xref: /linux/kernel/events/core.c (revision 924d934393f98fa6a41d6ea27352faf79c2bbaf6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 				       void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	/*
1951 	 * When creating a new group leader, group_leader->ctx is initialized
1952 	 * after the size has been validated, but we cannot safely use
1953 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1954 	 * leader cannot have any siblings yet, so we can safely skip checking
1955 	 * the non-existent siblings.
1956 	 */
1957 	if (event == group_leader)
1958 		return true;
1959 
1960 	for_each_sibling_event(sibling, group_leader) {
1961 		if (__perf_event_read_size(sibling->attr.read_format,
1962 					   group_leader->nr_siblings + 1) > 16*1024)
1963 			return false;
1964 	}
1965 
1966 	return true;
1967 }
1968 
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971 	struct perf_event *group_leader = event->group_leader, *pos;
1972 
1973 	lockdep_assert_held(&event->ctx->lock);
1974 
1975 	/*
1976 	 * We can have double attach due to group movement (move_group) in
1977 	 * perf_event_open().
1978 	 */
1979 	if (event->attach_state & PERF_ATTACH_GROUP)
1980 		return;
1981 
1982 	event->attach_state |= PERF_ATTACH_GROUP;
1983 
1984 	if (group_leader == event)
1985 		return;
1986 
1987 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988 
1989 	group_leader->group_caps &= event->event_caps;
1990 
1991 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992 	group_leader->nr_siblings++;
1993 	group_leader->group_generation++;
1994 
1995 	perf_event__header_size(group_leader);
1996 
1997 	for_each_sibling_event(pos, group_leader)
1998 		perf_event__header_size(pos);
1999 }
2000 
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008 	WARN_ON_ONCE(event->ctx != ctx);
2009 	lockdep_assert_held(&ctx->lock);
2010 
2011 	/*
2012 	 * We can have double detach due to exit/hot-unplug + close.
2013 	 */
2014 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015 		return;
2016 
2017 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018 
2019 	ctx->nr_events--;
2020 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021 		ctx->nr_user--;
2022 	if (event->attr.inherit_stat)
2023 		ctx->nr_stat--;
2024 
2025 	list_del_rcu(&event->event_entry);
2026 
2027 	if (event->group_leader == event)
2028 		del_event_from_groups(event, ctx);
2029 
2030 	/*
2031 	 * If event was in error state, then keep it
2032 	 * that way, otherwise bogus counts will be
2033 	 * returned on read(). The only way to get out
2034 	 * of error state is by explicit re-enabling
2035 	 * of the event
2036 	 */
2037 	if (event->state > PERF_EVENT_STATE_OFF) {
2038 		perf_cgroup_event_disable(event, ctx);
2039 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040 	}
2041 
2042 	ctx->generation++;
2043 	event->pmu_ctx->nr_events--;
2044 }
2045 
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049 	if (!has_aux(aux_event))
2050 		return 0;
2051 
2052 	if (!event->pmu->aux_output_match)
2053 		return 0;
2054 
2055 	return event->pmu->aux_output_match(aux_event);
2056 }
2057 
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060 			    struct perf_event_context *ctx);
2061 
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064 	struct perf_event_context *ctx = event->ctx;
2065 	struct perf_event *iter;
2066 
2067 	/*
2068 	 * If event uses aux_event tear down the link
2069 	 */
2070 	if (event->aux_event) {
2071 		iter = event->aux_event;
2072 		event->aux_event = NULL;
2073 		put_event(iter);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * If the event is an aux_event, tear down all links to
2079 	 * it from other events.
2080 	 */
2081 	for_each_sibling_event(iter, event->group_leader) {
2082 		if (iter->aux_event != event)
2083 			continue;
2084 
2085 		iter->aux_event = NULL;
2086 		put_event(event);
2087 
2088 		/*
2089 		 * If it's ACTIVE, schedule it out and put it into ERROR
2090 		 * state so that we don't try to schedule it again. Note
2091 		 * that perf_event_enable() will clear the ERROR status.
2092 		 */
2093 		event_sched_out(iter, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095 	}
2096 }
2097 
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102 
2103 static int perf_get_aux_event(struct perf_event *event,
2104 			      struct perf_event *group_leader)
2105 {
2106 	/*
2107 	 * Our group leader must be an aux event if we want to be
2108 	 * an aux_output. This way, the aux event will precede its
2109 	 * aux_output events in the group, and therefore will always
2110 	 * schedule first.
2111 	 */
2112 	if (!group_leader)
2113 		return 0;
2114 
2115 	/*
2116 	 * aux_output and aux_sample_size are mutually exclusive.
2117 	 */
2118 	if (event->attr.aux_output && event->attr.aux_sample_size)
2119 		return 0;
2120 
2121 	if (event->attr.aux_output &&
2122 	    !perf_aux_output_match(event, group_leader))
2123 		return 0;
2124 
2125 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126 		return 0;
2127 
2128 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129 		return 0;
2130 
2131 	/*
2132 	 * Link aux_outputs to their aux event; this is undone in
2133 	 * perf_group_detach() by perf_put_aux_event(). When the
2134 	 * group in torn down, the aux_output events loose their
2135 	 * link to the aux_event and can't schedule any more.
2136 	 */
2137 	event->aux_event = group_leader;
2138 
2139 	return 1;
2140 }
2141 
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145 				    &event->pmu_ctx->flexible_active;
2146 }
2147 
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156 	event_sched_out(event, event->ctx);
2157 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159 
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162 	struct perf_event *leader = event->group_leader;
2163 	struct perf_event *sibling, *tmp;
2164 	struct perf_event_context *ctx = event->ctx;
2165 
2166 	lockdep_assert_held(&ctx->lock);
2167 
2168 	/*
2169 	 * We can have double detach due to exit/hot-unplug + close.
2170 	 */
2171 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2172 		return;
2173 
2174 	event->attach_state &= ~PERF_ATTACH_GROUP;
2175 
2176 	perf_put_aux_event(event);
2177 
2178 	/*
2179 	 * If this is a sibling, remove it from its group.
2180 	 */
2181 	if (leader != event) {
2182 		list_del_init(&event->sibling_list);
2183 		event->group_leader->nr_siblings--;
2184 		event->group_leader->group_generation++;
2185 		goto out;
2186 	}
2187 
2188 	/*
2189 	 * If this was a group event with sibling events then
2190 	 * upgrade the siblings to singleton events by adding them
2191 	 * to whatever list we are on.
2192 	 */
2193 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194 
2195 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196 			perf_remove_sibling_event(sibling);
2197 
2198 		sibling->group_leader = sibling;
2199 		list_del_init(&sibling->sibling_list);
2200 
2201 		/* Inherit group flags from the previous leader */
2202 		sibling->group_caps = event->group_caps;
2203 
2204 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205 			add_event_to_groups(sibling, event->ctx);
2206 
2207 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2209 		}
2210 
2211 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2212 	}
2213 
2214 out:
2215 	for_each_sibling_event(tmp, leader)
2216 		perf_event__header_size(tmp);
2217 
2218 	perf_event__header_size(leader);
2219 }
2220 
2221 static void sync_child_event(struct perf_event *child_event);
2222 
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225 	struct perf_event *parent_event = event->parent;
2226 
2227 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2228 		return;
2229 
2230 	event->attach_state &= ~PERF_ATTACH_CHILD;
2231 
2232 	if (WARN_ON_ONCE(!parent_event))
2233 		return;
2234 
2235 	lockdep_assert_held(&parent_event->child_mutex);
2236 
2237 	sync_child_event(event);
2238 	list_del_init(&event->child_list);
2239 }
2240 
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243 	return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245 
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250 	       perf_cgroup_match(event);
2251 }
2252 
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2257 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259 
2260 	// XXX cpc serialization, probably per-cpu IRQ disabled
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	if (event->pending_sigtrap) {
2287 		bool dec = true;
2288 
2289 		event->pending_sigtrap = 0;
2290 		if (state != PERF_EVENT_STATE_OFF &&
2291 		    !event->pending_work) {
2292 			event->pending_work = 1;
2293 			dec = false;
2294 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295 			task_work_add(current, &event->pending_task, TWA_RESUME);
2296 		}
2297 		if (dec)
2298 			local_dec(&event->ctx->nr_pending);
2299 	}
2300 
2301 	perf_event_set_state(event, state);
2302 
2303 	if (!is_software_event(event))
2304 		cpc->active_oncpu--;
2305 	if (event->attr.freq && event->attr.sample_freq) {
2306 		ctx->nr_freq--;
2307 		epc->nr_freq--;
2308 	}
2309 	if (event->attr.exclusive || !cpc->active_oncpu)
2310 		cpc->exclusive = 0;
2311 
2312 	perf_pmu_enable(event->pmu);
2313 }
2314 
2315 static void
2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2317 {
2318 	struct perf_event *event;
2319 
2320 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321 		return;
2322 
2323 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2324 
2325 	event_sched_out(group_event, ctx);
2326 
2327 	/*
2328 	 * Schedule out siblings (if any):
2329 	 */
2330 	for_each_sibling_event(event, group_event)
2331 		event_sched_out(event, ctx);
2332 }
2333 
2334 #define DETACH_GROUP	0x01UL
2335 #define DETACH_CHILD	0x02UL
2336 #define DETACH_DEAD	0x04UL
2337 
2338 /*
2339  * Cross CPU call to remove a performance event
2340  *
2341  * We disable the event on the hardware level first. After that we
2342  * remove it from the context list.
2343  */
2344 static void
2345 __perf_remove_from_context(struct perf_event *event,
2346 			   struct perf_cpu_context *cpuctx,
2347 			   struct perf_event_context *ctx,
2348 			   void *info)
2349 {
2350 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2351 	unsigned long flags = (unsigned long)info;
2352 
2353 	if (ctx->is_active & EVENT_TIME) {
2354 		update_context_time(ctx);
2355 		update_cgrp_time_from_cpuctx(cpuctx, false);
2356 	}
2357 
2358 	/*
2359 	 * Ensure event_sched_out() switches to OFF, at the very least
2360 	 * this avoids raising perf_pending_task() at this time.
2361 	 */
2362 	if (flags & DETACH_DEAD)
2363 		event->pending_disable = 1;
2364 	event_sched_out(event, ctx);
2365 	if (flags & DETACH_GROUP)
2366 		perf_group_detach(event);
2367 	if (flags & DETACH_CHILD)
2368 		perf_child_detach(event);
2369 	list_del_event(event, ctx);
2370 	if (flags & DETACH_DEAD)
2371 		event->state = PERF_EVENT_STATE_DEAD;
2372 
2373 	if (!pmu_ctx->nr_events) {
2374 		pmu_ctx->rotate_necessary = 0;
2375 
2376 		if (ctx->task && ctx->is_active) {
2377 			struct perf_cpu_pmu_context *cpc;
2378 
2379 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2380 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2381 			cpc->task_epc = NULL;
2382 		}
2383 	}
2384 
2385 	if (!ctx->nr_events && ctx->is_active) {
2386 		if (ctx == &cpuctx->ctx)
2387 			update_cgrp_time_from_cpuctx(cpuctx, true);
2388 
2389 		ctx->is_active = 0;
2390 		if (ctx->task) {
2391 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2392 			cpuctx->task_ctx = NULL;
2393 		}
2394 	}
2395 }
2396 
2397 /*
2398  * Remove the event from a task's (or a CPU's) list of events.
2399  *
2400  * If event->ctx is a cloned context, callers must make sure that
2401  * every task struct that event->ctx->task could possibly point to
2402  * remains valid.  This is OK when called from perf_release since
2403  * that only calls us on the top-level context, which can't be a clone.
2404  * When called from perf_event_exit_task, it's OK because the
2405  * context has been detached from its task.
2406  */
2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2408 {
2409 	struct perf_event_context *ctx = event->ctx;
2410 
2411 	lockdep_assert_held(&ctx->mutex);
2412 
2413 	/*
2414 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2415 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2416 	 * event_function_call() user.
2417 	 */
2418 	raw_spin_lock_irq(&ctx->lock);
2419 	if (!ctx->is_active) {
2420 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2421 					   ctx, (void *)flags);
2422 		raw_spin_unlock_irq(&ctx->lock);
2423 		return;
2424 	}
2425 	raw_spin_unlock_irq(&ctx->lock);
2426 
2427 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2428 }
2429 
2430 /*
2431  * Cross CPU call to disable a performance event
2432  */
2433 static void __perf_event_disable(struct perf_event *event,
2434 				 struct perf_cpu_context *cpuctx,
2435 				 struct perf_event_context *ctx,
2436 				 void *info)
2437 {
2438 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2439 		return;
2440 
2441 	if (ctx->is_active & EVENT_TIME) {
2442 		update_context_time(ctx);
2443 		update_cgrp_time_from_event(event);
2444 	}
2445 
2446 	perf_pmu_disable(event->pmu_ctx->pmu);
2447 
2448 	if (event == event->group_leader)
2449 		group_sched_out(event, ctx);
2450 	else
2451 		event_sched_out(event, ctx);
2452 
2453 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2454 	perf_cgroup_event_disable(event, ctx);
2455 
2456 	perf_pmu_enable(event->pmu_ctx->pmu);
2457 }
2458 
2459 /*
2460  * Disable an event.
2461  *
2462  * If event->ctx is a cloned context, callers must make sure that
2463  * every task struct that event->ctx->task could possibly point to
2464  * remains valid.  This condition is satisfied when called through
2465  * perf_event_for_each_child or perf_event_for_each because they
2466  * hold the top-level event's child_mutex, so any descendant that
2467  * goes to exit will block in perf_event_exit_event().
2468  *
2469  * When called from perf_pending_irq it's OK because event->ctx
2470  * is the current context on this CPU and preemption is disabled,
2471  * hence we can't get into perf_event_task_sched_out for this context.
2472  */
2473 static void _perf_event_disable(struct perf_event *event)
2474 {
2475 	struct perf_event_context *ctx = event->ctx;
2476 
2477 	raw_spin_lock_irq(&ctx->lock);
2478 	if (event->state <= PERF_EVENT_STATE_OFF) {
2479 		raw_spin_unlock_irq(&ctx->lock);
2480 		return;
2481 	}
2482 	raw_spin_unlock_irq(&ctx->lock);
2483 
2484 	event_function_call(event, __perf_event_disable, NULL);
2485 }
2486 
2487 void perf_event_disable_local(struct perf_event *event)
2488 {
2489 	event_function_local(event, __perf_event_disable, NULL);
2490 }
2491 
2492 /*
2493  * Strictly speaking kernel users cannot create groups and therefore this
2494  * interface does not need the perf_event_ctx_lock() magic.
2495  */
2496 void perf_event_disable(struct perf_event *event)
2497 {
2498 	struct perf_event_context *ctx;
2499 
2500 	ctx = perf_event_ctx_lock(event);
2501 	_perf_event_disable(event);
2502 	perf_event_ctx_unlock(event, ctx);
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_disable);
2505 
2506 void perf_event_disable_inatomic(struct perf_event *event)
2507 {
2508 	event->pending_disable = 1;
2509 	irq_work_queue(&event->pending_irq);
2510 }
2511 
2512 #define MAX_INTERRUPTS (~0ULL)
2513 
2514 static void perf_log_throttle(struct perf_event *event, int enable);
2515 static void perf_log_itrace_start(struct perf_event *event);
2516 
2517 static int
2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2519 {
2520 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2521 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2522 	int ret = 0;
2523 
2524 	WARN_ON_ONCE(event->ctx != ctx);
2525 
2526 	lockdep_assert_held(&ctx->lock);
2527 
2528 	if (event->state <= PERF_EVENT_STATE_OFF)
2529 		return 0;
2530 
2531 	WRITE_ONCE(event->oncpu, smp_processor_id());
2532 	/*
2533 	 * Order event::oncpu write to happen before the ACTIVE state is
2534 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2535 	 * ->oncpu if it sees ACTIVE.
2536 	 */
2537 	smp_wmb();
2538 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2539 
2540 	/*
2541 	 * Unthrottle events, since we scheduled we might have missed several
2542 	 * ticks already, also for a heavily scheduling task there is little
2543 	 * guarantee it'll get a tick in a timely manner.
2544 	 */
2545 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2546 		perf_log_throttle(event, 1);
2547 		event->hw.interrupts = 0;
2548 	}
2549 
2550 	perf_pmu_disable(event->pmu);
2551 
2552 	perf_log_itrace_start(event);
2553 
2554 	if (event->pmu->add(event, PERF_EF_START)) {
2555 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2556 		event->oncpu = -1;
2557 		ret = -EAGAIN;
2558 		goto out;
2559 	}
2560 
2561 	if (!is_software_event(event))
2562 		cpc->active_oncpu++;
2563 	if (event->attr.freq && event->attr.sample_freq) {
2564 		ctx->nr_freq++;
2565 		epc->nr_freq++;
2566 	}
2567 	if (event->attr.exclusive)
2568 		cpc->exclusive = 1;
2569 
2570 out:
2571 	perf_pmu_enable(event->pmu);
2572 
2573 	return ret;
2574 }
2575 
2576 static int
2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2578 {
2579 	struct perf_event *event, *partial_group = NULL;
2580 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2581 
2582 	if (group_event->state == PERF_EVENT_STATE_OFF)
2583 		return 0;
2584 
2585 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2586 
2587 	if (event_sched_in(group_event, ctx))
2588 		goto error;
2589 
2590 	/*
2591 	 * Schedule in siblings as one group (if any):
2592 	 */
2593 	for_each_sibling_event(event, group_event) {
2594 		if (event_sched_in(event, ctx)) {
2595 			partial_group = event;
2596 			goto group_error;
2597 		}
2598 	}
2599 
2600 	if (!pmu->commit_txn(pmu))
2601 		return 0;
2602 
2603 group_error:
2604 	/*
2605 	 * Groups can be scheduled in as one unit only, so undo any
2606 	 * partial group before returning:
2607 	 * The events up to the failed event are scheduled out normally.
2608 	 */
2609 	for_each_sibling_event(event, group_event) {
2610 		if (event == partial_group)
2611 			break;
2612 
2613 		event_sched_out(event, ctx);
2614 	}
2615 	event_sched_out(group_event, ctx);
2616 
2617 error:
2618 	pmu->cancel_txn(pmu);
2619 	return -EAGAIN;
2620 }
2621 
2622 /*
2623  * Work out whether we can put this event group on the CPU now.
2624  */
2625 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2626 {
2627 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2628 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2629 
2630 	/*
2631 	 * Groups consisting entirely of software events can always go on.
2632 	 */
2633 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2634 		return 1;
2635 	/*
2636 	 * If an exclusive group is already on, no other hardware
2637 	 * events can go on.
2638 	 */
2639 	if (cpc->exclusive)
2640 		return 0;
2641 	/*
2642 	 * If this group is exclusive and there are already
2643 	 * events on the CPU, it can't go on.
2644 	 */
2645 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2646 		return 0;
2647 	/*
2648 	 * Otherwise, try to add it if all previous groups were able
2649 	 * to go on.
2650 	 */
2651 	return can_add_hw;
2652 }
2653 
2654 static void add_event_to_ctx(struct perf_event *event,
2655 			       struct perf_event_context *ctx)
2656 {
2657 	list_add_event(event, ctx);
2658 	perf_group_attach(event);
2659 }
2660 
2661 static void task_ctx_sched_out(struct perf_event_context *ctx,
2662 				enum event_type_t event_type)
2663 {
2664 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2665 
2666 	if (!cpuctx->task_ctx)
2667 		return;
2668 
2669 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2670 		return;
2671 
2672 	ctx_sched_out(ctx, event_type);
2673 }
2674 
2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2676 				struct perf_event_context *ctx)
2677 {
2678 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2679 	if (ctx)
2680 		 ctx_sched_in(ctx, EVENT_PINNED);
2681 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2682 	if (ctx)
2683 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2684 }
2685 
2686 /*
2687  * We want to maintain the following priority of scheduling:
2688  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689  *  - task pinned (EVENT_PINNED)
2690  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691  *  - task flexible (EVENT_FLEXIBLE).
2692  *
2693  * In order to avoid unscheduling and scheduling back in everything every
2694  * time an event is added, only do it for the groups of equal priority and
2695  * below.
2696  *
2697  * This can be called after a batch operation on task events, in which case
2698  * event_type is a bit mask of the types of events involved. For CPU events,
2699  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700  */
2701 /*
2702  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2703  * event to the context or enabling existing event in the context. We can
2704  * probably optimize it by rescheduling only affected pmu_ctx.
2705  */
2706 static void ctx_resched(struct perf_cpu_context *cpuctx,
2707 			struct perf_event_context *task_ctx,
2708 			enum event_type_t event_type)
2709 {
2710 	bool cpu_event = !!(event_type & EVENT_CPU);
2711 
2712 	/*
2713 	 * If pinned groups are involved, flexible groups also need to be
2714 	 * scheduled out.
2715 	 */
2716 	if (event_type & EVENT_PINNED)
2717 		event_type |= EVENT_FLEXIBLE;
2718 
2719 	event_type &= EVENT_ALL;
2720 
2721 	perf_ctx_disable(&cpuctx->ctx, false);
2722 	if (task_ctx) {
2723 		perf_ctx_disable(task_ctx, false);
2724 		task_ctx_sched_out(task_ctx, event_type);
2725 	}
2726 
2727 	/*
2728 	 * Decide which cpu ctx groups to schedule out based on the types
2729 	 * of events that caused rescheduling:
2730 	 *  - EVENT_CPU: schedule out corresponding groups;
2731 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2732 	 *  - otherwise, do nothing more.
2733 	 */
2734 	if (cpu_event)
2735 		ctx_sched_out(&cpuctx->ctx, event_type);
2736 	else if (event_type & EVENT_PINNED)
2737 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2738 
2739 	perf_event_sched_in(cpuctx, task_ctx);
2740 
2741 	perf_ctx_enable(&cpuctx->ctx, false);
2742 	if (task_ctx)
2743 		perf_ctx_enable(task_ctx, false);
2744 }
2745 
2746 void perf_pmu_resched(struct pmu *pmu)
2747 {
2748 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2749 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750 
2751 	perf_ctx_lock(cpuctx, task_ctx);
2752 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2753 	perf_ctx_unlock(cpuctx, task_ctx);
2754 }
2755 
2756 /*
2757  * Cross CPU call to install and enable a performance event
2758  *
2759  * Very similar to remote_function() + event_function() but cannot assume that
2760  * things like ctx->is_active and cpuctx->task_ctx are set.
2761  */
2762 static int  __perf_install_in_context(void *info)
2763 {
2764 	struct perf_event *event = info;
2765 	struct perf_event_context *ctx = event->ctx;
2766 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2767 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2768 	bool reprogram = true;
2769 	int ret = 0;
2770 
2771 	raw_spin_lock(&cpuctx->ctx.lock);
2772 	if (ctx->task) {
2773 		raw_spin_lock(&ctx->lock);
2774 		task_ctx = ctx;
2775 
2776 		reprogram = (ctx->task == current);
2777 
2778 		/*
2779 		 * If the task is running, it must be running on this CPU,
2780 		 * otherwise we cannot reprogram things.
2781 		 *
2782 		 * If its not running, we don't care, ctx->lock will
2783 		 * serialize against it becoming runnable.
2784 		 */
2785 		if (task_curr(ctx->task) && !reprogram) {
2786 			ret = -ESRCH;
2787 			goto unlock;
2788 		}
2789 
2790 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2791 	} else if (task_ctx) {
2792 		raw_spin_lock(&task_ctx->lock);
2793 	}
2794 
2795 #ifdef CONFIG_CGROUP_PERF
2796 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2797 		/*
2798 		 * If the current cgroup doesn't match the event's
2799 		 * cgroup, we should not try to schedule it.
2800 		 */
2801 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2802 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2803 					event->cgrp->css.cgroup);
2804 	}
2805 #endif
2806 
2807 	if (reprogram) {
2808 		ctx_sched_out(ctx, EVENT_TIME);
2809 		add_event_to_ctx(event, ctx);
2810 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2811 	} else {
2812 		add_event_to_ctx(event, ctx);
2813 	}
2814 
2815 unlock:
2816 	perf_ctx_unlock(cpuctx, task_ctx);
2817 
2818 	return ret;
2819 }
2820 
2821 static bool exclusive_event_installable(struct perf_event *event,
2822 					struct perf_event_context *ctx);
2823 
2824 /*
2825  * Attach a performance event to a context.
2826  *
2827  * Very similar to event_function_call, see comment there.
2828  */
2829 static void
2830 perf_install_in_context(struct perf_event_context *ctx,
2831 			struct perf_event *event,
2832 			int cpu)
2833 {
2834 	struct task_struct *task = READ_ONCE(ctx->task);
2835 
2836 	lockdep_assert_held(&ctx->mutex);
2837 
2838 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2839 
2840 	if (event->cpu != -1)
2841 		WARN_ON_ONCE(event->cpu != cpu);
2842 
2843 	/*
2844 	 * Ensures that if we can observe event->ctx, both the event and ctx
2845 	 * will be 'complete'. See perf_iterate_sb_cpu().
2846 	 */
2847 	smp_store_release(&event->ctx, ctx);
2848 
2849 	/*
2850 	 * perf_event_attr::disabled events will not run and can be initialized
2851 	 * without IPI. Except when this is the first event for the context, in
2852 	 * that case we need the magic of the IPI to set ctx->is_active.
2853 	 *
2854 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2855 	 * event will issue the IPI and reprogram the hardware.
2856 	 */
2857 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2858 	    ctx->nr_events && !is_cgroup_event(event)) {
2859 		raw_spin_lock_irq(&ctx->lock);
2860 		if (ctx->task == TASK_TOMBSTONE) {
2861 			raw_spin_unlock_irq(&ctx->lock);
2862 			return;
2863 		}
2864 		add_event_to_ctx(event, ctx);
2865 		raw_spin_unlock_irq(&ctx->lock);
2866 		return;
2867 	}
2868 
2869 	if (!task) {
2870 		cpu_function_call(cpu, __perf_install_in_context, event);
2871 		return;
2872 	}
2873 
2874 	/*
2875 	 * Should not happen, we validate the ctx is still alive before calling.
2876 	 */
2877 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2878 		return;
2879 
2880 	/*
2881 	 * Installing events is tricky because we cannot rely on ctx->is_active
2882 	 * to be set in case this is the nr_events 0 -> 1 transition.
2883 	 *
2884 	 * Instead we use task_curr(), which tells us if the task is running.
2885 	 * However, since we use task_curr() outside of rq::lock, we can race
2886 	 * against the actual state. This means the result can be wrong.
2887 	 *
2888 	 * If we get a false positive, we retry, this is harmless.
2889 	 *
2890 	 * If we get a false negative, things are complicated. If we are after
2891 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2892 	 * value must be correct. If we're before, it doesn't matter since
2893 	 * perf_event_context_sched_in() will program the counter.
2894 	 *
2895 	 * However, this hinges on the remote context switch having observed
2896 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2897 	 * ctx::lock in perf_event_context_sched_in().
2898 	 *
2899 	 * We do this by task_function_call(), if the IPI fails to hit the task
2900 	 * we know any future context switch of task must see the
2901 	 * perf_event_ctpx[] store.
2902 	 */
2903 
2904 	/*
2905 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2906 	 * task_cpu() load, such that if the IPI then does not find the task
2907 	 * running, a future context switch of that task must observe the
2908 	 * store.
2909 	 */
2910 	smp_mb();
2911 again:
2912 	if (!task_function_call(task, __perf_install_in_context, event))
2913 		return;
2914 
2915 	raw_spin_lock_irq(&ctx->lock);
2916 	task = ctx->task;
2917 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2918 		/*
2919 		 * Cannot happen because we already checked above (which also
2920 		 * cannot happen), and we hold ctx->mutex, which serializes us
2921 		 * against perf_event_exit_task_context().
2922 		 */
2923 		raw_spin_unlock_irq(&ctx->lock);
2924 		return;
2925 	}
2926 	/*
2927 	 * If the task is not running, ctx->lock will avoid it becoming so,
2928 	 * thus we can safely install the event.
2929 	 */
2930 	if (task_curr(task)) {
2931 		raw_spin_unlock_irq(&ctx->lock);
2932 		goto again;
2933 	}
2934 	add_event_to_ctx(event, ctx);
2935 	raw_spin_unlock_irq(&ctx->lock);
2936 }
2937 
2938 /*
2939  * Cross CPU call to enable a performance event
2940  */
2941 static void __perf_event_enable(struct perf_event *event,
2942 				struct perf_cpu_context *cpuctx,
2943 				struct perf_event_context *ctx,
2944 				void *info)
2945 {
2946 	struct perf_event *leader = event->group_leader;
2947 	struct perf_event_context *task_ctx;
2948 
2949 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2950 	    event->state <= PERF_EVENT_STATE_ERROR)
2951 		return;
2952 
2953 	if (ctx->is_active)
2954 		ctx_sched_out(ctx, EVENT_TIME);
2955 
2956 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2957 	perf_cgroup_event_enable(event, ctx);
2958 
2959 	if (!ctx->is_active)
2960 		return;
2961 
2962 	if (!event_filter_match(event)) {
2963 		ctx_sched_in(ctx, EVENT_TIME);
2964 		return;
2965 	}
2966 
2967 	/*
2968 	 * If the event is in a group and isn't the group leader,
2969 	 * then don't put it on unless the group is on.
2970 	 */
2971 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2972 		ctx_sched_in(ctx, EVENT_TIME);
2973 		return;
2974 	}
2975 
2976 	task_ctx = cpuctx->task_ctx;
2977 	if (ctx->task)
2978 		WARN_ON_ONCE(task_ctx != ctx);
2979 
2980 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2981 }
2982 
2983 /*
2984  * Enable an event.
2985  *
2986  * If event->ctx is a cloned context, callers must make sure that
2987  * every task struct that event->ctx->task could possibly point to
2988  * remains valid.  This condition is satisfied when called through
2989  * perf_event_for_each_child or perf_event_for_each as described
2990  * for perf_event_disable.
2991  */
2992 static void _perf_event_enable(struct perf_event *event)
2993 {
2994 	struct perf_event_context *ctx = event->ctx;
2995 
2996 	raw_spin_lock_irq(&ctx->lock);
2997 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2998 	    event->state <  PERF_EVENT_STATE_ERROR) {
2999 out:
3000 		raw_spin_unlock_irq(&ctx->lock);
3001 		return;
3002 	}
3003 
3004 	/*
3005 	 * If the event is in error state, clear that first.
3006 	 *
3007 	 * That way, if we see the event in error state below, we know that it
3008 	 * has gone back into error state, as distinct from the task having
3009 	 * been scheduled away before the cross-call arrived.
3010 	 */
3011 	if (event->state == PERF_EVENT_STATE_ERROR) {
3012 		/*
3013 		 * Detached SIBLING events cannot leave ERROR state.
3014 		 */
3015 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3016 		    event->group_leader == event)
3017 			goto out;
3018 
3019 		event->state = PERF_EVENT_STATE_OFF;
3020 	}
3021 	raw_spin_unlock_irq(&ctx->lock);
3022 
3023 	event_function_call(event, __perf_event_enable, NULL);
3024 }
3025 
3026 /*
3027  * See perf_event_disable();
3028  */
3029 void perf_event_enable(struct perf_event *event)
3030 {
3031 	struct perf_event_context *ctx;
3032 
3033 	ctx = perf_event_ctx_lock(event);
3034 	_perf_event_enable(event);
3035 	perf_event_ctx_unlock(event, ctx);
3036 }
3037 EXPORT_SYMBOL_GPL(perf_event_enable);
3038 
3039 struct stop_event_data {
3040 	struct perf_event	*event;
3041 	unsigned int		restart;
3042 };
3043 
3044 static int __perf_event_stop(void *info)
3045 {
3046 	struct stop_event_data *sd = info;
3047 	struct perf_event *event = sd->event;
3048 
3049 	/* if it's already INACTIVE, do nothing */
3050 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 		return 0;
3052 
3053 	/* matches smp_wmb() in event_sched_in() */
3054 	smp_rmb();
3055 
3056 	/*
3057 	 * There is a window with interrupts enabled before we get here,
3058 	 * so we need to check again lest we try to stop another CPU's event.
3059 	 */
3060 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3061 		return -EAGAIN;
3062 
3063 	event->pmu->stop(event, PERF_EF_UPDATE);
3064 
3065 	/*
3066 	 * May race with the actual stop (through perf_pmu_output_stop()),
3067 	 * but it is only used for events with AUX ring buffer, and such
3068 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3069 	 * see comments in perf_aux_output_begin().
3070 	 *
3071 	 * Since this is happening on an event-local CPU, no trace is lost
3072 	 * while restarting.
3073 	 */
3074 	if (sd->restart)
3075 		event->pmu->start(event, 0);
3076 
3077 	return 0;
3078 }
3079 
3080 static int perf_event_stop(struct perf_event *event, int restart)
3081 {
3082 	struct stop_event_data sd = {
3083 		.event		= event,
3084 		.restart	= restart,
3085 	};
3086 	int ret = 0;
3087 
3088 	do {
3089 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3090 			return 0;
3091 
3092 		/* matches smp_wmb() in event_sched_in() */
3093 		smp_rmb();
3094 
3095 		/*
3096 		 * We only want to restart ACTIVE events, so if the event goes
3097 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3098 		 * fall through with ret==-ENXIO.
3099 		 */
3100 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3101 					__perf_event_stop, &sd);
3102 	} while (ret == -EAGAIN);
3103 
3104 	return ret;
3105 }
3106 
3107 /*
3108  * In order to contain the amount of racy and tricky in the address filter
3109  * configuration management, it is a two part process:
3110  *
3111  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3112  *      we update the addresses of corresponding vmas in
3113  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3114  * (p2) when an event is scheduled in (pmu::add), it calls
3115  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3116  *      if the generation has changed since the previous call.
3117  *
3118  * If (p1) happens while the event is active, we restart it to force (p2).
3119  *
3120  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3121  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3122  *     ioctl;
3123  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3124  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3125  *     for reading;
3126  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3127  *     of exec.
3128  */
3129 void perf_event_addr_filters_sync(struct perf_event *event)
3130 {
3131 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3132 
3133 	if (!has_addr_filter(event))
3134 		return;
3135 
3136 	raw_spin_lock(&ifh->lock);
3137 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3138 		event->pmu->addr_filters_sync(event);
3139 		event->hw.addr_filters_gen = event->addr_filters_gen;
3140 	}
3141 	raw_spin_unlock(&ifh->lock);
3142 }
3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3144 
3145 static int _perf_event_refresh(struct perf_event *event, int refresh)
3146 {
3147 	/*
3148 	 * not supported on inherited events
3149 	 */
3150 	if (event->attr.inherit || !is_sampling_event(event))
3151 		return -EINVAL;
3152 
3153 	atomic_add(refresh, &event->event_limit);
3154 	_perf_event_enable(event);
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  * See perf_event_disable()
3161  */
3162 int perf_event_refresh(struct perf_event *event, int refresh)
3163 {
3164 	struct perf_event_context *ctx;
3165 	int ret;
3166 
3167 	ctx = perf_event_ctx_lock(event);
3168 	ret = _perf_event_refresh(event, refresh);
3169 	perf_event_ctx_unlock(event, ctx);
3170 
3171 	return ret;
3172 }
3173 EXPORT_SYMBOL_GPL(perf_event_refresh);
3174 
3175 static int perf_event_modify_breakpoint(struct perf_event *bp,
3176 					 struct perf_event_attr *attr)
3177 {
3178 	int err;
3179 
3180 	_perf_event_disable(bp);
3181 
3182 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3183 
3184 	if (!bp->attr.disabled)
3185 		_perf_event_enable(bp);
3186 
3187 	return err;
3188 }
3189 
3190 /*
3191  * Copy event-type-independent attributes that may be modified.
3192  */
3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3194 					const struct perf_event_attr *from)
3195 {
3196 	to->sig_data = from->sig_data;
3197 }
3198 
3199 static int perf_event_modify_attr(struct perf_event *event,
3200 				  struct perf_event_attr *attr)
3201 {
3202 	int (*func)(struct perf_event *, struct perf_event_attr *);
3203 	struct perf_event *child;
3204 	int err;
3205 
3206 	if (event->attr.type != attr->type)
3207 		return -EINVAL;
3208 
3209 	switch (event->attr.type) {
3210 	case PERF_TYPE_BREAKPOINT:
3211 		func = perf_event_modify_breakpoint;
3212 		break;
3213 	default:
3214 		/* Place holder for future additions. */
3215 		return -EOPNOTSUPP;
3216 	}
3217 
3218 	WARN_ON_ONCE(event->ctx->parent_ctx);
3219 
3220 	mutex_lock(&event->child_mutex);
3221 	/*
3222 	 * Event-type-independent attributes must be copied before event-type
3223 	 * modification, which will validate that final attributes match the
3224 	 * source attributes after all relevant attributes have been copied.
3225 	 */
3226 	perf_event_modify_copy_attr(&event->attr, attr);
3227 	err = func(event, attr);
3228 	if (err)
3229 		goto out;
3230 	list_for_each_entry(child, &event->child_list, child_list) {
3231 		perf_event_modify_copy_attr(&child->attr, attr);
3232 		err = func(child, attr);
3233 		if (err)
3234 			goto out;
3235 	}
3236 out:
3237 	mutex_unlock(&event->child_mutex);
3238 	return err;
3239 }
3240 
3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3242 				enum event_type_t event_type)
3243 {
3244 	struct perf_event_context *ctx = pmu_ctx->ctx;
3245 	struct perf_event *event, *tmp;
3246 	struct pmu *pmu = pmu_ctx->pmu;
3247 
3248 	if (ctx->task && !ctx->is_active) {
3249 		struct perf_cpu_pmu_context *cpc;
3250 
3251 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3252 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3253 		cpc->task_epc = NULL;
3254 	}
3255 
3256 	if (!event_type)
3257 		return;
3258 
3259 	perf_pmu_disable(pmu);
3260 	if (event_type & EVENT_PINNED) {
3261 		list_for_each_entry_safe(event, tmp,
3262 					 &pmu_ctx->pinned_active,
3263 					 active_list)
3264 			group_sched_out(event, ctx);
3265 	}
3266 
3267 	if (event_type & EVENT_FLEXIBLE) {
3268 		list_for_each_entry_safe(event, tmp,
3269 					 &pmu_ctx->flexible_active,
3270 					 active_list)
3271 			group_sched_out(event, ctx);
3272 		/*
3273 		 * Since we cleared EVENT_FLEXIBLE, also clear
3274 		 * rotate_necessary, is will be reset by
3275 		 * ctx_flexible_sched_in() when needed.
3276 		 */
3277 		pmu_ctx->rotate_necessary = 0;
3278 	}
3279 	perf_pmu_enable(pmu);
3280 }
3281 
3282 static void
3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3284 {
3285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3286 	struct perf_event_pmu_context *pmu_ctx;
3287 	int is_active = ctx->is_active;
3288 	bool cgroup = event_type & EVENT_CGROUP;
3289 
3290 	event_type &= ~EVENT_CGROUP;
3291 
3292 	lockdep_assert_held(&ctx->lock);
3293 
3294 	if (likely(!ctx->nr_events)) {
3295 		/*
3296 		 * See __perf_remove_from_context().
3297 		 */
3298 		WARN_ON_ONCE(ctx->is_active);
3299 		if (ctx->task)
3300 			WARN_ON_ONCE(cpuctx->task_ctx);
3301 		return;
3302 	}
3303 
3304 	/*
3305 	 * Always update time if it was set; not only when it changes.
3306 	 * Otherwise we can 'forget' to update time for any but the last
3307 	 * context we sched out. For example:
3308 	 *
3309 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3310 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3311 	 *
3312 	 * would only update time for the pinned events.
3313 	 */
3314 	if (is_active & EVENT_TIME) {
3315 		/* update (and stop) ctx time */
3316 		update_context_time(ctx);
3317 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3318 		/*
3319 		 * CPU-release for the below ->is_active store,
3320 		 * see __load_acquire() in perf_event_time_now()
3321 		 */
3322 		barrier();
3323 	}
3324 
3325 	ctx->is_active &= ~event_type;
3326 	if (!(ctx->is_active & EVENT_ALL))
3327 		ctx->is_active = 0;
3328 
3329 	if (ctx->task) {
3330 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3331 		if (!ctx->is_active)
3332 			cpuctx->task_ctx = NULL;
3333 	}
3334 
3335 	is_active ^= ctx->is_active; /* changed bits */
3336 
3337 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3338 		if (cgroup && !pmu_ctx->nr_cgroups)
3339 			continue;
3340 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3341 	}
3342 }
3343 
3344 /*
3345  * Test whether two contexts are equivalent, i.e. whether they have both been
3346  * cloned from the same version of the same context.
3347  *
3348  * Equivalence is measured using a generation number in the context that is
3349  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350  * and list_del_event().
3351  */
3352 static int context_equiv(struct perf_event_context *ctx1,
3353 			 struct perf_event_context *ctx2)
3354 {
3355 	lockdep_assert_held(&ctx1->lock);
3356 	lockdep_assert_held(&ctx2->lock);
3357 
3358 	/* Pinning disables the swap optimization */
3359 	if (ctx1->pin_count || ctx2->pin_count)
3360 		return 0;
3361 
3362 	/* If ctx1 is the parent of ctx2 */
3363 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364 		return 1;
3365 
3366 	/* If ctx2 is the parent of ctx1 */
3367 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368 		return 1;
3369 
3370 	/*
3371 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3372 	 * hierarchy, see perf_event_init_context().
3373 	 */
3374 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375 			ctx1->parent_gen == ctx2->parent_gen)
3376 		return 1;
3377 
3378 	/* Unmatched */
3379 	return 0;
3380 }
3381 
3382 static void __perf_event_sync_stat(struct perf_event *event,
3383 				     struct perf_event *next_event)
3384 {
3385 	u64 value;
3386 
3387 	if (!event->attr.inherit_stat)
3388 		return;
3389 
3390 	/*
3391 	 * Update the event value, we cannot use perf_event_read()
3392 	 * because we're in the middle of a context switch and have IRQs
3393 	 * disabled, which upsets smp_call_function_single(), however
3394 	 * we know the event must be on the current CPU, therefore we
3395 	 * don't need to use it.
3396 	 */
3397 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3398 		event->pmu->read(event);
3399 
3400 	perf_event_update_time(event);
3401 
3402 	/*
3403 	 * In order to keep per-task stats reliable we need to flip the event
3404 	 * values when we flip the contexts.
3405 	 */
3406 	value = local64_read(&next_event->count);
3407 	value = local64_xchg(&event->count, value);
3408 	local64_set(&next_event->count, value);
3409 
3410 	swap(event->total_time_enabled, next_event->total_time_enabled);
3411 	swap(event->total_time_running, next_event->total_time_running);
3412 
3413 	/*
3414 	 * Since we swizzled the values, update the user visible data too.
3415 	 */
3416 	perf_event_update_userpage(event);
3417 	perf_event_update_userpage(next_event);
3418 }
3419 
3420 static void perf_event_sync_stat(struct perf_event_context *ctx,
3421 				   struct perf_event_context *next_ctx)
3422 {
3423 	struct perf_event *event, *next_event;
3424 
3425 	if (!ctx->nr_stat)
3426 		return;
3427 
3428 	update_context_time(ctx);
3429 
3430 	event = list_first_entry(&ctx->event_list,
3431 				   struct perf_event, event_entry);
3432 
3433 	next_event = list_first_entry(&next_ctx->event_list,
3434 					struct perf_event, event_entry);
3435 
3436 	while (&event->event_entry != &ctx->event_list &&
3437 	       &next_event->event_entry != &next_ctx->event_list) {
3438 
3439 		__perf_event_sync_stat(event, next_event);
3440 
3441 		event = list_next_entry(event, event_entry);
3442 		next_event = list_next_entry(next_event, event_entry);
3443 	}
3444 }
3445 
3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3447 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3448 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3449 	     !list_entry_is_head(pos1, head1, member) &&		\
3450 	     !list_entry_is_head(pos2, head2, member);			\
3451 	     pos1 = list_next_entry(pos1, member),			\
3452 	     pos2 = list_next_entry(pos2, member))
3453 
3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3455 					  struct perf_event_context *next_ctx)
3456 {
3457 	struct perf_event_pmu_context *prev_epc, *next_epc;
3458 
3459 	if (!prev_ctx->nr_task_data)
3460 		return;
3461 
3462 	double_list_for_each_entry(prev_epc, next_epc,
3463 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3464 				   pmu_ctx_entry) {
3465 
3466 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3467 			continue;
3468 
3469 		/*
3470 		 * PMU specific parts of task perf context can require
3471 		 * additional synchronization. As an example of such
3472 		 * synchronization see implementation details of Intel
3473 		 * LBR call stack data profiling;
3474 		 */
3475 		if (prev_epc->pmu->swap_task_ctx)
3476 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3477 		else
3478 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3479 	}
3480 }
3481 
3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3483 {
3484 	struct perf_event_pmu_context *pmu_ctx;
3485 	struct perf_cpu_pmu_context *cpc;
3486 
3487 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3488 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3489 
3490 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3491 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3492 	}
3493 }
3494 
3495 static void
3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3497 {
3498 	struct perf_event_context *ctx = task->perf_event_ctxp;
3499 	struct perf_event_context *next_ctx;
3500 	struct perf_event_context *parent, *next_parent;
3501 	int do_switch = 1;
3502 
3503 	if (likely(!ctx))
3504 		return;
3505 
3506 	rcu_read_lock();
3507 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3508 	if (!next_ctx)
3509 		goto unlock;
3510 
3511 	parent = rcu_dereference(ctx->parent_ctx);
3512 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3513 
3514 	/* If neither context have a parent context; they cannot be clones. */
3515 	if (!parent && !next_parent)
3516 		goto unlock;
3517 
3518 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3519 		/*
3520 		 * Looks like the two contexts are clones, so we might be
3521 		 * able to optimize the context switch.  We lock both
3522 		 * contexts and check that they are clones under the
3523 		 * lock (including re-checking that neither has been
3524 		 * uncloned in the meantime).  It doesn't matter which
3525 		 * order we take the locks because no other cpu could
3526 		 * be trying to lock both of these tasks.
3527 		 */
3528 		raw_spin_lock(&ctx->lock);
3529 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3530 		if (context_equiv(ctx, next_ctx)) {
3531 
3532 			perf_ctx_disable(ctx, false);
3533 
3534 			/* PMIs are disabled; ctx->nr_pending is stable. */
3535 			if (local_read(&ctx->nr_pending) ||
3536 			    local_read(&next_ctx->nr_pending)) {
3537 				/*
3538 				 * Must not swap out ctx when there's pending
3539 				 * events that rely on the ctx->task relation.
3540 				 */
3541 				raw_spin_unlock(&next_ctx->lock);
3542 				rcu_read_unlock();
3543 				goto inside_switch;
3544 			}
3545 
3546 			WRITE_ONCE(ctx->task, next);
3547 			WRITE_ONCE(next_ctx->task, task);
3548 
3549 			perf_ctx_sched_task_cb(ctx, false);
3550 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3551 
3552 			perf_ctx_enable(ctx, false);
3553 
3554 			/*
3555 			 * RCU_INIT_POINTER here is safe because we've not
3556 			 * modified the ctx and the above modification of
3557 			 * ctx->task and ctx->task_ctx_data are immaterial
3558 			 * since those values are always verified under
3559 			 * ctx->lock which we're now holding.
3560 			 */
3561 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3562 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3563 
3564 			do_switch = 0;
3565 
3566 			perf_event_sync_stat(ctx, next_ctx);
3567 		}
3568 		raw_spin_unlock(&next_ctx->lock);
3569 		raw_spin_unlock(&ctx->lock);
3570 	}
3571 unlock:
3572 	rcu_read_unlock();
3573 
3574 	if (do_switch) {
3575 		raw_spin_lock(&ctx->lock);
3576 		perf_ctx_disable(ctx, false);
3577 
3578 inside_switch:
3579 		perf_ctx_sched_task_cb(ctx, false);
3580 		task_ctx_sched_out(ctx, EVENT_ALL);
3581 
3582 		perf_ctx_enable(ctx, false);
3583 		raw_spin_unlock(&ctx->lock);
3584 	}
3585 }
3586 
3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3589 
3590 void perf_sched_cb_dec(struct pmu *pmu)
3591 {
3592 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3593 
3594 	this_cpu_dec(perf_sched_cb_usages);
3595 	barrier();
3596 
3597 	if (!--cpc->sched_cb_usage)
3598 		list_del(&cpc->sched_cb_entry);
3599 }
3600 
3601 
3602 void perf_sched_cb_inc(struct pmu *pmu)
3603 {
3604 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3605 
3606 	if (!cpc->sched_cb_usage++)
3607 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3608 
3609 	barrier();
3610 	this_cpu_inc(perf_sched_cb_usages);
3611 }
3612 
3613 /*
3614  * This function provides the context switch callback to the lower code
3615  * layer. It is invoked ONLY when the context switch callback is enabled.
3616  *
3617  * This callback is relevant even to per-cpu events; for example multi event
3618  * PEBS requires this to provide PID/TID information. This requires we flush
3619  * all queued PEBS records before we context switch to a new task.
3620  */
3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3622 {
3623 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3624 	struct pmu *pmu;
3625 
3626 	pmu = cpc->epc.pmu;
3627 
3628 	/* software PMUs will not have sched_task */
3629 	if (WARN_ON_ONCE(!pmu->sched_task))
3630 		return;
3631 
3632 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3633 	perf_pmu_disable(pmu);
3634 
3635 	pmu->sched_task(cpc->task_epc, sched_in);
3636 
3637 	perf_pmu_enable(pmu);
3638 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3639 }
3640 
3641 static void perf_pmu_sched_task(struct task_struct *prev,
3642 				struct task_struct *next,
3643 				bool sched_in)
3644 {
3645 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3646 	struct perf_cpu_pmu_context *cpc;
3647 
3648 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3649 	if (prev == next || cpuctx->task_ctx)
3650 		return;
3651 
3652 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3653 		__perf_pmu_sched_task(cpc, sched_in);
3654 }
3655 
3656 static void perf_event_switch(struct task_struct *task,
3657 			      struct task_struct *next_prev, bool sched_in);
3658 
3659 /*
3660  * Called from scheduler to remove the events of the current task,
3661  * with interrupts disabled.
3662  *
3663  * We stop each event and update the event value in event->count.
3664  *
3665  * This does not protect us against NMI, but disable()
3666  * sets the disabled bit in the control field of event _before_
3667  * accessing the event control register. If a NMI hits, then it will
3668  * not restart the event.
3669  */
3670 void __perf_event_task_sched_out(struct task_struct *task,
3671 				 struct task_struct *next)
3672 {
3673 	if (__this_cpu_read(perf_sched_cb_usages))
3674 		perf_pmu_sched_task(task, next, false);
3675 
3676 	if (atomic_read(&nr_switch_events))
3677 		perf_event_switch(task, next, false);
3678 
3679 	perf_event_context_sched_out(task, next);
3680 
3681 	/*
3682 	 * if cgroup events exist on this CPU, then we need
3683 	 * to check if we have to switch out PMU state.
3684 	 * cgroup event are system-wide mode only
3685 	 */
3686 	perf_cgroup_switch(next);
3687 }
3688 
3689 static bool perf_less_group_idx(const void *l, const void *r)
3690 {
3691 	const struct perf_event *le = *(const struct perf_event **)l;
3692 	const struct perf_event *re = *(const struct perf_event **)r;
3693 
3694 	return le->group_index < re->group_index;
3695 }
3696 
3697 static void swap_ptr(void *l, void *r)
3698 {
3699 	void **lp = l, **rp = r;
3700 
3701 	swap(*lp, *rp);
3702 }
3703 
3704 static const struct min_heap_callbacks perf_min_heap = {
3705 	.elem_size = sizeof(struct perf_event *),
3706 	.less = perf_less_group_idx,
3707 	.swp = swap_ptr,
3708 };
3709 
3710 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3711 {
3712 	struct perf_event **itrs = heap->data;
3713 
3714 	if (event) {
3715 		itrs[heap->nr] = event;
3716 		heap->nr++;
3717 	}
3718 }
3719 
3720 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3721 {
3722 	struct perf_cpu_pmu_context *cpc;
3723 
3724 	if (!pmu_ctx->ctx->task)
3725 		return;
3726 
3727 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3728 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3729 	cpc->task_epc = pmu_ctx;
3730 }
3731 
3732 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3733 				struct perf_event_groups *groups, int cpu,
3734 				struct pmu *pmu,
3735 				int (*func)(struct perf_event *, void *),
3736 				void *data)
3737 {
3738 #ifdef CONFIG_CGROUP_PERF
3739 	struct cgroup_subsys_state *css = NULL;
3740 #endif
3741 	struct perf_cpu_context *cpuctx = NULL;
3742 	/* Space for per CPU and/or any CPU event iterators. */
3743 	struct perf_event *itrs[2];
3744 	struct min_heap event_heap;
3745 	struct perf_event **evt;
3746 	int ret;
3747 
3748 	if (pmu->filter && pmu->filter(pmu, cpu))
3749 		return 0;
3750 
3751 	if (!ctx->task) {
3752 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3753 		event_heap = (struct min_heap){
3754 			.data = cpuctx->heap,
3755 			.nr = 0,
3756 			.size = cpuctx->heap_size,
3757 		};
3758 
3759 		lockdep_assert_held(&cpuctx->ctx.lock);
3760 
3761 #ifdef CONFIG_CGROUP_PERF
3762 		if (cpuctx->cgrp)
3763 			css = &cpuctx->cgrp->css;
3764 #endif
3765 	} else {
3766 		event_heap = (struct min_heap){
3767 			.data = itrs,
3768 			.nr = 0,
3769 			.size = ARRAY_SIZE(itrs),
3770 		};
3771 		/* Events not within a CPU context may be on any CPU. */
3772 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3773 	}
3774 	evt = event_heap.data;
3775 
3776 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3777 
3778 #ifdef CONFIG_CGROUP_PERF
3779 	for (; css; css = css->parent)
3780 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3781 #endif
3782 
3783 	if (event_heap.nr) {
3784 		__link_epc((*evt)->pmu_ctx);
3785 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3786 	}
3787 
3788 	min_heapify_all(&event_heap, &perf_min_heap);
3789 
3790 	while (event_heap.nr) {
3791 		ret = func(*evt, data);
3792 		if (ret)
3793 			return ret;
3794 
3795 		*evt = perf_event_groups_next(*evt, pmu);
3796 		if (*evt)
3797 			min_heapify(&event_heap, 0, &perf_min_heap);
3798 		else
3799 			min_heap_pop(&event_heap, &perf_min_heap);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 /*
3806  * Because the userpage is strictly per-event (there is no concept of context,
3807  * so there cannot be a context indirection), every userpage must be updated
3808  * when context time starts :-(
3809  *
3810  * IOW, we must not miss EVENT_TIME edges.
3811  */
3812 static inline bool event_update_userpage(struct perf_event *event)
3813 {
3814 	if (likely(!atomic_read(&event->mmap_count)))
3815 		return false;
3816 
3817 	perf_event_update_time(event);
3818 	perf_event_update_userpage(event);
3819 
3820 	return true;
3821 }
3822 
3823 static inline void group_update_userpage(struct perf_event *group_event)
3824 {
3825 	struct perf_event *event;
3826 
3827 	if (!event_update_userpage(group_event))
3828 		return;
3829 
3830 	for_each_sibling_event(event, group_event)
3831 		event_update_userpage(event);
3832 }
3833 
3834 static int merge_sched_in(struct perf_event *event, void *data)
3835 {
3836 	struct perf_event_context *ctx = event->ctx;
3837 	int *can_add_hw = data;
3838 
3839 	if (event->state <= PERF_EVENT_STATE_OFF)
3840 		return 0;
3841 
3842 	if (!event_filter_match(event))
3843 		return 0;
3844 
3845 	if (group_can_go_on(event, *can_add_hw)) {
3846 		if (!group_sched_in(event, ctx))
3847 			list_add_tail(&event->active_list, get_event_list(event));
3848 	}
3849 
3850 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3851 		*can_add_hw = 0;
3852 		if (event->attr.pinned) {
3853 			perf_cgroup_event_disable(event, ctx);
3854 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3855 		} else {
3856 			struct perf_cpu_pmu_context *cpc;
3857 
3858 			event->pmu_ctx->rotate_necessary = 1;
3859 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3860 			perf_mux_hrtimer_restart(cpc);
3861 			group_update_userpage(event);
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3869 				struct perf_event_groups *groups,
3870 				struct pmu *pmu)
3871 {
3872 	int can_add_hw = 1;
3873 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3874 			   merge_sched_in, &can_add_hw);
3875 }
3876 
3877 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3878 				struct perf_event_groups *groups,
3879 				bool cgroup)
3880 {
3881 	struct perf_event_pmu_context *pmu_ctx;
3882 
3883 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3884 		if (cgroup && !pmu_ctx->nr_cgroups)
3885 			continue;
3886 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3887 	}
3888 }
3889 
3890 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3891 			       struct pmu *pmu)
3892 {
3893 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3894 }
3895 
3896 static void
3897 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3898 {
3899 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3900 	int is_active = ctx->is_active;
3901 	bool cgroup = event_type & EVENT_CGROUP;
3902 
3903 	event_type &= ~EVENT_CGROUP;
3904 
3905 	lockdep_assert_held(&ctx->lock);
3906 
3907 	if (likely(!ctx->nr_events))
3908 		return;
3909 
3910 	if (!(is_active & EVENT_TIME)) {
3911 		/* start ctx time */
3912 		__update_context_time(ctx, false);
3913 		perf_cgroup_set_timestamp(cpuctx);
3914 		/*
3915 		 * CPU-release for the below ->is_active store,
3916 		 * see __load_acquire() in perf_event_time_now()
3917 		 */
3918 		barrier();
3919 	}
3920 
3921 	ctx->is_active |= (event_type | EVENT_TIME);
3922 	if (ctx->task) {
3923 		if (!is_active)
3924 			cpuctx->task_ctx = ctx;
3925 		else
3926 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3927 	}
3928 
3929 	is_active ^= ctx->is_active; /* changed bits */
3930 
3931 	/*
3932 	 * First go through the list and put on any pinned groups
3933 	 * in order to give them the best chance of going on.
3934 	 */
3935 	if (is_active & EVENT_PINNED)
3936 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3937 
3938 	/* Then walk through the lower prio flexible groups */
3939 	if (is_active & EVENT_FLEXIBLE)
3940 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3941 }
3942 
3943 static void perf_event_context_sched_in(struct task_struct *task)
3944 {
3945 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3946 	struct perf_event_context *ctx;
3947 
3948 	rcu_read_lock();
3949 	ctx = rcu_dereference(task->perf_event_ctxp);
3950 	if (!ctx)
3951 		goto rcu_unlock;
3952 
3953 	if (cpuctx->task_ctx == ctx) {
3954 		perf_ctx_lock(cpuctx, ctx);
3955 		perf_ctx_disable(ctx, false);
3956 
3957 		perf_ctx_sched_task_cb(ctx, true);
3958 
3959 		perf_ctx_enable(ctx, false);
3960 		perf_ctx_unlock(cpuctx, ctx);
3961 		goto rcu_unlock;
3962 	}
3963 
3964 	perf_ctx_lock(cpuctx, ctx);
3965 	/*
3966 	 * We must check ctx->nr_events while holding ctx->lock, such
3967 	 * that we serialize against perf_install_in_context().
3968 	 */
3969 	if (!ctx->nr_events)
3970 		goto unlock;
3971 
3972 	perf_ctx_disable(ctx, false);
3973 	/*
3974 	 * We want to keep the following priority order:
3975 	 * cpu pinned (that don't need to move), task pinned,
3976 	 * cpu flexible, task flexible.
3977 	 *
3978 	 * However, if task's ctx is not carrying any pinned
3979 	 * events, no need to flip the cpuctx's events around.
3980 	 */
3981 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3982 		perf_ctx_disable(&cpuctx->ctx, false);
3983 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3984 	}
3985 
3986 	perf_event_sched_in(cpuctx, ctx);
3987 
3988 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3989 
3990 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3991 		perf_ctx_enable(&cpuctx->ctx, false);
3992 
3993 	perf_ctx_enable(ctx, false);
3994 
3995 unlock:
3996 	perf_ctx_unlock(cpuctx, ctx);
3997 rcu_unlock:
3998 	rcu_read_unlock();
3999 }
4000 
4001 /*
4002  * Called from scheduler to add the events of the current task
4003  * with interrupts disabled.
4004  *
4005  * We restore the event value and then enable it.
4006  *
4007  * This does not protect us against NMI, but enable()
4008  * sets the enabled bit in the control field of event _before_
4009  * accessing the event control register. If a NMI hits, then it will
4010  * keep the event running.
4011  */
4012 void __perf_event_task_sched_in(struct task_struct *prev,
4013 				struct task_struct *task)
4014 {
4015 	perf_event_context_sched_in(task);
4016 
4017 	if (atomic_read(&nr_switch_events))
4018 		perf_event_switch(task, prev, true);
4019 
4020 	if (__this_cpu_read(perf_sched_cb_usages))
4021 		perf_pmu_sched_task(prev, task, true);
4022 }
4023 
4024 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4025 {
4026 	u64 frequency = event->attr.sample_freq;
4027 	u64 sec = NSEC_PER_SEC;
4028 	u64 divisor, dividend;
4029 
4030 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4031 
4032 	count_fls = fls64(count);
4033 	nsec_fls = fls64(nsec);
4034 	frequency_fls = fls64(frequency);
4035 	sec_fls = 30;
4036 
4037 	/*
4038 	 * We got @count in @nsec, with a target of sample_freq HZ
4039 	 * the target period becomes:
4040 	 *
4041 	 *             @count * 10^9
4042 	 * period = -------------------
4043 	 *          @nsec * sample_freq
4044 	 *
4045 	 */
4046 
4047 	/*
4048 	 * Reduce accuracy by one bit such that @a and @b converge
4049 	 * to a similar magnitude.
4050 	 */
4051 #define REDUCE_FLS(a, b)		\
4052 do {					\
4053 	if (a##_fls > b##_fls) {	\
4054 		a >>= 1;		\
4055 		a##_fls--;		\
4056 	} else {			\
4057 		b >>= 1;		\
4058 		b##_fls--;		\
4059 	}				\
4060 } while (0)
4061 
4062 	/*
4063 	 * Reduce accuracy until either term fits in a u64, then proceed with
4064 	 * the other, so that finally we can do a u64/u64 division.
4065 	 */
4066 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4067 		REDUCE_FLS(nsec, frequency);
4068 		REDUCE_FLS(sec, count);
4069 	}
4070 
4071 	if (count_fls + sec_fls > 64) {
4072 		divisor = nsec * frequency;
4073 
4074 		while (count_fls + sec_fls > 64) {
4075 			REDUCE_FLS(count, sec);
4076 			divisor >>= 1;
4077 		}
4078 
4079 		dividend = count * sec;
4080 	} else {
4081 		dividend = count * sec;
4082 
4083 		while (nsec_fls + frequency_fls > 64) {
4084 			REDUCE_FLS(nsec, frequency);
4085 			dividend >>= 1;
4086 		}
4087 
4088 		divisor = nsec * frequency;
4089 	}
4090 
4091 	if (!divisor)
4092 		return dividend;
4093 
4094 	return div64_u64(dividend, divisor);
4095 }
4096 
4097 static DEFINE_PER_CPU(int, perf_throttled_count);
4098 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4099 
4100 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4101 {
4102 	struct hw_perf_event *hwc = &event->hw;
4103 	s64 period, sample_period;
4104 	s64 delta;
4105 
4106 	period = perf_calculate_period(event, nsec, count);
4107 
4108 	delta = (s64)(period - hwc->sample_period);
4109 	delta = (delta + 7) / 8; /* low pass filter */
4110 
4111 	sample_period = hwc->sample_period + delta;
4112 
4113 	if (!sample_period)
4114 		sample_period = 1;
4115 
4116 	hwc->sample_period = sample_period;
4117 
4118 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4119 		if (disable)
4120 			event->pmu->stop(event, PERF_EF_UPDATE);
4121 
4122 		local64_set(&hwc->period_left, 0);
4123 
4124 		if (disable)
4125 			event->pmu->start(event, PERF_EF_RELOAD);
4126 	}
4127 }
4128 
4129 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4130 {
4131 	struct perf_event *event;
4132 	struct hw_perf_event *hwc;
4133 	u64 now, period = TICK_NSEC;
4134 	s64 delta;
4135 
4136 	list_for_each_entry(event, event_list, active_list) {
4137 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4138 			continue;
4139 
4140 		// XXX use visit thingy to avoid the -1,cpu match
4141 		if (!event_filter_match(event))
4142 			continue;
4143 
4144 		hwc = &event->hw;
4145 
4146 		if (hwc->interrupts == MAX_INTERRUPTS) {
4147 			hwc->interrupts = 0;
4148 			perf_log_throttle(event, 1);
4149 			if (!event->attr.freq || !event->attr.sample_freq)
4150 				event->pmu->start(event, 0);
4151 		}
4152 
4153 		if (!event->attr.freq || !event->attr.sample_freq)
4154 			continue;
4155 
4156 		/*
4157 		 * stop the event and update event->count
4158 		 */
4159 		event->pmu->stop(event, PERF_EF_UPDATE);
4160 
4161 		now = local64_read(&event->count);
4162 		delta = now - hwc->freq_count_stamp;
4163 		hwc->freq_count_stamp = now;
4164 
4165 		/*
4166 		 * restart the event
4167 		 * reload only if value has changed
4168 		 * we have stopped the event so tell that
4169 		 * to perf_adjust_period() to avoid stopping it
4170 		 * twice.
4171 		 */
4172 		if (delta > 0)
4173 			perf_adjust_period(event, period, delta, false);
4174 
4175 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4176 	}
4177 }
4178 
4179 /*
4180  * combine freq adjustment with unthrottling to avoid two passes over the
4181  * events. At the same time, make sure, having freq events does not change
4182  * the rate of unthrottling as that would introduce bias.
4183  */
4184 static void
4185 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4186 {
4187 	struct perf_event_pmu_context *pmu_ctx;
4188 
4189 	/*
4190 	 * only need to iterate over all events iff:
4191 	 * - context have events in frequency mode (needs freq adjust)
4192 	 * - there are events to unthrottle on this cpu
4193 	 */
4194 	if (!(ctx->nr_freq || unthrottle))
4195 		return;
4196 
4197 	raw_spin_lock(&ctx->lock);
4198 
4199 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4200 		if (!(pmu_ctx->nr_freq || unthrottle))
4201 			continue;
4202 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4203 			continue;
4204 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4205 			continue;
4206 
4207 		perf_pmu_disable(pmu_ctx->pmu);
4208 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4209 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4210 		perf_pmu_enable(pmu_ctx->pmu);
4211 	}
4212 
4213 	raw_spin_unlock(&ctx->lock);
4214 }
4215 
4216 /*
4217  * Move @event to the tail of the @ctx's elegible events.
4218  */
4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4220 {
4221 	/*
4222 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4223 	 * disabled by the inheritance code.
4224 	 */
4225 	if (ctx->rotate_disable)
4226 		return;
4227 
4228 	perf_event_groups_delete(&ctx->flexible_groups, event);
4229 	perf_event_groups_insert(&ctx->flexible_groups, event);
4230 }
4231 
4232 /* pick an event from the flexible_groups to rotate */
4233 static inline struct perf_event *
4234 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4235 {
4236 	struct perf_event *event;
4237 	struct rb_node *node;
4238 	struct rb_root *tree;
4239 	struct __group_key key = {
4240 		.pmu = pmu_ctx->pmu,
4241 	};
4242 
4243 	/* pick the first active flexible event */
4244 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4245 					 struct perf_event, active_list);
4246 	if (event)
4247 		goto out;
4248 
4249 	/* if no active flexible event, pick the first event */
4250 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4251 
4252 	if (!pmu_ctx->ctx->task) {
4253 		key.cpu = smp_processor_id();
4254 
4255 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 		if (node)
4257 			event = __node_2_pe(node);
4258 		goto out;
4259 	}
4260 
4261 	key.cpu = -1;
4262 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4263 	if (node) {
4264 		event = __node_2_pe(node);
4265 		goto out;
4266 	}
4267 
4268 	key.cpu = smp_processor_id();
4269 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4270 	if (node)
4271 		event = __node_2_pe(node);
4272 
4273 out:
4274 	/*
4275 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4276 	 * finds there are unschedulable events, it will set it again.
4277 	 */
4278 	pmu_ctx->rotate_necessary = 0;
4279 
4280 	return event;
4281 }
4282 
4283 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4284 {
4285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4286 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4287 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4288 	int cpu_rotate, task_rotate;
4289 	struct pmu *pmu;
4290 
4291 	/*
4292 	 * Since we run this from IRQ context, nobody can install new
4293 	 * events, thus the event count values are stable.
4294 	 */
4295 
4296 	cpu_epc = &cpc->epc;
4297 	pmu = cpu_epc->pmu;
4298 	task_epc = cpc->task_epc;
4299 
4300 	cpu_rotate = cpu_epc->rotate_necessary;
4301 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4302 
4303 	if (!(cpu_rotate || task_rotate))
4304 		return false;
4305 
4306 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4307 	perf_pmu_disable(pmu);
4308 
4309 	if (task_rotate)
4310 		task_event = ctx_event_to_rotate(task_epc);
4311 	if (cpu_rotate)
4312 		cpu_event = ctx_event_to_rotate(cpu_epc);
4313 
4314 	/*
4315 	 * As per the order given at ctx_resched() first 'pop' task flexible
4316 	 * and then, if needed CPU flexible.
4317 	 */
4318 	if (task_event || (task_epc && cpu_event)) {
4319 		update_context_time(task_epc->ctx);
4320 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4321 	}
4322 
4323 	if (cpu_event) {
4324 		update_context_time(&cpuctx->ctx);
4325 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4326 		rotate_ctx(&cpuctx->ctx, cpu_event);
4327 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4328 	}
4329 
4330 	if (task_event)
4331 		rotate_ctx(task_epc->ctx, task_event);
4332 
4333 	if (task_event || (task_epc && cpu_event))
4334 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4335 
4336 	perf_pmu_enable(pmu);
4337 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4338 
4339 	return true;
4340 }
4341 
4342 void perf_event_task_tick(void)
4343 {
4344 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4345 	struct perf_event_context *ctx;
4346 	int throttled;
4347 
4348 	lockdep_assert_irqs_disabled();
4349 
4350 	__this_cpu_inc(perf_throttled_seq);
4351 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4352 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4353 
4354 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4355 
4356 	rcu_read_lock();
4357 	ctx = rcu_dereference(current->perf_event_ctxp);
4358 	if (ctx)
4359 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4360 	rcu_read_unlock();
4361 }
4362 
4363 static int event_enable_on_exec(struct perf_event *event,
4364 				struct perf_event_context *ctx)
4365 {
4366 	if (!event->attr.enable_on_exec)
4367 		return 0;
4368 
4369 	event->attr.enable_on_exec = 0;
4370 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4371 		return 0;
4372 
4373 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4374 
4375 	return 1;
4376 }
4377 
4378 /*
4379  * Enable all of a task's events that have been marked enable-on-exec.
4380  * This expects task == current.
4381  */
4382 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4383 {
4384 	struct perf_event_context *clone_ctx = NULL;
4385 	enum event_type_t event_type = 0;
4386 	struct perf_cpu_context *cpuctx;
4387 	struct perf_event *event;
4388 	unsigned long flags;
4389 	int enabled = 0;
4390 
4391 	local_irq_save(flags);
4392 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4393 		goto out;
4394 
4395 	if (!ctx->nr_events)
4396 		goto out;
4397 
4398 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4399 	perf_ctx_lock(cpuctx, ctx);
4400 	ctx_sched_out(ctx, EVENT_TIME);
4401 
4402 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4403 		enabled |= event_enable_on_exec(event, ctx);
4404 		event_type |= get_event_type(event);
4405 	}
4406 
4407 	/*
4408 	 * Unclone and reschedule this context if we enabled any event.
4409 	 */
4410 	if (enabled) {
4411 		clone_ctx = unclone_ctx(ctx);
4412 		ctx_resched(cpuctx, ctx, event_type);
4413 	} else {
4414 		ctx_sched_in(ctx, EVENT_TIME);
4415 	}
4416 	perf_ctx_unlock(cpuctx, ctx);
4417 
4418 out:
4419 	local_irq_restore(flags);
4420 
4421 	if (clone_ctx)
4422 		put_ctx(clone_ctx);
4423 }
4424 
4425 static void perf_remove_from_owner(struct perf_event *event);
4426 static void perf_event_exit_event(struct perf_event *event,
4427 				  struct perf_event_context *ctx);
4428 
4429 /*
4430  * Removes all events from the current task that have been marked
4431  * remove-on-exec, and feeds their values back to parent events.
4432  */
4433 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4434 {
4435 	struct perf_event_context *clone_ctx = NULL;
4436 	struct perf_event *event, *next;
4437 	unsigned long flags;
4438 	bool modified = false;
4439 
4440 	mutex_lock(&ctx->mutex);
4441 
4442 	if (WARN_ON_ONCE(ctx->task != current))
4443 		goto unlock;
4444 
4445 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4446 		if (!event->attr.remove_on_exec)
4447 			continue;
4448 
4449 		if (!is_kernel_event(event))
4450 			perf_remove_from_owner(event);
4451 
4452 		modified = true;
4453 
4454 		perf_event_exit_event(event, ctx);
4455 	}
4456 
4457 	raw_spin_lock_irqsave(&ctx->lock, flags);
4458 	if (modified)
4459 		clone_ctx = unclone_ctx(ctx);
4460 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4461 
4462 unlock:
4463 	mutex_unlock(&ctx->mutex);
4464 
4465 	if (clone_ctx)
4466 		put_ctx(clone_ctx);
4467 }
4468 
4469 struct perf_read_data {
4470 	struct perf_event *event;
4471 	bool group;
4472 	int ret;
4473 };
4474 
4475 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4476 {
4477 	u16 local_pkg, event_pkg;
4478 
4479 	if ((unsigned)event_cpu >= nr_cpu_ids)
4480 		return event_cpu;
4481 
4482 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4483 		int local_cpu = smp_processor_id();
4484 
4485 		event_pkg = topology_physical_package_id(event_cpu);
4486 		local_pkg = topology_physical_package_id(local_cpu);
4487 
4488 		if (event_pkg == local_pkg)
4489 			return local_cpu;
4490 	}
4491 
4492 	return event_cpu;
4493 }
4494 
4495 /*
4496  * Cross CPU call to read the hardware event
4497  */
4498 static void __perf_event_read(void *info)
4499 {
4500 	struct perf_read_data *data = info;
4501 	struct perf_event *sub, *event = data->event;
4502 	struct perf_event_context *ctx = event->ctx;
4503 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4504 	struct pmu *pmu = event->pmu;
4505 
4506 	/*
4507 	 * If this is a task context, we need to check whether it is
4508 	 * the current task context of this cpu.  If not it has been
4509 	 * scheduled out before the smp call arrived.  In that case
4510 	 * event->count would have been updated to a recent sample
4511 	 * when the event was scheduled out.
4512 	 */
4513 	if (ctx->task && cpuctx->task_ctx != ctx)
4514 		return;
4515 
4516 	raw_spin_lock(&ctx->lock);
4517 	if (ctx->is_active & EVENT_TIME) {
4518 		update_context_time(ctx);
4519 		update_cgrp_time_from_event(event);
4520 	}
4521 
4522 	perf_event_update_time(event);
4523 	if (data->group)
4524 		perf_event_update_sibling_time(event);
4525 
4526 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4527 		goto unlock;
4528 
4529 	if (!data->group) {
4530 		pmu->read(event);
4531 		data->ret = 0;
4532 		goto unlock;
4533 	}
4534 
4535 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4536 
4537 	pmu->read(event);
4538 
4539 	for_each_sibling_event(sub, event) {
4540 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4541 			/*
4542 			 * Use sibling's PMU rather than @event's since
4543 			 * sibling could be on different (eg: software) PMU.
4544 			 */
4545 			sub->pmu->read(sub);
4546 		}
4547 	}
4548 
4549 	data->ret = pmu->commit_txn(pmu);
4550 
4551 unlock:
4552 	raw_spin_unlock(&ctx->lock);
4553 }
4554 
4555 static inline u64 perf_event_count(struct perf_event *event)
4556 {
4557 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4558 }
4559 
4560 static void calc_timer_values(struct perf_event *event,
4561 				u64 *now,
4562 				u64 *enabled,
4563 				u64 *running)
4564 {
4565 	u64 ctx_time;
4566 
4567 	*now = perf_clock();
4568 	ctx_time = perf_event_time_now(event, *now);
4569 	__perf_update_times(event, ctx_time, enabled, running);
4570 }
4571 
4572 /*
4573  * NMI-safe method to read a local event, that is an event that
4574  * is:
4575  *   - either for the current task, or for this CPU
4576  *   - does not have inherit set, for inherited task events
4577  *     will not be local and we cannot read them atomically
4578  *   - must not have a pmu::count method
4579  */
4580 int perf_event_read_local(struct perf_event *event, u64 *value,
4581 			  u64 *enabled, u64 *running)
4582 {
4583 	unsigned long flags;
4584 	int event_oncpu;
4585 	int event_cpu;
4586 	int ret = 0;
4587 
4588 	/*
4589 	 * Disabling interrupts avoids all counter scheduling (context
4590 	 * switches, timer based rotation and IPIs).
4591 	 */
4592 	local_irq_save(flags);
4593 
4594 	/*
4595 	 * It must not be an event with inherit set, we cannot read
4596 	 * all child counters from atomic context.
4597 	 */
4598 	if (event->attr.inherit) {
4599 		ret = -EOPNOTSUPP;
4600 		goto out;
4601 	}
4602 
4603 	/* If this is a per-task event, it must be for current */
4604 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4605 	    event->hw.target != current) {
4606 		ret = -EINVAL;
4607 		goto out;
4608 	}
4609 
4610 	/*
4611 	 * Get the event CPU numbers, and adjust them to local if the event is
4612 	 * a per-package event that can be read locally
4613 	 */
4614 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4615 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4616 
4617 	/* If this is a per-CPU event, it must be for this CPU */
4618 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4619 	    event_cpu != smp_processor_id()) {
4620 		ret = -EINVAL;
4621 		goto out;
4622 	}
4623 
4624 	/* If this is a pinned event it must be running on this CPU */
4625 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4626 		ret = -EBUSY;
4627 		goto out;
4628 	}
4629 
4630 	/*
4631 	 * If the event is currently on this CPU, its either a per-task event,
4632 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4633 	 * oncpu == -1).
4634 	 */
4635 	if (event_oncpu == smp_processor_id())
4636 		event->pmu->read(event);
4637 
4638 	*value = local64_read(&event->count);
4639 	if (enabled || running) {
4640 		u64 __enabled, __running, __now;
4641 
4642 		calc_timer_values(event, &__now, &__enabled, &__running);
4643 		if (enabled)
4644 			*enabled = __enabled;
4645 		if (running)
4646 			*running = __running;
4647 	}
4648 out:
4649 	local_irq_restore(flags);
4650 
4651 	return ret;
4652 }
4653 
4654 static int perf_event_read(struct perf_event *event, bool group)
4655 {
4656 	enum perf_event_state state = READ_ONCE(event->state);
4657 	int event_cpu, ret = 0;
4658 
4659 	/*
4660 	 * If event is enabled and currently active on a CPU, update the
4661 	 * value in the event structure:
4662 	 */
4663 again:
4664 	if (state == PERF_EVENT_STATE_ACTIVE) {
4665 		struct perf_read_data data;
4666 
4667 		/*
4668 		 * Orders the ->state and ->oncpu loads such that if we see
4669 		 * ACTIVE we must also see the right ->oncpu.
4670 		 *
4671 		 * Matches the smp_wmb() from event_sched_in().
4672 		 */
4673 		smp_rmb();
4674 
4675 		event_cpu = READ_ONCE(event->oncpu);
4676 		if ((unsigned)event_cpu >= nr_cpu_ids)
4677 			return 0;
4678 
4679 		data = (struct perf_read_data){
4680 			.event = event,
4681 			.group = group,
4682 			.ret = 0,
4683 		};
4684 
4685 		preempt_disable();
4686 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4687 
4688 		/*
4689 		 * Purposely ignore the smp_call_function_single() return
4690 		 * value.
4691 		 *
4692 		 * If event_cpu isn't a valid CPU it means the event got
4693 		 * scheduled out and that will have updated the event count.
4694 		 *
4695 		 * Therefore, either way, we'll have an up-to-date event count
4696 		 * after this.
4697 		 */
4698 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4699 		preempt_enable();
4700 		ret = data.ret;
4701 
4702 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4703 		struct perf_event_context *ctx = event->ctx;
4704 		unsigned long flags;
4705 
4706 		raw_spin_lock_irqsave(&ctx->lock, flags);
4707 		state = event->state;
4708 		if (state != PERF_EVENT_STATE_INACTIVE) {
4709 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710 			goto again;
4711 		}
4712 
4713 		/*
4714 		 * May read while context is not active (e.g., thread is
4715 		 * blocked), in that case we cannot update context time
4716 		 */
4717 		if (ctx->is_active & EVENT_TIME) {
4718 			update_context_time(ctx);
4719 			update_cgrp_time_from_event(event);
4720 		}
4721 
4722 		perf_event_update_time(event);
4723 		if (group)
4724 			perf_event_update_sibling_time(event);
4725 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4726 	}
4727 
4728 	return ret;
4729 }
4730 
4731 /*
4732  * Initialize the perf_event context in a task_struct:
4733  */
4734 static void __perf_event_init_context(struct perf_event_context *ctx)
4735 {
4736 	raw_spin_lock_init(&ctx->lock);
4737 	mutex_init(&ctx->mutex);
4738 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4739 	perf_event_groups_init(&ctx->pinned_groups);
4740 	perf_event_groups_init(&ctx->flexible_groups);
4741 	INIT_LIST_HEAD(&ctx->event_list);
4742 	refcount_set(&ctx->refcount, 1);
4743 }
4744 
4745 static void
4746 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4747 {
4748 	epc->pmu = pmu;
4749 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4750 	INIT_LIST_HEAD(&epc->pinned_active);
4751 	INIT_LIST_HEAD(&epc->flexible_active);
4752 	atomic_set(&epc->refcount, 1);
4753 }
4754 
4755 static struct perf_event_context *
4756 alloc_perf_context(struct task_struct *task)
4757 {
4758 	struct perf_event_context *ctx;
4759 
4760 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4761 	if (!ctx)
4762 		return NULL;
4763 
4764 	__perf_event_init_context(ctx);
4765 	if (task)
4766 		ctx->task = get_task_struct(task);
4767 
4768 	return ctx;
4769 }
4770 
4771 static struct task_struct *
4772 find_lively_task_by_vpid(pid_t vpid)
4773 {
4774 	struct task_struct *task;
4775 
4776 	rcu_read_lock();
4777 	if (!vpid)
4778 		task = current;
4779 	else
4780 		task = find_task_by_vpid(vpid);
4781 	if (task)
4782 		get_task_struct(task);
4783 	rcu_read_unlock();
4784 
4785 	if (!task)
4786 		return ERR_PTR(-ESRCH);
4787 
4788 	return task;
4789 }
4790 
4791 /*
4792  * Returns a matching context with refcount and pincount.
4793  */
4794 static struct perf_event_context *
4795 find_get_context(struct task_struct *task, struct perf_event *event)
4796 {
4797 	struct perf_event_context *ctx, *clone_ctx = NULL;
4798 	struct perf_cpu_context *cpuctx;
4799 	unsigned long flags;
4800 	int err;
4801 
4802 	if (!task) {
4803 		/* Must be root to operate on a CPU event: */
4804 		err = perf_allow_cpu(&event->attr);
4805 		if (err)
4806 			return ERR_PTR(err);
4807 
4808 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4809 		ctx = &cpuctx->ctx;
4810 		get_ctx(ctx);
4811 		raw_spin_lock_irqsave(&ctx->lock, flags);
4812 		++ctx->pin_count;
4813 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4814 
4815 		return ctx;
4816 	}
4817 
4818 	err = -EINVAL;
4819 retry:
4820 	ctx = perf_lock_task_context(task, &flags);
4821 	if (ctx) {
4822 		clone_ctx = unclone_ctx(ctx);
4823 		++ctx->pin_count;
4824 
4825 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4826 
4827 		if (clone_ctx)
4828 			put_ctx(clone_ctx);
4829 	} else {
4830 		ctx = alloc_perf_context(task);
4831 		err = -ENOMEM;
4832 		if (!ctx)
4833 			goto errout;
4834 
4835 		err = 0;
4836 		mutex_lock(&task->perf_event_mutex);
4837 		/*
4838 		 * If it has already passed perf_event_exit_task().
4839 		 * we must see PF_EXITING, it takes this mutex too.
4840 		 */
4841 		if (task->flags & PF_EXITING)
4842 			err = -ESRCH;
4843 		else if (task->perf_event_ctxp)
4844 			err = -EAGAIN;
4845 		else {
4846 			get_ctx(ctx);
4847 			++ctx->pin_count;
4848 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4849 		}
4850 		mutex_unlock(&task->perf_event_mutex);
4851 
4852 		if (unlikely(err)) {
4853 			put_ctx(ctx);
4854 
4855 			if (err == -EAGAIN)
4856 				goto retry;
4857 			goto errout;
4858 		}
4859 	}
4860 
4861 	return ctx;
4862 
4863 errout:
4864 	return ERR_PTR(err);
4865 }
4866 
4867 static struct perf_event_pmu_context *
4868 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4869 		     struct perf_event *event)
4870 {
4871 	struct perf_event_pmu_context *new = NULL, *epc;
4872 	void *task_ctx_data = NULL;
4873 
4874 	if (!ctx->task) {
4875 		/*
4876 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4877 		 * relies on the fact that find_get_pmu_context() cannot fail
4878 		 * for CPU contexts.
4879 		 */
4880 		struct perf_cpu_pmu_context *cpc;
4881 
4882 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4883 		epc = &cpc->epc;
4884 		raw_spin_lock_irq(&ctx->lock);
4885 		if (!epc->ctx) {
4886 			atomic_set(&epc->refcount, 1);
4887 			epc->embedded = 1;
4888 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4889 			epc->ctx = ctx;
4890 		} else {
4891 			WARN_ON_ONCE(epc->ctx != ctx);
4892 			atomic_inc(&epc->refcount);
4893 		}
4894 		raw_spin_unlock_irq(&ctx->lock);
4895 		return epc;
4896 	}
4897 
4898 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4899 	if (!new)
4900 		return ERR_PTR(-ENOMEM);
4901 
4902 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4903 		task_ctx_data = alloc_task_ctx_data(pmu);
4904 		if (!task_ctx_data) {
4905 			kfree(new);
4906 			return ERR_PTR(-ENOMEM);
4907 		}
4908 	}
4909 
4910 	__perf_init_event_pmu_context(new, pmu);
4911 
4912 	/*
4913 	 * XXX
4914 	 *
4915 	 * lockdep_assert_held(&ctx->mutex);
4916 	 *
4917 	 * can't because perf_event_init_task() doesn't actually hold the
4918 	 * child_ctx->mutex.
4919 	 */
4920 
4921 	raw_spin_lock_irq(&ctx->lock);
4922 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4923 		if (epc->pmu == pmu) {
4924 			WARN_ON_ONCE(epc->ctx != ctx);
4925 			atomic_inc(&epc->refcount);
4926 			goto found_epc;
4927 		}
4928 	}
4929 
4930 	epc = new;
4931 	new = NULL;
4932 
4933 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4934 	epc->ctx = ctx;
4935 
4936 found_epc:
4937 	if (task_ctx_data && !epc->task_ctx_data) {
4938 		epc->task_ctx_data = task_ctx_data;
4939 		task_ctx_data = NULL;
4940 		ctx->nr_task_data++;
4941 	}
4942 	raw_spin_unlock_irq(&ctx->lock);
4943 
4944 	free_task_ctx_data(pmu, task_ctx_data);
4945 	kfree(new);
4946 
4947 	return epc;
4948 }
4949 
4950 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4951 {
4952 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4953 }
4954 
4955 static void free_epc_rcu(struct rcu_head *head)
4956 {
4957 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4958 
4959 	kfree(epc->task_ctx_data);
4960 	kfree(epc);
4961 }
4962 
4963 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4964 {
4965 	struct perf_event_context *ctx = epc->ctx;
4966 	unsigned long flags;
4967 
4968 	/*
4969 	 * XXX
4970 	 *
4971 	 * lockdep_assert_held(&ctx->mutex);
4972 	 *
4973 	 * can't because of the call-site in _free_event()/put_event()
4974 	 * which isn't always called under ctx->mutex.
4975 	 */
4976 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4977 		return;
4978 
4979 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4980 
4981 	list_del_init(&epc->pmu_ctx_entry);
4982 	epc->ctx = NULL;
4983 
4984 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4985 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4986 
4987 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988 
4989 	if (epc->embedded)
4990 		return;
4991 
4992 	call_rcu(&epc->rcu_head, free_epc_rcu);
4993 }
4994 
4995 static void perf_event_free_filter(struct perf_event *event);
4996 
4997 static void free_event_rcu(struct rcu_head *head)
4998 {
4999 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5000 
5001 	if (event->ns)
5002 		put_pid_ns(event->ns);
5003 	perf_event_free_filter(event);
5004 	kmem_cache_free(perf_event_cache, event);
5005 }
5006 
5007 static void ring_buffer_attach(struct perf_event *event,
5008 			       struct perf_buffer *rb);
5009 
5010 static void detach_sb_event(struct perf_event *event)
5011 {
5012 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5013 
5014 	raw_spin_lock(&pel->lock);
5015 	list_del_rcu(&event->sb_list);
5016 	raw_spin_unlock(&pel->lock);
5017 }
5018 
5019 static bool is_sb_event(struct perf_event *event)
5020 {
5021 	struct perf_event_attr *attr = &event->attr;
5022 
5023 	if (event->parent)
5024 		return false;
5025 
5026 	if (event->attach_state & PERF_ATTACH_TASK)
5027 		return false;
5028 
5029 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5030 	    attr->comm || attr->comm_exec ||
5031 	    attr->task || attr->ksymbol ||
5032 	    attr->context_switch || attr->text_poke ||
5033 	    attr->bpf_event)
5034 		return true;
5035 	return false;
5036 }
5037 
5038 static void unaccount_pmu_sb_event(struct perf_event *event)
5039 {
5040 	if (is_sb_event(event))
5041 		detach_sb_event(event);
5042 }
5043 
5044 #ifdef CONFIG_NO_HZ_FULL
5045 static DEFINE_SPINLOCK(nr_freq_lock);
5046 #endif
5047 
5048 static void unaccount_freq_event_nohz(void)
5049 {
5050 #ifdef CONFIG_NO_HZ_FULL
5051 	spin_lock(&nr_freq_lock);
5052 	if (atomic_dec_and_test(&nr_freq_events))
5053 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5054 	spin_unlock(&nr_freq_lock);
5055 #endif
5056 }
5057 
5058 static void unaccount_freq_event(void)
5059 {
5060 	if (tick_nohz_full_enabled())
5061 		unaccount_freq_event_nohz();
5062 	else
5063 		atomic_dec(&nr_freq_events);
5064 }
5065 
5066 static void unaccount_event(struct perf_event *event)
5067 {
5068 	bool dec = false;
5069 
5070 	if (event->parent)
5071 		return;
5072 
5073 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5074 		dec = true;
5075 	if (event->attr.mmap || event->attr.mmap_data)
5076 		atomic_dec(&nr_mmap_events);
5077 	if (event->attr.build_id)
5078 		atomic_dec(&nr_build_id_events);
5079 	if (event->attr.comm)
5080 		atomic_dec(&nr_comm_events);
5081 	if (event->attr.namespaces)
5082 		atomic_dec(&nr_namespaces_events);
5083 	if (event->attr.cgroup)
5084 		atomic_dec(&nr_cgroup_events);
5085 	if (event->attr.task)
5086 		atomic_dec(&nr_task_events);
5087 	if (event->attr.freq)
5088 		unaccount_freq_event();
5089 	if (event->attr.context_switch) {
5090 		dec = true;
5091 		atomic_dec(&nr_switch_events);
5092 	}
5093 	if (is_cgroup_event(event))
5094 		dec = true;
5095 	if (has_branch_stack(event))
5096 		dec = true;
5097 	if (event->attr.ksymbol)
5098 		atomic_dec(&nr_ksymbol_events);
5099 	if (event->attr.bpf_event)
5100 		atomic_dec(&nr_bpf_events);
5101 	if (event->attr.text_poke)
5102 		atomic_dec(&nr_text_poke_events);
5103 
5104 	if (dec) {
5105 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5106 			schedule_delayed_work(&perf_sched_work, HZ);
5107 	}
5108 
5109 	unaccount_pmu_sb_event(event);
5110 }
5111 
5112 static void perf_sched_delayed(struct work_struct *work)
5113 {
5114 	mutex_lock(&perf_sched_mutex);
5115 	if (atomic_dec_and_test(&perf_sched_count))
5116 		static_branch_disable(&perf_sched_events);
5117 	mutex_unlock(&perf_sched_mutex);
5118 }
5119 
5120 /*
5121  * The following implement mutual exclusion of events on "exclusive" pmus
5122  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5123  * at a time, so we disallow creating events that might conflict, namely:
5124  *
5125  *  1) cpu-wide events in the presence of per-task events,
5126  *  2) per-task events in the presence of cpu-wide events,
5127  *  3) two matching events on the same perf_event_context.
5128  *
5129  * The former two cases are handled in the allocation path (perf_event_alloc(),
5130  * _free_event()), the latter -- before the first perf_install_in_context().
5131  */
5132 static int exclusive_event_init(struct perf_event *event)
5133 {
5134 	struct pmu *pmu = event->pmu;
5135 
5136 	if (!is_exclusive_pmu(pmu))
5137 		return 0;
5138 
5139 	/*
5140 	 * Prevent co-existence of per-task and cpu-wide events on the
5141 	 * same exclusive pmu.
5142 	 *
5143 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5144 	 * events on this "exclusive" pmu, positive means there are
5145 	 * per-task events.
5146 	 *
5147 	 * Since this is called in perf_event_alloc() path, event::ctx
5148 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5149 	 * to mean "per-task event", because unlike other attach states it
5150 	 * never gets cleared.
5151 	 */
5152 	if (event->attach_state & PERF_ATTACH_TASK) {
5153 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5154 			return -EBUSY;
5155 	} else {
5156 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5157 			return -EBUSY;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 static void exclusive_event_destroy(struct perf_event *event)
5164 {
5165 	struct pmu *pmu = event->pmu;
5166 
5167 	if (!is_exclusive_pmu(pmu))
5168 		return;
5169 
5170 	/* see comment in exclusive_event_init() */
5171 	if (event->attach_state & PERF_ATTACH_TASK)
5172 		atomic_dec(&pmu->exclusive_cnt);
5173 	else
5174 		atomic_inc(&pmu->exclusive_cnt);
5175 }
5176 
5177 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5178 {
5179 	if ((e1->pmu == e2->pmu) &&
5180 	    (e1->cpu == e2->cpu ||
5181 	     e1->cpu == -1 ||
5182 	     e2->cpu == -1))
5183 		return true;
5184 	return false;
5185 }
5186 
5187 static bool exclusive_event_installable(struct perf_event *event,
5188 					struct perf_event_context *ctx)
5189 {
5190 	struct perf_event *iter_event;
5191 	struct pmu *pmu = event->pmu;
5192 
5193 	lockdep_assert_held(&ctx->mutex);
5194 
5195 	if (!is_exclusive_pmu(pmu))
5196 		return true;
5197 
5198 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5199 		if (exclusive_event_match(iter_event, event))
5200 			return false;
5201 	}
5202 
5203 	return true;
5204 }
5205 
5206 static void perf_addr_filters_splice(struct perf_event *event,
5207 				       struct list_head *head);
5208 
5209 static void _free_event(struct perf_event *event)
5210 {
5211 	irq_work_sync(&event->pending_irq);
5212 
5213 	unaccount_event(event);
5214 
5215 	security_perf_event_free(event);
5216 
5217 	if (event->rb) {
5218 		/*
5219 		 * Can happen when we close an event with re-directed output.
5220 		 *
5221 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5222 		 * over us; possibly making our ring_buffer_put() the last.
5223 		 */
5224 		mutex_lock(&event->mmap_mutex);
5225 		ring_buffer_attach(event, NULL);
5226 		mutex_unlock(&event->mmap_mutex);
5227 	}
5228 
5229 	if (is_cgroup_event(event))
5230 		perf_detach_cgroup(event);
5231 
5232 	if (!event->parent) {
5233 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234 			put_callchain_buffers();
5235 	}
5236 
5237 	perf_event_free_bpf_prog(event);
5238 	perf_addr_filters_splice(event, NULL);
5239 	kfree(event->addr_filter_ranges);
5240 
5241 	if (event->destroy)
5242 		event->destroy(event);
5243 
5244 	/*
5245 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5246 	 * hw.target.
5247 	 */
5248 	if (event->hw.target)
5249 		put_task_struct(event->hw.target);
5250 
5251 	if (event->pmu_ctx)
5252 		put_pmu_ctx(event->pmu_ctx);
5253 
5254 	/*
5255 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256 	 * all task references must be cleaned up.
5257 	 */
5258 	if (event->ctx)
5259 		put_ctx(event->ctx);
5260 
5261 	exclusive_event_destroy(event);
5262 	module_put(event->pmu->module);
5263 
5264 	call_rcu(&event->rcu_head, free_event_rcu);
5265 }
5266 
5267 /*
5268  * Used to free events which have a known refcount of 1, such as in error paths
5269  * where the event isn't exposed yet and inherited events.
5270  */
5271 static void free_event(struct perf_event *event)
5272 {
5273 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274 				"unexpected event refcount: %ld; ptr=%p\n",
5275 				atomic_long_read(&event->refcount), event)) {
5276 		/* leak to avoid use-after-free */
5277 		return;
5278 	}
5279 
5280 	_free_event(event);
5281 }
5282 
5283 /*
5284  * Remove user event from the owner task.
5285  */
5286 static void perf_remove_from_owner(struct perf_event *event)
5287 {
5288 	struct task_struct *owner;
5289 
5290 	rcu_read_lock();
5291 	/*
5292 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5293 	 * observe !owner it means the list deletion is complete and we can
5294 	 * indeed free this event, otherwise we need to serialize on
5295 	 * owner->perf_event_mutex.
5296 	 */
5297 	owner = READ_ONCE(event->owner);
5298 	if (owner) {
5299 		/*
5300 		 * Since delayed_put_task_struct() also drops the last
5301 		 * task reference we can safely take a new reference
5302 		 * while holding the rcu_read_lock().
5303 		 */
5304 		get_task_struct(owner);
5305 	}
5306 	rcu_read_unlock();
5307 
5308 	if (owner) {
5309 		/*
5310 		 * If we're here through perf_event_exit_task() we're already
5311 		 * holding ctx->mutex which would be an inversion wrt. the
5312 		 * normal lock order.
5313 		 *
5314 		 * However we can safely take this lock because its the child
5315 		 * ctx->mutex.
5316 		 */
5317 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318 
5319 		/*
5320 		 * We have to re-check the event->owner field, if it is cleared
5321 		 * we raced with perf_event_exit_task(), acquiring the mutex
5322 		 * ensured they're done, and we can proceed with freeing the
5323 		 * event.
5324 		 */
5325 		if (event->owner) {
5326 			list_del_init(&event->owner_entry);
5327 			smp_store_release(&event->owner, NULL);
5328 		}
5329 		mutex_unlock(&owner->perf_event_mutex);
5330 		put_task_struct(owner);
5331 	}
5332 }
5333 
5334 static void put_event(struct perf_event *event)
5335 {
5336 	if (!atomic_long_dec_and_test(&event->refcount))
5337 		return;
5338 
5339 	_free_event(event);
5340 }
5341 
5342 /*
5343  * Kill an event dead; while event:refcount will preserve the event
5344  * object, it will not preserve its functionality. Once the last 'user'
5345  * gives up the object, we'll destroy the thing.
5346  */
5347 int perf_event_release_kernel(struct perf_event *event)
5348 {
5349 	struct perf_event_context *ctx = event->ctx;
5350 	struct perf_event *child, *tmp;
5351 	LIST_HEAD(free_list);
5352 
5353 	/*
5354 	 * If we got here through err_alloc: free_event(event); we will not
5355 	 * have attached to a context yet.
5356 	 */
5357 	if (!ctx) {
5358 		WARN_ON_ONCE(event->attach_state &
5359 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360 		goto no_ctx;
5361 	}
5362 
5363 	if (!is_kernel_event(event))
5364 		perf_remove_from_owner(event);
5365 
5366 	ctx = perf_event_ctx_lock(event);
5367 	WARN_ON_ONCE(ctx->parent_ctx);
5368 
5369 	/*
5370 	 * Mark this event as STATE_DEAD, there is no external reference to it
5371 	 * anymore.
5372 	 *
5373 	 * Anybody acquiring event->child_mutex after the below loop _must_
5374 	 * also see this, most importantly inherit_event() which will avoid
5375 	 * placing more children on the list.
5376 	 *
5377 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5378 	 * child events.
5379 	 */
5380 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5381 
5382 	perf_event_ctx_unlock(event, ctx);
5383 
5384 again:
5385 	mutex_lock(&event->child_mutex);
5386 	list_for_each_entry(child, &event->child_list, child_list) {
5387 
5388 		/*
5389 		 * Cannot change, child events are not migrated, see the
5390 		 * comment with perf_event_ctx_lock_nested().
5391 		 */
5392 		ctx = READ_ONCE(child->ctx);
5393 		/*
5394 		 * Since child_mutex nests inside ctx::mutex, we must jump
5395 		 * through hoops. We start by grabbing a reference on the ctx.
5396 		 *
5397 		 * Since the event cannot get freed while we hold the
5398 		 * child_mutex, the context must also exist and have a !0
5399 		 * reference count.
5400 		 */
5401 		get_ctx(ctx);
5402 
5403 		/*
5404 		 * Now that we have a ctx ref, we can drop child_mutex, and
5405 		 * acquire ctx::mutex without fear of it going away. Then we
5406 		 * can re-acquire child_mutex.
5407 		 */
5408 		mutex_unlock(&event->child_mutex);
5409 		mutex_lock(&ctx->mutex);
5410 		mutex_lock(&event->child_mutex);
5411 
5412 		/*
5413 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5414 		 * state, if child is still the first entry, it didn't get freed
5415 		 * and we can continue doing so.
5416 		 */
5417 		tmp = list_first_entry_or_null(&event->child_list,
5418 					       struct perf_event, child_list);
5419 		if (tmp == child) {
5420 			perf_remove_from_context(child, DETACH_GROUP);
5421 			list_move(&child->child_list, &free_list);
5422 			/*
5423 			 * This matches the refcount bump in inherit_event();
5424 			 * this can't be the last reference.
5425 			 */
5426 			put_event(event);
5427 		}
5428 
5429 		mutex_unlock(&event->child_mutex);
5430 		mutex_unlock(&ctx->mutex);
5431 		put_ctx(ctx);
5432 		goto again;
5433 	}
5434 	mutex_unlock(&event->child_mutex);
5435 
5436 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5437 		void *var = &child->ctx->refcount;
5438 
5439 		list_del(&child->child_list);
5440 		free_event(child);
5441 
5442 		/*
5443 		 * Wake any perf_event_free_task() waiting for this event to be
5444 		 * freed.
5445 		 */
5446 		smp_mb(); /* pairs with wait_var_event() */
5447 		wake_up_var(var);
5448 	}
5449 
5450 no_ctx:
5451 	put_event(event); /* Must be the 'last' reference */
5452 	return 0;
5453 }
5454 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5455 
5456 /*
5457  * Called when the last reference to the file is gone.
5458  */
5459 static int perf_release(struct inode *inode, struct file *file)
5460 {
5461 	perf_event_release_kernel(file->private_data);
5462 	return 0;
5463 }
5464 
5465 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5466 {
5467 	struct perf_event *child;
5468 	u64 total = 0;
5469 
5470 	*enabled = 0;
5471 	*running = 0;
5472 
5473 	mutex_lock(&event->child_mutex);
5474 
5475 	(void)perf_event_read(event, false);
5476 	total += perf_event_count(event);
5477 
5478 	*enabled += event->total_time_enabled +
5479 			atomic64_read(&event->child_total_time_enabled);
5480 	*running += event->total_time_running +
5481 			atomic64_read(&event->child_total_time_running);
5482 
5483 	list_for_each_entry(child, &event->child_list, child_list) {
5484 		(void)perf_event_read(child, false);
5485 		total += perf_event_count(child);
5486 		*enabled += child->total_time_enabled;
5487 		*running += child->total_time_running;
5488 	}
5489 	mutex_unlock(&event->child_mutex);
5490 
5491 	return total;
5492 }
5493 
5494 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5495 {
5496 	struct perf_event_context *ctx;
5497 	u64 count;
5498 
5499 	ctx = perf_event_ctx_lock(event);
5500 	count = __perf_event_read_value(event, enabled, running);
5501 	perf_event_ctx_unlock(event, ctx);
5502 
5503 	return count;
5504 }
5505 EXPORT_SYMBOL_GPL(perf_event_read_value);
5506 
5507 static int __perf_read_group_add(struct perf_event *leader,
5508 					u64 read_format, u64 *values)
5509 {
5510 	struct perf_event_context *ctx = leader->ctx;
5511 	struct perf_event *sub, *parent;
5512 	unsigned long flags;
5513 	int n = 1; /* skip @nr */
5514 	int ret;
5515 
5516 	ret = perf_event_read(leader, true);
5517 	if (ret)
5518 		return ret;
5519 
5520 	raw_spin_lock_irqsave(&ctx->lock, flags);
5521 	/*
5522 	 * Verify the grouping between the parent and child (inherited)
5523 	 * events is still in tact.
5524 	 *
5525 	 * Specifically:
5526 	 *  - leader->ctx->lock pins leader->sibling_list
5527 	 *  - parent->child_mutex pins parent->child_list
5528 	 *  - parent->ctx->mutex pins parent->sibling_list
5529 	 *
5530 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5531 	 * ctx->mutex), group destruction is not atomic between children, also
5532 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5533 	 * group.
5534 	 *
5535 	 * Therefore it is possible to have parent and child groups in a
5536 	 * different configuration and summing over such a beast makes no sense
5537 	 * what so ever.
5538 	 *
5539 	 * Reject this.
5540 	 */
5541 	parent = leader->parent;
5542 	if (parent &&
5543 	    (parent->group_generation != leader->group_generation ||
5544 	     parent->nr_siblings != leader->nr_siblings)) {
5545 		ret = -ECHILD;
5546 		goto unlock;
5547 	}
5548 
5549 	/*
5550 	 * Since we co-schedule groups, {enabled,running} times of siblings
5551 	 * will be identical to those of the leader, so we only publish one
5552 	 * set.
5553 	 */
5554 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5555 		values[n++] += leader->total_time_enabled +
5556 			atomic64_read(&leader->child_total_time_enabled);
5557 	}
5558 
5559 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5560 		values[n++] += leader->total_time_running +
5561 			atomic64_read(&leader->child_total_time_running);
5562 	}
5563 
5564 	/*
5565 	 * Write {count,id} tuples for every sibling.
5566 	 */
5567 	values[n++] += perf_event_count(leader);
5568 	if (read_format & PERF_FORMAT_ID)
5569 		values[n++] = primary_event_id(leader);
5570 	if (read_format & PERF_FORMAT_LOST)
5571 		values[n++] = atomic64_read(&leader->lost_samples);
5572 
5573 	for_each_sibling_event(sub, leader) {
5574 		values[n++] += perf_event_count(sub);
5575 		if (read_format & PERF_FORMAT_ID)
5576 			values[n++] = primary_event_id(sub);
5577 		if (read_format & PERF_FORMAT_LOST)
5578 			values[n++] = atomic64_read(&sub->lost_samples);
5579 	}
5580 
5581 unlock:
5582 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5583 	return ret;
5584 }
5585 
5586 static int perf_read_group(struct perf_event *event,
5587 				   u64 read_format, char __user *buf)
5588 {
5589 	struct perf_event *leader = event->group_leader, *child;
5590 	struct perf_event_context *ctx = leader->ctx;
5591 	int ret;
5592 	u64 *values;
5593 
5594 	lockdep_assert_held(&ctx->mutex);
5595 
5596 	values = kzalloc(event->read_size, GFP_KERNEL);
5597 	if (!values)
5598 		return -ENOMEM;
5599 
5600 	values[0] = 1 + leader->nr_siblings;
5601 
5602 	mutex_lock(&leader->child_mutex);
5603 
5604 	ret = __perf_read_group_add(leader, read_format, values);
5605 	if (ret)
5606 		goto unlock;
5607 
5608 	list_for_each_entry(child, &leader->child_list, child_list) {
5609 		ret = __perf_read_group_add(child, read_format, values);
5610 		if (ret)
5611 			goto unlock;
5612 	}
5613 
5614 	mutex_unlock(&leader->child_mutex);
5615 
5616 	ret = event->read_size;
5617 	if (copy_to_user(buf, values, event->read_size))
5618 		ret = -EFAULT;
5619 	goto out;
5620 
5621 unlock:
5622 	mutex_unlock(&leader->child_mutex);
5623 out:
5624 	kfree(values);
5625 	return ret;
5626 }
5627 
5628 static int perf_read_one(struct perf_event *event,
5629 				 u64 read_format, char __user *buf)
5630 {
5631 	u64 enabled, running;
5632 	u64 values[5];
5633 	int n = 0;
5634 
5635 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5636 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5637 		values[n++] = enabled;
5638 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639 		values[n++] = running;
5640 	if (read_format & PERF_FORMAT_ID)
5641 		values[n++] = primary_event_id(event);
5642 	if (read_format & PERF_FORMAT_LOST)
5643 		values[n++] = atomic64_read(&event->lost_samples);
5644 
5645 	if (copy_to_user(buf, values, n * sizeof(u64)))
5646 		return -EFAULT;
5647 
5648 	return n * sizeof(u64);
5649 }
5650 
5651 static bool is_event_hup(struct perf_event *event)
5652 {
5653 	bool no_children;
5654 
5655 	if (event->state > PERF_EVENT_STATE_EXIT)
5656 		return false;
5657 
5658 	mutex_lock(&event->child_mutex);
5659 	no_children = list_empty(&event->child_list);
5660 	mutex_unlock(&event->child_mutex);
5661 	return no_children;
5662 }
5663 
5664 /*
5665  * Read the performance event - simple non blocking version for now
5666  */
5667 static ssize_t
5668 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5669 {
5670 	u64 read_format = event->attr.read_format;
5671 	int ret;
5672 
5673 	/*
5674 	 * Return end-of-file for a read on an event that is in
5675 	 * error state (i.e. because it was pinned but it couldn't be
5676 	 * scheduled on to the CPU at some point).
5677 	 */
5678 	if (event->state == PERF_EVENT_STATE_ERROR)
5679 		return 0;
5680 
5681 	if (count < event->read_size)
5682 		return -ENOSPC;
5683 
5684 	WARN_ON_ONCE(event->ctx->parent_ctx);
5685 	if (read_format & PERF_FORMAT_GROUP)
5686 		ret = perf_read_group(event, read_format, buf);
5687 	else
5688 		ret = perf_read_one(event, read_format, buf);
5689 
5690 	return ret;
5691 }
5692 
5693 static ssize_t
5694 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5695 {
5696 	struct perf_event *event = file->private_data;
5697 	struct perf_event_context *ctx;
5698 	int ret;
5699 
5700 	ret = security_perf_event_read(event);
5701 	if (ret)
5702 		return ret;
5703 
5704 	ctx = perf_event_ctx_lock(event);
5705 	ret = __perf_read(event, buf, count);
5706 	perf_event_ctx_unlock(event, ctx);
5707 
5708 	return ret;
5709 }
5710 
5711 static __poll_t perf_poll(struct file *file, poll_table *wait)
5712 {
5713 	struct perf_event *event = file->private_data;
5714 	struct perf_buffer *rb;
5715 	__poll_t events = EPOLLHUP;
5716 
5717 	poll_wait(file, &event->waitq, wait);
5718 
5719 	if (is_event_hup(event))
5720 		return events;
5721 
5722 	/*
5723 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5724 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5725 	 */
5726 	mutex_lock(&event->mmap_mutex);
5727 	rb = event->rb;
5728 	if (rb)
5729 		events = atomic_xchg(&rb->poll, 0);
5730 	mutex_unlock(&event->mmap_mutex);
5731 	return events;
5732 }
5733 
5734 static void _perf_event_reset(struct perf_event *event)
5735 {
5736 	(void)perf_event_read(event, false);
5737 	local64_set(&event->count, 0);
5738 	perf_event_update_userpage(event);
5739 }
5740 
5741 /* Assume it's not an event with inherit set. */
5742 u64 perf_event_pause(struct perf_event *event, bool reset)
5743 {
5744 	struct perf_event_context *ctx;
5745 	u64 count;
5746 
5747 	ctx = perf_event_ctx_lock(event);
5748 	WARN_ON_ONCE(event->attr.inherit);
5749 	_perf_event_disable(event);
5750 	count = local64_read(&event->count);
5751 	if (reset)
5752 		local64_set(&event->count, 0);
5753 	perf_event_ctx_unlock(event, ctx);
5754 
5755 	return count;
5756 }
5757 EXPORT_SYMBOL_GPL(perf_event_pause);
5758 
5759 /*
5760  * Holding the top-level event's child_mutex means that any
5761  * descendant process that has inherited this event will block
5762  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5763  * task existence requirements of perf_event_enable/disable.
5764  */
5765 static void perf_event_for_each_child(struct perf_event *event,
5766 					void (*func)(struct perf_event *))
5767 {
5768 	struct perf_event *child;
5769 
5770 	WARN_ON_ONCE(event->ctx->parent_ctx);
5771 
5772 	mutex_lock(&event->child_mutex);
5773 	func(event);
5774 	list_for_each_entry(child, &event->child_list, child_list)
5775 		func(child);
5776 	mutex_unlock(&event->child_mutex);
5777 }
5778 
5779 static void perf_event_for_each(struct perf_event *event,
5780 				  void (*func)(struct perf_event *))
5781 {
5782 	struct perf_event_context *ctx = event->ctx;
5783 	struct perf_event *sibling;
5784 
5785 	lockdep_assert_held(&ctx->mutex);
5786 
5787 	event = event->group_leader;
5788 
5789 	perf_event_for_each_child(event, func);
5790 	for_each_sibling_event(sibling, event)
5791 		perf_event_for_each_child(sibling, func);
5792 }
5793 
5794 static void __perf_event_period(struct perf_event *event,
5795 				struct perf_cpu_context *cpuctx,
5796 				struct perf_event_context *ctx,
5797 				void *info)
5798 {
5799 	u64 value = *((u64 *)info);
5800 	bool active;
5801 
5802 	if (event->attr.freq) {
5803 		event->attr.sample_freq = value;
5804 	} else {
5805 		event->attr.sample_period = value;
5806 		event->hw.sample_period = value;
5807 	}
5808 
5809 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5810 	if (active) {
5811 		perf_pmu_disable(event->pmu);
5812 		/*
5813 		 * We could be throttled; unthrottle now to avoid the tick
5814 		 * trying to unthrottle while we already re-started the event.
5815 		 */
5816 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5817 			event->hw.interrupts = 0;
5818 			perf_log_throttle(event, 1);
5819 		}
5820 		event->pmu->stop(event, PERF_EF_UPDATE);
5821 	}
5822 
5823 	local64_set(&event->hw.period_left, 0);
5824 
5825 	if (active) {
5826 		event->pmu->start(event, PERF_EF_RELOAD);
5827 		perf_pmu_enable(event->pmu);
5828 	}
5829 }
5830 
5831 static int perf_event_check_period(struct perf_event *event, u64 value)
5832 {
5833 	return event->pmu->check_period(event, value);
5834 }
5835 
5836 static int _perf_event_period(struct perf_event *event, u64 value)
5837 {
5838 	if (!is_sampling_event(event))
5839 		return -EINVAL;
5840 
5841 	if (!value)
5842 		return -EINVAL;
5843 
5844 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5845 		return -EINVAL;
5846 
5847 	if (perf_event_check_period(event, value))
5848 		return -EINVAL;
5849 
5850 	if (!event->attr.freq && (value & (1ULL << 63)))
5851 		return -EINVAL;
5852 
5853 	event_function_call(event, __perf_event_period, &value);
5854 
5855 	return 0;
5856 }
5857 
5858 int perf_event_period(struct perf_event *event, u64 value)
5859 {
5860 	struct perf_event_context *ctx;
5861 	int ret;
5862 
5863 	ctx = perf_event_ctx_lock(event);
5864 	ret = _perf_event_period(event, value);
5865 	perf_event_ctx_unlock(event, ctx);
5866 
5867 	return ret;
5868 }
5869 EXPORT_SYMBOL_GPL(perf_event_period);
5870 
5871 static const struct file_operations perf_fops;
5872 
5873 static inline int perf_fget_light(int fd, struct fd *p)
5874 {
5875 	struct fd f = fdget(fd);
5876 	if (!f.file)
5877 		return -EBADF;
5878 
5879 	if (f.file->f_op != &perf_fops) {
5880 		fdput(f);
5881 		return -EBADF;
5882 	}
5883 	*p = f;
5884 	return 0;
5885 }
5886 
5887 static int perf_event_set_output(struct perf_event *event,
5888 				 struct perf_event *output_event);
5889 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5890 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5891 			  struct perf_event_attr *attr);
5892 
5893 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5894 {
5895 	void (*func)(struct perf_event *);
5896 	u32 flags = arg;
5897 
5898 	switch (cmd) {
5899 	case PERF_EVENT_IOC_ENABLE:
5900 		func = _perf_event_enable;
5901 		break;
5902 	case PERF_EVENT_IOC_DISABLE:
5903 		func = _perf_event_disable;
5904 		break;
5905 	case PERF_EVENT_IOC_RESET:
5906 		func = _perf_event_reset;
5907 		break;
5908 
5909 	case PERF_EVENT_IOC_REFRESH:
5910 		return _perf_event_refresh(event, arg);
5911 
5912 	case PERF_EVENT_IOC_PERIOD:
5913 	{
5914 		u64 value;
5915 
5916 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5917 			return -EFAULT;
5918 
5919 		return _perf_event_period(event, value);
5920 	}
5921 	case PERF_EVENT_IOC_ID:
5922 	{
5923 		u64 id = primary_event_id(event);
5924 
5925 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5926 			return -EFAULT;
5927 		return 0;
5928 	}
5929 
5930 	case PERF_EVENT_IOC_SET_OUTPUT:
5931 	{
5932 		int ret;
5933 		if (arg != -1) {
5934 			struct perf_event *output_event;
5935 			struct fd output;
5936 			ret = perf_fget_light(arg, &output);
5937 			if (ret)
5938 				return ret;
5939 			output_event = output.file->private_data;
5940 			ret = perf_event_set_output(event, output_event);
5941 			fdput(output);
5942 		} else {
5943 			ret = perf_event_set_output(event, NULL);
5944 		}
5945 		return ret;
5946 	}
5947 
5948 	case PERF_EVENT_IOC_SET_FILTER:
5949 		return perf_event_set_filter(event, (void __user *)arg);
5950 
5951 	case PERF_EVENT_IOC_SET_BPF:
5952 	{
5953 		struct bpf_prog *prog;
5954 		int err;
5955 
5956 		prog = bpf_prog_get(arg);
5957 		if (IS_ERR(prog))
5958 			return PTR_ERR(prog);
5959 
5960 		err = perf_event_set_bpf_prog(event, prog, 0);
5961 		if (err) {
5962 			bpf_prog_put(prog);
5963 			return err;
5964 		}
5965 
5966 		return 0;
5967 	}
5968 
5969 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5970 		struct perf_buffer *rb;
5971 
5972 		rcu_read_lock();
5973 		rb = rcu_dereference(event->rb);
5974 		if (!rb || !rb->nr_pages) {
5975 			rcu_read_unlock();
5976 			return -EINVAL;
5977 		}
5978 		rb_toggle_paused(rb, !!arg);
5979 		rcu_read_unlock();
5980 		return 0;
5981 	}
5982 
5983 	case PERF_EVENT_IOC_QUERY_BPF:
5984 		return perf_event_query_prog_array(event, (void __user *)arg);
5985 
5986 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5987 		struct perf_event_attr new_attr;
5988 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5989 					 &new_attr);
5990 
5991 		if (err)
5992 			return err;
5993 
5994 		return perf_event_modify_attr(event,  &new_attr);
5995 	}
5996 	default:
5997 		return -ENOTTY;
5998 	}
5999 
6000 	if (flags & PERF_IOC_FLAG_GROUP)
6001 		perf_event_for_each(event, func);
6002 	else
6003 		perf_event_for_each_child(event, func);
6004 
6005 	return 0;
6006 }
6007 
6008 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6009 {
6010 	struct perf_event *event = file->private_data;
6011 	struct perf_event_context *ctx;
6012 	long ret;
6013 
6014 	/* Treat ioctl like writes as it is likely a mutating operation. */
6015 	ret = security_perf_event_write(event);
6016 	if (ret)
6017 		return ret;
6018 
6019 	ctx = perf_event_ctx_lock(event);
6020 	ret = _perf_ioctl(event, cmd, arg);
6021 	perf_event_ctx_unlock(event, ctx);
6022 
6023 	return ret;
6024 }
6025 
6026 #ifdef CONFIG_COMPAT
6027 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6028 				unsigned long arg)
6029 {
6030 	switch (_IOC_NR(cmd)) {
6031 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6032 	case _IOC_NR(PERF_EVENT_IOC_ID):
6033 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6034 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6035 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6036 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6037 			cmd &= ~IOCSIZE_MASK;
6038 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6039 		}
6040 		break;
6041 	}
6042 	return perf_ioctl(file, cmd, arg);
6043 }
6044 #else
6045 # define perf_compat_ioctl NULL
6046 #endif
6047 
6048 int perf_event_task_enable(void)
6049 {
6050 	struct perf_event_context *ctx;
6051 	struct perf_event *event;
6052 
6053 	mutex_lock(&current->perf_event_mutex);
6054 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6055 		ctx = perf_event_ctx_lock(event);
6056 		perf_event_for_each_child(event, _perf_event_enable);
6057 		perf_event_ctx_unlock(event, ctx);
6058 	}
6059 	mutex_unlock(&current->perf_event_mutex);
6060 
6061 	return 0;
6062 }
6063 
6064 int perf_event_task_disable(void)
6065 {
6066 	struct perf_event_context *ctx;
6067 	struct perf_event *event;
6068 
6069 	mutex_lock(&current->perf_event_mutex);
6070 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6071 		ctx = perf_event_ctx_lock(event);
6072 		perf_event_for_each_child(event, _perf_event_disable);
6073 		perf_event_ctx_unlock(event, ctx);
6074 	}
6075 	mutex_unlock(&current->perf_event_mutex);
6076 
6077 	return 0;
6078 }
6079 
6080 static int perf_event_index(struct perf_event *event)
6081 {
6082 	if (event->hw.state & PERF_HES_STOPPED)
6083 		return 0;
6084 
6085 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6086 		return 0;
6087 
6088 	return event->pmu->event_idx(event);
6089 }
6090 
6091 static void perf_event_init_userpage(struct perf_event *event)
6092 {
6093 	struct perf_event_mmap_page *userpg;
6094 	struct perf_buffer *rb;
6095 
6096 	rcu_read_lock();
6097 	rb = rcu_dereference(event->rb);
6098 	if (!rb)
6099 		goto unlock;
6100 
6101 	userpg = rb->user_page;
6102 
6103 	/* Allow new userspace to detect that bit 0 is deprecated */
6104 	userpg->cap_bit0_is_deprecated = 1;
6105 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6106 	userpg->data_offset = PAGE_SIZE;
6107 	userpg->data_size = perf_data_size(rb);
6108 
6109 unlock:
6110 	rcu_read_unlock();
6111 }
6112 
6113 void __weak arch_perf_update_userpage(
6114 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6115 {
6116 }
6117 
6118 /*
6119  * Callers need to ensure there can be no nesting of this function, otherwise
6120  * the seqlock logic goes bad. We can not serialize this because the arch
6121  * code calls this from NMI context.
6122  */
6123 void perf_event_update_userpage(struct perf_event *event)
6124 {
6125 	struct perf_event_mmap_page *userpg;
6126 	struct perf_buffer *rb;
6127 	u64 enabled, running, now;
6128 
6129 	rcu_read_lock();
6130 	rb = rcu_dereference(event->rb);
6131 	if (!rb)
6132 		goto unlock;
6133 
6134 	/*
6135 	 * compute total_time_enabled, total_time_running
6136 	 * based on snapshot values taken when the event
6137 	 * was last scheduled in.
6138 	 *
6139 	 * we cannot simply called update_context_time()
6140 	 * because of locking issue as we can be called in
6141 	 * NMI context
6142 	 */
6143 	calc_timer_values(event, &now, &enabled, &running);
6144 
6145 	userpg = rb->user_page;
6146 	/*
6147 	 * Disable preemption to guarantee consistent time stamps are stored to
6148 	 * the user page.
6149 	 */
6150 	preempt_disable();
6151 	++userpg->lock;
6152 	barrier();
6153 	userpg->index = perf_event_index(event);
6154 	userpg->offset = perf_event_count(event);
6155 	if (userpg->index)
6156 		userpg->offset -= local64_read(&event->hw.prev_count);
6157 
6158 	userpg->time_enabled = enabled +
6159 			atomic64_read(&event->child_total_time_enabled);
6160 
6161 	userpg->time_running = running +
6162 			atomic64_read(&event->child_total_time_running);
6163 
6164 	arch_perf_update_userpage(event, userpg, now);
6165 
6166 	barrier();
6167 	++userpg->lock;
6168 	preempt_enable();
6169 unlock:
6170 	rcu_read_unlock();
6171 }
6172 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6173 
6174 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6175 {
6176 	struct perf_event *event = vmf->vma->vm_file->private_data;
6177 	struct perf_buffer *rb;
6178 	vm_fault_t ret = VM_FAULT_SIGBUS;
6179 
6180 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6181 		if (vmf->pgoff == 0)
6182 			ret = 0;
6183 		return ret;
6184 	}
6185 
6186 	rcu_read_lock();
6187 	rb = rcu_dereference(event->rb);
6188 	if (!rb)
6189 		goto unlock;
6190 
6191 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6192 		goto unlock;
6193 
6194 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6195 	if (!vmf->page)
6196 		goto unlock;
6197 
6198 	get_page(vmf->page);
6199 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6200 	vmf->page->index   = vmf->pgoff;
6201 
6202 	ret = 0;
6203 unlock:
6204 	rcu_read_unlock();
6205 
6206 	return ret;
6207 }
6208 
6209 static void ring_buffer_attach(struct perf_event *event,
6210 			       struct perf_buffer *rb)
6211 {
6212 	struct perf_buffer *old_rb = NULL;
6213 	unsigned long flags;
6214 
6215 	WARN_ON_ONCE(event->parent);
6216 
6217 	if (event->rb) {
6218 		/*
6219 		 * Should be impossible, we set this when removing
6220 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6221 		 */
6222 		WARN_ON_ONCE(event->rcu_pending);
6223 
6224 		old_rb = event->rb;
6225 		spin_lock_irqsave(&old_rb->event_lock, flags);
6226 		list_del_rcu(&event->rb_entry);
6227 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6228 
6229 		event->rcu_batches = get_state_synchronize_rcu();
6230 		event->rcu_pending = 1;
6231 	}
6232 
6233 	if (rb) {
6234 		if (event->rcu_pending) {
6235 			cond_synchronize_rcu(event->rcu_batches);
6236 			event->rcu_pending = 0;
6237 		}
6238 
6239 		spin_lock_irqsave(&rb->event_lock, flags);
6240 		list_add_rcu(&event->rb_entry, &rb->event_list);
6241 		spin_unlock_irqrestore(&rb->event_lock, flags);
6242 	}
6243 
6244 	/*
6245 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6246 	 * before swizzling the event::rb pointer; if it's getting
6247 	 * unmapped, its aux_mmap_count will be 0 and it won't
6248 	 * restart. See the comment in __perf_pmu_output_stop().
6249 	 *
6250 	 * Data will inevitably be lost when set_output is done in
6251 	 * mid-air, but then again, whoever does it like this is
6252 	 * not in for the data anyway.
6253 	 */
6254 	if (has_aux(event))
6255 		perf_event_stop(event, 0);
6256 
6257 	rcu_assign_pointer(event->rb, rb);
6258 
6259 	if (old_rb) {
6260 		ring_buffer_put(old_rb);
6261 		/*
6262 		 * Since we detached before setting the new rb, so that we
6263 		 * could attach the new rb, we could have missed a wakeup.
6264 		 * Provide it now.
6265 		 */
6266 		wake_up_all(&event->waitq);
6267 	}
6268 }
6269 
6270 static void ring_buffer_wakeup(struct perf_event *event)
6271 {
6272 	struct perf_buffer *rb;
6273 
6274 	if (event->parent)
6275 		event = event->parent;
6276 
6277 	rcu_read_lock();
6278 	rb = rcu_dereference(event->rb);
6279 	if (rb) {
6280 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6281 			wake_up_all(&event->waitq);
6282 	}
6283 	rcu_read_unlock();
6284 }
6285 
6286 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6287 {
6288 	struct perf_buffer *rb;
6289 
6290 	if (event->parent)
6291 		event = event->parent;
6292 
6293 	rcu_read_lock();
6294 	rb = rcu_dereference(event->rb);
6295 	if (rb) {
6296 		if (!refcount_inc_not_zero(&rb->refcount))
6297 			rb = NULL;
6298 	}
6299 	rcu_read_unlock();
6300 
6301 	return rb;
6302 }
6303 
6304 void ring_buffer_put(struct perf_buffer *rb)
6305 {
6306 	if (!refcount_dec_and_test(&rb->refcount))
6307 		return;
6308 
6309 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6310 
6311 	call_rcu(&rb->rcu_head, rb_free_rcu);
6312 }
6313 
6314 static void perf_mmap_open(struct vm_area_struct *vma)
6315 {
6316 	struct perf_event *event = vma->vm_file->private_data;
6317 
6318 	atomic_inc(&event->mmap_count);
6319 	atomic_inc(&event->rb->mmap_count);
6320 
6321 	if (vma->vm_pgoff)
6322 		atomic_inc(&event->rb->aux_mmap_count);
6323 
6324 	if (event->pmu->event_mapped)
6325 		event->pmu->event_mapped(event, vma->vm_mm);
6326 }
6327 
6328 static void perf_pmu_output_stop(struct perf_event *event);
6329 
6330 /*
6331  * A buffer can be mmap()ed multiple times; either directly through the same
6332  * event, or through other events by use of perf_event_set_output().
6333  *
6334  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6335  * the buffer here, where we still have a VM context. This means we need
6336  * to detach all events redirecting to us.
6337  */
6338 static void perf_mmap_close(struct vm_area_struct *vma)
6339 {
6340 	struct perf_event *event = vma->vm_file->private_data;
6341 	struct perf_buffer *rb = ring_buffer_get(event);
6342 	struct user_struct *mmap_user = rb->mmap_user;
6343 	int mmap_locked = rb->mmap_locked;
6344 	unsigned long size = perf_data_size(rb);
6345 	bool detach_rest = false;
6346 
6347 	if (event->pmu->event_unmapped)
6348 		event->pmu->event_unmapped(event, vma->vm_mm);
6349 
6350 	/*
6351 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6352 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6353 	 * serialize with perf_mmap here.
6354 	 */
6355 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6356 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6357 		/*
6358 		 * Stop all AUX events that are writing to this buffer,
6359 		 * so that we can free its AUX pages and corresponding PMU
6360 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6361 		 * they won't start any more (see perf_aux_output_begin()).
6362 		 */
6363 		perf_pmu_output_stop(event);
6364 
6365 		/* now it's safe to free the pages */
6366 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6367 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6368 
6369 		/* this has to be the last one */
6370 		rb_free_aux(rb);
6371 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6372 
6373 		mutex_unlock(&event->mmap_mutex);
6374 	}
6375 
6376 	if (atomic_dec_and_test(&rb->mmap_count))
6377 		detach_rest = true;
6378 
6379 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6380 		goto out_put;
6381 
6382 	ring_buffer_attach(event, NULL);
6383 	mutex_unlock(&event->mmap_mutex);
6384 
6385 	/* If there's still other mmap()s of this buffer, we're done. */
6386 	if (!detach_rest)
6387 		goto out_put;
6388 
6389 	/*
6390 	 * No other mmap()s, detach from all other events that might redirect
6391 	 * into the now unreachable buffer. Somewhat complicated by the
6392 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6393 	 */
6394 again:
6395 	rcu_read_lock();
6396 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6397 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6398 			/*
6399 			 * This event is en-route to free_event() which will
6400 			 * detach it and remove it from the list.
6401 			 */
6402 			continue;
6403 		}
6404 		rcu_read_unlock();
6405 
6406 		mutex_lock(&event->mmap_mutex);
6407 		/*
6408 		 * Check we didn't race with perf_event_set_output() which can
6409 		 * swizzle the rb from under us while we were waiting to
6410 		 * acquire mmap_mutex.
6411 		 *
6412 		 * If we find a different rb; ignore this event, a next
6413 		 * iteration will no longer find it on the list. We have to
6414 		 * still restart the iteration to make sure we're not now
6415 		 * iterating the wrong list.
6416 		 */
6417 		if (event->rb == rb)
6418 			ring_buffer_attach(event, NULL);
6419 
6420 		mutex_unlock(&event->mmap_mutex);
6421 		put_event(event);
6422 
6423 		/*
6424 		 * Restart the iteration; either we're on the wrong list or
6425 		 * destroyed its integrity by doing a deletion.
6426 		 */
6427 		goto again;
6428 	}
6429 	rcu_read_unlock();
6430 
6431 	/*
6432 	 * It could be there's still a few 0-ref events on the list; they'll
6433 	 * get cleaned up by free_event() -- they'll also still have their
6434 	 * ref on the rb and will free it whenever they are done with it.
6435 	 *
6436 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6437 	 * undo the VM accounting.
6438 	 */
6439 
6440 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6441 			&mmap_user->locked_vm);
6442 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6443 	free_uid(mmap_user);
6444 
6445 out_put:
6446 	ring_buffer_put(rb); /* could be last */
6447 }
6448 
6449 static const struct vm_operations_struct perf_mmap_vmops = {
6450 	.open		= perf_mmap_open,
6451 	.close		= perf_mmap_close, /* non mergeable */
6452 	.fault		= perf_mmap_fault,
6453 	.page_mkwrite	= perf_mmap_fault,
6454 };
6455 
6456 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6457 {
6458 	struct perf_event *event = file->private_data;
6459 	unsigned long user_locked, user_lock_limit;
6460 	struct user_struct *user = current_user();
6461 	struct perf_buffer *rb = NULL;
6462 	unsigned long locked, lock_limit;
6463 	unsigned long vma_size;
6464 	unsigned long nr_pages;
6465 	long user_extra = 0, extra = 0;
6466 	int ret = 0, flags = 0;
6467 
6468 	/*
6469 	 * Don't allow mmap() of inherited per-task counters. This would
6470 	 * create a performance issue due to all children writing to the
6471 	 * same rb.
6472 	 */
6473 	if (event->cpu == -1 && event->attr.inherit)
6474 		return -EINVAL;
6475 
6476 	if (!(vma->vm_flags & VM_SHARED))
6477 		return -EINVAL;
6478 
6479 	ret = security_perf_event_read(event);
6480 	if (ret)
6481 		return ret;
6482 
6483 	vma_size = vma->vm_end - vma->vm_start;
6484 
6485 	if (vma->vm_pgoff == 0) {
6486 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6487 	} else {
6488 		/*
6489 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6490 		 * mapped, all subsequent mappings should have the same size
6491 		 * and offset. Must be above the normal perf buffer.
6492 		 */
6493 		u64 aux_offset, aux_size;
6494 
6495 		if (!event->rb)
6496 			return -EINVAL;
6497 
6498 		nr_pages = vma_size / PAGE_SIZE;
6499 
6500 		mutex_lock(&event->mmap_mutex);
6501 		ret = -EINVAL;
6502 
6503 		rb = event->rb;
6504 		if (!rb)
6505 			goto aux_unlock;
6506 
6507 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6508 		aux_size = READ_ONCE(rb->user_page->aux_size);
6509 
6510 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6511 			goto aux_unlock;
6512 
6513 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6514 			goto aux_unlock;
6515 
6516 		/* already mapped with a different offset */
6517 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6518 			goto aux_unlock;
6519 
6520 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6521 			goto aux_unlock;
6522 
6523 		/* already mapped with a different size */
6524 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6525 			goto aux_unlock;
6526 
6527 		if (!is_power_of_2(nr_pages))
6528 			goto aux_unlock;
6529 
6530 		if (!atomic_inc_not_zero(&rb->mmap_count))
6531 			goto aux_unlock;
6532 
6533 		if (rb_has_aux(rb)) {
6534 			atomic_inc(&rb->aux_mmap_count);
6535 			ret = 0;
6536 			goto unlock;
6537 		}
6538 
6539 		atomic_set(&rb->aux_mmap_count, 1);
6540 		user_extra = nr_pages;
6541 
6542 		goto accounting;
6543 	}
6544 
6545 	/*
6546 	 * If we have rb pages ensure they're a power-of-two number, so we
6547 	 * can do bitmasks instead of modulo.
6548 	 */
6549 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6550 		return -EINVAL;
6551 
6552 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6553 		return -EINVAL;
6554 
6555 	WARN_ON_ONCE(event->ctx->parent_ctx);
6556 again:
6557 	mutex_lock(&event->mmap_mutex);
6558 	if (event->rb) {
6559 		if (data_page_nr(event->rb) != nr_pages) {
6560 			ret = -EINVAL;
6561 			goto unlock;
6562 		}
6563 
6564 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6565 			/*
6566 			 * Raced against perf_mmap_close(); remove the
6567 			 * event and try again.
6568 			 */
6569 			ring_buffer_attach(event, NULL);
6570 			mutex_unlock(&event->mmap_mutex);
6571 			goto again;
6572 		}
6573 
6574 		goto unlock;
6575 	}
6576 
6577 	user_extra = nr_pages + 1;
6578 
6579 accounting:
6580 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6581 
6582 	/*
6583 	 * Increase the limit linearly with more CPUs:
6584 	 */
6585 	user_lock_limit *= num_online_cpus();
6586 
6587 	user_locked = atomic_long_read(&user->locked_vm);
6588 
6589 	/*
6590 	 * sysctl_perf_event_mlock may have changed, so that
6591 	 *     user->locked_vm > user_lock_limit
6592 	 */
6593 	if (user_locked > user_lock_limit)
6594 		user_locked = user_lock_limit;
6595 	user_locked += user_extra;
6596 
6597 	if (user_locked > user_lock_limit) {
6598 		/*
6599 		 * charge locked_vm until it hits user_lock_limit;
6600 		 * charge the rest from pinned_vm
6601 		 */
6602 		extra = user_locked - user_lock_limit;
6603 		user_extra -= extra;
6604 	}
6605 
6606 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6607 	lock_limit >>= PAGE_SHIFT;
6608 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6609 
6610 	if ((locked > lock_limit) && perf_is_paranoid() &&
6611 		!capable(CAP_IPC_LOCK)) {
6612 		ret = -EPERM;
6613 		goto unlock;
6614 	}
6615 
6616 	WARN_ON(!rb && event->rb);
6617 
6618 	if (vma->vm_flags & VM_WRITE)
6619 		flags |= RING_BUFFER_WRITABLE;
6620 
6621 	if (!rb) {
6622 		rb = rb_alloc(nr_pages,
6623 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6624 			      event->cpu, flags);
6625 
6626 		if (!rb) {
6627 			ret = -ENOMEM;
6628 			goto unlock;
6629 		}
6630 
6631 		atomic_set(&rb->mmap_count, 1);
6632 		rb->mmap_user = get_current_user();
6633 		rb->mmap_locked = extra;
6634 
6635 		ring_buffer_attach(event, rb);
6636 
6637 		perf_event_update_time(event);
6638 		perf_event_init_userpage(event);
6639 		perf_event_update_userpage(event);
6640 	} else {
6641 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6642 				   event->attr.aux_watermark, flags);
6643 		if (!ret)
6644 			rb->aux_mmap_locked = extra;
6645 	}
6646 
6647 unlock:
6648 	if (!ret) {
6649 		atomic_long_add(user_extra, &user->locked_vm);
6650 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6651 
6652 		atomic_inc(&event->mmap_count);
6653 	} else if (rb) {
6654 		atomic_dec(&rb->mmap_count);
6655 	}
6656 aux_unlock:
6657 	mutex_unlock(&event->mmap_mutex);
6658 
6659 	/*
6660 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6661 	 * vma.
6662 	 */
6663 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6664 	vma->vm_ops = &perf_mmap_vmops;
6665 
6666 	if (event->pmu->event_mapped)
6667 		event->pmu->event_mapped(event, vma->vm_mm);
6668 
6669 	return ret;
6670 }
6671 
6672 static int perf_fasync(int fd, struct file *filp, int on)
6673 {
6674 	struct inode *inode = file_inode(filp);
6675 	struct perf_event *event = filp->private_data;
6676 	int retval;
6677 
6678 	inode_lock(inode);
6679 	retval = fasync_helper(fd, filp, on, &event->fasync);
6680 	inode_unlock(inode);
6681 
6682 	if (retval < 0)
6683 		return retval;
6684 
6685 	return 0;
6686 }
6687 
6688 static const struct file_operations perf_fops = {
6689 	.llseek			= no_llseek,
6690 	.release		= perf_release,
6691 	.read			= perf_read,
6692 	.poll			= perf_poll,
6693 	.unlocked_ioctl		= perf_ioctl,
6694 	.compat_ioctl		= perf_compat_ioctl,
6695 	.mmap			= perf_mmap,
6696 	.fasync			= perf_fasync,
6697 };
6698 
6699 /*
6700  * Perf event wakeup
6701  *
6702  * If there's data, ensure we set the poll() state and publish everything
6703  * to user-space before waking everybody up.
6704  */
6705 
6706 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6707 {
6708 	/* only the parent has fasync state */
6709 	if (event->parent)
6710 		event = event->parent;
6711 	return &event->fasync;
6712 }
6713 
6714 void perf_event_wakeup(struct perf_event *event)
6715 {
6716 	ring_buffer_wakeup(event);
6717 
6718 	if (event->pending_kill) {
6719 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6720 		event->pending_kill = 0;
6721 	}
6722 }
6723 
6724 static void perf_sigtrap(struct perf_event *event)
6725 {
6726 	/*
6727 	 * We'd expect this to only occur if the irq_work is delayed and either
6728 	 * ctx->task or current has changed in the meantime. This can be the
6729 	 * case on architectures that do not implement arch_irq_work_raise().
6730 	 */
6731 	if (WARN_ON_ONCE(event->ctx->task != current))
6732 		return;
6733 
6734 	/*
6735 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6736 	 * task exiting.
6737 	 */
6738 	if (current->flags & PF_EXITING)
6739 		return;
6740 
6741 	send_sig_perf((void __user *)event->pending_addr,
6742 		      event->orig_type, event->attr.sig_data);
6743 }
6744 
6745 /*
6746  * Deliver the pending work in-event-context or follow the context.
6747  */
6748 static void __perf_pending_irq(struct perf_event *event)
6749 {
6750 	int cpu = READ_ONCE(event->oncpu);
6751 
6752 	/*
6753 	 * If the event isn't running; we done. event_sched_out() will have
6754 	 * taken care of things.
6755 	 */
6756 	if (cpu < 0)
6757 		return;
6758 
6759 	/*
6760 	 * Yay, we hit home and are in the context of the event.
6761 	 */
6762 	if (cpu == smp_processor_id()) {
6763 		if (event->pending_sigtrap) {
6764 			event->pending_sigtrap = 0;
6765 			perf_sigtrap(event);
6766 			local_dec(&event->ctx->nr_pending);
6767 		}
6768 		if (event->pending_disable) {
6769 			event->pending_disable = 0;
6770 			perf_event_disable_local(event);
6771 		}
6772 		return;
6773 	}
6774 
6775 	/*
6776 	 *  CPU-A			CPU-B
6777 	 *
6778 	 *  perf_event_disable_inatomic()
6779 	 *    @pending_disable = CPU-A;
6780 	 *    irq_work_queue();
6781 	 *
6782 	 *  sched-out
6783 	 *    @pending_disable = -1;
6784 	 *
6785 	 *				sched-in
6786 	 *				perf_event_disable_inatomic()
6787 	 *				  @pending_disable = CPU-B;
6788 	 *				  irq_work_queue(); // FAILS
6789 	 *
6790 	 *  irq_work_run()
6791 	 *    perf_pending_irq()
6792 	 *
6793 	 * But the event runs on CPU-B and wants disabling there.
6794 	 */
6795 	irq_work_queue_on(&event->pending_irq, cpu);
6796 }
6797 
6798 static void perf_pending_irq(struct irq_work *entry)
6799 {
6800 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6801 	int rctx;
6802 
6803 	/*
6804 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6805 	 * and we won't recurse 'further'.
6806 	 */
6807 	rctx = perf_swevent_get_recursion_context();
6808 
6809 	/*
6810 	 * The wakeup isn't bound to the context of the event -- it can happen
6811 	 * irrespective of where the event is.
6812 	 */
6813 	if (event->pending_wakeup) {
6814 		event->pending_wakeup = 0;
6815 		perf_event_wakeup(event);
6816 	}
6817 
6818 	__perf_pending_irq(event);
6819 
6820 	if (rctx >= 0)
6821 		perf_swevent_put_recursion_context(rctx);
6822 }
6823 
6824 static void perf_pending_task(struct callback_head *head)
6825 {
6826 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6827 	int rctx;
6828 
6829 	/*
6830 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6831 	 * and we won't recurse 'further'.
6832 	 */
6833 	preempt_disable_notrace();
6834 	rctx = perf_swevent_get_recursion_context();
6835 
6836 	if (event->pending_work) {
6837 		event->pending_work = 0;
6838 		perf_sigtrap(event);
6839 		local_dec(&event->ctx->nr_pending);
6840 	}
6841 
6842 	if (rctx >= 0)
6843 		perf_swevent_put_recursion_context(rctx);
6844 	preempt_enable_notrace();
6845 
6846 	put_event(event);
6847 }
6848 
6849 #ifdef CONFIG_GUEST_PERF_EVENTS
6850 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6851 
6852 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6853 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6854 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6855 
6856 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6857 {
6858 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6859 		return;
6860 
6861 	rcu_assign_pointer(perf_guest_cbs, cbs);
6862 	static_call_update(__perf_guest_state, cbs->state);
6863 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6864 
6865 	/* Implementing ->handle_intel_pt_intr is optional. */
6866 	if (cbs->handle_intel_pt_intr)
6867 		static_call_update(__perf_guest_handle_intel_pt_intr,
6868 				   cbs->handle_intel_pt_intr);
6869 }
6870 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6871 
6872 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6873 {
6874 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6875 		return;
6876 
6877 	rcu_assign_pointer(perf_guest_cbs, NULL);
6878 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6879 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6880 	static_call_update(__perf_guest_handle_intel_pt_intr,
6881 			   (void *)&__static_call_return0);
6882 	synchronize_rcu();
6883 }
6884 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6885 #endif
6886 
6887 static void
6888 perf_output_sample_regs(struct perf_output_handle *handle,
6889 			struct pt_regs *regs, u64 mask)
6890 {
6891 	int bit;
6892 	DECLARE_BITMAP(_mask, 64);
6893 
6894 	bitmap_from_u64(_mask, mask);
6895 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6896 		u64 val;
6897 
6898 		val = perf_reg_value(regs, bit);
6899 		perf_output_put(handle, val);
6900 	}
6901 }
6902 
6903 static void perf_sample_regs_user(struct perf_regs *regs_user,
6904 				  struct pt_regs *regs)
6905 {
6906 	if (user_mode(regs)) {
6907 		regs_user->abi = perf_reg_abi(current);
6908 		regs_user->regs = regs;
6909 	} else if (!(current->flags & PF_KTHREAD)) {
6910 		perf_get_regs_user(regs_user, regs);
6911 	} else {
6912 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6913 		regs_user->regs = NULL;
6914 	}
6915 }
6916 
6917 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6918 				  struct pt_regs *regs)
6919 {
6920 	regs_intr->regs = regs;
6921 	regs_intr->abi  = perf_reg_abi(current);
6922 }
6923 
6924 
6925 /*
6926  * Get remaining task size from user stack pointer.
6927  *
6928  * It'd be better to take stack vma map and limit this more
6929  * precisely, but there's no way to get it safely under interrupt,
6930  * so using TASK_SIZE as limit.
6931  */
6932 static u64 perf_ustack_task_size(struct pt_regs *regs)
6933 {
6934 	unsigned long addr = perf_user_stack_pointer(regs);
6935 
6936 	if (!addr || addr >= TASK_SIZE)
6937 		return 0;
6938 
6939 	return TASK_SIZE - addr;
6940 }
6941 
6942 static u16
6943 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6944 			struct pt_regs *regs)
6945 {
6946 	u64 task_size;
6947 
6948 	/* No regs, no stack pointer, no dump. */
6949 	if (!regs)
6950 		return 0;
6951 
6952 	/*
6953 	 * Check if we fit in with the requested stack size into the:
6954 	 * - TASK_SIZE
6955 	 *   If we don't, we limit the size to the TASK_SIZE.
6956 	 *
6957 	 * - remaining sample size
6958 	 *   If we don't, we customize the stack size to
6959 	 *   fit in to the remaining sample size.
6960 	 */
6961 
6962 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6963 	stack_size = min(stack_size, (u16) task_size);
6964 
6965 	/* Current header size plus static size and dynamic size. */
6966 	header_size += 2 * sizeof(u64);
6967 
6968 	/* Do we fit in with the current stack dump size? */
6969 	if ((u16) (header_size + stack_size) < header_size) {
6970 		/*
6971 		 * If we overflow the maximum size for the sample,
6972 		 * we customize the stack dump size to fit in.
6973 		 */
6974 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6975 		stack_size = round_up(stack_size, sizeof(u64));
6976 	}
6977 
6978 	return stack_size;
6979 }
6980 
6981 static void
6982 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6983 			  struct pt_regs *regs)
6984 {
6985 	/* Case of a kernel thread, nothing to dump */
6986 	if (!regs) {
6987 		u64 size = 0;
6988 		perf_output_put(handle, size);
6989 	} else {
6990 		unsigned long sp;
6991 		unsigned int rem;
6992 		u64 dyn_size;
6993 
6994 		/*
6995 		 * We dump:
6996 		 * static size
6997 		 *   - the size requested by user or the best one we can fit
6998 		 *     in to the sample max size
6999 		 * data
7000 		 *   - user stack dump data
7001 		 * dynamic size
7002 		 *   - the actual dumped size
7003 		 */
7004 
7005 		/* Static size. */
7006 		perf_output_put(handle, dump_size);
7007 
7008 		/* Data. */
7009 		sp = perf_user_stack_pointer(regs);
7010 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7011 		dyn_size = dump_size - rem;
7012 
7013 		perf_output_skip(handle, rem);
7014 
7015 		/* Dynamic size. */
7016 		perf_output_put(handle, dyn_size);
7017 	}
7018 }
7019 
7020 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7021 					  struct perf_sample_data *data,
7022 					  size_t size)
7023 {
7024 	struct perf_event *sampler = event->aux_event;
7025 	struct perf_buffer *rb;
7026 
7027 	data->aux_size = 0;
7028 
7029 	if (!sampler)
7030 		goto out;
7031 
7032 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7033 		goto out;
7034 
7035 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7036 		goto out;
7037 
7038 	rb = ring_buffer_get(sampler);
7039 	if (!rb)
7040 		goto out;
7041 
7042 	/*
7043 	 * If this is an NMI hit inside sampling code, don't take
7044 	 * the sample. See also perf_aux_sample_output().
7045 	 */
7046 	if (READ_ONCE(rb->aux_in_sampling)) {
7047 		data->aux_size = 0;
7048 	} else {
7049 		size = min_t(size_t, size, perf_aux_size(rb));
7050 		data->aux_size = ALIGN(size, sizeof(u64));
7051 	}
7052 	ring_buffer_put(rb);
7053 
7054 out:
7055 	return data->aux_size;
7056 }
7057 
7058 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7059                                  struct perf_event *event,
7060                                  struct perf_output_handle *handle,
7061                                  unsigned long size)
7062 {
7063 	unsigned long flags;
7064 	long ret;
7065 
7066 	/*
7067 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7068 	 * paths. If we start calling them in NMI context, they may race with
7069 	 * the IRQ ones, that is, for example, re-starting an event that's just
7070 	 * been stopped, which is why we're using a separate callback that
7071 	 * doesn't change the event state.
7072 	 *
7073 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7074 	 */
7075 	local_irq_save(flags);
7076 	/*
7077 	 * Guard against NMI hits inside the critical section;
7078 	 * see also perf_prepare_sample_aux().
7079 	 */
7080 	WRITE_ONCE(rb->aux_in_sampling, 1);
7081 	barrier();
7082 
7083 	ret = event->pmu->snapshot_aux(event, handle, size);
7084 
7085 	barrier();
7086 	WRITE_ONCE(rb->aux_in_sampling, 0);
7087 	local_irq_restore(flags);
7088 
7089 	return ret;
7090 }
7091 
7092 static void perf_aux_sample_output(struct perf_event *event,
7093 				   struct perf_output_handle *handle,
7094 				   struct perf_sample_data *data)
7095 {
7096 	struct perf_event *sampler = event->aux_event;
7097 	struct perf_buffer *rb;
7098 	unsigned long pad;
7099 	long size;
7100 
7101 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7102 		return;
7103 
7104 	rb = ring_buffer_get(sampler);
7105 	if (!rb)
7106 		return;
7107 
7108 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7109 
7110 	/*
7111 	 * An error here means that perf_output_copy() failed (returned a
7112 	 * non-zero surplus that it didn't copy), which in its current
7113 	 * enlightened implementation is not possible. If that changes, we'd
7114 	 * like to know.
7115 	 */
7116 	if (WARN_ON_ONCE(size < 0))
7117 		goto out_put;
7118 
7119 	/*
7120 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7121 	 * perf_prepare_sample_aux(), so should not be more than that.
7122 	 */
7123 	pad = data->aux_size - size;
7124 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7125 		pad = 8;
7126 
7127 	if (pad) {
7128 		u64 zero = 0;
7129 		perf_output_copy(handle, &zero, pad);
7130 	}
7131 
7132 out_put:
7133 	ring_buffer_put(rb);
7134 }
7135 
7136 /*
7137  * A set of common sample data types saved even for non-sample records
7138  * when event->attr.sample_id_all is set.
7139  */
7140 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7141 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7142 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7143 
7144 static void __perf_event_header__init_id(struct perf_sample_data *data,
7145 					 struct perf_event *event,
7146 					 u64 sample_type)
7147 {
7148 	data->type = event->attr.sample_type;
7149 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7150 
7151 	if (sample_type & PERF_SAMPLE_TID) {
7152 		/* namespace issues */
7153 		data->tid_entry.pid = perf_event_pid(event, current);
7154 		data->tid_entry.tid = perf_event_tid(event, current);
7155 	}
7156 
7157 	if (sample_type & PERF_SAMPLE_TIME)
7158 		data->time = perf_event_clock(event);
7159 
7160 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7161 		data->id = primary_event_id(event);
7162 
7163 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7164 		data->stream_id = event->id;
7165 
7166 	if (sample_type & PERF_SAMPLE_CPU) {
7167 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7168 		data->cpu_entry.reserved = 0;
7169 	}
7170 }
7171 
7172 void perf_event_header__init_id(struct perf_event_header *header,
7173 				struct perf_sample_data *data,
7174 				struct perf_event *event)
7175 {
7176 	if (event->attr.sample_id_all) {
7177 		header->size += event->id_header_size;
7178 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7179 	}
7180 }
7181 
7182 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7183 					   struct perf_sample_data *data)
7184 {
7185 	u64 sample_type = data->type;
7186 
7187 	if (sample_type & PERF_SAMPLE_TID)
7188 		perf_output_put(handle, data->tid_entry);
7189 
7190 	if (sample_type & PERF_SAMPLE_TIME)
7191 		perf_output_put(handle, data->time);
7192 
7193 	if (sample_type & PERF_SAMPLE_ID)
7194 		perf_output_put(handle, data->id);
7195 
7196 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7197 		perf_output_put(handle, data->stream_id);
7198 
7199 	if (sample_type & PERF_SAMPLE_CPU)
7200 		perf_output_put(handle, data->cpu_entry);
7201 
7202 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7203 		perf_output_put(handle, data->id);
7204 }
7205 
7206 void perf_event__output_id_sample(struct perf_event *event,
7207 				  struct perf_output_handle *handle,
7208 				  struct perf_sample_data *sample)
7209 {
7210 	if (event->attr.sample_id_all)
7211 		__perf_event__output_id_sample(handle, sample);
7212 }
7213 
7214 static void perf_output_read_one(struct perf_output_handle *handle,
7215 				 struct perf_event *event,
7216 				 u64 enabled, u64 running)
7217 {
7218 	u64 read_format = event->attr.read_format;
7219 	u64 values[5];
7220 	int n = 0;
7221 
7222 	values[n++] = perf_event_count(event);
7223 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7224 		values[n++] = enabled +
7225 			atomic64_read(&event->child_total_time_enabled);
7226 	}
7227 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7228 		values[n++] = running +
7229 			atomic64_read(&event->child_total_time_running);
7230 	}
7231 	if (read_format & PERF_FORMAT_ID)
7232 		values[n++] = primary_event_id(event);
7233 	if (read_format & PERF_FORMAT_LOST)
7234 		values[n++] = atomic64_read(&event->lost_samples);
7235 
7236 	__output_copy(handle, values, n * sizeof(u64));
7237 }
7238 
7239 static void perf_output_read_group(struct perf_output_handle *handle,
7240 			    struct perf_event *event,
7241 			    u64 enabled, u64 running)
7242 {
7243 	struct perf_event *leader = event->group_leader, *sub;
7244 	u64 read_format = event->attr.read_format;
7245 	unsigned long flags;
7246 	u64 values[6];
7247 	int n = 0;
7248 
7249 	/*
7250 	 * Disabling interrupts avoids all counter scheduling
7251 	 * (context switches, timer based rotation and IPIs).
7252 	 */
7253 	local_irq_save(flags);
7254 
7255 	values[n++] = 1 + leader->nr_siblings;
7256 
7257 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7258 		values[n++] = enabled;
7259 
7260 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7261 		values[n++] = running;
7262 
7263 	if ((leader != event) &&
7264 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7265 		leader->pmu->read(leader);
7266 
7267 	values[n++] = perf_event_count(leader);
7268 	if (read_format & PERF_FORMAT_ID)
7269 		values[n++] = primary_event_id(leader);
7270 	if (read_format & PERF_FORMAT_LOST)
7271 		values[n++] = atomic64_read(&leader->lost_samples);
7272 
7273 	__output_copy(handle, values, n * sizeof(u64));
7274 
7275 	for_each_sibling_event(sub, leader) {
7276 		n = 0;
7277 
7278 		if ((sub != event) &&
7279 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7280 			sub->pmu->read(sub);
7281 
7282 		values[n++] = perf_event_count(sub);
7283 		if (read_format & PERF_FORMAT_ID)
7284 			values[n++] = primary_event_id(sub);
7285 		if (read_format & PERF_FORMAT_LOST)
7286 			values[n++] = atomic64_read(&sub->lost_samples);
7287 
7288 		__output_copy(handle, values, n * sizeof(u64));
7289 	}
7290 
7291 	local_irq_restore(flags);
7292 }
7293 
7294 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7295 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7296 
7297 /*
7298  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7299  *
7300  * The problem is that its both hard and excessively expensive to iterate the
7301  * child list, not to mention that its impossible to IPI the children running
7302  * on another CPU, from interrupt/NMI context.
7303  */
7304 static void perf_output_read(struct perf_output_handle *handle,
7305 			     struct perf_event *event)
7306 {
7307 	u64 enabled = 0, running = 0, now;
7308 	u64 read_format = event->attr.read_format;
7309 
7310 	/*
7311 	 * compute total_time_enabled, total_time_running
7312 	 * based on snapshot values taken when the event
7313 	 * was last scheduled in.
7314 	 *
7315 	 * we cannot simply called update_context_time()
7316 	 * because of locking issue as we are called in
7317 	 * NMI context
7318 	 */
7319 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7320 		calc_timer_values(event, &now, &enabled, &running);
7321 
7322 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7323 		perf_output_read_group(handle, event, enabled, running);
7324 	else
7325 		perf_output_read_one(handle, event, enabled, running);
7326 }
7327 
7328 void perf_output_sample(struct perf_output_handle *handle,
7329 			struct perf_event_header *header,
7330 			struct perf_sample_data *data,
7331 			struct perf_event *event)
7332 {
7333 	u64 sample_type = data->type;
7334 
7335 	perf_output_put(handle, *header);
7336 
7337 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7338 		perf_output_put(handle, data->id);
7339 
7340 	if (sample_type & PERF_SAMPLE_IP)
7341 		perf_output_put(handle, data->ip);
7342 
7343 	if (sample_type & PERF_SAMPLE_TID)
7344 		perf_output_put(handle, data->tid_entry);
7345 
7346 	if (sample_type & PERF_SAMPLE_TIME)
7347 		perf_output_put(handle, data->time);
7348 
7349 	if (sample_type & PERF_SAMPLE_ADDR)
7350 		perf_output_put(handle, data->addr);
7351 
7352 	if (sample_type & PERF_SAMPLE_ID)
7353 		perf_output_put(handle, data->id);
7354 
7355 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7356 		perf_output_put(handle, data->stream_id);
7357 
7358 	if (sample_type & PERF_SAMPLE_CPU)
7359 		perf_output_put(handle, data->cpu_entry);
7360 
7361 	if (sample_type & PERF_SAMPLE_PERIOD)
7362 		perf_output_put(handle, data->period);
7363 
7364 	if (sample_type & PERF_SAMPLE_READ)
7365 		perf_output_read(handle, event);
7366 
7367 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7368 		int size = 1;
7369 
7370 		size += data->callchain->nr;
7371 		size *= sizeof(u64);
7372 		__output_copy(handle, data->callchain, size);
7373 	}
7374 
7375 	if (sample_type & PERF_SAMPLE_RAW) {
7376 		struct perf_raw_record *raw = data->raw;
7377 
7378 		if (raw) {
7379 			struct perf_raw_frag *frag = &raw->frag;
7380 
7381 			perf_output_put(handle, raw->size);
7382 			do {
7383 				if (frag->copy) {
7384 					__output_custom(handle, frag->copy,
7385 							frag->data, frag->size);
7386 				} else {
7387 					__output_copy(handle, frag->data,
7388 						      frag->size);
7389 				}
7390 				if (perf_raw_frag_last(frag))
7391 					break;
7392 				frag = frag->next;
7393 			} while (1);
7394 			if (frag->pad)
7395 				__output_skip(handle, NULL, frag->pad);
7396 		} else {
7397 			struct {
7398 				u32	size;
7399 				u32	data;
7400 			} raw = {
7401 				.size = sizeof(u32),
7402 				.data = 0,
7403 			};
7404 			perf_output_put(handle, raw);
7405 		}
7406 	}
7407 
7408 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7409 		if (data->br_stack) {
7410 			size_t size;
7411 
7412 			size = data->br_stack->nr
7413 			     * sizeof(struct perf_branch_entry);
7414 
7415 			perf_output_put(handle, data->br_stack->nr);
7416 			if (branch_sample_hw_index(event))
7417 				perf_output_put(handle, data->br_stack->hw_idx);
7418 			perf_output_copy(handle, data->br_stack->entries, size);
7419 			/*
7420 			 * Add the extension space which is appended
7421 			 * right after the struct perf_branch_stack.
7422 			 */
7423 			if (data->br_stack_cntr) {
7424 				size = data->br_stack->nr * sizeof(u64);
7425 				perf_output_copy(handle, data->br_stack_cntr, size);
7426 			}
7427 		} else {
7428 			/*
7429 			 * we always store at least the value of nr
7430 			 */
7431 			u64 nr = 0;
7432 			perf_output_put(handle, nr);
7433 		}
7434 	}
7435 
7436 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7437 		u64 abi = data->regs_user.abi;
7438 
7439 		/*
7440 		 * If there are no regs to dump, notice it through
7441 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7442 		 */
7443 		perf_output_put(handle, abi);
7444 
7445 		if (abi) {
7446 			u64 mask = event->attr.sample_regs_user;
7447 			perf_output_sample_regs(handle,
7448 						data->regs_user.regs,
7449 						mask);
7450 		}
7451 	}
7452 
7453 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7454 		perf_output_sample_ustack(handle,
7455 					  data->stack_user_size,
7456 					  data->regs_user.regs);
7457 	}
7458 
7459 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7460 		perf_output_put(handle, data->weight.full);
7461 
7462 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7463 		perf_output_put(handle, data->data_src.val);
7464 
7465 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7466 		perf_output_put(handle, data->txn);
7467 
7468 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7469 		u64 abi = data->regs_intr.abi;
7470 		/*
7471 		 * If there are no regs to dump, notice it through
7472 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7473 		 */
7474 		perf_output_put(handle, abi);
7475 
7476 		if (abi) {
7477 			u64 mask = event->attr.sample_regs_intr;
7478 
7479 			perf_output_sample_regs(handle,
7480 						data->regs_intr.regs,
7481 						mask);
7482 		}
7483 	}
7484 
7485 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7486 		perf_output_put(handle, data->phys_addr);
7487 
7488 	if (sample_type & PERF_SAMPLE_CGROUP)
7489 		perf_output_put(handle, data->cgroup);
7490 
7491 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7492 		perf_output_put(handle, data->data_page_size);
7493 
7494 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7495 		perf_output_put(handle, data->code_page_size);
7496 
7497 	if (sample_type & PERF_SAMPLE_AUX) {
7498 		perf_output_put(handle, data->aux_size);
7499 
7500 		if (data->aux_size)
7501 			perf_aux_sample_output(event, handle, data);
7502 	}
7503 
7504 	if (!event->attr.watermark) {
7505 		int wakeup_events = event->attr.wakeup_events;
7506 
7507 		if (wakeup_events) {
7508 			struct perf_buffer *rb = handle->rb;
7509 			int events = local_inc_return(&rb->events);
7510 
7511 			if (events >= wakeup_events) {
7512 				local_sub(wakeup_events, &rb->events);
7513 				local_inc(&rb->wakeup);
7514 			}
7515 		}
7516 	}
7517 }
7518 
7519 static u64 perf_virt_to_phys(u64 virt)
7520 {
7521 	u64 phys_addr = 0;
7522 
7523 	if (!virt)
7524 		return 0;
7525 
7526 	if (virt >= TASK_SIZE) {
7527 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7528 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7529 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7530 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7531 	} else {
7532 		/*
7533 		 * Walking the pages tables for user address.
7534 		 * Interrupts are disabled, so it prevents any tear down
7535 		 * of the page tables.
7536 		 * Try IRQ-safe get_user_page_fast_only first.
7537 		 * If failed, leave phys_addr as 0.
7538 		 */
7539 		if (current->mm != NULL) {
7540 			struct page *p;
7541 
7542 			pagefault_disable();
7543 			if (get_user_page_fast_only(virt, 0, &p)) {
7544 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7545 				put_page(p);
7546 			}
7547 			pagefault_enable();
7548 		}
7549 	}
7550 
7551 	return phys_addr;
7552 }
7553 
7554 /*
7555  * Return the pagetable size of a given virtual address.
7556  */
7557 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7558 {
7559 	u64 size = 0;
7560 
7561 #ifdef CONFIG_HAVE_FAST_GUP
7562 	pgd_t *pgdp, pgd;
7563 	p4d_t *p4dp, p4d;
7564 	pud_t *pudp, pud;
7565 	pmd_t *pmdp, pmd;
7566 	pte_t *ptep, pte;
7567 
7568 	pgdp = pgd_offset(mm, addr);
7569 	pgd = READ_ONCE(*pgdp);
7570 	if (pgd_none(pgd))
7571 		return 0;
7572 
7573 	if (pgd_leaf(pgd))
7574 		return pgd_leaf_size(pgd);
7575 
7576 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7577 	p4d = READ_ONCE(*p4dp);
7578 	if (!p4d_present(p4d))
7579 		return 0;
7580 
7581 	if (p4d_leaf(p4d))
7582 		return p4d_leaf_size(p4d);
7583 
7584 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7585 	pud = READ_ONCE(*pudp);
7586 	if (!pud_present(pud))
7587 		return 0;
7588 
7589 	if (pud_leaf(pud))
7590 		return pud_leaf_size(pud);
7591 
7592 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7593 again:
7594 	pmd = pmdp_get_lockless(pmdp);
7595 	if (!pmd_present(pmd))
7596 		return 0;
7597 
7598 	if (pmd_leaf(pmd))
7599 		return pmd_leaf_size(pmd);
7600 
7601 	ptep = pte_offset_map(&pmd, addr);
7602 	if (!ptep)
7603 		goto again;
7604 
7605 	pte = ptep_get_lockless(ptep);
7606 	if (pte_present(pte))
7607 		size = pte_leaf_size(pte);
7608 	pte_unmap(ptep);
7609 #endif /* CONFIG_HAVE_FAST_GUP */
7610 
7611 	return size;
7612 }
7613 
7614 static u64 perf_get_page_size(unsigned long addr)
7615 {
7616 	struct mm_struct *mm;
7617 	unsigned long flags;
7618 	u64 size;
7619 
7620 	if (!addr)
7621 		return 0;
7622 
7623 	/*
7624 	 * Software page-table walkers must disable IRQs,
7625 	 * which prevents any tear down of the page tables.
7626 	 */
7627 	local_irq_save(flags);
7628 
7629 	mm = current->mm;
7630 	if (!mm) {
7631 		/*
7632 		 * For kernel threads and the like, use init_mm so that
7633 		 * we can find kernel memory.
7634 		 */
7635 		mm = &init_mm;
7636 	}
7637 
7638 	size = perf_get_pgtable_size(mm, addr);
7639 
7640 	local_irq_restore(flags);
7641 
7642 	return size;
7643 }
7644 
7645 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7646 
7647 struct perf_callchain_entry *
7648 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7649 {
7650 	bool kernel = !event->attr.exclude_callchain_kernel;
7651 	bool user   = !event->attr.exclude_callchain_user;
7652 	/* Disallow cross-task user callchains. */
7653 	bool crosstask = event->ctx->task && event->ctx->task != current;
7654 	const u32 max_stack = event->attr.sample_max_stack;
7655 	struct perf_callchain_entry *callchain;
7656 
7657 	if (!kernel && !user)
7658 		return &__empty_callchain;
7659 
7660 	callchain = get_perf_callchain(regs, 0, kernel, user,
7661 				       max_stack, crosstask, true);
7662 	return callchain ?: &__empty_callchain;
7663 }
7664 
7665 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7666 {
7667 	return d * !!(flags & s);
7668 }
7669 
7670 void perf_prepare_sample(struct perf_sample_data *data,
7671 			 struct perf_event *event,
7672 			 struct pt_regs *regs)
7673 {
7674 	u64 sample_type = event->attr.sample_type;
7675 	u64 filtered_sample_type;
7676 
7677 	/*
7678 	 * Add the sample flags that are dependent to others.  And clear the
7679 	 * sample flags that have already been done by the PMU driver.
7680 	 */
7681 	filtered_sample_type = sample_type;
7682 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7683 					   PERF_SAMPLE_IP);
7684 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7685 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7686 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7687 					   PERF_SAMPLE_REGS_USER);
7688 	filtered_sample_type &= ~data->sample_flags;
7689 
7690 	if (filtered_sample_type == 0) {
7691 		/* Make sure it has the correct data->type for output */
7692 		data->type = event->attr.sample_type;
7693 		return;
7694 	}
7695 
7696 	__perf_event_header__init_id(data, event, filtered_sample_type);
7697 
7698 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7699 		data->ip = perf_instruction_pointer(regs);
7700 		data->sample_flags |= PERF_SAMPLE_IP;
7701 	}
7702 
7703 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7704 		perf_sample_save_callchain(data, event, regs);
7705 
7706 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7707 		data->raw = NULL;
7708 		data->dyn_size += sizeof(u64);
7709 		data->sample_flags |= PERF_SAMPLE_RAW;
7710 	}
7711 
7712 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7713 		data->br_stack = NULL;
7714 		data->dyn_size += sizeof(u64);
7715 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7716 	}
7717 
7718 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7719 		perf_sample_regs_user(&data->regs_user, regs);
7720 
7721 	/*
7722 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7723 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7724 	 * the dyn_size if it's not requested by users.
7725 	 */
7726 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7727 		/* regs dump ABI info */
7728 		int size = sizeof(u64);
7729 
7730 		if (data->regs_user.regs) {
7731 			u64 mask = event->attr.sample_regs_user;
7732 			size += hweight64(mask) * sizeof(u64);
7733 		}
7734 
7735 		data->dyn_size += size;
7736 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7737 	}
7738 
7739 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7740 		/*
7741 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7742 		 * processed as the last one or have additional check added
7743 		 * in case new sample type is added, because we could eat
7744 		 * up the rest of the sample size.
7745 		 */
7746 		u16 stack_size = event->attr.sample_stack_user;
7747 		u16 header_size = perf_sample_data_size(data, event);
7748 		u16 size = sizeof(u64);
7749 
7750 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7751 						     data->regs_user.regs);
7752 
7753 		/*
7754 		 * If there is something to dump, add space for the dump
7755 		 * itself and for the field that tells the dynamic size,
7756 		 * which is how many have been actually dumped.
7757 		 */
7758 		if (stack_size)
7759 			size += sizeof(u64) + stack_size;
7760 
7761 		data->stack_user_size = stack_size;
7762 		data->dyn_size += size;
7763 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7764 	}
7765 
7766 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7767 		data->weight.full = 0;
7768 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7769 	}
7770 
7771 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7772 		data->data_src.val = PERF_MEM_NA;
7773 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7774 	}
7775 
7776 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7777 		data->txn = 0;
7778 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7779 	}
7780 
7781 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7782 		data->addr = 0;
7783 		data->sample_flags |= PERF_SAMPLE_ADDR;
7784 	}
7785 
7786 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7787 		/* regs dump ABI info */
7788 		int size = sizeof(u64);
7789 
7790 		perf_sample_regs_intr(&data->regs_intr, regs);
7791 
7792 		if (data->regs_intr.regs) {
7793 			u64 mask = event->attr.sample_regs_intr;
7794 
7795 			size += hweight64(mask) * sizeof(u64);
7796 		}
7797 
7798 		data->dyn_size += size;
7799 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7800 	}
7801 
7802 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7803 		data->phys_addr = perf_virt_to_phys(data->addr);
7804 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7805 	}
7806 
7807 #ifdef CONFIG_CGROUP_PERF
7808 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7809 		struct cgroup *cgrp;
7810 
7811 		/* protected by RCU */
7812 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7813 		data->cgroup = cgroup_id(cgrp);
7814 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7815 	}
7816 #endif
7817 
7818 	/*
7819 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7820 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7821 	 * but the value will not dump to the userspace.
7822 	 */
7823 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7824 		data->data_page_size = perf_get_page_size(data->addr);
7825 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7826 	}
7827 
7828 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7829 		data->code_page_size = perf_get_page_size(data->ip);
7830 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7831 	}
7832 
7833 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7834 		u64 size;
7835 		u16 header_size = perf_sample_data_size(data, event);
7836 
7837 		header_size += sizeof(u64); /* size */
7838 
7839 		/*
7840 		 * Given the 16bit nature of header::size, an AUX sample can
7841 		 * easily overflow it, what with all the preceding sample bits.
7842 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7843 		 * per sample in total (rounded down to 8 byte boundary).
7844 		 */
7845 		size = min_t(size_t, U16_MAX - header_size,
7846 			     event->attr.aux_sample_size);
7847 		size = rounddown(size, 8);
7848 		size = perf_prepare_sample_aux(event, data, size);
7849 
7850 		WARN_ON_ONCE(size + header_size > U16_MAX);
7851 		data->dyn_size += size + sizeof(u64); /* size above */
7852 		data->sample_flags |= PERF_SAMPLE_AUX;
7853 	}
7854 }
7855 
7856 void perf_prepare_header(struct perf_event_header *header,
7857 			 struct perf_sample_data *data,
7858 			 struct perf_event *event,
7859 			 struct pt_regs *regs)
7860 {
7861 	header->type = PERF_RECORD_SAMPLE;
7862 	header->size = perf_sample_data_size(data, event);
7863 	header->misc = perf_misc_flags(regs);
7864 
7865 	/*
7866 	 * If you're adding more sample types here, you likely need to do
7867 	 * something about the overflowing header::size, like repurpose the
7868 	 * lowest 3 bits of size, which should be always zero at the moment.
7869 	 * This raises a more important question, do we really need 512k sized
7870 	 * samples and why, so good argumentation is in order for whatever you
7871 	 * do here next.
7872 	 */
7873 	WARN_ON_ONCE(header->size & 7);
7874 }
7875 
7876 static __always_inline int
7877 __perf_event_output(struct perf_event *event,
7878 		    struct perf_sample_data *data,
7879 		    struct pt_regs *regs,
7880 		    int (*output_begin)(struct perf_output_handle *,
7881 					struct perf_sample_data *,
7882 					struct perf_event *,
7883 					unsigned int))
7884 {
7885 	struct perf_output_handle handle;
7886 	struct perf_event_header header;
7887 	int err;
7888 
7889 	/* protect the callchain buffers */
7890 	rcu_read_lock();
7891 
7892 	perf_prepare_sample(data, event, regs);
7893 	perf_prepare_header(&header, data, event, regs);
7894 
7895 	err = output_begin(&handle, data, event, header.size);
7896 	if (err)
7897 		goto exit;
7898 
7899 	perf_output_sample(&handle, &header, data, event);
7900 
7901 	perf_output_end(&handle);
7902 
7903 exit:
7904 	rcu_read_unlock();
7905 	return err;
7906 }
7907 
7908 void
7909 perf_event_output_forward(struct perf_event *event,
7910 			 struct perf_sample_data *data,
7911 			 struct pt_regs *regs)
7912 {
7913 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7914 }
7915 
7916 void
7917 perf_event_output_backward(struct perf_event *event,
7918 			   struct perf_sample_data *data,
7919 			   struct pt_regs *regs)
7920 {
7921 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7922 }
7923 
7924 int
7925 perf_event_output(struct perf_event *event,
7926 		  struct perf_sample_data *data,
7927 		  struct pt_regs *regs)
7928 {
7929 	return __perf_event_output(event, data, regs, perf_output_begin);
7930 }
7931 
7932 /*
7933  * read event_id
7934  */
7935 
7936 struct perf_read_event {
7937 	struct perf_event_header	header;
7938 
7939 	u32				pid;
7940 	u32				tid;
7941 };
7942 
7943 static void
7944 perf_event_read_event(struct perf_event *event,
7945 			struct task_struct *task)
7946 {
7947 	struct perf_output_handle handle;
7948 	struct perf_sample_data sample;
7949 	struct perf_read_event read_event = {
7950 		.header = {
7951 			.type = PERF_RECORD_READ,
7952 			.misc = 0,
7953 			.size = sizeof(read_event) + event->read_size,
7954 		},
7955 		.pid = perf_event_pid(event, task),
7956 		.tid = perf_event_tid(event, task),
7957 	};
7958 	int ret;
7959 
7960 	perf_event_header__init_id(&read_event.header, &sample, event);
7961 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7962 	if (ret)
7963 		return;
7964 
7965 	perf_output_put(&handle, read_event);
7966 	perf_output_read(&handle, event);
7967 	perf_event__output_id_sample(event, &handle, &sample);
7968 
7969 	perf_output_end(&handle);
7970 }
7971 
7972 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7973 
7974 static void
7975 perf_iterate_ctx(struct perf_event_context *ctx,
7976 		   perf_iterate_f output,
7977 		   void *data, bool all)
7978 {
7979 	struct perf_event *event;
7980 
7981 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7982 		if (!all) {
7983 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7984 				continue;
7985 			if (!event_filter_match(event))
7986 				continue;
7987 		}
7988 
7989 		output(event, data);
7990 	}
7991 }
7992 
7993 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7994 {
7995 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7996 	struct perf_event *event;
7997 
7998 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7999 		/*
8000 		 * Skip events that are not fully formed yet; ensure that
8001 		 * if we observe event->ctx, both event and ctx will be
8002 		 * complete enough. See perf_install_in_context().
8003 		 */
8004 		if (!smp_load_acquire(&event->ctx))
8005 			continue;
8006 
8007 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8008 			continue;
8009 		if (!event_filter_match(event))
8010 			continue;
8011 		output(event, data);
8012 	}
8013 }
8014 
8015 /*
8016  * Iterate all events that need to receive side-band events.
8017  *
8018  * For new callers; ensure that account_pmu_sb_event() includes
8019  * your event, otherwise it might not get delivered.
8020  */
8021 static void
8022 perf_iterate_sb(perf_iterate_f output, void *data,
8023 	       struct perf_event_context *task_ctx)
8024 {
8025 	struct perf_event_context *ctx;
8026 
8027 	rcu_read_lock();
8028 	preempt_disable();
8029 
8030 	/*
8031 	 * If we have task_ctx != NULL we only notify the task context itself.
8032 	 * The task_ctx is set only for EXIT events before releasing task
8033 	 * context.
8034 	 */
8035 	if (task_ctx) {
8036 		perf_iterate_ctx(task_ctx, output, data, false);
8037 		goto done;
8038 	}
8039 
8040 	perf_iterate_sb_cpu(output, data);
8041 
8042 	ctx = rcu_dereference(current->perf_event_ctxp);
8043 	if (ctx)
8044 		perf_iterate_ctx(ctx, output, data, false);
8045 done:
8046 	preempt_enable();
8047 	rcu_read_unlock();
8048 }
8049 
8050 /*
8051  * Clear all file-based filters at exec, they'll have to be
8052  * re-instated when/if these objects are mmapped again.
8053  */
8054 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8055 {
8056 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8057 	struct perf_addr_filter *filter;
8058 	unsigned int restart = 0, count = 0;
8059 	unsigned long flags;
8060 
8061 	if (!has_addr_filter(event))
8062 		return;
8063 
8064 	raw_spin_lock_irqsave(&ifh->lock, flags);
8065 	list_for_each_entry(filter, &ifh->list, entry) {
8066 		if (filter->path.dentry) {
8067 			event->addr_filter_ranges[count].start = 0;
8068 			event->addr_filter_ranges[count].size = 0;
8069 			restart++;
8070 		}
8071 
8072 		count++;
8073 	}
8074 
8075 	if (restart)
8076 		event->addr_filters_gen++;
8077 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8078 
8079 	if (restart)
8080 		perf_event_stop(event, 1);
8081 }
8082 
8083 void perf_event_exec(void)
8084 {
8085 	struct perf_event_context *ctx;
8086 
8087 	ctx = perf_pin_task_context(current);
8088 	if (!ctx)
8089 		return;
8090 
8091 	perf_event_enable_on_exec(ctx);
8092 	perf_event_remove_on_exec(ctx);
8093 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8094 
8095 	perf_unpin_context(ctx);
8096 	put_ctx(ctx);
8097 }
8098 
8099 struct remote_output {
8100 	struct perf_buffer	*rb;
8101 	int			err;
8102 };
8103 
8104 static void __perf_event_output_stop(struct perf_event *event, void *data)
8105 {
8106 	struct perf_event *parent = event->parent;
8107 	struct remote_output *ro = data;
8108 	struct perf_buffer *rb = ro->rb;
8109 	struct stop_event_data sd = {
8110 		.event	= event,
8111 	};
8112 
8113 	if (!has_aux(event))
8114 		return;
8115 
8116 	if (!parent)
8117 		parent = event;
8118 
8119 	/*
8120 	 * In case of inheritance, it will be the parent that links to the
8121 	 * ring-buffer, but it will be the child that's actually using it.
8122 	 *
8123 	 * We are using event::rb to determine if the event should be stopped,
8124 	 * however this may race with ring_buffer_attach() (through set_output),
8125 	 * which will make us skip the event that actually needs to be stopped.
8126 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8127 	 * its rb pointer.
8128 	 */
8129 	if (rcu_dereference(parent->rb) == rb)
8130 		ro->err = __perf_event_stop(&sd);
8131 }
8132 
8133 static int __perf_pmu_output_stop(void *info)
8134 {
8135 	struct perf_event *event = info;
8136 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8137 	struct remote_output ro = {
8138 		.rb	= event->rb,
8139 	};
8140 
8141 	rcu_read_lock();
8142 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8143 	if (cpuctx->task_ctx)
8144 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8145 				   &ro, false);
8146 	rcu_read_unlock();
8147 
8148 	return ro.err;
8149 }
8150 
8151 static void perf_pmu_output_stop(struct perf_event *event)
8152 {
8153 	struct perf_event *iter;
8154 	int err, cpu;
8155 
8156 restart:
8157 	rcu_read_lock();
8158 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8159 		/*
8160 		 * For per-CPU events, we need to make sure that neither they
8161 		 * nor their children are running; for cpu==-1 events it's
8162 		 * sufficient to stop the event itself if it's active, since
8163 		 * it can't have children.
8164 		 */
8165 		cpu = iter->cpu;
8166 		if (cpu == -1)
8167 			cpu = READ_ONCE(iter->oncpu);
8168 
8169 		if (cpu == -1)
8170 			continue;
8171 
8172 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8173 		if (err == -EAGAIN) {
8174 			rcu_read_unlock();
8175 			goto restart;
8176 		}
8177 	}
8178 	rcu_read_unlock();
8179 }
8180 
8181 /*
8182  * task tracking -- fork/exit
8183  *
8184  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8185  */
8186 
8187 struct perf_task_event {
8188 	struct task_struct		*task;
8189 	struct perf_event_context	*task_ctx;
8190 
8191 	struct {
8192 		struct perf_event_header	header;
8193 
8194 		u32				pid;
8195 		u32				ppid;
8196 		u32				tid;
8197 		u32				ptid;
8198 		u64				time;
8199 	} event_id;
8200 };
8201 
8202 static int perf_event_task_match(struct perf_event *event)
8203 {
8204 	return event->attr.comm  || event->attr.mmap ||
8205 	       event->attr.mmap2 || event->attr.mmap_data ||
8206 	       event->attr.task;
8207 }
8208 
8209 static void perf_event_task_output(struct perf_event *event,
8210 				   void *data)
8211 {
8212 	struct perf_task_event *task_event = data;
8213 	struct perf_output_handle handle;
8214 	struct perf_sample_data	sample;
8215 	struct task_struct *task = task_event->task;
8216 	int ret, size = task_event->event_id.header.size;
8217 
8218 	if (!perf_event_task_match(event))
8219 		return;
8220 
8221 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8222 
8223 	ret = perf_output_begin(&handle, &sample, event,
8224 				task_event->event_id.header.size);
8225 	if (ret)
8226 		goto out;
8227 
8228 	task_event->event_id.pid = perf_event_pid(event, task);
8229 	task_event->event_id.tid = perf_event_tid(event, task);
8230 
8231 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8232 		task_event->event_id.ppid = perf_event_pid(event,
8233 							task->real_parent);
8234 		task_event->event_id.ptid = perf_event_pid(event,
8235 							task->real_parent);
8236 	} else {  /* PERF_RECORD_FORK */
8237 		task_event->event_id.ppid = perf_event_pid(event, current);
8238 		task_event->event_id.ptid = perf_event_tid(event, current);
8239 	}
8240 
8241 	task_event->event_id.time = perf_event_clock(event);
8242 
8243 	perf_output_put(&handle, task_event->event_id);
8244 
8245 	perf_event__output_id_sample(event, &handle, &sample);
8246 
8247 	perf_output_end(&handle);
8248 out:
8249 	task_event->event_id.header.size = size;
8250 }
8251 
8252 static void perf_event_task(struct task_struct *task,
8253 			      struct perf_event_context *task_ctx,
8254 			      int new)
8255 {
8256 	struct perf_task_event task_event;
8257 
8258 	if (!atomic_read(&nr_comm_events) &&
8259 	    !atomic_read(&nr_mmap_events) &&
8260 	    !atomic_read(&nr_task_events))
8261 		return;
8262 
8263 	task_event = (struct perf_task_event){
8264 		.task	  = task,
8265 		.task_ctx = task_ctx,
8266 		.event_id    = {
8267 			.header = {
8268 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8269 				.misc = 0,
8270 				.size = sizeof(task_event.event_id),
8271 			},
8272 			/* .pid  */
8273 			/* .ppid */
8274 			/* .tid  */
8275 			/* .ptid */
8276 			/* .time */
8277 		},
8278 	};
8279 
8280 	perf_iterate_sb(perf_event_task_output,
8281 		       &task_event,
8282 		       task_ctx);
8283 }
8284 
8285 void perf_event_fork(struct task_struct *task)
8286 {
8287 	perf_event_task(task, NULL, 1);
8288 	perf_event_namespaces(task);
8289 }
8290 
8291 /*
8292  * comm tracking
8293  */
8294 
8295 struct perf_comm_event {
8296 	struct task_struct	*task;
8297 	char			*comm;
8298 	int			comm_size;
8299 
8300 	struct {
8301 		struct perf_event_header	header;
8302 
8303 		u32				pid;
8304 		u32				tid;
8305 	} event_id;
8306 };
8307 
8308 static int perf_event_comm_match(struct perf_event *event)
8309 {
8310 	return event->attr.comm;
8311 }
8312 
8313 static void perf_event_comm_output(struct perf_event *event,
8314 				   void *data)
8315 {
8316 	struct perf_comm_event *comm_event = data;
8317 	struct perf_output_handle handle;
8318 	struct perf_sample_data sample;
8319 	int size = comm_event->event_id.header.size;
8320 	int ret;
8321 
8322 	if (!perf_event_comm_match(event))
8323 		return;
8324 
8325 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8326 	ret = perf_output_begin(&handle, &sample, event,
8327 				comm_event->event_id.header.size);
8328 
8329 	if (ret)
8330 		goto out;
8331 
8332 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8333 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8334 
8335 	perf_output_put(&handle, comm_event->event_id);
8336 	__output_copy(&handle, comm_event->comm,
8337 				   comm_event->comm_size);
8338 
8339 	perf_event__output_id_sample(event, &handle, &sample);
8340 
8341 	perf_output_end(&handle);
8342 out:
8343 	comm_event->event_id.header.size = size;
8344 }
8345 
8346 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8347 {
8348 	char comm[TASK_COMM_LEN];
8349 	unsigned int size;
8350 
8351 	memset(comm, 0, sizeof(comm));
8352 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8353 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8354 
8355 	comm_event->comm = comm;
8356 	comm_event->comm_size = size;
8357 
8358 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8359 
8360 	perf_iterate_sb(perf_event_comm_output,
8361 		       comm_event,
8362 		       NULL);
8363 }
8364 
8365 void perf_event_comm(struct task_struct *task, bool exec)
8366 {
8367 	struct perf_comm_event comm_event;
8368 
8369 	if (!atomic_read(&nr_comm_events))
8370 		return;
8371 
8372 	comm_event = (struct perf_comm_event){
8373 		.task	= task,
8374 		/* .comm      */
8375 		/* .comm_size */
8376 		.event_id  = {
8377 			.header = {
8378 				.type = PERF_RECORD_COMM,
8379 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8380 				/* .size */
8381 			},
8382 			/* .pid */
8383 			/* .tid */
8384 		},
8385 	};
8386 
8387 	perf_event_comm_event(&comm_event);
8388 }
8389 
8390 /*
8391  * namespaces tracking
8392  */
8393 
8394 struct perf_namespaces_event {
8395 	struct task_struct		*task;
8396 
8397 	struct {
8398 		struct perf_event_header	header;
8399 
8400 		u32				pid;
8401 		u32				tid;
8402 		u64				nr_namespaces;
8403 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8404 	} event_id;
8405 };
8406 
8407 static int perf_event_namespaces_match(struct perf_event *event)
8408 {
8409 	return event->attr.namespaces;
8410 }
8411 
8412 static void perf_event_namespaces_output(struct perf_event *event,
8413 					 void *data)
8414 {
8415 	struct perf_namespaces_event *namespaces_event = data;
8416 	struct perf_output_handle handle;
8417 	struct perf_sample_data sample;
8418 	u16 header_size = namespaces_event->event_id.header.size;
8419 	int ret;
8420 
8421 	if (!perf_event_namespaces_match(event))
8422 		return;
8423 
8424 	perf_event_header__init_id(&namespaces_event->event_id.header,
8425 				   &sample, event);
8426 	ret = perf_output_begin(&handle, &sample, event,
8427 				namespaces_event->event_id.header.size);
8428 	if (ret)
8429 		goto out;
8430 
8431 	namespaces_event->event_id.pid = perf_event_pid(event,
8432 							namespaces_event->task);
8433 	namespaces_event->event_id.tid = perf_event_tid(event,
8434 							namespaces_event->task);
8435 
8436 	perf_output_put(&handle, namespaces_event->event_id);
8437 
8438 	perf_event__output_id_sample(event, &handle, &sample);
8439 
8440 	perf_output_end(&handle);
8441 out:
8442 	namespaces_event->event_id.header.size = header_size;
8443 }
8444 
8445 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8446 				   struct task_struct *task,
8447 				   const struct proc_ns_operations *ns_ops)
8448 {
8449 	struct path ns_path;
8450 	struct inode *ns_inode;
8451 	int error;
8452 
8453 	error = ns_get_path(&ns_path, task, ns_ops);
8454 	if (!error) {
8455 		ns_inode = ns_path.dentry->d_inode;
8456 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8457 		ns_link_info->ino = ns_inode->i_ino;
8458 		path_put(&ns_path);
8459 	}
8460 }
8461 
8462 void perf_event_namespaces(struct task_struct *task)
8463 {
8464 	struct perf_namespaces_event namespaces_event;
8465 	struct perf_ns_link_info *ns_link_info;
8466 
8467 	if (!atomic_read(&nr_namespaces_events))
8468 		return;
8469 
8470 	namespaces_event = (struct perf_namespaces_event){
8471 		.task	= task,
8472 		.event_id  = {
8473 			.header = {
8474 				.type = PERF_RECORD_NAMESPACES,
8475 				.misc = 0,
8476 				.size = sizeof(namespaces_event.event_id),
8477 			},
8478 			/* .pid */
8479 			/* .tid */
8480 			.nr_namespaces = NR_NAMESPACES,
8481 			/* .link_info[NR_NAMESPACES] */
8482 		},
8483 	};
8484 
8485 	ns_link_info = namespaces_event.event_id.link_info;
8486 
8487 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8488 			       task, &mntns_operations);
8489 
8490 #ifdef CONFIG_USER_NS
8491 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8492 			       task, &userns_operations);
8493 #endif
8494 #ifdef CONFIG_NET_NS
8495 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8496 			       task, &netns_operations);
8497 #endif
8498 #ifdef CONFIG_UTS_NS
8499 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8500 			       task, &utsns_operations);
8501 #endif
8502 #ifdef CONFIG_IPC_NS
8503 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8504 			       task, &ipcns_operations);
8505 #endif
8506 #ifdef CONFIG_PID_NS
8507 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8508 			       task, &pidns_operations);
8509 #endif
8510 #ifdef CONFIG_CGROUPS
8511 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8512 			       task, &cgroupns_operations);
8513 #endif
8514 
8515 	perf_iterate_sb(perf_event_namespaces_output,
8516 			&namespaces_event,
8517 			NULL);
8518 }
8519 
8520 /*
8521  * cgroup tracking
8522  */
8523 #ifdef CONFIG_CGROUP_PERF
8524 
8525 struct perf_cgroup_event {
8526 	char				*path;
8527 	int				path_size;
8528 	struct {
8529 		struct perf_event_header	header;
8530 		u64				id;
8531 		char				path[];
8532 	} event_id;
8533 };
8534 
8535 static int perf_event_cgroup_match(struct perf_event *event)
8536 {
8537 	return event->attr.cgroup;
8538 }
8539 
8540 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8541 {
8542 	struct perf_cgroup_event *cgroup_event = data;
8543 	struct perf_output_handle handle;
8544 	struct perf_sample_data sample;
8545 	u16 header_size = cgroup_event->event_id.header.size;
8546 	int ret;
8547 
8548 	if (!perf_event_cgroup_match(event))
8549 		return;
8550 
8551 	perf_event_header__init_id(&cgroup_event->event_id.header,
8552 				   &sample, event);
8553 	ret = perf_output_begin(&handle, &sample, event,
8554 				cgroup_event->event_id.header.size);
8555 	if (ret)
8556 		goto out;
8557 
8558 	perf_output_put(&handle, cgroup_event->event_id);
8559 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8560 
8561 	perf_event__output_id_sample(event, &handle, &sample);
8562 
8563 	perf_output_end(&handle);
8564 out:
8565 	cgroup_event->event_id.header.size = header_size;
8566 }
8567 
8568 static void perf_event_cgroup(struct cgroup *cgrp)
8569 {
8570 	struct perf_cgroup_event cgroup_event;
8571 	char path_enomem[16] = "//enomem";
8572 	char *pathname;
8573 	size_t size;
8574 
8575 	if (!atomic_read(&nr_cgroup_events))
8576 		return;
8577 
8578 	cgroup_event = (struct perf_cgroup_event){
8579 		.event_id  = {
8580 			.header = {
8581 				.type = PERF_RECORD_CGROUP,
8582 				.misc = 0,
8583 				.size = sizeof(cgroup_event.event_id),
8584 			},
8585 			.id = cgroup_id(cgrp),
8586 		},
8587 	};
8588 
8589 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8590 	if (pathname == NULL) {
8591 		cgroup_event.path = path_enomem;
8592 	} else {
8593 		/* just to be sure to have enough space for alignment */
8594 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8595 		cgroup_event.path = pathname;
8596 	}
8597 
8598 	/*
8599 	 * Since our buffer works in 8 byte units we need to align our string
8600 	 * size to a multiple of 8. However, we must guarantee the tail end is
8601 	 * zero'd out to avoid leaking random bits to userspace.
8602 	 */
8603 	size = strlen(cgroup_event.path) + 1;
8604 	while (!IS_ALIGNED(size, sizeof(u64)))
8605 		cgroup_event.path[size++] = '\0';
8606 
8607 	cgroup_event.event_id.header.size += size;
8608 	cgroup_event.path_size = size;
8609 
8610 	perf_iterate_sb(perf_event_cgroup_output,
8611 			&cgroup_event,
8612 			NULL);
8613 
8614 	kfree(pathname);
8615 }
8616 
8617 #endif
8618 
8619 /*
8620  * mmap tracking
8621  */
8622 
8623 struct perf_mmap_event {
8624 	struct vm_area_struct	*vma;
8625 
8626 	const char		*file_name;
8627 	int			file_size;
8628 	int			maj, min;
8629 	u64			ino;
8630 	u64			ino_generation;
8631 	u32			prot, flags;
8632 	u8			build_id[BUILD_ID_SIZE_MAX];
8633 	u32			build_id_size;
8634 
8635 	struct {
8636 		struct perf_event_header	header;
8637 
8638 		u32				pid;
8639 		u32				tid;
8640 		u64				start;
8641 		u64				len;
8642 		u64				pgoff;
8643 	} event_id;
8644 };
8645 
8646 static int perf_event_mmap_match(struct perf_event *event,
8647 				 void *data)
8648 {
8649 	struct perf_mmap_event *mmap_event = data;
8650 	struct vm_area_struct *vma = mmap_event->vma;
8651 	int executable = vma->vm_flags & VM_EXEC;
8652 
8653 	return (!executable && event->attr.mmap_data) ||
8654 	       (executable && (event->attr.mmap || event->attr.mmap2));
8655 }
8656 
8657 static void perf_event_mmap_output(struct perf_event *event,
8658 				   void *data)
8659 {
8660 	struct perf_mmap_event *mmap_event = data;
8661 	struct perf_output_handle handle;
8662 	struct perf_sample_data sample;
8663 	int size = mmap_event->event_id.header.size;
8664 	u32 type = mmap_event->event_id.header.type;
8665 	bool use_build_id;
8666 	int ret;
8667 
8668 	if (!perf_event_mmap_match(event, data))
8669 		return;
8670 
8671 	if (event->attr.mmap2) {
8672 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8673 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8674 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8675 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8676 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8677 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8678 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8679 	}
8680 
8681 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8682 	ret = perf_output_begin(&handle, &sample, event,
8683 				mmap_event->event_id.header.size);
8684 	if (ret)
8685 		goto out;
8686 
8687 	mmap_event->event_id.pid = perf_event_pid(event, current);
8688 	mmap_event->event_id.tid = perf_event_tid(event, current);
8689 
8690 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8691 
8692 	if (event->attr.mmap2 && use_build_id)
8693 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8694 
8695 	perf_output_put(&handle, mmap_event->event_id);
8696 
8697 	if (event->attr.mmap2) {
8698 		if (use_build_id) {
8699 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8700 
8701 			__output_copy(&handle, size, 4);
8702 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8703 		} else {
8704 			perf_output_put(&handle, mmap_event->maj);
8705 			perf_output_put(&handle, mmap_event->min);
8706 			perf_output_put(&handle, mmap_event->ino);
8707 			perf_output_put(&handle, mmap_event->ino_generation);
8708 		}
8709 		perf_output_put(&handle, mmap_event->prot);
8710 		perf_output_put(&handle, mmap_event->flags);
8711 	}
8712 
8713 	__output_copy(&handle, mmap_event->file_name,
8714 				   mmap_event->file_size);
8715 
8716 	perf_event__output_id_sample(event, &handle, &sample);
8717 
8718 	perf_output_end(&handle);
8719 out:
8720 	mmap_event->event_id.header.size = size;
8721 	mmap_event->event_id.header.type = type;
8722 }
8723 
8724 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8725 {
8726 	struct vm_area_struct *vma = mmap_event->vma;
8727 	struct file *file = vma->vm_file;
8728 	int maj = 0, min = 0;
8729 	u64 ino = 0, gen = 0;
8730 	u32 prot = 0, flags = 0;
8731 	unsigned int size;
8732 	char tmp[16];
8733 	char *buf = NULL;
8734 	char *name = NULL;
8735 
8736 	if (vma->vm_flags & VM_READ)
8737 		prot |= PROT_READ;
8738 	if (vma->vm_flags & VM_WRITE)
8739 		prot |= PROT_WRITE;
8740 	if (vma->vm_flags & VM_EXEC)
8741 		prot |= PROT_EXEC;
8742 
8743 	if (vma->vm_flags & VM_MAYSHARE)
8744 		flags = MAP_SHARED;
8745 	else
8746 		flags = MAP_PRIVATE;
8747 
8748 	if (vma->vm_flags & VM_LOCKED)
8749 		flags |= MAP_LOCKED;
8750 	if (is_vm_hugetlb_page(vma))
8751 		flags |= MAP_HUGETLB;
8752 
8753 	if (file) {
8754 		struct inode *inode;
8755 		dev_t dev;
8756 
8757 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8758 		if (!buf) {
8759 			name = "//enomem";
8760 			goto cpy_name;
8761 		}
8762 		/*
8763 		 * d_path() works from the end of the rb backwards, so we
8764 		 * need to add enough zero bytes after the string to handle
8765 		 * the 64bit alignment we do later.
8766 		 */
8767 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8768 		if (IS_ERR(name)) {
8769 			name = "//toolong";
8770 			goto cpy_name;
8771 		}
8772 		inode = file_inode(vma->vm_file);
8773 		dev = inode->i_sb->s_dev;
8774 		ino = inode->i_ino;
8775 		gen = inode->i_generation;
8776 		maj = MAJOR(dev);
8777 		min = MINOR(dev);
8778 
8779 		goto got_name;
8780 	} else {
8781 		if (vma->vm_ops && vma->vm_ops->name)
8782 			name = (char *) vma->vm_ops->name(vma);
8783 		if (!name)
8784 			name = (char *)arch_vma_name(vma);
8785 		if (!name) {
8786 			if (vma_is_initial_heap(vma))
8787 				name = "[heap]";
8788 			else if (vma_is_initial_stack(vma))
8789 				name = "[stack]";
8790 			else
8791 				name = "//anon";
8792 		}
8793 	}
8794 
8795 cpy_name:
8796 	strscpy(tmp, name, sizeof(tmp));
8797 	name = tmp;
8798 got_name:
8799 	/*
8800 	 * Since our buffer works in 8 byte units we need to align our string
8801 	 * size to a multiple of 8. However, we must guarantee the tail end is
8802 	 * zero'd out to avoid leaking random bits to userspace.
8803 	 */
8804 	size = strlen(name)+1;
8805 	while (!IS_ALIGNED(size, sizeof(u64)))
8806 		name[size++] = '\0';
8807 
8808 	mmap_event->file_name = name;
8809 	mmap_event->file_size = size;
8810 	mmap_event->maj = maj;
8811 	mmap_event->min = min;
8812 	mmap_event->ino = ino;
8813 	mmap_event->ino_generation = gen;
8814 	mmap_event->prot = prot;
8815 	mmap_event->flags = flags;
8816 
8817 	if (!(vma->vm_flags & VM_EXEC))
8818 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8819 
8820 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8821 
8822 	if (atomic_read(&nr_build_id_events))
8823 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8824 
8825 	perf_iterate_sb(perf_event_mmap_output,
8826 		       mmap_event,
8827 		       NULL);
8828 
8829 	kfree(buf);
8830 }
8831 
8832 /*
8833  * Check whether inode and address range match filter criteria.
8834  */
8835 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8836 				     struct file *file, unsigned long offset,
8837 				     unsigned long size)
8838 {
8839 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8840 	if (!filter->path.dentry)
8841 		return false;
8842 
8843 	if (d_inode(filter->path.dentry) != file_inode(file))
8844 		return false;
8845 
8846 	if (filter->offset > offset + size)
8847 		return false;
8848 
8849 	if (filter->offset + filter->size < offset)
8850 		return false;
8851 
8852 	return true;
8853 }
8854 
8855 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8856 					struct vm_area_struct *vma,
8857 					struct perf_addr_filter_range *fr)
8858 {
8859 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8860 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8861 	struct file *file = vma->vm_file;
8862 
8863 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8864 		return false;
8865 
8866 	if (filter->offset < off) {
8867 		fr->start = vma->vm_start;
8868 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8869 	} else {
8870 		fr->start = vma->vm_start + filter->offset - off;
8871 		fr->size = min(vma->vm_end - fr->start, filter->size);
8872 	}
8873 
8874 	return true;
8875 }
8876 
8877 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8878 {
8879 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8880 	struct vm_area_struct *vma = data;
8881 	struct perf_addr_filter *filter;
8882 	unsigned int restart = 0, count = 0;
8883 	unsigned long flags;
8884 
8885 	if (!has_addr_filter(event))
8886 		return;
8887 
8888 	if (!vma->vm_file)
8889 		return;
8890 
8891 	raw_spin_lock_irqsave(&ifh->lock, flags);
8892 	list_for_each_entry(filter, &ifh->list, entry) {
8893 		if (perf_addr_filter_vma_adjust(filter, vma,
8894 						&event->addr_filter_ranges[count]))
8895 			restart++;
8896 
8897 		count++;
8898 	}
8899 
8900 	if (restart)
8901 		event->addr_filters_gen++;
8902 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8903 
8904 	if (restart)
8905 		perf_event_stop(event, 1);
8906 }
8907 
8908 /*
8909  * Adjust all task's events' filters to the new vma
8910  */
8911 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8912 {
8913 	struct perf_event_context *ctx;
8914 
8915 	/*
8916 	 * Data tracing isn't supported yet and as such there is no need
8917 	 * to keep track of anything that isn't related to executable code:
8918 	 */
8919 	if (!(vma->vm_flags & VM_EXEC))
8920 		return;
8921 
8922 	rcu_read_lock();
8923 	ctx = rcu_dereference(current->perf_event_ctxp);
8924 	if (ctx)
8925 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8926 	rcu_read_unlock();
8927 }
8928 
8929 void perf_event_mmap(struct vm_area_struct *vma)
8930 {
8931 	struct perf_mmap_event mmap_event;
8932 
8933 	if (!atomic_read(&nr_mmap_events))
8934 		return;
8935 
8936 	mmap_event = (struct perf_mmap_event){
8937 		.vma	= vma,
8938 		/* .file_name */
8939 		/* .file_size */
8940 		.event_id  = {
8941 			.header = {
8942 				.type = PERF_RECORD_MMAP,
8943 				.misc = PERF_RECORD_MISC_USER,
8944 				/* .size */
8945 			},
8946 			/* .pid */
8947 			/* .tid */
8948 			.start  = vma->vm_start,
8949 			.len    = vma->vm_end - vma->vm_start,
8950 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8951 		},
8952 		/* .maj (attr_mmap2 only) */
8953 		/* .min (attr_mmap2 only) */
8954 		/* .ino (attr_mmap2 only) */
8955 		/* .ino_generation (attr_mmap2 only) */
8956 		/* .prot (attr_mmap2 only) */
8957 		/* .flags (attr_mmap2 only) */
8958 	};
8959 
8960 	perf_addr_filters_adjust(vma);
8961 	perf_event_mmap_event(&mmap_event);
8962 }
8963 
8964 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8965 			  unsigned long size, u64 flags)
8966 {
8967 	struct perf_output_handle handle;
8968 	struct perf_sample_data sample;
8969 	struct perf_aux_event {
8970 		struct perf_event_header	header;
8971 		u64				offset;
8972 		u64				size;
8973 		u64				flags;
8974 	} rec = {
8975 		.header = {
8976 			.type = PERF_RECORD_AUX,
8977 			.misc = 0,
8978 			.size = sizeof(rec),
8979 		},
8980 		.offset		= head,
8981 		.size		= size,
8982 		.flags		= flags,
8983 	};
8984 	int ret;
8985 
8986 	perf_event_header__init_id(&rec.header, &sample, event);
8987 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8988 
8989 	if (ret)
8990 		return;
8991 
8992 	perf_output_put(&handle, rec);
8993 	perf_event__output_id_sample(event, &handle, &sample);
8994 
8995 	perf_output_end(&handle);
8996 }
8997 
8998 /*
8999  * Lost/dropped samples logging
9000  */
9001 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9002 {
9003 	struct perf_output_handle handle;
9004 	struct perf_sample_data sample;
9005 	int ret;
9006 
9007 	struct {
9008 		struct perf_event_header	header;
9009 		u64				lost;
9010 	} lost_samples_event = {
9011 		.header = {
9012 			.type = PERF_RECORD_LOST_SAMPLES,
9013 			.misc = 0,
9014 			.size = sizeof(lost_samples_event),
9015 		},
9016 		.lost		= lost,
9017 	};
9018 
9019 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9020 
9021 	ret = perf_output_begin(&handle, &sample, event,
9022 				lost_samples_event.header.size);
9023 	if (ret)
9024 		return;
9025 
9026 	perf_output_put(&handle, lost_samples_event);
9027 	perf_event__output_id_sample(event, &handle, &sample);
9028 	perf_output_end(&handle);
9029 }
9030 
9031 /*
9032  * context_switch tracking
9033  */
9034 
9035 struct perf_switch_event {
9036 	struct task_struct	*task;
9037 	struct task_struct	*next_prev;
9038 
9039 	struct {
9040 		struct perf_event_header	header;
9041 		u32				next_prev_pid;
9042 		u32				next_prev_tid;
9043 	} event_id;
9044 };
9045 
9046 static int perf_event_switch_match(struct perf_event *event)
9047 {
9048 	return event->attr.context_switch;
9049 }
9050 
9051 static void perf_event_switch_output(struct perf_event *event, void *data)
9052 {
9053 	struct perf_switch_event *se = data;
9054 	struct perf_output_handle handle;
9055 	struct perf_sample_data sample;
9056 	int ret;
9057 
9058 	if (!perf_event_switch_match(event))
9059 		return;
9060 
9061 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9062 	if (event->ctx->task) {
9063 		se->event_id.header.type = PERF_RECORD_SWITCH;
9064 		se->event_id.header.size = sizeof(se->event_id.header);
9065 	} else {
9066 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9067 		se->event_id.header.size = sizeof(se->event_id);
9068 		se->event_id.next_prev_pid =
9069 					perf_event_pid(event, se->next_prev);
9070 		se->event_id.next_prev_tid =
9071 					perf_event_tid(event, se->next_prev);
9072 	}
9073 
9074 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9075 
9076 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9077 	if (ret)
9078 		return;
9079 
9080 	if (event->ctx->task)
9081 		perf_output_put(&handle, se->event_id.header);
9082 	else
9083 		perf_output_put(&handle, se->event_id);
9084 
9085 	perf_event__output_id_sample(event, &handle, &sample);
9086 
9087 	perf_output_end(&handle);
9088 }
9089 
9090 static void perf_event_switch(struct task_struct *task,
9091 			      struct task_struct *next_prev, bool sched_in)
9092 {
9093 	struct perf_switch_event switch_event;
9094 
9095 	/* N.B. caller checks nr_switch_events != 0 */
9096 
9097 	switch_event = (struct perf_switch_event){
9098 		.task		= task,
9099 		.next_prev	= next_prev,
9100 		.event_id	= {
9101 			.header = {
9102 				/* .type */
9103 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9104 				/* .size */
9105 			},
9106 			/* .next_prev_pid */
9107 			/* .next_prev_tid */
9108 		},
9109 	};
9110 
9111 	if (!sched_in && task->on_rq) {
9112 		switch_event.event_id.header.misc |=
9113 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9114 	}
9115 
9116 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9117 }
9118 
9119 /*
9120  * IRQ throttle logging
9121  */
9122 
9123 static void perf_log_throttle(struct perf_event *event, int enable)
9124 {
9125 	struct perf_output_handle handle;
9126 	struct perf_sample_data sample;
9127 	int ret;
9128 
9129 	struct {
9130 		struct perf_event_header	header;
9131 		u64				time;
9132 		u64				id;
9133 		u64				stream_id;
9134 	} throttle_event = {
9135 		.header = {
9136 			.type = PERF_RECORD_THROTTLE,
9137 			.misc = 0,
9138 			.size = sizeof(throttle_event),
9139 		},
9140 		.time		= perf_event_clock(event),
9141 		.id		= primary_event_id(event),
9142 		.stream_id	= event->id,
9143 	};
9144 
9145 	if (enable)
9146 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9147 
9148 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9149 
9150 	ret = perf_output_begin(&handle, &sample, event,
9151 				throttle_event.header.size);
9152 	if (ret)
9153 		return;
9154 
9155 	perf_output_put(&handle, throttle_event);
9156 	perf_event__output_id_sample(event, &handle, &sample);
9157 	perf_output_end(&handle);
9158 }
9159 
9160 /*
9161  * ksymbol register/unregister tracking
9162  */
9163 
9164 struct perf_ksymbol_event {
9165 	const char	*name;
9166 	int		name_len;
9167 	struct {
9168 		struct perf_event_header        header;
9169 		u64				addr;
9170 		u32				len;
9171 		u16				ksym_type;
9172 		u16				flags;
9173 	} event_id;
9174 };
9175 
9176 static int perf_event_ksymbol_match(struct perf_event *event)
9177 {
9178 	return event->attr.ksymbol;
9179 }
9180 
9181 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9182 {
9183 	struct perf_ksymbol_event *ksymbol_event = data;
9184 	struct perf_output_handle handle;
9185 	struct perf_sample_data sample;
9186 	int ret;
9187 
9188 	if (!perf_event_ksymbol_match(event))
9189 		return;
9190 
9191 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9192 				   &sample, event);
9193 	ret = perf_output_begin(&handle, &sample, event,
9194 				ksymbol_event->event_id.header.size);
9195 	if (ret)
9196 		return;
9197 
9198 	perf_output_put(&handle, ksymbol_event->event_id);
9199 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9200 	perf_event__output_id_sample(event, &handle, &sample);
9201 
9202 	perf_output_end(&handle);
9203 }
9204 
9205 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9206 			const char *sym)
9207 {
9208 	struct perf_ksymbol_event ksymbol_event;
9209 	char name[KSYM_NAME_LEN];
9210 	u16 flags = 0;
9211 	int name_len;
9212 
9213 	if (!atomic_read(&nr_ksymbol_events))
9214 		return;
9215 
9216 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9217 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9218 		goto err;
9219 
9220 	strscpy(name, sym, KSYM_NAME_LEN);
9221 	name_len = strlen(name) + 1;
9222 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9223 		name[name_len++] = '\0';
9224 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9225 
9226 	if (unregister)
9227 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9228 
9229 	ksymbol_event = (struct perf_ksymbol_event){
9230 		.name = name,
9231 		.name_len = name_len,
9232 		.event_id = {
9233 			.header = {
9234 				.type = PERF_RECORD_KSYMBOL,
9235 				.size = sizeof(ksymbol_event.event_id) +
9236 					name_len,
9237 			},
9238 			.addr = addr,
9239 			.len = len,
9240 			.ksym_type = ksym_type,
9241 			.flags = flags,
9242 		},
9243 	};
9244 
9245 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9246 	return;
9247 err:
9248 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9249 }
9250 
9251 /*
9252  * bpf program load/unload tracking
9253  */
9254 
9255 struct perf_bpf_event {
9256 	struct bpf_prog	*prog;
9257 	struct {
9258 		struct perf_event_header        header;
9259 		u16				type;
9260 		u16				flags;
9261 		u32				id;
9262 		u8				tag[BPF_TAG_SIZE];
9263 	} event_id;
9264 };
9265 
9266 static int perf_event_bpf_match(struct perf_event *event)
9267 {
9268 	return event->attr.bpf_event;
9269 }
9270 
9271 static void perf_event_bpf_output(struct perf_event *event, void *data)
9272 {
9273 	struct perf_bpf_event *bpf_event = data;
9274 	struct perf_output_handle handle;
9275 	struct perf_sample_data sample;
9276 	int ret;
9277 
9278 	if (!perf_event_bpf_match(event))
9279 		return;
9280 
9281 	perf_event_header__init_id(&bpf_event->event_id.header,
9282 				   &sample, event);
9283 	ret = perf_output_begin(&handle, &sample, event,
9284 				bpf_event->event_id.header.size);
9285 	if (ret)
9286 		return;
9287 
9288 	perf_output_put(&handle, bpf_event->event_id);
9289 	perf_event__output_id_sample(event, &handle, &sample);
9290 
9291 	perf_output_end(&handle);
9292 }
9293 
9294 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9295 					 enum perf_bpf_event_type type)
9296 {
9297 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9298 	int i;
9299 
9300 	if (prog->aux->func_cnt == 0) {
9301 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9302 				   (u64)(unsigned long)prog->bpf_func,
9303 				   prog->jited_len, unregister,
9304 				   prog->aux->ksym.name);
9305 	} else {
9306 		for (i = 0; i < prog->aux->func_cnt; i++) {
9307 			struct bpf_prog *subprog = prog->aux->func[i];
9308 
9309 			perf_event_ksymbol(
9310 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9311 				(u64)(unsigned long)subprog->bpf_func,
9312 				subprog->jited_len, unregister,
9313 				subprog->aux->ksym.name);
9314 		}
9315 	}
9316 }
9317 
9318 void perf_event_bpf_event(struct bpf_prog *prog,
9319 			  enum perf_bpf_event_type type,
9320 			  u16 flags)
9321 {
9322 	struct perf_bpf_event bpf_event;
9323 
9324 	switch (type) {
9325 	case PERF_BPF_EVENT_PROG_LOAD:
9326 	case PERF_BPF_EVENT_PROG_UNLOAD:
9327 		if (atomic_read(&nr_ksymbol_events))
9328 			perf_event_bpf_emit_ksymbols(prog, type);
9329 		break;
9330 	default:
9331 		return;
9332 	}
9333 
9334 	if (!atomic_read(&nr_bpf_events))
9335 		return;
9336 
9337 	bpf_event = (struct perf_bpf_event){
9338 		.prog = prog,
9339 		.event_id = {
9340 			.header = {
9341 				.type = PERF_RECORD_BPF_EVENT,
9342 				.size = sizeof(bpf_event.event_id),
9343 			},
9344 			.type = type,
9345 			.flags = flags,
9346 			.id = prog->aux->id,
9347 		},
9348 	};
9349 
9350 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9351 
9352 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9353 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9354 }
9355 
9356 struct perf_text_poke_event {
9357 	const void		*old_bytes;
9358 	const void		*new_bytes;
9359 	size_t			pad;
9360 	u16			old_len;
9361 	u16			new_len;
9362 
9363 	struct {
9364 		struct perf_event_header	header;
9365 
9366 		u64				addr;
9367 	} event_id;
9368 };
9369 
9370 static int perf_event_text_poke_match(struct perf_event *event)
9371 {
9372 	return event->attr.text_poke;
9373 }
9374 
9375 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9376 {
9377 	struct perf_text_poke_event *text_poke_event = data;
9378 	struct perf_output_handle handle;
9379 	struct perf_sample_data sample;
9380 	u64 padding = 0;
9381 	int ret;
9382 
9383 	if (!perf_event_text_poke_match(event))
9384 		return;
9385 
9386 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9387 
9388 	ret = perf_output_begin(&handle, &sample, event,
9389 				text_poke_event->event_id.header.size);
9390 	if (ret)
9391 		return;
9392 
9393 	perf_output_put(&handle, text_poke_event->event_id);
9394 	perf_output_put(&handle, text_poke_event->old_len);
9395 	perf_output_put(&handle, text_poke_event->new_len);
9396 
9397 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9398 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9399 
9400 	if (text_poke_event->pad)
9401 		__output_copy(&handle, &padding, text_poke_event->pad);
9402 
9403 	perf_event__output_id_sample(event, &handle, &sample);
9404 
9405 	perf_output_end(&handle);
9406 }
9407 
9408 void perf_event_text_poke(const void *addr, const void *old_bytes,
9409 			  size_t old_len, const void *new_bytes, size_t new_len)
9410 {
9411 	struct perf_text_poke_event text_poke_event;
9412 	size_t tot, pad;
9413 
9414 	if (!atomic_read(&nr_text_poke_events))
9415 		return;
9416 
9417 	tot  = sizeof(text_poke_event.old_len) + old_len;
9418 	tot += sizeof(text_poke_event.new_len) + new_len;
9419 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9420 
9421 	text_poke_event = (struct perf_text_poke_event){
9422 		.old_bytes    = old_bytes,
9423 		.new_bytes    = new_bytes,
9424 		.pad          = pad,
9425 		.old_len      = old_len,
9426 		.new_len      = new_len,
9427 		.event_id  = {
9428 			.header = {
9429 				.type = PERF_RECORD_TEXT_POKE,
9430 				.misc = PERF_RECORD_MISC_KERNEL,
9431 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9432 			},
9433 			.addr = (unsigned long)addr,
9434 		},
9435 	};
9436 
9437 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9438 }
9439 
9440 void perf_event_itrace_started(struct perf_event *event)
9441 {
9442 	event->attach_state |= PERF_ATTACH_ITRACE;
9443 }
9444 
9445 static void perf_log_itrace_start(struct perf_event *event)
9446 {
9447 	struct perf_output_handle handle;
9448 	struct perf_sample_data sample;
9449 	struct perf_aux_event {
9450 		struct perf_event_header        header;
9451 		u32				pid;
9452 		u32				tid;
9453 	} rec;
9454 	int ret;
9455 
9456 	if (event->parent)
9457 		event = event->parent;
9458 
9459 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9460 	    event->attach_state & PERF_ATTACH_ITRACE)
9461 		return;
9462 
9463 	rec.header.type	= PERF_RECORD_ITRACE_START;
9464 	rec.header.misc	= 0;
9465 	rec.header.size	= sizeof(rec);
9466 	rec.pid	= perf_event_pid(event, current);
9467 	rec.tid	= perf_event_tid(event, current);
9468 
9469 	perf_event_header__init_id(&rec.header, &sample, event);
9470 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9471 
9472 	if (ret)
9473 		return;
9474 
9475 	perf_output_put(&handle, rec);
9476 	perf_event__output_id_sample(event, &handle, &sample);
9477 
9478 	perf_output_end(&handle);
9479 }
9480 
9481 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9482 {
9483 	struct perf_output_handle handle;
9484 	struct perf_sample_data sample;
9485 	struct perf_aux_event {
9486 		struct perf_event_header        header;
9487 		u64				hw_id;
9488 	} rec;
9489 	int ret;
9490 
9491 	if (event->parent)
9492 		event = event->parent;
9493 
9494 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9495 	rec.header.misc	= 0;
9496 	rec.header.size	= sizeof(rec);
9497 	rec.hw_id	= hw_id;
9498 
9499 	perf_event_header__init_id(&rec.header, &sample, event);
9500 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9501 
9502 	if (ret)
9503 		return;
9504 
9505 	perf_output_put(&handle, rec);
9506 	perf_event__output_id_sample(event, &handle, &sample);
9507 
9508 	perf_output_end(&handle);
9509 }
9510 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9511 
9512 static int
9513 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9514 {
9515 	struct hw_perf_event *hwc = &event->hw;
9516 	int ret = 0;
9517 	u64 seq;
9518 
9519 	seq = __this_cpu_read(perf_throttled_seq);
9520 	if (seq != hwc->interrupts_seq) {
9521 		hwc->interrupts_seq = seq;
9522 		hwc->interrupts = 1;
9523 	} else {
9524 		hwc->interrupts++;
9525 		if (unlikely(throttle &&
9526 			     hwc->interrupts > max_samples_per_tick)) {
9527 			__this_cpu_inc(perf_throttled_count);
9528 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9529 			hwc->interrupts = MAX_INTERRUPTS;
9530 			perf_log_throttle(event, 0);
9531 			ret = 1;
9532 		}
9533 	}
9534 
9535 	if (event->attr.freq) {
9536 		u64 now = perf_clock();
9537 		s64 delta = now - hwc->freq_time_stamp;
9538 
9539 		hwc->freq_time_stamp = now;
9540 
9541 		if (delta > 0 && delta < 2*TICK_NSEC)
9542 			perf_adjust_period(event, delta, hwc->last_period, true);
9543 	}
9544 
9545 	return ret;
9546 }
9547 
9548 int perf_event_account_interrupt(struct perf_event *event)
9549 {
9550 	return __perf_event_account_interrupt(event, 1);
9551 }
9552 
9553 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9554 {
9555 	/*
9556 	 * Due to interrupt latency (AKA "skid"), we may enter the
9557 	 * kernel before taking an overflow, even if the PMU is only
9558 	 * counting user events.
9559 	 */
9560 	if (event->attr.exclude_kernel && !user_mode(regs))
9561 		return false;
9562 
9563 	return true;
9564 }
9565 
9566 #ifdef CONFIG_BPF_SYSCALL
9567 static void bpf_overflow_handler(struct perf_event *event,
9568 				 struct perf_sample_data *data,
9569 				 struct pt_regs *regs)
9570 {
9571 	struct bpf_perf_event_data_kern ctx = {
9572 		.data = data,
9573 		.event = event,
9574 	};
9575 	struct bpf_prog *prog;
9576 	int ret = 0;
9577 
9578 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9579 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9580 		goto out;
9581 	rcu_read_lock();
9582 	prog = READ_ONCE(event->prog);
9583 	if (prog) {
9584 		perf_prepare_sample(data, event, regs);
9585 		ret = bpf_prog_run(prog, &ctx);
9586 	}
9587 	rcu_read_unlock();
9588 out:
9589 	__this_cpu_dec(bpf_prog_active);
9590 	if (!ret)
9591 		return;
9592 
9593 	event->orig_overflow_handler(event, data, regs);
9594 }
9595 
9596 static int perf_event_set_bpf_handler(struct perf_event *event,
9597 				      struct bpf_prog *prog,
9598 				      u64 bpf_cookie)
9599 {
9600 	if (event->overflow_handler_context)
9601 		/* hw breakpoint or kernel counter */
9602 		return -EINVAL;
9603 
9604 	if (event->prog)
9605 		return -EEXIST;
9606 
9607 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9608 		return -EINVAL;
9609 
9610 	if (event->attr.precise_ip &&
9611 	    prog->call_get_stack &&
9612 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9613 	     event->attr.exclude_callchain_kernel ||
9614 	     event->attr.exclude_callchain_user)) {
9615 		/*
9616 		 * On perf_event with precise_ip, calling bpf_get_stack()
9617 		 * may trigger unwinder warnings and occasional crashes.
9618 		 * bpf_get_[stack|stackid] works around this issue by using
9619 		 * callchain attached to perf_sample_data. If the
9620 		 * perf_event does not full (kernel and user) callchain
9621 		 * attached to perf_sample_data, do not allow attaching BPF
9622 		 * program that calls bpf_get_[stack|stackid].
9623 		 */
9624 		return -EPROTO;
9625 	}
9626 
9627 	event->prog = prog;
9628 	event->bpf_cookie = bpf_cookie;
9629 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9630 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9631 	return 0;
9632 }
9633 
9634 static void perf_event_free_bpf_handler(struct perf_event *event)
9635 {
9636 	struct bpf_prog *prog = event->prog;
9637 
9638 	if (!prog)
9639 		return;
9640 
9641 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9642 	event->prog = NULL;
9643 	bpf_prog_put(prog);
9644 }
9645 #else
9646 static void bpf_overflow_handler(struct perf_event *event,
9647 				 struct perf_sample_data *data,
9648 				 struct pt_regs *regs)
9649 {
9650 }
9651 
9652 static int perf_event_set_bpf_handler(struct perf_event *event,
9653 				      struct bpf_prog *prog,
9654 				      u64 bpf_cookie)
9655 {
9656 	return -EOPNOTSUPP;
9657 }
9658 
9659 static void perf_event_free_bpf_handler(struct perf_event *event)
9660 {
9661 }
9662 #endif
9663 
9664 /*
9665  * Generic event overflow handling, sampling.
9666  */
9667 
9668 static int __perf_event_overflow(struct perf_event *event,
9669 				 int throttle, struct perf_sample_data *data,
9670 				 struct pt_regs *regs)
9671 {
9672 	int events = atomic_read(&event->event_limit);
9673 	int ret = 0;
9674 
9675 	/*
9676 	 * Non-sampling counters might still use the PMI to fold short
9677 	 * hardware counters, ignore those.
9678 	 */
9679 	if (unlikely(!is_sampling_event(event)))
9680 		return 0;
9681 
9682 	ret = __perf_event_account_interrupt(event, throttle);
9683 
9684 	/*
9685 	 * XXX event_limit might not quite work as expected on inherited
9686 	 * events
9687 	 */
9688 
9689 	event->pending_kill = POLL_IN;
9690 	if (events && atomic_dec_and_test(&event->event_limit)) {
9691 		ret = 1;
9692 		event->pending_kill = POLL_HUP;
9693 		perf_event_disable_inatomic(event);
9694 	}
9695 
9696 	if (event->attr.sigtrap) {
9697 		/*
9698 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9699 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9700 		 * it is the first event, on the other hand, we should also not
9701 		 * trigger the WARN or override the data address.
9702 		 */
9703 		bool valid_sample = sample_is_allowed(event, regs);
9704 		unsigned int pending_id = 1;
9705 
9706 		if (regs)
9707 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9708 		if (!event->pending_sigtrap) {
9709 			event->pending_sigtrap = pending_id;
9710 			local_inc(&event->ctx->nr_pending);
9711 		} else if (event->attr.exclude_kernel && valid_sample) {
9712 			/*
9713 			 * Should not be able to return to user space without
9714 			 * consuming pending_sigtrap; with exceptions:
9715 			 *
9716 			 *  1. Where !exclude_kernel, events can overflow again
9717 			 *     in the kernel without returning to user space.
9718 			 *
9719 			 *  2. Events that can overflow again before the IRQ-
9720 			 *     work without user space progress (e.g. hrtimer).
9721 			 *     To approximate progress (with false negatives),
9722 			 *     check 32-bit hash of the current IP.
9723 			 */
9724 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9725 		}
9726 
9727 		event->pending_addr = 0;
9728 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9729 			event->pending_addr = data->addr;
9730 		irq_work_queue(&event->pending_irq);
9731 	}
9732 
9733 	READ_ONCE(event->overflow_handler)(event, data, regs);
9734 
9735 	if (*perf_event_fasync(event) && event->pending_kill) {
9736 		event->pending_wakeup = 1;
9737 		irq_work_queue(&event->pending_irq);
9738 	}
9739 
9740 	return ret;
9741 }
9742 
9743 int perf_event_overflow(struct perf_event *event,
9744 			struct perf_sample_data *data,
9745 			struct pt_regs *regs)
9746 {
9747 	return __perf_event_overflow(event, 1, data, regs);
9748 }
9749 
9750 /*
9751  * Generic software event infrastructure
9752  */
9753 
9754 struct swevent_htable {
9755 	struct swevent_hlist		*swevent_hlist;
9756 	struct mutex			hlist_mutex;
9757 	int				hlist_refcount;
9758 
9759 	/* Recursion avoidance in each contexts */
9760 	int				recursion[PERF_NR_CONTEXTS];
9761 };
9762 
9763 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9764 
9765 /*
9766  * We directly increment event->count and keep a second value in
9767  * event->hw.period_left to count intervals. This period event
9768  * is kept in the range [-sample_period, 0] so that we can use the
9769  * sign as trigger.
9770  */
9771 
9772 u64 perf_swevent_set_period(struct perf_event *event)
9773 {
9774 	struct hw_perf_event *hwc = &event->hw;
9775 	u64 period = hwc->last_period;
9776 	u64 nr, offset;
9777 	s64 old, val;
9778 
9779 	hwc->last_period = hwc->sample_period;
9780 
9781 	old = local64_read(&hwc->period_left);
9782 	do {
9783 		val = old;
9784 		if (val < 0)
9785 			return 0;
9786 
9787 		nr = div64_u64(period + val, period);
9788 		offset = nr * period;
9789 		val -= offset;
9790 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9791 
9792 	return nr;
9793 }
9794 
9795 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9796 				    struct perf_sample_data *data,
9797 				    struct pt_regs *regs)
9798 {
9799 	struct hw_perf_event *hwc = &event->hw;
9800 	int throttle = 0;
9801 
9802 	if (!overflow)
9803 		overflow = perf_swevent_set_period(event);
9804 
9805 	if (hwc->interrupts == MAX_INTERRUPTS)
9806 		return;
9807 
9808 	for (; overflow; overflow--) {
9809 		if (__perf_event_overflow(event, throttle,
9810 					    data, regs)) {
9811 			/*
9812 			 * We inhibit the overflow from happening when
9813 			 * hwc->interrupts == MAX_INTERRUPTS.
9814 			 */
9815 			break;
9816 		}
9817 		throttle = 1;
9818 	}
9819 }
9820 
9821 static void perf_swevent_event(struct perf_event *event, u64 nr,
9822 			       struct perf_sample_data *data,
9823 			       struct pt_regs *regs)
9824 {
9825 	struct hw_perf_event *hwc = &event->hw;
9826 
9827 	local64_add(nr, &event->count);
9828 
9829 	if (!regs)
9830 		return;
9831 
9832 	if (!is_sampling_event(event))
9833 		return;
9834 
9835 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9836 		data->period = nr;
9837 		return perf_swevent_overflow(event, 1, data, regs);
9838 	} else
9839 		data->period = event->hw.last_period;
9840 
9841 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9842 		return perf_swevent_overflow(event, 1, data, regs);
9843 
9844 	if (local64_add_negative(nr, &hwc->period_left))
9845 		return;
9846 
9847 	perf_swevent_overflow(event, 0, data, regs);
9848 }
9849 
9850 static int perf_exclude_event(struct perf_event *event,
9851 			      struct pt_regs *regs)
9852 {
9853 	if (event->hw.state & PERF_HES_STOPPED)
9854 		return 1;
9855 
9856 	if (regs) {
9857 		if (event->attr.exclude_user && user_mode(regs))
9858 			return 1;
9859 
9860 		if (event->attr.exclude_kernel && !user_mode(regs))
9861 			return 1;
9862 	}
9863 
9864 	return 0;
9865 }
9866 
9867 static int perf_swevent_match(struct perf_event *event,
9868 				enum perf_type_id type,
9869 				u32 event_id,
9870 				struct perf_sample_data *data,
9871 				struct pt_regs *regs)
9872 {
9873 	if (event->attr.type != type)
9874 		return 0;
9875 
9876 	if (event->attr.config != event_id)
9877 		return 0;
9878 
9879 	if (perf_exclude_event(event, regs))
9880 		return 0;
9881 
9882 	return 1;
9883 }
9884 
9885 static inline u64 swevent_hash(u64 type, u32 event_id)
9886 {
9887 	u64 val = event_id | (type << 32);
9888 
9889 	return hash_64(val, SWEVENT_HLIST_BITS);
9890 }
9891 
9892 static inline struct hlist_head *
9893 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9894 {
9895 	u64 hash = swevent_hash(type, event_id);
9896 
9897 	return &hlist->heads[hash];
9898 }
9899 
9900 /* For the read side: events when they trigger */
9901 static inline struct hlist_head *
9902 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9903 {
9904 	struct swevent_hlist *hlist;
9905 
9906 	hlist = rcu_dereference(swhash->swevent_hlist);
9907 	if (!hlist)
9908 		return NULL;
9909 
9910 	return __find_swevent_head(hlist, type, event_id);
9911 }
9912 
9913 /* For the event head insertion and removal in the hlist */
9914 static inline struct hlist_head *
9915 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9916 {
9917 	struct swevent_hlist *hlist;
9918 	u32 event_id = event->attr.config;
9919 	u64 type = event->attr.type;
9920 
9921 	/*
9922 	 * Event scheduling is always serialized against hlist allocation
9923 	 * and release. Which makes the protected version suitable here.
9924 	 * The context lock guarantees that.
9925 	 */
9926 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9927 					  lockdep_is_held(&event->ctx->lock));
9928 	if (!hlist)
9929 		return NULL;
9930 
9931 	return __find_swevent_head(hlist, type, event_id);
9932 }
9933 
9934 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9935 				    u64 nr,
9936 				    struct perf_sample_data *data,
9937 				    struct pt_regs *regs)
9938 {
9939 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9940 	struct perf_event *event;
9941 	struct hlist_head *head;
9942 
9943 	rcu_read_lock();
9944 	head = find_swevent_head_rcu(swhash, type, event_id);
9945 	if (!head)
9946 		goto end;
9947 
9948 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9949 		if (perf_swevent_match(event, type, event_id, data, regs))
9950 			perf_swevent_event(event, nr, data, regs);
9951 	}
9952 end:
9953 	rcu_read_unlock();
9954 }
9955 
9956 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9957 
9958 int perf_swevent_get_recursion_context(void)
9959 {
9960 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9961 
9962 	return get_recursion_context(swhash->recursion);
9963 }
9964 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9965 
9966 void perf_swevent_put_recursion_context(int rctx)
9967 {
9968 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9969 
9970 	put_recursion_context(swhash->recursion, rctx);
9971 }
9972 
9973 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9974 {
9975 	struct perf_sample_data data;
9976 
9977 	if (WARN_ON_ONCE(!regs))
9978 		return;
9979 
9980 	perf_sample_data_init(&data, addr, 0);
9981 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9982 }
9983 
9984 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9985 {
9986 	int rctx;
9987 
9988 	preempt_disable_notrace();
9989 	rctx = perf_swevent_get_recursion_context();
9990 	if (unlikely(rctx < 0))
9991 		goto fail;
9992 
9993 	___perf_sw_event(event_id, nr, regs, addr);
9994 
9995 	perf_swevent_put_recursion_context(rctx);
9996 fail:
9997 	preempt_enable_notrace();
9998 }
9999 
10000 static void perf_swevent_read(struct perf_event *event)
10001 {
10002 }
10003 
10004 static int perf_swevent_add(struct perf_event *event, int flags)
10005 {
10006 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10007 	struct hw_perf_event *hwc = &event->hw;
10008 	struct hlist_head *head;
10009 
10010 	if (is_sampling_event(event)) {
10011 		hwc->last_period = hwc->sample_period;
10012 		perf_swevent_set_period(event);
10013 	}
10014 
10015 	hwc->state = !(flags & PERF_EF_START);
10016 
10017 	head = find_swevent_head(swhash, event);
10018 	if (WARN_ON_ONCE(!head))
10019 		return -EINVAL;
10020 
10021 	hlist_add_head_rcu(&event->hlist_entry, head);
10022 	perf_event_update_userpage(event);
10023 
10024 	return 0;
10025 }
10026 
10027 static void perf_swevent_del(struct perf_event *event, int flags)
10028 {
10029 	hlist_del_rcu(&event->hlist_entry);
10030 }
10031 
10032 static void perf_swevent_start(struct perf_event *event, int flags)
10033 {
10034 	event->hw.state = 0;
10035 }
10036 
10037 static void perf_swevent_stop(struct perf_event *event, int flags)
10038 {
10039 	event->hw.state = PERF_HES_STOPPED;
10040 }
10041 
10042 /* Deref the hlist from the update side */
10043 static inline struct swevent_hlist *
10044 swevent_hlist_deref(struct swevent_htable *swhash)
10045 {
10046 	return rcu_dereference_protected(swhash->swevent_hlist,
10047 					 lockdep_is_held(&swhash->hlist_mutex));
10048 }
10049 
10050 static void swevent_hlist_release(struct swevent_htable *swhash)
10051 {
10052 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10053 
10054 	if (!hlist)
10055 		return;
10056 
10057 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10058 	kfree_rcu(hlist, rcu_head);
10059 }
10060 
10061 static void swevent_hlist_put_cpu(int cpu)
10062 {
10063 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10064 
10065 	mutex_lock(&swhash->hlist_mutex);
10066 
10067 	if (!--swhash->hlist_refcount)
10068 		swevent_hlist_release(swhash);
10069 
10070 	mutex_unlock(&swhash->hlist_mutex);
10071 }
10072 
10073 static void swevent_hlist_put(void)
10074 {
10075 	int cpu;
10076 
10077 	for_each_possible_cpu(cpu)
10078 		swevent_hlist_put_cpu(cpu);
10079 }
10080 
10081 static int swevent_hlist_get_cpu(int cpu)
10082 {
10083 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10084 	int err = 0;
10085 
10086 	mutex_lock(&swhash->hlist_mutex);
10087 	if (!swevent_hlist_deref(swhash) &&
10088 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10089 		struct swevent_hlist *hlist;
10090 
10091 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10092 		if (!hlist) {
10093 			err = -ENOMEM;
10094 			goto exit;
10095 		}
10096 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10097 	}
10098 	swhash->hlist_refcount++;
10099 exit:
10100 	mutex_unlock(&swhash->hlist_mutex);
10101 
10102 	return err;
10103 }
10104 
10105 static int swevent_hlist_get(void)
10106 {
10107 	int err, cpu, failed_cpu;
10108 
10109 	mutex_lock(&pmus_lock);
10110 	for_each_possible_cpu(cpu) {
10111 		err = swevent_hlist_get_cpu(cpu);
10112 		if (err) {
10113 			failed_cpu = cpu;
10114 			goto fail;
10115 		}
10116 	}
10117 	mutex_unlock(&pmus_lock);
10118 	return 0;
10119 fail:
10120 	for_each_possible_cpu(cpu) {
10121 		if (cpu == failed_cpu)
10122 			break;
10123 		swevent_hlist_put_cpu(cpu);
10124 	}
10125 	mutex_unlock(&pmus_lock);
10126 	return err;
10127 }
10128 
10129 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10130 
10131 static void sw_perf_event_destroy(struct perf_event *event)
10132 {
10133 	u64 event_id = event->attr.config;
10134 
10135 	WARN_ON(event->parent);
10136 
10137 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10138 	swevent_hlist_put();
10139 }
10140 
10141 static struct pmu perf_cpu_clock; /* fwd declaration */
10142 static struct pmu perf_task_clock;
10143 
10144 static int perf_swevent_init(struct perf_event *event)
10145 {
10146 	u64 event_id = event->attr.config;
10147 
10148 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10149 		return -ENOENT;
10150 
10151 	/*
10152 	 * no branch sampling for software events
10153 	 */
10154 	if (has_branch_stack(event))
10155 		return -EOPNOTSUPP;
10156 
10157 	switch (event_id) {
10158 	case PERF_COUNT_SW_CPU_CLOCK:
10159 		event->attr.type = perf_cpu_clock.type;
10160 		return -ENOENT;
10161 	case PERF_COUNT_SW_TASK_CLOCK:
10162 		event->attr.type = perf_task_clock.type;
10163 		return -ENOENT;
10164 
10165 	default:
10166 		break;
10167 	}
10168 
10169 	if (event_id >= PERF_COUNT_SW_MAX)
10170 		return -ENOENT;
10171 
10172 	if (!event->parent) {
10173 		int err;
10174 
10175 		err = swevent_hlist_get();
10176 		if (err)
10177 			return err;
10178 
10179 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10180 		event->destroy = sw_perf_event_destroy;
10181 	}
10182 
10183 	return 0;
10184 }
10185 
10186 static struct pmu perf_swevent = {
10187 	.task_ctx_nr	= perf_sw_context,
10188 
10189 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10190 
10191 	.event_init	= perf_swevent_init,
10192 	.add		= perf_swevent_add,
10193 	.del		= perf_swevent_del,
10194 	.start		= perf_swevent_start,
10195 	.stop		= perf_swevent_stop,
10196 	.read		= perf_swevent_read,
10197 };
10198 
10199 #ifdef CONFIG_EVENT_TRACING
10200 
10201 static void tp_perf_event_destroy(struct perf_event *event)
10202 {
10203 	perf_trace_destroy(event);
10204 }
10205 
10206 static int perf_tp_event_init(struct perf_event *event)
10207 {
10208 	int err;
10209 
10210 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10211 		return -ENOENT;
10212 
10213 	/*
10214 	 * no branch sampling for tracepoint events
10215 	 */
10216 	if (has_branch_stack(event))
10217 		return -EOPNOTSUPP;
10218 
10219 	err = perf_trace_init(event);
10220 	if (err)
10221 		return err;
10222 
10223 	event->destroy = tp_perf_event_destroy;
10224 
10225 	return 0;
10226 }
10227 
10228 static struct pmu perf_tracepoint = {
10229 	.task_ctx_nr	= perf_sw_context,
10230 
10231 	.event_init	= perf_tp_event_init,
10232 	.add		= perf_trace_add,
10233 	.del		= perf_trace_del,
10234 	.start		= perf_swevent_start,
10235 	.stop		= perf_swevent_stop,
10236 	.read		= perf_swevent_read,
10237 };
10238 
10239 static int perf_tp_filter_match(struct perf_event *event,
10240 				struct perf_sample_data *data)
10241 {
10242 	void *record = data->raw->frag.data;
10243 
10244 	/* only top level events have filters set */
10245 	if (event->parent)
10246 		event = event->parent;
10247 
10248 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10249 		return 1;
10250 	return 0;
10251 }
10252 
10253 static int perf_tp_event_match(struct perf_event *event,
10254 				struct perf_sample_data *data,
10255 				struct pt_regs *regs)
10256 {
10257 	if (event->hw.state & PERF_HES_STOPPED)
10258 		return 0;
10259 	/*
10260 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10261 	 */
10262 	if (event->attr.exclude_kernel && !user_mode(regs))
10263 		return 0;
10264 
10265 	if (!perf_tp_filter_match(event, data))
10266 		return 0;
10267 
10268 	return 1;
10269 }
10270 
10271 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10272 			       struct trace_event_call *call, u64 count,
10273 			       struct pt_regs *regs, struct hlist_head *head,
10274 			       struct task_struct *task)
10275 {
10276 	if (bpf_prog_array_valid(call)) {
10277 		*(struct pt_regs **)raw_data = regs;
10278 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10279 			perf_swevent_put_recursion_context(rctx);
10280 			return;
10281 		}
10282 	}
10283 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10284 		      rctx, task);
10285 }
10286 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10287 
10288 static void __perf_tp_event_target_task(u64 count, void *record,
10289 					struct pt_regs *regs,
10290 					struct perf_sample_data *data,
10291 					struct perf_event *event)
10292 {
10293 	struct trace_entry *entry = record;
10294 
10295 	if (event->attr.config != entry->type)
10296 		return;
10297 	/* Cannot deliver synchronous signal to other task. */
10298 	if (event->attr.sigtrap)
10299 		return;
10300 	if (perf_tp_event_match(event, data, regs))
10301 		perf_swevent_event(event, count, data, regs);
10302 }
10303 
10304 static void perf_tp_event_target_task(u64 count, void *record,
10305 				      struct pt_regs *regs,
10306 				      struct perf_sample_data *data,
10307 				      struct perf_event_context *ctx)
10308 {
10309 	unsigned int cpu = smp_processor_id();
10310 	struct pmu *pmu = &perf_tracepoint;
10311 	struct perf_event *event, *sibling;
10312 
10313 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10314 		__perf_tp_event_target_task(count, record, regs, data, event);
10315 		for_each_sibling_event(sibling, event)
10316 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10317 	}
10318 
10319 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10320 		__perf_tp_event_target_task(count, record, regs, data, event);
10321 		for_each_sibling_event(sibling, event)
10322 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10323 	}
10324 }
10325 
10326 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10327 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10328 		   struct task_struct *task)
10329 {
10330 	struct perf_sample_data data;
10331 	struct perf_event *event;
10332 
10333 	struct perf_raw_record raw = {
10334 		.frag = {
10335 			.size = entry_size,
10336 			.data = record,
10337 		},
10338 	};
10339 
10340 	perf_sample_data_init(&data, 0, 0);
10341 	perf_sample_save_raw_data(&data, &raw);
10342 
10343 	perf_trace_buf_update(record, event_type);
10344 
10345 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10346 		if (perf_tp_event_match(event, &data, regs)) {
10347 			perf_swevent_event(event, count, &data, regs);
10348 
10349 			/*
10350 			 * Here use the same on-stack perf_sample_data,
10351 			 * some members in data are event-specific and
10352 			 * need to be re-computed for different sweveents.
10353 			 * Re-initialize data->sample_flags safely to avoid
10354 			 * the problem that next event skips preparing data
10355 			 * because data->sample_flags is set.
10356 			 */
10357 			perf_sample_data_init(&data, 0, 0);
10358 			perf_sample_save_raw_data(&data, &raw);
10359 		}
10360 	}
10361 
10362 	/*
10363 	 * If we got specified a target task, also iterate its context and
10364 	 * deliver this event there too.
10365 	 */
10366 	if (task && task != current) {
10367 		struct perf_event_context *ctx;
10368 
10369 		rcu_read_lock();
10370 		ctx = rcu_dereference(task->perf_event_ctxp);
10371 		if (!ctx)
10372 			goto unlock;
10373 
10374 		raw_spin_lock(&ctx->lock);
10375 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10376 		raw_spin_unlock(&ctx->lock);
10377 unlock:
10378 		rcu_read_unlock();
10379 	}
10380 
10381 	perf_swevent_put_recursion_context(rctx);
10382 }
10383 EXPORT_SYMBOL_GPL(perf_tp_event);
10384 
10385 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10386 /*
10387  * Flags in config, used by dynamic PMU kprobe and uprobe
10388  * The flags should match following PMU_FORMAT_ATTR().
10389  *
10390  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10391  *                               if not set, create kprobe/uprobe
10392  *
10393  * The following values specify a reference counter (or semaphore in the
10394  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10395  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10396  *
10397  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10398  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10399  */
10400 enum perf_probe_config {
10401 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10402 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10403 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10404 };
10405 
10406 PMU_FORMAT_ATTR(retprobe, "config:0");
10407 #endif
10408 
10409 #ifdef CONFIG_KPROBE_EVENTS
10410 static struct attribute *kprobe_attrs[] = {
10411 	&format_attr_retprobe.attr,
10412 	NULL,
10413 };
10414 
10415 static struct attribute_group kprobe_format_group = {
10416 	.name = "format",
10417 	.attrs = kprobe_attrs,
10418 };
10419 
10420 static const struct attribute_group *kprobe_attr_groups[] = {
10421 	&kprobe_format_group,
10422 	NULL,
10423 };
10424 
10425 static int perf_kprobe_event_init(struct perf_event *event);
10426 static struct pmu perf_kprobe = {
10427 	.task_ctx_nr	= perf_sw_context,
10428 	.event_init	= perf_kprobe_event_init,
10429 	.add		= perf_trace_add,
10430 	.del		= perf_trace_del,
10431 	.start		= perf_swevent_start,
10432 	.stop		= perf_swevent_stop,
10433 	.read		= perf_swevent_read,
10434 	.attr_groups	= kprobe_attr_groups,
10435 };
10436 
10437 static int perf_kprobe_event_init(struct perf_event *event)
10438 {
10439 	int err;
10440 	bool is_retprobe;
10441 
10442 	if (event->attr.type != perf_kprobe.type)
10443 		return -ENOENT;
10444 
10445 	if (!perfmon_capable())
10446 		return -EACCES;
10447 
10448 	/*
10449 	 * no branch sampling for probe events
10450 	 */
10451 	if (has_branch_stack(event))
10452 		return -EOPNOTSUPP;
10453 
10454 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10455 	err = perf_kprobe_init(event, is_retprobe);
10456 	if (err)
10457 		return err;
10458 
10459 	event->destroy = perf_kprobe_destroy;
10460 
10461 	return 0;
10462 }
10463 #endif /* CONFIG_KPROBE_EVENTS */
10464 
10465 #ifdef CONFIG_UPROBE_EVENTS
10466 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10467 
10468 static struct attribute *uprobe_attrs[] = {
10469 	&format_attr_retprobe.attr,
10470 	&format_attr_ref_ctr_offset.attr,
10471 	NULL,
10472 };
10473 
10474 static struct attribute_group uprobe_format_group = {
10475 	.name = "format",
10476 	.attrs = uprobe_attrs,
10477 };
10478 
10479 static const struct attribute_group *uprobe_attr_groups[] = {
10480 	&uprobe_format_group,
10481 	NULL,
10482 };
10483 
10484 static int perf_uprobe_event_init(struct perf_event *event);
10485 static struct pmu perf_uprobe = {
10486 	.task_ctx_nr	= perf_sw_context,
10487 	.event_init	= perf_uprobe_event_init,
10488 	.add		= perf_trace_add,
10489 	.del		= perf_trace_del,
10490 	.start		= perf_swevent_start,
10491 	.stop		= perf_swevent_stop,
10492 	.read		= perf_swevent_read,
10493 	.attr_groups	= uprobe_attr_groups,
10494 };
10495 
10496 static int perf_uprobe_event_init(struct perf_event *event)
10497 {
10498 	int err;
10499 	unsigned long ref_ctr_offset;
10500 	bool is_retprobe;
10501 
10502 	if (event->attr.type != perf_uprobe.type)
10503 		return -ENOENT;
10504 
10505 	if (!perfmon_capable())
10506 		return -EACCES;
10507 
10508 	/*
10509 	 * no branch sampling for probe events
10510 	 */
10511 	if (has_branch_stack(event))
10512 		return -EOPNOTSUPP;
10513 
10514 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10515 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10516 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10517 	if (err)
10518 		return err;
10519 
10520 	event->destroy = perf_uprobe_destroy;
10521 
10522 	return 0;
10523 }
10524 #endif /* CONFIG_UPROBE_EVENTS */
10525 
10526 static inline void perf_tp_register(void)
10527 {
10528 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10529 #ifdef CONFIG_KPROBE_EVENTS
10530 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10531 #endif
10532 #ifdef CONFIG_UPROBE_EVENTS
10533 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10534 #endif
10535 }
10536 
10537 static void perf_event_free_filter(struct perf_event *event)
10538 {
10539 	ftrace_profile_free_filter(event);
10540 }
10541 
10542 /*
10543  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10544  * with perf_event_open()
10545  */
10546 static inline bool perf_event_is_tracing(struct perf_event *event)
10547 {
10548 	if (event->pmu == &perf_tracepoint)
10549 		return true;
10550 #ifdef CONFIG_KPROBE_EVENTS
10551 	if (event->pmu == &perf_kprobe)
10552 		return true;
10553 #endif
10554 #ifdef CONFIG_UPROBE_EVENTS
10555 	if (event->pmu == &perf_uprobe)
10556 		return true;
10557 #endif
10558 	return false;
10559 }
10560 
10561 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10562 			    u64 bpf_cookie)
10563 {
10564 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10565 
10566 	if (!perf_event_is_tracing(event))
10567 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10568 
10569 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10570 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10571 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10572 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10573 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10574 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10575 		return -EINVAL;
10576 
10577 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10578 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10579 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10580 		return -EINVAL;
10581 
10582 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10583 		/* only uprobe programs are allowed to be sleepable */
10584 		return -EINVAL;
10585 
10586 	/* Kprobe override only works for kprobes, not uprobes. */
10587 	if (prog->kprobe_override && !is_kprobe)
10588 		return -EINVAL;
10589 
10590 	if (is_tracepoint || is_syscall_tp) {
10591 		int off = trace_event_get_offsets(event->tp_event);
10592 
10593 		if (prog->aux->max_ctx_offset > off)
10594 			return -EACCES;
10595 	}
10596 
10597 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10598 }
10599 
10600 void perf_event_free_bpf_prog(struct perf_event *event)
10601 {
10602 	if (!perf_event_is_tracing(event)) {
10603 		perf_event_free_bpf_handler(event);
10604 		return;
10605 	}
10606 	perf_event_detach_bpf_prog(event);
10607 }
10608 
10609 #else
10610 
10611 static inline void perf_tp_register(void)
10612 {
10613 }
10614 
10615 static void perf_event_free_filter(struct perf_event *event)
10616 {
10617 }
10618 
10619 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10620 			    u64 bpf_cookie)
10621 {
10622 	return -ENOENT;
10623 }
10624 
10625 void perf_event_free_bpf_prog(struct perf_event *event)
10626 {
10627 }
10628 #endif /* CONFIG_EVENT_TRACING */
10629 
10630 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10631 void perf_bp_event(struct perf_event *bp, void *data)
10632 {
10633 	struct perf_sample_data sample;
10634 	struct pt_regs *regs = data;
10635 
10636 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10637 
10638 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10639 		perf_swevent_event(bp, 1, &sample, regs);
10640 }
10641 #endif
10642 
10643 /*
10644  * Allocate a new address filter
10645  */
10646 static struct perf_addr_filter *
10647 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10648 {
10649 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10650 	struct perf_addr_filter *filter;
10651 
10652 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10653 	if (!filter)
10654 		return NULL;
10655 
10656 	INIT_LIST_HEAD(&filter->entry);
10657 	list_add_tail(&filter->entry, filters);
10658 
10659 	return filter;
10660 }
10661 
10662 static void free_filters_list(struct list_head *filters)
10663 {
10664 	struct perf_addr_filter *filter, *iter;
10665 
10666 	list_for_each_entry_safe(filter, iter, filters, entry) {
10667 		path_put(&filter->path);
10668 		list_del(&filter->entry);
10669 		kfree(filter);
10670 	}
10671 }
10672 
10673 /*
10674  * Free existing address filters and optionally install new ones
10675  */
10676 static void perf_addr_filters_splice(struct perf_event *event,
10677 				     struct list_head *head)
10678 {
10679 	unsigned long flags;
10680 	LIST_HEAD(list);
10681 
10682 	if (!has_addr_filter(event))
10683 		return;
10684 
10685 	/* don't bother with children, they don't have their own filters */
10686 	if (event->parent)
10687 		return;
10688 
10689 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10690 
10691 	list_splice_init(&event->addr_filters.list, &list);
10692 	if (head)
10693 		list_splice(head, &event->addr_filters.list);
10694 
10695 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10696 
10697 	free_filters_list(&list);
10698 }
10699 
10700 /*
10701  * Scan through mm's vmas and see if one of them matches the
10702  * @filter; if so, adjust filter's address range.
10703  * Called with mm::mmap_lock down for reading.
10704  */
10705 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10706 				   struct mm_struct *mm,
10707 				   struct perf_addr_filter_range *fr)
10708 {
10709 	struct vm_area_struct *vma;
10710 	VMA_ITERATOR(vmi, mm, 0);
10711 
10712 	for_each_vma(vmi, vma) {
10713 		if (!vma->vm_file)
10714 			continue;
10715 
10716 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10717 			return;
10718 	}
10719 }
10720 
10721 /*
10722  * Update event's address range filters based on the
10723  * task's existing mappings, if any.
10724  */
10725 static void perf_event_addr_filters_apply(struct perf_event *event)
10726 {
10727 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10728 	struct task_struct *task = READ_ONCE(event->ctx->task);
10729 	struct perf_addr_filter *filter;
10730 	struct mm_struct *mm = NULL;
10731 	unsigned int count = 0;
10732 	unsigned long flags;
10733 
10734 	/*
10735 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10736 	 * will stop on the parent's child_mutex that our caller is also holding
10737 	 */
10738 	if (task == TASK_TOMBSTONE)
10739 		return;
10740 
10741 	if (ifh->nr_file_filters) {
10742 		mm = get_task_mm(task);
10743 		if (!mm)
10744 			goto restart;
10745 
10746 		mmap_read_lock(mm);
10747 	}
10748 
10749 	raw_spin_lock_irqsave(&ifh->lock, flags);
10750 	list_for_each_entry(filter, &ifh->list, entry) {
10751 		if (filter->path.dentry) {
10752 			/*
10753 			 * Adjust base offset if the filter is associated to a
10754 			 * binary that needs to be mapped:
10755 			 */
10756 			event->addr_filter_ranges[count].start = 0;
10757 			event->addr_filter_ranges[count].size = 0;
10758 
10759 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10760 		} else {
10761 			event->addr_filter_ranges[count].start = filter->offset;
10762 			event->addr_filter_ranges[count].size  = filter->size;
10763 		}
10764 
10765 		count++;
10766 	}
10767 
10768 	event->addr_filters_gen++;
10769 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10770 
10771 	if (ifh->nr_file_filters) {
10772 		mmap_read_unlock(mm);
10773 
10774 		mmput(mm);
10775 	}
10776 
10777 restart:
10778 	perf_event_stop(event, 1);
10779 }
10780 
10781 /*
10782  * Address range filtering: limiting the data to certain
10783  * instruction address ranges. Filters are ioctl()ed to us from
10784  * userspace as ascii strings.
10785  *
10786  * Filter string format:
10787  *
10788  * ACTION RANGE_SPEC
10789  * where ACTION is one of the
10790  *  * "filter": limit the trace to this region
10791  *  * "start": start tracing from this address
10792  *  * "stop": stop tracing at this address/region;
10793  * RANGE_SPEC is
10794  *  * for kernel addresses: <start address>[/<size>]
10795  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10796  *
10797  * if <size> is not specified or is zero, the range is treated as a single
10798  * address; not valid for ACTION=="filter".
10799  */
10800 enum {
10801 	IF_ACT_NONE = -1,
10802 	IF_ACT_FILTER,
10803 	IF_ACT_START,
10804 	IF_ACT_STOP,
10805 	IF_SRC_FILE,
10806 	IF_SRC_KERNEL,
10807 	IF_SRC_FILEADDR,
10808 	IF_SRC_KERNELADDR,
10809 };
10810 
10811 enum {
10812 	IF_STATE_ACTION = 0,
10813 	IF_STATE_SOURCE,
10814 	IF_STATE_END,
10815 };
10816 
10817 static const match_table_t if_tokens = {
10818 	{ IF_ACT_FILTER,	"filter" },
10819 	{ IF_ACT_START,		"start" },
10820 	{ IF_ACT_STOP,		"stop" },
10821 	{ IF_SRC_FILE,		"%u/%u@%s" },
10822 	{ IF_SRC_KERNEL,	"%u/%u" },
10823 	{ IF_SRC_FILEADDR,	"%u@%s" },
10824 	{ IF_SRC_KERNELADDR,	"%u" },
10825 	{ IF_ACT_NONE,		NULL },
10826 };
10827 
10828 /*
10829  * Address filter string parser
10830  */
10831 static int
10832 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10833 			     struct list_head *filters)
10834 {
10835 	struct perf_addr_filter *filter = NULL;
10836 	char *start, *orig, *filename = NULL;
10837 	substring_t args[MAX_OPT_ARGS];
10838 	int state = IF_STATE_ACTION, token;
10839 	unsigned int kernel = 0;
10840 	int ret = -EINVAL;
10841 
10842 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10843 	if (!fstr)
10844 		return -ENOMEM;
10845 
10846 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10847 		static const enum perf_addr_filter_action_t actions[] = {
10848 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10849 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10850 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10851 		};
10852 		ret = -EINVAL;
10853 
10854 		if (!*start)
10855 			continue;
10856 
10857 		/* filter definition begins */
10858 		if (state == IF_STATE_ACTION) {
10859 			filter = perf_addr_filter_new(event, filters);
10860 			if (!filter)
10861 				goto fail;
10862 		}
10863 
10864 		token = match_token(start, if_tokens, args);
10865 		switch (token) {
10866 		case IF_ACT_FILTER:
10867 		case IF_ACT_START:
10868 		case IF_ACT_STOP:
10869 			if (state != IF_STATE_ACTION)
10870 				goto fail;
10871 
10872 			filter->action = actions[token];
10873 			state = IF_STATE_SOURCE;
10874 			break;
10875 
10876 		case IF_SRC_KERNELADDR:
10877 		case IF_SRC_KERNEL:
10878 			kernel = 1;
10879 			fallthrough;
10880 
10881 		case IF_SRC_FILEADDR:
10882 		case IF_SRC_FILE:
10883 			if (state != IF_STATE_SOURCE)
10884 				goto fail;
10885 
10886 			*args[0].to = 0;
10887 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10888 			if (ret)
10889 				goto fail;
10890 
10891 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10892 				*args[1].to = 0;
10893 				ret = kstrtoul(args[1].from, 0, &filter->size);
10894 				if (ret)
10895 					goto fail;
10896 			}
10897 
10898 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10899 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10900 
10901 				kfree(filename);
10902 				filename = match_strdup(&args[fpos]);
10903 				if (!filename) {
10904 					ret = -ENOMEM;
10905 					goto fail;
10906 				}
10907 			}
10908 
10909 			state = IF_STATE_END;
10910 			break;
10911 
10912 		default:
10913 			goto fail;
10914 		}
10915 
10916 		/*
10917 		 * Filter definition is fully parsed, validate and install it.
10918 		 * Make sure that it doesn't contradict itself or the event's
10919 		 * attribute.
10920 		 */
10921 		if (state == IF_STATE_END) {
10922 			ret = -EINVAL;
10923 
10924 			/*
10925 			 * ACTION "filter" must have a non-zero length region
10926 			 * specified.
10927 			 */
10928 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10929 			    !filter->size)
10930 				goto fail;
10931 
10932 			if (!kernel) {
10933 				if (!filename)
10934 					goto fail;
10935 
10936 				/*
10937 				 * For now, we only support file-based filters
10938 				 * in per-task events; doing so for CPU-wide
10939 				 * events requires additional context switching
10940 				 * trickery, since same object code will be
10941 				 * mapped at different virtual addresses in
10942 				 * different processes.
10943 				 */
10944 				ret = -EOPNOTSUPP;
10945 				if (!event->ctx->task)
10946 					goto fail;
10947 
10948 				/* look up the path and grab its inode */
10949 				ret = kern_path(filename, LOOKUP_FOLLOW,
10950 						&filter->path);
10951 				if (ret)
10952 					goto fail;
10953 
10954 				ret = -EINVAL;
10955 				if (!filter->path.dentry ||
10956 				    !S_ISREG(d_inode(filter->path.dentry)
10957 					     ->i_mode))
10958 					goto fail;
10959 
10960 				event->addr_filters.nr_file_filters++;
10961 			}
10962 
10963 			/* ready to consume more filters */
10964 			kfree(filename);
10965 			filename = NULL;
10966 			state = IF_STATE_ACTION;
10967 			filter = NULL;
10968 			kernel = 0;
10969 		}
10970 	}
10971 
10972 	if (state != IF_STATE_ACTION)
10973 		goto fail;
10974 
10975 	kfree(filename);
10976 	kfree(orig);
10977 
10978 	return 0;
10979 
10980 fail:
10981 	kfree(filename);
10982 	free_filters_list(filters);
10983 	kfree(orig);
10984 
10985 	return ret;
10986 }
10987 
10988 static int
10989 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10990 {
10991 	LIST_HEAD(filters);
10992 	int ret;
10993 
10994 	/*
10995 	 * Since this is called in perf_ioctl() path, we're already holding
10996 	 * ctx::mutex.
10997 	 */
10998 	lockdep_assert_held(&event->ctx->mutex);
10999 
11000 	if (WARN_ON_ONCE(event->parent))
11001 		return -EINVAL;
11002 
11003 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11004 	if (ret)
11005 		goto fail_clear_files;
11006 
11007 	ret = event->pmu->addr_filters_validate(&filters);
11008 	if (ret)
11009 		goto fail_free_filters;
11010 
11011 	/* remove existing filters, if any */
11012 	perf_addr_filters_splice(event, &filters);
11013 
11014 	/* install new filters */
11015 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11016 
11017 	return ret;
11018 
11019 fail_free_filters:
11020 	free_filters_list(&filters);
11021 
11022 fail_clear_files:
11023 	event->addr_filters.nr_file_filters = 0;
11024 
11025 	return ret;
11026 }
11027 
11028 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11029 {
11030 	int ret = -EINVAL;
11031 	char *filter_str;
11032 
11033 	filter_str = strndup_user(arg, PAGE_SIZE);
11034 	if (IS_ERR(filter_str))
11035 		return PTR_ERR(filter_str);
11036 
11037 #ifdef CONFIG_EVENT_TRACING
11038 	if (perf_event_is_tracing(event)) {
11039 		struct perf_event_context *ctx = event->ctx;
11040 
11041 		/*
11042 		 * Beware, here be dragons!!
11043 		 *
11044 		 * the tracepoint muck will deadlock against ctx->mutex, but
11045 		 * the tracepoint stuff does not actually need it. So
11046 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11047 		 * already have a reference on ctx.
11048 		 *
11049 		 * This can result in event getting moved to a different ctx,
11050 		 * but that does not affect the tracepoint state.
11051 		 */
11052 		mutex_unlock(&ctx->mutex);
11053 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11054 		mutex_lock(&ctx->mutex);
11055 	} else
11056 #endif
11057 	if (has_addr_filter(event))
11058 		ret = perf_event_set_addr_filter(event, filter_str);
11059 
11060 	kfree(filter_str);
11061 	return ret;
11062 }
11063 
11064 /*
11065  * hrtimer based swevent callback
11066  */
11067 
11068 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11069 {
11070 	enum hrtimer_restart ret = HRTIMER_RESTART;
11071 	struct perf_sample_data data;
11072 	struct pt_regs *regs;
11073 	struct perf_event *event;
11074 	u64 period;
11075 
11076 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11077 
11078 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11079 		return HRTIMER_NORESTART;
11080 
11081 	event->pmu->read(event);
11082 
11083 	perf_sample_data_init(&data, 0, event->hw.last_period);
11084 	regs = get_irq_regs();
11085 
11086 	if (regs && !perf_exclude_event(event, regs)) {
11087 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11088 			if (__perf_event_overflow(event, 1, &data, regs))
11089 				ret = HRTIMER_NORESTART;
11090 	}
11091 
11092 	period = max_t(u64, 10000, event->hw.sample_period);
11093 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11094 
11095 	return ret;
11096 }
11097 
11098 static void perf_swevent_start_hrtimer(struct perf_event *event)
11099 {
11100 	struct hw_perf_event *hwc = &event->hw;
11101 	s64 period;
11102 
11103 	if (!is_sampling_event(event))
11104 		return;
11105 
11106 	period = local64_read(&hwc->period_left);
11107 	if (period) {
11108 		if (period < 0)
11109 			period = 10000;
11110 
11111 		local64_set(&hwc->period_left, 0);
11112 	} else {
11113 		period = max_t(u64, 10000, hwc->sample_period);
11114 	}
11115 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11116 		      HRTIMER_MODE_REL_PINNED_HARD);
11117 }
11118 
11119 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11120 {
11121 	struct hw_perf_event *hwc = &event->hw;
11122 
11123 	if (is_sampling_event(event)) {
11124 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11125 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11126 
11127 		hrtimer_cancel(&hwc->hrtimer);
11128 	}
11129 }
11130 
11131 static void perf_swevent_init_hrtimer(struct perf_event *event)
11132 {
11133 	struct hw_perf_event *hwc = &event->hw;
11134 
11135 	if (!is_sampling_event(event))
11136 		return;
11137 
11138 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11139 	hwc->hrtimer.function = perf_swevent_hrtimer;
11140 
11141 	/*
11142 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11143 	 * mapping and avoid the whole period adjust feedback stuff.
11144 	 */
11145 	if (event->attr.freq) {
11146 		long freq = event->attr.sample_freq;
11147 
11148 		event->attr.sample_period = NSEC_PER_SEC / freq;
11149 		hwc->sample_period = event->attr.sample_period;
11150 		local64_set(&hwc->period_left, hwc->sample_period);
11151 		hwc->last_period = hwc->sample_period;
11152 		event->attr.freq = 0;
11153 	}
11154 }
11155 
11156 /*
11157  * Software event: cpu wall time clock
11158  */
11159 
11160 static void cpu_clock_event_update(struct perf_event *event)
11161 {
11162 	s64 prev;
11163 	u64 now;
11164 
11165 	now = local_clock();
11166 	prev = local64_xchg(&event->hw.prev_count, now);
11167 	local64_add(now - prev, &event->count);
11168 }
11169 
11170 static void cpu_clock_event_start(struct perf_event *event, int flags)
11171 {
11172 	local64_set(&event->hw.prev_count, local_clock());
11173 	perf_swevent_start_hrtimer(event);
11174 }
11175 
11176 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11177 {
11178 	perf_swevent_cancel_hrtimer(event);
11179 	cpu_clock_event_update(event);
11180 }
11181 
11182 static int cpu_clock_event_add(struct perf_event *event, int flags)
11183 {
11184 	if (flags & PERF_EF_START)
11185 		cpu_clock_event_start(event, flags);
11186 	perf_event_update_userpage(event);
11187 
11188 	return 0;
11189 }
11190 
11191 static void cpu_clock_event_del(struct perf_event *event, int flags)
11192 {
11193 	cpu_clock_event_stop(event, flags);
11194 }
11195 
11196 static void cpu_clock_event_read(struct perf_event *event)
11197 {
11198 	cpu_clock_event_update(event);
11199 }
11200 
11201 static int cpu_clock_event_init(struct perf_event *event)
11202 {
11203 	if (event->attr.type != perf_cpu_clock.type)
11204 		return -ENOENT;
11205 
11206 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11207 		return -ENOENT;
11208 
11209 	/*
11210 	 * no branch sampling for software events
11211 	 */
11212 	if (has_branch_stack(event))
11213 		return -EOPNOTSUPP;
11214 
11215 	perf_swevent_init_hrtimer(event);
11216 
11217 	return 0;
11218 }
11219 
11220 static struct pmu perf_cpu_clock = {
11221 	.task_ctx_nr	= perf_sw_context,
11222 
11223 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11224 	.dev		= PMU_NULL_DEV,
11225 
11226 	.event_init	= cpu_clock_event_init,
11227 	.add		= cpu_clock_event_add,
11228 	.del		= cpu_clock_event_del,
11229 	.start		= cpu_clock_event_start,
11230 	.stop		= cpu_clock_event_stop,
11231 	.read		= cpu_clock_event_read,
11232 };
11233 
11234 /*
11235  * Software event: task time clock
11236  */
11237 
11238 static void task_clock_event_update(struct perf_event *event, u64 now)
11239 {
11240 	u64 prev;
11241 	s64 delta;
11242 
11243 	prev = local64_xchg(&event->hw.prev_count, now);
11244 	delta = now - prev;
11245 	local64_add(delta, &event->count);
11246 }
11247 
11248 static void task_clock_event_start(struct perf_event *event, int flags)
11249 {
11250 	local64_set(&event->hw.prev_count, event->ctx->time);
11251 	perf_swevent_start_hrtimer(event);
11252 }
11253 
11254 static void task_clock_event_stop(struct perf_event *event, int flags)
11255 {
11256 	perf_swevent_cancel_hrtimer(event);
11257 	task_clock_event_update(event, event->ctx->time);
11258 }
11259 
11260 static int task_clock_event_add(struct perf_event *event, int flags)
11261 {
11262 	if (flags & PERF_EF_START)
11263 		task_clock_event_start(event, flags);
11264 	perf_event_update_userpage(event);
11265 
11266 	return 0;
11267 }
11268 
11269 static void task_clock_event_del(struct perf_event *event, int flags)
11270 {
11271 	task_clock_event_stop(event, PERF_EF_UPDATE);
11272 }
11273 
11274 static void task_clock_event_read(struct perf_event *event)
11275 {
11276 	u64 now = perf_clock();
11277 	u64 delta = now - event->ctx->timestamp;
11278 	u64 time = event->ctx->time + delta;
11279 
11280 	task_clock_event_update(event, time);
11281 }
11282 
11283 static int task_clock_event_init(struct perf_event *event)
11284 {
11285 	if (event->attr.type != perf_task_clock.type)
11286 		return -ENOENT;
11287 
11288 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11289 		return -ENOENT;
11290 
11291 	/*
11292 	 * no branch sampling for software events
11293 	 */
11294 	if (has_branch_stack(event))
11295 		return -EOPNOTSUPP;
11296 
11297 	perf_swevent_init_hrtimer(event);
11298 
11299 	return 0;
11300 }
11301 
11302 static struct pmu perf_task_clock = {
11303 	.task_ctx_nr	= perf_sw_context,
11304 
11305 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11306 	.dev		= PMU_NULL_DEV,
11307 
11308 	.event_init	= task_clock_event_init,
11309 	.add		= task_clock_event_add,
11310 	.del		= task_clock_event_del,
11311 	.start		= task_clock_event_start,
11312 	.stop		= task_clock_event_stop,
11313 	.read		= task_clock_event_read,
11314 };
11315 
11316 static void perf_pmu_nop_void(struct pmu *pmu)
11317 {
11318 }
11319 
11320 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11321 {
11322 }
11323 
11324 static int perf_pmu_nop_int(struct pmu *pmu)
11325 {
11326 	return 0;
11327 }
11328 
11329 static int perf_event_nop_int(struct perf_event *event, u64 value)
11330 {
11331 	return 0;
11332 }
11333 
11334 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11335 
11336 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11337 {
11338 	__this_cpu_write(nop_txn_flags, flags);
11339 
11340 	if (flags & ~PERF_PMU_TXN_ADD)
11341 		return;
11342 
11343 	perf_pmu_disable(pmu);
11344 }
11345 
11346 static int perf_pmu_commit_txn(struct pmu *pmu)
11347 {
11348 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11349 
11350 	__this_cpu_write(nop_txn_flags, 0);
11351 
11352 	if (flags & ~PERF_PMU_TXN_ADD)
11353 		return 0;
11354 
11355 	perf_pmu_enable(pmu);
11356 	return 0;
11357 }
11358 
11359 static void perf_pmu_cancel_txn(struct pmu *pmu)
11360 {
11361 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11362 
11363 	__this_cpu_write(nop_txn_flags, 0);
11364 
11365 	if (flags & ~PERF_PMU_TXN_ADD)
11366 		return;
11367 
11368 	perf_pmu_enable(pmu);
11369 }
11370 
11371 static int perf_event_idx_default(struct perf_event *event)
11372 {
11373 	return 0;
11374 }
11375 
11376 static void free_pmu_context(struct pmu *pmu)
11377 {
11378 	free_percpu(pmu->cpu_pmu_context);
11379 }
11380 
11381 /*
11382  * Let userspace know that this PMU supports address range filtering:
11383  */
11384 static ssize_t nr_addr_filters_show(struct device *dev,
11385 				    struct device_attribute *attr,
11386 				    char *page)
11387 {
11388 	struct pmu *pmu = dev_get_drvdata(dev);
11389 
11390 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11391 }
11392 DEVICE_ATTR_RO(nr_addr_filters);
11393 
11394 static struct idr pmu_idr;
11395 
11396 static ssize_t
11397 type_show(struct device *dev, struct device_attribute *attr, char *page)
11398 {
11399 	struct pmu *pmu = dev_get_drvdata(dev);
11400 
11401 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11402 }
11403 static DEVICE_ATTR_RO(type);
11404 
11405 static ssize_t
11406 perf_event_mux_interval_ms_show(struct device *dev,
11407 				struct device_attribute *attr,
11408 				char *page)
11409 {
11410 	struct pmu *pmu = dev_get_drvdata(dev);
11411 
11412 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11413 }
11414 
11415 static DEFINE_MUTEX(mux_interval_mutex);
11416 
11417 static ssize_t
11418 perf_event_mux_interval_ms_store(struct device *dev,
11419 				 struct device_attribute *attr,
11420 				 const char *buf, size_t count)
11421 {
11422 	struct pmu *pmu = dev_get_drvdata(dev);
11423 	int timer, cpu, ret;
11424 
11425 	ret = kstrtoint(buf, 0, &timer);
11426 	if (ret)
11427 		return ret;
11428 
11429 	if (timer < 1)
11430 		return -EINVAL;
11431 
11432 	/* same value, noting to do */
11433 	if (timer == pmu->hrtimer_interval_ms)
11434 		return count;
11435 
11436 	mutex_lock(&mux_interval_mutex);
11437 	pmu->hrtimer_interval_ms = timer;
11438 
11439 	/* update all cpuctx for this PMU */
11440 	cpus_read_lock();
11441 	for_each_online_cpu(cpu) {
11442 		struct perf_cpu_pmu_context *cpc;
11443 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11444 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11445 
11446 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11447 	}
11448 	cpus_read_unlock();
11449 	mutex_unlock(&mux_interval_mutex);
11450 
11451 	return count;
11452 }
11453 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11454 
11455 static struct attribute *pmu_dev_attrs[] = {
11456 	&dev_attr_type.attr,
11457 	&dev_attr_perf_event_mux_interval_ms.attr,
11458 	&dev_attr_nr_addr_filters.attr,
11459 	NULL,
11460 };
11461 
11462 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11463 {
11464 	struct device *dev = kobj_to_dev(kobj);
11465 	struct pmu *pmu = dev_get_drvdata(dev);
11466 
11467 	if (n == 2 && !pmu->nr_addr_filters)
11468 		return 0;
11469 
11470 	return a->mode;
11471 }
11472 
11473 static struct attribute_group pmu_dev_attr_group = {
11474 	.is_visible = pmu_dev_is_visible,
11475 	.attrs = pmu_dev_attrs,
11476 };
11477 
11478 static const struct attribute_group *pmu_dev_groups[] = {
11479 	&pmu_dev_attr_group,
11480 	NULL,
11481 };
11482 
11483 static int pmu_bus_running;
11484 static struct bus_type pmu_bus = {
11485 	.name		= "event_source",
11486 	.dev_groups	= pmu_dev_groups,
11487 };
11488 
11489 static void pmu_dev_release(struct device *dev)
11490 {
11491 	kfree(dev);
11492 }
11493 
11494 static int pmu_dev_alloc(struct pmu *pmu)
11495 {
11496 	int ret = -ENOMEM;
11497 
11498 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11499 	if (!pmu->dev)
11500 		goto out;
11501 
11502 	pmu->dev->groups = pmu->attr_groups;
11503 	device_initialize(pmu->dev);
11504 
11505 	dev_set_drvdata(pmu->dev, pmu);
11506 	pmu->dev->bus = &pmu_bus;
11507 	pmu->dev->parent = pmu->parent;
11508 	pmu->dev->release = pmu_dev_release;
11509 
11510 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11511 	if (ret)
11512 		goto free_dev;
11513 
11514 	ret = device_add(pmu->dev);
11515 	if (ret)
11516 		goto free_dev;
11517 
11518 	if (pmu->attr_update) {
11519 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11520 		if (ret)
11521 			goto del_dev;
11522 	}
11523 
11524 out:
11525 	return ret;
11526 
11527 del_dev:
11528 	device_del(pmu->dev);
11529 
11530 free_dev:
11531 	put_device(pmu->dev);
11532 	goto out;
11533 }
11534 
11535 static struct lock_class_key cpuctx_mutex;
11536 static struct lock_class_key cpuctx_lock;
11537 
11538 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11539 {
11540 	int cpu, ret, max = PERF_TYPE_MAX;
11541 
11542 	mutex_lock(&pmus_lock);
11543 	ret = -ENOMEM;
11544 	pmu->pmu_disable_count = alloc_percpu(int);
11545 	if (!pmu->pmu_disable_count)
11546 		goto unlock;
11547 
11548 	pmu->type = -1;
11549 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11550 		ret = -EINVAL;
11551 		goto free_pdc;
11552 	}
11553 
11554 	pmu->name = name;
11555 
11556 	if (type >= 0)
11557 		max = type;
11558 
11559 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11560 	if (ret < 0)
11561 		goto free_pdc;
11562 
11563 	WARN_ON(type >= 0 && ret != type);
11564 
11565 	type = ret;
11566 	pmu->type = type;
11567 
11568 	if (pmu_bus_running && !pmu->dev) {
11569 		ret = pmu_dev_alloc(pmu);
11570 		if (ret)
11571 			goto free_idr;
11572 	}
11573 
11574 	ret = -ENOMEM;
11575 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11576 	if (!pmu->cpu_pmu_context)
11577 		goto free_dev;
11578 
11579 	for_each_possible_cpu(cpu) {
11580 		struct perf_cpu_pmu_context *cpc;
11581 
11582 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11583 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11584 		__perf_mux_hrtimer_init(cpc, cpu);
11585 	}
11586 
11587 	if (!pmu->start_txn) {
11588 		if (pmu->pmu_enable) {
11589 			/*
11590 			 * If we have pmu_enable/pmu_disable calls, install
11591 			 * transaction stubs that use that to try and batch
11592 			 * hardware accesses.
11593 			 */
11594 			pmu->start_txn  = perf_pmu_start_txn;
11595 			pmu->commit_txn = perf_pmu_commit_txn;
11596 			pmu->cancel_txn = perf_pmu_cancel_txn;
11597 		} else {
11598 			pmu->start_txn  = perf_pmu_nop_txn;
11599 			pmu->commit_txn = perf_pmu_nop_int;
11600 			pmu->cancel_txn = perf_pmu_nop_void;
11601 		}
11602 	}
11603 
11604 	if (!pmu->pmu_enable) {
11605 		pmu->pmu_enable  = perf_pmu_nop_void;
11606 		pmu->pmu_disable = perf_pmu_nop_void;
11607 	}
11608 
11609 	if (!pmu->check_period)
11610 		pmu->check_period = perf_event_nop_int;
11611 
11612 	if (!pmu->event_idx)
11613 		pmu->event_idx = perf_event_idx_default;
11614 
11615 	list_add_rcu(&pmu->entry, &pmus);
11616 	atomic_set(&pmu->exclusive_cnt, 0);
11617 	ret = 0;
11618 unlock:
11619 	mutex_unlock(&pmus_lock);
11620 
11621 	return ret;
11622 
11623 free_dev:
11624 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11625 		device_del(pmu->dev);
11626 		put_device(pmu->dev);
11627 	}
11628 
11629 free_idr:
11630 	idr_remove(&pmu_idr, pmu->type);
11631 
11632 free_pdc:
11633 	free_percpu(pmu->pmu_disable_count);
11634 	goto unlock;
11635 }
11636 EXPORT_SYMBOL_GPL(perf_pmu_register);
11637 
11638 void perf_pmu_unregister(struct pmu *pmu)
11639 {
11640 	mutex_lock(&pmus_lock);
11641 	list_del_rcu(&pmu->entry);
11642 
11643 	/*
11644 	 * We dereference the pmu list under both SRCU and regular RCU, so
11645 	 * synchronize against both of those.
11646 	 */
11647 	synchronize_srcu(&pmus_srcu);
11648 	synchronize_rcu();
11649 
11650 	free_percpu(pmu->pmu_disable_count);
11651 	idr_remove(&pmu_idr, pmu->type);
11652 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11653 		if (pmu->nr_addr_filters)
11654 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11655 		device_del(pmu->dev);
11656 		put_device(pmu->dev);
11657 	}
11658 	free_pmu_context(pmu);
11659 	mutex_unlock(&pmus_lock);
11660 }
11661 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11662 
11663 static inline bool has_extended_regs(struct perf_event *event)
11664 {
11665 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11666 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11667 }
11668 
11669 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11670 {
11671 	struct perf_event_context *ctx = NULL;
11672 	int ret;
11673 
11674 	if (!try_module_get(pmu->module))
11675 		return -ENODEV;
11676 
11677 	/*
11678 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11679 	 * for example, validate if the group fits on the PMU. Therefore,
11680 	 * if this is a sibling event, acquire the ctx->mutex to protect
11681 	 * the sibling_list.
11682 	 */
11683 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11684 		/*
11685 		 * This ctx->mutex can nest when we're called through
11686 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11687 		 */
11688 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11689 						 SINGLE_DEPTH_NESTING);
11690 		BUG_ON(!ctx);
11691 	}
11692 
11693 	event->pmu = pmu;
11694 	ret = pmu->event_init(event);
11695 
11696 	if (ctx)
11697 		perf_event_ctx_unlock(event->group_leader, ctx);
11698 
11699 	if (!ret) {
11700 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11701 		    has_extended_regs(event))
11702 			ret = -EOPNOTSUPP;
11703 
11704 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11705 		    event_has_any_exclude_flag(event))
11706 			ret = -EINVAL;
11707 
11708 		if (ret && event->destroy)
11709 			event->destroy(event);
11710 	}
11711 
11712 	if (ret)
11713 		module_put(pmu->module);
11714 
11715 	return ret;
11716 }
11717 
11718 static struct pmu *perf_init_event(struct perf_event *event)
11719 {
11720 	bool extended_type = false;
11721 	int idx, type, ret;
11722 	struct pmu *pmu;
11723 
11724 	idx = srcu_read_lock(&pmus_srcu);
11725 
11726 	/*
11727 	 * Save original type before calling pmu->event_init() since certain
11728 	 * pmus overwrites event->attr.type to forward event to another pmu.
11729 	 */
11730 	event->orig_type = event->attr.type;
11731 
11732 	/* Try parent's PMU first: */
11733 	if (event->parent && event->parent->pmu) {
11734 		pmu = event->parent->pmu;
11735 		ret = perf_try_init_event(pmu, event);
11736 		if (!ret)
11737 			goto unlock;
11738 	}
11739 
11740 	/*
11741 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11742 	 * are often aliases for PERF_TYPE_RAW.
11743 	 */
11744 	type = event->attr.type;
11745 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11746 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11747 		if (!type) {
11748 			type = PERF_TYPE_RAW;
11749 		} else {
11750 			extended_type = true;
11751 			event->attr.config &= PERF_HW_EVENT_MASK;
11752 		}
11753 	}
11754 
11755 again:
11756 	rcu_read_lock();
11757 	pmu = idr_find(&pmu_idr, type);
11758 	rcu_read_unlock();
11759 	if (pmu) {
11760 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11761 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11762 			goto fail;
11763 
11764 		ret = perf_try_init_event(pmu, event);
11765 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11766 			type = event->attr.type;
11767 			goto again;
11768 		}
11769 
11770 		if (ret)
11771 			pmu = ERR_PTR(ret);
11772 
11773 		goto unlock;
11774 	}
11775 
11776 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11777 		ret = perf_try_init_event(pmu, event);
11778 		if (!ret)
11779 			goto unlock;
11780 
11781 		if (ret != -ENOENT) {
11782 			pmu = ERR_PTR(ret);
11783 			goto unlock;
11784 		}
11785 	}
11786 fail:
11787 	pmu = ERR_PTR(-ENOENT);
11788 unlock:
11789 	srcu_read_unlock(&pmus_srcu, idx);
11790 
11791 	return pmu;
11792 }
11793 
11794 static void attach_sb_event(struct perf_event *event)
11795 {
11796 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11797 
11798 	raw_spin_lock(&pel->lock);
11799 	list_add_rcu(&event->sb_list, &pel->list);
11800 	raw_spin_unlock(&pel->lock);
11801 }
11802 
11803 /*
11804  * We keep a list of all !task (and therefore per-cpu) events
11805  * that need to receive side-band records.
11806  *
11807  * This avoids having to scan all the various PMU per-cpu contexts
11808  * looking for them.
11809  */
11810 static void account_pmu_sb_event(struct perf_event *event)
11811 {
11812 	if (is_sb_event(event))
11813 		attach_sb_event(event);
11814 }
11815 
11816 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11817 static void account_freq_event_nohz(void)
11818 {
11819 #ifdef CONFIG_NO_HZ_FULL
11820 	/* Lock so we don't race with concurrent unaccount */
11821 	spin_lock(&nr_freq_lock);
11822 	if (atomic_inc_return(&nr_freq_events) == 1)
11823 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11824 	spin_unlock(&nr_freq_lock);
11825 #endif
11826 }
11827 
11828 static void account_freq_event(void)
11829 {
11830 	if (tick_nohz_full_enabled())
11831 		account_freq_event_nohz();
11832 	else
11833 		atomic_inc(&nr_freq_events);
11834 }
11835 
11836 
11837 static void account_event(struct perf_event *event)
11838 {
11839 	bool inc = false;
11840 
11841 	if (event->parent)
11842 		return;
11843 
11844 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11845 		inc = true;
11846 	if (event->attr.mmap || event->attr.mmap_data)
11847 		atomic_inc(&nr_mmap_events);
11848 	if (event->attr.build_id)
11849 		atomic_inc(&nr_build_id_events);
11850 	if (event->attr.comm)
11851 		atomic_inc(&nr_comm_events);
11852 	if (event->attr.namespaces)
11853 		atomic_inc(&nr_namespaces_events);
11854 	if (event->attr.cgroup)
11855 		atomic_inc(&nr_cgroup_events);
11856 	if (event->attr.task)
11857 		atomic_inc(&nr_task_events);
11858 	if (event->attr.freq)
11859 		account_freq_event();
11860 	if (event->attr.context_switch) {
11861 		atomic_inc(&nr_switch_events);
11862 		inc = true;
11863 	}
11864 	if (has_branch_stack(event))
11865 		inc = true;
11866 	if (is_cgroup_event(event))
11867 		inc = true;
11868 	if (event->attr.ksymbol)
11869 		atomic_inc(&nr_ksymbol_events);
11870 	if (event->attr.bpf_event)
11871 		atomic_inc(&nr_bpf_events);
11872 	if (event->attr.text_poke)
11873 		atomic_inc(&nr_text_poke_events);
11874 
11875 	if (inc) {
11876 		/*
11877 		 * We need the mutex here because static_branch_enable()
11878 		 * must complete *before* the perf_sched_count increment
11879 		 * becomes visible.
11880 		 */
11881 		if (atomic_inc_not_zero(&perf_sched_count))
11882 			goto enabled;
11883 
11884 		mutex_lock(&perf_sched_mutex);
11885 		if (!atomic_read(&perf_sched_count)) {
11886 			static_branch_enable(&perf_sched_events);
11887 			/*
11888 			 * Guarantee that all CPUs observe they key change and
11889 			 * call the perf scheduling hooks before proceeding to
11890 			 * install events that need them.
11891 			 */
11892 			synchronize_rcu();
11893 		}
11894 		/*
11895 		 * Now that we have waited for the sync_sched(), allow further
11896 		 * increments to by-pass the mutex.
11897 		 */
11898 		atomic_inc(&perf_sched_count);
11899 		mutex_unlock(&perf_sched_mutex);
11900 	}
11901 enabled:
11902 
11903 	account_pmu_sb_event(event);
11904 }
11905 
11906 /*
11907  * Allocate and initialize an event structure
11908  */
11909 static struct perf_event *
11910 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11911 		 struct task_struct *task,
11912 		 struct perf_event *group_leader,
11913 		 struct perf_event *parent_event,
11914 		 perf_overflow_handler_t overflow_handler,
11915 		 void *context, int cgroup_fd)
11916 {
11917 	struct pmu *pmu;
11918 	struct perf_event *event;
11919 	struct hw_perf_event *hwc;
11920 	long err = -EINVAL;
11921 	int node;
11922 
11923 	if ((unsigned)cpu >= nr_cpu_ids) {
11924 		if (!task || cpu != -1)
11925 			return ERR_PTR(-EINVAL);
11926 	}
11927 	if (attr->sigtrap && !task) {
11928 		/* Requires a task: avoid signalling random tasks. */
11929 		return ERR_PTR(-EINVAL);
11930 	}
11931 
11932 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11933 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11934 				      node);
11935 	if (!event)
11936 		return ERR_PTR(-ENOMEM);
11937 
11938 	/*
11939 	 * Single events are their own group leaders, with an
11940 	 * empty sibling list:
11941 	 */
11942 	if (!group_leader)
11943 		group_leader = event;
11944 
11945 	mutex_init(&event->child_mutex);
11946 	INIT_LIST_HEAD(&event->child_list);
11947 
11948 	INIT_LIST_HEAD(&event->event_entry);
11949 	INIT_LIST_HEAD(&event->sibling_list);
11950 	INIT_LIST_HEAD(&event->active_list);
11951 	init_event_group(event);
11952 	INIT_LIST_HEAD(&event->rb_entry);
11953 	INIT_LIST_HEAD(&event->active_entry);
11954 	INIT_LIST_HEAD(&event->addr_filters.list);
11955 	INIT_HLIST_NODE(&event->hlist_entry);
11956 
11957 
11958 	init_waitqueue_head(&event->waitq);
11959 	init_irq_work(&event->pending_irq, perf_pending_irq);
11960 	init_task_work(&event->pending_task, perf_pending_task);
11961 
11962 	mutex_init(&event->mmap_mutex);
11963 	raw_spin_lock_init(&event->addr_filters.lock);
11964 
11965 	atomic_long_set(&event->refcount, 1);
11966 	event->cpu		= cpu;
11967 	event->attr		= *attr;
11968 	event->group_leader	= group_leader;
11969 	event->pmu		= NULL;
11970 	event->oncpu		= -1;
11971 
11972 	event->parent		= parent_event;
11973 
11974 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11975 	event->id		= atomic64_inc_return(&perf_event_id);
11976 
11977 	event->state		= PERF_EVENT_STATE_INACTIVE;
11978 
11979 	if (parent_event)
11980 		event->event_caps = parent_event->event_caps;
11981 
11982 	if (task) {
11983 		event->attach_state = PERF_ATTACH_TASK;
11984 		/*
11985 		 * XXX pmu::event_init needs to know what task to account to
11986 		 * and we cannot use the ctx information because we need the
11987 		 * pmu before we get a ctx.
11988 		 */
11989 		event->hw.target = get_task_struct(task);
11990 	}
11991 
11992 	event->clock = &local_clock;
11993 	if (parent_event)
11994 		event->clock = parent_event->clock;
11995 
11996 	if (!overflow_handler && parent_event) {
11997 		overflow_handler = parent_event->overflow_handler;
11998 		context = parent_event->overflow_handler_context;
11999 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12000 		if (overflow_handler == bpf_overflow_handler) {
12001 			struct bpf_prog *prog = parent_event->prog;
12002 
12003 			bpf_prog_inc(prog);
12004 			event->prog = prog;
12005 			event->orig_overflow_handler =
12006 				parent_event->orig_overflow_handler;
12007 		}
12008 #endif
12009 	}
12010 
12011 	if (overflow_handler) {
12012 		event->overflow_handler	= overflow_handler;
12013 		event->overflow_handler_context = context;
12014 	} else if (is_write_backward(event)){
12015 		event->overflow_handler = perf_event_output_backward;
12016 		event->overflow_handler_context = NULL;
12017 	} else {
12018 		event->overflow_handler = perf_event_output_forward;
12019 		event->overflow_handler_context = NULL;
12020 	}
12021 
12022 	perf_event__state_init(event);
12023 
12024 	pmu = NULL;
12025 
12026 	hwc = &event->hw;
12027 	hwc->sample_period = attr->sample_period;
12028 	if (attr->freq && attr->sample_freq)
12029 		hwc->sample_period = 1;
12030 	hwc->last_period = hwc->sample_period;
12031 
12032 	local64_set(&hwc->period_left, hwc->sample_period);
12033 
12034 	/*
12035 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12036 	 * See perf_output_read().
12037 	 */
12038 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12039 		goto err_ns;
12040 
12041 	if (!has_branch_stack(event))
12042 		event->attr.branch_sample_type = 0;
12043 
12044 	pmu = perf_init_event(event);
12045 	if (IS_ERR(pmu)) {
12046 		err = PTR_ERR(pmu);
12047 		goto err_ns;
12048 	}
12049 
12050 	/*
12051 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12052 	 * events (they don't make sense as the cgroup will be different
12053 	 * on other CPUs in the uncore mask).
12054 	 */
12055 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12056 		err = -EINVAL;
12057 		goto err_pmu;
12058 	}
12059 
12060 	if (event->attr.aux_output &&
12061 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12062 		err = -EOPNOTSUPP;
12063 		goto err_pmu;
12064 	}
12065 
12066 	if (cgroup_fd != -1) {
12067 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12068 		if (err)
12069 			goto err_pmu;
12070 	}
12071 
12072 	err = exclusive_event_init(event);
12073 	if (err)
12074 		goto err_pmu;
12075 
12076 	if (has_addr_filter(event)) {
12077 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12078 						    sizeof(struct perf_addr_filter_range),
12079 						    GFP_KERNEL);
12080 		if (!event->addr_filter_ranges) {
12081 			err = -ENOMEM;
12082 			goto err_per_task;
12083 		}
12084 
12085 		/*
12086 		 * Clone the parent's vma offsets: they are valid until exec()
12087 		 * even if the mm is not shared with the parent.
12088 		 */
12089 		if (event->parent) {
12090 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12091 
12092 			raw_spin_lock_irq(&ifh->lock);
12093 			memcpy(event->addr_filter_ranges,
12094 			       event->parent->addr_filter_ranges,
12095 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12096 			raw_spin_unlock_irq(&ifh->lock);
12097 		}
12098 
12099 		/* force hw sync on the address filters */
12100 		event->addr_filters_gen = 1;
12101 	}
12102 
12103 	if (!event->parent) {
12104 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12105 			err = get_callchain_buffers(attr->sample_max_stack);
12106 			if (err)
12107 				goto err_addr_filters;
12108 		}
12109 	}
12110 
12111 	err = security_perf_event_alloc(event);
12112 	if (err)
12113 		goto err_callchain_buffer;
12114 
12115 	/* symmetric to unaccount_event() in _free_event() */
12116 	account_event(event);
12117 
12118 	return event;
12119 
12120 err_callchain_buffer:
12121 	if (!event->parent) {
12122 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12123 			put_callchain_buffers();
12124 	}
12125 err_addr_filters:
12126 	kfree(event->addr_filter_ranges);
12127 
12128 err_per_task:
12129 	exclusive_event_destroy(event);
12130 
12131 err_pmu:
12132 	if (is_cgroup_event(event))
12133 		perf_detach_cgroup(event);
12134 	if (event->destroy)
12135 		event->destroy(event);
12136 	module_put(pmu->module);
12137 err_ns:
12138 	if (event->hw.target)
12139 		put_task_struct(event->hw.target);
12140 	call_rcu(&event->rcu_head, free_event_rcu);
12141 
12142 	return ERR_PTR(err);
12143 }
12144 
12145 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12146 			  struct perf_event_attr *attr)
12147 {
12148 	u32 size;
12149 	int ret;
12150 
12151 	/* Zero the full structure, so that a short copy will be nice. */
12152 	memset(attr, 0, sizeof(*attr));
12153 
12154 	ret = get_user(size, &uattr->size);
12155 	if (ret)
12156 		return ret;
12157 
12158 	/* ABI compatibility quirk: */
12159 	if (!size)
12160 		size = PERF_ATTR_SIZE_VER0;
12161 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12162 		goto err_size;
12163 
12164 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12165 	if (ret) {
12166 		if (ret == -E2BIG)
12167 			goto err_size;
12168 		return ret;
12169 	}
12170 
12171 	attr->size = size;
12172 
12173 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12174 		return -EINVAL;
12175 
12176 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12177 		return -EINVAL;
12178 
12179 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12180 		return -EINVAL;
12181 
12182 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12183 		u64 mask = attr->branch_sample_type;
12184 
12185 		/* only using defined bits */
12186 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12187 			return -EINVAL;
12188 
12189 		/* at least one branch bit must be set */
12190 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12191 			return -EINVAL;
12192 
12193 		/* propagate priv level, when not set for branch */
12194 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12195 
12196 			/* exclude_kernel checked on syscall entry */
12197 			if (!attr->exclude_kernel)
12198 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12199 
12200 			if (!attr->exclude_user)
12201 				mask |= PERF_SAMPLE_BRANCH_USER;
12202 
12203 			if (!attr->exclude_hv)
12204 				mask |= PERF_SAMPLE_BRANCH_HV;
12205 			/*
12206 			 * adjust user setting (for HW filter setup)
12207 			 */
12208 			attr->branch_sample_type = mask;
12209 		}
12210 		/* privileged levels capture (kernel, hv): check permissions */
12211 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12212 			ret = perf_allow_kernel(attr);
12213 			if (ret)
12214 				return ret;
12215 		}
12216 	}
12217 
12218 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12219 		ret = perf_reg_validate(attr->sample_regs_user);
12220 		if (ret)
12221 			return ret;
12222 	}
12223 
12224 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12225 		if (!arch_perf_have_user_stack_dump())
12226 			return -ENOSYS;
12227 
12228 		/*
12229 		 * We have __u32 type for the size, but so far
12230 		 * we can only use __u16 as maximum due to the
12231 		 * __u16 sample size limit.
12232 		 */
12233 		if (attr->sample_stack_user >= USHRT_MAX)
12234 			return -EINVAL;
12235 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12236 			return -EINVAL;
12237 	}
12238 
12239 	if (!attr->sample_max_stack)
12240 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12241 
12242 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12243 		ret = perf_reg_validate(attr->sample_regs_intr);
12244 
12245 #ifndef CONFIG_CGROUP_PERF
12246 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12247 		return -EINVAL;
12248 #endif
12249 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12250 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12251 		return -EINVAL;
12252 
12253 	if (!attr->inherit && attr->inherit_thread)
12254 		return -EINVAL;
12255 
12256 	if (attr->remove_on_exec && attr->enable_on_exec)
12257 		return -EINVAL;
12258 
12259 	if (attr->sigtrap && !attr->remove_on_exec)
12260 		return -EINVAL;
12261 
12262 out:
12263 	return ret;
12264 
12265 err_size:
12266 	put_user(sizeof(*attr), &uattr->size);
12267 	ret = -E2BIG;
12268 	goto out;
12269 }
12270 
12271 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12272 {
12273 	if (b < a)
12274 		swap(a, b);
12275 
12276 	mutex_lock(a);
12277 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12278 }
12279 
12280 static int
12281 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12282 {
12283 	struct perf_buffer *rb = NULL;
12284 	int ret = -EINVAL;
12285 
12286 	if (!output_event) {
12287 		mutex_lock(&event->mmap_mutex);
12288 		goto set;
12289 	}
12290 
12291 	/* don't allow circular references */
12292 	if (event == output_event)
12293 		goto out;
12294 
12295 	/*
12296 	 * Don't allow cross-cpu buffers
12297 	 */
12298 	if (output_event->cpu != event->cpu)
12299 		goto out;
12300 
12301 	/*
12302 	 * If its not a per-cpu rb, it must be the same task.
12303 	 */
12304 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12305 		goto out;
12306 
12307 	/*
12308 	 * Mixing clocks in the same buffer is trouble you don't need.
12309 	 */
12310 	if (output_event->clock != event->clock)
12311 		goto out;
12312 
12313 	/*
12314 	 * Either writing ring buffer from beginning or from end.
12315 	 * Mixing is not allowed.
12316 	 */
12317 	if (is_write_backward(output_event) != is_write_backward(event))
12318 		goto out;
12319 
12320 	/*
12321 	 * If both events generate aux data, they must be on the same PMU
12322 	 */
12323 	if (has_aux(event) && has_aux(output_event) &&
12324 	    event->pmu != output_event->pmu)
12325 		goto out;
12326 
12327 	/*
12328 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12329 	 * output_event is already on rb->event_list, and the list iteration
12330 	 * restarts after every removal, it is guaranteed this new event is
12331 	 * observed *OR* if output_event is already removed, it's guaranteed we
12332 	 * observe !rb->mmap_count.
12333 	 */
12334 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12335 set:
12336 	/* Can't redirect output if we've got an active mmap() */
12337 	if (atomic_read(&event->mmap_count))
12338 		goto unlock;
12339 
12340 	if (output_event) {
12341 		/* get the rb we want to redirect to */
12342 		rb = ring_buffer_get(output_event);
12343 		if (!rb)
12344 			goto unlock;
12345 
12346 		/* did we race against perf_mmap_close() */
12347 		if (!atomic_read(&rb->mmap_count)) {
12348 			ring_buffer_put(rb);
12349 			goto unlock;
12350 		}
12351 	}
12352 
12353 	ring_buffer_attach(event, rb);
12354 
12355 	ret = 0;
12356 unlock:
12357 	mutex_unlock(&event->mmap_mutex);
12358 	if (output_event)
12359 		mutex_unlock(&output_event->mmap_mutex);
12360 
12361 out:
12362 	return ret;
12363 }
12364 
12365 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12366 {
12367 	bool nmi_safe = false;
12368 
12369 	switch (clk_id) {
12370 	case CLOCK_MONOTONIC:
12371 		event->clock = &ktime_get_mono_fast_ns;
12372 		nmi_safe = true;
12373 		break;
12374 
12375 	case CLOCK_MONOTONIC_RAW:
12376 		event->clock = &ktime_get_raw_fast_ns;
12377 		nmi_safe = true;
12378 		break;
12379 
12380 	case CLOCK_REALTIME:
12381 		event->clock = &ktime_get_real_ns;
12382 		break;
12383 
12384 	case CLOCK_BOOTTIME:
12385 		event->clock = &ktime_get_boottime_ns;
12386 		break;
12387 
12388 	case CLOCK_TAI:
12389 		event->clock = &ktime_get_clocktai_ns;
12390 		break;
12391 
12392 	default:
12393 		return -EINVAL;
12394 	}
12395 
12396 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12397 		return -EINVAL;
12398 
12399 	return 0;
12400 }
12401 
12402 static bool
12403 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12404 {
12405 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12406 	bool is_capable = perfmon_capable();
12407 
12408 	if (attr->sigtrap) {
12409 		/*
12410 		 * perf_event_attr::sigtrap sends signals to the other task.
12411 		 * Require the current task to also have CAP_KILL.
12412 		 */
12413 		rcu_read_lock();
12414 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12415 		rcu_read_unlock();
12416 
12417 		/*
12418 		 * If the required capabilities aren't available, checks for
12419 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12420 		 * can effectively change the target task.
12421 		 */
12422 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12423 	}
12424 
12425 	/*
12426 	 * Preserve ptrace permission check for backwards compatibility. The
12427 	 * ptrace check also includes checks that the current task and other
12428 	 * task have matching uids, and is therefore not done here explicitly.
12429 	 */
12430 	return is_capable || ptrace_may_access(task, ptrace_mode);
12431 }
12432 
12433 /**
12434  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12435  *
12436  * @attr_uptr:	event_id type attributes for monitoring/sampling
12437  * @pid:		target pid
12438  * @cpu:		target cpu
12439  * @group_fd:		group leader event fd
12440  * @flags:		perf event open flags
12441  */
12442 SYSCALL_DEFINE5(perf_event_open,
12443 		struct perf_event_attr __user *, attr_uptr,
12444 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12445 {
12446 	struct perf_event *group_leader = NULL, *output_event = NULL;
12447 	struct perf_event_pmu_context *pmu_ctx;
12448 	struct perf_event *event, *sibling;
12449 	struct perf_event_attr attr;
12450 	struct perf_event_context *ctx;
12451 	struct file *event_file = NULL;
12452 	struct fd group = {NULL, 0};
12453 	struct task_struct *task = NULL;
12454 	struct pmu *pmu;
12455 	int event_fd;
12456 	int move_group = 0;
12457 	int err;
12458 	int f_flags = O_RDWR;
12459 	int cgroup_fd = -1;
12460 
12461 	/* for future expandability... */
12462 	if (flags & ~PERF_FLAG_ALL)
12463 		return -EINVAL;
12464 
12465 	err = perf_copy_attr(attr_uptr, &attr);
12466 	if (err)
12467 		return err;
12468 
12469 	/* Do we allow access to perf_event_open(2) ? */
12470 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12471 	if (err)
12472 		return err;
12473 
12474 	if (!attr.exclude_kernel) {
12475 		err = perf_allow_kernel(&attr);
12476 		if (err)
12477 			return err;
12478 	}
12479 
12480 	if (attr.namespaces) {
12481 		if (!perfmon_capable())
12482 			return -EACCES;
12483 	}
12484 
12485 	if (attr.freq) {
12486 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12487 			return -EINVAL;
12488 	} else {
12489 		if (attr.sample_period & (1ULL << 63))
12490 			return -EINVAL;
12491 	}
12492 
12493 	/* Only privileged users can get physical addresses */
12494 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12495 		err = perf_allow_kernel(&attr);
12496 		if (err)
12497 			return err;
12498 	}
12499 
12500 	/* REGS_INTR can leak data, lockdown must prevent this */
12501 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12502 		err = security_locked_down(LOCKDOWN_PERF);
12503 		if (err)
12504 			return err;
12505 	}
12506 
12507 	/*
12508 	 * In cgroup mode, the pid argument is used to pass the fd
12509 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12510 	 * designates the cpu on which to monitor threads from that
12511 	 * cgroup.
12512 	 */
12513 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12514 		return -EINVAL;
12515 
12516 	if (flags & PERF_FLAG_FD_CLOEXEC)
12517 		f_flags |= O_CLOEXEC;
12518 
12519 	event_fd = get_unused_fd_flags(f_flags);
12520 	if (event_fd < 0)
12521 		return event_fd;
12522 
12523 	if (group_fd != -1) {
12524 		err = perf_fget_light(group_fd, &group);
12525 		if (err)
12526 			goto err_fd;
12527 		group_leader = group.file->private_data;
12528 		if (flags & PERF_FLAG_FD_OUTPUT)
12529 			output_event = group_leader;
12530 		if (flags & PERF_FLAG_FD_NO_GROUP)
12531 			group_leader = NULL;
12532 	}
12533 
12534 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12535 		task = find_lively_task_by_vpid(pid);
12536 		if (IS_ERR(task)) {
12537 			err = PTR_ERR(task);
12538 			goto err_group_fd;
12539 		}
12540 	}
12541 
12542 	if (task && group_leader &&
12543 	    group_leader->attr.inherit != attr.inherit) {
12544 		err = -EINVAL;
12545 		goto err_task;
12546 	}
12547 
12548 	if (flags & PERF_FLAG_PID_CGROUP)
12549 		cgroup_fd = pid;
12550 
12551 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12552 				 NULL, NULL, cgroup_fd);
12553 	if (IS_ERR(event)) {
12554 		err = PTR_ERR(event);
12555 		goto err_task;
12556 	}
12557 
12558 	if (is_sampling_event(event)) {
12559 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12560 			err = -EOPNOTSUPP;
12561 			goto err_alloc;
12562 		}
12563 	}
12564 
12565 	/*
12566 	 * Special case software events and allow them to be part of
12567 	 * any hardware group.
12568 	 */
12569 	pmu = event->pmu;
12570 
12571 	if (attr.use_clockid) {
12572 		err = perf_event_set_clock(event, attr.clockid);
12573 		if (err)
12574 			goto err_alloc;
12575 	}
12576 
12577 	if (pmu->task_ctx_nr == perf_sw_context)
12578 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12579 
12580 	if (task) {
12581 		err = down_read_interruptible(&task->signal->exec_update_lock);
12582 		if (err)
12583 			goto err_alloc;
12584 
12585 		/*
12586 		 * We must hold exec_update_lock across this and any potential
12587 		 * perf_install_in_context() call for this new event to
12588 		 * serialize against exec() altering our credentials (and the
12589 		 * perf_event_exit_task() that could imply).
12590 		 */
12591 		err = -EACCES;
12592 		if (!perf_check_permission(&attr, task))
12593 			goto err_cred;
12594 	}
12595 
12596 	/*
12597 	 * Get the target context (task or percpu):
12598 	 */
12599 	ctx = find_get_context(task, event);
12600 	if (IS_ERR(ctx)) {
12601 		err = PTR_ERR(ctx);
12602 		goto err_cred;
12603 	}
12604 
12605 	mutex_lock(&ctx->mutex);
12606 
12607 	if (ctx->task == TASK_TOMBSTONE) {
12608 		err = -ESRCH;
12609 		goto err_locked;
12610 	}
12611 
12612 	if (!task) {
12613 		/*
12614 		 * Check if the @cpu we're creating an event for is online.
12615 		 *
12616 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12617 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12618 		 */
12619 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12620 
12621 		if (!cpuctx->online) {
12622 			err = -ENODEV;
12623 			goto err_locked;
12624 		}
12625 	}
12626 
12627 	if (group_leader) {
12628 		err = -EINVAL;
12629 
12630 		/*
12631 		 * Do not allow a recursive hierarchy (this new sibling
12632 		 * becoming part of another group-sibling):
12633 		 */
12634 		if (group_leader->group_leader != group_leader)
12635 			goto err_locked;
12636 
12637 		/* All events in a group should have the same clock */
12638 		if (group_leader->clock != event->clock)
12639 			goto err_locked;
12640 
12641 		/*
12642 		 * Make sure we're both events for the same CPU;
12643 		 * grouping events for different CPUs is broken; since
12644 		 * you can never concurrently schedule them anyhow.
12645 		 */
12646 		if (group_leader->cpu != event->cpu)
12647 			goto err_locked;
12648 
12649 		/*
12650 		 * Make sure we're both on the same context; either task or cpu.
12651 		 */
12652 		if (group_leader->ctx != ctx)
12653 			goto err_locked;
12654 
12655 		/*
12656 		 * Only a group leader can be exclusive or pinned
12657 		 */
12658 		if (attr.exclusive || attr.pinned)
12659 			goto err_locked;
12660 
12661 		if (is_software_event(event) &&
12662 		    !in_software_context(group_leader)) {
12663 			/*
12664 			 * If the event is a sw event, but the group_leader
12665 			 * is on hw context.
12666 			 *
12667 			 * Allow the addition of software events to hw
12668 			 * groups, this is safe because software events
12669 			 * never fail to schedule.
12670 			 *
12671 			 * Note the comment that goes with struct
12672 			 * perf_event_pmu_context.
12673 			 */
12674 			pmu = group_leader->pmu_ctx->pmu;
12675 		} else if (!is_software_event(event)) {
12676 			if (is_software_event(group_leader) &&
12677 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12678 				/*
12679 				 * In case the group is a pure software group, and we
12680 				 * try to add a hardware event, move the whole group to
12681 				 * the hardware context.
12682 				 */
12683 				move_group = 1;
12684 			}
12685 
12686 			/* Don't allow group of multiple hw events from different pmus */
12687 			if (!in_software_context(group_leader) &&
12688 			    group_leader->pmu_ctx->pmu != pmu)
12689 				goto err_locked;
12690 		}
12691 	}
12692 
12693 	/*
12694 	 * Now that we're certain of the pmu; find the pmu_ctx.
12695 	 */
12696 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12697 	if (IS_ERR(pmu_ctx)) {
12698 		err = PTR_ERR(pmu_ctx);
12699 		goto err_locked;
12700 	}
12701 	event->pmu_ctx = pmu_ctx;
12702 
12703 	if (output_event) {
12704 		err = perf_event_set_output(event, output_event);
12705 		if (err)
12706 			goto err_context;
12707 	}
12708 
12709 	if (!perf_event_validate_size(event)) {
12710 		err = -E2BIG;
12711 		goto err_context;
12712 	}
12713 
12714 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12715 		err = -EINVAL;
12716 		goto err_context;
12717 	}
12718 
12719 	/*
12720 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12721 	 * because we need to serialize with concurrent event creation.
12722 	 */
12723 	if (!exclusive_event_installable(event, ctx)) {
12724 		err = -EBUSY;
12725 		goto err_context;
12726 	}
12727 
12728 	WARN_ON_ONCE(ctx->parent_ctx);
12729 
12730 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12731 	if (IS_ERR(event_file)) {
12732 		err = PTR_ERR(event_file);
12733 		event_file = NULL;
12734 		goto err_context;
12735 	}
12736 
12737 	/*
12738 	 * This is the point on no return; we cannot fail hereafter. This is
12739 	 * where we start modifying current state.
12740 	 */
12741 
12742 	if (move_group) {
12743 		perf_remove_from_context(group_leader, 0);
12744 		put_pmu_ctx(group_leader->pmu_ctx);
12745 
12746 		for_each_sibling_event(sibling, group_leader) {
12747 			perf_remove_from_context(sibling, 0);
12748 			put_pmu_ctx(sibling->pmu_ctx);
12749 		}
12750 
12751 		/*
12752 		 * Install the group siblings before the group leader.
12753 		 *
12754 		 * Because a group leader will try and install the entire group
12755 		 * (through the sibling list, which is still in-tact), we can
12756 		 * end up with siblings installed in the wrong context.
12757 		 *
12758 		 * By installing siblings first we NO-OP because they're not
12759 		 * reachable through the group lists.
12760 		 */
12761 		for_each_sibling_event(sibling, group_leader) {
12762 			sibling->pmu_ctx = pmu_ctx;
12763 			get_pmu_ctx(pmu_ctx);
12764 			perf_event__state_init(sibling);
12765 			perf_install_in_context(ctx, sibling, sibling->cpu);
12766 		}
12767 
12768 		/*
12769 		 * Removing from the context ends up with disabled
12770 		 * event. What we want here is event in the initial
12771 		 * startup state, ready to be add into new context.
12772 		 */
12773 		group_leader->pmu_ctx = pmu_ctx;
12774 		get_pmu_ctx(pmu_ctx);
12775 		perf_event__state_init(group_leader);
12776 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12777 	}
12778 
12779 	/*
12780 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12781 	 * that we're serialized against further additions and before
12782 	 * perf_install_in_context() which is the point the event is active and
12783 	 * can use these values.
12784 	 */
12785 	perf_event__header_size(event);
12786 	perf_event__id_header_size(event);
12787 
12788 	event->owner = current;
12789 
12790 	perf_install_in_context(ctx, event, event->cpu);
12791 	perf_unpin_context(ctx);
12792 
12793 	mutex_unlock(&ctx->mutex);
12794 
12795 	if (task) {
12796 		up_read(&task->signal->exec_update_lock);
12797 		put_task_struct(task);
12798 	}
12799 
12800 	mutex_lock(&current->perf_event_mutex);
12801 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12802 	mutex_unlock(&current->perf_event_mutex);
12803 
12804 	/*
12805 	 * Drop the reference on the group_event after placing the
12806 	 * new event on the sibling_list. This ensures destruction
12807 	 * of the group leader will find the pointer to itself in
12808 	 * perf_group_detach().
12809 	 */
12810 	fdput(group);
12811 	fd_install(event_fd, event_file);
12812 	return event_fd;
12813 
12814 err_context:
12815 	put_pmu_ctx(event->pmu_ctx);
12816 	event->pmu_ctx = NULL; /* _free_event() */
12817 err_locked:
12818 	mutex_unlock(&ctx->mutex);
12819 	perf_unpin_context(ctx);
12820 	put_ctx(ctx);
12821 err_cred:
12822 	if (task)
12823 		up_read(&task->signal->exec_update_lock);
12824 err_alloc:
12825 	free_event(event);
12826 err_task:
12827 	if (task)
12828 		put_task_struct(task);
12829 err_group_fd:
12830 	fdput(group);
12831 err_fd:
12832 	put_unused_fd(event_fd);
12833 	return err;
12834 }
12835 
12836 /**
12837  * perf_event_create_kernel_counter
12838  *
12839  * @attr: attributes of the counter to create
12840  * @cpu: cpu in which the counter is bound
12841  * @task: task to profile (NULL for percpu)
12842  * @overflow_handler: callback to trigger when we hit the event
12843  * @context: context data could be used in overflow_handler callback
12844  */
12845 struct perf_event *
12846 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12847 				 struct task_struct *task,
12848 				 perf_overflow_handler_t overflow_handler,
12849 				 void *context)
12850 {
12851 	struct perf_event_pmu_context *pmu_ctx;
12852 	struct perf_event_context *ctx;
12853 	struct perf_event *event;
12854 	struct pmu *pmu;
12855 	int err;
12856 
12857 	/*
12858 	 * Grouping is not supported for kernel events, neither is 'AUX',
12859 	 * make sure the caller's intentions are adjusted.
12860 	 */
12861 	if (attr->aux_output)
12862 		return ERR_PTR(-EINVAL);
12863 
12864 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12865 				 overflow_handler, context, -1);
12866 	if (IS_ERR(event)) {
12867 		err = PTR_ERR(event);
12868 		goto err;
12869 	}
12870 
12871 	/* Mark owner so we could distinguish it from user events. */
12872 	event->owner = TASK_TOMBSTONE;
12873 	pmu = event->pmu;
12874 
12875 	if (pmu->task_ctx_nr == perf_sw_context)
12876 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12877 
12878 	/*
12879 	 * Get the target context (task or percpu):
12880 	 */
12881 	ctx = find_get_context(task, event);
12882 	if (IS_ERR(ctx)) {
12883 		err = PTR_ERR(ctx);
12884 		goto err_alloc;
12885 	}
12886 
12887 	WARN_ON_ONCE(ctx->parent_ctx);
12888 	mutex_lock(&ctx->mutex);
12889 	if (ctx->task == TASK_TOMBSTONE) {
12890 		err = -ESRCH;
12891 		goto err_unlock;
12892 	}
12893 
12894 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12895 	if (IS_ERR(pmu_ctx)) {
12896 		err = PTR_ERR(pmu_ctx);
12897 		goto err_unlock;
12898 	}
12899 	event->pmu_ctx = pmu_ctx;
12900 
12901 	if (!task) {
12902 		/*
12903 		 * Check if the @cpu we're creating an event for is online.
12904 		 *
12905 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12906 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12907 		 */
12908 		struct perf_cpu_context *cpuctx =
12909 			container_of(ctx, struct perf_cpu_context, ctx);
12910 		if (!cpuctx->online) {
12911 			err = -ENODEV;
12912 			goto err_pmu_ctx;
12913 		}
12914 	}
12915 
12916 	if (!exclusive_event_installable(event, ctx)) {
12917 		err = -EBUSY;
12918 		goto err_pmu_ctx;
12919 	}
12920 
12921 	perf_install_in_context(ctx, event, event->cpu);
12922 	perf_unpin_context(ctx);
12923 	mutex_unlock(&ctx->mutex);
12924 
12925 	return event;
12926 
12927 err_pmu_ctx:
12928 	put_pmu_ctx(pmu_ctx);
12929 	event->pmu_ctx = NULL; /* _free_event() */
12930 err_unlock:
12931 	mutex_unlock(&ctx->mutex);
12932 	perf_unpin_context(ctx);
12933 	put_ctx(ctx);
12934 err_alloc:
12935 	free_event(event);
12936 err:
12937 	return ERR_PTR(err);
12938 }
12939 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12940 
12941 static void __perf_pmu_remove(struct perf_event_context *ctx,
12942 			      int cpu, struct pmu *pmu,
12943 			      struct perf_event_groups *groups,
12944 			      struct list_head *events)
12945 {
12946 	struct perf_event *event, *sibling;
12947 
12948 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12949 		perf_remove_from_context(event, 0);
12950 		put_pmu_ctx(event->pmu_ctx);
12951 		list_add(&event->migrate_entry, events);
12952 
12953 		for_each_sibling_event(sibling, event) {
12954 			perf_remove_from_context(sibling, 0);
12955 			put_pmu_ctx(sibling->pmu_ctx);
12956 			list_add(&sibling->migrate_entry, events);
12957 		}
12958 	}
12959 }
12960 
12961 static void __perf_pmu_install_event(struct pmu *pmu,
12962 				     struct perf_event_context *ctx,
12963 				     int cpu, struct perf_event *event)
12964 {
12965 	struct perf_event_pmu_context *epc;
12966 	struct perf_event_context *old_ctx = event->ctx;
12967 
12968 	get_ctx(ctx); /* normally find_get_context() */
12969 
12970 	event->cpu = cpu;
12971 	epc = find_get_pmu_context(pmu, ctx, event);
12972 	event->pmu_ctx = epc;
12973 
12974 	if (event->state >= PERF_EVENT_STATE_OFF)
12975 		event->state = PERF_EVENT_STATE_INACTIVE;
12976 	perf_install_in_context(ctx, event, cpu);
12977 
12978 	/*
12979 	 * Now that event->ctx is updated and visible, put the old ctx.
12980 	 */
12981 	put_ctx(old_ctx);
12982 }
12983 
12984 static void __perf_pmu_install(struct perf_event_context *ctx,
12985 			       int cpu, struct pmu *pmu, struct list_head *events)
12986 {
12987 	struct perf_event *event, *tmp;
12988 
12989 	/*
12990 	 * Re-instate events in 2 passes.
12991 	 *
12992 	 * Skip over group leaders and only install siblings on this first
12993 	 * pass, siblings will not get enabled without a leader, however a
12994 	 * leader will enable its siblings, even if those are still on the old
12995 	 * context.
12996 	 */
12997 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12998 		if (event->group_leader == event)
12999 			continue;
13000 
13001 		list_del(&event->migrate_entry);
13002 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13003 	}
13004 
13005 	/*
13006 	 * Once all the siblings are setup properly, install the group leaders
13007 	 * to make it go.
13008 	 */
13009 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13010 		list_del(&event->migrate_entry);
13011 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13012 	}
13013 }
13014 
13015 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13016 {
13017 	struct perf_event_context *src_ctx, *dst_ctx;
13018 	LIST_HEAD(events);
13019 
13020 	/*
13021 	 * Since per-cpu context is persistent, no need to grab an extra
13022 	 * reference.
13023 	 */
13024 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13025 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13026 
13027 	/*
13028 	 * See perf_event_ctx_lock() for comments on the details
13029 	 * of swizzling perf_event::ctx.
13030 	 */
13031 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13032 
13033 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13034 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13035 
13036 	if (!list_empty(&events)) {
13037 		/*
13038 		 * Wait for the events to quiesce before re-instating them.
13039 		 */
13040 		synchronize_rcu();
13041 
13042 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13043 	}
13044 
13045 	mutex_unlock(&dst_ctx->mutex);
13046 	mutex_unlock(&src_ctx->mutex);
13047 }
13048 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13049 
13050 static void sync_child_event(struct perf_event *child_event)
13051 {
13052 	struct perf_event *parent_event = child_event->parent;
13053 	u64 child_val;
13054 
13055 	if (child_event->attr.inherit_stat) {
13056 		struct task_struct *task = child_event->ctx->task;
13057 
13058 		if (task && task != TASK_TOMBSTONE)
13059 			perf_event_read_event(child_event, task);
13060 	}
13061 
13062 	child_val = perf_event_count(child_event);
13063 
13064 	/*
13065 	 * Add back the child's count to the parent's count:
13066 	 */
13067 	atomic64_add(child_val, &parent_event->child_count);
13068 	atomic64_add(child_event->total_time_enabled,
13069 		     &parent_event->child_total_time_enabled);
13070 	atomic64_add(child_event->total_time_running,
13071 		     &parent_event->child_total_time_running);
13072 }
13073 
13074 static void
13075 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13076 {
13077 	struct perf_event *parent_event = event->parent;
13078 	unsigned long detach_flags = 0;
13079 
13080 	if (parent_event) {
13081 		/*
13082 		 * Do not destroy the 'original' grouping; because of the
13083 		 * context switch optimization the original events could've
13084 		 * ended up in a random child task.
13085 		 *
13086 		 * If we were to destroy the original group, all group related
13087 		 * operations would cease to function properly after this
13088 		 * random child dies.
13089 		 *
13090 		 * Do destroy all inherited groups, we don't care about those
13091 		 * and being thorough is better.
13092 		 */
13093 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13094 		mutex_lock(&parent_event->child_mutex);
13095 	}
13096 
13097 	perf_remove_from_context(event, detach_flags);
13098 
13099 	raw_spin_lock_irq(&ctx->lock);
13100 	if (event->state > PERF_EVENT_STATE_EXIT)
13101 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13102 	raw_spin_unlock_irq(&ctx->lock);
13103 
13104 	/*
13105 	 * Child events can be freed.
13106 	 */
13107 	if (parent_event) {
13108 		mutex_unlock(&parent_event->child_mutex);
13109 		/*
13110 		 * Kick perf_poll() for is_event_hup();
13111 		 */
13112 		perf_event_wakeup(parent_event);
13113 		free_event(event);
13114 		put_event(parent_event);
13115 		return;
13116 	}
13117 
13118 	/*
13119 	 * Parent events are governed by their filedesc, retain them.
13120 	 */
13121 	perf_event_wakeup(event);
13122 }
13123 
13124 static void perf_event_exit_task_context(struct task_struct *child)
13125 {
13126 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13127 	struct perf_event *child_event, *next;
13128 
13129 	WARN_ON_ONCE(child != current);
13130 
13131 	child_ctx = perf_pin_task_context(child);
13132 	if (!child_ctx)
13133 		return;
13134 
13135 	/*
13136 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13137 	 * ctx::mutex over the entire thing. This serializes against almost
13138 	 * everything that wants to access the ctx.
13139 	 *
13140 	 * The exception is sys_perf_event_open() /
13141 	 * perf_event_create_kernel_count() which does find_get_context()
13142 	 * without ctx::mutex (it cannot because of the move_group double mutex
13143 	 * lock thing). See the comments in perf_install_in_context().
13144 	 */
13145 	mutex_lock(&child_ctx->mutex);
13146 
13147 	/*
13148 	 * In a single ctx::lock section, de-schedule the events and detach the
13149 	 * context from the task such that we cannot ever get it scheduled back
13150 	 * in.
13151 	 */
13152 	raw_spin_lock_irq(&child_ctx->lock);
13153 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13154 
13155 	/*
13156 	 * Now that the context is inactive, destroy the task <-> ctx relation
13157 	 * and mark the context dead.
13158 	 */
13159 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13160 	put_ctx(child_ctx); /* cannot be last */
13161 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13162 	put_task_struct(current); /* cannot be last */
13163 
13164 	clone_ctx = unclone_ctx(child_ctx);
13165 	raw_spin_unlock_irq(&child_ctx->lock);
13166 
13167 	if (clone_ctx)
13168 		put_ctx(clone_ctx);
13169 
13170 	/*
13171 	 * Report the task dead after unscheduling the events so that we
13172 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13173 	 * get a few PERF_RECORD_READ events.
13174 	 */
13175 	perf_event_task(child, child_ctx, 0);
13176 
13177 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13178 		perf_event_exit_event(child_event, child_ctx);
13179 
13180 	mutex_unlock(&child_ctx->mutex);
13181 
13182 	put_ctx(child_ctx);
13183 }
13184 
13185 /*
13186  * When a child task exits, feed back event values to parent events.
13187  *
13188  * Can be called with exec_update_lock held when called from
13189  * setup_new_exec().
13190  */
13191 void perf_event_exit_task(struct task_struct *child)
13192 {
13193 	struct perf_event *event, *tmp;
13194 
13195 	mutex_lock(&child->perf_event_mutex);
13196 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13197 				 owner_entry) {
13198 		list_del_init(&event->owner_entry);
13199 
13200 		/*
13201 		 * Ensure the list deletion is visible before we clear
13202 		 * the owner, closes a race against perf_release() where
13203 		 * we need to serialize on the owner->perf_event_mutex.
13204 		 */
13205 		smp_store_release(&event->owner, NULL);
13206 	}
13207 	mutex_unlock(&child->perf_event_mutex);
13208 
13209 	perf_event_exit_task_context(child);
13210 
13211 	/*
13212 	 * The perf_event_exit_task_context calls perf_event_task
13213 	 * with child's task_ctx, which generates EXIT events for
13214 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13215 	 * At this point we need to send EXIT events to cpu contexts.
13216 	 */
13217 	perf_event_task(child, NULL, 0);
13218 }
13219 
13220 static void perf_free_event(struct perf_event *event,
13221 			    struct perf_event_context *ctx)
13222 {
13223 	struct perf_event *parent = event->parent;
13224 
13225 	if (WARN_ON_ONCE(!parent))
13226 		return;
13227 
13228 	mutex_lock(&parent->child_mutex);
13229 	list_del_init(&event->child_list);
13230 	mutex_unlock(&parent->child_mutex);
13231 
13232 	put_event(parent);
13233 
13234 	raw_spin_lock_irq(&ctx->lock);
13235 	perf_group_detach(event);
13236 	list_del_event(event, ctx);
13237 	raw_spin_unlock_irq(&ctx->lock);
13238 	free_event(event);
13239 }
13240 
13241 /*
13242  * Free a context as created by inheritance by perf_event_init_task() below,
13243  * used by fork() in case of fail.
13244  *
13245  * Even though the task has never lived, the context and events have been
13246  * exposed through the child_list, so we must take care tearing it all down.
13247  */
13248 void perf_event_free_task(struct task_struct *task)
13249 {
13250 	struct perf_event_context *ctx;
13251 	struct perf_event *event, *tmp;
13252 
13253 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13254 	if (!ctx)
13255 		return;
13256 
13257 	mutex_lock(&ctx->mutex);
13258 	raw_spin_lock_irq(&ctx->lock);
13259 	/*
13260 	 * Destroy the task <-> ctx relation and mark the context dead.
13261 	 *
13262 	 * This is important because even though the task hasn't been
13263 	 * exposed yet the context has been (through child_list).
13264 	 */
13265 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13266 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13267 	put_task_struct(task); /* cannot be last */
13268 	raw_spin_unlock_irq(&ctx->lock);
13269 
13270 
13271 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13272 		perf_free_event(event, ctx);
13273 
13274 	mutex_unlock(&ctx->mutex);
13275 
13276 	/*
13277 	 * perf_event_release_kernel() could've stolen some of our
13278 	 * child events and still have them on its free_list. In that
13279 	 * case we must wait for these events to have been freed (in
13280 	 * particular all their references to this task must've been
13281 	 * dropped).
13282 	 *
13283 	 * Without this copy_process() will unconditionally free this
13284 	 * task (irrespective of its reference count) and
13285 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13286 	 * use-after-free.
13287 	 *
13288 	 * Wait for all events to drop their context reference.
13289 	 */
13290 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13291 	put_ctx(ctx); /* must be last */
13292 }
13293 
13294 void perf_event_delayed_put(struct task_struct *task)
13295 {
13296 	WARN_ON_ONCE(task->perf_event_ctxp);
13297 }
13298 
13299 struct file *perf_event_get(unsigned int fd)
13300 {
13301 	struct file *file = fget(fd);
13302 	if (!file)
13303 		return ERR_PTR(-EBADF);
13304 
13305 	if (file->f_op != &perf_fops) {
13306 		fput(file);
13307 		return ERR_PTR(-EBADF);
13308 	}
13309 
13310 	return file;
13311 }
13312 
13313 const struct perf_event *perf_get_event(struct file *file)
13314 {
13315 	if (file->f_op != &perf_fops)
13316 		return ERR_PTR(-EINVAL);
13317 
13318 	return file->private_data;
13319 }
13320 
13321 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13322 {
13323 	if (!event)
13324 		return ERR_PTR(-EINVAL);
13325 
13326 	return &event->attr;
13327 }
13328 
13329 /*
13330  * Inherit an event from parent task to child task.
13331  *
13332  * Returns:
13333  *  - valid pointer on success
13334  *  - NULL for orphaned events
13335  *  - IS_ERR() on error
13336  */
13337 static struct perf_event *
13338 inherit_event(struct perf_event *parent_event,
13339 	      struct task_struct *parent,
13340 	      struct perf_event_context *parent_ctx,
13341 	      struct task_struct *child,
13342 	      struct perf_event *group_leader,
13343 	      struct perf_event_context *child_ctx)
13344 {
13345 	enum perf_event_state parent_state = parent_event->state;
13346 	struct perf_event_pmu_context *pmu_ctx;
13347 	struct perf_event *child_event;
13348 	unsigned long flags;
13349 
13350 	/*
13351 	 * Instead of creating recursive hierarchies of events,
13352 	 * we link inherited events back to the original parent,
13353 	 * which has a filp for sure, which we use as the reference
13354 	 * count:
13355 	 */
13356 	if (parent_event->parent)
13357 		parent_event = parent_event->parent;
13358 
13359 	child_event = perf_event_alloc(&parent_event->attr,
13360 					   parent_event->cpu,
13361 					   child,
13362 					   group_leader, parent_event,
13363 					   NULL, NULL, -1);
13364 	if (IS_ERR(child_event))
13365 		return child_event;
13366 
13367 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13368 	if (IS_ERR(pmu_ctx)) {
13369 		free_event(child_event);
13370 		return ERR_CAST(pmu_ctx);
13371 	}
13372 	child_event->pmu_ctx = pmu_ctx;
13373 
13374 	/*
13375 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13376 	 * must be under the same lock in order to serialize against
13377 	 * perf_event_release_kernel(), such that either we must observe
13378 	 * is_orphaned_event() or they will observe us on the child_list.
13379 	 */
13380 	mutex_lock(&parent_event->child_mutex);
13381 	if (is_orphaned_event(parent_event) ||
13382 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13383 		mutex_unlock(&parent_event->child_mutex);
13384 		/* task_ctx_data is freed with child_ctx */
13385 		free_event(child_event);
13386 		return NULL;
13387 	}
13388 
13389 	get_ctx(child_ctx);
13390 
13391 	/*
13392 	 * Make the child state follow the state of the parent event,
13393 	 * not its attr.disabled bit.  We hold the parent's mutex,
13394 	 * so we won't race with perf_event_{en, dis}able_family.
13395 	 */
13396 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13397 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13398 	else
13399 		child_event->state = PERF_EVENT_STATE_OFF;
13400 
13401 	if (parent_event->attr.freq) {
13402 		u64 sample_period = parent_event->hw.sample_period;
13403 		struct hw_perf_event *hwc = &child_event->hw;
13404 
13405 		hwc->sample_period = sample_period;
13406 		hwc->last_period   = sample_period;
13407 
13408 		local64_set(&hwc->period_left, sample_period);
13409 	}
13410 
13411 	child_event->ctx = child_ctx;
13412 	child_event->overflow_handler = parent_event->overflow_handler;
13413 	child_event->overflow_handler_context
13414 		= parent_event->overflow_handler_context;
13415 
13416 	/*
13417 	 * Precalculate sample_data sizes
13418 	 */
13419 	perf_event__header_size(child_event);
13420 	perf_event__id_header_size(child_event);
13421 
13422 	/*
13423 	 * Link it up in the child's context:
13424 	 */
13425 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13426 	add_event_to_ctx(child_event, child_ctx);
13427 	child_event->attach_state |= PERF_ATTACH_CHILD;
13428 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13429 
13430 	/*
13431 	 * Link this into the parent event's child list
13432 	 */
13433 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13434 	mutex_unlock(&parent_event->child_mutex);
13435 
13436 	return child_event;
13437 }
13438 
13439 /*
13440  * Inherits an event group.
13441  *
13442  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13443  * This matches with perf_event_release_kernel() removing all child events.
13444  *
13445  * Returns:
13446  *  - 0 on success
13447  *  - <0 on error
13448  */
13449 static int inherit_group(struct perf_event *parent_event,
13450 	      struct task_struct *parent,
13451 	      struct perf_event_context *parent_ctx,
13452 	      struct task_struct *child,
13453 	      struct perf_event_context *child_ctx)
13454 {
13455 	struct perf_event *leader;
13456 	struct perf_event *sub;
13457 	struct perf_event *child_ctr;
13458 
13459 	leader = inherit_event(parent_event, parent, parent_ctx,
13460 				 child, NULL, child_ctx);
13461 	if (IS_ERR(leader))
13462 		return PTR_ERR(leader);
13463 	/*
13464 	 * @leader can be NULL here because of is_orphaned_event(). In this
13465 	 * case inherit_event() will create individual events, similar to what
13466 	 * perf_group_detach() would do anyway.
13467 	 */
13468 	for_each_sibling_event(sub, parent_event) {
13469 		child_ctr = inherit_event(sub, parent, parent_ctx,
13470 					    child, leader, child_ctx);
13471 		if (IS_ERR(child_ctr))
13472 			return PTR_ERR(child_ctr);
13473 
13474 		if (sub->aux_event == parent_event && child_ctr &&
13475 		    !perf_get_aux_event(child_ctr, leader))
13476 			return -EINVAL;
13477 	}
13478 	if (leader)
13479 		leader->group_generation = parent_event->group_generation;
13480 	return 0;
13481 }
13482 
13483 /*
13484  * Creates the child task context and tries to inherit the event-group.
13485  *
13486  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13487  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13488  * consistent with perf_event_release_kernel() removing all child events.
13489  *
13490  * Returns:
13491  *  - 0 on success
13492  *  - <0 on error
13493  */
13494 static int
13495 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13496 		   struct perf_event_context *parent_ctx,
13497 		   struct task_struct *child,
13498 		   u64 clone_flags, int *inherited_all)
13499 {
13500 	struct perf_event_context *child_ctx;
13501 	int ret;
13502 
13503 	if (!event->attr.inherit ||
13504 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13505 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13506 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13507 		*inherited_all = 0;
13508 		return 0;
13509 	}
13510 
13511 	child_ctx = child->perf_event_ctxp;
13512 	if (!child_ctx) {
13513 		/*
13514 		 * This is executed from the parent task context, so
13515 		 * inherit events that have been marked for cloning.
13516 		 * First allocate and initialize a context for the
13517 		 * child.
13518 		 */
13519 		child_ctx = alloc_perf_context(child);
13520 		if (!child_ctx)
13521 			return -ENOMEM;
13522 
13523 		child->perf_event_ctxp = child_ctx;
13524 	}
13525 
13526 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13527 	if (ret)
13528 		*inherited_all = 0;
13529 
13530 	return ret;
13531 }
13532 
13533 /*
13534  * Initialize the perf_event context in task_struct
13535  */
13536 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13537 {
13538 	struct perf_event_context *child_ctx, *parent_ctx;
13539 	struct perf_event_context *cloned_ctx;
13540 	struct perf_event *event;
13541 	struct task_struct *parent = current;
13542 	int inherited_all = 1;
13543 	unsigned long flags;
13544 	int ret = 0;
13545 
13546 	if (likely(!parent->perf_event_ctxp))
13547 		return 0;
13548 
13549 	/*
13550 	 * If the parent's context is a clone, pin it so it won't get
13551 	 * swapped under us.
13552 	 */
13553 	parent_ctx = perf_pin_task_context(parent);
13554 	if (!parent_ctx)
13555 		return 0;
13556 
13557 	/*
13558 	 * No need to check if parent_ctx != NULL here; since we saw
13559 	 * it non-NULL earlier, the only reason for it to become NULL
13560 	 * is if we exit, and since we're currently in the middle of
13561 	 * a fork we can't be exiting at the same time.
13562 	 */
13563 
13564 	/*
13565 	 * Lock the parent list. No need to lock the child - not PID
13566 	 * hashed yet and not running, so nobody can access it.
13567 	 */
13568 	mutex_lock(&parent_ctx->mutex);
13569 
13570 	/*
13571 	 * We dont have to disable NMIs - we are only looking at
13572 	 * the list, not manipulating it:
13573 	 */
13574 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13575 		ret = inherit_task_group(event, parent, parent_ctx,
13576 					 child, clone_flags, &inherited_all);
13577 		if (ret)
13578 			goto out_unlock;
13579 	}
13580 
13581 	/*
13582 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13583 	 * to allocations, but we need to prevent rotation because
13584 	 * rotate_ctx() will change the list from interrupt context.
13585 	 */
13586 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13587 	parent_ctx->rotate_disable = 1;
13588 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13589 
13590 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13591 		ret = inherit_task_group(event, parent, parent_ctx,
13592 					 child, clone_flags, &inherited_all);
13593 		if (ret)
13594 			goto out_unlock;
13595 	}
13596 
13597 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13598 	parent_ctx->rotate_disable = 0;
13599 
13600 	child_ctx = child->perf_event_ctxp;
13601 
13602 	if (child_ctx && inherited_all) {
13603 		/*
13604 		 * Mark the child context as a clone of the parent
13605 		 * context, or of whatever the parent is a clone of.
13606 		 *
13607 		 * Note that if the parent is a clone, the holding of
13608 		 * parent_ctx->lock avoids it from being uncloned.
13609 		 */
13610 		cloned_ctx = parent_ctx->parent_ctx;
13611 		if (cloned_ctx) {
13612 			child_ctx->parent_ctx = cloned_ctx;
13613 			child_ctx->parent_gen = parent_ctx->parent_gen;
13614 		} else {
13615 			child_ctx->parent_ctx = parent_ctx;
13616 			child_ctx->parent_gen = parent_ctx->generation;
13617 		}
13618 		get_ctx(child_ctx->parent_ctx);
13619 	}
13620 
13621 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13622 out_unlock:
13623 	mutex_unlock(&parent_ctx->mutex);
13624 
13625 	perf_unpin_context(parent_ctx);
13626 	put_ctx(parent_ctx);
13627 
13628 	return ret;
13629 }
13630 
13631 /*
13632  * Initialize the perf_event context in task_struct
13633  */
13634 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13635 {
13636 	int ret;
13637 
13638 	child->perf_event_ctxp = NULL;
13639 	mutex_init(&child->perf_event_mutex);
13640 	INIT_LIST_HEAD(&child->perf_event_list);
13641 
13642 	ret = perf_event_init_context(child, clone_flags);
13643 	if (ret) {
13644 		perf_event_free_task(child);
13645 		return ret;
13646 	}
13647 
13648 	return 0;
13649 }
13650 
13651 static void __init perf_event_init_all_cpus(void)
13652 {
13653 	struct swevent_htable *swhash;
13654 	struct perf_cpu_context *cpuctx;
13655 	int cpu;
13656 
13657 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13658 
13659 	for_each_possible_cpu(cpu) {
13660 		swhash = &per_cpu(swevent_htable, cpu);
13661 		mutex_init(&swhash->hlist_mutex);
13662 
13663 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13664 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13665 
13666 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13667 
13668 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13669 		__perf_event_init_context(&cpuctx->ctx);
13670 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13671 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13672 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13673 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13674 		cpuctx->heap = cpuctx->heap_default;
13675 	}
13676 }
13677 
13678 static void perf_swevent_init_cpu(unsigned int cpu)
13679 {
13680 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13681 
13682 	mutex_lock(&swhash->hlist_mutex);
13683 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13684 		struct swevent_hlist *hlist;
13685 
13686 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13687 		WARN_ON(!hlist);
13688 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13689 	}
13690 	mutex_unlock(&swhash->hlist_mutex);
13691 }
13692 
13693 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13694 static void __perf_event_exit_context(void *__info)
13695 {
13696 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13697 	struct perf_event_context *ctx = __info;
13698 	struct perf_event *event;
13699 
13700 	raw_spin_lock(&ctx->lock);
13701 	ctx_sched_out(ctx, EVENT_TIME);
13702 	list_for_each_entry(event, &ctx->event_list, event_entry)
13703 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13704 	raw_spin_unlock(&ctx->lock);
13705 }
13706 
13707 static void perf_event_exit_cpu_context(int cpu)
13708 {
13709 	struct perf_cpu_context *cpuctx;
13710 	struct perf_event_context *ctx;
13711 
13712 	// XXX simplify cpuctx->online
13713 	mutex_lock(&pmus_lock);
13714 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13715 	ctx = &cpuctx->ctx;
13716 
13717 	mutex_lock(&ctx->mutex);
13718 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13719 	cpuctx->online = 0;
13720 	mutex_unlock(&ctx->mutex);
13721 	cpumask_clear_cpu(cpu, perf_online_mask);
13722 	mutex_unlock(&pmus_lock);
13723 }
13724 #else
13725 
13726 static void perf_event_exit_cpu_context(int cpu) { }
13727 
13728 #endif
13729 
13730 int perf_event_init_cpu(unsigned int cpu)
13731 {
13732 	struct perf_cpu_context *cpuctx;
13733 	struct perf_event_context *ctx;
13734 
13735 	perf_swevent_init_cpu(cpu);
13736 
13737 	mutex_lock(&pmus_lock);
13738 	cpumask_set_cpu(cpu, perf_online_mask);
13739 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13740 	ctx = &cpuctx->ctx;
13741 
13742 	mutex_lock(&ctx->mutex);
13743 	cpuctx->online = 1;
13744 	mutex_unlock(&ctx->mutex);
13745 	mutex_unlock(&pmus_lock);
13746 
13747 	return 0;
13748 }
13749 
13750 int perf_event_exit_cpu(unsigned int cpu)
13751 {
13752 	perf_event_exit_cpu_context(cpu);
13753 	return 0;
13754 }
13755 
13756 static int
13757 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13758 {
13759 	int cpu;
13760 
13761 	for_each_online_cpu(cpu)
13762 		perf_event_exit_cpu(cpu);
13763 
13764 	return NOTIFY_OK;
13765 }
13766 
13767 /*
13768  * Run the perf reboot notifier at the very last possible moment so that
13769  * the generic watchdog code runs as long as possible.
13770  */
13771 static struct notifier_block perf_reboot_notifier = {
13772 	.notifier_call = perf_reboot,
13773 	.priority = INT_MIN,
13774 };
13775 
13776 void __init perf_event_init(void)
13777 {
13778 	int ret;
13779 
13780 	idr_init(&pmu_idr);
13781 
13782 	perf_event_init_all_cpus();
13783 	init_srcu_struct(&pmus_srcu);
13784 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13785 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13786 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13787 	perf_tp_register();
13788 	perf_event_init_cpu(smp_processor_id());
13789 	register_reboot_notifier(&perf_reboot_notifier);
13790 
13791 	ret = init_hw_breakpoint();
13792 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13793 
13794 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13795 
13796 	/*
13797 	 * Build time assertion that we keep the data_head at the intended
13798 	 * location.  IOW, validation we got the __reserved[] size right.
13799 	 */
13800 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13801 		     != 1024);
13802 }
13803 
13804 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13805 			      char *page)
13806 {
13807 	struct perf_pmu_events_attr *pmu_attr =
13808 		container_of(attr, struct perf_pmu_events_attr, attr);
13809 
13810 	if (pmu_attr->event_str)
13811 		return sprintf(page, "%s\n", pmu_attr->event_str);
13812 
13813 	return 0;
13814 }
13815 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13816 
13817 static int __init perf_event_sysfs_init(void)
13818 {
13819 	struct pmu *pmu;
13820 	int ret;
13821 
13822 	mutex_lock(&pmus_lock);
13823 
13824 	ret = bus_register(&pmu_bus);
13825 	if (ret)
13826 		goto unlock;
13827 
13828 	list_for_each_entry(pmu, &pmus, entry) {
13829 		if (pmu->dev)
13830 			continue;
13831 
13832 		ret = pmu_dev_alloc(pmu);
13833 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13834 	}
13835 	pmu_bus_running = 1;
13836 	ret = 0;
13837 
13838 unlock:
13839 	mutex_unlock(&pmus_lock);
13840 
13841 	return ret;
13842 }
13843 device_initcall(perf_event_sysfs_init);
13844 
13845 #ifdef CONFIG_CGROUP_PERF
13846 static struct cgroup_subsys_state *
13847 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13848 {
13849 	struct perf_cgroup *jc;
13850 
13851 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13852 	if (!jc)
13853 		return ERR_PTR(-ENOMEM);
13854 
13855 	jc->info = alloc_percpu(struct perf_cgroup_info);
13856 	if (!jc->info) {
13857 		kfree(jc);
13858 		return ERR_PTR(-ENOMEM);
13859 	}
13860 
13861 	return &jc->css;
13862 }
13863 
13864 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13865 {
13866 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13867 
13868 	free_percpu(jc->info);
13869 	kfree(jc);
13870 }
13871 
13872 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13873 {
13874 	perf_event_cgroup(css->cgroup);
13875 	return 0;
13876 }
13877 
13878 static int __perf_cgroup_move(void *info)
13879 {
13880 	struct task_struct *task = info;
13881 
13882 	preempt_disable();
13883 	perf_cgroup_switch(task);
13884 	preempt_enable();
13885 
13886 	return 0;
13887 }
13888 
13889 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13890 {
13891 	struct task_struct *task;
13892 	struct cgroup_subsys_state *css;
13893 
13894 	cgroup_taskset_for_each(task, css, tset)
13895 		task_function_call(task, __perf_cgroup_move, task);
13896 }
13897 
13898 struct cgroup_subsys perf_event_cgrp_subsys = {
13899 	.css_alloc	= perf_cgroup_css_alloc,
13900 	.css_free	= perf_cgroup_css_free,
13901 	.css_online	= perf_cgroup_css_online,
13902 	.attach		= perf_cgroup_attach,
13903 	/*
13904 	 * Implicitly enable on dfl hierarchy so that perf events can
13905 	 * always be filtered by cgroup2 path as long as perf_event
13906 	 * controller is not mounted on a legacy hierarchy.
13907 	 */
13908 	.implicit_on_dfl = true,
13909 	.threaded	= true,
13910 };
13911 #endif /* CONFIG_CGROUP_PERF */
13912 
13913 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13914