1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 #ifdef CONFIG_CGROUP_PERF 586 587 static inline bool 588 perf_cgroup_match(struct perf_event *event) 589 { 590 struct perf_event_context *ctx = event->ctx; 591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 592 593 /* @event doesn't care about cgroup */ 594 if (!event->cgrp) 595 return true; 596 597 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 598 if (!cpuctx->cgrp) 599 return false; 600 601 /* 602 * Cgroup scoping is recursive. An event enabled for a cgroup is 603 * also enabled for all its descendant cgroups. If @cpuctx's 604 * cgroup is a descendant of @event's (the test covers identity 605 * case), it's a match. 606 */ 607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 608 event->cgrp->css.cgroup); 609 } 610 611 static inline void perf_detach_cgroup(struct perf_event *event) 612 { 613 css_put(&event->cgrp->css); 614 event->cgrp = NULL; 615 } 616 617 static inline int is_cgroup_event(struct perf_event *event) 618 { 619 return event->cgrp != NULL; 620 } 621 622 static inline u64 perf_cgroup_event_time(struct perf_event *event) 623 { 624 struct perf_cgroup_info *t; 625 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 return t->time; 628 } 629 630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 631 { 632 struct perf_cgroup_info *info; 633 u64 now; 634 635 now = perf_clock(); 636 637 info = this_cpu_ptr(cgrp->info); 638 639 info->time += now - info->timestamp; 640 info->timestamp = now; 641 } 642 643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 644 { 645 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 646 if (cgrp_out) 647 __update_cgrp_time(cgrp_out); 648 } 649 650 static inline void update_cgrp_time_from_event(struct perf_event *event) 651 { 652 struct perf_cgroup *cgrp; 653 654 /* 655 * ensure we access cgroup data only when needed and 656 * when we know the cgroup is pinned (css_get) 657 */ 658 if (!is_cgroup_event(event)) 659 return; 660 661 cgrp = perf_cgroup_from_task(current, event->ctx); 662 /* 663 * Do not update time when cgroup is not active 664 */ 665 if (cgrp == event->cgrp) 666 __update_cgrp_time(event->cgrp); 667 } 668 669 static inline void 670 perf_cgroup_set_timestamp(struct task_struct *task, 671 struct perf_event_context *ctx) 672 { 673 struct perf_cgroup *cgrp; 674 struct perf_cgroup_info *info; 675 676 /* 677 * ctx->lock held by caller 678 * ensure we do not access cgroup data 679 * unless we have the cgroup pinned (css_get) 680 */ 681 if (!task || !ctx->nr_cgroups) 682 return; 683 684 cgrp = perf_cgroup_from_task(task, ctx); 685 info = this_cpu_ptr(cgrp->info); 686 info->timestamp = ctx->timestamp; 687 } 688 689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 690 691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 693 694 /* 695 * reschedule events based on the cgroup constraint of task. 696 * 697 * mode SWOUT : schedule out everything 698 * mode SWIN : schedule in based on cgroup for next 699 */ 700 static void perf_cgroup_switch(struct task_struct *task, int mode) 701 { 702 struct perf_cpu_context *cpuctx; 703 struct list_head *list; 704 unsigned long flags; 705 706 /* 707 * Disable interrupts and preemption to avoid this CPU's 708 * cgrp_cpuctx_entry to change under us. 709 */ 710 local_irq_save(flags); 711 712 list = this_cpu_ptr(&cgrp_cpuctx_list); 713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 715 716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 717 perf_pmu_disable(cpuctx->ctx.pmu); 718 719 if (mode & PERF_CGROUP_SWOUT) { 720 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 721 /* 722 * must not be done before ctxswout due 723 * to event_filter_match() in event_sched_out() 724 */ 725 cpuctx->cgrp = NULL; 726 } 727 728 if (mode & PERF_CGROUP_SWIN) { 729 WARN_ON_ONCE(cpuctx->cgrp); 730 /* 731 * set cgrp before ctxsw in to allow 732 * event_filter_match() to not have to pass 733 * task around 734 * we pass the cpuctx->ctx to perf_cgroup_from_task() 735 * because cgorup events are only per-cpu 736 */ 737 cpuctx->cgrp = perf_cgroup_from_task(task, 738 &cpuctx->ctx); 739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 740 } 741 perf_pmu_enable(cpuctx->ctx.pmu); 742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 743 } 744 745 local_irq_restore(flags); 746 } 747 748 static inline void perf_cgroup_sched_out(struct task_struct *task, 749 struct task_struct *next) 750 { 751 struct perf_cgroup *cgrp1; 752 struct perf_cgroup *cgrp2 = NULL; 753 754 rcu_read_lock(); 755 /* 756 * we come here when we know perf_cgroup_events > 0 757 * we do not need to pass the ctx here because we know 758 * we are holding the rcu lock 759 */ 760 cgrp1 = perf_cgroup_from_task(task, NULL); 761 cgrp2 = perf_cgroup_from_task(next, NULL); 762 763 /* 764 * only schedule out current cgroup events if we know 765 * that we are switching to a different cgroup. Otherwise, 766 * do no touch the cgroup events. 767 */ 768 if (cgrp1 != cgrp2) 769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 770 771 rcu_read_unlock(); 772 } 773 774 static inline void perf_cgroup_sched_in(struct task_struct *prev, 775 struct task_struct *task) 776 { 777 struct perf_cgroup *cgrp1; 778 struct perf_cgroup *cgrp2 = NULL; 779 780 rcu_read_lock(); 781 /* 782 * we come here when we know perf_cgroup_events > 0 783 * we do not need to pass the ctx here because we know 784 * we are holding the rcu lock 785 */ 786 cgrp1 = perf_cgroup_from_task(task, NULL); 787 cgrp2 = perf_cgroup_from_task(prev, NULL); 788 789 /* 790 * only need to schedule in cgroup events if we are changing 791 * cgroup during ctxsw. Cgroup events were not scheduled 792 * out of ctxsw out if that was not the case. 793 */ 794 if (cgrp1 != cgrp2) 795 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 796 797 rcu_read_unlock(); 798 } 799 800 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 801 struct perf_event_attr *attr, 802 struct perf_event *group_leader) 803 { 804 struct perf_cgroup *cgrp; 805 struct cgroup_subsys_state *css; 806 struct fd f = fdget(fd); 807 int ret = 0; 808 809 if (!f.file) 810 return -EBADF; 811 812 css = css_tryget_online_from_dir(f.file->f_path.dentry, 813 &perf_event_cgrp_subsys); 814 if (IS_ERR(css)) { 815 ret = PTR_ERR(css); 816 goto out; 817 } 818 819 cgrp = container_of(css, struct perf_cgroup, css); 820 event->cgrp = cgrp; 821 822 /* 823 * all events in a group must monitor 824 * the same cgroup because a task belongs 825 * to only one perf cgroup at a time 826 */ 827 if (group_leader && group_leader->cgrp != cgrp) { 828 perf_detach_cgroup(event); 829 ret = -EINVAL; 830 } 831 out: 832 fdput(f); 833 return ret; 834 } 835 836 static inline void 837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 838 { 839 struct perf_cgroup_info *t; 840 t = per_cpu_ptr(event->cgrp->info, event->cpu); 841 event->shadow_ctx_time = now - t->timestamp; 842 } 843 844 static inline void 845 perf_cgroup_defer_enabled(struct perf_event *event) 846 { 847 /* 848 * when the current task's perf cgroup does not match 849 * the event's, we need to remember to call the 850 * perf_mark_enable() function the first time a task with 851 * a matching perf cgroup is scheduled in. 852 */ 853 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 854 event->cgrp_defer_enabled = 1; 855 } 856 857 static inline void 858 perf_cgroup_mark_enabled(struct perf_event *event, 859 struct perf_event_context *ctx) 860 { 861 struct perf_event *sub; 862 u64 tstamp = perf_event_time(event); 863 864 if (!event->cgrp_defer_enabled) 865 return; 866 867 event->cgrp_defer_enabled = 0; 868 869 event->tstamp_enabled = tstamp - event->total_time_enabled; 870 list_for_each_entry(sub, &event->sibling_list, group_entry) { 871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 872 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 873 sub->cgrp_defer_enabled = 0; 874 } 875 } 876 } 877 878 /* 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 880 * cleared when last cgroup event is removed. 881 */ 882 static inline void 883 list_update_cgroup_event(struct perf_event *event, 884 struct perf_event_context *ctx, bool add) 885 { 886 struct perf_cpu_context *cpuctx; 887 struct list_head *cpuctx_entry; 888 889 if (!is_cgroup_event(event)) 890 return; 891 892 if (add && ctx->nr_cgroups++) 893 return; 894 else if (!add && --ctx->nr_cgroups) 895 return; 896 /* 897 * Because cgroup events are always per-cpu events, 898 * this will always be called from the right CPU. 899 */ 900 cpuctx = __get_cpu_context(ctx); 901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 903 if (add) { 904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 905 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 906 cpuctx->cgrp = event->cgrp; 907 } else { 908 list_del(cpuctx_entry); 909 cpuctx->cgrp = NULL; 910 } 911 } 912 913 #else /* !CONFIG_CGROUP_PERF */ 914 915 static inline bool 916 perf_cgroup_match(struct perf_event *event) 917 { 918 return true; 919 } 920 921 static inline void perf_detach_cgroup(struct perf_event *event) 922 {} 923 924 static inline int is_cgroup_event(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disabled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1253 { 1254 /* 1255 * only top level events have the pid namespace they were created in 1256 */ 1257 if (event->parent) 1258 event = event->parent; 1259 1260 return task_tgid_nr_ns(p, event->ns); 1261 } 1262 1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1264 { 1265 /* 1266 * only top level events have the pid namespace they were created in 1267 */ 1268 if (event->parent) 1269 event = event->parent; 1270 1271 return task_pid_nr_ns(p, event->ns); 1272 } 1273 1274 /* 1275 * If we inherit events we want to return the parent event id 1276 * to userspace. 1277 */ 1278 static u64 primary_event_id(struct perf_event *event) 1279 { 1280 u64 id = event->id; 1281 1282 if (event->parent) 1283 id = event->parent->id; 1284 1285 return id; 1286 } 1287 1288 /* 1289 * Get the perf_event_context for a task and lock it. 1290 * 1291 * This has to cope with with the fact that until it is locked, 1292 * the context could get moved to another task. 1293 */ 1294 static struct perf_event_context * 1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1296 { 1297 struct perf_event_context *ctx; 1298 1299 retry: 1300 /* 1301 * One of the few rules of preemptible RCU is that one cannot do 1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1303 * part of the read side critical section was irqs-enabled -- see 1304 * rcu_read_unlock_special(). 1305 * 1306 * Since ctx->lock nests under rq->lock we must ensure the entire read 1307 * side critical section has interrupts disabled. 1308 */ 1309 local_irq_save(*flags); 1310 rcu_read_lock(); 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1312 if (ctx) { 1313 /* 1314 * If this context is a clone of another, it might 1315 * get swapped for another underneath us by 1316 * perf_event_task_sched_out, though the 1317 * rcu_read_lock() protects us from any context 1318 * getting freed. Lock the context and check if it 1319 * got swapped before we could get the lock, and retry 1320 * if so. If we locked the right context, then it 1321 * can't get swapped on us any more. 1322 */ 1323 raw_spin_lock(&ctx->lock); 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1325 raw_spin_unlock(&ctx->lock); 1326 rcu_read_unlock(); 1327 local_irq_restore(*flags); 1328 goto retry; 1329 } 1330 1331 if (ctx->task == TASK_TOMBSTONE || 1332 !atomic_inc_not_zero(&ctx->refcount)) { 1333 raw_spin_unlock(&ctx->lock); 1334 ctx = NULL; 1335 } else { 1336 WARN_ON_ONCE(ctx->task != task); 1337 } 1338 } 1339 rcu_read_unlock(); 1340 if (!ctx) 1341 local_irq_restore(*flags); 1342 return ctx; 1343 } 1344 1345 /* 1346 * Get the context for a task and increment its pin_count so it 1347 * can't get swapped to another task. This also increments its 1348 * reference count so that the context can't get freed. 1349 */ 1350 static struct perf_event_context * 1351 perf_pin_task_context(struct task_struct *task, int ctxn) 1352 { 1353 struct perf_event_context *ctx; 1354 unsigned long flags; 1355 1356 ctx = perf_lock_task_context(task, ctxn, &flags); 1357 if (ctx) { 1358 ++ctx->pin_count; 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1360 } 1361 return ctx; 1362 } 1363 1364 static void perf_unpin_context(struct perf_event_context *ctx) 1365 { 1366 unsigned long flags; 1367 1368 raw_spin_lock_irqsave(&ctx->lock, flags); 1369 --ctx->pin_count; 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1371 } 1372 1373 /* 1374 * Update the record of the current time in a context. 1375 */ 1376 static void update_context_time(struct perf_event_context *ctx) 1377 { 1378 u64 now = perf_clock(); 1379 1380 ctx->time += now - ctx->timestamp; 1381 ctx->timestamp = now; 1382 } 1383 1384 static u64 perf_event_time(struct perf_event *event) 1385 { 1386 struct perf_event_context *ctx = event->ctx; 1387 1388 if (is_cgroup_event(event)) 1389 return perf_cgroup_event_time(event); 1390 1391 return ctx ? ctx->time : 0; 1392 } 1393 1394 /* 1395 * Update the total_time_enabled and total_time_running fields for a event. 1396 */ 1397 static void update_event_times(struct perf_event *event) 1398 { 1399 struct perf_event_context *ctx = event->ctx; 1400 u64 run_end; 1401 1402 lockdep_assert_held(&ctx->lock); 1403 1404 if (event->state < PERF_EVENT_STATE_INACTIVE || 1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1406 return; 1407 1408 /* 1409 * in cgroup mode, time_enabled represents 1410 * the time the event was enabled AND active 1411 * tasks were in the monitored cgroup. This is 1412 * independent of the activity of the context as 1413 * there may be a mix of cgroup and non-cgroup events. 1414 * 1415 * That is why we treat cgroup events differently 1416 * here. 1417 */ 1418 if (is_cgroup_event(event)) 1419 run_end = perf_cgroup_event_time(event); 1420 else if (ctx->is_active) 1421 run_end = ctx->time; 1422 else 1423 run_end = event->tstamp_stopped; 1424 1425 event->total_time_enabled = run_end - event->tstamp_enabled; 1426 1427 if (event->state == PERF_EVENT_STATE_INACTIVE) 1428 run_end = event->tstamp_stopped; 1429 else 1430 run_end = perf_event_time(event); 1431 1432 event->total_time_running = run_end - event->tstamp_running; 1433 1434 } 1435 1436 /* 1437 * Update total_time_enabled and total_time_running for all events in a group. 1438 */ 1439 static void update_group_times(struct perf_event *leader) 1440 { 1441 struct perf_event *event; 1442 1443 update_event_times(leader); 1444 list_for_each_entry(event, &leader->sibling_list, group_entry) 1445 update_event_times(event); 1446 } 1447 1448 static enum event_type_t get_event_type(struct perf_event *event) 1449 { 1450 struct perf_event_context *ctx = event->ctx; 1451 enum event_type_t event_type; 1452 1453 lockdep_assert_held(&ctx->lock); 1454 1455 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1456 if (!ctx->task) 1457 event_type |= EVENT_CPU; 1458 1459 return event_type; 1460 } 1461 1462 static struct list_head * 1463 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1464 { 1465 if (event->attr.pinned) 1466 return &ctx->pinned_groups; 1467 else 1468 return &ctx->flexible_groups; 1469 } 1470 1471 /* 1472 * Add a event from the lists for its context. 1473 * Must be called with ctx->mutex and ctx->lock held. 1474 */ 1475 static void 1476 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1477 { 1478 lockdep_assert_held(&ctx->lock); 1479 1480 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1481 event->attach_state |= PERF_ATTACH_CONTEXT; 1482 1483 /* 1484 * If we're a stand alone event or group leader, we go to the context 1485 * list, group events are kept attached to the group so that 1486 * perf_group_detach can, at all times, locate all siblings. 1487 */ 1488 if (event->group_leader == event) { 1489 struct list_head *list; 1490 1491 event->group_caps = event->event_caps; 1492 1493 list = ctx_group_list(event, ctx); 1494 list_add_tail(&event->group_entry, list); 1495 } 1496 1497 list_update_cgroup_event(event, ctx, true); 1498 1499 list_add_rcu(&event->event_entry, &ctx->event_list); 1500 ctx->nr_events++; 1501 if (event->attr.inherit_stat) 1502 ctx->nr_stat++; 1503 1504 ctx->generation++; 1505 } 1506 1507 /* 1508 * Initialize event state based on the perf_event_attr::disabled. 1509 */ 1510 static inline void perf_event__state_init(struct perf_event *event) 1511 { 1512 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1513 PERF_EVENT_STATE_INACTIVE; 1514 } 1515 1516 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1517 { 1518 int entry = sizeof(u64); /* value */ 1519 int size = 0; 1520 int nr = 1; 1521 1522 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1523 size += sizeof(u64); 1524 1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1526 size += sizeof(u64); 1527 1528 if (event->attr.read_format & PERF_FORMAT_ID) 1529 entry += sizeof(u64); 1530 1531 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1532 nr += nr_siblings; 1533 size += sizeof(u64); 1534 } 1535 1536 size += entry * nr; 1537 event->read_size = size; 1538 } 1539 1540 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1541 { 1542 struct perf_sample_data *data; 1543 u16 size = 0; 1544 1545 if (sample_type & PERF_SAMPLE_IP) 1546 size += sizeof(data->ip); 1547 1548 if (sample_type & PERF_SAMPLE_ADDR) 1549 size += sizeof(data->addr); 1550 1551 if (sample_type & PERF_SAMPLE_PERIOD) 1552 size += sizeof(data->period); 1553 1554 if (sample_type & PERF_SAMPLE_WEIGHT) 1555 size += sizeof(data->weight); 1556 1557 if (sample_type & PERF_SAMPLE_READ) 1558 size += event->read_size; 1559 1560 if (sample_type & PERF_SAMPLE_DATA_SRC) 1561 size += sizeof(data->data_src.val); 1562 1563 if (sample_type & PERF_SAMPLE_TRANSACTION) 1564 size += sizeof(data->txn); 1565 1566 event->header_size = size; 1567 } 1568 1569 /* 1570 * Called at perf_event creation and when events are attached/detached from a 1571 * group. 1572 */ 1573 static void perf_event__header_size(struct perf_event *event) 1574 { 1575 __perf_event_read_size(event, 1576 event->group_leader->nr_siblings); 1577 __perf_event_header_size(event, event->attr.sample_type); 1578 } 1579 1580 static void perf_event__id_header_size(struct perf_event *event) 1581 { 1582 struct perf_sample_data *data; 1583 u64 sample_type = event->attr.sample_type; 1584 u16 size = 0; 1585 1586 if (sample_type & PERF_SAMPLE_TID) 1587 size += sizeof(data->tid_entry); 1588 1589 if (sample_type & PERF_SAMPLE_TIME) 1590 size += sizeof(data->time); 1591 1592 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1593 size += sizeof(data->id); 1594 1595 if (sample_type & PERF_SAMPLE_ID) 1596 size += sizeof(data->id); 1597 1598 if (sample_type & PERF_SAMPLE_STREAM_ID) 1599 size += sizeof(data->stream_id); 1600 1601 if (sample_type & PERF_SAMPLE_CPU) 1602 size += sizeof(data->cpu_entry); 1603 1604 event->id_header_size = size; 1605 } 1606 1607 static bool perf_event_validate_size(struct perf_event *event) 1608 { 1609 /* 1610 * The values computed here will be over-written when we actually 1611 * attach the event. 1612 */ 1613 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1614 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1615 perf_event__id_header_size(event); 1616 1617 /* 1618 * Sum the lot; should not exceed the 64k limit we have on records. 1619 * Conservative limit to allow for callchains and other variable fields. 1620 */ 1621 if (event->read_size + event->header_size + 1622 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1623 return false; 1624 1625 return true; 1626 } 1627 1628 static void perf_group_attach(struct perf_event *event) 1629 { 1630 struct perf_event *group_leader = event->group_leader, *pos; 1631 1632 lockdep_assert_held(&event->ctx->lock); 1633 1634 /* 1635 * We can have double attach due to group movement in perf_event_open. 1636 */ 1637 if (event->attach_state & PERF_ATTACH_GROUP) 1638 return; 1639 1640 event->attach_state |= PERF_ATTACH_GROUP; 1641 1642 if (group_leader == event) 1643 return; 1644 1645 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1646 1647 group_leader->group_caps &= event->event_caps; 1648 1649 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1650 group_leader->nr_siblings++; 1651 1652 perf_event__header_size(group_leader); 1653 1654 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1655 perf_event__header_size(pos); 1656 } 1657 1658 /* 1659 * Remove a event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 WARN_ON_ONCE(event->ctx != ctx); 1666 lockdep_assert_held(&ctx->lock); 1667 1668 /* 1669 * We can have double detach due to exit/hot-unplug + close. 1670 */ 1671 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1672 return; 1673 1674 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1675 1676 list_update_cgroup_event(event, ctx, false); 1677 1678 ctx->nr_events--; 1679 if (event->attr.inherit_stat) 1680 ctx->nr_stat--; 1681 1682 list_del_rcu(&event->event_entry); 1683 1684 if (event->group_leader == event) 1685 list_del_init(&event->group_entry); 1686 1687 update_group_times(event); 1688 1689 /* 1690 * If event was in error state, then keep it 1691 * that way, otherwise bogus counts will be 1692 * returned on read(). The only way to get out 1693 * of error state is by explicit re-enabling 1694 * of the event 1695 */ 1696 if (event->state > PERF_EVENT_STATE_OFF) 1697 event->state = PERF_EVENT_STATE_OFF; 1698 1699 ctx->generation++; 1700 } 1701 1702 static void perf_group_detach(struct perf_event *event) 1703 { 1704 struct perf_event *sibling, *tmp; 1705 struct list_head *list = NULL; 1706 1707 lockdep_assert_held(&event->ctx->lock); 1708 1709 /* 1710 * We can have double detach due to exit/hot-unplug + close. 1711 */ 1712 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1713 return; 1714 1715 event->attach_state &= ~PERF_ATTACH_GROUP; 1716 1717 /* 1718 * If this is a sibling, remove it from its group. 1719 */ 1720 if (event->group_leader != event) { 1721 list_del_init(&event->group_entry); 1722 event->group_leader->nr_siblings--; 1723 goto out; 1724 } 1725 1726 if (!list_empty(&event->group_entry)) 1727 list = &event->group_entry; 1728 1729 /* 1730 * If this was a group event with sibling events then 1731 * upgrade the siblings to singleton events by adding them 1732 * to whatever list we are on. 1733 */ 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1735 if (list) 1736 list_move_tail(&sibling->group_entry, list); 1737 sibling->group_leader = sibling; 1738 1739 /* Inherit group flags from the previous leader */ 1740 sibling->group_caps = event->group_caps; 1741 1742 WARN_ON_ONCE(sibling->ctx != event->ctx); 1743 } 1744 1745 out: 1746 perf_event__header_size(event->group_leader); 1747 1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1749 perf_event__header_size(tmp); 1750 } 1751 1752 static bool is_orphaned_event(struct perf_event *event) 1753 { 1754 return event->state == PERF_EVENT_STATE_DEAD; 1755 } 1756 1757 static inline int __pmu_filter_match(struct perf_event *event) 1758 { 1759 struct pmu *pmu = event->pmu; 1760 return pmu->filter_match ? pmu->filter_match(event) : 1; 1761 } 1762 1763 /* 1764 * Check whether we should attempt to schedule an event group based on 1765 * PMU-specific filtering. An event group can consist of HW and SW events, 1766 * potentially with a SW leader, so we must check all the filters, to 1767 * determine whether a group is schedulable: 1768 */ 1769 static inline int pmu_filter_match(struct perf_event *event) 1770 { 1771 struct perf_event *child; 1772 1773 if (!__pmu_filter_match(event)) 1774 return 0; 1775 1776 list_for_each_entry(child, &event->sibling_list, group_entry) { 1777 if (!__pmu_filter_match(child)) 1778 return 0; 1779 } 1780 1781 return 1; 1782 } 1783 1784 static inline int 1785 event_filter_match(struct perf_event *event) 1786 { 1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1788 perf_cgroup_match(event) && pmu_filter_match(event); 1789 } 1790 1791 static void 1792 event_sched_out(struct perf_event *event, 1793 struct perf_cpu_context *cpuctx, 1794 struct perf_event_context *ctx) 1795 { 1796 u64 tstamp = perf_event_time(event); 1797 u64 delta; 1798 1799 WARN_ON_ONCE(event->ctx != ctx); 1800 lockdep_assert_held(&ctx->lock); 1801 1802 /* 1803 * An event which could not be activated because of 1804 * filter mismatch still needs to have its timings 1805 * maintained, otherwise bogus information is return 1806 * via read() for time_enabled, time_running: 1807 */ 1808 if (event->state == PERF_EVENT_STATE_INACTIVE && 1809 !event_filter_match(event)) { 1810 delta = tstamp - event->tstamp_stopped; 1811 event->tstamp_running += delta; 1812 event->tstamp_stopped = tstamp; 1813 } 1814 1815 if (event->state != PERF_EVENT_STATE_ACTIVE) 1816 return; 1817 1818 perf_pmu_disable(event->pmu); 1819 1820 event->tstamp_stopped = tstamp; 1821 event->pmu->del(event, 0); 1822 event->oncpu = -1; 1823 event->state = PERF_EVENT_STATE_INACTIVE; 1824 if (event->pending_disable) { 1825 event->pending_disable = 0; 1826 event->state = PERF_EVENT_STATE_OFF; 1827 } 1828 1829 if (!is_software_event(event)) 1830 cpuctx->active_oncpu--; 1831 if (!--ctx->nr_active) 1832 perf_event_ctx_deactivate(ctx); 1833 if (event->attr.freq && event->attr.sample_freq) 1834 ctx->nr_freq--; 1835 if (event->attr.exclusive || !cpuctx->active_oncpu) 1836 cpuctx->exclusive = 0; 1837 1838 perf_pmu_enable(event->pmu); 1839 } 1840 1841 static void 1842 group_sched_out(struct perf_event *group_event, 1843 struct perf_cpu_context *cpuctx, 1844 struct perf_event_context *ctx) 1845 { 1846 struct perf_event *event; 1847 int state = group_event->state; 1848 1849 perf_pmu_disable(ctx->pmu); 1850 1851 event_sched_out(group_event, cpuctx, ctx); 1852 1853 /* 1854 * Schedule out siblings (if any): 1855 */ 1856 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1857 event_sched_out(event, cpuctx, ctx); 1858 1859 perf_pmu_enable(ctx->pmu); 1860 1861 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1862 cpuctx->exclusive = 0; 1863 } 1864 1865 #define DETACH_GROUP 0x01UL 1866 1867 /* 1868 * Cross CPU call to remove a performance event 1869 * 1870 * We disable the event on the hardware level first. After that we 1871 * remove it from the context list. 1872 */ 1873 static void 1874 __perf_remove_from_context(struct perf_event *event, 1875 struct perf_cpu_context *cpuctx, 1876 struct perf_event_context *ctx, 1877 void *info) 1878 { 1879 unsigned long flags = (unsigned long)info; 1880 1881 event_sched_out(event, cpuctx, ctx); 1882 if (flags & DETACH_GROUP) 1883 perf_group_detach(event); 1884 list_del_event(event, ctx); 1885 1886 if (!ctx->nr_events && ctx->is_active) { 1887 ctx->is_active = 0; 1888 if (ctx->task) { 1889 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1890 cpuctx->task_ctx = NULL; 1891 } 1892 } 1893 } 1894 1895 /* 1896 * Remove the event from a task's (or a CPU's) list of events. 1897 * 1898 * If event->ctx is a cloned context, callers must make sure that 1899 * every task struct that event->ctx->task could possibly point to 1900 * remains valid. This is OK when called from perf_release since 1901 * that only calls us on the top-level context, which can't be a clone. 1902 * When called from perf_event_exit_task, it's OK because the 1903 * context has been detached from its task. 1904 */ 1905 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1906 { 1907 struct perf_event_context *ctx = event->ctx; 1908 1909 lockdep_assert_held(&ctx->mutex); 1910 1911 event_function_call(event, __perf_remove_from_context, (void *)flags); 1912 1913 /* 1914 * The above event_function_call() can NO-OP when it hits 1915 * TASK_TOMBSTONE. In that case we must already have been detached 1916 * from the context (by perf_event_exit_event()) but the grouping 1917 * might still be in-tact. 1918 */ 1919 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1920 if ((flags & DETACH_GROUP) && 1921 (event->attach_state & PERF_ATTACH_GROUP)) { 1922 /* 1923 * Since in that case we cannot possibly be scheduled, simply 1924 * detach now. 1925 */ 1926 raw_spin_lock_irq(&ctx->lock); 1927 perf_group_detach(event); 1928 raw_spin_unlock_irq(&ctx->lock); 1929 } 1930 } 1931 1932 /* 1933 * Cross CPU call to disable a performance event 1934 */ 1935 static void __perf_event_disable(struct perf_event *event, 1936 struct perf_cpu_context *cpuctx, 1937 struct perf_event_context *ctx, 1938 void *info) 1939 { 1940 if (event->state < PERF_EVENT_STATE_INACTIVE) 1941 return; 1942 1943 update_context_time(ctx); 1944 update_cgrp_time_from_event(event); 1945 update_group_times(event); 1946 if (event == event->group_leader) 1947 group_sched_out(event, cpuctx, ctx); 1948 else 1949 event_sched_out(event, cpuctx, ctx); 1950 event->state = PERF_EVENT_STATE_OFF; 1951 } 1952 1953 /* 1954 * Disable a event. 1955 * 1956 * If event->ctx is a cloned context, callers must make sure that 1957 * every task struct that event->ctx->task could possibly point to 1958 * remains valid. This condition is satisifed when called through 1959 * perf_event_for_each_child or perf_event_for_each because they 1960 * hold the top-level event's child_mutex, so any descendant that 1961 * goes to exit will block in perf_event_exit_event(). 1962 * 1963 * When called from perf_pending_event it's OK because event->ctx 1964 * is the current context on this CPU and preemption is disabled, 1965 * hence we can't get into perf_event_task_sched_out for this context. 1966 */ 1967 static void _perf_event_disable(struct perf_event *event) 1968 { 1969 struct perf_event_context *ctx = event->ctx; 1970 1971 raw_spin_lock_irq(&ctx->lock); 1972 if (event->state <= PERF_EVENT_STATE_OFF) { 1973 raw_spin_unlock_irq(&ctx->lock); 1974 return; 1975 } 1976 raw_spin_unlock_irq(&ctx->lock); 1977 1978 event_function_call(event, __perf_event_disable, NULL); 1979 } 1980 1981 void perf_event_disable_local(struct perf_event *event) 1982 { 1983 event_function_local(event, __perf_event_disable, NULL); 1984 } 1985 1986 /* 1987 * Strictly speaking kernel users cannot create groups and therefore this 1988 * interface does not need the perf_event_ctx_lock() magic. 1989 */ 1990 void perf_event_disable(struct perf_event *event) 1991 { 1992 struct perf_event_context *ctx; 1993 1994 ctx = perf_event_ctx_lock(event); 1995 _perf_event_disable(event); 1996 perf_event_ctx_unlock(event, ctx); 1997 } 1998 EXPORT_SYMBOL_GPL(perf_event_disable); 1999 2000 void perf_event_disable_inatomic(struct perf_event *event) 2001 { 2002 event->pending_disable = 1; 2003 irq_work_queue(&event->pending); 2004 } 2005 2006 static void perf_set_shadow_time(struct perf_event *event, 2007 struct perf_event_context *ctx, 2008 u64 tstamp) 2009 { 2010 /* 2011 * use the correct time source for the time snapshot 2012 * 2013 * We could get by without this by leveraging the 2014 * fact that to get to this function, the caller 2015 * has most likely already called update_context_time() 2016 * and update_cgrp_time_xx() and thus both timestamp 2017 * are identical (or very close). Given that tstamp is, 2018 * already adjusted for cgroup, we could say that: 2019 * tstamp - ctx->timestamp 2020 * is equivalent to 2021 * tstamp - cgrp->timestamp. 2022 * 2023 * Then, in perf_output_read(), the calculation would 2024 * work with no changes because: 2025 * - event is guaranteed scheduled in 2026 * - no scheduled out in between 2027 * - thus the timestamp would be the same 2028 * 2029 * But this is a bit hairy. 2030 * 2031 * So instead, we have an explicit cgroup call to remain 2032 * within the time time source all along. We believe it 2033 * is cleaner and simpler to understand. 2034 */ 2035 if (is_cgroup_event(event)) 2036 perf_cgroup_set_shadow_time(event, tstamp); 2037 else 2038 event->shadow_ctx_time = tstamp - ctx->timestamp; 2039 } 2040 2041 #define MAX_INTERRUPTS (~0ULL) 2042 2043 static void perf_log_throttle(struct perf_event *event, int enable); 2044 static void perf_log_itrace_start(struct perf_event *event); 2045 2046 static int 2047 event_sched_in(struct perf_event *event, 2048 struct perf_cpu_context *cpuctx, 2049 struct perf_event_context *ctx) 2050 { 2051 u64 tstamp = perf_event_time(event); 2052 int ret = 0; 2053 2054 lockdep_assert_held(&ctx->lock); 2055 2056 if (event->state <= PERF_EVENT_STATE_OFF) 2057 return 0; 2058 2059 WRITE_ONCE(event->oncpu, smp_processor_id()); 2060 /* 2061 * Order event::oncpu write to happen before the ACTIVE state 2062 * is visible. 2063 */ 2064 smp_wmb(); 2065 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2066 2067 /* 2068 * Unthrottle events, since we scheduled we might have missed several 2069 * ticks already, also for a heavily scheduling task there is little 2070 * guarantee it'll get a tick in a timely manner. 2071 */ 2072 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2073 perf_log_throttle(event, 1); 2074 event->hw.interrupts = 0; 2075 } 2076 2077 /* 2078 * The new state must be visible before we turn it on in the hardware: 2079 */ 2080 smp_wmb(); 2081 2082 perf_pmu_disable(event->pmu); 2083 2084 perf_set_shadow_time(event, ctx, tstamp); 2085 2086 perf_log_itrace_start(event); 2087 2088 if (event->pmu->add(event, PERF_EF_START)) { 2089 event->state = PERF_EVENT_STATE_INACTIVE; 2090 event->oncpu = -1; 2091 ret = -EAGAIN; 2092 goto out; 2093 } 2094 2095 event->tstamp_running += tstamp - event->tstamp_stopped; 2096 2097 if (!is_software_event(event)) 2098 cpuctx->active_oncpu++; 2099 if (!ctx->nr_active++) 2100 perf_event_ctx_activate(ctx); 2101 if (event->attr.freq && event->attr.sample_freq) 2102 ctx->nr_freq++; 2103 2104 if (event->attr.exclusive) 2105 cpuctx->exclusive = 1; 2106 2107 out: 2108 perf_pmu_enable(event->pmu); 2109 2110 return ret; 2111 } 2112 2113 static int 2114 group_sched_in(struct perf_event *group_event, 2115 struct perf_cpu_context *cpuctx, 2116 struct perf_event_context *ctx) 2117 { 2118 struct perf_event *event, *partial_group = NULL; 2119 struct pmu *pmu = ctx->pmu; 2120 u64 now = ctx->time; 2121 bool simulate = false; 2122 2123 if (group_event->state == PERF_EVENT_STATE_OFF) 2124 return 0; 2125 2126 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2127 2128 if (event_sched_in(group_event, cpuctx, ctx)) { 2129 pmu->cancel_txn(pmu); 2130 perf_mux_hrtimer_restart(cpuctx); 2131 return -EAGAIN; 2132 } 2133 2134 /* 2135 * Schedule in siblings as one group (if any): 2136 */ 2137 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2138 if (event_sched_in(event, cpuctx, ctx)) { 2139 partial_group = event; 2140 goto group_error; 2141 } 2142 } 2143 2144 if (!pmu->commit_txn(pmu)) 2145 return 0; 2146 2147 group_error: 2148 /* 2149 * Groups can be scheduled in as one unit only, so undo any 2150 * partial group before returning: 2151 * The events up to the failed event are scheduled out normally, 2152 * tstamp_stopped will be updated. 2153 * 2154 * The failed events and the remaining siblings need to have 2155 * their timings updated as if they had gone thru event_sched_in() 2156 * and event_sched_out(). This is required to get consistent timings 2157 * across the group. This also takes care of the case where the group 2158 * could never be scheduled by ensuring tstamp_stopped is set to mark 2159 * the time the event was actually stopped, such that time delta 2160 * calculation in update_event_times() is correct. 2161 */ 2162 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2163 if (event == partial_group) 2164 simulate = true; 2165 2166 if (simulate) { 2167 event->tstamp_running += now - event->tstamp_stopped; 2168 event->tstamp_stopped = now; 2169 } else { 2170 event_sched_out(event, cpuctx, ctx); 2171 } 2172 } 2173 event_sched_out(group_event, cpuctx, ctx); 2174 2175 pmu->cancel_txn(pmu); 2176 2177 perf_mux_hrtimer_restart(cpuctx); 2178 2179 return -EAGAIN; 2180 } 2181 2182 /* 2183 * Work out whether we can put this event group on the CPU now. 2184 */ 2185 static int group_can_go_on(struct perf_event *event, 2186 struct perf_cpu_context *cpuctx, 2187 int can_add_hw) 2188 { 2189 /* 2190 * Groups consisting entirely of software events can always go on. 2191 */ 2192 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2193 return 1; 2194 /* 2195 * If an exclusive group is already on, no other hardware 2196 * events can go on. 2197 */ 2198 if (cpuctx->exclusive) 2199 return 0; 2200 /* 2201 * If this group is exclusive and there are already 2202 * events on the CPU, it can't go on. 2203 */ 2204 if (event->attr.exclusive && cpuctx->active_oncpu) 2205 return 0; 2206 /* 2207 * Otherwise, try to add it if all previous groups were able 2208 * to go on. 2209 */ 2210 return can_add_hw; 2211 } 2212 2213 static void add_event_to_ctx(struct perf_event *event, 2214 struct perf_event_context *ctx) 2215 { 2216 u64 tstamp = perf_event_time(event); 2217 2218 list_add_event(event, ctx); 2219 perf_group_attach(event); 2220 event->tstamp_enabled = tstamp; 2221 event->tstamp_running = tstamp; 2222 event->tstamp_stopped = tstamp; 2223 } 2224 2225 static void ctx_sched_out(struct perf_event_context *ctx, 2226 struct perf_cpu_context *cpuctx, 2227 enum event_type_t event_type); 2228 static void 2229 ctx_sched_in(struct perf_event_context *ctx, 2230 struct perf_cpu_context *cpuctx, 2231 enum event_type_t event_type, 2232 struct task_struct *task); 2233 2234 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2235 struct perf_event_context *ctx, 2236 enum event_type_t event_type) 2237 { 2238 if (!cpuctx->task_ctx) 2239 return; 2240 2241 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2242 return; 2243 2244 ctx_sched_out(ctx, cpuctx, event_type); 2245 } 2246 2247 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx, 2249 struct task_struct *task) 2250 { 2251 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2252 if (ctx) 2253 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2254 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2255 if (ctx) 2256 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2257 } 2258 2259 /* 2260 * We want to maintain the following priority of scheduling: 2261 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2262 * - task pinned (EVENT_PINNED) 2263 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2264 * - task flexible (EVENT_FLEXIBLE). 2265 * 2266 * In order to avoid unscheduling and scheduling back in everything every 2267 * time an event is added, only do it for the groups of equal priority and 2268 * below. 2269 * 2270 * This can be called after a batch operation on task events, in which case 2271 * event_type is a bit mask of the types of events involved. For CPU events, 2272 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2273 */ 2274 static void ctx_resched(struct perf_cpu_context *cpuctx, 2275 struct perf_event_context *task_ctx, 2276 enum event_type_t event_type) 2277 { 2278 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2279 bool cpu_event = !!(event_type & EVENT_CPU); 2280 2281 /* 2282 * If pinned groups are involved, flexible groups also need to be 2283 * scheduled out. 2284 */ 2285 if (event_type & EVENT_PINNED) 2286 event_type |= EVENT_FLEXIBLE; 2287 2288 perf_pmu_disable(cpuctx->ctx.pmu); 2289 if (task_ctx) 2290 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2291 2292 /* 2293 * Decide which cpu ctx groups to schedule out based on the types 2294 * of events that caused rescheduling: 2295 * - EVENT_CPU: schedule out corresponding groups; 2296 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2297 * - otherwise, do nothing more. 2298 */ 2299 if (cpu_event) 2300 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2301 else if (ctx_event_type & EVENT_PINNED) 2302 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2303 2304 perf_event_sched_in(cpuctx, task_ctx, current); 2305 perf_pmu_enable(cpuctx->ctx.pmu); 2306 } 2307 2308 /* 2309 * Cross CPU call to install and enable a performance event 2310 * 2311 * Very similar to remote_function() + event_function() but cannot assume that 2312 * things like ctx->is_active and cpuctx->task_ctx are set. 2313 */ 2314 static int __perf_install_in_context(void *info) 2315 { 2316 struct perf_event *event = info; 2317 struct perf_event_context *ctx = event->ctx; 2318 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2319 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2320 bool reprogram = true; 2321 int ret = 0; 2322 2323 raw_spin_lock(&cpuctx->ctx.lock); 2324 if (ctx->task) { 2325 raw_spin_lock(&ctx->lock); 2326 task_ctx = ctx; 2327 2328 reprogram = (ctx->task == current); 2329 2330 /* 2331 * If the task is running, it must be running on this CPU, 2332 * otherwise we cannot reprogram things. 2333 * 2334 * If its not running, we don't care, ctx->lock will 2335 * serialize against it becoming runnable. 2336 */ 2337 if (task_curr(ctx->task) && !reprogram) { 2338 ret = -ESRCH; 2339 goto unlock; 2340 } 2341 2342 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2343 } else if (task_ctx) { 2344 raw_spin_lock(&task_ctx->lock); 2345 } 2346 2347 if (reprogram) { 2348 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2349 add_event_to_ctx(event, ctx); 2350 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2351 } else { 2352 add_event_to_ctx(event, ctx); 2353 } 2354 2355 unlock: 2356 perf_ctx_unlock(cpuctx, task_ctx); 2357 2358 return ret; 2359 } 2360 2361 /* 2362 * Attach a performance event to a context. 2363 * 2364 * Very similar to event_function_call, see comment there. 2365 */ 2366 static void 2367 perf_install_in_context(struct perf_event_context *ctx, 2368 struct perf_event *event, 2369 int cpu) 2370 { 2371 struct task_struct *task = READ_ONCE(ctx->task); 2372 2373 lockdep_assert_held(&ctx->mutex); 2374 2375 if (event->cpu != -1) 2376 event->cpu = cpu; 2377 2378 /* 2379 * Ensures that if we can observe event->ctx, both the event and ctx 2380 * will be 'complete'. See perf_iterate_sb_cpu(). 2381 */ 2382 smp_store_release(&event->ctx, ctx); 2383 2384 if (!task) { 2385 cpu_function_call(cpu, __perf_install_in_context, event); 2386 return; 2387 } 2388 2389 /* 2390 * Should not happen, we validate the ctx is still alive before calling. 2391 */ 2392 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2393 return; 2394 2395 /* 2396 * Installing events is tricky because we cannot rely on ctx->is_active 2397 * to be set in case this is the nr_events 0 -> 1 transition. 2398 * 2399 * Instead we use task_curr(), which tells us if the task is running. 2400 * However, since we use task_curr() outside of rq::lock, we can race 2401 * against the actual state. This means the result can be wrong. 2402 * 2403 * If we get a false positive, we retry, this is harmless. 2404 * 2405 * If we get a false negative, things are complicated. If we are after 2406 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2407 * value must be correct. If we're before, it doesn't matter since 2408 * perf_event_context_sched_in() will program the counter. 2409 * 2410 * However, this hinges on the remote context switch having observed 2411 * our task->perf_event_ctxp[] store, such that it will in fact take 2412 * ctx::lock in perf_event_context_sched_in(). 2413 * 2414 * We do this by task_function_call(), if the IPI fails to hit the task 2415 * we know any future context switch of task must see the 2416 * perf_event_ctpx[] store. 2417 */ 2418 2419 /* 2420 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2421 * task_cpu() load, such that if the IPI then does not find the task 2422 * running, a future context switch of that task must observe the 2423 * store. 2424 */ 2425 smp_mb(); 2426 again: 2427 if (!task_function_call(task, __perf_install_in_context, event)) 2428 return; 2429 2430 raw_spin_lock_irq(&ctx->lock); 2431 task = ctx->task; 2432 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2433 /* 2434 * Cannot happen because we already checked above (which also 2435 * cannot happen), and we hold ctx->mutex, which serializes us 2436 * against perf_event_exit_task_context(). 2437 */ 2438 raw_spin_unlock_irq(&ctx->lock); 2439 return; 2440 } 2441 /* 2442 * If the task is not running, ctx->lock will avoid it becoming so, 2443 * thus we can safely install the event. 2444 */ 2445 if (task_curr(task)) { 2446 raw_spin_unlock_irq(&ctx->lock); 2447 goto again; 2448 } 2449 add_event_to_ctx(event, ctx); 2450 raw_spin_unlock_irq(&ctx->lock); 2451 } 2452 2453 /* 2454 * Put a event into inactive state and update time fields. 2455 * Enabling the leader of a group effectively enables all 2456 * the group members that aren't explicitly disabled, so we 2457 * have to update their ->tstamp_enabled also. 2458 * Note: this works for group members as well as group leaders 2459 * since the non-leader members' sibling_lists will be empty. 2460 */ 2461 static void __perf_event_mark_enabled(struct perf_event *event) 2462 { 2463 struct perf_event *sub; 2464 u64 tstamp = perf_event_time(event); 2465 2466 event->state = PERF_EVENT_STATE_INACTIVE; 2467 event->tstamp_enabled = tstamp - event->total_time_enabled; 2468 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2469 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2470 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2471 } 2472 } 2473 2474 /* 2475 * Cross CPU call to enable a performance event 2476 */ 2477 static void __perf_event_enable(struct perf_event *event, 2478 struct perf_cpu_context *cpuctx, 2479 struct perf_event_context *ctx, 2480 void *info) 2481 { 2482 struct perf_event *leader = event->group_leader; 2483 struct perf_event_context *task_ctx; 2484 2485 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2486 event->state <= PERF_EVENT_STATE_ERROR) 2487 return; 2488 2489 if (ctx->is_active) 2490 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2491 2492 __perf_event_mark_enabled(event); 2493 2494 if (!ctx->is_active) 2495 return; 2496 2497 if (!event_filter_match(event)) { 2498 if (is_cgroup_event(event)) 2499 perf_cgroup_defer_enabled(event); 2500 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2501 return; 2502 } 2503 2504 /* 2505 * If the event is in a group and isn't the group leader, 2506 * then don't put it on unless the group is on. 2507 */ 2508 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2509 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2510 return; 2511 } 2512 2513 task_ctx = cpuctx->task_ctx; 2514 if (ctx->task) 2515 WARN_ON_ONCE(task_ctx != ctx); 2516 2517 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2518 } 2519 2520 /* 2521 * Enable a event. 2522 * 2523 * If event->ctx is a cloned context, callers must make sure that 2524 * every task struct that event->ctx->task could possibly point to 2525 * remains valid. This condition is satisfied when called through 2526 * perf_event_for_each_child or perf_event_for_each as described 2527 * for perf_event_disable. 2528 */ 2529 static void _perf_event_enable(struct perf_event *event) 2530 { 2531 struct perf_event_context *ctx = event->ctx; 2532 2533 raw_spin_lock_irq(&ctx->lock); 2534 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2535 event->state < PERF_EVENT_STATE_ERROR) { 2536 raw_spin_unlock_irq(&ctx->lock); 2537 return; 2538 } 2539 2540 /* 2541 * If the event is in error state, clear that first. 2542 * 2543 * That way, if we see the event in error state below, we know that it 2544 * has gone back into error state, as distinct from the task having 2545 * been scheduled away before the cross-call arrived. 2546 */ 2547 if (event->state == PERF_EVENT_STATE_ERROR) 2548 event->state = PERF_EVENT_STATE_OFF; 2549 raw_spin_unlock_irq(&ctx->lock); 2550 2551 event_function_call(event, __perf_event_enable, NULL); 2552 } 2553 2554 /* 2555 * See perf_event_disable(); 2556 */ 2557 void perf_event_enable(struct perf_event *event) 2558 { 2559 struct perf_event_context *ctx; 2560 2561 ctx = perf_event_ctx_lock(event); 2562 _perf_event_enable(event); 2563 perf_event_ctx_unlock(event, ctx); 2564 } 2565 EXPORT_SYMBOL_GPL(perf_event_enable); 2566 2567 struct stop_event_data { 2568 struct perf_event *event; 2569 unsigned int restart; 2570 }; 2571 2572 static int __perf_event_stop(void *info) 2573 { 2574 struct stop_event_data *sd = info; 2575 struct perf_event *event = sd->event; 2576 2577 /* if it's already INACTIVE, do nothing */ 2578 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2579 return 0; 2580 2581 /* matches smp_wmb() in event_sched_in() */ 2582 smp_rmb(); 2583 2584 /* 2585 * There is a window with interrupts enabled before we get here, 2586 * so we need to check again lest we try to stop another CPU's event. 2587 */ 2588 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2589 return -EAGAIN; 2590 2591 event->pmu->stop(event, PERF_EF_UPDATE); 2592 2593 /* 2594 * May race with the actual stop (through perf_pmu_output_stop()), 2595 * but it is only used for events with AUX ring buffer, and such 2596 * events will refuse to restart because of rb::aux_mmap_count==0, 2597 * see comments in perf_aux_output_begin(). 2598 * 2599 * Since this is happening on a event-local CPU, no trace is lost 2600 * while restarting. 2601 */ 2602 if (sd->restart) 2603 event->pmu->start(event, 0); 2604 2605 return 0; 2606 } 2607 2608 static int perf_event_stop(struct perf_event *event, int restart) 2609 { 2610 struct stop_event_data sd = { 2611 .event = event, 2612 .restart = restart, 2613 }; 2614 int ret = 0; 2615 2616 do { 2617 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2618 return 0; 2619 2620 /* matches smp_wmb() in event_sched_in() */ 2621 smp_rmb(); 2622 2623 /* 2624 * We only want to restart ACTIVE events, so if the event goes 2625 * inactive here (event->oncpu==-1), there's nothing more to do; 2626 * fall through with ret==-ENXIO. 2627 */ 2628 ret = cpu_function_call(READ_ONCE(event->oncpu), 2629 __perf_event_stop, &sd); 2630 } while (ret == -EAGAIN); 2631 2632 return ret; 2633 } 2634 2635 /* 2636 * In order to contain the amount of racy and tricky in the address filter 2637 * configuration management, it is a two part process: 2638 * 2639 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2640 * we update the addresses of corresponding vmas in 2641 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2642 * (p2) when an event is scheduled in (pmu::add), it calls 2643 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2644 * if the generation has changed since the previous call. 2645 * 2646 * If (p1) happens while the event is active, we restart it to force (p2). 2647 * 2648 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2649 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2650 * ioctl; 2651 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2652 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2653 * for reading; 2654 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2655 * of exec. 2656 */ 2657 void perf_event_addr_filters_sync(struct perf_event *event) 2658 { 2659 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2660 2661 if (!has_addr_filter(event)) 2662 return; 2663 2664 raw_spin_lock(&ifh->lock); 2665 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2666 event->pmu->addr_filters_sync(event); 2667 event->hw.addr_filters_gen = event->addr_filters_gen; 2668 } 2669 raw_spin_unlock(&ifh->lock); 2670 } 2671 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2672 2673 static int _perf_event_refresh(struct perf_event *event, int refresh) 2674 { 2675 /* 2676 * not supported on inherited events 2677 */ 2678 if (event->attr.inherit || !is_sampling_event(event)) 2679 return -EINVAL; 2680 2681 atomic_add(refresh, &event->event_limit); 2682 _perf_event_enable(event); 2683 2684 return 0; 2685 } 2686 2687 /* 2688 * See perf_event_disable() 2689 */ 2690 int perf_event_refresh(struct perf_event *event, int refresh) 2691 { 2692 struct perf_event_context *ctx; 2693 int ret; 2694 2695 ctx = perf_event_ctx_lock(event); 2696 ret = _perf_event_refresh(event, refresh); 2697 perf_event_ctx_unlock(event, ctx); 2698 2699 return ret; 2700 } 2701 EXPORT_SYMBOL_GPL(perf_event_refresh); 2702 2703 static void ctx_sched_out(struct perf_event_context *ctx, 2704 struct perf_cpu_context *cpuctx, 2705 enum event_type_t event_type) 2706 { 2707 int is_active = ctx->is_active; 2708 struct perf_event *event; 2709 2710 lockdep_assert_held(&ctx->lock); 2711 2712 if (likely(!ctx->nr_events)) { 2713 /* 2714 * See __perf_remove_from_context(). 2715 */ 2716 WARN_ON_ONCE(ctx->is_active); 2717 if (ctx->task) 2718 WARN_ON_ONCE(cpuctx->task_ctx); 2719 return; 2720 } 2721 2722 ctx->is_active &= ~event_type; 2723 if (!(ctx->is_active & EVENT_ALL)) 2724 ctx->is_active = 0; 2725 2726 if (ctx->task) { 2727 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2728 if (!ctx->is_active) 2729 cpuctx->task_ctx = NULL; 2730 } 2731 2732 /* 2733 * Always update time if it was set; not only when it changes. 2734 * Otherwise we can 'forget' to update time for any but the last 2735 * context we sched out. For example: 2736 * 2737 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2738 * ctx_sched_out(.event_type = EVENT_PINNED) 2739 * 2740 * would only update time for the pinned events. 2741 */ 2742 if (is_active & EVENT_TIME) { 2743 /* update (and stop) ctx time */ 2744 update_context_time(ctx); 2745 update_cgrp_time_from_cpuctx(cpuctx); 2746 } 2747 2748 is_active ^= ctx->is_active; /* changed bits */ 2749 2750 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2751 return; 2752 2753 perf_pmu_disable(ctx->pmu); 2754 if (is_active & EVENT_PINNED) { 2755 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2756 group_sched_out(event, cpuctx, ctx); 2757 } 2758 2759 if (is_active & EVENT_FLEXIBLE) { 2760 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2761 group_sched_out(event, cpuctx, ctx); 2762 } 2763 perf_pmu_enable(ctx->pmu); 2764 } 2765 2766 /* 2767 * Test whether two contexts are equivalent, i.e. whether they have both been 2768 * cloned from the same version of the same context. 2769 * 2770 * Equivalence is measured using a generation number in the context that is 2771 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2772 * and list_del_event(). 2773 */ 2774 static int context_equiv(struct perf_event_context *ctx1, 2775 struct perf_event_context *ctx2) 2776 { 2777 lockdep_assert_held(&ctx1->lock); 2778 lockdep_assert_held(&ctx2->lock); 2779 2780 /* Pinning disables the swap optimization */ 2781 if (ctx1->pin_count || ctx2->pin_count) 2782 return 0; 2783 2784 /* If ctx1 is the parent of ctx2 */ 2785 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2786 return 1; 2787 2788 /* If ctx2 is the parent of ctx1 */ 2789 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2790 return 1; 2791 2792 /* 2793 * If ctx1 and ctx2 have the same parent; we flatten the parent 2794 * hierarchy, see perf_event_init_context(). 2795 */ 2796 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2797 ctx1->parent_gen == ctx2->parent_gen) 2798 return 1; 2799 2800 /* Unmatched */ 2801 return 0; 2802 } 2803 2804 static void __perf_event_sync_stat(struct perf_event *event, 2805 struct perf_event *next_event) 2806 { 2807 u64 value; 2808 2809 if (!event->attr.inherit_stat) 2810 return; 2811 2812 /* 2813 * Update the event value, we cannot use perf_event_read() 2814 * because we're in the middle of a context switch and have IRQs 2815 * disabled, which upsets smp_call_function_single(), however 2816 * we know the event must be on the current CPU, therefore we 2817 * don't need to use it. 2818 */ 2819 switch (event->state) { 2820 case PERF_EVENT_STATE_ACTIVE: 2821 event->pmu->read(event); 2822 /* fall-through */ 2823 2824 case PERF_EVENT_STATE_INACTIVE: 2825 update_event_times(event); 2826 break; 2827 2828 default: 2829 break; 2830 } 2831 2832 /* 2833 * In order to keep per-task stats reliable we need to flip the event 2834 * values when we flip the contexts. 2835 */ 2836 value = local64_read(&next_event->count); 2837 value = local64_xchg(&event->count, value); 2838 local64_set(&next_event->count, value); 2839 2840 swap(event->total_time_enabled, next_event->total_time_enabled); 2841 swap(event->total_time_running, next_event->total_time_running); 2842 2843 /* 2844 * Since we swizzled the values, update the user visible data too. 2845 */ 2846 perf_event_update_userpage(event); 2847 perf_event_update_userpage(next_event); 2848 } 2849 2850 static void perf_event_sync_stat(struct perf_event_context *ctx, 2851 struct perf_event_context *next_ctx) 2852 { 2853 struct perf_event *event, *next_event; 2854 2855 if (!ctx->nr_stat) 2856 return; 2857 2858 update_context_time(ctx); 2859 2860 event = list_first_entry(&ctx->event_list, 2861 struct perf_event, event_entry); 2862 2863 next_event = list_first_entry(&next_ctx->event_list, 2864 struct perf_event, event_entry); 2865 2866 while (&event->event_entry != &ctx->event_list && 2867 &next_event->event_entry != &next_ctx->event_list) { 2868 2869 __perf_event_sync_stat(event, next_event); 2870 2871 event = list_next_entry(event, event_entry); 2872 next_event = list_next_entry(next_event, event_entry); 2873 } 2874 } 2875 2876 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2877 struct task_struct *next) 2878 { 2879 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2880 struct perf_event_context *next_ctx; 2881 struct perf_event_context *parent, *next_parent; 2882 struct perf_cpu_context *cpuctx; 2883 int do_switch = 1; 2884 2885 if (likely(!ctx)) 2886 return; 2887 2888 cpuctx = __get_cpu_context(ctx); 2889 if (!cpuctx->task_ctx) 2890 return; 2891 2892 rcu_read_lock(); 2893 next_ctx = next->perf_event_ctxp[ctxn]; 2894 if (!next_ctx) 2895 goto unlock; 2896 2897 parent = rcu_dereference(ctx->parent_ctx); 2898 next_parent = rcu_dereference(next_ctx->parent_ctx); 2899 2900 /* If neither context have a parent context; they cannot be clones. */ 2901 if (!parent && !next_parent) 2902 goto unlock; 2903 2904 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2905 /* 2906 * Looks like the two contexts are clones, so we might be 2907 * able to optimize the context switch. We lock both 2908 * contexts and check that they are clones under the 2909 * lock (including re-checking that neither has been 2910 * uncloned in the meantime). It doesn't matter which 2911 * order we take the locks because no other cpu could 2912 * be trying to lock both of these tasks. 2913 */ 2914 raw_spin_lock(&ctx->lock); 2915 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2916 if (context_equiv(ctx, next_ctx)) { 2917 WRITE_ONCE(ctx->task, next); 2918 WRITE_ONCE(next_ctx->task, task); 2919 2920 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2921 2922 /* 2923 * RCU_INIT_POINTER here is safe because we've not 2924 * modified the ctx and the above modification of 2925 * ctx->task and ctx->task_ctx_data are immaterial 2926 * since those values are always verified under 2927 * ctx->lock which we're now holding. 2928 */ 2929 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2930 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2931 2932 do_switch = 0; 2933 2934 perf_event_sync_stat(ctx, next_ctx); 2935 } 2936 raw_spin_unlock(&next_ctx->lock); 2937 raw_spin_unlock(&ctx->lock); 2938 } 2939 unlock: 2940 rcu_read_unlock(); 2941 2942 if (do_switch) { 2943 raw_spin_lock(&ctx->lock); 2944 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2945 raw_spin_unlock(&ctx->lock); 2946 } 2947 } 2948 2949 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2950 2951 void perf_sched_cb_dec(struct pmu *pmu) 2952 { 2953 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2954 2955 this_cpu_dec(perf_sched_cb_usages); 2956 2957 if (!--cpuctx->sched_cb_usage) 2958 list_del(&cpuctx->sched_cb_entry); 2959 } 2960 2961 2962 void perf_sched_cb_inc(struct pmu *pmu) 2963 { 2964 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2965 2966 if (!cpuctx->sched_cb_usage++) 2967 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2968 2969 this_cpu_inc(perf_sched_cb_usages); 2970 } 2971 2972 /* 2973 * This function provides the context switch callback to the lower code 2974 * layer. It is invoked ONLY when the context switch callback is enabled. 2975 * 2976 * This callback is relevant even to per-cpu events; for example multi event 2977 * PEBS requires this to provide PID/TID information. This requires we flush 2978 * all queued PEBS records before we context switch to a new task. 2979 */ 2980 static void perf_pmu_sched_task(struct task_struct *prev, 2981 struct task_struct *next, 2982 bool sched_in) 2983 { 2984 struct perf_cpu_context *cpuctx; 2985 struct pmu *pmu; 2986 2987 if (prev == next) 2988 return; 2989 2990 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2991 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2992 2993 if (WARN_ON_ONCE(!pmu->sched_task)) 2994 continue; 2995 2996 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2997 perf_pmu_disable(pmu); 2998 2999 pmu->sched_task(cpuctx->task_ctx, sched_in); 3000 3001 perf_pmu_enable(pmu); 3002 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3003 } 3004 } 3005 3006 static void perf_event_switch(struct task_struct *task, 3007 struct task_struct *next_prev, bool sched_in); 3008 3009 #define for_each_task_context_nr(ctxn) \ 3010 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3011 3012 /* 3013 * Called from scheduler to remove the events of the current task, 3014 * with interrupts disabled. 3015 * 3016 * We stop each event and update the event value in event->count. 3017 * 3018 * This does not protect us against NMI, but disable() 3019 * sets the disabled bit in the control field of event _before_ 3020 * accessing the event control register. If a NMI hits, then it will 3021 * not restart the event. 3022 */ 3023 void __perf_event_task_sched_out(struct task_struct *task, 3024 struct task_struct *next) 3025 { 3026 int ctxn; 3027 3028 if (__this_cpu_read(perf_sched_cb_usages)) 3029 perf_pmu_sched_task(task, next, false); 3030 3031 if (atomic_read(&nr_switch_events)) 3032 perf_event_switch(task, next, false); 3033 3034 for_each_task_context_nr(ctxn) 3035 perf_event_context_sched_out(task, ctxn, next); 3036 3037 /* 3038 * if cgroup events exist on this CPU, then we need 3039 * to check if we have to switch out PMU state. 3040 * cgroup event are system-wide mode only 3041 */ 3042 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3043 perf_cgroup_sched_out(task, next); 3044 } 3045 3046 /* 3047 * Called with IRQs disabled 3048 */ 3049 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3050 enum event_type_t event_type) 3051 { 3052 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3053 } 3054 3055 static void 3056 ctx_pinned_sched_in(struct perf_event_context *ctx, 3057 struct perf_cpu_context *cpuctx) 3058 { 3059 struct perf_event *event; 3060 3061 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3062 if (event->state <= PERF_EVENT_STATE_OFF) 3063 continue; 3064 if (!event_filter_match(event)) 3065 continue; 3066 3067 /* may need to reset tstamp_enabled */ 3068 if (is_cgroup_event(event)) 3069 perf_cgroup_mark_enabled(event, ctx); 3070 3071 if (group_can_go_on(event, cpuctx, 1)) 3072 group_sched_in(event, cpuctx, ctx); 3073 3074 /* 3075 * If this pinned group hasn't been scheduled, 3076 * put it in error state. 3077 */ 3078 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3079 update_group_times(event); 3080 event->state = PERF_EVENT_STATE_ERROR; 3081 } 3082 } 3083 } 3084 3085 static void 3086 ctx_flexible_sched_in(struct perf_event_context *ctx, 3087 struct perf_cpu_context *cpuctx) 3088 { 3089 struct perf_event *event; 3090 int can_add_hw = 1; 3091 3092 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3093 /* Ignore events in OFF or ERROR state */ 3094 if (event->state <= PERF_EVENT_STATE_OFF) 3095 continue; 3096 /* 3097 * Listen to the 'cpu' scheduling filter constraint 3098 * of events: 3099 */ 3100 if (!event_filter_match(event)) 3101 continue; 3102 3103 /* may need to reset tstamp_enabled */ 3104 if (is_cgroup_event(event)) 3105 perf_cgroup_mark_enabled(event, ctx); 3106 3107 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3108 if (group_sched_in(event, cpuctx, ctx)) 3109 can_add_hw = 0; 3110 } 3111 } 3112 } 3113 3114 static void 3115 ctx_sched_in(struct perf_event_context *ctx, 3116 struct perf_cpu_context *cpuctx, 3117 enum event_type_t event_type, 3118 struct task_struct *task) 3119 { 3120 int is_active = ctx->is_active; 3121 u64 now; 3122 3123 lockdep_assert_held(&ctx->lock); 3124 3125 if (likely(!ctx->nr_events)) 3126 return; 3127 3128 ctx->is_active |= (event_type | EVENT_TIME); 3129 if (ctx->task) { 3130 if (!is_active) 3131 cpuctx->task_ctx = ctx; 3132 else 3133 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3134 } 3135 3136 is_active ^= ctx->is_active; /* changed bits */ 3137 3138 if (is_active & EVENT_TIME) { 3139 /* start ctx time */ 3140 now = perf_clock(); 3141 ctx->timestamp = now; 3142 perf_cgroup_set_timestamp(task, ctx); 3143 } 3144 3145 /* 3146 * First go through the list and put on any pinned groups 3147 * in order to give them the best chance of going on. 3148 */ 3149 if (is_active & EVENT_PINNED) 3150 ctx_pinned_sched_in(ctx, cpuctx); 3151 3152 /* Then walk through the lower prio flexible groups */ 3153 if (is_active & EVENT_FLEXIBLE) 3154 ctx_flexible_sched_in(ctx, cpuctx); 3155 } 3156 3157 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3158 enum event_type_t event_type, 3159 struct task_struct *task) 3160 { 3161 struct perf_event_context *ctx = &cpuctx->ctx; 3162 3163 ctx_sched_in(ctx, cpuctx, event_type, task); 3164 } 3165 3166 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3167 struct task_struct *task) 3168 { 3169 struct perf_cpu_context *cpuctx; 3170 3171 cpuctx = __get_cpu_context(ctx); 3172 if (cpuctx->task_ctx == ctx) 3173 return; 3174 3175 perf_ctx_lock(cpuctx, ctx); 3176 perf_pmu_disable(ctx->pmu); 3177 /* 3178 * We want to keep the following priority order: 3179 * cpu pinned (that don't need to move), task pinned, 3180 * cpu flexible, task flexible. 3181 * 3182 * However, if task's ctx is not carrying any pinned 3183 * events, no need to flip the cpuctx's events around. 3184 */ 3185 if (!list_empty(&ctx->pinned_groups)) 3186 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3187 perf_event_sched_in(cpuctx, ctx, task); 3188 perf_pmu_enable(ctx->pmu); 3189 perf_ctx_unlock(cpuctx, ctx); 3190 } 3191 3192 /* 3193 * Called from scheduler to add the events of the current task 3194 * with interrupts disabled. 3195 * 3196 * We restore the event value and then enable it. 3197 * 3198 * This does not protect us against NMI, but enable() 3199 * sets the enabled bit in the control field of event _before_ 3200 * accessing the event control register. If a NMI hits, then it will 3201 * keep the event running. 3202 */ 3203 void __perf_event_task_sched_in(struct task_struct *prev, 3204 struct task_struct *task) 3205 { 3206 struct perf_event_context *ctx; 3207 int ctxn; 3208 3209 /* 3210 * If cgroup events exist on this CPU, then we need to check if we have 3211 * to switch in PMU state; cgroup event are system-wide mode only. 3212 * 3213 * Since cgroup events are CPU events, we must schedule these in before 3214 * we schedule in the task events. 3215 */ 3216 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3217 perf_cgroup_sched_in(prev, task); 3218 3219 for_each_task_context_nr(ctxn) { 3220 ctx = task->perf_event_ctxp[ctxn]; 3221 if (likely(!ctx)) 3222 continue; 3223 3224 perf_event_context_sched_in(ctx, task); 3225 } 3226 3227 if (atomic_read(&nr_switch_events)) 3228 perf_event_switch(task, prev, true); 3229 3230 if (__this_cpu_read(perf_sched_cb_usages)) 3231 perf_pmu_sched_task(prev, task, true); 3232 } 3233 3234 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3235 { 3236 u64 frequency = event->attr.sample_freq; 3237 u64 sec = NSEC_PER_SEC; 3238 u64 divisor, dividend; 3239 3240 int count_fls, nsec_fls, frequency_fls, sec_fls; 3241 3242 count_fls = fls64(count); 3243 nsec_fls = fls64(nsec); 3244 frequency_fls = fls64(frequency); 3245 sec_fls = 30; 3246 3247 /* 3248 * We got @count in @nsec, with a target of sample_freq HZ 3249 * the target period becomes: 3250 * 3251 * @count * 10^9 3252 * period = ------------------- 3253 * @nsec * sample_freq 3254 * 3255 */ 3256 3257 /* 3258 * Reduce accuracy by one bit such that @a and @b converge 3259 * to a similar magnitude. 3260 */ 3261 #define REDUCE_FLS(a, b) \ 3262 do { \ 3263 if (a##_fls > b##_fls) { \ 3264 a >>= 1; \ 3265 a##_fls--; \ 3266 } else { \ 3267 b >>= 1; \ 3268 b##_fls--; \ 3269 } \ 3270 } while (0) 3271 3272 /* 3273 * Reduce accuracy until either term fits in a u64, then proceed with 3274 * the other, so that finally we can do a u64/u64 division. 3275 */ 3276 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3277 REDUCE_FLS(nsec, frequency); 3278 REDUCE_FLS(sec, count); 3279 } 3280 3281 if (count_fls + sec_fls > 64) { 3282 divisor = nsec * frequency; 3283 3284 while (count_fls + sec_fls > 64) { 3285 REDUCE_FLS(count, sec); 3286 divisor >>= 1; 3287 } 3288 3289 dividend = count * sec; 3290 } else { 3291 dividend = count * sec; 3292 3293 while (nsec_fls + frequency_fls > 64) { 3294 REDUCE_FLS(nsec, frequency); 3295 dividend >>= 1; 3296 } 3297 3298 divisor = nsec * frequency; 3299 } 3300 3301 if (!divisor) 3302 return dividend; 3303 3304 return div64_u64(dividend, divisor); 3305 } 3306 3307 static DEFINE_PER_CPU(int, perf_throttled_count); 3308 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3309 3310 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3311 { 3312 struct hw_perf_event *hwc = &event->hw; 3313 s64 period, sample_period; 3314 s64 delta; 3315 3316 period = perf_calculate_period(event, nsec, count); 3317 3318 delta = (s64)(period - hwc->sample_period); 3319 delta = (delta + 7) / 8; /* low pass filter */ 3320 3321 sample_period = hwc->sample_period + delta; 3322 3323 if (!sample_period) 3324 sample_period = 1; 3325 3326 hwc->sample_period = sample_period; 3327 3328 if (local64_read(&hwc->period_left) > 8*sample_period) { 3329 if (disable) 3330 event->pmu->stop(event, PERF_EF_UPDATE); 3331 3332 local64_set(&hwc->period_left, 0); 3333 3334 if (disable) 3335 event->pmu->start(event, PERF_EF_RELOAD); 3336 } 3337 } 3338 3339 /* 3340 * combine freq adjustment with unthrottling to avoid two passes over the 3341 * events. At the same time, make sure, having freq events does not change 3342 * the rate of unthrottling as that would introduce bias. 3343 */ 3344 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3345 int needs_unthr) 3346 { 3347 struct perf_event *event; 3348 struct hw_perf_event *hwc; 3349 u64 now, period = TICK_NSEC; 3350 s64 delta; 3351 3352 /* 3353 * only need to iterate over all events iff: 3354 * - context have events in frequency mode (needs freq adjust) 3355 * - there are events to unthrottle on this cpu 3356 */ 3357 if (!(ctx->nr_freq || needs_unthr)) 3358 return; 3359 3360 raw_spin_lock(&ctx->lock); 3361 perf_pmu_disable(ctx->pmu); 3362 3363 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3364 if (event->state != PERF_EVENT_STATE_ACTIVE) 3365 continue; 3366 3367 if (!event_filter_match(event)) 3368 continue; 3369 3370 perf_pmu_disable(event->pmu); 3371 3372 hwc = &event->hw; 3373 3374 if (hwc->interrupts == MAX_INTERRUPTS) { 3375 hwc->interrupts = 0; 3376 perf_log_throttle(event, 1); 3377 event->pmu->start(event, 0); 3378 } 3379 3380 if (!event->attr.freq || !event->attr.sample_freq) 3381 goto next; 3382 3383 /* 3384 * stop the event and update event->count 3385 */ 3386 event->pmu->stop(event, PERF_EF_UPDATE); 3387 3388 now = local64_read(&event->count); 3389 delta = now - hwc->freq_count_stamp; 3390 hwc->freq_count_stamp = now; 3391 3392 /* 3393 * restart the event 3394 * reload only if value has changed 3395 * we have stopped the event so tell that 3396 * to perf_adjust_period() to avoid stopping it 3397 * twice. 3398 */ 3399 if (delta > 0) 3400 perf_adjust_period(event, period, delta, false); 3401 3402 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3403 next: 3404 perf_pmu_enable(event->pmu); 3405 } 3406 3407 perf_pmu_enable(ctx->pmu); 3408 raw_spin_unlock(&ctx->lock); 3409 } 3410 3411 /* 3412 * Round-robin a context's events: 3413 */ 3414 static void rotate_ctx(struct perf_event_context *ctx) 3415 { 3416 /* 3417 * Rotate the first entry last of non-pinned groups. Rotation might be 3418 * disabled by the inheritance code. 3419 */ 3420 if (!ctx->rotate_disable) 3421 list_rotate_left(&ctx->flexible_groups); 3422 } 3423 3424 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3425 { 3426 struct perf_event_context *ctx = NULL; 3427 int rotate = 0; 3428 3429 if (cpuctx->ctx.nr_events) { 3430 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3431 rotate = 1; 3432 } 3433 3434 ctx = cpuctx->task_ctx; 3435 if (ctx && ctx->nr_events) { 3436 if (ctx->nr_events != ctx->nr_active) 3437 rotate = 1; 3438 } 3439 3440 if (!rotate) 3441 goto done; 3442 3443 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3444 perf_pmu_disable(cpuctx->ctx.pmu); 3445 3446 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3447 if (ctx) 3448 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3449 3450 rotate_ctx(&cpuctx->ctx); 3451 if (ctx) 3452 rotate_ctx(ctx); 3453 3454 perf_event_sched_in(cpuctx, ctx, current); 3455 3456 perf_pmu_enable(cpuctx->ctx.pmu); 3457 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3458 done: 3459 3460 return rotate; 3461 } 3462 3463 void perf_event_task_tick(void) 3464 { 3465 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3466 struct perf_event_context *ctx, *tmp; 3467 int throttled; 3468 3469 WARN_ON(!irqs_disabled()); 3470 3471 __this_cpu_inc(perf_throttled_seq); 3472 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3473 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3474 3475 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3476 perf_adjust_freq_unthr_context(ctx, throttled); 3477 } 3478 3479 static int event_enable_on_exec(struct perf_event *event, 3480 struct perf_event_context *ctx) 3481 { 3482 if (!event->attr.enable_on_exec) 3483 return 0; 3484 3485 event->attr.enable_on_exec = 0; 3486 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3487 return 0; 3488 3489 __perf_event_mark_enabled(event); 3490 3491 return 1; 3492 } 3493 3494 /* 3495 * Enable all of a task's events that have been marked enable-on-exec. 3496 * This expects task == current. 3497 */ 3498 static void perf_event_enable_on_exec(int ctxn) 3499 { 3500 struct perf_event_context *ctx, *clone_ctx = NULL; 3501 enum event_type_t event_type = 0; 3502 struct perf_cpu_context *cpuctx; 3503 struct perf_event *event; 3504 unsigned long flags; 3505 int enabled = 0; 3506 3507 local_irq_save(flags); 3508 ctx = current->perf_event_ctxp[ctxn]; 3509 if (!ctx || !ctx->nr_events) 3510 goto out; 3511 3512 cpuctx = __get_cpu_context(ctx); 3513 perf_ctx_lock(cpuctx, ctx); 3514 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3515 list_for_each_entry(event, &ctx->event_list, event_entry) { 3516 enabled |= event_enable_on_exec(event, ctx); 3517 event_type |= get_event_type(event); 3518 } 3519 3520 /* 3521 * Unclone and reschedule this context if we enabled any event. 3522 */ 3523 if (enabled) { 3524 clone_ctx = unclone_ctx(ctx); 3525 ctx_resched(cpuctx, ctx, event_type); 3526 } else { 3527 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3528 } 3529 perf_ctx_unlock(cpuctx, ctx); 3530 3531 out: 3532 local_irq_restore(flags); 3533 3534 if (clone_ctx) 3535 put_ctx(clone_ctx); 3536 } 3537 3538 struct perf_read_data { 3539 struct perf_event *event; 3540 bool group; 3541 int ret; 3542 }; 3543 3544 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3545 { 3546 u16 local_pkg, event_pkg; 3547 3548 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3549 int local_cpu = smp_processor_id(); 3550 3551 event_pkg = topology_physical_package_id(event_cpu); 3552 local_pkg = topology_physical_package_id(local_cpu); 3553 3554 if (event_pkg == local_pkg) 3555 return local_cpu; 3556 } 3557 3558 return event_cpu; 3559 } 3560 3561 /* 3562 * Cross CPU call to read the hardware event 3563 */ 3564 static void __perf_event_read(void *info) 3565 { 3566 struct perf_read_data *data = info; 3567 struct perf_event *sub, *event = data->event; 3568 struct perf_event_context *ctx = event->ctx; 3569 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3570 struct pmu *pmu = event->pmu; 3571 3572 /* 3573 * If this is a task context, we need to check whether it is 3574 * the current task context of this cpu. If not it has been 3575 * scheduled out before the smp call arrived. In that case 3576 * event->count would have been updated to a recent sample 3577 * when the event was scheduled out. 3578 */ 3579 if (ctx->task && cpuctx->task_ctx != ctx) 3580 return; 3581 3582 raw_spin_lock(&ctx->lock); 3583 if (ctx->is_active) { 3584 update_context_time(ctx); 3585 update_cgrp_time_from_event(event); 3586 } 3587 3588 update_event_times(event); 3589 if (event->state != PERF_EVENT_STATE_ACTIVE) 3590 goto unlock; 3591 3592 if (!data->group) { 3593 pmu->read(event); 3594 data->ret = 0; 3595 goto unlock; 3596 } 3597 3598 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3599 3600 pmu->read(event); 3601 3602 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3603 update_event_times(sub); 3604 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3605 /* 3606 * Use sibling's PMU rather than @event's since 3607 * sibling could be on different (eg: software) PMU. 3608 */ 3609 sub->pmu->read(sub); 3610 } 3611 } 3612 3613 data->ret = pmu->commit_txn(pmu); 3614 3615 unlock: 3616 raw_spin_unlock(&ctx->lock); 3617 } 3618 3619 static inline u64 perf_event_count(struct perf_event *event) 3620 { 3621 if (event->pmu->count) 3622 return event->pmu->count(event); 3623 3624 return __perf_event_count(event); 3625 } 3626 3627 /* 3628 * NMI-safe method to read a local event, that is an event that 3629 * is: 3630 * - either for the current task, or for this CPU 3631 * - does not have inherit set, for inherited task events 3632 * will not be local and we cannot read them atomically 3633 * - must not have a pmu::count method 3634 */ 3635 u64 perf_event_read_local(struct perf_event *event) 3636 { 3637 unsigned long flags; 3638 u64 val; 3639 3640 /* 3641 * Disabling interrupts avoids all counter scheduling (context 3642 * switches, timer based rotation and IPIs). 3643 */ 3644 local_irq_save(flags); 3645 3646 /* If this is a per-task event, it must be for current */ 3647 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3648 event->hw.target != current); 3649 3650 /* If this is a per-CPU event, it must be for this CPU */ 3651 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3652 event->cpu != smp_processor_id()); 3653 3654 /* 3655 * It must not be an event with inherit set, we cannot read 3656 * all child counters from atomic context. 3657 */ 3658 WARN_ON_ONCE(event->attr.inherit); 3659 3660 /* 3661 * It must not have a pmu::count method, those are not 3662 * NMI safe. 3663 */ 3664 WARN_ON_ONCE(event->pmu->count); 3665 3666 /* 3667 * If the event is currently on this CPU, its either a per-task event, 3668 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3669 * oncpu == -1). 3670 */ 3671 if (event->oncpu == smp_processor_id()) 3672 event->pmu->read(event); 3673 3674 val = local64_read(&event->count); 3675 local_irq_restore(flags); 3676 3677 return val; 3678 } 3679 3680 static int perf_event_read(struct perf_event *event, bool group) 3681 { 3682 int event_cpu, ret = 0; 3683 3684 /* 3685 * If event is enabled and currently active on a CPU, update the 3686 * value in the event structure: 3687 */ 3688 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3689 struct perf_read_data data = { 3690 .event = event, 3691 .group = group, 3692 .ret = 0, 3693 }; 3694 3695 event_cpu = READ_ONCE(event->oncpu); 3696 if ((unsigned)event_cpu >= nr_cpu_ids) 3697 return 0; 3698 3699 preempt_disable(); 3700 event_cpu = __perf_event_read_cpu(event, event_cpu); 3701 3702 /* 3703 * Purposely ignore the smp_call_function_single() return 3704 * value. 3705 * 3706 * If event_cpu isn't a valid CPU it means the event got 3707 * scheduled out and that will have updated the event count. 3708 * 3709 * Therefore, either way, we'll have an up-to-date event count 3710 * after this. 3711 */ 3712 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3713 preempt_enable(); 3714 ret = data.ret; 3715 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3716 struct perf_event_context *ctx = event->ctx; 3717 unsigned long flags; 3718 3719 raw_spin_lock_irqsave(&ctx->lock, flags); 3720 /* 3721 * may read while context is not active 3722 * (e.g., thread is blocked), in that case 3723 * we cannot update context time 3724 */ 3725 if (ctx->is_active) { 3726 update_context_time(ctx); 3727 update_cgrp_time_from_event(event); 3728 } 3729 if (group) 3730 update_group_times(event); 3731 else 3732 update_event_times(event); 3733 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3734 } 3735 3736 return ret; 3737 } 3738 3739 /* 3740 * Initialize the perf_event context in a task_struct: 3741 */ 3742 static void __perf_event_init_context(struct perf_event_context *ctx) 3743 { 3744 raw_spin_lock_init(&ctx->lock); 3745 mutex_init(&ctx->mutex); 3746 INIT_LIST_HEAD(&ctx->active_ctx_list); 3747 INIT_LIST_HEAD(&ctx->pinned_groups); 3748 INIT_LIST_HEAD(&ctx->flexible_groups); 3749 INIT_LIST_HEAD(&ctx->event_list); 3750 atomic_set(&ctx->refcount, 1); 3751 } 3752 3753 static struct perf_event_context * 3754 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3755 { 3756 struct perf_event_context *ctx; 3757 3758 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3759 if (!ctx) 3760 return NULL; 3761 3762 __perf_event_init_context(ctx); 3763 if (task) { 3764 ctx->task = task; 3765 get_task_struct(task); 3766 } 3767 ctx->pmu = pmu; 3768 3769 return ctx; 3770 } 3771 3772 static struct task_struct * 3773 find_lively_task_by_vpid(pid_t vpid) 3774 { 3775 struct task_struct *task; 3776 3777 rcu_read_lock(); 3778 if (!vpid) 3779 task = current; 3780 else 3781 task = find_task_by_vpid(vpid); 3782 if (task) 3783 get_task_struct(task); 3784 rcu_read_unlock(); 3785 3786 if (!task) 3787 return ERR_PTR(-ESRCH); 3788 3789 return task; 3790 } 3791 3792 /* 3793 * Returns a matching context with refcount and pincount. 3794 */ 3795 static struct perf_event_context * 3796 find_get_context(struct pmu *pmu, struct task_struct *task, 3797 struct perf_event *event) 3798 { 3799 struct perf_event_context *ctx, *clone_ctx = NULL; 3800 struct perf_cpu_context *cpuctx; 3801 void *task_ctx_data = NULL; 3802 unsigned long flags; 3803 int ctxn, err; 3804 int cpu = event->cpu; 3805 3806 if (!task) { 3807 /* Must be root to operate on a CPU event: */ 3808 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3809 return ERR_PTR(-EACCES); 3810 3811 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3812 ctx = &cpuctx->ctx; 3813 get_ctx(ctx); 3814 ++ctx->pin_count; 3815 3816 return ctx; 3817 } 3818 3819 err = -EINVAL; 3820 ctxn = pmu->task_ctx_nr; 3821 if (ctxn < 0) 3822 goto errout; 3823 3824 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3825 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3826 if (!task_ctx_data) { 3827 err = -ENOMEM; 3828 goto errout; 3829 } 3830 } 3831 3832 retry: 3833 ctx = perf_lock_task_context(task, ctxn, &flags); 3834 if (ctx) { 3835 clone_ctx = unclone_ctx(ctx); 3836 ++ctx->pin_count; 3837 3838 if (task_ctx_data && !ctx->task_ctx_data) { 3839 ctx->task_ctx_data = task_ctx_data; 3840 task_ctx_data = NULL; 3841 } 3842 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3843 3844 if (clone_ctx) 3845 put_ctx(clone_ctx); 3846 } else { 3847 ctx = alloc_perf_context(pmu, task); 3848 err = -ENOMEM; 3849 if (!ctx) 3850 goto errout; 3851 3852 if (task_ctx_data) { 3853 ctx->task_ctx_data = task_ctx_data; 3854 task_ctx_data = NULL; 3855 } 3856 3857 err = 0; 3858 mutex_lock(&task->perf_event_mutex); 3859 /* 3860 * If it has already passed perf_event_exit_task(). 3861 * we must see PF_EXITING, it takes this mutex too. 3862 */ 3863 if (task->flags & PF_EXITING) 3864 err = -ESRCH; 3865 else if (task->perf_event_ctxp[ctxn]) 3866 err = -EAGAIN; 3867 else { 3868 get_ctx(ctx); 3869 ++ctx->pin_count; 3870 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3871 } 3872 mutex_unlock(&task->perf_event_mutex); 3873 3874 if (unlikely(err)) { 3875 put_ctx(ctx); 3876 3877 if (err == -EAGAIN) 3878 goto retry; 3879 goto errout; 3880 } 3881 } 3882 3883 kfree(task_ctx_data); 3884 return ctx; 3885 3886 errout: 3887 kfree(task_ctx_data); 3888 return ERR_PTR(err); 3889 } 3890 3891 static void perf_event_free_filter(struct perf_event *event); 3892 static void perf_event_free_bpf_prog(struct perf_event *event); 3893 3894 static void free_event_rcu(struct rcu_head *head) 3895 { 3896 struct perf_event *event; 3897 3898 event = container_of(head, struct perf_event, rcu_head); 3899 if (event->ns) 3900 put_pid_ns(event->ns); 3901 perf_event_free_filter(event); 3902 kfree(event); 3903 } 3904 3905 static void ring_buffer_attach(struct perf_event *event, 3906 struct ring_buffer *rb); 3907 3908 static void detach_sb_event(struct perf_event *event) 3909 { 3910 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3911 3912 raw_spin_lock(&pel->lock); 3913 list_del_rcu(&event->sb_list); 3914 raw_spin_unlock(&pel->lock); 3915 } 3916 3917 static bool is_sb_event(struct perf_event *event) 3918 { 3919 struct perf_event_attr *attr = &event->attr; 3920 3921 if (event->parent) 3922 return false; 3923 3924 if (event->attach_state & PERF_ATTACH_TASK) 3925 return false; 3926 3927 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3928 attr->comm || attr->comm_exec || 3929 attr->task || 3930 attr->context_switch) 3931 return true; 3932 return false; 3933 } 3934 3935 static void unaccount_pmu_sb_event(struct perf_event *event) 3936 { 3937 if (is_sb_event(event)) 3938 detach_sb_event(event); 3939 } 3940 3941 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3942 { 3943 if (event->parent) 3944 return; 3945 3946 if (is_cgroup_event(event)) 3947 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3948 } 3949 3950 #ifdef CONFIG_NO_HZ_FULL 3951 static DEFINE_SPINLOCK(nr_freq_lock); 3952 #endif 3953 3954 static void unaccount_freq_event_nohz(void) 3955 { 3956 #ifdef CONFIG_NO_HZ_FULL 3957 spin_lock(&nr_freq_lock); 3958 if (atomic_dec_and_test(&nr_freq_events)) 3959 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3960 spin_unlock(&nr_freq_lock); 3961 #endif 3962 } 3963 3964 static void unaccount_freq_event(void) 3965 { 3966 if (tick_nohz_full_enabled()) 3967 unaccount_freq_event_nohz(); 3968 else 3969 atomic_dec(&nr_freq_events); 3970 } 3971 3972 static void unaccount_event(struct perf_event *event) 3973 { 3974 bool dec = false; 3975 3976 if (event->parent) 3977 return; 3978 3979 if (event->attach_state & PERF_ATTACH_TASK) 3980 dec = true; 3981 if (event->attr.mmap || event->attr.mmap_data) 3982 atomic_dec(&nr_mmap_events); 3983 if (event->attr.comm) 3984 atomic_dec(&nr_comm_events); 3985 if (event->attr.namespaces) 3986 atomic_dec(&nr_namespaces_events); 3987 if (event->attr.task) 3988 atomic_dec(&nr_task_events); 3989 if (event->attr.freq) 3990 unaccount_freq_event(); 3991 if (event->attr.context_switch) { 3992 dec = true; 3993 atomic_dec(&nr_switch_events); 3994 } 3995 if (is_cgroup_event(event)) 3996 dec = true; 3997 if (has_branch_stack(event)) 3998 dec = true; 3999 4000 if (dec) { 4001 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4002 schedule_delayed_work(&perf_sched_work, HZ); 4003 } 4004 4005 unaccount_event_cpu(event, event->cpu); 4006 4007 unaccount_pmu_sb_event(event); 4008 } 4009 4010 static void perf_sched_delayed(struct work_struct *work) 4011 { 4012 mutex_lock(&perf_sched_mutex); 4013 if (atomic_dec_and_test(&perf_sched_count)) 4014 static_branch_disable(&perf_sched_events); 4015 mutex_unlock(&perf_sched_mutex); 4016 } 4017 4018 /* 4019 * The following implement mutual exclusion of events on "exclusive" pmus 4020 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4021 * at a time, so we disallow creating events that might conflict, namely: 4022 * 4023 * 1) cpu-wide events in the presence of per-task events, 4024 * 2) per-task events in the presence of cpu-wide events, 4025 * 3) two matching events on the same context. 4026 * 4027 * The former two cases are handled in the allocation path (perf_event_alloc(), 4028 * _free_event()), the latter -- before the first perf_install_in_context(). 4029 */ 4030 static int exclusive_event_init(struct perf_event *event) 4031 { 4032 struct pmu *pmu = event->pmu; 4033 4034 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4035 return 0; 4036 4037 /* 4038 * Prevent co-existence of per-task and cpu-wide events on the 4039 * same exclusive pmu. 4040 * 4041 * Negative pmu::exclusive_cnt means there are cpu-wide 4042 * events on this "exclusive" pmu, positive means there are 4043 * per-task events. 4044 * 4045 * Since this is called in perf_event_alloc() path, event::ctx 4046 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4047 * to mean "per-task event", because unlike other attach states it 4048 * never gets cleared. 4049 */ 4050 if (event->attach_state & PERF_ATTACH_TASK) { 4051 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4052 return -EBUSY; 4053 } else { 4054 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4055 return -EBUSY; 4056 } 4057 4058 return 0; 4059 } 4060 4061 static void exclusive_event_destroy(struct perf_event *event) 4062 { 4063 struct pmu *pmu = event->pmu; 4064 4065 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4066 return; 4067 4068 /* see comment in exclusive_event_init() */ 4069 if (event->attach_state & PERF_ATTACH_TASK) 4070 atomic_dec(&pmu->exclusive_cnt); 4071 else 4072 atomic_inc(&pmu->exclusive_cnt); 4073 } 4074 4075 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4076 { 4077 if ((e1->pmu == e2->pmu) && 4078 (e1->cpu == e2->cpu || 4079 e1->cpu == -1 || 4080 e2->cpu == -1)) 4081 return true; 4082 return false; 4083 } 4084 4085 /* Called under the same ctx::mutex as perf_install_in_context() */ 4086 static bool exclusive_event_installable(struct perf_event *event, 4087 struct perf_event_context *ctx) 4088 { 4089 struct perf_event *iter_event; 4090 struct pmu *pmu = event->pmu; 4091 4092 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4093 return true; 4094 4095 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4096 if (exclusive_event_match(iter_event, event)) 4097 return false; 4098 } 4099 4100 return true; 4101 } 4102 4103 static void perf_addr_filters_splice(struct perf_event *event, 4104 struct list_head *head); 4105 4106 static void _free_event(struct perf_event *event) 4107 { 4108 irq_work_sync(&event->pending); 4109 4110 unaccount_event(event); 4111 4112 if (event->rb) { 4113 /* 4114 * Can happen when we close an event with re-directed output. 4115 * 4116 * Since we have a 0 refcount, perf_mmap_close() will skip 4117 * over us; possibly making our ring_buffer_put() the last. 4118 */ 4119 mutex_lock(&event->mmap_mutex); 4120 ring_buffer_attach(event, NULL); 4121 mutex_unlock(&event->mmap_mutex); 4122 } 4123 4124 if (is_cgroup_event(event)) 4125 perf_detach_cgroup(event); 4126 4127 if (!event->parent) { 4128 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4129 put_callchain_buffers(); 4130 } 4131 4132 perf_event_free_bpf_prog(event); 4133 perf_addr_filters_splice(event, NULL); 4134 kfree(event->addr_filters_offs); 4135 4136 if (event->destroy) 4137 event->destroy(event); 4138 4139 if (event->ctx) 4140 put_ctx(event->ctx); 4141 4142 exclusive_event_destroy(event); 4143 module_put(event->pmu->module); 4144 4145 call_rcu(&event->rcu_head, free_event_rcu); 4146 } 4147 4148 /* 4149 * Used to free events which have a known refcount of 1, such as in error paths 4150 * where the event isn't exposed yet and inherited events. 4151 */ 4152 static void free_event(struct perf_event *event) 4153 { 4154 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4155 "unexpected event refcount: %ld; ptr=%p\n", 4156 atomic_long_read(&event->refcount), event)) { 4157 /* leak to avoid use-after-free */ 4158 return; 4159 } 4160 4161 _free_event(event); 4162 } 4163 4164 /* 4165 * Remove user event from the owner task. 4166 */ 4167 static void perf_remove_from_owner(struct perf_event *event) 4168 { 4169 struct task_struct *owner; 4170 4171 rcu_read_lock(); 4172 /* 4173 * Matches the smp_store_release() in perf_event_exit_task(). If we 4174 * observe !owner it means the list deletion is complete and we can 4175 * indeed free this event, otherwise we need to serialize on 4176 * owner->perf_event_mutex. 4177 */ 4178 owner = lockless_dereference(event->owner); 4179 if (owner) { 4180 /* 4181 * Since delayed_put_task_struct() also drops the last 4182 * task reference we can safely take a new reference 4183 * while holding the rcu_read_lock(). 4184 */ 4185 get_task_struct(owner); 4186 } 4187 rcu_read_unlock(); 4188 4189 if (owner) { 4190 /* 4191 * If we're here through perf_event_exit_task() we're already 4192 * holding ctx->mutex which would be an inversion wrt. the 4193 * normal lock order. 4194 * 4195 * However we can safely take this lock because its the child 4196 * ctx->mutex. 4197 */ 4198 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4199 4200 /* 4201 * We have to re-check the event->owner field, if it is cleared 4202 * we raced with perf_event_exit_task(), acquiring the mutex 4203 * ensured they're done, and we can proceed with freeing the 4204 * event. 4205 */ 4206 if (event->owner) { 4207 list_del_init(&event->owner_entry); 4208 smp_store_release(&event->owner, NULL); 4209 } 4210 mutex_unlock(&owner->perf_event_mutex); 4211 put_task_struct(owner); 4212 } 4213 } 4214 4215 static void put_event(struct perf_event *event) 4216 { 4217 if (!atomic_long_dec_and_test(&event->refcount)) 4218 return; 4219 4220 _free_event(event); 4221 } 4222 4223 /* 4224 * Kill an event dead; while event:refcount will preserve the event 4225 * object, it will not preserve its functionality. Once the last 'user' 4226 * gives up the object, we'll destroy the thing. 4227 */ 4228 int perf_event_release_kernel(struct perf_event *event) 4229 { 4230 struct perf_event_context *ctx = event->ctx; 4231 struct perf_event *child, *tmp; 4232 4233 /* 4234 * If we got here through err_file: fput(event_file); we will not have 4235 * attached to a context yet. 4236 */ 4237 if (!ctx) { 4238 WARN_ON_ONCE(event->attach_state & 4239 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4240 goto no_ctx; 4241 } 4242 4243 if (!is_kernel_event(event)) 4244 perf_remove_from_owner(event); 4245 4246 ctx = perf_event_ctx_lock(event); 4247 WARN_ON_ONCE(ctx->parent_ctx); 4248 perf_remove_from_context(event, DETACH_GROUP); 4249 4250 raw_spin_lock_irq(&ctx->lock); 4251 /* 4252 * Mark this event as STATE_DEAD, there is no external reference to it 4253 * anymore. 4254 * 4255 * Anybody acquiring event->child_mutex after the below loop _must_ 4256 * also see this, most importantly inherit_event() which will avoid 4257 * placing more children on the list. 4258 * 4259 * Thus this guarantees that we will in fact observe and kill _ALL_ 4260 * child events. 4261 */ 4262 event->state = PERF_EVENT_STATE_DEAD; 4263 raw_spin_unlock_irq(&ctx->lock); 4264 4265 perf_event_ctx_unlock(event, ctx); 4266 4267 again: 4268 mutex_lock(&event->child_mutex); 4269 list_for_each_entry(child, &event->child_list, child_list) { 4270 4271 /* 4272 * Cannot change, child events are not migrated, see the 4273 * comment with perf_event_ctx_lock_nested(). 4274 */ 4275 ctx = lockless_dereference(child->ctx); 4276 /* 4277 * Since child_mutex nests inside ctx::mutex, we must jump 4278 * through hoops. We start by grabbing a reference on the ctx. 4279 * 4280 * Since the event cannot get freed while we hold the 4281 * child_mutex, the context must also exist and have a !0 4282 * reference count. 4283 */ 4284 get_ctx(ctx); 4285 4286 /* 4287 * Now that we have a ctx ref, we can drop child_mutex, and 4288 * acquire ctx::mutex without fear of it going away. Then we 4289 * can re-acquire child_mutex. 4290 */ 4291 mutex_unlock(&event->child_mutex); 4292 mutex_lock(&ctx->mutex); 4293 mutex_lock(&event->child_mutex); 4294 4295 /* 4296 * Now that we hold ctx::mutex and child_mutex, revalidate our 4297 * state, if child is still the first entry, it didn't get freed 4298 * and we can continue doing so. 4299 */ 4300 tmp = list_first_entry_or_null(&event->child_list, 4301 struct perf_event, child_list); 4302 if (tmp == child) { 4303 perf_remove_from_context(child, DETACH_GROUP); 4304 list_del(&child->child_list); 4305 free_event(child); 4306 /* 4307 * This matches the refcount bump in inherit_event(); 4308 * this can't be the last reference. 4309 */ 4310 put_event(event); 4311 } 4312 4313 mutex_unlock(&event->child_mutex); 4314 mutex_unlock(&ctx->mutex); 4315 put_ctx(ctx); 4316 goto again; 4317 } 4318 mutex_unlock(&event->child_mutex); 4319 4320 no_ctx: 4321 put_event(event); /* Must be the 'last' reference */ 4322 return 0; 4323 } 4324 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4325 4326 /* 4327 * Called when the last reference to the file is gone. 4328 */ 4329 static int perf_release(struct inode *inode, struct file *file) 4330 { 4331 perf_event_release_kernel(file->private_data); 4332 return 0; 4333 } 4334 4335 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4336 { 4337 struct perf_event *child; 4338 u64 total = 0; 4339 4340 *enabled = 0; 4341 *running = 0; 4342 4343 mutex_lock(&event->child_mutex); 4344 4345 (void)perf_event_read(event, false); 4346 total += perf_event_count(event); 4347 4348 *enabled += event->total_time_enabled + 4349 atomic64_read(&event->child_total_time_enabled); 4350 *running += event->total_time_running + 4351 atomic64_read(&event->child_total_time_running); 4352 4353 list_for_each_entry(child, &event->child_list, child_list) { 4354 (void)perf_event_read(child, false); 4355 total += perf_event_count(child); 4356 *enabled += child->total_time_enabled; 4357 *running += child->total_time_running; 4358 } 4359 mutex_unlock(&event->child_mutex); 4360 4361 return total; 4362 } 4363 EXPORT_SYMBOL_GPL(perf_event_read_value); 4364 4365 static int __perf_read_group_add(struct perf_event *leader, 4366 u64 read_format, u64 *values) 4367 { 4368 struct perf_event *sub; 4369 int n = 1; /* skip @nr */ 4370 int ret; 4371 4372 ret = perf_event_read(leader, true); 4373 if (ret) 4374 return ret; 4375 4376 /* 4377 * Since we co-schedule groups, {enabled,running} times of siblings 4378 * will be identical to those of the leader, so we only publish one 4379 * set. 4380 */ 4381 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4382 values[n++] += leader->total_time_enabled + 4383 atomic64_read(&leader->child_total_time_enabled); 4384 } 4385 4386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4387 values[n++] += leader->total_time_running + 4388 atomic64_read(&leader->child_total_time_running); 4389 } 4390 4391 /* 4392 * Write {count,id} tuples for every sibling. 4393 */ 4394 values[n++] += perf_event_count(leader); 4395 if (read_format & PERF_FORMAT_ID) 4396 values[n++] = primary_event_id(leader); 4397 4398 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4399 values[n++] += perf_event_count(sub); 4400 if (read_format & PERF_FORMAT_ID) 4401 values[n++] = primary_event_id(sub); 4402 } 4403 4404 return 0; 4405 } 4406 4407 static int perf_read_group(struct perf_event *event, 4408 u64 read_format, char __user *buf) 4409 { 4410 struct perf_event *leader = event->group_leader, *child; 4411 struct perf_event_context *ctx = leader->ctx; 4412 int ret; 4413 u64 *values; 4414 4415 lockdep_assert_held(&ctx->mutex); 4416 4417 values = kzalloc(event->read_size, GFP_KERNEL); 4418 if (!values) 4419 return -ENOMEM; 4420 4421 values[0] = 1 + leader->nr_siblings; 4422 4423 /* 4424 * By locking the child_mutex of the leader we effectively 4425 * lock the child list of all siblings.. XXX explain how. 4426 */ 4427 mutex_lock(&leader->child_mutex); 4428 4429 ret = __perf_read_group_add(leader, read_format, values); 4430 if (ret) 4431 goto unlock; 4432 4433 list_for_each_entry(child, &leader->child_list, child_list) { 4434 ret = __perf_read_group_add(child, read_format, values); 4435 if (ret) 4436 goto unlock; 4437 } 4438 4439 mutex_unlock(&leader->child_mutex); 4440 4441 ret = event->read_size; 4442 if (copy_to_user(buf, values, event->read_size)) 4443 ret = -EFAULT; 4444 goto out; 4445 4446 unlock: 4447 mutex_unlock(&leader->child_mutex); 4448 out: 4449 kfree(values); 4450 return ret; 4451 } 4452 4453 static int perf_read_one(struct perf_event *event, 4454 u64 read_format, char __user *buf) 4455 { 4456 u64 enabled, running; 4457 u64 values[4]; 4458 int n = 0; 4459 4460 values[n++] = perf_event_read_value(event, &enabled, &running); 4461 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4462 values[n++] = enabled; 4463 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4464 values[n++] = running; 4465 if (read_format & PERF_FORMAT_ID) 4466 values[n++] = primary_event_id(event); 4467 4468 if (copy_to_user(buf, values, n * sizeof(u64))) 4469 return -EFAULT; 4470 4471 return n * sizeof(u64); 4472 } 4473 4474 static bool is_event_hup(struct perf_event *event) 4475 { 4476 bool no_children; 4477 4478 if (event->state > PERF_EVENT_STATE_EXIT) 4479 return false; 4480 4481 mutex_lock(&event->child_mutex); 4482 no_children = list_empty(&event->child_list); 4483 mutex_unlock(&event->child_mutex); 4484 return no_children; 4485 } 4486 4487 /* 4488 * Read the performance event - simple non blocking version for now 4489 */ 4490 static ssize_t 4491 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4492 { 4493 u64 read_format = event->attr.read_format; 4494 int ret; 4495 4496 /* 4497 * Return end-of-file for a read on a event that is in 4498 * error state (i.e. because it was pinned but it couldn't be 4499 * scheduled on to the CPU at some point). 4500 */ 4501 if (event->state == PERF_EVENT_STATE_ERROR) 4502 return 0; 4503 4504 if (count < event->read_size) 4505 return -ENOSPC; 4506 4507 WARN_ON_ONCE(event->ctx->parent_ctx); 4508 if (read_format & PERF_FORMAT_GROUP) 4509 ret = perf_read_group(event, read_format, buf); 4510 else 4511 ret = perf_read_one(event, read_format, buf); 4512 4513 return ret; 4514 } 4515 4516 static ssize_t 4517 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4518 { 4519 struct perf_event *event = file->private_data; 4520 struct perf_event_context *ctx; 4521 int ret; 4522 4523 ctx = perf_event_ctx_lock(event); 4524 ret = __perf_read(event, buf, count); 4525 perf_event_ctx_unlock(event, ctx); 4526 4527 return ret; 4528 } 4529 4530 static unsigned int perf_poll(struct file *file, poll_table *wait) 4531 { 4532 struct perf_event *event = file->private_data; 4533 struct ring_buffer *rb; 4534 unsigned int events = POLLHUP; 4535 4536 poll_wait(file, &event->waitq, wait); 4537 4538 if (is_event_hup(event)) 4539 return events; 4540 4541 /* 4542 * Pin the event->rb by taking event->mmap_mutex; otherwise 4543 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4544 */ 4545 mutex_lock(&event->mmap_mutex); 4546 rb = event->rb; 4547 if (rb) 4548 events = atomic_xchg(&rb->poll, 0); 4549 mutex_unlock(&event->mmap_mutex); 4550 return events; 4551 } 4552 4553 static void _perf_event_reset(struct perf_event *event) 4554 { 4555 (void)perf_event_read(event, false); 4556 local64_set(&event->count, 0); 4557 perf_event_update_userpage(event); 4558 } 4559 4560 /* 4561 * Holding the top-level event's child_mutex means that any 4562 * descendant process that has inherited this event will block 4563 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4564 * task existence requirements of perf_event_enable/disable. 4565 */ 4566 static void perf_event_for_each_child(struct perf_event *event, 4567 void (*func)(struct perf_event *)) 4568 { 4569 struct perf_event *child; 4570 4571 WARN_ON_ONCE(event->ctx->parent_ctx); 4572 4573 mutex_lock(&event->child_mutex); 4574 func(event); 4575 list_for_each_entry(child, &event->child_list, child_list) 4576 func(child); 4577 mutex_unlock(&event->child_mutex); 4578 } 4579 4580 static void perf_event_for_each(struct perf_event *event, 4581 void (*func)(struct perf_event *)) 4582 { 4583 struct perf_event_context *ctx = event->ctx; 4584 struct perf_event *sibling; 4585 4586 lockdep_assert_held(&ctx->mutex); 4587 4588 event = event->group_leader; 4589 4590 perf_event_for_each_child(event, func); 4591 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4592 perf_event_for_each_child(sibling, func); 4593 } 4594 4595 static void __perf_event_period(struct perf_event *event, 4596 struct perf_cpu_context *cpuctx, 4597 struct perf_event_context *ctx, 4598 void *info) 4599 { 4600 u64 value = *((u64 *)info); 4601 bool active; 4602 4603 if (event->attr.freq) { 4604 event->attr.sample_freq = value; 4605 } else { 4606 event->attr.sample_period = value; 4607 event->hw.sample_period = value; 4608 } 4609 4610 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4611 if (active) { 4612 perf_pmu_disable(ctx->pmu); 4613 /* 4614 * We could be throttled; unthrottle now to avoid the tick 4615 * trying to unthrottle while we already re-started the event. 4616 */ 4617 if (event->hw.interrupts == MAX_INTERRUPTS) { 4618 event->hw.interrupts = 0; 4619 perf_log_throttle(event, 1); 4620 } 4621 event->pmu->stop(event, PERF_EF_UPDATE); 4622 } 4623 4624 local64_set(&event->hw.period_left, 0); 4625 4626 if (active) { 4627 event->pmu->start(event, PERF_EF_RELOAD); 4628 perf_pmu_enable(ctx->pmu); 4629 } 4630 } 4631 4632 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4633 { 4634 u64 value; 4635 4636 if (!is_sampling_event(event)) 4637 return -EINVAL; 4638 4639 if (copy_from_user(&value, arg, sizeof(value))) 4640 return -EFAULT; 4641 4642 if (!value) 4643 return -EINVAL; 4644 4645 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4646 return -EINVAL; 4647 4648 event_function_call(event, __perf_event_period, &value); 4649 4650 return 0; 4651 } 4652 4653 static const struct file_operations perf_fops; 4654 4655 static inline int perf_fget_light(int fd, struct fd *p) 4656 { 4657 struct fd f = fdget(fd); 4658 if (!f.file) 4659 return -EBADF; 4660 4661 if (f.file->f_op != &perf_fops) { 4662 fdput(f); 4663 return -EBADF; 4664 } 4665 *p = f; 4666 return 0; 4667 } 4668 4669 static int perf_event_set_output(struct perf_event *event, 4670 struct perf_event *output_event); 4671 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4672 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4673 4674 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4675 { 4676 void (*func)(struct perf_event *); 4677 u32 flags = arg; 4678 4679 switch (cmd) { 4680 case PERF_EVENT_IOC_ENABLE: 4681 func = _perf_event_enable; 4682 break; 4683 case PERF_EVENT_IOC_DISABLE: 4684 func = _perf_event_disable; 4685 break; 4686 case PERF_EVENT_IOC_RESET: 4687 func = _perf_event_reset; 4688 break; 4689 4690 case PERF_EVENT_IOC_REFRESH: 4691 return _perf_event_refresh(event, arg); 4692 4693 case PERF_EVENT_IOC_PERIOD: 4694 return perf_event_period(event, (u64 __user *)arg); 4695 4696 case PERF_EVENT_IOC_ID: 4697 { 4698 u64 id = primary_event_id(event); 4699 4700 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4701 return -EFAULT; 4702 return 0; 4703 } 4704 4705 case PERF_EVENT_IOC_SET_OUTPUT: 4706 { 4707 int ret; 4708 if (arg != -1) { 4709 struct perf_event *output_event; 4710 struct fd output; 4711 ret = perf_fget_light(arg, &output); 4712 if (ret) 4713 return ret; 4714 output_event = output.file->private_data; 4715 ret = perf_event_set_output(event, output_event); 4716 fdput(output); 4717 } else { 4718 ret = perf_event_set_output(event, NULL); 4719 } 4720 return ret; 4721 } 4722 4723 case PERF_EVENT_IOC_SET_FILTER: 4724 return perf_event_set_filter(event, (void __user *)arg); 4725 4726 case PERF_EVENT_IOC_SET_BPF: 4727 return perf_event_set_bpf_prog(event, arg); 4728 4729 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4730 struct ring_buffer *rb; 4731 4732 rcu_read_lock(); 4733 rb = rcu_dereference(event->rb); 4734 if (!rb || !rb->nr_pages) { 4735 rcu_read_unlock(); 4736 return -EINVAL; 4737 } 4738 rb_toggle_paused(rb, !!arg); 4739 rcu_read_unlock(); 4740 return 0; 4741 } 4742 default: 4743 return -ENOTTY; 4744 } 4745 4746 if (flags & PERF_IOC_FLAG_GROUP) 4747 perf_event_for_each(event, func); 4748 else 4749 perf_event_for_each_child(event, func); 4750 4751 return 0; 4752 } 4753 4754 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4755 { 4756 struct perf_event *event = file->private_data; 4757 struct perf_event_context *ctx; 4758 long ret; 4759 4760 ctx = perf_event_ctx_lock(event); 4761 ret = _perf_ioctl(event, cmd, arg); 4762 perf_event_ctx_unlock(event, ctx); 4763 4764 return ret; 4765 } 4766 4767 #ifdef CONFIG_COMPAT 4768 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4769 unsigned long arg) 4770 { 4771 switch (_IOC_NR(cmd)) { 4772 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4773 case _IOC_NR(PERF_EVENT_IOC_ID): 4774 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4775 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4776 cmd &= ~IOCSIZE_MASK; 4777 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4778 } 4779 break; 4780 } 4781 return perf_ioctl(file, cmd, arg); 4782 } 4783 #else 4784 # define perf_compat_ioctl NULL 4785 #endif 4786 4787 int perf_event_task_enable(void) 4788 { 4789 struct perf_event_context *ctx; 4790 struct perf_event *event; 4791 4792 mutex_lock(¤t->perf_event_mutex); 4793 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4794 ctx = perf_event_ctx_lock(event); 4795 perf_event_for_each_child(event, _perf_event_enable); 4796 perf_event_ctx_unlock(event, ctx); 4797 } 4798 mutex_unlock(¤t->perf_event_mutex); 4799 4800 return 0; 4801 } 4802 4803 int perf_event_task_disable(void) 4804 { 4805 struct perf_event_context *ctx; 4806 struct perf_event *event; 4807 4808 mutex_lock(¤t->perf_event_mutex); 4809 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4810 ctx = perf_event_ctx_lock(event); 4811 perf_event_for_each_child(event, _perf_event_disable); 4812 perf_event_ctx_unlock(event, ctx); 4813 } 4814 mutex_unlock(¤t->perf_event_mutex); 4815 4816 return 0; 4817 } 4818 4819 static int perf_event_index(struct perf_event *event) 4820 { 4821 if (event->hw.state & PERF_HES_STOPPED) 4822 return 0; 4823 4824 if (event->state != PERF_EVENT_STATE_ACTIVE) 4825 return 0; 4826 4827 return event->pmu->event_idx(event); 4828 } 4829 4830 static void calc_timer_values(struct perf_event *event, 4831 u64 *now, 4832 u64 *enabled, 4833 u64 *running) 4834 { 4835 u64 ctx_time; 4836 4837 *now = perf_clock(); 4838 ctx_time = event->shadow_ctx_time + *now; 4839 *enabled = ctx_time - event->tstamp_enabled; 4840 *running = ctx_time - event->tstamp_running; 4841 } 4842 4843 static void perf_event_init_userpage(struct perf_event *event) 4844 { 4845 struct perf_event_mmap_page *userpg; 4846 struct ring_buffer *rb; 4847 4848 rcu_read_lock(); 4849 rb = rcu_dereference(event->rb); 4850 if (!rb) 4851 goto unlock; 4852 4853 userpg = rb->user_page; 4854 4855 /* Allow new userspace to detect that bit 0 is deprecated */ 4856 userpg->cap_bit0_is_deprecated = 1; 4857 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4858 userpg->data_offset = PAGE_SIZE; 4859 userpg->data_size = perf_data_size(rb); 4860 4861 unlock: 4862 rcu_read_unlock(); 4863 } 4864 4865 void __weak arch_perf_update_userpage( 4866 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4867 { 4868 } 4869 4870 /* 4871 * Callers need to ensure there can be no nesting of this function, otherwise 4872 * the seqlock logic goes bad. We can not serialize this because the arch 4873 * code calls this from NMI context. 4874 */ 4875 void perf_event_update_userpage(struct perf_event *event) 4876 { 4877 struct perf_event_mmap_page *userpg; 4878 struct ring_buffer *rb; 4879 u64 enabled, running, now; 4880 4881 rcu_read_lock(); 4882 rb = rcu_dereference(event->rb); 4883 if (!rb) 4884 goto unlock; 4885 4886 /* 4887 * compute total_time_enabled, total_time_running 4888 * based on snapshot values taken when the event 4889 * was last scheduled in. 4890 * 4891 * we cannot simply called update_context_time() 4892 * because of locking issue as we can be called in 4893 * NMI context 4894 */ 4895 calc_timer_values(event, &now, &enabled, &running); 4896 4897 userpg = rb->user_page; 4898 /* 4899 * Disable preemption so as to not let the corresponding user-space 4900 * spin too long if we get preempted. 4901 */ 4902 preempt_disable(); 4903 ++userpg->lock; 4904 barrier(); 4905 userpg->index = perf_event_index(event); 4906 userpg->offset = perf_event_count(event); 4907 if (userpg->index) 4908 userpg->offset -= local64_read(&event->hw.prev_count); 4909 4910 userpg->time_enabled = enabled + 4911 atomic64_read(&event->child_total_time_enabled); 4912 4913 userpg->time_running = running + 4914 atomic64_read(&event->child_total_time_running); 4915 4916 arch_perf_update_userpage(event, userpg, now); 4917 4918 barrier(); 4919 ++userpg->lock; 4920 preempt_enable(); 4921 unlock: 4922 rcu_read_unlock(); 4923 } 4924 4925 static int perf_mmap_fault(struct vm_fault *vmf) 4926 { 4927 struct perf_event *event = vmf->vma->vm_file->private_data; 4928 struct ring_buffer *rb; 4929 int ret = VM_FAULT_SIGBUS; 4930 4931 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4932 if (vmf->pgoff == 0) 4933 ret = 0; 4934 return ret; 4935 } 4936 4937 rcu_read_lock(); 4938 rb = rcu_dereference(event->rb); 4939 if (!rb) 4940 goto unlock; 4941 4942 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4943 goto unlock; 4944 4945 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4946 if (!vmf->page) 4947 goto unlock; 4948 4949 get_page(vmf->page); 4950 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4951 vmf->page->index = vmf->pgoff; 4952 4953 ret = 0; 4954 unlock: 4955 rcu_read_unlock(); 4956 4957 return ret; 4958 } 4959 4960 static void ring_buffer_attach(struct perf_event *event, 4961 struct ring_buffer *rb) 4962 { 4963 struct ring_buffer *old_rb = NULL; 4964 unsigned long flags; 4965 4966 if (event->rb) { 4967 /* 4968 * Should be impossible, we set this when removing 4969 * event->rb_entry and wait/clear when adding event->rb_entry. 4970 */ 4971 WARN_ON_ONCE(event->rcu_pending); 4972 4973 old_rb = event->rb; 4974 spin_lock_irqsave(&old_rb->event_lock, flags); 4975 list_del_rcu(&event->rb_entry); 4976 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4977 4978 event->rcu_batches = get_state_synchronize_rcu(); 4979 event->rcu_pending = 1; 4980 } 4981 4982 if (rb) { 4983 if (event->rcu_pending) { 4984 cond_synchronize_rcu(event->rcu_batches); 4985 event->rcu_pending = 0; 4986 } 4987 4988 spin_lock_irqsave(&rb->event_lock, flags); 4989 list_add_rcu(&event->rb_entry, &rb->event_list); 4990 spin_unlock_irqrestore(&rb->event_lock, flags); 4991 } 4992 4993 /* 4994 * Avoid racing with perf_mmap_close(AUX): stop the event 4995 * before swizzling the event::rb pointer; if it's getting 4996 * unmapped, its aux_mmap_count will be 0 and it won't 4997 * restart. See the comment in __perf_pmu_output_stop(). 4998 * 4999 * Data will inevitably be lost when set_output is done in 5000 * mid-air, but then again, whoever does it like this is 5001 * not in for the data anyway. 5002 */ 5003 if (has_aux(event)) 5004 perf_event_stop(event, 0); 5005 5006 rcu_assign_pointer(event->rb, rb); 5007 5008 if (old_rb) { 5009 ring_buffer_put(old_rb); 5010 /* 5011 * Since we detached before setting the new rb, so that we 5012 * could attach the new rb, we could have missed a wakeup. 5013 * Provide it now. 5014 */ 5015 wake_up_all(&event->waitq); 5016 } 5017 } 5018 5019 static void ring_buffer_wakeup(struct perf_event *event) 5020 { 5021 struct ring_buffer *rb; 5022 5023 rcu_read_lock(); 5024 rb = rcu_dereference(event->rb); 5025 if (rb) { 5026 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5027 wake_up_all(&event->waitq); 5028 } 5029 rcu_read_unlock(); 5030 } 5031 5032 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5033 { 5034 struct ring_buffer *rb; 5035 5036 rcu_read_lock(); 5037 rb = rcu_dereference(event->rb); 5038 if (rb) { 5039 if (!atomic_inc_not_zero(&rb->refcount)) 5040 rb = NULL; 5041 } 5042 rcu_read_unlock(); 5043 5044 return rb; 5045 } 5046 5047 void ring_buffer_put(struct ring_buffer *rb) 5048 { 5049 if (!atomic_dec_and_test(&rb->refcount)) 5050 return; 5051 5052 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5053 5054 call_rcu(&rb->rcu_head, rb_free_rcu); 5055 } 5056 5057 static void perf_mmap_open(struct vm_area_struct *vma) 5058 { 5059 struct perf_event *event = vma->vm_file->private_data; 5060 5061 atomic_inc(&event->mmap_count); 5062 atomic_inc(&event->rb->mmap_count); 5063 5064 if (vma->vm_pgoff) 5065 atomic_inc(&event->rb->aux_mmap_count); 5066 5067 if (event->pmu->event_mapped) 5068 event->pmu->event_mapped(event); 5069 } 5070 5071 static void perf_pmu_output_stop(struct perf_event *event); 5072 5073 /* 5074 * A buffer can be mmap()ed multiple times; either directly through the same 5075 * event, or through other events by use of perf_event_set_output(). 5076 * 5077 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5078 * the buffer here, where we still have a VM context. This means we need 5079 * to detach all events redirecting to us. 5080 */ 5081 static void perf_mmap_close(struct vm_area_struct *vma) 5082 { 5083 struct perf_event *event = vma->vm_file->private_data; 5084 5085 struct ring_buffer *rb = ring_buffer_get(event); 5086 struct user_struct *mmap_user = rb->mmap_user; 5087 int mmap_locked = rb->mmap_locked; 5088 unsigned long size = perf_data_size(rb); 5089 5090 if (event->pmu->event_unmapped) 5091 event->pmu->event_unmapped(event); 5092 5093 /* 5094 * rb->aux_mmap_count will always drop before rb->mmap_count and 5095 * event->mmap_count, so it is ok to use event->mmap_mutex to 5096 * serialize with perf_mmap here. 5097 */ 5098 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5099 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5100 /* 5101 * Stop all AUX events that are writing to this buffer, 5102 * so that we can free its AUX pages and corresponding PMU 5103 * data. Note that after rb::aux_mmap_count dropped to zero, 5104 * they won't start any more (see perf_aux_output_begin()). 5105 */ 5106 perf_pmu_output_stop(event); 5107 5108 /* now it's safe to free the pages */ 5109 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5110 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5111 5112 /* this has to be the last one */ 5113 rb_free_aux(rb); 5114 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5115 5116 mutex_unlock(&event->mmap_mutex); 5117 } 5118 5119 atomic_dec(&rb->mmap_count); 5120 5121 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5122 goto out_put; 5123 5124 ring_buffer_attach(event, NULL); 5125 mutex_unlock(&event->mmap_mutex); 5126 5127 /* If there's still other mmap()s of this buffer, we're done. */ 5128 if (atomic_read(&rb->mmap_count)) 5129 goto out_put; 5130 5131 /* 5132 * No other mmap()s, detach from all other events that might redirect 5133 * into the now unreachable buffer. Somewhat complicated by the 5134 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5135 */ 5136 again: 5137 rcu_read_lock(); 5138 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5139 if (!atomic_long_inc_not_zero(&event->refcount)) { 5140 /* 5141 * This event is en-route to free_event() which will 5142 * detach it and remove it from the list. 5143 */ 5144 continue; 5145 } 5146 rcu_read_unlock(); 5147 5148 mutex_lock(&event->mmap_mutex); 5149 /* 5150 * Check we didn't race with perf_event_set_output() which can 5151 * swizzle the rb from under us while we were waiting to 5152 * acquire mmap_mutex. 5153 * 5154 * If we find a different rb; ignore this event, a next 5155 * iteration will no longer find it on the list. We have to 5156 * still restart the iteration to make sure we're not now 5157 * iterating the wrong list. 5158 */ 5159 if (event->rb == rb) 5160 ring_buffer_attach(event, NULL); 5161 5162 mutex_unlock(&event->mmap_mutex); 5163 put_event(event); 5164 5165 /* 5166 * Restart the iteration; either we're on the wrong list or 5167 * destroyed its integrity by doing a deletion. 5168 */ 5169 goto again; 5170 } 5171 rcu_read_unlock(); 5172 5173 /* 5174 * It could be there's still a few 0-ref events on the list; they'll 5175 * get cleaned up by free_event() -- they'll also still have their 5176 * ref on the rb and will free it whenever they are done with it. 5177 * 5178 * Aside from that, this buffer is 'fully' detached and unmapped, 5179 * undo the VM accounting. 5180 */ 5181 5182 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5183 vma->vm_mm->pinned_vm -= mmap_locked; 5184 free_uid(mmap_user); 5185 5186 out_put: 5187 ring_buffer_put(rb); /* could be last */ 5188 } 5189 5190 static const struct vm_operations_struct perf_mmap_vmops = { 5191 .open = perf_mmap_open, 5192 .close = perf_mmap_close, /* non mergable */ 5193 .fault = perf_mmap_fault, 5194 .page_mkwrite = perf_mmap_fault, 5195 }; 5196 5197 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5198 { 5199 struct perf_event *event = file->private_data; 5200 unsigned long user_locked, user_lock_limit; 5201 struct user_struct *user = current_user(); 5202 unsigned long locked, lock_limit; 5203 struct ring_buffer *rb = NULL; 5204 unsigned long vma_size; 5205 unsigned long nr_pages; 5206 long user_extra = 0, extra = 0; 5207 int ret = 0, flags = 0; 5208 5209 /* 5210 * Don't allow mmap() of inherited per-task counters. This would 5211 * create a performance issue due to all children writing to the 5212 * same rb. 5213 */ 5214 if (event->cpu == -1 && event->attr.inherit) 5215 return -EINVAL; 5216 5217 if (!(vma->vm_flags & VM_SHARED)) 5218 return -EINVAL; 5219 5220 vma_size = vma->vm_end - vma->vm_start; 5221 5222 if (vma->vm_pgoff == 0) { 5223 nr_pages = (vma_size / PAGE_SIZE) - 1; 5224 } else { 5225 /* 5226 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5227 * mapped, all subsequent mappings should have the same size 5228 * and offset. Must be above the normal perf buffer. 5229 */ 5230 u64 aux_offset, aux_size; 5231 5232 if (!event->rb) 5233 return -EINVAL; 5234 5235 nr_pages = vma_size / PAGE_SIZE; 5236 5237 mutex_lock(&event->mmap_mutex); 5238 ret = -EINVAL; 5239 5240 rb = event->rb; 5241 if (!rb) 5242 goto aux_unlock; 5243 5244 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5245 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5246 5247 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5248 goto aux_unlock; 5249 5250 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5251 goto aux_unlock; 5252 5253 /* already mapped with a different offset */ 5254 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5255 goto aux_unlock; 5256 5257 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5258 goto aux_unlock; 5259 5260 /* already mapped with a different size */ 5261 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5262 goto aux_unlock; 5263 5264 if (!is_power_of_2(nr_pages)) 5265 goto aux_unlock; 5266 5267 if (!atomic_inc_not_zero(&rb->mmap_count)) 5268 goto aux_unlock; 5269 5270 if (rb_has_aux(rb)) { 5271 atomic_inc(&rb->aux_mmap_count); 5272 ret = 0; 5273 goto unlock; 5274 } 5275 5276 atomic_set(&rb->aux_mmap_count, 1); 5277 user_extra = nr_pages; 5278 5279 goto accounting; 5280 } 5281 5282 /* 5283 * If we have rb pages ensure they're a power-of-two number, so we 5284 * can do bitmasks instead of modulo. 5285 */ 5286 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5287 return -EINVAL; 5288 5289 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5290 return -EINVAL; 5291 5292 WARN_ON_ONCE(event->ctx->parent_ctx); 5293 again: 5294 mutex_lock(&event->mmap_mutex); 5295 if (event->rb) { 5296 if (event->rb->nr_pages != nr_pages) { 5297 ret = -EINVAL; 5298 goto unlock; 5299 } 5300 5301 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5302 /* 5303 * Raced against perf_mmap_close() through 5304 * perf_event_set_output(). Try again, hope for better 5305 * luck. 5306 */ 5307 mutex_unlock(&event->mmap_mutex); 5308 goto again; 5309 } 5310 5311 goto unlock; 5312 } 5313 5314 user_extra = nr_pages + 1; 5315 5316 accounting: 5317 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5318 5319 /* 5320 * Increase the limit linearly with more CPUs: 5321 */ 5322 user_lock_limit *= num_online_cpus(); 5323 5324 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5325 5326 if (user_locked > user_lock_limit) 5327 extra = user_locked - user_lock_limit; 5328 5329 lock_limit = rlimit(RLIMIT_MEMLOCK); 5330 lock_limit >>= PAGE_SHIFT; 5331 locked = vma->vm_mm->pinned_vm + extra; 5332 5333 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5334 !capable(CAP_IPC_LOCK)) { 5335 ret = -EPERM; 5336 goto unlock; 5337 } 5338 5339 WARN_ON(!rb && event->rb); 5340 5341 if (vma->vm_flags & VM_WRITE) 5342 flags |= RING_BUFFER_WRITABLE; 5343 5344 if (!rb) { 5345 rb = rb_alloc(nr_pages, 5346 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5347 event->cpu, flags); 5348 5349 if (!rb) { 5350 ret = -ENOMEM; 5351 goto unlock; 5352 } 5353 5354 atomic_set(&rb->mmap_count, 1); 5355 rb->mmap_user = get_current_user(); 5356 rb->mmap_locked = extra; 5357 5358 ring_buffer_attach(event, rb); 5359 5360 perf_event_init_userpage(event); 5361 perf_event_update_userpage(event); 5362 } else { 5363 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5364 event->attr.aux_watermark, flags); 5365 if (!ret) 5366 rb->aux_mmap_locked = extra; 5367 } 5368 5369 unlock: 5370 if (!ret) { 5371 atomic_long_add(user_extra, &user->locked_vm); 5372 vma->vm_mm->pinned_vm += extra; 5373 5374 atomic_inc(&event->mmap_count); 5375 } else if (rb) { 5376 atomic_dec(&rb->mmap_count); 5377 } 5378 aux_unlock: 5379 mutex_unlock(&event->mmap_mutex); 5380 5381 /* 5382 * Since pinned accounting is per vm we cannot allow fork() to copy our 5383 * vma. 5384 */ 5385 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5386 vma->vm_ops = &perf_mmap_vmops; 5387 5388 if (event->pmu->event_mapped) 5389 event->pmu->event_mapped(event); 5390 5391 return ret; 5392 } 5393 5394 static int perf_fasync(int fd, struct file *filp, int on) 5395 { 5396 struct inode *inode = file_inode(filp); 5397 struct perf_event *event = filp->private_data; 5398 int retval; 5399 5400 inode_lock(inode); 5401 retval = fasync_helper(fd, filp, on, &event->fasync); 5402 inode_unlock(inode); 5403 5404 if (retval < 0) 5405 return retval; 5406 5407 return 0; 5408 } 5409 5410 static const struct file_operations perf_fops = { 5411 .llseek = no_llseek, 5412 .release = perf_release, 5413 .read = perf_read, 5414 .poll = perf_poll, 5415 .unlocked_ioctl = perf_ioctl, 5416 .compat_ioctl = perf_compat_ioctl, 5417 .mmap = perf_mmap, 5418 .fasync = perf_fasync, 5419 }; 5420 5421 /* 5422 * Perf event wakeup 5423 * 5424 * If there's data, ensure we set the poll() state and publish everything 5425 * to user-space before waking everybody up. 5426 */ 5427 5428 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5429 { 5430 /* only the parent has fasync state */ 5431 if (event->parent) 5432 event = event->parent; 5433 return &event->fasync; 5434 } 5435 5436 void perf_event_wakeup(struct perf_event *event) 5437 { 5438 ring_buffer_wakeup(event); 5439 5440 if (event->pending_kill) { 5441 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5442 event->pending_kill = 0; 5443 } 5444 } 5445 5446 static void perf_pending_event(struct irq_work *entry) 5447 { 5448 struct perf_event *event = container_of(entry, 5449 struct perf_event, pending); 5450 int rctx; 5451 5452 rctx = perf_swevent_get_recursion_context(); 5453 /* 5454 * If we 'fail' here, that's OK, it means recursion is already disabled 5455 * and we won't recurse 'further'. 5456 */ 5457 5458 if (event->pending_disable) { 5459 event->pending_disable = 0; 5460 perf_event_disable_local(event); 5461 } 5462 5463 if (event->pending_wakeup) { 5464 event->pending_wakeup = 0; 5465 perf_event_wakeup(event); 5466 } 5467 5468 if (rctx >= 0) 5469 perf_swevent_put_recursion_context(rctx); 5470 } 5471 5472 /* 5473 * We assume there is only KVM supporting the callbacks. 5474 * Later on, we might change it to a list if there is 5475 * another virtualization implementation supporting the callbacks. 5476 */ 5477 struct perf_guest_info_callbacks *perf_guest_cbs; 5478 5479 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5480 { 5481 perf_guest_cbs = cbs; 5482 return 0; 5483 } 5484 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5485 5486 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5487 { 5488 perf_guest_cbs = NULL; 5489 return 0; 5490 } 5491 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5492 5493 static void 5494 perf_output_sample_regs(struct perf_output_handle *handle, 5495 struct pt_regs *regs, u64 mask) 5496 { 5497 int bit; 5498 DECLARE_BITMAP(_mask, 64); 5499 5500 bitmap_from_u64(_mask, mask); 5501 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5502 u64 val; 5503 5504 val = perf_reg_value(regs, bit); 5505 perf_output_put(handle, val); 5506 } 5507 } 5508 5509 static void perf_sample_regs_user(struct perf_regs *regs_user, 5510 struct pt_regs *regs, 5511 struct pt_regs *regs_user_copy) 5512 { 5513 if (user_mode(regs)) { 5514 regs_user->abi = perf_reg_abi(current); 5515 regs_user->regs = regs; 5516 } else if (current->mm) { 5517 perf_get_regs_user(regs_user, regs, regs_user_copy); 5518 } else { 5519 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5520 regs_user->regs = NULL; 5521 } 5522 } 5523 5524 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5525 struct pt_regs *regs) 5526 { 5527 regs_intr->regs = regs; 5528 regs_intr->abi = perf_reg_abi(current); 5529 } 5530 5531 5532 /* 5533 * Get remaining task size from user stack pointer. 5534 * 5535 * It'd be better to take stack vma map and limit this more 5536 * precisly, but there's no way to get it safely under interrupt, 5537 * so using TASK_SIZE as limit. 5538 */ 5539 static u64 perf_ustack_task_size(struct pt_regs *regs) 5540 { 5541 unsigned long addr = perf_user_stack_pointer(regs); 5542 5543 if (!addr || addr >= TASK_SIZE) 5544 return 0; 5545 5546 return TASK_SIZE - addr; 5547 } 5548 5549 static u16 5550 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5551 struct pt_regs *regs) 5552 { 5553 u64 task_size; 5554 5555 /* No regs, no stack pointer, no dump. */ 5556 if (!regs) 5557 return 0; 5558 5559 /* 5560 * Check if we fit in with the requested stack size into the: 5561 * - TASK_SIZE 5562 * If we don't, we limit the size to the TASK_SIZE. 5563 * 5564 * - remaining sample size 5565 * If we don't, we customize the stack size to 5566 * fit in to the remaining sample size. 5567 */ 5568 5569 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5570 stack_size = min(stack_size, (u16) task_size); 5571 5572 /* Current header size plus static size and dynamic size. */ 5573 header_size += 2 * sizeof(u64); 5574 5575 /* Do we fit in with the current stack dump size? */ 5576 if ((u16) (header_size + stack_size) < header_size) { 5577 /* 5578 * If we overflow the maximum size for the sample, 5579 * we customize the stack dump size to fit in. 5580 */ 5581 stack_size = USHRT_MAX - header_size - sizeof(u64); 5582 stack_size = round_up(stack_size, sizeof(u64)); 5583 } 5584 5585 return stack_size; 5586 } 5587 5588 static void 5589 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5590 struct pt_regs *regs) 5591 { 5592 /* Case of a kernel thread, nothing to dump */ 5593 if (!regs) { 5594 u64 size = 0; 5595 perf_output_put(handle, size); 5596 } else { 5597 unsigned long sp; 5598 unsigned int rem; 5599 u64 dyn_size; 5600 5601 /* 5602 * We dump: 5603 * static size 5604 * - the size requested by user or the best one we can fit 5605 * in to the sample max size 5606 * data 5607 * - user stack dump data 5608 * dynamic size 5609 * - the actual dumped size 5610 */ 5611 5612 /* Static size. */ 5613 perf_output_put(handle, dump_size); 5614 5615 /* Data. */ 5616 sp = perf_user_stack_pointer(regs); 5617 rem = __output_copy_user(handle, (void *) sp, dump_size); 5618 dyn_size = dump_size - rem; 5619 5620 perf_output_skip(handle, rem); 5621 5622 /* Dynamic size. */ 5623 perf_output_put(handle, dyn_size); 5624 } 5625 } 5626 5627 static void __perf_event_header__init_id(struct perf_event_header *header, 5628 struct perf_sample_data *data, 5629 struct perf_event *event) 5630 { 5631 u64 sample_type = event->attr.sample_type; 5632 5633 data->type = sample_type; 5634 header->size += event->id_header_size; 5635 5636 if (sample_type & PERF_SAMPLE_TID) { 5637 /* namespace issues */ 5638 data->tid_entry.pid = perf_event_pid(event, current); 5639 data->tid_entry.tid = perf_event_tid(event, current); 5640 } 5641 5642 if (sample_type & PERF_SAMPLE_TIME) 5643 data->time = perf_event_clock(event); 5644 5645 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5646 data->id = primary_event_id(event); 5647 5648 if (sample_type & PERF_SAMPLE_STREAM_ID) 5649 data->stream_id = event->id; 5650 5651 if (sample_type & PERF_SAMPLE_CPU) { 5652 data->cpu_entry.cpu = raw_smp_processor_id(); 5653 data->cpu_entry.reserved = 0; 5654 } 5655 } 5656 5657 void perf_event_header__init_id(struct perf_event_header *header, 5658 struct perf_sample_data *data, 5659 struct perf_event *event) 5660 { 5661 if (event->attr.sample_id_all) 5662 __perf_event_header__init_id(header, data, event); 5663 } 5664 5665 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5666 struct perf_sample_data *data) 5667 { 5668 u64 sample_type = data->type; 5669 5670 if (sample_type & PERF_SAMPLE_TID) 5671 perf_output_put(handle, data->tid_entry); 5672 5673 if (sample_type & PERF_SAMPLE_TIME) 5674 perf_output_put(handle, data->time); 5675 5676 if (sample_type & PERF_SAMPLE_ID) 5677 perf_output_put(handle, data->id); 5678 5679 if (sample_type & PERF_SAMPLE_STREAM_ID) 5680 perf_output_put(handle, data->stream_id); 5681 5682 if (sample_type & PERF_SAMPLE_CPU) 5683 perf_output_put(handle, data->cpu_entry); 5684 5685 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5686 perf_output_put(handle, data->id); 5687 } 5688 5689 void perf_event__output_id_sample(struct perf_event *event, 5690 struct perf_output_handle *handle, 5691 struct perf_sample_data *sample) 5692 { 5693 if (event->attr.sample_id_all) 5694 __perf_event__output_id_sample(handle, sample); 5695 } 5696 5697 static void perf_output_read_one(struct perf_output_handle *handle, 5698 struct perf_event *event, 5699 u64 enabled, u64 running) 5700 { 5701 u64 read_format = event->attr.read_format; 5702 u64 values[4]; 5703 int n = 0; 5704 5705 values[n++] = perf_event_count(event); 5706 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5707 values[n++] = enabled + 5708 atomic64_read(&event->child_total_time_enabled); 5709 } 5710 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5711 values[n++] = running + 5712 atomic64_read(&event->child_total_time_running); 5713 } 5714 if (read_format & PERF_FORMAT_ID) 5715 values[n++] = primary_event_id(event); 5716 5717 __output_copy(handle, values, n * sizeof(u64)); 5718 } 5719 5720 static void perf_output_read_group(struct perf_output_handle *handle, 5721 struct perf_event *event, 5722 u64 enabled, u64 running) 5723 { 5724 struct perf_event *leader = event->group_leader, *sub; 5725 u64 read_format = event->attr.read_format; 5726 u64 values[5]; 5727 int n = 0; 5728 5729 values[n++] = 1 + leader->nr_siblings; 5730 5731 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5732 values[n++] = enabled; 5733 5734 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5735 values[n++] = running; 5736 5737 if (leader != event) 5738 leader->pmu->read(leader); 5739 5740 values[n++] = perf_event_count(leader); 5741 if (read_format & PERF_FORMAT_ID) 5742 values[n++] = primary_event_id(leader); 5743 5744 __output_copy(handle, values, n * sizeof(u64)); 5745 5746 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5747 n = 0; 5748 5749 if ((sub != event) && 5750 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5751 sub->pmu->read(sub); 5752 5753 values[n++] = perf_event_count(sub); 5754 if (read_format & PERF_FORMAT_ID) 5755 values[n++] = primary_event_id(sub); 5756 5757 __output_copy(handle, values, n * sizeof(u64)); 5758 } 5759 } 5760 5761 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5762 PERF_FORMAT_TOTAL_TIME_RUNNING) 5763 5764 /* 5765 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5766 * 5767 * The problem is that its both hard and excessively expensive to iterate the 5768 * child list, not to mention that its impossible to IPI the children running 5769 * on another CPU, from interrupt/NMI context. 5770 */ 5771 static void perf_output_read(struct perf_output_handle *handle, 5772 struct perf_event *event) 5773 { 5774 u64 enabled = 0, running = 0, now; 5775 u64 read_format = event->attr.read_format; 5776 5777 /* 5778 * compute total_time_enabled, total_time_running 5779 * based on snapshot values taken when the event 5780 * was last scheduled in. 5781 * 5782 * we cannot simply called update_context_time() 5783 * because of locking issue as we are called in 5784 * NMI context 5785 */ 5786 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5787 calc_timer_values(event, &now, &enabled, &running); 5788 5789 if (event->attr.read_format & PERF_FORMAT_GROUP) 5790 perf_output_read_group(handle, event, enabled, running); 5791 else 5792 perf_output_read_one(handle, event, enabled, running); 5793 } 5794 5795 void perf_output_sample(struct perf_output_handle *handle, 5796 struct perf_event_header *header, 5797 struct perf_sample_data *data, 5798 struct perf_event *event) 5799 { 5800 u64 sample_type = data->type; 5801 5802 perf_output_put(handle, *header); 5803 5804 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5805 perf_output_put(handle, data->id); 5806 5807 if (sample_type & PERF_SAMPLE_IP) 5808 perf_output_put(handle, data->ip); 5809 5810 if (sample_type & PERF_SAMPLE_TID) 5811 perf_output_put(handle, data->tid_entry); 5812 5813 if (sample_type & PERF_SAMPLE_TIME) 5814 perf_output_put(handle, data->time); 5815 5816 if (sample_type & PERF_SAMPLE_ADDR) 5817 perf_output_put(handle, data->addr); 5818 5819 if (sample_type & PERF_SAMPLE_ID) 5820 perf_output_put(handle, data->id); 5821 5822 if (sample_type & PERF_SAMPLE_STREAM_ID) 5823 perf_output_put(handle, data->stream_id); 5824 5825 if (sample_type & PERF_SAMPLE_CPU) 5826 perf_output_put(handle, data->cpu_entry); 5827 5828 if (sample_type & PERF_SAMPLE_PERIOD) 5829 perf_output_put(handle, data->period); 5830 5831 if (sample_type & PERF_SAMPLE_READ) 5832 perf_output_read(handle, event); 5833 5834 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5835 if (data->callchain) { 5836 int size = 1; 5837 5838 if (data->callchain) 5839 size += data->callchain->nr; 5840 5841 size *= sizeof(u64); 5842 5843 __output_copy(handle, data->callchain, size); 5844 } else { 5845 u64 nr = 0; 5846 perf_output_put(handle, nr); 5847 } 5848 } 5849 5850 if (sample_type & PERF_SAMPLE_RAW) { 5851 struct perf_raw_record *raw = data->raw; 5852 5853 if (raw) { 5854 struct perf_raw_frag *frag = &raw->frag; 5855 5856 perf_output_put(handle, raw->size); 5857 do { 5858 if (frag->copy) { 5859 __output_custom(handle, frag->copy, 5860 frag->data, frag->size); 5861 } else { 5862 __output_copy(handle, frag->data, 5863 frag->size); 5864 } 5865 if (perf_raw_frag_last(frag)) 5866 break; 5867 frag = frag->next; 5868 } while (1); 5869 if (frag->pad) 5870 __output_skip(handle, NULL, frag->pad); 5871 } else { 5872 struct { 5873 u32 size; 5874 u32 data; 5875 } raw = { 5876 .size = sizeof(u32), 5877 .data = 0, 5878 }; 5879 perf_output_put(handle, raw); 5880 } 5881 } 5882 5883 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5884 if (data->br_stack) { 5885 size_t size; 5886 5887 size = data->br_stack->nr 5888 * sizeof(struct perf_branch_entry); 5889 5890 perf_output_put(handle, data->br_stack->nr); 5891 perf_output_copy(handle, data->br_stack->entries, size); 5892 } else { 5893 /* 5894 * we always store at least the value of nr 5895 */ 5896 u64 nr = 0; 5897 perf_output_put(handle, nr); 5898 } 5899 } 5900 5901 if (sample_type & PERF_SAMPLE_REGS_USER) { 5902 u64 abi = data->regs_user.abi; 5903 5904 /* 5905 * If there are no regs to dump, notice it through 5906 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5907 */ 5908 perf_output_put(handle, abi); 5909 5910 if (abi) { 5911 u64 mask = event->attr.sample_regs_user; 5912 perf_output_sample_regs(handle, 5913 data->regs_user.regs, 5914 mask); 5915 } 5916 } 5917 5918 if (sample_type & PERF_SAMPLE_STACK_USER) { 5919 perf_output_sample_ustack(handle, 5920 data->stack_user_size, 5921 data->regs_user.regs); 5922 } 5923 5924 if (sample_type & PERF_SAMPLE_WEIGHT) 5925 perf_output_put(handle, data->weight); 5926 5927 if (sample_type & PERF_SAMPLE_DATA_SRC) 5928 perf_output_put(handle, data->data_src.val); 5929 5930 if (sample_type & PERF_SAMPLE_TRANSACTION) 5931 perf_output_put(handle, data->txn); 5932 5933 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5934 u64 abi = data->regs_intr.abi; 5935 /* 5936 * If there are no regs to dump, notice it through 5937 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5938 */ 5939 perf_output_put(handle, abi); 5940 5941 if (abi) { 5942 u64 mask = event->attr.sample_regs_intr; 5943 5944 perf_output_sample_regs(handle, 5945 data->regs_intr.regs, 5946 mask); 5947 } 5948 } 5949 5950 if (!event->attr.watermark) { 5951 int wakeup_events = event->attr.wakeup_events; 5952 5953 if (wakeup_events) { 5954 struct ring_buffer *rb = handle->rb; 5955 int events = local_inc_return(&rb->events); 5956 5957 if (events >= wakeup_events) { 5958 local_sub(wakeup_events, &rb->events); 5959 local_inc(&rb->wakeup); 5960 } 5961 } 5962 } 5963 } 5964 5965 void perf_prepare_sample(struct perf_event_header *header, 5966 struct perf_sample_data *data, 5967 struct perf_event *event, 5968 struct pt_regs *regs) 5969 { 5970 u64 sample_type = event->attr.sample_type; 5971 5972 header->type = PERF_RECORD_SAMPLE; 5973 header->size = sizeof(*header) + event->header_size; 5974 5975 header->misc = 0; 5976 header->misc |= perf_misc_flags(regs); 5977 5978 __perf_event_header__init_id(header, data, event); 5979 5980 if (sample_type & PERF_SAMPLE_IP) 5981 data->ip = perf_instruction_pointer(regs); 5982 5983 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5984 int size = 1; 5985 5986 data->callchain = perf_callchain(event, regs); 5987 5988 if (data->callchain) 5989 size += data->callchain->nr; 5990 5991 header->size += size * sizeof(u64); 5992 } 5993 5994 if (sample_type & PERF_SAMPLE_RAW) { 5995 struct perf_raw_record *raw = data->raw; 5996 int size; 5997 5998 if (raw) { 5999 struct perf_raw_frag *frag = &raw->frag; 6000 u32 sum = 0; 6001 6002 do { 6003 sum += frag->size; 6004 if (perf_raw_frag_last(frag)) 6005 break; 6006 frag = frag->next; 6007 } while (1); 6008 6009 size = round_up(sum + sizeof(u32), sizeof(u64)); 6010 raw->size = size - sizeof(u32); 6011 frag->pad = raw->size - sum; 6012 } else { 6013 size = sizeof(u64); 6014 } 6015 6016 header->size += size; 6017 } 6018 6019 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6020 int size = sizeof(u64); /* nr */ 6021 if (data->br_stack) { 6022 size += data->br_stack->nr 6023 * sizeof(struct perf_branch_entry); 6024 } 6025 header->size += size; 6026 } 6027 6028 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6029 perf_sample_regs_user(&data->regs_user, regs, 6030 &data->regs_user_copy); 6031 6032 if (sample_type & PERF_SAMPLE_REGS_USER) { 6033 /* regs dump ABI info */ 6034 int size = sizeof(u64); 6035 6036 if (data->regs_user.regs) { 6037 u64 mask = event->attr.sample_regs_user; 6038 size += hweight64(mask) * sizeof(u64); 6039 } 6040 6041 header->size += size; 6042 } 6043 6044 if (sample_type & PERF_SAMPLE_STACK_USER) { 6045 /* 6046 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6047 * processed as the last one or have additional check added 6048 * in case new sample type is added, because we could eat 6049 * up the rest of the sample size. 6050 */ 6051 u16 stack_size = event->attr.sample_stack_user; 6052 u16 size = sizeof(u64); 6053 6054 stack_size = perf_sample_ustack_size(stack_size, header->size, 6055 data->regs_user.regs); 6056 6057 /* 6058 * If there is something to dump, add space for the dump 6059 * itself and for the field that tells the dynamic size, 6060 * which is how many have been actually dumped. 6061 */ 6062 if (stack_size) 6063 size += sizeof(u64) + stack_size; 6064 6065 data->stack_user_size = stack_size; 6066 header->size += size; 6067 } 6068 6069 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6070 /* regs dump ABI info */ 6071 int size = sizeof(u64); 6072 6073 perf_sample_regs_intr(&data->regs_intr, regs); 6074 6075 if (data->regs_intr.regs) { 6076 u64 mask = event->attr.sample_regs_intr; 6077 6078 size += hweight64(mask) * sizeof(u64); 6079 } 6080 6081 header->size += size; 6082 } 6083 } 6084 6085 static void __always_inline 6086 __perf_event_output(struct perf_event *event, 6087 struct perf_sample_data *data, 6088 struct pt_regs *regs, 6089 int (*output_begin)(struct perf_output_handle *, 6090 struct perf_event *, 6091 unsigned int)) 6092 { 6093 struct perf_output_handle handle; 6094 struct perf_event_header header; 6095 6096 /* protect the callchain buffers */ 6097 rcu_read_lock(); 6098 6099 perf_prepare_sample(&header, data, event, regs); 6100 6101 if (output_begin(&handle, event, header.size)) 6102 goto exit; 6103 6104 perf_output_sample(&handle, &header, data, event); 6105 6106 perf_output_end(&handle); 6107 6108 exit: 6109 rcu_read_unlock(); 6110 } 6111 6112 void 6113 perf_event_output_forward(struct perf_event *event, 6114 struct perf_sample_data *data, 6115 struct pt_regs *regs) 6116 { 6117 __perf_event_output(event, data, regs, perf_output_begin_forward); 6118 } 6119 6120 void 6121 perf_event_output_backward(struct perf_event *event, 6122 struct perf_sample_data *data, 6123 struct pt_regs *regs) 6124 { 6125 __perf_event_output(event, data, regs, perf_output_begin_backward); 6126 } 6127 6128 void 6129 perf_event_output(struct perf_event *event, 6130 struct perf_sample_data *data, 6131 struct pt_regs *regs) 6132 { 6133 __perf_event_output(event, data, regs, perf_output_begin); 6134 } 6135 6136 /* 6137 * read event_id 6138 */ 6139 6140 struct perf_read_event { 6141 struct perf_event_header header; 6142 6143 u32 pid; 6144 u32 tid; 6145 }; 6146 6147 static void 6148 perf_event_read_event(struct perf_event *event, 6149 struct task_struct *task) 6150 { 6151 struct perf_output_handle handle; 6152 struct perf_sample_data sample; 6153 struct perf_read_event read_event = { 6154 .header = { 6155 .type = PERF_RECORD_READ, 6156 .misc = 0, 6157 .size = sizeof(read_event) + event->read_size, 6158 }, 6159 .pid = perf_event_pid(event, task), 6160 .tid = perf_event_tid(event, task), 6161 }; 6162 int ret; 6163 6164 perf_event_header__init_id(&read_event.header, &sample, event); 6165 ret = perf_output_begin(&handle, event, read_event.header.size); 6166 if (ret) 6167 return; 6168 6169 perf_output_put(&handle, read_event); 6170 perf_output_read(&handle, event); 6171 perf_event__output_id_sample(event, &handle, &sample); 6172 6173 perf_output_end(&handle); 6174 } 6175 6176 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6177 6178 static void 6179 perf_iterate_ctx(struct perf_event_context *ctx, 6180 perf_iterate_f output, 6181 void *data, bool all) 6182 { 6183 struct perf_event *event; 6184 6185 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6186 if (!all) { 6187 if (event->state < PERF_EVENT_STATE_INACTIVE) 6188 continue; 6189 if (!event_filter_match(event)) 6190 continue; 6191 } 6192 6193 output(event, data); 6194 } 6195 } 6196 6197 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6198 { 6199 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6200 struct perf_event *event; 6201 6202 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6203 /* 6204 * Skip events that are not fully formed yet; ensure that 6205 * if we observe event->ctx, both event and ctx will be 6206 * complete enough. See perf_install_in_context(). 6207 */ 6208 if (!smp_load_acquire(&event->ctx)) 6209 continue; 6210 6211 if (event->state < PERF_EVENT_STATE_INACTIVE) 6212 continue; 6213 if (!event_filter_match(event)) 6214 continue; 6215 output(event, data); 6216 } 6217 } 6218 6219 /* 6220 * Iterate all events that need to receive side-band events. 6221 * 6222 * For new callers; ensure that account_pmu_sb_event() includes 6223 * your event, otherwise it might not get delivered. 6224 */ 6225 static void 6226 perf_iterate_sb(perf_iterate_f output, void *data, 6227 struct perf_event_context *task_ctx) 6228 { 6229 struct perf_event_context *ctx; 6230 int ctxn; 6231 6232 rcu_read_lock(); 6233 preempt_disable(); 6234 6235 /* 6236 * If we have task_ctx != NULL we only notify the task context itself. 6237 * The task_ctx is set only for EXIT events before releasing task 6238 * context. 6239 */ 6240 if (task_ctx) { 6241 perf_iterate_ctx(task_ctx, output, data, false); 6242 goto done; 6243 } 6244 6245 perf_iterate_sb_cpu(output, data); 6246 6247 for_each_task_context_nr(ctxn) { 6248 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6249 if (ctx) 6250 perf_iterate_ctx(ctx, output, data, false); 6251 } 6252 done: 6253 preempt_enable(); 6254 rcu_read_unlock(); 6255 } 6256 6257 /* 6258 * Clear all file-based filters at exec, they'll have to be 6259 * re-instated when/if these objects are mmapped again. 6260 */ 6261 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6262 { 6263 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6264 struct perf_addr_filter *filter; 6265 unsigned int restart = 0, count = 0; 6266 unsigned long flags; 6267 6268 if (!has_addr_filter(event)) 6269 return; 6270 6271 raw_spin_lock_irqsave(&ifh->lock, flags); 6272 list_for_each_entry(filter, &ifh->list, entry) { 6273 if (filter->inode) { 6274 event->addr_filters_offs[count] = 0; 6275 restart++; 6276 } 6277 6278 count++; 6279 } 6280 6281 if (restart) 6282 event->addr_filters_gen++; 6283 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6284 6285 if (restart) 6286 perf_event_stop(event, 1); 6287 } 6288 6289 void perf_event_exec(void) 6290 { 6291 struct perf_event_context *ctx; 6292 int ctxn; 6293 6294 rcu_read_lock(); 6295 for_each_task_context_nr(ctxn) { 6296 ctx = current->perf_event_ctxp[ctxn]; 6297 if (!ctx) 6298 continue; 6299 6300 perf_event_enable_on_exec(ctxn); 6301 6302 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6303 true); 6304 } 6305 rcu_read_unlock(); 6306 } 6307 6308 struct remote_output { 6309 struct ring_buffer *rb; 6310 int err; 6311 }; 6312 6313 static void __perf_event_output_stop(struct perf_event *event, void *data) 6314 { 6315 struct perf_event *parent = event->parent; 6316 struct remote_output *ro = data; 6317 struct ring_buffer *rb = ro->rb; 6318 struct stop_event_data sd = { 6319 .event = event, 6320 }; 6321 6322 if (!has_aux(event)) 6323 return; 6324 6325 if (!parent) 6326 parent = event; 6327 6328 /* 6329 * In case of inheritance, it will be the parent that links to the 6330 * ring-buffer, but it will be the child that's actually using it. 6331 * 6332 * We are using event::rb to determine if the event should be stopped, 6333 * however this may race with ring_buffer_attach() (through set_output), 6334 * which will make us skip the event that actually needs to be stopped. 6335 * So ring_buffer_attach() has to stop an aux event before re-assigning 6336 * its rb pointer. 6337 */ 6338 if (rcu_dereference(parent->rb) == rb) 6339 ro->err = __perf_event_stop(&sd); 6340 } 6341 6342 static int __perf_pmu_output_stop(void *info) 6343 { 6344 struct perf_event *event = info; 6345 struct pmu *pmu = event->pmu; 6346 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6347 struct remote_output ro = { 6348 .rb = event->rb, 6349 }; 6350 6351 rcu_read_lock(); 6352 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6353 if (cpuctx->task_ctx) 6354 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6355 &ro, false); 6356 rcu_read_unlock(); 6357 6358 return ro.err; 6359 } 6360 6361 static void perf_pmu_output_stop(struct perf_event *event) 6362 { 6363 struct perf_event *iter; 6364 int err, cpu; 6365 6366 restart: 6367 rcu_read_lock(); 6368 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6369 /* 6370 * For per-CPU events, we need to make sure that neither they 6371 * nor their children are running; for cpu==-1 events it's 6372 * sufficient to stop the event itself if it's active, since 6373 * it can't have children. 6374 */ 6375 cpu = iter->cpu; 6376 if (cpu == -1) 6377 cpu = READ_ONCE(iter->oncpu); 6378 6379 if (cpu == -1) 6380 continue; 6381 6382 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6383 if (err == -EAGAIN) { 6384 rcu_read_unlock(); 6385 goto restart; 6386 } 6387 } 6388 rcu_read_unlock(); 6389 } 6390 6391 /* 6392 * task tracking -- fork/exit 6393 * 6394 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6395 */ 6396 6397 struct perf_task_event { 6398 struct task_struct *task; 6399 struct perf_event_context *task_ctx; 6400 6401 struct { 6402 struct perf_event_header header; 6403 6404 u32 pid; 6405 u32 ppid; 6406 u32 tid; 6407 u32 ptid; 6408 u64 time; 6409 } event_id; 6410 }; 6411 6412 static int perf_event_task_match(struct perf_event *event) 6413 { 6414 return event->attr.comm || event->attr.mmap || 6415 event->attr.mmap2 || event->attr.mmap_data || 6416 event->attr.task; 6417 } 6418 6419 static void perf_event_task_output(struct perf_event *event, 6420 void *data) 6421 { 6422 struct perf_task_event *task_event = data; 6423 struct perf_output_handle handle; 6424 struct perf_sample_data sample; 6425 struct task_struct *task = task_event->task; 6426 int ret, size = task_event->event_id.header.size; 6427 6428 if (!perf_event_task_match(event)) 6429 return; 6430 6431 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6432 6433 ret = perf_output_begin(&handle, event, 6434 task_event->event_id.header.size); 6435 if (ret) 6436 goto out; 6437 6438 task_event->event_id.pid = perf_event_pid(event, task); 6439 task_event->event_id.ppid = perf_event_pid(event, current); 6440 6441 task_event->event_id.tid = perf_event_tid(event, task); 6442 task_event->event_id.ptid = perf_event_tid(event, current); 6443 6444 task_event->event_id.time = perf_event_clock(event); 6445 6446 perf_output_put(&handle, task_event->event_id); 6447 6448 perf_event__output_id_sample(event, &handle, &sample); 6449 6450 perf_output_end(&handle); 6451 out: 6452 task_event->event_id.header.size = size; 6453 } 6454 6455 static void perf_event_task(struct task_struct *task, 6456 struct perf_event_context *task_ctx, 6457 int new) 6458 { 6459 struct perf_task_event task_event; 6460 6461 if (!atomic_read(&nr_comm_events) && 6462 !atomic_read(&nr_mmap_events) && 6463 !atomic_read(&nr_task_events)) 6464 return; 6465 6466 task_event = (struct perf_task_event){ 6467 .task = task, 6468 .task_ctx = task_ctx, 6469 .event_id = { 6470 .header = { 6471 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6472 .misc = 0, 6473 .size = sizeof(task_event.event_id), 6474 }, 6475 /* .pid */ 6476 /* .ppid */ 6477 /* .tid */ 6478 /* .ptid */ 6479 /* .time */ 6480 }, 6481 }; 6482 6483 perf_iterate_sb(perf_event_task_output, 6484 &task_event, 6485 task_ctx); 6486 } 6487 6488 void perf_event_fork(struct task_struct *task) 6489 { 6490 perf_event_task(task, NULL, 1); 6491 perf_event_namespaces(task); 6492 } 6493 6494 /* 6495 * comm tracking 6496 */ 6497 6498 struct perf_comm_event { 6499 struct task_struct *task; 6500 char *comm; 6501 int comm_size; 6502 6503 struct { 6504 struct perf_event_header header; 6505 6506 u32 pid; 6507 u32 tid; 6508 } event_id; 6509 }; 6510 6511 static int perf_event_comm_match(struct perf_event *event) 6512 { 6513 return event->attr.comm; 6514 } 6515 6516 static void perf_event_comm_output(struct perf_event *event, 6517 void *data) 6518 { 6519 struct perf_comm_event *comm_event = data; 6520 struct perf_output_handle handle; 6521 struct perf_sample_data sample; 6522 int size = comm_event->event_id.header.size; 6523 int ret; 6524 6525 if (!perf_event_comm_match(event)) 6526 return; 6527 6528 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6529 ret = perf_output_begin(&handle, event, 6530 comm_event->event_id.header.size); 6531 6532 if (ret) 6533 goto out; 6534 6535 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6536 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6537 6538 perf_output_put(&handle, comm_event->event_id); 6539 __output_copy(&handle, comm_event->comm, 6540 comm_event->comm_size); 6541 6542 perf_event__output_id_sample(event, &handle, &sample); 6543 6544 perf_output_end(&handle); 6545 out: 6546 comm_event->event_id.header.size = size; 6547 } 6548 6549 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6550 { 6551 char comm[TASK_COMM_LEN]; 6552 unsigned int size; 6553 6554 memset(comm, 0, sizeof(comm)); 6555 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6556 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6557 6558 comm_event->comm = comm; 6559 comm_event->comm_size = size; 6560 6561 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6562 6563 perf_iterate_sb(perf_event_comm_output, 6564 comm_event, 6565 NULL); 6566 } 6567 6568 void perf_event_comm(struct task_struct *task, bool exec) 6569 { 6570 struct perf_comm_event comm_event; 6571 6572 if (!atomic_read(&nr_comm_events)) 6573 return; 6574 6575 comm_event = (struct perf_comm_event){ 6576 .task = task, 6577 /* .comm */ 6578 /* .comm_size */ 6579 .event_id = { 6580 .header = { 6581 .type = PERF_RECORD_COMM, 6582 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6583 /* .size */ 6584 }, 6585 /* .pid */ 6586 /* .tid */ 6587 }, 6588 }; 6589 6590 perf_event_comm_event(&comm_event); 6591 } 6592 6593 /* 6594 * namespaces tracking 6595 */ 6596 6597 struct perf_namespaces_event { 6598 struct task_struct *task; 6599 6600 struct { 6601 struct perf_event_header header; 6602 6603 u32 pid; 6604 u32 tid; 6605 u64 nr_namespaces; 6606 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6607 } event_id; 6608 }; 6609 6610 static int perf_event_namespaces_match(struct perf_event *event) 6611 { 6612 return event->attr.namespaces; 6613 } 6614 6615 static void perf_event_namespaces_output(struct perf_event *event, 6616 void *data) 6617 { 6618 struct perf_namespaces_event *namespaces_event = data; 6619 struct perf_output_handle handle; 6620 struct perf_sample_data sample; 6621 int ret; 6622 6623 if (!perf_event_namespaces_match(event)) 6624 return; 6625 6626 perf_event_header__init_id(&namespaces_event->event_id.header, 6627 &sample, event); 6628 ret = perf_output_begin(&handle, event, 6629 namespaces_event->event_id.header.size); 6630 if (ret) 6631 return; 6632 6633 namespaces_event->event_id.pid = perf_event_pid(event, 6634 namespaces_event->task); 6635 namespaces_event->event_id.tid = perf_event_tid(event, 6636 namespaces_event->task); 6637 6638 perf_output_put(&handle, namespaces_event->event_id); 6639 6640 perf_event__output_id_sample(event, &handle, &sample); 6641 6642 perf_output_end(&handle); 6643 } 6644 6645 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6646 struct task_struct *task, 6647 const struct proc_ns_operations *ns_ops) 6648 { 6649 struct path ns_path; 6650 struct inode *ns_inode; 6651 void *error; 6652 6653 error = ns_get_path(&ns_path, task, ns_ops); 6654 if (!error) { 6655 ns_inode = ns_path.dentry->d_inode; 6656 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6657 ns_link_info->ino = ns_inode->i_ino; 6658 } 6659 } 6660 6661 void perf_event_namespaces(struct task_struct *task) 6662 { 6663 struct perf_namespaces_event namespaces_event; 6664 struct perf_ns_link_info *ns_link_info; 6665 6666 if (!atomic_read(&nr_namespaces_events)) 6667 return; 6668 6669 namespaces_event = (struct perf_namespaces_event){ 6670 .task = task, 6671 .event_id = { 6672 .header = { 6673 .type = PERF_RECORD_NAMESPACES, 6674 .misc = 0, 6675 .size = sizeof(namespaces_event.event_id), 6676 }, 6677 /* .pid */ 6678 /* .tid */ 6679 .nr_namespaces = NR_NAMESPACES, 6680 /* .link_info[NR_NAMESPACES] */ 6681 }, 6682 }; 6683 6684 ns_link_info = namespaces_event.event_id.link_info; 6685 6686 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6687 task, &mntns_operations); 6688 6689 #ifdef CONFIG_USER_NS 6690 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6691 task, &userns_operations); 6692 #endif 6693 #ifdef CONFIG_NET_NS 6694 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6695 task, &netns_operations); 6696 #endif 6697 #ifdef CONFIG_UTS_NS 6698 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6699 task, &utsns_operations); 6700 #endif 6701 #ifdef CONFIG_IPC_NS 6702 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6703 task, &ipcns_operations); 6704 #endif 6705 #ifdef CONFIG_PID_NS 6706 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6707 task, &pidns_operations); 6708 #endif 6709 #ifdef CONFIG_CGROUPS 6710 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6711 task, &cgroupns_operations); 6712 #endif 6713 6714 perf_iterate_sb(perf_event_namespaces_output, 6715 &namespaces_event, 6716 NULL); 6717 } 6718 6719 /* 6720 * mmap tracking 6721 */ 6722 6723 struct perf_mmap_event { 6724 struct vm_area_struct *vma; 6725 6726 const char *file_name; 6727 int file_size; 6728 int maj, min; 6729 u64 ino; 6730 u64 ino_generation; 6731 u32 prot, flags; 6732 6733 struct { 6734 struct perf_event_header header; 6735 6736 u32 pid; 6737 u32 tid; 6738 u64 start; 6739 u64 len; 6740 u64 pgoff; 6741 } event_id; 6742 }; 6743 6744 static int perf_event_mmap_match(struct perf_event *event, 6745 void *data) 6746 { 6747 struct perf_mmap_event *mmap_event = data; 6748 struct vm_area_struct *vma = mmap_event->vma; 6749 int executable = vma->vm_flags & VM_EXEC; 6750 6751 return (!executable && event->attr.mmap_data) || 6752 (executable && (event->attr.mmap || event->attr.mmap2)); 6753 } 6754 6755 static void perf_event_mmap_output(struct perf_event *event, 6756 void *data) 6757 { 6758 struct perf_mmap_event *mmap_event = data; 6759 struct perf_output_handle handle; 6760 struct perf_sample_data sample; 6761 int size = mmap_event->event_id.header.size; 6762 int ret; 6763 6764 if (!perf_event_mmap_match(event, data)) 6765 return; 6766 6767 if (event->attr.mmap2) { 6768 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6769 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6770 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6771 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6772 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6773 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6774 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6775 } 6776 6777 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6778 ret = perf_output_begin(&handle, event, 6779 mmap_event->event_id.header.size); 6780 if (ret) 6781 goto out; 6782 6783 mmap_event->event_id.pid = perf_event_pid(event, current); 6784 mmap_event->event_id.tid = perf_event_tid(event, current); 6785 6786 perf_output_put(&handle, mmap_event->event_id); 6787 6788 if (event->attr.mmap2) { 6789 perf_output_put(&handle, mmap_event->maj); 6790 perf_output_put(&handle, mmap_event->min); 6791 perf_output_put(&handle, mmap_event->ino); 6792 perf_output_put(&handle, mmap_event->ino_generation); 6793 perf_output_put(&handle, mmap_event->prot); 6794 perf_output_put(&handle, mmap_event->flags); 6795 } 6796 6797 __output_copy(&handle, mmap_event->file_name, 6798 mmap_event->file_size); 6799 6800 perf_event__output_id_sample(event, &handle, &sample); 6801 6802 perf_output_end(&handle); 6803 out: 6804 mmap_event->event_id.header.size = size; 6805 } 6806 6807 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6808 { 6809 struct vm_area_struct *vma = mmap_event->vma; 6810 struct file *file = vma->vm_file; 6811 int maj = 0, min = 0; 6812 u64 ino = 0, gen = 0; 6813 u32 prot = 0, flags = 0; 6814 unsigned int size; 6815 char tmp[16]; 6816 char *buf = NULL; 6817 char *name; 6818 6819 if (vma->vm_flags & VM_READ) 6820 prot |= PROT_READ; 6821 if (vma->vm_flags & VM_WRITE) 6822 prot |= PROT_WRITE; 6823 if (vma->vm_flags & VM_EXEC) 6824 prot |= PROT_EXEC; 6825 6826 if (vma->vm_flags & VM_MAYSHARE) 6827 flags = MAP_SHARED; 6828 else 6829 flags = MAP_PRIVATE; 6830 6831 if (vma->vm_flags & VM_DENYWRITE) 6832 flags |= MAP_DENYWRITE; 6833 if (vma->vm_flags & VM_MAYEXEC) 6834 flags |= MAP_EXECUTABLE; 6835 if (vma->vm_flags & VM_LOCKED) 6836 flags |= MAP_LOCKED; 6837 if (vma->vm_flags & VM_HUGETLB) 6838 flags |= MAP_HUGETLB; 6839 6840 if (file) { 6841 struct inode *inode; 6842 dev_t dev; 6843 6844 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6845 if (!buf) { 6846 name = "//enomem"; 6847 goto cpy_name; 6848 } 6849 /* 6850 * d_path() works from the end of the rb backwards, so we 6851 * need to add enough zero bytes after the string to handle 6852 * the 64bit alignment we do later. 6853 */ 6854 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6855 if (IS_ERR(name)) { 6856 name = "//toolong"; 6857 goto cpy_name; 6858 } 6859 inode = file_inode(vma->vm_file); 6860 dev = inode->i_sb->s_dev; 6861 ino = inode->i_ino; 6862 gen = inode->i_generation; 6863 maj = MAJOR(dev); 6864 min = MINOR(dev); 6865 6866 goto got_name; 6867 } else { 6868 if (vma->vm_ops && vma->vm_ops->name) { 6869 name = (char *) vma->vm_ops->name(vma); 6870 if (name) 6871 goto cpy_name; 6872 } 6873 6874 name = (char *)arch_vma_name(vma); 6875 if (name) 6876 goto cpy_name; 6877 6878 if (vma->vm_start <= vma->vm_mm->start_brk && 6879 vma->vm_end >= vma->vm_mm->brk) { 6880 name = "[heap]"; 6881 goto cpy_name; 6882 } 6883 if (vma->vm_start <= vma->vm_mm->start_stack && 6884 vma->vm_end >= vma->vm_mm->start_stack) { 6885 name = "[stack]"; 6886 goto cpy_name; 6887 } 6888 6889 name = "//anon"; 6890 goto cpy_name; 6891 } 6892 6893 cpy_name: 6894 strlcpy(tmp, name, sizeof(tmp)); 6895 name = tmp; 6896 got_name: 6897 /* 6898 * Since our buffer works in 8 byte units we need to align our string 6899 * size to a multiple of 8. However, we must guarantee the tail end is 6900 * zero'd out to avoid leaking random bits to userspace. 6901 */ 6902 size = strlen(name)+1; 6903 while (!IS_ALIGNED(size, sizeof(u64))) 6904 name[size++] = '\0'; 6905 6906 mmap_event->file_name = name; 6907 mmap_event->file_size = size; 6908 mmap_event->maj = maj; 6909 mmap_event->min = min; 6910 mmap_event->ino = ino; 6911 mmap_event->ino_generation = gen; 6912 mmap_event->prot = prot; 6913 mmap_event->flags = flags; 6914 6915 if (!(vma->vm_flags & VM_EXEC)) 6916 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6917 6918 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6919 6920 perf_iterate_sb(perf_event_mmap_output, 6921 mmap_event, 6922 NULL); 6923 6924 kfree(buf); 6925 } 6926 6927 /* 6928 * Check whether inode and address range match filter criteria. 6929 */ 6930 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6931 struct file *file, unsigned long offset, 6932 unsigned long size) 6933 { 6934 if (filter->inode != file_inode(file)) 6935 return false; 6936 6937 if (filter->offset > offset + size) 6938 return false; 6939 6940 if (filter->offset + filter->size < offset) 6941 return false; 6942 6943 return true; 6944 } 6945 6946 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6947 { 6948 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6949 struct vm_area_struct *vma = data; 6950 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6951 struct file *file = vma->vm_file; 6952 struct perf_addr_filter *filter; 6953 unsigned int restart = 0, count = 0; 6954 6955 if (!has_addr_filter(event)) 6956 return; 6957 6958 if (!file) 6959 return; 6960 6961 raw_spin_lock_irqsave(&ifh->lock, flags); 6962 list_for_each_entry(filter, &ifh->list, entry) { 6963 if (perf_addr_filter_match(filter, file, off, 6964 vma->vm_end - vma->vm_start)) { 6965 event->addr_filters_offs[count] = vma->vm_start; 6966 restart++; 6967 } 6968 6969 count++; 6970 } 6971 6972 if (restart) 6973 event->addr_filters_gen++; 6974 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6975 6976 if (restart) 6977 perf_event_stop(event, 1); 6978 } 6979 6980 /* 6981 * Adjust all task's events' filters to the new vma 6982 */ 6983 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6984 { 6985 struct perf_event_context *ctx; 6986 int ctxn; 6987 6988 /* 6989 * Data tracing isn't supported yet and as such there is no need 6990 * to keep track of anything that isn't related to executable code: 6991 */ 6992 if (!(vma->vm_flags & VM_EXEC)) 6993 return; 6994 6995 rcu_read_lock(); 6996 for_each_task_context_nr(ctxn) { 6997 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6998 if (!ctx) 6999 continue; 7000 7001 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7002 } 7003 rcu_read_unlock(); 7004 } 7005 7006 void perf_event_mmap(struct vm_area_struct *vma) 7007 { 7008 struct perf_mmap_event mmap_event; 7009 7010 if (!atomic_read(&nr_mmap_events)) 7011 return; 7012 7013 mmap_event = (struct perf_mmap_event){ 7014 .vma = vma, 7015 /* .file_name */ 7016 /* .file_size */ 7017 .event_id = { 7018 .header = { 7019 .type = PERF_RECORD_MMAP, 7020 .misc = PERF_RECORD_MISC_USER, 7021 /* .size */ 7022 }, 7023 /* .pid */ 7024 /* .tid */ 7025 .start = vma->vm_start, 7026 .len = vma->vm_end - vma->vm_start, 7027 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7028 }, 7029 /* .maj (attr_mmap2 only) */ 7030 /* .min (attr_mmap2 only) */ 7031 /* .ino (attr_mmap2 only) */ 7032 /* .ino_generation (attr_mmap2 only) */ 7033 /* .prot (attr_mmap2 only) */ 7034 /* .flags (attr_mmap2 only) */ 7035 }; 7036 7037 perf_addr_filters_adjust(vma); 7038 perf_event_mmap_event(&mmap_event); 7039 } 7040 7041 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7042 unsigned long size, u64 flags) 7043 { 7044 struct perf_output_handle handle; 7045 struct perf_sample_data sample; 7046 struct perf_aux_event { 7047 struct perf_event_header header; 7048 u64 offset; 7049 u64 size; 7050 u64 flags; 7051 } rec = { 7052 .header = { 7053 .type = PERF_RECORD_AUX, 7054 .misc = 0, 7055 .size = sizeof(rec), 7056 }, 7057 .offset = head, 7058 .size = size, 7059 .flags = flags, 7060 }; 7061 int ret; 7062 7063 perf_event_header__init_id(&rec.header, &sample, event); 7064 ret = perf_output_begin(&handle, event, rec.header.size); 7065 7066 if (ret) 7067 return; 7068 7069 perf_output_put(&handle, rec); 7070 perf_event__output_id_sample(event, &handle, &sample); 7071 7072 perf_output_end(&handle); 7073 } 7074 7075 /* 7076 * Lost/dropped samples logging 7077 */ 7078 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7079 { 7080 struct perf_output_handle handle; 7081 struct perf_sample_data sample; 7082 int ret; 7083 7084 struct { 7085 struct perf_event_header header; 7086 u64 lost; 7087 } lost_samples_event = { 7088 .header = { 7089 .type = PERF_RECORD_LOST_SAMPLES, 7090 .misc = 0, 7091 .size = sizeof(lost_samples_event), 7092 }, 7093 .lost = lost, 7094 }; 7095 7096 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7097 7098 ret = perf_output_begin(&handle, event, 7099 lost_samples_event.header.size); 7100 if (ret) 7101 return; 7102 7103 perf_output_put(&handle, lost_samples_event); 7104 perf_event__output_id_sample(event, &handle, &sample); 7105 perf_output_end(&handle); 7106 } 7107 7108 /* 7109 * context_switch tracking 7110 */ 7111 7112 struct perf_switch_event { 7113 struct task_struct *task; 7114 struct task_struct *next_prev; 7115 7116 struct { 7117 struct perf_event_header header; 7118 u32 next_prev_pid; 7119 u32 next_prev_tid; 7120 } event_id; 7121 }; 7122 7123 static int perf_event_switch_match(struct perf_event *event) 7124 { 7125 return event->attr.context_switch; 7126 } 7127 7128 static void perf_event_switch_output(struct perf_event *event, void *data) 7129 { 7130 struct perf_switch_event *se = data; 7131 struct perf_output_handle handle; 7132 struct perf_sample_data sample; 7133 int ret; 7134 7135 if (!perf_event_switch_match(event)) 7136 return; 7137 7138 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7139 if (event->ctx->task) { 7140 se->event_id.header.type = PERF_RECORD_SWITCH; 7141 se->event_id.header.size = sizeof(se->event_id.header); 7142 } else { 7143 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7144 se->event_id.header.size = sizeof(se->event_id); 7145 se->event_id.next_prev_pid = 7146 perf_event_pid(event, se->next_prev); 7147 se->event_id.next_prev_tid = 7148 perf_event_tid(event, se->next_prev); 7149 } 7150 7151 perf_event_header__init_id(&se->event_id.header, &sample, event); 7152 7153 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7154 if (ret) 7155 return; 7156 7157 if (event->ctx->task) 7158 perf_output_put(&handle, se->event_id.header); 7159 else 7160 perf_output_put(&handle, se->event_id); 7161 7162 perf_event__output_id_sample(event, &handle, &sample); 7163 7164 perf_output_end(&handle); 7165 } 7166 7167 static void perf_event_switch(struct task_struct *task, 7168 struct task_struct *next_prev, bool sched_in) 7169 { 7170 struct perf_switch_event switch_event; 7171 7172 /* N.B. caller checks nr_switch_events != 0 */ 7173 7174 switch_event = (struct perf_switch_event){ 7175 .task = task, 7176 .next_prev = next_prev, 7177 .event_id = { 7178 .header = { 7179 /* .type */ 7180 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7181 /* .size */ 7182 }, 7183 /* .next_prev_pid */ 7184 /* .next_prev_tid */ 7185 }, 7186 }; 7187 7188 perf_iterate_sb(perf_event_switch_output, 7189 &switch_event, 7190 NULL); 7191 } 7192 7193 /* 7194 * IRQ throttle logging 7195 */ 7196 7197 static void perf_log_throttle(struct perf_event *event, int enable) 7198 { 7199 struct perf_output_handle handle; 7200 struct perf_sample_data sample; 7201 int ret; 7202 7203 struct { 7204 struct perf_event_header header; 7205 u64 time; 7206 u64 id; 7207 u64 stream_id; 7208 } throttle_event = { 7209 .header = { 7210 .type = PERF_RECORD_THROTTLE, 7211 .misc = 0, 7212 .size = sizeof(throttle_event), 7213 }, 7214 .time = perf_event_clock(event), 7215 .id = primary_event_id(event), 7216 .stream_id = event->id, 7217 }; 7218 7219 if (enable) 7220 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7221 7222 perf_event_header__init_id(&throttle_event.header, &sample, event); 7223 7224 ret = perf_output_begin(&handle, event, 7225 throttle_event.header.size); 7226 if (ret) 7227 return; 7228 7229 perf_output_put(&handle, throttle_event); 7230 perf_event__output_id_sample(event, &handle, &sample); 7231 perf_output_end(&handle); 7232 } 7233 7234 static void perf_log_itrace_start(struct perf_event *event) 7235 { 7236 struct perf_output_handle handle; 7237 struct perf_sample_data sample; 7238 struct perf_aux_event { 7239 struct perf_event_header header; 7240 u32 pid; 7241 u32 tid; 7242 } rec; 7243 int ret; 7244 7245 if (event->parent) 7246 event = event->parent; 7247 7248 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7249 event->hw.itrace_started) 7250 return; 7251 7252 rec.header.type = PERF_RECORD_ITRACE_START; 7253 rec.header.misc = 0; 7254 rec.header.size = sizeof(rec); 7255 rec.pid = perf_event_pid(event, current); 7256 rec.tid = perf_event_tid(event, current); 7257 7258 perf_event_header__init_id(&rec.header, &sample, event); 7259 ret = perf_output_begin(&handle, event, rec.header.size); 7260 7261 if (ret) 7262 return; 7263 7264 perf_output_put(&handle, rec); 7265 perf_event__output_id_sample(event, &handle, &sample); 7266 7267 perf_output_end(&handle); 7268 } 7269 7270 static int 7271 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7272 { 7273 struct hw_perf_event *hwc = &event->hw; 7274 int ret = 0; 7275 u64 seq; 7276 7277 seq = __this_cpu_read(perf_throttled_seq); 7278 if (seq != hwc->interrupts_seq) { 7279 hwc->interrupts_seq = seq; 7280 hwc->interrupts = 1; 7281 } else { 7282 hwc->interrupts++; 7283 if (unlikely(throttle 7284 && hwc->interrupts >= max_samples_per_tick)) { 7285 __this_cpu_inc(perf_throttled_count); 7286 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7287 hwc->interrupts = MAX_INTERRUPTS; 7288 perf_log_throttle(event, 0); 7289 ret = 1; 7290 } 7291 } 7292 7293 if (event->attr.freq) { 7294 u64 now = perf_clock(); 7295 s64 delta = now - hwc->freq_time_stamp; 7296 7297 hwc->freq_time_stamp = now; 7298 7299 if (delta > 0 && delta < 2*TICK_NSEC) 7300 perf_adjust_period(event, delta, hwc->last_period, true); 7301 } 7302 7303 return ret; 7304 } 7305 7306 int perf_event_account_interrupt(struct perf_event *event) 7307 { 7308 return __perf_event_account_interrupt(event, 1); 7309 } 7310 7311 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 7312 { 7313 /* 7314 * Due to interrupt latency (AKA "skid"), we may enter the 7315 * kernel before taking an overflow, even if the PMU is only 7316 * counting user events. 7317 * To avoid leaking information to userspace, we must always 7318 * reject kernel samples when exclude_kernel is set. 7319 */ 7320 if (event->attr.exclude_kernel && !user_mode(regs)) 7321 return false; 7322 7323 return true; 7324 } 7325 7326 /* 7327 * Generic event overflow handling, sampling. 7328 */ 7329 7330 static int __perf_event_overflow(struct perf_event *event, 7331 int throttle, struct perf_sample_data *data, 7332 struct pt_regs *regs) 7333 { 7334 int events = atomic_read(&event->event_limit); 7335 int ret = 0; 7336 7337 /* 7338 * Non-sampling counters might still use the PMI to fold short 7339 * hardware counters, ignore those. 7340 */ 7341 if (unlikely(!is_sampling_event(event))) 7342 return 0; 7343 7344 ret = __perf_event_account_interrupt(event, throttle); 7345 7346 /* 7347 * For security, drop the skid kernel samples if necessary. 7348 */ 7349 if (!sample_is_allowed(event, regs)) 7350 return ret; 7351 7352 /* 7353 * XXX event_limit might not quite work as expected on inherited 7354 * events 7355 */ 7356 7357 event->pending_kill = POLL_IN; 7358 if (events && atomic_dec_and_test(&event->event_limit)) { 7359 ret = 1; 7360 event->pending_kill = POLL_HUP; 7361 7362 perf_event_disable_inatomic(event); 7363 } 7364 7365 READ_ONCE(event->overflow_handler)(event, data, regs); 7366 7367 if (*perf_event_fasync(event) && event->pending_kill) { 7368 event->pending_wakeup = 1; 7369 irq_work_queue(&event->pending); 7370 } 7371 7372 return ret; 7373 } 7374 7375 int perf_event_overflow(struct perf_event *event, 7376 struct perf_sample_data *data, 7377 struct pt_regs *regs) 7378 { 7379 return __perf_event_overflow(event, 1, data, regs); 7380 } 7381 7382 /* 7383 * Generic software event infrastructure 7384 */ 7385 7386 struct swevent_htable { 7387 struct swevent_hlist *swevent_hlist; 7388 struct mutex hlist_mutex; 7389 int hlist_refcount; 7390 7391 /* Recursion avoidance in each contexts */ 7392 int recursion[PERF_NR_CONTEXTS]; 7393 }; 7394 7395 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7396 7397 /* 7398 * We directly increment event->count and keep a second value in 7399 * event->hw.period_left to count intervals. This period event 7400 * is kept in the range [-sample_period, 0] so that we can use the 7401 * sign as trigger. 7402 */ 7403 7404 u64 perf_swevent_set_period(struct perf_event *event) 7405 { 7406 struct hw_perf_event *hwc = &event->hw; 7407 u64 period = hwc->last_period; 7408 u64 nr, offset; 7409 s64 old, val; 7410 7411 hwc->last_period = hwc->sample_period; 7412 7413 again: 7414 old = val = local64_read(&hwc->period_left); 7415 if (val < 0) 7416 return 0; 7417 7418 nr = div64_u64(period + val, period); 7419 offset = nr * period; 7420 val -= offset; 7421 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7422 goto again; 7423 7424 return nr; 7425 } 7426 7427 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7428 struct perf_sample_data *data, 7429 struct pt_regs *regs) 7430 { 7431 struct hw_perf_event *hwc = &event->hw; 7432 int throttle = 0; 7433 7434 if (!overflow) 7435 overflow = perf_swevent_set_period(event); 7436 7437 if (hwc->interrupts == MAX_INTERRUPTS) 7438 return; 7439 7440 for (; overflow; overflow--) { 7441 if (__perf_event_overflow(event, throttle, 7442 data, regs)) { 7443 /* 7444 * We inhibit the overflow from happening when 7445 * hwc->interrupts == MAX_INTERRUPTS. 7446 */ 7447 break; 7448 } 7449 throttle = 1; 7450 } 7451 } 7452 7453 static void perf_swevent_event(struct perf_event *event, u64 nr, 7454 struct perf_sample_data *data, 7455 struct pt_regs *regs) 7456 { 7457 struct hw_perf_event *hwc = &event->hw; 7458 7459 local64_add(nr, &event->count); 7460 7461 if (!regs) 7462 return; 7463 7464 if (!is_sampling_event(event)) 7465 return; 7466 7467 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7468 data->period = nr; 7469 return perf_swevent_overflow(event, 1, data, regs); 7470 } else 7471 data->period = event->hw.last_period; 7472 7473 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7474 return perf_swevent_overflow(event, 1, data, regs); 7475 7476 if (local64_add_negative(nr, &hwc->period_left)) 7477 return; 7478 7479 perf_swevent_overflow(event, 0, data, regs); 7480 } 7481 7482 static int perf_exclude_event(struct perf_event *event, 7483 struct pt_regs *regs) 7484 { 7485 if (event->hw.state & PERF_HES_STOPPED) 7486 return 1; 7487 7488 if (regs) { 7489 if (event->attr.exclude_user && user_mode(regs)) 7490 return 1; 7491 7492 if (event->attr.exclude_kernel && !user_mode(regs)) 7493 return 1; 7494 } 7495 7496 return 0; 7497 } 7498 7499 static int perf_swevent_match(struct perf_event *event, 7500 enum perf_type_id type, 7501 u32 event_id, 7502 struct perf_sample_data *data, 7503 struct pt_regs *regs) 7504 { 7505 if (event->attr.type != type) 7506 return 0; 7507 7508 if (event->attr.config != event_id) 7509 return 0; 7510 7511 if (perf_exclude_event(event, regs)) 7512 return 0; 7513 7514 return 1; 7515 } 7516 7517 static inline u64 swevent_hash(u64 type, u32 event_id) 7518 { 7519 u64 val = event_id | (type << 32); 7520 7521 return hash_64(val, SWEVENT_HLIST_BITS); 7522 } 7523 7524 static inline struct hlist_head * 7525 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7526 { 7527 u64 hash = swevent_hash(type, event_id); 7528 7529 return &hlist->heads[hash]; 7530 } 7531 7532 /* For the read side: events when they trigger */ 7533 static inline struct hlist_head * 7534 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7535 { 7536 struct swevent_hlist *hlist; 7537 7538 hlist = rcu_dereference(swhash->swevent_hlist); 7539 if (!hlist) 7540 return NULL; 7541 7542 return __find_swevent_head(hlist, type, event_id); 7543 } 7544 7545 /* For the event head insertion and removal in the hlist */ 7546 static inline struct hlist_head * 7547 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7548 { 7549 struct swevent_hlist *hlist; 7550 u32 event_id = event->attr.config; 7551 u64 type = event->attr.type; 7552 7553 /* 7554 * Event scheduling is always serialized against hlist allocation 7555 * and release. Which makes the protected version suitable here. 7556 * The context lock guarantees that. 7557 */ 7558 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7559 lockdep_is_held(&event->ctx->lock)); 7560 if (!hlist) 7561 return NULL; 7562 7563 return __find_swevent_head(hlist, type, event_id); 7564 } 7565 7566 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7567 u64 nr, 7568 struct perf_sample_data *data, 7569 struct pt_regs *regs) 7570 { 7571 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7572 struct perf_event *event; 7573 struct hlist_head *head; 7574 7575 rcu_read_lock(); 7576 head = find_swevent_head_rcu(swhash, type, event_id); 7577 if (!head) 7578 goto end; 7579 7580 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7581 if (perf_swevent_match(event, type, event_id, data, regs)) 7582 perf_swevent_event(event, nr, data, regs); 7583 } 7584 end: 7585 rcu_read_unlock(); 7586 } 7587 7588 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7589 7590 int perf_swevent_get_recursion_context(void) 7591 { 7592 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7593 7594 return get_recursion_context(swhash->recursion); 7595 } 7596 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7597 7598 void perf_swevent_put_recursion_context(int rctx) 7599 { 7600 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7601 7602 put_recursion_context(swhash->recursion, rctx); 7603 } 7604 7605 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7606 { 7607 struct perf_sample_data data; 7608 7609 if (WARN_ON_ONCE(!regs)) 7610 return; 7611 7612 perf_sample_data_init(&data, addr, 0); 7613 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7614 } 7615 7616 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7617 { 7618 int rctx; 7619 7620 preempt_disable_notrace(); 7621 rctx = perf_swevent_get_recursion_context(); 7622 if (unlikely(rctx < 0)) 7623 goto fail; 7624 7625 ___perf_sw_event(event_id, nr, regs, addr); 7626 7627 perf_swevent_put_recursion_context(rctx); 7628 fail: 7629 preempt_enable_notrace(); 7630 } 7631 7632 static void perf_swevent_read(struct perf_event *event) 7633 { 7634 } 7635 7636 static int perf_swevent_add(struct perf_event *event, int flags) 7637 { 7638 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7639 struct hw_perf_event *hwc = &event->hw; 7640 struct hlist_head *head; 7641 7642 if (is_sampling_event(event)) { 7643 hwc->last_period = hwc->sample_period; 7644 perf_swevent_set_period(event); 7645 } 7646 7647 hwc->state = !(flags & PERF_EF_START); 7648 7649 head = find_swevent_head(swhash, event); 7650 if (WARN_ON_ONCE(!head)) 7651 return -EINVAL; 7652 7653 hlist_add_head_rcu(&event->hlist_entry, head); 7654 perf_event_update_userpage(event); 7655 7656 return 0; 7657 } 7658 7659 static void perf_swevent_del(struct perf_event *event, int flags) 7660 { 7661 hlist_del_rcu(&event->hlist_entry); 7662 } 7663 7664 static void perf_swevent_start(struct perf_event *event, int flags) 7665 { 7666 event->hw.state = 0; 7667 } 7668 7669 static void perf_swevent_stop(struct perf_event *event, int flags) 7670 { 7671 event->hw.state = PERF_HES_STOPPED; 7672 } 7673 7674 /* Deref the hlist from the update side */ 7675 static inline struct swevent_hlist * 7676 swevent_hlist_deref(struct swevent_htable *swhash) 7677 { 7678 return rcu_dereference_protected(swhash->swevent_hlist, 7679 lockdep_is_held(&swhash->hlist_mutex)); 7680 } 7681 7682 static void swevent_hlist_release(struct swevent_htable *swhash) 7683 { 7684 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7685 7686 if (!hlist) 7687 return; 7688 7689 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7690 kfree_rcu(hlist, rcu_head); 7691 } 7692 7693 static void swevent_hlist_put_cpu(int cpu) 7694 { 7695 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7696 7697 mutex_lock(&swhash->hlist_mutex); 7698 7699 if (!--swhash->hlist_refcount) 7700 swevent_hlist_release(swhash); 7701 7702 mutex_unlock(&swhash->hlist_mutex); 7703 } 7704 7705 static void swevent_hlist_put(void) 7706 { 7707 int cpu; 7708 7709 for_each_possible_cpu(cpu) 7710 swevent_hlist_put_cpu(cpu); 7711 } 7712 7713 static int swevent_hlist_get_cpu(int cpu) 7714 { 7715 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7716 int err = 0; 7717 7718 mutex_lock(&swhash->hlist_mutex); 7719 if (!swevent_hlist_deref(swhash) && 7720 cpumask_test_cpu(cpu, perf_online_mask)) { 7721 struct swevent_hlist *hlist; 7722 7723 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7724 if (!hlist) { 7725 err = -ENOMEM; 7726 goto exit; 7727 } 7728 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7729 } 7730 swhash->hlist_refcount++; 7731 exit: 7732 mutex_unlock(&swhash->hlist_mutex); 7733 7734 return err; 7735 } 7736 7737 static int swevent_hlist_get(void) 7738 { 7739 int err, cpu, failed_cpu; 7740 7741 mutex_lock(&pmus_lock); 7742 for_each_possible_cpu(cpu) { 7743 err = swevent_hlist_get_cpu(cpu); 7744 if (err) { 7745 failed_cpu = cpu; 7746 goto fail; 7747 } 7748 } 7749 mutex_unlock(&pmus_lock); 7750 return 0; 7751 fail: 7752 for_each_possible_cpu(cpu) { 7753 if (cpu == failed_cpu) 7754 break; 7755 swevent_hlist_put_cpu(cpu); 7756 } 7757 mutex_unlock(&pmus_lock); 7758 return err; 7759 } 7760 7761 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7762 7763 static void sw_perf_event_destroy(struct perf_event *event) 7764 { 7765 u64 event_id = event->attr.config; 7766 7767 WARN_ON(event->parent); 7768 7769 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7770 swevent_hlist_put(); 7771 } 7772 7773 static int perf_swevent_init(struct perf_event *event) 7774 { 7775 u64 event_id = event->attr.config; 7776 7777 if (event->attr.type != PERF_TYPE_SOFTWARE) 7778 return -ENOENT; 7779 7780 /* 7781 * no branch sampling for software events 7782 */ 7783 if (has_branch_stack(event)) 7784 return -EOPNOTSUPP; 7785 7786 switch (event_id) { 7787 case PERF_COUNT_SW_CPU_CLOCK: 7788 case PERF_COUNT_SW_TASK_CLOCK: 7789 return -ENOENT; 7790 7791 default: 7792 break; 7793 } 7794 7795 if (event_id >= PERF_COUNT_SW_MAX) 7796 return -ENOENT; 7797 7798 if (!event->parent) { 7799 int err; 7800 7801 err = swevent_hlist_get(); 7802 if (err) 7803 return err; 7804 7805 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7806 event->destroy = sw_perf_event_destroy; 7807 } 7808 7809 return 0; 7810 } 7811 7812 static struct pmu perf_swevent = { 7813 .task_ctx_nr = perf_sw_context, 7814 7815 .capabilities = PERF_PMU_CAP_NO_NMI, 7816 7817 .event_init = perf_swevent_init, 7818 .add = perf_swevent_add, 7819 .del = perf_swevent_del, 7820 .start = perf_swevent_start, 7821 .stop = perf_swevent_stop, 7822 .read = perf_swevent_read, 7823 }; 7824 7825 #ifdef CONFIG_EVENT_TRACING 7826 7827 static int perf_tp_filter_match(struct perf_event *event, 7828 struct perf_sample_data *data) 7829 { 7830 void *record = data->raw->frag.data; 7831 7832 /* only top level events have filters set */ 7833 if (event->parent) 7834 event = event->parent; 7835 7836 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7837 return 1; 7838 return 0; 7839 } 7840 7841 static int perf_tp_event_match(struct perf_event *event, 7842 struct perf_sample_data *data, 7843 struct pt_regs *regs) 7844 { 7845 if (event->hw.state & PERF_HES_STOPPED) 7846 return 0; 7847 /* 7848 * All tracepoints are from kernel-space. 7849 */ 7850 if (event->attr.exclude_kernel) 7851 return 0; 7852 7853 if (!perf_tp_filter_match(event, data)) 7854 return 0; 7855 7856 return 1; 7857 } 7858 7859 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7860 struct trace_event_call *call, u64 count, 7861 struct pt_regs *regs, struct hlist_head *head, 7862 struct task_struct *task) 7863 { 7864 struct bpf_prog *prog = call->prog; 7865 7866 if (prog) { 7867 *(struct pt_regs **)raw_data = regs; 7868 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7869 perf_swevent_put_recursion_context(rctx); 7870 return; 7871 } 7872 } 7873 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7874 rctx, task); 7875 } 7876 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7877 7878 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7879 struct pt_regs *regs, struct hlist_head *head, int rctx, 7880 struct task_struct *task) 7881 { 7882 struct perf_sample_data data; 7883 struct perf_event *event; 7884 7885 struct perf_raw_record raw = { 7886 .frag = { 7887 .size = entry_size, 7888 .data = record, 7889 }, 7890 }; 7891 7892 perf_sample_data_init(&data, 0, 0); 7893 data.raw = &raw; 7894 7895 perf_trace_buf_update(record, event_type); 7896 7897 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7898 if (perf_tp_event_match(event, &data, regs)) 7899 perf_swevent_event(event, count, &data, regs); 7900 } 7901 7902 /* 7903 * If we got specified a target task, also iterate its context and 7904 * deliver this event there too. 7905 */ 7906 if (task && task != current) { 7907 struct perf_event_context *ctx; 7908 struct trace_entry *entry = record; 7909 7910 rcu_read_lock(); 7911 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7912 if (!ctx) 7913 goto unlock; 7914 7915 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7916 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7917 continue; 7918 if (event->attr.config != entry->type) 7919 continue; 7920 if (perf_tp_event_match(event, &data, regs)) 7921 perf_swevent_event(event, count, &data, regs); 7922 } 7923 unlock: 7924 rcu_read_unlock(); 7925 } 7926 7927 perf_swevent_put_recursion_context(rctx); 7928 } 7929 EXPORT_SYMBOL_GPL(perf_tp_event); 7930 7931 static void tp_perf_event_destroy(struct perf_event *event) 7932 { 7933 perf_trace_destroy(event); 7934 } 7935 7936 static int perf_tp_event_init(struct perf_event *event) 7937 { 7938 int err; 7939 7940 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7941 return -ENOENT; 7942 7943 /* 7944 * no branch sampling for tracepoint events 7945 */ 7946 if (has_branch_stack(event)) 7947 return -EOPNOTSUPP; 7948 7949 err = perf_trace_init(event); 7950 if (err) 7951 return err; 7952 7953 event->destroy = tp_perf_event_destroy; 7954 7955 return 0; 7956 } 7957 7958 static struct pmu perf_tracepoint = { 7959 .task_ctx_nr = perf_sw_context, 7960 7961 .event_init = perf_tp_event_init, 7962 .add = perf_trace_add, 7963 .del = perf_trace_del, 7964 .start = perf_swevent_start, 7965 .stop = perf_swevent_stop, 7966 .read = perf_swevent_read, 7967 }; 7968 7969 static inline void perf_tp_register(void) 7970 { 7971 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7972 } 7973 7974 static void perf_event_free_filter(struct perf_event *event) 7975 { 7976 ftrace_profile_free_filter(event); 7977 } 7978 7979 #ifdef CONFIG_BPF_SYSCALL 7980 static void bpf_overflow_handler(struct perf_event *event, 7981 struct perf_sample_data *data, 7982 struct pt_regs *regs) 7983 { 7984 struct bpf_perf_event_data_kern ctx = { 7985 .data = data, 7986 .regs = regs, 7987 }; 7988 int ret = 0; 7989 7990 preempt_disable(); 7991 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7992 goto out; 7993 rcu_read_lock(); 7994 ret = BPF_PROG_RUN(event->prog, &ctx); 7995 rcu_read_unlock(); 7996 out: 7997 __this_cpu_dec(bpf_prog_active); 7998 preempt_enable(); 7999 if (!ret) 8000 return; 8001 8002 event->orig_overflow_handler(event, data, regs); 8003 } 8004 8005 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8006 { 8007 struct bpf_prog *prog; 8008 8009 if (event->overflow_handler_context) 8010 /* hw breakpoint or kernel counter */ 8011 return -EINVAL; 8012 8013 if (event->prog) 8014 return -EEXIST; 8015 8016 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8017 if (IS_ERR(prog)) 8018 return PTR_ERR(prog); 8019 8020 event->prog = prog; 8021 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8022 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8023 return 0; 8024 } 8025 8026 static void perf_event_free_bpf_handler(struct perf_event *event) 8027 { 8028 struct bpf_prog *prog = event->prog; 8029 8030 if (!prog) 8031 return; 8032 8033 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8034 event->prog = NULL; 8035 bpf_prog_put(prog); 8036 } 8037 #else 8038 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8039 { 8040 return -EOPNOTSUPP; 8041 } 8042 static void perf_event_free_bpf_handler(struct perf_event *event) 8043 { 8044 } 8045 #endif 8046 8047 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8048 { 8049 bool is_kprobe, is_tracepoint; 8050 struct bpf_prog *prog; 8051 8052 if (event->attr.type == PERF_TYPE_HARDWARE || 8053 event->attr.type == PERF_TYPE_SOFTWARE) 8054 return perf_event_set_bpf_handler(event, prog_fd); 8055 8056 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8057 return -EINVAL; 8058 8059 if (event->tp_event->prog) 8060 return -EEXIST; 8061 8062 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8063 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8064 if (!is_kprobe && !is_tracepoint) 8065 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8066 return -EINVAL; 8067 8068 prog = bpf_prog_get(prog_fd); 8069 if (IS_ERR(prog)) 8070 return PTR_ERR(prog); 8071 8072 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8073 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8074 /* valid fd, but invalid bpf program type */ 8075 bpf_prog_put(prog); 8076 return -EINVAL; 8077 } 8078 8079 if (is_tracepoint) { 8080 int off = trace_event_get_offsets(event->tp_event); 8081 8082 if (prog->aux->max_ctx_offset > off) { 8083 bpf_prog_put(prog); 8084 return -EACCES; 8085 } 8086 } 8087 event->tp_event->prog = prog; 8088 8089 return 0; 8090 } 8091 8092 static void perf_event_free_bpf_prog(struct perf_event *event) 8093 { 8094 struct bpf_prog *prog; 8095 8096 perf_event_free_bpf_handler(event); 8097 8098 if (!event->tp_event) 8099 return; 8100 8101 prog = event->tp_event->prog; 8102 if (prog) { 8103 event->tp_event->prog = NULL; 8104 bpf_prog_put(prog); 8105 } 8106 } 8107 8108 #else 8109 8110 static inline void perf_tp_register(void) 8111 { 8112 } 8113 8114 static void perf_event_free_filter(struct perf_event *event) 8115 { 8116 } 8117 8118 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8119 { 8120 return -ENOENT; 8121 } 8122 8123 static void perf_event_free_bpf_prog(struct perf_event *event) 8124 { 8125 } 8126 #endif /* CONFIG_EVENT_TRACING */ 8127 8128 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8129 void perf_bp_event(struct perf_event *bp, void *data) 8130 { 8131 struct perf_sample_data sample; 8132 struct pt_regs *regs = data; 8133 8134 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8135 8136 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8137 perf_swevent_event(bp, 1, &sample, regs); 8138 } 8139 #endif 8140 8141 /* 8142 * Allocate a new address filter 8143 */ 8144 static struct perf_addr_filter * 8145 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8146 { 8147 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8148 struct perf_addr_filter *filter; 8149 8150 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8151 if (!filter) 8152 return NULL; 8153 8154 INIT_LIST_HEAD(&filter->entry); 8155 list_add_tail(&filter->entry, filters); 8156 8157 return filter; 8158 } 8159 8160 static void free_filters_list(struct list_head *filters) 8161 { 8162 struct perf_addr_filter *filter, *iter; 8163 8164 list_for_each_entry_safe(filter, iter, filters, entry) { 8165 if (filter->inode) 8166 iput(filter->inode); 8167 list_del(&filter->entry); 8168 kfree(filter); 8169 } 8170 } 8171 8172 /* 8173 * Free existing address filters and optionally install new ones 8174 */ 8175 static void perf_addr_filters_splice(struct perf_event *event, 8176 struct list_head *head) 8177 { 8178 unsigned long flags; 8179 LIST_HEAD(list); 8180 8181 if (!has_addr_filter(event)) 8182 return; 8183 8184 /* don't bother with children, they don't have their own filters */ 8185 if (event->parent) 8186 return; 8187 8188 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8189 8190 list_splice_init(&event->addr_filters.list, &list); 8191 if (head) 8192 list_splice(head, &event->addr_filters.list); 8193 8194 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8195 8196 free_filters_list(&list); 8197 } 8198 8199 /* 8200 * Scan through mm's vmas and see if one of them matches the 8201 * @filter; if so, adjust filter's address range. 8202 * Called with mm::mmap_sem down for reading. 8203 */ 8204 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8205 struct mm_struct *mm) 8206 { 8207 struct vm_area_struct *vma; 8208 8209 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8210 struct file *file = vma->vm_file; 8211 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8212 unsigned long vma_size = vma->vm_end - vma->vm_start; 8213 8214 if (!file) 8215 continue; 8216 8217 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8218 continue; 8219 8220 return vma->vm_start; 8221 } 8222 8223 return 0; 8224 } 8225 8226 /* 8227 * Update event's address range filters based on the 8228 * task's existing mappings, if any. 8229 */ 8230 static void perf_event_addr_filters_apply(struct perf_event *event) 8231 { 8232 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8233 struct task_struct *task = READ_ONCE(event->ctx->task); 8234 struct perf_addr_filter *filter; 8235 struct mm_struct *mm = NULL; 8236 unsigned int count = 0; 8237 unsigned long flags; 8238 8239 /* 8240 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8241 * will stop on the parent's child_mutex that our caller is also holding 8242 */ 8243 if (task == TASK_TOMBSTONE) 8244 return; 8245 8246 if (!ifh->nr_file_filters) 8247 return; 8248 8249 mm = get_task_mm(event->ctx->task); 8250 if (!mm) 8251 goto restart; 8252 8253 down_read(&mm->mmap_sem); 8254 8255 raw_spin_lock_irqsave(&ifh->lock, flags); 8256 list_for_each_entry(filter, &ifh->list, entry) { 8257 event->addr_filters_offs[count] = 0; 8258 8259 /* 8260 * Adjust base offset if the filter is associated to a binary 8261 * that needs to be mapped: 8262 */ 8263 if (filter->inode) 8264 event->addr_filters_offs[count] = 8265 perf_addr_filter_apply(filter, mm); 8266 8267 count++; 8268 } 8269 8270 event->addr_filters_gen++; 8271 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8272 8273 up_read(&mm->mmap_sem); 8274 8275 mmput(mm); 8276 8277 restart: 8278 perf_event_stop(event, 1); 8279 } 8280 8281 /* 8282 * Address range filtering: limiting the data to certain 8283 * instruction address ranges. Filters are ioctl()ed to us from 8284 * userspace as ascii strings. 8285 * 8286 * Filter string format: 8287 * 8288 * ACTION RANGE_SPEC 8289 * where ACTION is one of the 8290 * * "filter": limit the trace to this region 8291 * * "start": start tracing from this address 8292 * * "stop": stop tracing at this address/region; 8293 * RANGE_SPEC is 8294 * * for kernel addresses: <start address>[/<size>] 8295 * * for object files: <start address>[/<size>]@</path/to/object/file> 8296 * 8297 * if <size> is not specified, the range is treated as a single address. 8298 */ 8299 enum { 8300 IF_ACT_NONE = -1, 8301 IF_ACT_FILTER, 8302 IF_ACT_START, 8303 IF_ACT_STOP, 8304 IF_SRC_FILE, 8305 IF_SRC_KERNEL, 8306 IF_SRC_FILEADDR, 8307 IF_SRC_KERNELADDR, 8308 }; 8309 8310 enum { 8311 IF_STATE_ACTION = 0, 8312 IF_STATE_SOURCE, 8313 IF_STATE_END, 8314 }; 8315 8316 static const match_table_t if_tokens = { 8317 { IF_ACT_FILTER, "filter" }, 8318 { IF_ACT_START, "start" }, 8319 { IF_ACT_STOP, "stop" }, 8320 { IF_SRC_FILE, "%u/%u@%s" }, 8321 { IF_SRC_KERNEL, "%u/%u" }, 8322 { IF_SRC_FILEADDR, "%u@%s" }, 8323 { IF_SRC_KERNELADDR, "%u" }, 8324 { IF_ACT_NONE, NULL }, 8325 }; 8326 8327 /* 8328 * Address filter string parser 8329 */ 8330 static int 8331 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8332 struct list_head *filters) 8333 { 8334 struct perf_addr_filter *filter = NULL; 8335 char *start, *orig, *filename = NULL; 8336 struct path path; 8337 substring_t args[MAX_OPT_ARGS]; 8338 int state = IF_STATE_ACTION, token; 8339 unsigned int kernel = 0; 8340 int ret = -EINVAL; 8341 8342 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8343 if (!fstr) 8344 return -ENOMEM; 8345 8346 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8347 ret = -EINVAL; 8348 8349 if (!*start) 8350 continue; 8351 8352 /* filter definition begins */ 8353 if (state == IF_STATE_ACTION) { 8354 filter = perf_addr_filter_new(event, filters); 8355 if (!filter) 8356 goto fail; 8357 } 8358 8359 token = match_token(start, if_tokens, args); 8360 switch (token) { 8361 case IF_ACT_FILTER: 8362 case IF_ACT_START: 8363 filter->filter = 1; 8364 8365 case IF_ACT_STOP: 8366 if (state != IF_STATE_ACTION) 8367 goto fail; 8368 8369 state = IF_STATE_SOURCE; 8370 break; 8371 8372 case IF_SRC_KERNELADDR: 8373 case IF_SRC_KERNEL: 8374 kernel = 1; 8375 8376 case IF_SRC_FILEADDR: 8377 case IF_SRC_FILE: 8378 if (state != IF_STATE_SOURCE) 8379 goto fail; 8380 8381 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8382 filter->range = 1; 8383 8384 *args[0].to = 0; 8385 ret = kstrtoul(args[0].from, 0, &filter->offset); 8386 if (ret) 8387 goto fail; 8388 8389 if (filter->range) { 8390 *args[1].to = 0; 8391 ret = kstrtoul(args[1].from, 0, &filter->size); 8392 if (ret) 8393 goto fail; 8394 } 8395 8396 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8397 int fpos = filter->range ? 2 : 1; 8398 8399 filename = match_strdup(&args[fpos]); 8400 if (!filename) { 8401 ret = -ENOMEM; 8402 goto fail; 8403 } 8404 } 8405 8406 state = IF_STATE_END; 8407 break; 8408 8409 default: 8410 goto fail; 8411 } 8412 8413 /* 8414 * Filter definition is fully parsed, validate and install it. 8415 * Make sure that it doesn't contradict itself or the event's 8416 * attribute. 8417 */ 8418 if (state == IF_STATE_END) { 8419 ret = -EINVAL; 8420 if (kernel && event->attr.exclude_kernel) 8421 goto fail; 8422 8423 if (!kernel) { 8424 if (!filename) 8425 goto fail; 8426 8427 /* 8428 * For now, we only support file-based filters 8429 * in per-task events; doing so for CPU-wide 8430 * events requires additional context switching 8431 * trickery, since same object code will be 8432 * mapped at different virtual addresses in 8433 * different processes. 8434 */ 8435 ret = -EOPNOTSUPP; 8436 if (!event->ctx->task) 8437 goto fail_free_name; 8438 8439 /* look up the path and grab its inode */ 8440 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8441 if (ret) 8442 goto fail_free_name; 8443 8444 filter->inode = igrab(d_inode(path.dentry)); 8445 path_put(&path); 8446 kfree(filename); 8447 filename = NULL; 8448 8449 ret = -EINVAL; 8450 if (!filter->inode || 8451 !S_ISREG(filter->inode->i_mode)) 8452 /* free_filters_list() will iput() */ 8453 goto fail; 8454 8455 event->addr_filters.nr_file_filters++; 8456 } 8457 8458 /* ready to consume more filters */ 8459 state = IF_STATE_ACTION; 8460 filter = NULL; 8461 } 8462 } 8463 8464 if (state != IF_STATE_ACTION) 8465 goto fail; 8466 8467 kfree(orig); 8468 8469 return 0; 8470 8471 fail_free_name: 8472 kfree(filename); 8473 fail: 8474 free_filters_list(filters); 8475 kfree(orig); 8476 8477 return ret; 8478 } 8479 8480 static int 8481 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8482 { 8483 LIST_HEAD(filters); 8484 int ret; 8485 8486 /* 8487 * Since this is called in perf_ioctl() path, we're already holding 8488 * ctx::mutex. 8489 */ 8490 lockdep_assert_held(&event->ctx->mutex); 8491 8492 if (WARN_ON_ONCE(event->parent)) 8493 return -EINVAL; 8494 8495 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8496 if (ret) 8497 goto fail_clear_files; 8498 8499 ret = event->pmu->addr_filters_validate(&filters); 8500 if (ret) 8501 goto fail_free_filters; 8502 8503 /* remove existing filters, if any */ 8504 perf_addr_filters_splice(event, &filters); 8505 8506 /* install new filters */ 8507 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8508 8509 return ret; 8510 8511 fail_free_filters: 8512 free_filters_list(&filters); 8513 8514 fail_clear_files: 8515 event->addr_filters.nr_file_filters = 0; 8516 8517 return ret; 8518 } 8519 8520 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8521 { 8522 char *filter_str; 8523 int ret = -EINVAL; 8524 8525 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8526 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8527 !has_addr_filter(event)) 8528 return -EINVAL; 8529 8530 filter_str = strndup_user(arg, PAGE_SIZE); 8531 if (IS_ERR(filter_str)) 8532 return PTR_ERR(filter_str); 8533 8534 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8535 event->attr.type == PERF_TYPE_TRACEPOINT) 8536 ret = ftrace_profile_set_filter(event, event->attr.config, 8537 filter_str); 8538 else if (has_addr_filter(event)) 8539 ret = perf_event_set_addr_filter(event, filter_str); 8540 8541 kfree(filter_str); 8542 return ret; 8543 } 8544 8545 /* 8546 * hrtimer based swevent callback 8547 */ 8548 8549 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8550 { 8551 enum hrtimer_restart ret = HRTIMER_RESTART; 8552 struct perf_sample_data data; 8553 struct pt_regs *regs; 8554 struct perf_event *event; 8555 u64 period; 8556 8557 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8558 8559 if (event->state != PERF_EVENT_STATE_ACTIVE) 8560 return HRTIMER_NORESTART; 8561 8562 event->pmu->read(event); 8563 8564 perf_sample_data_init(&data, 0, event->hw.last_period); 8565 regs = get_irq_regs(); 8566 8567 if (regs && !perf_exclude_event(event, regs)) { 8568 if (!(event->attr.exclude_idle && is_idle_task(current))) 8569 if (__perf_event_overflow(event, 1, &data, regs)) 8570 ret = HRTIMER_NORESTART; 8571 } 8572 8573 period = max_t(u64, 10000, event->hw.sample_period); 8574 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8575 8576 return ret; 8577 } 8578 8579 static void perf_swevent_start_hrtimer(struct perf_event *event) 8580 { 8581 struct hw_perf_event *hwc = &event->hw; 8582 s64 period; 8583 8584 if (!is_sampling_event(event)) 8585 return; 8586 8587 period = local64_read(&hwc->period_left); 8588 if (period) { 8589 if (period < 0) 8590 period = 10000; 8591 8592 local64_set(&hwc->period_left, 0); 8593 } else { 8594 period = max_t(u64, 10000, hwc->sample_period); 8595 } 8596 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8597 HRTIMER_MODE_REL_PINNED); 8598 } 8599 8600 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8601 { 8602 struct hw_perf_event *hwc = &event->hw; 8603 8604 if (is_sampling_event(event)) { 8605 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8606 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8607 8608 hrtimer_cancel(&hwc->hrtimer); 8609 } 8610 } 8611 8612 static void perf_swevent_init_hrtimer(struct perf_event *event) 8613 { 8614 struct hw_perf_event *hwc = &event->hw; 8615 8616 if (!is_sampling_event(event)) 8617 return; 8618 8619 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8620 hwc->hrtimer.function = perf_swevent_hrtimer; 8621 8622 /* 8623 * Since hrtimers have a fixed rate, we can do a static freq->period 8624 * mapping and avoid the whole period adjust feedback stuff. 8625 */ 8626 if (event->attr.freq) { 8627 long freq = event->attr.sample_freq; 8628 8629 event->attr.sample_period = NSEC_PER_SEC / freq; 8630 hwc->sample_period = event->attr.sample_period; 8631 local64_set(&hwc->period_left, hwc->sample_period); 8632 hwc->last_period = hwc->sample_period; 8633 event->attr.freq = 0; 8634 } 8635 } 8636 8637 /* 8638 * Software event: cpu wall time clock 8639 */ 8640 8641 static void cpu_clock_event_update(struct perf_event *event) 8642 { 8643 s64 prev; 8644 u64 now; 8645 8646 now = local_clock(); 8647 prev = local64_xchg(&event->hw.prev_count, now); 8648 local64_add(now - prev, &event->count); 8649 } 8650 8651 static void cpu_clock_event_start(struct perf_event *event, int flags) 8652 { 8653 local64_set(&event->hw.prev_count, local_clock()); 8654 perf_swevent_start_hrtimer(event); 8655 } 8656 8657 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8658 { 8659 perf_swevent_cancel_hrtimer(event); 8660 cpu_clock_event_update(event); 8661 } 8662 8663 static int cpu_clock_event_add(struct perf_event *event, int flags) 8664 { 8665 if (flags & PERF_EF_START) 8666 cpu_clock_event_start(event, flags); 8667 perf_event_update_userpage(event); 8668 8669 return 0; 8670 } 8671 8672 static void cpu_clock_event_del(struct perf_event *event, int flags) 8673 { 8674 cpu_clock_event_stop(event, flags); 8675 } 8676 8677 static void cpu_clock_event_read(struct perf_event *event) 8678 { 8679 cpu_clock_event_update(event); 8680 } 8681 8682 static int cpu_clock_event_init(struct perf_event *event) 8683 { 8684 if (event->attr.type != PERF_TYPE_SOFTWARE) 8685 return -ENOENT; 8686 8687 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8688 return -ENOENT; 8689 8690 /* 8691 * no branch sampling for software events 8692 */ 8693 if (has_branch_stack(event)) 8694 return -EOPNOTSUPP; 8695 8696 perf_swevent_init_hrtimer(event); 8697 8698 return 0; 8699 } 8700 8701 static struct pmu perf_cpu_clock = { 8702 .task_ctx_nr = perf_sw_context, 8703 8704 .capabilities = PERF_PMU_CAP_NO_NMI, 8705 8706 .event_init = cpu_clock_event_init, 8707 .add = cpu_clock_event_add, 8708 .del = cpu_clock_event_del, 8709 .start = cpu_clock_event_start, 8710 .stop = cpu_clock_event_stop, 8711 .read = cpu_clock_event_read, 8712 }; 8713 8714 /* 8715 * Software event: task time clock 8716 */ 8717 8718 static void task_clock_event_update(struct perf_event *event, u64 now) 8719 { 8720 u64 prev; 8721 s64 delta; 8722 8723 prev = local64_xchg(&event->hw.prev_count, now); 8724 delta = now - prev; 8725 local64_add(delta, &event->count); 8726 } 8727 8728 static void task_clock_event_start(struct perf_event *event, int flags) 8729 { 8730 local64_set(&event->hw.prev_count, event->ctx->time); 8731 perf_swevent_start_hrtimer(event); 8732 } 8733 8734 static void task_clock_event_stop(struct perf_event *event, int flags) 8735 { 8736 perf_swevent_cancel_hrtimer(event); 8737 task_clock_event_update(event, event->ctx->time); 8738 } 8739 8740 static int task_clock_event_add(struct perf_event *event, int flags) 8741 { 8742 if (flags & PERF_EF_START) 8743 task_clock_event_start(event, flags); 8744 perf_event_update_userpage(event); 8745 8746 return 0; 8747 } 8748 8749 static void task_clock_event_del(struct perf_event *event, int flags) 8750 { 8751 task_clock_event_stop(event, PERF_EF_UPDATE); 8752 } 8753 8754 static void task_clock_event_read(struct perf_event *event) 8755 { 8756 u64 now = perf_clock(); 8757 u64 delta = now - event->ctx->timestamp; 8758 u64 time = event->ctx->time + delta; 8759 8760 task_clock_event_update(event, time); 8761 } 8762 8763 static int task_clock_event_init(struct perf_event *event) 8764 { 8765 if (event->attr.type != PERF_TYPE_SOFTWARE) 8766 return -ENOENT; 8767 8768 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8769 return -ENOENT; 8770 8771 /* 8772 * no branch sampling for software events 8773 */ 8774 if (has_branch_stack(event)) 8775 return -EOPNOTSUPP; 8776 8777 perf_swevent_init_hrtimer(event); 8778 8779 return 0; 8780 } 8781 8782 static struct pmu perf_task_clock = { 8783 .task_ctx_nr = perf_sw_context, 8784 8785 .capabilities = PERF_PMU_CAP_NO_NMI, 8786 8787 .event_init = task_clock_event_init, 8788 .add = task_clock_event_add, 8789 .del = task_clock_event_del, 8790 .start = task_clock_event_start, 8791 .stop = task_clock_event_stop, 8792 .read = task_clock_event_read, 8793 }; 8794 8795 static void perf_pmu_nop_void(struct pmu *pmu) 8796 { 8797 } 8798 8799 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8800 { 8801 } 8802 8803 static int perf_pmu_nop_int(struct pmu *pmu) 8804 { 8805 return 0; 8806 } 8807 8808 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8809 8810 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8811 { 8812 __this_cpu_write(nop_txn_flags, flags); 8813 8814 if (flags & ~PERF_PMU_TXN_ADD) 8815 return; 8816 8817 perf_pmu_disable(pmu); 8818 } 8819 8820 static int perf_pmu_commit_txn(struct pmu *pmu) 8821 { 8822 unsigned int flags = __this_cpu_read(nop_txn_flags); 8823 8824 __this_cpu_write(nop_txn_flags, 0); 8825 8826 if (flags & ~PERF_PMU_TXN_ADD) 8827 return 0; 8828 8829 perf_pmu_enable(pmu); 8830 return 0; 8831 } 8832 8833 static void perf_pmu_cancel_txn(struct pmu *pmu) 8834 { 8835 unsigned int flags = __this_cpu_read(nop_txn_flags); 8836 8837 __this_cpu_write(nop_txn_flags, 0); 8838 8839 if (flags & ~PERF_PMU_TXN_ADD) 8840 return; 8841 8842 perf_pmu_enable(pmu); 8843 } 8844 8845 static int perf_event_idx_default(struct perf_event *event) 8846 { 8847 return 0; 8848 } 8849 8850 /* 8851 * Ensures all contexts with the same task_ctx_nr have the same 8852 * pmu_cpu_context too. 8853 */ 8854 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8855 { 8856 struct pmu *pmu; 8857 8858 if (ctxn < 0) 8859 return NULL; 8860 8861 list_for_each_entry(pmu, &pmus, entry) { 8862 if (pmu->task_ctx_nr == ctxn) 8863 return pmu->pmu_cpu_context; 8864 } 8865 8866 return NULL; 8867 } 8868 8869 static void free_pmu_context(struct pmu *pmu) 8870 { 8871 mutex_lock(&pmus_lock); 8872 free_percpu(pmu->pmu_cpu_context); 8873 mutex_unlock(&pmus_lock); 8874 } 8875 8876 /* 8877 * Let userspace know that this PMU supports address range filtering: 8878 */ 8879 static ssize_t nr_addr_filters_show(struct device *dev, 8880 struct device_attribute *attr, 8881 char *page) 8882 { 8883 struct pmu *pmu = dev_get_drvdata(dev); 8884 8885 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8886 } 8887 DEVICE_ATTR_RO(nr_addr_filters); 8888 8889 static struct idr pmu_idr; 8890 8891 static ssize_t 8892 type_show(struct device *dev, struct device_attribute *attr, char *page) 8893 { 8894 struct pmu *pmu = dev_get_drvdata(dev); 8895 8896 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8897 } 8898 static DEVICE_ATTR_RO(type); 8899 8900 static ssize_t 8901 perf_event_mux_interval_ms_show(struct device *dev, 8902 struct device_attribute *attr, 8903 char *page) 8904 { 8905 struct pmu *pmu = dev_get_drvdata(dev); 8906 8907 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8908 } 8909 8910 static DEFINE_MUTEX(mux_interval_mutex); 8911 8912 static ssize_t 8913 perf_event_mux_interval_ms_store(struct device *dev, 8914 struct device_attribute *attr, 8915 const char *buf, size_t count) 8916 { 8917 struct pmu *pmu = dev_get_drvdata(dev); 8918 int timer, cpu, ret; 8919 8920 ret = kstrtoint(buf, 0, &timer); 8921 if (ret) 8922 return ret; 8923 8924 if (timer < 1) 8925 return -EINVAL; 8926 8927 /* same value, noting to do */ 8928 if (timer == pmu->hrtimer_interval_ms) 8929 return count; 8930 8931 mutex_lock(&mux_interval_mutex); 8932 pmu->hrtimer_interval_ms = timer; 8933 8934 /* update all cpuctx for this PMU */ 8935 cpus_read_lock(); 8936 for_each_online_cpu(cpu) { 8937 struct perf_cpu_context *cpuctx; 8938 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8939 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8940 8941 cpu_function_call(cpu, 8942 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8943 } 8944 cpus_read_unlock(); 8945 mutex_unlock(&mux_interval_mutex); 8946 8947 return count; 8948 } 8949 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8950 8951 static struct attribute *pmu_dev_attrs[] = { 8952 &dev_attr_type.attr, 8953 &dev_attr_perf_event_mux_interval_ms.attr, 8954 NULL, 8955 }; 8956 ATTRIBUTE_GROUPS(pmu_dev); 8957 8958 static int pmu_bus_running; 8959 static struct bus_type pmu_bus = { 8960 .name = "event_source", 8961 .dev_groups = pmu_dev_groups, 8962 }; 8963 8964 static void pmu_dev_release(struct device *dev) 8965 { 8966 kfree(dev); 8967 } 8968 8969 static int pmu_dev_alloc(struct pmu *pmu) 8970 { 8971 int ret = -ENOMEM; 8972 8973 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8974 if (!pmu->dev) 8975 goto out; 8976 8977 pmu->dev->groups = pmu->attr_groups; 8978 device_initialize(pmu->dev); 8979 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8980 if (ret) 8981 goto free_dev; 8982 8983 dev_set_drvdata(pmu->dev, pmu); 8984 pmu->dev->bus = &pmu_bus; 8985 pmu->dev->release = pmu_dev_release; 8986 ret = device_add(pmu->dev); 8987 if (ret) 8988 goto free_dev; 8989 8990 /* For PMUs with address filters, throw in an extra attribute: */ 8991 if (pmu->nr_addr_filters) 8992 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8993 8994 if (ret) 8995 goto del_dev; 8996 8997 out: 8998 return ret; 8999 9000 del_dev: 9001 device_del(pmu->dev); 9002 9003 free_dev: 9004 put_device(pmu->dev); 9005 goto out; 9006 } 9007 9008 static struct lock_class_key cpuctx_mutex; 9009 static struct lock_class_key cpuctx_lock; 9010 9011 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9012 { 9013 int cpu, ret; 9014 9015 mutex_lock(&pmus_lock); 9016 ret = -ENOMEM; 9017 pmu->pmu_disable_count = alloc_percpu(int); 9018 if (!pmu->pmu_disable_count) 9019 goto unlock; 9020 9021 pmu->type = -1; 9022 if (!name) 9023 goto skip_type; 9024 pmu->name = name; 9025 9026 if (type < 0) { 9027 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9028 if (type < 0) { 9029 ret = type; 9030 goto free_pdc; 9031 } 9032 } 9033 pmu->type = type; 9034 9035 if (pmu_bus_running) { 9036 ret = pmu_dev_alloc(pmu); 9037 if (ret) 9038 goto free_idr; 9039 } 9040 9041 skip_type: 9042 if (pmu->task_ctx_nr == perf_hw_context) { 9043 static int hw_context_taken = 0; 9044 9045 /* 9046 * Other than systems with heterogeneous CPUs, it never makes 9047 * sense for two PMUs to share perf_hw_context. PMUs which are 9048 * uncore must use perf_invalid_context. 9049 */ 9050 if (WARN_ON_ONCE(hw_context_taken && 9051 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9052 pmu->task_ctx_nr = perf_invalid_context; 9053 9054 hw_context_taken = 1; 9055 } 9056 9057 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9058 if (pmu->pmu_cpu_context) 9059 goto got_cpu_context; 9060 9061 ret = -ENOMEM; 9062 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9063 if (!pmu->pmu_cpu_context) 9064 goto free_dev; 9065 9066 for_each_possible_cpu(cpu) { 9067 struct perf_cpu_context *cpuctx; 9068 9069 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9070 __perf_event_init_context(&cpuctx->ctx); 9071 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9072 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9073 cpuctx->ctx.pmu = pmu; 9074 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9075 9076 __perf_mux_hrtimer_init(cpuctx, cpu); 9077 } 9078 9079 got_cpu_context: 9080 if (!pmu->start_txn) { 9081 if (pmu->pmu_enable) { 9082 /* 9083 * If we have pmu_enable/pmu_disable calls, install 9084 * transaction stubs that use that to try and batch 9085 * hardware accesses. 9086 */ 9087 pmu->start_txn = perf_pmu_start_txn; 9088 pmu->commit_txn = perf_pmu_commit_txn; 9089 pmu->cancel_txn = perf_pmu_cancel_txn; 9090 } else { 9091 pmu->start_txn = perf_pmu_nop_txn; 9092 pmu->commit_txn = perf_pmu_nop_int; 9093 pmu->cancel_txn = perf_pmu_nop_void; 9094 } 9095 } 9096 9097 if (!pmu->pmu_enable) { 9098 pmu->pmu_enable = perf_pmu_nop_void; 9099 pmu->pmu_disable = perf_pmu_nop_void; 9100 } 9101 9102 if (!pmu->event_idx) 9103 pmu->event_idx = perf_event_idx_default; 9104 9105 list_add_rcu(&pmu->entry, &pmus); 9106 atomic_set(&pmu->exclusive_cnt, 0); 9107 ret = 0; 9108 unlock: 9109 mutex_unlock(&pmus_lock); 9110 9111 return ret; 9112 9113 free_dev: 9114 device_del(pmu->dev); 9115 put_device(pmu->dev); 9116 9117 free_idr: 9118 if (pmu->type >= PERF_TYPE_MAX) 9119 idr_remove(&pmu_idr, pmu->type); 9120 9121 free_pdc: 9122 free_percpu(pmu->pmu_disable_count); 9123 goto unlock; 9124 } 9125 EXPORT_SYMBOL_GPL(perf_pmu_register); 9126 9127 void perf_pmu_unregister(struct pmu *pmu) 9128 { 9129 int remove_device; 9130 9131 mutex_lock(&pmus_lock); 9132 remove_device = pmu_bus_running; 9133 list_del_rcu(&pmu->entry); 9134 mutex_unlock(&pmus_lock); 9135 9136 /* 9137 * We dereference the pmu list under both SRCU and regular RCU, so 9138 * synchronize against both of those. 9139 */ 9140 synchronize_srcu(&pmus_srcu); 9141 synchronize_rcu(); 9142 9143 free_percpu(pmu->pmu_disable_count); 9144 if (pmu->type >= PERF_TYPE_MAX) 9145 idr_remove(&pmu_idr, pmu->type); 9146 if (remove_device) { 9147 if (pmu->nr_addr_filters) 9148 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9149 device_del(pmu->dev); 9150 put_device(pmu->dev); 9151 } 9152 free_pmu_context(pmu); 9153 } 9154 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9155 9156 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9157 { 9158 struct perf_event_context *ctx = NULL; 9159 int ret; 9160 9161 if (!try_module_get(pmu->module)) 9162 return -ENODEV; 9163 9164 if (event->group_leader != event) { 9165 /* 9166 * This ctx->mutex can nest when we're called through 9167 * inheritance. See the perf_event_ctx_lock_nested() comment. 9168 */ 9169 ctx = perf_event_ctx_lock_nested(event->group_leader, 9170 SINGLE_DEPTH_NESTING); 9171 BUG_ON(!ctx); 9172 } 9173 9174 event->pmu = pmu; 9175 ret = pmu->event_init(event); 9176 9177 if (ctx) 9178 perf_event_ctx_unlock(event->group_leader, ctx); 9179 9180 if (ret) 9181 module_put(pmu->module); 9182 9183 return ret; 9184 } 9185 9186 static struct pmu *perf_init_event(struct perf_event *event) 9187 { 9188 struct pmu *pmu; 9189 int idx; 9190 int ret; 9191 9192 idx = srcu_read_lock(&pmus_srcu); 9193 9194 /* Try parent's PMU first: */ 9195 if (event->parent && event->parent->pmu) { 9196 pmu = event->parent->pmu; 9197 ret = perf_try_init_event(pmu, event); 9198 if (!ret) 9199 goto unlock; 9200 } 9201 9202 rcu_read_lock(); 9203 pmu = idr_find(&pmu_idr, event->attr.type); 9204 rcu_read_unlock(); 9205 if (pmu) { 9206 ret = perf_try_init_event(pmu, event); 9207 if (ret) 9208 pmu = ERR_PTR(ret); 9209 goto unlock; 9210 } 9211 9212 list_for_each_entry_rcu(pmu, &pmus, entry) { 9213 ret = perf_try_init_event(pmu, event); 9214 if (!ret) 9215 goto unlock; 9216 9217 if (ret != -ENOENT) { 9218 pmu = ERR_PTR(ret); 9219 goto unlock; 9220 } 9221 } 9222 pmu = ERR_PTR(-ENOENT); 9223 unlock: 9224 srcu_read_unlock(&pmus_srcu, idx); 9225 9226 return pmu; 9227 } 9228 9229 static void attach_sb_event(struct perf_event *event) 9230 { 9231 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9232 9233 raw_spin_lock(&pel->lock); 9234 list_add_rcu(&event->sb_list, &pel->list); 9235 raw_spin_unlock(&pel->lock); 9236 } 9237 9238 /* 9239 * We keep a list of all !task (and therefore per-cpu) events 9240 * that need to receive side-band records. 9241 * 9242 * This avoids having to scan all the various PMU per-cpu contexts 9243 * looking for them. 9244 */ 9245 static void account_pmu_sb_event(struct perf_event *event) 9246 { 9247 if (is_sb_event(event)) 9248 attach_sb_event(event); 9249 } 9250 9251 static void account_event_cpu(struct perf_event *event, int cpu) 9252 { 9253 if (event->parent) 9254 return; 9255 9256 if (is_cgroup_event(event)) 9257 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9258 } 9259 9260 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9261 static void account_freq_event_nohz(void) 9262 { 9263 #ifdef CONFIG_NO_HZ_FULL 9264 /* Lock so we don't race with concurrent unaccount */ 9265 spin_lock(&nr_freq_lock); 9266 if (atomic_inc_return(&nr_freq_events) == 1) 9267 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9268 spin_unlock(&nr_freq_lock); 9269 #endif 9270 } 9271 9272 static void account_freq_event(void) 9273 { 9274 if (tick_nohz_full_enabled()) 9275 account_freq_event_nohz(); 9276 else 9277 atomic_inc(&nr_freq_events); 9278 } 9279 9280 9281 static void account_event(struct perf_event *event) 9282 { 9283 bool inc = false; 9284 9285 if (event->parent) 9286 return; 9287 9288 if (event->attach_state & PERF_ATTACH_TASK) 9289 inc = true; 9290 if (event->attr.mmap || event->attr.mmap_data) 9291 atomic_inc(&nr_mmap_events); 9292 if (event->attr.comm) 9293 atomic_inc(&nr_comm_events); 9294 if (event->attr.namespaces) 9295 atomic_inc(&nr_namespaces_events); 9296 if (event->attr.task) 9297 atomic_inc(&nr_task_events); 9298 if (event->attr.freq) 9299 account_freq_event(); 9300 if (event->attr.context_switch) { 9301 atomic_inc(&nr_switch_events); 9302 inc = true; 9303 } 9304 if (has_branch_stack(event)) 9305 inc = true; 9306 if (is_cgroup_event(event)) 9307 inc = true; 9308 9309 if (inc) { 9310 if (atomic_inc_not_zero(&perf_sched_count)) 9311 goto enabled; 9312 9313 mutex_lock(&perf_sched_mutex); 9314 if (!atomic_read(&perf_sched_count)) { 9315 static_branch_enable(&perf_sched_events); 9316 /* 9317 * Guarantee that all CPUs observe they key change and 9318 * call the perf scheduling hooks before proceeding to 9319 * install events that need them. 9320 */ 9321 synchronize_sched(); 9322 } 9323 /* 9324 * Now that we have waited for the sync_sched(), allow further 9325 * increments to by-pass the mutex. 9326 */ 9327 atomic_inc(&perf_sched_count); 9328 mutex_unlock(&perf_sched_mutex); 9329 } 9330 enabled: 9331 9332 account_event_cpu(event, event->cpu); 9333 9334 account_pmu_sb_event(event); 9335 } 9336 9337 /* 9338 * Allocate and initialize a event structure 9339 */ 9340 static struct perf_event * 9341 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9342 struct task_struct *task, 9343 struct perf_event *group_leader, 9344 struct perf_event *parent_event, 9345 perf_overflow_handler_t overflow_handler, 9346 void *context, int cgroup_fd) 9347 { 9348 struct pmu *pmu; 9349 struct perf_event *event; 9350 struct hw_perf_event *hwc; 9351 long err = -EINVAL; 9352 9353 if ((unsigned)cpu >= nr_cpu_ids) { 9354 if (!task || cpu != -1) 9355 return ERR_PTR(-EINVAL); 9356 } 9357 9358 event = kzalloc(sizeof(*event), GFP_KERNEL); 9359 if (!event) 9360 return ERR_PTR(-ENOMEM); 9361 9362 /* 9363 * Single events are their own group leaders, with an 9364 * empty sibling list: 9365 */ 9366 if (!group_leader) 9367 group_leader = event; 9368 9369 mutex_init(&event->child_mutex); 9370 INIT_LIST_HEAD(&event->child_list); 9371 9372 INIT_LIST_HEAD(&event->group_entry); 9373 INIT_LIST_HEAD(&event->event_entry); 9374 INIT_LIST_HEAD(&event->sibling_list); 9375 INIT_LIST_HEAD(&event->rb_entry); 9376 INIT_LIST_HEAD(&event->active_entry); 9377 INIT_LIST_HEAD(&event->addr_filters.list); 9378 INIT_HLIST_NODE(&event->hlist_entry); 9379 9380 9381 init_waitqueue_head(&event->waitq); 9382 init_irq_work(&event->pending, perf_pending_event); 9383 9384 mutex_init(&event->mmap_mutex); 9385 raw_spin_lock_init(&event->addr_filters.lock); 9386 9387 atomic_long_set(&event->refcount, 1); 9388 event->cpu = cpu; 9389 event->attr = *attr; 9390 event->group_leader = group_leader; 9391 event->pmu = NULL; 9392 event->oncpu = -1; 9393 9394 event->parent = parent_event; 9395 9396 event->ns = get_pid_ns(task_active_pid_ns(current)); 9397 event->id = atomic64_inc_return(&perf_event_id); 9398 9399 event->state = PERF_EVENT_STATE_INACTIVE; 9400 9401 if (task) { 9402 event->attach_state = PERF_ATTACH_TASK; 9403 /* 9404 * XXX pmu::event_init needs to know what task to account to 9405 * and we cannot use the ctx information because we need the 9406 * pmu before we get a ctx. 9407 */ 9408 event->hw.target = task; 9409 } 9410 9411 event->clock = &local_clock; 9412 if (parent_event) 9413 event->clock = parent_event->clock; 9414 9415 if (!overflow_handler && parent_event) { 9416 overflow_handler = parent_event->overflow_handler; 9417 context = parent_event->overflow_handler_context; 9418 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9419 if (overflow_handler == bpf_overflow_handler) { 9420 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9421 9422 if (IS_ERR(prog)) { 9423 err = PTR_ERR(prog); 9424 goto err_ns; 9425 } 9426 event->prog = prog; 9427 event->orig_overflow_handler = 9428 parent_event->orig_overflow_handler; 9429 } 9430 #endif 9431 } 9432 9433 if (overflow_handler) { 9434 event->overflow_handler = overflow_handler; 9435 event->overflow_handler_context = context; 9436 } else if (is_write_backward(event)){ 9437 event->overflow_handler = perf_event_output_backward; 9438 event->overflow_handler_context = NULL; 9439 } else { 9440 event->overflow_handler = perf_event_output_forward; 9441 event->overflow_handler_context = NULL; 9442 } 9443 9444 perf_event__state_init(event); 9445 9446 pmu = NULL; 9447 9448 hwc = &event->hw; 9449 hwc->sample_period = attr->sample_period; 9450 if (attr->freq && attr->sample_freq) 9451 hwc->sample_period = 1; 9452 hwc->last_period = hwc->sample_period; 9453 9454 local64_set(&hwc->period_left, hwc->sample_period); 9455 9456 /* 9457 * We currently do not support PERF_SAMPLE_READ on inherited events. 9458 * See perf_output_read(). 9459 */ 9460 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9461 goto err_ns; 9462 9463 if (!has_branch_stack(event)) 9464 event->attr.branch_sample_type = 0; 9465 9466 if (cgroup_fd != -1) { 9467 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9468 if (err) 9469 goto err_ns; 9470 } 9471 9472 pmu = perf_init_event(event); 9473 if (IS_ERR(pmu)) { 9474 err = PTR_ERR(pmu); 9475 goto err_ns; 9476 } 9477 9478 err = exclusive_event_init(event); 9479 if (err) 9480 goto err_pmu; 9481 9482 if (has_addr_filter(event)) { 9483 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9484 sizeof(unsigned long), 9485 GFP_KERNEL); 9486 if (!event->addr_filters_offs) { 9487 err = -ENOMEM; 9488 goto err_per_task; 9489 } 9490 9491 /* force hw sync on the address filters */ 9492 event->addr_filters_gen = 1; 9493 } 9494 9495 if (!event->parent) { 9496 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9497 err = get_callchain_buffers(attr->sample_max_stack); 9498 if (err) 9499 goto err_addr_filters; 9500 } 9501 } 9502 9503 /* symmetric to unaccount_event() in _free_event() */ 9504 account_event(event); 9505 9506 return event; 9507 9508 err_addr_filters: 9509 kfree(event->addr_filters_offs); 9510 9511 err_per_task: 9512 exclusive_event_destroy(event); 9513 9514 err_pmu: 9515 if (event->destroy) 9516 event->destroy(event); 9517 module_put(pmu->module); 9518 err_ns: 9519 if (is_cgroup_event(event)) 9520 perf_detach_cgroup(event); 9521 if (event->ns) 9522 put_pid_ns(event->ns); 9523 kfree(event); 9524 9525 return ERR_PTR(err); 9526 } 9527 9528 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9529 struct perf_event_attr *attr) 9530 { 9531 u32 size; 9532 int ret; 9533 9534 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9535 return -EFAULT; 9536 9537 /* 9538 * zero the full structure, so that a short copy will be nice. 9539 */ 9540 memset(attr, 0, sizeof(*attr)); 9541 9542 ret = get_user(size, &uattr->size); 9543 if (ret) 9544 return ret; 9545 9546 if (size > PAGE_SIZE) /* silly large */ 9547 goto err_size; 9548 9549 if (!size) /* abi compat */ 9550 size = PERF_ATTR_SIZE_VER0; 9551 9552 if (size < PERF_ATTR_SIZE_VER0) 9553 goto err_size; 9554 9555 /* 9556 * If we're handed a bigger struct than we know of, 9557 * ensure all the unknown bits are 0 - i.e. new 9558 * user-space does not rely on any kernel feature 9559 * extensions we dont know about yet. 9560 */ 9561 if (size > sizeof(*attr)) { 9562 unsigned char __user *addr; 9563 unsigned char __user *end; 9564 unsigned char val; 9565 9566 addr = (void __user *)uattr + sizeof(*attr); 9567 end = (void __user *)uattr + size; 9568 9569 for (; addr < end; addr++) { 9570 ret = get_user(val, addr); 9571 if (ret) 9572 return ret; 9573 if (val) 9574 goto err_size; 9575 } 9576 size = sizeof(*attr); 9577 } 9578 9579 ret = copy_from_user(attr, uattr, size); 9580 if (ret) 9581 return -EFAULT; 9582 9583 if (attr->__reserved_1) 9584 return -EINVAL; 9585 9586 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9587 return -EINVAL; 9588 9589 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9590 return -EINVAL; 9591 9592 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9593 u64 mask = attr->branch_sample_type; 9594 9595 /* only using defined bits */ 9596 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9597 return -EINVAL; 9598 9599 /* at least one branch bit must be set */ 9600 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9601 return -EINVAL; 9602 9603 /* propagate priv level, when not set for branch */ 9604 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9605 9606 /* exclude_kernel checked on syscall entry */ 9607 if (!attr->exclude_kernel) 9608 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9609 9610 if (!attr->exclude_user) 9611 mask |= PERF_SAMPLE_BRANCH_USER; 9612 9613 if (!attr->exclude_hv) 9614 mask |= PERF_SAMPLE_BRANCH_HV; 9615 /* 9616 * adjust user setting (for HW filter setup) 9617 */ 9618 attr->branch_sample_type = mask; 9619 } 9620 /* privileged levels capture (kernel, hv): check permissions */ 9621 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9622 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9623 return -EACCES; 9624 } 9625 9626 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9627 ret = perf_reg_validate(attr->sample_regs_user); 9628 if (ret) 9629 return ret; 9630 } 9631 9632 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9633 if (!arch_perf_have_user_stack_dump()) 9634 return -ENOSYS; 9635 9636 /* 9637 * We have __u32 type for the size, but so far 9638 * we can only use __u16 as maximum due to the 9639 * __u16 sample size limit. 9640 */ 9641 if (attr->sample_stack_user >= USHRT_MAX) 9642 ret = -EINVAL; 9643 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9644 ret = -EINVAL; 9645 } 9646 9647 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9648 ret = perf_reg_validate(attr->sample_regs_intr); 9649 out: 9650 return ret; 9651 9652 err_size: 9653 put_user(sizeof(*attr), &uattr->size); 9654 ret = -E2BIG; 9655 goto out; 9656 } 9657 9658 static int 9659 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9660 { 9661 struct ring_buffer *rb = NULL; 9662 int ret = -EINVAL; 9663 9664 if (!output_event) 9665 goto set; 9666 9667 /* don't allow circular references */ 9668 if (event == output_event) 9669 goto out; 9670 9671 /* 9672 * Don't allow cross-cpu buffers 9673 */ 9674 if (output_event->cpu != event->cpu) 9675 goto out; 9676 9677 /* 9678 * If its not a per-cpu rb, it must be the same task. 9679 */ 9680 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9681 goto out; 9682 9683 /* 9684 * Mixing clocks in the same buffer is trouble you don't need. 9685 */ 9686 if (output_event->clock != event->clock) 9687 goto out; 9688 9689 /* 9690 * Either writing ring buffer from beginning or from end. 9691 * Mixing is not allowed. 9692 */ 9693 if (is_write_backward(output_event) != is_write_backward(event)) 9694 goto out; 9695 9696 /* 9697 * If both events generate aux data, they must be on the same PMU 9698 */ 9699 if (has_aux(event) && has_aux(output_event) && 9700 event->pmu != output_event->pmu) 9701 goto out; 9702 9703 set: 9704 mutex_lock(&event->mmap_mutex); 9705 /* Can't redirect output if we've got an active mmap() */ 9706 if (atomic_read(&event->mmap_count)) 9707 goto unlock; 9708 9709 if (output_event) { 9710 /* get the rb we want to redirect to */ 9711 rb = ring_buffer_get(output_event); 9712 if (!rb) 9713 goto unlock; 9714 } 9715 9716 ring_buffer_attach(event, rb); 9717 9718 ret = 0; 9719 unlock: 9720 mutex_unlock(&event->mmap_mutex); 9721 9722 out: 9723 return ret; 9724 } 9725 9726 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9727 { 9728 if (b < a) 9729 swap(a, b); 9730 9731 mutex_lock(a); 9732 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9733 } 9734 9735 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9736 { 9737 bool nmi_safe = false; 9738 9739 switch (clk_id) { 9740 case CLOCK_MONOTONIC: 9741 event->clock = &ktime_get_mono_fast_ns; 9742 nmi_safe = true; 9743 break; 9744 9745 case CLOCK_MONOTONIC_RAW: 9746 event->clock = &ktime_get_raw_fast_ns; 9747 nmi_safe = true; 9748 break; 9749 9750 case CLOCK_REALTIME: 9751 event->clock = &ktime_get_real_ns; 9752 break; 9753 9754 case CLOCK_BOOTTIME: 9755 event->clock = &ktime_get_boot_ns; 9756 break; 9757 9758 case CLOCK_TAI: 9759 event->clock = &ktime_get_tai_ns; 9760 break; 9761 9762 default: 9763 return -EINVAL; 9764 } 9765 9766 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9767 return -EINVAL; 9768 9769 return 0; 9770 } 9771 9772 /* 9773 * Variation on perf_event_ctx_lock_nested(), except we take two context 9774 * mutexes. 9775 */ 9776 static struct perf_event_context * 9777 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9778 struct perf_event_context *ctx) 9779 { 9780 struct perf_event_context *gctx; 9781 9782 again: 9783 rcu_read_lock(); 9784 gctx = READ_ONCE(group_leader->ctx); 9785 if (!atomic_inc_not_zero(&gctx->refcount)) { 9786 rcu_read_unlock(); 9787 goto again; 9788 } 9789 rcu_read_unlock(); 9790 9791 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9792 9793 if (group_leader->ctx != gctx) { 9794 mutex_unlock(&ctx->mutex); 9795 mutex_unlock(&gctx->mutex); 9796 put_ctx(gctx); 9797 goto again; 9798 } 9799 9800 return gctx; 9801 } 9802 9803 /** 9804 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9805 * 9806 * @attr_uptr: event_id type attributes for monitoring/sampling 9807 * @pid: target pid 9808 * @cpu: target cpu 9809 * @group_fd: group leader event fd 9810 */ 9811 SYSCALL_DEFINE5(perf_event_open, 9812 struct perf_event_attr __user *, attr_uptr, 9813 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9814 { 9815 struct perf_event *group_leader = NULL, *output_event = NULL; 9816 struct perf_event *event, *sibling; 9817 struct perf_event_attr attr; 9818 struct perf_event_context *ctx, *uninitialized_var(gctx); 9819 struct file *event_file = NULL; 9820 struct fd group = {NULL, 0}; 9821 struct task_struct *task = NULL; 9822 struct pmu *pmu; 9823 int event_fd; 9824 int move_group = 0; 9825 int err; 9826 int f_flags = O_RDWR; 9827 int cgroup_fd = -1; 9828 9829 /* for future expandability... */ 9830 if (flags & ~PERF_FLAG_ALL) 9831 return -EINVAL; 9832 9833 err = perf_copy_attr(attr_uptr, &attr); 9834 if (err) 9835 return err; 9836 9837 if (!attr.exclude_kernel) { 9838 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9839 return -EACCES; 9840 } 9841 9842 if (attr.namespaces) { 9843 if (!capable(CAP_SYS_ADMIN)) 9844 return -EACCES; 9845 } 9846 9847 if (attr.freq) { 9848 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9849 return -EINVAL; 9850 } else { 9851 if (attr.sample_period & (1ULL << 63)) 9852 return -EINVAL; 9853 } 9854 9855 if (!attr.sample_max_stack) 9856 attr.sample_max_stack = sysctl_perf_event_max_stack; 9857 9858 /* 9859 * In cgroup mode, the pid argument is used to pass the fd 9860 * opened to the cgroup directory in cgroupfs. The cpu argument 9861 * designates the cpu on which to monitor threads from that 9862 * cgroup. 9863 */ 9864 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9865 return -EINVAL; 9866 9867 if (flags & PERF_FLAG_FD_CLOEXEC) 9868 f_flags |= O_CLOEXEC; 9869 9870 event_fd = get_unused_fd_flags(f_flags); 9871 if (event_fd < 0) 9872 return event_fd; 9873 9874 if (group_fd != -1) { 9875 err = perf_fget_light(group_fd, &group); 9876 if (err) 9877 goto err_fd; 9878 group_leader = group.file->private_data; 9879 if (flags & PERF_FLAG_FD_OUTPUT) 9880 output_event = group_leader; 9881 if (flags & PERF_FLAG_FD_NO_GROUP) 9882 group_leader = NULL; 9883 } 9884 9885 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9886 task = find_lively_task_by_vpid(pid); 9887 if (IS_ERR(task)) { 9888 err = PTR_ERR(task); 9889 goto err_group_fd; 9890 } 9891 } 9892 9893 if (task && group_leader && 9894 group_leader->attr.inherit != attr.inherit) { 9895 err = -EINVAL; 9896 goto err_task; 9897 } 9898 9899 if (task) { 9900 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9901 if (err) 9902 goto err_task; 9903 9904 /* 9905 * Reuse ptrace permission checks for now. 9906 * 9907 * We must hold cred_guard_mutex across this and any potential 9908 * perf_install_in_context() call for this new event to 9909 * serialize against exec() altering our credentials (and the 9910 * perf_event_exit_task() that could imply). 9911 */ 9912 err = -EACCES; 9913 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9914 goto err_cred; 9915 } 9916 9917 if (flags & PERF_FLAG_PID_CGROUP) 9918 cgroup_fd = pid; 9919 9920 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9921 NULL, NULL, cgroup_fd); 9922 if (IS_ERR(event)) { 9923 err = PTR_ERR(event); 9924 goto err_cred; 9925 } 9926 9927 if (is_sampling_event(event)) { 9928 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9929 err = -EOPNOTSUPP; 9930 goto err_alloc; 9931 } 9932 } 9933 9934 /* 9935 * Special case software events and allow them to be part of 9936 * any hardware group. 9937 */ 9938 pmu = event->pmu; 9939 9940 if (attr.use_clockid) { 9941 err = perf_event_set_clock(event, attr.clockid); 9942 if (err) 9943 goto err_alloc; 9944 } 9945 9946 if (pmu->task_ctx_nr == perf_sw_context) 9947 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9948 9949 if (group_leader && 9950 (is_software_event(event) != is_software_event(group_leader))) { 9951 if (is_software_event(event)) { 9952 /* 9953 * If event and group_leader are not both a software 9954 * event, and event is, then group leader is not. 9955 * 9956 * Allow the addition of software events to !software 9957 * groups, this is safe because software events never 9958 * fail to schedule. 9959 */ 9960 pmu = group_leader->pmu; 9961 } else if (is_software_event(group_leader) && 9962 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9963 /* 9964 * In case the group is a pure software group, and we 9965 * try to add a hardware event, move the whole group to 9966 * the hardware context. 9967 */ 9968 move_group = 1; 9969 } 9970 } 9971 9972 /* 9973 * Get the target context (task or percpu): 9974 */ 9975 ctx = find_get_context(pmu, task, event); 9976 if (IS_ERR(ctx)) { 9977 err = PTR_ERR(ctx); 9978 goto err_alloc; 9979 } 9980 9981 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9982 err = -EBUSY; 9983 goto err_context; 9984 } 9985 9986 /* 9987 * Look up the group leader (we will attach this event to it): 9988 */ 9989 if (group_leader) { 9990 err = -EINVAL; 9991 9992 /* 9993 * Do not allow a recursive hierarchy (this new sibling 9994 * becoming part of another group-sibling): 9995 */ 9996 if (group_leader->group_leader != group_leader) 9997 goto err_context; 9998 9999 /* All events in a group should have the same clock */ 10000 if (group_leader->clock != event->clock) 10001 goto err_context; 10002 10003 /* 10004 * Do not allow to attach to a group in a different 10005 * task or CPU context: 10006 */ 10007 if (move_group) { 10008 /* 10009 * Make sure we're both on the same task, or both 10010 * per-cpu events. 10011 */ 10012 if (group_leader->ctx->task != ctx->task) 10013 goto err_context; 10014 10015 /* 10016 * Make sure we're both events for the same CPU; 10017 * grouping events for different CPUs is broken; since 10018 * you can never concurrently schedule them anyhow. 10019 */ 10020 if (group_leader->cpu != event->cpu) 10021 goto err_context; 10022 } else { 10023 if (group_leader->ctx != ctx) 10024 goto err_context; 10025 } 10026 10027 /* 10028 * Only a group leader can be exclusive or pinned 10029 */ 10030 if (attr.exclusive || attr.pinned) 10031 goto err_context; 10032 } 10033 10034 if (output_event) { 10035 err = perf_event_set_output(event, output_event); 10036 if (err) 10037 goto err_context; 10038 } 10039 10040 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10041 f_flags); 10042 if (IS_ERR(event_file)) { 10043 err = PTR_ERR(event_file); 10044 event_file = NULL; 10045 goto err_context; 10046 } 10047 10048 if (move_group) { 10049 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10050 10051 if (gctx->task == TASK_TOMBSTONE) { 10052 err = -ESRCH; 10053 goto err_locked; 10054 } 10055 10056 /* 10057 * Check if we raced against another sys_perf_event_open() call 10058 * moving the software group underneath us. 10059 */ 10060 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10061 /* 10062 * If someone moved the group out from under us, check 10063 * if this new event wound up on the same ctx, if so 10064 * its the regular !move_group case, otherwise fail. 10065 */ 10066 if (gctx != ctx) { 10067 err = -EINVAL; 10068 goto err_locked; 10069 } else { 10070 perf_event_ctx_unlock(group_leader, gctx); 10071 move_group = 0; 10072 } 10073 } 10074 } else { 10075 mutex_lock(&ctx->mutex); 10076 } 10077 10078 if (ctx->task == TASK_TOMBSTONE) { 10079 err = -ESRCH; 10080 goto err_locked; 10081 } 10082 10083 if (!perf_event_validate_size(event)) { 10084 err = -E2BIG; 10085 goto err_locked; 10086 } 10087 10088 if (!task) { 10089 /* 10090 * Check if the @cpu we're creating an event for is online. 10091 * 10092 * We use the perf_cpu_context::ctx::mutex to serialize against 10093 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10094 */ 10095 struct perf_cpu_context *cpuctx = 10096 container_of(ctx, struct perf_cpu_context, ctx); 10097 10098 if (!cpuctx->online) { 10099 err = -ENODEV; 10100 goto err_locked; 10101 } 10102 } 10103 10104 10105 /* 10106 * Must be under the same ctx::mutex as perf_install_in_context(), 10107 * because we need to serialize with concurrent event creation. 10108 */ 10109 if (!exclusive_event_installable(event, ctx)) { 10110 /* exclusive and group stuff are assumed mutually exclusive */ 10111 WARN_ON_ONCE(move_group); 10112 10113 err = -EBUSY; 10114 goto err_locked; 10115 } 10116 10117 WARN_ON_ONCE(ctx->parent_ctx); 10118 10119 /* 10120 * This is the point on no return; we cannot fail hereafter. This is 10121 * where we start modifying current state. 10122 */ 10123 10124 if (move_group) { 10125 /* 10126 * See perf_event_ctx_lock() for comments on the details 10127 * of swizzling perf_event::ctx. 10128 */ 10129 perf_remove_from_context(group_leader, 0); 10130 put_ctx(gctx); 10131 10132 list_for_each_entry(sibling, &group_leader->sibling_list, 10133 group_entry) { 10134 perf_remove_from_context(sibling, 0); 10135 put_ctx(gctx); 10136 } 10137 10138 /* 10139 * Wait for everybody to stop referencing the events through 10140 * the old lists, before installing it on new lists. 10141 */ 10142 synchronize_rcu(); 10143 10144 /* 10145 * Install the group siblings before the group leader. 10146 * 10147 * Because a group leader will try and install the entire group 10148 * (through the sibling list, which is still in-tact), we can 10149 * end up with siblings installed in the wrong context. 10150 * 10151 * By installing siblings first we NO-OP because they're not 10152 * reachable through the group lists. 10153 */ 10154 list_for_each_entry(sibling, &group_leader->sibling_list, 10155 group_entry) { 10156 perf_event__state_init(sibling); 10157 perf_install_in_context(ctx, sibling, sibling->cpu); 10158 get_ctx(ctx); 10159 } 10160 10161 /* 10162 * Removing from the context ends up with disabled 10163 * event. What we want here is event in the initial 10164 * startup state, ready to be add into new context. 10165 */ 10166 perf_event__state_init(group_leader); 10167 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10168 get_ctx(ctx); 10169 } 10170 10171 /* 10172 * Precalculate sample_data sizes; do while holding ctx::mutex such 10173 * that we're serialized against further additions and before 10174 * perf_install_in_context() which is the point the event is active and 10175 * can use these values. 10176 */ 10177 perf_event__header_size(event); 10178 perf_event__id_header_size(event); 10179 10180 event->owner = current; 10181 10182 perf_install_in_context(ctx, event, event->cpu); 10183 perf_unpin_context(ctx); 10184 10185 if (move_group) 10186 perf_event_ctx_unlock(group_leader, gctx); 10187 mutex_unlock(&ctx->mutex); 10188 10189 if (task) { 10190 mutex_unlock(&task->signal->cred_guard_mutex); 10191 put_task_struct(task); 10192 } 10193 10194 mutex_lock(¤t->perf_event_mutex); 10195 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10196 mutex_unlock(¤t->perf_event_mutex); 10197 10198 /* 10199 * Drop the reference on the group_event after placing the 10200 * new event on the sibling_list. This ensures destruction 10201 * of the group leader will find the pointer to itself in 10202 * perf_group_detach(). 10203 */ 10204 fdput(group); 10205 fd_install(event_fd, event_file); 10206 return event_fd; 10207 10208 err_locked: 10209 if (move_group) 10210 perf_event_ctx_unlock(group_leader, gctx); 10211 mutex_unlock(&ctx->mutex); 10212 /* err_file: */ 10213 fput(event_file); 10214 err_context: 10215 perf_unpin_context(ctx); 10216 put_ctx(ctx); 10217 err_alloc: 10218 /* 10219 * If event_file is set, the fput() above will have called ->release() 10220 * and that will take care of freeing the event. 10221 */ 10222 if (!event_file) 10223 free_event(event); 10224 err_cred: 10225 if (task) 10226 mutex_unlock(&task->signal->cred_guard_mutex); 10227 err_task: 10228 if (task) 10229 put_task_struct(task); 10230 err_group_fd: 10231 fdput(group); 10232 err_fd: 10233 put_unused_fd(event_fd); 10234 return err; 10235 } 10236 10237 /** 10238 * perf_event_create_kernel_counter 10239 * 10240 * @attr: attributes of the counter to create 10241 * @cpu: cpu in which the counter is bound 10242 * @task: task to profile (NULL for percpu) 10243 */ 10244 struct perf_event * 10245 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10246 struct task_struct *task, 10247 perf_overflow_handler_t overflow_handler, 10248 void *context) 10249 { 10250 struct perf_event_context *ctx; 10251 struct perf_event *event; 10252 int err; 10253 10254 /* 10255 * Get the target context (task or percpu): 10256 */ 10257 10258 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10259 overflow_handler, context, -1); 10260 if (IS_ERR(event)) { 10261 err = PTR_ERR(event); 10262 goto err; 10263 } 10264 10265 /* Mark owner so we could distinguish it from user events. */ 10266 event->owner = TASK_TOMBSTONE; 10267 10268 ctx = find_get_context(event->pmu, task, event); 10269 if (IS_ERR(ctx)) { 10270 err = PTR_ERR(ctx); 10271 goto err_free; 10272 } 10273 10274 WARN_ON_ONCE(ctx->parent_ctx); 10275 mutex_lock(&ctx->mutex); 10276 if (ctx->task == TASK_TOMBSTONE) { 10277 err = -ESRCH; 10278 goto err_unlock; 10279 } 10280 10281 if (!task) { 10282 /* 10283 * Check if the @cpu we're creating an event for is online. 10284 * 10285 * We use the perf_cpu_context::ctx::mutex to serialize against 10286 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10287 */ 10288 struct perf_cpu_context *cpuctx = 10289 container_of(ctx, struct perf_cpu_context, ctx); 10290 if (!cpuctx->online) { 10291 err = -ENODEV; 10292 goto err_unlock; 10293 } 10294 } 10295 10296 if (!exclusive_event_installable(event, ctx)) { 10297 err = -EBUSY; 10298 goto err_unlock; 10299 } 10300 10301 perf_install_in_context(ctx, event, cpu); 10302 perf_unpin_context(ctx); 10303 mutex_unlock(&ctx->mutex); 10304 10305 return event; 10306 10307 err_unlock: 10308 mutex_unlock(&ctx->mutex); 10309 perf_unpin_context(ctx); 10310 put_ctx(ctx); 10311 err_free: 10312 free_event(event); 10313 err: 10314 return ERR_PTR(err); 10315 } 10316 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10317 10318 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10319 { 10320 struct perf_event_context *src_ctx; 10321 struct perf_event_context *dst_ctx; 10322 struct perf_event *event, *tmp; 10323 LIST_HEAD(events); 10324 10325 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10326 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10327 10328 /* 10329 * See perf_event_ctx_lock() for comments on the details 10330 * of swizzling perf_event::ctx. 10331 */ 10332 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10333 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10334 event_entry) { 10335 perf_remove_from_context(event, 0); 10336 unaccount_event_cpu(event, src_cpu); 10337 put_ctx(src_ctx); 10338 list_add(&event->migrate_entry, &events); 10339 } 10340 10341 /* 10342 * Wait for the events to quiesce before re-instating them. 10343 */ 10344 synchronize_rcu(); 10345 10346 /* 10347 * Re-instate events in 2 passes. 10348 * 10349 * Skip over group leaders and only install siblings on this first 10350 * pass, siblings will not get enabled without a leader, however a 10351 * leader will enable its siblings, even if those are still on the old 10352 * context. 10353 */ 10354 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10355 if (event->group_leader == event) 10356 continue; 10357 10358 list_del(&event->migrate_entry); 10359 if (event->state >= PERF_EVENT_STATE_OFF) 10360 event->state = PERF_EVENT_STATE_INACTIVE; 10361 account_event_cpu(event, dst_cpu); 10362 perf_install_in_context(dst_ctx, event, dst_cpu); 10363 get_ctx(dst_ctx); 10364 } 10365 10366 /* 10367 * Once all the siblings are setup properly, install the group leaders 10368 * to make it go. 10369 */ 10370 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10371 list_del(&event->migrate_entry); 10372 if (event->state >= PERF_EVENT_STATE_OFF) 10373 event->state = PERF_EVENT_STATE_INACTIVE; 10374 account_event_cpu(event, dst_cpu); 10375 perf_install_in_context(dst_ctx, event, dst_cpu); 10376 get_ctx(dst_ctx); 10377 } 10378 mutex_unlock(&dst_ctx->mutex); 10379 mutex_unlock(&src_ctx->mutex); 10380 } 10381 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10382 10383 static void sync_child_event(struct perf_event *child_event, 10384 struct task_struct *child) 10385 { 10386 struct perf_event *parent_event = child_event->parent; 10387 u64 child_val; 10388 10389 if (child_event->attr.inherit_stat) 10390 perf_event_read_event(child_event, child); 10391 10392 child_val = perf_event_count(child_event); 10393 10394 /* 10395 * Add back the child's count to the parent's count: 10396 */ 10397 atomic64_add(child_val, &parent_event->child_count); 10398 atomic64_add(child_event->total_time_enabled, 10399 &parent_event->child_total_time_enabled); 10400 atomic64_add(child_event->total_time_running, 10401 &parent_event->child_total_time_running); 10402 } 10403 10404 static void 10405 perf_event_exit_event(struct perf_event *child_event, 10406 struct perf_event_context *child_ctx, 10407 struct task_struct *child) 10408 { 10409 struct perf_event *parent_event = child_event->parent; 10410 10411 /* 10412 * Do not destroy the 'original' grouping; because of the context 10413 * switch optimization the original events could've ended up in a 10414 * random child task. 10415 * 10416 * If we were to destroy the original group, all group related 10417 * operations would cease to function properly after this random 10418 * child dies. 10419 * 10420 * Do destroy all inherited groups, we don't care about those 10421 * and being thorough is better. 10422 */ 10423 raw_spin_lock_irq(&child_ctx->lock); 10424 WARN_ON_ONCE(child_ctx->is_active); 10425 10426 if (parent_event) 10427 perf_group_detach(child_event); 10428 list_del_event(child_event, child_ctx); 10429 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10430 raw_spin_unlock_irq(&child_ctx->lock); 10431 10432 /* 10433 * Parent events are governed by their filedesc, retain them. 10434 */ 10435 if (!parent_event) { 10436 perf_event_wakeup(child_event); 10437 return; 10438 } 10439 /* 10440 * Child events can be cleaned up. 10441 */ 10442 10443 sync_child_event(child_event, child); 10444 10445 /* 10446 * Remove this event from the parent's list 10447 */ 10448 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10449 mutex_lock(&parent_event->child_mutex); 10450 list_del_init(&child_event->child_list); 10451 mutex_unlock(&parent_event->child_mutex); 10452 10453 /* 10454 * Kick perf_poll() for is_event_hup(). 10455 */ 10456 perf_event_wakeup(parent_event); 10457 free_event(child_event); 10458 put_event(parent_event); 10459 } 10460 10461 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10462 { 10463 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10464 struct perf_event *child_event, *next; 10465 10466 WARN_ON_ONCE(child != current); 10467 10468 child_ctx = perf_pin_task_context(child, ctxn); 10469 if (!child_ctx) 10470 return; 10471 10472 /* 10473 * In order to reduce the amount of tricky in ctx tear-down, we hold 10474 * ctx::mutex over the entire thing. This serializes against almost 10475 * everything that wants to access the ctx. 10476 * 10477 * The exception is sys_perf_event_open() / 10478 * perf_event_create_kernel_count() which does find_get_context() 10479 * without ctx::mutex (it cannot because of the move_group double mutex 10480 * lock thing). See the comments in perf_install_in_context(). 10481 */ 10482 mutex_lock(&child_ctx->mutex); 10483 10484 /* 10485 * In a single ctx::lock section, de-schedule the events and detach the 10486 * context from the task such that we cannot ever get it scheduled back 10487 * in. 10488 */ 10489 raw_spin_lock_irq(&child_ctx->lock); 10490 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10491 10492 /* 10493 * Now that the context is inactive, destroy the task <-> ctx relation 10494 * and mark the context dead. 10495 */ 10496 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10497 put_ctx(child_ctx); /* cannot be last */ 10498 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10499 put_task_struct(current); /* cannot be last */ 10500 10501 clone_ctx = unclone_ctx(child_ctx); 10502 raw_spin_unlock_irq(&child_ctx->lock); 10503 10504 if (clone_ctx) 10505 put_ctx(clone_ctx); 10506 10507 /* 10508 * Report the task dead after unscheduling the events so that we 10509 * won't get any samples after PERF_RECORD_EXIT. We can however still 10510 * get a few PERF_RECORD_READ events. 10511 */ 10512 perf_event_task(child, child_ctx, 0); 10513 10514 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10515 perf_event_exit_event(child_event, child_ctx, child); 10516 10517 mutex_unlock(&child_ctx->mutex); 10518 10519 put_ctx(child_ctx); 10520 } 10521 10522 /* 10523 * When a child task exits, feed back event values to parent events. 10524 * 10525 * Can be called with cred_guard_mutex held when called from 10526 * install_exec_creds(). 10527 */ 10528 void perf_event_exit_task(struct task_struct *child) 10529 { 10530 struct perf_event *event, *tmp; 10531 int ctxn; 10532 10533 mutex_lock(&child->perf_event_mutex); 10534 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10535 owner_entry) { 10536 list_del_init(&event->owner_entry); 10537 10538 /* 10539 * Ensure the list deletion is visible before we clear 10540 * the owner, closes a race against perf_release() where 10541 * we need to serialize on the owner->perf_event_mutex. 10542 */ 10543 smp_store_release(&event->owner, NULL); 10544 } 10545 mutex_unlock(&child->perf_event_mutex); 10546 10547 for_each_task_context_nr(ctxn) 10548 perf_event_exit_task_context(child, ctxn); 10549 10550 /* 10551 * The perf_event_exit_task_context calls perf_event_task 10552 * with child's task_ctx, which generates EXIT events for 10553 * child contexts and sets child->perf_event_ctxp[] to NULL. 10554 * At this point we need to send EXIT events to cpu contexts. 10555 */ 10556 perf_event_task(child, NULL, 0); 10557 } 10558 10559 static void perf_free_event(struct perf_event *event, 10560 struct perf_event_context *ctx) 10561 { 10562 struct perf_event *parent = event->parent; 10563 10564 if (WARN_ON_ONCE(!parent)) 10565 return; 10566 10567 mutex_lock(&parent->child_mutex); 10568 list_del_init(&event->child_list); 10569 mutex_unlock(&parent->child_mutex); 10570 10571 put_event(parent); 10572 10573 raw_spin_lock_irq(&ctx->lock); 10574 perf_group_detach(event); 10575 list_del_event(event, ctx); 10576 raw_spin_unlock_irq(&ctx->lock); 10577 free_event(event); 10578 } 10579 10580 /* 10581 * Free an unexposed, unused context as created by inheritance by 10582 * perf_event_init_task below, used by fork() in case of fail. 10583 * 10584 * Not all locks are strictly required, but take them anyway to be nice and 10585 * help out with the lockdep assertions. 10586 */ 10587 void perf_event_free_task(struct task_struct *task) 10588 { 10589 struct perf_event_context *ctx; 10590 struct perf_event *event, *tmp; 10591 int ctxn; 10592 10593 for_each_task_context_nr(ctxn) { 10594 ctx = task->perf_event_ctxp[ctxn]; 10595 if (!ctx) 10596 continue; 10597 10598 mutex_lock(&ctx->mutex); 10599 raw_spin_lock_irq(&ctx->lock); 10600 /* 10601 * Destroy the task <-> ctx relation and mark the context dead. 10602 * 10603 * This is important because even though the task hasn't been 10604 * exposed yet the context has been (through child_list). 10605 */ 10606 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10607 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10608 put_task_struct(task); /* cannot be last */ 10609 raw_spin_unlock_irq(&ctx->lock); 10610 10611 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10612 perf_free_event(event, ctx); 10613 10614 mutex_unlock(&ctx->mutex); 10615 put_ctx(ctx); 10616 } 10617 } 10618 10619 void perf_event_delayed_put(struct task_struct *task) 10620 { 10621 int ctxn; 10622 10623 for_each_task_context_nr(ctxn) 10624 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10625 } 10626 10627 struct file *perf_event_get(unsigned int fd) 10628 { 10629 struct file *file; 10630 10631 file = fget_raw(fd); 10632 if (!file) 10633 return ERR_PTR(-EBADF); 10634 10635 if (file->f_op != &perf_fops) { 10636 fput(file); 10637 return ERR_PTR(-EBADF); 10638 } 10639 10640 return file; 10641 } 10642 10643 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10644 { 10645 if (!event) 10646 return ERR_PTR(-EINVAL); 10647 10648 return &event->attr; 10649 } 10650 10651 /* 10652 * Inherit a event from parent task to child task. 10653 * 10654 * Returns: 10655 * - valid pointer on success 10656 * - NULL for orphaned events 10657 * - IS_ERR() on error 10658 */ 10659 static struct perf_event * 10660 inherit_event(struct perf_event *parent_event, 10661 struct task_struct *parent, 10662 struct perf_event_context *parent_ctx, 10663 struct task_struct *child, 10664 struct perf_event *group_leader, 10665 struct perf_event_context *child_ctx) 10666 { 10667 enum perf_event_active_state parent_state = parent_event->state; 10668 struct perf_event *child_event; 10669 unsigned long flags; 10670 10671 /* 10672 * Instead of creating recursive hierarchies of events, 10673 * we link inherited events back to the original parent, 10674 * which has a filp for sure, which we use as the reference 10675 * count: 10676 */ 10677 if (parent_event->parent) 10678 parent_event = parent_event->parent; 10679 10680 child_event = perf_event_alloc(&parent_event->attr, 10681 parent_event->cpu, 10682 child, 10683 group_leader, parent_event, 10684 NULL, NULL, -1); 10685 if (IS_ERR(child_event)) 10686 return child_event; 10687 10688 /* 10689 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10690 * must be under the same lock in order to serialize against 10691 * perf_event_release_kernel(), such that either we must observe 10692 * is_orphaned_event() or they will observe us on the child_list. 10693 */ 10694 mutex_lock(&parent_event->child_mutex); 10695 if (is_orphaned_event(parent_event) || 10696 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10697 mutex_unlock(&parent_event->child_mutex); 10698 free_event(child_event); 10699 return NULL; 10700 } 10701 10702 get_ctx(child_ctx); 10703 10704 /* 10705 * Make the child state follow the state of the parent event, 10706 * not its attr.disabled bit. We hold the parent's mutex, 10707 * so we won't race with perf_event_{en, dis}able_family. 10708 */ 10709 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10710 child_event->state = PERF_EVENT_STATE_INACTIVE; 10711 else 10712 child_event->state = PERF_EVENT_STATE_OFF; 10713 10714 if (parent_event->attr.freq) { 10715 u64 sample_period = parent_event->hw.sample_period; 10716 struct hw_perf_event *hwc = &child_event->hw; 10717 10718 hwc->sample_period = sample_period; 10719 hwc->last_period = sample_period; 10720 10721 local64_set(&hwc->period_left, sample_period); 10722 } 10723 10724 child_event->ctx = child_ctx; 10725 child_event->overflow_handler = parent_event->overflow_handler; 10726 child_event->overflow_handler_context 10727 = parent_event->overflow_handler_context; 10728 10729 /* 10730 * Precalculate sample_data sizes 10731 */ 10732 perf_event__header_size(child_event); 10733 perf_event__id_header_size(child_event); 10734 10735 /* 10736 * Link it up in the child's context: 10737 */ 10738 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10739 add_event_to_ctx(child_event, child_ctx); 10740 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10741 10742 /* 10743 * Link this into the parent event's child list 10744 */ 10745 list_add_tail(&child_event->child_list, &parent_event->child_list); 10746 mutex_unlock(&parent_event->child_mutex); 10747 10748 return child_event; 10749 } 10750 10751 /* 10752 * Inherits an event group. 10753 * 10754 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10755 * This matches with perf_event_release_kernel() removing all child events. 10756 * 10757 * Returns: 10758 * - 0 on success 10759 * - <0 on error 10760 */ 10761 static int inherit_group(struct perf_event *parent_event, 10762 struct task_struct *parent, 10763 struct perf_event_context *parent_ctx, 10764 struct task_struct *child, 10765 struct perf_event_context *child_ctx) 10766 { 10767 struct perf_event *leader; 10768 struct perf_event *sub; 10769 struct perf_event *child_ctr; 10770 10771 leader = inherit_event(parent_event, parent, parent_ctx, 10772 child, NULL, child_ctx); 10773 if (IS_ERR(leader)) 10774 return PTR_ERR(leader); 10775 /* 10776 * @leader can be NULL here because of is_orphaned_event(). In this 10777 * case inherit_event() will create individual events, similar to what 10778 * perf_group_detach() would do anyway. 10779 */ 10780 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10781 child_ctr = inherit_event(sub, parent, parent_ctx, 10782 child, leader, child_ctx); 10783 if (IS_ERR(child_ctr)) 10784 return PTR_ERR(child_ctr); 10785 } 10786 return 0; 10787 } 10788 10789 /* 10790 * Creates the child task context and tries to inherit the event-group. 10791 * 10792 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10793 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10794 * consistent with perf_event_release_kernel() removing all child events. 10795 * 10796 * Returns: 10797 * - 0 on success 10798 * - <0 on error 10799 */ 10800 static int 10801 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10802 struct perf_event_context *parent_ctx, 10803 struct task_struct *child, int ctxn, 10804 int *inherited_all) 10805 { 10806 int ret; 10807 struct perf_event_context *child_ctx; 10808 10809 if (!event->attr.inherit) { 10810 *inherited_all = 0; 10811 return 0; 10812 } 10813 10814 child_ctx = child->perf_event_ctxp[ctxn]; 10815 if (!child_ctx) { 10816 /* 10817 * This is executed from the parent task context, so 10818 * inherit events that have been marked for cloning. 10819 * First allocate and initialize a context for the 10820 * child. 10821 */ 10822 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10823 if (!child_ctx) 10824 return -ENOMEM; 10825 10826 child->perf_event_ctxp[ctxn] = child_ctx; 10827 } 10828 10829 ret = inherit_group(event, parent, parent_ctx, 10830 child, child_ctx); 10831 10832 if (ret) 10833 *inherited_all = 0; 10834 10835 return ret; 10836 } 10837 10838 /* 10839 * Initialize the perf_event context in task_struct 10840 */ 10841 static int perf_event_init_context(struct task_struct *child, int ctxn) 10842 { 10843 struct perf_event_context *child_ctx, *parent_ctx; 10844 struct perf_event_context *cloned_ctx; 10845 struct perf_event *event; 10846 struct task_struct *parent = current; 10847 int inherited_all = 1; 10848 unsigned long flags; 10849 int ret = 0; 10850 10851 if (likely(!parent->perf_event_ctxp[ctxn])) 10852 return 0; 10853 10854 /* 10855 * If the parent's context is a clone, pin it so it won't get 10856 * swapped under us. 10857 */ 10858 parent_ctx = perf_pin_task_context(parent, ctxn); 10859 if (!parent_ctx) 10860 return 0; 10861 10862 /* 10863 * No need to check if parent_ctx != NULL here; since we saw 10864 * it non-NULL earlier, the only reason for it to become NULL 10865 * is if we exit, and since we're currently in the middle of 10866 * a fork we can't be exiting at the same time. 10867 */ 10868 10869 /* 10870 * Lock the parent list. No need to lock the child - not PID 10871 * hashed yet and not running, so nobody can access it. 10872 */ 10873 mutex_lock(&parent_ctx->mutex); 10874 10875 /* 10876 * We dont have to disable NMIs - we are only looking at 10877 * the list, not manipulating it: 10878 */ 10879 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10880 ret = inherit_task_group(event, parent, parent_ctx, 10881 child, ctxn, &inherited_all); 10882 if (ret) 10883 goto out_unlock; 10884 } 10885 10886 /* 10887 * We can't hold ctx->lock when iterating the ->flexible_group list due 10888 * to allocations, but we need to prevent rotation because 10889 * rotate_ctx() will change the list from interrupt context. 10890 */ 10891 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10892 parent_ctx->rotate_disable = 1; 10893 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10894 10895 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10896 ret = inherit_task_group(event, parent, parent_ctx, 10897 child, ctxn, &inherited_all); 10898 if (ret) 10899 goto out_unlock; 10900 } 10901 10902 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10903 parent_ctx->rotate_disable = 0; 10904 10905 child_ctx = child->perf_event_ctxp[ctxn]; 10906 10907 if (child_ctx && inherited_all) { 10908 /* 10909 * Mark the child context as a clone of the parent 10910 * context, or of whatever the parent is a clone of. 10911 * 10912 * Note that if the parent is a clone, the holding of 10913 * parent_ctx->lock avoids it from being uncloned. 10914 */ 10915 cloned_ctx = parent_ctx->parent_ctx; 10916 if (cloned_ctx) { 10917 child_ctx->parent_ctx = cloned_ctx; 10918 child_ctx->parent_gen = parent_ctx->parent_gen; 10919 } else { 10920 child_ctx->parent_ctx = parent_ctx; 10921 child_ctx->parent_gen = parent_ctx->generation; 10922 } 10923 get_ctx(child_ctx->parent_ctx); 10924 } 10925 10926 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10927 out_unlock: 10928 mutex_unlock(&parent_ctx->mutex); 10929 10930 perf_unpin_context(parent_ctx); 10931 put_ctx(parent_ctx); 10932 10933 return ret; 10934 } 10935 10936 /* 10937 * Initialize the perf_event context in task_struct 10938 */ 10939 int perf_event_init_task(struct task_struct *child) 10940 { 10941 int ctxn, ret; 10942 10943 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10944 mutex_init(&child->perf_event_mutex); 10945 INIT_LIST_HEAD(&child->perf_event_list); 10946 10947 for_each_task_context_nr(ctxn) { 10948 ret = perf_event_init_context(child, ctxn); 10949 if (ret) { 10950 perf_event_free_task(child); 10951 return ret; 10952 } 10953 } 10954 10955 return 0; 10956 } 10957 10958 static void __init perf_event_init_all_cpus(void) 10959 { 10960 struct swevent_htable *swhash; 10961 int cpu; 10962 10963 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 10964 10965 for_each_possible_cpu(cpu) { 10966 swhash = &per_cpu(swevent_htable, cpu); 10967 mutex_init(&swhash->hlist_mutex); 10968 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10969 10970 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10971 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10972 10973 #ifdef CONFIG_CGROUP_PERF 10974 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 10975 #endif 10976 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10977 } 10978 } 10979 10980 void perf_swevent_init_cpu(unsigned int cpu) 10981 { 10982 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10983 10984 mutex_lock(&swhash->hlist_mutex); 10985 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10986 struct swevent_hlist *hlist; 10987 10988 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10989 WARN_ON(!hlist); 10990 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10991 } 10992 mutex_unlock(&swhash->hlist_mutex); 10993 } 10994 10995 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10996 static void __perf_event_exit_context(void *__info) 10997 { 10998 struct perf_event_context *ctx = __info; 10999 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11000 struct perf_event *event; 11001 11002 raw_spin_lock(&ctx->lock); 11003 list_for_each_entry(event, &ctx->event_list, event_entry) 11004 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11005 raw_spin_unlock(&ctx->lock); 11006 } 11007 11008 static void perf_event_exit_cpu_context(int cpu) 11009 { 11010 struct perf_cpu_context *cpuctx; 11011 struct perf_event_context *ctx; 11012 struct pmu *pmu; 11013 11014 mutex_lock(&pmus_lock); 11015 list_for_each_entry(pmu, &pmus, entry) { 11016 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11017 ctx = &cpuctx->ctx; 11018 11019 mutex_lock(&ctx->mutex); 11020 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11021 cpuctx->online = 0; 11022 mutex_unlock(&ctx->mutex); 11023 } 11024 cpumask_clear_cpu(cpu, perf_online_mask); 11025 mutex_unlock(&pmus_lock); 11026 } 11027 #else 11028 11029 static void perf_event_exit_cpu_context(int cpu) { } 11030 11031 #endif 11032 11033 int perf_event_init_cpu(unsigned int cpu) 11034 { 11035 struct perf_cpu_context *cpuctx; 11036 struct perf_event_context *ctx; 11037 struct pmu *pmu; 11038 11039 perf_swevent_init_cpu(cpu); 11040 11041 mutex_lock(&pmus_lock); 11042 cpumask_set_cpu(cpu, perf_online_mask); 11043 list_for_each_entry(pmu, &pmus, entry) { 11044 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11045 ctx = &cpuctx->ctx; 11046 11047 mutex_lock(&ctx->mutex); 11048 cpuctx->online = 1; 11049 mutex_unlock(&ctx->mutex); 11050 } 11051 mutex_unlock(&pmus_lock); 11052 11053 return 0; 11054 } 11055 11056 int perf_event_exit_cpu(unsigned int cpu) 11057 { 11058 perf_event_exit_cpu_context(cpu); 11059 return 0; 11060 } 11061 11062 static int 11063 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11064 { 11065 int cpu; 11066 11067 for_each_online_cpu(cpu) 11068 perf_event_exit_cpu(cpu); 11069 11070 return NOTIFY_OK; 11071 } 11072 11073 /* 11074 * Run the perf reboot notifier at the very last possible moment so that 11075 * the generic watchdog code runs as long as possible. 11076 */ 11077 static struct notifier_block perf_reboot_notifier = { 11078 .notifier_call = perf_reboot, 11079 .priority = INT_MIN, 11080 }; 11081 11082 void __init perf_event_init(void) 11083 { 11084 int ret; 11085 11086 idr_init(&pmu_idr); 11087 11088 perf_event_init_all_cpus(); 11089 init_srcu_struct(&pmus_srcu); 11090 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11091 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11092 perf_pmu_register(&perf_task_clock, NULL, -1); 11093 perf_tp_register(); 11094 perf_event_init_cpu(smp_processor_id()); 11095 register_reboot_notifier(&perf_reboot_notifier); 11096 11097 ret = init_hw_breakpoint(); 11098 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11099 11100 /* 11101 * Build time assertion that we keep the data_head at the intended 11102 * location. IOW, validation we got the __reserved[] size right. 11103 */ 11104 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11105 != 1024); 11106 } 11107 11108 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11109 char *page) 11110 { 11111 struct perf_pmu_events_attr *pmu_attr = 11112 container_of(attr, struct perf_pmu_events_attr, attr); 11113 11114 if (pmu_attr->event_str) 11115 return sprintf(page, "%s\n", pmu_attr->event_str); 11116 11117 return 0; 11118 } 11119 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11120 11121 static int __init perf_event_sysfs_init(void) 11122 { 11123 struct pmu *pmu; 11124 int ret; 11125 11126 mutex_lock(&pmus_lock); 11127 11128 ret = bus_register(&pmu_bus); 11129 if (ret) 11130 goto unlock; 11131 11132 list_for_each_entry(pmu, &pmus, entry) { 11133 if (!pmu->name || pmu->type < 0) 11134 continue; 11135 11136 ret = pmu_dev_alloc(pmu); 11137 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11138 } 11139 pmu_bus_running = 1; 11140 ret = 0; 11141 11142 unlock: 11143 mutex_unlock(&pmus_lock); 11144 11145 return ret; 11146 } 11147 device_initcall(perf_event_sysfs_init); 11148 11149 #ifdef CONFIG_CGROUP_PERF 11150 static struct cgroup_subsys_state * 11151 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11152 { 11153 struct perf_cgroup *jc; 11154 11155 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11156 if (!jc) 11157 return ERR_PTR(-ENOMEM); 11158 11159 jc->info = alloc_percpu(struct perf_cgroup_info); 11160 if (!jc->info) { 11161 kfree(jc); 11162 return ERR_PTR(-ENOMEM); 11163 } 11164 11165 return &jc->css; 11166 } 11167 11168 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11169 { 11170 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11171 11172 free_percpu(jc->info); 11173 kfree(jc); 11174 } 11175 11176 static int __perf_cgroup_move(void *info) 11177 { 11178 struct task_struct *task = info; 11179 rcu_read_lock(); 11180 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11181 rcu_read_unlock(); 11182 return 0; 11183 } 11184 11185 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11186 { 11187 struct task_struct *task; 11188 struct cgroup_subsys_state *css; 11189 11190 cgroup_taskset_for_each(task, css, tset) 11191 task_function_call(task, __perf_cgroup_move, task); 11192 } 11193 11194 struct cgroup_subsys perf_event_cgrp_subsys = { 11195 .css_alloc = perf_cgroup_css_alloc, 11196 .css_free = perf_cgroup_css_free, 11197 .attach = perf_cgroup_attach, 11198 /* 11199 * Implicitly enable on dfl hierarchy so that perf events can 11200 * always be filtered by cgroup2 path as long as perf_event 11201 * controller is not mounted on a legacy hierarchy. 11202 */ 11203 .implicit_on_dfl = true, 11204 }; 11205 #endif /* CONFIG_CGROUP_PERF */ 11206