1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 /* 122 * branch priv levels that need permission checks 123 */ 124 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 125 (PERF_SAMPLE_BRANCH_KERNEL |\ 126 PERF_SAMPLE_BRANCH_HV) 127 128 enum event_type_t { 129 EVENT_FLEXIBLE = 0x1, 130 EVENT_PINNED = 0x2, 131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 132 }; 133 134 /* 135 * perf_sched_events : >0 events exist 136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 137 */ 138 struct static_key_deferred perf_sched_events __read_mostly; 139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 141 142 static atomic_t nr_mmap_events __read_mostly; 143 static atomic_t nr_comm_events __read_mostly; 144 static atomic_t nr_task_events __read_mostly; 145 146 static LIST_HEAD(pmus); 147 static DEFINE_MUTEX(pmus_lock); 148 static struct srcu_struct pmus_srcu; 149 150 /* 151 * perf event paranoia level: 152 * -1 - not paranoid at all 153 * 0 - disallow raw tracepoint access for unpriv 154 * 1 - disallow cpu events for unpriv 155 * 2 - disallow kernel profiling for unpriv 156 */ 157 int sysctl_perf_event_paranoid __read_mostly = 1; 158 159 /* Minimum for 512 kiB + 1 user control page */ 160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 161 162 /* 163 * max perf event sample rate 164 */ 165 #define DEFAULT_MAX_SAMPLE_RATE 100000 166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 167 static int max_samples_per_tick __read_mostly = 168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 169 170 int perf_proc_update_handler(struct ctl_table *table, int write, 171 void __user *buffer, size_t *lenp, 172 loff_t *ppos) 173 { 174 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 175 176 if (ret || !write) 177 return ret; 178 179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 180 181 return 0; 182 } 183 184 static atomic64_t perf_event_id; 185 186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 187 enum event_type_t event_type); 188 189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 190 enum event_type_t event_type, 191 struct task_struct *task); 192 193 static void update_context_time(struct perf_event_context *ctx); 194 static u64 perf_event_time(struct perf_event *event); 195 196 static void ring_buffer_attach(struct perf_event *event, 197 struct ring_buffer *rb); 198 199 void __weak perf_event_print_debug(void) { } 200 201 extern __weak const char *perf_pmu_name(void) 202 { 203 return "pmu"; 204 } 205 206 static inline u64 perf_clock(void) 207 { 208 return local_clock(); 209 } 210 211 static inline struct perf_cpu_context * 212 __get_cpu_context(struct perf_event_context *ctx) 213 { 214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 215 } 216 217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 raw_spin_lock(&cpuctx->ctx.lock); 221 if (ctx) 222 raw_spin_lock(&ctx->lock); 223 } 224 225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 226 struct perf_event_context *ctx) 227 { 228 if (ctx) 229 raw_spin_unlock(&ctx->lock); 230 raw_spin_unlock(&cpuctx->ctx.lock); 231 } 232 233 #ifdef CONFIG_CGROUP_PERF 234 235 /* 236 * Must ensure cgroup is pinned (css_get) before calling 237 * this function. In other words, we cannot call this function 238 * if there is no cgroup event for the current CPU context. 239 */ 240 static inline struct perf_cgroup * 241 perf_cgroup_from_task(struct task_struct *task) 242 { 243 return container_of(task_subsys_state(task, perf_subsys_id), 244 struct perf_cgroup, css); 245 } 246 247 static inline bool 248 perf_cgroup_match(struct perf_event *event) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 252 253 return !event->cgrp || event->cgrp == cpuctx->cgrp; 254 } 255 256 static inline bool perf_tryget_cgroup(struct perf_event *event) 257 { 258 return css_tryget(&event->cgrp->css); 259 } 260 261 static inline void perf_put_cgroup(struct perf_event *event) 262 { 263 css_put(&event->cgrp->css); 264 } 265 266 static inline void perf_detach_cgroup(struct perf_event *event) 267 { 268 perf_put_cgroup(event); 269 event->cgrp = NULL; 270 } 271 272 static inline int is_cgroup_event(struct perf_event *event) 273 { 274 return event->cgrp != NULL; 275 } 276 277 static inline u64 perf_cgroup_event_time(struct perf_event *event) 278 { 279 struct perf_cgroup_info *t; 280 281 t = per_cpu_ptr(event->cgrp->info, event->cpu); 282 return t->time; 283 } 284 285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 286 { 287 struct perf_cgroup_info *info; 288 u64 now; 289 290 now = perf_clock(); 291 292 info = this_cpu_ptr(cgrp->info); 293 294 info->time += now - info->timestamp; 295 info->timestamp = now; 296 } 297 298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 299 { 300 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 301 if (cgrp_out) 302 __update_cgrp_time(cgrp_out); 303 } 304 305 static inline void update_cgrp_time_from_event(struct perf_event *event) 306 { 307 struct perf_cgroup *cgrp; 308 309 /* 310 * ensure we access cgroup data only when needed and 311 * when we know the cgroup is pinned (css_get) 312 */ 313 if (!is_cgroup_event(event)) 314 return; 315 316 cgrp = perf_cgroup_from_task(current); 317 /* 318 * Do not update time when cgroup is not active 319 */ 320 if (cgrp == event->cgrp) 321 __update_cgrp_time(event->cgrp); 322 } 323 324 static inline void 325 perf_cgroup_set_timestamp(struct task_struct *task, 326 struct perf_event_context *ctx) 327 { 328 struct perf_cgroup *cgrp; 329 struct perf_cgroup_info *info; 330 331 /* 332 * ctx->lock held by caller 333 * ensure we do not access cgroup data 334 * unless we have the cgroup pinned (css_get) 335 */ 336 if (!task || !ctx->nr_cgroups) 337 return; 338 339 cgrp = perf_cgroup_from_task(task); 340 info = this_cpu_ptr(cgrp->info); 341 info->timestamp = ctx->timestamp; 342 } 343 344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 346 347 /* 348 * reschedule events based on the cgroup constraint of task. 349 * 350 * mode SWOUT : schedule out everything 351 * mode SWIN : schedule in based on cgroup for next 352 */ 353 void perf_cgroup_switch(struct task_struct *task, int mode) 354 { 355 struct perf_cpu_context *cpuctx; 356 struct pmu *pmu; 357 unsigned long flags; 358 359 /* 360 * disable interrupts to avoid geting nr_cgroup 361 * changes via __perf_event_disable(). Also 362 * avoids preemption. 363 */ 364 local_irq_save(flags); 365 366 /* 367 * we reschedule only in the presence of cgroup 368 * constrained events. 369 */ 370 rcu_read_lock(); 371 372 list_for_each_entry_rcu(pmu, &pmus, entry) { 373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 374 375 /* 376 * perf_cgroup_events says at least one 377 * context on this CPU has cgroup events. 378 * 379 * ctx->nr_cgroups reports the number of cgroup 380 * events for a context. 381 */ 382 if (cpuctx->ctx.nr_cgroups > 0) { 383 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 384 perf_pmu_disable(cpuctx->ctx.pmu); 385 386 if (mode & PERF_CGROUP_SWOUT) { 387 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 388 /* 389 * must not be done before ctxswout due 390 * to event_filter_match() in event_sched_out() 391 */ 392 cpuctx->cgrp = NULL; 393 } 394 395 if (mode & PERF_CGROUP_SWIN) { 396 WARN_ON_ONCE(cpuctx->cgrp); 397 /* set cgrp before ctxsw in to 398 * allow event_filter_match() to not 399 * have to pass task around 400 */ 401 cpuctx->cgrp = perf_cgroup_from_task(task); 402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 403 } 404 perf_pmu_enable(cpuctx->ctx.pmu); 405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 406 } 407 } 408 409 rcu_read_unlock(); 410 411 local_irq_restore(flags); 412 } 413 414 static inline void perf_cgroup_sched_out(struct task_struct *task, 415 struct task_struct *next) 416 { 417 struct perf_cgroup *cgrp1; 418 struct perf_cgroup *cgrp2 = NULL; 419 420 /* 421 * we come here when we know perf_cgroup_events > 0 422 */ 423 cgrp1 = perf_cgroup_from_task(task); 424 425 /* 426 * next is NULL when called from perf_event_enable_on_exec() 427 * that will systematically cause a cgroup_switch() 428 */ 429 if (next) 430 cgrp2 = perf_cgroup_from_task(next); 431 432 /* 433 * only schedule out current cgroup events if we know 434 * that we are switching to a different cgroup. Otherwise, 435 * do no touch the cgroup events. 436 */ 437 if (cgrp1 != cgrp2) 438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 439 } 440 441 static inline void perf_cgroup_sched_in(struct task_struct *prev, 442 struct task_struct *task) 443 { 444 struct perf_cgroup *cgrp1; 445 struct perf_cgroup *cgrp2 = NULL; 446 447 /* 448 * we come here when we know perf_cgroup_events > 0 449 */ 450 cgrp1 = perf_cgroup_from_task(task); 451 452 /* prev can never be NULL */ 453 cgrp2 = perf_cgroup_from_task(prev); 454 455 /* 456 * only need to schedule in cgroup events if we are changing 457 * cgroup during ctxsw. Cgroup events were not scheduled 458 * out of ctxsw out if that was not the case. 459 */ 460 if (cgrp1 != cgrp2) 461 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 462 } 463 464 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 465 struct perf_event_attr *attr, 466 struct perf_event *group_leader) 467 { 468 struct perf_cgroup *cgrp; 469 struct cgroup_subsys_state *css; 470 struct file *file; 471 int ret = 0, fput_needed; 472 473 file = fget_light(fd, &fput_needed); 474 if (!file) 475 return -EBADF; 476 477 css = cgroup_css_from_dir(file, perf_subsys_id); 478 if (IS_ERR(css)) { 479 ret = PTR_ERR(css); 480 goto out; 481 } 482 483 cgrp = container_of(css, struct perf_cgroup, css); 484 event->cgrp = cgrp; 485 486 /* must be done before we fput() the file */ 487 if (!perf_tryget_cgroup(event)) { 488 event->cgrp = NULL; 489 ret = -ENOENT; 490 goto out; 491 } 492 493 /* 494 * all events in a group must monitor 495 * the same cgroup because a task belongs 496 * to only one perf cgroup at a time 497 */ 498 if (group_leader && group_leader->cgrp != cgrp) { 499 perf_detach_cgroup(event); 500 ret = -EINVAL; 501 } 502 out: 503 fput_light(file, fput_needed); 504 return ret; 505 } 506 507 static inline void 508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 509 { 510 struct perf_cgroup_info *t; 511 t = per_cpu_ptr(event->cgrp->info, event->cpu); 512 event->shadow_ctx_time = now - t->timestamp; 513 } 514 515 static inline void 516 perf_cgroup_defer_enabled(struct perf_event *event) 517 { 518 /* 519 * when the current task's perf cgroup does not match 520 * the event's, we need to remember to call the 521 * perf_mark_enable() function the first time a task with 522 * a matching perf cgroup is scheduled in. 523 */ 524 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 525 event->cgrp_defer_enabled = 1; 526 } 527 528 static inline void 529 perf_cgroup_mark_enabled(struct perf_event *event, 530 struct perf_event_context *ctx) 531 { 532 struct perf_event *sub; 533 u64 tstamp = perf_event_time(event); 534 535 if (!event->cgrp_defer_enabled) 536 return; 537 538 event->cgrp_defer_enabled = 0; 539 540 event->tstamp_enabled = tstamp - event->total_time_enabled; 541 list_for_each_entry(sub, &event->sibling_list, group_entry) { 542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 543 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 544 sub->cgrp_defer_enabled = 0; 545 } 546 } 547 } 548 #else /* !CONFIG_CGROUP_PERF */ 549 550 static inline bool 551 perf_cgroup_match(struct perf_event *event) 552 { 553 return true; 554 } 555 556 static inline void perf_detach_cgroup(struct perf_event *event) 557 {} 558 559 static inline int is_cgroup_event(struct perf_event *event) 560 { 561 return 0; 562 } 563 564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 565 { 566 return 0; 567 } 568 569 static inline void update_cgrp_time_from_event(struct perf_event *event) 570 { 571 } 572 573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 574 { 575 } 576 577 static inline void perf_cgroup_sched_out(struct task_struct *task, 578 struct task_struct *next) 579 { 580 } 581 582 static inline void perf_cgroup_sched_in(struct task_struct *prev, 583 struct task_struct *task) 584 { 585 } 586 587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 588 struct perf_event_attr *attr, 589 struct perf_event *group_leader) 590 { 591 return -EINVAL; 592 } 593 594 static inline void 595 perf_cgroup_set_timestamp(struct task_struct *task, 596 struct perf_event_context *ctx) 597 { 598 } 599 600 void 601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 602 { 603 } 604 605 static inline void 606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 607 { 608 } 609 610 static inline u64 perf_cgroup_event_time(struct perf_event *event) 611 { 612 return 0; 613 } 614 615 static inline void 616 perf_cgroup_defer_enabled(struct perf_event *event) 617 { 618 } 619 620 static inline void 621 perf_cgroup_mark_enabled(struct perf_event *event, 622 struct perf_event_context *ctx) 623 { 624 } 625 #endif 626 627 void perf_pmu_disable(struct pmu *pmu) 628 { 629 int *count = this_cpu_ptr(pmu->pmu_disable_count); 630 if (!(*count)++) 631 pmu->pmu_disable(pmu); 632 } 633 634 void perf_pmu_enable(struct pmu *pmu) 635 { 636 int *count = this_cpu_ptr(pmu->pmu_disable_count); 637 if (!--(*count)) 638 pmu->pmu_enable(pmu); 639 } 640 641 static DEFINE_PER_CPU(struct list_head, rotation_list); 642 643 /* 644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 645 * because they're strictly cpu affine and rotate_start is called with IRQs 646 * disabled, while rotate_context is called from IRQ context. 647 */ 648 static void perf_pmu_rotate_start(struct pmu *pmu) 649 { 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 651 struct list_head *head = &__get_cpu_var(rotation_list); 652 653 WARN_ON(!irqs_disabled()); 654 655 if (list_empty(&cpuctx->rotation_list)) 656 list_add(&cpuctx->rotation_list, head); 657 } 658 659 static void get_ctx(struct perf_event_context *ctx) 660 { 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 662 } 663 664 static void put_ctx(struct perf_event_context *ctx) 665 { 666 if (atomic_dec_and_test(&ctx->refcount)) { 667 if (ctx->parent_ctx) 668 put_ctx(ctx->parent_ctx); 669 if (ctx->task) 670 put_task_struct(ctx->task); 671 kfree_rcu(ctx, rcu_head); 672 } 673 } 674 675 static void unclone_ctx(struct perf_event_context *ctx) 676 { 677 if (ctx->parent_ctx) { 678 put_ctx(ctx->parent_ctx); 679 ctx->parent_ctx = NULL; 680 } 681 } 682 683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 684 { 685 /* 686 * only top level events have the pid namespace they were created in 687 */ 688 if (event->parent) 689 event = event->parent; 690 691 return task_tgid_nr_ns(p, event->ns); 692 } 693 694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 695 { 696 /* 697 * only top level events have the pid namespace they were created in 698 */ 699 if (event->parent) 700 event = event->parent; 701 702 return task_pid_nr_ns(p, event->ns); 703 } 704 705 /* 706 * If we inherit events we want to return the parent event id 707 * to userspace. 708 */ 709 static u64 primary_event_id(struct perf_event *event) 710 { 711 u64 id = event->id; 712 713 if (event->parent) 714 id = event->parent->id; 715 716 return id; 717 } 718 719 /* 720 * Get the perf_event_context for a task and lock it. 721 * This has to cope with with the fact that until it is locked, 722 * the context could get moved to another task. 723 */ 724 static struct perf_event_context * 725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 726 { 727 struct perf_event_context *ctx; 728 729 rcu_read_lock(); 730 retry: 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 732 if (ctx) { 733 /* 734 * If this context is a clone of another, it might 735 * get swapped for another underneath us by 736 * perf_event_task_sched_out, though the 737 * rcu_read_lock() protects us from any context 738 * getting freed. Lock the context and check if it 739 * got swapped before we could get the lock, and retry 740 * if so. If we locked the right context, then it 741 * can't get swapped on us any more. 742 */ 743 raw_spin_lock_irqsave(&ctx->lock, *flags); 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 746 goto retry; 747 } 748 749 if (!atomic_inc_not_zero(&ctx->refcount)) { 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 751 ctx = NULL; 752 } 753 } 754 rcu_read_unlock(); 755 return ctx; 756 } 757 758 /* 759 * Get the context for a task and increment its pin_count so it 760 * can't get swapped to another task. This also increments its 761 * reference count so that the context can't get freed. 762 */ 763 static struct perf_event_context * 764 perf_pin_task_context(struct task_struct *task, int ctxn) 765 { 766 struct perf_event_context *ctx; 767 unsigned long flags; 768 769 ctx = perf_lock_task_context(task, ctxn, &flags); 770 if (ctx) { 771 ++ctx->pin_count; 772 raw_spin_unlock_irqrestore(&ctx->lock, flags); 773 } 774 return ctx; 775 } 776 777 static void perf_unpin_context(struct perf_event_context *ctx) 778 { 779 unsigned long flags; 780 781 raw_spin_lock_irqsave(&ctx->lock, flags); 782 --ctx->pin_count; 783 raw_spin_unlock_irqrestore(&ctx->lock, flags); 784 } 785 786 /* 787 * Update the record of the current time in a context. 788 */ 789 static void update_context_time(struct perf_event_context *ctx) 790 { 791 u64 now = perf_clock(); 792 793 ctx->time += now - ctx->timestamp; 794 ctx->timestamp = now; 795 } 796 797 static u64 perf_event_time(struct perf_event *event) 798 { 799 struct perf_event_context *ctx = event->ctx; 800 801 if (is_cgroup_event(event)) 802 return perf_cgroup_event_time(event); 803 804 return ctx ? ctx->time : 0; 805 } 806 807 /* 808 * Update the total_time_enabled and total_time_running fields for a event. 809 * The caller of this function needs to hold the ctx->lock. 810 */ 811 static void update_event_times(struct perf_event *event) 812 { 813 struct perf_event_context *ctx = event->ctx; 814 u64 run_end; 815 816 if (event->state < PERF_EVENT_STATE_INACTIVE || 817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 818 return; 819 /* 820 * in cgroup mode, time_enabled represents 821 * the time the event was enabled AND active 822 * tasks were in the monitored cgroup. This is 823 * independent of the activity of the context as 824 * there may be a mix of cgroup and non-cgroup events. 825 * 826 * That is why we treat cgroup events differently 827 * here. 828 */ 829 if (is_cgroup_event(event)) 830 run_end = perf_cgroup_event_time(event); 831 else if (ctx->is_active) 832 run_end = ctx->time; 833 else 834 run_end = event->tstamp_stopped; 835 836 event->total_time_enabled = run_end - event->tstamp_enabled; 837 838 if (event->state == PERF_EVENT_STATE_INACTIVE) 839 run_end = event->tstamp_stopped; 840 else 841 run_end = perf_event_time(event); 842 843 event->total_time_running = run_end - event->tstamp_running; 844 845 } 846 847 /* 848 * Update total_time_enabled and total_time_running for all events in a group. 849 */ 850 static void update_group_times(struct perf_event *leader) 851 { 852 struct perf_event *event; 853 854 update_event_times(leader); 855 list_for_each_entry(event, &leader->sibling_list, group_entry) 856 update_event_times(event); 857 } 858 859 static struct list_head * 860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 861 { 862 if (event->attr.pinned) 863 return &ctx->pinned_groups; 864 else 865 return &ctx->flexible_groups; 866 } 867 868 /* 869 * Add a event from the lists for its context. 870 * Must be called with ctx->mutex and ctx->lock held. 871 */ 872 static void 873 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 874 { 875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 876 event->attach_state |= PERF_ATTACH_CONTEXT; 877 878 /* 879 * If we're a stand alone event or group leader, we go to the context 880 * list, group events are kept attached to the group so that 881 * perf_group_detach can, at all times, locate all siblings. 882 */ 883 if (event->group_leader == event) { 884 struct list_head *list; 885 886 if (is_software_event(event)) 887 event->group_flags |= PERF_GROUP_SOFTWARE; 888 889 list = ctx_group_list(event, ctx); 890 list_add_tail(&event->group_entry, list); 891 } 892 893 if (is_cgroup_event(event)) 894 ctx->nr_cgroups++; 895 896 if (has_branch_stack(event)) 897 ctx->nr_branch_stack++; 898 899 list_add_rcu(&event->event_entry, &ctx->event_list); 900 if (!ctx->nr_events) 901 perf_pmu_rotate_start(ctx->pmu); 902 ctx->nr_events++; 903 if (event->attr.inherit_stat) 904 ctx->nr_stat++; 905 } 906 907 /* 908 * Called at perf_event creation and when events are attached/detached from a 909 * group. 910 */ 911 static void perf_event__read_size(struct perf_event *event) 912 { 913 int entry = sizeof(u64); /* value */ 914 int size = 0; 915 int nr = 1; 916 917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 918 size += sizeof(u64); 919 920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 921 size += sizeof(u64); 922 923 if (event->attr.read_format & PERF_FORMAT_ID) 924 entry += sizeof(u64); 925 926 if (event->attr.read_format & PERF_FORMAT_GROUP) { 927 nr += event->group_leader->nr_siblings; 928 size += sizeof(u64); 929 } 930 931 size += entry * nr; 932 event->read_size = size; 933 } 934 935 static void perf_event__header_size(struct perf_event *event) 936 { 937 struct perf_sample_data *data; 938 u64 sample_type = event->attr.sample_type; 939 u16 size = 0; 940 941 perf_event__read_size(event); 942 943 if (sample_type & PERF_SAMPLE_IP) 944 size += sizeof(data->ip); 945 946 if (sample_type & PERF_SAMPLE_ADDR) 947 size += sizeof(data->addr); 948 949 if (sample_type & PERF_SAMPLE_PERIOD) 950 size += sizeof(data->period); 951 952 if (sample_type & PERF_SAMPLE_READ) 953 size += event->read_size; 954 955 event->header_size = size; 956 } 957 958 static void perf_event__id_header_size(struct perf_event *event) 959 { 960 struct perf_sample_data *data; 961 u64 sample_type = event->attr.sample_type; 962 u16 size = 0; 963 964 if (sample_type & PERF_SAMPLE_TID) 965 size += sizeof(data->tid_entry); 966 967 if (sample_type & PERF_SAMPLE_TIME) 968 size += sizeof(data->time); 969 970 if (sample_type & PERF_SAMPLE_ID) 971 size += sizeof(data->id); 972 973 if (sample_type & PERF_SAMPLE_STREAM_ID) 974 size += sizeof(data->stream_id); 975 976 if (sample_type & PERF_SAMPLE_CPU) 977 size += sizeof(data->cpu_entry); 978 979 event->id_header_size = size; 980 } 981 982 static void perf_group_attach(struct perf_event *event) 983 { 984 struct perf_event *group_leader = event->group_leader, *pos; 985 986 /* 987 * We can have double attach due to group movement in perf_event_open. 988 */ 989 if (event->attach_state & PERF_ATTACH_GROUP) 990 return; 991 992 event->attach_state |= PERF_ATTACH_GROUP; 993 994 if (group_leader == event) 995 return; 996 997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 998 !is_software_event(event)) 999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1000 1001 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1002 group_leader->nr_siblings++; 1003 1004 perf_event__header_size(group_leader); 1005 1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1007 perf_event__header_size(pos); 1008 } 1009 1010 /* 1011 * Remove a event from the lists for its context. 1012 * Must be called with ctx->mutex and ctx->lock held. 1013 */ 1014 static void 1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1016 { 1017 struct perf_cpu_context *cpuctx; 1018 /* 1019 * We can have double detach due to exit/hot-unplug + close. 1020 */ 1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1022 return; 1023 1024 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1025 1026 if (is_cgroup_event(event)) { 1027 ctx->nr_cgroups--; 1028 cpuctx = __get_cpu_context(ctx); 1029 /* 1030 * if there are no more cgroup events 1031 * then cler cgrp to avoid stale pointer 1032 * in update_cgrp_time_from_cpuctx() 1033 */ 1034 if (!ctx->nr_cgroups) 1035 cpuctx->cgrp = NULL; 1036 } 1037 1038 if (has_branch_stack(event)) 1039 ctx->nr_branch_stack--; 1040 1041 ctx->nr_events--; 1042 if (event->attr.inherit_stat) 1043 ctx->nr_stat--; 1044 1045 list_del_rcu(&event->event_entry); 1046 1047 if (event->group_leader == event) 1048 list_del_init(&event->group_entry); 1049 1050 update_group_times(event); 1051 1052 /* 1053 * If event was in error state, then keep it 1054 * that way, otherwise bogus counts will be 1055 * returned on read(). The only way to get out 1056 * of error state is by explicit re-enabling 1057 * of the event 1058 */ 1059 if (event->state > PERF_EVENT_STATE_OFF) 1060 event->state = PERF_EVENT_STATE_OFF; 1061 } 1062 1063 static void perf_group_detach(struct perf_event *event) 1064 { 1065 struct perf_event *sibling, *tmp; 1066 struct list_head *list = NULL; 1067 1068 /* 1069 * We can have double detach due to exit/hot-unplug + close. 1070 */ 1071 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1072 return; 1073 1074 event->attach_state &= ~PERF_ATTACH_GROUP; 1075 1076 /* 1077 * If this is a sibling, remove it from its group. 1078 */ 1079 if (event->group_leader != event) { 1080 list_del_init(&event->group_entry); 1081 event->group_leader->nr_siblings--; 1082 goto out; 1083 } 1084 1085 if (!list_empty(&event->group_entry)) 1086 list = &event->group_entry; 1087 1088 /* 1089 * If this was a group event with sibling events then 1090 * upgrade the siblings to singleton events by adding them 1091 * to whatever list we are on. 1092 */ 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1094 if (list) 1095 list_move_tail(&sibling->group_entry, list); 1096 sibling->group_leader = sibling; 1097 1098 /* Inherit group flags from the previous leader */ 1099 sibling->group_flags = event->group_flags; 1100 } 1101 1102 out: 1103 perf_event__header_size(event->group_leader); 1104 1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1106 perf_event__header_size(tmp); 1107 } 1108 1109 static inline int 1110 event_filter_match(struct perf_event *event) 1111 { 1112 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1113 && perf_cgroup_match(event); 1114 } 1115 1116 static void 1117 event_sched_out(struct perf_event *event, 1118 struct perf_cpu_context *cpuctx, 1119 struct perf_event_context *ctx) 1120 { 1121 u64 tstamp = perf_event_time(event); 1122 u64 delta; 1123 /* 1124 * An event which could not be activated because of 1125 * filter mismatch still needs to have its timings 1126 * maintained, otherwise bogus information is return 1127 * via read() for time_enabled, time_running: 1128 */ 1129 if (event->state == PERF_EVENT_STATE_INACTIVE 1130 && !event_filter_match(event)) { 1131 delta = tstamp - event->tstamp_stopped; 1132 event->tstamp_running += delta; 1133 event->tstamp_stopped = tstamp; 1134 } 1135 1136 if (event->state != PERF_EVENT_STATE_ACTIVE) 1137 return; 1138 1139 event->state = PERF_EVENT_STATE_INACTIVE; 1140 if (event->pending_disable) { 1141 event->pending_disable = 0; 1142 event->state = PERF_EVENT_STATE_OFF; 1143 } 1144 event->tstamp_stopped = tstamp; 1145 event->pmu->del(event, 0); 1146 event->oncpu = -1; 1147 1148 if (!is_software_event(event)) 1149 cpuctx->active_oncpu--; 1150 ctx->nr_active--; 1151 if (event->attr.freq && event->attr.sample_freq) 1152 ctx->nr_freq--; 1153 if (event->attr.exclusive || !cpuctx->active_oncpu) 1154 cpuctx->exclusive = 0; 1155 } 1156 1157 static void 1158 group_sched_out(struct perf_event *group_event, 1159 struct perf_cpu_context *cpuctx, 1160 struct perf_event_context *ctx) 1161 { 1162 struct perf_event *event; 1163 int state = group_event->state; 1164 1165 event_sched_out(group_event, cpuctx, ctx); 1166 1167 /* 1168 * Schedule out siblings (if any): 1169 */ 1170 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1171 event_sched_out(event, cpuctx, ctx); 1172 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1174 cpuctx->exclusive = 0; 1175 } 1176 1177 /* 1178 * Cross CPU call to remove a performance event 1179 * 1180 * We disable the event on the hardware level first. After that we 1181 * remove it from the context list. 1182 */ 1183 static int __perf_remove_from_context(void *info) 1184 { 1185 struct perf_event *event = info; 1186 struct perf_event_context *ctx = event->ctx; 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1188 1189 raw_spin_lock(&ctx->lock); 1190 event_sched_out(event, cpuctx, ctx); 1191 list_del_event(event, ctx); 1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1193 ctx->is_active = 0; 1194 cpuctx->task_ctx = NULL; 1195 } 1196 raw_spin_unlock(&ctx->lock); 1197 1198 return 0; 1199 } 1200 1201 1202 /* 1203 * Remove the event from a task's (or a CPU's) list of events. 1204 * 1205 * CPU events are removed with a smp call. For task events we only 1206 * call when the task is on a CPU. 1207 * 1208 * If event->ctx is a cloned context, callers must make sure that 1209 * every task struct that event->ctx->task could possibly point to 1210 * remains valid. This is OK when called from perf_release since 1211 * that only calls us on the top-level context, which can't be a clone. 1212 * When called from perf_event_exit_task, it's OK because the 1213 * context has been detached from its task. 1214 */ 1215 static void perf_remove_from_context(struct perf_event *event) 1216 { 1217 struct perf_event_context *ctx = event->ctx; 1218 struct task_struct *task = ctx->task; 1219 1220 lockdep_assert_held(&ctx->mutex); 1221 1222 if (!task) { 1223 /* 1224 * Per cpu events are removed via an smp call and 1225 * the removal is always successful. 1226 */ 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1228 return; 1229 } 1230 1231 retry: 1232 if (!task_function_call(task, __perf_remove_from_context, event)) 1233 return; 1234 1235 raw_spin_lock_irq(&ctx->lock); 1236 /* 1237 * If we failed to find a running task, but find the context active now 1238 * that we've acquired the ctx->lock, retry. 1239 */ 1240 if (ctx->is_active) { 1241 raw_spin_unlock_irq(&ctx->lock); 1242 goto retry; 1243 } 1244 1245 /* 1246 * Since the task isn't running, its safe to remove the event, us 1247 * holding the ctx->lock ensures the task won't get scheduled in. 1248 */ 1249 list_del_event(event, ctx); 1250 raw_spin_unlock_irq(&ctx->lock); 1251 } 1252 1253 /* 1254 * Cross CPU call to disable a performance event 1255 */ 1256 int __perf_event_disable(void *info) 1257 { 1258 struct perf_event *event = info; 1259 struct perf_event_context *ctx = event->ctx; 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1261 1262 /* 1263 * If this is a per-task event, need to check whether this 1264 * event's task is the current task on this cpu. 1265 * 1266 * Can trigger due to concurrent perf_event_context_sched_out() 1267 * flipping contexts around. 1268 */ 1269 if (ctx->task && cpuctx->task_ctx != ctx) 1270 return -EINVAL; 1271 1272 raw_spin_lock(&ctx->lock); 1273 1274 /* 1275 * If the event is on, turn it off. 1276 * If it is in error state, leave it in error state. 1277 */ 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1279 update_context_time(ctx); 1280 update_cgrp_time_from_event(event); 1281 update_group_times(event); 1282 if (event == event->group_leader) 1283 group_sched_out(event, cpuctx, ctx); 1284 else 1285 event_sched_out(event, cpuctx, ctx); 1286 event->state = PERF_EVENT_STATE_OFF; 1287 } 1288 1289 raw_spin_unlock(&ctx->lock); 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Disable a event. 1296 * 1297 * If event->ctx is a cloned context, callers must make sure that 1298 * every task struct that event->ctx->task could possibly point to 1299 * remains valid. This condition is satisifed when called through 1300 * perf_event_for_each_child or perf_event_for_each because they 1301 * hold the top-level event's child_mutex, so any descendant that 1302 * goes to exit will block in sync_child_event. 1303 * When called from perf_pending_event it's OK because event->ctx 1304 * is the current context on this CPU and preemption is disabled, 1305 * hence we can't get into perf_event_task_sched_out for this context. 1306 */ 1307 void perf_event_disable(struct perf_event *event) 1308 { 1309 struct perf_event_context *ctx = event->ctx; 1310 struct task_struct *task = ctx->task; 1311 1312 if (!task) { 1313 /* 1314 * Disable the event on the cpu that it's on 1315 */ 1316 cpu_function_call(event->cpu, __perf_event_disable, event); 1317 return; 1318 } 1319 1320 retry: 1321 if (!task_function_call(task, __perf_event_disable, event)) 1322 return; 1323 1324 raw_spin_lock_irq(&ctx->lock); 1325 /* 1326 * If the event is still active, we need to retry the cross-call. 1327 */ 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1329 raw_spin_unlock_irq(&ctx->lock); 1330 /* 1331 * Reload the task pointer, it might have been changed by 1332 * a concurrent perf_event_context_sched_out(). 1333 */ 1334 task = ctx->task; 1335 goto retry; 1336 } 1337 1338 /* 1339 * Since we have the lock this context can't be scheduled 1340 * in, so we can change the state safely. 1341 */ 1342 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1343 update_group_times(event); 1344 event->state = PERF_EVENT_STATE_OFF; 1345 } 1346 raw_spin_unlock_irq(&ctx->lock); 1347 } 1348 EXPORT_SYMBOL_GPL(perf_event_disable); 1349 1350 static void perf_set_shadow_time(struct perf_event *event, 1351 struct perf_event_context *ctx, 1352 u64 tstamp) 1353 { 1354 /* 1355 * use the correct time source for the time snapshot 1356 * 1357 * We could get by without this by leveraging the 1358 * fact that to get to this function, the caller 1359 * has most likely already called update_context_time() 1360 * and update_cgrp_time_xx() and thus both timestamp 1361 * are identical (or very close). Given that tstamp is, 1362 * already adjusted for cgroup, we could say that: 1363 * tstamp - ctx->timestamp 1364 * is equivalent to 1365 * tstamp - cgrp->timestamp. 1366 * 1367 * Then, in perf_output_read(), the calculation would 1368 * work with no changes because: 1369 * - event is guaranteed scheduled in 1370 * - no scheduled out in between 1371 * - thus the timestamp would be the same 1372 * 1373 * But this is a bit hairy. 1374 * 1375 * So instead, we have an explicit cgroup call to remain 1376 * within the time time source all along. We believe it 1377 * is cleaner and simpler to understand. 1378 */ 1379 if (is_cgroup_event(event)) 1380 perf_cgroup_set_shadow_time(event, tstamp); 1381 else 1382 event->shadow_ctx_time = tstamp - ctx->timestamp; 1383 } 1384 1385 #define MAX_INTERRUPTS (~0ULL) 1386 1387 static void perf_log_throttle(struct perf_event *event, int enable); 1388 1389 static int 1390 event_sched_in(struct perf_event *event, 1391 struct perf_cpu_context *cpuctx, 1392 struct perf_event_context *ctx) 1393 { 1394 u64 tstamp = perf_event_time(event); 1395 1396 if (event->state <= PERF_EVENT_STATE_OFF) 1397 return 0; 1398 1399 event->state = PERF_EVENT_STATE_ACTIVE; 1400 event->oncpu = smp_processor_id(); 1401 1402 /* 1403 * Unthrottle events, since we scheduled we might have missed several 1404 * ticks already, also for a heavily scheduling task there is little 1405 * guarantee it'll get a tick in a timely manner. 1406 */ 1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1408 perf_log_throttle(event, 1); 1409 event->hw.interrupts = 0; 1410 } 1411 1412 /* 1413 * The new state must be visible before we turn it on in the hardware: 1414 */ 1415 smp_wmb(); 1416 1417 if (event->pmu->add(event, PERF_EF_START)) { 1418 event->state = PERF_EVENT_STATE_INACTIVE; 1419 event->oncpu = -1; 1420 return -EAGAIN; 1421 } 1422 1423 event->tstamp_running += tstamp - event->tstamp_stopped; 1424 1425 perf_set_shadow_time(event, ctx, tstamp); 1426 1427 if (!is_software_event(event)) 1428 cpuctx->active_oncpu++; 1429 ctx->nr_active++; 1430 if (event->attr.freq && event->attr.sample_freq) 1431 ctx->nr_freq++; 1432 1433 if (event->attr.exclusive) 1434 cpuctx->exclusive = 1; 1435 1436 return 0; 1437 } 1438 1439 static int 1440 group_sched_in(struct perf_event *group_event, 1441 struct perf_cpu_context *cpuctx, 1442 struct perf_event_context *ctx) 1443 { 1444 struct perf_event *event, *partial_group = NULL; 1445 struct pmu *pmu = group_event->pmu; 1446 u64 now = ctx->time; 1447 bool simulate = false; 1448 1449 if (group_event->state == PERF_EVENT_STATE_OFF) 1450 return 0; 1451 1452 pmu->start_txn(pmu); 1453 1454 if (event_sched_in(group_event, cpuctx, ctx)) { 1455 pmu->cancel_txn(pmu); 1456 return -EAGAIN; 1457 } 1458 1459 /* 1460 * Schedule in siblings as one group (if any): 1461 */ 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1463 if (event_sched_in(event, cpuctx, ctx)) { 1464 partial_group = event; 1465 goto group_error; 1466 } 1467 } 1468 1469 if (!pmu->commit_txn(pmu)) 1470 return 0; 1471 1472 group_error: 1473 /* 1474 * Groups can be scheduled in as one unit only, so undo any 1475 * partial group before returning: 1476 * The events up to the failed event are scheduled out normally, 1477 * tstamp_stopped will be updated. 1478 * 1479 * The failed events and the remaining siblings need to have 1480 * their timings updated as if they had gone thru event_sched_in() 1481 * and event_sched_out(). This is required to get consistent timings 1482 * across the group. This also takes care of the case where the group 1483 * could never be scheduled by ensuring tstamp_stopped is set to mark 1484 * the time the event was actually stopped, such that time delta 1485 * calculation in update_event_times() is correct. 1486 */ 1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1488 if (event == partial_group) 1489 simulate = true; 1490 1491 if (simulate) { 1492 event->tstamp_running += now - event->tstamp_stopped; 1493 event->tstamp_stopped = now; 1494 } else { 1495 event_sched_out(event, cpuctx, ctx); 1496 } 1497 } 1498 event_sched_out(group_event, cpuctx, ctx); 1499 1500 pmu->cancel_txn(pmu); 1501 1502 return -EAGAIN; 1503 } 1504 1505 /* 1506 * Work out whether we can put this event group on the CPU now. 1507 */ 1508 static int group_can_go_on(struct perf_event *event, 1509 struct perf_cpu_context *cpuctx, 1510 int can_add_hw) 1511 { 1512 /* 1513 * Groups consisting entirely of software events can always go on. 1514 */ 1515 if (event->group_flags & PERF_GROUP_SOFTWARE) 1516 return 1; 1517 /* 1518 * If an exclusive group is already on, no other hardware 1519 * events can go on. 1520 */ 1521 if (cpuctx->exclusive) 1522 return 0; 1523 /* 1524 * If this group is exclusive and there are already 1525 * events on the CPU, it can't go on. 1526 */ 1527 if (event->attr.exclusive && cpuctx->active_oncpu) 1528 return 0; 1529 /* 1530 * Otherwise, try to add it if all previous groups were able 1531 * to go on. 1532 */ 1533 return can_add_hw; 1534 } 1535 1536 static void add_event_to_ctx(struct perf_event *event, 1537 struct perf_event_context *ctx) 1538 { 1539 u64 tstamp = perf_event_time(event); 1540 1541 list_add_event(event, ctx); 1542 perf_group_attach(event); 1543 event->tstamp_enabled = tstamp; 1544 event->tstamp_running = tstamp; 1545 event->tstamp_stopped = tstamp; 1546 } 1547 1548 static void task_ctx_sched_out(struct perf_event_context *ctx); 1549 static void 1550 ctx_sched_in(struct perf_event_context *ctx, 1551 struct perf_cpu_context *cpuctx, 1552 enum event_type_t event_type, 1553 struct task_struct *task); 1554 1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1556 struct perf_event_context *ctx, 1557 struct task_struct *task) 1558 { 1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1560 if (ctx) 1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1563 if (ctx) 1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1565 } 1566 1567 /* 1568 * Cross CPU call to install and enable a performance event 1569 * 1570 * Must be called with ctx->mutex held 1571 */ 1572 static int __perf_install_in_context(void *info) 1573 { 1574 struct perf_event *event = info; 1575 struct perf_event_context *ctx = event->ctx; 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1577 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1578 struct task_struct *task = current; 1579 1580 perf_ctx_lock(cpuctx, task_ctx); 1581 perf_pmu_disable(cpuctx->ctx.pmu); 1582 1583 /* 1584 * If there was an active task_ctx schedule it out. 1585 */ 1586 if (task_ctx) 1587 task_ctx_sched_out(task_ctx); 1588 1589 /* 1590 * If the context we're installing events in is not the 1591 * active task_ctx, flip them. 1592 */ 1593 if (ctx->task && task_ctx != ctx) { 1594 if (task_ctx) 1595 raw_spin_unlock(&task_ctx->lock); 1596 raw_spin_lock(&ctx->lock); 1597 task_ctx = ctx; 1598 } 1599 1600 if (task_ctx) { 1601 cpuctx->task_ctx = task_ctx; 1602 task = task_ctx->task; 1603 } 1604 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1606 1607 update_context_time(ctx); 1608 /* 1609 * update cgrp time only if current cgrp 1610 * matches event->cgrp. Must be done before 1611 * calling add_event_to_ctx() 1612 */ 1613 update_cgrp_time_from_event(event); 1614 1615 add_event_to_ctx(event, ctx); 1616 1617 /* 1618 * Schedule everything back in 1619 */ 1620 perf_event_sched_in(cpuctx, task_ctx, task); 1621 1622 perf_pmu_enable(cpuctx->ctx.pmu); 1623 perf_ctx_unlock(cpuctx, task_ctx); 1624 1625 return 0; 1626 } 1627 1628 /* 1629 * Attach a performance event to a context 1630 * 1631 * First we add the event to the list with the hardware enable bit 1632 * in event->hw_config cleared. 1633 * 1634 * If the event is attached to a task which is on a CPU we use a smp 1635 * call to enable it in the task context. The task might have been 1636 * scheduled away, but we check this in the smp call again. 1637 */ 1638 static void 1639 perf_install_in_context(struct perf_event_context *ctx, 1640 struct perf_event *event, 1641 int cpu) 1642 { 1643 struct task_struct *task = ctx->task; 1644 1645 lockdep_assert_held(&ctx->mutex); 1646 1647 event->ctx = ctx; 1648 if (event->cpu != -1) 1649 event->cpu = cpu; 1650 1651 if (!task) { 1652 /* 1653 * Per cpu events are installed via an smp call and 1654 * the install is always successful. 1655 */ 1656 cpu_function_call(cpu, __perf_install_in_context, event); 1657 return; 1658 } 1659 1660 retry: 1661 if (!task_function_call(task, __perf_install_in_context, event)) 1662 return; 1663 1664 raw_spin_lock_irq(&ctx->lock); 1665 /* 1666 * If we failed to find a running task, but find the context active now 1667 * that we've acquired the ctx->lock, retry. 1668 */ 1669 if (ctx->is_active) { 1670 raw_spin_unlock_irq(&ctx->lock); 1671 goto retry; 1672 } 1673 1674 /* 1675 * Since the task isn't running, its safe to add the event, us holding 1676 * the ctx->lock ensures the task won't get scheduled in. 1677 */ 1678 add_event_to_ctx(event, ctx); 1679 raw_spin_unlock_irq(&ctx->lock); 1680 } 1681 1682 /* 1683 * Put a event into inactive state and update time fields. 1684 * Enabling the leader of a group effectively enables all 1685 * the group members that aren't explicitly disabled, so we 1686 * have to update their ->tstamp_enabled also. 1687 * Note: this works for group members as well as group leaders 1688 * since the non-leader members' sibling_lists will be empty. 1689 */ 1690 static void __perf_event_mark_enabled(struct perf_event *event) 1691 { 1692 struct perf_event *sub; 1693 u64 tstamp = perf_event_time(event); 1694 1695 event->state = PERF_EVENT_STATE_INACTIVE; 1696 event->tstamp_enabled = tstamp - event->total_time_enabled; 1697 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1700 } 1701 } 1702 1703 /* 1704 * Cross CPU call to enable a performance event 1705 */ 1706 static int __perf_event_enable(void *info) 1707 { 1708 struct perf_event *event = info; 1709 struct perf_event_context *ctx = event->ctx; 1710 struct perf_event *leader = event->group_leader; 1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1712 int err; 1713 1714 if (WARN_ON_ONCE(!ctx->is_active)) 1715 return -EINVAL; 1716 1717 raw_spin_lock(&ctx->lock); 1718 update_context_time(ctx); 1719 1720 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1721 goto unlock; 1722 1723 /* 1724 * set current task's cgroup time reference point 1725 */ 1726 perf_cgroup_set_timestamp(current, ctx); 1727 1728 __perf_event_mark_enabled(event); 1729 1730 if (!event_filter_match(event)) { 1731 if (is_cgroup_event(event)) 1732 perf_cgroup_defer_enabled(event); 1733 goto unlock; 1734 } 1735 1736 /* 1737 * If the event is in a group and isn't the group leader, 1738 * then don't put it on unless the group is on. 1739 */ 1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1741 goto unlock; 1742 1743 if (!group_can_go_on(event, cpuctx, 1)) { 1744 err = -EEXIST; 1745 } else { 1746 if (event == leader) 1747 err = group_sched_in(event, cpuctx, ctx); 1748 else 1749 err = event_sched_in(event, cpuctx, ctx); 1750 } 1751 1752 if (err) { 1753 /* 1754 * If this event can't go on and it's part of a 1755 * group, then the whole group has to come off. 1756 */ 1757 if (leader != event) 1758 group_sched_out(leader, cpuctx, ctx); 1759 if (leader->attr.pinned) { 1760 update_group_times(leader); 1761 leader->state = PERF_EVENT_STATE_ERROR; 1762 } 1763 } 1764 1765 unlock: 1766 raw_spin_unlock(&ctx->lock); 1767 1768 return 0; 1769 } 1770 1771 /* 1772 * Enable a event. 1773 * 1774 * If event->ctx is a cloned context, callers must make sure that 1775 * every task struct that event->ctx->task could possibly point to 1776 * remains valid. This condition is satisfied when called through 1777 * perf_event_for_each_child or perf_event_for_each as described 1778 * for perf_event_disable. 1779 */ 1780 void perf_event_enable(struct perf_event *event) 1781 { 1782 struct perf_event_context *ctx = event->ctx; 1783 struct task_struct *task = ctx->task; 1784 1785 if (!task) { 1786 /* 1787 * Enable the event on the cpu that it's on 1788 */ 1789 cpu_function_call(event->cpu, __perf_event_enable, event); 1790 return; 1791 } 1792 1793 raw_spin_lock_irq(&ctx->lock); 1794 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1795 goto out; 1796 1797 /* 1798 * If the event is in error state, clear that first. 1799 * That way, if we see the event in error state below, we 1800 * know that it has gone back into error state, as distinct 1801 * from the task having been scheduled away before the 1802 * cross-call arrived. 1803 */ 1804 if (event->state == PERF_EVENT_STATE_ERROR) 1805 event->state = PERF_EVENT_STATE_OFF; 1806 1807 retry: 1808 if (!ctx->is_active) { 1809 __perf_event_mark_enabled(event); 1810 goto out; 1811 } 1812 1813 raw_spin_unlock_irq(&ctx->lock); 1814 1815 if (!task_function_call(task, __perf_event_enable, event)) 1816 return; 1817 1818 raw_spin_lock_irq(&ctx->lock); 1819 1820 /* 1821 * If the context is active and the event is still off, 1822 * we need to retry the cross-call. 1823 */ 1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1825 /* 1826 * task could have been flipped by a concurrent 1827 * perf_event_context_sched_out() 1828 */ 1829 task = ctx->task; 1830 goto retry; 1831 } 1832 1833 out: 1834 raw_spin_unlock_irq(&ctx->lock); 1835 } 1836 EXPORT_SYMBOL_GPL(perf_event_enable); 1837 1838 int perf_event_refresh(struct perf_event *event, int refresh) 1839 { 1840 /* 1841 * not supported on inherited events 1842 */ 1843 if (event->attr.inherit || !is_sampling_event(event)) 1844 return -EINVAL; 1845 1846 atomic_add(refresh, &event->event_limit); 1847 perf_event_enable(event); 1848 1849 return 0; 1850 } 1851 EXPORT_SYMBOL_GPL(perf_event_refresh); 1852 1853 static void ctx_sched_out(struct perf_event_context *ctx, 1854 struct perf_cpu_context *cpuctx, 1855 enum event_type_t event_type) 1856 { 1857 struct perf_event *event; 1858 int is_active = ctx->is_active; 1859 1860 ctx->is_active &= ~event_type; 1861 if (likely(!ctx->nr_events)) 1862 return; 1863 1864 update_context_time(ctx); 1865 update_cgrp_time_from_cpuctx(cpuctx); 1866 if (!ctx->nr_active) 1867 return; 1868 1869 perf_pmu_disable(ctx->pmu); 1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1872 group_sched_out(event, cpuctx, ctx); 1873 } 1874 1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1877 group_sched_out(event, cpuctx, ctx); 1878 } 1879 perf_pmu_enable(ctx->pmu); 1880 } 1881 1882 /* 1883 * Test whether two contexts are equivalent, i.e. whether they 1884 * have both been cloned from the same version of the same context 1885 * and they both have the same number of enabled events. 1886 * If the number of enabled events is the same, then the set 1887 * of enabled events should be the same, because these are both 1888 * inherited contexts, therefore we can't access individual events 1889 * in them directly with an fd; we can only enable/disable all 1890 * events via prctl, or enable/disable all events in a family 1891 * via ioctl, which will have the same effect on both contexts. 1892 */ 1893 static int context_equiv(struct perf_event_context *ctx1, 1894 struct perf_event_context *ctx2) 1895 { 1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1897 && ctx1->parent_gen == ctx2->parent_gen 1898 && !ctx1->pin_count && !ctx2->pin_count; 1899 } 1900 1901 static void __perf_event_sync_stat(struct perf_event *event, 1902 struct perf_event *next_event) 1903 { 1904 u64 value; 1905 1906 if (!event->attr.inherit_stat) 1907 return; 1908 1909 /* 1910 * Update the event value, we cannot use perf_event_read() 1911 * because we're in the middle of a context switch and have IRQs 1912 * disabled, which upsets smp_call_function_single(), however 1913 * we know the event must be on the current CPU, therefore we 1914 * don't need to use it. 1915 */ 1916 switch (event->state) { 1917 case PERF_EVENT_STATE_ACTIVE: 1918 event->pmu->read(event); 1919 /* fall-through */ 1920 1921 case PERF_EVENT_STATE_INACTIVE: 1922 update_event_times(event); 1923 break; 1924 1925 default: 1926 break; 1927 } 1928 1929 /* 1930 * In order to keep per-task stats reliable we need to flip the event 1931 * values when we flip the contexts. 1932 */ 1933 value = local64_read(&next_event->count); 1934 value = local64_xchg(&event->count, value); 1935 local64_set(&next_event->count, value); 1936 1937 swap(event->total_time_enabled, next_event->total_time_enabled); 1938 swap(event->total_time_running, next_event->total_time_running); 1939 1940 /* 1941 * Since we swizzled the values, update the user visible data too. 1942 */ 1943 perf_event_update_userpage(event); 1944 perf_event_update_userpage(next_event); 1945 } 1946 1947 #define list_next_entry(pos, member) \ 1948 list_entry(pos->member.next, typeof(*pos), member) 1949 1950 static void perf_event_sync_stat(struct perf_event_context *ctx, 1951 struct perf_event_context *next_ctx) 1952 { 1953 struct perf_event *event, *next_event; 1954 1955 if (!ctx->nr_stat) 1956 return; 1957 1958 update_context_time(ctx); 1959 1960 event = list_first_entry(&ctx->event_list, 1961 struct perf_event, event_entry); 1962 1963 next_event = list_first_entry(&next_ctx->event_list, 1964 struct perf_event, event_entry); 1965 1966 while (&event->event_entry != &ctx->event_list && 1967 &next_event->event_entry != &next_ctx->event_list) { 1968 1969 __perf_event_sync_stat(event, next_event); 1970 1971 event = list_next_entry(event, event_entry); 1972 next_event = list_next_entry(next_event, event_entry); 1973 } 1974 } 1975 1976 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1977 struct task_struct *next) 1978 { 1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1980 struct perf_event_context *next_ctx; 1981 struct perf_event_context *parent; 1982 struct perf_cpu_context *cpuctx; 1983 int do_switch = 1; 1984 1985 if (likely(!ctx)) 1986 return; 1987 1988 cpuctx = __get_cpu_context(ctx); 1989 if (!cpuctx->task_ctx) 1990 return; 1991 1992 rcu_read_lock(); 1993 parent = rcu_dereference(ctx->parent_ctx); 1994 next_ctx = next->perf_event_ctxp[ctxn]; 1995 if (parent && next_ctx && 1996 rcu_dereference(next_ctx->parent_ctx) == parent) { 1997 /* 1998 * Looks like the two contexts are clones, so we might be 1999 * able to optimize the context switch. We lock both 2000 * contexts and check that they are clones under the 2001 * lock (including re-checking that neither has been 2002 * uncloned in the meantime). It doesn't matter which 2003 * order we take the locks because no other cpu could 2004 * be trying to lock both of these tasks. 2005 */ 2006 raw_spin_lock(&ctx->lock); 2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2008 if (context_equiv(ctx, next_ctx)) { 2009 /* 2010 * XXX do we need a memory barrier of sorts 2011 * wrt to rcu_dereference() of perf_event_ctxp 2012 */ 2013 task->perf_event_ctxp[ctxn] = next_ctx; 2014 next->perf_event_ctxp[ctxn] = ctx; 2015 ctx->task = next; 2016 next_ctx->task = task; 2017 do_switch = 0; 2018 2019 perf_event_sync_stat(ctx, next_ctx); 2020 } 2021 raw_spin_unlock(&next_ctx->lock); 2022 raw_spin_unlock(&ctx->lock); 2023 } 2024 rcu_read_unlock(); 2025 2026 if (do_switch) { 2027 raw_spin_lock(&ctx->lock); 2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2029 cpuctx->task_ctx = NULL; 2030 raw_spin_unlock(&ctx->lock); 2031 } 2032 } 2033 2034 #define for_each_task_context_nr(ctxn) \ 2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2036 2037 /* 2038 * Called from scheduler to remove the events of the current task, 2039 * with interrupts disabled. 2040 * 2041 * We stop each event and update the event value in event->count. 2042 * 2043 * This does not protect us against NMI, but disable() 2044 * sets the disabled bit in the control field of event _before_ 2045 * accessing the event control register. If a NMI hits, then it will 2046 * not restart the event. 2047 */ 2048 void __perf_event_task_sched_out(struct task_struct *task, 2049 struct task_struct *next) 2050 { 2051 int ctxn; 2052 2053 for_each_task_context_nr(ctxn) 2054 perf_event_context_sched_out(task, ctxn, next); 2055 2056 /* 2057 * if cgroup events exist on this CPU, then we need 2058 * to check if we have to switch out PMU state. 2059 * cgroup event are system-wide mode only 2060 */ 2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2062 perf_cgroup_sched_out(task, next); 2063 } 2064 2065 static void task_ctx_sched_out(struct perf_event_context *ctx) 2066 { 2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2068 2069 if (!cpuctx->task_ctx) 2070 return; 2071 2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2073 return; 2074 2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2076 cpuctx->task_ctx = NULL; 2077 } 2078 2079 /* 2080 * Called with IRQs disabled 2081 */ 2082 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2083 enum event_type_t event_type) 2084 { 2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2086 } 2087 2088 static void 2089 ctx_pinned_sched_in(struct perf_event_context *ctx, 2090 struct perf_cpu_context *cpuctx) 2091 { 2092 struct perf_event *event; 2093 2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2095 if (event->state <= PERF_EVENT_STATE_OFF) 2096 continue; 2097 if (!event_filter_match(event)) 2098 continue; 2099 2100 /* may need to reset tstamp_enabled */ 2101 if (is_cgroup_event(event)) 2102 perf_cgroup_mark_enabled(event, ctx); 2103 2104 if (group_can_go_on(event, cpuctx, 1)) 2105 group_sched_in(event, cpuctx, ctx); 2106 2107 /* 2108 * If this pinned group hasn't been scheduled, 2109 * put it in error state. 2110 */ 2111 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2112 update_group_times(event); 2113 event->state = PERF_EVENT_STATE_ERROR; 2114 } 2115 } 2116 } 2117 2118 static void 2119 ctx_flexible_sched_in(struct perf_event_context *ctx, 2120 struct perf_cpu_context *cpuctx) 2121 { 2122 struct perf_event *event; 2123 int can_add_hw = 1; 2124 2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2126 /* Ignore events in OFF or ERROR state */ 2127 if (event->state <= PERF_EVENT_STATE_OFF) 2128 continue; 2129 /* 2130 * Listen to the 'cpu' scheduling filter constraint 2131 * of events: 2132 */ 2133 if (!event_filter_match(event)) 2134 continue; 2135 2136 /* may need to reset tstamp_enabled */ 2137 if (is_cgroup_event(event)) 2138 perf_cgroup_mark_enabled(event, ctx); 2139 2140 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2141 if (group_sched_in(event, cpuctx, ctx)) 2142 can_add_hw = 0; 2143 } 2144 } 2145 } 2146 2147 static void 2148 ctx_sched_in(struct perf_event_context *ctx, 2149 struct perf_cpu_context *cpuctx, 2150 enum event_type_t event_type, 2151 struct task_struct *task) 2152 { 2153 u64 now; 2154 int is_active = ctx->is_active; 2155 2156 ctx->is_active |= event_type; 2157 if (likely(!ctx->nr_events)) 2158 return; 2159 2160 now = perf_clock(); 2161 ctx->timestamp = now; 2162 perf_cgroup_set_timestamp(task, ctx); 2163 /* 2164 * First go through the list and put on any pinned groups 2165 * in order to give them the best chance of going on. 2166 */ 2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2168 ctx_pinned_sched_in(ctx, cpuctx); 2169 2170 /* Then walk through the lower prio flexible groups */ 2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2172 ctx_flexible_sched_in(ctx, cpuctx); 2173 } 2174 2175 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2176 enum event_type_t event_type, 2177 struct task_struct *task) 2178 { 2179 struct perf_event_context *ctx = &cpuctx->ctx; 2180 2181 ctx_sched_in(ctx, cpuctx, event_type, task); 2182 } 2183 2184 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2185 struct task_struct *task) 2186 { 2187 struct perf_cpu_context *cpuctx; 2188 2189 cpuctx = __get_cpu_context(ctx); 2190 if (cpuctx->task_ctx == ctx) 2191 return; 2192 2193 perf_ctx_lock(cpuctx, ctx); 2194 perf_pmu_disable(ctx->pmu); 2195 /* 2196 * We want to keep the following priority order: 2197 * cpu pinned (that don't need to move), task pinned, 2198 * cpu flexible, task flexible. 2199 */ 2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2201 2202 if (ctx->nr_events) 2203 cpuctx->task_ctx = ctx; 2204 2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2206 2207 perf_pmu_enable(ctx->pmu); 2208 perf_ctx_unlock(cpuctx, ctx); 2209 2210 /* 2211 * Since these rotations are per-cpu, we need to ensure the 2212 * cpu-context we got scheduled on is actually rotating. 2213 */ 2214 perf_pmu_rotate_start(ctx->pmu); 2215 } 2216 2217 /* 2218 * When sampling the branck stack in system-wide, it may be necessary 2219 * to flush the stack on context switch. This happens when the branch 2220 * stack does not tag its entries with the pid of the current task. 2221 * Otherwise it becomes impossible to associate a branch entry with a 2222 * task. This ambiguity is more likely to appear when the branch stack 2223 * supports priv level filtering and the user sets it to monitor only 2224 * at the user level (which could be a useful measurement in system-wide 2225 * mode). In that case, the risk is high of having a branch stack with 2226 * branch from multiple tasks. Flushing may mean dropping the existing 2227 * entries or stashing them somewhere in the PMU specific code layer. 2228 * 2229 * This function provides the context switch callback to the lower code 2230 * layer. It is invoked ONLY when there is at least one system-wide context 2231 * with at least one active event using taken branch sampling. 2232 */ 2233 static void perf_branch_stack_sched_in(struct task_struct *prev, 2234 struct task_struct *task) 2235 { 2236 struct perf_cpu_context *cpuctx; 2237 struct pmu *pmu; 2238 unsigned long flags; 2239 2240 /* no need to flush branch stack if not changing task */ 2241 if (prev == task) 2242 return; 2243 2244 local_irq_save(flags); 2245 2246 rcu_read_lock(); 2247 2248 list_for_each_entry_rcu(pmu, &pmus, entry) { 2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2250 2251 /* 2252 * check if the context has at least one 2253 * event using PERF_SAMPLE_BRANCH_STACK 2254 */ 2255 if (cpuctx->ctx.nr_branch_stack > 0 2256 && pmu->flush_branch_stack) { 2257 2258 pmu = cpuctx->ctx.pmu; 2259 2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2261 2262 perf_pmu_disable(pmu); 2263 2264 pmu->flush_branch_stack(); 2265 2266 perf_pmu_enable(pmu); 2267 2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2269 } 2270 } 2271 2272 rcu_read_unlock(); 2273 2274 local_irq_restore(flags); 2275 } 2276 2277 /* 2278 * Called from scheduler to add the events of the current task 2279 * with interrupts disabled. 2280 * 2281 * We restore the event value and then enable it. 2282 * 2283 * This does not protect us against NMI, but enable() 2284 * sets the enabled bit in the control field of event _before_ 2285 * accessing the event control register. If a NMI hits, then it will 2286 * keep the event running. 2287 */ 2288 void __perf_event_task_sched_in(struct task_struct *prev, 2289 struct task_struct *task) 2290 { 2291 struct perf_event_context *ctx; 2292 int ctxn; 2293 2294 for_each_task_context_nr(ctxn) { 2295 ctx = task->perf_event_ctxp[ctxn]; 2296 if (likely(!ctx)) 2297 continue; 2298 2299 perf_event_context_sched_in(ctx, task); 2300 } 2301 /* 2302 * if cgroup events exist on this CPU, then we need 2303 * to check if we have to switch in PMU state. 2304 * cgroup event are system-wide mode only 2305 */ 2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2307 perf_cgroup_sched_in(prev, task); 2308 2309 /* check for system-wide branch_stack events */ 2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2311 perf_branch_stack_sched_in(prev, task); 2312 } 2313 2314 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2315 { 2316 u64 frequency = event->attr.sample_freq; 2317 u64 sec = NSEC_PER_SEC; 2318 u64 divisor, dividend; 2319 2320 int count_fls, nsec_fls, frequency_fls, sec_fls; 2321 2322 count_fls = fls64(count); 2323 nsec_fls = fls64(nsec); 2324 frequency_fls = fls64(frequency); 2325 sec_fls = 30; 2326 2327 /* 2328 * We got @count in @nsec, with a target of sample_freq HZ 2329 * the target period becomes: 2330 * 2331 * @count * 10^9 2332 * period = ------------------- 2333 * @nsec * sample_freq 2334 * 2335 */ 2336 2337 /* 2338 * Reduce accuracy by one bit such that @a and @b converge 2339 * to a similar magnitude. 2340 */ 2341 #define REDUCE_FLS(a, b) \ 2342 do { \ 2343 if (a##_fls > b##_fls) { \ 2344 a >>= 1; \ 2345 a##_fls--; \ 2346 } else { \ 2347 b >>= 1; \ 2348 b##_fls--; \ 2349 } \ 2350 } while (0) 2351 2352 /* 2353 * Reduce accuracy until either term fits in a u64, then proceed with 2354 * the other, so that finally we can do a u64/u64 division. 2355 */ 2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2357 REDUCE_FLS(nsec, frequency); 2358 REDUCE_FLS(sec, count); 2359 } 2360 2361 if (count_fls + sec_fls > 64) { 2362 divisor = nsec * frequency; 2363 2364 while (count_fls + sec_fls > 64) { 2365 REDUCE_FLS(count, sec); 2366 divisor >>= 1; 2367 } 2368 2369 dividend = count * sec; 2370 } else { 2371 dividend = count * sec; 2372 2373 while (nsec_fls + frequency_fls > 64) { 2374 REDUCE_FLS(nsec, frequency); 2375 dividend >>= 1; 2376 } 2377 2378 divisor = nsec * frequency; 2379 } 2380 2381 if (!divisor) 2382 return dividend; 2383 2384 return div64_u64(dividend, divisor); 2385 } 2386 2387 static DEFINE_PER_CPU(int, perf_throttled_count); 2388 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2389 2390 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2391 { 2392 struct hw_perf_event *hwc = &event->hw; 2393 s64 period, sample_period; 2394 s64 delta; 2395 2396 period = perf_calculate_period(event, nsec, count); 2397 2398 delta = (s64)(period - hwc->sample_period); 2399 delta = (delta + 7) / 8; /* low pass filter */ 2400 2401 sample_period = hwc->sample_period + delta; 2402 2403 if (!sample_period) 2404 sample_period = 1; 2405 2406 hwc->sample_period = sample_period; 2407 2408 if (local64_read(&hwc->period_left) > 8*sample_period) { 2409 if (disable) 2410 event->pmu->stop(event, PERF_EF_UPDATE); 2411 2412 local64_set(&hwc->period_left, 0); 2413 2414 if (disable) 2415 event->pmu->start(event, PERF_EF_RELOAD); 2416 } 2417 } 2418 2419 /* 2420 * combine freq adjustment with unthrottling to avoid two passes over the 2421 * events. At the same time, make sure, having freq events does not change 2422 * the rate of unthrottling as that would introduce bias. 2423 */ 2424 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2425 int needs_unthr) 2426 { 2427 struct perf_event *event; 2428 struct hw_perf_event *hwc; 2429 u64 now, period = TICK_NSEC; 2430 s64 delta; 2431 2432 /* 2433 * only need to iterate over all events iff: 2434 * - context have events in frequency mode (needs freq adjust) 2435 * - there are events to unthrottle on this cpu 2436 */ 2437 if (!(ctx->nr_freq || needs_unthr)) 2438 return; 2439 2440 raw_spin_lock(&ctx->lock); 2441 perf_pmu_disable(ctx->pmu); 2442 2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2444 if (event->state != PERF_EVENT_STATE_ACTIVE) 2445 continue; 2446 2447 if (!event_filter_match(event)) 2448 continue; 2449 2450 hwc = &event->hw; 2451 2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2453 hwc->interrupts = 0; 2454 perf_log_throttle(event, 1); 2455 event->pmu->start(event, 0); 2456 } 2457 2458 if (!event->attr.freq || !event->attr.sample_freq) 2459 continue; 2460 2461 /* 2462 * stop the event and update event->count 2463 */ 2464 event->pmu->stop(event, PERF_EF_UPDATE); 2465 2466 now = local64_read(&event->count); 2467 delta = now - hwc->freq_count_stamp; 2468 hwc->freq_count_stamp = now; 2469 2470 /* 2471 * restart the event 2472 * reload only if value has changed 2473 * we have stopped the event so tell that 2474 * to perf_adjust_period() to avoid stopping it 2475 * twice. 2476 */ 2477 if (delta > 0) 2478 perf_adjust_period(event, period, delta, false); 2479 2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2481 } 2482 2483 perf_pmu_enable(ctx->pmu); 2484 raw_spin_unlock(&ctx->lock); 2485 } 2486 2487 /* 2488 * Round-robin a context's events: 2489 */ 2490 static void rotate_ctx(struct perf_event_context *ctx) 2491 { 2492 /* 2493 * Rotate the first entry last of non-pinned groups. Rotation might be 2494 * disabled by the inheritance code. 2495 */ 2496 if (!ctx->rotate_disable) 2497 list_rotate_left(&ctx->flexible_groups); 2498 } 2499 2500 /* 2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2502 * because they're strictly cpu affine and rotate_start is called with IRQs 2503 * disabled, while rotate_context is called from IRQ context. 2504 */ 2505 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2506 { 2507 struct perf_event_context *ctx = NULL; 2508 int rotate = 0, remove = 1; 2509 2510 if (cpuctx->ctx.nr_events) { 2511 remove = 0; 2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2513 rotate = 1; 2514 } 2515 2516 ctx = cpuctx->task_ctx; 2517 if (ctx && ctx->nr_events) { 2518 remove = 0; 2519 if (ctx->nr_events != ctx->nr_active) 2520 rotate = 1; 2521 } 2522 2523 if (!rotate) 2524 goto done; 2525 2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2527 perf_pmu_disable(cpuctx->ctx.pmu); 2528 2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2530 if (ctx) 2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2532 2533 rotate_ctx(&cpuctx->ctx); 2534 if (ctx) 2535 rotate_ctx(ctx); 2536 2537 perf_event_sched_in(cpuctx, ctx, current); 2538 2539 perf_pmu_enable(cpuctx->ctx.pmu); 2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2541 done: 2542 if (remove) 2543 list_del_init(&cpuctx->rotation_list); 2544 } 2545 2546 void perf_event_task_tick(void) 2547 { 2548 struct list_head *head = &__get_cpu_var(rotation_list); 2549 struct perf_cpu_context *cpuctx, *tmp; 2550 struct perf_event_context *ctx; 2551 int throttled; 2552 2553 WARN_ON(!irqs_disabled()); 2554 2555 __this_cpu_inc(perf_throttled_seq); 2556 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2557 2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2559 ctx = &cpuctx->ctx; 2560 perf_adjust_freq_unthr_context(ctx, throttled); 2561 2562 ctx = cpuctx->task_ctx; 2563 if (ctx) 2564 perf_adjust_freq_unthr_context(ctx, throttled); 2565 2566 if (cpuctx->jiffies_interval == 1 || 2567 !(jiffies % cpuctx->jiffies_interval)) 2568 perf_rotate_context(cpuctx); 2569 } 2570 } 2571 2572 static int event_enable_on_exec(struct perf_event *event, 2573 struct perf_event_context *ctx) 2574 { 2575 if (!event->attr.enable_on_exec) 2576 return 0; 2577 2578 event->attr.enable_on_exec = 0; 2579 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2580 return 0; 2581 2582 __perf_event_mark_enabled(event); 2583 2584 return 1; 2585 } 2586 2587 /* 2588 * Enable all of a task's events that have been marked enable-on-exec. 2589 * This expects task == current. 2590 */ 2591 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2592 { 2593 struct perf_event *event; 2594 unsigned long flags; 2595 int enabled = 0; 2596 int ret; 2597 2598 local_irq_save(flags); 2599 if (!ctx || !ctx->nr_events) 2600 goto out; 2601 2602 /* 2603 * We must ctxsw out cgroup events to avoid conflict 2604 * when invoking perf_task_event_sched_in() later on 2605 * in this function. Otherwise we end up trying to 2606 * ctxswin cgroup events which are already scheduled 2607 * in. 2608 */ 2609 perf_cgroup_sched_out(current, NULL); 2610 2611 raw_spin_lock(&ctx->lock); 2612 task_ctx_sched_out(ctx); 2613 2614 list_for_each_entry(event, &ctx->event_list, event_entry) { 2615 ret = event_enable_on_exec(event, ctx); 2616 if (ret) 2617 enabled = 1; 2618 } 2619 2620 /* 2621 * Unclone this context if we enabled any event. 2622 */ 2623 if (enabled) 2624 unclone_ctx(ctx); 2625 2626 raw_spin_unlock(&ctx->lock); 2627 2628 /* 2629 * Also calls ctxswin for cgroup events, if any: 2630 */ 2631 perf_event_context_sched_in(ctx, ctx->task); 2632 out: 2633 local_irq_restore(flags); 2634 } 2635 2636 /* 2637 * Cross CPU call to read the hardware event 2638 */ 2639 static void __perf_event_read(void *info) 2640 { 2641 struct perf_event *event = info; 2642 struct perf_event_context *ctx = event->ctx; 2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2644 2645 /* 2646 * If this is a task context, we need to check whether it is 2647 * the current task context of this cpu. If not it has been 2648 * scheduled out before the smp call arrived. In that case 2649 * event->count would have been updated to a recent sample 2650 * when the event was scheduled out. 2651 */ 2652 if (ctx->task && cpuctx->task_ctx != ctx) 2653 return; 2654 2655 raw_spin_lock(&ctx->lock); 2656 if (ctx->is_active) { 2657 update_context_time(ctx); 2658 update_cgrp_time_from_event(event); 2659 } 2660 update_event_times(event); 2661 if (event->state == PERF_EVENT_STATE_ACTIVE) 2662 event->pmu->read(event); 2663 raw_spin_unlock(&ctx->lock); 2664 } 2665 2666 static inline u64 perf_event_count(struct perf_event *event) 2667 { 2668 return local64_read(&event->count) + atomic64_read(&event->child_count); 2669 } 2670 2671 static u64 perf_event_read(struct perf_event *event) 2672 { 2673 /* 2674 * If event is enabled and currently active on a CPU, update the 2675 * value in the event structure: 2676 */ 2677 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2678 smp_call_function_single(event->oncpu, 2679 __perf_event_read, event, 1); 2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2681 struct perf_event_context *ctx = event->ctx; 2682 unsigned long flags; 2683 2684 raw_spin_lock_irqsave(&ctx->lock, flags); 2685 /* 2686 * may read while context is not active 2687 * (e.g., thread is blocked), in that case 2688 * we cannot update context time 2689 */ 2690 if (ctx->is_active) { 2691 update_context_time(ctx); 2692 update_cgrp_time_from_event(event); 2693 } 2694 update_event_times(event); 2695 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2696 } 2697 2698 return perf_event_count(event); 2699 } 2700 2701 /* 2702 * Initialize the perf_event context in a task_struct: 2703 */ 2704 static void __perf_event_init_context(struct perf_event_context *ctx) 2705 { 2706 raw_spin_lock_init(&ctx->lock); 2707 mutex_init(&ctx->mutex); 2708 INIT_LIST_HEAD(&ctx->pinned_groups); 2709 INIT_LIST_HEAD(&ctx->flexible_groups); 2710 INIT_LIST_HEAD(&ctx->event_list); 2711 atomic_set(&ctx->refcount, 1); 2712 } 2713 2714 static struct perf_event_context * 2715 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2716 { 2717 struct perf_event_context *ctx; 2718 2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2720 if (!ctx) 2721 return NULL; 2722 2723 __perf_event_init_context(ctx); 2724 if (task) { 2725 ctx->task = task; 2726 get_task_struct(task); 2727 } 2728 ctx->pmu = pmu; 2729 2730 return ctx; 2731 } 2732 2733 static struct task_struct * 2734 find_lively_task_by_vpid(pid_t vpid) 2735 { 2736 struct task_struct *task; 2737 int err; 2738 2739 rcu_read_lock(); 2740 if (!vpid) 2741 task = current; 2742 else 2743 task = find_task_by_vpid(vpid); 2744 if (task) 2745 get_task_struct(task); 2746 rcu_read_unlock(); 2747 2748 if (!task) 2749 return ERR_PTR(-ESRCH); 2750 2751 /* Reuse ptrace permission checks for now. */ 2752 err = -EACCES; 2753 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2754 goto errout; 2755 2756 return task; 2757 errout: 2758 put_task_struct(task); 2759 return ERR_PTR(err); 2760 2761 } 2762 2763 /* 2764 * Returns a matching context with refcount and pincount. 2765 */ 2766 static struct perf_event_context * 2767 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2768 { 2769 struct perf_event_context *ctx; 2770 struct perf_cpu_context *cpuctx; 2771 unsigned long flags; 2772 int ctxn, err; 2773 2774 if (!task) { 2775 /* Must be root to operate on a CPU event: */ 2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2777 return ERR_PTR(-EACCES); 2778 2779 /* 2780 * We could be clever and allow to attach a event to an 2781 * offline CPU and activate it when the CPU comes up, but 2782 * that's for later. 2783 */ 2784 if (!cpu_online(cpu)) 2785 return ERR_PTR(-ENODEV); 2786 2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2788 ctx = &cpuctx->ctx; 2789 get_ctx(ctx); 2790 ++ctx->pin_count; 2791 2792 return ctx; 2793 } 2794 2795 err = -EINVAL; 2796 ctxn = pmu->task_ctx_nr; 2797 if (ctxn < 0) 2798 goto errout; 2799 2800 retry: 2801 ctx = perf_lock_task_context(task, ctxn, &flags); 2802 if (ctx) { 2803 unclone_ctx(ctx); 2804 ++ctx->pin_count; 2805 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2806 } else { 2807 ctx = alloc_perf_context(pmu, task); 2808 err = -ENOMEM; 2809 if (!ctx) 2810 goto errout; 2811 2812 err = 0; 2813 mutex_lock(&task->perf_event_mutex); 2814 /* 2815 * If it has already passed perf_event_exit_task(). 2816 * we must see PF_EXITING, it takes this mutex too. 2817 */ 2818 if (task->flags & PF_EXITING) 2819 err = -ESRCH; 2820 else if (task->perf_event_ctxp[ctxn]) 2821 err = -EAGAIN; 2822 else { 2823 get_ctx(ctx); 2824 ++ctx->pin_count; 2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2826 } 2827 mutex_unlock(&task->perf_event_mutex); 2828 2829 if (unlikely(err)) { 2830 put_ctx(ctx); 2831 2832 if (err == -EAGAIN) 2833 goto retry; 2834 goto errout; 2835 } 2836 } 2837 2838 return ctx; 2839 2840 errout: 2841 return ERR_PTR(err); 2842 } 2843 2844 static void perf_event_free_filter(struct perf_event *event); 2845 2846 static void free_event_rcu(struct rcu_head *head) 2847 { 2848 struct perf_event *event; 2849 2850 event = container_of(head, struct perf_event, rcu_head); 2851 if (event->ns) 2852 put_pid_ns(event->ns); 2853 perf_event_free_filter(event); 2854 kfree(event); 2855 } 2856 2857 static void ring_buffer_put(struct ring_buffer *rb); 2858 2859 static void free_event(struct perf_event *event) 2860 { 2861 irq_work_sync(&event->pending); 2862 2863 if (!event->parent) { 2864 if (event->attach_state & PERF_ATTACH_TASK) 2865 static_key_slow_dec_deferred(&perf_sched_events); 2866 if (event->attr.mmap || event->attr.mmap_data) 2867 atomic_dec(&nr_mmap_events); 2868 if (event->attr.comm) 2869 atomic_dec(&nr_comm_events); 2870 if (event->attr.task) 2871 atomic_dec(&nr_task_events); 2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2873 put_callchain_buffers(); 2874 if (is_cgroup_event(event)) { 2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2876 static_key_slow_dec_deferred(&perf_sched_events); 2877 } 2878 2879 if (has_branch_stack(event)) { 2880 static_key_slow_dec_deferred(&perf_sched_events); 2881 /* is system-wide event */ 2882 if (!(event->attach_state & PERF_ATTACH_TASK)) 2883 atomic_dec(&per_cpu(perf_branch_stack_events, 2884 event->cpu)); 2885 } 2886 } 2887 2888 if (event->rb) { 2889 ring_buffer_put(event->rb); 2890 event->rb = NULL; 2891 } 2892 2893 if (is_cgroup_event(event)) 2894 perf_detach_cgroup(event); 2895 2896 if (event->destroy) 2897 event->destroy(event); 2898 2899 if (event->ctx) 2900 put_ctx(event->ctx); 2901 2902 call_rcu(&event->rcu_head, free_event_rcu); 2903 } 2904 2905 int perf_event_release_kernel(struct perf_event *event) 2906 { 2907 struct perf_event_context *ctx = event->ctx; 2908 2909 WARN_ON_ONCE(ctx->parent_ctx); 2910 /* 2911 * There are two ways this annotation is useful: 2912 * 2913 * 1) there is a lock recursion from perf_event_exit_task 2914 * see the comment there. 2915 * 2916 * 2) there is a lock-inversion with mmap_sem through 2917 * perf_event_read_group(), which takes faults while 2918 * holding ctx->mutex, however this is called after 2919 * the last filedesc died, so there is no possibility 2920 * to trigger the AB-BA case. 2921 */ 2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2923 raw_spin_lock_irq(&ctx->lock); 2924 perf_group_detach(event); 2925 raw_spin_unlock_irq(&ctx->lock); 2926 perf_remove_from_context(event); 2927 mutex_unlock(&ctx->mutex); 2928 2929 free_event(event); 2930 2931 return 0; 2932 } 2933 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2934 2935 /* 2936 * Called when the last reference to the file is gone. 2937 */ 2938 static void put_event(struct perf_event *event) 2939 { 2940 struct task_struct *owner; 2941 2942 if (!atomic_long_dec_and_test(&event->refcount)) 2943 return; 2944 2945 rcu_read_lock(); 2946 owner = ACCESS_ONCE(event->owner); 2947 /* 2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2949 * !owner it means the list deletion is complete and we can indeed 2950 * free this event, otherwise we need to serialize on 2951 * owner->perf_event_mutex. 2952 */ 2953 smp_read_barrier_depends(); 2954 if (owner) { 2955 /* 2956 * Since delayed_put_task_struct() also drops the last 2957 * task reference we can safely take a new reference 2958 * while holding the rcu_read_lock(). 2959 */ 2960 get_task_struct(owner); 2961 } 2962 rcu_read_unlock(); 2963 2964 if (owner) { 2965 mutex_lock(&owner->perf_event_mutex); 2966 /* 2967 * We have to re-check the event->owner field, if it is cleared 2968 * we raced with perf_event_exit_task(), acquiring the mutex 2969 * ensured they're done, and we can proceed with freeing the 2970 * event. 2971 */ 2972 if (event->owner) 2973 list_del_init(&event->owner_entry); 2974 mutex_unlock(&owner->perf_event_mutex); 2975 put_task_struct(owner); 2976 } 2977 2978 perf_event_release_kernel(event); 2979 } 2980 2981 static int perf_release(struct inode *inode, struct file *file) 2982 { 2983 put_event(file->private_data); 2984 return 0; 2985 } 2986 2987 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2988 { 2989 struct perf_event *child; 2990 u64 total = 0; 2991 2992 *enabled = 0; 2993 *running = 0; 2994 2995 mutex_lock(&event->child_mutex); 2996 total += perf_event_read(event); 2997 *enabled += event->total_time_enabled + 2998 atomic64_read(&event->child_total_time_enabled); 2999 *running += event->total_time_running + 3000 atomic64_read(&event->child_total_time_running); 3001 3002 list_for_each_entry(child, &event->child_list, child_list) { 3003 total += perf_event_read(child); 3004 *enabled += child->total_time_enabled; 3005 *running += child->total_time_running; 3006 } 3007 mutex_unlock(&event->child_mutex); 3008 3009 return total; 3010 } 3011 EXPORT_SYMBOL_GPL(perf_event_read_value); 3012 3013 static int perf_event_read_group(struct perf_event *event, 3014 u64 read_format, char __user *buf) 3015 { 3016 struct perf_event *leader = event->group_leader, *sub; 3017 int n = 0, size = 0, ret = -EFAULT; 3018 struct perf_event_context *ctx = leader->ctx; 3019 u64 values[5]; 3020 u64 count, enabled, running; 3021 3022 mutex_lock(&ctx->mutex); 3023 count = perf_event_read_value(leader, &enabled, &running); 3024 3025 values[n++] = 1 + leader->nr_siblings; 3026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3027 values[n++] = enabled; 3028 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3029 values[n++] = running; 3030 values[n++] = count; 3031 if (read_format & PERF_FORMAT_ID) 3032 values[n++] = primary_event_id(leader); 3033 3034 size = n * sizeof(u64); 3035 3036 if (copy_to_user(buf, values, size)) 3037 goto unlock; 3038 3039 ret = size; 3040 3041 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3042 n = 0; 3043 3044 values[n++] = perf_event_read_value(sub, &enabled, &running); 3045 if (read_format & PERF_FORMAT_ID) 3046 values[n++] = primary_event_id(sub); 3047 3048 size = n * sizeof(u64); 3049 3050 if (copy_to_user(buf + ret, values, size)) { 3051 ret = -EFAULT; 3052 goto unlock; 3053 } 3054 3055 ret += size; 3056 } 3057 unlock: 3058 mutex_unlock(&ctx->mutex); 3059 3060 return ret; 3061 } 3062 3063 static int perf_event_read_one(struct perf_event *event, 3064 u64 read_format, char __user *buf) 3065 { 3066 u64 enabled, running; 3067 u64 values[4]; 3068 int n = 0; 3069 3070 values[n++] = perf_event_read_value(event, &enabled, &running); 3071 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3072 values[n++] = enabled; 3073 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3074 values[n++] = running; 3075 if (read_format & PERF_FORMAT_ID) 3076 values[n++] = primary_event_id(event); 3077 3078 if (copy_to_user(buf, values, n * sizeof(u64))) 3079 return -EFAULT; 3080 3081 return n * sizeof(u64); 3082 } 3083 3084 /* 3085 * Read the performance event - simple non blocking version for now 3086 */ 3087 static ssize_t 3088 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3089 { 3090 u64 read_format = event->attr.read_format; 3091 int ret; 3092 3093 /* 3094 * Return end-of-file for a read on a event that is in 3095 * error state (i.e. because it was pinned but it couldn't be 3096 * scheduled on to the CPU at some point). 3097 */ 3098 if (event->state == PERF_EVENT_STATE_ERROR) 3099 return 0; 3100 3101 if (count < event->read_size) 3102 return -ENOSPC; 3103 3104 WARN_ON_ONCE(event->ctx->parent_ctx); 3105 if (read_format & PERF_FORMAT_GROUP) 3106 ret = perf_event_read_group(event, read_format, buf); 3107 else 3108 ret = perf_event_read_one(event, read_format, buf); 3109 3110 return ret; 3111 } 3112 3113 static ssize_t 3114 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3115 { 3116 struct perf_event *event = file->private_data; 3117 3118 return perf_read_hw(event, buf, count); 3119 } 3120 3121 static unsigned int perf_poll(struct file *file, poll_table *wait) 3122 { 3123 struct perf_event *event = file->private_data; 3124 struct ring_buffer *rb; 3125 unsigned int events = POLL_HUP; 3126 3127 /* 3128 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3129 * grabs the rb reference but perf_event_set_output() overrides it. 3130 * Here is the timeline for two threads T1, T2: 3131 * t0: T1, rb = rcu_dereference(event->rb) 3132 * t1: T2, old_rb = event->rb 3133 * t2: T2, event->rb = new rb 3134 * t3: T2, ring_buffer_detach(old_rb) 3135 * t4: T1, ring_buffer_attach(rb1) 3136 * t5: T1, poll_wait(event->waitq) 3137 * 3138 * To avoid this problem, we grab mmap_mutex in perf_poll() 3139 * thereby ensuring that the assignment of the new ring buffer 3140 * and the detachment of the old buffer appear atomic to perf_poll() 3141 */ 3142 mutex_lock(&event->mmap_mutex); 3143 3144 rcu_read_lock(); 3145 rb = rcu_dereference(event->rb); 3146 if (rb) { 3147 ring_buffer_attach(event, rb); 3148 events = atomic_xchg(&rb->poll, 0); 3149 } 3150 rcu_read_unlock(); 3151 3152 mutex_unlock(&event->mmap_mutex); 3153 3154 poll_wait(file, &event->waitq, wait); 3155 3156 return events; 3157 } 3158 3159 static void perf_event_reset(struct perf_event *event) 3160 { 3161 (void)perf_event_read(event); 3162 local64_set(&event->count, 0); 3163 perf_event_update_userpage(event); 3164 } 3165 3166 /* 3167 * Holding the top-level event's child_mutex means that any 3168 * descendant process that has inherited this event will block 3169 * in sync_child_event if it goes to exit, thus satisfying the 3170 * task existence requirements of perf_event_enable/disable. 3171 */ 3172 static void perf_event_for_each_child(struct perf_event *event, 3173 void (*func)(struct perf_event *)) 3174 { 3175 struct perf_event *child; 3176 3177 WARN_ON_ONCE(event->ctx->parent_ctx); 3178 mutex_lock(&event->child_mutex); 3179 func(event); 3180 list_for_each_entry(child, &event->child_list, child_list) 3181 func(child); 3182 mutex_unlock(&event->child_mutex); 3183 } 3184 3185 static void perf_event_for_each(struct perf_event *event, 3186 void (*func)(struct perf_event *)) 3187 { 3188 struct perf_event_context *ctx = event->ctx; 3189 struct perf_event *sibling; 3190 3191 WARN_ON_ONCE(ctx->parent_ctx); 3192 mutex_lock(&ctx->mutex); 3193 event = event->group_leader; 3194 3195 perf_event_for_each_child(event, func); 3196 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3197 perf_event_for_each_child(sibling, func); 3198 mutex_unlock(&ctx->mutex); 3199 } 3200 3201 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3202 { 3203 struct perf_event_context *ctx = event->ctx; 3204 int ret = 0; 3205 u64 value; 3206 3207 if (!is_sampling_event(event)) 3208 return -EINVAL; 3209 3210 if (copy_from_user(&value, arg, sizeof(value))) 3211 return -EFAULT; 3212 3213 if (!value) 3214 return -EINVAL; 3215 3216 raw_spin_lock_irq(&ctx->lock); 3217 if (event->attr.freq) { 3218 if (value > sysctl_perf_event_sample_rate) { 3219 ret = -EINVAL; 3220 goto unlock; 3221 } 3222 3223 event->attr.sample_freq = value; 3224 } else { 3225 event->attr.sample_period = value; 3226 event->hw.sample_period = value; 3227 } 3228 unlock: 3229 raw_spin_unlock_irq(&ctx->lock); 3230 3231 return ret; 3232 } 3233 3234 static const struct file_operations perf_fops; 3235 3236 static struct file *perf_fget_light(int fd, int *fput_needed) 3237 { 3238 struct file *file; 3239 3240 file = fget_light(fd, fput_needed); 3241 if (!file) 3242 return ERR_PTR(-EBADF); 3243 3244 if (file->f_op != &perf_fops) { 3245 fput_light(file, *fput_needed); 3246 *fput_needed = 0; 3247 return ERR_PTR(-EBADF); 3248 } 3249 3250 return file; 3251 } 3252 3253 static int perf_event_set_output(struct perf_event *event, 3254 struct perf_event *output_event); 3255 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3256 3257 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3258 { 3259 struct perf_event *event = file->private_data; 3260 void (*func)(struct perf_event *); 3261 u32 flags = arg; 3262 3263 switch (cmd) { 3264 case PERF_EVENT_IOC_ENABLE: 3265 func = perf_event_enable; 3266 break; 3267 case PERF_EVENT_IOC_DISABLE: 3268 func = perf_event_disable; 3269 break; 3270 case PERF_EVENT_IOC_RESET: 3271 func = perf_event_reset; 3272 break; 3273 3274 case PERF_EVENT_IOC_REFRESH: 3275 return perf_event_refresh(event, arg); 3276 3277 case PERF_EVENT_IOC_PERIOD: 3278 return perf_event_period(event, (u64 __user *)arg); 3279 3280 case PERF_EVENT_IOC_SET_OUTPUT: 3281 { 3282 struct file *output_file = NULL; 3283 struct perf_event *output_event = NULL; 3284 int fput_needed = 0; 3285 int ret; 3286 3287 if (arg != -1) { 3288 output_file = perf_fget_light(arg, &fput_needed); 3289 if (IS_ERR(output_file)) 3290 return PTR_ERR(output_file); 3291 output_event = output_file->private_data; 3292 } 3293 3294 ret = perf_event_set_output(event, output_event); 3295 if (output_event) 3296 fput_light(output_file, fput_needed); 3297 3298 return ret; 3299 } 3300 3301 case PERF_EVENT_IOC_SET_FILTER: 3302 return perf_event_set_filter(event, (void __user *)arg); 3303 3304 default: 3305 return -ENOTTY; 3306 } 3307 3308 if (flags & PERF_IOC_FLAG_GROUP) 3309 perf_event_for_each(event, func); 3310 else 3311 perf_event_for_each_child(event, func); 3312 3313 return 0; 3314 } 3315 3316 int perf_event_task_enable(void) 3317 { 3318 struct perf_event *event; 3319 3320 mutex_lock(¤t->perf_event_mutex); 3321 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3322 perf_event_for_each_child(event, perf_event_enable); 3323 mutex_unlock(¤t->perf_event_mutex); 3324 3325 return 0; 3326 } 3327 3328 int perf_event_task_disable(void) 3329 { 3330 struct perf_event *event; 3331 3332 mutex_lock(¤t->perf_event_mutex); 3333 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3334 perf_event_for_each_child(event, perf_event_disable); 3335 mutex_unlock(¤t->perf_event_mutex); 3336 3337 return 0; 3338 } 3339 3340 static int perf_event_index(struct perf_event *event) 3341 { 3342 if (event->hw.state & PERF_HES_STOPPED) 3343 return 0; 3344 3345 if (event->state != PERF_EVENT_STATE_ACTIVE) 3346 return 0; 3347 3348 return event->pmu->event_idx(event); 3349 } 3350 3351 static void calc_timer_values(struct perf_event *event, 3352 u64 *now, 3353 u64 *enabled, 3354 u64 *running) 3355 { 3356 u64 ctx_time; 3357 3358 *now = perf_clock(); 3359 ctx_time = event->shadow_ctx_time + *now; 3360 *enabled = ctx_time - event->tstamp_enabled; 3361 *running = ctx_time - event->tstamp_running; 3362 } 3363 3364 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3365 { 3366 } 3367 3368 /* 3369 * Callers need to ensure there can be no nesting of this function, otherwise 3370 * the seqlock logic goes bad. We can not serialize this because the arch 3371 * code calls this from NMI context. 3372 */ 3373 void perf_event_update_userpage(struct perf_event *event) 3374 { 3375 struct perf_event_mmap_page *userpg; 3376 struct ring_buffer *rb; 3377 u64 enabled, running, now; 3378 3379 rcu_read_lock(); 3380 /* 3381 * compute total_time_enabled, total_time_running 3382 * based on snapshot values taken when the event 3383 * was last scheduled in. 3384 * 3385 * we cannot simply called update_context_time() 3386 * because of locking issue as we can be called in 3387 * NMI context 3388 */ 3389 calc_timer_values(event, &now, &enabled, &running); 3390 rb = rcu_dereference(event->rb); 3391 if (!rb) 3392 goto unlock; 3393 3394 userpg = rb->user_page; 3395 3396 /* 3397 * Disable preemption so as to not let the corresponding user-space 3398 * spin too long if we get preempted. 3399 */ 3400 preempt_disable(); 3401 ++userpg->lock; 3402 barrier(); 3403 userpg->index = perf_event_index(event); 3404 userpg->offset = perf_event_count(event); 3405 if (userpg->index) 3406 userpg->offset -= local64_read(&event->hw.prev_count); 3407 3408 userpg->time_enabled = enabled + 3409 atomic64_read(&event->child_total_time_enabled); 3410 3411 userpg->time_running = running + 3412 atomic64_read(&event->child_total_time_running); 3413 3414 arch_perf_update_userpage(userpg, now); 3415 3416 barrier(); 3417 ++userpg->lock; 3418 preempt_enable(); 3419 unlock: 3420 rcu_read_unlock(); 3421 } 3422 3423 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3424 { 3425 struct perf_event *event = vma->vm_file->private_data; 3426 struct ring_buffer *rb; 3427 int ret = VM_FAULT_SIGBUS; 3428 3429 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3430 if (vmf->pgoff == 0) 3431 ret = 0; 3432 return ret; 3433 } 3434 3435 rcu_read_lock(); 3436 rb = rcu_dereference(event->rb); 3437 if (!rb) 3438 goto unlock; 3439 3440 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3441 goto unlock; 3442 3443 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3444 if (!vmf->page) 3445 goto unlock; 3446 3447 get_page(vmf->page); 3448 vmf->page->mapping = vma->vm_file->f_mapping; 3449 vmf->page->index = vmf->pgoff; 3450 3451 ret = 0; 3452 unlock: 3453 rcu_read_unlock(); 3454 3455 return ret; 3456 } 3457 3458 static void ring_buffer_attach(struct perf_event *event, 3459 struct ring_buffer *rb) 3460 { 3461 unsigned long flags; 3462 3463 if (!list_empty(&event->rb_entry)) 3464 return; 3465 3466 spin_lock_irqsave(&rb->event_lock, flags); 3467 if (!list_empty(&event->rb_entry)) 3468 goto unlock; 3469 3470 list_add(&event->rb_entry, &rb->event_list); 3471 unlock: 3472 spin_unlock_irqrestore(&rb->event_lock, flags); 3473 } 3474 3475 static void ring_buffer_detach(struct perf_event *event, 3476 struct ring_buffer *rb) 3477 { 3478 unsigned long flags; 3479 3480 if (list_empty(&event->rb_entry)) 3481 return; 3482 3483 spin_lock_irqsave(&rb->event_lock, flags); 3484 list_del_init(&event->rb_entry); 3485 wake_up_all(&event->waitq); 3486 spin_unlock_irqrestore(&rb->event_lock, flags); 3487 } 3488 3489 static void ring_buffer_wakeup(struct perf_event *event) 3490 { 3491 struct ring_buffer *rb; 3492 3493 rcu_read_lock(); 3494 rb = rcu_dereference(event->rb); 3495 if (!rb) 3496 goto unlock; 3497 3498 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3499 wake_up_all(&event->waitq); 3500 3501 unlock: 3502 rcu_read_unlock(); 3503 } 3504 3505 static void rb_free_rcu(struct rcu_head *rcu_head) 3506 { 3507 struct ring_buffer *rb; 3508 3509 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3510 rb_free(rb); 3511 } 3512 3513 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3514 { 3515 struct ring_buffer *rb; 3516 3517 rcu_read_lock(); 3518 rb = rcu_dereference(event->rb); 3519 if (rb) { 3520 if (!atomic_inc_not_zero(&rb->refcount)) 3521 rb = NULL; 3522 } 3523 rcu_read_unlock(); 3524 3525 return rb; 3526 } 3527 3528 static void ring_buffer_put(struct ring_buffer *rb) 3529 { 3530 struct perf_event *event, *n; 3531 unsigned long flags; 3532 3533 if (!atomic_dec_and_test(&rb->refcount)) 3534 return; 3535 3536 spin_lock_irqsave(&rb->event_lock, flags); 3537 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3538 list_del_init(&event->rb_entry); 3539 wake_up_all(&event->waitq); 3540 } 3541 spin_unlock_irqrestore(&rb->event_lock, flags); 3542 3543 call_rcu(&rb->rcu_head, rb_free_rcu); 3544 } 3545 3546 static void perf_mmap_open(struct vm_area_struct *vma) 3547 { 3548 struct perf_event *event = vma->vm_file->private_data; 3549 3550 atomic_inc(&event->mmap_count); 3551 } 3552 3553 static void perf_mmap_close(struct vm_area_struct *vma) 3554 { 3555 struct perf_event *event = vma->vm_file->private_data; 3556 3557 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3558 unsigned long size = perf_data_size(event->rb); 3559 struct user_struct *user = event->mmap_user; 3560 struct ring_buffer *rb = event->rb; 3561 3562 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3563 vma->vm_mm->pinned_vm -= event->mmap_locked; 3564 rcu_assign_pointer(event->rb, NULL); 3565 ring_buffer_detach(event, rb); 3566 mutex_unlock(&event->mmap_mutex); 3567 3568 ring_buffer_put(rb); 3569 free_uid(user); 3570 } 3571 } 3572 3573 static const struct vm_operations_struct perf_mmap_vmops = { 3574 .open = perf_mmap_open, 3575 .close = perf_mmap_close, 3576 .fault = perf_mmap_fault, 3577 .page_mkwrite = perf_mmap_fault, 3578 }; 3579 3580 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3581 { 3582 struct perf_event *event = file->private_data; 3583 unsigned long user_locked, user_lock_limit; 3584 struct user_struct *user = current_user(); 3585 unsigned long locked, lock_limit; 3586 struct ring_buffer *rb; 3587 unsigned long vma_size; 3588 unsigned long nr_pages; 3589 long user_extra, extra; 3590 int ret = 0, flags = 0; 3591 3592 /* 3593 * Don't allow mmap() of inherited per-task counters. This would 3594 * create a performance issue due to all children writing to the 3595 * same rb. 3596 */ 3597 if (event->cpu == -1 && event->attr.inherit) 3598 return -EINVAL; 3599 3600 if (!(vma->vm_flags & VM_SHARED)) 3601 return -EINVAL; 3602 3603 vma_size = vma->vm_end - vma->vm_start; 3604 nr_pages = (vma_size / PAGE_SIZE) - 1; 3605 3606 /* 3607 * If we have rb pages ensure they're a power-of-two number, so we 3608 * can do bitmasks instead of modulo. 3609 */ 3610 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3611 return -EINVAL; 3612 3613 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3614 return -EINVAL; 3615 3616 if (vma->vm_pgoff != 0) 3617 return -EINVAL; 3618 3619 WARN_ON_ONCE(event->ctx->parent_ctx); 3620 mutex_lock(&event->mmap_mutex); 3621 if (event->rb) { 3622 if (event->rb->nr_pages == nr_pages) 3623 atomic_inc(&event->rb->refcount); 3624 else 3625 ret = -EINVAL; 3626 goto unlock; 3627 } 3628 3629 user_extra = nr_pages + 1; 3630 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3631 3632 /* 3633 * Increase the limit linearly with more CPUs: 3634 */ 3635 user_lock_limit *= num_online_cpus(); 3636 3637 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3638 3639 extra = 0; 3640 if (user_locked > user_lock_limit) 3641 extra = user_locked - user_lock_limit; 3642 3643 lock_limit = rlimit(RLIMIT_MEMLOCK); 3644 lock_limit >>= PAGE_SHIFT; 3645 locked = vma->vm_mm->pinned_vm + extra; 3646 3647 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3648 !capable(CAP_IPC_LOCK)) { 3649 ret = -EPERM; 3650 goto unlock; 3651 } 3652 3653 WARN_ON(event->rb); 3654 3655 if (vma->vm_flags & VM_WRITE) 3656 flags |= RING_BUFFER_WRITABLE; 3657 3658 rb = rb_alloc(nr_pages, 3659 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3660 event->cpu, flags); 3661 3662 if (!rb) { 3663 ret = -ENOMEM; 3664 goto unlock; 3665 } 3666 rcu_assign_pointer(event->rb, rb); 3667 3668 atomic_long_add(user_extra, &user->locked_vm); 3669 event->mmap_locked = extra; 3670 event->mmap_user = get_current_user(); 3671 vma->vm_mm->pinned_vm += event->mmap_locked; 3672 3673 perf_event_update_userpage(event); 3674 3675 unlock: 3676 if (!ret) 3677 atomic_inc(&event->mmap_count); 3678 mutex_unlock(&event->mmap_mutex); 3679 3680 vma->vm_flags |= VM_RESERVED; 3681 vma->vm_ops = &perf_mmap_vmops; 3682 3683 return ret; 3684 } 3685 3686 static int perf_fasync(int fd, struct file *filp, int on) 3687 { 3688 struct inode *inode = filp->f_path.dentry->d_inode; 3689 struct perf_event *event = filp->private_data; 3690 int retval; 3691 3692 mutex_lock(&inode->i_mutex); 3693 retval = fasync_helper(fd, filp, on, &event->fasync); 3694 mutex_unlock(&inode->i_mutex); 3695 3696 if (retval < 0) 3697 return retval; 3698 3699 return 0; 3700 } 3701 3702 static const struct file_operations perf_fops = { 3703 .llseek = no_llseek, 3704 .release = perf_release, 3705 .read = perf_read, 3706 .poll = perf_poll, 3707 .unlocked_ioctl = perf_ioctl, 3708 .compat_ioctl = perf_ioctl, 3709 .mmap = perf_mmap, 3710 .fasync = perf_fasync, 3711 }; 3712 3713 /* 3714 * Perf event wakeup 3715 * 3716 * If there's data, ensure we set the poll() state and publish everything 3717 * to user-space before waking everybody up. 3718 */ 3719 3720 void perf_event_wakeup(struct perf_event *event) 3721 { 3722 ring_buffer_wakeup(event); 3723 3724 if (event->pending_kill) { 3725 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3726 event->pending_kill = 0; 3727 } 3728 } 3729 3730 static void perf_pending_event(struct irq_work *entry) 3731 { 3732 struct perf_event *event = container_of(entry, 3733 struct perf_event, pending); 3734 3735 if (event->pending_disable) { 3736 event->pending_disable = 0; 3737 __perf_event_disable(event); 3738 } 3739 3740 if (event->pending_wakeup) { 3741 event->pending_wakeup = 0; 3742 perf_event_wakeup(event); 3743 } 3744 } 3745 3746 /* 3747 * We assume there is only KVM supporting the callbacks. 3748 * Later on, we might change it to a list if there is 3749 * another virtualization implementation supporting the callbacks. 3750 */ 3751 struct perf_guest_info_callbacks *perf_guest_cbs; 3752 3753 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3754 { 3755 perf_guest_cbs = cbs; 3756 return 0; 3757 } 3758 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3759 3760 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3761 { 3762 perf_guest_cbs = NULL; 3763 return 0; 3764 } 3765 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3766 3767 static void __perf_event_header__init_id(struct perf_event_header *header, 3768 struct perf_sample_data *data, 3769 struct perf_event *event) 3770 { 3771 u64 sample_type = event->attr.sample_type; 3772 3773 data->type = sample_type; 3774 header->size += event->id_header_size; 3775 3776 if (sample_type & PERF_SAMPLE_TID) { 3777 /* namespace issues */ 3778 data->tid_entry.pid = perf_event_pid(event, current); 3779 data->tid_entry.tid = perf_event_tid(event, current); 3780 } 3781 3782 if (sample_type & PERF_SAMPLE_TIME) 3783 data->time = perf_clock(); 3784 3785 if (sample_type & PERF_SAMPLE_ID) 3786 data->id = primary_event_id(event); 3787 3788 if (sample_type & PERF_SAMPLE_STREAM_ID) 3789 data->stream_id = event->id; 3790 3791 if (sample_type & PERF_SAMPLE_CPU) { 3792 data->cpu_entry.cpu = raw_smp_processor_id(); 3793 data->cpu_entry.reserved = 0; 3794 } 3795 } 3796 3797 void perf_event_header__init_id(struct perf_event_header *header, 3798 struct perf_sample_data *data, 3799 struct perf_event *event) 3800 { 3801 if (event->attr.sample_id_all) 3802 __perf_event_header__init_id(header, data, event); 3803 } 3804 3805 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3806 struct perf_sample_data *data) 3807 { 3808 u64 sample_type = data->type; 3809 3810 if (sample_type & PERF_SAMPLE_TID) 3811 perf_output_put(handle, data->tid_entry); 3812 3813 if (sample_type & PERF_SAMPLE_TIME) 3814 perf_output_put(handle, data->time); 3815 3816 if (sample_type & PERF_SAMPLE_ID) 3817 perf_output_put(handle, data->id); 3818 3819 if (sample_type & PERF_SAMPLE_STREAM_ID) 3820 perf_output_put(handle, data->stream_id); 3821 3822 if (sample_type & PERF_SAMPLE_CPU) 3823 perf_output_put(handle, data->cpu_entry); 3824 } 3825 3826 void perf_event__output_id_sample(struct perf_event *event, 3827 struct perf_output_handle *handle, 3828 struct perf_sample_data *sample) 3829 { 3830 if (event->attr.sample_id_all) 3831 __perf_event__output_id_sample(handle, sample); 3832 } 3833 3834 static void perf_output_read_one(struct perf_output_handle *handle, 3835 struct perf_event *event, 3836 u64 enabled, u64 running) 3837 { 3838 u64 read_format = event->attr.read_format; 3839 u64 values[4]; 3840 int n = 0; 3841 3842 values[n++] = perf_event_count(event); 3843 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3844 values[n++] = enabled + 3845 atomic64_read(&event->child_total_time_enabled); 3846 } 3847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3848 values[n++] = running + 3849 atomic64_read(&event->child_total_time_running); 3850 } 3851 if (read_format & PERF_FORMAT_ID) 3852 values[n++] = primary_event_id(event); 3853 3854 __output_copy(handle, values, n * sizeof(u64)); 3855 } 3856 3857 /* 3858 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3859 */ 3860 static void perf_output_read_group(struct perf_output_handle *handle, 3861 struct perf_event *event, 3862 u64 enabled, u64 running) 3863 { 3864 struct perf_event *leader = event->group_leader, *sub; 3865 u64 read_format = event->attr.read_format; 3866 u64 values[5]; 3867 int n = 0; 3868 3869 values[n++] = 1 + leader->nr_siblings; 3870 3871 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3872 values[n++] = enabled; 3873 3874 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3875 values[n++] = running; 3876 3877 if (leader != event) 3878 leader->pmu->read(leader); 3879 3880 values[n++] = perf_event_count(leader); 3881 if (read_format & PERF_FORMAT_ID) 3882 values[n++] = primary_event_id(leader); 3883 3884 __output_copy(handle, values, n * sizeof(u64)); 3885 3886 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3887 n = 0; 3888 3889 if (sub != event) 3890 sub->pmu->read(sub); 3891 3892 values[n++] = perf_event_count(sub); 3893 if (read_format & PERF_FORMAT_ID) 3894 values[n++] = primary_event_id(sub); 3895 3896 __output_copy(handle, values, n * sizeof(u64)); 3897 } 3898 } 3899 3900 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3901 PERF_FORMAT_TOTAL_TIME_RUNNING) 3902 3903 static void perf_output_read(struct perf_output_handle *handle, 3904 struct perf_event *event) 3905 { 3906 u64 enabled = 0, running = 0, now; 3907 u64 read_format = event->attr.read_format; 3908 3909 /* 3910 * compute total_time_enabled, total_time_running 3911 * based on snapshot values taken when the event 3912 * was last scheduled in. 3913 * 3914 * we cannot simply called update_context_time() 3915 * because of locking issue as we are called in 3916 * NMI context 3917 */ 3918 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3919 calc_timer_values(event, &now, &enabled, &running); 3920 3921 if (event->attr.read_format & PERF_FORMAT_GROUP) 3922 perf_output_read_group(handle, event, enabled, running); 3923 else 3924 perf_output_read_one(handle, event, enabled, running); 3925 } 3926 3927 void perf_output_sample(struct perf_output_handle *handle, 3928 struct perf_event_header *header, 3929 struct perf_sample_data *data, 3930 struct perf_event *event) 3931 { 3932 u64 sample_type = data->type; 3933 3934 perf_output_put(handle, *header); 3935 3936 if (sample_type & PERF_SAMPLE_IP) 3937 perf_output_put(handle, data->ip); 3938 3939 if (sample_type & PERF_SAMPLE_TID) 3940 perf_output_put(handle, data->tid_entry); 3941 3942 if (sample_type & PERF_SAMPLE_TIME) 3943 perf_output_put(handle, data->time); 3944 3945 if (sample_type & PERF_SAMPLE_ADDR) 3946 perf_output_put(handle, data->addr); 3947 3948 if (sample_type & PERF_SAMPLE_ID) 3949 perf_output_put(handle, data->id); 3950 3951 if (sample_type & PERF_SAMPLE_STREAM_ID) 3952 perf_output_put(handle, data->stream_id); 3953 3954 if (sample_type & PERF_SAMPLE_CPU) 3955 perf_output_put(handle, data->cpu_entry); 3956 3957 if (sample_type & PERF_SAMPLE_PERIOD) 3958 perf_output_put(handle, data->period); 3959 3960 if (sample_type & PERF_SAMPLE_READ) 3961 perf_output_read(handle, event); 3962 3963 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3964 if (data->callchain) { 3965 int size = 1; 3966 3967 if (data->callchain) 3968 size += data->callchain->nr; 3969 3970 size *= sizeof(u64); 3971 3972 __output_copy(handle, data->callchain, size); 3973 } else { 3974 u64 nr = 0; 3975 perf_output_put(handle, nr); 3976 } 3977 } 3978 3979 if (sample_type & PERF_SAMPLE_RAW) { 3980 if (data->raw) { 3981 perf_output_put(handle, data->raw->size); 3982 __output_copy(handle, data->raw->data, 3983 data->raw->size); 3984 } else { 3985 struct { 3986 u32 size; 3987 u32 data; 3988 } raw = { 3989 .size = sizeof(u32), 3990 .data = 0, 3991 }; 3992 perf_output_put(handle, raw); 3993 } 3994 } 3995 3996 if (!event->attr.watermark) { 3997 int wakeup_events = event->attr.wakeup_events; 3998 3999 if (wakeup_events) { 4000 struct ring_buffer *rb = handle->rb; 4001 int events = local_inc_return(&rb->events); 4002 4003 if (events >= wakeup_events) { 4004 local_sub(wakeup_events, &rb->events); 4005 local_inc(&rb->wakeup); 4006 } 4007 } 4008 } 4009 4010 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4011 if (data->br_stack) { 4012 size_t size; 4013 4014 size = data->br_stack->nr 4015 * sizeof(struct perf_branch_entry); 4016 4017 perf_output_put(handle, data->br_stack->nr); 4018 perf_output_copy(handle, data->br_stack->entries, size); 4019 } else { 4020 /* 4021 * we always store at least the value of nr 4022 */ 4023 u64 nr = 0; 4024 perf_output_put(handle, nr); 4025 } 4026 } 4027 } 4028 4029 void perf_prepare_sample(struct perf_event_header *header, 4030 struct perf_sample_data *data, 4031 struct perf_event *event, 4032 struct pt_regs *regs) 4033 { 4034 u64 sample_type = event->attr.sample_type; 4035 4036 header->type = PERF_RECORD_SAMPLE; 4037 header->size = sizeof(*header) + event->header_size; 4038 4039 header->misc = 0; 4040 header->misc |= perf_misc_flags(regs); 4041 4042 __perf_event_header__init_id(header, data, event); 4043 4044 if (sample_type & PERF_SAMPLE_IP) 4045 data->ip = perf_instruction_pointer(regs); 4046 4047 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4048 int size = 1; 4049 4050 data->callchain = perf_callchain(event, regs); 4051 4052 if (data->callchain) 4053 size += data->callchain->nr; 4054 4055 header->size += size * sizeof(u64); 4056 } 4057 4058 if (sample_type & PERF_SAMPLE_RAW) { 4059 int size = sizeof(u32); 4060 4061 if (data->raw) 4062 size += data->raw->size; 4063 else 4064 size += sizeof(u32); 4065 4066 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4067 header->size += size; 4068 } 4069 4070 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4071 int size = sizeof(u64); /* nr */ 4072 if (data->br_stack) { 4073 size += data->br_stack->nr 4074 * sizeof(struct perf_branch_entry); 4075 } 4076 header->size += size; 4077 } 4078 } 4079 4080 static void perf_event_output(struct perf_event *event, 4081 struct perf_sample_data *data, 4082 struct pt_regs *regs) 4083 { 4084 struct perf_output_handle handle; 4085 struct perf_event_header header; 4086 4087 /* protect the callchain buffers */ 4088 rcu_read_lock(); 4089 4090 perf_prepare_sample(&header, data, event, regs); 4091 4092 if (perf_output_begin(&handle, event, header.size)) 4093 goto exit; 4094 4095 perf_output_sample(&handle, &header, data, event); 4096 4097 perf_output_end(&handle); 4098 4099 exit: 4100 rcu_read_unlock(); 4101 } 4102 4103 /* 4104 * read event_id 4105 */ 4106 4107 struct perf_read_event { 4108 struct perf_event_header header; 4109 4110 u32 pid; 4111 u32 tid; 4112 }; 4113 4114 static void 4115 perf_event_read_event(struct perf_event *event, 4116 struct task_struct *task) 4117 { 4118 struct perf_output_handle handle; 4119 struct perf_sample_data sample; 4120 struct perf_read_event read_event = { 4121 .header = { 4122 .type = PERF_RECORD_READ, 4123 .misc = 0, 4124 .size = sizeof(read_event) + event->read_size, 4125 }, 4126 .pid = perf_event_pid(event, task), 4127 .tid = perf_event_tid(event, task), 4128 }; 4129 int ret; 4130 4131 perf_event_header__init_id(&read_event.header, &sample, event); 4132 ret = perf_output_begin(&handle, event, read_event.header.size); 4133 if (ret) 4134 return; 4135 4136 perf_output_put(&handle, read_event); 4137 perf_output_read(&handle, event); 4138 perf_event__output_id_sample(event, &handle, &sample); 4139 4140 perf_output_end(&handle); 4141 } 4142 4143 /* 4144 * task tracking -- fork/exit 4145 * 4146 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4147 */ 4148 4149 struct perf_task_event { 4150 struct task_struct *task; 4151 struct perf_event_context *task_ctx; 4152 4153 struct { 4154 struct perf_event_header header; 4155 4156 u32 pid; 4157 u32 ppid; 4158 u32 tid; 4159 u32 ptid; 4160 u64 time; 4161 } event_id; 4162 }; 4163 4164 static void perf_event_task_output(struct perf_event *event, 4165 struct perf_task_event *task_event) 4166 { 4167 struct perf_output_handle handle; 4168 struct perf_sample_data sample; 4169 struct task_struct *task = task_event->task; 4170 int ret, size = task_event->event_id.header.size; 4171 4172 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4173 4174 ret = perf_output_begin(&handle, event, 4175 task_event->event_id.header.size); 4176 if (ret) 4177 goto out; 4178 4179 task_event->event_id.pid = perf_event_pid(event, task); 4180 task_event->event_id.ppid = perf_event_pid(event, current); 4181 4182 task_event->event_id.tid = perf_event_tid(event, task); 4183 task_event->event_id.ptid = perf_event_tid(event, current); 4184 4185 perf_output_put(&handle, task_event->event_id); 4186 4187 perf_event__output_id_sample(event, &handle, &sample); 4188 4189 perf_output_end(&handle); 4190 out: 4191 task_event->event_id.header.size = size; 4192 } 4193 4194 static int perf_event_task_match(struct perf_event *event) 4195 { 4196 if (event->state < PERF_EVENT_STATE_INACTIVE) 4197 return 0; 4198 4199 if (!event_filter_match(event)) 4200 return 0; 4201 4202 if (event->attr.comm || event->attr.mmap || 4203 event->attr.mmap_data || event->attr.task) 4204 return 1; 4205 4206 return 0; 4207 } 4208 4209 static void perf_event_task_ctx(struct perf_event_context *ctx, 4210 struct perf_task_event *task_event) 4211 { 4212 struct perf_event *event; 4213 4214 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4215 if (perf_event_task_match(event)) 4216 perf_event_task_output(event, task_event); 4217 } 4218 } 4219 4220 static void perf_event_task_event(struct perf_task_event *task_event) 4221 { 4222 struct perf_cpu_context *cpuctx; 4223 struct perf_event_context *ctx; 4224 struct pmu *pmu; 4225 int ctxn; 4226 4227 rcu_read_lock(); 4228 list_for_each_entry_rcu(pmu, &pmus, entry) { 4229 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4230 if (cpuctx->active_pmu != pmu) 4231 goto next; 4232 perf_event_task_ctx(&cpuctx->ctx, task_event); 4233 4234 ctx = task_event->task_ctx; 4235 if (!ctx) { 4236 ctxn = pmu->task_ctx_nr; 4237 if (ctxn < 0) 4238 goto next; 4239 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4240 } 4241 if (ctx) 4242 perf_event_task_ctx(ctx, task_event); 4243 next: 4244 put_cpu_ptr(pmu->pmu_cpu_context); 4245 } 4246 rcu_read_unlock(); 4247 } 4248 4249 static void perf_event_task(struct task_struct *task, 4250 struct perf_event_context *task_ctx, 4251 int new) 4252 { 4253 struct perf_task_event task_event; 4254 4255 if (!atomic_read(&nr_comm_events) && 4256 !atomic_read(&nr_mmap_events) && 4257 !atomic_read(&nr_task_events)) 4258 return; 4259 4260 task_event = (struct perf_task_event){ 4261 .task = task, 4262 .task_ctx = task_ctx, 4263 .event_id = { 4264 .header = { 4265 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4266 .misc = 0, 4267 .size = sizeof(task_event.event_id), 4268 }, 4269 /* .pid */ 4270 /* .ppid */ 4271 /* .tid */ 4272 /* .ptid */ 4273 .time = perf_clock(), 4274 }, 4275 }; 4276 4277 perf_event_task_event(&task_event); 4278 } 4279 4280 void perf_event_fork(struct task_struct *task) 4281 { 4282 perf_event_task(task, NULL, 1); 4283 } 4284 4285 /* 4286 * comm tracking 4287 */ 4288 4289 struct perf_comm_event { 4290 struct task_struct *task; 4291 char *comm; 4292 int comm_size; 4293 4294 struct { 4295 struct perf_event_header header; 4296 4297 u32 pid; 4298 u32 tid; 4299 } event_id; 4300 }; 4301 4302 static void perf_event_comm_output(struct perf_event *event, 4303 struct perf_comm_event *comm_event) 4304 { 4305 struct perf_output_handle handle; 4306 struct perf_sample_data sample; 4307 int size = comm_event->event_id.header.size; 4308 int ret; 4309 4310 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4311 ret = perf_output_begin(&handle, event, 4312 comm_event->event_id.header.size); 4313 4314 if (ret) 4315 goto out; 4316 4317 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4318 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4319 4320 perf_output_put(&handle, comm_event->event_id); 4321 __output_copy(&handle, comm_event->comm, 4322 comm_event->comm_size); 4323 4324 perf_event__output_id_sample(event, &handle, &sample); 4325 4326 perf_output_end(&handle); 4327 out: 4328 comm_event->event_id.header.size = size; 4329 } 4330 4331 static int perf_event_comm_match(struct perf_event *event) 4332 { 4333 if (event->state < PERF_EVENT_STATE_INACTIVE) 4334 return 0; 4335 4336 if (!event_filter_match(event)) 4337 return 0; 4338 4339 if (event->attr.comm) 4340 return 1; 4341 4342 return 0; 4343 } 4344 4345 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4346 struct perf_comm_event *comm_event) 4347 { 4348 struct perf_event *event; 4349 4350 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4351 if (perf_event_comm_match(event)) 4352 perf_event_comm_output(event, comm_event); 4353 } 4354 } 4355 4356 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4357 { 4358 struct perf_cpu_context *cpuctx; 4359 struct perf_event_context *ctx; 4360 char comm[TASK_COMM_LEN]; 4361 unsigned int size; 4362 struct pmu *pmu; 4363 int ctxn; 4364 4365 memset(comm, 0, sizeof(comm)); 4366 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4367 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4368 4369 comm_event->comm = comm; 4370 comm_event->comm_size = size; 4371 4372 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4373 rcu_read_lock(); 4374 list_for_each_entry_rcu(pmu, &pmus, entry) { 4375 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4376 if (cpuctx->active_pmu != pmu) 4377 goto next; 4378 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4379 4380 ctxn = pmu->task_ctx_nr; 4381 if (ctxn < 0) 4382 goto next; 4383 4384 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4385 if (ctx) 4386 perf_event_comm_ctx(ctx, comm_event); 4387 next: 4388 put_cpu_ptr(pmu->pmu_cpu_context); 4389 } 4390 rcu_read_unlock(); 4391 } 4392 4393 void perf_event_comm(struct task_struct *task) 4394 { 4395 struct perf_comm_event comm_event; 4396 struct perf_event_context *ctx; 4397 int ctxn; 4398 4399 for_each_task_context_nr(ctxn) { 4400 ctx = task->perf_event_ctxp[ctxn]; 4401 if (!ctx) 4402 continue; 4403 4404 perf_event_enable_on_exec(ctx); 4405 } 4406 4407 if (!atomic_read(&nr_comm_events)) 4408 return; 4409 4410 comm_event = (struct perf_comm_event){ 4411 .task = task, 4412 /* .comm */ 4413 /* .comm_size */ 4414 .event_id = { 4415 .header = { 4416 .type = PERF_RECORD_COMM, 4417 .misc = 0, 4418 /* .size */ 4419 }, 4420 /* .pid */ 4421 /* .tid */ 4422 }, 4423 }; 4424 4425 perf_event_comm_event(&comm_event); 4426 } 4427 4428 /* 4429 * mmap tracking 4430 */ 4431 4432 struct perf_mmap_event { 4433 struct vm_area_struct *vma; 4434 4435 const char *file_name; 4436 int file_size; 4437 4438 struct { 4439 struct perf_event_header header; 4440 4441 u32 pid; 4442 u32 tid; 4443 u64 start; 4444 u64 len; 4445 u64 pgoff; 4446 } event_id; 4447 }; 4448 4449 static void perf_event_mmap_output(struct perf_event *event, 4450 struct perf_mmap_event *mmap_event) 4451 { 4452 struct perf_output_handle handle; 4453 struct perf_sample_data sample; 4454 int size = mmap_event->event_id.header.size; 4455 int ret; 4456 4457 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4458 ret = perf_output_begin(&handle, event, 4459 mmap_event->event_id.header.size); 4460 if (ret) 4461 goto out; 4462 4463 mmap_event->event_id.pid = perf_event_pid(event, current); 4464 mmap_event->event_id.tid = perf_event_tid(event, current); 4465 4466 perf_output_put(&handle, mmap_event->event_id); 4467 __output_copy(&handle, mmap_event->file_name, 4468 mmap_event->file_size); 4469 4470 perf_event__output_id_sample(event, &handle, &sample); 4471 4472 perf_output_end(&handle); 4473 out: 4474 mmap_event->event_id.header.size = size; 4475 } 4476 4477 static int perf_event_mmap_match(struct perf_event *event, 4478 struct perf_mmap_event *mmap_event, 4479 int executable) 4480 { 4481 if (event->state < PERF_EVENT_STATE_INACTIVE) 4482 return 0; 4483 4484 if (!event_filter_match(event)) 4485 return 0; 4486 4487 if ((!executable && event->attr.mmap_data) || 4488 (executable && event->attr.mmap)) 4489 return 1; 4490 4491 return 0; 4492 } 4493 4494 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4495 struct perf_mmap_event *mmap_event, 4496 int executable) 4497 { 4498 struct perf_event *event; 4499 4500 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4501 if (perf_event_mmap_match(event, mmap_event, executable)) 4502 perf_event_mmap_output(event, mmap_event); 4503 } 4504 } 4505 4506 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4507 { 4508 struct perf_cpu_context *cpuctx; 4509 struct perf_event_context *ctx; 4510 struct vm_area_struct *vma = mmap_event->vma; 4511 struct file *file = vma->vm_file; 4512 unsigned int size; 4513 char tmp[16]; 4514 char *buf = NULL; 4515 const char *name; 4516 struct pmu *pmu; 4517 int ctxn; 4518 4519 memset(tmp, 0, sizeof(tmp)); 4520 4521 if (file) { 4522 /* 4523 * d_path works from the end of the rb backwards, so we 4524 * need to add enough zero bytes after the string to handle 4525 * the 64bit alignment we do later. 4526 */ 4527 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4528 if (!buf) { 4529 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4530 goto got_name; 4531 } 4532 name = d_path(&file->f_path, buf, PATH_MAX); 4533 if (IS_ERR(name)) { 4534 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4535 goto got_name; 4536 } 4537 } else { 4538 if (arch_vma_name(mmap_event->vma)) { 4539 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4540 sizeof(tmp)); 4541 goto got_name; 4542 } 4543 4544 if (!vma->vm_mm) { 4545 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4546 goto got_name; 4547 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4548 vma->vm_end >= vma->vm_mm->brk) { 4549 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4550 goto got_name; 4551 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4552 vma->vm_end >= vma->vm_mm->start_stack) { 4553 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4554 goto got_name; 4555 } 4556 4557 name = strncpy(tmp, "//anon", sizeof(tmp)); 4558 goto got_name; 4559 } 4560 4561 got_name: 4562 size = ALIGN(strlen(name)+1, sizeof(u64)); 4563 4564 mmap_event->file_name = name; 4565 mmap_event->file_size = size; 4566 4567 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4568 4569 rcu_read_lock(); 4570 list_for_each_entry_rcu(pmu, &pmus, entry) { 4571 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4572 if (cpuctx->active_pmu != pmu) 4573 goto next; 4574 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4575 vma->vm_flags & VM_EXEC); 4576 4577 ctxn = pmu->task_ctx_nr; 4578 if (ctxn < 0) 4579 goto next; 4580 4581 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4582 if (ctx) { 4583 perf_event_mmap_ctx(ctx, mmap_event, 4584 vma->vm_flags & VM_EXEC); 4585 } 4586 next: 4587 put_cpu_ptr(pmu->pmu_cpu_context); 4588 } 4589 rcu_read_unlock(); 4590 4591 kfree(buf); 4592 } 4593 4594 void perf_event_mmap(struct vm_area_struct *vma) 4595 { 4596 struct perf_mmap_event mmap_event; 4597 4598 if (!atomic_read(&nr_mmap_events)) 4599 return; 4600 4601 mmap_event = (struct perf_mmap_event){ 4602 .vma = vma, 4603 /* .file_name */ 4604 /* .file_size */ 4605 .event_id = { 4606 .header = { 4607 .type = PERF_RECORD_MMAP, 4608 .misc = PERF_RECORD_MISC_USER, 4609 /* .size */ 4610 }, 4611 /* .pid */ 4612 /* .tid */ 4613 .start = vma->vm_start, 4614 .len = vma->vm_end - vma->vm_start, 4615 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4616 }, 4617 }; 4618 4619 perf_event_mmap_event(&mmap_event); 4620 } 4621 4622 /* 4623 * IRQ throttle logging 4624 */ 4625 4626 static void perf_log_throttle(struct perf_event *event, int enable) 4627 { 4628 struct perf_output_handle handle; 4629 struct perf_sample_data sample; 4630 int ret; 4631 4632 struct { 4633 struct perf_event_header header; 4634 u64 time; 4635 u64 id; 4636 u64 stream_id; 4637 } throttle_event = { 4638 .header = { 4639 .type = PERF_RECORD_THROTTLE, 4640 .misc = 0, 4641 .size = sizeof(throttle_event), 4642 }, 4643 .time = perf_clock(), 4644 .id = primary_event_id(event), 4645 .stream_id = event->id, 4646 }; 4647 4648 if (enable) 4649 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4650 4651 perf_event_header__init_id(&throttle_event.header, &sample, event); 4652 4653 ret = perf_output_begin(&handle, event, 4654 throttle_event.header.size); 4655 if (ret) 4656 return; 4657 4658 perf_output_put(&handle, throttle_event); 4659 perf_event__output_id_sample(event, &handle, &sample); 4660 perf_output_end(&handle); 4661 } 4662 4663 /* 4664 * Generic event overflow handling, sampling. 4665 */ 4666 4667 static int __perf_event_overflow(struct perf_event *event, 4668 int throttle, struct perf_sample_data *data, 4669 struct pt_regs *regs) 4670 { 4671 int events = atomic_read(&event->event_limit); 4672 struct hw_perf_event *hwc = &event->hw; 4673 u64 seq; 4674 int ret = 0; 4675 4676 /* 4677 * Non-sampling counters might still use the PMI to fold short 4678 * hardware counters, ignore those. 4679 */ 4680 if (unlikely(!is_sampling_event(event))) 4681 return 0; 4682 4683 seq = __this_cpu_read(perf_throttled_seq); 4684 if (seq != hwc->interrupts_seq) { 4685 hwc->interrupts_seq = seq; 4686 hwc->interrupts = 1; 4687 } else { 4688 hwc->interrupts++; 4689 if (unlikely(throttle 4690 && hwc->interrupts >= max_samples_per_tick)) { 4691 __this_cpu_inc(perf_throttled_count); 4692 hwc->interrupts = MAX_INTERRUPTS; 4693 perf_log_throttle(event, 0); 4694 ret = 1; 4695 } 4696 } 4697 4698 if (event->attr.freq) { 4699 u64 now = perf_clock(); 4700 s64 delta = now - hwc->freq_time_stamp; 4701 4702 hwc->freq_time_stamp = now; 4703 4704 if (delta > 0 && delta < 2*TICK_NSEC) 4705 perf_adjust_period(event, delta, hwc->last_period, true); 4706 } 4707 4708 /* 4709 * XXX event_limit might not quite work as expected on inherited 4710 * events 4711 */ 4712 4713 event->pending_kill = POLL_IN; 4714 if (events && atomic_dec_and_test(&event->event_limit)) { 4715 ret = 1; 4716 event->pending_kill = POLL_HUP; 4717 event->pending_disable = 1; 4718 irq_work_queue(&event->pending); 4719 } 4720 4721 if (event->overflow_handler) 4722 event->overflow_handler(event, data, regs); 4723 else 4724 perf_event_output(event, data, regs); 4725 4726 if (event->fasync && event->pending_kill) { 4727 event->pending_wakeup = 1; 4728 irq_work_queue(&event->pending); 4729 } 4730 4731 return ret; 4732 } 4733 4734 int perf_event_overflow(struct perf_event *event, 4735 struct perf_sample_data *data, 4736 struct pt_regs *regs) 4737 { 4738 return __perf_event_overflow(event, 1, data, regs); 4739 } 4740 4741 /* 4742 * Generic software event infrastructure 4743 */ 4744 4745 struct swevent_htable { 4746 struct swevent_hlist *swevent_hlist; 4747 struct mutex hlist_mutex; 4748 int hlist_refcount; 4749 4750 /* Recursion avoidance in each contexts */ 4751 int recursion[PERF_NR_CONTEXTS]; 4752 }; 4753 4754 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4755 4756 /* 4757 * We directly increment event->count and keep a second value in 4758 * event->hw.period_left to count intervals. This period event 4759 * is kept in the range [-sample_period, 0] so that we can use the 4760 * sign as trigger. 4761 */ 4762 4763 static u64 perf_swevent_set_period(struct perf_event *event) 4764 { 4765 struct hw_perf_event *hwc = &event->hw; 4766 u64 period = hwc->last_period; 4767 u64 nr, offset; 4768 s64 old, val; 4769 4770 hwc->last_period = hwc->sample_period; 4771 4772 again: 4773 old = val = local64_read(&hwc->period_left); 4774 if (val < 0) 4775 return 0; 4776 4777 nr = div64_u64(period + val, period); 4778 offset = nr * period; 4779 val -= offset; 4780 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4781 goto again; 4782 4783 return nr; 4784 } 4785 4786 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4787 struct perf_sample_data *data, 4788 struct pt_regs *regs) 4789 { 4790 struct hw_perf_event *hwc = &event->hw; 4791 int throttle = 0; 4792 4793 if (!overflow) 4794 overflow = perf_swevent_set_period(event); 4795 4796 if (hwc->interrupts == MAX_INTERRUPTS) 4797 return; 4798 4799 for (; overflow; overflow--) { 4800 if (__perf_event_overflow(event, throttle, 4801 data, regs)) { 4802 /* 4803 * We inhibit the overflow from happening when 4804 * hwc->interrupts == MAX_INTERRUPTS. 4805 */ 4806 break; 4807 } 4808 throttle = 1; 4809 } 4810 } 4811 4812 static void perf_swevent_event(struct perf_event *event, u64 nr, 4813 struct perf_sample_data *data, 4814 struct pt_regs *regs) 4815 { 4816 struct hw_perf_event *hwc = &event->hw; 4817 4818 local64_add(nr, &event->count); 4819 4820 if (!regs) 4821 return; 4822 4823 if (!is_sampling_event(event)) 4824 return; 4825 4826 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4827 data->period = nr; 4828 return perf_swevent_overflow(event, 1, data, regs); 4829 } else 4830 data->period = event->hw.last_period; 4831 4832 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4833 return perf_swevent_overflow(event, 1, data, regs); 4834 4835 if (local64_add_negative(nr, &hwc->period_left)) 4836 return; 4837 4838 perf_swevent_overflow(event, 0, data, regs); 4839 } 4840 4841 static int perf_exclude_event(struct perf_event *event, 4842 struct pt_regs *regs) 4843 { 4844 if (event->hw.state & PERF_HES_STOPPED) 4845 return 1; 4846 4847 if (regs) { 4848 if (event->attr.exclude_user && user_mode(regs)) 4849 return 1; 4850 4851 if (event->attr.exclude_kernel && !user_mode(regs)) 4852 return 1; 4853 } 4854 4855 return 0; 4856 } 4857 4858 static int perf_swevent_match(struct perf_event *event, 4859 enum perf_type_id type, 4860 u32 event_id, 4861 struct perf_sample_data *data, 4862 struct pt_regs *regs) 4863 { 4864 if (event->attr.type != type) 4865 return 0; 4866 4867 if (event->attr.config != event_id) 4868 return 0; 4869 4870 if (perf_exclude_event(event, regs)) 4871 return 0; 4872 4873 return 1; 4874 } 4875 4876 static inline u64 swevent_hash(u64 type, u32 event_id) 4877 { 4878 u64 val = event_id | (type << 32); 4879 4880 return hash_64(val, SWEVENT_HLIST_BITS); 4881 } 4882 4883 static inline struct hlist_head * 4884 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4885 { 4886 u64 hash = swevent_hash(type, event_id); 4887 4888 return &hlist->heads[hash]; 4889 } 4890 4891 /* For the read side: events when they trigger */ 4892 static inline struct hlist_head * 4893 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4894 { 4895 struct swevent_hlist *hlist; 4896 4897 hlist = rcu_dereference(swhash->swevent_hlist); 4898 if (!hlist) 4899 return NULL; 4900 4901 return __find_swevent_head(hlist, type, event_id); 4902 } 4903 4904 /* For the event head insertion and removal in the hlist */ 4905 static inline struct hlist_head * 4906 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4907 { 4908 struct swevent_hlist *hlist; 4909 u32 event_id = event->attr.config; 4910 u64 type = event->attr.type; 4911 4912 /* 4913 * Event scheduling is always serialized against hlist allocation 4914 * and release. Which makes the protected version suitable here. 4915 * The context lock guarantees that. 4916 */ 4917 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4918 lockdep_is_held(&event->ctx->lock)); 4919 if (!hlist) 4920 return NULL; 4921 4922 return __find_swevent_head(hlist, type, event_id); 4923 } 4924 4925 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4926 u64 nr, 4927 struct perf_sample_data *data, 4928 struct pt_regs *regs) 4929 { 4930 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4931 struct perf_event *event; 4932 struct hlist_node *node; 4933 struct hlist_head *head; 4934 4935 rcu_read_lock(); 4936 head = find_swevent_head_rcu(swhash, type, event_id); 4937 if (!head) 4938 goto end; 4939 4940 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4941 if (perf_swevent_match(event, type, event_id, data, regs)) 4942 perf_swevent_event(event, nr, data, regs); 4943 } 4944 end: 4945 rcu_read_unlock(); 4946 } 4947 4948 int perf_swevent_get_recursion_context(void) 4949 { 4950 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4951 4952 return get_recursion_context(swhash->recursion); 4953 } 4954 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4955 4956 inline void perf_swevent_put_recursion_context(int rctx) 4957 { 4958 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4959 4960 put_recursion_context(swhash->recursion, rctx); 4961 } 4962 4963 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4964 { 4965 struct perf_sample_data data; 4966 int rctx; 4967 4968 preempt_disable_notrace(); 4969 rctx = perf_swevent_get_recursion_context(); 4970 if (rctx < 0) 4971 return; 4972 4973 perf_sample_data_init(&data, addr, 0); 4974 4975 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4976 4977 perf_swevent_put_recursion_context(rctx); 4978 preempt_enable_notrace(); 4979 } 4980 4981 static void perf_swevent_read(struct perf_event *event) 4982 { 4983 } 4984 4985 static int perf_swevent_add(struct perf_event *event, int flags) 4986 { 4987 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4988 struct hw_perf_event *hwc = &event->hw; 4989 struct hlist_head *head; 4990 4991 if (is_sampling_event(event)) { 4992 hwc->last_period = hwc->sample_period; 4993 perf_swevent_set_period(event); 4994 } 4995 4996 hwc->state = !(flags & PERF_EF_START); 4997 4998 head = find_swevent_head(swhash, event); 4999 if (WARN_ON_ONCE(!head)) 5000 return -EINVAL; 5001 5002 hlist_add_head_rcu(&event->hlist_entry, head); 5003 5004 return 0; 5005 } 5006 5007 static void perf_swevent_del(struct perf_event *event, int flags) 5008 { 5009 hlist_del_rcu(&event->hlist_entry); 5010 } 5011 5012 static void perf_swevent_start(struct perf_event *event, int flags) 5013 { 5014 event->hw.state = 0; 5015 } 5016 5017 static void perf_swevent_stop(struct perf_event *event, int flags) 5018 { 5019 event->hw.state = PERF_HES_STOPPED; 5020 } 5021 5022 /* Deref the hlist from the update side */ 5023 static inline struct swevent_hlist * 5024 swevent_hlist_deref(struct swevent_htable *swhash) 5025 { 5026 return rcu_dereference_protected(swhash->swevent_hlist, 5027 lockdep_is_held(&swhash->hlist_mutex)); 5028 } 5029 5030 static void swevent_hlist_release(struct swevent_htable *swhash) 5031 { 5032 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5033 5034 if (!hlist) 5035 return; 5036 5037 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5038 kfree_rcu(hlist, rcu_head); 5039 } 5040 5041 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5042 { 5043 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5044 5045 mutex_lock(&swhash->hlist_mutex); 5046 5047 if (!--swhash->hlist_refcount) 5048 swevent_hlist_release(swhash); 5049 5050 mutex_unlock(&swhash->hlist_mutex); 5051 } 5052 5053 static void swevent_hlist_put(struct perf_event *event) 5054 { 5055 int cpu; 5056 5057 if (event->cpu != -1) { 5058 swevent_hlist_put_cpu(event, event->cpu); 5059 return; 5060 } 5061 5062 for_each_possible_cpu(cpu) 5063 swevent_hlist_put_cpu(event, cpu); 5064 } 5065 5066 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5067 { 5068 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5069 int err = 0; 5070 5071 mutex_lock(&swhash->hlist_mutex); 5072 5073 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5074 struct swevent_hlist *hlist; 5075 5076 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5077 if (!hlist) { 5078 err = -ENOMEM; 5079 goto exit; 5080 } 5081 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5082 } 5083 swhash->hlist_refcount++; 5084 exit: 5085 mutex_unlock(&swhash->hlist_mutex); 5086 5087 return err; 5088 } 5089 5090 static int swevent_hlist_get(struct perf_event *event) 5091 { 5092 int err; 5093 int cpu, failed_cpu; 5094 5095 if (event->cpu != -1) 5096 return swevent_hlist_get_cpu(event, event->cpu); 5097 5098 get_online_cpus(); 5099 for_each_possible_cpu(cpu) { 5100 err = swevent_hlist_get_cpu(event, cpu); 5101 if (err) { 5102 failed_cpu = cpu; 5103 goto fail; 5104 } 5105 } 5106 put_online_cpus(); 5107 5108 return 0; 5109 fail: 5110 for_each_possible_cpu(cpu) { 5111 if (cpu == failed_cpu) 5112 break; 5113 swevent_hlist_put_cpu(event, cpu); 5114 } 5115 5116 put_online_cpus(); 5117 return err; 5118 } 5119 5120 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5121 5122 static void sw_perf_event_destroy(struct perf_event *event) 5123 { 5124 u64 event_id = event->attr.config; 5125 5126 WARN_ON(event->parent); 5127 5128 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5129 swevent_hlist_put(event); 5130 } 5131 5132 static int perf_swevent_init(struct perf_event *event) 5133 { 5134 int event_id = event->attr.config; 5135 5136 if (event->attr.type != PERF_TYPE_SOFTWARE) 5137 return -ENOENT; 5138 5139 /* 5140 * no branch sampling for software events 5141 */ 5142 if (has_branch_stack(event)) 5143 return -EOPNOTSUPP; 5144 5145 switch (event_id) { 5146 case PERF_COUNT_SW_CPU_CLOCK: 5147 case PERF_COUNT_SW_TASK_CLOCK: 5148 return -ENOENT; 5149 5150 default: 5151 break; 5152 } 5153 5154 if (event_id >= PERF_COUNT_SW_MAX) 5155 return -ENOENT; 5156 5157 if (!event->parent) { 5158 int err; 5159 5160 err = swevent_hlist_get(event); 5161 if (err) 5162 return err; 5163 5164 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5165 event->destroy = sw_perf_event_destroy; 5166 } 5167 5168 return 0; 5169 } 5170 5171 static int perf_swevent_event_idx(struct perf_event *event) 5172 { 5173 return 0; 5174 } 5175 5176 static struct pmu perf_swevent = { 5177 .task_ctx_nr = perf_sw_context, 5178 5179 .event_init = perf_swevent_init, 5180 .add = perf_swevent_add, 5181 .del = perf_swevent_del, 5182 .start = perf_swevent_start, 5183 .stop = perf_swevent_stop, 5184 .read = perf_swevent_read, 5185 5186 .event_idx = perf_swevent_event_idx, 5187 }; 5188 5189 #ifdef CONFIG_EVENT_TRACING 5190 5191 static int perf_tp_filter_match(struct perf_event *event, 5192 struct perf_sample_data *data) 5193 { 5194 void *record = data->raw->data; 5195 5196 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5197 return 1; 5198 return 0; 5199 } 5200 5201 static int perf_tp_event_match(struct perf_event *event, 5202 struct perf_sample_data *data, 5203 struct pt_regs *regs) 5204 { 5205 if (event->hw.state & PERF_HES_STOPPED) 5206 return 0; 5207 /* 5208 * All tracepoints are from kernel-space. 5209 */ 5210 if (event->attr.exclude_kernel) 5211 return 0; 5212 5213 if (!perf_tp_filter_match(event, data)) 5214 return 0; 5215 5216 return 1; 5217 } 5218 5219 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5220 struct pt_regs *regs, struct hlist_head *head, int rctx, 5221 struct task_struct *task) 5222 { 5223 struct perf_sample_data data; 5224 struct perf_event *event; 5225 struct hlist_node *node; 5226 5227 struct perf_raw_record raw = { 5228 .size = entry_size, 5229 .data = record, 5230 }; 5231 5232 perf_sample_data_init(&data, addr, 0); 5233 data.raw = &raw; 5234 5235 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5236 if (perf_tp_event_match(event, &data, regs)) 5237 perf_swevent_event(event, count, &data, regs); 5238 } 5239 5240 /* 5241 * If we got specified a target task, also iterate its context and 5242 * deliver this event there too. 5243 */ 5244 if (task && task != current) { 5245 struct perf_event_context *ctx; 5246 struct trace_entry *entry = record; 5247 5248 rcu_read_lock(); 5249 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5250 if (!ctx) 5251 goto unlock; 5252 5253 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5254 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5255 continue; 5256 if (event->attr.config != entry->type) 5257 continue; 5258 if (perf_tp_event_match(event, &data, regs)) 5259 perf_swevent_event(event, count, &data, regs); 5260 } 5261 unlock: 5262 rcu_read_unlock(); 5263 } 5264 5265 perf_swevent_put_recursion_context(rctx); 5266 } 5267 EXPORT_SYMBOL_GPL(perf_tp_event); 5268 5269 static void tp_perf_event_destroy(struct perf_event *event) 5270 { 5271 perf_trace_destroy(event); 5272 } 5273 5274 static int perf_tp_event_init(struct perf_event *event) 5275 { 5276 int err; 5277 5278 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5279 return -ENOENT; 5280 5281 /* 5282 * no branch sampling for tracepoint events 5283 */ 5284 if (has_branch_stack(event)) 5285 return -EOPNOTSUPP; 5286 5287 err = perf_trace_init(event); 5288 if (err) 5289 return err; 5290 5291 event->destroy = tp_perf_event_destroy; 5292 5293 return 0; 5294 } 5295 5296 static struct pmu perf_tracepoint = { 5297 .task_ctx_nr = perf_sw_context, 5298 5299 .event_init = perf_tp_event_init, 5300 .add = perf_trace_add, 5301 .del = perf_trace_del, 5302 .start = perf_swevent_start, 5303 .stop = perf_swevent_stop, 5304 .read = perf_swevent_read, 5305 5306 .event_idx = perf_swevent_event_idx, 5307 }; 5308 5309 static inline void perf_tp_register(void) 5310 { 5311 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5312 } 5313 5314 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5315 { 5316 char *filter_str; 5317 int ret; 5318 5319 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5320 return -EINVAL; 5321 5322 filter_str = strndup_user(arg, PAGE_SIZE); 5323 if (IS_ERR(filter_str)) 5324 return PTR_ERR(filter_str); 5325 5326 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5327 5328 kfree(filter_str); 5329 return ret; 5330 } 5331 5332 static void perf_event_free_filter(struct perf_event *event) 5333 { 5334 ftrace_profile_free_filter(event); 5335 } 5336 5337 #else 5338 5339 static inline void perf_tp_register(void) 5340 { 5341 } 5342 5343 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5344 { 5345 return -ENOENT; 5346 } 5347 5348 static void perf_event_free_filter(struct perf_event *event) 5349 { 5350 } 5351 5352 #endif /* CONFIG_EVENT_TRACING */ 5353 5354 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5355 void perf_bp_event(struct perf_event *bp, void *data) 5356 { 5357 struct perf_sample_data sample; 5358 struct pt_regs *regs = data; 5359 5360 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5361 5362 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5363 perf_swevent_event(bp, 1, &sample, regs); 5364 } 5365 #endif 5366 5367 /* 5368 * hrtimer based swevent callback 5369 */ 5370 5371 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5372 { 5373 enum hrtimer_restart ret = HRTIMER_RESTART; 5374 struct perf_sample_data data; 5375 struct pt_regs *regs; 5376 struct perf_event *event; 5377 u64 period; 5378 5379 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5380 5381 if (event->state != PERF_EVENT_STATE_ACTIVE) 5382 return HRTIMER_NORESTART; 5383 5384 event->pmu->read(event); 5385 5386 perf_sample_data_init(&data, 0, event->hw.last_period); 5387 regs = get_irq_regs(); 5388 5389 if (regs && !perf_exclude_event(event, regs)) { 5390 if (!(event->attr.exclude_idle && is_idle_task(current))) 5391 if (__perf_event_overflow(event, 1, &data, regs)) 5392 ret = HRTIMER_NORESTART; 5393 } 5394 5395 period = max_t(u64, 10000, event->hw.sample_period); 5396 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5397 5398 return ret; 5399 } 5400 5401 static void perf_swevent_start_hrtimer(struct perf_event *event) 5402 { 5403 struct hw_perf_event *hwc = &event->hw; 5404 s64 period; 5405 5406 if (!is_sampling_event(event)) 5407 return; 5408 5409 period = local64_read(&hwc->period_left); 5410 if (period) { 5411 if (period < 0) 5412 period = 10000; 5413 5414 local64_set(&hwc->period_left, 0); 5415 } else { 5416 period = max_t(u64, 10000, hwc->sample_period); 5417 } 5418 __hrtimer_start_range_ns(&hwc->hrtimer, 5419 ns_to_ktime(period), 0, 5420 HRTIMER_MODE_REL_PINNED, 0); 5421 } 5422 5423 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5424 { 5425 struct hw_perf_event *hwc = &event->hw; 5426 5427 if (is_sampling_event(event)) { 5428 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5429 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5430 5431 hrtimer_cancel(&hwc->hrtimer); 5432 } 5433 } 5434 5435 static void perf_swevent_init_hrtimer(struct perf_event *event) 5436 { 5437 struct hw_perf_event *hwc = &event->hw; 5438 5439 if (!is_sampling_event(event)) 5440 return; 5441 5442 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5443 hwc->hrtimer.function = perf_swevent_hrtimer; 5444 5445 /* 5446 * Since hrtimers have a fixed rate, we can do a static freq->period 5447 * mapping and avoid the whole period adjust feedback stuff. 5448 */ 5449 if (event->attr.freq) { 5450 long freq = event->attr.sample_freq; 5451 5452 event->attr.sample_period = NSEC_PER_SEC / freq; 5453 hwc->sample_period = event->attr.sample_period; 5454 local64_set(&hwc->period_left, hwc->sample_period); 5455 event->attr.freq = 0; 5456 } 5457 } 5458 5459 /* 5460 * Software event: cpu wall time clock 5461 */ 5462 5463 static void cpu_clock_event_update(struct perf_event *event) 5464 { 5465 s64 prev; 5466 u64 now; 5467 5468 now = local_clock(); 5469 prev = local64_xchg(&event->hw.prev_count, now); 5470 local64_add(now - prev, &event->count); 5471 } 5472 5473 static void cpu_clock_event_start(struct perf_event *event, int flags) 5474 { 5475 local64_set(&event->hw.prev_count, local_clock()); 5476 perf_swevent_start_hrtimer(event); 5477 } 5478 5479 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5480 { 5481 perf_swevent_cancel_hrtimer(event); 5482 cpu_clock_event_update(event); 5483 } 5484 5485 static int cpu_clock_event_add(struct perf_event *event, int flags) 5486 { 5487 if (flags & PERF_EF_START) 5488 cpu_clock_event_start(event, flags); 5489 5490 return 0; 5491 } 5492 5493 static void cpu_clock_event_del(struct perf_event *event, int flags) 5494 { 5495 cpu_clock_event_stop(event, flags); 5496 } 5497 5498 static void cpu_clock_event_read(struct perf_event *event) 5499 { 5500 cpu_clock_event_update(event); 5501 } 5502 5503 static int cpu_clock_event_init(struct perf_event *event) 5504 { 5505 if (event->attr.type != PERF_TYPE_SOFTWARE) 5506 return -ENOENT; 5507 5508 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5509 return -ENOENT; 5510 5511 /* 5512 * no branch sampling for software events 5513 */ 5514 if (has_branch_stack(event)) 5515 return -EOPNOTSUPP; 5516 5517 perf_swevent_init_hrtimer(event); 5518 5519 return 0; 5520 } 5521 5522 static struct pmu perf_cpu_clock = { 5523 .task_ctx_nr = perf_sw_context, 5524 5525 .event_init = cpu_clock_event_init, 5526 .add = cpu_clock_event_add, 5527 .del = cpu_clock_event_del, 5528 .start = cpu_clock_event_start, 5529 .stop = cpu_clock_event_stop, 5530 .read = cpu_clock_event_read, 5531 5532 .event_idx = perf_swevent_event_idx, 5533 }; 5534 5535 /* 5536 * Software event: task time clock 5537 */ 5538 5539 static void task_clock_event_update(struct perf_event *event, u64 now) 5540 { 5541 u64 prev; 5542 s64 delta; 5543 5544 prev = local64_xchg(&event->hw.prev_count, now); 5545 delta = now - prev; 5546 local64_add(delta, &event->count); 5547 } 5548 5549 static void task_clock_event_start(struct perf_event *event, int flags) 5550 { 5551 local64_set(&event->hw.prev_count, event->ctx->time); 5552 perf_swevent_start_hrtimer(event); 5553 } 5554 5555 static void task_clock_event_stop(struct perf_event *event, int flags) 5556 { 5557 perf_swevent_cancel_hrtimer(event); 5558 task_clock_event_update(event, event->ctx->time); 5559 } 5560 5561 static int task_clock_event_add(struct perf_event *event, int flags) 5562 { 5563 if (flags & PERF_EF_START) 5564 task_clock_event_start(event, flags); 5565 5566 return 0; 5567 } 5568 5569 static void task_clock_event_del(struct perf_event *event, int flags) 5570 { 5571 task_clock_event_stop(event, PERF_EF_UPDATE); 5572 } 5573 5574 static void task_clock_event_read(struct perf_event *event) 5575 { 5576 u64 now = perf_clock(); 5577 u64 delta = now - event->ctx->timestamp; 5578 u64 time = event->ctx->time + delta; 5579 5580 task_clock_event_update(event, time); 5581 } 5582 5583 static int task_clock_event_init(struct perf_event *event) 5584 { 5585 if (event->attr.type != PERF_TYPE_SOFTWARE) 5586 return -ENOENT; 5587 5588 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5589 return -ENOENT; 5590 5591 /* 5592 * no branch sampling for software events 5593 */ 5594 if (has_branch_stack(event)) 5595 return -EOPNOTSUPP; 5596 5597 perf_swevent_init_hrtimer(event); 5598 5599 return 0; 5600 } 5601 5602 static struct pmu perf_task_clock = { 5603 .task_ctx_nr = perf_sw_context, 5604 5605 .event_init = task_clock_event_init, 5606 .add = task_clock_event_add, 5607 .del = task_clock_event_del, 5608 .start = task_clock_event_start, 5609 .stop = task_clock_event_stop, 5610 .read = task_clock_event_read, 5611 5612 .event_idx = perf_swevent_event_idx, 5613 }; 5614 5615 static void perf_pmu_nop_void(struct pmu *pmu) 5616 { 5617 } 5618 5619 static int perf_pmu_nop_int(struct pmu *pmu) 5620 { 5621 return 0; 5622 } 5623 5624 static void perf_pmu_start_txn(struct pmu *pmu) 5625 { 5626 perf_pmu_disable(pmu); 5627 } 5628 5629 static int perf_pmu_commit_txn(struct pmu *pmu) 5630 { 5631 perf_pmu_enable(pmu); 5632 return 0; 5633 } 5634 5635 static void perf_pmu_cancel_txn(struct pmu *pmu) 5636 { 5637 perf_pmu_enable(pmu); 5638 } 5639 5640 static int perf_event_idx_default(struct perf_event *event) 5641 { 5642 return event->hw.idx + 1; 5643 } 5644 5645 /* 5646 * Ensures all contexts with the same task_ctx_nr have the same 5647 * pmu_cpu_context too. 5648 */ 5649 static void *find_pmu_context(int ctxn) 5650 { 5651 struct pmu *pmu; 5652 5653 if (ctxn < 0) 5654 return NULL; 5655 5656 list_for_each_entry(pmu, &pmus, entry) { 5657 if (pmu->task_ctx_nr == ctxn) 5658 return pmu->pmu_cpu_context; 5659 } 5660 5661 return NULL; 5662 } 5663 5664 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5665 { 5666 int cpu; 5667 5668 for_each_possible_cpu(cpu) { 5669 struct perf_cpu_context *cpuctx; 5670 5671 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5672 5673 if (cpuctx->active_pmu == old_pmu) 5674 cpuctx->active_pmu = pmu; 5675 } 5676 } 5677 5678 static void free_pmu_context(struct pmu *pmu) 5679 { 5680 struct pmu *i; 5681 5682 mutex_lock(&pmus_lock); 5683 /* 5684 * Like a real lame refcount. 5685 */ 5686 list_for_each_entry(i, &pmus, entry) { 5687 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5688 update_pmu_context(i, pmu); 5689 goto out; 5690 } 5691 } 5692 5693 free_percpu(pmu->pmu_cpu_context); 5694 out: 5695 mutex_unlock(&pmus_lock); 5696 } 5697 static struct idr pmu_idr; 5698 5699 static ssize_t 5700 type_show(struct device *dev, struct device_attribute *attr, char *page) 5701 { 5702 struct pmu *pmu = dev_get_drvdata(dev); 5703 5704 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5705 } 5706 5707 static struct device_attribute pmu_dev_attrs[] = { 5708 __ATTR_RO(type), 5709 __ATTR_NULL, 5710 }; 5711 5712 static int pmu_bus_running; 5713 static struct bus_type pmu_bus = { 5714 .name = "event_source", 5715 .dev_attrs = pmu_dev_attrs, 5716 }; 5717 5718 static void pmu_dev_release(struct device *dev) 5719 { 5720 kfree(dev); 5721 } 5722 5723 static int pmu_dev_alloc(struct pmu *pmu) 5724 { 5725 int ret = -ENOMEM; 5726 5727 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5728 if (!pmu->dev) 5729 goto out; 5730 5731 pmu->dev->groups = pmu->attr_groups; 5732 device_initialize(pmu->dev); 5733 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5734 if (ret) 5735 goto free_dev; 5736 5737 dev_set_drvdata(pmu->dev, pmu); 5738 pmu->dev->bus = &pmu_bus; 5739 pmu->dev->release = pmu_dev_release; 5740 ret = device_add(pmu->dev); 5741 if (ret) 5742 goto free_dev; 5743 5744 out: 5745 return ret; 5746 5747 free_dev: 5748 put_device(pmu->dev); 5749 goto out; 5750 } 5751 5752 static struct lock_class_key cpuctx_mutex; 5753 static struct lock_class_key cpuctx_lock; 5754 5755 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5756 { 5757 int cpu, ret; 5758 5759 mutex_lock(&pmus_lock); 5760 ret = -ENOMEM; 5761 pmu->pmu_disable_count = alloc_percpu(int); 5762 if (!pmu->pmu_disable_count) 5763 goto unlock; 5764 5765 pmu->type = -1; 5766 if (!name) 5767 goto skip_type; 5768 pmu->name = name; 5769 5770 if (type < 0) { 5771 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5772 if (!err) 5773 goto free_pdc; 5774 5775 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5776 if (err) { 5777 ret = err; 5778 goto free_pdc; 5779 } 5780 } 5781 pmu->type = type; 5782 5783 if (pmu_bus_running) { 5784 ret = pmu_dev_alloc(pmu); 5785 if (ret) 5786 goto free_idr; 5787 } 5788 5789 skip_type: 5790 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5791 if (pmu->pmu_cpu_context) 5792 goto got_cpu_context; 5793 5794 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5795 if (!pmu->pmu_cpu_context) 5796 goto free_dev; 5797 5798 for_each_possible_cpu(cpu) { 5799 struct perf_cpu_context *cpuctx; 5800 5801 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5802 __perf_event_init_context(&cpuctx->ctx); 5803 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5804 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5805 cpuctx->ctx.type = cpu_context; 5806 cpuctx->ctx.pmu = pmu; 5807 cpuctx->jiffies_interval = 1; 5808 INIT_LIST_HEAD(&cpuctx->rotation_list); 5809 cpuctx->active_pmu = pmu; 5810 } 5811 5812 got_cpu_context: 5813 if (!pmu->start_txn) { 5814 if (pmu->pmu_enable) { 5815 /* 5816 * If we have pmu_enable/pmu_disable calls, install 5817 * transaction stubs that use that to try and batch 5818 * hardware accesses. 5819 */ 5820 pmu->start_txn = perf_pmu_start_txn; 5821 pmu->commit_txn = perf_pmu_commit_txn; 5822 pmu->cancel_txn = perf_pmu_cancel_txn; 5823 } else { 5824 pmu->start_txn = perf_pmu_nop_void; 5825 pmu->commit_txn = perf_pmu_nop_int; 5826 pmu->cancel_txn = perf_pmu_nop_void; 5827 } 5828 } 5829 5830 if (!pmu->pmu_enable) { 5831 pmu->pmu_enable = perf_pmu_nop_void; 5832 pmu->pmu_disable = perf_pmu_nop_void; 5833 } 5834 5835 if (!pmu->event_idx) 5836 pmu->event_idx = perf_event_idx_default; 5837 5838 list_add_rcu(&pmu->entry, &pmus); 5839 ret = 0; 5840 unlock: 5841 mutex_unlock(&pmus_lock); 5842 5843 return ret; 5844 5845 free_dev: 5846 device_del(pmu->dev); 5847 put_device(pmu->dev); 5848 5849 free_idr: 5850 if (pmu->type >= PERF_TYPE_MAX) 5851 idr_remove(&pmu_idr, pmu->type); 5852 5853 free_pdc: 5854 free_percpu(pmu->pmu_disable_count); 5855 goto unlock; 5856 } 5857 5858 void perf_pmu_unregister(struct pmu *pmu) 5859 { 5860 mutex_lock(&pmus_lock); 5861 list_del_rcu(&pmu->entry); 5862 mutex_unlock(&pmus_lock); 5863 5864 /* 5865 * We dereference the pmu list under both SRCU and regular RCU, so 5866 * synchronize against both of those. 5867 */ 5868 synchronize_srcu(&pmus_srcu); 5869 synchronize_rcu(); 5870 5871 free_percpu(pmu->pmu_disable_count); 5872 if (pmu->type >= PERF_TYPE_MAX) 5873 idr_remove(&pmu_idr, pmu->type); 5874 device_del(pmu->dev); 5875 put_device(pmu->dev); 5876 free_pmu_context(pmu); 5877 } 5878 5879 struct pmu *perf_init_event(struct perf_event *event) 5880 { 5881 struct pmu *pmu = NULL; 5882 int idx; 5883 int ret; 5884 5885 idx = srcu_read_lock(&pmus_srcu); 5886 5887 rcu_read_lock(); 5888 pmu = idr_find(&pmu_idr, event->attr.type); 5889 rcu_read_unlock(); 5890 if (pmu) { 5891 event->pmu = pmu; 5892 ret = pmu->event_init(event); 5893 if (ret) 5894 pmu = ERR_PTR(ret); 5895 goto unlock; 5896 } 5897 5898 list_for_each_entry_rcu(pmu, &pmus, entry) { 5899 event->pmu = pmu; 5900 ret = pmu->event_init(event); 5901 if (!ret) 5902 goto unlock; 5903 5904 if (ret != -ENOENT) { 5905 pmu = ERR_PTR(ret); 5906 goto unlock; 5907 } 5908 } 5909 pmu = ERR_PTR(-ENOENT); 5910 unlock: 5911 srcu_read_unlock(&pmus_srcu, idx); 5912 5913 return pmu; 5914 } 5915 5916 /* 5917 * Allocate and initialize a event structure 5918 */ 5919 static struct perf_event * 5920 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5921 struct task_struct *task, 5922 struct perf_event *group_leader, 5923 struct perf_event *parent_event, 5924 perf_overflow_handler_t overflow_handler, 5925 void *context) 5926 { 5927 struct pmu *pmu; 5928 struct perf_event *event; 5929 struct hw_perf_event *hwc; 5930 long err; 5931 5932 if ((unsigned)cpu >= nr_cpu_ids) { 5933 if (!task || cpu != -1) 5934 return ERR_PTR(-EINVAL); 5935 } 5936 5937 event = kzalloc(sizeof(*event), GFP_KERNEL); 5938 if (!event) 5939 return ERR_PTR(-ENOMEM); 5940 5941 /* 5942 * Single events are their own group leaders, with an 5943 * empty sibling list: 5944 */ 5945 if (!group_leader) 5946 group_leader = event; 5947 5948 mutex_init(&event->child_mutex); 5949 INIT_LIST_HEAD(&event->child_list); 5950 5951 INIT_LIST_HEAD(&event->group_entry); 5952 INIT_LIST_HEAD(&event->event_entry); 5953 INIT_LIST_HEAD(&event->sibling_list); 5954 INIT_LIST_HEAD(&event->rb_entry); 5955 5956 init_waitqueue_head(&event->waitq); 5957 init_irq_work(&event->pending, perf_pending_event); 5958 5959 mutex_init(&event->mmap_mutex); 5960 5961 atomic_long_set(&event->refcount, 1); 5962 event->cpu = cpu; 5963 event->attr = *attr; 5964 event->group_leader = group_leader; 5965 event->pmu = NULL; 5966 event->oncpu = -1; 5967 5968 event->parent = parent_event; 5969 5970 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5971 event->id = atomic64_inc_return(&perf_event_id); 5972 5973 event->state = PERF_EVENT_STATE_INACTIVE; 5974 5975 if (task) { 5976 event->attach_state = PERF_ATTACH_TASK; 5977 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5978 /* 5979 * hw_breakpoint is a bit difficult here.. 5980 */ 5981 if (attr->type == PERF_TYPE_BREAKPOINT) 5982 event->hw.bp_target = task; 5983 #endif 5984 } 5985 5986 if (!overflow_handler && parent_event) { 5987 overflow_handler = parent_event->overflow_handler; 5988 context = parent_event->overflow_handler_context; 5989 } 5990 5991 event->overflow_handler = overflow_handler; 5992 event->overflow_handler_context = context; 5993 5994 if (attr->disabled) 5995 event->state = PERF_EVENT_STATE_OFF; 5996 5997 pmu = NULL; 5998 5999 hwc = &event->hw; 6000 hwc->sample_period = attr->sample_period; 6001 if (attr->freq && attr->sample_freq) 6002 hwc->sample_period = 1; 6003 hwc->last_period = hwc->sample_period; 6004 6005 local64_set(&hwc->period_left, hwc->sample_period); 6006 6007 /* 6008 * we currently do not support PERF_FORMAT_GROUP on inherited events 6009 */ 6010 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6011 goto done; 6012 6013 pmu = perf_init_event(event); 6014 6015 done: 6016 err = 0; 6017 if (!pmu) 6018 err = -EINVAL; 6019 else if (IS_ERR(pmu)) 6020 err = PTR_ERR(pmu); 6021 6022 if (err) { 6023 if (event->ns) 6024 put_pid_ns(event->ns); 6025 kfree(event); 6026 return ERR_PTR(err); 6027 } 6028 6029 if (!event->parent) { 6030 if (event->attach_state & PERF_ATTACH_TASK) 6031 static_key_slow_inc(&perf_sched_events.key); 6032 if (event->attr.mmap || event->attr.mmap_data) 6033 atomic_inc(&nr_mmap_events); 6034 if (event->attr.comm) 6035 atomic_inc(&nr_comm_events); 6036 if (event->attr.task) 6037 atomic_inc(&nr_task_events); 6038 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6039 err = get_callchain_buffers(); 6040 if (err) { 6041 free_event(event); 6042 return ERR_PTR(err); 6043 } 6044 } 6045 if (has_branch_stack(event)) { 6046 static_key_slow_inc(&perf_sched_events.key); 6047 if (!(event->attach_state & PERF_ATTACH_TASK)) 6048 atomic_inc(&per_cpu(perf_branch_stack_events, 6049 event->cpu)); 6050 } 6051 } 6052 6053 return event; 6054 } 6055 6056 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6057 struct perf_event_attr *attr) 6058 { 6059 u32 size; 6060 int ret; 6061 6062 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6063 return -EFAULT; 6064 6065 /* 6066 * zero the full structure, so that a short copy will be nice. 6067 */ 6068 memset(attr, 0, sizeof(*attr)); 6069 6070 ret = get_user(size, &uattr->size); 6071 if (ret) 6072 return ret; 6073 6074 if (size > PAGE_SIZE) /* silly large */ 6075 goto err_size; 6076 6077 if (!size) /* abi compat */ 6078 size = PERF_ATTR_SIZE_VER0; 6079 6080 if (size < PERF_ATTR_SIZE_VER0) 6081 goto err_size; 6082 6083 /* 6084 * If we're handed a bigger struct than we know of, 6085 * ensure all the unknown bits are 0 - i.e. new 6086 * user-space does not rely on any kernel feature 6087 * extensions we dont know about yet. 6088 */ 6089 if (size > sizeof(*attr)) { 6090 unsigned char __user *addr; 6091 unsigned char __user *end; 6092 unsigned char val; 6093 6094 addr = (void __user *)uattr + sizeof(*attr); 6095 end = (void __user *)uattr + size; 6096 6097 for (; addr < end; addr++) { 6098 ret = get_user(val, addr); 6099 if (ret) 6100 return ret; 6101 if (val) 6102 goto err_size; 6103 } 6104 size = sizeof(*attr); 6105 } 6106 6107 ret = copy_from_user(attr, uattr, size); 6108 if (ret) 6109 return -EFAULT; 6110 6111 if (attr->__reserved_1) 6112 return -EINVAL; 6113 6114 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6115 return -EINVAL; 6116 6117 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6118 return -EINVAL; 6119 6120 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6121 u64 mask = attr->branch_sample_type; 6122 6123 /* only using defined bits */ 6124 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6125 return -EINVAL; 6126 6127 /* at least one branch bit must be set */ 6128 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6129 return -EINVAL; 6130 6131 /* kernel level capture: check permissions */ 6132 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6133 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6134 return -EACCES; 6135 6136 /* propagate priv level, when not set for branch */ 6137 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6138 6139 /* exclude_kernel checked on syscall entry */ 6140 if (!attr->exclude_kernel) 6141 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6142 6143 if (!attr->exclude_user) 6144 mask |= PERF_SAMPLE_BRANCH_USER; 6145 6146 if (!attr->exclude_hv) 6147 mask |= PERF_SAMPLE_BRANCH_HV; 6148 /* 6149 * adjust user setting (for HW filter setup) 6150 */ 6151 attr->branch_sample_type = mask; 6152 } 6153 } 6154 out: 6155 return ret; 6156 6157 err_size: 6158 put_user(sizeof(*attr), &uattr->size); 6159 ret = -E2BIG; 6160 goto out; 6161 } 6162 6163 static int 6164 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6165 { 6166 struct ring_buffer *rb = NULL, *old_rb = NULL; 6167 int ret = -EINVAL; 6168 6169 if (!output_event) 6170 goto set; 6171 6172 /* don't allow circular references */ 6173 if (event == output_event) 6174 goto out; 6175 6176 /* 6177 * Don't allow cross-cpu buffers 6178 */ 6179 if (output_event->cpu != event->cpu) 6180 goto out; 6181 6182 /* 6183 * If its not a per-cpu rb, it must be the same task. 6184 */ 6185 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6186 goto out; 6187 6188 set: 6189 mutex_lock(&event->mmap_mutex); 6190 /* Can't redirect output if we've got an active mmap() */ 6191 if (atomic_read(&event->mmap_count)) 6192 goto unlock; 6193 6194 if (output_event) { 6195 /* get the rb we want to redirect to */ 6196 rb = ring_buffer_get(output_event); 6197 if (!rb) 6198 goto unlock; 6199 } 6200 6201 old_rb = event->rb; 6202 rcu_assign_pointer(event->rb, rb); 6203 if (old_rb) 6204 ring_buffer_detach(event, old_rb); 6205 ret = 0; 6206 unlock: 6207 mutex_unlock(&event->mmap_mutex); 6208 6209 if (old_rb) 6210 ring_buffer_put(old_rb); 6211 out: 6212 return ret; 6213 } 6214 6215 /** 6216 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6217 * 6218 * @attr_uptr: event_id type attributes for monitoring/sampling 6219 * @pid: target pid 6220 * @cpu: target cpu 6221 * @group_fd: group leader event fd 6222 */ 6223 SYSCALL_DEFINE5(perf_event_open, 6224 struct perf_event_attr __user *, attr_uptr, 6225 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6226 { 6227 struct perf_event *group_leader = NULL, *output_event = NULL; 6228 struct perf_event *event, *sibling; 6229 struct perf_event_attr attr; 6230 struct perf_event_context *ctx; 6231 struct file *event_file = NULL; 6232 struct file *group_file = NULL; 6233 struct task_struct *task = NULL; 6234 struct pmu *pmu; 6235 int event_fd; 6236 int move_group = 0; 6237 int fput_needed = 0; 6238 int err; 6239 6240 /* for future expandability... */ 6241 if (flags & ~PERF_FLAG_ALL) 6242 return -EINVAL; 6243 6244 err = perf_copy_attr(attr_uptr, &attr); 6245 if (err) 6246 return err; 6247 6248 if (!attr.exclude_kernel) { 6249 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6250 return -EACCES; 6251 } 6252 6253 if (attr.freq) { 6254 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6255 return -EINVAL; 6256 } 6257 6258 /* 6259 * In cgroup mode, the pid argument is used to pass the fd 6260 * opened to the cgroup directory in cgroupfs. The cpu argument 6261 * designates the cpu on which to monitor threads from that 6262 * cgroup. 6263 */ 6264 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6265 return -EINVAL; 6266 6267 event_fd = get_unused_fd_flags(O_RDWR); 6268 if (event_fd < 0) 6269 return event_fd; 6270 6271 if (group_fd != -1) { 6272 group_file = perf_fget_light(group_fd, &fput_needed); 6273 if (IS_ERR(group_file)) { 6274 err = PTR_ERR(group_file); 6275 goto err_fd; 6276 } 6277 group_leader = group_file->private_data; 6278 if (flags & PERF_FLAG_FD_OUTPUT) 6279 output_event = group_leader; 6280 if (flags & PERF_FLAG_FD_NO_GROUP) 6281 group_leader = NULL; 6282 } 6283 6284 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6285 task = find_lively_task_by_vpid(pid); 6286 if (IS_ERR(task)) { 6287 err = PTR_ERR(task); 6288 goto err_group_fd; 6289 } 6290 } 6291 6292 get_online_cpus(); 6293 6294 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6295 NULL, NULL); 6296 if (IS_ERR(event)) { 6297 err = PTR_ERR(event); 6298 goto err_task; 6299 } 6300 6301 if (flags & PERF_FLAG_PID_CGROUP) { 6302 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6303 if (err) 6304 goto err_alloc; 6305 /* 6306 * one more event: 6307 * - that has cgroup constraint on event->cpu 6308 * - that may need work on context switch 6309 */ 6310 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6311 static_key_slow_inc(&perf_sched_events.key); 6312 } 6313 6314 /* 6315 * Special case software events and allow them to be part of 6316 * any hardware group. 6317 */ 6318 pmu = event->pmu; 6319 6320 if (group_leader && 6321 (is_software_event(event) != is_software_event(group_leader))) { 6322 if (is_software_event(event)) { 6323 /* 6324 * If event and group_leader are not both a software 6325 * event, and event is, then group leader is not. 6326 * 6327 * Allow the addition of software events to !software 6328 * groups, this is safe because software events never 6329 * fail to schedule. 6330 */ 6331 pmu = group_leader->pmu; 6332 } else if (is_software_event(group_leader) && 6333 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6334 /* 6335 * In case the group is a pure software group, and we 6336 * try to add a hardware event, move the whole group to 6337 * the hardware context. 6338 */ 6339 move_group = 1; 6340 } 6341 } 6342 6343 /* 6344 * Get the target context (task or percpu): 6345 */ 6346 ctx = find_get_context(pmu, task, event->cpu); 6347 if (IS_ERR(ctx)) { 6348 err = PTR_ERR(ctx); 6349 goto err_alloc; 6350 } 6351 6352 if (task) { 6353 put_task_struct(task); 6354 task = NULL; 6355 } 6356 6357 /* 6358 * Look up the group leader (we will attach this event to it): 6359 */ 6360 if (group_leader) { 6361 err = -EINVAL; 6362 6363 /* 6364 * Do not allow a recursive hierarchy (this new sibling 6365 * becoming part of another group-sibling): 6366 */ 6367 if (group_leader->group_leader != group_leader) 6368 goto err_context; 6369 /* 6370 * Do not allow to attach to a group in a different 6371 * task or CPU context: 6372 */ 6373 if (move_group) { 6374 if (group_leader->ctx->type != ctx->type) 6375 goto err_context; 6376 } else { 6377 if (group_leader->ctx != ctx) 6378 goto err_context; 6379 } 6380 6381 /* 6382 * Only a group leader can be exclusive or pinned 6383 */ 6384 if (attr.exclusive || attr.pinned) 6385 goto err_context; 6386 } 6387 6388 if (output_event) { 6389 err = perf_event_set_output(event, output_event); 6390 if (err) 6391 goto err_context; 6392 } 6393 6394 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6395 if (IS_ERR(event_file)) { 6396 err = PTR_ERR(event_file); 6397 goto err_context; 6398 } 6399 6400 if (move_group) { 6401 struct perf_event_context *gctx = group_leader->ctx; 6402 6403 mutex_lock(&gctx->mutex); 6404 perf_remove_from_context(group_leader); 6405 list_for_each_entry(sibling, &group_leader->sibling_list, 6406 group_entry) { 6407 perf_remove_from_context(sibling); 6408 put_ctx(gctx); 6409 } 6410 mutex_unlock(&gctx->mutex); 6411 put_ctx(gctx); 6412 } 6413 6414 WARN_ON_ONCE(ctx->parent_ctx); 6415 mutex_lock(&ctx->mutex); 6416 6417 if (move_group) { 6418 synchronize_rcu(); 6419 perf_install_in_context(ctx, group_leader, event->cpu); 6420 get_ctx(ctx); 6421 list_for_each_entry(sibling, &group_leader->sibling_list, 6422 group_entry) { 6423 perf_install_in_context(ctx, sibling, event->cpu); 6424 get_ctx(ctx); 6425 } 6426 } 6427 6428 perf_install_in_context(ctx, event, event->cpu); 6429 ++ctx->generation; 6430 perf_unpin_context(ctx); 6431 mutex_unlock(&ctx->mutex); 6432 6433 put_online_cpus(); 6434 6435 event->owner = current; 6436 6437 mutex_lock(¤t->perf_event_mutex); 6438 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6439 mutex_unlock(¤t->perf_event_mutex); 6440 6441 /* 6442 * Precalculate sample_data sizes 6443 */ 6444 perf_event__header_size(event); 6445 perf_event__id_header_size(event); 6446 6447 /* 6448 * Drop the reference on the group_event after placing the 6449 * new event on the sibling_list. This ensures destruction 6450 * of the group leader will find the pointer to itself in 6451 * perf_group_detach(). 6452 */ 6453 fput_light(group_file, fput_needed); 6454 fd_install(event_fd, event_file); 6455 return event_fd; 6456 6457 err_context: 6458 perf_unpin_context(ctx); 6459 put_ctx(ctx); 6460 err_alloc: 6461 free_event(event); 6462 err_task: 6463 put_online_cpus(); 6464 if (task) 6465 put_task_struct(task); 6466 err_group_fd: 6467 fput_light(group_file, fput_needed); 6468 err_fd: 6469 put_unused_fd(event_fd); 6470 return err; 6471 } 6472 6473 /** 6474 * perf_event_create_kernel_counter 6475 * 6476 * @attr: attributes of the counter to create 6477 * @cpu: cpu in which the counter is bound 6478 * @task: task to profile (NULL for percpu) 6479 */ 6480 struct perf_event * 6481 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6482 struct task_struct *task, 6483 perf_overflow_handler_t overflow_handler, 6484 void *context) 6485 { 6486 struct perf_event_context *ctx; 6487 struct perf_event *event; 6488 int err; 6489 6490 /* 6491 * Get the target context (task or percpu): 6492 */ 6493 6494 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6495 overflow_handler, context); 6496 if (IS_ERR(event)) { 6497 err = PTR_ERR(event); 6498 goto err; 6499 } 6500 6501 ctx = find_get_context(event->pmu, task, cpu); 6502 if (IS_ERR(ctx)) { 6503 err = PTR_ERR(ctx); 6504 goto err_free; 6505 } 6506 6507 WARN_ON_ONCE(ctx->parent_ctx); 6508 mutex_lock(&ctx->mutex); 6509 perf_install_in_context(ctx, event, cpu); 6510 ++ctx->generation; 6511 perf_unpin_context(ctx); 6512 mutex_unlock(&ctx->mutex); 6513 6514 return event; 6515 6516 err_free: 6517 free_event(event); 6518 err: 6519 return ERR_PTR(err); 6520 } 6521 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6522 6523 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6524 { 6525 struct perf_event_context *src_ctx; 6526 struct perf_event_context *dst_ctx; 6527 struct perf_event *event, *tmp; 6528 LIST_HEAD(events); 6529 6530 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6531 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6532 6533 mutex_lock(&src_ctx->mutex); 6534 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6535 event_entry) { 6536 perf_remove_from_context(event); 6537 put_ctx(src_ctx); 6538 list_add(&event->event_entry, &events); 6539 } 6540 mutex_unlock(&src_ctx->mutex); 6541 6542 synchronize_rcu(); 6543 6544 mutex_lock(&dst_ctx->mutex); 6545 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6546 list_del(&event->event_entry); 6547 if (event->state >= PERF_EVENT_STATE_OFF) 6548 event->state = PERF_EVENT_STATE_INACTIVE; 6549 perf_install_in_context(dst_ctx, event, dst_cpu); 6550 get_ctx(dst_ctx); 6551 } 6552 mutex_unlock(&dst_ctx->mutex); 6553 } 6554 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6555 6556 static void sync_child_event(struct perf_event *child_event, 6557 struct task_struct *child) 6558 { 6559 struct perf_event *parent_event = child_event->parent; 6560 u64 child_val; 6561 6562 if (child_event->attr.inherit_stat) 6563 perf_event_read_event(child_event, child); 6564 6565 child_val = perf_event_count(child_event); 6566 6567 /* 6568 * Add back the child's count to the parent's count: 6569 */ 6570 atomic64_add(child_val, &parent_event->child_count); 6571 atomic64_add(child_event->total_time_enabled, 6572 &parent_event->child_total_time_enabled); 6573 atomic64_add(child_event->total_time_running, 6574 &parent_event->child_total_time_running); 6575 6576 /* 6577 * Remove this event from the parent's list 6578 */ 6579 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6580 mutex_lock(&parent_event->child_mutex); 6581 list_del_init(&child_event->child_list); 6582 mutex_unlock(&parent_event->child_mutex); 6583 6584 /* 6585 * Release the parent event, if this was the last 6586 * reference to it. 6587 */ 6588 put_event(parent_event); 6589 } 6590 6591 static void 6592 __perf_event_exit_task(struct perf_event *child_event, 6593 struct perf_event_context *child_ctx, 6594 struct task_struct *child) 6595 { 6596 if (child_event->parent) { 6597 raw_spin_lock_irq(&child_ctx->lock); 6598 perf_group_detach(child_event); 6599 raw_spin_unlock_irq(&child_ctx->lock); 6600 } 6601 6602 perf_remove_from_context(child_event); 6603 6604 /* 6605 * It can happen that the parent exits first, and has events 6606 * that are still around due to the child reference. These 6607 * events need to be zapped. 6608 */ 6609 if (child_event->parent) { 6610 sync_child_event(child_event, child); 6611 free_event(child_event); 6612 } 6613 } 6614 6615 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6616 { 6617 struct perf_event *child_event, *tmp; 6618 struct perf_event_context *child_ctx; 6619 unsigned long flags; 6620 6621 if (likely(!child->perf_event_ctxp[ctxn])) { 6622 perf_event_task(child, NULL, 0); 6623 return; 6624 } 6625 6626 local_irq_save(flags); 6627 /* 6628 * We can't reschedule here because interrupts are disabled, 6629 * and either child is current or it is a task that can't be 6630 * scheduled, so we are now safe from rescheduling changing 6631 * our context. 6632 */ 6633 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6634 6635 /* 6636 * Take the context lock here so that if find_get_context is 6637 * reading child->perf_event_ctxp, we wait until it has 6638 * incremented the context's refcount before we do put_ctx below. 6639 */ 6640 raw_spin_lock(&child_ctx->lock); 6641 task_ctx_sched_out(child_ctx); 6642 child->perf_event_ctxp[ctxn] = NULL; 6643 /* 6644 * If this context is a clone; unclone it so it can't get 6645 * swapped to another process while we're removing all 6646 * the events from it. 6647 */ 6648 unclone_ctx(child_ctx); 6649 update_context_time(child_ctx); 6650 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6651 6652 /* 6653 * Report the task dead after unscheduling the events so that we 6654 * won't get any samples after PERF_RECORD_EXIT. We can however still 6655 * get a few PERF_RECORD_READ events. 6656 */ 6657 perf_event_task(child, child_ctx, 0); 6658 6659 /* 6660 * We can recurse on the same lock type through: 6661 * 6662 * __perf_event_exit_task() 6663 * sync_child_event() 6664 * put_event() 6665 * mutex_lock(&ctx->mutex) 6666 * 6667 * But since its the parent context it won't be the same instance. 6668 */ 6669 mutex_lock(&child_ctx->mutex); 6670 6671 again: 6672 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6673 group_entry) 6674 __perf_event_exit_task(child_event, child_ctx, child); 6675 6676 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6677 group_entry) 6678 __perf_event_exit_task(child_event, child_ctx, child); 6679 6680 /* 6681 * If the last event was a group event, it will have appended all 6682 * its siblings to the list, but we obtained 'tmp' before that which 6683 * will still point to the list head terminating the iteration. 6684 */ 6685 if (!list_empty(&child_ctx->pinned_groups) || 6686 !list_empty(&child_ctx->flexible_groups)) 6687 goto again; 6688 6689 mutex_unlock(&child_ctx->mutex); 6690 6691 put_ctx(child_ctx); 6692 } 6693 6694 /* 6695 * When a child task exits, feed back event values to parent events. 6696 */ 6697 void perf_event_exit_task(struct task_struct *child) 6698 { 6699 struct perf_event *event, *tmp; 6700 int ctxn; 6701 6702 mutex_lock(&child->perf_event_mutex); 6703 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6704 owner_entry) { 6705 list_del_init(&event->owner_entry); 6706 6707 /* 6708 * Ensure the list deletion is visible before we clear 6709 * the owner, closes a race against perf_release() where 6710 * we need to serialize on the owner->perf_event_mutex. 6711 */ 6712 smp_wmb(); 6713 event->owner = NULL; 6714 } 6715 mutex_unlock(&child->perf_event_mutex); 6716 6717 for_each_task_context_nr(ctxn) 6718 perf_event_exit_task_context(child, ctxn); 6719 } 6720 6721 static void perf_free_event(struct perf_event *event, 6722 struct perf_event_context *ctx) 6723 { 6724 struct perf_event *parent = event->parent; 6725 6726 if (WARN_ON_ONCE(!parent)) 6727 return; 6728 6729 mutex_lock(&parent->child_mutex); 6730 list_del_init(&event->child_list); 6731 mutex_unlock(&parent->child_mutex); 6732 6733 put_event(parent); 6734 6735 perf_group_detach(event); 6736 list_del_event(event, ctx); 6737 free_event(event); 6738 } 6739 6740 /* 6741 * free an unexposed, unused context as created by inheritance by 6742 * perf_event_init_task below, used by fork() in case of fail. 6743 */ 6744 void perf_event_free_task(struct task_struct *task) 6745 { 6746 struct perf_event_context *ctx; 6747 struct perf_event *event, *tmp; 6748 int ctxn; 6749 6750 for_each_task_context_nr(ctxn) { 6751 ctx = task->perf_event_ctxp[ctxn]; 6752 if (!ctx) 6753 continue; 6754 6755 mutex_lock(&ctx->mutex); 6756 again: 6757 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6758 group_entry) 6759 perf_free_event(event, ctx); 6760 6761 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6762 group_entry) 6763 perf_free_event(event, ctx); 6764 6765 if (!list_empty(&ctx->pinned_groups) || 6766 !list_empty(&ctx->flexible_groups)) 6767 goto again; 6768 6769 mutex_unlock(&ctx->mutex); 6770 6771 put_ctx(ctx); 6772 } 6773 } 6774 6775 void perf_event_delayed_put(struct task_struct *task) 6776 { 6777 int ctxn; 6778 6779 for_each_task_context_nr(ctxn) 6780 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6781 } 6782 6783 /* 6784 * inherit a event from parent task to child task: 6785 */ 6786 static struct perf_event * 6787 inherit_event(struct perf_event *parent_event, 6788 struct task_struct *parent, 6789 struct perf_event_context *parent_ctx, 6790 struct task_struct *child, 6791 struct perf_event *group_leader, 6792 struct perf_event_context *child_ctx) 6793 { 6794 struct perf_event *child_event; 6795 unsigned long flags; 6796 6797 /* 6798 * Instead of creating recursive hierarchies of events, 6799 * we link inherited events back to the original parent, 6800 * which has a filp for sure, which we use as the reference 6801 * count: 6802 */ 6803 if (parent_event->parent) 6804 parent_event = parent_event->parent; 6805 6806 child_event = perf_event_alloc(&parent_event->attr, 6807 parent_event->cpu, 6808 child, 6809 group_leader, parent_event, 6810 NULL, NULL); 6811 if (IS_ERR(child_event)) 6812 return child_event; 6813 6814 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 6815 free_event(child_event); 6816 return NULL; 6817 } 6818 6819 get_ctx(child_ctx); 6820 6821 /* 6822 * Make the child state follow the state of the parent event, 6823 * not its attr.disabled bit. We hold the parent's mutex, 6824 * so we won't race with perf_event_{en, dis}able_family. 6825 */ 6826 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6827 child_event->state = PERF_EVENT_STATE_INACTIVE; 6828 else 6829 child_event->state = PERF_EVENT_STATE_OFF; 6830 6831 if (parent_event->attr.freq) { 6832 u64 sample_period = parent_event->hw.sample_period; 6833 struct hw_perf_event *hwc = &child_event->hw; 6834 6835 hwc->sample_period = sample_period; 6836 hwc->last_period = sample_period; 6837 6838 local64_set(&hwc->period_left, sample_period); 6839 } 6840 6841 child_event->ctx = child_ctx; 6842 child_event->overflow_handler = parent_event->overflow_handler; 6843 child_event->overflow_handler_context 6844 = parent_event->overflow_handler_context; 6845 6846 /* 6847 * Precalculate sample_data sizes 6848 */ 6849 perf_event__header_size(child_event); 6850 perf_event__id_header_size(child_event); 6851 6852 /* 6853 * Link it up in the child's context: 6854 */ 6855 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6856 add_event_to_ctx(child_event, child_ctx); 6857 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6858 6859 /* 6860 * Link this into the parent event's child list 6861 */ 6862 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6863 mutex_lock(&parent_event->child_mutex); 6864 list_add_tail(&child_event->child_list, &parent_event->child_list); 6865 mutex_unlock(&parent_event->child_mutex); 6866 6867 return child_event; 6868 } 6869 6870 static int inherit_group(struct perf_event *parent_event, 6871 struct task_struct *parent, 6872 struct perf_event_context *parent_ctx, 6873 struct task_struct *child, 6874 struct perf_event_context *child_ctx) 6875 { 6876 struct perf_event *leader; 6877 struct perf_event *sub; 6878 struct perf_event *child_ctr; 6879 6880 leader = inherit_event(parent_event, parent, parent_ctx, 6881 child, NULL, child_ctx); 6882 if (IS_ERR(leader)) 6883 return PTR_ERR(leader); 6884 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6885 child_ctr = inherit_event(sub, parent, parent_ctx, 6886 child, leader, child_ctx); 6887 if (IS_ERR(child_ctr)) 6888 return PTR_ERR(child_ctr); 6889 } 6890 return 0; 6891 } 6892 6893 static int 6894 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6895 struct perf_event_context *parent_ctx, 6896 struct task_struct *child, int ctxn, 6897 int *inherited_all) 6898 { 6899 int ret; 6900 struct perf_event_context *child_ctx; 6901 6902 if (!event->attr.inherit) { 6903 *inherited_all = 0; 6904 return 0; 6905 } 6906 6907 child_ctx = child->perf_event_ctxp[ctxn]; 6908 if (!child_ctx) { 6909 /* 6910 * This is executed from the parent task context, so 6911 * inherit events that have been marked for cloning. 6912 * First allocate and initialize a context for the 6913 * child. 6914 */ 6915 6916 child_ctx = alloc_perf_context(event->pmu, child); 6917 if (!child_ctx) 6918 return -ENOMEM; 6919 6920 child->perf_event_ctxp[ctxn] = child_ctx; 6921 } 6922 6923 ret = inherit_group(event, parent, parent_ctx, 6924 child, child_ctx); 6925 6926 if (ret) 6927 *inherited_all = 0; 6928 6929 return ret; 6930 } 6931 6932 /* 6933 * Initialize the perf_event context in task_struct 6934 */ 6935 int perf_event_init_context(struct task_struct *child, int ctxn) 6936 { 6937 struct perf_event_context *child_ctx, *parent_ctx; 6938 struct perf_event_context *cloned_ctx; 6939 struct perf_event *event; 6940 struct task_struct *parent = current; 6941 int inherited_all = 1; 6942 unsigned long flags; 6943 int ret = 0; 6944 6945 if (likely(!parent->perf_event_ctxp[ctxn])) 6946 return 0; 6947 6948 /* 6949 * If the parent's context is a clone, pin it so it won't get 6950 * swapped under us. 6951 */ 6952 parent_ctx = perf_pin_task_context(parent, ctxn); 6953 6954 /* 6955 * No need to check if parent_ctx != NULL here; since we saw 6956 * it non-NULL earlier, the only reason for it to become NULL 6957 * is if we exit, and since we're currently in the middle of 6958 * a fork we can't be exiting at the same time. 6959 */ 6960 6961 /* 6962 * Lock the parent list. No need to lock the child - not PID 6963 * hashed yet and not running, so nobody can access it. 6964 */ 6965 mutex_lock(&parent_ctx->mutex); 6966 6967 /* 6968 * We dont have to disable NMIs - we are only looking at 6969 * the list, not manipulating it: 6970 */ 6971 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6972 ret = inherit_task_group(event, parent, parent_ctx, 6973 child, ctxn, &inherited_all); 6974 if (ret) 6975 break; 6976 } 6977 6978 /* 6979 * We can't hold ctx->lock when iterating the ->flexible_group list due 6980 * to allocations, but we need to prevent rotation because 6981 * rotate_ctx() will change the list from interrupt context. 6982 */ 6983 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6984 parent_ctx->rotate_disable = 1; 6985 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6986 6987 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6988 ret = inherit_task_group(event, parent, parent_ctx, 6989 child, ctxn, &inherited_all); 6990 if (ret) 6991 break; 6992 } 6993 6994 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6995 parent_ctx->rotate_disable = 0; 6996 6997 child_ctx = child->perf_event_ctxp[ctxn]; 6998 6999 if (child_ctx && inherited_all) { 7000 /* 7001 * Mark the child context as a clone of the parent 7002 * context, or of whatever the parent is a clone of. 7003 * 7004 * Note that if the parent is a clone, the holding of 7005 * parent_ctx->lock avoids it from being uncloned. 7006 */ 7007 cloned_ctx = parent_ctx->parent_ctx; 7008 if (cloned_ctx) { 7009 child_ctx->parent_ctx = cloned_ctx; 7010 child_ctx->parent_gen = parent_ctx->parent_gen; 7011 } else { 7012 child_ctx->parent_ctx = parent_ctx; 7013 child_ctx->parent_gen = parent_ctx->generation; 7014 } 7015 get_ctx(child_ctx->parent_ctx); 7016 } 7017 7018 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7019 mutex_unlock(&parent_ctx->mutex); 7020 7021 perf_unpin_context(parent_ctx); 7022 put_ctx(parent_ctx); 7023 7024 return ret; 7025 } 7026 7027 /* 7028 * Initialize the perf_event context in task_struct 7029 */ 7030 int perf_event_init_task(struct task_struct *child) 7031 { 7032 int ctxn, ret; 7033 7034 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7035 mutex_init(&child->perf_event_mutex); 7036 INIT_LIST_HEAD(&child->perf_event_list); 7037 7038 for_each_task_context_nr(ctxn) { 7039 ret = perf_event_init_context(child, ctxn); 7040 if (ret) 7041 return ret; 7042 } 7043 7044 return 0; 7045 } 7046 7047 static void __init perf_event_init_all_cpus(void) 7048 { 7049 struct swevent_htable *swhash; 7050 int cpu; 7051 7052 for_each_possible_cpu(cpu) { 7053 swhash = &per_cpu(swevent_htable, cpu); 7054 mutex_init(&swhash->hlist_mutex); 7055 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7056 } 7057 } 7058 7059 static void __cpuinit perf_event_init_cpu(int cpu) 7060 { 7061 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7062 7063 mutex_lock(&swhash->hlist_mutex); 7064 if (swhash->hlist_refcount > 0) { 7065 struct swevent_hlist *hlist; 7066 7067 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7068 WARN_ON(!hlist); 7069 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7070 } 7071 mutex_unlock(&swhash->hlist_mutex); 7072 } 7073 7074 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7075 static void perf_pmu_rotate_stop(struct pmu *pmu) 7076 { 7077 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7078 7079 WARN_ON(!irqs_disabled()); 7080 7081 list_del_init(&cpuctx->rotation_list); 7082 } 7083 7084 static void __perf_event_exit_context(void *__info) 7085 { 7086 struct perf_event_context *ctx = __info; 7087 struct perf_event *event, *tmp; 7088 7089 perf_pmu_rotate_stop(ctx->pmu); 7090 7091 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7092 __perf_remove_from_context(event); 7093 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7094 __perf_remove_from_context(event); 7095 } 7096 7097 static void perf_event_exit_cpu_context(int cpu) 7098 { 7099 struct perf_event_context *ctx; 7100 struct pmu *pmu; 7101 int idx; 7102 7103 idx = srcu_read_lock(&pmus_srcu); 7104 list_for_each_entry_rcu(pmu, &pmus, entry) { 7105 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7106 7107 mutex_lock(&ctx->mutex); 7108 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7109 mutex_unlock(&ctx->mutex); 7110 } 7111 srcu_read_unlock(&pmus_srcu, idx); 7112 } 7113 7114 static void perf_event_exit_cpu(int cpu) 7115 { 7116 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7117 7118 mutex_lock(&swhash->hlist_mutex); 7119 swevent_hlist_release(swhash); 7120 mutex_unlock(&swhash->hlist_mutex); 7121 7122 perf_event_exit_cpu_context(cpu); 7123 } 7124 #else 7125 static inline void perf_event_exit_cpu(int cpu) { } 7126 #endif 7127 7128 static int 7129 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7130 { 7131 int cpu; 7132 7133 for_each_online_cpu(cpu) 7134 perf_event_exit_cpu(cpu); 7135 7136 return NOTIFY_OK; 7137 } 7138 7139 /* 7140 * Run the perf reboot notifier at the very last possible moment so that 7141 * the generic watchdog code runs as long as possible. 7142 */ 7143 static struct notifier_block perf_reboot_notifier = { 7144 .notifier_call = perf_reboot, 7145 .priority = INT_MIN, 7146 }; 7147 7148 static int __cpuinit 7149 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7150 { 7151 unsigned int cpu = (long)hcpu; 7152 7153 switch (action & ~CPU_TASKS_FROZEN) { 7154 7155 case CPU_UP_PREPARE: 7156 case CPU_DOWN_FAILED: 7157 perf_event_init_cpu(cpu); 7158 break; 7159 7160 case CPU_UP_CANCELED: 7161 case CPU_DOWN_PREPARE: 7162 perf_event_exit_cpu(cpu); 7163 break; 7164 7165 default: 7166 break; 7167 } 7168 7169 return NOTIFY_OK; 7170 } 7171 7172 void __init perf_event_init(void) 7173 { 7174 int ret; 7175 7176 idr_init(&pmu_idr); 7177 7178 perf_event_init_all_cpus(); 7179 init_srcu_struct(&pmus_srcu); 7180 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7181 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7182 perf_pmu_register(&perf_task_clock, NULL, -1); 7183 perf_tp_register(); 7184 perf_cpu_notifier(perf_cpu_notify); 7185 register_reboot_notifier(&perf_reboot_notifier); 7186 7187 ret = init_hw_breakpoint(); 7188 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7189 7190 /* do not patch jump label more than once per second */ 7191 jump_label_rate_limit(&perf_sched_events, HZ); 7192 7193 /* 7194 * Build time assertion that we keep the data_head at the intended 7195 * location. IOW, validation we got the __reserved[] size right. 7196 */ 7197 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7198 != 1024); 7199 } 7200 7201 static int __init perf_event_sysfs_init(void) 7202 { 7203 struct pmu *pmu; 7204 int ret; 7205 7206 mutex_lock(&pmus_lock); 7207 7208 ret = bus_register(&pmu_bus); 7209 if (ret) 7210 goto unlock; 7211 7212 list_for_each_entry(pmu, &pmus, entry) { 7213 if (!pmu->name || pmu->type < 0) 7214 continue; 7215 7216 ret = pmu_dev_alloc(pmu); 7217 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7218 } 7219 pmu_bus_running = 1; 7220 ret = 0; 7221 7222 unlock: 7223 mutex_unlock(&pmus_lock); 7224 7225 return ret; 7226 } 7227 device_initcall(perf_event_sysfs_init); 7228 7229 #ifdef CONFIG_CGROUP_PERF 7230 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont) 7231 { 7232 struct perf_cgroup *jc; 7233 7234 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7235 if (!jc) 7236 return ERR_PTR(-ENOMEM); 7237 7238 jc->info = alloc_percpu(struct perf_cgroup_info); 7239 if (!jc->info) { 7240 kfree(jc); 7241 return ERR_PTR(-ENOMEM); 7242 } 7243 7244 return &jc->css; 7245 } 7246 7247 static void perf_cgroup_destroy(struct cgroup *cont) 7248 { 7249 struct perf_cgroup *jc; 7250 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7251 struct perf_cgroup, css); 7252 free_percpu(jc->info); 7253 kfree(jc); 7254 } 7255 7256 static int __perf_cgroup_move(void *info) 7257 { 7258 struct task_struct *task = info; 7259 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7260 return 0; 7261 } 7262 7263 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7264 { 7265 struct task_struct *task; 7266 7267 cgroup_taskset_for_each(task, cgrp, tset) 7268 task_function_call(task, __perf_cgroup_move, task); 7269 } 7270 7271 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7272 struct task_struct *task) 7273 { 7274 /* 7275 * cgroup_exit() is called in the copy_process() failure path. 7276 * Ignore this case since the task hasn't ran yet, this avoids 7277 * trying to poke a half freed task state from generic code. 7278 */ 7279 if (!(task->flags & PF_EXITING)) 7280 return; 7281 7282 task_function_call(task, __perf_cgroup_move, task); 7283 } 7284 7285 struct cgroup_subsys perf_subsys = { 7286 .name = "perf_event", 7287 .subsys_id = perf_subsys_id, 7288 .create = perf_cgroup_create, 7289 .destroy = perf_cgroup_destroy, 7290 .exit = perf_cgroup_exit, 7291 .attach = perf_cgroup_attach, 7292 }; 7293 #endif /* CONFIG_CGROUP_PERF */ 7294