1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static int 1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 1892 { 1893 if (!has_aux(aux_event)) 1894 return 0; 1895 1896 if (!event->pmu->aux_output_match) 1897 return 0; 1898 1899 return event->pmu->aux_output_match(aux_event); 1900 } 1901 1902 static void put_event(struct perf_event *event); 1903 static void event_sched_out(struct perf_event *event, 1904 struct perf_cpu_context *cpuctx, 1905 struct perf_event_context *ctx); 1906 1907 static void perf_put_aux_event(struct perf_event *event) 1908 { 1909 struct perf_event_context *ctx = event->ctx; 1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1911 struct perf_event *iter; 1912 1913 /* 1914 * If event uses aux_event tear down the link 1915 */ 1916 if (event->aux_event) { 1917 iter = event->aux_event; 1918 event->aux_event = NULL; 1919 put_event(iter); 1920 return; 1921 } 1922 1923 /* 1924 * If the event is an aux_event, tear down all links to 1925 * it from other events. 1926 */ 1927 for_each_sibling_event(iter, event->group_leader) { 1928 if (iter->aux_event != event) 1929 continue; 1930 1931 iter->aux_event = NULL; 1932 put_event(event); 1933 1934 /* 1935 * If it's ACTIVE, schedule it out and put it into ERROR 1936 * state so that we don't try to schedule it again. Note 1937 * that perf_event_enable() will clear the ERROR status. 1938 */ 1939 event_sched_out(iter, cpuctx, ctx); 1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 1941 } 1942 } 1943 1944 static int perf_get_aux_event(struct perf_event *event, 1945 struct perf_event *group_leader) 1946 { 1947 /* 1948 * Our group leader must be an aux event if we want to be 1949 * an aux_output. This way, the aux event will precede its 1950 * aux_output events in the group, and therefore will always 1951 * schedule first. 1952 */ 1953 if (!group_leader) 1954 return 0; 1955 1956 if (!perf_aux_output_match(event, group_leader)) 1957 return 0; 1958 1959 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 1960 return 0; 1961 1962 /* 1963 * Link aux_outputs to their aux event; this is undone in 1964 * perf_group_detach() by perf_put_aux_event(). When the 1965 * group in torn down, the aux_output events loose their 1966 * link to the aux_event and can't schedule any more. 1967 */ 1968 event->aux_event = group_leader; 1969 1970 return 1; 1971 } 1972 1973 static void perf_group_detach(struct perf_event *event) 1974 { 1975 struct perf_event *sibling, *tmp; 1976 struct perf_event_context *ctx = event->ctx; 1977 1978 lockdep_assert_held(&ctx->lock); 1979 1980 /* 1981 * We can have double detach due to exit/hot-unplug + close. 1982 */ 1983 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1984 return; 1985 1986 event->attach_state &= ~PERF_ATTACH_GROUP; 1987 1988 perf_put_aux_event(event); 1989 1990 /* 1991 * If this is a sibling, remove it from its group. 1992 */ 1993 if (event->group_leader != event) { 1994 list_del_init(&event->sibling_list); 1995 event->group_leader->nr_siblings--; 1996 goto out; 1997 } 1998 1999 /* 2000 * If this was a group event with sibling events then 2001 * upgrade the siblings to singleton events by adding them 2002 * to whatever list we are on. 2003 */ 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2005 2006 sibling->group_leader = sibling; 2007 list_del_init(&sibling->sibling_list); 2008 2009 /* Inherit group flags from the previous leader */ 2010 sibling->group_caps = event->group_caps; 2011 2012 if (!RB_EMPTY_NODE(&event->group_node)) { 2013 add_event_to_groups(sibling, event->ctx); 2014 2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 2016 struct list_head *list = sibling->attr.pinned ? 2017 &ctx->pinned_active : &ctx->flexible_active; 2018 2019 list_add_tail(&sibling->active_list, list); 2020 } 2021 } 2022 2023 WARN_ON_ONCE(sibling->ctx != event->ctx); 2024 } 2025 2026 out: 2027 perf_event__header_size(event->group_leader); 2028 2029 for_each_sibling_event(tmp, event->group_leader) 2030 perf_event__header_size(tmp); 2031 } 2032 2033 static bool is_orphaned_event(struct perf_event *event) 2034 { 2035 return event->state == PERF_EVENT_STATE_DEAD; 2036 } 2037 2038 static inline int __pmu_filter_match(struct perf_event *event) 2039 { 2040 struct pmu *pmu = event->pmu; 2041 return pmu->filter_match ? pmu->filter_match(event) : 1; 2042 } 2043 2044 /* 2045 * Check whether we should attempt to schedule an event group based on 2046 * PMU-specific filtering. An event group can consist of HW and SW events, 2047 * potentially with a SW leader, so we must check all the filters, to 2048 * determine whether a group is schedulable: 2049 */ 2050 static inline int pmu_filter_match(struct perf_event *event) 2051 { 2052 struct perf_event *sibling; 2053 2054 if (!__pmu_filter_match(event)) 2055 return 0; 2056 2057 for_each_sibling_event(sibling, event) { 2058 if (!__pmu_filter_match(sibling)) 2059 return 0; 2060 } 2061 2062 return 1; 2063 } 2064 2065 static inline int 2066 event_filter_match(struct perf_event *event) 2067 { 2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2069 perf_cgroup_match(event) && pmu_filter_match(event); 2070 } 2071 2072 static void 2073 event_sched_out(struct perf_event *event, 2074 struct perf_cpu_context *cpuctx, 2075 struct perf_event_context *ctx) 2076 { 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2078 2079 WARN_ON_ONCE(event->ctx != ctx); 2080 lockdep_assert_held(&ctx->lock); 2081 2082 if (event->state != PERF_EVENT_STATE_ACTIVE) 2083 return; 2084 2085 /* 2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2087 * we can schedule events _OUT_ individually through things like 2088 * __perf_remove_from_context(). 2089 */ 2090 list_del_init(&event->active_list); 2091 2092 perf_pmu_disable(event->pmu); 2093 2094 event->pmu->del(event, 0); 2095 event->oncpu = -1; 2096 2097 if (READ_ONCE(event->pending_disable) >= 0) { 2098 WRITE_ONCE(event->pending_disable, -1); 2099 state = PERF_EVENT_STATE_OFF; 2100 } 2101 perf_event_set_state(event, state); 2102 2103 if (!is_software_event(event)) 2104 cpuctx->active_oncpu--; 2105 if (!--ctx->nr_active) 2106 perf_event_ctx_deactivate(ctx); 2107 if (event->attr.freq && event->attr.sample_freq) 2108 ctx->nr_freq--; 2109 if (event->attr.exclusive || !cpuctx->active_oncpu) 2110 cpuctx->exclusive = 0; 2111 2112 perf_pmu_enable(event->pmu); 2113 } 2114 2115 static void 2116 group_sched_out(struct perf_event *group_event, 2117 struct perf_cpu_context *cpuctx, 2118 struct perf_event_context *ctx) 2119 { 2120 struct perf_event *event; 2121 2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2123 return; 2124 2125 perf_pmu_disable(ctx->pmu); 2126 2127 event_sched_out(group_event, cpuctx, ctx); 2128 2129 /* 2130 * Schedule out siblings (if any): 2131 */ 2132 for_each_sibling_event(event, group_event) 2133 event_sched_out(event, cpuctx, ctx); 2134 2135 perf_pmu_enable(ctx->pmu); 2136 2137 if (group_event->attr.exclusive) 2138 cpuctx->exclusive = 0; 2139 } 2140 2141 #define DETACH_GROUP 0x01UL 2142 2143 /* 2144 * Cross CPU call to remove a performance event 2145 * 2146 * We disable the event on the hardware level first. After that we 2147 * remove it from the context list. 2148 */ 2149 static void 2150 __perf_remove_from_context(struct perf_event *event, 2151 struct perf_cpu_context *cpuctx, 2152 struct perf_event_context *ctx, 2153 void *info) 2154 { 2155 unsigned long flags = (unsigned long)info; 2156 2157 if (ctx->is_active & EVENT_TIME) { 2158 update_context_time(ctx); 2159 update_cgrp_time_from_cpuctx(cpuctx); 2160 } 2161 2162 event_sched_out(event, cpuctx, ctx); 2163 if (flags & DETACH_GROUP) 2164 perf_group_detach(event); 2165 list_del_event(event, ctx); 2166 2167 if (!ctx->nr_events && ctx->is_active) { 2168 ctx->is_active = 0; 2169 if (ctx->task) { 2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2171 cpuctx->task_ctx = NULL; 2172 } 2173 } 2174 } 2175 2176 /* 2177 * Remove the event from a task's (or a CPU's) list of events. 2178 * 2179 * If event->ctx is a cloned context, callers must make sure that 2180 * every task struct that event->ctx->task could possibly point to 2181 * remains valid. This is OK when called from perf_release since 2182 * that only calls us on the top-level context, which can't be a clone. 2183 * When called from perf_event_exit_task, it's OK because the 2184 * context has been detached from its task. 2185 */ 2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2187 { 2188 struct perf_event_context *ctx = event->ctx; 2189 2190 lockdep_assert_held(&ctx->mutex); 2191 2192 event_function_call(event, __perf_remove_from_context, (void *)flags); 2193 2194 /* 2195 * The above event_function_call() can NO-OP when it hits 2196 * TASK_TOMBSTONE. In that case we must already have been detached 2197 * from the context (by perf_event_exit_event()) but the grouping 2198 * might still be in-tact. 2199 */ 2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2201 if ((flags & DETACH_GROUP) && 2202 (event->attach_state & PERF_ATTACH_GROUP)) { 2203 /* 2204 * Since in that case we cannot possibly be scheduled, simply 2205 * detach now. 2206 */ 2207 raw_spin_lock_irq(&ctx->lock); 2208 perf_group_detach(event); 2209 raw_spin_unlock_irq(&ctx->lock); 2210 } 2211 } 2212 2213 /* 2214 * Cross CPU call to disable a performance event 2215 */ 2216 static void __perf_event_disable(struct perf_event *event, 2217 struct perf_cpu_context *cpuctx, 2218 struct perf_event_context *ctx, 2219 void *info) 2220 { 2221 if (event->state < PERF_EVENT_STATE_INACTIVE) 2222 return; 2223 2224 if (ctx->is_active & EVENT_TIME) { 2225 update_context_time(ctx); 2226 update_cgrp_time_from_event(event); 2227 } 2228 2229 if (event == event->group_leader) 2230 group_sched_out(event, cpuctx, ctx); 2231 else 2232 event_sched_out(event, cpuctx, ctx); 2233 2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2235 } 2236 2237 /* 2238 * Disable an event. 2239 * 2240 * If event->ctx is a cloned context, callers must make sure that 2241 * every task struct that event->ctx->task could possibly point to 2242 * remains valid. This condition is satisfied when called through 2243 * perf_event_for_each_child or perf_event_for_each because they 2244 * hold the top-level event's child_mutex, so any descendant that 2245 * goes to exit will block in perf_event_exit_event(). 2246 * 2247 * When called from perf_pending_event it's OK because event->ctx 2248 * is the current context on this CPU and preemption is disabled, 2249 * hence we can't get into perf_event_task_sched_out for this context. 2250 */ 2251 static void _perf_event_disable(struct perf_event *event) 2252 { 2253 struct perf_event_context *ctx = event->ctx; 2254 2255 raw_spin_lock_irq(&ctx->lock); 2256 if (event->state <= PERF_EVENT_STATE_OFF) { 2257 raw_spin_unlock_irq(&ctx->lock); 2258 return; 2259 } 2260 raw_spin_unlock_irq(&ctx->lock); 2261 2262 event_function_call(event, __perf_event_disable, NULL); 2263 } 2264 2265 void perf_event_disable_local(struct perf_event *event) 2266 { 2267 event_function_local(event, __perf_event_disable, NULL); 2268 } 2269 2270 /* 2271 * Strictly speaking kernel users cannot create groups and therefore this 2272 * interface does not need the perf_event_ctx_lock() magic. 2273 */ 2274 void perf_event_disable(struct perf_event *event) 2275 { 2276 struct perf_event_context *ctx; 2277 2278 ctx = perf_event_ctx_lock(event); 2279 _perf_event_disable(event); 2280 perf_event_ctx_unlock(event, ctx); 2281 } 2282 EXPORT_SYMBOL_GPL(perf_event_disable); 2283 2284 void perf_event_disable_inatomic(struct perf_event *event) 2285 { 2286 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2287 /* can fail, see perf_pending_event_disable() */ 2288 irq_work_queue(&event->pending); 2289 } 2290 2291 static void perf_set_shadow_time(struct perf_event *event, 2292 struct perf_event_context *ctx) 2293 { 2294 /* 2295 * use the correct time source for the time snapshot 2296 * 2297 * We could get by without this by leveraging the 2298 * fact that to get to this function, the caller 2299 * has most likely already called update_context_time() 2300 * and update_cgrp_time_xx() and thus both timestamp 2301 * are identical (or very close). Given that tstamp is, 2302 * already adjusted for cgroup, we could say that: 2303 * tstamp - ctx->timestamp 2304 * is equivalent to 2305 * tstamp - cgrp->timestamp. 2306 * 2307 * Then, in perf_output_read(), the calculation would 2308 * work with no changes because: 2309 * - event is guaranteed scheduled in 2310 * - no scheduled out in between 2311 * - thus the timestamp would be the same 2312 * 2313 * But this is a bit hairy. 2314 * 2315 * So instead, we have an explicit cgroup call to remain 2316 * within the time time source all along. We believe it 2317 * is cleaner and simpler to understand. 2318 */ 2319 if (is_cgroup_event(event)) 2320 perf_cgroup_set_shadow_time(event, event->tstamp); 2321 else 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2323 } 2324 2325 #define MAX_INTERRUPTS (~0ULL) 2326 2327 static void perf_log_throttle(struct perf_event *event, int enable); 2328 static void perf_log_itrace_start(struct perf_event *event); 2329 2330 static int 2331 event_sched_in(struct perf_event *event, 2332 struct perf_cpu_context *cpuctx, 2333 struct perf_event_context *ctx) 2334 { 2335 int ret = 0; 2336 2337 lockdep_assert_held(&ctx->lock); 2338 2339 if (event->state <= PERF_EVENT_STATE_OFF) 2340 return 0; 2341 2342 WRITE_ONCE(event->oncpu, smp_processor_id()); 2343 /* 2344 * Order event::oncpu write to happen before the ACTIVE state is 2345 * visible. This allows perf_event_{stop,read}() to observe the correct 2346 * ->oncpu if it sees ACTIVE. 2347 */ 2348 smp_wmb(); 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2350 2351 /* 2352 * Unthrottle events, since we scheduled we might have missed several 2353 * ticks already, also for a heavily scheduling task there is little 2354 * guarantee it'll get a tick in a timely manner. 2355 */ 2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2357 perf_log_throttle(event, 1); 2358 event->hw.interrupts = 0; 2359 } 2360 2361 perf_pmu_disable(event->pmu); 2362 2363 perf_set_shadow_time(event, ctx); 2364 2365 perf_log_itrace_start(event); 2366 2367 if (event->pmu->add(event, PERF_EF_START)) { 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2369 event->oncpu = -1; 2370 ret = -EAGAIN; 2371 goto out; 2372 } 2373 2374 if (!is_software_event(event)) 2375 cpuctx->active_oncpu++; 2376 if (!ctx->nr_active++) 2377 perf_event_ctx_activate(ctx); 2378 if (event->attr.freq && event->attr.sample_freq) 2379 ctx->nr_freq++; 2380 2381 if (event->attr.exclusive) 2382 cpuctx->exclusive = 1; 2383 2384 out: 2385 perf_pmu_enable(event->pmu); 2386 2387 return ret; 2388 } 2389 2390 static int 2391 group_sched_in(struct perf_event *group_event, 2392 struct perf_cpu_context *cpuctx, 2393 struct perf_event_context *ctx) 2394 { 2395 struct perf_event *event, *partial_group = NULL; 2396 struct pmu *pmu = ctx->pmu; 2397 2398 if (group_event->state == PERF_EVENT_STATE_OFF) 2399 return 0; 2400 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2402 2403 if (event_sched_in(group_event, cpuctx, ctx)) { 2404 pmu->cancel_txn(pmu); 2405 perf_mux_hrtimer_restart(cpuctx); 2406 return -EAGAIN; 2407 } 2408 2409 /* 2410 * Schedule in siblings as one group (if any): 2411 */ 2412 for_each_sibling_event(event, group_event) { 2413 if (event_sched_in(event, cpuctx, ctx)) { 2414 partial_group = event; 2415 goto group_error; 2416 } 2417 } 2418 2419 if (!pmu->commit_txn(pmu)) 2420 return 0; 2421 2422 group_error: 2423 /* 2424 * Groups can be scheduled in as one unit only, so undo any 2425 * partial group before returning: 2426 * The events up to the failed event are scheduled out normally. 2427 */ 2428 for_each_sibling_event(event, group_event) { 2429 if (event == partial_group) 2430 break; 2431 2432 event_sched_out(event, cpuctx, ctx); 2433 } 2434 event_sched_out(group_event, cpuctx, ctx); 2435 2436 pmu->cancel_txn(pmu); 2437 2438 perf_mux_hrtimer_restart(cpuctx); 2439 2440 return -EAGAIN; 2441 } 2442 2443 /* 2444 * Work out whether we can put this event group on the CPU now. 2445 */ 2446 static int group_can_go_on(struct perf_event *event, 2447 struct perf_cpu_context *cpuctx, 2448 int can_add_hw) 2449 { 2450 /* 2451 * Groups consisting entirely of software events can always go on. 2452 */ 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2454 return 1; 2455 /* 2456 * If an exclusive group is already on, no other hardware 2457 * events can go on. 2458 */ 2459 if (cpuctx->exclusive) 2460 return 0; 2461 /* 2462 * If this group is exclusive and there are already 2463 * events on the CPU, it can't go on. 2464 */ 2465 if (event->attr.exclusive && cpuctx->active_oncpu) 2466 return 0; 2467 /* 2468 * Otherwise, try to add it if all previous groups were able 2469 * to go on. 2470 */ 2471 return can_add_hw; 2472 } 2473 2474 static void add_event_to_ctx(struct perf_event *event, 2475 struct perf_event_context *ctx) 2476 { 2477 list_add_event(event, ctx); 2478 perf_group_attach(event); 2479 } 2480 2481 static void ctx_sched_out(struct perf_event_context *ctx, 2482 struct perf_cpu_context *cpuctx, 2483 enum event_type_t event_type); 2484 static void 2485 ctx_sched_in(struct perf_event_context *ctx, 2486 struct perf_cpu_context *cpuctx, 2487 enum event_type_t event_type, 2488 struct task_struct *task); 2489 2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2491 struct perf_event_context *ctx, 2492 enum event_type_t event_type) 2493 { 2494 if (!cpuctx->task_ctx) 2495 return; 2496 2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2498 return; 2499 2500 ctx_sched_out(ctx, cpuctx, event_type); 2501 } 2502 2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2504 struct perf_event_context *ctx, 2505 struct task_struct *task) 2506 { 2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2508 if (ctx) 2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2511 if (ctx) 2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2513 } 2514 2515 /* 2516 * We want to maintain the following priority of scheduling: 2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2518 * - task pinned (EVENT_PINNED) 2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2520 * - task flexible (EVENT_FLEXIBLE). 2521 * 2522 * In order to avoid unscheduling and scheduling back in everything every 2523 * time an event is added, only do it for the groups of equal priority and 2524 * below. 2525 * 2526 * This can be called after a batch operation on task events, in which case 2527 * event_type is a bit mask of the types of events involved. For CPU events, 2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2529 */ 2530 static void ctx_resched(struct perf_cpu_context *cpuctx, 2531 struct perf_event_context *task_ctx, 2532 enum event_type_t event_type) 2533 { 2534 enum event_type_t ctx_event_type; 2535 bool cpu_event = !!(event_type & EVENT_CPU); 2536 2537 /* 2538 * If pinned groups are involved, flexible groups also need to be 2539 * scheduled out. 2540 */ 2541 if (event_type & EVENT_PINNED) 2542 event_type |= EVENT_FLEXIBLE; 2543 2544 ctx_event_type = event_type & EVENT_ALL; 2545 2546 perf_pmu_disable(cpuctx->ctx.pmu); 2547 if (task_ctx) 2548 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2549 2550 /* 2551 * Decide which cpu ctx groups to schedule out based on the types 2552 * of events that caused rescheduling: 2553 * - EVENT_CPU: schedule out corresponding groups; 2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2555 * - otherwise, do nothing more. 2556 */ 2557 if (cpu_event) 2558 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2559 else if (ctx_event_type & EVENT_PINNED) 2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2561 2562 perf_event_sched_in(cpuctx, task_ctx, current); 2563 perf_pmu_enable(cpuctx->ctx.pmu); 2564 } 2565 2566 void perf_pmu_resched(struct pmu *pmu) 2567 { 2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2569 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2570 2571 perf_ctx_lock(cpuctx, task_ctx); 2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2573 perf_ctx_unlock(cpuctx, task_ctx); 2574 } 2575 2576 /* 2577 * Cross CPU call to install and enable a performance event 2578 * 2579 * Very similar to remote_function() + event_function() but cannot assume that 2580 * things like ctx->is_active and cpuctx->task_ctx are set. 2581 */ 2582 static int __perf_install_in_context(void *info) 2583 { 2584 struct perf_event *event = info; 2585 struct perf_event_context *ctx = event->ctx; 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2588 bool reprogram = true; 2589 int ret = 0; 2590 2591 raw_spin_lock(&cpuctx->ctx.lock); 2592 if (ctx->task) { 2593 raw_spin_lock(&ctx->lock); 2594 task_ctx = ctx; 2595 2596 reprogram = (ctx->task == current); 2597 2598 /* 2599 * If the task is running, it must be running on this CPU, 2600 * otherwise we cannot reprogram things. 2601 * 2602 * If its not running, we don't care, ctx->lock will 2603 * serialize against it becoming runnable. 2604 */ 2605 if (task_curr(ctx->task) && !reprogram) { 2606 ret = -ESRCH; 2607 goto unlock; 2608 } 2609 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2611 } else if (task_ctx) { 2612 raw_spin_lock(&task_ctx->lock); 2613 } 2614 2615 #ifdef CONFIG_CGROUP_PERF 2616 if (is_cgroup_event(event)) { 2617 /* 2618 * If the current cgroup doesn't match the event's 2619 * cgroup, we should not try to schedule it. 2620 */ 2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2623 event->cgrp->css.cgroup); 2624 } 2625 #endif 2626 2627 if (reprogram) { 2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2629 add_event_to_ctx(event, ctx); 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2631 } else { 2632 add_event_to_ctx(event, ctx); 2633 } 2634 2635 unlock: 2636 perf_ctx_unlock(cpuctx, task_ctx); 2637 2638 return ret; 2639 } 2640 2641 static bool exclusive_event_installable(struct perf_event *event, 2642 struct perf_event_context *ctx); 2643 2644 /* 2645 * Attach a performance event to a context. 2646 * 2647 * Very similar to event_function_call, see comment there. 2648 */ 2649 static void 2650 perf_install_in_context(struct perf_event_context *ctx, 2651 struct perf_event *event, 2652 int cpu) 2653 { 2654 struct task_struct *task = READ_ONCE(ctx->task); 2655 2656 lockdep_assert_held(&ctx->mutex); 2657 2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2659 2660 if (event->cpu != -1) 2661 event->cpu = cpu; 2662 2663 /* 2664 * Ensures that if we can observe event->ctx, both the event and ctx 2665 * will be 'complete'. See perf_iterate_sb_cpu(). 2666 */ 2667 smp_store_release(&event->ctx, ctx); 2668 2669 /* 2670 * perf_event_attr::disabled events will not run and can be initialized 2671 * without IPI. Except when this is the first event for the context, in 2672 * that case we need the magic of the IPI to set ctx->is_active. 2673 * 2674 * The IOC_ENABLE that is sure to follow the creation of a disabled 2675 * event will issue the IPI and reprogram the hardware. 2676 */ 2677 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2678 raw_spin_lock_irq(&ctx->lock); 2679 if (ctx->task == TASK_TOMBSTONE) { 2680 raw_spin_unlock_irq(&ctx->lock); 2681 return; 2682 } 2683 add_event_to_ctx(event, ctx); 2684 raw_spin_unlock_irq(&ctx->lock); 2685 return; 2686 } 2687 2688 if (!task) { 2689 cpu_function_call(cpu, __perf_install_in_context, event); 2690 return; 2691 } 2692 2693 /* 2694 * Should not happen, we validate the ctx is still alive before calling. 2695 */ 2696 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2697 return; 2698 2699 /* 2700 * Installing events is tricky because we cannot rely on ctx->is_active 2701 * to be set in case this is the nr_events 0 -> 1 transition. 2702 * 2703 * Instead we use task_curr(), which tells us if the task is running. 2704 * However, since we use task_curr() outside of rq::lock, we can race 2705 * against the actual state. This means the result can be wrong. 2706 * 2707 * If we get a false positive, we retry, this is harmless. 2708 * 2709 * If we get a false negative, things are complicated. If we are after 2710 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2711 * value must be correct. If we're before, it doesn't matter since 2712 * perf_event_context_sched_in() will program the counter. 2713 * 2714 * However, this hinges on the remote context switch having observed 2715 * our task->perf_event_ctxp[] store, such that it will in fact take 2716 * ctx::lock in perf_event_context_sched_in(). 2717 * 2718 * We do this by task_function_call(), if the IPI fails to hit the task 2719 * we know any future context switch of task must see the 2720 * perf_event_ctpx[] store. 2721 */ 2722 2723 /* 2724 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2725 * task_cpu() load, such that if the IPI then does not find the task 2726 * running, a future context switch of that task must observe the 2727 * store. 2728 */ 2729 smp_mb(); 2730 again: 2731 if (!task_function_call(task, __perf_install_in_context, event)) 2732 return; 2733 2734 raw_spin_lock_irq(&ctx->lock); 2735 task = ctx->task; 2736 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2737 /* 2738 * Cannot happen because we already checked above (which also 2739 * cannot happen), and we hold ctx->mutex, which serializes us 2740 * against perf_event_exit_task_context(). 2741 */ 2742 raw_spin_unlock_irq(&ctx->lock); 2743 return; 2744 } 2745 /* 2746 * If the task is not running, ctx->lock will avoid it becoming so, 2747 * thus we can safely install the event. 2748 */ 2749 if (task_curr(task)) { 2750 raw_spin_unlock_irq(&ctx->lock); 2751 goto again; 2752 } 2753 add_event_to_ctx(event, ctx); 2754 raw_spin_unlock_irq(&ctx->lock); 2755 } 2756 2757 /* 2758 * Cross CPU call to enable a performance event 2759 */ 2760 static void __perf_event_enable(struct perf_event *event, 2761 struct perf_cpu_context *cpuctx, 2762 struct perf_event_context *ctx, 2763 void *info) 2764 { 2765 struct perf_event *leader = event->group_leader; 2766 struct perf_event_context *task_ctx; 2767 2768 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2769 event->state <= PERF_EVENT_STATE_ERROR) 2770 return; 2771 2772 if (ctx->is_active) 2773 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2774 2775 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2776 2777 if (!ctx->is_active) 2778 return; 2779 2780 if (!event_filter_match(event)) { 2781 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2782 return; 2783 } 2784 2785 /* 2786 * If the event is in a group and isn't the group leader, 2787 * then don't put it on unless the group is on. 2788 */ 2789 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2790 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2791 return; 2792 } 2793 2794 task_ctx = cpuctx->task_ctx; 2795 if (ctx->task) 2796 WARN_ON_ONCE(task_ctx != ctx); 2797 2798 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2799 } 2800 2801 /* 2802 * Enable an event. 2803 * 2804 * If event->ctx is a cloned context, callers must make sure that 2805 * every task struct that event->ctx->task could possibly point to 2806 * remains valid. This condition is satisfied when called through 2807 * perf_event_for_each_child or perf_event_for_each as described 2808 * for perf_event_disable. 2809 */ 2810 static void _perf_event_enable(struct perf_event *event) 2811 { 2812 struct perf_event_context *ctx = event->ctx; 2813 2814 raw_spin_lock_irq(&ctx->lock); 2815 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2816 event->state < PERF_EVENT_STATE_ERROR) { 2817 raw_spin_unlock_irq(&ctx->lock); 2818 return; 2819 } 2820 2821 /* 2822 * If the event is in error state, clear that first. 2823 * 2824 * That way, if we see the event in error state below, we know that it 2825 * has gone back into error state, as distinct from the task having 2826 * been scheduled away before the cross-call arrived. 2827 */ 2828 if (event->state == PERF_EVENT_STATE_ERROR) 2829 event->state = PERF_EVENT_STATE_OFF; 2830 raw_spin_unlock_irq(&ctx->lock); 2831 2832 event_function_call(event, __perf_event_enable, NULL); 2833 } 2834 2835 /* 2836 * See perf_event_disable(); 2837 */ 2838 void perf_event_enable(struct perf_event *event) 2839 { 2840 struct perf_event_context *ctx; 2841 2842 ctx = perf_event_ctx_lock(event); 2843 _perf_event_enable(event); 2844 perf_event_ctx_unlock(event, ctx); 2845 } 2846 EXPORT_SYMBOL_GPL(perf_event_enable); 2847 2848 struct stop_event_data { 2849 struct perf_event *event; 2850 unsigned int restart; 2851 }; 2852 2853 static int __perf_event_stop(void *info) 2854 { 2855 struct stop_event_data *sd = info; 2856 struct perf_event *event = sd->event; 2857 2858 /* if it's already INACTIVE, do nothing */ 2859 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2860 return 0; 2861 2862 /* matches smp_wmb() in event_sched_in() */ 2863 smp_rmb(); 2864 2865 /* 2866 * There is a window with interrupts enabled before we get here, 2867 * so we need to check again lest we try to stop another CPU's event. 2868 */ 2869 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2870 return -EAGAIN; 2871 2872 event->pmu->stop(event, PERF_EF_UPDATE); 2873 2874 /* 2875 * May race with the actual stop (through perf_pmu_output_stop()), 2876 * but it is only used for events with AUX ring buffer, and such 2877 * events will refuse to restart because of rb::aux_mmap_count==0, 2878 * see comments in perf_aux_output_begin(). 2879 * 2880 * Since this is happening on an event-local CPU, no trace is lost 2881 * while restarting. 2882 */ 2883 if (sd->restart) 2884 event->pmu->start(event, 0); 2885 2886 return 0; 2887 } 2888 2889 static int perf_event_stop(struct perf_event *event, int restart) 2890 { 2891 struct stop_event_data sd = { 2892 .event = event, 2893 .restart = restart, 2894 }; 2895 int ret = 0; 2896 2897 do { 2898 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2899 return 0; 2900 2901 /* matches smp_wmb() in event_sched_in() */ 2902 smp_rmb(); 2903 2904 /* 2905 * We only want to restart ACTIVE events, so if the event goes 2906 * inactive here (event->oncpu==-1), there's nothing more to do; 2907 * fall through with ret==-ENXIO. 2908 */ 2909 ret = cpu_function_call(READ_ONCE(event->oncpu), 2910 __perf_event_stop, &sd); 2911 } while (ret == -EAGAIN); 2912 2913 return ret; 2914 } 2915 2916 /* 2917 * In order to contain the amount of racy and tricky in the address filter 2918 * configuration management, it is a two part process: 2919 * 2920 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2921 * we update the addresses of corresponding vmas in 2922 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2923 * (p2) when an event is scheduled in (pmu::add), it calls 2924 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2925 * if the generation has changed since the previous call. 2926 * 2927 * If (p1) happens while the event is active, we restart it to force (p2). 2928 * 2929 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2930 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2931 * ioctl; 2932 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2933 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2934 * for reading; 2935 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2936 * of exec. 2937 */ 2938 void perf_event_addr_filters_sync(struct perf_event *event) 2939 { 2940 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2941 2942 if (!has_addr_filter(event)) 2943 return; 2944 2945 raw_spin_lock(&ifh->lock); 2946 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2947 event->pmu->addr_filters_sync(event); 2948 event->hw.addr_filters_gen = event->addr_filters_gen; 2949 } 2950 raw_spin_unlock(&ifh->lock); 2951 } 2952 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2953 2954 static int _perf_event_refresh(struct perf_event *event, int refresh) 2955 { 2956 /* 2957 * not supported on inherited events 2958 */ 2959 if (event->attr.inherit || !is_sampling_event(event)) 2960 return -EINVAL; 2961 2962 atomic_add(refresh, &event->event_limit); 2963 _perf_event_enable(event); 2964 2965 return 0; 2966 } 2967 2968 /* 2969 * See perf_event_disable() 2970 */ 2971 int perf_event_refresh(struct perf_event *event, int refresh) 2972 { 2973 struct perf_event_context *ctx; 2974 int ret; 2975 2976 ctx = perf_event_ctx_lock(event); 2977 ret = _perf_event_refresh(event, refresh); 2978 perf_event_ctx_unlock(event, ctx); 2979 2980 return ret; 2981 } 2982 EXPORT_SYMBOL_GPL(perf_event_refresh); 2983 2984 static int perf_event_modify_breakpoint(struct perf_event *bp, 2985 struct perf_event_attr *attr) 2986 { 2987 int err; 2988 2989 _perf_event_disable(bp); 2990 2991 err = modify_user_hw_breakpoint_check(bp, attr, true); 2992 2993 if (!bp->attr.disabled) 2994 _perf_event_enable(bp); 2995 2996 return err; 2997 } 2998 2999 static int perf_event_modify_attr(struct perf_event *event, 3000 struct perf_event_attr *attr) 3001 { 3002 if (event->attr.type != attr->type) 3003 return -EINVAL; 3004 3005 switch (event->attr.type) { 3006 case PERF_TYPE_BREAKPOINT: 3007 return perf_event_modify_breakpoint(event, attr); 3008 default: 3009 /* Place holder for future additions. */ 3010 return -EOPNOTSUPP; 3011 } 3012 } 3013 3014 static void ctx_sched_out(struct perf_event_context *ctx, 3015 struct perf_cpu_context *cpuctx, 3016 enum event_type_t event_type) 3017 { 3018 struct perf_event *event, *tmp; 3019 int is_active = ctx->is_active; 3020 3021 lockdep_assert_held(&ctx->lock); 3022 3023 if (likely(!ctx->nr_events)) { 3024 /* 3025 * See __perf_remove_from_context(). 3026 */ 3027 WARN_ON_ONCE(ctx->is_active); 3028 if (ctx->task) 3029 WARN_ON_ONCE(cpuctx->task_ctx); 3030 return; 3031 } 3032 3033 ctx->is_active &= ~event_type; 3034 if (!(ctx->is_active & EVENT_ALL)) 3035 ctx->is_active = 0; 3036 3037 if (ctx->task) { 3038 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3039 if (!ctx->is_active) 3040 cpuctx->task_ctx = NULL; 3041 } 3042 3043 /* 3044 * Always update time if it was set; not only when it changes. 3045 * Otherwise we can 'forget' to update time for any but the last 3046 * context we sched out. For example: 3047 * 3048 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3049 * ctx_sched_out(.event_type = EVENT_PINNED) 3050 * 3051 * would only update time for the pinned events. 3052 */ 3053 if (is_active & EVENT_TIME) { 3054 /* update (and stop) ctx time */ 3055 update_context_time(ctx); 3056 update_cgrp_time_from_cpuctx(cpuctx); 3057 } 3058 3059 is_active ^= ctx->is_active; /* changed bits */ 3060 3061 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3062 return; 3063 3064 /* 3065 * If we had been multiplexing, no rotations are necessary, now no events 3066 * are active. 3067 */ 3068 ctx->rotate_necessary = 0; 3069 3070 perf_pmu_disable(ctx->pmu); 3071 if (is_active & EVENT_PINNED) { 3072 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3073 group_sched_out(event, cpuctx, ctx); 3074 } 3075 3076 if (is_active & EVENT_FLEXIBLE) { 3077 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3078 group_sched_out(event, cpuctx, ctx); 3079 } 3080 perf_pmu_enable(ctx->pmu); 3081 } 3082 3083 /* 3084 * Test whether two contexts are equivalent, i.e. whether they have both been 3085 * cloned from the same version of the same context. 3086 * 3087 * Equivalence is measured using a generation number in the context that is 3088 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3089 * and list_del_event(). 3090 */ 3091 static int context_equiv(struct perf_event_context *ctx1, 3092 struct perf_event_context *ctx2) 3093 { 3094 lockdep_assert_held(&ctx1->lock); 3095 lockdep_assert_held(&ctx2->lock); 3096 3097 /* Pinning disables the swap optimization */ 3098 if (ctx1->pin_count || ctx2->pin_count) 3099 return 0; 3100 3101 /* If ctx1 is the parent of ctx2 */ 3102 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3103 return 1; 3104 3105 /* If ctx2 is the parent of ctx1 */ 3106 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3107 return 1; 3108 3109 /* 3110 * If ctx1 and ctx2 have the same parent; we flatten the parent 3111 * hierarchy, see perf_event_init_context(). 3112 */ 3113 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3114 ctx1->parent_gen == ctx2->parent_gen) 3115 return 1; 3116 3117 /* Unmatched */ 3118 return 0; 3119 } 3120 3121 static void __perf_event_sync_stat(struct perf_event *event, 3122 struct perf_event *next_event) 3123 { 3124 u64 value; 3125 3126 if (!event->attr.inherit_stat) 3127 return; 3128 3129 /* 3130 * Update the event value, we cannot use perf_event_read() 3131 * because we're in the middle of a context switch and have IRQs 3132 * disabled, which upsets smp_call_function_single(), however 3133 * we know the event must be on the current CPU, therefore we 3134 * don't need to use it. 3135 */ 3136 if (event->state == PERF_EVENT_STATE_ACTIVE) 3137 event->pmu->read(event); 3138 3139 perf_event_update_time(event); 3140 3141 /* 3142 * In order to keep per-task stats reliable we need to flip the event 3143 * values when we flip the contexts. 3144 */ 3145 value = local64_read(&next_event->count); 3146 value = local64_xchg(&event->count, value); 3147 local64_set(&next_event->count, value); 3148 3149 swap(event->total_time_enabled, next_event->total_time_enabled); 3150 swap(event->total_time_running, next_event->total_time_running); 3151 3152 /* 3153 * Since we swizzled the values, update the user visible data too. 3154 */ 3155 perf_event_update_userpage(event); 3156 perf_event_update_userpage(next_event); 3157 } 3158 3159 static void perf_event_sync_stat(struct perf_event_context *ctx, 3160 struct perf_event_context *next_ctx) 3161 { 3162 struct perf_event *event, *next_event; 3163 3164 if (!ctx->nr_stat) 3165 return; 3166 3167 update_context_time(ctx); 3168 3169 event = list_first_entry(&ctx->event_list, 3170 struct perf_event, event_entry); 3171 3172 next_event = list_first_entry(&next_ctx->event_list, 3173 struct perf_event, event_entry); 3174 3175 while (&event->event_entry != &ctx->event_list && 3176 &next_event->event_entry != &next_ctx->event_list) { 3177 3178 __perf_event_sync_stat(event, next_event); 3179 3180 event = list_next_entry(event, event_entry); 3181 next_event = list_next_entry(next_event, event_entry); 3182 } 3183 } 3184 3185 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3186 struct task_struct *next) 3187 { 3188 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3189 struct perf_event_context *next_ctx; 3190 struct perf_event_context *parent, *next_parent; 3191 struct perf_cpu_context *cpuctx; 3192 int do_switch = 1; 3193 3194 if (likely(!ctx)) 3195 return; 3196 3197 cpuctx = __get_cpu_context(ctx); 3198 if (!cpuctx->task_ctx) 3199 return; 3200 3201 rcu_read_lock(); 3202 next_ctx = next->perf_event_ctxp[ctxn]; 3203 if (!next_ctx) 3204 goto unlock; 3205 3206 parent = rcu_dereference(ctx->parent_ctx); 3207 next_parent = rcu_dereference(next_ctx->parent_ctx); 3208 3209 /* If neither context have a parent context; they cannot be clones. */ 3210 if (!parent && !next_parent) 3211 goto unlock; 3212 3213 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3214 /* 3215 * Looks like the two contexts are clones, so we might be 3216 * able to optimize the context switch. We lock both 3217 * contexts and check that they are clones under the 3218 * lock (including re-checking that neither has been 3219 * uncloned in the meantime). It doesn't matter which 3220 * order we take the locks because no other cpu could 3221 * be trying to lock both of these tasks. 3222 */ 3223 raw_spin_lock(&ctx->lock); 3224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3225 if (context_equiv(ctx, next_ctx)) { 3226 struct pmu *pmu = ctx->pmu; 3227 3228 WRITE_ONCE(ctx->task, next); 3229 WRITE_ONCE(next_ctx->task, task); 3230 3231 /* 3232 * PMU specific parts of task perf context can require 3233 * additional synchronization. As an example of such 3234 * synchronization see implementation details of Intel 3235 * LBR call stack data profiling; 3236 */ 3237 if (pmu->swap_task_ctx) 3238 pmu->swap_task_ctx(ctx, next_ctx); 3239 else 3240 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3241 3242 /* 3243 * RCU_INIT_POINTER here is safe because we've not 3244 * modified the ctx and the above modification of 3245 * ctx->task and ctx->task_ctx_data are immaterial 3246 * since those values are always verified under 3247 * ctx->lock which we're now holding. 3248 */ 3249 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3250 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3251 3252 do_switch = 0; 3253 3254 perf_event_sync_stat(ctx, next_ctx); 3255 } 3256 raw_spin_unlock(&next_ctx->lock); 3257 raw_spin_unlock(&ctx->lock); 3258 } 3259 unlock: 3260 rcu_read_unlock(); 3261 3262 if (do_switch) { 3263 raw_spin_lock(&ctx->lock); 3264 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3265 raw_spin_unlock(&ctx->lock); 3266 } 3267 } 3268 3269 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3270 3271 void perf_sched_cb_dec(struct pmu *pmu) 3272 { 3273 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3274 3275 this_cpu_dec(perf_sched_cb_usages); 3276 3277 if (!--cpuctx->sched_cb_usage) 3278 list_del(&cpuctx->sched_cb_entry); 3279 } 3280 3281 3282 void perf_sched_cb_inc(struct pmu *pmu) 3283 { 3284 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3285 3286 if (!cpuctx->sched_cb_usage++) 3287 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3288 3289 this_cpu_inc(perf_sched_cb_usages); 3290 } 3291 3292 /* 3293 * This function provides the context switch callback to the lower code 3294 * layer. It is invoked ONLY when the context switch callback is enabled. 3295 * 3296 * This callback is relevant even to per-cpu events; for example multi event 3297 * PEBS requires this to provide PID/TID information. This requires we flush 3298 * all queued PEBS records before we context switch to a new task. 3299 */ 3300 static void perf_pmu_sched_task(struct task_struct *prev, 3301 struct task_struct *next, 3302 bool sched_in) 3303 { 3304 struct perf_cpu_context *cpuctx; 3305 struct pmu *pmu; 3306 3307 if (prev == next) 3308 return; 3309 3310 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3311 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3312 3313 if (WARN_ON_ONCE(!pmu->sched_task)) 3314 continue; 3315 3316 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3317 perf_pmu_disable(pmu); 3318 3319 pmu->sched_task(cpuctx->task_ctx, sched_in); 3320 3321 perf_pmu_enable(pmu); 3322 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3323 } 3324 } 3325 3326 static void perf_event_switch(struct task_struct *task, 3327 struct task_struct *next_prev, bool sched_in); 3328 3329 #define for_each_task_context_nr(ctxn) \ 3330 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3331 3332 /* 3333 * Called from scheduler to remove the events of the current task, 3334 * with interrupts disabled. 3335 * 3336 * We stop each event and update the event value in event->count. 3337 * 3338 * This does not protect us against NMI, but disable() 3339 * sets the disabled bit in the control field of event _before_ 3340 * accessing the event control register. If a NMI hits, then it will 3341 * not restart the event. 3342 */ 3343 void __perf_event_task_sched_out(struct task_struct *task, 3344 struct task_struct *next) 3345 { 3346 int ctxn; 3347 3348 if (__this_cpu_read(perf_sched_cb_usages)) 3349 perf_pmu_sched_task(task, next, false); 3350 3351 if (atomic_read(&nr_switch_events)) 3352 perf_event_switch(task, next, false); 3353 3354 for_each_task_context_nr(ctxn) 3355 perf_event_context_sched_out(task, ctxn, next); 3356 3357 /* 3358 * if cgroup events exist on this CPU, then we need 3359 * to check if we have to switch out PMU state. 3360 * cgroup event are system-wide mode only 3361 */ 3362 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3363 perf_cgroup_sched_out(task, next); 3364 } 3365 3366 /* 3367 * Called with IRQs disabled 3368 */ 3369 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3370 enum event_type_t event_type) 3371 { 3372 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3373 } 3374 3375 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3376 int (*func)(struct perf_event *, void *), void *data) 3377 { 3378 struct perf_event **evt, *evt1, *evt2; 3379 int ret; 3380 3381 evt1 = perf_event_groups_first(groups, -1); 3382 evt2 = perf_event_groups_first(groups, cpu); 3383 3384 while (evt1 || evt2) { 3385 if (evt1 && evt2) { 3386 if (evt1->group_index < evt2->group_index) 3387 evt = &evt1; 3388 else 3389 evt = &evt2; 3390 } else if (evt1) { 3391 evt = &evt1; 3392 } else { 3393 evt = &evt2; 3394 } 3395 3396 ret = func(*evt, data); 3397 if (ret) 3398 return ret; 3399 3400 *evt = perf_event_groups_next(*evt); 3401 } 3402 3403 return 0; 3404 } 3405 3406 struct sched_in_data { 3407 struct perf_event_context *ctx; 3408 struct perf_cpu_context *cpuctx; 3409 int can_add_hw; 3410 }; 3411 3412 static int pinned_sched_in(struct perf_event *event, void *data) 3413 { 3414 struct sched_in_data *sid = data; 3415 3416 if (event->state <= PERF_EVENT_STATE_OFF) 3417 return 0; 3418 3419 if (!event_filter_match(event)) 3420 return 0; 3421 3422 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3423 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3424 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3425 } 3426 3427 /* 3428 * If this pinned group hasn't been scheduled, 3429 * put it in error state. 3430 */ 3431 if (event->state == PERF_EVENT_STATE_INACTIVE) 3432 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3433 3434 return 0; 3435 } 3436 3437 static int flexible_sched_in(struct perf_event *event, void *data) 3438 { 3439 struct sched_in_data *sid = data; 3440 3441 if (event->state <= PERF_EVENT_STATE_OFF) 3442 return 0; 3443 3444 if (!event_filter_match(event)) 3445 return 0; 3446 3447 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3448 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3449 if (ret) { 3450 sid->can_add_hw = 0; 3451 sid->ctx->rotate_necessary = 1; 3452 return 0; 3453 } 3454 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3455 } 3456 3457 return 0; 3458 } 3459 3460 static void 3461 ctx_pinned_sched_in(struct perf_event_context *ctx, 3462 struct perf_cpu_context *cpuctx) 3463 { 3464 struct sched_in_data sid = { 3465 .ctx = ctx, 3466 .cpuctx = cpuctx, 3467 .can_add_hw = 1, 3468 }; 3469 3470 visit_groups_merge(&ctx->pinned_groups, 3471 smp_processor_id(), 3472 pinned_sched_in, &sid); 3473 } 3474 3475 static void 3476 ctx_flexible_sched_in(struct perf_event_context *ctx, 3477 struct perf_cpu_context *cpuctx) 3478 { 3479 struct sched_in_data sid = { 3480 .ctx = ctx, 3481 .cpuctx = cpuctx, 3482 .can_add_hw = 1, 3483 }; 3484 3485 visit_groups_merge(&ctx->flexible_groups, 3486 smp_processor_id(), 3487 flexible_sched_in, &sid); 3488 } 3489 3490 static void 3491 ctx_sched_in(struct perf_event_context *ctx, 3492 struct perf_cpu_context *cpuctx, 3493 enum event_type_t event_type, 3494 struct task_struct *task) 3495 { 3496 int is_active = ctx->is_active; 3497 u64 now; 3498 3499 lockdep_assert_held(&ctx->lock); 3500 3501 if (likely(!ctx->nr_events)) 3502 return; 3503 3504 ctx->is_active |= (event_type | EVENT_TIME); 3505 if (ctx->task) { 3506 if (!is_active) 3507 cpuctx->task_ctx = ctx; 3508 else 3509 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3510 } 3511 3512 is_active ^= ctx->is_active; /* changed bits */ 3513 3514 if (is_active & EVENT_TIME) { 3515 /* start ctx time */ 3516 now = perf_clock(); 3517 ctx->timestamp = now; 3518 perf_cgroup_set_timestamp(task, ctx); 3519 } 3520 3521 /* 3522 * First go through the list and put on any pinned groups 3523 * in order to give them the best chance of going on. 3524 */ 3525 if (is_active & EVENT_PINNED) 3526 ctx_pinned_sched_in(ctx, cpuctx); 3527 3528 /* Then walk through the lower prio flexible groups */ 3529 if (is_active & EVENT_FLEXIBLE) 3530 ctx_flexible_sched_in(ctx, cpuctx); 3531 } 3532 3533 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3534 enum event_type_t event_type, 3535 struct task_struct *task) 3536 { 3537 struct perf_event_context *ctx = &cpuctx->ctx; 3538 3539 ctx_sched_in(ctx, cpuctx, event_type, task); 3540 } 3541 3542 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3543 struct task_struct *task) 3544 { 3545 struct perf_cpu_context *cpuctx; 3546 3547 cpuctx = __get_cpu_context(ctx); 3548 if (cpuctx->task_ctx == ctx) 3549 return; 3550 3551 perf_ctx_lock(cpuctx, ctx); 3552 /* 3553 * We must check ctx->nr_events while holding ctx->lock, such 3554 * that we serialize against perf_install_in_context(). 3555 */ 3556 if (!ctx->nr_events) 3557 goto unlock; 3558 3559 perf_pmu_disable(ctx->pmu); 3560 /* 3561 * We want to keep the following priority order: 3562 * cpu pinned (that don't need to move), task pinned, 3563 * cpu flexible, task flexible. 3564 * 3565 * However, if task's ctx is not carrying any pinned 3566 * events, no need to flip the cpuctx's events around. 3567 */ 3568 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3569 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3570 perf_event_sched_in(cpuctx, ctx, task); 3571 perf_pmu_enable(ctx->pmu); 3572 3573 unlock: 3574 perf_ctx_unlock(cpuctx, ctx); 3575 } 3576 3577 /* 3578 * Called from scheduler to add the events of the current task 3579 * with interrupts disabled. 3580 * 3581 * We restore the event value and then enable it. 3582 * 3583 * This does not protect us against NMI, but enable() 3584 * sets the enabled bit in the control field of event _before_ 3585 * accessing the event control register. If a NMI hits, then it will 3586 * keep the event running. 3587 */ 3588 void __perf_event_task_sched_in(struct task_struct *prev, 3589 struct task_struct *task) 3590 { 3591 struct perf_event_context *ctx; 3592 int ctxn; 3593 3594 /* 3595 * If cgroup events exist on this CPU, then we need to check if we have 3596 * to switch in PMU state; cgroup event are system-wide mode only. 3597 * 3598 * Since cgroup events are CPU events, we must schedule these in before 3599 * we schedule in the task events. 3600 */ 3601 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3602 perf_cgroup_sched_in(prev, task); 3603 3604 for_each_task_context_nr(ctxn) { 3605 ctx = task->perf_event_ctxp[ctxn]; 3606 if (likely(!ctx)) 3607 continue; 3608 3609 perf_event_context_sched_in(ctx, task); 3610 } 3611 3612 if (atomic_read(&nr_switch_events)) 3613 perf_event_switch(task, prev, true); 3614 3615 if (__this_cpu_read(perf_sched_cb_usages)) 3616 perf_pmu_sched_task(prev, task, true); 3617 } 3618 3619 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3620 { 3621 u64 frequency = event->attr.sample_freq; 3622 u64 sec = NSEC_PER_SEC; 3623 u64 divisor, dividend; 3624 3625 int count_fls, nsec_fls, frequency_fls, sec_fls; 3626 3627 count_fls = fls64(count); 3628 nsec_fls = fls64(nsec); 3629 frequency_fls = fls64(frequency); 3630 sec_fls = 30; 3631 3632 /* 3633 * We got @count in @nsec, with a target of sample_freq HZ 3634 * the target period becomes: 3635 * 3636 * @count * 10^9 3637 * period = ------------------- 3638 * @nsec * sample_freq 3639 * 3640 */ 3641 3642 /* 3643 * Reduce accuracy by one bit such that @a and @b converge 3644 * to a similar magnitude. 3645 */ 3646 #define REDUCE_FLS(a, b) \ 3647 do { \ 3648 if (a##_fls > b##_fls) { \ 3649 a >>= 1; \ 3650 a##_fls--; \ 3651 } else { \ 3652 b >>= 1; \ 3653 b##_fls--; \ 3654 } \ 3655 } while (0) 3656 3657 /* 3658 * Reduce accuracy until either term fits in a u64, then proceed with 3659 * the other, so that finally we can do a u64/u64 division. 3660 */ 3661 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3662 REDUCE_FLS(nsec, frequency); 3663 REDUCE_FLS(sec, count); 3664 } 3665 3666 if (count_fls + sec_fls > 64) { 3667 divisor = nsec * frequency; 3668 3669 while (count_fls + sec_fls > 64) { 3670 REDUCE_FLS(count, sec); 3671 divisor >>= 1; 3672 } 3673 3674 dividend = count * sec; 3675 } else { 3676 dividend = count * sec; 3677 3678 while (nsec_fls + frequency_fls > 64) { 3679 REDUCE_FLS(nsec, frequency); 3680 dividend >>= 1; 3681 } 3682 3683 divisor = nsec * frequency; 3684 } 3685 3686 if (!divisor) 3687 return dividend; 3688 3689 return div64_u64(dividend, divisor); 3690 } 3691 3692 static DEFINE_PER_CPU(int, perf_throttled_count); 3693 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3694 3695 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3696 { 3697 struct hw_perf_event *hwc = &event->hw; 3698 s64 period, sample_period; 3699 s64 delta; 3700 3701 period = perf_calculate_period(event, nsec, count); 3702 3703 delta = (s64)(period - hwc->sample_period); 3704 delta = (delta + 7) / 8; /* low pass filter */ 3705 3706 sample_period = hwc->sample_period + delta; 3707 3708 if (!sample_period) 3709 sample_period = 1; 3710 3711 hwc->sample_period = sample_period; 3712 3713 if (local64_read(&hwc->period_left) > 8*sample_period) { 3714 if (disable) 3715 event->pmu->stop(event, PERF_EF_UPDATE); 3716 3717 local64_set(&hwc->period_left, 0); 3718 3719 if (disable) 3720 event->pmu->start(event, PERF_EF_RELOAD); 3721 } 3722 } 3723 3724 /* 3725 * combine freq adjustment with unthrottling to avoid two passes over the 3726 * events. At the same time, make sure, having freq events does not change 3727 * the rate of unthrottling as that would introduce bias. 3728 */ 3729 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3730 int needs_unthr) 3731 { 3732 struct perf_event *event; 3733 struct hw_perf_event *hwc; 3734 u64 now, period = TICK_NSEC; 3735 s64 delta; 3736 3737 /* 3738 * only need to iterate over all events iff: 3739 * - context have events in frequency mode (needs freq adjust) 3740 * - there are events to unthrottle on this cpu 3741 */ 3742 if (!(ctx->nr_freq || needs_unthr)) 3743 return; 3744 3745 raw_spin_lock(&ctx->lock); 3746 perf_pmu_disable(ctx->pmu); 3747 3748 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3749 if (event->state != PERF_EVENT_STATE_ACTIVE) 3750 continue; 3751 3752 if (!event_filter_match(event)) 3753 continue; 3754 3755 perf_pmu_disable(event->pmu); 3756 3757 hwc = &event->hw; 3758 3759 if (hwc->interrupts == MAX_INTERRUPTS) { 3760 hwc->interrupts = 0; 3761 perf_log_throttle(event, 1); 3762 event->pmu->start(event, 0); 3763 } 3764 3765 if (!event->attr.freq || !event->attr.sample_freq) 3766 goto next; 3767 3768 /* 3769 * stop the event and update event->count 3770 */ 3771 event->pmu->stop(event, PERF_EF_UPDATE); 3772 3773 now = local64_read(&event->count); 3774 delta = now - hwc->freq_count_stamp; 3775 hwc->freq_count_stamp = now; 3776 3777 /* 3778 * restart the event 3779 * reload only if value has changed 3780 * we have stopped the event so tell that 3781 * to perf_adjust_period() to avoid stopping it 3782 * twice. 3783 */ 3784 if (delta > 0) 3785 perf_adjust_period(event, period, delta, false); 3786 3787 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3788 next: 3789 perf_pmu_enable(event->pmu); 3790 } 3791 3792 perf_pmu_enable(ctx->pmu); 3793 raw_spin_unlock(&ctx->lock); 3794 } 3795 3796 /* 3797 * Move @event to the tail of the @ctx's elegible events. 3798 */ 3799 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3800 { 3801 /* 3802 * Rotate the first entry last of non-pinned groups. Rotation might be 3803 * disabled by the inheritance code. 3804 */ 3805 if (ctx->rotate_disable) 3806 return; 3807 3808 perf_event_groups_delete(&ctx->flexible_groups, event); 3809 perf_event_groups_insert(&ctx->flexible_groups, event); 3810 } 3811 3812 /* pick an event from the flexible_groups to rotate */ 3813 static inline struct perf_event * 3814 ctx_event_to_rotate(struct perf_event_context *ctx) 3815 { 3816 struct perf_event *event; 3817 3818 /* pick the first active flexible event */ 3819 event = list_first_entry_or_null(&ctx->flexible_active, 3820 struct perf_event, active_list); 3821 3822 /* if no active flexible event, pick the first event */ 3823 if (!event) { 3824 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 3825 typeof(*event), group_node); 3826 } 3827 3828 return event; 3829 } 3830 3831 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3832 { 3833 struct perf_event *cpu_event = NULL, *task_event = NULL; 3834 struct perf_event_context *task_ctx = NULL; 3835 int cpu_rotate, task_rotate; 3836 3837 /* 3838 * Since we run this from IRQ context, nobody can install new 3839 * events, thus the event count values are stable. 3840 */ 3841 3842 cpu_rotate = cpuctx->ctx.rotate_necessary; 3843 task_ctx = cpuctx->task_ctx; 3844 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3845 3846 if (!(cpu_rotate || task_rotate)) 3847 return false; 3848 3849 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3850 perf_pmu_disable(cpuctx->ctx.pmu); 3851 3852 if (task_rotate) 3853 task_event = ctx_event_to_rotate(task_ctx); 3854 if (cpu_rotate) 3855 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 3856 3857 /* 3858 * As per the order given at ctx_resched() first 'pop' task flexible 3859 * and then, if needed CPU flexible. 3860 */ 3861 if (task_event || (task_ctx && cpu_event)) 3862 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3863 if (cpu_event) 3864 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3865 3866 if (task_event) 3867 rotate_ctx(task_ctx, task_event); 3868 if (cpu_event) 3869 rotate_ctx(&cpuctx->ctx, cpu_event); 3870 3871 perf_event_sched_in(cpuctx, task_ctx, current); 3872 3873 perf_pmu_enable(cpuctx->ctx.pmu); 3874 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3875 3876 return true; 3877 } 3878 3879 void perf_event_task_tick(void) 3880 { 3881 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3882 struct perf_event_context *ctx, *tmp; 3883 int throttled; 3884 3885 lockdep_assert_irqs_disabled(); 3886 3887 __this_cpu_inc(perf_throttled_seq); 3888 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3889 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3890 3891 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3892 perf_adjust_freq_unthr_context(ctx, throttled); 3893 } 3894 3895 static int event_enable_on_exec(struct perf_event *event, 3896 struct perf_event_context *ctx) 3897 { 3898 if (!event->attr.enable_on_exec) 3899 return 0; 3900 3901 event->attr.enable_on_exec = 0; 3902 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3903 return 0; 3904 3905 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3906 3907 return 1; 3908 } 3909 3910 /* 3911 * Enable all of a task's events that have been marked enable-on-exec. 3912 * This expects task == current. 3913 */ 3914 static void perf_event_enable_on_exec(int ctxn) 3915 { 3916 struct perf_event_context *ctx, *clone_ctx = NULL; 3917 enum event_type_t event_type = 0; 3918 struct perf_cpu_context *cpuctx; 3919 struct perf_event *event; 3920 unsigned long flags; 3921 int enabled = 0; 3922 3923 local_irq_save(flags); 3924 ctx = current->perf_event_ctxp[ctxn]; 3925 if (!ctx || !ctx->nr_events) 3926 goto out; 3927 3928 cpuctx = __get_cpu_context(ctx); 3929 perf_ctx_lock(cpuctx, ctx); 3930 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3931 list_for_each_entry(event, &ctx->event_list, event_entry) { 3932 enabled |= event_enable_on_exec(event, ctx); 3933 event_type |= get_event_type(event); 3934 } 3935 3936 /* 3937 * Unclone and reschedule this context if we enabled any event. 3938 */ 3939 if (enabled) { 3940 clone_ctx = unclone_ctx(ctx); 3941 ctx_resched(cpuctx, ctx, event_type); 3942 } else { 3943 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3944 } 3945 perf_ctx_unlock(cpuctx, ctx); 3946 3947 out: 3948 local_irq_restore(flags); 3949 3950 if (clone_ctx) 3951 put_ctx(clone_ctx); 3952 } 3953 3954 struct perf_read_data { 3955 struct perf_event *event; 3956 bool group; 3957 int ret; 3958 }; 3959 3960 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3961 { 3962 u16 local_pkg, event_pkg; 3963 3964 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3965 int local_cpu = smp_processor_id(); 3966 3967 event_pkg = topology_physical_package_id(event_cpu); 3968 local_pkg = topology_physical_package_id(local_cpu); 3969 3970 if (event_pkg == local_pkg) 3971 return local_cpu; 3972 } 3973 3974 return event_cpu; 3975 } 3976 3977 /* 3978 * Cross CPU call to read the hardware event 3979 */ 3980 static void __perf_event_read(void *info) 3981 { 3982 struct perf_read_data *data = info; 3983 struct perf_event *sub, *event = data->event; 3984 struct perf_event_context *ctx = event->ctx; 3985 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3986 struct pmu *pmu = event->pmu; 3987 3988 /* 3989 * If this is a task context, we need to check whether it is 3990 * the current task context of this cpu. If not it has been 3991 * scheduled out before the smp call arrived. In that case 3992 * event->count would have been updated to a recent sample 3993 * when the event was scheduled out. 3994 */ 3995 if (ctx->task && cpuctx->task_ctx != ctx) 3996 return; 3997 3998 raw_spin_lock(&ctx->lock); 3999 if (ctx->is_active & EVENT_TIME) { 4000 update_context_time(ctx); 4001 update_cgrp_time_from_event(event); 4002 } 4003 4004 perf_event_update_time(event); 4005 if (data->group) 4006 perf_event_update_sibling_time(event); 4007 4008 if (event->state != PERF_EVENT_STATE_ACTIVE) 4009 goto unlock; 4010 4011 if (!data->group) { 4012 pmu->read(event); 4013 data->ret = 0; 4014 goto unlock; 4015 } 4016 4017 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4018 4019 pmu->read(event); 4020 4021 for_each_sibling_event(sub, event) { 4022 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4023 /* 4024 * Use sibling's PMU rather than @event's since 4025 * sibling could be on different (eg: software) PMU. 4026 */ 4027 sub->pmu->read(sub); 4028 } 4029 } 4030 4031 data->ret = pmu->commit_txn(pmu); 4032 4033 unlock: 4034 raw_spin_unlock(&ctx->lock); 4035 } 4036 4037 static inline u64 perf_event_count(struct perf_event *event) 4038 { 4039 return local64_read(&event->count) + atomic64_read(&event->child_count); 4040 } 4041 4042 /* 4043 * NMI-safe method to read a local event, that is an event that 4044 * is: 4045 * - either for the current task, or for this CPU 4046 * - does not have inherit set, for inherited task events 4047 * will not be local and we cannot read them atomically 4048 * - must not have a pmu::count method 4049 */ 4050 int perf_event_read_local(struct perf_event *event, u64 *value, 4051 u64 *enabled, u64 *running) 4052 { 4053 unsigned long flags; 4054 int ret = 0; 4055 4056 /* 4057 * Disabling interrupts avoids all counter scheduling (context 4058 * switches, timer based rotation and IPIs). 4059 */ 4060 local_irq_save(flags); 4061 4062 /* 4063 * It must not be an event with inherit set, we cannot read 4064 * all child counters from atomic context. 4065 */ 4066 if (event->attr.inherit) { 4067 ret = -EOPNOTSUPP; 4068 goto out; 4069 } 4070 4071 /* If this is a per-task event, it must be for current */ 4072 if ((event->attach_state & PERF_ATTACH_TASK) && 4073 event->hw.target != current) { 4074 ret = -EINVAL; 4075 goto out; 4076 } 4077 4078 /* If this is a per-CPU event, it must be for this CPU */ 4079 if (!(event->attach_state & PERF_ATTACH_TASK) && 4080 event->cpu != smp_processor_id()) { 4081 ret = -EINVAL; 4082 goto out; 4083 } 4084 4085 /* If this is a pinned event it must be running on this CPU */ 4086 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4087 ret = -EBUSY; 4088 goto out; 4089 } 4090 4091 /* 4092 * If the event is currently on this CPU, its either a per-task event, 4093 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4094 * oncpu == -1). 4095 */ 4096 if (event->oncpu == smp_processor_id()) 4097 event->pmu->read(event); 4098 4099 *value = local64_read(&event->count); 4100 if (enabled || running) { 4101 u64 now = event->shadow_ctx_time + perf_clock(); 4102 u64 __enabled, __running; 4103 4104 __perf_update_times(event, now, &__enabled, &__running); 4105 if (enabled) 4106 *enabled = __enabled; 4107 if (running) 4108 *running = __running; 4109 } 4110 out: 4111 local_irq_restore(flags); 4112 4113 return ret; 4114 } 4115 4116 static int perf_event_read(struct perf_event *event, bool group) 4117 { 4118 enum perf_event_state state = READ_ONCE(event->state); 4119 int event_cpu, ret = 0; 4120 4121 /* 4122 * If event is enabled and currently active on a CPU, update the 4123 * value in the event structure: 4124 */ 4125 again: 4126 if (state == PERF_EVENT_STATE_ACTIVE) { 4127 struct perf_read_data data; 4128 4129 /* 4130 * Orders the ->state and ->oncpu loads such that if we see 4131 * ACTIVE we must also see the right ->oncpu. 4132 * 4133 * Matches the smp_wmb() from event_sched_in(). 4134 */ 4135 smp_rmb(); 4136 4137 event_cpu = READ_ONCE(event->oncpu); 4138 if ((unsigned)event_cpu >= nr_cpu_ids) 4139 return 0; 4140 4141 data = (struct perf_read_data){ 4142 .event = event, 4143 .group = group, 4144 .ret = 0, 4145 }; 4146 4147 preempt_disable(); 4148 event_cpu = __perf_event_read_cpu(event, event_cpu); 4149 4150 /* 4151 * Purposely ignore the smp_call_function_single() return 4152 * value. 4153 * 4154 * If event_cpu isn't a valid CPU it means the event got 4155 * scheduled out and that will have updated the event count. 4156 * 4157 * Therefore, either way, we'll have an up-to-date event count 4158 * after this. 4159 */ 4160 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4161 preempt_enable(); 4162 ret = data.ret; 4163 4164 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4165 struct perf_event_context *ctx = event->ctx; 4166 unsigned long flags; 4167 4168 raw_spin_lock_irqsave(&ctx->lock, flags); 4169 state = event->state; 4170 if (state != PERF_EVENT_STATE_INACTIVE) { 4171 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4172 goto again; 4173 } 4174 4175 /* 4176 * May read while context is not active (e.g., thread is 4177 * blocked), in that case we cannot update context time 4178 */ 4179 if (ctx->is_active & EVENT_TIME) { 4180 update_context_time(ctx); 4181 update_cgrp_time_from_event(event); 4182 } 4183 4184 perf_event_update_time(event); 4185 if (group) 4186 perf_event_update_sibling_time(event); 4187 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4188 } 4189 4190 return ret; 4191 } 4192 4193 /* 4194 * Initialize the perf_event context in a task_struct: 4195 */ 4196 static void __perf_event_init_context(struct perf_event_context *ctx) 4197 { 4198 raw_spin_lock_init(&ctx->lock); 4199 mutex_init(&ctx->mutex); 4200 INIT_LIST_HEAD(&ctx->active_ctx_list); 4201 perf_event_groups_init(&ctx->pinned_groups); 4202 perf_event_groups_init(&ctx->flexible_groups); 4203 INIT_LIST_HEAD(&ctx->event_list); 4204 INIT_LIST_HEAD(&ctx->pinned_active); 4205 INIT_LIST_HEAD(&ctx->flexible_active); 4206 refcount_set(&ctx->refcount, 1); 4207 } 4208 4209 static struct perf_event_context * 4210 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4211 { 4212 struct perf_event_context *ctx; 4213 4214 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4215 if (!ctx) 4216 return NULL; 4217 4218 __perf_event_init_context(ctx); 4219 if (task) 4220 ctx->task = get_task_struct(task); 4221 ctx->pmu = pmu; 4222 4223 return ctx; 4224 } 4225 4226 static struct task_struct * 4227 find_lively_task_by_vpid(pid_t vpid) 4228 { 4229 struct task_struct *task; 4230 4231 rcu_read_lock(); 4232 if (!vpid) 4233 task = current; 4234 else 4235 task = find_task_by_vpid(vpid); 4236 if (task) 4237 get_task_struct(task); 4238 rcu_read_unlock(); 4239 4240 if (!task) 4241 return ERR_PTR(-ESRCH); 4242 4243 return task; 4244 } 4245 4246 /* 4247 * Returns a matching context with refcount and pincount. 4248 */ 4249 static struct perf_event_context * 4250 find_get_context(struct pmu *pmu, struct task_struct *task, 4251 struct perf_event *event) 4252 { 4253 struct perf_event_context *ctx, *clone_ctx = NULL; 4254 struct perf_cpu_context *cpuctx; 4255 void *task_ctx_data = NULL; 4256 unsigned long flags; 4257 int ctxn, err; 4258 int cpu = event->cpu; 4259 4260 if (!task) { 4261 /* Must be root to operate on a CPU event: */ 4262 err = perf_allow_cpu(&event->attr); 4263 if (err) 4264 return ERR_PTR(err); 4265 4266 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4267 ctx = &cpuctx->ctx; 4268 get_ctx(ctx); 4269 ++ctx->pin_count; 4270 4271 return ctx; 4272 } 4273 4274 err = -EINVAL; 4275 ctxn = pmu->task_ctx_nr; 4276 if (ctxn < 0) 4277 goto errout; 4278 4279 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4280 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4281 if (!task_ctx_data) { 4282 err = -ENOMEM; 4283 goto errout; 4284 } 4285 } 4286 4287 retry: 4288 ctx = perf_lock_task_context(task, ctxn, &flags); 4289 if (ctx) { 4290 clone_ctx = unclone_ctx(ctx); 4291 ++ctx->pin_count; 4292 4293 if (task_ctx_data && !ctx->task_ctx_data) { 4294 ctx->task_ctx_data = task_ctx_data; 4295 task_ctx_data = NULL; 4296 } 4297 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4298 4299 if (clone_ctx) 4300 put_ctx(clone_ctx); 4301 } else { 4302 ctx = alloc_perf_context(pmu, task); 4303 err = -ENOMEM; 4304 if (!ctx) 4305 goto errout; 4306 4307 if (task_ctx_data) { 4308 ctx->task_ctx_data = task_ctx_data; 4309 task_ctx_data = NULL; 4310 } 4311 4312 err = 0; 4313 mutex_lock(&task->perf_event_mutex); 4314 /* 4315 * If it has already passed perf_event_exit_task(). 4316 * we must see PF_EXITING, it takes this mutex too. 4317 */ 4318 if (task->flags & PF_EXITING) 4319 err = -ESRCH; 4320 else if (task->perf_event_ctxp[ctxn]) 4321 err = -EAGAIN; 4322 else { 4323 get_ctx(ctx); 4324 ++ctx->pin_count; 4325 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4326 } 4327 mutex_unlock(&task->perf_event_mutex); 4328 4329 if (unlikely(err)) { 4330 put_ctx(ctx); 4331 4332 if (err == -EAGAIN) 4333 goto retry; 4334 goto errout; 4335 } 4336 } 4337 4338 kfree(task_ctx_data); 4339 return ctx; 4340 4341 errout: 4342 kfree(task_ctx_data); 4343 return ERR_PTR(err); 4344 } 4345 4346 static void perf_event_free_filter(struct perf_event *event); 4347 static void perf_event_free_bpf_prog(struct perf_event *event); 4348 4349 static void free_event_rcu(struct rcu_head *head) 4350 { 4351 struct perf_event *event; 4352 4353 event = container_of(head, struct perf_event, rcu_head); 4354 if (event->ns) 4355 put_pid_ns(event->ns); 4356 perf_event_free_filter(event); 4357 kfree(event); 4358 } 4359 4360 static void ring_buffer_attach(struct perf_event *event, 4361 struct ring_buffer *rb); 4362 4363 static void detach_sb_event(struct perf_event *event) 4364 { 4365 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4366 4367 raw_spin_lock(&pel->lock); 4368 list_del_rcu(&event->sb_list); 4369 raw_spin_unlock(&pel->lock); 4370 } 4371 4372 static bool is_sb_event(struct perf_event *event) 4373 { 4374 struct perf_event_attr *attr = &event->attr; 4375 4376 if (event->parent) 4377 return false; 4378 4379 if (event->attach_state & PERF_ATTACH_TASK) 4380 return false; 4381 4382 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4383 attr->comm || attr->comm_exec || 4384 attr->task || attr->ksymbol || 4385 attr->context_switch || 4386 attr->bpf_event) 4387 return true; 4388 return false; 4389 } 4390 4391 static void unaccount_pmu_sb_event(struct perf_event *event) 4392 { 4393 if (is_sb_event(event)) 4394 detach_sb_event(event); 4395 } 4396 4397 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4398 { 4399 if (event->parent) 4400 return; 4401 4402 if (is_cgroup_event(event)) 4403 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4404 } 4405 4406 #ifdef CONFIG_NO_HZ_FULL 4407 static DEFINE_SPINLOCK(nr_freq_lock); 4408 #endif 4409 4410 static void unaccount_freq_event_nohz(void) 4411 { 4412 #ifdef CONFIG_NO_HZ_FULL 4413 spin_lock(&nr_freq_lock); 4414 if (atomic_dec_and_test(&nr_freq_events)) 4415 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4416 spin_unlock(&nr_freq_lock); 4417 #endif 4418 } 4419 4420 static void unaccount_freq_event(void) 4421 { 4422 if (tick_nohz_full_enabled()) 4423 unaccount_freq_event_nohz(); 4424 else 4425 atomic_dec(&nr_freq_events); 4426 } 4427 4428 static void unaccount_event(struct perf_event *event) 4429 { 4430 bool dec = false; 4431 4432 if (event->parent) 4433 return; 4434 4435 if (event->attach_state & PERF_ATTACH_TASK) 4436 dec = true; 4437 if (event->attr.mmap || event->attr.mmap_data) 4438 atomic_dec(&nr_mmap_events); 4439 if (event->attr.comm) 4440 atomic_dec(&nr_comm_events); 4441 if (event->attr.namespaces) 4442 atomic_dec(&nr_namespaces_events); 4443 if (event->attr.task) 4444 atomic_dec(&nr_task_events); 4445 if (event->attr.freq) 4446 unaccount_freq_event(); 4447 if (event->attr.context_switch) { 4448 dec = true; 4449 atomic_dec(&nr_switch_events); 4450 } 4451 if (is_cgroup_event(event)) 4452 dec = true; 4453 if (has_branch_stack(event)) 4454 dec = true; 4455 if (event->attr.ksymbol) 4456 atomic_dec(&nr_ksymbol_events); 4457 if (event->attr.bpf_event) 4458 atomic_dec(&nr_bpf_events); 4459 4460 if (dec) { 4461 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4462 schedule_delayed_work(&perf_sched_work, HZ); 4463 } 4464 4465 unaccount_event_cpu(event, event->cpu); 4466 4467 unaccount_pmu_sb_event(event); 4468 } 4469 4470 static void perf_sched_delayed(struct work_struct *work) 4471 { 4472 mutex_lock(&perf_sched_mutex); 4473 if (atomic_dec_and_test(&perf_sched_count)) 4474 static_branch_disable(&perf_sched_events); 4475 mutex_unlock(&perf_sched_mutex); 4476 } 4477 4478 /* 4479 * The following implement mutual exclusion of events on "exclusive" pmus 4480 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4481 * at a time, so we disallow creating events that might conflict, namely: 4482 * 4483 * 1) cpu-wide events in the presence of per-task events, 4484 * 2) per-task events in the presence of cpu-wide events, 4485 * 3) two matching events on the same context. 4486 * 4487 * The former two cases are handled in the allocation path (perf_event_alloc(), 4488 * _free_event()), the latter -- before the first perf_install_in_context(). 4489 */ 4490 static int exclusive_event_init(struct perf_event *event) 4491 { 4492 struct pmu *pmu = event->pmu; 4493 4494 if (!is_exclusive_pmu(pmu)) 4495 return 0; 4496 4497 /* 4498 * Prevent co-existence of per-task and cpu-wide events on the 4499 * same exclusive pmu. 4500 * 4501 * Negative pmu::exclusive_cnt means there are cpu-wide 4502 * events on this "exclusive" pmu, positive means there are 4503 * per-task events. 4504 * 4505 * Since this is called in perf_event_alloc() path, event::ctx 4506 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4507 * to mean "per-task event", because unlike other attach states it 4508 * never gets cleared. 4509 */ 4510 if (event->attach_state & PERF_ATTACH_TASK) { 4511 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4512 return -EBUSY; 4513 } else { 4514 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4515 return -EBUSY; 4516 } 4517 4518 return 0; 4519 } 4520 4521 static void exclusive_event_destroy(struct perf_event *event) 4522 { 4523 struct pmu *pmu = event->pmu; 4524 4525 if (!is_exclusive_pmu(pmu)) 4526 return; 4527 4528 /* see comment in exclusive_event_init() */ 4529 if (event->attach_state & PERF_ATTACH_TASK) 4530 atomic_dec(&pmu->exclusive_cnt); 4531 else 4532 atomic_inc(&pmu->exclusive_cnt); 4533 } 4534 4535 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4536 { 4537 if ((e1->pmu == e2->pmu) && 4538 (e1->cpu == e2->cpu || 4539 e1->cpu == -1 || 4540 e2->cpu == -1)) 4541 return true; 4542 return false; 4543 } 4544 4545 static bool exclusive_event_installable(struct perf_event *event, 4546 struct perf_event_context *ctx) 4547 { 4548 struct perf_event *iter_event; 4549 struct pmu *pmu = event->pmu; 4550 4551 lockdep_assert_held(&ctx->mutex); 4552 4553 if (!is_exclusive_pmu(pmu)) 4554 return true; 4555 4556 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4557 if (exclusive_event_match(iter_event, event)) 4558 return false; 4559 } 4560 4561 return true; 4562 } 4563 4564 static void perf_addr_filters_splice(struct perf_event *event, 4565 struct list_head *head); 4566 4567 static void _free_event(struct perf_event *event) 4568 { 4569 irq_work_sync(&event->pending); 4570 4571 unaccount_event(event); 4572 4573 security_perf_event_free(event); 4574 4575 if (event->rb) { 4576 /* 4577 * Can happen when we close an event with re-directed output. 4578 * 4579 * Since we have a 0 refcount, perf_mmap_close() will skip 4580 * over us; possibly making our ring_buffer_put() the last. 4581 */ 4582 mutex_lock(&event->mmap_mutex); 4583 ring_buffer_attach(event, NULL); 4584 mutex_unlock(&event->mmap_mutex); 4585 } 4586 4587 if (is_cgroup_event(event)) 4588 perf_detach_cgroup(event); 4589 4590 if (!event->parent) { 4591 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4592 put_callchain_buffers(); 4593 } 4594 4595 perf_event_free_bpf_prog(event); 4596 perf_addr_filters_splice(event, NULL); 4597 kfree(event->addr_filter_ranges); 4598 4599 if (event->destroy) 4600 event->destroy(event); 4601 4602 /* 4603 * Must be after ->destroy(), due to uprobe_perf_close() using 4604 * hw.target. 4605 */ 4606 if (event->hw.target) 4607 put_task_struct(event->hw.target); 4608 4609 /* 4610 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4611 * all task references must be cleaned up. 4612 */ 4613 if (event->ctx) 4614 put_ctx(event->ctx); 4615 4616 exclusive_event_destroy(event); 4617 module_put(event->pmu->module); 4618 4619 call_rcu(&event->rcu_head, free_event_rcu); 4620 } 4621 4622 /* 4623 * Used to free events which have a known refcount of 1, such as in error paths 4624 * where the event isn't exposed yet and inherited events. 4625 */ 4626 static void free_event(struct perf_event *event) 4627 { 4628 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4629 "unexpected event refcount: %ld; ptr=%p\n", 4630 atomic_long_read(&event->refcount), event)) { 4631 /* leak to avoid use-after-free */ 4632 return; 4633 } 4634 4635 _free_event(event); 4636 } 4637 4638 /* 4639 * Remove user event from the owner task. 4640 */ 4641 static void perf_remove_from_owner(struct perf_event *event) 4642 { 4643 struct task_struct *owner; 4644 4645 rcu_read_lock(); 4646 /* 4647 * Matches the smp_store_release() in perf_event_exit_task(). If we 4648 * observe !owner it means the list deletion is complete and we can 4649 * indeed free this event, otherwise we need to serialize on 4650 * owner->perf_event_mutex. 4651 */ 4652 owner = READ_ONCE(event->owner); 4653 if (owner) { 4654 /* 4655 * Since delayed_put_task_struct() also drops the last 4656 * task reference we can safely take a new reference 4657 * while holding the rcu_read_lock(). 4658 */ 4659 get_task_struct(owner); 4660 } 4661 rcu_read_unlock(); 4662 4663 if (owner) { 4664 /* 4665 * If we're here through perf_event_exit_task() we're already 4666 * holding ctx->mutex which would be an inversion wrt. the 4667 * normal lock order. 4668 * 4669 * However we can safely take this lock because its the child 4670 * ctx->mutex. 4671 */ 4672 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4673 4674 /* 4675 * We have to re-check the event->owner field, if it is cleared 4676 * we raced with perf_event_exit_task(), acquiring the mutex 4677 * ensured they're done, and we can proceed with freeing the 4678 * event. 4679 */ 4680 if (event->owner) { 4681 list_del_init(&event->owner_entry); 4682 smp_store_release(&event->owner, NULL); 4683 } 4684 mutex_unlock(&owner->perf_event_mutex); 4685 put_task_struct(owner); 4686 } 4687 } 4688 4689 static void put_event(struct perf_event *event) 4690 { 4691 if (!atomic_long_dec_and_test(&event->refcount)) 4692 return; 4693 4694 _free_event(event); 4695 } 4696 4697 /* 4698 * Kill an event dead; while event:refcount will preserve the event 4699 * object, it will not preserve its functionality. Once the last 'user' 4700 * gives up the object, we'll destroy the thing. 4701 */ 4702 int perf_event_release_kernel(struct perf_event *event) 4703 { 4704 struct perf_event_context *ctx = event->ctx; 4705 struct perf_event *child, *tmp; 4706 LIST_HEAD(free_list); 4707 4708 /* 4709 * If we got here through err_file: fput(event_file); we will not have 4710 * attached to a context yet. 4711 */ 4712 if (!ctx) { 4713 WARN_ON_ONCE(event->attach_state & 4714 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4715 goto no_ctx; 4716 } 4717 4718 if (!is_kernel_event(event)) 4719 perf_remove_from_owner(event); 4720 4721 ctx = perf_event_ctx_lock(event); 4722 WARN_ON_ONCE(ctx->parent_ctx); 4723 perf_remove_from_context(event, DETACH_GROUP); 4724 4725 raw_spin_lock_irq(&ctx->lock); 4726 /* 4727 * Mark this event as STATE_DEAD, there is no external reference to it 4728 * anymore. 4729 * 4730 * Anybody acquiring event->child_mutex after the below loop _must_ 4731 * also see this, most importantly inherit_event() which will avoid 4732 * placing more children on the list. 4733 * 4734 * Thus this guarantees that we will in fact observe and kill _ALL_ 4735 * child events. 4736 */ 4737 event->state = PERF_EVENT_STATE_DEAD; 4738 raw_spin_unlock_irq(&ctx->lock); 4739 4740 perf_event_ctx_unlock(event, ctx); 4741 4742 again: 4743 mutex_lock(&event->child_mutex); 4744 list_for_each_entry(child, &event->child_list, child_list) { 4745 4746 /* 4747 * Cannot change, child events are not migrated, see the 4748 * comment with perf_event_ctx_lock_nested(). 4749 */ 4750 ctx = READ_ONCE(child->ctx); 4751 /* 4752 * Since child_mutex nests inside ctx::mutex, we must jump 4753 * through hoops. We start by grabbing a reference on the ctx. 4754 * 4755 * Since the event cannot get freed while we hold the 4756 * child_mutex, the context must also exist and have a !0 4757 * reference count. 4758 */ 4759 get_ctx(ctx); 4760 4761 /* 4762 * Now that we have a ctx ref, we can drop child_mutex, and 4763 * acquire ctx::mutex without fear of it going away. Then we 4764 * can re-acquire child_mutex. 4765 */ 4766 mutex_unlock(&event->child_mutex); 4767 mutex_lock(&ctx->mutex); 4768 mutex_lock(&event->child_mutex); 4769 4770 /* 4771 * Now that we hold ctx::mutex and child_mutex, revalidate our 4772 * state, if child is still the first entry, it didn't get freed 4773 * and we can continue doing so. 4774 */ 4775 tmp = list_first_entry_or_null(&event->child_list, 4776 struct perf_event, child_list); 4777 if (tmp == child) { 4778 perf_remove_from_context(child, DETACH_GROUP); 4779 list_move(&child->child_list, &free_list); 4780 /* 4781 * This matches the refcount bump in inherit_event(); 4782 * this can't be the last reference. 4783 */ 4784 put_event(event); 4785 } 4786 4787 mutex_unlock(&event->child_mutex); 4788 mutex_unlock(&ctx->mutex); 4789 put_ctx(ctx); 4790 goto again; 4791 } 4792 mutex_unlock(&event->child_mutex); 4793 4794 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4795 void *var = &child->ctx->refcount; 4796 4797 list_del(&child->child_list); 4798 free_event(child); 4799 4800 /* 4801 * Wake any perf_event_free_task() waiting for this event to be 4802 * freed. 4803 */ 4804 smp_mb(); /* pairs with wait_var_event() */ 4805 wake_up_var(var); 4806 } 4807 4808 no_ctx: 4809 put_event(event); /* Must be the 'last' reference */ 4810 return 0; 4811 } 4812 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4813 4814 /* 4815 * Called when the last reference to the file is gone. 4816 */ 4817 static int perf_release(struct inode *inode, struct file *file) 4818 { 4819 perf_event_release_kernel(file->private_data); 4820 return 0; 4821 } 4822 4823 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4824 { 4825 struct perf_event *child; 4826 u64 total = 0; 4827 4828 *enabled = 0; 4829 *running = 0; 4830 4831 mutex_lock(&event->child_mutex); 4832 4833 (void)perf_event_read(event, false); 4834 total += perf_event_count(event); 4835 4836 *enabled += event->total_time_enabled + 4837 atomic64_read(&event->child_total_time_enabled); 4838 *running += event->total_time_running + 4839 atomic64_read(&event->child_total_time_running); 4840 4841 list_for_each_entry(child, &event->child_list, child_list) { 4842 (void)perf_event_read(child, false); 4843 total += perf_event_count(child); 4844 *enabled += child->total_time_enabled; 4845 *running += child->total_time_running; 4846 } 4847 mutex_unlock(&event->child_mutex); 4848 4849 return total; 4850 } 4851 4852 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4853 { 4854 struct perf_event_context *ctx; 4855 u64 count; 4856 4857 ctx = perf_event_ctx_lock(event); 4858 count = __perf_event_read_value(event, enabled, running); 4859 perf_event_ctx_unlock(event, ctx); 4860 4861 return count; 4862 } 4863 EXPORT_SYMBOL_GPL(perf_event_read_value); 4864 4865 static int __perf_read_group_add(struct perf_event *leader, 4866 u64 read_format, u64 *values) 4867 { 4868 struct perf_event_context *ctx = leader->ctx; 4869 struct perf_event *sub; 4870 unsigned long flags; 4871 int n = 1; /* skip @nr */ 4872 int ret; 4873 4874 ret = perf_event_read(leader, true); 4875 if (ret) 4876 return ret; 4877 4878 raw_spin_lock_irqsave(&ctx->lock, flags); 4879 4880 /* 4881 * Since we co-schedule groups, {enabled,running} times of siblings 4882 * will be identical to those of the leader, so we only publish one 4883 * set. 4884 */ 4885 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4886 values[n++] += leader->total_time_enabled + 4887 atomic64_read(&leader->child_total_time_enabled); 4888 } 4889 4890 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4891 values[n++] += leader->total_time_running + 4892 atomic64_read(&leader->child_total_time_running); 4893 } 4894 4895 /* 4896 * Write {count,id} tuples for every sibling. 4897 */ 4898 values[n++] += perf_event_count(leader); 4899 if (read_format & PERF_FORMAT_ID) 4900 values[n++] = primary_event_id(leader); 4901 4902 for_each_sibling_event(sub, leader) { 4903 values[n++] += perf_event_count(sub); 4904 if (read_format & PERF_FORMAT_ID) 4905 values[n++] = primary_event_id(sub); 4906 } 4907 4908 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4909 return 0; 4910 } 4911 4912 static int perf_read_group(struct perf_event *event, 4913 u64 read_format, char __user *buf) 4914 { 4915 struct perf_event *leader = event->group_leader, *child; 4916 struct perf_event_context *ctx = leader->ctx; 4917 int ret; 4918 u64 *values; 4919 4920 lockdep_assert_held(&ctx->mutex); 4921 4922 values = kzalloc(event->read_size, GFP_KERNEL); 4923 if (!values) 4924 return -ENOMEM; 4925 4926 values[0] = 1 + leader->nr_siblings; 4927 4928 /* 4929 * By locking the child_mutex of the leader we effectively 4930 * lock the child list of all siblings.. XXX explain how. 4931 */ 4932 mutex_lock(&leader->child_mutex); 4933 4934 ret = __perf_read_group_add(leader, read_format, values); 4935 if (ret) 4936 goto unlock; 4937 4938 list_for_each_entry(child, &leader->child_list, child_list) { 4939 ret = __perf_read_group_add(child, read_format, values); 4940 if (ret) 4941 goto unlock; 4942 } 4943 4944 mutex_unlock(&leader->child_mutex); 4945 4946 ret = event->read_size; 4947 if (copy_to_user(buf, values, event->read_size)) 4948 ret = -EFAULT; 4949 goto out; 4950 4951 unlock: 4952 mutex_unlock(&leader->child_mutex); 4953 out: 4954 kfree(values); 4955 return ret; 4956 } 4957 4958 static int perf_read_one(struct perf_event *event, 4959 u64 read_format, char __user *buf) 4960 { 4961 u64 enabled, running; 4962 u64 values[4]; 4963 int n = 0; 4964 4965 values[n++] = __perf_event_read_value(event, &enabled, &running); 4966 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4967 values[n++] = enabled; 4968 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4969 values[n++] = running; 4970 if (read_format & PERF_FORMAT_ID) 4971 values[n++] = primary_event_id(event); 4972 4973 if (copy_to_user(buf, values, n * sizeof(u64))) 4974 return -EFAULT; 4975 4976 return n * sizeof(u64); 4977 } 4978 4979 static bool is_event_hup(struct perf_event *event) 4980 { 4981 bool no_children; 4982 4983 if (event->state > PERF_EVENT_STATE_EXIT) 4984 return false; 4985 4986 mutex_lock(&event->child_mutex); 4987 no_children = list_empty(&event->child_list); 4988 mutex_unlock(&event->child_mutex); 4989 return no_children; 4990 } 4991 4992 /* 4993 * Read the performance event - simple non blocking version for now 4994 */ 4995 static ssize_t 4996 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4997 { 4998 u64 read_format = event->attr.read_format; 4999 int ret; 5000 5001 /* 5002 * Return end-of-file for a read on an event that is in 5003 * error state (i.e. because it was pinned but it couldn't be 5004 * scheduled on to the CPU at some point). 5005 */ 5006 if (event->state == PERF_EVENT_STATE_ERROR) 5007 return 0; 5008 5009 if (count < event->read_size) 5010 return -ENOSPC; 5011 5012 WARN_ON_ONCE(event->ctx->parent_ctx); 5013 if (read_format & PERF_FORMAT_GROUP) 5014 ret = perf_read_group(event, read_format, buf); 5015 else 5016 ret = perf_read_one(event, read_format, buf); 5017 5018 return ret; 5019 } 5020 5021 static ssize_t 5022 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5023 { 5024 struct perf_event *event = file->private_data; 5025 struct perf_event_context *ctx; 5026 int ret; 5027 5028 ret = security_perf_event_read(event); 5029 if (ret) 5030 return ret; 5031 5032 ctx = perf_event_ctx_lock(event); 5033 ret = __perf_read(event, buf, count); 5034 perf_event_ctx_unlock(event, ctx); 5035 5036 return ret; 5037 } 5038 5039 static __poll_t perf_poll(struct file *file, poll_table *wait) 5040 { 5041 struct perf_event *event = file->private_data; 5042 struct ring_buffer *rb; 5043 __poll_t events = EPOLLHUP; 5044 5045 poll_wait(file, &event->waitq, wait); 5046 5047 if (is_event_hup(event)) 5048 return events; 5049 5050 /* 5051 * Pin the event->rb by taking event->mmap_mutex; otherwise 5052 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5053 */ 5054 mutex_lock(&event->mmap_mutex); 5055 rb = event->rb; 5056 if (rb) 5057 events = atomic_xchg(&rb->poll, 0); 5058 mutex_unlock(&event->mmap_mutex); 5059 return events; 5060 } 5061 5062 static void _perf_event_reset(struct perf_event *event) 5063 { 5064 (void)perf_event_read(event, false); 5065 local64_set(&event->count, 0); 5066 perf_event_update_userpage(event); 5067 } 5068 5069 /* 5070 * Holding the top-level event's child_mutex means that any 5071 * descendant process that has inherited this event will block 5072 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5073 * task existence requirements of perf_event_enable/disable. 5074 */ 5075 static void perf_event_for_each_child(struct perf_event *event, 5076 void (*func)(struct perf_event *)) 5077 { 5078 struct perf_event *child; 5079 5080 WARN_ON_ONCE(event->ctx->parent_ctx); 5081 5082 mutex_lock(&event->child_mutex); 5083 func(event); 5084 list_for_each_entry(child, &event->child_list, child_list) 5085 func(child); 5086 mutex_unlock(&event->child_mutex); 5087 } 5088 5089 static void perf_event_for_each(struct perf_event *event, 5090 void (*func)(struct perf_event *)) 5091 { 5092 struct perf_event_context *ctx = event->ctx; 5093 struct perf_event *sibling; 5094 5095 lockdep_assert_held(&ctx->mutex); 5096 5097 event = event->group_leader; 5098 5099 perf_event_for_each_child(event, func); 5100 for_each_sibling_event(sibling, event) 5101 perf_event_for_each_child(sibling, func); 5102 } 5103 5104 static void __perf_event_period(struct perf_event *event, 5105 struct perf_cpu_context *cpuctx, 5106 struct perf_event_context *ctx, 5107 void *info) 5108 { 5109 u64 value = *((u64 *)info); 5110 bool active; 5111 5112 if (event->attr.freq) { 5113 event->attr.sample_freq = value; 5114 } else { 5115 event->attr.sample_period = value; 5116 event->hw.sample_period = value; 5117 } 5118 5119 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5120 if (active) { 5121 perf_pmu_disable(ctx->pmu); 5122 /* 5123 * We could be throttled; unthrottle now to avoid the tick 5124 * trying to unthrottle while we already re-started the event. 5125 */ 5126 if (event->hw.interrupts == MAX_INTERRUPTS) { 5127 event->hw.interrupts = 0; 5128 perf_log_throttle(event, 1); 5129 } 5130 event->pmu->stop(event, PERF_EF_UPDATE); 5131 } 5132 5133 local64_set(&event->hw.period_left, 0); 5134 5135 if (active) { 5136 event->pmu->start(event, PERF_EF_RELOAD); 5137 perf_pmu_enable(ctx->pmu); 5138 } 5139 } 5140 5141 static int perf_event_check_period(struct perf_event *event, u64 value) 5142 { 5143 return event->pmu->check_period(event, value); 5144 } 5145 5146 static int perf_event_period(struct perf_event *event, u64 __user *arg) 5147 { 5148 u64 value; 5149 5150 if (!is_sampling_event(event)) 5151 return -EINVAL; 5152 5153 if (copy_from_user(&value, arg, sizeof(value))) 5154 return -EFAULT; 5155 5156 if (!value) 5157 return -EINVAL; 5158 5159 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5160 return -EINVAL; 5161 5162 if (perf_event_check_period(event, value)) 5163 return -EINVAL; 5164 5165 if (!event->attr.freq && (value & (1ULL << 63))) 5166 return -EINVAL; 5167 5168 event_function_call(event, __perf_event_period, &value); 5169 5170 return 0; 5171 } 5172 5173 static const struct file_operations perf_fops; 5174 5175 static inline int perf_fget_light(int fd, struct fd *p) 5176 { 5177 struct fd f = fdget(fd); 5178 if (!f.file) 5179 return -EBADF; 5180 5181 if (f.file->f_op != &perf_fops) { 5182 fdput(f); 5183 return -EBADF; 5184 } 5185 *p = f; 5186 return 0; 5187 } 5188 5189 static int perf_event_set_output(struct perf_event *event, 5190 struct perf_event *output_event); 5191 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5192 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5193 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5194 struct perf_event_attr *attr); 5195 5196 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5197 { 5198 void (*func)(struct perf_event *); 5199 u32 flags = arg; 5200 5201 switch (cmd) { 5202 case PERF_EVENT_IOC_ENABLE: 5203 func = _perf_event_enable; 5204 break; 5205 case PERF_EVENT_IOC_DISABLE: 5206 func = _perf_event_disable; 5207 break; 5208 case PERF_EVENT_IOC_RESET: 5209 func = _perf_event_reset; 5210 break; 5211 5212 case PERF_EVENT_IOC_REFRESH: 5213 return _perf_event_refresh(event, arg); 5214 5215 case PERF_EVENT_IOC_PERIOD: 5216 return perf_event_period(event, (u64 __user *)arg); 5217 5218 case PERF_EVENT_IOC_ID: 5219 { 5220 u64 id = primary_event_id(event); 5221 5222 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5223 return -EFAULT; 5224 return 0; 5225 } 5226 5227 case PERF_EVENT_IOC_SET_OUTPUT: 5228 { 5229 int ret; 5230 if (arg != -1) { 5231 struct perf_event *output_event; 5232 struct fd output; 5233 ret = perf_fget_light(arg, &output); 5234 if (ret) 5235 return ret; 5236 output_event = output.file->private_data; 5237 ret = perf_event_set_output(event, output_event); 5238 fdput(output); 5239 } else { 5240 ret = perf_event_set_output(event, NULL); 5241 } 5242 return ret; 5243 } 5244 5245 case PERF_EVENT_IOC_SET_FILTER: 5246 return perf_event_set_filter(event, (void __user *)arg); 5247 5248 case PERF_EVENT_IOC_SET_BPF: 5249 return perf_event_set_bpf_prog(event, arg); 5250 5251 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5252 struct ring_buffer *rb; 5253 5254 rcu_read_lock(); 5255 rb = rcu_dereference(event->rb); 5256 if (!rb || !rb->nr_pages) { 5257 rcu_read_unlock(); 5258 return -EINVAL; 5259 } 5260 rb_toggle_paused(rb, !!arg); 5261 rcu_read_unlock(); 5262 return 0; 5263 } 5264 5265 case PERF_EVENT_IOC_QUERY_BPF: 5266 return perf_event_query_prog_array(event, (void __user *)arg); 5267 5268 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5269 struct perf_event_attr new_attr; 5270 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5271 &new_attr); 5272 5273 if (err) 5274 return err; 5275 5276 return perf_event_modify_attr(event, &new_attr); 5277 } 5278 default: 5279 return -ENOTTY; 5280 } 5281 5282 if (flags & PERF_IOC_FLAG_GROUP) 5283 perf_event_for_each(event, func); 5284 else 5285 perf_event_for_each_child(event, func); 5286 5287 return 0; 5288 } 5289 5290 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5291 { 5292 struct perf_event *event = file->private_data; 5293 struct perf_event_context *ctx; 5294 long ret; 5295 5296 /* Treat ioctl like writes as it is likely a mutating operation. */ 5297 ret = security_perf_event_write(event); 5298 if (ret) 5299 return ret; 5300 5301 ctx = perf_event_ctx_lock(event); 5302 ret = _perf_ioctl(event, cmd, arg); 5303 perf_event_ctx_unlock(event, ctx); 5304 5305 return ret; 5306 } 5307 5308 #ifdef CONFIG_COMPAT 5309 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5310 unsigned long arg) 5311 { 5312 switch (_IOC_NR(cmd)) { 5313 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5314 case _IOC_NR(PERF_EVENT_IOC_ID): 5315 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5316 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5317 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5318 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5319 cmd &= ~IOCSIZE_MASK; 5320 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5321 } 5322 break; 5323 } 5324 return perf_ioctl(file, cmd, arg); 5325 } 5326 #else 5327 # define perf_compat_ioctl NULL 5328 #endif 5329 5330 int perf_event_task_enable(void) 5331 { 5332 struct perf_event_context *ctx; 5333 struct perf_event *event; 5334 5335 mutex_lock(¤t->perf_event_mutex); 5336 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5337 ctx = perf_event_ctx_lock(event); 5338 perf_event_for_each_child(event, _perf_event_enable); 5339 perf_event_ctx_unlock(event, ctx); 5340 } 5341 mutex_unlock(¤t->perf_event_mutex); 5342 5343 return 0; 5344 } 5345 5346 int perf_event_task_disable(void) 5347 { 5348 struct perf_event_context *ctx; 5349 struct perf_event *event; 5350 5351 mutex_lock(¤t->perf_event_mutex); 5352 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5353 ctx = perf_event_ctx_lock(event); 5354 perf_event_for_each_child(event, _perf_event_disable); 5355 perf_event_ctx_unlock(event, ctx); 5356 } 5357 mutex_unlock(¤t->perf_event_mutex); 5358 5359 return 0; 5360 } 5361 5362 static int perf_event_index(struct perf_event *event) 5363 { 5364 if (event->hw.state & PERF_HES_STOPPED) 5365 return 0; 5366 5367 if (event->state != PERF_EVENT_STATE_ACTIVE) 5368 return 0; 5369 5370 return event->pmu->event_idx(event); 5371 } 5372 5373 static void calc_timer_values(struct perf_event *event, 5374 u64 *now, 5375 u64 *enabled, 5376 u64 *running) 5377 { 5378 u64 ctx_time; 5379 5380 *now = perf_clock(); 5381 ctx_time = event->shadow_ctx_time + *now; 5382 __perf_update_times(event, ctx_time, enabled, running); 5383 } 5384 5385 static void perf_event_init_userpage(struct perf_event *event) 5386 { 5387 struct perf_event_mmap_page *userpg; 5388 struct ring_buffer *rb; 5389 5390 rcu_read_lock(); 5391 rb = rcu_dereference(event->rb); 5392 if (!rb) 5393 goto unlock; 5394 5395 userpg = rb->user_page; 5396 5397 /* Allow new userspace to detect that bit 0 is deprecated */ 5398 userpg->cap_bit0_is_deprecated = 1; 5399 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5400 userpg->data_offset = PAGE_SIZE; 5401 userpg->data_size = perf_data_size(rb); 5402 5403 unlock: 5404 rcu_read_unlock(); 5405 } 5406 5407 void __weak arch_perf_update_userpage( 5408 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5409 { 5410 } 5411 5412 /* 5413 * Callers need to ensure there can be no nesting of this function, otherwise 5414 * the seqlock logic goes bad. We can not serialize this because the arch 5415 * code calls this from NMI context. 5416 */ 5417 void perf_event_update_userpage(struct perf_event *event) 5418 { 5419 struct perf_event_mmap_page *userpg; 5420 struct ring_buffer *rb; 5421 u64 enabled, running, now; 5422 5423 rcu_read_lock(); 5424 rb = rcu_dereference(event->rb); 5425 if (!rb) 5426 goto unlock; 5427 5428 /* 5429 * compute total_time_enabled, total_time_running 5430 * based on snapshot values taken when the event 5431 * was last scheduled in. 5432 * 5433 * we cannot simply called update_context_time() 5434 * because of locking issue as we can be called in 5435 * NMI context 5436 */ 5437 calc_timer_values(event, &now, &enabled, &running); 5438 5439 userpg = rb->user_page; 5440 /* 5441 * Disable preemption to guarantee consistent time stamps are stored to 5442 * the user page. 5443 */ 5444 preempt_disable(); 5445 ++userpg->lock; 5446 barrier(); 5447 userpg->index = perf_event_index(event); 5448 userpg->offset = perf_event_count(event); 5449 if (userpg->index) 5450 userpg->offset -= local64_read(&event->hw.prev_count); 5451 5452 userpg->time_enabled = enabled + 5453 atomic64_read(&event->child_total_time_enabled); 5454 5455 userpg->time_running = running + 5456 atomic64_read(&event->child_total_time_running); 5457 5458 arch_perf_update_userpage(event, userpg, now); 5459 5460 barrier(); 5461 ++userpg->lock; 5462 preempt_enable(); 5463 unlock: 5464 rcu_read_unlock(); 5465 } 5466 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5467 5468 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5469 { 5470 struct perf_event *event = vmf->vma->vm_file->private_data; 5471 struct ring_buffer *rb; 5472 vm_fault_t ret = VM_FAULT_SIGBUS; 5473 5474 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5475 if (vmf->pgoff == 0) 5476 ret = 0; 5477 return ret; 5478 } 5479 5480 rcu_read_lock(); 5481 rb = rcu_dereference(event->rb); 5482 if (!rb) 5483 goto unlock; 5484 5485 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5486 goto unlock; 5487 5488 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5489 if (!vmf->page) 5490 goto unlock; 5491 5492 get_page(vmf->page); 5493 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5494 vmf->page->index = vmf->pgoff; 5495 5496 ret = 0; 5497 unlock: 5498 rcu_read_unlock(); 5499 5500 return ret; 5501 } 5502 5503 static void ring_buffer_attach(struct perf_event *event, 5504 struct ring_buffer *rb) 5505 { 5506 struct ring_buffer *old_rb = NULL; 5507 unsigned long flags; 5508 5509 if (event->rb) { 5510 /* 5511 * Should be impossible, we set this when removing 5512 * event->rb_entry and wait/clear when adding event->rb_entry. 5513 */ 5514 WARN_ON_ONCE(event->rcu_pending); 5515 5516 old_rb = event->rb; 5517 spin_lock_irqsave(&old_rb->event_lock, flags); 5518 list_del_rcu(&event->rb_entry); 5519 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5520 5521 event->rcu_batches = get_state_synchronize_rcu(); 5522 event->rcu_pending = 1; 5523 } 5524 5525 if (rb) { 5526 if (event->rcu_pending) { 5527 cond_synchronize_rcu(event->rcu_batches); 5528 event->rcu_pending = 0; 5529 } 5530 5531 spin_lock_irqsave(&rb->event_lock, flags); 5532 list_add_rcu(&event->rb_entry, &rb->event_list); 5533 spin_unlock_irqrestore(&rb->event_lock, flags); 5534 } 5535 5536 /* 5537 * Avoid racing with perf_mmap_close(AUX): stop the event 5538 * before swizzling the event::rb pointer; if it's getting 5539 * unmapped, its aux_mmap_count will be 0 and it won't 5540 * restart. See the comment in __perf_pmu_output_stop(). 5541 * 5542 * Data will inevitably be lost when set_output is done in 5543 * mid-air, but then again, whoever does it like this is 5544 * not in for the data anyway. 5545 */ 5546 if (has_aux(event)) 5547 perf_event_stop(event, 0); 5548 5549 rcu_assign_pointer(event->rb, rb); 5550 5551 if (old_rb) { 5552 ring_buffer_put(old_rb); 5553 /* 5554 * Since we detached before setting the new rb, so that we 5555 * could attach the new rb, we could have missed a wakeup. 5556 * Provide it now. 5557 */ 5558 wake_up_all(&event->waitq); 5559 } 5560 } 5561 5562 static void ring_buffer_wakeup(struct perf_event *event) 5563 { 5564 struct ring_buffer *rb; 5565 5566 rcu_read_lock(); 5567 rb = rcu_dereference(event->rb); 5568 if (rb) { 5569 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5570 wake_up_all(&event->waitq); 5571 } 5572 rcu_read_unlock(); 5573 } 5574 5575 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5576 { 5577 struct ring_buffer *rb; 5578 5579 rcu_read_lock(); 5580 rb = rcu_dereference(event->rb); 5581 if (rb) { 5582 if (!refcount_inc_not_zero(&rb->refcount)) 5583 rb = NULL; 5584 } 5585 rcu_read_unlock(); 5586 5587 return rb; 5588 } 5589 5590 void ring_buffer_put(struct ring_buffer *rb) 5591 { 5592 if (!refcount_dec_and_test(&rb->refcount)) 5593 return; 5594 5595 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5596 5597 call_rcu(&rb->rcu_head, rb_free_rcu); 5598 } 5599 5600 static void perf_mmap_open(struct vm_area_struct *vma) 5601 { 5602 struct perf_event *event = vma->vm_file->private_data; 5603 5604 atomic_inc(&event->mmap_count); 5605 atomic_inc(&event->rb->mmap_count); 5606 5607 if (vma->vm_pgoff) 5608 atomic_inc(&event->rb->aux_mmap_count); 5609 5610 if (event->pmu->event_mapped) 5611 event->pmu->event_mapped(event, vma->vm_mm); 5612 } 5613 5614 static void perf_pmu_output_stop(struct perf_event *event); 5615 5616 /* 5617 * A buffer can be mmap()ed multiple times; either directly through the same 5618 * event, or through other events by use of perf_event_set_output(). 5619 * 5620 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5621 * the buffer here, where we still have a VM context. This means we need 5622 * to detach all events redirecting to us. 5623 */ 5624 static void perf_mmap_close(struct vm_area_struct *vma) 5625 { 5626 struct perf_event *event = vma->vm_file->private_data; 5627 5628 struct ring_buffer *rb = ring_buffer_get(event); 5629 struct user_struct *mmap_user = rb->mmap_user; 5630 int mmap_locked = rb->mmap_locked; 5631 unsigned long size = perf_data_size(rb); 5632 5633 if (event->pmu->event_unmapped) 5634 event->pmu->event_unmapped(event, vma->vm_mm); 5635 5636 /* 5637 * rb->aux_mmap_count will always drop before rb->mmap_count and 5638 * event->mmap_count, so it is ok to use event->mmap_mutex to 5639 * serialize with perf_mmap here. 5640 */ 5641 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5642 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5643 /* 5644 * Stop all AUX events that are writing to this buffer, 5645 * so that we can free its AUX pages and corresponding PMU 5646 * data. Note that after rb::aux_mmap_count dropped to zero, 5647 * they won't start any more (see perf_aux_output_begin()). 5648 */ 5649 perf_pmu_output_stop(event); 5650 5651 /* now it's safe to free the pages */ 5652 if (!rb->aux_mmap_locked) 5653 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5654 else 5655 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5656 5657 /* this has to be the last one */ 5658 rb_free_aux(rb); 5659 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5660 5661 mutex_unlock(&event->mmap_mutex); 5662 } 5663 5664 atomic_dec(&rb->mmap_count); 5665 5666 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5667 goto out_put; 5668 5669 ring_buffer_attach(event, NULL); 5670 mutex_unlock(&event->mmap_mutex); 5671 5672 /* If there's still other mmap()s of this buffer, we're done. */ 5673 if (atomic_read(&rb->mmap_count)) 5674 goto out_put; 5675 5676 /* 5677 * No other mmap()s, detach from all other events that might redirect 5678 * into the now unreachable buffer. Somewhat complicated by the 5679 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5680 */ 5681 again: 5682 rcu_read_lock(); 5683 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5684 if (!atomic_long_inc_not_zero(&event->refcount)) { 5685 /* 5686 * This event is en-route to free_event() which will 5687 * detach it and remove it from the list. 5688 */ 5689 continue; 5690 } 5691 rcu_read_unlock(); 5692 5693 mutex_lock(&event->mmap_mutex); 5694 /* 5695 * Check we didn't race with perf_event_set_output() which can 5696 * swizzle the rb from under us while we were waiting to 5697 * acquire mmap_mutex. 5698 * 5699 * If we find a different rb; ignore this event, a next 5700 * iteration will no longer find it on the list. We have to 5701 * still restart the iteration to make sure we're not now 5702 * iterating the wrong list. 5703 */ 5704 if (event->rb == rb) 5705 ring_buffer_attach(event, NULL); 5706 5707 mutex_unlock(&event->mmap_mutex); 5708 put_event(event); 5709 5710 /* 5711 * Restart the iteration; either we're on the wrong list or 5712 * destroyed its integrity by doing a deletion. 5713 */ 5714 goto again; 5715 } 5716 rcu_read_unlock(); 5717 5718 /* 5719 * It could be there's still a few 0-ref events on the list; they'll 5720 * get cleaned up by free_event() -- they'll also still have their 5721 * ref on the rb and will free it whenever they are done with it. 5722 * 5723 * Aside from that, this buffer is 'fully' detached and unmapped, 5724 * undo the VM accounting. 5725 */ 5726 5727 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5728 &mmap_user->locked_vm); 5729 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5730 free_uid(mmap_user); 5731 5732 out_put: 5733 ring_buffer_put(rb); /* could be last */ 5734 } 5735 5736 static const struct vm_operations_struct perf_mmap_vmops = { 5737 .open = perf_mmap_open, 5738 .close = perf_mmap_close, /* non mergeable */ 5739 .fault = perf_mmap_fault, 5740 .page_mkwrite = perf_mmap_fault, 5741 }; 5742 5743 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5744 { 5745 struct perf_event *event = file->private_data; 5746 unsigned long user_locked, user_lock_limit; 5747 struct user_struct *user = current_user(); 5748 unsigned long locked, lock_limit; 5749 struct ring_buffer *rb = NULL; 5750 unsigned long vma_size; 5751 unsigned long nr_pages; 5752 long user_extra = 0, extra = 0; 5753 int ret = 0, flags = 0; 5754 5755 /* 5756 * Don't allow mmap() of inherited per-task counters. This would 5757 * create a performance issue due to all children writing to the 5758 * same rb. 5759 */ 5760 if (event->cpu == -1 && event->attr.inherit) 5761 return -EINVAL; 5762 5763 if (!(vma->vm_flags & VM_SHARED)) 5764 return -EINVAL; 5765 5766 ret = security_perf_event_read(event); 5767 if (ret) 5768 return ret; 5769 5770 vma_size = vma->vm_end - vma->vm_start; 5771 5772 if (vma->vm_pgoff == 0) { 5773 nr_pages = (vma_size / PAGE_SIZE) - 1; 5774 } else { 5775 /* 5776 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5777 * mapped, all subsequent mappings should have the same size 5778 * and offset. Must be above the normal perf buffer. 5779 */ 5780 u64 aux_offset, aux_size; 5781 5782 if (!event->rb) 5783 return -EINVAL; 5784 5785 nr_pages = vma_size / PAGE_SIZE; 5786 5787 mutex_lock(&event->mmap_mutex); 5788 ret = -EINVAL; 5789 5790 rb = event->rb; 5791 if (!rb) 5792 goto aux_unlock; 5793 5794 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5795 aux_size = READ_ONCE(rb->user_page->aux_size); 5796 5797 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5798 goto aux_unlock; 5799 5800 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5801 goto aux_unlock; 5802 5803 /* already mapped with a different offset */ 5804 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5805 goto aux_unlock; 5806 5807 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5808 goto aux_unlock; 5809 5810 /* already mapped with a different size */ 5811 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5812 goto aux_unlock; 5813 5814 if (!is_power_of_2(nr_pages)) 5815 goto aux_unlock; 5816 5817 if (!atomic_inc_not_zero(&rb->mmap_count)) 5818 goto aux_unlock; 5819 5820 if (rb_has_aux(rb)) { 5821 atomic_inc(&rb->aux_mmap_count); 5822 ret = 0; 5823 goto unlock; 5824 } 5825 5826 atomic_set(&rb->aux_mmap_count, 1); 5827 user_extra = nr_pages; 5828 5829 goto accounting; 5830 } 5831 5832 /* 5833 * If we have rb pages ensure they're a power-of-two number, so we 5834 * can do bitmasks instead of modulo. 5835 */ 5836 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5837 return -EINVAL; 5838 5839 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5840 return -EINVAL; 5841 5842 WARN_ON_ONCE(event->ctx->parent_ctx); 5843 again: 5844 mutex_lock(&event->mmap_mutex); 5845 if (event->rb) { 5846 if (event->rb->nr_pages != nr_pages) { 5847 ret = -EINVAL; 5848 goto unlock; 5849 } 5850 5851 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5852 /* 5853 * Raced against perf_mmap_close() through 5854 * perf_event_set_output(). Try again, hope for better 5855 * luck. 5856 */ 5857 mutex_unlock(&event->mmap_mutex); 5858 goto again; 5859 } 5860 5861 goto unlock; 5862 } 5863 5864 user_extra = nr_pages + 1; 5865 5866 accounting: 5867 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5868 5869 /* 5870 * Increase the limit linearly with more CPUs: 5871 */ 5872 user_lock_limit *= num_online_cpus(); 5873 5874 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5875 5876 if (user_locked <= user_lock_limit) { 5877 /* charge all to locked_vm */ 5878 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) { 5879 /* charge all to pinned_vm */ 5880 extra = user_extra; 5881 user_extra = 0; 5882 } else { 5883 /* 5884 * charge locked_vm until it hits user_lock_limit; 5885 * charge the rest from pinned_vm 5886 */ 5887 extra = user_locked - user_lock_limit; 5888 user_extra -= extra; 5889 } 5890 5891 lock_limit = rlimit(RLIMIT_MEMLOCK); 5892 lock_limit >>= PAGE_SHIFT; 5893 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5894 5895 if ((locked > lock_limit) && perf_is_paranoid() && 5896 !capable(CAP_IPC_LOCK)) { 5897 ret = -EPERM; 5898 goto unlock; 5899 } 5900 5901 WARN_ON(!rb && event->rb); 5902 5903 if (vma->vm_flags & VM_WRITE) 5904 flags |= RING_BUFFER_WRITABLE; 5905 5906 if (!rb) { 5907 rb = rb_alloc(nr_pages, 5908 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5909 event->cpu, flags); 5910 5911 if (!rb) { 5912 ret = -ENOMEM; 5913 goto unlock; 5914 } 5915 5916 atomic_set(&rb->mmap_count, 1); 5917 rb->mmap_user = get_current_user(); 5918 rb->mmap_locked = extra; 5919 5920 ring_buffer_attach(event, rb); 5921 5922 perf_event_init_userpage(event); 5923 perf_event_update_userpage(event); 5924 } else { 5925 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5926 event->attr.aux_watermark, flags); 5927 if (!ret) 5928 rb->aux_mmap_locked = extra; 5929 } 5930 5931 unlock: 5932 if (!ret) { 5933 atomic_long_add(user_extra, &user->locked_vm); 5934 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5935 5936 atomic_inc(&event->mmap_count); 5937 } else if (rb) { 5938 atomic_dec(&rb->mmap_count); 5939 } 5940 aux_unlock: 5941 mutex_unlock(&event->mmap_mutex); 5942 5943 /* 5944 * Since pinned accounting is per vm we cannot allow fork() to copy our 5945 * vma. 5946 */ 5947 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5948 vma->vm_ops = &perf_mmap_vmops; 5949 5950 if (event->pmu->event_mapped) 5951 event->pmu->event_mapped(event, vma->vm_mm); 5952 5953 return ret; 5954 } 5955 5956 static int perf_fasync(int fd, struct file *filp, int on) 5957 { 5958 struct inode *inode = file_inode(filp); 5959 struct perf_event *event = filp->private_data; 5960 int retval; 5961 5962 inode_lock(inode); 5963 retval = fasync_helper(fd, filp, on, &event->fasync); 5964 inode_unlock(inode); 5965 5966 if (retval < 0) 5967 return retval; 5968 5969 return 0; 5970 } 5971 5972 static const struct file_operations perf_fops = { 5973 .llseek = no_llseek, 5974 .release = perf_release, 5975 .read = perf_read, 5976 .poll = perf_poll, 5977 .unlocked_ioctl = perf_ioctl, 5978 .compat_ioctl = perf_compat_ioctl, 5979 .mmap = perf_mmap, 5980 .fasync = perf_fasync, 5981 }; 5982 5983 /* 5984 * Perf event wakeup 5985 * 5986 * If there's data, ensure we set the poll() state and publish everything 5987 * to user-space before waking everybody up. 5988 */ 5989 5990 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5991 { 5992 /* only the parent has fasync state */ 5993 if (event->parent) 5994 event = event->parent; 5995 return &event->fasync; 5996 } 5997 5998 void perf_event_wakeup(struct perf_event *event) 5999 { 6000 ring_buffer_wakeup(event); 6001 6002 if (event->pending_kill) { 6003 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6004 event->pending_kill = 0; 6005 } 6006 } 6007 6008 static void perf_pending_event_disable(struct perf_event *event) 6009 { 6010 int cpu = READ_ONCE(event->pending_disable); 6011 6012 if (cpu < 0) 6013 return; 6014 6015 if (cpu == smp_processor_id()) { 6016 WRITE_ONCE(event->pending_disable, -1); 6017 perf_event_disable_local(event); 6018 return; 6019 } 6020 6021 /* 6022 * CPU-A CPU-B 6023 * 6024 * perf_event_disable_inatomic() 6025 * @pending_disable = CPU-A; 6026 * irq_work_queue(); 6027 * 6028 * sched-out 6029 * @pending_disable = -1; 6030 * 6031 * sched-in 6032 * perf_event_disable_inatomic() 6033 * @pending_disable = CPU-B; 6034 * irq_work_queue(); // FAILS 6035 * 6036 * irq_work_run() 6037 * perf_pending_event() 6038 * 6039 * But the event runs on CPU-B and wants disabling there. 6040 */ 6041 irq_work_queue_on(&event->pending, cpu); 6042 } 6043 6044 static void perf_pending_event(struct irq_work *entry) 6045 { 6046 struct perf_event *event = container_of(entry, struct perf_event, pending); 6047 int rctx; 6048 6049 rctx = perf_swevent_get_recursion_context(); 6050 /* 6051 * If we 'fail' here, that's OK, it means recursion is already disabled 6052 * and we won't recurse 'further'. 6053 */ 6054 6055 perf_pending_event_disable(event); 6056 6057 if (event->pending_wakeup) { 6058 event->pending_wakeup = 0; 6059 perf_event_wakeup(event); 6060 } 6061 6062 if (rctx >= 0) 6063 perf_swevent_put_recursion_context(rctx); 6064 } 6065 6066 /* 6067 * We assume there is only KVM supporting the callbacks. 6068 * Later on, we might change it to a list if there is 6069 * another virtualization implementation supporting the callbacks. 6070 */ 6071 struct perf_guest_info_callbacks *perf_guest_cbs; 6072 6073 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6074 { 6075 perf_guest_cbs = cbs; 6076 return 0; 6077 } 6078 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6079 6080 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6081 { 6082 perf_guest_cbs = NULL; 6083 return 0; 6084 } 6085 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6086 6087 static void 6088 perf_output_sample_regs(struct perf_output_handle *handle, 6089 struct pt_regs *regs, u64 mask) 6090 { 6091 int bit; 6092 DECLARE_BITMAP(_mask, 64); 6093 6094 bitmap_from_u64(_mask, mask); 6095 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6096 u64 val; 6097 6098 val = perf_reg_value(regs, bit); 6099 perf_output_put(handle, val); 6100 } 6101 } 6102 6103 static void perf_sample_regs_user(struct perf_regs *regs_user, 6104 struct pt_regs *regs, 6105 struct pt_regs *regs_user_copy) 6106 { 6107 if (user_mode(regs)) { 6108 regs_user->abi = perf_reg_abi(current); 6109 regs_user->regs = regs; 6110 } else if (!(current->flags & PF_KTHREAD)) { 6111 perf_get_regs_user(regs_user, regs, regs_user_copy); 6112 } else { 6113 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6114 regs_user->regs = NULL; 6115 } 6116 } 6117 6118 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6119 struct pt_regs *regs) 6120 { 6121 regs_intr->regs = regs; 6122 regs_intr->abi = perf_reg_abi(current); 6123 } 6124 6125 6126 /* 6127 * Get remaining task size from user stack pointer. 6128 * 6129 * It'd be better to take stack vma map and limit this more 6130 * precisely, but there's no way to get it safely under interrupt, 6131 * so using TASK_SIZE as limit. 6132 */ 6133 static u64 perf_ustack_task_size(struct pt_regs *regs) 6134 { 6135 unsigned long addr = perf_user_stack_pointer(regs); 6136 6137 if (!addr || addr >= TASK_SIZE) 6138 return 0; 6139 6140 return TASK_SIZE - addr; 6141 } 6142 6143 static u16 6144 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6145 struct pt_regs *regs) 6146 { 6147 u64 task_size; 6148 6149 /* No regs, no stack pointer, no dump. */ 6150 if (!regs) 6151 return 0; 6152 6153 /* 6154 * Check if we fit in with the requested stack size into the: 6155 * - TASK_SIZE 6156 * If we don't, we limit the size to the TASK_SIZE. 6157 * 6158 * - remaining sample size 6159 * If we don't, we customize the stack size to 6160 * fit in to the remaining sample size. 6161 */ 6162 6163 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6164 stack_size = min(stack_size, (u16) task_size); 6165 6166 /* Current header size plus static size and dynamic size. */ 6167 header_size += 2 * sizeof(u64); 6168 6169 /* Do we fit in with the current stack dump size? */ 6170 if ((u16) (header_size + stack_size) < header_size) { 6171 /* 6172 * If we overflow the maximum size for the sample, 6173 * we customize the stack dump size to fit in. 6174 */ 6175 stack_size = USHRT_MAX - header_size - sizeof(u64); 6176 stack_size = round_up(stack_size, sizeof(u64)); 6177 } 6178 6179 return stack_size; 6180 } 6181 6182 static void 6183 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6184 struct pt_regs *regs) 6185 { 6186 /* Case of a kernel thread, nothing to dump */ 6187 if (!regs) { 6188 u64 size = 0; 6189 perf_output_put(handle, size); 6190 } else { 6191 unsigned long sp; 6192 unsigned int rem; 6193 u64 dyn_size; 6194 mm_segment_t fs; 6195 6196 /* 6197 * We dump: 6198 * static size 6199 * - the size requested by user or the best one we can fit 6200 * in to the sample max size 6201 * data 6202 * - user stack dump data 6203 * dynamic size 6204 * - the actual dumped size 6205 */ 6206 6207 /* Static size. */ 6208 perf_output_put(handle, dump_size); 6209 6210 /* Data. */ 6211 sp = perf_user_stack_pointer(regs); 6212 fs = get_fs(); 6213 set_fs(USER_DS); 6214 rem = __output_copy_user(handle, (void *) sp, dump_size); 6215 set_fs(fs); 6216 dyn_size = dump_size - rem; 6217 6218 perf_output_skip(handle, rem); 6219 6220 /* Dynamic size. */ 6221 perf_output_put(handle, dyn_size); 6222 } 6223 } 6224 6225 static void __perf_event_header__init_id(struct perf_event_header *header, 6226 struct perf_sample_data *data, 6227 struct perf_event *event) 6228 { 6229 u64 sample_type = event->attr.sample_type; 6230 6231 data->type = sample_type; 6232 header->size += event->id_header_size; 6233 6234 if (sample_type & PERF_SAMPLE_TID) { 6235 /* namespace issues */ 6236 data->tid_entry.pid = perf_event_pid(event, current); 6237 data->tid_entry.tid = perf_event_tid(event, current); 6238 } 6239 6240 if (sample_type & PERF_SAMPLE_TIME) 6241 data->time = perf_event_clock(event); 6242 6243 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6244 data->id = primary_event_id(event); 6245 6246 if (sample_type & PERF_SAMPLE_STREAM_ID) 6247 data->stream_id = event->id; 6248 6249 if (sample_type & PERF_SAMPLE_CPU) { 6250 data->cpu_entry.cpu = raw_smp_processor_id(); 6251 data->cpu_entry.reserved = 0; 6252 } 6253 } 6254 6255 void perf_event_header__init_id(struct perf_event_header *header, 6256 struct perf_sample_data *data, 6257 struct perf_event *event) 6258 { 6259 if (event->attr.sample_id_all) 6260 __perf_event_header__init_id(header, data, event); 6261 } 6262 6263 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6264 struct perf_sample_data *data) 6265 { 6266 u64 sample_type = data->type; 6267 6268 if (sample_type & PERF_SAMPLE_TID) 6269 perf_output_put(handle, data->tid_entry); 6270 6271 if (sample_type & PERF_SAMPLE_TIME) 6272 perf_output_put(handle, data->time); 6273 6274 if (sample_type & PERF_SAMPLE_ID) 6275 perf_output_put(handle, data->id); 6276 6277 if (sample_type & PERF_SAMPLE_STREAM_ID) 6278 perf_output_put(handle, data->stream_id); 6279 6280 if (sample_type & PERF_SAMPLE_CPU) 6281 perf_output_put(handle, data->cpu_entry); 6282 6283 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6284 perf_output_put(handle, data->id); 6285 } 6286 6287 void perf_event__output_id_sample(struct perf_event *event, 6288 struct perf_output_handle *handle, 6289 struct perf_sample_data *sample) 6290 { 6291 if (event->attr.sample_id_all) 6292 __perf_event__output_id_sample(handle, sample); 6293 } 6294 6295 static void perf_output_read_one(struct perf_output_handle *handle, 6296 struct perf_event *event, 6297 u64 enabled, u64 running) 6298 { 6299 u64 read_format = event->attr.read_format; 6300 u64 values[4]; 6301 int n = 0; 6302 6303 values[n++] = perf_event_count(event); 6304 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6305 values[n++] = enabled + 6306 atomic64_read(&event->child_total_time_enabled); 6307 } 6308 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6309 values[n++] = running + 6310 atomic64_read(&event->child_total_time_running); 6311 } 6312 if (read_format & PERF_FORMAT_ID) 6313 values[n++] = primary_event_id(event); 6314 6315 __output_copy(handle, values, n * sizeof(u64)); 6316 } 6317 6318 static void perf_output_read_group(struct perf_output_handle *handle, 6319 struct perf_event *event, 6320 u64 enabled, u64 running) 6321 { 6322 struct perf_event *leader = event->group_leader, *sub; 6323 u64 read_format = event->attr.read_format; 6324 u64 values[5]; 6325 int n = 0; 6326 6327 values[n++] = 1 + leader->nr_siblings; 6328 6329 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6330 values[n++] = enabled; 6331 6332 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6333 values[n++] = running; 6334 6335 if ((leader != event) && 6336 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6337 leader->pmu->read(leader); 6338 6339 values[n++] = perf_event_count(leader); 6340 if (read_format & PERF_FORMAT_ID) 6341 values[n++] = primary_event_id(leader); 6342 6343 __output_copy(handle, values, n * sizeof(u64)); 6344 6345 for_each_sibling_event(sub, leader) { 6346 n = 0; 6347 6348 if ((sub != event) && 6349 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6350 sub->pmu->read(sub); 6351 6352 values[n++] = perf_event_count(sub); 6353 if (read_format & PERF_FORMAT_ID) 6354 values[n++] = primary_event_id(sub); 6355 6356 __output_copy(handle, values, n * sizeof(u64)); 6357 } 6358 } 6359 6360 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6361 PERF_FORMAT_TOTAL_TIME_RUNNING) 6362 6363 /* 6364 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6365 * 6366 * The problem is that its both hard and excessively expensive to iterate the 6367 * child list, not to mention that its impossible to IPI the children running 6368 * on another CPU, from interrupt/NMI context. 6369 */ 6370 static void perf_output_read(struct perf_output_handle *handle, 6371 struct perf_event *event) 6372 { 6373 u64 enabled = 0, running = 0, now; 6374 u64 read_format = event->attr.read_format; 6375 6376 /* 6377 * compute total_time_enabled, total_time_running 6378 * based on snapshot values taken when the event 6379 * was last scheduled in. 6380 * 6381 * we cannot simply called update_context_time() 6382 * because of locking issue as we are called in 6383 * NMI context 6384 */ 6385 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6386 calc_timer_values(event, &now, &enabled, &running); 6387 6388 if (event->attr.read_format & PERF_FORMAT_GROUP) 6389 perf_output_read_group(handle, event, enabled, running); 6390 else 6391 perf_output_read_one(handle, event, enabled, running); 6392 } 6393 6394 void perf_output_sample(struct perf_output_handle *handle, 6395 struct perf_event_header *header, 6396 struct perf_sample_data *data, 6397 struct perf_event *event) 6398 { 6399 u64 sample_type = data->type; 6400 6401 perf_output_put(handle, *header); 6402 6403 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6404 perf_output_put(handle, data->id); 6405 6406 if (sample_type & PERF_SAMPLE_IP) 6407 perf_output_put(handle, data->ip); 6408 6409 if (sample_type & PERF_SAMPLE_TID) 6410 perf_output_put(handle, data->tid_entry); 6411 6412 if (sample_type & PERF_SAMPLE_TIME) 6413 perf_output_put(handle, data->time); 6414 6415 if (sample_type & PERF_SAMPLE_ADDR) 6416 perf_output_put(handle, data->addr); 6417 6418 if (sample_type & PERF_SAMPLE_ID) 6419 perf_output_put(handle, data->id); 6420 6421 if (sample_type & PERF_SAMPLE_STREAM_ID) 6422 perf_output_put(handle, data->stream_id); 6423 6424 if (sample_type & PERF_SAMPLE_CPU) 6425 perf_output_put(handle, data->cpu_entry); 6426 6427 if (sample_type & PERF_SAMPLE_PERIOD) 6428 perf_output_put(handle, data->period); 6429 6430 if (sample_type & PERF_SAMPLE_READ) 6431 perf_output_read(handle, event); 6432 6433 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6434 int size = 1; 6435 6436 size += data->callchain->nr; 6437 size *= sizeof(u64); 6438 __output_copy(handle, data->callchain, size); 6439 } 6440 6441 if (sample_type & PERF_SAMPLE_RAW) { 6442 struct perf_raw_record *raw = data->raw; 6443 6444 if (raw) { 6445 struct perf_raw_frag *frag = &raw->frag; 6446 6447 perf_output_put(handle, raw->size); 6448 do { 6449 if (frag->copy) { 6450 __output_custom(handle, frag->copy, 6451 frag->data, frag->size); 6452 } else { 6453 __output_copy(handle, frag->data, 6454 frag->size); 6455 } 6456 if (perf_raw_frag_last(frag)) 6457 break; 6458 frag = frag->next; 6459 } while (1); 6460 if (frag->pad) 6461 __output_skip(handle, NULL, frag->pad); 6462 } else { 6463 struct { 6464 u32 size; 6465 u32 data; 6466 } raw = { 6467 .size = sizeof(u32), 6468 .data = 0, 6469 }; 6470 perf_output_put(handle, raw); 6471 } 6472 } 6473 6474 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6475 if (data->br_stack) { 6476 size_t size; 6477 6478 size = data->br_stack->nr 6479 * sizeof(struct perf_branch_entry); 6480 6481 perf_output_put(handle, data->br_stack->nr); 6482 perf_output_copy(handle, data->br_stack->entries, size); 6483 } else { 6484 /* 6485 * we always store at least the value of nr 6486 */ 6487 u64 nr = 0; 6488 perf_output_put(handle, nr); 6489 } 6490 } 6491 6492 if (sample_type & PERF_SAMPLE_REGS_USER) { 6493 u64 abi = data->regs_user.abi; 6494 6495 /* 6496 * If there are no regs to dump, notice it through 6497 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6498 */ 6499 perf_output_put(handle, abi); 6500 6501 if (abi) { 6502 u64 mask = event->attr.sample_regs_user; 6503 perf_output_sample_regs(handle, 6504 data->regs_user.regs, 6505 mask); 6506 } 6507 } 6508 6509 if (sample_type & PERF_SAMPLE_STACK_USER) { 6510 perf_output_sample_ustack(handle, 6511 data->stack_user_size, 6512 data->regs_user.regs); 6513 } 6514 6515 if (sample_type & PERF_SAMPLE_WEIGHT) 6516 perf_output_put(handle, data->weight); 6517 6518 if (sample_type & PERF_SAMPLE_DATA_SRC) 6519 perf_output_put(handle, data->data_src.val); 6520 6521 if (sample_type & PERF_SAMPLE_TRANSACTION) 6522 perf_output_put(handle, data->txn); 6523 6524 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6525 u64 abi = data->regs_intr.abi; 6526 /* 6527 * If there are no regs to dump, notice it through 6528 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6529 */ 6530 perf_output_put(handle, abi); 6531 6532 if (abi) { 6533 u64 mask = event->attr.sample_regs_intr; 6534 6535 perf_output_sample_regs(handle, 6536 data->regs_intr.regs, 6537 mask); 6538 } 6539 } 6540 6541 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6542 perf_output_put(handle, data->phys_addr); 6543 6544 if (!event->attr.watermark) { 6545 int wakeup_events = event->attr.wakeup_events; 6546 6547 if (wakeup_events) { 6548 struct ring_buffer *rb = handle->rb; 6549 int events = local_inc_return(&rb->events); 6550 6551 if (events >= wakeup_events) { 6552 local_sub(wakeup_events, &rb->events); 6553 local_inc(&rb->wakeup); 6554 } 6555 } 6556 } 6557 } 6558 6559 static u64 perf_virt_to_phys(u64 virt) 6560 { 6561 u64 phys_addr = 0; 6562 struct page *p = NULL; 6563 6564 if (!virt) 6565 return 0; 6566 6567 if (virt >= TASK_SIZE) { 6568 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6569 if (virt_addr_valid((void *)(uintptr_t)virt) && 6570 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6571 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6572 } else { 6573 /* 6574 * Walking the pages tables for user address. 6575 * Interrupts are disabled, so it prevents any tear down 6576 * of the page tables. 6577 * Try IRQ-safe __get_user_pages_fast first. 6578 * If failed, leave phys_addr as 0. 6579 */ 6580 if ((current->mm != NULL) && 6581 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6582 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6583 6584 if (p) 6585 put_page(p); 6586 } 6587 6588 return phys_addr; 6589 } 6590 6591 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6592 6593 struct perf_callchain_entry * 6594 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6595 { 6596 bool kernel = !event->attr.exclude_callchain_kernel; 6597 bool user = !event->attr.exclude_callchain_user; 6598 /* Disallow cross-task user callchains. */ 6599 bool crosstask = event->ctx->task && event->ctx->task != current; 6600 const u32 max_stack = event->attr.sample_max_stack; 6601 struct perf_callchain_entry *callchain; 6602 6603 if (!kernel && !user) 6604 return &__empty_callchain; 6605 6606 callchain = get_perf_callchain(regs, 0, kernel, user, 6607 max_stack, crosstask, true); 6608 return callchain ?: &__empty_callchain; 6609 } 6610 6611 void perf_prepare_sample(struct perf_event_header *header, 6612 struct perf_sample_data *data, 6613 struct perf_event *event, 6614 struct pt_regs *regs) 6615 { 6616 u64 sample_type = event->attr.sample_type; 6617 6618 header->type = PERF_RECORD_SAMPLE; 6619 header->size = sizeof(*header) + event->header_size; 6620 6621 header->misc = 0; 6622 header->misc |= perf_misc_flags(regs); 6623 6624 __perf_event_header__init_id(header, data, event); 6625 6626 if (sample_type & PERF_SAMPLE_IP) 6627 data->ip = perf_instruction_pointer(regs); 6628 6629 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6630 int size = 1; 6631 6632 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6633 data->callchain = perf_callchain(event, regs); 6634 6635 size += data->callchain->nr; 6636 6637 header->size += size * sizeof(u64); 6638 } 6639 6640 if (sample_type & PERF_SAMPLE_RAW) { 6641 struct perf_raw_record *raw = data->raw; 6642 int size; 6643 6644 if (raw) { 6645 struct perf_raw_frag *frag = &raw->frag; 6646 u32 sum = 0; 6647 6648 do { 6649 sum += frag->size; 6650 if (perf_raw_frag_last(frag)) 6651 break; 6652 frag = frag->next; 6653 } while (1); 6654 6655 size = round_up(sum + sizeof(u32), sizeof(u64)); 6656 raw->size = size - sizeof(u32); 6657 frag->pad = raw->size - sum; 6658 } else { 6659 size = sizeof(u64); 6660 } 6661 6662 header->size += size; 6663 } 6664 6665 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6666 int size = sizeof(u64); /* nr */ 6667 if (data->br_stack) { 6668 size += data->br_stack->nr 6669 * sizeof(struct perf_branch_entry); 6670 } 6671 header->size += size; 6672 } 6673 6674 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6675 perf_sample_regs_user(&data->regs_user, regs, 6676 &data->regs_user_copy); 6677 6678 if (sample_type & PERF_SAMPLE_REGS_USER) { 6679 /* regs dump ABI info */ 6680 int size = sizeof(u64); 6681 6682 if (data->regs_user.regs) { 6683 u64 mask = event->attr.sample_regs_user; 6684 size += hweight64(mask) * sizeof(u64); 6685 } 6686 6687 header->size += size; 6688 } 6689 6690 if (sample_type & PERF_SAMPLE_STACK_USER) { 6691 /* 6692 * Either we need PERF_SAMPLE_STACK_USER bit to be always 6693 * processed as the last one or have additional check added 6694 * in case new sample type is added, because we could eat 6695 * up the rest of the sample size. 6696 */ 6697 u16 stack_size = event->attr.sample_stack_user; 6698 u16 size = sizeof(u64); 6699 6700 stack_size = perf_sample_ustack_size(stack_size, header->size, 6701 data->regs_user.regs); 6702 6703 /* 6704 * If there is something to dump, add space for the dump 6705 * itself and for the field that tells the dynamic size, 6706 * which is how many have been actually dumped. 6707 */ 6708 if (stack_size) 6709 size += sizeof(u64) + stack_size; 6710 6711 data->stack_user_size = stack_size; 6712 header->size += size; 6713 } 6714 6715 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6716 /* regs dump ABI info */ 6717 int size = sizeof(u64); 6718 6719 perf_sample_regs_intr(&data->regs_intr, regs); 6720 6721 if (data->regs_intr.regs) { 6722 u64 mask = event->attr.sample_regs_intr; 6723 6724 size += hweight64(mask) * sizeof(u64); 6725 } 6726 6727 header->size += size; 6728 } 6729 6730 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6731 data->phys_addr = perf_virt_to_phys(data->addr); 6732 } 6733 6734 static __always_inline int 6735 __perf_event_output(struct perf_event *event, 6736 struct perf_sample_data *data, 6737 struct pt_regs *regs, 6738 int (*output_begin)(struct perf_output_handle *, 6739 struct perf_event *, 6740 unsigned int)) 6741 { 6742 struct perf_output_handle handle; 6743 struct perf_event_header header; 6744 int err; 6745 6746 /* protect the callchain buffers */ 6747 rcu_read_lock(); 6748 6749 perf_prepare_sample(&header, data, event, regs); 6750 6751 err = output_begin(&handle, event, header.size); 6752 if (err) 6753 goto exit; 6754 6755 perf_output_sample(&handle, &header, data, event); 6756 6757 perf_output_end(&handle); 6758 6759 exit: 6760 rcu_read_unlock(); 6761 return err; 6762 } 6763 6764 void 6765 perf_event_output_forward(struct perf_event *event, 6766 struct perf_sample_data *data, 6767 struct pt_regs *regs) 6768 { 6769 __perf_event_output(event, data, regs, perf_output_begin_forward); 6770 } 6771 6772 void 6773 perf_event_output_backward(struct perf_event *event, 6774 struct perf_sample_data *data, 6775 struct pt_regs *regs) 6776 { 6777 __perf_event_output(event, data, regs, perf_output_begin_backward); 6778 } 6779 6780 int 6781 perf_event_output(struct perf_event *event, 6782 struct perf_sample_data *data, 6783 struct pt_regs *regs) 6784 { 6785 return __perf_event_output(event, data, regs, perf_output_begin); 6786 } 6787 6788 /* 6789 * read event_id 6790 */ 6791 6792 struct perf_read_event { 6793 struct perf_event_header header; 6794 6795 u32 pid; 6796 u32 tid; 6797 }; 6798 6799 static void 6800 perf_event_read_event(struct perf_event *event, 6801 struct task_struct *task) 6802 { 6803 struct perf_output_handle handle; 6804 struct perf_sample_data sample; 6805 struct perf_read_event read_event = { 6806 .header = { 6807 .type = PERF_RECORD_READ, 6808 .misc = 0, 6809 .size = sizeof(read_event) + event->read_size, 6810 }, 6811 .pid = perf_event_pid(event, task), 6812 .tid = perf_event_tid(event, task), 6813 }; 6814 int ret; 6815 6816 perf_event_header__init_id(&read_event.header, &sample, event); 6817 ret = perf_output_begin(&handle, event, read_event.header.size); 6818 if (ret) 6819 return; 6820 6821 perf_output_put(&handle, read_event); 6822 perf_output_read(&handle, event); 6823 perf_event__output_id_sample(event, &handle, &sample); 6824 6825 perf_output_end(&handle); 6826 } 6827 6828 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6829 6830 static void 6831 perf_iterate_ctx(struct perf_event_context *ctx, 6832 perf_iterate_f output, 6833 void *data, bool all) 6834 { 6835 struct perf_event *event; 6836 6837 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6838 if (!all) { 6839 if (event->state < PERF_EVENT_STATE_INACTIVE) 6840 continue; 6841 if (!event_filter_match(event)) 6842 continue; 6843 } 6844 6845 output(event, data); 6846 } 6847 } 6848 6849 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6850 { 6851 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6852 struct perf_event *event; 6853 6854 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6855 /* 6856 * Skip events that are not fully formed yet; ensure that 6857 * if we observe event->ctx, both event and ctx will be 6858 * complete enough. See perf_install_in_context(). 6859 */ 6860 if (!smp_load_acquire(&event->ctx)) 6861 continue; 6862 6863 if (event->state < PERF_EVENT_STATE_INACTIVE) 6864 continue; 6865 if (!event_filter_match(event)) 6866 continue; 6867 output(event, data); 6868 } 6869 } 6870 6871 /* 6872 * Iterate all events that need to receive side-band events. 6873 * 6874 * For new callers; ensure that account_pmu_sb_event() includes 6875 * your event, otherwise it might not get delivered. 6876 */ 6877 static void 6878 perf_iterate_sb(perf_iterate_f output, void *data, 6879 struct perf_event_context *task_ctx) 6880 { 6881 struct perf_event_context *ctx; 6882 int ctxn; 6883 6884 rcu_read_lock(); 6885 preempt_disable(); 6886 6887 /* 6888 * If we have task_ctx != NULL we only notify the task context itself. 6889 * The task_ctx is set only for EXIT events before releasing task 6890 * context. 6891 */ 6892 if (task_ctx) { 6893 perf_iterate_ctx(task_ctx, output, data, false); 6894 goto done; 6895 } 6896 6897 perf_iterate_sb_cpu(output, data); 6898 6899 for_each_task_context_nr(ctxn) { 6900 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6901 if (ctx) 6902 perf_iterate_ctx(ctx, output, data, false); 6903 } 6904 done: 6905 preempt_enable(); 6906 rcu_read_unlock(); 6907 } 6908 6909 /* 6910 * Clear all file-based filters at exec, they'll have to be 6911 * re-instated when/if these objects are mmapped again. 6912 */ 6913 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6914 { 6915 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6916 struct perf_addr_filter *filter; 6917 unsigned int restart = 0, count = 0; 6918 unsigned long flags; 6919 6920 if (!has_addr_filter(event)) 6921 return; 6922 6923 raw_spin_lock_irqsave(&ifh->lock, flags); 6924 list_for_each_entry(filter, &ifh->list, entry) { 6925 if (filter->path.dentry) { 6926 event->addr_filter_ranges[count].start = 0; 6927 event->addr_filter_ranges[count].size = 0; 6928 restart++; 6929 } 6930 6931 count++; 6932 } 6933 6934 if (restart) 6935 event->addr_filters_gen++; 6936 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6937 6938 if (restart) 6939 perf_event_stop(event, 1); 6940 } 6941 6942 void perf_event_exec(void) 6943 { 6944 struct perf_event_context *ctx; 6945 int ctxn; 6946 6947 rcu_read_lock(); 6948 for_each_task_context_nr(ctxn) { 6949 ctx = current->perf_event_ctxp[ctxn]; 6950 if (!ctx) 6951 continue; 6952 6953 perf_event_enable_on_exec(ctxn); 6954 6955 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6956 true); 6957 } 6958 rcu_read_unlock(); 6959 } 6960 6961 struct remote_output { 6962 struct ring_buffer *rb; 6963 int err; 6964 }; 6965 6966 static void __perf_event_output_stop(struct perf_event *event, void *data) 6967 { 6968 struct perf_event *parent = event->parent; 6969 struct remote_output *ro = data; 6970 struct ring_buffer *rb = ro->rb; 6971 struct stop_event_data sd = { 6972 .event = event, 6973 }; 6974 6975 if (!has_aux(event)) 6976 return; 6977 6978 if (!parent) 6979 parent = event; 6980 6981 /* 6982 * In case of inheritance, it will be the parent that links to the 6983 * ring-buffer, but it will be the child that's actually using it. 6984 * 6985 * We are using event::rb to determine if the event should be stopped, 6986 * however this may race with ring_buffer_attach() (through set_output), 6987 * which will make us skip the event that actually needs to be stopped. 6988 * So ring_buffer_attach() has to stop an aux event before re-assigning 6989 * its rb pointer. 6990 */ 6991 if (rcu_dereference(parent->rb) == rb) 6992 ro->err = __perf_event_stop(&sd); 6993 } 6994 6995 static int __perf_pmu_output_stop(void *info) 6996 { 6997 struct perf_event *event = info; 6998 struct pmu *pmu = event->ctx->pmu; 6999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7000 struct remote_output ro = { 7001 .rb = event->rb, 7002 }; 7003 7004 rcu_read_lock(); 7005 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7006 if (cpuctx->task_ctx) 7007 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7008 &ro, false); 7009 rcu_read_unlock(); 7010 7011 return ro.err; 7012 } 7013 7014 static void perf_pmu_output_stop(struct perf_event *event) 7015 { 7016 struct perf_event *iter; 7017 int err, cpu; 7018 7019 restart: 7020 rcu_read_lock(); 7021 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7022 /* 7023 * For per-CPU events, we need to make sure that neither they 7024 * nor their children are running; for cpu==-1 events it's 7025 * sufficient to stop the event itself if it's active, since 7026 * it can't have children. 7027 */ 7028 cpu = iter->cpu; 7029 if (cpu == -1) 7030 cpu = READ_ONCE(iter->oncpu); 7031 7032 if (cpu == -1) 7033 continue; 7034 7035 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7036 if (err == -EAGAIN) { 7037 rcu_read_unlock(); 7038 goto restart; 7039 } 7040 } 7041 rcu_read_unlock(); 7042 } 7043 7044 /* 7045 * task tracking -- fork/exit 7046 * 7047 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7048 */ 7049 7050 struct perf_task_event { 7051 struct task_struct *task; 7052 struct perf_event_context *task_ctx; 7053 7054 struct { 7055 struct perf_event_header header; 7056 7057 u32 pid; 7058 u32 ppid; 7059 u32 tid; 7060 u32 ptid; 7061 u64 time; 7062 } event_id; 7063 }; 7064 7065 static int perf_event_task_match(struct perf_event *event) 7066 { 7067 return event->attr.comm || event->attr.mmap || 7068 event->attr.mmap2 || event->attr.mmap_data || 7069 event->attr.task; 7070 } 7071 7072 static void perf_event_task_output(struct perf_event *event, 7073 void *data) 7074 { 7075 struct perf_task_event *task_event = data; 7076 struct perf_output_handle handle; 7077 struct perf_sample_data sample; 7078 struct task_struct *task = task_event->task; 7079 int ret, size = task_event->event_id.header.size; 7080 7081 if (!perf_event_task_match(event)) 7082 return; 7083 7084 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7085 7086 ret = perf_output_begin(&handle, event, 7087 task_event->event_id.header.size); 7088 if (ret) 7089 goto out; 7090 7091 task_event->event_id.pid = perf_event_pid(event, task); 7092 task_event->event_id.ppid = perf_event_pid(event, current); 7093 7094 task_event->event_id.tid = perf_event_tid(event, task); 7095 task_event->event_id.ptid = perf_event_tid(event, current); 7096 7097 task_event->event_id.time = perf_event_clock(event); 7098 7099 perf_output_put(&handle, task_event->event_id); 7100 7101 perf_event__output_id_sample(event, &handle, &sample); 7102 7103 perf_output_end(&handle); 7104 out: 7105 task_event->event_id.header.size = size; 7106 } 7107 7108 static void perf_event_task(struct task_struct *task, 7109 struct perf_event_context *task_ctx, 7110 int new) 7111 { 7112 struct perf_task_event task_event; 7113 7114 if (!atomic_read(&nr_comm_events) && 7115 !atomic_read(&nr_mmap_events) && 7116 !atomic_read(&nr_task_events)) 7117 return; 7118 7119 task_event = (struct perf_task_event){ 7120 .task = task, 7121 .task_ctx = task_ctx, 7122 .event_id = { 7123 .header = { 7124 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7125 .misc = 0, 7126 .size = sizeof(task_event.event_id), 7127 }, 7128 /* .pid */ 7129 /* .ppid */ 7130 /* .tid */ 7131 /* .ptid */ 7132 /* .time */ 7133 }, 7134 }; 7135 7136 perf_iterate_sb(perf_event_task_output, 7137 &task_event, 7138 task_ctx); 7139 } 7140 7141 void perf_event_fork(struct task_struct *task) 7142 { 7143 perf_event_task(task, NULL, 1); 7144 perf_event_namespaces(task); 7145 } 7146 7147 /* 7148 * comm tracking 7149 */ 7150 7151 struct perf_comm_event { 7152 struct task_struct *task; 7153 char *comm; 7154 int comm_size; 7155 7156 struct { 7157 struct perf_event_header header; 7158 7159 u32 pid; 7160 u32 tid; 7161 } event_id; 7162 }; 7163 7164 static int perf_event_comm_match(struct perf_event *event) 7165 { 7166 return event->attr.comm; 7167 } 7168 7169 static void perf_event_comm_output(struct perf_event *event, 7170 void *data) 7171 { 7172 struct perf_comm_event *comm_event = data; 7173 struct perf_output_handle handle; 7174 struct perf_sample_data sample; 7175 int size = comm_event->event_id.header.size; 7176 int ret; 7177 7178 if (!perf_event_comm_match(event)) 7179 return; 7180 7181 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7182 ret = perf_output_begin(&handle, event, 7183 comm_event->event_id.header.size); 7184 7185 if (ret) 7186 goto out; 7187 7188 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7189 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7190 7191 perf_output_put(&handle, comm_event->event_id); 7192 __output_copy(&handle, comm_event->comm, 7193 comm_event->comm_size); 7194 7195 perf_event__output_id_sample(event, &handle, &sample); 7196 7197 perf_output_end(&handle); 7198 out: 7199 comm_event->event_id.header.size = size; 7200 } 7201 7202 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7203 { 7204 char comm[TASK_COMM_LEN]; 7205 unsigned int size; 7206 7207 memset(comm, 0, sizeof(comm)); 7208 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7209 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7210 7211 comm_event->comm = comm; 7212 comm_event->comm_size = size; 7213 7214 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7215 7216 perf_iterate_sb(perf_event_comm_output, 7217 comm_event, 7218 NULL); 7219 } 7220 7221 void perf_event_comm(struct task_struct *task, bool exec) 7222 { 7223 struct perf_comm_event comm_event; 7224 7225 if (!atomic_read(&nr_comm_events)) 7226 return; 7227 7228 comm_event = (struct perf_comm_event){ 7229 .task = task, 7230 /* .comm */ 7231 /* .comm_size */ 7232 .event_id = { 7233 .header = { 7234 .type = PERF_RECORD_COMM, 7235 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7236 /* .size */ 7237 }, 7238 /* .pid */ 7239 /* .tid */ 7240 }, 7241 }; 7242 7243 perf_event_comm_event(&comm_event); 7244 } 7245 7246 /* 7247 * namespaces tracking 7248 */ 7249 7250 struct perf_namespaces_event { 7251 struct task_struct *task; 7252 7253 struct { 7254 struct perf_event_header header; 7255 7256 u32 pid; 7257 u32 tid; 7258 u64 nr_namespaces; 7259 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7260 } event_id; 7261 }; 7262 7263 static int perf_event_namespaces_match(struct perf_event *event) 7264 { 7265 return event->attr.namespaces; 7266 } 7267 7268 static void perf_event_namespaces_output(struct perf_event *event, 7269 void *data) 7270 { 7271 struct perf_namespaces_event *namespaces_event = data; 7272 struct perf_output_handle handle; 7273 struct perf_sample_data sample; 7274 u16 header_size = namespaces_event->event_id.header.size; 7275 int ret; 7276 7277 if (!perf_event_namespaces_match(event)) 7278 return; 7279 7280 perf_event_header__init_id(&namespaces_event->event_id.header, 7281 &sample, event); 7282 ret = perf_output_begin(&handle, event, 7283 namespaces_event->event_id.header.size); 7284 if (ret) 7285 goto out; 7286 7287 namespaces_event->event_id.pid = perf_event_pid(event, 7288 namespaces_event->task); 7289 namespaces_event->event_id.tid = perf_event_tid(event, 7290 namespaces_event->task); 7291 7292 perf_output_put(&handle, namespaces_event->event_id); 7293 7294 perf_event__output_id_sample(event, &handle, &sample); 7295 7296 perf_output_end(&handle); 7297 out: 7298 namespaces_event->event_id.header.size = header_size; 7299 } 7300 7301 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7302 struct task_struct *task, 7303 const struct proc_ns_operations *ns_ops) 7304 { 7305 struct path ns_path; 7306 struct inode *ns_inode; 7307 void *error; 7308 7309 error = ns_get_path(&ns_path, task, ns_ops); 7310 if (!error) { 7311 ns_inode = ns_path.dentry->d_inode; 7312 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7313 ns_link_info->ino = ns_inode->i_ino; 7314 path_put(&ns_path); 7315 } 7316 } 7317 7318 void perf_event_namespaces(struct task_struct *task) 7319 { 7320 struct perf_namespaces_event namespaces_event; 7321 struct perf_ns_link_info *ns_link_info; 7322 7323 if (!atomic_read(&nr_namespaces_events)) 7324 return; 7325 7326 namespaces_event = (struct perf_namespaces_event){ 7327 .task = task, 7328 .event_id = { 7329 .header = { 7330 .type = PERF_RECORD_NAMESPACES, 7331 .misc = 0, 7332 .size = sizeof(namespaces_event.event_id), 7333 }, 7334 /* .pid */ 7335 /* .tid */ 7336 .nr_namespaces = NR_NAMESPACES, 7337 /* .link_info[NR_NAMESPACES] */ 7338 }, 7339 }; 7340 7341 ns_link_info = namespaces_event.event_id.link_info; 7342 7343 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7344 task, &mntns_operations); 7345 7346 #ifdef CONFIG_USER_NS 7347 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7348 task, &userns_operations); 7349 #endif 7350 #ifdef CONFIG_NET_NS 7351 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7352 task, &netns_operations); 7353 #endif 7354 #ifdef CONFIG_UTS_NS 7355 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7356 task, &utsns_operations); 7357 #endif 7358 #ifdef CONFIG_IPC_NS 7359 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7360 task, &ipcns_operations); 7361 #endif 7362 #ifdef CONFIG_PID_NS 7363 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7364 task, &pidns_operations); 7365 #endif 7366 #ifdef CONFIG_CGROUPS 7367 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7368 task, &cgroupns_operations); 7369 #endif 7370 7371 perf_iterate_sb(perf_event_namespaces_output, 7372 &namespaces_event, 7373 NULL); 7374 } 7375 7376 /* 7377 * mmap tracking 7378 */ 7379 7380 struct perf_mmap_event { 7381 struct vm_area_struct *vma; 7382 7383 const char *file_name; 7384 int file_size; 7385 int maj, min; 7386 u64 ino; 7387 u64 ino_generation; 7388 u32 prot, flags; 7389 7390 struct { 7391 struct perf_event_header header; 7392 7393 u32 pid; 7394 u32 tid; 7395 u64 start; 7396 u64 len; 7397 u64 pgoff; 7398 } event_id; 7399 }; 7400 7401 static int perf_event_mmap_match(struct perf_event *event, 7402 void *data) 7403 { 7404 struct perf_mmap_event *mmap_event = data; 7405 struct vm_area_struct *vma = mmap_event->vma; 7406 int executable = vma->vm_flags & VM_EXEC; 7407 7408 return (!executable && event->attr.mmap_data) || 7409 (executable && (event->attr.mmap || event->attr.mmap2)); 7410 } 7411 7412 static void perf_event_mmap_output(struct perf_event *event, 7413 void *data) 7414 { 7415 struct perf_mmap_event *mmap_event = data; 7416 struct perf_output_handle handle; 7417 struct perf_sample_data sample; 7418 int size = mmap_event->event_id.header.size; 7419 u32 type = mmap_event->event_id.header.type; 7420 int ret; 7421 7422 if (!perf_event_mmap_match(event, data)) 7423 return; 7424 7425 if (event->attr.mmap2) { 7426 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7427 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7428 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7429 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7430 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7431 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7432 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7433 } 7434 7435 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7436 ret = perf_output_begin(&handle, event, 7437 mmap_event->event_id.header.size); 7438 if (ret) 7439 goto out; 7440 7441 mmap_event->event_id.pid = perf_event_pid(event, current); 7442 mmap_event->event_id.tid = perf_event_tid(event, current); 7443 7444 perf_output_put(&handle, mmap_event->event_id); 7445 7446 if (event->attr.mmap2) { 7447 perf_output_put(&handle, mmap_event->maj); 7448 perf_output_put(&handle, mmap_event->min); 7449 perf_output_put(&handle, mmap_event->ino); 7450 perf_output_put(&handle, mmap_event->ino_generation); 7451 perf_output_put(&handle, mmap_event->prot); 7452 perf_output_put(&handle, mmap_event->flags); 7453 } 7454 7455 __output_copy(&handle, mmap_event->file_name, 7456 mmap_event->file_size); 7457 7458 perf_event__output_id_sample(event, &handle, &sample); 7459 7460 perf_output_end(&handle); 7461 out: 7462 mmap_event->event_id.header.size = size; 7463 mmap_event->event_id.header.type = type; 7464 } 7465 7466 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7467 { 7468 struct vm_area_struct *vma = mmap_event->vma; 7469 struct file *file = vma->vm_file; 7470 int maj = 0, min = 0; 7471 u64 ino = 0, gen = 0; 7472 u32 prot = 0, flags = 0; 7473 unsigned int size; 7474 char tmp[16]; 7475 char *buf = NULL; 7476 char *name; 7477 7478 if (vma->vm_flags & VM_READ) 7479 prot |= PROT_READ; 7480 if (vma->vm_flags & VM_WRITE) 7481 prot |= PROT_WRITE; 7482 if (vma->vm_flags & VM_EXEC) 7483 prot |= PROT_EXEC; 7484 7485 if (vma->vm_flags & VM_MAYSHARE) 7486 flags = MAP_SHARED; 7487 else 7488 flags = MAP_PRIVATE; 7489 7490 if (vma->vm_flags & VM_DENYWRITE) 7491 flags |= MAP_DENYWRITE; 7492 if (vma->vm_flags & VM_MAYEXEC) 7493 flags |= MAP_EXECUTABLE; 7494 if (vma->vm_flags & VM_LOCKED) 7495 flags |= MAP_LOCKED; 7496 if (vma->vm_flags & VM_HUGETLB) 7497 flags |= MAP_HUGETLB; 7498 7499 if (file) { 7500 struct inode *inode; 7501 dev_t dev; 7502 7503 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7504 if (!buf) { 7505 name = "//enomem"; 7506 goto cpy_name; 7507 } 7508 /* 7509 * d_path() works from the end of the rb backwards, so we 7510 * need to add enough zero bytes after the string to handle 7511 * the 64bit alignment we do later. 7512 */ 7513 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7514 if (IS_ERR(name)) { 7515 name = "//toolong"; 7516 goto cpy_name; 7517 } 7518 inode = file_inode(vma->vm_file); 7519 dev = inode->i_sb->s_dev; 7520 ino = inode->i_ino; 7521 gen = inode->i_generation; 7522 maj = MAJOR(dev); 7523 min = MINOR(dev); 7524 7525 goto got_name; 7526 } else { 7527 if (vma->vm_ops && vma->vm_ops->name) { 7528 name = (char *) vma->vm_ops->name(vma); 7529 if (name) 7530 goto cpy_name; 7531 } 7532 7533 name = (char *)arch_vma_name(vma); 7534 if (name) 7535 goto cpy_name; 7536 7537 if (vma->vm_start <= vma->vm_mm->start_brk && 7538 vma->vm_end >= vma->vm_mm->brk) { 7539 name = "[heap]"; 7540 goto cpy_name; 7541 } 7542 if (vma->vm_start <= vma->vm_mm->start_stack && 7543 vma->vm_end >= vma->vm_mm->start_stack) { 7544 name = "[stack]"; 7545 goto cpy_name; 7546 } 7547 7548 name = "//anon"; 7549 goto cpy_name; 7550 } 7551 7552 cpy_name: 7553 strlcpy(tmp, name, sizeof(tmp)); 7554 name = tmp; 7555 got_name: 7556 /* 7557 * Since our buffer works in 8 byte units we need to align our string 7558 * size to a multiple of 8. However, we must guarantee the tail end is 7559 * zero'd out to avoid leaking random bits to userspace. 7560 */ 7561 size = strlen(name)+1; 7562 while (!IS_ALIGNED(size, sizeof(u64))) 7563 name[size++] = '\0'; 7564 7565 mmap_event->file_name = name; 7566 mmap_event->file_size = size; 7567 mmap_event->maj = maj; 7568 mmap_event->min = min; 7569 mmap_event->ino = ino; 7570 mmap_event->ino_generation = gen; 7571 mmap_event->prot = prot; 7572 mmap_event->flags = flags; 7573 7574 if (!(vma->vm_flags & VM_EXEC)) 7575 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7576 7577 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7578 7579 perf_iterate_sb(perf_event_mmap_output, 7580 mmap_event, 7581 NULL); 7582 7583 kfree(buf); 7584 } 7585 7586 /* 7587 * Check whether inode and address range match filter criteria. 7588 */ 7589 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7590 struct file *file, unsigned long offset, 7591 unsigned long size) 7592 { 7593 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7594 if (!filter->path.dentry) 7595 return false; 7596 7597 if (d_inode(filter->path.dentry) != file_inode(file)) 7598 return false; 7599 7600 if (filter->offset > offset + size) 7601 return false; 7602 7603 if (filter->offset + filter->size < offset) 7604 return false; 7605 7606 return true; 7607 } 7608 7609 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7610 struct vm_area_struct *vma, 7611 struct perf_addr_filter_range *fr) 7612 { 7613 unsigned long vma_size = vma->vm_end - vma->vm_start; 7614 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7615 struct file *file = vma->vm_file; 7616 7617 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7618 return false; 7619 7620 if (filter->offset < off) { 7621 fr->start = vma->vm_start; 7622 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7623 } else { 7624 fr->start = vma->vm_start + filter->offset - off; 7625 fr->size = min(vma->vm_end - fr->start, filter->size); 7626 } 7627 7628 return true; 7629 } 7630 7631 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7632 { 7633 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7634 struct vm_area_struct *vma = data; 7635 struct perf_addr_filter *filter; 7636 unsigned int restart = 0, count = 0; 7637 unsigned long flags; 7638 7639 if (!has_addr_filter(event)) 7640 return; 7641 7642 if (!vma->vm_file) 7643 return; 7644 7645 raw_spin_lock_irqsave(&ifh->lock, flags); 7646 list_for_each_entry(filter, &ifh->list, entry) { 7647 if (perf_addr_filter_vma_adjust(filter, vma, 7648 &event->addr_filter_ranges[count])) 7649 restart++; 7650 7651 count++; 7652 } 7653 7654 if (restart) 7655 event->addr_filters_gen++; 7656 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7657 7658 if (restart) 7659 perf_event_stop(event, 1); 7660 } 7661 7662 /* 7663 * Adjust all task's events' filters to the new vma 7664 */ 7665 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7666 { 7667 struct perf_event_context *ctx; 7668 int ctxn; 7669 7670 /* 7671 * Data tracing isn't supported yet and as such there is no need 7672 * to keep track of anything that isn't related to executable code: 7673 */ 7674 if (!(vma->vm_flags & VM_EXEC)) 7675 return; 7676 7677 rcu_read_lock(); 7678 for_each_task_context_nr(ctxn) { 7679 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7680 if (!ctx) 7681 continue; 7682 7683 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7684 } 7685 rcu_read_unlock(); 7686 } 7687 7688 void perf_event_mmap(struct vm_area_struct *vma) 7689 { 7690 struct perf_mmap_event mmap_event; 7691 7692 if (!atomic_read(&nr_mmap_events)) 7693 return; 7694 7695 mmap_event = (struct perf_mmap_event){ 7696 .vma = vma, 7697 /* .file_name */ 7698 /* .file_size */ 7699 .event_id = { 7700 .header = { 7701 .type = PERF_RECORD_MMAP, 7702 .misc = PERF_RECORD_MISC_USER, 7703 /* .size */ 7704 }, 7705 /* .pid */ 7706 /* .tid */ 7707 .start = vma->vm_start, 7708 .len = vma->vm_end - vma->vm_start, 7709 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7710 }, 7711 /* .maj (attr_mmap2 only) */ 7712 /* .min (attr_mmap2 only) */ 7713 /* .ino (attr_mmap2 only) */ 7714 /* .ino_generation (attr_mmap2 only) */ 7715 /* .prot (attr_mmap2 only) */ 7716 /* .flags (attr_mmap2 only) */ 7717 }; 7718 7719 perf_addr_filters_adjust(vma); 7720 perf_event_mmap_event(&mmap_event); 7721 } 7722 7723 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7724 unsigned long size, u64 flags) 7725 { 7726 struct perf_output_handle handle; 7727 struct perf_sample_data sample; 7728 struct perf_aux_event { 7729 struct perf_event_header header; 7730 u64 offset; 7731 u64 size; 7732 u64 flags; 7733 } rec = { 7734 .header = { 7735 .type = PERF_RECORD_AUX, 7736 .misc = 0, 7737 .size = sizeof(rec), 7738 }, 7739 .offset = head, 7740 .size = size, 7741 .flags = flags, 7742 }; 7743 int ret; 7744 7745 perf_event_header__init_id(&rec.header, &sample, event); 7746 ret = perf_output_begin(&handle, event, rec.header.size); 7747 7748 if (ret) 7749 return; 7750 7751 perf_output_put(&handle, rec); 7752 perf_event__output_id_sample(event, &handle, &sample); 7753 7754 perf_output_end(&handle); 7755 } 7756 7757 /* 7758 * Lost/dropped samples logging 7759 */ 7760 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7761 { 7762 struct perf_output_handle handle; 7763 struct perf_sample_data sample; 7764 int ret; 7765 7766 struct { 7767 struct perf_event_header header; 7768 u64 lost; 7769 } lost_samples_event = { 7770 .header = { 7771 .type = PERF_RECORD_LOST_SAMPLES, 7772 .misc = 0, 7773 .size = sizeof(lost_samples_event), 7774 }, 7775 .lost = lost, 7776 }; 7777 7778 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7779 7780 ret = perf_output_begin(&handle, event, 7781 lost_samples_event.header.size); 7782 if (ret) 7783 return; 7784 7785 perf_output_put(&handle, lost_samples_event); 7786 perf_event__output_id_sample(event, &handle, &sample); 7787 perf_output_end(&handle); 7788 } 7789 7790 /* 7791 * context_switch tracking 7792 */ 7793 7794 struct perf_switch_event { 7795 struct task_struct *task; 7796 struct task_struct *next_prev; 7797 7798 struct { 7799 struct perf_event_header header; 7800 u32 next_prev_pid; 7801 u32 next_prev_tid; 7802 } event_id; 7803 }; 7804 7805 static int perf_event_switch_match(struct perf_event *event) 7806 { 7807 return event->attr.context_switch; 7808 } 7809 7810 static void perf_event_switch_output(struct perf_event *event, void *data) 7811 { 7812 struct perf_switch_event *se = data; 7813 struct perf_output_handle handle; 7814 struct perf_sample_data sample; 7815 int ret; 7816 7817 if (!perf_event_switch_match(event)) 7818 return; 7819 7820 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7821 if (event->ctx->task) { 7822 se->event_id.header.type = PERF_RECORD_SWITCH; 7823 se->event_id.header.size = sizeof(se->event_id.header); 7824 } else { 7825 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7826 se->event_id.header.size = sizeof(se->event_id); 7827 se->event_id.next_prev_pid = 7828 perf_event_pid(event, se->next_prev); 7829 se->event_id.next_prev_tid = 7830 perf_event_tid(event, se->next_prev); 7831 } 7832 7833 perf_event_header__init_id(&se->event_id.header, &sample, event); 7834 7835 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7836 if (ret) 7837 return; 7838 7839 if (event->ctx->task) 7840 perf_output_put(&handle, se->event_id.header); 7841 else 7842 perf_output_put(&handle, se->event_id); 7843 7844 perf_event__output_id_sample(event, &handle, &sample); 7845 7846 perf_output_end(&handle); 7847 } 7848 7849 static void perf_event_switch(struct task_struct *task, 7850 struct task_struct *next_prev, bool sched_in) 7851 { 7852 struct perf_switch_event switch_event; 7853 7854 /* N.B. caller checks nr_switch_events != 0 */ 7855 7856 switch_event = (struct perf_switch_event){ 7857 .task = task, 7858 .next_prev = next_prev, 7859 .event_id = { 7860 .header = { 7861 /* .type */ 7862 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7863 /* .size */ 7864 }, 7865 /* .next_prev_pid */ 7866 /* .next_prev_tid */ 7867 }, 7868 }; 7869 7870 if (!sched_in && task->state == TASK_RUNNING) 7871 switch_event.event_id.header.misc |= 7872 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7873 7874 perf_iterate_sb(perf_event_switch_output, 7875 &switch_event, 7876 NULL); 7877 } 7878 7879 /* 7880 * IRQ throttle logging 7881 */ 7882 7883 static void perf_log_throttle(struct perf_event *event, int enable) 7884 { 7885 struct perf_output_handle handle; 7886 struct perf_sample_data sample; 7887 int ret; 7888 7889 struct { 7890 struct perf_event_header header; 7891 u64 time; 7892 u64 id; 7893 u64 stream_id; 7894 } throttle_event = { 7895 .header = { 7896 .type = PERF_RECORD_THROTTLE, 7897 .misc = 0, 7898 .size = sizeof(throttle_event), 7899 }, 7900 .time = perf_event_clock(event), 7901 .id = primary_event_id(event), 7902 .stream_id = event->id, 7903 }; 7904 7905 if (enable) 7906 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7907 7908 perf_event_header__init_id(&throttle_event.header, &sample, event); 7909 7910 ret = perf_output_begin(&handle, event, 7911 throttle_event.header.size); 7912 if (ret) 7913 return; 7914 7915 perf_output_put(&handle, throttle_event); 7916 perf_event__output_id_sample(event, &handle, &sample); 7917 perf_output_end(&handle); 7918 } 7919 7920 /* 7921 * ksymbol register/unregister tracking 7922 */ 7923 7924 struct perf_ksymbol_event { 7925 const char *name; 7926 int name_len; 7927 struct { 7928 struct perf_event_header header; 7929 u64 addr; 7930 u32 len; 7931 u16 ksym_type; 7932 u16 flags; 7933 } event_id; 7934 }; 7935 7936 static int perf_event_ksymbol_match(struct perf_event *event) 7937 { 7938 return event->attr.ksymbol; 7939 } 7940 7941 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7942 { 7943 struct perf_ksymbol_event *ksymbol_event = data; 7944 struct perf_output_handle handle; 7945 struct perf_sample_data sample; 7946 int ret; 7947 7948 if (!perf_event_ksymbol_match(event)) 7949 return; 7950 7951 perf_event_header__init_id(&ksymbol_event->event_id.header, 7952 &sample, event); 7953 ret = perf_output_begin(&handle, event, 7954 ksymbol_event->event_id.header.size); 7955 if (ret) 7956 return; 7957 7958 perf_output_put(&handle, ksymbol_event->event_id); 7959 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7960 perf_event__output_id_sample(event, &handle, &sample); 7961 7962 perf_output_end(&handle); 7963 } 7964 7965 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7966 const char *sym) 7967 { 7968 struct perf_ksymbol_event ksymbol_event; 7969 char name[KSYM_NAME_LEN]; 7970 u16 flags = 0; 7971 int name_len; 7972 7973 if (!atomic_read(&nr_ksymbol_events)) 7974 return; 7975 7976 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7977 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7978 goto err; 7979 7980 strlcpy(name, sym, KSYM_NAME_LEN); 7981 name_len = strlen(name) + 1; 7982 while (!IS_ALIGNED(name_len, sizeof(u64))) 7983 name[name_len++] = '\0'; 7984 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7985 7986 if (unregister) 7987 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7988 7989 ksymbol_event = (struct perf_ksymbol_event){ 7990 .name = name, 7991 .name_len = name_len, 7992 .event_id = { 7993 .header = { 7994 .type = PERF_RECORD_KSYMBOL, 7995 .size = sizeof(ksymbol_event.event_id) + 7996 name_len, 7997 }, 7998 .addr = addr, 7999 .len = len, 8000 .ksym_type = ksym_type, 8001 .flags = flags, 8002 }, 8003 }; 8004 8005 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8006 return; 8007 err: 8008 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8009 } 8010 8011 /* 8012 * bpf program load/unload tracking 8013 */ 8014 8015 struct perf_bpf_event { 8016 struct bpf_prog *prog; 8017 struct { 8018 struct perf_event_header header; 8019 u16 type; 8020 u16 flags; 8021 u32 id; 8022 u8 tag[BPF_TAG_SIZE]; 8023 } event_id; 8024 }; 8025 8026 static int perf_event_bpf_match(struct perf_event *event) 8027 { 8028 return event->attr.bpf_event; 8029 } 8030 8031 static void perf_event_bpf_output(struct perf_event *event, void *data) 8032 { 8033 struct perf_bpf_event *bpf_event = data; 8034 struct perf_output_handle handle; 8035 struct perf_sample_data sample; 8036 int ret; 8037 8038 if (!perf_event_bpf_match(event)) 8039 return; 8040 8041 perf_event_header__init_id(&bpf_event->event_id.header, 8042 &sample, event); 8043 ret = perf_output_begin(&handle, event, 8044 bpf_event->event_id.header.size); 8045 if (ret) 8046 return; 8047 8048 perf_output_put(&handle, bpf_event->event_id); 8049 perf_event__output_id_sample(event, &handle, &sample); 8050 8051 perf_output_end(&handle); 8052 } 8053 8054 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8055 enum perf_bpf_event_type type) 8056 { 8057 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8058 char sym[KSYM_NAME_LEN]; 8059 int i; 8060 8061 if (prog->aux->func_cnt == 0) { 8062 bpf_get_prog_name(prog, sym); 8063 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8064 (u64)(unsigned long)prog->bpf_func, 8065 prog->jited_len, unregister, sym); 8066 } else { 8067 for (i = 0; i < prog->aux->func_cnt; i++) { 8068 struct bpf_prog *subprog = prog->aux->func[i]; 8069 8070 bpf_get_prog_name(subprog, sym); 8071 perf_event_ksymbol( 8072 PERF_RECORD_KSYMBOL_TYPE_BPF, 8073 (u64)(unsigned long)subprog->bpf_func, 8074 subprog->jited_len, unregister, sym); 8075 } 8076 } 8077 } 8078 8079 void perf_event_bpf_event(struct bpf_prog *prog, 8080 enum perf_bpf_event_type type, 8081 u16 flags) 8082 { 8083 struct perf_bpf_event bpf_event; 8084 8085 if (type <= PERF_BPF_EVENT_UNKNOWN || 8086 type >= PERF_BPF_EVENT_MAX) 8087 return; 8088 8089 switch (type) { 8090 case PERF_BPF_EVENT_PROG_LOAD: 8091 case PERF_BPF_EVENT_PROG_UNLOAD: 8092 if (atomic_read(&nr_ksymbol_events)) 8093 perf_event_bpf_emit_ksymbols(prog, type); 8094 break; 8095 default: 8096 break; 8097 } 8098 8099 if (!atomic_read(&nr_bpf_events)) 8100 return; 8101 8102 bpf_event = (struct perf_bpf_event){ 8103 .prog = prog, 8104 .event_id = { 8105 .header = { 8106 .type = PERF_RECORD_BPF_EVENT, 8107 .size = sizeof(bpf_event.event_id), 8108 }, 8109 .type = type, 8110 .flags = flags, 8111 .id = prog->aux->id, 8112 }, 8113 }; 8114 8115 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8116 8117 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8118 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8119 } 8120 8121 void perf_event_itrace_started(struct perf_event *event) 8122 { 8123 event->attach_state |= PERF_ATTACH_ITRACE; 8124 } 8125 8126 static void perf_log_itrace_start(struct perf_event *event) 8127 { 8128 struct perf_output_handle handle; 8129 struct perf_sample_data sample; 8130 struct perf_aux_event { 8131 struct perf_event_header header; 8132 u32 pid; 8133 u32 tid; 8134 } rec; 8135 int ret; 8136 8137 if (event->parent) 8138 event = event->parent; 8139 8140 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8141 event->attach_state & PERF_ATTACH_ITRACE) 8142 return; 8143 8144 rec.header.type = PERF_RECORD_ITRACE_START; 8145 rec.header.misc = 0; 8146 rec.header.size = sizeof(rec); 8147 rec.pid = perf_event_pid(event, current); 8148 rec.tid = perf_event_tid(event, current); 8149 8150 perf_event_header__init_id(&rec.header, &sample, event); 8151 ret = perf_output_begin(&handle, event, rec.header.size); 8152 8153 if (ret) 8154 return; 8155 8156 perf_output_put(&handle, rec); 8157 perf_event__output_id_sample(event, &handle, &sample); 8158 8159 perf_output_end(&handle); 8160 } 8161 8162 static int 8163 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8164 { 8165 struct hw_perf_event *hwc = &event->hw; 8166 int ret = 0; 8167 u64 seq; 8168 8169 seq = __this_cpu_read(perf_throttled_seq); 8170 if (seq != hwc->interrupts_seq) { 8171 hwc->interrupts_seq = seq; 8172 hwc->interrupts = 1; 8173 } else { 8174 hwc->interrupts++; 8175 if (unlikely(throttle 8176 && hwc->interrupts >= max_samples_per_tick)) { 8177 __this_cpu_inc(perf_throttled_count); 8178 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8179 hwc->interrupts = MAX_INTERRUPTS; 8180 perf_log_throttle(event, 0); 8181 ret = 1; 8182 } 8183 } 8184 8185 if (event->attr.freq) { 8186 u64 now = perf_clock(); 8187 s64 delta = now - hwc->freq_time_stamp; 8188 8189 hwc->freq_time_stamp = now; 8190 8191 if (delta > 0 && delta < 2*TICK_NSEC) 8192 perf_adjust_period(event, delta, hwc->last_period, true); 8193 } 8194 8195 return ret; 8196 } 8197 8198 int perf_event_account_interrupt(struct perf_event *event) 8199 { 8200 return __perf_event_account_interrupt(event, 1); 8201 } 8202 8203 /* 8204 * Generic event overflow handling, sampling. 8205 */ 8206 8207 static int __perf_event_overflow(struct perf_event *event, 8208 int throttle, struct perf_sample_data *data, 8209 struct pt_regs *regs) 8210 { 8211 int events = atomic_read(&event->event_limit); 8212 int ret = 0; 8213 8214 /* 8215 * Non-sampling counters might still use the PMI to fold short 8216 * hardware counters, ignore those. 8217 */ 8218 if (unlikely(!is_sampling_event(event))) 8219 return 0; 8220 8221 ret = __perf_event_account_interrupt(event, throttle); 8222 8223 /* 8224 * XXX event_limit might not quite work as expected on inherited 8225 * events 8226 */ 8227 8228 event->pending_kill = POLL_IN; 8229 if (events && atomic_dec_and_test(&event->event_limit)) { 8230 ret = 1; 8231 event->pending_kill = POLL_HUP; 8232 8233 perf_event_disable_inatomic(event); 8234 } 8235 8236 READ_ONCE(event->overflow_handler)(event, data, regs); 8237 8238 if (*perf_event_fasync(event) && event->pending_kill) { 8239 event->pending_wakeup = 1; 8240 irq_work_queue(&event->pending); 8241 } 8242 8243 return ret; 8244 } 8245 8246 int perf_event_overflow(struct perf_event *event, 8247 struct perf_sample_data *data, 8248 struct pt_regs *regs) 8249 { 8250 return __perf_event_overflow(event, 1, data, regs); 8251 } 8252 8253 /* 8254 * Generic software event infrastructure 8255 */ 8256 8257 struct swevent_htable { 8258 struct swevent_hlist *swevent_hlist; 8259 struct mutex hlist_mutex; 8260 int hlist_refcount; 8261 8262 /* Recursion avoidance in each contexts */ 8263 int recursion[PERF_NR_CONTEXTS]; 8264 }; 8265 8266 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8267 8268 /* 8269 * We directly increment event->count and keep a second value in 8270 * event->hw.period_left to count intervals. This period event 8271 * is kept in the range [-sample_period, 0] so that we can use the 8272 * sign as trigger. 8273 */ 8274 8275 u64 perf_swevent_set_period(struct perf_event *event) 8276 { 8277 struct hw_perf_event *hwc = &event->hw; 8278 u64 period = hwc->last_period; 8279 u64 nr, offset; 8280 s64 old, val; 8281 8282 hwc->last_period = hwc->sample_period; 8283 8284 again: 8285 old = val = local64_read(&hwc->period_left); 8286 if (val < 0) 8287 return 0; 8288 8289 nr = div64_u64(period + val, period); 8290 offset = nr * period; 8291 val -= offset; 8292 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8293 goto again; 8294 8295 return nr; 8296 } 8297 8298 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8299 struct perf_sample_data *data, 8300 struct pt_regs *regs) 8301 { 8302 struct hw_perf_event *hwc = &event->hw; 8303 int throttle = 0; 8304 8305 if (!overflow) 8306 overflow = perf_swevent_set_period(event); 8307 8308 if (hwc->interrupts == MAX_INTERRUPTS) 8309 return; 8310 8311 for (; overflow; overflow--) { 8312 if (__perf_event_overflow(event, throttle, 8313 data, regs)) { 8314 /* 8315 * We inhibit the overflow from happening when 8316 * hwc->interrupts == MAX_INTERRUPTS. 8317 */ 8318 break; 8319 } 8320 throttle = 1; 8321 } 8322 } 8323 8324 static void perf_swevent_event(struct perf_event *event, u64 nr, 8325 struct perf_sample_data *data, 8326 struct pt_regs *regs) 8327 { 8328 struct hw_perf_event *hwc = &event->hw; 8329 8330 local64_add(nr, &event->count); 8331 8332 if (!regs) 8333 return; 8334 8335 if (!is_sampling_event(event)) 8336 return; 8337 8338 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8339 data->period = nr; 8340 return perf_swevent_overflow(event, 1, data, regs); 8341 } else 8342 data->period = event->hw.last_period; 8343 8344 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8345 return perf_swevent_overflow(event, 1, data, regs); 8346 8347 if (local64_add_negative(nr, &hwc->period_left)) 8348 return; 8349 8350 perf_swevent_overflow(event, 0, data, regs); 8351 } 8352 8353 static int perf_exclude_event(struct perf_event *event, 8354 struct pt_regs *regs) 8355 { 8356 if (event->hw.state & PERF_HES_STOPPED) 8357 return 1; 8358 8359 if (regs) { 8360 if (event->attr.exclude_user && user_mode(regs)) 8361 return 1; 8362 8363 if (event->attr.exclude_kernel && !user_mode(regs)) 8364 return 1; 8365 } 8366 8367 return 0; 8368 } 8369 8370 static int perf_swevent_match(struct perf_event *event, 8371 enum perf_type_id type, 8372 u32 event_id, 8373 struct perf_sample_data *data, 8374 struct pt_regs *regs) 8375 { 8376 if (event->attr.type != type) 8377 return 0; 8378 8379 if (event->attr.config != event_id) 8380 return 0; 8381 8382 if (perf_exclude_event(event, regs)) 8383 return 0; 8384 8385 return 1; 8386 } 8387 8388 static inline u64 swevent_hash(u64 type, u32 event_id) 8389 { 8390 u64 val = event_id | (type << 32); 8391 8392 return hash_64(val, SWEVENT_HLIST_BITS); 8393 } 8394 8395 static inline struct hlist_head * 8396 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8397 { 8398 u64 hash = swevent_hash(type, event_id); 8399 8400 return &hlist->heads[hash]; 8401 } 8402 8403 /* For the read side: events when they trigger */ 8404 static inline struct hlist_head * 8405 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8406 { 8407 struct swevent_hlist *hlist; 8408 8409 hlist = rcu_dereference(swhash->swevent_hlist); 8410 if (!hlist) 8411 return NULL; 8412 8413 return __find_swevent_head(hlist, type, event_id); 8414 } 8415 8416 /* For the event head insertion and removal in the hlist */ 8417 static inline struct hlist_head * 8418 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8419 { 8420 struct swevent_hlist *hlist; 8421 u32 event_id = event->attr.config; 8422 u64 type = event->attr.type; 8423 8424 /* 8425 * Event scheduling is always serialized against hlist allocation 8426 * and release. Which makes the protected version suitable here. 8427 * The context lock guarantees that. 8428 */ 8429 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8430 lockdep_is_held(&event->ctx->lock)); 8431 if (!hlist) 8432 return NULL; 8433 8434 return __find_swevent_head(hlist, type, event_id); 8435 } 8436 8437 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8438 u64 nr, 8439 struct perf_sample_data *data, 8440 struct pt_regs *regs) 8441 { 8442 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8443 struct perf_event *event; 8444 struct hlist_head *head; 8445 8446 rcu_read_lock(); 8447 head = find_swevent_head_rcu(swhash, type, event_id); 8448 if (!head) 8449 goto end; 8450 8451 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8452 if (perf_swevent_match(event, type, event_id, data, regs)) 8453 perf_swevent_event(event, nr, data, regs); 8454 } 8455 end: 8456 rcu_read_unlock(); 8457 } 8458 8459 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8460 8461 int perf_swevent_get_recursion_context(void) 8462 { 8463 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8464 8465 return get_recursion_context(swhash->recursion); 8466 } 8467 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8468 8469 void perf_swevent_put_recursion_context(int rctx) 8470 { 8471 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8472 8473 put_recursion_context(swhash->recursion, rctx); 8474 } 8475 8476 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8477 { 8478 struct perf_sample_data data; 8479 8480 if (WARN_ON_ONCE(!regs)) 8481 return; 8482 8483 perf_sample_data_init(&data, addr, 0); 8484 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8485 } 8486 8487 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8488 { 8489 int rctx; 8490 8491 preempt_disable_notrace(); 8492 rctx = perf_swevent_get_recursion_context(); 8493 if (unlikely(rctx < 0)) 8494 goto fail; 8495 8496 ___perf_sw_event(event_id, nr, regs, addr); 8497 8498 perf_swevent_put_recursion_context(rctx); 8499 fail: 8500 preempt_enable_notrace(); 8501 } 8502 8503 static void perf_swevent_read(struct perf_event *event) 8504 { 8505 } 8506 8507 static int perf_swevent_add(struct perf_event *event, int flags) 8508 { 8509 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8510 struct hw_perf_event *hwc = &event->hw; 8511 struct hlist_head *head; 8512 8513 if (is_sampling_event(event)) { 8514 hwc->last_period = hwc->sample_period; 8515 perf_swevent_set_period(event); 8516 } 8517 8518 hwc->state = !(flags & PERF_EF_START); 8519 8520 head = find_swevent_head(swhash, event); 8521 if (WARN_ON_ONCE(!head)) 8522 return -EINVAL; 8523 8524 hlist_add_head_rcu(&event->hlist_entry, head); 8525 perf_event_update_userpage(event); 8526 8527 return 0; 8528 } 8529 8530 static void perf_swevent_del(struct perf_event *event, int flags) 8531 { 8532 hlist_del_rcu(&event->hlist_entry); 8533 } 8534 8535 static void perf_swevent_start(struct perf_event *event, int flags) 8536 { 8537 event->hw.state = 0; 8538 } 8539 8540 static void perf_swevent_stop(struct perf_event *event, int flags) 8541 { 8542 event->hw.state = PERF_HES_STOPPED; 8543 } 8544 8545 /* Deref the hlist from the update side */ 8546 static inline struct swevent_hlist * 8547 swevent_hlist_deref(struct swevent_htable *swhash) 8548 { 8549 return rcu_dereference_protected(swhash->swevent_hlist, 8550 lockdep_is_held(&swhash->hlist_mutex)); 8551 } 8552 8553 static void swevent_hlist_release(struct swevent_htable *swhash) 8554 { 8555 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8556 8557 if (!hlist) 8558 return; 8559 8560 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8561 kfree_rcu(hlist, rcu_head); 8562 } 8563 8564 static void swevent_hlist_put_cpu(int cpu) 8565 { 8566 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8567 8568 mutex_lock(&swhash->hlist_mutex); 8569 8570 if (!--swhash->hlist_refcount) 8571 swevent_hlist_release(swhash); 8572 8573 mutex_unlock(&swhash->hlist_mutex); 8574 } 8575 8576 static void swevent_hlist_put(void) 8577 { 8578 int cpu; 8579 8580 for_each_possible_cpu(cpu) 8581 swevent_hlist_put_cpu(cpu); 8582 } 8583 8584 static int swevent_hlist_get_cpu(int cpu) 8585 { 8586 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8587 int err = 0; 8588 8589 mutex_lock(&swhash->hlist_mutex); 8590 if (!swevent_hlist_deref(swhash) && 8591 cpumask_test_cpu(cpu, perf_online_mask)) { 8592 struct swevent_hlist *hlist; 8593 8594 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8595 if (!hlist) { 8596 err = -ENOMEM; 8597 goto exit; 8598 } 8599 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8600 } 8601 swhash->hlist_refcount++; 8602 exit: 8603 mutex_unlock(&swhash->hlist_mutex); 8604 8605 return err; 8606 } 8607 8608 static int swevent_hlist_get(void) 8609 { 8610 int err, cpu, failed_cpu; 8611 8612 mutex_lock(&pmus_lock); 8613 for_each_possible_cpu(cpu) { 8614 err = swevent_hlist_get_cpu(cpu); 8615 if (err) { 8616 failed_cpu = cpu; 8617 goto fail; 8618 } 8619 } 8620 mutex_unlock(&pmus_lock); 8621 return 0; 8622 fail: 8623 for_each_possible_cpu(cpu) { 8624 if (cpu == failed_cpu) 8625 break; 8626 swevent_hlist_put_cpu(cpu); 8627 } 8628 mutex_unlock(&pmus_lock); 8629 return err; 8630 } 8631 8632 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8633 8634 static void sw_perf_event_destroy(struct perf_event *event) 8635 { 8636 u64 event_id = event->attr.config; 8637 8638 WARN_ON(event->parent); 8639 8640 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8641 swevent_hlist_put(); 8642 } 8643 8644 static int perf_swevent_init(struct perf_event *event) 8645 { 8646 u64 event_id = event->attr.config; 8647 8648 if (event->attr.type != PERF_TYPE_SOFTWARE) 8649 return -ENOENT; 8650 8651 /* 8652 * no branch sampling for software events 8653 */ 8654 if (has_branch_stack(event)) 8655 return -EOPNOTSUPP; 8656 8657 switch (event_id) { 8658 case PERF_COUNT_SW_CPU_CLOCK: 8659 case PERF_COUNT_SW_TASK_CLOCK: 8660 return -ENOENT; 8661 8662 default: 8663 break; 8664 } 8665 8666 if (event_id >= PERF_COUNT_SW_MAX) 8667 return -ENOENT; 8668 8669 if (!event->parent) { 8670 int err; 8671 8672 err = swevent_hlist_get(); 8673 if (err) 8674 return err; 8675 8676 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8677 event->destroy = sw_perf_event_destroy; 8678 } 8679 8680 return 0; 8681 } 8682 8683 static struct pmu perf_swevent = { 8684 .task_ctx_nr = perf_sw_context, 8685 8686 .capabilities = PERF_PMU_CAP_NO_NMI, 8687 8688 .event_init = perf_swevent_init, 8689 .add = perf_swevent_add, 8690 .del = perf_swevent_del, 8691 .start = perf_swevent_start, 8692 .stop = perf_swevent_stop, 8693 .read = perf_swevent_read, 8694 }; 8695 8696 #ifdef CONFIG_EVENT_TRACING 8697 8698 static int perf_tp_filter_match(struct perf_event *event, 8699 struct perf_sample_data *data) 8700 { 8701 void *record = data->raw->frag.data; 8702 8703 /* only top level events have filters set */ 8704 if (event->parent) 8705 event = event->parent; 8706 8707 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8708 return 1; 8709 return 0; 8710 } 8711 8712 static int perf_tp_event_match(struct perf_event *event, 8713 struct perf_sample_data *data, 8714 struct pt_regs *regs) 8715 { 8716 if (event->hw.state & PERF_HES_STOPPED) 8717 return 0; 8718 /* 8719 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8720 */ 8721 if (event->attr.exclude_kernel && !user_mode(regs)) 8722 return 0; 8723 8724 if (!perf_tp_filter_match(event, data)) 8725 return 0; 8726 8727 return 1; 8728 } 8729 8730 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8731 struct trace_event_call *call, u64 count, 8732 struct pt_regs *regs, struct hlist_head *head, 8733 struct task_struct *task) 8734 { 8735 if (bpf_prog_array_valid(call)) { 8736 *(struct pt_regs **)raw_data = regs; 8737 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8738 perf_swevent_put_recursion_context(rctx); 8739 return; 8740 } 8741 } 8742 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8743 rctx, task); 8744 } 8745 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8746 8747 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8748 struct pt_regs *regs, struct hlist_head *head, int rctx, 8749 struct task_struct *task) 8750 { 8751 struct perf_sample_data data; 8752 struct perf_event *event; 8753 8754 struct perf_raw_record raw = { 8755 .frag = { 8756 .size = entry_size, 8757 .data = record, 8758 }, 8759 }; 8760 8761 perf_sample_data_init(&data, 0, 0); 8762 data.raw = &raw; 8763 8764 perf_trace_buf_update(record, event_type); 8765 8766 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8767 if (perf_tp_event_match(event, &data, regs)) 8768 perf_swevent_event(event, count, &data, regs); 8769 } 8770 8771 /* 8772 * If we got specified a target task, also iterate its context and 8773 * deliver this event there too. 8774 */ 8775 if (task && task != current) { 8776 struct perf_event_context *ctx; 8777 struct trace_entry *entry = record; 8778 8779 rcu_read_lock(); 8780 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8781 if (!ctx) 8782 goto unlock; 8783 8784 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8785 if (event->cpu != smp_processor_id()) 8786 continue; 8787 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8788 continue; 8789 if (event->attr.config != entry->type) 8790 continue; 8791 if (perf_tp_event_match(event, &data, regs)) 8792 perf_swevent_event(event, count, &data, regs); 8793 } 8794 unlock: 8795 rcu_read_unlock(); 8796 } 8797 8798 perf_swevent_put_recursion_context(rctx); 8799 } 8800 EXPORT_SYMBOL_GPL(perf_tp_event); 8801 8802 static void tp_perf_event_destroy(struct perf_event *event) 8803 { 8804 perf_trace_destroy(event); 8805 } 8806 8807 static int perf_tp_event_init(struct perf_event *event) 8808 { 8809 int err; 8810 8811 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8812 return -ENOENT; 8813 8814 /* 8815 * no branch sampling for tracepoint events 8816 */ 8817 if (has_branch_stack(event)) 8818 return -EOPNOTSUPP; 8819 8820 err = perf_trace_init(event); 8821 if (err) 8822 return err; 8823 8824 event->destroy = tp_perf_event_destroy; 8825 8826 return 0; 8827 } 8828 8829 static struct pmu perf_tracepoint = { 8830 .task_ctx_nr = perf_sw_context, 8831 8832 .event_init = perf_tp_event_init, 8833 .add = perf_trace_add, 8834 .del = perf_trace_del, 8835 .start = perf_swevent_start, 8836 .stop = perf_swevent_stop, 8837 .read = perf_swevent_read, 8838 }; 8839 8840 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8841 /* 8842 * Flags in config, used by dynamic PMU kprobe and uprobe 8843 * The flags should match following PMU_FORMAT_ATTR(). 8844 * 8845 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8846 * if not set, create kprobe/uprobe 8847 * 8848 * The following values specify a reference counter (or semaphore in the 8849 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8850 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8851 * 8852 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8853 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8854 */ 8855 enum perf_probe_config { 8856 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8857 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8858 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8859 }; 8860 8861 PMU_FORMAT_ATTR(retprobe, "config:0"); 8862 #endif 8863 8864 #ifdef CONFIG_KPROBE_EVENTS 8865 static struct attribute *kprobe_attrs[] = { 8866 &format_attr_retprobe.attr, 8867 NULL, 8868 }; 8869 8870 static struct attribute_group kprobe_format_group = { 8871 .name = "format", 8872 .attrs = kprobe_attrs, 8873 }; 8874 8875 static const struct attribute_group *kprobe_attr_groups[] = { 8876 &kprobe_format_group, 8877 NULL, 8878 }; 8879 8880 static int perf_kprobe_event_init(struct perf_event *event); 8881 static struct pmu perf_kprobe = { 8882 .task_ctx_nr = perf_sw_context, 8883 .event_init = perf_kprobe_event_init, 8884 .add = perf_trace_add, 8885 .del = perf_trace_del, 8886 .start = perf_swevent_start, 8887 .stop = perf_swevent_stop, 8888 .read = perf_swevent_read, 8889 .attr_groups = kprobe_attr_groups, 8890 }; 8891 8892 static int perf_kprobe_event_init(struct perf_event *event) 8893 { 8894 int err; 8895 bool is_retprobe; 8896 8897 if (event->attr.type != perf_kprobe.type) 8898 return -ENOENT; 8899 8900 if (!capable(CAP_SYS_ADMIN)) 8901 return -EACCES; 8902 8903 /* 8904 * no branch sampling for probe events 8905 */ 8906 if (has_branch_stack(event)) 8907 return -EOPNOTSUPP; 8908 8909 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8910 err = perf_kprobe_init(event, is_retprobe); 8911 if (err) 8912 return err; 8913 8914 event->destroy = perf_kprobe_destroy; 8915 8916 return 0; 8917 } 8918 #endif /* CONFIG_KPROBE_EVENTS */ 8919 8920 #ifdef CONFIG_UPROBE_EVENTS 8921 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8922 8923 static struct attribute *uprobe_attrs[] = { 8924 &format_attr_retprobe.attr, 8925 &format_attr_ref_ctr_offset.attr, 8926 NULL, 8927 }; 8928 8929 static struct attribute_group uprobe_format_group = { 8930 .name = "format", 8931 .attrs = uprobe_attrs, 8932 }; 8933 8934 static const struct attribute_group *uprobe_attr_groups[] = { 8935 &uprobe_format_group, 8936 NULL, 8937 }; 8938 8939 static int perf_uprobe_event_init(struct perf_event *event); 8940 static struct pmu perf_uprobe = { 8941 .task_ctx_nr = perf_sw_context, 8942 .event_init = perf_uprobe_event_init, 8943 .add = perf_trace_add, 8944 .del = perf_trace_del, 8945 .start = perf_swevent_start, 8946 .stop = perf_swevent_stop, 8947 .read = perf_swevent_read, 8948 .attr_groups = uprobe_attr_groups, 8949 }; 8950 8951 static int perf_uprobe_event_init(struct perf_event *event) 8952 { 8953 int err; 8954 unsigned long ref_ctr_offset; 8955 bool is_retprobe; 8956 8957 if (event->attr.type != perf_uprobe.type) 8958 return -ENOENT; 8959 8960 if (!capable(CAP_SYS_ADMIN)) 8961 return -EACCES; 8962 8963 /* 8964 * no branch sampling for probe events 8965 */ 8966 if (has_branch_stack(event)) 8967 return -EOPNOTSUPP; 8968 8969 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8970 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8971 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8972 if (err) 8973 return err; 8974 8975 event->destroy = perf_uprobe_destroy; 8976 8977 return 0; 8978 } 8979 #endif /* CONFIG_UPROBE_EVENTS */ 8980 8981 static inline void perf_tp_register(void) 8982 { 8983 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8984 #ifdef CONFIG_KPROBE_EVENTS 8985 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8986 #endif 8987 #ifdef CONFIG_UPROBE_EVENTS 8988 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8989 #endif 8990 } 8991 8992 static void perf_event_free_filter(struct perf_event *event) 8993 { 8994 ftrace_profile_free_filter(event); 8995 } 8996 8997 #ifdef CONFIG_BPF_SYSCALL 8998 static void bpf_overflow_handler(struct perf_event *event, 8999 struct perf_sample_data *data, 9000 struct pt_regs *regs) 9001 { 9002 struct bpf_perf_event_data_kern ctx = { 9003 .data = data, 9004 .event = event, 9005 }; 9006 int ret = 0; 9007 9008 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9009 preempt_disable(); 9010 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9011 goto out; 9012 rcu_read_lock(); 9013 ret = BPF_PROG_RUN(event->prog, &ctx); 9014 rcu_read_unlock(); 9015 out: 9016 __this_cpu_dec(bpf_prog_active); 9017 preempt_enable(); 9018 if (!ret) 9019 return; 9020 9021 event->orig_overflow_handler(event, data, regs); 9022 } 9023 9024 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9025 { 9026 struct bpf_prog *prog; 9027 9028 if (event->overflow_handler_context) 9029 /* hw breakpoint or kernel counter */ 9030 return -EINVAL; 9031 9032 if (event->prog) 9033 return -EEXIST; 9034 9035 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9036 if (IS_ERR(prog)) 9037 return PTR_ERR(prog); 9038 9039 event->prog = prog; 9040 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9041 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9042 return 0; 9043 } 9044 9045 static void perf_event_free_bpf_handler(struct perf_event *event) 9046 { 9047 struct bpf_prog *prog = event->prog; 9048 9049 if (!prog) 9050 return; 9051 9052 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9053 event->prog = NULL; 9054 bpf_prog_put(prog); 9055 } 9056 #else 9057 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9058 { 9059 return -EOPNOTSUPP; 9060 } 9061 static void perf_event_free_bpf_handler(struct perf_event *event) 9062 { 9063 } 9064 #endif 9065 9066 /* 9067 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9068 * with perf_event_open() 9069 */ 9070 static inline bool perf_event_is_tracing(struct perf_event *event) 9071 { 9072 if (event->pmu == &perf_tracepoint) 9073 return true; 9074 #ifdef CONFIG_KPROBE_EVENTS 9075 if (event->pmu == &perf_kprobe) 9076 return true; 9077 #endif 9078 #ifdef CONFIG_UPROBE_EVENTS 9079 if (event->pmu == &perf_uprobe) 9080 return true; 9081 #endif 9082 return false; 9083 } 9084 9085 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9086 { 9087 bool is_kprobe, is_tracepoint, is_syscall_tp; 9088 struct bpf_prog *prog; 9089 int ret; 9090 9091 if (!perf_event_is_tracing(event)) 9092 return perf_event_set_bpf_handler(event, prog_fd); 9093 9094 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9095 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9096 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9097 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9098 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9099 return -EINVAL; 9100 9101 prog = bpf_prog_get(prog_fd); 9102 if (IS_ERR(prog)) 9103 return PTR_ERR(prog); 9104 9105 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9106 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9107 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9108 /* valid fd, but invalid bpf program type */ 9109 bpf_prog_put(prog); 9110 return -EINVAL; 9111 } 9112 9113 /* Kprobe override only works for kprobes, not uprobes. */ 9114 if (prog->kprobe_override && 9115 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9116 bpf_prog_put(prog); 9117 return -EINVAL; 9118 } 9119 9120 if (is_tracepoint || is_syscall_tp) { 9121 int off = trace_event_get_offsets(event->tp_event); 9122 9123 if (prog->aux->max_ctx_offset > off) { 9124 bpf_prog_put(prog); 9125 return -EACCES; 9126 } 9127 } 9128 9129 ret = perf_event_attach_bpf_prog(event, prog); 9130 if (ret) 9131 bpf_prog_put(prog); 9132 return ret; 9133 } 9134 9135 static void perf_event_free_bpf_prog(struct perf_event *event) 9136 { 9137 if (!perf_event_is_tracing(event)) { 9138 perf_event_free_bpf_handler(event); 9139 return; 9140 } 9141 perf_event_detach_bpf_prog(event); 9142 } 9143 9144 #else 9145 9146 static inline void perf_tp_register(void) 9147 { 9148 } 9149 9150 static void perf_event_free_filter(struct perf_event *event) 9151 { 9152 } 9153 9154 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9155 { 9156 return -ENOENT; 9157 } 9158 9159 static void perf_event_free_bpf_prog(struct perf_event *event) 9160 { 9161 } 9162 #endif /* CONFIG_EVENT_TRACING */ 9163 9164 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9165 void perf_bp_event(struct perf_event *bp, void *data) 9166 { 9167 struct perf_sample_data sample; 9168 struct pt_regs *regs = data; 9169 9170 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9171 9172 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9173 perf_swevent_event(bp, 1, &sample, regs); 9174 } 9175 #endif 9176 9177 /* 9178 * Allocate a new address filter 9179 */ 9180 static struct perf_addr_filter * 9181 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9182 { 9183 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9184 struct perf_addr_filter *filter; 9185 9186 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9187 if (!filter) 9188 return NULL; 9189 9190 INIT_LIST_HEAD(&filter->entry); 9191 list_add_tail(&filter->entry, filters); 9192 9193 return filter; 9194 } 9195 9196 static void free_filters_list(struct list_head *filters) 9197 { 9198 struct perf_addr_filter *filter, *iter; 9199 9200 list_for_each_entry_safe(filter, iter, filters, entry) { 9201 path_put(&filter->path); 9202 list_del(&filter->entry); 9203 kfree(filter); 9204 } 9205 } 9206 9207 /* 9208 * Free existing address filters and optionally install new ones 9209 */ 9210 static void perf_addr_filters_splice(struct perf_event *event, 9211 struct list_head *head) 9212 { 9213 unsigned long flags; 9214 LIST_HEAD(list); 9215 9216 if (!has_addr_filter(event)) 9217 return; 9218 9219 /* don't bother with children, they don't have their own filters */ 9220 if (event->parent) 9221 return; 9222 9223 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9224 9225 list_splice_init(&event->addr_filters.list, &list); 9226 if (head) 9227 list_splice(head, &event->addr_filters.list); 9228 9229 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9230 9231 free_filters_list(&list); 9232 } 9233 9234 /* 9235 * Scan through mm's vmas and see if one of them matches the 9236 * @filter; if so, adjust filter's address range. 9237 * Called with mm::mmap_sem down for reading. 9238 */ 9239 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9240 struct mm_struct *mm, 9241 struct perf_addr_filter_range *fr) 9242 { 9243 struct vm_area_struct *vma; 9244 9245 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9246 if (!vma->vm_file) 9247 continue; 9248 9249 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9250 return; 9251 } 9252 } 9253 9254 /* 9255 * Update event's address range filters based on the 9256 * task's existing mappings, if any. 9257 */ 9258 static void perf_event_addr_filters_apply(struct perf_event *event) 9259 { 9260 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9261 struct task_struct *task = READ_ONCE(event->ctx->task); 9262 struct perf_addr_filter *filter; 9263 struct mm_struct *mm = NULL; 9264 unsigned int count = 0; 9265 unsigned long flags; 9266 9267 /* 9268 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9269 * will stop on the parent's child_mutex that our caller is also holding 9270 */ 9271 if (task == TASK_TOMBSTONE) 9272 return; 9273 9274 if (ifh->nr_file_filters) { 9275 mm = get_task_mm(event->ctx->task); 9276 if (!mm) 9277 goto restart; 9278 9279 down_read(&mm->mmap_sem); 9280 } 9281 9282 raw_spin_lock_irqsave(&ifh->lock, flags); 9283 list_for_each_entry(filter, &ifh->list, entry) { 9284 if (filter->path.dentry) { 9285 /* 9286 * Adjust base offset if the filter is associated to a 9287 * binary that needs to be mapped: 9288 */ 9289 event->addr_filter_ranges[count].start = 0; 9290 event->addr_filter_ranges[count].size = 0; 9291 9292 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9293 } else { 9294 event->addr_filter_ranges[count].start = filter->offset; 9295 event->addr_filter_ranges[count].size = filter->size; 9296 } 9297 9298 count++; 9299 } 9300 9301 event->addr_filters_gen++; 9302 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9303 9304 if (ifh->nr_file_filters) { 9305 up_read(&mm->mmap_sem); 9306 9307 mmput(mm); 9308 } 9309 9310 restart: 9311 perf_event_stop(event, 1); 9312 } 9313 9314 /* 9315 * Address range filtering: limiting the data to certain 9316 * instruction address ranges. Filters are ioctl()ed to us from 9317 * userspace as ascii strings. 9318 * 9319 * Filter string format: 9320 * 9321 * ACTION RANGE_SPEC 9322 * where ACTION is one of the 9323 * * "filter": limit the trace to this region 9324 * * "start": start tracing from this address 9325 * * "stop": stop tracing at this address/region; 9326 * RANGE_SPEC is 9327 * * for kernel addresses: <start address>[/<size>] 9328 * * for object files: <start address>[/<size>]@</path/to/object/file> 9329 * 9330 * if <size> is not specified or is zero, the range is treated as a single 9331 * address; not valid for ACTION=="filter". 9332 */ 9333 enum { 9334 IF_ACT_NONE = -1, 9335 IF_ACT_FILTER, 9336 IF_ACT_START, 9337 IF_ACT_STOP, 9338 IF_SRC_FILE, 9339 IF_SRC_KERNEL, 9340 IF_SRC_FILEADDR, 9341 IF_SRC_KERNELADDR, 9342 }; 9343 9344 enum { 9345 IF_STATE_ACTION = 0, 9346 IF_STATE_SOURCE, 9347 IF_STATE_END, 9348 }; 9349 9350 static const match_table_t if_tokens = { 9351 { IF_ACT_FILTER, "filter" }, 9352 { IF_ACT_START, "start" }, 9353 { IF_ACT_STOP, "stop" }, 9354 { IF_SRC_FILE, "%u/%u@%s" }, 9355 { IF_SRC_KERNEL, "%u/%u" }, 9356 { IF_SRC_FILEADDR, "%u@%s" }, 9357 { IF_SRC_KERNELADDR, "%u" }, 9358 { IF_ACT_NONE, NULL }, 9359 }; 9360 9361 /* 9362 * Address filter string parser 9363 */ 9364 static int 9365 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9366 struct list_head *filters) 9367 { 9368 struct perf_addr_filter *filter = NULL; 9369 char *start, *orig, *filename = NULL; 9370 substring_t args[MAX_OPT_ARGS]; 9371 int state = IF_STATE_ACTION, token; 9372 unsigned int kernel = 0; 9373 int ret = -EINVAL; 9374 9375 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9376 if (!fstr) 9377 return -ENOMEM; 9378 9379 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9380 static const enum perf_addr_filter_action_t actions[] = { 9381 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9382 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9383 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9384 }; 9385 ret = -EINVAL; 9386 9387 if (!*start) 9388 continue; 9389 9390 /* filter definition begins */ 9391 if (state == IF_STATE_ACTION) { 9392 filter = perf_addr_filter_new(event, filters); 9393 if (!filter) 9394 goto fail; 9395 } 9396 9397 token = match_token(start, if_tokens, args); 9398 switch (token) { 9399 case IF_ACT_FILTER: 9400 case IF_ACT_START: 9401 case IF_ACT_STOP: 9402 if (state != IF_STATE_ACTION) 9403 goto fail; 9404 9405 filter->action = actions[token]; 9406 state = IF_STATE_SOURCE; 9407 break; 9408 9409 case IF_SRC_KERNELADDR: 9410 case IF_SRC_KERNEL: 9411 kernel = 1; 9412 /* fall through */ 9413 9414 case IF_SRC_FILEADDR: 9415 case IF_SRC_FILE: 9416 if (state != IF_STATE_SOURCE) 9417 goto fail; 9418 9419 *args[0].to = 0; 9420 ret = kstrtoul(args[0].from, 0, &filter->offset); 9421 if (ret) 9422 goto fail; 9423 9424 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9425 *args[1].to = 0; 9426 ret = kstrtoul(args[1].from, 0, &filter->size); 9427 if (ret) 9428 goto fail; 9429 } 9430 9431 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9432 int fpos = token == IF_SRC_FILE ? 2 : 1; 9433 9434 filename = match_strdup(&args[fpos]); 9435 if (!filename) { 9436 ret = -ENOMEM; 9437 goto fail; 9438 } 9439 } 9440 9441 state = IF_STATE_END; 9442 break; 9443 9444 default: 9445 goto fail; 9446 } 9447 9448 /* 9449 * Filter definition is fully parsed, validate and install it. 9450 * Make sure that it doesn't contradict itself or the event's 9451 * attribute. 9452 */ 9453 if (state == IF_STATE_END) { 9454 ret = -EINVAL; 9455 if (kernel && event->attr.exclude_kernel) 9456 goto fail; 9457 9458 /* 9459 * ACTION "filter" must have a non-zero length region 9460 * specified. 9461 */ 9462 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9463 !filter->size) 9464 goto fail; 9465 9466 if (!kernel) { 9467 if (!filename) 9468 goto fail; 9469 9470 /* 9471 * For now, we only support file-based filters 9472 * in per-task events; doing so for CPU-wide 9473 * events requires additional context switching 9474 * trickery, since same object code will be 9475 * mapped at different virtual addresses in 9476 * different processes. 9477 */ 9478 ret = -EOPNOTSUPP; 9479 if (!event->ctx->task) 9480 goto fail_free_name; 9481 9482 /* look up the path and grab its inode */ 9483 ret = kern_path(filename, LOOKUP_FOLLOW, 9484 &filter->path); 9485 if (ret) 9486 goto fail_free_name; 9487 9488 kfree(filename); 9489 filename = NULL; 9490 9491 ret = -EINVAL; 9492 if (!filter->path.dentry || 9493 !S_ISREG(d_inode(filter->path.dentry) 9494 ->i_mode)) 9495 goto fail; 9496 9497 event->addr_filters.nr_file_filters++; 9498 } 9499 9500 /* ready to consume more filters */ 9501 state = IF_STATE_ACTION; 9502 filter = NULL; 9503 } 9504 } 9505 9506 if (state != IF_STATE_ACTION) 9507 goto fail; 9508 9509 kfree(orig); 9510 9511 return 0; 9512 9513 fail_free_name: 9514 kfree(filename); 9515 fail: 9516 free_filters_list(filters); 9517 kfree(orig); 9518 9519 return ret; 9520 } 9521 9522 static int 9523 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9524 { 9525 LIST_HEAD(filters); 9526 int ret; 9527 9528 /* 9529 * Since this is called in perf_ioctl() path, we're already holding 9530 * ctx::mutex. 9531 */ 9532 lockdep_assert_held(&event->ctx->mutex); 9533 9534 if (WARN_ON_ONCE(event->parent)) 9535 return -EINVAL; 9536 9537 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9538 if (ret) 9539 goto fail_clear_files; 9540 9541 ret = event->pmu->addr_filters_validate(&filters); 9542 if (ret) 9543 goto fail_free_filters; 9544 9545 /* remove existing filters, if any */ 9546 perf_addr_filters_splice(event, &filters); 9547 9548 /* install new filters */ 9549 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9550 9551 return ret; 9552 9553 fail_free_filters: 9554 free_filters_list(&filters); 9555 9556 fail_clear_files: 9557 event->addr_filters.nr_file_filters = 0; 9558 9559 return ret; 9560 } 9561 9562 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9563 { 9564 int ret = -EINVAL; 9565 char *filter_str; 9566 9567 filter_str = strndup_user(arg, PAGE_SIZE); 9568 if (IS_ERR(filter_str)) 9569 return PTR_ERR(filter_str); 9570 9571 #ifdef CONFIG_EVENT_TRACING 9572 if (perf_event_is_tracing(event)) { 9573 struct perf_event_context *ctx = event->ctx; 9574 9575 /* 9576 * Beware, here be dragons!! 9577 * 9578 * the tracepoint muck will deadlock against ctx->mutex, but 9579 * the tracepoint stuff does not actually need it. So 9580 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9581 * already have a reference on ctx. 9582 * 9583 * This can result in event getting moved to a different ctx, 9584 * but that does not affect the tracepoint state. 9585 */ 9586 mutex_unlock(&ctx->mutex); 9587 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9588 mutex_lock(&ctx->mutex); 9589 } else 9590 #endif 9591 if (has_addr_filter(event)) 9592 ret = perf_event_set_addr_filter(event, filter_str); 9593 9594 kfree(filter_str); 9595 return ret; 9596 } 9597 9598 /* 9599 * hrtimer based swevent callback 9600 */ 9601 9602 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9603 { 9604 enum hrtimer_restart ret = HRTIMER_RESTART; 9605 struct perf_sample_data data; 9606 struct pt_regs *regs; 9607 struct perf_event *event; 9608 u64 period; 9609 9610 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9611 9612 if (event->state != PERF_EVENT_STATE_ACTIVE) 9613 return HRTIMER_NORESTART; 9614 9615 event->pmu->read(event); 9616 9617 perf_sample_data_init(&data, 0, event->hw.last_period); 9618 regs = get_irq_regs(); 9619 9620 if (regs && !perf_exclude_event(event, regs)) { 9621 if (!(event->attr.exclude_idle && is_idle_task(current))) 9622 if (__perf_event_overflow(event, 1, &data, regs)) 9623 ret = HRTIMER_NORESTART; 9624 } 9625 9626 period = max_t(u64, 10000, event->hw.sample_period); 9627 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9628 9629 return ret; 9630 } 9631 9632 static void perf_swevent_start_hrtimer(struct perf_event *event) 9633 { 9634 struct hw_perf_event *hwc = &event->hw; 9635 s64 period; 9636 9637 if (!is_sampling_event(event)) 9638 return; 9639 9640 period = local64_read(&hwc->period_left); 9641 if (period) { 9642 if (period < 0) 9643 period = 10000; 9644 9645 local64_set(&hwc->period_left, 0); 9646 } else { 9647 period = max_t(u64, 10000, hwc->sample_period); 9648 } 9649 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9650 HRTIMER_MODE_REL_PINNED_HARD); 9651 } 9652 9653 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9654 { 9655 struct hw_perf_event *hwc = &event->hw; 9656 9657 if (is_sampling_event(event)) { 9658 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9659 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9660 9661 hrtimer_cancel(&hwc->hrtimer); 9662 } 9663 } 9664 9665 static void perf_swevent_init_hrtimer(struct perf_event *event) 9666 { 9667 struct hw_perf_event *hwc = &event->hw; 9668 9669 if (!is_sampling_event(event)) 9670 return; 9671 9672 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 9673 hwc->hrtimer.function = perf_swevent_hrtimer; 9674 9675 /* 9676 * Since hrtimers have a fixed rate, we can do a static freq->period 9677 * mapping and avoid the whole period adjust feedback stuff. 9678 */ 9679 if (event->attr.freq) { 9680 long freq = event->attr.sample_freq; 9681 9682 event->attr.sample_period = NSEC_PER_SEC / freq; 9683 hwc->sample_period = event->attr.sample_period; 9684 local64_set(&hwc->period_left, hwc->sample_period); 9685 hwc->last_period = hwc->sample_period; 9686 event->attr.freq = 0; 9687 } 9688 } 9689 9690 /* 9691 * Software event: cpu wall time clock 9692 */ 9693 9694 static void cpu_clock_event_update(struct perf_event *event) 9695 { 9696 s64 prev; 9697 u64 now; 9698 9699 now = local_clock(); 9700 prev = local64_xchg(&event->hw.prev_count, now); 9701 local64_add(now - prev, &event->count); 9702 } 9703 9704 static void cpu_clock_event_start(struct perf_event *event, int flags) 9705 { 9706 local64_set(&event->hw.prev_count, local_clock()); 9707 perf_swevent_start_hrtimer(event); 9708 } 9709 9710 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9711 { 9712 perf_swevent_cancel_hrtimer(event); 9713 cpu_clock_event_update(event); 9714 } 9715 9716 static int cpu_clock_event_add(struct perf_event *event, int flags) 9717 { 9718 if (flags & PERF_EF_START) 9719 cpu_clock_event_start(event, flags); 9720 perf_event_update_userpage(event); 9721 9722 return 0; 9723 } 9724 9725 static void cpu_clock_event_del(struct perf_event *event, int flags) 9726 { 9727 cpu_clock_event_stop(event, flags); 9728 } 9729 9730 static void cpu_clock_event_read(struct perf_event *event) 9731 { 9732 cpu_clock_event_update(event); 9733 } 9734 9735 static int cpu_clock_event_init(struct perf_event *event) 9736 { 9737 if (event->attr.type != PERF_TYPE_SOFTWARE) 9738 return -ENOENT; 9739 9740 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9741 return -ENOENT; 9742 9743 /* 9744 * no branch sampling for software events 9745 */ 9746 if (has_branch_stack(event)) 9747 return -EOPNOTSUPP; 9748 9749 perf_swevent_init_hrtimer(event); 9750 9751 return 0; 9752 } 9753 9754 static struct pmu perf_cpu_clock = { 9755 .task_ctx_nr = perf_sw_context, 9756 9757 .capabilities = PERF_PMU_CAP_NO_NMI, 9758 9759 .event_init = cpu_clock_event_init, 9760 .add = cpu_clock_event_add, 9761 .del = cpu_clock_event_del, 9762 .start = cpu_clock_event_start, 9763 .stop = cpu_clock_event_stop, 9764 .read = cpu_clock_event_read, 9765 }; 9766 9767 /* 9768 * Software event: task time clock 9769 */ 9770 9771 static void task_clock_event_update(struct perf_event *event, u64 now) 9772 { 9773 u64 prev; 9774 s64 delta; 9775 9776 prev = local64_xchg(&event->hw.prev_count, now); 9777 delta = now - prev; 9778 local64_add(delta, &event->count); 9779 } 9780 9781 static void task_clock_event_start(struct perf_event *event, int flags) 9782 { 9783 local64_set(&event->hw.prev_count, event->ctx->time); 9784 perf_swevent_start_hrtimer(event); 9785 } 9786 9787 static void task_clock_event_stop(struct perf_event *event, int flags) 9788 { 9789 perf_swevent_cancel_hrtimer(event); 9790 task_clock_event_update(event, event->ctx->time); 9791 } 9792 9793 static int task_clock_event_add(struct perf_event *event, int flags) 9794 { 9795 if (flags & PERF_EF_START) 9796 task_clock_event_start(event, flags); 9797 perf_event_update_userpage(event); 9798 9799 return 0; 9800 } 9801 9802 static void task_clock_event_del(struct perf_event *event, int flags) 9803 { 9804 task_clock_event_stop(event, PERF_EF_UPDATE); 9805 } 9806 9807 static void task_clock_event_read(struct perf_event *event) 9808 { 9809 u64 now = perf_clock(); 9810 u64 delta = now - event->ctx->timestamp; 9811 u64 time = event->ctx->time + delta; 9812 9813 task_clock_event_update(event, time); 9814 } 9815 9816 static int task_clock_event_init(struct perf_event *event) 9817 { 9818 if (event->attr.type != PERF_TYPE_SOFTWARE) 9819 return -ENOENT; 9820 9821 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9822 return -ENOENT; 9823 9824 /* 9825 * no branch sampling for software events 9826 */ 9827 if (has_branch_stack(event)) 9828 return -EOPNOTSUPP; 9829 9830 perf_swevent_init_hrtimer(event); 9831 9832 return 0; 9833 } 9834 9835 static struct pmu perf_task_clock = { 9836 .task_ctx_nr = perf_sw_context, 9837 9838 .capabilities = PERF_PMU_CAP_NO_NMI, 9839 9840 .event_init = task_clock_event_init, 9841 .add = task_clock_event_add, 9842 .del = task_clock_event_del, 9843 .start = task_clock_event_start, 9844 .stop = task_clock_event_stop, 9845 .read = task_clock_event_read, 9846 }; 9847 9848 static void perf_pmu_nop_void(struct pmu *pmu) 9849 { 9850 } 9851 9852 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9853 { 9854 } 9855 9856 static int perf_pmu_nop_int(struct pmu *pmu) 9857 { 9858 return 0; 9859 } 9860 9861 static int perf_event_nop_int(struct perf_event *event, u64 value) 9862 { 9863 return 0; 9864 } 9865 9866 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9867 9868 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9869 { 9870 __this_cpu_write(nop_txn_flags, flags); 9871 9872 if (flags & ~PERF_PMU_TXN_ADD) 9873 return; 9874 9875 perf_pmu_disable(pmu); 9876 } 9877 9878 static int perf_pmu_commit_txn(struct pmu *pmu) 9879 { 9880 unsigned int flags = __this_cpu_read(nop_txn_flags); 9881 9882 __this_cpu_write(nop_txn_flags, 0); 9883 9884 if (flags & ~PERF_PMU_TXN_ADD) 9885 return 0; 9886 9887 perf_pmu_enable(pmu); 9888 return 0; 9889 } 9890 9891 static void perf_pmu_cancel_txn(struct pmu *pmu) 9892 { 9893 unsigned int flags = __this_cpu_read(nop_txn_flags); 9894 9895 __this_cpu_write(nop_txn_flags, 0); 9896 9897 if (flags & ~PERF_PMU_TXN_ADD) 9898 return; 9899 9900 perf_pmu_enable(pmu); 9901 } 9902 9903 static int perf_event_idx_default(struct perf_event *event) 9904 { 9905 return 0; 9906 } 9907 9908 /* 9909 * Ensures all contexts with the same task_ctx_nr have the same 9910 * pmu_cpu_context too. 9911 */ 9912 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9913 { 9914 struct pmu *pmu; 9915 9916 if (ctxn < 0) 9917 return NULL; 9918 9919 list_for_each_entry(pmu, &pmus, entry) { 9920 if (pmu->task_ctx_nr == ctxn) 9921 return pmu->pmu_cpu_context; 9922 } 9923 9924 return NULL; 9925 } 9926 9927 static void free_pmu_context(struct pmu *pmu) 9928 { 9929 /* 9930 * Static contexts such as perf_sw_context have a global lifetime 9931 * and may be shared between different PMUs. Avoid freeing them 9932 * when a single PMU is going away. 9933 */ 9934 if (pmu->task_ctx_nr > perf_invalid_context) 9935 return; 9936 9937 free_percpu(pmu->pmu_cpu_context); 9938 } 9939 9940 /* 9941 * Let userspace know that this PMU supports address range filtering: 9942 */ 9943 static ssize_t nr_addr_filters_show(struct device *dev, 9944 struct device_attribute *attr, 9945 char *page) 9946 { 9947 struct pmu *pmu = dev_get_drvdata(dev); 9948 9949 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9950 } 9951 DEVICE_ATTR_RO(nr_addr_filters); 9952 9953 static struct idr pmu_idr; 9954 9955 static ssize_t 9956 type_show(struct device *dev, struct device_attribute *attr, char *page) 9957 { 9958 struct pmu *pmu = dev_get_drvdata(dev); 9959 9960 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9961 } 9962 static DEVICE_ATTR_RO(type); 9963 9964 static ssize_t 9965 perf_event_mux_interval_ms_show(struct device *dev, 9966 struct device_attribute *attr, 9967 char *page) 9968 { 9969 struct pmu *pmu = dev_get_drvdata(dev); 9970 9971 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9972 } 9973 9974 static DEFINE_MUTEX(mux_interval_mutex); 9975 9976 static ssize_t 9977 perf_event_mux_interval_ms_store(struct device *dev, 9978 struct device_attribute *attr, 9979 const char *buf, size_t count) 9980 { 9981 struct pmu *pmu = dev_get_drvdata(dev); 9982 int timer, cpu, ret; 9983 9984 ret = kstrtoint(buf, 0, &timer); 9985 if (ret) 9986 return ret; 9987 9988 if (timer < 1) 9989 return -EINVAL; 9990 9991 /* same value, noting to do */ 9992 if (timer == pmu->hrtimer_interval_ms) 9993 return count; 9994 9995 mutex_lock(&mux_interval_mutex); 9996 pmu->hrtimer_interval_ms = timer; 9997 9998 /* update all cpuctx for this PMU */ 9999 cpus_read_lock(); 10000 for_each_online_cpu(cpu) { 10001 struct perf_cpu_context *cpuctx; 10002 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10003 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10004 10005 cpu_function_call(cpu, 10006 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10007 } 10008 cpus_read_unlock(); 10009 mutex_unlock(&mux_interval_mutex); 10010 10011 return count; 10012 } 10013 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10014 10015 static struct attribute *pmu_dev_attrs[] = { 10016 &dev_attr_type.attr, 10017 &dev_attr_perf_event_mux_interval_ms.attr, 10018 NULL, 10019 }; 10020 ATTRIBUTE_GROUPS(pmu_dev); 10021 10022 static int pmu_bus_running; 10023 static struct bus_type pmu_bus = { 10024 .name = "event_source", 10025 .dev_groups = pmu_dev_groups, 10026 }; 10027 10028 static void pmu_dev_release(struct device *dev) 10029 { 10030 kfree(dev); 10031 } 10032 10033 static int pmu_dev_alloc(struct pmu *pmu) 10034 { 10035 int ret = -ENOMEM; 10036 10037 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10038 if (!pmu->dev) 10039 goto out; 10040 10041 pmu->dev->groups = pmu->attr_groups; 10042 device_initialize(pmu->dev); 10043 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10044 if (ret) 10045 goto free_dev; 10046 10047 dev_set_drvdata(pmu->dev, pmu); 10048 pmu->dev->bus = &pmu_bus; 10049 pmu->dev->release = pmu_dev_release; 10050 ret = device_add(pmu->dev); 10051 if (ret) 10052 goto free_dev; 10053 10054 /* For PMUs with address filters, throw in an extra attribute: */ 10055 if (pmu->nr_addr_filters) 10056 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10057 10058 if (ret) 10059 goto del_dev; 10060 10061 if (pmu->attr_update) 10062 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10063 10064 if (ret) 10065 goto del_dev; 10066 10067 out: 10068 return ret; 10069 10070 del_dev: 10071 device_del(pmu->dev); 10072 10073 free_dev: 10074 put_device(pmu->dev); 10075 goto out; 10076 } 10077 10078 static struct lock_class_key cpuctx_mutex; 10079 static struct lock_class_key cpuctx_lock; 10080 10081 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10082 { 10083 int cpu, ret, max = PERF_TYPE_MAX; 10084 10085 mutex_lock(&pmus_lock); 10086 ret = -ENOMEM; 10087 pmu->pmu_disable_count = alloc_percpu(int); 10088 if (!pmu->pmu_disable_count) 10089 goto unlock; 10090 10091 pmu->type = -1; 10092 if (!name) 10093 goto skip_type; 10094 pmu->name = name; 10095 10096 if (type != PERF_TYPE_SOFTWARE) { 10097 if (type >= 0) 10098 max = type; 10099 10100 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10101 if (ret < 0) 10102 goto free_pdc; 10103 10104 WARN_ON(type >= 0 && ret != type); 10105 10106 type = ret; 10107 } 10108 pmu->type = type; 10109 10110 if (pmu_bus_running) { 10111 ret = pmu_dev_alloc(pmu); 10112 if (ret) 10113 goto free_idr; 10114 } 10115 10116 skip_type: 10117 if (pmu->task_ctx_nr == perf_hw_context) { 10118 static int hw_context_taken = 0; 10119 10120 /* 10121 * Other than systems with heterogeneous CPUs, it never makes 10122 * sense for two PMUs to share perf_hw_context. PMUs which are 10123 * uncore must use perf_invalid_context. 10124 */ 10125 if (WARN_ON_ONCE(hw_context_taken && 10126 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10127 pmu->task_ctx_nr = perf_invalid_context; 10128 10129 hw_context_taken = 1; 10130 } 10131 10132 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10133 if (pmu->pmu_cpu_context) 10134 goto got_cpu_context; 10135 10136 ret = -ENOMEM; 10137 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10138 if (!pmu->pmu_cpu_context) 10139 goto free_dev; 10140 10141 for_each_possible_cpu(cpu) { 10142 struct perf_cpu_context *cpuctx; 10143 10144 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10145 __perf_event_init_context(&cpuctx->ctx); 10146 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10147 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10148 cpuctx->ctx.pmu = pmu; 10149 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10150 10151 __perf_mux_hrtimer_init(cpuctx, cpu); 10152 } 10153 10154 got_cpu_context: 10155 if (!pmu->start_txn) { 10156 if (pmu->pmu_enable) { 10157 /* 10158 * If we have pmu_enable/pmu_disable calls, install 10159 * transaction stubs that use that to try and batch 10160 * hardware accesses. 10161 */ 10162 pmu->start_txn = perf_pmu_start_txn; 10163 pmu->commit_txn = perf_pmu_commit_txn; 10164 pmu->cancel_txn = perf_pmu_cancel_txn; 10165 } else { 10166 pmu->start_txn = perf_pmu_nop_txn; 10167 pmu->commit_txn = perf_pmu_nop_int; 10168 pmu->cancel_txn = perf_pmu_nop_void; 10169 } 10170 } 10171 10172 if (!pmu->pmu_enable) { 10173 pmu->pmu_enable = perf_pmu_nop_void; 10174 pmu->pmu_disable = perf_pmu_nop_void; 10175 } 10176 10177 if (!pmu->check_period) 10178 pmu->check_period = perf_event_nop_int; 10179 10180 if (!pmu->event_idx) 10181 pmu->event_idx = perf_event_idx_default; 10182 10183 /* 10184 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10185 * since these cannot be in the IDR. This way the linear search 10186 * is fast, provided a valid software event is provided. 10187 */ 10188 if (type == PERF_TYPE_SOFTWARE || !name) 10189 list_add_rcu(&pmu->entry, &pmus); 10190 else 10191 list_add_tail_rcu(&pmu->entry, &pmus); 10192 10193 atomic_set(&pmu->exclusive_cnt, 0); 10194 ret = 0; 10195 unlock: 10196 mutex_unlock(&pmus_lock); 10197 10198 return ret; 10199 10200 free_dev: 10201 device_del(pmu->dev); 10202 put_device(pmu->dev); 10203 10204 free_idr: 10205 if (pmu->type != PERF_TYPE_SOFTWARE) 10206 idr_remove(&pmu_idr, pmu->type); 10207 10208 free_pdc: 10209 free_percpu(pmu->pmu_disable_count); 10210 goto unlock; 10211 } 10212 EXPORT_SYMBOL_GPL(perf_pmu_register); 10213 10214 void perf_pmu_unregister(struct pmu *pmu) 10215 { 10216 mutex_lock(&pmus_lock); 10217 list_del_rcu(&pmu->entry); 10218 10219 /* 10220 * We dereference the pmu list under both SRCU and regular RCU, so 10221 * synchronize against both of those. 10222 */ 10223 synchronize_srcu(&pmus_srcu); 10224 synchronize_rcu(); 10225 10226 free_percpu(pmu->pmu_disable_count); 10227 if (pmu->type != PERF_TYPE_SOFTWARE) 10228 idr_remove(&pmu_idr, pmu->type); 10229 if (pmu_bus_running) { 10230 if (pmu->nr_addr_filters) 10231 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10232 device_del(pmu->dev); 10233 put_device(pmu->dev); 10234 } 10235 free_pmu_context(pmu); 10236 mutex_unlock(&pmus_lock); 10237 } 10238 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10239 10240 static inline bool has_extended_regs(struct perf_event *event) 10241 { 10242 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10243 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10244 } 10245 10246 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10247 { 10248 struct perf_event_context *ctx = NULL; 10249 int ret; 10250 10251 if (!try_module_get(pmu->module)) 10252 return -ENODEV; 10253 10254 /* 10255 * A number of pmu->event_init() methods iterate the sibling_list to, 10256 * for example, validate if the group fits on the PMU. Therefore, 10257 * if this is a sibling event, acquire the ctx->mutex to protect 10258 * the sibling_list. 10259 */ 10260 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10261 /* 10262 * This ctx->mutex can nest when we're called through 10263 * inheritance. See the perf_event_ctx_lock_nested() comment. 10264 */ 10265 ctx = perf_event_ctx_lock_nested(event->group_leader, 10266 SINGLE_DEPTH_NESTING); 10267 BUG_ON(!ctx); 10268 } 10269 10270 event->pmu = pmu; 10271 ret = pmu->event_init(event); 10272 10273 if (ctx) 10274 perf_event_ctx_unlock(event->group_leader, ctx); 10275 10276 if (!ret) { 10277 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10278 has_extended_regs(event)) 10279 ret = -EOPNOTSUPP; 10280 10281 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10282 event_has_any_exclude_flag(event)) 10283 ret = -EINVAL; 10284 10285 if (ret && event->destroy) 10286 event->destroy(event); 10287 } 10288 10289 if (ret) 10290 module_put(pmu->module); 10291 10292 return ret; 10293 } 10294 10295 static struct pmu *perf_init_event(struct perf_event *event) 10296 { 10297 int idx, type, ret; 10298 struct pmu *pmu; 10299 10300 idx = srcu_read_lock(&pmus_srcu); 10301 10302 /* Try parent's PMU first: */ 10303 if (event->parent && event->parent->pmu) { 10304 pmu = event->parent->pmu; 10305 ret = perf_try_init_event(pmu, event); 10306 if (!ret) 10307 goto unlock; 10308 } 10309 10310 rcu_read_lock(); 10311 /* 10312 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10313 * are often aliases for PERF_TYPE_RAW. 10314 */ 10315 type = event->attr.type; 10316 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10317 type = PERF_TYPE_RAW; 10318 10319 again: 10320 pmu = idr_find(&pmu_idr, type); 10321 rcu_read_unlock(); 10322 if (pmu) { 10323 ret = perf_try_init_event(pmu, event); 10324 if (ret == -ENOENT && event->attr.type != type) { 10325 type = event->attr.type; 10326 goto again; 10327 } 10328 10329 if (ret) 10330 pmu = ERR_PTR(ret); 10331 10332 goto unlock; 10333 } 10334 10335 list_for_each_entry_rcu(pmu, &pmus, entry) { 10336 ret = perf_try_init_event(pmu, event); 10337 if (!ret) 10338 goto unlock; 10339 10340 if (ret != -ENOENT) { 10341 pmu = ERR_PTR(ret); 10342 goto unlock; 10343 } 10344 } 10345 pmu = ERR_PTR(-ENOENT); 10346 unlock: 10347 srcu_read_unlock(&pmus_srcu, idx); 10348 10349 return pmu; 10350 } 10351 10352 static void attach_sb_event(struct perf_event *event) 10353 { 10354 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10355 10356 raw_spin_lock(&pel->lock); 10357 list_add_rcu(&event->sb_list, &pel->list); 10358 raw_spin_unlock(&pel->lock); 10359 } 10360 10361 /* 10362 * We keep a list of all !task (and therefore per-cpu) events 10363 * that need to receive side-band records. 10364 * 10365 * This avoids having to scan all the various PMU per-cpu contexts 10366 * looking for them. 10367 */ 10368 static void account_pmu_sb_event(struct perf_event *event) 10369 { 10370 if (is_sb_event(event)) 10371 attach_sb_event(event); 10372 } 10373 10374 static void account_event_cpu(struct perf_event *event, int cpu) 10375 { 10376 if (event->parent) 10377 return; 10378 10379 if (is_cgroup_event(event)) 10380 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10381 } 10382 10383 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10384 static void account_freq_event_nohz(void) 10385 { 10386 #ifdef CONFIG_NO_HZ_FULL 10387 /* Lock so we don't race with concurrent unaccount */ 10388 spin_lock(&nr_freq_lock); 10389 if (atomic_inc_return(&nr_freq_events) == 1) 10390 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10391 spin_unlock(&nr_freq_lock); 10392 #endif 10393 } 10394 10395 static void account_freq_event(void) 10396 { 10397 if (tick_nohz_full_enabled()) 10398 account_freq_event_nohz(); 10399 else 10400 atomic_inc(&nr_freq_events); 10401 } 10402 10403 10404 static void account_event(struct perf_event *event) 10405 { 10406 bool inc = false; 10407 10408 if (event->parent) 10409 return; 10410 10411 if (event->attach_state & PERF_ATTACH_TASK) 10412 inc = true; 10413 if (event->attr.mmap || event->attr.mmap_data) 10414 atomic_inc(&nr_mmap_events); 10415 if (event->attr.comm) 10416 atomic_inc(&nr_comm_events); 10417 if (event->attr.namespaces) 10418 atomic_inc(&nr_namespaces_events); 10419 if (event->attr.task) 10420 atomic_inc(&nr_task_events); 10421 if (event->attr.freq) 10422 account_freq_event(); 10423 if (event->attr.context_switch) { 10424 atomic_inc(&nr_switch_events); 10425 inc = true; 10426 } 10427 if (has_branch_stack(event)) 10428 inc = true; 10429 if (is_cgroup_event(event)) 10430 inc = true; 10431 if (event->attr.ksymbol) 10432 atomic_inc(&nr_ksymbol_events); 10433 if (event->attr.bpf_event) 10434 atomic_inc(&nr_bpf_events); 10435 10436 if (inc) { 10437 /* 10438 * We need the mutex here because static_branch_enable() 10439 * must complete *before* the perf_sched_count increment 10440 * becomes visible. 10441 */ 10442 if (atomic_inc_not_zero(&perf_sched_count)) 10443 goto enabled; 10444 10445 mutex_lock(&perf_sched_mutex); 10446 if (!atomic_read(&perf_sched_count)) { 10447 static_branch_enable(&perf_sched_events); 10448 /* 10449 * Guarantee that all CPUs observe they key change and 10450 * call the perf scheduling hooks before proceeding to 10451 * install events that need them. 10452 */ 10453 synchronize_rcu(); 10454 } 10455 /* 10456 * Now that we have waited for the sync_sched(), allow further 10457 * increments to by-pass the mutex. 10458 */ 10459 atomic_inc(&perf_sched_count); 10460 mutex_unlock(&perf_sched_mutex); 10461 } 10462 enabled: 10463 10464 account_event_cpu(event, event->cpu); 10465 10466 account_pmu_sb_event(event); 10467 } 10468 10469 /* 10470 * Allocate and initialize an event structure 10471 */ 10472 static struct perf_event * 10473 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10474 struct task_struct *task, 10475 struct perf_event *group_leader, 10476 struct perf_event *parent_event, 10477 perf_overflow_handler_t overflow_handler, 10478 void *context, int cgroup_fd) 10479 { 10480 struct pmu *pmu; 10481 struct perf_event *event; 10482 struct hw_perf_event *hwc; 10483 long err = -EINVAL; 10484 10485 if ((unsigned)cpu >= nr_cpu_ids) { 10486 if (!task || cpu != -1) 10487 return ERR_PTR(-EINVAL); 10488 } 10489 10490 event = kzalloc(sizeof(*event), GFP_KERNEL); 10491 if (!event) 10492 return ERR_PTR(-ENOMEM); 10493 10494 /* 10495 * Single events are their own group leaders, with an 10496 * empty sibling list: 10497 */ 10498 if (!group_leader) 10499 group_leader = event; 10500 10501 mutex_init(&event->child_mutex); 10502 INIT_LIST_HEAD(&event->child_list); 10503 10504 INIT_LIST_HEAD(&event->event_entry); 10505 INIT_LIST_HEAD(&event->sibling_list); 10506 INIT_LIST_HEAD(&event->active_list); 10507 init_event_group(event); 10508 INIT_LIST_HEAD(&event->rb_entry); 10509 INIT_LIST_HEAD(&event->active_entry); 10510 INIT_LIST_HEAD(&event->addr_filters.list); 10511 INIT_HLIST_NODE(&event->hlist_entry); 10512 10513 10514 init_waitqueue_head(&event->waitq); 10515 event->pending_disable = -1; 10516 init_irq_work(&event->pending, perf_pending_event); 10517 10518 mutex_init(&event->mmap_mutex); 10519 raw_spin_lock_init(&event->addr_filters.lock); 10520 10521 atomic_long_set(&event->refcount, 1); 10522 event->cpu = cpu; 10523 event->attr = *attr; 10524 event->group_leader = group_leader; 10525 event->pmu = NULL; 10526 event->oncpu = -1; 10527 10528 event->parent = parent_event; 10529 10530 event->ns = get_pid_ns(task_active_pid_ns(current)); 10531 event->id = atomic64_inc_return(&perf_event_id); 10532 10533 event->state = PERF_EVENT_STATE_INACTIVE; 10534 10535 if (task) { 10536 event->attach_state = PERF_ATTACH_TASK; 10537 /* 10538 * XXX pmu::event_init needs to know what task to account to 10539 * and we cannot use the ctx information because we need the 10540 * pmu before we get a ctx. 10541 */ 10542 event->hw.target = get_task_struct(task); 10543 } 10544 10545 event->clock = &local_clock; 10546 if (parent_event) 10547 event->clock = parent_event->clock; 10548 10549 if (!overflow_handler && parent_event) { 10550 overflow_handler = parent_event->overflow_handler; 10551 context = parent_event->overflow_handler_context; 10552 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10553 if (overflow_handler == bpf_overflow_handler) { 10554 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10555 10556 if (IS_ERR(prog)) { 10557 err = PTR_ERR(prog); 10558 goto err_ns; 10559 } 10560 event->prog = prog; 10561 event->orig_overflow_handler = 10562 parent_event->orig_overflow_handler; 10563 } 10564 #endif 10565 } 10566 10567 if (overflow_handler) { 10568 event->overflow_handler = overflow_handler; 10569 event->overflow_handler_context = context; 10570 } else if (is_write_backward(event)){ 10571 event->overflow_handler = perf_event_output_backward; 10572 event->overflow_handler_context = NULL; 10573 } else { 10574 event->overflow_handler = perf_event_output_forward; 10575 event->overflow_handler_context = NULL; 10576 } 10577 10578 perf_event__state_init(event); 10579 10580 pmu = NULL; 10581 10582 hwc = &event->hw; 10583 hwc->sample_period = attr->sample_period; 10584 if (attr->freq && attr->sample_freq) 10585 hwc->sample_period = 1; 10586 hwc->last_period = hwc->sample_period; 10587 10588 local64_set(&hwc->period_left, hwc->sample_period); 10589 10590 /* 10591 * We currently do not support PERF_SAMPLE_READ on inherited events. 10592 * See perf_output_read(). 10593 */ 10594 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10595 goto err_ns; 10596 10597 if (!has_branch_stack(event)) 10598 event->attr.branch_sample_type = 0; 10599 10600 if (cgroup_fd != -1) { 10601 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10602 if (err) 10603 goto err_ns; 10604 } 10605 10606 pmu = perf_init_event(event); 10607 if (IS_ERR(pmu)) { 10608 err = PTR_ERR(pmu); 10609 goto err_ns; 10610 } 10611 10612 if (event->attr.aux_output && 10613 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 10614 err = -EOPNOTSUPP; 10615 goto err_pmu; 10616 } 10617 10618 err = exclusive_event_init(event); 10619 if (err) 10620 goto err_pmu; 10621 10622 if (has_addr_filter(event)) { 10623 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10624 sizeof(struct perf_addr_filter_range), 10625 GFP_KERNEL); 10626 if (!event->addr_filter_ranges) { 10627 err = -ENOMEM; 10628 goto err_per_task; 10629 } 10630 10631 /* 10632 * Clone the parent's vma offsets: they are valid until exec() 10633 * even if the mm is not shared with the parent. 10634 */ 10635 if (event->parent) { 10636 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10637 10638 raw_spin_lock_irq(&ifh->lock); 10639 memcpy(event->addr_filter_ranges, 10640 event->parent->addr_filter_ranges, 10641 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10642 raw_spin_unlock_irq(&ifh->lock); 10643 } 10644 10645 /* force hw sync on the address filters */ 10646 event->addr_filters_gen = 1; 10647 } 10648 10649 if (!event->parent) { 10650 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10651 err = get_callchain_buffers(attr->sample_max_stack); 10652 if (err) 10653 goto err_addr_filters; 10654 } 10655 } 10656 10657 err = security_perf_event_alloc(event); 10658 if (err) 10659 goto err_callchain_buffer; 10660 10661 /* symmetric to unaccount_event() in _free_event() */ 10662 account_event(event); 10663 10664 return event; 10665 10666 err_callchain_buffer: 10667 if (!event->parent) { 10668 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 10669 put_callchain_buffers(); 10670 } 10671 err_addr_filters: 10672 kfree(event->addr_filter_ranges); 10673 10674 err_per_task: 10675 exclusive_event_destroy(event); 10676 10677 err_pmu: 10678 if (event->destroy) 10679 event->destroy(event); 10680 module_put(pmu->module); 10681 err_ns: 10682 if (is_cgroup_event(event)) 10683 perf_detach_cgroup(event); 10684 if (event->ns) 10685 put_pid_ns(event->ns); 10686 if (event->hw.target) 10687 put_task_struct(event->hw.target); 10688 kfree(event); 10689 10690 return ERR_PTR(err); 10691 } 10692 10693 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10694 struct perf_event_attr *attr) 10695 { 10696 u32 size; 10697 int ret; 10698 10699 /* Zero the full structure, so that a short copy will be nice. */ 10700 memset(attr, 0, sizeof(*attr)); 10701 10702 ret = get_user(size, &uattr->size); 10703 if (ret) 10704 return ret; 10705 10706 /* ABI compatibility quirk: */ 10707 if (!size) 10708 size = PERF_ATTR_SIZE_VER0; 10709 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 10710 goto err_size; 10711 10712 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 10713 if (ret) { 10714 if (ret == -E2BIG) 10715 goto err_size; 10716 return ret; 10717 } 10718 10719 attr->size = size; 10720 10721 if (attr->__reserved_1 || attr->__reserved_2) 10722 return -EINVAL; 10723 10724 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10725 return -EINVAL; 10726 10727 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10728 return -EINVAL; 10729 10730 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10731 u64 mask = attr->branch_sample_type; 10732 10733 /* only using defined bits */ 10734 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10735 return -EINVAL; 10736 10737 /* at least one branch bit must be set */ 10738 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10739 return -EINVAL; 10740 10741 /* propagate priv level, when not set for branch */ 10742 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10743 10744 /* exclude_kernel checked on syscall entry */ 10745 if (!attr->exclude_kernel) 10746 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10747 10748 if (!attr->exclude_user) 10749 mask |= PERF_SAMPLE_BRANCH_USER; 10750 10751 if (!attr->exclude_hv) 10752 mask |= PERF_SAMPLE_BRANCH_HV; 10753 /* 10754 * adjust user setting (for HW filter setup) 10755 */ 10756 attr->branch_sample_type = mask; 10757 } 10758 /* privileged levels capture (kernel, hv): check permissions */ 10759 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 10760 ret = perf_allow_kernel(attr); 10761 if (ret) 10762 return ret; 10763 } 10764 } 10765 10766 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10767 ret = perf_reg_validate(attr->sample_regs_user); 10768 if (ret) 10769 return ret; 10770 } 10771 10772 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10773 if (!arch_perf_have_user_stack_dump()) 10774 return -ENOSYS; 10775 10776 /* 10777 * We have __u32 type for the size, but so far 10778 * we can only use __u16 as maximum due to the 10779 * __u16 sample size limit. 10780 */ 10781 if (attr->sample_stack_user >= USHRT_MAX) 10782 return -EINVAL; 10783 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10784 return -EINVAL; 10785 } 10786 10787 if (!attr->sample_max_stack) 10788 attr->sample_max_stack = sysctl_perf_event_max_stack; 10789 10790 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10791 ret = perf_reg_validate(attr->sample_regs_intr); 10792 out: 10793 return ret; 10794 10795 err_size: 10796 put_user(sizeof(*attr), &uattr->size); 10797 ret = -E2BIG; 10798 goto out; 10799 } 10800 10801 static int 10802 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10803 { 10804 struct ring_buffer *rb = NULL; 10805 int ret = -EINVAL; 10806 10807 if (!output_event) 10808 goto set; 10809 10810 /* don't allow circular references */ 10811 if (event == output_event) 10812 goto out; 10813 10814 /* 10815 * Don't allow cross-cpu buffers 10816 */ 10817 if (output_event->cpu != event->cpu) 10818 goto out; 10819 10820 /* 10821 * If its not a per-cpu rb, it must be the same task. 10822 */ 10823 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10824 goto out; 10825 10826 /* 10827 * Mixing clocks in the same buffer is trouble you don't need. 10828 */ 10829 if (output_event->clock != event->clock) 10830 goto out; 10831 10832 /* 10833 * Either writing ring buffer from beginning or from end. 10834 * Mixing is not allowed. 10835 */ 10836 if (is_write_backward(output_event) != is_write_backward(event)) 10837 goto out; 10838 10839 /* 10840 * If both events generate aux data, they must be on the same PMU 10841 */ 10842 if (has_aux(event) && has_aux(output_event) && 10843 event->pmu != output_event->pmu) 10844 goto out; 10845 10846 set: 10847 mutex_lock(&event->mmap_mutex); 10848 /* Can't redirect output if we've got an active mmap() */ 10849 if (atomic_read(&event->mmap_count)) 10850 goto unlock; 10851 10852 if (output_event) { 10853 /* get the rb we want to redirect to */ 10854 rb = ring_buffer_get(output_event); 10855 if (!rb) 10856 goto unlock; 10857 } 10858 10859 ring_buffer_attach(event, rb); 10860 10861 ret = 0; 10862 unlock: 10863 mutex_unlock(&event->mmap_mutex); 10864 10865 out: 10866 return ret; 10867 } 10868 10869 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10870 { 10871 if (b < a) 10872 swap(a, b); 10873 10874 mutex_lock(a); 10875 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10876 } 10877 10878 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10879 { 10880 bool nmi_safe = false; 10881 10882 switch (clk_id) { 10883 case CLOCK_MONOTONIC: 10884 event->clock = &ktime_get_mono_fast_ns; 10885 nmi_safe = true; 10886 break; 10887 10888 case CLOCK_MONOTONIC_RAW: 10889 event->clock = &ktime_get_raw_fast_ns; 10890 nmi_safe = true; 10891 break; 10892 10893 case CLOCK_REALTIME: 10894 event->clock = &ktime_get_real_ns; 10895 break; 10896 10897 case CLOCK_BOOTTIME: 10898 event->clock = &ktime_get_boottime_ns; 10899 break; 10900 10901 case CLOCK_TAI: 10902 event->clock = &ktime_get_clocktai_ns; 10903 break; 10904 10905 default: 10906 return -EINVAL; 10907 } 10908 10909 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10910 return -EINVAL; 10911 10912 return 0; 10913 } 10914 10915 /* 10916 * Variation on perf_event_ctx_lock_nested(), except we take two context 10917 * mutexes. 10918 */ 10919 static struct perf_event_context * 10920 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10921 struct perf_event_context *ctx) 10922 { 10923 struct perf_event_context *gctx; 10924 10925 again: 10926 rcu_read_lock(); 10927 gctx = READ_ONCE(group_leader->ctx); 10928 if (!refcount_inc_not_zero(&gctx->refcount)) { 10929 rcu_read_unlock(); 10930 goto again; 10931 } 10932 rcu_read_unlock(); 10933 10934 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10935 10936 if (group_leader->ctx != gctx) { 10937 mutex_unlock(&ctx->mutex); 10938 mutex_unlock(&gctx->mutex); 10939 put_ctx(gctx); 10940 goto again; 10941 } 10942 10943 return gctx; 10944 } 10945 10946 /** 10947 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10948 * 10949 * @attr_uptr: event_id type attributes for monitoring/sampling 10950 * @pid: target pid 10951 * @cpu: target cpu 10952 * @group_fd: group leader event fd 10953 */ 10954 SYSCALL_DEFINE5(perf_event_open, 10955 struct perf_event_attr __user *, attr_uptr, 10956 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10957 { 10958 struct perf_event *group_leader = NULL, *output_event = NULL; 10959 struct perf_event *event, *sibling; 10960 struct perf_event_attr attr; 10961 struct perf_event_context *ctx, *uninitialized_var(gctx); 10962 struct file *event_file = NULL; 10963 struct fd group = {NULL, 0}; 10964 struct task_struct *task = NULL; 10965 struct pmu *pmu; 10966 int event_fd; 10967 int move_group = 0; 10968 int err; 10969 int f_flags = O_RDWR; 10970 int cgroup_fd = -1; 10971 10972 /* for future expandability... */ 10973 if (flags & ~PERF_FLAG_ALL) 10974 return -EINVAL; 10975 10976 /* Do we allow access to perf_event_open(2) ? */ 10977 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 10978 if (err) 10979 return err; 10980 10981 err = perf_copy_attr(attr_uptr, &attr); 10982 if (err) 10983 return err; 10984 10985 if (!attr.exclude_kernel) { 10986 err = perf_allow_kernel(&attr); 10987 if (err) 10988 return err; 10989 } 10990 10991 if (attr.namespaces) { 10992 if (!capable(CAP_SYS_ADMIN)) 10993 return -EACCES; 10994 } 10995 10996 if (attr.freq) { 10997 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10998 return -EINVAL; 10999 } else { 11000 if (attr.sample_period & (1ULL << 63)) 11001 return -EINVAL; 11002 } 11003 11004 /* Only privileged users can get physical addresses */ 11005 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11006 err = perf_allow_kernel(&attr); 11007 if (err) 11008 return err; 11009 } 11010 11011 err = security_locked_down(LOCKDOWN_PERF); 11012 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11013 /* REGS_INTR can leak data, lockdown must prevent this */ 11014 return err; 11015 11016 err = 0; 11017 11018 /* 11019 * In cgroup mode, the pid argument is used to pass the fd 11020 * opened to the cgroup directory in cgroupfs. The cpu argument 11021 * designates the cpu on which to monitor threads from that 11022 * cgroup. 11023 */ 11024 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11025 return -EINVAL; 11026 11027 if (flags & PERF_FLAG_FD_CLOEXEC) 11028 f_flags |= O_CLOEXEC; 11029 11030 event_fd = get_unused_fd_flags(f_flags); 11031 if (event_fd < 0) 11032 return event_fd; 11033 11034 if (group_fd != -1) { 11035 err = perf_fget_light(group_fd, &group); 11036 if (err) 11037 goto err_fd; 11038 group_leader = group.file->private_data; 11039 if (flags & PERF_FLAG_FD_OUTPUT) 11040 output_event = group_leader; 11041 if (flags & PERF_FLAG_FD_NO_GROUP) 11042 group_leader = NULL; 11043 } 11044 11045 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11046 task = find_lively_task_by_vpid(pid); 11047 if (IS_ERR(task)) { 11048 err = PTR_ERR(task); 11049 goto err_group_fd; 11050 } 11051 } 11052 11053 if (task && group_leader && 11054 group_leader->attr.inherit != attr.inherit) { 11055 err = -EINVAL; 11056 goto err_task; 11057 } 11058 11059 if (task) { 11060 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 11061 if (err) 11062 goto err_task; 11063 11064 /* 11065 * Reuse ptrace permission checks for now. 11066 * 11067 * We must hold cred_guard_mutex across this and any potential 11068 * perf_install_in_context() call for this new event to 11069 * serialize against exec() altering our credentials (and the 11070 * perf_event_exit_task() that could imply). 11071 */ 11072 err = -EACCES; 11073 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11074 goto err_cred; 11075 } 11076 11077 if (flags & PERF_FLAG_PID_CGROUP) 11078 cgroup_fd = pid; 11079 11080 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11081 NULL, NULL, cgroup_fd); 11082 if (IS_ERR(event)) { 11083 err = PTR_ERR(event); 11084 goto err_cred; 11085 } 11086 11087 if (is_sampling_event(event)) { 11088 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11089 err = -EOPNOTSUPP; 11090 goto err_alloc; 11091 } 11092 } 11093 11094 /* 11095 * Special case software events and allow them to be part of 11096 * any hardware group. 11097 */ 11098 pmu = event->pmu; 11099 11100 if (attr.use_clockid) { 11101 err = perf_event_set_clock(event, attr.clockid); 11102 if (err) 11103 goto err_alloc; 11104 } 11105 11106 if (pmu->task_ctx_nr == perf_sw_context) 11107 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11108 11109 if (group_leader) { 11110 if (is_software_event(event) && 11111 !in_software_context(group_leader)) { 11112 /* 11113 * If the event is a sw event, but the group_leader 11114 * is on hw context. 11115 * 11116 * Allow the addition of software events to hw 11117 * groups, this is safe because software events 11118 * never fail to schedule. 11119 */ 11120 pmu = group_leader->ctx->pmu; 11121 } else if (!is_software_event(event) && 11122 is_software_event(group_leader) && 11123 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11124 /* 11125 * In case the group is a pure software group, and we 11126 * try to add a hardware event, move the whole group to 11127 * the hardware context. 11128 */ 11129 move_group = 1; 11130 } 11131 } 11132 11133 /* 11134 * Get the target context (task or percpu): 11135 */ 11136 ctx = find_get_context(pmu, task, event); 11137 if (IS_ERR(ctx)) { 11138 err = PTR_ERR(ctx); 11139 goto err_alloc; 11140 } 11141 11142 /* 11143 * Look up the group leader (we will attach this event to it): 11144 */ 11145 if (group_leader) { 11146 err = -EINVAL; 11147 11148 /* 11149 * Do not allow a recursive hierarchy (this new sibling 11150 * becoming part of another group-sibling): 11151 */ 11152 if (group_leader->group_leader != group_leader) 11153 goto err_context; 11154 11155 /* All events in a group should have the same clock */ 11156 if (group_leader->clock != event->clock) 11157 goto err_context; 11158 11159 /* 11160 * Make sure we're both events for the same CPU; 11161 * grouping events for different CPUs is broken; since 11162 * you can never concurrently schedule them anyhow. 11163 */ 11164 if (group_leader->cpu != event->cpu) 11165 goto err_context; 11166 11167 /* 11168 * Make sure we're both on the same task, or both 11169 * per-CPU events. 11170 */ 11171 if (group_leader->ctx->task != ctx->task) 11172 goto err_context; 11173 11174 /* 11175 * Do not allow to attach to a group in a different task 11176 * or CPU context. If we're moving SW events, we'll fix 11177 * this up later, so allow that. 11178 */ 11179 if (!move_group && group_leader->ctx != ctx) 11180 goto err_context; 11181 11182 /* 11183 * Only a group leader can be exclusive or pinned 11184 */ 11185 if (attr.exclusive || attr.pinned) 11186 goto err_context; 11187 } 11188 11189 if (output_event) { 11190 err = perf_event_set_output(event, output_event); 11191 if (err) 11192 goto err_context; 11193 } 11194 11195 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11196 f_flags); 11197 if (IS_ERR(event_file)) { 11198 err = PTR_ERR(event_file); 11199 event_file = NULL; 11200 goto err_context; 11201 } 11202 11203 if (move_group) { 11204 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11205 11206 if (gctx->task == TASK_TOMBSTONE) { 11207 err = -ESRCH; 11208 goto err_locked; 11209 } 11210 11211 /* 11212 * Check if we raced against another sys_perf_event_open() call 11213 * moving the software group underneath us. 11214 */ 11215 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11216 /* 11217 * If someone moved the group out from under us, check 11218 * if this new event wound up on the same ctx, if so 11219 * its the regular !move_group case, otherwise fail. 11220 */ 11221 if (gctx != ctx) { 11222 err = -EINVAL; 11223 goto err_locked; 11224 } else { 11225 perf_event_ctx_unlock(group_leader, gctx); 11226 move_group = 0; 11227 } 11228 } 11229 11230 /* 11231 * Failure to create exclusive events returns -EBUSY. 11232 */ 11233 err = -EBUSY; 11234 if (!exclusive_event_installable(group_leader, ctx)) 11235 goto err_locked; 11236 11237 for_each_sibling_event(sibling, group_leader) { 11238 if (!exclusive_event_installable(sibling, ctx)) 11239 goto err_locked; 11240 } 11241 } else { 11242 mutex_lock(&ctx->mutex); 11243 } 11244 11245 if (ctx->task == TASK_TOMBSTONE) { 11246 err = -ESRCH; 11247 goto err_locked; 11248 } 11249 11250 if (!perf_event_validate_size(event)) { 11251 err = -E2BIG; 11252 goto err_locked; 11253 } 11254 11255 if (!task) { 11256 /* 11257 * Check if the @cpu we're creating an event for is online. 11258 * 11259 * We use the perf_cpu_context::ctx::mutex to serialize against 11260 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11261 */ 11262 struct perf_cpu_context *cpuctx = 11263 container_of(ctx, struct perf_cpu_context, ctx); 11264 11265 if (!cpuctx->online) { 11266 err = -ENODEV; 11267 goto err_locked; 11268 } 11269 } 11270 11271 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader)) 11272 goto err_locked; 11273 11274 /* 11275 * Must be under the same ctx::mutex as perf_install_in_context(), 11276 * because we need to serialize with concurrent event creation. 11277 */ 11278 if (!exclusive_event_installable(event, ctx)) { 11279 err = -EBUSY; 11280 goto err_locked; 11281 } 11282 11283 WARN_ON_ONCE(ctx->parent_ctx); 11284 11285 /* 11286 * This is the point on no return; we cannot fail hereafter. This is 11287 * where we start modifying current state. 11288 */ 11289 11290 if (move_group) { 11291 /* 11292 * See perf_event_ctx_lock() for comments on the details 11293 * of swizzling perf_event::ctx. 11294 */ 11295 perf_remove_from_context(group_leader, 0); 11296 put_ctx(gctx); 11297 11298 for_each_sibling_event(sibling, group_leader) { 11299 perf_remove_from_context(sibling, 0); 11300 put_ctx(gctx); 11301 } 11302 11303 /* 11304 * Wait for everybody to stop referencing the events through 11305 * the old lists, before installing it on new lists. 11306 */ 11307 synchronize_rcu(); 11308 11309 /* 11310 * Install the group siblings before the group leader. 11311 * 11312 * Because a group leader will try and install the entire group 11313 * (through the sibling list, which is still in-tact), we can 11314 * end up with siblings installed in the wrong context. 11315 * 11316 * By installing siblings first we NO-OP because they're not 11317 * reachable through the group lists. 11318 */ 11319 for_each_sibling_event(sibling, group_leader) { 11320 perf_event__state_init(sibling); 11321 perf_install_in_context(ctx, sibling, sibling->cpu); 11322 get_ctx(ctx); 11323 } 11324 11325 /* 11326 * Removing from the context ends up with disabled 11327 * event. What we want here is event in the initial 11328 * startup state, ready to be add into new context. 11329 */ 11330 perf_event__state_init(group_leader); 11331 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11332 get_ctx(ctx); 11333 } 11334 11335 /* 11336 * Precalculate sample_data sizes; do while holding ctx::mutex such 11337 * that we're serialized against further additions and before 11338 * perf_install_in_context() which is the point the event is active and 11339 * can use these values. 11340 */ 11341 perf_event__header_size(event); 11342 perf_event__id_header_size(event); 11343 11344 event->owner = current; 11345 11346 perf_install_in_context(ctx, event, event->cpu); 11347 perf_unpin_context(ctx); 11348 11349 if (move_group) 11350 perf_event_ctx_unlock(group_leader, gctx); 11351 mutex_unlock(&ctx->mutex); 11352 11353 if (task) { 11354 mutex_unlock(&task->signal->cred_guard_mutex); 11355 put_task_struct(task); 11356 } 11357 11358 mutex_lock(¤t->perf_event_mutex); 11359 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11360 mutex_unlock(¤t->perf_event_mutex); 11361 11362 /* 11363 * Drop the reference on the group_event after placing the 11364 * new event on the sibling_list. This ensures destruction 11365 * of the group leader will find the pointer to itself in 11366 * perf_group_detach(). 11367 */ 11368 fdput(group); 11369 fd_install(event_fd, event_file); 11370 return event_fd; 11371 11372 err_locked: 11373 if (move_group) 11374 perf_event_ctx_unlock(group_leader, gctx); 11375 mutex_unlock(&ctx->mutex); 11376 /* err_file: */ 11377 fput(event_file); 11378 err_context: 11379 perf_unpin_context(ctx); 11380 put_ctx(ctx); 11381 err_alloc: 11382 /* 11383 * If event_file is set, the fput() above will have called ->release() 11384 * and that will take care of freeing the event. 11385 */ 11386 if (!event_file) 11387 free_event(event); 11388 err_cred: 11389 if (task) 11390 mutex_unlock(&task->signal->cred_guard_mutex); 11391 err_task: 11392 if (task) 11393 put_task_struct(task); 11394 err_group_fd: 11395 fdput(group); 11396 err_fd: 11397 put_unused_fd(event_fd); 11398 return err; 11399 } 11400 11401 /** 11402 * perf_event_create_kernel_counter 11403 * 11404 * @attr: attributes of the counter to create 11405 * @cpu: cpu in which the counter is bound 11406 * @task: task to profile (NULL for percpu) 11407 */ 11408 struct perf_event * 11409 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11410 struct task_struct *task, 11411 perf_overflow_handler_t overflow_handler, 11412 void *context) 11413 { 11414 struct perf_event_context *ctx; 11415 struct perf_event *event; 11416 int err; 11417 11418 /* 11419 * Get the target context (task or percpu): 11420 */ 11421 11422 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11423 overflow_handler, context, -1); 11424 if (IS_ERR(event)) { 11425 err = PTR_ERR(event); 11426 goto err; 11427 } 11428 11429 /* Mark owner so we could distinguish it from user events. */ 11430 event->owner = TASK_TOMBSTONE; 11431 11432 ctx = find_get_context(event->pmu, task, event); 11433 if (IS_ERR(ctx)) { 11434 err = PTR_ERR(ctx); 11435 goto err_free; 11436 } 11437 11438 WARN_ON_ONCE(ctx->parent_ctx); 11439 mutex_lock(&ctx->mutex); 11440 if (ctx->task == TASK_TOMBSTONE) { 11441 err = -ESRCH; 11442 goto err_unlock; 11443 } 11444 11445 if (!task) { 11446 /* 11447 * Check if the @cpu we're creating an event for is online. 11448 * 11449 * We use the perf_cpu_context::ctx::mutex to serialize against 11450 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11451 */ 11452 struct perf_cpu_context *cpuctx = 11453 container_of(ctx, struct perf_cpu_context, ctx); 11454 if (!cpuctx->online) { 11455 err = -ENODEV; 11456 goto err_unlock; 11457 } 11458 } 11459 11460 if (!exclusive_event_installable(event, ctx)) { 11461 err = -EBUSY; 11462 goto err_unlock; 11463 } 11464 11465 perf_install_in_context(ctx, event, event->cpu); 11466 perf_unpin_context(ctx); 11467 mutex_unlock(&ctx->mutex); 11468 11469 return event; 11470 11471 err_unlock: 11472 mutex_unlock(&ctx->mutex); 11473 perf_unpin_context(ctx); 11474 put_ctx(ctx); 11475 err_free: 11476 free_event(event); 11477 err: 11478 return ERR_PTR(err); 11479 } 11480 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11481 11482 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11483 { 11484 struct perf_event_context *src_ctx; 11485 struct perf_event_context *dst_ctx; 11486 struct perf_event *event, *tmp; 11487 LIST_HEAD(events); 11488 11489 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11490 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11491 11492 /* 11493 * See perf_event_ctx_lock() for comments on the details 11494 * of swizzling perf_event::ctx. 11495 */ 11496 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11497 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11498 event_entry) { 11499 perf_remove_from_context(event, 0); 11500 unaccount_event_cpu(event, src_cpu); 11501 put_ctx(src_ctx); 11502 list_add(&event->migrate_entry, &events); 11503 } 11504 11505 /* 11506 * Wait for the events to quiesce before re-instating them. 11507 */ 11508 synchronize_rcu(); 11509 11510 /* 11511 * Re-instate events in 2 passes. 11512 * 11513 * Skip over group leaders and only install siblings on this first 11514 * pass, siblings will not get enabled without a leader, however a 11515 * leader will enable its siblings, even if those are still on the old 11516 * context. 11517 */ 11518 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11519 if (event->group_leader == event) 11520 continue; 11521 11522 list_del(&event->migrate_entry); 11523 if (event->state >= PERF_EVENT_STATE_OFF) 11524 event->state = PERF_EVENT_STATE_INACTIVE; 11525 account_event_cpu(event, dst_cpu); 11526 perf_install_in_context(dst_ctx, event, dst_cpu); 11527 get_ctx(dst_ctx); 11528 } 11529 11530 /* 11531 * Once all the siblings are setup properly, install the group leaders 11532 * to make it go. 11533 */ 11534 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11535 list_del(&event->migrate_entry); 11536 if (event->state >= PERF_EVENT_STATE_OFF) 11537 event->state = PERF_EVENT_STATE_INACTIVE; 11538 account_event_cpu(event, dst_cpu); 11539 perf_install_in_context(dst_ctx, event, dst_cpu); 11540 get_ctx(dst_ctx); 11541 } 11542 mutex_unlock(&dst_ctx->mutex); 11543 mutex_unlock(&src_ctx->mutex); 11544 } 11545 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11546 11547 static void sync_child_event(struct perf_event *child_event, 11548 struct task_struct *child) 11549 { 11550 struct perf_event *parent_event = child_event->parent; 11551 u64 child_val; 11552 11553 if (child_event->attr.inherit_stat) 11554 perf_event_read_event(child_event, child); 11555 11556 child_val = perf_event_count(child_event); 11557 11558 /* 11559 * Add back the child's count to the parent's count: 11560 */ 11561 atomic64_add(child_val, &parent_event->child_count); 11562 atomic64_add(child_event->total_time_enabled, 11563 &parent_event->child_total_time_enabled); 11564 atomic64_add(child_event->total_time_running, 11565 &parent_event->child_total_time_running); 11566 } 11567 11568 static void 11569 perf_event_exit_event(struct perf_event *child_event, 11570 struct perf_event_context *child_ctx, 11571 struct task_struct *child) 11572 { 11573 struct perf_event *parent_event = child_event->parent; 11574 11575 /* 11576 * Do not destroy the 'original' grouping; because of the context 11577 * switch optimization the original events could've ended up in a 11578 * random child task. 11579 * 11580 * If we were to destroy the original group, all group related 11581 * operations would cease to function properly after this random 11582 * child dies. 11583 * 11584 * Do destroy all inherited groups, we don't care about those 11585 * and being thorough is better. 11586 */ 11587 raw_spin_lock_irq(&child_ctx->lock); 11588 WARN_ON_ONCE(child_ctx->is_active); 11589 11590 if (parent_event) 11591 perf_group_detach(child_event); 11592 list_del_event(child_event, child_ctx); 11593 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11594 raw_spin_unlock_irq(&child_ctx->lock); 11595 11596 /* 11597 * Parent events are governed by their filedesc, retain them. 11598 */ 11599 if (!parent_event) { 11600 perf_event_wakeup(child_event); 11601 return; 11602 } 11603 /* 11604 * Child events can be cleaned up. 11605 */ 11606 11607 sync_child_event(child_event, child); 11608 11609 /* 11610 * Remove this event from the parent's list 11611 */ 11612 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11613 mutex_lock(&parent_event->child_mutex); 11614 list_del_init(&child_event->child_list); 11615 mutex_unlock(&parent_event->child_mutex); 11616 11617 /* 11618 * Kick perf_poll() for is_event_hup(). 11619 */ 11620 perf_event_wakeup(parent_event); 11621 free_event(child_event); 11622 put_event(parent_event); 11623 } 11624 11625 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11626 { 11627 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11628 struct perf_event *child_event, *next; 11629 11630 WARN_ON_ONCE(child != current); 11631 11632 child_ctx = perf_pin_task_context(child, ctxn); 11633 if (!child_ctx) 11634 return; 11635 11636 /* 11637 * In order to reduce the amount of tricky in ctx tear-down, we hold 11638 * ctx::mutex over the entire thing. This serializes against almost 11639 * everything that wants to access the ctx. 11640 * 11641 * The exception is sys_perf_event_open() / 11642 * perf_event_create_kernel_count() which does find_get_context() 11643 * without ctx::mutex (it cannot because of the move_group double mutex 11644 * lock thing). See the comments in perf_install_in_context(). 11645 */ 11646 mutex_lock(&child_ctx->mutex); 11647 11648 /* 11649 * In a single ctx::lock section, de-schedule the events and detach the 11650 * context from the task such that we cannot ever get it scheduled back 11651 * in. 11652 */ 11653 raw_spin_lock_irq(&child_ctx->lock); 11654 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11655 11656 /* 11657 * Now that the context is inactive, destroy the task <-> ctx relation 11658 * and mark the context dead. 11659 */ 11660 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11661 put_ctx(child_ctx); /* cannot be last */ 11662 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11663 put_task_struct(current); /* cannot be last */ 11664 11665 clone_ctx = unclone_ctx(child_ctx); 11666 raw_spin_unlock_irq(&child_ctx->lock); 11667 11668 if (clone_ctx) 11669 put_ctx(clone_ctx); 11670 11671 /* 11672 * Report the task dead after unscheduling the events so that we 11673 * won't get any samples after PERF_RECORD_EXIT. We can however still 11674 * get a few PERF_RECORD_READ events. 11675 */ 11676 perf_event_task(child, child_ctx, 0); 11677 11678 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11679 perf_event_exit_event(child_event, child_ctx, child); 11680 11681 mutex_unlock(&child_ctx->mutex); 11682 11683 put_ctx(child_ctx); 11684 } 11685 11686 /* 11687 * When a child task exits, feed back event values to parent events. 11688 * 11689 * Can be called with cred_guard_mutex held when called from 11690 * install_exec_creds(). 11691 */ 11692 void perf_event_exit_task(struct task_struct *child) 11693 { 11694 struct perf_event *event, *tmp; 11695 int ctxn; 11696 11697 mutex_lock(&child->perf_event_mutex); 11698 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11699 owner_entry) { 11700 list_del_init(&event->owner_entry); 11701 11702 /* 11703 * Ensure the list deletion is visible before we clear 11704 * the owner, closes a race against perf_release() where 11705 * we need to serialize on the owner->perf_event_mutex. 11706 */ 11707 smp_store_release(&event->owner, NULL); 11708 } 11709 mutex_unlock(&child->perf_event_mutex); 11710 11711 for_each_task_context_nr(ctxn) 11712 perf_event_exit_task_context(child, ctxn); 11713 11714 /* 11715 * The perf_event_exit_task_context calls perf_event_task 11716 * with child's task_ctx, which generates EXIT events for 11717 * child contexts and sets child->perf_event_ctxp[] to NULL. 11718 * At this point we need to send EXIT events to cpu contexts. 11719 */ 11720 perf_event_task(child, NULL, 0); 11721 } 11722 11723 static void perf_free_event(struct perf_event *event, 11724 struct perf_event_context *ctx) 11725 { 11726 struct perf_event *parent = event->parent; 11727 11728 if (WARN_ON_ONCE(!parent)) 11729 return; 11730 11731 mutex_lock(&parent->child_mutex); 11732 list_del_init(&event->child_list); 11733 mutex_unlock(&parent->child_mutex); 11734 11735 put_event(parent); 11736 11737 raw_spin_lock_irq(&ctx->lock); 11738 perf_group_detach(event); 11739 list_del_event(event, ctx); 11740 raw_spin_unlock_irq(&ctx->lock); 11741 free_event(event); 11742 } 11743 11744 /* 11745 * Free a context as created by inheritance by perf_event_init_task() below, 11746 * used by fork() in case of fail. 11747 * 11748 * Even though the task has never lived, the context and events have been 11749 * exposed through the child_list, so we must take care tearing it all down. 11750 */ 11751 void perf_event_free_task(struct task_struct *task) 11752 { 11753 struct perf_event_context *ctx; 11754 struct perf_event *event, *tmp; 11755 int ctxn; 11756 11757 for_each_task_context_nr(ctxn) { 11758 ctx = task->perf_event_ctxp[ctxn]; 11759 if (!ctx) 11760 continue; 11761 11762 mutex_lock(&ctx->mutex); 11763 raw_spin_lock_irq(&ctx->lock); 11764 /* 11765 * Destroy the task <-> ctx relation and mark the context dead. 11766 * 11767 * This is important because even though the task hasn't been 11768 * exposed yet the context has been (through child_list). 11769 */ 11770 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11771 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11772 put_task_struct(task); /* cannot be last */ 11773 raw_spin_unlock_irq(&ctx->lock); 11774 11775 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11776 perf_free_event(event, ctx); 11777 11778 mutex_unlock(&ctx->mutex); 11779 11780 /* 11781 * perf_event_release_kernel() could've stolen some of our 11782 * child events and still have them on its free_list. In that 11783 * case we must wait for these events to have been freed (in 11784 * particular all their references to this task must've been 11785 * dropped). 11786 * 11787 * Without this copy_process() will unconditionally free this 11788 * task (irrespective of its reference count) and 11789 * _free_event()'s put_task_struct(event->hw.target) will be a 11790 * use-after-free. 11791 * 11792 * Wait for all events to drop their context reference. 11793 */ 11794 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 11795 put_ctx(ctx); /* must be last */ 11796 } 11797 } 11798 11799 void perf_event_delayed_put(struct task_struct *task) 11800 { 11801 int ctxn; 11802 11803 for_each_task_context_nr(ctxn) 11804 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11805 } 11806 11807 struct file *perf_event_get(unsigned int fd) 11808 { 11809 struct file *file = fget(fd); 11810 if (!file) 11811 return ERR_PTR(-EBADF); 11812 11813 if (file->f_op != &perf_fops) { 11814 fput(file); 11815 return ERR_PTR(-EBADF); 11816 } 11817 11818 return file; 11819 } 11820 11821 const struct perf_event *perf_get_event(struct file *file) 11822 { 11823 if (file->f_op != &perf_fops) 11824 return ERR_PTR(-EINVAL); 11825 11826 return file->private_data; 11827 } 11828 11829 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11830 { 11831 if (!event) 11832 return ERR_PTR(-EINVAL); 11833 11834 return &event->attr; 11835 } 11836 11837 /* 11838 * Inherit an event from parent task to child task. 11839 * 11840 * Returns: 11841 * - valid pointer on success 11842 * - NULL for orphaned events 11843 * - IS_ERR() on error 11844 */ 11845 static struct perf_event * 11846 inherit_event(struct perf_event *parent_event, 11847 struct task_struct *parent, 11848 struct perf_event_context *parent_ctx, 11849 struct task_struct *child, 11850 struct perf_event *group_leader, 11851 struct perf_event_context *child_ctx) 11852 { 11853 enum perf_event_state parent_state = parent_event->state; 11854 struct perf_event *child_event; 11855 unsigned long flags; 11856 11857 /* 11858 * Instead of creating recursive hierarchies of events, 11859 * we link inherited events back to the original parent, 11860 * which has a filp for sure, which we use as the reference 11861 * count: 11862 */ 11863 if (parent_event->parent) 11864 parent_event = parent_event->parent; 11865 11866 child_event = perf_event_alloc(&parent_event->attr, 11867 parent_event->cpu, 11868 child, 11869 group_leader, parent_event, 11870 NULL, NULL, -1); 11871 if (IS_ERR(child_event)) 11872 return child_event; 11873 11874 11875 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11876 !child_ctx->task_ctx_data) { 11877 struct pmu *pmu = child_event->pmu; 11878 11879 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11880 GFP_KERNEL); 11881 if (!child_ctx->task_ctx_data) { 11882 free_event(child_event); 11883 return NULL; 11884 } 11885 } 11886 11887 /* 11888 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11889 * must be under the same lock in order to serialize against 11890 * perf_event_release_kernel(), such that either we must observe 11891 * is_orphaned_event() or they will observe us on the child_list. 11892 */ 11893 mutex_lock(&parent_event->child_mutex); 11894 if (is_orphaned_event(parent_event) || 11895 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11896 mutex_unlock(&parent_event->child_mutex); 11897 /* task_ctx_data is freed with child_ctx */ 11898 free_event(child_event); 11899 return NULL; 11900 } 11901 11902 get_ctx(child_ctx); 11903 11904 /* 11905 * Make the child state follow the state of the parent event, 11906 * not its attr.disabled bit. We hold the parent's mutex, 11907 * so we won't race with perf_event_{en, dis}able_family. 11908 */ 11909 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11910 child_event->state = PERF_EVENT_STATE_INACTIVE; 11911 else 11912 child_event->state = PERF_EVENT_STATE_OFF; 11913 11914 if (parent_event->attr.freq) { 11915 u64 sample_period = parent_event->hw.sample_period; 11916 struct hw_perf_event *hwc = &child_event->hw; 11917 11918 hwc->sample_period = sample_period; 11919 hwc->last_period = sample_period; 11920 11921 local64_set(&hwc->period_left, sample_period); 11922 } 11923 11924 child_event->ctx = child_ctx; 11925 child_event->overflow_handler = parent_event->overflow_handler; 11926 child_event->overflow_handler_context 11927 = parent_event->overflow_handler_context; 11928 11929 /* 11930 * Precalculate sample_data sizes 11931 */ 11932 perf_event__header_size(child_event); 11933 perf_event__id_header_size(child_event); 11934 11935 /* 11936 * Link it up in the child's context: 11937 */ 11938 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11939 add_event_to_ctx(child_event, child_ctx); 11940 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11941 11942 /* 11943 * Link this into the parent event's child list 11944 */ 11945 list_add_tail(&child_event->child_list, &parent_event->child_list); 11946 mutex_unlock(&parent_event->child_mutex); 11947 11948 return child_event; 11949 } 11950 11951 /* 11952 * Inherits an event group. 11953 * 11954 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11955 * This matches with perf_event_release_kernel() removing all child events. 11956 * 11957 * Returns: 11958 * - 0 on success 11959 * - <0 on error 11960 */ 11961 static int inherit_group(struct perf_event *parent_event, 11962 struct task_struct *parent, 11963 struct perf_event_context *parent_ctx, 11964 struct task_struct *child, 11965 struct perf_event_context *child_ctx) 11966 { 11967 struct perf_event *leader; 11968 struct perf_event *sub; 11969 struct perf_event *child_ctr; 11970 11971 leader = inherit_event(parent_event, parent, parent_ctx, 11972 child, NULL, child_ctx); 11973 if (IS_ERR(leader)) 11974 return PTR_ERR(leader); 11975 /* 11976 * @leader can be NULL here because of is_orphaned_event(). In this 11977 * case inherit_event() will create individual events, similar to what 11978 * perf_group_detach() would do anyway. 11979 */ 11980 for_each_sibling_event(sub, parent_event) { 11981 child_ctr = inherit_event(sub, parent, parent_ctx, 11982 child, leader, child_ctx); 11983 if (IS_ERR(child_ctr)) 11984 return PTR_ERR(child_ctr); 11985 11986 if (sub->aux_event == parent_event && 11987 !perf_get_aux_event(child_ctr, leader)) 11988 return -EINVAL; 11989 } 11990 return 0; 11991 } 11992 11993 /* 11994 * Creates the child task context and tries to inherit the event-group. 11995 * 11996 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11997 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11998 * consistent with perf_event_release_kernel() removing all child events. 11999 * 12000 * Returns: 12001 * - 0 on success 12002 * - <0 on error 12003 */ 12004 static int 12005 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12006 struct perf_event_context *parent_ctx, 12007 struct task_struct *child, int ctxn, 12008 int *inherited_all) 12009 { 12010 int ret; 12011 struct perf_event_context *child_ctx; 12012 12013 if (!event->attr.inherit) { 12014 *inherited_all = 0; 12015 return 0; 12016 } 12017 12018 child_ctx = child->perf_event_ctxp[ctxn]; 12019 if (!child_ctx) { 12020 /* 12021 * This is executed from the parent task context, so 12022 * inherit events that have been marked for cloning. 12023 * First allocate and initialize a context for the 12024 * child. 12025 */ 12026 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12027 if (!child_ctx) 12028 return -ENOMEM; 12029 12030 child->perf_event_ctxp[ctxn] = child_ctx; 12031 } 12032 12033 ret = inherit_group(event, parent, parent_ctx, 12034 child, child_ctx); 12035 12036 if (ret) 12037 *inherited_all = 0; 12038 12039 return ret; 12040 } 12041 12042 /* 12043 * Initialize the perf_event context in task_struct 12044 */ 12045 static int perf_event_init_context(struct task_struct *child, int ctxn) 12046 { 12047 struct perf_event_context *child_ctx, *parent_ctx; 12048 struct perf_event_context *cloned_ctx; 12049 struct perf_event *event; 12050 struct task_struct *parent = current; 12051 int inherited_all = 1; 12052 unsigned long flags; 12053 int ret = 0; 12054 12055 if (likely(!parent->perf_event_ctxp[ctxn])) 12056 return 0; 12057 12058 /* 12059 * If the parent's context is a clone, pin it so it won't get 12060 * swapped under us. 12061 */ 12062 parent_ctx = perf_pin_task_context(parent, ctxn); 12063 if (!parent_ctx) 12064 return 0; 12065 12066 /* 12067 * No need to check if parent_ctx != NULL here; since we saw 12068 * it non-NULL earlier, the only reason for it to become NULL 12069 * is if we exit, and since we're currently in the middle of 12070 * a fork we can't be exiting at the same time. 12071 */ 12072 12073 /* 12074 * Lock the parent list. No need to lock the child - not PID 12075 * hashed yet and not running, so nobody can access it. 12076 */ 12077 mutex_lock(&parent_ctx->mutex); 12078 12079 /* 12080 * We dont have to disable NMIs - we are only looking at 12081 * the list, not manipulating it: 12082 */ 12083 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12084 ret = inherit_task_group(event, parent, parent_ctx, 12085 child, ctxn, &inherited_all); 12086 if (ret) 12087 goto out_unlock; 12088 } 12089 12090 /* 12091 * We can't hold ctx->lock when iterating the ->flexible_group list due 12092 * to allocations, but we need to prevent rotation because 12093 * rotate_ctx() will change the list from interrupt context. 12094 */ 12095 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12096 parent_ctx->rotate_disable = 1; 12097 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12098 12099 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12100 ret = inherit_task_group(event, parent, parent_ctx, 12101 child, ctxn, &inherited_all); 12102 if (ret) 12103 goto out_unlock; 12104 } 12105 12106 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12107 parent_ctx->rotate_disable = 0; 12108 12109 child_ctx = child->perf_event_ctxp[ctxn]; 12110 12111 if (child_ctx && inherited_all) { 12112 /* 12113 * Mark the child context as a clone of the parent 12114 * context, or of whatever the parent is a clone of. 12115 * 12116 * Note that if the parent is a clone, the holding of 12117 * parent_ctx->lock avoids it from being uncloned. 12118 */ 12119 cloned_ctx = parent_ctx->parent_ctx; 12120 if (cloned_ctx) { 12121 child_ctx->parent_ctx = cloned_ctx; 12122 child_ctx->parent_gen = parent_ctx->parent_gen; 12123 } else { 12124 child_ctx->parent_ctx = parent_ctx; 12125 child_ctx->parent_gen = parent_ctx->generation; 12126 } 12127 get_ctx(child_ctx->parent_ctx); 12128 } 12129 12130 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12131 out_unlock: 12132 mutex_unlock(&parent_ctx->mutex); 12133 12134 perf_unpin_context(parent_ctx); 12135 put_ctx(parent_ctx); 12136 12137 return ret; 12138 } 12139 12140 /* 12141 * Initialize the perf_event context in task_struct 12142 */ 12143 int perf_event_init_task(struct task_struct *child) 12144 { 12145 int ctxn, ret; 12146 12147 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12148 mutex_init(&child->perf_event_mutex); 12149 INIT_LIST_HEAD(&child->perf_event_list); 12150 12151 for_each_task_context_nr(ctxn) { 12152 ret = perf_event_init_context(child, ctxn); 12153 if (ret) { 12154 perf_event_free_task(child); 12155 return ret; 12156 } 12157 } 12158 12159 return 0; 12160 } 12161 12162 static void __init perf_event_init_all_cpus(void) 12163 { 12164 struct swevent_htable *swhash; 12165 int cpu; 12166 12167 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12168 12169 for_each_possible_cpu(cpu) { 12170 swhash = &per_cpu(swevent_htable, cpu); 12171 mutex_init(&swhash->hlist_mutex); 12172 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12173 12174 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12175 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12176 12177 #ifdef CONFIG_CGROUP_PERF 12178 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12179 #endif 12180 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12181 } 12182 } 12183 12184 static void perf_swevent_init_cpu(unsigned int cpu) 12185 { 12186 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12187 12188 mutex_lock(&swhash->hlist_mutex); 12189 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12190 struct swevent_hlist *hlist; 12191 12192 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12193 WARN_ON(!hlist); 12194 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12195 } 12196 mutex_unlock(&swhash->hlist_mutex); 12197 } 12198 12199 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12200 static void __perf_event_exit_context(void *__info) 12201 { 12202 struct perf_event_context *ctx = __info; 12203 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12204 struct perf_event *event; 12205 12206 raw_spin_lock(&ctx->lock); 12207 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12208 list_for_each_entry(event, &ctx->event_list, event_entry) 12209 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12210 raw_spin_unlock(&ctx->lock); 12211 } 12212 12213 static void perf_event_exit_cpu_context(int cpu) 12214 { 12215 struct perf_cpu_context *cpuctx; 12216 struct perf_event_context *ctx; 12217 struct pmu *pmu; 12218 12219 mutex_lock(&pmus_lock); 12220 list_for_each_entry(pmu, &pmus, entry) { 12221 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12222 ctx = &cpuctx->ctx; 12223 12224 mutex_lock(&ctx->mutex); 12225 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12226 cpuctx->online = 0; 12227 mutex_unlock(&ctx->mutex); 12228 } 12229 cpumask_clear_cpu(cpu, perf_online_mask); 12230 mutex_unlock(&pmus_lock); 12231 } 12232 #else 12233 12234 static void perf_event_exit_cpu_context(int cpu) { } 12235 12236 #endif 12237 12238 int perf_event_init_cpu(unsigned int cpu) 12239 { 12240 struct perf_cpu_context *cpuctx; 12241 struct perf_event_context *ctx; 12242 struct pmu *pmu; 12243 12244 perf_swevent_init_cpu(cpu); 12245 12246 mutex_lock(&pmus_lock); 12247 cpumask_set_cpu(cpu, perf_online_mask); 12248 list_for_each_entry(pmu, &pmus, entry) { 12249 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12250 ctx = &cpuctx->ctx; 12251 12252 mutex_lock(&ctx->mutex); 12253 cpuctx->online = 1; 12254 mutex_unlock(&ctx->mutex); 12255 } 12256 mutex_unlock(&pmus_lock); 12257 12258 return 0; 12259 } 12260 12261 int perf_event_exit_cpu(unsigned int cpu) 12262 { 12263 perf_event_exit_cpu_context(cpu); 12264 return 0; 12265 } 12266 12267 static int 12268 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12269 { 12270 int cpu; 12271 12272 for_each_online_cpu(cpu) 12273 perf_event_exit_cpu(cpu); 12274 12275 return NOTIFY_OK; 12276 } 12277 12278 /* 12279 * Run the perf reboot notifier at the very last possible moment so that 12280 * the generic watchdog code runs as long as possible. 12281 */ 12282 static struct notifier_block perf_reboot_notifier = { 12283 .notifier_call = perf_reboot, 12284 .priority = INT_MIN, 12285 }; 12286 12287 void __init perf_event_init(void) 12288 { 12289 int ret; 12290 12291 idr_init(&pmu_idr); 12292 12293 perf_event_init_all_cpus(); 12294 init_srcu_struct(&pmus_srcu); 12295 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12296 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12297 perf_pmu_register(&perf_task_clock, NULL, -1); 12298 perf_tp_register(); 12299 perf_event_init_cpu(smp_processor_id()); 12300 register_reboot_notifier(&perf_reboot_notifier); 12301 12302 ret = init_hw_breakpoint(); 12303 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12304 12305 /* 12306 * Build time assertion that we keep the data_head at the intended 12307 * location. IOW, validation we got the __reserved[] size right. 12308 */ 12309 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12310 != 1024); 12311 } 12312 12313 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12314 char *page) 12315 { 12316 struct perf_pmu_events_attr *pmu_attr = 12317 container_of(attr, struct perf_pmu_events_attr, attr); 12318 12319 if (pmu_attr->event_str) 12320 return sprintf(page, "%s\n", pmu_attr->event_str); 12321 12322 return 0; 12323 } 12324 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12325 12326 static int __init perf_event_sysfs_init(void) 12327 { 12328 struct pmu *pmu; 12329 int ret; 12330 12331 mutex_lock(&pmus_lock); 12332 12333 ret = bus_register(&pmu_bus); 12334 if (ret) 12335 goto unlock; 12336 12337 list_for_each_entry(pmu, &pmus, entry) { 12338 if (!pmu->name || pmu->type < 0) 12339 continue; 12340 12341 ret = pmu_dev_alloc(pmu); 12342 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12343 } 12344 pmu_bus_running = 1; 12345 ret = 0; 12346 12347 unlock: 12348 mutex_unlock(&pmus_lock); 12349 12350 return ret; 12351 } 12352 device_initcall(perf_event_sysfs_init); 12353 12354 #ifdef CONFIG_CGROUP_PERF 12355 static struct cgroup_subsys_state * 12356 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12357 { 12358 struct perf_cgroup *jc; 12359 12360 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12361 if (!jc) 12362 return ERR_PTR(-ENOMEM); 12363 12364 jc->info = alloc_percpu(struct perf_cgroup_info); 12365 if (!jc->info) { 12366 kfree(jc); 12367 return ERR_PTR(-ENOMEM); 12368 } 12369 12370 return &jc->css; 12371 } 12372 12373 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12374 { 12375 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12376 12377 free_percpu(jc->info); 12378 kfree(jc); 12379 } 12380 12381 static int __perf_cgroup_move(void *info) 12382 { 12383 struct task_struct *task = info; 12384 rcu_read_lock(); 12385 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12386 rcu_read_unlock(); 12387 return 0; 12388 } 12389 12390 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12391 { 12392 struct task_struct *task; 12393 struct cgroup_subsys_state *css; 12394 12395 cgroup_taskset_for_each(task, css, tset) 12396 task_function_call(task, __perf_cgroup_move, task); 12397 } 12398 12399 struct cgroup_subsys perf_event_cgrp_subsys = { 12400 .css_alloc = perf_cgroup_css_alloc, 12401 .css_free = perf_cgroup_css_free, 12402 .attach = perf_cgroup_attach, 12403 /* 12404 * Implicitly enable on dfl hierarchy so that perf events can 12405 * always be filtered by cgroup2 path as long as perf_event 12406 * controller is not mounted on a legacy hierarchy. 12407 */ 12408 .implicit_on_dfl = true, 12409 .threaded = true, 12410 }; 12411 #endif /* CONFIG_CGROUP_PERF */ 12412