xref: /linux/kernel/events/core.c (revision 9efac6798b20ae6b63ce244b569755f3b60d80aa)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 	cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907 
908 #else /* !CONFIG_CGROUP_PERF */
909 
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 	return true;
914 }
915 
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918 
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 	return 0;
922 }
923 
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 	/*
1255 	 * only top level events have the pid namespace they were created in
1256 	 */
1257 	if (event->parent)
1258 		event = event->parent;
1259 
1260 	return task_tgid_nr_ns(p, event->ns);
1261 }
1262 
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 	/*
1266 	 * only top level events have the pid namespace they were created in
1267 	 */
1268 	if (event->parent)
1269 		event = event->parent;
1270 
1271 	return task_pid_nr_ns(p, event->ns);
1272 }
1273 
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 	u64 id = event->id;
1281 
1282 	if (event->parent)
1283 		id = event->parent->id;
1284 
1285 	return id;
1286 }
1287 
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 	struct perf_event_context *ctx;
1298 
1299 retry:
1300 	/*
1301 	 * One of the few rules of preemptible RCU is that one cannot do
1302 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 	 * part of the read side critical section was irqs-enabled -- see
1304 	 * rcu_read_unlock_special().
1305 	 *
1306 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 	 * side critical section has interrupts disabled.
1308 	 */
1309 	local_irq_save(*flags);
1310 	rcu_read_lock();
1311 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 	if (ctx) {
1313 		/*
1314 		 * If this context is a clone of another, it might
1315 		 * get swapped for another underneath us by
1316 		 * perf_event_task_sched_out, though the
1317 		 * rcu_read_lock() protects us from any context
1318 		 * getting freed.  Lock the context and check if it
1319 		 * got swapped before we could get the lock, and retry
1320 		 * if so.  If we locked the right context, then it
1321 		 * can't get swapped on us any more.
1322 		 */
1323 		raw_spin_lock(&ctx->lock);
1324 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 			raw_spin_unlock(&ctx->lock);
1326 			rcu_read_unlock();
1327 			local_irq_restore(*flags);
1328 			goto retry;
1329 		}
1330 
1331 		if (ctx->task == TASK_TOMBSTONE ||
1332 		    !atomic_inc_not_zero(&ctx->refcount)) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			ctx = NULL;
1335 		} else {
1336 			WARN_ON_ONCE(ctx->task != task);
1337 		}
1338 	}
1339 	rcu_read_unlock();
1340 	if (!ctx)
1341 		local_irq_restore(*flags);
1342 	return ctx;
1343 }
1344 
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 	struct perf_event_context *ctx;
1354 	unsigned long flags;
1355 
1356 	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 	if (ctx) {
1358 		++ctx->pin_count;
1359 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 	}
1361 	return ctx;
1362 }
1363 
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 	unsigned long flags;
1367 
1368 	raw_spin_lock_irqsave(&ctx->lock, flags);
1369 	--ctx->pin_count;
1370 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372 
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 	u64 now = perf_clock();
1379 
1380 	ctx->time += now - ctx->timestamp;
1381 	ctx->timestamp = now;
1382 }
1383 
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 	struct perf_event_context *ctx = event->ctx;
1387 
1388 	if (is_cgroup_event(event))
1389 		return perf_cgroup_event_time(event);
1390 
1391 	return ctx ? ctx->time : 0;
1392 }
1393 
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 	struct perf_event_context *ctx = event->ctx;
1400 	u64 run_end;
1401 
1402 	lockdep_assert_held(&ctx->lock);
1403 
1404 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 		return;
1407 
1408 	/*
1409 	 * in cgroup mode, time_enabled represents
1410 	 * the time the event was enabled AND active
1411 	 * tasks were in the monitored cgroup. This is
1412 	 * independent of the activity of the context as
1413 	 * there may be a mix of cgroup and non-cgroup events.
1414 	 *
1415 	 * That is why we treat cgroup events differently
1416 	 * here.
1417 	 */
1418 	if (is_cgroup_event(event))
1419 		run_end = perf_cgroup_event_time(event);
1420 	else if (ctx->is_active)
1421 		run_end = ctx->time;
1422 	else
1423 		run_end = event->tstamp_stopped;
1424 
1425 	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 
1427 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 		run_end = event->tstamp_stopped;
1429 	else
1430 		run_end = perf_event_time(event);
1431 
1432 	event->total_time_running = run_end - event->tstamp_running;
1433 
1434 }
1435 
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 	struct perf_event *event;
1442 
1443 	update_event_times(leader);
1444 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 		update_event_times(event);
1446 }
1447 
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 	if (event->attr.pinned)
1452 		return &ctx->pinned_groups;
1453 	else
1454 		return &ctx->flexible_groups;
1455 }
1456 
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 
1465 	lockdep_assert_held(&ctx->lock);
1466 
1467 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 	event->attach_state |= PERF_ATTACH_CONTEXT;
1469 
1470 	/*
1471 	 * If we're a stand alone event or group leader, we go to the context
1472 	 * list, group events are kept attached to the group so that
1473 	 * perf_group_detach can, at all times, locate all siblings.
1474 	 */
1475 	if (event->group_leader == event) {
1476 		struct list_head *list;
1477 
1478 		if (is_software_event(event))
1479 			event->group_flags |= PERF_GROUP_SOFTWARE;
1480 
1481 		list = ctx_group_list(event, ctx);
1482 		list_add_tail(&event->group_entry, list);
1483 	}
1484 
1485 	list_update_cgroup_event(event, ctx, true);
1486 
1487 	list_add_rcu(&event->event_entry, &ctx->event_list);
1488 	ctx->nr_events++;
1489 	if (event->attr.inherit_stat)
1490 		ctx->nr_stat++;
1491 
1492 	ctx->generation++;
1493 }
1494 
1495 /*
1496  * Initialize event state based on the perf_event_attr::disabled.
1497  */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501 					      PERF_EVENT_STATE_INACTIVE;
1502 }
1503 
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506 	int entry = sizeof(u64); /* value */
1507 	int size = 0;
1508 	int nr = 1;
1509 
1510 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511 		size += sizeof(u64);
1512 
1513 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514 		size += sizeof(u64);
1515 
1516 	if (event->attr.read_format & PERF_FORMAT_ID)
1517 		entry += sizeof(u64);
1518 
1519 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520 		nr += nr_siblings;
1521 		size += sizeof(u64);
1522 	}
1523 
1524 	size += entry * nr;
1525 	event->read_size = size;
1526 }
1527 
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530 	struct perf_sample_data *data;
1531 	u16 size = 0;
1532 
1533 	if (sample_type & PERF_SAMPLE_IP)
1534 		size += sizeof(data->ip);
1535 
1536 	if (sample_type & PERF_SAMPLE_ADDR)
1537 		size += sizeof(data->addr);
1538 
1539 	if (sample_type & PERF_SAMPLE_PERIOD)
1540 		size += sizeof(data->period);
1541 
1542 	if (sample_type & PERF_SAMPLE_WEIGHT)
1543 		size += sizeof(data->weight);
1544 
1545 	if (sample_type & PERF_SAMPLE_READ)
1546 		size += event->read_size;
1547 
1548 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1549 		size += sizeof(data->data_src.val);
1550 
1551 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1552 		size += sizeof(data->txn);
1553 
1554 	event->header_size = size;
1555 }
1556 
1557 /*
1558  * Called at perf_event creation and when events are attached/detached from a
1559  * group.
1560  */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563 	__perf_event_read_size(event,
1564 			       event->group_leader->nr_siblings);
1565 	__perf_event_header_size(event, event->attr.sample_type);
1566 }
1567 
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570 	struct perf_sample_data *data;
1571 	u64 sample_type = event->attr.sample_type;
1572 	u16 size = 0;
1573 
1574 	if (sample_type & PERF_SAMPLE_TID)
1575 		size += sizeof(data->tid_entry);
1576 
1577 	if (sample_type & PERF_SAMPLE_TIME)
1578 		size += sizeof(data->time);
1579 
1580 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581 		size += sizeof(data->id);
1582 
1583 	if (sample_type & PERF_SAMPLE_ID)
1584 		size += sizeof(data->id);
1585 
1586 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1587 		size += sizeof(data->stream_id);
1588 
1589 	if (sample_type & PERF_SAMPLE_CPU)
1590 		size += sizeof(data->cpu_entry);
1591 
1592 	event->id_header_size = size;
1593 }
1594 
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597 	/*
1598 	 * The values computed here will be over-written when we actually
1599 	 * attach the event.
1600 	 */
1601 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603 	perf_event__id_header_size(event);
1604 
1605 	/*
1606 	 * Sum the lot; should not exceed the 64k limit we have on records.
1607 	 * Conservative limit to allow for callchains and other variable fields.
1608 	 */
1609 	if (event->read_size + event->header_size +
1610 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618 	struct perf_event *group_leader = event->group_leader, *pos;
1619 
1620 	/*
1621 	 * We can have double attach due to group movement in perf_event_open.
1622 	 */
1623 	if (event->attach_state & PERF_ATTACH_GROUP)
1624 		return;
1625 
1626 	event->attach_state |= PERF_ATTACH_GROUP;
1627 
1628 	if (group_leader == event)
1629 		return;
1630 
1631 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632 
1633 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634 			!is_software_event(event))
1635 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636 
1637 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638 	group_leader->nr_siblings++;
1639 
1640 	perf_event__header_size(group_leader);
1641 
1642 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643 		perf_event__header_size(pos);
1644 }
1645 
1646 /*
1647  * Remove a event from the lists for its context.
1648  * Must be called with ctx->mutex and ctx->lock held.
1649  */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653 	WARN_ON_ONCE(event->ctx != ctx);
1654 	lockdep_assert_held(&ctx->lock);
1655 
1656 	/*
1657 	 * We can have double detach due to exit/hot-unplug + close.
1658 	 */
1659 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660 		return;
1661 
1662 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663 
1664 	list_update_cgroup_event(event, ctx, false);
1665 
1666 	ctx->nr_events--;
1667 	if (event->attr.inherit_stat)
1668 		ctx->nr_stat--;
1669 
1670 	list_del_rcu(&event->event_entry);
1671 
1672 	if (event->group_leader == event)
1673 		list_del_init(&event->group_entry);
1674 
1675 	update_group_times(event);
1676 
1677 	/*
1678 	 * If event was in error state, then keep it
1679 	 * that way, otherwise bogus counts will be
1680 	 * returned on read(). The only way to get out
1681 	 * of error state is by explicit re-enabling
1682 	 * of the event
1683 	 */
1684 	if (event->state > PERF_EVENT_STATE_OFF)
1685 		event->state = PERF_EVENT_STATE_OFF;
1686 
1687 	ctx->generation++;
1688 }
1689 
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692 	struct perf_event *sibling, *tmp;
1693 	struct list_head *list = NULL;
1694 
1695 	/*
1696 	 * We can have double detach due to exit/hot-unplug + close.
1697 	 */
1698 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1699 		return;
1700 
1701 	event->attach_state &= ~PERF_ATTACH_GROUP;
1702 
1703 	/*
1704 	 * If this is a sibling, remove it from its group.
1705 	 */
1706 	if (event->group_leader != event) {
1707 		list_del_init(&event->group_entry);
1708 		event->group_leader->nr_siblings--;
1709 		goto out;
1710 	}
1711 
1712 	if (!list_empty(&event->group_entry))
1713 		list = &event->group_entry;
1714 
1715 	/*
1716 	 * If this was a group event with sibling events then
1717 	 * upgrade the siblings to singleton events by adding them
1718 	 * to whatever list we are on.
1719 	 */
1720 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721 		if (list)
1722 			list_move_tail(&sibling->group_entry, list);
1723 		sibling->group_leader = sibling;
1724 
1725 		/* Inherit group flags from the previous leader */
1726 		sibling->group_flags = event->group_flags;
1727 
1728 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1729 	}
1730 
1731 out:
1732 	perf_event__header_size(event->group_leader);
1733 
1734 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735 		perf_event__header_size(tmp);
1736 }
1737 
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740 	return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742 
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745 	struct pmu *pmu = event->pmu;
1746 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748 
1749 /*
1750  * Check whether we should attempt to schedule an event group based on
1751  * PMU-specific filtering. An event group can consist of HW and SW events,
1752  * potentially with a SW leader, so we must check all the filters, to
1753  * determine whether a group is schedulable:
1754  */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757 	struct perf_event *child;
1758 
1759 	if (!__pmu_filter_match(event))
1760 		return 0;
1761 
1762 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1763 		if (!__pmu_filter_match(child))
1764 			return 0;
1765 	}
1766 
1767 	return 1;
1768 }
1769 
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774 	       perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776 
1777 static void
1778 event_sched_out(struct perf_event *event,
1779 		  struct perf_cpu_context *cpuctx,
1780 		  struct perf_event_context *ctx)
1781 {
1782 	u64 tstamp = perf_event_time(event);
1783 	u64 delta;
1784 
1785 	WARN_ON_ONCE(event->ctx != ctx);
1786 	lockdep_assert_held(&ctx->lock);
1787 
1788 	/*
1789 	 * An event which could not be activated because of
1790 	 * filter mismatch still needs to have its timings
1791 	 * maintained, otherwise bogus information is return
1792 	 * via read() for time_enabled, time_running:
1793 	 */
1794 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795 	    !event_filter_match(event)) {
1796 		delta = tstamp - event->tstamp_stopped;
1797 		event->tstamp_running += delta;
1798 		event->tstamp_stopped = tstamp;
1799 	}
1800 
1801 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 		return;
1803 
1804 	perf_pmu_disable(event->pmu);
1805 
1806 	event->tstamp_stopped = tstamp;
1807 	event->pmu->del(event, 0);
1808 	event->oncpu = -1;
1809 	event->state = PERF_EVENT_STATE_INACTIVE;
1810 	if (event->pending_disable) {
1811 		event->pending_disable = 0;
1812 		event->state = PERF_EVENT_STATE_OFF;
1813 	}
1814 
1815 	if (!is_software_event(event))
1816 		cpuctx->active_oncpu--;
1817 	if (!--ctx->nr_active)
1818 		perf_event_ctx_deactivate(ctx);
1819 	if (event->attr.freq && event->attr.sample_freq)
1820 		ctx->nr_freq--;
1821 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 		cpuctx->exclusive = 0;
1823 
1824 	perf_pmu_enable(event->pmu);
1825 }
1826 
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 		struct perf_cpu_context *cpuctx,
1830 		struct perf_event_context *ctx)
1831 {
1832 	struct perf_event *event;
1833 	int state = group_event->state;
1834 
1835 	event_sched_out(group_event, cpuctx, ctx);
1836 
1837 	/*
1838 	 * Schedule out siblings (if any):
1839 	 */
1840 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841 		event_sched_out(event, cpuctx, ctx);
1842 
1843 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844 		cpuctx->exclusive = 0;
1845 }
1846 
1847 #define DETACH_GROUP	0x01UL
1848 
1849 /*
1850  * Cross CPU call to remove a performance event
1851  *
1852  * We disable the event on the hardware level first. After that we
1853  * remove it from the context list.
1854  */
1855 static void
1856 __perf_remove_from_context(struct perf_event *event,
1857 			   struct perf_cpu_context *cpuctx,
1858 			   struct perf_event_context *ctx,
1859 			   void *info)
1860 {
1861 	unsigned long flags = (unsigned long)info;
1862 
1863 	event_sched_out(event, cpuctx, ctx);
1864 	if (flags & DETACH_GROUP)
1865 		perf_group_detach(event);
1866 	list_del_event(event, ctx);
1867 
1868 	if (!ctx->nr_events && ctx->is_active) {
1869 		ctx->is_active = 0;
1870 		if (ctx->task) {
1871 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872 			cpuctx->task_ctx = NULL;
1873 		}
1874 	}
1875 }
1876 
1877 /*
1878  * Remove the event from a task's (or a CPU's) list of events.
1879  *
1880  * If event->ctx is a cloned context, callers must make sure that
1881  * every task struct that event->ctx->task could possibly point to
1882  * remains valid.  This is OK when called from perf_release since
1883  * that only calls us on the top-level context, which can't be a clone.
1884  * When called from perf_event_exit_task, it's OK because the
1885  * context has been detached from its task.
1886  */
1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1888 {
1889 	lockdep_assert_held(&event->ctx->mutex);
1890 
1891 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1892 }
1893 
1894 /*
1895  * Cross CPU call to disable a performance event
1896  */
1897 static void __perf_event_disable(struct perf_event *event,
1898 				 struct perf_cpu_context *cpuctx,
1899 				 struct perf_event_context *ctx,
1900 				 void *info)
1901 {
1902 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1903 		return;
1904 
1905 	update_context_time(ctx);
1906 	update_cgrp_time_from_event(event);
1907 	update_group_times(event);
1908 	if (event == event->group_leader)
1909 		group_sched_out(event, cpuctx, ctx);
1910 	else
1911 		event_sched_out(event, cpuctx, ctx);
1912 	event->state = PERF_EVENT_STATE_OFF;
1913 }
1914 
1915 /*
1916  * Disable a event.
1917  *
1918  * If event->ctx is a cloned context, callers must make sure that
1919  * every task struct that event->ctx->task could possibly point to
1920  * remains valid.  This condition is satisifed when called through
1921  * perf_event_for_each_child or perf_event_for_each because they
1922  * hold the top-level event's child_mutex, so any descendant that
1923  * goes to exit will block in perf_event_exit_event().
1924  *
1925  * When called from perf_pending_event it's OK because event->ctx
1926  * is the current context on this CPU and preemption is disabled,
1927  * hence we can't get into perf_event_task_sched_out for this context.
1928  */
1929 static void _perf_event_disable(struct perf_event *event)
1930 {
1931 	struct perf_event_context *ctx = event->ctx;
1932 
1933 	raw_spin_lock_irq(&ctx->lock);
1934 	if (event->state <= PERF_EVENT_STATE_OFF) {
1935 		raw_spin_unlock_irq(&ctx->lock);
1936 		return;
1937 	}
1938 	raw_spin_unlock_irq(&ctx->lock);
1939 
1940 	event_function_call(event, __perf_event_disable, NULL);
1941 }
1942 
1943 void perf_event_disable_local(struct perf_event *event)
1944 {
1945 	event_function_local(event, __perf_event_disable, NULL);
1946 }
1947 
1948 /*
1949  * Strictly speaking kernel users cannot create groups and therefore this
1950  * interface does not need the perf_event_ctx_lock() magic.
1951  */
1952 void perf_event_disable(struct perf_event *event)
1953 {
1954 	struct perf_event_context *ctx;
1955 
1956 	ctx = perf_event_ctx_lock(event);
1957 	_perf_event_disable(event);
1958 	perf_event_ctx_unlock(event, ctx);
1959 }
1960 EXPORT_SYMBOL_GPL(perf_event_disable);
1961 
1962 static void perf_set_shadow_time(struct perf_event *event,
1963 				 struct perf_event_context *ctx,
1964 				 u64 tstamp)
1965 {
1966 	/*
1967 	 * use the correct time source for the time snapshot
1968 	 *
1969 	 * We could get by without this by leveraging the
1970 	 * fact that to get to this function, the caller
1971 	 * has most likely already called update_context_time()
1972 	 * and update_cgrp_time_xx() and thus both timestamp
1973 	 * are identical (or very close). Given that tstamp is,
1974 	 * already adjusted for cgroup, we could say that:
1975 	 *    tstamp - ctx->timestamp
1976 	 * is equivalent to
1977 	 *    tstamp - cgrp->timestamp.
1978 	 *
1979 	 * Then, in perf_output_read(), the calculation would
1980 	 * work with no changes because:
1981 	 * - event is guaranteed scheduled in
1982 	 * - no scheduled out in between
1983 	 * - thus the timestamp would be the same
1984 	 *
1985 	 * But this is a bit hairy.
1986 	 *
1987 	 * So instead, we have an explicit cgroup call to remain
1988 	 * within the time time source all along. We believe it
1989 	 * is cleaner and simpler to understand.
1990 	 */
1991 	if (is_cgroup_event(event))
1992 		perf_cgroup_set_shadow_time(event, tstamp);
1993 	else
1994 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1995 }
1996 
1997 #define MAX_INTERRUPTS (~0ULL)
1998 
1999 static void perf_log_throttle(struct perf_event *event, int enable);
2000 static void perf_log_itrace_start(struct perf_event *event);
2001 
2002 static int
2003 event_sched_in(struct perf_event *event,
2004 		 struct perf_cpu_context *cpuctx,
2005 		 struct perf_event_context *ctx)
2006 {
2007 	u64 tstamp = perf_event_time(event);
2008 	int ret = 0;
2009 
2010 	lockdep_assert_held(&ctx->lock);
2011 
2012 	if (event->state <= PERF_EVENT_STATE_OFF)
2013 		return 0;
2014 
2015 	WRITE_ONCE(event->oncpu, smp_processor_id());
2016 	/*
2017 	 * Order event::oncpu write to happen before the ACTIVE state
2018 	 * is visible.
2019 	 */
2020 	smp_wmb();
2021 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2022 
2023 	/*
2024 	 * Unthrottle events, since we scheduled we might have missed several
2025 	 * ticks already, also for a heavily scheduling task there is little
2026 	 * guarantee it'll get a tick in a timely manner.
2027 	 */
2028 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029 		perf_log_throttle(event, 1);
2030 		event->hw.interrupts = 0;
2031 	}
2032 
2033 	/*
2034 	 * The new state must be visible before we turn it on in the hardware:
2035 	 */
2036 	smp_wmb();
2037 
2038 	perf_pmu_disable(event->pmu);
2039 
2040 	perf_set_shadow_time(event, ctx, tstamp);
2041 
2042 	perf_log_itrace_start(event);
2043 
2044 	if (event->pmu->add(event, PERF_EF_START)) {
2045 		event->state = PERF_EVENT_STATE_INACTIVE;
2046 		event->oncpu = -1;
2047 		ret = -EAGAIN;
2048 		goto out;
2049 	}
2050 
2051 	event->tstamp_running += tstamp - event->tstamp_stopped;
2052 
2053 	if (!is_software_event(event))
2054 		cpuctx->active_oncpu++;
2055 	if (!ctx->nr_active++)
2056 		perf_event_ctx_activate(ctx);
2057 	if (event->attr.freq && event->attr.sample_freq)
2058 		ctx->nr_freq++;
2059 
2060 	if (event->attr.exclusive)
2061 		cpuctx->exclusive = 1;
2062 
2063 out:
2064 	perf_pmu_enable(event->pmu);
2065 
2066 	return ret;
2067 }
2068 
2069 static int
2070 group_sched_in(struct perf_event *group_event,
2071 	       struct perf_cpu_context *cpuctx,
2072 	       struct perf_event_context *ctx)
2073 {
2074 	struct perf_event *event, *partial_group = NULL;
2075 	struct pmu *pmu = ctx->pmu;
2076 	u64 now = ctx->time;
2077 	bool simulate = false;
2078 
2079 	if (group_event->state == PERF_EVENT_STATE_OFF)
2080 		return 0;
2081 
2082 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083 
2084 	if (event_sched_in(group_event, cpuctx, ctx)) {
2085 		pmu->cancel_txn(pmu);
2086 		perf_mux_hrtimer_restart(cpuctx);
2087 		return -EAGAIN;
2088 	}
2089 
2090 	/*
2091 	 * Schedule in siblings as one group (if any):
2092 	 */
2093 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094 		if (event_sched_in(event, cpuctx, ctx)) {
2095 			partial_group = event;
2096 			goto group_error;
2097 		}
2098 	}
2099 
2100 	if (!pmu->commit_txn(pmu))
2101 		return 0;
2102 
2103 group_error:
2104 	/*
2105 	 * Groups can be scheduled in as one unit only, so undo any
2106 	 * partial group before returning:
2107 	 * The events up to the failed event are scheduled out normally,
2108 	 * tstamp_stopped will be updated.
2109 	 *
2110 	 * The failed events and the remaining siblings need to have
2111 	 * their timings updated as if they had gone thru event_sched_in()
2112 	 * and event_sched_out(). This is required to get consistent timings
2113 	 * across the group. This also takes care of the case where the group
2114 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2115 	 * the time the event was actually stopped, such that time delta
2116 	 * calculation in update_event_times() is correct.
2117 	 */
2118 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119 		if (event == partial_group)
2120 			simulate = true;
2121 
2122 		if (simulate) {
2123 			event->tstamp_running += now - event->tstamp_stopped;
2124 			event->tstamp_stopped = now;
2125 		} else {
2126 			event_sched_out(event, cpuctx, ctx);
2127 		}
2128 	}
2129 	event_sched_out(group_event, cpuctx, ctx);
2130 
2131 	pmu->cancel_txn(pmu);
2132 
2133 	perf_mux_hrtimer_restart(cpuctx);
2134 
2135 	return -EAGAIN;
2136 }
2137 
2138 /*
2139  * Work out whether we can put this event group on the CPU now.
2140  */
2141 static int group_can_go_on(struct perf_event *event,
2142 			   struct perf_cpu_context *cpuctx,
2143 			   int can_add_hw)
2144 {
2145 	/*
2146 	 * Groups consisting entirely of software events can always go on.
2147 	 */
2148 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2149 		return 1;
2150 	/*
2151 	 * If an exclusive group is already on, no other hardware
2152 	 * events can go on.
2153 	 */
2154 	if (cpuctx->exclusive)
2155 		return 0;
2156 	/*
2157 	 * If this group is exclusive and there are already
2158 	 * events on the CPU, it can't go on.
2159 	 */
2160 	if (event->attr.exclusive && cpuctx->active_oncpu)
2161 		return 0;
2162 	/*
2163 	 * Otherwise, try to add it if all previous groups were able
2164 	 * to go on.
2165 	 */
2166 	return can_add_hw;
2167 }
2168 
2169 static void add_event_to_ctx(struct perf_event *event,
2170 			       struct perf_event_context *ctx)
2171 {
2172 	u64 tstamp = perf_event_time(event);
2173 
2174 	list_add_event(event, ctx);
2175 	perf_group_attach(event);
2176 	event->tstamp_enabled = tstamp;
2177 	event->tstamp_running = tstamp;
2178 	event->tstamp_stopped = tstamp;
2179 }
2180 
2181 static void ctx_sched_out(struct perf_event_context *ctx,
2182 			  struct perf_cpu_context *cpuctx,
2183 			  enum event_type_t event_type);
2184 static void
2185 ctx_sched_in(struct perf_event_context *ctx,
2186 	     struct perf_cpu_context *cpuctx,
2187 	     enum event_type_t event_type,
2188 	     struct task_struct *task);
2189 
2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191 			       struct perf_event_context *ctx)
2192 {
2193 	if (!cpuctx->task_ctx)
2194 		return;
2195 
2196 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197 		return;
2198 
2199 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200 }
2201 
2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203 				struct perf_event_context *ctx,
2204 				struct task_struct *task)
2205 {
2206 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207 	if (ctx)
2208 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210 	if (ctx)
2211 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212 }
2213 
2214 static void ctx_resched(struct perf_cpu_context *cpuctx,
2215 			struct perf_event_context *task_ctx)
2216 {
2217 	perf_pmu_disable(cpuctx->ctx.pmu);
2218 	if (task_ctx)
2219 		task_ctx_sched_out(cpuctx, task_ctx);
2220 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221 	perf_event_sched_in(cpuctx, task_ctx, current);
2222 	perf_pmu_enable(cpuctx->ctx.pmu);
2223 }
2224 
2225 /*
2226  * Cross CPU call to install and enable a performance event
2227  *
2228  * Very similar to remote_function() + event_function() but cannot assume that
2229  * things like ctx->is_active and cpuctx->task_ctx are set.
2230  */
2231 static int  __perf_install_in_context(void *info)
2232 {
2233 	struct perf_event *event = info;
2234 	struct perf_event_context *ctx = event->ctx;
2235 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237 	bool activate = true;
2238 	int ret = 0;
2239 
2240 	raw_spin_lock(&cpuctx->ctx.lock);
2241 	if (ctx->task) {
2242 		raw_spin_lock(&ctx->lock);
2243 		task_ctx = ctx;
2244 
2245 		/* If we're on the wrong CPU, try again */
2246 		if (task_cpu(ctx->task) != smp_processor_id()) {
2247 			ret = -ESRCH;
2248 			goto unlock;
2249 		}
2250 
2251 		/*
2252 		 * If we're on the right CPU, see if the task we target is
2253 		 * current, if not we don't have to activate the ctx, a future
2254 		 * context switch will do that for us.
2255 		 */
2256 		if (ctx->task != current)
2257 			activate = false;
2258 		else
2259 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260 
2261 	} else if (task_ctx) {
2262 		raw_spin_lock(&task_ctx->lock);
2263 	}
2264 
2265 	if (activate) {
2266 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267 		add_event_to_ctx(event, ctx);
2268 		ctx_resched(cpuctx, task_ctx);
2269 	} else {
2270 		add_event_to_ctx(event, ctx);
2271 	}
2272 
2273 unlock:
2274 	perf_ctx_unlock(cpuctx, task_ctx);
2275 
2276 	return ret;
2277 }
2278 
2279 /*
2280  * Attach a performance event to a context.
2281  *
2282  * Very similar to event_function_call, see comment there.
2283  */
2284 static void
2285 perf_install_in_context(struct perf_event_context *ctx,
2286 			struct perf_event *event,
2287 			int cpu)
2288 {
2289 	struct task_struct *task = READ_ONCE(ctx->task);
2290 
2291 	lockdep_assert_held(&ctx->mutex);
2292 
2293 	if (event->cpu != -1)
2294 		event->cpu = cpu;
2295 
2296 	/*
2297 	 * Ensures that if we can observe event->ctx, both the event and ctx
2298 	 * will be 'complete'. See perf_iterate_sb_cpu().
2299 	 */
2300 	smp_store_release(&event->ctx, ctx);
2301 
2302 	if (!task) {
2303 		cpu_function_call(cpu, __perf_install_in_context, event);
2304 		return;
2305 	}
2306 
2307 	/*
2308 	 * Should not happen, we validate the ctx is still alive before calling.
2309 	 */
2310 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311 		return;
2312 
2313 	/*
2314 	 * Installing events is tricky because we cannot rely on ctx->is_active
2315 	 * to be set in case this is the nr_events 0 -> 1 transition.
2316 	 */
2317 again:
2318 	/*
2319 	 * Cannot use task_function_call() because we need to run on the task's
2320 	 * CPU regardless of whether its current or not.
2321 	 */
2322 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323 		return;
2324 
2325 	raw_spin_lock_irq(&ctx->lock);
2326 	task = ctx->task;
2327 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328 		/*
2329 		 * Cannot happen because we already checked above (which also
2330 		 * cannot happen), and we hold ctx->mutex, which serializes us
2331 		 * against perf_event_exit_task_context().
2332 		 */
2333 		raw_spin_unlock_irq(&ctx->lock);
2334 		return;
2335 	}
2336 	raw_spin_unlock_irq(&ctx->lock);
2337 	/*
2338 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2339 	 * unconditionally.
2340 	 */
2341 	goto again;
2342 }
2343 
2344 /*
2345  * Put a event into inactive state and update time fields.
2346  * Enabling the leader of a group effectively enables all
2347  * the group members that aren't explicitly disabled, so we
2348  * have to update their ->tstamp_enabled also.
2349  * Note: this works for group members as well as group leaders
2350  * since the non-leader members' sibling_lists will be empty.
2351  */
2352 static void __perf_event_mark_enabled(struct perf_event *event)
2353 {
2354 	struct perf_event *sub;
2355 	u64 tstamp = perf_event_time(event);
2356 
2357 	event->state = PERF_EVENT_STATE_INACTIVE;
2358 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2359 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2362 	}
2363 }
2364 
2365 /*
2366  * Cross CPU call to enable a performance event
2367  */
2368 static void __perf_event_enable(struct perf_event *event,
2369 				struct perf_cpu_context *cpuctx,
2370 				struct perf_event_context *ctx,
2371 				void *info)
2372 {
2373 	struct perf_event *leader = event->group_leader;
2374 	struct perf_event_context *task_ctx;
2375 
2376 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377 	    event->state <= PERF_EVENT_STATE_ERROR)
2378 		return;
2379 
2380 	if (ctx->is_active)
2381 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382 
2383 	__perf_event_mark_enabled(event);
2384 
2385 	if (!ctx->is_active)
2386 		return;
2387 
2388 	if (!event_filter_match(event)) {
2389 		if (is_cgroup_event(event))
2390 			perf_cgroup_defer_enabled(event);
2391 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392 		return;
2393 	}
2394 
2395 	/*
2396 	 * If the event is in a group and isn't the group leader,
2397 	 * then don't put it on unless the group is on.
2398 	 */
2399 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401 		return;
2402 	}
2403 
2404 	task_ctx = cpuctx->task_ctx;
2405 	if (ctx->task)
2406 		WARN_ON_ONCE(task_ctx != ctx);
2407 
2408 	ctx_resched(cpuctx, task_ctx);
2409 }
2410 
2411 /*
2412  * Enable a event.
2413  *
2414  * If event->ctx is a cloned context, callers must make sure that
2415  * every task struct that event->ctx->task could possibly point to
2416  * remains valid.  This condition is satisfied when called through
2417  * perf_event_for_each_child or perf_event_for_each as described
2418  * for perf_event_disable.
2419  */
2420 static void _perf_event_enable(struct perf_event *event)
2421 {
2422 	struct perf_event_context *ctx = event->ctx;
2423 
2424 	raw_spin_lock_irq(&ctx->lock);
2425 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426 	    event->state <  PERF_EVENT_STATE_ERROR) {
2427 		raw_spin_unlock_irq(&ctx->lock);
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * If the event is in error state, clear that first.
2433 	 *
2434 	 * That way, if we see the event in error state below, we know that it
2435 	 * has gone back into error state, as distinct from the task having
2436 	 * been scheduled away before the cross-call arrived.
2437 	 */
2438 	if (event->state == PERF_EVENT_STATE_ERROR)
2439 		event->state = PERF_EVENT_STATE_OFF;
2440 	raw_spin_unlock_irq(&ctx->lock);
2441 
2442 	event_function_call(event, __perf_event_enable, NULL);
2443 }
2444 
2445 /*
2446  * See perf_event_disable();
2447  */
2448 void perf_event_enable(struct perf_event *event)
2449 {
2450 	struct perf_event_context *ctx;
2451 
2452 	ctx = perf_event_ctx_lock(event);
2453 	_perf_event_enable(event);
2454 	perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_enable);
2457 
2458 struct stop_event_data {
2459 	struct perf_event	*event;
2460 	unsigned int		restart;
2461 };
2462 
2463 static int __perf_event_stop(void *info)
2464 {
2465 	struct stop_event_data *sd = info;
2466 	struct perf_event *event = sd->event;
2467 
2468 	/* if it's already INACTIVE, do nothing */
2469 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470 		return 0;
2471 
2472 	/* matches smp_wmb() in event_sched_in() */
2473 	smp_rmb();
2474 
2475 	/*
2476 	 * There is a window with interrupts enabled before we get here,
2477 	 * so we need to check again lest we try to stop another CPU's event.
2478 	 */
2479 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2480 		return -EAGAIN;
2481 
2482 	event->pmu->stop(event, PERF_EF_UPDATE);
2483 
2484 	/*
2485 	 * May race with the actual stop (through perf_pmu_output_stop()),
2486 	 * but it is only used for events with AUX ring buffer, and such
2487 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2488 	 * see comments in perf_aux_output_begin().
2489 	 *
2490 	 * Since this is happening on a event-local CPU, no trace is lost
2491 	 * while restarting.
2492 	 */
2493 	if (sd->restart)
2494 		event->pmu->start(event, PERF_EF_START);
2495 
2496 	return 0;
2497 }
2498 
2499 static int perf_event_stop(struct perf_event *event, int restart)
2500 {
2501 	struct stop_event_data sd = {
2502 		.event		= event,
2503 		.restart	= restart,
2504 	};
2505 	int ret = 0;
2506 
2507 	do {
2508 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509 			return 0;
2510 
2511 		/* matches smp_wmb() in event_sched_in() */
2512 		smp_rmb();
2513 
2514 		/*
2515 		 * We only want to restart ACTIVE events, so if the event goes
2516 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2517 		 * fall through with ret==-ENXIO.
2518 		 */
2519 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2520 					__perf_event_stop, &sd);
2521 	} while (ret == -EAGAIN);
2522 
2523 	return ret;
2524 }
2525 
2526 /*
2527  * In order to contain the amount of racy and tricky in the address filter
2528  * configuration management, it is a two part process:
2529  *
2530  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531  *      we update the addresses of corresponding vmas in
2532  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2533  * (p2) when an event is scheduled in (pmu::add), it calls
2534  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535  *      if the generation has changed since the previous call.
2536  *
2537  * If (p1) happens while the event is active, we restart it to force (p2).
2538  *
2539  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2541  *     ioctl;
2542  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2544  *     for reading;
2545  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546  *     of exec.
2547  */
2548 void perf_event_addr_filters_sync(struct perf_event *event)
2549 {
2550 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551 
2552 	if (!has_addr_filter(event))
2553 		return;
2554 
2555 	raw_spin_lock(&ifh->lock);
2556 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557 		event->pmu->addr_filters_sync(event);
2558 		event->hw.addr_filters_gen = event->addr_filters_gen;
2559 	}
2560 	raw_spin_unlock(&ifh->lock);
2561 }
2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563 
2564 static int _perf_event_refresh(struct perf_event *event, int refresh)
2565 {
2566 	/*
2567 	 * not supported on inherited events
2568 	 */
2569 	if (event->attr.inherit || !is_sampling_event(event))
2570 		return -EINVAL;
2571 
2572 	atomic_add(refresh, &event->event_limit);
2573 	_perf_event_enable(event);
2574 
2575 	return 0;
2576 }
2577 
2578 /*
2579  * See perf_event_disable()
2580  */
2581 int perf_event_refresh(struct perf_event *event, int refresh)
2582 {
2583 	struct perf_event_context *ctx;
2584 	int ret;
2585 
2586 	ctx = perf_event_ctx_lock(event);
2587 	ret = _perf_event_refresh(event, refresh);
2588 	perf_event_ctx_unlock(event, ctx);
2589 
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(perf_event_refresh);
2593 
2594 static void ctx_sched_out(struct perf_event_context *ctx,
2595 			  struct perf_cpu_context *cpuctx,
2596 			  enum event_type_t event_type)
2597 {
2598 	int is_active = ctx->is_active;
2599 	struct perf_event *event;
2600 
2601 	lockdep_assert_held(&ctx->lock);
2602 
2603 	if (likely(!ctx->nr_events)) {
2604 		/*
2605 		 * See __perf_remove_from_context().
2606 		 */
2607 		WARN_ON_ONCE(ctx->is_active);
2608 		if (ctx->task)
2609 			WARN_ON_ONCE(cpuctx->task_ctx);
2610 		return;
2611 	}
2612 
2613 	ctx->is_active &= ~event_type;
2614 	if (!(ctx->is_active & EVENT_ALL))
2615 		ctx->is_active = 0;
2616 
2617 	if (ctx->task) {
2618 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619 		if (!ctx->is_active)
2620 			cpuctx->task_ctx = NULL;
2621 	}
2622 
2623 	/*
2624 	 * Always update time if it was set; not only when it changes.
2625 	 * Otherwise we can 'forget' to update time for any but the last
2626 	 * context we sched out. For example:
2627 	 *
2628 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2630 	 *
2631 	 * would only update time for the pinned events.
2632 	 */
2633 	if (is_active & EVENT_TIME) {
2634 		/* update (and stop) ctx time */
2635 		update_context_time(ctx);
2636 		update_cgrp_time_from_cpuctx(cpuctx);
2637 	}
2638 
2639 	is_active ^= ctx->is_active; /* changed bits */
2640 
2641 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642 		return;
2643 
2644 	perf_pmu_disable(ctx->pmu);
2645 	if (is_active & EVENT_PINNED) {
2646 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647 			group_sched_out(event, cpuctx, ctx);
2648 	}
2649 
2650 	if (is_active & EVENT_FLEXIBLE) {
2651 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652 			group_sched_out(event, cpuctx, ctx);
2653 	}
2654 	perf_pmu_enable(ctx->pmu);
2655 }
2656 
2657 /*
2658  * Test whether two contexts are equivalent, i.e. whether they have both been
2659  * cloned from the same version of the same context.
2660  *
2661  * Equivalence is measured using a generation number in the context that is
2662  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663  * and list_del_event().
2664  */
2665 static int context_equiv(struct perf_event_context *ctx1,
2666 			 struct perf_event_context *ctx2)
2667 {
2668 	lockdep_assert_held(&ctx1->lock);
2669 	lockdep_assert_held(&ctx2->lock);
2670 
2671 	/* Pinning disables the swap optimization */
2672 	if (ctx1->pin_count || ctx2->pin_count)
2673 		return 0;
2674 
2675 	/* If ctx1 is the parent of ctx2 */
2676 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677 		return 1;
2678 
2679 	/* If ctx2 is the parent of ctx1 */
2680 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681 		return 1;
2682 
2683 	/*
2684 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2685 	 * hierarchy, see perf_event_init_context().
2686 	 */
2687 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688 			ctx1->parent_gen == ctx2->parent_gen)
2689 		return 1;
2690 
2691 	/* Unmatched */
2692 	return 0;
2693 }
2694 
2695 static void __perf_event_sync_stat(struct perf_event *event,
2696 				     struct perf_event *next_event)
2697 {
2698 	u64 value;
2699 
2700 	if (!event->attr.inherit_stat)
2701 		return;
2702 
2703 	/*
2704 	 * Update the event value, we cannot use perf_event_read()
2705 	 * because we're in the middle of a context switch and have IRQs
2706 	 * disabled, which upsets smp_call_function_single(), however
2707 	 * we know the event must be on the current CPU, therefore we
2708 	 * don't need to use it.
2709 	 */
2710 	switch (event->state) {
2711 	case PERF_EVENT_STATE_ACTIVE:
2712 		event->pmu->read(event);
2713 		/* fall-through */
2714 
2715 	case PERF_EVENT_STATE_INACTIVE:
2716 		update_event_times(event);
2717 		break;
2718 
2719 	default:
2720 		break;
2721 	}
2722 
2723 	/*
2724 	 * In order to keep per-task stats reliable we need to flip the event
2725 	 * values when we flip the contexts.
2726 	 */
2727 	value = local64_read(&next_event->count);
2728 	value = local64_xchg(&event->count, value);
2729 	local64_set(&next_event->count, value);
2730 
2731 	swap(event->total_time_enabled, next_event->total_time_enabled);
2732 	swap(event->total_time_running, next_event->total_time_running);
2733 
2734 	/*
2735 	 * Since we swizzled the values, update the user visible data too.
2736 	 */
2737 	perf_event_update_userpage(event);
2738 	perf_event_update_userpage(next_event);
2739 }
2740 
2741 static void perf_event_sync_stat(struct perf_event_context *ctx,
2742 				   struct perf_event_context *next_ctx)
2743 {
2744 	struct perf_event *event, *next_event;
2745 
2746 	if (!ctx->nr_stat)
2747 		return;
2748 
2749 	update_context_time(ctx);
2750 
2751 	event = list_first_entry(&ctx->event_list,
2752 				   struct perf_event, event_entry);
2753 
2754 	next_event = list_first_entry(&next_ctx->event_list,
2755 					struct perf_event, event_entry);
2756 
2757 	while (&event->event_entry != &ctx->event_list &&
2758 	       &next_event->event_entry != &next_ctx->event_list) {
2759 
2760 		__perf_event_sync_stat(event, next_event);
2761 
2762 		event = list_next_entry(event, event_entry);
2763 		next_event = list_next_entry(next_event, event_entry);
2764 	}
2765 }
2766 
2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768 					 struct task_struct *next)
2769 {
2770 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771 	struct perf_event_context *next_ctx;
2772 	struct perf_event_context *parent, *next_parent;
2773 	struct perf_cpu_context *cpuctx;
2774 	int do_switch = 1;
2775 
2776 	if (likely(!ctx))
2777 		return;
2778 
2779 	cpuctx = __get_cpu_context(ctx);
2780 	if (!cpuctx->task_ctx)
2781 		return;
2782 
2783 	rcu_read_lock();
2784 	next_ctx = next->perf_event_ctxp[ctxn];
2785 	if (!next_ctx)
2786 		goto unlock;
2787 
2788 	parent = rcu_dereference(ctx->parent_ctx);
2789 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2790 
2791 	/* If neither context have a parent context; they cannot be clones. */
2792 	if (!parent && !next_parent)
2793 		goto unlock;
2794 
2795 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796 		/*
2797 		 * Looks like the two contexts are clones, so we might be
2798 		 * able to optimize the context switch.  We lock both
2799 		 * contexts and check that they are clones under the
2800 		 * lock (including re-checking that neither has been
2801 		 * uncloned in the meantime).  It doesn't matter which
2802 		 * order we take the locks because no other cpu could
2803 		 * be trying to lock both of these tasks.
2804 		 */
2805 		raw_spin_lock(&ctx->lock);
2806 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807 		if (context_equiv(ctx, next_ctx)) {
2808 			WRITE_ONCE(ctx->task, next);
2809 			WRITE_ONCE(next_ctx->task, task);
2810 
2811 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812 
2813 			/*
2814 			 * RCU_INIT_POINTER here is safe because we've not
2815 			 * modified the ctx and the above modification of
2816 			 * ctx->task and ctx->task_ctx_data are immaterial
2817 			 * since those values are always verified under
2818 			 * ctx->lock which we're now holding.
2819 			 */
2820 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822 
2823 			do_switch = 0;
2824 
2825 			perf_event_sync_stat(ctx, next_ctx);
2826 		}
2827 		raw_spin_unlock(&next_ctx->lock);
2828 		raw_spin_unlock(&ctx->lock);
2829 	}
2830 unlock:
2831 	rcu_read_unlock();
2832 
2833 	if (do_switch) {
2834 		raw_spin_lock(&ctx->lock);
2835 		task_ctx_sched_out(cpuctx, ctx);
2836 		raw_spin_unlock(&ctx->lock);
2837 	}
2838 }
2839 
2840 void perf_sched_cb_dec(struct pmu *pmu)
2841 {
2842 	this_cpu_dec(perf_sched_cb_usages);
2843 }
2844 
2845 void perf_sched_cb_inc(struct pmu *pmu)
2846 {
2847 	this_cpu_inc(perf_sched_cb_usages);
2848 }
2849 
2850 /*
2851  * This function provides the context switch callback to the lower code
2852  * layer. It is invoked ONLY when the context switch callback is enabled.
2853  */
2854 static void perf_pmu_sched_task(struct task_struct *prev,
2855 				struct task_struct *next,
2856 				bool sched_in)
2857 {
2858 	struct perf_cpu_context *cpuctx;
2859 	struct pmu *pmu;
2860 	unsigned long flags;
2861 
2862 	if (prev == next)
2863 		return;
2864 
2865 	local_irq_save(flags);
2866 
2867 	rcu_read_lock();
2868 
2869 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2870 		if (pmu->sched_task) {
2871 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872 
2873 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874 
2875 			perf_pmu_disable(pmu);
2876 
2877 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2878 
2879 			perf_pmu_enable(pmu);
2880 
2881 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882 		}
2883 	}
2884 
2885 	rcu_read_unlock();
2886 
2887 	local_irq_restore(flags);
2888 }
2889 
2890 static void perf_event_switch(struct task_struct *task,
2891 			      struct task_struct *next_prev, bool sched_in);
2892 
2893 #define for_each_task_context_nr(ctxn)					\
2894 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895 
2896 /*
2897  * Called from scheduler to remove the events of the current task,
2898  * with interrupts disabled.
2899  *
2900  * We stop each event and update the event value in event->count.
2901  *
2902  * This does not protect us against NMI, but disable()
2903  * sets the disabled bit in the control field of event _before_
2904  * accessing the event control register. If a NMI hits, then it will
2905  * not restart the event.
2906  */
2907 void __perf_event_task_sched_out(struct task_struct *task,
2908 				 struct task_struct *next)
2909 {
2910 	int ctxn;
2911 
2912 	if (__this_cpu_read(perf_sched_cb_usages))
2913 		perf_pmu_sched_task(task, next, false);
2914 
2915 	if (atomic_read(&nr_switch_events))
2916 		perf_event_switch(task, next, false);
2917 
2918 	for_each_task_context_nr(ctxn)
2919 		perf_event_context_sched_out(task, ctxn, next);
2920 
2921 	/*
2922 	 * if cgroup events exist on this CPU, then we need
2923 	 * to check if we have to switch out PMU state.
2924 	 * cgroup event are system-wide mode only
2925 	 */
2926 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927 		perf_cgroup_sched_out(task, next);
2928 }
2929 
2930 /*
2931  * Called with IRQs disabled
2932  */
2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934 			      enum event_type_t event_type)
2935 {
2936 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 }
2938 
2939 static void
2940 ctx_pinned_sched_in(struct perf_event_context *ctx,
2941 		    struct perf_cpu_context *cpuctx)
2942 {
2943 	struct perf_event *event;
2944 
2945 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946 		if (event->state <= PERF_EVENT_STATE_OFF)
2947 			continue;
2948 		if (!event_filter_match(event))
2949 			continue;
2950 
2951 		/* may need to reset tstamp_enabled */
2952 		if (is_cgroup_event(event))
2953 			perf_cgroup_mark_enabled(event, ctx);
2954 
2955 		if (group_can_go_on(event, cpuctx, 1))
2956 			group_sched_in(event, cpuctx, ctx);
2957 
2958 		/*
2959 		 * If this pinned group hasn't been scheduled,
2960 		 * put it in error state.
2961 		 */
2962 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963 			update_group_times(event);
2964 			event->state = PERF_EVENT_STATE_ERROR;
2965 		}
2966 	}
2967 }
2968 
2969 static void
2970 ctx_flexible_sched_in(struct perf_event_context *ctx,
2971 		      struct perf_cpu_context *cpuctx)
2972 {
2973 	struct perf_event *event;
2974 	int can_add_hw = 1;
2975 
2976 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977 		/* Ignore events in OFF or ERROR state */
2978 		if (event->state <= PERF_EVENT_STATE_OFF)
2979 			continue;
2980 		/*
2981 		 * Listen to the 'cpu' scheduling filter constraint
2982 		 * of events:
2983 		 */
2984 		if (!event_filter_match(event))
2985 			continue;
2986 
2987 		/* may need to reset tstamp_enabled */
2988 		if (is_cgroup_event(event))
2989 			perf_cgroup_mark_enabled(event, ctx);
2990 
2991 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992 			if (group_sched_in(event, cpuctx, ctx))
2993 				can_add_hw = 0;
2994 		}
2995 	}
2996 }
2997 
2998 static void
2999 ctx_sched_in(struct perf_event_context *ctx,
3000 	     struct perf_cpu_context *cpuctx,
3001 	     enum event_type_t event_type,
3002 	     struct task_struct *task)
3003 {
3004 	int is_active = ctx->is_active;
3005 	u64 now;
3006 
3007 	lockdep_assert_held(&ctx->lock);
3008 
3009 	if (likely(!ctx->nr_events))
3010 		return;
3011 
3012 	ctx->is_active |= (event_type | EVENT_TIME);
3013 	if (ctx->task) {
3014 		if (!is_active)
3015 			cpuctx->task_ctx = ctx;
3016 		else
3017 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018 	}
3019 
3020 	is_active ^= ctx->is_active; /* changed bits */
3021 
3022 	if (is_active & EVENT_TIME) {
3023 		/* start ctx time */
3024 		now = perf_clock();
3025 		ctx->timestamp = now;
3026 		perf_cgroup_set_timestamp(task, ctx);
3027 	}
3028 
3029 	/*
3030 	 * First go through the list and put on any pinned groups
3031 	 * in order to give them the best chance of going on.
3032 	 */
3033 	if (is_active & EVENT_PINNED)
3034 		ctx_pinned_sched_in(ctx, cpuctx);
3035 
3036 	/* Then walk through the lower prio flexible groups */
3037 	if (is_active & EVENT_FLEXIBLE)
3038 		ctx_flexible_sched_in(ctx, cpuctx);
3039 }
3040 
3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3042 			     enum event_type_t event_type,
3043 			     struct task_struct *task)
3044 {
3045 	struct perf_event_context *ctx = &cpuctx->ctx;
3046 
3047 	ctx_sched_in(ctx, cpuctx, event_type, task);
3048 }
3049 
3050 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051 					struct task_struct *task)
3052 {
3053 	struct perf_cpu_context *cpuctx;
3054 
3055 	cpuctx = __get_cpu_context(ctx);
3056 	if (cpuctx->task_ctx == ctx)
3057 		return;
3058 
3059 	perf_ctx_lock(cpuctx, ctx);
3060 	perf_pmu_disable(ctx->pmu);
3061 	/*
3062 	 * We want to keep the following priority order:
3063 	 * cpu pinned (that don't need to move), task pinned,
3064 	 * cpu flexible, task flexible.
3065 	 */
3066 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067 	perf_event_sched_in(cpuctx, ctx, task);
3068 	perf_pmu_enable(ctx->pmu);
3069 	perf_ctx_unlock(cpuctx, ctx);
3070 }
3071 
3072 /*
3073  * Called from scheduler to add the events of the current task
3074  * with interrupts disabled.
3075  *
3076  * We restore the event value and then enable it.
3077  *
3078  * This does not protect us against NMI, but enable()
3079  * sets the enabled bit in the control field of event _before_
3080  * accessing the event control register. If a NMI hits, then it will
3081  * keep the event running.
3082  */
3083 void __perf_event_task_sched_in(struct task_struct *prev,
3084 				struct task_struct *task)
3085 {
3086 	struct perf_event_context *ctx;
3087 	int ctxn;
3088 
3089 	/*
3090 	 * If cgroup events exist on this CPU, then we need to check if we have
3091 	 * to switch in PMU state; cgroup event are system-wide mode only.
3092 	 *
3093 	 * Since cgroup events are CPU events, we must schedule these in before
3094 	 * we schedule in the task events.
3095 	 */
3096 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097 		perf_cgroup_sched_in(prev, task);
3098 
3099 	for_each_task_context_nr(ctxn) {
3100 		ctx = task->perf_event_ctxp[ctxn];
3101 		if (likely(!ctx))
3102 			continue;
3103 
3104 		perf_event_context_sched_in(ctx, task);
3105 	}
3106 
3107 	if (atomic_read(&nr_switch_events))
3108 		perf_event_switch(task, prev, true);
3109 
3110 	if (__this_cpu_read(perf_sched_cb_usages))
3111 		perf_pmu_sched_task(prev, task, true);
3112 }
3113 
3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115 {
3116 	u64 frequency = event->attr.sample_freq;
3117 	u64 sec = NSEC_PER_SEC;
3118 	u64 divisor, dividend;
3119 
3120 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3121 
3122 	count_fls = fls64(count);
3123 	nsec_fls = fls64(nsec);
3124 	frequency_fls = fls64(frequency);
3125 	sec_fls = 30;
3126 
3127 	/*
3128 	 * We got @count in @nsec, with a target of sample_freq HZ
3129 	 * the target period becomes:
3130 	 *
3131 	 *             @count * 10^9
3132 	 * period = -------------------
3133 	 *          @nsec * sample_freq
3134 	 *
3135 	 */
3136 
3137 	/*
3138 	 * Reduce accuracy by one bit such that @a and @b converge
3139 	 * to a similar magnitude.
3140 	 */
3141 #define REDUCE_FLS(a, b)		\
3142 do {					\
3143 	if (a##_fls > b##_fls) {	\
3144 		a >>= 1;		\
3145 		a##_fls--;		\
3146 	} else {			\
3147 		b >>= 1;		\
3148 		b##_fls--;		\
3149 	}				\
3150 } while (0)
3151 
3152 	/*
3153 	 * Reduce accuracy until either term fits in a u64, then proceed with
3154 	 * the other, so that finally we can do a u64/u64 division.
3155 	 */
3156 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157 		REDUCE_FLS(nsec, frequency);
3158 		REDUCE_FLS(sec, count);
3159 	}
3160 
3161 	if (count_fls + sec_fls > 64) {
3162 		divisor = nsec * frequency;
3163 
3164 		while (count_fls + sec_fls > 64) {
3165 			REDUCE_FLS(count, sec);
3166 			divisor >>= 1;
3167 		}
3168 
3169 		dividend = count * sec;
3170 	} else {
3171 		dividend = count * sec;
3172 
3173 		while (nsec_fls + frequency_fls > 64) {
3174 			REDUCE_FLS(nsec, frequency);
3175 			dividend >>= 1;
3176 		}
3177 
3178 		divisor = nsec * frequency;
3179 	}
3180 
3181 	if (!divisor)
3182 		return dividend;
3183 
3184 	return div64_u64(dividend, divisor);
3185 }
3186 
3187 static DEFINE_PER_CPU(int, perf_throttled_count);
3188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189 
3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191 {
3192 	struct hw_perf_event *hwc = &event->hw;
3193 	s64 period, sample_period;
3194 	s64 delta;
3195 
3196 	period = perf_calculate_period(event, nsec, count);
3197 
3198 	delta = (s64)(period - hwc->sample_period);
3199 	delta = (delta + 7) / 8; /* low pass filter */
3200 
3201 	sample_period = hwc->sample_period + delta;
3202 
3203 	if (!sample_period)
3204 		sample_period = 1;
3205 
3206 	hwc->sample_period = sample_period;
3207 
3208 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3209 		if (disable)
3210 			event->pmu->stop(event, PERF_EF_UPDATE);
3211 
3212 		local64_set(&hwc->period_left, 0);
3213 
3214 		if (disable)
3215 			event->pmu->start(event, PERF_EF_RELOAD);
3216 	}
3217 }
3218 
3219 /*
3220  * combine freq adjustment with unthrottling to avoid two passes over the
3221  * events. At the same time, make sure, having freq events does not change
3222  * the rate of unthrottling as that would introduce bias.
3223  */
3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225 					   int needs_unthr)
3226 {
3227 	struct perf_event *event;
3228 	struct hw_perf_event *hwc;
3229 	u64 now, period = TICK_NSEC;
3230 	s64 delta;
3231 
3232 	/*
3233 	 * only need to iterate over all events iff:
3234 	 * - context have events in frequency mode (needs freq adjust)
3235 	 * - there are events to unthrottle on this cpu
3236 	 */
3237 	if (!(ctx->nr_freq || needs_unthr))
3238 		return;
3239 
3240 	raw_spin_lock(&ctx->lock);
3241 	perf_pmu_disable(ctx->pmu);
3242 
3243 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 			continue;
3246 
3247 		if (!event_filter_match(event))
3248 			continue;
3249 
3250 		perf_pmu_disable(event->pmu);
3251 
3252 		hwc = &event->hw;
3253 
3254 		if (hwc->interrupts == MAX_INTERRUPTS) {
3255 			hwc->interrupts = 0;
3256 			perf_log_throttle(event, 1);
3257 			event->pmu->start(event, 0);
3258 		}
3259 
3260 		if (!event->attr.freq || !event->attr.sample_freq)
3261 			goto next;
3262 
3263 		/*
3264 		 * stop the event and update event->count
3265 		 */
3266 		event->pmu->stop(event, PERF_EF_UPDATE);
3267 
3268 		now = local64_read(&event->count);
3269 		delta = now - hwc->freq_count_stamp;
3270 		hwc->freq_count_stamp = now;
3271 
3272 		/*
3273 		 * restart the event
3274 		 * reload only if value has changed
3275 		 * we have stopped the event so tell that
3276 		 * to perf_adjust_period() to avoid stopping it
3277 		 * twice.
3278 		 */
3279 		if (delta > 0)
3280 			perf_adjust_period(event, period, delta, false);
3281 
3282 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283 	next:
3284 		perf_pmu_enable(event->pmu);
3285 	}
3286 
3287 	perf_pmu_enable(ctx->pmu);
3288 	raw_spin_unlock(&ctx->lock);
3289 }
3290 
3291 /*
3292  * Round-robin a context's events:
3293  */
3294 static void rotate_ctx(struct perf_event_context *ctx)
3295 {
3296 	/*
3297 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3298 	 * disabled by the inheritance code.
3299 	 */
3300 	if (!ctx->rotate_disable)
3301 		list_rotate_left(&ctx->flexible_groups);
3302 }
3303 
3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305 {
3306 	struct perf_event_context *ctx = NULL;
3307 	int rotate = 0;
3308 
3309 	if (cpuctx->ctx.nr_events) {
3310 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311 			rotate = 1;
3312 	}
3313 
3314 	ctx = cpuctx->task_ctx;
3315 	if (ctx && ctx->nr_events) {
3316 		if (ctx->nr_events != ctx->nr_active)
3317 			rotate = 1;
3318 	}
3319 
3320 	if (!rotate)
3321 		goto done;
3322 
3323 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3324 	perf_pmu_disable(cpuctx->ctx.pmu);
3325 
3326 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327 	if (ctx)
3328 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3329 
3330 	rotate_ctx(&cpuctx->ctx);
3331 	if (ctx)
3332 		rotate_ctx(ctx);
3333 
3334 	perf_event_sched_in(cpuctx, ctx, current);
3335 
3336 	perf_pmu_enable(cpuctx->ctx.pmu);
3337 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 done:
3339 
3340 	return rotate;
3341 }
3342 
3343 void perf_event_task_tick(void)
3344 {
3345 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346 	struct perf_event_context *ctx, *tmp;
3347 	int throttled;
3348 
3349 	WARN_ON(!irqs_disabled());
3350 
3351 	__this_cpu_inc(perf_throttled_seq);
3352 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354 
3355 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356 		perf_adjust_freq_unthr_context(ctx, throttled);
3357 }
3358 
3359 static int event_enable_on_exec(struct perf_event *event,
3360 				struct perf_event_context *ctx)
3361 {
3362 	if (!event->attr.enable_on_exec)
3363 		return 0;
3364 
3365 	event->attr.enable_on_exec = 0;
3366 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367 		return 0;
3368 
3369 	__perf_event_mark_enabled(event);
3370 
3371 	return 1;
3372 }
3373 
3374 /*
3375  * Enable all of a task's events that have been marked enable-on-exec.
3376  * This expects task == current.
3377  */
3378 static void perf_event_enable_on_exec(int ctxn)
3379 {
3380 	struct perf_event_context *ctx, *clone_ctx = NULL;
3381 	struct perf_cpu_context *cpuctx;
3382 	struct perf_event *event;
3383 	unsigned long flags;
3384 	int enabled = 0;
3385 
3386 	local_irq_save(flags);
3387 	ctx = current->perf_event_ctxp[ctxn];
3388 	if (!ctx || !ctx->nr_events)
3389 		goto out;
3390 
3391 	cpuctx = __get_cpu_context(ctx);
3392 	perf_ctx_lock(cpuctx, ctx);
3393 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394 	list_for_each_entry(event, &ctx->event_list, event_entry)
3395 		enabled |= event_enable_on_exec(event, ctx);
3396 
3397 	/*
3398 	 * Unclone and reschedule this context if we enabled any event.
3399 	 */
3400 	if (enabled) {
3401 		clone_ctx = unclone_ctx(ctx);
3402 		ctx_resched(cpuctx, ctx);
3403 	}
3404 	perf_ctx_unlock(cpuctx, ctx);
3405 
3406 out:
3407 	local_irq_restore(flags);
3408 
3409 	if (clone_ctx)
3410 		put_ctx(clone_ctx);
3411 }
3412 
3413 struct perf_read_data {
3414 	struct perf_event *event;
3415 	bool group;
3416 	int ret;
3417 };
3418 
3419 /*
3420  * Cross CPU call to read the hardware event
3421  */
3422 static void __perf_event_read(void *info)
3423 {
3424 	struct perf_read_data *data = info;
3425 	struct perf_event *sub, *event = data->event;
3426 	struct perf_event_context *ctx = event->ctx;
3427 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428 	struct pmu *pmu = event->pmu;
3429 
3430 	/*
3431 	 * If this is a task context, we need to check whether it is
3432 	 * the current task context of this cpu.  If not it has been
3433 	 * scheduled out before the smp call arrived.  In that case
3434 	 * event->count would have been updated to a recent sample
3435 	 * when the event was scheduled out.
3436 	 */
3437 	if (ctx->task && cpuctx->task_ctx != ctx)
3438 		return;
3439 
3440 	raw_spin_lock(&ctx->lock);
3441 	if (ctx->is_active) {
3442 		update_context_time(ctx);
3443 		update_cgrp_time_from_event(event);
3444 	}
3445 
3446 	update_event_times(event);
3447 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3448 		goto unlock;
3449 
3450 	if (!data->group) {
3451 		pmu->read(event);
3452 		data->ret = 0;
3453 		goto unlock;
3454 	}
3455 
3456 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457 
3458 	pmu->read(event);
3459 
3460 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461 		update_event_times(sub);
3462 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463 			/*
3464 			 * Use sibling's PMU rather than @event's since
3465 			 * sibling could be on different (eg: software) PMU.
3466 			 */
3467 			sub->pmu->read(sub);
3468 		}
3469 	}
3470 
3471 	data->ret = pmu->commit_txn(pmu);
3472 
3473 unlock:
3474 	raw_spin_unlock(&ctx->lock);
3475 }
3476 
3477 static inline u64 perf_event_count(struct perf_event *event)
3478 {
3479 	if (event->pmu->count)
3480 		return event->pmu->count(event);
3481 
3482 	return __perf_event_count(event);
3483 }
3484 
3485 /*
3486  * NMI-safe method to read a local event, that is an event that
3487  * is:
3488  *   - either for the current task, or for this CPU
3489  *   - does not have inherit set, for inherited task events
3490  *     will not be local and we cannot read them atomically
3491  *   - must not have a pmu::count method
3492  */
3493 u64 perf_event_read_local(struct perf_event *event)
3494 {
3495 	unsigned long flags;
3496 	u64 val;
3497 
3498 	/*
3499 	 * Disabling interrupts avoids all counter scheduling (context
3500 	 * switches, timer based rotation and IPIs).
3501 	 */
3502 	local_irq_save(flags);
3503 
3504 	/* If this is a per-task event, it must be for current */
3505 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506 		     event->hw.target != current);
3507 
3508 	/* If this is a per-CPU event, it must be for this CPU */
3509 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510 		     event->cpu != smp_processor_id());
3511 
3512 	/*
3513 	 * It must not be an event with inherit set, we cannot read
3514 	 * all child counters from atomic context.
3515 	 */
3516 	WARN_ON_ONCE(event->attr.inherit);
3517 
3518 	/*
3519 	 * It must not have a pmu::count method, those are not
3520 	 * NMI safe.
3521 	 */
3522 	WARN_ON_ONCE(event->pmu->count);
3523 
3524 	/*
3525 	 * If the event is currently on this CPU, its either a per-task event,
3526 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527 	 * oncpu == -1).
3528 	 */
3529 	if (event->oncpu == smp_processor_id())
3530 		event->pmu->read(event);
3531 
3532 	val = local64_read(&event->count);
3533 	local_irq_restore(flags);
3534 
3535 	return val;
3536 }
3537 
3538 static int perf_event_read(struct perf_event *event, bool group)
3539 {
3540 	int ret = 0;
3541 
3542 	/*
3543 	 * If event is enabled and currently active on a CPU, update the
3544 	 * value in the event structure:
3545 	 */
3546 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547 		struct perf_read_data data = {
3548 			.event = event,
3549 			.group = group,
3550 			.ret = 0,
3551 		};
3552 		/*
3553 		 * Purposely ignore the smp_call_function_single() return
3554 		 * value.
3555 		 *
3556 		 * If event->oncpu isn't a valid CPU it means the event got
3557 		 * scheduled out and that will have updated the event count.
3558 		 *
3559 		 * Therefore, either way, we'll have an up-to-date event count
3560 		 * after this.
3561 		 */
3562 		(void)smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3563 		ret = data.ret;
3564 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3565 		struct perf_event_context *ctx = event->ctx;
3566 		unsigned long flags;
3567 
3568 		raw_spin_lock_irqsave(&ctx->lock, flags);
3569 		/*
3570 		 * may read while context is not active
3571 		 * (e.g., thread is blocked), in that case
3572 		 * we cannot update context time
3573 		 */
3574 		if (ctx->is_active) {
3575 			update_context_time(ctx);
3576 			update_cgrp_time_from_event(event);
3577 		}
3578 		if (group)
3579 			update_group_times(event);
3580 		else
3581 			update_event_times(event);
3582 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3583 	}
3584 
3585 	return ret;
3586 }
3587 
3588 /*
3589  * Initialize the perf_event context in a task_struct:
3590  */
3591 static void __perf_event_init_context(struct perf_event_context *ctx)
3592 {
3593 	raw_spin_lock_init(&ctx->lock);
3594 	mutex_init(&ctx->mutex);
3595 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3596 	INIT_LIST_HEAD(&ctx->pinned_groups);
3597 	INIT_LIST_HEAD(&ctx->flexible_groups);
3598 	INIT_LIST_HEAD(&ctx->event_list);
3599 	atomic_set(&ctx->refcount, 1);
3600 }
3601 
3602 static struct perf_event_context *
3603 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3604 {
3605 	struct perf_event_context *ctx;
3606 
3607 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3608 	if (!ctx)
3609 		return NULL;
3610 
3611 	__perf_event_init_context(ctx);
3612 	if (task) {
3613 		ctx->task = task;
3614 		get_task_struct(task);
3615 	}
3616 	ctx->pmu = pmu;
3617 
3618 	return ctx;
3619 }
3620 
3621 static struct task_struct *
3622 find_lively_task_by_vpid(pid_t vpid)
3623 {
3624 	struct task_struct *task;
3625 
3626 	rcu_read_lock();
3627 	if (!vpid)
3628 		task = current;
3629 	else
3630 		task = find_task_by_vpid(vpid);
3631 	if (task)
3632 		get_task_struct(task);
3633 	rcu_read_unlock();
3634 
3635 	if (!task)
3636 		return ERR_PTR(-ESRCH);
3637 
3638 	return task;
3639 }
3640 
3641 /*
3642  * Returns a matching context with refcount and pincount.
3643  */
3644 static struct perf_event_context *
3645 find_get_context(struct pmu *pmu, struct task_struct *task,
3646 		struct perf_event *event)
3647 {
3648 	struct perf_event_context *ctx, *clone_ctx = NULL;
3649 	struct perf_cpu_context *cpuctx;
3650 	void *task_ctx_data = NULL;
3651 	unsigned long flags;
3652 	int ctxn, err;
3653 	int cpu = event->cpu;
3654 
3655 	if (!task) {
3656 		/* Must be root to operate on a CPU event: */
3657 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3658 			return ERR_PTR(-EACCES);
3659 
3660 		/*
3661 		 * We could be clever and allow to attach a event to an
3662 		 * offline CPU and activate it when the CPU comes up, but
3663 		 * that's for later.
3664 		 */
3665 		if (!cpu_online(cpu))
3666 			return ERR_PTR(-ENODEV);
3667 
3668 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3669 		ctx = &cpuctx->ctx;
3670 		get_ctx(ctx);
3671 		++ctx->pin_count;
3672 
3673 		return ctx;
3674 	}
3675 
3676 	err = -EINVAL;
3677 	ctxn = pmu->task_ctx_nr;
3678 	if (ctxn < 0)
3679 		goto errout;
3680 
3681 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3682 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3683 		if (!task_ctx_data) {
3684 			err = -ENOMEM;
3685 			goto errout;
3686 		}
3687 	}
3688 
3689 retry:
3690 	ctx = perf_lock_task_context(task, ctxn, &flags);
3691 	if (ctx) {
3692 		clone_ctx = unclone_ctx(ctx);
3693 		++ctx->pin_count;
3694 
3695 		if (task_ctx_data && !ctx->task_ctx_data) {
3696 			ctx->task_ctx_data = task_ctx_data;
3697 			task_ctx_data = NULL;
3698 		}
3699 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3700 
3701 		if (clone_ctx)
3702 			put_ctx(clone_ctx);
3703 	} else {
3704 		ctx = alloc_perf_context(pmu, task);
3705 		err = -ENOMEM;
3706 		if (!ctx)
3707 			goto errout;
3708 
3709 		if (task_ctx_data) {
3710 			ctx->task_ctx_data = task_ctx_data;
3711 			task_ctx_data = NULL;
3712 		}
3713 
3714 		err = 0;
3715 		mutex_lock(&task->perf_event_mutex);
3716 		/*
3717 		 * If it has already passed perf_event_exit_task().
3718 		 * we must see PF_EXITING, it takes this mutex too.
3719 		 */
3720 		if (task->flags & PF_EXITING)
3721 			err = -ESRCH;
3722 		else if (task->perf_event_ctxp[ctxn])
3723 			err = -EAGAIN;
3724 		else {
3725 			get_ctx(ctx);
3726 			++ctx->pin_count;
3727 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3728 		}
3729 		mutex_unlock(&task->perf_event_mutex);
3730 
3731 		if (unlikely(err)) {
3732 			put_ctx(ctx);
3733 
3734 			if (err == -EAGAIN)
3735 				goto retry;
3736 			goto errout;
3737 		}
3738 	}
3739 
3740 	kfree(task_ctx_data);
3741 	return ctx;
3742 
3743 errout:
3744 	kfree(task_ctx_data);
3745 	return ERR_PTR(err);
3746 }
3747 
3748 static void perf_event_free_filter(struct perf_event *event);
3749 static void perf_event_free_bpf_prog(struct perf_event *event);
3750 
3751 static void free_event_rcu(struct rcu_head *head)
3752 {
3753 	struct perf_event *event;
3754 
3755 	event = container_of(head, struct perf_event, rcu_head);
3756 	if (event->ns)
3757 		put_pid_ns(event->ns);
3758 	perf_event_free_filter(event);
3759 	kfree(event);
3760 }
3761 
3762 static void ring_buffer_attach(struct perf_event *event,
3763 			       struct ring_buffer *rb);
3764 
3765 static void detach_sb_event(struct perf_event *event)
3766 {
3767 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3768 
3769 	raw_spin_lock(&pel->lock);
3770 	list_del_rcu(&event->sb_list);
3771 	raw_spin_unlock(&pel->lock);
3772 }
3773 
3774 static bool is_sb_event(struct perf_event *event)
3775 {
3776 	struct perf_event_attr *attr = &event->attr;
3777 
3778 	if (event->parent)
3779 		return false;
3780 
3781 	if (event->attach_state & PERF_ATTACH_TASK)
3782 		return false;
3783 
3784 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3785 	    attr->comm || attr->comm_exec ||
3786 	    attr->task ||
3787 	    attr->context_switch)
3788 		return true;
3789 	return false;
3790 }
3791 
3792 static void unaccount_pmu_sb_event(struct perf_event *event)
3793 {
3794 	if (is_sb_event(event))
3795 		detach_sb_event(event);
3796 }
3797 
3798 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3799 {
3800 	if (event->parent)
3801 		return;
3802 
3803 	if (is_cgroup_event(event))
3804 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3805 }
3806 
3807 #ifdef CONFIG_NO_HZ_FULL
3808 static DEFINE_SPINLOCK(nr_freq_lock);
3809 #endif
3810 
3811 static void unaccount_freq_event_nohz(void)
3812 {
3813 #ifdef CONFIG_NO_HZ_FULL
3814 	spin_lock(&nr_freq_lock);
3815 	if (atomic_dec_and_test(&nr_freq_events))
3816 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3817 	spin_unlock(&nr_freq_lock);
3818 #endif
3819 }
3820 
3821 static void unaccount_freq_event(void)
3822 {
3823 	if (tick_nohz_full_enabled())
3824 		unaccount_freq_event_nohz();
3825 	else
3826 		atomic_dec(&nr_freq_events);
3827 }
3828 
3829 static void unaccount_event(struct perf_event *event)
3830 {
3831 	bool dec = false;
3832 
3833 	if (event->parent)
3834 		return;
3835 
3836 	if (event->attach_state & PERF_ATTACH_TASK)
3837 		dec = true;
3838 	if (event->attr.mmap || event->attr.mmap_data)
3839 		atomic_dec(&nr_mmap_events);
3840 	if (event->attr.comm)
3841 		atomic_dec(&nr_comm_events);
3842 	if (event->attr.task)
3843 		atomic_dec(&nr_task_events);
3844 	if (event->attr.freq)
3845 		unaccount_freq_event();
3846 	if (event->attr.context_switch) {
3847 		dec = true;
3848 		atomic_dec(&nr_switch_events);
3849 	}
3850 	if (is_cgroup_event(event))
3851 		dec = true;
3852 	if (has_branch_stack(event))
3853 		dec = true;
3854 
3855 	if (dec) {
3856 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3857 			schedule_delayed_work(&perf_sched_work, HZ);
3858 	}
3859 
3860 	unaccount_event_cpu(event, event->cpu);
3861 
3862 	unaccount_pmu_sb_event(event);
3863 }
3864 
3865 static void perf_sched_delayed(struct work_struct *work)
3866 {
3867 	mutex_lock(&perf_sched_mutex);
3868 	if (atomic_dec_and_test(&perf_sched_count))
3869 		static_branch_disable(&perf_sched_events);
3870 	mutex_unlock(&perf_sched_mutex);
3871 }
3872 
3873 /*
3874  * The following implement mutual exclusion of events on "exclusive" pmus
3875  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3876  * at a time, so we disallow creating events that might conflict, namely:
3877  *
3878  *  1) cpu-wide events in the presence of per-task events,
3879  *  2) per-task events in the presence of cpu-wide events,
3880  *  3) two matching events on the same context.
3881  *
3882  * The former two cases are handled in the allocation path (perf_event_alloc(),
3883  * _free_event()), the latter -- before the first perf_install_in_context().
3884  */
3885 static int exclusive_event_init(struct perf_event *event)
3886 {
3887 	struct pmu *pmu = event->pmu;
3888 
3889 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3890 		return 0;
3891 
3892 	/*
3893 	 * Prevent co-existence of per-task and cpu-wide events on the
3894 	 * same exclusive pmu.
3895 	 *
3896 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3897 	 * events on this "exclusive" pmu, positive means there are
3898 	 * per-task events.
3899 	 *
3900 	 * Since this is called in perf_event_alloc() path, event::ctx
3901 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3902 	 * to mean "per-task event", because unlike other attach states it
3903 	 * never gets cleared.
3904 	 */
3905 	if (event->attach_state & PERF_ATTACH_TASK) {
3906 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3907 			return -EBUSY;
3908 	} else {
3909 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3910 			return -EBUSY;
3911 	}
3912 
3913 	return 0;
3914 }
3915 
3916 static void exclusive_event_destroy(struct perf_event *event)
3917 {
3918 	struct pmu *pmu = event->pmu;
3919 
3920 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3921 		return;
3922 
3923 	/* see comment in exclusive_event_init() */
3924 	if (event->attach_state & PERF_ATTACH_TASK)
3925 		atomic_dec(&pmu->exclusive_cnt);
3926 	else
3927 		atomic_inc(&pmu->exclusive_cnt);
3928 }
3929 
3930 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3931 {
3932 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3933 	    (e1->cpu == e2->cpu ||
3934 	     e1->cpu == -1 ||
3935 	     e2->cpu == -1))
3936 		return true;
3937 	return false;
3938 }
3939 
3940 /* Called under the same ctx::mutex as perf_install_in_context() */
3941 static bool exclusive_event_installable(struct perf_event *event,
3942 					struct perf_event_context *ctx)
3943 {
3944 	struct perf_event *iter_event;
3945 	struct pmu *pmu = event->pmu;
3946 
3947 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3948 		return true;
3949 
3950 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3951 		if (exclusive_event_match(iter_event, event))
3952 			return false;
3953 	}
3954 
3955 	return true;
3956 }
3957 
3958 static void perf_addr_filters_splice(struct perf_event *event,
3959 				       struct list_head *head);
3960 
3961 static void _free_event(struct perf_event *event)
3962 {
3963 	irq_work_sync(&event->pending);
3964 
3965 	unaccount_event(event);
3966 
3967 	if (event->rb) {
3968 		/*
3969 		 * Can happen when we close an event with re-directed output.
3970 		 *
3971 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3972 		 * over us; possibly making our ring_buffer_put() the last.
3973 		 */
3974 		mutex_lock(&event->mmap_mutex);
3975 		ring_buffer_attach(event, NULL);
3976 		mutex_unlock(&event->mmap_mutex);
3977 	}
3978 
3979 	if (is_cgroup_event(event))
3980 		perf_detach_cgroup(event);
3981 
3982 	if (!event->parent) {
3983 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3984 			put_callchain_buffers();
3985 	}
3986 
3987 	perf_event_free_bpf_prog(event);
3988 	perf_addr_filters_splice(event, NULL);
3989 	kfree(event->addr_filters_offs);
3990 
3991 	if (event->destroy)
3992 		event->destroy(event);
3993 
3994 	if (event->ctx)
3995 		put_ctx(event->ctx);
3996 
3997 	exclusive_event_destroy(event);
3998 	module_put(event->pmu->module);
3999 
4000 	call_rcu(&event->rcu_head, free_event_rcu);
4001 }
4002 
4003 /*
4004  * Used to free events which have a known refcount of 1, such as in error paths
4005  * where the event isn't exposed yet and inherited events.
4006  */
4007 static void free_event(struct perf_event *event)
4008 {
4009 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4010 				"unexpected event refcount: %ld; ptr=%p\n",
4011 				atomic_long_read(&event->refcount), event)) {
4012 		/* leak to avoid use-after-free */
4013 		return;
4014 	}
4015 
4016 	_free_event(event);
4017 }
4018 
4019 /*
4020  * Remove user event from the owner task.
4021  */
4022 static void perf_remove_from_owner(struct perf_event *event)
4023 {
4024 	struct task_struct *owner;
4025 
4026 	rcu_read_lock();
4027 	/*
4028 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4029 	 * observe !owner it means the list deletion is complete and we can
4030 	 * indeed free this event, otherwise we need to serialize on
4031 	 * owner->perf_event_mutex.
4032 	 */
4033 	owner = lockless_dereference(event->owner);
4034 	if (owner) {
4035 		/*
4036 		 * Since delayed_put_task_struct() also drops the last
4037 		 * task reference we can safely take a new reference
4038 		 * while holding the rcu_read_lock().
4039 		 */
4040 		get_task_struct(owner);
4041 	}
4042 	rcu_read_unlock();
4043 
4044 	if (owner) {
4045 		/*
4046 		 * If we're here through perf_event_exit_task() we're already
4047 		 * holding ctx->mutex which would be an inversion wrt. the
4048 		 * normal lock order.
4049 		 *
4050 		 * However we can safely take this lock because its the child
4051 		 * ctx->mutex.
4052 		 */
4053 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4054 
4055 		/*
4056 		 * We have to re-check the event->owner field, if it is cleared
4057 		 * we raced with perf_event_exit_task(), acquiring the mutex
4058 		 * ensured they're done, and we can proceed with freeing the
4059 		 * event.
4060 		 */
4061 		if (event->owner) {
4062 			list_del_init(&event->owner_entry);
4063 			smp_store_release(&event->owner, NULL);
4064 		}
4065 		mutex_unlock(&owner->perf_event_mutex);
4066 		put_task_struct(owner);
4067 	}
4068 }
4069 
4070 static void put_event(struct perf_event *event)
4071 {
4072 	if (!atomic_long_dec_and_test(&event->refcount))
4073 		return;
4074 
4075 	_free_event(event);
4076 }
4077 
4078 /*
4079  * Kill an event dead; while event:refcount will preserve the event
4080  * object, it will not preserve its functionality. Once the last 'user'
4081  * gives up the object, we'll destroy the thing.
4082  */
4083 int perf_event_release_kernel(struct perf_event *event)
4084 {
4085 	struct perf_event_context *ctx = event->ctx;
4086 	struct perf_event *child, *tmp;
4087 
4088 	/*
4089 	 * If we got here through err_file: fput(event_file); we will not have
4090 	 * attached to a context yet.
4091 	 */
4092 	if (!ctx) {
4093 		WARN_ON_ONCE(event->attach_state &
4094 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4095 		goto no_ctx;
4096 	}
4097 
4098 	if (!is_kernel_event(event))
4099 		perf_remove_from_owner(event);
4100 
4101 	ctx = perf_event_ctx_lock(event);
4102 	WARN_ON_ONCE(ctx->parent_ctx);
4103 	perf_remove_from_context(event, DETACH_GROUP);
4104 
4105 	raw_spin_lock_irq(&ctx->lock);
4106 	/*
4107 	 * Mark this even as STATE_DEAD, there is no external reference to it
4108 	 * anymore.
4109 	 *
4110 	 * Anybody acquiring event->child_mutex after the below loop _must_
4111 	 * also see this, most importantly inherit_event() which will avoid
4112 	 * placing more children on the list.
4113 	 *
4114 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4115 	 * child events.
4116 	 */
4117 	event->state = PERF_EVENT_STATE_DEAD;
4118 	raw_spin_unlock_irq(&ctx->lock);
4119 
4120 	perf_event_ctx_unlock(event, ctx);
4121 
4122 again:
4123 	mutex_lock(&event->child_mutex);
4124 	list_for_each_entry(child, &event->child_list, child_list) {
4125 
4126 		/*
4127 		 * Cannot change, child events are not migrated, see the
4128 		 * comment with perf_event_ctx_lock_nested().
4129 		 */
4130 		ctx = lockless_dereference(child->ctx);
4131 		/*
4132 		 * Since child_mutex nests inside ctx::mutex, we must jump
4133 		 * through hoops. We start by grabbing a reference on the ctx.
4134 		 *
4135 		 * Since the event cannot get freed while we hold the
4136 		 * child_mutex, the context must also exist and have a !0
4137 		 * reference count.
4138 		 */
4139 		get_ctx(ctx);
4140 
4141 		/*
4142 		 * Now that we have a ctx ref, we can drop child_mutex, and
4143 		 * acquire ctx::mutex without fear of it going away. Then we
4144 		 * can re-acquire child_mutex.
4145 		 */
4146 		mutex_unlock(&event->child_mutex);
4147 		mutex_lock(&ctx->mutex);
4148 		mutex_lock(&event->child_mutex);
4149 
4150 		/*
4151 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4152 		 * state, if child is still the first entry, it didn't get freed
4153 		 * and we can continue doing so.
4154 		 */
4155 		tmp = list_first_entry_or_null(&event->child_list,
4156 					       struct perf_event, child_list);
4157 		if (tmp == child) {
4158 			perf_remove_from_context(child, DETACH_GROUP);
4159 			list_del(&child->child_list);
4160 			free_event(child);
4161 			/*
4162 			 * This matches the refcount bump in inherit_event();
4163 			 * this can't be the last reference.
4164 			 */
4165 			put_event(event);
4166 		}
4167 
4168 		mutex_unlock(&event->child_mutex);
4169 		mutex_unlock(&ctx->mutex);
4170 		put_ctx(ctx);
4171 		goto again;
4172 	}
4173 	mutex_unlock(&event->child_mutex);
4174 
4175 no_ctx:
4176 	put_event(event); /* Must be the 'last' reference */
4177 	return 0;
4178 }
4179 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4180 
4181 /*
4182  * Called when the last reference to the file is gone.
4183  */
4184 static int perf_release(struct inode *inode, struct file *file)
4185 {
4186 	perf_event_release_kernel(file->private_data);
4187 	return 0;
4188 }
4189 
4190 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4191 {
4192 	struct perf_event *child;
4193 	u64 total = 0;
4194 
4195 	*enabled = 0;
4196 	*running = 0;
4197 
4198 	mutex_lock(&event->child_mutex);
4199 
4200 	(void)perf_event_read(event, false);
4201 	total += perf_event_count(event);
4202 
4203 	*enabled += event->total_time_enabled +
4204 			atomic64_read(&event->child_total_time_enabled);
4205 	*running += event->total_time_running +
4206 			atomic64_read(&event->child_total_time_running);
4207 
4208 	list_for_each_entry(child, &event->child_list, child_list) {
4209 		(void)perf_event_read(child, false);
4210 		total += perf_event_count(child);
4211 		*enabled += child->total_time_enabled;
4212 		*running += child->total_time_running;
4213 	}
4214 	mutex_unlock(&event->child_mutex);
4215 
4216 	return total;
4217 }
4218 EXPORT_SYMBOL_GPL(perf_event_read_value);
4219 
4220 static int __perf_read_group_add(struct perf_event *leader,
4221 					u64 read_format, u64 *values)
4222 {
4223 	struct perf_event *sub;
4224 	int n = 1; /* skip @nr */
4225 	int ret;
4226 
4227 	ret = perf_event_read(leader, true);
4228 	if (ret)
4229 		return ret;
4230 
4231 	/*
4232 	 * Since we co-schedule groups, {enabled,running} times of siblings
4233 	 * will be identical to those of the leader, so we only publish one
4234 	 * set.
4235 	 */
4236 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4237 		values[n++] += leader->total_time_enabled +
4238 			atomic64_read(&leader->child_total_time_enabled);
4239 	}
4240 
4241 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4242 		values[n++] += leader->total_time_running +
4243 			atomic64_read(&leader->child_total_time_running);
4244 	}
4245 
4246 	/*
4247 	 * Write {count,id} tuples for every sibling.
4248 	 */
4249 	values[n++] += perf_event_count(leader);
4250 	if (read_format & PERF_FORMAT_ID)
4251 		values[n++] = primary_event_id(leader);
4252 
4253 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4254 		values[n++] += perf_event_count(sub);
4255 		if (read_format & PERF_FORMAT_ID)
4256 			values[n++] = primary_event_id(sub);
4257 	}
4258 
4259 	return 0;
4260 }
4261 
4262 static int perf_read_group(struct perf_event *event,
4263 				   u64 read_format, char __user *buf)
4264 {
4265 	struct perf_event *leader = event->group_leader, *child;
4266 	struct perf_event_context *ctx = leader->ctx;
4267 	int ret;
4268 	u64 *values;
4269 
4270 	lockdep_assert_held(&ctx->mutex);
4271 
4272 	values = kzalloc(event->read_size, GFP_KERNEL);
4273 	if (!values)
4274 		return -ENOMEM;
4275 
4276 	values[0] = 1 + leader->nr_siblings;
4277 
4278 	/*
4279 	 * By locking the child_mutex of the leader we effectively
4280 	 * lock the child list of all siblings.. XXX explain how.
4281 	 */
4282 	mutex_lock(&leader->child_mutex);
4283 
4284 	ret = __perf_read_group_add(leader, read_format, values);
4285 	if (ret)
4286 		goto unlock;
4287 
4288 	list_for_each_entry(child, &leader->child_list, child_list) {
4289 		ret = __perf_read_group_add(child, read_format, values);
4290 		if (ret)
4291 			goto unlock;
4292 	}
4293 
4294 	mutex_unlock(&leader->child_mutex);
4295 
4296 	ret = event->read_size;
4297 	if (copy_to_user(buf, values, event->read_size))
4298 		ret = -EFAULT;
4299 	goto out;
4300 
4301 unlock:
4302 	mutex_unlock(&leader->child_mutex);
4303 out:
4304 	kfree(values);
4305 	return ret;
4306 }
4307 
4308 static int perf_read_one(struct perf_event *event,
4309 				 u64 read_format, char __user *buf)
4310 {
4311 	u64 enabled, running;
4312 	u64 values[4];
4313 	int n = 0;
4314 
4315 	values[n++] = perf_event_read_value(event, &enabled, &running);
4316 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4317 		values[n++] = enabled;
4318 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4319 		values[n++] = running;
4320 	if (read_format & PERF_FORMAT_ID)
4321 		values[n++] = primary_event_id(event);
4322 
4323 	if (copy_to_user(buf, values, n * sizeof(u64)))
4324 		return -EFAULT;
4325 
4326 	return n * sizeof(u64);
4327 }
4328 
4329 static bool is_event_hup(struct perf_event *event)
4330 {
4331 	bool no_children;
4332 
4333 	if (event->state > PERF_EVENT_STATE_EXIT)
4334 		return false;
4335 
4336 	mutex_lock(&event->child_mutex);
4337 	no_children = list_empty(&event->child_list);
4338 	mutex_unlock(&event->child_mutex);
4339 	return no_children;
4340 }
4341 
4342 /*
4343  * Read the performance event - simple non blocking version for now
4344  */
4345 static ssize_t
4346 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4347 {
4348 	u64 read_format = event->attr.read_format;
4349 	int ret;
4350 
4351 	/*
4352 	 * Return end-of-file for a read on a event that is in
4353 	 * error state (i.e. because it was pinned but it couldn't be
4354 	 * scheduled on to the CPU at some point).
4355 	 */
4356 	if (event->state == PERF_EVENT_STATE_ERROR)
4357 		return 0;
4358 
4359 	if (count < event->read_size)
4360 		return -ENOSPC;
4361 
4362 	WARN_ON_ONCE(event->ctx->parent_ctx);
4363 	if (read_format & PERF_FORMAT_GROUP)
4364 		ret = perf_read_group(event, read_format, buf);
4365 	else
4366 		ret = perf_read_one(event, read_format, buf);
4367 
4368 	return ret;
4369 }
4370 
4371 static ssize_t
4372 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4373 {
4374 	struct perf_event *event = file->private_data;
4375 	struct perf_event_context *ctx;
4376 	int ret;
4377 
4378 	ctx = perf_event_ctx_lock(event);
4379 	ret = __perf_read(event, buf, count);
4380 	perf_event_ctx_unlock(event, ctx);
4381 
4382 	return ret;
4383 }
4384 
4385 static unsigned int perf_poll(struct file *file, poll_table *wait)
4386 {
4387 	struct perf_event *event = file->private_data;
4388 	struct ring_buffer *rb;
4389 	unsigned int events = POLLHUP;
4390 
4391 	poll_wait(file, &event->waitq, wait);
4392 
4393 	if (is_event_hup(event))
4394 		return events;
4395 
4396 	/*
4397 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4398 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4399 	 */
4400 	mutex_lock(&event->mmap_mutex);
4401 	rb = event->rb;
4402 	if (rb)
4403 		events = atomic_xchg(&rb->poll, 0);
4404 	mutex_unlock(&event->mmap_mutex);
4405 	return events;
4406 }
4407 
4408 static void _perf_event_reset(struct perf_event *event)
4409 {
4410 	(void)perf_event_read(event, false);
4411 	local64_set(&event->count, 0);
4412 	perf_event_update_userpage(event);
4413 }
4414 
4415 /*
4416  * Holding the top-level event's child_mutex means that any
4417  * descendant process that has inherited this event will block
4418  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4419  * task existence requirements of perf_event_enable/disable.
4420  */
4421 static void perf_event_for_each_child(struct perf_event *event,
4422 					void (*func)(struct perf_event *))
4423 {
4424 	struct perf_event *child;
4425 
4426 	WARN_ON_ONCE(event->ctx->parent_ctx);
4427 
4428 	mutex_lock(&event->child_mutex);
4429 	func(event);
4430 	list_for_each_entry(child, &event->child_list, child_list)
4431 		func(child);
4432 	mutex_unlock(&event->child_mutex);
4433 }
4434 
4435 static void perf_event_for_each(struct perf_event *event,
4436 				  void (*func)(struct perf_event *))
4437 {
4438 	struct perf_event_context *ctx = event->ctx;
4439 	struct perf_event *sibling;
4440 
4441 	lockdep_assert_held(&ctx->mutex);
4442 
4443 	event = event->group_leader;
4444 
4445 	perf_event_for_each_child(event, func);
4446 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4447 		perf_event_for_each_child(sibling, func);
4448 }
4449 
4450 static void __perf_event_period(struct perf_event *event,
4451 				struct perf_cpu_context *cpuctx,
4452 				struct perf_event_context *ctx,
4453 				void *info)
4454 {
4455 	u64 value = *((u64 *)info);
4456 	bool active;
4457 
4458 	if (event->attr.freq) {
4459 		event->attr.sample_freq = value;
4460 	} else {
4461 		event->attr.sample_period = value;
4462 		event->hw.sample_period = value;
4463 	}
4464 
4465 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4466 	if (active) {
4467 		perf_pmu_disable(ctx->pmu);
4468 		/*
4469 		 * We could be throttled; unthrottle now to avoid the tick
4470 		 * trying to unthrottle while we already re-started the event.
4471 		 */
4472 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4473 			event->hw.interrupts = 0;
4474 			perf_log_throttle(event, 1);
4475 		}
4476 		event->pmu->stop(event, PERF_EF_UPDATE);
4477 	}
4478 
4479 	local64_set(&event->hw.period_left, 0);
4480 
4481 	if (active) {
4482 		event->pmu->start(event, PERF_EF_RELOAD);
4483 		perf_pmu_enable(ctx->pmu);
4484 	}
4485 }
4486 
4487 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4488 {
4489 	u64 value;
4490 
4491 	if (!is_sampling_event(event))
4492 		return -EINVAL;
4493 
4494 	if (copy_from_user(&value, arg, sizeof(value)))
4495 		return -EFAULT;
4496 
4497 	if (!value)
4498 		return -EINVAL;
4499 
4500 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4501 		return -EINVAL;
4502 
4503 	event_function_call(event, __perf_event_period, &value);
4504 
4505 	return 0;
4506 }
4507 
4508 static const struct file_operations perf_fops;
4509 
4510 static inline int perf_fget_light(int fd, struct fd *p)
4511 {
4512 	struct fd f = fdget(fd);
4513 	if (!f.file)
4514 		return -EBADF;
4515 
4516 	if (f.file->f_op != &perf_fops) {
4517 		fdput(f);
4518 		return -EBADF;
4519 	}
4520 	*p = f;
4521 	return 0;
4522 }
4523 
4524 static int perf_event_set_output(struct perf_event *event,
4525 				 struct perf_event *output_event);
4526 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4527 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4528 
4529 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4530 {
4531 	void (*func)(struct perf_event *);
4532 	u32 flags = arg;
4533 
4534 	switch (cmd) {
4535 	case PERF_EVENT_IOC_ENABLE:
4536 		func = _perf_event_enable;
4537 		break;
4538 	case PERF_EVENT_IOC_DISABLE:
4539 		func = _perf_event_disable;
4540 		break;
4541 	case PERF_EVENT_IOC_RESET:
4542 		func = _perf_event_reset;
4543 		break;
4544 
4545 	case PERF_EVENT_IOC_REFRESH:
4546 		return _perf_event_refresh(event, arg);
4547 
4548 	case PERF_EVENT_IOC_PERIOD:
4549 		return perf_event_period(event, (u64 __user *)arg);
4550 
4551 	case PERF_EVENT_IOC_ID:
4552 	{
4553 		u64 id = primary_event_id(event);
4554 
4555 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4556 			return -EFAULT;
4557 		return 0;
4558 	}
4559 
4560 	case PERF_EVENT_IOC_SET_OUTPUT:
4561 	{
4562 		int ret;
4563 		if (arg != -1) {
4564 			struct perf_event *output_event;
4565 			struct fd output;
4566 			ret = perf_fget_light(arg, &output);
4567 			if (ret)
4568 				return ret;
4569 			output_event = output.file->private_data;
4570 			ret = perf_event_set_output(event, output_event);
4571 			fdput(output);
4572 		} else {
4573 			ret = perf_event_set_output(event, NULL);
4574 		}
4575 		return ret;
4576 	}
4577 
4578 	case PERF_EVENT_IOC_SET_FILTER:
4579 		return perf_event_set_filter(event, (void __user *)arg);
4580 
4581 	case PERF_EVENT_IOC_SET_BPF:
4582 		return perf_event_set_bpf_prog(event, arg);
4583 
4584 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4585 		struct ring_buffer *rb;
4586 
4587 		rcu_read_lock();
4588 		rb = rcu_dereference(event->rb);
4589 		if (!rb || !rb->nr_pages) {
4590 			rcu_read_unlock();
4591 			return -EINVAL;
4592 		}
4593 		rb_toggle_paused(rb, !!arg);
4594 		rcu_read_unlock();
4595 		return 0;
4596 	}
4597 	default:
4598 		return -ENOTTY;
4599 	}
4600 
4601 	if (flags & PERF_IOC_FLAG_GROUP)
4602 		perf_event_for_each(event, func);
4603 	else
4604 		perf_event_for_each_child(event, func);
4605 
4606 	return 0;
4607 }
4608 
4609 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4610 {
4611 	struct perf_event *event = file->private_data;
4612 	struct perf_event_context *ctx;
4613 	long ret;
4614 
4615 	ctx = perf_event_ctx_lock(event);
4616 	ret = _perf_ioctl(event, cmd, arg);
4617 	perf_event_ctx_unlock(event, ctx);
4618 
4619 	return ret;
4620 }
4621 
4622 #ifdef CONFIG_COMPAT
4623 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4624 				unsigned long arg)
4625 {
4626 	switch (_IOC_NR(cmd)) {
4627 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4628 	case _IOC_NR(PERF_EVENT_IOC_ID):
4629 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4630 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4631 			cmd &= ~IOCSIZE_MASK;
4632 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4633 		}
4634 		break;
4635 	}
4636 	return perf_ioctl(file, cmd, arg);
4637 }
4638 #else
4639 # define perf_compat_ioctl NULL
4640 #endif
4641 
4642 int perf_event_task_enable(void)
4643 {
4644 	struct perf_event_context *ctx;
4645 	struct perf_event *event;
4646 
4647 	mutex_lock(&current->perf_event_mutex);
4648 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4649 		ctx = perf_event_ctx_lock(event);
4650 		perf_event_for_each_child(event, _perf_event_enable);
4651 		perf_event_ctx_unlock(event, ctx);
4652 	}
4653 	mutex_unlock(&current->perf_event_mutex);
4654 
4655 	return 0;
4656 }
4657 
4658 int perf_event_task_disable(void)
4659 {
4660 	struct perf_event_context *ctx;
4661 	struct perf_event *event;
4662 
4663 	mutex_lock(&current->perf_event_mutex);
4664 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4665 		ctx = perf_event_ctx_lock(event);
4666 		perf_event_for_each_child(event, _perf_event_disable);
4667 		perf_event_ctx_unlock(event, ctx);
4668 	}
4669 	mutex_unlock(&current->perf_event_mutex);
4670 
4671 	return 0;
4672 }
4673 
4674 static int perf_event_index(struct perf_event *event)
4675 {
4676 	if (event->hw.state & PERF_HES_STOPPED)
4677 		return 0;
4678 
4679 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4680 		return 0;
4681 
4682 	return event->pmu->event_idx(event);
4683 }
4684 
4685 static void calc_timer_values(struct perf_event *event,
4686 				u64 *now,
4687 				u64 *enabled,
4688 				u64 *running)
4689 {
4690 	u64 ctx_time;
4691 
4692 	*now = perf_clock();
4693 	ctx_time = event->shadow_ctx_time + *now;
4694 	*enabled = ctx_time - event->tstamp_enabled;
4695 	*running = ctx_time - event->tstamp_running;
4696 }
4697 
4698 static void perf_event_init_userpage(struct perf_event *event)
4699 {
4700 	struct perf_event_mmap_page *userpg;
4701 	struct ring_buffer *rb;
4702 
4703 	rcu_read_lock();
4704 	rb = rcu_dereference(event->rb);
4705 	if (!rb)
4706 		goto unlock;
4707 
4708 	userpg = rb->user_page;
4709 
4710 	/* Allow new userspace to detect that bit 0 is deprecated */
4711 	userpg->cap_bit0_is_deprecated = 1;
4712 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4713 	userpg->data_offset = PAGE_SIZE;
4714 	userpg->data_size = perf_data_size(rb);
4715 
4716 unlock:
4717 	rcu_read_unlock();
4718 }
4719 
4720 void __weak arch_perf_update_userpage(
4721 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4722 {
4723 }
4724 
4725 /*
4726  * Callers need to ensure there can be no nesting of this function, otherwise
4727  * the seqlock logic goes bad. We can not serialize this because the arch
4728  * code calls this from NMI context.
4729  */
4730 void perf_event_update_userpage(struct perf_event *event)
4731 {
4732 	struct perf_event_mmap_page *userpg;
4733 	struct ring_buffer *rb;
4734 	u64 enabled, running, now;
4735 
4736 	rcu_read_lock();
4737 	rb = rcu_dereference(event->rb);
4738 	if (!rb)
4739 		goto unlock;
4740 
4741 	/*
4742 	 * compute total_time_enabled, total_time_running
4743 	 * based on snapshot values taken when the event
4744 	 * was last scheduled in.
4745 	 *
4746 	 * we cannot simply called update_context_time()
4747 	 * because of locking issue as we can be called in
4748 	 * NMI context
4749 	 */
4750 	calc_timer_values(event, &now, &enabled, &running);
4751 
4752 	userpg = rb->user_page;
4753 	/*
4754 	 * Disable preemption so as to not let the corresponding user-space
4755 	 * spin too long if we get preempted.
4756 	 */
4757 	preempt_disable();
4758 	++userpg->lock;
4759 	barrier();
4760 	userpg->index = perf_event_index(event);
4761 	userpg->offset = perf_event_count(event);
4762 	if (userpg->index)
4763 		userpg->offset -= local64_read(&event->hw.prev_count);
4764 
4765 	userpg->time_enabled = enabled +
4766 			atomic64_read(&event->child_total_time_enabled);
4767 
4768 	userpg->time_running = running +
4769 			atomic64_read(&event->child_total_time_running);
4770 
4771 	arch_perf_update_userpage(event, userpg, now);
4772 
4773 	barrier();
4774 	++userpg->lock;
4775 	preempt_enable();
4776 unlock:
4777 	rcu_read_unlock();
4778 }
4779 
4780 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4781 {
4782 	struct perf_event *event = vma->vm_file->private_data;
4783 	struct ring_buffer *rb;
4784 	int ret = VM_FAULT_SIGBUS;
4785 
4786 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4787 		if (vmf->pgoff == 0)
4788 			ret = 0;
4789 		return ret;
4790 	}
4791 
4792 	rcu_read_lock();
4793 	rb = rcu_dereference(event->rb);
4794 	if (!rb)
4795 		goto unlock;
4796 
4797 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4798 		goto unlock;
4799 
4800 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4801 	if (!vmf->page)
4802 		goto unlock;
4803 
4804 	get_page(vmf->page);
4805 	vmf->page->mapping = vma->vm_file->f_mapping;
4806 	vmf->page->index   = vmf->pgoff;
4807 
4808 	ret = 0;
4809 unlock:
4810 	rcu_read_unlock();
4811 
4812 	return ret;
4813 }
4814 
4815 static void ring_buffer_attach(struct perf_event *event,
4816 			       struct ring_buffer *rb)
4817 {
4818 	struct ring_buffer *old_rb = NULL;
4819 	unsigned long flags;
4820 
4821 	if (event->rb) {
4822 		/*
4823 		 * Should be impossible, we set this when removing
4824 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4825 		 */
4826 		WARN_ON_ONCE(event->rcu_pending);
4827 
4828 		old_rb = event->rb;
4829 		spin_lock_irqsave(&old_rb->event_lock, flags);
4830 		list_del_rcu(&event->rb_entry);
4831 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4832 
4833 		event->rcu_batches = get_state_synchronize_rcu();
4834 		event->rcu_pending = 1;
4835 	}
4836 
4837 	if (rb) {
4838 		if (event->rcu_pending) {
4839 			cond_synchronize_rcu(event->rcu_batches);
4840 			event->rcu_pending = 0;
4841 		}
4842 
4843 		spin_lock_irqsave(&rb->event_lock, flags);
4844 		list_add_rcu(&event->rb_entry, &rb->event_list);
4845 		spin_unlock_irqrestore(&rb->event_lock, flags);
4846 	}
4847 
4848 	/*
4849 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4850 	 * before swizzling the event::rb pointer; if it's getting
4851 	 * unmapped, its aux_mmap_count will be 0 and it won't
4852 	 * restart. See the comment in __perf_pmu_output_stop().
4853 	 *
4854 	 * Data will inevitably be lost when set_output is done in
4855 	 * mid-air, but then again, whoever does it like this is
4856 	 * not in for the data anyway.
4857 	 */
4858 	if (has_aux(event))
4859 		perf_event_stop(event, 0);
4860 
4861 	rcu_assign_pointer(event->rb, rb);
4862 
4863 	if (old_rb) {
4864 		ring_buffer_put(old_rb);
4865 		/*
4866 		 * Since we detached before setting the new rb, so that we
4867 		 * could attach the new rb, we could have missed a wakeup.
4868 		 * Provide it now.
4869 		 */
4870 		wake_up_all(&event->waitq);
4871 	}
4872 }
4873 
4874 static void ring_buffer_wakeup(struct perf_event *event)
4875 {
4876 	struct ring_buffer *rb;
4877 
4878 	rcu_read_lock();
4879 	rb = rcu_dereference(event->rb);
4880 	if (rb) {
4881 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4882 			wake_up_all(&event->waitq);
4883 	}
4884 	rcu_read_unlock();
4885 }
4886 
4887 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4888 {
4889 	struct ring_buffer *rb;
4890 
4891 	rcu_read_lock();
4892 	rb = rcu_dereference(event->rb);
4893 	if (rb) {
4894 		if (!atomic_inc_not_zero(&rb->refcount))
4895 			rb = NULL;
4896 	}
4897 	rcu_read_unlock();
4898 
4899 	return rb;
4900 }
4901 
4902 void ring_buffer_put(struct ring_buffer *rb)
4903 {
4904 	if (!atomic_dec_and_test(&rb->refcount))
4905 		return;
4906 
4907 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4908 
4909 	call_rcu(&rb->rcu_head, rb_free_rcu);
4910 }
4911 
4912 static void perf_mmap_open(struct vm_area_struct *vma)
4913 {
4914 	struct perf_event *event = vma->vm_file->private_data;
4915 
4916 	atomic_inc(&event->mmap_count);
4917 	atomic_inc(&event->rb->mmap_count);
4918 
4919 	if (vma->vm_pgoff)
4920 		atomic_inc(&event->rb->aux_mmap_count);
4921 
4922 	if (event->pmu->event_mapped)
4923 		event->pmu->event_mapped(event);
4924 }
4925 
4926 static void perf_pmu_output_stop(struct perf_event *event);
4927 
4928 /*
4929  * A buffer can be mmap()ed multiple times; either directly through the same
4930  * event, or through other events by use of perf_event_set_output().
4931  *
4932  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4933  * the buffer here, where we still have a VM context. This means we need
4934  * to detach all events redirecting to us.
4935  */
4936 static void perf_mmap_close(struct vm_area_struct *vma)
4937 {
4938 	struct perf_event *event = vma->vm_file->private_data;
4939 
4940 	struct ring_buffer *rb = ring_buffer_get(event);
4941 	struct user_struct *mmap_user = rb->mmap_user;
4942 	int mmap_locked = rb->mmap_locked;
4943 	unsigned long size = perf_data_size(rb);
4944 
4945 	if (event->pmu->event_unmapped)
4946 		event->pmu->event_unmapped(event);
4947 
4948 	/*
4949 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4950 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4951 	 * serialize with perf_mmap here.
4952 	 */
4953 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4954 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4955 		/*
4956 		 * Stop all AUX events that are writing to this buffer,
4957 		 * so that we can free its AUX pages and corresponding PMU
4958 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4959 		 * they won't start any more (see perf_aux_output_begin()).
4960 		 */
4961 		perf_pmu_output_stop(event);
4962 
4963 		/* now it's safe to free the pages */
4964 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4965 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4966 
4967 		/* this has to be the last one */
4968 		rb_free_aux(rb);
4969 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4970 
4971 		mutex_unlock(&event->mmap_mutex);
4972 	}
4973 
4974 	atomic_dec(&rb->mmap_count);
4975 
4976 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4977 		goto out_put;
4978 
4979 	ring_buffer_attach(event, NULL);
4980 	mutex_unlock(&event->mmap_mutex);
4981 
4982 	/* If there's still other mmap()s of this buffer, we're done. */
4983 	if (atomic_read(&rb->mmap_count))
4984 		goto out_put;
4985 
4986 	/*
4987 	 * No other mmap()s, detach from all other events that might redirect
4988 	 * into the now unreachable buffer. Somewhat complicated by the
4989 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4990 	 */
4991 again:
4992 	rcu_read_lock();
4993 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4994 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4995 			/*
4996 			 * This event is en-route to free_event() which will
4997 			 * detach it and remove it from the list.
4998 			 */
4999 			continue;
5000 		}
5001 		rcu_read_unlock();
5002 
5003 		mutex_lock(&event->mmap_mutex);
5004 		/*
5005 		 * Check we didn't race with perf_event_set_output() which can
5006 		 * swizzle the rb from under us while we were waiting to
5007 		 * acquire mmap_mutex.
5008 		 *
5009 		 * If we find a different rb; ignore this event, a next
5010 		 * iteration will no longer find it on the list. We have to
5011 		 * still restart the iteration to make sure we're not now
5012 		 * iterating the wrong list.
5013 		 */
5014 		if (event->rb == rb)
5015 			ring_buffer_attach(event, NULL);
5016 
5017 		mutex_unlock(&event->mmap_mutex);
5018 		put_event(event);
5019 
5020 		/*
5021 		 * Restart the iteration; either we're on the wrong list or
5022 		 * destroyed its integrity by doing a deletion.
5023 		 */
5024 		goto again;
5025 	}
5026 	rcu_read_unlock();
5027 
5028 	/*
5029 	 * It could be there's still a few 0-ref events on the list; they'll
5030 	 * get cleaned up by free_event() -- they'll also still have their
5031 	 * ref on the rb and will free it whenever they are done with it.
5032 	 *
5033 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5034 	 * undo the VM accounting.
5035 	 */
5036 
5037 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5038 	vma->vm_mm->pinned_vm -= mmap_locked;
5039 	free_uid(mmap_user);
5040 
5041 out_put:
5042 	ring_buffer_put(rb); /* could be last */
5043 }
5044 
5045 static const struct vm_operations_struct perf_mmap_vmops = {
5046 	.open		= perf_mmap_open,
5047 	.close		= perf_mmap_close, /* non mergable */
5048 	.fault		= perf_mmap_fault,
5049 	.page_mkwrite	= perf_mmap_fault,
5050 };
5051 
5052 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5053 {
5054 	struct perf_event *event = file->private_data;
5055 	unsigned long user_locked, user_lock_limit;
5056 	struct user_struct *user = current_user();
5057 	unsigned long locked, lock_limit;
5058 	struct ring_buffer *rb = NULL;
5059 	unsigned long vma_size;
5060 	unsigned long nr_pages;
5061 	long user_extra = 0, extra = 0;
5062 	int ret = 0, flags = 0;
5063 
5064 	/*
5065 	 * Don't allow mmap() of inherited per-task counters. This would
5066 	 * create a performance issue due to all children writing to the
5067 	 * same rb.
5068 	 */
5069 	if (event->cpu == -1 && event->attr.inherit)
5070 		return -EINVAL;
5071 
5072 	if (!(vma->vm_flags & VM_SHARED))
5073 		return -EINVAL;
5074 
5075 	vma_size = vma->vm_end - vma->vm_start;
5076 
5077 	if (vma->vm_pgoff == 0) {
5078 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5079 	} else {
5080 		/*
5081 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5082 		 * mapped, all subsequent mappings should have the same size
5083 		 * and offset. Must be above the normal perf buffer.
5084 		 */
5085 		u64 aux_offset, aux_size;
5086 
5087 		if (!event->rb)
5088 			return -EINVAL;
5089 
5090 		nr_pages = vma_size / PAGE_SIZE;
5091 
5092 		mutex_lock(&event->mmap_mutex);
5093 		ret = -EINVAL;
5094 
5095 		rb = event->rb;
5096 		if (!rb)
5097 			goto aux_unlock;
5098 
5099 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5100 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5101 
5102 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5103 			goto aux_unlock;
5104 
5105 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5106 			goto aux_unlock;
5107 
5108 		/* already mapped with a different offset */
5109 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5110 			goto aux_unlock;
5111 
5112 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5113 			goto aux_unlock;
5114 
5115 		/* already mapped with a different size */
5116 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5117 			goto aux_unlock;
5118 
5119 		if (!is_power_of_2(nr_pages))
5120 			goto aux_unlock;
5121 
5122 		if (!atomic_inc_not_zero(&rb->mmap_count))
5123 			goto aux_unlock;
5124 
5125 		if (rb_has_aux(rb)) {
5126 			atomic_inc(&rb->aux_mmap_count);
5127 			ret = 0;
5128 			goto unlock;
5129 		}
5130 
5131 		atomic_set(&rb->aux_mmap_count, 1);
5132 		user_extra = nr_pages;
5133 
5134 		goto accounting;
5135 	}
5136 
5137 	/*
5138 	 * If we have rb pages ensure they're a power-of-two number, so we
5139 	 * can do bitmasks instead of modulo.
5140 	 */
5141 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5142 		return -EINVAL;
5143 
5144 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5145 		return -EINVAL;
5146 
5147 	WARN_ON_ONCE(event->ctx->parent_ctx);
5148 again:
5149 	mutex_lock(&event->mmap_mutex);
5150 	if (event->rb) {
5151 		if (event->rb->nr_pages != nr_pages) {
5152 			ret = -EINVAL;
5153 			goto unlock;
5154 		}
5155 
5156 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5157 			/*
5158 			 * Raced against perf_mmap_close() through
5159 			 * perf_event_set_output(). Try again, hope for better
5160 			 * luck.
5161 			 */
5162 			mutex_unlock(&event->mmap_mutex);
5163 			goto again;
5164 		}
5165 
5166 		goto unlock;
5167 	}
5168 
5169 	user_extra = nr_pages + 1;
5170 
5171 accounting:
5172 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5173 
5174 	/*
5175 	 * Increase the limit linearly with more CPUs:
5176 	 */
5177 	user_lock_limit *= num_online_cpus();
5178 
5179 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5180 
5181 	if (user_locked > user_lock_limit)
5182 		extra = user_locked - user_lock_limit;
5183 
5184 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5185 	lock_limit >>= PAGE_SHIFT;
5186 	locked = vma->vm_mm->pinned_vm + extra;
5187 
5188 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5189 		!capable(CAP_IPC_LOCK)) {
5190 		ret = -EPERM;
5191 		goto unlock;
5192 	}
5193 
5194 	WARN_ON(!rb && event->rb);
5195 
5196 	if (vma->vm_flags & VM_WRITE)
5197 		flags |= RING_BUFFER_WRITABLE;
5198 
5199 	if (!rb) {
5200 		rb = rb_alloc(nr_pages,
5201 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5202 			      event->cpu, flags);
5203 
5204 		if (!rb) {
5205 			ret = -ENOMEM;
5206 			goto unlock;
5207 		}
5208 
5209 		atomic_set(&rb->mmap_count, 1);
5210 		rb->mmap_user = get_current_user();
5211 		rb->mmap_locked = extra;
5212 
5213 		ring_buffer_attach(event, rb);
5214 
5215 		perf_event_init_userpage(event);
5216 		perf_event_update_userpage(event);
5217 	} else {
5218 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5219 				   event->attr.aux_watermark, flags);
5220 		if (!ret)
5221 			rb->aux_mmap_locked = extra;
5222 	}
5223 
5224 unlock:
5225 	if (!ret) {
5226 		atomic_long_add(user_extra, &user->locked_vm);
5227 		vma->vm_mm->pinned_vm += extra;
5228 
5229 		atomic_inc(&event->mmap_count);
5230 	} else if (rb) {
5231 		atomic_dec(&rb->mmap_count);
5232 	}
5233 aux_unlock:
5234 	mutex_unlock(&event->mmap_mutex);
5235 
5236 	/*
5237 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5238 	 * vma.
5239 	 */
5240 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5241 	vma->vm_ops = &perf_mmap_vmops;
5242 
5243 	if (event->pmu->event_mapped)
5244 		event->pmu->event_mapped(event);
5245 
5246 	return ret;
5247 }
5248 
5249 static int perf_fasync(int fd, struct file *filp, int on)
5250 {
5251 	struct inode *inode = file_inode(filp);
5252 	struct perf_event *event = filp->private_data;
5253 	int retval;
5254 
5255 	inode_lock(inode);
5256 	retval = fasync_helper(fd, filp, on, &event->fasync);
5257 	inode_unlock(inode);
5258 
5259 	if (retval < 0)
5260 		return retval;
5261 
5262 	return 0;
5263 }
5264 
5265 static const struct file_operations perf_fops = {
5266 	.llseek			= no_llseek,
5267 	.release		= perf_release,
5268 	.read			= perf_read,
5269 	.poll			= perf_poll,
5270 	.unlocked_ioctl		= perf_ioctl,
5271 	.compat_ioctl		= perf_compat_ioctl,
5272 	.mmap			= perf_mmap,
5273 	.fasync			= perf_fasync,
5274 };
5275 
5276 /*
5277  * Perf event wakeup
5278  *
5279  * If there's data, ensure we set the poll() state and publish everything
5280  * to user-space before waking everybody up.
5281  */
5282 
5283 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5284 {
5285 	/* only the parent has fasync state */
5286 	if (event->parent)
5287 		event = event->parent;
5288 	return &event->fasync;
5289 }
5290 
5291 void perf_event_wakeup(struct perf_event *event)
5292 {
5293 	ring_buffer_wakeup(event);
5294 
5295 	if (event->pending_kill) {
5296 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5297 		event->pending_kill = 0;
5298 	}
5299 }
5300 
5301 static void perf_pending_event(struct irq_work *entry)
5302 {
5303 	struct perf_event *event = container_of(entry,
5304 			struct perf_event, pending);
5305 	int rctx;
5306 
5307 	rctx = perf_swevent_get_recursion_context();
5308 	/*
5309 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5310 	 * and we won't recurse 'further'.
5311 	 */
5312 
5313 	if (event->pending_disable) {
5314 		event->pending_disable = 0;
5315 		perf_event_disable_local(event);
5316 	}
5317 
5318 	if (event->pending_wakeup) {
5319 		event->pending_wakeup = 0;
5320 		perf_event_wakeup(event);
5321 	}
5322 
5323 	if (rctx >= 0)
5324 		perf_swevent_put_recursion_context(rctx);
5325 }
5326 
5327 /*
5328  * We assume there is only KVM supporting the callbacks.
5329  * Later on, we might change it to a list if there is
5330  * another virtualization implementation supporting the callbacks.
5331  */
5332 struct perf_guest_info_callbacks *perf_guest_cbs;
5333 
5334 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5335 {
5336 	perf_guest_cbs = cbs;
5337 	return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5340 
5341 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5342 {
5343 	perf_guest_cbs = NULL;
5344 	return 0;
5345 }
5346 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5347 
5348 static void
5349 perf_output_sample_regs(struct perf_output_handle *handle,
5350 			struct pt_regs *regs, u64 mask)
5351 {
5352 	int bit;
5353 
5354 	for_each_set_bit(bit, (const unsigned long *) &mask,
5355 			 sizeof(mask) * BITS_PER_BYTE) {
5356 		u64 val;
5357 
5358 		val = perf_reg_value(regs, bit);
5359 		perf_output_put(handle, val);
5360 	}
5361 }
5362 
5363 static void perf_sample_regs_user(struct perf_regs *regs_user,
5364 				  struct pt_regs *regs,
5365 				  struct pt_regs *regs_user_copy)
5366 {
5367 	if (user_mode(regs)) {
5368 		regs_user->abi = perf_reg_abi(current);
5369 		regs_user->regs = regs;
5370 	} else if (current->mm) {
5371 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5372 	} else {
5373 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5374 		regs_user->regs = NULL;
5375 	}
5376 }
5377 
5378 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5379 				  struct pt_regs *regs)
5380 {
5381 	regs_intr->regs = regs;
5382 	regs_intr->abi  = perf_reg_abi(current);
5383 }
5384 
5385 
5386 /*
5387  * Get remaining task size from user stack pointer.
5388  *
5389  * It'd be better to take stack vma map and limit this more
5390  * precisly, but there's no way to get it safely under interrupt,
5391  * so using TASK_SIZE as limit.
5392  */
5393 static u64 perf_ustack_task_size(struct pt_regs *regs)
5394 {
5395 	unsigned long addr = perf_user_stack_pointer(regs);
5396 
5397 	if (!addr || addr >= TASK_SIZE)
5398 		return 0;
5399 
5400 	return TASK_SIZE - addr;
5401 }
5402 
5403 static u16
5404 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5405 			struct pt_regs *regs)
5406 {
5407 	u64 task_size;
5408 
5409 	/* No regs, no stack pointer, no dump. */
5410 	if (!regs)
5411 		return 0;
5412 
5413 	/*
5414 	 * Check if we fit in with the requested stack size into the:
5415 	 * - TASK_SIZE
5416 	 *   If we don't, we limit the size to the TASK_SIZE.
5417 	 *
5418 	 * - remaining sample size
5419 	 *   If we don't, we customize the stack size to
5420 	 *   fit in to the remaining sample size.
5421 	 */
5422 
5423 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5424 	stack_size = min(stack_size, (u16) task_size);
5425 
5426 	/* Current header size plus static size and dynamic size. */
5427 	header_size += 2 * sizeof(u64);
5428 
5429 	/* Do we fit in with the current stack dump size? */
5430 	if ((u16) (header_size + stack_size) < header_size) {
5431 		/*
5432 		 * If we overflow the maximum size for the sample,
5433 		 * we customize the stack dump size to fit in.
5434 		 */
5435 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5436 		stack_size = round_up(stack_size, sizeof(u64));
5437 	}
5438 
5439 	return stack_size;
5440 }
5441 
5442 static void
5443 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5444 			  struct pt_regs *regs)
5445 {
5446 	/* Case of a kernel thread, nothing to dump */
5447 	if (!regs) {
5448 		u64 size = 0;
5449 		perf_output_put(handle, size);
5450 	} else {
5451 		unsigned long sp;
5452 		unsigned int rem;
5453 		u64 dyn_size;
5454 
5455 		/*
5456 		 * We dump:
5457 		 * static size
5458 		 *   - the size requested by user or the best one we can fit
5459 		 *     in to the sample max size
5460 		 * data
5461 		 *   - user stack dump data
5462 		 * dynamic size
5463 		 *   - the actual dumped size
5464 		 */
5465 
5466 		/* Static size. */
5467 		perf_output_put(handle, dump_size);
5468 
5469 		/* Data. */
5470 		sp = perf_user_stack_pointer(regs);
5471 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5472 		dyn_size = dump_size - rem;
5473 
5474 		perf_output_skip(handle, rem);
5475 
5476 		/* Dynamic size. */
5477 		perf_output_put(handle, dyn_size);
5478 	}
5479 }
5480 
5481 static void __perf_event_header__init_id(struct perf_event_header *header,
5482 					 struct perf_sample_data *data,
5483 					 struct perf_event *event)
5484 {
5485 	u64 sample_type = event->attr.sample_type;
5486 
5487 	data->type = sample_type;
5488 	header->size += event->id_header_size;
5489 
5490 	if (sample_type & PERF_SAMPLE_TID) {
5491 		/* namespace issues */
5492 		data->tid_entry.pid = perf_event_pid(event, current);
5493 		data->tid_entry.tid = perf_event_tid(event, current);
5494 	}
5495 
5496 	if (sample_type & PERF_SAMPLE_TIME)
5497 		data->time = perf_event_clock(event);
5498 
5499 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5500 		data->id = primary_event_id(event);
5501 
5502 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5503 		data->stream_id = event->id;
5504 
5505 	if (sample_type & PERF_SAMPLE_CPU) {
5506 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5507 		data->cpu_entry.reserved = 0;
5508 	}
5509 }
5510 
5511 void perf_event_header__init_id(struct perf_event_header *header,
5512 				struct perf_sample_data *data,
5513 				struct perf_event *event)
5514 {
5515 	if (event->attr.sample_id_all)
5516 		__perf_event_header__init_id(header, data, event);
5517 }
5518 
5519 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5520 					   struct perf_sample_data *data)
5521 {
5522 	u64 sample_type = data->type;
5523 
5524 	if (sample_type & PERF_SAMPLE_TID)
5525 		perf_output_put(handle, data->tid_entry);
5526 
5527 	if (sample_type & PERF_SAMPLE_TIME)
5528 		perf_output_put(handle, data->time);
5529 
5530 	if (sample_type & PERF_SAMPLE_ID)
5531 		perf_output_put(handle, data->id);
5532 
5533 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5534 		perf_output_put(handle, data->stream_id);
5535 
5536 	if (sample_type & PERF_SAMPLE_CPU)
5537 		perf_output_put(handle, data->cpu_entry);
5538 
5539 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5540 		perf_output_put(handle, data->id);
5541 }
5542 
5543 void perf_event__output_id_sample(struct perf_event *event,
5544 				  struct perf_output_handle *handle,
5545 				  struct perf_sample_data *sample)
5546 {
5547 	if (event->attr.sample_id_all)
5548 		__perf_event__output_id_sample(handle, sample);
5549 }
5550 
5551 static void perf_output_read_one(struct perf_output_handle *handle,
5552 				 struct perf_event *event,
5553 				 u64 enabled, u64 running)
5554 {
5555 	u64 read_format = event->attr.read_format;
5556 	u64 values[4];
5557 	int n = 0;
5558 
5559 	values[n++] = perf_event_count(event);
5560 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5561 		values[n++] = enabled +
5562 			atomic64_read(&event->child_total_time_enabled);
5563 	}
5564 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5565 		values[n++] = running +
5566 			atomic64_read(&event->child_total_time_running);
5567 	}
5568 	if (read_format & PERF_FORMAT_ID)
5569 		values[n++] = primary_event_id(event);
5570 
5571 	__output_copy(handle, values, n * sizeof(u64));
5572 }
5573 
5574 /*
5575  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5576  */
5577 static void perf_output_read_group(struct perf_output_handle *handle,
5578 			    struct perf_event *event,
5579 			    u64 enabled, u64 running)
5580 {
5581 	struct perf_event *leader = event->group_leader, *sub;
5582 	u64 read_format = event->attr.read_format;
5583 	u64 values[5];
5584 	int n = 0;
5585 
5586 	values[n++] = 1 + leader->nr_siblings;
5587 
5588 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5589 		values[n++] = enabled;
5590 
5591 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5592 		values[n++] = running;
5593 
5594 	if (leader != event)
5595 		leader->pmu->read(leader);
5596 
5597 	values[n++] = perf_event_count(leader);
5598 	if (read_format & PERF_FORMAT_ID)
5599 		values[n++] = primary_event_id(leader);
5600 
5601 	__output_copy(handle, values, n * sizeof(u64));
5602 
5603 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5604 		n = 0;
5605 
5606 		if ((sub != event) &&
5607 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5608 			sub->pmu->read(sub);
5609 
5610 		values[n++] = perf_event_count(sub);
5611 		if (read_format & PERF_FORMAT_ID)
5612 			values[n++] = primary_event_id(sub);
5613 
5614 		__output_copy(handle, values, n * sizeof(u64));
5615 	}
5616 }
5617 
5618 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5619 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5620 
5621 static void perf_output_read(struct perf_output_handle *handle,
5622 			     struct perf_event *event)
5623 {
5624 	u64 enabled = 0, running = 0, now;
5625 	u64 read_format = event->attr.read_format;
5626 
5627 	/*
5628 	 * compute total_time_enabled, total_time_running
5629 	 * based on snapshot values taken when the event
5630 	 * was last scheduled in.
5631 	 *
5632 	 * we cannot simply called update_context_time()
5633 	 * because of locking issue as we are called in
5634 	 * NMI context
5635 	 */
5636 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5637 		calc_timer_values(event, &now, &enabled, &running);
5638 
5639 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5640 		perf_output_read_group(handle, event, enabled, running);
5641 	else
5642 		perf_output_read_one(handle, event, enabled, running);
5643 }
5644 
5645 void perf_output_sample(struct perf_output_handle *handle,
5646 			struct perf_event_header *header,
5647 			struct perf_sample_data *data,
5648 			struct perf_event *event)
5649 {
5650 	u64 sample_type = data->type;
5651 
5652 	perf_output_put(handle, *header);
5653 
5654 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5655 		perf_output_put(handle, data->id);
5656 
5657 	if (sample_type & PERF_SAMPLE_IP)
5658 		perf_output_put(handle, data->ip);
5659 
5660 	if (sample_type & PERF_SAMPLE_TID)
5661 		perf_output_put(handle, data->tid_entry);
5662 
5663 	if (sample_type & PERF_SAMPLE_TIME)
5664 		perf_output_put(handle, data->time);
5665 
5666 	if (sample_type & PERF_SAMPLE_ADDR)
5667 		perf_output_put(handle, data->addr);
5668 
5669 	if (sample_type & PERF_SAMPLE_ID)
5670 		perf_output_put(handle, data->id);
5671 
5672 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5673 		perf_output_put(handle, data->stream_id);
5674 
5675 	if (sample_type & PERF_SAMPLE_CPU)
5676 		perf_output_put(handle, data->cpu_entry);
5677 
5678 	if (sample_type & PERF_SAMPLE_PERIOD)
5679 		perf_output_put(handle, data->period);
5680 
5681 	if (sample_type & PERF_SAMPLE_READ)
5682 		perf_output_read(handle, event);
5683 
5684 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5685 		if (data->callchain) {
5686 			int size = 1;
5687 
5688 			if (data->callchain)
5689 				size += data->callchain->nr;
5690 
5691 			size *= sizeof(u64);
5692 
5693 			__output_copy(handle, data->callchain, size);
5694 		} else {
5695 			u64 nr = 0;
5696 			perf_output_put(handle, nr);
5697 		}
5698 	}
5699 
5700 	if (sample_type & PERF_SAMPLE_RAW) {
5701 		struct perf_raw_record *raw = data->raw;
5702 
5703 		if (raw) {
5704 			struct perf_raw_frag *frag = &raw->frag;
5705 
5706 			perf_output_put(handle, raw->size);
5707 			do {
5708 				if (frag->copy) {
5709 					__output_custom(handle, frag->copy,
5710 							frag->data, frag->size);
5711 				} else {
5712 					__output_copy(handle, frag->data,
5713 						      frag->size);
5714 				}
5715 				if (perf_raw_frag_last(frag))
5716 					break;
5717 				frag = frag->next;
5718 			} while (1);
5719 			if (frag->pad)
5720 				__output_skip(handle, NULL, frag->pad);
5721 		} else {
5722 			struct {
5723 				u32	size;
5724 				u32	data;
5725 			} raw = {
5726 				.size = sizeof(u32),
5727 				.data = 0,
5728 			};
5729 			perf_output_put(handle, raw);
5730 		}
5731 	}
5732 
5733 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5734 		if (data->br_stack) {
5735 			size_t size;
5736 
5737 			size = data->br_stack->nr
5738 			     * sizeof(struct perf_branch_entry);
5739 
5740 			perf_output_put(handle, data->br_stack->nr);
5741 			perf_output_copy(handle, data->br_stack->entries, size);
5742 		} else {
5743 			/*
5744 			 * we always store at least the value of nr
5745 			 */
5746 			u64 nr = 0;
5747 			perf_output_put(handle, nr);
5748 		}
5749 	}
5750 
5751 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5752 		u64 abi = data->regs_user.abi;
5753 
5754 		/*
5755 		 * If there are no regs to dump, notice it through
5756 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5757 		 */
5758 		perf_output_put(handle, abi);
5759 
5760 		if (abi) {
5761 			u64 mask = event->attr.sample_regs_user;
5762 			perf_output_sample_regs(handle,
5763 						data->regs_user.regs,
5764 						mask);
5765 		}
5766 	}
5767 
5768 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5769 		perf_output_sample_ustack(handle,
5770 					  data->stack_user_size,
5771 					  data->regs_user.regs);
5772 	}
5773 
5774 	if (sample_type & PERF_SAMPLE_WEIGHT)
5775 		perf_output_put(handle, data->weight);
5776 
5777 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5778 		perf_output_put(handle, data->data_src.val);
5779 
5780 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5781 		perf_output_put(handle, data->txn);
5782 
5783 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5784 		u64 abi = data->regs_intr.abi;
5785 		/*
5786 		 * If there are no regs to dump, notice it through
5787 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5788 		 */
5789 		perf_output_put(handle, abi);
5790 
5791 		if (abi) {
5792 			u64 mask = event->attr.sample_regs_intr;
5793 
5794 			perf_output_sample_regs(handle,
5795 						data->regs_intr.regs,
5796 						mask);
5797 		}
5798 	}
5799 
5800 	if (!event->attr.watermark) {
5801 		int wakeup_events = event->attr.wakeup_events;
5802 
5803 		if (wakeup_events) {
5804 			struct ring_buffer *rb = handle->rb;
5805 			int events = local_inc_return(&rb->events);
5806 
5807 			if (events >= wakeup_events) {
5808 				local_sub(wakeup_events, &rb->events);
5809 				local_inc(&rb->wakeup);
5810 			}
5811 		}
5812 	}
5813 }
5814 
5815 void perf_prepare_sample(struct perf_event_header *header,
5816 			 struct perf_sample_data *data,
5817 			 struct perf_event *event,
5818 			 struct pt_regs *regs)
5819 {
5820 	u64 sample_type = event->attr.sample_type;
5821 
5822 	header->type = PERF_RECORD_SAMPLE;
5823 	header->size = sizeof(*header) + event->header_size;
5824 
5825 	header->misc = 0;
5826 	header->misc |= perf_misc_flags(regs);
5827 
5828 	__perf_event_header__init_id(header, data, event);
5829 
5830 	if (sample_type & PERF_SAMPLE_IP)
5831 		data->ip = perf_instruction_pointer(regs);
5832 
5833 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834 		int size = 1;
5835 
5836 		data->callchain = perf_callchain(event, regs);
5837 
5838 		if (data->callchain)
5839 			size += data->callchain->nr;
5840 
5841 		header->size += size * sizeof(u64);
5842 	}
5843 
5844 	if (sample_type & PERF_SAMPLE_RAW) {
5845 		struct perf_raw_record *raw = data->raw;
5846 		int size;
5847 
5848 		if (raw) {
5849 			struct perf_raw_frag *frag = &raw->frag;
5850 			u32 sum = 0;
5851 
5852 			do {
5853 				sum += frag->size;
5854 				if (perf_raw_frag_last(frag))
5855 					break;
5856 				frag = frag->next;
5857 			} while (1);
5858 
5859 			size = round_up(sum + sizeof(u32), sizeof(u64));
5860 			raw->size = size - sizeof(u32);
5861 			frag->pad = raw->size - sum;
5862 		} else {
5863 			size = sizeof(u64);
5864 		}
5865 
5866 		header->size += size;
5867 	}
5868 
5869 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5870 		int size = sizeof(u64); /* nr */
5871 		if (data->br_stack) {
5872 			size += data->br_stack->nr
5873 			      * sizeof(struct perf_branch_entry);
5874 		}
5875 		header->size += size;
5876 	}
5877 
5878 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5879 		perf_sample_regs_user(&data->regs_user, regs,
5880 				      &data->regs_user_copy);
5881 
5882 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5883 		/* regs dump ABI info */
5884 		int size = sizeof(u64);
5885 
5886 		if (data->regs_user.regs) {
5887 			u64 mask = event->attr.sample_regs_user;
5888 			size += hweight64(mask) * sizeof(u64);
5889 		}
5890 
5891 		header->size += size;
5892 	}
5893 
5894 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5895 		/*
5896 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5897 		 * processed as the last one or have additional check added
5898 		 * in case new sample type is added, because we could eat
5899 		 * up the rest of the sample size.
5900 		 */
5901 		u16 stack_size = event->attr.sample_stack_user;
5902 		u16 size = sizeof(u64);
5903 
5904 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5905 						     data->regs_user.regs);
5906 
5907 		/*
5908 		 * If there is something to dump, add space for the dump
5909 		 * itself and for the field that tells the dynamic size,
5910 		 * which is how many have been actually dumped.
5911 		 */
5912 		if (stack_size)
5913 			size += sizeof(u64) + stack_size;
5914 
5915 		data->stack_user_size = stack_size;
5916 		header->size += size;
5917 	}
5918 
5919 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5920 		/* regs dump ABI info */
5921 		int size = sizeof(u64);
5922 
5923 		perf_sample_regs_intr(&data->regs_intr, regs);
5924 
5925 		if (data->regs_intr.regs) {
5926 			u64 mask = event->attr.sample_regs_intr;
5927 
5928 			size += hweight64(mask) * sizeof(u64);
5929 		}
5930 
5931 		header->size += size;
5932 	}
5933 }
5934 
5935 static void __always_inline
5936 __perf_event_output(struct perf_event *event,
5937 		    struct perf_sample_data *data,
5938 		    struct pt_regs *regs,
5939 		    int (*output_begin)(struct perf_output_handle *,
5940 					struct perf_event *,
5941 					unsigned int))
5942 {
5943 	struct perf_output_handle handle;
5944 	struct perf_event_header header;
5945 
5946 	/* protect the callchain buffers */
5947 	rcu_read_lock();
5948 
5949 	perf_prepare_sample(&header, data, event, regs);
5950 
5951 	if (output_begin(&handle, event, header.size))
5952 		goto exit;
5953 
5954 	perf_output_sample(&handle, &header, data, event);
5955 
5956 	perf_output_end(&handle);
5957 
5958 exit:
5959 	rcu_read_unlock();
5960 }
5961 
5962 void
5963 perf_event_output_forward(struct perf_event *event,
5964 			 struct perf_sample_data *data,
5965 			 struct pt_regs *regs)
5966 {
5967 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5968 }
5969 
5970 void
5971 perf_event_output_backward(struct perf_event *event,
5972 			   struct perf_sample_data *data,
5973 			   struct pt_regs *regs)
5974 {
5975 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5976 }
5977 
5978 void
5979 perf_event_output(struct perf_event *event,
5980 		  struct perf_sample_data *data,
5981 		  struct pt_regs *regs)
5982 {
5983 	__perf_event_output(event, data, regs, perf_output_begin);
5984 }
5985 
5986 /*
5987  * read event_id
5988  */
5989 
5990 struct perf_read_event {
5991 	struct perf_event_header	header;
5992 
5993 	u32				pid;
5994 	u32				tid;
5995 };
5996 
5997 static void
5998 perf_event_read_event(struct perf_event *event,
5999 			struct task_struct *task)
6000 {
6001 	struct perf_output_handle handle;
6002 	struct perf_sample_data sample;
6003 	struct perf_read_event read_event = {
6004 		.header = {
6005 			.type = PERF_RECORD_READ,
6006 			.misc = 0,
6007 			.size = sizeof(read_event) + event->read_size,
6008 		},
6009 		.pid = perf_event_pid(event, task),
6010 		.tid = perf_event_tid(event, task),
6011 	};
6012 	int ret;
6013 
6014 	perf_event_header__init_id(&read_event.header, &sample, event);
6015 	ret = perf_output_begin(&handle, event, read_event.header.size);
6016 	if (ret)
6017 		return;
6018 
6019 	perf_output_put(&handle, read_event);
6020 	perf_output_read(&handle, event);
6021 	perf_event__output_id_sample(event, &handle, &sample);
6022 
6023 	perf_output_end(&handle);
6024 }
6025 
6026 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6027 
6028 static void
6029 perf_iterate_ctx(struct perf_event_context *ctx,
6030 		   perf_iterate_f output,
6031 		   void *data, bool all)
6032 {
6033 	struct perf_event *event;
6034 
6035 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6036 		if (!all) {
6037 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6038 				continue;
6039 			if (!event_filter_match(event))
6040 				continue;
6041 		}
6042 
6043 		output(event, data);
6044 	}
6045 }
6046 
6047 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6048 {
6049 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6050 	struct perf_event *event;
6051 
6052 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6053 		/*
6054 		 * Skip events that are not fully formed yet; ensure that
6055 		 * if we observe event->ctx, both event and ctx will be
6056 		 * complete enough. See perf_install_in_context().
6057 		 */
6058 		if (!smp_load_acquire(&event->ctx))
6059 			continue;
6060 
6061 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6062 			continue;
6063 		if (!event_filter_match(event))
6064 			continue;
6065 		output(event, data);
6066 	}
6067 }
6068 
6069 /*
6070  * Iterate all events that need to receive side-band events.
6071  *
6072  * For new callers; ensure that account_pmu_sb_event() includes
6073  * your event, otherwise it might not get delivered.
6074  */
6075 static void
6076 perf_iterate_sb(perf_iterate_f output, void *data,
6077 	       struct perf_event_context *task_ctx)
6078 {
6079 	struct perf_event_context *ctx;
6080 	int ctxn;
6081 
6082 	rcu_read_lock();
6083 	preempt_disable();
6084 
6085 	/*
6086 	 * If we have task_ctx != NULL we only notify the task context itself.
6087 	 * The task_ctx is set only for EXIT events before releasing task
6088 	 * context.
6089 	 */
6090 	if (task_ctx) {
6091 		perf_iterate_ctx(task_ctx, output, data, false);
6092 		goto done;
6093 	}
6094 
6095 	perf_iterate_sb_cpu(output, data);
6096 
6097 	for_each_task_context_nr(ctxn) {
6098 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6099 		if (ctx)
6100 			perf_iterate_ctx(ctx, output, data, false);
6101 	}
6102 done:
6103 	preempt_enable();
6104 	rcu_read_unlock();
6105 }
6106 
6107 /*
6108  * Clear all file-based filters at exec, they'll have to be
6109  * re-instated when/if these objects are mmapped again.
6110  */
6111 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6112 {
6113 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6114 	struct perf_addr_filter *filter;
6115 	unsigned int restart = 0, count = 0;
6116 	unsigned long flags;
6117 
6118 	if (!has_addr_filter(event))
6119 		return;
6120 
6121 	raw_spin_lock_irqsave(&ifh->lock, flags);
6122 	list_for_each_entry(filter, &ifh->list, entry) {
6123 		if (filter->inode) {
6124 			event->addr_filters_offs[count] = 0;
6125 			restart++;
6126 		}
6127 
6128 		count++;
6129 	}
6130 
6131 	if (restart)
6132 		event->addr_filters_gen++;
6133 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6134 
6135 	if (restart)
6136 		perf_event_stop(event, 1);
6137 }
6138 
6139 void perf_event_exec(void)
6140 {
6141 	struct perf_event_context *ctx;
6142 	int ctxn;
6143 
6144 	rcu_read_lock();
6145 	for_each_task_context_nr(ctxn) {
6146 		ctx = current->perf_event_ctxp[ctxn];
6147 		if (!ctx)
6148 			continue;
6149 
6150 		perf_event_enable_on_exec(ctxn);
6151 
6152 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6153 				   true);
6154 	}
6155 	rcu_read_unlock();
6156 }
6157 
6158 struct remote_output {
6159 	struct ring_buffer	*rb;
6160 	int			err;
6161 };
6162 
6163 static void __perf_event_output_stop(struct perf_event *event, void *data)
6164 {
6165 	struct perf_event *parent = event->parent;
6166 	struct remote_output *ro = data;
6167 	struct ring_buffer *rb = ro->rb;
6168 	struct stop_event_data sd = {
6169 		.event	= event,
6170 	};
6171 
6172 	if (!has_aux(event))
6173 		return;
6174 
6175 	if (!parent)
6176 		parent = event;
6177 
6178 	/*
6179 	 * In case of inheritance, it will be the parent that links to the
6180 	 * ring-buffer, but it will be the child that's actually using it.
6181 	 *
6182 	 * We are using event::rb to determine if the event should be stopped,
6183 	 * however this may race with ring_buffer_attach() (through set_output),
6184 	 * which will make us skip the event that actually needs to be stopped.
6185 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6186 	 * its rb pointer.
6187 	 */
6188 	if (rcu_dereference(parent->rb) == rb)
6189 		ro->err = __perf_event_stop(&sd);
6190 }
6191 
6192 static int __perf_pmu_output_stop(void *info)
6193 {
6194 	struct perf_event *event = info;
6195 	struct pmu *pmu = event->pmu;
6196 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6197 	struct remote_output ro = {
6198 		.rb	= event->rb,
6199 	};
6200 
6201 	rcu_read_lock();
6202 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6203 	if (cpuctx->task_ctx)
6204 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6205 				   &ro, false);
6206 	rcu_read_unlock();
6207 
6208 	return ro.err;
6209 }
6210 
6211 static void perf_pmu_output_stop(struct perf_event *event)
6212 {
6213 	struct perf_event *iter;
6214 	int err, cpu;
6215 
6216 restart:
6217 	rcu_read_lock();
6218 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6219 		/*
6220 		 * For per-CPU events, we need to make sure that neither they
6221 		 * nor their children are running; for cpu==-1 events it's
6222 		 * sufficient to stop the event itself if it's active, since
6223 		 * it can't have children.
6224 		 */
6225 		cpu = iter->cpu;
6226 		if (cpu == -1)
6227 			cpu = READ_ONCE(iter->oncpu);
6228 
6229 		if (cpu == -1)
6230 			continue;
6231 
6232 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6233 		if (err == -EAGAIN) {
6234 			rcu_read_unlock();
6235 			goto restart;
6236 		}
6237 	}
6238 	rcu_read_unlock();
6239 }
6240 
6241 /*
6242  * task tracking -- fork/exit
6243  *
6244  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6245  */
6246 
6247 struct perf_task_event {
6248 	struct task_struct		*task;
6249 	struct perf_event_context	*task_ctx;
6250 
6251 	struct {
6252 		struct perf_event_header	header;
6253 
6254 		u32				pid;
6255 		u32				ppid;
6256 		u32				tid;
6257 		u32				ptid;
6258 		u64				time;
6259 	} event_id;
6260 };
6261 
6262 static int perf_event_task_match(struct perf_event *event)
6263 {
6264 	return event->attr.comm  || event->attr.mmap ||
6265 	       event->attr.mmap2 || event->attr.mmap_data ||
6266 	       event->attr.task;
6267 }
6268 
6269 static void perf_event_task_output(struct perf_event *event,
6270 				   void *data)
6271 {
6272 	struct perf_task_event *task_event = data;
6273 	struct perf_output_handle handle;
6274 	struct perf_sample_data	sample;
6275 	struct task_struct *task = task_event->task;
6276 	int ret, size = task_event->event_id.header.size;
6277 
6278 	if (!perf_event_task_match(event))
6279 		return;
6280 
6281 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6282 
6283 	ret = perf_output_begin(&handle, event,
6284 				task_event->event_id.header.size);
6285 	if (ret)
6286 		goto out;
6287 
6288 	task_event->event_id.pid = perf_event_pid(event, task);
6289 	task_event->event_id.ppid = perf_event_pid(event, current);
6290 
6291 	task_event->event_id.tid = perf_event_tid(event, task);
6292 	task_event->event_id.ptid = perf_event_tid(event, current);
6293 
6294 	task_event->event_id.time = perf_event_clock(event);
6295 
6296 	perf_output_put(&handle, task_event->event_id);
6297 
6298 	perf_event__output_id_sample(event, &handle, &sample);
6299 
6300 	perf_output_end(&handle);
6301 out:
6302 	task_event->event_id.header.size = size;
6303 }
6304 
6305 static void perf_event_task(struct task_struct *task,
6306 			      struct perf_event_context *task_ctx,
6307 			      int new)
6308 {
6309 	struct perf_task_event task_event;
6310 
6311 	if (!atomic_read(&nr_comm_events) &&
6312 	    !atomic_read(&nr_mmap_events) &&
6313 	    !atomic_read(&nr_task_events))
6314 		return;
6315 
6316 	task_event = (struct perf_task_event){
6317 		.task	  = task,
6318 		.task_ctx = task_ctx,
6319 		.event_id    = {
6320 			.header = {
6321 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6322 				.misc = 0,
6323 				.size = sizeof(task_event.event_id),
6324 			},
6325 			/* .pid  */
6326 			/* .ppid */
6327 			/* .tid  */
6328 			/* .ptid */
6329 			/* .time */
6330 		},
6331 	};
6332 
6333 	perf_iterate_sb(perf_event_task_output,
6334 		       &task_event,
6335 		       task_ctx);
6336 }
6337 
6338 void perf_event_fork(struct task_struct *task)
6339 {
6340 	perf_event_task(task, NULL, 1);
6341 }
6342 
6343 /*
6344  * comm tracking
6345  */
6346 
6347 struct perf_comm_event {
6348 	struct task_struct	*task;
6349 	char			*comm;
6350 	int			comm_size;
6351 
6352 	struct {
6353 		struct perf_event_header	header;
6354 
6355 		u32				pid;
6356 		u32				tid;
6357 	} event_id;
6358 };
6359 
6360 static int perf_event_comm_match(struct perf_event *event)
6361 {
6362 	return event->attr.comm;
6363 }
6364 
6365 static void perf_event_comm_output(struct perf_event *event,
6366 				   void *data)
6367 {
6368 	struct perf_comm_event *comm_event = data;
6369 	struct perf_output_handle handle;
6370 	struct perf_sample_data sample;
6371 	int size = comm_event->event_id.header.size;
6372 	int ret;
6373 
6374 	if (!perf_event_comm_match(event))
6375 		return;
6376 
6377 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6378 	ret = perf_output_begin(&handle, event,
6379 				comm_event->event_id.header.size);
6380 
6381 	if (ret)
6382 		goto out;
6383 
6384 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6385 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6386 
6387 	perf_output_put(&handle, comm_event->event_id);
6388 	__output_copy(&handle, comm_event->comm,
6389 				   comm_event->comm_size);
6390 
6391 	perf_event__output_id_sample(event, &handle, &sample);
6392 
6393 	perf_output_end(&handle);
6394 out:
6395 	comm_event->event_id.header.size = size;
6396 }
6397 
6398 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6399 {
6400 	char comm[TASK_COMM_LEN];
6401 	unsigned int size;
6402 
6403 	memset(comm, 0, sizeof(comm));
6404 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6405 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6406 
6407 	comm_event->comm = comm;
6408 	comm_event->comm_size = size;
6409 
6410 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6411 
6412 	perf_iterate_sb(perf_event_comm_output,
6413 		       comm_event,
6414 		       NULL);
6415 }
6416 
6417 void perf_event_comm(struct task_struct *task, bool exec)
6418 {
6419 	struct perf_comm_event comm_event;
6420 
6421 	if (!atomic_read(&nr_comm_events))
6422 		return;
6423 
6424 	comm_event = (struct perf_comm_event){
6425 		.task	= task,
6426 		/* .comm      */
6427 		/* .comm_size */
6428 		.event_id  = {
6429 			.header = {
6430 				.type = PERF_RECORD_COMM,
6431 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6432 				/* .size */
6433 			},
6434 			/* .pid */
6435 			/* .tid */
6436 		},
6437 	};
6438 
6439 	perf_event_comm_event(&comm_event);
6440 }
6441 
6442 /*
6443  * mmap tracking
6444  */
6445 
6446 struct perf_mmap_event {
6447 	struct vm_area_struct	*vma;
6448 
6449 	const char		*file_name;
6450 	int			file_size;
6451 	int			maj, min;
6452 	u64			ino;
6453 	u64			ino_generation;
6454 	u32			prot, flags;
6455 
6456 	struct {
6457 		struct perf_event_header	header;
6458 
6459 		u32				pid;
6460 		u32				tid;
6461 		u64				start;
6462 		u64				len;
6463 		u64				pgoff;
6464 	} event_id;
6465 };
6466 
6467 static int perf_event_mmap_match(struct perf_event *event,
6468 				 void *data)
6469 {
6470 	struct perf_mmap_event *mmap_event = data;
6471 	struct vm_area_struct *vma = mmap_event->vma;
6472 	int executable = vma->vm_flags & VM_EXEC;
6473 
6474 	return (!executable && event->attr.mmap_data) ||
6475 	       (executable && (event->attr.mmap || event->attr.mmap2));
6476 }
6477 
6478 static void perf_event_mmap_output(struct perf_event *event,
6479 				   void *data)
6480 {
6481 	struct perf_mmap_event *mmap_event = data;
6482 	struct perf_output_handle handle;
6483 	struct perf_sample_data sample;
6484 	int size = mmap_event->event_id.header.size;
6485 	int ret;
6486 
6487 	if (!perf_event_mmap_match(event, data))
6488 		return;
6489 
6490 	if (event->attr.mmap2) {
6491 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6492 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6493 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6494 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6495 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6496 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6497 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6498 	}
6499 
6500 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6501 	ret = perf_output_begin(&handle, event,
6502 				mmap_event->event_id.header.size);
6503 	if (ret)
6504 		goto out;
6505 
6506 	mmap_event->event_id.pid = perf_event_pid(event, current);
6507 	mmap_event->event_id.tid = perf_event_tid(event, current);
6508 
6509 	perf_output_put(&handle, mmap_event->event_id);
6510 
6511 	if (event->attr.mmap2) {
6512 		perf_output_put(&handle, mmap_event->maj);
6513 		perf_output_put(&handle, mmap_event->min);
6514 		perf_output_put(&handle, mmap_event->ino);
6515 		perf_output_put(&handle, mmap_event->ino_generation);
6516 		perf_output_put(&handle, mmap_event->prot);
6517 		perf_output_put(&handle, mmap_event->flags);
6518 	}
6519 
6520 	__output_copy(&handle, mmap_event->file_name,
6521 				   mmap_event->file_size);
6522 
6523 	perf_event__output_id_sample(event, &handle, &sample);
6524 
6525 	perf_output_end(&handle);
6526 out:
6527 	mmap_event->event_id.header.size = size;
6528 }
6529 
6530 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6531 {
6532 	struct vm_area_struct *vma = mmap_event->vma;
6533 	struct file *file = vma->vm_file;
6534 	int maj = 0, min = 0;
6535 	u64 ino = 0, gen = 0;
6536 	u32 prot = 0, flags = 0;
6537 	unsigned int size;
6538 	char tmp[16];
6539 	char *buf = NULL;
6540 	char *name;
6541 
6542 	if (file) {
6543 		struct inode *inode;
6544 		dev_t dev;
6545 
6546 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6547 		if (!buf) {
6548 			name = "//enomem";
6549 			goto cpy_name;
6550 		}
6551 		/*
6552 		 * d_path() works from the end of the rb backwards, so we
6553 		 * need to add enough zero bytes after the string to handle
6554 		 * the 64bit alignment we do later.
6555 		 */
6556 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6557 		if (IS_ERR(name)) {
6558 			name = "//toolong";
6559 			goto cpy_name;
6560 		}
6561 		inode = file_inode(vma->vm_file);
6562 		dev = inode->i_sb->s_dev;
6563 		ino = inode->i_ino;
6564 		gen = inode->i_generation;
6565 		maj = MAJOR(dev);
6566 		min = MINOR(dev);
6567 
6568 		if (vma->vm_flags & VM_READ)
6569 			prot |= PROT_READ;
6570 		if (vma->vm_flags & VM_WRITE)
6571 			prot |= PROT_WRITE;
6572 		if (vma->vm_flags & VM_EXEC)
6573 			prot |= PROT_EXEC;
6574 
6575 		if (vma->vm_flags & VM_MAYSHARE)
6576 			flags = MAP_SHARED;
6577 		else
6578 			flags = MAP_PRIVATE;
6579 
6580 		if (vma->vm_flags & VM_DENYWRITE)
6581 			flags |= MAP_DENYWRITE;
6582 		if (vma->vm_flags & VM_MAYEXEC)
6583 			flags |= MAP_EXECUTABLE;
6584 		if (vma->vm_flags & VM_LOCKED)
6585 			flags |= MAP_LOCKED;
6586 		if (vma->vm_flags & VM_HUGETLB)
6587 			flags |= MAP_HUGETLB;
6588 
6589 		goto got_name;
6590 	} else {
6591 		if (vma->vm_ops && vma->vm_ops->name) {
6592 			name = (char *) vma->vm_ops->name(vma);
6593 			if (name)
6594 				goto cpy_name;
6595 		}
6596 
6597 		name = (char *)arch_vma_name(vma);
6598 		if (name)
6599 			goto cpy_name;
6600 
6601 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6602 				vma->vm_end >= vma->vm_mm->brk) {
6603 			name = "[heap]";
6604 			goto cpy_name;
6605 		}
6606 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6607 				vma->vm_end >= vma->vm_mm->start_stack) {
6608 			name = "[stack]";
6609 			goto cpy_name;
6610 		}
6611 
6612 		name = "//anon";
6613 		goto cpy_name;
6614 	}
6615 
6616 cpy_name:
6617 	strlcpy(tmp, name, sizeof(tmp));
6618 	name = tmp;
6619 got_name:
6620 	/*
6621 	 * Since our buffer works in 8 byte units we need to align our string
6622 	 * size to a multiple of 8. However, we must guarantee the tail end is
6623 	 * zero'd out to avoid leaking random bits to userspace.
6624 	 */
6625 	size = strlen(name)+1;
6626 	while (!IS_ALIGNED(size, sizeof(u64)))
6627 		name[size++] = '\0';
6628 
6629 	mmap_event->file_name = name;
6630 	mmap_event->file_size = size;
6631 	mmap_event->maj = maj;
6632 	mmap_event->min = min;
6633 	mmap_event->ino = ino;
6634 	mmap_event->ino_generation = gen;
6635 	mmap_event->prot = prot;
6636 	mmap_event->flags = flags;
6637 
6638 	if (!(vma->vm_flags & VM_EXEC))
6639 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6640 
6641 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6642 
6643 	perf_iterate_sb(perf_event_mmap_output,
6644 		       mmap_event,
6645 		       NULL);
6646 
6647 	kfree(buf);
6648 }
6649 
6650 /*
6651  * Check whether inode and address range match filter criteria.
6652  */
6653 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6654 				     struct file *file, unsigned long offset,
6655 				     unsigned long size)
6656 {
6657 	if (filter->inode != file->f_inode)
6658 		return false;
6659 
6660 	if (filter->offset > offset + size)
6661 		return false;
6662 
6663 	if (filter->offset + filter->size < offset)
6664 		return false;
6665 
6666 	return true;
6667 }
6668 
6669 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6670 {
6671 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6672 	struct vm_area_struct *vma = data;
6673 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6674 	struct file *file = vma->vm_file;
6675 	struct perf_addr_filter *filter;
6676 	unsigned int restart = 0, count = 0;
6677 
6678 	if (!has_addr_filter(event))
6679 		return;
6680 
6681 	if (!file)
6682 		return;
6683 
6684 	raw_spin_lock_irqsave(&ifh->lock, flags);
6685 	list_for_each_entry(filter, &ifh->list, entry) {
6686 		if (perf_addr_filter_match(filter, file, off,
6687 					     vma->vm_end - vma->vm_start)) {
6688 			event->addr_filters_offs[count] = vma->vm_start;
6689 			restart++;
6690 		}
6691 
6692 		count++;
6693 	}
6694 
6695 	if (restart)
6696 		event->addr_filters_gen++;
6697 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6698 
6699 	if (restart)
6700 		perf_event_stop(event, 1);
6701 }
6702 
6703 /*
6704  * Adjust all task's events' filters to the new vma
6705  */
6706 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6707 {
6708 	struct perf_event_context *ctx;
6709 	int ctxn;
6710 
6711 	/*
6712 	 * Data tracing isn't supported yet and as such there is no need
6713 	 * to keep track of anything that isn't related to executable code:
6714 	 */
6715 	if (!(vma->vm_flags & VM_EXEC))
6716 		return;
6717 
6718 	rcu_read_lock();
6719 	for_each_task_context_nr(ctxn) {
6720 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6721 		if (!ctx)
6722 			continue;
6723 
6724 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6725 	}
6726 	rcu_read_unlock();
6727 }
6728 
6729 void perf_event_mmap(struct vm_area_struct *vma)
6730 {
6731 	struct perf_mmap_event mmap_event;
6732 
6733 	if (!atomic_read(&nr_mmap_events))
6734 		return;
6735 
6736 	mmap_event = (struct perf_mmap_event){
6737 		.vma	= vma,
6738 		/* .file_name */
6739 		/* .file_size */
6740 		.event_id  = {
6741 			.header = {
6742 				.type = PERF_RECORD_MMAP,
6743 				.misc = PERF_RECORD_MISC_USER,
6744 				/* .size */
6745 			},
6746 			/* .pid */
6747 			/* .tid */
6748 			.start  = vma->vm_start,
6749 			.len    = vma->vm_end - vma->vm_start,
6750 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6751 		},
6752 		/* .maj (attr_mmap2 only) */
6753 		/* .min (attr_mmap2 only) */
6754 		/* .ino (attr_mmap2 only) */
6755 		/* .ino_generation (attr_mmap2 only) */
6756 		/* .prot (attr_mmap2 only) */
6757 		/* .flags (attr_mmap2 only) */
6758 	};
6759 
6760 	perf_addr_filters_adjust(vma);
6761 	perf_event_mmap_event(&mmap_event);
6762 }
6763 
6764 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6765 			  unsigned long size, u64 flags)
6766 {
6767 	struct perf_output_handle handle;
6768 	struct perf_sample_data sample;
6769 	struct perf_aux_event {
6770 		struct perf_event_header	header;
6771 		u64				offset;
6772 		u64				size;
6773 		u64				flags;
6774 	} rec = {
6775 		.header = {
6776 			.type = PERF_RECORD_AUX,
6777 			.misc = 0,
6778 			.size = sizeof(rec),
6779 		},
6780 		.offset		= head,
6781 		.size		= size,
6782 		.flags		= flags,
6783 	};
6784 	int ret;
6785 
6786 	perf_event_header__init_id(&rec.header, &sample, event);
6787 	ret = perf_output_begin(&handle, event, rec.header.size);
6788 
6789 	if (ret)
6790 		return;
6791 
6792 	perf_output_put(&handle, rec);
6793 	perf_event__output_id_sample(event, &handle, &sample);
6794 
6795 	perf_output_end(&handle);
6796 }
6797 
6798 /*
6799  * Lost/dropped samples logging
6800  */
6801 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6802 {
6803 	struct perf_output_handle handle;
6804 	struct perf_sample_data sample;
6805 	int ret;
6806 
6807 	struct {
6808 		struct perf_event_header	header;
6809 		u64				lost;
6810 	} lost_samples_event = {
6811 		.header = {
6812 			.type = PERF_RECORD_LOST_SAMPLES,
6813 			.misc = 0,
6814 			.size = sizeof(lost_samples_event),
6815 		},
6816 		.lost		= lost,
6817 	};
6818 
6819 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6820 
6821 	ret = perf_output_begin(&handle, event,
6822 				lost_samples_event.header.size);
6823 	if (ret)
6824 		return;
6825 
6826 	perf_output_put(&handle, lost_samples_event);
6827 	perf_event__output_id_sample(event, &handle, &sample);
6828 	perf_output_end(&handle);
6829 }
6830 
6831 /*
6832  * context_switch tracking
6833  */
6834 
6835 struct perf_switch_event {
6836 	struct task_struct	*task;
6837 	struct task_struct	*next_prev;
6838 
6839 	struct {
6840 		struct perf_event_header	header;
6841 		u32				next_prev_pid;
6842 		u32				next_prev_tid;
6843 	} event_id;
6844 };
6845 
6846 static int perf_event_switch_match(struct perf_event *event)
6847 {
6848 	return event->attr.context_switch;
6849 }
6850 
6851 static void perf_event_switch_output(struct perf_event *event, void *data)
6852 {
6853 	struct perf_switch_event *se = data;
6854 	struct perf_output_handle handle;
6855 	struct perf_sample_data sample;
6856 	int ret;
6857 
6858 	if (!perf_event_switch_match(event))
6859 		return;
6860 
6861 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6862 	if (event->ctx->task) {
6863 		se->event_id.header.type = PERF_RECORD_SWITCH;
6864 		se->event_id.header.size = sizeof(se->event_id.header);
6865 	} else {
6866 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6867 		se->event_id.header.size = sizeof(se->event_id);
6868 		se->event_id.next_prev_pid =
6869 					perf_event_pid(event, se->next_prev);
6870 		se->event_id.next_prev_tid =
6871 					perf_event_tid(event, se->next_prev);
6872 	}
6873 
6874 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6875 
6876 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6877 	if (ret)
6878 		return;
6879 
6880 	if (event->ctx->task)
6881 		perf_output_put(&handle, se->event_id.header);
6882 	else
6883 		perf_output_put(&handle, se->event_id);
6884 
6885 	perf_event__output_id_sample(event, &handle, &sample);
6886 
6887 	perf_output_end(&handle);
6888 }
6889 
6890 static void perf_event_switch(struct task_struct *task,
6891 			      struct task_struct *next_prev, bool sched_in)
6892 {
6893 	struct perf_switch_event switch_event;
6894 
6895 	/* N.B. caller checks nr_switch_events != 0 */
6896 
6897 	switch_event = (struct perf_switch_event){
6898 		.task		= task,
6899 		.next_prev	= next_prev,
6900 		.event_id	= {
6901 			.header = {
6902 				/* .type */
6903 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6904 				/* .size */
6905 			},
6906 			/* .next_prev_pid */
6907 			/* .next_prev_tid */
6908 		},
6909 	};
6910 
6911 	perf_iterate_sb(perf_event_switch_output,
6912 		       &switch_event,
6913 		       NULL);
6914 }
6915 
6916 /*
6917  * IRQ throttle logging
6918  */
6919 
6920 static void perf_log_throttle(struct perf_event *event, int enable)
6921 {
6922 	struct perf_output_handle handle;
6923 	struct perf_sample_data sample;
6924 	int ret;
6925 
6926 	struct {
6927 		struct perf_event_header	header;
6928 		u64				time;
6929 		u64				id;
6930 		u64				stream_id;
6931 	} throttle_event = {
6932 		.header = {
6933 			.type = PERF_RECORD_THROTTLE,
6934 			.misc = 0,
6935 			.size = sizeof(throttle_event),
6936 		},
6937 		.time		= perf_event_clock(event),
6938 		.id		= primary_event_id(event),
6939 		.stream_id	= event->id,
6940 	};
6941 
6942 	if (enable)
6943 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6944 
6945 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6946 
6947 	ret = perf_output_begin(&handle, event,
6948 				throttle_event.header.size);
6949 	if (ret)
6950 		return;
6951 
6952 	perf_output_put(&handle, throttle_event);
6953 	perf_event__output_id_sample(event, &handle, &sample);
6954 	perf_output_end(&handle);
6955 }
6956 
6957 static void perf_log_itrace_start(struct perf_event *event)
6958 {
6959 	struct perf_output_handle handle;
6960 	struct perf_sample_data sample;
6961 	struct perf_aux_event {
6962 		struct perf_event_header        header;
6963 		u32				pid;
6964 		u32				tid;
6965 	} rec;
6966 	int ret;
6967 
6968 	if (event->parent)
6969 		event = event->parent;
6970 
6971 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6972 	    event->hw.itrace_started)
6973 		return;
6974 
6975 	rec.header.type	= PERF_RECORD_ITRACE_START;
6976 	rec.header.misc	= 0;
6977 	rec.header.size	= sizeof(rec);
6978 	rec.pid	= perf_event_pid(event, current);
6979 	rec.tid	= perf_event_tid(event, current);
6980 
6981 	perf_event_header__init_id(&rec.header, &sample, event);
6982 	ret = perf_output_begin(&handle, event, rec.header.size);
6983 
6984 	if (ret)
6985 		return;
6986 
6987 	perf_output_put(&handle, rec);
6988 	perf_event__output_id_sample(event, &handle, &sample);
6989 
6990 	perf_output_end(&handle);
6991 }
6992 
6993 /*
6994  * Generic event overflow handling, sampling.
6995  */
6996 
6997 static int __perf_event_overflow(struct perf_event *event,
6998 				   int throttle, struct perf_sample_data *data,
6999 				   struct pt_regs *regs)
7000 {
7001 	int events = atomic_read(&event->event_limit);
7002 	struct hw_perf_event *hwc = &event->hw;
7003 	u64 seq;
7004 	int ret = 0;
7005 
7006 	/*
7007 	 * Non-sampling counters might still use the PMI to fold short
7008 	 * hardware counters, ignore those.
7009 	 */
7010 	if (unlikely(!is_sampling_event(event)))
7011 		return 0;
7012 
7013 	seq = __this_cpu_read(perf_throttled_seq);
7014 	if (seq != hwc->interrupts_seq) {
7015 		hwc->interrupts_seq = seq;
7016 		hwc->interrupts = 1;
7017 	} else {
7018 		hwc->interrupts++;
7019 		if (unlikely(throttle
7020 			     && hwc->interrupts >= max_samples_per_tick)) {
7021 			__this_cpu_inc(perf_throttled_count);
7022 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7023 			hwc->interrupts = MAX_INTERRUPTS;
7024 			perf_log_throttle(event, 0);
7025 			ret = 1;
7026 		}
7027 	}
7028 
7029 	if (event->attr.freq) {
7030 		u64 now = perf_clock();
7031 		s64 delta = now - hwc->freq_time_stamp;
7032 
7033 		hwc->freq_time_stamp = now;
7034 
7035 		if (delta > 0 && delta < 2*TICK_NSEC)
7036 			perf_adjust_period(event, delta, hwc->last_period, true);
7037 	}
7038 
7039 	/*
7040 	 * XXX event_limit might not quite work as expected on inherited
7041 	 * events
7042 	 */
7043 
7044 	event->pending_kill = POLL_IN;
7045 	if (events && atomic_dec_and_test(&event->event_limit)) {
7046 		ret = 1;
7047 		event->pending_kill = POLL_HUP;
7048 		event->pending_disable = 1;
7049 		irq_work_queue(&event->pending);
7050 	}
7051 
7052 	event->overflow_handler(event, data, regs);
7053 
7054 	if (*perf_event_fasync(event) && event->pending_kill) {
7055 		event->pending_wakeup = 1;
7056 		irq_work_queue(&event->pending);
7057 	}
7058 
7059 	return ret;
7060 }
7061 
7062 int perf_event_overflow(struct perf_event *event,
7063 			  struct perf_sample_data *data,
7064 			  struct pt_regs *regs)
7065 {
7066 	return __perf_event_overflow(event, 1, data, regs);
7067 }
7068 
7069 /*
7070  * Generic software event infrastructure
7071  */
7072 
7073 struct swevent_htable {
7074 	struct swevent_hlist		*swevent_hlist;
7075 	struct mutex			hlist_mutex;
7076 	int				hlist_refcount;
7077 
7078 	/* Recursion avoidance in each contexts */
7079 	int				recursion[PERF_NR_CONTEXTS];
7080 };
7081 
7082 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7083 
7084 /*
7085  * We directly increment event->count and keep a second value in
7086  * event->hw.period_left to count intervals. This period event
7087  * is kept in the range [-sample_period, 0] so that we can use the
7088  * sign as trigger.
7089  */
7090 
7091 u64 perf_swevent_set_period(struct perf_event *event)
7092 {
7093 	struct hw_perf_event *hwc = &event->hw;
7094 	u64 period = hwc->last_period;
7095 	u64 nr, offset;
7096 	s64 old, val;
7097 
7098 	hwc->last_period = hwc->sample_period;
7099 
7100 again:
7101 	old = val = local64_read(&hwc->period_left);
7102 	if (val < 0)
7103 		return 0;
7104 
7105 	nr = div64_u64(period + val, period);
7106 	offset = nr * period;
7107 	val -= offset;
7108 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7109 		goto again;
7110 
7111 	return nr;
7112 }
7113 
7114 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7115 				    struct perf_sample_data *data,
7116 				    struct pt_regs *regs)
7117 {
7118 	struct hw_perf_event *hwc = &event->hw;
7119 	int throttle = 0;
7120 
7121 	if (!overflow)
7122 		overflow = perf_swevent_set_period(event);
7123 
7124 	if (hwc->interrupts == MAX_INTERRUPTS)
7125 		return;
7126 
7127 	for (; overflow; overflow--) {
7128 		if (__perf_event_overflow(event, throttle,
7129 					    data, regs)) {
7130 			/*
7131 			 * We inhibit the overflow from happening when
7132 			 * hwc->interrupts == MAX_INTERRUPTS.
7133 			 */
7134 			break;
7135 		}
7136 		throttle = 1;
7137 	}
7138 }
7139 
7140 static void perf_swevent_event(struct perf_event *event, u64 nr,
7141 			       struct perf_sample_data *data,
7142 			       struct pt_regs *regs)
7143 {
7144 	struct hw_perf_event *hwc = &event->hw;
7145 
7146 	local64_add(nr, &event->count);
7147 
7148 	if (!regs)
7149 		return;
7150 
7151 	if (!is_sampling_event(event))
7152 		return;
7153 
7154 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7155 		data->period = nr;
7156 		return perf_swevent_overflow(event, 1, data, regs);
7157 	} else
7158 		data->period = event->hw.last_period;
7159 
7160 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7161 		return perf_swevent_overflow(event, 1, data, regs);
7162 
7163 	if (local64_add_negative(nr, &hwc->period_left))
7164 		return;
7165 
7166 	perf_swevent_overflow(event, 0, data, regs);
7167 }
7168 
7169 static int perf_exclude_event(struct perf_event *event,
7170 			      struct pt_regs *regs)
7171 {
7172 	if (event->hw.state & PERF_HES_STOPPED)
7173 		return 1;
7174 
7175 	if (regs) {
7176 		if (event->attr.exclude_user && user_mode(regs))
7177 			return 1;
7178 
7179 		if (event->attr.exclude_kernel && !user_mode(regs))
7180 			return 1;
7181 	}
7182 
7183 	return 0;
7184 }
7185 
7186 static int perf_swevent_match(struct perf_event *event,
7187 				enum perf_type_id type,
7188 				u32 event_id,
7189 				struct perf_sample_data *data,
7190 				struct pt_regs *regs)
7191 {
7192 	if (event->attr.type != type)
7193 		return 0;
7194 
7195 	if (event->attr.config != event_id)
7196 		return 0;
7197 
7198 	if (perf_exclude_event(event, regs))
7199 		return 0;
7200 
7201 	return 1;
7202 }
7203 
7204 static inline u64 swevent_hash(u64 type, u32 event_id)
7205 {
7206 	u64 val = event_id | (type << 32);
7207 
7208 	return hash_64(val, SWEVENT_HLIST_BITS);
7209 }
7210 
7211 static inline struct hlist_head *
7212 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7213 {
7214 	u64 hash = swevent_hash(type, event_id);
7215 
7216 	return &hlist->heads[hash];
7217 }
7218 
7219 /* For the read side: events when they trigger */
7220 static inline struct hlist_head *
7221 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7222 {
7223 	struct swevent_hlist *hlist;
7224 
7225 	hlist = rcu_dereference(swhash->swevent_hlist);
7226 	if (!hlist)
7227 		return NULL;
7228 
7229 	return __find_swevent_head(hlist, type, event_id);
7230 }
7231 
7232 /* For the event head insertion and removal in the hlist */
7233 static inline struct hlist_head *
7234 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7235 {
7236 	struct swevent_hlist *hlist;
7237 	u32 event_id = event->attr.config;
7238 	u64 type = event->attr.type;
7239 
7240 	/*
7241 	 * Event scheduling is always serialized against hlist allocation
7242 	 * and release. Which makes the protected version suitable here.
7243 	 * The context lock guarantees that.
7244 	 */
7245 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7246 					  lockdep_is_held(&event->ctx->lock));
7247 	if (!hlist)
7248 		return NULL;
7249 
7250 	return __find_swevent_head(hlist, type, event_id);
7251 }
7252 
7253 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7254 				    u64 nr,
7255 				    struct perf_sample_data *data,
7256 				    struct pt_regs *regs)
7257 {
7258 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7259 	struct perf_event *event;
7260 	struct hlist_head *head;
7261 
7262 	rcu_read_lock();
7263 	head = find_swevent_head_rcu(swhash, type, event_id);
7264 	if (!head)
7265 		goto end;
7266 
7267 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7268 		if (perf_swevent_match(event, type, event_id, data, regs))
7269 			perf_swevent_event(event, nr, data, regs);
7270 	}
7271 end:
7272 	rcu_read_unlock();
7273 }
7274 
7275 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7276 
7277 int perf_swevent_get_recursion_context(void)
7278 {
7279 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7280 
7281 	return get_recursion_context(swhash->recursion);
7282 }
7283 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7284 
7285 void perf_swevent_put_recursion_context(int rctx)
7286 {
7287 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7288 
7289 	put_recursion_context(swhash->recursion, rctx);
7290 }
7291 
7292 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7293 {
7294 	struct perf_sample_data data;
7295 
7296 	if (WARN_ON_ONCE(!regs))
7297 		return;
7298 
7299 	perf_sample_data_init(&data, addr, 0);
7300 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7301 }
7302 
7303 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7304 {
7305 	int rctx;
7306 
7307 	preempt_disable_notrace();
7308 	rctx = perf_swevent_get_recursion_context();
7309 	if (unlikely(rctx < 0))
7310 		goto fail;
7311 
7312 	___perf_sw_event(event_id, nr, regs, addr);
7313 
7314 	perf_swevent_put_recursion_context(rctx);
7315 fail:
7316 	preempt_enable_notrace();
7317 }
7318 
7319 static void perf_swevent_read(struct perf_event *event)
7320 {
7321 }
7322 
7323 static int perf_swevent_add(struct perf_event *event, int flags)
7324 {
7325 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7326 	struct hw_perf_event *hwc = &event->hw;
7327 	struct hlist_head *head;
7328 
7329 	if (is_sampling_event(event)) {
7330 		hwc->last_period = hwc->sample_period;
7331 		perf_swevent_set_period(event);
7332 	}
7333 
7334 	hwc->state = !(flags & PERF_EF_START);
7335 
7336 	head = find_swevent_head(swhash, event);
7337 	if (WARN_ON_ONCE(!head))
7338 		return -EINVAL;
7339 
7340 	hlist_add_head_rcu(&event->hlist_entry, head);
7341 	perf_event_update_userpage(event);
7342 
7343 	return 0;
7344 }
7345 
7346 static void perf_swevent_del(struct perf_event *event, int flags)
7347 {
7348 	hlist_del_rcu(&event->hlist_entry);
7349 }
7350 
7351 static void perf_swevent_start(struct perf_event *event, int flags)
7352 {
7353 	event->hw.state = 0;
7354 }
7355 
7356 static void perf_swevent_stop(struct perf_event *event, int flags)
7357 {
7358 	event->hw.state = PERF_HES_STOPPED;
7359 }
7360 
7361 /* Deref the hlist from the update side */
7362 static inline struct swevent_hlist *
7363 swevent_hlist_deref(struct swevent_htable *swhash)
7364 {
7365 	return rcu_dereference_protected(swhash->swevent_hlist,
7366 					 lockdep_is_held(&swhash->hlist_mutex));
7367 }
7368 
7369 static void swevent_hlist_release(struct swevent_htable *swhash)
7370 {
7371 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7372 
7373 	if (!hlist)
7374 		return;
7375 
7376 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7377 	kfree_rcu(hlist, rcu_head);
7378 }
7379 
7380 static void swevent_hlist_put_cpu(int cpu)
7381 {
7382 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7383 
7384 	mutex_lock(&swhash->hlist_mutex);
7385 
7386 	if (!--swhash->hlist_refcount)
7387 		swevent_hlist_release(swhash);
7388 
7389 	mutex_unlock(&swhash->hlist_mutex);
7390 }
7391 
7392 static void swevent_hlist_put(void)
7393 {
7394 	int cpu;
7395 
7396 	for_each_possible_cpu(cpu)
7397 		swevent_hlist_put_cpu(cpu);
7398 }
7399 
7400 static int swevent_hlist_get_cpu(int cpu)
7401 {
7402 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7403 	int err = 0;
7404 
7405 	mutex_lock(&swhash->hlist_mutex);
7406 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7407 		struct swevent_hlist *hlist;
7408 
7409 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7410 		if (!hlist) {
7411 			err = -ENOMEM;
7412 			goto exit;
7413 		}
7414 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7415 	}
7416 	swhash->hlist_refcount++;
7417 exit:
7418 	mutex_unlock(&swhash->hlist_mutex);
7419 
7420 	return err;
7421 }
7422 
7423 static int swevent_hlist_get(void)
7424 {
7425 	int err, cpu, failed_cpu;
7426 
7427 	get_online_cpus();
7428 	for_each_possible_cpu(cpu) {
7429 		err = swevent_hlist_get_cpu(cpu);
7430 		if (err) {
7431 			failed_cpu = cpu;
7432 			goto fail;
7433 		}
7434 	}
7435 	put_online_cpus();
7436 
7437 	return 0;
7438 fail:
7439 	for_each_possible_cpu(cpu) {
7440 		if (cpu == failed_cpu)
7441 			break;
7442 		swevent_hlist_put_cpu(cpu);
7443 	}
7444 
7445 	put_online_cpus();
7446 	return err;
7447 }
7448 
7449 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7450 
7451 static void sw_perf_event_destroy(struct perf_event *event)
7452 {
7453 	u64 event_id = event->attr.config;
7454 
7455 	WARN_ON(event->parent);
7456 
7457 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7458 	swevent_hlist_put();
7459 }
7460 
7461 static int perf_swevent_init(struct perf_event *event)
7462 {
7463 	u64 event_id = event->attr.config;
7464 
7465 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7466 		return -ENOENT;
7467 
7468 	/*
7469 	 * no branch sampling for software events
7470 	 */
7471 	if (has_branch_stack(event))
7472 		return -EOPNOTSUPP;
7473 
7474 	switch (event_id) {
7475 	case PERF_COUNT_SW_CPU_CLOCK:
7476 	case PERF_COUNT_SW_TASK_CLOCK:
7477 		return -ENOENT;
7478 
7479 	default:
7480 		break;
7481 	}
7482 
7483 	if (event_id >= PERF_COUNT_SW_MAX)
7484 		return -ENOENT;
7485 
7486 	if (!event->parent) {
7487 		int err;
7488 
7489 		err = swevent_hlist_get();
7490 		if (err)
7491 			return err;
7492 
7493 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7494 		event->destroy = sw_perf_event_destroy;
7495 	}
7496 
7497 	return 0;
7498 }
7499 
7500 static struct pmu perf_swevent = {
7501 	.task_ctx_nr	= perf_sw_context,
7502 
7503 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7504 
7505 	.event_init	= perf_swevent_init,
7506 	.add		= perf_swevent_add,
7507 	.del		= perf_swevent_del,
7508 	.start		= perf_swevent_start,
7509 	.stop		= perf_swevent_stop,
7510 	.read		= perf_swevent_read,
7511 };
7512 
7513 #ifdef CONFIG_EVENT_TRACING
7514 
7515 static int perf_tp_filter_match(struct perf_event *event,
7516 				struct perf_sample_data *data)
7517 {
7518 	void *record = data->raw->frag.data;
7519 
7520 	/* only top level events have filters set */
7521 	if (event->parent)
7522 		event = event->parent;
7523 
7524 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7525 		return 1;
7526 	return 0;
7527 }
7528 
7529 static int perf_tp_event_match(struct perf_event *event,
7530 				struct perf_sample_data *data,
7531 				struct pt_regs *regs)
7532 {
7533 	if (event->hw.state & PERF_HES_STOPPED)
7534 		return 0;
7535 	/*
7536 	 * All tracepoints are from kernel-space.
7537 	 */
7538 	if (event->attr.exclude_kernel)
7539 		return 0;
7540 
7541 	if (!perf_tp_filter_match(event, data))
7542 		return 0;
7543 
7544 	return 1;
7545 }
7546 
7547 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7548 			       struct trace_event_call *call, u64 count,
7549 			       struct pt_regs *regs, struct hlist_head *head,
7550 			       struct task_struct *task)
7551 {
7552 	struct bpf_prog *prog = call->prog;
7553 
7554 	if (prog) {
7555 		*(struct pt_regs **)raw_data = regs;
7556 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7557 			perf_swevent_put_recursion_context(rctx);
7558 			return;
7559 		}
7560 	}
7561 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7562 		      rctx, task);
7563 }
7564 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7565 
7566 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7567 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7568 		   struct task_struct *task)
7569 {
7570 	struct perf_sample_data data;
7571 	struct perf_event *event;
7572 
7573 	struct perf_raw_record raw = {
7574 		.frag = {
7575 			.size = entry_size,
7576 			.data = record,
7577 		},
7578 	};
7579 
7580 	perf_sample_data_init(&data, 0, 0);
7581 	data.raw = &raw;
7582 
7583 	perf_trace_buf_update(record, event_type);
7584 
7585 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7586 		if (perf_tp_event_match(event, &data, regs))
7587 			perf_swevent_event(event, count, &data, regs);
7588 	}
7589 
7590 	/*
7591 	 * If we got specified a target task, also iterate its context and
7592 	 * deliver this event there too.
7593 	 */
7594 	if (task && task != current) {
7595 		struct perf_event_context *ctx;
7596 		struct trace_entry *entry = record;
7597 
7598 		rcu_read_lock();
7599 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7600 		if (!ctx)
7601 			goto unlock;
7602 
7603 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7604 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7605 				continue;
7606 			if (event->attr.config != entry->type)
7607 				continue;
7608 			if (perf_tp_event_match(event, &data, regs))
7609 				perf_swevent_event(event, count, &data, regs);
7610 		}
7611 unlock:
7612 		rcu_read_unlock();
7613 	}
7614 
7615 	perf_swevent_put_recursion_context(rctx);
7616 }
7617 EXPORT_SYMBOL_GPL(perf_tp_event);
7618 
7619 static void tp_perf_event_destroy(struct perf_event *event)
7620 {
7621 	perf_trace_destroy(event);
7622 }
7623 
7624 static int perf_tp_event_init(struct perf_event *event)
7625 {
7626 	int err;
7627 
7628 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7629 		return -ENOENT;
7630 
7631 	/*
7632 	 * no branch sampling for tracepoint events
7633 	 */
7634 	if (has_branch_stack(event))
7635 		return -EOPNOTSUPP;
7636 
7637 	err = perf_trace_init(event);
7638 	if (err)
7639 		return err;
7640 
7641 	event->destroy = tp_perf_event_destroy;
7642 
7643 	return 0;
7644 }
7645 
7646 static struct pmu perf_tracepoint = {
7647 	.task_ctx_nr	= perf_sw_context,
7648 
7649 	.event_init	= perf_tp_event_init,
7650 	.add		= perf_trace_add,
7651 	.del		= perf_trace_del,
7652 	.start		= perf_swevent_start,
7653 	.stop		= perf_swevent_stop,
7654 	.read		= perf_swevent_read,
7655 };
7656 
7657 static inline void perf_tp_register(void)
7658 {
7659 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7660 }
7661 
7662 static void perf_event_free_filter(struct perf_event *event)
7663 {
7664 	ftrace_profile_free_filter(event);
7665 }
7666 
7667 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7668 {
7669 	bool is_kprobe, is_tracepoint;
7670 	struct bpf_prog *prog;
7671 
7672 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7673 		return -EINVAL;
7674 
7675 	if (event->tp_event->prog)
7676 		return -EEXIST;
7677 
7678 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7679 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7680 	if (!is_kprobe && !is_tracepoint)
7681 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7682 		return -EINVAL;
7683 
7684 	prog = bpf_prog_get(prog_fd);
7685 	if (IS_ERR(prog))
7686 		return PTR_ERR(prog);
7687 
7688 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7689 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7690 		/* valid fd, but invalid bpf program type */
7691 		bpf_prog_put(prog);
7692 		return -EINVAL;
7693 	}
7694 
7695 	if (is_tracepoint) {
7696 		int off = trace_event_get_offsets(event->tp_event);
7697 
7698 		if (prog->aux->max_ctx_offset > off) {
7699 			bpf_prog_put(prog);
7700 			return -EACCES;
7701 		}
7702 	}
7703 	event->tp_event->prog = prog;
7704 
7705 	return 0;
7706 }
7707 
7708 static void perf_event_free_bpf_prog(struct perf_event *event)
7709 {
7710 	struct bpf_prog *prog;
7711 
7712 	if (!event->tp_event)
7713 		return;
7714 
7715 	prog = event->tp_event->prog;
7716 	if (prog) {
7717 		event->tp_event->prog = NULL;
7718 		bpf_prog_put(prog);
7719 	}
7720 }
7721 
7722 #else
7723 
7724 static inline void perf_tp_register(void)
7725 {
7726 }
7727 
7728 static void perf_event_free_filter(struct perf_event *event)
7729 {
7730 }
7731 
7732 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7733 {
7734 	return -ENOENT;
7735 }
7736 
7737 static void perf_event_free_bpf_prog(struct perf_event *event)
7738 {
7739 }
7740 #endif /* CONFIG_EVENT_TRACING */
7741 
7742 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7743 void perf_bp_event(struct perf_event *bp, void *data)
7744 {
7745 	struct perf_sample_data sample;
7746 	struct pt_regs *regs = data;
7747 
7748 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7749 
7750 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7751 		perf_swevent_event(bp, 1, &sample, regs);
7752 }
7753 #endif
7754 
7755 /*
7756  * Allocate a new address filter
7757  */
7758 static struct perf_addr_filter *
7759 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7760 {
7761 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7762 	struct perf_addr_filter *filter;
7763 
7764 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7765 	if (!filter)
7766 		return NULL;
7767 
7768 	INIT_LIST_HEAD(&filter->entry);
7769 	list_add_tail(&filter->entry, filters);
7770 
7771 	return filter;
7772 }
7773 
7774 static void free_filters_list(struct list_head *filters)
7775 {
7776 	struct perf_addr_filter *filter, *iter;
7777 
7778 	list_for_each_entry_safe(filter, iter, filters, entry) {
7779 		if (filter->inode)
7780 			iput(filter->inode);
7781 		list_del(&filter->entry);
7782 		kfree(filter);
7783 	}
7784 }
7785 
7786 /*
7787  * Free existing address filters and optionally install new ones
7788  */
7789 static void perf_addr_filters_splice(struct perf_event *event,
7790 				     struct list_head *head)
7791 {
7792 	unsigned long flags;
7793 	LIST_HEAD(list);
7794 
7795 	if (!has_addr_filter(event))
7796 		return;
7797 
7798 	/* don't bother with children, they don't have their own filters */
7799 	if (event->parent)
7800 		return;
7801 
7802 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7803 
7804 	list_splice_init(&event->addr_filters.list, &list);
7805 	if (head)
7806 		list_splice(head, &event->addr_filters.list);
7807 
7808 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7809 
7810 	free_filters_list(&list);
7811 }
7812 
7813 /*
7814  * Scan through mm's vmas and see if one of them matches the
7815  * @filter; if so, adjust filter's address range.
7816  * Called with mm::mmap_sem down for reading.
7817  */
7818 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7819 					    struct mm_struct *mm)
7820 {
7821 	struct vm_area_struct *vma;
7822 
7823 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7824 		struct file *file = vma->vm_file;
7825 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7826 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7827 
7828 		if (!file)
7829 			continue;
7830 
7831 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7832 			continue;
7833 
7834 		return vma->vm_start;
7835 	}
7836 
7837 	return 0;
7838 }
7839 
7840 /*
7841  * Update event's address range filters based on the
7842  * task's existing mappings, if any.
7843  */
7844 static void perf_event_addr_filters_apply(struct perf_event *event)
7845 {
7846 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7847 	struct task_struct *task = READ_ONCE(event->ctx->task);
7848 	struct perf_addr_filter *filter;
7849 	struct mm_struct *mm = NULL;
7850 	unsigned int count = 0;
7851 	unsigned long flags;
7852 
7853 	/*
7854 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7855 	 * will stop on the parent's child_mutex that our caller is also holding
7856 	 */
7857 	if (task == TASK_TOMBSTONE)
7858 		return;
7859 
7860 	mm = get_task_mm(event->ctx->task);
7861 	if (!mm)
7862 		goto restart;
7863 
7864 	down_read(&mm->mmap_sem);
7865 
7866 	raw_spin_lock_irqsave(&ifh->lock, flags);
7867 	list_for_each_entry(filter, &ifh->list, entry) {
7868 		event->addr_filters_offs[count] = 0;
7869 
7870 		/*
7871 		 * Adjust base offset if the filter is associated to a binary
7872 		 * that needs to be mapped:
7873 		 */
7874 		if (filter->inode)
7875 			event->addr_filters_offs[count] =
7876 				perf_addr_filter_apply(filter, mm);
7877 
7878 		count++;
7879 	}
7880 
7881 	event->addr_filters_gen++;
7882 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7883 
7884 	up_read(&mm->mmap_sem);
7885 
7886 	mmput(mm);
7887 
7888 restart:
7889 	perf_event_stop(event, 1);
7890 }
7891 
7892 /*
7893  * Address range filtering: limiting the data to certain
7894  * instruction address ranges. Filters are ioctl()ed to us from
7895  * userspace as ascii strings.
7896  *
7897  * Filter string format:
7898  *
7899  * ACTION RANGE_SPEC
7900  * where ACTION is one of the
7901  *  * "filter": limit the trace to this region
7902  *  * "start": start tracing from this address
7903  *  * "stop": stop tracing at this address/region;
7904  * RANGE_SPEC is
7905  *  * for kernel addresses: <start address>[/<size>]
7906  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7907  *
7908  * if <size> is not specified, the range is treated as a single address.
7909  */
7910 enum {
7911 	IF_ACT_FILTER,
7912 	IF_ACT_START,
7913 	IF_ACT_STOP,
7914 	IF_SRC_FILE,
7915 	IF_SRC_KERNEL,
7916 	IF_SRC_FILEADDR,
7917 	IF_SRC_KERNELADDR,
7918 };
7919 
7920 enum {
7921 	IF_STATE_ACTION = 0,
7922 	IF_STATE_SOURCE,
7923 	IF_STATE_END,
7924 };
7925 
7926 static const match_table_t if_tokens = {
7927 	{ IF_ACT_FILTER,	"filter" },
7928 	{ IF_ACT_START,		"start" },
7929 	{ IF_ACT_STOP,		"stop" },
7930 	{ IF_SRC_FILE,		"%u/%u@%s" },
7931 	{ IF_SRC_KERNEL,	"%u/%u" },
7932 	{ IF_SRC_FILEADDR,	"%u@%s" },
7933 	{ IF_SRC_KERNELADDR,	"%u" },
7934 };
7935 
7936 /*
7937  * Address filter string parser
7938  */
7939 static int
7940 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7941 			     struct list_head *filters)
7942 {
7943 	struct perf_addr_filter *filter = NULL;
7944 	char *start, *orig, *filename = NULL;
7945 	struct path path;
7946 	substring_t args[MAX_OPT_ARGS];
7947 	int state = IF_STATE_ACTION, token;
7948 	unsigned int kernel = 0;
7949 	int ret = -EINVAL;
7950 
7951 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7952 	if (!fstr)
7953 		return -ENOMEM;
7954 
7955 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7956 		ret = -EINVAL;
7957 
7958 		if (!*start)
7959 			continue;
7960 
7961 		/* filter definition begins */
7962 		if (state == IF_STATE_ACTION) {
7963 			filter = perf_addr_filter_new(event, filters);
7964 			if (!filter)
7965 				goto fail;
7966 		}
7967 
7968 		token = match_token(start, if_tokens, args);
7969 		switch (token) {
7970 		case IF_ACT_FILTER:
7971 		case IF_ACT_START:
7972 			filter->filter = 1;
7973 
7974 		case IF_ACT_STOP:
7975 			if (state != IF_STATE_ACTION)
7976 				goto fail;
7977 
7978 			state = IF_STATE_SOURCE;
7979 			break;
7980 
7981 		case IF_SRC_KERNELADDR:
7982 		case IF_SRC_KERNEL:
7983 			kernel = 1;
7984 
7985 		case IF_SRC_FILEADDR:
7986 		case IF_SRC_FILE:
7987 			if (state != IF_STATE_SOURCE)
7988 				goto fail;
7989 
7990 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7991 				filter->range = 1;
7992 
7993 			*args[0].to = 0;
7994 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7995 			if (ret)
7996 				goto fail;
7997 
7998 			if (filter->range) {
7999 				*args[1].to = 0;
8000 				ret = kstrtoul(args[1].from, 0, &filter->size);
8001 				if (ret)
8002 					goto fail;
8003 			}
8004 
8005 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8006 				int fpos = filter->range ? 2 : 1;
8007 
8008 				filename = match_strdup(&args[fpos]);
8009 				if (!filename) {
8010 					ret = -ENOMEM;
8011 					goto fail;
8012 				}
8013 			}
8014 
8015 			state = IF_STATE_END;
8016 			break;
8017 
8018 		default:
8019 			goto fail;
8020 		}
8021 
8022 		/*
8023 		 * Filter definition is fully parsed, validate and install it.
8024 		 * Make sure that it doesn't contradict itself or the event's
8025 		 * attribute.
8026 		 */
8027 		if (state == IF_STATE_END) {
8028 			if (kernel && event->attr.exclude_kernel)
8029 				goto fail;
8030 
8031 			if (!kernel) {
8032 				if (!filename)
8033 					goto fail;
8034 
8035 				/* look up the path and grab its inode */
8036 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8037 				if (ret)
8038 					goto fail_free_name;
8039 
8040 				filter->inode = igrab(d_inode(path.dentry));
8041 				path_put(&path);
8042 				kfree(filename);
8043 				filename = NULL;
8044 
8045 				ret = -EINVAL;
8046 				if (!filter->inode ||
8047 				    !S_ISREG(filter->inode->i_mode))
8048 					/* free_filters_list() will iput() */
8049 					goto fail;
8050 			}
8051 
8052 			/* ready to consume more filters */
8053 			state = IF_STATE_ACTION;
8054 			filter = NULL;
8055 		}
8056 	}
8057 
8058 	if (state != IF_STATE_ACTION)
8059 		goto fail;
8060 
8061 	kfree(orig);
8062 
8063 	return 0;
8064 
8065 fail_free_name:
8066 	kfree(filename);
8067 fail:
8068 	free_filters_list(filters);
8069 	kfree(orig);
8070 
8071 	return ret;
8072 }
8073 
8074 static int
8075 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8076 {
8077 	LIST_HEAD(filters);
8078 	int ret;
8079 
8080 	/*
8081 	 * Since this is called in perf_ioctl() path, we're already holding
8082 	 * ctx::mutex.
8083 	 */
8084 	lockdep_assert_held(&event->ctx->mutex);
8085 
8086 	if (WARN_ON_ONCE(event->parent))
8087 		return -EINVAL;
8088 
8089 	/*
8090 	 * For now, we only support filtering in per-task events; doing so
8091 	 * for CPU-wide events requires additional context switching trickery,
8092 	 * since same object code will be mapped at different virtual
8093 	 * addresses in different processes.
8094 	 */
8095 	if (!event->ctx->task)
8096 		return -EOPNOTSUPP;
8097 
8098 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8099 	if (ret)
8100 		return ret;
8101 
8102 	ret = event->pmu->addr_filters_validate(&filters);
8103 	if (ret) {
8104 		free_filters_list(&filters);
8105 		return ret;
8106 	}
8107 
8108 	/* remove existing filters, if any */
8109 	perf_addr_filters_splice(event, &filters);
8110 
8111 	/* install new filters */
8112 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8113 
8114 	return ret;
8115 }
8116 
8117 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8118 {
8119 	char *filter_str;
8120 	int ret = -EINVAL;
8121 
8122 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8123 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8124 	    !has_addr_filter(event))
8125 		return -EINVAL;
8126 
8127 	filter_str = strndup_user(arg, PAGE_SIZE);
8128 	if (IS_ERR(filter_str))
8129 		return PTR_ERR(filter_str);
8130 
8131 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8132 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8133 		ret = ftrace_profile_set_filter(event, event->attr.config,
8134 						filter_str);
8135 	else if (has_addr_filter(event))
8136 		ret = perf_event_set_addr_filter(event, filter_str);
8137 
8138 	kfree(filter_str);
8139 	return ret;
8140 }
8141 
8142 /*
8143  * hrtimer based swevent callback
8144  */
8145 
8146 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8147 {
8148 	enum hrtimer_restart ret = HRTIMER_RESTART;
8149 	struct perf_sample_data data;
8150 	struct pt_regs *regs;
8151 	struct perf_event *event;
8152 	u64 period;
8153 
8154 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8155 
8156 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8157 		return HRTIMER_NORESTART;
8158 
8159 	event->pmu->read(event);
8160 
8161 	perf_sample_data_init(&data, 0, event->hw.last_period);
8162 	regs = get_irq_regs();
8163 
8164 	if (regs && !perf_exclude_event(event, regs)) {
8165 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8166 			if (__perf_event_overflow(event, 1, &data, regs))
8167 				ret = HRTIMER_NORESTART;
8168 	}
8169 
8170 	period = max_t(u64, 10000, event->hw.sample_period);
8171 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8172 
8173 	return ret;
8174 }
8175 
8176 static void perf_swevent_start_hrtimer(struct perf_event *event)
8177 {
8178 	struct hw_perf_event *hwc = &event->hw;
8179 	s64 period;
8180 
8181 	if (!is_sampling_event(event))
8182 		return;
8183 
8184 	period = local64_read(&hwc->period_left);
8185 	if (period) {
8186 		if (period < 0)
8187 			period = 10000;
8188 
8189 		local64_set(&hwc->period_left, 0);
8190 	} else {
8191 		period = max_t(u64, 10000, hwc->sample_period);
8192 	}
8193 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8194 		      HRTIMER_MODE_REL_PINNED);
8195 }
8196 
8197 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8198 {
8199 	struct hw_perf_event *hwc = &event->hw;
8200 
8201 	if (is_sampling_event(event)) {
8202 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8203 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8204 
8205 		hrtimer_cancel(&hwc->hrtimer);
8206 	}
8207 }
8208 
8209 static void perf_swevent_init_hrtimer(struct perf_event *event)
8210 {
8211 	struct hw_perf_event *hwc = &event->hw;
8212 
8213 	if (!is_sampling_event(event))
8214 		return;
8215 
8216 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8217 	hwc->hrtimer.function = perf_swevent_hrtimer;
8218 
8219 	/*
8220 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8221 	 * mapping and avoid the whole period adjust feedback stuff.
8222 	 */
8223 	if (event->attr.freq) {
8224 		long freq = event->attr.sample_freq;
8225 
8226 		event->attr.sample_period = NSEC_PER_SEC / freq;
8227 		hwc->sample_period = event->attr.sample_period;
8228 		local64_set(&hwc->period_left, hwc->sample_period);
8229 		hwc->last_period = hwc->sample_period;
8230 		event->attr.freq = 0;
8231 	}
8232 }
8233 
8234 /*
8235  * Software event: cpu wall time clock
8236  */
8237 
8238 static void cpu_clock_event_update(struct perf_event *event)
8239 {
8240 	s64 prev;
8241 	u64 now;
8242 
8243 	now = local_clock();
8244 	prev = local64_xchg(&event->hw.prev_count, now);
8245 	local64_add(now - prev, &event->count);
8246 }
8247 
8248 static void cpu_clock_event_start(struct perf_event *event, int flags)
8249 {
8250 	local64_set(&event->hw.prev_count, local_clock());
8251 	perf_swevent_start_hrtimer(event);
8252 }
8253 
8254 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8255 {
8256 	perf_swevent_cancel_hrtimer(event);
8257 	cpu_clock_event_update(event);
8258 }
8259 
8260 static int cpu_clock_event_add(struct perf_event *event, int flags)
8261 {
8262 	if (flags & PERF_EF_START)
8263 		cpu_clock_event_start(event, flags);
8264 	perf_event_update_userpage(event);
8265 
8266 	return 0;
8267 }
8268 
8269 static void cpu_clock_event_del(struct perf_event *event, int flags)
8270 {
8271 	cpu_clock_event_stop(event, flags);
8272 }
8273 
8274 static void cpu_clock_event_read(struct perf_event *event)
8275 {
8276 	cpu_clock_event_update(event);
8277 }
8278 
8279 static int cpu_clock_event_init(struct perf_event *event)
8280 {
8281 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8282 		return -ENOENT;
8283 
8284 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8285 		return -ENOENT;
8286 
8287 	/*
8288 	 * no branch sampling for software events
8289 	 */
8290 	if (has_branch_stack(event))
8291 		return -EOPNOTSUPP;
8292 
8293 	perf_swevent_init_hrtimer(event);
8294 
8295 	return 0;
8296 }
8297 
8298 static struct pmu perf_cpu_clock = {
8299 	.task_ctx_nr	= perf_sw_context,
8300 
8301 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8302 
8303 	.event_init	= cpu_clock_event_init,
8304 	.add		= cpu_clock_event_add,
8305 	.del		= cpu_clock_event_del,
8306 	.start		= cpu_clock_event_start,
8307 	.stop		= cpu_clock_event_stop,
8308 	.read		= cpu_clock_event_read,
8309 };
8310 
8311 /*
8312  * Software event: task time clock
8313  */
8314 
8315 static void task_clock_event_update(struct perf_event *event, u64 now)
8316 {
8317 	u64 prev;
8318 	s64 delta;
8319 
8320 	prev = local64_xchg(&event->hw.prev_count, now);
8321 	delta = now - prev;
8322 	local64_add(delta, &event->count);
8323 }
8324 
8325 static void task_clock_event_start(struct perf_event *event, int flags)
8326 {
8327 	local64_set(&event->hw.prev_count, event->ctx->time);
8328 	perf_swevent_start_hrtimer(event);
8329 }
8330 
8331 static void task_clock_event_stop(struct perf_event *event, int flags)
8332 {
8333 	perf_swevent_cancel_hrtimer(event);
8334 	task_clock_event_update(event, event->ctx->time);
8335 }
8336 
8337 static int task_clock_event_add(struct perf_event *event, int flags)
8338 {
8339 	if (flags & PERF_EF_START)
8340 		task_clock_event_start(event, flags);
8341 	perf_event_update_userpage(event);
8342 
8343 	return 0;
8344 }
8345 
8346 static void task_clock_event_del(struct perf_event *event, int flags)
8347 {
8348 	task_clock_event_stop(event, PERF_EF_UPDATE);
8349 }
8350 
8351 static void task_clock_event_read(struct perf_event *event)
8352 {
8353 	u64 now = perf_clock();
8354 	u64 delta = now - event->ctx->timestamp;
8355 	u64 time = event->ctx->time + delta;
8356 
8357 	task_clock_event_update(event, time);
8358 }
8359 
8360 static int task_clock_event_init(struct perf_event *event)
8361 {
8362 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8363 		return -ENOENT;
8364 
8365 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8366 		return -ENOENT;
8367 
8368 	/*
8369 	 * no branch sampling for software events
8370 	 */
8371 	if (has_branch_stack(event))
8372 		return -EOPNOTSUPP;
8373 
8374 	perf_swevent_init_hrtimer(event);
8375 
8376 	return 0;
8377 }
8378 
8379 static struct pmu perf_task_clock = {
8380 	.task_ctx_nr	= perf_sw_context,
8381 
8382 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8383 
8384 	.event_init	= task_clock_event_init,
8385 	.add		= task_clock_event_add,
8386 	.del		= task_clock_event_del,
8387 	.start		= task_clock_event_start,
8388 	.stop		= task_clock_event_stop,
8389 	.read		= task_clock_event_read,
8390 };
8391 
8392 static void perf_pmu_nop_void(struct pmu *pmu)
8393 {
8394 }
8395 
8396 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8397 {
8398 }
8399 
8400 static int perf_pmu_nop_int(struct pmu *pmu)
8401 {
8402 	return 0;
8403 }
8404 
8405 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8406 
8407 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8408 {
8409 	__this_cpu_write(nop_txn_flags, flags);
8410 
8411 	if (flags & ~PERF_PMU_TXN_ADD)
8412 		return;
8413 
8414 	perf_pmu_disable(pmu);
8415 }
8416 
8417 static int perf_pmu_commit_txn(struct pmu *pmu)
8418 {
8419 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8420 
8421 	__this_cpu_write(nop_txn_flags, 0);
8422 
8423 	if (flags & ~PERF_PMU_TXN_ADD)
8424 		return 0;
8425 
8426 	perf_pmu_enable(pmu);
8427 	return 0;
8428 }
8429 
8430 static void perf_pmu_cancel_txn(struct pmu *pmu)
8431 {
8432 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8433 
8434 	__this_cpu_write(nop_txn_flags, 0);
8435 
8436 	if (flags & ~PERF_PMU_TXN_ADD)
8437 		return;
8438 
8439 	perf_pmu_enable(pmu);
8440 }
8441 
8442 static int perf_event_idx_default(struct perf_event *event)
8443 {
8444 	return 0;
8445 }
8446 
8447 /*
8448  * Ensures all contexts with the same task_ctx_nr have the same
8449  * pmu_cpu_context too.
8450  */
8451 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8452 {
8453 	struct pmu *pmu;
8454 
8455 	if (ctxn < 0)
8456 		return NULL;
8457 
8458 	list_for_each_entry(pmu, &pmus, entry) {
8459 		if (pmu->task_ctx_nr == ctxn)
8460 			return pmu->pmu_cpu_context;
8461 	}
8462 
8463 	return NULL;
8464 }
8465 
8466 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8467 {
8468 	int cpu;
8469 
8470 	for_each_possible_cpu(cpu) {
8471 		struct perf_cpu_context *cpuctx;
8472 
8473 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8474 
8475 		if (cpuctx->unique_pmu == old_pmu)
8476 			cpuctx->unique_pmu = pmu;
8477 	}
8478 }
8479 
8480 static void free_pmu_context(struct pmu *pmu)
8481 {
8482 	struct pmu *i;
8483 
8484 	mutex_lock(&pmus_lock);
8485 	/*
8486 	 * Like a real lame refcount.
8487 	 */
8488 	list_for_each_entry(i, &pmus, entry) {
8489 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8490 			update_pmu_context(i, pmu);
8491 			goto out;
8492 		}
8493 	}
8494 
8495 	free_percpu(pmu->pmu_cpu_context);
8496 out:
8497 	mutex_unlock(&pmus_lock);
8498 }
8499 
8500 /*
8501  * Let userspace know that this PMU supports address range filtering:
8502  */
8503 static ssize_t nr_addr_filters_show(struct device *dev,
8504 				    struct device_attribute *attr,
8505 				    char *page)
8506 {
8507 	struct pmu *pmu = dev_get_drvdata(dev);
8508 
8509 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8510 }
8511 DEVICE_ATTR_RO(nr_addr_filters);
8512 
8513 static struct idr pmu_idr;
8514 
8515 static ssize_t
8516 type_show(struct device *dev, struct device_attribute *attr, char *page)
8517 {
8518 	struct pmu *pmu = dev_get_drvdata(dev);
8519 
8520 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8521 }
8522 static DEVICE_ATTR_RO(type);
8523 
8524 static ssize_t
8525 perf_event_mux_interval_ms_show(struct device *dev,
8526 				struct device_attribute *attr,
8527 				char *page)
8528 {
8529 	struct pmu *pmu = dev_get_drvdata(dev);
8530 
8531 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8532 }
8533 
8534 static DEFINE_MUTEX(mux_interval_mutex);
8535 
8536 static ssize_t
8537 perf_event_mux_interval_ms_store(struct device *dev,
8538 				 struct device_attribute *attr,
8539 				 const char *buf, size_t count)
8540 {
8541 	struct pmu *pmu = dev_get_drvdata(dev);
8542 	int timer, cpu, ret;
8543 
8544 	ret = kstrtoint(buf, 0, &timer);
8545 	if (ret)
8546 		return ret;
8547 
8548 	if (timer < 1)
8549 		return -EINVAL;
8550 
8551 	/* same value, noting to do */
8552 	if (timer == pmu->hrtimer_interval_ms)
8553 		return count;
8554 
8555 	mutex_lock(&mux_interval_mutex);
8556 	pmu->hrtimer_interval_ms = timer;
8557 
8558 	/* update all cpuctx for this PMU */
8559 	get_online_cpus();
8560 	for_each_online_cpu(cpu) {
8561 		struct perf_cpu_context *cpuctx;
8562 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8563 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8564 
8565 		cpu_function_call(cpu,
8566 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8567 	}
8568 	put_online_cpus();
8569 	mutex_unlock(&mux_interval_mutex);
8570 
8571 	return count;
8572 }
8573 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8574 
8575 static struct attribute *pmu_dev_attrs[] = {
8576 	&dev_attr_type.attr,
8577 	&dev_attr_perf_event_mux_interval_ms.attr,
8578 	NULL,
8579 };
8580 ATTRIBUTE_GROUPS(pmu_dev);
8581 
8582 static int pmu_bus_running;
8583 static struct bus_type pmu_bus = {
8584 	.name		= "event_source",
8585 	.dev_groups	= pmu_dev_groups,
8586 };
8587 
8588 static void pmu_dev_release(struct device *dev)
8589 {
8590 	kfree(dev);
8591 }
8592 
8593 static int pmu_dev_alloc(struct pmu *pmu)
8594 {
8595 	int ret = -ENOMEM;
8596 
8597 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8598 	if (!pmu->dev)
8599 		goto out;
8600 
8601 	pmu->dev->groups = pmu->attr_groups;
8602 	device_initialize(pmu->dev);
8603 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8604 	if (ret)
8605 		goto free_dev;
8606 
8607 	dev_set_drvdata(pmu->dev, pmu);
8608 	pmu->dev->bus = &pmu_bus;
8609 	pmu->dev->release = pmu_dev_release;
8610 	ret = device_add(pmu->dev);
8611 	if (ret)
8612 		goto free_dev;
8613 
8614 	/* For PMUs with address filters, throw in an extra attribute: */
8615 	if (pmu->nr_addr_filters)
8616 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8617 
8618 	if (ret)
8619 		goto del_dev;
8620 
8621 out:
8622 	return ret;
8623 
8624 del_dev:
8625 	device_del(pmu->dev);
8626 
8627 free_dev:
8628 	put_device(pmu->dev);
8629 	goto out;
8630 }
8631 
8632 static struct lock_class_key cpuctx_mutex;
8633 static struct lock_class_key cpuctx_lock;
8634 
8635 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8636 {
8637 	int cpu, ret;
8638 
8639 	mutex_lock(&pmus_lock);
8640 	ret = -ENOMEM;
8641 	pmu->pmu_disable_count = alloc_percpu(int);
8642 	if (!pmu->pmu_disable_count)
8643 		goto unlock;
8644 
8645 	pmu->type = -1;
8646 	if (!name)
8647 		goto skip_type;
8648 	pmu->name = name;
8649 
8650 	if (type < 0) {
8651 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8652 		if (type < 0) {
8653 			ret = type;
8654 			goto free_pdc;
8655 		}
8656 	}
8657 	pmu->type = type;
8658 
8659 	if (pmu_bus_running) {
8660 		ret = pmu_dev_alloc(pmu);
8661 		if (ret)
8662 			goto free_idr;
8663 	}
8664 
8665 skip_type:
8666 	if (pmu->task_ctx_nr == perf_hw_context) {
8667 		static int hw_context_taken = 0;
8668 
8669 		/*
8670 		 * Other than systems with heterogeneous CPUs, it never makes
8671 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8672 		 * uncore must use perf_invalid_context.
8673 		 */
8674 		if (WARN_ON_ONCE(hw_context_taken &&
8675 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8676 			pmu->task_ctx_nr = perf_invalid_context;
8677 
8678 		hw_context_taken = 1;
8679 	}
8680 
8681 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8682 	if (pmu->pmu_cpu_context)
8683 		goto got_cpu_context;
8684 
8685 	ret = -ENOMEM;
8686 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8687 	if (!pmu->pmu_cpu_context)
8688 		goto free_dev;
8689 
8690 	for_each_possible_cpu(cpu) {
8691 		struct perf_cpu_context *cpuctx;
8692 
8693 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8694 		__perf_event_init_context(&cpuctx->ctx);
8695 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8696 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8697 		cpuctx->ctx.pmu = pmu;
8698 
8699 		__perf_mux_hrtimer_init(cpuctx, cpu);
8700 
8701 		cpuctx->unique_pmu = pmu;
8702 	}
8703 
8704 got_cpu_context:
8705 	if (!pmu->start_txn) {
8706 		if (pmu->pmu_enable) {
8707 			/*
8708 			 * If we have pmu_enable/pmu_disable calls, install
8709 			 * transaction stubs that use that to try and batch
8710 			 * hardware accesses.
8711 			 */
8712 			pmu->start_txn  = perf_pmu_start_txn;
8713 			pmu->commit_txn = perf_pmu_commit_txn;
8714 			pmu->cancel_txn = perf_pmu_cancel_txn;
8715 		} else {
8716 			pmu->start_txn  = perf_pmu_nop_txn;
8717 			pmu->commit_txn = perf_pmu_nop_int;
8718 			pmu->cancel_txn = perf_pmu_nop_void;
8719 		}
8720 	}
8721 
8722 	if (!pmu->pmu_enable) {
8723 		pmu->pmu_enable  = perf_pmu_nop_void;
8724 		pmu->pmu_disable = perf_pmu_nop_void;
8725 	}
8726 
8727 	if (!pmu->event_idx)
8728 		pmu->event_idx = perf_event_idx_default;
8729 
8730 	list_add_rcu(&pmu->entry, &pmus);
8731 	atomic_set(&pmu->exclusive_cnt, 0);
8732 	ret = 0;
8733 unlock:
8734 	mutex_unlock(&pmus_lock);
8735 
8736 	return ret;
8737 
8738 free_dev:
8739 	device_del(pmu->dev);
8740 	put_device(pmu->dev);
8741 
8742 free_idr:
8743 	if (pmu->type >= PERF_TYPE_MAX)
8744 		idr_remove(&pmu_idr, pmu->type);
8745 
8746 free_pdc:
8747 	free_percpu(pmu->pmu_disable_count);
8748 	goto unlock;
8749 }
8750 EXPORT_SYMBOL_GPL(perf_pmu_register);
8751 
8752 void perf_pmu_unregister(struct pmu *pmu)
8753 {
8754 	mutex_lock(&pmus_lock);
8755 	list_del_rcu(&pmu->entry);
8756 	mutex_unlock(&pmus_lock);
8757 
8758 	/*
8759 	 * We dereference the pmu list under both SRCU and regular RCU, so
8760 	 * synchronize against both of those.
8761 	 */
8762 	synchronize_srcu(&pmus_srcu);
8763 	synchronize_rcu();
8764 
8765 	free_percpu(pmu->pmu_disable_count);
8766 	if (pmu->type >= PERF_TYPE_MAX)
8767 		idr_remove(&pmu_idr, pmu->type);
8768 	if (pmu->nr_addr_filters)
8769 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8770 	device_del(pmu->dev);
8771 	put_device(pmu->dev);
8772 	free_pmu_context(pmu);
8773 }
8774 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8775 
8776 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8777 {
8778 	struct perf_event_context *ctx = NULL;
8779 	int ret;
8780 
8781 	if (!try_module_get(pmu->module))
8782 		return -ENODEV;
8783 
8784 	if (event->group_leader != event) {
8785 		/*
8786 		 * This ctx->mutex can nest when we're called through
8787 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8788 		 */
8789 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8790 						 SINGLE_DEPTH_NESTING);
8791 		BUG_ON(!ctx);
8792 	}
8793 
8794 	event->pmu = pmu;
8795 	ret = pmu->event_init(event);
8796 
8797 	if (ctx)
8798 		perf_event_ctx_unlock(event->group_leader, ctx);
8799 
8800 	if (ret)
8801 		module_put(pmu->module);
8802 
8803 	return ret;
8804 }
8805 
8806 static struct pmu *perf_init_event(struct perf_event *event)
8807 {
8808 	struct pmu *pmu = NULL;
8809 	int idx;
8810 	int ret;
8811 
8812 	idx = srcu_read_lock(&pmus_srcu);
8813 
8814 	rcu_read_lock();
8815 	pmu = idr_find(&pmu_idr, event->attr.type);
8816 	rcu_read_unlock();
8817 	if (pmu) {
8818 		ret = perf_try_init_event(pmu, event);
8819 		if (ret)
8820 			pmu = ERR_PTR(ret);
8821 		goto unlock;
8822 	}
8823 
8824 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8825 		ret = perf_try_init_event(pmu, event);
8826 		if (!ret)
8827 			goto unlock;
8828 
8829 		if (ret != -ENOENT) {
8830 			pmu = ERR_PTR(ret);
8831 			goto unlock;
8832 		}
8833 	}
8834 	pmu = ERR_PTR(-ENOENT);
8835 unlock:
8836 	srcu_read_unlock(&pmus_srcu, idx);
8837 
8838 	return pmu;
8839 }
8840 
8841 static void attach_sb_event(struct perf_event *event)
8842 {
8843 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8844 
8845 	raw_spin_lock(&pel->lock);
8846 	list_add_rcu(&event->sb_list, &pel->list);
8847 	raw_spin_unlock(&pel->lock);
8848 }
8849 
8850 /*
8851  * We keep a list of all !task (and therefore per-cpu) events
8852  * that need to receive side-band records.
8853  *
8854  * This avoids having to scan all the various PMU per-cpu contexts
8855  * looking for them.
8856  */
8857 static void account_pmu_sb_event(struct perf_event *event)
8858 {
8859 	if (is_sb_event(event))
8860 		attach_sb_event(event);
8861 }
8862 
8863 static void account_event_cpu(struct perf_event *event, int cpu)
8864 {
8865 	if (event->parent)
8866 		return;
8867 
8868 	if (is_cgroup_event(event))
8869 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8870 }
8871 
8872 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8873 static void account_freq_event_nohz(void)
8874 {
8875 #ifdef CONFIG_NO_HZ_FULL
8876 	/* Lock so we don't race with concurrent unaccount */
8877 	spin_lock(&nr_freq_lock);
8878 	if (atomic_inc_return(&nr_freq_events) == 1)
8879 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8880 	spin_unlock(&nr_freq_lock);
8881 #endif
8882 }
8883 
8884 static void account_freq_event(void)
8885 {
8886 	if (tick_nohz_full_enabled())
8887 		account_freq_event_nohz();
8888 	else
8889 		atomic_inc(&nr_freq_events);
8890 }
8891 
8892 
8893 static void account_event(struct perf_event *event)
8894 {
8895 	bool inc = false;
8896 
8897 	if (event->parent)
8898 		return;
8899 
8900 	if (event->attach_state & PERF_ATTACH_TASK)
8901 		inc = true;
8902 	if (event->attr.mmap || event->attr.mmap_data)
8903 		atomic_inc(&nr_mmap_events);
8904 	if (event->attr.comm)
8905 		atomic_inc(&nr_comm_events);
8906 	if (event->attr.task)
8907 		atomic_inc(&nr_task_events);
8908 	if (event->attr.freq)
8909 		account_freq_event();
8910 	if (event->attr.context_switch) {
8911 		atomic_inc(&nr_switch_events);
8912 		inc = true;
8913 	}
8914 	if (has_branch_stack(event))
8915 		inc = true;
8916 	if (is_cgroup_event(event))
8917 		inc = true;
8918 
8919 	if (inc) {
8920 		if (atomic_inc_not_zero(&perf_sched_count))
8921 			goto enabled;
8922 
8923 		mutex_lock(&perf_sched_mutex);
8924 		if (!atomic_read(&perf_sched_count)) {
8925 			static_branch_enable(&perf_sched_events);
8926 			/*
8927 			 * Guarantee that all CPUs observe they key change and
8928 			 * call the perf scheduling hooks before proceeding to
8929 			 * install events that need them.
8930 			 */
8931 			synchronize_sched();
8932 		}
8933 		/*
8934 		 * Now that we have waited for the sync_sched(), allow further
8935 		 * increments to by-pass the mutex.
8936 		 */
8937 		atomic_inc(&perf_sched_count);
8938 		mutex_unlock(&perf_sched_mutex);
8939 	}
8940 enabled:
8941 
8942 	account_event_cpu(event, event->cpu);
8943 
8944 	account_pmu_sb_event(event);
8945 }
8946 
8947 /*
8948  * Allocate and initialize a event structure
8949  */
8950 static struct perf_event *
8951 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8952 		 struct task_struct *task,
8953 		 struct perf_event *group_leader,
8954 		 struct perf_event *parent_event,
8955 		 perf_overflow_handler_t overflow_handler,
8956 		 void *context, int cgroup_fd)
8957 {
8958 	struct pmu *pmu;
8959 	struct perf_event *event;
8960 	struct hw_perf_event *hwc;
8961 	long err = -EINVAL;
8962 
8963 	if ((unsigned)cpu >= nr_cpu_ids) {
8964 		if (!task || cpu != -1)
8965 			return ERR_PTR(-EINVAL);
8966 	}
8967 
8968 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8969 	if (!event)
8970 		return ERR_PTR(-ENOMEM);
8971 
8972 	/*
8973 	 * Single events are their own group leaders, with an
8974 	 * empty sibling list:
8975 	 */
8976 	if (!group_leader)
8977 		group_leader = event;
8978 
8979 	mutex_init(&event->child_mutex);
8980 	INIT_LIST_HEAD(&event->child_list);
8981 
8982 	INIT_LIST_HEAD(&event->group_entry);
8983 	INIT_LIST_HEAD(&event->event_entry);
8984 	INIT_LIST_HEAD(&event->sibling_list);
8985 	INIT_LIST_HEAD(&event->rb_entry);
8986 	INIT_LIST_HEAD(&event->active_entry);
8987 	INIT_LIST_HEAD(&event->addr_filters.list);
8988 	INIT_HLIST_NODE(&event->hlist_entry);
8989 
8990 
8991 	init_waitqueue_head(&event->waitq);
8992 	init_irq_work(&event->pending, perf_pending_event);
8993 
8994 	mutex_init(&event->mmap_mutex);
8995 	raw_spin_lock_init(&event->addr_filters.lock);
8996 
8997 	atomic_long_set(&event->refcount, 1);
8998 	event->cpu		= cpu;
8999 	event->attr		= *attr;
9000 	event->group_leader	= group_leader;
9001 	event->pmu		= NULL;
9002 	event->oncpu		= -1;
9003 
9004 	event->parent		= parent_event;
9005 
9006 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9007 	event->id		= atomic64_inc_return(&perf_event_id);
9008 
9009 	event->state		= PERF_EVENT_STATE_INACTIVE;
9010 
9011 	if (task) {
9012 		event->attach_state = PERF_ATTACH_TASK;
9013 		/*
9014 		 * XXX pmu::event_init needs to know what task to account to
9015 		 * and we cannot use the ctx information because we need the
9016 		 * pmu before we get a ctx.
9017 		 */
9018 		event->hw.target = task;
9019 	}
9020 
9021 	event->clock = &local_clock;
9022 	if (parent_event)
9023 		event->clock = parent_event->clock;
9024 
9025 	if (!overflow_handler && parent_event) {
9026 		overflow_handler = parent_event->overflow_handler;
9027 		context = parent_event->overflow_handler_context;
9028 	}
9029 
9030 	if (overflow_handler) {
9031 		event->overflow_handler	= overflow_handler;
9032 		event->overflow_handler_context = context;
9033 	} else if (is_write_backward(event)){
9034 		event->overflow_handler = perf_event_output_backward;
9035 		event->overflow_handler_context = NULL;
9036 	} else {
9037 		event->overflow_handler = perf_event_output_forward;
9038 		event->overflow_handler_context = NULL;
9039 	}
9040 
9041 	perf_event__state_init(event);
9042 
9043 	pmu = NULL;
9044 
9045 	hwc = &event->hw;
9046 	hwc->sample_period = attr->sample_period;
9047 	if (attr->freq && attr->sample_freq)
9048 		hwc->sample_period = 1;
9049 	hwc->last_period = hwc->sample_period;
9050 
9051 	local64_set(&hwc->period_left, hwc->sample_period);
9052 
9053 	/*
9054 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9055 	 */
9056 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9057 		goto err_ns;
9058 
9059 	if (!has_branch_stack(event))
9060 		event->attr.branch_sample_type = 0;
9061 
9062 	if (cgroup_fd != -1) {
9063 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9064 		if (err)
9065 			goto err_ns;
9066 	}
9067 
9068 	pmu = perf_init_event(event);
9069 	if (!pmu)
9070 		goto err_ns;
9071 	else if (IS_ERR(pmu)) {
9072 		err = PTR_ERR(pmu);
9073 		goto err_ns;
9074 	}
9075 
9076 	err = exclusive_event_init(event);
9077 	if (err)
9078 		goto err_pmu;
9079 
9080 	if (has_addr_filter(event)) {
9081 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9082 						   sizeof(unsigned long),
9083 						   GFP_KERNEL);
9084 		if (!event->addr_filters_offs)
9085 			goto err_per_task;
9086 
9087 		/* force hw sync on the address filters */
9088 		event->addr_filters_gen = 1;
9089 	}
9090 
9091 	if (!event->parent) {
9092 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9093 			err = get_callchain_buffers(attr->sample_max_stack);
9094 			if (err)
9095 				goto err_addr_filters;
9096 		}
9097 	}
9098 
9099 	/* symmetric to unaccount_event() in _free_event() */
9100 	account_event(event);
9101 
9102 	return event;
9103 
9104 err_addr_filters:
9105 	kfree(event->addr_filters_offs);
9106 
9107 err_per_task:
9108 	exclusive_event_destroy(event);
9109 
9110 err_pmu:
9111 	if (event->destroy)
9112 		event->destroy(event);
9113 	module_put(pmu->module);
9114 err_ns:
9115 	if (is_cgroup_event(event))
9116 		perf_detach_cgroup(event);
9117 	if (event->ns)
9118 		put_pid_ns(event->ns);
9119 	kfree(event);
9120 
9121 	return ERR_PTR(err);
9122 }
9123 
9124 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9125 			  struct perf_event_attr *attr)
9126 {
9127 	u32 size;
9128 	int ret;
9129 
9130 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9131 		return -EFAULT;
9132 
9133 	/*
9134 	 * zero the full structure, so that a short copy will be nice.
9135 	 */
9136 	memset(attr, 0, sizeof(*attr));
9137 
9138 	ret = get_user(size, &uattr->size);
9139 	if (ret)
9140 		return ret;
9141 
9142 	if (size > PAGE_SIZE)	/* silly large */
9143 		goto err_size;
9144 
9145 	if (!size)		/* abi compat */
9146 		size = PERF_ATTR_SIZE_VER0;
9147 
9148 	if (size < PERF_ATTR_SIZE_VER0)
9149 		goto err_size;
9150 
9151 	/*
9152 	 * If we're handed a bigger struct than we know of,
9153 	 * ensure all the unknown bits are 0 - i.e. new
9154 	 * user-space does not rely on any kernel feature
9155 	 * extensions we dont know about yet.
9156 	 */
9157 	if (size > sizeof(*attr)) {
9158 		unsigned char __user *addr;
9159 		unsigned char __user *end;
9160 		unsigned char val;
9161 
9162 		addr = (void __user *)uattr + sizeof(*attr);
9163 		end  = (void __user *)uattr + size;
9164 
9165 		for (; addr < end; addr++) {
9166 			ret = get_user(val, addr);
9167 			if (ret)
9168 				return ret;
9169 			if (val)
9170 				goto err_size;
9171 		}
9172 		size = sizeof(*attr);
9173 	}
9174 
9175 	ret = copy_from_user(attr, uattr, size);
9176 	if (ret)
9177 		return -EFAULT;
9178 
9179 	if (attr->__reserved_1)
9180 		return -EINVAL;
9181 
9182 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9183 		return -EINVAL;
9184 
9185 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9186 		return -EINVAL;
9187 
9188 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9189 		u64 mask = attr->branch_sample_type;
9190 
9191 		/* only using defined bits */
9192 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9193 			return -EINVAL;
9194 
9195 		/* at least one branch bit must be set */
9196 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9197 			return -EINVAL;
9198 
9199 		/* propagate priv level, when not set for branch */
9200 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9201 
9202 			/* exclude_kernel checked on syscall entry */
9203 			if (!attr->exclude_kernel)
9204 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9205 
9206 			if (!attr->exclude_user)
9207 				mask |= PERF_SAMPLE_BRANCH_USER;
9208 
9209 			if (!attr->exclude_hv)
9210 				mask |= PERF_SAMPLE_BRANCH_HV;
9211 			/*
9212 			 * adjust user setting (for HW filter setup)
9213 			 */
9214 			attr->branch_sample_type = mask;
9215 		}
9216 		/* privileged levels capture (kernel, hv): check permissions */
9217 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9218 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9219 			return -EACCES;
9220 	}
9221 
9222 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9223 		ret = perf_reg_validate(attr->sample_regs_user);
9224 		if (ret)
9225 			return ret;
9226 	}
9227 
9228 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9229 		if (!arch_perf_have_user_stack_dump())
9230 			return -ENOSYS;
9231 
9232 		/*
9233 		 * We have __u32 type for the size, but so far
9234 		 * we can only use __u16 as maximum due to the
9235 		 * __u16 sample size limit.
9236 		 */
9237 		if (attr->sample_stack_user >= USHRT_MAX)
9238 			ret = -EINVAL;
9239 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9240 			ret = -EINVAL;
9241 	}
9242 
9243 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9244 		ret = perf_reg_validate(attr->sample_regs_intr);
9245 out:
9246 	return ret;
9247 
9248 err_size:
9249 	put_user(sizeof(*attr), &uattr->size);
9250 	ret = -E2BIG;
9251 	goto out;
9252 }
9253 
9254 static int
9255 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9256 {
9257 	struct ring_buffer *rb = NULL;
9258 	int ret = -EINVAL;
9259 
9260 	if (!output_event)
9261 		goto set;
9262 
9263 	/* don't allow circular references */
9264 	if (event == output_event)
9265 		goto out;
9266 
9267 	/*
9268 	 * Don't allow cross-cpu buffers
9269 	 */
9270 	if (output_event->cpu != event->cpu)
9271 		goto out;
9272 
9273 	/*
9274 	 * If its not a per-cpu rb, it must be the same task.
9275 	 */
9276 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9277 		goto out;
9278 
9279 	/*
9280 	 * Mixing clocks in the same buffer is trouble you don't need.
9281 	 */
9282 	if (output_event->clock != event->clock)
9283 		goto out;
9284 
9285 	/*
9286 	 * Either writing ring buffer from beginning or from end.
9287 	 * Mixing is not allowed.
9288 	 */
9289 	if (is_write_backward(output_event) != is_write_backward(event))
9290 		goto out;
9291 
9292 	/*
9293 	 * If both events generate aux data, they must be on the same PMU
9294 	 */
9295 	if (has_aux(event) && has_aux(output_event) &&
9296 	    event->pmu != output_event->pmu)
9297 		goto out;
9298 
9299 set:
9300 	mutex_lock(&event->mmap_mutex);
9301 	/* Can't redirect output if we've got an active mmap() */
9302 	if (atomic_read(&event->mmap_count))
9303 		goto unlock;
9304 
9305 	if (output_event) {
9306 		/* get the rb we want to redirect to */
9307 		rb = ring_buffer_get(output_event);
9308 		if (!rb)
9309 			goto unlock;
9310 	}
9311 
9312 	ring_buffer_attach(event, rb);
9313 
9314 	ret = 0;
9315 unlock:
9316 	mutex_unlock(&event->mmap_mutex);
9317 
9318 out:
9319 	return ret;
9320 }
9321 
9322 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9323 {
9324 	if (b < a)
9325 		swap(a, b);
9326 
9327 	mutex_lock(a);
9328 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9329 }
9330 
9331 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9332 {
9333 	bool nmi_safe = false;
9334 
9335 	switch (clk_id) {
9336 	case CLOCK_MONOTONIC:
9337 		event->clock = &ktime_get_mono_fast_ns;
9338 		nmi_safe = true;
9339 		break;
9340 
9341 	case CLOCK_MONOTONIC_RAW:
9342 		event->clock = &ktime_get_raw_fast_ns;
9343 		nmi_safe = true;
9344 		break;
9345 
9346 	case CLOCK_REALTIME:
9347 		event->clock = &ktime_get_real_ns;
9348 		break;
9349 
9350 	case CLOCK_BOOTTIME:
9351 		event->clock = &ktime_get_boot_ns;
9352 		break;
9353 
9354 	case CLOCK_TAI:
9355 		event->clock = &ktime_get_tai_ns;
9356 		break;
9357 
9358 	default:
9359 		return -EINVAL;
9360 	}
9361 
9362 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9363 		return -EINVAL;
9364 
9365 	return 0;
9366 }
9367 
9368 /**
9369  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9370  *
9371  * @attr_uptr:	event_id type attributes for monitoring/sampling
9372  * @pid:		target pid
9373  * @cpu:		target cpu
9374  * @group_fd:		group leader event fd
9375  */
9376 SYSCALL_DEFINE5(perf_event_open,
9377 		struct perf_event_attr __user *, attr_uptr,
9378 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9379 {
9380 	struct perf_event *group_leader = NULL, *output_event = NULL;
9381 	struct perf_event *event, *sibling;
9382 	struct perf_event_attr attr;
9383 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9384 	struct file *event_file = NULL;
9385 	struct fd group = {NULL, 0};
9386 	struct task_struct *task = NULL;
9387 	struct pmu *pmu;
9388 	int event_fd;
9389 	int move_group = 0;
9390 	int err;
9391 	int f_flags = O_RDWR;
9392 	int cgroup_fd = -1;
9393 
9394 	/* for future expandability... */
9395 	if (flags & ~PERF_FLAG_ALL)
9396 		return -EINVAL;
9397 
9398 	err = perf_copy_attr(attr_uptr, &attr);
9399 	if (err)
9400 		return err;
9401 
9402 	if (!attr.exclude_kernel) {
9403 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9404 			return -EACCES;
9405 	}
9406 
9407 	if (attr.freq) {
9408 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9409 			return -EINVAL;
9410 	} else {
9411 		if (attr.sample_period & (1ULL << 63))
9412 			return -EINVAL;
9413 	}
9414 
9415 	if (!attr.sample_max_stack)
9416 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9417 
9418 	/*
9419 	 * In cgroup mode, the pid argument is used to pass the fd
9420 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9421 	 * designates the cpu on which to monitor threads from that
9422 	 * cgroup.
9423 	 */
9424 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9425 		return -EINVAL;
9426 
9427 	if (flags & PERF_FLAG_FD_CLOEXEC)
9428 		f_flags |= O_CLOEXEC;
9429 
9430 	event_fd = get_unused_fd_flags(f_flags);
9431 	if (event_fd < 0)
9432 		return event_fd;
9433 
9434 	if (group_fd != -1) {
9435 		err = perf_fget_light(group_fd, &group);
9436 		if (err)
9437 			goto err_fd;
9438 		group_leader = group.file->private_data;
9439 		if (flags & PERF_FLAG_FD_OUTPUT)
9440 			output_event = group_leader;
9441 		if (flags & PERF_FLAG_FD_NO_GROUP)
9442 			group_leader = NULL;
9443 	}
9444 
9445 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9446 		task = find_lively_task_by_vpid(pid);
9447 		if (IS_ERR(task)) {
9448 			err = PTR_ERR(task);
9449 			goto err_group_fd;
9450 		}
9451 	}
9452 
9453 	if (task && group_leader &&
9454 	    group_leader->attr.inherit != attr.inherit) {
9455 		err = -EINVAL;
9456 		goto err_task;
9457 	}
9458 
9459 	get_online_cpus();
9460 
9461 	if (task) {
9462 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9463 		if (err)
9464 			goto err_cpus;
9465 
9466 		/*
9467 		 * Reuse ptrace permission checks for now.
9468 		 *
9469 		 * We must hold cred_guard_mutex across this and any potential
9470 		 * perf_install_in_context() call for this new event to
9471 		 * serialize against exec() altering our credentials (and the
9472 		 * perf_event_exit_task() that could imply).
9473 		 */
9474 		err = -EACCES;
9475 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9476 			goto err_cred;
9477 	}
9478 
9479 	if (flags & PERF_FLAG_PID_CGROUP)
9480 		cgroup_fd = pid;
9481 
9482 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9483 				 NULL, NULL, cgroup_fd);
9484 	if (IS_ERR(event)) {
9485 		err = PTR_ERR(event);
9486 		goto err_cred;
9487 	}
9488 
9489 	if (is_sampling_event(event)) {
9490 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9491 			err = -EOPNOTSUPP;
9492 			goto err_alloc;
9493 		}
9494 	}
9495 
9496 	/*
9497 	 * Special case software events and allow them to be part of
9498 	 * any hardware group.
9499 	 */
9500 	pmu = event->pmu;
9501 
9502 	if (attr.use_clockid) {
9503 		err = perf_event_set_clock(event, attr.clockid);
9504 		if (err)
9505 			goto err_alloc;
9506 	}
9507 
9508 	if (group_leader &&
9509 	    (is_software_event(event) != is_software_event(group_leader))) {
9510 		if (is_software_event(event)) {
9511 			/*
9512 			 * If event and group_leader are not both a software
9513 			 * event, and event is, then group leader is not.
9514 			 *
9515 			 * Allow the addition of software events to !software
9516 			 * groups, this is safe because software events never
9517 			 * fail to schedule.
9518 			 */
9519 			pmu = group_leader->pmu;
9520 		} else if (is_software_event(group_leader) &&
9521 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9522 			/*
9523 			 * In case the group is a pure software group, and we
9524 			 * try to add a hardware event, move the whole group to
9525 			 * the hardware context.
9526 			 */
9527 			move_group = 1;
9528 		}
9529 	}
9530 
9531 	/*
9532 	 * Get the target context (task or percpu):
9533 	 */
9534 	ctx = find_get_context(pmu, task, event);
9535 	if (IS_ERR(ctx)) {
9536 		err = PTR_ERR(ctx);
9537 		goto err_alloc;
9538 	}
9539 
9540 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9541 		err = -EBUSY;
9542 		goto err_context;
9543 	}
9544 
9545 	/*
9546 	 * Look up the group leader (we will attach this event to it):
9547 	 */
9548 	if (group_leader) {
9549 		err = -EINVAL;
9550 
9551 		/*
9552 		 * Do not allow a recursive hierarchy (this new sibling
9553 		 * becoming part of another group-sibling):
9554 		 */
9555 		if (group_leader->group_leader != group_leader)
9556 			goto err_context;
9557 
9558 		/* All events in a group should have the same clock */
9559 		if (group_leader->clock != event->clock)
9560 			goto err_context;
9561 
9562 		/*
9563 		 * Do not allow to attach to a group in a different
9564 		 * task or CPU context:
9565 		 */
9566 		if (move_group) {
9567 			/*
9568 			 * Make sure we're both on the same task, or both
9569 			 * per-cpu events.
9570 			 */
9571 			if (group_leader->ctx->task != ctx->task)
9572 				goto err_context;
9573 
9574 			/*
9575 			 * Make sure we're both events for the same CPU;
9576 			 * grouping events for different CPUs is broken; since
9577 			 * you can never concurrently schedule them anyhow.
9578 			 */
9579 			if (group_leader->cpu != event->cpu)
9580 				goto err_context;
9581 		} else {
9582 			if (group_leader->ctx != ctx)
9583 				goto err_context;
9584 		}
9585 
9586 		/*
9587 		 * Only a group leader can be exclusive or pinned
9588 		 */
9589 		if (attr.exclusive || attr.pinned)
9590 			goto err_context;
9591 	}
9592 
9593 	if (output_event) {
9594 		err = perf_event_set_output(event, output_event);
9595 		if (err)
9596 			goto err_context;
9597 	}
9598 
9599 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9600 					f_flags);
9601 	if (IS_ERR(event_file)) {
9602 		err = PTR_ERR(event_file);
9603 		event_file = NULL;
9604 		goto err_context;
9605 	}
9606 
9607 	if (move_group) {
9608 		gctx = group_leader->ctx;
9609 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9610 		if (gctx->task == TASK_TOMBSTONE) {
9611 			err = -ESRCH;
9612 			goto err_locked;
9613 		}
9614 	} else {
9615 		mutex_lock(&ctx->mutex);
9616 	}
9617 
9618 	if (ctx->task == TASK_TOMBSTONE) {
9619 		err = -ESRCH;
9620 		goto err_locked;
9621 	}
9622 
9623 	if (!perf_event_validate_size(event)) {
9624 		err = -E2BIG;
9625 		goto err_locked;
9626 	}
9627 
9628 	/*
9629 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9630 	 * because we need to serialize with concurrent event creation.
9631 	 */
9632 	if (!exclusive_event_installable(event, ctx)) {
9633 		/* exclusive and group stuff are assumed mutually exclusive */
9634 		WARN_ON_ONCE(move_group);
9635 
9636 		err = -EBUSY;
9637 		goto err_locked;
9638 	}
9639 
9640 	WARN_ON_ONCE(ctx->parent_ctx);
9641 
9642 	/*
9643 	 * This is the point on no return; we cannot fail hereafter. This is
9644 	 * where we start modifying current state.
9645 	 */
9646 
9647 	if (move_group) {
9648 		/*
9649 		 * See perf_event_ctx_lock() for comments on the details
9650 		 * of swizzling perf_event::ctx.
9651 		 */
9652 		perf_remove_from_context(group_leader, 0);
9653 
9654 		list_for_each_entry(sibling, &group_leader->sibling_list,
9655 				    group_entry) {
9656 			perf_remove_from_context(sibling, 0);
9657 			put_ctx(gctx);
9658 		}
9659 
9660 		/*
9661 		 * Wait for everybody to stop referencing the events through
9662 		 * the old lists, before installing it on new lists.
9663 		 */
9664 		synchronize_rcu();
9665 
9666 		/*
9667 		 * Install the group siblings before the group leader.
9668 		 *
9669 		 * Because a group leader will try and install the entire group
9670 		 * (through the sibling list, which is still in-tact), we can
9671 		 * end up with siblings installed in the wrong context.
9672 		 *
9673 		 * By installing siblings first we NO-OP because they're not
9674 		 * reachable through the group lists.
9675 		 */
9676 		list_for_each_entry(sibling, &group_leader->sibling_list,
9677 				    group_entry) {
9678 			perf_event__state_init(sibling);
9679 			perf_install_in_context(ctx, sibling, sibling->cpu);
9680 			get_ctx(ctx);
9681 		}
9682 
9683 		/*
9684 		 * Removing from the context ends up with disabled
9685 		 * event. What we want here is event in the initial
9686 		 * startup state, ready to be add into new context.
9687 		 */
9688 		perf_event__state_init(group_leader);
9689 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9690 		get_ctx(ctx);
9691 
9692 		/*
9693 		 * Now that all events are installed in @ctx, nothing
9694 		 * references @gctx anymore, so drop the last reference we have
9695 		 * on it.
9696 		 */
9697 		put_ctx(gctx);
9698 	}
9699 
9700 	/*
9701 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9702 	 * that we're serialized against further additions and before
9703 	 * perf_install_in_context() which is the point the event is active and
9704 	 * can use these values.
9705 	 */
9706 	perf_event__header_size(event);
9707 	perf_event__id_header_size(event);
9708 
9709 	event->owner = current;
9710 
9711 	perf_install_in_context(ctx, event, event->cpu);
9712 	perf_unpin_context(ctx);
9713 
9714 	if (move_group)
9715 		mutex_unlock(&gctx->mutex);
9716 	mutex_unlock(&ctx->mutex);
9717 
9718 	if (task) {
9719 		mutex_unlock(&task->signal->cred_guard_mutex);
9720 		put_task_struct(task);
9721 	}
9722 
9723 	put_online_cpus();
9724 
9725 	mutex_lock(&current->perf_event_mutex);
9726 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9727 	mutex_unlock(&current->perf_event_mutex);
9728 
9729 	/*
9730 	 * Drop the reference on the group_event after placing the
9731 	 * new event on the sibling_list. This ensures destruction
9732 	 * of the group leader will find the pointer to itself in
9733 	 * perf_group_detach().
9734 	 */
9735 	fdput(group);
9736 	fd_install(event_fd, event_file);
9737 	return event_fd;
9738 
9739 err_locked:
9740 	if (move_group)
9741 		mutex_unlock(&gctx->mutex);
9742 	mutex_unlock(&ctx->mutex);
9743 /* err_file: */
9744 	fput(event_file);
9745 err_context:
9746 	perf_unpin_context(ctx);
9747 	put_ctx(ctx);
9748 err_alloc:
9749 	/*
9750 	 * If event_file is set, the fput() above will have called ->release()
9751 	 * and that will take care of freeing the event.
9752 	 */
9753 	if (!event_file)
9754 		free_event(event);
9755 err_cred:
9756 	if (task)
9757 		mutex_unlock(&task->signal->cred_guard_mutex);
9758 err_cpus:
9759 	put_online_cpus();
9760 err_task:
9761 	if (task)
9762 		put_task_struct(task);
9763 err_group_fd:
9764 	fdput(group);
9765 err_fd:
9766 	put_unused_fd(event_fd);
9767 	return err;
9768 }
9769 
9770 /**
9771  * perf_event_create_kernel_counter
9772  *
9773  * @attr: attributes of the counter to create
9774  * @cpu: cpu in which the counter is bound
9775  * @task: task to profile (NULL for percpu)
9776  */
9777 struct perf_event *
9778 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9779 				 struct task_struct *task,
9780 				 perf_overflow_handler_t overflow_handler,
9781 				 void *context)
9782 {
9783 	struct perf_event_context *ctx;
9784 	struct perf_event *event;
9785 	int err;
9786 
9787 	/*
9788 	 * Get the target context (task or percpu):
9789 	 */
9790 
9791 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9792 				 overflow_handler, context, -1);
9793 	if (IS_ERR(event)) {
9794 		err = PTR_ERR(event);
9795 		goto err;
9796 	}
9797 
9798 	/* Mark owner so we could distinguish it from user events. */
9799 	event->owner = TASK_TOMBSTONE;
9800 
9801 	ctx = find_get_context(event->pmu, task, event);
9802 	if (IS_ERR(ctx)) {
9803 		err = PTR_ERR(ctx);
9804 		goto err_free;
9805 	}
9806 
9807 	WARN_ON_ONCE(ctx->parent_ctx);
9808 	mutex_lock(&ctx->mutex);
9809 	if (ctx->task == TASK_TOMBSTONE) {
9810 		err = -ESRCH;
9811 		goto err_unlock;
9812 	}
9813 
9814 	if (!exclusive_event_installable(event, ctx)) {
9815 		err = -EBUSY;
9816 		goto err_unlock;
9817 	}
9818 
9819 	perf_install_in_context(ctx, event, cpu);
9820 	perf_unpin_context(ctx);
9821 	mutex_unlock(&ctx->mutex);
9822 
9823 	return event;
9824 
9825 err_unlock:
9826 	mutex_unlock(&ctx->mutex);
9827 	perf_unpin_context(ctx);
9828 	put_ctx(ctx);
9829 err_free:
9830 	free_event(event);
9831 err:
9832 	return ERR_PTR(err);
9833 }
9834 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9835 
9836 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9837 {
9838 	struct perf_event_context *src_ctx;
9839 	struct perf_event_context *dst_ctx;
9840 	struct perf_event *event, *tmp;
9841 	LIST_HEAD(events);
9842 
9843 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9844 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9845 
9846 	/*
9847 	 * See perf_event_ctx_lock() for comments on the details
9848 	 * of swizzling perf_event::ctx.
9849 	 */
9850 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9851 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9852 				 event_entry) {
9853 		perf_remove_from_context(event, 0);
9854 		unaccount_event_cpu(event, src_cpu);
9855 		put_ctx(src_ctx);
9856 		list_add(&event->migrate_entry, &events);
9857 	}
9858 
9859 	/*
9860 	 * Wait for the events to quiesce before re-instating them.
9861 	 */
9862 	synchronize_rcu();
9863 
9864 	/*
9865 	 * Re-instate events in 2 passes.
9866 	 *
9867 	 * Skip over group leaders and only install siblings on this first
9868 	 * pass, siblings will not get enabled without a leader, however a
9869 	 * leader will enable its siblings, even if those are still on the old
9870 	 * context.
9871 	 */
9872 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9873 		if (event->group_leader == event)
9874 			continue;
9875 
9876 		list_del(&event->migrate_entry);
9877 		if (event->state >= PERF_EVENT_STATE_OFF)
9878 			event->state = PERF_EVENT_STATE_INACTIVE;
9879 		account_event_cpu(event, dst_cpu);
9880 		perf_install_in_context(dst_ctx, event, dst_cpu);
9881 		get_ctx(dst_ctx);
9882 	}
9883 
9884 	/*
9885 	 * Once all the siblings are setup properly, install the group leaders
9886 	 * to make it go.
9887 	 */
9888 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9889 		list_del(&event->migrate_entry);
9890 		if (event->state >= PERF_EVENT_STATE_OFF)
9891 			event->state = PERF_EVENT_STATE_INACTIVE;
9892 		account_event_cpu(event, dst_cpu);
9893 		perf_install_in_context(dst_ctx, event, dst_cpu);
9894 		get_ctx(dst_ctx);
9895 	}
9896 	mutex_unlock(&dst_ctx->mutex);
9897 	mutex_unlock(&src_ctx->mutex);
9898 }
9899 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9900 
9901 static void sync_child_event(struct perf_event *child_event,
9902 			       struct task_struct *child)
9903 {
9904 	struct perf_event *parent_event = child_event->parent;
9905 	u64 child_val;
9906 
9907 	if (child_event->attr.inherit_stat)
9908 		perf_event_read_event(child_event, child);
9909 
9910 	child_val = perf_event_count(child_event);
9911 
9912 	/*
9913 	 * Add back the child's count to the parent's count:
9914 	 */
9915 	atomic64_add(child_val, &parent_event->child_count);
9916 	atomic64_add(child_event->total_time_enabled,
9917 		     &parent_event->child_total_time_enabled);
9918 	atomic64_add(child_event->total_time_running,
9919 		     &parent_event->child_total_time_running);
9920 }
9921 
9922 static void
9923 perf_event_exit_event(struct perf_event *child_event,
9924 		      struct perf_event_context *child_ctx,
9925 		      struct task_struct *child)
9926 {
9927 	struct perf_event *parent_event = child_event->parent;
9928 
9929 	/*
9930 	 * Do not destroy the 'original' grouping; because of the context
9931 	 * switch optimization the original events could've ended up in a
9932 	 * random child task.
9933 	 *
9934 	 * If we were to destroy the original group, all group related
9935 	 * operations would cease to function properly after this random
9936 	 * child dies.
9937 	 *
9938 	 * Do destroy all inherited groups, we don't care about those
9939 	 * and being thorough is better.
9940 	 */
9941 	raw_spin_lock_irq(&child_ctx->lock);
9942 	WARN_ON_ONCE(child_ctx->is_active);
9943 
9944 	if (parent_event)
9945 		perf_group_detach(child_event);
9946 	list_del_event(child_event, child_ctx);
9947 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9948 	raw_spin_unlock_irq(&child_ctx->lock);
9949 
9950 	/*
9951 	 * Parent events are governed by their filedesc, retain them.
9952 	 */
9953 	if (!parent_event) {
9954 		perf_event_wakeup(child_event);
9955 		return;
9956 	}
9957 	/*
9958 	 * Child events can be cleaned up.
9959 	 */
9960 
9961 	sync_child_event(child_event, child);
9962 
9963 	/*
9964 	 * Remove this event from the parent's list
9965 	 */
9966 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9967 	mutex_lock(&parent_event->child_mutex);
9968 	list_del_init(&child_event->child_list);
9969 	mutex_unlock(&parent_event->child_mutex);
9970 
9971 	/*
9972 	 * Kick perf_poll() for is_event_hup().
9973 	 */
9974 	perf_event_wakeup(parent_event);
9975 	free_event(child_event);
9976 	put_event(parent_event);
9977 }
9978 
9979 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9980 {
9981 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9982 	struct perf_event *child_event, *next;
9983 
9984 	WARN_ON_ONCE(child != current);
9985 
9986 	child_ctx = perf_pin_task_context(child, ctxn);
9987 	if (!child_ctx)
9988 		return;
9989 
9990 	/*
9991 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9992 	 * ctx::mutex over the entire thing. This serializes against almost
9993 	 * everything that wants to access the ctx.
9994 	 *
9995 	 * The exception is sys_perf_event_open() /
9996 	 * perf_event_create_kernel_count() which does find_get_context()
9997 	 * without ctx::mutex (it cannot because of the move_group double mutex
9998 	 * lock thing). See the comments in perf_install_in_context().
9999 	 */
10000 	mutex_lock(&child_ctx->mutex);
10001 
10002 	/*
10003 	 * In a single ctx::lock section, de-schedule the events and detach the
10004 	 * context from the task such that we cannot ever get it scheduled back
10005 	 * in.
10006 	 */
10007 	raw_spin_lock_irq(&child_ctx->lock);
10008 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10009 
10010 	/*
10011 	 * Now that the context is inactive, destroy the task <-> ctx relation
10012 	 * and mark the context dead.
10013 	 */
10014 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10015 	put_ctx(child_ctx); /* cannot be last */
10016 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10017 	put_task_struct(current); /* cannot be last */
10018 
10019 	clone_ctx = unclone_ctx(child_ctx);
10020 	raw_spin_unlock_irq(&child_ctx->lock);
10021 
10022 	if (clone_ctx)
10023 		put_ctx(clone_ctx);
10024 
10025 	/*
10026 	 * Report the task dead after unscheduling the events so that we
10027 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10028 	 * get a few PERF_RECORD_READ events.
10029 	 */
10030 	perf_event_task(child, child_ctx, 0);
10031 
10032 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10033 		perf_event_exit_event(child_event, child_ctx, child);
10034 
10035 	mutex_unlock(&child_ctx->mutex);
10036 
10037 	put_ctx(child_ctx);
10038 }
10039 
10040 /*
10041  * When a child task exits, feed back event values to parent events.
10042  *
10043  * Can be called with cred_guard_mutex held when called from
10044  * install_exec_creds().
10045  */
10046 void perf_event_exit_task(struct task_struct *child)
10047 {
10048 	struct perf_event *event, *tmp;
10049 	int ctxn;
10050 
10051 	mutex_lock(&child->perf_event_mutex);
10052 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10053 				 owner_entry) {
10054 		list_del_init(&event->owner_entry);
10055 
10056 		/*
10057 		 * Ensure the list deletion is visible before we clear
10058 		 * the owner, closes a race against perf_release() where
10059 		 * we need to serialize on the owner->perf_event_mutex.
10060 		 */
10061 		smp_store_release(&event->owner, NULL);
10062 	}
10063 	mutex_unlock(&child->perf_event_mutex);
10064 
10065 	for_each_task_context_nr(ctxn)
10066 		perf_event_exit_task_context(child, ctxn);
10067 
10068 	/*
10069 	 * The perf_event_exit_task_context calls perf_event_task
10070 	 * with child's task_ctx, which generates EXIT events for
10071 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10072 	 * At this point we need to send EXIT events to cpu contexts.
10073 	 */
10074 	perf_event_task(child, NULL, 0);
10075 }
10076 
10077 static void perf_free_event(struct perf_event *event,
10078 			    struct perf_event_context *ctx)
10079 {
10080 	struct perf_event *parent = event->parent;
10081 
10082 	if (WARN_ON_ONCE(!parent))
10083 		return;
10084 
10085 	mutex_lock(&parent->child_mutex);
10086 	list_del_init(&event->child_list);
10087 	mutex_unlock(&parent->child_mutex);
10088 
10089 	put_event(parent);
10090 
10091 	raw_spin_lock_irq(&ctx->lock);
10092 	perf_group_detach(event);
10093 	list_del_event(event, ctx);
10094 	raw_spin_unlock_irq(&ctx->lock);
10095 	free_event(event);
10096 }
10097 
10098 /*
10099  * Free an unexposed, unused context as created by inheritance by
10100  * perf_event_init_task below, used by fork() in case of fail.
10101  *
10102  * Not all locks are strictly required, but take them anyway to be nice and
10103  * help out with the lockdep assertions.
10104  */
10105 void perf_event_free_task(struct task_struct *task)
10106 {
10107 	struct perf_event_context *ctx;
10108 	struct perf_event *event, *tmp;
10109 	int ctxn;
10110 
10111 	for_each_task_context_nr(ctxn) {
10112 		ctx = task->perf_event_ctxp[ctxn];
10113 		if (!ctx)
10114 			continue;
10115 
10116 		mutex_lock(&ctx->mutex);
10117 again:
10118 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10119 				group_entry)
10120 			perf_free_event(event, ctx);
10121 
10122 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10123 				group_entry)
10124 			perf_free_event(event, ctx);
10125 
10126 		if (!list_empty(&ctx->pinned_groups) ||
10127 				!list_empty(&ctx->flexible_groups))
10128 			goto again;
10129 
10130 		mutex_unlock(&ctx->mutex);
10131 
10132 		put_ctx(ctx);
10133 	}
10134 }
10135 
10136 void perf_event_delayed_put(struct task_struct *task)
10137 {
10138 	int ctxn;
10139 
10140 	for_each_task_context_nr(ctxn)
10141 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10142 }
10143 
10144 struct file *perf_event_get(unsigned int fd)
10145 {
10146 	struct file *file;
10147 
10148 	file = fget_raw(fd);
10149 	if (!file)
10150 		return ERR_PTR(-EBADF);
10151 
10152 	if (file->f_op != &perf_fops) {
10153 		fput(file);
10154 		return ERR_PTR(-EBADF);
10155 	}
10156 
10157 	return file;
10158 }
10159 
10160 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10161 {
10162 	if (!event)
10163 		return ERR_PTR(-EINVAL);
10164 
10165 	return &event->attr;
10166 }
10167 
10168 /*
10169  * inherit a event from parent task to child task:
10170  */
10171 static struct perf_event *
10172 inherit_event(struct perf_event *parent_event,
10173 	      struct task_struct *parent,
10174 	      struct perf_event_context *parent_ctx,
10175 	      struct task_struct *child,
10176 	      struct perf_event *group_leader,
10177 	      struct perf_event_context *child_ctx)
10178 {
10179 	enum perf_event_active_state parent_state = parent_event->state;
10180 	struct perf_event *child_event;
10181 	unsigned long flags;
10182 
10183 	/*
10184 	 * Instead of creating recursive hierarchies of events,
10185 	 * we link inherited events back to the original parent,
10186 	 * which has a filp for sure, which we use as the reference
10187 	 * count:
10188 	 */
10189 	if (parent_event->parent)
10190 		parent_event = parent_event->parent;
10191 
10192 	child_event = perf_event_alloc(&parent_event->attr,
10193 					   parent_event->cpu,
10194 					   child,
10195 					   group_leader, parent_event,
10196 					   NULL, NULL, -1);
10197 	if (IS_ERR(child_event))
10198 		return child_event;
10199 
10200 	/*
10201 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10202 	 * must be under the same lock in order to serialize against
10203 	 * perf_event_release_kernel(), such that either we must observe
10204 	 * is_orphaned_event() or they will observe us on the child_list.
10205 	 */
10206 	mutex_lock(&parent_event->child_mutex);
10207 	if (is_orphaned_event(parent_event) ||
10208 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10209 		mutex_unlock(&parent_event->child_mutex);
10210 		free_event(child_event);
10211 		return NULL;
10212 	}
10213 
10214 	get_ctx(child_ctx);
10215 
10216 	/*
10217 	 * Make the child state follow the state of the parent event,
10218 	 * not its attr.disabled bit.  We hold the parent's mutex,
10219 	 * so we won't race with perf_event_{en, dis}able_family.
10220 	 */
10221 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10222 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10223 	else
10224 		child_event->state = PERF_EVENT_STATE_OFF;
10225 
10226 	if (parent_event->attr.freq) {
10227 		u64 sample_period = parent_event->hw.sample_period;
10228 		struct hw_perf_event *hwc = &child_event->hw;
10229 
10230 		hwc->sample_period = sample_period;
10231 		hwc->last_period   = sample_period;
10232 
10233 		local64_set(&hwc->period_left, sample_period);
10234 	}
10235 
10236 	child_event->ctx = child_ctx;
10237 	child_event->overflow_handler = parent_event->overflow_handler;
10238 	child_event->overflow_handler_context
10239 		= parent_event->overflow_handler_context;
10240 
10241 	/*
10242 	 * Precalculate sample_data sizes
10243 	 */
10244 	perf_event__header_size(child_event);
10245 	perf_event__id_header_size(child_event);
10246 
10247 	/*
10248 	 * Link it up in the child's context:
10249 	 */
10250 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10251 	add_event_to_ctx(child_event, child_ctx);
10252 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10253 
10254 	/*
10255 	 * Link this into the parent event's child list
10256 	 */
10257 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10258 	mutex_unlock(&parent_event->child_mutex);
10259 
10260 	return child_event;
10261 }
10262 
10263 static int inherit_group(struct perf_event *parent_event,
10264 	      struct task_struct *parent,
10265 	      struct perf_event_context *parent_ctx,
10266 	      struct task_struct *child,
10267 	      struct perf_event_context *child_ctx)
10268 {
10269 	struct perf_event *leader;
10270 	struct perf_event *sub;
10271 	struct perf_event *child_ctr;
10272 
10273 	leader = inherit_event(parent_event, parent, parent_ctx,
10274 				 child, NULL, child_ctx);
10275 	if (IS_ERR(leader))
10276 		return PTR_ERR(leader);
10277 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10278 		child_ctr = inherit_event(sub, parent, parent_ctx,
10279 					    child, leader, child_ctx);
10280 		if (IS_ERR(child_ctr))
10281 			return PTR_ERR(child_ctr);
10282 	}
10283 	return 0;
10284 }
10285 
10286 static int
10287 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10288 		   struct perf_event_context *parent_ctx,
10289 		   struct task_struct *child, int ctxn,
10290 		   int *inherited_all)
10291 {
10292 	int ret;
10293 	struct perf_event_context *child_ctx;
10294 
10295 	if (!event->attr.inherit) {
10296 		*inherited_all = 0;
10297 		return 0;
10298 	}
10299 
10300 	child_ctx = child->perf_event_ctxp[ctxn];
10301 	if (!child_ctx) {
10302 		/*
10303 		 * This is executed from the parent task context, so
10304 		 * inherit events that have been marked for cloning.
10305 		 * First allocate and initialize a context for the
10306 		 * child.
10307 		 */
10308 
10309 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10310 		if (!child_ctx)
10311 			return -ENOMEM;
10312 
10313 		child->perf_event_ctxp[ctxn] = child_ctx;
10314 	}
10315 
10316 	ret = inherit_group(event, parent, parent_ctx,
10317 			    child, child_ctx);
10318 
10319 	if (ret)
10320 		*inherited_all = 0;
10321 
10322 	return ret;
10323 }
10324 
10325 /*
10326  * Initialize the perf_event context in task_struct
10327  */
10328 static int perf_event_init_context(struct task_struct *child, int ctxn)
10329 {
10330 	struct perf_event_context *child_ctx, *parent_ctx;
10331 	struct perf_event_context *cloned_ctx;
10332 	struct perf_event *event;
10333 	struct task_struct *parent = current;
10334 	int inherited_all = 1;
10335 	unsigned long flags;
10336 	int ret = 0;
10337 
10338 	if (likely(!parent->perf_event_ctxp[ctxn]))
10339 		return 0;
10340 
10341 	/*
10342 	 * If the parent's context is a clone, pin it so it won't get
10343 	 * swapped under us.
10344 	 */
10345 	parent_ctx = perf_pin_task_context(parent, ctxn);
10346 	if (!parent_ctx)
10347 		return 0;
10348 
10349 	/*
10350 	 * No need to check if parent_ctx != NULL here; since we saw
10351 	 * it non-NULL earlier, the only reason for it to become NULL
10352 	 * is if we exit, and since we're currently in the middle of
10353 	 * a fork we can't be exiting at the same time.
10354 	 */
10355 
10356 	/*
10357 	 * Lock the parent list. No need to lock the child - not PID
10358 	 * hashed yet and not running, so nobody can access it.
10359 	 */
10360 	mutex_lock(&parent_ctx->mutex);
10361 
10362 	/*
10363 	 * We dont have to disable NMIs - we are only looking at
10364 	 * the list, not manipulating it:
10365 	 */
10366 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10367 		ret = inherit_task_group(event, parent, parent_ctx,
10368 					 child, ctxn, &inherited_all);
10369 		if (ret)
10370 			break;
10371 	}
10372 
10373 	/*
10374 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10375 	 * to allocations, but we need to prevent rotation because
10376 	 * rotate_ctx() will change the list from interrupt context.
10377 	 */
10378 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10379 	parent_ctx->rotate_disable = 1;
10380 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10381 
10382 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10383 		ret = inherit_task_group(event, parent, parent_ctx,
10384 					 child, ctxn, &inherited_all);
10385 		if (ret)
10386 			break;
10387 	}
10388 
10389 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10390 	parent_ctx->rotate_disable = 0;
10391 
10392 	child_ctx = child->perf_event_ctxp[ctxn];
10393 
10394 	if (child_ctx && inherited_all) {
10395 		/*
10396 		 * Mark the child context as a clone of the parent
10397 		 * context, or of whatever the parent is a clone of.
10398 		 *
10399 		 * Note that if the parent is a clone, the holding of
10400 		 * parent_ctx->lock avoids it from being uncloned.
10401 		 */
10402 		cloned_ctx = parent_ctx->parent_ctx;
10403 		if (cloned_ctx) {
10404 			child_ctx->parent_ctx = cloned_ctx;
10405 			child_ctx->parent_gen = parent_ctx->parent_gen;
10406 		} else {
10407 			child_ctx->parent_ctx = parent_ctx;
10408 			child_ctx->parent_gen = parent_ctx->generation;
10409 		}
10410 		get_ctx(child_ctx->parent_ctx);
10411 	}
10412 
10413 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10414 	mutex_unlock(&parent_ctx->mutex);
10415 
10416 	perf_unpin_context(parent_ctx);
10417 	put_ctx(parent_ctx);
10418 
10419 	return ret;
10420 }
10421 
10422 /*
10423  * Initialize the perf_event context in task_struct
10424  */
10425 int perf_event_init_task(struct task_struct *child)
10426 {
10427 	int ctxn, ret;
10428 
10429 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10430 	mutex_init(&child->perf_event_mutex);
10431 	INIT_LIST_HEAD(&child->perf_event_list);
10432 
10433 	for_each_task_context_nr(ctxn) {
10434 		ret = perf_event_init_context(child, ctxn);
10435 		if (ret) {
10436 			perf_event_free_task(child);
10437 			return ret;
10438 		}
10439 	}
10440 
10441 	return 0;
10442 }
10443 
10444 static void __init perf_event_init_all_cpus(void)
10445 {
10446 	struct swevent_htable *swhash;
10447 	int cpu;
10448 
10449 	for_each_possible_cpu(cpu) {
10450 		swhash = &per_cpu(swevent_htable, cpu);
10451 		mutex_init(&swhash->hlist_mutex);
10452 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10453 
10454 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10455 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10456 	}
10457 }
10458 
10459 int perf_event_init_cpu(unsigned int cpu)
10460 {
10461 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10462 
10463 	mutex_lock(&swhash->hlist_mutex);
10464 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10465 		struct swevent_hlist *hlist;
10466 
10467 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10468 		WARN_ON(!hlist);
10469 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10470 	}
10471 	mutex_unlock(&swhash->hlist_mutex);
10472 	return 0;
10473 }
10474 
10475 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10476 static void __perf_event_exit_context(void *__info)
10477 {
10478 	struct perf_event_context *ctx = __info;
10479 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10480 	struct perf_event *event;
10481 
10482 	raw_spin_lock(&ctx->lock);
10483 	list_for_each_entry(event, &ctx->event_list, event_entry)
10484 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10485 	raw_spin_unlock(&ctx->lock);
10486 }
10487 
10488 static void perf_event_exit_cpu_context(int cpu)
10489 {
10490 	struct perf_event_context *ctx;
10491 	struct pmu *pmu;
10492 	int idx;
10493 
10494 	idx = srcu_read_lock(&pmus_srcu);
10495 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10496 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10497 
10498 		mutex_lock(&ctx->mutex);
10499 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10500 		mutex_unlock(&ctx->mutex);
10501 	}
10502 	srcu_read_unlock(&pmus_srcu, idx);
10503 }
10504 #else
10505 
10506 static void perf_event_exit_cpu_context(int cpu) { }
10507 
10508 #endif
10509 
10510 int perf_event_exit_cpu(unsigned int cpu)
10511 {
10512 	perf_event_exit_cpu_context(cpu);
10513 	return 0;
10514 }
10515 
10516 static int
10517 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10518 {
10519 	int cpu;
10520 
10521 	for_each_online_cpu(cpu)
10522 		perf_event_exit_cpu(cpu);
10523 
10524 	return NOTIFY_OK;
10525 }
10526 
10527 /*
10528  * Run the perf reboot notifier at the very last possible moment so that
10529  * the generic watchdog code runs as long as possible.
10530  */
10531 static struct notifier_block perf_reboot_notifier = {
10532 	.notifier_call = perf_reboot,
10533 	.priority = INT_MIN,
10534 };
10535 
10536 void __init perf_event_init(void)
10537 {
10538 	int ret;
10539 
10540 	idr_init(&pmu_idr);
10541 
10542 	perf_event_init_all_cpus();
10543 	init_srcu_struct(&pmus_srcu);
10544 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10545 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10546 	perf_pmu_register(&perf_task_clock, NULL, -1);
10547 	perf_tp_register();
10548 	perf_event_init_cpu(smp_processor_id());
10549 	register_reboot_notifier(&perf_reboot_notifier);
10550 
10551 	ret = init_hw_breakpoint();
10552 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10553 
10554 	/*
10555 	 * Build time assertion that we keep the data_head at the intended
10556 	 * location.  IOW, validation we got the __reserved[] size right.
10557 	 */
10558 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10559 		     != 1024);
10560 }
10561 
10562 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10563 			      char *page)
10564 {
10565 	struct perf_pmu_events_attr *pmu_attr =
10566 		container_of(attr, struct perf_pmu_events_attr, attr);
10567 
10568 	if (pmu_attr->event_str)
10569 		return sprintf(page, "%s\n", pmu_attr->event_str);
10570 
10571 	return 0;
10572 }
10573 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10574 
10575 static int __init perf_event_sysfs_init(void)
10576 {
10577 	struct pmu *pmu;
10578 	int ret;
10579 
10580 	mutex_lock(&pmus_lock);
10581 
10582 	ret = bus_register(&pmu_bus);
10583 	if (ret)
10584 		goto unlock;
10585 
10586 	list_for_each_entry(pmu, &pmus, entry) {
10587 		if (!pmu->name || pmu->type < 0)
10588 			continue;
10589 
10590 		ret = pmu_dev_alloc(pmu);
10591 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10592 	}
10593 	pmu_bus_running = 1;
10594 	ret = 0;
10595 
10596 unlock:
10597 	mutex_unlock(&pmus_lock);
10598 
10599 	return ret;
10600 }
10601 device_initcall(perf_event_sysfs_init);
10602 
10603 #ifdef CONFIG_CGROUP_PERF
10604 static struct cgroup_subsys_state *
10605 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10606 {
10607 	struct perf_cgroup *jc;
10608 
10609 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10610 	if (!jc)
10611 		return ERR_PTR(-ENOMEM);
10612 
10613 	jc->info = alloc_percpu(struct perf_cgroup_info);
10614 	if (!jc->info) {
10615 		kfree(jc);
10616 		return ERR_PTR(-ENOMEM);
10617 	}
10618 
10619 	return &jc->css;
10620 }
10621 
10622 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10623 {
10624 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10625 
10626 	free_percpu(jc->info);
10627 	kfree(jc);
10628 }
10629 
10630 static int __perf_cgroup_move(void *info)
10631 {
10632 	struct task_struct *task = info;
10633 	rcu_read_lock();
10634 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10635 	rcu_read_unlock();
10636 	return 0;
10637 }
10638 
10639 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10640 {
10641 	struct task_struct *task;
10642 	struct cgroup_subsys_state *css;
10643 
10644 	cgroup_taskset_for_each(task, css, tset)
10645 		task_function_call(task, __perf_cgroup_move, task);
10646 }
10647 
10648 struct cgroup_subsys perf_event_cgrp_subsys = {
10649 	.css_alloc	= perf_cgroup_css_alloc,
10650 	.css_free	= perf_cgroup_css_free,
10651 	.attach		= perf_cgroup_attach,
10652 };
10653 #endif /* CONFIG_CGROUP_PERF */
10654