xref: /linux/kernel/events/core.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 /*
122  * branch priv levels that need permission checks
123  */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 	(PERF_SAMPLE_BRANCH_KERNEL |\
126 	 PERF_SAMPLE_BRANCH_HV)
127 
128 enum event_type_t {
129 	EVENT_FLEXIBLE = 0x1,
130 	EVENT_PINNED = 0x2,
131 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133 
134 /*
135  * perf_sched_events : >0 events exist
136  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137  */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141 
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145 
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149 
150 /*
151  * perf event paranoia level:
152  *  -1 - not paranoid at all
153  *   0 - disallow raw tracepoint access for unpriv
154  *   1 - disallow cpu events for unpriv
155  *   2 - disallow kernel profiling for unpriv
156  */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158 
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161 
162 /*
163  * max perf event sample rate
164  */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169 
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 		void __user *buffer, size_t *lenp,
172 		loff_t *ppos)
173 {
174 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175 
176 	if (ret || !write)
177 		return ret;
178 
179 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180 
181 	return 0;
182 }
183 
184 static atomic64_t perf_event_id;
185 
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 			      enum event_type_t event_type);
188 
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 			     enum event_type_t event_type,
191 			     struct task_struct *task);
192 
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195 
196 static void ring_buffer_attach(struct perf_event *event,
197 			       struct ring_buffer *rb);
198 
199 void __weak perf_event_print_debug(void)	{ }
200 
201 extern __weak const char *perf_pmu_name(void)
202 {
203 	return "pmu";
204 }
205 
206 static inline u64 perf_clock(void)
207 {
208 	return local_clock();
209 }
210 
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216 
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 			  struct perf_event_context *ctx)
219 {
220 	raw_spin_lock(&cpuctx->ctx.lock);
221 	if (ctx)
222 		raw_spin_lock(&ctx->lock);
223 }
224 
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 			    struct perf_event_context *ctx)
227 {
228 	if (ctx)
229 		raw_spin_unlock(&ctx->lock);
230 	raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232 
233 #ifdef CONFIG_CGROUP_PERF
234 
235 /*
236  * Must ensure cgroup is pinned (css_get) before calling
237  * this function. In other words, we cannot call this function
238  * if there is no cgroup event for the current CPU context.
239  */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 	return container_of(task_subsys_state(task, perf_subsys_id),
244 			struct perf_cgroup, css);
245 }
246 
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252 
253 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255 
256 static inline bool perf_tryget_cgroup(struct perf_event *event)
257 {
258 	return css_tryget(&event->cgrp->css);
259 }
260 
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 	css_put(&event->cgrp->css);
264 }
265 
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 	perf_put_cgroup(event);
269 	event->cgrp = NULL;
270 }
271 
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 	return event->cgrp != NULL;
275 }
276 
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 	struct perf_cgroup_info *t;
280 
281 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 	return t->time;
283 }
284 
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 	struct perf_cgroup_info *info;
288 	u64 now;
289 
290 	now = perf_clock();
291 
292 	info = this_cpu_ptr(cgrp->info);
293 
294 	info->time += now - info->timestamp;
295 	info->timestamp = now;
296 }
297 
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 	if (cgrp_out)
302 		__update_cgrp_time(cgrp_out);
303 }
304 
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 	struct perf_cgroup *cgrp;
308 
309 	/*
310 	 * ensure we access cgroup data only when needed and
311 	 * when we know the cgroup is pinned (css_get)
312 	 */
313 	if (!is_cgroup_event(event))
314 		return;
315 
316 	cgrp = perf_cgroup_from_task(current);
317 	/*
318 	 * Do not update time when cgroup is not active
319 	 */
320 	if (cgrp == event->cgrp)
321 		__update_cgrp_time(event->cgrp);
322 }
323 
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 			  struct perf_event_context *ctx)
327 {
328 	struct perf_cgroup *cgrp;
329 	struct perf_cgroup_info *info;
330 
331 	/*
332 	 * ctx->lock held by caller
333 	 * ensure we do not access cgroup data
334 	 * unless we have the cgroup pinned (css_get)
335 	 */
336 	if (!task || !ctx->nr_cgroups)
337 		return;
338 
339 	cgrp = perf_cgroup_from_task(task);
340 	info = this_cpu_ptr(cgrp->info);
341 	info->timestamp = ctx->timestamp;
342 }
343 
344 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
346 
347 /*
348  * reschedule events based on the cgroup constraint of task.
349  *
350  * mode SWOUT : schedule out everything
351  * mode SWIN : schedule in based on cgroup for next
352  */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 	struct perf_cpu_context *cpuctx;
356 	struct pmu *pmu;
357 	unsigned long flags;
358 
359 	/*
360 	 * disable interrupts to avoid geting nr_cgroup
361 	 * changes via __perf_event_disable(). Also
362 	 * avoids preemption.
363 	 */
364 	local_irq_save(flags);
365 
366 	/*
367 	 * we reschedule only in the presence of cgroup
368 	 * constrained events.
369 	 */
370 	rcu_read_lock();
371 
372 	list_for_each_entry_rcu(pmu, &pmus, entry) {
373 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374 
375 		/*
376 		 * perf_cgroup_events says at least one
377 		 * context on this CPU has cgroup events.
378 		 *
379 		 * ctx->nr_cgroups reports the number of cgroup
380 		 * events for a context.
381 		 */
382 		if (cpuctx->ctx.nr_cgroups > 0) {
383 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 			perf_pmu_disable(cpuctx->ctx.pmu);
385 
386 			if (mode & PERF_CGROUP_SWOUT) {
387 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 				/*
389 				 * must not be done before ctxswout due
390 				 * to event_filter_match() in event_sched_out()
391 				 */
392 				cpuctx->cgrp = NULL;
393 			}
394 
395 			if (mode & PERF_CGROUP_SWIN) {
396 				WARN_ON_ONCE(cpuctx->cgrp);
397 				/* set cgrp before ctxsw in to
398 				 * allow event_filter_match() to not
399 				 * have to pass task around
400 				 */
401 				cpuctx->cgrp = perf_cgroup_from_task(task);
402 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 			}
404 			perf_pmu_enable(cpuctx->ctx.pmu);
405 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 		}
407 	}
408 
409 	rcu_read_unlock();
410 
411 	local_irq_restore(flags);
412 }
413 
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 					 struct task_struct *next)
416 {
417 	struct perf_cgroup *cgrp1;
418 	struct perf_cgroup *cgrp2 = NULL;
419 
420 	/*
421 	 * we come here when we know perf_cgroup_events > 0
422 	 */
423 	cgrp1 = perf_cgroup_from_task(task);
424 
425 	/*
426 	 * next is NULL when called from perf_event_enable_on_exec()
427 	 * that will systematically cause a cgroup_switch()
428 	 */
429 	if (next)
430 		cgrp2 = perf_cgroup_from_task(next);
431 
432 	/*
433 	 * only schedule out current cgroup events if we know
434 	 * that we are switching to a different cgroup. Otherwise,
435 	 * do no touch the cgroup events.
436 	 */
437 	if (cgrp1 != cgrp2)
438 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440 
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 					struct task_struct *task)
443 {
444 	struct perf_cgroup *cgrp1;
445 	struct perf_cgroup *cgrp2 = NULL;
446 
447 	/*
448 	 * we come here when we know perf_cgroup_events > 0
449 	 */
450 	cgrp1 = perf_cgroup_from_task(task);
451 
452 	/* prev can never be NULL */
453 	cgrp2 = perf_cgroup_from_task(prev);
454 
455 	/*
456 	 * only need to schedule in cgroup events if we are changing
457 	 * cgroup during ctxsw. Cgroup events were not scheduled
458 	 * out of ctxsw out if that was not the case.
459 	 */
460 	if (cgrp1 != cgrp2)
461 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463 
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 				      struct perf_event_attr *attr,
466 				      struct perf_event *group_leader)
467 {
468 	struct perf_cgroup *cgrp;
469 	struct cgroup_subsys_state *css;
470 	struct file *file;
471 	int ret = 0, fput_needed;
472 
473 	file = fget_light(fd, &fput_needed);
474 	if (!file)
475 		return -EBADF;
476 
477 	css = cgroup_css_from_dir(file, perf_subsys_id);
478 	if (IS_ERR(css)) {
479 		ret = PTR_ERR(css);
480 		goto out;
481 	}
482 
483 	cgrp = container_of(css, struct perf_cgroup, css);
484 	event->cgrp = cgrp;
485 
486 	/* must be done before we fput() the file */
487 	if (!perf_tryget_cgroup(event)) {
488 		event->cgrp = NULL;
489 		ret = -ENOENT;
490 		goto out;
491 	}
492 
493 	/*
494 	 * all events in a group must monitor
495 	 * the same cgroup because a task belongs
496 	 * to only one perf cgroup at a time
497 	 */
498 	if (group_leader && group_leader->cgrp != cgrp) {
499 		perf_detach_cgroup(event);
500 		ret = -EINVAL;
501 	}
502 out:
503 	fput_light(file, fput_needed);
504 	return ret;
505 }
506 
507 static inline void
508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509 {
510 	struct perf_cgroup_info *t;
511 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 	event->shadow_ctx_time = now - t->timestamp;
513 }
514 
515 static inline void
516 perf_cgroup_defer_enabled(struct perf_event *event)
517 {
518 	/*
519 	 * when the current task's perf cgroup does not match
520 	 * the event's, we need to remember to call the
521 	 * perf_mark_enable() function the first time a task with
522 	 * a matching perf cgroup is scheduled in.
523 	 */
524 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 		event->cgrp_defer_enabled = 1;
526 }
527 
528 static inline void
529 perf_cgroup_mark_enabled(struct perf_event *event,
530 			 struct perf_event_context *ctx)
531 {
532 	struct perf_event *sub;
533 	u64 tstamp = perf_event_time(event);
534 
535 	if (!event->cgrp_defer_enabled)
536 		return;
537 
538 	event->cgrp_defer_enabled = 0;
539 
540 	event->tstamp_enabled = tstamp - event->total_time_enabled;
541 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 			sub->cgrp_defer_enabled = 0;
545 		}
546 	}
547 }
548 #else /* !CONFIG_CGROUP_PERF */
549 
550 static inline bool
551 perf_cgroup_match(struct perf_event *event)
552 {
553 	return true;
554 }
555 
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {}
558 
559 static inline int is_cgroup_event(struct perf_event *event)
560 {
561 	return 0;
562 }
563 
564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565 {
566 	return 0;
567 }
568 
569 static inline void update_cgrp_time_from_event(struct perf_event *event)
570 {
571 }
572 
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 }
576 
577 static inline void perf_cgroup_sched_out(struct task_struct *task,
578 					 struct task_struct *next)
579 {
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 }
586 
587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 				      struct perf_event_attr *attr,
589 				      struct perf_event *group_leader)
590 {
591 	return -EINVAL;
592 }
593 
594 static inline void
595 perf_cgroup_set_timestamp(struct task_struct *task,
596 			  struct perf_event_context *ctx)
597 {
598 }
599 
600 void
601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602 {
603 }
604 
605 static inline void
606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607 {
608 }
609 
610 static inline u64 perf_cgroup_event_time(struct perf_event *event)
611 {
612 	return 0;
613 }
614 
615 static inline void
616 perf_cgroup_defer_enabled(struct perf_event *event)
617 {
618 }
619 
620 static inline void
621 perf_cgroup_mark_enabled(struct perf_event *event,
622 			 struct perf_event_context *ctx)
623 {
624 }
625 #endif
626 
627 void perf_pmu_disable(struct pmu *pmu)
628 {
629 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 	if (!(*count)++)
631 		pmu->pmu_disable(pmu);
632 }
633 
634 void perf_pmu_enable(struct pmu *pmu)
635 {
636 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 	if (!--(*count))
638 		pmu->pmu_enable(pmu);
639 }
640 
641 static DEFINE_PER_CPU(struct list_head, rotation_list);
642 
643 /*
644  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645  * because they're strictly cpu affine and rotate_start is called with IRQs
646  * disabled, while rotate_context is called from IRQ context.
647  */
648 static void perf_pmu_rotate_start(struct pmu *pmu)
649 {
650 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 	struct list_head *head = &__get_cpu_var(rotation_list);
652 
653 	WARN_ON(!irqs_disabled());
654 
655 	if (list_empty(&cpuctx->rotation_list))
656 		list_add(&cpuctx->rotation_list, head);
657 }
658 
659 static void get_ctx(struct perf_event_context *ctx)
660 {
661 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 }
663 
664 static void put_ctx(struct perf_event_context *ctx)
665 {
666 	if (atomic_dec_and_test(&ctx->refcount)) {
667 		if (ctx->parent_ctx)
668 			put_ctx(ctx->parent_ctx);
669 		if (ctx->task)
670 			put_task_struct(ctx->task);
671 		kfree_rcu(ctx, rcu_head);
672 	}
673 }
674 
675 static void unclone_ctx(struct perf_event_context *ctx)
676 {
677 	if (ctx->parent_ctx) {
678 		put_ctx(ctx->parent_ctx);
679 		ctx->parent_ctx = NULL;
680 	}
681 }
682 
683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684 {
685 	/*
686 	 * only top level events have the pid namespace they were created in
687 	 */
688 	if (event->parent)
689 		event = event->parent;
690 
691 	return task_tgid_nr_ns(p, event->ns);
692 }
693 
694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695 {
696 	/*
697 	 * only top level events have the pid namespace they were created in
698 	 */
699 	if (event->parent)
700 		event = event->parent;
701 
702 	return task_pid_nr_ns(p, event->ns);
703 }
704 
705 /*
706  * If we inherit events we want to return the parent event id
707  * to userspace.
708  */
709 static u64 primary_event_id(struct perf_event *event)
710 {
711 	u64 id = event->id;
712 
713 	if (event->parent)
714 		id = event->parent->id;
715 
716 	return id;
717 }
718 
719 /*
720  * Get the perf_event_context for a task and lock it.
721  * This has to cope with with the fact that until it is locked,
722  * the context could get moved to another task.
723  */
724 static struct perf_event_context *
725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726 {
727 	struct perf_event_context *ctx;
728 
729 	rcu_read_lock();
730 retry:
731 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 	if (ctx) {
733 		/*
734 		 * If this context is a clone of another, it might
735 		 * get swapped for another underneath us by
736 		 * perf_event_task_sched_out, though the
737 		 * rcu_read_lock() protects us from any context
738 		 * getting freed.  Lock the context and check if it
739 		 * got swapped before we could get the lock, and retry
740 		 * if so.  If we locked the right context, then it
741 		 * can't get swapped on us any more.
742 		 */
743 		raw_spin_lock_irqsave(&ctx->lock, *flags);
744 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 			goto retry;
747 		}
748 
749 		if (!atomic_inc_not_zero(&ctx->refcount)) {
750 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 			ctx = NULL;
752 		}
753 	}
754 	rcu_read_unlock();
755 	return ctx;
756 }
757 
758 /*
759  * Get the context for a task and increment its pin_count so it
760  * can't get swapped to another task.  This also increments its
761  * reference count so that the context can't get freed.
762  */
763 static struct perf_event_context *
764 perf_pin_task_context(struct task_struct *task, int ctxn)
765 {
766 	struct perf_event_context *ctx;
767 	unsigned long flags;
768 
769 	ctx = perf_lock_task_context(task, ctxn, &flags);
770 	if (ctx) {
771 		++ctx->pin_count;
772 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 	}
774 	return ctx;
775 }
776 
777 static void perf_unpin_context(struct perf_event_context *ctx)
778 {
779 	unsigned long flags;
780 
781 	raw_spin_lock_irqsave(&ctx->lock, flags);
782 	--ctx->pin_count;
783 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 }
785 
786 /*
787  * Update the record of the current time in a context.
788  */
789 static void update_context_time(struct perf_event_context *ctx)
790 {
791 	u64 now = perf_clock();
792 
793 	ctx->time += now - ctx->timestamp;
794 	ctx->timestamp = now;
795 }
796 
797 static u64 perf_event_time(struct perf_event *event)
798 {
799 	struct perf_event_context *ctx = event->ctx;
800 
801 	if (is_cgroup_event(event))
802 		return perf_cgroup_event_time(event);
803 
804 	return ctx ? ctx->time : 0;
805 }
806 
807 /*
808  * Update the total_time_enabled and total_time_running fields for a event.
809  * The caller of this function needs to hold the ctx->lock.
810  */
811 static void update_event_times(struct perf_event *event)
812 {
813 	struct perf_event_context *ctx = event->ctx;
814 	u64 run_end;
815 
816 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 		return;
819 	/*
820 	 * in cgroup mode, time_enabled represents
821 	 * the time the event was enabled AND active
822 	 * tasks were in the monitored cgroup. This is
823 	 * independent of the activity of the context as
824 	 * there may be a mix of cgroup and non-cgroup events.
825 	 *
826 	 * That is why we treat cgroup events differently
827 	 * here.
828 	 */
829 	if (is_cgroup_event(event))
830 		run_end = perf_cgroup_event_time(event);
831 	else if (ctx->is_active)
832 		run_end = ctx->time;
833 	else
834 		run_end = event->tstamp_stopped;
835 
836 	event->total_time_enabled = run_end - event->tstamp_enabled;
837 
838 	if (event->state == PERF_EVENT_STATE_INACTIVE)
839 		run_end = event->tstamp_stopped;
840 	else
841 		run_end = perf_event_time(event);
842 
843 	event->total_time_running = run_end - event->tstamp_running;
844 
845 }
846 
847 /*
848  * Update total_time_enabled and total_time_running for all events in a group.
849  */
850 static void update_group_times(struct perf_event *leader)
851 {
852 	struct perf_event *event;
853 
854 	update_event_times(leader);
855 	list_for_each_entry(event, &leader->sibling_list, group_entry)
856 		update_event_times(event);
857 }
858 
859 static struct list_head *
860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861 {
862 	if (event->attr.pinned)
863 		return &ctx->pinned_groups;
864 	else
865 		return &ctx->flexible_groups;
866 }
867 
868 /*
869  * Add a event from the lists for its context.
870  * Must be called with ctx->mutex and ctx->lock held.
871  */
872 static void
873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874 {
875 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 	event->attach_state |= PERF_ATTACH_CONTEXT;
877 
878 	/*
879 	 * If we're a stand alone event or group leader, we go to the context
880 	 * list, group events are kept attached to the group so that
881 	 * perf_group_detach can, at all times, locate all siblings.
882 	 */
883 	if (event->group_leader == event) {
884 		struct list_head *list;
885 
886 		if (is_software_event(event))
887 			event->group_flags |= PERF_GROUP_SOFTWARE;
888 
889 		list = ctx_group_list(event, ctx);
890 		list_add_tail(&event->group_entry, list);
891 	}
892 
893 	if (is_cgroup_event(event))
894 		ctx->nr_cgroups++;
895 
896 	if (has_branch_stack(event))
897 		ctx->nr_branch_stack++;
898 
899 	list_add_rcu(&event->event_entry, &ctx->event_list);
900 	if (!ctx->nr_events)
901 		perf_pmu_rotate_start(ctx->pmu);
902 	ctx->nr_events++;
903 	if (event->attr.inherit_stat)
904 		ctx->nr_stat++;
905 }
906 
907 /*
908  * Called at perf_event creation and when events are attached/detached from a
909  * group.
910  */
911 static void perf_event__read_size(struct perf_event *event)
912 {
913 	int entry = sizeof(u64); /* value */
914 	int size = 0;
915 	int nr = 1;
916 
917 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 		size += sizeof(u64);
919 
920 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 		size += sizeof(u64);
922 
923 	if (event->attr.read_format & PERF_FORMAT_ID)
924 		entry += sizeof(u64);
925 
926 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 		nr += event->group_leader->nr_siblings;
928 		size += sizeof(u64);
929 	}
930 
931 	size += entry * nr;
932 	event->read_size = size;
933 }
934 
935 static void perf_event__header_size(struct perf_event *event)
936 {
937 	struct perf_sample_data *data;
938 	u64 sample_type = event->attr.sample_type;
939 	u16 size = 0;
940 
941 	perf_event__read_size(event);
942 
943 	if (sample_type & PERF_SAMPLE_IP)
944 		size += sizeof(data->ip);
945 
946 	if (sample_type & PERF_SAMPLE_ADDR)
947 		size += sizeof(data->addr);
948 
949 	if (sample_type & PERF_SAMPLE_PERIOD)
950 		size += sizeof(data->period);
951 
952 	if (sample_type & PERF_SAMPLE_READ)
953 		size += event->read_size;
954 
955 	event->header_size = size;
956 }
957 
958 static void perf_event__id_header_size(struct perf_event *event)
959 {
960 	struct perf_sample_data *data;
961 	u64 sample_type = event->attr.sample_type;
962 	u16 size = 0;
963 
964 	if (sample_type & PERF_SAMPLE_TID)
965 		size += sizeof(data->tid_entry);
966 
967 	if (sample_type & PERF_SAMPLE_TIME)
968 		size += sizeof(data->time);
969 
970 	if (sample_type & PERF_SAMPLE_ID)
971 		size += sizeof(data->id);
972 
973 	if (sample_type & PERF_SAMPLE_STREAM_ID)
974 		size += sizeof(data->stream_id);
975 
976 	if (sample_type & PERF_SAMPLE_CPU)
977 		size += sizeof(data->cpu_entry);
978 
979 	event->id_header_size = size;
980 }
981 
982 static void perf_group_attach(struct perf_event *event)
983 {
984 	struct perf_event *group_leader = event->group_leader, *pos;
985 
986 	/*
987 	 * We can have double attach due to group movement in perf_event_open.
988 	 */
989 	if (event->attach_state & PERF_ATTACH_GROUP)
990 		return;
991 
992 	event->attach_state |= PERF_ATTACH_GROUP;
993 
994 	if (group_leader == event)
995 		return;
996 
997 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 			!is_software_event(event))
999 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000 
1001 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 	group_leader->nr_siblings++;
1003 
1004 	perf_event__header_size(group_leader);
1005 
1006 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 		perf_event__header_size(pos);
1008 }
1009 
1010 /*
1011  * Remove a event from the lists for its context.
1012  * Must be called with ctx->mutex and ctx->lock held.
1013  */
1014 static void
1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016 {
1017 	struct perf_cpu_context *cpuctx;
1018 	/*
1019 	 * We can have double detach due to exit/hot-unplug + close.
1020 	 */
1021 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 		return;
1023 
1024 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025 
1026 	if (is_cgroup_event(event)) {
1027 		ctx->nr_cgroups--;
1028 		cpuctx = __get_cpu_context(ctx);
1029 		/*
1030 		 * if there are no more cgroup events
1031 		 * then cler cgrp to avoid stale pointer
1032 		 * in update_cgrp_time_from_cpuctx()
1033 		 */
1034 		if (!ctx->nr_cgroups)
1035 			cpuctx->cgrp = NULL;
1036 	}
1037 
1038 	if (has_branch_stack(event))
1039 		ctx->nr_branch_stack--;
1040 
1041 	ctx->nr_events--;
1042 	if (event->attr.inherit_stat)
1043 		ctx->nr_stat--;
1044 
1045 	list_del_rcu(&event->event_entry);
1046 
1047 	if (event->group_leader == event)
1048 		list_del_init(&event->group_entry);
1049 
1050 	update_group_times(event);
1051 
1052 	/*
1053 	 * If event was in error state, then keep it
1054 	 * that way, otherwise bogus counts will be
1055 	 * returned on read(). The only way to get out
1056 	 * of error state is by explicit re-enabling
1057 	 * of the event
1058 	 */
1059 	if (event->state > PERF_EVENT_STATE_OFF)
1060 		event->state = PERF_EVENT_STATE_OFF;
1061 }
1062 
1063 static void perf_group_detach(struct perf_event *event)
1064 {
1065 	struct perf_event *sibling, *tmp;
1066 	struct list_head *list = NULL;
1067 
1068 	/*
1069 	 * We can have double detach due to exit/hot-unplug + close.
1070 	 */
1071 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 		return;
1073 
1074 	event->attach_state &= ~PERF_ATTACH_GROUP;
1075 
1076 	/*
1077 	 * If this is a sibling, remove it from its group.
1078 	 */
1079 	if (event->group_leader != event) {
1080 		list_del_init(&event->group_entry);
1081 		event->group_leader->nr_siblings--;
1082 		goto out;
1083 	}
1084 
1085 	if (!list_empty(&event->group_entry))
1086 		list = &event->group_entry;
1087 
1088 	/*
1089 	 * If this was a group event with sibling events then
1090 	 * upgrade the siblings to singleton events by adding them
1091 	 * to whatever list we are on.
1092 	 */
1093 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 		if (list)
1095 			list_move_tail(&sibling->group_entry, list);
1096 		sibling->group_leader = sibling;
1097 
1098 		/* Inherit group flags from the previous leader */
1099 		sibling->group_flags = event->group_flags;
1100 	}
1101 
1102 out:
1103 	perf_event__header_size(event->group_leader);
1104 
1105 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 		perf_event__header_size(tmp);
1107 }
1108 
1109 static inline int
1110 event_filter_match(struct perf_event *event)
1111 {
1112 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 	    && perf_cgroup_match(event);
1114 }
1115 
1116 static void
1117 event_sched_out(struct perf_event *event,
1118 		  struct perf_cpu_context *cpuctx,
1119 		  struct perf_event_context *ctx)
1120 {
1121 	u64 tstamp = perf_event_time(event);
1122 	u64 delta;
1123 	/*
1124 	 * An event which could not be activated because of
1125 	 * filter mismatch still needs to have its timings
1126 	 * maintained, otherwise bogus information is return
1127 	 * via read() for time_enabled, time_running:
1128 	 */
1129 	if (event->state == PERF_EVENT_STATE_INACTIVE
1130 	    && !event_filter_match(event)) {
1131 		delta = tstamp - event->tstamp_stopped;
1132 		event->tstamp_running += delta;
1133 		event->tstamp_stopped = tstamp;
1134 	}
1135 
1136 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 		return;
1138 
1139 	event->state = PERF_EVENT_STATE_INACTIVE;
1140 	if (event->pending_disable) {
1141 		event->pending_disable = 0;
1142 		event->state = PERF_EVENT_STATE_OFF;
1143 	}
1144 	event->tstamp_stopped = tstamp;
1145 	event->pmu->del(event, 0);
1146 	event->oncpu = -1;
1147 
1148 	if (!is_software_event(event))
1149 		cpuctx->active_oncpu--;
1150 	ctx->nr_active--;
1151 	if (event->attr.freq && event->attr.sample_freq)
1152 		ctx->nr_freq--;
1153 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 		cpuctx->exclusive = 0;
1155 }
1156 
1157 static void
1158 group_sched_out(struct perf_event *group_event,
1159 		struct perf_cpu_context *cpuctx,
1160 		struct perf_event_context *ctx)
1161 {
1162 	struct perf_event *event;
1163 	int state = group_event->state;
1164 
1165 	event_sched_out(group_event, cpuctx, ctx);
1166 
1167 	/*
1168 	 * Schedule out siblings (if any):
1169 	 */
1170 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 		event_sched_out(event, cpuctx, ctx);
1172 
1173 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 		cpuctx->exclusive = 0;
1175 }
1176 
1177 /*
1178  * Cross CPU call to remove a performance event
1179  *
1180  * We disable the event on the hardware level first. After that we
1181  * remove it from the context list.
1182  */
1183 static int __perf_remove_from_context(void *info)
1184 {
1185 	struct perf_event *event = info;
1186 	struct perf_event_context *ctx = event->ctx;
1187 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 
1189 	raw_spin_lock(&ctx->lock);
1190 	event_sched_out(event, cpuctx, ctx);
1191 	list_del_event(event, ctx);
1192 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 		ctx->is_active = 0;
1194 		cpuctx->task_ctx = NULL;
1195 	}
1196 	raw_spin_unlock(&ctx->lock);
1197 
1198 	return 0;
1199 }
1200 
1201 
1202 /*
1203  * Remove the event from a task's (or a CPU's) list of events.
1204  *
1205  * CPU events are removed with a smp call. For task events we only
1206  * call when the task is on a CPU.
1207  *
1208  * If event->ctx is a cloned context, callers must make sure that
1209  * every task struct that event->ctx->task could possibly point to
1210  * remains valid.  This is OK when called from perf_release since
1211  * that only calls us on the top-level context, which can't be a clone.
1212  * When called from perf_event_exit_task, it's OK because the
1213  * context has been detached from its task.
1214  */
1215 static void perf_remove_from_context(struct perf_event *event)
1216 {
1217 	struct perf_event_context *ctx = event->ctx;
1218 	struct task_struct *task = ctx->task;
1219 
1220 	lockdep_assert_held(&ctx->mutex);
1221 
1222 	if (!task) {
1223 		/*
1224 		 * Per cpu events are removed via an smp call and
1225 		 * the removal is always successful.
1226 		 */
1227 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 		return;
1229 	}
1230 
1231 retry:
1232 	if (!task_function_call(task, __perf_remove_from_context, event))
1233 		return;
1234 
1235 	raw_spin_lock_irq(&ctx->lock);
1236 	/*
1237 	 * If we failed to find a running task, but find the context active now
1238 	 * that we've acquired the ctx->lock, retry.
1239 	 */
1240 	if (ctx->is_active) {
1241 		raw_spin_unlock_irq(&ctx->lock);
1242 		goto retry;
1243 	}
1244 
1245 	/*
1246 	 * Since the task isn't running, its safe to remove the event, us
1247 	 * holding the ctx->lock ensures the task won't get scheduled in.
1248 	 */
1249 	list_del_event(event, ctx);
1250 	raw_spin_unlock_irq(&ctx->lock);
1251 }
1252 
1253 /*
1254  * Cross CPU call to disable a performance event
1255  */
1256 int __perf_event_disable(void *info)
1257 {
1258 	struct perf_event *event = info;
1259 	struct perf_event_context *ctx = event->ctx;
1260 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261 
1262 	/*
1263 	 * If this is a per-task event, need to check whether this
1264 	 * event's task is the current task on this cpu.
1265 	 *
1266 	 * Can trigger due to concurrent perf_event_context_sched_out()
1267 	 * flipping contexts around.
1268 	 */
1269 	if (ctx->task && cpuctx->task_ctx != ctx)
1270 		return -EINVAL;
1271 
1272 	raw_spin_lock(&ctx->lock);
1273 
1274 	/*
1275 	 * If the event is on, turn it off.
1276 	 * If it is in error state, leave it in error state.
1277 	 */
1278 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 		update_context_time(ctx);
1280 		update_cgrp_time_from_event(event);
1281 		update_group_times(event);
1282 		if (event == event->group_leader)
1283 			group_sched_out(event, cpuctx, ctx);
1284 		else
1285 			event_sched_out(event, cpuctx, ctx);
1286 		event->state = PERF_EVENT_STATE_OFF;
1287 	}
1288 
1289 	raw_spin_unlock(&ctx->lock);
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Disable a event.
1296  *
1297  * If event->ctx is a cloned context, callers must make sure that
1298  * every task struct that event->ctx->task could possibly point to
1299  * remains valid.  This condition is satisifed when called through
1300  * perf_event_for_each_child or perf_event_for_each because they
1301  * hold the top-level event's child_mutex, so any descendant that
1302  * goes to exit will block in sync_child_event.
1303  * When called from perf_pending_event it's OK because event->ctx
1304  * is the current context on this CPU and preemption is disabled,
1305  * hence we can't get into perf_event_task_sched_out for this context.
1306  */
1307 void perf_event_disable(struct perf_event *event)
1308 {
1309 	struct perf_event_context *ctx = event->ctx;
1310 	struct task_struct *task = ctx->task;
1311 
1312 	if (!task) {
1313 		/*
1314 		 * Disable the event on the cpu that it's on
1315 		 */
1316 		cpu_function_call(event->cpu, __perf_event_disable, event);
1317 		return;
1318 	}
1319 
1320 retry:
1321 	if (!task_function_call(task, __perf_event_disable, event))
1322 		return;
1323 
1324 	raw_spin_lock_irq(&ctx->lock);
1325 	/*
1326 	 * If the event is still active, we need to retry the cross-call.
1327 	 */
1328 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 		raw_spin_unlock_irq(&ctx->lock);
1330 		/*
1331 		 * Reload the task pointer, it might have been changed by
1332 		 * a concurrent perf_event_context_sched_out().
1333 		 */
1334 		task = ctx->task;
1335 		goto retry;
1336 	}
1337 
1338 	/*
1339 	 * Since we have the lock this context can't be scheduled
1340 	 * in, so we can change the state safely.
1341 	 */
1342 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 		update_group_times(event);
1344 		event->state = PERF_EVENT_STATE_OFF;
1345 	}
1346 	raw_spin_unlock_irq(&ctx->lock);
1347 }
1348 EXPORT_SYMBOL_GPL(perf_event_disable);
1349 
1350 static void perf_set_shadow_time(struct perf_event *event,
1351 				 struct perf_event_context *ctx,
1352 				 u64 tstamp)
1353 {
1354 	/*
1355 	 * use the correct time source for the time snapshot
1356 	 *
1357 	 * We could get by without this by leveraging the
1358 	 * fact that to get to this function, the caller
1359 	 * has most likely already called update_context_time()
1360 	 * and update_cgrp_time_xx() and thus both timestamp
1361 	 * are identical (or very close). Given that tstamp is,
1362 	 * already adjusted for cgroup, we could say that:
1363 	 *    tstamp - ctx->timestamp
1364 	 * is equivalent to
1365 	 *    tstamp - cgrp->timestamp.
1366 	 *
1367 	 * Then, in perf_output_read(), the calculation would
1368 	 * work with no changes because:
1369 	 * - event is guaranteed scheduled in
1370 	 * - no scheduled out in between
1371 	 * - thus the timestamp would be the same
1372 	 *
1373 	 * But this is a bit hairy.
1374 	 *
1375 	 * So instead, we have an explicit cgroup call to remain
1376 	 * within the time time source all along. We believe it
1377 	 * is cleaner and simpler to understand.
1378 	 */
1379 	if (is_cgroup_event(event))
1380 		perf_cgroup_set_shadow_time(event, tstamp);
1381 	else
1382 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1383 }
1384 
1385 #define MAX_INTERRUPTS (~0ULL)
1386 
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388 
1389 static int
1390 event_sched_in(struct perf_event *event,
1391 		 struct perf_cpu_context *cpuctx,
1392 		 struct perf_event_context *ctx)
1393 {
1394 	u64 tstamp = perf_event_time(event);
1395 
1396 	if (event->state <= PERF_EVENT_STATE_OFF)
1397 		return 0;
1398 
1399 	event->state = PERF_EVENT_STATE_ACTIVE;
1400 	event->oncpu = smp_processor_id();
1401 
1402 	/*
1403 	 * Unthrottle events, since we scheduled we might have missed several
1404 	 * ticks already, also for a heavily scheduling task there is little
1405 	 * guarantee it'll get a tick in a timely manner.
1406 	 */
1407 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 		perf_log_throttle(event, 1);
1409 		event->hw.interrupts = 0;
1410 	}
1411 
1412 	/*
1413 	 * The new state must be visible before we turn it on in the hardware:
1414 	 */
1415 	smp_wmb();
1416 
1417 	if (event->pmu->add(event, PERF_EF_START)) {
1418 		event->state = PERF_EVENT_STATE_INACTIVE;
1419 		event->oncpu = -1;
1420 		return -EAGAIN;
1421 	}
1422 
1423 	event->tstamp_running += tstamp - event->tstamp_stopped;
1424 
1425 	perf_set_shadow_time(event, ctx, tstamp);
1426 
1427 	if (!is_software_event(event))
1428 		cpuctx->active_oncpu++;
1429 	ctx->nr_active++;
1430 	if (event->attr.freq && event->attr.sample_freq)
1431 		ctx->nr_freq++;
1432 
1433 	if (event->attr.exclusive)
1434 		cpuctx->exclusive = 1;
1435 
1436 	return 0;
1437 }
1438 
1439 static int
1440 group_sched_in(struct perf_event *group_event,
1441 	       struct perf_cpu_context *cpuctx,
1442 	       struct perf_event_context *ctx)
1443 {
1444 	struct perf_event *event, *partial_group = NULL;
1445 	struct pmu *pmu = group_event->pmu;
1446 	u64 now = ctx->time;
1447 	bool simulate = false;
1448 
1449 	if (group_event->state == PERF_EVENT_STATE_OFF)
1450 		return 0;
1451 
1452 	pmu->start_txn(pmu);
1453 
1454 	if (event_sched_in(group_event, cpuctx, ctx)) {
1455 		pmu->cancel_txn(pmu);
1456 		return -EAGAIN;
1457 	}
1458 
1459 	/*
1460 	 * Schedule in siblings as one group (if any):
1461 	 */
1462 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 		if (event_sched_in(event, cpuctx, ctx)) {
1464 			partial_group = event;
1465 			goto group_error;
1466 		}
1467 	}
1468 
1469 	if (!pmu->commit_txn(pmu))
1470 		return 0;
1471 
1472 group_error:
1473 	/*
1474 	 * Groups can be scheduled in as one unit only, so undo any
1475 	 * partial group before returning:
1476 	 * The events up to the failed event are scheduled out normally,
1477 	 * tstamp_stopped will be updated.
1478 	 *
1479 	 * The failed events and the remaining siblings need to have
1480 	 * their timings updated as if they had gone thru event_sched_in()
1481 	 * and event_sched_out(). This is required to get consistent timings
1482 	 * across the group. This also takes care of the case where the group
1483 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 	 * the time the event was actually stopped, such that time delta
1485 	 * calculation in update_event_times() is correct.
1486 	 */
1487 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 		if (event == partial_group)
1489 			simulate = true;
1490 
1491 		if (simulate) {
1492 			event->tstamp_running += now - event->tstamp_stopped;
1493 			event->tstamp_stopped = now;
1494 		} else {
1495 			event_sched_out(event, cpuctx, ctx);
1496 		}
1497 	}
1498 	event_sched_out(group_event, cpuctx, ctx);
1499 
1500 	pmu->cancel_txn(pmu);
1501 
1502 	return -EAGAIN;
1503 }
1504 
1505 /*
1506  * Work out whether we can put this event group on the CPU now.
1507  */
1508 static int group_can_go_on(struct perf_event *event,
1509 			   struct perf_cpu_context *cpuctx,
1510 			   int can_add_hw)
1511 {
1512 	/*
1513 	 * Groups consisting entirely of software events can always go on.
1514 	 */
1515 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 		return 1;
1517 	/*
1518 	 * If an exclusive group is already on, no other hardware
1519 	 * events can go on.
1520 	 */
1521 	if (cpuctx->exclusive)
1522 		return 0;
1523 	/*
1524 	 * If this group is exclusive and there are already
1525 	 * events on the CPU, it can't go on.
1526 	 */
1527 	if (event->attr.exclusive && cpuctx->active_oncpu)
1528 		return 0;
1529 	/*
1530 	 * Otherwise, try to add it if all previous groups were able
1531 	 * to go on.
1532 	 */
1533 	return can_add_hw;
1534 }
1535 
1536 static void add_event_to_ctx(struct perf_event *event,
1537 			       struct perf_event_context *ctx)
1538 {
1539 	u64 tstamp = perf_event_time(event);
1540 
1541 	list_add_event(event, ctx);
1542 	perf_group_attach(event);
1543 	event->tstamp_enabled = tstamp;
1544 	event->tstamp_running = tstamp;
1545 	event->tstamp_stopped = tstamp;
1546 }
1547 
1548 static void task_ctx_sched_out(struct perf_event_context *ctx);
1549 static void
1550 ctx_sched_in(struct perf_event_context *ctx,
1551 	     struct perf_cpu_context *cpuctx,
1552 	     enum event_type_t event_type,
1553 	     struct task_struct *task);
1554 
1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 				struct perf_event_context *ctx,
1557 				struct task_struct *task)
1558 {
1559 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 	if (ctx)
1561 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 	if (ctx)
1564 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565 }
1566 
1567 /*
1568  * Cross CPU call to install and enable a performance event
1569  *
1570  * Must be called with ctx->mutex held
1571  */
1572 static int  __perf_install_in_context(void *info)
1573 {
1574 	struct perf_event *event = info;
1575 	struct perf_event_context *ctx = event->ctx;
1576 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 	struct task_struct *task = current;
1579 
1580 	perf_ctx_lock(cpuctx, task_ctx);
1581 	perf_pmu_disable(cpuctx->ctx.pmu);
1582 
1583 	/*
1584 	 * If there was an active task_ctx schedule it out.
1585 	 */
1586 	if (task_ctx)
1587 		task_ctx_sched_out(task_ctx);
1588 
1589 	/*
1590 	 * If the context we're installing events in is not the
1591 	 * active task_ctx, flip them.
1592 	 */
1593 	if (ctx->task && task_ctx != ctx) {
1594 		if (task_ctx)
1595 			raw_spin_unlock(&task_ctx->lock);
1596 		raw_spin_lock(&ctx->lock);
1597 		task_ctx = ctx;
1598 	}
1599 
1600 	if (task_ctx) {
1601 		cpuctx->task_ctx = task_ctx;
1602 		task = task_ctx->task;
1603 	}
1604 
1605 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606 
1607 	update_context_time(ctx);
1608 	/*
1609 	 * update cgrp time only if current cgrp
1610 	 * matches event->cgrp. Must be done before
1611 	 * calling add_event_to_ctx()
1612 	 */
1613 	update_cgrp_time_from_event(event);
1614 
1615 	add_event_to_ctx(event, ctx);
1616 
1617 	/*
1618 	 * Schedule everything back in
1619 	 */
1620 	perf_event_sched_in(cpuctx, task_ctx, task);
1621 
1622 	perf_pmu_enable(cpuctx->ctx.pmu);
1623 	perf_ctx_unlock(cpuctx, task_ctx);
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Attach a performance event to a context
1630  *
1631  * First we add the event to the list with the hardware enable bit
1632  * in event->hw_config cleared.
1633  *
1634  * If the event is attached to a task which is on a CPU we use a smp
1635  * call to enable it in the task context. The task might have been
1636  * scheduled away, but we check this in the smp call again.
1637  */
1638 static void
1639 perf_install_in_context(struct perf_event_context *ctx,
1640 			struct perf_event *event,
1641 			int cpu)
1642 {
1643 	struct task_struct *task = ctx->task;
1644 
1645 	lockdep_assert_held(&ctx->mutex);
1646 
1647 	event->ctx = ctx;
1648 	if (event->cpu != -1)
1649 		event->cpu = cpu;
1650 
1651 	if (!task) {
1652 		/*
1653 		 * Per cpu events are installed via an smp call and
1654 		 * the install is always successful.
1655 		 */
1656 		cpu_function_call(cpu, __perf_install_in_context, event);
1657 		return;
1658 	}
1659 
1660 retry:
1661 	if (!task_function_call(task, __perf_install_in_context, event))
1662 		return;
1663 
1664 	raw_spin_lock_irq(&ctx->lock);
1665 	/*
1666 	 * If we failed to find a running task, but find the context active now
1667 	 * that we've acquired the ctx->lock, retry.
1668 	 */
1669 	if (ctx->is_active) {
1670 		raw_spin_unlock_irq(&ctx->lock);
1671 		goto retry;
1672 	}
1673 
1674 	/*
1675 	 * Since the task isn't running, its safe to add the event, us holding
1676 	 * the ctx->lock ensures the task won't get scheduled in.
1677 	 */
1678 	add_event_to_ctx(event, ctx);
1679 	raw_spin_unlock_irq(&ctx->lock);
1680 }
1681 
1682 /*
1683  * Put a event into inactive state and update time fields.
1684  * Enabling the leader of a group effectively enables all
1685  * the group members that aren't explicitly disabled, so we
1686  * have to update their ->tstamp_enabled also.
1687  * Note: this works for group members as well as group leaders
1688  * since the non-leader members' sibling_lists will be empty.
1689  */
1690 static void __perf_event_mark_enabled(struct perf_event *event)
1691 {
1692 	struct perf_event *sub;
1693 	u64 tstamp = perf_event_time(event);
1694 
1695 	event->state = PERF_EVENT_STATE_INACTIVE;
1696 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1697 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1698 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1700 	}
1701 }
1702 
1703 /*
1704  * Cross CPU call to enable a performance event
1705  */
1706 static int __perf_event_enable(void *info)
1707 {
1708 	struct perf_event *event = info;
1709 	struct perf_event_context *ctx = event->ctx;
1710 	struct perf_event *leader = event->group_leader;
1711 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1712 	int err;
1713 
1714 	if (WARN_ON_ONCE(!ctx->is_active))
1715 		return -EINVAL;
1716 
1717 	raw_spin_lock(&ctx->lock);
1718 	update_context_time(ctx);
1719 
1720 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1721 		goto unlock;
1722 
1723 	/*
1724 	 * set current task's cgroup time reference point
1725 	 */
1726 	perf_cgroup_set_timestamp(current, ctx);
1727 
1728 	__perf_event_mark_enabled(event);
1729 
1730 	if (!event_filter_match(event)) {
1731 		if (is_cgroup_event(event))
1732 			perf_cgroup_defer_enabled(event);
1733 		goto unlock;
1734 	}
1735 
1736 	/*
1737 	 * If the event is in a group and isn't the group leader,
1738 	 * then don't put it on unless the group is on.
1739 	 */
1740 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1741 		goto unlock;
1742 
1743 	if (!group_can_go_on(event, cpuctx, 1)) {
1744 		err = -EEXIST;
1745 	} else {
1746 		if (event == leader)
1747 			err = group_sched_in(event, cpuctx, ctx);
1748 		else
1749 			err = event_sched_in(event, cpuctx, ctx);
1750 	}
1751 
1752 	if (err) {
1753 		/*
1754 		 * If this event can't go on and it's part of a
1755 		 * group, then the whole group has to come off.
1756 		 */
1757 		if (leader != event)
1758 			group_sched_out(leader, cpuctx, ctx);
1759 		if (leader->attr.pinned) {
1760 			update_group_times(leader);
1761 			leader->state = PERF_EVENT_STATE_ERROR;
1762 		}
1763 	}
1764 
1765 unlock:
1766 	raw_spin_unlock(&ctx->lock);
1767 
1768 	return 0;
1769 }
1770 
1771 /*
1772  * Enable a event.
1773  *
1774  * If event->ctx is a cloned context, callers must make sure that
1775  * every task struct that event->ctx->task could possibly point to
1776  * remains valid.  This condition is satisfied when called through
1777  * perf_event_for_each_child or perf_event_for_each as described
1778  * for perf_event_disable.
1779  */
1780 void perf_event_enable(struct perf_event *event)
1781 {
1782 	struct perf_event_context *ctx = event->ctx;
1783 	struct task_struct *task = ctx->task;
1784 
1785 	if (!task) {
1786 		/*
1787 		 * Enable the event on the cpu that it's on
1788 		 */
1789 		cpu_function_call(event->cpu, __perf_event_enable, event);
1790 		return;
1791 	}
1792 
1793 	raw_spin_lock_irq(&ctx->lock);
1794 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1795 		goto out;
1796 
1797 	/*
1798 	 * If the event is in error state, clear that first.
1799 	 * That way, if we see the event in error state below, we
1800 	 * know that it has gone back into error state, as distinct
1801 	 * from the task having been scheduled away before the
1802 	 * cross-call arrived.
1803 	 */
1804 	if (event->state == PERF_EVENT_STATE_ERROR)
1805 		event->state = PERF_EVENT_STATE_OFF;
1806 
1807 retry:
1808 	if (!ctx->is_active) {
1809 		__perf_event_mark_enabled(event);
1810 		goto out;
1811 	}
1812 
1813 	raw_spin_unlock_irq(&ctx->lock);
1814 
1815 	if (!task_function_call(task, __perf_event_enable, event))
1816 		return;
1817 
1818 	raw_spin_lock_irq(&ctx->lock);
1819 
1820 	/*
1821 	 * If the context is active and the event is still off,
1822 	 * we need to retry the cross-call.
1823 	 */
1824 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 		/*
1826 		 * task could have been flipped by a concurrent
1827 		 * perf_event_context_sched_out()
1828 		 */
1829 		task = ctx->task;
1830 		goto retry;
1831 	}
1832 
1833 out:
1834 	raw_spin_unlock_irq(&ctx->lock);
1835 }
1836 EXPORT_SYMBOL_GPL(perf_event_enable);
1837 
1838 int perf_event_refresh(struct perf_event *event, int refresh)
1839 {
1840 	/*
1841 	 * not supported on inherited events
1842 	 */
1843 	if (event->attr.inherit || !is_sampling_event(event))
1844 		return -EINVAL;
1845 
1846 	atomic_add(refresh, &event->event_limit);
1847 	perf_event_enable(event);
1848 
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(perf_event_refresh);
1852 
1853 static void ctx_sched_out(struct perf_event_context *ctx,
1854 			  struct perf_cpu_context *cpuctx,
1855 			  enum event_type_t event_type)
1856 {
1857 	struct perf_event *event;
1858 	int is_active = ctx->is_active;
1859 
1860 	ctx->is_active &= ~event_type;
1861 	if (likely(!ctx->nr_events))
1862 		return;
1863 
1864 	update_context_time(ctx);
1865 	update_cgrp_time_from_cpuctx(cpuctx);
1866 	if (!ctx->nr_active)
1867 		return;
1868 
1869 	perf_pmu_disable(ctx->pmu);
1870 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1871 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 			group_sched_out(event, cpuctx, ctx);
1873 	}
1874 
1875 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1876 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1877 			group_sched_out(event, cpuctx, ctx);
1878 	}
1879 	perf_pmu_enable(ctx->pmu);
1880 }
1881 
1882 /*
1883  * Test whether two contexts are equivalent, i.e. whether they
1884  * have both been cloned from the same version of the same context
1885  * and they both have the same number of enabled events.
1886  * If the number of enabled events is the same, then the set
1887  * of enabled events should be the same, because these are both
1888  * inherited contexts, therefore we can't access individual events
1889  * in them directly with an fd; we can only enable/disable all
1890  * events via prctl, or enable/disable all events in a family
1891  * via ioctl, which will have the same effect on both contexts.
1892  */
1893 static int context_equiv(struct perf_event_context *ctx1,
1894 			 struct perf_event_context *ctx2)
1895 {
1896 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1897 		&& ctx1->parent_gen == ctx2->parent_gen
1898 		&& !ctx1->pin_count && !ctx2->pin_count;
1899 }
1900 
1901 static void __perf_event_sync_stat(struct perf_event *event,
1902 				     struct perf_event *next_event)
1903 {
1904 	u64 value;
1905 
1906 	if (!event->attr.inherit_stat)
1907 		return;
1908 
1909 	/*
1910 	 * Update the event value, we cannot use perf_event_read()
1911 	 * because we're in the middle of a context switch and have IRQs
1912 	 * disabled, which upsets smp_call_function_single(), however
1913 	 * we know the event must be on the current CPU, therefore we
1914 	 * don't need to use it.
1915 	 */
1916 	switch (event->state) {
1917 	case PERF_EVENT_STATE_ACTIVE:
1918 		event->pmu->read(event);
1919 		/* fall-through */
1920 
1921 	case PERF_EVENT_STATE_INACTIVE:
1922 		update_event_times(event);
1923 		break;
1924 
1925 	default:
1926 		break;
1927 	}
1928 
1929 	/*
1930 	 * In order to keep per-task stats reliable we need to flip the event
1931 	 * values when we flip the contexts.
1932 	 */
1933 	value = local64_read(&next_event->count);
1934 	value = local64_xchg(&event->count, value);
1935 	local64_set(&next_event->count, value);
1936 
1937 	swap(event->total_time_enabled, next_event->total_time_enabled);
1938 	swap(event->total_time_running, next_event->total_time_running);
1939 
1940 	/*
1941 	 * Since we swizzled the values, update the user visible data too.
1942 	 */
1943 	perf_event_update_userpage(event);
1944 	perf_event_update_userpage(next_event);
1945 }
1946 
1947 #define list_next_entry(pos, member) \
1948 	list_entry(pos->member.next, typeof(*pos), member)
1949 
1950 static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 				   struct perf_event_context *next_ctx)
1952 {
1953 	struct perf_event *event, *next_event;
1954 
1955 	if (!ctx->nr_stat)
1956 		return;
1957 
1958 	update_context_time(ctx);
1959 
1960 	event = list_first_entry(&ctx->event_list,
1961 				   struct perf_event, event_entry);
1962 
1963 	next_event = list_first_entry(&next_ctx->event_list,
1964 					struct perf_event, event_entry);
1965 
1966 	while (&event->event_entry != &ctx->event_list &&
1967 	       &next_event->event_entry != &next_ctx->event_list) {
1968 
1969 		__perf_event_sync_stat(event, next_event);
1970 
1971 		event = list_next_entry(event, event_entry);
1972 		next_event = list_next_entry(next_event, event_entry);
1973 	}
1974 }
1975 
1976 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 					 struct task_struct *next)
1978 {
1979 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1980 	struct perf_event_context *next_ctx;
1981 	struct perf_event_context *parent;
1982 	struct perf_cpu_context *cpuctx;
1983 	int do_switch = 1;
1984 
1985 	if (likely(!ctx))
1986 		return;
1987 
1988 	cpuctx = __get_cpu_context(ctx);
1989 	if (!cpuctx->task_ctx)
1990 		return;
1991 
1992 	rcu_read_lock();
1993 	parent = rcu_dereference(ctx->parent_ctx);
1994 	next_ctx = next->perf_event_ctxp[ctxn];
1995 	if (parent && next_ctx &&
1996 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 		/*
1998 		 * Looks like the two contexts are clones, so we might be
1999 		 * able to optimize the context switch.  We lock both
2000 		 * contexts and check that they are clones under the
2001 		 * lock (including re-checking that neither has been
2002 		 * uncloned in the meantime).  It doesn't matter which
2003 		 * order we take the locks because no other cpu could
2004 		 * be trying to lock both of these tasks.
2005 		 */
2006 		raw_spin_lock(&ctx->lock);
2007 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2008 		if (context_equiv(ctx, next_ctx)) {
2009 			/*
2010 			 * XXX do we need a memory barrier of sorts
2011 			 * wrt to rcu_dereference() of perf_event_ctxp
2012 			 */
2013 			task->perf_event_ctxp[ctxn] = next_ctx;
2014 			next->perf_event_ctxp[ctxn] = ctx;
2015 			ctx->task = next;
2016 			next_ctx->task = task;
2017 			do_switch = 0;
2018 
2019 			perf_event_sync_stat(ctx, next_ctx);
2020 		}
2021 		raw_spin_unlock(&next_ctx->lock);
2022 		raw_spin_unlock(&ctx->lock);
2023 	}
2024 	rcu_read_unlock();
2025 
2026 	if (do_switch) {
2027 		raw_spin_lock(&ctx->lock);
2028 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2029 		cpuctx->task_ctx = NULL;
2030 		raw_spin_unlock(&ctx->lock);
2031 	}
2032 }
2033 
2034 #define for_each_task_context_nr(ctxn)					\
2035 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036 
2037 /*
2038  * Called from scheduler to remove the events of the current task,
2039  * with interrupts disabled.
2040  *
2041  * We stop each event and update the event value in event->count.
2042  *
2043  * This does not protect us against NMI, but disable()
2044  * sets the disabled bit in the control field of event _before_
2045  * accessing the event control register. If a NMI hits, then it will
2046  * not restart the event.
2047  */
2048 void __perf_event_task_sched_out(struct task_struct *task,
2049 				 struct task_struct *next)
2050 {
2051 	int ctxn;
2052 
2053 	for_each_task_context_nr(ctxn)
2054 		perf_event_context_sched_out(task, ctxn, next);
2055 
2056 	/*
2057 	 * if cgroup events exist on this CPU, then we need
2058 	 * to check if we have to switch out PMU state.
2059 	 * cgroup event are system-wide mode only
2060 	 */
2061 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2062 		perf_cgroup_sched_out(task, next);
2063 }
2064 
2065 static void task_ctx_sched_out(struct perf_event_context *ctx)
2066 {
2067 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2068 
2069 	if (!cpuctx->task_ctx)
2070 		return;
2071 
2072 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 		return;
2074 
2075 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2076 	cpuctx->task_ctx = NULL;
2077 }
2078 
2079 /*
2080  * Called with IRQs disabled
2081  */
2082 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 			      enum event_type_t event_type)
2084 {
2085 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2086 }
2087 
2088 static void
2089 ctx_pinned_sched_in(struct perf_event_context *ctx,
2090 		    struct perf_cpu_context *cpuctx)
2091 {
2092 	struct perf_event *event;
2093 
2094 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 		if (event->state <= PERF_EVENT_STATE_OFF)
2096 			continue;
2097 		if (!event_filter_match(event))
2098 			continue;
2099 
2100 		/* may need to reset tstamp_enabled */
2101 		if (is_cgroup_event(event))
2102 			perf_cgroup_mark_enabled(event, ctx);
2103 
2104 		if (group_can_go_on(event, cpuctx, 1))
2105 			group_sched_in(event, cpuctx, ctx);
2106 
2107 		/*
2108 		 * If this pinned group hasn't been scheduled,
2109 		 * put it in error state.
2110 		 */
2111 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 			update_group_times(event);
2113 			event->state = PERF_EVENT_STATE_ERROR;
2114 		}
2115 	}
2116 }
2117 
2118 static void
2119 ctx_flexible_sched_in(struct perf_event_context *ctx,
2120 		      struct perf_cpu_context *cpuctx)
2121 {
2122 	struct perf_event *event;
2123 	int can_add_hw = 1;
2124 
2125 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 		/* Ignore events in OFF or ERROR state */
2127 		if (event->state <= PERF_EVENT_STATE_OFF)
2128 			continue;
2129 		/*
2130 		 * Listen to the 'cpu' scheduling filter constraint
2131 		 * of events:
2132 		 */
2133 		if (!event_filter_match(event))
2134 			continue;
2135 
2136 		/* may need to reset tstamp_enabled */
2137 		if (is_cgroup_event(event))
2138 			perf_cgroup_mark_enabled(event, ctx);
2139 
2140 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2141 			if (group_sched_in(event, cpuctx, ctx))
2142 				can_add_hw = 0;
2143 		}
2144 	}
2145 }
2146 
2147 static void
2148 ctx_sched_in(struct perf_event_context *ctx,
2149 	     struct perf_cpu_context *cpuctx,
2150 	     enum event_type_t event_type,
2151 	     struct task_struct *task)
2152 {
2153 	u64 now;
2154 	int is_active = ctx->is_active;
2155 
2156 	ctx->is_active |= event_type;
2157 	if (likely(!ctx->nr_events))
2158 		return;
2159 
2160 	now = perf_clock();
2161 	ctx->timestamp = now;
2162 	perf_cgroup_set_timestamp(task, ctx);
2163 	/*
2164 	 * First go through the list and put on any pinned groups
2165 	 * in order to give them the best chance of going on.
2166 	 */
2167 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2168 		ctx_pinned_sched_in(ctx, cpuctx);
2169 
2170 	/* Then walk through the lower prio flexible groups */
2171 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2172 		ctx_flexible_sched_in(ctx, cpuctx);
2173 }
2174 
2175 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2176 			     enum event_type_t event_type,
2177 			     struct task_struct *task)
2178 {
2179 	struct perf_event_context *ctx = &cpuctx->ctx;
2180 
2181 	ctx_sched_in(ctx, cpuctx, event_type, task);
2182 }
2183 
2184 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 					struct task_struct *task)
2186 {
2187 	struct perf_cpu_context *cpuctx;
2188 
2189 	cpuctx = __get_cpu_context(ctx);
2190 	if (cpuctx->task_ctx == ctx)
2191 		return;
2192 
2193 	perf_ctx_lock(cpuctx, ctx);
2194 	perf_pmu_disable(ctx->pmu);
2195 	/*
2196 	 * We want to keep the following priority order:
2197 	 * cpu pinned (that don't need to move), task pinned,
2198 	 * cpu flexible, task flexible.
2199 	 */
2200 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201 
2202 	if (ctx->nr_events)
2203 		cpuctx->task_ctx = ctx;
2204 
2205 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206 
2207 	perf_pmu_enable(ctx->pmu);
2208 	perf_ctx_unlock(cpuctx, ctx);
2209 
2210 	/*
2211 	 * Since these rotations are per-cpu, we need to ensure the
2212 	 * cpu-context we got scheduled on is actually rotating.
2213 	 */
2214 	perf_pmu_rotate_start(ctx->pmu);
2215 }
2216 
2217 /*
2218  * When sampling the branck stack in system-wide, it may be necessary
2219  * to flush the stack on context switch. This happens when the branch
2220  * stack does not tag its entries with the pid of the current task.
2221  * Otherwise it becomes impossible to associate a branch entry with a
2222  * task. This ambiguity is more likely to appear when the branch stack
2223  * supports priv level filtering and the user sets it to monitor only
2224  * at the user level (which could be a useful measurement in system-wide
2225  * mode). In that case, the risk is high of having a branch stack with
2226  * branch from multiple tasks. Flushing may mean dropping the existing
2227  * entries or stashing them somewhere in the PMU specific code layer.
2228  *
2229  * This function provides the context switch callback to the lower code
2230  * layer. It is invoked ONLY when there is at least one system-wide context
2231  * with at least one active event using taken branch sampling.
2232  */
2233 static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 				       struct task_struct *task)
2235 {
2236 	struct perf_cpu_context *cpuctx;
2237 	struct pmu *pmu;
2238 	unsigned long flags;
2239 
2240 	/* no need to flush branch stack if not changing task */
2241 	if (prev == task)
2242 		return;
2243 
2244 	local_irq_save(flags);
2245 
2246 	rcu_read_lock();
2247 
2248 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250 
2251 		/*
2252 		 * check if the context has at least one
2253 		 * event using PERF_SAMPLE_BRANCH_STACK
2254 		 */
2255 		if (cpuctx->ctx.nr_branch_stack > 0
2256 		    && pmu->flush_branch_stack) {
2257 
2258 			pmu = cpuctx->ctx.pmu;
2259 
2260 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261 
2262 			perf_pmu_disable(pmu);
2263 
2264 			pmu->flush_branch_stack();
2265 
2266 			perf_pmu_enable(pmu);
2267 
2268 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 		}
2270 	}
2271 
2272 	rcu_read_unlock();
2273 
2274 	local_irq_restore(flags);
2275 }
2276 
2277 /*
2278  * Called from scheduler to add the events of the current task
2279  * with interrupts disabled.
2280  *
2281  * We restore the event value and then enable it.
2282  *
2283  * This does not protect us against NMI, but enable()
2284  * sets the enabled bit in the control field of event _before_
2285  * accessing the event control register. If a NMI hits, then it will
2286  * keep the event running.
2287  */
2288 void __perf_event_task_sched_in(struct task_struct *prev,
2289 				struct task_struct *task)
2290 {
2291 	struct perf_event_context *ctx;
2292 	int ctxn;
2293 
2294 	for_each_task_context_nr(ctxn) {
2295 		ctx = task->perf_event_ctxp[ctxn];
2296 		if (likely(!ctx))
2297 			continue;
2298 
2299 		perf_event_context_sched_in(ctx, task);
2300 	}
2301 	/*
2302 	 * if cgroup events exist on this CPU, then we need
2303 	 * to check if we have to switch in PMU state.
2304 	 * cgroup event are system-wide mode only
2305 	 */
2306 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2307 		perf_cgroup_sched_in(prev, task);
2308 
2309 	/* check for system-wide branch_stack events */
2310 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 		perf_branch_stack_sched_in(prev, task);
2312 }
2313 
2314 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315 {
2316 	u64 frequency = event->attr.sample_freq;
2317 	u64 sec = NSEC_PER_SEC;
2318 	u64 divisor, dividend;
2319 
2320 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2321 
2322 	count_fls = fls64(count);
2323 	nsec_fls = fls64(nsec);
2324 	frequency_fls = fls64(frequency);
2325 	sec_fls = 30;
2326 
2327 	/*
2328 	 * We got @count in @nsec, with a target of sample_freq HZ
2329 	 * the target period becomes:
2330 	 *
2331 	 *             @count * 10^9
2332 	 * period = -------------------
2333 	 *          @nsec * sample_freq
2334 	 *
2335 	 */
2336 
2337 	/*
2338 	 * Reduce accuracy by one bit such that @a and @b converge
2339 	 * to a similar magnitude.
2340 	 */
2341 #define REDUCE_FLS(a, b)		\
2342 do {					\
2343 	if (a##_fls > b##_fls) {	\
2344 		a >>= 1;		\
2345 		a##_fls--;		\
2346 	} else {			\
2347 		b >>= 1;		\
2348 		b##_fls--;		\
2349 	}				\
2350 } while (0)
2351 
2352 	/*
2353 	 * Reduce accuracy until either term fits in a u64, then proceed with
2354 	 * the other, so that finally we can do a u64/u64 division.
2355 	 */
2356 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 		REDUCE_FLS(nsec, frequency);
2358 		REDUCE_FLS(sec, count);
2359 	}
2360 
2361 	if (count_fls + sec_fls > 64) {
2362 		divisor = nsec * frequency;
2363 
2364 		while (count_fls + sec_fls > 64) {
2365 			REDUCE_FLS(count, sec);
2366 			divisor >>= 1;
2367 		}
2368 
2369 		dividend = count * sec;
2370 	} else {
2371 		dividend = count * sec;
2372 
2373 		while (nsec_fls + frequency_fls > 64) {
2374 			REDUCE_FLS(nsec, frequency);
2375 			dividend >>= 1;
2376 		}
2377 
2378 		divisor = nsec * frequency;
2379 	}
2380 
2381 	if (!divisor)
2382 		return dividend;
2383 
2384 	return div64_u64(dividend, divisor);
2385 }
2386 
2387 static DEFINE_PER_CPU(int, perf_throttled_count);
2388 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389 
2390 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2391 {
2392 	struct hw_perf_event *hwc = &event->hw;
2393 	s64 period, sample_period;
2394 	s64 delta;
2395 
2396 	period = perf_calculate_period(event, nsec, count);
2397 
2398 	delta = (s64)(period - hwc->sample_period);
2399 	delta = (delta + 7) / 8; /* low pass filter */
2400 
2401 	sample_period = hwc->sample_period + delta;
2402 
2403 	if (!sample_period)
2404 		sample_period = 1;
2405 
2406 	hwc->sample_period = sample_period;
2407 
2408 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2409 		if (disable)
2410 			event->pmu->stop(event, PERF_EF_UPDATE);
2411 
2412 		local64_set(&hwc->period_left, 0);
2413 
2414 		if (disable)
2415 			event->pmu->start(event, PERF_EF_RELOAD);
2416 	}
2417 }
2418 
2419 /*
2420  * combine freq adjustment with unthrottling to avoid two passes over the
2421  * events. At the same time, make sure, having freq events does not change
2422  * the rate of unthrottling as that would introduce bias.
2423  */
2424 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 					   int needs_unthr)
2426 {
2427 	struct perf_event *event;
2428 	struct hw_perf_event *hwc;
2429 	u64 now, period = TICK_NSEC;
2430 	s64 delta;
2431 
2432 	/*
2433 	 * only need to iterate over all events iff:
2434 	 * - context have events in frequency mode (needs freq adjust)
2435 	 * - there are events to unthrottle on this cpu
2436 	 */
2437 	if (!(ctx->nr_freq || needs_unthr))
2438 		return;
2439 
2440 	raw_spin_lock(&ctx->lock);
2441 	perf_pmu_disable(ctx->pmu);
2442 
2443 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2444 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2445 			continue;
2446 
2447 		if (!event_filter_match(event))
2448 			continue;
2449 
2450 		hwc = &event->hw;
2451 
2452 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 			hwc->interrupts = 0;
2454 			perf_log_throttle(event, 1);
2455 			event->pmu->start(event, 0);
2456 		}
2457 
2458 		if (!event->attr.freq || !event->attr.sample_freq)
2459 			continue;
2460 
2461 		/*
2462 		 * stop the event and update event->count
2463 		 */
2464 		event->pmu->stop(event, PERF_EF_UPDATE);
2465 
2466 		now = local64_read(&event->count);
2467 		delta = now - hwc->freq_count_stamp;
2468 		hwc->freq_count_stamp = now;
2469 
2470 		/*
2471 		 * restart the event
2472 		 * reload only if value has changed
2473 		 * we have stopped the event so tell that
2474 		 * to perf_adjust_period() to avoid stopping it
2475 		 * twice.
2476 		 */
2477 		if (delta > 0)
2478 			perf_adjust_period(event, period, delta, false);
2479 
2480 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2481 	}
2482 
2483 	perf_pmu_enable(ctx->pmu);
2484 	raw_spin_unlock(&ctx->lock);
2485 }
2486 
2487 /*
2488  * Round-robin a context's events:
2489  */
2490 static void rotate_ctx(struct perf_event_context *ctx)
2491 {
2492 	/*
2493 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 	 * disabled by the inheritance code.
2495 	 */
2496 	if (!ctx->rotate_disable)
2497 		list_rotate_left(&ctx->flexible_groups);
2498 }
2499 
2500 /*
2501  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502  * because they're strictly cpu affine and rotate_start is called with IRQs
2503  * disabled, while rotate_context is called from IRQ context.
2504  */
2505 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2506 {
2507 	struct perf_event_context *ctx = NULL;
2508 	int rotate = 0, remove = 1;
2509 
2510 	if (cpuctx->ctx.nr_events) {
2511 		remove = 0;
2512 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 			rotate = 1;
2514 	}
2515 
2516 	ctx = cpuctx->task_ctx;
2517 	if (ctx && ctx->nr_events) {
2518 		remove = 0;
2519 		if (ctx->nr_events != ctx->nr_active)
2520 			rotate = 1;
2521 	}
2522 
2523 	if (!rotate)
2524 		goto done;
2525 
2526 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527 	perf_pmu_disable(cpuctx->ctx.pmu);
2528 
2529 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 	if (ctx)
2531 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2532 
2533 	rotate_ctx(&cpuctx->ctx);
2534 	if (ctx)
2535 		rotate_ctx(ctx);
2536 
2537 	perf_event_sched_in(cpuctx, ctx, current);
2538 
2539 	perf_pmu_enable(cpuctx->ctx.pmu);
2540 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2541 done:
2542 	if (remove)
2543 		list_del_init(&cpuctx->rotation_list);
2544 }
2545 
2546 void perf_event_task_tick(void)
2547 {
2548 	struct list_head *head = &__get_cpu_var(rotation_list);
2549 	struct perf_cpu_context *cpuctx, *tmp;
2550 	struct perf_event_context *ctx;
2551 	int throttled;
2552 
2553 	WARN_ON(!irqs_disabled());
2554 
2555 	__this_cpu_inc(perf_throttled_seq);
2556 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557 
2558 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2559 		ctx = &cpuctx->ctx;
2560 		perf_adjust_freq_unthr_context(ctx, throttled);
2561 
2562 		ctx = cpuctx->task_ctx;
2563 		if (ctx)
2564 			perf_adjust_freq_unthr_context(ctx, throttled);
2565 
2566 		if (cpuctx->jiffies_interval == 1 ||
2567 				!(jiffies % cpuctx->jiffies_interval))
2568 			perf_rotate_context(cpuctx);
2569 	}
2570 }
2571 
2572 static int event_enable_on_exec(struct perf_event *event,
2573 				struct perf_event_context *ctx)
2574 {
2575 	if (!event->attr.enable_on_exec)
2576 		return 0;
2577 
2578 	event->attr.enable_on_exec = 0;
2579 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 		return 0;
2581 
2582 	__perf_event_mark_enabled(event);
2583 
2584 	return 1;
2585 }
2586 
2587 /*
2588  * Enable all of a task's events that have been marked enable-on-exec.
2589  * This expects task == current.
2590  */
2591 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2592 {
2593 	struct perf_event *event;
2594 	unsigned long flags;
2595 	int enabled = 0;
2596 	int ret;
2597 
2598 	local_irq_save(flags);
2599 	if (!ctx || !ctx->nr_events)
2600 		goto out;
2601 
2602 	/*
2603 	 * We must ctxsw out cgroup events to avoid conflict
2604 	 * when invoking perf_task_event_sched_in() later on
2605 	 * in this function. Otherwise we end up trying to
2606 	 * ctxswin cgroup events which are already scheduled
2607 	 * in.
2608 	 */
2609 	perf_cgroup_sched_out(current, NULL);
2610 
2611 	raw_spin_lock(&ctx->lock);
2612 	task_ctx_sched_out(ctx);
2613 
2614 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2615 		ret = event_enable_on_exec(event, ctx);
2616 		if (ret)
2617 			enabled = 1;
2618 	}
2619 
2620 	/*
2621 	 * Unclone this context if we enabled any event.
2622 	 */
2623 	if (enabled)
2624 		unclone_ctx(ctx);
2625 
2626 	raw_spin_unlock(&ctx->lock);
2627 
2628 	/*
2629 	 * Also calls ctxswin for cgroup events, if any:
2630 	 */
2631 	perf_event_context_sched_in(ctx, ctx->task);
2632 out:
2633 	local_irq_restore(flags);
2634 }
2635 
2636 /*
2637  * Cross CPU call to read the hardware event
2638  */
2639 static void __perf_event_read(void *info)
2640 {
2641 	struct perf_event *event = info;
2642 	struct perf_event_context *ctx = event->ctx;
2643 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2644 
2645 	/*
2646 	 * If this is a task context, we need to check whether it is
2647 	 * the current task context of this cpu.  If not it has been
2648 	 * scheduled out before the smp call arrived.  In that case
2649 	 * event->count would have been updated to a recent sample
2650 	 * when the event was scheduled out.
2651 	 */
2652 	if (ctx->task && cpuctx->task_ctx != ctx)
2653 		return;
2654 
2655 	raw_spin_lock(&ctx->lock);
2656 	if (ctx->is_active) {
2657 		update_context_time(ctx);
2658 		update_cgrp_time_from_event(event);
2659 	}
2660 	update_event_times(event);
2661 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 		event->pmu->read(event);
2663 	raw_spin_unlock(&ctx->lock);
2664 }
2665 
2666 static inline u64 perf_event_count(struct perf_event *event)
2667 {
2668 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2669 }
2670 
2671 static u64 perf_event_read(struct perf_event *event)
2672 {
2673 	/*
2674 	 * If event is enabled and currently active on a CPU, update the
2675 	 * value in the event structure:
2676 	 */
2677 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 		smp_call_function_single(event->oncpu,
2679 					 __perf_event_read, event, 1);
2680 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2681 		struct perf_event_context *ctx = event->ctx;
2682 		unsigned long flags;
2683 
2684 		raw_spin_lock_irqsave(&ctx->lock, flags);
2685 		/*
2686 		 * may read while context is not active
2687 		 * (e.g., thread is blocked), in that case
2688 		 * we cannot update context time
2689 		 */
2690 		if (ctx->is_active) {
2691 			update_context_time(ctx);
2692 			update_cgrp_time_from_event(event);
2693 		}
2694 		update_event_times(event);
2695 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2696 	}
2697 
2698 	return perf_event_count(event);
2699 }
2700 
2701 /*
2702  * Initialize the perf_event context in a task_struct:
2703  */
2704 static void __perf_event_init_context(struct perf_event_context *ctx)
2705 {
2706 	raw_spin_lock_init(&ctx->lock);
2707 	mutex_init(&ctx->mutex);
2708 	INIT_LIST_HEAD(&ctx->pinned_groups);
2709 	INIT_LIST_HEAD(&ctx->flexible_groups);
2710 	INIT_LIST_HEAD(&ctx->event_list);
2711 	atomic_set(&ctx->refcount, 1);
2712 }
2713 
2714 static struct perf_event_context *
2715 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716 {
2717 	struct perf_event_context *ctx;
2718 
2719 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 	if (!ctx)
2721 		return NULL;
2722 
2723 	__perf_event_init_context(ctx);
2724 	if (task) {
2725 		ctx->task = task;
2726 		get_task_struct(task);
2727 	}
2728 	ctx->pmu = pmu;
2729 
2730 	return ctx;
2731 }
2732 
2733 static struct task_struct *
2734 find_lively_task_by_vpid(pid_t vpid)
2735 {
2736 	struct task_struct *task;
2737 	int err;
2738 
2739 	rcu_read_lock();
2740 	if (!vpid)
2741 		task = current;
2742 	else
2743 		task = find_task_by_vpid(vpid);
2744 	if (task)
2745 		get_task_struct(task);
2746 	rcu_read_unlock();
2747 
2748 	if (!task)
2749 		return ERR_PTR(-ESRCH);
2750 
2751 	/* Reuse ptrace permission checks for now. */
2752 	err = -EACCES;
2753 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 		goto errout;
2755 
2756 	return task;
2757 errout:
2758 	put_task_struct(task);
2759 	return ERR_PTR(err);
2760 
2761 }
2762 
2763 /*
2764  * Returns a matching context with refcount and pincount.
2765  */
2766 static struct perf_event_context *
2767 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2768 {
2769 	struct perf_event_context *ctx;
2770 	struct perf_cpu_context *cpuctx;
2771 	unsigned long flags;
2772 	int ctxn, err;
2773 
2774 	if (!task) {
2775 		/* Must be root to operate on a CPU event: */
2776 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2777 			return ERR_PTR(-EACCES);
2778 
2779 		/*
2780 		 * We could be clever and allow to attach a event to an
2781 		 * offline CPU and activate it when the CPU comes up, but
2782 		 * that's for later.
2783 		 */
2784 		if (!cpu_online(cpu))
2785 			return ERR_PTR(-ENODEV);
2786 
2787 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2788 		ctx = &cpuctx->ctx;
2789 		get_ctx(ctx);
2790 		++ctx->pin_count;
2791 
2792 		return ctx;
2793 	}
2794 
2795 	err = -EINVAL;
2796 	ctxn = pmu->task_ctx_nr;
2797 	if (ctxn < 0)
2798 		goto errout;
2799 
2800 retry:
2801 	ctx = perf_lock_task_context(task, ctxn, &flags);
2802 	if (ctx) {
2803 		unclone_ctx(ctx);
2804 		++ctx->pin_count;
2805 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2806 	} else {
2807 		ctx = alloc_perf_context(pmu, task);
2808 		err = -ENOMEM;
2809 		if (!ctx)
2810 			goto errout;
2811 
2812 		err = 0;
2813 		mutex_lock(&task->perf_event_mutex);
2814 		/*
2815 		 * If it has already passed perf_event_exit_task().
2816 		 * we must see PF_EXITING, it takes this mutex too.
2817 		 */
2818 		if (task->flags & PF_EXITING)
2819 			err = -ESRCH;
2820 		else if (task->perf_event_ctxp[ctxn])
2821 			err = -EAGAIN;
2822 		else {
2823 			get_ctx(ctx);
2824 			++ctx->pin_count;
2825 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2826 		}
2827 		mutex_unlock(&task->perf_event_mutex);
2828 
2829 		if (unlikely(err)) {
2830 			put_ctx(ctx);
2831 
2832 			if (err == -EAGAIN)
2833 				goto retry;
2834 			goto errout;
2835 		}
2836 	}
2837 
2838 	return ctx;
2839 
2840 errout:
2841 	return ERR_PTR(err);
2842 }
2843 
2844 static void perf_event_free_filter(struct perf_event *event);
2845 
2846 static void free_event_rcu(struct rcu_head *head)
2847 {
2848 	struct perf_event *event;
2849 
2850 	event = container_of(head, struct perf_event, rcu_head);
2851 	if (event->ns)
2852 		put_pid_ns(event->ns);
2853 	perf_event_free_filter(event);
2854 	kfree(event);
2855 }
2856 
2857 static void ring_buffer_put(struct ring_buffer *rb);
2858 
2859 static void free_event(struct perf_event *event)
2860 {
2861 	irq_work_sync(&event->pending);
2862 
2863 	if (!event->parent) {
2864 		if (event->attach_state & PERF_ATTACH_TASK)
2865 			static_key_slow_dec_deferred(&perf_sched_events);
2866 		if (event->attr.mmap || event->attr.mmap_data)
2867 			atomic_dec(&nr_mmap_events);
2868 		if (event->attr.comm)
2869 			atomic_dec(&nr_comm_events);
2870 		if (event->attr.task)
2871 			atomic_dec(&nr_task_events);
2872 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 			put_callchain_buffers();
2874 		if (is_cgroup_event(event)) {
2875 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2876 			static_key_slow_dec_deferred(&perf_sched_events);
2877 		}
2878 
2879 		if (has_branch_stack(event)) {
2880 			static_key_slow_dec_deferred(&perf_sched_events);
2881 			/* is system-wide event */
2882 			if (!(event->attach_state & PERF_ATTACH_TASK))
2883 				atomic_dec(&per_cpu(perf_branch_stack_events,
2884 						    event->cpu));
2885 		}
2886 	}
2887 
2888 	if (event->rb) {
2889 		ring_buffer_put(event->rb);
2890 		event->rb = NULL;
2891 	}
2892 
2893 	if (is_cgroup_event(event))
2894 		perf_detach_cgroup(event);
2895 
2896 	if (event->destroy)
2897 		event->destroy(event);
2898 
2899 	if (event->ctx)
2900 		put_ctx(event->ctx);
2901 
2902 	call_rcu(&event->rcu_head, free_event_rcu);
2903 }
2904 
2905 int perf_event_release_kernel(struct perf_event *event)
2906 {
2907 	struct perf_event_context *ctx = event->ctx;
2908 
2909 	WARN_ON_ONCE(ctx->parent_ctx);
2910 	/*
2911 	 * There are two ways this annotation is useful:
2912 	 *
2913 	 *  1) there is a lock recursion from perf_event_exit_task
2914 	 *     see the comment there.
2915 	 *
2916 	 *  2) there is a lock-inversion with mmap_sem through
2917 	 *     perf_event_read_group(), which takes faults while
2918 	 *     holding ctx->mutex, however this is called after
2919 	 *     the last filedesc died, so there is no possibility
2920 	 *     to trigger the AB-BA case.
2921 	 */
2922 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2923 	raw_spin_lock_irq(&ctx->lock);
2924 	perf_group_detach(event);
2925 	raw_spin_unlock_irq(&ctx->lock);
2926 	perf_remove_from_context(event);
2927 	mutex_unlock(&ctx->mutex);
2928 
2929 	free_event(event);
2930 
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2934 
2935 /*
2936  * Called when the last reference to the file is gone.
2937  */
2938 static void put_event(struct perf_event *event)
2939 {
2940 	struct task_struct *owner;
2941 
2942 	if (!atomic_long_dec_and_test(&event->refcount))
2943 		return;
2944 
2945 	rcu_read_lock();
2946 	owner = ACCESS_ONCE(event->owner);
2947 	/*
2948 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 	 * !owner it means the list deletion is complete and we can indeed
2950 	 * free this event, otherwise we need to serialize on
2951 	 * owner->perf_event_mutex.
2952 	 */
2953 	smp_read_barrier_depends();
2954 	if (owner) {
2955 		/*
2956 		 * Since delayed_put_task_struct() also drops the last
2957 		 * task reference we can safely take a new reference
2958 		 * while holding the rcu_read_lock().
2959 		 */
2960 		get_task_struct(owner);
2961 	}
2962 	rcu_read_unlock();
2963 
2964 	if (owner) {
2965 		mutex_lock(&owner->perf_event_mutex);
2966 		/*
2967 		 * We have to re-check the event->owner field, if it is cleared
2968 		 * we raced with perf_event_exit_task(), acquiring the mutex
2969 		 * ensured they're done, and we can proceed with freeing the
2970 		 * event.
2971 		 */
2972 		if (event->owner)
2973 			list_del_init(&event->owner_entry);
2974 		mutex_unlock(&owner->perf_event_mutex);
2975 		put_task_struct(owner);
2976 	}
2977 
2978 	perf_event_release_kernel(event);
2979 }
2980 
2981 static int perf_release(struct inode *inode, struct file *file)
2982 {
2983 	put_event(file->private_data);
2984 	return 0;
2985 }
2986 
2987 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2988 {
2989 	struct perf_event *child;
2990 	u64 total = 0;
2991 
2992 	*enabled = 0;
2993 	*running = 0;
2994 
2995 	mutex_lock(&event->child_mutex);
2996 	total += perf_event_read(event);
2997 	*enabled += event->total_time_enabled +
2998 			atomic64_read(&event->child_total_time_enabled);
2999 	*running += event->total_time_running +
3000 			atomic64_read(&event->child_total_time_running);
3001 
3002 	list_for_each_entry(child, &event->child_list, child_list) {
3003 		total += perf_event_read(child);
3004 		*enabled += child->total_time_enabled;
3005 		*running += child->total_time_running;
3006 	}
3007 	mutex_unlock(&event->child_mutex);
3008 
3009 	return total;
3010 }
3011 EXPORT_SYMBOL_GPL(perf_event_read_value);
3012 
3013 static int perf_event_read_group(struct perf_event *event,
3014 				   u64 read_format, char __user *buf)
3015 {
3016 	struct perf_event *leader = event->group_leader, *sub;
3017 	int n = 0, size = 0, ret = -EFAULT;
3018 	struct perf_event_context *ctx = leader->ctx;
3019 	u64 values[5];
3020 	u64 count, enabled, running;
3021 
3022 	mutex_lock(&ctx->mutex);
3023 	count = perf_event_read_value(leader, &enabled, &running);
3024 
3025 	values[n++] = 1 + leader->nr_siblings;
3026 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3027 		values[n++] = enabled;
3028 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3029 		values[n++] = running;
3030 	values[n++] = count;
3031 	if (read_format & PERF_FORMAT_ID)
3032 		values[n++] = primary_event_id(leader);
3033 
3034 	size = n * sizeof(u64);
3035 
3036 	if (copy_to_user(buf, values, size))
3037 		goto unlock;
3038 
3039 	ret = size;
3040 
3041 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3042 		n = 0;
3043 
3044 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3045 		if (read_format & PERF_FORMAT_ID)
3046 			values[n++] = primary_event_id(sub);
3047 
3048 		size = n * sizeof(u64);
3049 
3050 		if (copy_to_user(buf + ret, values, size)) {
3051 			ret = -EFAULT;
3052 			goto unlock;
3053 		}
3054 
3055 		ret += size;
3056 	}
3057 unlock:
3058 	mutex_unlock(&ctx->mutex);
3059 
3060 	return ret;
3061 }
3062 
3063 static int perf_event_read_one(struct perf_event *event,
3064 				 u64 read_format, char __user *buf)
3065 {
3066 	u64 enabled, running;
3067 	u64 values[4];
3068 	int n = 0;
3069 
3070 	values[n++] = perf_event_read_value(event, &enabled, &running);
3071 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3072 		values[n++] = enabled;
3073 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3074 		values[n++] = running;
3075 	if (read_format & PERF_FORMAT_ID)
3076 		values[n++] = primary_event_id(event);
3077 
3078 	if (copy_to_user(buf, values, n * sizeof(u64)))
3079 		return -EFAULT;
3080 
3081 	return n * sizeof(u64);
3082 }
3083 
3084 /*
3085  * Read the performance event - simple non blocking version for now
3086  */
3087 static ssize_t
3088 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3089 {
3090 	u64 read_format = event->attr.read_format;
3091 	int ret;
3092 
3093 	/*
3094 	 * Return end-of-file for a read on a event that is in
3095 	 * error state (i.e. because it was pinned but it couldn't be
3096 	 * scheduled on to the CPU at some point).
3097 	 */
3098 	if (event->state == PERF_EVENT_STATE_ERROR)
3099 		return 0;
3100 
3101 	if (count < event->read_size)
3102 		return -ENOSPC;
3103 
3104 	WARN_ON_ONCE(event->ctx->parent_ctx);
3105 	if (read_format & PERF_FORMAT_GROUP)
3106 		ret = perf_event_read_group(event, read_format, buf);
3107 	else
3108 		ret = perf_event_read_one(event, read_format, buf);
3109 
3110 	return ret;
3111 }
3112 
3113 static ssize_t
3114 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3115 {
3116 	struct perf_event *event = file->private_data;
3117 
3118 	return perf_read_hw(event, buf, count);
3119 }
3120 
3121 static unsigned int perf_poll(struct file *file, poll_table *wait)
3122 {
3123 	struct perf_event *event = file->private_data;
3124 	struct ring_buffer *rb;
3125 	unsigned int events = POLL_HUP;
3126 
3127 	/*
3128 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3129 	 * grabs the rb reference but perf_event_set_output() overrides it.
3130 	 * Here is the timeline for two threads T1, T2:
3131 	 * t0: T1, rb = rcu_dereference(event->rb)
3132 	 * t1: T2, old_rb = event->rb
3133 	 * t2: T2, event->rb = new rb
3134 	 * t3: T2, ring_buffer_detach(old_rb)
3135 	 * t4: T1, ring_buffer_attach(rb1)
3136 	 * t5: T1, poll_wait(event->waitq)
3137 	 *
3138 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3139 	 * thereby ensuring that the assignment of the new ring buffer
3140 	 * and the detachment of the old buffer appear atomic to perf_poll()
3141 	 */
3142 	mutex_lock(&event->mmap_mutex);
3143 
3144 	rcu_read_lock();
3145 	rb = rcu_dereference(event->rb);
3146 	if (rb) {
3147 		ring_buffer_attach(event, rb);
3148 		events = atomic_xchg(&rb->poll, 0);
3149 	}
3150 	rcu_read_unlock();
3151 
3152 	mutex_unlock(&event->mmap_mutex);
3153 
3154 	poll_wait(file, &event->waitq, wait);
3155 
3156 	return events;
3157 }
3158 
3159 static void perf_event_reset(struct perf_event *event)
3160 {
3161 	(void)perf_event_read(event);
3162 	local64_set(&event->count, 0);
3163 	perf_event_update_userpage(event);
3164 }
3165 
3166 /*
3167  * Holding the top-level event's child_mutex means that any
3168  * descendant process that has inherited this event will block
3169  * in sync_child_event if it goes to exit, thus satisfying the
3170  * task existence requirements of perf_event_enable/disable.
3171  */
3172 static void perf_event_for_each_child(struct perf_event *event,
3173 					void (*func)(struct perf_event *))
3174 {
3175 	struct perf_event *child;
3176 
3177 	WARN_ON_ONCE(event->ctx->parent_ctx);
3178 	mutex_lock(&event->child_mutex);
3179 	func(event);
3180 	list_for_each_entry(child, &event->child_list, child_list)
3181 		func(child);
3182 	mutex_unlock(&event->child_mutex);
3183 }
3184 
3185 static void perf_event_for_each(struct perf_event *event,
3186 				  void (*func)(struct perf_event *))
3187 {
3188 	struct perf_event_context *ctx = event->ctx;
3189 	struct perf_event *sibling;
3190 
3191 	WARN_ON_ONCE(ctx->parent_ctx);
3192 	mutex_lock(&ctx->mutex);
3193 	event = event->group_leader;
3194 
3195 	perf_event_for_each_child(event, func);
3196 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3197 		perf_event_for_each_child(sibling, func);
3198 	mutex_unlock(&ctx->mutex);
3199 }
3200 
3201 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3202 {
3203 	struct perf_event_context *ctx = event->ctx;
3204 	int ret = 0;
3205 	u64 value;
3206 
3207 	if (!is_sampling_event(event))
3208 		return -EINVAL;
3209 
3210 	if (copy_from_user(&value, arg, sizeof(value)))
3211 		return -EFAULT;
3212 
3213 	if (!value)
3214 		return -EINVAL;
3215 
3216 	raw_spin_lock_irq(&ctx->lock);
3217 	if (event->attr.freq) {
3218 		if (value > sysctl_perf_event_sample_rate) {
3219 			ret = -EINVAL;
3220 			goto unlock;
3221 		}
3222 
3223 		event->attr.sample_freq = value;
3224 	} else {
3225 		event->attr.sample_period = value;
3226 		event->hw.sample_period = value;
3227 	}
3228 unlock:
3229 	raw_spin_unlock_irq(&ctx->lock);
3230 
3231 	return ret;
3232 }
3233 
3234 static const struct file_operations perf_fops;
3235 
3236 static struct file *perf_fget_light(int fd, int *fput_needed)
3237 {
3238 	struct file *file;
3239 
3240 	file = fget_light(fd, fput_needed);
3241 	if (!file)
3242 		return ERR_PTR(-EBADF);
3243 
3244 	if (file->f_op != &perf_fops) {
3245 		fput_light(file, *fput_needed);
3246 		*fput_needed = 0;
3247 		return ERR_PTR(-EBADF);
3248 	}
3249 
3250 	return file;
3251 }
3252 
3253 static int perf_event_set_output(struct perf_event *event,
3254 				 struct perf_event *output_event);
3255 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3256 
3257 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3258 {
3259 	struct perf_event *event = file->private_data;
3260 	void (*func)(struct perf_event *);
3261 	u32 flags = arg;
3262 
3263 	switch (cmd) {
3264 	case PERF_EVENT_IOC_ENABLE:
3265 		func = perf_event_enable;
3266 		break;
3267 	case PERF_EVENT_IOC_DISABLE:
3268 		func = perf_event_disable;
3269 		break;
3270 	case PERF_EVENT_IOC_RESET:
3271 		func = perf_event_reset;
3272 		break;
3273 
3274 	case PERF_EVENT_IOC_REFRESH:
3275 		return perf_event_refresh(event, arg);
3276 
3277 	case PERF_EVENT_IOC_PERIOD:
3278 		return perf_event_period(event, (u64 __user *)arg);
3279 
3280 	case PERF_EVENT_IOC_SET_OUTPUT:
3281 	{
3282 		struct file *output_file = NULL;
3283 		struct perf_event *output_event = NULL;
3284 		int fput_needed = 0;
3285 		int ret;
3286 
3287 		if (arg != -1) {
3288 			output_file = perf_fget_light(arg, &fput_needed);
3289 			if (IS_ERR(output_file))
3290 				return PTR_ERR(output_file);
3291 			output_event = output_file->private_data;
3292 		}
3293 
3294 		ret = perf_event_set_output(event, output_event);
3295 		if (output_event)
3296 			fput_light(output_file, fput_needed);
3297 
3298 		return ret;
3299 	}
3300 
3301 	case PERF_EVENT_IOC_SET_FILTER:
3302 		return perf_event_set_filter(event, (void __user *)arg);
3303 
3304 	default:
3305 		return -ENOTTY;
3306 	}
3307 
3308 	if (flags & PERF_IOC_FLAG_GROUP)
3309 		perf_event_for_each(event, func);
3310 	else
3311 		perf_event_for_each_child(event, func);
3312 
3313 	return 0;
3314 }
3315 
3316 int perf_event_task_enable(void)
3317 {
3318 	struct perf_event *event;
3319 
3320 	mutex_lock(&current->perf_event_mutex);
3321 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3322 		perf_event_for_each_child(event, perf_event_enable);
3323 	mutex_unlock(&current->perf_event_mutex);
3324 
3325 	return 0;
3326 }
3327 
3328 int perf_event_task_disable(void)
3329 {
3330 	struct perf_event *event;
3331 
3332 	mutex_lock(&current->perf_event_mutex);
3333 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3334 		perf_event_for_each_child(event, perf_event_disable);
3335 	mutex_unlock(&current->perf_event_mutex);
3336 
3337 	return 0;
3338 }
3339 
3340 static int perf_event_index(struct perf_event *event)
3341 {
3342 	if (event->hw.state & PERF_HES_STOPPED)
3343 		return 0;
3344 
3345 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3346 		return 0;
3347 
3348 	return event->pmu->event_idx(event);
3349 }
3350 
3351 static void calc_timer_values(struct perf_event *event,
3352 				u64 *now,
3353 				u64 *enabled,
3354 				u64 *running)
3355 {
3356 	u64 ctx_time;
3357 
3358 	*now = perf_clock();
3359 	ctx_time = event->shadow_ctx_time + *now;
3360 	*enabled = ctx_time - event->tstamp_enabled;
3361 	*running = ctx_time - event->tstamp_running;
3362 }
3363 
3364 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3365 {
3366 }
3367 
3368 /*
3369  * Callers need to ensure there can be no nesting of this function, otherwise
3370  * the seqlock logic goes bad. We can not serialize this because the arch
3371  * code calls this from NMI context.
3372  */
3373 void perf_event_update_userpage(struct perf_event *event)
3374 {
3375 	struct perf_event_mmap_page *userpg;
3376 	struct ring_buffer *rb;
3377 	u64 enabled, running, now;
3378 
3379 	rcu_read_lock();
3380 	/*
3381 	 * compute total_time_enabled, total_time_running
3382 	 * based on snapshot values taken when the event
3383 	 * was last scheduled in.
3384 	 *
3385 	 * we cannot simply called update_context_time()
3386 	 * because of locking issue as we can be called in
3387 	 * NMI context
3388 	 */
3389 	calc_timer_values(event, &now, &enabled, &running);
3390 	rb = rcu_dereference(event->rb);
3391 	if (!rb)
3392 		goto unlock;
3393 
3394 	userpg = rb->user_page;
3395 
3396 	/*
3397 	 * Disable preemption so as to not let the corresponding user-space
3398 	 * spin too long if we get preempted.
3399 	 */
3400 	preempt_disable();
3401 	++userpg->lock;
3402 	barrier();
3403 	userpg->index = perf_event_index(event);
3404 	userpg->offset = perf_event_count(event);
3405 	if (userpg->index)
3406 		userpg->offset -= local64_read(&event->hw.prev_count);
3407 
3408 	userpg->time_enabled = enabled +
3409 			atomic64_read(&event->child_total_time_enabled);
3410 
3411 	userpg->time_running = running +
3412 			atomic64_read(&event->child_total_time_running);
3413 
3414 	arch_perf_update_userpage(userpg, now);
3415 
3416 	barrier();
3417 	++userpg->lock;
3418 	preempt_enable();
3419 unlock:
3420 	rcu_read_unlock();
3421 }
3422 
3423 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3424 {
3425 	struct perf_event *event = vma->vm_file->private_data;
3426 	struct ring_buffer *rb;
3427 	int ret = VM_FAULT_SIGBUS;
3428 
3429 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3430 		if (vmf->pgoff == 0)
3431 			ret = 0;
3432 		return ret;
3433 	}
3434 
3435 	rcu_read_lock();
3436 	rb = rcu_dereference(event->rb);
3437 	if (!rb)
3438 		goto unlock;
3439 
3440 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3441 		goto unlock;
3442 
3443 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3444 	if (!vmf->page)
3445 		goto unlock;
3446 
3447 	get_page(vmf->page);
3448 	vmf->page->mapping = vma->vm_file->f_mapping;
3449 	vmf->page->index   = vmf->pgoff;
3450 
3451 	ret = 0;
3452 unlock:
3453 	rcu_read_unlock();
3454 
3455 	return ret;
3456 }
3457 
3458 static void ring_buffer_attach(struct perf_event *event,
3459 			       struct ring_buffer *rb)
3460 {
3461 	unsigned long flags;
3462 
3463 	if (!list_empty(&event->rb_entry))
3464 		return;
3465 
3466 	spin_lock_irqsave(&rb->event_lock, flags);
3467 	if (!list_empty(&event->rb_entry))
3468 		goto unlock;
3469 
3470 	list_add(&event->rb_entry, &rb->event_list);
3471 unlock:
3472 	spin_unlock_irqrestore(&rb->event_lock, flags);
3473 }
3474 
3475 static void ring_buffer_detach(struct perf_event *event,
3476 			       struct ring_buffer *rb)
3477 {
3478 	unsigned long flags;
3479 
3480 	if (list_empty(&event->rb_entry))
3481 		return;
3482 
3483 	spin_lock_irqsave(&rb->event_lock, flags);
3484 	list_del_init(&event->rb_entry);
3485 	wake_up_all(&event->waitq);
3486 	spin_unlock_irqrestore(&rb->event_lock, flags);
3487 }
3488 
3489 static void ring_buffer_wakeup(struct perf_event *event)
3490 {
3491 	struct ring_buffer *rb;
3492 
3493 	rcu_read_lock();
3494 	rb = rcu_dereference(event->rb);
3495 	if (!rb)
3496 		goto unlock;
3497 
3498 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3499 		wake_up_all(&event->waitq);
3500 
3501 unlock:
3502 	rcu_read_unlock();
3503 }
3504 
3505 static void rb_free_rcu(struct rcu_head *rcu_head)
3506 {
3507 	struct ring_buffer *rb;
3508 
3509 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3510 	rb_free(rb);
3511 }
3512 
3513 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3514 {
3515 	struct ring_buffer *rb;
3516 
3517 	rcu_read_lock();
3518 	rb = rcu_dereference(event->rb);
3519 	if (rb) {
3520 		if (!atomic_inc_not_zero(&rb->refcount))
3521 			rb = NULL;
3522 	}
3523 	rcu_read_unlock();
3524 
3525 	return rb;
3526 }
3527 
3528 static void ring_buffer_put(struct ring_buffer *rb)
3529 {
3530 	struct perf_event *event, *n;
3531 	unsigned long flags;
3532 
3533 	if (!atomic_dec_and_test(&rb->refcount))
3534 		return;
3535 
3536 	spin_lock_irqsave(&rb->event_lock, flags);
3537 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3538 		list_del_init(&event->rb_entry);
3539 		wake_up_all(&event->waitq);
3540 	}
3541 	spin_unlock_irqrestore(&rb->event_lock, flags);
3542 
3543 	call_rcu(&rb->rcu_head, rb_free_rcu);
3544 }
3545 
3546 static void perf_mmap_open(struct vm_area_struct *vma)
3547 {
3548 	struct perf_event *event = vma->vm_file->private_data;
3549 
3550 	atomic_inc(&event->mmap_count);
3551 }
3552 
3553 static void perf_mmap_close(struct vm_area_struct *vma)
3554 {
3555 	struct perf_event *event = vma->vm_file->private_data;
3556 
3557 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3558 		unsigned long size = perf_data_size(event->rb);
3559 		struct user_struct *user = event->mmap_user;
3560 		struct ring_buffer *rb = event->rb;
3561 
3562 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3563 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3564 		rcu_assign_pointer(event->rb, NULL);
3565 		ring_buffer_detach(event, rb);
3566 		mutex_unlock(&event->mmap_mutex);
3567 
3568 		ring_buffer_put(rb);
3569 		free_uid(user);
3570 	}
3571 }
3572 
3573 static const struct vm_operations_struct perf_mmap_vmops = {
3574 	.open		= perf_mmap_open,
3575 	.close		= perf_mmap_close,
3576 	.fault		= perf_mmap_fault,
3577 	.page_mkwrite	= perf_mmap_fault,
3578 };
3579 
3580 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3581 {
3582 	struct perf_event *event = file->private_data;
3583 	unsigned long user_locked, user_lock_limit;
3584 	struct user_struct *user = current_user();
3585 	unsigned long locked, lock_limit;
3586 	struct ring_buffer *rb;
3587 	unsigned long vma_size;
3588 	unsigned long nr_pages;
3589 	long user_extra, extra;
3590 	int ret = 0, flags = 0;
3591 
3592 	/*
3593 	 * Don't allow mmap() of inherited per-task counters. This would
3594 	 * create a performance issue due to all children writing to the
3595 	 * same rb.
3596 	 */
3597 	if (event->cpu == -1 && event->attr.inherit)
3598 		return -EINVAL;
3599 
3600 	if (!(vma->vm_flags & VM_SHARED))
3601 		return -EINVAL;
3602 
3603 	vma_size = vma->vm_end - vma->vm_start;
3604 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3605 
3606 	/*
3607 	 * If we have rb pages ensure they're a power-of-two number, so we
3608 	 * can do bitmasks instead of modulo.
3609 	 */
3610 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3611 		return -EINVAL;
3612 
3613 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3614 		return -EINVAL;
3615 
3616 	if (vma->vm_pgoff != 0)
3617 		return -EINVAL;
3618 
3619 	WARN_ON_ONCE(event->ctx->parent_ctx);
3620 	mutex_lock(&event->mmap_mutex);
3621 	if (event->rb) {
3622 		if (event->rb->nr_pages == nr_pages)
3623 			atomic_inc(&event->rb->refcount);
3624 		else
3625 			ret = -EINVAL;
3626 		goto unlock;
3627 	}
3628 
3629 	user_extra = nr_pages + 1;
3630 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3631 
3632 	/*
3633 	 * Increase the limit linearly with more CPUs:
3634 	 */
3635 	user_lock_limit *= num_online_cpus();
3636 
3637 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3638 
3639 	extra = 0;
3640 	if (user_locked > user_lock_limit)
3641 		extra = user_locked - user_lock_limit;
3642 
3643 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3644 	lock_limit >>= PAGE_SHIFT;
3645 	locked = vma->vm_mm->pinned_vm + extra;
3646 
3647 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3648 		!capable(CAP_IPC_LOCK)) {
3649 		ret = -EPERM;
3650 		goto unlock;
3651 	}
3652 
3653 	WARN_ON(event->rb);
3654 
3655 	if (vma->vm_flags & VM_WRITE)
3656 		flags |= RING_BUFFER_WRITABLE;
3657 
3658 	rb = rb_alloc(nr_pages,
3659 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3660 		event->cpu, flags);
3661 
3662 	if (!rb) {
3663 		ret = -ENOMEM;
3664 		goto unlock;
3665 	}
3666 	rcu_assign_pointer(event->rb, rb);
3667 
3668 	atomic_long_add(user_extra, &user->locked_vm);
3669 	event->mmap_locked = extra;
3670 	event->mmap_user = get_current_user();
3671 	vma->vm_mm->pinned_vm += event->mmap_locked;
3672 
3673 	perf_event_update_userpage(event);
3674 
3675 unlock:
3676 	if (!ret)
3677 		atomic_inc(&event->mmap_count);
3678 	mutex_unlock(&event->mmap_mutex);
3679 
3680 	vma->vm_flags |= VM_RESERVED;
3681 	vma->vm_ops = &perf_mmap_vmops;
3682 
3683 	return ret;
3684 }
3685 
3686 static int perf_fasync(int fd, struct file *filp, int on)
3687 {
3688 	struct inode *inode = filp->f_path.dentry->d_inode;
3689 	struct perf_event *event = filp->private_data;
3690 	int retval;
3691 
3692 	mutex_lock(&inode->i_mutex);
3693 	retval = fasync_helper(fd, filp, on, &event->fasync);
3694 	mutex_unlock(&inode->i_mutex);
3695 
3696 	if (retval < 0)
3697 		return retval;
3698 
3699 	return 0;
3700 }
3701 
3702 static const struct file_operations perf_fops = {
3703 	.llseek			= no_llseek,
3704 	.release		= perf_release,
3705 	.read			= perf_read,
3706 	.poll			= perf_poll,
3707 	.unlocked_ioctl		= perf_ioctl,
3708 	.compat_ioctl		= perf_ioctl,
3709 	.mmap			= perf_mmap,
3710 	.fasync			= perf_fasync,
3711 };
3712 
3713 /*
3714  * Perf event wakeup
3715  *
3716  * If there's data, ensure we set the poll() state and publish everything
3717  * to user-space before waking everybody up.
3718  */
3719 
3720 void perf_event_wakeup(struct perf_event *event)
3721 {
3722 	ring_buffer_wakeup(event);
3723 
3724 	if (event->pending_kill) {
3725 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3726 		event->pending_kill = 0;
3727 	}
3728 }
3729 
3730 static void perf_pending_event(struct irq_work *entry)
3731 {
3732 	struct perf_event *event = container_of(entry,
3733 			struct perf_event, pending);
3734 
3735 	if (event->pending_disable) {
3736 		event->pending_disable = 0;
3737 		__perf_event_disable(event);
3738 	}
3739 
3740 	if (event->pending_wakeup) {
3741 		event->pending_wakeup = 0;
3742 		perf_event_wakeup(event);
3743 	}
3744 }
3745 
3746 /*
3747  * We assume there is only KVM supporting the callbacks.
3748  * Later on, we might change it to a list if there is
3749  * another virtualization implementation supporting the callbacks.
3750  */
3751 struct perf_guest_info_callbacks *perf_guest_cbs;
3752 
3753 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3754 {
3755 	perf_guest_cbs = cbs;
3756 	return 0;
3757 }
3758 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3759 
3760 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3761 {
3762 	perf_guest_cbs = NULL;
3763 	return 0;
3764 }
3765 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3766 
3767 static void __perf_event_header__init_id(struct perf_event_header *header,
3768 					 struct perf_sample_data *data,
3769 					 struct perf_event *event)
3770 {
3771 	u64 sample_type = event->attr.sample_type;
3772 
3773 	data->type = sample_type;
3774 	header->size += event->id_header_size;
3775 
3776 	if (sample_type & PERF_SAMPLE_TID) {
3777 		/* namespace issues */
3778 		data->tid_entry.pid = perf_event_pid(event, current);
3779 		data->tid_entry.tid = perf_event_tid(event, current);
3780 	}
3781 
3782 	if (sample_type & PERF_SAMPLE_TIME)
3783 		data->time = perf_clock();
3784 
3785 	if (sample_type & PERF_SAMPLE_ID)
3786 		data->id = primary_event_id(event);
3787 
3788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3789 		data->stream_id = event->id;
3790 
3791 	if (sample_type & PERF_SAMPLE_CPU) {
3792 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3793 		data->cpu_entry.reserved = 0;
3794 	}
3795 }
3796 
3797 void perf_event_header__init_id(struct perf_event_header *header,
3798 				struct perf_sample_data *data,
3799 				struct perf_event *event)
3800 {
3801 	if (event->attr.sample_id_all)
3802 		__perf_event_header__init_id(header, data, event);
3803 }
3804 
3805 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3806 					   struct perf_sample_data *data)
3807 {
3808 	u64 sample_type = data->type;
3809 
3810 	if (sample_type & PERF_SAMPLE_TID)
3811 		perf_output_put(handle, data->tid_entry);
3812 
3813 	if (sample_type & PERF_SAMPLE_TIME)
3814 		perf_output_put(handle, data->time);
3815 
3816 	if (sample_type & PERF_SAMPLE_ID)
3817 		perf_output_put(handle, data->id);
3818 
3819 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3820 		perf_output_put(handle, data->stream_id);
3821 
3822 	if (sample_type & PERF_SAMPLE_CPU)
3823 		perf_output_put(handle, data->cpu_entry);
3824 }
3825 
3826 void perf_event__output_id_sample(struct perf_event *event,
3827 				  struct perf_output_handle *handle,
3828 				  struct perf_sample_data *sample)
3829 {
3830 	if (event->attr.sample_id_all)
3831 		__perf_event__output_id_sample(handle, sample);
3832 }
3833 
3834 static void perf_output_read_one(struct perf_output_handle *handle,
3835 				 struct perf_event *event,
3836 				 u64 enabled, u64 running)
3837 {
3838 	u64 read_format = event->attr.read_format;
3839 	u64 values[4];
3840 	int n = 0;
3841 
3842 	values[n++] = perf_event_count(event);
3843 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3844 		values[n++] = enabled +
3845 			atomic64_read(&event->child_total_time_enabled);
3846 	}
3847 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3848 		values[n++] = running +
3849 			atomic64_read(&event->child_total_time_running);
3850 	}
3851 	if (read_format & PERF_FORMAT_ID)
3852 		values[n++] = primary_event_id(event);
3853 
3854 	__output_copy(handle, values, n * sizeof(u64));
3855 }
3856 
3857 /*
3858  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3859  */
3860 static void perf_output_read_group(struct perf_output_handle *handle,
3861 			    struct perf_event *event,
3862 			    u64 enabled, u64 running)
3863 {
3864 	struct perf_event *leader = event->group_leader, *sub;
3865 	u64 read_format = event->attr.read_format;
3866 	u64 values[5];
3867 	int n = 0;
3868 
3869 	values[n++] = 1 + leader->nr_siblings;
3870 
3871 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3872 		values[n++] = enabled;
3873 
3874 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3875 		values[n++] = running;
3876 
3877 	if (leader != event)
3878 		leader->pmu->read(leader);
3879 
3880 	values[n++] = perf_event_count(leader);
3881 	if (read_format & PERF_FORMAT_ID)
3882 		values[n++] = primary_event_id(leader);
3883 
3884 	__output_copy(handle, values, n * sizeof(u64));
3885 
3886 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3887 		n = 0;
3888 
3889 		if (sub != event)
3890 			sub->pmu->read(sub);
3891 
3892 		values[n++] = perf_event_count(sub);
3893 		if (read_format & PERF_FORMAT_ID)
3894 			values[n++] = primary_event_id(sub);
3895 
3896 		__output_copy(handle, values, n * sizeof(u64));
3897 	}
3898 }
3899 
3900 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3901 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3902 
3903 static void perf_output_read(struct perf_output_handle *handle,
3904 			     struct perf_event *event)
3905 {
3906 	u64 enabled = 0, running = 0, now;
3907 	u64 read_format = event->attr.read_format;
3908 
3909 	/*
3910 	 * compute total_time_enabled, total_time_running
3911 	 * based on snapshot values taken when the event
3912 	 * was last scheduled in.
3913 	 *
3914 	 * we cannot simply called update_context_time()
3915 	 * because of locking issue as we are called in
3916 	 * NMI context
3917 	 */
3918 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3919 		calc_timer_values(event, &now, &enabled, &running);
3920 
3921 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3922 		perf_output_read_group(handle, event, enabled, running);
3923 	else
3924 		perf_output_read_one(handle, event, enabled, running);
3925 }
3926 
3927 void perf_output_sample(struct perf_output_handle *handle,
3928 			struct perf_event_header *header,
3929 			struct perf_sample_data *data,
3930 			struct perf_event *event)
3931 {
3932 	u64 sample_type = data->type;
3933 
3934 	perf_output_put(handle, *header);
3935 
3936 	if (sample_type & PERF_SAMPLE_IP)
3937 		perf_output_put(handle, data->ip);
3938 
3939 	if (sample_type & PERF_SAMPLE_TID)
3940 		perf_output_put(handle, data->tid_entry);
3941 
3942 	if (sample_type & PERF_SAMPLE_TIME)
3943 		perf_output_put(handle, data->time);
3944 
3945 	if (sample_type & PERF_SAMPLE_ADDR)
3946 		perf_output_put(handle, data->addr);
3947 
3948 	if (sample_type & PERF_SAMPLE_ID)
3949 		perf_output_put(handle, data->id);
3950 
3951 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3952 		perf_output_put(handle, data->stream_id);
3953 
3954 	if (sample_type & PERF_SAMPLE_CPU)
3955 		perf_output_put(handle, data->cpu_entry);
3956 
3957 	if (sample_type & PERF_SAMPLE_PERIOD)
3958 		perf_output_put(handle, data->period);
3959 
3960 	if (sample_type & PERF_SAMPLE_READ)
3961 		perf_output_read(handle, event);
3962 
3963 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3964 		if (data->callchain) {
3965 			int size = 1;
3966 
3967 			if (data->callchain)
3968 				size += data->callchain->nr;
3969 
3970 			size *= sizeof(u64);
3971 
3972 			__output_copy(handle, data->callchain, size);
3973 		} else {
3974 			u64 nr = 0;
3975 			perf_output_put(handle, nr);
3976 		}
3977 	}
3978 
3979 	if (sample_type & PERF_SAMPLE_RAW) {
3980 		if (data->raw) {
3981 			perf_output_put(handle, data->raw->size);
3982 			__output_copy(handle, data->raw->data,
3983 					   data->raw->size);
3984 		} else {
3985 			struct {
3986 				u32	size;
3987 				u32	data;
3988 			} raw = {
3989 				.size = sizeof(u32),
3990 				.data = 0,
3991 			};
3992 			perf_output_put(handle, raw);
3993 		}
3994 	}
3995 
3996 	if (!event->attr.watermark) {
3997 		int wakeup_events = event->attr.wakeup_events;
3998 
3999 		if (wakeup_events) {
4000 			struct ring_buffer *rb = handle->rb;
4001 			int events = local_inc_return(&rb->events);
4002 
4003 			if (events >= wakeup_events) {
4004 				local_sub(wakeup_events, &rb->events);
4005 				local_inc(&rb->wakeup);
4006 			}
4007 		}
4008 	}
4009 
4010 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4011 		if (data->br_stack) {
4012 			size_t size;
4013 
4014 			size = data->br_stack->nr
4015 			     * sizeof(struct perf_branch_entry);
4016 
4017 			perf_output_put(handle, data->br_stack->nr);
4018 			perf_output_copy(handle, data->br_stack->entries, size);
4019 		} else {
4020 			/*
4021 			 * we always store at least the value of nr
4022 			 */
4023 			u64 nr = 0;
4024 			perf_output_put(handle, nr);
4025 		}
4026 	}
4027 }
4028 
4029 void perf_prepare_sample(struct perf_event_header *header,
4030 			 struct perf_sample_data *data,
4031 			 struct perf_event *event,
4032 			 struct pt_regs *regs)
4033 {
4034 	u64 sample_type = event->attr.sample_type;
4035 
4036 	header->type = PERF_RECORD_SAMPLE;
4037 	header->size = sizeof(*header) + event->header_size;
4038 
4039 	header->misc = 0;
4040 	header->misc |= perf_misc_flags(regs);
4041 
4042 	__perf_event_header__init_id(header, data, event);
4043 
4044 	if (sample_type & PERF_SAMPLE_IP)
4045 		data->ip = perf_instruction_pointer(regs);
4046 
4047 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4048 		int size = 1;
4049 
4050 		data->callchain = perf_callchain(event, regs);
4051 
4052 		if (data->callchain)
4053 			size += data->callchain->nr;
4054 
4055 		header->size += size * sizeof(u64);
4056 	}
4057 
4058 	if (sample_type & PERF_SAMPLE_RAW) {
4059 		int size = sizeof(u32);
4060 
4061 		if (data->raw)
4062 			size += data->raw->size;
4063 		else
4064 			size += sizeof(u32);
4065 
4066 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4067 		header->size += size;
4068 	}
4069 
4070 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4071 		int size = sizeof(u64); /* nr */
4072 		if (data->br_stack) {
4073 			size += data->br_stack->nr
4074 			      * sizeof(struct perf_branch_entry);
4075 		}
4076 		header->size += size;
4077 	}
4078 }
4079 
4080 static void perf_event_output(struct perf_event *event,
4081 				struct perf_sample_data *data,
4082 				struct pt_regs *regs)
4083 {
4084 	struct perf_output_handle handle;
4085 	struct perf_event_header header;
4086 
4087 	/* protect the callchain buffers */
4088 	rcu_read_lock();
4089 
4090 	perf_prepare_sample(&header, data, event, regs);
4091 
4092 	if (perf_output_begin(&handle, event, header.size))
4093 		goto exit;
4094 
4095 	perf_output_sample(&handle, &header, data, event);
4096 
4097 	perf_output_end(&handle);
4098 
4099 exit:
4100 	rcu_read_unlock();
4101 }
4102 
4103 /*
4104  * read event_id
4105  */
4106 
4107 struct perf_read_event {
4108 	struct perf_event_header	header;
4109 
4110 	u32				pid;
4111 	u32				tid;
4112 };
4113 
4114 static void
4115 perf_event_read_event(struct perf_event *event,
4116 			struct task_struct *task)
4117 {
4118 	struct perf_output_handle handle;
4119 	struct perf_sample_data sample;
4120 	struct perf_read_event read_event = {
4121 		.header = {
4122 			.type = PERF_RECORD_READ,
4123 			.misc = 0,
4124 			.size = sizeof(read_event) + event->read_size,
4125 		},
4126 		.pid = perf_event_pid(event, task),
4127 		.tid = perf_event_tid(event, task),
4128 	};
4129 	int ret;
4130 
4131 	perf_event_header__init_id(&read_event.header, &sample, event);
4132 	ret = perf_output_begin(&handle, event, read_event.header.size);
4133 	if (ret)
4134 		return;
4135 
4136 	perf_output_put(&handle, read_event);
4137 	perf_output_read(&handle, event);
4138 	perf_event__output_id_sample(event, &handle, &sample);
4139 
4140 	perf_output_end(&handle);
4141 }
4142 
4143 /*
4144  * task tracking -- fork/exit
4145  *
4146  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4147  */
4148 
4149 struct perf_task_event {
4150 	struct task_struct		*task;
4151 	struct perf_event_context	*task_ctx;
4152 
4153 	struct {
4154 		struct perf_event_header	header;
4155 
4156 		u32				pid;
4157 		u32				ppid;
4158 		u32				tid;
4159 		u32				ptid;
4160 		u64				time;
4161 	} event_id;
4162 };
4163 
4164 static void perf_event_task_output(struct perf_event *event,
4165 				     struct perf_task_event *task_event)
4166 {
4167 	struct perf_output_handle handle;
4168 	struct perf_sample_data	sample;
4169 	struct task_struct *task = task_event->task;
4170 	int ret, size = task_event->event_id.header.size;
4171 
4172 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4173 
4174 	ret = perf_output_begin(&handle, event,
4175 				task_event->event_id.header.size);
4176 	if (ret)
4177 		goto out;
4178 
4179 	task_event->event_id.pid = perf_event_pid(event, task);
4180 	task_event->event_id.ppid = perf_event_pid(event, current);
4181 
4182 	task_event->event_id.tid = perf_event_tid(event, task);
4183 	task_event->event_id.ptid = perf_event_tid(event, current);
4184 
4185 	perf_output_put(&handle, task_event->event_id);
4186 
4187 	perf_event__output_id_sample(event, &handle, &sample);
4188 
4189 	perf_output_end(&handle);
4190 out:
4191 	task_event->event_id.header.size = size;
4192 }
4193 
4194 static int perf_event_task_match(struct perf_event *event)
4195 {
4196 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4197 		return 0;
4198 
4199 	if (!event_filter_match(event))
4200 		return 0;
4201 
4202 	if (event->attr.comm || event->attr.mmap ||
4203 	    event->attr.mmap_data || event->attr.task)
4204 		return 1;
4205 
4206 	return 0;
4207 }
4208 
4209 static void perf_event_task_ctx(struct perf_event_context *ctx,
4210 				  struct perf_task_event *task_event)
4211 {
4212 	struct perf_event *event;
4213 
4214 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4215 		if (perf_event_task_match(event))
4216 			perf_event_task_output(event, task_event);
4217 	}
4218 }
4219 
4220 static void perf_event_task_event(struct perf_task_event *task_event)
4221 {
4222 	struct perf_cpu_context *cpuctx;
4223 	struct perf_event_context *ctx;
4224 	struct pmu *pmu;
4225 	int ctxn;
4226 
4227 	rcu_read_lock();
4228 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4229 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4230 		if (cpuctx->active_pmu != pmu)
4231 			goto next;
4232 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4233 
4234 		ctx = task_event->task_ctx;
4235 		if (!ctx) {
4236 			ctxn = pmu->task_ctx_nr;
4237 			if (ctxn < 0)
4238 				goto next;
4239 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4240 		}
4241 		if (ctx)
4242 			perf_event_task_ctx(ctx, task_event);
4243 next:
4244 		put_cpu_ptr(pmu->pmu_cpu_context);
4245 	}
4246 	rcu_read_unlock();
4247 }
4248 
4249 static void perf_event_task(struct task_struct *task,
4250 			      struct perf_event_context *task_ctx,
4251 			      int new)
4252 {
4253 	struct perf_task_event task_event;
4254 
4255 	if (!atomic_read(&nr_comm_events) &&
4256 	    !atomic_read(&nr_mmap_events) &&
4257 	    !atomic_read(&nr_task_events))
4258 		return;
4259 
4260 	task_event = (struct perf_task_event){
4261 		.task	  = task,
4262 		.task_ctx = task_ctx,
4263 		.event_id    = {
4264 			.header = {
4265 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4266 				.misc = 0,
4267 				.size = sizeof(task_event.event_id),
4268 			},
4269 			/* .pid  */
4270 			/* .ppid */
4271 			/* .tid  */
4272 			/* .ptid */
4273 			.time = perf_clock(),
4274 		},
4275 	};
4276 
4277 	perf_event_task_event(&task_event);
4278 }
4279 
4280 void perf_event_fork(struct task_struct *task)
4281 {
4282 	perf_event_task(task, NULL, 1);
4283 }
4284 
4285 /*
4286  * comm tracking
4287  */
4288 
4289 struct perf_comm_event {
4290 	struct task_struct	*task;
4291 	char			*comm;
4292 	int			comm_size;
4293 
4294 	struct {
4295 		struct perf_event_header	header;
4296 
4297 		u32				pid;
4298 		u32				tid;
4299 	} event_id;
4300 };
4301 
4302 static void perf_event_comm_output(struct perf_event *event,
4303 				     struct perf_comm_event *comm_event)
4304 {
4305 	struct perf_output_handle handle;
4306 	struct perf_sample_data sample;
4307 	int size = comm_event->event_id.header.size;
4308 	int ret;
4309 
4310 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4311 	ret = perf_output_begin(&handle, event,
4312 				comm_event->event_id.header.size);
4313 
4314 	if (ret)
4315 		goto out;
4316 
4317 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4318 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4319 
4320 	perf_output_put(&handle, comm_event->event_id);
4321 	__output_copy(&handle, comm_event->comm,
4322 				   comm_event->comm_size);
4323 
4324 	perf_event__output_id_sample(event, &handle, &sample);
4325 
4326 	perf_output_end(&handle);
4327 out:
4328 	comm_event->event_id.header.size = size;
4329 }
4330 
4331 static int perf_event_comm_match(struct perf_event *event)
4332 {
4333 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4334 		return 0;
4335 
4336 	if (!event_filter_match(event))
4337 		return 0;
4338 
4339 	if (event->attr.comm)
4340 		return 1;
4341 
4342 	return 0;
4343 }
4344 
4345 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4346 				  struct perf_comm_event *comm_event)
4347 {
4348 	struct perf_event *event;
4349 
4350 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4351 		if (perf_event_comm_match(event))
4352 			perf_event_comm_output(event, comm_event);
4353 	}
4354 }
4355 
4356 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4357 {
4358 	struct perf_cpu_context *cpuctx;
4359 	struct perf_event_context *ctx;
4360 	char comm[TASK_COMM_LEN];
4361 	unsigned int size;
4362 	struct pmu *pmu;
4363 	int ctxn;
4364 
4365 	memset(comm, 0, sizeof(comm));
4366 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4367 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4368 
4369 	comm_event->comm = comm;
4370 	comm_event->comm_size = size;
4371 
4372 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4373 	rcu_read_lock();
4374 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4375 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4376 		if (cpuctx->active_pmu != pmu)
4377 			goto next;
4378 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4379 
4380 		ctxn = pmu->task_ctx_nr;
4381 		if (ctxn < 0)
4382 			goto next;
4383 
4384 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4385 		if (ctx)
4386 			perf_event_comm_ctx(ctx, comm_event);
4387 next:
4388 		put_cpu_ptr(pmu->pmu_cpu_context);
4389 	}
4390 	rcu_read_unlock();
4391 }
4392 
4393 void perf_event_comm(struct task_struct *task)
4394 {
4395 	struct perf_comm_event comm_event;
4396 	struct perf_event_context *ctx;
4397 	int ctxn;
4398 
4399 	for_each_task_context_nr(ctxn) {
4400 		ctx = task->perf_event_ctxp[ctxn];
4401 		if (!ctx)
4402 			continue;
4403 
4404 		perf_event_enable_on_exec(ctx);
4405 	}
4406 
4407 	if (!atomic_read(&nr_comm_events))
4408 		return;
4409 
4410 	comm_event = (struct perf_comm_event){
4411 		.task	= task,
4412 		/* .comm      */
4413 		/* .comm_size */
4414 		.event_id  = {
4415 			.header = {
4416 				.type = PERF_RECORD_COMM,
4417 				.misc = 0,
4418 				/* .size */
4419 			},
4420 			/* .pid */
4421 			/* .tid */
4422 		},
4423 	};
4424 
4425 	perf_event_comm_event(&comm_event);
4426 }
4427 
4428 /*
4429  * mmap tracking
4430  */
4431 
4432 struct perf_mmap_event {
4433 	struct vm_area_struct	*vma;
4434 
4435 	const char		*file_name;
4436 	int			file_size;
4437 
4438 	struct {
4439 		struct perf_event_header	header;
4440 
4441 		u32				pid;
4442 		u32				tid;
4443 		u64				start;
4444 		u64				len;
4445 		u64				pgoff;
4446 	} event_id;
4447 };
4448 
4449 static void perf_event_mmap_output(struct perf_event *event,
4450 				     struct perf_mmap_event *mmap_event)
4451 {
4452 	struct perf_output_handle handle;
4453 	struct perf_sample_data sample;
4454 	int size = mmap_event->event_id.header.size;
4455 	int ret;
4456 
4457 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4458 	ret = perf_output_begin(&handle, event,
4459 				mmap_event->event_id.header.size);
4460 	if (ret)
4461 		goto out;
4462 
4463 	mmap_event->event_id.pid = perf_event_pid(event, current);
4464 	mmap_event->event_id.tid = perf_event_tid(event, current);
4465 
4466 	perf_output_put(&handle, mmap_event->event_id);
4467 	__output_copy(&handle, mmap_event->file_name,
4468 				   mmap_event->file_size);
4469 
4470 	perf_event__output_id_sample(event, &handle, &sample);
4471 
4472 	perf_output_end(&handle);
4473 out:
4474 	mmap_event->event_id.header.size = size;
4475 }
4476 
4477 static int perf_event_mmap_match(struct perf_event *event,
4478 				   struct perf_mmap_event *mmap_event,
4479 				   int executable)
4480 {
4481 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4482 		return 0;
4483 
4484 	if (!event_filter_match(event))
4485 		return 0;
4486 
4487 	if ((!executable && event->attr.mmap_data) ||
4488 	    (executable && event->attr.mmap))
4489 		return 1;
4490 
4491 	return 0;
4492 }
4493 
4494 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4495 				  struct perf_mmap_event *mmap_event,
4496 				  int executable)
4497 {
4498 	struct perf_event *event;
4499 
4500 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4501 		if (perf_event_mmap_match(event, mmap_event, executable))
4502 			perf_event_mmap_output(event, mmap_event);
4503 	}
4504 }
4505 
4506 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4507 {
4508 	struct perf_cpu_context *cpuctx;
4509 	struct perf_event_context *ctx;
4510 	struct vm_area_struct *vma = mmap_event->vma;
4511 	struct file *file = vma->vm_file;
4512 	unsigned int size;
4513 	char tmp[16];
4514 	char *buf = NULL;
4515 	const char *name;
4516 	struct pmu *pmu;
4517 	int ctxn;
4518 
4519 	memset(tmp, 0, sizeof(tmp));
4520 
4521 	if (file) {
4522 		/*
4523 		 * d_path works from the end of the rb backwards, so we
4524 		 * need to add enough zero bytes after the string to handle
4525 		 * the 64bit alignment we do later.
4526 		 */
4527 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4528 		if (!buf) {
4529 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4530 			goto got_name;
4531 		}
4532 		name = d_path(&file->f_path, buf, PATH_MAX);
4533 		if (IS_ERR(name)) {
4534 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4535 			goto got_name;
4536 		}
4537 	} else {
4538 		if (arch_vma_name(mmap_event->vma)) {
4539 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4540 				       sizeof(tmp));
4541 			goto got_name;
4542 		}
4543 
4544 		if (!vma->vm_mm) {
4545 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4546 			goto got_name;
4547 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4548 				vma->vm_end >= vma->vm_mm->brk) {
4549 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4550 			goto got_name;
4551 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4552 				vma->vm_end >= vma->vm_mm->start_stack) {
4553 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4554 			goto got_name;
4555 		}
4556 
4557 		name = strncpy(tmp, "//anon", sizeof(tmp));
4558 		goto got_name;
4559 	}
4560 
4561 got_name:
4562 	size = ALIGN(strlen(name)+1, sizeof(u64));
4563 
4564 	mmap_event->file_name = name;
4565 	mmap_event->file_size = size;
4566 
4567 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4568 
4569 	rcu_read_lock();
4570 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4571 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4572 		if (cpuctx->active_pmu != pmu)
4573 			goto next;
4574 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4575 					vma->vm_flags & VM_EXEC);
4576 
4577 		ctxn = pmu->task_ctx_nr;
4578 		if (ctxn < 0)
4579 			goto next;
4580 
4581 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4582 		if (ctx) {
4583 			perf_event_mmap_ctx(ctx, mmap_event,
4584 					vma->vm_flags & VM_EXEC);
4585 		}
4586 next:
4587 		put_cpu_ptr(pmu->pmu_cpu_context);
4588 	}
4589 	rcu_read_unlock();
4590 
4591 	kfree(buf);
4592 }
4593 
4594 void perf_event_mmap(struct vm_area_struct *vma)
4595 {
4596 	struct perf_mmap_event mmap_event;
4597 
4598 	if (!atomic_read(&nr_mmap_events))
4599 		return;
4600 
4601 	mmap_event = (struct perf_mmap_event){
4602 		.vma	= vma,
4603 		/* .file_name */
4604 		/* .file_size */
4605 		.event_id  = {
4606 			.header = {
4607 				.type = PERF_RECORD_MMAP,
4608 				.misc = PERF_RECORD_MISC_USER,
4609 				/* .size */
4610 			},
4611 			/* .pid */
4612 			/* .tid */
4613 			.start  = vma->vm_start,
4614 			.len    = vma->vm_end - vma->vm_start,
4615 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4616 		},
4617 	};
4618 
4619 	perf_event_mmap_event(&mmap_event);
4620 }
4621 
4622 /*
4623  * IRQ throttle logging
4624  */
4625 
4626 static void perf_log_throttle(struct perf_event *event, int enable)
4627 {
4628 	struct perf_output_handle handle;
4629 	struct perf_sample_data sample;
4630 	int ret;
4631 
4632 	struct {
4633 		struct perf_event_header	header;
4634 		u64				time;
4635 		u64				id;
4636 		u64				stream_id;
4637 	} throttle_event = {
4638 		.header = {
4639 			.type = PERF_RECORD_THROTTLE,
4640 			.misc = 0,
4641 			.size = sizeof(throttle_event),
4642 		},
4643 		.time		= perf_clock(),
4644 		.id		= primary_event_id(event),
4645 		.stream_id	= event->id,
4646 	};
4647 
4648 	if (enable)
4649 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4650 
4651 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4652 
4653 	ret = perf_output_begin(&handle, event,
4654 				throttle_event.header.size);
4655 	if (ret)
4656 		return;
4657 
4658 	perf_output_put(&handle, throttle_event);
4659 	perf_event__output_id_sample(event, &handle, &sample);
4660 	perf_output_end(&handle);
4661 }
4662 
4663 /*
4664  * Generic event overflow handling, sampling.
4665  */
4666 
4667 static int __perf_event_overflow(struct perf_event *event,
4668 				   int throttle, struct perf_sample_data *data,
4669 				   struct pt_regs *regs)
4670 {
4671 	int events = atomic_read(&event->event_limit);
4672 	struct hw_perf_event *hwc = &event->hw;
4673 	u64 seq;
4674 	int ret = 0;
4675 
4676 	/*
4677 	 * Non-sampling counters might still use the PMI to fold short
4678 	 * hardware counters, ignore those.
4679 	 */
4680 	if (unlikely(!is_sampling_event(event)))
4681 		return 0;
4682 
4683 	seq = __this_cpu_read(perf_throttled_seq);
4684 	if (seq != hwc->interrupts_seq) {
4685 		hwc->interrupts_seq = seq;
4686 		hwc->interrupts = 1;
4687 	} else {
4688 		hwc->interrupts++;
4689 		if (unlikely(throttle
4690 			     && hwc->interrupts >= max_samples_per_tick)) {
4691 			__this_cpu_inc(perf_throttled_count);
4692 			hwc->interrupts = MAX_INTERRUPTS;
4693 			perf_log_throttle(event, 0);
4694 			ret = 1;
4695 		}
4696 	}
4697 
4698 	if (event->attr.freq) {
4699 		u64 now = perf_clock();
4700 		s64 delta = now - hwc->freq_time_stamp;
4701 
4702 		hwc->freq_time_stamp = now;
4703 
4704 		if (delta > 0 && delta < 2*TICK_NSEC)
4705 			perf_adjust_period(event, delta, hwc->last_period, true);
4706 	}
4707 
4708 	/*
4709 	 * XXX event_limit might not quite work as expected on inherited
4710 	 * events
4711 	 */
4712 
4713 	event->pending_kill = POLL_IN;
4714 	if (events && atomic_dec_and_test(&event->event_limit)) {
4715 		ret = 1;
4716 		event->pending_kill = POLL_HUP;
4717 		event->pending_disable = 1;
4718 		irq_work_queue(&event->pending);
4719 	}
4720 
4721 	if (event->overflow_handler)
4722 		event->overflow_handler(event, data, regs);
4723 	else
4724 		perf_event_output(event, data, regs);
4725 
4726 	if (event->fasync && event->pending_kill) {
4727 		event->pending_wakeup = 1;
4728 		irq_work_queue(&event->pending);
4729 	}
4730 
4731 	return ret;
4732 }
4733 
4734 int perf_event_overflow(struct perf_event *event,
4735 			  struct perf_sample_data *data,
4736 			  struct pt_regs *regs)
4737 {
4738 	return __perf_event_overflow(event, 1, data, regs);
4739 }
4740 
4741 /*
4742  * Generic software event infrastructure
4743  */
4744 
4745 struct swevent_htable {
4746 	struct swevent_hlist		*swevent_hlist;
4747 	struct mutex			hlist_mutex;
4748 	int				hlist_refcount;
4749 
4750 	/* Recursion avoidance in each contexts */
4751 	int				recursion[PERF_NR_CONTEXTS];
4752 };
4753 
4754 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4755 
4756 /*
4757  * We directly increment event->count and keep a second value in
4758  * event->hw.period_left to count intervals. This period event
4759  * is kept in the range [-sample_period, 0] so that we can use the
4760  * sign as trigger.
4761  */
4762 
4763 static u64 perf_swevent_set_period(struct perf_event *event)
4764 {
4765 	struct hw_perf_event *hwc = &event->hw;
4766 	u64 period = hwc->last_period;
4767 	u64 nr, offset;
4768 	s64 old, val;
4769 
4770 	hwc->last_period = hwc->sample_period;
4771 
4772 again:
4773 	old = val = local64_read(&hwc->period_left);
4774 	if (val < 0)
4775 		return 0;
4776 
4777 	nr = div64_u64(period + val, period);
4778 	offset = nr * period;
4779 	val -= offset;
4780 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4781 		goto again;
4782 
4783 	return nr;
4784 }
4785 
4786 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4787 				    struct perf_sample_data *data,
4788 				    struct pt_regs *regs)
4789 {
4790 	struct hw_perf_event *hwc = &event->hw;
4791 	int throttle = 0;
4792 
4793 	if (!overflow)
4794 		overflow = perf_swevent_set_period(event);
4795 
4796 	if (hwc->interrupts == MAX_INTERRUPTS)
4797 		return;
4798 
4799 	for (; overflow; overflow--) {
4800 		if (__perf_event_overflow(event, throttle,
4801 					    data, regs)) {
4802 			/*
4803 			 * We inhibit the overflow from happening when
4804 			 * hwc->interrupts == MAX_INTERRUPTS.
4805 			 */
4806 			break;
4807 		}
4808 		throttle = 1;
4809 	}
4810 }
4811 
4812 static void perf_swevent_event(struct perf_event *event, u64 nr,
4813 			       struct perf_sample_data *data,
4814 			       struct pt_regs *regs)
4815 {
4816 	struct hw_perf_event *hwc = &event->hw;
4817 
4818 	local64_add(nr, &event->count);
4819 
4820 	if (!regs)
4821 		return;
4822 
4823 	if (!is_sampling_event(event))
4824 		return;
4825 
4826 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4827 		data->period = nr;
4828 		return perf_swevent_overflow(event, 1, data, regs);
4829 	} else
4830 		data->period = event->hw.last_period;
4831 
4832 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4833 		return perf_swevent_overflow(event, 1, data, regs);
4834 
4835 	if (local64_add_negative(nr, &hwc->period_left))
4836 		return;
4837 
4838 	perf_swevent_overflow(event, 0, data, regs);
4839 }
4840 
4841 static int perf_exclude_event(struct perf_event *event,
4842 			      struct pt_regs *regs)
4843 {
4844 	if (event->hw.state & PERF_HES_STOPPED)
4845 		return 1;
4846 
4847 	if (regs) {
4848 		if (event->attr.exclude_user && user_mode(regs))
4849 			return 1;
4850 
4851 		if (event->attr.exclude_kernel && !user_mode(regs))
4852 			return 1;
4853 	}
4854 
4855 	return 0;
4856 }
4857 
4858 static int perf_swevent_match(struct perf_event *event,
4859 				enum perf_type_id type,
4860 				u32 event_id,
4861 				struct perf_sample_data *data,
4862 				struct pt_regs *regs)
4863 {
4864 	if (event->attr.type != type)
4865 		return 0;
4866 
4867 	if (event->attr.config != event_id)
4868 		return 0;
4869 
4870 	if (perf_exclude_event(event, regs))
4871 		return 0;
4872 
4873 	return 1;
4874 }
4875 
4876 static inline u64 swevent_hash(u64 type, u32 event_id)
4877 {
4878 	u64 val = event_id | (type << 32);
4879 
4880 	return hash_64(val, SWEVENT_HLIST_BITS);
4881 }
4882 
4883 static inline struct hlist_head *
4884 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4885 {
4886 	u64 hash = swevent_hash(type, event_id);
4887 
4888 	return &hlist->heads[hash];
4889 }
4890 
4891 /* For the read side: events when they trigger */
4892 static inline struct hlist_head *
4893 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4894 {
4895 	struct swevent_hlist *hlist;
4896 
4897 	hlist = rcu_dereference(swhash->swevent_hlist);
4898 	if (!hlist)
4899 		return NULL;
4900 
4901 	return __find_swevent_head(hlist, type, event_id);
4902 }
4903 
4904 /* For the event head insertion and removal in the hlist */
4905 static inline struct hlist_head *
4906 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4907 {
4908 	struct swevent_hlist *hlist;
4909 	u32 event_id = event->attr.config;
4910 	u64 type = event->attr.type;
4911 
4912 	/*
4913 	 * Event scheduling is always serialized against hlist allocation
4914 	 * and release. Which makes the protected version suitable here.
4915 	 * The context lock guarantees that.
4916 	 */
4917 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4918 					  lockdep_is_held(&event->ctx->lock));
4919 	if (!hlist)
4920 		return NULL;
4921 
4922 	return __find_swevent_head(hlist, type, event_id);
4923 }
4924 
4925 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4926 				    u64 nr,
4927 				    struct perf_sample_data *data,
4928 				    struct pt_regs *regs)
4929 {
4930 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4931 	struct perf_event *event;
4932 	struct hlist_node *node;
4933 	struct hlist_head *head;
4934 
4935 	rcu_read_lock();
4936 	head = find_swevent_head_rcu(swhash, type, event_id);
4937 	if (!head)
4938 		goto end;
4939 
4940 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4941 		if (perf_swevent_match(event, type, event_id, data, regs))
4942 			perf_swevent_event(event, nr, data, regs);
4943 	}
4944 end:
4945 	rcu_read_unlock();
4946 }
4947 
4948 int perf_swevent_get_recursion_context(void)
4949 {
4950 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4951 
4952 	return get_recursion_context(swhash->recursion);
4953 }
4954 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4955 
4956 inline void perf_swevent_put_recursion_context(int rctx)
4957 {
4958 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4959 
4960 	put_recursion_context(swhash->recursion, rctx);
4961 }
4962 
4963 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4964 {
4965 	struct perf_sample_data data;
4966 	int rctx;
4967 
4968 	preempt_disable_notrace();
4969 	rctx = perf_swevent_get_recursion_context();
4970 	if (rctx < 0)
4971 		return;
4972 
4973 	perf_sample_data_init(&data, addr, 0);
4974 
4975 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4976 
4977 	perf_swevent_put_recursion_context(rctx);
4978 	preempt_enable_notrace();
4979 }
4980 
4981 static void perf_swevent_read(struct perf_event *event)
4982 {
4983 }
4984 
4985 static int perf_swevent_add(struct perf_event *event, int flags)
4986 {
4987 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4988 	struct hw_perf_event *hwc = &event->hw;
4989 	struct hlist_head *head;
4990 
4991 	if (is_sampling_event(event)) {
4992 		hwc->last_period = hwc->sample_period;
4993 		perf_swevent_set_period(event);
4994 	}
4995 
4996 	hwc->state = !(flags & PERF_EF_START);
4997 
4998 	head = find_swevent_head(swhash, event);
4999 	if (WARN_ON_ONCE(!head))
5000 		return -EINVAL;
5001 
5002 	hlist_add_head_rcu(&event->hlist_entry, head);
5003 
5004 	return 0;
5005 }
5006 
5007 static void perf_swevent_del(struct perf_event *event, int flags)
5008 {
5009 	hlist_del_rcu(&event->hlist_entry);
5010 }
5011 
5012 static void perf_swevent_start(struct perf_event *event, int flags)
5013 {
5014 	event->hw.state = 0;
5015 }
5016 
5017 static void perf_swevent_stop(struct perf_event *event, int flags)
5018 {
5019 	event->hw.state = PERF_HES_STOPPED;
5020 }
5021 
5022 /* Deref the hlist from the update side */
5023 static inline struct swevent_hlist *
5024 swevent_hlist_deref(struct swevent_htable *swhash)
5025 {
5026 	return rcu_dereference_protected(swhash->swevent_hlist,
5027 					 lockdep_is_held(&swhash->hlist_mutex));
5028 }
5029 
5030 static void swevent_hlist_release(struct swevent_htable *swhash)
5031 {
5032 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5033 
5034 	if (!hlist)
5035 		return;
5036 
5037 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5038 	kfree_rcu(hlist, rcu_head);
5039 }
5040 
5041 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5042 {
5043 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5044 
5045 	mutex_lock(&swhash->hlist_mutex);
5046 
5047 	if (!--swhash->hlist_refcount)
5048 		swevent_hlist_release(swhash);
5049 
5050 	mutex_unlock(&swhash->hlist_mutex);
5051 }
5052 
5053 static void swevent_hlist_put(struct perf_event *event)
5054 {
5055 	int cpu;
5056 
5057 	if (event->cpu != -1) {
5058 		swevent_hlist_put_cpu(event, event->cpu);
5059 		return;
5060 	}
5061 
5062 	for_each_possible_cpu(cpu)
5063 		swevent_hlist_put_cpu(event, cpu);
5064 }
5065 
5066 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5067 {
5068 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5069 	int err = 0;
5070 
5071 	mutex_lock(&swhash->hlist_mutex);
5072 
5073 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5074 		struct swevent_hlist *hlist;
5075 
5076 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5077 		if (!hlist) {
5078 			err = -ENOMEM;
5079 			goto exit;
5080 		}
5081 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5082 	}
5083 	swhash->hlist_refcount++;
5084 exit:
5085 	mutex_unlock(&swhash->hlist_mutex);
5086 
5087 	return err;
5088 }
5089 
5090 static int swevent_hlist_get(struct perf_event *event)
5091 {
5092 	int err;
5093 	int cpu, failed_cpu;
5094 
5095 	if (event->cpu != -1)
5096 		return swevent_hlist_get_cpu(event, event->cpu);
5097 
5098 	get_online_cpus();
5099 	for_each_possible_cpu(cpu) {
5100 		err = swevent_hlist_get_cpu(event, cpu);
5101 		if (err) {
5102 			failed_cpu = cpu;
5103 			goto fail;
5104 		}
5105 	}
5106 	put_online_cpus();
5107 
5108 	return 0;
5109 fail:
5110 	for_each_possible_cpu(cpu) {
5111 		if (cpu == failed_cpu)
5112 			break;
5113 		swevent_hlist_put_cpu(event, cpu);
5114 	}
5115 
5116 	put_online_cpus();
5117 	return err;
5118 }
5119 
5120 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5121 
5122 static void sw_perf_event_destroy(struct perf_event *event)
5123 {
5124 	u64 event_id = event->attr.config;
5125 
5126 	WARN_ON(event->parent);
5127 
5128 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5129 	swevent_hlist_put(event);
5130 }
5131 
5132 static int perf_swevent_init(struct perf_event *event)
5133 {
5134 	int event_id = event->attr.config;
5135 
5136 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5137 		return -ENOENT;
5138 
5139 	/*
5140 	 * no branch sampling for software events
5141 	 */
5142 	if (has_branch_stack(event))
5143 		return -EOPNOTSUPP;
5144 
5145 	switch (event_id) {
5146 	case PERF_COUNT_SW_CPU_CLOCK:
5147 	case PERF_COUNT_SW_TASK_CLOCK:
5148 		return -ENOENT;
5149 
5150 	default:
5151 		break;
5152 	}
5153 
5154 	if (event_id >= PERF_COUNT_SW_MAX)
5155 		return -ENOENT;
5156 
5157 	if (!event->parent) {
5158 		int err;
5159 
5160 		err = swevent_hlist_get(event);
5161 		if (err)
5162 			return err;
5163 
5164 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5165 		event->destroy = sw_perf_event_destroy;
5166 	}
5167 
5168 	return 0;
5169 }
5170 
5171 static int perf_swevent_event_idx(struct perf_event *event)
5172 {
5173 	return 0;
5174 }
5175 
5176 static struct pmu perf_swevent = {
5177 	.task_ctx_nr	= perf_sw_context,
5178 
5179 	.event_init	= perf_swevent_init,
5180 	.add		= perf_swevent_add,
5181 	.del		= perf_swevent_del,
5182 	.start		= perf_swevent_start,
5183 	.stop		= perf_swevent_stop,
5184 	.read		= perf_swevent_read,
5185 
5186 	.event_idx	= perf_swevent_event_idx,
5187 };
5188 
5189 #ifdef CONFIG_EVENT_TRACING
5190 
5191 static int perf_tp_filter_match(struct perf_event *event,
5192 				struct perf_sample_data *data)
5193 {
5194 	void *record = data->raw->data;
5195 
5196 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5197 		return 1;
5198 	return 0;
5199 }
5200 
5201 static int perf_tp_event_match(struct perf_event *event,
5202 				struct perf_sample_data *data,
5203 				struct pt_regs *regs)
5204 {
5205 	if (event->hw.state & PERF_HES_STOPPED)
5206 		return 0;
5207 	/*
5208 	 * All tracepoints are from kernel-space.
5209 	 */
5210 	if (event->attr.exclude_kernel)
5211 		return 0;
5212 
5213 	if (!perf_tp_filter_match(event, data))
5214 		return 0;
5215 
5216 	return 1;
5217 }
5218 
5219 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5220 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5221 		   struct task_struct *task)
5222 {
5223 	struct perf_sample_data data;
5224 	struct perf_event *event;
5225 	struct hlist_node *node;
5226 
5227 	struct perf_raw_record raw = {
5228 		.size = entry_size,
5229 		.data = record,
5230 	};
5231 
5232 	perf_sample_data_init(&data, addr, 0);
5233 	data.raw = &raw;
5234 
5235 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5236 		if (perf_tp_event_match(event, &data, regs))
5237 			perf_swevent_event(event, count, &data, regs);
5238 	}
5239 
5240 	/*
5241 	 * If we got specified a target task, also iterate its context and
5242 	 * deliver this event there too.
5243 	 */
5244 	if (task && task != current) {
5245 		struct perf_event_context *ctx;
5246 		struct trace_entry *entry = record;
5247 
5248 		rcu_read_lock();
5249 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5250 		if (!ctx)
5251 			goto unlock;
5252 
5253 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5254 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5255 				continue;
5256 			if (event->attr.config != entry->type)
5257 				continue;
5258 			if (perf_tp_event_match(event, &data, regs))
5259 				perf_swevent_event(event, count, &data, regs);
5260 		}
5261 unlock:
5262 		rcu_read_unlock();
5263 	}
5264 
5265 	perf_swevent_put_recursion_context(rctx);
5266 }
5267 EXPORT_SYMBOL_GPL(perf_tp_event);
5268 
5269 static void tp_perf_event_destroy(struct perf_event *event)
5270 {
5271 	perf_trace_destroy(event);
5272 }
5273 
5274 static int perf_tp_event_init(struct perf_event *event)
5275 {
5276 	int err;
5277 
5278 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5279 		return -ENOENT;
5280 
5281 	/*
5282 	 * no branch sampling for tracepoint events
5283 	 */
5284 	if (has_branch_stack(event))
5285 		return -EOPNOTSUPP;
5286 
5287 	err = perf_trace_init(event);
5288 	if (err)
5289 		return err;
5290 
5291 	event->destroy = tp_perf_event_destroy;
5292 
5293 	return 0;
5294 }
5295 
5296 static struct pmu perf_tracepoint = {
5297 	.task_ctx_nr	= perf_sw_context,
5298 
5299 	.event_init	= perf_tp_event_init,
5300 	.add		= perf_trace_add,
5301 	.del		= perf_trace_del,
5302 	.start		= perf_swevent_start,
5303 	.stop		= perf_swevent_stop,
5304 	.read		= perf_swevent_read,
5305 
5306 	.event_idx	= perf_swevent_event_idx,
5307 };
5308 
5309 static inline void perf_tp_register(void)
5310 {
5311 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5312 }
5313 
5314 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5315 {
5316 	char *filter_str;
5317 	int ret;
5318 
5319 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5320 		return -EINVAL;
5321 
5322 	filter_str = strndup_user(arg, PAGE_SIZE);
5323 	if (IS_ERR(filter_str))
5324 		return PTR_ERR(filter_str);
5325 
5326 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5327 
5328 	kfree(filter_str);
5329 	return ret;
5330 }
5331 
5332 static void perf_event_free_filter(struct perf_event *event)
5333 {
5334 	ftrace_profile_free_filter(event);
5335 }
5336 
5337 #else
5338 
5339 static inline void perf_tp_register(void)
5340 {
5341 }
5342 
5343 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5344 {
5345 	return -ENOENT;
5346 }
5347 
5348 static void perf_event_free_filter(struct perf_event *event)
5349 {
5350 }
5351 
5352 #endif /* CONFIG_EVENT_TRACING */
5353 
5354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5355 void perf_bp_event(struct perf_event *bp, void *data)
5356 {
5357 	struct perf_sample_data sample;
5358 	struct pt_regs *regs = data;
5359 
5360 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5361 
5362 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5363 		perf_swevent_event(bp, 1, &sample, regs);
5364 }
5365 #endif
5366 
5367 /*
5368  * hrtimer based swevent callback
5369  */
5370 
5371 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5372 {
5373 	enum hrtimer_restart ret = HRTIMER_RESTART;
5374 	struct perf_sample_data data;
5375 	struct pt_regs *regs;
5376 	struct perf_event *event;
5377 	u64 period;
5378 
5379 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5380 
5381 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5382 		return HRTIMER_NORESTART;
5383 
5384 	event->pmu->read(event);
5385 
5386 	perf_sample_data_init(&data, 0, event->hw.last_period);
5387 	regs = get_irq_regs();
5388 
5389 	if (regs && !perf_exclude_event(event, regs)) {
5390 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5391 			if (__perf_event_overflow(event, 1, &data, regs))
5392 				ret = HRTIMER_NORESTART;
5393 	}
5394 
5395 	period = max_t(u64, 10000, event->hw.sample_period);
5396 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5397 
5398 	return ret;
5399 }
5400 
5401 static void perf_swevent_start_hrtimer(struct perf_event *event)
5402 {
5403 	struct hw_perf_event *hwc = &event->hw;
5404 	s64 period;
5405 
5406 	if (!is_sampling_event(event))
5407 		return;
5408 
5409 	period = local64_read(&hwc->period_left);
5410 	if (period) {
5411 		if (period < 0)
5412 			period = 10000;
5413 
5414 		local64_set(&hwc->period_left, 0);
5415 	} else {
5416 		period = max_t(u64, 10000, hwc->sample_period);
5417 	}
5418 	__hrtimer_start_range_ns(&hwc->hrtimer,
5419 				ns_to_ktime(period), 0,
5420 				HRTIMER_MODE_REL_PINNED, 0);
5421 }
5422 
5423 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5424 {
5425 	struct hw_perf_event *hwc = &event->hw;
5426 
5427 	if (is_sampling_event(event)) {
5428 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5429 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5430 
5431 		hrtimer_cancel(&hwc->hrtimer);
5432 	}
5433 }
5434 
5435 static void perf_swevent_init_hrtimer(struct perf_event *event)
5436 {
5437 	struct hw_perf_event *hwc = &event->hw;
5438 
5439 	if (!is_sampling_event(event))
5440 		return;
5441 
5442 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5443 	hwc->hrtimer.function = perf_swevent_hrtimer;
5444 
5445 	/*
5446 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5447 	 * mapping and avoid the whole period adjust feedback stuff.
5448 	 */
5449 	if (event->attr.freq) {
5450 		long freq = event->attr.sample_freq;
5451 
5452 		event->attr.sample_period = NSEC_PER_SEC / freq;
5453 		hwc->sample_period = event->attr.sample_period;
5454 		local64_set(&hwc->period_left, hwc->sample_period);
5455 		event->attr.freq = 0;
5456 	}
5457 }
5458 
5459 /*
5460  * Software event: cpu wall time clock
5461  */
5462 
5463 static void cpu_clock_event_update(struct perf_event *event)
5464 {
5465 	s64 prev;
5466 	u64 now;
5467 
5468 	now = local_clock();
5469 	prev = local64_xchg(&event->hw.prev_count, now);
5470 	local64_add(now - prev, &event->count);
5471 }
5472 
5473 static void cpu_clock_event_start(struct perf_event *event, int flags)
5474 {
5475 	local64_set(&event->hw.prev_count, local_clock());
5476 	perf_swevent_start_hrtimer(event);
5477 }
5478 
5479 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5480 {
5481 	perf_swevent_cancel_hrtimer(event);
5482 	cpu_clock_event_update(event);
5483 }
5484 
5485 static int cpu_clock_event_add(struct perf_event *event, int flags)
5486 {
5487 	if (flags & PERF_EF_START)
5488 		cpu_clock_event_start(event, flags);
5489 
5490 	return 0;
5491 }
5492 
5493 static void cpu_clock_event_del(struct perf_event *event, int flags)
5494 {
5495 	cpu_clock_event_stop(event, flags);
5496 }
5497 
5498 static void cpu_clock_event_read(struct perf_event *event)
5499 {
5500 	cpu_clock_event_update(event);
5501 }
5502 
5503 static int cpu_clock_event_init(struct perf_event *event)
5504 {
5505 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5506 		return -ENOENT;
5507 
5508 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5509 		return -ENOENT;
5510 
5511 	/*
5512 	 * no branch sampling for software events
5513 	 */
5514 	if (has_branch_stack(event))
5515 		return -EOPNOTSUPP;
5516 
5517 	perf_swevent_init_hrtimer(event);
5518 
5519 	return 0;
5520 }
5521 
5522 static struct pmu perf_cpu_clock = {
5523 	.task_ctx_nr	= perf_sw_context,
5524 
5525 	.event_init	= cpu_clock_event_init,
5526 	.add		= cpu_clock_event_add,
5527 	.del		= cpu_clock_event_del,
5528 	.start		= cpu_clock_event_start,
5529 	.stop		= cpu_clock_event_stop,
5530 	.read		= cpu_clock_event_read,
5531 
5532 	.event_idx	= perf_swevent_event_idx,
5533 };
5534 
5535 /*
5536  * Software event: task time clock
5537  */
5538 
5539 static void task_clock_event_update(struct perf_event *event, u64 now)
5540 {
5541 	u64 prev;
5542 	s64 delta;
5543 
5544 	prev = local64_xchg(&event->hw.prev_count, now);
5545 	delta = now - prev;
5546 	local64_add(delta, &event->count);
5547 }
5548 
5549 static void task_clock_event_start(struct perf_event *event, int flags)
5550 {
5551 	local64_set(&event->hw.prev_count, event->ctx->time);
5552 	perf_swevent_start_hrtimer(event);
5553 }
5554 
5555 static void task_clock_event_stop(struct perf_event *event, int flags)
5556 {
5557 	perf_swevent_cancel_hrtimer(event);
5558 	task_clock_event_update(event, event->ctx->time);
5559 }
5560 
5561 static int task_clock_event_add(struct perf_event *event, int flags)
5562 {
5563 	if (flags & PERF_EF_START)
5564 		task_clock_event_start(event, flags);
5565 
5566 	return 0;
5567 }
5568 
5569 static void task_clock_event_del(struct perf_event *event, int flags)
5570 {
5571 	task_clock_event_stop(event, PERF_EF_UPDATE);
5572 }
5573 
5574 static void task_clock_event_read(struct perf_event *event)
5575 {
5576 	u64 now = perf_clock();
5577 	u64 delta = now - event->ctx->timestamp;
5578 	u64 time = event->ctx->time + delta;
5579 
5580 	task_clock_event_update(event, time);
5581 }
5582 
5583 static int task_clock_event_init(struct perf_event *event)
5584 {
5585 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5586 		return -ENOENT;
5587 
5588 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5589 		return -ENOENT;
5590 
5591 	/*
5592 	 * no branch sampling for software events
5593 	 */
5594 	if (has_branch_stack(event))
5595 		return -EOPNOTSUPP;
5596 
5597 	perf_swevent_init_hrtimer(event);
5598 
5599 	return 0;
5600 }
5601 
5602 static struct pmu perf_task_clock = {
5603 	.task_ctx_nr	= perf_sw_context,
5604 
5605 	.event_init	= task_clock_event_init,
5606 	.add		= task_clock_event_add,
5607 	.del		= task_clock_event_del,
5608 	.start		= task_clock_event_start,
5609 	.stop		= task_clock_event_stop,
5610 	.read		= task_clock_event_read,
5611 
5612 	.event_idx	= perf_swevent_event_idx,
5613 };
5614 
5615 static void perf_pmu_nop_void(struct pmu *pmu)
5616 {
5617 }
5618 
5619 static int perf_pmu_nop_int(struct pmu *pmu)
5620 {
5621 	return 0;
5622 }
5623 
5624 static void perf_pmu_start_txn(struct pmu *pmu)
5625 {
5626 	perf_pmu_disable(pmu);
5627 }
5628 
5629 static int perf_pmu_commit_txn(struct pmu *pmu)
5630 {
5631 	perf_pmu_enable(pmu);
5632 	return 0;
5633 }
5634 
5635 static void perf_pmu_cancel_txn(struct pmu *pmu)
5636 {
5637 	perf_pmu_enable(pmu);
5638 }
5639 
5640 static int perf_event_idx_default(struct perf_event *event)
5641 {
5642 	return event->hw.idx + 1;
5643 }
5644 
5645 /*
5646  * Ensures all contexts with the same task_ctx_nr have the same
5647  * pmu_cpu_context too.
5648  */
5649 static void *find_pmu_context(int ctxn)
5650 {
5651 	struct pmu *pmu;
5652 
5653 	if (ctxn < 0)
5654 		return NULL;
5655 
5656 	list_for_each_entry(pmu, &pmus, entry) {
5657 		if (pmu->task_ctx_nr == ctxn)
5658 			return pmu->pmu_cpu_context;
5659 	}
5660 
5661 	return NULL;
5662 }
5663 
5664 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5665 {
5666 	int cpu;
5667 
5668 	for_each_possible_cpu(cpu) {
5669 		struct perf_cpu_context *cpuctx;
5670 
5671 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5672 
5673 		if (cpuctx->active_pmu == old_pmu)
5674 			cpuctx->active_pmu = pmu;
5675 	}
5676 }
5677 
5678 static void free_pmu_context(struct pmu *pmu)
5679 {
5680 	struct pmu *i;
5681 
5682 	mutex_lock(&pmus_lock);
5683 	/*
5684 	 * Like a real lame refcount.
5685 	 */
5686 	list_for_each_entry(i, &pmus, entry) {
5687 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5688 			update_pmu_context(i, pmu);
5689 			goto out;
5690 		}
5691 	}
5692 
5693 	free_percpu(pmu->pmu_cpu_context);
5694 out:
5695 	mutex_unlock(&pmus_lock);
5696 }
5697 static struct idr pmu_idr;
5698 
5699 static ssize_t
5700 type_show(struct device *dev, struct device_attribute *attr, char *page)
5701 {
5702 	struct pmu *pmu = dev_get_drvdata(dev);
5703 
5704 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5705 }
5706 
5707 static struct device_attribute pmu_dev_attrs[] = {
5708        __ATTR_RO(type),
5709        __ATTR_NULL,
5710 };
5711 
5712 static int pmu_bus_running;
5713 static struct bus_type pmu_bus = {
5714 	.name		= "event_source",
5715 	.dev_attrs	= pmu_dev_attrs,
5716 };
5717 
5718 static void pmu_dev_release(struct device *dev)
5719 {
5720 	kfree(dev);
5721 }
5722 
5723 static int pmu_dev_alloc(struct pmu *pmu)
5724 {
5725 	int ret = -ENOMEM;
5726 
5727 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5728 	if (!pmu->dev)
5729 		goto out;
5730 
5731 	pmu->dev->groups = pmu->attr_groups;
5732 	device_initialize(pmu->dev);
5733 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5734 	if (ret)
5735 		goto free_dev;
5736 
5737 	dev_set_drvdata(pmu->dev, pmu);
5738 	pmu->dev->bus = &pmu_bus;
5739 	pmu->dev->release = pmu_dev_release;
5740 	ret = device_add(pmu->dev);
5741 	if (ret)
5742 		goto free_dev;
5743 
5744 out:
5745 	return ret;
5746 
5747 free_dev:
5748 	put_device(pmu->dev);
5749 	goto out;
5750 }
5751 
5752 static struct lock_class_key cpuctx_mutex;
5753 static struct lock_class_key cpuctx_lock;
5754 
5755 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5756 {
5757 	int cpu, ret;
5758 
5759 	mutex_lock(&pmus_lock);
5760 	ret = -ENOMEM;
5761 	pmu->pmu_disable_count = alloc_percpu(int);
5762 	if (!pmu->pmu_disable_count)
5763 		goto unlock;
5764 
5765 	pmu->type = -1;
5766 	if (!name)
5767 		goto skip_type;
5768 	pmu->name = name;
5769 
5770 	if (type < 0) {
5771 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5772 		if (!err)
5773 			goto free_pdc;
5774 
5775 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5776 		if (err) {
5777 			ret = err;
5778 			goto free_pdc;
5779 		}
5780 	}
5781 	pmu->type = type;
5782 
5783 	if (pmu_bus_running) {
5784 		ret = pmu_dev_alloc(pmu);
5785 		if (ret)
5786 			goto free_idr;
5787 	}
5788 
5789 skip_type:
5790 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5791 	if (pmu->pmu_cpu_context)
5792 		goto got_cpu_context;
5793 
5794 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5795 	if (!pmu->pmu_cpu_context)
5796 		goto free_dev;
5797 
5798 	for_each_possible_cpu(cpu) {
5799 		struct perf_cpu_context *cpuctx;
5800 
5801 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5802 		__perf_event_init_context(&cpuctx->ctx);
5803 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5804 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5805 		cpuctx->ctx.type = cpu_context;
5806 		cpuctx->ctx.pmu = pmu;
5807 		cpuctx->jiffies_interval = 1;
5808 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5809 		cpuctx->active_pmu = pmu;
5810 	}
5811 
5812 got_cpu_context:
5813 	if (!pmu->start_txn) {
5814 		if (pmu->pmu_enable) {
5815 			/*
5816 			 * If we have pmu_enable/pmu_disable calls, install
5817 			 * transaction stubs that use that to try and batch
5818 			 * hardware accesses.
5819 			 */
5820 			pmu->start_txn  = perf_pmu_start_txn;
5821 			pmu->commit_txn = perf_pmu_commit_txn;
5822 			pmu->cancel_txn = perf_pmu_cancel_txn;
5823 		} else {
5824 			pmu->start_txn  = perf_pmu_nop_void;
5825 			pmu->commit_txn = perf_pmu_nop_int;
5826 			pmu->cancel_txn = perf_pmu_nop_void;
5827 		}
5828 	}
5829 
5830 	if (!pmu->pmu_enable) {
5831 		pmu->pmu_enable  = perf_pmu_nop_void;
5832 		pmu->pmu_disable = perf_pmu_nop_void;
5833 	}
5834 
5835 	if (!pmu->event_idx)
5836 		pmu->event_idx = perf_event_idx_default;
5837 
5838 	list_add_rcu(&pmu->entry, &pmus);
5839 	ret = 0;
5840 unlock:
5841 	mutex_unlock(&pmus_lock);
5842 
5843 	return ret;
5844 
5845 free_dev:
5846 	device_del(pmu->dev);
5847 	put_device(pmu->dev);
5848 
5849 free_idr:
5850 	if (pmu->type >= PERF_TYPE_MAX)
5851 		idr_remove(&pmu_idr, pmu->type);
5852 
5853 free_pdc:
5854 	free_percpu(pmu->pmu_disable_count);
5855 	goto unlock;
5856 }
5857 
5858 void perf_pmu_unregister(struct pmu *pmu)
5859 {
5860 	mutex_lock(&pmus_lock);
5861 	list_del_rcu(&pmu->entry);
5862 	mutex_unlock(&pmus_lock);
5863 
5864 	/*
5865 	 * We dereference the pmu list under both SRCU and regular RCU, so
5866 	 * synchronize against both of those.
5867 	 */
5868 	synchronize_srcu(&pmus_srcu);
5869 	synchronize_rcu();
5870 
5871 	free_percpu(pmu->pmu_disable_count);
5872 	if (pmu->type >= PERF_TYPE_MAX)
5873 		idr_remove(&pmu_idr, pmu->type);
5874 	device_del(pmu->dev);
5875 	put_device(pmu->dev);
5876 	free_pmu_context(pmu);
5877 }
5878 
5879 struct pmu *perf_init_event(struct perf_event *event)
5880 {
5881 	struct pmu *pmu = NULL;
5882 	int idx;
5883 	int ret;
5884 
5885 	idx = srcu_read_lock(&pmus_srcu);
5886 
5887 	rcu_read_lock();
5888 	pmu = idr_find(&pmu_idr, event->attr.type);
5889 	rcu_read_unlock();
5890 	if (pmu) {
5891 		event->pmu = pmu;
5892 		ret = pmu->event_init(event);
5893 		if (ret)
5894 			pmu = ERR_PTR(ret);
5895 		goto unlock;
5896 	}
5897 
5898 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5899 		event->pmu = pmu;
5900 		ret = pmu->event_init(event);
5901 		if (!ret)
5902 			goto unlock;
5903 
5904 		if (ret != -ENOENT) {
5905 			pmu = ERR_PTR(ret);
5906 			goto unlock;
5907 		}
5908 	}
5909 	pmu = ERR_PTR(-ENOENT);
5910 unlock:
5911 	srcu_read_unlock(&pmus_srcu, idx);
5912 
5913 	return pmu;
5914 }
5915 
5916 /*
5917  * Allocate and initialize a event structure
5918  */
5919 static struct perf_event *
5920 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5921 		 struct task_struct *task,
5922 		 struct perf_event *group_leader,
5923 		 struct perf_event *parent_event,
5924 		 perf_overflow_handler_t overflow_handler,
5925 		 void *context)
5926 {
5927 	struct pmu *pmu;
5928 	struct perf_event *event;
5929 	struct hw_perf_event *hwc;
5930 	long err;
5931 
5932 	if ((unsigned)cpu >= nr_cpu_ids) {
5933 		if (!task || cpu != -1)
5934 			return ERR_PTR(-EINVAL);
5935 	}
5936 
5937 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5938 	if (!event)
5939 		return ERR_PTR(-ENOMEM);
5940 
5941 	/*
5942 	 * Single events are their own group leaders, with an
5943 	 * empty sibling list:
5944 	 */
5945 	if (!group_leader)
5946 		group_leader = event;
5947 
5948 	mutex_init(&event->child_mutex);
5949 	INIT_LIST_HEAD(&event->child_list);
5950 
5951 	INIT_LIST_HEAD(&event->group_entry);
5952 	INIT_LIST_HEAD(&event->event_entry);
5953 	INIT_LIST_HEAD(&event->sibling_list);
5954 	INIT_LIST_HEAD(&event->rb_entry);
5955 
5956 	init_waitqueue_head(&event->waitq);
5957 	init_irq_work(&event->pending, perf_pending_event);
5958 
5959 	mutex_init(&event->mmap_mutex);
5960 
5961 	atomic_long_set(&event->refcount, 1);
5962 	event->cpu		= cpu;
5963 	event->attr		= *attr;
5964 	event->group_leader	= group_leader;
5965 	event->pmu		= NULL;
5966 	event->oncpu		= -1;
5967 
5968 	event->parent		= parent_event;
5969 
5970 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5971 	event->id		= atomic64_inc_return(&perf_event_id);
5972 
5973 	event->state		= PERF_EVENT_STATE_INACTIVE;
5974 
5975 	if (task) {
5976 		event->attach_state = PERF_ATTACH_TASK;
5977 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5978 		/*
5979 		 * hw_breakpoint is a bit difficult here..
5980 		 */
5981 		if (attr->type == PERF_TYPE_BREAKPOINT)
5982 			event->hw.bp_target = task;
5983 #endif
5984 	}
5985 
5986 	if (!overflow_handler && parent_event) {
5987 		overflow_handler = parent_event->overflow_handler;
5988 		context = parent_event->overflow_handler_context;
5989 	}
5990 
5991 	event->overflow_handler	= overflow_handler;
5992 	event->overflow_handler_context = context;
5993 
5994 	if (attr->disabled)
5995 		event->state = PERF_EVENT_STATE_OFF;
5996 
5997 	pmu = NULL;
5998 
5999 	hwc = &event->hw;
6000 	hwc->sample_period = attr->sample_period;
6001 	if (attr->freq && attr->sample_freq)
6002 		hwc->sample_period = 1;
6003 	hwc->last_period = hwc->sample_period;
6004 
6005 	local64_set(&hwc->period_left, hwc->sample_period);
6006 
6007 	/*
6008 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6009 	 */
6010 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6011 		goto done;
6012 
6013 	pmu = perf_init_event(event);
6014 
6015 done:
6016 	err = 0;
6017 	if (!pmu)
6018 		err = -EINVAL;
6019 	else if (IS_ERR(pmu))
6020 		err = PTR_ERR(pmu);
6021 
6022 	if (err) {
6023 		if (event->ns)
6024 			put_pid_ns(event->ns);
6025 		kfree(event);
6026 		return ERR_PTR(err);
6027 	}
6028 
6029 	if (!event->parent) {
6030 		if (event->attach_state & PERF_ATTACH_TASK)
6031 			static_key_slow_inc(&perf_sched_events.key);
6032 		if (event->attr.mmap || event->attr.mmap_data)
6033 			atomic_inc(&nr_mmap_events);
6034 		if (event->attr.comm)
6035 			atomic_inc(&nr_comm_events);
6036 		if (event->attr.task)
6037 			atomic_inc(&nr_task_events);
6038 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6039 			err = get_callchain_buffers();
6040 			if (err) {
6041 				free_event(event);
6042 				return ERR_PTR(err);
6043 			}
6044 		}
6045 		if (has_branch_stack(event)) {
6046 			static_key_slow_inc(&perf_sched_events.key);
6047 			if (!(event->attach_state & PERF_ATTACH_TASK))
6048 				atomic_inc(&per_cpu(perf_branch_stack_events,
6049 						    event->cpu));
6050 		}
6051 	}
6052 
6053 	return event;
6054 }
6055 
6056 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6057 			  struct perf_event_attr *attr)
6058 {
6059 	u32 size;
6060 	int ret;
6061 
6062 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6063 		return -EFAULT;
6064 
6065 	/*
6066 	 * zero the full structure, so that a short copy will be nice.
6067 	 */
6068 	memset(attr, 0, sizeof(*attr));
6069 
6070 	ret = get_user(size, &uattr->size);
6071 	if (ret)
6072 		return ret;
6073 
6074 	if (size > PAGE_SIZE)	/* silly large */
6075 		goto err_size;
6076 
6077 	if (!size)		/* abi compat */
6078 		size = PERF_ATTR_SIZE_VER0;
6079 
6080 	if (size < PERF_ATTR_SIZE_VER0)
6081 		goto err_size;
6082 
6083 	/*
6084 	 * If we're handed a bigger struct than we know of,
6085 	 * ensure all the unknown bits are 0 - i.e. new
6086 	 * user-space does not rely on any kernel feature
6087 	 * extensions we dont know about yet.
6088 	 */
6089 	if (size > sizeof(*attr)) {
6090 		unsigned char __user *addr;
6091 		unsigned char __user *end;
6092 		unsigned char val;
6093 
6094 		addr = (void __user *)uattr + sizeof(*attr);
6095 		end  = (void __user *)uattr + size;
6096 
6097 		for (; addr < end; addr++) {
6098 			ret = get_user(val, addr);
6099 			if (ret)
6100 				return ret;
6101 			if (val)
6102 				goto err_size;
6103 		}
6104 		size = sizeof(*attr);
6105 	}
6106 
6107 	ret = copy_from_user(attr, uattr, size);
6108 	if (ret)
6109 		return -EFAULT;
6110 
6111 	if (attr->__reserved_1)
6112 		return -EINVAL;
6113 
6114 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6115 		return -EINVAL;
6116 
6117 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6118 		return -EINVAL;
6119 
6120 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6121 		u64 mask = attr->branch_sample_type;
6122 
6123 		/* only using defined bits */
6124 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6125 			return -EINVAL;
6126 
6127 		/* at least one branch bit must be set */
6128 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6129 			return -EINVAL;
6130 
6131 		/* kernel level capture: check permissions */
6132 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6133 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6134 			return -EACCES;
6135 
6136 		/* propagate priv level, when not set for branch */
6137 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6138 
6139 			/* exclude_kernel checked on syscall entry */
6140 			if (!attr->exclude_kernel)
6141 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6142 
6143 			if (!attr->exclude_user)
6144 				mask |= PERF_SAMPLE_BRANCH_USER;
6145 
6146 			if (!attr->exclude_hv)
6147 				mask |= PERF_SAMPLE_BRANCH_HV;
6148 			/*
6149 			 * adjust user setting (for HW filter setup)
6150 			 */
6151 			attr->branch_sample_type = mask;
6152 		}
6153 	}
6154 out:
6155 	return ret;
6156 
6157 err_size:
6158 	put_user(sizeof(*attr), &uattr->size);
6159 	ret = -E2BIG;
6160 	goto out;
6161 }
6162 
6163 static int
6164 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6165 {
6166 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6167 	int ret = -EINVAL;
6168 
6169 	if (!output_event)
6170 		goto set;
6171 
6172 	/* don't allow circular references */
6173 	if (event == output_event)
6174 		goto out;
6175 
6176 	/*
6177 	 * Don't allow cross-cpu buffers
6178 	 */
6179 	if (output_event->cpu != event->cpu)
6180 		goto out;
6181 
6182 	/*
6183 	 * If its not a per-cpu rb, it must be the same task.
6184 	 */
6185 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6186 		goto out;
6187 
6188 set:
6189 	mutex_lock(&event->mmap_mutex);
6190 	/* Can't redirect output if we've got an active mmap() */
6191 	if (atomic_read(&event->mmap_count))
6192 		goto unlock;
6193 
6194 	if (output_event) {
6195 		/* get the rb we want to redirect to */
6196 		rb = ring_buffer_get(output_event);
6197 		if (!rb)
6198 			goto unlock;
6199 	}
6200 
6201 	old_rb = event->rb;
6202 	rcu_assign_pointer(event->rb, rb);
6203 	if (old_rb)
6204 		ring_buffer_detach(event, old_rb);
6205 	ret = 0;
6206 unlock:
6207 	mutex_unlock(&event->mmap_mutex);
6208 
6209 	if (old_rb)
6210 		ring_buffer_put(old_rb);
6211 out:
6212 	return ret;
6213 }
6214 
6215 /**
6216  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6217  *
6218  * @attr_uptr:	event_id type attributes for monitoring/sampling
6219  * @pid:		target pid
6220  * @cpu:		target cpu
6221  * @group_fd:		group leader event fd
6222  */
6223 SYSCALL_DEFINE5(perf_event_open,
6224 		struct perf_event_attr __user *, attr_uptr,
6225 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6226 {
6227 	struct perf_event *group_leader = NULL, *output_event = NULL;
6228 	struct perf_event *event, *sibling;
6229 	struct perf_event_attr attr;
6230 	struct perf_event_context *ctx;
6231 	struct file *event_file = NULL;
6232 	struct file *group_file = NULL;
6233 	struct task_struct *task = NULL;
6234 	struct pmu *pmu;
6235 	int event_fd;
6236 	int move_group = 0;
6237 	int fput_needed = 0;
6238 	int err;
6239 
6240 	/* for future expandability... */
6241 	if (flags & ~PERF_FLAG_ALL)
6242 		return -EINVAL;
6243 
6244 	err = perf_copy_attr(attr_uptr, &attr);
6245 	if (err)
6246 		return err;
6247 
6248 	if (!attr.exclude_kernel) {
6249 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6250 			return -EACCES;
6251 	}
6252 
6253 	if (attr.freq) {
6254 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6255 			return -EINVAL;
6256 	}
6257 
6258 	/*
6259 	 * In cgroup mode, the pid argument is used to pass the fd
6260 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6261 	 * designates the cpu on which to monitor threads from that
6262 	 * cgroup.
6263 	 */
6264 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6265 		return -EINVAL;
6266 
6267 	event_fd = get_unused_fd_flags(O_RDWR);
6268 	if (event_fd < 0)
6269 		return event_fd;
6270 
6271 	if (group_fd != -1) {
6272 		group_file = perf_fget_light(group_fd, &fput_needed);
6273 		if (IS_ERR(group_file)) {
6274 			err = PTR_ERR(group_file);
6275 			goto err_fd;
6276 		}
6277 		group_leader = group_file->private_data;
6278 		if (flags & PERF_FLAG_FD_OUTPUT)
6279 			output_event = group_leader;
6280 		if (flags & PERF_FLAG_FD_NO_GROUP)
6281 			group_leader = NULL;
6282 	}
6283 
6284 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6285 		task = find_lively_task_by_vpid(pid);
6286 		if (IS_ERR(task)) {
6287 			err = PTR_ERR(task);
6288 			goto err_group_fd;
6289 		}
6290 	}
6291 
6292 	get_online_cpus();
6293 
6294 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6295 				 NULL, NULL);
6296 	if (IS_ERR(event)) {
6297 		err = PTR_ERR(event);
6298 		goto err_task;
6299 	}
6300 
6301 	if (flags & PERF_FLAG_PID_CGROUP) {
6302 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6303 		if (err)
6304 			goto err_alloc;
6305 		/*
6306 		 * one more event:
6307 		 * - that has cgroup constraint on event->cpu
6308 		 * - that may need work on context switch
6309 		 */
6310 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6311 		static_key_slow_inc(&perf_sched_events.key);
6312 	}
6313 
6314 	/*
6315 	 * Special case software events and allow them to be part of
6316 	 * any hardware group.
6317 	 */
6318 	pmu = event->pmu;
6319 
6320 	if (group_leader &&
6321 	    (is_software_event(event) != is_software_event(group_leader))) {
6322 		if (is_software_event(event)) {
6323 			/*
6324 			 * If event and group_leader are not both a software
6325 			 * event, and event is, then group leader is not.
6326 			 *
6327 			 * Allow the addition of software events to !software
6328 			 * groups, this is safe because software events never
6329 			 * fail to schedule.
6330 			 */
6331 			pmu = group_leader->pmu;
6332 		} else if (is_software_event(group_leader) &&
6333 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6334 			/*
6335 			 * In case the group is a pure software group, and we
6336 			 * try to add a hardware event, move the whole group to
6337 			 * the hardware context.
6338 			 */
6339 			move_group = 1;
6340 		}
6341 	}
6342 
6343 	/*
6344 	 * Get the target context (task or percpu):
6345 	 */
6346 	ctx = find_get_context(pmu, task, event->cpu);
6347 	if (IS_ERR(ctx)) {
6348 		err = PTR_ERR(ctx);
6349 		goto err_alloc;
6350 	}
6351 
6352 	if (task) {
6353 		put_task_struct(task);
6354 		task = NULL;
6355 	}
6356 
6357 	/*
6358 	 * Look up the group leader (we will attach this event to it):
6359 	 */
6360 	if (group_leader) {
6361 		err = -EINVAL;
6362 
6363 		/*
6364 		 * Do not allow a recursive hierarchy (this new sibling
6365 		 * becoming part of another group-sibling):
6366 		 */
6367 		if (group_leader->group_leader != group_leader)
6368 			goto err_context;
6369 		/*
6370 		 * Do not allow to attach to a group in a different
6371 		 * task or CPU context:
6372 		 */
6373 		if (move_group) {
6374 			if (group_leader->ctx->type != ctx->type)
6375 				goto err_context;
6376 		} else {
6377 			if (group_leader->ctx != ctx)
6378 				goto err_context;
6379 		}
6380 
6381 		/*
6382 		 * Only a group leader can be exclusive or pinned
6383 		 */
6384 		if (attr.exclusive || attr.pinned)
6385 			goto err_context;
6386 	}
6387 
6388 	if (output_event) {
6389 		err = perf_event_set_output(event, output_event);
6390 		if (err)
6391 			goto err_context;
6392 	}
6393 
6394 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6395 	if (IS_ERR(event_file)) {
6396 		err = PTR_ERR(event_file);
6397 		goto err_context;
6398 	}
6399 
6400 	if (move_group) {
6401 		struct perf_event_context *gctx = group_leader->ctx;
6402 
6403 		mutex_lock(&gctx->mutex);
6404 		perf_remove_from_context(group_leader);
6405 		list_for_each_entry(sibling, &group_leader->sibling_list,
6406 				    group_entry) {
6407 			perf_remove_from_context(sibling);
6408 			put_ctx(gctx);
6409 		}
6410 		mutex_unlock(&gctx->mutex);
6411 		put_ctx(gctx);
6412 	}
6413 
6414 	WARN_ON_ONCE(ctx->parent_ctx);
6415 	mutex_lock(&ctx->mutex);
6416 
6417 	if (move_group) {
6418 		synchronize_rcu();
6419 		perf_install_in_context(ctx, group_leader, event->cpu);
6420 		get_ctx(ctx);
6421 		list_for_each_entry(sibling, &group_leader->sibling_list,
6422 				    group_entry) {
6423 			perf_install_in_context(ctx, sibling, event->cpu);
6424 			get_ctx(ctx);
6425 		}
6426 	}
6427 
6428 	perf_install_in_context(ctx, event, event->cpu);
6429 	++ctx->generation;
6430 	perf_unpin_context(ctx);
6431 	mutex_unlock(&ctx->mutex);
6432 
6433 	put_online_cpus();
6434 
6435 	event->owner = current;
6436 
6437 	mutex_lock(&current->perf_event_mutex);
6438 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6439 	mutex_unlock(&current->perf_event_mutex);
6440 
6441 	/*
6442 	 * Precalculate sample_data sizes
6443 	 */
6444 	perf_event__header_size(event);
6445 	perf_event__id_header_size(event);
6446 
6447 	/*
6448 	 * Drop the reference on the group_event after placing the
6449 	 * new event on the sibling_list. This ensures destruction
6450 	 * of the group leader will find the pointer to itself in
6451 	 * perf_group_detach().
6452 	 */
6453 	fput_light(group_file, fput_needed);
6454 	fd_install(event_fd, event_file);
6455 	return event_fd;
6456 
6457 err_context:
6458 	perf_unpin_context(ctx);
6459 	put_ctx(ctx);
6460 err_alloc:
6461 	free_event(event);
6462 err_task:
6463 	put_online_cpus();
6464 	if (task)
6465 		put_task_struct(task);
6466 err_group_fd:
6467 	fput_light(group_file, fput_needed);
6468 err_fd:
6469 	put_unused_fd(event_fd);
6470 	return err;
6471 }
6472 
6473 /**
6474  * perf_event_create_kernel_counter
6475  *
6476  * @attr: attributes of the counter to create
6477  * @cpu: cpu in which the counter is bound
6478  * @task: task to profile (NULL for percpu)
6479  */
6480 struct perf_event *
6481 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6482 				 struct task_struct *task,
6483 				 perf_overflow_handler_t overflow_handler,
6484 				 void *context)
6485 {
6486 	struct perf_event_context *ctx;
6487 	struct perf_event *event;
6488 	int err;
6489 
6490 	/*
6491 	 * Get the target context (task or percpu):
6492 	 */
6493 
6494 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6495 				 overflow_handler, context);
6496 	if (IS_ERR(event)) {
6497 		err = PTR_ERR(event);
6498 		goto err;
6499 	}
6500 
6501 	ctx = find_get_context(event->pmu, task, cpu);
6502 	if (IS_ERR(ctx)) {
6503 		err = PTR_ERR(ctx);
6504 		goto err_free;
6505 	}
6506 
6507 	WARN_ON_ONCE(ctx->parent_ctx);
6508 	mutex_lock(&ctx->mutex);
6509 	perf_install_in_context(ctx, event, cpu);
6510 	++ctx->generation;
6511 	perf_unpin_context(ctx);
6512 	mutex_unlock(&ctx->mutex);
6513 
6514 	return event;
6515 
6516 err_free:
6517 	free_event(event);
6518 err:
6519 	return ERR_PTR(err);
6520 }
6521 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6522 
6523 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6524 {
6525 	struct perf_event_context *src_ctx;
6526 	struct perf_event_context *dst_ctx;
6527 	struct perf_event *event, *tmp;
6528 	LIST_HEAD(events);
6529 
6530 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6531 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6532 
6533 	mutex_lock(&src_ctx->mutex);
6534 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6535 				 event_entry) {
6536 		perf_remove_from_context(event);
6537 		put_ctx(src_ctx);
6538 		list_add(&event->event_entry, &events);
6539 	}
6540 	mutex_unlock(&src_ctx->mutex);
6541 
6542 	synchronize_rcu();
6543 
6544 	mutex_lock(&dst_ctx->mutex);
6545 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6546 		list_del(&event->event_entry);
6547 		if (event->state >= PERF_EVENT_STATE_OFF)
6548 			event->state = PERF_EVENT_STATE_INACTIVE;
6549 		perf_install_in_context(dst_ctx, event, dst_cpu);
6550 		get_ctx(dst_ctx);
6551 	}
6552 	mutex_unlock(&dst_ctx->mutex);
6553 }
6554 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6555 
6556 static void sync_child_event(struct perf_event *child_event,
6557 			       struct task_struct *child)
6558 {
6559 	struct perf_event *parent_event = child_event->parent;
6560 	u64 child_val;
6561 
6562 	if (child_event->attr.inherit_stat)
6563 		perf_event_read_event(child_event, child);
6564 
6565 	child_val = perf_event_count(child_event);
6566 
6567 	/*
6568 	 * Add back the child's count to the parent's count:
6569 	 */
6570 	atomic64_add(child_val, &parent_event->child_count);
6571 	atomic64_add(child_event->total_time_enabled,
6572 		     &parent_event->child_total_time_enabled);
6573 	atomic64_add(child_event->total_time_running,
6574 		     &parent_event->child_total_time_running);
6575 
6576 	/*
6577 	 * Remove this event from the parent's list
6578 	 */
6579 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6580 	mutex_lock(&parent_event->child_mutex);
6581 	list_del_init(&child_event->child_list);
6582 	mutex_unlock(&parent_event->child_mutex);
6583 
6584 	/*
6585 	 * Release the parent event, if this was the last
6586 	 * reference to it.
6587 	 */
6588 	put_event(parent_event);
6589 }
6590 
6591 static void
6592 __perf_event_exit_task(struct perf_event *child_event,
6593 			 struct perf_event_context *child_ctx,
6594 			 struct task_struct *child)
6595 {
6596 	if (child_event->parent) {
6597 		raw_spin_lock_irq(&child_ctx->lock);
6598 		perf_group_detach(child_event);
6599 		raw_spin_unlock_irq(&child_ctx->lock);
6600 	}
6601 
6602 	perf_remove_from_context(child_event);
6603 
6604 	/*
6605 	 * It can happen that the parent exits first, and has events
6606 	 * that are still around due to the child reference. These
6607 	 * events need to be zapped.
6608 	 */
6609 	if (child_event->parent) {
6610 		sync_child_event(child_event, child);
6611 		free_event(child_event);
6612 	}
6613 }
6614 
6615 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6616 {
6617 	struct perf_event *child_event, *tmp;
6618 	struct perf_event_context *child_ctx;
6619 	unsigned long flags;
6620 
6621 	if (likely(!child->perf_event_ctxp[ctxn])) {
6622 		perf_event_task(child, NULL, 0);
6623 		return;
6624 	}
6625 
6626 	local_irq_save(flags);
6627 	/*
6628 	 * We can't reschedule here because interrupts are disabled,
6629 	 * and either child is current or it is a task that can't be
6630 	 * scheduled, so we are now safe from rescheduling changing
6631 	 * our context.
6632 	 */
6633 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6634 
6635 	/*
6636 	 * Take the context lock here so that if find_get_context is
6637 	 * reading child->perf_event_ctxp, we wait until it has
6638 	 * incremented the context's refcount before we do put_ctx below.
6639 	 */
6640 	raw_spin_lock(&child_ctx->lock);
6641 	task_ctx_sched_out(child_ctx);
6642 	child->perf_event_ctxp[ctxn] = NULL;
6643 	/*
6644 	 * If this context is a clone; unclone it so it can't get
6645 	 * swapped to another process while we're removing all
6646 	 * the events from it.
6647 	 */
6648 	unclone_ctx(child_ctx);
6649 	update_context_time(child_ctx);
6650 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6651 
6652 	/*
6653 	 * Report the task dead after unscheduling the events so that we
6654 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6655 	 * get a few PERF_RECORD_READ events.
6656 	 */
6657 	perf_event_task(child, child_ctx, 0);
6658 
6659 	/*
6660 	 * We can recurse on the same lock type through:
6661 	 *
6662 	 *   __perf_event_exit_task()
6663 	 *     sync_child_event()
6664 	 *       put_event()
6665 	 *         mutex_lock(&ctx->mutex)
6666 	 *
6667 	 * But since its the parent context it won't be the same instance.
6668 	 */
6669 	mutex_lock(&child_ctx->mutex);
6670 
6671 again:
6672 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6673 				 group_entry)
6674 		__perf_event_exit_task(child_event, child_ctx, child);
6675 
6676 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6677 				 group_entry)
6678 		__perf_event_exit_task(child_event, child_ctx, child);
6679 
6680 	/*
6681 	 * If the last event was a group event, it will have appended all
6682 	 * its siblings to the list, but we obtained 'tmp' before that which
6683 	 * will still point to the list head terminating the iteration.
6684 	 */
6685 	if (!list_empty(&child_ctx->pinned_groups) ||
6686 	    !list_empty(&child_ctx->flexible_groups))
6687 		goto again;
6688 
6689 	mutex_unlock(&child_ctx->mutex);
6690 
6691 	put_ctx(child_ctx);
6692 }
6693 
6694 /*
6695  * When a child task exits, feed back event values to parent events.
6696  */
6697 void perf_event_exit_task(struct task_struct *child)
6698 {
6699 	struct perf_event *event, *tmp;
6700 	int ctxn;
6701 
6702 	mutex_lock(&child->perf_event_mutex);
6703 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6704 				 owner_entry) {
6705 		list_del_init(&event->owner_entry);
6706 
6707 		/*
6708 		 * Ensure the list deletion is visible before we clear
6709 		 * the owner, closes a race against perf_release() where
6710 		 * we need to serialize on the owner->perf_event_mutex.
6711 		 */
6712 		smp_wmb();
6713 		event->owner = NULL;
6714 	}
6715 	mutex_unlock(&child->perf_event_mutex);
6716 
6717 	for_each_task_context_nr(ctxn)
6718 		perf_event_exit_task_context(child, ctxn);
6719 }
6720 
6721 static void perf_free_event(struct perf_event *event,
6722 			    struct perf_event_context *ctx)
6723 {
6724 	struct perf_event *parent = event->parent;
6725 
6726 	if (WARN_ON_ONCE(!parent))
6727 		return;
6728 
6729 	mutex_lock(&parent->child_mutex);
6730 	list_del_init(&event->child_list);
6731 	mutex_unlock(&parent->child_mutex);
6732 
6733 	put_event(parent);
6734 
6735 	perf_group_detach(event);
6736 	list_del_event(event, ctx);
6737 	free_event(event);
6738 }
6739 
6740 /*
6741  * free an unexposed, unused context as created by inheritance by
6742  * perf_event_init_task below, used by fork() in case of fail.
6743  */
6744 void perf_event_free_task(struct task_struct *task)
6745 {
6746 	struct perf_event_context *ctx;
6747 	struct perf_event *event, *tmp;
6748 	int ctxn;
6749 
6750 	for_each_task_context_nr(ctxn) {
6751 		ctx = task->perf_event_ctxp[ctxn];
6752 		if (!ctx)
6753 			continue;
6754 
6755 		mutex_lock(&ctx->mutex);
6756 again:
6757 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6758 				group_entry)
6759 			perf_free_event(event, ctx);
6760 
6761 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6762 				group_entry)
6763 			perf_free_event(event, ctx);
6764 
6765 		if (!list_empty(&ctx->pinned_groups) ||
6766 				!list_empty(&ctx->flexible_groups))
6767 			goto again;
6768 
6769 		mutex_unlock(&ctx->mutex);
6770 
6771 		put_ctx(ctx);
6772 	}
6773 }
6774 
6775 void perf_event_delayed_put(struct task_struct *task)
6776 {
6777 	int ctxn;
6778 
6779 	for_each_task_context_nr(ctxn)
6780 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6781 }
6782 
6783 /*
6784  * inherit a event from parent task to child task:
6785  */
6786 static struct perf_event *
6787 inherit_event(struct perf_event *parent_event,
6788 	      struct task_struct *parent,
6789 	      struct perf_event_context *parent_ctx,
6790 	      struct task_struct *child,
6791 	      struct perf_event *group_leader,
6792 	      struct perf_event_context *child_ctx)
6793 {
6794 	struct perf_event *child_event;
6795 	unsigned long flags;
6796 
6797 	/*
6798 	 * Instead of creating recursive hierarchies of events,
6799 	 * we link inherited events back to the original parent,
6800 	 * which has a filp for sure, which we use as the reference
6801 	 * count:
6802 	 */
6803 	if (parent_event->parent)
6804 		parent_event = parent_event->parent;
6805 
6806 	child_event = perf_event_alloc(&parent_event->attr,
6807 					   parent_event->cpu,
6808 					   child,
6809 					   group_leader, parent_event,
6810 				           NULL, NULL);
6811 	if (IS_ERR(child_event))
6812 		return child_event;
6813 
6814 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
6815 		free_event(child_event);
6816 		return NULL;
6817 	}
6818 
6819 	get_ctx(child_ctx);
6820 
6821 	/*
6822 	 * Make the child state follow the state of the parent event,
6823 	 * not its attr.disabled bit.  We hold the parent's mutex,
6824 	 * so we won't race with perf_event_{en, dis}able_family.
6825 	 */
6826 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6827 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6828 	else
6829 		child_event->state = PERF_EVENT_STATE_OFF;
6830 
6831 	if (parent_event->attr.freq) {
6832 		u64 sample_period = parent_event->hw.sample_period;
6833 		struct hw_perf_event *hwc = &child_event->hw;
6834 
6835 		hwc->sample_period = sample_period;
6836 		hwc->last_period   = sample_period;
6837 
6838 		local64_set(&hwc->period_left, sample_period);
6839 	}
6840 
6841 	child_event->ctx = child_ctx;
6842 	child_event->overflow_handler = parent_event->overflow_handler;
6843 	child_event->overflow_handler_context
6844 		= parent_event->overflow_handler_context;
6845 
6846 	/*
6847 	 * Precalculate sample_data sizes
6848 	 */
6849 	perf_event__header_size(child_event);
6850 	perf_event__id_header_size(child_event);
6851 
6852 	/*
6853 	 * Link it up in the child's context:
6854 	 */
6855 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6856 	add_event_to_ctx(child_event, child_ctx);
6857 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6858 
6859 	/*
6860 	 * Link this into the parent event's child list
6861 	 */
6862 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6863 	mutex_lock(&parent_event->child_mutex);
6864 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6865 	mutex_unlock(&parent_event->child_mutex);
6866 
6867 	return child_event;
6868 }
6869 
6870 static int inherit_group(struct perf_event *parent_event,
6871 	      struct task_struct *parent,
6872 	      struct perf_event_context *parent_ctx,
6873 	      struct task_struct *child,
6874 	      struct perf_event_context *child_ctx)
6875 {
6876 	struct perf_event *leader;
6877 	struct perf_event *sub;
6878 	struct perf_event *child_ctr;
6879 
6880 	leader = inherit_event(parent_event, parent, parent_ctx,
6881 				 child, NULL, child_ctx);
6882 	if (IS_ERR(leader))
6883 		return PTR_ERR(leader);
6884 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6885 		child_ctr = inherit_event(sub, parent, parent_ctx,
6886 					    child, leader, child_ctx);
6887 		if (IS_ERR(child_ctr))
6888 			return PTR_ERR(child_ctr);
6889 	}
6890 	return 0;
6891 }
6892 
6893 static int
6894 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6895 		   struct perf_event_context *parent_ctx,
6896 		   struct task_struct *child, int ctxn,
6897 		   int *inherited_all)
6898 {
6899 	int ret;
6900 	struct perf_event_context *child_ctx;
6901 
6902 	if (!event->attr.inherit) {
6903 		*inherited_all = 0;
6904 		return 0;
6905 	}
6906 
6907 	child_ctx = child->perf_event_ctxp[ctxn];
6908 	if (!child_ctx) {
6909 		/*
6910 		 * This is executed from the parent task context, so
6911 		 * inherit events that have been marked for cloning.
6912 		 * First allocate and initialize a context for the
6913 		 * child.
6914 		 */
6915 
6916 		child_ctx = alloc_perf_context(event->pmu, child);
6917 		if (!child_ctx)
6918 			return -ENOMEM;
6919 
6920 		child->perf_event_ctxp[ctxn] = child_ctx;
6921 	}
6922 
6923 	ret = inherit_group(event, parent, parent_ctx,
6924 			    child, child_ctx);
6925 
6926 	if (ret)
6927 		*inherited_all = 0;
6928 
6929 	return ret;
6930 }
6931 
6932 /*
6933  * Initialize the perf_event context in task_struct
6934  */
6935 int perf_event_init_context(struct task_struct *child, int ctxn)
6936 {
6937 	struct perf_event_context *child_ctx, *parent_ctx;
6938 	struct perf_event_context *cloned_ctx;
6939 	struct perf_event *event;
6940 	struct task_struct *parent = current;
6941 	int inherited_all = 1;
6942 	unsigned long flags;
6943 	int ret = 0;
6944 
6945 	if (likely(!parent->perf_event_ctxp[ctxn]))
6946 		return 0;
6947 
6948 	/*
6949 	 * If the parent's context is a clone, pin it so it won't get
6950 	 * swapped under us.
6951 	 */
6952 	parent_ctx = perf_pin_task_context(parent, ctxn);
6953 
6954 	/*
6955 	 * No need to check if parent_ctx != NULL here; since we saw
6956 	 * it non-NULL earlier, the only reason for it to become NULL
6957 	 * is if we exit, and since we're currently in the middle of
6958 	 * a fork we can't be exiting at the same time.
6959 	 */
6960 
6961 	/*
6962 	 * Lock the parent list. No need to lock the child - not PID
6963 	 * hashed yet and not running, so nobody can access it.
6964 	 */
6965 	mutex_lock(&parent_ctx->mutex);
6966 
6967 	/*
6968 	 * We dont have to disable NMIs - we are only looking at
6969 	 * the list, not manipulating it:
6970 	 */
6971 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6972 		ret = inherit_task_group(event, parent, parent_ctx,
6973 					 child, ctxn, &inherited_all);
6974 		if (ret)
6975 			break;
6976 	}
6977 
6978 	/*
6979 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6980 	 * to allocations, but we need to prevent rotation because
6981 	 * rotate_ctx() will change the list from interrupt context.
6982 	 */
6983 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6984 	parent_ctx->rotate_disable = 1;
6985 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6986 
6987 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6988 		ret = inherit_task_group(event, parent, parent_ctx,
6989 					 child, ctxn, &inherited_all);
6990 		if (ret)
6991 			break;
6992 	}
6993 
6994 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6995 	parent_ctx->rotate_disable = 0;
6996 
6997 	child_ctx = child->perf_event_ctxp[ctxn];
6998 
6999 	if (child_ctx && inherited_all) {
7000 		/*
7001 		 * Mark the child context as a clone of the parent
7002 		 * context, or of whatever the parent is a clone of.
7003 		 *
7004 		 * Note that if the parent is a clone, the holding of
7005 		 * parent_ctx->lock avoids it from being uncloned.
7006 		 */
7007 		cloned_ctx = parent_ctx->parent_ctx;
7008 		if (cloned_ctx) {
7009 			child_ctx->parent_ctx = cloned_ctx;
7010 			child_ctx->parent_gen = parent_ctx->parent_gen;
7011 		} else {
7012 			child_ctx->parent_ctx = parent_ctx;
7013 			child_ctx->parent_gen = parent_ctx->generation;
7014 		}
7015 		get_ctx(child_ctx->parent_ctx);
7016 	}
7017 
7018 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7019 	mutex_unlock(&parent_ctx->mutex);
7020 
7021 	perf_unpin_context(parent_ctx);
7022 	put_ctx(parent_ctx);
7023 
7024 	return ret;
7025 }
7026 
7027 /*
7028  * Initialize the perf_event context in task_struct
7029  */
7030 int perf_event_init_task(struct task_struct *child)
7031 {
7032 	int ctxn, ret;
7033 
7034 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7035 	mutex_init(&child->perf_event_mutex);
7036 	INIT_LIST_HEAD(&child->perf_event_list);
7037 
7038 	for_each_task_context_nr(ctxn) {
7039 		ret = perf_event_init_context(child, ctxn);
7040 		if (ret)
7041 			return ret;
7042 	}
7043 
7044 	return 0;
7045 }
7046 
7047 static void __init perf_event_init_all_cpus(void)
7048 {
7049 	struct swevent_htable *swhash;
7050 	int cpu;
7051 
7052 	for_each_possible_cpu(cpu) {
7053 		swhash = &per_cpu(swevent_htable, cpu);
7054 		mutex_init(&swhash->hlist_mutex);
7055 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7056 	}
7057 }
7058 
7059 static void __cpuinit perf_event_init_cpu(int cpu)
7060 {
7061 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7062 
7063 	mutex_lock(&swhash->hlist_mutex);
7064 	if (swhash->hlist_refcount > 0) {
7065 		struct swevent_hlist *hlist;
7066 
7067 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7068 		WARN_ON(!hlist);
7069 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7070 	}
7071 	mutex_unlock(&swhash->hlist_mutex);
7072 }
7073 
7074 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7075 static void perf_pmu_rotate_stop(struct pmu *pmu)
7076 {
7077 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7078 
7079 	WARN_ON(!irqs_disabled());
7080 
7081 	list_del_init(&cpuctx->rotation_list);
7082 }
7083 
7084 static void __perf_event_exit_context(void *__info)
7085 {
7086 	struct perf_event_context *ctx = __info;
7087 	struct perf_event *event, *tmp;
7088 
7089 	perf_pmu_rotate_stop(ctx->pmu);
7090 
7091 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7092 		__perf_remove_from_context(event);
7093 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7094 		__perf_remove_from_context(event);
7095 }
7096 
7097 static void perf_event_exit_cpu_context(int cpu)
7098 {
7099 	struct perf_event_context *ctx;
7100 	struct pmu *pmu;
7101 	int idx;
7102 
7103 	idx = srcu_read_lock(&pmus_srcu);
7104 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7105 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7106 
7107 		mutex_lock(&ctx->mutex);
7108 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7109 		mutex_unlock(&ctx->mutex);
7110 	}
7111 	srcu_read_unlock(&pmus_srcu, idx);
7112 }
7113 
7114 static void perf_event_exit_cpu(int cpu)
7115 {
7116 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7117 
7118 	mutex_lock(&swhash->hlist_mutex);
7119 	swevent_hlist_release(swhash);
7120 	mutex_unlock(&swhash->hlist_mutex);
7121 
7122 	perf_event_exit_cpu_context(cpu);
7123 }
7124 #else
7125 static inline void perf_event_exit_cpu(int cpu) { }
7126 #endif
7127 
7128 static int
7129 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7130 {
7131 	int cpu;
7132 
7133 	for_each_online_cpu(cpu)
7134 		perf_event_exit_cpu(cpu);
7135 
7136 	return NOTIFY_OK;
7137 }
7138 
7139 /*
7140  * Run the perf reboot notifier at the very last possible moment so that
7141  * the generic watchdog code runs as long as possible.
7142  */
7143 static struct notifier_block perf_reboot_notifier = {
7144 	.notifier_call = perf_reboot,
7145 	.priority = INT_MIN,
7146 };
7147 
7148 static int __cpuinit
7149 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7150 {
7151 	unsigned int cpu = (long)hcpu;
7152 
7153 	switch (action & ~CPU_TASKS_FROZEN) {
7154 
7155 	case CPU_UP_PREPARE:
7156 	case CPU_DOWN_FAILED:
7157 		perf_event_init_cpu(cpu);
7158 		break;
7159 
7160 	case CPU_UP_CANCELED:
7161 	case CPU_DOWN_PREPARE:
7162 		perf_event_exit_cpu(cpu);
7163 		break;
7164 
7165 	default:
7166 		break;
7167 	}
7168 
7169 	return NOTIFY_OK;
7170 }
7171 
7172 void __init perf_event_init(void)
7173 {
7174 	int ret;
7175 
7176 	idr_init(&pmu_idr);
7177 
7178 	perf_event_init_all_cpus();
7179 	init_srcu_struct(&pmus_srcu);
7180 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7181 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7182 	perf_pmu_register(&perf_task_clock, NULL, -1);
7183 	perf_tp_register();
7184 	perf_cpu_notifier(perf_cpu_notify);
7185 	register_reboot_notifier(&perf_reboot_notifier);
7186 
7187 	ret = init_hw_breakpoint();
7188 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7189 
7190 	/* do not patch jump label more than once per second */
7191 	jump_label_rate_limit(&perf_sched_events, HZ);
7192 
7193 	/*
7194 	 * Build time assertion that we keep the data_head at the intended
7195 	 * location.  IOW, validation we got the __reserved[] size right.
7196 	 */
7197 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7198 		     != 1024);
7199 }
7200 
7201 static int __init perf_event_sysfs_init(void)
7202 {
7203 	struct pmu *pmu;
7204 	int ret;
7205 
7206 	mutex_lock(&pmus_lock);
7207 
7208 	ret = bus_register(&pmu_bus);
7209 	if (ret)
7210 		goto unlock;
7211 
7212 	list_for_each_entry(pmu, &pmus, entry) {
7213 		if (!pmu->name || pmu->type < 0)
7214 			continue;
7215 
7216 		ret = pmu_dev_alloc(pmu);
7217 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7218 	}
7219 	pmu_bus_running = 1;
7220 	ret = 0;
7221 
7222 unlock:
7223 	mutex_unlock(&pmus_lock);
7224 
7225 	return ret;
7226 }
7227 device_initcall(perf_event_sysfs_init);
7228 
7229 #ifdef CONFIG_CGROUP_PERF
7230 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7231 {
7232 	struct perf_cgroup *jc;
7233 
7234 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7235 	if (!jc)
7236 		return ERR_PTR(-ENOMEM);
7237 
7238 	jc->info = alloc_percpu(struct perf_cgroup_info);
7239 	if (!jc->info) {
7240 		kfree(jc);
7241 		return ERR_PTR(-ENOMEM);
7242 	}
7243 
7244 	return &jc->css;
7245 }
7246 
7247 static void perf_cgroup_destroy(struct cgroup *cont)
7248 {
7249 	struct perf_cgroup *jc;
7250 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7251 			  struct perf_cgroup, css);
7252 	free_percpu(jc->info);
7253 	kfree(jc);
7254 }
7255 
7256 static int __perf_cgroup_move(void *info)
7257 {
7258 	struct task_struct *task = info;
7259 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7260 	return 0;
7261 }
7262 
7263 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7264 {
7265 	struct task_struct *task;
7266 
7267 	cgroup_taskset_for_each(task, cgrp, tset)
7268 		task_function_call(task, __perf_cgroup_move, task);
7269 }
7270 
7271 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7272 			     struct task_struct *task)
7273 {
7274 	/*
7275 	 * cgroup_exit() is called in the copy_process() failure path.
7276 	 * Ignore this case since the task hasn't ran yet, this avoids
7277 	 * trying to poke a half freed task state from generic code.
7278 	 */
7279 	if (!(task->flags & PF_EXITING))
7280 		return;
7281 
7282 	task_function_call(task, __perf_cgroup_move, task);
7283 }
7284 
7285 struct cgroup_subsys perf_subsys = {
7286 	.name		= "perf_event",
7287 	.subsys_id	= perf_subsys_id,
7288 	.create		= perf_cgroup_create,
7289 	.destroy	= perf_cgroup_destroy,
7290 	.exit		= perf_cgroup_exit,
7291 	.attach		= perf_cgroup_attach,
7292 };
7293 #endif /* CONFIG_CGROUP_PERF */
7294