINVAL;
5164 
5165 	if (!event->attr.freq && (value & (1ULL << 63)))
5166 		return -EINVAL;
5167 
5168 	event_function_call(event, __perf_event_period, &value);
5169 
5170 	return 0;
5171 }
5172 
5173 static const struct file_operations perf_fops;
5174 
5175 static inline int perf_fget_light(int fd, struct fd *p)
5176 {
5177 	struct fd f = fdget(fd);
5178 	if (!f.file)
5179 		return -EBADF;
5180 
5181 	if (f.file->f_op != &perf_fops) {
5182 		fdput(f);
5183 		return -EBADF;
5184 	}
5185 	*p = f;
5186 	return 0;
5187 }
5188 
5189 static int perf_event_set_output(struct perf_event *event,
5190 				 struct perf_event *output_event);
5191 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5192 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5193 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5194 			  struct perf_event_attr *attr);
5195 
5196 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5197 {
5198 	void (*func)(struct perf_event *);
5199 	u32 flags = arg;
5200 
5201 	switch (cmd) {
5202 	case PERF_EVENT_IOC_ENABLE:
5203 		func = _perf_event_enable;
5204 		break;
5205 	case PERF_EVENT_IOC_DISABLE:
5206 		func = _perf_event_disable;
5207 		break;
5208 	case PERF_EVENT_IOC_RESET:
5209 		func = _perf_event_reset;
5210 		break;
5211 
5212 	case PERF_EVENT_IOC_REFRESH:
5213 		return _perf_event_refresh(event, arg);
5214 
5215 	case PERF_EVENT_IOC_PERIOD:
5216 		return perf_event_period(event, (u64 __user *)arg);
5217 
5218 	case PERF_EVENT_IOC_ID:
5219 	{
5220 		u64 id = primary_event_id(event);
5221 
5222 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5223 			return -EFAULT;
5224 		return 0;
5225 	}
5226 
5227 	case PERF_EVENT_IOC_SET_OUTPUT:
5228 	{
5229 		int ret;
5230 		if (arg != -1) {
5231 			struct perf_event *output_event;
5232 			struct fd output;
5233 			ret = perf_fget_light(arg, &output);
5234 			if (ret)
5235 				return ret;
5236 			output_event = output.file->private_data;
5237 			ret = perf_event_set_output(event, output_event);
5238 			fdput(output);
5239 		} else {
5240 			ret = perf_event_set_output(event, NULL);
5241 		}
5242 		return ret;
5243 	}
5244 
5245 	case PERF_EVENT_IOC_SET_FILTER:
5246 		return perf_event_set_filter(event, (void __user *)arg);
5247 
5248 	case PERF_EVENT_IOC_SET_BPF:
5249 		return perf_event_set_bpf_prog(event, arg);
5250 
5251 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5252 		struct ring_buffer *rb;
5253 
5254 		rcu_read_lock();
5255 		rb = rcu_dereference(event->rb);
5256 		if (!rb || !rb->nr_pages) {
5257 			rcu_read_unlock();
5258 			return -EINVAL;
5259 		}
5260 		rb_toggle_paused(rb, !!arg);
5261 		rcu_read_unlock();
5262 		return 0;
5263 	}
5264 
5265 	case PERF_EVENT_IOC_QUERY_BPF:
5266 		return perf_event_query_prog_array(event, (void __user *)arg);
5267 
5268 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5269 		struct perf_event_attr new_attr;
5270 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5271 					 &new_attr);
5272 
5273 		if (err)
5274 			return err;
5275 
5276 		return perf_event_modify_attr(event,  &new_attr);
5277 	}
5278 	default:
5279 		return -ENOTTY;
5280 	}
5281 
5282 	if (flags & PERF_IOC_FLAG_GROUP)
5283 		perf_event_for_each(event, func);
5284 	else
5285 		perf_event_for_each_child(event, func);
5286 
5287 	return 0;
5288 }
5289 
5290 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5291 {
5292 	struct perf_event *event = file->private_data;
5293 	struct perf_event_context *ctx;
5294 	long ret;
5295 
5296 	/* Treat ioctl like writes as it is likely a mutating operation. */
5297 	ret = security_perf_event_write(event);
5298 	if (ret)
5299 		return ret;
5300 
5301 	ctx = perf_event_ctx_lock(event);
5302 	ret = _perf_ioctl(event, cmd, arg);
5303 	perf_event_ctx_unlock(event, ctx);
5304 
5305 	return ret;
5306 }
5307 
5308 #ifdef CONFIG_COMPAT
5309 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5310 				unsigned long arg)
5311 {
5312 	switch (_IOC_NR(cmd)) {
5313 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5314 	case _IOC_NR(PERF_EVENT_IOC_ID):
5315 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5316 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5317 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5318 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5319 			cmd &= ~IOCSIZE_MASK;
5320 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5321 		}
5322 		break;
5323 	}
5324 	return perf_ioctl(file, cmd, arg);
5325 }
5326 #else
5327 # define perf_compat_ioctl NULL
5328 #endif
5329 
5330 int perf_event_task_enable(void)
5331 {
5332 	struct perf_event_context *ctx;
5333 	struct perf_event *event;
5334 
5335 	mutex_lock(&current->perf_event_mutex);
5336 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5337 		ctx = perf_event_ctx_lock(event);
5338 		perf_event_for_each_child(event, _perf_event_enable);
5339 		perf_event_ctx_unlock(event, ctx);
5340 	}
5341 	mutex_unlock(&current->perf_event_mutex);
5342 
5343 	return 0;
5344 }
5345 
5346 int perf_event_task_disable(void)
5347 {
5348 	struct perf_event_context *ctx;
5349 	struct perf_event *event;
5350 
5351 	mutex_lock(&current->perf_event_mutex);
5352 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5353 		ctx = perf_event_ctx_lock(event);
5354 		perf_event_for_each_child(event, _perf_event_disable);
5355 		perf_event_ctx_unlock(event, ctx);
5356 	}
5357 	mutex_unlock(&current->perf_event_mutex);
5358 
5359 	return 0;
5360 }
5361 
5362 static int perf_event_index(struct perf_event *event)
5363 {
5364 	if (event->hw.state & PERF_HES_STOPPED)
5365 		return 0;
5366 
5367 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5368 		return 0;
5369 
5370 	return event->pmu->event_idx(event);
5371 }
5372 
5373 static void calc_timer_values(struct perf_event *event,
5374 				u64 *now,
5375 				u64 *enabled,
5376 				u64 *running)
5377 {
5378 	u64 ctx_time;
5379 
5380 	*now = perf_clock();
5381 	ctx_time = event->shadow_ctx_time + *now;
5382 	__perf_update_times(event, ctx_time, enabled, running);
5383 }
5384 
5385 static void perf_event_init_userpage(struct perf_event *event)
5386 {
5387 	struct perf_event_mmap_page *userpg;
5388 	struct ring_buffer *rb;
5389 
5390 	rcu_read_lock();
5391 	rb = rcu_dereference(event->rb);
5392 	if (!rb)
5393 		goto unlock;
5394 
5395 	userpg = rb->user_page;
5396 
5397 	/* Allow new userspace to detect that bit 0 is deprecated */
5398 	userpg->cap_bit0_is_deprecated = 1;
5399 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5400 	userpg->data_offset = PAGE_SIZE;
5401 	userpg->data_size = perf_data_size(rb);
5402 
5403 unlock:
5404 	rcu_read_unlock();
5405 }
5406 
5407 void __weak arch_perf_update_userpage(
5408 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5409 {
5410 }
5411 
5412 /*
5413  * Callers need to ensure there can be no nesting of this function, otherwise
5414  * the seqlock logic goes bad. We can not serialize this because the arch
5415  * code calls this from NMI context.
5416  */
5417 void perf_event_update_userpage(struct perf_event *event)
5418 {
5419 	struct perf_event_mmap_page *userpg;
5420 	struct ring_buffer *rb;
5421 	u64 enabled, running, now;
5422 
5423 	rcu_read_lock();
5424 	rb = rcu_dereference(event->rb);
5425 	if (!rb)
5426 		goto unlock;
5427 
5428 	/*
5429 	 * compute total_time_enabled, total_time_running
5430 	 * based on snapshot values taken when the event
5431 	 * was last scheduled in.
5432 	 *
5433 	 * we cannot simply called update_context_time()
5434 	 * because of locking issue as we can be called in
5435 	 * NMI context
5436 	 */
5437 	calc_timer_values(event, &now, &enabled, &running);
5438 
5439 	userpg = rb->user_page;
5440 	/*
5441 	 * Disable preemption to guarantee consistent time stamps are stored to
5442 	 * the user page.
5443 	 */
5444 	preempt_disable();
5445 	++userpg->lock;
5446 	barrier();
5447 	userpg->index = perf_event_index(event);
5448 	userpg->offset = perf_event_count(event);
5449 	if (userpg->index)
5450 		userpg->offset -= local64_read(&event->hw.prev_count);
5451 
5452 	userpg->time_enabled = enabled +
5453 			atomic64_read(&event->child_total_time_enabled);
5454 
5455 	userpg->time_running = running +
5456 			atomic64_read(&event->child_total_time_running);
5457 
5458 	arch_perf_update_userpage(event, userpg, now);
5459 
5460 	barrier();
5461 	++userpg->lock;
5462 	preempt_enable();
5463 unlock:
5464 	rcu_read_unlock();
5465 }
5466 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5467 
5468 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5469 {
5470 	struct perf_event *event = vmf->vma->vm_file->private_data;
5471 	struct ring_buffer *rb;
5472 	vm_fault_t ret = VM_FAULT_SIGBUS;
5473 
5474 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5475 		if (vmf->pgoff == 0)
5476 			ret = 0;
5477 		return ret;
5478 	}
5479 
5480 	rcu_read_lock();
5481 	rb = rcu_dereference(event->rb);
5482 	if (!rb)
5483 		goto unlock;
5484 
5485 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5486 		goto unlock;
5487 
5488 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5489 	if (!vmf->page)
5490 		goto unlock;
5491 
5492 	get_page(vmf->page);
5493 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5494 	vmf->page->index   = vmf->pgoff;
5495 
5496 	ret = 0;
5497 unlock:
5498 	rcu_read_unlock();
5499 
5500 	return ret;
5501 }
5502 
5503 static void ring_buffer_attach(struct perf_event *event,
5504 			       struct ring_buffer *rb)
5505 {
5506 	struct ring_buffer *old_rb = NULL;
5507 	unsigned long flags;
5508 
5509 	if (event->rb) {
5510 		/*
5511 		 * Should be impossible, we set this when removing
5512 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5513 		 */
5514 		WARN_ON_ONCE(event->rcu_pending);
5515 
5516 		old_rb = event->rb;
5517 		spin_lock_irqsave(&old_rb->event_lock, flags);
5518 		list_del_rcu(&event->rb_entry);
5519 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5520 
5521 		event->rcu_batches = get_state_synchronize_rcu();
5522 		event->rcu_pending = 1;
5523 	}
5524 
5525 	if (rb) {
5526 		if (event->rcu_pending) {
5527 			cond_synchronize_rcu(event->rcu_batches);
5528 			event->rcu_pending = 0;
5529 		}
5530 
5531 		spin_lock_irqsave(&rb->event_lock, flags);
5532 		list_add_rcu(&event->rb_entry, &rb->event_list);
5533 		spin_unlock_irqrestore(&rb->event_lock, flags);
5534 	}
5535 
5536 	/*
5537 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5538 	 * before swizzling the event::rb pointer; if it's getting
5539 	 * unmapped, its aux_mmap_count will be 0 and it won't
5540 	 * restart. See the comment in __perf_pmu_output_stop().
5541 	 *
5542 	 * Data will inevitably be lost when set_output is done in
5543 	 * mid-air, but then again, whoever does it like this is
5544 	 * not in for the data anyway.
5545 	 */
5546 	if (has_aux(event))
5547 		perf_event_stop(event, 0);
5548 
5549 	rcu_assign_pointer(event->rb, rb);
5550 
5551 	if (old_rb) {
5552 		ring_buffer_put(old_rb);
5553 		/*
5554 		 * Since we detached before setting the new rb, so that we
5555 		 * could attach the new rb, we could have missed a wakeup.
5556 		 * Provide it now.
5557 		 */
5558 		wake_up_all(&event->waitq);
5559 	}
5560 }
5561 
5562 static void ring_buffer_wakeup(struct perf_event *event)
5563 {
5564 	struct ring_buffer *rb;
5565 
5566 	rcu_read_lock();
5567 	rb = rcu_dereference(event->rb);
5568 	if (rb) {
5569 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5570 			wake_up_all(&event->waitq);
5571 	}
5572 	rcu_read_unlock();
5573 }
5574 
5575 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5576 {
5577 	struct ring_buffer *rb;
5578 
5579 	rcu_read_lock();
5580 	rb = rcu_dereference(event->rb);
5581 	if (rb) {
5582 		if (!refcount_inc_not_zero(&rb->refcount))
5583 			rb = NULL;
5584 	}
5585 	rcu_read_unlock();
5586 
5587 	return rb;
5588 }
5589 
5590 void ring_buffer_put(struct ring_buffer *rb)
5591 {
5592 	if (!refcount_dec_and_test(&rb->refcount))
5593 		return;
5594 
5595 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5596 
5597 	call_rcu(&rb->rcu_head, rb_free_rcu);
5598 }
5599 
5600 static void perf_mmap_open(struct vm_area_struct *vma)
5601 {
5602 	struct perf_event *event = vma->vm_file->private_data;
5603 
5604 	atomic_inc(&event->mmap_count);
5605 	atomic_inc(&event->rb->mmap_count);
5606 
5607 	if (vma->vm_pgoff)
5608 		atomic_inc(&event->rb->aux_mmap_count);
5609 
5610 	if (event->pmu->event_mapped)
5611 		event->pmu->event_mapped(event, vma->vm_mm);
5612 }
5613 
5614 static void perf_pmu_output_stop(struct perf_event *event);
5615 
5616 /*
5617  * A buffer can be mmap()ed multiple times; either directly through the same
5618  * event, or through other events by use of perf_event_set_output().
5619  *
5620  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5621  * the buffer here, where we still have a VM context. This means we need
5622  * to detach all events redirecting to us.
5623  */
5624 static void perf_mmap_close(struct vm_area_struct *vma)
5625 {
5626 	struct perf_event *event = vma->vm_file->private_data;
5627 
5628 	struct ring_buffer *rb = ring_buffer_get(event);
5629 	struct user_struct *mmap_user = rb->mmap_user;
5630 	int mmap_locked = rb->mmap_locked;
5631 	unsigned long size = perf_data_size(rb);
5632 
5633 	if (event->pmu->event_unmapped)
5634 		event->pmu->event_unmapped(event, vma->vm_mm);
5635 
5636 	/*
5637 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5638 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5639 	 * serialize with perf_mmap here.
5640 	 */
5641 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5642 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5643 		/*
5644 		 * Stop all AUX events that are writing to this buffer,
5645 		 * so that we can free its AUX pages and corresponding PMU
5646 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5647 		 * they won't start any more (see perf_aux_output_begin()).
5648 		 */
5649 		perf_pmu_output_stop(event);
5650 
5651 		/* now it's safe to free the pages */
5652 		if (!rb->aux_mmap_locked)
5653 			atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5654 		else
5655 			atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5656 
5657 		/* this has to be the last one */
5658 		rb_free_aux(rb);
5659 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5660 
5661 		mutex_unlock(&event->mmap_mutex);
5662 	}
5663 
5664 	atomic_dec(&rb->mmap_count);
5665 
5666 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5667 		goto out_put;
5668 
5669 	ring_buffer_attach(event, NULL);
5670 	mutex_unlock(&event->mmap_mutex);
5671 
5672 	/* If there's still other mmap()s of this buffer, we're done. */
5673 	if (atomic_read(&rb->mmap_count))
5674 		goto out_put;
5675 
5676 	/*
5677 	 * No other mmap()s, detach from all other events that might redirect
5678 	 * into the now unreachable buffer. Somewhat complicated by the
5679 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5680 	 */
5681 again:
5682 	rcu_read_lock();
5683 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5684 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5685 			/*
5686 			 * This event is en-route to free_event() which will
5687 			 * detach it and remove it from the list.
5688 			 */
5689 			continue;
5690 		}
5691 		rcu_read_unlock();
5692 
5693 		mutex_lock(&event->mmap_mutex);
5694 		/*
5695 		 * Check we didn't race with perf_event_set_output() which can
5696 		 * swizzle the rb from under us while we were waiting to
5697 		 * acquire mmap_mutex.
5698 		 *
5699 		 * If we find a different rb; ignore this event, a next
5700 		 * iteration will no longer find it on the list. We have to
5701 		 * still restart the iteration to make sure we're not now
5702 		 * iterating the wrong list.
5703 		 */
5704 		if (event->rb == rb)
5705 			ring_buffer_attach(event, NULL);
5706 
5707 		mutex_unlock(&event->mmap_mutex);
5708 		put_event(event);
5709 
5710 		/*
5711 		 * Restart the iteration; either we're on the wrong list or
5712 		 * destroyed its integrity by doing a deletion.
5713 		 */
5714 		goto again;
5715 	}
5716 	rcu_read_unlock();
5717 
5718 	/*
5719 	 * It could be there's still a few 0-ref events on the list; they'll
5720 	 * get cleaned up by free_event() -- they'll also still have their
5721 	 * ref on the rb and will free it whenever they are done with it.
5722 	 *
5723 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5724 	 * undo the VM accounting.
5725 	 */
5726 
5727 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5728 			&mmap_user->locked_vm);
5729 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5730 	free_uid(mmap_user);
5731 
5732 out_put:
5733 	ring_buffer_put(rb); /* could be last */
5734 }
5735 
5736 static const struct vm_operations_struct perf_mmap_vmops = {
5737 	.open		= perf_mmap_open,
5738 	.close		= perf_mmap_close, /* non mergeable */
5739 	.fault		= perf_mmap_fault,
5740 	.page_mkwrite	= perf_mmap_fault,
5741 };
5742 
5743 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5744 {
5745 	struct perf_event *event = file->private_data;
5746 	unsigned long user_locked, user_lock_limit;
5747 	struct user_struct *user = current_user();
5748 	unsigned long locked, lock_limit;
5749 	struct ring_buffer *rb = NULL;
5750 	unsigned long vma_size;
5751 	unsigned long nr_pages;
5752 	long user_extra = 0, extra = 0;
5753 	int ret = 0, flags = 0;
5754 
5755 	/*
5756 	 * Don't allow mmap() of inherited per-task counters. This would
5757 	 * create a performance issue due to all children writing to the
5758 	 * same rb.
5759 	 */
5760 	if (event->cpu == -1 && event->attr.inherit)
5761 		return -EINVAL;
5762 
5763 	if (!(vma->vm_flags & VM_SHARED))
5764 		return -EINVAL;
5765 
5766 	ret = security_perf_event_read(event);
5767 	if (ret)
5768 		return ret;
5769 
5770 	vma_size = vma->vm_end - vma->vm_start;
5771 
5772 	if (vma->vm_pgoff == 0) {
5773 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5774 	} else {
5775 		/*
5776 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5777 		 * mapped, all subsequent mappings should have the same size
5778 		 * and offset. Must be above the normal perf buffer.
5779 		 */
5780 		u64 aux_offset, aux_size;
5781 
5782 		if (!event->rb)
5783 			return -EINVAL;
5784 
5785 		nr_pages = vma_size / PAGE_SIZE;
5786 
5787 		mutex_lock(&event->mmap_mutex);
5788 		ret = -EINVAL;
5789 
5790 		rb = event->rb;
5791 		if (!rb)
5792 			goto aux_unlock;
5793 
5794 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5795 		aux_size = READ_ONCE(rb->user_page->aux_size);
5796 
5797 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5798 			goto aux_unlock;
5799 
5800 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5801 			goto aux_unlock;
5802 
5803 		/* already mapped with a different offset */
5804 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5805 			goto aux_unlock;
5806 
5807 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5808 			goto aux_unlock;
5809 
5810 		/* already mapped with a different size */
5811 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5812 			goto aux_unlock;
5813 
5814 		if (!is_power_of_2(nr_pages))
5815 			goto aux_unlock;
5816 
5817 		if (!atomic_inc_not_zero(&rb->mmap_count))
5818 			goto aux_unlock;
5819 
5820 		if (rb_has_aux(rb)) {
5821 			atomic_inc(&rb->aux_mmap_count);
5822 			ret = 0;
5823 			goto unlock;
5824 		}
5825 
5826 		atomic_set(&rb->aux_mmap_count, 1);
5827 		user_extra = nr_pages;
5828 
5829 		goto accounting;
5830 	}
5831 
5832 	/*
5833 	 * If we have rb pages ensure they're a power-of-two number, so we
5834 	 * can do bitmasks instead of modulo.
5835 	 */
5836 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5837 		return -EINVAL;
5838 
5839 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5840 		return -EINVAL;
5841 
5842 	WARN_ON_ONCE(event->ctx->parent_ctx);
5843 again:
5844 	mutex_lock(&event->mmap_mutex);
5845 	if (event->rb) {
5846 		if (event->rb->nr_pages != nr_pages) {
5847 			ret = -EINVAL;
5848 			goto unlock;
5849 		}
5850 
5851 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5852 			/*
5853 			 * Raced against perf_mmap_close() through
5854 			 * perf_event_set_output(). Try again, hope for better
5855 			 * luck.
5856 			 */
5857 			mutex_unlock(&event->mmap_mutex);
5858 			goto again;
5859 		}
5860 
5861 		goto unlock;
5862 	}
5863 
5864 	user_extra = nr_pages + 1;
5865 
5866 accounting:
5867 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5868 
5869 	/*
5870 	 * Increase the limit linearly with more CPUs:
5871 	 */
5872 	user_lock_limit *= num_online_cpus();
5873 
5874 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5875 
5876 	if (user_locked <= user_lock_limit) {
5877 		/* charge all to locked_vm */
5878 	} else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5879 		/* charge all to pinned_vm */
5880 		extra = user_extra;
5881 		user_extra = 0;
5882 	} else {
5883 		/*
5884 		 * charge locked_vm until it hits user_lock_limit;
5885 		 * charge the rest from pinned_vm
5886 		 */
5887 		extra = user_locked - user_lock_limit;
5888 		user_extra -= extra;
5889 	}
5890 
5891 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5892 	lock_limit >>= PAGE_SHIFT;
5893 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5894 
5895 	if ((locked > lock_limit) && perf_is_paranoid() &&
5896 		!capable(CAP_IPC_LOCK)) {
5897 		ret = -EPERM;
5898 		goto unlock;
5899 	}
5900 
5901 	WARN_ON(!rb && event->rb);
5902 
5903 	if (vma->vm_flags & VM_WRITE)
5904 		flags |= RING_BUFFER_WRITABLE;
5905 
5906 	if (!rb) {
5907 		rb = rb_alloc(nr_pages,
5908 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5909 			      event->cpu, flags);
5910 
5911 		if (!rb) {
5912 			ret = -ENOMEM;
5913 			goto unlock;
5914 		}
5915 
5916 		atomic_set(&rb->mmap_count, 1);
5917 		rb->mmap_user = get_current_user();
5918 		rb->mmap_locked = extra;
5919 
5920 		ring_buffer_attach(event, rb);
5921 
5922 		perf_event_init_userpage(event);
5923 		perf_event_update_userpage(event);
5924 	} else {
5925 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5926 				   event->attr.aux_watermark, flags);
5927 		if (!ret)
5928 			rb->aux_mmap_locked = extra;
5929 	}
5930 
5931 unlock:
5932 	if (!ret) {
5933 		atomic_long_add(user_extra, &user->locked_vm);
5934 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5935 
5936 		atomic_inc(&event->mmap_count);
5937 	} else if (rb) {
5938 		atomic_dec(&rb->mmap_count);
5939 	}
5940 aux_unlock:
5941 	mutex_unlock(&event->mmap_mutex);
5942 
5943 	/*
5944 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5945 	 * vma.
5946 	 */
5947 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5948 	vma->vm_ops = &perf_mmap_vmops;
5949 
5950 	if (event->pmu->event_mapped)
5951 		event->pmu->event_mapped(event, vma->vm_mm);
5952 
5953 	return ret;
5954 }
5955 
5956 static int perf_fasync(int fd, struct file *filp, int on)
5957 {
5958 	struct inode *inode = file_inode(filp);
5959 	struct perf_event *event = filp->private_data;
5960 	int retval;
5961 
5962 	inode_lock(inode);
5963 	retval = fasync_helper(fd, filp, on, &event->fasync);
5964 	inode_unlock(inode);
5965 
5966 	if (retval < 0)
5967 		return retval;
5968 
5969 	return 0;
5970 }
5971 
5972 static const struct file_operations perf_fops = {
5973 	.llseek			= no_llseek,
5974 	.release		= perf_release,
5975 	.read			= perf_read,
5976 	.poll			= perf_poll,
5977 	.unlocked_ioctl		= perf_ioctl,
5978 	.compat_ioctl		= perf_compat_ioctl,
5979 	.mmap			= perf_mmap,
5980 	.fasync			= perf_fasync,
5981 };
5982 
5983 /*
5984  * Perf event wakeup
5985  *
5986  * If there's data, ensure we set the poll() state and publish everything
5987  * to user-space before waking everybody up.
5988  */
5989 
5990 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5991 {
5992 	/* only the parent has fasync state */
5993 	if (event->parent)
5994 		event = event->parent;
5995 	return &event->fasync;
5996 }
5997 
5998 void perf_event_wakeup(struct perf_event *event)
5999 {
6000 	ring_buffer_wakeup(event);
6001 
6002 	if (event->pending_kill) {
6003 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6004 		event->pending_kill = 0;
6005 	}
6006 }
6007 
6008 static void perf_pending_event_disable(struct perf_event *event)
6009 {
6010 	int cpu = READ_ONCE(event->pending_disable);
6011 
6012 	if (cpu < 0)
6013 		return;
6014 
6015 	if (cpu == smp_processor_id()) {
6016 		WRITE_ONCE(event->pending_disable, -1);
6017 		perf_event_disable_local(event);
6018 		return;
6019 	}
6020 
6021 	/*
6022 	 *  CPU-A			CPU-B
6023 	 *
6024 	 *  perf_event_disable_inatomic()
6025 	 *    @pending_disable = CPU-A;
6026 	 *    irq_work_queue();
6027 	 *
6028 	 *  sched-out
6029 	 *    @pending_disable = -1;
6030 	 *
6031 	 *				sched-in
6032 	 *				perf_event_disable_inatomic()
6033 	 *				  @pending_disable = CPU-B;
6034 	 *				  irq_work_queue(); // FAILS
6035 	 *
6036 	 *  irq_work_run()
6037 	 *    perf_pending_event()
6038 	 *
6039 	 * But the event runs on CPU-B and wants disabling there.
6040 	 */
6041 	irq_work_queue_on(&event->pending, cpu);
6042 }
6043 
6044 static void perf_pending_event(struct irq_work *entry)
6045 {
6046 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6047 	int rctx;
6048 
6049 	rctx = perf_swevent_get_recursion_context();
6050 	/*
6051 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6052 	 * and we won't recurse 'further'.
6053 	 */
6054 
6055 	perf_pending_event_disable(event);
6056 
6057 	if (event->pending_wakeup) {
6058 		event->pending_wakeup = 0;
6059 		perf_event_wakeup(event);
6060 	}
6061 
6062 	if (rctx >= 0)
6063 		perf_swevent_put_recursion_context(rctx);
6064 }
6065 
6066 /*
6067  * We assume there is only KVM supporting the callbacks.
6068  * Later on, we might change it to a list if there is
6069  * another virtualization implementation supporting the callbacks.
6070  */
6071 struct perf_guest_info_callbacks *perf_guest_cbs;
6072 
6073 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6074 {
6075 	perf_guest_cbs = cbs;
6076 	return 0;
6077 }
6078 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6079 
6080 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6081 {
6082 	perf_guest_cbs = NULL;
6083 	return 0;
6084 }
6085 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6086 
6087 static void
6088 perf_output_sample_regs(struct perf_output_handle *handle,
6089 			struct pt_regs *regs, u64 mask)
6090 {
6091 	int bit;
6092 	DECLARE_BITMAP(_mask, 64);
6093 
6094 	bitmap_from_u64(_mask, mask);
6095 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6096 		u64 val;
6097 
6098 		val = perf_reg_value(regs, bit);
6099 		perf_output_put(handle, val);
6100 	}
6101 }
6102 
6103 static void perf_sample_regs_user(struct perf_regs *regs_user,
6104 				  struct pt_regs *regs,
6105 				  struct pt_regs *regs_user_copy)
6106 {
6107 	if (user_mode(regs)) {
6108 		regs_user->abi = perf_reg_abi(current);
6109 		regs_user->regs = regs;
6110 	} else if (!(current->flags & PF_KTHREAD)) {
6111 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6112 	} else {
6113 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6114 		regs_user->regs = NULL;
6115 	}
6116 }
6117 
6118 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6119 				  struct pt_regs *regs)
6120 {
6121 	regs_intr->regs = regs;
6122 	regs_intr->abi  = perf_reg_abi(current);
6123 }
6124 
6125 
6126 /*
6127  * Get remaining task size from user stack pointer.
6128  *
6129  * It'd be better to take stack vma map and limit this more
6130  * precisely, but there's no way to get it safely under interrupt,
6131  * so using TASK_SIZE as limit.
6132  */
6133 static u64 perf_ustack_task_size(struct pt_regs *regs)
6134 {
6135 	unsigned long addr = perf_user_stack_pointer(regs);
6136 
6137 	if (!addr || addr >= TASK_SIZE)
6138 		return 0;
6139 
6140 	return TASK_SIZE - addr;
6141 }
6142 
6143 static u16
6144 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6145 			struct pt_regs *regs)
6146 {
6147 	u64 task_size;
6148 
6149 	/* No regs, no stack pointer, no dump. */
6150 	if (!regs)
6151 		return 0;
6152 
6153 	/*
6154 	 * Check if we fit in with the requested stack size into the:
6155 	 * - TASK_SIZE
6156 	 *   If we don't, we limit the size to the TASK_SIZE.
6157 	 *
6158 	 * - remaining sample size
6159 	 *   If we don't, we customize the stack size to
6160 	 *   fit in to the remaining sample size.
6161 	 */
6162 
6163 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6164 	stack_size = min(stack_size, (u16) task_size);
6165 
6166 	/* Current header size plus static size and dynamic size. */
6167 	header_size += 2 * sizeof(u64);
6168 
6169 	/* Do we fit in with the current stack dump size? */
6170 	if ((u16) (header_size + stack_size) < header_size) {
6171 		/*
6172 		 * If we overflow the maximum size for the sample,
6173 		 * we customize the stack dump size to fit in.
6174 		 */
6175 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6176 		stack_size = round_up(stack_size, sizeof(u64));
6177 	}
6178 
6179 	return stack_size;
6180 }
6181 
6182 static void
6183 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6184 			  struct pt_regs *regs)
6185 {
6186 	/* Case of a kernel thread, nothing to dump */
6187 	if (!regs) {
6188 		u64 size = 0;
6189 		perf_output_put(handle, size);
6190 	} else {
6191 		unsigned long sp;
6192 		unsigned int rem;
6193 		u64 dyn_size;
6194 		mm_segment_t fs;
6195 
6196 		/*
6197 		 * We dump:
6198 		 * static size
6199 		 *   - the size requested by user or the best one we can fit
6200 		 *     in to the sample max size
6201 		 * data
6202 		 *   - user stack dump data
6203 		 * dynamic size
6204 		 *   - the actual dumped size
6205 		 */
6206 
6207 		/* Static size. */
6208 		perf_output_put(handle, dump_size);
6209 
6210 		/* Data. */
6211 		sp = perf_user_stack_pointer(regs);
6212 		fs = get_fs();
6213 		set_fs(USER_DS);
6214 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6215 		set_fs(fs);
6216 		dyn_size = dump_size - rem;
6217 
6218 		perf_output_skip(handle, rem);
6219 
6220 		/* Dynamic size. */
6221 		perf_output_put(handle, dyn_size);
6222 	}
6223 }
6224 
6225 static void __perf_event_header__init_id(struct perf_event_header *header,
6226 					 struct perf_sample_data *data,
6227 					 struct perf_event *event)
6228 {
6229 	u64 sample_type = event->attr.sample_type;
6230 
6231 	data->type = sample_type;
6232 	header->size += event->id_header_size;
6233 
6234 	if (sample_type & PERF_SAMPLE_TID) {
6235 		/* namespace issues */
6236 		data->tid_entry.pid = perf_event_pid(event, current);
6237 		data->tid_entry.tid = perf_event_tid(event, current);
6238 	}
6239 
6240 	if (sample_type & PERF_SAMPLE_TIME)
6241 		data->time = perf_event_clock(event);
6242 
6243 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6244 		data->id = primary_event_id(event);
6245 
6246 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6247 		data->stream_id = event->id;
6248 
6249 	if (sample_type & PERF_SAMPLE_CPU) {
6250 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6251 		data->cpu_entry.reserved = 0;
6252 	}
6253 }
6254 
6255 void perf_event_header__init_id(struct perf_event_header *header,
6256 				struct perf_sample_data *data,
6257 				struct perf_event *event)
6258 {
6259 	if (event->attr.sample_id_all)
6260 		__perf_event_header__init_id(header, data, event);
6261 }
6262 
6263 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6264 					   struct perf_sample_data *data)
6265 {
6266 	u64 sample_type = data->type;
6267 
6268 	if (sample_type & PERF_SAMPLE_TID)
6269 		perf_output_put(handle, data->tid_entry);
6270 
6271 	if (sample_type & PERF_SAMPLE_TIME)
6272 		perf_output_put(handle, data->time);
6273 
6274 	if (sample_type & PERF_SAMPLE_ID)
6275 		perf_output_put(handle, data->id);
6276 
6277 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6278 		perf_output_put(handle, data->stream_id);
6279 
6280 	if (sample_type & PERF_SAMPLE_CPU)
6281 		perf_output_put(handle, data->cpu_entry);
6282 
6283 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6284 		perf_output_put(handle, data->id);
6285 }
6286 
6287 void perf_event__output_id_sample(struct perf_event *event,
6288 				  struct perf_output_handle *handle,
6289 				  struct perf_sample_data *sample)
6290 {
6291 	if (event->attr.sample_id_all)
6292 		__perf_event__output_id_sample(handle, sample);
6293 }
6294 
6295 static void perf_output_read_one(struct perf_output_handle *handle,
6296 				 struct perf_event *event,
6297 				 u64 enabled, u64 running)
6298 {
6299 	u64 read_format = event->attr.read_format;
6300 	u64 values[4];
6301 	int n = 0;
6302 
6303 	values[n++] = perf_event_count(event);
6304 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6305 		values[n++] = enabled +
6306 			atomic64_read(&event->child_total_time_enabled);
6307 	}
6308 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6309 		values[n++] = running +
6310 			atomic64_read(&event->child_total_time_running);
6311 	}
6312 	if (read_format & PERF_FORMAT_ID)
6313 		values[n++] = primary_event_id(event);
6314 
6315 	__output_copy(handle, values, n * sizeof(u64));
6316 }
6317 
6318 static void perf_output_read_group(struct perf_output_handle *handle,
6319 			    struct perf_event *event,
6320 			    u64 enabled, u64 running)
6321 {
6322 	struct perf_event *leader = event->group_leader, *sub;
6323 	u64 read_format = event->attr.read_format;
6324 	u64 values[5];
6325 	int n = 0;
6326 
6327 	values[n++] = 1 + leader->nr_siblings;
6328 
6329 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6330 		values[n++] = enabled;
6331 
6332 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6333 		values[n++] = running;
6334 
6335 	if ((leader != event) &&
6336 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6337 		leader->pmu->read(leader);
6338 
6339 	values[n++] = perf_event_count(leader);
6340 	if (read_format & PERF_FORMAT_ID)
6341 		values[n++] = primary_event_id(leader);
6342 
6343 	__output_copy(handle, values, n * sizeof(u64));
6344 
6345 	for_each_sibling_event(sub, leader) {
6346 		n = 0;
6347 
6348 		if ((sub != event) &&
6349 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6350 			sub->pmu->read(sub);
6351 
6352 		values[n++] = perf_event_count(sub);
6353 		if (read_format & PERF_FORMAT_ID)
6354 			values[n++] = primary_event_id(sub);
6355 
6356 		__output_copy(handle, values, n * sizeof(u64));
6357 	}
6358 }
6359 
6360 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6361 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6362 
6363 /*
6364  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6365  *
6366  * The problem is that its both hard and excessively expensive to iterate the
6367  * child list, not to mention that its impossible to IPI the children running
6368  * on another CPU, from interrupt/NMI context.
6369  */
6370 static void perf_output_read(struct perf_output_handle *handle,
6371 			     struct perf_event *event)
6372 {
6373 	u64 enabled = 0, running = 0, now;
6374 	u64 read_format = event->attr.read_format;
6375 
6376 	/*
6377 	 * compute total_time_enabled, total_time_running
6378 	 * based on snapshot values taken when the event
6379 	 * was last scheduled in.
6380 	 *
6381 	 * we cannot simply called update_context_time()
6382 	 * because of locking issue as we are called in
6383 	 * NMI context
6384 	 */
6385 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6386 		calc_timer_values(event, &now, &enabled, &running);
6387 
6388 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6389 		perf_output_read_group(handle, event, enabled, running);
6390 	else
6391 		perf_output_read_one(handle, event, enabled, running);
6392 }
6393 
6394 void perf_output_sample(struct perf_output_handle *handle,
6395 			struct perf_event_header *header,
6396 			struct perf_sample_data *data,
6397 			struct perf_event *event)
6398 {
6399 	u64 sample_type = data->type;
6400 
6401 	perf_output_put(handle, *header);
6402 
6403 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6404 		perf_output_put(handle, data->id);
6405 
6406 	if (sample_type & PERF_SAMPLE_IP)
6407 		perf_output_put(handle, data->ip);
6408 
6409 	if (sample_type & PERF_SAMPLE_TID)
6410 		perf_output_put(handle, data->tid_entry);
6411 
6412 	if (sample_type & PERF_SAMPLE_TIME)
6413 		perf_output_put(handle, data->time);
6414 
6415 	if (sample_type & PERF_SAMPLE_ADDR)
6416 		perf_output_put(handle, data->addr);
6417 
6418 	if (sample_type & PERF_SAMPLE_ID)
6419 		perf_output_put(handle, data->id);
6420 
6421 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6422 		perf_output_put(handle, data->stream_id);
6423 
6424 	if (sample_type & PERF_SAMPLE_CPU)
6425 		perf_output_put(handle, data->cpu_entry);
6426 
6427 	if (sample_type & PERF_SAMPLE_PERIOD)
6428 		perf_output_put(handle, data->period);
6429 
6430 	if (sample_type & PERF_SAMPLE_READ)
6431 		perf_output_read(handle, event);
6432 
6433 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6434 		int size = 1;
6435 
6436 		size += data->callchain->nr;
6437 		size *= sizeof(u64);
6438 		__output_copy(handle, data->callchain, size);
6439 	}
6440 
6441 	if (sample_type & PERF_SAMPLE_RAW) {
6442 		struct perf_raw_record *raw = data->raw;
6443 
6444 		if (raw) {
6445 			struct perf_raw_frag *frag = &raw->frag;
6446 
6447 			perf_output_put(handle, raw->size);
6448 			do {
6449 				if (frag->copy) {
6450 					__output_custom(handle, frag->copy,
6451 							frag->data, frag->size);
6452 				} else {
6453 					__output_copy(handle, frag->data,
6454 						      frag->size);
6455 				}
6456 				if (perf_raw_frag_last(frag))
6457 					break;
6458 				frag = frag->next;
6459 			} while (1);
6460 			if (frag->pad)
6461 				__output_skip(handle, NULL, frag->pad);
6462 		} else {
6463 			struct {
6464 				u32	size;
6465 				u32	data;
6466 			} raw = {
6467 				.size = sizeof(u32),
6468 				.data = 0,
6469 			};
6470 			perf_output_put(handle, raw);
6471 		}
6472 	}
6473 
6474 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6475 		if (data->br_stack) {
6476 			size_t size;
6477 
6478 			size = data->br_stack->nr
6479 			     * sizeof(struct perf_branch_entry);
6480 
6481 			perf_output_put(handle, data->br_stack->nr);
6482 			perf_output_copy(handle, data->br_stack->entries, size);
6483 		} else {
6484 			/*
6485 			 * we always store at least the value of nr
6486 			 */
6487 			u64 nr = 0;
6488 			perf_output_put(handle, nr);
6489 		}
6490 	}
6491 
6492 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6493 		u64 abi = data->regs_user.abi;
6494 
6495 		/*
6496 		 * If there are no regs to dump, notice it through
6497 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6498 		 */
6499 		perf_output_put(handle, abi);
6500 
6501 		if (abi) {
6502 			u64 mask = event->attr.sample_regs_user;
6503 			perf_output_sample_regs(handle,
6504 						data->regs_user.regs,
6505 						mask);
6506 		}
6507 	}
6508 
6509 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6510 		perf_output_sample_ustack(handle,
6511 					  data->stack_user_size,
6512 					  data->regs_user.regs);
6513 	}
6514 
6515 	if (sample_type & PERF_SAMPLE_WEIGHT)
6516 		perf_output_put(handle, data->weight);
6517 
6518 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6519 		perf_output_put(handle, data->data_src.val);
6520 
6521 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6522 		perf_output_put(handle, data->txn);
6523 
6524 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6525 		u64 abi = data->regs_intr.abi;
6526 		/*
6527 		 * If there are no regs to dump, notice it through
6528 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6529 		 */
6530 		perf_output_put(handle, abi);
6531 
6532 		if (abi) {
6533 			u64 mask = event->attr.sample_regs_intr;
6534 
6535 			perf_output_sample_regs(handle,
6536 						data->regs_intr.regs,
6537 						mask);
6538 		}
6539 	}
6540 
6541 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6542 		perf_output_put(handle, data->phys_addr);
6543 
6544 	if (!event->attr.watermark) {
6545 		int wakeup_events = event->attr.wakeup_events;
6546 
6547 		if (wakeup_events) {
6548 			struct ring_buffer *rb = handle->rb;
6549 			int events = local_inc_return(&rb->events);
6550 
6551 			if (events >= wakeup_events) {
6552 				local_sub(wakeup_events, &rb->events);
6553 				local_inc(&rb->wakeup);
6554 			}
6555 		}
6556 	}
6557 }
6558 
6559 static u64 perf_virt_to_phys(u64 virt)
6560 {
6561 	u64 phys_addr = 0;
6562 	struct page *p = NULL;
6563 
6564 	if (!virt)
6565 		return 0;
6566 
6567 	if (virt >= TASK_SIZE) {
6568 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6569 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6570 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6571 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6572 	} else {
6573 		/*
6574 		 * Walking the pages tables for user address.
6575 		 * Interrupts are disabled, so it prevents any tear down
6576 		 * of the page tables.
6577 		 * Try IRQ-safe __get_user_pages_fast first.
6578 		 * If failed, leave phys_addr as 0.
6579 		 */
6580 		if ((current->mm != NULL) &&
6581 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6582 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6583 
6584 		if (p)
6585 			put_page(p);
6586 	}
6587 
6588 	return phys_addr;
6589 }
6590 
6591 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6592 
6593 struct perf_callchain_entry *
6594 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6595 {
6596 	bool kernel = !event->attr.exclude_callchain_kernel;
6597 	bool user   = !event->attr.exclude_callchain_user;
6598 	/* Disallow cross-task user callchains. */
6599 	bool crosstask = event->ctx->task && event->ctx->task != current;
6600 	const u32 max_stack = event->attr.sample_max_stack;
6601 	struct perf_callchain_entry *callchain;
6602 
6603 	if (!kernel && !user)
6604 		return &__empty_callchain;
6605 
6606 	callchain = get_perf_callchain(regs, 0, kernel, user,
6607 				       max_stack, crosstask, true);
6608 	return callchain ?: &__empty_callchain;
6609 }
6610 
6611 void perf_prepare_sample(struct perf_event_header *header,
6612 			 struct perf_sample_data *data,
6613 			 struct perf_event *event,
6614 			 struct pt_regs *regs)
6615 {
6616 	u64 sample_type = event->attr.sample_type;
6617 
6618 	header->type = PERF_RECORD_SAMPLE;
6619 	header->size = sizeof(*header) + event->header_size;
6620 
6621 	header->misc = 0;
6622 	header->misc |= perf_misc_flags(regs);
6623 
6624 	__perf_event_header__init_id(header, data, event);
6625 
6626 	if (sample_type & PERF_SAMPLE_IP)
6627 		data->ip = perf_instruction_pointer(regs);
6628 
6629 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6630 		int size = 1;
6631 
6632 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6633 			data->callchain = perf_callchain(event, regs);
6634 
6635 		size += data->callchain->nr;
6636 
6637 		header->size += size * sizeof(u64);
6638 	}
6639 
6640 	if (sample_type & PERF_SAMPLE_RAW) {
6641 		struct perf_raw_record *raw = data->raw;
6642 		int size;
6643 
6644 		if (raw) {
6645 			struct perf_raw_frag *frag = &raw->frag;
6646 			u32 sum = 0;
6647 
6648 			do {
6649 				sum += frag->size;
6650 				if (perf_raw_frag_last(frag))
6651 					break;
6652 				frag = frag->next;
6653 			} while (1);
6654 
6655 			size = round_up(sum + sizeof(u32), sizeof(u64));
6656 			raw->size = size - sizeof(u32);
6657 			frag->pad = raw->size - sum;
6658 		} else {
6659 			size = sizeof(u64);
6660 		}
6661 
6662 		header->size += size;
6663 	}
6664 
6665 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6666 		int size = sizeof(u64); /* nr */
6667 		if (data->br_stack) {
6668 			size += data->br_stack->nr
6669 			      * sizeof(struct perf_branch_entry);
6670 		}
6671 		header->size += size;
6672 	}
6673 
6674 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6675 		perf_sample_regs_user(&data->regs_user, regs,
6676 				      &data->regs_user_copy);
6677 
6678 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6679 		/* regs dump ABI info */
6680 		int size = sizeof(u64);
6681 
6682 		if (data->regs_user.regs) {
6683 			u64 mask = event->attr.sample_regs_user;
6684 			size += hweight64(mask) * sizeof(u64);
6685 		}
6686 
6687 		header->size += size;
6688 	}
6689 
6690 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6691 		/*
6692 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6693 		 * processed as the last one or have additional check added
6694 		 * in case new sample type is added, because we could eat
6695 		 * up the rest of the sample size.
6696 		 */
6697 		u16 stack_size = event->attr.sample_stack_user;
6698 		u16 size = sizeof(u64);
6699 
6700 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6701 						     data->regs_user.regs);
6702 
6703 		/*
6704 		 * If there is something to dump, add space for the dump
6705 		 * itself and for the field that tells the dynamic size,
6706 		 * which is how many have been actually dumped.
6707 		 */
6708 		if (stack_size)
6709 			size += sizeof(u64) + stack_size;
6710 
6711 		data->stack_user_size = stack_size;
6712 		header->size += size;
6713 	}
6714 
6715 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6716 		/* regs dump ABI info */
6717 		int size = sizeof(u64);
6718 
6719 		perf_sample_regs_intr(&data->regs_intr, regs);
6720 
6721 		if (data->regs_intr.regs) {
6722 			u64 mask = event->attr.sample_regs_intr;
6723 
6724 			size += hweight64(mask) * sizeof(u64);
6725 		}
6726 
6727 		header->size += size;
6728 	}
6729 
6730 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6731 		data->phys_addr = perf_virt_to_phys(data->addr);
6732 }
6733 
6734 static __always_inline int
6735 __perf_event_output(struct perf_event *event,
6736 		    struct perf_sample_data *data,
6737 		    struct pt_regs *regs,
6738 		    int (*output_begin)(struct perf_output_handle *,
6739 					struct perf_event *,
6740 					unsigned int))
6741 {
6742 	struct perf_output_handle handle;
6743 	struct perf_event_header header;
6744 	int err;
6745 
6746 	/* protect the callchain buffers */
6747 	rcu_read_lock();
6748 
6749 	perf_prepare_sample(&header, data, event, regs);
6750 
6751 	err = output_begin(&handle, event, header.size);
6752 	if (err)
6753 		goto exit;
6754 
6755 	perf_output_sample(&handle, &header, data, event);
6756 
6757 	perf_output_end(&handle);
6758 
6759 exit:
6760 	rcu_read_unlock();
6761 	return err;
6762 }
6763 
6764 void
6765 perf_event_output_forward(struct perf_event *event,
6766 			 struct perf_sample_data *data,
6767 			 struct pt_regs *regs)
6768 {
6769 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6770 }
6771 
6772 void
6773 perf_event_output_backward(struct perf_event *event,
6774 			   struct perf_sample_data *data,
6775 			   struct pt_regs *regs)
6776 {
6777 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6778 }
6779 
6780 int
6781 perf_event_output(struct perf_event *event,
6782 		  struct perf_sample_data *data,
6783 		  struct pt_regs *regs)
6784 {
6785 	return __perf_event_output(event, data, regs, perf_output_begin);
6786 }
6787 
6788 /*
6789  * read event_id
6790  */
6791 
6792 struct perf_read_event {
6793 	struct perf_event_header	header;
6794 
6795 	u32				pid;
6796 	u32				tid;
6797 };
6798 
6799 static void
6800 perf_event_read_event(struct perf_event *event,
6801 			struct task_struct *task)
6802 {
6803 	struct perf_output_handle handle;
6804 	struct perf_sample_data sample;
6805 	struct perf_read_event read_event = {
6806 		.header = {
6807 			.type = PERF_RECORD_READ,
6808 			.misc = 0,
6809 			.size = sizeof(read_event) + event->read_size,
6810 		},
6811 		.pid = perf_event_pid(event, task),
6812 		.tid = perf_event_tid(event, task),
6813 	};
6814 	int ret;
6815 
6816 	perf_event_header__init_id(&read_event.header, &sample, event);
6817 	ret = perf_output_begin(&handle, event, read_event.header.size);
6818 	if (ret)
6819 		return;
6820 
6821 	perf_output_put(&handle, read_event);
6822 	perf_output_read(&handle, event);
6823 	perf_event__output_id_sample(event, &handle, &sample);
6824 
6825 	perf_output_end(&handle);
6826 }
6827 
6828 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6829 
6830 static void
6831 perf_iterate_ctx(struct perf_event_context *ctx,
6832 		   perf_iterate_f output,
6833 		   void *data, bool all)
6834 {
6835 	struct perf_event *event;
6836 
6837 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6838 		if (!all) {
6839 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6840 				continue;
6841 			if (!event_filter_match(event))
6842 				continue;
6843 		}
6844 
6845 		output(event, data);
6846 	}
6847 }
6848 
6849 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6850 {
6851 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6852 	struct perf_event *event;
6853 
6854 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6855 		/*
6856 		 * Skip events that are not fully formed yet; ensure that
6857 		 * if we observe event->ctx, both event and ctx will be
6858 		 * complete enough. See perf_install_in_context().
6859 		 */
6860 		if (!smp_load_acquire(&event->ctx))
6861 			continue;
6862 
6863 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6864 			continue;
6865 		if (!event_filter_match(event))
6866 			continue;
6867 		output(event, data);
6868 	}
6869 }
6870 
6871 /*
6872  * Iterate all events that need to receive side-band events.
6873  *
6874  * For new callers; ensure that account_pmu_sb_event() includes
6875  * your event, otherwise it might not get delivered.
6876  */
6877 static void
6878 perf_iterate_sb(perf_iterate_f output, void *data,
6879 	       struct perf_event_context *task_ctx)
6880 {
6881 	struct perf_event_context *ctx;
6882 	int ctxn;
6883 
6884 	rcu_read_lock();
6885 	preempt_disable();
6886 
6887 	/*
6888 	 * If we have task_ctx != NULL we only notify the task context itself.
6889 	 * The task_ctx is set only for EXIT events before releasing task
6890 	 * context.
6891 	 */
6892 	if (task_ctx) {
6893 		perf_iterate_ctx(task_ctx, output, data, false);
6894 		goto done;
6895 	}
6896 
6897 	perf_iterate_sb_cpu(output, data);
6898 
6899 	for_each_task_context_nr(ctxn) {
6900 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6901 		if (ctx)
6902 			perf_iterate_ctx(ctx, output, data, false);
6903 	}
6904 done:
6905 	preempt_enable();
6906 	rcu_read_unlock();
6907 }
6908 
6909 /*
6910  * Clear all file-based filters at exec, they'll have to be
6911  * re-instated when/if these objects are mmapped again.
6912  */
6913 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6914 {
6915 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6916 	struct perf_addr_filter *filter;
6917 	unsigned int restart = 0, count = 0;
6918 	unsigned long flags;
6919 
6920 	if (!has_addr_filter(event))
6921 		return;
6922 
6923 	raw_spin_lock_irqsave(&ifh->lock, flags);
6924 	list_for_each_entry(filter, &ifh->list, entry) {
6925 		if (filter->path.dentry) {
6926 			event->addr_filter_ranges[count].start = 0;
6927 			event->addr_filter_ranges[count].size = 0;
6928 			restart++;
6929 		}
6930 
6931 		count++;
6932 	}
6933 
6934 	if (restart)
6935 		event->addr_filters_gen++;
6936 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6937 
6938 	if (restart)
6939 		perf_event_stop(event, 1);
6940 }
6941 
6942 void perf_event_exec(void)
6943 {
6944 	struct perf_event_context *ctx;
6945 	int ctxn;
6946 
6947 	rcu_read_lock();
6948 	for_each_task_context_nr(ctxn) {
6949 		ctx = current->perf_event_ctxp[ctxn];
6950 		if (!ctx)
6951 			continue;
6952 
6953 		perf_event_enable_on_exec(ctxn);
6954 
6955 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6956 				   true);
6957 	}
6958 	rcu_read_unlock();
6959 }
6960 
6961 struct remote_output {
6962 	struct ring_buffer	*rb;
6963 	int			err;
6964 };
6965 
6966 static void __perf_event_output_stop(struct perf_event *event, void *data)
6967 {
6968 	struct perf_event *parent = event->parent;
6969 	struct remote_output *ro = data;
6970 	struct ring_buffer *rb = ro->rb;
6971 	struct stop_event_data sd = {
6972 		.event	= event,
6973 	};
6974 
6975 	if (!has_aux(event))
6976 		return;
6977 
6978 	if (!parent)
6979 		parent = event;
6980 
6981 	/*
6982 	 * In case of inheritance, it will be the parent that links to the
6983 	 * ring-buffer, but it will be the child that's actually using it.
6984 	 *
6985 	 * We are using event::rb to determine if the event should be stopped,
6986 	 * however this may race with ring_buffer_attach() (through set_output),
6987 	 * which will make us skip the event that actually needs to be stopped.
6988 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6989 	 * its rb pointer.
6990 	 */
6991 	if (rcu_dereference(parent->rb) == rb)
6992 		ro->err = __perf_event_stop(&sd);
6993 }
6994 
6995 static int __perf_pmu_output_stop(void *info)
6996 {
6997 	struct perf_event *event = info;
6998 	struct pmu *pmu = event->ctx->pmu;
6999 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7000 	struct remote_output ro = {
7001 		.rb	= event->rb,
7002 	};
7003 
7004 	rcu_read_lock();
7005 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7006 	if (cpuctx->task_ctx)
7007 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7008 				   &ro, false);
7009 	rcu_read_unlock();
7010 
7011 	return ro.err;
7012 }
7013 
7014 static void perf_pmu_output_stop(struct perf_event *event)
7015 {
7016 	struct perf_event *iter;
7017 	int err, cpu;
7018 
7019 restart:
7020 	rcu_read_lock();
7021 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7022 		/*
7023 		 * For per-CPU events, we need to make sure that neither they
7024 		 * nor their children are running; for cpu==-1 events it's
7025 		 * sufficient to stop the event itself if it's active, since
7026 		 * it can't have children.
7027 		 */
7028 		cpu = iter->cpu;
7029 		if (cpu == -1)
7030 			cpu = READ_ONCE(iter->oncpu);
7031 
7032 		if (cpu == -1)
7033 			continue;
7034 
7035 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7036 		if (err == -EAGAIN) {
7037 			rcu_read_unlock();
7038 			goto restart;
7039 		}
7040 	}
7041 	rcu_read_unlock();
7042 }
7043 
7044 /*
7045  * task tracking -- fork/exit
7046  *
7047  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7048  */
7049 
7050 struct perf_task_event {
7051 	struct task_struct		*task;
7052 	struct perf_event_context	*task_ctx;
7053 
7054 	struct {
7055 		struct perf_event_header	header;
7056 
7057 		u32				pid;
7058 		u32				ppid;
7059 		u32				tid;
7060 		u32				ptid;
7061 		u64				time;
7062 	} event_id;
7063 };
7064 
7065 static int perf_event_task_match(struct perf_event *event)
7066 {
7067 	return event->attr.comm  || event->attr.mmap ||
7068 	       event->attr.mmap2 || event->attr.mmap_data ||
7069 	       event->attr.task;
7070 }
7071 
7072 static void perf_event_task_output(struct perf_event *event,
7073 				   void *data)
7074 {
7075 	struct perf_task_event *task_event = data;
7076 	struct perf_output_handle handle;
7077 	struct perf_sample_data	sample;
7078 	struct task_struct *task = task_event->task;
7079 	int ret, size = task_event->event_id.header.size;
7080 
7081 	if (!perf_event_task_match(event))
7082 		return;
7083 
7084 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7085 
7086 	ret = perf_output_begin(&handle, event,
7087 				task_event->event_id.header.size);
7088 	if (ret)
7089 		goto out;
7090 
7091 	task_event->event_id.pid = perf_event_pid(event, task);
7092 	task_event->event_id.ppid = perf_event_pid(event, current);
7093 
7094 	task_event->event_id.tid = perf_event_tid(event, task);
7095 	task_event->event_id.ptid = perf_event_tid(event, current);
7096 
7097 	task_event->event_id.time = perf_event_clock(event);
7098 
7099 	perf_output_put(&handle, task_event->event_id);
7100 
7101 	perf_event__output_id_sample(event, &handle, &sample);
7102 
7103 	perf_output_end(&handle);
7104 out:
7105 	task_event->event_id.header.size = size;
7106 }
7107 
7108 static void perf_event_task(struct task_struct *task,
7109 			      struct perf_event_context *task_ctx,
7110 			      int new)
7111 {
7112 	struct perf_task_event task_event;
7113 
7114 	if (!atomic_read(&nr_comm_events) &&
7115 	    !atomic_read(&nr_mmap_events) &&
7116 	    !atomic_read(&nr_task_events))
7117 		return;
7118 
7119 	task_event = (struct perf_task_event){
7120 		.task	  = task,
7121 		.task_ctx = task_ctx,
7122 		.event_id    = {
7123 			.header = {
7124 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7125 				.misc = 0,
7126 				.size = sizeof(task_event.event_id),
7127 			},
7128 			/* .pid  */
7129 			/* .ppid */
7130 			/* .tid  */
7131 			/* .ptid */
7132 			/* .time */
7133 		},
7134 	};
7135 
7136 	perf_iterate_sb(perf_event_task_output,
7137 		       &task_event,
7138 		       task_ctx);
7139 }
7140 
7141 void perf_event_fork(struct task_struct *task)
7142 {
7143 	perf_event_task(task, NULL, 1);
7144 	perf_event_namespaces(task);
7145 }
7146 
7147 /*
7148  * comm tracking
7149  */
7150 
7151 struct perf_comm_event {
7152 	struct task_struct	*task;
7153 	char			*comm;
7154 	int			comm_size;
7155 
7156 	struct {
7157 		struct perf_event_header	header;
7158 
7159 		u32				pid;
7160 		u32				tid;
7161 	} event_id;
7162 };
7163 
7164 static int perf_event_comm_match(struct perf_event *event)
7165 {
7166 	return event->attr.comm;
7167 }
7168 
7169 static void perf_event_comm_output(struct perf_event *event,
7170 				   void *data)
7171 {
7172 	struct perf_comm_event *comm_event = data;
7173 	struct perf_output_handle handle;
7174 	struct perf_sample_data sample;
7175 	int size = comm_event->event_id.header.size;
7176 	int ret;
7177 
7178 	if (!perf_event_comm_match(event))
7179 		return;
7180 
7181 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7182 	ret = perf_output_begin(&handle, event,
7183 				comm_event->event_id.header.size);
7184 
7185 	if (ret)
7186 		goto out;
7187 
7188 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7189 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7190 
7191 	perf_output_put(&handle, comm_event->event_id);
7192 	__output_copy(&handle, comm_event->comm,
7193 				   comm_event->comm_size);
7194 
7195 	perf_event__output_id_sample(event, &handle, &sample);
7196 
7197 	perf_output_end(&handle);
7198 out:
7199 	comm_event->event_id.header.size = size;
7200 }
7201 
7202 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7203 {
7204 	char comm[TASK_COMM_LEN];
7205 	unsigned int size;
7206 
7207 	memset(comm, 0, sizeof(comm));
7208 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7209 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7210 
7211 	comm_event->comm = comm;
7212 	comm_event->comm_size = size;
7213 
7214 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7215 
7216 	perf_iterate_sb(perf_event_comm_output,
7217 		       comm_event,
7218 		       NULL);
7219 }
7220 
7221 void perf_event_comm(struct task_struct *task, bool exec)
7222 {
7223 	struct perf_comm_event comm_event;
7224 
7225 	if (!atomic_read(&nr_comm_events))
7226 		return;
7227 
7228 	comm_event = (struct perf_comm_event){
7229 		.task	= task,
7230 		/* .comm      */
7231 		/* .comm_size */
7232 		.event_id  = {
7233 			.header = {
7234 				.type = PERF_RECORD_COMM,
7235 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7236 				/* .size */
7237 			},
7238 			/* .pid */
7239 			/* .tid */
7240 		},
7241 	};
7242 
7243 	perf_event_comm_event(&comm_event);
7244 }
7245 
7246 /*
7247  * namespaces tracking
7248  */
7249 
7250 struct perf_namespaces_event {
7251 	struct task_struct		*task;
7252 
7253 	struct {
7254 		struct perf_event_header	header;
7255 
7256 		u32				pid;
7257 		u32				tid;
7258 		u64				nr_namespaces;
7259 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7260 	} event_id;
7261 };
7262 
7263 static int perf_event_namespaces_match(struct perf_event *event)
7264 {
7265 	return event->attr.namespaces;
7266 }
7267 
7268 static void perf_event_namespaces_output(struct perf_event *event,
7269 					 void *data)
7270 {
7271 	struct perf_namespaces_event *namespaces_event = data;
7272 	struct perf_output_handle handle;
7273 	struct perf_sample_data sample;
7274 	u16 header_size = namespaces_event->event_id.header.size;
7275 	int ret;
7276 
7277 	if (!perf_event_namespaces_match(event))
7278 		return;
7279 
7280 	perf_event_header__init_id(&namespaces_event->event_id.header,
7281 				   &sample, event);
7282 	ret = perf_output_begin(&handle, event,
7283 				namespaces_event->event_id.header.size);
7284 	if (ret)
7285 		goto out;
7286 
7287 	namespaces_event->event_id.pid = perf_event_pid(event,
7288 							namespaces_event->task);
7289 	namespaces_event->event_id.tid = perf_event_tid(event,
7290 							namespaces_event->task);
7291 
7292 	perf_output_put(&handle, namespaces_event->event_id);
7293 
7294 	perf_event__output_id_sample(event, &handle, &sample);
7295 
7296 	perf_output_end(&handle);
7297 out:
7298 	namespaces_event->event_id.header.size = header_size;
7299 }
7300 
7301 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7302 				   struct task_struct *task,
7303 				   const struct proc_ns_operations *ns_ops)
7304 {
7305 	struct path ns_path;
7306 	struct inode *ns_inode;
7307 	void *error;
7308 
7309 	error = ns_get_path(&ns_path, task, ns_ops);
7310 	if (!error) {
7311 		ns_inode = ns_path.dentry->d_inode;
7312 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7313 		ns_link_info->ino = ns_inode->i_ino;
7314 		path_put(&ns_path);
7315 	}
7316 }
7317 
7318 void perf_event_namespaces(struct task_struct *task)
7319 {
7320 	struct perf_namespaces_event namespaces_event;
7321 	struct perf_ns_link_info *ns_link_info;
7322 
7323 	if (!atomic_read(&nr_namespaces_events))
7324 		return;
7325 
7326 	namespaces_event = (struct perf_namespaces_event){
7327 		.task	= task,
7328 		.event_id  = {
7329 			.header = {
7330 				.type = PERF_RECORD_NAMESPACES,
7331 				.misc = 0,
7332 				.size = sizeof(namespaces_event.event_id),
7333 			},
7334 			/* .pid */
7335 			/* .tid */
7336 			.nr_namespaces = NR_NAMESPACES,
7337 			/* .link_info[NR_NAMESPACES] */
7338 		},
7339 	};
7340 
7341 	ns_link_info = namespaces_event.event_id.link_info;
7342 
7343 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7344 			       task, &mntns_operations);
7345 
7346 #ifdef CONFIG_USER_NS
7347 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7348 			       task, &userns_operations);
7349 #endif
7350 #ifdef CONFIG_NET_NS
7351 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7352 			       task, &netns_operations);
7353 #endif
7354 #ifdef CONFIG_UTS_NS
7355 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7356 			       task, &utsns_operations);
7357 #endif
7358 #ifdef CONFIG_IPC_NS
7359 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7360 			       task, &ipcns_operations);
7361 #endif
7362 #ifdef CONFIG_PID_NS
7363 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7364 			       task, &pidns_operations);
7365 #endif
7366 #ifdef CONFIG_CGROUPS
7367 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7368 			       task, &cgroupns_operations);
7369 #endif
7370 
7371 	perf_iterate_sb(perf_event_namespaces_output,
7372 			&namespaces_event,
7373 			NULL);
7374 }
7375 
7376 /*
7377  * mmap tracking
7378  */
7379 
7380 struct perf_mmap_event {
7381 	struct vm_area_struct	*vma;
7382 
7383 	const char		*file_name;
7384 	int			file_size;
7385 	int			maj, min;
7386 	u64			ino;
7387 	u64			ino_generation;
7388 	u32			prot, flags;
7389 
7390 	struct {
7391 		struct perf_event_header	header;
7392 
7393 		u32				pid;
7394 		u32				tid;
7395 		u64				start;
7396 		u64				len;
7397 		u64				pgoff;
7398 	} event_id;
7399 };
7400 
7401 static int perf_event_mmap_match(struct perf_event *event,
7402 				 void *data)
7403 {
7404 	struct perf_mmap_event *mmap_event = data;
7405 	struct vm_area_struct *vma = mmap_event->vma;
7406 	int executable = vma->vm_flags & VM_EXEC;
7407 
7408 	return (!executable && event->attr.mmap_data) ||
7409 	       (executable && (event->attr.mmap || event->attr.mmap2));
7410 }
7411 
7412 static void perf_event_mmap_output(struct perf_event *event,
7413 				   void *data)
7414 {
7415 	struct perf_mmap_event *mmap_event = data;
7416 	struct perf_output_handle handle;
7417 	struct perf_sample_data sample;
7418 	int size = mmap_event->event_id.header.size;
7419 	u32 type = mmap_event->event_id.header.type;
7420 	int ret;
7421 
7422 	if (!perf_event_mmap_match(event, data))
7423 		return;
7424 
7425 	if (event->attr.mmap2) {
7426 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7427 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7428 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7429 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7430 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7431 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7432 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7433 	}
7434 
7435 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7436 	ret = perf_output_begin(&handle, event,
7437 				mmap_event->event_id.header.size);
7438 	if (ret)
7439 		goto out;
7440 
7441 	mmap_event->event_id.pid = perf_event_pid(event, current);
7442 	mmap_event->event_id.tid = perf_event_tid(event, current);
7443 
7444 	perf_output_put(&handle, mmap_event->event_id);
7445 
7446 	if (event->attr.mmap2) {
7447 		perf_output_put(&handle, mmap_event->maj);
7448 		perf_output_put(&handle, mmap_event->min);
7449 		perf_output_put(&handle, mmap_event->ino);
7450 		perf_output_put(&handle, mmap_event->ino_generation);
7451 		perf_output_put(&handle, mmap_event->prot);
7452 		perf_output_put(&handle, mmap_event->flags);
7453 	}
7454 
7455 	__output_copy(&handle, mmap_event->file_name,
7456 				   mmap_event->file_size);
7457 
7458 	perf_event__output_id_sample(event, &handle, &sample);
7459 
7460 	perf_output_end(&handle);
7461 out:
7462 	mmap_event->event_id.header.size = size;
7463 	mmap_event->event_id.header.type = type;
7464 }
7465 
7466 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7467 {
7468 	struct vm_area_struct *vma = mmap_event->vma;
7469 	struct file *file = vma->vm_file;
7470 	int maj = 0, min = 0;
7471 	u64 ino = 0, gen = 0;
7472 	u32 prot = 0, flags = 0;
7473 	unsigned int size;
7474 	char tmp[16];
7475 	char *buf = NULL;
7476 	char *name;
7477 
7478 	if (vma->vm_flags & VM_READ)
7479 		prot |= PROT_READ;
7480 	if (vma->vm_flags & VM_WRITE)
7481 		prot |= PROT_WRITE;
7482 	if (vma->vm_flags & VM_EXEC)
7483 		prot |= PROT_EXEC;
7484 
7485 	if (vma->vm_flags & VM_MAYSHARE)
7486 		flags = MAP_SHARED;
7487 	else
7488 		flags = MAP_PRIVATE;
7489 
7490 	if (vma->vm_flags & VM_DENYWRITE)
7491 		flags |= MAP_DENYWRITE;
7492 	if (vma->vm_flags & VM_MAYEXEC)
7493 		flags |= MAP_EXECUTABLE;
7494 	if (vma->vm_flags & VM_LOCKED)
7495 		flags |= MAP_LOCKED;
7496 	if (vma->vm_flags & VM_HUGETLB)
7497 		flags |= MAP_HUGETLB;
7498 
7499 	if (file) {
7500 		struct inode *inode;
7501 		dev_t dev;
7502 
7503 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7504 		if (!buf) {
7505 			name = "//enomem";
7506 			goto cpy_name;
7507 		}
7508 		/*
7509 		 * d_path() works from the end of the rb backwards, so we
7510 		 * need to add enough zero bytes after the string to handle
7511 		 * the 64bit alignment we do later.
7512 		 */
7513 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7514 		if (IS_ERR(name)) {
7515 			name = "//toolong";
7516 			goto cpy_name;
7517 		}
7518 		inode = file_inode(vma->vm_file);
7519 		dev = inode->i_sb->s_dev;
7520 		ino = inode->i_ino;
7521 		gen = inode->i_generation;
7522 		maj = MAJOR(dev);
7523 		min = MINOR(dev);
7524 
7525 		goto got_name;
7526 	} else {
7527 		if (vma->vm_ops && vma->vm_ops->name) {
7528 			name = (char *) vma->vm_ops->name(vma);
7529 			if (name)
7530 				goto cpy_name;
7531 		}
7532 
7533 		name = (char *)arch_vma_name(vma);
7534 		if (name)
7535 			goto cpy_name;
7536 
7537 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7538 				vma->vm_end >= vma->vm_mm->brk) {
7539 			name = "[heap]";
7540 			goto cpy_name;
7541 		}
7542 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7543 				vma->vm_end >= vma->vm_mm->start_stack) {
7544 			name = "[stack]";
7545 			goto cpy_name;
7546 		}
7547 
7548 		name = "//anon";
7549 		goto cpy_name;
7550 	}
7551 
7552 cpy_name:
7553 	strlcpy(tmp, name, sizeof(tmp));
7554 	name = tmp;
7555 got_name:
7556 	/*
7557 	 * Since our buffer works in 8 byte units we need to align our string
7558 	 * size to a multiple of 8. However, we must guarantee the tail end is
7559 	 * zero'd out to avoid leaking random bits to userspace.
7560 	 */
7561 	size = strlen(name)+1;
7562 	while (!IS_ALIGNED(size, sizeof(u64)))
7563 		name[size++] = '\0';
7564 
7565 	mmap_event->file_name = name;
7566 	mmap_event->file_size = size;
7567 	mmap_event->maj = maj;
7568 	mmap_event->min = min;
7569 	mmap_event->ino = ino;
7570 	mmap_event->ino_generation = gen;
7571 	mmap_event->prot = prot;
7572 	mmap_event->flags = flags;
7573 
7574 	if (!(vma->vm_flags & VM_EXEC))
7575 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7576 
7577 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7578 
7579 	perf_iterate_sb(perf_event_mmap_output,
7580 		       mmap_event,
7581 		       NULL);
7582 
7583 	kfree(buf);
7584 }
7585 
7586 /*
7587  * Check whether inode and address range match filter criteria.
7588  */
7589 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7590 				     struct file *file, unsigned long offset,
7591 				     unsigned long size)
7592 {
7593 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7594 	if (!filter->path.dentry)
7595 		return false;
7596 
7597 	if (d_inode(filter->path.dentry) != file_inode(file))
7598 		return false;
7599 
7600 	if (filter->offset > offset + size)
7601 		return false;
7602 
7603 	if (filter->offset + filter->size < offset)
7604 		return false;
7605 
7606 	return true;
7607 }
7608 
7609 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7610 					struct vm_area_struct *vma,
7611 					struct perf_addr_filter_range *fr)
7612 {
7613 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7614 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7615 	struct file *file = vma->vm_file;
7616 
7617 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7618 		return false;
7619 
7620 	if (filter->offset < off) {
7621 		fr->start = vma->vm_start;
7622 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7623 	} else {
7624 		fr->start = vma->vm_start + filter->offset - off;
7625 		fr->size = min(vma->vm_end - fr->start, filter->size);
7626 	}
7627 
7628 	return true;
7629 }
7630 
7631 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7632 {
7633 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7634 	struct vm_area_struct *vma = data;
7635 	struct perf_addr_filter *filter;
7636 	unsigned int restart = 0, count = 0;
7637 	unsigned long flags;
7638 
7639 	if (!has_addr_filter(event))
7640 		return;
7641 
7642 	if (!vma->vm_file)
7643 		return;
7644 
7645 	raw_spin_lock_irqsave(&ifh->lock, flags);
7646 	list_for_each_entry(filter, &ifh->list, entry) {
7647 		if (perf_addr_filter_vma_adjust(filter, vma,
7648 						&event->addr_filter_ranges[count]))
7649 			restart++;
7650 
7651 		count++;
7652 	}
7653 
7654 	if (restart)
7655 		event->addr_filters_gen++;
7656 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7657 
7658 	if (restart)
7659 		perf_event_stop(event, 1);
7660 }
7661 
7662 /*
7663  * Adjust all task's events' filters to the new vma
7664  */
7665 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7666 {
7667 	struct perf_event_context *ctx;
7668 	int ctxn;
7669 
7670 	/*
7671 	 * Data tracing isn't supported yet and as such there is no need
7672 	 * to keep track of anything that isn't related to executable code:
7673 	 */
7674 	if (!(vma->vm_flags & VM_EXEC))
7675 		return;
7676 
7677 	rcu_read_lock();
7678 	for_each_task_context_nr(ctxn) {
7679 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7680 		if (!ctx)
7681 			continue;
7682 
7683 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7684 	}
7685 	rcu_read_unlock();
7686 }
7687 
7688 void perf_event_mmap(struct vm_area_struct *vma)
7689 {
7690 	struct perf_mmap_event mmap_event;
7691 
7692 	if (!atomic_read(&nr_mmap_events))
7693 		return;
7694 
7695 	mmap_event = (struct perf_mmap_event){
7696 		.vma	= vma,
7697 		/* .file_name */
7698 		/* .file_size */
7699 		.event_id  = {
7700 			.header = {
7701 				.type = PERF_RECORD_MMAP,
7702 				.misc = PERF_RECORD_MISC_USER,
7703 				/* .size */
7704 			},
7705 			/* .pid */
7706 			/* .tid */
7707 			.start  = vma->vm_start,
7708 			.len    = vma->vm_end - vma->vm_start,
7709 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7710 		},
7711 		/* .maj (attr_mmap2 only) */
7712 		/* .min (attr_mmap2 only) */
7713 		/* .ino (attr_mmap2 only) */
7714 		/* .ino_generation (attr_mmap2 only) */
7715 		/* .prot (attr_mmap2 only) */
7716 		/* .flags (attr_mmap2 only) */
7717 	};
7718 
7719 	perf_addr_filters_adjust(vma);
7720 	perf_event_mmap_event(&mmap_event);
7721 }
7722 
7723 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7724 			  unsigned long size, u64 flags)
7725 {
7726 	struct perf_output_handle handle;
7727 	struct perf_sample_data sample;
7728 	struct perf_aux_event {
7729 		struct perf_event_header	header;
7730 		u64				offset;
7731 		u64				size;
7732 		u64				flags;
7733 	} rec = {
7734 		.header = {
7735 			.type = PERF_RECORD_AUX,
7736 			.misc = 0,
7737 			.size = sizeof(rec),
7738 		},
7739 		.offset		= head,
7740 		.size		= size,
7741 		.flags		= flags,
7742 	};
7743 	int ret;
7744 
7745 	perf_event_header__init_id(&rec.header, &sample, event);
7746 	ret = perf_output_begin(&handle, event, rec.header.size);
7747 
7748 	if (ret)
7749 		return;
7750 
7751 	perf_output_put(&handle, rec);
7752 	perf_event__output_id_sample(event, &handle, &sample);
7753 
7754 	perf_output_end(&handle);
7755 }
7756 
7757 /*
7758  * Lost/dropped samples logging
7759  */
7760 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7761 {
7762 	struct perf_output_handle handle;
7763 	struct perf_sample_data sample;
7764 	int ret;
7765 
7766 	struct {
7767 		struct perf_event_header	header;
7768 		u64				lost;
7769 	} lost_samples_event = {
7770 		.header = {
7771 			.type = PERF_RECORD_LOST_SAMPLES,
7772 			.misc = 0,
7773 			.size = sizeof(lost_samples_event),
7774 		},
7775 		.lost		= lost,
7776 	};
7777 
7778 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7779 
7780 	ret = perf_output_begin(&handle, event,
7781 				lost_samples_event.header.size);
7782 	if (ret)
7783 		return;
7784 
7785 	perf_output_put(&handle, lost_samples_event);
7786 	perf_event__output_id_sample(event, &handle, &sample);
7787 	perf_output_end(&handle);
7788 }
7789 
7790 /*
7791  * context_switch tracking
7792  */
7793 
7794 struct perf_switch_event {
7795 	struct task_struct	*task;
7796 	struct task_struct	*next_prev;
7797 
7798 	struct {
7799 		struct perf_event_header	header;
7800 		u32				next_prev_pid;
7801 		u32				next_prev_tid;
7802 	} event_id;
7803 };
7804 
7805 static int perf_event_switch_match(struct perf_event *event)
7806 {
7807 	return event->attr.context_switch;
7808 }
7809 
7810 static void perf_event_switch_output(struct perf_event *event, void *data)
7811 {
7812 	struct perf_switch_event *se = data;
7813 	struct perf_output_handle handle;
7814 	struct perf_sample_data sample;
7815 	int ret;
7816 
7817 	if (!perf_event_switch_match(event))
7818 		return;
7819 
7820 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7821 	if (event->ctx->task) {
7822 		se->event_id.header.type = PERF_RECORD_SWITCH;
7823 		se->event_id.header.size = sizeof(se->event_id.header);
7824 	} else {
7825 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7826 		se->event_id.header.size = sizeof(se->event_id);
7827 		se->event_id.next_prev_pid =
7828 					perf_event_pid(event, se->next_prev);
7829 		se->event_id.next_prev_tid =
7830 					perf_event_tid(event, se->next_prev);
7831 	}
7832 
7833 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7834 
7835 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7836 	if (ret)
7837 		return;
7838 
7839 	if (event->ctx->task)
7840 		perf_output_put(&handle, se->event_id.header);
7841 	else
7842 		perf_output_put(&handle, se->event_id);
7843 
7844 	perf_event__output_id_sample(event, &handle, &sample);
7845 
7846 	perf_output_end(&handle);
7847 }
7848 
7849 static void perf_event_switch(struct task_struct *task,
7850 			      struct task_struct *next_prev, bool sched_in)
7851 {
7852 	struct perf_switch_event switch_event;
7853 
7854 	/* N.B. caller checks nr_switch_events != 0 */
7855 
7856 	switch_event = (struct perf_switch_event){
7857 		.task		= task,
7858 		.next_prev	= next_prev,
7859 		.event_id	= {
7860 			.header = {
7861 				/* .type */
7862 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7863 				/* .size */
7864 			},
7865 			/* .next_prev_pid */
7866 			/* .next_prev_tid */
7867 		},
7868 	};
7869 
7870 	if (!sched_in && task->state == TASK_RUNNING)
7871 		switch_event.event_id.header.misc |=
7872 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7873 
7874 	perf_iterate_sb(perf_event_switch_output,
7875 		       &switch_event,
7876 		       NULL);
7877 }
7878 
7879 /*
7880  * IRQ throttle logging
7881  */
7882 
7883 static void perf_log_throttle(struct perf_event *event, int enable)
7884 {
7885 	struct perf_output_handle handle;
7886 	struct perf_sample_data sample;
7887 	int ret;
7888 
7889 	struct {
7890 		struct perf_event_header	header;
7891 		u64				time;
7892 		u64				id;
7893 		u64				stream_id;
7894 	} throttle_event = {
7895 		.header = {
7896 			.type = PERF_RECORD_THROTTLE,
7897 			.misc = 0,
7898 			.size = sizeof(throttle_event),
7899 		},
7900 		.time		= perf_event_clock(event),
7901 		.id		= primary_event_id(event),
7902 		.stream_id	= event->id,
7903 	};
7904 
7905 	if (enable)
7906 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7907 
7908 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7909 
7910 	ret = perf_output_begin(&handle, event,
7911 				throttle_event.header.size);
7912 	if (ret)
7913 		return;
7914 
7915 	perf_output_put(&handle, throttle_event);
7916 	perf_event__output_id_sample(event, &handle, &sample);
7917 	perf_output_end(&handle);
7918 }
7919 
7920 /*
7921  * ksymbol register/unregister tracking
7922  */
7923 
7924 struct perf_ksymbol_event {
7925 	const char	*name;
7926 	int		name_len;
7927 	struct {
7928 		struct perf_event_header        header;
7929 		u64				addr;
7930 		u32				len;
7931 		u16				ksym_type;
7932 		u16				flags;
7933 	} event_id;
7934 };
7935 
7936 static int perf_event_ksymbol_match(struct perf_event *event)
7937 {
7938 	return event->attr.ksymbol;
7939 }
7940 
7941 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7942 {
7943 	struct perf_ksymbol_event *ksymbol_event = data;
7944 	struct perf_output_handle handle;
7945 	struct perf_sample_data sample;
7946 	int ret;
7947 
7948 	if (!perf_event_ksymbol_match(event))
7949 		return;
7950 
7951 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7952 				   &sample, event);
7953 	ret = perf_output_begin(&handle, event,
7954 				ksymbol_event->event_id.header.size);
7955 	if (ret)
7956 		return;
7957 
7958 	perf_output_put(&handle, ksymbol_event->event_id);
7959 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7960 	perf_event__output_id_sample(event, &handle, &sample);
7961 
7962 	perf_output_end(&handle);
7963 }
7964 
7965 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7966 			const char *sym)
7967 {
7968 	struct perf_ksymbol_event ksymbol_event;
7969 	char name[KSYM_NAME_LEN];
7970 	u16 flags = 0;
7971 	int name_len;
7972 
7973 	if (!atomic_read(&nr_ksymbol_events))
7974 		return;
7975 
7976 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7977 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7978 		goto err;
7979 
7980 	strlcpy(name, sym, KSYM_NAME_LEN);
7981 	name_len = strlen(name) + 1;
7982 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7983 		name[name_len++] = '\0';
7984 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7985 
7986 	if (unregister)
7987 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7988 
7989 	ksymbol_event = (struct perf_ksymbol_event){
7990 		.name = name,
7991 		.name_len = name_len,
7992 		.event_id = {
7993 			.header = {
7994 				.type = PERF_RECORD_KSYMBOL,
7995 				.size = sizeof(ksymbol_event.event_id) +
7996 					name_len,
7997 			},
7998 			.addr = addr,
7999 			.len = len,
8000 			.ksym_type = ksym_type,
8001 			.flags = flags,
8002 		},
8003 	};
8004 
8005 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8006 	return;
8007 err:
8008 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8009 }
8010 
8011 /*
8012  * bpf program load/unload tracking
8013  */
8014 
8015 struct perf_bpf_event {
8016 	struct bpf_prog	*prog;
8017 	struct {
8018 		struct perf_event_header        header;
8019 		u16				type;
8020 		u16				flags;
8021 		u32				id;
8022 		u8				tag[BPF_TAG_SIZE];
8023 	} event_id;
8024 };
8025 
8026 static int perf_event_bpf_match(struct perf_event *event)
8027 {
8028 	return event->attr.bpf_event;
8029 }
8030 
8031 static void perf_event_bpf_output(struct perf_event *event, void *data)
8032 {
8033 	struct perf_bpf_event *bpf_event = data;
8034 	struct perf_output_handle handle;
8035 	struct perf_sample_data sample;
8036 	int ret;
8037 
8038 	if (!perf_event_bpf_match(event))
8039 		return;
8040 
8041 	perf_event_header__init_id(&bpf_event->event_id.header,
8042 				   &sample, event);
8043 	ret = perf_output_begin(&handle, event,
8044 				bpf_event->event_id.header.size);
8045 	if (ret)
8046 		return;
8047 
8048 	perf_output_put(&handle, bpf_event->event_id);
8049 	perf_event__output_id_sample(event, &handle, &sample);
8050 
8051 	perf_output_end(&handle);
8052 }
8053 
8054 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8055 					 enum perf_bpf_event_type type)
8056 {
8057 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8058 	char sym[KSYM_NAME_LEN];
8059 	int i;
8060 
8061 	if (prog->aux->func_cnt == 0) {
8062 		bpf_get_prog_name(prog, sym);
8063 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8064 				   (u64)(unsigned long)prog->bpf_func,
8065 				   prog->jited_len, unregister, sym);
8066 	} else {
8067 		for (i = 0; i < prog->aux->func_cnt; i++) {
8068 			struct bpf_prog *subprog = prog->aux->func[i];
8069 
8070 			bpf_get_prog_name(subprog, sym);
8071 			perf_event_ksymbol(
8072 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8073 				(u64)(unsigned long)subprog->bpf_func,
8074 				subprog->jited_len, unregister, sym);
8075 		}
8076 	}
8077 }
8078 
8079 void perf_event_bpf_event(struct bpf_prog *prog,
8080 			  enum perf_bpf_event_type type,
8081 			  u16 flags)
8082 {
8083 	struct perf_bpf_event bpf_event;
8084 
8085 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8086 	    type >= PERF_BPF_EVENT_MAX)
8087 		return;
8088 
8089 	switch (type) {
8090 	case PERF_BPF_EVENT_PROG_LOAD:
8091 	case PERF_BPF_EVENT_PROG_UNLOAD:
8092 		if (atomic_read(&nr_ksymbol_events))
8093 			perf_event_bpf_emit_ksymbols(prog, type);
8094 		break;
8095 	default:
8096 		break;
8097 	}
8098 
8099 	if (!atomic_read(&nr_bpf_events))
8100 		return;
8101 
8102 	bpf_event = (struct perf_bpf_event){
8103 		.prog = prog,
8104 		.event_id = {
8105 			.header = {
8106 				.type = PERF_RECORD_BPF_EVENT,
8107 				.size = sizeof(bpf_event.event_id),
8108 			},
8109 			.type = type,
8110 			.flags = flags,
8111 			.id = prog->aux->id,
8112 		},
8113 	};
8114 
8115 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8116 
8117 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8118 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8119 }
8120 
8121 void perf_event_itrace_started(struct perf_event *event)
8122 {
8123 	event->attach_state |= PERF_ATTACH_ITRACE;
8124 }
8125 
8126 static void perf_log_itrace_start(struct perf_event *event)
8127 {
8128 	struct perf_output_handle handle;
8129 	struct perf_sample_data sample;
8130 	struct perf_aux_event {
8131 		struct perf_event_header        header;
8132 		u32				pid;
8133 		u32				tid;
8134 	} rec;
8135 	int ret;
8136 
8137 	if (event->parent)
8138 		event = event->parent;
8139 
8140 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8141 	    event->attach_state & PERF_ATTACH_ITRACE)
8142 		return;
8143 
8144 	rec.header.type	= PERF_RECORD_ITRACE_START;
8145 	rec.header.misc	= 0;
8146 	rec.header.size	= sizeof(rec);
8147 	rec.pid	= perf_event_pid(event, current);
8148 	rec.tid	= perf_event_tid(event, current);
8149 
8150 	perf_event_header__init_id(&rec.header, &sample, event);
8151 	ret = perf_output_begin(&handle, event, rec.header.size);
8152 
8153 	if (ret)
8154 		return;
8155 
8156 	perf_output_put(&handle, rec);
8157 	perf_event__output_id_sample(event, &handle, &sample);
8158 
8159 	perf_output_end(&handle);
8160 }
8161 
8162 static int
8163 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8164 {
8165 	struct hw_perf_event *hwc = &event->hw;
8166 	int ret = 0;
8167 	u64 seq;
8168 
8169 	seq = __this_cpu_read(perf_throttled_seq);
8170 	if (seq != hwc->interrupts_seq) {
8171 		hwc->interrupts_seq = seq;
8172 		hwc->interrupts = 1;
8173 	} else {
8174 		hwc->interrupts++;
8175 		if (unlikely(throttle
8176 			     && hwc->interrupts >= max_samples_per_tick)) {
8177 			__this_cpu_inc(perf_throttled_count);
8178 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8179 			hwc->interrupts = MAX_INTERRUPTS;
8180 			perf_log_throttle(event, 0);
8181 			ret = 1;
8182 		}
8183 	}
8184 
8185 	if (event->attr.freq) {
8186 		u64 now = perf_clock();
8187 		s64 delta = now - hwc->freq_time_stamp;
8188 
8189 		hwc->freq_time_stamp = now;
8190 
8191 		if (delta > 0 && delta < 2*TICK_NSEC)
8192 			perf_adjust_period(event, delta, hwc->last_period, true);
8193 	}
8194 
8195 	return ret;
8196 }
8197 
8198 int perf_event_account_interrupt(struct perf_event *event)
8199 {
8200 	return __perf_event_account_interrupt(event, 1);
8201 }
8202 
8203 /*
8204  * Generic event overflow handling, sampling.
8205  */
8206 
8207 static int __perf_event_overflow(struct perf_event *event,
8208 				   int throttle, struct perf_sample_data *data,
8209 				   struct pt_regs *regs)
8210 {
8211 	int events = atomic_read(&event->event_limit);
8212 	int ret = 0;
8213 
8214 	/*
8215 	 * Non-sampling counters might still use the PMI to fold short
8216 	 * hardware counters, ignore those.
8217 	 */
8218 	if (unlikely(!is_sampling_event(event)))
8219 		return 0;
8220 
8221 	ret = __perf_event_account_interrupt(event, throttle);
8222 
8223 	/*
8224 	 * XXX event_limit might not quite work as expected on inherited
8225 	 * events
8226 	 */
8227 
8228 	event->pending_kill = POLL_IN;
8229 	if (events && atomic_dec_and_test(&event->event_limit)) {
8230 		ret = 1;
8231 		event->pending_kill = POLL_HUP;
8232 
8233 		perf_event_disable_inatomic(event);
8234 	}
8235 
8236 	READ_ONCE(event->overflow_handler)(event, data, regs);
8237 
8238 	if (*perf_event_fasync(event) && event->pending_kill) {
8239 		event->pending_wakeup = 1;
8240 		irq_work_queue(&event->pending);
8241 	}
8242 
8243 	return ret;
8244 }
8245 
8246 int perf_event_overflow(struct perf_event *event,
8247 			  struct perf_sample_data *data,
8248 			  struct pt_regs *regs)
8249 {
8250 	return __perf_event_overflow(event, 1, data, regs);
8251 }
8252 
8253 /*
8254  * Generic software event infrastructure
8255  */
8256 
8257 struct swevent_htable {
8258 	struct swevent_hlist		*swevent_hlist;
8259 	struct mutex			hlist_mutex;
8260 	int				hlist_refcount;
8261 
8262 	/* Recursion avoidance in each contexts */
8263 	int				recursion[PERF_NR_CONTEXTS];
8264 };
8265 
8266 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8267 
8268 /*
8269  * We directly increment event->count and keep a second value in
8270  * event->hw.period_left to count intervals. This period event
8271  * is kept in the range [-sample_period, 0] so that we can use the
8272  * sign as trigger.
8273  */
8274 
8275 u64 perf_swevent_set_period(struct perf_event *event)
8276 {
8277 	struct hw_perf_event *hwc = &event->hw;
8278 	u64 period = hwc->last_period;
8279 	u64 nr, offset;
8280 	s64 old, val;
8281 
8282 	hwc->last_period = hwc->sample_period;
8283 
8284 again:
8285 	old = val = local64_read(&hwc->period_left);
8286 	if (val < 0)
8287 		return 0;
8288 
8289 	nr = div64_u64(period + val, period);
8290 	offset = nr * period;
8291 	val -= offset;
8292 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8293 		goto again;
8294 
8295 	return nr;
8296 }
8297 
8298 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8299 				    struct perf_sample_data *data,
8300 				    struct pt_regs *regs)
8301 {
8302 	struct hw_perf_event *hwc = &event->hw;
8303 	int throttle = 0;
8304 
8305 	if (!overflow)
8306 		overflow = perf_swevent_set_period(event);
8307 
8308 	if (hwc->interrupts == MAX_INTERRUPTS)
8309 		return;
8310 
8311 	for (; overflow; overflow--) {
8312 		if (__perf_event_overflow(event, throttle,
8313 					    data, regs)) {
8314 			/*
8315 			 * We inhibit the overflow from happening when
8316 			 * hwc->interrupts == MAX_INTERRUPTS.
8317 			 */
8318 			break;
8319 		}
8320 		throttle = 1;
8321 	}
8322 }
8323 
8324 static void perf_swevent_event(struct perf_event *event, u64 nr,
8325 			       struct perf_sample_data *data,
8326 			       struct pt_regs *regs)
8327 {
8328 	struct hw_perf_event *hwc = &event->hw;
8329 
8330 	local64_add(nr, &event->count);
8331 
8332 	if (!regs)
8333 		return;
8334 
8335 	if (!is_sampling_event(event))
8336 		return;
8337 
8338 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8339 		data->period = nr;
8340 		return perf_swevent_overflow(event, 1, data, regs);
8341 	} else
8342 		data->period = event->hw.last_period;
8343 
8344 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8345 		return perf_swevent_overflow(event, 1, data, regs);
8346 
8347 	if (local64_add_negative(nr, &hwc->period_left))
8348 		return;
8349 
8350 	perf_swevent_overflow(event, 0, data, regs);
8351 }
8352 
8353 static int perf_exclude_event(struct perf_event *event,
8354 			      struct pt_regs *regs)
8355 {
8356 	if (event->hw.state & PERF_HES_STOPPED)
8357 		return 1;
8358 
8359 	if (regs) {
8360 		if (event->attr.exclude_user && user_mode(regs))
8361 			return 1;
8362 
8363 		if (event->attr.exclude_kernel && !user_mode(regs))
8364 			return 1;
8365 	}
8366 
8367 	return 0;
8368 }
8369 
8370 static int perf_swevent_match(struct perf_event *event,
8371 				enum perf_type_id type,
8372 				u32 event_id,
8373 				struct perf_sample_data *data,
8374 				struct pt_regs *regs)
8375 {
8376 	if (event->attr.type != type)
8377 		return 0;
8378 
8379 	if (event->attr.config != event_id)
8380 		return 0;
8381 
8382 	if (perf_exclude_event(event, regs))
8383 		return 0;
8384 
8385 	return 1;
8386 }
8387 
8388 static inline u64 swevent_hash(u64 type, u32 event_id)
8389 {
8390 	u64 val = event_id | (type << 32);
8391 
8392 	return hash_64(val, SWEVENT_HLIST_BITS);
8393 }
8394 
8395 static inline struct hlist_head *
8396 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8397 {
8398 	u64 hash = swevent_hash(type, event_id);
8399 
8400 	return &hlist->heads[hash];
8401 }
8402 
8403 /* For the read side: events when they trigger */
8404 static inline struct hlist_head *
8405 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8406 {
8407 	struct swevent_hlist *hlist;
8408 
8409 	hlist = rcu_dereference(swhash->swevent_hlist);
8410 	if (!hlist)
8411 		return NULL;
8412 
8413 	return __find_swevent_head(hlist, type, event_id);
8414 }
8415 
8416 /* For the event head insertion and removal in the hlist */
8417 static inline struct hlist_head *
8418 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8419 {
8420 	struct swevent_hlist *hlist;
8421 	u32 event_id = event->attr.config;
8422 	u64 type = event->attr.type;
8423 
8424 	/*
8425 	 * Event scheduling is always serialized against hlist allocation
8426 	 * and release. Which makes the protected version suitable here.
8427 	 * The context lock guarantees that.
8428 	 */
8429 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8430 					  lockdep_is_held(&event->ctx->lock));
8431 	if (!hlist)
8432 		return NULL;
8433 
8434 	return __find_swevent_head(hlist, type, event_id);
8435 }
8436 
8437 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8438 				    u64 nr,
8439 				    struct perf_sample_data *data,
8440 				    struct pt_regs *regs)
8441 {
8442 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8443 	struct perf_event *event;
8444 	struct hlist_head *head;
8445 
8446 	rcu_read_lock();
8447 	head = find_swevent_head_rcu(swhash, type, event_id);
8448 	if (!head)
8449 		goto end;
8450 
8451 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8452 		if (perf_swevent_match(event, type, event_id, data, regs))
8453 			perf_swevent_event(event, nr, data, regs);
8454 	}
8455 end:
8456 	rcu_read_unlock();
8457 }
8458 
8459 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8460 
8461 int perf_swevent_get_recursion_context(void)
8462 {
8463 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8464 
8465 	return get_recursion_context(swhash->recursion);
8466 }
8467 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8468 
8469 void perf_swevent_put_recursion_context(int rctx)
8470 {
8471 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8472 
8473 	put_recursion_context(swhash->recursion, rctx);
8474 }
8475 
8476 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8477 {
8478 	struct perf_sample_data data;
8479 
8480 	if (WARN_ON_ONCE(!regs))
8481 		return;
8482 
8483 	perf_sample_data_init(&data, addr, 0);
8484 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8485 }
8486 
8487 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8488 {
8489 	int rctx;
8490 
8491 	preempt_disable_notrace();
8492 	rctx = perf_swevent_get_recursion_context();
8493 	if (unlikely(rctx < 0))
8494 		goto fail;
8495 
8496 	___perf_sw_event(event_id, nr, regs, addr);
8497 
8498 	perf_swevent_put_recursion_context(rctx);
8499 fail:
8500 	preempt_enable_notrace();
8501 }
8502 
8503 static void perf_swevent_read(struct perf_event *event)
8504 {
8505 }
8506 
8507 static int perf_swevent_add(struct perf_event *event, int flags)
8508 {
8509 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8510 	struct hw_perf_event *hwc = &event->hw;
8511 	struct hlist_head *head;
8512 
8513 	if (is_sampling_event(event)) {
8514 		hwc->last_period = hwc->sample_period;
8515 		perf_swevent_set_period(event);
8516 	}
8517 
8518 	hwc->state = !(flags & PERF_EF_START);
8519 
8520 	head = find_swevent_head(swhash, event);
8521 	if (WARN_ON_ONCE(!head))
8522 		return -EINVAL;
8523 
8524 	hlist_add_head_rcu(&event->hlist_entry, head);
8525 	perf_event_update_userpage(event);
8526 
8527 	return 0;
8528 }
8529 
8530 static void perf_swevent_del(struct perf_event *event, int flags)
8531 {
8532 	hlist_del_rcu(&event->hlist_entry);
8533 }
8534 
8535 static void perf_swevent_start(struct perf_event *event, int flags)
8536 {
8537 	event->hw.state = 0;
8538 }
8539 
8540 static void perf_swevent_stop(struct perf_event *event, int flags)
8541 {
8542 	event->hw.state = PERF_HES_STOPPED;
8543 }
8544 
8545 /* Deref the hlist from the update side */
8546 static inline struct swevent_hlist *
8547 swevent_hlist_deref(struct swevent_htable *swhash)
8548 {
8549 	return rcu_dereference_protected(swhash->swevent_hlist,
8550 					 lockdep_is_held(&swhash->hlist_mutex));
8551 }
8552 
8553 static void swevent_hlist_release(struct swevent_htable *swhash)
8554 {
8555 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8556 
8557 	if (!hlist)
8558 		return;
8559 
8560 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8561 	kfree_rcu(hlist, rcu_head);
8562 }
8563 
8564 static void swevent_hlist_put_cpu(int cpu)
8565 {
8566 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8567 
8568 	mutex_lock(&swhash->hlist_mutex);
8569 
8570 	if (!--swhash->hlist_refcount)
8571 		swevent_hlist_release(swhash);
8572 
8573 	mutex_unlock(&swhash->hlist_mutex);
8574 }
8575 
8576 static void swevent_hlist_put(void)
8577 {
8578 	int cpu;
8579 
8580 	for_each_possible_cpu(cpu)
8581 		swevent_hlist_put_cpu(cpu);
8582 }
8583 
8584 static int swevent_hlist_get_cpu(int cpu)
8585 {
8586 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8587 	int err = 0;
8588 
8589 	mutex_lock(&swhash->hlist_mutex);
8590 	if (!swevent_hlist_deref(swhash) &&
8591 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8592 		struct swevent_hlist *hlist;
8593 
8594 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8595 		if (!hlist) {
8596 			err = -ENOMEM;
8597 			goto exit;
8598 		}
8599 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8600 	}
8601 	swhash->hlist_refcount++;
8602 exit:
8603 	mutex_unlock(&swhash->hlist_mutex);
8604 
8605 	return err;
8606 }
8607 
8608 static int swevent_hlist_get(void)
8609 {
8610 	int err, cpu, failed_cpu;
8611 
8612 	mutex_lock(&pmus_lock);
8613 	for_each_possible_cpu(cpu) {
8614 		err = swevent_hlist_get_cpu(cpu);
8615 		if (err) {
8616 			failed_cpu = cpu;
8617 			goto fail;
8618 		}
8619 	}
8620 	mutex_unlock(&pmus_lock);
8621 	return 0;
8622 fail:
8623 	for_each_possible_cpu(cpu) {
8624 		if (cpu == failed_cpu)
8625 			break;
8626 		swevent_hlist_put_cpu(cpu);
8627 	}
8628 	mutex_unlock(&pmus_lock);
8629 	return err;
8630 }
8631 
8632 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8633 
8634 static void sw_perf_event_destroy(struct perf_event *event)
8635 {
8636 	u64 event_id = event->attr.config;
8637 
8638 	WARN_ON(event->parent);
8639 
8640 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8641 	swevent_hlist_put();
8642 }
8643 
8644 static int perf_swevent_init(struct perf_event *event)
8645 {
8646 	u64 event_id = event->attr.config;
8647 
8648 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8649 		return -ENOENT;
8650 
8651 	/*
8652 	 * no branch sampling for software events
8653 	 */
8654 	if (has_branch_stack(event))
8655 		return -EOPNOTSUPP;
8656 
8657 	switch (event_id) {
8658 	case PERF_COUNT_SW_CPU_CLOCK:
8659 	case PERF_COUNT_SW_TASK_CLOCK:
8660 		return -ENOENT;
8661 
8662 	default:
8663 		break;
8664 	}
8665 
8666 	if (event_id >= PERF_COUNT_SW_MAX)
8667 		return -ENOENT;
8668 
8669 	if (!event->parent) {
8670 		int err;
8671 
8672 		err = swevent_hlist_get();
8673 		if (err)
8674 			return err;
8675 
8676 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8677 		event->destroy = sw_perf_event_destroy;
8678 	}
8679 
8680 	return 0;
8681 }
8682 
8683 static struct pmu perf_swevent = {
8684 	.task_ctx_nr	= perf_sw_context,
8685 
8686 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8687 
8688 	.event_init	= perf_swevent_init,
8689 	.add		= perf_swevent_add,
8690 	.del		= perf_swevent_del,
8691 	.start		= perf_swevent_start,
8692 	.stop		= perf_swevent_stop,
8693 	.read		= perf_swevent_read,
8694 };
8695 
8696 #ifdef CONFIG_EVENT_TRACING
8697 
8698 static int perf_tp_filter_match(struct perf_event *event,
8699 				struct perf_sample_data *data)
8700 {
8701 	void *record = data->raw->frag.data;
8702 
8703 	/* only top level events have filters set */
8704 	if (event->parent)
8705 		event = event->parent;
8706 
8707 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8708 		return 1;
8709 	return 0;
8710 }
8711 
8712 static int perf_tp_event_match(struct perf_event *event,
8713 				struct perf_sample_data *data,
8714 				struct pt_regs *regs)
8715 {
8716 	if (event->hw.state & PERF_HES_STOPPED)
8717 		return 0;
8718 	/*
8719 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8720 	 */
8721 	if (event->attr.exclude_kernel && !user_mode(regs))
8722 		return 0;
8723 
8724 	if (!perf_tp_filter_match(event, data))
8725 		return 0;
8726 
8727 	return 1;
8728 }
8729 
8730 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8731 			       struct trace_event_call *call, u64 count,
8732 			       struct pt_regs *regs, struct hlist_head *head,
8733 			       struct task_struct *task)
8734 {
8735 	if (bpf_prog_array_valid(call)) {
8736 		*(struct pt_regs **)raw_data = regs;
8737 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8738 			perf_swevent_put_recursion_context(rctx);
8739 			return;
8740 		}
8741 	}
8742 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8743 		      rctx, task);
8744 }
8745 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8746 
8747 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8748 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8749 		   struct task_struct *task)
8750 {
8751 	struct perf_sample_data data;
8752 	struct perf_event *event;
8753 
8754 	struct perf_raw_record raw = {
8755 		.frag = {
8756 			.size = entry_size,
8757 			.data = record,
8758 		},
8759 	};
8760 
8761 	perf_sample_data_init(&data, 0, 0);
8762 	data.raw = &raw;
8763 
8764 	perf_trace_buf_update(record, event_type);
8765 
8766 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8767 		if (perf_tp_event_match(event, &data, regs))
8768 			perf_swevent_event(event, count, &data, regs);
8769 	}
8770 
8771 	/*
8772 	 * If we got specified a target task, also iterate its context and
8773 	 * deliver this event there too.
8774 	 */
8775 	if (task && task != current) {
8776 		struct perf_event_context *ctx;
8777 		struct trace_entry *entry = record;
8778 
8779 		rcu_read_lock();
8780 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8781 		if (!ctx)
8782 			goto unlock;
8783 
8784 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8785 			if (event->cpu != smp_processor_id())
8786 				continue;
8787 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8788 				continue;
8789 			if (event->attr.config != entry->type)
8790 				continue;
8791 			if (perf_tp_event_match(event, &data, regs))
8792 				perf_swevent_event(event, count, &data, regs);
8793 		}
8794 unlock:
8795 		rcu_read_unlock();
8796 	}
8797 
8798 	perf_swevent_put_recursion_context(rctx);
8799 }
8800 EXPORT_SYMBOL_GPL(perf_tp_event);
8801 
8802 static void tp_perf_event_destroy(struct perf_event *event)
8803 {
8804 	perf_trace_destroy(event);
8805 }
8806 
8807 static int perf_tp_event_init(struct perf_event *event)
8808 {
8809 	int err;
8810 
8811 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8812 		return -ENOENT;
8813 
8814 	/*
8815 	 * no branch sampling for tracepoint events
8816 	 */
8817 	if (has_branch_stack(event))
8818 		return -EOPNOTSUPP;
8819 
8820 	err = perf_trace_init(event);
8821 	if (err)
8822 		return err;
8823 
8824 	event->destroy = tp_perf_event_destroy;
8825 
8826 	return 0;
8827 }
8828 
8829 static struct pmu perf_tracepoint = {
8830 	.task_ctx_nr	= perf_sw_context,
8831 
8832 	.event_init	= perf_tp_event_init,
8833 	.add		= perf_trace_add,
8834 	.del		= perf_trace_del,
8835 	.start		= perf_swevent_start,
8836 	.stop		= perf_swevent_stop,
8837 	.read		= perf_swevent_read,
8838 };
8839 
8840 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8841 /*
8842  * Flags in config, used by dynamic PMU kprobe and uprobe
8843  * The flags should match following PMU_FORMAT_ATTR().
8844  *
8845  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8846  *                               if not set, create kprobe/uprobe
8847  *
8848  * The following values specify a reference counter (or semaphore in the
8849  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8850  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8851  *
8852  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8853  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8854  */
8855 enum perf_probe_config {
8856 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8857 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8858 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8859 };
8860 
8861 PMU_FORMAT_ATTR(retprobe, "config:0");
8862 #endif
8863 
8864 #ifdef CONFIG_KPROBE_EVENTS
8865 static struct attribute *kprobe_attrs[] = {
8866 	&format_attr_retprobe.attr,
8867 	NULL,
8868 };
8869 
8870 static struct attribute_group kprobe_format_group = {
8871 	.name = "format",
8872 	.attrs = kprobe_attrs,
8873 };
8874 
8875 static const struct attribute_group *kprobe_attr_groups[] = {
8876 	&kprobe_format_group,
8877 	NULL,
8878 };
8879 
8880 static int perf_kprobe_event_init(struct perf_event *event);
8881 static struct pmu perf_kprobe = {
8882 	.task_ctx_nr	= perf_sw_context,
8883 	.event_init	= perf_kprobe_event_init,
8884 	.add		= perf_trace_add,
8885 	.del		= perf_trace_del,
8886 	.start		= perf_swevent_start,
8887 	.stop		= perf_swevent_stop,
8888 	.read		= perf_swevent_read,
8889 	.attr_groups	= kprobe_attr_groups,
8890 };
8891 
8892 static int perf_kprobe_event_init(struct perf_event *event)
8893 {
8894 	int err;
8895 	bool is_retprobe;
8896 
8897 	if (event->attr.type != perf_kprobe.type)
8898 		return -ENOENT;
8899 
8900 	if (!capable(CAP_SYS_ADMIN))
8901 		return -EACCES;
8902 
8903 	/*
8904 	 * no branch sampling for probe events
8905 	 */
8906 	if (has_branch_stack(event))
8907 		return -EOPNOTSUPP;
8908 
8909 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8910 	err = perf_kprobe_init(event, is_retprobe);
8911 	if (err)
8912 		return err;
8913 
8914 	event->destroy = perf_kprobe_destroy;
8915 
8916 	return 0;
8917 }
8918 #endif /* CONFIG_KPROBE_EVENTS */
8919 
8920 #ifdef CONFIG_UPROBE_EVENTS
8921 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8922 
8923 static struct attribute *uprobe_attrs[] = {
8924 	&format_attr_retprobe.attr,
8925 	&format_attr_ref_ctr_offset.attr,
8926 	NULL,
8927 };
8928 
8929 static struct attribute_group uprobe_format_group = {
8930 	.name = "format",
8931 	.attrs = uprobe_attrs,
8932 };
8933 
8934 static const struct attribute_group *uprobe_attr_groups[] = {
8935 	&uprobe_format_group,
8936 	NULL,
8937 };
8938 
8939 static int perf_uprobe_event_init(struct perf_event *event);
8940 static struct pmu perf_uprobe = {
8941 	.task_ctx_nr	= perf_sw_context,
8942 	.event_init	= perf_uprobe_event_init,
8943 	.add		= perf_trace_add,
8944 	.del		= perf_trace_del,
8945 	.start		= perf_swevent_start,
8946 	.stop		= perf_swevent_stop,
8947 	.read		= perf_swevent_read,
8948 	.attr_groups	= uprobe_attr_groups,
8949 };
8950 
8951 static int perf_uprobe_event_init(struct perf_event *event)
8952 {
8953 	int err;
8954 	unsigned long ref_ctr_offset;
8955 	bool is_retprobe;
8956 
8957 	if (event->attr.type != perf_uprobe.type)
8958 		return -ENOENT;
8959 
8960 	if (!capable(CAP_SYS_ADMIN))
8961 		return -EACCES;
8962 
8963 	/*
8964 	 * no branch sampling for probe events
8965 	 */
8966 	if (has_branch_stack(event))
8967 		return -EOPNOTSUPP;
8968 
8969 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8970 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8971 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8972 	if (err)
8973 		return err;
8974 
8975 	event->destroy = perf_uprobe_destroy;
8976 
8977 	return 0;
8978 }
8979 #endif /* CONFIG_UPROBE_EVENTS */
8980 
8981 static inline void perf_tp_register(void)
8982 {
8983 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8984 #ifdef CONFIG_KPROBE_EVENTS
8985 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8986 #endif
8987 #ifdef CONFIG_UPROBE_EVENTS
8988 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8989 #endif
8990 }
8991 
8992 static void perf_event_free_filter(struct perf_event *event)
8993 {
8994 	ftrace_profile_free_filter(event);
8995 }
8996 
8997 #ifdef CONFIG_BPF_SYSCALL
8998 static void bpf_overflow_handler(struct perf_event *event,
8999 				 struct perf_sample_data *data,
9000 				 struct pt_regs *regs)
9001 {
9002 	struct bpf_perf_event_data_kern ctx = {
9003 		.data = data,
9004 		.event = event,
9005 	};
9006 	int ret = 0;
9007 
9008 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9009 	preempt_disable();
9010 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9011 		goto out;
9012 	rcu_read_lock();
9013 	ret = BPF_PROG_RUN(event->prog, &ctx);
9014 	rcu_read_unlock();
9015 out:
9016 	__this_cpu_dec(bpf_prog_active);
9017 	preempt_enable();
9018 	if (!ret)
9019 		return;
9020 
9021 	event->orig_overflow_handler(event, data, regs);
9022 }
9023 
9024 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9025 {
9026 	struct bpf_prog *prog;
9027 
9028 	if (event->overflow_handler_context)
9029 		/* hw breakpoint or kernel counter */
9030 		return -EINVAL;
9031 
9032 	if (event->prog)
9033 		return -EEXIST;
9034 
9035 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9036 	if (IS_ERR(prog))
9037 		return PTR_ERR(prog);
9038 
9039 	event->prog = prog;
9040 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9041 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9042 	return 0;
9043 }
9044 
9045 static void perf_event_free_bpf_handler(struct perf_event *event)
9046 {
9047 	struct bpf_prog *prog = event->prog;
9048 
9049 	if (!prog)
9050 		return;
9051 
9052 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9053 	event->prog = NULL;
9054 	bpf_prog_put(prog);
9055 }
9056 #else
9057 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9058 {
9059 	return -EOPNOTSUPP;
9060 }
9061 static void perf_event_free_bpf_handler(struct perf_event *event)
9062 {
9063 }
9064 #endif
9065 
9066 /*
9067  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9068  * with perf_event_open()
9069  */
9070 static inline bool perf_event_is_tracing(struct perf_event *event)
9071 {
9072 	if (event->pmu == &perf_tracepoint)
9073 		return true;
9074 #ifdef CONFIG_KPROBE_EVENTS
9075 	if (event->pmu == &perf_kprobe)
9076 		return true;
9077 #endif
9078 #ifdef CONFIG_UPROBE_EVENTS
9079 	if (event->pmu == &perf_uprobe)
9080 		return true;
9081 #endif
9082 	return false;
9083 }
9084 
9085 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9086 {
9087 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9088 	struct bpf_prog *prog;
9089 	int ret;
9090 
9091 	if (!perf_event_is_tracing(event))
9092 		return perf_event_set_bpf_handler(event, prog_fd);
9093 
9094 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9095 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9096 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9097 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9098 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9099 		return -EINVAL;
9100 
9101 	prog = bpf_prog_get(prog_fd);
9102 	if (IS_ERR(prog))
9103 		return PTR_ERR(prog);
9104 
9105 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9106 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9107 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9108 		/* valid fd, but invalid bpf program type */
9109 		bpf_prog_put(prog);
9110 		return -EINVAL;
9111 	}
9112 
9113 	/* Kprobe override only works for kprobes, not uprobes. */
9114 	if (prog->kprobe_override &&
9115 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9116 		bpf_prog_put(prog);
9117 		return -EINVAL;
9118 	}
9119 
9120 	if (is_tracepoint || is_syscall_tp) {
9121 		int off = trace_event_get_offsets(event->tp_event);
9122 
9123 		if (prog->aux->max_ctx_offset > off) {
9124 			bpf_prog_put(prog);
9125 			return -EACCES;
9126 		}
9127 	}
9128 
9129 	ret = perf_event_attach_bpf_prog(event, prog);
9130 	if (ret)
9131 		bpf_prog_put(prog);
9132 	return ret;
9133 }
9134 
9135 static void perf_event_free_bpf_prog(struct perf_event *event)
9136 {
9137 	if (!perf_event_is_tracing(event)) {
9138 		perf_event_free_bpf_handler(event);
9139 		return;
9140 	}
9141 	perf_event_detach_bpf_prog(event);
9142 }
9143 
9144 #else
9145 
9146 static inline void perf_tp_register(void)
9147 {
9148 }
9149 
9150 static void perf_event_free_filter(struct perf_event *event)
9151 {
9152 }
9153 
9154 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9155 {
9156 	return -ENOENT;
9157 }
9158 
9159 static void perf_event_free_bpf_prog(struct perf_event *event)
9160 {
9161 }
9162 #endif /* CONFIG_EVENT_TRACING */
9163 
9164 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9165 void perf_bp_event(struct perf_event *bp, void *data)
9166 {
9167 	struct perf_sample_data sample;
9168 	struct pt_regs *regs = data;
9169 
9170 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9171 
9172 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9173 		perf_swevent_event(bp, 1, &sample, regs);
9174 }
9175 #endif
9176 
9177 /*
9178  * Allocate a new address filter
9179  */
9180 static struct perf_addr_filter *
9181 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9182 {
9183 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9184 	struct perf_addr_filter *filter;
9185 
9186 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9187 	if (!filter)
9188 		return NULL;
9189 
9190 	INIT_LIST_HEAD(&filter->entry);
9191 	list_add_tail(&filter->entry, filters);
9192 
9193 	return filter;
9194 }
9195 
9196 static void free_filters_list(struct list_head *filters)
9197 {
9198 	struct perf_addr_filter *filter, *iter;
9199 
9200 	list_for_each_entry_safe(filter, iter, filters, entry) {
9201 		path_put(&filter->path);
9202 		list_del(&filter->entry);
9203 		kfree(filter);
9204 	}
9205 }
9206 
9207 /*
9208  * Free existing address filters and optionally install new ones
9209  */
9210 static void perf_addr_filters_splice(struct perf_event *event,
9211 				     struct list_head *head)
9212 {
9213 	unsigned long flags;
9214 	LIST_HEAD(list);
9215 
9216 	if (!has_addr_filter(event))
9217 		return;
9218 
9219 	/* don't bother with children, they don't have their own filters */
9220 	if (event->parent)
9221 		return;
9222 
9223 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9224 
9225 	list_splice_init(&event->addr_filters.list, &list);
9226 	if (head)
9227 		list_splice(head, &event->addr_filters.list);
9228 
9229 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9230 
9231 	free_filters_list(&list);
9232 }
9233 
9234 /*
9235  * Scan through mm's vmas and see if one of them matches the
9236  * @filter; if so, adjust filter's address range.
9237  * Called with mm::mmap_sem down for reading.
9238  */
9239 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9240 				   struct mm_struct *mm,
9241 				   struct perf_addr_filter_range *fr)
9242 {
9243 	struct vm_area_struct *vma;
9244 
9245 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9246 		if (!vma->vm_file)
9247 			continue;
9248 
9249 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9250 			return;
9251 	}
9252 }
9253 
9254 /*
9255  * Update event's address range filters based on the
9256  * task's existing mappings, if any.
9257  */
9258 static void perf_event_addr_filters_apply(struct perf_event *event)
9259 {
9260 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9261 	struct task_struct *task = READ_ONCE(event->ctx->task);
9262 	struct perf_addr_filter *filter;
9263 	struct mm_struct *mm = NULL;
9264 	unsigned int count = 0;
9265 	unsigned long flags;
9266 
9267 	/*
9268 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9269 	 * will stop on the parent's child_mutex that our caller is also holding
9270 	 */
9271 	if (task == TASK_TOMBSTONE)
9272 		return;
9273 
9274 	if (ifh->nr_file_filters) {
9275 		mm = get_task_mm(event->ctx->task);
9276 		if (!mm)
9277 			goto restart;
9278 
9279 		down_read(&mm->mmap_sem);
9280 	}
9281 
9282 	raw_spin_lock_irqsave(&ifh->lock, flags);
9283 	list_for_each_entry(filter, &ifh->list, entry) {
9284 		if (filter->path.dentry) {
9285 			/*
9286 			 * Adjust base offset if the filter is associated to a
9287 			 * binary that needs to be mapped:
9288 			 */
9289 			event->addr_filter_ranges[count].start = 0;
9290 			event->addr_filter_ranges[count].size = 0;
9291 
9292 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9293 		} else {
9294 			event->addr_filter_ranges[count].start = filter->offset;
9295 			event->addr_filter_ranges[count].size  = filter->size;
9296 		}
9297 
9298 		count++;
9299 	}
9300 
9301 	event->addr_filters_gen++;
9302 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9303 
9304 	if (ifh->nr_file_filters) {
9305 		up_read(&mm->mmap_sem);
9306 
9307 		mmput(mm);
9308 	}
9309 
9310 restart:
9311 	perf_event_stop(event, 1);
9312 }
9313 
9314 /*
9315  * Address range filtering: limiting the data to certain
9316  * instruction address ranges. Filters are ioctl()ed to us from
9317  * userspace as ascii strings.
9318  *
9319  * Filter string format:
9320  *
9321  * ACTION RANGE_SPEC
9322  * where ACTION is one of the
9323  *  * "filter": limit the trace to this region
9324  *  * "start": start tracing from this address
9325  *  * "stop": stop tracing at this address/region;
9326  * RANGE_SPEC is
9327  *  * for kernel addresses: <start address>[/<size>]
9328  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9329  *
9330  * if <size> is not specified or is zero, the range is treated as a single
9331  * address; not valid for ACTION=="filter".
9332  */
9333 enum {
9334 	IF_ACT_NONE = -1,
9335 	IF_ACT_FILTER,
9336 	IF_ACT_START,
9337 	IF_ACT_STOP,
9338 	IF_SRC_FILE,
9339 	IF_SRC_KERNEL,
9340 	IF_SRC_FILEADDR,
9341 	IF_SRC_KERNELADDR,
9342 };
9343 
9344 enum {
9345 	IF_STATE_ACTION = 0,
9346 	IF_STATE_SOURCE,
9347 	IF_STATE_END,
9348 };
9349 
9350 static const match_table_t if_tokens = {
9351 	{ IF_ACT_FILTER,	"filter" },
9352 	{ IF_ACT_START,		"start" },
9353 	{ IF_ACT_STOP,		"stop" },
9354 	{ IF_SRC_FILE,		"%u/%u@%s" },
9355 	{ IF_SRC_KERNEL,	"%u/%u" },
9356 	{ IF_SRC_FILEADDR,	"%u@%s" },
9357 	{ IF_SRC_KERNELADDR,	"%u" },
9358 	{ IF_ACT_NONE,		NULL },
9359 };
9360 
9361 /*
9362  * Address filter string parser
9363  */
9364 static int
9365 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9366 			     struct list_head *filters)
9367 {
9368 	struct perf_addr_filter *filter = NULL;
9369 	char *start, *orig, *filename = NULL;
9370 	substring_t args[MAX_OPT_ARGS];
9371 	int state = IF_STATE_ACTION, token;
9372 	unsigned int kernel = 0;
9373 	int ret = -EINVAL;
9374 
9375 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9376 	if (!fstr)
9377 		return -ENOMEM;
9378 
9379 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9380 		static const enum perf_addr_filter_action_t actions[] = {
9381 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9382 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9383 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9384 		};
9385 		ret = -EINVAL;
9386 
9387 		if (!*start)
9388 			continue;
9389 
9390 		/* filter definition begins */
9391 		if (state == IF_STATE_ACTION) {
9392 			filter = perf_addr_filter_new(event, filters);
9393 			if (!filter)
9394 				goto fail;
9395 		}
9396 
9397 		token = match_token(start, if_tokens, args);
9398 		switch (token) {
9399 		case IF_ACT_FILTER:
9400 		case IF_ACT_START:
9401 		case IF_ACT_STOP:
9402 			if (state != IF_STATE_ACTION)
9403 				goto fail;
9404 
9405 			filter->action = actions[token];
9406 			state = IF_STATE_SOURCE;
9407 			break;
9408 
9409 		case IF_SRC_KERNELADDR:
9410 		case IF_SRC_KERNEL:
9411 			kernel = 1;
9412 			/* fall through */
9413 
9414 		case IF_SRC_FILEADDR:
9415 		case IF_SRC_FILE:
9416 			if (state != IF_STATE_SOURCE)
9417 				goto fail;
9418 
9419 			*args[0].to = 0;
9420 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9421 			if (ret)
9422 				goto fail;
9423 
9424 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9425 				*args[1].to = 0;
9426 				ret = kstrtoul(args[1].from, 0, &filter->size);
9427 				if (ret)
9428 					goto fail;
9429 			}
9430 
9431 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9432 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9433 
9434 				filename = match_strdup(&args[fpos]);
9435 				if (!filename) {
9436 					ret = -ENOMEM;
9437 					goto fail;
9438 				}
9439 			}
9440 
9441 			state = IF_STATE_END;
9442 			break;
9443 
9444 		default:
9445 			goto fail;
9446 		}
9447 
9448 		/*
9449 		 * Filter definition is fully parsed, validate and install it.
9450 		 * Make sure that it doesn't contradict itself or the event's
9451 		 * attribute.
9452 		 */
9453 		if (state == IF_STATE_END) {
9454 			ret = -EINVAL;
9455 			if (kernel && event->attr.exclude_kernel)
9456 				goto fail;
9457 
9458 			/*
9459 			 * ACTION "filter" must have a non-zero length region
9460 			 * specified.
9461 			 */
9462 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9463 			    !filter->size)
9464 				goto fail;
9465 
9466 			if (!kernel) {
9467 				if (!filename)
9468 					goto fail;
9469 
9470 				/*
9471 				 * For now, we only support file-based filters
9472 				 * in per-task events; doing so for CPU-wide
9473 				 * events requires additional context switching
9474 				 * trickery, since same object code will be
9475 				 * mapped at different virtual addresses in
9476 				 * different processes.
9477 				 */
9478 				ret = -EOPNOTSUPP;
9479 				if (!event->ctx->task)
9480 					goto fail_free_name;
9481 
9482 				/* look up the path and grab its inode */
9483 				ret = kern_path(filename, LOOKUP_FOLLOW,
9484 						&filter->path);
9485 				if (ret)
9486 					goto fail_free_name;
9487 
9488 				kfree(filename);
9489 				filename = NULL;
9490 
9491 				ret = -EINVAL;
9492 				if (!filter->path.dentry ||
9493 				    !S_ISREG(d_inode(filter->path.dentry)
9494 					     ->i_mode))
9495 					goto fail;
9496 
9497 				event->addr_filters.nr_file_filters++;
9498 			}
9499 
9500 			/* ready to consume more filters */
9501 			state = IF_STATE_ACTION;
9502 			filter = NULL;
9503 		}
9504 	}
9505 
9506 	if (state != IF_STATE_ACTION)
9507 		goto fail;
9508 
9509 	kfree(orig);
9510 
9511 	return 0;
9512 
9513 fail_free_name:
9514 	kfree(filename);
9515 fail:
9516 	free_filters_list(filters);
9517 	kfree(orig);
9518 
9519 	return ret;
9520 }
9521 
9522 static int
9523 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9524 {
9525 	LIST_HEAD(filters);
9526 	int ret;
9527 
9528 	/*
9529 	 * Since this is called in perf_ioctl() path, we're already holding
9530 	 * ctx::mutex.
9531 	 */
9532 	lockdep_assert_held(&event->ctx->mutex);
9533 
9534 	if (WARN_ON_ONCE(event->parent))
9535 		return -EINVAL;
9536 
9537 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9538 	if (ret)
9539 		goto fail_clear_files;
9540 
9541 	ret = event->pmu->addr_filters_validate(&filters);
9542 	if (ret)
9543 		goto fail_free_filters;
9544 
9545 	/* remove existing filters, if any */
9546 	perf_addr_filters_splice(event, &filters);
9547 
9548 	/* install new filters */
9549 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9550 
9551 	return ret;
9552 
9553 fail_free_filters:
9554 	free_filters_list(&filters);
9555 
9556 fail_clear_files:
9557 	event->addr_filters.nr_file_filters = 0;
9558 
9559 	return ret;
9560 }
9561 
9562 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9563 {
9564 	int ret = -EINVAL;
9565 	char *filter_str;
9566 
9567 	filter_str = strndup_user(arg, PAGE_SIZE);
9568 	if (IS_ERR(filter_str))
9569 		return PTR_ERR(filter_str);
9570 
9571 #ifdef CONFIG_EVENT_TRACING
9572 	if (perf_event_is_tracing(event)) {
9573 		struct perf_event_context *ctx = event->ctx;
9574 
9575 		/*
9576 		 * Beware, here be dragons!!
9577 		 *
9578 		 * the tracepoint muck will deadlock against ctx->mutex, but
9579 		 * the tracepoint stuff does not actually need it. So
9580 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9581 		 * already have a reference on ctx.
9582 		 *
9583 		 * This can result in event getting moved to a different ctx,
9584 		 * but that does not affect the tracepoint state.
9585 		 */
9586 		mutex_unlock(&ctx->mutex);
9587 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9588 		mutex_lock(&ctx->mutex);
9589 	} else
9590 #endif
9591 	if (has_addr_filter(event))
9592 		ret = perf_event_set_addr_filter(event, filter_str);
9593 
9594 	kfree(filter_str);
9595 	return ret;
9596 }
9597 
9598 /*
9599  * hrtimer based swevent callback
9600  */
9601 
9602 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9603 {
9604 	enum hrtimer_restart ret = HRTIMER_RESTART;
9605 	struct perf_sample_data data;
9606 	struct pt_regs *regs;
9607 	struct perf_event *event;
9608 	u64 period;
9609 
9610 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9611 
9612 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9613 		return HRTIMER_NORESTART;
9614 
9615 	event->pmu->read(event);
9616 
9617 	perf_sample_data_init(&data, 0, event->hw.last_period);
9618 	regs = get_irq_regs();
9619 
9620 	if (regs && !perf_exclude_event(event, regs)) {
9621 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9622 			if (__perf_event_overflow(event, 1, &data, regs))
9623 				ret = HRTIMER_NORESTART;
9624 	}
9625 
9626 	period = max_t(u64, 10000, event->hw.sample_period);
9627 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9628 
9629 	return ret;
9630 }
9631 
9632 static void perf_swevent_start_hrtimer(struct perf_event *event)
9633 {
9634 	struct hw_perf_event *hwc = &event->hw;
9635 	s64 period;
9636 
9637 	if (!is_sampling_event(event))
9638 		return;
9639 
9640 	period = local64_read(&hwc->period_left);
9641 	if (period) {
9642 		if (period < 0)
9643 			period = 10000;
9644 
9645 		local64_set(&hwc->period_left, 0);
9646 	} else {
9647 		period = max_t(u64, 10000, hwc->sample_period);
9648 	}
9649 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9650 		      HRTIMER_MODE_REL_PINNED_HARD);
9651 }
9652 
9653 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9654 {
9655 	struct hw_perf_event *hwc = &event->hw;
9656 
9657 	if (is_sampling_event(event)) {
9658 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9659 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9660 
9661 		hrtimer_cancel(&hwc->hrtimer);
9662 	}
9663 }
9664 
9665 static void perf_swevent_init_hrtimer(struct perf_event *event)
9666 {
9667 	struct hw_perf_event *hwc = &event->hw;
9668 
9669 	if (!is_sampling_event(event))
9670 		return;
9671 
9672 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9673 	hwc->hrtimer.function = perf_swevent_hrtimer;
9674 
9675 	/*
9676 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9677 	 * mapping and avoid the whole period adjust feedback stuff.
9678 	 */
9679 	if (event->attr.freq) {
9680 		long freq = event->attr.sample_freq;
9681 
9682 		event->attr.sample_period = NSEC_PER_SEC / freq;
9683 		hwc->sample_period = event->attr.sample_period;
9684 		local64_set(&hwc->period_left, hwc->sample_period);
9685 		hwc->last_period = hwc->sample_period;
9686 		event->attr.freq = 0;
9687 	}
9688 }
9689 
9690 /*
9691  * Software event: cpu wall time clock
9692  */
9693 
9694 static void cpu_clock_event_update(struct perf_event *event)
9695 {
9696 	s64 prev;
9697 	u64 now;
9698 
9699 	now = local_clock();
9700 	prev = local64_xchg(&event->hw.prev_count, now);
9701 	local64_add(now - prev, &event->count);
9702 }
9703 
9704 static void cpu_clock_event_start(struct perf_event *event, int flags)
9705 {
9706 	local64_set(&event->hw.prev_count, local_clock());
9707 	perf_swevent_start_hrtimer(event);
9708 }
9709 
9710 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9711 {
9712 	perf_swevent_cancel_hrtimer(event);
9713 	cpu_clock_event_update(event);
9714 }
9715 
9716 static int cpu_clock_event_add(struct perf_event *event, int flags)
9717 {
9718 	if (flags & PERF_EF_START)
9719 		cpu_clock_event_start(event, flags);
9720 	perf_event_update_userpage(event);
9721 
9722 	return 0;
9723 }
9724 
9725 static void cpu_clock_event_del(struct perf_event *event, int flags)
9726 {
9727 	cpu_clock_event_stop(event, flags);
9728 }
9729 
9730 static void cpu_clock_event_read(struct perf_event *event)
9731 {
9732 	cpu_clock_event_update(event);
9733 }
9734 
9735 static int cpu_clock_event_init(struct perf_event *event)
9736 {
9737 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9738 		return -ENOENT;
9739 
9740 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9741 		return -ENOENT;
9742 
9743 	/*
9744 	 * no branch sampling for software events
9745 	 */
9746 	if (has_branch_stack(event))
9747 		return -EOPNOTSUPP;
9748 
9749 	perf_swevent_init_hrtimer(event);
9750 
9751 	return 0;
9752 }
9753 
9754 static struct pmu perf_cpu_clock = {
9755 	.task_ctx_nr	= perf_sw_context,
9756 
9757 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9758 
9759 	.event_init	= cpu_clock_event_init,
9760 	.add		= cpu_clock_event_add,
9761 	.del		= cpu_clock_event_del,
9762 	.start		= cpu_clock_event_start,
9763 	.stop		= cpu_clock_event_stop,
9764 	.read		= cpu_clock_event_read,
9765 };
9766 
9767 /*
9768  * Software event: task time clock
9769  */
9770 
9771 static void task_clock_event_update(struct perf_event *event, u64 now)
9772 {
9773 	u64 prev;
9774 	s64 delta;
9775 
9776 	prev = local64_xchg(&event->hw.prev_count, now);
9777 	delta = now - prev;
9778 	local64_add(delta, &event->count);
9779 }
9780 
9781 static void task_clock_event_start(struct perf_event *event, int flags)
9782 {
9783 	local64_set(&event->hw.prev_count, event->ctx->time);
9784 	perf_swevent_start_hrtimer(event);
9785 }
9786 
9787 static void task_clock_event_stop(struct perf_event *event, int flags)
9788 {
9789 	perf_swevent_cancel_hrtimer(event);
9790 	task_clock_event_update(event, event->ctx->time);
9791 }
9792 
9793 static int task_clock_event_add(struct perf_event *event, int flags)
9794 {
9795 	if (flags & PERF_EF_START)
9796 		task_clock_event_start(event, flags);
9797 	perf_event_update_userpage(event);
9798 
9799 	return 0;
9800 }
9801 
9802 static void task_clock_event_del(struct perf_event *event, int flags)
9803 {
9804 	task_clock_event_stop(event, PERF_EF_UPDATE);
9805 }
9806 
9807 static void task_clock_event_read(struct perf_event *event)
9808 {
9809 	u64 now = perf_clock();
9810 	u64 delta = now - event->ctx->timestamp;
9811 	u64 time = event->ctx->time + delta;
9812 
9813 	task_clock_event_update(event, time);
9814 }
9815 
9816 static int task_clock_event_init(struct perf_event *event)
9817 {
9818 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9819 		return -ENOENT;
9820 
9821 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9822 		return -ENOENT;
9823 
9824 	/*
9825 	 * no branch sampling for software events
9826 	 */
9827 	if (has_branch_stack(event))
9828 		return -EOPNOTSUPP;
9829 
9830 	perf_swevent_init_hrtimer(event);
9831 
9832 	return 0;
9833 }
9834 
9835 static struct pmu perf_task_clock = {
9836 	.task_ctx_nr	= perf_sw_context,
9837 
9838 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9839 
9840 	.event_init	= task_clock_event_init,
9841 	.add		= task_clock_event_add,
9842 	.del		= task_clock_event_del,
9843 	.start		= task_clock_event_start,
9844 	.stop		= task_clock_event_stop,
9845 	.read		= task_clock_event_read,
9846 };
9847 
9848 static void perf_pmu_nop_void(struct pmu *pmu)
9849 {
9850 }
9851 
9852 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9853 {
9854 }
9855 
9856 static int perf_pmu_nop_int(struct pmu *pmu)
9857 {
9858 	return 0;
9859 }
9860 
9861 static int perf_event_nop_int(struct perf_event *event, u64 value)
9862 {
9863 	return 0;
9864 }
9865 
9866 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9867 
9868 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9869 {
9870 	__this_cpu_write(nop_txn_flags, flags);
9871 
9872 	if (flags & ~PERF_PMU_TXN_ADD)
9873 		return;
9874 
9875 	perf_pmu_disable(pmu);
9876 }
9877 
9878 static int perf_pmu_commit_txn(struct pmu *pmu)
9879 {
9880 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9881 
9882 	__this_cpu_write(nop_txn_flags, 0);
9883 
9884 	if (flags & ~PERF_PMU_TXN_ADD)
9885 		return 0;
9886 
9887 	perf_pmu_enable(pmu);
9888 	return 0;
9889 }
9890 
9891 static void perf_pmu_cancel_txn(struct pmu *pmu)
9892 {
9893 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9894 
9895 	__this_cpu_write(nop_txn_flags, 0);
9896 
9897 	if (flags & ~PERF_PMU_TXN_ADD)
9898 		return;
9899 
9900 	perf_pmu_enable(pmu);
9901 }
9902 
9903 static int perf_event_idx_default(struct perf_event *event)
9904 {
9905 	return 0;
9906 }
9907 
9908 /*
9909  * Ensures all contexts with the same task_ctx_nr have the same
9910  * pmu_cpu_context too.
9911  */
9912 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9913 {
9914 	struct pmu *pmu;
9915 
9916 	if (ctxn < 0)
9917 		return NULL;
9918 
9919 	list_for_each_entry(pmu, &pmus, entry) {
9920 		if (pmu->task_ctx_nr == ctxn)
9921 			return pmu->pmu_cpu_context;
9922 	}
9923 
9924 	return NULL;
9925 }
9926 
9927 static void free_pmu_context(struct pmu *pmu)
9928 {
9929 	/*
9930 	 * Static contexts such as perf_sw_context have a global lifetime
9931 	 * and may be shared between different PMUs. Avoid freeing them
9932 	 * when a single PMU is going away.
9933 	 */
9934 	if (pmu->task_ctx_nr > perf_invalid_context)
9935 		return;
9936 
9937 	free_percpu(pmu->pmu_cpu_context);
9938 }
9939 
9940 /*
9941  * Let userspace know that this PMU supports address range filtering:
9942  */
9943 static ssize_t nr_addr_filters_show(struct device *dev,
9944 				    struct device_attribute *attr,
9945 				    char *page)
9946 {
9947 	struct pmu *pmu = dev_get_drvdata(dev);
9948 
9949 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9950 }
9951 DEVICE_ATTR_RO(nr_addr_filters);
9952 
9953 static struct idr pmu_idr;
9954 
9955 static ssize_t
9956 type_show(struct device *dev, struct device_attribute *attr, char *page)
9957 {
9958 	struct pmu *pmu = dev_get_drvdata(dev);
9959 
9960 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9961 }
9962 static DEVICE_ATTR_RO(type);
9963 
9964 static ssize_t
9965 perf_event_mux_interval_ms_show(struct device *dev,
9966 				struct device_attribute *attr,
9967 				char *page)
9968 {
9969 	struct pmu *pmu = dev_get_drvdata(dev);
9970 
9971 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9972 }
9973 
9974 static DEFINE_MUTEX(mux_interval_mutex);
9975 
9976 static ssize_t
9977 perf_event_mux_interval_ms_store(struct device *dev,
9978 				 struct device_attribute *attr,
9979 				 const char *buf, size_t count)
9980 {
9981 	struct pmu *pmu = dev_get_drvdata(dev);
9982 	int timer, cpu, ret;
9983 
9984 	ret = kstrtoint(buf, 0, &timer);
9985 	if (ret)
9986 		return ret;
9987 
9988 	if (timer < 1)
9989 		return -EINVAL;
9990 
9991 	/* same value, noting to do */
9992 	if (timer == pmu->hrtimer_interval_ms)
9993 		return count;
9994 
9995 	mutex_lock(&mux_interval_mutex);
9996 	pmu->hrtimer_interval_ms = timer;
9997 
9998 	/* update all cpuctx for this PMU */
9999 	cpus_read_lock();
10000 	for_each_online_cpu(cpu) {
10001 		struct perf_cpu_context *cpuctx;
10002 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10003 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10004 
10005 		cpu_function_call(cpu,
10006 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10007 	}
10008 	cpus_read_unlock();
10009 	mutex_unlock(&mux_interval_mutex);
10010 
10011 	return count;
10012 }
10013 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10014 
10015 static struct attribute *pmu_dev_attrs[] = {
10016 	&dev_attr_type.attr,
10017 	&dev_attr_perf_event_mux_interval_ms.attr,
10018 	NULL,
10019 };
10020 ATTRIBUTE_GROUPS(pmu_dev);
10021 
10022 static int pmu_bus_running;
10023 static struct bus_type pmu_bus = {
10024 	.name		= "event_source",
10025 	.dev_groups	= pmu_dev_groups,
10026 };
10027 
10028 static void pmu_dev_release(struct device *dev)
10029 {
10030 	kfree(dev);
10031 }
10032 
10033 static int pmu_dev_alloc(struct pmu *pmu)
10034 {
10035 	int ret = -ENOMEM;
10036 
10037 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10038 	if (!pmu->dev)
10039 		goto out;
10040 
10041 	pmu->dev->groups = pmu->attr_groups;
10042 	device_initialize(pmu->dev);
10043 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10044 	if (ret)
10045 		goto free_dev;
10046 
10047 	dev_set_drvdata(pmu->dev, pmu);
10048 	pmu->dev->bus = &pmu_bus;
10049 	pmu->dev->release = pmu_dev_release;
10050 	ret = device_add(pmu->dev);
10051 	if (ret)
10052 		goto free_dev;
10053 
10054 	/* For PMUs with address filters, throw in an extra attribute: */
10055 	if (pmu->nr_addr_filters)
10056 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10057 
10058 	if (ret)
10059 		goto del_dev;
10060 
10061 	if (pmu->attr_update)
10062 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10063 
10064 	if (ret)
10065 		goto del_dev;
10066 
10067 out:
10068 	return ret;
10069 
10070 del_dev:
10071 	device_del(pmu->dev);
10072 
10073 free_dev:
10074 	put_device(pmu->dev);
10075 	goto out;
10076 }
10077 
10078 static struct lock_class_key cpuctx_mutex;
10079 static struct lock_class_key cpuctx_lock;
10080 
10081 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10082 {
10083 	int cpu, ret, max = PERF_TYPE_MAX;
10084 
10085 	mutex_lock(&pmus_lock);
10086 	ret = -ENOMEM;
10087 	pmu->pmu_disable_count = alloc_percpu(int);
10088 	if (!pmu->pmu_disable_count)
10089 		goto unlock;
10090 
10091 	pmu->type = -1;
10092 	if (!name)
10093 		goto skip_type;
10094 	pmu->name = name;
10095 
10096 	if (type != PERF_TYPE_SOFTWARE) {
10097 		if (type >= 0)
10098 			max = type;
10099 
10100 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10101 		if (ret < 0)
10102 			goto free_pdc;
10103 
10104 		WARN_ON(type >= 0 && ret != type);
10105 
10106 		type = ret;
10107 	}
10108 	pmu->type = type;
10109 
10110 	if (pmu_bus_running) {
10111 		ret = pmu_dev_alloc(pmu);
10112 		if (ret)
10113 			goto free_idr;
10114 	}
10115 
10116 skip_type:
10117 	if (pmu->task_ctx_nr == perf_hw_context) {
10118 		static int hw_context_taken = 0;
10119 
10120 		/*
10121 		 * Other than systems with heterogeneous CPUs, it never makes
10122 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10123 		 * uncore must use perf_invalid_context.
10124 		 */
10125 		if (WARN_ON_ONCE(hw_context_taken &&
10126 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10127 			pmu->task_ctx_nr = perf_invalid_context;
10128 
10129 		hw_context_taken = 1;
10130 	}
10131 
10132 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10133 	if (pmu->pmu_cpu_context)
10134 		goto got_cpu_context;
10135 
10136 	ret = -ENOMEM;
10137 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10138 	if (!pmu->pmu_cpu_context)
10139 		goto free_dev;
10140 
10141 	for_each_possible_cpu(cpu) {
10142 		struct perf_cpu_context *cpuctx;
10143 
10144 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10145 		__perf_event_init_context(&cpuctx->ctx);
10146 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10147 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10148 		cpuctx->ctx.pmu = pmu;
10149 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10150 
10151 		__perf_mux_hrtimer_init(cpuctx, cpu);
10152 	}
10153 
10154 got_cpu_context:
10155 	if (!pmu->start_txn) {
10156 		if (pmu->pmu_enable) {
10157 			/*
10158 			 * If we have pmu_enable/pmu_disable calls, install
10159 			 * transaction stubs that use that to try and batch
10160 			 * hardware accesses.
10161 			 */
10162 			pmu->start_txn  = perf_pmu_start_txn;
10163 			pmu->commit_txn = perf_pmu_commit_txn;
10164 			pmu->cancel_txn = perf_pmu_cancel_txn;
10165 		} else {
10166 			pmu->start_txn  = perf_pmu_nop_txn;
10167 			pmu->commit_txn = perf_pmu_nop_int;
10168 			pmu->cancel_txn = perf_pmu_nop_void;
10169 		}
10170 	}
10171 
10172 	if (!pmu->pmu_enable) {
10173 		pmu->pmu_enable  = perf_pmu_nop_void;
10174 		pmu->pmu_disable = perf_pmu_nop_void;
10175 	}
10176 
10177 	if (!pmu->check_period)
10178 		pmu->check_period = perf_event_nop_int;
10179 
10180 	if (!pmu->event_idx)
10181 		pmu->event_idx = perf_event_idx_default;
10182 
10183 	/*
10184 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10185 	 * since these cannot be in the IDR. This way the linear search
10186 	 * is fast, provided a valid software event is provided.
10187 	 */
10188 	if (type == PERF_TYPE_SOFTWARE || !name)
10189 		list_add_rcu(&pmu->entry, &pmus);
10190 	else
10191 		list_add_tail_rcu(&pmu->entry, &pmus);
10192 
10193 	atomic_set(&pmu->exclusive_cnt, 0);
10194 	ret = 0;
10195 unlock:
10196 	mutex_unlock(&pmus_lock);
10197 
10198 	return ret;
10199 
10200 free_dev:
10201 	device_del(pmu->dev);
10202 	put_device(pmu->dev);
10203 
10204 free_idr:
10205 	if (pmu->type != PERF_TYPE_SOFTWARE)
10206 		idr_remove(&pmu_idr, pmu->type);
10207 
10208 free_pdc:
10209 	free_percpu(pmu->pmu_disable_count);
10210 	goto unlock;
10211 }
10212 EXPORT_SYMBOL_GPL(perf_pmu_register);
10213 
10214 void perf_pmu_unregister(struct pmu *pmu)
10215 {
10216 	mutex_lock(&pmus_lock);
10217 	list_del_rcu(&pmu->entry);
10218 
10219 	/*
10220 	 * We dereference the pmu list under both SRCU and regular RCU, so
10221 	 * synchronize against both of those.
10222 	 */
10223 	synchronize_srcu(&pmus_srcu);
10224 	synchronize_rcu();
10225 
10226 	free_percpu(pmu->pmu_disable_count);
10227 	if (pmu->type != PERF_TYPE_SOFTWARE)
10228 		idr_remove(&pmu_idr, pmu->type);
10229 	if (pmu_bus_running) {
10230 		if (pmu->nr_addr_filters)
10231 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10232 		device_del(pmu->dev);
10233 		put_device(pmu->dev);
10234 	}
10235 	free_pmu_context(pmu);
10236 	mutex_unlock(&pmus_lock);
10237 }
10238 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10239 
10240 static inline bool has_extended_regs(struct perf_event *event)
10241 {
10242 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10243 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10244 }
10245 
10246 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10247 {
10248 	struct perf_event_context *ctx = NULL;
10249 	int ret;
10250 
10251 	if (!try_module_get(pmu->module))
10252 		return -ENODEV;
10253 
10254 	/*
10255 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10256 	 * for example, validate if the group fits on the PMU. Therefore,
10257 	 * if this is a sibling event, acquire the ctx->mutex to protect
10258 	 * the sibling_list.
10259 	 */
10260 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10261 		/*
10262 		 * This ctx->mutex can nest when we're called through
10263 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10264 		 */
10265 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10266 						 SINGLE_DEPTH_NESTING);
10267 		BUG_ON(!ctx);
10268 	}
10269 
10270 	event->pmu = pmu;
10271 	ret = pmu->event_init(event);
10272 
10273 	if (ctx)
10274 		perf_event_ctx_unlock(event->group_leader, ctx);
10275 
10276 	if (!ret) {
10277 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10278 		    has_extended_regs(event))
10279 			ret = -EOPNOTSUPP;
10280 
10281 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10282 		    event_has_any_exclude_flag(event))
10283 			ret = -EINVAL;
10284 
10285 		if (ret && event->destroy)
10286 			event->destroy(event);
10287 	}
10288 
10289 	if (ret)
10290 		module_put(pmu->module);
10291 
10292 	return ret;
10293 }
10294 
10295 static struct pmu *perf_init_event(struct perf_event *event)
10296 {
10297 	int idx, type, ret;
10298 	struct pmu *pmu;
10299 
10300 	idx = srcu_read_lock(&pmus_srcu);
10301 
10302 	/* Try parent's PMU first: */
10303 	if (event->parent && event->parent->pmu) {
10304 		pmu = event->parent->pmu;
10305 		ret = perf_try_init_event(pmu, event);
10306 		if (!ret)
10307 			goto unlock;
10308 	}
10309 
10310 	rcu_read_lock();
10311 	/*
10312 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10313 	 * are often aliases for PERF_TYPE_RAW.
10314 	 */
10315 	type = event->attr.type;
10316 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10317 		type = PERF_TYPE_RAW;
10318 
10319 again:
10320 	pmu = idr_find(&pmu_idr, type);
10321 	rcu_read_unlock();
10322 	if (pmu) {
10323 		ret = perf_try_init_event(pmu, event);
10324 		if (ret == -ENOENT && event->attr.type != type) {
10325 			type = event->attr.type;
10326 			goto again;
10327 		}
10328 
10329 		if (ret)
10330 			pmu = ERR_PTR(ret);
10331 
10332 		goto unlock;
10333 	}
10334 
10335 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10336 		ret = perf_try_init_event(pmu, event);
10337 		if (!ret)
10338 			goto unlock;
10339 
10340 		if (ret != -ENOENT) {
10341 			pmu = ERR_PTR(ret);
10342 			goto unlock;
10343 		}
10344 	}
10345 	pmu = ERR_PTR(-ENOENT);
10346 unlock:
10347 	srcu_read_unlock(&pmus_srcu, idx);
10348 
10349 	return pmu;
10350 }
10351 
10352 static void attach_sb_event(struct perf_event *event)
10353 {
10354 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10355 
10356 	raw_spin_lock(&pel->lock);
10357 	list_add_rcu(&event->sb_list, &pel->list);
10358 	raw_spin_unlock(&pel->lock);
10359 }
10360 
10361 /*
10362  * We keep a list of all !task (and therefore per-cpu) events
10363  * that need to receive side-band records.
10364  *
10365  * This avoids having to scan all the various PMU per-cpu contexts
10366  * looking for them.
10367  */
10368 static void account_pmu_sb_event(struct perf_event *event)
10369 {
10370 	if (is_sb_event(event))
10371 		attach_sb_event(event);
10372 }
10373 
10374 static void account_event_cpu(struct perf_event *event, int cpu)
10375 {
10376 	if (event->parent)
10377 		return;
10378 
10379 	if (is_cgroup_event(event))
10380 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10381 }
10382 
10383 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10384 static void account_freq_event_nohz(void)
10385 {
10386 #ifdef CONFIG_NO_HZ_FULL
10387 	/* Lock so we don't race with concurrent unaccount */
10388 	spin_lock(&nr_freq_lock);
10389 	if (atomic_inc_return(&nr_freq_events) == 1)
10390 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10391 	spin_unlock(&nr_freq_lock);
10392 #endif
10393 }
10394 
10395 static void account_freq_event(void)
10396 {
10397 	if (tick_nohz_full_enabled())
10398 		account_freq_event_nohz();
10399 	else
10400 		atomic_inc(&nr_freq_events);
10401 }
10402 
10403 
10404 static void account_event(struct perf_event *event)
10405 {
10406 	bool inc = false;
10407 
10408 	if (event->parent)
10409 		return;
10410 
10411 	if (event->attach_state & PERF_ATTACH_TASK)
10412 		inc = true;
10413 	if (event->attr.mmap || event->attr.mmap_data)
10414 		atomic_inc(&nr_mmap_events);
10415 	if (event->attr.comm)
10416 		atomic_inc(&nr_comm_events);
10417 	if (event->attr.namespaces)
10418 		atomic_inc(&nr_namespaces_events);
10419 	if (event->attr.task)
10420 		atomic_inc(&nr_task_events);
10421 	if (event->attr.freq)
10422 		account_freq_event();
10423 	if (event->attr.context_switch) {
10424 		atomic_inc(&nr_switch_events);
10425 		inc = true;
10426 	}
10427 	if (has_branch_stack(event))
10428 		inc = true;
10429 	if (is_cgroup_event(event))
10430 		inc = true;
10431 	if (event->attr.ksymbol)
10432 		atomic_inc(&nr_ksymbol_events);
10433 	if (event->attr.bpf_event)
10434 		atomic_inc(&nr_bpf_events);
10435 
10436 	if (inc) {
10437 		/*
10438 		 * We need the mutex here because static_branch_enable()
10439 		 * must complete *before* the perf_sched_count increment
10440 		 * becomes visible.
10441 		 */
10442 		if (atomic_inc_not_zero(&perf_sched_count))
10443 			goto enabled;
10444 
10445 		mutex_lock(&perf_sched_mutex);
10446 		if (!atomic_read(&perf_sched_count)) {
10447 			static_branch_enable(&perf_sched_events);
10448 			/*
10449 			 * Guarantee that all CPUs observe they key change and
10450 			 * call the perf scheduling hooks before proceeding to
10451 			 * install events that need them.
10452 			 */
10453 			synchronize_rcu();
10454 		}
10455 		/*
10456 		 * Now that we have waited for the sync_sched(), allow further
10457 		 * increments to by-pass the mutex.
10458 		 */
10459 		atomic_inc(&perf_sched_count);
10460 		mutex_unlock(&perf_sched_mutex);
10461 	}
10462 enabled:
10463 
10464 	account_event_cpu(event, event->cpu);
10465 
10466 	account_pmu_sb_event(event);
10467 }
10468 
10469 /*
10470  * Allocate and initialize an event structure
10471  */
10472 static struct perf_event *
10473 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10474 		 struct task_struct *task,
10475 		 struct perf_event *group_leader,
10476 		 struct perf_event *parent_event,
10477 		 perf_overflow_handler_t overflow_handler,
10478 		 void *context, int cgroup_fd)
10479 {
10480 	struct pmu *pmu;
10481 	struct perf_event *event;
10482 	struct hw_perf_event *hwc;
10483 	long err = -EINVAL;
10484 
10485 	if ((unsigned)cpu >= nr_cpu_ids) {
10486 		if (!task || cpu != -1)
10487 			return ERR_PTR(-EINVAL);
10488 	}
10489 
10490 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10491 	if (!event)
10492 		return ERR_PTR(-ENOMEM);
10493 
10494 	/*
10495 	 * Single events are their own group leaders, with an
10496 	 * empty sibling list:
10497 	 */
10498 	if (!group_leader)
10499 		group_leader = event;
10500 
10501 	mutex_init(&event->child_mutex);
10502 	INIT_LIST_HEAD(&event->child_list);
10503 
10504 	INIT_LIST_HEAD(&event->event_entry);
10505 	INIT_LIST_HEAD(&event->sibling_list);
10506 	INIT_LIST_HEAD(&event->active_list);
10507 	init_event_group(event);
10508 	INIT_LIST_HEAD(&event->rb_entry);
10509 	INIT_LIST_HEAD(&event->active_entry);
10510 	INIT_LIST_HEAD(&event->addr_filters.list);
10511 	INIT_HLIST_NODE(&event->hlist_entry);
10512 
10513 
10514 	init_waitqueue_head(&event->waitq);
10515 	event->pending_disable = -1;
10516 	init_irq_work(&event->pending, perf_pending_event);
10517 
10518 	mutex_init(&event->mmap_mutex);
10519 	raw_spin_lock_init(&event->addr_filters.lock);
10520 
10521 	atomic_long_set(&event->refcount, 1);
10522 	event->cpu		= cpu;
10523 	event->attr		= *attr;
10524 	event->group_leader	= group_leader;
10525 	event->pmu		= NULL;
10526 	event->oncpu		= -1;
10527 
10528 	event->parent		= parent_event;
10529 
10530 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10531 	event->id		= atomic64_inc_return(&perf_event_id);
10532 
10533 	event->state		= PERF_EVENT_STATE_INACTIVE;
10534 
10535 	if (task) {
10536 		event->attach_state = PERF_ATTACH_TASK;
10537 		/*
10538 		 * XXX pmu::event_init needs to know what task to account to
10539 		 * and we cannot use the ctx information because we need the
10540 		 * pmu before we get a ctx.
10541 		 */
10542 		event->hw.target = get_task_struct(task);
10543 	}
10544 
10545 	event->clock = &local_clock;
10546 	if (parent_event)
10547 		event->clock = parent_event->clock;
10548 
10549 	if (!overflow_handler && parent_event) {
10550 		overflow_handler = parent_event->overflow_handler;
10551 		context = parent_event->overflow_handler_context;
10552 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10553 		if (overflow_handler == bpf_overflow_handler) {
10554 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10555 
10556 			if (IS_ERR(prog)) {
10557 				err = PTR_ERR(prog);
10558 				goto err_ns;
10559 			}
10560 			event->prog = prog;
10561 			event->orig_overflow_handler =
10562 				parent_event->orig_overflow_handler;
10563 		}
10564 #endif
10565 	}
10566 
10567 	if (overflow_handler) {
10568 		event->overflow_handler	= overflow_handler;
10569 		event->overflow_handler_context = context;
10570 	} else if (is_write_backward(event)){
10571 		event->overflow_handler = perf_event_output_backward;
10572 		event->overflow_handler_context = NULL;
10573 	} else {
10574 		event->overflow_handler = perf_event_output_forward;
10575 		event->overflow_handler_context = NULL;
10576 	}
10577 
10578 	perf_event__state_init(event);
10579 
10580 	pmu = NULL;
10581 
10582 	hwc = &event->hw;
10583 	hwc->sample_period = attr->sample_period;
10584 	if (attr->freq && attr->sample_freq)
10585 		hwc->sample_period = 1;
10586 	hwc->last_period = hwc->sample_period;
10587 
10588 	local64_set(&hwc->period_left, hwc->sample_period);
10589 
10590 	/*
10591 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10592 	 * See perf_output_read().
10593 	 */
10594 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10595 		goto err_ns;
10596 
10597 	if (!has_branch_stack(event))
10598 		event->attr.branch_sample_type = 0;
10599 
10600 	if (cgroup_fd != -1) {
10601 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10602 		if (err)
10603 			goto err_ns;
10604 	}
10605 
10606 	pmu = perf_init_event(event);
10607 	if (IS_ERR(pmu)) {
10608 		err = PTR_ERR(pmu);
10609 		goto err_ns;
10610 	}
10611 
10612 	if (event->attr.aux_output &&
10613 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10614 		err = -EOPNOTSUPP;
10615 		goto err_pmu;
10616 	}
10617 
10618 	err = exclusive_event_init(event);
10619 	if (err)
10620 		goto err_pmu;
10621 
10622 	if (has_addr_filter(event)) {
10623 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10624 						    sizeof(struct perf_addr_filter_range),
10625 						    GFP_KERNEL);
10626 		if (!event->addr_filter_ranges) {
10627 			err = -ENOMEM;
10628 			goto err_per_task;
10629 		}
10630 
10631 		/*
10632 		 * Clone the parent's vma offsets: they are valid until exec()
10633 		 * even if the mm is not shared with the parent.
10634 		 */
10635 		if (event->parent) {
10636 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10637 
10638 			raw_spin_lock_irq(&ifh->lock);
10639 			memcpy(event->addr_filter_ranges,
10640 			       event->parent->addr_filter_ranges,
10641 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10642 			raw_spin_unlock_irq(&ifh->lock);
10643 		}
10644 
10645 		/* force hw sync on the address filters */
10646 		event->addr_filters_gen = 1;
10647 	}
10648 
10649 	if (!event->parent) {
10650 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10651 			err = get_callchain_buffers(attr->sample_max_stack);
10652 			if (err)
10653 				goto err_addr_filters;
10654 		}
10655 	}
10656 
10657 	err = security_perf_event_alloc(event);
10658 	if (err)
10659 		goto err_callchain_buffer;
10660 
10661 	/* symmetric to unaccount_event() in _free_event() */
10662 	account_event(event);
10663 
10664 	return event;
10665 
10666 err_callchain_buffer:
10667 	if (!event->parent) {
10668 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10669 			put_callchain_buffers();
10670 	}
10671 err_addr_filters:
10672 	kfree(event->addr_filter_ranges);
10673 
10674 err_per_task:
10675 	exclusive_event_destroy(event);
10676 
10677 err_pmu:
10678 	if (event->destroy)
10679 		event->destroy(event);
10680 	module_put(pmu->module);
10681 err_ns:
10682 	if (is_cgroup_event(event))
10683 		perf_detach_cgroup(event);
10684 	if (event->ns)
10685 		put_pid_ns(event->ns);
10686 	if (event->hw.target)
10687 		put_task_struct(event->hw.target);
10688 	kfree(event);
10689 
10690 	return ERR_PTR(err);
10691 }
10692 
10693 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10694 			  struct perf_event_attr *attr)
10695 {
10696 	u32 size;
10697 	int ret;
10698 
10699 	/* Zero the full structure, so that a short copy will be nice. */
10700 	memset(attr, 0, sizeof(*attr));
10701 
10702 	ret = get_user(size, &uattr->size);
10703 	if (ret)
10704 		return ret;
10705 
10706 	/* ABI compatibility quirk: */
10707 	if (!size)
10708 		size = PERF_ATTR_SIZE_VER0;
10709 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10710 		goto err_size;
10711 
10712 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10713 	if (ret) {
10714 		if (ret == -E2BIG)
10715 			goto err_size;
10716 		return ret;
10717 	}
10718 
10719 	attr->size = size;
10720 
10721 	if (attr->__reserved_1 || attr->__reserved_2)
10722 		return -EINVAL;
10723 
10724 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10725 		return -EINVAL;
10726 
10727 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10728 		return -EINVAL;
10729 
10730 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10731 		u64 mask = attr->branch_sample_type;
10732 
10733 		/* only using defined bits */
10734 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10735 			return -EINVAL;
10736 
10737 		/* at least one branch bit must be set */
10738 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10739 			return -EINVAL;
10740 
10741 		/* propagate priv level, when not set for branch */
10742 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10743 
10744 			/* exclude_kernel checked on syscall entry */
10745 			if (!attr->exclude_kernel)
10746 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10747 
10748 			if (!attr->exclude_user)
10749 				mask |= PERF_SAMPLE_BRANCH_USER;
10750 
10751 			if (!attr->exclude_hv)
10752 				mask |= PERF_SAMPLE_BRANCH_HV;
10753 			/*
10754 			 * adjust user setting (for HW filter setup)
10755 			 */
10756 			attr->branch_sample_type = mask;
10757 		}
10758 		/* privileged levels capture (kernel, hv): check permissions */
10759 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10760 			ret = perf_allow_kernel(attr);
10761 			if (ret)
10762 				return ret;
10763 		}
10764 	}
10765 
10766 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10767 		ret = perf_reg_validate(attr->sample_regs_user);
10768 		if (ret)
10769 			return ret;
10770 	}
10771 
10772 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10773 		if (!arch_perf_have_user_stack_dump())
10774 			return -ENOSYS;
10775 
10776 		/*
10777 		 * We have __u32 type for the size, but so far
10778 		 * we can only use __u16 as maximum due to the
10779 		 * __u16 sample size limit.
10780 		 */
10781 		if (attr->sample_stack_user >= USHRT_MAX)
10782 			return -EINVAL;
10783 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10784 			return -EINVAL;
10785 	}
10786 
10787 	if (!attr->sample_max_stack)
10788 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10789 
10790 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10791 		ret = perf_reg_validate(attr->sample_regs_intr);
10792 out:
10793 	return ret;
10794 
10795 err_size:
10796 	put_user(sizeof(*attr), &uattr->size);
10797 	ret = -E2BIG;
10798 	goto out;
10799 }
10800 
10801 static int
10802 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10803 {
10804 	struct ring_buffer *rb = NULL;
10805 	int ret = -EINVAL;
10806 
10807 	if (!output_event)
10808 		goto set;
10809 
10810 	/* don't allow circular references */
10811 	if (event == output_event)
10812 		goto out;
10813 
10814 	/*
10815 	 * Don't allow cross-cpu buffers
10816 	 */
10817 	if (output_event->cpu != event->cpu)
10818 		goto out;
10819 
10820 	/*
10821 	 * If its not a per-cpu rb, it must be the same task.
10822 	 */
10823 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10824 		goto out;
10825 
10826 	/*
10827 	 * Mixing clocks in the same buffer is trouble you don't need.
10828 	 */
10829 	if (output_event->clock != event->clock)
10830 		goto out;
10831 
10832 	/*
10833 	 * Either writing ring buffer from beginning or from end.
10834 	 * Mixing is not allowed.
10835 	 */
10836 	if (is_write_backward(output_event) != is_write_backward(event))
10837 		goto out;
10838 
10839 	/*
10840 	 * If both events generate aux data, they must be on the same PMU
10841 	 */
10842 	if (has_aux(event) && has_aux(output_event) &&
10843 	    event->pmu != output_event->pmu)
10844 		goto out;
10845 
10846 set:
10847 	mutex_lock(&event->mmap_mutex);
10848 	/* Can't redirect output if we've got an active mmap() */
10849 	if (atomic_read(&event->mmap_count))
10850 		goto unlock;
10851 
10852 	if (output_event) {
10853 		/* get the rb we want to redirect to */
10854 		rb = ring_buffer_get(output_event);
10855 		if (!rb)
10856 			goto unlock;
10857 	}
10858 
10859 	ring_buffer_attach(event, rb);
10860 
10861 	ret = 0;
10862 unlock:
10863 	mutex_unlock(&event->mmap_mutex);
10864 
10865 out:
10866 	return ret;
10867 }
10868 
10869 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10870 {
10871 	if (b < a)
10872 		swap(a, b);
10873 
10874 	mutex_lock(a);
10875 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10876 }
10877 
10878 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10879 {
10880 	bool nmi_safe = false;
10881 
10882 	switch (clk_id) {
10883 	case CLOCK_MONOTONIC:
10884 		event->clock = &ktime_get_mono_fast_ns;
10885 		nmi_safe = true;
10886 		break;
10887 
10888 	case CLOCK_MONOTONIC_RAW:
10889 		event->clock = &ktime_get_raw_fast_ns;
10890 		nmi_safe = true;
10891 		break;
10892 
10893 	case CLOCK_REALTIME:
10894 		event->clock = &ktime_get_real_ns;
10895 		break;
10896 
10897 	case CLOCK_BOOTTIME:
10898 		event->clock = &ktime_get_boottime_ns;
10899 		break;
10900 
10901 	case CLOCK_TAI:
10902 		event->clock = &ktime_get_clocktai_ns;
10903 		break;
10904 
10905 	default:
10906 		return -EINVAL;
10907 	}
10908 
10909 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10910 		return -EINVAL;
10911 
10912 	return 0;
10913 }
10914 
10915 /*
10916  * Variation on perf_event_ctx_lock_nested(), except we take two context
10917  * mutexes.
10918  */
10919 static struct perf_event_context *
10920 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10921 			     struct perf_event_context *ctx)
10922 {
10923 	struct perf_event_context *gctx;
10924 
10925 again:
10926 	rcu_read_lock();
10927 	gctx = READ_ONCE(group_leader->ctx);
10928 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10929 		rcu_read_unlock();
10930 		goto again;
10931 	}
10932 	rcu_read_unlock();
10933 
10934 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10935 
10936 	if (group_leader->ctx != gctx) {
10937 		mutex_unlock(&ctx->mutex);
10938 		mutex_unlock(&gctx->mutex);
10939 		put_ctx(gctx);
10940 		goto again;
10941 	}
10942 
10943 	return gctx;
10944 }
10945 
10946 /**
10947  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10948  *
10949  * @attr_uptr:	event_id type attributes for monitoring/sampling
10950  * @pid:		target pid
10951  * @cpu:		target cpu
10952  * @group_fd:		group leader event fd
10953  */
10954 SYSCALL_DEFINE5(perf_event_open,
10955 		struct perf_event_attr __user *, attr_uptr,
10956 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10957 {
10958 	struct perf_event *group_leader = NULL, *output_event = NULL;
10959 	struct perf_event *event, *sibling;
10960 	struct perf_event_attr attr;
10961 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10962 	struct file *event_file = NULL;
10963 	struct fd group = {NULL, 0};
10964 	struct task_struct *task = NULL;
10965 	struct pmu *pmu;
10966 	int event_fd;
10967 	int move_group = 0;
10968 	int err;
10969 	int f_flags = O_RDWR;
10970 	int cgroup_fd = -1;
10971 
10972 	/* for future expandability... */
10973 	if (flags & ~PERF_FLAG_ALL)
10974 		return -EINVAL;
10975 
10976 	/* Do we allow access to perf_event_open(2) ? */
10977 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
10978 	if (err)
10979 		return err;
10980 
10981 	err = perf_copy_attr(attr_uptr, &attr);
10982 	if (err)
10983 		return err;
10984 
10985 	if (!attr.exclude_kernel) {
10986 		err = perf_allow_kernel(&attr);
10987 		if (err)
10988 			return err;
10989 	}
10990 
10991 	if (attr.namespaces) {
10992 		if (!capable(CAP_SYS_ADMIN))
10993 			return -EACCES;
10994 	}
10995 
10996 	if (attr.freq) {
10997 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10998 			return -EINVAL;
10999 	} else {
11000 		if (attr.sample_period & (1ULL << 63))
11001 			return -EINVAL;
11002 	}
11003 
11004 	/* Only privileged users can get physical addresses */
11005 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11006 		err = perf_allow_kernel(&attr);
11007 		if (err)
11008 			return err;
11009 	}
11010 
11011 	err = security_locked_down(LOCKDOWN_PERF);
11012 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11013 		/* REGS_INTR can leak data, lockdown must prevent this */
11014 		return err;
11015 
11016 	err = 0;
11017 
11018 	/*
11019 	 * In cgroup mode, the pid argument is used to pass the fd
11020 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11021 	 * designates the cpu on which to monitor threads from that
11022 	 * cgroup.
11023 	 */
11024 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11025 		return -EINVAL;
11026 
11027 	if (flags & PERF_FLAG_FD_CLOEXEC)
11028 		f_flags |= O_CLOEXEC;
11029 
11030 	event_fd = get_unused_fd_flags(f_flags);
11031 	if (event_fd < 0)
11032 		return event_fd;
11033 
11034 	if (group_fd != -1) {
11035 		err = perf_fget_light(group_fd, &group);
11036 		if (err)
11037 			goto err_fd;
11038 		group_leader = group.file->private_data;
11039 		if (flags & PERF_FLAG_FD_OUTPUT)
11040 			output_event = group_leader;
11041 		if (flags & PERF_FLAG_FD_NO_GROUP)
11042 			group_leader = NULL;
11043 	}
11044 
11045 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11046 		task = find_lively_task_by_vpid(pid);
11047 		if (IS_ERR(task)) {
11048 			err = PTR_ERR(task);
11049 			goto err_group_fd;
11050 		}
11051 	}
11052 
11053 	if (task && group_leader &&
11054 	    group_leader->attr.inherit != attr.inherit) {
11055 		err = -EINVAL;
11056 		goto err_task;
11057 	}
11058 
11059 	if (task) {
11060 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11061 		if (err)
11062 			goto err_task;
11063 
11064 		/*
11065 		 * Reuse ptrace permission checks for now.
11066 		 *
11067 		 * We must hold cred_guard_mutex across this and any potential
11068 		 * perf_install_in_context() call for this new event to
11069 		 * serialize against exec() altering our credentials (and the
11070 		 * perf_event_exit_task() that could imply).
11071 		 */
11072 		err = -EACCES;
11073 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11074 			goto err_cred;
11075 	}
11076 
11077 	if (flags & PERF_FLAG_PID_CGROUP)
11078 		cgroup_fd = pid;
11079 
11080 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11081 				 NULL, NULL, cgroup_fd);
11082 	if (IS_ERR(event)) {
11083 		err = PTR_ERR(event);
11084 		goto err_cred;
11085 	}
11086 
11087 	if (is_sampling_event(event)) {
11088 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11089 			err = -EOPNOTSUPP;
11090 			goto err_alloc;
11091 		}
11092 	}
11093 
11094 	/*
11095 	 * Special case software events and allow them to be part of
11096 	 * any hardware group.
11097 	 */
11098 	pmu = event->pmu;
11099 
11100 	if (attr.use_clockid) {
11101 		err = perf_event_set_clock(event, attr.clockid);
11102 		if (err)
11103 			goto err_alloc;
11104 	}
11105 
11106 	if (pmu->task_ctx_nr == perf_sw_context)
11107 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11108 
11109 	if (group_leader) {
11110 		if (is_software_event(event) &&
11111 		    !in_software_context(group_leader)) {
11112 			/*
11113 			 * If the event is a sw event, but the group_leader
11114 			 * is on hw context.
11115 			 *
11116 			 * Allow the addition of software events to hw
11117 			 * groups, this is safe because software events
11118 			 * never fail to schedule.
11119 			 */
11120 			pmu = group_leader->ctx->pmu;
11121 		} else if (!is_software_event(event) &&
11122 			   is_software_event(group_leader) &&
11123 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11124 			/*
11125 			 * In case the group is a pure software group, and we
11126 			 * try to add a hardware event, move the whole group to
11127 			 * the hardware context.
11128 			 */
11129 			move_group = 1;
11130 		}
11131 	}
11132 
11133 	/*
11134 	 * Get the target context (task or percpu):
11135 	 */
11136 	ctx = find_get_context(pmu, task, event);
11137 	if (IS_ERR(ctx)) {
11138 		err = PTR_ERR(ctx);
11139 		goto err_alloc;
11140 	}
11141 
11142 	/*
11143 	 * Look up the group leader (we will attach this event to it):
11144 	 */
11145 	if (group_leader) {
11146 		err = -EINVAL;
11147 
11148 		/*
11149 		 * Do not allow a recursive hierarchy (this new sibling
11150 		 * becoming part of another group-sibling):
11151 		 */
11152 		if (group_leader->group_leader != group_leader)
11153 			goto err_context;
11154 
11155 		/* All events in a group should have the same clock */
11156 		if (group_leader->clock != event->clock)
11157 			goto err_context;
11158 
11159 		/*
11160 		 * Make sure we're both events for the same CPU;
11161 		 * grouping events for different CPUs is broken; since
11162 		 * you can never concurrently schedule them anyhow.
11163 		 */
11164 		if (group_leader->cpu != event->cpu)
11165 			goto err_context;
11166 
11167 		/*
11168 		 * Make sure we're both on the same task, or both
11169 		 * per-CPU events.
11170 		 */
11171 		if (group_leader->ctx->task != ctx->task)
11172 			goto err_context;
11173 
11174 		/*
11175 		 * Do not allow to attach to a group in a different task
11176 		 * or CPU context. If we're moving SW events, we'll fix
11177 		 * this up later, so allow that.
11178 		 */
11179 		if (!move_group && group_leader->ctx != ctx)
11180 			goto err_context;
11181 
11182 		/*
11183 		 * Only a group leader can be exclusive or pinned
11184 		 */
11185 		if (attr.exclusive || attr.pinned)
11186 			goto err_context;
11187 	}
11188 
11189 	if (output_event) {
11190 		err = perf_event_set_output(event, output_event);
11191 		if (err)
11192 			goto err_context;
11193 	}
11194 
11195 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11196 					f_flags);
11197 	if (IS_ERR(event_file)) {
11198 		err = PTR_ERR(event_file);
11199 		event_file = NULL;
11200 		goto err_context;
11201 	}
11202 
11203 	if (move_group) {
11204 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11205 
11206 		if (gctx->task == TASK_TOMBSTONE) {
11207 			err = -ESRCH;
11208 			goto err_locked;
11209 		}
11210 
11211 		/*
11212 		 * Check if we raced against another sys_perf_event_open() call
11213 		 * moving the software group underneath us.
11214 		 */
11215 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11216 			/*
11217 			 * If someone moved the group out from under us, check
11218 			 * if this new event wound up on the same ctx, if so
11219 			 * its the regular !move_group case, otherwise fail.
11220 			 */
11221 			if (gctx != ctx) {
11222 				err = -EINVAL;
11223 				goto err_locked;
11224 			} else {
11225 				perf_event_ctx_unlock(group_leader, gctx);
11226 				move_group = 0;
11227 			}
11228 		}
11229 
11230 		/*
11231 		 * Failure to create exclusive events returns -EBUSY.
11232 		 */
11233 		err = -EBUSY;
11234 		if (!exclusive_event_installable(group_leader, ctx))
11235 			goto err_locked;
11236 
11237 		for_each_sibling_event(sibling, group_leader) {
11238 			if (!exclusive_event_installable(sibling, ctx))
11239 				goto err_locked;
11240 		}
11241 	} else {
11242 		mutex_lock(&ctx->mutex);
11243 	}
11244 
11245 	if (ctx->task == TASK_TOMBSTONE) {
11246 		err = -ESRCH;
11247 		goto err_locked;
11248 	}
11249 
11250 	if (!perf_event_validate_size(event)) {
11251 		err = -E2BIG;
11252 		goto err_locked;
11253 	}
11254 
11255 	if (!task) {
11256 		/*
11257 		 * Check if the @cpu we're creating an event for is online.
11258 		 *
11259 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11260 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11261 		 */
11262 		struct perf_cpu_context *cpuctx =
11263 			container_of(ctx, struct perf_cpu_context, ctx);
11264 
11265 		if (!cpuctx->online) {
11266 			err = -ENODEV;
11267 			goto err_locked;
11268 		}
11269 	}
11270 
11271 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11272 		goto err_locked;
11273 
11274 	/*
11275 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11276 	 * because we need to serialize with concurrent event creation.
11277 	 */
11278 	if (!exclusive_event_installable(event, ctx)) {
11279 		err = -EBUSY;
11280 		goto err_locked;
11281 	}
11282 
11283 	WARN_ON_ONCE(ctx->parent_ctx);
11284 
11285 	/*
11286 	 * This is the point on no return; we cannot fail hereafter. This is
11287 	 * where we start modifying current state.
11288 	 */
11289 
11290 	if (move_group) {
11291 		/*
11292 		 * See perf_event_ctx_lock() for comments on the details
11293 		 * of swizzling perf_event::ctx.
11294 		 */
11295 		perf_remove_from_context(group_leader, 0);
11296 		put_ctx(gctx);
11297 
11298 		for_each_sibling_event(sibling, group_leader) {
11299 			perf_remove_from_context(sibling, 0);
11300 			put_ctx(gctx);
11301 		}
11302 
11303 		/*
11304 		 * Wait for everybody to stop referencing the events through
11305 		 * the old lists, before installing it on new lists.
11306 		 */
11307 		synchronize_rcu();
11308 
11309 		/*
11310 		 * Install the group siblings before the group leader.
11311 		 *
11312 		 * Because a group leader will try and install the entire group
11313 		 * (through the sibling list, which is still in-tact), we can
11314 		 * end up with siblings installed in the wrong context.
11315 		 *
11316 		 * By installing siblings first we NO-OP because they're not
11317 		 * reachable through the group lists.
11318 		 */
11319 		for_each_sibling_event(sibling, group_leader) {
11320 			perf_event__state_init(sibling);
11321 			perf_install_in_context(ctx, sibling, sibling->cpu);
11322 			get_ctx(ctx);
11323 		}
11324 
11325 		/*
11326 		 * Removing from the context ends up with disabled
11327 		 * event. What we want here is event in the initial
11328 		 * startup state, ready to be add into new context.
11329 		 */
11330 		perf_event__state_init(group_leader);
11331 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11332 		get_ctx(ctx);
11333 	}
11334 
11335 	/*
11336 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11337 	 * that we're serialized against further additions and before
11338 	 * perf_install_in_context() which is the point the event is active and
11339 	 * can use these values.
11340 	 */
11341 	perf_event__header_size(event);
11342 	perf_event__id_header_size(event);
11343 
11344 	event->owner = current;
11345 
11346 	perf_install_in_context(ctx, event, event->cpu);
11347 	perf_unpin_context(ctx);
11348 
11349 	if (move_group)
11350 		perf_event_ctx_unlock(group_leader, gctx);
11351 	mutex_unlock(&ctx->mutex);
11352 
11353 	if (task) {
11354 		mutex_unlock(&task->signal->cred_guard_mutex);
11355 		put_task_struct(task);
11356 	}
11357 
11358 	mutex_lock(&current->perf_event_mutex);
11359 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11360 	mutex_unlock(&current->perf_event_mutex);
11361 
11362 	/*
11363 	 * Drop the reference on the group_event after placing the
11364 	 * new event on the sibling_list. This ensures destruction
11365 	 * of the group leader will find the pointer to itself in
11366 	 * perf_group_detach().
11367 	 */
11368 	fdput(group);
11369 	fd_install(event_fd, event_file);
11370 	return event_fd;
11371 
11372 err_locked:
11373 	if (move_group)
11374 		perf_event_ctx_unlock(group_leader, gctx);
11375 	mutex_unlock(&ctx->mutex);
11376 /* err_file: */
11377 	fput(event_file);
11378 err_context:
11379 	perf_unpin_context(ctx);
11380 	put_ctx(ctx);
11381 err_alloc:
11382 	/*
11383 	 * If event_file is set, the fput() above will have called ->release()
11384 	 * and that will take care of freeing the event.
11385 	 */
11386 	if (!event_file)
11387 		free_event(event);
11388 err_cred:
11389 	if (task)
11390 		mutex_unlock(&task->signal->cred_guard_mutex);
11391 err_task:
11392 	if (task)
11393 		put_task_struct(task);
11394 err_group_fd:
11395 	fdput(group);
11396 err_fd:
11397 	put_unused_fd(event_fd);
11398 	return err;
11399 }
11400 
11401 /**
11402  * perf_event_create_kernel_counter
11403  *
11404  * @attr: attributes of the counter to create
11405  * @cpu: cpu in which the counter is bound
11406  * @task: task to profile (NULL for percpu)
11407  */
11408 struct perf_event *
11409 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11410 				 struct task_struct *task,
11411 				 perf_overflow_handler_t overflow_handler,
11412 				 void *context)
11413 {
11414 	struct perf_event_context *ctx;
11415 	struct perf_event *event;
11416 	int err;
11417 
11418 	/*
11419 	 * Get the target context (task or percpu):
11420 	 */
11421 
11422 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11423 				 overflow_handler, context, -1);
11424 	if (IS_ERR(event)) {
11425 		err = PTR_ERR(event);
11426 		goto err;
11427 	}
11428 
11429 	/* Mark owner so we could distinguish it from user events. */
11430 	event->owner = TASK_TOMBSTONE;
11431 
11432 	ctx = find_get_context(event->pmu, task, event);
11433 	if (IS_ERR(ctx)) {
11434 		err = PTR_ERR(ctx);
11435 		goto err_free;
11436 	}
11437 
11438 	WARN_ON_ONCE(ctx->parent_ctx);
11439 	mutex_lock(&ctx->mutex);
11440 	if (ctx->task == TASK_TOMBSTONE) {
11441 		err = -ESRCH;
11442 		goto err_unlock;
11443 	}
11444 
11445 	if (!task) {
11446 		/*
11447 		 * Check if the @cpu we're creating an event for is online.
11448 		 *
11449 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11450 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11451 		 */
11452 		struct perf_cpu_context *cpuctx =
11453 			container_of(ctx, struct perf_cpu_context, ctx);
11454 		if (!cpuctx->online) {
11455 			err = -ENODEV;
11456 			goto err_unlock;
11457 		}
11458 	}
11459 
11460 	if (!exclusive_event_installable(event, ctx)) {
11461 		err = -EBUSY;
11462 		goto err_unlock;
11463 	}
11464 
11465 	perf_install_in_context(ctx, event, event->cpu);
11466 	perf_unpin_context(ctx);
11467 	mutex_unlock(&ctx->mutex);
11468 
11469 	return event;
11470 
11471 err_unlock:
11472 	mutex_unlock(&ctx->mutex);
11473 	perf_unpin_context(ctx);
11474 	put_ctx(ctx);
11475 err_free:
11476 	free_event(event);
11477 err:
11478 	return ERR_PTR(err);
11479 }
11480 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11481 
11482 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11483 {
11484 	struct perf_event_context *src_ctx;
11485 	struct perf_event_context *dst_ctx;
11486 	struct perf_event *event, *tmp;
11487 	LIST_HEAD(events);
11488 
11489 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11490 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11491 
11492 	/*
11493 	 * See perf_event_ctx_lock() for comments on the details
11494 	 * of swizzling perf_event::ctx.
11495 	 */
11496 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11497 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11498 				 event_entry) {
11499 		perf_remove_from_context(event, 0);
11500 		unaccount_event_cpu(event, src_cpu);
11501 		put_ctx(src_ctx);
11502 		list_add(&event->migrate_entry, &events);
11503 	}
11504 
11505 	/*
11506 	 * Wait for the events to quiesce before re-instating them.
11507 	 */
11508 	synchronize_rcu();
11509 
11510 	/*
11511 	 * Re-instate events in 2 passes.
11512 	 *
11513 	 * Skip over group leaders and only install siblings on this first
11514 	 * pass, siblings will not get enabled without a leader, however a
11515 	 * leader will enable its siblings, even if those are still on the old
11516 	 * context.
11517 	 */
11518 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11519 		if (event->group_leader == event)
11520 			continue;
11521 
11522 		list_del(&event->migrate_entry);
11523 		if (event->state >= PERF_EVENT_STATE_OFF)
11524 			event->state = PERF_EVENT_STATE_INACTIVE;
11525 		account_event_cpu(event, dst_cpu);
11526 		perf_install_in_context(dst_ctx, event, dst_cpu);
11527 		get_ctx(dst_ctx);
11528 	}
11529 
11530 	/*
11531 	 * Once all the siblings are setup properly, install the group leaders
11532 	 * to make it go.
11533 	 */
11534 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11535 		list_del(&event->migrate_entry);
11536 		if (event->state >= PERF_EVENT_STATE_OFF)
11537 			event->state = PERF_EVENT_STATE_INACTIVE;
11538 		account_event_cpu(event, dst_cpu);
11539 		perf_install_in_context(dst_ctx, event, dst_cpu);
11540 		get_ctx(dst_ctx);
11541 	}
11542 	mutex_unlock(&dst_ctx->mutex);
11543 	mutex_unlock(&src_ctx->mutex);
11544 }
11545 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11546 
11547 static void sync_child_event(struct perf_event *child_event,
11548 			       struct task_struct *child)
11549 {
11550 	struct perf_event *parent_event = child_event->parent;
11551 	u64 child_val;
11552 
11553 	if (child_event->attr.inherit_stat)
11554 		perf_event_read_event(child_event, child);
11555 
11556 	child_val = perf_event_count(child_event);
11557 
11558 	/*
11559 	 * Add back the child's count to the parent's count:
11560 	 */
11561 	atomic64_add(child_val, &parent_event->child_count);
11562 	atomic64_add(child_event->total_time_enabled,
11563 		     &parent_event->child_total_time_enabled);
11564 	atomic64_add(child_event->total_time_running,
11565 		     &parent_event->child_total_time_running);
11566 }
11567 
11568 static void
11569 perf_event_exit_event(struct perf_event *child_event,
11570 		      struct perf_event_context *child_ctx,
11571 		      struct task_struct *child)
11572 {
11573 	struct perf_event *parent_event = child_event->parent;
11574 
11575 	/*
11576 	 * Do not destroy the 'original' grouping; because of the context
11577 	 * switch optimization the original events could've ended up in a
11578 	 * random child task.
11579 	 *
11580 	 * If we were to destroy the original group, all group related
11581 	 * operations would cease to function properly after this random
11582 	 * child dies.
11583 	 *
11584 	 * Do destroy all inherited groups, we don't care about those
11585 	 * and being thorough is better.
11586 	 */
11587 	raw_spin_lock_irq(&child_ctx->lock);
11588 	WARN_ON_ONCE(child_ctx->is_active);
11589 
11590 	if (parent_event)
11591 		perf_group_detach(child_event);
11592 	list_del_event(child_event, child_ctx);
11593 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11594 	raw_spin_unlock_irq(&child_ctx->lock);
11595 
11596 	/*
11597 	 * Parent events are governed by their filedesc, retain them.
11598 	 */
11599 	if (!parent_event) {
11600 		perf_event_wakeup(child_event);
11601 		return;
11602 	}
11603 	/*
11604 	 * Child events can be cleaned up.
11605 	 */
11606 
11607 	sync_child_event(child_event, child);
11608 
11609 	/*
11610 	 * Remove this event from the parent's list
11611 	 */
11612 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11613 	mutex_lock(&parent_event->child_mutex);
11614 	list_del_init(&child_event->child_list);
11615 	mutex_unlock(&parent_event->child_mutex);
11616 
11617 	/*
11618 	 * Kick perf_poll() for is_event_hup().
11619 	 */
11620 	perf_event_wakeup(parent_event);
11621 	free_event(child_event);
11622 	put_event(parent_event);
11623 }
11624 
11625 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11626 {
11627 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11628 	struct perf_event *child_event, *next;
11629 
11630 	WARN_ON_ONCE(child != current);
11631 
11632 	child_ctx = perf_pin_task_context(child, ctxn);
11633 	if (!child_ctx)
11634 		return;
11635 
11636 	/*
11637 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11638 	 * ctx::mutex over the entire thing. This serializes against almost
11639 	 * everything that wants to access the ctx.
11640 	 *
11641 	 * The exception is sys_perf_event_open() /
11642 	 * perf_event_create_kernel_count() which does find_get_context()
11643 	 * without ctx::mutex (it cannot because of the move_group double mutex
11644 	 * lock thing). See the comments in perf_install_in_context().
11645 	 */
11646 	mutex_lock(&child_ctx->mutex);
11647 
11648 	/*
11649 	 * In a single ctx::lock section, de-schedule the events and detach the
11650 	 * context from the task such that we cannot ever get it scheduled back
11651 	 * in.
11652 	 */
11653 	raw_spin_lock_irq(&child_ctx->lock);
11654 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11655 
11656 	/*
11657 	 * Now that the context is inactive, destroy the task <-> ctx relation
11658 	 * and mark the context dead.
11659 	 */
11660 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11661 	put_ctx(child_ctx); /* cannot be last */
11662 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11663 	put_task_struct(current); /* cannot be last */
11664 
11665 	clone_ctx = unclone_ctx(child_ctx);
11666 	raw_spin_unlock_irq(&child_ctx->lock);
11667 
11668 	if (clone_ctx)
11669 		put_ctx(clone_ctx);
11670 
11671 	/*
11672 	 * Report the task dead after unscheduling the events so that we
11673 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11674 	 * get a few PERF_RECORD_READ events.
11675 	 */
11676 	perf_event_task(child, child_ctx, 0);
11677 
11678 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11679 		perf_event_exit_event(child_event, child_ctx, child);
11680 
11681 	mutex_unlock(&child_ctx->mutex);
11682 
11683 	put_ctx(child_ctx);
11684 }
11685 
11686 /*
11687  * When a child task exits, feed back event values to parent events.
11688  *
11689  * Can be called with cred_guard_mutex held when called from
11690  * install_exec_creds().
11691  */
11692 void perf_event_exit_task(struct task_struct *child)
11693 {
11694 	struct perf_event *event, *tmp;
11695 	int ctxn;
11696 
11697 	mutex_lock(&child->perf_event_mutex);
11698 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11699 				 owner_entry) {
11700 		list_del_init(&event->owner_entry);
11701 
11702 		/*
11703 		 * Ensure the list deletion is visible before we clear
11704 		 * the owner, closes a race against perf_release() where
11705 		 * we need to serialize on the owner->perf_event_mutex.
11706 		 */
11707 		smp_store_release(&event->owner, NULL);
11708 	}
11709 	mutex_unlock(&child->perf_event_mutex);
11710 
11711 	for_each_task_context_nr(ctxn)
11712 		perf_event_exit_task_context(child, ctxn);
11713 
11714 	/*
11715 	 * The perf_event_exit_task_context calls perf_event_task
11716 	 * with child's task_ctx, which generates EXIT events for
11717 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11718 	 * At this point we need to send EXIT events to cpu contexts.
11719 	 */
11720 	perf_event_task(child, NULL, 0);
11721 }
11722 
11723 static void perf_free_event(struct perf_event *event,
11724 			    struct perf_event_context *ctx)
11725 {
11726 	struct perf_event *parent = event->parent;
11727 
11728 	if (WARN_ON_ONCE(!parent))
11729 		return;
11730 
11731 	mutex_lock(&parent->child_mutex);
11732 	list_del_init(&event->child_list);
11733 	mutex_unlock(&parent->child_mutex);
11734 
11735 	put_event(parent);
11736 
11737 	raw_spin_lock_irq(&ctx->lock);
11738 	perf_group_detach(event);
11739 	list_del_event(event, ctx);
11740 	raw_spin_unlock_irq(&ctx->lock);
11741 	free_event(event);
11742 }
11743 
11744 /*
11745  * Free a context as created by inheritance by perf_event_init_task() below,
11746  * used by fork() in case of fail.
11747  *
11748  * Even though the task has never lived, the context and events have been
11749  * exposed through the child_list, so we must take care tearing it all down.
11750  */
11751 void perf_event_free_task(struct task_struct *task)
11752 {
11753 	struct perf_event_context *ctx;
11754 	struct perf_event *event, *tmp;
11755 	int ctxn;
11756 
11757 	for_each_task_context_nr(ctxn) {
11758 		ctx = task->perf_event_ctxp[ctxn];
11759 		if (!ctx)
11760 			continue;
11761 
11762 		mutex_lock(&ctx->mutex);
11763 		raw_spin_lock_irq(&ctx->lock);
11764 		/*
11765 		 * Destroy the task <-> ctx relation and mark the context dead.
11766 		 *
11767 		 * This is important because even though the task hasn't been
11768 		 * exposed yet the context has been (through child_list).
11769 		 */
11770 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11771 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11772 		put_task_struct(task); /* cannot be last */
11773 		raw_spin_unlock_irq(&ctx->lock);
11774 
11775 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11776 			perf_free_event(event, ctx);
11777 
11778 		mutex_unlock(&ctx->mutex);
11779 
11780 		/*
11781 		 * perf_event_release_kernel() could've stolen some of our
11782 		 * child events and still have them on its free_list. In that
11783 		 * case we must wait for these events to have been freed (in
11784 		 * particular all their references to this task must've been
11785 		 * dropped).
11786 		 *
11787 		 * Without this copy_process() will unconditionally free this
11788 		 * task (irrespective of its reference count) and
11789 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11790 		 * use-after-free.
11791 		 *
11792 		 * Wait for all events to drop their context reference.
11793 		 */
11794 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11795 		put_ctx(ctx); /* must be last */
11796 	}
11797 }
11798 
11799 void perf_event_delayed_put(struct task_struct *task)
11800 {
11801 	int ctxn;
11802 
11803 	for_each_task_context_nr(ctxn)
11804 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11805 }
11806 
11807 struct file *perf_event_get(unsigned int fd)
11808 {
11809 	struct file *file = fget(fd);
11810 	if (!file)
11811 		return ERR_PTR(-EBADF);
11812 
11813 	if (file->f_op != &perf_fops) {
11814 		fput(file);
11815 		return ERR_PTR(-EBADF);
11816 	}
11817 
11818 	return file;
11819 }
11820 
11821 const struct perf_event *perf_get_event(struct file *file)
11822 {
11823 	if (file->f_op != &perf_fops)
11824 		return ERR_PTR(-EINVAL);
11825 
11826 	return file->private_data;
11827 }
11828 
11829 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11830 {
11831 	if (!event)
11832 		return ERR_PTR(-EINVAL);
11833 
11834 	return &event->attr;
11835 }
11836 
11837 /*
11838  * Inherit an event from parent task to child task.
11839  *
11840  * Returns:
11841  *  - valid pointer on success
11842  *  - NULL for orphaned events
11843  *  - IS_ERR() on error
11844  */
11845 static struct perf_event *
11846 inherit_event(struct perf_event *parent_event,
11847 	      struct task_struct *parent,
11848 	      struct perf_event_context *parent_ctx,
11849 	      struct task_struct *child,
11850 	      struct perf_event *group_leader,
11851 	      struct perf_event_context *child_ctx)
11852 {
11853 	enum perf_event_state parent_state = parent_event->state;
11854 	struct perf_event *child_event;
11855 	unsigned long flags;
11856 
11857 	/*
11858 	 * Instead of creating recursive hierarchies of events,
11859 	 * we link inherited events back to the original parent,
11860 	 * which has a filp for sure, which we use as the reference
11861 	 * count:
11862 	 */
11863 	if (parent_event->parent)
11864 		parent_event = parent_event->parent;
11865 
11866 	child_event = perf_event_alloc(&parent_event->attr,
11867 					   parent_event->cpu,
11868 					   child,
11869 					   group_leader, parent_event,
11870 					   NULL, NULL, -1);
11871 	if (IS_ERR(child_event))
11872 		return child_event;
11873 
11874 
11875 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11876 	    !child_ctx->task_ctx_data) {
11877 		struct pmu *pmu = child_event->pmu;
11878 
11879 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11880 						   GFP_KERNEL);
11881 		if (!child_ctx->task_ctx_data) {
11882 			free_event(child_event);
11883 			return NULL;
11884 		}
11885 	}
11886 
11887 	/*
11888 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11889 	 * must be under the same lock in order to serialize against
11890 	 * perf_event_release_kernel(), such that either we must observe
11891 	 * is_orphaned_event() or they will observe us on the child_list.
11892 	 */
11893 	mutex_lock(&parent_event->child_mutex);
11894 	if (is_orphaned_event(parent_event) ||
11895 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11896 		mutex_unlock(&parent_event->child_mutex);
11897 		/* task_ctx_data is freed with child_ctx */
11898 		free_event(child_event);
11899 		return NULL;
11900 	}
11901 
11902 	get_ctx(child_ctx);
11903 
11904 	/*
11905 	 * Make the child state follow the state of the parent event,
11906 	 * not its attr.disabled bit.  We hold the parent's mutex,
11907 	 * so we won't race with perf_event_{en, dis}able_family.
11908 	 */
11909 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11910 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11911 	else
11912 		child_event->state = PERF_EVENT_STATE_OFF;
11913 
11914 	if (parent_event->attr.freq) {
11915 		u64 sample_period = parent_event->hw.sample_period;
11916 		struct hw_perf_event *hwc = &child_event->hw;
11917 
11918 		hwc->sample_period = sample_period;
11919 		hwc->last_period   = sample_period;
11920 
11921 		local64_set(&hwc->period_left, sample_period);
11922 	}
11923 
11924 	child_event->ctx = child_ctx;
11925 	child_event->overflow_handler = parent_event->overflow_handler;
11926 	child_event->overflow_handler_context
11927 		= parent_event->overflow_handler_context;
11928 
11929 	/*
11930 	 * Precalculate sample_data sizes
11931 	 */
11932 	perf_event__header_size(child_event);
11933 	perf_event__id_header_size(child_event);
11934 
11935 	/*
11936 	 * Link it up in the child's context:
11937 	 */
11938 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11939 	add_event_to_ctx(child_event, child_ctx);
11940 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11941 
11942 	/*
11943 	 * Link this into the parent event's child list
11944 	 */
11945 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11946 	mutex_unlock(&parent_event->child_mutex);
11947 
11948 	return child_event;
11949 }
11950 
11951 /*
11952  * Inherits an event group.
11953  *
11954  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11955  * This matches with perf_event_release_kernel() removing all child events.
11956  *
11957  * Returns:
11958  *  - 0 on success
11959  *  - <0 on error
11960  */
11961 static int inherit_group(struct perf_event *parent_event,
11962 	      struct task_struct *parent,
11963 	      struct perf_event_context *parent_ctx,
11964 	      struct task_struct *child,
11965 	      struct perf_event_context *child_ctx)
11966 {
11967 	struct perf_event *leader;
11968 	struct perf_event *sub;
11969 	struct perf_event *child_ctr;
11970 
11971 	leader = inherit_event(parent_event, parent, parent_ctx,
11972 				 child, NULL, child_ctx);
11973 	if (IS_ERR(leader))
11974 		return PTR_ERR(leader);
11975 	/*
11976 	 * @leader can be NULL here because of is_orphaned_event(). In this
11977 	 * case inherit_event() will create individual events, similar to what
11978 	 * perf_group_detach() would do anyway.
11979 	 */
11980 	for_each_sibling_event(sub, parent_event) {
11981 		child_ctr = inherit_event(sub, parent, parent_ctx,
11982 					    child, leader, child_ctx);
11983 		if (IS_ERR(child_ctr))
11984 			return PTR_ERR(child_ctr);
11985 
11986 		if (sub->aux_event == parent_event &&
11987 		    !perf_get_aux_event(child_ctr, leader))
11988 			return -EINVAL;
11989 	}
11990 	return 0;
11991 }
11992 
11993 /*
11994  * Creates the child task context and tries to inherit the event-group.
11995  *
11996  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11997  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11998  * consistent with perf_event_release_kernel() removing all child events.
11999  *
12000  * Returns:
12001  *  - 0 on success
12002  *  - <0 on error
12003  */
12004 static int
12005 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12006 		   struct perf_event_context *parent_ctx,
12007 		   struct task_struct *child, int ctxn,
12008 		   int *inherited_all)
12009 {
12010 	int ret;
12011 	struct perf_event_context *child_ctx;
12012 
12013 	if (!event->attr.inherit) {
12014 		*inherited_all = 0;
12015 		return 0;
12016 	}
12017 
12018 	child_ctx = child->perf_event_ctxp[ctxn];
12019 	if (!child_ctx) {
12020 		/*
12021 		 * This is executed from the parent task context, so
12022 		 * inherit events that have been marked for cloning.
12023 		 * First allocate and initialize a context for the
12024 		 * child.
12025 		 */
12026 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12027 		if (!child_ctx)
12028 			return -ENOMEM;
12029 
12030 		child->perf_event_ctxp[ctxn] = child_ctx;
12031 	}
12032 
12033 	ret = inherit_group(event, parent, parent_ctx,
12034 			    child, child_ctx);
12035 
12036 	if (ret)
12037 		*inherited_all = 0;
12038 
12039 	return ret;
12040 }
12041 
12042 /*
12043  * Initialize the perf_event context in task_struct
12044  */
12045 static int perf_event_init_context(struct task_struct *child, int ctxn)
12046 {
12047 	struct perf_event_context *child_ctx, *parent_ctx;
12048 	struct perf_event_context *cloned_ctx;
12049 	struct perf_event *event;
12050 	struct task_struct *parent = current;
12051 	int inherited_all = 1;
12052 	unsigned long flags;
12053 	int ret = 0;
12054 
12055 	if (likely(!parent->perf_event_ctxp[ctxn]))
12056 		return 0;
12057 
12058 	/*
12059 	 * If the parent's context is a clone, pin it so it won't get
12060 	 * swapped under us.
12061 	 */
12062 	parent_ctx = perf_pin_task_context(parent, ctxn);
12063 	if (!parent_ctx)
12064 		return 0;
12065 
12066 	/*
12067 	 * No need to check if parent_ctx != NULL here; since we saw
12068 	 * it non-NULL earlier, the only reason for it to become NULL
12069 	 * is if we exit, and since we're currently in the middle of
12070 	 * a fork we can't be exiting at the same time.
12071 	 */
12072 
12073 	/*
12074 	 * Lock the parent list. No need to lock the child - not PID
12075 	 * hashed yet and not running, so nobody can access it.
12076 	 */
12077 	mutex_lock(&parent_ctx->mutex);
12078 
12079 	/*
12080 	 * We dont have to disable NMIs - we are only looking at
12081 	 * the list, not manipulating it:
12082 	 */
12083 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12084 		ret = inherit_task_group(event, parent, parent_ctx,
12085 					 child, ctxn, &inherited_all);
12086 		if (ret)
12087 			goto out_unlock;
12088 	}
12089 
12090 	/*
12091 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12092 	 * to allocations, but we need to prevent rotation because
12093 	 * rotate_ctx() will change the list from interrupt context.
12094 	 */
12095 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12096 	parent_ctx->rotate_disable = 1;
12097 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12098 
12099 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12100 		ret = inherit_task_group(event, parent, parent_ctx,
12101 					 child, ctxn, &inherited_all);
12102 		if (ret)
12103 			goto out_unlock;
12104 	}
12105 
12106 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12107 	parent_ctx->rotate_disable = 0;
12108 
12109 	child_ctx = child->perf_event_ctxp[ctxn];
12110 
12111 	if (child_ctx && inherited_all) {
12112 		/*
12113 		 * Mark the child context as a clone of the parent
12114 		 * context, or of whatever the parent is a clone of.
12115 		 *
12116 		 * Note that if the parent is a clone, the holding of
12117 		 * parent_ctx->lock avoids it from being uncloned.
12118 		 */
12119 		cloned_ctx = parent_ctx->parent_ctx;
12120 		if (cloned_ctx) {
12121 			child_ctx->parent_ctx = cloned_ctx;
12122 			child_ctx->parent_gen = parent_ctx->parent_gen;
12123 		} else {
12124 			child_ctx->parent_ctx = parent_ctx;
12125 			child_ctx->parent_gen = parent_ctx->generation;
12126 		}
12127 		get_ctx(child_ctx->parent_ctx);
12128 	}
12129 
12130 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12131 out_unlock:
12132 	mutex_unlock(&parent_ctx->mutex);
12133 
12134 	perf_unpin_context(parent_ctx);
12135 	put_ctx(parent_ctx);
12136 
12137 	return ret;
12138 }
12139 
12140 /*
12141  * Initialize the perf_event context in task_struct
12142  */
12143 int perf_event_init_task(struct task_struct *child)
12144 {
12145 	int ctxn, ret;
12146 
12147 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12148 	mutex_init(&child->perf_event_mutex);
12149 	INIT_LIST_HEAD(&child->perf_event_list);
12150 
12151 	for_each_task_context_nr(ctxn) {
12152 		ret = perf_event_init_context(child, ctxn);
12153 		if (ret) {
12154 			perf_event_free_task(child);
12155 			return ret;
12156 		}
12157 	}
12158 
12159 	return 0;
12160 }
12161 
12162 static void __init perf_event_init_all_cpus(void)
12163 {
12164 	struct swevent_htable *swhash;
12165 	int cpu;
12166 
12167 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12168 
12169 	for_each_possible_cpu(cpu) {
12170 		swhash = &per_cpu(swevent_htable, cpu);
12171 		mutex_init(&swhash->hlist_mutex);
12172 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12173 
12174 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12175 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12176 
12177 #ifdef CONFIG_CGROUP_PERF
12178 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12179 #endif
12180 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12181 	}
12182 }
12183 
12184 static void perf_swevent_init_cpu(unsigned int cpu)
12185 {
12186 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12187 
12188 	mutex_lock(&swhash->hlist_mutex);
12189 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12190 		struct swevent_hlist *hlist;
12191 
12192 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12193 		WARN_ON(!hlist);
12194 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12195 	}
12196 	mutex_unlock(&swhash->hlist_mutex);
12197 }
12198 
12199 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12200 static void __perf_event_exit_context(void *__info)
12201 {
12202 	struct perf_event_context *ctx = __info;
12203 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12204 	struct perf_event *event;
12205 
12206 	raw_spin_lock(&ctx->lock);
12207 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12208 	list_for_each_entry(event, &ctx->event_list, event_entry)
12209 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12210 	raw_spin_unlock(&ctx->lock);
12211 }
12212 
12213 static void perf_event_exit_cpu_context(int cpu)
12214 {
12215 	struct perf_cpu_context *cpuctx;
12216 	struct perf_event_context *ctx;
12217 	struct pmu *pmu;
12218 
12219 	mutex_lock(&pmus_lock);
12220 	list_for_each_entry(pmu, &pmus, entry) {
12221 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12222 		ctx = &cpuctx->ctx;
12223 
12224 		mutex_lock(&ctx->mutex);
12225 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12226 		cpuctx->online = 0;
12227 		mutex_unlock(&ctx->mutex);
12228 	}
12229 	cpumask_clear_cpu(cpu, perf_online_mask);
12230 	mutex_unlock(&pmus_lock);
12231 }
12232 #else
12233 
12234 static void perf_event_exit_cpu_context(int cpu) { }
12235 
12236 #endif
12237 
12238 int perf_event_init_cpu(unsigned int cpu)
12239 {
12240 	struct perf_cpu_context *cpuctx;
12241 	struct perf_event_context *ctx;
12242 	struct pmu *pmu;
12243 
12244 	perf_swevent_init_cpu(cpu);
12245 
12246 	mutex_lock(&pmus_lock);
12247 	cpumask_set_cpu(cpu, perf_online_mask);
12248 	list_for_each_entry(pmu, &pmus, entry) {
12249 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12250 		ctx = &cpuctx->ctx;
12251 
12252 		mutex_lock(&ctx->mutex);
12253 		cpuctx->online = 1;
12254 		mutex_unlock(&ctx->mutex);
12255 	}
12256 	mutex_unlock(&pmus_lock);
12257 
12258 	return 0;
12259 }
12260 
12261 int perf_event_exit_cpu(unsigned int cpu)
12262 {
12263 	perf_event_exit_cpu_context(cpu);
12264 	return 0;
12265 }
12266 
12267 static int
12268 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12269 {
12270 	int cpu;
12271 
12272 	for_each_online_cpu(cpu)
12273 		perf_event_exit_cpu(cpu);
12274 
12275 	return NOTIFY_OK;
12276 }
12277 
12278 /*
12279  * Run the perf reboot notifier at the very last possible moment so that
12280  * the generic watchdog code runs as long as possible.
12281  */
12282 static struct notifier_block perf_reboot_notifier = {
12283 	.notifier_call = perf_reboot,
12284 	.priority = INT_MIN,
12285 };
12286 
12287 void __init perf_event_init(void)
12288 {
12289 	int ret;
12290 
12291 	idr_init(&pmu_idr);
12292 
12293 	perf_event_init_all_cpus();
12294 	init_srcu_struct(&pmus_srcu);
12295 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12296 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12297 	perf_pmu_register(&perf_task_clock, NULL, -1);
12298 	perf_tp_register();
12299 	perf_event_init_cpu(smp_processor_id());
12300 	register_reboot_notifier(&perf_reboot_notifier);
12301 
12302 	ret = init_hw_breakpoint();
12303 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12304 
12305 	/*
12306 	 * Build time assertion that we keep the data_head at the intended
12307 	 * location.  IOW, validation we got the __reserved[] size right.
12308 	 */
12309 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12310 		     != 1024);
12311 }
12312 
12313 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12314 			      char *page)
12315 {
12316 	struct perf_pmu_events_attr *pmu_attr =
12317 		container_of(attr, struct perf_pmu_events_attr, attr);
12318 
12319 	if (pmu_attr->event_str)
12320 		return sprintf(page, "%s\n", pmu_attr->event_str);
12321 
12322 	return 0;
12323 }
12324 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12325 
12326 static int __init perf_event_sysfs_init(void)
12327 {
12328 	struct pmu *pmu;
12329 	int ret;
12330 
12331 	mutex_lock(&pmus_lock);
12332 
12333 	ret = bus_register(&pmu_bus);
12334 	if (ret)
12335 		goto unlock;
12336 
12337 	list_for_each_entry(pmu, &pmus, entry) {
12338 		if (!pmu->name || pmu->type < 0)
12339 			continue;
12340 
12341 		ret = pmu_dev_alloc(pmu);
12342 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12343 	}
12344 	pmu_bus_running = 1;
12345 	ret = 0;
12346 
12347 unlock:
12348 	mutex_unlock(&pmus_lock);
12349 
12350 	return ret;
12351 }
12352 device_initcall(perf_event_sysfs_init);
12353 
12354 #ifdef CONFIG_CGROUP_PERF
12355 static struct cgroup_subsys_state *
12356 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12357 {
12358 	struct perf_cgroup *jc;
12359 
12360 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12361 	if (!jc)
12362 		return ERR_PTR(-ENOMEM);
12363 
12364 	jc->info = alloc_percpu(struct perf_cgroup_info);
12365 	if (!jc->info) {
12366 		kfree(jc);
12367 		return ERR_PTR(-ENOMEM);
12368 	}
12369 
12370 	return &jc->css;
12371 }
12372 
12373 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12374 {
12375 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12376 
12377 	free_percpu(jc->info);
12378 	kfree(jc);
12379 }
12380 
12381 static int __perf_cgroup_move(void *info)
12382 {
12383 	struct task_struct *task = info;
12384 	rcu_read_lock();
12385 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12386 	rcu_read_unlock();
12387 	return 0;
12388 }
12389 
12390 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12391 {
12392 	struct task_struct *task;
12393 	struct cgroup_subsys_state *css;
12394 
12395 	cgroup_taskset_for_each(task, css, tset)
12396 		task_function_call(task, __perf_cgroup_move, task);
12397 }
12398 
12399 struct cgroup_subsys perf_event_cgrp_subsys = {
12400 	.css_alloc	= perf_cgroup_css_alloc,
12401 	.css_free	= perf_cgroup_css_free,
12402 	.attach		= perf_cgroup_attach,
12403 	/*
12404 	 * Implicitly enable on dfl hierarchy so that perf events can
12405 	 * always be filtered by cgroup2 path as long as perf_event
12406 	 * controller is not mounted on a legacy hierarchy.
12407 	 */
12408 	.implicit_on_dfl = true,
12409 	.threaded	= true,
12410 };
12411 #endif /* CONFIG_CGROUP_PERF */
12412