1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 #include <linux/percpu-rwsem.h> 59 60 #include "internal.h" 61 62 #include <asm/irq_regs.h> 63 64 typedef int (*remote_function_f)(void *); 65 66 struct remote_function_call { 67 struct task_struct *p; 68 remote_function_f func; 69 void *info; 70 int ret; 71 }; 72 73 static void remote_function(void *data) 74 { 75 struct remote_function_call *tfc = data; 76 struct task_struct *p = tfc->p; 77 78 if (p) { 79 /* -EAGAIN */ 80 if (task_cpu(p) != smp_processor_id()) 81 return; 82 83 /* 84 * Now that we're on right CPU with IRQs disabled, we can test 85 * if we hit the right task without races. 86 */ 87 88 tfc->ret = -ESRCH; /* No such (running) process */ 89 if (p != current) 90 return; 91 } 92 93 tfc->ret = tfc->func(tfc->info); 94 } 95 96 /** 97 * task_function_call - call a function on the cpu on which a task runs 98 * @p: the task to evaluate 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func when the task is currently running. This might 103 * be on the current CPU, which just calls the function directly. This will 104 * retry due to any failures in smp_call_function_single(), such as if the 105 * task_cpu() goes offline concurrently. 106 * 107 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 108 */ 109 static int 110 task_function_call(struct task_struct *p, remote_function_f func, void *info) 111 { 112 struct remote_function_call data = { 113 .p = p, 114 .func = func, 115 .info = info, 116 .ret = -EAGAIN, 117 }; 118 int ret; 119 120 for (;;) { 121 ret = smp_call_function_single(task_cpu(p), remote_function, 122 &data, 1); 123 if (!ret) 124 ret = data.ret; 125 126 if (ret != -EAGAIN) 127 break; 128 129 cond_resched(); 130 } 131 132 return ret; 133 } 134 135 /** 136 * cpu_function_call - call a function on the cpu 137 * @cpu: target cpu to queue this function 138 * @func: the function to be called 139 * @info: the function call argument 140 * 141 * Calls the function @func on the remote cpu. 142 * 143 * returns: @func return value or -ENXIO when the cpu is offline 144 */ 145 static int cpu_function_call(int cpu, remote_function_f func, void *info) 146 { 147 struct remote_function_call data = { 148 .p = NULL, 149 .func = func, 150 .info = info, 151 .ret = -ENXIO, /* No such CPU */ 152 }; 153 154 smp_call_function_single(cpu, remote_function, &data, 1); 155 156 return data.ret; 157 } 158 159 enum event_type_t { 160 EVENT_FLEXIBLE = 0x01, 161 EVENT_PINNED = 0x02, 162 EVENT_TIME = 0x04, 163 EVENT_FROZEN = 0x08, 164 /* see ctx_resched() for details */ 165 EVENT_CPU = 0x10, 166 EVENT_CGROUP = 0x20, 167 168 /* compound helpers */ 169 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 170 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 171 }; 172 173 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 174 { 175 raw_spin_lock(&ctx->lock); 176 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 177 } 178 179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 180 struct perf_event_context *ctx) 181 { 182 __perf_ctx_lock(&cpuctx->ctx); 183 if (ctx) 184 __perf_ctx_lock(ctx); 185 } 186 187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 188 { 189 /* 190 * If ctx_sched_in() didn't again set any ALL flags, clean up 191 * after ctx_sched_out() by clearing is_active. 192 */ 193 if (ctx->is_active & EVENT_FROZEN) { 194 if (!(ctx->is_active & EVENT_ALL)) 195 ctx->is_active = 0; 196 else 197 ctx->is_active &= ~EVENT_FROZEN; 198 } 199 raw_spin_unlock(&ctx->lock); 200 } 201 202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 203 struct perf_event_context *ctx) 204 { 205 if (ctx) 206 __perf_ctx_unlock(ctx); 207 __perf_ctx_unlock(&cpuctx->ctx); 208 } 209 210 typedef struct { 211 struct perf_cpu_context *cpuctx; 212 struct perf_event_context *ctx; 213 } class_perf_ctx_lock_t; 214 215 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T) 216 { perf_ctx_unlock(_T->cpuctx, _T->ctx); } 217 218 static inline class_perf_ctx_lock_t 219 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx, 220 struct perf_event_context *ctx) 221 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; } 222 223 #define TASK_TOMBSTONE ((void *)-1L) 224 225 static bool is_kernel_event(struct perf_event *event) 226 { 227 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 228 } 229 230 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 231 232 struct perf_event_context *perf_cpu_task_ctx(void) 233 { 234 lockdep_assert_irqs_disabled(); 235 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 236 } 237 238 /* 239 * On task ctx scheduling... 240 * 241 * When !ctx->nr_events a task context will not be scheduled. This means 242 * we can disable the scheduler hooks (for performance) without leaving 243 * pending task ctx state. 244 * 245 * This however results in two special cases: 246 * 247 * - removing the last event from a task ctx; this is relatively straight 248 * forward and is done in __perf_remove_from_context. 249 * 250 * - adding the first event to a task ctx; this is tricky because we cannot 251 * rely on ctx->is_active and therefore cannot use event_function_call(). 252 * See perf_install_in_context(). 253 * 254 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 255 */ 256 257 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 258 struct perf_event_context *, void *); 259 260 struct event_function_struct { 261 struct perf_event *event; 262 event_f func; 263 void *data; 264 }; 265 266 static int event_function(void *info) 267 { 268 struct event_function_struct *efs = info; 269 struct perf_event *event = efs->event; 270 struct perf_event_context *ctx = event->ctx; 271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 272 struct perf_event_context *task_ctx = cpuctx->task_ctx; 273 int ret = 0; 274 275 lockdep_assert_irqs_disabled(); 276 277 perf_ctx_lock(cpuctx, task_ctx); 278 /* 279 * Since we do the IPI call without holding ctx->lock things can have 280 * changed, double check we hit the task we set out to hit. 281 */ 282 if (ctx->task) { 283 if (ctx->task != current) { 284 ret = -ESRCH; 285 goto unlock; 286 } 287 288 /* 289 * We only use event_function_call() on established contexts, 290 * and event_function() is only ever called when active (or 291 * rather, we'll have bailed in task_function_call() or the 292 * above ctx->task != current test), therefore we must have 293 * ctx->is_active here. 294 */ 295 WARN_ON_ONCE(!ctx->is_active); 296 /* 297 * And since we have ctx->is_active, cpuctx->task_ctx must 298 * match. 299 */ 300 WARN_ON_ONCE(task_ctx != ctx); 301 } else { 302 WARN_ON_ONCE(&cpuctx->ctx != ctx); 303 } 304 305 efs->func(event, cpuctx, ctx, efs->data); 306 unlock: 307 perf_ctx_unlock(cpuctx, task_ctx); 308 309 return ret; 310 } 311 312 static void event_function_call(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 316 struct perf_cpu_context *cpuctx; 317 struct event_function_struct efs = { 318 .event = event, 319 .func = func, 320 .data = data, 321 }; 322 323 if (!event->parent) { 324 /* 325 * If this is a !child event, we must hold ctx::mutex to 326 * stabilize the event->ctx relation. See 327 * perf_event_ctx_lock(). 328 */ 329 lockdep_assert_held(&ctx->mutex); 330 } 331 332 if (!task) { 333 cpu_function_call(event->cpu, event_function, &efs); 334 return; 335 } 336 337 if (task == TASK_TOMBSTONE) 338 return; 339 340 again: 341 if (!task_function_call(task, event_function, &efs)) 342 return; 343 344 local_irq_disable(); 345 cpuctx = this_cpu_ptr(&perf_cpu_context); 346 perf_ctx_lock(cpuctx, ctx); 347 /* 348 * Reload the task pointer, it might have been changed by 349 * a concurrent perf_event_context_sched_out(). 350 */ 351 task = ctx->task; 352 if (task == TASK_TOMBSTONE) 353 goto unlock; 354 if (ctx->is_active) { 355 perf_ctx_unlock(cpuctx, ctx); 356 local_irq_enable(); 357 goto again; 358 } 359 func(event, NULL, ctx, data); 360 unlock: 361 perf_ctx_unlock(cpuctx, ctx); 362 local_irq_enable(); 363 } 364 365 /* 366 * Similar to event_function_call() + event_function(), but hard assumes IRQs 367 * are already disabled and we're on the right CPU. 368 */ 369 static void event_function_local(struct perf_event *event, event_f func, void *data) 370 { 371 struct perf_event_context *ctx = event->ctx; 372 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 373 struct task_struct *task = READ_ONCE(ctx->task); 374 struct perf_event_context *task_ctx = NULL; 375 376 lockdep_assert_irqs_disabled(); 377 378 if (task) { 379 if (task == TASK_TOMBSTONE) 380 return; 381 382 task_ctx = ctx; 383 } 384 385 perf_ctx_lock(cpuctx, task_ctx); 386 387 task = ctx->task; 388 if (task == TASK_TOMBSTONE) 389 goto unlock; 390 391 if (task) { 392 /* 393 * We must be either inactive or active and the right task, 394 * otherwise we're screwed, since we cannot IPI to somewhere 395 * else. 396 */ 397 if (ctx->is_active) { 398 if (WARN_ON_ONCE(task != current)) 399 goto unlock; 400 401 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 402 goto unlock; 403 } 404 } else { 405 WARN_ON_ONCE(&cpuctx->ctx != ctx); 406 } 407 408 func(event, cpuctx, ctx, data); 409 unlock: 410 perf_ctx_unlock(cpuctx, task_ctx); 411 } 412 413 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 414 PERF_FLAG_FD_OUTPUT |\ 415 PERF_FLAG_PID_CGROUP |\ 416 PERF_FLAG_FD_CLOEXEC) 417 418 /* 419 * branch priv levels that need permission checks 420 */ 421 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 422 (PERF_SAMPLE_BRANCH_KERNEL |\ 423 PERF_SAMPLE_BRANCH_HV) 424 425 /* 426 * perf_sched_events : >0 events exist 427 */ 428 429 static void perf_sched_delayed(struct work_struct *work); 430 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 431 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 432 static DEFINE_MUTEX(perf_sched_mutex); 433 static atomic_t perf_sched_count; 434 435 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 436 437 static atomic_t nr_mmap_events __read_mostly; 438 static atomic_t nr_comm_events __read_mostly; 439 static atomic_t nr_namespaces_events __read_mostly; 440 static atomic_t nr_task_events __read_mostly; 441 static atomic_t nr_freq_events __read_mostly; 442 static atomic_t nr_switch_events __read_mostly; 443 static atomic_t nr_ksymbol_events __read_mostly; 444 static atomic_t nr_bpf_events __read_mostly; 445 static atomic_t nr_cgroup_events __read_mostly; 446 static atomic_t nr_text_poke_events __read_mostly; 447 static atomic_t nr_build_id_events __read_mostly; 448 449 static LIST_HEAD(pmus); 450 static DEFINE_MUTEX(pmus_lock); 451 static struct srcu_struct pmus_srcu; 452 static cpumask_var_t perf_online_mask; 453 static cpumask_var_t perf_online_core_mask; 454 static cpumask_var_t perf_online_die_mask; 455 static cpumask_var_t perf_online_cluster_mask; 456 static cpumask_var_t perf_online_pkg_mask; 457 static cpumask_var_t perf_online_sys_mask; 458 static struct kmem_cache *perf_event_cache; 459 460 /* 461 * perf event paranoia level: 462 * -1 - not paranoid at all 463 * 0 - disallow raw tracepoint access for unpriv 464 * 1 - disallow cpu events for unpriv 465 * 2 - disallow kernel profiling for unpriv 466 */ 467 int sysctl_perf_event_paranoid __read_mostly = 2; 468 469 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ 470 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); 471 472 /* 473 * max perf event sample rate 474 */ 475 #define DEFAULT_MAX_SAMPLE_RATE 100000 476 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 477 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 478 479 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 480 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 481 482 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 483 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 484 485 static int perf_sample_allowed_ns __read_mostly = 486 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 487 488 static void update_perf_cpu_limits(void) 489 { 490 u64 tmp = perf_sample_period_ns; 491 492 tmp *= sysctl_perf_cpu_time_max_percent; 493 tmp = div_u64(tmp, 100); 494 if (!tmp) 495 tmp = 1; 496 497 WRITE_ONCE(perf_sample_allowed_ns, tmp); 498 } 499 500 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 501 502 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 503 void *buffer, size_t *lenp, loff_t *ppos) 504 { 505 int ret; 506 int perf_cpu = sysctl_perf_cpu_time_max_percent; 507 /* 508 * If throttling is disabled don't allow the write: 509 */ 510 if (write && (perf_cpu == 100 || perf_cpu == 0)) 511 return -EINVAL; 512 513 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 514 if (ret || !write) 515 return ret; 516 517 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 518 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 519 update_perf_cpu_limits(); 520 521 return 0; 522 } 523 524 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 525 void *buffer, size_t *lenp, loff_t *ppos) 526 { 527 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 528 529 if (ret || !write) 530 return ret; 531 532 if (sysctl_perf_cpu_time_max_percent == 100 || 533 sysctl_perf_cpu_time_max_percent == 0) { 534 printk(KERN_WARNING 535 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 536 WRITE_ONCE(perf_sample_allowed_ns, 0); 537 } else { 538 update_perf_cpu_limits(); 539 } 540 541 return 0; 542 } 543 544 static const struct ctl_table events_core_sysctl_table[] = { 545 /* 546 * User-space relies on this file as a feature check for 547 * perf_events being enabled. It's an ABI, do not remove! 548 */ 549 { 550 .procname = "perf_event_paranoid", 551 .data = &sysctl_perf_event_paranoid, 552 .maxlen = sizeof(sysctl_perf_event_paranoid), 553 .mode = 0644, 554 .proc_handler = proc_dointvec, 555 }, 556 { 557 .procname = "perf_event_mlock_kb", 558 .data = &sysctl_perf_event_mlock, 559 .maxlen = sizeof(sysctl_perf_event_mlock), 560 .mode = 0644, 561 .proc_handler = proc_dointvec, 562 }, 563 { 564 .procname = "perf_event_max_sample_rate", 565 .data = &sysctl_perf_event_sample_rate, 566 .maxlen = sizeof(sysctl_perf_event_sample_rate), 567 .mode = 0644, 568 .proc_handler = perf_event_max_sample_rate_handler, 569 .extra1 = SYSCTL_ONE, 570 }, 571 { 572 .procname = "perf_cpu_time_max_percent", 573 .data = &sysctl_perf_cpu_time_max_percent, 574 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), 575 .mode = 0644, 576 .proc_handler = perf_cpu_time_max_percent_handler, 577 .extra1 = SYSCTL_ZERO, 578 .extra2 = SYSCTL_ONE_HUNDRED, 579 }, 580 }; 581 582 static int __init init_events_core_sysctls(void) 583 { 584 register_sysctl_init("kernel", events_core_sysctl_table); 585 return 0; 586 } 587 core_initcall(init_events_core_sysctls); 588 589 590 /* 591 * perf samples are done in some very critical code paths (NMIs). 592 * If they take too much CPU time, the system can lock up and not 593 * get any real work done. This will drop the sample rate when 594 * we detect that events are taking too long. 595 */ 596 #define NR_ACCUMULATED_SAMPLES 128 597 static DEFINE_PER_CPU(u64, running_sample_length); 598 599 static u64 __report_avg; 600 static u64 __report_allowed; 601 602 static void perf_duration_warn(struct irq_work *w) 603 { 604 printk_ratelimited(KERN_INFO 605 "perf: interrupt took too long (%lld > %lld), lowering " 606 "kernel.perf_event_max_sample_rate to %d\n", 607 __report_avg, __report_allowed, 608 sysctl_perf_event_sample_rate); 609 } 610 611 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 612 613 void perf_sample_event_took(u64 sample_len_ns) 614 { 615 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 616 u64 running_len; 617 u64 avg_len; 618 u32 max; 619 620 if (max_len == 0) 621 return; 622 623 /* Decay the counter by 1 average sample. */ 624 running_len = __this_cpu_read(running_sample_length); 625 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 626 running_len += sample_len_ns; 627 __this_cpu_write(running_sample_length, running_len); 628 629 /* 630 * Note: this will be biased artificially low until we have 631 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 632 * from having to maintain a count. 633 */ 634 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 635 if (avg_len <= max_len) 636 return; 637 638 __report_avg = avg_len; 639 __report_allowed = max_len; 640 641 /* 642 * Compute a throttle threshold 25% below the current duration. 643 */ 644 avg_len += avg_len / 4; 645 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 646 if (avg_len < max) 647 max /= (u32)avg_len; 648 else 649 max = 1; 650 651 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 652 WRITE_ONCE(max_samples_per_tick, max); 653 654 sysctl_perf_event_sample_rate = max * HZ; 655 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 656 657 if (!irq_work_queue(&perf_duration_work)) { 658 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 659 "kernel.perf_event_max_sample_rate to %d\n", 660 __report_avg, __report_allowed, 661 sysctl_perf_event_sample_rate); 662 } 663 } 664 665 static atomic64_t perf_event_id; 666 667 static void update_context_time(struct perf_event_context *ctx); 668 static u64 perf_event_time(struct perf_event *event); 669 670 void __weak perf_event_print_debug(void) { } 671 672 static inline u64 perf_clock(void) 673 { 674 return local_clock(); 675 } 676 677 static inline u64 perf_event_clock(struct perf_event *event) 678 { 679 return event->clock(); 680 } 681 682 /* 683 * State based event timekeeping... 684 * 685 * The basic idea is to use event->state to determine which (if any) time 686 * fields to increment with the current delta. This means we only need to 687 * update timestamps when we change state or when they are explicitly requested 688 * (read). 689 * 690 * Event groups make things a little more complicated, but not terribly so. The 691 * rules for a group are that if the group leader is OFF the entire group is 692 * OFF, irrespective of what the group member states are. This results in 693 * __perf_effective_state(). 694 * 695 * A further ramification is that when a group leader flips between OFF and 696 * !OFF, we need to update all group member times. 697 * 698 * 699 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 700 * need to make sure the relevant context time is updated before we try and 701 * update our timestamps. 702 */ 703 704 static __always_inline enum perf_event_state 705 __perf_effective_state(struct perf_event *event) 706 { 707 struct perf_event *leader = event->group_leader; 708 709 if (leader->state <= PERF_EVENT_STATE_OFF) 710 return leader->state; 711 712 return event->state; 713 } 714 715 static __always_inline void 716 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 717 { 718 enum perf_event_state state = __perf_effective_state(event); 719 u64 delta = now - event->tstamp; 720 721 *enabled = event->total_time_enabled; 722 if (state >= PERF_EVENT_STATE_INACTIVE) 723 *enabled += delta; 724 725 *running = event->total_time_running; 726 if (state >= PERF_EVENT_STATE_ACTIVE) 727 *running += delta; 728 } 729 730 static void perf_event_update_time(struct perf_event *event) 731 { 732 u64 now = perf_event_time(event); 733 734 __perf_update_times(event, now, &event->total_time_enabled, 735 &event->total_time_running); 736 event->tstamp = now; 737 } 738 739 static void perf_event_update_sibling_time(struct perf_event *leader) 740 { 741 struct perf_event *sibling; 742 743 for_each_sibling_event(sibling, leader) 744 perf_event_update_time(sibling); 745 } 746 747 static void 748 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 749 { 750 if (event->state == state) 751 return; 752 753 perf_event_update_time(event); 754 /* 755 * If a group leader gets enabled/disabled all its siblings 756 * are affected too. 757 */ 758 if ((event->state < 0) ^ (state < 0)) 759 perf_event_update_sibling_time(event); 760 761 WRITE_ONCE(event->state, state); 762 } 763 764 /* 765 * UP store-release, load-acquire 766 */ 767 768 #define __store_release(ptr, val) \ 769 do { \ 770 barrier(); \ 771 WRITE_ONCE(*(ptr), (val)); \ 772 } while (0) 773 774 #define __load_acquire(ptr) \ 775 ({ \ 776 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 777 barrier(); \ 778 ___p; \ 779 }) 780 781 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 782 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 783 if (_cgroup && !_epc->nr_cgroups) \ 784 continue; \ 785 else if (_pmu && _epc->pmu != _pmu) \ 786 continue; \ 787 else 788 789 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 790 { 791 struct perf_event_pmu_context *pmu_ctx; 792 793 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 794 perf_pmu_disable(pmu_ctx->pmu); 795 } 796 797 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 798 { 799 struct perf_event_pmu_context *pmu_ctx; 800 801 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 802 perf_pmu_enable(pmu_ctx->pmu); 803 } 804 805 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 806 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 807 808 #ifdef CONFIG_CGROUP_PERF 809 810 static inline bool 811 perf_cgroup_match(struct perf_event *event) 812 { 813 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 814 815 /* @event doesn't care about cgroup */ 816 if (!event->cgrp) 817 return true; 818 819 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 820 if (!cpuctx->cgrp) 821 return false; 822 823 /* 824 * Cgroup scoping is recursive. An event enabled for a cgroup is 825 * also enabled for all its descendant cgroups. If @cpuctx's 826 * cgroup is a descendant of @event's (the test covers identity 827 * case), it's a match. 828 */ 829 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 830 event->cgrp->css.cgroup); 831 } 832 833 static inline void perf_detach_cgroup(struct perf_event *event) 834 { 835 css_put(&event->cgrp->css); 836 event->cgrp = NULL; 837 } 838 839 static inline int is_cgroup_event(struct perf_event *event) 840 { 841 return event->cgrp != NULL; 842 } 843 844 static inline u64 perf_cgroup_event_time(struct perf_event *event) 845 { 846 struct perf_cgroup_info *t; 847 848 t = per_cpu_ptr(event->cgrp->info, event->cpu); 849 return t->time; 850 } 851 852 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 853 { 854 struct perf_cgroup_info *t; 855 856 t = per_cpu_ptr(event->cgrp->info, event->cpu); 857 if (!__load_acquire(&t->active)) 858 return t->time; 859 now += READ_ONCE(t->timeoffset); 860 return now; 861 } 862 863 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 864 { 865 if (adv) 866 info->time += now - info->timestamp; 867 info->timestamp = now; 868 /* 869 * see update_context_time() 870 */ 871 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 872 } 873 874 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 875 { 876 struct perf_cgroup *cgrp = cpuctx->cgrp; 877 struct cgroup_subsys_state *css; 878 struct perf_cgroup_info *info; 879 880 if (cgrp) { 881 u64 now = perf_clock(); 882 883 for (css = &cgrp->css; css; css = css->parent) { 884 cgrp = container_of(css, struct perf_cgroup, css); 885 info = this_cpu_ptr(cgrp->info); 886 887 __update_cgrp_time(info, now, true); 888 if (final) 889 __store_release(&info->active, 0); 890 } 891 } 892 } 893 894 static inline void update_cgrp_time_from_event(struct perf_event *event) 895 { 896 struct perf_cgroup_info *info; 897 898 /* 899 * ensure we access cgroup data only when needed and 900 * when we know the cgroup is pinned (css_get) 901 */ 902 if (!is_cgroup_event(event)) 903 return; 904 905 info = this_cpu_ptr(event->cgrp->info); 906 /* 907 * Do not update time when cgroup is not active 908 */ 909 if (info->active) 910 __update_cgrp_time(info, perf_clock(), true); 911 } 912 913 static inline void 914 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 915 { 916 struct perf_event_context *ctx = &cpuctx->ctx; 917 struct perf_cgroup *cgrp = cpuctx->cgrp; 918 struct perf_cgroup_info *info; 919 struct cgroup_subsys_state *css; 920 921 /* 922 * ctx->lock held by caller 923 * ensure we do not access cgroup data 924 * unless we have the cgroup pinned (css_get) 925 */ 926 if (!cgrp) 927 return; 928 929 WARN_ON_ONCE(!ctx->nr_cgroups); 930 931 for (css = &cgrp->css; css; css = css->parent) { 932 cgrp = container_of(css, struct perf_cgroup, css); 933 info = this_cpu_ptr(cgrp->info); 934 __update_cgrp_time(info, ctx->timestamp, false); 935 __store_release(&info->active, 1); 936 } 937 } 938 939 /* 940 * reschedule events based on the cgroup constraint of task. 941 */ 942 static void perf_cgroup_switch(struct task_struct *task) 943 { 944 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 945 struct perf_cgroup *cgrp; 946 947 /* 948 * cpuctx->cgrp is set when the first cgroup event enabled, 949 * and is cleared when the last cgroup event disabled. 950 */ 951 if (READ_ONCE(cpuctx->cgrp) == NULL) 952 return; 953 954 cgrp = perf_cgroup_from_task(task, NULL); 955 if (READ_ONCE(cpuctx->cgrp) == cgrp) 956 return; 957 958 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); 959 /* 960 * Re-check, could've raced vs perf_remove_from_context(). 961 */ 962 if (READ_ONCE(cpuctx->cgrp) == NULL) 963 return; 964 965 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 966 967 perf_ctx_disable(&cpuctx->ctx, true); 968 969 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 970 /* 971 * must not be done before ctxswout due 972 * to update_cgrp_time_from_cpuctx() in 973 * ctx_sched_out() 974 */ 975 cpuctx->cgrp = cgrp; 976 /* 977 * set cgrp before ctxsw in to allow 978 * perf_cgroup_set_timestamp() in ctx_sched_in() 979 * to not have to pass task around 980 */ 981 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 982 983 perf_ctx_enable(&cpuctx->ctx, true); 984 } 985 986 static int perf_cgroup_ensure_storage(struct perf_event *event, 987 struct cgroup_subsys_state *css) 988 { 989 struct perf_cpu_context *cpuctx; 990 struct perf_event **storage; 991 int cpu, heap_size, ret = 0; 992 993 /* 994 * Allow storage to have sufficient space for an iterator for each 995 * possibly nested cgroup plus an iterator for events with no cgroup. 996 */ 997 for (heap_size = 1; css; css = css->parent) 998 heap_size++; 999 1000 for_each_possible_cpu(cpu) { 1001 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 1002 if (heap_size <= cpuctx->heap_size) 1003 continue; 1004 1005 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 1006 GFP_KERNEL, cpu_to_node(cpu)); 1007 if (!storage) { 1008 ret = -ENOMEM; 1009 break; 1010 } 1011 1012 raw_spin_lock_irq(&cpuctx->ctx.lock); 1013 if (cpuctx->heap_size < heap_size) { 1014 swap(cpuctx->heap, storage); 1015 if (storage == cpuctx->heap_default) 1016 storage = NULL; 1017 cpuctx->heap_size = heap_size; 1018 } 1019 raw_spin_unlock_irq(&cpuctx->ctx.lock); 1020 1021 kfree(storage); 1022 } 1023 1024 return ret; 1025 } 1026 1027 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 1028 struct perf_event_attr *attr, 1029 struct perf_event *group_leader) 1030 { 1031 struct perf_cgroup *cgrp; 1032 struct cgroup_subsys_state *css; 1033 CLASS(fd, f)(fd); 1034 int ret = 0; 1035 1036 if (fd_empty(f)) 1037 return -EBADF; 1038 1039 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 1040 &perf_event_cgrp_subsys); 1041 if (IS_ERR(css)) 1042 return PTR_ERR(css); 1043 1044 ret = perf_cgroup_ensure_storage(event, css); 1045 if (ret) 1046 return ret; 1047 1048 cgrp = container_of(css, struct perf_cgroup, css); 1049 event->cgrp = cgrp; 1050 1051 /* 1052 * all events in a group must monitor 1053 * the same cgroup because a task belongs 1054 * to only one perf cgroup at a time 1055 */ 1056 if (group_leader && group_leader->cgrp != cgrp) { 1057 perf_detach_cgroup(event); 1058 ret = -EINVAL; 1059 } 1060 return ret; 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 1068 if (!is_cgroup_event(event)) 1069 return; 1070 1071 event->pmu_ctx->nr_cgroups++; 1072 1073 /* 1074 * Because cgroup events are always per-cpu events, 1075 * @ctx == &cpuctx->ctx. 1076 */ 1077 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1078 1079 if (ctx->nr_cgroups++) 1080 return; 1081 1082 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1083 } 1084 1085 static inline void 1086 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1087 { 1088 struct perf_cpu_context *cpuctx; 1089 1090 if (!is_cgroup_event(event)) 1091 return; 1092 1093 event->pmu_ctx->nr_cgroups--; 1094 1095 /* 1096 * Because cgroup events are always per-cpu events, 1097 * @ctx == &cpuctx->ctx. 1098 */ 1099 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1100 1101 if (--ctx->nr_cgroups) 1102 return; 1103 1104 cpuctx->cgrp = NULL; 1105 } 1106 1107 #else /* !CONFIG_CGROUP_PERF */ 1108 1109 static inline bool 1110 perf_cgroup_match(struct perf_event *event) 1111 { 1112 return true; 1113 } 1114 1115 static inline void perf_detach_cgroup(struct perf_event *event) 1116 {} 1117 1118 static inline int is_cgroup_event(struct perf_event *event) 1119 { 1120 return 0; 1121 } 1122 1123 static inline void update_cgrp_time_from_event(struct perf_event *event) 1124 { 1125 } 1126 1127 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1128 bool final) 1129 { 1130 } 1131 1132 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1133 struct perf_event_attr *attr, 1134 struct perf_event *group_leader) 1135 { 1136 return -EINVAL; 1137 } 1138 1139 static inline void 1140 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1141 { 1142 } 1143 1144 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1145 { 1146 return 0; 1147 } 1148 1149 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1150 { 1151 return 0; 1152 } 1153 1154 static inline void 1155 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1156 { 1157 } 1158 1159 static inline void 1160 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1161 { 1162 } 1163 1164 static void perf_cgroup_switch(struct task_struct *task) 1165 { 1166 } 1167 #endif 1168 1169 /* 1170 * set default to be dependent on timer tick just 1171 * like original code 1172 */ 1173 #define PERF_CPU_HRTIMER (1000 / HZ) 1174 /* 1175 * function must be called with interrupts disabled 1176 */ 1177 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1178 { 1179 struct perf_cpu_pmu_context *cpc; 1180 bool rotations; 1181 1182 lockdep_assert_irqs_disabled(); 1183 1184 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1185 rotations = perf_rotate_context(cpc); 1186 1187 raw_spin_lock(&cpc->hrtimer_lock); 1188 if (rotations) 1189 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1190 else 1191 cpc->hrtimer_active = 0; 1192 raw_spin_unlock(&cpc->hrtimer_lock); 1193 1194 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1195 } 1196 1197 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1198 { 1199 struct hrtimer *timer = &cpc->hrtimer; 1200 struct pmu *pmu = cpc->epc.pmu; 1201 u64 interval; 1202 1203 /* 1204 * check default is sane, if not set then force to 1205 * default interval (1/tick) 1206 */ 1207 interval = pmu->hrtimer_interval_ms; 1208 if (interval < 1) 1209 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1210 1211 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1212 1213 raw_spin_lock_init(&cpc->hrtimer_lock); 1214 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, 1215 HRTIMER_MODE_ABS_PINNED_HARD); 1216 } 1217 1218 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1219 { 1220 struct hrtimer *timer = &cpc->hrtimer; 1221 unsigned long flags; 1222 1223 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1224 if (!cpc->hrtimer_active) { 1225 cpc->hrtimer_active = 1; 1226 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1227 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1228 } 1229 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1230 1231 return 0; 1232 } 1233 1234 static int perf_mux_hrtimer_restart_ipi(void *arg) 1235 { 1236 return perf_mux_hrtimer_restart(arg); 1237 } 1238 1239 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) 1240 { 1241 return *this_cpu_ptr(pmu->cpu_pmu_context); 1242 } 1243 1244 void perf_pmu_disable(struct pmu *pmu) 1245 { 1246 int *count = &this_cpc(pmu)->pmu_disable_count; 1247 if (!(*count)++) 1248 pmu->pmu_disable(pmu); 1249 } 1250 1251 void perf_pmu_enable(struct pmu *pmu) 1252 { 1253 int *count = &this_cpc(pmu)->pmu_disable_count; 1254 if (!--(*count)) 1255 pmu->pmu_enable(pmu); 1256 } 1257 1258 static void perf_assert_pmu_disabled(struct pmu *pmu) 1259 { 1260 int *count = &this_cpc(pmu)->pmu_disable_count; 1261 WARN_ON_ONCE(*count == 0); 1262 } 1263 1264 static inline void perf_pmu_read(struct perf_event *event) 1265 { 1266 if (event->state == PERF_EVENT_STATE_ACTIVE) 1267 event->pmu->read(event); 1268 } 1269 1270 static void get_ctx(struct perf_event_context *ctx) 1271 { 1272 refcount_inc(&ctx->refcount); 1273 } 1274 1275 static void free_ctx(struct rcu_head *head) 1276 { 1277 struct perf_event_context *ctx; 1278 1279 ctx = container_of(head, struct perf_event_context, rcu_head); 1280 kfree(ctx); 1281 } 1282 1283 static void put_ctx(struct perf_event_context *ctx) 1284 { 1285 if (refcount_dec_and_test(&ctx->refcount)) { 1286 if (ctx->parent_ctx) 1287 put_ctx(ctx->parent_ctx); 1288 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1289 put_task_struct(ctx->task); 1290 call_rcu(&ctx->rcu_head, free_ctx); 1291 } else { 1292 smp_mb__after_atomic(); /* pairs with wait_var_event() */ 1293 if (ctx->task == TASK_TOMBSTONE) 1294 wake_up_var(&ctx->refcount); 1295 } 1296 } 1297 1298 /* 1299 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1300 * perf_pmu_migrate_context() we need some magic. 1301 * 1302 * Those places that change perf_event::ctx will hold both 1303 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1304 * 1305 * Lock ordering is by mutex address. There are two other sites where 1306 * perf_event_context::mutex nests and those are: 1307 * 1308 * - perf_event_exit_task_context() [ child , 0 ] 1309 * perf_event_exit_event() 1310 * put_event() [ parent, 1 ] 1311 * 1312 * - perf_event_init_context() [ parent, 0 ] 1313 * inherit_task_group() 1314 * inherit_group() 1315 * inherit_event() 1316 * perf_event_alloc() 1317 * perf_init_event() 1318 * perf_try_init_event() [ child , 1 ] 1319 * 1320 * While it appears there is an obvious deadlock here -- the parent and child 1321 * nesting levels are inverted between the two. This is in fact safe because 1322 * life-time rules separate them. That is an exiting task cannot fork, and a 1323 * spawning task cannot (yet) exit. 1324 * 1325 * But remember that these are parent<->child context relations, and 1326 * migration does not affect children, therefore these two orderings should not 1327 * interact. 1328 * 1329 * The change in perf_event::ctx does not affect children (as claimed above) 1330 * because the sys_perf_event_open() case will install a new event and break 1331 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1332 * concerned with cpuctx and that doesn't have children. 1333 * 1334 * The places that change perf_event::ctx will issue: 1335 * 1336 * perf_remove_from_context(); 1337 * synchronize_rcu(); 1338 * perf_install_in_context(); 1339 * 1340 * to affect the change. The remove_from_context() + synchronize_rcu() should 1341 * quiesce the event, after which we can install it in the new location. This 1342 * means that only external vectors (perf_fops, prctl) can perturb the event 1343 * while in transit. Therefore all such accessors should also acquire 1344 * perf_event_context::mutex to serialize against this. 1345 * 1346 * However; because event->ctx can change while we're waiting to acquire 1347 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1348 * function. 1349 * 1350 * Lock order: 1351 * exec_update_lock 1352 * task_struct::perf_event_mutex 1353 * perf_event_context::mutex 1354 * perf_event::child_mutex; 1355 * perf_event_context::lock 1356 * mmap_lock 1357 * perf_event::mmap_mutex 1358 * perf_buffer::aux_mutex 1359 * perf_addr_filters_head::lock 1360 * 1361 * cpu_hotplug_lock 1362 * pmus_lock 1363 * cpuctx->mutex / perf_event_context::mutex 1364 */ 1365 static struct perf_event_context * 1366 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 again: 1371 rcu_read_lock(); 1372 ctx = READ_ONCE(event->ctx); 1373 if (!refcount_inc_not_zero(&ctx->refcount)) { 1374 rcu_read_unlock(); 1375 goto again; 1376 } 1377 rcu_read_unlock(); 1378 1379 mutex_lock_nested(&ctx->mutex, nesting); 1380 if (event->ctx != ctx) { 1381 mutex_unlock(&ctx->mutex); 1382 put_ctx(ctx); 1383 goto again; 1384 } 1385 1386 return ctx; 1387 } 1388 1389 static inline struct perf_event_context * 1390 perf_event_ctx_lock(struct perf_event *event) 1391 { 1392 return perf_event_ctx_lock_nested(event, 0); 1393 } 1394 1395 static void perf_event_ctx_unlock(struct perf_event *event, 1396 struct perf_event_context *ctx) 1397 { 1398 mutex_unlock(&ctx->mutex); 1399 put_ctx(ctx); 1400 } 1401 1402 /* 1403 * This must be done under the ctx->lock, such as to serialize against 1404 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1405 * calling scheduler related locks and ctx->lock nests inside those. 1406 */ 1407 static __must_check struct perf_event_context * 1408 unclone_ctx(struct perf_event_context *ctx) 1409 { 1410 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1411 1412 lockdep_assert_held(&ctx->lock); 1413 1414 if (parent_ctx) 1415 ctx->parent_ctx = NULL; 1416 ctx->generation++; 1417 1418 return parent_ctx; 1419 } 1420 1421 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1422 enum pid_type type) 1423 { 1424 u32 nr; 1425 /* 1426 * only top level events have the pid namespace they were created in 1427 */ 1428 if (event->parent) 1429 event = event->parent; 1430 1431 nr = __task_pid_nr_ns(p, type, event->ns); 1432 /* avoid -1 if it is idle thread or runs in another ns */ 1433 if (!nr && !pid_alive(p)) 1434 nr = -1; 1435 return nr; 1436 } 1437 1438 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1439 { 1440 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1441 } 1442 1443 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1444 { 1445 return perf_event_pid_type(event, p, PIDTYPE_PID); 1446 } 1447 1448 /* 1449 * If we inherit events we want to return the parent event id 1450 * to userspace. 1451 */ 1452 static u64 primary_event_id(struct perf_event *event) 1453 { 1454 u64 id = event->id; 1455 1456 if (event->parent) 1457 id = event->parent->id; 1458 1459 return id; 1460 } 1461 1462 /* 1463 * Get the perf_event_context for a task and lock it. 1464 * 1465 * This has to cope with the fact that until it is locked, 1466 * the context could get moved to another task. 1467 */ 1468 static struct perf_event_context * 1469 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1470 { 1471 struct perf_event_context *ctx; 1472 1473 retry: 1474 /* 1475 * One of the few rules of preemptible RCU is that one cannot do 1476 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1477 * part of the read side critical section was irqs-enabled -- see 1478 * rcu_read_unlock_special(). 1479 * 1480 * Since ctx->lock nests under rq->lock we must ensure the entire read 1481 * side critical section has interrupts disabled. 1482 */ 1483 local_irq_save(*flags); 1484 rcu_read_lock(); 1485 ctx = rcu_dereference(task->perf_event_ctxp); 1486 if (ctx) { 1487 /* 1488 * If this context is a clone of another, it might 1489 * get swapped for another underneath us by 1490 * perf_event_task_sched_out, though the 1491 * rcu_read_lock() protects us from any context 1492 * getting freed. Lock the context and check if it 1493 * got swapped before we could get the lock, and retry 1494 * if so. If we locked the right context, then it 1495 * can't get swapped on us any more. 1496 */ 1497 raw_spin_lock(&ctx->lock); 1498 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1499 raw_spin_unlock(&ctx->lock); 1500 rcu_read_unlock(); 1501 local_irq_restore(*flags); 1502 goto retry; 1503 } 1504 1505 if (ctx->task == TASK_TOMBSTONE || 1506 !refcount_inc_not_zero(&ctx->refcount)) { 1507 raw_spin_unlock(&ctx->lock); 1508 ctx = NULL; 1509 } else { 1510 WARN_ON_ONCE(ctx->task != task); 1511 } 1512 } 1513 rcu_read_unlock(); 1514 if (!ctx) 1515 local_irq_restore(*flags); 1516 return ctx; 1517 } 1518 1519 /* 1520 * Get the context for a task and increment its pin_count so it 1521 * can't get swapped to another task. This also increments its 1522 * reference count so that the context can't get freed. 1523 */ 1524 static struct perf_event_context * 1525 perf_pin_task_context(struct task_struct *task) 1526 { 1527 struct perf_event_context *ctx; 1528 unsigned long flags; 1529 1530 ctx = perf_lock_task_context(task, &flags); 1531 if (ctx) { 1532 ++ctx->pin_count; 1533 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1534 } 1535 return ctx; 1536 } 1537 1538 static void perf_unpin_context(struct perf_event_context *ctx) 1539 { 1540 unsigned long flags; 1541 1542 raw_spin_lock_irqsave(&ctx->lock, flags); 1543 --ctx->pin_count; 1544 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1545 } 1546 1547 /* 1548 * Update the record of the current time in a context. 1549 */ 1550 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1551 { 1552 u64 now = perf_clock(); 1553 1554 lockdep_assert_held(&ctx->lock); 1555 1556 if (adv) 1557 ctx->time += now - ctx->timestamp; 1558 ctx->timestamp = now; 1559 1560 /* 1561 * The above: time' = time + (now - timestamp), can be re-arranged 1562 * into: time` = now + (time - timestamp), which gives a single value 1563 * offset to compute future time without locks on. 1564 * 1565 * See perf_event_time_now(), which can be used from NMI context where 1566 * it's (obviously) not possible to acquire ctx->lock in order to read 1567 * both the above values in a consistent manner. 1568 */ 1569 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1570 } 1571 1572 static void update_context_time(struct perf_event_context *ctx) 1573 { 1574 __update_context_time(ctx, true); 1575 } 1576 1577 static u64 perf_event_time(struct perf_event *event) 1578 { 1579 struct perf_event_context *ctx = event->ctx; 1580 1581 if (unlikely(!ctx)) 1582 return 0; 1583 1584 if (is_cgroup_event(event)) 1585 return perf_cgroup_event_time(event); 1586 1587 return ctx->time; 1588 } 1589 1590 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1591 { 1592 struct perf_event_context *ctx = event->ctx; 1593 1594 if (unlikely(!ctx)) 1595 return 0; 1596 1597 if (is_cgroup_event(event)) 1598 return perf_cgroup_event_time_now(event, now); 1599 1600 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1601 return ctx->time; 1602 1603 now += READ_ONCE(ctx->timeoffset); 1604 return now; 1605 } 1606 1607 static enum event_type_t get_event_type(struct perf_event *event) 1608 { 1609 struct perf_event_context *ctx = event->ctx; 1610 enum event_type_t event_type; 1611 1612 lockdep_assert_held(&ctx->lock); 1613 1614 /* 1615 * It's 'group type', really, because if our group leader is 1616 * pinned, so are we. 1617 */ 1618 if (event->group_leader != event) 1619 event = event->group_leader; 1620 1621 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1622 if (!ctx->task) 1623 event_type |= EVENT_CPU; 1624 1625 return event_type; 1626 } 1627 1628 /* 1629 * Helper function to initialize event group nodes. 1630 */ 1631 static void init_event_group(struct perf_event *event) 1632 { 1633 RB_CLEAR_NODE(&event->group_node); 1634 event->group_index = 0; 1635 } 1636 1637 /* 1638 * Extract pinned or flexible groups from the context 1639 * based on event attrs bits. 1640 */ 1641 static struct perf_event_groups * 1642 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1643 { 1644 if (event->attr.pinned) 1645 return &ctx->pinned_groups; 1646 else 1647 return &ctx->flexible_groups; 1648 } 1649 1650 /* 1651 * Helper function to initializes perf_event_group trees. 1652 */ 1653 static void perf_event_groups_init(struct perf_event_groups *groups) 1654 { 1655 groups->tree = RB_ROOT; 1656 groups->index = 0; 1657 } 1658 1659 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1660 { 1661 struct cgroup *cgroup = NULL; 1662 1663 #ifdef CONFIG_CGROUP_PERF 1664 if (event->cgrp) 1665 cgroup = event->cgrp->css.cgroup; 1666 #endif 1667 1668 return cgroup; 1669 } 1670 1671 /* 1672 * Compare function for event groups; 1673 * 1674 * Implements complex key that first sorts by CPU and then by virtual index 1675 * which provides ordering when rotating groups for the same CPU. 1676 */ 1677 static __always_inline int 1678 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1679 const struct cgroup *left_cgroup, const u64 left_group_index, 1680 const struct perf_event *right) 1681 { 1682 if (left_cpu < right->cpu) 1683 return -1; 1684 if (left_cpu > right->cpu) 1685 return 1; 1686 1687 if (left_pmu) { 1688 if (left_pmu < right->pmu_ctx->pmu) 1689 return -1; 1690 if (left_pmu > right->pmu_ctx->pmu) 1691 return 1; 1692 } 1693 1694 #ifdef CONFIG_CGROUP_PERF 1695 { 1696 const struct cgroup *right_cgroup = event_cgroup(right); 1697 1698 if (left_cgroup != right_cgroup) { 1699 if (!left_cgroup) { 1700 /* 1701 * Left has no cgroup but right does, no 1702 * cgroups come first. 1703 */ 1704 return -1; 1705 } 1706 if (!right_cgroup) { 1707 /* 1708 * Right has no cgroup but left does, no 1709 * cgroups come first. 1710 */ 1711 return 1; 1712 } 1713 /* Two dissimilar cgroups, order by id. */ 1714 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1715 return -1; 1716 1717 return 1; 1718 } 1719 } 1720 #endif 1721 1722 if (left_group_index < right->group_index) 1723 return -1; 1724 if (left_group_index > right->group_index) 1725 return 1; 1726 1727 return 0; 1728 } 1729 1730 #define __node_2_pe(node) \ 1731 rb_entry((node), struct perf_event, group_node) 1732 1733 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1734 { 1735 struct perf_event *e = __node_2_pe(a); 1736 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1737 e->group_index, __node_2_pe(b)) < 0; 1738 } 1739 1740 struct __group_key { 1741 int cpu; 1742 struct pmu *pmu; 1743 struct cgroup *cgroup; 1744 }; 1745 1746 static inline int __group_cmp(const void *key, const struct rb_node *node) 1747 { 1748 const struct __group_key *a = key; 1749 const struct perf_event *b = __node_2_pe(node); 1750 1751 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1752 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1753 } 1754 1755 static inline int 1756 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1757 { 1758 const struct __group_key *a = key; 1759 const struct perf_event *b = __node_2_pe(node); 1760 1761 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1762 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1763 b->group_index, b); 1764 } 1765 1766 /* 1767 * Insert @event into @groups' tree; using 1768 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1769 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1770 */ 1771 static void 1772 perf_event_groups_insert(struct perf_event_groups *groups, 1773 struct perf_event *event) 1774 { 1775 event->group_index = ++groups->index; 1776 1777 rb_add(&event->group_node, &groups->tree, __group_less); 1778 } 1779 1780 /* 1781 * Helper function to insert event into the pinned or flexible groups. 1782 */ 1783 static void 1784 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1785 { 1786 struct perf_event_groups *groups; 1787 1788 groups = get_event_groups(event, ctx); 1789 perf_event_groups_insert(groups, event); 1790 } 1791 1792 /* 1793 * Delete a group from a tree. 1794 */ 1795 static void 1796 perf_event_groups_delete(struct perf_event_groups *groups, 1797 struct perf_event *event) 1798 { 1799 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1800 RB_EMPTY_ROOT(&groups->tree)); 1801 1802 rb_erase(&event->group_node, &groups->tree); 1803 init_event_group(event); 1804 } 1805 1806 /* 1807 * Helper function to delete event from its groups. 1808 */ 1809 static void 1810 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1811 { 1812 struct perf_event_groups *groups; 1813 1814 groups = get_event_groups(event, ctx); 1815 perf_event_groups_delete(groups, event); 1816 } 1817 1818 /* 1819 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1820 */ 1821 static struct perf_event * 1822 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1823 struct pmu *pmu, struct cgroup *cgrp) 1824 { 1825 struct __group_key key = { 1826 .cpu = cpu, 1827 .pmu = pmu, 1828 .cgroup = cgrp, 1829 }; 1830 struct rb_node *node; 1831 1832 node = rb_find_first(&key, &groups->tree, __group_cmp); 1833 if (node) 1834 return __node_2_pe(node); 1835 1836 return NULL; 1837 } 1838 1839 static struct perf_event * 1840 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1841 { 1842 struct __group_key key = { 1843 .cpu = event->cpu, 1844 .pmu = pmu, 1845 .cgroup = event_cgroup(event), 1846 }; 1847 struct rb_node *next; 1848 1849 next = rb_next_match(&key, &event->group_node, __group_cmp); 1850 if (next) 1851 return __node_2_pe(next); 1852 1853 return NULL; 1854 } 1855 1856 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1857 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1858 event; event = perf_event_groups_next(event, pmu)) 1859 1860 /* 1861 * Iterate through the whole groups tree. 1862 */ 1863 #define perf_event_groups_for_each(event, groups) \ 1864 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1865 typeof(*event), group_node); event; \ 1866 event = rb_entry_safe(rb_next(&event->group_node), \ 1867 typeof(*event), group_node)) 1868 1869 /* 1870 * Does the event attribute request inherit with PERF_SAMPLE_READ 1871 */ 1872 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1873 { 1874 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1875 } 1876 1877 /* 1878 * Add an event from the lists for its context. 1879 * Must be called with ctx->mutex and ctx->lock held. 1880 */ 1881 static void 1882 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1883 { 1884 lockdep_assert_held(&ctx->lock); 1885 1886 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1887 event->attach_state |= PERF_ATTACH_CONTEXT; 1888 1889 event->tstamp = perf_event_time(event); 1890 1891 /* 1892 * If we're a stand alone event or group leader, we go to the context 1893 * list, group events are kept attached to the group so that 1894 * perf_group_detach can, at all times, locate all siblings. 1895 */ 1896 if (event->group_leader == event) { 1897 event->group_caps = event->event_caps; 1898 add_event_to_groups(event, ctx); 1899 } 1900 1901 list_add_rcu(&event->event_entry, &ctx->event_list); 1902 ctx->nr_events++; 1903 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1904 ctx->nr_user++; 1905 if (event->attr.inherit_stat) 1906 ctx->nr_stat++; 1907 if (has_inherit_and_sample_read(&event->attr)) 1908 local_inc(&ctx->nr_no_switch_fast); 1909 1910 if (event->state > PERF_EVENT_STATE_OFF) 1911 perf_cgroup_event_enable(event, ctx); 1912 1913 ctx->generation++; 1914 event->pmu_ctx->nr_events++; 1915 } 1916 1917 /* 1918 * Initialize event state based on the perf_event_attr::disabled. 1919 */ 1920 static inline void perf_event__state_init(struct perf_event *event) 1921 { 1922 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1923 PERF_EVENT_STATE_INACTIVE; 1924 } 1925 1926 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1927 { 1928 int entry = sizeof(u64); /* value */ 1929 int size = 0; 1930 int nr = 1; 1931 1932 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1933 size += sizeof(u64); 1934 1935 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1936 size += sizeof(u64); 1937 1938 if (read_format & PERF_FORMAT_ID) 1939 entry += sizeof(u64); 1940 1941 if (read_format & PERF_FORMAT_LOST) 1942 entry += sizeof(u64); 1943 1944 if (read_format & PERF_FORMAT_GROUP) { 1945 nr += nr_siblings; 1946 size += sizeof(u64); 1947 } 1948 1949 /* 1950 * Since perf_event_validate_size() limits this to 16k and inhibits 1951 * adding more siblings, this will never overflow. 1952 */ 1953 return size + nr * entry; 1954 } 1955 1956 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1957 { 1958 struct perf_sample_data *data; 1959 u16 size = 0; 1960 1961 if (sample_type & PERF_SAMPLE_IP) 1962 size += sizeof(data->ip); 1963 1964 if (sample_type & PERF_SAMPLE_ADDR) 1965 size += sizeof(data->addr); 1966 1967 if (sample_type & PERF_SAMPLE_PERIOD) 1968 size += sizeof(data->period); 1969 1970 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1971 size += sizeof(data->weight.full); 1972 1973 if (sample_type & PERF_SAMPLE_READ) 1974 size += event->read_size; 1975 1976 if (sample_type & PERF_SAMPLE_DATA_SRC) 1977 size += sizeof(data->data_src.val); 1978 1979 if (sample_type & PERF_SAMPLE_TRANSACTION) 1980 size += sizeof(data->txn); 1981 1982 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1983 size += sizeof(data->phys_addr); 1984 1985 if (sample_type & PERF_SAMPLE_CGROUP) 1986 size += sizeof(data->cgroup); 1987 1988 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1989 size += sizeof(data->data_page_size); 1990 1991 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1992 size += sizeof(data->code_page_size); 1993 1994 event->header_size = size; 1995 } 1996 1997 /* 1998 * Called at perf_event creation and when events are attached/detached from a 1999 * group. 2000 */ 2001 static void perf_event__header_size(struct perf_event *event) 2002 { 2003 event->read_size = 2004 __perf_event_read_size(event->attr.read_format, 2005 event->group_leader->nr_siblings); 2006 __perf_event_header_size(event, event->attr.sample_type); 2007 } 2008 2009 static void perf_event__id_header_size(struct perf_event *event) 2010 { 2011 struct perf_sample_data *data; 2012 u64 sample_type = event->attr.sample_type; 2013 u16 size = 0; 2014 2015 if (sample_type & PERF_SAMPLE_TID) 2016 size += sizeof(data->tid_entry); 2017 2018 if (sample_type & PERF_SAMPLE_TIME) 2019 size += sizeof(data->time); 2020 2021 if (sample_type & PERF_SAMPLE_IDENTIFIER) 2022 size += sizeof(data->id); 2023 2024 if (sample_type & PERF_SAMPLE_ID) 2025 size += sizeof(data->id); 2026 2027 if (sample_type & PERF_SAMPLE_STREAM_ID) 2028 size += sizeof(data->stream_id); 2029 2030 if (sample_type & PERF_SAMPLE_CPU) 2031 size += sizeof(data->cpu_entry); 2032 2033 event->id_header_size = size; 2034 } 2035 2036 /* 2037 * Check that adding an event to the group does not result in anybody 2038 * overflowing the 64k event limit imposed by the output buffer. 2039 * 2040 * Specifically, check that the read_size for the event does not exceed 16k, 2041 * read_size being the one term that grows with groups size. Since read_size 2042 * depends on per-event read_format, also (re)check the existing events. 2043 * 2044 * This leaves 48k for the constant size fields and things like callchains, 2045 * branch stacks and register sets. 2046 */ 2047 static bool perf_event_validate_size(struct perf_event *event) 2048 { 2049 struct perf_event *sibling, *group_leader = event->group_leader; 2050 2051 if (__perf_event_read_size(event->attr.read_format, 2052 group_leader->nr_siblings + 1) > 16*1024) 2053 return false; 2054 2055 if (__perf_event_read_size(group_leader->attr.read_format, 2056 group_leader->nr_siblings + 1) > 16*1024) 2057 return false; 2058 2059 /* 2060 * When creating a new group leader, group_leader->ctx is initialized 2061 * after the size has been validated, but we cannot safely use 2062 * for_each_sibling_event() until group_leader->ctx is set. A new group 2063 * leader cannot have any siblings yet, so we can safely skip checking 2064 * the non-existent siblings. 2065 */ 2066 if (event == group_leader) 2067 return true; 2068 2069 for_each_sibling_event(sibling, group_leader) { 2070 if (__perf_event_read_size(sibling->attr.read_format, 2071 group_leader->nr_siblings + 1) > 16*1024) 2072 return false; 2073 } 2074 2075 return true; 2076 } 2077 2078 static void perf_group_attach(struct perf_event *event) 2079 { 2080 struct perf_event *group_leader = event->group_leader, *pos; 2081 2082 lockdep_assert_held(&event->ctx->lock); 2083 2084 /* 2085 * We can have double attach due to group movement (move_group) in 2086 * perf_event_open(). 2087 */ 2088 if (event->attach_state & PERF_ATTACH_GROUP) 2089 return; 2090 2091 event->attach_state |= PERF_ATTACH_GROUP; 2092 2093 if (group_leader == event) 2094 return; 2095 2096 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2097 2098 group_leader->group_caps &= event->event_caps; 2099 2100 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2101 group_leader->nr_siblings++; 2102 group_leader->group_generation++; 2103 2104 perf_event__header_size(group_leader); 2105 2106 for_each_sibling_event(pos, group_leader) 2107 perf_event__header_size(pos); 2108 } 2109 2110 /* 2111 * Remove an event from the lists for its context. 2112 * Must be called with ctx->mutex and ctx->lock held. 2113 */ 2114 static void 2115 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2116 { 2117 WARN_ON_ONCE(event->ctx != ctx); 2118 lockdep_assert_held(&ctx->lock); 2119 2120 /* 2121 * We can have double detach due to exit/hot-unplug + close. 2122 */ 2123 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2124 return; 2125 2126 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2127 2128 ctx->nr_events--; 2129 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2130 ctx->nr_user--; 2131 if (event->attr.inherit_stat) 2132 ctx->nr_stat--; 2133 if (has_inherit_and_sample_read(&event->attr)) 2134 local_dec(&ctx->nr_no_switch_fast); 2135 2136 list_del_rcu(&event->event_entry); 2137 2138 if (event->group_leader == event) 2139 del_event_from_groups(event, ctx); 2140 2141 ctx->generation++; 2142 event->pmu_ctx->nr_events--; 2143 } 2144 2145 static int 2146 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2147 { 2148 if (!has_aux(aux_event)) 2149 return 0; 2150 2151 if (!event->pmu->aux_output_match) 2152 return 0; 2153 2154 return event->pmu->aux_output_match(aux_event); 2155 } 2156 2157 static void put_event(struct perf_event *event); 2158 static void __event_disable(struct perf_event *event, 2159 struct perf_event_context *ctx, 2160 enum perf_event_state state); 2161 2162 static void perf_put_aux_event(struct perf_event *event) 2163 { 2164 struct perf_event_context *ctx = event->ctx; 2165 struct perf_event *iter; 2166 2167 /* 2168 * If event uses aux_event tear down the link 2169 */ 2170 if (event->aux_event) { 2171 iter = event->aux_event; 2172 event->aux_event = NULL; 2173 put_event(iter); 2174 return; 2175 } 2176 2177 /* 2178 * If the event is an aux_event, tear down all links to 2179 * it from other events. 2180 */ 2181 for_each_sibling_event(iter, event) { 2182 if (iter->aux_event != event) 2183 continue; 2184 2185 iter->aux_event = NULL; 2186 put_event(event); 2187 2188 /* 2189 * If it's ACTIVE, schedule it out and put it into ERROR 2190 * state so that we don't try to schedule it again. Note 2191 * that perf_event_enable() will clear the ERROR status. 2192 */ 2193 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR); 2194 } 2195 } 2196 2197 static bool perf_need_aux_event(struct perf_event *event) 2198 { 2199 return event->attr.aux_output || has_aux_action(event); 2200 } 2201 2202 static int perf_get_aux_event(struct perf_event *event, 2203 struct perf_event *group_leader) 2204 { 2205 /* 2206 * Our group leader must be an aux event if we want to be 2207 * an aux_output. This way, the aux event will precede its 2208 * aux_output events in the group, and therefore will always 2209 * schedule first. 2210 */ 2211 if (!group_leader) 2212 return 0; 2213 2214 /* 2215 * aux_output and aux_sample_size are mutually exclusive. 2216 */ 2217 if (event->attr.aux_output && event->attr.aux_sample_size) 2218 return 0; 2219 2220 if (event->attr.aux_output && 2221 !perf_aux_output_match(event, group_leader)) 2222 return 0; 2223 2224 if ((event->attr.aux_pause || event->attr.aux_resume) && 2225 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2226 return 0; 2227 2228 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2229 return 0; 2230 2231 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2232 return 0; 2233 2234 /* 2235 * Link aux_outputs to their aux event; this is undone in 2236 * perf_group_detach() by perf_put_aux_event(). When the 2237 * group in torn down, the aux_output events loose their 2238 * link to the aux_event and can't schedule any more. 2239 */ 2240 event->aux_event = group_leader; 2241 2242 return 1; 2243 } 2244 2245 static inline struct list_head *get_event_list(struct perf_event *event) 2246 { 2247 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2248 &event->pmu_ctx->flexible_active; 2249 } 2250 2251 static void perf_group_detach(struct perf_event *event) 2252 { 2253 struct perf_event *leader = event->group_leader; 2254 struct perf_event *sibling, *tmp; 2255 struct perf_event_context *ctx = event->ctx; 2256 2257 lockdep_assert_held(&ctx->lock); 2258 2259 /* 2260 * We can have double detach due to exit/hot-unplug + close. 2261 */ 2262 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2263 return; 2264 2265 event->attach_state &= ~PERF_ATTACH_GROUP; 2266 2267 perf_put_aux_event(event); 2268 2269 /* 2270 * If this is a sibling, remove it from its group. 2271 */ 2272 if (leader != event) { 2273 list_del_init(&event->sibling_list); 2274 event->group_leader->nr_siblings--; 2275 event->group_leader->group_generation++; 2276 goto out; 2277 } 2278 2279 /* 2280 * If this was a group event with sibling events then 2281 * upgrade the siblings to singleton events by adding them 2282 * to whatever list we are on. 2283 */ 2284 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2285 2286 /* 2287 * Events that have PERF_EV_CAP_SIBLING require being part of 2288 * a group and cannot exist on their own, schedule them out 2289 * and move them into the ERROR state. Also see 2290 * _perf_event_enable(), it will not be able to recover this 2291 * ERROR state. 2292 */ 2293 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2294 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR); 2295 2296 sibling->group_leader = sibling; 2297 list_del_init(&sibling->sibling_list); 2298 2299 /* Inherit group flags from the previous leader */ 2300 sibling->group_caps = event->group_caps; 2301 2302 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2303 add_event_to_groups(sibling, event->ctx); 2304 2305 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2306 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2307 } 2308 2309 WARN_ON_ONCE(sibling->ctx != event->ctx); 2310 } 2311 2312 out: 2313 for_each_sibling_event(tmp, leader) 2314 perf_event__header_size(tmp); 2315 2316 perf_event__header_size(leader); 2317 } 2318 2319 static void sync_child_event(struct perf_event *child_event); 2320 2321 static void perf_child_detach(struct perf_event *event) 2322 { 2323 struct perf_event *parent_event = event->parent; 2324 2325 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2326 return; 2327 2328 event->attach_state &= ~PERF_ATTACH_CHILD; 2329 2330 if (WARN_ON_ONCE(!parent_event)) 2331 return; 2332 2333 /* 2334 * Can't check this from an IPI, the holder is likey another CPU. 2335 * 2336 lockdep_assert_held(&parent_event->child_mutex); 2337 */ 2338 2339 sync_child_event(event); 2340 list_del_init(&event->child_list); 2341 } 2342 2343 static bool is_orphaned_event(struct perf_event *event) 2344 { 2345 return event->state == PERF_EVENT_STATE_DEAD; 2346 } 2347 2348 static inline int 2349 event_filter_match(struct perf_event *event) 2350 { 2351 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2352 perf_cgroup_match(event); 2353 } 2354 2355 static inline bool is_event_in_freq_mode(struct perf_event *event) 2356 { 2357 return event->attr.freq && event->attr.sample_freq; 2358 } 2359 2360 static void 2361 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2362 { 2363 struct perf_event_pmu_context *epc = event->pmu_ctx; 2364 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2365 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2366 2367 // XXX cpc serialization, probably per-cpu IRQ disabled 2368 2369 WARN_ON_ONCE(event->ctx != ctx); 2370 lockdep_assert_held(&ctx->lock); 2371 2372 if (event->state != PERF_EVENT_STATE_ACTIVE) 2373 return; 2374 2375 /* 2376 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2377 * we can schedule events _OUT_ individually through things like 2378 * __perf_remove_from_context(). 2379 */ 2380 list_del_init(&event->active_list); 2381 2382 perf_pmu_disable(event->pmu); 2383 2384 event->pmu->del(event, 0); 2385 event->oncpu = -1; 2386 2387 if (event->pending_disable) { 2388 event->pending_disable = 0; 2389 perf_cgroup_event_disable(event, ctx); 2390 state = PERF_EVENT_STATE_OFF; 2391 } 2392 2393 perf_event_set_state(event, state); 2394 2395 if (!is_software_event(event)) 2396 cpc->active_oncpu--; 2397 if (is_event_in_freq_mode(event)) { 2398 ctx->nr_freq--; 2399 epc->nr_freq--; 2400 } 2401 if (event->attr.exclusive || !cpc->active_oncpu) 2402 cpc->exclusive = 0; 2403 2404 perf_pmu_enable(event->pmu); 2405 } 2406 2407 static void 2408 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2409 { 2410 struct perf_event *event; 2411 2412 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2413 return; 2414 2415 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2416 2417 event_sched_out(group_event, ctx); 2418 2419 /* 2420 * Schedule out siblings (if any): 2421 */ 2422 for_each_sibling_event(event, group_event) 2423 event_sched_out(event, ctx); 2424 } 2425 2426 static inline void 2427 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2428 { 2429 if (ctx->is_active & EVENT_TIME) { 2430 if (ctx->is_active & EVENT_FROZEN) 2431 return; 2432 update_context_time(ctx); 2433 update_cgrp_time_from_cpuctx(cpuctx, final); 2434 } 2435 } 2436 2437 static inline void 2438 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2439 { 2440 __ctx_time_update(cpuctx, ctx, false); 2441 } 2442 2443 /* 2444 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2445 */ 2446 static inline void 2447 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2448 { 2449 ctx_time_update(cpuctx, ctx); 2450 if (ctx->is_active & EVENT_TIME) 2451 ctx->is_active |= EVENT_FROZEN; 2452 } 2453 2454 static inline void 2455 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2456 { 2457 if (ctx->is_active & EVENT_TIME) { 2458 if (ctx->is_active & EVENT_FROZEN) 2459 return; 2460 update_context_time(ctx); 2461 update_cgrp_time_from_event(event); 2462 } 2463 } 2464 2465 #define DETACH_GROUP 0x01UL 2466 #define DETACH_CHILD 0x02UL 2467 #define DETACH_EXIT 0x04UL 2468 #define DETACH_REVOKE 0x08UL 2469 #define DETACH_DEAD 0x10UL 2470 2471 /* 2472 * Cross CPU call to remove a performance event 2473 * 2474 * We disable the event on the hardware level first. After that we 2475 * remove it from the context list. 2476 */ 2477 static void 2478 __perf_remove_from_context(struct perf_event *event, 2479 struct perf_cpu_context *cpuctx, 2480 struct perf_event_context *ctx, 2481 void *info) 2482 { 2483 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2484 enum perf_event_state state = PERF_EVENT_STATE_OFF; 2485 unsigned long flags = (unsigned long)info; 2486 2487 ctx_time_update(cpuctx, ctx); 2488 2489 /* 2490 * Ensure event_sched_out() switches to OFF, at the very least 2491 * this avoids raising perf_pending_task() at this time. 2492 */ 2493 if (flags & DETACH_EXIT) 2494 state = PERF_EVENT_STATE_EXIT; 2495 if (flags & DETACH_REVOKE) 2496 state = PERF_EVENT_STATE_REVOKED; 2497 if (flags & DETACH_DEAD) 2498 state = PERF_EVENT_STATE_DEAD; 2499 2500 event_sched_out(event, ctx); 2501 2502 if (event->state > PERF_EVENT_STATE_OFF) 2503 perf_cgroup_event_disable(event, ctx); 2504 2505 perf_event_set_state(event, min(event->state, state)); 2506 2507 if (flags & DETACH_GROUP) 2508 perf_group_detach(event); 2509 if (flags & DETACH_CHILD) 2510 perf_child_detach(event); 2511 list_del_event(event, ctx); 2512 2513 if (!pmu_ctx->nr_events) { 2514 pmu_ctx->rotate_necessary = 0; 2515 2516 if (ctx->task && ctx->is_active) { 2517 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); 2518 2519 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2520 cpc->task_epc = NULL; 2521 } 2522 } 2523 2524 if (!ctx->nr_events && ctx->is_active) { 2525 if (ctx == &cpuctx->ctx) 2526 update_cgrp_time_from_cpuctx(cpuctx, true); 2527 2528 ctx->is_active = 0; 2529 if (ctx->task) { 2530 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2531 cpuctx->task_ctx = NULL; 2532 } 2533 } 2534 } 2535 2536 /* 2537 * Remove the event from a task's (or a CPU's) list of events. 2538 * 2539 * If event->ctx is a cloned context, callers must make sure that 2540 * every task struct that event->ctx->task could possibly point to 2541 * remains valid. This is OK when called from perf_release since 2542 * that only calls us on the top-level context, which can't be a clone. 2543 * When called from perf_event_exit_task, it's OK because the 2544 * context has been detached from its task. 2545 */ 2546 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2547 { 2548 struct perf_event_context *ctx = event->ctx; 2549 2550 lockdep_assert_held(&ctx->mutex); 2551 2552 /* 2553 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2554 * to work in the face of TASK_TOMBSTONE, unlike every other 2555 * event_function_call() user. 2556 */ 2557 raw_spin_lock_irq(&ctx->lock); 2558 if (!ctx->is_active) { 2559 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2560 ctx, (void *)flags); 2561 raw_spin_unlock_irq(&ctx->lock); 2562 return; 2563 } 2564 raw_spin_unlock_irq(&ctx->lock); 2565 2566 event_function_call(event, __perf_remove_from_context, (void *)flags); 2567 } 2568 2569 static void __event_disable(struct perf_event *event, 2570 struct perf_event_context *ctx, 2571 enum perf_event_state state) 2572 { 2573 event_sched_out(event, ctx); 2574 perf_cgroup_event_disable(event, ctx); 2575 perf_event_set_state(event, state); 2576 } 2577 2578 /* 2579 * Cross CPU call to disable a performance event 2580 */ 2581 static void __perf_event_disable(struct perf_event *event, 2582 struct perf_cpu_context *cpuctx, 2583 struct perf_event_context *ctx, 2584 void *info) 2585 { 2586 if (event->state < PERF_EVENT_STATE_INACTIVE) 2587 return; 2588 2589 perf_pmu_disable(event->pmu_ctx->pmu); 2590 ctx_time_update_event(ctx, event); 2591 2592 /* 2593 * When disabling a group leader, the whole group becomes ineligible 2594 * to run, so schedule out the full group. 2595 */ 2596 if (event == event->group_leader) 2597 group_sched_out(event, ctx); 2598 2599 /* 2600 * But only mark the leader OFF; the siblings will remain 2601 * INACTIVE. 2602 */ 2603 __event_disable(event, ctx, PERF_EVENT_STATE_OFF); 2604 2605 perf_pmu_enable(event->pmu_ctx->pmu); 2606 } 2607 2608 /* 2609 * Disable an event. 2610 * 2611 * If event->ctx is a cloned context, callers must make sure that 2612 * every task struct that event->ctx->task could possibly point to 2613 * remains valid. This condition is satisfied when called through 2614 * perf_event_for_each_child or perf_event_for_each because they 2615 * hold the top-level event's child_mutex, so any descendant that 2616 * goes to exit will block in perf_event_exit_event(). 2617 * 2618 * When called from perf_pending_disable it's OK because event->ctx 2619 * is the current context on this CPU and preemption is disabled, 2620 * hence we can't get into perf_event_task_sched_out for this context. 2621 */ 2622 static void _perf_event_disable(struct perf_event *event) 2623 { 2624 struct perf_event_context *ctx = event->ctx; 2625 2626 raw_spin_lock_irq(&ctx->lock); 2627 if (event->state <= PERF_EVENT_STATE_OFF) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 return; 2630 } 2631 raw_spin_unlock_irq(&ctx->lock); 2632 2633 event_function_call(event, __perf_event_disable, NULL); 2634 } 2635 2636 void perf_event_disable_local(struct perf_event *event) 2637 { 2638 event_function_local(event, __perf_event_disable, NULL); 2639 } 2640 2641 /* 2642 * Strictly speaking kernel users cannot create groups and therefore this 2643 * interface does not need the perf_event_ctx_lock() magic. 2644 */ 2645 void perf_event_disable(struct perf_event *event) 2646 { 2647 struct perf_event_context *ctx; 2648 2649 ctx = perf_event_ctx_lock(event); 2650 _perf_event_disable(event); 2651 perf_event_ctx_unlock(event, ctx); 2652 } 2653 EXPORT_SYMBOL_GPL(perf_event_disable); 2654 2655 void perf_event_disable_inatomic(struct perf_event *event) 2656 { 2657 event->pending_disable = 1; 2658 irq_work_queue(&event->pending_disable_irq); 2659 } 2660 2661 #define MAX_INTERRUPTS (~0ULL) 2662 2663 static void perf_log_throttle(struct perf_event *event, int enable); 2664 static void perf_log_itrace_start(struct perf_event *event); 2665 2666 static void perf_event_unthrottle(struct perf_event *event, bool start) 2667 { 2668 event->hw.interrupts = 0; 2669 if (start) 2670 event->pmu->start(event, 0); 2671 if (event == event->group_leader) 2672 perf_log_throttle(event, 1); 2673 } 2674 2675 static void perf_event_throttle(struct perf_event *event) 2676 { 2677 event->hw.interrupts = MAX_INTERRUPTS; 2678 event->pmu->stop(event, 0); 2679 if (event == event->group_leader) 2680 perf_log_throttle(event, 0); 2681 } 2682 2683 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event) 2684 { 2685 struct perf_event *sibling, *leader = event->group_leader; 2686 2687 perf_event_unthrottle(leader, skip_start_event ? leader != event : true); 2688 for_each_sibling_event(sibling, leader) 2689 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true); 2690 } 2691 2692 static void perf_event_throttle_group(struct perf_event *event) 2693 { 2694 struct perf_event *sibling, *leader = event->group_leader; 2695 2696 perf_event_throttle(leader); 2697 for_each_sibling_event(sibling, leader) 2698 perf_event_throttle(sibling); 2699 } 2700 2701 static int 2702 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2703 { 2704 struct perf_event_pmu_context *epc = event->pmu_ctx; 2705 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2706 int ret = 0; 2707 2708 WARN_ON_ONCE(event->ctx != ctx); 2709 2710 lockdep_assert_held(&ctx->lock); 2711 2712 if (event->state <= PERF_EVENT_STATE_OFF) 2713 return 0; 2714 2715 WRITE_ONCE(event->oncpu, smp_processor_id()); 2716 /* 2717 * Order event::oncpu write to happen before the ACTIVE state is 2718 * visible. This allows perf_event_{stop,read}() to observe the correct 2719 * ->oncpu if it sees ACTIVE. 2720 */ 2721 smp_wmb(); 2722 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2723 2724 /* 2725 * Unthrottle events, since we scheduled we might have missed several 2726 * ticks already, also for a heavily scheduling task there is little 2727 * guarantee it'll get a tick in a timely manner. 2728 */ 2729 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) 2730 perf_event_unthrottle(event, false); 2731 2732 perf_pmu_disable(event->pmu); 2733 2734 perf_log_itrace_start(event); 2735 2736 if (event->pmu->add(event, PERF_EF_START)) { 2737 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2738 event->oncpu = -1; 2739 ret = -EAGAIN; 2740 goto out; 2741 } 2742 2743 if (!is_software_event(event)) 2744 cpc->active_oncpu++; 2745 if (is_event_in_freq_mode(event)) { 2746 ctx->nr_freq++; 2747 epc->nr_freq++; 2748 } 2749 if (event->attr.exclusive) 2750 cpc->exclusive = 1; 2751 2752 out: 2753 perf_pmu_enable(event->pmu); 2754 2755 return ret; 2756 } 2757 2758 static int 2759 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2760 { 2761 struct perf_event *event, *partial_group = NULL; 2762 struct pmu *pmu = group_event->pmu_ctx->pmu; 2763 2764 if (group_event->state == PERF_EVENT_STATE_OFF) 2765 return 0; 2766 2767 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2768 2769 if (event_sched_in(group_event, ctx)) 2770 goto error; 2771 2772 /* 2773 * Schedule in siblings as one group (if any): 2774 */ 2775 for_each_sibling_event(event, group_event) { 2776 if (event_sched_in(event, ctx)) { 2777 partial_group = event; 2778 goto group_error; 2779 } 2780 } 2781 2782 if (!pmu->commit_txn(pmu)) 2783 return 0; 2784 2785 group_error: 2786 /* 2787 * Groups can be scheduled in as one unit only, so undo any 2788 * partial group before returning: 2789 * The events up to the failed event are scheduled out normally. 2790 */ 2791 for_each_sibling_event(event, group_event) { 2792 if (event == partial_group) 2793 break; 2794 2795 event_sched_out(event, ctx); 2796 } 2797 event_sched_out(group_event, ctx); 2798 2799 error: 2800 pmu->cancel_txn(pmu); 2801 return -EAGAIN; 2802 } 2803 2804 /* 2805 * Work out whether we can put this event group on the CPU now. 2806 */ 2807 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2808 { 2809 struct perf_event_pmu_context *epc = event->pmu_ctx; 2810 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); 2811 2812 /* 2813 * Groups consisting entirely of software events can always go on. 2814 */ 2815 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2816 return 1; 2817 /* 2818 * If an exclusive group is already on, no other hardware 2819 * events can go on. 2820 */ 2821 if (cpc->exclusive) 2822 return 0; 2823 /* 2824 * If this group is exclusive and there are already 2825 * events on the CPU, it can't go on. 2826 */ 2827 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2828 return 0; 2829 /* 2830 * Otherwise, try to add it if all previous groups were able 2831 * to go on. 2832 */ 2833 return can_add_hw; 2834 } 2835 2836 static void add_event_to_ctx(struct perf_event *event, 2837 struct perf_event_context *ctx) 2838 { 2839 list_add_event(event, ctx); 2840 perf_group_attach(event); 2841 } 2842 2843 static void task_ctx_sched_out(struct perf_event_context *ctx, 2844 struct pmu *pmu, 2845 enum event_type_t event_type) 2846 { 2847 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2848 2849 if (!cpuctx->task_ctx) 2850 return; 2851 2852 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2853 return; 2854 2855 ctx_sched_out(ctx, pmu, event_type); 2856 } 2857 2858 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2859 struct perf_event_context *ctx, 2860 struct pmu *pmu) 2861 { 2862 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2863 if (ctx) 2864 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2865 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2866 if (ctx) 2867 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2868 } 2869 2870 /* 2871 * We want to maintain the following priority of scheduling: 2872 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2873 * - task pinned (EVENT_PINNED) 2874 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2875 * - task flexible (EVENT_FLEXIBLE). 2876 * 2877 * In order to avoid unscheduling and scheduling back in everything every 2878 * time an event is added, only do it for the groups of equal priority and 2879 * below. 2880 * 2881 * This can be called after a batch operation on task events, in which case 2882 * event_type is a bit mask of the types of events involved. For CPU events, 2883 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2884 */ 2885 static void ctx_resched(struct perf_cpu_context *cpuctx, 2886 struct perf_event_context *task_ctx, 2887 struct pmu *pmu, enum event_type_t event_type) 2888 { 2889 bool cpu_event = !!(event_type & EVENT_CPU); 2890 struct perf_event_pmu_context *epc; 2891 2892 /* 2893 * If pinned groups are involved, flexible groups also need to be 2894 * scheduled out. 2895 */ 2896 if (event_type & EVENT_PINNED) 2897 event_type |= EVENT_FLEXIBLE; 2898 2899 event_type &= EVENT_ALL; 2900 2901 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2902 perf_pmu_disable(epc->pmu); 2903 2904 if (task_ctx) { 2905 for_each_epc(epc, task_ctx, pmu, false) 2906 perf_pmu_disable(epc->pmu); 2907 2908 task_ctx_sched_out(task_ctx, pmu, event_type); 2909 } 2910 2911 /* 2912 * Decide which cpu ctx groups to schedule out based on the types 2913 * of events that caused rescheduling: 2914 * - EVENT_CPU: schedule out corresponding groups; 2915 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2916 * - otherwise, do nothing more. 2917 */ 2918 if (cpu_event) 2919 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2920 else if (event_type & EVENT_PINNED) 2921 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2922 2923 perf_event_sched_in(cpuctx, task_ctx, pmu); 2924 2925 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2926 perf_pmu_enable(epc->pmu); 2927 2928 if (task_ctx) { 2929 for_each_epc(epc, task_ctx, pmu, false) 2930 perf_pmu_enable(epc->pmu); 2931 } 2932 } 2933 2934 void perf_pmu_resched(struct pmu *pmu) 2935 { 2936 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2937 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2938 2939 perf_ctx_lock(cpuctx, task_ctx); 2940 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2941 perf_ctx_unlock(cpuctx, task_ctx); 2942 } 2943 2944 /* 2945 * Cross CPU call to install and enable a performance event 2946 * 2947 * Very similar to remote_function() + event_function() but cannot assume that 2948 * things like ctx->is_active and cpuctx->task_ctx are set. 2949 */ 2950 static int __perf_install_in_context(void *info) 2951 { 2952 struct perf_event *event = info; 2953 struct perf_event_context *ctx = event->ctx; 2954 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2955 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2956 bool reprogram = true; 2957 int ret = 0; 2958 2959 raw_spin_lock(&cpuctx->ctx.lock); 2960 if (ctx->task) { 2961 raw_spin_lock(&ctx->lock); 2962 task_ctx = ctx; 2963 2964 reprogram = (ctx->task == current); 2965 2966 /* 2967 * If the task is running, it must be running on this CPU, 2968 * otherwise we cannot reprogram things. 2969 * 2970 * If its not running, we don't care, ctx->lock will 2971 * serialize against it becoming runnable. 2972 */ 2973 if (task_curr(ctx->task) && !reprogram) { 2974 ret = -ESRCH; 2975 goto unlock; 2976 } 2977 2978 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2979 } else if (task_ctx) { 2980 raw_spin_lock(&task_ctx->lock); 2981 } 2982 2983 #ifdef CONFIG_CGROUP_PERF 2984 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2985 /* 2986 * If the current cgroup doesn't match the event's 2987 * cgroup, we should not try to schedule it. 2988 */ 2989 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2990 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2991 event->cgrp->css.cgroup); 2992 } 2993 #endif 2994 2995 if (reprogram) { 2996 ctx_time_freeze(cpuctx, ctx); 2997 add_event_to_ctx(event, ctx); 2998 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2999 get_event_type(event)); 3000 } else { 3001 add_event_to_ctx(event, ctx); 3002 } 3003 3004 unlock: 3005 perf_ctx_unlock(cpuctx, task_ctx); 3006 3007 return ret; 3008 } 3009 3010 static bool exclusive_event_installable(struct perf_event *event, 3011 struct perf_event_context *ctx); 3012 3013 /* 3014 * Attach a performance event to a context. 3015 * 3016 * Very similar to event_function_call, see comment there. 3017 */ 3018 static void 3019 perf_install_in_context(struct perf_event_context *ctx, 3020 struct perf_event *event, 3021 int cpu) 3022 { 3023 struct task_struct *task = READ_ONCE(ctx->task); 3024 3025 lockdep_assert_held(&ctx->mutex); 3026 3027 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 3028 3029 if (event->cpu != -1) 3030 WARN_ON_ONCE(event->cpu != cpu); 3031 3032 /* 3033 * Ensures that if we can observe event->ctx, both the event and ctx 3034 * will be 'complete'. See perf_iterate_sb_cpu(). 3035 */ 3036 smp_store_release(&event->ctx, ctx); 3037 3038 /* 3039 * perf_event_attr::disabled events will not run and can be initialized 3040 * without IPI. Except when this is the first event for the context, in 3041 * that case we need the magic of the IPI to set ctx->is_active. 3042 * 3043 * The IOC_ENABLE that is sure to follow the creation of a disabled 3044 * event will issue the IPI and reprogram the hardware. 3045 */ 3046 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 3047 ctx->nr_events && !is_cgroup_event(event)) { 3048 raw_spin_lock_irq(&ctx->lock); 3049 if (ctx->task == TASK_TOMBSTONE) { 3050 raw_spin_unlock_irq(&ctx->lock); 3051 return; 3052 } 3053 add_event_to_ctx(event, ctx); 3054 raw_spin_unlock_irq(&ctx->lock); 3055 return; 3056 } 3057 3058 if (!task) { 3059 cpu_function_call(cpu, __perf_install_in_context, event); 3060 return; 3061 } 3062 3063 /* 3064 * Should not happen, we validate the ctx is still alive before calling. 3065 */ 3066 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 3067 return; 3068 3069 /* 3070 * Installing events is tricky because we cannot rely on ctx->is_active 3071 * to be set in case this is the nr_events 0 -> 1 transition. 3072 * 3073 * Instead we use task_curr(), which tells us if the task is running. 3074 * However, since we use task_curr() outside of rq::lock, we can race 3075 * against the actual state. This means the result can be wrong. 3076 * 3077 * If we get a false positive, we retry, this is harmless. 3078 * 3079 * If we get a false negative, things are complicated. If we are after 3080 * perf_event_context_sched_in() ctx::lock will serialize us, and the 3081 * value must be correct. If we're before, it doesn't matter since 3082 * perf_event_context_sched_in() will program the counter. 3083 * 3084 * However, this hinges on the remote context switch having observed 3085 * our task->perf_event_ctxp[] store, such that it will in fact take 3086 * ctx::lock in perf_event_context_sched_in(). 3087 * 3088 * We do this by task_function_call(), if the IPI fails to hit the task 3089 * we know any future context switch of task must see the 3090 * perf_event_ctpx[] store. 3091 */ 3092 3093 /* 3094 * This smp_mb() orders the task->perf_event_ctxp[] store with the 3095 * task_cpu() load, such that if the IPI then does not find the task 3096 * running, a future context switch of that task must observe the 3097 * store. 3098 */ 3099 smp_mb(); 3100 again: 3101 if (!task_function_call(task, __perf_install_in_context, event)) 3102 return; 3103 3104 raw_spin_lock_irq(&ctx->lock); 3105 task = ctx->task; 3106 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 3107 /* 3108 * Cannot happen because we already checked above (which also 3109 * cannot happen), and we hold ctx->mutex, which serializes us 3110 * against perf_event_exit_task_context(). 3111 */ 3112 raw_spin_unlock_irq(&ctx->lock); 3113 return; 3114 } 3115 /* 3116 * If the task is not running, ctx->lock will avoid it becoming so, 3117 * thus we can safely install the event. 3118 */ 3119 if (task_curr(task)) { 3120 raw_spin_unlock_irq(&ctx->lock); 3121 goto again; 3122 } 3123 add_event_to_ctx(event, ctx); 3124 raw_spin_unlock_irq(&ctx->lock); 3125 } 3126 3127 /* 3128 * Cross CPU call to enable a performance event 3129 */ 3130 static void __perf_event_enable(struct perf_event *event, 3131 struct perf_cpu_context *cpuctx, 3132 struct perf_event_context *ctx, 3133 void *info) 3134 { 3135 struct perf_event *leader = event->group_leader; 3136 struct perf_event_context *task_ctx; 3137 3138 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3139 event->state <= PERF_EVENT_STATE_ERROR) 3140 return; 3141 3142 ctx_time_freeze(cpuctx, ctx); 3143 3144 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3145 perf_cgroup_event_enable(event, ctx); 3146 3147 if (!ctx->is_active) 3148 return; 3149 3150 if (!event_filter_match(event)) 3151 return; 3152 3153 /* 3154 * If the event is in a group and isn't the group leader, 3155 * then don't put it on unless the group is on. 3156 */ 3157 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3158 return; 3159 3160 task_ctx = cpuctx->task_ctx; 3161 if (ctx->task) 3162 WARN_ON_ONCE(task_ctx != ctx); 3163 3164 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3165 } 3166 3167 /* 3168 * Enable an event. 3169 * 3170 * If event->ctx is a cloned context, callers must make sure that 3171 * every task struct that event->ctx->task could possibly point to 3172 * remains valid. This condition is satisfied when called through 3173 * perf_event_for_each_child or perf_event_for_each as described 3174 * for perf_event_disable. 3175 */ 3176 static void _perf_event_enable(struct perf_event *event) 3177 { 3178 struct perf_event_context *ctx = event->ctx; 3179 3180 raw_spin_lock_irq(&ctx->lock); 3181 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3182 event->state < PERF_EVENT_STATE_ERROR) { 3183 out: 3184 raw_spin_unlock_irq(&ctx->lock); 3185 return; 3186 } 3187 3188 /* 3189 * If the event is in error state, clear that first. 3190 * 3191 * That way, if we see the event in error state below, we know that it 3192 * has gone back into error state, as distinct from the task having 3193 * been scheduled away before the cross-call arrived. 3194 */ 3195 if (event->state == PERF_EVENT_STATE_ERROR) { 3196 /* 3197 * Detached SIBLING events cannot leave ERROR state. 3198 */ 3199 if (event->event_caps & PERF_EV_CAP_SIBLING && 3200 event->group_leader == event) 3201 goto out; 3202 3203 event->state = PERF_EVENT_STATE_OFF; 3204 } 3205 raw_spin_unlock_irq(&ctx->lock); 3206 3207 event_function_call(event, __perf_event_enable, NULL); 3208 } 3209 3210 /* 3211 * See perf_event_disable(); 3212 */ 3213 void perf_event_enable(struct perf_event *event) 3214 { 3215 struct perf_event_context *ctx; 3216 3217 ctx = perf_event_ctx_lock(event); 3218 _perf_event_enable(event); 3219 perf_event_ctx_unlock(event, ctx); 3220 } 3221 EXPORT_SYMBOL_GPL(perf_event_enable); 3222 3223 struct stop_event_data { 3224 struct perf_event *event; 3225 unsigned int restart; 3226 }; 3227 3228 static int __perf_event_stop(void *info) 3229 { 3230 struct stop_event_data *sd = info; 3231 struct perf_event *event = sd->event; 3232 3233 /* if it's already INACTIVE, do nothing */ 3234 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3235 return 0; 3236 3237 /* matches smp_wmb() in event_sched_in() */ 3238 smp_rmb(); 3239 3240 /* 3241 * There is a window with interrupts enabled before we get here, 3242 * so we need to check again lest we try to stop another CPU's event. 3243 */ 3244 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3245 return -EAGAIN; 3246 3247 event->pmu->stop(event, PERF_EF_UPDATE); 3248 3249 /* 3250 * May race with the actual stop (through perf_pmu_output_stop()), 3251 * but it is only used for events with AUX ring buffer, and such 3252 * events will refuse to restart because of rb::aux_mmap_count==0, 3253 * see comments in perf_aux_output_begin(). 3254 * 3255 * Since this is happening on an event-local CPU, no trace is lost 3256 * while restarting. 3257 */ 3258 if (sd->restart) 3259 event->pmu->start(event, 0); 3260 3261 return 0; 3262 } 3263 3264 static int perf_event_stop(struct perf_event *event, int restart) 3265 { 3266 struct stop_event_data sd = { 3267 .event = event, 3268 .restart = restart, 3269 }; 3270 int ret = 0; 3271 3272 do { 3273 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3274 return 0; 3275 3276 /* matches smp_wmb() in event_sched_in() */ 3277 smp_rmb(); 3278 3279 /* 3280 * We only want to restart ACTIVE events, so if the event goes 3281 * inactive here (event->oncpu==-1), there's nothing more to do; 3282 * fall through with ret==-ENXIO. 3283 */ 3284 ret = cpu_function_call(READ_ONCE(event->oncpu), 3285 __perf_event_stop, &sd); 3286 } while (ret == -EAGAIN); 3287 3288 return ret; 3289 } 3290 3291 /* 3292 * In order to contain the amount of racy and tricky in the address filter 3293 * configuration management, it is a two part process: 3294 * 3295 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3296 * we update the addresses of corresponding vmas in 3297 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3298 * (p2) when an event is scheduled in (pmu::add), it calls 3299 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3300 * if the generation has changed since the previous call. 3301 * 3302 * If (p1) happens while the event is active, we restart it to force (p2). 3303 * 3304 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3305 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3306 * ioctl; 3307 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3308 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3309 * for reading; 3310 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3311 * of exec. 3312 */ 3313 void perf_event_addr_filters_sync(struct perf_event *event) 3314 { 3315 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3316 3317 if (!has_addr_filter(event)) 3318 return; 3319 3320 raw_spin_lock(&ifh->lock); 3321 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3322 event->pmu->addr_filters_sync(event); 3323 event->hw.addr_filters_gen = event->addr_filters_gen; 3324 } 3325 raw_spin_unlock(&ifh->lock); 3326 } 3327 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3328 3329 static int _perf_event_refresh(struct perf_event *event, int refresh) 3330 { 3331 /* 3332 * not supported on inherited events 3333 */ 3334 if (event->attr.inherit || !is_sampling_event(event)) 3335 return -EINVAL; 3336 3337 atomic_add(refresh, &event->event_limit); 3338 _perf_event_enable(event); 3339 3340 return 0; 3341 } 3342 3343 /* 3344 * See perf_event_disable() 3345 */ 3346 int perf_event_refresh(struct perf_event *event, int refresh) 3347 { 3348 struct perf_event_context *ctx; 3349 int ret; 3350 3351 ctx = perf_event_ctx_lock(event); 3352 ret = _perf_event_refresh(event, refresh); 3353 perf_event_ctx_unlock(event, ctx); 3354 3355 return ret; 3356 } 3357 EXPORT_SYMBOL_GPL(perf_event_refresh); 3358 3359 static int perf_event_modify_breakpoint(struct perf_event *bp, 3360 struct perf_event_attr *attr) 3361 { 3362 int err; 3363 3364 _perf_event_disable(bp); 3365 3366 err = modify_user_hw_breakpoint_check(bp, attr, true); 3367 3368 if (!bp->attr.disabled) 3369 _perf_event_enable(bp); 3370 3371 return err; 3372 } 3373 3374 /* 3375 * Copy event-type-independent attributes that may be modified. 3376 */ 3377 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3378 const struct perf_event_attr *from) 3379 { 3380 to->sig_data = from->sig_data; 3381 } 3382 3383 static int perf_event_modify_attr(struct perf_event *event, 3384 struct perf_event_attr *attr) 3385 { 3386 int (*func)(struct perf_event *, struct perf_event_attr *); 3387 struct perf_event *child; 3388 int err; 3389 3390 if (event->attr.type != attr->type) 3391 return -EINVAL; 3392 3393 switch (event->attr.type) { 3394 case PERF_TYPE_BREAKPOINT: 3395 func = perf_event_modify_breakpoint; 3396 break; 3397 default: 3398 /* Place holder for future additions. */ 3399 return -EOPNOTSUPP; 3400 } 3401 3402 WARN_ON_ONCE(event->ctx->parent_ctx); 3403 3404 mutex_lock(&event->child_mutex); 3405 /* 3406 * Event-type-independent attributes must be copied before event-type 3407 * modification, which will validate that final attributes match the 3408 * source attributes after all relevant attributes have been copied. 3409 */ 3410 perf_event_modify_copy_attr(&event->attr, attr); 3411 err = func(event, attr); 3412 if (err) 3413 goto out; 3414 list_for_each_entry(child, &event->child_list, child_list) { 3415 perf_event_modify_copy_attr(&child->attr, attr); 3416 err = func(child, attr); 3417 if (err) 3418 goto out; 3419 } 3420 out: 3421 mutex_unlock(&event->child_mutex); 3422 return err; 3423 } 3424 3425 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3426 enum event_type_t event_type) 3427 { 3428 struct perf_event_context *ctx = pmu_ctx->ctx; 3429 struct perf_event *event, *tmp; 3430 struct pmu *pmu = pmu_ctx->pmu; 3431 3432 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3433 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3434 3435 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3436 cpc->task_epc = NULL; 3437 } 3438 3439 if (!(event_type & EVENT_ALL)) 3440 return; 3441 3442 perf_pmu_disable(pmu); 3443 if (event_type & EVENT_PINNED) { 3444 list_for_each_entry_safe(event, tmp, 3445 &pmu_ctx->pinned_active, 3446 active_list) 3447 group_sched_out(event, ctx); 3448 } 3449 3450 if (event_type & EVENT_FLEXIBLE) { 3451 list_for_each_entry_safe(event, tmp, 3452 &pmu_ctx->flexible_active, 3453 active_list) 3454 group_sched_out(event, ctx); 3455 /* 3456 * Since we cleared EVENT_FLEXIBLE, also clear 3457 * rotate_necessary, is will be reset by 3458 * ctx_flexible_sched_in() when needed. 3459 */ 3460 pmu_ctx->rotate_necessary = 0; 3461 } 3462 perf_pmu_enable(pmu); 3463 } 3464 3465 /* 3466 * Be very careful with the @pmu argument since this will change ctx state. 3467 * The @pmu argument works for ctx_resched(), because that is symmetric in 3468 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3469 * 3470 * However, if you were to be asymmetrical, you could end up with messed up 3471 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3472 * be active. 3473 */ 3474 static void 3475 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3476 { 3477 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3478 struct perf_event_pmu_context *pmu_ctx; 3479 int is_active = ctx->is_active; 3480 bool cgroup = event_type & EVENT_CGROUP; 3481 3482 event_type &= ~EVENT_CGROUP; 3483 3484 lockdep_assert_held(&ctx->lock); 3485 3486 if (likely(!ctx->nr_events)) { 3487 /* 3488 * See __perf_remove_from_context(). 3489 */ 3490 WARN_ON_ONCE(ctx->is_active); 3491 if (ctx->task) 3492 WARN_ON_ONCE(cpuctx->task_ctx); 3493 return; 3494 } 3495 3496 /* 3497 * Always update time if it was set; not only when it changes. 3498 * Otherwise we can 'forget' to update time for any but the last 3499 * context we sched out. For example: 3500 * 3501 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3502 * ctx_sched_out(.event_type = EVENT_PINNED) 3503 * 3504 * would only update time for the pinned events. 3505 */ 3506 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3507 3508 /* 3509 * CPU-release for the below ->is_active store, 3510 * see __load_acquire() in perf_event_time_now() 3511 */ 3512 barrier(); 3513 ctx->is_active &= ~event_type; 3514 3515 if (!(ctx->is_active & EVENT_ALL)) { 3516 /* 3517 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3518 * does not observe a hole. perf_ctx_unlock() will clean up. 3519 */ 3520 if (ctx->is_active & EVENT_FROZEN) 3521 ctx->is_active &= EVENT_TIME_FROZEN; 3522 else 3523 ctx->is_active = 0; 3524 } 3525 3526 if (ctx->task) { 3527 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3528 if (!(ctx->is_active & EVENT_ALL)) 3529 cpuctx->task_ctx = NULL; 3530 } 3531 3532 is_active ^= ctx->is_active; /* changed bits */ 3533 3534 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3535 __pmu_ctx_sched_out(pmu_ctx, is_active); 3536 } 3537 3538 /* 3539 * Test whether two contexts are equivalent, i.e. whether they have both been 3540 * cloned from the same version of the same context. 3541 * 3542 * Equivalence is measured using a generation number in the context that is 3543 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3544 * and list_del_event(). 3545 */ 3546 static int context_equiv(struct perf_event_context *ctx1, 3547 struct perf_event_context *ctx2) 3548 { 3549 lockdep_assert_held(&ctx1->lock); 3550 lockdep_assert_held(&ctx2->lock); 3551 3552 /* Pinning disables the swap optimization */ 3553 if (ctx1->pin_count || ctx2->pin_count) 3554 return 0; 3555 3556 /* If ctx1 is the parent of ctx2 */ 3557 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3558 return 1; 3559 3560 /* If ctx2 is the parent of ctx1 */ 3561 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3562 return 1; 3563 3564 /* 3565 * If ctx1 and ctx2 have the same parent; we flatten the parent 3566 * hierarchy, see perf_event_init_context(). 3567 */ 3568 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3569 ctx1->parent_gen == ctx2->parent_gen) 3570 return 1; 3571 3572 /* Unmatched */ 3573 return 0; 3574 } 3575 3576 static void __perf_event_sync_stat(struct perf_event *event, 3577 struct perf_event *next_event) 3578 { 3579 u64 value; 3580 3581 if (!event->attr.inherit_stat) 3582 return; 3583 3584 /* 3585 * Update the event value, we cannot use perf_event_read() 3586 * because we're in the middle of a context switch and have IRQs 3587 * disabled, which upsets smp_call_function_single(), however 3588 * we know the event must be on the current CPU, therefore we 3589 * don't need to use it. 3590 */ 3591 perf_pmu_read(event); 3592 3593 perf_event_update_time(event); 3594 3595 /* 3596 * In order to keep per-task stats reliable we need to flip the event 3597 * values when we flip the contexts. 3598 */ 3599 value = local64_read(&next_event->count); 3600 value = local64_xchg(&event->count, value); 3601 local64_set(&next_event->count, value); 3602 3603 swap(event->total_time_enabled, next_event->total_time_enabled); 3604 swap(event->total_time_running, next_event->total_time_running); 3605 3606 /* 3607 * Since we swizzled the values, update the user visible data too. 3608 */ 3609 perf_event_update_userpage(event); 3610 perf_event_update_userpage(next_event); 3611 } 3612 3613 static void perf_event_sync_stat(struct perf_event_context *ctx, 3614 struct perf_event_context *next_ctx) 3615 { 3616 struct perf_event *event, *next_event; 3617 3618 if (!ctx->nr_stat) 3619 return; 3620 3621 update_context_time(ctx); 3622 3623 event = list_first_entry(&ctx->event_list, 3624 struct perf_event, event_entry); 3625 3626 next_event = list_first_entry(&next_ctx->event_list, 3627 struct perf_event, event_entry); 3628 3629 while (&event->event_entry != &ctx->event_list && 3630 &next_event->event_entry != &next_ctx->event_list) { 3631 3632 __perf_event_sync_stat(event, next_event); 3633 3634 event = list_next_entry(event, event_entry); 3635 next_event = list_next_entry(next_event, event_entry); 3636 } 3637 } 3638 3639 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, 3640 struct task_struct *task, bool sched_in) 3641 { 3642 struct perf_event_pmu_context *pmu_ctx; 3643 struct perf_cpu_pmu_context *cpc; 3644 3645 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3646 cpc = this_cpc(pmu_ctx->pmu); 3647 3648 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3649 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); 3650 } 3651 } 3652 3653 static void 3654 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3655 { 3656 struct perf_event_context *ctx = task->perf_event_ctxp; 3657 struct perf_event_context *next_ctx; 3658 struct perf_event_context *parent, *next_parent; 3659 int do_switch = 1; 3660 3661 if (likely(!ctx)) 3662 return; 3663 3664 rcu_read_lock(); 3665 next_ctx = rcu_dereference(next->perf_event_ctxp); 3666 if (!next_ctx) 3667 goto unlock; 3668 3669 parent = rcu_dereference(ctx->parent_ctx); 3670 next_parent = rcu_dereference(next_ctx->parent_ctx); 3671 3672 /* If neither context have a parent context; they cannot be clones. */ 3673 if (!parent && !next_parent) 3674 goto unlock; 3675 3676 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3677 /* 3678 * Looks like the two contexts are clones, so we might be 3679 * able to optimize the context switch. We lock both 3680 * contexts and check that they are clones under the 3681 * lock (including re-checking that neither has been 3682 * uncloned in the meantime). It doesn't matter which 3683 * order we take the locks because no other cpu could 3684 * be trying to lock both of these tasks. 3685 */ 3686 raw_spin_lock(&ctx->lock); 3687 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3688 if (context_equiv(ctx, next_ctx)) { 3689 3690 perf_ctx_disable(ctx, false); 3691 3692 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3693 if (local_read(&ctx->nr_no_switch_fast) || 3694 local_read(&next_ctx->nr_no_switch_fast)) { 3695 /* 3696 * Must not swap out ctx when there's pending 3697 * events that rely on the ctx->task relation. 3698 * 3699 * Likewise, when a context contains inherit + 3700 * SAMPLE_READ events they should be switched 3701 * out using the slow path so that they are 3702 * treated as if they were distinct contexts. 3703 */ 3704 raw_spin_unlock(&next_ctx->lock); 3705 rcu_read_unlock(); 3706 goto inside_switch; 3707 } 3708 3709 WRITE_ONCE(ctx->task, next); 3710 WRITE_ONCE(next_ctx->task, task); 3711 3712 perf_ctx_sched_task_cb(ctx, task, false); 3713 3714 perf_ctx_enable(ctx, false); 3715 3716 /* 3717 * RCU_INIT_POINTER here is safe because we've not 3718 * modified the ctx and the above modification of 3719 * ctx->task is immaterial since this value is 3720 * always verified under ctx->lock which we're now 3721 * holding. 3722 */ 3723 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3724 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3725 3726 do_switch = 0; 3727 3728 perf_event_sync_stat(ctx, next_ctx); 3729 } 3730 raw_spin_unlock(&next_ctx->lock); 3731 raw_spin_unlock(&ctx->lock); 3732 } 3733 unlock: 3734 rcu_read_unlock(); 3735 3736 if (do_switch) { 3737 raw_spin_lock(&ctx->lock); 3738 perf_ctx_disable(ctx, false); 3739 3740 inside_switch: 3741 perf_ctx_sched_task_cb(ctx, task, false); 3742 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3743 3744 perf_ctx_enable(ctx, false); 3745 raw_spin_unlock(&ctx->lock); 3746 } 3747 } 3748 3749 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3750 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3751 3752 void perf_sched_cb_dec(struct pmu *pmu) 3753 { 3754 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3755 3756 this_cpu_dec(perf_sched_cb_usages); 3757 barrier(); 3758 3759 if (!--cpc->sched_cb_usage) 3760 list_del(&cpc->sched_cb_entry); 3761 } 3762 3763 3764 void perf_sched_cb_inc(struct pmu *pmu) 3765 { 3766 struct perf_cpu_pmu_context *cpc = this_cpc(pmu); 3767 3768 if (!cpc->sched_cb_usage++) 3769 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3770 3771 barrier(); 3772 this_cpu_inc(perf_sched_cb_usages); 3773 } 3774 3775 /* 3776 * This function provides the context switch callback to the lower code 3777 * layer. It is invoked ONLY when the context switch callback is enabled. 3778 * 3779 * This callback is relevant even to per-cpu events; for example multi event 3780 * PEBS requires this to provide PID/TID information. This requires we flush 3781 * all queued PEBS records before we context switch to a new task. 3782 */ 3783 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, 3784 struct task_struct *task, bool sched_in) 3785 { 3786 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3787 struct pmu *pmu; 3788 3789 pmu = cpc->epc.pmu; 3790 3791 /* software PMUs will not have sched_task */ 3792 if (WARN_ON_ONCE(!pmu->sched_task)) 3793 return; 3794 3795 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3796 perf_pmu_disable(pmu); 3797 3798 pmu->sched_task(cpc->task_epc, task, sched_in); 3799 3800 perf_pmu_enable(pmu); 3801 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3802 } 3803 3804 static void perf_pmu_sched_task(struct task_struct *prev, 3805 struct task_struct *next, 3806 bool sched_in) 3807 { 3808 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3809 struct perf_cpu_pmu_context *cpc; 3810 3811 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3812 if (prev == next || cpuctx->task_ctx) 3813 return; 3814 3815 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3816 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); 3817 } 3818 3819 static void perf_event_switch(struct task_struct *task, 3820 struct task_struct *next_prev, bool sched_in); 3821 3822 /* 3823 * Called from scheduler to remove the events of the current task, 3824 * with interrupts disabled. 3825 * 3826 * We stop each event and update the event value in event->count. 3827 * 3828 * This does not protect us against NMI, but disable() 3829 * sets the disabled bit in the control field of event _before_ 3830 * accessing the event control register. If a NMI hits, then it will 3831 * not restart the event. 3832 */ 3833 void __perf_event_task_sched_out(struct task_struct *task, 3834 struct task_struct *next) 3835 { 3836 if (__this_cpu_read(perf_sched_cb_usages)) 3837 perf_pmu_sched_task(task, next, false); 3838 3839 if (atomic_read(&nr_switch_events)) 3840 perf_event_switch(task, next, false); 3841 3842 perf_event_context_sched_out(task, next); 3843 3844 /* 3845 * if cgroup events exist on this CPU, then we need 3846 * to check if we have to switch out PMU state. 3847 * cgroup event are system-wide mode only 3848 */ 3849 perf_cgroup_switch(next); 3850 } 3851 3852 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3853 { 3854 const struct perf_event *le = *(const struct perf_event **)l; 3855 const struct perf_event *re = *(const struct perf_event **)r; 3856 3857 return le->group_index < re->group_index; 3858 } 3859 3860 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3861 3862 static const struct min_heap_callbacks perf_min_heap = { 3863 .less = perf_less_group_idx, 3864 .swp = NULL, 3865 }; 3866 3867 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3868 { 3869 struct perf_event **itrs = heap->data; 3870 3871 if (event) { 3872 itrs[heap->nr] = event; 3873 heap->nr++; 3874 } 3875 } 3876 3877 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3878 { 3879 struct perf_cpu_pmu_context *cpc; 3880 3881 if (!pmu_ctx->ctx->task) 3882 return; 3883 3884 cpc = this_cpc(pmu_ctx->pmu); 3885 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3886 cpc->task_epc = pmu_ctx; 3887 } 3888 3889 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3890 struct perf_event_groups *groups, int cpu, 3891 struct pmu *pmu, 3892 int (*func)(struct perf_event *, void *), 3893 void *data) 3894 { 3895 #ifdef CONFIG_CGROUP_PERF 3896 struct cgroup_subsys_state *css = NULL; 3897 #endif 3898 struct perf_cpu_context *cpuctx = NULL; 3899 /* Space for per CPU and/or any CPU event iterators. */ 3900 struct perf_event *itrs[2]; 3901 struct perf_event_min_heap event_heap; 3902 struct perf_event **evt; 3903 int ret; 3904 3905 if (pmu->filter && pmu->filter(pmu, cpu)) 3906 return 0; 3907 3908 if (!ctx->task) { 3909 cpuctx = this_cpu_ptr(&perf_cpu_context); 3910 event_heap = (struct perf_event_min_heap){ 3911 .data = cpuctx->heap, 3912 .nr = 0, 3913 .size = cpuctx->heap_size, 3914 }; 3915 3916 lockdep_assert_held(&cpuctx->ctx.lock); 3917 3918 #ifdef CONFIG_CGROUP_PERF 3919 if (cpuctx->cgrp) 3920 css = &cpuctx->cgrp->css; 3921 #endif 3922 } else { 3923 event_heap = (struct perf_event_min_heap){ 3924 .data = itrs, 3925 .nr = 0, 3926 .size = ARRAY_SIZE(itrs), 3927 }; 3928 /* Events not within a CPU context may be on any CPU. */ 3929 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3930 } 3931 evt = event_heap.data; 3932 3933 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3934 3935 #ifdef CONFIG_CGROUP_PERF 3936 for (; css; css = css->parent) 3937 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3938 #endif 3939 3940 if (event_heap.nr) { 3941 __link_epc((*evt)->pmu_ctx); 3942 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3943 } 3944 3945 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3946 3947 while (event_heap.nr) { 3948 ret = func(*evt, data); 3949 if (ret) 3950 return ret; 3951 3952 *evt = perf_event_groups_next(*evt, pmu); 3953 if (*evt) 3954 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3955 else 3956 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3957 } 3958 3959 return 0; 3960 } 3961 3962 /* 3963 * Because the userpage is strictly per-event (there is no concept of context, 3964 * so there cannot be a context indirection), every userpage must be updated 3965 * when context time starts :-( 3966 * 3967 * IOW, we must not miss EVENT_TIME edges. 3968 */ 3969 static inline bool event_update_userpage(struct perf_event *event) 3970 { 3971 if (likely(!atomic_read(&event->mmap_count))) 3972 return false; 3973 3974 perf_event_update_time(event); 3975 perf_event_update_userpage(event); 3976 3977 return true; 3978 } 3979 3980 static inline void group_update_userpage(struct perf_event *group_event) 3981 { 3982 struct perf_event *event; 3983 3984 if (!event_update_userpage(group_event)) 3985 return; 3986 3987 for_each_sibling_event(event, group_event) 3988 event_update_userpage(event); 3989 } 3990 3991 static int merge_sched_in(struct perf_event *event, void *data) 3992 { 3993 struct perf_event_context *ctx = event->ctx; 3994 int *can_add_hw = data; 3995 3996 if (event->state <= PERF_EVENT_STATE_OFF) 3997 return 0; 3998 3999 if (!event_filter_match(event)) 4000 return 0; 4001 4002 if (group_can_go_on(event, *can_add_hw)) { 4003 if (!group_sched_in(event, ctx)) 4004 list_add_tail(&event->active_list, get_event_list(event)); 4005 } 4006 4007 if (event->state == PERF_EVENT_STATE_INACTIVE) { 4008 *can_add_hw = 0; 4009 if (event->attr.pinned) { 4010 perf_cgroup_event_disable(event, ctx); 4011 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 4012 4013 if (*perf_event_fasync(event)) 4014 event->pending_kill = POLL_ERR; 4015 4016 perf_event_wakeup(event); 4017 } else { 4018 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); 4019 4020 event->pmu_ctx->rotate_necessary = 1; 4021 perf_mux_hrtimer_restart(cpc); 4022 group_update_userpage(event); 4023 } 4024 } 4025 4026 return 0; 4027 } 4028 4029 static void pmu_groups_sched_in(struct perf_event_context *ctx, 4030 struct perf_event_groups *groups, 4031 struct pmu *pmu) 4032 { 4033 int can_add_hw = 1; 4034 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 4035 merge_sched_in, &can_add_hw); 4036 } 4037 4038 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 4039 enum event_type_t event_type) 4040 { 4041 struct perf_event_context *ctx = pmu_ctx->ctx; 4042 4043 if (event_type & EVENT_PINNED) 4044 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 4045 if (event_type & EVENT_FLEXIBLE) 4046 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 4047 } 4048 4049 static void 4050 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 4051 { 4052 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4053 struct perf_event_pmu_context *pmu_ctx; 4054 int is_active = ctx->is_active; 4055 bool cgroup = event_type & EVENT_CGROUP; 4056 4057 event_type &= ~EVENT_CGROUP; 4058 4059 lockdep_assert_held(&ctx->lock); 4060 4061 if (likely(!ctx->nr_events)) 4062 return; 4063 4064 if (!(is_active & EVENT_TIME)) { 4065 /* start ctx time */ 4066 __update_context_time(ctx, false); 4067 perf_cgroup_set_timestamp(cpuctx); 4068 /* 4069 * CPU-release for the below ->is_active store, 4070 * see __load_acquire() in perf_event_time_now() 4071 */ 4072 barrier(); 4073 } 4074 4075 ctx->is_active |= (event_type | EVENT_TIME); 4076 if (ctx->task) { 4077 if (!(is_active & EVENT_ALL)) 4078 cpuctx->task_ctx = ctx; 4079 else 4080 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 4081 } 4082 4083 is_active ^= ctx->is_active; /* changed bits */ 4084 4085 /* 4086 * First go through the list and put on any pinned groups 4087 * in order to give them the best chance of going on. 4088 */ 4089 if (is_active & EVENT_PINNED) { 4090 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4091 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4092 } 4093 4094 /* Then walk through the lower prio flexible groups */ 4095 if (is_active & EVENT_FLEXIBLE) { 4096 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4097 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4098 } 4099 } 4100 4101 static void perf_event_context_sched_in(struct task_struct *task) 4102 { 4103 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4104 struct perf_event_context *ctx; 4105 4106 rcu_read_lock(); 4107 ctx = rcu_dereference(task->perf_event_ctxp); 4108 if (!ctx) 4109 goto rcu_unlock; 4110 4111 if (cpuctx->task_ctx == ctx) { 4112 perf_ctx_lock(cpuctx, ctx); 4113 perf_ctx_disable(ctx, false); 4114 4115 perf_ctx_sched_task_cb(ctx, task, true); 4116 4117 perf_ctx_enable(ctx, false); 4118 perf_ctx_unlock(cpuctx, ctx); 4119 goto rcu_unlock; 4120 } 4121 4122 perf_ctx_lock(cpuctx, ctx); 4123 /* 4124 * We must check ctx->nr_events while holding ctx->lock, such 4125 * that we serialize against perf_install_in_context(). 4126 */ 4127 if (!ctx->nr_events) 4128 goto unlock; 4129 4130 perf_ctx_disable(ctx, false); 4131 /* 4132 * We want to keep the following priority order: 4133 * cpu pinned (that don't need to move), task pinned, 4134 * cpu flexible, task flexible. 4135 * 4136 * However, if task's ctx is not carrying any pinned 4137 * events, no need to flip the cpuctx's events around. 4138 */ 4139 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4140 perf_ctx_disable(&cpuctx->ctx, false); 4141 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4142 } 4143 4144 perf_event_sched_in(cpuctx, ctx, NULL); 4145 4146 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); 4147 4148 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4149 perf_ctx_enable(&cpuctx->ctx, false); 4150 4151 perf_ctx_enable(ctx, false); 4152 4153 unlock: 4154 perf_ctx_unlock(cpuctx, ctx); 4155 rcu_unlock: 4156 rcu_read_unlock(); 4157 } 4158 4159 /* 4160 * Called from scheduler to add the events of the current task 4161 * with interrupts disabled. 4162 * 4163 * We restore the event value and then enable it. 4164 * 4165 * This does not protect us against NMI, but enable() 4166 * sets the enabled bit in the control field of event _before_ 4167 * accessing the event control register. If a NMI hits, then it will 4168 * keep the event running. 4169 */ 4170 void __perf_event_task_sched_in(struct task_struct *prev, 4171 struct task_struct *task) 4172 { 4173 perf_event_context_sched_in(task); 4174 4175 if (atomic_read(&nr_switch_events)) 4176 perf_event_switch(task, prev, true); 4177 4178 if (__this_cpu_read(perf_sched_cb_usages)) 4179 perf_pmu_sched_task(prev, task, true); 4180 } 4181 4182 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4183 { 4184 u64 frequency = event->attr.sample_freq; 4185 u64 sec = NSEC_PER_SEC; 4186 u64 divisor, dividend; 4187 4188 int count_fls, nsec_fls, frequency_fls, sec_fls; 4189 4190 count_fls = fls64(count); 4191 nsec_fls = fls64(nsec); 4192 frequency_fls = fls64(frequency); 4193 sec_fls = 30; 4194 4195 /* 4196 * We got @count in @nsec, with a target of sample_freq HZ 4197 * the target period becomes: 4198 * 4199 * @count * 10^9 4200 * period = ------------------- 4201 * @nsec * sample_freq 4202 * 4203 */ 4204 4205 /* 4206 * Reduce accuracy by one bit such that @a and @b converge 4207 * to a similar magnitude. 4208 */ 4209 #define REDUCE_FLS(a, b) \ 4210 do { \ 4211 if (a##_fls > b##_fls) { \ 4212 a >>= 1; \ 4213 a##_fls--; \ 4214 } else { \ 4215 b >>= 1; \ 4216 b##_fls--; \ 4217 } \ 4218 } while (0) 4219 4220 /* 4221 * Reduce accuracy until either term fits in a u64, then proceed with 4222 * the other, so that finally we can do a u64/u64 division. 4223 */ 4224 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4225 REDUCE_FLS(nsec, frequency); 4226 REDUCE_FLS(sec, count); 4227 } 4228 4229 if (count_fls + sec_fls > 64) { 4230 divisor = nsec * frequency; 4231 4232 while (count_fls + sec_fls > 64) { 4233 REDUCE_FLS(count, sec); 4234 divisor >>= 1; 4235 } 4236 4237 dividend = count * sec; 4238 } else { 4239 dividend = count * sec; 4240 4241 while (nsec_fls + frequency_fls > 64) { 4242 REDUCE_FLS(nsec, frequency); 4243 dividend >>= 1; 4244 } 4245 4246 divisor = nsec * frequency; 4247 } 4248 4249 if (!divisor) 4250 return dividend; 4251 4252 return div64_u64(dividend, divisor); 4253 } 4254 4255 static DEFINE_PER_CPU(int, perf_throttled_count); 4256 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4257 4258 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4259 { 4260 struct hw_perf_event *hwc = &event->hw; 4261 s64 period, sample_period; 4262 s64 delta; 4263 4264 period = perf_calculate_period(event, nsec, count); 4265 4266 delta = (s64)(period - hwc->sample_period); 4267 if (delta >= 0) 4268 delta += 7; 4269 else 4270 delta -= 7; 4271 delta /= 8; /* low pass filter */ 4272 4273 sample_period = hwc->sample_period + delta; 4274 4275 if (!sample_period) 4276 sample_period = 1; 4277 4278 hwc->sample_period = sample_period; 4279 4280 if (local64_read(&hwc->period_left) > 8*sample_period) { 4281 if (disable) 4282 event->pmu->stop(event, PERF_EF_UPDATE); 4283 4284 local64_set(&hwc->period_left, 0); 4285 4286 if (disable) 4287 event->pmu->start(event, PERF_EF_RELOAD); 4288 } 4289 } 4290 4291 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4292 { 4293 struct perf_event *event; 4294 struct hw_perf_event *hwc; 4295 u64 now, period = TICK_NSEC; 4296 s64 delta; 4297 4298 list_for_each_entry(event, event_list, active_list) { 4299 if (event->state != PERF_EVENT_STATE_ACTIVE) 4300 continue; 4301 4302 // XXX use visit thingy to avoid the -1,cpu match 4303 if (!event_filter_match(event)) 4304 continue; 4305 4306 hwc = &event->hw; 4307 4308 if (hwc->interrupts == MAX_INTERRUPTS) 4309 perf_event_unthrottle_group(event, is_event_in_freq_mode(event)); 4310 4311 if (!is_event_in_freq_mode(event)) 4312 continue; 4313 4314 /* 4315 * stop the event and update event->count 4316 */ 4317 event->pmu->stop(event, PERF_EF_UPDATE); 4318 4319 now = local64_read(&event->count); 4320 delta = now - hwc->freq_count_stamp; 4321 hwc->freq_count_stamp = now; 4322 4323 /* 4324 * restart the event 4325 * reload only if value has changed 4326 * we have stopped the event so tell that 4327 * to perf_adjust_period() to avoid stopping it 4328 * twice. 4329 */ 4330 if (delta > 0) 4331 perf_adjust_period(event, period, delta, false); 4332 4333 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4334 } 4335 } 4336 4337 /* 4338 * combine freq adjustment with unthrottling to avoid two passes over the 4339 * events. At the same time, make sure, having freq events does not change 4340 * the rate of unthrottling as that would introduce bias. 4341 */ 4342 static void 4343 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4344 { 4345 struct perf_event_pmu_context *pmu_ctx; 4346 4347 /* 4348 * only need to iterate over all events iff: 4349 * - context have events in frequency mode (needs freq adjust) 4350 * - there are events to unthrottle on this cpu 4351 */ 4352 if (!(ctx->nr_freq || unthrottle)) 4353 return; 4354 4355 raw_spin_lock(&ctx->lock); 4356 4357 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4358 if (!(pmu_ctx->nr_freq || unthrottle)) 4359 continue; 4360 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4361 continue; 4362 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4363 continue; 4364 4365 perf_pmu_disable(pmu_ctx->pmu); 4366 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4367 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4368 perf_pmu_enable(pmu_ctx->pmu); 4369 } 4370 4371 raw_spin_unlock(&ctx->lock); 4372 } 4373 4374 /* 4375 * Move @event to the tail of the @ctx's elegible events. 4376 */ 4377 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4378 { 4379 /* 4380 * Rotate the first entry last of non-pinned groups. Rotation might be 4381 * disabled by the inheritance code. 4382 */ 4383 if (ctx->rotate_disable) 4384 return; 4385 4386 perf_event_groups_delete(&ctx->flexible_groups, event); 4387 perf_event_groups_insert(&ctx->flexible_groups, event); 4388 } 4389 4390 /* pick an event from the flexible_groups to rotate */ 4391 static inline struct perf_event * 4392 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4393 { 4394 struct perf_event *event; 4395 struct rb_node *node; 4396 struct rb_root *tree; 4397 struct __group_key key = { 4398 .pmu = pmu_ctx->pmu, 4399 }; 4400 4401 /* pick the first active flexible event */ 4402 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4403 struct perf_event, active_list); 4404 if (event) 4405 goto out; 4406 4407 /* if no active flexible event, pick the first event */ 4408 tree = &pmu_ctx->ctx->flexible_groups.tree; 4409 4410 if (!pmu_ctx->ctx->task) { 4411 key.cpu = smp_processor_id(); 4412 4413 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4414 if (node) 4415 event = __node_2_pe(node); 4416 goto out; 4417 } 4418 4419 key.cpu = -1; 4420 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4421 if (node) { 4422 event = __node_2_pe(node); 4423 goto out; 4424 } 4425 4426 key.cpu = smp_processor_id(); 4427 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4428 if (node) 4429 event = __node_2_pe(node); 4430 4431 out: 4432 /* 4433 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4434 * finds there are unschedulable events, it will set it again. 4435 */ 4436 pmu_ctx->rotate_necessary = 0; 4437 4438 return event; 4439 } 4440 4441 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4442 { 4443 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4444 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4445 struct perf_event *cpu_event = NULL, *task_event = NULL; 4446 int cpu_rotate, task_rotate; 4447 struct pmu *pmu; 4448 4449 /* 4450 * Since we run this from IRQ context, nobody can install new 4451 * events, thus the event count values are stable. 4452 */ 4453 4454 cpu_epc = &cpc->epc; 4455 pmu = cpu_epc->pmu; 4456 task_epc = cpc->task_epc; 4457 4458 cpu_rotate = cpu_epc->rotate_necessary; 4459 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4460 4461 if (!(cpu_rotate || task_rotate)) 4462 return false; 4463 4464 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4465 perf_pmu_disable(pmu); 4466 4467 if (task_rotate) 4468 task_event = ctx_event_to_rotate(task_epc); 4469 if (cpu_rotate) 4470 cpu_event = ctx_event_to_rotate(cpu_epc); 4471 4472 /* 4473 * As per the order given at ctx_resched() first 'pop' task flexible 4474 * and then, if needed CPU flexible. 4475 */ 4476 if (task_event || (task_epc && cpu_event)) { 4477 update_context_time(task_epc->ctx); 4478 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4479 } 4480 4481 if (cpu_event) { 4482 update_context_time(&cpuctx->ctx); 4483 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4484 rotate_ctx(&cpuctx->ctx, cpu_event); 4485 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4486 } 4487 4488 if (task_event) 4489 rotate_ctx(task_epc->ctx, task_event); 4490 4491 if (task_event || (task_epc && cpu_event)) 4492 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4493 4494 perf_pmu_enable(pmu); 4495 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4496 4497 return true; 4498 } 4499 4500 void perf_event_task_tick(void) 4501 { 4502 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4503 struct perf_event_context *ctx; 4504 int throttled; 4505 4506 lockdep_assert_irqs_disabled(); 4507 4508 __this_cpu_inc(perf_throttled_seq); 4509 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4510 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4511 4512 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4513 4514 rcu_read_lock(); 4515 ctx = rcu_dereference(current->perf_event_ctxp); 4516 if (ctx) 4517 perf_adjust_freq_unthr_context(ctx, !!throttled); 4518 rcu_read_unlock(); 4519 } 4520 4521 static int event_enable_on_exec(struct perf_event *event, 4522 struct perf_event_context *ctx) 4523 { 4524 if (!event->attr.enable_on_exec) 4525 return 0; 4526 4527 event->attr.enable_on_exec = 0; 4528 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4529 return 0; 4530 4531 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4532 4533 return 1; 4534 } 4535 4536 /* 4537 * Enable all of a task's events that have been marked enable-on-exec. 4538 * This expects task == current. 4539 */ 4540 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4541 { 4542 struct perf_event_context *clone_ctx = NULL; 4543 enum event_type_t event_type = 0; 4544 struct perf_cpu_context *cpuctx; 4545 struct perf_event *event; 4546 unsigned long flags; 4547 int enabled = 0; 4548 4549 local_irq_save(flags); 4550 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4551 goto out; 4552 4553 if (!ctx->nr_events) 4554 goto out; 4555 4556 cpuctx = this_cpu_ptr(&perf_cpu_context); 4557 perf_ctx_lock(cpuctx, ctx); 4558 ctx_time_freeze(cpuctx, ctx); 4559 4560 list_for_each_entry(event, &ctx->event_list, event_entry) { 4561 enabled |= event_enable_on_exec(event, ctx); 4562 event_type |= get_event_type(event); 4563 } 4564 4565 /* 4566 * Unclone and reschedule this context if we enabled any event. 4567 */ 4568 if (enabled) { 4569 clone_ctx = unclone_ctx(ctx); 4570 ctx_resched(cpuctx, ctx, NULL, event_type); 4571 } 4572 perf_ctx_unlock(cpuctx, ctx); 4573 4574 out: 4575 local_irq_restore(flags); 4576 4577 if (clone_ctx) 4578 put_ctx(clone_ctx); 4579 } 4580 4581 static void perf_remove_from_owner(struct perf_event *event); 4582 static void perf_event_exit_event(struct perf_event *event, 4583 struct perf_event_context *ctx, 4584 bool revoke); 4585 4586 /* 4587 * Removes all events from the current task that have been marked 4588 * remove-on-exec, and feeds their values back to parent events. 4589 */ 4590 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4591 { 4592 struct perf_event_context *clone_ctx = NULL; 4593 struct perf_event *event, *next; 4594 unsigned long flags; 4595 bool modified = false; 4596 4597 mutex_lock(&ctx->mutex); 4598 4599 if (WARN_ON_ONCE(ctx->task != current)) 4600 goto unlock; 4601 4602 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4603 if (!event->attr.remove_on_exec) 4604 continue; 4605 4606 if (!is_kernel_event(event)) 4607 perf_remove_from_owner(event); 4608 4609 modified = true; 4610 4611 perf_event_exit_event(event, ctx, false); 4612 } 4613 4614 raw_spin_lock_irqsave(&ctx->lock, flags); 4615 if (modified) 4616 clone_ctx = unclone_ctx(ctx); 4617 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4618 4619 unlock: 4620 mutex_unlock(&ctx->mutex); 4621 4622 if (clone_ctx) 4623 put_ctx(clone_ctx); 4624 } 4625 4626 struct perf_read_data { 4627 struct perf_event *event; 4628 bool group; 4629 int ret; 4630 }; 4631 4632 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4633 4634 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4635 { 4636 int local_cpu = smp_processor_id(); 4637 u16 local_pkg, event_pkg; 4638 4639 if ((unsigned)event_cpu >= nr_cpu_ids) 4640 return event_cpu; 4641 4642 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4643 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4644 4645 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4646 return local_cpu; 4647 } 4648 4649 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4650 event_pkg = topology_physical_package_id(event_cpu); 4651 local_pkg = topology_physical_package_id(local_cpu); 4652 4653 if (event_pkg == local_pkg) 4654 return local_cpu; 4655 } 4656 4657 return event_cpu; 4658 } 4659 4660 /* 4661 * Cross CPU call to read the hardware event 4662 */ 4663 static void __perf_event_read(void *info) 4664 { 4665 struct perf_read_data *data = info; 4666 struct perf_event *sub, *event = data->event; 4667 struct perf_event_context *ctx = event->ctx; 4668 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4669 struct pmu *pmu = event->pmu; 4670 4671 /* 4672 * If this is a task context, we need to check whether it is 4673 * the current task context of this cpu. If not it has been 4674 * scheduled out before the smp call arrived. In that case 4675 * event->count would have been updated to a recent sample 4676 * when the event was scheduled out. 4677 */ 4678 if (ctx->task && cpuctx->task_ctx != ctx) 4679 return; 4680 4681 raw_spin_lock(&ctx->lock); 4682 ctx_time_update_event(ctx, event); 4683 4684 perf_event_update_time(event); 4685 if (data->group) 4686 perf_event_update_sibling_time(event); 4687 4688 if (event->state != PERF_EVENT_STATE_ACTIVE) 4689 goto unlock; 4690 4691 if (!data->group) { 4692 pmu->read(event); 4693 data->ret = 0; 4694 goto unlock; 4695 } 4696 4697 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4698 4699 pmu->read(event); 4700 4701 for_each_sibling_event(sub, event) 4702 perf_pmu_read(sub); 4703 4704 data->ret = pmu->commit_txn(pmu); 4705 4706 unlock: 4707 raw_spin_unlock(&ctx->lock); 4708 } 4709 4710 static inline u64 perf_event_count(struct perf_event *event, bool self) 4711 { 4712 if (self) 4713 return local64_read(&event->count); 4714 4715 return local64_read(&event->count) + atomic64_read(&event->child_count); 4716 } 4717 4718 static void calc_timer_values(struct perf_event *event, 4719 u64 *now, 4720 u64 *enabled, 4721 u64 *running) 4722 { 4723 u64 ctx_time; 4724 4725 *now = perf_clock(); 4726 ctx_time = perf_event_time_now(event, *now); 4727 __perf_update_times(event, ctx_time, enabled, running); 4728 } 4729 4730 /* 4731 * NMI-safe method to read a local event, that is an event that 4732 * is: 4733 * - either for the current task, or for this CPU 4734 * - does not have inherit set, for inherited task events 4735 * will not be local and we cannot read them atomically 4736 * - must not have a pmu::count method 4737 */ 4738 int perf_event_read_local(struct perf_event *event, u64 *value, 4739 u64 *enabled, u64 *running) 4740 { 4741 unsigned long flags; 4742 int event_oncpu; 4743 int event_cpu; 4744 int ret = 0; 4745 4746 /* 4747 * Disabling interrupts avoids all counter scheduling (context 4748 * switches, timer based rotation and IPIs). 4749 */ 4750 local_irq_save(flags); 4751 4752 /* 4753 * It must not be an event with inherit set, we cannot read 4754 * all child counters from atomic context. 4755 */ 4756 if (event->attr.inherit) { 4757 ret = -EOPNOTSUPP; 4758 goto out; 4759 } 4760 4761 /* If this is a per-task event, it must be for current */ 4762 if ((event->attach_state & PERF_ATTACH_TASK) && 4763 event->hw.target != current) { 4764 ret = -EINVAL; 4765 goto out; 4766 } 4767 4768 /* 4769 * Get the event CPU numbers, and adjust them to local if the event is 4770 * a per-package event that can be read locally 4771 */ 4772 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4773 event_cpu = __perf_event_read_cpu(event, event->cpu); 4774 4775 /* If this is a per-CPU event, it must be for this CPU */ 4776 if (!(event->attach_state & PERF_ATTACH_TASK) && 4777 event_cpu != smp_processor_id()) { 4778 ret = -EINVAL; 4779 goto out; 4780 } 4781 4782 /* If this is a pinned event it must be running on this CPU */ 4783 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4784 ret = -EBUSY; 4785 goto out; 4786 } 4787 4788 /* 4789 * If the event is currently on this CPU, its either a per-task event, 4790 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4791 * oncpu == -1). 4792 */ 4793 if (event_oncpu == smp_processor_id()) 4794 event->pmu->read(event); 4795 4796 *value = local64_read(&event->count); 4797 if (enabled || running) { 4798 u64 __enabled, __running, __now; 4799 4800 calc_timer_values(event, &__now, &__enabled, &__running); 4801 if (enabled) 4802 *enabled = __enabled; 4803 if (running) 4804 *running = __running; 4805 } 4806 out: 4807 local_irq_restore(flags); 4808 4809 return ret; 4810 } 4811 4812 static int perf_event_read(struct perf_event *event, bool group) 4813 { 4814 enum perf_event_state state = READ_ONCE(event->state); 4815 int event_cpu, ret = 0; 4816 4817 /* 4818 * If event is enabled and currently active on a CPU, update the 4819 * value in the event structure: 4820 */ 4821 again: 4822 if (state == PERF_EVENT_STATE_ACTIVE) { 4823 struct perf_read_data data; 4824 4825 /* 4826 * Orders the ->state and ->oncpu loads such that if we see 4827 * ACTIVE we must also see the right ->oncpu. 4828 * 4829 * Matches the smp_wmb() from event_sched_in(). 4830 */ 4831 smp_rmb(); 4832 4833 event_cpu = READ_ONCE(event->oncpu); 4834 if ((unsigned)event_cpu >= nr_cpu_ids) 4835 return 0; 4836 4837 data = (struct perf_read_data){ 4838 .event = event, 4839 .group = group, 4840 .ret = 0, 4841 }; 4842 4843 preempt_disable(); 4844 event_cpu = __perf_event_read_cpu(event, event_cpu); 4845 4846 /* 4847 * Purposely ignore the smp_call_function_single() return 4848 * value. 4849 * 4850 * If event_cpu isn't a valid CPU it means the event got 4851 * scheduled out and that will have updated the event count. 4852 * 4853 * Therefore, either way, we'll have an up-to-date event count 4854 * after this. 4855 */ 4856 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4857 preempt_enable(); 4858 ret = data.ret; 4859 4860 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4861 struct perf_event_context *ctx = event->ctx; 4862 unsigned long flags; 4863 4864 raw_spin_lock_irqsave(&ctx->lock, flags); 4865 state = event->state; 4866 if (state != PERF_EVENT_STATE_INACTIVE) { 4867 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4868 goto again; 4869 } 4870 4871 /* 4872 * May read while context is not active (e.g., thread is 4873 * blocked), in that case we cannot update context time 4874 */ 4875 ctx_time_update_event(ctx, event); 4876 4877 perf_event_update_time(event); 4878 if (group) 4879 perf_event_update_sibling_time(event); 4880 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4881 } 4882 4883 return ret; 4884 } 4885 4886 /* 4887 * Initialize the perf_event context in a task_struct: 4888 */ 4889 static void __perf_event_init_context(struct perf_event_context *ctx) 4890 { 4891 raw_spin_lock_init(&ctx->lock); 4892 mutex_init(&ctx->mutex); 4893 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4894 perf_event_groups_init(&ctx->pinned_groups); 4895 perf_event_groups_init(&ctx->flexible_groups); 4896 INIT_LIST_HEAD(&ctx->event_list); 4897 refcount_set(&ctx->refcount, 1); 4898 } 4899 4900 static void 4901 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4902 { 4903 epc->pmu = pmu; 4904 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4905 INIT_LIST_HEAD(&epc->pinned_active); 4906 INIT_LIST_HEAD(&epc->flexible_active); 4907 atomic_set(&epc->refcount, 1); 4908 } 4909 4910 static struct perf_event_context * 4911 alloc_perf_context(struct task_struct *task) 4912 { 4913 struct perf_event_context *ctx; 4914 4915 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4916 if (!ctx) 4917 return NULL; 4918 4919 __perf_event_init_context(ctx); 4920 if (task) 4921 ctx->task = get_task_struct(task); 4922 4923 return ctx; 4924 } 4925 4926 static struct task_struct * 4927 find_lively_task_by_vpid(pid_t vpid) 4928 { 4929 struct task_struct *task; 4930 4931 rcu_read_lock(); 4932 if (!vpid) 4933 task = current; 4934 else 4935 task = find_task_by_vpid(vpid); 4936 if (task) 4937 get_task_struct(task); 4938 rcu_read_unlock(); 4939 4940 if (!task) 4941 return ERR_PTR(-ESRCH); 4942 4943 return task; 4944 } 4945 4946 /* 4947 * Returns a matching context with refcount and pincount. 4948 */ 4949 static struct perf_event_context * 4950 find_get_context(struct task_struct *task, struct perf_event *event) 4951 { 4952 struct perf_event_context *ctx, *clone_ctx = NULL; 4953 struct perf_cpu_context *cpuctx; 4954 unsigned long flags; 4955 int err; 4956 4957 if (!task) { 4958 /* Must be root to operate on a CPU event: */ 4959 err = perf_allow_cpu(); 4960 if (err) 4961 return ERR_PTR(err); 4962 4963 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4964 ctx = &cpuctx->ctx; 4965 get_ctx(ctx); 4966 raw_spin_lock_irqsave(&ctx->lock, flags); 4967 ++ctx->pin_count; 4968 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4969 4970 return ctx; 4971 } 4972 4973 err = -EINVAL; 4974 retry: 4975 ctx = perf_lock_task_context(task, &flags); 4976 if (ctx) { 4977 clone_ctx = unclone_ctx(ctx); 4978 ++ctx->pin_count; 4979 4980 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4981 4982 if (clone_ctx) 4983 put_ctx(clone_ctx); 4984 } else { 4985 ctx = alloc_perf_context(task); 4986 err = -ENOMEM; 4987 if (!ctx) 4988 goto errout; 4989 4990 err = 0; 4991 mutex_lock(&task->perf_event_mutex); 4992 /* 4993 * If it has already passed perf_event_exit_task(). 4994 * we must see PF_EXITING, it takes this mutex too. 4995 */ 4996 if (task->flags & PF_EXITING) 4997 err = -ESRCH; 4998 else if (task->perf_event_ctxp) 4999 err = -EAGAIN; 5000 else { 5001 get_ctx(ctx); 5002 ++ctx->pin_count; 5003 rcu_assign_pointer(task->perf_event_ctxp, ctx); 5004 } 5005 mutex_unlock(&task->perf_event_mutex); 5006 5007 if (unlikely(err)) { 5008 put_ctx(ctx); 5009 5010 if (err == -EAGAIN) 5011 goto retry; 5012 goto errout; 5013 } 5014 } 5015 5016 return ctx; 5017 5018 errout: 5019 return ERR_PTR(err); 5020 } 5021 5022 static struct perf_event_pmu_context * 5023 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 5024 struct perf_event *event) 5025 { 5026 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; 5027 5028 if (!ctx->task) { 5029 /* 5030 * perf_pmu_migrate_context() / __perf_pmu_install_event() 5031 * relies on the fact that find_get_pmu_context() cannot fail 5032 * for CPU contexts. 5033 */ 5034 struct perf_cpu_pmu_context *cpc; 5035 5036 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 5037 epc = &cpc->epc; 5038 raw_spin_lock_irq(&ctx->lock); 5039 if (!epc->ctx) { 5040 /* 5041 * One extra reference for the pmu; see perf_pmu_free(). 5042 */ 5043 atomic_set(&epc->refcount, 2); 5044 epc->embedded = 1; 5045 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5046 epc->ctx = ctx; 5047 } else { 5048 WARN_ON_ONCE(epc->ctx != ctx); 5049 atomic_inc(&epc->refcount); 5050 } 5051 raw_spin_unlock_irq(&ctx->lock); 5052 return epc; 5053 } 5054 5055 new = kzalloc(sizeof(*epc), GFP_KERNEL); 5056 if (!new) 5057 return ERR_PTR(-ENOMEM); 5058 5059 __perf_init_event_pmu_context(new, pmu); 5060 5061 /* 5062 * XXX 5063 * 5064 * lockdep_assert_held(&ctx->mutex); 5065 * 5066 * can't because perf_event_init_task() doesn't actually hold the 5067 * child_ctx->mutex. 5068 */ 5069 5070 raw_spin_lock_irq(&ctx->lock); 5071 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5072 if (epc->pmu == pmu) { 5073 WARN_ON_ONCE(epc->ctx != ctx); 5074 atomic_inc(&epc->refcount); 5075 goto found_epc; 5076 } 5077 /* Make sure the pmu_ctx_list is sorted by PMU type: */ 5078 if (!pos && epc->pmu->type > pmu->type) 5079 pos = epc; 5080 } 5081 5082 epc = new; 5083 new = NULL; 5084 5085 if (!pos) 5086 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5087 else 5088 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); 5089 5090 epc->ctx = ctx; 5091 5092 found_epc: 5093 raw_spin_unlock_irq(&ctx->lock); 5094 kfree(new); 5095 5096 return epc; 5097 } 5098 5099 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5100 { 5101 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5102 } 5103 5104 static void free_cpc_rcu(struct rcu_head *head) 5105 { 5106 struct perf_cpu_pmu_context *cpc = 5107 container_of(head, typeof(*cpc), epc.rcu_head); 5108 5109 kfree(cpc); 5110 } 5111 5112 static void free_epc_rcu(struct rcu_head *head) 5113 { 5114 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5115 5116 kfree(epc); 5117 } 5118 5119 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5120 { 5121 struct perf_event_context *ctx = epc->ctx; 5122 unsigned long flags; 5123 5124 /* 5125 * XXX 5126 * 5127 * lockdep_assert_held(&ctx->mutex); 5128 * 5129 * can't because of the call-site in _free_event()/put_event() 5130 * which isn't always called under ctx->mutex. 5131 */ 5132 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5133 return; 5134 5135 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5136 5137 list_del_init(&epc->pmu_ctx_entry); 5138 epc->ctx = NULL; 5139 5140 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5141 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5142 5143 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5144 5145 if (epc->embedded) { 5146 call_rcu(&epc->rcu_head, free_cpc_rcu); 5147 return; 5148 } 5149 5150 call_rcu(&epc->rcu_head, free_epc_rcu); 5151 } 5152 5153 static void perf_event_free_filter(struct perf_event *event); 5154 5155 static void free_event_rcu(struct rcu_head *head) 5156 { 5157 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5158 5159 if (event->ns) 5160 put_pid_ns(event->ns); 5161 perf_event_free_filter(event); 5162 kmem_cache_free(perf_event_cache, event); 5163 } 5164 5165 static void ring_buffer_attach(struct perf_event *event, 5166 struct perf_buffer *rb); 5167 5168 static void detach_sb_event(struct perf_event *event) 5169 { 5170 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5171 5172 raw_spin_lock(&pel->lock); 5173 list_del_rcu(&event->sb_list); 5174 raw_spin_unlock(&pel->lock); 5175 } 5176 5177 static bool is_sb_event(struct perf_event *event) 5178 { 5179 struct perf_event_attr *attr = &event->attr; 5180 5181 if (event->parent) 5182 return false; 5183 5184 if (event->attach_state & PERF_ATTACH_TASK) 5185 return false; 5186 5187 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5188 attr->comm || attr->comm_exec || 5189 attr->task || attr->ksymbol || 5190 attr->context_switch || attr->text_poke || 5191 attr->bpf_event) 5192 return true; 5193 5194 return false; 5195 } 5196 5197 static void unaccount_pmu_sb_event(struct perf_event *event) 5198 { 5199 if (is_sb_event(event)) 5200 detach_sb_event(event); 5201 } 5202 5203 #ifdef CONFIG_NO_HZ_FULL 5204 static DEFINE_SPINLOCK(nr_freq_lock); 5205 #endif 5206 5207 static void unaccount_freq_event_nohz(void) 5208 { 5209 #ifdef CONFIG_NO_HZ_FULL 5210 spin_lock(&nr_freq_lock); 5211 if (atomic_dec_and_test(&nr_freq_events)) 5212 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5213 spin_unlock(&nr_freq_lock); 5214 #endif 5215 } 5216 5217 static void unaccount_freq_event(void) 5218 { 5219 if (tick_nohz_full_enabled()) 5220 unaccount_freq_event_nohz(); 5221 else 5222 atomic_dec(&nr_freq_events); 5223 } 5224 5225 5226 static struct perf_ctx_data * 5227 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) 5228 { 5229 struct perf_ctx_data *cd; 5230 5231 cd = kzalloc(sizeof(*cd), GFP_KERNEL); 5232 if (!cd) 5233 return NULL; 5234 5235 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); 5236 if (!cd->data) { 5237 kfree(cd); 5238 return NULL; 5239 } 5240 5241 cd->global = global; 5242 cd->ctx_cache = ctx_cache; 5243 refcount_set(&cd->refcount, 1); 5244 5245 return cd; 5246 } 5247 5248 static void free_perf_ctx_data(struct perf_ctx_data *cd) 5249 { 5250 kmem_cache_free(cd->ctx_cache, cd->data); 5251 kfree(cd); 5252 } 5253 5254 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) 5255 { 5256 struct perf_ctx_data *cd; 5257 5258 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); 5259 free_perf_ctx_data(cd); 5260 } 5261 5262 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) 5263 { 5264 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); 5265 } 5266 5267 static int 5268 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, 5269 bool global) 5270 { 5271 struct perf_ctx_data *cd, *old = NULL; 5272 5273 cd = alloc_perf_ctx_data(ctx_cache, global); 5274 if (!cd) 5275 return -ENOMEM; 5276 5277 for (;;) { 5278 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) { 5279 if (old) 5280 perf_free_ctx_data_rcu(old); 5281 return 0; 5282 } 5283 5284 if (!old) { 5285 /* 5286 * After seeing a dead @old, we raced with 5287 * removal and lost, try again to install @cd. 5288 */ 5289 continue; 5290 } 5291 5292 if (refcount_inc_not_zero(&old->refcount)) { 5293 free_perf_ctx_data(cd); /* unused */ 5294 return 0; 5295 } 5296 5297 /* 5298 * @old is a dead object, refcount==0 is stable, try and 5299 * replace it with @cd. 5300 */ 5301 } 5302 return 0; 5303 } 5304 5305 static void __detach_global_ctx_data(void); 5306 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); 5307 static refcount_t global_ctx_data_ref; 5308 5309 static int 5310 attach_global_ctx_data(struct kmem_cache *ctx_cache) 5311 { 5312 struct task_struct *g, *p; 5313 struct perf_ctx_data *cd; 5314 int ret; 5315 5316 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5317 return 0; 5318 5319 guard(percpu_write)(&global_ctx_data_rwsem); 5320 if (refcount_inc_not_zero(&global_ctx_data_ref)) 5321 return 0; 5322 again: 5323 /* Allocate everything */ 5324 scoped_guard (rcu) { 5325 for_each_process_thread(g, p) { 5326 cd = rcu_dereference(p->perf_ctx_data); 5327 if (cd && !cd->global) { 5328 cd->global = 1; 5329 if (!refcount_inc_not_zero(&cd->refcount)) 5330 cd = NULL; 5331 } 5332 if (!cd) { 5333 get_task_struct(p); 5334 goto alloc; 5335 } 5336 } 5337 } 5338 5339 refcount_set(&global_ctx_data_ref, 1); 5340 5341 return 0; 5342 alloc: 5343 ret = attach_task_ctx_data(p, ctx_cache, true); 5344 put_task_struct(p); 5345 if (ret) { 5346 __detach_global_ctx_data(); 5347 return ret; 5348 } 5349 goto again; 5350 } 5351 5352 static int 5353 attach_perf_ctx_data(struct perf_event *event) 5354 { 5355 struct task_struct *task = event->hw.target; 5356 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; 5357 int ret; 5358 5359 if (!ctx_cache) 5360 return -ENOMEM; 5361 5362 if (task) 5363 return attach_task_ctx_data(task, ctx_cache, false); 5364 5365 ret = attach_global_ctx_data(ctx_cache); 5366 if (ret) 5367 return ret; 5368 5369 event->attach_state |= PERF_ATTACH_GLOBAL_DATA; 5370 return 0; 5371 } 5372 5373 static void 5374 detach_task_ctx_data(struct task_struct *p) 5375 { 5376 struct perf_ctx_data *cd; 5377 5378 scoped_guard (rcu) { 5379 cd = rcu_dereference(p->perf_ctx_data); 5380 if (!cd || !refcount_dec_and_test(&cd->refcount)) 5381 return; 5382 } 5383 5384 /* 5385 * The old ctx_data may be lost because of the race. 5386 * Nothing is required to do for the case. 5387 * See attach_task_ctx_data(). 5388 */ 5389 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) 5390 perf_free_ctx_data_rcu(cd); 5391 } 5392 5393 static void __detach_global_ctx_data(void) 5394 { 5395 struct task_struct *g, *p; 5396 struct perf_ctx_data *cd; 5397 5398 again: 5399 scoped_guard (rcu) { 5400 for_each_process_thread(g, p) { 5401 cd = rcu_dereference(p->perf_ctx_data); 5402 if (!cd || !cd->global) 5403 continue; 5404 cd->global = 0; 5405 get_task_struct(p); 5406 goto detach; 5407 } 5408 } 5409 return; 5410 detach: 5411 detach_task_ctx_data(p); 5412 put_task_struct(p); 5413 goto again; 5414 } 5415 5416 static void detach_global_ctx_data(void) 5417 { 5418 if (refcount_dec_not_one(&global_ctx_data_ref)) 5419 return; 5420 5421 guard(percpu_write)(&global_ctx_data_rwsem); 5422 if (!refcount_dec_and_test(&global_ctx_data_ref)) 5423 return; 5424 5425 /* remove everything */ 5426 __detach_global_ctx_data(); 5427 } 5428 5429 static void detach_perf_ctx_data(struct perf_event *event) 5430 { 5431 struct task_struct *task = event->hw.target; 5432 5433 event->attach_state &= ~PERF_ATTACH_TASK_DATA; 5434 5435 if (task) 5436 return detach_task_ctx_data(task); 5437 5438 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { 5439 detach_global_ctx_data(); 5440 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; 5441 } 5442 } 5443 5444 static void unaccount_event(struct perf_event *event) 5445 { 5446 bool dec = false; 5447 5448 if (event->parent) 5449 return; 5450 5451 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5452 dec = true; 5453 if (event->attr.mmap || event->attr.mmap_data) 5454 atomic_dec(&nr_mmap_events); 5455 if (event->attr.build_id) 5456 atomic_dec(&nr_build_id_events); 5457 if (event->attr.comm) 5458 atomic_dec(&nr_comm_events); 5459 if (event->attr.namespaces) 5460 atomic_dec(&nr_namespaces_events); 5461 if (event->attr.cgroup) 5462 atomic_dec(&nr_cgroup_events); 5463 if (event->attr.task) 5464 atomic_dec(&nr_task_events); 5465 if (event->attr.freq) 5466 unaccount_freq_event(); 5467 if (event->attr.context_switch) { 5468 dec = true; 5469 atomic_dec(&nr_switch_events); 5470 } 5471 if (is_cgroup_event(event)) 5472 dec = true; 5473 if (has_branch_stack(event)) 5474 dec = true; 5475 if (event->attr.ksymbol) 5476 atomic_dec(&nr_ksymbol_events); 5477 if (event->attr.bpf_event) 5478 atomic_dec(&nr_bpf_events); 5479 if (event->attr.text_poke) 5480 atomic_dec(&nr_text_poke_events); 5481 5482 if (dec) { 5483 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5484 schedule_delayed_work(&perf_sched_work, HZ); 5485 } 5486 5487 unaccount_pmu_sb_event(event); 5488 } 5489 5490 static void perf_sched_delayed(struct work_struct *work) 5491 { 5492 mutex_lock(&perf_sched_mutex); 5493 if (atomic_dec_and_test(&perf_sched_count)) 5494 static_branch_disable(&perf_sched_events); 5495 mutex_unlock(&perf_sched_mutex); 5496 } 5497 5498 /* 5499 * The following implement mutual exclusion of events on "exclusive" pmus 5500 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5501 * at a time, so we disallow creating events that might conflict, namely: 5502 * 5503 * 1) cpu-wide events in the presence of per-task events, 5504 * 2) per-task events in the presence of cpu-wide events, 5505 * 3) two matching events on the same perf_event_context. 5506 * 5507 * The former two cases are handled in the allocation path (perf_event_alloc(), 5508 * _free_event()), the latter -- before the first perf_install_in_context(). 5509 */ 5510 static int exclusive_event_init(struct perf_event *event) 5511 { 5512 struct pmu *pmu = event->pmu; 5513 5514 if (!is_exclusive_pmu(pmu)) 5515 return 0; 5516 5517 /* 5518 * Prevent co-existence of per-task and cpu-wide events on the 5519 * same exclusive pmu. 5520 * 5521 * Negative pmu::exclusive_cnt means there are cpu-wide 5522 * events on this "exclusive" pmu, positive means there are 5523 * per-task events. 5524 * 5525 * Since this is called in perf_event_alloc() path, event::ctx 5526 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5527 * to mean "per-task event", because unlike other attach states it 5528 * never gets cleared. 5529 */ 5530 if (event->attach_state & PERF_ATTACH_TASK) { 5531 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5532 return -EBUSY; 5533 } else { 5534 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5535 return -EBUSY; 5536 } 5537 5538 event->attach_state |= PERF_ATTACH_EXCLUSIVE; 5539 5540 return 0; 5541 } 5542 5543 static void exclusive_event_destroy(struct perf_event *event) 5544 { 5545 struct pmu *pmu = event->pmu; 5546 5547 /* see comment in exclusive_event_init() */ 5548 if (event->attach_state & PERF_ATTACH_TASK) 5549 atomic_dec(&pmu->exclusive_cnt); 5550 else 5551 atomic_inc(&pmu->exclusive_cnt); 5552 5553 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; 5554 } 5555 5556 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5557 { 5558 if ((e1->pmu == e2->pmu) && 5559 (e1->cpu == e2->cpu || 5560 e1->cpu == -1 || 5561 e2->cpu == -1)) 5562 return true; 5563 return false; 5564 } 5565 5566 static bool exclusive_event_installable(struct perf_event *event, 5567 struct perf_event_context *ctx) 5568 { 5569 struct perf_event *iter_event; 5570 struct pmu *pmu = event->pmu; 5571 5572 lockdep_assert_held(&ctx->mutex); 5573 5574 if (!is_exclusive_pmu(pmu)) 5575 return true; 5576 5577 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5578 if (exclusive_event_match(iter_event, event)) 5579 return false; 5580 } 5581 5582 return true; 5583 } 5584 5585 static void perf_free_addr_filters(struct perf_event *event); 5586 5587 /* vs perf_event_alloc() error */ 5588 static void __free_event(struct perf_event *event) 5589 { 5590 struct pmu *pmu = event->pmu; 5591 5592 if (event->attach_state & PERF_ATTACH_CALLCHAIN) 5593 put_callchain_buffers(); 5594 5595 kfree(event->addr_filter_ranges); 5596 5597 if (event->attach_state & PERF_ATTACH_EXCLUSIVE) 5598 exclusive_event_destroy(event); 5599 5600 if (is_cgroup_event(event)) 5601 perf_detach_cgroup(event); 5602 5603 if (event->attach_state & PERF_ATTACH_TASK_DATA) 5604 detach_perf_ctx_data(event); 5605 5606 if (event->destroy) 5607 event->destroy(event); 5608 5609 /* 5610 * Must be after ->destroy(), due to uprobe_perf_close() using 5611 * hw.target. 5612 */ 5613 if (event->hw.target) 5614 put_task_struct(event->hw.target); 5615 5616 if (event->pmu_ctx) { 5617 /* 5618 * put_pmu_ctx() needs an event->ctx reference, because of 5619 * epc->ctx. 5620 */ 5621 WARN_ON_ONCE(!pmu); 5622 WARN_ON_ONCE(!event->ctx); 5623 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); 5624 put_pmu_ctx(event->pmu_ctx); 5625 } 5626 5627 /* 5628 * perf_event_free_task() relies on put_ctx() being 'last', in 5629 * particular all task references must be cleaned up. 5630 */ 5631 if (event->ctx) 5632 put_ctx(event->ctx); 5633 5634 if (pmu) { 5635 module_put(pmu->module); 5636 scoped_guard (spinlock, &pmu->events_lock) { 5637 list_del(&event->pmu_list); 5638 wake_up_var(pmu); 5639 } 5640 } 5641 5642 call_rcu(&event->rcu_head, free_event_rcu); 5643 } 5644 5645 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) 5646 5647 /* vs perf_event_alloc() success */ 5648 static void _free_event(struct perf_event *event) 5649 { 5650 irq_work_sync(&event->pending_irq); 5651 irq_work_sync(&event->pending_disable_irq); 5652 5653 unaccount_event(event); 5654 5655 security_perf_event_free(event); 5656 5657 if (event->rb) { 5658 /* 5659 * Can happen when we close an event with re-directed output. 5660 * 5661 * Since we have a 0 refcount, perf_mmap_close() will skip 5662 * over us; possibly making our ring_buffer_put() the last. 5663 */ 5664 mutex_lock(&event->mmap_mutex); 5665 ring_buffer_attach(event, NULL); 5666 mutex_unlock(&event->mmap_mutex); 5667 } 5668 5669 perf_event_free_bpf_prog(event); 5670 perf_free_addr_filters(event); 5671 5672 __free_event(event); 5673 } 5674 5675 /* 5676 * Used to free events which have a known refcount of 1, such as in error paths 5677 * of inherited events. 5678 */ 5679 static void free_event(struct perf_event *event) 5680 { 5681 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5682 "unexpected event refcount: %ld; ptr=%p\n", 5683 atomic_long_read(&event->refcount), event)) { 5684 /* leak to avoid use-after-free */ 5685 return; 5686 } 5687 5688 _free_event(event); 5689 } 5690 5691 /* 5692 * Remove user event from the owner task. 5693 */ 5694 static void perf_remove_from_owner(struct perf_event *event) 5695 { 5696 struct task_struct *owner; 5697 5698 rcu_read_lock(); 5699 /* 5700 * Matches the smp_store_release() in perf_event_exit_task(). If we 5701 * observe !owner it means the list deletion is complete and we can 5702 * indeed free this event, otherwise we need to serialize on 5703 * owner->perf_event_mutex. 5704 */ 5705 owner = READ_ONCE(event->owner); 5706 if (owner) { 5707 /* 5708 * Since delayed_put_task_struct() also drops the last 5709 * task reference we can safely take a new reference 5710 * while holding the rcu_read_lock(). 5711 */ 5712 get_task_struct(owner); 5713 } 5714 rcu_read_unlock(); 5715 5716 if (owner) { 5717 /* 5718 * If we're here through perf_event_exit_task() we're already 5719 * holding ctx->mutex which would be an inversion wrt. the 5720 * normal lock order. 5721 * 5722 * However we can safely take this lock because its the child 5723 * ctx->mutex. 5724 */ 5725 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5726 5727 /* 5728 * We have to re-check the event->owner field, if it is cleared 5729 * we raced with perf_event_exit_task(), acquiring the mutex 5730 * ensured they're done, and we can proceed with freeing the 5731 * event. 5732 */ 5733 if (event->owner) { 5734 list_del_init(&event->owner_entry); 5735 smp_store_release(&event->owner, NULL); 5736 } 5737 mutex_unlock(&owner->perf_event_mutex); 5738 put_task_struct(owner); 5739 } 5740 } 5741 5742 static void put_event(struct perf_event *event) 5743 { 5744 struct perf_event *parent; 5745 5746 if (!atomic_long_dec_and_test(&event->refcount)) 5747 return; 5748 5749 parent = event->parent; 5750 _free_event(event); 5751 5752 /* Matches the refcount bump in inherit_event() */ 5753 if (parent) 5754 put_event(parent); 5755 } 5756 5757 /* 5758 * Kill an event dead; while event:refcount will preserve the event 5759 * object, it will not preserve its functionality. Once the last 'user' 5760 * gives up the object, we'll destroy the thing. 5761 */ 5762 int perf_event_release_kernel(struct perf_event *event) 5763 { 5764 struct perf_event_context *ctx = event->ctx; 5765 struct perf_event *child, *tmp; 5766 5767 /* 5768 * If we got here through err_alloc: free_event(event); we will not 5769 * have attached to a context yet. 5770 */ 5771 if (!ctx) { 5772 WARN_ON_ONCE(event->attach_state & 5773 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5774 goto no_ctx; 5775 } 5776 5777 if (!is_kernel_event(event)) 5778 perf_remove_from_owner(event); 5779 5780 ctx = perf_event_ctx_lock(event); 5781 WARN_ON_ONCE(ctx->parent_ctx); 5782 5783 /* 5784 * Mark this event as STATE_DEAD, there is no external reference to it 5785 * anymore. 5786 * 5787 * Anybody acquiring event->child_mutex after the below loop _must_ 5788 * also see this, most importantly inherit_event() which will avoid 5789 * placing more children on the list. 5790 * 5791 * Thus this guarantees that we will in fact observe and kill _ALL_ 5792 * child events. 5793 */ 5794 if (event->state > PERF_EVENT_STATE_REVOKED) { 5795 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5796 } else { 5797 event->state = PERF_EVENT_STATE_DEAD; 5798 } 5799 5800 perf_event_ctx_unlock(event, ctx); 5801 5802 again: 5803 mutex_lock(&event->child_mutex); 5804 list_for_each_entry(child, &event->child_list, child_list) { 5805 /* 5806 * Cannot change, child events are not migrated, see the 5807 * comment with perf_event_ctx_lock_nested(). 5808 */ 5809 ctx = READ_ONCE(child->ctx); 5810 /* 5811 * Since child_mutex nests inside ctx::mutex, we must jump 5812 * through hoops. We start by grabbing a reference on the ctx. 5813 * 5814 * Since the event cannot get freed while we hold the 5815 * child_mutex, the context must also exist and have a !0 5816 * reference count. 5817 */ 5818 get_ctx(ctx); 5819 5820 /* 5821 * Now that we have a ctx ref, we can drop child_mutex, and 5822 * acquire ctx::mutex without fear of it going away. Then we 5823 * can re-acquire child_mutex. 5824 */ 5825 mutex_unlock(&event->child_mutex); 5826 mutex_lock(&ctx->mutex); 5827 mutex_lock(&event->child_mutex); 5828 5829 /* 5830 * Now that we hold ctx::mutex and child_mutex, revalidate our 5831 * state, if child is still the first entry, it didn't get freed 5832 * and we can continue doing so. 5833 */ 5834 tmp = list_first_entry_or_null(&event->child_list, 5835 struct perf_event, child_list); 5836 if (tmp == child) { 5837 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD); 5838 } else { 5839 child = NULL; 5840 } 5841 5842 mutex_unlock(&event->child_mutex); 5843 mutex_unlock(&ctx->mutex); 5844 5845 if (child) { 5846 /* Last reference unless ->pending_task work is pending */ 5847 put_event(child); 5848 } 5849 put_ctx(ctx); 5850 5851 goto again; 5852 } 5853 mutex_unlock(&event->child_mutex); 5854 5855 no_ctx: 5856 /* 5857 * Last reference unless ->pending_task work is pending on this event 5858 * or any of its children. 5859 */ 5860 put_event(event); 5861 return 0; 5862 } 5863 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5864 5865 /* 5866 * Called when the last reference to the file is gone. 5867 */ 5868 static int perf_release(struct inode *inode, struct file *file) 5869 { 5870 perf_event_release_kernel(file->private_data); 5871 return 0; 5872 } 5873 5874 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5875 { 5876 struct perf_event *child; 5877 u64 total = 0; 5878 5879 *enabled = 0; 5880 *running = 0; 5881 5882 mutex_lock(&event->child_mutex); 5883 5884 (void)perf_event_read(event, false); 5885 total += perf_event_count(event, false); 5886 5887 *enabled += event->total_time_enabled + 5888 atomic64_read(&event->child_total_time_enabled); 5889 *running += event->total_time_running + 5890 atomic64_read(&event->child_total_time_running); 5891 5892 list_for_each_entry(child, &event->child_list, child_list) { 5893 (void)perf_event_read(child, false); 5894 total += perf_event_count(child, false); 5895 *enabled += child->total_time_enabled; 5896 *running += child->total_time_running; 5897 } 5898 mutex_unlock(&event->child_mutex); 5899 5900 return total; 5901 } 5902 5903 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5904 { 5905 struct perf_event_context *ctx; 5906 u64 count; 5907 5908 ctx = perf_event_ctx_lock(event); 5909 count = __perf_event_read_value(event, enabled, running); 5910 perf_event_ctx_unlock(event, ctx); 5911 5912 return count; 5913 } 5914 EXPORT_SYMBOL_GPL(perf_event_read_value); 5915 5916 static int __perf_read_group_add(struct perf_event *leader, 5917 u64 read_format, u64 *values) 5918 { 5919 struct perf_event_context *ctx = leader->ctx; 5920 struct perf_event *sub, *parent; 5921 unsigned long flags; 5922 int n = 1; /* skip @nr */ 5923 int ret; 5924 5925 ret = perf_event_read(leader, true); 5926 if (ret) 5927 return ret; 5928 5929 raw_spin_lock_irqsave(&ctx->lock, flags); 5930 /* 5931 * Verify the grouping between the parent and child (inherited) 5932 * events is still in tact. 5933 * 5934 * Specifically: 5935 * - leader->ctx->lock pins leader->sibling_list 5936 * - parent->child_mutex pins parent->child_list 5937 * - parent->ctx->mutex pins parent->sibling_list 5938 * 5939 * Because parent->ctx != leader->ctx (and child_list nests inside 5940 * ctx->mutex), group destruction is not atomic between children, also 5941 * see perf_event_release_kernel(). Additionally, parent can grow the 5942 * group. 5943 * 5944 * Therefore it is possible to have parent and child groups in a 5945 * different configuration and summing over such a beast makes no sense 5946 * what so ever. 5947 * 5948 * Reject this. 5949 */ 5950 parent = leader->parent; 5951 if (parent && 5952 (parent->group_generation != leader->group_generation || 5953 parent->nr_siblings != leader->nr_siblings)) { 5954 ret = -ECHILD; 5955 goto unlock; 5956 } 5957 5958 /* 5959 * Since we co-schedule groups, {enabled,running} times of siblings 5960 * will be identical to those of the leader, so we only publish one 5961 * set. 5962 */ 5963 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5964 values[n++] += leader->total_time_enabled + 5965 atomic64_read(&leader->child_total_time_enabled); 5966 } 5967 5968 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5969 values[n++] += leader->total_time_running + 5970 atomic64_read(&leader->child_total_time_running); 5971 } 5972 5973 /* 5974 * Write {count,id} tuples for every sibling. 5975 */ 5976 values[n++] += perf_event_count(leader, false); 5977 if (read_format & PERF_FORMAT_ID) 5978 values[n++] = primary_event_id(leader); 5979 if (read_format & PERF_FORMAT_LOST) 5980 values[n++] = atomic64_read(&leader->lost_samples); 5981 5982 for_each_sibling_event(sub, leader) { 5983 values[n++] += perf_event_count(sub, false); 5984 if (read_format & PERF_FORMAT_ID) 5985 values[n++] = primary_event_id(sub); 5986 if (read_format & PERF_FORMAT_LOST) 5987 values[n++] = atomic64_read(&sub->lost_samples); 5988 } 5989 5990 unlock: 5991 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5992 return ret; 5993 } 5994 5995 static int perf_read_group(struct perf_event *event, 5996 u64 read_format, char __user *buf) 5997 { 5998 struct perf_event *leader = event->group_leader, *child; 5999 struct perf_event_context *ctx = leader->ctx; 6000 int ret; 6001 u64 *values; 6002 6003 lockdep_assert_held(&ctx->mutex); 6004 6005 values = kzalloc(event->read_size, GFP_KERNEL); 6006 if (!values) 6007 return -ENOMEM; 6008 6009 values[0] = 1 + leader->nr_siblings; 6010 6011 mutex_lock(&leader->child_mutex); 6012 6013 ret = __perf_read_group_add(leader, read_format, values); 6014 if (ret) 6015 goto unlock; 6016 6017 list_for_each_entry(child, &leader->child_list, child_list) { 6018 ret = __perf_read_group_add(child, read_format, values); 6019 if (ret) 6020 goto unlock; 6021 } 6022 6023 mutex_unlock(&leader->child_mutex); 6024 6025 ret = event->read_size; 6026 if (copy_to_user(buf, values, event->read_size)) 6027 ret = -EFAULT; 6028 goto out; 6029 6030 unlock: 6031 mutex_unlock(&leader->child_mutex); 6032 out: 6033 kfree(values); 6034 return ret; 6035 } 6036 6037 static int perf_read_one(struct perf_event *event, 6038 u64 read_format, char __user *buf) 6039 { 6040 u64 enabled, running; 6041 u64 values[5]; 6042 int n = 0; 6043 6044 values[n++] = __perf_event_read_value(event, &enabled, &running); 6045 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6046 values[n++] = enabled; 6047 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6048 values[n++] = running; 6049 if (read_format & PERF_FORMAT_ID) 6050 values[n++] = primary_event_id(event); 6051 if (read_format & PERF_FORMAT_LOST) 6052 values[n++] = atomic64_read(&event->lost_samples); 6053 6054 if (copy_to_user(buf, values, n * sizeof(u64))) 6055 return -EFAULT; 6056 6057 return n * sizeof(u64); 6058 } 6059 6060 static bool is_event_hup(struct perf_event *event) 6061 { 6062 bool no_children; 6063 6064 if (event->state > PERF_EVENT_STATE_EXIT) 6065 return false; 6066 6067 mutex_lock(&event->child_mutex); 6068 no_children = list_empty(&event->child_list); 6069 mutex_unlock(&event->child_mutex); 6070 return no_children; 6071 } 6072 6073 /* 6074 * Read the performance event - simple non blocking version for now 6075 */ 6076 static ssize_t 6077 __perf_read(struct perf_event *event, char __user *buf, size_t count) 6078 { 6079 u64 read_format = event->attr.read_format; 6080 int ret; 6081 6082 /* 6083 * Return end-of-file for a read on an event that is in 6084 * error state (i.e. because it was pinned but it couldn't be 6085 * scheduled on to the CPU at some point). 6086 */ 6087 if (event->state == PERF_EVENT_STATE_ERROR) 6088 return 0; 6089 6090 if (count < event->read_size) 6091 return -ENOSPC; 6092 6093 WARN_ON_ONCE(event->ctx->parent_ctx); 6094 if (read_format & PERF_FORMAT_GROUP) 6095 ret = perf_read_group(event, read_format, buf); 6096 else 6097 ret = perf_read_one(event, read_format, buf); 6098 6099 return ret; 6100 } 6101 6102 static ssize_t 6103 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 6104 { 6105 struct perf_event *event = file->private_data; 6106 struct perf_event_context *ctx; 6107 int ret; 6108 6109 ret = security_perf_event_read(event); 6110 if (ret) 6111 return ret; 6112 6113 ctx = perf_event_ctx_lock(event); 6114 ret = __perf_read(event, buf, count); 6115 perf_event_ctx_unlock(event, ctx); 6116 6117 return ret; 6118 } 6119 6120 static __poll_t perf_poll(struct file *file, poll_table *wait) 6121 { 6122 struct perf_event *event = file->private_data; 6123 struct perf_buffer *rb; 6124 __poll_t events = EPOLLHUP; 6125 6126 if (event->state <= PERF_EVENT_STATE_REVOKED) 6127 return EPOLLERR; 6128 6129 poll_wait(file, &event->waitq, wait); 6130 6131 if (event->state <= PERF_EVENT_STATE_REVOKED) 6132 return EPOLLERR; 6133 6134 if (is_event_hup(event)) 6135 return events; 6136 6137 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && 6138 event->attr.pinned)) 6139 return EPOLLERR; 6140 6141 /* 6142 * Pin the event->rb by taking event->mmap_mutex; otherwise 6143 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 6144 */ 6145 mutex_lock(&event->mmap_mutex); 6146 rb = event->rb; 6147 if (rb) 6148 events = atomic_xchg(&rb->poll, 0); 6149 mutex_unlock(&event->mmap_mutex); 6150 return events; 6151 } 6152 6153 static void _perf_event_reset(struct perf_event *event) 6154 { 6155 (void)perf_event_read(event, false); 6156 local64_set(&event->count, 0); 6157 perf_event_update_userpage(event); 6158 } 6159 6160 /* Assume it's not an event with inherit set. */ 6161 u64 perf_event_pause(struct perf_event *event, bool reset) 6162 { 6163 struct perf_event_context *ctx; 6164 u64 count; 6165 6166 ctx = perf_event_ctx_lock(event); 6167 WARN_ON_ONCE(event->attr.inherit); 6168 _perf_event_disable(event); 6169 count = local64_read(&event->count); 6170 if (reset) 6171 local64_set(&event->count, 0); 6172 perf_event_ctx_unlock(event, ctx); 6173 6174 return count; 6175 } 6176 EXPORT_SYMBOL_GPL(perf_event_pause); 6177 6178 /* 6179 * Holding the top-level event's child_mutex means that any 6180 * descendant process that has inherited this event will block 6181 * in perf_event_exit_event() if it goes to exit, thus satisfying the 6182 * task existence requirements of perf_event_enable/disable. 6183 */ 6184 static void perf_event_for_each_child(struct perf_event *event, 6185 void (*func)(struct perf_event *)) 6186 { 6187 struct perf_event *child; 6188 6189 WARN_ON_ONCE(event->ctx->parent_ctx); 6190 6191 mutex_lock(&event->child_mutex); 6192 func(event); 6193 list_for_each_entry(child, &event->child_list, child_list) 6194 func(child); 6195 mutex_unlock(&event->child_mutex); 6196 } 6197 6198 static void perf_event_for_each(struct perf_event *event, 6199 void (*func)(struct perf_event *)) 6200 { 6201 struct perf_event_context *ctx = event->ctx; 6202 struct perf_event *sibling; 6203 6204 lockdep_assert_held(&ctx->mutex); 6205 6206 event = event->group_leader; 6207 6208 perf_event_for_each_child(event, func); 6209 for_each_sibling_event(sibling, event) 6210 perf_event_for_each_child(sibling, func); 6211 } 6212 6213 static void __perf_event_period(struct perf_event *event, 6214 struct perf_cpu_context *cpuctx, 6215 struct perf_event_context *ctx, 6216 void *info) 6217 { 6218 u64 value = *((u64 *)info); 6219 bool active; 6220 6221 if (event->attr.freq) { 6222 event->attr.sample_freq = value; 6223 } else { 6224 event->attr.sample_period = value; 6225 event->hw.sample_period = value; 6226 } 6227 6228 active = (event->state == PERF_EVENT_STATE_ACTIVE); 6229 if (active) { 6230 perf_pmu_disable(event->pmu); 6231 event->pmu->stop(event, PERF_EF_UPDATE); 6232 } 6233 6234 local64_set(&event->hw.period_left, 0); 6235 6236 if (active) { 6237 event->pmu->start(event, PERF_EF_RELOAD); 6238 /* 6239 * Once the period is force-reset, the event starts immediately. 6240 * But the event/group could be throttled. Unthrottle the 6241 * event/group now to avoid the next tick trying to unthrottle 6242 * while we already re-started the event/group. 6243 */ 6244 if (event->hw.interrupts == MAX_INTERRUPTS) 6245 perf_event_unthrottle_group(event, true); 6246 perf_pmu_enable(event->pmu); 6247 } 6248 } 6249 6250 static int perf_event_check_period(struct perf_event *event, u64 value) 6251 { 6252 return event->pmu->check_period(event, value); 6253 } 6254 6255 static int _perf_event_period(struct perf_event *event, u64 value) 6256 { 6257 if (!is_sampling_event(event)) 6258 return -EINVAL; 6259 6260 if (!value) 6261 return -EINVAL; 6262 6263 if (event->attr.freq) { 6264 if (value > sysctl_perf_event_sample_rate) 6265 return -EINVAL; 6266 } else { 6267 if (perf_event_check_period(event, value)) 6268 return -EINVAL; 6269 if (value & (1ULL << 63)) 6270 return -EINVAL; 6271 } 6272 6273 event_function_call(event, __perf_event_period, &value); 6274 6275 return 0; 6276 } 6277 6278 int perf_event_period(struct perf_event *event, u64 value) 6279 { 6280 struct perf_event_context *ctx; 6281 int ret; 6282 6283 ctx = perf_event_ctx_lock(event); 6284 ret = _perf_event_period(event, value); 6285 perf_event_ctx_unlock(event, ctx); 6286 6287 return ret; 6288 } 6289 EXPORT_SYMBOL_GPL(perf_event_period); 6290 6291 static const struct file_operations perf_fops; 6292 6293 static inline bool is_perf_file(struct fd f) 6294 { 6295 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 6296 } 6297 6298 static int perf_event_set_output(struct perf_event *event, 6299 struct perf_event *output_event); 6300 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6301 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6302 struct perf_event_attr *attr); 6303 static int __perf_event_set_bpf_prog(struct perf_event *event, 6304 struct bpf_prog *prog, 6305 u64 bpf_cookie); 6306 6307 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6308 { 6309 void (*func)(struct perf_event *); 6310 u32 flags = arg; 6311 6312 if (event->state <= PERF_EVENT_STATE_REVOKED) 6313 return -ENODEV; 6314 6315 switch (cmd) { 6316 case PERF_EVENT_IOC_ENABLE: 6317 func = _perf_event_enable; 6318 break; 6319 case PERF_EVENT_IOC_DISABLE: 6320 func = _perf_event_disable; 6321 break; 6322 case PERF_EVENT_IOC_RESET: 6323 func = _perf_event_reset; 6324 break; 6325 6326 case PERF_EVENT_IOC_REFRESH: 6327 return _perf_event_refresh(event, arg); 6328 6329 case PERF_EVENT_IOC_PERIOD: 6330 { 6331 u64 value; 6332 6333 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6334 return -EFAULT; 6335 6336 return _perf_event_period(event, value); 6337 } 6338 case PERF_EVENT_IOC_ID: 6339 { 6340 u64 id = primary_event_id(event); 6341 6342 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6343 return -EFAULT; 6344 return 0; 6345 } 6346 6347 case PERF_EVENT_IOC_SET_OUTPUT: 6348 { 6349 CLASS(fd, output)(arg); // arg == -1 => empty 6350 struct perf_event *output_event = NULL; 6351 if (arg != -1) { 6352 if (!is_perf_file(output)) 6353 return -EBADF; 6354 output_event = fd_file(output)->private_data; 6355 } 6356 return perf_event_set_output(event, output_event); 6357 } 6358 6359 case PERF_EVENT_IOC_SET_FILTER: 6360 return perf_event_set_filter(event, (void __user *)arg); 6361 6362 case PERF_EVENT_IOC_SET_BPF: 6363 { 6364 struct bpf_prog *prog; 6365 int err; 6366 6367 prog = bpf_prog_get(arg); 6368 if (IS_ERR(prog)) 6369 return PTR_ERR(prog); 6370 6371 err = __perf_event_set_bpf_prog(event, prog, 0); 6372 if (err) { 6373 bpf_prog_put(prog); 6374 return err; 6375 } 6376 6377 return 0; 6378 } 6379 6380 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6381 struct perf_buffer *rb; 6382 6383 rcu_read_lock(); 6384 rb = rcu_dereference(event->rb); 6385 if (!rb || !rb->nr_pages) { 6386 rcu_read_unlock(); 6387 return -EINVAL; 6388 } 6389 rb_toggle_paused(rb, !!arg); 6390 rcu_read_unlock(); 6391 return 0; 6392 } 6393 6394 case PERF_EVENT_IOC_QUERY_BPF: 6395 return perf_event_query_prog_array(event, (void __user *)arg); 6396 6397 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6398 struct perf_event_attr new_attr; 6399 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6400 &new_attr); 6401 6402 if (err) 6403 return err; 6404 6405 return perf_event_modify_attr(event, &new_attr); 6406 } 6407 default: 6408 return -ENOTTY; 6409 } 6410 6411 if (flags & PERF_IOC_FLAG_GROUP) 6412 perf_event_for_each(event, func); 6413 else 6414 perf_event_for_each_child(event, func); 6415 6416 return 0; 6417 } 6418 6419 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6420 { 6421 struct perf_event *event = file->private_data; 6422 struct perf_event_context *ctx; 6423 long ret; 6424 6425 /* Treat ioctl like writes as it is likely a mutating operation. */ 6426 ret = security_perf_event_write(event); 6427 if (ret) 6428 return ret; 6429 6430 ctx = perf_event_ctx_lock(event); 6431 ret = _perf_ioctl(event, cmd, arg); 6432 perf_event_ctx_unlock(event, ctx); 6433 6434 return ret; 6435 } 6436 6437 #ifdef CONFIG_COMPAT 6438 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6439 unsigned long arg) 6440 { 6441 switch (_IOC_NR(cmd)) { 6442 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6443 case _IOC_NR(PERF_EVENT_IOC_ID): 6444 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6445 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6446 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6447 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6448 cmd &= ~IOCSIZE_MASK; 6449 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6450 } 6451 break; 6452 } 6453 return perf_ioctl(file, cmd, arg); 6454 } 6455 #else 6456 # define perf_compat_ioctl NULL 6457 #endif 6458 6459 int perf_event_task_enable(void) 6460 { 6461 struct perf_event_context *ctx; 6462 struct perf_event *event; 6463 6464 mutex_lock(¤t->perf_event_mutex); 6465 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6466 ctx = perf_event_ctx_lock(event); 6467 perf_event_for_each_child(event, _perf_event_enable); 6468 perf_event_ctx_unlock(event, ctx); 6469 } 6470 mutex_unlock(¤t->perf_event_mutex); 6471 6472 return 0; 6473 } 6474 6475 int perf_event_task_disable(void) 6476 { 6477 struct perf_event_context *ctx; 6478 struct perf_event *event; 6479 6480 mutex_lock(¤t->perf_event_mutex); 6481 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6482 ctx = perf_event_ctx_lock(event); 6483 perf_event_for_each_child(event, _perf_event_disable); 6484 perf_event_ctx_unlock(event, ctx); 6485 } 6486 mutex_unlock(¤t->perf_event_mutex); 6487 6488 return 0; 6489 } 6490 6491 static int perf_event_index(struct perf_event *event) 6492 { 6493 if (event->hw.state & PERF_HES_STOPPED) 6494 return 0; 6495 6496 if (event->state != PERF_EVENT_STATE_ACTIVE) 6497 return 0; 6498 6499 return event->pmu->event_idx(event); 6500 } 6501 6502 static void perf_event_init_userpage(struct perf_event *event) 6503 { 6504 struct perf_event_mmap_page *userpg; 6505 struct perf_buffer *rb; 6506 6507 rcu_read_lock(); 6508 rb = rcu_dereference(event->rb); 6509 if (!rb) 6510 goto unlock; 6511 6512 userpg = rb->user_page; 6513 6514 /* Allow new userspace to detect that bit 0 is deprecated */ 6515 userpg->cap_bit0_is_deprecated = 1; 6516 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6517 userpg->data_offset = PAGE_SIZE; 6518 userpg->data_size = perf_data_size(rb); 6519 6520 unlock: 6521 rcu_read_unlock(); 6522 } 6523 6524 void __weak arch_perf_update_userpage( 6525 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6526 { 6527 } 6528 6529 /* 6530 * Callers need to ensure there can be no nesting of this function, otherwise 6531 * the seqlock logic goes bad. We can not serialize this because the arch 6532 * code calls this from NMI context. 6533 */ 6534 void perf_event_update_userpage(struct perf_event *event) 6535 { 6536 struct perf_event_mmap_page *userpg; 6537 struct perf_buffer *rb; 6538 u64 enabled, running, now; 6539 6540 rcu_read_lock(); 6541 rb = rcu_dereference(event->rb); 6542 if (!rb) 6543 goto unlock; 6544 6545 /* 6546 * compute total_time_enabled, total_time_running 6547 * based on snapshot values taken when the event 6548 * was last scheduled in. 6549 * 6550 * we cannot simply called update_context_time() 6551 * because of locking issue as we can be called in 6552 * NMI context 6553 */ 6554 calc_timer_values(event, &now, &enabled, &running); 6555 6556 userpg = rb->user_page; 6557 /* 6558 * Disable preemption to guarantee consistent time stamps are stored to 6559 * the user page. 6560 */ 6561 preempt_disable(); 6562 ++userpg->lock; 6563 barrier(); 6564 userpg->index = perf_event_index(event); 6565 userpg->offset = perf_event_count(event, false); 6566 if (userpg->index) 6567 userpg->offset -= local64_read(&event->hw.prev_count); 6568 6569 userpg->time_enabled = enabled + 6570 atomic64_read(&event->child_total_time_enabled); 6571 6572 userpg->time_running = running + 6573 atomic64_read(&event->child_total_time_running); 6574 6575 arch_perf_update_userpage(event, userpg, now); 6576 6577 barrier(); 6578 ++userpg->lock; 6579 preempt_enable(); 6580 unlock: 6581 rcu_read_unlock(); 6582 } 6583 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6584 6585 static void ring_buffer_attach(struct perf_event *event, 6586 struct perf_buffer *rb) 6587 { 6588 struct perf_buffer *old_rb = NULL; 6589 unsigned long flags; 6590 6591 WARN_ON_ONCE(event->parent); 6592 6593 if (event->rb) { 6594 /* 6595 * Should be impossible, we set this when removing 6596 * event->rb_entry and wait/clear when adding event->rb_entry. 6597 */ 6598 WARN_ON_ONCE(event->rcu_pending); 6599 6600 old_rb = event->rb; 6601 spin_lock_irqsave(&old_rb->event_lock, flags); 6602 list_del_rcu(&event->rb_entry); 6603 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6604 6605 event->rcu_batches = get_state_synchronize_rcu(); 6606 event->rcu_pending = 1; 6607 } 6608 6609 if (rb) { 6610 if (event->rcu_pending) { 6611 cond_synchronize_rcu(event->rcu_batches); 6612 event->rcu_pending = 0; 6613 } 6614 6615 spin_lock_irqsave(&rb->event_lock, flags); 6616 list_add_rcu(&event->rb_entry, &rb->event_list); 6617 spin_unlock_irqrestore(&rb->event_lock, flags); 6618 } 6619 6620 /* 6621 * Avoid racing with perf_mmap_close(AUX): stop the event 6622 * before swizzling the event::rb pointer; if it's getting 6623 * unmapped, its aux_mmap_count will be 0 and it won't 6624 * restart. See the comment in __perf_pmu_output_stop(). 6625 * 6626 * Data will inevitably be lost when set_output is done in 6627 * mid-air, but then again, whoever does it like this is 6628 * not in for the data anyway. 6629 */ 6630 if (has_aux(event)) 6631 perf_event_stop(event, 0); 6632 6633 rcu_assign_pointer(event->rb, rb); 6634 6635 if (old_rb) { 6636 ring_buffer_put(old_rb); 6637 /* 6638 * Since we detached before setting the new rb, so that we 6639 * could attach the new rb, we could have missed a wakeup. 6640 * Provide it now. 6641 */ 6642 wake_up_all(&event->waitq); 6643 } 6644 } 6645 6646 static void ring_buffer_wakeup(struct perf_event *event) 6647 { 6648 struct perf_buffer *rb; 6649 6650 if (event->parent) 6651 event = event->parent; 6652 6653 rcu_read_lock(); 6654 rb = rcu_dereference(event->rb); 6655 if (rb) { 6656 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6657 wake_up_all(&event->waitq); 6658 } 6659 rcu_read_unlock(); 6660 } 6661 6662 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6663 { 6664 struct perf_buffer *rb; 6665 6666 if (event->parent) 6667 event = event->parent; 6668 6669 rcu_read_lock(); 6670 rb = rcu_dereference(event->rb); 6671 if (rb) { 6672 if (!refcount_inc_not_zero(&rb->refcount)) 6673 rb = NULL; 6674 } 6675 rcu_read_unlock(); 6676 6677 return rb; 6678 } 6679 6680 void ring_buffer_put(struct perf_buffer *rb) 6681 { 6682 if (!refcount_dec_and_test(&rb->refcount)) 6683 return; 6684 6685 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6686 6687 call_rcu(&rb->rcu_head, rb_free_rcu); 6688 } 6689 6690 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm); 6691 6692 #define get_mapped(event, func) \ 6693 ({ struct pmu *pmu; \ 6694 mapped_f f = NULL; \ 6695 guard(rcu)(); \ 6696 pmu = READ_ONCE(event->pmu); \ 6697 if (pmu) \ 6698 f = pmu->func; \ 6699 f; \ 6700 }) 6701 6702 static void perf_mmap_open(struct vm_area_struct *vma) 6703 { 6704 struct perf_event *event = vma->vm_file->private_data; 6705 mapped_f mapped = get_mapped(event, event_mapped); 6706 6707 atomic_inc(&event->mmap_count); 6708 atomic_inc(&event->rb->mmap_count); 6709 6710 if (vma->vm_pgoff) 6711 atomic_inc(&event->rb->aux_mmap_count); 6712 6713 if (mapped) 6714 mapped(event, vma->vm_mm); 6715 } 6716 6717 static void perf_pmu_output_stop(struct perf_event *event); 6718 6719 /* 6720 * A buffer can be mmap()ed multiple times; either directly through the same 6721 * event, or through other events by use of perf_event_set_output(). 6722 * 6723 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6724 * the buffer here, where we still have a VM context. This means we need 6725 * to detach all events redirecting to us. 6726 */ 6727 static void perf_mmap_close(struct vm_area_struct *vma) 6728 { 6729 struct perf_event *event = vma->vm_file->private_data; 6730 mapped_f unmapped = get_mapped(event, event_unmapped); 6731 struct perf_buffer *rb = ring_buffer_get(event); 6732 struct user_struct *mmap_user = rb->mmap_user; 6733 int mmap_locked = rb->mmap_locked; 6734 unsigned long size = perf_data_size(rb); 6735 bool detach_rest = false; 6736 6737 /* FIXIES vs perf_pmu_unregister() */ 6738 if (unmapped) 6739 unmapped(event, vma->vm_mm); 6740 6741 /* 6742 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6743 * to avoid complications. 6744 */ 6745 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6746 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6747 /* 6748 * Stop all AUX events that are writing to this buffer, 6749 * so that we can free its AUX pages and corresponding PMU 6750 * data. Note that after rb::aux_mmap_count dropped to zero, 6751 * they won't start any more (see perf_aux_output_begin()). 6752 */ 6753 perf_pmu_output_stop(event); 6754 6755 /* now it's safe to free the pages */ 6756 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6757 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6758 6759 /* this has to be the last one */ 6760 rb_free_aux(rb); 6761 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6762 6763 mutex_unlock(&rb->aux_mutex); 6764 } 6765 6766 if (atomic_dec_and_test(&rb->mmap_count)) 6767 detach_rest = true; 6768 6769 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6770 goto out_put; 6771 6772 ring_buffer_attach(event, NULL); 6773 mutex_unlock(&event->mmap_mutex); 6774 6775 /* If there's still other mmap()s of this buffer, we're done. */ 6776 if (!detach_rest) 6777 goto out_put; 6778 6779 /* 6780 * No other mmap()s, detach from all other events that might redirect 6781 * into the now unreachable buffer. Somewhat complicated by the 6782 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6783 */ 6784 again: 6785 rcu_read_lock(); 6786 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6787 if (!atomic_long_inc_not_zero(&event->refcount)) { 6788 /* 6789 * This event is en-route to free_event() which will 6790 * detach it and remove it from the list. 6791 */ 6792 continue; 6793 } 6794 rcu_read_unlock(); 6795 6796 mutex_lock(&event->mmap_mutex); 6797 /* 6798 * Check we didn't race with perf_event_set_output() which can 6799 * swizzle the rb from under us while we were waiting to 6800 * acquire mmap_mutex. 6801 * 6802 * If we find a different rb; ignore this event, a next 6803 * iteration will no longer find it on the list. We have to 6804 * still restart the iteration to make sure we're not now 6805 * iterating the wrong list. 6806 */ 6807 if (event->rb == rb) 6808 ring_buffer_attach(event, NULL); 6809 6810 mutex_unlock(&event->mmap_mutex); 6811 put_event(event); 6812 6813 /* 6814 * Restart the iteration; either we're on the wrong list or 6815 * destroyed its integrity by doing a deletion. 6816 */ 6817 goto again; 6818 } 6819 rcu_read_unlock(); 6820 6821 /* 6822 * It could be there's still a few 0-ref events on the list; they'll 6823 * get cleaned up by free_event() -- they'll also still have their 6824 * ref on the rb and will free it whenever they are done with it. 6825 * 6826 * Aside from that, this buffer is 'fully' detached and unmapped, 6827 * undo the VM accounting. 6828 */ 6829 6830 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6831 &mmap_user->locked_vm); 6832 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6833 free_uid(mmap_user); 6834 6835 out_put: 6836 ring_buffer_put(rb); /* could be last */ 6837 } 6838 6839 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) 6840 { 6841 /* The first page is the user control page, others are read-only. */ 6842 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; 6843 } 6844 6845 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr) 6846 { 6847 /* 6848 * Forbid splitting perf mappings to prevent refcount leaks due to 6849 * the resulting non-matching offsets and sizes. See open()/close(). 6850 */ 6851 return -EINVAL; 6852 } 6853 6854 static const struct vm_operations_struct perf_mmap_vmops = { 6855 .open = perf_mmap_open, 6856 .close = perf_mmap_close, /* non mergeable */ 6857 .pfn_mkwrite = perf_mmap_pfn_mkwrite, 6858 .may_split = perf_mmap_may_split, 6859 }; 6860 6861 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) 6862 { 6863 unsigned long nr_pages = vma_pages(vma); 6864 int err = 0; 6865 unsigned long pagenum; 6866 6867 /* 6868 * We map this as a VM_PFNMAP VMA. 6869 * 6870 * This is not ideal as this is designed broadly for mappings of PFNs 6871 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which 6872 * !pfn_valid(pfn). 6873 * 6874 * We are mapping kernel-allocated memory (memory we manage ourselves) 6875 * which would more ideally be mapped using vm_insert_page() or a 6876 * similar mechanism, that is as a VM_MIXEDMAP mapping. 6877 * 6878 * However this won't work here, because: 6879 * 6880 * 1. It uses vma->vm_page_prot, but this field has not been completely 6881 * setup at the point of the f_op->mmp() hook, so we are unable to 6882 * indicate that this should be mapped CoW in order that the 6883 * mkwrite() hook can be invoked to make the first page R/W and the 6884 * rest R/O as desired. 6885 * 6886 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in 6887 * vm_normal_page() returning a struct page * pointer, which means 6888 * vm_ops->page_mkwrite() will be invoked rather than 6889 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping 6890 * to work around retry logic in the fault handler, however this 6891 * field is no longer allowed to be used within struct page. 6892 * 6893 * 3. Having a struct page * made available in the fault logic also 6894 * means that the page gets put on the rmap and becomes 6895 * inappropriately accessible and subject to map and ref counting. 6896 * 6897 * Ideally we would have a mechanism that could explicitly express our 6898 * desires, but this is not currently the case, so we instead use 6899 * VM_PFNMAP. 6900 * 6901 * We manage the lifetime of these mappings with internal refcounts (see 6902 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of 6903 * this mapping is maintained correctly. 6904 */ 6905 for (pagenum = 0; pagenum < nr_pages; pagenum++) { 6906 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; 6907 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); 6908 6909 if (page == NULL) { 6910 err = -EINVAL; 6911 break; 6912 } 6913 6914 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ 6915 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, 6916 vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); 6917 if (err) 6918 break; 6919 } 6920 6921 #ifdef CONFIG_MMU 6922 /* Clear any partial mappings on error. */ 6923 if (err) 6924 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); 6925 #endif 6926 6927 return err; 6928 } 6929 6930 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6931 { 6932 struct perf_event *event = file->private_data; 6933 unsigned long user_locked, user_lock_limit; 6934 struct user_struct *user = current_user(); 6935 struct mutex *aux_mutex = NULL; 6936 struct perf_buffer *rb = NULL; 6937 unsigned long locked, lock_limit; 6938 unsigned long vma_size; 6939 unsigned long nr_pages; 6940 long user_extra = 0, extra = 0; 6941 int ret, flags = 0; 6942 mapped_f mapped; 6943 6944 /* 6945 * Don't allow mmap() of inherited per-task counters. This would 6946 * create a performance issue due to all children writing to the 6947 * same rb. 6948 */ 6949 if (event->cpu == -1 && event->attr.inherit) 6950 return -EINVAL; 6951 6952 if (!(vma->vm_flags & VM_SHARED)) 6953 return -EINVAL; 6954 6955 ret = security_perf_event_read(event); 6956 if (ret) 6957 return ret; 6958 6959 vma_size = vma->vm_end - vma->vm_start; 6960 nr_pages = vma_size / PAGE_SIZE; 6961 6962 if (nr_pages > INT_MAX) 6963 return -ENOMEM; 6964 6965 if (vma_size != PAGE_SIZE * nr_pages) 6966 return -EINVAL; 6967 6968 user_extra = nr_pages; 6969 6970 mutex_lock(&event->mmap_mutex); 6971 ret = -EINVAL; 6972 6973 /* 6974 * This relies on __pmu_detach_event() taking mmap_mutex after marking 6975 * the event REVOKED. Either we observe the state, or __pmu_detach_event() 6976 * will detach the rb created here. 6977 */ 6978 if (event->state <= PERF_EVENT_STATE_REVOKED) { 6979 ret = -ENODEV; 6980 goto unlock; 6981 } 6982 6983 if (vma->vm_pgoff == 0) { 6984 nr_pages -= 1; 6985 6986 /* 6987 * If we have rb pages ensure they're a power-of-two number, so we 6988 * can do bitmasks instead of modulo. 6989 */ 6990 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6991 goto unlock; 6992 6993 WARN_ON_ONCE(event->ctx->parent_ctx); 6994 6995 if (event->rb) { 6996 if (data_page_nr(event->rb) != nr_pages) 6997 goto unlock; 6998 6999 if (atomic_inc_not_zero(&event->rb->mmap_count)) { 7000 /* 7001 * Success -- managed to mmap() the same buffer 7002 * multiple times. 7003 */ 7004 ret = 0; 7005 /* We need the rb to map pages. */ 7006 rb = event->rb; 7007 goto unlock; 7008 } 7009 7010 /* 7011 * Raced against perf_mmap_close()'s 7012 * atomic_dec_and_mutex_lock() remove the 7013 * event and continue as if !event->rb 7014 */ 7015 ring_buffer_attach(event, NULL); 7016 } 7017 7018 } else { 7019 /* 7020 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 7021 * mapped, all subsequent mappings should have the same size 7022 * and offset. Must be above the normal perf buffer. 7023 */ 7024 u64 aux_offset, aux_size; 7025 7026 rb = event->rb; 7027 if (!rb) 7028 goto aux_unlock; 7029 7030 aux_mutex = &rb->aux_mutex; 7031 mutex_lock(aux_mutex); 7032 7033 aux_offset = READ_ONCE(rb->user_page->aux_offset); 7034 aux_size = READ_ONCE(rb->user_page->aux_size); 7035 7036 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 7037 goto aux_unlock; 7038 7039 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 7040 goto aux_unlock; 7041 7042 /* already mapped with a different offset */ 7043 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 7044 goto aux_unlock; 7045 7046 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 7047 goto aux_unlock; 7048 7049 /* already mapped with a different size */ 7050 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 7051 goto aux_unlock; 7052 7053 if (!is_power_of_2(nr_pages)) 7054 goto aux_unlock; 7055 7056 if (!atomic_inc_not_zero(&rb->mmap_count)) 7057 goto aux_unlock; 7058 7059 if (rb_has_aux(rb)) { 7060 atomic_inc(&rb->aux_mmap_count); 7061 ret = 0; 7062 goto unlock; 7063 } 7064 } 7065 7066 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 7067 7068 /* 7069 * Increase the limit linearly with more CPUs: 7070 */ 7071 user_lock_limit *= num_online_cpus(); 7072 7073 user_locked = atomic_long_read(&user->locked_vm); 7074 7075 /* 7076 * sysctl_perf_event_mlock may have changed, so that 7077 * user->locked_vm > user_lock_limit 7078 */ 7079 if (user_locked > user_lock_limit) 7080 user_locked = user_lock_limit; 7081 user_locked += user_extra; 7082 7083 if (user_locked > user_lock_limit) { 7084 /* 7085 * charge locked_vm until it hits user_lock_limit; 7086 * charge the rest from pinned_vm 7087 */ 7088 extra = user_locked - user_lock_limit; 7089 user_extra -= extra; 7090 } 7091 7092 lock_limit = rlimit(RLIMIT_MEMLOCK); 7093 lock_limit >>= PAGE_SHIFT; 7094 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 7095 7096 if ((locked > lock_limit) && perf_is_paranoid() && 7097 !capable(CAP_IPC_LOCK)) { 7098 ret = -EPERM; 7099 goto unlock; 7100 } 7101 7102 WARN_ON(!rb && event->rb); 7103 7104 if (vma->vm_flags & VM_WRITE) 7105 flags |= RING_BUFFER_WRITABLE; 7106 7107 if (!rb) { 7108 rb = rb_alloc(nr_pages, 7109 event->attr.watermark ? event->attr.wakeup_watermark : 0, 7110 event->cpu, flags); 7111 7112 if (!rb) { 7113 ret = -ENOMEM; 7114 goto unlock; 7115 } 7116 7117 atomic_set(&rb->mmap_count, 1); 7118 rb->mmap_user = get_current_user(); 7119 rb->mmap_locked = extra; 7120 7121 ring_buffer_attach(event, rb); 7122 7123 perf_event_update_time(event); 7124 perf_event_init_userpage(event); 7125 perf_event_update_userpage(event); 7126 ret = 0; 7127 } else { 7128 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 7129 event->attr.aux_watermark, flags); 7130 if (!ret) { 7131 atomic_set(&rb->aux_mmap_count, 1); 7132 rb->aux_mmap_locked = extra; 7133 } 7134 } 7135 7136 unlock: 7137 if (!ret) { 7138 atomic_long_add(user_extra, &user->locked_vm); 7139 atomic64_add(extra, &vma->vm_mm->pinned_vm); 7140 7141 atomic_inc(&event->mmap_count); 7142 } else if (rb) { 7143 /* AUX allocation failed */ 7144 atomic_dec(&rb->mmap_count); 7145 } 7146 aux_unlock: 7147 if (aux_mutex) 7148 mutex_unlock(aux_mutex); 7149 mutex_unlock(&event->mmap_mutex); 7150 7151 if (ret) 7152 return ret; 7153 7154 /* 7155 * Since pinned accounting is per vm we cannot allow fork() to copy our 7156 * vma. 7157 */ 7158 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 7159 vma->vm_ops = &perf_mmap_vmops; 7160 7161 mapped = get_mapped(event, event_mapped); 7162 if (mapped) 7163 mapped(event, vma->vm_mm); 7164 7165 /* 7166 * Try to map it into the page table. On fail, invoke 7167 * perf_mmap_close() to undo the above, as the callsite expects 7168 * full cleanup in this case and therefore does not invoke 7169 * vmops::close(). 7170 */ 7171 ret = map_range(rb, vma); 7172 if (ret) 7173 perf_mmap_close(vma); 7174 7175 return ret; 7176 } 7177 7178 static int perf_fasync(int fd, struct file *filp, int on) 7179 { 7180 struct inode *inode = file_inode(filp); 7181 struct perf_event *event = filp->private_data; 7182 int retval; 7183 7184 if (event->state <= PERF_EVENT_STATE_REVOKED) 7185 return -ENODEV; 7186 7187 inode_lock(inode); 7188 retval = fasync_helper(fd, filp, on, &event->fasync); 7189 inode_unlock(inode); 7190 7191 if (retval < 0) 7192 return retval; 7193 7194 return 0; 7195 } 7196 7197 static const struct file_operations perf_fops = { 7198 .release = perf_release, 7199 .read = perf_read, 7200 .poll = perf_poll, 7201 .unlocked_ioctl = perf_ioctl, 7202 .compat_ioctl = perf_compat_ioctl, 7203 .mmap = perf_mmap, 7204 .fasync = perf_fasync, 7205 }; 7206 7207 /* 7208 * Perf event wakeup 7209 * 7210 * If there's data, ensure we set the poll() state and publish everything 7211 * to user-space before waking everybody up. 7212 */ 7213 7214 void perf_event_wakeup(struct perf_event *event) 7215 { 7216 ring_buffer_wakeup(event); 7217 7218 if (event->pending_kill) { 7219 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 7220 event->pending_kill = 0; 7221 } 7222 } 7223 7224 static void perf_sigtrap(struct perf_event *event) 7225 { 7226 /* 7227 * Both perf_pending_task() and perf_pending_irq() can race with the 7228 * task exiting. 7229 */ 7230 if (current->flags & PF_EXITING) 7231 return; 7232 7233 /* 7234 * We'd expect this to only occur if the irq_work is delayed and either 7235 * ctx->task or current has changed in the meantime. This can be the 7236 * case on architectures that do not implement arch_irq_work_raise(). 7237 */ 7238 if (WARN_ON_ONCE(event->ctx->task != current)) 7239 return; 7240 7241 send_sig_perf((void __user *)event->pending_addr, 7242 event->orig_type, event->attr.sig_data); 7243 } 7244 7245 /* 7246 * Deliver the pending work in-event-context or follow the context. 7247 */ 7248 static void __perf_pending_disable(struct perf_event *event) 7249 { 7250 int cpu = READ_ONCE(event->oncpu); 7251 7252 /* 7253 * If the event isn't running; we done. event_sched_out() will have 7254 * taken care of things. 7255 */ 7256 if (cpu < 0) 7257 return; 7258 7259 /* 7260 * Yay, we hit home and are in the context of the event. 7261 */ 7262 if (cpu == smp_processor_id()) { 7263 if (event->pending_disable) { 7264 event->pending_disable = 0; 7265 perf_event_disable_local(event); 7266 } 7267 return; 7268 } 7269 7270 /* 7271 * CPU-A CPU-B 7272 * 7273 * perf_event_disable_inatomic() 7274 * @pending_disable = 1; 7275 * irq_work_queue(); 7276 * 7277 * sched-out 7278 * @pending_disable = 0; 7279 * 7280 * sched-in 7281 * perf_event_disable_inatomic() 7282 * @pending_disable = 1; 7283 * irq_work_queue(); // FAILS 7284 * 7285 * irq_work_run() 7286 * perf_pending_disable() 7287 * 7288 * But the event runs on CPU-B and wants disabling there. 7289 */ 7290 irq_work_queue_on(&event->pending_disable_irq, cpu); 7291 } 7292 7293 static void perf_pending_disable(struct irq_work *entry) 7294 { 7295 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 7296 int rctx; 7297 7298 /* 7299 * If we 'fail' here, that's OK, it means recursion is already disabled 7300 * and we won't recurse 'further'. 7301 */ 7302 rctx = perf_swevent_get_recursion_context(); 7303 __perf_pending_disable(event); 7304 if (rctx >= 0) 7305 perf_swevent_put_recursion_context(rctx); 7306 } 7307 7308 static void perf_pending_irq(struct irq_work *entry) 7309 { 7310 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 7311 int rctx; 7312 7313 /* 7314 * If we 'fail' here, that's OK, it means recursion is already disabled 7315 * and we won't recurse 'further'. 7316 */ 7317 rctx = perf_swevent_get_recursion_context(); 7318 7319 /* 7320 * The wakeup isn't bound to the context of the event -- it can happen 7321 * irrespective of where the event is. 7322 */ 7323 if (event->pending_wakeup) { 7324 event->pending_wakeup = 0; 7325 perf_event_wakeup(event); 7326 } 7327 7328 if (rctx >= 0) 7329 perf_swevent_put_recursion_context(rctx); 7330 } 7331 7332 static void perf_pending_task(struct callback_head *head) 7333 { 7334 struct perf_event *event = container_of(head, struct perf_event, pending_task); 7335 int rctx; 7336 7337 /* 7338 * If we 'fail' here, that's OK, it means recursion is already disabled 7339 * and we won't recurse 'further'. 7340 */ 7341 rctx = perf_swevent_get_recursion_context(); 7342 7343 if (event->pending_work) { 7344 event->pending_work = 0; 7345 perf_sigtrap(event); 7346 local_dec(&event->ctx->nr_no_switch_fast); 7347 } 7348 put_event(event); 7349 7350 if (rctx >= 0) 7351 perf_swevent_put_recursion_context(rctx); 7352 } 7353 7354 #ifdef CONFIG_GUEST_PERF_EVENTS 7355 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 7356 7357 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 7358 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 7359 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 7360 7361 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7362 { 7363 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 7364 return; 7365 7366 rcu_assign_pointer(perf_guest_cbs, cbs); 7367 static_call_update(__perf_guest_state, cbs->state); 7368 static_call_update(__perf_guest_get_ip, cbs->get_ip); 7369 7370 /* Implementing ->handle_intel_pt_intr is optional. */ 7371 if (cbs->handle_intel_pt_intr) 7372 static_call_update(__perf_guest_handle_intel_pt_intr, 7373 cbs->handle_intel_pt_intr); 7374 } 7375 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 7376 7377 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 7378 { 7379 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 7380 return; 7381 7382 rcu_assign_pointer(perf_guest_cbs, NULL); 7383 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 7384 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 7385 static_call_update(__perf_guest_handle_intel_pt_intr, 7386 (void *)&__static_call_return0); 7387 synchronize_rcu(); 7388 } 7389 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7390 #endif 7391 7392 static bool should_sample_guest(struct perf_event *event) 7393 { 7394 return !event->attr.exclude_guest && perf_guest_state(); 7395 } 7396 7397 unsigned long perf_misc_flags(struct perf_event *event, 7398 struct pt_regs *regs) 7399 { 7400 if (should_sample_guest(event)) 7401 return perf_arch_guest_misc_flags(regs); 7402 7403 return perf_arch_misc_flags(regs); 7404 } 7405 7406 unsigned long perf_instruction_pointer(struct perf_event *event, 7407 struct pt_regs *regs) 7408 { 7409 if (should_sample_guest(event)) 7410 return perf_guest_get_ip(); 7411 7412 return perf_arch_instruction_pointer(regs); 7413 } 7414 7415 static void 7416 perf_output_sample_regs(struct perf_output_handle *handle, 7417 struct pt_regs *regs, u64 mask) 7418 { 7419 int bit; 7420 DECLARE_BITMAP(_mask, 64); 7421 7422 bitmap_from_u64(_mask, mask); 7423 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7424 u64 val; 7425 7426 val = perf_reg_value(regs, bit); 7427 perf_output_put(handle, val); 7428 } 7429 } 7430 7431 static void perf_sample_regs_user(struct perf_regs *regs_user, 7432 struct pt_regs *regs) 7433 { 7434 if (user_mode(regs)) { 7435 regs_user->abi = perf_reg_abi(current); 7436 regs_user->regs = regs; 7437 } else if (!(current->flags & PF_KTHREAD)) { 7438 perf_get_regs_user(regs_user, regs); 7439 } else { 7440 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7441 regs_user->regs = NULL; 7442 } 7443 } 7444 7445 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7446 struct pt_regs *regs) 7447 { 7448 regs_intr->regs = regs; 7449 regs_intr->abi = perf_reg_abi(current); 7450 } 7451 7452 7453 /* 7454 * Get remaining task size from user stack pointer. 7455 * 7456 * It'd be better to take stack vma map and limit this more 7457 * precisely, but there's no way to get it safely under interrupt, 7458 * so using TASK_SIZE as limit. 7459 */ 7460 static u64 perf_ustack_task_size(struct pt_regs *regs) 7461 { 7462 unsigned long addr = perf_user_stack_pointer(regs); 7463 7464 if (!addr || addr >= TASK_SIZE) 7465 return 0; 7466 7467 return TASK_SIZE - addr; 7468 } 7469 7470 static u16 7471 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7472 struct pt_regs *regs) 7473 { 7474 u64 task_size; 7475 7476 /* No regs, no stack pointer, no dump. */ 7477 if (!regs) 7478 return 0; 7479 7480 /* No mm, no stack, no dump. */ 7481 if (!current->mm) 7482 return 0; 7483 7484 /* 7485 * Check if we fit in with the requested stack size into the: 7486 * - TASK_SIZE 7487 * If we don't, we limit the size to the TASK_SIZE. 7488 * 7489 * - remaining sample size 7490 * If we don't, we customize the stack size to 7491 * fit in to the remaining sample size. 7492 */ 7493 7494 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7495 stack_size = min(stack_size, (u16) task_size); 7496 7497 /* Current header size plus static size and dynamic size. */ 7498 header_size += 2 * sizeof(u64); 7499 7500 /* Do we fit in with the current stack dump size? */ 7501 if ((u16) (header_size + stack_size) < header_size) { 7502 /* 7503 * If we overflow the maximum size for the sample, 7504 * we customize the stack dump size to fit in. 7505 */ 7506 stack_size = USHRT_MAX - header_size - sizeof(u64); 7507 stack_size = round_up(stack_size, sizeof(u64)); 7508 } 7509 7510 return stack_size; 7511 } 7512 7513 static void 7514 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7515 struct pt_regs *regs) 7516 { 7517 /* Case of a kernel thread, nothing to dump */ 7518 if (!regs) { 7519 u64 size = 0; 7520 perf_output_put(handle, size); 7521 } else { 7522 unsigned long sp; 7523 unsigned int rem; 7524 u64 dyn_size; 7525 7526 /* 7527 * We dump: 7528 * static size 7529 * - the size requested by user or the best one we can fit 7530 * in to the sample max size 7531 * data 7532 * - user stack dump data 7533 * dynamic size 7534 * - the actual dumped size 7535 */ 7536 7537 /* Static size. */ 7538 perf_output_put(handle, dump_size); 7539 7540 /* Data. */ 7541 sp = perf_user_stack_pointer(regs); 7542 rem = __output_copy_user(handle, (void *) sp, dump_size); 7543 dyn_size = dump_size - rem; 7544 7545 perf_output_skip(handle, rem); 7546 7547 /* Dynamic size. */ 7548 perf_output_put(handle, dyn_size); 7549 } 7550 } 7551 7552 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7553 struct perf_sample_data *data, 7554 size_t size) 7555 { 7556 struct perf_event *sampler = event->aux_event; 7557 struct perf_buffer *rb; 7558 7559 data->aux_size = 0; 7560 7561 if (!sampler) 7562 goto out; 7563 7564 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7565 goto out; 7566 7567 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7568 goto out; 7569 7570 rb = ring_buffer_get(sampler); 7571 if (!rb) 7572 goto out; 7573 7574 /* 7575 * If this is an NMI hit inside sampling code, don't take 7576 * the sample. See also perf_aux_sample_output(). 7577 */ 7578 if (READ_ONCE(rb->aux_in_sampling)) { 7579 data->aux_size = 0; 7580 } else { 7581 size = min_t(size_t, size, perf_aux_size(rb)); 7582 data->aux_size = ALIGN(size, sizeof(u64)); 7583 } 7584 ring_buffer_put(rb); 7585 7586 out: 7587 return data->aux_size; 7588 } 7589 7590 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7591 struct perf_event *event, 7592 struct perf_output_handle *handle, 7593 unsigned long size) 7594 { 7595 unsigned long flags; 7596 long ret; 7597 7598 /* 7599 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7600 * paths. If we start calling them in NMI context, they may race with 7601 * the IRQ ones, that is, for example, re-starting an event that's just 7602 * been stopped, which is why we're using a separate callback that 7603 * doesn't change the event state. 7604 * 7605 * IRQs need to be disabled to prevent IPIs from racing with us. 7606 */ 7607 local_irq_save(flags); 7608 /* 7609 * Guard against NMI hits inside the critical section; 7610 * see also perf_prepare_sample_aux(). 7611 */ 7612 WRITE_ONCE(rb->aux_in_sampling, 1); 7613 barrier(); 7614 7615 ret = event->pmu->snapshot_aux(event, handle, size); 7616 7617 barrier(); 7618 WRITE_ONCE(rb->aux_in_sampling, 0); 7619 local_irq_restore(flags); 7620 7621 return ret; 7622 } 7623 7624 static void perf_aux_sample_output(struct perf_event *event, 7625 struct perf_output_handle *handle, 7626 struct perf_sample_data *data) 7627 { 7628 struct perf_event *sampler = event->aux_event; 7629 struct perf_buffer *rb; 7630 unsigned long pad; 7631 long size; 7632 7633 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7634 return; 7635 7636 rb = ring_buffer_get(sampler); 7637 if (!rb) 7638 return; 7639 7640 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7641 7642 /* 7643 * An error here means that perf_output_copy() failed (returned a 7644 * non-zero surplus that it didn't copy), which in its current 7645 * enlightened implementation is not possible. If that changes, we'd 7646 * like to know. 7647 */ 7648 if (WARN_ON_ONCE(size < 0)) 7649 goto out_put; 7650 7651 /* 7652 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7653 * perf_prepare_sample_aux(), so should not be more than that. 7654 */ 7655 pad = data->aux_size - size; 7656 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7657 pad = 8; 7658 7659 if (pad) { 7660 u64 zero = 0; 7661 perf_output_copy(handle, &zero, pad); 7662 } 7663 7664 out_put: 7665 ring_buffer_put(rb); 7666 } 7667 7668 /* 7669 * A set of common sample data types saved even for non-sample records 7670 * when event->attr.sample_id_all is set. 7671 */ 7672 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7673 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7674 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7675 7676 static void __perf_event_header__init_id(struct perf_sample_data *data, 7677 struct perf_event *event, 7678 u64 sample_type) 7679 { 7680 data->type = event->attr.sample_type; 7681 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7682 7683 if (sample_type & PERF_SAMPLE_TID) { 7684 /* namespace issues */ 7685 data->tid_entry.pid = perf_event_pid(event, current); 7686 data->tid_entry.tid = perf_event_tid(event, current); 7687 } 7688 7689 if (sample_type & PERF_SAMPLE_TIME) 7690 data->time = perf_event_clock(event); 7691 7692 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7693 data->id = primary_event_id(event); 7694 7695 if (sample_type & PERF_SAMPLE_STREAM_ID) 7696 data->stream_id = event->id; 7697 7698 if (sample_type & PERF_SAMPLE_CPU) { 7699 data->cpu_entry.cpu = raw_smp_processor_id(); 7700 data->cpu_entry.reserved = 0; 7701 } 7702 } 7703 7704 void perf_event_header__init_id(struct perf_event_header *header, 7705 struct perf_sample_data *data, 7706 struct perf_event *event) 7707 { 7708 if (event->attr.sample_id_all) { 7709 header->size += event->id_header_size; 7710 __perf_event_header__init_id(data, event, event->attr.sample_type); 7711 } 7712 } 7713 7714 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7715 struct perf_sample_data *data) 7716 { 7717 u64 sample_type = data->type; 7718 7719 if (sample_type & PERF_SAMPLE_TID) 7720 perf_output_put(handle, data->tid_entry); 7721 7722 if (sample_type & PERF_SAMPLE_TIME) 7723 perf_output_put(handle, data->time); 7724 7725 if (sample_type & PERF_SAMPLE_ID) 7726 perf_output_put(handle, data->id); 7727 7728 if (sample_type & PERF_SAMPLE_STREAM_ID) 7729 perf_output_put(handle, data->stream_id); 7730 7731 if (sample_type & PERF_SAMPLE_CPU) 7732 perf_output_put(handle, data->cpu_entry); 7733 7734 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7735 perf_output_put(handle, data->id); 7736 } 7737 7738 void perf_event__output_id_sample(struct perf_event *event, 7739 struct perf_output_handle *handle, 7740 struct perf_sample_data *sample) 7741 { 7742 if (event->attr.sample_id_all) 7743 __perf_event__output_id_sample(handle, sample); 7744 } 7745 7746 static void perf_output_read_one(struct perf_output_handle *handle, 7747 struct perf_event *event, 7748 u64 enabled, u64 running) 7749 { 7750 u64 read_format = event->attr.read_format; 7751 u64 values[5]; 7752 int n = 0; 7753 7754 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7755 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7756 values[n++] = enabled + 7757 atomic64_read(&event->child_total_time_enabled); 7758 } 7759 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7760 values[n++] = running + 7761 atomic64_read(&event->child_total_time_running); 7762 } 7763 if (read_format & PERF_FORMAT_ID) 7764 values[n++] = primary_event_id(event); 7765 if (read_format & PERF_FORMAT_LOST) 7766 values[n++] = atomic64_read(&event->lost_samples); 7767 7768 __output_copy(handle, values, n * sizeof(u64)); 7769 } 7770 7771 static void perf_output_read_group(struct perf_output_handle *handle, 7772 struct perf_event *event, 7773 u64 enabled, u64 running) 7774 { 7775 struct perf_event *leader = event->group_leader, *sub; 7776 u64 read_format = event->attr.read_format; 7777 unsigned long flags; 7778 u64 values[6]; 7779 int n = 0; 7780 bool self = has_inherit_and_sample_read(&event->attr); 7781 7782 /* 7783 * Disabling interrupts avoids all counter scheduling 7784 * (context switches, timer based rotation and IPIs). 7785 */ 7786 local_irq_save(flags); 7787 7788 values[n++] = 1 + leader->nr_siblings; 7789 7790 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7791 values[n++] = enabled; 7792 7793 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7794 values[n++] = running; 7795 7796 if ((leader != event) && !handle->skip_read) 7797 perf_pmu_read(leader); 7798 7799 values[n++] = perf_event_count(leader, self); 7800 if (read_format & PERF_FORMAT_ID) 7801 values[n++] = primary_event_id(leader); 7802 if (read_format & PERF_FORMAT_LOST) 7803 values[n++] = atomic64_read(&leader->lost_samples); 7804 7805 __output_copy(handle, values, n * sizeof(u64)); 7806 7807 for_each_sibling_event(sub, leader) { 7808 n = 0; 7809 7810 if ((sub != event) && !handle->skip_read) 7811 perf_pmu_read(sub); 7812 7813 values[n++] = perf_event_count(sub, self); 7814 if (read_format & PERF_FORMAT_ID) 7815 values[n++] = primary_event_id(sub); 7816 if (read_format & PERF_FORMAT_LOST) 7817 values[n++] = atomic64_read(&sub->lost_samples); 7818 7819 __output_copy(handle, values, n * sizeof(u64)); 7820 } 7821 7822 local_irq_restore(flags); 7823 } 7824 7825 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7826 PERF_FORMAT_TOTAL_TIME_RUNNING) 7827 7828 /* 7829 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7830 * 7831 * The problem is that its both hard and excessively expensive to iterate the 7832 * child list, not to mention that its impossible to IPI the children running 7833 * on another CPU, from interrupt/NMI context. 7834 * 7835 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7836 * counts rather than attempting to accumulate some value across all children on 7837 * all cores. 7838 */ 7839 static void perf_output_read(struct perf_output_handle *handle, 7840 struct perf_event *event) 7841 { 7842 u64 enabled = 0, running = 0, now; 7843 u64 read_format = event->attr.read_format; 7844 7845 /* 7846 * compute total_time_enabled, total_time_running 7847 * based on snapshot values taken when the event 7848 * was last scheduled in. 7849 * 7850 * we cannot simply called update_context_time() 7851 * because of locking issue as we are called in 7852 * NMI context 7853 */ 7854 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7855 calc_timer_values(event, &now, &enabled, &running); 7856 7857 if (event->attr.read_format & PERF_FORMAT_GROUP) 7858 perf_output_read_group(handle, event, enabled, running); 7859 else 7860 perf_output_read_one(handle, event, enabled, running); 7861 } 7862 7863 void perf_output_sample(struct perf_output_handle *handle, 7864 struct perf_event_header *header, 7865 struct perf_sample_data *data, 7866 struct perf_event *event) 7867 { 7868 u64 sample_type = data->type; 7869 7870 if (data->sample_flags & PERF_SAMPLE_READ) 7871 handle->skip_read = 1; 7872 7873 perf_output_put(handle, *header); 7874 7875 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7876 perf_output_put(handle, data->id); 7877 7878 if (sample_type & PERF_SAMPLE_IP) 7879 perf_output_put(handle, data->ip); 7880 7881 if (sample_type & PERF_SAMPLE_TID) 7882 perf_output_put(handle, data->tid_entry); 7883 7884 if (sample_type & PERF_SAMPLE_TIME) 7885 perf_output_put(handle, data->time); 7886 7887 if (sample_type & PERF_SAMPLE_ADDR) 7888 perf_output_put(handle, data->addr); 7889 7890 if (sample_type & PERF_SAMPLE_ID) 7891 perf_output_put(handle, data->id); 7892 7893 if (sample_type & PERF_SAMPLE_STREAM_ID) 7894 perf_output_put(handle, data->stream_id); 7895 7896 if (sample_type & PERF_SAMPLE_CPU) 7897 perf_output_put(handle, data->cpu_entry); 7898 7899 if (sample_type & PERF_SAMPLE_PERIOD) 7900 perf_output_put(handle, data->period); 7901 7902 if (sample_type & PERF_SAMPLE_READ) 7903 perf_output_read(handle, event); 7904 7905 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7906 int size = 1; 7907 7908 size += data->callchain->nr; 7909 size *= sizeof(u64); 7910 __output_copy(handle, data->callchain, size); 7911 } 7912 7913 if (sample_type & PERF_SAMPLE_RAW) { 7914 struct perf_raw_record *raw = data->raw; 7915 7916 if (raw) { 7917 struct perf_raw_frag *frag = &raw->frag; 7918 7919 perf_output_put(handle, raw->size); 7920 do { 7921 if (frag->copy) { 7922 __output_custom(handle, frag->copy, 7923 frag->data, frag->size); 7924 } else { 7925 __output_copy(handle, frag->data, 7926 frag->size); 7927 } 7928 if (perf_raw_frag_last(frag)) 7929 break; 7930 frag = frag->next; 7931 } while (1); 7932 if (frag->pad) 7933 __output_skip(handle, NULL, frag->pad); 7934 } else { 7935 struct { 7936 u32 size; 7937 u32 data; 7938 } raw = { 7939 .size = sizeof(u32), 7940 .data = 0, 7941 }; 7942 perf_output_put(handle, raw); 7943 } 7944 } 7945 7946 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7947 if (data->br_stack) { 7948 size_t size; 7949 7950 size = data->br_stack->nr 7951 * sizeof(struct perf_branch_entry); 7952 7953 perf_output_put(handle, data->br_stack->nr); 7954 if (branch_sample_hw_index(event)) 7955 perf_output_put(handle, data->br_stack->hw_idx); 7956 perf_output_copy(handle, data->br_stack->entries, size); 7957 /* 7958 * Add the extension space which is appended 7959 * right after the struct perf_branch_stack. 7960 */ 7961 if (data->br_stack_cntr) { 7962 size = data->br_stack->nr * sizeof(u64); 7963 perf_output_copy(handle, data->br_stack_cntr, size); 7964 } 7965 } else { 7966 /* 7967 * we always store at least the value of nr 7968 */ 7969 u64 nr = 0; 7970 perf_output_put(handle, nr); 7971 } 7972 } 7973 7974 if (sample_type & PERF_SAMPLE_REGS_USER) { 7975 u64 abi = data->regs_user.abi; 7976 7977 /* 7978 * If there are no regs to dump, notice it through 7979 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7980 */ 7981 perf_output_put(handle, abi); 7982 7983 if (abi) { 7984 u64 mask = event->attr.sample_regs_user; 7985 perf_output_sample_regs(handle, 7986 data->regs_user.regs, 7987 mask); 7988 } 7989 } 7990 7991 if (sample_type & PERF_SAMPLE_STACK_USER) { 7992 perf_output_sample_ustack(handle, 7993 data->stack_user_size, 7994 data->regs_user.regs); 7995 } 7996 7997 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7998 perf_output_put(handle, data->weight.full); 7999 8000 if (sample_type & PERF_SAMPLE_DATA_SRC) 8001 perf_output_put(handle, data->data_src.val); 8002 8003 if (sample_type & PERF_SAMPLE_TRANSACTION) 8004 perf_output_put(handle, data->txn); 8005 8006 if (sample_type & PERF_SAMPLE_REGS_INTR) { 8007 u64 abi = data->regs_intr.abi; 8008 /* 8009 * If there are no regs to dump, notice it through 8010 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 8011 */ 8012 perf_output_put(handle, abi); 8013 8014 if (abi) { 8015 u64 mask = event->attr.sample_regs_intr; 8016 8017 perf_output_sample_regs(handle, 8018 data->regs_intr.regs, 8019 mask); 8020 } 8021 } 8022 8023 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 8024 perf_output_put(handle, data->phys_addr); 8025 8026 if (sample_type & PERF_SAMPLE_CGROUP) 8027 perf_output_put(handle, data->cgroup); 8028 8029 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 8030 perf_output_put(handle, data->data_page_size); 8031 8032 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 8033 perf_output_put(handle, data->code_page_size); 8034 8035 if (sample_type & PERF_SAMPLE_AUX) { 8036 perf_output_put(handle, data->aux_size); 8037 8038 if (data->aux_size) 8039 perf_aux_sample_output(event, handle, data); 8040 } 8041 8042 if (!event->attr.watermark) { 8043 int wakeup_events = event->attr.wakeup_events; 8044 8045 if (wakeup_events) { 8046 struct perf_buffer *rb = handle->rb; 8047 int events = local_inc_return(&rb->events); 8048 8049 if (events >= wakeup_events) { 8050 local_sub(wakeup_events, &rb->events); 8051 local_inc(&rb->wakeup); 8052 } 8053 } 8054 } 8055 } 8056 8057 static u64 perf_virt_to_phys(u64 virt) 8058 { 8059 u64 phys_addr = 0; 8060 8061 if (!virt) 8062 return 0; 8063 8064 if (virt >= TASK_SIZE) { 8065 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 8066 if (virt_addr_valid((void *)(uintptr_t)virt) && 8067 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 8068 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 8069 } else { 8070 /* 8071 * Walking the pages tables for user address. 8072 * Interrupts are disabled, so it prevents any tear down 8073 * of the page tables. 8074 * Try IRQ-safe get_user_page_fast_only first. 8075 * If failed, leave phys_addr as 0. 8076 */ 8077 if (current->mm != NULL) { 8078 struct page *p; 8079 8080 pagefault_disable(); 8081 if (get_user_page_fast_only(virt, 0, &p)) { 8082 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 8083 put_page(p); 8084 } 8085 pagefault_enable(); 8086 } 8087 } 8088 8089 return phys_addr; 8090 } 8091 8092 /* 8093 * Return the pagetable size of a given virtual address. 8094 */ 8095 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 8096 { 8097 u64 size = 0; 8098 8099 #ifdef CONFIG_HAVE_GUP_FAST 8100 pgd_t *pgdp, pgd; 8101 p4d_t *p4dp, p4d; 8102 pud_t *pudp, pud; 8103 pmd_t *pmdp, pmd; 8104 pte_t *ptep, pte; 8105 8106 pgdp = pgd_offset(mm, addr); 8107 pgd = READ_ONCE(*pgdp); 8108 if (pgd_none(pgd)) 8109 return 0; 8110 8111 if (pgd_leaf(pgd)) 8112 return pgd_leaf_size(pgd); 8113 8114 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 8115 p4d = READ_ONCE(*p4dp); 8116 if (!p4d_present(p4d)) 8117 return 0; 8118 8119 if (p4d_leaf(p4d)) 8120 return p4d_leaf_size(p4d); 8121 8122 pudp = pud_offset_lockless(p4dp, p4d, addr); 8123 pud = READ_ONCE(*pudp); 8124 if (!pud_present(pud)) 8125 return 0; 8126 8127 if (pud_leaf(pud)) 8128 return pud_leaf_size(pud); 8129 8130 pmdp = pmd_offset_lockless(pudp, pud, addr); 8131 again: 8132 pmd = pmdp_get_lockless(pmdp); 8133 if (!pmd_present(pmd)) 8134 return 0; 8135 8136 if (pmd_leaf(pmd)) 8137 return pmd_leaf_size(pmd); 8138 8139 ptep = pte_offset_map(&pmd, addr); 8140 if (!ptep) 8141 goto again; 8142 8143 pte = ptep_get_lockless(ptep); 8144 if (pte_present(pte)) 8145 size = __pte_leaf_size(pmd, pte); 8146 pte_unmap(ptep); 8147 #endif /* CONFIG_HAVE_GUP_FAST */ 8148 8149 return size; 8150 } 8151 8152 static u64 perf_get_page_size(unsigned long addr) 8153 { 8154 struct mm_struct *mm; 8155 unsigned long flags; 8156 u64 size; 8157 8158 if (!addr) 8159 return 0; 8160 8161 /* 8162 * Software page-table walkers must disable IRQs, 8163 * which prevents any tear down of the page tables. 8164 */ 8165 local_irq_save(flags); 8166 8167 mm = current->mm; 8168 if (!mm) { 8169 /* 8170 * For kernel threads and the like, use init_mm so that 8171 * we can find kernel memory. 8172 */ 8173 mm = &init_mm; 8174 } 8175 8176 size = perf_get_pgtable_size(mm, addr); 8177 8178 local_irq_restore(flags); 8179 8180 return size; 8181 } 8182 8183 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 8184 8185 struct perf_callchain_entry * 8186 perf_callchain(struct perf_event *event, struct pt_regs *regs) 8187 { 8188 bool kernel = !event->attr.exclude_callchain_kernel; 8189 bool user = !event->attr.exclude_callchain_user; 8190 /* Disallow cross-task user callchains. */ 8191 bool crosstask = event->ctx->task && event->ctx->task != current; 8192 const u32 max_stack = event->attr.sample_max_stack; 8193 struct perf_callchain_entry *callchain; 8194 8195 if (!current->mm) 8196 user = false; 8197 8198 if (!kernel && !user) 8199 return &__empty_callchain; 8200 8201 callchain = get_perf_callchain(regs, 0, kernel, user, 8202 max_stack, crosstask, true); 8203 return callchain ?: &__empty_callchain; 8204 } 8205 8206 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 8207 { 8208 return d * !!(flags & s); 8209 } 8210 8211 void perf_prepare_sample(struct perf_sample_data *data, 8212 struct perf_event *event, 8213 struct pt_regs *regs) 8214 { 8215 u64 sample_type = event->attr.sample_type; 8216 u64 filtered_sample_type; 8217 8218 /* 8219 * Add the sample flags that are dependent to others. And clear the 8220 * sample flags that have already been done by the PMU driver. 8221 */ 8222 filtered_sample_type = sample_type; 8223 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 8224 PERF_SAMPLE_IP); 8225 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 8226 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 8227 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 8228 PERF_SAMPLE_REGS_USER); 8229 filtered_sample_type &= ~data->sample_flags; 8230 8231 if (filtered_sample_type == 0) { 8232 /* Make sure it has the correct data->type for output */ 8233 data->type = event->attr.sample_type; 8234 return; 8235 } 8236 8237 __perf_event_header__init_id(data, event, filtered_sample_type); 8238 8239 if (filtered_sample_type & PERF_SAMPLE_IP) { 8240 data->ip = perf_instruction_pointer(event, regs); 8241 data->sample_flags |= PERF_SAMPLE_IP; 8242 } 8243 8244 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 8245 perf_sample_save_callchain(data, event, regs); 8246 8247 if (filtered_sample_type & PERF_SAMPLE_RAW) { 8248 data->raw = NULL; 8249 data->dyn_size += sizeof(u64); 8250 data->sample_flags |= PERF_SAMPLE_RAW; 8251 } 8252 8253 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 8254 data->br_stack = NULL; 8255 data->dyn_size += sizeof(u64); 8256 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 8257 } 8258 8259 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 8260 perf_sample_regs_user(&data->regs_user, regs); 8261 8262 /* 8263 * It cannot use the filtered_sample_type here as REGS_USER can be set 8264 * by STACK_USER (using __cond_set() above) and we don't want to update 8265 * the dyn_size if it's not requested by users. 8266 */ 8267 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 8268 /* regs dump ABI info */ 8269 int size = sizeof(u64); 8270 8271 if (data->regs_user.regs) { 8272 u64 mask = event->attr.sample_regs_user; 8273 size += hweight64(mask) * sizeof(u64); 8274 } 8275 8276 data->dyn_size += size; 8277 data->sample_flags |= PERF_SAMPLE_REGS_USER; 8278 } 8279 8280 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 8281 /* 8282 * Either we need PERF_SAMPLE_STACK_USER bit to be always 8283 * processed as the last one or have additional check added 8284 * in case new sample type is added, because we could eat 8285 * up the rest of the sample size. 8286 */ 8287 u16 stack_size = event->attr.sample_stack_user; 8288 u16 header_size = perf_sample_data_size(data, event); 8289 u16 size = sizeof(u64); 8290 8291 stack_size = perf_sample_ustack_size(stack_size, header_size, 8292 data->regs_user.regs); 8293 8294 /* 8295 * If there is something to dump, add space for the dump 8296 * itself and for the field that tells the dynamic size, 8297 * which is how many have been actually dumped. 8298 */ 8299 if (stack_size) 8300 size += sizeof(u64) + stack_size; 8301 8302 data->stack_user_size = stack_size; 8303 data->dyn_size += size; 8304 data->sample_flags |= PERF_SAMPLE_STACK_USER; 8305 } 8306 8307 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 8308 data->weight.full = 0; 8309 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 8310 } 8311 8312 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 8313 data->data_src.val = PERF_MEM_NA; 8314 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 8315 } 8316 8317 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 8318 data->txn = 0; 8319 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 8320 } 8321 8322 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 8323 data->addr = 0; 8324 data->sample_flags |= PERF_SAMPLE_ADDR; 8325 } 8326 8327 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 8328 /* regs dump ABI info */ 8329 int size = sizeof(u64); 8330 8331 perf_sample_regs_intr(&data->regs_intr, regs); 8332 8333 if (data->regs_intr.regs) { 8334 u64 mask = event->attr.sample_regs_intr; 8335 8336 size += hweight64(mask) * sizeof(u64); 8337 } 8338 8339 data->dyn_size += size; 8340 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 8341 } 8342 8343 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 8344 data->phys_addr = perf_virt_to_phys(data->addr); 8345 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 8346 } 8347 8348 #ifdef CONFIG_CGROUP_PERF 8349 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 8350 struct cgroup *cgrp; 8351 8352 /* protected by RCU */ 8353 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 8354 data->cgroup = cgroup_id(cgrp); 8355 data->sample_flags |= PERF_SAMPLE_CGROUP; 8356 } 8357 #endif 8358 8359 /* 8360 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 8361 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 8362 * but the value will not dump to the userspace. 8363 */ 8364 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 8365 data->data_page_size = perf_get_page_size(data->addr); 8366 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 8367 } 8368 8369 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 8370 data->code_page_size = perf_get_page_size(data->ip); 8371 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 8372 } 8373 8374 if (filtered_sample_type & PERF_SAMPLE_AUX) { 8375 u64 size; 8376 u16 header_size = perf_sample_data_size(data, event); 8377 8378 header_size += sizeof(u64); /* size */ 8379 8380 /* 8381 * Given the 16bit nature of header::size, an AUX sample can 8382 * easily overflow it, what with all the preceding sample bits. 8383 * Make sure this doesn't happen by using up to U16_MAX bytes 8384 * per sample in total (rounded down to 8 byte boundary). 8385 */ 8386 size = min_t(size_t, U16_MAX - header_size, 8387 event->attr.aux_sample_size); 8388 size = rounddown(size, 8); 8389 size = perf_prepare_sample_aux(event, data, size); 8390 8391 WARN_ON_ONCE(size + header_size > U16_MAX); 8392 data->dyn_size += size + sizeof(u64); /* size above */ 8393 data->sample_flags |= PERF_SAMPLE_AUX; 8394 } 8395 } 8396 8397 void perf_prepare_header(struct perf_event_header *header, 8398 struct perf_sample_data *data, 8399 struct perf_event *event, 8400 struct pt_regs *regs) 8401 { 8402 header->type = PERF_RECORD_SAMPLE; 8403 header->size = perf_sample_data_size(data, event); 8404 header->misc = perf_misc_flags(event, regs); 8405 8406 /* 8407 * If you're adding more sample types here, you likely need to do 8408 * something about the overflowing header::size, like repurpose the 8409 * lowest 3 bits of size, which should be always zero at the moment. 8410 * This raises a more important question, do we really need 512k sized 8411 * samples and why, so good argumentation is in order for whatever you 8412 * do here next. 8413 */ 8414 WARN_ON_ONCE(header->size & 7); 8415 } 8416 8417 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8418 { 8419 if (pause) { 8420 if (!event->hw.aux_paused) { 8421 event->hw.aux_paused = 1; 8422 event->pmu->stop(event, PERF_EF_PAUSE); 8423 } 8424 } else { 8425 if (event->hw.aux_paused) { 8426 event->hw.aux_paused = 0; 8427 event->pmu->start(event, PERF_EF_RESUME); 8428 } 8429 } 8430 } 8431 8432 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8433 { 8434 struct perf_buffer *rb; 8435 8436 if (WARN_ON_ONCE(!event)) 8437 return; 8438 8439 rb = ring_buffer_get(event); 8440 if (!rb) 8441 return; 8442 8443 scoped_guard (irqsave) { 8444 /* 8445 * Guard against self-recursion here. Another event could trip 8446 * this same from NMI context. 8447 */ 8448 if (READ_ONCE(rb->aux_in_pause_resume)) 8449 break; 8450 8451 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8452 barrier(); 8453 __perf_event_aux_pause(event, pause); 8454 barrier(); 8455 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8456 } 8457 ring_buffer_put(rb); 8458 } 8459 8460 static __always_inline int 8461 __perf_event_output(struct perf_event *event, 8462 struct perf_sample_data *data, 8463 struct pt_regs *regs, 8464 int (*output_begin)(struct perf_output_handle *, 8465 struct perf_sample_data *, 8466 struct perf_event *, 8467 unsigned int)) 8468 { 8469 struct perf_output_handle handle; 8470 struct perf_event_header header; 8471 int err; 8472 8473 /* protect the callchain buffers */ 8474 rcu_read_lock(); 8475 8476 perf_prepare_sample(data, event, regs); 8477 perf_prepare_header(&header, data, event, regs); 8478 8479 err = output_begin(&handle, data, event, header.size); 8480 if (err) 8481 goto exit; 8482 8483 perf_output_sample(&handle, &header, data, event); 8484 8485 perf_output_end(&handle); 8486 8487 exit: 8488 rcu_read_unlock(); 8489 return err; 8490 } 8491 8492 void 8493 perf_event_output_forward(struct perf_event *event, 8494 struct perf_sample_data *data, 8495 struct pt_regs *regs) 8496 { 8497 __perf_event_output(event, data, regs, perf_output_begin_forward); 8498 } 8499 8500 void 8501 perf_event_output_backward(struct perf_event *event, 8502 struct perf_sample_data *data, 8503 struct pt_regs *regs) 8504 { 8505 __perf_event_output(event, data, regs, perf_output_begin_backward); 8506 } 8507 8508 int 8509 perf_event_output(struct perf_event *event, 8510 struct perf_sample_data *data, 8511 struct pt_regs *regs) 8512 { 8513 return __perf_event_output(event, data, regs, perf_output_begin); 8514 } 8515 8516 /* 8517 * read event_id 8518 */ 8519 8520 struct perf_read_event { 8521 struct perf_event_header header; 8522 8523 u32 pid; 8524 u32 tid; 8525 }; 8526 8527 static void 8528 perf_event_read_event(struct perf_event *event, 8529 struct task_struct *task) 8530 { 8531 struct perf_output_handle handle; 8532 struct perf_sample_data sample; 8533 struct perf_read_event read_event = { 8534 .header = { 8535 .type = PERF_RECORD_READ, 8536 .misc = 0, 8537 .size = sizeof(read_event) + event->read_size, 8538 }, 8539 .pid = perf_event_pid(event, task), 8540 .tid = perf_event_tid(event, task), 8541 }; 8542 int ret; 8543 8544 perf_event_header__init_id(&read_event.header, &sample, event); 8545 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8546 if (ret) 8547 return; 8548 8549 perf_output_put(&handle, read_event); 8550 perf_output_read(&handle, event); 8551 perf_event__output_id_sample(event, &handle, &sample); 8552 8553 perf_output_end(&handle); 8554 } 8555 8556 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8557 8558 static void 8559 perf_iterate_ctx(struct perf_event_context *ctx, 8560 perf_iterate_f output, 8561 void *data, bool all) 8562 { 8563 struct perf_event *event; 8564 8565 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8566 if (!all) { 8567 if (event->state < PERF_EVENT_STATE_INACTIVE) 8568 continue; 8569 if (!event_filter_match(event)) 8570 continue; 8571 } 8572 8573 output(event, data); 8574 } 8575 } 8576 8577 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8578 { 8579 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8580 struct perf_event *event; 8581 8582 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8583 /* 8584 * Skip events that are not fully formed yet; ensure that 8585 * if we observe event->ctx, both event and ctx will be 8586 * complete enough. See perf_install_in_context(). 8587 */ 8588 if (!smp_load_acquire(&event->ctx)) 8589 continue; 8590 8591 if (event->state < PERF_EVENT_STATE_INACTIVE) 8592 continue; 8593 if (!event_filter_match(event)) 8594 continue; 8595 output(event, data); 8596 } 8597 } 8598 8599 /* 8600 * Iterate all events that need to receive side-band events. 8601 * 8602 * For new callers; ensure that account_pmu_sb_event() includes 8603 * your event, otherwise it might not get delivered. 8604 */ 8605 static void 8606 perf_iterate_sb(perf_iterate_f output, void *data, 8607 struct perf_event_context *task_ctx) 8608 { 8609 struct perf_event_context *ctx; 8610 8611 rcu_read_lock(); 8612 preempt_disable(); 8613 8614 /* 8615 * If we have task_ctx != NULL we only notify the task context itself. 8616 * The task_ctx is set only for EXIT events before releasing task 8617 * context. 8618 */ 8619 if (task_ctx) { 8620 perf_iterate_ctx(task_ctx, output, data, false); 8621 goto done; 8622 } 8623 8624 perf_iterate_sb_cpu(output, data); 8625 8626 ctx = rcu_dereference(current->perf_event_ctxp); 8627 if (ctx) 8628 perf_iterate_ctx(ctx, output, data, false); 8629 done: 8630 preempt_enable(); 8631 rcu_read_unlock(); 8632 } 8633 8634 /* 8635 * Clear all file-based filters at exec, they'll have to be 8636 * re-instated when/if these objects are mmapped again. 8637 */ 8638 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8639 { 8640 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8641 struct perf_addr_filter *filter; 8642 unsigned int restart = 0, count = 0; 8643 unsigned long flags; 8644 8645 if (!has_addr_filter(event)) 8646 return; 8647 8648 raw_spin_lock_irqsave(&ifh->lock, flags); 8649 list_for_each_entry(filter, &ifh->list, entry) { 8650 if (filter->path.dentry) { 8651 event->addr_filter_ranges[count].start = 0; 8652 event->addr_filter_ranges[count].size = 0; 8653 restart++; 8654 } 8655 8656 count++; 8657 } 8658 8659 if (restart) 8660 event->addr_filters_gen++; 8661 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8662 8663 if (restart) 8664 perf_event_stop(event, 1); 8665 } 8666 8667 void perf_event_exec(void) 8668 { 8669 struct perf_event_context *ctx; 8670 8671 ctx = perf_pin_task_context(current); 8672 if (!ctx) 8673 return; 8674 8675 perf_event_enable_on_exec(ctx); 8676 perf_event_remove_on_exec(ctx); 8677 scoped_guard(rcu) 8678 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8679 8680 perf_unpin_context(ctx); 8681 put_ctx(ctx); 8682 } 8683 8684 struct remote_output { 8685 struct perf_buffer *rb; 8686 int err; 8687 }; 8688 8689 static void __perf_event_output_stop(struct perf_event *event, void *data) 8690 { 8691 struct perf_event *parent = event->parent; 8692 struct remote_output *ro = data; 8693 struct perf_buffer *rb = ro->rb; 8694 struct stop_event_data sd = { 8695 .event = event, 8696 }; 8697 8698 if (!has_aux(event)) 8699 return; 8700 8701 if (!parent) 8702 parent = event; 8703 8704 /* 8705 * In case of inheritance, it will be the parent that links to the 8706 * ring-buffer, but it will be the child that's actually using it. 8707 * 8708 * We are using event::rb to determine if the event should be stopped, 8709 * however this may race with ring_buffer_attach() (through set_output), 8710 * which will make us skip the event that actually needs to be stopped. 8711 * So ring_buffer_attach() has to stop an aux event before re-assigning 8712 * its rb pointer. 8713 */ 8714 if (rcu_dereference(parent->rb) == rb) 8715 ro->err = __perf_event_stop(&sd); 8716 } 8717 8718 static int __perf_pmu_output_stop(void *info) 8719 { 8720 struct perf_event *event = info; 8721 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8722 struct remote_output ro = { 8723 .rb = event->rb, 8724 }; 8725 8726 rcu_read_lock(); 8727 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8728 if (cpuctx->task_ctx) 8729 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8730 &ro, false); 8731 rcu_read_unlock(); 8732 8733 return ro.err; 8734 } 8735 8736 static void perf_pmu_output_stop(struct perf_event *event) 8737 { 8738 struct perf_event *iter; 8739 int err, cpu; 8740 8741 restart: 8742 rcu_read_lock(); 8743 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8744 /* 8745 * For per-CPU events, we need to make sure that neither they 8746 * nor their children are running; for cpu==-1 events it's 8747 * sufficient to stop the event itself if it's active, since 8748 * it can't have children. 8749 */ 8750 cpu = iter->cpu; 8751 if (cpu == -1) 8752 cpu = READ_ONCE(iter->oncpu); 8753 8754 if (cpu == -1) 8755 continue; 8756 8757 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8758 if (err == -EAGAIN) { 8759 rcu_read_unlock(); 8760 goto restart; 8761 } 8762 } 8763 rcu_read_unlock(); 8764 } 8765 8766 /* 8767 * task tracking -- fork/exit 8768 * 8769 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8770 */ 8771 8772 struct perf_task_event { 8773 struct task_struct *task; 8774 struct perf_event_context *task_ctx; 8775 8776 struct { 8777 struct perf_event_header header; 8778 8779 u32 pid; 8780 u32 ppid; 8781 u32 tid; 8782 u32 ptid; 8783 u64 time; 8784 } event_id; 8785 }; 8786 8787 static int perf_event_task_match(struct perf_event *event) 8788 { 8789 return event->attr.comm || event->attr.mmap || 8790 event->attr.mmap2 || event->attr.mmap_data || 8791 event->attr.task; 8792 } 8793 8794 static void perf_event_task_output(struct perf_event *event, 8795 void *data) 8796 { 8797 struct perf_task_event *task_event = data; 8798 struct perf_output_handle handle; 8799 struct perf_sample_data sample; 8800 struct task_struct *task = task_event->task; 8801 int ret, size = task_event->event_id.header.size; 8802 8803 if (!perf_event_task_match(event)) 8804 return; 8805 8806 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8807 8808 ret = perf_output_begin(&handle, &sample, event, 8809 task_event->event_id.header.size); 8810 if (ret) 8811 goto out; 8812 8813 task_event->event_id.pid = perf_event_pid(event, task); 8814 task_event->event_id.tid = perf_event_tid(event, task); 8815 8816 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8817 task_event->event_id.ppid = perf_event_pid(event, 8818 task->real_parent); 8819 task_event->event_id.ptid = perf_event_pid(event, 8820 task->real_parent); 8821 } else { /* PERF_RECORD_FORK */ 8822 task_event->event_id.ppid = perf_event_pid(event, current); 8823 task_event->event_id.ptid = perf_event_tid(event, current); 8824 } 8825 8826 task_event->event_id.time = perf_event_clock(event); 8827 8828 perf_output_put(&handle, task_event->event_id); 8829 8830 perf_event__output_id_sample(event, &handle, &sample); 8831 8832 perf_output_end(&handle); 8833 out: 8834 task_event->event_id.header.size = size; 8835 } 8836 8837 static void perf_event_task(struct task_struct *task, 8838 struct perf_event_context *task_ctx, 8839 int new) 8840 { 8841 struct perf_task_event task_event; 8842 8843 if (!atomic_read(&nr_comm_events) && 8844 !atomic_read(&nr_mmap_events) && 8845 !atomic_read(&nr_task_events)) 8846 return; 8847 8848 task_event = (struct perf_task_event){ 8849 .task = task, 8850 .task_ctx = task_ctx, 8851 .event_id = { 8852 .header = { 8853 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8854 .misc = 0, 8855 .size = sizeof(task_event.event_id), 8856 }, 8857 /* .pid */ 8858 /* .ppid */ 8859 /* .tid */ 8860 /* .ptid */ 8861 /* .time */ 8862 }, 8863 }; 8864 8865 perf_iterate_sb(perf_event_task_output, 8866 &task_event, 8867 task_ctx); 8868 } 8869 8870 /* 8871 * Allocate data for a new task when profiling system-wide 8872 * events which require PMU specific data 8873 */ 8874 static void 8875 perf_event_alloc_task_data(struct task_struct *child, 8876 struct task_struct *parent) 8877 { 8878 struct kmem_cache *ctx_cache = NULL; 8879 struct perf_ctx_data *cd; 8880 8881 if (!refcount_read(&global_ctx_data_ref)) 8882 return; 8883 8884 scoped_guard (rcu) { 8885 cd = rcu_dereference(parent->perf_ctx_data); 8886 if (cd) 8887 ctx_cache = cd->ctx_cache; 8888 } 8889 8890 if (!ctx_cache) 8891 return; 8892 8893 guard(percpu_read)(&global_ctx_data_rwsem); 8894 scoped_guard (rcu) { 8895 cd = rcu_dereference(child->perf_ctx_data); 8896 if (!cd) { 8897 /* 8898 * A system-wide event may be unaccount, 8899 * when attaching the perf_ctx_data. 8900 */ 8901 if (!refcount_read(&global_ctx_data_ref)) 8902 return; 8903 goto attach; 8904 } 8905 8906 if (!cd->global) { 8907 cd->global = 1; 8908 refcount_inc(&cd->refcount); 8909 } 8910 } 8911 8912 return; 8913 attach: 8914 attach_task_ctx_data(child, ctx_cache, true); 8915 } 8916 8917 void perf_event_fork(struct task_struct *task) 8918 { 8919 perf_event_task(task, NULL, 1); 8920 perf_event_namespaces(task); 8921 perf_event_alloc_task_data(task, current); 8922 } 8923 8924 /* 8925 * comm tracking 8926 */ 8927 8928 struct perf_comm_event { 8929 struct task_struct *task; 8930 char *comm; 8931 int comm_size; 8932 8933 struct { 8934 struct perf_event_header header; 8935 8936 u32 pid; 8937 u32 tid; 8938 } event_id; 8939 }; 8940 8941 static int perf_event_comm_match(struct perf_event *event) 8942 { 8943 return event->attr.comm; 8944 } 8945 8946 static void perf_event_comm_output(struct perf_event *event, 8947 void *data) 8948 { 8949 struct perf_comm_event *comm_event = data; 8950 struct perf_output_handle handle; 8951 struct perf_sample_data sample; 8952 int size = comm_event->event_id.header.size; 8953 int ret; 8954 8955 if (!perf_event_comm_match(event)) 8956 return; 8957 8958 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8959 ret = perf_output_begin(&handle, &sample, event, 8960 comm_event->event_id.header.size); 8961 8962 if (ret) 8963 goto out; 8964 8965 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8966 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8967 8968 perf_output_put(&handle, comm_event->event_id); 8969 __output_copy(&handle, comm_event->comm, 8970 comm_event->comm_size); 8971 8972 perf_event__output_id_sample(event, &handle, &sample); 8973 8974 perf_output_end(&handle); 8975 out: 8976 comm_event->event_id.header.size = size; 8977 } 8978 8979 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8980 { 8981 char comm[TASK_COMM_LEN]; 8982 unsigned int size; 8983 8984 memset(comm, 0, sizeof(comm)); 8985 strscpy(comm, comm_event->task->comm); 8986 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8987 8988 comm_event->comm = comm; 8989 comm_event->comm_size = size; 8990 8991 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8992 8993 perf_iterate_sb(perf_event_comm_output, 8994 comm_event, 8995 NULL); 8996 } 8997 8998 void perf_event_comm(struct task_struct *task, bool exec) 8999 { 9000 struct perf_comm_event comm_event; 9001 9002 if (!atomic_read(&nr_comm_events)) 9003 return; 9004 9005 comm_event = (struct perf_comm_event){ 9006 .task = task, 9007 /* .comm */ 9008 /* .comm_size */ 9009 .event_id = { 9010 .header = { 9011 .type = PERF_RECORD_COMM, 9012 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 9013 /* .size */ 9014 }, 9015 /* .pid */ 9016 /* .tid */ 9017 }, 9018 }; 9019 9020 perf_event_comm_event(&comm_event); 9021 } 9022 9023 /* 9024 * namespaces tracking 9025 */ 9026 9027 struct perf_namespaces_event { 9028 struct task_struct *task; 9029 9030 struct { 9031 struct perf_event_header header; 9032 9033 u32 pid; 9034 u32 tid; 9035 u64 nr_namespaces; 9036 struct perf_ns_link_info link_info[NR_NAMESPACES]; 9037 } event_id; 9038 }; 9039 9040 static int perf_event_namespaces_match(struct perf_event *event) 9041 { 9042 return event->attr.namespaces; 9043 } 9044 9045 static void perf_event_namespaces_output(struct perf_event *event, 9046 void *data) 9047 { 9048 struct perf_namespaces_event *namespaces_event = data; 9049 struct perf_output_handle handle; 9050 struct perf_sample_data sample; 9051 u16 header_size = namespaces_event->event_id.header.size; 9052 int ret; 9053 9054 if (!perf_event_namespaces_match(event)) 9055 return; 9056 9057 perf_event_header__init_id(&namespaces_event->event_id.header, 9058 &sample, event); 9059 ret = perf_output_begin(&handle, &sample, event, 9060 namespaces_event->event_id.header.size); 9061 if (ret) 9062 goto out; 9063 9064 namespaces_event->event_id.pid = perf_event_pid(event, 9065 namespaces_event->task); 9066 namespaces_event->event_id.tid = perf_event_tid(event, 9067 namespaces_event->task); 9068 9069 perf_output_put(&handle, namespaces_event->event_id); 9070 9071 perf_event__output_id_sample(event, &handle, &sample); 9072 9073 perf_output_end(&handle); 9074 out: 9075 namespaces_event->event_id.header.size = header_size; 9076 } 9077 9078 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 9079 struct task_struct *task, 9080 const struct proc_ns_operations *ns_ops) 9081 { 9082 struct path ns_path; 9083 struct inode *ns_inode; 9084 int error; 9085 9086 error = ns_get_path(&ns_path, task, ns_ops); 9087 if (!error) { 9088 ns_inode = ns_path.dentry->d_inode; 9089 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 9090 ns_link_info->ino = ns_inode->i_ino; 9091 path_put(&ns_path); 9092 } 9093 } 9094 9095 void perf_event_namespaces(struct task_struct *task) 9096 { 9097 struct perf_namespaces_event namespaces_event; 9098 struct perf_ns_link_info *ns_link_info; 9099 9100 if (!atomic_read(&nr_namespaces_events)) 9101 return; 9102 9103 namespaces_event = (struct perf_namespaces_event){ 9104 .task = task, 9105 .event_id = { 9106 .header = { 9107 .type = PERF_RECORD_NAMESPACES, 9108 .misc = 0, 9109 .size = sizeof(namespaces_event.event_id), 9110 }, 9111 /* .pid */ 9112 /* .tid */ 9113 .nr_namespaces = NR_NAMESPACES, 9114 /* .link_info[NR_NAMESPACES] */ 9115 }, 9116 }; 9117 9118 ns_link_info = namespaces_event.event_id.link_info; 9119 9120 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 9121 task, &mntns_operations); 9122 9123 #ifdef CONFIG_USER_NS 9124 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 9125 task, &userns_operations); 9126 #endif 9127 #ifdef CONFIG_NET_NS 9128 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 9129 task, &netns_operations); 9130 #endif 9131 #ifdef CONFIG_UTS_NS 9132 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 9133 task, &utsns_operations); 9134 #endif 9135 #ifdef CONFIG_IPC_NS 9136 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 9137 task, &ipcns_operations); 9138 #endif 9139 #ifdef CONFIG_PID_NS 9140 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 9141 task, &pidns_operations); 9142 #endif 9143 #ifdef CONFIG_CGROUPS 9144 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 9145 task, &cgroupns_operations); 9146 #endif 9147 9148 perf_iterate_sb(perf_event_namespaces_output, 9149 &namespaces_event, 9150 NULL); 9151 } 9152 9153 /* 9154 * cgroup tracking 9155 */ 9156 #ifdef CONFIG_CGROUP_PERF 9157 9158 struct perf_cgroup_event { 9159 char *path; 9160 int path_size; 9161 struct { 9162 struct perf_event_header header; 9163 u64 id; 9164 char path[]; 9165 } event_id; 9166 }; 9167 9168 static int perf_event_cgroup_match(struct perf_event *event) 9169 { 9170 return event->attr.cgroup; 9171 } 9172 9173 static void perf_event_cgroup_output(struct perf_event *event, void *data) 9174 { 9175 struct perf_cgroup_event *cgroup_event = data; 9176 struct perf_output_handle handle; 9177 struct perf_sample_data sample; 9178 u16 header_size = cgroup_event->event_id.header.size; 9179 int ret; 9180 9181 if (!perf_event_cgroup_match(event)) 9182 return; 9183 9184 perf_event_header__init_id(&cgroup_event->event_id.header, 9185 &sample, event); 9186 ret = perf_output_begin(&handle, &sample, event, 9187 cgroup_event->event_id.header.size); 9188 if (ret) 9189 goto out; 9190 9191 perf_output_put(&handle, cgroup_event->event_id); 9192 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 9193 9194 perf_event__output_id_sample(event, &handle, &sample); 9195 9196 perf_output_end(&handle); 9197 out: 9198 cgroup_event->event_id.header.size = header_size; 9199 } 9200 9201 static void perf_event_cgroup(struct cgroup *cgrp) 9202 { 9203 struct perf_cgroup_event cgroup_event; 9204 char path_enomem[16] = "//enomem"; 9205 char *pathname; 9206 size_t size; 9207 9208 if (!atomic_read(&nr_cgroup_events)) 9209 return; 9210 9211 cgroup_event = (struct perf_cgroup_event){ 9212 .event_id = { 9213 .header = { 9214 .type = PERF_RECORD_CGROUP, 9215 .misc = 0, 9216 .size = sizeof(cgroup_event.event_id), 9217 }, 9218 .id = cgroup_id(cgrp), 9219 }, 9220 }; 9221 9222 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 9223 if (pathname == NULL) { 9224 cgroup_event.path = path_enomem; 9225 } else { 9226 /* just to be sure to have enough space for alignment */ 9227 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 9228 cgroup_event.path = pathname; 9229 } 9230 9231 /* 9232 * Since our buffer works in 8 byte units we need to align our string 9233 * size to a multiple of 8. However, we must guarantee the tail end is 9234 * zero'd out to avoid leaking random bits to userspace. 9235 */ 9236 size = strlen(cgroup_event.path) + 1; 9237 while (!IS_ALIGNED(size, sizeof(u64))) 9238 cgroup_event.path[size++] = '\0'; 9239 9240 cgroup_event.event_id.header.size += size; 9241 cgroup_event.path_size = size; 9242 9243 perf_iterate_sb(perf_event_cgroup_output, 9244 &cgroup_event, 9245 NULL); 9246 9247 kfree(pathname); 9248 } 9249 9250 #endif 9251 9252 /* 9253 * mmap tracking 9254 */ 9255 9256 struct perf_mmap_event { 9257 struct vm_area_struct *vma; 9258 9259 const char *file_name; 9260 int file_size; 9261 int maj, min; 9262 u64 ino; 9263 u64 ino_generation; 9264 u32 prot, flags; 9265 u8 build_id[BUILD_ID_SIZE_MAX]; 9266 u32 build_id_size; 9267 9268 struct { 9269 struct perf_event_header header; 9270 9271 u32 pid; 9272 u32 tid; 9273 u64 start; 9274 u64 len; 9275 u64 pgoff; 9276 } event_id; 9277 }; 9278 9279 static int perf_event_mmap_match(struct perf_event *event, 9280 void *data) 9281 { 9282 struct perf_mmap_event *mmap_event = data; 9283 struct vm_area_struct *vma = mmap_event->vma; 9284 int executable = vma->vm_flags & VM_EXEC; 9285 9286 return (!executable && event->attr.mmap_data) || 9287 (executable && (event->attr.mmap || event->attr.mmap2)); 9288 } 9289 9290 static void perf_event_mmap_output(struct perf_event *event, 9291 void *data) 9292 { 9293 struct perf_mmap_event *mmap_event = data; 9294 struct perf_output_handle handle; 9295 struct perf_sample_data sample; 9296 int size = mmap_event->event_id.header.size; 9297 u32 type = mmap_event->event_id.header.type; 9298 bool use_build_id; 9299 int ret; 9300 9301 if (!perf_event_mmap_match(event, data)) 9302 return; 9303 9304 if (event->attr.mmap2) { 9305 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 9306 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 9307 mmap_event->event_id.header.size += sizeof(mmap_event->min); 9308 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 9309 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 9310 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 9311 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 9312 } 9313 9314 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 9315 ret = perf_output_begin(&handle, &sample, event, 9316 mmap_event->event_id.header.size); 9317 if (ret) 9318 goto out; 9319 9320 mmap_event->event_id.pid = perf_event_pid(event, current); 9321 mmap_event->event_id.tid = perf_event_tid(event, current); 9322 9323 use_build_id = event->attr.build_id && mmap_event->build_id_size; 9324 9325 if (event->attr.mmap2 && use_build_id) 9326 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 9327 9328 perf_output_put(&handle, mmap_event->event_id); 9329 9330 if (event->attr.mmap2) { 9331 if (use_build_id) { 9332 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 9333 9334 __output_copy(&handle, size, 4); 9335 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 9336 } else { 9337 perf_output_put(&handle, mmap_event->maj); 9338 perf_output_put(&handle, mmap_event->min); 9339 perf_output_put(&handle, mmap_event->ino); 9340 perf_output_put(&handle, mmap_event->ino_generation); 9341 } 9342 perf_output_put(&handle, mmap_event->prot); 9343 perf_output_put(&handle, mmap_event->flags); 9344 } 9345 9346 __output_copy(&handle, mmap_event->file_name, 9347 mmap_event->file_size); 9348 9349 perf_event__output_id_sample(event, &handle, &sample); 9350 9351 perf_output_end(&handle); 9352 out: 9353 mmap_event->event_id.header.size = size; 9354 mmap_event->event_id.header.type = type; 9355 } 9356 9357 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 9358 { 9359 struct vm_area_struct *vma = mmap_event->vma; 9360 struct file *file = vma->vm_file; 9361 int maj = 0, min = 0; 9362 u64 ino = 0, gen = 0; 9363 u32 prot = 0, flags = 0; 9364 unsigned int size; 9365 char tmp[16]; 9366 char *buf = NULL; 9367 char *name = NULL; 9368 9369 if (vma->vm_flags & VM_READ) 9370 prot |= PROT_READ; 9371 if (vma->vm_flags & VM_WRITE) 9372 prot |= PROT_WRITE; 9373 if (vma->vm_flags & VM_EXEC) 9374 prot |= PROT_EXEC; 9375 9376 if (vma->vm_flags & VM_MAYSHARE) 9377 flags = MAP_SHARED; 9378 else 9379 flags = MAP_PRIVATE; 9380 9381 if (vma->vm_flags & VM_LOCKED) 9382 flags |= MAP_LOCKED; 9383 if (is_vm_hugetlb_page(vma)) 9384 flags |= MAP_HUGETLB; 9385 9386 if (file) { 9387 struct inode *inode; 9388 dev_t dev; 9389 9390 buf = kmalloc(PATH_MAX, GFP_KERNEL); 9391 if (!buf) { 9392 name = "//enomem"; 9393 goto cpy_name; 9394 } 9395 /* 9396 * d_path() works from the end of the rb backwards, so we 9397 * need to add enough zero bytes after the string to handle 9398 * the 64bit alignment we do later. 9399 */ 9400 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 9401 if (IS_ERR(name)) { 9402 name = "//toolong"; 9403 goto cpy_name; 9404 } 9405 inode = file_inode(vma->vm_file); 9406 dev = inode->i_sb->s_dev; 9407 ino = inode->i_ino; 9408 gen = inode->i_generation; 9409 maj = MAJOR(dev); 9410 min = MINOR(dev); 9411 9412 goto got_name; 9413 } else { 9414 if (vma->vm_ops && vma->vm_ops->name) 9415 name = (char *) vma->vm_ops->name(vma); 9416 if (!name) 9417 name = (char *)arch_vma_name(vma); 9418 if (!name) { 9419 if (vma_is_initial_heap(vma)) 9420 name = "[heap]"; 9421 else if (vma_is_initial_stack(vma)) 9422 name = "[stack]"; 9423 else 9424 name = "//anon"; 9425 } 9426 } 9427 9428 cpy_name: 9429 strscpy(tmp, name); 9430 name = tmp; 9431 got_name: 9432 /* 9433 * Since our buffer works in 8 byte units we need to align our string 9434 * size to a multiple of 8. However, we must guarantee the tail end is 9435 * zero'd out to avoid leaking random bits to userspace. 9436 */ 9437 size = strlen(name)+1; 9438 while (!IS_ALIGNED(size, sizeof(u64))) 9439 name[size++] = '\0'; 9440 9441 mmap_event->file_name = name; 9442 mmap_event->file_size = size; 9443 mmap_event->maj = maj; 9444 mmap_event->min = min; 9445 mmap_event->ino = ino; 9446 mmap_event->ino_generation = gen; 9447 mmap_event->prot = prot; 9448 mmap_event->flags = flags; 9449 9450 if (!(vma->vm_flags & VM_EXEC)) 9451 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9452 9453 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9454 9455 if (atomic_read(&nr_build_id_events)) 9456 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9457 9458 perf_iterate_sb(perf_event_mmap_output, 9459 mmap_event, 9460 NULL); 9461 9462 kfree(buf); 9463 } 9464 9465 /* 9466 * Check whether inode and address range match filter criteria. 9467 */ 9468 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9469 struct file *file, unsigned long offset, 9470 unsigned long size) 9471 { 9472 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9473 if (!filter->path.dentry) 9474 return false; 9475 9476 if (d_inode(filter->path.dentry) != file_inode(file)) 9477 return false; 9478 9479 if (filter->offset > offset + size) 9480 return false; 9481 9482 if (filter->offset + filter->size < offset) 9483 return false; 9484 9485 return true; 9486 } 9487 9488 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9489 struct vm_area_struct *vma, 9490 struct perf_addr_filter_range *fr) 9491 { 9492 unsigned long vma_size = vma->vm_end - vma->vm_start; 9493 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9494 struct file *file = vma->vm_file; 9495 9496 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9497 return false; 9498 9499 if (filter->offset < off) { 9500 fr->start = vma->vm_start; 9501 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9502 } else { 9503 fr->start = vma->vm_start + filter->offset - off; 9504 fr->size = min(vma->vm_end - fr->start, filter->size); 9505 } 9506 9507 return true; 9508 } 9509 9510 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9511 { 9512 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9513 struct vm_area_struct *vma = data; 9514 struct perf_addr_filter *filter; 9515 unsigned int restart = 0, count = 0; 9516 unsigned long flags; 9517 9518 if (!has_addr_filter(event)) 9519 return; 9520 9521 if (!vma->vm_file) 9522 return; 9523 9524 raw_spin_lock_irqsave(&ifh->lock, flags); 9525 list_for_each_entry(filter, &ifh->list, entry) { 9526 if (perf_addr_filter_vma_adjust(filter, vma, 9527 &event->addr_filter_ranges[count])) 9528 restart++; 9529 9530 count++; 9531 } 9532 9533 if (restart) 9534 event->addr_filters_gen++; 9535 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9536 9537 if (restart) 9538 perf_event_stop(event, 1); 9539 } 9540 9541 /* 9542 * Adjust all task's events' filters to the new vma 9543 */ 9544 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9545 { 9546 struct perf_event_context *ctx; 9547 9548 /* 9549 * Data tracing isn't supported yet and as such there is no need 9550 * to keep track of anything that isn't related to executable code: 9551 */ 9552 if (!(vma->vm_flags & VM_EXEC)) 9553 return; 9554 9555 rcu_read_lock(); 9556 ctx = rcu_dereference(current->perf_event_ctxp); 9557 if (ctx) 9558 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9559 rcu_read_unlock(); 9560 } 9561 9562 void perf_event_mmap(struct vm_area_struct *vma) 9563 { 9564 struct perf_mmap_event mmap_event; 9565 9566 if (!atomic_read(&nr_mmap_events)) 9567 return; 9568 9569 mmap_event = (struct perf_mmap_event){ 9570 .vma = vma, 9571 /* .file_name */ 9572 /* .file_size */ 9573 .event_id = { 9574 .header = { 9575 .type = PERF_RECORD_MMAP, 9576 .misc = PERF_RECORD_MISC_USER, 9577 /* .size */ 9578 }, 9579 /* .pid */ 9580 /* .tid */ 9581 .start = vma->vm_start, 9582 .len = vma->vm_end - vma->vm_start, 9583 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9584 }, 9585 /* .maj (attr_mmap2 only) */ 9586 /* .min (attr_mmap2 only) */ 9587 /* .ino (attr_mmap2 only) */ 9588 /* .ino_generation (attr_mmap2 only) */ 9589 /* .prot (attr_mmap2 only) */ 9590 /* .flags (attr_mmap2 only) */ 9591 }; 9592 9593 perf_addr_filters_adjust(vma); 9594 perf_event_mmap_event(&mmap_event); 9595 } 9596 9597 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9598 unsigned long size, u64 flags) 9599 { 9600 struct perf_output_handle handle; 9601 struct perf_sample_data sample; 9602 struct perf_aux_event { 9603 struct perf_event_header header; 9604 u64 offset; 9605 u64 size; 9606 u64 flags; 9607 } rec = { 9608 .header = { 9609 .type = PERF_RECORD_AUX, 9610 .misc = 0, 9611 .size = sizeof(rec), 9612 }, 9613 .offset = head, 9614 .size = size, 9615 .flags = flags, 9616 }; 9617 int ret; 9618 9619 perf_event_header__init_id(&rec.header, &sample, event); 9620 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9621 9622 if (ret) 9623 return; 9624 9625 perf_output_put(&handle, rec); 9626 perf_event__output_id_sample(event, &handle, &sample); 9627 9628 perf_output_end(&handle); 9629 } 9630 9631 /* 9632 * Lost/dropped samples logging 9633 */ 9634 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9635 { 9636 struct perf_output_handle handle; 9637 struct perf_sample_data sample; 9638 int ret; 9639 9640 struct { 9641 struct perf_event_header header; 9642 u64 lost; 9643 } lost_samples_event = { 9644 .header = { 9645 .type = PERF_RECORD_LOST_SAMPLES, 9646 .misc = 0, 9647 .size = sizeof(lost_samples_event), 9648 }, 9649 .lost = lost, 9650 }; 9651 9652 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9653 9654 ret = perf_output_begin(&handle, &sample, event, 9655 lost_samples_event.header.size); 9656 if (ret) 9657 return; 9658 9659 perf_output_put(&handle, lost_samples_event); 9660 perf_event__output_id_sample(event, &handle, &sample); 9661 perf_output_end(&handle); 9662 } 9663 9664 /* 9665 * context_switch tracking 9666 */ 9667 9668 struct perf_switch_event { 9669 struct task_struct *task; 9670 struct task_struct *next_prev; 9671 9672 struct { 9673 struct perf_event_header header; 9674 u32 next_prev_pid; 9675 u32 next_prev_tid; 9676 } event_id; 9677 }; 9678 9679 static int perf_event_switch_match(struct perf_event *event) 9680 { 9681 return event->attr.context_switch; 9682 } 9683 9684 static void perf_event_switch_output(struct perf_event *event, void *data) 9685 { 9686 struct perf_switch_event *se = data; 9687 struct perf_output_handle handle; 9688 struct perf_sample_data sample; 9689 int ret; 9690 9691 if (!perf_event_switch_match(event)) 9692 return; 9693 9694 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9695 if (event->ctx->task) { 9696 se->event_id.header.type = PERF_RECORD_SWITCH; 9697 se->event_id.header.size = sizeof(se->event_id.header); 9698 } else { 9699 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9700 se->event_id.header.size = sizeof(se->event_id); 9701 se->event_id.next_prev_pid = 9702 perf_event_pid(event, se->next_prev); 9703 se->event_id.next_prev_tid = 9704 perf_event_tid(event, se->next_prev); 9705 } 9706 9707 perf_event_header__init_id(&se->event_id.header, &sample, event); 9708 9709 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9710 if (ret) 9711 return; 9712 9713 if (event->ctx->task) 9714 perf_output_put(&handle, se->event_id.header); 9715 else 9716 perf_output_put(&handle, se->event_id); 9717 9718 perf_event__output_id_sample(event, &handle, &sample); 9719 9720 perf_output_end(&handle); 9721 } 9722 9723 static void perf_event_switch(struct task_struct *task, 9724 struct task_struct *next_prev, bool sched_in) 9725 { 9726 struct perf_switch_event switch_event; 9727 9728 /* N.B. caller checks nr_switch_events != 0 */ 9729 9730 switch_event = (struct perf_switch_event){ 9731 .task = task, 9732 .next_prev = next_prev, 9733 .event_id = { 9734 .header = { 9735 /* .type */ 9736 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9737 /* .size */ 9738 }, 9739 /* .next_prev_pid */ 9740 /* .next_prev_tid */ 9741 }, 9742 }; 9743 9744 if (!sched_in && task_is_runnable(task)) { 9745 switch_event.event_id.header.misc |= 9746 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9747 } 9748 9749 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9750 } 9751 9752 /* 9753 * IRQ throttle logging 9754 */ 9755 9756 static void perf_log_throttle(struct perf_event *event, int enable) 9757 { 9758 struct perf_output_handle handle; 9759 struct perf_sample_data sample; 9760 int ret; 9761 9762 struct { 9763 struct perf_event_header header; 9764 u64 time; 9765 u64 id; 9766 u64 stream_id; 9767 } throttle_event = { 9768 .header = { 9769 .type = PERF_RECORD_THROTTLE, 9770 .misc = 0, 9771 .size = sizeof(throttle_event), 9772 }, 9773 .time = perf_event_clock(event), 9774 .id = primary_event_id(event), 9775 .stream_id = event->id, 9776 }; 9777 9778 if (enable) 9779 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9780 9781 perf_event_header__init_id(&throttle_event.header, &sample, event); 9782 9783 ret = perf_output_begin(&handle, &sample, event, 9784 throttle_event.header.size); 9785 if (ret) 9786 return; 9787 9788 perf_output_put(&handle, throttle_event); 9789 perf_event__output_id_sample(event, &handle, &sample); 9790 perf_output_end(&handle); 9791 } 9792 9793 /* 9794 * ksymbol register/unregister tracking 9795 */ 9796 9797 struct perf_ksymbol_event { 9798 const char *name; 9799 int name_len; 9800 struct { 9801 struct perf_event_header header; 9802 u64 addr; 9803 u32 len; 9804 u16 ksym_type; 9805 u16 flags; 9806 } event_id; 9807 }; 9808 9809 static int perf_event_ksymbol_match(struct perf_event *event) 9810 { 9811 return event->attr.ksymbol; 9812 } 9813 9814 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9815 { 9816 struct perf_ksymbol_event *ksymbol_event = data; 9817 struct perf_output_handle handle; 9818 struct perf_sample_data sample; 9819 int ret; 9820 9821 if (!perf_event_ksymbol_match(event)) 9822 return; 9823 9824 perf_event_header__init_id(&ksymbol_event->event_id.header, 9825 &sample, event); 9826 ret = perf_output_begin(&handle, &sample, event, 9827 ksymbol_event->event_id.header.size); 9828 if (ret) 9829 return; 9830 9831 perf_output_put(&handle, ksymbol_event->event_id); 9832 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9833 perf_event__output_id_sample(event, &handle, &sample); 9834 9835 perf_output_end(&handle); 9836 } 9837 9838 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9839 const char *sym) 9840 { 9841 struct perf_ksymbol_event ksymbol_event; 9842 char name[KSYM_NAME_LEN]; 9843 u16 flags = 0; 9844 int name_len; 9845 9846 if (!atomic_read(&nr_ksymbol_events)) 9847 return; 9848 9849 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9850 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9851 goto err; 9852 9853 strscpy(name, sym); 9854 name_len = strlen(name) + 1; 9855 while (!IS_ALIGNED(name_len, sizeof(u64))) 9856 name[name_len++] = '\0'; 9857 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9858 9859 if (unregister) 9860 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9861 9862 ksymbol_event = (struct perf_ksymbol_event){ 9863 .name = name, 9864 .name_len = name_len, 9865 .event_id = { 9866 .header = { 9867 .type = PERF_RECORD_KSYMBOL, 9868 .size = sizeof(ksymbol_event.event_id) + 9869 name_len, 9870 }, 9871 .addr = addr, 9872 .len = len, 9873 .ksym_type = ksym_type, 9874 .flags = flags, 9875 }, 9876 }; 9877 9878 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9879 return; 9880 err: 9881 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9882 } 9883 9884 /* 9885 * bpf program load/unload tracking 9886 */ 9887 9888 struct perf_bpf_event { 9889 struct bpf_prog *prog; 9890 struct { 9891 struct perf_event_header header; 9892 u16 type; 9893 u16 flags; 9894 u32 id; 9895 u8 tag[BPF_TAG_SIZE]; 9896 } event_id; 9897 }; 9898 9899 static int perf_event_bpf_match(struct perf_event *event) 9900 { 9901 return event->attr.bpf_event; 9902 } 9903 9904 static void perf_event_bpf_output(struct perf_event *event, void *data) 9905 { 9906 struct perf_bpf_event *bpf_event = data; 9907 struct perf_output_handle handle; 9908 struct perf_sample_data sample; 9909 int ret; 9910 9911 if (!perf_event_bpf_match(event)) 9912 return; 9913 9914 perf_event_header__init_id(&bpf_event->event_id.header, 9915 &sample, event); 9916 ret = perf_output_begin(&handle, &sample, event, 9917 bpf_event->event_id.header.size); 9918 if (ret) 9919 return; 9920 9921 perf_output_put(&handle, bpf_event->event_id); 9922 perf_event__output_id_sample(event, &handle, &sample); 9923 9924 perf_output_end(&handle); 9925 } 9926 9927 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9928 enum perf_bpf_event_type type) 9929 { 9930 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9931 int i; 9932 9933 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9934 (u64)(unsigned long)prog->bpf_func, 9935 prog->jited_len, unregister, 9936 prog->aux->ksym.name); 9937 9938 for (i = 1; i < prog->aux->func_cnt; i++) { 9939 struct bpf_prog *subprog = prog->aux->func[i]; 9940 9941 perf_event_ksymbol( 9942 PERF_RECORD_KSYMBOL_TYPE_BPF, 9943 (u64)(unsigned long)subprog->bpf_func, 9944 subprog->jited_len, unregister, 9945 subprog->aux->ksym.name); 9946 } 9947 } 9948 9949 void perf_event_bpf_event(struct bpf_prog *prog, 9950 enum perf_bpf_event_type type, 9951 u16 flags) 9952 { 9953 struct perf_bpf_event bpf_event; 9954 9955 switch (type) { 9956 case PERF_BPF_EVENT_PROG_LOAD: 9957 case PERF_BPF_EVENT_PROG_UNLOAD: 9958 if (atomic_read(&nr_ksymbol_events)) 9959 perf_event_bpf_emit_ksymbols(prog, type); 9960 break; 9961 default: 9962 return; 9963 } 9964 9965 if (!atomic_read(&nr_bpf_events)) 9966 return; 9967 9968 bpf_event = (struct perf_bpf_event){ 9969 .prog = prog, 9970 .event_id = { 9971 .header = { 9972 .type = PERF_RECORD_BPF_EVENT, 9973 .size = sizeof(bpf_event.event_id), 9974 }, 9975 .type = type, 9976 .flags = flags, 9977 .id = prog->aux->id, 9978 }, 9979 }; 9980 9981 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9982 9983 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9984 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9985 } 9986 9987 struct perf_text_poke_event { 9988 const void *old_bytes; 9989 const void *new_bytes; 9990 size_t pad; 9991 u16 old_len; 9992 u16 new_len; 9993 9994 struct { 9995 struct perf_event_header header; 9996 9997 u64 addr; 9998 } event_id; 9999 }; 10000 10001 static int perf_event_text_poke_match(struct perf_event *event) 10002 { 10003 return event->attr.text_poke; 10004 } 10005 10006 static void perf_event_text_poke_output(struct perf_event *event, void *data) 10007 { 10008 struct perf_text_poke_event *text_poke_event = data; 10009 struct perf_output_handle handle; 10010 struct perf_sample_data sample; 10011 u64 padding = 0; 10012 int ret; 10013 10014 if (!perf_event_text_poke_match(event)) 10015 return; 10016 10017 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 10018 10019 ret = perf_output_begin(&handle, &sample, event, 10020 text_poke_event->event_id.header.size); 10021 if (ret) 10022 return; 10023 10024 perf_output_put(&handle, text_poke_event->event_id); 10025 perf_output_put(&handle, text_poke_event->old_len); 10026 perf_output_put(&handle, text_poke_event->new_len); 10027 10028 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 10029 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 10030 10031 if (text_poke_event->pad) 10032 __output_copy(&handle, &padding, text_poke_event->pad); 10033 10034 perf_event__output_id_sample(event, &handle, &sample); 10035 10036 perf_output_end(&handle); 10037 } 10038 10039 void perf_event_text_poke(const void *addr, const void *old_bytes, 10040 size_t old_len, const void *new_bytes, size_t new_len) 10041 { 10042 struct perf_text_poke_event text_poke_event; 10043 size_t tot, pad; 10044 10045 if (!atomic_read(&nr_text_poke_events)) 10046 return; 10047 10048 tot = sizeof(text_poke_event.old_len) + old_len; 10049 tot += sizeof(text_poke_event.new_len) + new_len; 10050 pad = ALIGN(tot, sizeof(u64)) - tot; 10051 10052 text_poke_event = (struct perf_text_poke_event){ 10053 .old_bytes = old_bytes, 10054 .new_bytes = new_bytes, 10055 .pad = pad, 10056 .old_len = old_len, 10057 .new_len = new_len, 10058 .event_id = { 10059 .header = { 10060 .type = PERF_RECORD_TEXT_POKE, 10061 .misc = PERF_RECORD_MISC_KERNEL, 10062 .size = sizeof(text_poke_event.event_id) + tot + pad, 10063 }, 10064 .addr = (unsigned long)addr, 10065 }, 10066 }; 10067 10068 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 10069 } 10070 10071 void perf_event_itrace_started(struct perf_event *event) 10072 { 10073 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE); 10074 } 10075 10076 static void perf_log_itrace_start(struct perf_event *event) 10077 { 10078 struct perf_output_handle handle; 10079 struct perf_sample_data sample; 10080 struct perf_aux_event { 10081 struct perf_event_header header; 10082 u32 pid; 10083 u32 tid; 10084 } rec; 10085 int ret; 10086 10087 if (event->parent) 10088 event = event->parent; 10089 10090 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 10091 event->attach_state & PERF_ATTACH_ITRACE) 10092 return; 10093 10094 rec.header.type = PERF_RECORD_ITRACE_START; 10095 rec.header.misc = 0; 10096 rec.header.size = sizeof(rec); 10097 rec.pid = perf_event_pid(event, current); 10098 rec.tid = perf_event_tid(event, current); 10099 10100 perf_event_header__init_id(&rec.header, &sample, event); 10101 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10102 10103 if (ret) 10104 return; 10105 10106 perf_output_put(&handle, rec); 10107 perf_event__output_id_sample(event, &handle, &sample); 10108 10109 perf_output_end(&handle); 10110 } 10111 10112 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 10113 { 10114 struct perf_output_handle handle; 10115 struct perf_sample_data sample; 10116 struct perf_aux_event { 10117 struct perf_event_header header; 10118 u64 hw_id; 10119 } rec; 10120 int ret; 10121 10122 if (event->parent) 10123 event = event->parent; 10124 10125 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 10126 rec.header.misc = 0; 10127 rec.header.size = sizeof(rec); 10128 rec.hw_id = hw_id; 10129 10130 perf_event_header__init_id(&rec.header, &sample, event); 10131 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 10132 10133 if (ret) 10134 return; 10135 10136 perf_output_put(&handle, rec); 10137 perf_event__output_id_sample(event, &handle, &sample); 10138 10139 perf_output_end(&handle); 10140 } 10141 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 10142 10143 static int 10144 __perf_event_account_interrupt(struct perf_event *event, int throttle) 10145 { 10146 struct hw_perf_event *hwc = &event->hw; 10147 int ret = 0; 10148 u64 seq; 10149 10150 seq = __this_cpu_read(perf_throttled_seq); 10151 if (seq != hwc->interrupts_seq) { 10152 hwc->interrupts_seq = seq; 10153 hwc->interrupts = 1; 10154 } else { 10155 hwc->interrupts++; 10156 } 10157 10158 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) { 10159 __this_cpu_inc(perf_throttled_count); 10160 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 10161 perf_event_throttle_group(event); 10162 ret = 1; 10163 } 10164 10165 if (event->attr.freq) { 10166 u64 now = perf_clock(); 10167 s64 delta = now - hwc->freq_time_stamp; 10168 10169 hwc->freq_time_stamp = now; 10170 10171 if (delta > 0 && delta < 2*TICK_NSEC) 10172 perf_adjust_period(event, delta, hwc->last_period, true); 10173 } 10174 10175 return ret; 10176 } 10177 10178 int perf_event_account_interrupt(struct perf_event *event) 10179 { 10180 return __perf_event_account_interrupt(event, 1); 10181 } 10182 10183 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 10184 { 10185 /* 10186 * Due to interrupt latency (AKA "skid"), we may enter the 10187 * kernel before taking an overflow, even if the PMU is only 10188 * counting user events. 10189 */ 10190 if (event->attr.exclude_kernel && !user_mode(regs)) 10191 return false; 10192 10193 return true; 10194 } 10195 10196 #ifdef CONFIG_BPF_SYSCALL 10197 static int bpf_overflow_handler(struct perf_event *event, 10198 struct perf_sample_data *data, 10199 struct pt_regs *regs) 10200 { 10201 struct bpf_perf_event_data_kern ctx = { 10202 .data = data, 10203 .event = event, 10204 }; 10205 struct bpf_prog *prog; 10206 int ret = 0; 10207 10208 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10209 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10210 goto out; 10211 rcu_read_lock(); 10212 prog = READ_ONCE(event->prog); 10213 if (prog) { 10214 perf_prepare_sample(data, event, regs); 10215 ret = bpf_prog_run(prog, &ctx); 10216 } 10217 rcu_read_unlock(); 10218 out: 10219 __this_cpu_dec(bpf_prog_active); 10220 10221 return ret; 10222 } 10223 10224 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10225 struct bpf_prog *prog, 10226 u64 bpf_cookie) 10227 { 10228 if (event->overflow_handler_context) 10229 /* hw breakpoint or kernel counter */ 10230 return -EINVAL; 10231 10232 if (event->prog) 10233 return -EEXIST; 10234 10235 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10236 return -EINVAL; 10237 10238 if (event->attr.precise_ip && 10239 prog->call_get_stack && 10240 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10241 event->attr.exclude_callchain_kernel || 10242 event->attr.exclude_callchain_user)) { 10243 /* 10244 * On perf_event with precise_ip, calling bpf_get_stack() 10245 * may trigger unwinder warnings and occasional crashes. 10246 * bpf_get_[stack|stackid] works around this issue by using 10247 * callchain attached to perf_sample_data. If the 10248 * perf_event does not full (kernel and user) callchain 10249 * attached to perf_sample_data, do not allow attaching BPF 10250 * program that calls bpf_get_[stack|stackid]. 10251 */ 10252 return -EPROTO; 10253 } 10254 10255 event->prog = prog; 10256 event->bpf_cookie = bpf_cookie; 10257 return 0; 10258 } 10259 10260 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10261 { 10262 struct bpf_prog *prog = event->prog; 10263 10264 if (!prog) 10265 return; 10266 10267 event->prog = NULL; 10268 bpf_prog_put(prog); 10269 } 10270 #else 10271 static inline int bpf_overflow_handler(struct perf_event *event, 10272 struct perf_sample_data *data, 10273 struct pt_regs *regs) 10274 { 10275 return 1; 10276 } 10277 10278 static inline int perf_event_set_bpf_handler(struct perf_event *event, 10279 struct bpf_prog *prog, 10280 u64 bpf_cookie) 10281 { 10282 return -EOPNOTSUPP; 10283 } 10284 10285 static inline void perf_event_free_bpf_handler(struct perf_event *event) 10286 { 10287 } 10288 #endif 10289 10290 /* 10291 * Generic event overflow handling, sampling. 10292 */ 10293 10294 static int __perf_event_overflow(struct perf_event *event, 10295 int throttle, struct perf_sample_data *data, 10296 struct pt_regs *regs) 10297 { 10298 int events = atomic_read(&event->event_limit); 10299 int ret = 0; 10300 10301 /* 10302 * Non-sampling counters might still use the PMI to fold short 10303 * hardware counters, ignore those. 10304 */ 10305 if (unlikely(!is_sampling_event(event))) 10306 return 0; 10307 10308 ret = __perf_event_account_interrupt(event, throttle); 10309 10310 if (event->attr.aux_pause) 10311 perf_event_aux_pause(event->aux_event, true); 10312 10313 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 10314 !bpf_overflow_handler(event, data, regs)) 10315 goto out; 10316 10317 /* 10318 * XXX event_limit might not quite work as expected on inherited 10319 * events 10320 */ 10321 10322 event->pending_kill = POLL_IN; 10323 if (events && atomic_dec_and_test(&event->event_limit)) { 10324 ret = 1; 10325 event->pending_kill = POLL_HUP; 10326 perf_event_disable_inatomic(event); 10327 } 10328 10329 if (event->attr.sigtrap) { 10330 /* 10331 * The desired behaviour of sigtrap vs invalid samples is a bit 10332 * tricky; on the one hand, one should not loose the SIGTRAP if 10333 * it is the first event, on the other hand, we should also not 10334 * trigger the WARN or override the data address. 10335 */ 10336 bool valid_sample = sample_is_allowed(event, regs); 10337 unsigned int pending_id = 1; 10338 enum task_work_notify_mode notify_mode; 10339 10340 if (regs) 10341 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 10342 10343 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 10344 10345 if (!event->pending_work && 10346 !task_work_add(current, &event->pending_task, notify_mode)) { 10347 event->pending_work = pending_id; 10348 local_inc(&event->ctx->nr_no_switch_fast); 10349 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 10350 10351 event->pending_addr = 0; 10352 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 10353 event->pending_addr = data->addr; 10354 10355 } else if (event->attr.exclude_kernel && valid_sample) { 10356 /* 10357 * Should not be able to return to user space without 10358 * consuming pending_work; with exceptions: 10359 * 10360 * 1. Where !exclude_kernel, events can overflow again 10361 * in the kernel without returning to user space. 10362 * 10363 * 2. Events that can overflow again before the IRQ- 10364 * work without user space progress (e.g. hrtimer). 10365 * To approximate progress (with false negatives), 10366 * check 32-bit hash of the current IP. 10367 */ 10368 WARN_ON_ONCE(event->pending_work != pending_id); 10369 } 10370 } 10371 10372 READ_ONCE(event->overflow_handler)(event, data, regs); 10373 10374 if (*perf_event_fasync(event) && event->pending_kill) { 10375 event->pending_wakeup = 1; 10376 irq_work_queue(&event->pending_irq); 10377 } 10378 out: 10379 if (event->attr.aux_resume) 10380 perf_event_aux_pause(event->aux_event, false); 10381 10382 return ret; 10383 } 10384 10385 int perf_event_overflow(struct perf_event *event, 10386 struct perf_sample_data *data, 10387 struct pt_regs *regs) 10388 { 10389 return __perf_event_overflow(event, 1, data, regs); 10390 } 10391 10392 /* 10393 * Generic software event infrastructure 10394 */ 10395 10396 struct swevent_htable { 10397 struct swevent_hlist *swevent_hlist; 10398 struct mutex hlist_mutex; 10399 int hlist_refcount; 10400 }; 10401 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 10402 10403 /* 10404 * We directly increment event->count and keep a second value in 10405 * event->hw.period_left to count intervals. This period event 10406 * is kept in the range [-sample_period, 0] so that we can use the 10407 * sign as trigger. 10408 */ 10409 10410 u64 perf_swevent_set_period(struct perf_event *event) 10411 { 10412 struct hw_perf_event *hwc = &event->hw; 10413 u64 period = hwc->last_period; 10414 u64 nr, offset; 10415 s64 old, val; 10416 10417 hwc->last_period = hwc->sample_period; 10418 10419 old = local64_read(&hwc->period_left); 10420 do { 10421 val = old; 10422 if (val < 0) 10423 return 0; 10424 10425 nr = div64_u64(period + val, period); 10426 offset = nr * period; 10427 val -= offset; 10428 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 10429 10430 return nr; 10431 } 10432 10433 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 10434 struct perf_sample_data *data, 10435 struct pt_regs *regs) 10436 { 10437 struct hw_perf_event *hwc = &event->hw; 10438 int throttle = 0; 10439 10440 if (!overflow) 10441 overflow = perf_swevent_set_period(event); 10442 10443 if (hwc->interrupts == MAX_INTERRUPTS) 10444 return; 10445 10446 for (; overflow; overflow--) { 10447 if (__perf_event_overflow(event, throttle, 10448 data, regs)) { 10449 /* 10450 * We inhibit the overflow from happening when 10451 * hwc->interrupts == MAX_INTERRUPTS. 10452 */ 10453 break; 10454 } 10455 throttle = 1; 10456 } 10457 } 10458 10459 static void perf_swevent_event(struct perf_event *event, u64 nr, 10460 struct perf_sample_data *data, 10461 struct pt_regs *regs) 10462 { 10463 struct hw_perf_event *hwc = &event->hw; 10464 10465 local64_add(nr, &event->count); 10466 10467 if (!regs) 10468 return; 10469 10470 if (!is_sampling_event(event)) 10471 return; 10472 10473 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10474 data->period = nr; 10475 return perf_swevent_overflow(event, 1, data, regs); 10476 } else 10477 data->period = event->hw.last_period; 10478 10479 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10480 return perf_swevent_overflow(event, 1, data, regs); 10481 10482 if (local64_add_negative(nr, &hwc->period_left)) 10483 return; 10484 10485 perf_swevent_overflow(event, 0, data, regs); 10486 } 10487 10488 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 10489 { 10490 if (event->hw.state & PERF_HES_STOPPED) 10491 return 1; 10492 10493 if (regs) { 10494 if (event->attr.exclude_user && user_mode(regs)) 10495 return 1; 10496 10497 if (event->attr.exclude_kernel && !user_mode(regs)) 10498 return 1; 10499 } 10500 10501 return 0; 10502 } 10503 10504 static int perf_swevent_match(struct perf_event *event, 10505 enum perf_type_id type, 10506 u32 event_id, 10507 struct perf_sample_data *data, 10508 struct pt_regs *regs) 10509 { 10510 if (event->attr.type != type) 10511 return 0; 10512 10513 if (event->attr.config != event_id) 10514 return 0; 10515 10516 if (perf_exclude_event(event, regs)) 10517 return 0; 10518 10519 return 1; 10520 } 10521 10522 static inline u64 swevent_hash(u64 type, u32 event_id) 10523 { 10524 u64 val = event_id | (type << 32); 10525 10526 return hash_64(val, SWEVENT_HLIST_BITS); 10527 } 10528 10529 static inline struct hlist_head * 10530 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10531 { 10532 u64 hash = swevent_hash(type, event_id); 10533 10534 return &hlist->heads[hash]; 10535 } 10536 10537 /* For the read side: events when they trigger */ 10538 static inline struct hlist_head * 10539 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10540 { 10541 struct swevent_hlist *hlist; 10542 10543 hlist = rcu_dereference(swhash->swevent_hlist); 10544 if (!hlist) 10545 return NULL; 10546 10547 return __find_swevent_head(hlist, type, event_id); 10548 } 10549 10550 /* For the event head insertion and removal in the hlist */ 10551 static inline struct hlist_head * 10552 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10553 { 10554 struct swevent_hlist *hlist; 10555 u32 event_id = event->attr.config; 10556 u64 type = event->attr.type; 10557 10558 /* 10559 * Event scheduling is always serialized against hlist allocation 10560 * and release. Which makes the protected version suitable here. 10561 * The context lock guarantees that. 10562 */ 10563 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10564 lockdep_is_held(&event->ctx->lock)); 10565 if (!hlist) 10566 return NULL; 10567 10568 return __find_swevent_head(hlist, type, event_id); 10569 } 10570 10571 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10572 u64 nr, 10573 struct perf_sample_data *data, 10574 struct pt_regs *regs) 10575 { 10576 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10577 struct perf_event *event; 10578 struct hlist_head *head; 10579 10580 rcu_read_lock(); 10581 head = find_swevent_head_rcu(swhash, type, event_id); 10582 if (!head) 10583 goto end; 10584 10585 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10586 if (perf_swevent_match(event, type, event_id, data, regs)) 10587 perf_swevent_event(event, nr, data, regs); 10588 } 10589 end: 10590 rcu_read_unlock(); 10591 } 10592 10593 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10594 10595 int perf_swevent_get_recursion_context(void) 10596 { 10597 return get_recursion_context(current->perf_recursion); 10598 } 10599 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10600 10601 void perf_swevent_put_recursion_context(int rctx) 10602 { 10603 put_recursion_context(current->perf_recursion, rctx); 10604 } 10605 10606 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10607 { 10608 struct perf_sample_data data; 10609 10610 if (WARN_ON_ONCE(!regs)) 10611 return; 10612 10613 perf_sample_data_init(&data, addr, 0); 10614 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10615 } 10616 10617 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10618 { 10619 int rctx; 10620 10621 preempt_disable_notrace(); 10622 rctx = perf_swevent_get_recursion_context(); 10623 if (unlikely(rctx < 0)) 10624 goto fail; 10625 10626 ___perf_sw_event(event_id, nr, regs, addr); 10627 10628 perf_swevent_put_recursion_context(rctx); 10629 fail: 10630 preempt_enable_notrace(); 10631 } 10632 10633 static void perf_swevent_read(struct perf_event *event) 10634 { 10635 } 10636 10637 static int perf_swevent_add(struct perf_event *event, int flags) 10638 { 10639 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10640 struct hw_perf_event *hwc = &event->hw; 10641 struct hlist_head *head; 10642 10643 if (is_sampling_event(event)) { 10644 hwc->last_period = hwc->sample_period; 10645 perf_swevent_set_period(event); 10646 } 10647 10648 hwc->state = !(flags & PERF_EF_START); 10649 10650 head = find_swevent_head(swhash, event); 10651 if (WARN_ON_ONCE(!head)) 10652 return -EINVAL; 10653 10654 hlist_add_head_rcu(&event->hlist_entry, head); 10655 perf_event_update_userpage(event); 10656 10657 return 0; 10658 } 10659 10660 static void perf_swevent_del(struct perf_event *event, int flags) 10661 { 10662 hlist_del_rcu(&event->hlist_entry); 10663 } 10664 10665 static void perf_swevent_start(struct perf_event *event, int flags) 10666 { 10667 event->hw.state = 0; 10668 } 10669 10670 static void perf_swevent_stop(struct perf_event *event, int flags) 10671 { 10672 event->hw.state = PERF_HES_STOPPED; 10673 } 10674 10675 /* Deref the hlist from the update side */ 10676 static inline struct swevent_hlist * 10677 swevent_hlist_deref(struct swevent_htable *swhash) 10678 { 10679 return rcu_dereference_protected(swhash->swevent_hlist, 10680 lockdep_is_held(&swhash->hlist_mutex)); 10681 } 10682 10683 static void swevent_hlist_release(struct swevent_htable *swhash) 10684 { 10685 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10686 10687 if (!hlist) 10688 return; 10689 10690 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10691 kfree_rcu(hlist, rcu_head); 10692 } 10693 10694 static void swevent_hlist_put_cpu(int cpu) 10695 { 10696 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10697 10698 mutex_lock(&swhash->hlist_mutex); 10699 10700 if (!--swhash->hlist_refcount) 10701 swevent_hlist_release(swhash); 10702 10703 mutex_unlock(&swhash->hlist_mutex); 10704 } 10705 10706 static void swevent_hlist_put(void) 10707 { 10708 int cpu; 10709 10710 for_each_possible_cpu(cpu) 10711 swevent_hlist_put_cpu(cpu); 10712 } 10713 10714 static int swevent_hlist_get_cpu(int cpu) 10715 { 10716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10717 int err = 0; 10718 10719 mutex_lock(&swhash->hlist_mutex); 10720 if (!swevent_hlist_deref(swhash) && 10721 cpumask_test_cpu(cpu, perf_online_mask)) { 10722 struct swevent_hlist *hlist; 10723 10724 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10725 if (!hlist) { 10726 err = -ENOMEM; 10727 goto exit; 10728 } 10729 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10730 } 10731 swhash->hlist_refcount++; 10732 exit: 10733 mutex_unlock(&swhash->hlist_mutex); 10734 10735 return err; 10736 } 10737 10738 static int swevent_hlist_get(void) 10739 { 10740 int err, cpu, failed_cpu; 10741 10742 mutex_lock(&pmus_lock); 10743 for_each_possible_cpu(cpu) { 10744 err = swevent_hlist_get_cpu(cpu); 10745 if (err) { 10746 failed_cpu = cpu; 10747 goto fail; 10748 } 10749 } 10750 mutex_unlock(&pmus_lock); 10751 return 0; 10752 fail: 10753 for_each_possible_cpu(cpu) { 10754 if (cpu == failed_cpu) 10755 break; 10756 swevent_hlist_put_cpu(cpu); 10757 } 10758 mutex_unlock(&pmus_lock); 10759 return err; 10760 } 10761 10762 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10763 10764 static void sw_perf_event_destroy(struct perf_event *event) 10765 { 10766 u64 event_id = event->attr.config; 10767 10768 WARN_ON(event->parent); 10769 10770 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10771 swevent_hlist_put(); 10772 } 10773 10774 static struct pmu perf_cpu_clock; /* fwd declaration */ 10775 static struct pmu perf_task_clock; 10776 10777 static int perf_swevent_init(struct perf_event *event) 10778 { 10779 u64 event_id = event->attr.config; 10780 10781 if (event->attr.type != PERF_TYPE_SOFTWARE) 10782 return -ENOENT; 10783 10784 /* 10785 * no branch sampling for software events 10786 */ 10787 if (has_branch_stack(event)) 10788 return -EOPNOTSUPP; 10789 10790 switch (event_id) { 10791 case PERF_COUNT_SW_CPU_CLOCK: 10792 event->attr.type = perf_cpu_clock.type; 10793 return -ENOENT; 10794 case PERF_COUNT_SW_TASK_CLOCK: 10795 event->attr.type = perf_task_clock.type; 10796 return -ENOENT; 10797 10798 default: 10799 break; 10800 } 10801 10802 if (event_id >= PERF_COUNT_SW_MAX) 10803 return -ENOENT; 10804 10805 if (!event->parent) { 10806 int err; 10807 10808 err = swevent_hlist_get(); 10809 if (err) 10810 return err; 10811 10812 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10813 event->destroy = sw_perf_event_destroy; 10814 } 10815 10816 return 0; 10817 } 10818 10819 static struct pmu perf_swevent = { 10820 .task_ctx_nr = perf_sw_context, 10821 10822 .capabilities = PERF_PMU_CAP_NO_NMI, 10823 10824 .event_init = perf_swevent_init, 10825 .add = perf_swevent_add, 10826 .del = perf_swevent_del, 10827 .start = perf_swevent_start, 10828 .stop = perf_swevent_stop, 10829 .read = perf_swevent_read, 10830 }; 10831 10832 #ifdef CONFIG_EVENT_TRACING 10833 10834 static void tp_perf_event_destroy(struct perf_event *event) 10835 { 10836 perf_trace_destroy(event); 10837 } 10838 10839 static int perf_tp_event_init(struct perf_event *event) 10840 { 10841 int err; 10842 10843 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10844 return -ENOENT; 10845 10846 /* 10847 * no branch sampling for tracepoint events 10848 */ 10849 if (has_branch_stack(event)) 10850 return -EOPNOTSUPP; 10851 10852 err = perf_trace_init(event); 10853 if (err) 10854 return err; 10855 10856 event->destroy = tp_perf_event_destroy; 10857 10858 return 0; 10859 } 10860 10861 static struct pmu perf_tracepoint = { 10862 .task_ctx_nr = perf_sw_context, 10863 10864 .event_init = perf_tp_event_init, 10865 .add = perf_trace_add, 10866 .del = perf_trace_del, 10867 .start = perf_swevent_start, 10868 .stop = perf_swevent_stop, 10869 .read = perf_swevent_read, 10870 }; 10871 10872 static int perf_tp_filter_match(struct perf_event *event, 10873 struct perf_raw_record *raw) 10874 { 10875 void *record = raw->frag.data; 10876 10877 /* only top level events have filters set */ 10878 if (event->parent) 10879 event = event->parent; 10880 10881 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10882 return 1; 10883 return 0; 10884 } 10885 10886 static int perf_tp_event_match(struct perf_event *event, 10887 struct perf_raw_record *raw, 10888 struct pt_regs *regs) 10889 { 10890 if (event->hw.state & PERF_HES_STOPPED) 10891 return 0; 10892 /* 10893 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10894 */ 10895 if (event->attr.exclude_kernel && !user_mode(regs)) 10896 return 0; 10897 10898 if (!perf_tp_filter_match(event, raw)) 10899 return 0; 10900 10901 return 1; 10902 } 10903 10904 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10905 struct trace_event_call *call, u64 count, 10906 struct pt_regs *regs, struct hlist_head *head, 10907 struct task_struct *task) 10908 { 10909 if (bpf_prog_array_valid(call)) { 10910 *(struct pt_regs **)raw_data = regs; 10911 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10912 perf_swevent_put_recursion_context(rctx); 10913 return; 10914 } 10915 } 10916 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10917 rctx, task); 10918 } 10919 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10920 10921 static void __perf_tp_event_target_task(u64 count, void *record, 10922 struct pt_regs *regs, 10923 struct perf_sample_data *data, 10924 struct perf_raw_record *raw, 10925 struct perf_event *event) 10926 { 10927 struct trace_entry *entry = record; 10928 10929 if (event->attr.config != entry->type) 10930 return; 10931 /* Cannot deliver synchronous signal to other task. */ 10932 if (event->attr.sigtrap) 10933 return; 10934 if (perf_tp_event_match(event, raw, regs)) { 10935 perf_sample_data_init(data, 0, 0); 10936 perf_sample_save_raw_data(data, event, raw); 10937 perf_swevent_event(event, count, data, regs); 10938 } 10939 } 10940 10941 static void perf_tp_event_target_task(u64 count, void *record, 10942 struct pt_regs *regs, 10943 struct perf_sample_data *data, 10944 struct perf_raw_record *raw, 10945 struct perf_event_context *ctx) 10946 { 10947 unsigned int cpu = smp_processor_id(); 10948 struct pmu *pmu = &perf_tracepoint; 10949 struct perf_event *event, *sibling; 10950 10951 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10952 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10953 for_each_sibling_event(sibling, event) 10954 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10955 } 10956 10957 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10958 __perf_tp_event_target_task(count, record, regs, data, raw, event); 10959 for_each_sibling_event(sibling, event) 10960 __perf_tp_event_target_task(count, record, regs, data, raw, sibling); 10961 } 10962 } 10963 10964 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10965 struct pt_regs *regs, struct hlist_head *head, int rctx, 10966 struct task_struct *task) 10967 { 10968 struct perf_sample_data data; 10969 struct perf_event *event; 10970 10971 struct perf_raw_record raw = { 10972 .frag = { 10973 .size = entry_size, 10974 .data = record, 10975 }, 10976 }; 10977 10978 perf_trace_buf_update(record, event_type); 10979 10980 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10981 if (perf_tp_event_match(event, &raw, regs)) { 10982 /* 10983 * Here use the same on-stack perf_sample_data, 10984 * some members in data are event-specific and 10985 * need to be re-computed for different sweveents. 10986 * Re-initialize data->sample_flags safely to avoid 10987 * the problem that next event skips preparing data 10988 * because data->sample_flags is set. 10989 */ 10990 perf_sample_data_init(&data, 0, 0); 10991 perf_sample_save_raw_data(&data, event, &raw); 10992 perf_swevent_event(event, count, &data, regs); 10993 } 10994 } 10995 10996 /* 10997 * If we got specified a target task, also iterate its context and 10998 * deliver this event there too. 10999 */ 11000 if (task && task != current) { 11001 struct perf_event_context *ctx; 11002 11003 rcu_read_lock(); 11004 ctx = rcu_dereference(task->perf_event_ctxp); 11005 if (!ctx) 11006 goto unlock; 11007 11008 raw_spin_lock(&ctx->lock); 11009 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); 11010 raw_spin_unlock(&ctx->lock); 11011 unlock: 11012 rcu_read_unlock(); 11013 } 11014 11015 perf_swevent_put_recursion_context(rctx); 11016 } 11017 EXPORT_SYMBOL_GPL(perf_tp_event); 11018 11019 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 11020 /* 11021 * Flags in config, used by dynamic PMU kprobe and uprobe 11022 * The flags should match following PMU_FORMAT_ATTR(). 11023 * 11024 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 11025 * if not set, create kprobe/uprobe 11026 * 11027 * The following values specify a reference counter (or semaphore in the 11028 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 11029 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 11030 * 11031 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 11032 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 11033 */ 11034 enum perf_probe_config { 11035 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 11036 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 11037 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 11038 }; 11039 11040 PMU_FORMAT_ATTR(retprobe, "config:0"); 11041 #endif 11042 11043 #ifdef CONFIG_KPROBE_EVENTS 11044 static struct attribute *kprobe_attrs[] = { 11045 &format_attr_retprobe.attr, 11046 NULL, 11047 }; 11048 11049 static struct attribute_group kprobe_format_group = { 11050 .name = "format", 11051 .attrs = kprobe_attrs, 11052 }; 11053 11054 static const struct attribute_group *kprobe_attr_groups[] = { 11055 &kprobe_format_group, 11056 NULL, 11057 }; 11058 11059 static int perf_kprobe_event_init(struct perf_event *event); 11060 static struct pmu perf_kprobe = { 11061 .task_ctx_nr = perf_sw_context, 11062 .event_init = perf_kprobe_event_init, 11063 .add = perf_trace_add, 11064 .del = perf_trace_del, 11065 .start = perf_swevent_start, 11066 .stop = perf_swevent_stop, 11067 .read = perf_swevent_read, 11068 .attr_groups = kprobe_attr_groups, 11069 }; 11070 11071 static int perf_kprobe_event_init(struct perf_event *event) 11072 { 11073 int err; 11074 bool is_retprobe; 11075 11076 if (event->attr.type != perf_kprobe.type) 11077 return -ENOENT; 11078 11079 if (!perfmon_capable()) 11080 return -EACCES; 11081 11082 /* 11083 * no branch sampling for probe events 11084 */ 11085 if (has_branch_stack(event)) 11086 return -EOPNOTSUPP; 11087 11088 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11089 err = perf_kprobe_init(event, is_retprobe); 11090 if (err) 11091 return err; 11092 11093 event->destroy = perf_kprobe_destroy; 11094 11095 return 0; 11096 } 11097 #endif /* CONFIG_KPROBE_EVENTS */ 11098 11099 #ifdef CONFIG_UPROBE_EVENTS 11100 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 11101 11102 static struct attribute *uprobe_attrs[] = { 11103 &format_attr_retprobe.attr, 11104 &format_attr_ref_ctr_offset.attr, 11105 NULL, 11106 }; 11107 11108 static struct attribute_group uprobe_format_group = { 11109 .name = "format", 11110 .attrs = uprobe_attrs, 11111 }; 11112 11113 static const struct attribute_group *uprobe_attr_groups[] = { 11114 &uprobe_format_group, 11115 NULL, 11116 }; 11117 11118 static int perf_uprobe_event_init(struct perf_event *event); 11119 static struct pmu perf_uprobe = { 11120 .task_ctx_nr = perf_sw_context, 11121 .event_init = perf_uprobe_event_init, 11122 .add = perf_trace_add, 11123 .del = perf_trace_del, 11124 .start = perf_swevent_start, 11125 .stop = perf_swevent_stop, 11126 .read = perf_swevent_read, 11127 .attr_groups = uprobe_attr_groups, 11128 }; 11129 11130 static int perf_uprobe_event_init(struct perf_event *event) 11131 { 11132 int err; 11133 unsigned long ref_ctr_offset; 11134 bool is_retprobe; 11135 11136 if (event->attr.type != perf_uprobe.type) 11137 return -ENOENT; 11138 11139 if (!capable(CAP_SYS_ADMIN)) 11140 return -EACCES; 11141 11142 /* 11143 * no branch sampling for probe events 11144 */ 11145 if (has_branch_stack(event)) 11146 return -EOPNOTSUPP; 11147 11148 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 11149 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11150 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 11151 if (err) 11152 return err; 11153 11154 event->destroy = perf_uprobe_destroy; 11155 11156 return 0; 11157 } 11158 #endif /* CONFIG_UPROBE_EVENTS */ 11159 11160 static inline void perf_tp_register(void) 11161 { 11162 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 11163 #ifdef CONFIG_KPROBE_EVENTS 11164 perf_pmu_register(&perf_kprobe, "kprobe", -1); 11165 #endif 11166 #ifdef CONFIG_UPROBE_EVENTS 11167 perf_pmu_register(&perf_uprobe, "uprobe", -1); 11168 #endif 11169 } 11170 11171 static void perf_event_free_filter(struct perf_event *event) 11172 { 11173 ftrace_profile_free_filter(event); 11174 } 11175 11176 /* 11177 * returns true if the event is a tracepoint, or a kprobe/upprobe created 11178 * with perf_event_open() 11179 */ 11180 static inline bool perf_event_is_tracing(struct perf_event *event) 11181 { 11182 if (event->pmu == &perf_tracepoint) 11183 return true; 11184 #ifdef CONFIG_KPROBE_EVENTS 11185 if (event->pmu == &perf_kprobe) 11186 return true; 11187 #endif 11188 #ifdef CONFIG_UPROBE_EVENTS 11189 if (event->pmu == &perf_uprobe) 11190 return true; 11191 #endif 11192 return false; 11193 } 11194 11195 static int __perf_event_set_bpf_prog(struct perf_event *event, 11196 struct bpf_prog *prog, 11197 u64 bpf_cookie) 11198 { 11199 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 11200 11201 if (event->state <= PERF_EVENT_STATE_REVOKED) 11202 return -ENODEV; 11203 11204 if (!perf_event_is_tracing(event)) 11205 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 11206 11207 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 11208 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 11209 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 11210 is_syscall_tp = is_syscall_trace_event(event->tp_event); 11211 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 11212 /* bpf programs can only be attached to u/kprobe or tracepoint */ 11213 return -EINVAL; 11214 11215 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 11216 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 11217 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 11218 return -EINVAL; 11219 11220 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 11221 /* only uprobe programs are allowed to be sleepable */ 11222 return -EINVAL; 11223 11224 /* Kprobe override only works for kprobes, not uprobes. */ 11225 if (prog->kprobe_override && !is_kprobe) 11226 return -EINVAL; 11227 11228 if (is_tracepoint || is_syscall_tp) { 11229 int off = trace_event_get_offsets(event->tp_event); 11230 11231 if (prog->aux->max_ctx_offset > off) 11232 return -EACCES; 11233 } 11234 11235 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 11236 } 11237 11238 int perf_event_set_bpf_prog(struct perf_event *event, 11239 struct bpf_prog *prog, 11240 u64 bpf_cookie) 11241 { 11242 struct perf_event_context *ctx; 11243 int ret; 11244 11245 ctx = perf_event_ctx_lock(event); 11246 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie); 11247 perf_event_ctx_unlock(event, ctx); 11248 11249 return ret; 11250 } 11251 11252 void perf_event_free_bpf_prog(struct perf_event *event) 11253 { 11254 if (!event->prog) 11255 return; 11256 11257 if (!perf_event_is_tracing(event)) { 11258 perf_event_free_bpf_handler(event); 11259 return; 11260 } 11261 perf_event_detach_bpf_prog(event); 11262 } 11263 11264 #else 11265 11266 static inline void perf_tp_register(void) 11267 { 11268 } 11269 11270 static void perf_event_free_filter(struct perf_event *event) 11271 { 11272 } 11273 11274 static int __perf_event_set_bpf_prog(struct perf_event *event, 11275 struct bpf_prog *prog, 11276 u64 bpf_cookie) 11277 { 11278 return -ENOENT; 11279 } 11280 11281 int perf_event_set_bpf_prog(struct perf_event *event, 11282 struct bpf_prog *prog, 11283 u64 bpf_cookie) 11284 { 11285 return -ENOENT; 11286 } 11287 11288 void perf_event_free_bpf_prog(struct perf_event *event) 11289 { 11290 } 11291 #endif /* CONFIG_EVENT_TRACING */ 11292 11293 #ifdef CONFIG_HAVE_HW_BREAKPOINT 11294 void perf_bp_event(struct perf_event *bp, void *data) 11295 { 11296 struct perf_sample_data sample; 11297 struct pt_regs *regs = data; 11298 11299 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 11300 11301 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 11302 perf_swevent_event(bp, 1, &sample, regs); 11303 } 11304 #endif 11305 11306 /* 11307 * Allocate a new address filter 11308 */ 11309 static struct perf_addr_filter * 11310 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 11311 { 11312 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 11313 struct perf_addr_filter *filter; 11314 11315 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 11316 if (!filter) 11317 return NULL; 11318 11319 INIT_LIST_HEAD(&filter->entry); 11320 list_add_tail(&filter->entry, filters); 11321 11322 return filter; 11323 } 11324 11325 static void free_filters_list(struct list_head *filters) 11326 { 11327 struct perf_addr_filter *filter, *iter; 11328 11329 list_for_each_entry_safe(filter, iter, filters, entry) { 11330 path_put(&filter->path); 11331 list_del(&filter->entry); 11332 kfree(filter); 11333 } 11334 } 11335 11336 /* 11337 * Free existing address filters and optionally install new ones 11338 */ 11339 static void perf_addr_filters_splice(struct perf_event *event, 11340 struct list_head *head) 11341 { 11342 unsigned long flags; 11343 LIST_HEAD(list); 11344 11345 if (!has_addr_filter(event)) 11346 return; 11347 11348 /* don't bother with children, they don't have their own filters */ 11349 if (event->parent) 11350 return; 11351 11352 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 11353 11354 list_splice_init(&event->addr_filters.list, &list); 11355 if (head) 11356 list_splice(head, &event->addr_filters.list); 11357 11358 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 11359 11360 free_filters_list(&list); 11361 } 11362 11363 static void perf_free_addr_filters(struct perf_event *event) 11364 { 11365 /* 11366 * Used during free paths, there is no concurrency. 11367 */ 11368 if (list_empty(&event->addr_filters.list)) 11369 return; 11370 11371 perf_addr_filters_splice(event, NULL); 11372 } 11373 11374 /* 11375 * Scan through mm's vmas and see if one of them matches the 11376 * @filter; if so, adjust filter's address range. 11377 * Called with mm::mmap_lock down for reading. 11378 */ 11379 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 11380 struct mm_struct *mm, 11381 struct perf_addr_filter_range *fr) 11382 { 11383 struct vm_area_struct *vma; 11384 VMA_ITERATOR(vmi, mm, 0); 11385 11386 for_each_vma(vmi, vma) { 11387 if (!vma->vm_file) 11388 continue; 11389 11390 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 11391 return; 11392 } 11393 } 11394 11395 /* 11396 * Update event's address range filters based on the 11397 * task's existing mappings, if any. 11398 */ 11399 static void perf_event_addr_filters_apply(struct perf_event *event) 11400 { 11401 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11402 struct task_struct *task = READ_ONCE(event->ctx->task); 11403 struct perf_addr_filter *filter; 11404 struct mm_struct *mm = NULL; 11405 unsigned int count = 0; 11406 unsigned long flags; 11407 11408 /* 11409 * We may observe TASK_TOMBSTONE, which means that the event tear-down 11410 * will stop on the parent's child_mutex that our caller is also holding 11411 */ 11412 if (task == TASK_TOMBSTONE) 11413 return; 11414 11415 if (ifh->nr_file_filters) { 11416 mm = get_task_mm(task); 11417 if (!mm) 11418 goto restart; 11419 11420 mmap_read_lock(mm); 11421 } 11422 11423 raw_spin_lock_irqsave(&ifh->lock, flags); 11424 list_for_each_entry(filter, &ifh->list, entry) { 11425 if (filter->path.dentry) { 11426 /* 11427 * Adjust base offset if the filter is associated to a 11428 * binary that needs to be mapped: 11429 */ 11430 event->addr_filter_ranges[count].start = 0; 11431 event->addr_filter_ranges[count].size = 0; 11432 11433 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 11434 } else { 11435 event->addr_filter_ranges[count].start = filter->offset; 11436 event->addr_filter_ranges[count].size = filter->size; 11437 } 11438 11439 count++; 11440 } 11441 11442 event->addr_filters_gen++; 11443 raw_spin_unlock_irqrestore(&ifh->lock, flags); 11444 11445 if (ifh->nr_file_filters) { 11446 mmap_read_unlock(mm); 11447 11448 mmput(mm); 11449 } 11450 11451 restart: 11452 perf_event_stop(event, 1); 11453 } 11454 11455 /* 11456 * Address range filtering: limiting the data to certain 11457 * instruction address ranges. Filters are ioctl()ed to us from 11458 * userspace as ascii strings. 11459 * 11460 * Filter string format: 11461 * 11462 * ACTION RANGE_SPEC 11463 * where ACTION is one of the 11464 * * "filter": limit the trace to this region 11465 * * "start": start tracing from this address 11466 * * "stop": stop tracing at this address/region; 11467 * RANGE_SPEC is 11468 * * for kernel addresses: <start address>[/<size>] 11469 * * for object files: <start address>[/<size>]@</path/to/object/file> 11470 * 11471 * if <size> is not specified or is zero, the range is treated as a single 11472 * address; not valid for ACTION=="filter". 11473 */ 11474 enum { 11475 IF_ACT_NONE = -1, 11476 IF_ACT_FILTER, 11477 IF_ACT_START, 11478 IF_ACT_STOP, 11479 IF_SRC_FILE, 11480 IF_SRC_KERNEL, 11481 IF_SRC_FILEADDR, 11482 IF_SRC_KERNELADDR, 11483 }; 11484 11485 enum { 11486 IF_STATE_ACTION = 0, 11487 IF_STATE_SOURCE, 11488 IF_STATE_END, 11489 }; 11490 11491 static const match_table_t if_tokens = { 11492 { IF_ACT_FILTER, "filter" }, 11493 { IF_ACT_START, "start" }, 11494 { IF_ACT_STOP, "stop" }, 11495 { IF_SRC_FILE, "%u/%u@%s" }, 11496 { IF_SRC_KERNEL, "%u/%u" }, 11497 { IF_SRC_FILEADDR, "%u@%s" }, 11498 { IF_SRC_KERNELADDR, "%u" }, 11499 { IF_ACT_NONE, NULL }, 11500 }; 11501 11502 /* 11503 * Address filter string parser 11504 */ 11505 static int 11506 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11507 struct list_head *filters) 11508 { 11509 struct perf_addr_filter *filter = NULL; 11510 char *start, *orig, *filename = NULL; 11511 substring_t args[MAX_OPT_ARGS]; 11512 int state = IF_STATE_ACTION, token; 11513 unsigned int kernel = 0; 11514 int ret = -EINVAL; 11515 11516 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11517 if (!fstr) 11518 return -ENOMEM; 11519 11520 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11521 static const enum perf_addr_filter_action_t actions[] = { 11522 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11523 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11524 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11525 }; 11526 ret = -EINVAL; 11527 11528 if (!*start) 11529 continue; 11530 11531 /* filter definition begins */ 11532 if (state == IF_STATE_ACTION) { 11533 filter = perf_addr_filter_new(event, filters); 11534 if (!filter) 11535 goto fail; 11536 } 11537 11538 token = match_token(start, if_tokens, args); 11539 switch (token) { 11540 case IF_ACT_FILTER: 11541 case IF_ACT_START: 11542 case IF_ACT_STOP: 11543 if (state != IF_STATE_ACTION) 11544 goto fail; 11545 11546 filter->action = actions[token]; 11547 state = IF_STATE_SOURCE; 11548 break; 11549 11550 case IF_SRC_KERNELADDR: 11551 case IF_SRC_KERNEL: 11552 kernel = 1; 11553 fallthrough; 11554 11555 case IF_SRC_FILEADDR: 11556 case IF_SRC_FILE: 11557 if (state != IF_STATE_SOURCE) 11558 goto fail; 11559 11560 *args[0].to = 0; 11561 ret = kstrtoul(args[0].from, 0, &filter->offset); 11562 if (ret) 11563 goto fail; 11564 11565 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11566 *args[1].to = 0; 11567 ret = kstrtoul(args[1].from, 0, &filter->size); 11568 if (ret) 11569 goto fail; 11570 } 11571 11572 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11573 int fpos = token == IF_SRC_FILE ? 2 : 1; 11574 11575 kfree(filename); 11576 filename = match_strdup(&args[fpos]); 11577 if (!filename) { 11578 ret = -ENOMEM; 11579 goto fail; 11580 } 11581 } 11582 11583 state = IF_STATE_END; 11584 break; 11585 11586 default: 11587 goto fail; 11588 } 11589 11590 /* 11591 * Filter definition is fully parsed, validate and install it. 11592 * Make sure that it doesn't contradict itself or the event's 11593 * attribute. 11594 */ 11595 if (state == IF_STATE_END) { 11596 ret = -EINVAL; 11597 11598 /* 11599 * ACTION "filter" must have a non-zero length region 11600 * specified. 11601 */ 11602 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11603 !filter->size) 11604 goto fail; 11605 11606 if (!kernel) { 11607 if (!filename) 11608 goto fail; 11609 11610 /* 11611 * For now, we only support file-based filters 11612 * in per-task events; doing so for CPU-wide 11613 * events requires additional context switching 11614 * trickery, since same object code will be 11615 * mapped at different virtual addresses in 11616 * different processes. 11617 */ 11618 ret = -EOPNOTSUPP; 11619 if (!event->ctx->task) 11620 goto fail; 11621 11622 /* look up the path and grab its inode */ 11623 ret = kern_path(filename, LOOKUP_FOLLOW, 11624 &filter->path); 11625 if (ret) 11626 goto fail; 11627 11628 ret = -EINVAL; 11629 if (!filter->path.dentry || 11630 !S_ISREG(d_inode(filter->path.dentry) 11631 ->i_mode)) 11632 goto fail; 11633 11634 event->addr_filters.nr_file_filters++; 11635 } 11636 11637 /* ready to consume more filters */ 11638 kfree(filename); 11639 filename = NULL; 11640 state = IF_STATE_ACTION; 11641 filter = NULL; 11642 kernel = 0; 11643 } 11644 } 11645 11646 if (state != IF_STATE_ACTION) 11647 goto fail; 11648 11649 kfree(filename); 11650 kfree(orig); 11651 11652 return 0; 11653 11654 fail: 11655 kfree(filename); 11656 free_filters_list(filters); 11657 kfree(orig); 11658 11659 return ret; 11660 } 11661 11662 static int 11663 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11664 { 11665 LIST_HEAD(filters); 11666 int ret; 11667 11668 /* 11669 * Since this is called in perf_ioctl() path, we're already holding 11670 * ctx::mutex. 11671 */ 11672 lockdep_assert_held(&event->ctx->mutex); 11673 11674 if (WARN_ON_ONCE(event->parent)) 11675 return -EINVAL; 11676 11677 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11678 if (ret) 11679 goto fail_clear_files; 11680 11681 ret = event->pmu->addr_filters_validate(&filters); 11682 if (ret) 11683 goto fail_free_filters; 11684 11685 /* remove existing filters, if any */ 11686 perf_addr_filters_splice(event, &filters); 11687 11688 /* install new filters */ 11689 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11690 11691 return ret; 11692 11693 fail_free_filters: 11694 free_filters_list(&filters); 11695 11696 fail_clear_files: 11697 event->addr_filters.nr_file_filters = 0; 11698 11699 return ret; 11700 } 11701 11702 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11703 { 11704 int ret = -EINVAL; 11705 char *filter_str; 11706 11707 filter_str = strndup_user(arg, PAGE_SIZE); 11708 if (IS_ERR(filter_str)) 11709 return PTR_ERR(filter_str); 11710 11711 #ifdef CONFIG_EVENT_TRACING 11712 if (perf_event_is_tracing(event)) { 11713 struct perf_event_context *ctx = event->ctx; 11714 11715 /* 11716 * Beware, here be dragons!! 11717 * 11718 * the tracepoint muck will deadlock against ctx->mutex, but 11719 * the tracepoint stuff does not actually need it. So 11720 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11721 * already have a reference on ctx. 11722 * 11723 * This can result in event getting moved to a different ctx, 11724 * but that does not affect the tracepoint state. 11725 */ 11726 mutex_unlock(&ctx->mutex); 11727 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11728 mutex_lock(&ctx->mutex); 11729 } else 11730 #endif 11731 if (has_addr_filter(event)) 11732 ret = perf_event_set_addr_filter(event, filter_str); 11733 11734 kfree(filter_str); 11735 return ret; 11736 } 11737 11738 /* 11739 * hrtimer based swevent callback 11740 */ 11741 11742 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11743 { 11744 enum hrtimer_restart ret = HRTIMER_RESTART; 11745 struct perf_sample_data data; 11746 struct pt_regs *regs; 11747 struct perf_event *event; 11748 u64 period; 11749 11750 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11751 11752 if (event->state != PERF_EVENT_STATE_ACTIVE) 11753 return HRTIMER_NORESTART; 11754 11755 event->pmu->read(event); 11756 11757 perf_sample_data_init(&data, 0, event->hw.last_period); 11758 regs = get_irq_regs(); 11759 11760 if (regs && !perf_exclude_event(event, regs)) { 11761 if (!(event->attr.exclude_idle && is_idle_task(current))) 11762 if (__perf_event_overflow(event, 1, &data, regs)) 11763 ret = HRTIMER_NORESTART; 11764 } 11765 11766 period = max_t(u64, 10000, event->hw.sample_period); 11767 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11768 11769 return ret; 11770 } 11771 11772 static void perf_swevent_start_hrtimer(struct perf_event *event) 11773 { 11774 struct hw_perf_event *hwc = &event->hw; 11775 s64 period; 11776 11777 if (!is_sampling_event(event)) 11778 return; 11779 11780 period = local64_read(&hwc->period_left); 11781 if (period) { 11782 if (period < 0) 11783 period = 10000; 11784 11785 local64_set(&hwc->period_left, 0); 11786 } else { 11787 period = max_t(u64, 10000, hwc->sample_period); 11788 } 11789 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11790 HRTIMER_MODE_REL_PINNED_HARD); 11791 } 11792 11793 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11794 { 11795 struct hw_perf_event *hwc = &event->hw; 11796 11797 /* 11798 * The throttle can be triggered in the hrtimer handler. 11799 * The HRTIMER_NORESTART should be used to stop the timer, 11800 * rather than hrtimer_cancel(). See perf_swevent_hrtimer() 11801 */ 11802 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) { 11803 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11804 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11805 11806 hrtimer_cancel(&hwc->hrtimer); 11807 } 11808 } 11809 11810 static void perf_swevent_init_hrtimer(struct perf_event *event) 11811 { 11812 struct hw_perf_event *hwc = &event->hw; 11813 11814 if (!is_sampling_event(event)) 11815 return; 11816 11817 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11818 11819 /* 11820 * Since hrtimers have a fixed rate, we can do a static freq->period 11821 * mapping and avoid the whole period adjust feedback stuff. 11822 */ 11823 if (event->attr.freq) { 11824 long freq = event->attr.sample_freq; 11825 11826 event->attr.sample_period = NSEC_PER_SEC / freq; 11827 hwc->sample_period = event->attr.sample_period; 11828 local64_set(&hwc->period_left, hwc->sample_period); 11829 hwc->last_period = hwc->sample_period; 11830 event->attr.freq = 0; 11831 } 11832 } 11833 11834 /* 11835 * Software event: cpu wall time clock 11836 */ 11837 11838 static void cpu_clock_event_update(struct perf_event *event) 11839 { 11840 s64 prev; 11841 u64 now; 11842 11843 now = local_clock(); 11844 prev = local64_xchg(&event->hw.prev_count, now); 11845 local64_add(now - prev, &event->count); 11846 } 11847 11848 static void cpu_clock_event_start(struct perf_event *event, int flags) 11849 { 11850 local64_set(&event->hw.prev_count, local_clock()); 11851 perf_swevent_start_hrtimer(event); 11852 } 11853 11854 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11855 { 11856 perf_swevent_cancel_hrtimer(event); 11857 if (flags & PERF_EF_UPDATE) 11858 cpu_clock_event_update(event); 11859 } 11860 11861 static int cpu_clock_event_add(struct perf_event *event, int flags) 11862 { 11863 if (flags & PERF_EF_START) 11864 cpu_clock_event_start(event, flags); 11865 perf_event_update_userpage(event); 11866 11867 return 0; 11868 } 11869 11870 static void cpu_clock_event_del(struct perf_event *event, int flags) 11871 { 11872 cpu_clock_event_stop(event, flags); 11873 } 11874 11875 static void cpu_clock_event_read(struct perf_event *event) 11876 { 11877 cpu_clock_event_update(event); 11878 } 11879 11880 static int cpu_clock_event_init(struct perf_event *event) 11881 { 11882 if (event->attr.type != perf_cpu_clock.type) 11883 return -ENOENT; 11884 11885 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11886 return -ENOENT; 11887 11888 /* 11889 * no branch sampling for software events 11890 */ 11891 if (has_branch_stack(event)) 11892 return -EOPNOTSUPP; 11893 11894 perf_swevent_init_hrtimer(event); 11895 11896 return 0; 11897 } 11898 11899 static struct pmu perf_cpu_clock = { 11900 .task_ctx_nr = perf_sw_context, 11901 11902 .capabilities = PERF_PMU_CAP_NO_NMI, 11903 .dev = PMU_NULL_DEV, 11904 11905 .event_init = cpu_clock_event_init, 11906 .add = cpu_clock_event_add, 11907 .del = cpu_clock_event_del, 11908 .start = cpu_clock_event_start, 11909 .stop = cpu_clock_event_stop, 11910 .read = cpu_clock_event_read, 11911 }; 11912 11913 /* 11914 * Software event: task time clock 11915 */ 11916 11917 static void task_clock_event_update(struct perf_event *event, u64 now) 11918 { 11919 u64 prev; 11920 s64 delta; 11921 11922 prev = local64_xchg(&event->hw.prev_count, now); 11923 delta = now - prev; 11924 local64_add(delta, &event->count); 11925 } 11926 11927 static void task_clock_event_start(struct perf_event *event, int flags) 11928 { 11929 local64_set(&event->hw.prev_count, event->ctx->time); 11930 perf_swevent_start_hrtimer(event); 11931 } 11932 11933 static void task_clock_event_stop(struct perf_event *event, int flags) 11934 { 11935 perf_swevent_cancel_hrtimer(event); 11936 if (flags & PERF_EF_UPDATE) 11937 task_clock_event_update(event, event->ctx->time); 11938 } 11939 11940 static int task_clock_event_add(struct perf_event *event, int flags) 11941 { 11942 if (flags & PERF_EF_START) 11943 task_clock_event_start(event, flags); 11944 perf_event_update_userpage(event); 11945 11946 return 0; 11947 } 11948 11949 static void task_clock_event_del(struct perf_event *event, int flags) 11950 { 11951 task_clock_event_stop(event, PERF_EF_UPDATE); 11952 } 11953 11954 static void task_clock_event_read(struct perf_event *event) 11955 { 11956 u64 now = perf_clock(); 11957 u64 delta = now - event->ctx->timestamp; 11958 u64 time = event->ctx->time + delta; 11959 11960 task_clock_event_update(event, time); 11961 } 11962 11963 static int task_clock_event_init(struct perf_event *event) 11964 { 11965 if (event->attr.type != perf_task_clock.type) 11966 return -ENOENT; 11967 11968 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11969 return -ENOENT; 11970 11971 /* 11972 * no branch sampling for software events 11973 */ 11974 if (has_branch_stack(event)) 11975 return -EOPNOTSUPP; 11976 11977 perf_swevent_init_hrtimer(event); 11978 11979 return 0; 11980 } 11981 11982 static struct pmu perf_task_clock = { 11983 .task_ctx_nr = perf_sw_context, 11984 11985 .capabilities = PERF_PMU_CAP_NO_NMI, 11986 .dev = PMU_NULL_DEV, 11987 11988 .event_init = task_clock_event_init, 11989 .add = task_clock_event_add, 11990 .del = task_clock_event_del, 11991 .start = task_clock_event_start, 11992 .stop = task_clock_event_stop, 11993 .read = task_clock_event_read, 11994 }; 11995 11996 static void perf_pmu_nop_void(struct pmu *pmu) 11997 { 11998 } 11999 12000 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 12001 { 12002 } 12003 12004 static int perf_pmu_nop_int(struct pmu *pmu) 12005 { 12006 return 0; 12007 } 12008 12009 static int perf_event_nop_int(struct perf_event *event, u64 value) 12010 { 12011 return 0; 12012 } 12013 12014 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 12015 12016 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 12017 { 12018 __this_cpu_write(nop_txn_flags, flags); 12019 12020 if (flags & ~PERF_PMU_TXN_ADD) 12021 return; 12022 12023 perf_pmu_disable(pmu); 12024 } 12025 12026 static int perf_pmu_commit_txn(struct pmu *pmu) 12027 { 12028 unsigned int flags = __this_cpu_read(nop_txn_flags); 12029 12030 __this_cpu_write(nop_txn_flags, 0); 12031 12032 if (flags & ~PERF_PMU_TXN_ADD) 12033 return 0; 12034 12035 perf_pmu_enable(pmu); 12036 return 0; 12037 } 12038 12039 static void perf_pmu_cancel_txn(struct pmu *pmu) 12040 { 12041 unsigned int flags = __this_cpu_read(nop_txn_flags); 12042 12043 __this_cpu_write(nop_txn_flags, 0); 12044 12045 if (flags & ~PERF_PMU_TXN_ADD) 12046 return; 12047 12048 perf_pmu_enable(pmu); 12049 } 12050 12051 static int perf_event_idx_default(struct perf_event *event) 12052 { 12053 return 0; 12054 } 12055 12056 /* 12057 * Let userspace know that this PMU supports address range filtering: 12058 */ 12059 static ssize_t nr_addr_filters_show(struct device *dev, 12060 struct device_attribute *attr, 12061 char *page) 12062 { 12063 struct pmu *pmu = dev_get_drvdata(dev); 12064 12065 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); 12066 } 12067 DEVICE_ATTR_RO(nr_addr_filters); 12068 12069 static struct idr pmu_idr; 12070 12071 static ssize_t 12072 type_show(struct device *dev, struct device_attribute *attr, char *page) 12073 { 12074 struct pmu *pmu = dev_get_drvdata(dev); 12075 12076 return sysfs_emit(page, "%d\n", pmu->type); 12077 } 12078 static DEVICE_ATTR_RO(type); 12079 12080 static ssize_t 12081 perf_event_mux_interval_ms_show(struct device *dev, 12082 struct device_attribute *attr, 12083 char *page) 12084 { 12085 struct pmu *pmu = dev_get_drvdata(dev); 12086 12087 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); 12088 } 12089 12090 static DEFINE_MUTEX(mux_interval_mutex); 12091 12092 static ssize_t 12093 perf_event_mux_interval_ms_store(struct device *dev, 12094 struct device_attribute *attr, 12095 const char *buf, size_t count) 12096 { 12097 struct pmu *pmu = dev_get_drvdata(dev); 12098 int timer, cpu, ret; 12099 12100 ret = kstrtoint(buf, 0, &timer); 12101 if (ret) 12102 return ret; 12103 12104 if (timer < 1) 12105 return -EINVAL; 12106 12107 /* same value, noting to do */ 12108 if (timer == pmu->hrtimer_interval_ms) 12109 return count; 12110 12111 mutex_lock(&mux_interval_mutex); 12112 pmu->hrtimer_interval_ms = timer; 12113 12114 /* update all cpuctx for this PMU */ 12115 cpus_read_lock(); 12116 for_each_online_cpu(cpu) { 12117 struct perf_cpu_pmu_context *cpc; 12118 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 12120 12121 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 12122 } 12123 cpus_read_unlock(); 12124 mutex_unlock(&mux_interval_mutex); 12125 12126 return count; 12127 } 12128 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 12129 12130 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 12131 { 12132 switch (scope) { 12133 case PERF_PMU_SCOPE_CORE: 12134 return topology_sibling_cpumask(cpu); 12135 case PERF_PMU_SCOPE_DIE: 12136 return topology_die_cpumask(cpu); 12137 case PERF_PMU_SCOPE_CLUSTER: 12138 return topology_cluster_cpumask(cpu); 12139 case PERF_PMU_SCOPE_PKG: 12140 return topology_core_cpumask(cpu); 12141 case PERF_PMU_SCOPE_SYS_WIDE: 12142 return cpu_online_mask; 12143 } 12144 12145 return NULL; 12146 } 12147 12148 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 12149 { 12150 switch (scope) { 12151 case PERF_PMU_SCOPE_CORE: 12152 return perf_online_core_mask; 12153 case PERF_PMU_SCOPE_DIE: 12154 return perf_online_die_mask; 12155 case PERF_PMU_SCOPE_CLUSTER: 12156 return perf_online_cluster_mask; 12157 case PERF_PMU_SCOPE_PKG: 12158 return perf_online_pkg_mask; 12159 case PERF_PMU_SCOPE_SYS_WIDE: 12160 return perf_online_sys_mask; 12161 } 12162 12163 return NULL; 12164 } 12165 12166 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 12167 char *buf) 12168 { 12169 struct pmu *pmu = dev_get_drvdata(dev); 12170 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 12171 12172 if (mask) 12173 return cpumap_print_to_pagebuf(true, buf, mask); 12174 return 0; 12175 } 12176 12177 static DEVICE_ATTR_RO(cpumask); 12178 12179 static struct attribute *pmu_dev_attrs[] = { 12180 &dev_attr_type.attr, 12181 &dev_attr_perf_event_mux_interval_ms.attr, 12182 &dev_attr_nr_addr_filters.attr, 12183 &dev_attr_cpumask.attr, 12184 NULL, 12185 }; 12186 12187 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 12188 { 12189 struct device *dev = kobj_to_dev(kobj); 12190 struct pmu *pmu = dev_get_drvdata(dev); 12191 12192 if (n == 2 && !pmu->nr_addr_filters) 12193 return 0; 12194 12195 /* cpumask */ 12196 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 12197 return 0; 12198 12199 return a->mode; 12200 } 12201 12202 static struct attribute_group pmu_dev_attr_group = { 12203 .is_visible = pmu_dev_is_visible, 12204 .attrs = pmu_dev_attrs, 12205 }; 12206 12207 static const struct attribute_group *pmu_dev_groups[] = { 12208 &pmu_dev_attr_group, 12209 NULL, 12210 }; 12211 12212 static int pmu_bus_running; 12213 static struct bus_type pmu_bus = { 12214 .name = "event_source", 12215 .dev_groups = pmu_dev_groups, 12216 }; 12217 12218 static void pmu_dev_release(struct device *dev) 12219 { 12220 kfree(dev); 12221 } 12222 12223 static int pmu_dev_alloc(struct pmu *pmu) 12224 { 12225 int ret = -ENOMEM; 12226 12227 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 12228 if (!pmu->dev) 12229 goto out; 12230 12231 pmu->dev->groups = pmu->attr_groups; 12232 device_initialize(pmu->dev); 12233 12234 dev_set_drvdata(pmu->dev, pmu); 12235 pmu->dev->bus = &pmu_bus; 12236 pmu->dev->parent = pmu->parent; 12237 pmu->dev->release = pmu_dev_release; 12238 12239 ret = dev_set_name(pmu->dev, "%s", pmu->name); 12240 if (ret) 12241 goto free_dev; 12242 12243 ret = device_add(pmu->dev); 12244 if (ret) 12245 goto free_dev; 12246 12247 if (pmu->attr_update) { 12248 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 12249 if (ret) 12250 goto del_dev; 12251 } 12252 12253 out: 12254 return ret; 12255 12256 del_dev: 12257 device_del(pmu->dev); 12258 12259 free_dev: 12260 put_device(pmu->dev); 12261 pmu->dev = NULL; 12262 goto out; 12263 } 12264 12265 static struct lock_class_key cpuctx_mutex; 12266 static struct lock_class_key cpuctx_lock; 12267 12268 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) 12269 { 12270 void *tmp, *val = idr_find(idr, id); 12271 12272 if (val != old) 12273 return false; 12274 12275 tmp = idr_replace(idr, new, id); 12276 if (IS_ERR(tmp)) 12277 return false; 12278 12279 WARN_ON_ONCE(tmp != val); 12280 return true; 12281 } 12282 12283 static void perf_pmu_free(struct pmu *pmu) 12284 { 12285 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 12286 if (pmu->nr_addr_filters) 12287 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 12288 device_del(pmu->dev); 12289 put_device(pmu->dev); 12290 } 12291 12292 if (pmu->cpu_pmu_context) { 12293 int cpu; 12294 12295 for_each_possible_cpu(cpu) { 12296 struct perf_cpu_pmu_context *cpc; 12297 12298 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); 12299 if (!cpc) 12300 continue; 12301 if (cpc->epc.embedded) { 12302 /* refcount managed */ 12303 put_pmu_ctx(&cpc->epc); 12304 continue; 12305 } 12306 kfree(cpc); 12307 } 12308 free_percpu(pmu->cpu_pmu_context); 12309 } 12310 } 12311 12312 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) 12313 12314 int perf_pmu_register(struct pmu *_pmu, const char *name, int type) 12315 { 12316 int cpu, max = PERF_TYPE_MAX; 12317 12318 struct pmu *pmu __free(pmu_unregister) = _pmu; 12319 guard(mutex)(&pmus_lock); 12320 12321 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) 12322 return -EINVAL; 12323 12324 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, 12325 "Can not register a pmu with an invalid scope.\n")) 12326 return -EINVAL; 12327 12328 pmu->name = name; 12329 12330 if (type >= 0) 12331 max = type; 12332 12333 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); 12334 if (pmu_type.id < 0) 12335 return pmu_type.id; 12336 12337 WARN_ON(type >= 0 && pmu_type.id != type); 12338 12339 pmu->type = pmu_type.id; 12340 atomic_set(&pmu->exclusive_cnt, 0); 12341 12342 if (pmu_bus_running && !pmu->dev) { 12343 int ret = pmu_dev_alloc(pmu); 12344 if (ret) 12345 return ret; 12346 } 12347 12348 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); 12349 if (!pmu->cpu_pmu_context) 12350 return -ENOMEM; 12351 12352 for_each_possible_cpu(cpu) { 12353 struct perf_cpu_pmu_context *cpc = 12354 kmalloc_node(sizeof(struct perf_cpu_pmu_context), 12355 GFP_KERNEL | __GFP_ZERO, 12356 cpu_to_node(cpu)); 12357 12358 if (!cpc) 12359 return -ENOMEM; 12360 12361 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; 12362 __perf_init_event_pmu_context(&cpc->epc, pmu); 12363 __perf_mux_hrtimer_init(cpc, cpu); 12364 } 12365 12366 if (!pmu->start_txn) { 12367 if (pmu->pmu_enable) { 12368 /* 12369 * If we have pmu_enable/pmu_disable calls, install 12370 * transaction stubs that use that to try and batch 12371 * hardware accesses. 12372 */ 12373 pmu->start_txn = perf_pmu_start_txn; 12374 pmu->commit_txn = perf_pmu_commit_txn; 12375 pmu->cancel_txn = perf_pmu_cancel_txn; 12376 } else { 12377 pmu->start_txn = perf_pmu_nop_txn; 12378 pmu->commit_txn = perf_pmu_nop_int; 12379 pmu->cancel_txn = perf_pmu_nop_void; 12380 } 12381 } 12382 12383 if (!pmu->pmu_enable) { 12384 pmu->pmu_enable = perf_pmu_nop_void; 12385 pmu->pmu_disable = perf_pmu_nop_void; 12386 } 12387 12388 if (!pmu->check_period) 12389 pmu->check_period = perf_event_nop_int; 12390 12391 if (!pmu->event_idx) 12392 pmu->event_idx = perf_event_idx_default; 12393 12394 INIT_LIST_HEAD(&pmu->events); 12395 spin_lock_init(&pmu->events_lock); 12396 12397 /* 12398 * Now that the PMU is complete, make it visible to perf_try_init_event(). 12399 */ 12400 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) 12401 return -EINVAL; 12402 list_add_rcu(&pmu->entry, &pmus); 12403 12404 take_idr_id(pmu_type); 12405 _pmu = no_free_ptr(pmu); // let it rip 12406 return 0; 12407 } 12408 EXPORT_SYMBOL_GPL(perf_pmu_register); 12409 12410 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event, 12411 struct perf_event_context *ctx) 12412 { 12413 /* 12414 * De-schedule the event and mark it REVOKED. 12415 */ 12416 perf_event_exit_event(event, ctx, true); 12417 12418 /* 12419 * All _free_event() bits that rely on event->pmu: 12420 * 12421 * Notably, perf_mmap() relies on the ordering here. 12422 */ 12423 scoped_guard (mutex, &event->mmap_mutex) { 12424 WARN_ON_ONCE(pmu->event_unmapped); 12425 /* 12426 * Mostly an empty lock sequence, such that perf_mmap(), which 12427 * relies on mmap_mutex, is sure to observe the state change. 12428 */ 12429 } 12430 12431 perf_event_free_bpf_prog(event); 12432 perf_free_addr_filters(event); 12433 12434 if (event->destroy) { 12435 event->destroy(event); 12436 event->destroy = NULL; 12437 } 12438 12439 if (event->pmu_ctx) { 12440 put_pmu_ctx(event->pmu_ctx); 12441 event->pmu_ctx = NULL; 12442 } 12443 12444 exclusive_event_destroy(event); 12445 module_put(pmu->module); 12446 12447 event->pmu = NULL; /* force fault instead of UAF */ 12448 } 12449 12450 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event) 12451 { 12452 struct perf_event_context *ctx; 12453 12454 ctx = perf_event_ctx_lock(event); 12455 __pmu_detach_event(pmu, event, ctx); 12456 perf_event_ctx_unlock(event, ctx); 12457 12458 scoped_guard (spinlock, &pmu->events_lock) 12459 list_del(&event->pmu_list); 12460 } 12461 12462 static struct perf_event *pmu_get_event(struct pmu *pmu) 12463 { 12464 struct perf_event *event; 12465 12466 guard(spinlock)(&pmu->events_lock); 12467 list_for_each_entry(event, &pmu->events, pmu_list) { 12468 if (atomic_long_inc_not_zero(&event->refcount)) 12469 return event; 12470 } 12471 12472 return NULL; 12473 } 12474 12475 static bool pmu_empty(struct pmu *pmu) 12476 { 12477 guard(spinlock)(&pmu->events_lock); 12478 return list_empty(&pmu->events); 12479 } 12480 12481 static void pmu_detach_events(struct pmu *pmu) 12482 { 12483 struct perf_event *event; 12484 12485 for (;;) { 12486 event = pmu_get_event(pmu); 12487 if (!event) 12488 break; 12489 12490 pmu_detach_event(pmu, event); 12491 put_event(event); 12492 } 12493 12494 /* 12495 * wait for pending _free_event()s 12496 */ 12497 wait_var_event(pmu, pmu_empty(pmu)); 12498 } 12499 12500 int perf_pmu_unregister(struct pmu *pmu) 12501 { 12502 scoped_guard (mutex, &pmus_lock) { 12503 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL)) 12504 return -EINVAL; 12505 12506 list_del_rcu(&pmu->entry); 12507 } 12508 12509 /* 12510 * We dereference the pmu list under both SRCU and regular RCU, so 12511 * synchronize against both of those. 12512 * 12513 * Notably, the entirety of event creation, from perf_init_event() 12514 * (which will now fail, because of the above) until 12515 * perf_install_in_context() should be under SRCU such that 12516 * this synchronizes against event creation. This avoids trying to 12517 * detach events that are not fully formed. 12518 */ 12519 synchronize_srcu(&pmus_srcu); 12520 synchronize_rcu(); 12521 12522 if (pmu->event_unmapped && !pmu_empty(pmu)) { 12523 /* 12524 * Can't force remove events when pmu::event_unmapped() 12525 * is used in perf_mmap_close(). 12526 */ 12527 guard(mutex)(&pmus_lock); 12528 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu); 12529 list_add_rcu(&pmu->entry, &pmus); 12530 return -EBUSY; 12531 } 12532 12533 scoped_guard (mutex, &pmus_lock) 12534 idr_remove(&pmu_idr, pmu->type); 12535 12536 /* 12537 * PMU is removed from the pmus list, so no new events will 12538 * be created, now take care of the existing ones. 12539 */ 12540 pmu_detach_events(pmu); 12541 12542 /* 12543 * PMU is unused, make it go away. 12544 */ 12545 perf_pmu_free(pmu); 12546 return 0; 12547 } 12548 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 12549 12550 static inline bool has_extended_regs(struct perf_event *event) 12551 { 12552 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 12553 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 12554 } 12555 12556 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 12557 { 12558 struct perf_event_context *ctx = NULL; 12559 int ret; 12560 12561 if (!try_module_get(pmu->module)) 12562 return -ENODEV; 12563 12564 /* 12565 * A number of pmu->event_init() methods iterate the sibling_list to, 12566 * for example, validate if the group fits on the PMU. Therefore, 12567 * if this is a sibling event, acquire the ctx->mutex to protect 12568 * the sibling_list. 12569 */ 12570 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 12571 /* 12572 * This ctx->mutex can nest when we're called through 12573 * inheritance. See the perf_event_ctx_lock_nested() comment. 12574 */ 12575 ctx = perf_event_ctx_lock_nested(event->group_leader, 12576 SINGLE_DEPTH_NESTING); 12577 BUG_ON(!ctx); 12578 } 12579 12580 event->pmu = pmu; 12581 ret = pmu->event_init(event); 12582 12583 if (ctx) 12584 perf_event_ctx_unlock(event->group_leader, ctx); 12585 12586 if (ret) 12587 goto err_pmu; 12588 12589 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 12590 has_extended_regs(event)) { 12591 ret = -EOPNOTSUPP; 12592 goto err_destroy; 12593 } 12594 12595 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 12596 event_has_any_exclude_flag(event)) { 12597 ret = -EINVAL; 12598 goto err_destroy; 12599 } 12600 12601 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 12602 const struct cpumask *cpumask; 12603 struct cpumask *pmu_cpumask; 12604 int cpu; 12605 12606 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 12607 pmu_cpumask = perf_scope_cpumask(pmu->scope); 12608 12609 ret = -ENODEV; 12610 if (!pmu_cpumask || !cpumask) 12611 goto err_destroy; 12612 12613 cpu = cpumask_any_and(pmu_cpumask, cpumask); 12614 if (cpu >= nr_cpu_ids) 12615 goto err_destroy; 12616 12617 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 12618 } 12619 12620 return 0; 12621 12622 err_destroy: 12623 if (event->destroy) { 12624 event->destroy(event); 12625 event->destroy = NULL; 12626 } 12627 12628 err_pmu: 12629 event->pmu = NULL; 12630 module_put(pmu->module); 12631 return ret; 12632 } 12633 12634 static struct pmu *perf_init_event(struct perf_event *event) 12635 { 12636 bool extended_type = false; 12637 struct pmu *pmu; 12638 int type, ret; 12639 12640 guard(srcu)(&pmus_srcu); /* pmu idr/list access */ 12641 12642 /* 12643 * Save original type before calling pmu->event_init() since certain 12644 * pmus overwrites event->attr.type to forward event to another pmu. 12645 */ 12646 event->orig_type = event->attr.type; 12647 12648 /* Try parent's PMU first: */ 12649 if (event->parent && event->parent->pmu) { 12650 pmu = event->parent->pmu; 12651 ret = perf_try_init_event(pmu, event); 12652 if (!ret) 12653 return pmu; 12654 } 12655 12656 /* 12657 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12658 * are often aliases for PERF_TYPE_RAW. 12659 */ 12660 type = event->attr.type; 12661 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12662 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12663 if (!type) { 12664 type = PERF_TYPE_RAW; 12665 } else { 12666 extended_type = true; 12667 event->attr.config &= PERF_HW_EVENT_MASK; 12668 } 12669 } 12670 12671 again: 12672 scoped_guard (rcu) 12673 pmu = idr_find(&pmu_idr, type); 12674 if (pmu) { 12675 if (event->attr.type != type && type != PERF_TYPE_RAW && 12676 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12677 return ERR_PTR(-ENOENT); 12678 12679 ret = perf_try_init_event(pmu, event); 12680 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12681 type = event->attr.type; 12682 goto again; 12683 } 12684 12685 if (ret) 12686 return ERR_PTR(ret); 12687 12688 return pmu; 12689 } 12690 12691 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12692 ret = perf_try_init_event(pmu, event); 12693 if (!ret) 12694 return pmu; 12695 12696 if (ret != -ENOENT) 12697 return ERR_PTR(ret); 12698 } 12699 12700 return ERR_PTR(-ENOENT); 12701 } 12702 12703 static void attach_sb_event(struct perf_event *event) 12704 { 12705 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12706 12707 raw_spin_lock(&pel->lock); 12708 list_add_rcu(&event->sb_list, &pel->list); 12709 raw_spin_unlock(&pel->lock); 12710 } 12711 12712 /* 12713 * We keep a list of all !task (and therefore per-cpu) events 12714 * that need to receive side-band records. 12715 * 12716 * This avoids having to scan all the various PMU per-cpu contexts 12717 * looking for them. 12718 */ 12719 static void account_pmu_sb_event(struct perf_event *event) 12720 { 12721 if (is_sb_event(event)) 12722 attach_sb_event(event); 12723 } 12724 12725 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12726 static void account_freq_event_nohz(void) 12727 { 12728 #ifdef CONFIG_NO_HZ_FULL 12729 /* Lock so we don't race with concurrent unaccount */ 12730 spin_lock(&nr_freq_lock); 12731 if (atomic_inc_return(&nr_freq_events) == 1) 12732 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12733 spin_unlock(&nr_freq_lock); 12734 #endif 12735 } 12736 12737 static void account_freq_event(void) 12738 { 12739 if (tick_nohz_full_enabled()) 12740 account_freq_event_nohz(); 12741 else 12742 atomic_inc(&nr_freq_events); 12743 } 12744 12745 12746 static void account_event(struct perf_event *event) 12747 { 12748 bool inc = false; 12749 12750 if (event->parent) 12751 return; 12752 12753 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12754 inc = true; 12755 if (event->attr.mmap || event->attr.mmap_data) 12756 atomic_inc(&nr_mmap_events); 12757 if (event->attr.build_id) 12758 atomic_inc(&nr_build_id_events); 12759 if (event->attr.comm) 12760 atomic_inc(&nr_comm_events); 12761 if (event->attr.namespaces) 12762 atomic_inc(&nr_namespaces_events); 12763 if (event->attr.cgroup) 12764 atomic_inc(&nr_cgroup_events); 12765 if (event->attr.task) 12766 atomic_inc(&nr_task_events); 12767 if (event->attr.freq) 12768 account_freq_event(); 12769 if (event->attr.context_switch) { 12770 atomic_inc(&nr_switch_events); 12771 inc = true; 12772 } 12773 if (has_branch_stack(event)) 12774 inc = true; 12775 if (is_cgroup_event(event)) 12776 inc = true; 12777 if (event->attr.ksymbol) 12778 atomic_inc(&nr_ksymbol_events); 12779 if (event->attr.bpf_event) 12780 atomic_inc(&nr_bpf_events); 12781 if (event->attr.text_poke) 12782 atomic_inc(&nr_text_poke_events); 12783 12784 if (inc) { 12785 /* 12786 * We need the mutex here because static_branch_enable() 12787 * must complete *before* the perf_sched_count increment 12788 * becomes visible. 12789 */ 12790 if (atomic_inc_not_zero(&perf_sched_count)) 12791 goto enabled; 12792 12793 mutex_lock(&perf_sched_mutex); 12794 if (!atomic_read(&perf_sched_count)) { 12795 static_branch_enable(&perf_sched_events); 12796 /* 12797 * Guarantee that all CPUs observe they key change and 12798 * call the perf scheduling hooks before proceeding to 12799 * install events that need them. 12800 */ 12801 synchronize_rcu(); 12802 } 12803 /* 12804 * Now that we have waited for the sync_sched(), allow further 12805 * increments to by-pass the mutex. 12806 */ 12807 atomic_inc(&perf_sched_count); 12808 mutex_unlock(&perf_sched_mutex); 12809 } 12810 enabled: 12811 12812 account_pmu_sb_event(event); 12813 } 12814 12815 /* 12816 * Allocate and initialize an event structure 12817 */ 12818 static struct perf_event * 12819 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12820 struct task_struct *task, 12821 struct perf_event *group_leader, 12822 struct perf_event *parent_event, 12823 perf_overflow_handler_t overflow_handler, 12824 void *context, int cgroup_fd) 12825 { 12826 struct pmu *pmu; 12827 struct hw_perf_event *hwc; 12828 long err = -EINVAL; 12829 int node; 12830 12831 if ((unsigned)cpu >= nr_cpu_ids) { 12832 if (!task || cpu != -1) 12833 return ERR_PTR(-EINVAL); 12834 } 12835 if (attr->sigtrap && !task) { 12836 /* Requires a task: avoid signalling random tasks. */ 12837 return ERR_PTR(-EINVAL); 12838 } 12839 12840 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12841 struct perf_event *event __free(__free_event) = 12842 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); 12843 if (!event) 12844 return ERR_PTR(-ENOMEM); 12845 12846 /* 12847 * Single events are their own group leaders, with an 12848 * empty sibling list: 12849 */ 12850 if (!group_leader) 12851 group_leader = event; 12852 12853 mutex_init(&event->child_mutex); 12854 INIT_LIST_HEAD(&event->child_list); 12855 12856 INIT_LIST_HEAD(&event->event_entry); 12857 INIT_LIST_HEAD(&event->sibling_list); 12858 INIT_LIST_HEAD(&event->active_list); 12859 init_event_group(event); 12860 INIT_LIST_HEAD(&event->rb_entry); 12861 INIT_LIST_HEAD(&event->active_entry); 12862 INIT_LIST_HEAD(&event->addr_filters.list); 12863 INIT_HLIST_NODE(&event->hlist_entry); 12864 INIT_LIST_HEAD(&event->pmu_list); 12865 12866 12867 init_waitqueue_head(&event->waitq); 12868 init_irq_work(&event->pending_irq, perf_pending_irq); 12869 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12870 init_task_work(&event->pending_task, perf_pending_task); 12871 12872 mutex_init(&event->mmap_mutex); 12873 raw_spin_lock_init(&event->addr_filters.lock); 12874 12875 atomic_long_set(&event->refcount, 1); 12876 event->cpu = cpu; 12877 event->attr = *attr; 12878 event->group_leader = group_leader; 12879 event->pmu = NULL; 12880 event->oncpu = -1; 12881 12882 event->parent = parent_event; 12883 12884 event->ns = get_pid_ns(task_active_pid_ns(current)); 12885 event->id = atomic64_inc_return(&perf_event_id); 12886 12887 event->state = PERF_EVENT_STATE_INACTIVE; 12888 12889 if (parent_event) 12890 event->event_caps = parent_event->event_caps; 12891 12892 if (task) { 12893 event->attach_state = PERF_ATTACH_TASK; 12894 /* 12895 * XXX pmu::event_init needs to know what task to account to 12896 * and we cannot use the ctx information because we need the 12897 * pmu before we get a ctx. 12898 */ 12899 event->hw.target = get_task_struct(task); 12900 } 12901 12902 event->clock = &local_clock; 12903 if (parent_event) 12904 event->clock = parent_event->clock; 12905 12906 if (!overflow_handler && parent_event) { 12907 overflow_handler = parent_event->overflow_handler; 12908 context = parent_event->overflow_handler_context; 12909 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12910 if (parent_event->prog) { 12911 struct bpf_prog *prog = parent_event->prog; 12912 12913 bpf_prog_inc(prog); 12914 event->prog = prog; 12915 } 12916 #endif 12917 } 12918 12919 if (overflow_handler) { 12920 event->overflow_handler = overflow_handler; 12921 event->overflow_handler_context = context; 12922 } else if (is_write_backward(event)){ 12923 event->overflow_handler = perf_event_output_backward; 12924 event->overflow_handler_context = NULL; 12925 } else { 12926 event->overflow_handler = perf_event_output_forward; 12927 event->overflow_handler_context = NULL; 12928 } 12929 12930 perf_event__state_init(event); 12931 12932 pmu = NULL; 12933 12934 hwc = &event->hw; 12935 hwc->sample_period = attr->sample_period; 12936 if (is_event_in_freq_mode(event)) 12937 hwc->sample_period = 1; 12938 hwc->last_period = hwc->sample_period; 12939 12940 local64_set(&hwc->period_left, hwc->sample_period); 12941 12942 /* 12943 * We do not support PERF_SAMPLE_READ on inherited events unless 12944 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12945 * collect per-thread samples. 12946 * See perf_output_read(). 12947 */ 12948 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12949 return ERR_PTR(-EINVAL); 12950 12951 if (!has_branch_stack(event)) 12952 event->attr.branch_sample_type = 0; 12953 12954 pmu = perf_init_event(event); 12955 if (IS_ERR(pmu)) 12956 return (void*)pmu; 12957 12958 /* 12959 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). 12960 * The attach should be right after the perf_init_event(). 12961 * Otherwise, the __free_event() would mistakenly detach the non-exist 12962 * perf_ctx_data because of the other errors between them. 12963 */ 12964 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 12965 err = attach_perf_ctx_data(event); 12966 if (err) 12967 return ERR_PTR(err); 12968 } 12969 12970 /* 12971 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12972 * events (they don't make sense as the cgroup will be different 12973 * on other CPUs in the uncore mask). 12974 */ 12975 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) 12976 return ERR_PTR(-EINVAL); 12977 12978 if (event->attr.aux_output && 12979 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 12980 event->attr.aux_pause || event->attr.aux_resume)) 12981 return ERR_PTR(-EOPNOTSUPP); 12982 12983 if (event->attr.aux_pause && event->attr.aux_resume) 12984 return ERR_PTR(-EINVAL); 12985 12986 if (event->attr.aux_start_paused) { 12987 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 12988 return ERR_PTR(-EOPNOTSUPP); 12989 event->hw.aux_paused = 1; 12990 } 12991 12992 if (cgroup_fd != -1) { 12993 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12994 if (err) 12995 return ERR_PTR(err); 12996 } 12997 12998 err = exclusive_event_init(event); 12999 if (err) 13000 return ERR_PTR(err); 13001 13002 if (has_addr_filter(event)) { 13003 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 13004 sizeof(struct perf_addr_filter_range), 13005 GFP_KERNEL); 13006 if (!event->addr_filter_ranges) 13007 return ERR_PTR(-ENOMEM); 13008 13009 /* 13010 * Clone the parent's vma offsets: they are valid until exec() 13011 * even if the mm is not shared with the parent. 13012 */ 13013 if (event->parent) { 13014 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 13015 13016 raw_spin_lock_irq(&ifh->lock); 13017 memcpy(event->addr_filter_ranges, 13018 event->parent->addr_filter_ranges, 13019 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 13020 raw_spin_unlock_irq(&ifh->lock); 13021 } 13022 13023 /* force hw sync on the address filters */ 13024 event->addr_filters_gen = 1; 13025 } 13026 13027 if (!event->parent) { 13028 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 13029 err = get_callchain_buffers(attr->sample_max_stack); 13030 if (err) 13031 return ERR_PTR(err); 13032 event->attach_state |= PERF_ATTACH_CALLCHAIN; 13033 } 13034 } 13035 13036 err = security_perf_event_alloc(event); 13037 if (err) 13038 return ERR_PTR(err); 13039 13040 /* symmetric to unaccount_event() in _free_event() */ 13041 account_event(event); 13042 13043 /* 13044 * Event creation should be under SRCU, see perf_pmu_unregister(). 13045 */ 13046 lockdep_assert_held(&pmus_srcu); 13047 scoped_guard (spinlock, &pmu->events_lock) 13048 list_add(&event->pmu_list, &pmu->events); 13049 13050 return_ptr(event); 13051 } 13052 13053 static int perf_copy_attr(struct perf_event_attr __user *uattr, 13054 struct perf_event_attr *attr) 13055 { 13056 u32 size; 13057 int ret; 13058 13059 /* Zero the full structure, so that a short copy will be nice. */ 13060 memset(attr, 0, sizeof(*attr)); 13061 13062 ret = get_user(size, &uattr->size); 13063 if (ret) 13064 return ret; 13065 13066 /* ABI compatibility quirk: */ 13067 if (!size) 13068 size = PERF_ATTR_SIZE_VER0; 13069 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 13070 goto err_size; 13071 13072 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 13073 if (ret) { 13074 if (ret == -E2BIG) 13075 goto err_size; 13076 return ret; 13077 } 13078 13079 attr->size = size; 13080 13081 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 13082 return -EINVAL; 13083 13084 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 13085 return -EINVAL; 13086 13087 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 13088 return -EINVAL; 13089 13090 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 13091 u64 mask = attr->branch_sample_type; 13092 13093 /* only using defined bits */ 13094 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 13095 return -EINVAL; 13096 13097 /* at least one branch bit must be set */ 13098 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 13099 return -EINVAL; 13100 13101 /* propagate priv level, when not set for branch */ 13102 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 13103 13104 /* exclude_kernel checked on syscall entry */ 13105 if (!attr->exclude_kernel) 13106 mask |= PERF_SAMPLE_BRANCH_KERNEL; 13107 13108 if (!attr->exclude_user) 13109 mask |= PERF_SAMPLE_BRANCH_USER; 13110 13111 if (!attr->exclude_hv) 13112 mask |= PERF_SAMPLE_BRANCH_HV; 13113 /* 13114 * adjust user setting (for HW filter setup) 13115 */ 13116 attr->branch_sample_type = mask; 13117 } 13118 /* privileged levels capture (kernel, hv): check permissions */ 13119 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 13120 ret = perf_allow_kernel(); 13121 if (ret) 13122 return ret; 13123 } 13124 } 13125 13126 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 13127 ret = perf_reg_validate(attr->sample_regs_user); 13128 if (ret) 13129 return ret; 13130 } 13131 13132 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 13133 if (!arch_perf_have_user_stack_dump()) 13134 return -ENOSYS; 13135 13136 /* 13137 * We have __u32 type for the size, but so far 13138 * we can only use __u16 as maximum due to the 13139 * __u16 sample size limit. 13140 */ 13141 if (attr->sample_stack_user >= USHRT_MAX) 13142 return -EINVAL; 13143 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 13144 return -EINVAL; 13145 } 13146 13147 if (!attr->sample_max_stack) 13148 attr->sample_max_stack = sysctl_perf_event_max_stack; 13149 13150 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 13151 ret = perf_reg_validate(attr->sample_regs_intr); 13152 13153 #ifndef CONFIG_CGROUP_PERF 13154 if (attr->sample_type & PERF_SAMPLE_CGROUP) 13155 return -EINVAL; 13156 #endif 13157 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 13158 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 13159 return -EINVAL; 13160 13161 if (!attr->inherit && attr->inherit_thread) 13162 return -EINVAL; 13163 13164 if (attr->remove_on_exec && attr->enable_on_exec) 13165 return -EINVAL; 13166 13167 if (attr->sigtrap && !attr->remove_on_exec) 13168 return -EINVAL; 13169 13170 out: 13171 return ret; 13172 13173 err_size: 13174 put_user(sizeof(*attr), &uattr->size); 13175 ret = -E2BIG; 13176 goto out; 13177 } 13178 13179 static void mutex_lock_double(struct mutex *a, struct mutex *b) 13180 { 13181 if (b < a) 13182 swap(a, b); 13183 13184 mutex_lock(a); 13185 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 13186 } 13187 13188 static int 13189 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 13190 { 13191 struct perf_buffer *rb = NULL; 13192 int ret = -EINVAL; 13193 13194 if (!output_event) { 13195 mutex_lock(&event->mmap_mutex); 13196 goto set; 13197 } 13198 13199 /* don't allow circular references */ 13200 if (event == output_event) 13201 goto out; 13202 13203 /* 13204 * Don't allow cross-cpu buffers 13205 */ 13206 if (output_event->cpu != event->cpu) 13207 goto out; 13208 13209 /* 13210 * If its not a per-cpu rb, it must be the same task. 13211 */ 13212 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 13213 goto out; 13214 13215 /* 13216 * Mixing clocks in the same buffer is trouble you don't need. 13217 */ 13218 if (output_event->clock != event->clock) 13219 goto out; 13220 13221 /* 13222 * Either writing ring buffer from beginning or from end. 13223 * Mixing is not allowed. 13224 */ 13225 if (is_write_backward(output_event) != is_write_backward(event)) 13226 goto out; 13227 13228 /* 13229 * If both events generate aux data, they must be on the same PMU 13230 */ 13231 if (has_aux(event) && has_aux(output_event) && 13232 event->pmu != output_event->pmu) 13233 goto out; 13234 13235 /* 13236 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 13237 * output_event is already on rb->event_list, and the list iteration 13238 * restarts after every removal, it is guaranteed this new event is 13239 * observed *OR* if output_event is already removed, it's guaranteed we 13240 * observe !rb->mmap_count. 13241 */ 13242 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 13243 set: 13244 /* Can't redirect output if we've got an active mmap() */ 13245 if (atomic_read(&event->mmap_count)) 13246 goto unlock; 13247 13248 if (output_event) { 13249 if (output_event->state <= PERF_EVENT_STATE_REVOKED) 13250 goto unlock; 13251 13252 /* get the rb we want to redirect to */ 13253 rb = ring_buffer_get(output_event); 13254 if (!rb) 13255 goto unlock; 13256 13257 /* did we race against perf_mmap_close() */ 13258 if (!atomic_read(&rb->mmap_count)) { 13259 ring_buffer_put(rb); 13260 goto unlock; 13261 } 13262 } 13263 13264 ring_buffer_attach(event, rb); 13265 13266 ret = 0; 13267 unlock: 13268 mutex_unlock(&event->mmap_mutex); 13269 if (output_event) 13270 mutex_unlock(&output_event->mmap_mutex); 13271 13272 out: 13273 return ret; 13274 } 13275 13276 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 13277 { 13278 bool nmi_safe = false; 13279 13280 switch (clk_id) { 13281 case CLOCK_MONOTONIC: 13282 event->clock = &ktime_get_mono_fast_ns; 13283 nmi_safe = true; 13284 break; 13285 13286 case CLOCK_MONOTONIC_RAW: 13287 event->clock = &ktime_get_raw_fast_ns; 13288 nmi_safe = true; 13289 break; 13290 13291 case CLOCK_REALTIME: 13292 event->clock = &ktime_get_real_ns; 13293 break; 13294 13295 case CLOCK_BOOTTIME: 13296 event->clock = &ktime_get_boottime_ns; 13297 break; 13298 13299 case CLOCK_TAI: 13300 event->clock = &ktime_get_clocktai_ns; 13301 break; 13302 13303 default: 13304 return -EINVAL; 13305 } 13306 13307 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 13308 return -EINVAL; 13309 13310 return 0; 13311 } 13312 13313 static bool 13314 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 13315 { 13316 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 13317 bool is_capable = perfmon_capable(); 13318 13319 if (attr->sigtrap) { 13320 /* 13321 * perf_event_attr::sigtrap sends signals to the other task. 13322 * Require the current task to also have CAP_KILL. 13323 */ 13324 rcu_read_lock(); 13325 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 13326 rcu_read_unlock(); 13327 13328 /* 13329 * If the required capabilities aren't available, checks for 13330 * ptrace permissions: upgrade to ATTACH, since sending signals 13331 * can effectively change the target task. 13332 */ 13333 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 13334 } 13335 13336 /* 13337 * Preserve ptrace permission check for backwards compatibility. The 13338 * ptrace check also includes checks that the current task and other 13339 * task have matching uids, and is therefore not done here explicitly. 13340 */ 13341 return is_capable || ptrace_may_access(task, ptrace_mode); 13342 } 13343 13344 /** 13345 * sys_perf_event_open - open a performance event, associate it to a task/cpu 13346 * 13347 * @attr_uptr: event_id type attributes for monitoring/sampling 13348 * @pid: target pid 13349 * @cpu: target cpu 13350 * @group_fd: group leader event fd 13351 * @flags: perf event open flags 13352 */ 13353 SYSCALL_DEFINE5(perf_event_open, 13354 struct perf_event_attr __user *, attr_uptr, 13355 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 13356 { 13357 struct perf_event *group_leader = NULL, *output_event = NULL; 13358 struct perf_event_pmu_context *pmu_ctx; 13359 struct perf_event *event, *sibling; 13360 struct perf_event_attr attr; 13361 struct perf_event_context *ctx; 13362 struct file *event_file = NULL; 13363 struct task_struct *task = NULL; 13364 struct pmu *pmu; 13365 int event_fd; 13366 int move_group = 0; 13367 int err; 13368 int f_flags = O_RDWR; 13369 int cgroup_fd = -1; 13370 13371 /* for future expandability... */ 13372 if (flags & ~PERF_FLAG_ALL) 13373 return -EINVAL; 13374 13375 err = perf_copy_attr(attr_uptr, &attr); 13376 if (err) 13377 return err; 13378 13379 /* Do we allow access to perf_event_open(2) ? */ 13380 err = security_perf_event_open(PERF_SECURITY_OPEN); 13381 if (err) 13382 return err; 13383 13384 if (!attr.exclude_kernel) { 13385 err = perf_allow_kernel(); 13386 if (err) 13387 return err; 13388 } 13389 13390 if (attr.namespaces) { 13391 if (!perfmon_capable()) 13392 return -EACCES; 13393 } 13394 13395 if (attr.freq) { 13396 if (attr.sample_freq > sysctl_perf_event_sample_rate) 13397 return -EINVAL; 13398 } else { 13399 if (attr.sample_period & (1ULL << 63)) 13400 return -EINVAL; 13401 } 13402 13403 /* Only privileged users can get physical addresses */ 13404 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 13405 err = perf_allow_kernel(); 13406 if (err) 13407 return err; 13408 } 13409 13410 /* REGS_INTR can leak data, lockdown must prevent this */ 13411 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 13412 err = security_locked_down(LOCKDOWN_PERF); 13413 if (err) 13414 return err; 13415 } 13416 13417 /* 13418 * In cgroup mode, the pid argument is used to pass the fd 13419 * opened to the cgroup directory in cgroupfs. The cpu argument 13420 * designates the cpu on which to monitor threads from that 13421 * cgroup. 13422 */ 13423 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 13424 return -EINVAL; 13425 13426 if (flags & PERF_FLAG_FD_CLOEXEC) 13427 f_flags |= O_CLOEXEC; 13428 13429 event_fd = get_unused_fd_flags(f_flags); 13430 if (event_fd < 0) 13431 return event_fd; 13432 13433 /* 13434 * Event creation should be under SRCU, see perf_pmu_unregister(). 13435 */ 13436 guard(srcu)(&pmus_srcu); 13437 13438 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 13439 if (group_fd != -1) { 13440 if (!is_perf_file(group)) { 13441 err = -EBADF; 13442 goto err_fd; 13443 } 13444 group_leader = fd_file(group)->private_data; 13445 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) { 13446 err = -ENODEV; 13447 goto err_fd; 13448 } 13449 if (flags & PERF_FLAG_FD_OUTPUT) 13450 output_event = group_leader; 13451 if (flags & PERF_FLAG_FD_NO_GROUP) 13452 group_leader = NULL; 13453 } 13454 13455 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 13456 task = find_lively_task_by_vpid(pid); 13457 if (IS_ERR(task)) { 13458 err = PTR_ERR(task); 13459 goto err_fd; 13460 } 13461 } 13462 13463 if (task && group_leader && 13464 group_leader->attr.inherit != attr.inherit) { 13465 err = -EINVAL; 13466 goto err_task; 13467 } 13468 13469 if (flags & PERF_FLAG_PID_CGROUP) 13470 cgroup_fd = pid; 13471 13472 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 13473 NULL, NULL, cgroup_fd); 13474 if (IS_ERR(event)) { 13475 err = PTR_ERR(event); 13476 goto err_task; 13477 } 13478 13479 if (is_sampling_event(event)) { 13480 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 13481 err = -EOPNOTSUPP; 13482 goto err_alloc; 13483 } 13484 } 13485 13486 /* 13487 * Special case software events and allow them to be part of 13488 * any hardware group. 13489 */ 13490 pmu = event->pmu; 13491 13492 if (attr.use_clockid) { 13493 err = perf_event_set_clock(event, attr.clockid); 13494 if (err) 13495 goto err_alloc; 13496 } 13497 13498 if (pmu->task_ctx_nr == perf_sw_context) 13499 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13500 13501 if (task) { 13502 err = down_read_interruptible(&task->signal->exec_update_lock); 13503 if (err) 13504 goto err_alloc; 13505 13506 /* 13507 * We must hold exec_update_lock across this and any potential 13508 * perf_install_in_context() call for this new event to 13509 * serialize against exec() altering our credentials (and the 13510 * perf_event_exit_task() that could imply). 13511 */ 13512 err = -EACCES; 13513 if (!perf_check_permission(&attr, task)) 13514 goto err_cred; 13515 } 13516 13517 /* 13518 * Get the target context (task or percpu): 13519 */ 13520 ctx = find_get_context(task, event); 13521 if (IS_ERR(ctx)) { 13522 err = PTR_ERR(ctx); 13523 goto err_cred; 13524 } 13525 13526 mutex_lock(&ctx->mutex); 13527 13528 if (ctx->task == TASK_TOMBSTONE) { 13529 err = -ESRCH; 13530 goto err_locked; 13531 } 13532 13533 if (!task) { 13534 /* 13535 * Check if the @cpu we're creating an event for is online. 13536 * 13537 * We use the perf_cpu_context::ctx::mutex to serialize against 13538 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13539 */ 13540 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 13541 13542 if (!cpuctx->online) { 13543 err = -ENODEV; 13544 goto err_locked; 13545 } 13546 } 13547 13548 if (group_leader) { 13549 err = -EINVAL; 13550 13551 /* 13552 * Do not allow a recursive hierarchy (this new sibling 13553 * becoming part of another group-sibling): 13554 */ 13555 if (group_leader->group_leader != group_leader) 13556 goto err_locked; 13557 13558 /* All events in a group should have the same clock */ 13559 if (group_leader->clock != event->clock) 13560 goto err_locked; 13561 13562 /* 13563 * Make sure we're both events for the same CPU; 13564 * grouping events for different CPUs is broken; since 13565 * you can never concurrently schedule them anyhow. 13566 */ 13567 if (group_leader->cpu != event->cpu) 13568 goto err_locked; 13569 13570 /* 13571 * Make sure we're both on the same context; either task or cpu. 13572 */ 13573 if (group_leader->ctx != ctx) 13574 goto err_locked; 13575 13576 /* 13577 * Only a group leader can be exclusive or pinned 13578 */ 13579 if (attr.exclusive || attr.pinned) 13580 goto err_locked; 13581 13582 if (is_software_event(event) && 13583 !in_software_context(group_leader)) { 13584 /* 13585 * If the event is a sw event, but the group_leader 13586 * is on hw context. 13587 * 13588 * Allow the addition of software events to hw 13589 * groups, this is safe because software events 13590 * never fail to schedule. 13591 * 13592 * Note the comment that goes with struct 13593 * perf_event_pmu_context. 13594 */ 13595 pmu = group_leader->pmu_ctx->pmu; 13596 } else if (!is_software_event(event)) { 13597 if (is_software_event(group_leader) && 13598 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 13599 /* 13600 * In case the group is a pure software group, and we 13601 * try to add a hardware event, move the whole group to 13602 * the hardware context. 13603 */ 13604 move_group = 1; 13605 } 13606 13607 /* Don't allow group of multiple hw events from different pmus */ 13608 if (!in_software_context(group_leader) && 13609 group_leader->pmu_ctx->pmu != pmu) 13610 goto err_locked; 13611 } 13612 } 13613 13614 /* 13615 * Now that we're certain of the pmu; find the pmu_ctx. 13616 */ 13617 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13618 if (IS_ERR(pmu_ctx)) { 13619 err = PTR_ERR(pmu_ctx); 13620 goto err_locked; 13621 } 13622 event->pmu_ctx = pmu_ctx; 13623 13624 if (output_event) { 13625 err = perf_event_set_output(event, output_event); 13626 if (err) 13627 goto err_context; 13628 } 13629 13630 if (!perf_event_validate_size(event)) { 13631 err = -E2BIG; 13632 goto err_context; 13633 } 13634 13635 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 13636 err = -EINVAL; 13637 goto err_context; 13638 } 13639 13640 /* 13641 * Must be under the same ctx::mutex as perf_install_in_context(), 13642 * because we need to serialize with concurrent event creation. 13643 */ 13644 if (!exclusive_event_installable(event, ctx)) { 13645 err = -EBUSY; 13646 goto err_context; 13647 } 13648 13649 WARN_ON_ONCE(ctx->parent_ctx); 13650 13651 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13652 if (IS_ERR(event_file)) { 13653 err = PTR_ERR(event_file); 13654 event_file = NULL; 13655 goto err_context; 13656 } 13657 13658 /* 13659 * This is the point on no return; we cannot fail hereafter. This is 13660 * where we start modifying current state. 13661 */ 13662 13663 if (move_group) { 13664 perf_remove_from_context(group_leader, 0); 13665 put_pmu_ctx(group_leader->pmu_ctx); 13666 13667 for_each_sibling_event(sibling, group_leader) { 13668 perf_remove_from_context(sibling, 0); 13669 put_pmu_ctx(sibling->pmu_ctx); 13670 } 13671 13672 /* 13673 * Install the group siblings before the group leader. 13674 * 13675 * Because a group leader will try and install the entire group 13676 * (through the sibling list, which is still in-tact), we can 13677 * end up with siblings installed in the wrong context. 13678 * 13679 * By installing siblings first we NO-OP because they're not 13680 * reachable through the group lists. 13681 */ 13682 for_each_sibling_event(sibling, group_leader) { 13683 sibling->pmu_ctx = pmu_ctx; 13684 get_pmu_ctx(pmu_ctx); 13685 perf_event__state_init(sibling); 13686 perf_install_in_context(ctx, sibling, sibling->cpu); 13687 } 13688 13689 /* 13690 * Removing from the context ends up with disabled 13691 * event. What we want here is event in the initial 13692 * startup state, ready to be add into new context. 13693 */ 13694 group_leader->pmu_ctx = pmu_ctx; 13695 get_pmu_ctx(pmu_ctx); 13696 perf_event__state_init(group_leader); 13697 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13698 } 13699 13700 /* 13701 * Precalculate sample_data sizes; do while holding ctx::mutex such 13702 * that we're serialized against further additions and before 13703 * perf_install_in_context() which is the point the event is active and 13704 * can use these values. 13705 */ 13706 perf_event__header_size(event); 13707 perf_event__id_header_size(event); 13708 13709 event->owner = current; 13710 13711 perf_install_in_context(ctx, event, event->cpu); 13712 perf_unpin_context(ctx); 13713 13714 mutex_unlock(&ctx->mutex); 13715 13716 if (task) { 13717 up_read(&task->signal->exec_update_lock); 13718 put_task_struct(task); 13719 } 13720 13721 mutex_lock(¤t->perf_event_mutex); 13722 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13723 mutex_unlock(¤t->perf_event_mutex); 13724 13725 /* 13726 * File reference in group guarantees that group_leader has been 13727 * kept alive until we place the new event on the sibling_list. 13728 * This ensures destruction of the group leader will find 13729 * the pointer to itself in perf_group_detach(). 13730 */ 13731 fd_install(event_fd, event_file); 13732 return event_fd; 13733 13734 err_context: 13735 put_pmu_ctx(event->pmu_ctx); 13736 event->pmu_ctx = NULL; /* _free_event() */ 13737 err_locked: 13738 mutex_unlock(&ctx->mutex); 13739 perf_unpin_context(ctx); 13740 put_ctx(ctx); 13741 err_cred: 13742 if (task) 13743 up_read(&task->signal->exec_update_lock); 13744 err_alloc: 13745 put_event(event); 13746 err_task: 13747 if (task) 13748 put_task_struct(task); 13749 err_fd: 13750 put_unused_fd(event_fd); 13751 return err; 13752 } 13753 13754 /** 13755 * perf_event_create_kernel_counter 13756 * 13757 * @attr: attributes of the counter to create 13758 * @cpu: cpu in which the counter is bound 13759 * @task: task to profile (NULL for percpu) 13760 * @overflow_handler: callback to trigger when we hit the event 13761 * @context: context data could be used in overflow_handler callback 13762 */ 13763 struct perf_event * 13764 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13765 struct task_struct *task, 13766 perf_overflow_handler_t overflow_handler, 13767 void *context) 13768 { 13769 struct perf_event_pmu_context *pmu_ctx; 13770 struct perf_event_context *ctx; 13771 struct perf_event *event; 13772 struct pmu *pmu; 13773 int err; 13774 13775 /* 13776 * Grouping is not supported for kernel events, neither is 'AUX', 13777 * make sure the caller's intentions are adjusted. 13778 */ 13779 if (attr->aux_output || attr->aux_action) 13780 return ERR_PTR(-EINVAL); 13781 13782 /* 13783 * Event creation should be under SRCU, see perf_pmu_unregister(). 13784 */ 13785 guard(srcu)(&pmus_srcu); 13786 13787 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13788 overflow_handler, context, -1); 13789 if (IS_ERR(event)) { 13790 err = PTR_ERR(event); 13791 goto err; 13792 } 13793 13794 /* Mark owner so we could distinguish it from user events. */ 13795 event->owner = TASK_TOMBSTONE; 13796 pmu = event->pmu; 13797 13798 if (pmu->task_ctx_nr == perf_sw_context) 13799 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13800 13801 /* 13802 * Get the target context (task or percpu): 13803 */ 13804 ctx = find_get_context(task, event); 13805 if (IS_ERR(ctx)) { 13806 err = PTR_ERR(ctx); 13807 goto err_alloc; 13808 } 13809 13810 WARN_ON_ONCE(ctx->parent_ctx); 13811 mutex_lock(&ctx->mutex); 13812 if (ctx->task == TASK_TOMBSTONE) { 13813 err = -ESRCH; 13814 goto err_unlock; 13815 } 13816 13817 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13818 if (IS_ERR(pmu_ctx)) { 13819 err = PTR_ERR(pmu_ctx); 13820 goto err_unlock; 13821 } 13822 event->pmu_ctx = pmu_ctx; 13823 13824 if (!task) { 13825 /* 13826 * Check if the @cpu we're creating an event for is online. 13827 * 13828 * We use the perf_cpu_context::ctx::mutex to serialize against 13829 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13830 */ 13831 struct perf_cpu_context *cpuctx = 13832 container_of(ctx, struct perf_cpu_context, ctx); 13833 if (!cpuctx->online) { 13834 err = -ENODEV; 13835 goto err_pmu_ctx; 13836 } 13837 } 13838 13839 if (!exclusive_event_installable(event, ctx)) { 13840 err = -EBUSY; 13841 goto err_pmu_ctx; 13842 } 13843 13844 perf_install_in_context(ctx, event, event->cpu); 13845 perf_unpin_context(ctx); 13846 mutex_unlock(&ctx->mutex); 13847 13848 return event; 13849 13850 err_pmu_ctx: 13851 put_pmu_ctx(pmu_ctx); 13852 event->pmu_ctx = NULL; /* _free_event() */ 13853 err_unlock: 13854 mutex_unlock(&ctx->mutex); 13855 perf_unpin_context(ctx); 13856 put_ctx(ctx); 13857 err_alloc: 13858 put_event(event); 13859 err: 13860 return ERR_PTR(err); 13861 } 13862 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13863 13864 static void __perf_pmu_remove(struct perf_event_context *ctx, 13865 int cpu, struct pmu *pmu, 13866 struct perf_event_groups *groups, 13867 struct list_head *events) 13868 { 13869 struct perf_event *event, *sibling; 13870 13871 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13872 perf_remove_from_context(event, 0); 13873 put_pmu_ctx(event->pmu_ctx); 13874 list_add(&event->migrate_entry, events); 13875 13876 for_each_sibling_event(sibling, event) { 13877 perf_remove_from_context(sibling, 0); 13878 put_pmu_ctx(sibling->pmu_ctx); 13879 list_add(&sibling->migrate_entry, events); 13880 } 13881 } 13882 } 13883 13884 static void __perf_pmu_install_event(struct pmu *pmu, 13885 struct perf_event_context *ctx, 13886 int cpu, struct perf_event *event) 13887 { 13888 struct perf_event_pmu_context *epc; 13889 struct perf_event_context *old_ctx = event->ctx; 13890 13891 get_ctx(ctx); /* normally find_get_context() */ 13892 13893 event->cpu = cpu; 13894 epc = find_get_pmu_context(pmu, ctx, event); 13895 event->pmu_ctx = epc; 13896 13897 if (event->state >= PERF_EVENT_STATE_OFF) 13898 event->state = PERF_EVENT_STATE_INACTIVE; 13899 perf_install_in_context(ctx, event, cpu); 13900 13901 /* 13902 * Now that event->ctx is updated and visible, put the old ctx. 13903 */ 13904 put_ctx(old_ctx); 13905 } 13906 13907 static void __perf_pmu_install(struct perf_event_context *ctx, 13908 int cpu, struct pmu *pmu, struct list_head *events) 13909 { 13910 struct perf_event *event, *tmp; 13911 13912 /* 13913 * Re-instate events in 2 passes. 13914 * 13915 * Skip over group leaders and only install siblings on this first 13916 * pass, siblings will not get enabled without a leader, however a 13917 * leader will enable its siblings, even if those are still on the old 13918 * context. 13919 */ 13920 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13921 if (event->group_leader == event) 13922 continue; 13923 13924 list_del(&event->migrate_entry); 13925 __perf_pmu_install_event(pmu, ctx, cpu, event); 13926 } 13927 13928 /* 13929 * Once all the siblings are setup properly, install the group leaders 13930 * to make it go. 13931 */ 13932 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13933 list_del(&event->migrate_entry); 13934 __perf_pmu_install_event(pmu, ctx, cpu, event); 13935 } 13936 } 13937 13938 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13939 { 13940 struct perf_event_context *src_ctx, *dst_ctx; 13941 LIST_HEAD(events); 13942 13943 /* 13944 * Since per-cpu context is persistent, no need to grab an extra 13945 * reference. 13946 */ 13947 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13948 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13949 13950 /* 13951 * See perf_event_ctx_lock() for comments on the details 13952 * of swizzling perf_event::ctx. 13953 */ 13954 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13955 13956 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13957 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13958 13959 if (!list_empty(&events)) { 13960 /* 13961 * Wait for the events to quiesce before re-instating them. 13962 */ 13963 synchronize_rcu(); 13964 13965 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13966 } 13967 13968 mutex_unlock(&dst_ctx->mutex); 13969 mutex_unlock(&src_ctx->mutex); 13970 } 13971 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13972 13973 static void sync_child_event(struct perf_event *child_event) 13974 { 13975 struct perf_event *parent_event = child_event->parent; 13976 u64 child_val; 13977 13978 if (child_event->attr.inherit_stat) { 13979 struct task_struct *task = child_event->ctx->task; 13980 13981 if (task && task != TASK_TOMBSTONE) 13982 perf_event_read_event(child_event, task); 13983 } 13984 13985 child_val = perf_event_count(child_event, false); 13986 13987 /* 13988 * Add back the child's count to the parent's count: 13989 */ 13990 atomic64_add(child_val, &parent_event->child_count); 13991 atomic64_add(child_event->total_time_enabled, 13992 &parent_event->child_total_time_enabled); 13993 atomic64_add(child_event->total_time_running, 13994 &parent_event->child_total_time_running); 13995 } 13996 13997 static void 13998 perf_event_exit_event(struct perf_event *event, 13999 struct perf_event_context *ctx, bool revoke) 14000 { 14001 struct perf_event *parent_event = event->parent; 14002 unsigned long detach_flags = DETACH_EXIT; 14003 unsigned int attach_state; 14004 14005 if (parent_event) { 14006 /* 14007 * Do not destroy the 'original' grouping; because of the 14008 * context switch optimization the original events could've 14009 * ended up in a random child task. 14010 * 14011 * If we were to destroy the original group, all group related 14012 * operations would cease to function properly after this 14013 * random child dies. 14014 * 14015 * Do destroy all inherited groups, we don't care about those 14016 * and being thorough is better. 14017 */ 14018 detach_flags |= DETACH_GROUP | DETACH_CHILD; 14019 mutex_lock(&parent_event->child_mutex); 14020 /* PERF_ATTACH_ITRACE might be set concurrently */ 14021 attach_state = READ_ONCE(event->attach_state); 14022 } 14023 14024 if (revoke) 14025 detach_flags |= DETACH_GROUP | DETACH_REVOKE; 14026 14027 perf_remove_from_context(event, detach_flags); 14028 /* 14029 * Child events can be freed. 14030 */ 14031 if (parent_event) { 14032 mutex_unlock(&parent_event->child_mutex); 14033 14034 /* 14035 * Match the refcount initialization. Make sure it doesn't happen 14036 * twice if pmu_detach_event() calls it on an already exited task. 14037 */ 14038 if (attach_state & PERF_ATTACH_CHILD) { 14039 /* 14040 * Kick perf_poll() for is_event_hup(); 14041 */ 14042 perf_event_wakeup(parent_event); 14043 /* 14044 * pmu_detach_event() will have an extra refcount. 14045 * perf_pending_task() might have one too. 14046 */ 14047 put_event(event); 14048 } 14049 14050 return; 14051 } 14052 14053 /* 14054 * Parent events are governed by their filedesc, retain them. 14055 */ 14056 perf_event_wakeup(event); 14057 } 14058 14059 static void perf_event_exit_task_context(struct task_struct *task, bool exit) 14060 { 14061 struct perf_event_context *ctx, *clone_ctx = NULL; 14062 struct perf_event *child_event, *next; 14063 14064 ctx = perf_pin_task_context(task); 14065 if (!ctx) 14066 return; 14067 14068 /* 14069 * In order to reduce the amount of tricky in ctx tear-down, we hold 14070 * ctx::mutex over the entire thing. This serializes against almost 14071 * everything that wants to access the ctx. 14072 * 14073 * The exception is sys_perf_event_open() / 14074 * perf_event_create_kernel_count() which does find_get_context() 14075 * without ctx::mutex (it cannot because of the move_group double mutex 14076 * lock thing). See the comments in perf_install_in_context(). 14077 */ 14078 mutex_lock(&ctx->mutex); 14079 14080 /* 14081 * In a single ctx::lock section, de-schedule the events and detach the 14082 * context from the task such that we cannot ever get it scheduled back 14083 * in. 14084 */ 14085 raw_spin_lock_irq(&ctx->lock); 14086 if (exit) 14087 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 14088 14089 /* 14090 * Now that the context is inactive, destroy the task <-> ctx relation 14091 * and mark the context dead. 14092 */ 14093 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 14094 put_ctx(ctx); /* cannot be last */ 14095 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 14096 put_task_struct(task); /* cannot be last */ 14097 14098 clone_ctx = unclone_ctx(ctx); 14099 raw_spin_unlock_irq(&ctx->lock); 14100 14101 if (clone_ctx) 14102 put_ctx(clone_ctx); 14103 14104 /* 14105 * Report the task dead after unscheduling the events so that we 14106 * won't get any samples after PERF_RECORD_EXIT. We can however still 14107 * get a few PERF_RECORD_READ events. 14108 */ 14109 if (exit) 14110 perf_event_task(task, ctx, 0); 14111 14112 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry) 14113 perf_event_exit_event(child_event, ctx, false); 14114 14115 mutex_unlock(&ctx->mutex); 14116 14117 if (!exit) { 14118 /* 14119 * perf_event_release_kernel() could still have a reference on 14120 * this context. In that case we must wait for these events to 14121 * have been freed (in particular all their references to this 14122 * task must've been dropped). 14123 * 14124 * Without this copy_process() will unconditionally free this 14125 * task (irrespective of its reference count) and 14126 * _free_event()'s put_task_struct(event->hw.target) will be a 14127 * use-after-free. 14128 * 14129 * Wait for all events to drop their context reference. 14130 */ 14131 wait_var_event(&ctx->refcount, 14132 refcount_read(&ctx->refcount) == 1); 14133 } 14134 put_ctx(ctx); 14135 } 14136 14137 /* 14138 * When a task exits, feed back event values to parent events. 14139 * 14140 * Can be called with exec_update_lock held when called from 14141 * setup_new_exec(). 14142 */ 14143 void perf_event_exit_task(struct task_struct *task) 14144 { 14145 struct perf_event *event, *tmp; 14146 14147 WARN_ON_ONCE(task != current); 14148 14149 mutex_lock(&task->perf_event_mutex); 14150 list_for_each_entry_safe(event, tmp, &task->perf_event_list, 14151 owner_entry) { 14152 list_del_init(&event->owner_entry); 14153 14154 /* 14155 * Ensure the list deletion is visible before we clear 14156 * the owner, closes a race against perf_release() where 14157 * we need to serialize on the owner->perf_event_mutex. 14158 */ 14159 smp_store_release(&event->owner, NULL); 14160 } 14161 mutex_unlock(&task->perf_event_mutex); 14162 14163 perf_event_exit_task_context(task, true); 14164 14165 /* 14166 * The perf_event_exit_task_context calls perf_event_task 14167 * with task's task_ctx, which generates EXIT events for 14168 * task contexts and sets task->perf_event_ctxp[] to NULL. 14169 * At this point we need to send EXIT events to cpu contexts. 14170 */ 14171 perf_event_task(task, NULL, 0); 14172 14173 /* 14174 * Detach the perf_ctx_data for the system-wide event. 14175 */ 14176 guard(percpu_read)(&global_ctx_data_rwsem); 14177 detach_task_ctx_data(task); 14178 } 14179 14180 /* 14181 * Free a context as created by inheritance by perf_event_init_task() below, 14182 * used by fork() in case of fail. 14183 * 14184 * Even though the task has never lived, the context and events have been 14185 * exposed through the child_list, so we must take care tearing it all down. 14186 */ 14187 void perf_event_free_task(struct task_struct *task) 14188 { 14189 perf_event_exit_task_context(task, false); 14190 } 14191 14192 void perf_event_delayed_put(struct task_struct *task) 14193 { 14194 WARN_ON_ONCE(task->perf_event_ctxp); 14195 } 14196 14197 struct file *perf_event_get(unsigned int fd) 14198 { 14199 struct file *file = fget(fd); 14200 if (!file) 14201 return ERR_PTR(-EBADF); 14202 14203 if (file->f_op != &perf_fops) { 14204 fput(file); 14205 return ERR_PTR(-EBADF); 14206 } 14207 14208 return file; 14209 } 14210 14211 const struct perf_event *perf_get_event(struct file *file) 14212 { 14213 if (file->f_op != &perf_fops) 14214 return ERR_PTR(-EINVAL); 14215 14216 return file->private_data; 14217 } 14218 14219 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 14220 { 14221 if (!event) 14222 return ERR_PTR(-EINVAL); 14223 14224 return &event->attr; 14225 } 14226 14227 int perf_allow_kernel(void) 14228 { 14229 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 14230 return -EACCES; 14231 14232 return security_perf_event_open(PERF_SECURITY_KERNEL); 14233 } 14234 EXPORT_SYMBOL_GPL(perf_allow_kernel); 14235 14236 /* 14237 * Inherit an event from parent task to child task. 14238 * 14239 * Returns: 14240 * - valid pointer on success 14241 * - NULL for orphaned events 14242 * - IS_ERR() on error 14243 */ 14244 static struct perf_event * 14245 inherit_event(struct perf_event *parent_event, 14246 struct task_struct *parent, 14247 struct perf_event_context *parent_ctx, 14248 struct task_struct *child, 14249 struct perf_event *group_leader, 14250 struct perf_event_context *child_ctx) 14251 { 14252 enum perf_event_state parent_state = parent_event->state; 14253 struct perf_event_pmu_context *pmu_ctx; 14254 struct perf_event *child_event; 14255 unsigned long flags; 14256 14257 /* 14258 * Instead of creating recursive hierarchies of events, 14259 * we link inherited events back to the original parent, 14260 * which has a filp for sure, which we use as the reference 14261 * count: 14262 */ 14263 if (parent_event->parent) 14264 parent_event = parent_event->parent; 14265 14266 if (parent_event->state <= PERF_EVENT_STATE_REVOKED) 14267 return NULL; 14268 14269 /* 14270 * Event creation should be under SRCU, see perf_pmu_unregister(). 14271 */ 14272 guard(srcu)(&pmus_srcu); 14273 14274 child_event = perf_event_alloc(&parent_event->attr, 14275 parent_event->cpu, 14276 child, 14277 group_leader, parent_event, 14278 NULL, NULL, -1); 14279 if (IS_ERR(child_event)) 14280 return child_event; 14281 14282 get_ctx(child_ctx); 14283 child_event->ctx = child_ctx; 14284 14285 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 14286 if (IS_ERR(pmu_ctx)) { 14287 free_event(child_event); 14288 return ERR_CAST(pmu_ctx); 14289 } 14290 child_event->pmu_ctx = pmu_ctx; 14291 14292 /* 14293 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 14294 * must be under the same lock in order to serialize against 14295 * perf_event_release_kernel(), such that either we must observe 14296 * is_orphaned_event() or they will observe us on the child_list. 14297 */ 14298 mutex_lock(&parent_event->child_mutex); 14299 if (is_orphaned_event(parent_event) || 14300 !atomic_long_inc_not_zero(&parent_event->refcount)) { 14301 mutex_unlock(&parent_event->child_mutex); 14302 free_event(child_event); 14303 return NULL; 14304 } 14305 14306 /* 14307 * Make the child state follow the state of the parent event, 14308 * not its attr.disabled bit. We hold the parent's mutex, 14309 * so we won't race with perf_event_{en, dis}able_family. 14310 */ 14311 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 14312 child_event->state = PERF_EVENT_STATE_INACTIVE; 14313 else 14314 child_event->state = PERF_EVENT_STATE_OFF; 14315 14316 if (parent_event->attr.freq) { 14317 u64 sample_period = parent_event->hw.sample_period; 14318 struct hw_perf_event *hwc = &child_event->hw; 14319 14320 hwc->sample_period = sample_period; 14321 hwc->last_period = sample_period; 14322 14323 local64_set(&hwc->period_left, sample_period); 14324 } 14325 14326 child_event->overflow_handler = parent_event->overflow_handler; 14327 child_event->overflow_handler_context 14328 = parent_event->overflow_handler_context; 14329 14330 /* 14331 * Precalculate sample_data sizes 14332 */ 14333 perf_event__header_size(child_event); 14334 perf_event__id_header_size(child_event); 14335 14336 /* 14337 * Link it up in the child's context: 14338 */ 14339 raw_spin_lock_irqsave(&child_ctx->lock, flags); 14340 add_event_to_ctx(child_event, child_ctx); 14341 child_event->attach_state |= PERF_ATTACH_CHILD; 14342 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 14343 14344 /* 14345 * Link this into the parent event's child list 14346 */ 14347 list_add_tail(&child_event->child_list, &parent_event->child_list); 14348 mutex_unlock(&parent_event->child_mutex); 14349 14350 return child_event; 14351 } 14352 14353 /* 14354 * Inherits an event group. 14355 * 14356 * This will quietly suppress orphaned events; !inherit_event() is not an error. 14357 * This matches with perf_event_release_kernel() removing all child events. 14358 * 14359 * Returns: 14360 * - 0 on success 14361 * - <0 on error 14362 */ 14363 static int inherit_group(struct perf_event *parent_event, 14364 struct task_struct *parent, 14365 struct perf_event_context *parent_ctx, 14366 struct task_struct *child, 14367 struct perf_event_context *child_ctx) 14368 { 14369 struct perf_event *leader; 14370 struct perf_event *sub; 14371 struct perf_event *child_ctr; 14372 14373 leader = inherit_event(parent_event, parent, parent_ctx, 14374 child, NULL, child_ctx); 14375 if (IS_ERR(leader)) 14376 return PTR_ERR(leader); 14377 /* 14378 * @leader can be NULL here because of is_orphaned_event(). In this 14379 * case inherit_event() will create individual events, similar to what 14380 * perf_group_detach() would do anyway. 14381 */ 14382 for_each_sibling_event(sub, parent_event) { 14383 child_ctr = inherit_event(sub, parent, parent_ctx, 14384 child, leader, child_ctx); 14385 if (IS_ERR(child_ctr)) 14386 return PTR_ERR(child_ctr); 14387 14388 if (sub->aux_event == parent_event && child_ctr && 14389 !perf_get_aux_event(child_ctr, leader)) 14390 return -EINVAL; 14391 } 14392 if (leader) 14393 leader->group_generation = parent_event->group_generation; 14394 return 0; 14395 } 14396 14397 /* 14398 * Creates the child task context and tries to inherit the event-group. 14399 * 14400 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 14401 * inherited_all set when we 'fail' to inherit an orphaned event; this is 14402 * consistent with perf_event_release_kernel() removing all child events. 14403 * 14404 * Returns: 14405 * - 0 on success 14406 * - <0 on error 14407 */ 14408 static int 14409 inherit_task_group(struct perf_event *event, struct task_struct *parent, 14410 struct perf_event_context *parent_ctx, 14411 struct task_struct *child, 14412 u64 clone_flags, int *inherited_all) 14413 { 14414 struct perf_event_context *child_ctx; 14415 int ret; 14416 14417 if (!event->attr.inherit || 14418 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 14419 /* Do not inherit if sigtrap and signal handlers were cleared. */ 14420 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 14421 *inherited_all = 0; 14422 return 0; 14423 } 14424 14425 child_ctx = child->perf_event_ctxp; 14426 if (!child_ctx) { 14427 /* 14428 * This is executed from the parent task context, so 14429 * inherit events that have been marked for cloning. 14430 * First allocate and initialize a context for the 14431 * child. 14432 */ 14433 child_ctx = alloc_perf_context(child); 14434 if (!child_ctx) 14435 return -ENOMEM; 14436 14437 child->perf_event_ctxp = child_ctx; 14438 } 14439 14440 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 14441 if (ret) 14442 *inherited_all = 0; 14443 14444 return ret; 14445 } 14446 14447 /* 14448 * Initialize the perf_event context in task_struct 14449 */ 14450 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 14451 { 14452 struct perf_event_context *child_ctx, *parent_ctx; 14453 struct perf_event_context *cloned_ctx; 14454 struct perf_event *event; 14455 struct task_struct *parent = current; 14456 int inherited_all = 1; 14457 unsigned long flags; 14458 int ret = 0; 14459 14460 if (likely(!parent->perf_event_ctxp)) 14461 return 0; 14462 14463 /* 14464 * If the parent's context is a clone, pin it so it won't get 14465 * swapped under us. 14466 */ 14467 parent_ctx = perf_pin_task_context(parent); 14468 if (!parent_ctx) 14469 return 0; 14470 14471 /* 14472 * No need to check if parent_ctx != NULL here; since we saw 14473 * it non-NULL earlier, the only reason for it to become NULL 14474 * is if we exit, and since we're currently in the middle of 14475 * a fork we can't be exiting at the same time. 14476 */ 14477 14478 /* 14479 * Lock the parent list. No need to lock the child - not PID 14480 * hashed yet and not running, so nobody can access it. 14481 */ 14482 mutex_lock(&parent_ctx->mutex); 14483 14484 /* 14485 * We dont have to disable NMIs - we are only looking at 14486 * the list, not manipulating it: 14487 */ 14488 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 14489 ret = inherit_task_group(event, parent, parent_ctx, 14490 child, clone_flags, &inherited_all); 14491 if (ret) 14492 goto out_unlock; 14493 } 14494 14495 /* 14496 * We can't hold ctx->lock when iterating the ->flexible_group list due 14497 * to allocations, but we need to prevent rotation because 14498 * rotate_ctx() will change the list from interrupt context. 14499 */ 14500 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14501 parent_ctx->rotate_disable = 1; 14502 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14503 14504 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 14505 ret = inherit_task_group(event, parent, parent_ctx, 14506 child, clone_flags, &inherited_all); 14507 if (ret) 14508 goto out_unlock; 14509 } 14510 14511 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 14512 parent_ctx->rotate_disable = 0; 14513 14514 child_ctx = child->perf_event_ctxp; 14515 14516 if (child_ctx && inherited_all) { 14517 /* 14518 * Mark the child context as a clone of the parent 14519 * context, or of whatever the parent is a clone of. 14520 * 14521 * Note that if the parent is a clone, the holding of 14522 * parent_ctx->lock avoids it from being uncloned. 14523 */ 14524 cloned_ctx = parent_ctx->parent_ctx; 14525 if (cloned_ctx) { 14526 child_ctx->parent_ctx = cloned_ctx; 14527 child_ctx->parent_gen = parent_ctx->parent_gen; 14528 } else { 14529 child_ctx->parent_ctx = parent_ctx; 14530 child_ctx->parent_gen = parent_ctx->generation; 14531 } 14532 get_ctx(child_ctx->parent_ctx); 14533 } 14534 14535 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 14536 out_unlock: 14537 mutex_unlock(&parent_ctx->mutex); 14538 14539 perf_unpin_context(parent_ctx); 14540 put_ctx(parent_ctx); 14541 14542 return ret; 14543 } 14544 14545 /* 14546 * Initialize the perf_event context in task_struct 14547 */ 14548 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 14549 { 14550 int ret; 14551 14552 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 14553 child->perf_event_ctxp = NULL; 14554 mutex_init(&child->perf_event_mutex); 14555 INIT_LIST_HEAD(&child->perf_event_list); 14556 child->perf_ctx_data = NULL; 14557 14558 ret = perf_event_init_context(child, clone_flags); 14559 if (ret) { 14560 perf_event_free_task(child); 14561 return ret; 14562 } 14563 14564 return 0; 14565 } 14566 14567 static void __init perf_event_init_all_cpus(void) 14568 { 14569 struct swevent_htable *swhash; 14570 struct perf_cpu_context *cpuctx; 14571 int cpu; 14572 14573 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 14574 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 14575 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 14576 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 14577 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 14578 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 14579 14580 14581 for_each_possible_cpu(cpu) { 14582 swhash = &per_cpu(swevent_htable, cpu); 14583 mutex_init(&swhash->hlist_mutex); 14584 14585 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 14586 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 14587 14588 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 14589 14590 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14591 __perf_event_init_context(&cpuctx->ctx); 14592 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 14593 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 14594 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 14595 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 14596 cpuctx->heap = cpuctx->heap_default; 14597 } 14598 } 14599 14600 static void perf_swevent_init_cpu(unsigned int cpu) 14601 { 14602 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 14603 14604 mutex_lock(&swhash->hlist_mutex); 14605 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 14606 struct swevent_hlist *hlist; 14607 14608 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 14609 WARN_ON(!hlist); 14610 rcu_assign_pointer(swhash->swevent_hlist, hlist); 14611 } 14612 mutex_unlock(&swhash->hlist_mutex); 14613 } 14614 14615 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 14616 static void __perf_event_exit_context(void *__info) 14617 { 14618 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 14619 struct perf_event_context *ctx = __info; 14620 struct perf_event *event; 14621 14622 raw_spin_lock(&ctx->lock); 14623 ctx_sched_out(ctx, NULL, EVENT_TIME); 14624 list_for_each_entry(event, &ctx->event_list, event_entry) 14625 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 14626 raw_spin_unlock(&ctx->lock); 14627 } 14628 14629 static void perf_event_clear_cpumask(unsigned int cpu) 14630 { 14631 int target[PERF_PMU_MAX_SCOPE]; 14632 unsigned int scope; 14633 struct pmu *pmu; 14634 14635 cpumask_clear_cpu(cpu, perf_online_mask); 14636 14637 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14638 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14639 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14640 14641 target[scope] = -1; 14642 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14643 continue; 14644 14645 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14646 continue; 14647 target[scope] = cpumask_any_but(cpumask, cpu); 14648 if (target[scope] < nr_cpu_ids) 14649 cpumask_set_cpu(target[scope], pmu_cpumask); 14650 } 14651 14652 /* migrate */ 14653 list_for_each_entry(pmu, &pmus, entry) { 14654 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14655 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14656 continue; 14657 14658 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14659 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14660 } 14661 } 14662 14663 static void perf_event_exit_cpu_context(int cpu) 14664 { 14665 struct perf_cpu_context *cpuctx; 14666 struct perf_event_context *ctx; 14667 14668 // XXX simplify cpuctx->online 14669 mutex_lock(&pmus_lock); 14670 /* 14671 * Clear the cpumasks, and migrate to other CPUs if possible. 14672 * Must be invoked before the __perf_event_exit_context. 14673 */ 14674 perf_event_clear_cpumask(cpu); 14675 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14676 ctx = &cpuctx->ctx; 14677 14678 mutex_lock(&ctx->mutex); 14679 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14680 cpuctx->online = 0; 14681 mutex_unlock(&ctx->mutex); 14682 mutex_unlock(&pmus_lock); 14683 } 14684 #else 14685 14686 static void perf_event_exit_cpu_context(int cpu) { } 14687 14688 #endif 14689 14690 static void perf_event_setup_cpumask(unsigned int cpu) 14691 { 14692 struct cpumask *pmu_cpumask; 14693 unsigned int scope; 14694 14695 /* 14696 * Early boot stage, the cpumask hasn't been set yet. 14697 * The perf_online_<domain>_masks includes the first CPU of each domain. 14698 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14699 */ 14700 if (cpumask_empty(perf_online_mask)) { 14701 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14702 pmu_cpumask = perf_scope_cpumask(scope); 14703 if (WARN_ON_ONCE(!pmu_cpumask)) 14704 continue; 14705 cpumask_set_cpu(cpu, pmu_cpumask); 14706 } 14707 goto end; 14708 } 14709 14710 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14711 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14712 14713 pmu_cpumask = perf_scope_cpumask(scope); 14714 14715 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14716 continue; 14717 14718 if (!cpumask_empty(cpumask) && 14719 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14720 cpumask_set_cpu(cpu, pmu_cpumask); 14721 } 14722 end: 14723 cpumask_set_cpu(cpu, perf_online_mask); 14724 } 14725 14726 int perf_event_init_cpu(unsigned int cpu) 14727 { 14728 struct perf_cpu_context *cpuctx; 14729 struct perf_event_context *ctx; 14730 14731 perf_swevent_init_cpu(cpu); 14732 14733 mutex_lock(&pmus_lock); 14734 perf_event_setup_cpumask(cpu); 14735 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14736 ctx = &cpuctx->ctx; 14737 14738 mutex_lock(&ctx->mutex); 14739 cpuctx->online = 1; 14740 mutex_unlock(&ctx->mutex); 14741 mutex_unlock(&pmus_lock); 14742 14743 return 0; 14744 } 14745 14746 int perf_event_exit_cpu(unsigned int cpu) 14747 { 14748 perf_event_exit_cpu_context(cpu); 14749 return 0; 14750 } 14751 14752 static int 14753 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14754 { 14755 int cpu; 14756 14757 for_each_online_cpu(cpu) 14758 perf_event_exit_cpu(cpu); 14759 14760 return NOTIFY_OK; 14761 } 14762 14763 /* 14764 * Run the perf reboot notifier at the very last possible moment so that 14765 * the generic watchdog code runs as long as possible. 14766 */ 14767 static struct notifier_block perf_reboot_notifier = { 14768 .notifier_call = perf_reboot, 14769 .priority = INT_MIN, 14770 }; 14771 14772 void __init perf_event_init(void) 14773 { 14774 int ret; 14775 14776 idr_init(&pmu_idr); 14777 14778 perf_event_init_all_cpus(); 14779 init_srcu_struct(&pmus_srcu); 14780 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14781 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14782 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14783 perf_tp_register(); 14784 perf_event_init_cpu(smp_processor_id()); 14785 register_reboot_notifier(&perf_reboot_notifier); 14786 14787 ret = init_hw_breakpoint(); 14788 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14789 14790 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14791 14792 /* 14793 * Build time assertion that we keep the data_head at the intended 14794 * location. IOW, validation we got the __reserved[] size right. 14795 */ 14796 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14797 != 1024); 14798 } 14799 14800 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14801 char *page) 14802 { 14803 struct perf_pmu_events_attr *pmu_attr = 14804 container_of(attr, struct perf_pmu_events_attr, attr); 14805 14806 if (pmu_attr->event_str) 14807 return sprintf(page, "%s\n", pmu_attr->event_str); 14808 14809 return 0; 14810 } 14811 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14812 14813 static int __init perf_event_sysfs_init(void) 14814 { 14815 struct pmu *pmu; 14816 int ret; 14817 14818 mutex_lock(&pmus_lock); 14819 14820 ret = bus_register(&pmu_bus); 14821 if (ret) 14822 goto unlock; 14823 14824 list_for_each_entry(pmu, &pmus, entry) { 14825 if (pmu->dev) 14826 continue; 14827 14828 ret = pmu_dev_alloc(pmu); 14829 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14830 } 14831 pmu_bus_running = 1; 14832 ret = 0; 14833 14834 unlock: 14835 mutex_unlock(&pmus_lock); 14836 14837 return ret; 14838 } 14839 device_initcall(perf_event_sysfs_init); 14840 14841 #ifdef CONFIG_CGROUP_PERF 14842 static struct cgroup_subsys_state * 14843 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14844 { 14845 struct perf_cgroup *jc; 14846 14847 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14848 if (!jc) 14849 return ERR_PTR(-ENOMEM); 14850 14851 jc->info = alloc_percpu(struct perf_cgroup_info); 14852 if (!jc->info) { 14853 kfree(jc); 14854 return ERR_PTR(-ENOMEM); 14855 } 14856 14857 return &jc->css; 14858 } 14859 14860 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14861 { 14862 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14863 14864 free_percpu(jc->info); 14865 kfree(jc); 14866 } 14867 14868 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14869 { 14870 perf_event_cgroup(css->cgroup); 14871 return 0; 14872 } 14873 14874 static int __perf_cgroup_move(void *info) 14875 { 14876 struct task_struct *task = info; 14877 14878 preempt_disable(); 14879 perf_cgroup_switch(task); 14880 preempt_enable(); 14881 14882 return 0; 14883 } 14884 14885 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14886 { 14887 struct task_struct *task; 14888 struct cgroup_subsys_state *css; 14889 14890 cgroup_taskset_for_each(task, css, tset) 14891 task_function_call(task, __perf_cgroup_move, task); 14892 } 14893 14894 struct cgroup_subsys perf_event_cgrp_subsys = { 14895 .css_alloc = perf_cgroup_css_alloc, 14896 .css_free = perf_cgroup_css_free, 14897 .css_online = perf_cgroup_css_online, 14898 .attach = perf_cgroup_attach, 14899 /* 14900 * Implicitly enable on dfl hierarchy so that perf events can 14901 * always be filtered by cgroup2 path as long as perf_event 14902 * controller is not mounted on a legacy hierarchy. 14903 */ 14904 .implicit_on_dfl = true, 14905 .threaded = true, 14906 }; 14907 #endif /* CONFIG_CGROUP_PERF */ 14908 14909 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14910