1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 cpuctx->cgrp = add ? event->cgrp : NULL; 906 } 907 908 #else /* !CONFIG_CGROUP_PERF */ 909 910 static inline bool 911 perf_cgroup_match(struct perf_event *event) 912 { 913 return true; 914 } 915 916 static inline void perf_detach_cgroup(struct perf_event *event) 917 {} 918 919 static inline int is_cgroup_event(struct perf_event *event) 920 { 921 return 0; 922 } 923 924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disbled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1253 { 1254 /* 1255 * only top level events have the pid namespace they were created in 1256 */ 1257 if (event->parent) 1258 event = event->parent; 1259 1260 return task_tgid_nr_ns(p, event->ns); 1261 } 1262 1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1264 { 1265 /* 1266 * only top level events have the pid namespace they were created in 1267 */ 1268 if (event->parent) 1269 event = event->parent; 1270 1271 return task_pid_nr_ns(p, event->ns); 1272 } 1273 1274 /* 1275 * If we inherit events we want to return the parent event id 1276 * to userspace. 1277 */ 1278 static u64 primary_event_id(struct perf_event *event) 1279 { 1280 u64 id = event->id; 1281 1282 if (event->parent) 1283 id = event->parent->id; 1284 1285 return id; 1286 } 1287 1288 /* 1289 * Get the perf_event_context for a task and lock it. 1290 * 1291 * This has to cope with with the fact that until it is locked, 1292 * the context could get moved to another task. 1293 */ 1294 static struct perf_event_context * 1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1296 { 1297 struct perf_event_context *ctx; 1298 1299 retry: 1300 /* 1301 * One of the few rules of preemptible RCU is that one cannot do 1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1303 * part of the read side critical section was irqs-enabled -- see 1304 * rcu_read_unlock_special(). 1305 * 1306 * Since ctx->lock nests under rq->lock we must ensure the entire read 1307 * side critical section has interrupts disabled. 1308 */ 1309 local_irq_save(*flags); 1310 rcu_read_lock(); 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1312 if (ctx) { 1313 /* 1314 * If this context is a clone of another, it might 1315 * get swapped for another underneath us by 1316 * perf_event_task_sched_out, though the 1317 * rcu_read_lock() protects us from any context 1318 * getting freed. Lock the context and check if it 1319 * got swapped before we could get the lock, and retry 1320 * if so. If we locked the right context, then it 1321 * can't get swapped on us any more. 1322 */ 1323 raw_spin_lock(&ctx->lock); 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1325 raw_spin_unlock(&ctx->lock); 1326 rcu_read_unlock(); 1327 local_irq_restore(*flags); 1328 goto retry; 1329 } 1330 1331 if (ctx->task == TASK_TOMBSTONE || 1332 !atomic_inc_not_zero(&ctx->refcount)) { 1333 raw_spin_unlock(&ctx->lock); 1334 ctx = NULL; 1335 } else { 1336 WARN_ON_ONCE(ctx->task != task); 1337 } 1338 } 1339 rcu_read_unlock(); 1340 if (!ctx) 1341 local_irq_restore(*flags); 1342 return ctx; 1343 } 1344 1345 /* 1346 * Get the context for a task and increment its pin_count so it 1347 * can't get swapped to another task. This also increments its 1348 * reference count so that the context can't get freed. 1349 */ 1350 static struct perf_event_context * 1351 perf_pin_task_context(struct task_struct *task, int ctxn) 1352 { 1353 struct perf_event_context *ctx; 1354 unsigned long flags; 1355 1356 ctx = perf_lock_task_context(task, ctxn, &flags); 1357 if (ctx) { 1358 ++ctx->pin_count; 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1360 } 1361 return ctx; 1362 } 1363 1364 static void perf_unpin_context(struct perf_event_context *ctx) 1365 { 1366 unsigned long flags; 1367 1368 raw_spin_lock_irqsave(&ctx->lock, flags); 1369 --ctx->pin_count; 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1371 } 1372 1373 /* 1374 * Update the record of the current time in a context. 1375 */ 1376 static void update_context_time(struct perf_event_context *ctx) 1377 { 1378 u64 now = perf_clock(); 1379 1380 ctx->time += now - ctx->timestamp; 1381 ctx->timestamp = now; 1382 } 1383 1384 static u64 perf_event_time(struct perf_event *event) 1385 { 1386 struct perf_event_context *ctx = event->ctx; 1387 1388 if (is_cgroup_event(event)) 1389 return perf_cgroup_event_time(event); 1390 1391 return ctx ? ctx->time : 0; 1392 } 1393 1394 /* 1395 * Update the total_time_enabled and total_time_running fields for a event. 1396 */ 1397 static void update_event_times(struct perf_event *event) 1398 { 1399 struct perf_event_context *ctx = event->ctx; 1400 u64 run_end; 1401 1402 lockdep_assert_held(&ctx->lock); 1403 1404 if (event->state < PERF_EVENT_STATE_INACTIVE || 1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1406 return; 1407 1408 /* 1409 * in cgroup mode, time_enabled represents 1410 * the time the event was enabled AND active 1411 * tasks were in the monitored cgroup. This is 1412 * independent of the activity of the context as 1413 * there may be a mix of cgroup and non-cgroup events. 1414 * 1415 * That is why we treat cgroup events differently 1416 * here. 1417 */ 1418 if (is_cgroup_event(event)) 1419 run_end = perf_cgroup_event_time(event); 1420 else if (ctx->is_active) 1421 run_end = ctx->time; 1422 else 1423 run_end = event->tstamp_stopped; 1424 1425 event->total_time_enabled = run_end - event->tstamp_enabled; 1426 1427 if (event->state == PERF_EVENT_STATE_INACTIVE) 1428 run_end = event->tstamp_stopped; 1429 else 1430 run_end = perf_event_time(event); 1431 1432 event->total_time_running = run_end - event->tstamp_running; 1433 1434 } 1435 1436 /* 1437 * Update total_time_enabled and total_time_running for all events in a group. 1438 */ 1439 static void update_group_times(struct perf_event *leader) 1440 { 1441 struct perf_event *event; 1442 1443 update_event_times(leader); 1444 list_for_each_entry(event, &leader->sibling_list, group_entry) 1445 update_event_times(event); 1446 } 1447 1448 static struct list_head * 1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1450 { 1451 if (event->attr.pinned) 1452 return &ctx->pinned_groups; 1453 else 1454 return &ctx->flexible_groups; 1455 } 1456 1457 /* 1458 * Add a event from the lists for its context. 1459 * Must be called with ctx->mutex and ctx->lock held. 1460 */ 1461 static void 1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1463 { 1464 1465 lockdep_assert_held(&ctx->lock); 1466 1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1468 event->attach_state |= PERF_ATTACH_CONTEXT; 1469 1470 /* 1471 * If we're a stand alone event or group leader, we go to the context 1472 * list, group events are kept attached to the group so that 1473 * perf_group_detach can, at all times, locate all siblings. 1474 */ 1475 if (event->group_leader == event) { 1476 struct list_head *list; 1477 1478 if (is_software_event(event)) 1479 event->group_flags |= PERF_GROUP_SOFTWARE; 1480 1481 list = ctx_group_list(event, ctx); 1482 list_add_tail(&event->group_entry, list); 1483 } 1484 1485 list_update_cgroup_event(event, ctx, true); 1486 1487 list_add_rcu(&event->event_entry, &ctx->event_list); 1488 ctx->nr_events++; 1489 if (event->attr.inherit_stat) 1490 ctx->nr_stat++; 1491 1492 ctx->generation++; 1493 } 1494 1495 /* 1496 * Initialize event state based on the perf_event_attr::disabled. 1497 */ 1498 static inline void perf_event__state_init(struct perf_event *event) 1499 { 1500 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1501 PERF_EVENT_STATE_INACTIVE; 1502 } 1503 1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1505 { 1506 int entry = sizeof(u64); /* value */ 1507 int size = 0; 1508 int nr = 1; 1509 1510 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1511 size += sizeof(u64); 1512 1513 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1514 size += sizeof(u64); 1515 1516 if (event->attr.read_format & PERF_FORMAT_ID) 1517 entry += sizeof(u64); 1518 1519 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1520 nr += nr_siblings; 1521 size += sizeof(u64); 1522 } 1523 1524 size += entry * nr; 1525 event->read_size = size; 1526 } 1527 1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1529 { 1530 struct perf_sample_data *data; 1531 u16 size = 0; 1532 1533 if (sample_type & PERF_SAMPLE_IP) 1534 size += sizeof(data->ip); 1535 1536 if (sample_type & PERF_SAMPLE_ADDR) 1537 size += sizeof(data->addr); 1538 1539 if (sample_type & PERF_SAMPLE_PERIOD) 1540 size += sizeof(data->period); 1541 1542 if (sample_type & PERF_SAMPLE_WEIGHT) 1543 size += sizeof(data->weight); 1544 1545 if (sample_type & PERF_SAMPLE_READ) 1546 size += event->read_size; 1547 1548 if (sample_type & PERF_SAMPLE_DATA_SRC) 1549 size += sizeof(data->data_src.val); 1550 1551 if (sample_type & PERF_SAMPLE_TRANSACTION) 1552 size += sizeof(data->txn); 1553 1554 event->header_size = size; 1555 } 1556 1557 /* 1558 * Called at perf_event creation and when events are attached/detached from a 1559 * group. 1560 */ 1561 static void perf_event__header_size(struct perf_event *event) 1562 { 1563 __perf_event_read_size(event, 1564 event->group_leader->nr_siblings); 1565 __perf_event_header_size(event, event->attr.sample_type); 1566 } 1567 1568 static void perf_event__id_header_size(struct perf_event *event) 1569 { 1570 struct perf_sample_data *data; 1571 u64 sample_type = event->attr.sample_type; 1572 u16 size = 0; 1573 1574 if (sample_type & PERF_SAMPLE_TID) 1575 size += sizeof(data->tid_entry); 1576 1577 if (sample_type & PERF_SAMPLE_TIME) 1578 size += sizeof(data->time); 1579 1580 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1581 size += sizeof(data->id); 1582 1583 if (sample_type & PERF_SAMPLE_ID) 1584 size += sizeof(data->id); 1585 1586 if (sample_type & PERF_SAMPLE_STREAM_ID) 1587 size += sizeof(data->stream_id); 1588 1589 if (sample_type & PERF_SAMPLE_CPU) 1590 size += sizeof(data->cpu_entry); 1591 1592 event->id_header_size = size; 1593 } 1594 1595 static bool perf_event_validate_size(struct perf_event *event) 1596 { 1597 /* 1598 * The values computed here will be over-written when we actually 1599 * attach the event. 1600 */ 1601 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1602 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1603 perf_event__id_header_size(event); 1604 1605 /* 1606 * Sum the lot; should not exceed the 64k limit we have on records. 1607 * Conservative limit to allow for callchains and other variable fields. 1608 */ 1609 if (event->read_size + event->header_size + 1610 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1611 return false; 1612 1613 return true; 1614 } 1615 1616 static void perf_group_attach(struct perf_event *event) 1617 { 1618 struct perf_event *group_leader = event->group_leader, *pos; 1619 1620 /* 1621 * We can have double attach due to group movement in perf_event_open. 1622 */ 1623 if (event->attach_state & PERF_ATTACH_GROUP) 1624 return; 1625 1626 event->attach_state |= PERF_ATTACH_GROUP; 1627 1628 if (group_leader == event) 1629 return; 1630 1631 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1632 1633 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1634 !is_software_event(event)) 1635 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1636 1637 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1638 group_leader->nr_siblings++; 1639 1640 perf_event__header_size(group_leader); 1641 1642 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1643 perf_event__header_size(pos); 1644 } 1645 1646 /* 1647 * Remove a event from the lists for its context. 1648 * Must be called with ctx->mutex and ctx->lock held. 1649 */ 1650 static void 1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1652 { 1653 WARN_ON_ONCE(event->ctx != ctx); 1654 lockdep_assert_held(&ctx->lock); 1655 1656 /* 1657 * We can have double detach due to exit/hot-unplug + close. 1658 */ 1659 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1660 return; 1661 1662 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1663 1664 list_update_cgroup_event(event, ctx, false); 1665 1666 ctx->nr_events--; 1667 if (event->attr.inherit_stat) 1668 ctx->nr_stat--; 1669 1670 list_del_rcu(&event->event_entry); 1671 1672 if (event->group_leader == event) 1673 list_del_init(&event->group_entry); 1674 1675 update_group_times(event); 1676 1677 /* 1678 * If event was in error state, then keep it 1679 * that way, otherwise bogus counts will be 1680 * returned on read(). The only way to get out 1681 * of error state is by explicit re-enabling 1682 * of the event 1683 */ 1684 if (event->state > PERF_EVENT_STATE_OFF) 1685 event->state = PERF_EVENT_STATE_OFF; 1686 1687 ctx->generation++; 1688 } 1689 1690 static void perf_group_detach(struct perf_event *event) 1691 { 1692 struct perf_event *sibling, *tmp; 1693 struct list_head *list = NULL; 1694 1695 /* 1696 * We can have double detach due to exit/hot-unplug + close. 1697 */ 1698 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1699 return; 1700 1701 event->attach_state &= ~PERF_ATTACH_GROUP; 1702 1703 /* 1704 * If this is a sibling, remove it from its group. 1705 */ 1706 if (event->group_leader != event) { 1707 list_del_init(&event->group_entry); 1708 event->group_leader->nr_siblings--; 1709 goto out; 1710 } 1711 1712 if (!list_empty(&event->group_entry)) 1713 list = &event->group_entry; 1714 1715 /* 1716 * If this was a group event with sibling events then 1717 * upgrade the siblings to singleton events by adding them 1718 * to whatever list we are on. 1719 */ 1720 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1721 if (list) 1722 list_move_tail(&sibling->group_entry, list); 1723 sibling->group_leader = sibling; 1724 1725 /* Inherit group flags from the previous leader */ 1726 sibling->group_flags = event->group_flags; 1727 1728 WARN_ON_ONCE(sibling->ctx != event->ctx); 1729 } 1730 1731 out: 1732 perf_event__header_size(event->group_leader); 1733 1734 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1735 perf_event__header_size(tmp); 1736 } 1737 1738 static bool is_orphaned_event(struct perf_event *event) 1739 { 1740 return event->state == PERF_EVENT_STATE_DEAD; 1741 } 1742 1743 static inline int __pmu_filter_match(struct perf_event *event) 1744 { 1745 struct pmu *pmu = event->pmu; 1746 return pmu->filter_match ? pmu->filter_match(event) : 1; 1747 } 1748 1749 /* 1750 * Check whether we should attempt to schedule an event group based on 1751 * PMU-specific filtering. An event group can consist of HW and SW events, 1752 * potentially with a SW leader, so we must check all the filters, to 1753 * determine whether a group is schedulable: 1754 */ 1755 static inline int pmu_filter_match(struct perf_event *event) 1756 { 1757 struct perf_event *child; 1758 1759 if (!__pmu_filter_match(event)) 1760 return 0; 1761 1762 list_for_each_entry(child, &event->sibling_list, group_entry) { 1763 if (!__pmu_filter_match(child)) 1764 return 0; 1765 } 1766 1767 return 1; 1768 } 1769 1770 static inline int 1771 event_filter_match(struct perf_event *event) 1772 { 1773 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1774 perf_cgroup_match(event) && pmu_filter_match(event); 1775 } 1776 1777 static void 1778 event_sched_out(struct perf_event *event, 1779 struct perf_cpu_context *cpuctx, 1780 struct perf_event_context *ctx) 1781 { 1782 u64 tstamp = perf_event_time(event); 1783 u64 delta; 1784 1785 WARN_ON_ONCE(event->ctx != ctx); 1786 lockdep_assert_held(&ctx->lock); 1787 1788 /* 1789 * An event which could not be activated because of 1790 * filter mismatch still needs to have its timings 1791 * maintained, otherwise bogus information is return 1792 * via read() for time_enabled, time_running: 1793 */ 1794 if (event->state == PERF_EVENT_STATE_INACTIVE && 1795 !event_filter_match(event)) { 1796 delta = tstamp - event->tstamp_stopped; 1797 event->tstamp_running += delta; 1798 event->tstamp_stopped = tstamp; 1799 } 1800 1801 if (event->state != PERF_EVENT_STATE_ACTIVE) 1802 return; 1803 1804 perf_pmu_disable(event->pmu); 1805 1806 event->tstamp_stopped = tstamp; 1807 event->pmu->del(event, 0); 1808 event->oncpu = -1; 1809 event->state = PERF_EVENT_STATE_INACTIVE; 1810 if (event->pending_disable) { 1811 event->pending_disable = 0; 1812 event->state = PERF_EVENT_STATE_OFF; 1813 } 1814 1815 if (!is_software_event(event)) 1816 cpuctx->active_oncpu--; 1817 if (!--ctx->nr_active) 1818 perf_event_ctx_deactivate(ctx); 1819 if (event->attr.freq && event->attr.sample_freq) 1820 ctx->nr_freq--; 1821 if (event->attr.exclusive || !cpuctx->active_oncpu) 1822 cpuctx->exclusive = 0; 1823 1824 perf_pmu_enable(event->pmu); 1825 } 1826 1827 static void 1828 group_sched_out(struct perf_event *group_event, 1829 struct perf_cpu_context *cpuctx, 1830 struct perf_event_context *ctx) 1831 { 1832 struct perf_event *event; 1833 int state = group_event->state; 1834 1835 event_sched_out(group_event, cpuctx, ctx); 1836 1837 /* 1838 * Schedule out siblings (if any): 1839 */ 1840 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1841 event_sched_out(event, cpuctx, ctx); 1842 1843 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1844 cpuctx->exclusive = 0; 1845 } 1846 1847 #define DETACH_GROUP 0x01UL 1848 1849 /* 1850 * Cross CPU call to remove a performance event 1851 * 1852 * We disable the event on the hardware level first. After that we 1853 * remove it from the context list. 1854 */ 1855 static void 1856 __perf_remove_from_context(struct perf_event *event, 1857 struct perf_cpu_context *cpuctx, 1858 struct perf_event_context *ctx, 1859 void *info) 1860 { 1861 unsigned long flags = (unsigned long)info; 1862 1863 event_sched_out(event, cpuctx, ctx); 1864 if (flags & DETACH_GROUP) 1865 perf_group_detach(event); 1866 list_del_event(event, ctx); 1867 1868 if (!ctx->nr_events && ctx->is_active) { 1869 ctx->is_active = 0; 1870 if (ctx->task) { 1871 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1872 cpuctx->task_ctx = NULL; 1873 } 1874 } 1875 } 1876 1877 /* 1878 * Remove the event from a task's (or a CPU's) list of events. 1879 * 1880 * If event->ctx is a cloned context, callers must make sure that 1881 * every task struct that event->ctx->task could possibly point to 1882 * remains valid. This is OK when called from perf_release since 1883 * that only calls us on the top-level context, which can't be a clone. 1884 * When called from perf_event_exit_task, it's OK because the 1885 * context has been detached from its task. 1886 */ 1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1888 { 1889 lockdep_assert_held(&event->ctx->mutex); 1890 1891 event_function_call(event, __perf_remove_from_context, (void *)flags); 1892 } 1893 1894 /* 1895 * Cross CPU call to disable a performance event 1896 */ 1897 static void __perf_event_disable(struct perf_event *event, 1898 struct perf_cpu_context *cpuctx, 1899 struct perf_event_context *ctx, 1900 void *info) 1901 { 1902 if (event->state < PERF_EVENT_STATE_INACTIVE) 1903 return; 1904 1905 update_context_time(ctx); 1906 update_cgrp_time_from_event(event); 1907 update_group_times(event); 1908 if (event == event->group_leader) 1909 group_sched_out(event, cpuctx, ctx); 1910 else 1911 event_sched_out(event, cpuctx, ctx); 1912 event->state = PERF_EVENT_STATE_OFF; 1913 } 1914 1915 /* 1916 * Disable a event. 1917 * 1918 * If event->ctx is a cloned context, callers must make sure that 1919 * every task struct that event->ctx->task could possibly point to 1920 * remains valid. This condition is satisifed when called through 1921 * perf_event_for_each_child or perf_event_for_each because they 1922 * hold the top-level event's child_mutex, so any descendant that 1923 * goes to exit will block in perf_event_exit_event(). 1924 * 1925 * When called from perf_pending_event it's OK because event->ctx 1926 * is the current context on this CPU and preemption is disabled, 1927 * hence we can't get into perf_event_task_sched_out for this context. 1928 */ 1929 static void _perf_event_disable(struct perf_event *event) 1930 { 1931 struct perf_event_context *ctx = event->ctx; 1932 1933 raw_spin_lock_irq(&ctx->lock); 1934 if (event->state <= PERF_EVENT_STATE_OFF) { 1935 raw_spin_unlock_irq(&ctx->lock); 1936 return; 1937 } 1938 raw_spin_unlock_irq(&ctx->lock); 1939 1940 event_function_call(event, __perf_event_disable, NULL); 1941 } 1942 1943 void perf_event_disable_local(struct perf_event *event) 1944 { 1945 event_function_local(event, __perf_event_disable, NULL); 1946 } 1947 1948 /* 1949 * Strictly speaking kernel users cannot create groups and therefore this 1950 * interface does not need the perf_event_ctx_lock() magic. 1951 */ 1952 void perf_event_disable(struct perf_event *event) 1953 { 1954 struct perf_event_context *ctx; 1955 1956 ctx = perf_event_ctx_lock(event); 1957 _perf_event_disable(event); 1958 perf_event_ctx_unlock(event, ctx); 1959 } 1960 EXPORT_SYMBOL_GPL(perf_event_disable); 1961 1962 static void perf_set_shadow_time(struct perf_event *event, 1963 struct perf_event_context *ctx, 1964 u64 tstamp) 1965 { 1966 /* 1967 * use the correct time source for the time snapshot 1968 * 1969 * We could get by without this by leveraging the 1970 * fact that to get to this function, the caller 1971 * has most likely already called update_context_time() 1972 * and update_cgrp_time_xx() and thus both timestamp 1973 * are identical (or very close). Given that tstamp is, 1974 * already adjusted for cgroup, we could say that: 1975 * tstamp - ctx->timestamp 1976 * is equivalent to 1977 * tstamp - cgrp->timestamp. 1978 * 1979 * Then, in perf_output_read(), the calculation would 1980 * work with no changes because: 1981 * - event is guaranteed scheduled in 1982 * - no scheduled out in between 1983 * - thus the timestamp would be the same 1984 * 1985 * But this is a bit hairy. 1986 * 1987 * So instead, we have an explicit cgroup call to remain 1988 * within the time time source all along. We believe it 1989 * is cleaner and simpler to understand. 1990 */ 1991 if (is_cgroup_event(event)) 1992 perf_cgroup_set_shadow_time(event, tstamp); 1993 else 1994 event->shadow_ctx_time = tstamp - ctx->timestamp; 1995 } 1996 1997 #define MAX_INTERRUPTS (~0ULL) 1998 1999 static void perf_log_throttle(struct perf_event *event, int enable); 2000 static void perf_log_itrace_start(struct perf_event *event); 2001 2002 static int 2003 event_sched_in(struct perf_event *event, 2004 struct perf_cpu_context *cpuctx, 2005 struct perf_event_context *ctx) 2006 { 2007 u64 tstamp = perf_event_time(event); 2008 int ret = 0; 2009 2010 lockdep_assert_held(&ctx->lock); 2011 2012 if (event->state <= PERF_EVENT_STATE_OFF) 2013 return 0; 2014 2015 WRITE_ONCE(event->oncpu, smp_processor_id()); 2016 /* 2017 * Order event::oncpu write to happen before the ACTIVE state 2018 * is visible. 2019 */ 2020 smp_wmb(); 2021 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2022 2023 /* 2024 * Unthrottle events, since we scheduled we might have missed several 2025 * ticks already, also for a heavily scheduling task there is little 2026 * guarantee it'll get a tick in a timely manner. 2027 */ 2028 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2029 perf_log_throttle(event, 1); 2030 event->hw.interrupts = 0; 2031 } 2032 2033 /* 2034 * The new state must be visible before we turn it on in the hardware: 2035 */ 2036 smp_wmb(); 2037 2038 perf_pmu_disable(event->pmu); 2039 2040 perf_set_shadow_time(event, ctx, tstamp); 2041 2042 perf_log_itrace_start(event); 2043 2044 if (event->pmu->add(event, PERF_EF_START)) { 2045 event->state = PERF_EVENT_STATE_INACTIVE; 2046 event->oncpu = -1; 2047 ret = -EAGAIN; 2048 goto out; 2049 } 2050 2051 event->tstamp_running += tstamp - event->tstamp_stopped; 2052 2053 if (!is_software_event(event)) 2054 cpuctx->active_oncpu++; 2055 if (!ctx->nr_active++) 2056 perf_event_ctx_activate(ctx); 2057 if (event->attr.freq && event->attr.sample_freq) 2058 ctx->nr_freq++; 2059 2060 if (event->attr.exclusive) 2061 cpuctx->exclusive = 1; 2062 2063 out: 2064 perf_pmu_enable(event->pmu); 2065 2066 return ret; 2067 } 2068 2069 static int 2070 group_sched_in(struct perf_event *group_event, 2071 struct perf_cpu_context *cpuctx, 2072 struct perf_event_context *ctx) 2073 { 2074 struct perf_event *event, *partial_group = NULL; 2075 struct pmu *pmu = ctx->pmu; 2076 u64 now = ctx->time; 2077 bool simulate = false; 2078 2079 if (group_event->state == PERF_EVENT_STATE_OFF) 2080 return 0; 2081 2082 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2083 2084 if (event_sched_in(group_event, cpuctx, ctx)) { 2085 pmu->cancel_txn(pmu); 2086 perf_mux_hrtimer_restart(cpuctx); 2087 return -EAGAIN; 2088 } 2089 2090 /* 2091 * Schedule in siblings as one group (if any): 2092 */ 2093 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2094 if (event_sched_in(event, cpuctx, ctx)) { 2095 partial_group = event; 2096 goto group_error; 2097 } 2098 } 2099 2100 if (!pmu->commit_txn(pmu)) 2101 return 0; 2102 2103 group_error: 2104 /* 2105 * Groups can be scheduled in as one unit only, so undo any 2106 * partial group before returning: 2107 * The events up to the failed event are scheduled out normally, 2108 * tstamp_stopped will be updated. 2109 * 2110 * The failed events and the remaining siblings need to have 2111 * their timings updated as if they had gone thru event_sched_in() 2112 * and event_sched_out(). This is required to get consistent timings 2113 * across the group. This also takes care of the case where the group 2114 * could never be scheduled by ensuring tstamp_stopped is set to mark 2115 * the time the event was actually stopped, such that time delta 2116 * calculation in update_event_times() is correct. 2117 */ 2118 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2119 if (event == partial_group) 2120 simulate = true; 2121 2122 if (simulate) { 2123 event->tstamp_running += now - event->tstamp_stopped; 2124 event->tstamp_stopped = now; 2125 } else { 2126 event_sched_out(event, cpuctx, ctx); 2127 } 2128 } 2129 event_sched_out(group_event, cpuctx, ctx); 2130 2131 pmu->cancel_txn(pmu); 2132 2133 perf_mux_hrtimer_restart(cpuctx); 2134 2135 return -EAGAIN; 2136 } 2137 2138 /* 2139 * Work out whether we can put this event group on the CPU now. 2140 */ 2141 static int group_can_go_on(struct perf_event *event, 2142 struct perf_cpu_context *cpuctx, 2143 int can_add_hw) 2144 { 2145 /* 2146 * Groups consisting entirely of software events can always go on. 2147 */ 2148 if (event->group_flags & PERF_GROUP_SOFTWARE) 2149 return 1; 2150 /* 2151 * If an exclusive group is already on, no other hardware 2152 * events can go on. 2153 */ 2154 if (cpuctx->exclusive) 2155 return 0; 2156 /* 2157 * If this group is exclusive and there are already 2158 * events on the CPU, it can't go on. 2159 */ 2160 if (event->attr.exclusive && cpuctx->active_oncpu) 2161 return 0; 2162 /* 2163 * Otherwise, try to add it if all previous groups were able 2164 * to go on. 2165 */ 2166 return can_add_hw; 2167 } 2168 2169 static void add_event_to_ctx(struct perf_event *event, 2170 struct perf_event_context *ctx) 2171 { 2172 u64 tstamp = perf_event_time(event); 2173 2174 list_add_event(event, ctx); 2175 perf_group_attach(event); 2176 event->tstamp_enabled = tstamp; 2177 event->tstamp_running = tstamp; 2178 event->tstamp_stopped = tstamp; 2179 } 2180 2181 static void ctx_sched_out(struct perf_event_context *ctx, 2182 struct perf_cpu_context *cpuctx, 2183 enum event_type_t event_type); 2184 static void 2185 ctx_sched_in(struct perf_event_context *ctx, 2186 struct perf_cpu_context *cpuctx, 2187 enum event_type_t event_type, 2188 struct task_struct *task); 2189 2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2191 struct perf_event_context *ctx) 2192 { 2193 if (!cpuctx->task_ctx) 2194 return; 2195 2196 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2197 return; 2198 2199 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2200 } 2201 2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2203 struct perf_event_context *ctx, 2204 struct task_struct *task) 2205 { 2206 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2207 if (ctx) 2208 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2209 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2210 if (ctx) 2211 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2212 } 2213 2214 static void ctx_resched(struct perf_cpu_context *cpuctx, 2215 struct perf_event_context *task_ctx) 2216 { 2217 perf_pmu_disable(cpuctx->ctx.pmu); 2218 if (task_ctx) 2219 task_ctx_sched_out(cpuctx, task_ctx); 2220 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2221 perf_event_sched_in(cpuctx, task_ctx, current); 2222 perf_pmu_enable(cpuctx->ctx.pmu); 2223 } 2224 2225 /* 2226 * Cross CPU call to install and enable a performance event 2227 * 2228 * Very similar to remote_function() + event_function() but cannot assume that 2229 * things like ctx->is_active and cpuctx->task_ctx are set. 2230 */ 2231 static int __perf_install_in_context(void *info) 2232 { 2233 struct perf_event *event = info; 2234 struct perf_event_context *ctx = event->ctx; 2235 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2236 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2237 bool activate = true; 2238 int ret = 0; 2239 2240 raw_spin_lock(&cpuctx->ctx.lock); 2241 if (ctx->task) { 2242 raw_spin_lock(&ctx->lock); 2243 task_ctx = ctx; 2244 2245 /* If we're on the wrong CPU, try again */ 2246 if (task_cpu(ctx->task) != smp_processor_id()) { 2247 ret = -ESRCH; 2248 goto unlock; 2249 } 2250 2251 /* 2252 * If we're on the right CPU, see if the task we target is 2253 * current, if not we don't have to activate the ctx, a future 2254 * context switch will do that for us. 2255 */ 2256 if (ctx->task != current) 2257 activate = false; 2258 else 2259 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2260 2261 } else if (task_ctx) { 2262 raw_spin_lock(&task_ctx->lock); 2263 } 2264 2265 if (activate) { 2266 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2267 add_event_to_ctx(event, ctx); 2268 ctx_resched(cpuctx, task_ctx); 2269 } else { 2270 add_event_to_ctx(event, ctx); 2271 } 2272 2273 unlock: 2274 perf_ctx_unlock(cpuctx, task_ctx); 2275 2276 return ret; 2277 } 2278 2279 /* 2280 * Attach a performance event to a context. 2281 * 2282 * Very similar to event_function_call, see comment there. 2283 */ 2284 static void 2285 perf_install_in_context(struct perf_event_context *ctx, 2286 struct perf_event *event, 2287 int cpu) 2288 { 2289 struct task_struct *task = READ_ONCE(ctx->task); 2290 2291 lockdep_assert_held(&ctx->mutex); 2292 2293 if (event->cpu != -1) 2294 event->cpu = cpu; 2295 2296 /* 2297 * Ensures that if we can observe event->ctx, both the event and ctx 2298 * will be 'complete'. See perf_iterate_sb_cpu(). 2299 */ 2300 smp_store_release(&event->ctx, ctx); 2301 2302 if (!task) { 2303 cpu_function_call(cpu, __perf_install_in_context, event); 2304 return; 2305 } 2306 2307 /* 2308 * Should not happen, we validate the ctx is still alive before calling. 2309 */ 2310 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2311 return; 2312 2313 /* 2314 * Installing events is tricky because we cannot rely on ctx->is_active 2315 * to be set in case this is the nr_events 0 -> 1 transition. 2316 */ 2317 again: 2318 /* 2319 * Cannot use task_function_call() because we need to run on the task's 2320 * CPU regardless of whether its current or not. 2321 */ 2322 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2323 return; 2324 2325 raw_spin_lock_irq(&ctx->lock); 2326 task = ctx->task; 2327 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2328 /* 2329 * Cannot happen because we already checked above (which also 2330 * cannot happen), and we hold ctx->mutex, which serializes us 2331 * against perf_event_exit_task_context(). 2332 */ 2333 raw_spin_unlock_irq(&ctx->lock); 2334 return; 2335 } 2336 raw_spin_unlock_irq(&ctx->lock); 2337 /* 2338 * Since !ctx->is_active doesn't mean anything, we must IPI 2339 * unconditionally. 2340 */ 2341 goto again; 2342 } 2343 2344 /* 2345 * Put a event into inactive state and update time fields. 2346 * Enabling the leader of a group effectively enables all 2347 * the group members that aren't explicitly disabled, so we 2348 * have to update their ->tstamp_enabled also. 2349 * Note: this works for group members as well as group leaders 2350 * since the non-leader members' sibling_lists will be empty. 2351 */ 2352 static void __perf_event_mark_enabled(struct perf_event *event) 2353 { 2354 struct perf_event *sub; 2355 u64 tstamp = perf_event_time(event); 2356 2357 event->state = PERF_EVENT_STATE_INACTIVE; 2358 event->tstamp_enabled = tstamp - event->total_time_enabled; 2359 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2360 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2361 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2362 } 2363 } 2364 2365 /* 2366 * Cross CPU call to enable a performance event 2367 */ 2368 static void __perf_event_enable(struct perf_event *event, 2369 struct perf_cpu_context *cpuctx, 2370 struct perf_event_context *ctx, 2371 void *info) 2372 { 2373 struct perf_event *leader = event->group_leader; 2374 struct perf_event_context *task_ctx; 2375 2376 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2377 event->state <= PERF_EVENT_STATE_ERROR) 2378 return; 2379 2380 if (ctx->is_active) 2381 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2382 2383 __perf_event_mark_enabled(event); 2384 2385 if (!ctx->is_active) 2386 return; 2387 2388 if (!event_filter_match(event)) { 2389 if (is_cgroup_event(event)) 2390 perf_cgroup_defer_enabled(event); 2391 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2392 return; 2393 } 2394 2395 /* 2396 * If the event is in a group and isn't the group leader, 2397 * then don't put it on unless the group is on. 2398 */ 2399 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2400 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2401 return; 2402 } 2403 2404 task_ctx = cpuctx->task_ctx; 2405 if (ctx->task) 2406 WARN_ON_ONCE(task_ctx != ctx); 2407 2408 ctx_resched(cpuctx, task_ctx); 2409 } 2410 2411 /* 2412 * Enable a event. 2413 * 2414 * If event->ctx is a cloned context, callers must make sure that 2415 * every task struct that event->ctx->task could possibly point to 2416 * remains valid. This condition is satisfied when called through 2417 * perf_event_for_each_child or perf_event_for_each as described 2418 * for perf_event_disable. 2419 */ 2420 static void _perf_event_enable(struct perf_event *event) 2421 { 2422 struct perf_event_context *ctx = event->ctx; 2423 2424 raw_spin_lock_irq(&ctx->lock); 2425 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2426 event->state < PERF_EVENT_STATE_ERROR) { 2427 raw_spin_unlock_irq(&ctx->lock); 2428 return; 2429 } 2430 2431 /* 2432 * If the event is in error state, clear that first. 2433 * 2434 * That way, if we see the event in error state below, we know that it 2435 * has gone back into error state, as distinct from the task having 2436 * been scheduled away before the cross-call arrived. 2437 */ 2438 if (event->state == PERF_EVENT_STATE_ERROR) 2439 event->state = PERF_EVENT_STATE_OFF; 2440 raw_spin_unlock_irq(&ctx->lock); 2441 2442 event_function_call(event, __perf_event_enable, NULL); 2443 } 2444 2445 /* 2446 * See perf_event_disable(); 2447 */ 2448 void perf_event_enable(struct perf_event *event) 2449 { 2450 struct perf_event_context *ctx; 2451 2452 ctx = perf_event_ctx_lock(event); 2453 _perf_event_enable(event); 2454 perf_event_ctx_unlock(event, ctx); 2455 } 2456 EXPORT_SYMBOL_GPL(perf_event_enable); 2457 2458 struct stop_event_data { 2459 struct perf_event *event; 2460 unsigned int restart; 2461 }; 2462 2463 static int __perf_event_stop(void *info) 2464 { 2465 struct stop_event_data *sd = info; 2466 struct perf_event *event = sd->event; 2467 2468 /* if it's already INACTIVE, do nothing */ 2469 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2470 return 0; 2471 2472 /* matches smp_wmb() in event_sched_in() */ 2473 smp_rmb(); 2474 2475 /* 2476 * There is a window with interrupts enabled before we get here, 2477 * so we need to check again lest we try to stop another CPU's event. 2478 */ 2479 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2480 return -EAGAIN; 2481 2482 event->pmu->stop(event, PERF_EF_UPDATE); 2483 2484 /* 2485 * May race with the actual stop (through perf_pmu_output_stop()), 2486 * but it is only used for events with AUX ring buffer, and such 2487 * events will refuse to restart because of rb::aux_mmap_count==0, 2488 * see comments in perf_aux_output_begin(). 2489 * 2490 * Since this is happening on a event-local CPU, no trace is lost 2491 * while restarting. 2492 */ 2493 if (sd->restart) 2494 event->pmu->start(event, PERF_EF_START); 2495 2496 return 0; 2497 } 2498 2499 static int perf_event_stop(struct perf_event *event, int restart) 2500 { 2501 struct stop_event_data sd = { 2502 .event = event, 2503 .restart = restart, 2504 }; 2505 int ret = 0; 2506 2507 do { 2508 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2509 return 0; 2510 2511 /* matches smp_wmb() in event_sched_in() */ 2512 smp_rmb(); 2513 2514 /* 2515 * We only want to restart ACTIVE events, so if the event goes 2516 * inactive here (event->oncpu==-1), there's nothing more to do; 2517 * fall through with ret==-ENXIO. 2518 */ 2519 ret = cpu_function_call(READ_ONCE(event->oncpu), 2520 __perf_event_stop, &sd); 2521 } while (ret == -EAGAIN); 2522 2523 return ret; 2524 } 2525 2526 /* 2527 * In order to contain the amount of racy and tricky in the address filter 2528 * configuration management, it is a two part process: 2529 * 2530 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2531 * we update the addresses of corresponding vmas in 2532 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2533 * (p2) when an event is scheduled in (pmu::add), it calls 2534 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2535 * if the generation has changed since the previous call. 2536 * 2537 * If (p1) happens while the event is active, we restart it to force (p2). 2538 * 2539 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2540 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2541 * ioctl; 2542 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2543 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2544 * for reading; 2545 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2546 * of exec. 2547 */ 2548 void perf_event_addr_filters_sync(struct perf_event *event) 2549 { 2550 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2551 2552 if (!has_addr_filter(event)) 2553 return; 2554 2555 raw_spin_lock(&ifh->lock); 2556 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2557 event->pmu->addr_filters_sync(event); 2558 event->hw.addr_filters_gen = event->addr_filters_gen; 2559 } 2560 raw_spin_unlock(&ifh->lock); 2561 } 2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2563 2564 static int _perf_event_refresh(struct perf_event *event, int refresh) 2565 { 2566 /* 2567 * not supported on inherited events 2568 */ 2569 if (event->attr.inherit || !is_sampling_event(event)) 2570 return -EINVAL; 2571 2572 atomic_add(refresh, &event->event_limit); 2573 _perf_event_enable(event); 2574 2575 return 0; 2576 } 2577 2578 /* 2579 * See perf_event_disable() 2580 */ 2581 int perf_event_refresh(struct perf_event *event, int refresh) 2582 { 2583 struct perf_event_context *ctx; 2584 int ret; 2585 2586 ctx = perf_event_ctx_lock(event); 2587 ret = _perf_event_refresh(event, refresh); 2588 perf_event_ctx_unlock(event, ctx); 2589 2590 return ret; 2591 } 2592 EXPORT_SYMBOL_GPL(perf_event_refresh); 2593 2594 static void ctx_sched_out(struct perf_event_context *ctx, 2595 struct perf_cpu_context *cpuctx, 2596 enum event_type_t event_type) 2597 { 2598 int is_active = ctx->is_active; 2599 struct perf_event *event; 2600 2601 lockdep_assert_held(&ctx->lock); 2602 2603 if (likely(!ctx->nr_events)) { 2604 /* 2605 * See __perf_remove_from_context(). 2606 */ 2607 WARN_ON_ONCE(ctx->is_active); 2608 if (ctx->task) 2609 WARN_ON_ONCE(cpuctx->task_ctx); 2610 return; 2611 } 2612 2613 ctx->is_active &= ~event_type; 2614 if (!(ctx->is_active & EVENT_ALL)) 2615 ctx->is_active = 0; 2616 2617 if (ctx->task) { 2618 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2619 if (!ctx->is_active) 2620 cpuctx->task_ctx = NULL; 2621 } 2622 2623 /* 2624 * Always update time if it was set; not only when it changes. 2625 * Otherwise we can 'forget' to update time for any but the last 2626 * context we sched out. For example: 2627 * 2628 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2629 * ctx_sched_out(.event_type = EVENT_PINNED) 2630 * 2631 * would only update time for the pinned events. 2632 */ 2633 if (is_active & EVENT_TIME) { 2634 /* update (and stop) ctx time */ 2635 update_context_time(ctx); 2636 update_cgrp_time_from_cpuctx(cpuctx); 2637 } 2638 2639 is_active ^= ctx->is_active; /* changed bits */ 2640 2641 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2642 return; 2643 2644 perf_pmu_disable(ctx->pmu); 2645 if (is_active & EVENT_PINNED) { 2646 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2647 group_sched_out(event, cpuctx, ctx); 2648 } 2649 2650 if (is_active & EVENT_FLEXIBLE) { 2651 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2652 group_sched_out(event, cpuctx, ctx); 2653 } 2654 perf_pmu_enable(ctx->pmu); 2655 } 2656 2657 /* 2658 * Test whether two contexts are equivalent, i.e. whether they have both been 2659 * cloned from the same version of the same context. 2660 * 2661 * Equivalence is measured using a generation number in the context that is 2662 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2663 * and list_del_event(). 2664 */ 2665 static int context_equiv(struct perf_event_context *ctx1, 2666 struct perf_event_context *ctx2) 2667 { 2668 lockdep_assert_held(&ctx1->lock); 2669 lockdep_assert_held(&ctx2->lock); 2670 2671 /* Pinning disables the swap optimization */ 2672 if (ctx1->pin_count || ctx2->pin_count) 2673 return 0; 2674 2675 /* If ctx1 is the parent of ctx2 */ 2676 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2677 return 1; 2678 2679 /* If ctx2 is the parent of ctx1 */ 2680 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2681 return 1; 2682 2683 /* 2684 * If ctx1 and ctx2 have the same parent; we flatten the parent 2685 * hierarchy, see perf_event_init_context(). 2686 */ 2687 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2688 ctx1->parent_gen == ctx2->parent_gen) 2689 return 1; 2690 2691 /* Unmatched */ 2692 return 0; 2693 } 2694 2695 static void __perf_event_sync_stat(struct perf_event *event, 2696 struct perf_event *next_event) 2697 { 2698 u64 value; 2699 2700 if (!event->attr.inherit_stat) 2701 return; 2702 2703 /* 2704 * Update the event value, we cannot use perf_event_read() 2705 * because we're in the middle of a context switch and have IRQs 2706 * disabled, which upsets smp_call_function_single(), however 2707 * we know the event must be on the current CPU, therefore we 2708 * don't need to use it. 2709 */ 2710 switch (event->state) { 2711 case PERF_EVENT_STATE_ACTIVE: 2712 event->pmu->read(event); 2713 /* fall-through */ 2714 2715 case PERF_EVENT_STATE_INACTIVE: 2716 update_event_times(event); 2717 break; 2718 2719 default: 2720 break; 2721 } 2722 2723 /* 2724 * In order to keep per-task stats reliable we need to flip the event 2725 * values when we flip the contexts. 2726 */ 2727 value = local64_read(&next_event->count); 2728 value = local64_xchg(&event->count, value); 2729 local64_set(&next_event->count, value); 2730 2731 swap(event->total_time_enabled, next_event->total_time_enabled); 2732 swap(event->total_time_running, next_event->total_time_running); 2733 2734 /* 2735 * Since we swizzled the values, update the user visible data too. 2736 */ 2737 perf_event_update_userpage(event); 2738 perf_event_update_userpage(next_event); 2739 } 2740 2741 static void perf_event_sync_stat(struct perf_event_context *ctx, 2742 struct perf_event_context *next_ctx) 2743 { 2744 struct perf_event *event, *next_event; 2745 2746 if (!ctx->nr_stat) 2747 return; 2748 2749 update_context_time(ctx); 2750 2751 event = list_first_entry(&ctx->event_list, 2752 struct perf_event, event_entry); 2753 2754 next_event = list_first_entry(&next_ctx->event_list, 2755 struct perf_event, event_entry); 2756 2757 while (&event->event_entry != &ctx->event_list && 2758 &next_event->event_entry != &next_ctx->event_list) { 2759 2760 __perf_event_sync_stat(event, next_event); 2761 2762 event = list_next_entry(event, event_entry); 2763 next_event = list_next_entry(next_event, event_entry); 2764 } 2765 } 2766 2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2768 struct task_struct *next) 2769 { 2770 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2771 struct perf_event_context *next_ctx; 2772 struct perf_event_context *parent, *next_parent; 2773 struct perf_cpu_context *cpuctx; 2774 int do_switch = 1; 2775 2776 if (likely(!ctx)) 2777 return; 2778 2779 cpuctx = __get_cpu_context(ctx); 2780 if (!cpuctx->task_ctx) 2781 return; 2782 2783 rcu_read_lock(); 2784 next_ctx = next->perf_event_ctxp[ctxn]; 2785 if (!next_ctx) 2786 goto unlock; 2787 2788 parent = rcu_dereference(ctx->parent_ctx); 2789 next_parent = rcu_dereference(next_ctx->parent_ctx); 2790 2791 /* If neither context have a parent context; they cannot be clones. */ 2792 if (!parent && !next_parent) 2793 goto unlock; 2794 2795 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2796 /* 2797 * Looks like the two contexts are clones, so we might be 2798 * able to optimize the context switch. We lock both 2799 * contexts and check that they are clones under the 2800 * lock (including re-checking that neither has been 2801 * uncloned in the meantime). It doesn't matter which 2802 * order we take the locks because no other cpu could 2803 * be trying to lock both of these tasks. 2804 */ 2805 raw_spin_lock(&ctx->lock); 2806 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2807 if (context_equiv(ctx, next_ctx)) { 2808 WRITE_ONCE(ctx->task, next); 2809 WRITE_ONCE(next_ctx->task, task); 2810 2811 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2812 2813 /* 2814 * RCU_INIT_POINTER here is safe because we've not 2815 * modified the ctx and the above modification of 2816 * ctx->task and ctx->task_ctx_data are immaterial 2817 * since those values are always verified under 2818 * ctx->lock which we're now holding. 2819 */ 2820 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2821 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2822 2823 do_switch = 0; 2824 2825 perf_event_sync_stat(ctx, next_ctx); 2826 } 2827 raw_spin_unlock(&next_ctx->lock); 2828 raw_spin_unlock(&ctx->lock); 2829 } 2830 unlock: 2831 rcu_read_unlock(); 2832 2833 if (do_switch) { 2834 raw_spin_lock(&ctx->lock); 2835 task_ctx_sched_out(cpuctx, ctx); 2836 raw_spin_unlock(&ctx->lock); 2837 } 2838 } 2839 2840 void perf_sched_cb_dec(struct pmu *pmu) 2841 { 2842 this_cpu_dec(perf_sched_cb_usages); 2843 } 2844 2845 void perf_sched_cb_inc(struct pmu *pmu) 2846 { 2847 this_cpu_inc(perf_sched_cb_usages); 2848 } 2849 2850 /* 2851 * This function provides the context switch callback to the lower code 2852 * layer. It is invoked ONLY when the context switch callback is enabled. 2853 */ 2854 static void perf_pmu_sched_task(struct task_struct *prev, 2855 struct task_struct *next, 2856 bool sched_in) 2857 { 2858 struct perf_cpu_context *cpuctx; 2859 struct pmu *pmu; 2860 unsigned long flags; 2861 2862 if (prev == next) 2863 return; 2864 2865 local_irq_save(flags); 2866 2867 rcu_read_lock(); 2868 2869 list_for_each_entry_rcu(pmu, &pmus, entry) { 2870 if (pmu->sched_task) { 2871 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2872 2873 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2874 2875 perf_pmu_disable(pmu); 2876 2877 pmu->sched_task(cpuctx->task_ctx, sched_in); 2878 2879 perf_pmu_enable(pmu); 2880 2881 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2882 } 2883 } 2884 2885 rcu_read_unlock(); 2886 2887 local_irq_restore(flags); 2888 } 2889 2890 static void perf_event_switch(struct task_struct *task, 2891 struct task_struct *next_prev, bool sched_in); 2892 2893 #define for_each_task_context_nr(ctxn) \ 2894 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2895 2896 /* 2897 * Called from scheduler to remove the events of the current task, 2898 * with interrupts disabled. 2899 * 2900 * We stop each event and update the event value in event->count. 2901 * 2902 * This does not protect us against NMI, but disable() 2903 * sets the disabled bit in the control field of event _before_ 2904 * accessing the event control register. If a NMI hits, then it will 2905 * not restart the event. 2906 */ 2907 void __perf_event_task_sched_out(struct task_struct *task, 2908 struct task_struct *next) 2909 { 2910 int ctxn; 2911 2912 if (__this_cpu_read(perf_sched_cb_usages)) 2913 perf_pmu_sched_task(task, next, false); 2914 2915 if (atomic_read(&nr_switch_events)) 2916 perf_event_switch(task, next, false); 2917 2918 for_each_task_context_nr(ctxn) 2919 perf_event_context_sched_out(task, ctxn, next); 2920 2921 /* 2922 * if cgroup events exist on this CPU, then we need 2923 * to check if we have to switch out PMU state. 2924 * cgroup event are system-wide mode only 2925 */ 2926 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2927 perf_cgroup_sched_out(task, next); 2928 } 2929 2930 /* 2931 * Called with IRQs disabled 2932 */ 2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2934 enum event_type_t event_type) 2935 { 2936 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2937 } 2938 2939 static void 2940 ctx_pinned_sched_in(struct perf_event_context *ctx, 2941 struct perf_cpu_context *cpuctx) 2942 { 2943 struct perf_event *event; 2944 2945 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2946 if (event->state <= PERF_EVENT_STATE_OFF) 2947 continue; 2948 if (!event_filter_match(event)) 2949 continue; 2950 2951 /* may need to reset tstamp_enabled */ 2952 if (is_cgroup_event(event)) 2953 perf_cgroup_mark_enabled(event, ctx); 2954 2955 if (group_can_go_on(event, cpuctx, 1)) 2956 group_sched_in(event, cpuctx, ctx); 2957 2958 /* 2959 * If this pinned group hasn't been scheduled, 2960 * put it in error state. 2961 */ 2962 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2963 update_group_times(event); 2964 event->state = PERF_EVENT_STATE_ERROR; 2965 } 2966 } 2967 } 2968 2969 static void 2970 ctx_flexible_sched_in(struct perf_event_context *ctx, 2971 struct perf_cpu_context *cpuctx) 2972 { 2973 struct perf_event *event; 2974 int can_add_hw = 1; 2975 2976 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2977 /* Ignore events in OFF or ERROR state */ 2978 if (event->state <= PERF_EVENT_STATE_OFF) 2979 continue; 2980 /* 2981 * Listen to the 'cpu' scheduling filter constraint 2982 * of events: 2983 */ 2984 if (!event_filter_match(event)) 2985 continue; 2986 2987 /* may need to reset tstamp_enabled */ 2988 if (is_cgroup_event(event)) 2989 perf_cgroup_mark_enabled(event, ctx); 2990 2991 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2992 if (group_sched_in(event, cpuctx, ctx)) 2993 can_add_hw = 0; 2994 } 2995 } 2996 } 2997 2998 static void 2999 ctx_sched_in(struct perf_event_context *ctx, 3000 struct perf_cpu_context *cpuctx, 3001 enum event_type_t event_type, 3002 struct task_struct *task) 3003 { 3004 int is_active = ctx->is_active; 3005 u64 now; 3006 3007 lockdep_assert_held(&ctx->lock); 3008 3009 if (likely(!ctx->nr_events)) 3010 return; 3011 3012 ctx->is_active |= (event_type | EVENT_TIME); 3013 if (ctx->task) { 3014 if (!is_active) 3015 cpuctx->task_ctx = ctx; 3016 else 3017 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3018 } 3019 3020 is_active ^= ctx->is_active; /* changed bits */ 3021 3022 if (is_active & EVENT_TIME) { 3023 /* start ctx time */ 3024 now = perf_clock(); 3025 ctx->timestamp = now; 3026 perf_cgroup_set_timestamp(task, ctx); 3027 } 3028 3029 /* 3030 * First go through the list and put on any pinned groups 3031 * in order to give them the best chance of going on. 3032 */ 3033 if (is_active & EVENT_PINNED) 3034 ctx_pinned_sched_in(ctx, cpuctx); 3035 3036 /* Then walk through the lower prio flexible groups */ 3037 if (is_active & EVENT_FLEXIBLE) 3038 ctx_flexible_sched_in(ctx, cpuctx); 3039 } 3040 3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3042 enum event_type_t event_type, 3043 struct task_struct *task) 3044 { 3045 struct perf_event_context *ctx = &cpuctx->ctx; 3046 3047 ctx_sched_in(ctx, cpuctx, event_type, task); 3048 } 3049 3050 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3051 struct task_struct *task) 3052 { 3053 struct perf_cpu_context *cpuctx; 3054 3055 cpuctx = __get_cpu_context(ctx); 3056 if (cpuctx->task_ctx == ctx) 3057 return; 3058 3059 perf_ctx_lock(cpuctx, ctx); 3060 perf_pmu_disable(ctx->pmu); 3061 /* 3062 * We want to keep the following priority order: 3063 * cpu pinned (that don't need to move), task pinned, 3064 * cpu flexible, task flexible. 3065 */ 3066 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3067 perf_event_sched_in(cpuctx, ctx, task); 3068 perf_pmu_enable(ctx->pmu); 3069 perf_ctx_unlock(cpuctx, ctx); 3070 } 3071 3072 /* 3073 * Called from scheduler to add the events of the current task 3074 * with interrupts disabled. 3075 * 3076 * We restore the event value and then enable it. 3077 * 3078 * This does not protect us against NMI, but enable() 3079 * sets the enabled bit in the control field of event _before_ 3080 * accessing the event control register. If a NMI hits, then it will 3081 * keep the event running. 3082 */ 3083 void __perf_event_task_sched_in(struct task_struct *prev, 3084 struct task_struct *task) 3085 { 3086 struct perf_event_context *ctx; 3087 int ctxn; 3088 3089 /* 3090 * If cgroup events exist on this CPU, then we need to check if we have 3091 * to switch in PMU state; cgroup event are system-wide mode only. 3092 * 3093 * Since cgroup events are CPU events, we must schedule these in before 3094 * we schedule in the task events. 3095 */ 3096 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3097 perf_cgroup_sched_in(prev, task); 3098 3099 for_each_task_context_nr(ctxn) { 3100 ctx = task->perf_event_ctxp[ctxn]; 3101 if (likely(!ctx)) 3102 continue; 3103 3104 perf_event_context_sched_in(ctx, task); 3105 } 3106 3107 if (atomic_read(&nr_switch_events)) 3108 perf_event_switch(task, prev, true); 3109 3110 if (__this_cpu_read(perf_sched_cb_usages)) 3111 perf_pmu_sched_task(prev, task, true); 3112 } 3113 3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3115 { 3116 u64 frequency = event->attr.sample_freq; 3117 u64 sec = NSEC_PER_SEC; 3118 u64 divisor, dividend; 3119 3120 int count_fls, nsec_fls, frequency_fls, sec_fls; 3121 3122 count_fls = fls64(count); 3123 nsec_fls = fls64(nsec); 3124 frequency_fls = fls64(frequency); 3125 sec_fls = 30; 3126 3127 /* 3128 * We got @count in @nsec, with a target of sample_freq HZ 3129 * the target period becomes: 3130 * 3131 * @count * 10^9 3132 * period = ------------------- 3133 * @nsec * sample_freq 3134 * 3135 */ 3136 3137 /* 3138 * Reduce accuracy by one bit such that @a and @b converge 3139 * to a similar magnitude. 3140 */ 3141 #define REDUCE_FLS(a, b) \ 3142 do { \ 3143 if (a##_fls > b##_fls) { \ 3144 a >>= 1; \ 3145 a##_fls--; \ 3146 } else { \ 3147 b >>= 1; \ 3148 b##_fls--; \ 3149 } \ 3150 } while (0) 3151 3152 /* 3153 * Reduce accuracy until either term fits in a u64, then proceed with 3154 * the other, so that finally we can do a u64/u64 division. 3155 */ 3156 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3157 REDUCE_FLS(nsec, frequency); 3158 REDUCE_FLS(sec, count); 3159 } 3160 3161 if (count_fls + sec_fls > 64) { 3162 divisor = nsec * frequency; 3163 3164 while (count_fls + sec_fls > 64) { 3165 REDUCE_FLS(count, sec); 3166 divisor >>= 1; 3167 } 3168 3169 dividend = count * sec; 3170 } else { 3171 dividend = count * sec; 3172 3173 while (nsec_fls + frequency_fls > 64) { 3174 REDUCE_FLS(nsec, frequency); 3175 dividend >>= 1; 3176 } 3177 3178 divisor = nsec * frequency; 3179 } 3180 3181 if (!divisor) 3182 return dividend; 3183 3184 return div64_u64(dividend, divisor); 3185 } 3186 3187 static DEFINE_PER_CPU(int, perf_throttled_count); 3188 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3189 3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3191 { 3192 struct hw_perf_event *hwc = &event->hw; 3193 s64 period, sample_period; 3194 s64 delta; 3195 3196 period = perf_calculate_period(event, nsec, count); 3197 3198 delta = (s64)(period - hwc->sample_period); 3199 delta = (delta + 7) / 8; /* low pass filter */ 3200 3201 sample_period = hwc->sample_period + delta; 3202 3203 if (!sample_period) 3204 sample_period = 1; 3205 3206 hwc->sample_period = sample_period; 3207 3208 if (local64_read(&hwc->period_left) > 8*sample_period) { 3209 if (disable) 3210 event->pmu->stop(event, PERF_EF_UPDATE); 3211 3212 local64_set(&hwc->period_left, 0); 3213 3214 if (disable) 3215 event->pmu->start(event, PERF_EF_RELOAD); 3216 } 3217 } 3218 3219 /* 3220 * combine freq adjustment with unthrottling to avoid two passes over the 3221 * events. At the same time, make sure, having freq events does not change 3222 * the rate of unthrottling as that would introduce bias. 3223 */ 3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3225 int needs_unthr) 3226 { 3227 struct perf_event *event; 3228 struct hw_perf_event *hwc; 3229 u64 now, period = TICK_NSEC; 3230 s64 delta; 3231 3232 /* 3233 * only need to iterate over all events iff: 3234 * - context have events in frequency mode (needs freq adjust) 3235 * - there are events to unthrottle on this cpu 3236 */ 3237 if (!(ctx->nr_freq || needs_unthr)) 3238 return; 3239 3240 raw_spin_lock(&ctx->lock); 3241 perf_pmu_disable(ctx->pmu); 3242 3243 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3244 if (event->state != PERF_EVENT_STATE_ACTIVE) 3245 continue; 3246 3247 if (!event_filter_match(event)) 3248 continue; 3249 3250 perf_pmu_disable(event->pmu); 3251 3252 hwc = &event->hw; 3253 3254 if (hwc->interrupts == MAX_INTERRUPTS) { 3255 hwc->interrupts = 0; 3256 perf_log_throttle(event, 1); 3257 event->pmu->start(event, 0); 3258 } 3259 3260 if (!event->attr.freq || !event->attr.sample_freq) 3261 goto next; 3262 3263 /* 3264 * stop the event and update event->count 3265 */ 3266 event->pmu->stop(event, PERF_EF_UPDATE); 3267 3268 now = local64_read(&event->count); 3269 delta = now - hwc->freq_count_stamp; 3270 hwc->freq_count_stamp = now; 3271 3272 /* 3273 * restart the event 3274 * reload only if value has changed 3275 * we have stopped the event so tell that 3276 * to perf_adjust_period() to avoid stopping it 3277 * twice. 3278 */ 3279 if (delta > 0) 3280 perf_adjust_period(event, period, delta, false); 3281 3282 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3283 next: 3284 perf_pmu_enable(event->pmu); 3285 } 3286 3287 perf_pmu_enable(ctx->pmu); 3288 raw_spin_unlock(&ctx->lock); 3289 } 3290 3291 /* 3292 * Round-robin a context's events: 3293 */ 3294 static void rotate_ctx(struct perf_event_context *ctx) 3295 { 3296 /* 3297 * Rotate the first entry last of non-pinned groups. Rotation might be 3298 * disabled by the inheritance code. 3299 */ 3300 if (!ctx->rotate_disable) 3301 list_rotate_left(&ctx->flexible_groups); 3302 } 3303 3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3305 { 3306 struct perf_event_context *ctx = NULL; 3307 int rotate = 0; 3308 3309 if (cpuctx->ctx.nr_events) { 3310 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3311 rotate = 1; 3312 } 3313 3314 ctx = cpuctx->task_ctx; 3315 if (ctx && ctx->nr_events) { 3316 if (ctx->nr_events != ctx->nr_active) 3317 rotate = 1; 3318 } 3319 3320 if (!rotate) 3321 goto done; 3322 3323 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3324 perf_pmu_disable(cpuctx->ctx.pmu); 3325 3326 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3327 if (ctx) 3328 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3329 3330 rotate_ctx(&cpuctx->ctx); 3331 if (ctx) 3332 rotate_ctx(ctx); 3333 3334 perf_event_sched_in(cpuctx, ctx, current); 3335 3336 perf_pmu_enable(cpuctx->ctx.pmu); 3337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3338 done: 3339 3340 return rotate; 3341 } 3342 3343 void perf_event_task_tick(void) 3344 { 3345 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3346 struct perf_event_context *ctx, *tmp; 3347 int throttled; 3348 3349 WARN_ON(!irqs_disabled()); 3350 3351 __this_cpu_inc(perf_throttled_seq); 3352 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3353 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3354 3355 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3356 perf_adjust_freq_unthr_context(ctx, throttled); 3357 } 3358 3359 static int event_enable_on_exec(struct perf_event *event, 3360 struct perf_event_context *ctx) 3361 { 3362 if (!event->attr.enable_on_exec) 3363 return 0; 3364 3365 event->attr.enable_on_exec = 0; 3366 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3367 return 0; 3368 3369 __perf_event_mark_enabled(event); 3370 3371 return 1; 3372 } 3373 3374 /* 3375 * Enable all of a task's events that have been marked enable-on-exec. 3376 * This expects task == current. 3377 */ 3378 static void perf_event_enable_on_exec(int ctxn) 3379 { 3380 struct perf_event_context *ctx, *clone_ctx = NULL; 3381 struct perf_cpu_context *cpuctx; 3382 struct perf_event *event; 3383 unsigned long flags; 3384 int enabled = 0; 3385 3386 local_irq_save(flags); 3387 ctx = current->perf_event_ctxp[ctxn]; 3388 if (!ctx || !ctx->nr_events) 3389 goto out; 3390 3391 cpuctx = __get_cpu_context(ctx); 3392 perf_ctx_lock(cpuctx, ctx); 3393 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3394 list_for_each_entry(event, &ctx->event_list, event_entry) 3395 enabled |= event_enable_on_exec(event, ctx); 3396 3397 /* 3398 * Unclone and reschedule this context if we enabled any event. 3399 */ 3400 if (enabled) { 3401 clone_ctx = unclone_ctx(ctx); 3402 ctx_resched(cpuctx, ctx); 3403 } 3404 perf_ctx_unlock(cpuctx, ctx); 3405 3406 out: 3407 local_irq_restore(flags); 3408 3409 if (clone_ctx) 3410 put_ctx(clone_ctx); 3411 } 3412 3413 struct perf_read_data { 3414 struct perf_event *event; 3415 bool group; 3416 int ret; 3417 }; 3418 3419 /* 3420 * Cross CPU call to read the hardware event 3421 */ 3422 static void __perf_event_read(void *info) 3423 { 3424 struct perf_read_data *data = info; 3425 struct perf_event *sub, *event = data->event; 3426 struct perf_event_context *ctx = event->ctx; 3427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3428 struct pmu *pmu = event->pmu; 3429 3430 /* 3431 * If this is a task context, we need to check whether it is 3432 * the current task context of this cpu. If not it has been 3433 * scheduled out before the smp call arrived. In that case 3434 * event->count would have been updated to a recent sample 3435 * when the event was scheduled out. 3436 */ 3437 if (ctx->task && cpuctx->task_ctx != ctx) 3438 return; 3439 3440 raw_spin_lock(&ctx->lock); 3441 if (ctx->is_active) { 3442 update_context_time(ctx); 3443 update_cgrp_time_from_event(event); 3444 } 3445 3446 update_event_times(event); 3447 if (event->state != PERF_EVENT_STATE_ACTIVE) 3448 goto unlock; 3449 3450 if (!data->group) { 3451 pmu->read(event); 3452 data->ret = 0; 3453 goto unlock; 3454 } 3455 3456 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3457 3458 pmu->read(event); 3459 3460 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3461 update_event_times(sub); 3462 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3463 /* 3464 * Use sibling's PMU rather than @event's since 3465 * sibling could be on different (eg: software) PMU. 3466 */ 3467 sub->pmu->read(sub); 3468 } 3469 } 3470 3471 data->ret = pmu->commit_txn(pmu); 3472 3473 unlock: 3474 raw_spin_unlock(&ctx->lock); 3475 } 3476 3477 static inline u64 perf_event_count(struct perf_event *event) 3478 { 3479 if (event->pmu->count) 3480 return event->pmu->count(event); 3481 3482 return __perf_event_count(event); 3483 } 3484 3485 /* 3486 * NMI-safe method to read a local event, that is an event that 3487 * is: 3488 * - either for the current task, or for this CPU 3489 * - does not have inherit set, for inherited task events 3490 * will not be local and we cannot read them atomically 3491 * - must not have a pmu::count method 3492 */ 3493 u64 perf_event_read_local(struct perf_event *event) 3494 { 3495 unsigned long flags; 3496 u64 val; 3497 3498 /* 3499 * Disabling interrupts avoids all counter scheduling (context 3500 * switches, timer based rotation and IPIs). 3501 */ 3502 local_irq_save(flags); 3503 3504 /* If this is a per-task event, it must be for current */ 3505 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3506 event->hw.target != current); 3507 3508 /* If this is a per-CPU event, it must be for this CPU */ 3509 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3510 event->cpu != smp_processor_id()); 3511 3512 /* 3513 * It must not be an event with inherit set, we cannot read 3514 * all child counters from atomic context. 3515 */ 3516 WARN_ON_ONCE(event->attr.inherit); 3517 3518 /* 3519 * It must not have a pmu::count method, those are not 3520 * NMI safe. 3521 */ 3522 WARN_ON_ONCE(event->pmu->count); 3523 3524 /* 3525 * If the event is currently on this CPU, its either a per-task event, 3526 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3527 * oncpu == -1). 3528 */ 3529 if (event->oncpu == smp_processor_id()) 3530 event->pmu->read(event); 3531 3532 val = local64_read(&event->count); 3533 local_irq_restore(flags); 3534 3535 return val; 3536 } 3537 3538 static int perf_event_read(struct perf_event *event, bool group) 3539 { 3540 int ret = 0; 3541 3542 /* 3543 * If event is enabled and currently active on a CPU, update the 3544 * value in the event structure: 3545 */ 3546 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3547 struct perf_read_data data = { 3548 .event = event, 3549 .group = group, 3550 .ret = 0, 3551 }; 3552 /* 3553 * Purposely ignore the smp_call_function_single() return 3554 * value. 3555 * 3556 * If event->oncpu isn't a valid CPU it means the event got 3557 * scheduled out and that will have updated the event count. 3558 * 3559 * Therefore, either way, we'll have an up-to-date event count 3560 * after this. 3561 */ 3562 (void)smp_call_function_single(event->oncpu, __perf_event_read, &data, 1); 3563 ret = data.ret; 3564 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3565 struct perf_event_context *ctx = event->ctx; 3566 unsigned long flags; 3567 3568 raw_spin_lock_irqsave(&ctx->lock, flags); 3569 /* 3570 * may read while context is not active 3571 * (e.g., thread is blocked), in that case 3572 * we cannot update context time 3573 */ 3574 if (ctx->is_active) { 3575 update_context_time(ctx); 3576 update_cgrp_time_from_event(event); 3577 } 3578 if (group) 3579 update_group_times(event); 3580 else 3581 update_event_times(event); 3582 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3583 } 3584 3585 return ret; 3586 } 3587 3588 /* 3589 * Initialize the perf_event context in a task_struct: 3590 */ 3591 static void __perf_event_init_context(struct perf_event_context *ctx) 3592 { 3593 raw_spin_lock_init(&ctx->lock); 3594 mutex_init(&ctx->mutex); 3595 INIT_LIST_HEAD(&ctx->active_ctx_list); 3596 INIT_LIST_HEAD(&ctx->pinned_groups); 3597 INIT_LIST_HEAD(&ctx->flexible_groups); 3598 INIT_LIST_HEAD(&ctx->event_list); 3599 atomic_set(&ctx->refcount, 1); 3600 } 3601 3602 static struct perf_event_context * 3603 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3604 { 3605 struct perf_event_context *ctx; 3606 3607 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3608 if (!ctx) 3609 return NULL; 3610 3611 __perf_event_init_context(ctx); 3612 if (task) { 3613 ctx->task = task; 3614 get_task_struct(task); 3615 } 3616 ctx->pmu = pmu; 3617 3618 return ctx; 3619 } 3620 3621 static struct task_struct * 3622 find_lively_task_by_vpid(pid_t vpid) 3623 { 3624 struct task_struct *task; 3625 3626 rcu_read_lock(); 3627 if (!vpid) 3628 task = current; 3629 else 3630 task = find_task_by_vpid(vpid); 3631 if (task) 3632 get_task_struct(task); 3633 rcu_read_unlock(); 3634 3635 if (!task) 3636 return ERR_PTR(-ESRCH); 3637 3638 return task; 3639 } 3640 3641 /* 3642 * Returns a matching context with refcount and pincount. 3643 */ 3644 static struct perf_event_context * 3645 find_get_context(struct pmu *pmu, struct task_struct *task, 3646 struct perf_event *event) 3647 { 3648 struct perf_event_context *ctx, *clone_ctx = NULL; 3649 struct perf_cpu_context *cpuctx; 3650 void *task_ctx_data = NULL; 3651 unsigned long flags; 3652 int ctxn, err; 3653 int cpu = event->cpu; 3654 3655 if (!task) { 3656 /* Must be root to operate on a CPU event: */ 3657 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3658 return ERR_PTR(-EACCES); 3659 3660 /* 3661 * We could be clever and allow to attach a event to an 3662 * offline CPU and activate it when the CPU comes up, but 3663 * that's for later. 3664 */ 3665 if (!cpu_online(cpu)) 3666 return ERR_PTR(-ENODEV); 3667 3668 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3669 ctx = &cpuctx->ctx; 3670 get_ctx(ctx); 3671 ++ctx->pin_count; 3672 3673 return ctx; 3674 } 3675 3676 err = -EINVAL; 3677 ctxn = pmu->task_ctx_nr; 3678 if (ctxn < 0) 3679 goto errout; 3680 3681 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3682 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3683 if (!task_ctx_data) { 3684 err = -ENOMEM; 3685 goto errout; 3686 } 3687 } 3688 3689 retry: 3690 ctx = perf_lock_task_context(task, ctxn, &flags); 3691 if (ctx) { 3692 clone_ctx = unclone_ctx(ctx); 3693 ++ctx->pin_count; 3694 3695 if (task_ctx_data && !ctx->task_ctx_data) { 3696 ctx->task_ctx_data = task_ctx_data; 3697 task_ctx_data = NULL; 3698 } 3699 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3700 3701 if (clone_ctx) 3702 put_ctx(clone_ctx); 3703 } else { 3704 ctx = alloc_perf_context(pmu, task); 3705 err = -ENOMEM; 3706 if (!ctx) 3707 goto errout; 3708 3709 if (task_ctx_data) { 3710 ctx->task_ctx_data = task_ctx_data; 3711 task_ctx_data = NULL; 3712 } 3713 3714 err = 0; 3715 mutex_lock(&task->perf_event_mutex); 3716 /* 3717 * If it has already passed perf_event_exit_task(). 3718 * we must see PF_EXITING, it takes this mutex too. 3719 */ 3720 if (task->flags & PF_EXITING) 3721 err = -ESRCH; 3722 else if (task->perf_event_ctxp[ctxn]) 3723 err = -EAGAIN; 3724 else { 3725 get_ctx(ctx); 3726 ++ctx->pin_count; 3727 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3728 } 3729 mutex_unlock(&task->perf_event_mutex); 3730 3731 if (unlikely(err)) { 3732 put_ctx(ctx); 3733 3734 if (err == -EAGAIN) 3735 goto retry; 3736 goto errout; 3737 } 3738 } 3739 3740 kfree(task_ctx_data); 3741 return ctx; 3742 3743 errout: 3744 kfree(task_ctx_data); 3745 return ERR_PTR(err); 3746 } 3747 3748 static void perf_event_free_filter(struct perf_event *event); 3749 static void perf_event_free_bpf_prog(struct perf_event *event); 3750 3751 static void free_event_rcu(struct rcu_head *head) 3752 { 3753 struct perf_event *event; 3754 3755 event = container_of(head, struct perf_event, rcu_head); 3756 if (event->ns) 3757 put_pid_ns(event->ns); 3758 perf_event_free_filter(event); 3759 kfree(event); 3760 } 3761 3762 static void ring_buffer_attach(struct perf_event *event, 3763 struct ring_buffer *rb); 3764 3765 static void detach_sb_event(struct perf_event *event) 3766 { 3767 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3768 3769 raw_spin_lock(&pel->lock); 3770 list_del_rcu(&event->sb_list); 3771 raw_spin_unlock(&pel->lock); 3772 } 3773 3774 static bool is_sb_event(struct perf_event *event) 3775 { 3776 struct perf_event_attr *attr = &event->attr; 3777 3778 if (event->parent) 3779 return false; 3780 3781 if (event->attach_state & PERF_ATTACH_TASK) 3782 return false; 3783 3784 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3785 attr->comm || attr->comm_exec || 3786 attr->task || 3787 attr->context_switch) 3788 return true; 3789 return false; 3790 } 3791 3792 static void unaccount_pmu_sb_event(struct perf_event *event) 3793 { 3794 if (is_sb_event(event)) 3795 detach_sb_event(event); 3796 } 3797 3798 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3799 { 3800 if (event->parent) 3801 return; 3802 3803 if (is_cgroup_event(event)) 3804 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3805 } 3806 3807 #ifdef CONFIG_NO_HZ_FULL 3808 static DEFINE_SPINLOCK(nr_freq_lock); 3809 #endif 3810 3811 static void unaccount_freq_event_nohz(void) 3812 { 3813 #ifdef CONFIG_NO_HZ_FULL 3814 spin_lock(&nr_freq_lock); 3815 if (atomic_dec_and_test(&nr_freq_events)) 3816 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3817 spin_unlock(&nr_freq_lock); 3818 #endif 3819 } 3820 3821 static void unaccount_freq_event(void) 3822 { 3823 if (tick_nohz_full_enabled()) 3824 unaccount_freq_event_nohz(); 3825 else 3826 atomic_dec(&nr_freq_events); 3827 } 3828 3829 static void unaccount_event(struct perf_event *event) 3830 { 3831 bool dec = false; 3832 3833 if (event->parent) 3834 return; 3835 3836 if (event->attach_state & PERF_ATTACH_TASK) 3837 dec = true; 3838 if (event->attr.mmap || event->attr.mmap_data) 3839 atomic_dec(&nr_mmap_events); 3840 if (event->attr.comm) 3841 atomic_dec(&nr_comm_events); 3842 if (event->attr.task) 3843 atomic_dec(&nr_task_events); 3844 if (event->attr.freq) 3845 unaccount_freq_event(); 3846 if (event->attr.context_switch) { 3847 dec = true; 3848 atomic_dec(&nr_switch_events); 3849 } 3850 if (is_cgroup_event(event)) 3851 dec = true; 3852 if (has_branch_stack(event)) 3853 dec = true; 3854 3855 if (dec) { 3856 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3857 schedule_delayed_work(&perf_sched_work, HZ); 3858 } 3859 3860 unaccount_event_cpu(event, event->cpu); 3861 3862 unaccount_pmu_sb_event(event); 3863 } 3864 3865 static void perf_sched_delayed(struct work_struct *work) 3866 { 3867 mutex_lock(&perf_sched_mutex); 3868 if (atomic_dec_and_test(&perf_sched_count)) 3869 static_branch_disable(&perf_sched_events); 3870 mutex_unlock(&perf_sched_mutex); 3871 } 3872 3873 /* 3874 * The following implement mutual exclusion of events on "exclusive" pmus 3875 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3876 * at a time, so we disallow creating events that might conflict, namely: 3877 * 3878 * 1) cpu-wide events in the presence of per-task events, 3879 * 2) per-task events in the presence of cpu-wide events, 3880 * 3) two matching events on the same context. 3881 * 3882 * The former two cases are handled in the allocation path (perf_event_alloc(), 3883 * _free_event()), the latter -- before the first perf_install_in_context(). 3884 */ 3885 static int exclusive_event_init(struct perf_event *event) 3886 { 3887 struct pmu *pmu = event->pmu; 3888 3889 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3890 return 0; 3891 3892 /* 3893 * Prevent co-existence of per-task and cpu-wide events on the 3894 * same exclusive pmu. 3895 * 3896 * Negative pmu::exclusive_cnt means there are cpu-wide 3897 * events on this "exclusive" pmu, positive means there are 3898 * per-task events. 3899 * 3900 * Since this is called in perf_event_alloc() path, event::ctx 3901 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3902 * to mean "per-task event", because unlike other attach states it 3903 * never gets cleared. 3904 */ 3905 if (event->attach_state & PERF_ATTACH_TASK) { 3906 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3907 return -EBUSY; 3908 } else { 3909 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3910 return -EBUSY; 3911 } 3912 3913 return 0; 3914 } 3915 3916 static void exclusive_event_destroy(struct perf_event *event) 3917 { 3918 struct pmu *pmu = event->pmu; 3919 3920 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3921 return; 3922 3923 /* see comment in exclusive_event_init() */ 3924 if (event->attach_state & PERF_ATTACH_TASK) 3925 atomic_dec(&pmu->exclusive_cnt); 3926 else 3927 atomic_inc(&pmu->exclusive_cnt); 3928 } 3929 3930 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3931 { 3932 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3933 (e1->cpu == e2->cpu || 3934 e1->cpu == -1 || 3935 e2->cpu == -1)) 3936 return true; 3937 return false; 3938 } 3939 3940 /* Called under the same ctx::mutex as perf_install_in_context() */ 3941 static bool exclusive_event_installable(struct perf_event *event, 3942 struct perf_event_context *ctx) 3943 { 3944 struct perf_event *iter_event; 3945 struct pmu *pmu = event->pmu; 3946 3947 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3948 return true; 3949 3950 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3951 if (exclusive_event_match(iter_event, event)) 3952 return false; 3953 } 3954 3955 return true; 3956 } 3957 3958 static void perf_addr_filters_splice(struct perf_event *event, 3959 struct list_head *head); 3960 3961 static void _free_event(struct perf_event *event) 3962 { 3963 irq_work_sync(&event->pending); 3964 3965 unaccount_event(event); 3966 3967 if (event->rb) { 3968 /* 3969 * Can happen when we close an event with re-directed output. 3970 * 3971 * Since we have a 0 refcount, perf_mmap_close() will skip 3972 * over us; possibly making our ring_buffer_put() the last. 3973 */ 3974 mutex_lock(&event->mmap_mutex); 3975 ring_buffer_attach(event, NULL); 3976 mutex_unlock(&event->mmap_mutex); 3977 } 3978 3979 if (is_cgroup_event(event)) 3980 perf_detach_cgroup(event); 3981 3982 if (!event->parent) { 3983 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3984 put_callchain_buffers(); 3985 } 3986 3987 perf_event_free_bpf_prog(event); 3988 perf_addr_filters_splice(event, NULL); 3989 kfree(event->addr_filters_offs); 3990 3991 if (event->destroy) 3992 event->destroy(event); 3993 3994 if (event->ctx) 3995 put_ctx(event->ctx); 3996 3997 exclusive_event_destroy(event); 3998 module_put(event->pmu->module); 3999 4000 call_rcu(&event->rcu_head, free_event_rcu); 4001 } 4002 4003 /* 4004 * Used to free events which have a known refcount of 1, such as in error paths 4005 * where the event isn't exposed yet and inherited events. 4006 */ 4007 static void free_event(struct perf_event *event) 4008 { 4009 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4010 "unexpected event refcount: %ld; ptr=%p\n", 4011 atomic_long_read(&event->refcount), event)) { 4012 /* leak to avoid use-after-free */ 4013 return; 4014 } 4015 4016 _free_event(event); 4017 } 4018 4019 /* 4020 * Remove user event from the owner task. 4021 */ 4022 static void perf_remove_from_owner(struct perf_event *event) 4023 { 4024 struct task_struct *owner; 4025 4026 rcu_read_lock(); 4027 /* 4028 * Matches the smp_store_release() in perf_event_exit_task(). If we 4029 * observe !owner it means the list deletion is complete and we can 4030 * indeed free this event, otherwise we need to serialize on 4031 * owner->perf_event_mutex. 4032 */ 4033 owner = lockless_dereference(event->owner); 4034 if (owner) { 4035 /* 4036 * Since delayed_put_task_struct() also drops the last 4037 * task reference we can safely take a new reference 4038 * while holding the rcu_read_lock(). 4039 */ 4040 get_task_struct(owner); 4041 } 4042 rcu_read_unlock(); 4043 4044 if (owner) { 4045 /* 4046 * If we're here through perf_event_exit_task() we're already 4047 * holding ctx->mutex which would be an inversion wrt. the 4048 * normal lock order. 4049 * 4050 * However we can safely take this lock because its the child 4051 * ctx->mutex. 4052 */ 4053 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4054 4055 /* 4056 * We have to re-check the event->owner field, if it is cleared 4057 * we raced with perf_event_exit_task(), acquiring the mutex 4058 * ensured they're done, and we can proceed with freeing the 4059 * event. 4060 */ 4061 if (event->owner) { 4062 list_del_init(&event->owner_entry); 4063 smp_store_release(&event->owner, NULL); 4064 } 4065 mutex_unlock(&owner->perf_event_mutex); 4066 put_task_struct(owner); 4067 } 4068 } 4069 4070 static void put_event(struct perf_event *event) 4071 { 4072 if (!atomic_long_dec_and_test(&event->refcount)) 4073 return; 4074 4075 _free_event(event); 4076 } 4077 4078 /* 4079 * Kill an event dead; while event:refcount will preserve the event 4080 * object, it will not preserve its functionality. Once the last 'user' 4081 * gives up the object, we'll destroy the thing. 4082 */ 4083 int perf_event_release_kernel(struct perf_event *event) 4084 { 4085 struct perf_event_context *ctx = event->ctx; 4086 struct perf_event *child, *tmp; 4087 4088 /* 4089 * If we got here through err_file: fput(event_file); we will not have 4090 * attached to a context yet. 4091 */ 4092 if (!ctx) { 4093 WARN_ON_ONCE(event->attach_state & 4094 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4095 goto no_ctx; 4096 } 4097 4098 if (!is_kernel_event(event)) 4099 perf_remove_from_owner(event); 4100 4101 ctx = perf_event_ctx_lock(event); 4102 WARN_ON_ONCE(ctx->parent_ctx); 4103 perf_remove_from_context(event, DETACH_GROUP); 4104 4105 raw_spin_lock_irq(&ctx->lock); 4106 /* 4107 * Mark this even as STATE_DEAD, there is no external reference to it 4108 * anymore. 4109 * 4110 * Anybody acquiring event->child_mutex after the below loop _must_ 4111 * also see this, most importantly inherit_event() which will avoid 4112 * placing more children on the list. 4113 * 4114 * Thus this guarantees that we will in fact observe and kill _ALL_ 4115 * child events. 4116 */ 4117 event->state = PERF_EVENT_STATE_DEAD; 4118 raw_spin_unlock_irq(&ctx->lock); 4119 4120 perf_event_ctx_unlock(event, ctx); 4121 4122 again: 4123 mutex_lock(&event->child_mutex); 4124 list_for_each_entry(child, &event->child_list, child_list) { 4125 4126 /* 4127 * Cannot change, child events are not migrated, see the 4128 * comment with perf_event_ctx_lock_nested(). 4129 */ 4130 ctx = lockless_dereference(child->ctx); 4131 /* 4132 * Since child_mutex nests inside ctx::mutex, we must jump 4133 * through hoops. We start by grabbing a reference on the ctx. 4134 * 4135 * Since the event cannot get freed while we hold the 4136 * child_mutex, the context must also exist and have a !0 4137 * reference count. 4138 */ 4139 get_ctx(ctx); 4140 4141 /* 4142 * Now that we have a ctx ref, we can drop child_mutex, and 4143 * acquire ctx::mutex without fear of it going away. Then we 4144 * can re-acquire child_mutex. 4145 */ 4146 mutex_unlock(&event->child_mutex); 4147 mutex_lock(&ctx->mutex); 4148 mutex_lock(&event->child_mutex); 4149 4150 /* 4151 * Now that we hold ctx::mutex and child_mutex, revalidate our 4152 * state, if child is still the first entry, it didn't get freed 4153 * and we can continue doing so. 4154 */ 4155 tmp = list_first_entry_or_null(&event->child_list, 4156 struct perf_event, child_list); 4157 if (tmp == child) { 4158 perf_remove_from_context(child, DETACH_GROUP); 4159 list_del(&child->child_list); 4160 free_event(child); 4161 /* 4162 * This matches the refcount bump in inherit_event(); 4163 * this can't be the last reference. 4164 */ 4165 put_event(event); 4166 } 4167 4168 mutex_unlock(&event->child_mutex); 4169 mutex_unlock(&ctx->mutex); 4170 put_ctx(ctx); 4171 goto again; 4172 } 4173 mutex_unlock(&event->child_mutex); 4174 4175 no_ctx: 4176 put_event(event); /* Must be the 'last' reference */ 4177 return 0; 4178 } 4179 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4180 4181 /* 4182 * Called when the last reference to the file is gone. 4183 */ 4184 static int perf_release(struct inode *inode, struct file *file) 4185 { 4186 perf_event_release_kernel(file->private_data); 4187 return 0; 4188 } 4189 4190 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4191 { 4192 struct perf_event *child; 4193 u64 total = 0; 4194 4195 *enabled = 0; 4196 *running = 0; 4197 4198 mutex_lock(&event->child_mutex); 4199 4200 (void)perf_event_read(event, false); 4201 total += perf_event_count(event); 4202 4203 *enabled += event->total_time_enabled + 4204 atomic64_read(&event->child_total_time_enabled); 4205 *running += event->total_time_running + 4206 atomic64_read(&event->child_total_time_running); 4207 4208 list_for_each_entry(child, &event->child_list, child_list) { 4209 (void)perf_event_read(child, false); 4210 total += perf_event_count(child); 4211 *enabled += child->total_time_enabled; 4212 *running += child->total_time_running; 4213 } 4214 mutex_unlock(&event->child_mutex); 4215 4216 return total; 4217 } 4218 EXPORT_SYMBOL_GPL(perf_event_read_value); 4219 4220 static int __perf_read_group_add(struct perf_event *leader, 4221 u64 read_format, u64 *values) 4222 { 4223 struct perf_event *sub; 4224 int n = 1; /* skip @nr */ 4225 int ret; 4226 4227 ret = perf_event_read(leader, true); 4228 if (ret) 4229 return ret; 4230 4231 /* 4232 * Since we co-schedule groups, {enabled,running} times of siblings 4233 * will be identical to those of the leader, so we only publish one 4234 * set. 4235 */ 4236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4237 values[n++] += leader->total_time_enabled + 4238 atomic64_read(&leader->child_total_time_enabled); 4239 } 4240 4241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4242 values[n++] += leader->total_time_running + 4243 atomic64_read(&leader->child_total_time_running); 4244 } 4245 4246 /* 4247 * Write {count,id} tuples for every sibling. 4248 */ 4249 values[n++] += perf_event_count(leader); 4250 if (read_format & PERF_FORMAT_ID) 4251 values[n++] = primary_event_id(leader); 4252 4253 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4254 values[n++] += perf_event_count(sub); 4255 if (read_format & PERF_FORMAT_ID) 4256 values[n++] = primary_event_id(sub); 4257 } 4258 4259 return 0; 4260 } 4261 4262 static int perf_read_group(struct perf_event *event, 4263 u64 read_format, char __user *buf) 4264 { 4265 struct perf_event *leader = event->group_leader, *child; 4266 struct perf_event_context *ctx = leader->ctx; 4267 int ret; 4268 u64 *values; 4269 4270 lockdep_assert_held(&ctx->mutex); 4271 4272 values = kzalloc(event->read_size, GFP_KERNEL); 4273 if (!values) 4274 return -ENOMEM; 4275 4276 values[0] = 1 + leader->nr_siblings; 4277 4278 /* 4279 * By locking the child_mutex of the leader we effectively 4280 * lock the child list of all siblings.. XXX explain how. 4281 */ 4282 mutex_lock(&leader->child_mutex); 4283 4284 ret = __perf_read_group_add(leader, read_format, values); 4285 if (ret) 4286 goto unlock; 4287 4288 list_for_each_entry(child, &leader->child_list, child_list) { 4289 ret = __perf_read_group_add(child, read_format, values); 4290 if (ret) 4291 goto unlock; 4292 } 4293 4294 mutex_unlock(&leader->child_mutex); 4295 4296 ret = event->read_size; 4297 if (copy_to_user(buf, values, event->read_size)) 4298 ret = -EFAULT; 4299 goto out; 4300 4301 unlock: 4302 mutex_unlock(&leader->child_mutex); 4303 out: 4304 kfree(values); 4305 return ret; 4306 } 4307 4308 static int perf_read_one(struct perf_event *event, 4309 u64 read_format, char __user *buf) 4310 { 4311 u64 enabled, running; 4312 u64 values[4]; 4313 int n = 0; 4314 4315 values[n++] = perf_event_read_value(event, &enabled, &running); 4316 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4317 values[n++] = enabled; 4318 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4319 values[n++] = running; 4320 if (read_format & PERF_FORMAT_ID) 4321 values[n++] = primary_event_id(event); 4322 4323 if (copy_to_user(buf, values, n * sizeof(u64))) 4324 return -EFAULT; 4325 4326 return n * sizeof(u64); 4327 } 4328 4329 static bool is_event_hup(struct perf_event *event) 4330 { 4331 bool no_children; 4332 4333 if (event->state > PERF_EVENT_STATE_EXIT) 4334 return false; 4335 4336 mutex_lock(&event->child_mutex); 4337 no_children = list_empty(&event->child_list); 4338 mutex_unlock(&event->child_mutex); 4339 return no_children; 4340 } 4341 4342 /* 4343 * Read the performance event - simple non blocking version for now 4344 */ 4345 static ssize_t 4346 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4347 { 4348 u64 read_format = event->attr.read_format; 4349 int ret; 4350 4351 /* 4352 * Return end-of-file for a read on a event that is in 4353 * error state (i.e. because it was pinned but it couldn't be 4354 * scheduled on to the CPU at some point). 4355 */ 4356 if (event->state == PERF_EVENT_STATE_ERROR) 4357 return 0; 4358 4359 if (count < event->read_size) 4360 return -ENOSPC; 4361 4362 WARN_ON_ONCE(event->ctx->parent_ctx); 4363 if (read_format & PERF_FORMAT_GROUP) 4364 ret = perf_read_group(event, read_format, buf); 4365 else 4366 ret = perf_read_one(event, read_format, buf); 4367 4368 return ret; 4369 } 4370 4371 static ssize_t 4372 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4373 { 4374 struct perf_event *event = file->private_data; 4375 struct perf_event_context *ctx; 4376 int ret; 4377 4378 ctx = perf_event_ctx_lock(event); 4379 ret = __perf_read(event, buf, count); 4380 perf_event_ctx_unlock(event, ctx); 4381 4382 return ret; 4383 } 4384 4385 static unsigned int perf_poll(struct file *file, poll_table *wait) 4386 { 4387 struct perf_event *event = file->private_data; 4388 struct ring_buffer *rb; 4389 unsigned int events = POLLHUP; 4390 4391 poll_wait(file, &event->waitq, wait); 4392 4393 if (is_event_hup(event)) 4394 return events; 4395 4396 /* 4397 * Pin the event->rb by taking event->mmap_mutex; otherwise 4398 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4399 */ 4400 mutex_lock(&event->mmap_mutex); 4401 rb = event->rb; 4402 if (rb) 4403 events = atomic_xchg(&rb->poll, 0); 4404 mutex_unlock(&event->mmap_mutex); 4405 return events; 4406 } 4407 4408 static void _perf_event_reset(struct perf_event *event) 4409 { 4410 (void)perf_event_read(event, false); 4411 local64_set(&event->count, 0); 4412 perf_event_update_userpage(event); 4413 } 4414 4415 /* 4416 * Holding the top-level event's child_mutex means that any 4417 * descendant process that has inherited this event will block 4418 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4419 * task existence requirements of perf_event_enable/disable. 4420 */ 4421 static void perf_event_for_each_child(struct perf_event *event, 4422 void (*func)(struct perf_event *)) 4423 { 4424 struct perf_event *child; 4425 4426 WARN_ON_ONCE(event->ctx->parent_ctx); 4427 4428 mutex_lock(&event->child_mutex); 4429 func(event); 4430 list_for_each_entry(child, &event->child_list, child_list) 4431 func(child); 4432 mutex_unlock(&event->child_mutex); 4433 } 4434 4435 static void perf_event_for_each(struct perf_event *event, 4436 void (*func)(struct perf_event *)) 4437 { 4438 struct perf_event_context *ctx = event->ctx; 4439 struct perf_event *sibling; 4440 4441 lockdep_assert_held(&ctx->mutex); 4442 4443 event = event->group_leader; 4444 4445 perf_event_for_each_child(event, func); 4446 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4447 perf_event_for_each_child(sibling, func); 4448 } 4449 4450 static void __perf_event_period(struct perf_event *event, 4451 struct perf_cpu_context *cpuctx, 4452 struct perf_event_context *ctx, 4453 void *info) 4454 { 4455 u64 value = *((u64 *)info); 4456 bool active; 4457 4458 if (event->attr.freq) { 4459 event->attr.sample_freq = value; 4460 } else { 4461 event->attr.sample_period = value; 4462 event->hw.sample_period = value; 4463 } 4464 4465 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4466 if (active) { 4467 perf_pmu_disable(ctx->pmu); 4468 /* 4469 * We could be throttled; unthrottle now to avoid the tick 4470 * trying to unthrottle while we already re-started the event. 4471 */ 4472 if (event->hw.interrupts == MAX_INTERRUPTS) { 4473 event->hw.interrupts = 0; 4474 perf_log_throttle(event, 1); 4475 } 4476 event->pmu->stop(event, PERF_EF_UPDATE); 4477 } 4478 4479 local64_set(&event->hw.period_left, 0); 4480 4481 if (active) { 4482 event->pmu->start(event, PERF_EF_RELOAD); 4483 perf_pmu_enable(ctx->pmu); 4484 } 4485 } 4486 4487 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4488 { 4489 u64 value; 4490 4491 if (!is_sampling_event(event)) 4492 return -EINVAL; 4493 4494 if (copy_from_user(&value, arg, sizeof(value))) 4495 return -EFAULT; 4496 4497 if (!value) 4498 return -EINVAL; 4499 4500 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4501 return -EINVAL; 4502 4503 event_function_call(event, __perf_event_period, &value); 4504 4505 return 0; 4506 } 4507 4508 static const struct file_operations perf_fops; 4509 4510 static inline int perf_fget_light(int fd, struct fd *p) 4511 { 4512 struct fd f = fdget(fd); 4513 if (!f.file) 4514 return -EBADF; 4515 4516 if (f.file->f_op != &perf_fops) { 4517 fdput(f); 4518 return -EBADF; 4519 } 4520 *p = f; 4521 return 0; 4522 } 4523 4524 static int perf_event_set_output(struct perf_event *event, 4525 struct perf_event *output_event); 4526 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4527 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4528 4529 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4530 { 4531 void (*func)(struct perf_event *); 4532 u32 flags = arg; 4533 4534 switch (cmd) { 4535 case PERF_EVENT_IOC_ENABLE: 4536 func = _perf_event_enable; 4537 break; 4538 case PERF_EVENT_IOC_DISABLE: 4539 func = _perf_event_disable; 4540 break; 4541 case PERF_EVENT_IOC_RESET: 4542 func = _perf_event_reset; 4543 break; 4544 4545 case PERF_EVENT_IOC_REFRESH: 4546 return _perf_event_refresh(event, arg); 4547 4548 case PERF_EVENT_IOC_PERIOD: 4549 return perf_event_period(event, (u64 __user *)arg); 4550 4551 case PERF_EVENT_IOC_ID: 4552 { 4553 u64 id = primary_event_id(event); 4554 4555 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4556 return -EFAULT; 4557 return 0; 4558 } 4559 4560 case PERF_EVENT_IOC_SET_OUTPUT: 4561 { 4562 int ret; 4563 if (arg != -1) { 4564 struct perf_event *output_event; 4565 struct fd output; 4566 ret = perf_fget_light(arg, &output); 4567 if (ret) 4568 return ret; 4569 output_event = output.file->private_data; 4570 ret = perf_event_set_output(event, output_event); 4571 fdput(output); 4572 } else { 4573 ret = perf_event_set_output(event, NULL); 4574 } 4575 return ret; 4576 } 4577 4578 case PERF_EVENT_IOC_SET_FILTER: 4579 return perf_event_set_filter(event, (void __user *)arg); 4580 4581 case PERF_EVENT_IOC_SET_BPF: 4582 return perf_event_set_bpf_prog(event, arg); 4583 4584 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4585 struct ring_buffer *rb; 4586 4587 rcu_read_lock(); 4588 rb = rcu_dereference(event->rb); 4589 if (!rb || !rb->nr_pages) { 4590 rcu_read_unlock(); 4591 return -EINVAL; 4592 } 4593 rb_toggle_paused(rb, !!arg); 4594 rcu_read_unlock(); 4595 return 0; 4596 } 4597 default: 4598 return -ENOTTY; 4599 } 4600 4601 if (flags & PERF_IOC_FLAG_GROUP) 4602 perf_event_for_each(event, func); 4603 else 4604 perf_event_for_each_child(event, func); 4605 4606 return 0; 4607 } 4608 4609 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4610 { 4611 struct perf_event *event = file->private_data; 4612 struct perf_event_context *ctx; 4613 long ret; 4614 4615 ctx = perf_event_ctx_lock(event); 4616 ret = _perf_ioctl(event, cmd, arg); 4617 perf_event_ctx_unlock(event, ctx); 4618 4619 return ret; 4620 } 4621 4622 #ifdef CONFIG_COMPAT 4623 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4624 unsigned long arg) 4625 { 4626 switch (_IOC_NR(cmd)) { 4627 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4628 case _IOC_NR(PERF_EVENT_IOC_ID): 4629 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4630 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4631 cmd &= ~IOCSIZE_MASK; 4632 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4633 } 4634 break; 4635 } 4636 return perf_ioctl(file, cmd, arg); 4637 } 4638 #else 4639 # define perf_compat_ioctl NULL 4640 #endif 4641 4642 int perf_event_task_enable(void) 4643 { 4644 struct perf_event_context *ctx; 4645 struct perf_event *event; 4646 4647 mutex_lock(¤t->perf_event_mutex); 4648 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4649 ctx = perf_event_ctx_lock(event); 4650 perf_event_for_each_child(event, _perf_event_enable); 4651 perf_event_ctx_unlock(event, ctx); 4652 } 4653 mutex_unlock(¤t->perf_event_mutex); 4654 4655 return 0; 4656 } 4657 4658 int perf_event_task_disable(void) 4659 { 4660 struct perf_event_context *ctx; 4661 struct perf_event *event; 4662 4663 mutex_lock(¤t->perf_event_mutex); 4664 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4665 ctx = perf_event_ctx_lock(event); 4666 perf_event_for_each_child(event, _perf_event_disable); 4667 perf_event_ctx_unlock(event, ctx); 4668 } 4669 mutex_unlock(¤t->perf_event_mutex); 4670 4671 return 0; 4672 } 4673 4674 static int perf_event_index(struct perf_event *event) 4675 { 4676 if (event->hw.state & PERF_HES_STOPPED) 4677 return 0; 4678 4679 if (event->state != PERF_EVENT_STATE_ACTIVE) 4680 return 0; 4681 4682 return event->pmu->event_idx(event); 4683 } 4684 4685 static void calc_timer_values(struct perf_event *event, 4686 u64 *now, 4687 u64 *enabled, 4688 u64 *running) 4689 { 4690 u64 ctx_time; 4691 4692 *now = perf_clock(); 4693 ctx_time = event->shadow_ctx_time + *now; 4694 *enabled = ctx_time - event->tstamp_enabled; 4695 *running = ctx_time - event->tstamp_running; 4696 } 4697 4698 static void perf_event_init_userpage(struct perf_event *event) 4699 { 4700 struct perf_event_mmap_page *userpg; 4701 struct ring_buffer *rb; 4702 4703 rcu_read_lock(); 4704 rb = rcu_dereference(event->rb); 4705 if (!rb) 4706 goto unlock; 4707 4708 userpg = rb->user_page; 4709 4710 /* Allow new userspace to detect that bit 0 is deprecated */ 4711 userpg->cap_bit0_is_deprecated = 1; 4712 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4713 userpg->data_offset = PAGE_SIZE; 4714 userpg->data_size = perf_data_size(rb); 4715 4716 unlock: 4717 rcu_read_unlock(); 4718 } 4719 4720 void __weak arch_perf_update_userpage( 4721 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4722 { 4723 } 4724 4725 /* 4726 * Callers need to ensure there can be no nesting of this function, otherwise 4727 * the seqlock logic goes bad. We can not serialize this because the arch 4728 * code calls this from NMI context. 4729 */ 4730 void perf_event_update_userpage(struct perf_event *event) 4731 { 4732 struct perf_event_mmap_page *userpg; 4733 struct ring_buffer *rb; 4734 u64 enabled, running, now; 4735 4736 rcu_read_lock(); 4737 rb = rcu_dereference(event->rb); 4738 if (!rb) 4739 goto unlock; 4740 4741 /* 4742 * compute total_time_enabled, total_time_running 4743 * based on snapshot values taken when the event 4744 * was last scheduled in. 4745 * 4746 * we cannot simply called update_context_time() 4747 * because of locking issue as we can be called in 4748 * NMI context 4749 */ 4750 calc_timer_values(event, &now, &enabled, &running); 4751 4752 userpg = rb->user_page; 4753 /* 4754 * Disable preemption so as to not let the corresponding user-space 4755 * spin too long if we get preempted. 4756 */ 4757 preempt_disable(); 4758 ++userpg->lock; 4759 barrier(); 4760 userpg->index = perf_event_index(event); 4761 userpg->offset = perf_event_count(event); 4762 if (userpg->index) 4763 userpg->offset -= local64_read(&event->hw.prev_count); 4764 4765 userpg->time_enabled = enabled + 4766 atomic64_read(&event->child_total_time_enabled); 4767 4768 userpg->time_running = running + 4769 atomic64_read(&event->child_total_time_running); 4770 4771 arch_perf_update_userpage(event, userpg, now); 4772 4773 barrier(); 4774 ++userpg->lock; 4775 preempt_enable(); 4776 unlock: 4777 rcu_read_unlock(); 4778 } 4779 4780 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4781 { 4782 struct perf_event *event = vma->vm_file->private_data; 4783 struct ring_buffer *rb; 4784 int ret = VM_FAULT_SIGBUS; 4785 4786 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4787 if (vmf->pgoff == 0) 4788 ret = 0; 4789 return ret; 4790 } 4791 4792 rcu_read_lock(); 4793 rb = rcu_dereference(event->rb); 4794 if (!rb) 4795 goto unlock; 4796 4797 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4798 goto unlock; 4799 4800 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4801 if (!vmf->page) 4802 goto unlock; 4803 4804 get_page(vmf->page); 4805 vmf->page->mapping = vma->vm_file->f_mapping; 4806 vmf->page->index = vmf->pgoff; 4807 4808 ret = 0; 4809 unlock: 4810 rcu_read_unlock(); 4811 4812 return ret; 4813 } 4814 4815 static void ring_buffer_attach(struct perf_event *event, 4816 struct ring_buffer *rb) 4817 { 4818 struct ring_buffer *old_rb = NULL; 4819 unsigned long flags; 4820 4821 if (event->rb) { 4822 /* 4823 * Should be impossible, we set this when removing 4824 * event->rb_entry and wait/clear when adding event->rb_entry. 4825 */ 4826 WARN_ON_ONCE(event->rcu_pending); 4827 4828 old_rb = event->rb; 4829 spin_lock_irqsave(&old_rb->event_lock, flags); 4830 list_del_rcu(&event->rb_entry); 4831 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4832 4833 event->rcu_batches = get_state_synchronize_rcu(); 4834 event->rcu_pending = 1; 4835 } 4836 4837 if (rb) { 4838 if (event->rcu_pending) { 4839 cond_synchronize_rcu(event->rcu_batches); 4840 event->rcu_pending = 0; 4841 } 4842 4843 spin_lock_irqsave(&rb->event_lock, flags); 4844 list_add_rcu(&event->rb_entry, &rb->event_list); 4845 spin_unlock_irqrestore(&rb->event_lock, flags); 4846 } 4847 4848 /* 4849 * Avoid racing with perf_mmap_close(AUX): stop the event 4850 * before swizzling the event::rb pointer; if it's getting 4851 * unmapped, its aux_mmap_count will be 0 and it won't 4852 * restart. See the comment in __perf_pmu_output_stop(). 4853 * 4854 * Data will inevitably be lost when set_output is done in 4855 * mid-air, but then again, whoever does it like this is 4856 * not in for the data anyway. 4857 */ 4858 if (has_aux(event)) 4859 perf_event_stop(event, 0); 4860 4861 rcu_assign_pointer(event->rb, rb); 4862 4863 if (old_rb) { 4864 ring_buffer_put(old_rb); 4865 /* 4866 * Since we detached before setting the new rb, so that we 4867 * could attach the new rb, we could have missed a wakeup. 4868 * Provide it now. 4869 */ 4870 wake_up_all(&event->waitq); 4871 } 4872 } 4873 4874 static void ring_buffer_wakeup(struct perf_event *event) 4875 { 4876 struct ring_buffer *rb; 4877 4878 rcu_read_lock(); 4879 rb = rcu_dereference(event->rb); 4880 if (rb) { 4881 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4882 wake_up_all(&event->waitq); 4883 } 4884 rcu_read_unlock(); 4885 } 4886 4887 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4888 { 4889 struct ring_buffer *rb; 4890 4891 rcu_read_lock(); 4892 rb = rcu_dereference(event->rb); 4893 if (rb) { 4894 if (!atomic_inc_not_zero(&rb->refcount)) 4895 rb = NULL; 4896 } 4897 rcu_read_unlock(); 4898 4899 return rb; 4900 } 4901 4902 void ring_buffer_put(struct ring_buffer *rb) 4903 { 4904 if (!atomic_dec_and_test(&rb->refcount)) 4905 return; 4906 4907 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4908 4909 call_rcu(&rb->rcu_head, rb_free_rcu); 4910 } 4911 4912 static void perf_mmap_open(struct vm_area_struct *vma) 4913 { 4914 struct perf_event *event = vma->vm_file->private_data; 4915 4916 atomic_inc(&event->mmap_count); 4917 atomic_inc(&event->rb->mmap_count); 4918 4919 if (vma->vm_pgoff) 4920 atomic_inc(&event->rb->aux_mmap_count); 4921 4922 if (event->pmu->event_mapped) 4923 event->pmu->event_mapped(event); 4924 } 4925 4926 static void perf_pmu_output_stop(struct perf_event *event); 4927 4928 /* 4929 * A buffer can be mmap()ed multiple times; either directly through the same 4930 * event, or through other events by use of perf_event_set_output(). 4931 * 4932 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4933 * the buffer here, where we still have a VM context. This means we need 4934 * to detach all events redirecting to us. 4935 */ 4936 static void perf_mmap_close(struct vm_area_struct *vma) 4937 { 4938 struct perf_event *event = vma->vm_file->private_data; 4939 4940 struct ring_buffer *rb = ring_buffer_get(event); 4941 struct user_struct *mmap_user = rb->mmap_user; 4942 int mmap_locked = rb->mmap_locked; 4943 unsigned long size = perf_data_size(rb); 4944 4945 if (event->pmu->event_unmapped) 4946 event->pmu->event_unmapped(event); 4947 4948 /* 4949 * rb->aux_mmap_count will always drop before rb->mmap_count and 4950 * event->mmap_count, so it is ok to use event->mmap_mutex to 4951 * serialize with perf_mmap here. 4952 */ 4953 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4954 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4955 /* 4956 * Stop all AUX events that are writing to this buffer, 4957 * so that we can free its AUX pages and corresponding PMU 4958 * data. Note that after rb::aux_mmap_count dropped to zero, 4959 * they won't start any more (see perf_aux_output_begin()). 4960 */ 4961 perf_pmu_output_stop(event); 4962 4963 /* now it's safe to free the pages */ 4964 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4965 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4966 4967 /* this has to be the last one */ 4968 rb_free_aux(rb); 4969 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4970 4971 mutex_unlock(&event->mmap_mutex); 4972 } 4973 4974 atomic_dec(&rb->mmap_count); 4975 4976 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4977 goto out_put; 4978 4979 ring_buffer_attach(event, NULL); 4980 mutex_unlock(&event->mmap_mutex); 4981 4982 /* If there's still other mmap()s of this buffer, we're done. */ 4983 if (atomic_read(&rb->mmap_count)) 4984 goto out_put; 4985 4986 /* 4987 * No other mmap()s, detach from all other events that might redirect 4988 * into the now unreachable buffer. Somewhat complicated by the 4989 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4990 */ 4991 again: 4992 rcu_read_lock(); 4993 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4994 if (!atomic_long_inc_not_zero(&event->refcount)) { 4995 /* 4996 * This event is en-route to free_event() which will 4997 * detach it and remove it from the list. 4998 */ 4999 continue; 5000 } 5001 rcu_read_unlock(); 5002 5003 mutex_lock(&event->mmap_mutex); 5004 /* 5005 * Check we didn't race with perf_event_set_output() which can 5006 * swizzle the rb from under us while we were waiting to 5007 * acquire mmap_mutex. 5008 * 5009 * If we find a different rb; ignore this event, a next 5010 * iteration will no longer find it on the list. We have to 5011 * still restart the iteration to make sure we're not now 5012 * iterating the wrong list. 5013 */ 5014 if (event->rb == rb) 5015 ring_buffer_attach(event, NULL); 5016 5017 mutex_unlock(&event->mmap_mutex); 5018 put_event(event); 5019 5020 /* 5021 * Restart the iteration; either we're on the wrong list or 5022 * destroyed its integrity by doing a deletion. 5023 */ 5024 goto again; 5025 } 5026 rcu_read_unlock(); 5027 5028 /* 5029 * It could be there's still a few 0-ref events on the list; they'll 5030 * get cleaned up by free_event() -- they'll also still have their 5031 * ref on the rb and will free it whenever they are done with it. 5032 * 5033 * Aside from that, this buffer is 'fully' detached and unmapped, 5034 * undo the VM accounting. 5035 */ 5036 5037 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5038 vma->vm_mm->pinned_vm -= mmap_locked; 5039 free_uid(mmap_user); 5040 5041 out_put: 5042 ring_buffer_put(rb); /* could be last */ 5043 } 5044 5045 static const struct vm_operations_struct perf_mmap_vmops = { 5046 .open = perf_mmap_open, 5047 .close = perf_mmap_close, /* non mergable */ 5048 .fault = perf_mmap_fault, 5049 .page_mkwrite = perf_mmap_fault, 5050 }; 5051 5052 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5053 { 5054 struct perf_event *event = file->private_data; 5055 unsigned long user_locked, user_lock_limit; 5056 struct user_struct *user = current_user(); 5057 unsigned long locked, lock_limit; 5058 struct ring_buffer *rb = NULL; 5059 unsigned long vma_size; 5060 unsigned long nr_pages; 5061 long user_extra = 0, extra = 0; 5062 int ret = 0, flags = 0; 5063 5064 /* 5065 * Don't allow mmap() of inherited per-task counters. This would 5066 * create a performance issue due to all children writing to the 5067 * same rb. 5068 */ 5069 if (event->cpu == -1 && event->attr.inherit) 5070 return -EINVAL; 5071 5072 if (!(vma->vm_flags & VM_SHARED)) 5073 return -EINVAL; 5074 5075 vma_size = vma->vm_end - vma->vm_start; 5076 5077 if (vma->vm_pgoff == 0) { 5078 nr_pages = (vma_size / PAGE_SIZE) - 1; 5079 } else { 5080 /* 5081 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5082 * mapped, all subsequent mappings should have the same size 5083 * and offset. Must be above the normal perf buffer. 5084 */ 5085 u64 aux_offset, aux_size; 5086 5087 if (!event->rb) 5088 return -EINVAL; 5089 5090 nr_pages = vma_size / PAGE_SIZE; 5091 5092 mutex_lock(&event->mmap_mutex); 5093 ret = -EINVAL; 5094 5095 rb = event->rb; 5096 if (!rb) 5097 goto aux_unlock; 5098 5099 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5100 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5101 5102 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5103 goto aux_unlock; 5104 5105 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5106 goto aux_unlock; 5107 5108 /* already mapped with a different offset */ 5109 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5110 goto aux_unlock; 5111 5112 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5113 goto aux_unlock; 5114 5115 /* already mapped with a different size */ 5116 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5117 goto aux_unlock; 5118 5119 if (!is_power_of_2(nr_pages)) 5120 goto aux_unlock; 5121 5122 if (!atomic_inc_not_zero(&rb->mmap_count)) 5123 goto aux_unlock; 5124 5125 if (rb_has_aux(rb)) { 5126 atomic_inc(&rb->aux_mmap_count); 5127 ret = 0; 5128 goto unlock; 5129 } 5130 5131 atomic_set(&rb->aux_mmap_count, 1); 5132 user_extra = nr_pages; 5133 5134 goto accounting; 5135 } 5136 5137 /* 5138 * If we have rb pages ensure they're a power-of-two number, so we 5139 * can do bitmasks instead of modulo. 5140 */ 5141 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5142 return -EINVAL; 5143 5144 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5145 return -EINVAL; 5146 5147 WARN_ON_ONCE(event->ctx->parent_ctx); 5148 again: 5149 mutex_lock(&event->mmap_mutex); 5150 if (event->rb) { 5151 if (event->rb->nr_pages != nr_pages) { 5152 ret = -EINVAL; 5153 goto unlock; 5154 } 5155 5156 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5157 /* 5158 * Raced against perf_mmap_close() through 5159 * perf_event_set_output(). Try again, hope for better 5160 * luck. 5161 */ 5162 mutex_unlock(&event->mmap_mutex); 5163 goto again; 5164 } 5165 5166 goto unlock; 5167 } 5168 5169 user_extra = nr_pages + 1; 5170 5171 accounting: 5172 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5173 5174 /* 5175 * Increase the limit linearly with more CPUs: 5176 */ 5177 user_lock_limit *= num_online_cpus(); 5178 5179 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5180 5181 if (user_locked > user_lock_limit) 5182 extra = user_locked - user_lock_limit; 5183 5184 lock_limit = rlimit(RLIMIT_MEMLOCK); 5185 lock_limit >>= PAGE_SHIFT; 5186 locked = vma->vm_mm->pinned_vm + extra; 5187 5188 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5189 !capable(CAP_IPC_LOCK)) { 5190 ret = -EPERM; 5191 goto unlock; 5192 } 5193 5194 WARN_ON(!rb && event->rb); 5195 5196 if (vma->vm_flags & VM_WRITE) 5197 flags |= RING_BUFFER_WRITABLE; 5198 5199 if (!rb) { 5200 rb = rb_alloc(nr_pages, 5201 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5202 event->cpu, flags); 5203 5204 if (!rb) { 5205 ret = -ENOMEM; 5206 goto unlock; 5207 } 5208 5209 atomic_set(&rb->mmap_count, 1); 5210 rb->mmap_user = get_current_user(); 5211 rb->mmap_locked = extra; 5212 5213 ring_buffer_attach(event, rb); 5214 5215 perf_event_init_userpage(event); 5216 perf_event_update_userpage(event); 5217 } else { 5218 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5219 event->attr.aux_watermark, flags); 5220 if (!ret) 5221 rb->aux_mmap_locked = extra; 5222 } 5223 5224 unlock: 5225 if (!ret) { 5226 atomic_long_add(user_extra, &user->locked_vm); 5227 vma->vm_mm->pinned_vm += extra; 5228 5229 atomic_inc(&event->mmap_count); 5230 } else if (rb) { 5231 atomic_dec(&rb->mmap_count); 5232 } 5233 aux_unlock: 5234 mutex_unlock(&event->mmap_mutex); 5235 5236 /* 5237 * Since pinned accounting is per vm we cannot allow fork() to copy our 5238 * vma. 5239 */ 5240 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5241 vma->vm_ops = &perf_mmap_vmops; 5242 5243 if (event->pmu->event_mapped) 5244 event->pmu->event_mapped(event); 5245 5246 return ret; 5247 } 5248 5249 static int perf_fasync(int fd, struct file *filp, int on) 5250 { 5251 struct inode *inode = file_inode(filp); 5252 struct perf_event *event = filp->private_data; 5253 int retval; 5254 5255 inode_lock(inode); 5256 retval = fasync_helper(fd, filp, on, &event->fasync); 5257 inode_unlock(inode); 5258 5259 if (retval < 0) 5260 return retval; 5261 5262 return 0; 5263 } 5264 5265 static const struct file_operations perf_fops = { 5266 .llseek = no_llseek, 5267 .release = perf_release, 5268 .read = perf_read, 5269 .poll = perf_poll, 5270 .unlocked_ioctl = perf_ioctl, 5271 .compat_ioctl = perf_compat_ioctl, 5272 .mmap = perf_mmap, 5273 .fasync = perf_fasync, 5274 }; 5275 5276 /* 5277 * Perf event wakeup 5278 * 5279 * If there's data, ensure we set the poll() state and publish everything 5280 * to user-space before waking everybody up. 5281 */ 5282 5283 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5284 { 5285 /* only the parent has fasync state */ 5286 if (event->parent) 5287 event = event->parent; 5288 return &event->fasync; 5289 } 5290 5291 void perf_event_wakeup(struct perf_event *event) 5292 { 5293 ring_buffer_wakeup(event); 5294 5295 if (event->pending_kill) { 5296 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5297 event->pending_kill = 0; 5298 } 5299 } 5300 5301 static void perf_pending_event(struct irq_work *entry) 5302 { 5303 struct perf_event *event = container_of(entry, 5304 struct perf_event, pending); 5305 int rctx; 5306 5307 rctx = perf_swevent_get_recursion_context(); 5308 /* 5309 * If we 'fail' here, that's OK, it means recursion is already disabled 5310 * and we won't recurse 'further'. 5311 */ 5312 5313 if (event->pending_disable) { 5314 event->pending_disable = 0; 5315 perf_event_disable_local(event); 5316 } 5317 5318 if (event->pending_wakeup) { 5319 event->pending_wakeup = 0; 5320 perf_event_wakeup(event); 5321 } 5322 5323 if (rctx >= 0) 5324 perf_swevent_put_recursion_context(rctx); 5325 } 5326 5327 /* 5328 * We assume there is only KVM supporting the callbacks. 5329 * Later on, we might change it to a list if there is 5330 * another virtualization implementation supporting the callbacks. 5331 */ 5332 struct perf_guest_info_callbacks *perf_guest_cbs; 5333 5334 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5335 { 5336 perf_guest_cbs = cbs; 5337 return 0; 5338 } 5339 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5340 5341 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5342 { 5343 perf_guest_cbs = NULL; 5344 return 0; 5345 } 5346 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5347 5348 static void 5349 perf_output_sample_regs(struct perf_output_handle *handle, 5350 struct pt_regs *regs, u64 mask) 5351 { 5352 int bit; 5353 5354 for_each_set_bit(bit, (const unsigned long *) &mask, 5355 sizeof(mask) * BITS_PER_BYTE) { 5356 u64 val; 5357 5358 val = perf_reg_value(regs, bit); 5359 perf_output_put(handle, val); 5360 } 5361 } 5362 5363 static void perf_sample_regs_user(struct perf_regs *regs_user, 5364 struct pt_regs *regs, 5365 struct pt_regs *regs_user_copy) 5366 { 5367 if (user_mode(regs)) { 5368 regs_user->abi = perf_reg_abi(current); 5369 regs_user->regs = regs; 5370 } else if (current->mm) { 5371 perf_get_regs_user(regs_user, regs, regs_user_copy); 5372 } else { 5373 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5374 regs_user->regs = NULL; 5375 } 5376 } 5377 5378 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5379 struct pt_regs *regs) 5380 { 5381 regs_intr->regs = regs; 5382 regs_intr->abi = perf_reg_abi(current); 5383 } 5384 5385 5386 /* 5387 * Get remaining task size from user stack pointer. 5388 * 5389 * It'd be better to take stack vma map and limit this more 5390 * precisly, but there's no way to get it safely under interrupt, 5391 * so using TASK_SIZE as limit. 5392 */ 5393 static u64 perf_ustack_task_size(struct pt_regs *regs) 5394 { 5395 unsigned long addr = perf_user_stack_pointer(regs); 5396 5397 if (!addr || addr >= TASK_SIZE) 5398 return 0; 5399 5400 return TASK_SIZE - addr; 5401 } 5402 5403 static u16 5404 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5405 struct pt_regs *regs) 5406 { 5407 u64 task_size; 5408 5409 /* No regs, no stack pointer, no dump. */ 5410 if (!regs) 5411 return 0; 5412 5413 /* 5414 * Check if we fit in with the requested stack size into the: 5415 * - TASK_SIZE 5416 * If we don't, we limit the size to the TASK_SIZE. 5417 * 5418 * - remaining sample size 5419 * If we don't, we customize the stack size to 5420 * fit in to the remaining sample size. 5421 */ 5422 5423 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5424 stack_size = min(stack_size, (u16) task_size); 5425 5426 /* Current header size plus static size and dynamic size. */ 5427 header_size += 2 * sizeof(u64); 5428 5429 /* Do we fit in with the current stack dump size? */ 5430 if ((u16) (header_size + stack_size) < header_size) { 5431 /* 5432 * If we overflow the maximum size for the sample, 5433 * we customize the stack dump size to fit in. 5434 */ 5435 stack_size = USHRT_MAX - header_size - sizeof(u64); 5436 stack_size = round_up(stack_size, sizeof(u64)); 5437 } 5438 5439 return stack_size; 5440 } 5441 5442 static void 5443 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5444 struct pt_regs *regs) 5445 { 5446 /* Case of a kernel thread, nothing to dump */ 5447 if (!regs) { 5448 u64 size = 0; 5449 perf_output_put(handle, size); 5450 } else { 5451 unsigned long sp; 5452 unsigned int rem; 5453 u64 dyn_size; 5454 5455 /* 5456 * We dump: 5457 * static size 5458 * - the size requested by user or the best one we can fit 5459 * in to the sample max size 5460 * data 5461 * - user stack dump data 5462 * dynamic size 5463 * - the actual dumped size 5464 */ 5465 5466 /* Static size. */ 5467 perf_output_put(handle, dump_size); 5468 5469 /* Data. */ 5470 sp = perf_user_stack_pointer(regs); 5471 rem = __output_copy_user(handle, (void *) sp, dump_size); 5472 dyn_size = dump_size - rem; 5473 5474 perf_output_skip(handle, rem); 5475 5476 /* Dynamic size. */ 5477 perf_output_put(handle, dyn_size); 5478 } 5479 } 5480 5481 static void __perf_event_header__init_id(struct perf_event_header *header, 5482 struct perf_sample_data *data, 5483 struct perf_event *event) 5484 { 5485 u64 sample_type = event->attr.sample_type; 5486 5487 data->type = sample_type; 5488 header->size += event->id_header_size; 5489 5490 if (sample_type & PERF_SAMPLE_TID) { 5491 /* namespace issues */ 5492 data->tid_entry.pid = perf_event_pid(event, current); 5493 data->tid_entry.tid = perf_event_tid(event, current); 5494 } 5495 5496 if (sample_type & PERF_SAMPLE_TIME) 5497 data->time = perf_event_clock(event); 5498 5499 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5500 data->id = primary_event_id(event); 5501 5502 if (sample_type & PERF_SAMPLE_STREAM_ID) 5503 data->stream_id = event->id; 5504 5505 if (sample_type & PERF_SAMPLE_CPU) { 5506 data->cpu_entry.cpu = raw_smp_processor_id(); 5507 data->cpu_entry.reserved = 0; 5508 } 5509 } 5510 5511 void perf_event_header__init_id(struct perf_event_header *header, 5512 struct perf_sample_data *data, 5513 struct perf_event *event) 5514 { 5515 if (event->attr.sample_id_all) 5516 __perf_event_header__init_id(header, data, event); 5517 } 5518 5519 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5520 struct perf_sample_data *data) 5521 { 5522 u64 sample_type = data->type; 5523 5524 if (sample_type & PERF_SAMPLE_TID) 5525 perf_output_put(handle, data->tid_entry); 5526 5527 if (sample_type & PERF_SAMPLE_TIME) 5528 perf_output_put(handle, data->time); 5529 5530 if (sample_type & PERF_SAMPLE_ID) 5531 perf_output_put(handle, data->id); 5532 5533 if (sample_type & PERF_SAMPLE_STREAM_ID) 5534 perf_output_put(handle, data->stream_id); 5535 5536 if (sample_type & PERF_SAMPLE_CPU) 5537 perf_output_put(handle, data->cpu_entry); 5538 5539 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5540 perf_output_put(handle, data->id); 5541 } 5542 5543 void perf_event__output_id_sample(struct perf_event *event, 5544 struct perf_output_handle *handle, 5545 struct perf_sample_data *sample) 5546 { 5547 if (event->attr.sample_id_all) 5548 __perf_event__output_id_sample(handle, sample); 5549 } 5550 5551 static void perf_output_read_one(struct perf_output_handle *handle, 5552 struct perf_event *event, 5553 u64 enabled, u64 running) 5554 { 5555 u64 read_format = event->attr.read_format; 5556 u64 values[4]; 5557 int n = 0; 5558 5559 values[n++] = perf_event_count(event); 5560 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5561 values[n++] = enabled + 5562 atomic64_read(&event->child_total_time_enabled); 5563 } 5564 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5565 values[n++] = running + 5566 atomic64_read(&event->child_total_time_running); 5567 } 5568 if (read_format & PERF_FORMAT_ID) 5569 values[n++] = primary_event_id(event); 5570 5571 __output_copy(handle, values, n * sizeof(u64)); 5572 } 5573 5574 /* 5575 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5576 */ 5577 static void perf_output_read_group(struct perf_output_handle *handle, 5578 struct perf_event *event, 5579 u64 enabled, u64 running) 5580 { 5581 struct perf_event *leader = event->group_leader, *sub; 5582 u64 read_format = event->attr.read_format; 5583 u64 values[5]; 5584 int n = 0; 5585 5586 values[n++] = 1 + leader->nr_siblings; 5587 5588 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5589 values[n++] = enabled; 5590 5591 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5592 values[n++] = running; 5593 5594 if (leader != event) 5595 leader->pmu->read(leader); 5596 5597 values[n++] = perf_event_count(leader); 5598 if (read_format & PERF_FORMAT_ID) 5599 values[n++] = primary_event_id(leader); 5600 5601 __output_copy(handle, values, n * sizeof(u64)); 5602 5603 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5604 n = 0; 5605 5606 if ((sub != event) && 5607 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5608 sub->pmu->read(sub); 5609 5610 values[n++] = perf_event_count(sub); 5611 if (read_format & PERF_FORMAT_ID) 5612 values[n++] = primary_event_id(sub); 5613 5614 __output_copy(handle, values, n * sizeof(u64)); 5615 } 5616 } 5617 5618 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5619 PERF_FORMAT_TOTAL_TIME_RUNNING) 5620 5621 static void perf_output_read(struct perf_output_handle *handle, 5622 struct perf_event *event) 5623 { 5624 u64 enabled = 0, running = 0, now; 5625 u64 read_format = event->attr.read_format; 5626 5627 /* 5628 * compute total_time_enabled, total_time_running 5629 * based on snapshot values taken when the event 5630 * was last scheduled in. 5631 * 5632 * we cannot simply called update_context_time() 5633 * because of locking issue as we are called in 5634 * NMI context 5635 */ 5636 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5637 calc_timer_values(event, &now, &enabled, &running); 5638 5639 if (event->attr.read_format & PERF_FORMAT_GROUP) 5640 perf_output_read_group(handle, event, enabled, running); 5641 else 5642 perf_output_read_one(handle, event, enabled, running); 5643 } 5644 5645 void perf_output_sample(struct perf_output_handle *handle, 5646 struct perf_event_header *header, 5647 struct perf_sample_data *data, 5648 struct perf_event *event) 5649 { 5650 u64 sample_type = data->type; 5651 5652 perf_output_put(handle, *header); 5653 5654 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5655 perf_output_put(handle, data->id); 5656 5657 if (sample_type & PERF_SAMPLE_IP) 5658 perf_output_put(handle, data->ip); 5659 5660 if (sample_type & PERF_SAMPLE_TID) 5661 perf_output_put(handle, data->tid_entry); 5662 5663 if (sample_type & PERF_SAMPLE_TIME) 5664 perf_output_put(handle, data->time); 5665 5666 if (sample_type & PERF_SAMPLE_ADDR) 5667 perf_output_put(handle, data->addr); 5668 5669 if (sample_type & PERF_SAMPLE_ID) 5670 perf_output_put(handle, data->id); 5671 5672 if (sample_type & PERF_SAMPLE_STREAM_ID) 5673 perf_output_put(handle, data->stream_id); 5674 5675 if (sample_type & PERF_SAMPLE_CPU) 5676 perf_output_put(handle, data->cpu_entry); 5677 5678 if (sample_type & PERF_SAMPLE_PERIOD) 5679 perf_output_put(handle, data->period); 5680 5681 if (sample_type & PERF_SAMPLE_READ) 5682 perf_output_read(handle, event); 5683 5684 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5685 if (data->callchain) { 5686 int size = 1; 5687 5688 if (data->callchain) 5689 size += data->callchain->nr; 5690 5691 size *= sizeof(u64); 5692 5693 __output_copy(handle, data->callchain, size); 5694 } else { 5695 u64 nr = 0; 5696 perf_output_put(handle, nr); 5697 } 5698 } 5699 5700 if (sample_type & PERF_SAMPLE_RAW) { 5701 struct perf_raw_record *raw = data->raw; 5702 5703 if (raw) { 5704 struct perf_raw_frag *frag = &raw->frag; 5705 5706 perf_output_put(handle, raw->size); 5707 do { 5708 if (frag->copy) { 5709 __output_custom(handle, frag->copy, 5710 frag->data, frag->size); 5711 } else { 5712 __output_copy(handle, frag->data, 5713 frag->size); 5714 } 5715 if (perf_raw_frag_last(frag)) 5716 break; 5717 frag = frag->next; 5718 } while (1); 5719 if (frag->pad) 5720 __output_skip(handle, NULL, frag->pad); 5721 } else { 5722 struct { 5723 u32 size; 5724 u32 data; 5725 } raw = { 5726 .size = sizeof(u32), 5727 .data = 0, 5728 }; 5729 perf_output_put(handle, raw); 5730 } 5731 } 5732 5733 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5734 if (data->br_stack) { 5735 size_t size; 5736 5737 size = data->br_stack->nr 5738 * sizeof(struct perf_branch_entry); 5739 5740 perf_output_put(handle, data->br_stack->nr); 5741 perf_output_copy(handle, data->br_stack->entries, size); 5742 } else { 5743 /* 5744 * we always store at least the value of nr 5745 */ 5746 u64 nr = 0; 5747 perf_output_put(handle, nr); 5748 } 5749 } 5750 5751 if (sample_type & PERF_SAMPLE_REGS_USER) { 5752 u64 abi = data->regs_user.abi; 5753 5754 /* 5755 * If there are no regs to dump, notice it through 5756 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5757 */ 5758 perf_output_put(handle, abi); 5759 5760 if (abi) { 5761 u64 mask = event->attr.sample_regs_user; 5762 perf_output_sample_regs(handle, 5763 data->regs_user.regs, 5764 mask); 5765 } 5766 } 5767 5768 if (sample_type & PERF_SAMPLE_STACK_USER) { 5769 perf_output_sample_ustack(handle, 5770 data->stack_user_size, 5771 data->regs_user.regs); 5772 } 5773 5774 if (sample_type & PERF_SAMPLE_WEIGHT) 5775 perf_output_put(handle, data->weight); 5776 5777 if (sample_type & PERF_SAMPLE_DATA_SRC) 5778 perf_output_put(handle, data->data_src.val); 5779 5780 if (sample_type & PERF_SAMPLE_TRANSACTION) 5781 perf_output_put(handle, data->txn); 5782 5783 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5784 u64 abi = data->regs_intr.abi; 5785 /* 5786 * If there are no regs to dump, notice it through 5787 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5788 */ 5789 perf_output_put(handle, abi); 5790 5791 if (abi) { 5792 u64 mask = event->attr.sample_regs_intr; 5793 5794 perf_output_sample_regs(handle, 5795 data->regs_intr.regs, 5796 mask); 5797 } 5798 } 5799 5800 if (!event->attr.watermark) { 5801 int wakeup_events = event->attr.wakeup_events; 5802 5803 if (wakeup_events) { 5804 struct ring_buffer *rb = handle->rb; 5805 int events = local_inc_return(&rb->events); 5806 5807 if (events >= wakeup_events) { 5808 local_sub(wakeup_events, &rb->events); 5809 local_inc(&rb->wakeup); 5810 } 5811 } 5812 } 5813 } 5814 5815 void perf_prepare_sample(struct perf_event_header *header, 5816 struct perf_sample_data *data, 5817 struct perf_event *event, 5818 struct pt_regs *regs) 5819 { 5820 u64 sample_type = event->attr.sample_type; 5821 5822 header->type = PERF_RECORD_SAMPLE; 5823 header->size = sizeof(*header) + event->header_size; 5824 5825 header->misc = 0; 5826 header->misc |= perf_misc_flags(regs); 5827 5828 __perf_event_header__init_id(header, data, event); 5829 5830 if (sample_type & PERF_SAMPLE_IP) 5831 data->ip = perf_instruction_pointer(regs); 5832 5833 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5834 int size = 1; 5835 5836 data->callchain = perf_callchain(event, regs); 5837 5838 if (data->callchain) 5839 size += data->callchain->nr; 5840 5841 header->size += size * sizeof(u64); 5842 } 5843 5844 if (sample_type & PERF_SAMPLE_RAW) { 5845 struct perf_raw_record *raw = data->raw; 5846 int size; 5847 5848 if (raw) { 5849 struct perf_raw_frag *frag = &raw->frag; 5850 u32 sum = 0; 5851 5852 do { 5853 sum += frag->size; 5854 if (perf_raw_frag_last(frag)) 5855 break; 5856 frag = frag->next; 5857 } while (1); 5858 5859 size = round_up(sum + sizeof(u32), sizeof(u64)); 5860 raw->size = size - sizeof(u32); 5861 frag->pad = raw->size - sum; 5862 } else { 5863 size = sizeof(u64); 5864 } 5865 5866 header->size += size; 5867 } 5868 5869 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5870 int size = sizeof(u64); /* nr */ 5871 if (data->br_stack) { 5872 size += data->br_stack->nr 5873 * sizeof(struct perf_branch_entry); 5874 } 5875 header->size += size; 5876 } 5877 5878 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5879 perf_sample_regs_user(&data->regs_user, regs, 5880 &data->regs_user_copy); 5881 5882 if (sample_type & PERF_SAMPLE_REGS_USER) { 5883 /* regs dump ABI info */ 5884 int size = sizeof(u64); 5885 5886 if (data->regs_user.regs) { 5887 u64 mask = event->attr.sample_regs_user; 5888 size += hweight64(mask) * sizeof(u64); 5889 } 5890 5891 header->size += size; 5892 } 5893 5894 if (sample_type & PERF_SAMPLE_STACK_USER) { 5895 /* 5896 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5897 * processed as the last one or have additional check added 5898 * in case new sample type is added, because we could eat 5899 * up the rest of the sample size. 5900 */ 5901 u16 stack_size = event->attr.sample_stack_user; 5902 u16 size = sizeof(u64); 5903 5904 stack_size = perf_sample_ustack_size(stack_size, header->size, 5905 data->regs_user.regs); 5906 5907 /* 5908 * If there is something to dump, add space for the dump 5909 * itself and for the field that tells the dynamic size, 5910 * which is how many have been actually dumped. 5911 */ 5912 if (stack_size) 5913 size += sizeof(u64) + stack_size; 5914 5915 data->stack_user_size = stack_size; 5916 header->size += size; 5917 } 5918 5919 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5920 /* regs dump ABI info */ 5921 int size = sizeof(u64); 5922 5923 perf_sample_regs_intr(&data->regs_intr, regs); 5924 5925 if (data->regs_intr.regs) { 5926 u64 mask = event->attr.sample_regs_intr; 5927 5928 size += hweight64(mask) * sizeof(u64); 5929 } 5930 5931 header->size += size; 5932 } 5933 } 5934 5935 static void __always_inline 5936 __perf_event_output(struct perf_event *event, 5937 struct perf_sample_data *data, 5938 struct pt_regs *regs, 5939 int (*output_begin)(struct perf_output_handle *, 5940 struct perf_event *, 5941 unsigned int)) 5942 { 5943 struct perf_output_handle handle; 5944 struct perf_event_header header; 5945 5946 /* protect the callchain buffers */ 5947 rcu_read_lock(); 5948 5949 perf_prepare_sample(&header, data, event, regs); 5950 5951 if (output_begin(&handle, event, header.size)) 5952 goto exit; 5953 5954 perf_output_sample(&handle, &header, data, event); 5955 5956 perf_output_end(&handle); 5957 5958 exit: 5959 rcu_read_unlock(); 5960 } 5961 5962 void 5963 perf_event_output_forward(struct perf_event *event, 5964 struct perf_sample_data *data, 5965 struct pt_regs *regs) 5966 { 5967 __perf_event_output(event, data, regs, perf_output_begin_forward); 5968 } 5969 5970 void 5971 perf_event_output_backward(struct perf_event *event, 5972 struct perf_sample_data *data, 5973 struct pt_regs *regs) 5974 { 5975 __perf_event_output(event, data, regs, perf_output_begin_backward); 5976 } 5977 5978 void 5979 perf_event_output(struct perf_event *event, 5980 struct perf_sample_data *data, 5981 struct pt_regs *regs) 5982 { 5983 __perf_event_output(event, data, regs, perf_output_begin); 5984 } 5985 5986 /* 5987 * read event_id 5988 */ 5989 5990 struct perf_read_event { 5991 struct perf_event_header header; 5992 5993 u32 pid; 5994 u32 tid; 5995 }; 5996 5997 static void 5998 perf_event_read_event(struct perf_event *event, 5999 struct task_struct *task) 6000 { 6001 struct perf_output_handle handle; 6002 struct perf_sample_data sample; 6003 struct perf_read_event read_event = { 6004 .header = { 6005 .type = PERF_RECORD_READ, 6006 .misc = 0, 6007 .size = sizeof(read_event) + event->read_size, 6008 }, 6009 .pid = perf_event_pid(event, task), 6010 .tid = perf_event_tid(event, task), 6011 }; 6012 int ret; 6013 6014 perf_event_header__init_id(&read_event.header, &sample, event); 6015 ret = perf_output_begin(&handle, event, read_event.header.size); 6016 if (ret) 6017 return; 6018 6019 perf_output_put(&handle, read_event); 6020 perf_output_read(&handle, event); 6021 perf_event__output_id_sample(event, &handle, &sample); 6022 6023 perf_output_end(&handle); 6024 } 6025 6026 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6027 6028 static void 6029 perf_iterate_ctx(struct perf_event_context *ctx, 6030 perf_iterate_f output, 6031 void *data, bool all) 6032 { 6033 struct perf_event *event; 6034 6035 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6036 if (!all) { 6037 if (event->state < PERF_EVENT_STATE_INACTIVE) 6038 continue; 6039 if (!event_filter_match(event)) 6040 continue; 6041 } 6042 6043 output(event, data); 6044 } 6045 } 6046 6047 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6048 { 6049 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6050 struct perf_event *event; 6051 6052 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6053 /* 6054 * Skip events that are not fully formed yet; ensure that 6055 * if we observe event->ctx, both event and ctx will be 6056 * complete enough. See perf_install_in_context(). 6057 */ 6058 if (!smp_load_acquire(&event->ctx)) 6059 continue; 6060 6061 if (event->state < PERF_EVENT_STATE_INACTIVE) 6062 continue; 6063 if (!event_filter_match(event)) 6064 continue; 6065 output(event, data); 6066 } 6067 } 6068 6069 /* 6070 * Iterate all events that need to receive side-band events. 6071 * 6072 * For new callers; ensure that account_pmu_sb_event() includes 6073 * your event, otherwise it might not get delivered. 6074 */ 6075 static void 6076 perf_iterate_sb(perf_iterate_f output, void *data, 6077 struct perf_event_context *task_ctx) 6078 { 6079 struct perf_event_context *ctx; 6080 int ctxn; 6081 6082 rcu_read_lock(); 6083 preempt_disable(); 6084 6085 /* 6086 * If we have task_ctx != NULL we only notify the task context itself. 6087 * The task_ctx is set only for EXIT events before releasing task 6088 * context. 6089 */ 6090 if (task_ctx) { 6091 perf_iterate_ctx(task_ctx, output, data, false); 6092 goto done; 6093 } 6094 6095 perf_iterate_sb_cpu(output, data); 6096 6097 for_each_task_context_nr(ctxn) { 6098 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6099 if (ctx) 6100 perf_iterate_ctx(ctx, output, data, false); 6101 } 6102 done: 6103 preempt_enable(); 6104 rcu_read_unlock(); 6105 } 6106 6107 /* 6108 * Clear all file-based filters at exec, they'll have to be 6109 * re-instated when/if these objects are mmapped again. 6110 */ 6111 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6112 { 6113 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6114 struct perf_addr_filter *filter; 6115 unsigned int restart = 0, count = 0; 6116 unsigned long flags; 6117 6118 if (!has_addr_filter(event)) 6119 return; 6120 6121 raw_spin_lock_irqsave(&ifh->lock, flags); 6122 list_for_each_entry(filter, &ifh->list, entry) { 6123 if (filter->inode) { 6124 event->addr_filters_offs[count] = 0; 6125 restart++; 6126 } 6127 6128 count++; 6129 } 6130 6131 if (restart) 6132 event->addr_filters_gen++; 6133 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6134 6135 if (restart) 6136 perf_event_stop(event, 1); 6137 } 6138 6139 void perf_event_exec(void) 6140 { 6141 struct perf_event_context *ctx; 6142 int ctxn; 6143 6144 rcu_read_lock(); 6145 for_each_task_context_nr(ctxn) { 6146 ctx = current->perf_event_ctxp[ctxn]; 6147 if (!ctx) 6148 continue; 6149 6150 perf_event_enable_on_exec(ctxn); 6151 6152 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6153 true); 6154 } 6155 rcu_read_unlock(); 6156 } 6157 6158 struct remote_output { 6159 struct ring_buffer *rb; 6160 int err; 6161 }; 6162 6163 static void __perf_event_output_stop(struct perf_event *event, void *data) 6164 { 6165 struct perf_event *parent = event->parent; 6166 struct remote_output *ro = data; 6167 struct ring_buffer *rb = ro->rb; 6168 struct stop_event_data sd = { 6169 .event = event, 6170 }; 6171 6172 if (!has_aux(event)) 6173 return; 6174 6175 if (!parent) 6176 parent = event; 6177 6178 /* 6179 * In case of inheritance, it will be the parent that links to the 6180 * ring-buffer, but it will be the child that's actually using it. 6181 * 6182 * We are using event::rb to determine if the event should be stopped, 6183 * however this may race with ring_buffer_attach() (through set_output), 6184 * which will make us skip the event that actually needs to be stopped. 6185 * So ring_buffer_attach() has to stop an aux event before re-assigning 6186 * its rb pointer. 6187 */ 6188 if (rcu_dereference(parent->rb) == rb) 6189 ro->err = __perf_event_stop(&sd); 6190 } 6191 6192 static int __perf_pmu_output_stop(void *info) 6193 { 6194 struct perf_event *event = info; 6195 struct pmu *pmu = event->pmu; 6196 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6197 struct remote_output ro = { 6198 .rb = event->rb, 6199 }; 6200 6201 rcu_read_lock(); 6202 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6203 if (cpuctx->task_ctx) 6204 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6205 &ro, false); 6206 rcu_read_unlock(); 6207 6208 return ro.err; 6209 } 6210 6211 static void perf_pmu_output_stop(struct perf_event *event) 6212 { 6213 struct perf_event *iter; 6214 int err, cpu; 6215 6216 restart: 6217 rcu_read_lock(); 6218 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6219 /* 6220 * For per-CPU events, we need to make sure that neither they 6221 * nor their children are running; for cpu==-1 events it's 6222 * sufficient to stop the event itself if it's active, since 6223 * it can't have children. 6224 */ 6225 cpu = iter->cpu; 6226 if (cpu == -1) 6227 cpu = READ_ONCE(iter->oncpu); 6228 6229 if (cpu == -1) 6230 continue; 6231 6232 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6233 if (err == -EAGAIN) { 6234 rcu_read_unlock(); 6235 goto restart; 6236 } 6237 } 6238 rcu_read_unlock(); 6239 } 6240 6241 /* 6242 * task tracking -- fork/exit 6243 * 6244 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6245 */ 6246 6247 struct perf_task_event { 6248 struct task_struct *task; 6249 struct perf_event_context *task_ctx; 6250 6251 struct { 6252 struct perf_event_header header; 6253 6254 u32 pid; 6255 u32 ppid; 6256 u32 tid; 6257 u32 ptid; 6258 u64 time; 6259 } event_id; 6260 }; 6261 6262 static int perf_event_task_match(struct perf_event *event) 6263 { 6264 return event->attr.comm || event->attr.mmap || 6265 event->attr.mmap2 || event->attr.mmap_data || 6266 event->attr.task; 6267 } 6268 6269 static void perf_event_task_output(struct perf_event *event, 6270 void *data) 6271 { 6272 struct perf_task_event *task_event = data; 6273 struct perf_output_handle handle; 6274 struct perf_sample_data sample; 6275 struct task_struct *task = task_event->task; 6276 int ret, size = task_event->event_id.header.size; 6277 6278 if (!perf_event_task_match(event)) 6279 return; 6280 6281 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6282 6283 ret = perf_output_begin(&handle, event, 6284 task_event->event_id.header.size); 6285 if (ret) 6286 goto out; 6287 6288 task_event->event_id.pid = perf_event_pid(event, task); 6289 task_event->event_id.ppid = perf_event_pid(event, current); 6290 6291 task_event->event_id.tid = perf_event_tid(event, task); 6292 task_event->event_id.ptid = perf_event_tid(event, current); 6293 6294 task_event->event_id.time = perf_event_clock(event); 6295 6296 perf_output_put(&handle, task_event->event_id); 6297 6298 perf_event__output_id_sample(event, &handle, &sample); 6299 6300 perf_output_end(&handle); 6301 out: 6302 task_event->event_id.header.size = size; 6303 } 6304 6305 static void perf_event_task(struct task_struct *task, 6306 struct perf_event_context *task_ctx, 6307 int new) 6308 { 6309 struct perf_task_event task_event; 6310 6311 if (!atomic_read(&nr_comm_events) && 6312 !atomic_read(&nr_mmap_events) && 6313 !atomic_read(&nr_task_events)) 6314 return; 6315 6316 task_event = (struct perf_task_event){ 6317 .task = task, 6318 .task_ctx = task_ctx, 6319 .event_id = { 6320 .header = { 6321 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6322 .misc = 0, 6323 .size = sizeof(task_event.event_id), 6324 }, 6325 /* .pid */ 6326 /* .ppid */ 6327 /* .tid */ 6328 /* .ptid */ 6329 /* .time */ 6330 }, 6331 }; 6332 6333 perf_iterate_sb(perf_event_task_output, 6334 &task_event, 6335 task_ctx); 6336 } 6337 6338 void perf_event_fork(struct task_struct *task) 6339 { 6340 perf_event_task(task, NULL, 1); 6341 } 6342 6343 /* 6344 * comm tracking 6345 */ 6346 6347 struct perf_comm_event { 6348 struct task_struct *task; 6349 char *comm; 6350 int comm_size; 6351 6352 struct { 6353 struct perf_event_header header; 6354 6355 u32 pid; 6356 u32 tid; 6357 } event_id; 6358 }; 6359 6360 static int perf_event_comm_match(struct perf_event *event) 6361 { 6362 return event->attr.comm; 6363 } 6364 6365 static void perf_event_comm_output(struct perf_event *event, 6366 void *data) 6367 { 6368 struct perf_comm_event *comm_event = data; 6369 struct perf_output_handle handle; 6370 struct perf_sample_data sample; 6371 int size = comm_event->event_id.header.size; 6372 int ret; 6373 6374 if (!perf_event_comm_match(event)) 6375 return; 6376 6377 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6378 ret = perf_output_begin(&handle, event, 6379 comm_event->event_id.header.size); 6380 6381 if (ret) 6382 goto out; 6383 6384 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6385 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6386 6387 perf_output_put(&handle, comm_event->event_id); 6388 __output_copy(&handle, comm_event->comm, 6389 comm_event->comm_size); 6390 6391 perf_event__output_id_sample(event, &handle, &sample); 6392 6393 perf_output_end(&handle); 6394 out: 6395 comm_event->event_id.header.size = size; 6396 } 6397 6398 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6399 { 6400 char comm[TASK_COMM_LEN]; 6401 unsigned int size; 6402 6403 memset(comm, 0, sizeof(comm)); 6404 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6405 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6406 6407 comm_event->comm = comm; 6408 comm_event->comm_size = size; 6409 6410 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6411 6412 perf_iterate_sb(perf_event_comm_output, 6413 comm_event, 6414 NULL); 6415 } 6416 6417 void perf_event_comm(struct task_struct *task, bool exec) 6418 { 6419 struct perf_comm_event comm_event; 6420 6421 if (!atomic_read(&nr_comm_events)) 6422 return; 6423 6424 comm_event = (struct perf_comm_event){ 6425 .task = task, 6426 /* .comm */ 6427 /* .comm_size */ 6428 .event_id = { 6429 .header = { 6430 .type = PERF_RECORD_COMM, 6431 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6432 /* .size */ 6433 }, 6434 /* .pid */ 6435 /* .tid */ 6436 }, 6437 }; 6438 6439 perf_event_comm_event(&comm_event); 6440 } 6441 6442 /* 6443 * mmap tracking 6444 */ 6445 6446 struct perf_mmap_event { 6447 struct vm_area_struct *vma; 6448 6449 const char *file_name; 6450 int file_size; 6451 int maj, min; 6452 u64 ino; 6453 u64 ino_generation; 6454 u32 prot, flags; 6455 6456 struct { 6457 struct perf_event_header header; 6458 6459 u32 pid; 6460 u32 tid; 6461 u64 start; 6462 u64 len; 6463 u64 pgoff; 6464 } event_id; 6465 }; 6466 6467 static int perf_event_mmap_match(struct perf_event *event, 6468 void *data) 6469 { 6470 struct perf_mmap_event *mmap_event = data; 6471 struct vm_area_struct *vma = mmap_event->vma; 6472 int executable = vma->vm_flags & VM_EXEC; 6473 6474 return (!executable && event->attr.mmap_data) || 6475 (executable && (event->attr.mmap || event->attr.mmap2)); 6476 } 6477 6478 static void perf_event_mmap_output(struct perf_event *event, 6479 void *data) 6480 { 6481 struct perf_mmap_event *mmap_event = data; 6482 struct perf_output_handle handle; 6483 struct perf_sample_data sample; 6484 int size = mmap_event->event_id.header.size; 6485 int ret; 6486 6487 if (!perf_event_mmap_match(event, data)) 6488 return; 6489 6490 if (event->attr.mmap2) { 6491 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6492 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6493 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6494 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6495 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6496 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6497 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6498 } 6499 6500 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6501 ret = perf_output_begin(&handle, event, 6502 mmap_event->event_id.header.size); 6503 if (ret) 6504 goto out; 6505 6506 mmap_event->event_id.pid = perf_event_pid(event, current); 6507 mmap_event->event_id.tid = perf_event_tid(event, current); 6508 6509 perf_output_put(&handle, mmap_event->event_id); 6510 6511 if (event->attr.mmap2) { 6512 perf_output_put(&handle, mmap_event->maj); 6513 perf_output_put(&handle, mmap_event->min); 6514 perf_output_put(&handle, mmap_event->ino); 6515 perf_output_put(&handle, mmap_event->ino_generation); 6516 perf_output_put(&handle, mmap_event->prot); 6517 perf_output_put(&handle, mmap_event->flags); 6518 } 6519 6520 __output_copy(&handle, mmap_event->file_name, 6521 mmap_event->file_size); 6522 6523 perf_event__output_id_sample(event, &handle, &sample); 6524 6525 perf_output_end(&handle); 6526 out: 6527 mmap_event->event_id.header.size = size; 6528 } 6529 6530 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6531 { 6532 struct vm_area_struct *vma = mmap_event->vma; 6533 struct file *file = vma->vm_file; 6534 int maj = 0, min = 0; 6535 u64 ino = 0, gen = 0; 6536 u32 prot = 0, flags = 0; 6537 unsigned int size; 6538 char tmp[16]; 6539 char *buf = NULL; 6540 char *name; 6541 6542 if (file) { 6543 struct inode *inode; 6544 dev_t dev; 6545 6546 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6547 if (!buf) { 6548 name = "//enomem"; 6549 goto cpy_name; 6550 } 6551 /* 6552 * d_path() works from the end of the rb backwards, so we 6553 * need to add enough zero bytes after the string to handle 6554 * the 64bit alignment we do later. 6555 */ 6556 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6557 if (IS_ERR(name)) { 6558 name = "//toolong"; 6559 goto cpy_name; 6560 } 6561 inode = file_inode(vma->vm_file); 6562 dev = inode->i_sb->s_dev; 6563 ino = inode->i_ino; 6564 gen = inode->i_generation; 6565 maj = MAJOR(dev); 6566 min = MINOR(dev); 6567 6568 if (vma->vm_flags & VM_READ) 6569 prot |= PROT_READ; 6570 if (vma->vm_flags & VM_WRITE) 6571 prot |= PROT_WRITE; 6572 if (vma->vm_flags & VM_EXEC) 6573 prot |= PROT_EXEC; 6574 6575 if (vma->vm_flags & VM_MAYSHARE) 6576 flags = MAP_SHARED; 6577 else 6578 flags = MAP_PRIVATE; 6579 6580 if (vma->vm_flags & VM_DENYWRITE) 6581 flags |= MAP_DENYWRITE; 6582 if (vma->vm_flags & VM_MAYEXEC) 6583 flags |= MAP_EXECUTABLE; 6584 if (vma->vm_flags & VM_LOCKED) 6585 flags |= MAP_LOCKED; 6586 if (vma->vm_flags & VM_HUGETLB) 6587 flags |= MAP_HUGETLB; 6588 6589 goto got_name; 6590 } else { 6591 if (vma->vm_ops && vma->vm_ops->name) { 6592 name = (char *) vma->vm_ops->name(vma); 6593 if (name) 6594 goto cpy_name; 6595 } 6596 6597 name = (char *)arch_vma_name(vma); 6598 if (name) 6599 goto cpy_name; 6600 6601 if (vma->vm_start <= vma->vm_mm->start_brk && 6602 vma->vm_end >= vma->vm_mm->brk) { 6603 name = "[heap]"; 6604 goto cpy_name; 6605 } 6606 if (vma->vm_start <= vma->vm_mm->start_stack && 6607 vma->vm_end >= vma->vm_mm->start_stack) { 6608 name = "[stack]"; 6609 goto cpy_name; 6610 } 6611 6612 name = "//anon"; 6613 goto cpy_name; 6614 } 6615 6616 cpy_name: 6617 strlcpy(tmp, name, sizeof(tmp)); 6618 name = tmp; 6619 got_name: 6620 /* 6621 * Since our buffer works in 8 byte units we need to align our string 6622 * size to a multiple of 8. However, we must guarantee the tail end is 6623 * zero'd out to avoid leaking random bits to userspace. 6624 */ 6625 size = strlen(name)+1; 6626 while (!IS_ALIGNED(size, sizeof(u64))) 6627 name[size++] = '\0'; 6628 6629 mmap_event->file_name = name; 6630 mmap_event->file_size = size; 6631 mmap_event->maj = maj; 6632 mmap_event->min = min; 6633 mmap_event->ino = ino; 6634 mmap_event->ino_generation = gen; 6635 mmap_event->prot = prot; 6636 mmap_event->flags = flags; 6637 6638 if (!(vma->vm_flags & VM_EXEC)) 6639 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6640 6641 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6642 6643 perf_iterate_sb(perf_event_mmap_output, 6644 mmap_event, 6645 NULL); 6646 6647 kfree(buf); 6648 } 6649 6650 /* 6651 * Check whether inode and address range match filter criteria. 6652 */ 6653 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6654 struct file *file, unsigned long offset, 6655 unsigned long size) 6656 { 6657 if (filter->inode != file->f_inode) 6658 return false; 6659 6660 if (filter->offset > offset + size) 6661 return false; 6662 6663 if (filter->offset + filter->size < offset) 6664 return false; 6665 6666 return true; 6667 } 6668 6669 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6670 { 6671 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6672 struct vm_area_struct *vma = data; 6673 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6674 struct file *file = vma->vm_file; 6675 struct perf_addr_filter *filter; 6676 unsigned int restart = 0, count = 0; 6677 6678 if (!has_addr_filter(event)) 6679 return; 6680 6681 if (!file) 6682 return; 6683 6684 raw_spin_lock_irqsave(&ifh->lock, flags); 6685 list_for_each_entry(filter, &ifh->list, entry) { 6686 if (perf_addr_filter_match(filter, file, off, 6687 vma->vm_end - vma->vm_start)) { 6688 event->addr_filters_offs[count] = vma->vm_start; 6689 restart++; 6690 } 6691 6692 count++; 6693 } 6694 6695 if (restart) 6696 event->addr_filters_gen++; 6697 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6698 6699 if (restart) 6700 perf_event_stop(event, 1); 6701 } 6702 6703 /* 6704 * Adjust all task's events' filters to the new vma 6705 */ 6706 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6707 { 6708 struct perf_event_context *ctx; 6709 int ctxn; 6710 6711 /* 6712 * Data tracing isn't supported yet and as such there is no need 6713 * to keep track of anything that isn't related to executable code: 6714 */ 6715 if (!(vma->vm_flags & VM_EXEC)) 6716 return; 6717 6718 rcu_read_lock(); 6719 for_each_task_context_nr(ctxn) { 6720 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6721 if (!ctx) 6722 continue; 6723 6724 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6725 } 6726 rcu_read_unlock(); 6727 } 6728 6729 void perf_event_mmap(struct vm_area_struct *vma) 6730 { 6731 struct perf_mmap_event mmap_event; 6732 6733 if (!atomic_read(&nr_mmap_events)) 6734 return; 6735 6736 mmap_event = (struct perf_mmap_event){ 6737 .vma = vma, 6738 /* .file_name */ 6739 /* .file_size */ 6740 .event_id = { 6741 .header = { 6742 .type = PERF_RECORD_MMAP, 6743 .misc = PERF_RECORD_MISC_USER, 6744 /* .size */ 6745 }, 6746 /* .pid */ 6747 /* .tid */ 6748 .start = vma->vm_start, 6749 .len = vma->vm_end - vma->vm_start, 6750 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6751 }, 6752 /* .maj (attr_mmap2 only) */ 6753 /* .min (attr_mmap2 only) */ 6754 /* .ino (attr_mmap2 only) */ 6755 /* .ino_generation (attr_mmap2 only) */ 6756 /* .prot (attr_mmap2 only) */ 6757 /* .flags (attr_mmap2 only) */ 6758 }; 6759 6760 perf_addr_filters_adjust(vma); 6761 perf_event_mmap_event(&mmap_event); 6762 } 6763 6764 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6765 unsigned long size, u64 flags) 6766 { 6767 struct perf_output_handle handle; 6768 struct perf_sample_data sample; 6769 struct perf_aux_event { 6770 struct perf_event_header header; 6771 u64 offset; 6772 u64 size; 6773 u64 flags; 6774 } rec = { 6775 .header = { 6776 .type = PERF_RECORD_AUX, 6777 .misc = 0, 6778 .size = sizeof(rec), 6779 }, 6780 .offset = head, 6781 .size = size, 6782 .flags = flags, 6783 }; 6784 int ret; 6785 6786 perf_event_header__init_id(&rec.header, &sample, event); 6787 ret = perf_output_begin(&handle, event, rec.header.size); 6788 6789 if (ret) 6790 return; 6791 6792 perf_output_put(&handle, rec); 6793 perf_event__output_id_sample(event, &handle, &sample); 6794 6795 perf_output_end(&handle); 6796 } 6797 6798 /* 6799 * Lost/dropped samples logging 6800 */ 6801 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6802 { 6803 struct perf_output_handle handle; 6804 struct perf_sample_data sample; 6805 int ret; 6806 6807 struct { 6808 struct perf_event_header header; 6809 u64 lost; 6810 } lost_samples_event = { 6811 .header = { 6812 .type = PERF_RECORD_LOST_SAMPLES, 6813 .misc = 0, 6814 .size = sizeof(lost_samples_event), 6815 }, 6816 .lost = lost, 6817 }; 6818 6819 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6820 6821 ret = perf_output_begin(&handle, event, 6822 lost_samples_event.header.size); 6823 if (ret) 6824 return; 6825 6826 perf_output_put(&handle, lost_samples_event); 6827 perf_event__output_id_sample(event, &handle, &sample); 6828 perf_output_end(&handle); 6829 } 6830 6831 /* 6832 * context_switch tracking 6833 */ 6834 6835 struct perf_switch_event { 6836 struct task_struct *task; 6837 struct task_struct *next_prev; 6838 6839 struct { 6840 struct perf_event_header header; 6841 u32 next_prev_pid; 6842 u32 next_prev_tid; 6843 } event_id; 6844 }; 6845 6846 static int perf_event_switch_match(struct perf_event *event) 6847 { 6848 return event->attr.context_switch; 6849 } 6850 6851 static void perf_event_switch_output(struct perf_event *event, void *data) 6852 { 6853 struct perf_switch_event *se = data; 6854 struct perf_output_handle handle; 6855 struct perf_sample_data sample; 6856 int ret; 6857 6858 if (!perf_event_switch_match(event)) 6859 return; 6860 6861 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6862 if (event->ctx->task) { 6863 se->event_id.header.type = PERF_RECORD_SWITCH; 6864 se->event_id.header.size = sizeof(se->event_id.header); 6865 } else { 6866 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6867 se->event_id.header.size = sizeof(se->event_id); 6868 se->event_id.next_prev_pid = 6869 perf_event_pid(event, se->next_prev); 6870 se->event_id.next_prev_tid = 6871 perf_event_tid(event, se->next_prev); 6872 } 6873 6874 perf_event_header__init_id(&se->event_id.header, &sample, event); 6875 6876 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6877 if (ret) 6878 return; 6879 6880 if (event->ctx->task) 6881 perf_output_put(&handle, se->event_id.header); 6882 else 6883 perf_output_put(&handle, se->event_id); 6884 6885 perf_event__output_id_sample(event, &handle, &sample); 6886 6887 perf_output_end(&handle); 6888 } 6889 6890 static void perf_event_switch(struct task_struct *task, 6891 struct task_struct *next_prev, bool sched_in) 6892 { 6893 struct perf_switch_event switch_event; 6894 6895 /* N.B. caller checks nr_switch_events != 0 */ 6896 6897 switch_event = (struct perf_switch_event){ 6898 .task = task, 6899 .next_prev = next_prev, 6900 .event_id = { 6901 .header = { 6902 /* .type */ 6903 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6904 /* .size */ 6905 }, 6906 /* .next_prev_pid */ 6907 /* .next_prev_tid */ 6908 }, 6909 }; 6910 6911 perf_iterate_sb(perf_event_switch_output, 6912 &switch_event, 6913 NULL); 6914 } 6915 6916 /* 6917 * IRQ throttle logging 6918 */ 6919 6920 static void perf_log_throttle(struct perf_event *event, int enable) 6921 { 6922 struct perf_output_handle handle; 6923 struct perf_sample_data sample; 6924 int ret; 6925 6926 struct { 6927 struct perf_event_header header; 6928 u64 time; 6929 u64 id; 6930 u64 stream_id; 6931 } throttle_event = { 6932 .header = { 6933 .type = PERF_RECORD_THROTTLE, 6934 .misc = 0, 6935 .size = sizeof(throttle_event), 6936 }, 6937 .time = perf_event_clock(event), 6938 .id = primary_event_id(event), 6939 .stream_id = event->id, 6940 }; 6941 6942 if (enable) 6943 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6944 6945 perf_event_header__init_id(&throttle_event.header, &sample, event); 6946 6947 ret = perf_output_begin(&handle, event, 6948 throttle_event.header.size); 6949 if (ret) 6950 return; 6951 6952 perf_output_put(&handle, throttle_event); 6953 perf_event__output_id_sample(event, &handle, &sample); 6954 perf_output_end(&handle); 6955 } 6956 6957 static void perf_log_itrace_start(struct perf_event *event) 6958 { 6959 struct perf_output_handle handle; 6960 struct perf_sample_data sample; 6961 struct perf_aux_event { 6962 struct perf_event_header header; 6963 u32 pid; 6964 u32 tid; 6965 } rec; 6966 int ret; 6967 6968 if (event->parent) 6969 event = event->parent; 6970 6971 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6972 event->hw.itrace_started) 6973 return; 6974 6975 rec.header.type = PERF_RECORD_ITRACE_START; 6976 rec.header.misc = 0; 6977 rec.header.size = sizeof(rec); 6978 rec.pid = perf_event_pid(event, current); 6979 rec.tid = perf_event_tid(event, current); 6980 6981 perf_event_header__init_id(&rec.header, &sample, event); 6982 ret = perf_output_begin(&handle, event, rec.header.size); 6983 6984 if (ret) 6985 return; 6986 6987 perf_output_put(&handle, rec); 6988 perf_event__output_id_sample(event, &handle, &sample); 6989 6990 perf_output_end(&handle); 6991 } 6992 6993 /* 6994 * Generic event overflow handling, sampling. 6995 */ 6996 6997 static int __perf_event_overflow(struct perf_event *event, 6998 int throttle, struct perf_sample_data *data, 6999 struct pt_regs *regs) 7000 { 7001 int events = atomic_read(&event->event_limit); 7002 struct hw_perf_event *hwc = &event->hw; 7003 u64 seq; 7004 int ret = 0; 7005 7006 /* 7007 * Non-sampling counters might still use the PMI to fold short 7008 * hardware counters, ignore those. 7009 */ 7010 if (unlikely(!is_sampling_event(event))) 7011 return 0; 7012 7013 seq = __this_cpu_read(perf_throttled_seq); 7014 if (seq != hwc->interrupts_seq) { 7015 hwc->interrupts_seq = seq; 7016 hwc->interrupts = 1; 7017 } else { 7018 hwc->interrupts++; 7019 if (unlikely(throttle 7020 && hwc->interrupts >= max_samples_per_tick)) { 7021 __this_cpu_inc(perf_throttled_count); 7022 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7023 hwc->interrupts = MAX_INTERRUPTS; 7024 perf_log_throttle(event, 0); 7025 ret = 1; 7026 } 7027 } 7028 7029 if (event->attr.freq) { 7030 u64 now = perf_clock(); 7031 s64 delta = now - hwc->freq_time_stamp; 7032 7033 hwc->freq_time_stamp = now; 7034 7035 if (delta > 0 && delta < 2*TICK_NSEC) 7036 perf_adjust_period(event, delta, hwc->last_period, true); 7037 } 7038 7039 /* 7040 * XXX event_limit might not quite work as expected on inherited 7041 * events 7042 */ 7043 7044 event->pending_kill = POLL_IN; 7045 if (events && atomic_dec_and_test(&event->event_limit)) { 7046 ret = 1; 7047 event->pending_kill = POLL_HUP; 7048 event->pending_disable = 1; 7049 irq_work_queue(&event->pending); 7050 } 7051 7052 event->overflow_handler(event, data, regs); 7053 7054 if (*perf_event_fasync(event) && event->pending_kill) { 7055 event->pending_wakeup = 1; 7056 irq_work_queue(&event->pending); 7057 } 7058 7059 return ret; 7060 } 7061 7062 int perf_event_overflow(struct perf_event *event, 7063 struct perf_sample_data *data, 7064 struct pt_regs *regs) 7065 { 7066 return __perf_event_overflow(event, 1, data, regs); 7067 } 7068 7069 /* 7070 * Generic software event infrastructure 7071 */ 7072 7073 struct swevent_htable { 7074 struct swevent_hlist *swevent_hlist; 7075 struct mutex hlist_mutex; 7076 int hlist_refcount; 7077 7078 /* Recursion avoidance in each contexts */ 7079 int recursion[PERF_NR_CONTEXTS]; 7080 }; 7081 7082 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7083 7084 /* 7085 * We directly increment event->count and keep a second value in 7086 * event->hw.period_left to count intervals. This period event 7087 * is kept in the range [-sample_period, 0] so that we can use the 7088 * sign as trigger. 7089 */ 7090 7091 u64 perf_swevent_set_period(struct perf_event *event) 7092 { 7093 struct hw_perf_event *hwc = &event->hw; 7094 u64 period = hwc->last_period; 7095 u64 nr, offset; 7096 s64 old, val; 7097 7098 hwc->last_period = hwc->sample_period; 7099 7100 again: 7101 old = val = local64_read(&hwc->period_left); 7102 if (val < 0) 7103 return 0; 7104 7105 nr = div64_u64(period + val, period); 7106 offset = nr * period; 7107 val -= offset; 7108 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7109 goto again; 7110 7111 return nr; 7112 } 7113 7114 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7115 struct perf_sample_data *data, 7116 struct pt_regs *regs) 7117 { 7118 struct hw_perf_event *hwc = &event->hw; 7119 int throttle = 0; 7120 7121 if (!overflow) 7122 overflow = perf_swevent_set_period(event); 7123 7124 if (hwc->interrupts == MAX_INTERRUPTS) 7125 return; 7126 7127 for (; overflow; overflow--) { 7128 if (__perf_event_overflow(event, throttle, 7129 data, regs)) { 7130 /* 7131 * We inhibit the overflow from happening when 7132 * hwc->interrupts == MAX_INTERRUPTS. 7133 */ 7134 break; 7135 } 7136 throttle = 1; 7137 } 7138 } 7139 7140 static void perf_swevent_event(struct perf_event *event, u64 nr, 7141 struct perf_sample_data *data, 7142 struct pt_regs *regs) 7143 { 7144 struct hw_perf_event *hwc = &event->hw; 7145 7146 local64_add(nr, &event->count); 7147 7148 if (!regs) 7149 return; 7150 7151 if (!is_sampling_event(event)) 7152 return; 7153 7154 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7155 data->period = nr; 7156 return perf_swevent_overflow(event, 1, data, regs); 7157 } else 7158 data->period = event->hw.last_period; 7159 7160 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7161 return perf_swevent_overflow(event, 1, data, regs); 7162 7163 if (local64_add_negative(nr, &hwc->period_left)) 7164 return; 7165 7166 perf_swevent_overflow(event, 0, data, regs); 7167 } 7168 7169 static int perf_exclude_event(struct perf_event *event, 7170 struct pt_regs *regs) 7171 { 7172 if (event->hw.state & PERF_HES_STOPPED) 7173 return 1; 7174 7175 if (regs) { 7176 if (event->attr.exclude_user && user_mode(regs)) 7177 return 1; 7178 7179 if (event->attr.exclude_kernel && !user_mode(regs)) 7180 return 1; 7181 } 7182 7183 return 0; 7184 } 7185 7186 static int perf_swevent_match(struct perf_event *event, 7187 enum perf_type_id type, 7188 u32 event_id, 7189 struct perf_sample_data *data, 7190 struct pt_regs *regs) 7191 { 7192 if (event->attr.type != type) 7193 return 0; 7194 7195 if (event->attr.config != event_id) 7196 return 0; 7197 7198 if (perf_exclude_event(event, regs)) 7199 return 0; 7200 7201 return 1; 7202 } 7203 7204 static inline u64 swevent_hash(u64 type, u32 event_id) 7205 { 7206 u64 val = event_id | (type << 32); 7207 7208 return hash_64(val, SWEVENT_HLIST_BITS); 7209 } 7210 7211 static inline struct hlist_head * 7212 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7213 { 7214 u64 hash = swevent_hash(type, event_id); 7215 7216 return &hlist->heads[hash]; 7217 } 7218 7219 /* For the read side: events when they trigger */ 7220 static inline struct hlist_head * 7221 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7222 { 7223 struct swevent_hlist *hlist; 7224 7225 hlist = rcu_dereference(swhash->swevent_hlist); 7226 if (!hlist) 7227 return NULL; 7228 7229 return __find_swevent_head(hlist, type, event_id); 7230 } 7231 7232 /* For the event head insertion and removal in the hlist */ 7233 static inline struct hlist_head * 7234 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7235 { 7236 struct swevent_hlist *hlist; 7237 u32 event_id = event->attr.config; 7238 u64 type = event->attr.type; 7239 7240 /* 7241 * Event scheduling is always serialized against hlist allocation 7242 * and release. Which makes the protected version suitable here. 7243 * The context lock guarantees that. 7244 */ 7245 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7246 lockdep_is_held(&event->ctx->lock)); 7247 if (!hlist) 7248 return NULL; 7249 7250 return __find_swevent_head(hlist, type, event_id); 7251 } 7252 7253 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7254 u64 nr, 7255 struct perf_sample_data *data, 7256 struct pt_regs *regs) 7257 { 7258 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7259 struct perf_event *event; 7260 struct hlist_head *head; 7261 7262 rcu_read_lock(); 7263 head = find_swevent_head_rcu(swhash, type, event_id); 7264 if (!head) 7265 goto end; 7266 7267 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7268 if (perf_swevent_match(event, type, event_id, data, regs)) 7269 perf_swevent_event(event, nr, data, regs); 7270 } 7271 end: 7272 rcu_read_unlock(); 7273 } 7274 7275 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7276 7277 int perf_swevent_get_recursion_context(void) 7278 { 7279 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7280 7281 return get_recursion_context(swhash->recursion); 7282 } 7283 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7284 7285 void perf_swevent_put_recursion_context(int rctx) 7286 { 7287 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7288 7289 put_recursion_context(swhash->recursion, rctx); 7290 } 7291 7292 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7293 { 7294 struct perf_sample_data data; 7295 7296 if (WARN_ON_ONCE(!regs)) 7297 return; 7298 7299 perf_sample_data_init(&data, addr, 0); 7300 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7301 } 7302 7303 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7304 { 7305 int rctx; 7306 7307 preempt_disable_notrace(); 7308 rctx = perf_swevent_get_recursion_context(); 7309 if (unlikely(rctx < 0)) 7310 goto fail; 7311 7312 ___perf_sw_event(event_id, nr, regs, addr); 7313 7314 perf_swevent_put_recursion_context(rctx); 7315 fail: 7316 preempt_enable_notrace(); 7317 } 7318 7319 static void perf_swevent_read(struct perf_event *event) 7320 { 7321 } 7322 7323 static int perf_swevent_add(struct perf_event *event, int flags) 7324 { 7325 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7326 struct hw_perf_event *hwc = &event->hw; 7327 struct hlist_head *head; 7328 7329 if (is_sampling_event(event)) { 7330 hwc->last_period = hwc->sample_period; 7331 perf_swevent_set_period(event); 7332 } 7333 7334 hwc->state = !(flags & PERF_EF_START); 7335 7336 head = find_swevent_head(swhash, event); 7337 if (WARN_ON_ONCE(!head)) 7338 return -EINVAL; 7339 7340 hlist_add_head_rcu(&event->hlist_entry, head); 7341 perf_event_update_userpage(event); 7342 7343 return 0; 7344 } 7345 7346 static void perf_swevent_del(struct perf_event *event, int flags) 7347 { 7348 hlist_del_rcu(&event->hlist_entry); 7349 } 7350 7351 static void perf_swevent_start(struct perf_event *event, int flags) 7352 { 7353 event->hw.state = 0; 7354 } 7355 7356 static void perf_swevent_stop(struct perf_event *event, int flags) 7357 { 7358 event->hw.state = PERF_HES_STOPPED; 7359 } 7360 7361 /* Deref the hlist from the update side */ 7362 static inline struct swevent_hlist * 7363 swevent_hlist_deref(struct swevent_htable *swhash) 7364 { 7365 return rcu_dereference_protected(swhash->swevent_hlist, 7366 lockdep_is_held(&swhash->hlist_mutex)); 7367 } 7368 7369 static void swevent_hlist_release(struct swevent_htable *swhash) 7370 { 7371 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7372 7373 if (!hlist) 7374 return; 7375 7376 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7377 kfree_rcu(hlist, rcu_head); 7378 } 7379 7380 static void swevent_hlist_put_cpu(int cpu) 7381 { 7382 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7383 7384 mutex_lock(&swhash->hlist_mutex); 7385 7386 if (!--swhash->hlist_refcount) 7387 swevent_hlist_release(swhash); 7388 7389 mutex_unlock(&swhash->hlist_mutex); 7390 } 7391 7392 static void swevent_hlist_put(void) 7393 { 7394 int cpu; 7395 7396 for_each_possible_cpu(cpu) 7397 swevent_hlist_put_cpu(cpu); 7398 } 7399 7400 static int swevent_hlist_get_cpu(int cpu) 7401 { 7402 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7403 int err = 0; 7404 7405 mutex_lock(&swhash->hlist_mutex); 7406 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7407 struct swevent_hlist *hlist; 7408 7409 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7410 if (!hlist) { 7411 err = -ENOMEM; 7412 goto exit; 7413 } 7414 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7415 } 7416 swhash->hlist_refcount++; 7417 exit: 7418 mutex_unlock(&swhash->hlist_mutex); 7419 7420 return err; 7421 } 7422 7423 static int swevent_hlist_get(void) 7424 { 7425 int err, cpu, failed_cpu; 7426 7427 get_online_cpus(); 7428 for_each_possible_cpu(cpu) { 7429 err = swevent_hlist_get_cpu(cpu); 7430 if (err) { 7431 failed_cpu = cpu; 7432 goto fail; 7433 } 7434 } 7435 put_online_cpus(); 7436 7437 return 0; 7438 fail: 7439 for_each_possible_cpu(cpu) { 7440 if (cpu == failed_cpu) 7441 break; 7442 swevent_hlist_put_cpu(cpu); 7443 } 7444 7445 put_online_cpus(); 7446 return err; 7447 } 7448 7449 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7450 7451 static void sw_perf_event_destroy(struct perf_event *event) 7452 { 7453 u64 event_id = event->attr.config; 7454 7455 WARN_ON(event->parent); 7456 7457 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7458 swevent_hlist_put(); 7459 } 7460 7461 static int perf_swevent_init(struct perf_event *event) 7462 { 7463 u64 event_id = event->attr.config; 7464 7465 if (event->attr.type != PERF_TYPE_SOFTWARE) 7466 return -ENOENT; 7467 7468 /* 7469 * no branch sampling for software events 7470 */ 7471 if (has_branch_stack(event)) 7472 return -EOPNOTSUPP; 7473 7474 switch (event_id) { 7475 case PERF_COUNT_SW_CPU_CLOCK: 7476 case PERF_COUNT_SW_TASK_CLOCK: 7477 return -ENOENT; 7478 7479 default: 7480 break; 7481 } 7482 7483 if (event_id >= PERF_COUNT_SW_MAX) 7484 return -ENOENT; 7485 7486 if (!event->parent) { 7487 int err; 7488 7489 err = swevent_hlist_get(); 7490 if (err) 7491 return err; 7492 7493 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7494 event->destroy = sw_perf_event_destroy; 7495 } 7496 7497 return 0; 7498 } 7499 7500 static struct pmu perf_swevent = { 7501 .task_ctx_nr = perf_sw_context, 7502 7503 .capabilities = PERF_PMU_CAP_NO_NMI, 7504 7505 .event_init = perf_swevent_init, 7506 .add = perf_swevent_add, 7507 .del = perf_swevent_del, 7508 .start = perf_swevent_start, 7509 .stop = perf_swevent_stop, 7510 .read = perf_swevent_read, 7511 }; 7512 7513 #ifdef CONFIG_EVENT_TRACING 7514 7515 static int perf_tp_filter_match(struct perf_event *event, 7516 struct perf_sample_data *data) 7517 { 7518 void *record = data->raw->frag.data; 7519 7520 /* only top level events have filters set */ 7521 if (event->parent) 7522 event = event->parent; 7523 7524 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7525 return 1; 7526 return 0; 7527 } 7528 7529 static int perf_tp_event_match(struct perf_event *event, 7530 struct perf_sample_data *data, 7531 struct pt_regs *regs) 7532 { 7533 if (event->hw.state & PERF_HES_STOPPED) 7534 return 0; 7535 /* 7536 * All tracepoints are from kernel-space. 7537 */ 7538 if (event->attr.exclude_kernel) 7539 return 0; 7540 7541 if (!perf_tp_filter_match(event, data)) 7542 return 0; 7543 7544 return 1; 7545 } 7546 7547 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7548 struct trace_event_call *call, u64 count, 7549 struct pt_regs *regs, struct hlist_head *head, 7550 struct task_struct *task) 7551 { 7552 struct bpf_prog *prog = call->prog; 7553 7554 if (prog) { 7555 *(struct pt_regs **)raw_data = regs; 7556 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7557 perf_swevent_put_recursion_context(rctx); 7558 return; 7559 } 7560 } 7561 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7562 rctx, task); 7563 } 7564 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7565 7566 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7567 struct pt_regs *regs, struct hlist_head *head, int rctx, 7568 struct task_struct *task) 7569 { 7570 struct perf_sample_data data; 7571 struct perf_event *event; 7572 7573 struct perf_raw_record raw = { 7574 .frag = { 7575 .size = entry_size, 7576 .data = record, 7577 }, 7578 }; 7579 7580 perf_sample_data_init(&data, 0, 0); 7581 data.raw = &raw; 7582 7583 perf_trace_buf_update(record, event_type); 7584 7585 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7586 if (perf_tp_event_match(event, &data, regs)) 7587 perf_swevent_event(event, count, &data, regs); 7588 } 7589 7590 /* 7591 * If we got specified a target task, also iterate its context and 7592 * deliver this event there too. 7593 */ 7594 if (task && task != current) { 7595 struct perf_event_context *ctx; 7596 struct trace_entry *entry = record; 7597 7598 rcu_read_lock(); 7599 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7600 if (!ctx) 7601 goto unlock; 7602 7603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7604 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7605 continue; 7606 if (event->attr.config != entry->type) 7607 continue; 7608 if (perf_tp_event_match(event, &data, regs)) 7609 perf_swevent_event(event, count, &data, regs); 7610 } 7611 unlock: 7612 rcu_read_unlock(); 7613 } 7614 7615 perf_swevent_put_recursion_context(rctx); 7616 } 7617 EXPORT_SYMBOL_GPL(perf_tp_event); 7618 7619 static void tp_perf_event_destroy(struct perf_event *event) 7620 { 7621 perf_trace_destroy(event); 7622 } 7623 7624 static int perf_tp_event_init(struct perf_event *event) 7625 { 7626 int err; 7627 7628 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7629 return -ENOENT; 7630 7631 /* 7632 * no branch sampling for tracepoint events 7633 */ 7634 if (has_branch_stack(event)) 7635 return -EOPNOTSUPP; 7636 7637 err = perf_trace_init(event); 7638 if (err) 7639 return err; 7640 7641 event->destroy = tp_perf_event_destroy; 7642 7643 return 0; 7644 } 7645 7646 static struct pmu perf_tracepoint = { 7647 .task_ctx_nr = perf_sw_context, 7648 7649 .event_init = perf_tp_event_init, 7650 .add = perf_trace_add, 7651 .del = perf_trace_del, 7652 .start = perf_swevent_start, 7653 .stop = perf_swevent_stop, 7654 .read = perf_swevent_read, 7655 }; 7656 7657 static inline void perf_tp_register(void) 7658 { 7659 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7660 } 7661 7662 static void perf_event_free_filter(struct perf_event *event) 7663 { 7664 ftrace_profile_free_filter(event); 7665 } 7666 7667 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7668 { 7669 bool is_kprobe, is_tracepoint; 7670 struct bpf_prog *prog; 7671 7672 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7673 return -EINVAL; 7674 7675 if (event->tp_event->prog) 7676 return -EEXIST; 7677 7678 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7679 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7680 if (!is_kprobe && !is_tracepoint) 7681 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7682 return -EINVAL; 7683 7684 prog = bpf_prog_get(prog_fd); 7685 if (IS_ERR(prog)) 7686 return PTR_ERR(prog); 7687 7688 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7689 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7690 /* valid fd, but invalid bpf program type */ 7691 bpf_prog_put(prog); 7692 return -EINVAL; 7693 } 7694 7695 if (is_tracepoint) { 7696 int off = trace_event_get_offsets(event->tp_event); 7697 7698 if (prog->aux->max_ctx_offset > off) { 7699 bpf_prog_put(prog); 7700 return -EACCES; 7701 } 7702 } 7703 event->tp_event->prog = prog; 7704 7705 return 0; 7706 } 7707 7708 static void perf_event_free_bpf_prog(struct perf_event *event) 7709 { 7710 struct bpf_prog *prog; 7711 7712 if (!event->tp_event) 7713 return; 7714 7715 prog = event->tp_event->prog; 7716 if (prog) { 7717 event->tp_event->prog = NULL; 7718 bpf_prog_put(prog); 7719 } 7720 } 7721 7722 #else 7723 7724 static inline void perf_tp_register(void) 7725 { 7726 } 7727 7728 static void perf_event_free_filter(struct perf_event *event) 7729 { 7730 } 7731 7732 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7733 { 7734 return -ENOENT; 7735 } 7736 7737 static void perf_event_free_bpf_prog(struct perf_event *event) 7738 { 7739 } 7740 #endif /* CONFIG_EVENT_TRACING */ 7741 7742 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7743 void perf_bp_event(struct perf_event *bp, void *data) 7744 { 7745 struct perf_sample_data sample; 7746 struct pt_regs *regs = data; 7747 7748 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7749 7750 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7751 perf_swevent_event(bp, 1, &sample, regs); 7752 } 7753 #endif 7754 7755 /* 7756 * Allocate a new address filter 7757 */ 7758 static struct perf_addr_filter * 7759 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7760 { 7761 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7762 struct perf_addr_filter *filter; 7763 7764 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7765 if (!filter) 7766 return NULL; 7767 7768 INIT_LIST_HEAD(&filter->entry); 7769 list_add_tail(&filter->entry, filters); 7770 7771 return filter; 7772 } 7773 7774 static void free_filters_list(struct list_head *filters) 7775 { 7776 struct perf_addr_filter *filter, *iter; 7777 7778 list_for_each_entry_safe(filter, iter, filters, entry) { 7779 if (filter->inode) 7780 iput(filter->inode); 7781 list_del(&filter->entry); 7782 kfree(filter); 7783 } 7784 } 7785 7786 /* 7787 * Free existing address filters and optionally install new ones 7788 */ 7789 static void perf_addr_filters_splice(struct perf_event *event, 7790 struct list_head *head) 7791 { 7792 unsigned long flags; 7793 LIST_HEAD(list); 7794 7795 if (!has_addr_filter(event)) 7796 return; 7797 7798 /* don't bother with children, they don't have their own filters */ 7799 if (event->parent) 7800 return; 7801 7802 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7803 7804 list_splice_init(&event->addr_filters.list, &list); 7805 if (head) 7806 list_splice(head, &event->addr_filters.list); 7807 7808 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7809 7810 free_filters_list(&list); 7811 } 7812 7813 /* 7814 * Scan through mm's vmas and see if one of them matches the 7815 * @filter; if so, adjust filter's address range. 7816 * Called with mm::mmap_sem down for reading. 7817 */ 7818 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7819 struct mm_struct *mm) 7820 { 7821 struct vm_area_struct *vma; 7822 7823 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7824 struct file *file = vma->vm_file; 7825 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7826 unsigned long vma_size = vma->vm_end - vma->vm_start; 7827 7828 if (!file) 7829 continue; 7830 7831 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7832 continue; 7833 7834 return vma->vm_start; 7835 } 7836 7837 return 0; 7838 } 7839 7840 /* 7841 * Update event's address range filters based on the 7842 * task's existing mappings, if any. 7843 */ 7844 static void perf_event_addr_filters_apply(struct perf_event *event) 7845 { 7846 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7847 struct task_struct *task = READ_ONCE(event->ctx->task); 7848 struct perf_addr_filter *filter; 7849 struct mm_struct *mm = NULL; 7850 unsigned int count = 0; 7851 unsigned long flags; 7852 7853 /* 7854 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7855 * will stop on the parent's child_mutex that our caller is also holding 7856 */ 7857 if (task == TASK_TOMBSTONE) 7858 return; 7859 7860 mm = get_task_mm(event->ctx->task); 7861 if (!mm) 7862 goto restart; 7863 7864 down_read(&mm->mmap_sem); 7865 7866 raw_spin_lock_irqsave(&ifh->lock, flags); 7867 list_for_each_entry(filter, &ifh->list, entry) { 7868 event->addr_filters_offs[count] = 0; 7869 7870 /* 7871 * Adjust base offset if the filter is associated to a binary 7872 * that needs to be mapped: 7873 */ 7874 if (filter->inode) 7875 event->addr_filters_offs[count] = 7876 perf_addr_filter_apply(filter, mm); 7877 7878 count++; 7879 } 7880 7881 event->addr_filters_gen++; 7882 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7883 7884 up_read(&mm->mmap_sem); 7885 7886 mmput(mm); 7887 7888 restart: 7889 perf_event_stop(event, 1); 7890 } 7891 7892 /* 7893 * Address range filtering: limiting the data to certain 7894 * instruction address ranges. Filters are ioctl()ed to us from 7895 * userspace as ascii strings. 7896 * 7897 * Filter string format: 7898 * 7899 * ACTION RANGE_SPEC 7900 * where ACTION is one of the 7901 * * "filter": limit the trace to this region 7902 * * "start": start tracing from this address 7903 * * "stop": stop tracing at this address/region; 7904 * RANGE_SPEC is 7905 * * for kernel addresses: <start address>[/<size>] 7906 * * for object files: <start address>[/<size>]@</path/to/object/file> 7907 * 7908 * if <size> is not specified, the range is treated as a single address. 7909 */ 7910 enum { 7911 IF_ACT_FILTER, 7912 IF_ACT_START, 7913 IF_ACT_STOP, 7914 IF_SRC_FILE, 7915 IF_SRC_KERNEL, 7916 IF_SRC_FILEADDR, 7917 IF_SRC_KERNELADDR, 7918 }; 7919 7920 enum { 7921 IF_STATE_ACTION = 0, 7922 IF_STATE_SOURCE, 7923 IF_STATE_END, 7924 }; 7925 7926 static const match_table_t if_tokens = { 7927 { IF_ACT_FILTER, "filter" }, 7928 { IF_ACT_START, "start" }, 7929 { IF_ACT_STOP, "stop" }, 7930 { IF_SRC_FILE, "%u/%u@%s" }, 7931 { IF_SRC_KERNEL, "%u/%u" }, 7932 { IF_SRC_FILEADDR, "%u@%s" }, 7933 { IF_SRC_KERNELADDR, "%u" }, 7934 }; 7935 7936 /* 7937 * Address filter string parser 7938 */ 7939 static int 7940 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7941 struct list_head *filters) 7942 { 7943 struct perf_addr_filter *filter = NULL; 7944 char *start, *orig, *filename = NULL; 7945 struct path path; 7946 substring_t args[MAX_OPT_ARGS]; 7947 int state = IF_STATE_ACTION, token; 7948 unsigned int kernel = 0; 7949 int ret = -EINVAL; 7950 7951 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7952 if (!fstr) 7953 return -ENOMEM; 7954 7955 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7956 ret = -EINVAL; 7957 7958 if (!*start) 7959 continue; 7960 7961 /* filter definition begins */ 7962 if (state == IF_STATE_ACTION) { 7963 filter = perf_addr_filter_new(event, filters); 7964 if (!filter) 7965 goto fail; 7966 } 7967 7968 token = match_token(start, if_tokens, args); 7969 switch (token) { 7970 case IF_ACT_FILTER: 7971 case IF_ACT_START: 7972 filter->filter = 1; 7973 7974 case IF_ACT_STOP: 7975 if (state != IF_STATE_ACTION) 7976 goto fail; 7977 7978 state = IF_STATE_SOURCE; 7979 break; 7980 7981 case IF_SRC_KERNELADDR: 7982 case IF_SRC_KERNEL: 7983 kernel = 1; 7984 7985 case IF_SRC_FILEADDR: 7986 case IF_SRC_FILE: 7987 if (state != IF_STATE_SOURCE) 7988 goto fail; 7989 7990 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7991 filter->range = 1; 7992 7993 *args[0].to = 0; 7994 ret = kstrtoul(args[0].from, 0, &filter->offset); 7995 if (ret) 7996 goto fail; 7997 7998 if (filter->range) { 7999 *args[1].to = 0; 8000 ret = kstrtoul(args[1].from, 0, &filter->size); 8001 if (ret) 8002 goto fail; 8003 } 8004 8005 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8006 int fpos = filter->range ? 2 : 1; 8007 8008 filename = match_strdup(&args[fpos]); 8009 if (!filename) { 8010 ret = -ENOMEM; 8011 goto fail; 8012 } 8013 } 8014 8015 state = IF_STATE_END; 8016 break; 8017 8018 default: 8019 goto fail; 8020 } 8021 8022 /* 8023 * Filter definition is fully parsed, validate and install it. 8024 * Make sure that it doesn't contradict itself or the event's 8025 * attribute. 8026 */ 8027 if (state == IF_STATE_END) { 8028 if (kernel && event->attr.exclude_kernel) 8029 goto fail; 8030 8031 if (!kernel) { 8032 if (!filename) 8033 goto fail; 8034 8035 /* look up the path and grab its inode */ 8036 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8037 if (ret) 8038 goto fail_free_name; 8039 8040 filter->inode = igrab(d_inode(path.dentry)); 8041 path_put(&path); 8042 kfree(filename); 8043 filename = NULL; 8044 8045 ret = -EINVAL; 8046 if (!filter->inode || 8047 !S_ISREG(filter->inode->i_mode)) 8048 /* free_filters_list() will iput() */ 8049 goto fail; 8050 } 8051 8052 /* ready to consume more filters */ 8053 state = IF_STATE_ACTION; 8054 filter = NULL; 8055 } 8056 } 8057 8058 if (state != IF_STATE_ACTION) 8059 goto fail; 8060 8061 kfree(orig); 8062 8063 return 0; 8064 8065 fail_free_name: 8066 kfree(filename); 8067 fail: 8068 free_filters_list(filters); 8069 kfree(orig); 8070 8071 return ret; 8072 } 8073 8074 static int 8075 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8076 { 8077 LIST_HEAD(filters); 8078 int ret; 8079 8080 /* 8081 * Since this is called in perf_ioctl() path, we're already holding 8082 * ctx::mutex. 8083 */ 8084 lockdep_assert_held(&event->ctx->mutex); 8085 8086 if (WARN_ON_ONCE(event->parent)) 8087 return -EINVAL; 8088 8089 /* 8090 * For now, we only support filtering in per-task events; doing so 8091 * for CPU-wide events requires additional context switching trickery, 8092 * since same object code will be mapped at different virtual 8093 * addresses in different processes. 8094 */ 8095 if (!event->ctx->task) 8096 return -EOPNOTSUPP; 8097 8098 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8099 if (ret) 8100 return ret; 8101 8102 ret = event->pmu->addr_filters_validate(&filters); 8103 if (ret) { 8104 free_filters_list(&filters); 8105 return ret; 8106 } 8107 8108 /* remove existing filters, if any */ 8109 perf_addr_filters_splice(event, &filters); 8110 8111 /* install new filters */ 8112 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8113 8114 return ret; 8115 } 8116 8117 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8118 { 8119 char *filter_str; 8120 int ret = -EINVAL; 8121 8122 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8123 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8124 !has_addr_filter(event)) 8125 return -EINVAL; 8126 8127 filter_str = strndup_user(arg, PAGE_SIZE); 8128 if (IS_ERR(filter_str)) 8129 return PTR_ERR(filter_str); 8130 8131 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8132 event->attr.type == PERF_TYPE_TRACEPOINT) 8133 ret = ftrace_profile_set_filter(event, event->attr.config, 8134 filter_str); 8135 else if (has_addr_filter(event)) 8136 ret = perf_event_set_addr_filter(event, filter_str); 8137 8138 kfree(filter_str); 8139 return ret; 8140 } 8141 8142 /* 8143 * hrtimer based swevent callback 8144 */ 8145 8146 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8147 { 8148 enum hrtimer_restart ret = HRTIMER_RESTART; 8149 struct perf_sample_data data; 8150 struct pt_regs *regs; 8151 struct perf_event *event; 8152 u64 period; 8153 8154 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8155 8156 if (event->state != PERF_EVENT_STATE_ACTIVE) 8157 return HRTIMER_NORESTART; 8158 8159 event->pmu->read(event); 8160 8161 perf_sample_data_init(&data, 0, event->hw.last_period); 8162 regs = get_irq_regs(); 8163 8164 if (regs && !perf_exclude_event(event, regs)) { 8165 if (!(event->attr.exclude_idle && is_idle_task(current))) 8166 if (__perf_event_overflow(event, 1, &data, regs)) 8167 ret = HRTIMER_NORESTART; 8168 } 8169 8170 period = max_t(u64, 10000, event->hw.sample_period); 8171 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8172 8173 return ret; 8174 } 8175 8176 static void perf_swevent_start_hrtimer(struct perf_event *event) 8177 { 8178 struct hw_perf_event *hwc = &event->hw; 8179 s64 period; 8180 8181 if (!is_sampling_event(event)) 8182 return; 8183 8184 period = local64_read(&hwc->period_left); 8185 if (period) { 8186 if (period < 0) 8187 period = 10000; 8188 8189 local64_set(&hwc->period_left, 0); 8190 } else { 8191 period = max_t(u64, 10000, hwc->sample_period); 8192 } 8193 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8194 HRTIMER_MODE_REL_PINNED); 8195 } 8196 8197 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8198 { 8199 struct hw_perf_event *hwc = &event->hw; 8200 8201 if (is_sampling_event(event)) { 8202 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8203 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8204 8205 hrtimer_cancel(&hwc->hrtimer); 8206 } 8207 } 8208 8209 static void perf_swevent_init_hrtimer(struct perf_event *event) 8210 { 8211 struct hw_perf_event *hwc = &event->hw; 8212 8213 if (!is_sampling_event(event)) 8214 return; 8215 8216 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8217 hwc->hrtimer.function = perf_swevent_hrtimer; 8218 8219 /* 8220 * Since hrtimers have a fixed rate, we can do a static freq->period 8221 * mapping and avoid the whole period adjust feedback stuff. 8222 */ 8223 if (event->attr.freq) { 8224 long freq = event->attr.sample_freq; 8225 8226 event->attr.sample_period = NSEC_PER_SEC / freq; 8227 hwc->sample_period = event->attr.sample_period; 8228 local64_set(&hwc->period_left, hwc->sample_period); 8229 hwc->last_period = hwc->sample_period; 8230 event->attr.freq = 0; 8231 } 8232 } 8233 8234 /* 8235 * Software event: cpu wall time clock 8236 */ 8237 8238 static void cpu_clock_event_update(struct perf_event *event) 8239 { 8240 s64 prev; 8241 u64 now; 8242 8243 now = local_clock(); 8244 prev = local64_xchg(&event->hw.prev_count, now); 8245 local64_add(now - prev, &event->count); 8246 } 8247 8248 static void cpu_clock_event_start(struct perf_event *event, int flags) 8249 { 8250 local64_set(&event->hw.prev_count, local_clock()); 8251 perf_swevent_start_hrtimer(event); 8252 } 8253 8254 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8255 { 8256 perf_swevent_cancel_hrtimer(event); 8257 cpu_clock_event_update(event); 8258 } 8259 8260 static int cpu_clock_event_add(struct perf_event *event, int flags) 8261 { 8262 if (flags & PERF_EF_START) 8263 cpu_clock_event_start(event, flags); 8264 perf_event_update_userpage(event); 8265 8266 return 0; 8267 } 8268 8269 static void cpu_clock_event_del(struct perf_event *event, int flags) 8270 { 8271 cpu_clock_event_stop(event, flags); 8272 } 8273 8274 static void cpu_clock_event_read(struct perf_event *event) 8275 { 8276 cpu_clock_event_update(event); 8277 } 8278 8279 static int cpu_clock_event_init(struct perf_event *event) 8280 { 8281 if (event->attr.type != PERF_TYPE_SOFTWARE) 8282 return -ENOENT; 8283 8284 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8285 return -ENOENT; 8286 8287 /* 8288 * no branch sampling for software events 8289 */ 8290 if (has_branch_stack(event)) 8291 return -EOPNOTSUPP; 8292 8293 perf_swevent_init_hrtimer(event); 8294 8295 return 0; 8296 } 8297 8298 static struct pmu perf_cpu_clock = { 8299 .task_ctx_nr = perf_sw_context, 8300 8301 .capabilities = PERF_PMU_CAP_NO_NMI, 8302 8303 .event_init = cpu_clock_event_init, 8304 .add = cpu_clock_event_add, 8305 .del = cpu_clock_event_del, 8306 .start = cpu_clock_event_start, 8307 .stop = cpu_clock_event_stop, 8308 .read = cpu_clock_event_read, 8309 }; 8310 8311 /* 8312 * Software event: task time clock 8313 */ 8314 8315 static void task_clock_event_update(struct perf_event *event, u64 now) 8316 { 8317 u64 prev; 8318 s64 delta; 8319 8320 prev = local64_xchg(&event->hw.prev_count, now); 8321 delta = now - prev; 8322 local64_add(delta, &event->count); 8323 } 8324 8325 static void task_clock_event_start(struct perf_event *event, int flags) 8326 { 8327 local64_set(&event->hw.prev_count, event->ctx->time); 8328 perf_swevent_start_hrtimer(event); 8329 } 8330 8331 static void task_clock_event_stop(struct perf_event *event, int flags) 8332 { 8333 perf_swevent_cancel_hrtimer(event); 8334 task_clock_event_update(event, event->ctx->time); 8335 } 8336 8337 static int task_clock_event_add(struct perf_event *event, int flags) 8338 { 8339 if (flags & PERF_EF_START) 8340 task_clock_event_start(event, flags); 8341 perf_event_update_userpage(event); 8342 8343 return 0; 8344 } 8345 8346 static void task_clock_event_del(struct perf_event *event, int flags) 8347 { 8348 task_clock_event_stop(event, PERF_EF_UPDATE); 8349 } 8350 8351 static void task_clock_event_read(struct perf_event *event) 8352 { 8353 u64 now = perf_clock(); 8354 u64 delta = now - event->ctx->timestamp; 8355 u64 time = event->ctx->time + delta; 8356 8357 task_clock_event_update(event, time); 8358 } 8359 8360 static int task_clock_event_init(struct perf_event *event) 8361 { 8362 if (event->attr.type != PERF_TYPE_SOFTWARE) 8363 return -ENOENT; 8364 8365 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8366 return -ENOENT; 8367 8368 /* 8369 * no branch sampling for software events 8370 */ 8371 if (has_branch_stack(event)) 8372 return -EOPNOTSUPP; 8373 8374 perf_swevent_init_hrtimer(event); 8375 8376 return 0; 8377 } 8378 8379 static struct pmu perf_task_clock = { 8380 .task_ctx_nr = perf_sw_context, 8381 8382 .capabilities = PERF_PMU_CAP_NO_NMI, 8383 8384 .event_init = task_clock_event_init, 8385 .add = task_clock_event_add, 8386 .del = task_clock_event_del, 8387 .start = task_clock_event_start, 8388 .stop = task_clock_event_stop, 8389 .read = task_clock_event_read, 8390 }; 8391 8392 static void perf_pmu_nop_void(struct pmu *pmu) 8393 { 8394 } 8395 8396 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8397 { 8398 } 8399 8400 static int perf_pmu_nop_int(struct pmu *pmu) 8401 { 8402 return 0; 8403 } 8404 8405 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8406 8407 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8408 { 8409 __this_cpu_write(nop_txn_flags, flags); 8410 8411 if (flags & ~PERF_PMU_TXN_ADD) 8412 return; 8413 8414 perf_pmu_disable(pmu); 8415 } 8416 8417 static int perf_pmu_commit_txn(struct pmu *pmu) 8418 { 8419 unsigned int flags = __this_cpu_read(nop_txn_flags); 8420 8421 __this_cpu_write(nop_txn_flags, 0); 8422 8423 if (flags & ~PERF_PMU_TXN_ADD) 8424 return 0; 8425 8426 perf_pmu_enable(pmu); 8427 return 0; 8428 } 8429 8430 static void perf_pmu_cancel_txn(struct pmu *pmu) 8431 { 8432 unsigned int flags = __this_cpu_read(nop_txn_flags); 8433 8434 __this_cpu_write(nop_txn_flags, 0); 8435 8436 if (flags & ~PERF_PMU_TXN_ADD) 8437 return; 8438 8439 perf_pmu_enable(pmu); 8440 } 8441 8442 static int perf_event_idx_default(struct perf_event *event) 8443 { 8444 return 0; 8445 } 8446 8447 /* 8448 * Ensures all contexts with the same task_ctx_nr have the same 8449 * pmu_cpu_context too. 8450 */ 8451 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8452 { 8453 struct pmu *pmu; 8454 8455 if (ctxn < 0) 8456 return NULL; 8457 8458 list_for_each_entry(pmu, &pmus, entry) { 8459 if (pmu->task_ctx_nr == ctxn) 8460 return pmu->pmu_cpu_context; 8461 } 8462 8463 return NULL; 8464 } 8465 8466 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8467 { 8468 int cpu; 8469 8470 for_each_possible_cpu(cpu) { 8471 struct perf_cpu_context *cpuctx; 8472 8473 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8474 8475 if (cpuctx->unique_pmu == old_pmu) 8476 cpuctx->unique_pmu = pmu; 8477 } 8478 } 8479 8480 static void free_pmu_context(struct pmu *pmu) 8481 { 8482 struct pmu *i; 8483 8484 mutex_lock(&pmus_lock); 8485 /* 8486 * Like a real lame refcount. 8487 */ 8488 list_for_each_entry(i, &pmus, entry) { 8489 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8490 update_pmu_context(i, pmu); 8491 goto out; 8492 } 8493 } 8494 8495 free_percpu(pmu->pmu_cpu_context); 8496 out: 8497 mutex_unlock(&pmus_lock); 8498 } 8499 8500 /* 8501 * Let userspace know that this PMU supports address range filtering: 8502 */ 8503 static ssize_t nr_addr_filters_show(struct device *dev, 8504 struct device_attribute *attr, 8505 char *page) 8506 { 8507 struct pmu *pmu = dev_get_drvdata(dev); 8508 8509 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8510 } 8511 DEVICE_ATTR_RO(nr_addr_filters); 8512 8513 static struct idr pmu_idr; 8514 8515 static ssize_t 8516 type_show(struct device *dev, struct device_attribute *attr, char *page) 8517 { 8518 struct pmu *pmu = dev_get_drvdata(dev); 8519 8520 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8521 } 8522 static DEVICE_ATTR_RO(type); 8523 8524 static ssize_t 8525 perf_event_mux_interval_ms_show(struct device *dev, 8526 struct device_attribute *attr, 8527 char *page) 8528 { 8529 struct pmu *pmu = dev_get_drvdata(dev); 8530 8531 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8532 } 8533 8534 static DEFINE_MUTEX(mux_interval_mutex); 8535 8536 static ssize_t 8537 perf_event_mux_interval_ms_store(struct device *dev, 8538 struct device_attribute *attr, 8539 const char *buf, size_t count) 8540 { 8541 struct pmu *pmu = dev_get_drvdata(dev); 8542 int timer, cpu, ret; 8543 8544 ret = kstrtoint(buf, 0, &timer); 8545 if (ret) 8546 return ret; 8547 8548 if (timer < 1) 8549 return -EINVAL; 8550 8551 /* same value, noting to do */ 8552 if (timer == pmu->hrtimer_interval_ms) 8553 return count; 8554 8555 mutex_lock(&mux_interval_mutex); 8556 pmu->hrtimer_interval_ms = timer; 8557 8558 /* update all cpuctx for this PMU */ 8559 get_online_cpus(); 8560 for_each_online_cpu(cpu) { 8561 struct perf_cpu_context *cpuctx; 8562 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8563 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8564 8565 cpu_function_call(cpu, 8566 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8567 } 8568 put_online_cpus(); 8569 mutex_unlock(&mux_interval_mutex); 8570 8571 return count; 8572 } 8573 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8574 8575 static struct attribute *pmu_dev_attrs[] = { 8576 &dev_attr_type.attr, 8577 &dev_attr_perf_event_mux_interval_ms.attr, 8578 NULL, 8579 }; 8580 ATTRIBUTE_GROUPS(pmu_dev); 8581 8582 static int pmu_bus_running; 8583 static struct bus_type pmu_bus = { 8584 .name = "event_source", 8585 .dev_groups = pmu_dev_groups, 8586 }; 8587 8588 static void pmu_dev_release(struct device *dev) 8589 { 8590 kfree(dev); 8591 } 8592 8593 static int pmu_dev_alloc(struct pmu *pmu) 8594 { 8595 int ret = -ENOMEM; 8596 8597 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8598 if (!pmu->dev) 8599 goto out; 8600 8601 pmu->dev->groups = pmu->attr_groups; 8602 device_initialize(pmu->dev); 8603 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8604 if (ret) 8605 goto free_dev; 8606 8607 dev_set_drvdata(pmu->dev, pmu); 8608 pmu->dev->bus = &pmu_bus; 8609 pmu->dev->release = pmu_dev_release; 8610 ret = device_add(pmu->dev); 8611 if (ret) 8612 goto free_dev; 8613 8614 /* For PMUs with address filters, throw in an extra attribute: */ 8615 if (pmu->nr_addr_filters) 8616 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8617 8618 if (ret) 8619 goto del_dev; 8620 8621 out: 8622 return ret; 8623 8624 del_dev: 8625 device_del(pmu->dev); 8626 8627 free_dev: 8628 put_device(pmu->dev); 8629 goto out; 8630 } 8631 8632 static struct lock_class_key cpuctx_mutex; 8633 static struct lock_class_key cpuctx_lock; 8634 8635 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8636 { 8637 int cpu, ret; 8638 8639 mutex_lock(&pmus_lock); 8640 ret = -ENOMEM; 8641 pmu->pmu_disable_count = alloc_percpu(int); 8642 if (!pmu->pmu_disable_count) 8643 goto unlock; 8644 8645 pmu->type = -1; 8646 if (!name) 8647 goto skip_type; 8648 pmu->name = name; 8649 8650 if (type < 0) { 8651 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8652 if (type < 0) { 8653 ret = type; 8654 goto free_pdc; 8655 } 8656 } 8657 pmu->type = type; 8658 8659 if (pmu_bus_running) { 8660 ret = pmu_dev_alloc(pmu); 8661 if (ret) 8662 goto free_idr; 8663 } 8664 8665 skip_type: 8666 if (pmu->task_ctx_nr == perf_hw_context) { 8667 static int hw_context_taken = 0; 8668 8669 /* 8670 * Other than systems with heterogeneous CPUs, it never makes 8671 * sense for two PMUs to share perf_hw_context. PMUs which are 8672 * uncore must use perf_invalid_context. 8673 */ 8674 if (WARN_ON_ONCE(hw_context_taken && 8675 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8676 pmu->task_ctx_nr = perf_invalid_context; 8677 8678 hw_context_taken = 1; 8679 } 8680 8681 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8682 if (pmu->pmu_cpu_context) 8683 goto got_cpu_context; 8684 8685 ret = -ENOMEM; 8686 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8687 if (!pmu->pmu_cpu_context) 8688 goto free_dev; 8689 8690 for_each_possible_cpu(cpu) { 8691 struct perf_cpu_context *cpuctx; 8692 8693 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8694 __perf_event_init_context(&cpuctx->ctx); 8695 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8696 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8697 cpuctx->ctx.pmu = pmu; 8698 8699 __perf_mux_hrtimer_init(cpuctx, cpu); 8700 8701 cpuctx->unique_pmu = pmu; 8702 } 8703 8704 got_cpu_context: 8705 if (!pmu->start_txn) { 8706 if (pmu->pmu_enable) { 8707 /* 8708 * If we have pmu_enable/pmu_disable calls, install 8709 * transaction stubs that use that to try and batch 8710 * hardware accesses. 8711 */ 8712 pmu->start_txn = perf_pmu_start_txn; 8713 pmu->commit_txn = perf_pmu_commit_txn; 8714 pmu->cancel_txn = perf_pmu_cancel_txn; 8715 } else { 8716 pmu->start_txn = perf_pmu_nop_txn; 8717 pmu->commit_txn = perf_pmu_nop_int; 8718 pmu->cancel_txn = perf_pmu_nop_void; 8719 } 8720 } 8721 8722 if (!pmu->pmu_enable) { 8723 pmu->pmu_enable = perf_pmu_nop_void; 8724 pmu->pmu_disable = perf_pmu_nop_void; 8725 } 8726 8727 if (!pmu->event_idx) 8728 pmu->event_idx = perf_event_idx_default; 8729 8730 list_add_rcu(&pmu->entry, &pmus); 8731 atomic_set(&pmu->exclusive_cnt, 0); 8732 ret = 0; 8733 unlock: 8734 mutex_unlock(&pmus_lock); 8735 8736 return ret; 8737 8738 free_dev: 8739 device_del(pmu->dev); 8740 put_device(pmu->dev); 8741 8742 free_idr: 8743 if (pmu->type >= PERF_TYPE_MAX) 8744 idr_remove(&pmu_idr, pmu->type); 8745 8746 free_pdc: 8747 free_percpu(pmu->pmu_disable_count); 8748 goto unlock; 8749 } 8750 EXPORT_SYMBOL_GPL(perf_pmu_register); 8751 8752 void perf_pmu_unregister(struct pmu *pmu) 8753 { 8754 mutex_lock(&pmus_lock); 8755 list_del_rcu(&pmu->entry); 8756 mutex_unlock(&pmus_lock); 8757 8758 /* 8759 * We dereference the pmu list under both SRCU and regular RCU, so 8760 * synchronize against both of those. 8761 */ 8762 synchronize_srcu(&pmus_srcu); 8763 synchronize_rcu(); 8764 8765 free_percpu(pmu->pmu_disable_count); 8766 if (pmu->type >= PERF_TYPE_MAX) 8767 idr_remove(&pmu_idr, pmu->type); 8768 if (pmu->nr_addr_filters) 8769 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8770 device_del(pmu->dev); 8771 put_device(pmu->dev); 8772 free_pmu_context(pmu); 8773 } 8774 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8775 8776 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8777 { 8778 struct perf_event_context *ctx = NULL; 8779 int ret; 8780 8781 if (!try_module_get(pmu->module)) 8782 return -ENODEV; 8783 8784 if (event->group_leader != event) { 8785 /* 8786 * This ctx->mutex can nest when we're called through 8787 * inheritance. See the perf_event_ctx_lock_nested() comment. 8788 */ 8789 ctx = perf_event_ctx_lock_nested(event->group_leader, 8790 SINGLE_DEPTH_NESTING); 8791 BUG_ON(!ctx); 8792 } 8793 8794 event->pmu = pmu; 8795 ret = pmu->event_init(event); 8796 8797 if (ctx) 8798 perf_event_ctx_unlock(event->group_leader, ctx); 8799 8800 if (ret) 8801 module_put(pmu->module); 8802 8803 return ret; 8804 } 8805 8806 static struct pmu *perf_init_event(struct perf_event *event) 8807 { 8808 struct pmu *pmu = NULL; 8809 int idx; 8810 int ret; 8811 8812 idx = srcu_read_lock(&pmus_srcu); 8813 8814 rcu_read_lock(); 8815 pmu = idr_find(&pmu_idr, event->attr.type); 8816 rcu_read_unlock(); 8817 if (pmu) { 8818 ret = perf_try_init_event(pmu, event); 8819 if (ret) 8820 pmu = ERR_PTR(ret); 8821 goto unlock; 8822 } 8823 8824 list_for_each_entry_rcu(pmu, &pmus, entry) { 8825 ret = perf_try_init_event(pmu, event); 8826 if (!ret) 8827 goto unlock; 8828 8829 if (ret != -ENOENT) { 8830 pmu = ERR_PTR(ret); 8831 goto unlock; 8832 } 8833 } 8834 pmu = ERR_PTR(-ENOENT); 8835 unlock: 8836 srcu_read_unlock(&pmus_srcu, idx); 8837 8838 return pmu; 8839 } 8840 8841 static void attach_sb_event(struct perf_event *event) 8842 { 8843 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8844 8845 raw_spin_lock(&pel->lock); 8846 list_add_rcu(&event->sb_list, &pel->list); 8847 raw_spin_unlock(&pel->lock); 8848 } 8849 8850 /* 8851 * We keep a list of all !task (and therefore per-cpu) events 8852 * that need to receive side-band records. 8853 * 8854 * This avoids having to scan all the various PMU per-cpu contexts 8855 * looking for them. 8856 */ 8857 static void account_pmu_sb_event(struct perf_event *event) 8858 { 8859 if (is_sb_event(event)) 8860 attach_sb_event(event); 8861 } 8862 8863 static void account_event_cpu(struct perf_event *event, int cpu) 8864 { 8865 if (event->parent) 8866 return; 8867 8868 if (is_cgroup_event(event)) 8869 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8870 } 8871 8872 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8873 static void account_freq_event_nohz(void) 8874 { 8875 #ifdef CONFIG_NO_HZ_FULL 8876 /* Lock so we don't race with concurrent unaccount */ 8877 spin_lock(&nr_freq_lock); 8878 if (atomic_inc_return(&nr_freq_events) == 1) 8879 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8880 spin_unlock(&nr_freq_lock); 8881 #endif 8882 } 8883 8884 static void account_freq_event(void) 8885 { 8886 if (tick_nohz_full_enabled()) 8887 account_freq_event_nohz(); 8888 else 8889 atomic_inc(&nr_freq_events); 8890 } 8891 8892 8893 static void account_event(struct perf_event *event) 8894 { 8895 bool inc = false; 8896 8897 if (event->parent) 8898 return; 8899 8900 if (event->attach_state & PERF_ATTACH_TASK) 8901 inc = true; 8902 if (event->attr.mmap || event->attr.mmap_data) 8903 atomic_inc(&nr_mmap_events); 8904 if (event->attr.comm) 8905 atomic_inc(&nr_comm_events); 8906 if (event->attr.task) 8907 atomic_inc(&nr_task_events); 8908 if (event->attr.freq) 8909 account_freq_event(); 8910 if (event->attr.context_switch) { 8911 atomic_inc(&nr_switch_events); 8912 inc = true; 8913 } 8914 if (has_branch_stack(event)) 8915 inc = true; 8916 if (is_cgroup_event(event)) 8917 inc = true; 8918 8919 if (inc) { 8920 if (atomic_inc_not_zero(&perf_sched_count)) 8921 goto enabled; 8922 8923 mutex_lock(&perf_sched_mutex); 8924 if (!atomic_read(&perf_sched_count)) { 8925 static_branch_enable(&perf_sched_events); 8926 /* 8927 * Guarantee that all CPUs observe they key change and 8928 * call the perf scheduling hooks before proceeding to 8929 * install events that need them. 8930 */ 8931 synchronize_sched(); 8932 } 8933 /* 8934 * Now that we have waited for the sync_sched(), allow further 8935 * increments to by-pass the mutex. 8936 */ 8937 atomic_inc(&perf_sched_count); 8938 mutex_unlock(&perf_sched_mutex); 8939 } 8940 enabled: 8941 8942 account_event_cpu(event, event->cpu); 8943 8944 account_pmu_sb_event(event); 8945 } 8946 8947 /* 8948 * Allocate and initialize a event structure 8949 */ 8950 static struct perf_event * 8951 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8952 struct task_struct *task, 8953 struct perf_event *group_leader, 8954 struct perf_event *parent_event, 8955 perf_overflow_handler_t overflow_handler, 8956 void *context, int cgroup_fd) 8957 { 8958 struct pmu *pmu; 8959 struct perf_event *event; 8960 struct hw_perf_event *hwc; 8961 long err = -EINVAL; 8962 8963 if ((unsigned)cpu >= nr_cpu_ids) { 8964 if (!task || cpu != -1) 8965 return ERR_PTR(-EINVAL); 8966 } 8967 8968 event = kzalloc(sizeof(*event), GFP_KERNEL); 8969 if (!event) 8970 return ERR_PTR(-ENOMEM); 8971 8972 /* 8973 * Single events are their own group leaders, with an 8974 * empty sibling list: 8975 */ 8976 if (!group_leader) 8977 group_leader = event; 8978 8979 mutex_init(&event->child_mutex); 8980 INIT_LIST_HEAD(&event->child_list); 8981 8982 INIT_LIST_HEAD(&event->group_entry); 8983 INIT_LIST_HEAD(&event->event_entry); 8984 INIT_LIST_HEAD(&event->sibling_list); 8985 INIT_LIST_HEAD(&event->rb_entry); 8986 INIT_LIST_HEAD(&event->active_entry); 8987 INIT_LIST_HEAD(&event->addr_filters.list); 8988 INIT_HLIST_NODE(&event->hlist_entry); 8989 8990 8991 init_waitqueue_head(&event->waitq); 8992 init_irq_work(&event->pending, perf_pending_event); 8993 8994 mutex_init(&event->mmap_mutex); 8995 raw_spin_lock_init(&event->addr_filters.lock); 8996 8997 atomic_long_set(&event->refcount, 1); 8998 event->cpu = cpu; 8999 event->attr = *attr; 9000 event->group_leader = group_leader; 9001 event->pmu = NULL; 9002 event->oncpu = -1; 9003 9004 event->parent = parent_event; 9005 9006 event->ns = get_pid_ns(task_active_pid_ns(current)); 9007 event->id = atomic64_inc_return(&perf_event_id); 9008 9009 event->state = PERF_EVENT_STATE_INACTIVE; 9010 9011 if (task) { 9012 event->attach_state = PERF_ATTACH_TASK; 9013 /* 9014 * XXX pmu::event_init needs to know what task to account to 9015 * and we cannot use the ctx information because we need the 9016 * pmu before we get a ctx. 9017 */ 9018 event->hw.target = task; 9019 } 9020 9021 event->clock = &local_clock; 9022 if (parent_event) 9023 event->clock = parent_event->clock; 9024 9025 if (!overflow_handler && parent_event) { 9026 overflow_handler = parent_event->overflow_handler; 9027 context = parent_event->overflow_handler_context; 9028 } 9029 9030 if (overflow_handler) { 9031 event->overflow_handler = overflow_handler; 9032 event->overflow_handler_context = context; 9033 } else if (is_write_backward(event)){ 9034 event->overflow_handler = perf_event_output_backward; 9035 event->overflow_handler_context = NULL; 9036 } else { 9037 event->overflow_handler = perf_event_output_forward; 9038 event->overflow_handler_context = NULL; 9039 } 9040 9041 perf_event__state_init(event); 9042 9043 pmu = NULL; 9044 9045 hwc = &event->hw; 9046 hwc->sample_period = attr->sample_period; 9047 if (attr->freq && attr->sample_freq) 9048 hwc->sample_period = 1; 9049 hwc->last_period = hwc->sample_period; 9050 9051 local64_set(&hwc->period_left, hwc->sample_period); 9052 9053 /* 9054 * we currently do not support PERF_FORMAT_GROUP on inherited events 9055 */ 9056 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9057 goto err_ns; 9058 9059 if (!has_branch_stack(event)) 9060 event->attr.branch_sample_type = 0; 9061 9062 if (cgroup_fd != -1) { 9063 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9064 if (err) 9065 goto err_ns; 9066 } 9067 9068 pmu = perf_init_event(event); 9069 if (!pmu) 9070 goto err_ns; 9071 else if (IS_ERR(pmu)) { 9072 err = PTR_ERR(pmu); 9073 goto err_ns; 9074 } 9075 9076 err = exclusive_event_init(event); 9077 if (err) 9078 goto err_pmu; 9079 9080 if (has_addr_filter(event)) { 9081 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9082 sizeof(unsigned long), 9083 GFP_KERNEL); 9084 if (!event->addr_filters_offs) 9085 goto err_per_task; 9086 9087 /* force hw sync on the address filters */ 9088 event->addr_filters_gen = 1; 9089 } 9090 9091 if (!event->parent) { 9092 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9093 err = get_callchain_buffers(attr->sample_max_stack); 9094 if (err) 9095 goto err_addr_filters; 9096 } 9097 } 9098 9099 /* symmetric to unaccount_event() in _free_event() */ 9100 account_event(event); 9101 9102 return event; 9103 9104 err_addr_filters: 9105 kfree(event->addr_filters_offs); 9106 9107 err_per_task: 9108 exclusive_event_destroy(event); 9109 9110 err_pmu: 9111 if (event->destroy) 9112 event->destroy(event); 9113 module_put(pmu->module); 9114 err_ns: 9115 if (is_cgroup_event(event)) 9116 perf_detach_cgroup(event); 9117 if (event->ns) 9118 put_pid_ns(event->ns); 9119 kfree(event); 9120 9121 return ERR_PTR(err); 9122 } 9123 9124 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9125 struct perf_event_attr *attr) 9126 { 9127 u32 size; 9128 int ret; 9129 9130 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9131 return -EFAULT; 9132 9133 /* 9134 * zero the full structure, so that a short copy will be nice. 9135 */ 9136 memset(attr, 0, sizeof(*attr)); 9137 9138 ret = get_user(size, &uattr->size); 9139 if (ret) 9140 return ret; 9141 9142 if (size > PAGE_SIZE) /* silly large */ 9143 goto err_size; 9144 9145 if (!size) /* abi compat */ 9146 size = PERF_ATTR_SIZE_VER0; 9147 9148 if (size < PERF_ATTR_SIZE_VER0) 9149 goto err_size; 9150 9151 /* 9152 * If we're handed a bigger struct than we know of, 9153 * ensure all the unknown bits are 0 - i.e. new 9154 * user-space does not rely on any kernel feature 9155 * extensions we dont know about yet. 9156 */ 9157 if (size > sizeof(*attr)) { 9158 unsigned char __user *addr; 9159 unsigned char __user *end; 9160 unsigned char val; 9161 9162 addr = (void __user *)uattr + sizeof(*attr); 9163 end = (void __user *)uattr + size; 9164 9165 for (; addr < end; addr++) { 9166 ret = get_user(val, addr); 9167 if (ret) 9168 return ret; 9169 if (val) 9170 goto err_size; 9171 } 9172 size = sizeof(*attr); 9173 } 9174 9175 ret = copy_from_user(attr, uattr, size); 9176 if (ret) 9177 return -EFAULT; 9178 9179 if (attr->__reserved_1) 9180 return -EINVAL; 9181 9182 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9183 return -EINVAL; 9184 9185 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9186 return -EINVAL; 9187 9188 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9189 u64 mask = attr->branch_sample_type; 9190 9191 /* only using defined bits */ 9192 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9193 return -EINVAL; 9194 9195 /* at least one branch bit must be set */ 9196 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9197 return -EINVAL; 9198 9199 /* propagate priv level, when not set for branch */ 9200 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9201 9202 /* exclude_kernel checked on syscall entry */ 9203 if (!attr->exclude_kernel) 9204 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9205 9206 if (!attr->exclude_user) 9207 mask |= PERF_SAMPLE_BRANCH_USER; 9208 9209 if (!attr->exclude_hv) 9210 mask |= PERF_SAMPLE_BRANCH_HV; 9211 /* 9212 * adjust user setting (for HW filter setup) 9213 */ 9214 attr->branch_sample_type = mask; 9215 } 9216 /* privileged levels capture (kernel, hv): check permissions */ 9217 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9218 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9219 return -EACCES; 9220 } 9221 9222 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9223 ret = perf_reg_validate(attr->sample_regs_user); 9224 if (ret) 9225 return ret; 9226 } 9227 9228 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9229 if (!arch_perf_have_user_stack_dump()) 9230 return -ENOSYS; 9231 9232 /* 9233 * We have __u32 type for the size, but so far 9234 * we can only use __u16 as maximum due to the 9235 * __u16 sample size limit. 9236 */ 9237 if (attr->sample_stack_user >= USHRT_MAX) 9238 ret = -EINVAL; 9239 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9240 ret = -EINVAL; 9241 } 9242 9243 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9244 ret = perf_reg_validate(attr->sample_regs_intr); 9245 out: 9246 return ret; 9247 9248 err_size: 9249 put_user(sizeof(*attr), &uattr->size); 9250 ret = -E2BIG; 9251 goto out; 9252 } 9253 9254 static int 9255 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9256 { 9257 struct ring_buffer *rb = NULL; 9258 int ret = -EINVAL; 9259 9260 if (!output_event) 9261 goto set; 9262 9263 /* don't allow circular references */ 9264 if (event == output_event) 9265 goto out; 9266 9267 /* 9268 * Don't allow cross-cpu buffers 9269 */ 9270 if (output_event->cpu != event->cpu) 9271 goto out; 9272 9273 /* 9274 * If its not a per-cpu rb, it must be the same task. 9275 */ 9276 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9277 goto out; 9278 9279 /* 9280 * Mixing clocks in the same buffer is trouble you don't need. 9281 */ 9282 if (output_event->clock != event->clock) 9283 goto out; 9284 9285 /* 9286 * Either writing ring buffer from beginning or from end. 9287 * Mixing is not allowed. 9288 */ 9289 if (is_write_backward(output_event) != is_write_backward(event)) 9290 goto out; 9291 9292 /* 9293 * If both events generate aux data, they must be on the same PMU 9294 */ 9295 if (has_aux(event) && has_aux(output_event) && 9296 event->pmu != output_event->pmu) 9297 goto out; 9298 9299 set: 9300 mutex_lock(&event->mmap_mutex); 9301 /* Can't redirect output if we've got an active mmap() */ 9302 if (atomic_read(&event->mmap_count)) 9303 goto unlock; 9304 9305 if (output_event) { 9306 /* get the rb we want to redirect to */ 9307 rb = ring_buffer_get(output_event); 9308 if (!rb) 9309 goto unlock; 9310 } 9311 9312 ring_buffer_attach(event, rb); 9313 9314 ret = 0; 9315 unlock: 9316 mutex_unlock(&event->mmap_mutex); 9317 9318 out: 9319 return ret; 9320 } 9321 9322 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9323 { 9324 if (b < a) 9325 swap(a, b); 9326 9327 mutex_lock(a); 9328 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9329 } 9330 9331 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9332 { 9333 bool nmi_safe = false; 9334 9335 switch (clk_id) { 9336 case CLOCK_MONOTONIC: 9337 event->clock = &ktime_get_mono_fast_ns; 9338 nmi_safe = true; 9339 break; 9340 9341 case CLOCK_MONOTONIC_RAW: 9342 event->clock = &ktime_get_raw_fast_ns; 9343 nmi_safe = true; 9344 break; 9345 9346 case CLOCK_REALTIME: 9347 event->clock = &ktime_get_real_ns; 9348 break; 9349 9350 case CLOCK_BOOTTIME: 9351 event->clock = &ktime_get_boot_ns; 9352 break; 9353 9354 case CLOCK_TAI: 9355 event->clock = &ktime_get_tai_ns; 9356 break; 9357 9358 default: 9359 return -EINVAL; 9360 } 9361 9362 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9363 return -EINVAL; 9364 9365 return 0; 9366 } 9367 9368 /** 9369 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9370 * 9371 * @attr_uptr: event_id type attributes for monitoring/sampling 9372 * @pid: target pid 9373 * @cpu: target cpu 9374 * @group_fd: group leader event fd 9375 */ 9376 SYSCALL_DEFINE5(perf_event_open, 9377 struct perf_event_attr __user *, attr_uptr, 9378 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9379 { 9380 struct perf_event *group_leader = NULL, *output_event = NULL; 9381 struct perf_event *event, *sibling; 9382 struct perf_event_attr attr; 9383 struct perf_event_context *ctx, *uninitialized_var(gctx); 9384 struct file *event_file = NULL; 9385 struct fd group = {NULL, 0}; 9386 struct task_struct *task = NULL; 9387 struct pmu *pmu; 9388 int event_fd; 9389 int move_group = 0; 9390 int err; 9391 int f_flags = O_RDWR; 9392 int cgroup_fd = -1; 9393 9394 /* for future expandability... */ 9395 if (flags & ~PERF_FLAG_ALL) 9396 return -EINVAL; 9397 9398 err = perf_copy_attr(attr_uptr, &attr); 9399 if (err) 9400 return err; 9401 9402 if (!attr.exclude_kernel) { 9403 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9404 return -EACCES; 9405 } 9406 9407 if (attr.freq) { 9408 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9409 return -EINVAL; 9410 } else { 9411 if (attr.sample_period & (1ULL << 63)) 9412 return -EINVAL; 9413 } 9414 9415 if (!attr.sample_max_stack) 9416 attr.sample_max_stack = sysctl_perf_event_max_stack; 9417 9418 /* 9419 * In cgroup mode, the pid argument is used to pass the fd 9420 * opened to the cgroup directory in cgroupfs. The cpu argument 9421 * designates the cpu on which to monitor threads from that 9422 * cgroup. 9423 */ 9424 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9425 return -EINVAL; 9426 9427 if (flags & PERF_FLAG_FD_CLOEXEC) 9428 f_flags |= O_CLOEXEC; 9429 9430 event_fd = get_unused_fd_flags(f_flags); 9431 if (event_fd < 0) 9432 return event_fd; 9433 9434 if (group_fd != -1) { 9435 err = perf_fget_light(group_fd, &group); 9436 if (err) 9437 goto err_fd; 9438 group_leader = group.file->private_data; 9439 if (flags & PERF_FLAG_FD_OUTPUT) 9440 output_event = group_leader; 9441 if (flags & PERF_FLAG_FD_NO_GROUP) 9442 group_leader = NULL; 9443 } 9444 9445 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9446 task = find_lively_task_by_vpid(pid); 9447 if (IS_ERR(task)) { 9448 err = PTR_ERR(task); 9449 goto err_group_fd; 9450 } 9451 } 9452 9453 if (task && group_leader && 9454 group_leader->attr.inherit != attr.inherit) { 9455 err = -EINVAL; 9456 goto err_task; 9457 } 9458 9459 get_online_cpus(); 9460 9461 if (task) { 9462 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9463 if (err) 9464 goto err_cpus; 9465 9466 /* 9467 * Reuse ptrace permission checks for now. 9468 * 9469 * We must hold cred_guard_mutex across this and any potential 9470 * perf_install_in_context() call for this new event to 9471 * serialize against exec() altering our credentials (and the 9472 * perf_event_exit_task() that could imply). 9473 */ 9474 err = -EACCES; 9475 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9476 goto err_cred; 9477 } 9478 9479 if (flags & PERF_FLAG_PID_CGROUP) 9480 cgroup_fd = pid; 9481 9482 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9483 NULL, NULL, cgroup_fd); 9484 if (IS_ERR(event)) { 9485 err = PTR_ERR(event); 9486 goto err_cred; 9487 } 9488 9489 if (is_sampling_event(event)) { 9490 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9491 err = -EOPNOTSUPP; 9492 goto err_alloc; 9493 } 9494 } 9495 9496 /* 9497 * Special case software events and allow them to be part of 9498 * any hardware group. 9499 */ 9500 pmu = event->pmu; 9501 9502 if (attr.use_clockid) { 9503 err = perf_event_set_clock(event, attr.clockid); 9504 if (err) 9505 goto err_alloc; 9506 } 9507 9508 if (group_leader && 9509 (is_software_event(event) != is_software_event(group_leader))) { 9510 if (is_software_event(event)) { 9511 /* 9512 * If event and group_leader are not both a software 9513 * event, and event is, then group leader is not. 9514 * 9515 * Allow the addition of software events to !software 9516 * groups, this is safe because software events never 9517 * fail to schedule. 9518 */ 9519 pmu = group_leader->pmu; 9520 } else if (is_software_event(group_leader) && 9521 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9522 /* 9523 * In case the group is a pure software group, and we 9524 * try to add a hardware event, move the whole group to 9525 * the hardware context. 9526 */ 9527 move_group = 1; 9528 } 9529 } 9530 9531 /* 9532 * Get the target context (task or percpu): 9533 */ 9534 ctx = find_get_context(pmu, task, event); 9535 if (IS_ERR(ctx)) { 9536 err = PTR_ERR(ctx); 9537 goto err_alloc; 9538 } 9539 9540 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9541 err = -EBUSY; 9542 goto err_context; 9543 } 9544 9545 /* 9546 * Look up the group leader (we will attach this event to it): 9547 */ 9548 if (group_leader) { 9549 err = -EINVAL; 9550 9551 /* 9552 * Do not allow a recursive hierarchy (this new sibling 9553 * becoming part of another group-sibling): 9554 */ 9555 if (group_leader->group_leader != group_leader) 9556 goto err_context; 9557 9558 /* All events in a group should have the same clock */ 9559 if (group_leader->clock != event->clock) 9560 goto err_context; 9561 9562 /* 9563 * Do not allow to attach to a group in a different 9564 * task or CPU context: 9565 */ 9566 if (move_group) { 9567 /* 9568 * Make sure we're both on the same task, or both 9569 * per-cpu events. 9570 */ 9571 if (group_leader->ctx->task != ctx->task) 9572 goto err_context; 9573 9574 /* 9575 * Make sure we're both events for the same CPU; 9576 * grouping events for different CPUs is broken; since 9577 * you can never concurrently schedule them anyhow. 9578 */ 9579 if (group_leader->cpu != event->cpu) 9580 goto err_context; 9581 } else { 9582 if (group_leader->ctx != ctx) 9583 goto err_context; 9584 } 9585 9586 /* 9587 * Only a group leader can be exclusive or pinned 9588 */ 9589 if (attr.exclusive || attr.pinned) 9590 goto err_context; 9591 } 9592 9593 if (output_event) { 9594 err = perf_event_set_output(event, output_event); 9595 if (err) 9596 goto err_context; 9597 } 9598 9599 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9600 f_flags); 9601 if (IS_ERR(event_file)) { 9602 err = PTR_ERR(event_file); 9603 event_file = NULL; 9604 goto err_context; 9605 } 9606 9607 if (move_group) { 9608 gctx = group_leader->ctx; 9609 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9610 if (gctx->task == TASK_TOMBSTONE) { 9611 err = -ESRCH; 9612 goto err_locked; 9613 } 9614 } else { 9615 mutex_lock(&ctx->mutex); 9616 } 9617 9618 if (ctx->task == TASK_TOMBSTONE) { 9619 err = -ESRCH; 9620 goto err_locked; 9621 } 9622 9623 if (!perf_event_validate_size(event)) { 9624 err = -E2BIG; 9625 goto err_locked; 9626 } 9627 9628 /* 9629 * Must be under the same ctx::mutex as perf_install_in_context(), 9630 * because we need to serialize with concurrent event creation. 9631 */ 9632 if (!exclusive_event_installable(event, ctx)) { 9633 /* exclusive and group stuff are assumed mutually exclusive */ 9634 WARN_ON_ONCE(move_group); 9635 9636 err = -EBUSY; 9637 goto err_locked; 9638 } 9639 9640 WARN_ON_ONCE(ctx->parent_ctx); 9641 9642 /* 9643 * This is the point on no return; we cannot fail hereafter. This is 9644 * where we start modifying current state. 9645 */ 9646 9647 if (move_group) { 9648 /* 9649 * See perf_event_ctx_lock() for comments on the details 9650 * of swizzling perf_event::ctx. 9651 */ 9652 perf_remove_from_context(group_leader, 0); 9653 9654 list_for_each_entry(sibling, &group_leader->sibling_list, 9655 group_entry) { 9656 perf_remove_from_context(sibling, 0); 9657 put_ctx(gctx); 9658 } 9659 9660 /* 9661 * Wait for everybody to stop referencing the events through 9662 * the old lists, before installing it on new lists. 9663 */ 9664 synchronize_rcu(); 9665 9666 /* 9667 * Install the group siblings before the group leader. 9668 * 9669 * Because a group leader will try and install the entire group 9670 * (through the sibling list, which is still in-tact), we can 9671 * end up with siblings installed in the wrong context. 9672 * 9673 * By installing siblings first we NO-OP because they're not 9674 * reachable through the group lists. 9675 */ 9676 list_for_each_entry(sibling, &group_leader->sibling_list, 9677 group_entry) { 9678 perf_event__state_init(sibling); 9679 perf_install_in_context(ctx, sibling, sibling->cpu); 9680 get_ctx(ctx); 9681 } 9682 9683 /* 9684 * Removing from the context ends up with disabled 9685 * event. What we want here is event in the initial 9686 * startup state, ready to be add into new context. 9687 */ 9688 perf_event__state_init(group_leader); 9689 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9690 get_ctx(ctx); 9691 9692 /* 9693 * Now that all events are installed in @ctx, nothing 9694 * references @gctx anymore, so drop the last reference we have 9695 * on it. 9696 */ 9697 put_ctx(gctx); 9698 } 9699 9700 /* 9701 * Precalculate sample_data sizes; do while holding ctx::mutex such 9702 * that we're serialized against further additions and before 9703 * perf_install_in_context() which is the point the event is active and 9704 * can use these values. 9705 */ 9706 perf_event__header_size(event); 9707 perf_event__id_header_size(event); 9708 9709 event->owner = current; 9710 9711 perf_install_in_context(ctx, event, event->cpu); 9712 perf_unpin_context(ctx); 9713 9714 if (move_group) 9715 mutex_unlock(&gctx->mutex); 9716 mutex_unlock(&ctx->mutex); 9717 9718 if (task) { 9719 mutex_unlock(&task->signal->cred_guard_mutex); 9720 put_task_struct(task); 9721 } 9722 9723 put_online_cpus(); 9724 9725 mutex_lock(¤t->perf_event_mutex); 9726 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9727 mutex_unlock(¤t->perf_event_mutex); 9728 9729 /* 9730 * Drop the reference on the group_event after placing the 9731 * new event on the sibling_list. This ensures destruction 9732 * of the group leader will find the pointer to itself in 9733 * perf_group_detach(). 9734 */ 9735 fdput(group); 9736 fd_install(event_fd, event_file); 9737 return event_fd; 9738 9739 err_locked: 9740 if (move_group) 9741 mutex_unlock(&gctx->mutex); 9742 mutex_unlock(&ctx->mutex); 9743 /* err_file: */ 9744 fput(event_file); 9745 err_context: 9746 perf_unpin_context(ctx); 9747 put_ctx(ctx); 9748 err_alloc: 9749 /* 9750 * If event_file is set, the fput() above will have called ->release() 9751 * and that will take care of freeing the event. 9752 */ 9753 if (!event_file) 9754 free_event(event); 9755 err_cred: 9756 if (task) 9757 mutex_unlock(&task->signal->cred_guard_mutex); 9758 err_cpus: 9759 put_online_cpus(); 9760 err_task: 9761 if (task) 9762 put_task_struct(task); 9763 err_group_fd: 9764 fdput(group); 9765 err_fd: 9766 put_unused_fd(event_fd); 9767 return err; 9768 } 9769 9770 /** 9771 * perf_event_create_kernel_counter 9772 * 9773 * @attr: attributes of the counter to create 9774 * @cpu: cpu in which the counter is bound 9775 * @task: task to profile (NULL for percpu) 9776 */ 9777 struct perf_event * 9778 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9779 struct task_struct *task, 9780 perf_overflow_handler_t overflow_handler, 9781 void *context) 9782 { 9783 struct perf_event_context *ctx; 9784 struct perf_event *event; 9785 int err; 9786 9787 /* 9788 * Get the target context (task or percpu): 9789 */ 9790 9791 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9792 overflow_handler, context, -1); 9793 if (IS_ERR(event)) { 9794 err = PTR_ERR(event); 9795 goto err; 9796 } 9797 9798 /* Mark owner so we could distinguish it from user events. */ 9799 event->owner = TASK_TOMBSTONE; 9800 9801 ctx = find_get_context(event->pmu, task, event); 9802 if (IS_ERR(ctx)) { 9803 err = PTR_ERR(ctx); 9804 goto err_free; 9805 } 9806 9807 WARN_ON_ONCE(ctx->parent_ctx); 9808 mutex_lock(&ctx->mutex); 9809 if (ctx->task == TASK_TOMBSTONE) { 9810 err = -ESRCH; 9811 goto err_unlock; 9812 } 9813 9814 if (!exclusive_event_installable(event, ctx)) { 9815 err = -EBUSY; 9816 goto err_unlock; 9817 } 9818 9819 perf_install_in_context(ctx, event, cpu); 9820 perf_unpin_context(ctx); 9821 mutex_unlock(&ctx->mutex); 9822 9823 return event; 9824 9825 err_unlock: 9826 mutex_unlock(&ctx->mutex); 9827 perf_unpin_context(ctx); 9828 put_ctx(ctx); 9829 err_free: 9830 free_event(event); 9831 err: 9832 return ERR_PTR(err); 9833 } 9834 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9835 9836 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9837 { 9838 struct perf_event_context *src_ctx; 9839 struct perf_event_context *dst_ctx; 9840 struct perf_event *event, *tmp; 9841 LIST_HEAD(events); 9842 9843 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9844 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9845 9846 /* 9847 * See perf_event_ctx_lock() for comments on the details 9848 * of swizzling perf_event::ctx. 9849 */ 9850 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9851 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9852 event_entry) { 9853 perf_remove_from_context(event, 0); 9854 unaccount_event_cpu(event, src_cpu); 9855 put_ctx(src_ctx); 9856 list_add(&event->migrate_entry, &events); 9857 } 9858 9859 /* 9860 * Wait for the events to quiesce before re-instating them. 9861 */ 9862 synchronize_rcu(); 9863 9864 /* 9865 * Re-instate events in 2 passes. 9866 * 9867 * Skip over group leaders and only install siblings on this first 9868 * pass, siblings will not get enabled without a leader, however a 9869 * leader will enable its siblings, even if those are still on the old 9870 * context. 9871 */ 9872 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9873 if (event->group_leader == event) 9874 continue; 9875 9876 list_del(&event->migrate_entry); 9877 if (event->state >= PERF_EVENT_STATE_OFF) 9878 event->state = PERF_EVENT_STATE_INACTIVE; 9879 account_event_cpu(event, dst_cpu); 9880 perf_install_in_context(dst_ctx, event, dst_cpu); 9881 get_ctx(dst_ctx); 9882 } 9883 9884 /* 9885 * Once all the siblings are setup properly, install the group leaders 9886 * to make it go. 9887 */ 9888 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9889 list_del(&event->migrate_entry); 9890 if (event->state >= PERF_EVENT_STATE_OFF) 9891 event->state = PERF_EVENT_STATE_INACTIVE; 9892 account_event_cpu(event, dst_cpu); 9893 perf_install_in_context(dst_ctx, event, dst_cpu); 9894 get_ctx(dst_ctx); 9895 } 9896 mutex_unlock(&dst_ctx->mutex); 9897 mutex_unlock(&src_ctx->mutex); 9898 } 9899 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9900 9901 static void sync_child_event(struct perf_event *child_event, 9902 struct task_struct *child) 9903 { 9904 struct perf_event *parent_event = child_event->parent; 9905 u64 child_val; 9906 9907 if (child_event->attr.inherit_stat) 9908 perf_event_read_event(child_event, child); 9909 9910 child_val = perf_event_count(child_event); 9911 9912 /* 9913 * Add back the child's count to the parent's count: 9914 */ 9915 atomic64_add(child_val, &parent_event->child_count); 9916 atomic64_add(child_event->total_time_enabled, 9917 &parent_event->child_total_time_enabled); 9918 atomic64_add(child_event->total_time_running, 9919 &parent_event->child_total_time_running); 9920 } 9921 9922 static void 9923 perf_event_exit_event(struct perf_event *child_event, 9924 struct perf_event_context *child_ctx, 9925 struct task_struct *child) 9926 { 9927 struct perf_event *parent_event = child_event->parent; 9928 9929 /* 9930 * Do not destroy the 'original' grouping; because of the context 9931 * switch optimization the original events could've ended up in a 9932 * random child task. 9933 * 9934 * If we were to destroy the original group, all group related 9935 * operations would cease to function properly after this random 9936 * child dies. 9937 * 9938 * Do destroy all inherited groups, we don't care about those 9939 * and being thorough is better. 9940 */ 9941 raw_spin_lock_irq(&child_ctx->lock); 9942 WARN_ON_ONCE(child_ctx->is_active); 9943 9944 if (parent_event) 9945 perf_group_detach(child_event); 9946 list_del_event(child_event, child_ctx); 9947 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9948 raw_spin_unlock_irq(&child_ctx->lock); 9949 9950 /* 9951 * Parent events are governed by their filedesc, retain them. 9952 */ 9953 if (!parent_event) { 9954 perf_event_wakeup(child_event); 9955 return; 9956 } 9957 /* 9958 * Child events can be cleaned up. 9959 */ 9960 9961 sync_child_event(child_event, child); 9962 9963 /* 9964 * Remove this event from the parent's list 9965 */ 9966 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9967 mutex_lock(&parent_event->child_mutex); 9968 list_del_init(&child_event->child_list); 9969 mutex_unlock(&parent_event->child_mutex); 9970 9971 /* 9972 * Kick perf_poll() for is_event_hup(). 9973 */ 9974 perf_event_wakeup(parent_event); 9975 free_event(child_event); 9976 put_event(parent_event); 9977 } 9978 9979 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9980 { 9981 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9982 struct perf_event *child_event, *next; 9983 9984 WARN_ON_ONCE(child != current); 9985 9986 child_ctx = perf_pin_task_context(child, ctxn); 9987 if (!child_ctx) 9988 return; 9989 9990 /* 9991 * In order to reduce the amount of tricky in ctx tear-down, we hold 9992 * ctx::mutex over the entire thing. This serializes against almost 9993 * everything that wants to access the ctx. 9994 * 9995 * The exception is sys_perf_event_open() / 9996 * perf_event_create_kernel_count() which does find_get_context() 9997 * without ctx::mutex (it cannot because of the move_group double mutex 9998 * lock thing). See the comments in perf_install_in_context(). 9999 */ 10000 mutex_lock(&child_ctx->mutex); 10001 10002 /* 10003 * In a single ctx::lock section, de-schedule the events and detach the 10004 * context from the task such that we cannot ever get it scheduled back 10005 * in. 10006 */ 10007 raw_spin_lock_irq(&child_ctx->lock); 10008 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 10009 10010 /* 10011 * Now that the context is inactive, destroy the task <-> ctx relation 10012 * and mark the context dead. 10013 */ 10014 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10015 put_ctx(child_ctx); /* cannot be last */ 10016 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10017 put_task_struct(current); /* cannot be last */ 10018 10019 clone_ctx = unclone_ctx(child_ctx); 10020 raw_spin_unlock_irq(&child_ctx->lock); 10021 10022 if (clone_ctx) 10023 put_ctx(clone_ctx); 10024 10025 /* 10026 * Report the task dead after unscheduling the events so that we 10027 * won't get any samples after PERF_RECORD_EXIT. We can however still 10028 * get a few PERF_RECORD_READ events. 10029 */ 10030 perf_event_task(child, child_ctx, 0); 10031 10032 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10033 perf_event_exit_event(child_event, child_ctx, child); 10034 10035 mutex_unlock(&child_ctx->mutex); 10036 10037 put_ctx(child_ctx); 10038 } 10039 10040 /* 10041 * When a child task exits, feed back event values to parent events. 10042 * 10043 * Can be called with cred_guard_mutex held when called from 10044 * install_exec_creds(). 10045 */ 10046 void perf_event_exit_task(struct task_struct *child) 10047 { 10048 struct perf_event *event, *tmp; 10049 int ctxn; 10050 10051 mutex_lock(&child->perf_event_mutex); 10052 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10053 owner_entry) { 10054 list_del_init(&event->owner_entry); 10055 10056 /* 10057 * Ensure the list deletion is visible before we clear 10058 * the owner, closes a race against perf_release() where 10059 * we need to serialize on the owner->perf_event_mutex. 10060 */ 10061 smp_store_release(&event->owner, NULL); 10062 } 10063 mutex_unlock(&child->perf_event_mutex); 10064 10065 for_each_task_context_nr(ctxn) 10066 perf_event_exit_task_context(child, ctxn); 10067 10068 /* 10069 * The perf_event_exit_task_context calls perf_event_task 10070 * with child's task_ctx, which generates EXIT events for 10071 * child contexts and sets child->perf_event_ctxp[] to NULL. 10072 * At this point we need to send EXIT events to cpu contexts. 10073 */ 10074 perf_event_task(child, NULL, 0); 10075 } 10076 10077 static void perf_free_event(struct perf_event *event, 10078 struct perf_event_context *ctx) 10079 { 10080 struct perf_event *parent = event->parent; 10081 10082 if (WARN_ON_ONCE(!parent)) 10083 return; 10084 10085 mutex_lock(&parent->child_mutex); 10086 list_del_init(&event->child_list); 10087 mutex_unlock(&parent->child_mutex); 10088 10089 put_event(parent); 10090 10091 raw_spin_lock_irq(&ctx->lock); 10092 perf_group_detach(event); 10093 list_del_event(event, ctx); 10094 raw_spin_unlock_irq(&ctx->lock); 10095 free_event(event); 10096 } 10097 10098 /* 10099 * Free an unexposed, unused context as created by inheritance by 10100 * perf_event_init_task below, used by fork() in case of fail. 10101 * 10102 * Not all locks are strictly required, but take them anyway to be nice and 10103 * help out with the lockdep assertions. 10104 */ 10105 void perf_event_free_task(struct task_struct *task) 10106 { 10107 struct perf_event_context *ctx; 10108 struct perf_event *event, *tmp; 10109 int ctxn; 10110 10111 for_each_task_context_nr(ctxn) { 10112 ctx = task->perf_event_ctxp[ctxn]; 10113 if (!ctx) 10114 continue; 10115 10116 mutex_lock(&ctx->mutex); 10117 again: 10118 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10119 group_entry) 10120 perf_free_event(event, ctx); 10121 10122 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10123 group_entry) 10124 perf_free_event(event, ctx); 10125 10126 if (!list_empty(&ctx->pinned_groups) || 10127 !list_empty(&ctx->flexible_groups)) 10128 goto again; 10129 10130 mutex_unlock(&ctx->mutex); 10131 10132 put_ctx(ctx); 10133 } 10134 } 10135 10136 void perf_event_delayed_put(struct task_struct *task) 10137 { 10138 int ctxn; 10139 10140 for_each_task_context_nr(ctxn) 10141 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10142 } 10143 10144 struct file *perf_event_get(unsigned int fd) 10145 { 10146 struct file *file; 10147 10148 file = fget_raw(fd); 10149 if (!file) 10150 return ERR_PTR(-EBADF); 10151 10152 if (file->f_op != &perf_fops) { 10153 fput(file); 10154 return ERR_PTR(-EBADF); 10155 } 10156 10157 return file; 10158 } 10159 10160 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10161 { 10162 if (!event) 10163 return ERR_PTR(-EINVAL); 10164 10165 return &event->attr; 10166 } 10167 10168 /* 10169 * inherit a event from parent task to child task: 10170 */ 10171 static struct perf_event * 10172 inherit_event(struct perf_event *parent_event, 10173 struct task_struct *parent, 10174 struct perf_event_context *parent_ctx, 10175 struct task_struct *child, 10176 struct perf_event *group_leader, 10177 struct perf_event_context *child_ctx) 10178 { 10179 enum perf_event_active_state parent_state = parent_event->state; 10180 struct perf_event *child_event; 10181 unsigned long flags; 10182 10183 /* 10184 * Instead of creating recursive hierarchies of events, 10185 * we link inherited events back to the original parent, 10186 * which has a filp for sure, which we use as the reference 10187 * count: 10188 */ 10189 if (parent_event->parent) 10190 parent_event = parent_event->parent; 10191 10192 child_event = perf_event_alloc(&parent_event->attr, 10193 parent_event->cpu, 10194 child, 10195 group_leader, parent_event, 10196 NULL, NULL, -1); 10197 if (IS_ERR(child_event)) 10198 return child_event; 10199 10200 /* 10201 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10202 * must be under the same lock in order to serialize against 10203 * perf_event_release_kernel(), such that either we must observe 10204 * is_orphaned_event() or they will observe us on the child_list. 10205 */ 10206 mutex_lock(&parent_event->child_mutex); 10207 if (is_orphaned_event(parent_event) || 10208 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10209 mutex_unlock(&parent_event->child_mutex); 10210 free_event(child_event); 10211 return NULL; 10212 } 10213 10214 get_ctx(child_ctx); 10215 10216 /* 10217 * Make the child state follow the state of the parent event, 10218 * not its attr.disabled bit. We hold the parent's mutex, 10219 * so we won't race with perf_event_{en, dis}able_family. 10220 */ 10221 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10222 child_event->state = PERF_EVENT_STATE_INACTIVE; 10223 else 10224 child_event->state = PERF_EVENT_STATE_OFF; 10225 10226 if (parent_event->attr.freq) { 10227 u64 sample_period = parent_event->hw.sample_period; 10228 struct hw_perf_event *hwc = &child_event->hw; 10229 10230 hwc->sample_period = sample_period; 10231 hwc->last_period = sample_period; 10232 10233 local64_set(&hwc->period_left, sample_period); 10234 } 10235 10236 child_event->ctx = child_ctx; 10237 child_event->overflow_handler = parent_event->overflow_handler; 10238 child_event->overflow_handler_context 10239 = parent_event->overflow_handler_context; 10240 10241 /* 10242 * Precalculate sample_data sizes 10243 */ 10244 perf_event__header_size(child_event); 10245 perf_event__id_header_size(child_event); 10246 10247 /* 10248 * Link it up in the child's context: 10249 */ 10250 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10251 add_event_to_ctx(child_event, child_ctx); 10252 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10253 10254 /* 10255 * Link this into the parent event's child list 10256 */ 10257 list_add_tail(&child_event->child_list, &parent_event->child_list); 10258 mutex_unlock(&parent_event->child_mutex); 10259 10260 return child_event; 10261 } 10262 10263 static int inherit_group(struct perf_event *parent_event, 10264 struct task_struct *parent, 10265 struct perf_event_context *parent_ctx, 10266 struct task_struct *child, 10267 struct perf_event_context *child_ctx) 10268 { 10269 struct perf_event *leader; 10270 struct perf_event *sub; 10271 struct perf_event *child_ctr; 10272 10273 leader = inherit_event(parent_event, parent, parent_ctx, 10274 child, NULL, child_ctx); 10275 if (IS_ERR(leader)) 10276 return PTR_ERR(leader); 10277 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10278 child_ctr = inherit_event(sub, parent, parent_ctx, 10279 child, leader, child_ctx); 10280 if (IS_ERR(child_ctr)) 10281 return PTR_ERR(child_ctr); 10282 } 10283 return 0; 10284 } 10285 10286 static int 10287 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10288 struct perf_event_context *parent_ctx, 10289 struct task_struct *child, int ctxn, 10290 int *inherited_all) 10291 { 10292 int ret; 10293 struct perf_event_context *child_ctx; 10294 10295 if (!event->attr.inherit) { 10296 *inherited_all = 0; 10297 return 0; 10298 } 10299 10300 child_ctx = child->perf_event_ctxp[ctxn]; 10301 if (!child_ctx) { 10302 /* 10303 * This is executed from the parent task context, so 10304 * inherit events that have been marked for cloning. 10305 * First allocate and initialize a context for the 10306 * child. 10307 */ 10308 10309 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10310 if (!child_ctx) 10311 return -ENOMEM; 10312 10313 child->perf_event_ctxp[ctxn] = child_ctx; 10314 } 10315 10316 ret = inherit_group(event, parent, parent_ctx, 10317 child, child_ctx); 10318 10319 if (ret) 10320 *inherited_all = 0; 10321 10322 return ret; 10323 } 10324 10325 /* 10326 * Initialize the perf_event context in task_struct 10327 */ 10328 static int perf_event_init_context(struct task_struct *child, int ctxn) 10329 { 10330 struct perf_event_context *child_ctx, *parent_ctx; 10331 struct perf_event_context *cloned_ctx; 10332 struct perf_event *event; 10333 struct task_struct *parent = current; 10334 int inherited_all = 1; 10335 unsigned long flags; 10336 int ret = 0; 10337 10338 if (likely(!parent->perf_event_ctxp[ctxn])) 10339 return 0; 10340 10341 /* 10342 * If the parent's context is a clone, pin it so it won't get 10343 * swapped under us. 10344 */ 10345 parent_ctx = perf_pin_task_context(parent, ctxn); 10346 if (!parent_ctx) 10347 return 0; 10348 10349 /* 10350 * No need to check if parent_ctx != NULL here; since we saw 10351 * it non-NULL earlier, the only reason for it to become NULL 10352 * is if we exit, and since we're currently in the middle of 10353 * a fork we can't be exiting at the same time. 10354 */ 10355 10356 /* 10357 * Lock the parent list. No need to lock the child - not PID 10358 * hashed yet and not running, so nobody can access it. 10359 */ 10360 mutex_lock(&parent_ctx->mutex); 10361 10362 /* 10363 * We dont have to disable NMIs - we are only looking at 10364 * the list, not manipulating it: 10365 */ 10366 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10367 ret = inherit_task_group(event, parent, parent_ctx, 10368 child, ctxn, &inherited_all); 10369 if (ret) 10370 break; 10371 } 10372 10373 /* 10374 * We can't hold ctx->lock when iterating the ->flexible_group list due 10375 * to allocations, but we need to prevent rotation because 10376 * rotate_ctx() will change the list from interrupt context. 10377 */ 10378 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10379 parent_ctx->rotate_disable = 1; 10380 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10381 10382 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10383 ret = inherit_task_group(event, parent, parent_ctx, 10384 child, ctxn, &inherited_all); 10385 if (ret) 10386 break; 10387 } 10388 10389 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10390 parent_ctx->rotate_disable = 0; 10391 10392 child_ctx = child->perf_event_ctxp[ctxn]; 10393 10394 if (child_ctx && inherited_all) { 10395 /* 10396 * Mark the child context as a clone of the parent 10397 * context, or of whatever the parent is a clone of. 10398 * 10399 * Note that if the parent is a clone, the holding of 10400 * parent_ctx->lock avoids it from being uncloned. 10401 */ 10402 cloned_ctx = parent_ctx->parent_ctx; 10403 if (cloned_ctx) { 10404 child_ctx->parent_ctx = cloned_ctx; 10405 child_ctx->parent_gen = parent_ctx->parent_gen; 10406 } else { 10407 child_ctx->parent_ctx = parent_ctx; 10408 child_ctx->parent_gen = parent_ctx->generation; 10409 } 10410 get_ctx(child_ctx->parent_ctx); 10411 } 10412 10413 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10414 mutex_unlock(&parent_ctx->mutex); 10415 10416 perf_unpin_context(parent_ctx); 10417 put_ctx(parent_ctx); 10418 10419 return ret; 10420 } 10421 10422 /* 10423 * Initialize the perf_event context in task_struct 10424 */ 10425 int perf_event_init_task(struct task_struct *child) 10426 { 10427 int ctxn, ret; 10428 10429 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10430 mutex_init(&child->perf_event_mutex); 10431 INIT_LIST_HEAD(&child->perf_event_list); 10432 10433 for_each_task_context_nr(ctxn) { 10434 ret = perf_event_init_context(child, ctxn); 10435 if (ret) { 10436 perf_event_free_task(child); 10437 return ret; 10438 } 10439 } 10440 10441 return 0; 10442 } 10443 10444 static void __init perf_event_init_all_cpus(void) 10445 { 10446 struct swevent_htable *swhash; 10447 int cpu; 10448 10449 for_each_possible_cpu(cpu) { 10450 swhash = &per_cpu(swevent_htable, cpu); 10451 mutex_init(&swhash->hlist_mutex); 10452 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10453 10454 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10455 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10456 } 10457 } 10458 10459 int perf_event_init_cpu(unsigned int cpu) 10460 { 10461 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10462 10463 mutex_lock(&swhash->hlist_mutex); 10464 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10465 struct swevent_hlist *hlist; 10466 10467 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10468 WARN_ON(!hlist); 10469 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10470 } 10471 mutex_unlock(&swhash->hlist_mutex); 10472 return 0; 10473 } 10474 10475 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10476 static void __perf_event_exit_context(void *__info) 10477 { 10478 struct perf_event_context *ctx = __info; 10479 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10480 struct perf_event *event; 10481 10482 raw_spin_lock(&ctx->lock); 10483 list_for_each_entry(event, &ctx->event_list, event_entry) 10484 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10485 raw_spin_unlock(&ctx->lock); 10486 } 10487 10488 static void perf_event_exit_cpu_context(int cpu) 10489 { 10490 struct perf_event_context *ctx; 10491 struct pmu *pmu; 10492 int idx; 10493 10494 idx = srcu_read_lock(&pmus_srcu); 10495 list_for_each_entry_rcu(pmu, &pmus, entry) { 10496 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10497 10498 mutex_lock(&ctx->mutex); 10499 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10500 mutex_unlock(&ctx->mutex); 10501 } 10502 srcu_read_unlock(&pmus_srcu, idx); 10503 } 10504 #else 10505 10506 static void perf_event_exit_cpu_context(int cpu) { } 10507 10508 #endif 10509 10510 int perf_event_exit_cpu(unsigned int cpu) 10511 { 10512 perf_event_exit_cpu_context(cpu); 10513 return 0; 10514 } 10515 10516 static int 10517 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10518 { 10519 int cpu; 10520 10521 for_each_online_cpu(cpu) 10522 perf_event_exit_cpu(cpu); 10523 10524 return NOTIFY_OK; 10525 } 10526 10527 /* 10528 * Run the perf reboot notifier at the very last possible moment so that 10529 * the generic watchdog code runs as long as possible. 10530 */ 10531 static struct notifier_block perf_reboot_notifier = { 10532 .notifier_call = perf_reboot, 10533 .priority = INT_MIN, 10534 }; 10535 10536 void __init perf_event_init(void) 10537 { 10538 int ret; 10539 10540 idr_init(&pmu_idr); 10541 10542 perf_event_init_all_cpus(); 10543 init_srcu_struct(&pmus_srcu); 10544 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10545 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10546 perf_pmu_register(&perf_task_clock, NULL, -1); 10547 perf_tp_register(); 10548 perf_event_init_cpu(smp_processor_id()); 10549 register_reboot_notifier(&perf_reboot_notifier); 10550 10551 ret = init_hw_breakpoint(); 10552 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10553 10554 /* 10555 * Build time assertion that we keep the data_head at the intended 10556 * location. IOW, validation we got the __reserved[] size right. 10557 */ 10558 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10559 != 1024); 10560 } 10561 10562 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10563 char *page) 10564 { 10565 struct perf_pmu_events_attr *pmu_attr = 10566 container_of(attr, struct perf_pmu_events_attr, attr); 10567 10568 if (pmu_attr->event_str) 10569 return sprintf(page, "%s\n", pmu_attr->event_str); 10570 10571 return 0; 10572 } 10573 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10574 10575 static int __init perf_event_sysfs_init(void) 10576 { 10577 struct pmu *pmu; 10578 int ret; 10579 10580 mutex_lock(&pmus_lock); 10581 10582 ret = bus_register(&pmu_bus); 10583 if (ret) 10584 goto unlock; 10585 10586 list_for_each_entry(pmu, &pmus, entry) { 10587 if (!pmu->name || pmu->type < 0) 10588 continue; 10589 10590 ret = pmu_dev_alloc(pmu); 10591 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10592 } 10593 pmu_bus_running = 1; 10594 ret = 0; 10595 10596 unlock: 10597 mutex_unlock(&pmus_lock); 10598 10599 return ret; 10600 } 10601 device_initcall(perf_event_sysfs_init); 10602 10603 #ifdef CONFIG_CGROUP_PERF 10604 static struct cgroup_subsys_state * 10605 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10606 { 10607 struct perf_cgroup *jc; 10608 10609 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10610 if (!jc) 10611 return ERR_PTR(-ENOMEM); 10612 10613 jc->info = alloc_percpu(struct perf_cgroup_info); 10614 if (!jc->info) { 10615 kfree(jc); 10616 return ERR_PTR(-ENOMEM); 10617 } 10618 10619 return &jc->css; 10620 } 10621 10622 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10623 { 10624 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10625 10626 free_percpu(jc->info); 10627 kfree(jc); 10628 } 10629 10630 static int __perf_cgroup_move(void *info) 10631 { 10632 struct task_struct *task = info; 10633 rcu_read_lock(); 10634 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10635 rcu_read_unlock(); 10636 return 0; 10637 } 10638 10639 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10640 { 10641 struct task_struct *task; 10642 struct cgroup_subsys_state *css; 10643 10644 cgroup_taskset_for_each(task, css, tset) 10645 task_function_call(task, __perf_cgroup_move, task); 10646 } 10647 10648 struct cgroup_subsys perf_event_cgrp_subsys = { 10649 .css_alloc = perf_cgroup_css_alloc, 10650 .css_free = perf_cgroup_css_free, 10651 .attach = perf_cgroup_attach, 10652 }; 10653 #endif /* CONFIG_CGROUP_PERF */ 10654