1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 static atomic_t nr_freq_events __read_mostly; 149 150 static LIST_HEAD(pmus); 151 static DEFINE_MUTEX(pmus_lock); 152 static struct srcu_struct pmus_srcu; 153 154 /* 155 * perf event paranoia level: 156 * -1 - not paranoid at all 157 * 0 - disallow raw tracepoint access for unpriv 158 * 1 - disallow cpu events for unpriv 159 * 2 - disallow kernel profiling for unpriv 160 */ 161 int sysctl_perf_event_paranoid __read_mostly = 1; 162 163 /* Minimum for 512 kiB + 1 user control page */ 164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 165 166 /* 167 * max perf event sample rate 168 */ 169 #define DEFAULT_MAX_SAMPLE_RATE 100000 170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 172 173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 174 175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 177 178 static int perf_sample_allowed_ns __read_mostly = 179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 180 181 void update_perf_cpu_limits(void) 182 { 183 u64 tmp = perf_sample_period_ns; 184 185 tmp *= sysctl_perf_cpu_time_max_percent; 186 do_div(tmp, 100); 187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 188 } 189 190 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 191 192 int perf_proc_update_handler(struct ctl_table *table, int write, 193 void __user *buffer, size_t *lenp, 194 loff_t *ppos) 195 { 196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 197 198 if (ret || !write) 199 return ret; 200 201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 203 update_perf_cpu_limits(); 204 205 return 0; 206 } 207 208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 209 210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 211 void __user *buffer, size_t *lenp, 212 loff_t *ppos) 213 { 214 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 215 216 if (ret || !write) 217 return ret; 218 219 update_perf_cpu_limits(); 220 221 return 0; 222 } 223 224 /* 225 * perf samples are done in some very critical code paths (NMIs). 226 * If they take too much CPU time, the system can lock up and not 227 * get any real work done. This will drop the sample rate when 228 * we detect that events are taking too long. 229 */ 230 #define NR_ACCUMULATED_SAMPLES 128 231 static DEFINE_PER_CPU(u64, running_sample_length); 232 233 void perf_sample_event_took(u64 sample_len_ns) 234 { 235 u64 avg_local_sample_len; 236 u64 local_samples_len; 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 238 239 if (allowed_ns == 0) 240 return; 241 242 /* decay the counter by 1 average sample */ 243 local_samples_len = __get_cpu_var(running_sample_length); 244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 245 local_samples_len += sample_len_ns; 246 __get_cpu_var(running_sample_length) = local_samples_len; 247 248 /* 249 * note: this will be biased artifically low until we have 250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 251 * from having to maintain a count. 252 */ 253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 254 255 if (avg_local_sample_len <= allowed_ns) 256 return; 257 258 if (max_samples_per_tick <= 1) 259 return; 260 261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 264 265 printk_ratelimited(KERN_WARNING 266 "perf samples too long (%lld > %lld), lowering " 267 "kernel.perf_event_max_sample_rate to %d\n", 268 avg_local_sample_len, allowed_ns, 269 sysctl_perf_event_sample_rate); 270 271 update_perf_cpu_limits(); 272 } 273 274 static atomic64_t perf_event_id; 275 276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 277 enum event_type_t event_type); 278 279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 280 enum event_type_t event_type, 281 struct task_struct *task); 282 283 static void update_context_time(struct perf_event_context *ctx); 284 static u64 perf_event_time(struct perf_event *event); 285 286 void __weak perf_event_print_debug(void) { } 287 288 extern __weak const char *perf_pmu_name(void) 289 { 290 return "pmu"; 291 } 292 293 static inline u64 perf_clock(void) 294 { 295 return local_clock(); 296 } 297 298 static inline struct perf_cpu_context * 299 __get_cpu_context(struct perf_event_context *ctx) 300 { 301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 302 } 303 304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 305 struct perf_event_context *ctx) 306 { 307 raw_spin_lock(&cpuctx->ctx.lock); 308 if (ctx) 309 raw_spin_lock(&ctx->lock); 310 } 311 312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 313 struct perf_event_context *ctx) 314 { 315 if (ctx) 316 raw_spin_unlock(&ctx->lock); 317 raw_spin_unlock(&cpuctx->ctx.lock); 318 } 319 320 #ifdef CONFIG_CGROUP_PERF 321 322 /* 323 * perf_cgroup_info keeps track of time_enabled for a cgroup. 324 * This is a per-cpu dynamically allocated data structure. 325 */ 326 struct perf_cgroup_info { 327 u64 time; 328 u64 timestamp; 329 }; 330 331 struct perf_cgroup { 332 struct cgroup_subsys_state css; 333 struct perf_cgroup_info __percpu *info; 334 }; 335 336 /* 337 * Must ensure cgroup is pinned (css_get) before calling 338 * this function. In other words, we cannot call this function 339 * if there is no cgroup event for the current CPU context. 340 */ 341 static inline struct perf_cgroup * 342 perf_cgroup_from_task(struct task_struct *task) 343 { 344 return container_of(task_css(task, perf_subsys_id), 345 struct perf_cgroup, css); 346 } 347 348 static inline bool 349 perf_cgroup_match(struct perf_event *event) 350 { 351 struct perf_event_context *ctx = event->ctx; 352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 353 354 /* @event doesn't care about cgroup */ 355 if (!event->cgrp) 356 return true; 357 358 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 359 if (!cpuctx->cgrp) 360 return false; 361 362 /* 363 * Cgroup scoping is recursive. An event enabled for a cgroup is 364 * also enabled for all its descendant cgroups. If @cpuctx's 365 * cgroup is a descendant of @event's (the test covers identity 366 * case), it's a match. 367 */ 368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 369 event->cgrp->css.cgroup); 370 } 371 372 static inline bool perf_tryget_cgroup(struct perf_event *event) 373 { 374 return css_tryget(&event->cgrp->css); 375 } 376 377 static inline void perf_put_cgroup(struct perf_event *event) 378 { 379 css_put(&event->cgrp->css); 380 } 381 382 static inline void perf_detach_cgroup(struct perf_event *event) 383 { 384 perf_put_cgroup(event); 385 event->cgrp = NULL; 386 } 387 388 static inline int is_cgroup_event(struct perf_event *event) 389 { 390 return event->cgrp != NULL; 391 } 392 393 static inline u64 perf_cgroup_event_time(struct perf_event *event) 394 { 395 struct perf_cgroup_info *t; 396 397 t = per_cpu_ptr(event->cgrp->info, event->cpu); 398 return t->time; 399 } 400 401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 402 { 403 struct perf_cgroup_info *info; 404 u64 now; 405 406 now = perf_clock(); 407 408 info = this_cpu_ptr(cgrp->info); 409 410 info->time += now - info->timestamp; 411 info->timestamp = now; 412 } 413 414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 415 { 416 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 417 if (cgrp_out) 418 __update_cgrp_time(cgrp_out); 419 } 420 421 static inline void update_cgrp_time_from_event(struct perf_event *event) 422 { 423 struct perf_cgroup *cgrp; 424 425 /* 426 * ensure we access cgroup data only when needed and 427 * when we know the cgroup is pinned (css_get) 428 */ 429 if (!is_cgroup_event(event)) 430 return; 431 432 cgrp = perf_cgroup_from_task(current); 433 /* 434 * Do not update time when cgroup is not active 435 */ 436 if (cgrp == event->cgrp) 437 __update_cgrp_time(event->cgrp); 438 } 439 440 static inline void 441 perf_cgroup_set_timestamp(struct task_struct *task, 442 struct perf_event_context *ctx) 443 { 444 struct perf_cgroup *cgrp; 445 struct perf_cgroup_info *info; 446 447 /* 448 * ctx->lock held by caller 449 * ensure we do not access cgroup data 450 * unless we have the cgroup pinned (css_get) 451 */ 452 if (!task || !ctx->nr_cgroups) 453 return; 454 455 cgrp = perf_cgroup_from_task(task); 456 info = this_cpu_ptr(cgrp->info); 457 info->timestamp = ctx->timestamp; 458 } 459 460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 462 463 /* 464 * reschedule events based on the cgroup constraint of task. 465 * 466 * mode SWOUT : schedule out everything 467 * mode SWIN : schedule in based on cgroup for next 468 */ 469 void perf_cgroup_switch(struct task_struct *task, int mode) 470 { 471 struct perf_cpu_context *cpuctx; 472 struct pmu *pmu; 473 unsigned long flags; 474 475 /* 476 * disable interrupts to avoid geting nr_cgroup 477 * changes via __perf_event_disable(). Also 478 * avoids preemption. 479 */ 480 local_irq_save(flags); 481 482 /* 483 * we reschedule only in the presence of cgroup 484 * constrained events. 485 */ 486 rcu_read_lock(); 487 488 list_for_each_entry_rcu(pmu, &pmus, entry) { 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 490 if (cpuctx->unique_pmu != pmu) 491 continue; /* ensure we process each cpuctx once */ 492 493 /* 494 * perf_cgroup_events says at least one 495 * context on this CPU has cgroup events. 496 * 497 * ctx->nr_cgroups reports the number of cgroup 498 * events for a context. 499 */ 500 if (cpuctx->ctx.nr_cgroups > 0) { 501 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 502 perf_pmu_disable(cpuctx->ctx.pmu); 503 504 if (mode & PERF_CGROUP_SWOUT) { 505 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 506 /* 507 * must not be done before ctxswout due 508 * to event_filter_match() in event_sched_out() 509 */ 510 cpuctx->cgrp = NULL; 511 } 512 513 if (mode & PERF_CGROUP_SWIN) { 514 WARN_ON_ONCE(cpuctx->cgrp); 515 /* 516 * set cgrp before ctxsw in to allow 517 * event_filter_match() to not have to pass 518 * task around 519 */ 520 cpuctx->cgrp = perf_cgroup_from_task(task); 521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 522 } 523 perf_pmu_enable(cpuctx->ctx.pmu); 524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 525 } 526 } 527 528 rcu_read_unlock(); 529 530 local_irq_restore(flags); 531 } 532 533 static inline void perf_cgroup_sched_out(struct task_struct *task, 534 struct task_struct *next) 535 { 536 struct perf_cgroup *cgrp1; 537 struct perf_cgroup *cgrp2 = NULL; 538 539 /* 540 * we come here when we know perf_cgroup_events > 0 541 */ 542 cgrp1 = perf_cgroup_from_task(task); 543 544 /* 545 * next is NULL when called from perf_event_enable_on_exec() 546 * that will systematically cause a cgroup_switch() 547 */ 548 if (next) 549 cgrp2 = perf_cgroup_from_task(next); 550 551 /* 552 * only schedule out current cgroup events if we know 553 * that we are switching to a different cgroup. Otherwise, 554 * do no touch the cgroup events. 555 */ 556 if (cgrp1 != cgrp2) 557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 558 } 559 560 static inline void perf_cgroup_sched_in(struct task_struct *prev, 561 struct task_struct *task) 562 { 563 struct perf_cgroup *cgrp1; 564 struct perf_cgroup *cgrp2 = NULL; 565 566 /* 567 * we come here when we know perf_cgroup_events > 0 568 */ 569 cgrp1 = perf_cgroup_from_task(task); 570 571 /* prev can never be NULL */ 572 cgrp2 = perf_cgroup_from_task(prev); 573 574 /* 575 * only need to schedule in cgroup events if we are changing 576 * cgroup during ctxsw. Cgroup events were not scheduled 577 * out of ctxsw out if that was not the case. 578 */ 579 if (cgrp1 != cgrp2) 580 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 581 } 582 583 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 584 struct perf_event_attr *attr, 585 struct perf_event *group_leader) 586 { 587 struct perf_cgroup *cgrp; 588 struct cgroup_subsys_state *css; 589 struct fd f = fdget(fd); 590 int ret = 0; 591 592 if (!f.file) 593 return -EBADF; 594 595 rcu_read_lock(); 596 597 css = css_from_dir(f.file->f_dentry, &perf_subsys); 598 if (IS_ERR(css)) { 599 ret = PTR_ERR(css); 600 goto out; 601 } 602 603 cgrp = container_of(css, struct perf_cgroup, css); 604 event->cgrp = cgrp; 605 606 /* must be done before we fput() the file */ 607 if (!perf_tryget_cgroup(event)) { 608 event->cgrp = NULL; 609 ret = -ENOENT; 610 goto out; 611 } 612 613 /* 614 * all events in a group must monitor 615 * the same cgroup because a task belongs 616 * to only one perf cgroup at a time 617 */ 618 if (group_leader && group_leader->cgrp != cgrp) { 619 perf_detach_cgroup(event); 620 ret = -EINVAL; 621 } 622 out: 623 rcu_read_unlock(); 624 fdput(f); 625 return ret; 626 } 627 628 static inline void 629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 630 { 631 struct perf_cgroup_info *t; 632 t = per_cpu_ptr(event->cgrp->info, event->cpu); 633 event->shadow_ctx_time = now - t->timestamp; 634 } 635 636 static inline void 637 perf_cgroup_defer_enabled(struct perf_event *event) 638 { 639 /* 640 * when the current task's perf cgroup does not match 641 * the event's, we need to remember to call the 642 * perf_mark_enable() function the first time a task with 643 * a matching perf cgroup is scheduled in. 644 */ 645 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 646 event->cgrp_defer_enabled = 1; 647 } 648 649 static inline void 650 perf_cgroup_mark_enabled(struct perf_event *event, 651 struct perf_event_context *ctx) 652 { 653 struct perf_event *sub; 654 u64 tstamp = perf_event_time(event); 655 656 if (!event->cgrp_defer_enabled) 657 return; 658 659 event->cgrp_defer_enabled = 0; 660 661 event->tstamp_enabled = tstamp - event->total_time_enabled; 662 list_for_each_entry(sub, &event->sibling_list, group_entry) { 663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 664 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 665 sub->cgrp_defer_enabled = 0; 666 } 667 } 668 } 669 #else /* !CONFIG_CGROUP_PERF */ 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 return true; 675 } 676 677 static inline void perf_detach_cgroup(struct perf_event *event) 678 {} 679 680 static inline int is_cgroup_event(struct perf_event *event) 681 { 682 return 0; 683 } 684 685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 686 { 687 return 0; 688 } 689 690 static inline void update_cgrp_time_from_event(struct perf_event *event) 691 { 692 } 693 694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 695 { 696 } 697 698 static inline void perf_cgroup_sched_out(struct task_struct *task, 699 struct task_struct *next) 700 { 701 } 702 703 static inline void perf_cgroup_sched_in(struct task_struct *prev, 704 struct task_struct *task) 705 { 706 } 707 708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 709 struct perf_event_attr *attr, 710 struct perf_event *group_leader) 711 { 712 return -EINVAL; 713 } 714 715 static inline void 716 perf_cgroup_set_timestamp(struct task_struct *task, 717 struct perf_event_context *ctx) 718 { 719 } 720 721 void 722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 723 { 724 } 725 726 static inline void 727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 728 { 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 return 0; 734 } 735 736 static inline void 737 perf_cgroup_defer_enabled(struct perf_event *event) 738 { 739 } 740 741 static inline void 742 perf_cgroup_mark_enabled(struct perf_event *event, 743 struct perf_event_context *ctx) 744 { 745 } 746 #endif 747 748 /* 749 * set default to be dependent on timer tick just 750 * like original code 751 */ 752 #define PERF_CPU_HRTIMER (1000 / HZ) 753 /* 754 * function must be called with interrupts disbled 755 */ 756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 757 { 758 struct perf_cpu_context *cpuctx; 759 enum hrtimer_restart ret = HRTIMER_NORESTART; 760 int rotations = 0; 761 762 WARN_ON(!irqs_disabled()); 763 764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 765 766 rotations = perf_rotate_context(cpuctx); 767 768 /* 769 * arm timer if needed 770 */ 771 if (rotations) { 772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 773 ret = HRTIMER_RESTART; 774 } 775 776 return ret; 777 } 778 779 /* CPU is going down */ 780 void perf_cpu_hrtimer_cancel(int cpu) 781 { 782 struct perf_cpu_context *cpuctx; 783 struct pmu *pmu; 784 unsigned long flags; 785 786 if (WARN_ON(cpu != smp_processor_id())) 787 return; 788 789 local_irq_save(flags); 790 791 rcu_read_lock(); 792 793 list_for_each_entry_rcu(pmu, &pmus, entry) { 794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 795 796 if (pmu->task_ctx_nr == perf_sw_context) 797 continue; 798 799 hrtimer_cancel(&cpuctx->hrtimer); 800 } 801 802 rcu_read_unlock(); 803 804 local_irq_restore(flags); 805 } 806 807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 808 { 809 struct hrtimer *hr = &cpuctx->hrtimer; 810 struct pmu *pmu = cpuctx->ctx.pmu; 811 int timer; 812 813 /* no multiplexing needed for SW PMU */ 814 if (pmu->task_ctx_nr == perf_sw_context) 815 return; 816 817 /* 818 * check default is sane, if not set then force to 819 * default interval (1/tick) 820 */ 821 timer = pmu->hrtimer_interval_ms; 822 if (timer < 1) 823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 824 825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 826 827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 828 hr->function = perf_cpu_hrtimer_handler; 829 } 830 831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 832 { 833 struct hrtimer *hr = &cpuctx->hrtimer; 834 struct pmu *pmu = cpuctx->ctx.pmu; 835 836 /* not for SW PMU */ 837 if (pmu->task_ctx_nr == perf_sw_context) 838 return; 839 840 if (hrtimer_active(hr)) 841 return; 842 843 if (!hrtimer_callback_running(hr)) 844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 845 0, HRTIMER_MODE_REL_PINNED, 0); 846 } 847 848 void perf_pmu_disable(struct pmu *pmu) 849 { 850 int *count = this_cpu_ptr(pmu->pmu_disable_count); 851 if (!(*count)++) 852 pmu->pmu_disable(pmu); 853 } 854 855 void perf_pmu_enable(struct pmu *pmu) 856 { 857 int *count = this_cpu_ptr(pmu->pmu_disable_count); 858 if (!--(*count)) 859 pmu->pmu_enable(pmu); 860 } 861 862 static DEFINE_PER_CPU(struct list_head, rotation_list); 863 864 /* 865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 866 * because they're strictly cpu affine and rotate_start is called with IRQs 867 * disabled, while rotate_context is called from IRQ context. 868 */ 869 static void perf_pmu_rotate_start(struct pmu *pmu) 870 { 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 872 struct list_head *head = &__get_cpu_var(rotation_list); 873 874 WARN_ON(!irqs_disabled()); 875 876 if (list_empty(&cpuctx->rotation_list)) 877 list_add(&cpuctx->rotation_list, head); 878 } 879 880 static void get_ctx(struct perf_event_context *ctx) 881 { 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 883 } 884 885 static void put_ctx(struct perf_event_context *ctx) 886 { 887 if (atomic_dec_and_test(&ctx->refcount)) { 888 if (ctx->parent_ctx) 889 put_ctx(ctx->parent_ctx); 890 if (ctx->task) 891 put_task_struct(ctx->task); 892 kfree_rcu(ctx, rcu_head); 893 } 894 } 895 896 static void unclone_ctx(struct perf_event_context *ctx) 897 { 898 if (ctx->parent_ctx) { 899 put_ctx(ctx->parent_ctx); 900 ctx->parent_ctx = NULL; 901 } 902 ctx->generation++; 903 } 904 905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 906 { 907 /* 908 * only top level events have the pid namespace they were created in 909 */ 910 if (event->parent) 911 event = event->parent; 912 913 return task_tgid_nr_ns(p, event->ns); 914 } 915 916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 917 { 918 /* 919 * only top level events have the pid namespace they were created in 920 */ 921 if (event->parent) 922 event = event->parent; 923 924 return task_pid_nr_ns(p, event->ns); 925 } 926 927 /* 928 * If we inherit events we want to return the parent event id 929 * to userspace. 930 */ 931 static u64 primary_event_id(struct perf_event *event) 932 { 933 u64 id = event->id; 934 935 if (event->parent) 936 id = event->parent->id; 937 938 return id; 939 } 940 941 /* 942 * Get the perf_event_context for a task and lock it. 943 * This has to cope with with the fact that until it is locked, 944 * the context could get moved to another task. 945 */ 946 static struct perf_event_context * 947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 948 { 949 struct perf_event_context *ctx; 950 951 retry: 952 /* 953 * One of the few rules of preemptible RCU is that one cannot do 954 * rcu_read_unlock() while holding a scheduler (or nested) lock when 955 * part of the read side critical section was preemptible -- see 956 * rcu_read_unlock_special(). 957 * 958 * Since ctx->lock nests under rq->lock we must ensure the entire read 959 * side critical section is non-preemptible. 960 */ 961 preempt_disable(); 962 rcu_read_lock(); 963 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 964 if (ctx) { 965 /* 966 * If this context is a clone of another, it might 967 * get swapped for another underneath us by 968 * perf_event_task_sched_out, though the 969 * rcu_read_lock() protects us from any context 970 * getting freed. Lock the context and check if it 971 * got swapped before we could get the lock, and retry 972 * if so. If we locked the right context, then it 973 * can't get swapped on us any more. 974 */ 975 raw_spin_lock_irqsave(&ctx->lock, *flags); 976 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 977 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 978 rcu_read_unlock(); 979 preempt_enable(); 980 goto retry; 981 } 982 983 if (!atomic_inc_not_zero(&ctx->refcount)) { 984 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 985 ctx = NULL; 986 } 987 } 988 rcu_read_unlock(); 989 preempt_enable(); 990 return ctx; 991 } 992 993 /* 994 * Get the context for a task and increment its pin_count so it 995 * can't get swapped to another task. This also increments its 996 * reference count so that the context can't get freed. 997 */ 998 static struct perf_event_context * 999 perf_pin_task_context(struct task_struct *task, int ctxn) 1000 { 1001 struct perf_event_context *ctx; 1002 unsigned long flags; 1003 1004 ctx = perf_lock_task_context(task, ctxn, &flags); 1005 if (ctx) { 1006 ++ctx->pin_count; 1007 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1008 } 1009 return ctx; 1010 } 1011 1012 static void perf_unpin_context(struct perf_event_context *ctx) 1013 { 1014 unsigned long flags; 1015 1016 raw_spin_lock_irqsave(&ctx->lock, flags); 1017 --ctx->pin_count; 1018 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1019 } 1020 1021 /* 1022 * Update the record of the current time in a context. 1023 */ 1024 static void update_context_time(struct perf_event_context *ctx) 1025 { 1026 u64 now = perf_clock(); 1027 1028 ctx->time += now - ctx->timestamp; 1029 ctx->timestamp = now; 1030 } 1031 1032 static u64 perf_event_time(struct perf_event *event) 1033 { 1034 struct perf_event_context *ctx = event->ctx; 1035 1036 if (is_cgroup_event(event)) 1037 return perf_cgroup_event_time(event); 1038 1039 return ctx ? ctx->time : 0; 1040 } 1041 1042 /* 1043 * Update the total_time_enabled and total_time_running fields for a event. 1044 * The caller of this function needs to hold the ctx->lock. 1045 */ 1046 static void update_event_times(struct perf_event *event) 1047 { 1048 struct perf_event_context *ctx = event->ctx; 1049 u64 run_end; 1050 1051 if (event->state < PERF_EVENT_STATE_INACTIVE || 1052 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1053 return; 1054 /* 1055 * in cgroup mode, time_enabled represents 1056 * the time the event was enabled AND active 1057 * tasks were in the monitored cgroup. This is 1058 * independent of the activity of the context as 1059 * there may be a mix of cgroup and non-cgroup events. 1060 * 1061 * That is why we treat cgroup events differently 1062 * here. 1063 */ 1064 if (is_cgroup_event(event)) 1065 run_end = perf_cgroup_event_time(event); 1066 else if (ctx->is_active) 1067 run_end = ctx->time; 1068 else 1069 run_end = event->tstamp_stopped; 1070 1071 event->total_time_enabled = run_end - event->tstamp_enabled; 1072 1073 if (event->state == PERF_EVENT_STATE_INACTIVE) 1074 run_end = event->tstamp_stopped; 1075 else 1076 run_end = perf_event_time(event); 1077 1078 event->total_time_running = run_end - event->tstamp_running; 1079 1080 } 1081 1082 /* 1083 * Update total_time_enabled and total_time_running for all events in a group. 1084 */ 1085 static void update_group_times(struct perf_event *leader) 1086 { 1087 struct perf_event *event; 1088 1089 update_event_times(leader); 1090 list_for_each_entry(event, &leader->sibling_list, group_entry) 1091 update_event_times(event); 1092 } 1093 1094 static struct list_head * 1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1096 { 1097 if (event->attr.pinned) 1098 return &ctx->pinned_groups; 1099 else 1100 return &ctx->flexible_groups; 1101 } 1102 1103 /* 1104 * Add a event from the lists for its context. 1105 * Must be called with ctx->mutex and ctx->lock held. 1106 */ 1107 static void 1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1109 { 1110 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1111 event->attach_state |= PERF_ATTACH_CONTEXT; 1112 1113 /* 1114 * If we're a stand alone event or group leader, we go to the context 1115 * list, group events are kept attached to the group so that 1116 * perf_group_detach can, at all times, locate all siblings. 1117 */ 1118 if (event->group_leader == event) { 1119 struct list_head *list; 1120 1121 if (is_software_event(event)) 1122 event->group_flags |= PERF_GROUP_SOFTWARE; 1123 1124 list = ctx_group_list(event, ctx); 1125 list_add_tail(&event->group_entry, list); 1126 } 1127 1128 if (is_cgroup_event(event)) 1129 ctx->nr_cgroups++; 1130 1131 if (has_branch_stack(event)) 1132 ctx->nr_branch_stack++; 1133 1134 list_add_rcu(&event->event_entry, &ctx->event_list); 1135 if (!ctx->nr_events) 1136 perf_pmu_rotate_start(ctx->pmu); 1137 ctx->nr_events++; 1138 if (event->attr.inherit_stat) 1139 ctx->nr_stat++; 1140 1141 ctx->generation++; 1142 } 1143 1144 /* 1145 * Initialize event state based on the perf_event_attr::disabled. 1146 */ 1147 static inline void perf_event__state_init(struct perf_event *event) 1148 { 1149 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1150 PERF_EVENT_STATE_INACTIVE; 1151 } 1152 1153 /* 1154 * Called at perf_event creation and when events are attached/detached from a 1155 * group. 1156 */ 1157 static void perf_event__read_size(struct perf_event *event) 1158 { 1159 int entry = sizeof(u64); /* value */ 1160 int size = 0; 1161 int nr = 1; 1162 1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1164 size += sizeof(u64); 1165 1166 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1167 size += sizeof(u64); 1168 1169 if (event->attr.read_format & PERF_FORMAT_ID) 1170 entry += sizeof(u64); 1171 1172 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1173 nr += event->group_leader->nr_siblings; 1174 size += sizeof(u64); 1175 } 1176 1177 size += entry * nr; 1178 event->read_size = size; 1179 } 1180 1181 static void perf_event__header_size(struct perf_event *event) 1182 { 1183 struct perf_sample_data *data; 1184 u64 sample_type = event->attr.sample_type; 1185 u16 size = 0; 1186 1187 perf_event__read_size(event); 1188 1189 if (sample_type & PERF_SAMPLE_IP) 1190 size += sizeof(data->ip); 1191 1192 if (sample_type & PERF_SAMPLE_ADDR) 1193 size += sizeof(data->addr); 1194 1195 if (sample_type & PERF_SAMPLE_PERIOD) 1196 size += sizeof(data->period); 1197 1198 if (sample_type & PERF_SAMPLE_WEIGHT) 1199 size += sizeof(data->weight); 1200 1201 if (sample_type & PERF_SAMPLE_READ) 1202 size += event->read_size; 1203 1204 if (sample_type & PERF_SAMPLE_DATA_SRC) 1205 size += sizeof(data->data_src.val); 1206 1207 if (sample_type & PERF_SAMPLE_TRANSACTION) 1208 size += sizeof(data->txn); 1209 1210 event->header_size = size; 1211 } 1212 1213 static void perf_event__id_header_size(struct perf_event *event) 1214 { 1215 struct perf_sample_data *data; 1216 u64 sample_type = event->attr.sample_type; 1217 u16 size = 0; 1218 1219 if (sample_type & PERF_SAMPLE_TID) 1220 size += sizeof(data->tid_entry); 1221 1222 if (sample_type & PERF_SAMPLE_TIME) 1223 size += sizeof(data->time); 1224 1225 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1226 size += sizeof(data->id); 1227 1228 if (sample_type & PERF_SAMPLE_ID) 1229 size += sizeof(data->id); 1230 1231 if (sample_type & PERF_SAMPLE_STREAM_ID) 1232 size += sizeof(data->stream_id); 1233 1234 if (sample_type & PERF_SAMPLE_CPU) 1235 size += sizeof(data->cpu_entry); 1236 1237 event->id_header_size = size; 1238 } 1239 1240 static void perf_group_attach(struct perf_event *event) 1241 { 1242 struct perf_event *group_leader = event->group_leader, *pos; 1243 1244 /* 1245 * We can have double attach due to group movement in perf_event_open. 1246 */ 1247 if (event->attach_state & PERF_ATTACH_GROUP) 1248 return; 1249 1250 event->attach_state |= PERF_ATTACH_GROUP; 1251 1252 if (group_leader == event) 1253 return; 1254 1255 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1256 !is_software_event(event)) 1257 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1258 1259 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1260 group_leader->nr_siblings++; 1261 1262 perf_event__header_size(group_leader); 1263 1264 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1265 perf_event__header_size(pos); 1266 } 1267 1268 /* 1269 * Remove a event from the lists for its context. 1270 * Must be called with ctx->mutex and ctx->lock held. 1271 */ 1272 static void 1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1274 { 1275 struct perf_cpu_context *cpuctx; 1276 /* 1277 * We can have double detach due to exit/hot-unplug + close. 1278 */ 1279 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1280 return; 1281 1282 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1283 1284 if (is_cgroup_event(event)) { 1285 ctx->nr_cgroups--; 1286 cpuctx = __get_cpu_context(ctx); 1287 /* 1288 * if there are no more cgroup events 1289 * then cler cgrp to avoid stale pointer 1290 * in update_cgrp_time_from_cpuctx() 1291 */ 1292 if (!ctx->nr_cgroups) 1293 cpuctx->cgrp = NULL; 1294 } 1295 1296 if (has_branch_stack(event)) 1297 ctx->nr_branch_stack--; 1298 1299 ctx->nr_events--; 1300 if (event->attr.inherit_stat) 1301 ctx->nr_stat--; 1302 1303 list_del_rcu(&event->event_entry); 1304 1305 if (event->group_leader == event) 1306 list_del_init(&event->group_entry); 1307 1308 update_group_times(event); 1309 1310 /* 1311 * If event was in error state, then keep it 1312 * that way, otherwise bogus counts will be 1313 * returned on read(). The only way to get out 1314 * of error state is by explicit re-enabling 1315 * of the event 1316 */ 1317 if (event->state > PERF_EVENT_STATE_OFF) 1318 event->state = PERF_EVENT_STATE_OFF; 1319 1320 ctx->generation++; 1321 } 1322 1323 static void perf_group_detach(struct perf_event *event) 1324 { 1325 struct perf_event *sibling, *tmp; 1326 struct list_head *list = NULL; 1327 1328 /* 1329 * We can have double detach due to exit/hot-unplug + close. 1330 */ 1331 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1332 return; 1333 1334 event->attach_state &= ~PERF_ATTACH_GROUP; 1335 1336 /* 1337 * If this is a sibling, remove it from its group. 1338 */ 1339 if (event->group_leader != event) { 1340 list_del_init(&event->group_entry); 1341 event->group_leader->nr_siblings--; 1342 goto out; 1343 } 1344 1345 if (!list_empty(&event->group_entry)) 1346 list = &event->group_entry; 1347 1348 /* 1349 * If this was a group event with sibling events then 1350 * upgrade the siblings to singleton events by adding them 1351 * to whatever list we are on. 1352 */ 1353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1354 if (list) 1355 list_move_tail(&sibling->group_entry, list); 1356 sibling->group_leader = sibling; 1357 1358 /* Inherit group flags from the previous leader */ 1359 sibling->group_flags = event->group_flags; 1360 } 1361 1362 out: 1363 perf_event__header_size(event->group_leader); 1364 1365 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1366 perf_event__header_size(tmp); 1367 } 1368 1369 static inline int 1370 event_filter_match(struct perf_event *event) 1371 { 1372 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1373 && perf_cgroup_match(event); 1374 } 1375 1376 static void 1377 event_sched_out(struct perf_event *event, 1378 struct perf_cpu_context *cpuctx, 1379 struct perf_event_context *ctx) 1380 { 1381 u64 tstamp = perf_event_time(event); 1382 u64 delta; 1383 /* 1384 * An event which could not be activated because of 1385 * filter mismatch still needs to have its timings 1386 * maintained, otherwise bogus information is return 1387 * via read() for time_enabled, time_running: 1388 */ 1389 if (event->state == PERF_EVENT_STATE_INACTIVE 1390 && !event_filter_match(event)) { 1391 delta = tstamp - event->tstamp_stopped; 1392 event->tstamp_running += delta; 1393 event->tstamp_stopped = tstamp; 1394 } 1395 1396 if (event->state != PERF_EVENT_STATE_ACTIVE) 1397 return; 1398 1399 perf_pmu_disable(event->pmu); 1400 1401 event->state = PERF_EVENT_STATE_INACTIVE; 1402 if (event->pending_disable) { 1403 event->pending_disable = 0; 1404 event->state = PERF_EVENT_STATE_OFF; 1405 } 1406 event->tstamp_stopped = tstamp; 1407 event->pmu->del(event, 0); 1408 event->oncpu = -1; 1409 1410 if (!is_software_event(event)) 1411 cpuctx->active_oncpu--; 1412 ctx->nr_active--; 1413 if (event->attr.freq && event->attr.sample_freq) 1414 ctx->nr_freq--; 1415 if (event->attr.exclusive || !cpuctx->active_oncpu) 1416 cpuctx->exclusive = 0; 1417 1418 perf_pmu_enable(event->pmu); 1419 } 1420 1421 static void 1422 group_sched_out(struct perf_event *group_event, 1423 struct perf_cpu_context *cpuctx, 1424 struct perf_event_context *ctx) 1425 { 1426 struct perf_event *event; 1427 int state = group_event->state; 1428 1429 event_sched_out(group_event, cpuctx, ctx); 1430 1431 /* 1432 * Schedule out siblings (if any): 1433 */ 1434 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1435 event_sched_out(event, cpuctx, ctx); 1436 1437 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1438 cpuctx->exclusive = 0; 1439 } 1440 1441 /* 1442 * Cross CPU call to remove a performance event 1443 * 1444 * We disable the event on the hardware level first. After that we 1445 * remove it from the context list. 1446 */ 1447 static int __perf_remove_from_context(void *info) 1448 { 1449 struct perf_event *event = info; 1450 struct perf_event_context *ctx = event->ctx; 1451 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1452 1453 raw_spin_lock(&ctx->lock); 1454 event_sched_out(event, cpuctx, ctx); 1455 list_del_event(event, ctx); 1456 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1457 ctx->is_active = 0; 1458 cpuctx->task_ctx = NULL; 1459 } 1460 raw_spin_unlock(&ctx->lock); 1461 1462 return 0; 1463 } 1464 1465 1466 /* 1467 * Remove the event from a task's (or a CPU's) list of events. 1468 * 1469 * CPU events are removed with a smp call. For task events we only 1470 * call when the task is on a CPU. 1471 * 1472 * If event->ctx is a cloned context, callers must make sure that 1473 * every task struct that event->ctx->task could possibly point to 1474 * remains valid. This is OK when called from perf_release since 1475 * that only calls us on the top-level context, which can't be a clone. 1476 * When called from perf_event_exit_task, it's OK because the 1477 * context has been detached from its task. 1478 */ 1479 static void perf_remove_from_context(struct perf_event *event) 1480 { 1481 struct perf_event_context *ctx = event->ctx; 1482 struct task_struct *task = ctx->task; 1483 1484 lockdep_assert_held(&ctx->mutex); 1485 1486 if (!task) { 1487 /* 1488 * Per cpu events are removed via an smp call and 1489 * the removal is always successful. 1490 */ 1491 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1492 return; 1493 } 1494 1495 retry: 1496 if (!task_function_call(task, __perf_remove_from_context, event)) 1497 return; 1498 1499 raw_spin_lock_irq(&ctx->lock); 1500 /* 1501 * If we failed to find a running task, but find the context active now 1502 * that we've acquired the ctx->lock, retry. 1503 */ 1504 if (ctx->is_active) { 1505 raw_spin_unlock_irq(&ctx->lock); 1506 goto retry; 1507 } 1508 1509 /* 1510 * Since the task isn't running, its safe to remove the event, us 1511 * holding the ctx->lock ensures the task won't get scheduled in. 1512 */ 1513 list_del_event(event, ctx); 1514 raw_spin_unlock_irq(&ctx->lock); 1515 } 1516 1517 /* 1518 * Cross CPU call to disable a performance event 1519 */ 1520 int __perf_event_disable(void *info) 1521 { 1522 struct perf_event *event = info; 1523 struct perf_event_context *ctx = event->ctx; 1524 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1525 1526 /* 1527 * If this is a per-task event, need to check whether this 1528 * event's task is the current task on this cpu. 1529 * 1530 * Can trigger due to concurrent perf_event_context_sched_out() 1531 * flipping contexts around. 1532 */ 1533 if (ctx->task && cpuctx->task_ctx != ctx) 1534 return -EINVAL; 1535 1536 raw_spin_lock(&ctx->lock); 1537 1538 /* 1539 * If the event is on, turn it off. 1540 * If it is in error state, leave it in error state. 1541 */ 1542 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1543 update_context_time(ctx); 1544 update_cgrp_time_from_event(event); 1545 update_group_times(event); 1546 if (event == event->group_leader) 1547 group_sched_out(event, cpuctx, ctx); 1548 else 1549 event_sched_out(event, cpuctx, ctx); 1550 event->state = PERF_EVENT_STATE_OFF; 1551 } 1552 1553 raw_spin_unlock(&ctx->lock); 1554 1555 return 0; 1556 } 1557 1558 /* 1559 * Disable a event. 1560 * 1561 * If event->ctx is a cloned context, callers must make sure that 1562 * every task struct that event->ctx->task could possibly point to 1563 * remains valid. This condition is satisifed when called through 1564 * perf_event_for_each_child or perf_event_for_each because they 1565 * hold the top-level event's child_mutex, so any descendant that 1566 * goes to exit will block in sync_child_event. 1567 * When called from perf_pending_event it's OK because event->ctx 1568 * is the current context on this CPU and preemption is disabled, 1569 * hence we can't get into perf_event_task_sched_out for this context. 1570 */ 1571 void perf_event_disable(struct perf_event *event) 1572 { 1573 struct perf_event_context *ctx = event->ctx; 1574 struct task_struct *task = ctx->task; 1575 1576 if (!task) { 1577 /* 1578 * Disable the event on the cpu that it's on 1579 */ 1580 cpu_function_call(event->cpu, __perf_event_disable, event); 1581 return; 1582 } 1583 1584 retry: 1585 if (!task_function_call(task, __perf_event_disable, event)) 1586 return; 1587 1588 raw_spin_lock_irq(&ctx->lock); 1589 /* 1590 * If the event is still active, we need to retry the cross-call. 1591 */ 1592 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1593 raw_spin_unlock_irq(&ctx->lock); 1594 /* 1595 * Reload the task pointer, it might have been changed by 1596 * a concurrent perf_event_context_sched_out(). 1597 */ 1598 task = ctx->task; 1599 goto retry; 1600 } 1601 1602 /* 1603 * Since we have the lock this context can't be scheduled 1604 * in, so we can change the state safely. 1605 */ 1606 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1607 update_group_times(event); 1608 event->state = PERF_EVENT_STATE_OFF; 1609 } 1610 raw_spin_unlock_irq(&ctx->lock); 1611 } 1612 EXPORT_SYMBOL_GPL(perf_event_disable); 1613 1614 static void perf_set_shadow_time(struct perf_event *event, 1615 struct perf_event_context *ctx, 1616 u64 tstamp) 1617 { 1618 /* 1619 * use the correct time source for the time snapshot 1620 * 1621 * We could get by without this by leveraging the 1622 * fact that to get to this function, the caller 1623 * has most likely already called update_context_time() 1624 * and update_cgrp_time_xx() and thus both timestamp 1625 * are identical (or very close). Given that tstamp is, 1626 * already adjusted for cgroup, we could say that: 1627 * tstamp - ctx->timestamp 1628 * is equivalent to 1629 * tstamp - cgrp->timestamp. 1630 * 1631 * Then, in perf_output_read(), the calculation would 1632 * work with no changes because: 1633 * - event is guaranteed scheduled in 1634 * - no scheduled out in between 1635 * - thus the timestamp would be the same 1636 * 1637 * But this is a bit hairy. 1638 * 1639 * So instead, we have an explicit cgroup call to remain 1640 * within the time time source all along. We believe it 1641 * is cleaner and simpler to understand. 1642 */ 1643 if (is_cgroup_event(event)) 1644 perf_cgroup_set_shadow_time(event, tstamp); 1645 else 1646 event->shadow_ctx_time = tstamp - ctx->timestamp; 1647 } 1648 1649 #define MAX_INTERRUPTS (~0ULL) 1650 1651 static void perf_log_throttle(struct perf_event *event, int enable); 1652 1653 static int 1654 event_sched_in(struct perf_event *event, 1655 struct perf_cpu_context *cpuctx, 1656 struct perf_event_context *ctx) 1657 { 1658 u64 tstamp = perf_event_time(event); 1659 int ret = 0; 1660 1661 if (event->state <= PERF_EVENT_STATE_OFF) 1662 return 0; 1663 1664 event->state = PERF_EVENT_STATE_ACTIVE; 1665 event->oncpu = smp_processor_id(); 1666 1667 /* 1668 * Unthrottle events, since we scheduled we might have missed several 1669 * ticks already, also for a heavily scheduling task there is little 1670 * guarantee it'll get a tick in a timely manner. 1671 */ 1672 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1673 perf_log_throttle(event, 1); 1674 event->hw.interrupts = 0; 1675 } 1676 1677 /* 1678 * The new state must be visible before we turn it on in the hardware: 1679 */ 1680 smp_wmb(); 1681 1682 perf_pmu_disable(event->pmu); 1683 1684 if (event->pmu->add(event, PERF_EF_START)) { 1685 event->state = PERF_EVENT_STATE_INACTIVE; 1686 event->oncpu = -1; 1687 ret = -EAGAIN; 1688 goto out; 1689 } 1690 1691 event->tstamp_running += tstamp - event->tstamp_stopped; 1692 1693 perf_set_shadow_time(event, ctx, tstamp); 1694 1695 if (!is_software_event(event)) 1696 cpuctx->active_oncpu++; 1697 ctx->nr_active++; 1698 if (event->attr.freq && event->attr.sample_freq) 1699 ctx->nr_freq++; 1700 1701 if (event->attr.exclusive) 1702 cpuctx->exclusive = 1; 1703 1704 out: 1705 perf_pmu_enable(event->pmu); 1706 1707 return ret; 1708 } 1709 1710 static int 1711 group_sched_in(struct perf_event *group_event, 1712 struct perf_cpu_context *cpuctx, 1713 struct perf_event_context *ctx) 1714 { 1715 struct perf_event *event, *partial_group = NULL; 1716 struct pmu *pmu = group_event->pmu; 1717 u64 now = ctx->time; 1718 bool simulate = false; 1719 1720 if (group_event->state == PERF_EVENT_STATE_OFF) 1721 return 0; 1722 1723 pmu->start_txn(pmu); 1724 1725 if (event_sched_in(group_event, cpuctx, ctx)) { 1726 pmu->cancel_txn(pmu); 1727 perf_cpu_hrtimer_restart(cpuctx); 1728 return -EAGAIN; 1729 } 1730 1731 /* 1732 * Schedule in siblings as one group (if any): 1733 */ 1734 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1735 if (event_sched_in(event, cpuctx, ctx)) { 1736 partial_group = event; 1737 goto group_error; 1738 } 1739 } 1740 1741 if (!pmu->commit_txn(pmu)) 1742 return 0; 1743 1744 group_error: 1745 /* 1746 * Groups can be scheduled in as one unit only, so undo any 1747 * partial group before returning: 1748 * The events up to the failed event are scheduled out normally, 1749 * tstamp_stopped will be updated. 1750 * 1751 * The failed events and the remaining siblings need to have 1752 * their timings updated as if they had gone thru event_sched_in() 1753 * and event_sched_out(). This is required to get consistent timings 1754 * across the group. This also takes care of the case where the group 1755 * could never be scheduled by ensuring tstamp_stopped is set to mark 1756 * the time the event was actually stopped, such that time delta 1757 * calculation in update_event_times() is correct. 1758 */ 1759 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1760 if (event == partial_group) 1761 simulate = true; 1762 1763 if (simulate) { 1764 event->tstamp_running += now - event->tstamp_stopped; 1765 event->tstamp_stopped = now; 1766 } else { 1767 event_sched_out(event, cpuctx, ctx); 1768 } 1769 } 1770 event_sched_out(group_event, cpuctx, ctx); 1771 1772 pmu->cancel_txn(pmu); 1773 1774 perf_cpu_hrtimer_restart(cpuctx); 1775 1776 return -EAGAIN; 1777 } 1778 1779 /* 1780 * Work out whether we can put this event group on the CPU now. 1781 */ 1782 static int group_can_go_on(struct perf_event *event, 1783 struct perf_cpu_context *cpuctx, 1784 int can_add_hw) 1785 { 1786 /* 1787 * Groups consisting entirely of software events can always go on. 1788 */ 1789 if (event->group_flags & PERF_GROUP_SOFTWARE) 1790 return 1; 1791 /* 1792 * If an exclusive group is already on, no other hardware 1793 * events can go on. 1794 */ 1795 if (cpuctx->exclusive) 1796 return 0; 1797 /* 1798 * If this group is exclusive and there are already 1799 * events on the CPU, it can't go on. 1800 */ 1801 if (event->attr.exclusive && cpuctx->active_oncpu) 1802 return 0; 1803 /* 1804 * Otherwise, try to add it if all previous groups were able 1805 * to go on. 1806 */ 1807 return can_add_hw; 1808 } 1809 1810 static void add_event_to_ctx(struct perf_event *event, 1811 struct perf_event_context *ctx) 1812 { 1813 u64 tstamp = perf_event_time(event); 1814 1815 list_add_event(event, ctx); 1816 perf_group_attach(event); 1817 event->tstamp_enabled = tstamp; 1818 event->tstamp_running = tstamp; 1819 event->tstamp_stopped = tstamp; 1820 } 1821 1822 static void task_ctx_sched_out(struct perf_event_context *ctx); 1823 static void 1824 ctx_sched_in(struct perf_event_context *ctx, 1825 struct perf_cpu_context *cpuctx, 1826 enum event_type_t event_type, 1827 struct task_struct *task); 1828 1829 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1830 struct perf_event_context *ctx, 1831 struct task_struct *task) 1832 { 1833 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1834 if (ctx) 1835 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1836 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1837 if (ctx) 1838 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1839 } 1840 1841 /* 1842 * Cross CPU call to install and enable a performance event 1843 * 1844 * Must be called with ctx->mutex held 1845 */ 1846 static int __perf_install_in_context(void *info) 1847 { 1848 struct perf_event *event = info; 1849 struct perf_event_context *ctx = event->ctx; 1850 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1851 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1852 struct task_struct *task = current; 1853 1854 perf_ctx_lock(cpuctx, task_ctx); 1855 perf_pmu_disable(cpuctx->ctx.pmu); 1856 1857 /* 1858 * If there was an active task_ctx schedule it out. 1859 */ 1860 if (task_ctx) 1861 task_ctx_sched_out(task_ctx); 1862 1863 /* 1864 * If the context we're installing events in is not the 1865 * active task_ctx, flip them. 1866 */ 1867 if (ctx->task && task_ctx != ctx) { 1868 if (task_ctx) 1869 raw_spin_unlock(&task_ctx->lock); 1870 raw_spin_lock(&ctx->lock); 1871 task_ctx = ctx; 1872 } 1873 1874 if (task_ctx) { 1875 cpuctx->task_ctx = task_ctx; 1876 task = task_ctx->task; 1877 } 1878 1879 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1880 1881 update_context_time(ctx); 1882 /* 1883 * update cgrp time only if current cgrp 1884 * matches event->cgrp. Must be done before 1885 * calling add_event_to_ctx() 1886 */ 1887 update_cgrp_time_from_event(event); 1888 1889 add_event_to_ctx(event, ctx); 1890 1891 /* 1892 * Schedule everything back in 1893 */ 1894 perf_event_sched_in(cpuctx, task_ctx, task); 1895 1896 perf_pmu_enable(cpuctx->ctx.pmu); 1897 perf_ctx_unlock(cpuctx, task_ctx); 1898 1899 return 0; 1900 } 1901 1902 /* 1903 * Attach a performance event to a context 1904 * 1905 * First we add the event to the list with the hardware enable bit 1906 * in event->hw_config cleared. 1907 * 1908 * If the event is attached to a task which is on a CPU we use a smp 1909 * call to enable it in the task context. The task might have been 1910 * scheduled away, but we check this in the smp call again. 1911 */ 1912 static void 1913 perf_install_in_context(struct perf_event_context *ctx, 1914 struct perf_event *event, 1915 int cpu) 1916 { 1917 struct task_struct *task = ctx->task; 1918 1919 lockdep_assert_held(&ctx->mutex); 1920 1921 event->ctx = ctx; 1922 if (event->cpu != -1) 1923 event->cpu = cpu; 1924 1925 if (!task) { 1926 /* 1927 * Per cpu events are installed via an smp call and 1928 * the install is always successful. 1929 */ 1930 cpu_function_call(cpu, __perf_install_in_context, event); 1931 return; 1932 } 1933 1934 retry: 1935 if (!task_function_call(task, __perf_install_in_context, event)) 1936 return; 1937 1938 raw_spin_lock_irq(&ctx->lock); 1939 /* 1940 * If we failed to find a running task, but find the context active now 1941 * that we've acquired the ctx->lock, retry. 1942 */ 1943 if (ctx->is_active) { 1944 raw_spin_unlock_irq(&ctx->lock); 1945 goto retry; 1946 } 1947 1948 /* 1949 * Since the task isn't running, its safe to add the event, us holding 1950 * the ctx->lock ensures the task won't get scheduled in. 1951 */ 1952 add_event_to_ctx(event, ctx); 1953 raw_spin_unlock_irq(&ctx->lock); 1954 } 1955 1956 /* 1957 * Put a event into inactive state and update time fields. 1958 * Enabling the leader of a group effectively enables all 1959 * the group members that aren't explicitly disabled, so we 1960 * have to update their ->tstamp_enabled also. 1961 * Note: this works for group members as well as group leaders 1962 * since the non-leader members' sibling_lists will be empty. 1963 */ 1964 static void __perf_event_mark_enabled(struct perf_event *event) 1965 { 1966 struct perf_event *sub; 1967 u64 tstamp = perf_event_time(event); 1968 1969 event->state = PERF_EVENT_STATE_INACTIVE; 1970 event->tstamp_enabled = tstamp - event->total_time_enabled; 1971 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1972 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1973 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1974 } 1975 } 1976 1977 /* 1978 * Cross CPU call to enable a performance event 1979 */ 1980 static int __perf_event_enable(void *info) 1981 { 1982 struct perf_event *event = info; 1983 struct perf_event_context *ctx = event->ctx; 1984 struct perf_event *leader = event->group_leader; 1985 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1986 int err; 1987 1988 /* 1989 * There's a time window between 'ctx->is_active' check 1990 * in perf_event_enable function and this place having: 1991 * - IRQs on 1992 * - ctx->lock unlocked 1993 * 1994 * where the task could be killed and 'ctx' deactivated 1995 * by perf_event_exit_task. 1996 */ 1997 if (!ctx->is_active) 1998 return -EINVAL; 1999 2000 raw_spin_lock(&ctx->lock); 2001 update_context_time(ctx); 2002 2003 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2004 goto unlock; 2005 2006 /* 2007 * set current task's cgroup time reference point 2008 */ 2009 perf_cgroup_set_timestamp(current, ctx); 2010 2011 __perf_event_mark_enabled(event); 2012 2013 if (!event_filter_match(event)) { 2014 if (is_cgroup_event(event)) 2015 perf_cgroup_defer_enabled(event); 2016 goto unlock; 2017 } 2018 2019 /* 2020 * If the event is in a group and isn't the group leader, 2021 * then don't put it on unless the group is on. 2022 */ 2023 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2024 goto unlock; 2025 2026 if (!group_can_go_on(event, cpuctx, 1)) { 2027 err = -EEXIST; 2028 } else { 2029 if (event == leader) 2030 err = group_sched_in(event, cpuctx, ctx); 2031 else 2032 err = event_sched_in(event, cpuctx, ctx); 2033 } 2034 2035 if (err) { 2036 /* 2037 * If this event can't go on and it's part of a 2038 * group, then the whole group has to come off. 2039 */ 2040 if (leader != event) { 2041 group_sched_out(leader, cpuctx, ctx); 2042 perf_cpu_hrtimer_restart(cpuctx); 2043 } 2044 if (leader->attr.pinned) { 2045 update_group_times(leader); 2046 leader->state = PERF_EVENT_STATE_ERROR; 2047 } 2048 } 2049 2050 unlock: 2051 raw_spin_unlock(&ctx->lock); 2052 2053 return 0; 2054 } 2055 2056 /* 2057 * Enable a event. 2058 * 2059 * If event->ctx is a cloned context, callers must make sure that 2060 * every task struct that event->ctx->task could possibly point to 2061 * remains valid. This condition is satisfied when called through 2062 * perf_event_for_each_child or perf_event_for_each as described 2063 * for perf_event_disable. 2064 */ 2065 void perf_event_enable(struct perf_event *event) 2066 { 2067 struct perf_event_context *ctx = event->ctx; 2068 struct task_struct *task = ctx->task; 2069 2070 if (!task) { 2071 /* 2072 * Enable the event on the cpu that it's on 2073 */ 2074 cpu_function_call(event->cpu, __perf_event_enable, event); 2075 return; 2076 } 2077 2078 raw_spin_lock_irq(&ctx->lock); 2079 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2080 goto out; 2081 2082 /* 2083 * If the event is in error state, clear that first. 2084 * That way, if we see the event in error state below, we 2085 * know that it has gone back into error state, as distinct 2086 * from the task having been scheduled away before the 2087 * cross-call arrived. 2088 */ 2089 if (event->state == PERF_EVENT_STATE_ERROR) 2090 event->state = PERF_EVENT_STATE_OFF; 2091 2092 retry: 2093 if (!ctx->is_active) { 2094 __perf_event_mark_enabled(event); 2095 goto out; 2096 } 2097 2098 raw_spin_unlock_irq(&ctx->lock); 2099 2100 if (!task_function_call(task, __perf_event_enable, event)) 2101 return; 2102 2103 raw_spin_lock_irq(&ctx->lock); 2104 2105 /* 2106 * If the context is active and the event is still off, 2107 * we need to retry the cross-call. 2108 */ 2109 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2110 /* 2111 * task could have been flipped by a concurrent 2112 * perf_event_context_sched_out() 2113 */ 2114 task = ctx->task; 2115 goto retry; 2116 } 2117 2118 out: 2119 raw_spin_unlock_irq(&ctx->lock); 2120 } 2121 EXPORT_SYMBOL_GPL(perf_event_enable); 2122 2123 int perf_event_refresh(struct perf_event *event, int refresh) 2124 { 2125 /* 2126 * not supported on inherited events 2127 */ 2128 if (event->attr.inherit || !is_sampling_event(event)) 2129 return -EINVAL; 2130 2131 atomic_add(refresh, &event->event_limit); 2132 perf_event_enable(event); 2133 2134 return 0; 2135 } 2136 EXPORT_SYMBOL_GPL(perf_event_refresh); 2137 2138 static void ctx_sched_out(struct perf_event_context *ctx, 2139 struct perf_cpu_context *cpuctx, 2140 enum event_type_t event_type) 2141 { 2142 struct perf_event *event; 2143 int is_active = ctx->is_active; 2144 2145 ctx->is_active &= ~event_type; 2146 if (likely(!ctx->nr_events)) 2147 return; 2148 2149 update_context_time(ctx); 2150 update_cgrp_time_from_cpuctx(cpuctx); 2151 if (!ctx->nr_active) 2152 return; 2153 2154 perf_pmu_disable(ctx->pmu); 2155 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2156 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2157 group_sched_out(event, cpuctx, ctx); 2158 } 2159 2160 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2161 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2162 group_sched_out(event, cpuctx, ctx); 2163 } 2164 perf_pmu_enable(ctx->pmu); 2165 } 2166 2167 /* 2168 * Test whether two contexts are equivalent, i.e. whether they have both been 2169 * cloned from the same version of the same context. 2170 * 2171 * Equivalence is measured using a generation number in the context that is 2172 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2173 * and list_del_event(). 2174 */ 2175 static int context_equiv(struct perf_event_context *ctx1, 2176 struct perf_event_context *ctx2) 2177 { 2178 /* Pinning disables the swap optimization */ 2179 if (ctx1->pin_count || ctx2->pin_count) 2180 return 0; 2181 2182 /* If ctx1 is the parent of ctx2 */ 2183 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2184 return 1; 2185 2186 /* If ctx2 is the parent of ctx1 */ 2187 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2188 return 1; 2189 2190 /* 2191 * If ctx1 and ctx2 have the same parent; we flatten the parent 2192 * hierarchy, see perf_event_init_context(). 2193 */ 2194 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2195 ctx1->parent_gen == ctx2->parent_gen) 2196 return 1; 2197 2198 /* Unmatched */ 2199 return 0; 2200 } 2201 2202 static void __perf_event_sync_stat(struct perf_event *event, 2203 struct perf_event *next_event) 2204 { 2205 u64 value; 2206 2207 if (!event->attr.inherit_stat) 2208 return; 2209 2210 /* 2211 * Update the event value, we cannot use perf_event_read() 2212 * because we're in the middle of a context switch and have IRQs 2213 * disabled, which upsets smp_call_function_single(), however 2214 * we know the event must be on the current CPU, therefore we 2215 * don't need to use it. 2216 */ 2217 switch (event->state) { 2218 case PERF_EVENT_STATE_ACTIVE: 2219 event->pmu->read(event); 2220 /* fall-through */ 2221 2222 case PERF_EVENT_STATE_INACTIVE: 2223 update_event_times(event); 2224 break; 2225 2226 default: 2227 break; 2228 } 2229 2230 /* 2231 * In order to keep per-task stats reliable we need to flip the event 2232 * values when we flip the contexts. 2233 */ 2234 value = local64_read(&next_event->count); 2235 value = local64_xchg(&event->count, value); 2236 local64_set(&next_event->count, value); 2237 2238 swap(event->total_time_enabled, next_event->total_time_enabled); 2239 swap(event->total_time_running, next_event->total_time_running); 2240 2241 /* 2242 * Since we swizzled the values, update the user visible data too. 2243 */ 2244 perf_event_update_userpage(event); 2245 perf_event_update_userpage(next_event); 2246 } 2247 2248 static void perf_event_sync_stat(struct perf_event_context *ctx, 2249 struct perf_event_context *next_ctx) 2250 { 2251 struct perf_event *event, *next_event; 2252 2253 if (!ctx->nr_stat) 2254 return; 2255 2256 update_context_time(ctx); 2257 2258 event = list_first_entry(&ctx->event_list, 2259 struct perf_event, event_entry); 2260 2261 next_event = list_first_entry(&next_ctx->event_list, 2262 struct perf_event, event_entry); 2263 2264 while (&event->event_entry != &ctx->event_list && 2265 &next_event->event_entry != &next_ctx->event_list) { 2266 2267 __perf_event_sync_stat(event, next_event); 2268 2269 event = list_next_entry(event, event_entry); 2270 next_event = list_next_entry(next_event, event_entry); 2271 } 2272 } 2273 2274 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2275 struct task_struct *next) 2276 { 2277 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2278 struct perf_event_context *next_ctx; 2279 struct perf_event_context *parent, *next_parent; 2280 struct perf_cpu_context *cpuctx; 2281 int do_switch = 1; 2282 2283 if (likely(!ctx)) 2284 return; 2285 2286 cpuctx = __get_cpu_context(ctx); 2287 if (!cpuctx->task_ctx) 2288 return; 2289 2290 rcu_read_lock(); 2291 next_ctx = next->perf_event_ctxp[ctxn]; 2292 if (!next_ctx) 2293 goto unlock; 2294 2295 parent = rcu_dereference(ctx->parent_ctx); 2296 next_parent = rcu_dereference(next_ctx->parent_ctx); 2297 2298 /* If neither context have a parent context; they cannot be clones. */ 2299 if (!parent && !next_parent) 2300 goto unlock; 2301 2302 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2303 /* 2304 * Looks like the two contexts are clones, so we might be 2305 * able to optimize the context switch. We lock both 2306 * contexts and check that they are clones under the 2307 * lock (including re-checking that neither has been 2308 * uncloned in the meantime). It doesn't matter which 2309 * order we take the locks because no other cpu could 2310 * be trying to lock both of these tasks. 2311 */ 2312 raw_spin_lock(&ctx->lock); 2313 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2314 if (context_equiv(ctx, next_ctx)) { 2315 /* 2316 * XXX do we need a memory barrier of sorts 2317 * wrt to rcu_dereference() of perf_event_ctxp 2318 */ 2319 task->perf_event_ctxp[ctxn] = next_ctx; 2320 next->perf_event_ctxp[ctxn] = ctx; 2321 ctx->task = next; 2322 next_ctx->task = task; 2323 do_switch = 0; 2324 2325 perf_event_sync_stat(ctx, next_ctx); 2326 } 2327 raw_spin_unlock(&next_ctx->lock); 2328 raw_spin_unlock(&ctx->lock); 2329 } 2330 unlock: 2331 rcu_read_unlock(); 2332 2333 if (do_switch) { 2334 raw_spin_lock(&ctx->lock); 2335 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2336 cpuctx->task_ctx = NULL; 2337 raw_spin_unlock(&ctx->lock); 2338 } 2339 } 2340 2341 #define for_each_task_context_nr(ctxn) \ 2342 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2343 2344 /* 2345 * Called from scheduler to remove the events of the current task, 2346 * with interrupts disabled. 2347 * 2348 * We stop each event and update the event value in event->count. 2349 * 2350 * This does not protect us against NMI, but disable() 2351 * sets the disabled bit in the control field of event _before_ 2352 * accessing the event control register. If a NMI hits, then it will 2353 * not restart the event. 2354 */ 2355 void __perf_event_task_sched_out(struct task_struct *task, 2356 struct task_struct *next) 2357 { 2358 int ctxn; 2359 2360 for_each_task_context_nr(ctxn) 2361 perf_event_context_sched_out(task, ctxn, next); 2362 2363 /* 2364 * if cgroup events exist on this CPU, then we need 2365 * to check if we have to switch out PMU state. 2366 * cgroup event are system-wide mode only 2367 */ 2368 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2369 perf_cgroup_sched_out(task, next); 2370 } 2371 2372 static void task_ctx_sched_out(struct perf_event_context *ctx) 2373 { 2374 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2375 2376 if (!cpuctx->task_ctx) 2377 return; 2378 2379 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2380 return; 2381 2382 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2383 cpuctx->task_ctx = NULL; 2384 } 2385 2386 /* 2387 * Called with IRQs disabled 2388 */ 2389 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2390 enum event_type_t event_type) 2391 { 2392 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2393 } 2394 2395 static void 2396 ctx_pinned_sched_in(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx) 2398 { 2399 struct perf_event *event; 2400 2401 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2402 if (event->state <= PERF_EVENT_STATE_OFF) 2403 continue; 2404 if (!event_filter_match(event)) 2405 continue; 2406 2407 /* may need to reset tstamp_enabled */ 2408 if (is_cgroup_event(event)) 2409 perf_cgroup_mark_enabled(event, ctx); 2410 2411 if (group_can_go_on(event, cpuctx, 1)) 2412 group_sched_in(event, cpuctx, ctx); 2413 2414 /* 2415 * If this pinned group hasn't been scheduled, 2416 * put it in error state. 2417 */ 2418 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2419 update_group_times(event); 2420 event->state = PERF_EVENT_STATE_ERROR; 2421 } 2422 } 2423 } 2424 2425 static void 2426 ctx_flexible_sched_in(struct perf_event_context *ctx, 2427 struct perf_cpu_context *cpuctx) 2428 { 2429 struct perf_event *event; 2430 int can_add_hw = 1; 2431 2432 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2433 /* Ignore events in OFF or ERROR state */ 2434 if (event->state <= PERF_EVENT_STATE_OFF) 2435 continue; 2436 /* 2437 * Listen to the 'cpu' scheduling filter constraint 2438 * of events: 2439 */ 2440 if (!event_filter_match(event)) 2441 continue; 2442 2443 /* may need to reset tstamp_enabled */ 2444 if (is_cgroup_event(event)) 2445 perf_cgroup_mark_enabled(event, ctx); 2446 2447 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2448 if (group_sched_in(event, cpuctx, ctx)) 2449 can_add_hw = 0; 2450 } 2451 } 2452 } 2453 2454 static void 2455 ctx_sched_in(struct perf_event_context *ctx, 2456 struct perf_cpu_context *cpuctx, 2457 enum event_type_t event_type, 2458 struct task_struct *task) 2459 { 2460 u64 now; 2461 int is_active = ctx->is_active; 2462 2463 ctx->is_active |= event_type; 2464 if (likely(!ctx->nr_events)) 2465 return; 2466 2467 now = perf_clock(); 2468 ctx->timestamp = now; 2469 perf_cgroup_set_timestamp(task, ctx); 2470 /* 2471 * First go through the list and put on any pinned groups 2472 * in order to give them the best chance of going on. 2473 */ 2474 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2475 ctx_pinned_sched_in(ctx, cpuctx); 2476 2477 /* Then walk through the lower prio flexible groups */ 2478 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2479 ctx_flexible_sched_in(ctx, cpuctx); 2480 } 2481 2482 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2483 enum event_type_t event_type, 2484 struct task_struct *task) 2485 { 2486 struct perf_event_context *ctx = &cpuctx->ctx; 2487 2488 ctx_sched_in(ctx, cpuctx, event_type, task); 2489 } 2490 2491 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2492 struct task_struct *task) 2493 { 2494 struct perf_cpu_context *cpuctx; 2495 2496 cpuctx = __get_cpu_context(ctx); 2497 if (cpuctx->task_ctx == ctx) 2498 return; 2499 2500 perf_ctx_lock(cpuctx, ctx); 2501 perf_pmu_disable(ctx->pmu); 2502 /* 2503 * We want to keep the following priority order: 2504 * cpu pinned (that don't need to move), task pinned, 2505 * cpu flexible, task flexible. 2506 */ 2507 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2508 2509 if (ctx->nr_events) 2510 cpuctx->task_ctx = ctx; 2511 2512 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2513 2514 perf_pmu_enable(ctx->pmu); 2515 perf_ctx_unlock(cpuctx, ctx); 2516 2517 /* 2518 * Since these rotations are per-cpu, we need to ensure the 2519 * cpu-context we got scheduled on is actually rotating. 2520 */ 2521 perf_pmu_rotate_start(ctx->pmu); 2522 } 2523 2524 /* 2525 * When sampling the branck stack in system-wide, it may be necessary 2526 * to flush the stack on context switch. This happens when the branch 2527 * stack does not tag its entries with the pid of the current task. 2528 * Otherwise it becomes impossible to associate a branch entry with a 2529 * task. This ambiguity is more likely to appear when the branch stack 2530 * supports priv level filtering and the user sets it to monitor only 2531 * at the user level (which could be a useful measurement in system-wide 2532 * mode). In that case, the risk is high of having a branch stack with 2533 * branch from multiple tasks. Flushing may mean dropping the existing 2534 * entries or stashing them somewhere in the PMU specific code layer. 2535 * 2536 * This function provides the context switch callback to the lower code 2537 * layer. It is invoked ONLY when there is at least one system-wide context 2538 * with at least one active event using taken branch sampling. 2539 */ 2540 static void perf_branch_stack_sched_in(struct task_struct *prev, 2541 struct task_struct *task) 2542 { 2543 struct perf_cpu_context *cpuctx; 2544 struct pmu *pmu; 2545 unsigned long flags; 2546 2547 /* no need to flush branch stack if not changing task */ 2548 if (prev == task) 2549 return; 2550 2551 local_irq_save(flags); 2552 2553 rcu_read_lock(); 2554 2555 list_for_each_entry_rcu(pmu, &pmus, entry) { 2556 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2557 2558 /* 2559 * check if the context has at least one 2560 * event using PERF_SAMPLE_BRANCH_STACK 2561 */ 2562 if (cpuctx->ctx.nr_branch_stack > 0 2563 && pmu->flush_branch_stack) { 2564 2565 pmu = cpuctx->ctx.pmu; 2566 2567 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2568 2569 perf_pmu_disable(pmu); 2570 2571 pmu->flush_branch_stack(); 2572 2573 perf_pmu_enable(pmu); 2574 2575 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2576 } 2577 } 2578 2579 rcu_read_unlock(); 2580 2581 local_irq_restore(flags); 2582 } 2583 2584 /* 2585 * Called from scheduler to add the events of the current task 2586 * with interrupts disabled. 2587 * 2588 * We restore the event value and then enable it. 2589 * 2590 * This does not protect us against NMI, but enable() 2591 * sets the enabled bit in the control field of event _before_ 2592 * accessing the event control register. If a NMI hits, then it will 2593 * keep the event running. 2594 */ 2595 void __perf_event_task_sched_in(struct task_struct *prev, 2596 struct task_struct *task) 2597 { 2598 struct perf_event_context *ctx; 2599 int ctxn; 2600 2601 for_each_task_context_nr(ctxn) { 2602 ctx = task->perf_event_ctxp[ctxn]; 2603 if (likely(!ctx)) 2604 continue; 2605 2606 perf_event_context_sched_in(ctx, task); 2607 } 2608 /* 2609 * if cgroup events exist on this CPU, then we need 2610 * to check if we have to switch in PMU state. 2611 * cgroup event are system-wide mode only 2612 */ 2613 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2614 perf_cgroup_sched_in(prev, task); 2615 2616 /* check for system-wide branch_stack events */ 2617 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2618 perf_branch_stack_sched_in(prev, task); 2619 } 2620 2621 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2622 { 2623 u64 frequency = event->attr.sample_freq; 2624 u64 sec = NSEC_PER_SEC; 2625 u64 divisor, dividend; 2626 2627 int count_fls, nsec_fls, frequency_fls, sec_fls; 2628 2629 count_fls = fls64(count); 2630 nsec_fls = fls64(nsec); 2631 frequency_fls = fls64(frequency); 2632 sec_fls = 30; 2633 2634 /* 2635 * We got @count in @nsec, with a target of sample_freq HZ 2636 * the target period becomes: 2637 * 2638 * @count * 10^9 2639 * period = ------------------- 2640 * @nsec * sample_freq 2641 * 2642 */ 2643 2644 /* 2645 * Reduce accuracy by one bit such that @a and @b converge 2646 * to a similar magnitude. 2647 */ 2648 #define REDUCE_FLS(a, b) \ 2649 do { \ 2650 if (a##_fls > b##_fls) { \ 2651 a >>= 1; \ 2652 a##_fls--; \ 2653 } else { \ 2654 b >>= 1; \ 2655 b##_fls--; \ 2656 } \ 2657 } while (0) 2658 2659 /* 2660 * Reduce accuracy until either term fits in a u64, then proceed with 2661 * the other, so that finally we can do a u64/u64 division. 2662 */ 2663 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2664 REDUCE_FLS(nsec, frequency); 2665 REDUCE_FLS(sec, count); 2666 } 2667 2668 if (count_fls + sec_fls > 64) { 2669 divisor = nsec * frequency; 2670 2671 while (count_fls + sec_fls > 64) { 2672 REDUCE_FLS(count, sec); 2673 divisor >>= 1; 2674 } 2675 2676 dividend = count * sec; 2677 } else { 2678 dividend = count * sec; 2679 2680 while (nsec_fls + frequency_fls > 64) { 2681 REDUCE_FLS(nsec, frequency); 2682 dividend >>= 1; 2683 } 2684 2685 divisor = nsec * frequency; 2686 } 2687 2688 if (!divisor) 2689 return dividend; 2690 2691 return div64_u64(dividend, divisor); 2692 } 2693 2694 static DEFINE_PER_CPU(int, perf_throttled_count); 2695 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2696 2697 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2698 { 2699 struct hw_perf_event *hwc = &event->hw; 2700 s64 period, sample_period; 2701 s64 delta; 2702 2703 period = perf_calculate_period(event, nsec, count); 2704 2705 delta = (s64)(period - hwc->sample_period); 2706 delta = (delta + 7) / 8; /* low pass filter */ 2707 2708 sample_period = hwc->sample_period + delta; 2709 2710 if (!sample_period) 2711 sample_period = 1; 2712 2713 hwc->sample_period = sample_period; 2714 2715 if (local64_read(&hwc->period_left) > 8*sample_period) { 2716 if (disable) 2717 event->pmu->stop(event, PERF_EF_UPDATE); 2718 2719 local64_set(&hwc->period_left, 0); 2720 2721 if (disable) 2722 event->pmu->start(event, PERF_EF_RELOAD); 2723 } 2724 } 2725 2726 /* 2727 * combine freq adjustment with unthrottling to avoid two passes over the 2728 * events. At the same time, make sure, having freq events does not change 2729 * the rate of unthrottling as that would introduce bias. 2730 */ 2731 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2732 int needs_unthr) 2733 { 2734 struct perf_event *event; 2735 struct hw_perf_event *hwc; 2736 u64 now, period = TICK_NSEC; 2737 s64 delta; 2738 2739 /* 2740 * only need to iterate over all events iff: 2741 * - context have events in frequency mode (needs freq adjust) 2742 * - there are events to unthrottle on this cpu 2743 */ 2744 if (!(ctx->nr_freq || needs_unthr)) 2745 return; 2746 2747 raw_spin_lock(&ctx->lock); 2748 perf_pmu_disable(ctx->pmu); 2749 2750 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2751 if (event->state != PERF_EVENT_STATE_ACTIVE) 2752 continue; 2753 2754 if (!event_filter_match(event)) 2755 continue; 2756 2757 perf_pmu_disable(event->pmu); 2758 2759 hwc = &event->hw; 2760 2761 if (hwc->interrupts == MAX_INTERRUPTS) { 2762 hwc->interrupts = 0; 2763 perf_log_throttle(event, 1); 2764 event->pmu->start(event, 0); 2765 } 2766 2767 if (!event->attr.freq || !event->attr.sample_freq) 2768 goto next; 2769 2770 /* 2771 * stop the event and update event->count 2772 */ 2773 event->pmu->stop(event, PERF_EF_UPDATE); 2774 2775 now = local64_read(&event->count); 2776 delta = now - hwc->freq_count_stamp; 2777 hwc->freq_count_stamp = now; 2778 2779 /* 2780 * restart the event 2781 * reload only if value has changed 2782 * we have stopped the event so tell that 2783 * to perf_adjust_period() to avoid stopping it 2784 * twice. 2785 */ 2786 if (delta > 0) 2787 perf_adjust_period(event, period, delta, false); 2788 2789 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2790 next: 2791 perf_pmu_enable(event->pmu); 2792 } 2793 2794 perf_pmu_enable(ctx->pmu); 2795 raw_spin_unlock(&ctx->lock); 2796 } 2797 2798 /* 2799 * Round-robin a context's events: 2800 */ 2801 static void rotate_ctx(struct perf_event_context *ctx) 2802 { 2803 /* 2804 * Rotate the first entry last of non-pinned groups. Rotation might be 2805 * disabled by the inheritance code. 2806 */ 2807 if (!ctx->rotate_disable) 2808 list_rotate_left(&ctx->flexible_groups); 2809 } 2810 2811 /* 2812 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2813 * because they're strictly cpu affine and rotate_start is called with IRQs 2814 * disabled, while rotate_context is called from IRQ context. 2815 */ 2816 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2817 { 2818 struct perf_event_context *ctx = NULL; 2819 int rotate = 0, remove = 1; 2820 2821 if (cpuctx->ctx.nr_events) { 2822 remove = 0; 2823 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2824 rotate = 1; 2825 } 2826 2827 ctx = cpuctx->task_ctx; 2828 if (ctx && ctx->nr_events) { 2829 remove = 0; 2830 if (ctx->nr_events != ctx->nr_active) 2831 rotate = 1; 2832 } 2833 2834 if (!rotate) 2835 goto done; 2836 2837 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2838 perf_pmu_disable(cpuctx->ctx.pmu); 2839 2840 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2841 if (ctx) 2842 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2843 2844 rotate_ctx(&cpuctx->ctx); 2845 if (ctx) 2846 rotate_ctx(ctx); 2847 2848 perf_event_sched_in(cpuctx, ctx, current); 2849 2850 perf_pmu_enable(cpuctx->ctx.pmu); 2851 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2852 done: 2853 if (remove) 2854 list_del_init(&cpuctx->rotation_list); 2855 2856 return rotate; 2857 } 2858 2859 #ifdef CONFIG_NO_HZ_FULL 2860 bool perf_event_can_stop_tick(void) 2861 { 2862 if (atomic_read(&nr_freq_events) || 2863 __this_cpu_read(perf_throttled_count)) 2864 return false; 2865 else 2866 return true; 2867 } 2868 #endif 2869 2870 void perf_event_task_tick(void) 2871 { 2872 struct list_head *head = &__get_cpu_var(rotation_list); 2873 struct perf_cpu_context *cpuctx, *tmp; 2874 struct perf_event_context *ctx; 2875 int throttled; 2876 2877 WARN_ON(!irqs_disabled()); 2878 2879 __this_cpu_inc(perf_throttled_seq); 2880 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2881 2882 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2883 ctx = &cpuctx->ctx; 2884 perf_adjust_freq_unthr_context(ctx, throttled); 2885 2886 ctx = cpuctx->task_ctx; 2887 if (ctx) 2888 perf_adjust_freq_unthr_context(ctx, throttled); 2889 } 2890 } 2891 2892 static int event_enable_on_exec(struct perf_event *event, 2893 struct perf_event_context *ctx) 2894 { 2895 if (!event->attr.enable_on_exec) 2896 return 0; 2897 2898 event->attr.enable_on_exec = 0; 2899 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2900 return 0; 2901 2902 __perf_event_mark_enabled(event); 2903 2904 return 1; 2905 } 2906 2907 /* 2908 * Enable all of a task's events that have been marked enable-on-exec. 2909 * This expects task == current. 2910 */ 2911 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2912 { 2913 struct perf_event *event; 2914 unsigned long flags; 2915 int enabled = 0; 2916 int ret; 2917 2918 local_irq_save(flags); 2919 if (!ctx || !ctx->nr_events) 2920 goto out; 2921 2922 /* 2923 * We must ctxsw out cgroup events to avoid conflict 2924 * when invoking perf_task_event_sched_in() later on 2925 * in this function. Otherwise we end up trying to 2926 * ctxswin cgroup events which are already scheduled 2927 * in. 2928 */ 2929 perf_cgroup_sched_out(current, NULL); 2930 2931 raw_spin_lock(&ctx->lock); 2932 task_ctx_sched_out(ctx); 2933 2934 list_for_each_entry(event, &ctx->event_list, event_entry) { 2935 ret = event_enable_on_exec(event, ctx); 2936 if (ret) 2937 enabled = 1; 2938 } 2939 2940 /* 2941 * Unclone this context if we enabled any event. 2942 */ 2943 if (enabled) 2944 unclone_ctx(ctx); 2945 2946 raw_spin_unlock(&ctx->lock); 2947 2948 /* 2949 * Also calls ctxswin for cgroup events, if any: 2950 */ 2951 perf_event_context_sched_in(ctx, ctx->task); 2952 out: 2953 local_irq_restore(flags); 2954 } 2955 2956 /* 2957 * Cross CPU call to read the hardware event 2958 */ 2959 static void __perf_event_read(void *info) 2960 { 2961 struct perf_event *event = info; 2962 struct perf_event_context *ctx = event->ctx; 2963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2964 2965 /* 2966 * If this is a task context, we need to check whether it is 2967 * the current task context of this cpu. If not it has been 2968 * scheduled out before the smp call arrived. In that case 2969 * event->count would have been updated to a recent sample 2970 * when the event was scheduled out. 2971 */ 2972 if (ctx->task && cpuctx->task_ctx != ctx) 2973 return; 2974 2975 raw_spin_lock(&ctx->lock); 2976 if (ctx->is_active) { 2977 update_context_time(ctx); 2978 update_cgrp_time_from_event(event); 2979 } 2980 update_event_times(event); 2981 if (event->state == PERF_EVENT_STATE_ACTIVE) 2982 event->pmu->read(event); 2983 raw_spin_unlock(&ctx->lock); 2984 } 2985 2986 static inline u64 perf_event_count(struct perf_event *event) 2987 { 2988 return local64_read(&event->count) + atomic64_read(&event->child_count); 2989 } 2990 2991 static u64 perf_event_read(struct perf_event *event) 2992 { 2993 /* 2994 * If event is enabled and currently active on a CPU, update the 2995 * value in the event structure: 2996 */ 2997 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2998 smp_call_function_single(event->oncpu, 2999 __perf_event_read, event, 1); 3000 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3001 struct perf_event_context *ctx = event->ctx; 3002 unsigned long flags; 3003 3004 raw_spin_lock_irqsave(&ctx->lock, flags); 3005 /* 3006 * may read while context is not active 3007 * (e.g., thread is blocked), in that case 3008 * we cannot update context time 3009 */ 3010 if (ctx->is_active) { 3011 update_context_time(ctx); 3012 update_cgrp_time_from_event(event); 3013 } 3014 update_event_times(event); 3015 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3016 } 3017 3018 return perf_event_count(event); 3019 } 3020 3021 /* 3022 * Initialize the perf_event context in a task_struct: 3023 */ 3024 static void __perf_event_init_context(struct perf_event_context *ctx) 3025 { 3026 raw_spin_lock_init(&ctx->lock); 3027 mutex_init(&ctx->mutex); 3028 INIT_LIST_HEAD(&ctx->pinned_groups); 3029 INIT_LIST_HEAD(&ctx->flexible_groups); 3030 INIT_LIST_HEAD(&ctx->event_list); 3031 atomic_set(&ctx->refcount, 1); 3032 } 3033 3034 static struct perf_event_context * 3035 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3036 { 3037 struct perf_event_context *ctx; 3038 3039 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3040 if (!ctx) 3041 return NULL; 3042 3043 __perf_event_init_context(ctx); 3044 if (task) { 3045 ctx->task = task; 3046 get_task_struct(task); 3047 } 3048 ctx->pmu = pmu; 3049 3050 return ctx; 3051 } 3052 3053 static struct task_struct * 3054 find_lively_task_by_vpid(pid_t vpid) 3055 { 3056 struct task_struct *task; 3057 int err; 3058 3059 rcu_read_lock(); 3060 if (!vpid) 3061 task = current; 3062 else 3063 task = find_task_by_vpid(vpid); 3064 if (task) 3065 get_task_struct(task); 3066 rcu_read_unlock(); 3067 3068 if (!task) 3069 return ERR_PTR(-ESRCH); 3070 3071 /* Reuse ptrace permission checks for now. */ 3072 err = -EACCES; 3073 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3074 goto errout; 3075 3076 return task; 3077 errout: 3078 put_task_struct(task); 3079 return ERR_PTR(err); 3080 3081 } 3082 3083 /* 3084 * Returns a matching context with refcount and pincount. 3085 */ 3086 static struct perf_event_context * 3087 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3088 { 3089 struct perf_event_context *ctx; 3090 struct perf_cpu_context *cpuctx; 3091 unsigned long flags; 3092 int ctxn, err; 3093 3094 if (!task) { 3095 /* Must be root to operate on a CPU event: */ 3096 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3097 return ERR_PTR(-EACCES); 3098 3099 /* 3100 * We could be clever and allow to attach a event to an 3101 * offline CPU and activate it when the CPU comes up, but 3102 * that's for later. 3103 */ 3104 if (!cpu_online(cpu)) 3105 return ERR_PTR(-ENODEV); 3106 3107 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3108 ctx = &cpuctx->ctx; 3109 get_ctx(ctx); 3110 ++ctx->pin_count; 3111 3112 return ctx; 3113 } 3114 3115 err = -EINVAL; 3116 ctxn = pmu->task_ctx_nr; 3117 if (ctxn < 0) 3118 goto errout; 3119 3120 retry: 3121 ctx = perf_lock_task_context(task, ctxn, &flags); 3122 if (ctx) { 3123 unclone_ctx(ctx); 3124 ++ctx->pin_count; 3125 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3126 } else { 3127 ctx = alloc_perf_context(pmu, task); 3128 err = -ENOMEM; 3129 if (!ctx) 3130 goto errout; 3131 3132 err = 0; 3133 mutex_lock(&task->perf_event_mutex); 3134 /* 3135 * If it has already passed perf_event_exit_task(). 3136 * we must see PF_EXITING, it takes this mutex too. 3137 */ 3138 if (task->flags & PF_EXITING) 3139 err = -ESRCH; 3140 else if (task->perf_event_ctxp[ctxn]) 3141 err = -EAGAIN; 3142 else { 3143 get_ctx(ctx); 3144 ++ctx->pin_count; 3145 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3146 } 3147 mutex_unlock(&task->perf_event_mutex); 3148 3149 if (unlikely(err)) { 3150 put_ctx(ctx); 3151 3152 if (err == -EAGAIN) 3153 goto retry; 3154 goto errout; 3155 } 3156 } 3157 3158 return ctx; 3159 3160 errout: 3161 return ERR_PTR(err); 3162 } 3163 3164 static void perf_event_free_filter(struct perf_event *event); 3165 3166 static void free_event_rcu(struct rcu_head *head) 3167 { 3168 struct perf_event *event; 3169 3170 event = container_of(head, struct perf_event, rcu_head); 3171 if (event->ns) 3172 put_pid_ns(event->ns); 3173 perf_event_free_filter(event); 3174 kfree(event); 3175 } 3176 3177 static void ring_buffer_put(struct ring_buffer *rb); 3178 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb); 3179 3180 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3181 { 3182 if (event->parent) 3183 return; 3184 3185 if (has_branch_stack(event)) { 3186 if (!(event->attach_state & PERF_ATTACH_TASK)) 3187 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3188 } 3189 if (is_cgroup_event(event)) 3190 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3191 } 3192 3193 static void unaccount_event(struct perf_event *event) 3194 { 3195 if (event->parent) 3196 return; 3197 3198 if (event->attach_state & PERF_ATTACH_TASK) 3199 static_key_slow_dec_deferred(&perf_sched_events); 3200 if (event->attr.mmap || event->attr.mmap_data) 3201 atomic_dec(&nr_mmap_events); 3202 if (event->attr.comm) 3203 atomic_dec(&nr_comm_events); 3204 if (event->attr.task) 3205 atomic_dec(&nr_task_events); 3206 if (event->attr.freq) 3207 atomic_dec(&nr_freq_events); 3208 if (is_cgroup_event(event)) 3209 static_key_slow_dec_deferred(&perf_sched_events); 3210 if (has_branch_stack(event)) 3211 static_key_slow_dec_deferred(&perf_sched_events); 3212 3213 unaccount_event_cpu(event, event->cpu); 3214 } 3215 3216 static void __free_event(struct perf_event *event) 3217 { 3218 if (!event->parent) { 3219 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3220 put_callchain_buffers(); 3221 } 3222 3223 if (event->destroy) 3224 event->destroy(event); 3225 3226 if (event->ctx) 3227 put_ctx(event->ctx); 3228 3229 call_rcu(&event->rcu_head, free_event_rcu); 3230 } 3231 static void free_event(struct perf_event *event) 3232 { 3233 irq_work_sync(&event->pending); 3234 3235 unaccount_event(event); 3236 3237 if (event->rb) { 3238 struct ring_buffer *rb; 3239 3240 /* 3241 * Can happen when we close an event with re-directed output. 3242 * 3243 * Since we have a 0 refcount, perf_mmap_close() will skip 3244 * over us; possibly making our ring_buffer_put() the last. 3245 */ 3246 mutex_lock(&event->mmap_mutex); 3247 rb = event->rb; 3248 if (rb) { 3249 rcu_assign_pointer(event->rb, NULL); 3250 ring_buffer_detach(event, rb); 3251 ring_buffer_put(rb); /* could be last */ 3252 } 3253 mutex_unlock(&event->mmap_mutex); 3254 } 3255 3256 if (is_cgroup_event(event)) 3257 perf_detach_cgroup(event); 3258 3259 3260 __free_event(event); 3261 } 3262 3263 int perf_event_release_kernel(struct perf_event *event) 3264 { 3265 struct perf_event_context *ctx = event->ctx; 3266 3267 WARN_ON_ONCE(ctx->parent_ctx); 3268 /* 3269 * There are two ways this annotation is useful: 3270 * 3271 * 1) there is a lock recursion from perf_event_exit_task 3272 * see the comment there. 3273 * 3274 * 2) there is a lock-inversion with mmap_sem through 3275 * perf_event_read_group(), which takes faults while 3276 * holding ctx->mutex, however this is called after 3277 * the last filedesc died, so there is no possibility 3278 * to trigger the AB-BA case. 3279 */ 3280 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3281 raw_spin_lock_irq(&ctx->lock); 3282 perf_group_detach(event); 3283 raw_spin_unlock_irq(&ctx->lock); 3284 perf_remove_from_context(event); 3285 mutex_unlock(&ctx->mutex); 3286 3287 free_event(event); 3288 3289 return 0; 3290 } 3291 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3292 3293 /* 3294 * Called when the last reference to the file is gone. 3295 */ 3296 static void put_event(struct perf_event *event) 3297 { 3298 struct task_struct *owner; 3299 3300 if (!atomic_long_dec_and_test(&event->refcount)) 3301 return; 3302 3303 rcu_read_lock(); 3304 owner = ACCESS_ONCE(event->owner); 3305 /* 3306 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3307 * !owner it means the list deletion is complete and we can indeed 3308 * free this event, otherwise we need to serialize on 3309 * owner->perf_event_mutex. 3310 */ 3311 smp_read_barrier_depends(); 3312 if (owner) { 3313 /* 3314 * Since delayed_put_task_struct() also drops the last 3315 * task reference we can safely take a new reference 3316 * while holding the rcu_read_lock(). 3317 */ 3318 get_task_struct(owner); 3319 } 3320 rcu_read_unlock(); 3321 3322 if (owner) { 3323 mutex_lock(&owner->perf_event_mutex); 3324 /* 3325 * We have to re-check the event->owner field, if it is cleared 3326 * we raced with perf_event_exit_task(), acquiring the mutex 3327 * ensured they're done, and we can proceed with freeing the 3328 * event. 3329 */ 3330 if (event->owner) 3331 list_del_init(&event->owner_entry); 3332 mutex_unlock(&owner->perf_event_mutex); 3333 put_task_struct(owner); 3334 } 3335 3336 perf_event_release_kernel(event); 3337 } 3338 3339 static int perf_release(struct inode *inode, struct file *file) 3340 { 3341 put_event(file->private_data); 3342 return 0; 3343 } 3344 3345 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3346 { 3347 struct perf_event *child; 3348 u64 total = 0; 3349 3350 *enabled = 0; 3351 *running = 0; 3352 3353 mutex_lock(&event->child_mutex); 3354 total += perf_event_read(event); 3355 *enabled += event->total_time_enabled + 3356 atomic64_read(&event->child_total_time_enabled); 3357 *running += event->total_time_running + 3358 atomic64_read(&event->child_total_time_running); 3359 3360 list_for_each_entry(child, &event->child_list, child_list) { 3361 total += perf_event_read(child); 3362 *enabled += child->total_time_enabled; 3363 *running += child->total_time_running; 3364 } 3365 mutex_unlock(&event->child_mutex); 3366 3367 return total; 3368 } 3369 EXPORT_SYMBOL_GPL(perf_event_read_value); 3370 3371 static int perf_event_read_group(struct perf_event *event, 3372 u64 read_format, char __user *buf) 3373 { 3374 struct perf_event *leader = event->group_leader, *sub; 3375 int n = 0, size = 0, ret = -EFAULT; 3376 struct perf_event_context *ctx = leader->ctx; 3377 u64 values[5]; 3378 u64 count, enabled, running; 3379 3380 mutex_lock(&ctx->mutex); 3381 count = perf_event_read_value(leader, &enabled, &running); 3382 3383 values[n++] = 1 + leader->nr_siblings; 3384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3385 values[n++] = enabled; 3386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3387 values[n++] = running; 3388 values[n++] = count; 3389 if (read_format & PERF_FORMAT_ID) 3390 values[n++] = primary_event_id(leader); 3391 3392 size = n * sizeof(u64); 3393 3394 if (copy_to_user(buf, values, size)) 3395 goto unlock; 3396 3397 ret = size; 3398 3399 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3400 n = 0; 3401 3402 values[n++] = perf_event_read_value(sub, &enabled, &running); 3403 if (read_format & PERF_FORMAT_ID) 3404 values[n++] = primary_event_id(sub); 3405 3406 size = n * sizeof(u64); 3407 3408 if (copy_to_user(buf + ret, values, size)) { 3409 ret = -EFAULT; 3410 goto unlock; 3411 } 3412 3413 ret += size; 3414 } 3415 unlock: 3416 mutex_unlock(&ctx->mutex); 3417 3418 return ret; 3419 } 3420 3421 static int perf_event_read_one(struct perf_event *event, 3422 u64 read_format, char __user *buf) 3423 { 3424 u64 enabled, running; 3425 u64 values[4]; 3426 int n = 0; 3427 3428 values[n++] = perf_event_read_value(event, &enabled, &running); 3429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3430 values[n++] = enabled; 3431 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3432 values[n++] = running; 3433 if (read_format & PERF_FORMAT_ID) 3434 values[n++] = primary_event_id(event); 3435 3436 if (copy_to_user(buf, values, n * sizeof(u64))) 3437 return -EFAULT; 3438 3439 return n * sizeof(u64); 3440 } 3441 3442 /* 3443 * Read the performance event - simple non blocking version for now 3444 */ 3445 static ssize_t 3446 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3447 { 3448 u64 read_format = event->attr.read_format; 3449 int ret; 3450 3451 /* 3452 * Return end-of-file for a read on a event that is in 3453 * error state (i.e. because it was pinned but it couldn't be 3454 * scheduled on to the CPU at some point). 3455 */ 3456 if (event->state == PERF_EVENT_STATE_ERROR) 3457 return 0; 3458 3459 if (count < event->read_size) 3460 return -ENOSPC; 3461 3462 WARN_ON_ONCE(event->ctx->parent_ctx); 3463 if (read_format & PERF_FORMAT_GROUP) 3464 ret = perf_event_read_group(event, read_format, buf); 3465 else 3466 ret = perf_event_read_one(event, read_format, buf); 3467 3468 return ret; 3469 } 3470 3471 static ssize_t 3472 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3473 { 3474 struct perf_event *event = file->private_data; 3475 3476 return perf_read_hw(event, buf, count); 3477 } 3478 3479 static unsigned int perf_poll(struct file *file, poll_table *wait) 3480 { 3481 struct perf_event *event = file->private_data; 3482 struct ring_buffer *rb; 3483 unsigned int events = POLL_HUP; 3484 3485 /* 3486 * Pin the event->rb by taking event->mmap_mutex; otherwise 3487 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3488 */ 3489 mutex_lock(&event->mmap_mutex); 3490 rb = event->rb; 3491 if (rb) 3492 events = atomic_xchg(&rb->poll, 0); 3493 mutex_unlock(&event->mmap_mutex); 3494 3495 poll_wait(file, &event->waitq, wait); 3496 3497 return events; 3498 } 3499 3500 static void perf_event_reset(struct perf_event *event) 3501 { 3502 (void)perf_event_read(event); 3503 local64_set(&event->count, 0); 3504 perf_event_update_userpage(event); 3505 } 3506 3507 /* 3508 * Holding the top-level event's child_mutex means that any 3509 * descendant process that has inherited this event will block 3510 * in sync_child_event if it goes to exit, thus satisfying the 3511 * task existence requirements of perf_event_enable/disable. 3512 */ 3513 static void perf_event_for_each_child(struct perf_event *event, 3514 void (*func)(struct perf_event *)) 3515 { 3516 struct perf_event *child; 3517 3518 WARN_ON_ONCE(event->ctx->parent_ctx); 3519 mutex_lock(&event->child_mutex); 3520 func(event); 3521 list_for_each_entry(child, &event->child_list, child_list) 3522 func(child); 3523 mutex_unlock(&event->child_mutex); 3524 } 3525 3526 static void perf_event_for_each(struct perf_event *event, 3527 void (*func)(struct perf_event *)) 3528 { 3529 struct perf_event_context *ctx = event->ctx; 3530 struct perf_event *sibling; 3531 3532 WARN_ON_ONCE(ctx->parent_ctx); 3533 mutex_lock(&ctx->mutex); 3534 event = event->group_leader; 3535 3536 perf_event_for_each_child(event, func); 3537 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3538 perf_event_for_each_child(sibling, func); 3539 mutex_unlock(&ctx->mutex); 3540 } 3541 3542 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3543 { 3544 struct perf_event_context *ctx = event->ctx; 3545 int ret = 0; 3546 u64 value; 3547 3548 if (!is_sampling_event(event)) 3549 return -EINVAL; 3550 3551 if (copy_from_user(&value, arg, sizeof(value))) 3552 return -EFAULT; 3553 3554 if (!value) 3555 return -EINVAL; 3556 3557 raw_spin_lock_irq(&ctx->lock); 3558 if (event->attr.freq) { 3559 if (value > sysctl_perf_event_sample_rate) { 3560 ret = -EINVAL; 3561 goto unlock; 3562 } 3563 3564 event->attr.sample_freq = value; 3565 } else { 3566 event->attr.sample_period = value; 3567 event->hw.sample_period = value; 3568 } 3569 unlock: 3570 raw_spin_unlock_irq(&ctx->lock); 3571 3572 return ret; 3573 } 3574 3575 static const struct file_operations perf_fops; 3576 3577 static inline int perf_fget_light(int fd, struct fd *p) 3578 { 3579 struct fd f = fdget(fd); 3580 if (!f.file) 3581 return -EBADF; 3582 3583 if (f.file->f_op != &perf_fops) { 3584 fdput(f); 3585 return -EBADF; 3586 } 3587 *p = f; 3588 return 0; 3589 } 3590 3591 static int perf_event_set_output(struct perf_event *event, 3592 struct perf_event *output_event); 3593 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3594 3595 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3596 { 3597 struct perf_event *event = file->private_data; 3598 void (*func)(struct perf_event *); 3599 u32 flags = arg; 3600 3601 switch (cmd) { 3602 case PERF_EVENT_IOC_ENABLE: 3603 func = perf_event_enable; 3604 break; 3605 case PERF_EVENT_IOC_DISABLE: 3606 func = perf_event_disable; 3607 break; 3608 case PERF_EVENT_IOC_RESET: 3609 func = perf_event_reset; 3610 break; 3611 3612 case PERF_EVENT_IOC_REFRESH: 3613 return perf_event_refresh(event, arg); 3614 3615 case PERF_EVENT_IOC_PERIOD: 3616 return perf_event_period(event, (u64 __user *)arg); 3617 3618 case PERF_EVENT_IOC_ID: 3619 { 3620 u64 id = primary_event_id(event); 3621 3622 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3623 return -EFAULT; 3624 return 0; 3625 } 3626 3627 case PERF_EVENT_IOC_SET_OUTPUT: 3628 { 3629 int ret; 3630 if (arg != -1) { 3631 struct perf_event *output_event; 3632 struct fd output; 3633 ret = perf_fget_light(arg, &output); 3634 if (ret) 3635 return ret; 3636 output_event = output.file->private_data; 3637 ret = perf_event_set_output(event, output_event); 3638 fdput(output); 3639 } else { 3640 ret = perf_event_set_output(event, NULL); 3641 } 3642 return ret; 3643 } 3644 3645 case PERF_EVENT_IOC_SET_FILTER: 3646 return perf_event_set_filter(event, (void __user *)arg); 3647 3648 default: 3649 return -ENOTTY; 3650 } 3651 3652 if (flags & PERF_IOC_FLAG_GROUP) 3653 perf_event_for_each(event, func); 3654 else 3655 perf_event_for_each_child(event, func); 3656 3657 return 0; 3658 } 3659 3660 int perf_event_task_enable(void) 3661 { 3662 struct perf_event *event; 3663 3664 mutex_lock(¤t->perf_event_mutex); 3665 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3666 perf_event_for_each_child(event, perf_event_enable); 3667 mutex_unlock(¤t->perf_event_mutex); 3668 3669 return 0; 3670 } 3671 3672 int perf_event_task_disable(void) 3673 { 3674 struct perf_event *event; 3675 3676 mutex_lock(¤t->perf_event_mutex); 3677 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3678 perf_event_for_each_child(event, perf_event_disable); 3679 mutex_unlock(¤t->perf_event_mutex); 3680 3681 return 0; 3682 } 3683 3684 static int perf_event_index(struct perf_event *event) 3685 { 3686 if (event->hw.state & PERF_HES_STOPPED) 3687 return 0; 3688 3689 if (event->state != PERF_EVENT_STATE_ACTIVE) 3690 return 0; 3691 3692 return event->pmu->event_idx(event); 3693 } 3694 3695 static void calc_timer_values(struct perf_event *event, 3696 u64 *now, 3697 u64 *enabled, 3698 u64 *running) 3699 { 3700 u64 ctx_time; 3701 3702 *now = perf_clock(); 3703 ctx_time = event->shadow_ctx_time + *now; 3704 *enabled = ctx_time - event->tstamp_enabled; 3705 *running = ctx_time - event->tstamp_running; 3706 } 3707 3708 static void perf_event_init_userpage(struct perf_event *event) 3709 { 3710 struct perf_event_mmap_page *userpg; 3711 struct ring_buffer *rb; 3712 3713 rcu_read_lock(); 3714 rb = rcu_dereference(event->rb); 3715 if (!rb) 3716 goto unlock; 3717 3718 userpg = rb->user_page; 3719 3720 /* Allow new userspace to detect that bit 0 is deprecated */ 3721 userpg->cap_bit0_is_deprecated = 1; 3722 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3723 3724 unlock: 3725 rcu_read_unlock(); 3726 } 3727 3728 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3729 { 3730 } 3731 3732 /* 3733 * Callers need to ensure there can be no nesting of this function, otherwise 3734 * the seqlock logic goes bad. We can not serialize this because the arch 3735 * code calls this from NMI context. 3736 */ 3737 void perf_event_update_userpage(struct perf_event *event) 3738 { 3739 struct perf_event_mmap_page *userpg; 3740 struct ring_buffer *rb; 3741 u64 enabled, running, now; 3742 3743 rcu_read_lock(); 3744 rb = rcu_dereference(event->rb); 3745 if (!rb) 3746 goto unlock; 3747 3748 /* 3749 * compute total_time_enabled, total_time_running 3750 * based on snapshot values taken when the event 3751 * was last scheduled in. 3752 * 3753 * we cannot simply called update_context_time() 3754 * because of locking issue as we can be called in 3755 * NMI context 3756 */ 3757 calc_timer_values(event, &now, &enabled, &running); 3758 3759 userpg = rb->user_page; 3760 /* 3761 * Disable preemption so as to not let the corresponding user-space 3762 * spin too long if we get preempted. 3763 */ 3764 preempt_disable(); 3765 ++userpg->lock; 3766 barrier(); 3767 userpg->index = perf_event_index(event); 3768 userpg->offset = perf_event_count(event); 3769 if (userpg->index) 3770 userpg->offset -= local64_read(&event->hw.prev_count); 3771 3772 userpg->time_enabled = enabled + 3773 atomic64_read(&event->child_total_time_enabled); 3774 3775 userpg->time_running = running + 3776 atomic64_read(&event->child_total_time_running); 3777 3778 arch_perf_update_userpage(userpg, now); 3779 3780 barrier(); 3781 ++userpg->lock; 3782 preempt_enable(); 3783 unlock: 3784 rcu_read_unlock(); 3785 } 3786 3787 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3788 { 3789 struct perf_event *event = vma->vm_file->private_data; 3790 struct ring_buffer *rb; 3791 int ret = VM_FAULT_SIGBUS; 3792 3793 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3794 if (vmf->pgoff == 0) 3795 ret = 0; 3796 return ret; 3797 } 3798 3799 rcu_read_lock(); 3800 rb = rcu_dereference(event->rb); 3801 if (!rb) 3802 goto unlock; 3803 3804 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3805 goto unlock; 3806 3807 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3808 if (!vmf->page) 3809 goto unlock; 3810 3811 get_page(vmf->page); 3812 vmf->page->mapping = vma->vm_file->f_mapping; 3813 vmf->page->index = vmf->pgoff; 3814 3815 ret = 0; 3816 unlock: 3817 rcu_read_unlock(); 3818 3819 return ret; 3820 } 3821 3822 static void ring_buffer_attach(struct perf_event *event, 3823 struct ring_buffer *rb) 3824 { 3825 unsigned long flags; 3826 3827 if (!list_empty(&event->rb_entry)) 3828 return; 3829 3830 spin_lock_irqsave(&rb->event_lock, flags); 3831 if (list_empty(&event->rb_entry)) 3832 list_add(&event->rb_entry, &rb->event_list); 3833 spin_unlock_irqrestore(&rb->event_lock, flags); 3834 } 3835 3836 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb) 3837 { 3838 unsigned long flags; 3839 3840 if (list_empty(&event->rb_entry)) 3841 return; 3842 3843 spin_lock_irqsave(&rb->event_lock, flags); 3844 list_del_init(&event->rb_entry); 3845 wake_up_all(&event->waitq); 3846 spin_unlock_irqrestore(&rb->event_lock, flags); 3847 } 3848 3849 static void ring_buffer_wakeup(struct perf_event *event) 3850 { 3851 struct ring_buffer *rb; 3852 3853 rcu_read_lock(); 3854 rb = rcu_dereference(event->rb); 3855 if (rb) { 3856 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3857 wake_up_all(&event->waitq); 3858 } 3859 rcu_read_unlock(); 3860 } 3861 3862 static void rb_free_rcu(struct rcu_head *rcu_head) 3863 { 3864 struct ring_buffer *rb; 3865 3866 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3867 rb_free(rb); 3868 } 3869 3870 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3871 { 3872 struct ring_buffer *rb; 3873 3874 rcu_read_lock(); 3875 rb = rcu_dereference(event->rb); 3876 if (rb) { 3877 if (!atomic_inc_not_zero(&rb->refcount)) 3878 rb = NULL; 3879 } 3880 rcu_read_unlock(); 3881 3882 return rb; 3883 } 3884 3885 static void ring_buffer_put(struct ring_buffer *rb) 3886 { 3887 if (!atomic_dec_and_test(&rb->refcount)) 3888 return; 3889 3890 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3891 3892 call_rcu(&rb->rcu_head, rb_free_rcu); 3893 } 3894 3895 static void perf_mmap_open(struct vm_area_struct *vma) 3896 { 3897 struct perf_event *event = vma->vm_file->private_data; 3898 3899 atomic_inc(&event->mmap_count); 3900 atomic_inc(&event->rb->mmap_count); 3901 } 3902 3903 /* 3904 * A buffer can be mmap()ed multiple times; either directly through the same 3905 * event, or through other events by use of perf_event_set_output(). 3906 * 3907 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3908 * the buffer here, where we still have a VM context. This means we need 3909 * to detach all events redirecting to us. 3910 */ 3911 static void perf_mmap_close(struct vm_area_struct *vma) 3912 { 3913 struct perf_event *event = vma->vm_file->private_data; 3914 3915 struct ring_buffer *rb = event->rb; 3916 struct user_struct *mmap_user = rb->mmap_user; 3917 int mmap_locked = rb->mmap_locked; 3918 unsigned long size = perf_data_size(rb); 3919 3920 atomic_dec(&rb->mmap_count); 3921 3922 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3923 return; 3924 3925 /* Detach current event from the buffer. */ 3926 rcu_assign_pointer(event->rb, NULL); 3927 ring_buffer_detach(event, rb); 3928 mutex_unlock(&event->mmap_mutex); 3929 3930 /* If there's still other mmap()s of this buffer, we're done. */ 3931 if (atomic_read(&rb->mmap_count)) { 3932 ring_buffer_put(rb); /* can't be last */ 3933 return; 3934 } 3935 3936 /* 3937 * No other mmap()s, detach from all other events that might redirect 3938 * into the now unreachable buffer. Somewhat complicated by the 3939 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3940 */ 3941 again: 3942 rcu_read_lock(); 3943 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 3944 if (!atomic_long_inc_not_zero(&event->refcount)) { 3945 /* 3946 * This event is en-route to free_event() which will 3947 * detach it and remove it from the list. 3948 */ 3949 continue; 3950 } 3951 rcu_read_unlock(); 3952 3953 mutex_lock(&event->mmap_mutex); 3954 /* 3955 * Check we didn't race with perf_event_set_output() which can 3956 * swizzle the rb from under us while we were waiting to 3957 * acquire mmap_mutex. 3958 * 3959 * If we find a different rb; ignore this event, a next 3960 * iteration will no longer find it on the list. We have to 3961 * still restart the iteration to make sure we're not now 3962 * iterating the wrong list. 3963 */ 3964 if (event->rb == rb) { 3965 rcu_assign_pointer(event->rb, NULL); 3966 ring_buffer_detach(event, rb); 3967 ring_buffer_put(rb); /* can't be last, we still have one */ 3968 } 3969 mutex_unlock(&event->mmap_mutex); 3970 put_event(event); 3971 3972 /* 3973 * Restart the iteration; either we're on the wrong list or 3974 * destroyed its integrity by doing a deletion. 3975 */ 3976 goto again; 3977 } 3978 rcu_read_unlock(); 3979 3980 /* 3981 * It could be there's still a few 0-ref events on the list; they'll 3982 * get cleaned up by free_event() -- they'll also still have their 3983 * ref on the rb and will free it whenever they are done with it. 3984 * 3985 * Aside from that, this buffer is 'fully' detached and unmapped, 3986 * undo the VM accounting. 3987 */ 3988 3989 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 3990 vma->vm_mm->pinned_vm -= mmap_locked; 3991 free_uid(mmap_user); 3992 3993 ring_buffer_put(rb); /* could be last */ 3994 } 3995 3996 static const struct vm_operations_struct perf_mmap_vmops = { 3997 .open = perf_mmap_open, 3998 .close = perf_mmap_close, 3999 .fault = perf_mmap_fault, 4000 .page_mkwrite = perf_mmap_fault, 4001 }; 4002 4003 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4004 { 4005 struct perf_event *event = file->private_data; 4006 unsigned long user_locked, user_lock_limit; 4007 struct user_struct *user = current_user(); 4008 unsigned long locked, lock_limit; 4009 struct ring_buffer *rb; 4010 unsigned long vma_size; 4011 unsigned long nr_pages; 4012 long user_extra, extra; 4013 int ret = 0, flags = 0; 4014 4015 /* 4016 * Don't allow mmap() of inherited per-task counters. This would 4017 * create a performance issue due to all children writing to the 4018 * same rb. 4019 */ 4020 if (event->cpu == -1 && event->attr.inherit) 4021 return -EINVAL; 4022 4023 if (!(vma->vm_flags & VM_SHARED)) 4024 return -EINVAL; 4025 4026 vma_size = vma->vm_end - vma->vm_start; 4027 nr_pages = (vma_size / PAGE_SIZE) - 1; 4028 4029 /* 4030 * If we have rb pages ensure they're a power-of-two number, so we 4031 * can do bitmasks instead of modulo. 4032 */ 4033 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4034 return -EINVAL; 4035 4036 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4037 return -EINVAL; 4038 4039 if (vma->vm_pgoff != 0) 4040 return -EINVAL; 4041 4042 WARN_ON_ONCE(event->ctx->parent_ctx); 4043 again: 4044 mutex_lock(&event->mmap_mutex); 4045 if (event->rb) { 4046 if (event->rb->nr_pages != nr_pages) { 4047 ret = -EINVAL; 4048 goto unlock; 4049 } 4050 4051 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4052 /* 4053 * Raced against perf_mmap_close() through 4054 * perf_event_set_output(). Try again, hope for better 4055 * luck. 4056 */ 4057 mutex_unlock(&event->mmap_mutex); 4058 goto again; 4059 } 4060 4061 goto unlock; 4062 } 4063 4064 user_extra = nr_pages + 1; 4065 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4066 4067 /* 4068 * Increase the limit linearly with more CPUs: 4069 */ 4070 user_lock_limit *= num_online_cpus(); 4071 4072 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4073 4074 extra = 0; 4075 if (user_locked > user_lock_limit) 4076 extra = user_locked - user_lock_limit; 4077 4078 lock_limit = rlimit(RLIMIT_MEMLOCK); 4079 lock_limit >>= PAGE_SHIFT; 4080 locked = vma->vm_mm->pinned_vm + extra; 4081 4082 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4083 !capable(CAP_IPC_LOCK)) { 4084 ret = -EPERM; 4085 goto unlock; 4086 } 4087 4088 WARN_ON(event->rb); 4089 4090 if (vma->vm_flags & VM_WRITE) 4091 flags |= RING_BUFFER_WRITABLE; 4092 4093 rb = rb_alloc(nr_pages, 4094 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4095 event->cpu, flags); 4096 4097 if (!rb) { 4098 ret = -ENOMEM; 4099 goto unlock; 4100 } 4101 4102 atomic_set(&rb->mmap_count, 1); 4103 rb->mmap_locked = extra; 4104 rb->mmap_user = get_current_user(); 4105 4106 atomic_long_add(user_extra, &user->locked_vm); 4107 vma->vm_mm->pinned_vm += extra; 4108 4109 ring_buffer_attach(event, rb); 4110 rcu_assign_pointer(event->rb, rb); 4111 4112 perf_event_init_userpage(event); 4113 perf_event_update_userpage(event); 4114 4115 unlock: 4116 if (!ret) 4117 atomic_inc(&event->mmap_count); 4118 mutex_unlock(&event->mmap_mutex); 4119 4120 /* 4121 * Since pinned accounting is per vm we cannot allow fork() to copy our 4122 * vma. 4123 */ 4124 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4125 vma->vm_ops = &perf_mmap_vmops; 4126 4127 return ret; 4128 } 4129 4130 static int perf_fasync(int fd, struct file *filp, int on) 4131 { 4132 struct inode *inode = file_inode(filp); 4133 struct perf_event *event = filp->private_data; 4134 int retval; 4135 4136 mutex_lock(&inode->i_mutex); 4137 retval = fasync_helper(fd, filp, on, &event->fasync); 4138 mutex_unlock(&inode->i_mutex); 4139 4140 if (retval < 0) 4141 return retval; 4142 4143 return 0; 4144 } 4145 4146 static const struct file_operations perf_fops = { 4147 .llseek = no_llseek, 4148 .release = perf_release, 4149 .read = perf_read, 4150 .poll = perf_poll, 4151 .unlocked_ioctl = perf_ioctl, 4152 .compat_ioctl = perf_ioctl, 4153 .mmap = perf_mmap, 4154 .fasync = perf_fasync, 4155 }; 4156 4157 /* 4158 * Perf event wakeup 4159 * 4160 * If there's data, ensure we set the poll() state and publish everything 4161 * to user-space before waking everybody up. 4162 */ 4163 4164 void perf_event_wakeup(struct perf_event *event) 4165 { 4166 ring_buffer_wakeup(event); 4167 4168 if (event->pending_kill) { 4169 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4170 event->pending_kill = 0; 4171 } 4172 } 4173 4174 static void perf_pending_event(struct irq_work *entry) 4175 { 4176 struct perf_event *event = container_of(entry, 4177 struct perf_event, pending); 4178 4179 if (event->pending_disable) { 4180 event->pending_disable = 0; 4181 __perf_event_disable(event); 4182 } 4183 4184 if (event->pending_wakeup) { 4185 event->pending_wakeup = 0; 4186 perf_event_wakeup(event); 4187 } 4188 } 4189 4190 /* 4191 * We assume there is only KVM supporting the callbacks. 4192 * Later on, we might change it to a list if there is 4193 * another virtualization implementation supporting the callbacks. 4194 */ 4195 struct perf_guest_info_callbacks *perf_guest_cbs; 4196 4197 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4198 { 4199 perf_guest_cbs = cbs; 4200 return 0; 4201 } 4202 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4203 4204 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4205 { 4206 perf_guest_cbs = NULL; 4207 return 0; 4208 } 4209 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4210 4211 static void 4212 perf_output_sample_regs(struct perf_output_handle *handle, 4213 struct pt_regs *regs, u64 mask) 4214 { 4215 int bit; 4216 4217 for_each_set_bit(bit, (const unsigned long *) &mask, 4218 sizeof(mask) * BITS_PER_BYTE) { 4219 u64 val; 4220 4221 val = perf_reg_value(regs, bit); 4222 perf_output_put(handle, val); 4223 } 4224 } 4225 4226 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4227 struct pt_regs *regs) 4228 { 4229 if (!user_mode(regs)) { 4230 if (current->mm) 4231 regs = task_pt_regs(current); 4232 else 4233 regs = NULL; 4234 } 4235 4236 if (regs) { 4237 regs_user->regs = regs; 4238 regs_user->abi = perf_reg_abi(current); 4239 } 4240 } 4241 4242 /* 4243 * Get remaining task size from user stack pointer. 4244 * 4245 * It'd be better to take stack vma map and limit this more 4246 * precisly, but there's no way to get it safely under interrupt, 4247 * so using TASK_SIZE as limit. 4248 */ 4249 static u64 perf_ustack_task_size(struct pt_regs *regs) 4250 { 4251 unsigned long addr = perf_user_stack_pointer(regs); 4252 4253 if (!addr || addr >= TASK_SIZE) 4254 return 0; 4255 4256 return TASK_SIZE - addr; 4257 } 4258 4259 static u16 4260 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4261 struct pt_regs *regs) 4262 { 4263 u64 task_size; 4264 4265 /* No regs, no stack pointer, no dump. */ 4266 if (!regs) 4267 return 0; 4268 4269 /* 4270 * Check if we fit in with the requested stack size into the: 4271 * - TASK_SIZE 4272 * If we don't, we limit the size to the TASK_SIZE. 4273 * 4274 * - remaining sample size 4275 * If we don't, we customize the stack size to 4276 * fit in to the remaining sample size. 4277 */ 4278 4279 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4280 stack_size = min(stack_size, (u16) task_size); 4281 4282 /* Current header size plus static size and dynamic size. */ 4283 header_size += 2 * sizeof(u64); 4284 4285 /* Do we fit in with the current stack dump size? */ 4286 if ((u16) (header_size + stack_size) < header_size) { 4287 /* 4288 * If we overflow the maximum size for the sample, 4289 * we customize the stack dump size to fit in. 4290 */ 4291 stack_size = USHRT_MAX - header_size - sizeof(u64); 4292 stack_size = round_up(stack_size, sizeof(u64)); 4293 } 4294 4295 return stack_size; 4296 } 4297 4298 static void 4299 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4300 struct pt_regs *regs) 4301 { 4302 /* Case of a kernel thread, nothing to dump */ 4303 if (!regs) { 4304 u64 size = 0; 4305 perf_output_put(handle, size); 4306 } else { 4307 unsigned long sp; 4308 unsigned int rem; 4309 u64 dyn_size; 4310 4311 /* 4312 * We dump: 4313 * static size 4314 * - the size requested by user or the best one we can fit 4315 * in to the sample max size 4316 * data 4317 * - user stack dump data 4318 * dynamic size 4319 * - the actual dumped size 4320 */ 4321 4322 /* Static size. */ 4323 perf_output_put(handle, dump_size); 4324 4325 /* Data. */ 4326 sp = perf_user_stack_pointer(regs); 4327 rem = __output_copy_user(handle, (void *) sp, dump_size); 4328 dyn_size = dump_size - rem; 4329 4330 perf_output_skip(handle, rem); 4331 4332 /* Dynamic size. */ 4333 perf_output_put(handle, dyn_size); 4334 } 4335 } 4336 4337 static void __perf_event_header__init_id(struct perf_event_header *header, 4338 struct perf_sample_data *data, 4339 struct perf_event *event) 4340 { 4341 u64 sample_type = event->attr.sample_type; 4342 4343 data->type = sample_type; 4344 header->size += event->id_header_size; 4345 4346 if (sample_type & PERF_SAMPLE_TID) { 4347 /* namespace issues */ 4348 data->tid_entry.pid = perf_event_pid(event, current); 4349 data->tid_entry.tid = perf_event_tid(event, current); 4350 } 4351 4352 if (sample_type & PERF_SAMPLE_TIME) 4353 data->time = perf_clock(); 4354 4355 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4356 data->id = primary_event_id(event); 4357 4358 if (sample_type & PERF_SAMPLE_STREAM_ID) 4359 data->stream_id = event->id; 4360 4361 if (sample_type & PERF_SAMPLE_CPU) { 4362 data->cpu_entry.cpu = raw_smp_processor_id(); 4363 data->cpu_entry.reserved = 0; 4364 } 4365 } 4366 4367 void perf_event_header__init_id(struct perf_event_header *header, 4368 struct perf_sample_data *data, 4369 struct perf_event *event) 4370 { 4371 if (event->attr.sample_id_all) 4372 __perf_event_header__init_id(header, data, event); 4373 } 4374 4375 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4376 struct perf_sample_data *data) 4377 { 4378 u64 sample_type = data->type; 4379 4380 if (sample_type & PERF_SAMPLE_TID) 4381 perf_output_put(handle, data->tid_entry); 4382 4383 if (sample_type & PERF_SAMPLE_TIME) 4384 perf_output_put(handle, data->time); 4385 4386 if (sample_type & PERF_SAMPLE_ID) 4387 perf_output_put(handle, data->id); 4388 4389 if (sample_type & PERF_SAMPLE_STREAM_ID) 4390 perf_output_put(handle, data->stream_id); 4391 4392 if (sample_type & PERF_SAMPLE_CPU) 4393 perf_output_put(handle, data->cpu_entry); 4394 4395 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4396 perf_output_put(handle, data->id); 4397 } 4398 4399 void perf_event__output_id_sample(struct perf_event *event, 4400 struct perf_output_handle *handle, 4401 struct perf_sample_data *sample) 4402 { 4403 if (event->attr.sample_id_all) 4404 __perf_event__output_id_sample(handle, sample); 4405 } 4406 4407 static void perf_output_read_one(struct perf_output_handle *handle, 4408 struct perf_event *event, 4409 u64 enabled, u64 running) 4410 { 4411 u64 read_format = event->attr.read_format; 4412 u64 values[4]; 4413 int n = 0; 4414 4415 values[n++] = perf_event_count(event); 4416 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4417 values[n++] = enabled + 4418 atomic64_read(&event->child_total_time_enabled); 4419 } 4420 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4421 values[n++] = running + 4422 atomic64_read(&event->child_total_time_running); 4423 } 4424 if (read_format & PERF_FORMAT_ID) 4425 values[n++] = primary_event_id(event); 4426 4427 __output_copy(handle, values, n * sizeof(u64)); 4428 } 4429 4430 /* 4431 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4432 */ 4433 static void perf_output_read_group(struct perf_output_handle *handle, 4434 struct perf_event *event, 4435 u64 enabled, u64 running) 4436 { 4437 struct perf_event *leader = event->group_leader, *sub; 4438 u64 read_format = event->attr.read_format; 4439 u64 values[5]; 4440 int n = 0; 4441 4442 values[n++] = 1 + leader->nr_siblings; 4443 4444 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4445 values[n++] = enabled; 4446 4447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4448 values[n++] = running; 4449 4450 if (leader != event) 4451 leader->pmu->read(leader); 4452 4453 values[n++] = perf_event_count(leader); 4454 if (read_format & PERF_FORMAT_ID) 4455 values[n++] = primary_event_id(leader); 4456 4457 __output_copy(handle, values, n * sizeof(u64)); 4458 4459 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4460 n = 0; 4461 4462 if ((sub != event) && 4463 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4464 sub->pmu->read(sub); 4465 4466 values[n++] = perf_event_count(sub); 4467 if (read_format & PERF_FORMAT_ID) 4468 values[n++] = primary_event_id(sub); 4469 4470 __output_copy(handle, values, n * sizeof(u64)); 4471 } 4472 } 4473 4474 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4475 PERF_FORMAT_TOTAL_TIME_RUNNING) 4476 4477 static void perf_output_read(struct perf_output_handle *handle, 4478 struct perf_event *event) 4479 { 4480 u64 enabled = 0, running = 0, now; 4481 u64 read_format = event->attr.read_format; 4482 4483 /* 4484 * compute total_time_enabled, total_time_running 4485 * based on snapshot values taken when the event 4486 * was last scheduled in. 4487 * 4488 * we cannot simply called update_context_time() 4489 * because of locking issue as we are called in 4490 * NMI context 4491 */ 4492 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4493 calc_timer_values(event, &now, &enabled, &running); 4494 4495 if (event->attr.read_format & PERF_FORMAT_GROUP) 4496 perf_output_read_group(handle, event, enabled, running); 4497 else 4498 perf_output_read_one(handle, event, enabled, running); 4499 } 4500 4501 void perf_output_sample(struct perf_output_handle *handle, 4502 struct perf_event_header *header, 4503 struct perf_sample_data *data, 4504 struct perf_event *event) 4505 { 4506 u64 sample_type = data->type; 4507 4508 perf_output_put(handle, *header); 4509 4510 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4511 perf_output_put(handle, data->id); 4512 4513 if (sample_type & PERF_SAMPLE_IP) 4514 perf_output_put(handle, data->ip); 4515 4516 if (sample_type & PERF_SAMPLE_TID) 4517 perf_output_put(handle, data->tid_entry); 4518 4519 if (sample_type & PERF_SAMPLE_TIME) 4520 perf_output_put(handle, data->time); 4521 4522 if (sample_type & PERF_SAMPLE_ADDR) 4523 perf_output_put(handle, data->addr); 4524 4525 if (sample_type & PERF_SAMPLE_ID) 4526 perf_output_put(handle, data->id); 4527 4528 if (sample_type & PERF_SAMPLE_STREAM_ID) 4529 perf_output_put(handle, data->stream_id); 4530 4531 if (sample_type & PERF_SAMPLE_CPU) 4532 perf_output_put(handle, data->cpu_entry); 4533 4534 if (sample_type & PERF_SAMPLE_PERIOD) 4535 perf_output_put(handle, data->period); 4536 4537 if (sample_type & PERF_SAMPLE_READ) 4538 perf_output_read(handle, event); 4539 4540 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4541 if (data->callchain) { 4542 int size = 1; 4543 4544 if (data->callchain) 4545 size += data->callchain->nr; 4546 4547 size *= sizeof(u64); 4548 4549 __output_copy(handle, data->callchain, size); 4550 } else { 4551 u64 nr = 0; 4552 perf_output_put(handle, nr); 4553 } 4554 } 4555 4556 if (sample_type & PERF_SAMPLE_RAW) { 4557 if (data->raw) { 4558 perf_output_put(handle, data->raw->size); 4559 __output_copy(handle, data->raw->data, 4560 data->raw->size); 4561 } else { 4562 struct { 4563 u32 size; 4564 u32 data; 4565 } raw = { 4566 .size = sizeof(u32), 4567 .data = 0, 4568 }; 4569 perf_output_put(handle, raw); 4570 } 4571 } 4572 4573 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4574 if (data->br_stack) { 4575 size_t size; 4576 4577 size = data->br_stack->nr 4578 * sizeof(struct perf_branch_entry); 4579 4580 perf_output_put(handle, data->br_stack->nr); 4581 perf_output_copy(handle, data->br_stack->entries, size); 4582 } else { 4583 /* 4584 * we always store at least the value of nr 4585 */ 4586 u64 nr = 0; 4587 perf_output_put(handle, nr); 4588 } 4589 } 4590 4591 if (sample_type & PERF_SAMPLE_REGS_USER) { 4592 u64 abi = data->regs_user.abi; 4593 4594 /* 4595 * If there are no regs to dump, notice it through 4596 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4597 */ 4598 perf_output_put(handle, abi); 4599 4600 if (abi) { 4601 u64 mask = event->attr.sample_regs_user; 4602 perf_output_sample_regs(handle, 4603 data->regs_user.regs, 4604 mask); 4605 } 4606 } 4607 4608 if (sample_type & PERF_SAMPLE_STACK_USER) { 4609 perf_output_sample_ustack(handle, 4610 data->stack_user_size, 4611 data->regs_user.regs); 4612 } 4613 4614 if (sample_type & PERF_SAMPLE_WEIGHT) 4615 perf_output_put(handle, data->weight); 4616 4617 if (sample_type & PERF_SAMPLE_DATA_SRC) 4618 perf_output_put(handle, data->data_src.val); 4619 4620 if (sample_type & PERF_SAMPLE_TRANSACTION) 4621 perf_output_put(handle, data->txn); 4622 4623 if (!event->attr.watermark) { 4624 int wakeup_events = event->attr.wakeup_events; 4625 4626 if (wakeup_events) { 4627 struct ring_buffer *rb = handle->rb; 4628 int events = local_inc_return(&rb->events); 4629 4630 if (events >= wakeup_events) { 4631 local_sub(wakeup_events, &rb->events); 4632 local_inc(&rb->wakeup); 4633 } 4634 } 4635 } 4636 } 4637 4638 void perf_prepare_sample(struct perf_event_header *header, 4639 struct perf_sample_data *data, 4640 struct perf_event *event, 4641 struct pt_regs *regs) 4642 { 4643 u64 sample_type = event->attr.sample_type; 4644 4645 header->type = PERF_RECORD_SAMPLE; 4646 header->size = sizeof(*header) + event->header_size; 4647 4648 header->misc = 0; 4649 header->misc |= perf_misc_flags(regs); 4650 4651 __perf_event_header__init_id(header, data, event); 4652 4653 if (sample_type & PERF_SAMPLE_IP) 4654 data->ip = perf_instruction_pointer(regs); 4655 4656 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4657 int size = 1; 4658 4659 data->callchain = perf_callchain(event, regs); 4660 4661 if (data->callchain) 4662 size += data->callchain->nr; 4663 4664 header->size += size * sizeof(u64); 4665 } 4666 4667 if (sample_type & PERF_SAMPLE_RAW) { 4668 int size = sizeof(u32); 4669 4670 if (data->raw) 4671 size += data->raw->size; 4672 else 4673 size += sizeof(u32); 4674 4675 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4676 header->size += size; 4677 } 4678 4679 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4680 int size = sizeof(u64); /* nr */ 4681 if (data->br_stack) { 4682 size += data->br_stack->nr 4683 * sizeof(struct perf_branch_entry); 4684 } 4685 header->size += size; 4686 } 4687 4688 if (sample_type & PERF_SAMPLE_REGS_USER) { 4689 /* regs dump ABI info */ 4690 int size = sizeof(u64); 4691 4692 perf_sample_regs_user(&data->regs_user, regs); 4693 4694 if (data->regs_user.regs) { 4695 u64 mask = event->attr.sample_regs_user; 4696 size += hweight64(mask) * sizeof(u64); 4697 } 4698 4699 header->size += size; 4700 } 4701 4702 if (sample_type & PERF_SAMPLE_STACK_USER) { 4703 /* 4704 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4705 * processed as the last one or have additional check added 4706 * in case new sample type is added, because we could eat 4707 * up the rest of the sample size. 4708 */ 4709 struct perf_regs_user *uregs = &data->regs_user; 4710 u16 stack_size = event->attr.sample_stack_user; 4711 u16 size = sizeof(u64); 4712 4713 if (!uregs->abi) 4714 perf_sample_regs_user(uregs, regs); 4715 4716 stack_size = perf_sample_ustack_size(stack_size, header->size, 4717 uregs->regs); 4718 4719 /* 4720 * If there is something to dump, add space for the dump 4721 * itself and for the field that tells the dynamic size, 4722 * which is how many have been actually dumped. 4723 */ 4724 if (stack_size) 4725 size += sizeof(u64) + stack_size; 4726 4727 data->stack_user_size = stack_size; 4728 header->size += size; 4729 } 4730 } 4731 4732 static void perf_event_output(struct perf_event *event, 4733 struct perf_sample_data *data, 4734 struct pt_regs *regs) 4735 { 4736 struct perf_output_handle handle; 4737 struct perf_event_header header; 4738 4739 /* protect the callchain buffers */ 4740 rcu_read_lock(); 4741 4742 perf_prepare_sample(&header, data, event, regs); 4743 4744 if (perf_output_begin(&handle, event, header.size)) 4745 goto exit; 4746 4747 perf_output_sample(&handle, &header, data, event); 4748 4749 perf_output_end(&handle); 4750 4751 exit: 4752 rcu_read_unlock(); 4753 } 4754 4755 /* 4756 * read event_id 4757 */ 4758 4759 struct perf_read_event { 4760 struct perf_event_header header; 4761 4762 u32 pid; 4763 u32 tid; 4764 }; 4765 4766 static void 4767 perf_event_read_event(struct perf_event *event, 4768 struct task_struct *task) 4769 { 4770 struct perf_output_handle handle; 4771 struct perf_sample_data sample; 4772 struct perf_read_event read_event = { 4773 .header = { 4774 .type = PERF_RECORD_READ, 4775 .misc = 0, 4776 .size = sizeof(read_event) + event->read_size, 4777 }, 4778 .pid = perf_event_pid(event, task), 4779 .tid = perf_event_tid(event, task), 4780 }; 4781 int ret; 4782 4783 perf_event_header__init_id(&read_event.header, &sample, event); 4784 ret = perf_output_begin(&handle, event, read_event.header.size); 4785 if (ret) 4786 return; 4787 4788 perf_output_put(&handle, read_event); 4789 perf_output_read(&handle, event); 4790 perf_event__output_id_sample(event, &handle, &sample); 4791 4792 perf_output_end(&handle); 4793 } 4794 4795 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4796 4797 static void 4798 perf_event_aux_ctx(struct perf_event_context *ctx, 4799 perf_event_aux_output_cb output, 4800 void *data) 4801 { 4802 struct perf_event *event; 4803 4804 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4805 if (event->state < PERF_EVENT_STATE_INACTIVE) 4806 continue; 4807 if (!event_filter_match(event)) 4808 continue; 4809 output(event, data); 4810 } 4811 } 4812 4813 static void 4814 perf_event_aux(perf_event_aux_output_cb output, void *data, 4815 struct perf_event_context *task_ctx) 4816 { 4817 struct perf_cpu_context *cpuctx; 4818 struct perf_event_context *ctx; 4819 struct pmu *pmu; 4820 int ctxn; 4821 4822 rcu_read_lock(); 4823 list_for_each_entry_rcu(pmu, &pmus, entry) { 4824 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4825 if (cpuctx->unique_pmu != pmu) 4826 goto next; 4827 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4828 if (task_ctx) 4829 goto next; 4830 ctxn = pmu->task_ctx_nr; 4831 if (ctxn < 0) 4832 goto next; 4833 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4834 if (ctx) 4835 perf_event_aux_ctx(ctx, output, data); 4836 next: 4837 put_cpu_ptr(pmu->pmu_cpu_context); 4838 } 4839 4840 if (task_ctx) { 4841 preempt_disable(); 4842 perf_event_aux_ctx(task_ctx, output, data); 4843 preempt_enable(); 4844 } 4845 rcu_read_unlock(); 4846 } 4847 4848 /* 4849 * task tracking -- fork/exit 4850 * 4851 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4852 */ 4853 4854 struct perf_task_event { 4855 struct task_struct *task; 4856 struct perf_event_context *task_ctx; 4857 4858 struct { 4859 struct perf_event_header header; 4860 4861 u32 pid; 4862 u32 ppid; 4863 u32 tid; 4864 u32 ptid; 4865 u64 time; 4866 } event_id; 4867 }; 4868 4869 static int perf_event_task_match(struct perf_event *event) 4870 { 4871 return event->attr.comm || event->attr.mmap || 4872 event->attr.mmap2 || event->attr.mmap_data || 4873 event->attr.task; 4874 } 4875 4876 static void perf_event_task_output(struct perf_event *event, 4877 void *data) 4878 { 4879 struct perf_task_event *task_event = data; 4880 struct perf_output_handle handle; 4881 struct perf_sample_data sample; 4882 struct task_struct *task = task_event->task; 4883 int ret, size = task_event->event_id.header.size; 4884 4885 if (!perf_event_task_match(event)) 4886 return; 4887 4888 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4889 4890 ret = perf_output_begin(&handle, event, 4891 task_event->event_id.header.size); 4892 if (ret) 4893 goto out; 4894 4895 task_event->event_id.pid = perf_event_pid(event, task); 4896 task_event->event_id.ppid = perf_event_pid(event, current); 4897 4898 task_event->event_id.tid = perf_event_tid(event, task); 4899 task_event->event_id.ptid = perf_event_tid(event, current); 4900 4901 perf_output_put(&handle, task_event->event_id); 4902 4903 perf_event__output_id_sample(event, &handle, &sample); 4904 4905 perf_output_end(&handle); 4906 out: 4907 task_event->event_id.header.size = size; 4908 } 4909 4910 static void perf_event_task(struct task_struct *task, 4911 struct perf_event_context *task_ctx, 4912 int new) 4913 { 4914 struct perf_task_event task_event; 4915 4916 if (!atomic_read(&nr_comm_events) && 4917 !atomic_read(&nr_mmap_events) && 4918 !atomic_read(&nr_task_events)) 4919 return; 4920 4921 task_event = (struct perf_task_event){ 4922 .task = task, 4923 .task_ctx = task_ctx, 4924 .event_id = { 4925 .header = { 4926 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4927 .misc = 0, 4928 .size = sizeof(task_event.event_id), 4929 }, 4930 /* .pid */ 4931 /* .ppid */ 4932 /* .tid */ 4933 /* .ptid */ 4934 .time = perf_clock(), 4935 }, 4936 }; 4937 4938 perf_event_aux(perf_event_task_output, 4939 &task_event, 4940 task_ctx); 4941 } 4942 4943 void perf_event_fork(struct task_struct *task) 4944 { 4945 perf_event_task(task, NULL, 1); 4946 } 4947 4948 /* 4949 * comm tracking 4950 */ 4951 4952 struct perf_comm_event { 4953 struct task_struct *task; 4954 char *comm; 4955 int comm_size; 4956 4957 struct { 4958 struct perf_event_header header; 4959 4960 u32 pid; 4961 u32 tid; 4962 } event_id; 4963 }; 4964 4965 static int perf_event_comm_match(struct perf_event *event) 4966 { 4967 return event->attr.comm; 4968 } 4969 4970 static void perf_event_comm_output(struct perf_event *event, 4971 void *data) 4972 { 4973 struct perf_comm_event *comm_event = data; 4974 struct perf_output_handle handle; 4975 struct perf_sample_data sample; 4976 int size = comm_event->event_id.header.size; 4977 int ret; 4978 4979 if (!perf_event_comm_match(event)) 4980 return; 4981 4982 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4983 ret = perf_output_begin(&handle, event, 4984 comm_event->event_id.header.size); 4985 4986 if (ret) 4987 goto out; 4988 4989 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4990 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4991 4992 perf_output_put(&handle, comm_event->event_id); 4993 __output_copy(&handle, comm_event->comm, 4994 comm_event->comm_size); 4995 4996 perf_event__output_id_sample(event, &handle, &sample); 4997 4998 perf_output_end(&handle); 4999 out: 5000 comm_event->event_id.header.size = size; 5001 } 5002 5003 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5004 { 5005 char comm[TASK_COMM_LEN]; 5006 unsigned int size; 5007 5008 memset(comm, 0, sizeof(comm)); 5009 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5010 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5011 5012 comm_event->comm = comm; 5013 comm_event->comm_size = size; 5014 5015 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5016 5017 perf_event_aux(perf_event_comm_output, 5018 comm_event, 5019 NULL); 5020 } 5021 5022 void perf_event_comm(struct task_struct *task) 5023 { 5024 struct perf_comm_event comm_event; 5025 struct perf_event_context *ctx; 5026 int ctxn; 5027 5028 rcu_read_lock(); 5029 for_each_task_context_nr(ctxn) { 5030 ctx = task->perf_event_ctxp[ctxn]; 5031 if (!ctx) 5032 continue; 5033 5034 perf_event_enable_on_exec(ctx); 5035 } 5036 rcu_read_unlock(); 5037 5038 if (!atomic_read(&nr_comm_events)) 5039 return; 5040 5041 comm_event = (struct perf_comm_event){ 5042 .task = task, 5043 /* .comm */ 5044 /* .comm_size */ 5045 .event_id = { 5046 .header = { 5047 .type = PERF_RECORD_COMM, 5048 .misc = 0, 5049 /* .size */ 5050 }, 5051 /* .pid */ 5052 /* .tid */ 5053 }, 5054 }; 5055 5056 perf_event_comm_event(&comm_event); 5057 } 5058 5059 /* 5060 * mmap tracking 5061 */ 5062 5063 struct perf_mmap_event { 5064 struct vm_area_struct *vma; 5065 5066 const char *file_name; 5067 int file_size; 5068 int maj, min; 5069 u64 ino; 5070 u64 ino_generation; 5071 5072 struct { 5073 struct perf_event_header header; 5074 5075 u32 pid; 5076 u32 tid; 5077 u64 start; 5078 u64 len; 5079 u64 pgoff; 5080 } event_id; 5081 }; 5082 5083 static int perf_event_mmap_match(struct perf_event *event, 5084 void *data) 5085 { 5086 struct perf_mmap_event *mmap_event = data; 5087 struct vm_area_struct *vma = mmap_event->vma; 5088 int executable = vma->vm_flags & VM_EXEC; 5089 5090 return (!executable && event->attr.mmap_data) || 5091 (executable && (event->attr.mmap || event->attr.mmap2)); 5092 } 5093 5094 static void perf_event_mmap_output(struct perf_event *event, 5095 void *data) 5096 { 5097 struct perf_mmap_event *mmap_event = data; 5098 struct perf_output_handle handle; 5099 struct perf_sample_data sample; 5100 int size = mmap_event->event_id.header.size; 5101 int ret; 5102 5103 if (!perf_event_mmap_match(event, data)) 5104 return; 5105 5106 if (event->attr.mmap2) { 5107 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5108 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5109 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5110 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5111 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5112 } 5113 5114 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5115 ret = perf_output_begin(&handle, event, 5116 mmap_event->event_id.header.size); 5117 if (ret) 5118 goto out; 5119 5120 mmap_event->event_id.pid = perf_event_pid(event, current); 5121 mmap_event->event_id.tid = perf_event_tid(event, current); 5122 5123 perf_output_put(&handle, mmap_event->event_id); 5124 5125 if (event->attr.mmap2) { 5126 perf_output_put(&handle, mmap_event->maj); 5127 perf_output_put(&handle, mmap_event->min); 5128 perf_output_put(&handle, mmap_event->ino); 5129 perf_output_put(&handle, mmap_event->ino_generation); 5130 } 5131 5132 __output_copy(&handle, mmap_event->file_name, 5133 mmap_event->file_size); 5134 5135 perf_event__output_id_sample(event, &handle, &sample); 5136 5137 perf_output_end(&handle); 5138 out: 5139 mmap_event->event_id.header.size = size; 5140 } 5141 5142 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5143 { 5144 struct vm_area_struct *vma = mmap_event->vma; 5145 struct file *file = vma->vm_file; 5146 int maj = 0, min = 0; 5147 u64 ino = 0, gen = 0; 5148 unsigned int size; 5149 char tmp[16]; 5150 char *buf = NULL; 5151 char *name; 5152 5153 if (file) { 5154 struct inode *inode; 5155 dev_t dev; 5156 5157 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5158 if (!buf) { 5159 name = "//enomem"; 5160 goto cpy_name; 5161 } 5162 /* 5163 * d_path() works from the end of the rb backwards, so we 5164 * need to add enough zero bytes after the string to handle 5165 * the 64bit alignment we do later. 5166 */ 5167 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5168 if (IS_ERR(name)) { 5169 name = "//toolong"; 5170 goto cpy_name; 5171 } 5172 inode = file_inode(vma->vm_file); 5173 dev = inode->i_sb->s_dev; 5174 ino = inode->i_ino; 5175 gen = inode->i_generation; 5176 maj = MAJOR(dev); 5177 min = MINOR(dev); 5178 goto got_name; 5179 } else { 5180 name = (char *)arch_vma_name(vma); 5181 if (name) 5182 goto cpy_name; 5183 5184 if (vma->vm_start <= vma->vm_mm->start_brk && 5185 vma->vm_end >= vma->vm_mm->brk) { 5186 name = "[heap]"; 5187 goto cpy_name; 5188 } 5189 if (vma->vm_start <= vma->vm_mm->start_stack && 5190 vma->vm_end >= vma->vm_mm->start_stack) { 5191 name = "[stack]"; 5192 goto cpy_name; 5193 } 5194 5195 name = "//anon"; 5196 goto cpy_name; 5197 } 5198 5199 cpy_name: 5200 strlcpy(tmp, name, sizeof(tmp)); 5201 name = tmp; 5202 got_name: 5203 /* 5204 * Since our buffer works in 8 byte units we need to align our string 5205 * size to a multiple of 8. However, we must guarantee the tail end is 5206 * zero'd out to avoid leaking random bits to userspace. 5207 */ 5208 size = strlen(name)+1; 5209 while (!IS_ALIGNED(size, sizeof(u64))) 5210 name[size++] = '\0'; 5211 5212 mmap_event->file_name = name; 5213 mmap_event->file_size = size; 5214 mmap_event->maj = maj; 5215 mmap_event->min = min; 5216 mmap_event->ino = ino; 5217 mmap_event->ino_generation = gen; 5218 5219 if (!(vma->vm_flags & VM_EXEC)) 5220 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5221 5222 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5223 5224 perf_event_aux(perf_event_mmap_output, 5225 mmap_event, 5226 NULL); 5227 5228 kfree(buf); 5229 } 5230 5231 void perf_event_mmap(struct vm_area_struct *vma) 5232 { 5233 struct perf_mmap_event mmap_event; 5234 5235 if (!atomic_read(&nr_mmap_events)) 5236 return; 5237 5238 mmap_event = (struct perf_mmap_event){ 5239 .vma = vma, 5240 /* .file_name */ 5241 /* .file_size */ 5242 .event_id = { 5243 .header = { 5244 .type = PERF_RECORD_MMAP, 5245 .misc = PERF_RECORD_MISC_USER, 5246 /* .size */ 5247 }, 5248 /* .pid */ 5249 /* .tid */ 5250 .start = vma->vm_start, 5251 .len = vma->vm_end - vma->vm_start, 5252 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5253 }, 5254 /* .maj (attr_mmap2 only) */ 5255 /* .min (attr_mmap2 only) */ 5256 /* .ino (attr_mmap2 only) */ 5257 /* .ino_generation (attr_mmap2 only) */ 5258 }; 5259 5260 perf_event_mmap_event(&mmap_event); 5261 } 5262 5263 /* 5264 * IRQ throttle logging 5265 */ 5266 5267 static void perf_log_throttle(struct perf_event *event, int enable) 5268 { 5269 struct perf_output_handle handle; 5270 struct perf_sample_data sample; 5271 int ret; 5272 5273 struct { 5274 struct perf_event_header header; 5275 u64 time; 5276 u64 id; 5277 u64 stream_id; 5278 } throttle_event = { 5279 .header = { 5280 .type = PERF_RECORD_THROTTLE, 5281 .misc = 0, 5282 .size = sizeof(throttle_event), 5283 }, 5284 .time = perf_clock(), 5285 .id = primary_event_id(event), 5286 .stream_id = event->id, 5287 }; 5288 5289 if (enable) 5290 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5291 5292 perf_event_header__init_id(&throttle_event.header, &sample, event); 5293 5294 ret = perf_output_begin(&handle, event, 5295 throttle_event.header.size); 5296 if (ret) 5297 return; 5298 5299 perf_output_put(&handle, throttle_event); 5300 perf_event__output_id_sample(event, &handle, &sample); 5301 perf_output_end(&handle); 5302 } 5303 5304 /* 5305 * Generic event overflow handling, sampling. 5306 */ 5307 5308 static int __perf_event_overflow(struct perf_event *event, 5309 int throttle, struct perf_sample_data *data, 5310 struct pt_regs *regs) 5311 { 5312 int events = atomic_read(&event->event_limit); 5313 struct hw_perf_event *hwc = &event->hw; 5314 u64 seq; 5315 int ret = 0; 5316 5317 /* 5318 * Non-sampling counters might still use the PMI to fold short 5319 * hardware counters, ignore those. 5320 */ 5321 if (unlikely(!is_sampling_event(event))) 5322 return 0; 5323 5324 seq = __this_cpu_read(perf_throttled_seq); 5325 if (seq != hwc->interrupts_seq) { 5326 hwc->interrupts_seq = seq; 5327 hwc->interrupts = 1; 5328 } else { 5329 hwc->interrupts++; 5330 if (unlikely(throttle 5331 && hwc->interrupts >= max_samples_per_tick)) { 5332 __this_cpu_inc(perf_throttled_count); 5333 hwc->interrupts = MAX_INTERRUPTS; 5334 perf_log_throttle(event, 0); 5335 tick_nohz_full_kick(); 5336 ret = 1; 5337 } 5338 } 5339 5340 if (event->attr.freq) { 5341 u64 now = perf_clock(); 5342 s64 delta = now - hwc->freq_time_stamp; 5343 5344 hwc->freq_time_stamp = now; 5345 5346 if (delta > 0 && delta < 2*TICK_NSEC) 5347 perf_adjust_period(event, delta, hwc->last_period, true); 5348 } 5349 5350 /* 5351 * XXX event_limit might not quite work as expected on inherited 5352 * events 5353 */ 5354 5355 event->pending_kill = POLL_IN; 5356 if (events && atomic_dec_and_test(&event->event_limit)) { 5357 ret = 1; 5358 event->pending_kill = POLL_HUP; 5359 event->pending_disable = 1; 5360 irq_work_queue(&event->pending); 5361 } 5362 5363 if (event->overflow_handler) 5364 event->overflow_handler(event, data, regs); 5365 else 5366 perf_event_output(event, data, regs); 5367 5368 if (event->fasync && event->pending_kill) { 5369 event->pending_wakeup = 1; 5370 irq_work_queue(&event->pending); 5371 } 5372 5373 return ret; 5374 } 5375 5376 int perf_event_overflow(struct perf_event *event, 5377 struct perf_sample_data *data, 5378 struct pt_regs *regs) 5379 { 5380 return __perf_event_overflow(event, 1, data, regs); 5381 } 5382 5383 /* 5384 * Generic software event infrastructure 5385 */ 5386 5387 struct swevent_htable { 5388 struct swevent_hlist *swevent_hlist; 5389 struct mutex hlist_mutex; 5390 int hlist_refcount; 5391 5392 /* Recursion avoidance in each contexts */ 5393 int recursion[PERF_NR_CONTEXTS]; 5394 }; 5395 5396 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5397 5398 /* 5399 * We directly increment event->count and keep a second value in 5400 * event->hw.period_left to count intervals. This period event 5401 * is kept in the range [-sample_period, 0] so that we can use the 5402 * sign as trigger. 5403 */ 5404 5405 u64 perf_swevent_set_period(struct perf_event *event) 5406 { 5407 struct hw_perf_event *hwc = &event->hw; 5408 u64 period = hwc->last_period; 5409 u64 nr, offset; 5410 s64 old, val; 5411 5412 hwc->last_period = hwc->sample_period; 5413 5414 again: 5415 old = val = local64_read(&hwc->period_left); 5416 if (val < 0) 5417 return 0; 5418 5419 nr = div64_u64(period + val, period); 5420 offset = nr * period; 5421 val -= offset; 5422 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5423 goto again; 5424 5425 return nr; 5426 } 5427 5428 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5429 struct perf_sample_data *data, 5430 struct pt_regs *regs) 5431 { 5432 struct hw_perf_event *hwc = &event->hw; 5433 int throttle = 0; 5434 5435 if (!overflow) 5436 overflow = perf_swevent_set_period(event); 5437 5438 if (hwc->interrupts == MAX_INTERRUPTS) 5439 return; 5440 5441 for (; overflow; overflow--) { 5442 if (__perf_event_overflow(event, throttle, 5443 data, regs)) { 5444 /* 5445 * We inhibit the overflow from happening when 5446 * hwc->interrupts == MAX_INTERRUPTS. 5447 */ 5448 break; 5449 } 5450 throttle = 1; 5451 } 5452 } 5453 5454 static void perf_swevent_event(struct perf_event *event, u64 nr, 5455 struct perf_sample_data *data, 5456 struct pt_regs *regs) 5457 { 5458 struct hw_perf_event *hwc = &event->hw; 5459 5460 local64_add(nr, &event->count); 5461 5462 if (!regs) 5463 return; 5464 5465 if (!is_sampling_event(event)) 5466 return; 5467 5468 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5469 data->period = nr; 5470 return perf_swevent_overflow(event, 1, data, regs); 5471 } else 5472 data->period = event->hw.last_period; 5473 5474 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5475 return perf_swevent_overflow(event, 1, data, regs); 5476 5477 if (local64_add_negative(nr, &hwc->period_left)) 5478 return; 5479 5480 perf_swevent_overflow(event, 0, data, regs); 5481 } 5482 5483 static int perf_exclude_event(struct perf_event *event, 5484 struct pt_regs *regs) 5485 { 5486 if (event->hw.state & PERF_HES_STOPPED) 5487 return 1; 5488 5489 if (regs) { 5490 if (event->attr.exclude_user && user_mode(regs)) 5491 return 1; 5492 5493 if (event->attr.exclude_kernel && !user_mode(regs)) 5494 return 1; 5495 } 5496 5497 return 0; 5498 } 5499 5500 static int perf_swevent_match(struct perf_event *event, 5501 enum perf_type_id type, 5502 u32 event_id, 5503 struct perf_sample_data *data, 5504 struct pt_regs *regs) 5505 { 5506 if (event->attr.type != type) 5507 return 0; 5508 5509 if (event->attr.config != event_id) 5510 return 0; 5511 5512 if (perf_exclude_event(event, regs)) 5513 return 0; 5514 5515 return 1; 5516 } 5517 5518 static inline u64 swevent_hash(u64 type, u32 event_id) 5519 { 5520 u64 val = event_id | (type << 32); 5521 5522 return hash_64(val, SWEVENT_HLIST_BITS); 5523 } 5524 5525 static inline struct hlist_head * 5526 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5527 { 5528 u64 hash = swevent_hash(type, event_id); 5529 5530 return &hlist->heads[hash]; 5531 } 5532 5533 /* For the read side: events when they trigger */ 5534 static inline struct hlist_head * 5535 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5536 { 5537 struct swevent_hlist *hlist; 5538 5539 hlist = rcu_dereference(swhash->swevent_hlist); 5540 if (!hlist) 5541 return NULL; 5542 5543 return __find_swevent_head(hlist, type, event_id); 5544 } 5545 5546 /* For the event head insertion and removal in the hlist */ 5547 static inline struct hlist_head * 5548 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5549 { 5550 struct swevent_hlist *hlist; 5551 u32 event_id = event->attr.config; 5552 u64 type = event->attr.type; 5553 5554 /* 5555 * Event scheduling is always serialized against hlist allocation 5556 * and release. Which makes the protected version suitable here. 5557 * The context lock guarantees that. 5558 */ 5559 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5560 lockdep_is_held(&event->ctx->lock)); 5561 if (!hlist) 5562 return NULL; 5563 5564 return __find_swevent_head(hlist, type, event_id); 5565 } 5566 5567 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5568 u64 nr, 5569 struct perf_sample_data *data, 5570 struct pt_regs *regs) 5571 { 5572 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5573 struct perf_event *event; 5574 struct hlist_head *head; 5575 5576 rcu_read_lock(); 5577 head = find_swevent_head_rcu(swhash, type, event_id); 5578 if (!head) 5579 goto end; 5580 5581 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5582 if (perf_swevent_match(event, type, event_id, data, regs)) 5583 perf_swevent_event(event, nr, data, regs); 5584 } 5585 end: 5586 rcu_read_unlock(); 5587 } 5588 5589 int perf_swevent_get_recursion_context(void) 5590 { 5591 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5592 5593 return get_recursion_context(swhash->recursion); 5594 } 5595 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5596 5597 inline void perf_swevent_put_recursion_context(int rctx) 5598 { 5599 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5600 5601 put_recursion_context(swhash->recursion, rctx); 5602 } 5603 5604 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5605 { 5606 struct perf_sample_data data; 5607 int rctx; 5608 5609 preempt_disable_notrace(); 5610 rctx = perf_swevent_get_recursion_context(); 5611 if (rctx < 0) 5612 return; 5613 5614 perf_sample_data_init(&data, addr, 0); 5615 5616 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5617 5618 perf_swevent_put_recursion_context(rctx); 5619 preempt_enable_notrace(); 5620 } 5621 5622 static void perf_swevent_read(struct perf_event *event) 5623 { 5624 } 5625 5626 static int perf_swevent_add(struct perf_event *event, int flags) 5627 { 5628 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5629 struct hw_perf_event *hwc = &event->hw; 5630 struct hlist_head *head; 5631 5632 if (is_sampling_event(event)) { 5633 hwc->last_period = hwc->sample_period; 5634 perf_swevent_set_period(event); 5635 } 5636 5637 hwc->state = !(flags & PERF_EF_START); 5638 5639 head = find_swevent_head(swhash, event); 5640 if (WARN_ON_ONCE(!head)) 5641 return -EINVAL; 5642 5643 hlist_add_head_rcu(&event->hlist_entry, head); 5644 5645 return 0; 5646 } 5647 5648 static void perf_swevent_del(struct perf_event *event, int flags) 5649 { 5650 hlist_del_rcu(&event->hlist_entry); 5651 } 5652 5653 static void perf_swevent_start(struct perf_event *event, int flags) 5654 { 5655 event->hw.state = 0; 5656 } 5657 5658 static void perf_swevent_stop(struct perf_event *event, int flags) 5659 { 5660 event->hw.state = PERF_HES_STOPPED; 5661 } 5662 5663 /* Deref the hlist from the update side */ 5664 static inline struct swevent_hlist * 5665 swevent_hlist_deref(struct swevent_htable *swhash) 5666 { 5667 return rcu_dereference_protected(swhash->swevent_hlist, 5668 lockdep_is_held(&swhash->hlist_mutex)); 5669 } 5670 5671 static void swevent_hlist_release(struct swevent_htable *swhash) 5672 { 5673 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5674 5675 if (!hlist) 5676 return; 5677 5678 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5679 kfree_rcu(hlist, rcu_head); 5680 } 5681 5682 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5683 { 5684 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5685 5686 mutex_lock(&swhash->hlist_mutex); 5687 5688 if (!--swhash->hlist_refcount) 5689 swevent_hlist_release(swhash); 5690 5691 mutex_unlock(&swhash->hlist_mutex); 5692 } 5693 5694 static void swevent_hlist_put(struct perf_event *event) 5695 { 5696 int cpu; 5697 5698 for_each_possible_cpu(cpu) 5699 swevent_hlist_put_cpu(event, cpu); 5700 } 5701 5702 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5703 { 5704 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5705 int err = 0; 5706 5707 mutex_lock(&swhash->hlist_mutex); 5708 5709 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5710 struct swevent_hlist *hlist; 5711 5712 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5713 if (!hlist) { 5714 err = -ENOMEM; 5715 goto exit; 5716 } 5717 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5718 } 5719 swhash->hlist_refcount++; 5720 exit: 5721 mutex_unlock(&swhash->hlist_mutex); 5722 5723 return err; 5724 } 5725 5726 static int swevent_hlist_get(struct perf_event *event) 5727 { 5728 int err; 5729 int cpu, failed_cpu; 5730 5731 get_online_cpus(); 5732 for_each_possible_cpu(cpu) { 5733 err = swevent_hlist_get_cpu(event, cpu); 5734 if (err) { 5735 failed_cpu = cpu; 5736 goto fail; 5737 } 5738 } 5739 put_online_cpus(); 5740 5741 return 0; 5742 fail: 5743 for_each_possible_cpu(cpu) { 5744 if (cpu == failed_cpu) 5745 break; 5746 swevent_hlist_put_cpu(event, cpu); 5747 } 5748 5749 put_online_cpus(); 5750 return err; 5751 } 5752 5753 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5754 5755 static void sw_perf_event_destroy(struct perf_event *event) 5756 { 5757 u64 event_id = event->attr.config; 5758 5759 WARN_ON(event->parent); 5760 5761 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5762 swevent_hlist_put(event); 5763 } 5764 5765 static int perf_swevent_init(struct perf_event *event) 5766 { 5767 u64 event_id = event->attr.config; 5768 5769 if (event->attr.type != PERF_TYPE_SOFTWARE) 5770 return -ENOENT; 5771 5772 /* 5773 * no branch sampling for software events 5774 */ 5775 if (has_branch_stack(event)) 5776 return -EOPNOTSUPP; 5777 5778 switch (event_id) { 5779 case PERF_COUNT_SW_CPU_CLOCK: 5780 case PERF_COUNT_SW_TASK_CLOCK: 5781 return -ENOENT; 5782 5783 default: 5784 break; 5785 } 5786 5787 if (event_id >= PERF_COUNT_SW_MAX) 5788 return -ENOENT; 5789 5790 if (!event->parent) { 5791 int err; 5792 5793 err = swevent_hlist_get(event); 5794 if (err) 5795 return err; 5796 5797 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5798 event->destroy = sw_perf_event_destroy; 5799 } 5800 5801 return 0; 5802 } 5803 5804 static int perf_swevent_event_idx(struct perf_event *event) 5805 { 5806 return 0; 5807 } 5808 5809 static struct pmu perf_swevent = { 5810 .task_ctx_nr = perf_sw_context, 5811 5812 .event_init = perf_swevent_init, 5813 .add = perf_swevent_add, 5814 .del = perf_swevent_del, 5815 .start = perf_swevent_start, 5816 .stop = perf_swevent_stop, 5817 .read = perf_swevent_read, 5818 5819 .event_idx = perf_swevent_event_idx, 5820 }; 5821 5822 #ifdef CONFIG_EVENT_TRACING 5823 5824 static int perf_tp_filter_match(struct perf_event *event, 5825 struct perf_sample_data *data) 5826 { 5827 void *record = data->raw->data; 5828 5829 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5830 return 1; 5831 return 0; 5832 } 5833 5834 static int perf_tp_event_match(struct perf_event *event, 5835 struct perf_sample_data *data, 5836 struct pt_regs *regs) 5837 { 5838 if (event->hw.state & PERF_HES_STOPPED) 5839 return 0; 5840 /* 5841 * All tracepoints are from kernel-space. 5842 */ 5843 if (event->attr.exclude_kernel) 5844 return 0; 5845 5846 if (!perf_tp_filter_match(event, data)) 5847 return 0; 5848 5849 return 1; 5850 } 5851 5852 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5853 struct pt_regs *regs, struct hlist_head *head, int rctx, 5854 struct task_struct *task) 5855 { 5856 struct perf_sample_data data; 5857 struct perf_event *event; 5858 5859 struct perf_raw_record raw = { 5860 .size = entry_size, 5861 .data = record, 5862 }; 5863 5864 perf_sample_data_init(&data, addr, 0); 5865 data.raw = &raw; 5866 5867 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5868 if (perf_tp_event_match(event, &data, regs)) 5869 perf_swevent_event(event, count, &data, regs); 5870 } 5871 5872 /* 5873 * If we got specified a target task, also iterate its context and 5874 * deliver this event there too. 5875 */ 5876 if (task && task != current) { 5877 struct perf_event_context *ctx; 5878 struct trace_entry *entry = record; 5879 5880 rcu_read_lock(); 5881 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5882 if (!ctx) 5883 goto unlock; 5884 5885 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5886 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5887 continue; 5888 if (event->attr.config != entry->type) 5889 continue; 5890 if (perf_tp_event_match(event, &data, regs)) 5891 perf_swevent_event(event, count, &data, regs); 5892 } 5893 unlock: 5894 rcu_read_unlock(); 5895 } 5896 5897 perf_swevent_put_recursion_context(rctx); 5898 } 5899 EXPORT_SYMBOL_GPL(perf_tp_event); 5900 5901 static void tp_perf_event_destroy(struct perf_event *event) 5902 { 5903 perf_trace_destroy(event); 5904 } 5905 5906 static int perf_tp_event_init(struct perf_event *event) 5907 { 5908 int err; 5909 5910 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5911 return -ENOENT; 5912 5913 /* 5914 * no branch sampling for tracepoint events 5915 */ 5916 if (has_branch_stack(event)) 5917 return -EOPNOTSUPP; 5918 5919 err = perf_trace_init(event); 5920 if (err) 5921 return err; 5922 5923 event->destroy = tp_perf_event_destroy; 5924 5925 return 0; 5926 } 5927 5928 static struct pmu perf_tracepoint = { 5929 .task_ctx_nr = perf_sw_context, 5930 5931 .event_init = perf_tp_event_init, 5932 .add = perf_trace_add, 5933 .del = perf_trace_del, 5934 .start = perf_swevent_start, 5935 .stop = perf_swevent_stop, 5936 .read = perf_swevent_read, 5937 5938 .event_idx = perf_swevent_event_idx, 5939 }; 5940 5941 static inline void perf_tp_register(void) 5942 { 5943 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5944 } 5945 5946 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5947 { 5948 char *filter_str; 5949 int ret; 5950 5951 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5952 return -EINVAL; 5953 5954 filter_str = strndup_user(arg, PAGE_SIZE); 5955 if (IS_ERR(filter_str)) 5956 return PTR_ERR(filter_str); 5957 5958 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5959 5960 kfree(filter_str); 5961 return ret; 5962 } 5963 5964 static void perf_event_free_filter(struct perf_event *event) 5965 { 5966 ftrace_profile_free_filter(event); 5967 } 5968 5969 #else 5970 5971 static inline void perf_tp_register(void) 5972 { 5973 } 5974 5975 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5976 { 5977 return -ENOENT; 5978 } 5979 5980 static void perf_event_free_filter(struct perf_event *event) 5981 { 5982 } 5983 5984 #endif /* CONFIG_EVENT_TRACING */ 5985 5986 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5987 void perf_bp_event(struct perf_event *bp, void *data) 5988 { 5989 struct perf_sample_data sample; 5990 struct pt_regs *regs = data; 5991 5992 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5993 5994 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5995 perf_swevent_event(bp, 1, &sample, regs); 5996 } 5997 #endif 5998 5999 /* 6000 * hrtimer based swevent callback 6001 */ 6002 6003 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6004 { 6005 enum hrtimer_restart ret = HRTIMER_RESTART; 6006 struct perf_sample_data data; 6007 struct pt_regs *regs; 6008 struct perf_event *event; 6009 u64 period; 6010 6011 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6012 6013 if (event->state != PERF_EVENT_STATE_ACTIVE) 6014 return HRTIMER_NORESTART; 6015 6016 event->pmu->read(event); 6017 6018 perf_sample_data_init(&data, 0, event->hw.last_period); 6019 regs = get_irq_regs(); 6020 6021 if (regs && !perf_exclude_event(event, regs)) { 6022 if (!(event->attr.exclude_idle && is_idle_task(current))) 6023 if (__perf_event_overflow(event, 1, &data, regs)) 6024 ret = HRTIMER_NORESTART; 6025 } 6026 6027 period = max_t(u64, 10000, event->hw.sample_period); 6028 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6029 6030 return ret; 6031 } 6032 6033 static void perf_swevent_start_hrtimer(struct perf_event *event) 6034 { 6035 struct hw_perf_event *hwc = &event->hw; 6036 s64 period; 6037 6038 if (!is_sampling_event(event)) 6039 return; 6040 6041 period = local64_read(&hwc->period_left); 6042 if (period) { 6043 if (period < 0) 6044 period = 10000; 6045 6046 local64_set(&hwc->period_left, 0); 6047 } else { 6048 period = max_t(u64, 10000, hwc->sample_period); 6049 } 6050 __hrtimer_start_range_ns(&hwc->hrtimer, 6051 ns_to_ktime(period), 0, 6052 HRTIMER_MODE_REL_PINNED, 0); 6053 } 6054 6055 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6056 { 6057 struct hw_perf_event *hwc = &event->hw; 6058 6059 if (is_sampling_event(event)) { 6060 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6061 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6062 6063 hrtimer_cancel(&hwc->hrtimer); 6064 } 6065 } 6066 6067 static void perf_swevent_init_hrtimer(struct perf_event *event) 6068 { 6069 struct hw_perf_event *hwc = &event->hw; 6070 6071 if (!is_sampling_event(event)) 6072 return; 6073 6074 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6075 hwc->hrtimer.function = perf_swevent_hrtimer; 6076 6077 /* 6078 * Since hrtimers have a fixed rate, we can do a static freq->period 6079 * mapping and avoid the whole period adjust feedback stuff. 6080 */ 6081 if (event->attr.freq) { 6082 long freq = event->attr.sample_freq; 6083 6084 event->attr.sample_period = NSEC_PER_SEC / freq; 6085 hwc->sample_period = event->attr.sample_period; 6086 local64_set(&hwc->period_left, hwc->sample_period); 6087 hwc->last_period = hwc->sample_period; 6088 event->attr.freq = 0; 6089 } 6090 } 6091 6092 /* 6093 * Software event: cpu wall time clock 6094 */ 6095 6096 static void cpu_clock_event_update(struct perf_event *event) 6097 { 6098 s64 prev; 6099 u64 now; 6100 6101 now = local_clock(); 6102 prev = local64_xchg(&event->hw.prev_count, now); 6103 local64_add(now - prev, &event->count); 6104 } 6105 6106 static void cpu_clock_event_start(struct perf_event *event, int flags) 6107 { 6108 local64_set(&event->hw.prev_count, local_clock()); 6109 perf_swevent_start_hrtimer(event); 6110 } 6111 6112 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6113 { 6114 perf_swevent_cancel_hrtimer(event); 6115 cpu_clock_event_update(event); 6116 } 6117 6118 static int cpu_clock_event_add(struct perf_event *event, int flags) 6119 { 6120 if (flags & PERF_EF_START) 6121 cpu_clock_event_start(event, flags); 6122 6123 return 0; 6124 } 6125 6126 static void cpu_clock_event_del(struct perf_event *event, int flags) 6127 { 6128 cpu_clock_event_stop(event, flags); 6129 } 6130 6131 static void cpu_clock_event_read(struct perf_event *event) 6132 { 6133 cpu_clock_event_update(event); 6134 } 6135 6136 static int cpu_clock_event_init(struct perf_event *event) 6137 { 6138 if (event->attr.type != PERF_TYPE_SOFTWARE) 6139 return -ENOENT; 6140 6141 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6142 return -ENOENT; 6143 6144 /* 6145 * no branch sampling for software events 6146 */ 6147 if (has_branch_stack(event)) 6148 return -EOPNOTSUPP; 6149 6150 perf_swevent_init_hrtimer(event); 6151 6152 return 0; 6153 } 6154 6155 static struct pmu perf_cpu_clock = { 6156 .task_ctx_nr = perf_sw_context, 6157 6158 .event_init = cpu_clock_event_init, 6159 .add = cpu_clock_event_add, 6160 .del = cpu_clock_event_del, 6161 .start = cpu_clock_event_start, 6162 .stop = cpu_clock_event_stop, 6163 .read = cpu_clock_event_read, 6164 6165 .event_idx = perf_swevent_event_idx, 6166 }; 6167 6168 /* 6169 * Software event: task time clock 6170 */ 6171 6172 static void task_clock_event_update(struct perf_event *event, u64 now) 6173 { 6174 u64 prev; 6175 s64 delta; 6176 6177 prev = local64_xchg(&event->hw.prev_count, now); 6178 delta = now - prev; 6179 local64_add(delta, &event->count); 6180 } 6181 6182 static void task_clock_event_start(struct perf_event *event, int flags) 6183 { 6184 local64_set(&event->hw.prev_count, event->ctx->time); 6185 perf_swevent_start_hrtimer(event); 6186 } 6187 6188 static void task_clock_event_stop(struct perf_event *event, int flags) 6189 { 6190 perf_swevent_cancel_hrtimer(event); 6191 task_clock_event_update(event, event->ctx->time); 6192 } 6193 6194 static int task_clock_event_add(struct perf_event *event, int flags) 6195 { 6196 if (flags & PERF_EF_START) 6197 task_clock_event_start(event, flags); 6198 6199 return 0; 6200 } 6201 6202 static void task_clock_event_del(struct perf_event *event, int flags) 6203 { 6204 task_clock_event_stop(event, PERF_EF_UPDATE); 6205 } 6206 6207 static void task_clock_event_read(struct perf_event *event) 6208 { 6209 u64 now = perf_clock(); 6210 u64 delta = now - event->ctx->timestamp; 6211 u64 time = event->ctx->time + delta; 6212 6213 task_clock_event_update(event, time); 6214 } 6215 6216 static int task_clock_event_init(struct perf_event *event) 6217 { 6218 if (event->attr.type != PERF_TYPE_SOFTWARE) 6219 return -ENOENT; 6220 6221 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6222 return -ENOENT; 6223 6224 /* 6225 * no branch sampling for software events 6226 */ 6227 if (has_branch_stack(event)) 6228 return -EOPNOTSUPP; 6229 6230 perf_swevent_init_hrtimer(event); 6231 6232 return 0; 6233 } 6234 6235 static struct pmu perf_task_clock = { 6236 .task_ctx_nr = perf_sw_context, 6237 6238 .event_init = task_clock_event_init, 6239 .add = task_clock_event_add, 6240 .del = task_clock_event_del, 6241 .start = task_clock_event_start, 6242 .stop = task_clock_event_stop, 6243 .read = task_clock_event_read, 6244 6245 .event_idx = perf_swevent_event_idx, 6246 }; 6247 6248 static void perf_pmu_nop_void(struct pmu *pmu) 6249 { 6250 } 6251 6252 static int perf_pmu_nop_int(struct pmu *pmu) 6253 { 6254 return 0; 6255 } 6256 6257 static void perf_pmu_start_txn(struct pmu *pmu) 6258 { 6259 perf_pmu_disable(pmu); 6260 } 6261 6262 static int perf_pmu_commit_txn(struct pmu *pmu) 6263 { 6264 perf_pmu_enable(pmu); 6265 return 0; 6266 } 6267 6268 static void perf_pmu_cancel_txn(struct pmu *pmu) 6269 { 6270 perf_pmu_enable(pmu); 6271 } 6272 6273 static int perf_event_idx_default(struct perf_event *event) 6274 { 6275 return event->hw.idx + 1; 6276 } 6277 6278 /* 6279 * Ensures all contexts with the same task_ctx_nr have the same 6280 * pmu_cpu_context too. 6281 */ 6282 static void *find_pmu_context(int ctxn) 6283 { 6284 struct pmu *pmu; 6285 6286 if (ctxn < 0) 6287 return NULL; 6288 6289 list_for_each_entry(pmu, &pmus, entry) { 6290 if (pmu->task_ctx_nr == ctxn) 6291 return pmu->pmu_cpu_context; 6292 } 6293 6294 return NULL; 6295 } 6296 6297 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6298 { 6299 int cpu; 6300 6301 for_each_possible_cpu(cpu) { 6302 struct perf_cpu_context *cpuctx; 6303 6304 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6305 6306 if (cpuctx->unique_pmu == old_pmu) 6307 cpuctx->unique_pmu = pmu; 6308 } 6309 } 6310 6311 static void free_pmu_context(struct pmu *pmu) 6312 { 6313 struct pmu *i; 6314 6315 mutex_lock(&pmus_lock); 6316 /* 6317 * Like a real lame refcount. 6318 */ 6319 list_for_each_entry(i, &pmus, entry) { 6320 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6321 update_pmu_context(i, pmu); 6322 goto out; 6323 } 6324 } 6325 6326 free_percpu(pmu->pmu_cpu_context); 6327 out: 6328 mutex_unlock(&pmus_lock); 6329 } 6330 static struct idr pmu_idr; 6331 6332 static ssize_t 6333 type_show(struct device *dev, struct device_attribute *attr, char *page) 6334 { 6335 struct pmu *pmu = dev_get_drvdata(dev); 6336 6337 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6338 } 6339 static DEVICE_ATTR_RO(type); 6340 6341 static ssize_t 6342 perf_event_mux_interval_ms_show(struct device *dev, 6343 struct device_attribute *attr, 6344 char *page) 6345 { 6346 struct pmu *pmu = dev_get_drvdata(dev); 6347 6348 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6349 } 6350 6351 static ssize_t 6352 perf_event_mux_interval_ms_store(struct device *dev, 6353 struct device_attribute *attr, 6354 const char *buf, size_t count) 6355 { 6356 struct pmu *pmu = dev_get_drvdata(dev); 6357 int timer, cpu, ret; 6358 6359 ret = kstrtoint(buf, 0, &timer); 6360 if (ret) 6361 return ret; 6362 6363 if (timer < 1) 6364 return -EINVAL; 6365 6366 /* same value, noting to do */ 6367 if (timer == pmu->hrtimer_interval_ms) 6368 return count; 6369 6370 pmu->hrtimer_interval_ms = timer; 6371 6372 /* update all cpuctx for this PMU */ 6373 for_each_possible_cpu(cpu) { 6374 struct perf_cpu_context *cpuctx; 6375 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6376 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6377 6378 if (hrtimer_active(&cpuctx->hrtimer)) 6379 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6380 } 6381 6382 return count; 6383 } 6384 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6385 6386 static struct attribute *pmu_dev_attrs[] = { 6387 &dev_attr_type.attr, 6388 &dev_attr_perf_event_mux_interval_ms.attr, 6389 NULL, 6390 }; 6391 ATTRIBUTE_GROUPS(pmu_dev); 6392 6393 static int pmu_bus_running; 6394 static struct bus_type pmu_bus = { 6395 .name = "event_source", 6396 .dev_groups = pmu_dev_groups, 6397 }; 6398 6399 static void pmu_dev_release(struct device *dev) 6400 { 6401 kfree(dev); 6402 } 6403 6404 static int pmu_dev_alloc(struct pmu *pmu) 6405 { 6406 int ret = -ENOMEM; 6407 6408 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6409 if (!pmu->dev) 6410 goto out; 6411 6412 pmu->dev->groups = pmu->attr_groups; 6413 device_initialize(pmu->dev); 6414 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6415 if (ret) 6416 goto free_dev; 6417 6418 dev_set_drvdata(pmu->dev, pmu); 6419 pmu->dev->bus = &pmu_bus; 6420 pmu->dev->release = pmu_dev_release; 6421 ret = device_add(pmu->dev); 6422 if (ret) 6423 goto free_dev; 6424 6425 out: 6426 return ret; 6427 6428 free_dev: 6429 put_device(pmu->dev); 6430 goto out; 6431 } 6432 6433 static struct lock_class_key cpuctx_mutex; 6434 static struct lock_class_key cpuctx_lock; 6435 6436 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6437 { 6438 int cpu, ret; 6439 6440 mutex_lock(&pmus_lock); 6441 ret = -ENOMEM; 6442 pmu->pmu_disable_count = alloc_percpu(int); 6443 if (!pmu->pmu_disable_count) 6444 goto unlock; 6445 6446 pmu->type = -1; 6447 if (!name) 6448 goto skip_type; 6449 pmu->name = name; 6450 6451 if (type < 0) { 6452 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6453 if (type < 0) { 6454 ret = type; 6455 goto free_pdc; 6456 } 6457 } 6458 pmu->type = type; 6459 6460 if (pmu_bus_running) { 6461 ret = pmu_dev_alloc(pmu); 6462 if (ret) 6463 goto free_idr; 6464 } 6465 6466 skip_type: 6467 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6468 if (pmu->pmu_cpu_context) 6469 goto got_cpu_context; 6470 6471 ret = -ENOMEM; 6472 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6473 if (!pmu->pmu_cpu_context) 6474 goto free_dev; 6475 6476 for_each_possible_cpu(cpu) { 6477 struct perf_cpu_context *cpuctx; 6478 6479 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6480 __perf_event_init_context(&cpuctx->ctx); 6481 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6482 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6483 cpuctx->ctx.type = cpu_context; 6484 cpuctx->ctx.pmu = pmu; 6485 6486 __perf_cpu_hrtimer_init(cpuctx, cpu); 6487 6488 INIT_LIST_HEAD(&cpuctx->rotation_list); 6489 cpuctx->unique_pmu = pmu; 6490 } 6491 6492 got_cpu_context: 6493 if (!pmu->start_txn) { 6494 if (pmu->pmu_enable) { 6495 /* 6496 * If we have pmu_enable/pmu_disable calls, install 6497 * transaction stubs that use that to try and batch 6498 * hardware accesses. 6499 */ 6500 pmu->start_txn = perf_pmu_start_txn; 6501 pmu->commit_txn = perf_pmu_commit_txn; 6502 pmu->cancel_txn = perf_pmu_cancel_txn; 6503 } else { 6504 pmu->start_txn = perf_pmu_nop_void; 6505 pmu->commit_txn = perf_pmu_nop_int; 6506 pmu->cancel_txn = perf_pmu_nop_void; 6507 } 6508 } 6509 6510 if (!pmu->pmu_enable) { 6511 pmu->pmu_enable = perf_pmu_nop_void; 6512 pmu->pmu_disable = perf_pmu_nop_void; 6513 } 6514 6515 if (!pmu->event_idx) 6516 pmu->event_idx = perf_event_idx_default; 6517 6518 list_add_rcu(&pmu->entry, &pmus); 6519 ret = 0; 6520 unlock: 6521 mutex_unlock(&pmus_lock); 6522 6523 return ret; 6524 6525 free_dev: 6526 device_del(pmu->dev); 6527 put_device(pmu->dev); 6528 6529 free_idr: 6530 if (pmu->type >= PERF_TYPE_MAX) 6531 idr_remove(&pmu_idr, pmu->type); 6532 6533 free_pdc: 6534 free_percpu(pmu->pmu_disable_count); 6535 goto unlock; 6536 } 6537 6538 void perf_pmu_unregister(struct pmu *pmu) 6539 { 6540 mutex_lock(&pmus_lock); 6541 list_del_rcu(&pmu->entry); 6542 mutex_unlock(&pmus_lock); 6543 6544 /* 6545 * We dereference the pmu list under both SRCU and regular RCU, so 6546 * synchronize against both of those. 6547 */ 6548 synchronize_srcu(&pmus_srcu); 6549 synchronize_rcu(); 6550 6551 free_percpu(pmu->pmu_disable_count); 6552 if (pmu->type >= PERF_TYPE_MAX) 6553 idr_remove(&pmu_idr, pmu->type); 6554 device_del(pmu->dev); 6555 put_device(pmu->dev); 6556 free_pmu_context(pmu); 6557 } 6558 6559 struct pmu *perf_init_event(struct perf_event *event) 6560 { 6561 struct pmu *pmu = NULL; 6562 int idx; 6563 int ret; 6564 6565 idx = srcu_read_lock(&pmus_srcu); 6566 6567 rcu_read_lock(); 6568 pmu = idr_find(&pmu_idr, event->attr.type); 6569 rcu_read_unlock(); 6570 if (pmu) { 6571 event->pmu = pmu; 6572 ret = pmu->event_init(event); 6573 if (ret) 6574 pmu = ERR_PTR(ret); 6575 goto unlock; 6576 } 6577 6578 list_for_each_entry_rcu(pmu, &pmus, entry) { 6579 event->pmu = pmu; 6580 ret = pmu->event_init(event); 6581 if (!ret) 6582 goto unlock; 6583 6584 if (ret != -ENOENT) { 6585 pmu = ERR_PTR(ret); 6586 goto unlock; 6587 } 6588 } 6589 pmu = ERR_PTR(-ENOENT); 6590 unlock: 6591 srcu_read_unlock(&pmus_srcu, idx); 6592 6593 return pmu; 6594 } 6595 6596 static void account_event_cpu(struct perf_event *event, int cpu) 6597 { 6598 if (event->parent) 6599 return; 6600 6601 if (has_branch_stack(event)) { 6602 if (!(event->attach_state & PERF_ATTACH_TASK)) 6603 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6604 } 6605 if (is_cgroup_event(event)) 6606 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6607 } 6608 6609 static void account_event(struct perf_event *event) 6610 { 6611 if (event->parent) 6612 return; 6613 6614 if (event->attach_state & PERF_ATTACH_TASK) 6615 static_key_slow_inc(&perf_sched_events.key); 6616 if (event->attr.mmap || event->attr.mmap_data) 6617 atomic_inc(&nr_mmap_events); 6618 if (event->attr.comm) 6619 atomic_inc(&nr_comm_events); 6620 if (event->attr.task) 6621 atomic_inc(&nr_task_events); 6622 if (event->attr.freq) { 6623 if (atomic_inc_return(&nr_freq_events) == 1) 6624 tick_nohz_full_kick_all(); 6625 } 6626 if (has_branch_stack(event)) 6627 static_key_slow_inc(&perf_sched_events.key); 6628 if (is_cgroup_event(event)) 6629 static_key_slow_inc(&perf_sched_events.key); 6630 6631 account_event_cpu(event, event->cpu); 6632 } 6633 6634 /* 6635 * Allocate and initialize a event structure 6636 */ 6637 static struct perf_event * 6638 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6639 struct task_struct *task, 6640 struct perf_event *group_leader, 6641 struct perf_event *parent_event, 6642 perf_overflow_handler_t overflow_handler, 6643 void *context) 6644 { 6645 struct pmu *pmu; 6646 struct perf_event *event; 6647 struct hw_perf_event *hwc; 6648 long err = -EINVAL; 6649 6650 if ((unsigned)cpu >= nr_cpu_ids) { 6651 if (!task || cpu != -1) 6652 return ERR_PTR(-EINVAL); 6653 } 6654 6655 event = kzalloc(sizeof(*event), GFP_KERNEL); 6656 if (!event) 6657 return ERR_PTR(-ENOMEM); 6658 6659 /* 6660 * Single events are their own group leaders, with an 6661 * empty sibling list: 6662 */ 6663 if (!group_leader) 6664 group_leader = event; 6665 6666 mutex_init(&event->child_mutex); 6667 INIT_LIST_HEAD(&event->child_list); 6668 6669 INIT_LIST_HEAD(&event->group_entry); 6670 INIT_LIST_HEAD(&event->event_entry); 6671 INIT_LIST_HEAD(&event->sibling_list); 6672 INIT_LIST_HEAD(&event->rb_entry); 6673 6674 init_waitqueue_head(&event->waitq); 6675 init_irq_work(&event->pending, perf_pending_event); 6676 6677 mutex_init(&event->mmap_mutex); 6678 6679 atomic_long_set(&event->refcount, 1); 6680 event->cpu = cpu; 6681 event->attr = *attr; 6682 event->group_leader = group_leader; 6683 event->pmu = NULL; 6684 event->oncpu = -1; 6685 6686 event->parent = parent_event; 6687 6688 event->ns = get_pid_ns(task_active_pid_ns(current)); 6689 event->id = atomic64_inc_return(&perf_event_id); 6690 6691 event->state = PERF_EVENT_STATE_INACTIVE; 6692 6693 if (task) { 6694 event->attach_state = PERF_ATTACH_TASK; 6695 6696 if (attr->type == PERF_TYPE_TRACEPOINT) 6697 event->hw.tp_target = task; 6698 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6699 /* 6700 * hw_breakpoint is a bit difficult here.. 6701 */ 6702 else if (attr->type == PERF_TYPE_BREAKPOINT) 6703 event->hw.bp_target = task; 6704 #endif 6705 } 6706 6707 if (!overflow_handler && parent_event) { 6708 overflow_handler = parent_event->overflow_handler; 6709 context = parent_event->overflow_handler_context; 6710 } 6711 6712 event->overflow_handler = overflow_handler; 6713 event->overflow_handler_context = context; 6714 6715 perf_event__state_init(event); 6716 6717 pmu = NULL; 6718 6719 hwc = &event->hw; 6720 hwc->sample_period = attr->sample_period; 6721 if (attr->freq && attr->sample_freq) 6722 hwc->sample_period = 1; 6723 hwc->last_period = hwc->sample_period; 6724 6725 local64_set(&hwc->period_left, hwc->sample_period); 6726 6727 /* 6728 * we currently do not support PERF_FORMAT_GROUP on inherited events 6729 */ 6730 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6731 goto err_ns; 6732 6733 pmu = perf_init_event(event); 6734 if (!pmu) 6735 goto err_ns; 6736 else if (IS_ERR(pmu)) { 6737 err = PTR_ERR(pmu); 6738 goto err_ns; 6739 } 6740 6741 if (!event->parent) { 6742 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6743 err = get_callchain_buffers(); 6744 if (err) 6745 goto err_pmu; 6746 } 6747 } 6748 6749 return event; 6750 6751 err_pmu: 6752 if (event->destroy) 6753 event->destroy(event); 6754 err_ns: 6755 if (event->ns) 6756 put_pid_ns(event->ns); 6757 kfree(event); 6758 6759 return ERR_PTR(err); 6760 } 6761 6762 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6763 struct perf_event_attr *attr) 6764 { 6765 u32 size; 6766 int ret; 6767 6768 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6769 return -EFAULT; 6770 6771 /* 6772 * zero the full structure, so that a short copy will be nice. 6773 */ 6774 memset(attr, 0, sizeof(*attr)); 6775 6776 ret = get_user(size, &uattr->size); 6777 if (ret) 6778 return ret; 6779 6780 if (size > PAGE_SIZE) /* silly large */ 6781 goto err_size; 6782 6783 if (!size) /* abi compat */ 6784 size = PERF_ATTR_SIZE_VER0; 6785 6786 if (size < PERF_ATTR_SIZE_VER0) 6787 goto err_size; 6788 6789 /* 6790 * If we're handed a bigger struct than we know of, 6791 * ensure all the unknown bits are 0 - i.e. new 6792 * user-space does not rely on any kernel feature 6793 * extensions we dont know about yet. 6794 */ 6795 if (size > sizeof(*attr)) { 6796 unsigned char __user *addr; 6797 unsigned char __user *end; 6798 unsigned char val; 6799 6800 addr = (void __user *)uattr + sizeof(*attr); 6801 end = (void __user *)uattr + size; 6802 6803 for (; addr < end; addr++) { 6804 ret = get_user(val, addr); 6805 if (ret) 6806 return ret; 6807 if (val) 6808 goto err_size; 6809 } 6810 size = sizeof(*attr); 6811 } 6812 6813 ret = copy_from_user(attr, uattr, size); 6814 if (ret) 6815 return -EFAULT; 6816 6817 /* disabled for now */ 6818 if (attr->mmap2) 6819 return -EINVAL; 6820 6821 if (attr->__reserved_1) 6822 return -EINVAL; 6823 6824 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6825 return -EINVAL; 6826 6827 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6828 return -EINVAL; 6829 6830 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6831 u64 mask = attr->branch_sample_type; 6832 6833 /* only using defined bits */ 6834 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6835 return -EINVAL; 6836 6837 /* at least one branch bit must be set */ 6838 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6839 return -EINVAL; 6840 6841 /* propagate priv level, when not set for branch */ 6842 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6843 6844 /* exclude_kernel checked on syscall entry */ 6845 if (!attr->exclude_kernel) 6846 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6847 6848 if (!attr->exclude_user) 6849 mask |= PERF_SAMPLE_BRANCH_USER; 6850 6851 if (!attr->exclude_hv) 6852 mask |= PERF_SAMPLE_BRANCH_HV; 6853 /* 6854 * adjust user setting (for HW filter setup) 6855 */ 6856 attr->branch_sample_type = mask; 6857 } 6858 /* privileged levels capture (kernel, hv): check permissions */ 6859 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6860 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6861 return -EACCES; 6862 } 6863 6864 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6865 ret = perf_reg_validate(attr->sample_regs_user); 6866 if (ret) 6867 return ret; 6868 } 6869 6870 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6871 if (!arch_perf_have_user_stack_dump()) 6872 return -ENOSYS; 6873 6874 /* 6875 * We have __u32 type for the size, but so far 6876 * we can only use __u16 as maximum due to the 6877 * __u16 sample size limit. 6878 */ 6879 if (attr->sample_stack_user >= USHRT_MAX) 6880 ret = -EINVAL; 6881 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6882 ret = -EINVAL; 6883 } 6884 6885 out: 6886 return ret; 6887 6888 err_size: 6889 put_user(sizeof(*attr), &uattr->size); 6890 ret = -E2BIG; 6891 goto out; 6892 } 6893 6894 static int 6895 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6896 { 6897 struct ring_buffer *rb = NULL, *old_rb = NULL; 6898 int ret = -EINVAL; 6899 6900 if (!output_event) 6901 goto set; 6902 6903 /* don't allow circular references */ 6904 if (event == output_event) 6905 goto out; 6906 6907 /* 6908 * Don't allow cross-cpu buffers 6909 */ 6910 if (output_event->cpu != event->cpu) 6911 goto out; 6912 6913 /* 6914 * If its not a per-cpu rb, it must be the same task. 6915 */ 6916 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6917 goto out; 6918 6919 set: 6920 mutex_lock(&event->mmap_mutex); 6921 /* Can't redirect output if we've got an active mmap() */ 6922 if (atomic_read(&event->mmap_count)) 6923 goto unlock; 6924 6925 old_rb = event->rb; 6926 6927 if (output_event) { 6928 /* get the rb we want to redirect to */ 6929 rb = ring_buffer_get(output_event); 6930 if (!rb) 6931 goto unlock; 6932 } 6933 6934 if (old_rb) 6935 ring_buffer_detach(event, old_rb); 6936 6937 if (rb) 6938 ring_buffer_attach(event, rb); 6939 6940 rcu_assign_pointer(event->rb, rb); 6941 6942 if (old_rb) { 6943 ring_buffer_put(old_rb); 6944 /* 6945 * Since we detached before setting the new rb, so that we 6946 * could attach the new rb, we could have missed a wakeup. 6947 * Provide it now. 6948 */ 6949 wake_up_all(&event->waitq); 6950 } 6951 6952 ret = 0; 6953 unlock: 6954 mutex_unlock(&event->mmap_mutex); 6955 6956 out: 6957 return ret; 6958 } 6959 6960 /** 6961 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6962 * 6963 * @attr_uptr: event_id type attributes for monitoring/sampling 6964 * @pid: target pid 6965 * @cpu: target cpu 6966 * @group_fd: group leader event fd 6967 */ 6968 SYSCALL_DEFINE5(perf_event_open, 6969 struct perf_event_attr __user *, attr_uptr, 6970 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6971 { 6972 struct perf_event *group_leader = NULL, *output_event = NULL; 6973 struct perf_event *event, *sibling; 6974 struct perf_event_attr attr; 6975 struct perf_event_context *ctx; 6976 struct file *event_file = NULL; 6977 struct fd group = {NULL, 0}; 6978 struct task_struct *task = NULL; 6979 struct pmu *pmu; 6980 int event_fd; 6981 int move_group = 0; 6982 int err; 6983 6984 /* for future expandability... */ 6985 if (flags & ~PERF_FLAG_ALL) 6986 return -EINVAL; 6987 6988 err = perf_copy_attr(attr_uptr, &attr); 6989 if (err) 6990 return err; 6991 6992 if (!attr.exclude_kernel) { 6993 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6994 return -EACCES; 6995 } 6996 6997 if (attr.freq) { 6998 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6999 return -EINVAL; 7000 } 7001 7002 /* 7003 * In cgroup mode, the pid argument is used to pass the fd 7004 * opened to the cgroup directory in cgroupfs. The cpu argument 7005 * designates the cpu on which to monitor threads from that 7006 * cgroup. 7007 */ 7008 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7009 return -EINVAL; 7010 7011 event_fd = get_unused_fd(); 7012 if (event_fd < 0) 7013 return event_fd; 7014 7015 if (group_fd != -1) { 7016 err = perf_fget_light(group_fd, &group); 7017 if (err) 7018 goto err_fd; 7019 group_leader = group.file->private_data; 7020 if (flags & PERF_FLAG_FD_OUTPUT) 7021 output_event = group_leader; 7022 if (flags & PERF_FLAG_FD_NO_GROUP) 7023 group_leader = NULL; 7024 } 7025 7026 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7027 task = find_lively_task_by_vpid(pid); 7028 if (IS_ERR(task)) { 7029 err = PTR_ERR(task); 7030 goto err_group_fd; 7031 } 7032 } 7033 7034 get_online_cpus(); 7035 7036 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7037 NULL, NULL); 7038 if (IS_ERR(event)) { 7039 err = PTR_ERR(event); 7040 goto err_task; 7041 } 7042 7043 if (flags & PERF_FLAG_PID_CGROUP) { 7044 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7045 if (err) { 7046 __free_event(event); 7047 goto err_task; 7048 } 7049 } 7050 7051 account_event(event); 7052 7053 /* 7054 * Special case software events and allow them to be part of 7055 * any hardware group. 7056 */ 7057 pmu = event->pmu; 7058 7059 if (group_leader && 7060 (is_software_event(event) != is_software_event(group_leader))) { 7061 if (is_software_event(event)) { 7062 /* 7063 * If event and group_leader are not both a software 7064 * event, and event is, then group leader is not. 7065 * 7066 * Allow the addition of software events to !software 7067 * groups, this is safe because software events never 7068 * fail to schedule. 7069 */ 7070 pmu = group_leader->pmu; 7071 } else if (is_software_event(group_leader) && 7072 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7073 /* 7074 * In case the group is a pure software group, and we 7075 * try to add a hardware event, move the whole group to 7076 * the hardware context. 7077 */ 7078 move_group = 1; 7079 } 7080 } 7081 7082 /* 7083 * Get the target context (task or percpu): 7084 */ 7085 ctx = find_get_context(pmu, task, event->cpu); 7086 if (IS_ERR(ctx)) { 7087 err = PTR_ERR(ctx); 7088 goto err_alloc; 7089 } 7090 7091 if (task) { 7092 put_task_struct(task); 7093 task = NULL; 7094 } 7095 7096 /* 7097 * Look up the group leader (we will attach this event to it): 7098 */ 7099 if (group_leader) { 7100 err = -EINVAL; 7101 7102 /* 7103 * Do not allow a recursive hierarchy (this new sibling 7104 * becoming part of another group-sibling): 7105 */ 7106 if (group_leader->group_leader != group_leader) 7107 goto err_context; 7108 /* 7109 * Do not allow to attach to a group in a different 7110 * task or CPU context: 7111 */ 7112 if (move_group) { 7113 if (group_leader->ctx->type != ctx->type) 7114 goto err_context; 7115 } else { 7116 if (group_leader->ctx != ctx) 7117 goto err_context; 7118 } 7119 7120 /* 7121 * Only a group leader can be exclusive or pinned 7122 */ 7123 if (attr.exclusive || attr.pinned) 7124 goto err_context; 7125 } 7126 7127 if (output_event) { 7128 err = perf_event_set_output(event, output_event); 7129 if (err) 7130 goto err_context; 7131 } 7132 7133 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 7134 if (IS_ERR(event_file)) { 7135 err = PTR_ERR(event_file); 7136 goto err_context; 7137 } 7138 7139 if (move_group) { 7140 struct perf_event_context *gctx = group_leader->ctx; 7141 7142 mutex_lock(&gctx->mutex); 7143 perf_remove_from_context(group_leader); 7144 7145 /* 7146 * Removing from the context ends up with disabled 7147 * event. What we want here is event in the initial 7148 * startup state, ready to be add into new context. 7149 */ 7150 perf_event__state_init(group_leader); 7151 list_for_each_entry(sibling, &group_leader->sibling_list, 7152 group_entry) { 7153 perf_remove_from_context(sibling); 7154 perf_event__state_init(sibling); 7155 put_ctx(gctx); 7156 } 7157 mutex_unlock(&gctx->mutex); 7158 put_ctx(gctx); 7159 } 7160 7161 WARN_ON_ONCE(ctx->parent_ctx); 7162 mutex_lock(&ctx->mutex); 7163 7164 if (move_group) { 7165 synchronize_rcu(); 7166 perf_install_in_context(ctx, group_leader, event->cpu); 7167 get_ctx(ctx); 7168 list_for_each_entry(sibling, &group_leader->sibling_list, 7169 group_entry) { 7170 perf_install_in_context(ctx, sibling, event->cpu); 7171 get_ctx(ctx); 7172 } 7173 } 7174 7175 perf_install_in_context(ctx, event, event->cpu); 7176 perf_unpin_context(ctx); 7177 mutex_unlock(&ctx->mutex); 7178 7179 put_online_cpus(); 7180 7181 event->owner = current; 7182 7183 mutex_lock(¤t->perf_event_mutex); 7184 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7185 mutex_unlock(¤t->perf_event_mutex); 7186 7187 /* 7188 * Precalculate sample_data sizes 7189 */ 7190 perf_event__header_size(event); 7191 perf_event__id_header_size(event); 7192 7193 /* 7194 * Drop the reference on the group_event after placing the 7195 * new event on the sibling_list. This ensures destruction 7196 * of the group leader will find the pointer to itself in 7197 * perf_group_detach(). 7198 */ 7199 fdput(group); 7200 fd_install(event_fd, event_file); 7201 return event_fd; 7202 7203 err_context: 7204 perf_unpin_context(ctx); 7205 put_ctx(ctx); 7206 err_alloc: 7207 free_event(event); 7208 err_task: 7209 put_online_cpus(); 7210 if (task) 7211 put_task_struct(task); 7212 err_group_fd: 7213 fdput(group); 7214 err_fd: 7215 put_unused_fd(event_fd); 7216 return err; 7217 } 7218 7219 /** 7220 * perf_event_create_kernel_counter 7221 * 7222 * @attr: attributes of the counter to create 7223 * @cpu: cpu in which the counter is bound 7224 * @task: task to profile (NULL for percpu) 7225 */ 7226 struct perf_event * 7227 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7228 struct task_struct *task, 7229 perf_overflow_handler_t overflow_handler, 7230 void *context) 7231 { 7232 struct perf_event_context *ctx; 7233 struct perf_event *event; 7234 int err; 7235 7236 /* 7237 * Get the target context (task or percpu): 7238 */ 7239 7240 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7241 overflow_handler, context); 7242 if (IS_ERR(event)) { 7243 err = PTR_ERR(event); 7244 goto err; 7245 } 7246 7247 account_event(event); 7248 7249 ctx = find_get_context(event->pmu, task, cpu); 7250 if (IS_ERR(ctx)) { 7251 err = PTR_ERR(ctx); 7252 goto err_free; 7253 } 7254 7255 WARN_ON_ONCE(ctx->parent_ctx); 7256 mutex_lock(&ctx->mutex); 7257 perf_install_in_context(ctx, event, cpu); 7258 perf_unpin_context(ctx); 7259 mutex_unlock(&ctx->mutex); 7260 7261 return event; 7262 7263 err_free: 7264 free_event(event); 7265 err: 7266 return ERR_PTR(err); 7267 } 7268 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7269 7270 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7271 { 7272 struct perf_event_context *src_ctx; 7273 struct perf_event_context *dst_ctx; 7274 struct perf_event *event, *tmp; 7275 LIST_HEAD(events); 7276 7277 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7278 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7279 7280 mutex_lock(&src_ctx->mutex); 7281 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7282 event_entry) { 7283 perf_remove_from_context(event); 7284 unaccount_event_cpu(event, src_cpu); 7285 put_ctx(src_ctx); 7286 list_add(&event->migrate_entry, &events); 7287 } 7288 mutex_unlock(&src_ctx->mutex); 7289 7290 synchronize_rcu(); 7291 7292 mutex_lock(&dst_ctx->mutex); 7293 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7294 list_del(&event->migrate_entry); 7295 if (event->state >= PERF_EVENT_STATE_OFF) 7296 event->state = PERF_EVENT_STATE_INACTIVE; 7297 account_event_cpu(event, dst_cpu); 7298 perf_install_in_context(dst_ctx, event, dst_cpu); 7299 get_ctx(dst_ctx); 7300 } 7301 mutex_unlock(&dst_ctx->mutex); 7302 } 7303 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7304 7305 static void sync_child_event(struct perf_event *child_event, 7306 struct task_struct *child) 7307 { 7308 struct perf_event *parent_event = child_event->parent; 7309 u64 child_val; 7310 7311 if (child_event->attr.inherit_stat) 7312 perf_event_read_event(child_event, child); 7313 7314 child_val = perf_event_count(child_event); 7315 7316 /* 7317 * Add back the child's count to the parent's count: 7318 */ 7319 atomic64_add(child_val, &parent_event->child_count); 7320 atomic64_add(child_event->total_time_enabled, 7321 &parent_event->child_total_time_enabled); 7322 atomic64_add(child_event->total_time_running, 7323 &parent_event->child_total_time_running); 7324 7325 /* 7326 * Remove this event from the parent's list 7327 */ 7328 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7329 mutex_lock(&parent_event->child_mutex); 7330 list_del_init(&child_event->child_list); 7331 mutex_unlock(&parent_event->child_mutex); 7332 7333 /* 7334 * Release the parent event, if this was the last 7335 * reference to it. 7336 */ 7337 put_event(parent_event); 7338 } 7339 7340 static void 7341 __perf_event_exit_task(struct perf_event *child_event, 7342 struct perf_event_context *child_ctx, 7343 struct task_struct *child) 7344 { 7345 if (child_event->parent) { 7346 raw_spin_lock_irq(&child_ctx->lock); 7347 perf_group_detach(child_event); 7348 raw_spin_unlock_irq(&child_ctx->lock); 7349 } 7350 7351 perf_remove_from_context(child_event); 7352 7353 /* 7354 * It can happen that the parent exits first, and has events 7355 * that are still around due to the child reference. These 7356 * events need to be zapped. 7357 */ 7358 if (child_event->parent) { 7359 sync_child_event(child_event, child); 7360 free_event(child_event); 7361 } 7362 } 7363 7364 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7365 { 7366 struct perf_event *child_event, *tmp; 7367 struct perf_event_context *child_ctx; 7368 unsigned long flags; 7369 7370 if (likely(!child->perf_event_ctxp[ctxn])) { 7371 perf_event_task(child, NULL, 0); 7372 return; 7373 } 7374 7375 local_irq_save(flags); 7376 /* 7377 * We can't reschedule here because interrupts are disabled, 7378 * and either child is current or it is a task that can't be 7379 * scheduled, so we are now safe from rescheduling changing 7380 * our context. 7381 */ 7382 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7383 7384 /* 7385 * Take the context lock here so that if find_get_context is 7386 * reading child->perf_event_ctxp, we wait until it has 7387 * incremented the context's refcount before we do put_ctx below. 7388 */ 7389 raw_spin_lock(&child_ctx->lock); 7390 task_ctx_sched_out(child_ctx); 7391 child->perf_event_ctxp[ctxn] = NULL; 7392 /* 7393 * If this context is a clone; unclone it so it can't get 7394 * swapped to another process while we're removing all 7395 * the events from it. 7396 */ 7397 unclone_ctx(child_ctx); 7398 update_context_time(child_ctx); 7399 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7400 7401 /* 7402 * Report the task dead after unscheduling the events so that we 7403 * won't get any samples after PERF_RECORD_EXIT. We can however still 7404 * get a few PERF_RECORD_READ events. 7405 */ 7406 perf_event_task(child, child_ctx, 0); 7407 7408 /* 7409 * We can recurse on the same lock type through: 7410 * 7411 * __perf_event_exit_task() 7412 * sync_child_event() 7413 * put_event() 7414 * mutex_lock(&ctx->mutex) 7415 * 7416 * But since its the parent context it won't be the same instance. 7417 */ 7418 mutex_lock(&child_ctx->mutex); 7419 7420 again: 7421 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 7422 group_entry) 7423 __perf_event_exit_task(child_event, child_ctx, child); 7424 7425 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 7426 group_entry) 7427 __perf_event_exit_task(child_event, child_ctx, child); 7428 7429 /* 7430 * If the last event was a group event, it will have appended all 7431 * its siblings to the list, but we obtained 'tmp' before that which 7432 * will still point to the list head terminating the iteration. 7433 */ 7434 if (!list_empty(&child_ctx->pinned_groups) || 7435 !list_empty(&child_ctx->flexible_groups)) 7436 goto again; 7437 7438 mutex_unlock(&child_ctx->mutex); 7439 7440 put_ctx(child_ctx); 7441 } 7442 7443 /* 7444 * When a child task exits, feed back event values to parent events. 7445 */ 7446 void perf_event_exit_task(struct task_struct *child) 7447 { 7448 struct perf_event *event, *tmp; 7449 int ctxn; 7450 7451 mutex_lock(&child->perf_event_mutex); 7452 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7453 owner_entry) { 7454 list_del_init(&event->owner_entry); 7455 7456 /* 7457 * Ensure the list deletion is visible before we clear 7458 * the owner, closes a race against perf_release() where 7459 * we need to serialize on the owner->perf_event_mutex. 7460 */ 7461 smp_wmb(); 7462 event->owner = NULL; 7463 } 7464 mutex_unlock(&child->perf_event_mutex); 7465 7466 for_each_task_context_nr(ctxn) 7467 perf_event_exit_task_context(child, ctxn); 7468 } 7469 7470 static void perf_free_event(struct perf_event *event, 7471 struct perf_event_context *ctx) 7472 { 7473 struct perf_event *parent = event->parent; 7474 7475 if (WARN_ON_ONCE(!parent)) 7476 return; 7477 7478 mutex_lock(&parent->child_mutex); 7479 list_del_init(&event->child_list); 7480 mutex_unlock(&parent->child_mutex); 7481 7482 put_event(parent); 7483 7484 perf_group_detach(event); 7485 list_del_event(event, ctx); 7486 free_event(event); 7487 } 7488 7489 /* 7490 * free an unexposed, unused context as created by inheritance by 7491 * perf_event_init_task below, used by fork() in case of fail. 7492 */ 7493 void perf_event_free_task(struct task_struct *task) 7494 { 7495 struct perf_event_context *ctx; 7496 struct perf_event *event, *tmp; 7497 int ctxn; 7498 7499 for_each_task_context_nr(ctxn) { 7500 ctx = task->perf_event_ctxp[ctxn]; 7501 if (!ctx) 7502 continue; 7503 7504 mutex_lock(&ctx->mutex); 7505 again: 7506 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7507 group_entry) 7508 perf_free_event(event, ctx); 7509 7510 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7511 group_entry) 7512 perf_free_event(event, ctx); 7513 7514 if (!list_empty(&ctx->pinned_groups) || 7515 !list_empty(&ctx->flexible_groups)) 7516 goto again; 7517 7518 mutex_unlock(&ctx->mutex); 7519 7520 put_ctx(ctx); 7521 } 7522 } 7523 7524 void perf_event_delayed_put(struct task_struct *task) 7525 { 7526 int ctxn; 7527 7528 for_each_task_context_nr(ctxn) 7529 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7530 } 7531 7532 /* 7533 * inherit a event from parent task to child task: 7534 */ 7535 static struct perf_event * 7536 inherit_event(struct perf_event *parent_event, 7537 struct task_struct *parent, 7538 struct perf_event_context *parent_ctx, 7539 struct task_struct *child, 7540 struct perf_event *group_leader, 7541 struct perf_event_context *child_ctx) 7542 { 7543 struct perf_event *child_event; 7544 unsigned long flags; 7545 7546 /* 7547 * Instead of creating recursive hierarchies of events, 7548 * we link inherited events back to the original parent, 7549 * which has a filp for sure, which we use as the reference 7550 * count: 7551 */ 7552 if (parent_event->parent) 7553 parent_event = parent_event->parent; 7554 7555 child_event = perf_event_alloc(&parent_event->attr, 7556 parent_event->cpu, 7557 child, 7558 group_leader, parent_event, 7559 NULL, NULL); 7560 if (IS_ERR(child_event)) 7561 return child_event; 7562 7563 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7564 free_event(child_event); 7565 return NULL; 7566 } 7567 7568 get_ctx(child_ctx); 7569 7570 /* 7571 * Make the child state follow the state of the parent event, 7572 * not its attr.disabled bit. We hold the parent's mutex, 7573 * so we won't race with perf_event_{en, dis}able_family. 7574 */ 7575 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7576 child_event->state = PERF_EVENT_STATE_INACTIVE; 7577 else 7578 child_event->state = PERF_EVENT_STATE_OFF; 7579 7580 if (parent_event->attr.freq) { 7581 u64 sample_period = parent_event->hw.sample_period; 7582 struct hw_perf_event *hwc = &child_event->hw; 7583 7584 hwc->sample_period = sample_period; 7585 hwc->last_period = sample_period; 7586 7587 local64_set(&hwc->period_left, sample_period); 7588 } 7589 7590 child_event->ctx = child_ctx; 7591 child_event->overflow_handler = parent_event->overflow_handler; 7592 child_event->overflow_handler_context 7593 = parent_event->overflow_handler_context; 7594 7595 /* 7596 * Precalculate sample_data sizes 7597 */ 7598 perf_event__header_size(child_event); 7599 perf_event__id_header_size(child_event); 7600 7601 /* 7602 * Link it up in the child's context: 7603 */ 7604 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7605 add_event_to_ctx(child_event, child_ctx); 7606 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7607 7608 /* 7609 * Link this into the parent event's child list 7610 */ 7611 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7612 mutex_lock(&parent_event->child_mutex); 7613 list_add_tail(&child_event->child_list, &parent_event->child_list); 7614 mutex_unlock(&parent_event->child_mutex); 7615 7616 return child_event; 7617 } 7618 7619 static int inherit_group(struct perf_event *parent_event, 7620 struct task_struct *parent, 7621 struct perf_event_context *parent_ctx, 7622 struct task_struct *child, 7623 struct perf_event_context *child_ctx) 7624 { 7625 struct perf_event *leader; 7626 struct perf_event *sub; 7627 struct perf_event *child_ctr; 7628 7629 leader = inherit_event(parent_event, parent, parent_ctx, 7630 child, NULL, child_ctx); 7631 if (IS_ERR(leader)) 7632 return PTR_ERR(leader); 7633 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7634 child_ctr = inherit_event(sub, parent, parent_ctx, 7635 child, leader, child_ctx); 7636 if (IS_ERR(child_ctr)) 7637 return PTR_ERR(child_ctr); 7638 } 7639 return 0; 7640 } 7641 7642 static int 7643 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7644 struct perf_event_context *parent_ctx, 7645 struct task_struct *child, int ctxn, 7646 int *inherited_all) 7647 { 7648 int ret; 7649 struct perf_event_context *child_ctx; 7650 7651 if (!event->attr.inherit) { 7652 *inherited_all = 0; 7653 return 0; 7654 } 7655 7656 child_ctx = child->perf_event_ctxp[ctxn]; 7657 if (!child_ctx) { 7658 /* 7659 * This is executed from the parent task context, so 7660 * inherit events that have been marked for cloning. 7661 * First allocate and initialize a context for the 7662 * child. 7663 */ 7664 7665 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7666 if (!child_ctx) 7667 return -ENOMEM; 7668 7669 child->perf_event_ctxp[ctxn] = child_ctx; 7670 } 7671 7672 ret = inherit_group(event, parent, parent_ctx, 7673 child, child_ctx); 7674 7675 if (ret) 7676 *inherited_all = 0; 7677 7678 return ret; 7679 } 7680 7681 /* 7682 * Initialize the perf_event context in task_struct 7683 */ 7684 int perf_event_init_context(struct task_struct *child, int ctxn) 7685 { 7686 struct perf_event_context *child_ctx, *parent_ctx; 7687 struct perf_event_context *cloned_ctx; 7688 struct perf_event *event; 7689 struct task_struct *parent = current; 7690 int inherited_all = 1; 7691 unsigned long flags; 7692 int ret = 0; 7693 7694 if (likely(!parent->perf_event_ctxp[ctxn])) 7695 return 0; 7696 7697 /* 7698 * If the parent's context is a clone, pin it so it won't get 7699 * swapped under us. 7700 */ 7701 parent_ctx = perf_pin_task_context(parent, ctxn); 7702 7703 /* 7704 * No need to check if parent_ctx != NULL here; since we saw 7705 * it non-NULL earlier, the only reason for it to become NULL 7706 * is if we exit, and since we're currently in the middle of 7707 * a fork we can't be exiting at the same time. 7708 */ 7709 7710 /* 7711 * Lock the parent list. No need to lock the child - not PID 7712 * hashed yet and not running, so nobody can access it. 7713 */ 7714 mutex_lock(&parent_ctx->mutex); 7715 7716 /* 7717 * We dont have to disable NMIs - we are only looking at 7718 * the list, not manipulating it: 7719 */ 7720 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7721 ret = inherit_task_group(event, parent, parent_ctx, 7722 child, ctxn, &inherited_all); 7723 if (ret) 7724 break; 7725 } 7726 7727 /* 7728 * We can't hold ctx->lock when iterating the ->flexible_group list due 7729 * to allocations, but we need to prevent rotation because 7730 * rotate_ctx() will change the list from interrupt context. 7731 */ 7732 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7733 parent_ctx->rotate_disable = 1; 7734 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7735 7736 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7737 ret = inherit_task_group(event, parent, parent_ctx, 7738 child, ctxn, &inherited_all); 7739 if (ret) 7740 break; 7741 } 7742 7743 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7744 parent_ctx->rotate_disable = 0; 7745 7746 child_ctx = child->perf_event_ctxp[ctxn]; 7747 7748 if (child_ctx && inherited_all) { 7749 /* 7750 * Mark the child context as a clone of the parent 7751 * context, or of whatever the parent is a clone of. 7752 * 7753 * Note that if the parent is a clone, the holding of 7754 * parent_ctx->lock avoids it from being uncloned. 7755 */ 7756 cloned_ctx = parent_ctx->parent_ctx; 7757 if (cloned_ctx) { 7758 child_ctx->parent_ctx = cloned_ctx; 7759 child_ctx->parent_gen = parent_ctx->parent_gen; 7760 } else { 7761 child_ctx->parent_ctx = parent_ctx; 7762 child_ctx->parent_gen = parent_ctx->generation; 7763 } 7764 get_ctx(child_ctx->parent_ctx); 7765 } 7766 7767 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7768 mutex_unlock(&parent_ctx->mutex); 7769 7770 perf_unpin_context(parent_ctx); 7771 put_ctx(parent_ctx); 7772 7773 return ret; 7774 } 7775 7776 /* 7777 * Initialize the perf_event context in task_struct 7778 */ 7779 int perf_event_init_task(struct task_struct *child) 7780 { 7781 int ctxn, ret; 7782 7783 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7784 mutex_init(&child->perf_event_mutex); 7785 INIT_LIST_HEAD(&child->perf_event_list); 7786 7787 for_each_task_context_nr(ctxn) { 7788 ret = perf_event_init_context(child, ctxn); 7789 if (ret) 7790 return ret; 7791 } 7792 7793 return 0; 7794 } 7795 7796 static void __init perf_event_init_all_cpus(void) 7797 { 7798 struct swevent_htable *swhash; 7799 int cpu; 7800 7801 for_each_possible_cpu(cpu) { 7802 swhash = &per_cpu(swevent_htable, cpu); 7803 mutex_init(&swhash->hlist_mutex); 7804 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7805 } 7806 } 7807 7808 static void perf_event_init_cpu(int cpu) 7809 { 7810 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7811 7812 mutex_lock(&swhash->hlist_mutex); 7813 if (swhash->hlist_refcount > 0) { 7814 struct swevent_hlist *hlist; 7815 7816 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7817 WARN_ON(!hlist); 7818 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7819 } 7820 mutex_unlock(&swhash->hlist_mutex); 7821 } 7822 7823 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7824 static void perf_pmu_rotate_stop(struct pmu *pmu) 7825 { 7826 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7827 7828 WARN_ON(!irqs_disabled()); 7829 7830 list_del_init(&cpuctx->rotation_list); 7831 } 7832 7833 static void __perf_event_exit_context(void *__info) 7834 { 7835 struct perf_event_context *ctx = __info; 7836 struct perf_event *event, *tmp; 7837 7838 perf_pmu_rotate_stop(ctx->pmu); 7839 7840 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7841 __perf_remove_from_context(event); 7842 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7843 __perf_remove_from_context(event); 7844 } 7845 7846 static void perf_event_exit_cpu_context(int cpu) 7847 { 7848 struct perf_event_context *ctx; 7849 struct pmu *pmu; 7850 int idx; 7851 7852 idx = srcu_read_lock(&pmus_srcu); 7853 list_for_each_entry_rcu(pmu, &pmus, entry) { 7854 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7855 7856 mutex_lock(&ctx->mutex); 7857 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7858 mutex_unlock(&ctx->mutex); 7859 } 7860 srcu_read_unlock(&pmus_srcu, idx); 7861 } 7862 7863 static void perf_event_exit_cpu(int cpu) 7864 { 7865 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7866 7867 mutex_lock(&swhash->hlist_mutex); 7868 swevent_hlist_release(swhash); 7869 mutex_unlock(&swhash->hlist_mutex); 7870 7871 perf_event_exit_cpu_context(cpu); 7872 } 7873 #else 7874 static inline void perf_event_exit_cpu(int cpu) { } 7875 #endif 7876 7877 static int 7878 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7879 { 7880 int cpu; 7881 7882 for_each_online_cpu(cpu) 7883 perf_event_exit_cpu(cpu); 7884 7885 return NOTIFY_OK; 7886 } 7887 7888 /* 7889 * Run the perf reboot notifier at the very last possible moment so that 7890 * the generic watchdog code runs as long as possible. 7891 */ 7892 static struct notifier_block perf_reboot_notifier = { 7893 .notifier_call = perf_reboot, 7894 .priority = INT_MIN, 7895 }; 7896 7897 static int 7898 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7899 { 7900 unsigned int cpu = (long)hcpu; 7901 7902 switch (action & ~CPU_TASKS_FROZEN) { 7903 7904 case CPU_UP_PREPARE: 7905 case CPU_DOWN_FAILED: 7906 perf_event_init_cpu(cpu); 7907 break; 7908 7909 case CPU_UP_CANCELED: 7910 case CPU_DOWN_PREPARE: 7911 perf_event_exit_cpu(cpu); 7912 break; 7913 default: 7914 break; 7915 } 7916 7917 return NOTIFY_OK; 7918 } 7919 7920 void __init perf_event_init(void) 7921 { 7922 int ret; 7923 7924 idr_init(&pmu_idr); 7925 7926 perf_event_init_all_cpus(); 7927 init_srcu_struct(&pmus_srcu); 7928 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7929 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7930 perf_pmu_register(&perf_task_clock, NULL, -1); 7931 perf_tp_register(); 7932 perf_cpu_notifier(perf_cpu_notify); 7933 register_reboot_notifier(&perf_reboot_notifier); 7934 7935 ret = init_hw_breakpoint(); 7936 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7937 7938 /* do not patch jump label more than once per second */ 7939 jump_label_rate_limit(&perf_sched_events, HZ); 7940 7941 /* 7942 * Build time assertion that we keep the data_head at the intended 7943 * location. IOW, validation we got the __reserved[] size right. 7944 */ 7945 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7946 != 1024); 7947 } 7948 7949 static int __init perf_event_sysfs_init(void) 7950 { 7951 struct pmu *pmu; 7952 int ret; 7953 7954 mutex_lock(&pmus_lock); 7955 7956 ret = bus_register(&pmu_bus); 7957 if (ret) 7958 goto unlock; 7959 7960 list_for_each_entry(pmu, &pmus, entry) { 7961 if (!pmu->name || pmu->type < 0) 7962 continue; 7963 7964 ret = pmu_dev_alloc(pmu); 7965 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7966 } 7967 pmu_bus_running = 1; 7968 ret = 0; 7969 7970 unlock: 7971 mutex_unlock(&pmus_lock); 7972 7973 return ret; 7974 } 7975 device_initcall(perf_event_sysfs_init); 7976 7977 #ifdef CONFIG_CGROUP_PERF 7978 static struct cgroup_subsys_state * 7979 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7980 { 7981 struct perf_cgroup *jc; 7982 7983 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7984 if (!jc) 7985 return ERR_PTR(-ENOMEM); 7986 7987 jc->info = alloc_percpu(struct perf_cgroup_info); 7988 if (!jc->info) { 7989 kfree(jc); 7990 return ERR_PTR(-ENOMEM); 7991 } 7992 7993 return &jc->css; 7994 } 7995 7996 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 7997 { 7998 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 7999 8000 free_percpu(jc->info); 8001 kfree(jc); 8002 } 8003 8004 static int __perf_cgroup_move(void *info) 8005 { 8006 struct task_struct *task = info; 8007 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 8008 return 0; 8009 } 8010 8011 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 8012 struct cgroup_taskset *tset) 8013 { 8014 struct task_struct *task; 8015 8016 cgroup_taskset_for_each(task, css, tset) 8017 task_function_call(task, __perf_cgroup_move, task); 8018 } 8019 8020 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8021 struct cgroup_subsys_state *old_css, 8022 struct task_struct *task) 8023 { 8024 /* 8025 * cgroup_exit() is called in the copy_process() failure path. 8026 * Ignore this case since the task hasn't ran yet, this avoids 8027 * trying to poke a half freed task state from generic code. 8028 */ 8029 if (!(task->flags & PF_EXITING)) 8030 return; 8031 8032 task_function_call(task, __perf_cgroup_move, task); 8033 } 8034 8035 struct cgroup_subsys perf_subsys = { 8036 .name = "perf_event", 8037 .subsys_id = perf_subsys_id, 8038 .css_alloc = perf_cgroup_css_alloc, 8039 .css_free = perf_cgroup_css_free, 8040 .exit = perf_cgroup_exit, 8041 .attach = perf_cgroup_attach, 8042 }; 8043 #endif /* CONFIG_CGROUP_PERF */ 8044