xref: /linux/kernel/events/core.c (revision 8f668fbbd571bbd5187a9a0eae150b768fc388ac)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149 
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153 
154 /*
155  * perf event paranoia level:
156  *  -1 - not paranoid at all
157  *   0 - disallow raw tracepoint access for unpriv
158  *   1 - disallow cpu events for unpriv
159  *   2 - disallow kernel profiling for unpriv
160  */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162 
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 
166 /*
167  * max perf event sample rate
168  */
169 #define DEFAULT_MAX_SAMPLE_RATE		100000
170 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
172 
173 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
174 
175 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
177 
178 static int perf_sample_allowed_ns __read_mostly =
179 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
180 
181 void update_perf_cpu_limits(void)
182 {
183 	u64 tmp = perf_sample_period_ns;
184 
185 	tmp *= sysctl_perf_cpu_time_max_percent;
186 	do_div(tmp, 100);
187 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
188 }
189 
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191 
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 		void __user *buffer, size_t *lenp,
194 		loff_t *ppos)
195 {
196 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
197 
198 	if (ret || !write)
199 		return ret;
200 
201 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 	update_perf_cpu_limits();
204 
205 	return 0;
206 }
207 
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209 
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 				void __user *buffer, size_t *lenp,
212 				loff_t *ppos)
213 {
214 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	update_perf_cpu_limits();
220 
221 	return 0;
222 }
223 
224 /*
225  * perf samples are done in some very critical code paths (NMIs).
226  * If they take too much CPU time, the system can lock up and not
227  * get any real work done.  This will drop the sample rate when
228  * we detect that events are taking too long.
229  */
230 #define NR_ACCUMULATED_SAMPLES 128
231 static DEFINE_PER_CPU(u64, running_sample_length);
232 
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 	u64 avg_local_sample_len;
236 	u64 local_samples_len;
237 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238 
239 	if (allowed_ns == 0)
240 		return;
241 
242 	/* decay the counter by 1 average sample */
243 	local_samples_len = __get_cpu_var(running_sample_length);
244 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 	local_samples_len += sample_len_ns;
246 	__get_cpu_var(running_sample_length) = local_samples_len;
247 
248 	/*
249 	 * note: this will be biased artifically low until we have
250 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
251 	 * from having to maintain a count.
252 	 */
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	if (avg_local_sample_len <= allowed_ns)
256 		return;
257 
258 	if (max_samples_per_tick <= 1)
259 		return;
260 
261 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264 
265 	printk_ratelimited(KERN_WARNING
266 			"perf samples too long (%lld > %lld), lowering "
267 			"kernel.perf_event_max_sample_rate to %d\n",
268 			avg_local_sample_len, allowed_ns,
269 			sysctl_perf_event_sample_rate);
270 
271 	update_perf_cpu_limits();
272 }
273 
274 static atomic64_t perf_event_id;
275 
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 			      enum event_type_t event_type);
278 
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 			     enum event_type_t event_type,
281 			     struct task_struct *task);
282 
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285 
286 void __weak perf_event_print_debug(void)	{ }
287 
288 extern __weak const char *perf_pmu_name(void)
289 {
290 	return "pmu";
291 }
292 
293 static inline u64 perf_clock(void)
294 {
295 	return local_clock();
296 }
297 
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303 
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 			  struct perf_event_context *ctx)
306 {
307 	raw_spin_lock(&cpuctx->ctx.lock);
308 	if (ctx)
309 		raw_spin_lock(&ctx->lock);
310 }
311 
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 			    struct perf_event_context *ctx)
314 {
315 	if (ctx)
316 		raw_spin_unlock(&ctx->lock);
317 	raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319 
320 #ifdef CONFIG_CGROUP_PERF
321 
322 /*
323  * perf_cgroup_info keeps track of time_enabled for a cgroup.
324  * This is a per-cpu dynamically allocated data structure.
325  */
326 struct perf_cgroup_info {
327 	u64				time;
328 	u64				timestamp;
329 };
330 
331 struct perf_cgroup {
332 	struct cgroup_subsys_state	css;
333 	struct perf_cgroup_info	__percpu *info;
334 };
335 
336 /*
337  * Must ensure cgroup is pinned (css_get) before calling
338  * this function. In other words, we cannot call this function
339  * if there is no cgroup event for the current CPU context.
340  */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 	return container_of(task_css(task, perf_subsys_id),
345 			    struct perf_cgroup, css);
346 }
347 
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 	struct perf_event_context *ctx = event->ctx;
352 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353 
354 	/* @event doesn't care about cgroup */
355 	if (!event->cgrp)
356 		return true;
357 
358 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
359 	if (!cpuctx->cgrp)
360 		return false;
361 
362 	/*
363 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
364 	 * also enabled for all its descendant cgroups.  If @cpuctx's
365 	 * cgroup is a descendant of @event's (the test covers identity
366 	 * case), it's a match.
367 	 */
368 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 				    event->cgrp->css.cgroup);
370 }
371 
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 	return css_tryget(&event->cgrp->css);
375 }
376 
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 	css_put(&event->cgrp->css);
380 }
381 
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 	perf_put_cgroup(event);
385 	event->cgrp = NULL;
386 }
387 
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 	return event->cgrp != NULL;
391 }
392 
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 	struct perf_cgroup_info *t;
396 
397 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 	return t->time;
399 }
400 
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 	struct perf_cgroup_info *info;
404 	u64 now;
405 
406 	now = perf_clock();
407 
408 	info = this_cpu_ptr(cgrp->info);
409 
410 	info->time += now - info->timestamp;
411 	info->timestamp = now;
412 }
413 
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 	if (cgrp_out)
418 		__update_cgrp_time(cgrp_out);
419 }
420 
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 	struct perf_cgroup *cgrp;
424 
425 	/*
426 	 * ensure we access cgroup data only when needed and
427 	 * when we know the cgroup is pinned (css_get)
428 	 */
429 	if (!is_cgroup_event(event))
430 		return;
431 
432 	cgrp = perf_cgroup_from_task(current);
433 	/*
434 	 * Do not update time when cgroup is not active
435 	 */
436 	if (cgrp == event->cgrp)
437 		__update_cgrp_time(event->cgrp);
438 }
439 
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 			  struct perf_event_context *ctx)
443 {
444 	struct perf_cgroup *cgrp;
445 	struct perf_cgroup_info *info;
446 
447 	/*
448 	 * ctx->lock held by caller
449 	 * ensure we do not access cgroup data
450 	 * unless we have the cgroup pinned (css_get)
451 	 */
452 	if (!task || !ctx->nr_cgroups)
453 		return;
454 
455 	cgrp = perf_cgroup_from_task(task);
456 	info = this_cpu_ptr(cgrp->info);
457 	info->timestamp = ctx->timestamp;
458 }
459 
460 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
462 
463 /*
464  * reschedule events based on the cgroup constraint of task.
465  *
466  * mode SWOUT : schedule out everything
467  * mode SWIN : schedule in based on cgroup for next
468  */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 	struct perf_cpu_context *cpuctx;
472 	struct pmu *pmu;
473 	unsigned long flags;
474 
475 	/*
476 	 * disable interrupts to avoid geting nr_cgroup
477 	 * changes via __perf_event_disable(). Also
478 	 * avoids preemption.
479 	 */
480 	local_irq_save(flags);
481 
482 	/*
483 	 * we reschedule only in the presence of cgroup
484 	 * constrained events.
485 	 */
486 	rcu_read_lock();
487 
488 	list_for_each_entry_rcu(pmu, &pmus, entry) {
489 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 		if (cpuctx->unique_pmu != pmu)
491 			continue; /* ensure we process each cpuctx once */
492 
493 		/*
494 		 * perf_cgroup_events says at least one
495 		 * context on this CPU has cgroup events.
496 		 *
497 		 * ctx->nr_cgroups reports the number of cgroup
498 		 * events for a context.
499 		 */
500 		if (cpuctx->ctx.nr_cgroups > 0) {
501 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 			perf_pmu_disable(cpuctx->ctx.pmu);
503 
504 			if (mode & PERF_CGROUP_SWOUT) {
505 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 				/*
507 				 * must not be done before ctxswout due
508 				 * to event_filter_match() in event_sched_out()
509 				 */
510 				cpuctx->cgrp = NULL;
511 			}
512 
513 			if (mode & PERF_CGROUP_SWIN) {
514 				WARN_ON_ONCE(cpuctx->cgrp);
515 				/*
516 				 * set cgrp before ctxsw in to allow
517 				 * event_filter_match() to not have to pass
518 				 * task around
519 				 */
520 				cpuctx->cgrp = perf_cgroup_from_task(task);
521 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 			}
523 			perf_pmu_enable(cpuctx->ctx.pmu);
524 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 		}
526 	}
527 
528 	rcu_read_unlock();
529 
530 	local_irq_restore(flags);
531 }
532 
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 					 struct task_struct *next)
535 {
536 	struct perf_cgroup *cgrp1;
537 	struct perf_cgroup *cgrp2 = NULL;
538 
539 	/*
540 	 * we come here when we know perf_cgroup_events > 0
541 	 */
542 	cgrp1 = perf_cgroup_from_task(task);
543 
544 	/*
545 	 * next is NULL when called from perf_event_enable_on_exec()
546 	 * that will systematically cause a cgroup_switch()
547 	 */
548 	if (next)
549 		cgrp2 = perf_cgroup_from_task(next);
550 
551 	/*
552 	 * only schedule out current cgroup events if we know
553 	 * that we are switching to a different cgroup. Otherwise,
554 	 * do no touch the cgroup events.
555 	 */
556 	if (cgrp1 != cgrp2)
557 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559 
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 					struct task_struct *task)
562 {
563 	struct perf_cgroup *cgrp1;
564 	struct perf_cgroup *cgrp2 = NULL;
565 
566 	/*
567 	 * we come here when we know perf_cgroup_events > 0
568 	 */
569 	cgrp1 = perf_cgroup_from_task(task);
570 
571 	/* prev can never be NULL */
572 	cgrp2 = perf_cgroup_from_task(prev);
573 
574 	/*
575 	 * only need to schedule in cgroup events if we are changing
576 	 * cgroup during ctxsw. Cgroup events were not scheduled
577 	 * out of ctxsw out if that was not the case.
578 	 */
579 	if (cgrp1 != cgrp2)
580 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582 
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 				      struct perf_event_attr *attr,
585 				      struct perf_event *group_leader)
586 {
587 	struct perf_cgroup *cgrp;
588 	struct cgroup_subsys_state *css;
589 	struct fd f = fdget(fd);
590 	int ret = 0;
591 
592 	if (!f.file)
593 		return -EBADF;
594 
595 	rcu_read_lock();
596 
597 	css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 	if (IS_ERR(css)) {
599 		ret = PTR_ERR(css);
600 		goto out;
601 	}
602 
603 	cgrp = container_of(css, struct perf_cgroup, css);
604 	event->cgrp = cgrp;
605 
606 	/* must be done before we fput() the file */
607 	if (!perf_tryget_cgroup(event)) {
608 		event->cgrp = NULL;
609 		ret = -ENOENT;
610 		goto out;
611 	}
612 
613 	/*
614 	 * all events in a group must monitor
615 	 * the same cgroup because a task belongs
616 	 * to only one perf cgroup at a time
617 	 */
618 	if (group_leader && group_leader->cgrp != cgrp) {
619 		perf_detach_cgroup(event);
620 		ret = -EINVAL;
621 	}
622 out:
623 	rcu_read_unlock();
624 	fdput(f);
625 	return ret;
626 }
627 
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 	struct perf_cgroup_info *t;
632 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 	event->shadow_ctx_time = now - t->timestamp;
634 }
635 
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 	/*
640 	 * when the current task's perf cgroup does not match
641 	 * the event's, we need to remember to call the
642 	 * perf_mark_enable() function the first time a task with
643 	 * a matching perf cgroup is scheduled in.
644 	 */
645 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 		event->cgrp_defer_enabled = 1;
647 }
648 
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 			 struct perf_event_context *ctx)
652 {
653 	struct perf_event *sub;
654 	u64 tstamp = perf_event_time(event);
655 
656 	if (!event->cgrp_defer_enabled)
657 		return;
658 
659 	event->cgrp_defer_enabled = 0;
660 
661 	event->tstamp_enabled = tstamp - event->total_time_enabled;
662 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 			sub->cgrp_defer_enabled = 0;
666 		}
667 	}
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670 
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 	return true;
675 }
676 
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679 
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 	return 0;
683 }
684 
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 	return 0;
688 }
689 
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693 
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697 
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 					 struct task_struct *next)
700 {
701 }
702 
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 					struct task_struct *task)
705 {
706 }
707 
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 				      struct perf_event_attr *attr,
710 				      struct perf_event *group_leader)
711 {
712 	return -EINVAL;
713 }
714 
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 			  struct perf_event_context *ctx)
718 {
719 }
720 
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725 
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	return 0;
734 }
735 
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740 
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 			 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747 
748 /*
749  * set default to be dependent on timer tick just
750  * like original code
751  */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754  * function must be called with interrupts disbled
755  */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 	struct perf_cpu_context *cpuctx;
759 	enum hrtimer_restart ret = HRTIMER_NORESTART;
760 	int rotations = 0;
761 
762 	WARN_ON(!irqs_disabled());
763 
764 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765 
766 	rotations = perf_rotate_context(cpuctx);
767 
768 	/*
769 	 * arm timer if needed
770 	 */
771 	if (rotations) {
772 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 		ret = HRTIMER_RESTART;
774 	}
775 
776 	return ret;
777 }
778 
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 	struct perf_cpu_context *cpuctx;
783 	struct pmu *pmu;
784 	unsigned long flags;
785 
786 	if (WARN_ON(cpu != smp_processor_id()))
787 		return;
788 
789 	local_irq_save(flags);
790 
791 	rcu_read_lock();
792 
793 	list_for_each_entry_rcu(pmu, &pmus, entry) {
794 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795 
796 		if (pmu->task_ctx_nr == perf_sw_context)
797 			continue;
798 
799 		hrtimer_cancel(&cpuctx->hrtimer);
800 	}
801 
802 	rcu_read_unlock();
803 
804 	local_irq_restore(flags);
805 }
806 
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 	struct hrtimer *hr = &cpuctx->hrtimer;
810 	struct pmu *pmu = cpuctx->ctx.pmu;
811 	int timer;
812 
813 	/* no multiplexing needed for SW PMU */
814 	if (pmu->task_ctx_nr == perf_sw_context)
815 		return;
816 
817 	/*
818 	 * check default is sane, if not set then force to
819 	 * default interval (1/tick)
820 	 */
821 	timer = pmu->hrtimer_interval_ms;
822 	if (timer < 1)
823 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824 
825 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826 
827 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 	hr->function = perf_cpu_hrtimer_handler;
829 }
830 
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 	struct hrtimer *hr = &cpuctx->hrtimer;
834 	struct pmu *pmu = cpuctx->ctx.pmu;
835 
836 	/* not for SW PMU */
837 	if (pmu->task_ctx_nr == perf_sw_context)
838 		return;
839 
840 	if (hrtimer_active(hr))
841 		return;
842 
843 	if (!hrtimer_callback_running(hr))
844 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 					 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847 
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 	if (!(*count)++)
852 		pmu->pmu_disable(pmu);
853 }
854 
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 	if (!--(*count))
859 		pmu->pmu_enable(pmu);
860 }
861 
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863 
864 /*
865  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866  * because they're strictly cpu affine and rotate_start is called with IRQs
867  * disabled, while rotate_context is called from IRQ context.
868  */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 	struct list_head *head = &__get_cpu_var(rotation_list);
873 
874 	WARN_ON(!irqs_disabled());
875 
876 	if (list_empty(&cpuctx->rotation_list))
877 		list_add(&cpuctx->rotation_list, head);
878 }
879 
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884 
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 	if (atomic_dec_and_test(&ctx->refcount)) {
888 		if (ctx->parent_ctx)
889 			put_ctx(ctx->parent_ctx);
890 		if (ctx->task)
891 			put_task_struct(ctx->task);
892 		kfree_rcu(ctx, rcu_head);
893 	}
894 }
895 
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 	if (ctx->parent_ctx) {
899 		put_ctx(ctx->parent_ctx);
900 		ctx->parent_ctx = NULL;
901 	}
902 	ctx->generation++;
903 }
904 
905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
906 {
907 	/*
908 	 * only top level events have the pid namespace they were created in
909 	 */
910 	if (event->parent)
911 		event = event->parent;
912 
913 	return task_tgid_nr_ns(p, event->ns);
914 }
915 
916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
917 {
918 	/*
919 	 * only top level events have the pid namespace they were created in
920 	 */
921 	if (event->parent)
922 		event = event->parent;
923 
924 	return task_pid_nr_ns(p, event->ns);
925 }
926 
927 /*
928  * If we inherit events we want to return the parent event id
929  * to userspace.
930  */
931 static u64 primary_event_id(struct perf_event *event)
932 {
933 	u64 id = event->id;
934 
935 	if (event->parent)
936 		id = event->parent->id;
937 
938 	return id;
939 }
940 
941 /*
942  * Get the perf_event_context for a task and lock it.
943  * This has to cope with with the fact that until it is locked,
944  * the context could get moved to another task.
945  */
946 static struct perf_event_context *
947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
948 {
949 	struct perf_event_context *ctx;
950 
951 retry:
952 	/*
953 	 * One of the few rules of preemptible RCU is that one cannot do
954 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
955 	 * part of the read side critical section was preemptible -- see
956 	 * rcu_read_unlock_special().
957 	 *
958 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
959 	 * side critical section is non-preemptible.
960 	 */
961 	preempt_disable();
962 	rcu_read_lock();
963 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
964 	if (ctx) {
965 		/*
966 		 * If this context is a clone of another, it might
967 		 * get swapped for another underneath us by
968 		 * perf_event_task_sched_out, though the
969 		 * rcu_read_lock() protects us from any context
970 		 * getting freed.  Lock the context and check if it
971 		 * got swapped before we could get the lock, and retry
972 		 * if so.  If we locked the right context, then it
973 		 * can't get swapped on us any more.
974 		 */
975 		raw_spin_lock_irqsave(&ctx->lock, *flags);
976 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
977 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
978 			rcu_read_unlock();
979 			preempt_enable();
980 			goto retry;
981 		}
982 
983 		if (!atomic_inc_not_zero(&ctx->refcount)) {
984 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 			ctx = NULL;
986 		}
987 	}
988 	rcu_read_unlock();
989 	preempt_enable();
990 	return ctx;
991 }
992 
993 /*
994  * Get the context for a task and increment its pin_count so it
995  * can't get swapped to another task.  This also increments its
996  * reference count so that the context can't get freed.
997  */
998 static struct perf_event_context *
999 perf_pin_task_context(struct task_struct *task, int ctxn)
1000 {
1001 	struct perf_event_context *ctx;
1002 	unsigned long flags;
1003 
1004 	ctx = perf_lock_task_context(task, ctxn, &flags);
1005 	if (ctx) {
1006 		++ctx->pin_count;
1007 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 	}
1009 	return ctx;
1010 }
1011 
1012 static void perf_unpin_context(struct perf_event_context *ctx)
1013 {
1014 	unsigned long flags;
1015 
1016 	raw_spin_lock_irqsave(&ctx->lock, flags);
1017 	--ctx->pin_count;
1018 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1019 }
1020 
1021 /*
1022  * Update the record of the current time in a context.
1023  */
1024 static void update_context_time(struct perf_event_context *ctx)
1025 {
1026 	u64 now = perf_clock();
1027 
1028 	ctx->time += now - ctx->timestamp;
1029 	ctx->timestamp = now;
1030 }
1031 
1032 static u64 perf_event_time(struct perf_event *event)
1033 {
1034 	struct perf_event_context *ctx = event->ctx;
1035 
1036 	if (is_cgroup_event(event))
1037 		return perf_cgroup_event_time(event);
1038 
1039 	return ctx ? ctx->time : 0;
1040 }
1041 
1042 /*
1043  * Update the total_time_enabled and total_time_running fields for a event.
1044  * The caller of this function needs to hold the ctx->lock.
1045  */
1046 static void update_event_times(struct perf_event *event)
1047 {
1048 	struct perf_event_context *ctx = event->ctx;
1049 	u64 run_end;
1050 
1051 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1052 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1053 		return;
1054 	/*
1055 	 * in cgroup mode, time_enabled represents
1056 	 * the time the event was enabled AND active
1057 	 * tasks were in the monitored cgroup. This is
1058 	 * independent of the activity of the context as
1059 	 * there may be a mix of cgroup and non-cgroup events.
1060 	 *
1061 	 * That is why we treat cgroup events differently
1062 	 * here.
1063 	 */
1064 	if (is_cgroup_event(event))
1065 		run_end = perf_cgroup_event_time(event);
1066 	else if (ctx->is_active)
1067 		run_end = ctx->time;
1068 	else
1069 		run_end = event->tstamp_stopped;
1070 
1071 	event->total_time_enabled = run_end - event->tstamp_enabled;
1072 
1073 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1074 		run_end = event->tstamp_stopped;
1075 	else
1076 		run_end = perf_event_time(event);
1077 
1078 	event->total_time_running = run_end - event->tstamp_running;
1079 
1080 }
1081 
1082 /*
1083  * Update total_time_enabled and total_time_running for all events in a group.
1084  */
1085 static void update_group_times(struct perf_event *leader)
1086 {
1087 	struct perf_event *event;
1088 
1089 	update_event_times(leader);
1090 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1091 		update_event_times(event);
1092 }
1093 
1094 static struct list_head *
1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1096 {
1097 	if (event->attr.pinned)
1098 		return &ctx->pinned_groups;
1099 	else
1100 		return &ctx->flexible_groups;
1101 }
1102 
1103 /*
1104  * Add a event from the lists for its context.
1105  * Must be called with ctx->mutex and ctx->lock held.
1106  */
1107 static void
1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1109 {
1110 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1111 	event->attach_state |= PERF_ATTACH_CONTEXT;
1112 
1113 	/*
1114 	 * If we're a stand alone event or group leader, we go to the context
1115 	 * list, group events are kept attached to the group so that
1116 	 * perf_group_detach can, at all times, locate all siblings.
1117 	 */
1118 	if (event->group_leader == event) {
1119 		struct list_head *list;
1120 
1121 		if (is_software_event(event))
1122 			event->group_flags |= PERF_GROUP_SOFTWARE;
1123 
1124 		list = ctx_group_list(event, ctx);
1125 		list_add_tail(&event->group_entry, list);
1126 	}
1127 
1128 	if (is_cgroup_event(event))
1129 		ctx->nr_cgroups++;
1130 
1131 	if (has_branch_stack(event))
1132 		ctx->nr_branch_stack++;
1133 
1134 	list_add_rcu(&event->event_entry, &ctx->event_list);
1135 	if (!ctx->nr_events)
1136 		perf_pmu_rotate_start(ctx->pmu);
1137 	ctx->nr_events++;
1138 	if (event->attr.inherit_stat)
1139 		ctx->nr_stat++;
1140 
1141 	ctx->generation++;
1142 }
1143 
1144 /*
1145  * Initialize event state based on the perf_event_attr::disabled.
1146  */
1147 static inline void perf_event__state_init(struct perf_event *event)
1148 {
1149 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1150 					      PERF_EVENT_STATE_INACTIVE;
1151 }
1152 
1153 /*
1154  * Called at perf_event creation and when events are attached/detached from a
1155  * group.
1156  */
1157 static void perf_event__read_size(struct perf_event *event)
1158 {
1159 	int entry = sizeof(u64); /* value */
1160 	int size = 0;
1161 	int nr = 1;
1162 
1163 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1164 		size += sizeof(u64);
1165 
1166 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1167 		size += sizeof(u64);
1168 
1169 	if (event->attr.read_format & PERF_FORMAT_ID)
1170 		entry += sizeof(u64);
1171 
1172 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1173 		nr += event->group_leader->nr_siblings;
1174 		size += sizeof(u64);
1175 	}
1176 
1177 	size += entry * nr;
1178 	event->read_size = size;
1179 }
1180 
1181 static void perf_event__header_size(struct perf_event *event)
1182 {
1183 	struct perf_sample_data *data;
1184 	u64 sample_type = event->attr.sample_type;
1185 	u16 size = 0;
1186 
1187 	perf_event__read_size(event);
1188 
1189 	if (sample_type & PERF_SAMPLE_IP)
1190 		size += sizeof(data->ip);
1191 
1192 	if (sample_type & PERF_SAMPLE_ADDR)
1193 		size += sizeof(data->addr);
1194 
1195 	if (sample_type & PERF_SAMPLE_PERIOD)
1196 		size += sizeof(data->period);
1197 
1198 	if (sample_type & PERF_SAMPLE_WEIGHT)
1199 		size += sizeof(data->weight);
1200 
1201 	if (sample_type & PERF_SAMPLE_READ)
1202 		size += event->read_size;
1203 
1204 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1205 		size += sizeof(data->data_src.val);
1206 
1207 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1208 		size += sizeof(data->txn);
1209 
1210 	event->header_size = size;
1211 }
1212 
1213 static void perf_event__id_header_size(struct perf_event *event)
1214 {
1215 	struct perf_sample_data *data;
1216 	u64 sample_type = event->attr.sample_type;
1217 	u16 size = 0;
1218 
1219 	if (sample_type & PERF_SAMPLE_TID)
1220 		size += sizeof(data->tid_entry);
1221 
1222 	if (sample_type & PERF_SAMPLE_TIME)
1223 		size += sizeof(data->time);
1224 
1225 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1226 		size += sizeof(data->id);
1227 
1228 	if (sample_type & PERF_SAMPLE_ID)
1229 		size += sizeof(data->id);
1230 
1231 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1232 		size += sizeof(data->stream_id);
1233 
1234 	if (sample_type & PERF_SAMPLE_CPU)
1235 		size += sizeof(data->cpu_entry);
1236 
1237 	event->id_header_size = size;
1238 }
1239 
1240 static void perf_group_attach(struct perf_event *event)
1241 {
1242 	struct perf_event *group_leader = event->group_leader, *pos;
1243 
1244 	/*
1245 	 * We can have double attach due to group movement in perf_event_open.
1246 	 */
1247 	if (event->attach_state & PERF_ATTACH_GROUP)
1248 		return;
1249 
1250 	event->attach_state |= PERF_ATTACH_GROUP;
1251 
1252 	if (group_leader == event)
1253 		return;
1254 
1255 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1256 			!is_software_event(event))
1257 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1258 
1259 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1260 	group_leader->nr_siblings++;
1261 
1262 	perf_event__header_size(group_leader);
1263 
1264 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1265 		perf_event__header_size(pos);
1266 }
1267 
1268 /*
1269  * Remove a event from the lists for its context.
1270  * Must be called with ctx->mutex and ctx->lock held.
1271  */
1272 static void
1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1274 {
1275 	struct perf_cpu_context *cpuctx;
1276 	/*
1277 	 * We can have double detach due to exit/hot-unplug + close.
1278 	 */
1279 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1280 		return;
1281 
1282 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1283 
1284 	if (is_cgroup_event(event)) {
1285 		ctx->nr_cgroups--;
1286 		cpuctx = __get_cpu_context(ctx);
1287 		/*
1288 		 * if there are no more cgroup events
1289 		 * then cler cgrp to avoid stale pointer
1290 		 * in update_cgrp_time_from_cpuctx()
1291 		 */
1292 		if (!ctx->nr_cgroups)
1293 			cpuctx->cgrp = NULL;
1294 	}
1295 
1296 	if (has_branch_stack(event))
1297 		ctx->nr_branch_stack--;
1298 
1299 	ctx->nr_events--;
1300 	if (event->attr.inherit_stat)
1301 		ctx->nr_stat--;
1302 
1303 	list_del_rcu(&event->event_entry);
1304 
1305 	if (event->group_leader == event)
1306 		list_del_init(&event->group_entry);
1307 
1308 	update_group_times(event);
1309 
1310 	/*
1311 	 * If event was in error state, then keep it
1312 	 * that way, otherwise bogus counts will be
1313 	 * returned on read(). The only way to get out
1314 	 * of error state is by explicit re-enabling
1315 	 * of the event
1316 	 */
1317 	if (event->state > PERF_EVENT_STATE_OFF)
1318 		event->state = PERF_EVENT_STATE_OFF;
1319 
1320 	ctx->generation++;
1321 }
1322 
1323 static void perf_group_detach(struct perf_event *event)
1324 {
1325 	struct perf_event *sibling, *tmp;
1326 	struct list_head *list = NULL;
1327 
1328 	/*
1329 	 * We can have double detach due to exit/hot-unplug + close.
1330 	 */
1331 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1332 		return;
1333 
1334 	event->attach_state &= ~PERF_ATTACH_GROUP;
1335 
1336 	/*
1337 	 * If this is a sibling, remove it from its group.
1338 	 */
1339 	if (event->group_leader != event) {
1340 		list_del_init(&event->group_entry);
1341 		event->group_leader->nr_siblings--;
1342 		goto out;
1343 	}
1344 
1345 	if (!list_empty(&event->group_entry))
1346 		list = &event->group_entry;
1347 
1348 	/*
1349 	 * If this was a group event with sibling events then
1350 	 * upgrade the siblings to singleton events by adding them
1351 	 * to whatever list we are on.
1352 	 */
1353 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1354 		if (list)
1355 			list_move_tail(&sibling->group_entry, list);
1356 		sibling->group_leader = sibling;
1357 
1358 		/* Inherit group flags from the previous leader */
1359 		sibling->group_flags = event->group_flags;
1360 	}
1361 
1362 out:
1363 	perf_event__header_size(event->group_leader);
1364 
1365 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1366 		perf_event__header_size(tmp);
1367 }
1368 
1369 static inline int
1370 event_filter_match(struct perf_event *event)
1371 {
1372 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1373 	    && perf_cgroup_match(event);
1374 }
1375 
1376 static void
1377 event_sched_out(struct perf_event *event,
1378 		  struct perf_cpu_context *cpuctx,
1379 		  struct perf_event_context *ctx)
1380 {
1381 	u64 tstamp = perf_event_time(event);
1382 	u64 delta;
1383 	/*
1384 	 * An event which could not be activated because of
1385 	 * filter mismatch still needs to have its timings
1386 	 * maintained, otherwise bogus information is return
1387 	 * via read() for time_enabled, time_running:
1388 	 */
1389 	if (event->state == PERF_EVENT_STATE_INACTIVE
1390 	    && !event_filter_match(event)) {
1391 		delta = tstamp - event->tstamp_stopped;
1392 		event->tstamp_running += delta;
1393 		event->tstamp_stopped = tstamp;
1394 	}
1395 
1396 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1397 		return;
1398 
1399 	perf_pmu_disable(event->pmu);
1400 
1401 	event->state = PERF_EVENT_STATE_INACTIVE;
1402 	if (event->pending_disable) {
1403 		event->pending_disable = 0;
1404 		event->state = PERF_EVENT_STATE_OFF;
1405 	}
1406 	event->tstamp_stopped = tstamp;
1407 	event->pmu->del(event, 0);
1408 	event->oncpu = -1;
1409 
1410 	if (!is_software_event(event))
1411 		cpuctx->active_oncpu--;
1412 	ctx->nr_active--;
1413 	if (event->attr.freq && event->attr.sample_freq)
1414 		ctx->nr_freq--;
1415 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1416 		cpuctx->exclusive = 0;
1417 
1418 	perf_pmu_enable(event->pmu);
1419 }
1420 
1421 static void
1422 group_sched_out(struct perf_event *group_event,
1423 		struct perf_cpu_context *cpuctx,
1424 		struct perf_event_context *ctx)
1425 {
1426 	struct perf_event *event;
1427 	int state = group_event->state;
1428 
1429 	event_sched_out(group_event, cpuctx, ctx);
1430 
1431 	/*
1432 	 * Schedule out siblings (if any):
1433 	 */
1434 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1435 		event_sched_out(event, cpuctx, ctx);
1436 
1437 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1438 		cpuctx->exclusive = 0;
1439 }
1440 
1441 /*
1442  * Cross CPU call to remove a performance event
1443  *
1444  * We disable the event on the hardware level first. After that we
1445  * remove it from the context list.
1446  */
1447 static int __perf_remove_from_context(void *info)
1448 {
1449 	struct perf_event *event = info;
1450 	struct perf_event_context *ctx = event->ctx;
1451 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1452 
1453 	raw_spin_lock(&ctx->lock);
1454 	event_sched_out(event, cpuctx, ctx);
1455 	list_del_event(event, ctx);
1456 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1457 		ctx->is_active = 0;
1458 		cpuctx->task_ctx = NULL;
1459 	}
1460 	raw_spin_unlock(&ctx->lock);
1461 
1462 	return 0;
1463 }
1464 
1465 
1466 /*
1467  * Remove the event from a task's (or a CPU's) list of events.
1468  *
1469  * CPU events are removed with a smp call. For task events we only
1470  * call when the task is on a CPU.
1471  *
1472  * If event->ctx is a cloned context, callers must make sure that
1473  * every task struct that event->ctx->task could possibly point to
1474  * remains valid.  This is OK when called from perf_release since
1475  * that only calls us on the top-level context, which can't be a clone.
1476  * When called from perf_event_exit_task, it's OK because the
1477  * context has been detached from its task.
1478  */
1479 static void perf_remove_from_context(struct perf_event *event)
1480 {
1481 	struct perf_event_context *ctx = event->ctx;
1482 	struct task_struct *task = ctx->task;
1483 
1484 	lockdep_assert_held(&ctx->mutex);
1485 
1486 	if (!task) {
1487 		/*
1488 		 * Per cpu events are removed via an smp call and
1489 		 * the removal is always successful.
1490 		 */
1491 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1492 		return;
1493 	}
1494 
1495 retry:
1496 	if (!task_function_call(task, __perf_remove_from_context, event))
1497 		return;
1498 
1499 	raw_spin_lock_irq(&ctx->lock);
1500 	/*
1501 	 * If we failed to find a running task, but find the context active now
1502 	 * that we've acquired the ctx->lock, retry.
1503 	 */
1504 	if (ctx->is_active) {
1505 		raw_spin_unlock_irq(&ctx->lock);
1506 		goto retry;
1507 	}
1508 
1509 	/*
1510 	 * Since the task isn't running, its safe to remove the event, us
1511 	 * holding the ctx->lock ensures the task won't get scheduled in.
1512 	 */
1513 	list_del_event(event, ctx);
1514 	raw_spin_unlock_irq(&ctx->lock);
1515 }
1516 
1517 /*
1518  * Cross CPU call to disable a performance event
1519  */
1520 int __perf_event_disable(void *info)
1521 {
1522 	struct perf_event *event = info;
1523 	struct perf_event_context *ctx = event->ctx;
1524 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1525 
1526 	/*
1527 	 * If this is a per-task event, need to check whether this
1528 	 * event's task is the current task on this cpu.
1529 	 *
1530 	 * Can trigger due to concurrent perf_event_context_sched_out()
1531 	 * flipping contexts around.
1532 	 */
1533 	if (ctx->task && cpuctx->task_ctx != ctx)
1534 		return -EINVAL;
1535 
1536 	raw_spin_lock(&ctx->lock);
1537 
1538 	/*
1539 	 * If the event is on, turn it off.
1540 	 * If it is in error state, leave it in error state.
1541 	 */
1542 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1543 		update_context_time(ctx);
1544 		update_cgrp_time_from_event(event);
1545 		update_group_times(event);
1546 		if (event == event->group_leader)
1547 			group_sched_out(event, cpuctx, ctx);
1548 		else
1549 			event_sched_out(event, cpuctx, ctx);
1550 		event->state = PERF_EVENT_STATE_OFF;
1551 	}
1552 
1553 	raw_spin_unlock(&ctx->lock);
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Disable a event.
1560  *
1561  * If event->ctx is a cloned context, callers must make sure that
1562  * every task struct that event->ctx->task could possibly point to
1563  * remains valid.  This condition is satisifed when called through
1564  * perf_event_for_each_child or perf_event_for_each because they
1565  * hold the top-level event's child_mutex, so any descendant that
1566  * goes to exit will block in sync_child_event.
1567  * When called from perf_pending_event it's OK because event->ctx
1568  * is the current context on this CPU and preemption is disabled,
1569  * hence we can't get into perf_event_task_sched_out for this context.
1570  */
1571 void perf_event_disable(struct perf_event *event)
1572 {
1573 	struct perf_event_context *ctx = event->ctx;
1574 	struct task_struct *task = ctx->task;
1575 
1576 	if (!task) {
1577 		/*
1578 		 * Disable the event on the cpu that it's on
1579 		 */
1580 		cpu_function_call(event->cpu, __perf_event_disable, event);
1581 		return;
1582 	}
1583 
1584 retry:
1585 	if (!task_function_call(task, __perf_event_disable, event))
1586 		return;
1587 
1588 	raw_spin_lock_irq(&ctx->lock);
1589 	/*
1590 	 * If the event is still active, we need to retry the cross-call.
1591 	 */
1592 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1593 		raw_spin_unlock_irq(&ctx->lock);
1594 		/*
1595 		 * Reload the task pointer, it might have been changed by
1596 		 * a concurrent perf_event_context_sched_out().
1597 		 */
1598 		task = ctx->task;
1599 		goto retry;
1600 	}
1601 
1602 	/*
1603 	 * Since we have the lock this context can't be scheduled
1604 	 * in, so we can change the state safely.
1605 	 */
1606 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1607 		update_group_times(event);
1608 		event->state = PERF_EVENT_STATE_OFF;
1609 	}
1610 	raw_spin_unlock_irq(&ctx->lock);
1611 }
1612 EXPORT_SYMBOL_GPL(perf_event_disable);
1613 
1614 static void perf_set_shadow_time(struct perf_event *event,
1615 				 struct perf_event_context *ctx,
1616 				 u64 tstamp)
1617 {
1618 	/*
1619 	 * use the correct time source for the time snapshot
1620 	 *
1621 	 * We could get by without this by leveraging the
1622 	 * fact that to get to this function, the caller
1623 	 * has most likely already called update_context_time()
1624 	 * and update_cgrp_time_xx() and thus both timestamp
1625 	 * are identical (or very close). Given that tstamp is,
1626 	 * already adjusted for cgroup, we could say that:
1627 	 *    tstamp - ctx->timestamp
1628 	 * is equivalent to
1629 	 *    tstamp - cgrp->timestamp.
1630 	 *
1631 	 * Then, in perf_output_read(), the calculation would
1632 	 * work with no changes because:
1633 	 * - event is guaranteed scheduled in
1634 	 * - no scheduled out in between
1635 	 * - thus the timestamp would be the same
1636 	 *
1637 	 * But this is a bit hairy.
1638 	 *
1639 	 * So instead, we have an explicit cgroup call to remain
1640 	 * within the time time source all along. We believe it
1641 	 * is cleaner and simpler to understand.
1642 	 */
1643 	if (is_cgroup_event(event))
1644 		perf_cgroup_set_shadow_time(event, tstamp);
1645 	else
1646 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1647 }
1648 
1649 #define MAX_INTERRUPTS (~0ULL)
1650 
1651 static void perf_log_throttle(struct perf_event *event, int enable);
1652 
1653 static int
1654 event_sched_in(struct perf_event *event,
1655 		 struct perf_cpu_context *cpuctx,
1656 		 struct perf_event_context *ctx)
1657 {
1658 	u64 tstamp = perf_event_time(event);
1659 	int ret = 0;
1660 
1661 	if (event->state <= PERF_EVENT_STATE_OFF)
1662 		return 0;
1663 
1664 	event->state = PERF_EVENT_STATE_ACTIVE;
1665 	event->oncpu = smp_processor_id();
1666 
1667 	/*
1668 	 * Unthrottle events, since we scheduled we might have missed several
1669 	 * ticks already, also for a heavily scheduling task there is little
1670 	 * guarantee it'll get a tick in a timely manner.
1671 	 */
1672 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1673 		perf_log_throttle(event, 1);
1674 		event->hw.interrupts = 0;
1675 	}
1676 
1677 	/*
1678 	 * The new state must be visible before we turn it on in the hardware:
1679 	 */
1680 	smp_wmb();
1681 
1682 	perf_pmu_disable(event->pmu);
1683 
1684 	if (event->pmu->add(event, PERF_EF_START)) {
1685 		event->state = PERF_EVENT_STATE_INACTIVE;
1686 		event->oncpu = -1;
1687 		ret = -EAGAIN;
1688 		goto out;
1689 	}
1690 
1691 	event->tstamp_running += tstamp - event->tstamp_stopped;
1692 
1693 	perf_set_shadow_time(event, ctx, tstamp);
1694 
1695 	if (!is_software_event(event))
1696 		cpuctx->active_oncpu++;
1697 	ctx->nr_active++;
1698 	if (event->attr.freq && event->attr.sample_freq)
1699 		ctx->nr_freq++;
1700 
1701 	if (event->attr.exclusive)
1702 		cpuctx->exclusive = 1;
1703 
1704 out:
1705 	perf_pmu_enable(event->pmu);
1706 
1707 	return ret;
1708 }
1709 
1710 static int
1711 group_sched_in(struct perf_event *group_event,
1712 	       struct perf_cpu_context *cpuctx,
1713 	       struct perf_event_context *ctx)
1714 {
1715 	struct perf_event *event, *partial_group = NULL;
1716 	struct pmu *pmu = group_event->pmu;
1717 	u64 now = ctx->time;
1718 	bool simulate = false;
1719 
1720 	if (group_event->state == PERF_EVENT_STATE_OFF)
1721 		return 0;
1722 
1723 	pmu->start_txn(pmu);
1724 
1725 	if (event_sched_in(group_event, cpuctx, ctx)) {
1726 		pmu->cancel_txn(pmu);
1727 		perf_cpu_hrtimer_restart(cpuctx);
1728 		return -EAGAIN;
1729 	}
1730 
1731 	/*
1732 	 * Schedule in siblings as one group (if any):
1733 	 */
1734 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1735 		if (event_sched_in(event, cpuctx, ctx)) {
1736 			partial_group = event;
1737 			goto group_error;
1738 		}
1739 	}
1740 
1741 	if (!pmu->commit_txn(pmu))
1742 		return 0;
1743 
1744 group_error:
1745 	/*
1746 	 * Groups can be scheduled in as one unit only, so undo any
1747 	 * partial group before returning:
1748 	 * The events up to the failed event are scheduled out normally,
1749 	 * tstamp_stopped will be updated.
1750 	 *
1751 	 * The failed events and the remaining siblings need to have
1752 	 * their timings updated as if they had gone thru event_sched_in()
1753 	 * and event_sched_out(). This is required to get consistent timings
1754 	 * across the group. This also takes care of the case where the group
1755 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1756 	 * the time the event was actually stopped, such that time delta
1757 	 * calculation in update_event_times() is correct.
1758 	 */
1759 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1760 		if (event == partial_group)
1761 			simulate = true;
1762 
1763 		if (simulate) {
1764 			event->tstamp_running += now - event->tstamp_stopped;
1765 			event->tstamp_stopped = now;
1766 		} else {
1767 			event_sched_out(event, cpuctx, ctx);
1768 		}
1769 	}
1770 	event_sched_out(group_event, cpuctx, ctx);
1771 
1772 	pmu->cancel_txn(pmu);
1773 
1774 	perf_cpu_hrtimer_restart(cpuctx);
1775 
1776 	return -EAGAIN;
1777 }
1778 
1779 /*
1780  * Work out whether we can put this event group on the CPU now.
1781  */
1782 static int group_can_go_on(struct perf_event *event,
1783 			   struct perf_cpu_context *cpuctx,
1784 			   int can_add_hw)
1785 {
1786 	/*
1787 	 * Groups consisting entirely of software events can always go on.
1788 	 */
1789 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1790 		return 1;
1791 	/*
1792 	 * If an exclusive group is already on, no other hardware
1793 	 * events can go on.
1794 	 */
1795 	if (cpuctx->exclusive)
1796 		return 0;
1797 	/*
1798 	 * If this group is exclusive and there are already
1799 	 * events on the CPU, it can't go on.
1800 	 */
1801 	if (event->attr.exclusive && cpuctx->active_oncpu)
1802 		return 0;
1803 	/*
1804 	 * Otherwise, try to add it if all previous groups were able
1805 	 * to go on.
1806 	 */
1807 	return can_add_hw;
1808 }
1809 
1810 static void add_event_to_ctx(struct perf_event *event,
1811 			       struct perf_event_context *ctx)
1812 {
1813 	u64 tstamp = perf_event_time(event);
1814 
1815 	list_add_event(event, ctx);
1816 	perf_group_attach(event);
1817 	event->tstamp_enabled = tstamp;
1818 	event->tstamp_running = tstamp;
1819 	event->tstamp_stopped = tstamp;
1820 }
1821 
1822 static void task_ctx_sched_out(struct perf_event_context *ctx);
1823 static void
1824 ctx_sched_in(struct perf_event_context *ctx,
1825 	     struct perf_cpu_context *cpuctx,
1826 	     enum event_type_t event_type,
1827 	     struct task_struct *task);
1828 
1829 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1830 				struct perf_event_context *ctx,
1831 				struct task_struct *task)
1832 {
1833 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1834 	if (ctx)
1835 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1836 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1837 	if (ctx)
1838 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1839 }
1840 
1841 /*
1842  * Cross CPU call to install and enable a performance event
1843  *
1844  * Must be called with ctx->mutex held
1845  */
1846 static int  __perf_install_in_context(void *info)
1847 {
1848 	struct perf_event *event = info;
1849 	struct perf_event_context *ctx = event->ctx;
1850 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1851 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1852 	struct task_struct *task = current;
1853 
1854 	perf_ctx_lock(cpuctx, task_ctx);
1855 	perf_pmu_disable(cpuctx->ctx.pmu);
1856 
1857 	/*
1858 	 * If there was an active task_ctx schedule it out.
1859 	 */
1860 	if (task_ctx)
1861 		task_ctx_sched_out(task_ctx);
1862 
1863 	/*
1864 	 * If the context we're installing events in is not the
1865 	 * active task_ctx, flip them.
1866 	 */
1867 	if (ctx->task && task_ctx != ctx) {
1868 		if (task_ctx)
1869 			raw_spin_unlock(&task_ctx->lock);
1870 		raw_spin_lock(&ctx->lock);
1871 		task_ctx = ctx;
1872 	}
1873 
1874 	if (task_ctx) {
1875 		cpuctx->task_ctx = task_ctx;
1876 		task = task_ctx->task;
1877 	}
1878 
1879 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1880 
1881 	update_context_time(ctx);
1882 	/*
1883 	 * update cgrp time only if current cgrp
1884 	 * matches event->cgrp. Must be done before
1885 	 * calling add_event_to_ctx()
1886 	 */
1887 	update_cgrp_time_from_event(event);
1888 
1889 	add_event_to_ctx(event, ctx);
1890 
1891 	/*
1892 	 * Schedule everything back in
1893 	 */
1894 	perf_event_sched_in(cpuctx, task_ctx, task);
1895 
1896 	perf_pmu_enable(cpuctx->ctx.pmu);
1897 	perf_ctx_unlock(cpuctx, task_ctx);
1898 
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Attach a performance event to a context
1904  *
1905  * First we add the event to the list with the hardware enable bit
1906  * in event->hw_config cleared.
1907  *
1908  * If the event is attached to a task which is on a CPU we use a smp
1909  * call to enable it in the task context. The task might have been
1910  * scheduled away, but we check this in the smp call again.
1911  */
1912 static void
1913 perf_install_in_context(struct perf_event_context *ctx,
1914 			struct perf_event *event,
1915 			int cpu)
1916 {
1917 	struct task_struct *task = ctx->task;
1918 
1919 	lockdep_assert_held(&ctx->mutex);
1920 
1921 	event->ctx = ctx;
1922 	if (event->cpu != -1)
1923 		event->cpu = cpu;
1924 
1925 	if (!task) {
1926 		/*
1927 		 * Per cpu events are installed via an smp call and
1928 		 * the install is always successful.
1929 		 */
1930 		cpu_function_call(cpu, __perf_install_in_context, event);
1931 		return;
1932 	}
1933 
1934 retry:
1935 	if (!task_function_call(task, __perf_install_in_context, event))
1936 		return;
1937 
1938 	raw_spin_lock_irq(&ctx->lock);
1939 	/*
1940 	 * If we failed to find a running task, but find the context active now
1941 	 * that we've acquired the ctx->lock, retry.
1942 	 */
1943 	if (ctx->is_active) {
1944 		raw_spin_unlock_irq(&ctx->lock);
1945 		goto retry;
1946 	}
1947 
1948 	/*
1949 	 * Since the task isn't running, its safe to add the event, us holding
1950 	 * the ctx->lock ensures the task won't get scheduled in.
1951 	 */
1952 	add_event_to_ctx(event, ctx);
1953 	raw_spin_unlock_irq(&ctx->lock);
1954 }
1955 
1956 /*
1957  * Put a event into inactive state and update time fields.
1958  * Enabling the leader of a group effectively enables all
1959  * the group members that aren't explicitly disabled, so we
1960  * have to update their ->tstamp_enabled also.
1961  * Note: this works for group members as well as group leaders
1962  * since the non-leader members' sibling_lists will be empty.
1963  */
1964 static void __perf_event_mark_enabled(struct perf_event *event)
1965 {
1966 	struct perf_event *sub;
1967 	u64 tstamp = perf_event_time(event);
1968 
1969 	event->state = PERF_EVENT_STATE_INACTIVE;
1970 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1971 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1972 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1973 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1974 	}
1975 }
1976 
1977 /*
1978  * Cross CPU call to enable a performance event
1979  */
1980 static int __perf_event_enable(void *info)
1981 {
1982 	struct perf_event *event = info;
1983 	struct perf_event_context *ctx = event->ctx;
1984 	struct perf_event *leader = event->group_leader;
1985 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1986 	int err;
1987 
1988 	/*
1989 	 * There's a time window between 'ctx->is_active' check
1990 	 * in perf_event_enable function and this place having:
1991 	 *   - IRQs on
1992 	 *   - ctx->lock unlocked
1993 	 *
1994 	 * where the task could be killed and 'ctx' deactivated
1995 	 * by perf_event_exit_task.
1996 	 */
1997 	if (!ctx->is_active)
1998 		return -EINVAL;
1999 
2000 	raw_spin_lock(&ctx->lock);
2001 	update_context_time(ctx);
2002 
2003 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2004 		goto unlock;
2005 
2006 	/*
2007 	 * set current task's cgroup time reference point
2008 	 */
2009 	perf_cgroup_set_timestamp(current, ctx);
2010 
2011 	__perf_event_mark_enabled(event);
2012 
2013 	if (!event_filter_match(event)) {
2014 		if (is_cgroup_event(event))
2015 			perf_cgroup_defer_enabled(event);
2016 		goto unlock;
2017 	}
2018 
2019 	/*
2020 	 * If the event is in a group and isn't the group leader,
2021 	 * then don't put it on unless the group is on.
2022 	 */
2023 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2024 		goto unlock;
2025 
2026 	if (!group_can_go_on(event, cpuctx, 1)) {
2027 		err = -EEXIST;
2028 	} else {
2029 		if (event == leader)
2030 			err = group_sched_in(event, cpuctx, ctx);
2031 		else
2032 			err = event_sched_in(event, cpuctx, ctx);
2033 	}
2034 
2035 	if (err) {
2036 		/*
2037 		 * If this event can't go on and it's part of a
2038 		 * group, then the whole group has to come off.
2039 		 */
2040 		if (leader != event) {
2041 			group_sched_out(leader, cpuctx, ctx);
2042 			perf_cpu_hrtimer_restart(cpuctx);
2043 		}
2044 		if (leader->attr.pinned) {
2045 			update_group_times(leader);
2046 			leader->state = PERF_EVENT_STATE_ERROR;
2047 		}
2048 	}
2049 
2050 unlock:
2051 	raw_spin_unlock(&ctx->lock);
2052 
2053 	return 0;
2054 }
2055 
2056 /*
2057  * Enable a event.
2058  *
2059  * If event->ctx is a cloned context, callers must make sure that
2060  * every task struct that event->ctx->task could possibly point to
2061  * remains valid.  This condition is satisfied when called through
2062  * perf_event_for_each_child or perf_event_for_each as described
2063  * for perf_event_disable.
2064  */
2065 void perf_event_enable(struct perf_event *event)
2066 {
2067 	struct perf_event_context *ctx = event->ctx;
2068 	struct task_struct *task = ctx->task;
2069 
2070 	if (!task) {
2071 		/*
2072 		 * Enable the event on the cpu that it's on
2073 		 */
2074 		cpu_function_call(event->cpu, __perf_event_enable, event);
2075 		return;
2076 	}
2077 
2078 	raw_spin_lock_irq(&ctx->lock);
2079 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2080 		goto out;
2081 
2082 	/*
2083 	 * If the event is in error state, clear that first.
2084 	 * That way, if we see the event in error state below, we
2085 	 * know that it has gone back into error state, as distinct
2086 	 * from the task having been scheduled away before the
2087 	 * cross-call arrived.
2088 	 */
2089 	if (event->state == PERF_EVENT_STATE_ERROR)
2090 		event->state = PERF_EVENT_STATE_OFF;
2091 
2092 retry:
2093 	if (!ctx->is_active) {
2094 		__perf_event_mark_enabled(event);
2095 		goto out;
2096 	}
2097 
2098 	raw_spin_unlock_irq(&ctx->lock);
2099 
2100 	if (!task_function_call(task, __perf_event_enable, event))
2101 		return;
2102 
2103 	raw_spin_lock_irq(&ctx->lock);
2104 
2105 	/*
2106 	 * If the context is active and the event is still off,
2107 	 * we need to retry the cross-call.
2108 	 */
2109 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2110 		/*
2111 		 * task could have been flipped by a concurrent
2112 		 * perf_event_context_sched_out()
2113 		 */
2114 		task = ctx->task;
2115 		goto retry;
2116 	}
2117 
2118 out:
2119 	raw_spin_unlock_irq(&ctx->lock);
2120 }
2121 EXPORT_SYMBOL_GPL(perf_event_enable);
2122 
2123 int perf_event_refresh(struct perf_event *event, int refresh)
2124 {
2125 	/*
2126 	 * not supported on inherited events
2127 	 */
2128 	if (event->attr.inherit || !is_sampling_event(event))
2129 		return -EINVAL;
2130 
2131 	atomic_add(refresh, &event->event_limit);
2132 	perf_event_enable(event);
2133 
2134 	return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(perf_event_refresh);
2137 
2138 static void ctx_sched_out(struct perf_event_context *ctx,
2139 			  struct perf_cpu_context *cpuctx,
2140 			  enum event_type_t event_type)
2141 {
2142 	struct perf_event *event;
2143 	int is_active = ctx->is_active;
2144 
2145 	ctx->is_active &= ~event_type;
2146 	if (likely(!ctx->nr_events))
2147 		return;
2148 
2149 	update_context_time(ctx);
2150 	update_cgrp_time_from_cpuctx(cpuctx);
2151 	if (!ctx->nr_active)
2152 		return;
2153 
2154 	perf_pmu_disable(ctx->pmu);
2155 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2156 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2157 			group_sched_out(event, cpuctx, ctx);
2158 	}
2159 
2160 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2161 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2162 			group_sched_out(event, cpuctx, ctx);
2163 	}
2164 	perf_pmu_enable(ctx->pmu);
2165 }
2166 
2167 /*
2168  * Test whether two contexts are equivalent, i.e. whether they have both been
2169  * cloned from the same version of the same context.
2170  *
2171  * Equivalence is measured using a generation number in the context that is
2172  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2173  * and list_del_event().
2174  */
2175 static int context_equiv(struct perf_event_context *ctx1,
2176 			 struct perf_event_context *ctx2)
2177 {
2178 	/* Pinning disables the swap optimization */
2179 	if (ctx1->pin_count || ctx2->pin_count)
2180 		return 0;
2181 
2182 	/* If ctx1 is the parent of ctx2 */
2183 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2184 		return 1;
2185 
2186 	/* If ctx2 is the parent of ctx1 */
2187 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2188 		return 1;
2189 
2190 	/*
2191 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2192 	 * hierarchy, see perf_event_init_context().
2193 	 */
2194 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2195 			ctx1->parent_gen == ctx2->parent_gen)
2196 		return 1;
2197 
2198 	/* Unmatched */
2199 	return 0;
2200 }
2201 
2202 static void __perf_event_sync_stat(struct perf_event *event,
2203 				     struct perf_event *next_event)
2204 {
2205 	u64 value;
2206 
2207 	if (!event->attr.inherit_stat)
2208 		return;
2209 
2210 	/*
2211 	 * Update the event value, we cannot use perf_event_read()
2212 	 * because we're in the middle of a context switch and have IRQs
2213 	 * disabled, which upsets smp_call_function_single(), however
2214 	 * we know the event must be on the current CPU, therefore we
2215 	 * don't need to use it.
2216 	 */
2217 	switch (event->state) {
2218 	case PERF_EVENT_STATE_ACTIVE:
2219 		event->pmu->read(event);
2220 		/* fall-through */
2221 
2222 	case PERF_EVENT_STATE_INACTIVE:
2223 		update_event_times(event);
2224 		break;
2225 
2226 	default:
2227 		break;
2228 	}
2229 
2230 	/*
2231 	 * In order to keep per-task stats reliable we need to flip the event
2232 	 * values when we flip the contexts.
2233 	 */
2234 	value = local64_read(&next_event->count);
2235 	value = local64_xchg(&event->count, value);
2236 	local64_set(&next_event->count, value);
2237 
2238 	swap(event->total_time_enabled, next_event->total_time_enabled);
2239 	swap(event->total_time_running, next_event->total_time_running);
2240 
2241 	/*
2242 	 * Since we swizzled the values, update the user visible data too.
2243 	 */
2244 	perf_event_update_userpage(event);
2245 	perf_event_update_userpage(next_event);
2246 }
2247 
2248 static void perf_event_sync_stat(struct perf_event_context *ctx,
2249 				   struct perf_event_context *next_ctx)
2250 {
2251 	struct perf_event *event, *next_event;
2252 
2253 	if (!ctx->nr_stat)
2254 		return;
2255 
2256 	update_context_time(ctx);
2257 
2258 	event = list_first_entry(&ctx->event_list,
2259 				   struct perf_event, event_entry);
2260 
2261 	next_event = list_first_entry(&next_ctx->event_list,
2262 					struct perf_event, event_entry);
2263 
2264 	while (&event->event_entry != &ctx->event_list &&
2265 	       &next_event->event_entry != &next_ctx->event_list) {
2266 
2267 		__perf_event_sync_stat(event, next_event);
2268 
2269 		event = list_next_entry(event, event_entry);
2270 		next_event = list_next_entry(next_event, event_entry);
2271 	}
2272 }
2273 
2274 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2275 					 struct task_struct *next)
2276 {
2277 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2278 	struct perf_event_context *next_ctx;
2279 	struct perf_event_context *parent, *next_parent;
2280 	struct perf_cpu_context *cpuctx;
2281 	int do_switch = 1;
2282 
2283 	if (likely(!ctx))
2284 		return;
2285 
2286 	cpuctx = __get_cpu_context(ctx);
2287 	if (!cpuctx->task_ctx)
2288 		return;
2289 
2290 	rcu_read_lock();
2291 	next_ctx = next->perf_event_ctxp[ctxn];
2292 	if (!next_ctx)
2293 		goto unlock;
2294 
2295 	parent = rcu_dereference(ctx->parent_ctx);
2296 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2297 
2298 	/* If neither context have a parent context; they cannot be clones. */
2299 	if (!parent && !next_parent)
2300 		goto unlock;
2301 
2302 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2303 		/*
2304 		 * Looks like the two contexts are clones, so we might be
2305 		 * able to optimize the context switch.  We lock both
2306 		 * contexts and check that they are clones under the
2307 		 * lock (including re-checking that neither has been
2308 		 * uncloned in the meantime).  It doesn't matter which
2309 		 * order we take the locks because no other cpu could
2310 		 * be trying to lock both of these tasks.
2311 		 */
2312 		raw_spin_lock(&ctx->lock);
2313 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2314 		if (context_equiv(ctx, next_ctx)) {
2315 			/*
2316 			 * XXX do we need a memory barrier of sorts
2317 			 * wrt to rcu_dereference() of perf_event_ctxp
2318 			 */
2319 			task->perf_event_ctxp[ctxn] = next_ctx;
2320 			next->perf_event_ctxp[ctxn] = ctx;
2321 			ctx->task = next;
2322 			next_ctx->task = task;
2323 			do_switch = 0;
2324 
2325 			perf_event_sync_stat(ctx, next_ctx);
2326 		}
2327 		raw_spin_unlock(&next_ctx->lock);
2328 		raw_spin_unlock(&ctx->lock);
2329 	}
2330 unlock:
2331 	rcu_read_unlock();
2332 
2333 	if (do_switch) {
2334 		raw_spin_lock(&ctx->lock);
2335 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2336 		cpuctx->task_ctx = NULL;
2337 		raw_spin_unlock(&ctx->lock);
2338 	}
2339 }
2340 
2341 #define for_each_task_context_nr(ctxn)					\
2342 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2343 
2344 /*
2345  * Called from scheduler to remove the events of the current task,
2346  * with interrupts disabled.
2347  *
2348  * We stop each event and update the event value in event->count.
2349  *
2350  * This does not protect us against NMI, but disable()
2351  * sets the disabled bit in the control field of event _before_
2352  * accessing the event control register. If a NMI hits, then it will
2353  * not restart the event.
2354  */
2355 void __perf_event_task_sched_out(struct task_struct *task,
2356 				 struct task_struct *next)
2357 {
2358 	int ctxn;
2359 
2360 	for_each_task_context_nr(ctxn)
2361 		perf_event_context_sched_out(task, ctxn, next);
2362 
2363 	/*
2364 	 * if cgroup events exist on this CPU, then we need
2365 	 * to check if we have to switch out PMU state.
2366 	 * cgroup event are system-wide mode only
2367 	 */
2368 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2369 		perf_cgroup_sched_out(task, next);
2370 }
2371 
2372 static void task_ctx_sched_out(struct perf_event_context *ctx)
2373 {
2374 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2375 
2376 	if (!cpuctx->task_ctx)
2377 		return;
2378 
2379 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2380 		return;
2381 
2382 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2383 	cpuctx->task_ctx = NULL;
2384 }
2385 
2386 /*
2387  * Called with IRQs disabled
2388  */
2389 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2390 			      enum event_type_t event_type)
2391 {
2392 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2393 }
2394 
2395 static void
2396 ctx_pinned_sched_in(struct perf_event_context *ctx,
2397 		    struct perf_cpu_context *cpuctx)
2398 {
2399 	struct perf_event *event;
2400 
2401 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2402 		if (event->state <= PERF_EVENT_STATE_OFF)
2403 			continue;
2404 		if (!event_filter_match(event))
2405 			continue;
2406 
2407 		/* may need to reset tstamp_enabled */
2408 		if (is_cgroup_event(event))
2409 			perf_cgroup_mark_enabled(event, ctx);
2410 
2411 		if (group_can_go_on(event, cpuctx, 1))
2412 			group_sched_in(event, cpuctx, ctx);
2413 
2414 		/*
2415 		 * If this pinned group hasn't been scheduled,
2416 		 * put it in error state.
2417 		 */
2418 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2419 			update_group_times(event);
2420 			event->state = PERF_EVENT_STATE_ERROR;
2421 		}
2422 	}
2423 }
2424 
2425 static void
2426 ctx_flexible_sched_in(struct perf_event_context *ctx,
2427 		      struct perf_cpu_context *cpuctx)
2428 {
2429 	struct perf_event *event;
2430 	int can_add_hw = 1;
2431 
2432 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2433 		/* Ignore events in OFF or ERROR state */
2434 		if (event->state <= PERF_EVENT_STATE_OFF)
2435 			continue;
2436 		/*
2437 		 * Listen to the 'cpu' scheduling filter constraint
2438 		 * of events:
2439 		 */
2440 		if (!event_filter_match(event))
2441 			continue;
2442 
2443 		/* may need to reset tstamp_enabled */
2444 		if (is_cgroup_event(event))
2445 			perf_cgroup_mark_enabled(event, ctx);
2446 
2447 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2448 			if (group_sched_in(event, cpuctx, ctx))
2449 				can_add_hw = 0;
2450 		}
2451 	}
2452 }
2453 
2454 static void
2455 ctx_sched_in(struct perf_event_context *ctx,
2456 	     struct perf_cpu_context *cpuctx,
2457 	     enum event_type_t event_type,
2458 	     struct task_struct *task)
2459 {
2460 	u64 now;
2461 	int is_active = ctx->is_active;
2462 
2463 	ctx->is_active |= event_type;
2464 	if (likely(!ctx->nr_events))
2465 		return;
2466 
2467 	now = perf_clock();
2468 	ctx->timestamp = now;
2469 	perf_cgroup_set_timestamp(task, ctx);
2470 	/*
2471 	 * First go through the list and put on any pinned groups
2472 	 * in order to give them the best chance of going on.
2473 	 */
2474 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2475 		ctx_pinned_sched_in(ctx, cpuctx);
2476 
2477 	/* Then walk through the lower prio flexible groups */
2478 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2479 		ctx_flexible_sched_in(ctx, cpuctx);
2480 }
2481 
2482 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2483 			     enum event_type_t event_type,
2484 			     struct task_struct *task)
2485 {
2486 	struct perf_event_context *ctx = &cpuctx->ctx;
2487 
2488 	ctx_sched_in(ctx, cpuctx, event_type, task);
2489 }
2490 
2491 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2492 					struct task_struct *task)
2493 {
2494 	struct perf_cpu_context *cpuctx;
2495 
2496 	cpuctx = __get_cpu_context(ctx);
2497 	if (cpuctx->task_ctx == ctx)
2498 		return;
2499 
2500 	perf_ctx_lock(cpuctx, ctx);
2501 	perf_pmu_disable(ctx->pmu);
2502 	/*
2503 	 * We want to keep the following priority order:
2504 	 * cpu pinned (that don't need to move), task pinned,
2505 	 * cpu flexible, task flexible.
2506 	 */
2507 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2508 
2509 	if (ctx->nr_events)
2510 		cpuctx->task_ctx = ctx;
2511 
2512 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2513 
2514 	perf_pmu_enable(ctx->pmu);
2515 	perf_ctx_unlock(cpuctx, ctx);
2516 
2517 	/*
2518 	 * Since these rotations are per-cpu, we need to ensure the
2519 	 * cpu-context we got scheduled on is actually rotating.
2520 	 */
2521 	perf_pmu_rotate_start(ctx->pmu);
2522 }
2523 
2524 /*
2525  * When sampling the branck stack in system-wide, it may be necessary
2526  * to flush the stack on context switch. This happens when the branch
2527  * stack does not tag its entries with the pid of the current task.
2528  * Otherwise it becomes impossible to associate a branch entry with a
2529  * task. This ambiguity is more likely to appear when the branch stack
2530  * supports priv level filtering and the user sets it to monitor only
2531  * at the user level (which could be a useful measurement in system-wide
2532  * mode). In that case, the risk is high of having a branch stack with
2533  * branch from multiple tasks. Flushing may mean dropping the existing
2534  * entries or stashing them somewhere in the PMU specific code layer.
2535  *
2536  * This function provides the context switch callback to the lower code
2537  * layer. It is invoked ONLY when there is at least one system-wide context
2538  * with at least one active event using taken branch sampling.
2539  */
2540 static void perf_branch_stack_sched_in(struct task_struct *prev,
2541 				       struct task_struct *task)
2542 {
2543 	struct perf_cpu_context *cpuctx;
2544 	struct pmu *pmu;
2545 	unsigned long flags;
2546 
2547 	/* no need to flush branch stack if not changing task */
2548 	if (prev == task)
2549 		return;
2550 
2551 	local_irq_save(flags);
2552 
2553 	rcu_read_lock();
2554 
2555 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2556 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2557 
2558 		/*
2559 		 * check if the context has at least one
2560 		 * event using PERF_SAMPLE_BRANCH_STACK
2561 		 */
2562 		if (cpuctx->ctx.nr_branch_stack > 0
2563 		    && pmu->flush_branch_stack) {
2564 
2565 			pmu = cpuctx->ctx.pmu;
2566 
2567 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2568 
2569 			perf_pmu_disable(pmu);
2570 
2571 			pmu->flush_branch_stack();
2572 
2573 			perf_pmu_enable(pmu);
2574 
2575 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2576 		}
2577 	}
2578 
2579 	rcu_read_unlock();
2580 
2581 	local_irq_restore(flags);
2582 }
2583 
2584 /*
2585  * Called from scheduler to add the events of the current task
2586  * with interrupts disabled.
2587  *
2588  * We restore the event value and then enable it.
2589  *
2590  * This does not protect us against NMI, but enable()
2591  * sets the enabled bit in the control field of event _before_
2592  * accessing the event control register. If a NMI hits, then it will
2593  * keep the event running.
2594  */
2595 void __perf_event_task_sched_in(struct task_struct *prev,
2596 				struct task_struct *task)
2597 {
2598 	struct perf_event_context *ctx;
2599 	int ctxn;
2600 
2601 	for_each_task_context_nr(ctxn) {
2602 		ctx = task->perf_event_ctxp[ctxn];
2603 		if (likely(!ctx))
2604 			continue;
2605 
2606 		perf_event_context_sched_in(ctx, task);
2607 	}
2608 	/*
2609 	 * if cgroup events exist on this CPU, then we need
2610 	 * to check if we have to switch in PMU state.
2611 	 * cgroup event are system-wide mode only
2612 	 */
2613 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2614 		perf_cgroup_sched_in(prev, task);
2615 
2616 	/* check for system-wide branch_stack events */
2617 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2618 		perf_branch_stack_sched_in(prev, task);
2619 }
2620 
2621 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2622 {
2623 	u64 frequency = event->attr.sample_freq;
2624 	u64 sec = NSEC_PER_SEC;
2625 	u64 divisor, dividend;
2626 
2627 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2628 
2629 	count_fls = fls64(count);
2630 	nsec_fls = fls64(nsec);
2631 	frequency_fls = fls64(frequency);
2632 	sec_fls = 30;
2633 
2634 	/*
2635 	 * We got @count in @nsec, with a target of sample_freq HZ
2636 	 * the target period becomes:
2637 	 *
2638 	 *             @count * 10^9
2639 	 * period = -------------------
2640 	 *          @nsec * sample_freq
2641 	 *
2642 	 */
2643 
2644 	/*
2645 	 * Reduce accuracy by one bit such that @a and @b converge
2646 	 * to a similar magnitude.
2647 	 */
2648 #define REDUCE_FLS(a, b)		\
2649 do {					\
2650 	if (a##_fls > b##_fls) {	\
2651 		a >>= 1;		\
2652 		a##_fls--;		\
2653 	} else {			\
2654 		b >>= 1;		\
2655 		b##_fls--;		\
2656 	}				\
2657 } while (0)
2658 
2659 	/*
2660 	 * Reduce accuracy until either term fits in a u64, then proceed with
2661 	 * the other, so that finally we can do a u64/u64 division.
2662 	 */
2663 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2664 		REDUCE_FLS(nsec, frequency);
2665 		REDUCE_FLS(sec, count);
2666 	}
2667 
2668 	if (count_fls + sec_fls > 64) {
2669 		divisor = nsec * frequency;
2670 
2671 		while (count_fls + sec_fls > 64) {
2672 			REDUCE_FLS(count, sec);
2673 			divisor >>= 1;
2674 		}
2675 
2676 		dividend = count * sec;
2677 	} else {
2678 		dividend = count * sec;
2679 
2680 		while (nsec_fls + frequency_fls > 64) {
2681 			REDUCE_FLS(nsec, frequency);
2682 			dividend >>= 1;
2683 		}
2684 
2685 		divisor = nsec * frequency;
2686 	}
2687 
2688 	if (!divisor)
2689 		return dividend;
2690 
2691 	return div64_u64(dividend, divisor);
2692 }
2693 
2694 static DEFINE_PER_CPU(int, perf_throttled_count);
2695 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2696 
2697 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2698 {
2699 	struct hw_perf_event *hwc = &event->hw;
2700 	s64 period, sample_period;
2701 	s64 delta;
2702 
2703 	period = perf_calculate_period(event, nsec, count);
2704 
2705 	delta = (s64)(period - hwc->sample_period);
2706 	delta = (delta + 7) / 8; /* low pass filter */
2707 
2708 	sample_period = hwc->sample_period + delta;
2709 
2710 	if (!sample_period)
2711 		sample_period = 1;
2712 
2713 	hwc->sample_period = sample_period;
2714 
2715 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2716 		if (disable)
2717 			event->pmu->stop(event, PERF_EF_UPDATE);
2718 
2719 		local64_set(&hwc->period_left, 0);
2720 
2721 		if (disable)
2722 			event->pmu->start(event, PERF_EF_RELOAD);
2723 	}
2724 }
2725 
2726 /*
2727  * combine freq adjustment with unthrottling to avoid two passes over the
2728  * events. At the same time, make sure, having freq events does not change
2729  * the rate of unthrottling as that would introduce bias.
2730  */
2731 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2732 					   int needs_unthr)
2733 {
2734 	struct perf_event *event;
2735 	struct hw_perf_event *hwc;
2736 	u64 now, period = TICK_NSEC;
2737 	s64 delta;
2738 
2739 	/*
2740 	 * only need to iterate over all events iff:
2741 	 * - context have events in frequency mode (needs freq adjust)
2742 	 * - there are events to unthrottle on this cpu
2743 	 */
2744 	if (!(ctx->nr_freq || needs_unthr))
2745 		return;
2746 
2747 	raw_spin_lock(&ctx->lock);
2748 	perf_pmu_disable(ctx->pmu);
2749 
2750 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2751 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2752 			continue;
2753 
2754 		if (!event_filter_match(event))
2755 			continue;
2756 
2757 		perf_pmu_disable(event->pmu);
2758 
2759 		hwc = &event->hw;
2760 
2761 		if (hwc->interrupts == MAX_INTERRUPTS) {
2762 			hwc->interrupts = 0;
2763 			perf_log_throttle(event, 1);
2764 			event->pmu->start(event, 0);
2765 		}
2766 
2767 		if (!event->attr.freq || !event->attr.sample_freq)
2768 			goto next;
2769 
2770 		/*
2771 		 * stop the event and update event->count
2772 		 */
2773 		event->pmu->stop(event, PERF_EF_UPDATE);
2774 
2775 		now = local64_read(&event->count);
2776 		delta = now - hwc->freq_count_stamp;
2777 		hwc->freq_count_stamp = now;
2778 
2779 		/*
2780 		 * restart the event
2781 		 * reload only if value has changed
2782 		 * we have stopped the event so tell that
2783 		 * to perf_adjust_period() to avoid stopping it
2784 		 * twice.
2785 		 */
2786 		if (delta > 0)
2787 			perf_adjust_period(event, period, delta, false);
2788 
2789 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2790 	next:
2791 		perf_pmu_enable(event->pmu);
2792 	}
2793 
2794 	perf_pmu_enable(ctx->pmu);
2795 	raw_spin_unlock(&ctx->lock);
2796 }
2797 
2798 /*
2799  * Round-robin a context's events:
2800  */
2801 static void rotate_ctx(struct perf_event_context *ctx)
2802 {
2803 	/*
2804 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2805 	 * disabled by the inheritance code.
2806 	 */
2807 	if (!ctx->rotate_disable)
2808 		list_rotate_left(&ctx->flexible_groups);
2809 }
2810 
2811 /*
2812  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2813  * because they're strictly cpu affine and rotate_start is called with IRQs
2814  * disabled, while rotate_context is called from IRQ context.
2815  */
2816 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2817 {
2818 	struct perf_event_context *ctx = NULL;
2819 	int rotate = 0, remove = 1;
2820 
2821 	if (cpuctx->ctx.nr_events) {
2822 		remove = 0;
2823 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2824 			rotate = 1;
2825 	}
2826 
2827 	ctx = cpuctx->task_ctx;
2828 	if (ctx && ctx->nr_events) {
2829 		remove = 0;
2830 		if (ctx->nr_events != ctx->nr_active)
2831 			rotate = 1;
2832 	}
2833 
2834 	if (!rotate)
2835 		goto done;
2836 
2837 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2838 	perf_pmu_disable(cpuctx->ctx.pmu);
2839 
2840 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2841 	if (ctx)
2842 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2843 
2844 	rotate_ctx(&cpuctx->ctx);
2845 	if (ctx)
2846 		rotate_ctx(ctx);
2847 
2848 	perf_event_sched_in(cpuctx, ctx, current);
2849 
2850 	perf_pmu_enable(cpuctx->ctx.pmu);
2851 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2852 done:
2853 	if (remove)
2854 		list_del_init(&cpuctx->rotation_list);
2855 
2856 	return rotate;
2857 }
2858 
2859 #ifdef CONFIG_NO_HZ_FULL
2860 bool perf_event_can_stop_tick(void)
2861 {
2862 	if (atomic_read(&nr_freq_events) ||
2863 	    __this_cpu_read(perf_throttled_count))
2864 		return false;
2865 	else
2866 		return true;
2867 }
2868 #endif
2869 
2870 void perf_event_task_tick(void)
2871 {
2872 	struct list_head *head = &__get_cpu_var(rotation_list);
2873 	struct perf_cpu_context *cpuctx, *tmp;
2874 	struct perf_event_context *ctx;
2875 	int throttled;
2876 
2877 	WARN_ON(!irqs_disabled());
2878 
2879 	__this_cpu_inc(perf_throttled_seq);
2880 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2881 
2882 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2883 		ctx = &cpuctx->ctx;
2884 		perf_adjust_freq_unthr_context(ctx, throttled);
2885 
2886 		ctx = cpuctx->task_ctx;
2887 		if (ctx)
2888 			perf_adjust_freq_unthr_context(ctx, throttled);
2889 	}
2890 }
2891 
2892 static int event_enable_on_exec(struct perf_event *event,
2893 				struct perf_event_context *ctx)
2894 {
2895 	if (!event->attr.enable_on_exec)
2896 		return 0;
2897 
2898 	event->attr.enable_on_exec = 0;
2899 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2900 		return 0;
2901 
2902 	__perf_event_mark_enabled(event);
2903 
2904 	return 1;
2905 }
2906 
2907 /*
2908  * Enable all of a task's events that have been marked enable-on-exec.
2909  * This expects task == current.
2910  */
2911 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2912 {
2913 	struct perf_event *event;
2914 	unsigned long flags;
2915 	int enabled = 0;
2916 	int ret;
2917 
2918 	local_irq_save(flags);
2919 	if (!ctx || !ctx->nr_events)
2920 		goto out;
2921 
2922 	/*
2923 	 * We must ctxsw out cgroup events to avoid conflict
2924 	 * when invoking perf_task_event_sched_in() later on
2925 	 * in this function. Otherwise we end up trying to
2926 	 * ctxswin cgroup events which are already scheduled
2927 	 * in.
2928 	 */
2929 	perf_cgroup_sched_out(current, NULL);
2930 
2931 	raw_spin_lock(&ctx->lock);
2932 	task_ctx_sched_out(ctx);
2933 
2934 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2935 		ret = event_enable_on_exec(event, ctx);
2936 		if (ret)
2937 			enabled = 1;
2938 	}
2939 
2940 	/*
2941 	 * Unclone this context if we enabled any event.
2942 	 */
2943 	if (enabled)
2944 		unclone_ctx(ctx);
2945 
2946 	raw_spin_unlock(&ctx->lock);
2947 
2948 	/*
2949 	 * Also calls ctxswin for cgroup events, if any:
2950 	 */
2951 	perf_event_context_sched_in(ctx, ctx->task);
2952 out:
2953 	local_irq_restore(flags);
2954 }
2955 
2956 /*
2957  * Cross CPU call to read the hardware event
2958  */
2959 static void __perf_event_read(void *info)
2960 {
2961 	struct perf_event *event = info;
2962 	struct perf_event_context *ctx = event->ctx;
2963 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2964 
2965 	/*
2966 	 * If this is a task context, we need to check whether it is
2967 	 * the current task context of this cpu.  If not it has been
2968 	 * scheduled out before the smp call arrived.  In that case
2969 	 * event->count would have been updated to a recent sample
2970 	 * when the event was scheduled out.
2971 	 */
2972 	if (ctx->task && cpuctx->task_ctx != ctx)
2973 		return;
2974 
2975 	raw_spin_lock(&ctx->lock);
2976 	if (ctx->is_active) {
2977 		update_context_time(ctx);
2978 		update_cgrp_time_from_event(event);
2979 	}
2980 	update_event_times(event);
2981 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2982 		event->pmu->read(event);
2983 	raw_spin_unlock(&ctx->lock);
2984 }
2985 
2986 static inline u64 perf_event_count(struct perf_event *event)
2987 {
2988 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2989 }
2990 
2991 static u64 perf_event_read(struct perf_event *event)
2992 {
2993 	/*
2994 	 * If event is enabled and currently active on a CPU, update the
2995 	 * value in the event structure:
2996 	 */
2997 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2998 		smp_call_function_single(event->oncpu,
2999 					 __perf_event_read, event, 1);
3000 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3001 		struct perf_event_context *ctx = event->ctx;
3002 		unsigned long flags;
3003 
3004 		raw_spin_lock_irqsave(&ctx->lock, flags);
3005 		/*
3006 		 * may read while context is not active
3007 		 * (e.g., thread is blocked), in that case
3008 		 * we cannot update context time
3009 		 */
3010 		if (ctx->is_active) {
3011 			update_context_time(ctx);
3012 			update_cgrp_time_from_event(event);
3013 		}
3014 		update_event_times(event);
3015 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3016 	}
3017 
3018 	return perf_event_count(event);
3019 }
3020 
3021 /*
3022  * Initialize the perf_event context in a task_struct:
3023  */
3024 static void __perf_event_init_context(struct perf_event_context *ctx)
3025 {
3026 	raw_spin_lock_init(&ctx->lock);
3027 	mutex_init(&ctx->mutex);
3028 	INIT_LIST_HEAD(&ctx->pinned_groups);
3029 	INIT_LIST_HEAD(&ctx->flexible_groups);
3030 	INIT_LIST_HEAD(&ctx->event_list);
3031 	atomic_set(&ctx->refcount, 1);
3032 }
3033 
3034 static struct perf_event_context *
3035 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3036 {
3037 	struct perf_event_context *ctx;
3038 
3039 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3040 	if (!ctx)
3041 		return NULL;
3042 
3043 	__perf_event_init_context(ctx);
3044 	if (task) {
3045 		ctx->task = task;
3046 		get_task_struct(task);
3047 	}
3048 	ctx->pmu = pmu;
3049 
3050 	return ctx;
3051 }
3052 
3053 static struct task_struct *
3054 find_lively_task_by_vpid(pid_t vpid)
3055 {
3056 	struct task_struct *task;
3057 	int err;
3058 
3059 	rcu_read_lock();
3060 	if (!vpid)
3061 		task = current;
3062 	else
3063 		task = find_task_by_vpid(vpid);
3064 	if (task)
3065 		get_task_struct(task);
3066 	rcu_read_unlock();
3067 
3068 	if (!task)
3069 		return ERR_PTR(-ESRCH);
3070 
3071 	/* Reuse ptrace permission checks for now. */
3072 	err = -EACCES;
3073 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3074 		goto errout;
3075 
3076 	return task;
3077 errout:
3078 	put_task_struct(task);
3079 	return ERR_PTR(err);
3080 
3081 }
3082 
3083 /*
3084  * Returns a matching context with refcount and pincount.
3085  */
3086 static struct perf_event_context *
3087 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3088 {
3089 	struct perf_event_context *ctx;
3090 	struct perf_cpu_context *cpuctx;
3091 	unsigned long flags;
3092 	int ctxn, err;
3093 
3094 	if (!task) {
3095 		/* Must be root to operate on a CPU event: */
3096 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3097 			return ERR_PTR(-EACCES);
3098 
3099 		/*
3100 		 * We could be clever and allow to attach a event to an
3101 		 * offline CPU and activate it when the CPU comes up, but
3102 		 * that's for later.
3103 		 */
3104 		if (!cpu_online(cpu))
3105 			return ERR_PTR(-ENODEV);
3106 
3107 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3108 		ctx = &cpuctx->ctx;
3109 		get_ctx(ctx);
3110 		++ctx->pin_count;
3111 
3112 		return ctx;
3113 	}
3114 
3115 	err = -EINVAL;
3116 	ctxn = pmu->task_ctx_nr;
3117 	if (ctxn < 0)
3118 		goto errout;
3119 
3120 retry:
3121 	ctx = perf_lock_task_context(task, ctxn, &flags);
3122 	if (ctx) {
3123 		unclone_ctx(ctx);
3124 		++ctx->pin_count;
3125 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3126 	} else {
3127 		ctx = alloc_perf_context(pmu, task);
3128 		err = -ENOMEM;
3129 		if (!ctx)
3130 			goto errout;
3131 
3132 		err = 0;
3133 		mutex_lock(&task->perf_event_mutex);
3134 		/*
3135 		 * If it has already passed perf_event_exit_task().
3136 		 * we must see PF_EXITING, it takes this mutex too.
3137 		 */
3138 		if (task->flags & PF_EXITING)
3139 			err = -ESRCH;
3140 		else if (task->perf_event_ctxp[ctxn])
3141 			err = -EAGAIN;
3142 		else {
3143 			get_ctx(ctx);
3144 			++ctx->pin_count;
3145 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3146 		}
3147 		mutex_unlock(&task->perf_event_mutex);
3148 
3149 		if (unlikely(err)) {
3150 			put_ctx(ctx);
3151 
3152 			if (err == -EAGAIN)
3153 				goto retry;
3154 			goto errout;
3155 		}
3156 	}
3157 
3158 	return ctx;
3159 
3160 errout:
3161 	return ERR_PTR(err);
3162 }
3163 
3164 static void perf_event_free_filter(struct perf_event *event);
3165 
3166 static void free_event_rcu(struct rcu_head *head)
3167 {
3168 	struct perf_event *event;
3169 
3170 	event = container_of(head, struct perf_event, rcu_head);
3171 	if (event->ns)
3172 		put_pid_ns(event->ns);
3173 	perf_event_free_filter(event);
3174 	kfree(event);
3175 }
3176 
3177 static void ring_buffer_put(struct ring_buffer *rb);
3178 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3179 
3180 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3181 {
3182 	if (event->parent)
3183 		return;
3184 
3185 	if (has_branch_stack(event)) {
3186 		if (!(event->attach_state & PERF_ATTACH_TASK))
3187 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3188 	}
3189 	if (is_cgroup_event(event))
3190 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3191 }
3192 
3193 static void unaccount_event(struct perf_event *event)
3194 {
3195 	if (event->parent)
3196 		return;
3197 
3198 	if (event->attach_state & PERF_ATTACH_TASK)
3199 		static_key_slow_dec_deferred(&perf_sched_events);
3200 	if (event->attr.mmap || event->attr.mmap_data)
3201 		atomic_dec(&nr_mmap_events);
3202 	if (event->attr.comm)
3203 		atomic_dec(&nr_comm_events);
3204 	if (event->attr.task)
3205 		atomic_dec(&nr_task_events);
3206 	if (event->attr.freq)
3207 		atomic_dec(&nr_freq_events);
3208 	if (is_cgroup_event(event))
3209 		static_key_slow_dec_deferred(&perf_sched_events);
3210 	if (has_branch_stack(event))
3211 		static_key_slow_dec_deferred(&perf_sched_events);
3212 
3213 	unaccount_event_cpu(event, event->cpu);
3214 }
3215 
3216 static void __free_event(struct perf_event *event)
3217 {
3218 	if (!event->parent) {
3219 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3220 			put_callchain_buffers();
3221 	}
3222 
3223 	if (event->destroy)
3224 		event->destroy(event);
3225 
3226 	if (event->ctx)
3227 		put_ctx(event->ctx);
3228 
3229 	call_rcu(&event->rcu_head, free_event_rcu);
3230 }
3231 static void free_event(struct perf_event *event)
3232 {
3233 	irq_work_sync(&event->pending);
3234 
3235 	unaccount_event(event);
3236 
3237 	if (event->rb) {
3238 		struct ring_buffer *rb;
3239 
3240 		/*
3241 		 * Can happen when we close an event with re-directed output.
3242 		 *
3243 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3244 		 * over us; possibly making our ring_buffer_put() the last.
3245 		 */
3246 		mutex_lock(&event->mmap_mutex);
3247 		rb = event->rb;
3248 		if (rb) {
3249 			rcu_assign_pointer(event->rb, NULL);
3250 			ring_buffer_detach(event, rb);
3251 			ring_buffer_put(rb); /* could be last */
3252 		}
3253 		mutex_unlock(&event->mmap_mutex);
3254 	}
3255 
3256 	if (is_cgroup_event(event))
3257 		perf_detach_cgroup(event);
3258 
3259 
3260 	__free_event(event);
3261 }
3262 
3263 int perf_event_release_kernel(struct perf_event *event)
3264 {
3265 	struct perf_event_context *ctx = event->ctx;
3266 
3267 	WARN_ON_ONCE(ctx->parent_ctx);
3268 	/*
3269 	 * There are two ways this annotation is useful:
3270 	 *
3271 	 *  1) there is a lock recursion from perf_event_exit_task
3272 	 *     see the comment there.
3273 	 *
3274 	 *  2) there is a lock-inversion with mmap_sem through
3275 	 *     perf_event_read_group(), which takes faults while
3276 	 *     holding ctx->mutex, however this is called after
3277 	 *     the last filedesc died, so there is no possibility
3278 	 *     to trigger the AB-BA case.
3279 	 */
3280 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3281 	raw_spin_lock_irq(&ctx->lock);
3282 	perf_group_detach(event);
3283 	raw_spin_unlock_irq(&ctx->lock);
3284 	perf_remove_from_context(event);
3285 	mutex_unlock(&ctx->mutex);
3286 
3287 	free_event(event);
3288 
3289 	return 0;
3290 }
3291 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3292 
3293 /*
3294  * Called when the last reference to the file is gone.
3295  */
3296 static void put_event(struct perf_event *event)
3297 {
3298 	struct task_struct *owner;
3299 
3300 	if (!atomic_long_dec_and_test(&event->refcount))
3301 		return;
3302 
3303 	rcu_read_lock();
3304 	owner = ACCESS_ONCE(event->owner);
3305 	/*
3306 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3307 	 * !owner it means the list deletion is complete and we can indeed
3308 	 * free this event, otherwise we need to serialize on
3309 	 * owner->perf_event_mutex.
3310 	 */
3311 	smp_read_barrier_depends();
3312 	if (owner) {
3313 		/*
3314 		 * Since delayed_put_task_struct() also drops the last
3315 		 * task reference we can safely take a new reference
3316 		 * while holding the rcu_read_lock().
3317 		 */
3318 		get_task_struct(owner);
3319 	}
3320 	rcu_read_unlock();
3321 
3322 	if (owner) {
3323 		mutex_lock(&owner->perf_event_mutex);
3324 		/*
3325 		 * We have to re-check the event->owner field, if it is cleared
3326 		 * we raced with perf_event_exit_task(), acquiring the mutex
3327 		 * ensured they're done, and we can proceed with freeing the
3328 		 * event.
3329 		 */
3330 		if (event->owner)
3331 			list_del_init(&event->owner_entry);
3332 		mutex_unlock(&owner->perf_event_mutex);
3333 		put_task_struct(owner);
3334 	}
3335 
3336 	perf_event_release_kernel(event);
3337 }
3338 
3339 static int perf_release(struct inode *inode, struct file *file)
3340 {
3341 	put_event(file->private_data);
3342 	return 0;
3343 }
3344 
3345 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3346 {
3347 	struct perf_event *child;
3348 	u64 total = 0;
3349 
3350 	*enabled = 0;
3351 	*running = 0;
3352 
3353 	mutex_lock(&event->child_mutex);
3354 	total += perf_event_read(event);
3355 	*enabled += event->total_time_enabled +
3356 			atomic64_read(&event->child_total_time_enabled);
3357 	*running += event->total_time_running +
3358 			atomic64_read(&event->child_total_time_running);
3359 
3360 	list_for_each_entry(child, &event->child_list, child_list) {
3361 		total += perf_event_read(child);
3362 		*enabled += child->total_time_enabled;
3363 		*running += child->total_time_running;
3364 	}
3365 	mutex_unlock(&event->child_mutex);
3366 
3367 	return total;
3368 }
3369 EXPORT_SYMBOL_GPL(perf_event_read_value);
3370 
3371 static int perf_event_read_group(struct perf_event *event,
3372 				   u64 read_format, char __user *buf)
3373 {
3374 	struct perf_event *leader = event->group_leader, *sub;
3375 	int n = 0, size = 0, ret = -EFAULT;
3376 	struct perf_event_context *ctx = leader->ctx;
3377 	u64 values[5];
3378 	u64 count, enabled, running;
3379 
3380 	mutex_lock(&ctx->mutex);
3381 	count = perf_event_read_value(leader, &enabled, &running);
3382 
3383 	values[n++] = 1 + leader->nr_siblings;
3384 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3385 		values[n++] = enabled;
3386 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3387 		values[n++] = running;
3388 	values[n++] = count;
3389 	if (read_format & PERF_FORMAT_ID)
3390 		values[n++] = primary_event_id(leader);
3391 
3392 	size = n * sizeof(u64);
3393 
3394 	if (copy_to_user(buf, values, size))
3395 		goto unlock;
3396 
3397 	ret = size;
3398 
3399 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3400 		n = 0;
3401 
3402 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3403 		if (read_format & PERF_FORMAT_ID)
3404 			values[n++] = primary_event_id(sub);
3405 
3406 		size = n * sizeof(u64);
3407 
3408 		if (copy_to_user(buf + ret, values, size)) {
3409 			ret = -EFAULT;
3410 			goto unlock;
3411 		}
3412 
3413 		ret += size;
3414 	}
3415 unlock:
3416 	mutex_unlock(&ctx->mutex);
3417 
3418 	return ret;
3419 }
3420 
3421 static int perf_event_read_one(struct perf_event *event,
3422 				 u64 read_format, char __user *buf)
3423 {
3424 	u64 enabled, running;
3425 	u64 values[4];
3426 	int n = 0;
3427 
3428 	values[n++] = perf_event_read_value(event, &enabled, &running);
3429 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3430 		values[n++] = enabled;
3431 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3432 		values[n++] = running;
3433 	if (read_format & PERF_FORMAT_ID)
3434 		values[n++] = primary_event_id(event);
3435 
3436 	if (copy_to_user(buf, values, n * sizeof(u64)))
3437 		return -EFAULT;
3438 
3439 	return n * sizeof(u64);
3440 }
3441 
3442 /*
3443  * Read the performance event - simple non blocking version for now
3444  */
3445 static ssize_t
3446 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3447 {
3448 	u64 read_format = event->attr.read_format;
3449 	int ret;
3450 
3451 	/*
3452 	 * Return end-of-file for a read on a event that is in
3453 	 * error state (i.e. because it was pinned but it couldn't be
3454 	 * scheduled on to the CPU at some point).
3455 	 */
3456 	if (event->state == PERF_EVENT_STATE_ERROR)
3457 		return 0;
3458 
3459 	if (count < event->read_size)
3460 		return -ENOSPC;
3461 
3462 	WARN_ON_ONCE(event->ctx->parent_ctx);
3463 	if (read_format & PERF_FORMAT_GROUP)
3464 		ret = perf_event_read_group(event, read_format, buf);
3465 	else
3466 		ret = perf_event_read_one(event, read_format, buf);
3467 
3468 	return ret;
3469 }
3470 
3471 static ssize_t
3472 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3473 {
3474 	struct perf_event *event = file->private_data;
3475 
3476 	return perf_read_hw(event, buf, count);
3477 }
3478 
3479 static unsigned int perf_poll(struct file *file, poll_table *wait)
3480 {
3481 	struct perf_event *event = file->private_data;
3482 	struct ring_buffer *rb;
3483 	unsigned int events = POLL_HUP;
3484 
3485 	/*
3486 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3487 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3488 	 */
3489 	mutex_lock(&event->mmap_mutex);
3490 	rb = event->rb;
3491 	if (rb)
3492 		events = atomic_xchg(&rb->poll, 0);
3493 	mutex_unlock(&event->mmap_mutex);
3494 
3495 	poll_wait(file, &event->waitq, wait);
3496 
3497 	return events;
3498 }
3499 
3500 static void perf_event_reset(struct perf_event *event)
3501 {
3502 	(void)perf_event_read(event);
3503 	local64_set(&event->count, 0);
3504 	perf_event_update_userpage(event);
3505 }
3506 
3507 /*
3508  * Holding the top-level event's child_mutex means that any
3509  * descendant process that has inherited this event will block
3510  * in sync_child_event if it goes to exit, thus satisfying the
3511  * task existence requirements of perf_event_enable/disable.
3512  */
3513 static void perf_event_for_each_child(struct perf_event *event,
3514 					void (*func)(struct perf_event *))
3515 {
3516 	struct perf_event *child;
3517 
3518 	WARN_ON_ONCE(event->ctx->parent_ctx);
3519 	mutex_lock(&event->child_mutex);
3520 	func(event);
3521 	list_for_each_entry(child, &event->child_list, child_list)
3522 		func(child);
3523 	mutex_unlock(&event->child_mutex);
3524 }
3525 
3526 static void perf_event_for_each(struct perf_event *event,
3527 				  void (*func)(struct perf_event *))
3528 {
3529 	struct perf_event_context *ctx = event->ctx;
3530 	struct perf_event *sibling;
3531 
3532 	WARN_ON_ONCE(ctx->parent_ctx);
3533 	mutex_lock(&ctx->mutex);
3534 	event = event->group_leader;
3535 
3536 	perf_event_for_each_child(event, func);
3537 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3538 		perf_event_for_each_child(sibling, func);
3539 	mutex_unlock(&ctx->mutex);
3540 }
3541 
3542 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3543 {
3544 	struct perf_event_context *ctx = event->ctx;
3545 	int ret = 0;
3546 	u64 value;
3547 
3548 	if (!is_sampling_event(event))
3549 		return -EINVAL;
3550 
3551 	if (copy_from_user(&value, arg, sizeof(value)))
3552 		return -EFAULT;
3553 
3554 	if (!value)
3555 		return -EINVAL;
3556 
3557 	raw_spin_lock_irq(&ctx->lock);
3558 	if (event->attr.freq) {
3559 		if (value > sysctl_perf_event_sample_rate) {
3560 			ret = -EINVAL;
3561 			goto unlock;
3562 		}
3563 
3564 		event->attr.sample_freq = value;
3565 	} else {
3566 		event->attr.sample_period = value;
3567 		event->hw.sample_period = value;
3568 	}
3569 unlock:
3570 	raw_spin_unlock_irq(&ctx->lock);
3571 
3572 	return ret;
3573 }
3574 
3575 static const struct file_operations perf_fops;
3576 
3577 static inline int perf_fget_light(int fd, struct fd *p)
3578 {
3579 	struct fd f = fdget(fd);
3580 	if (!f.file)
3581 		return -EBADF;
3582 
3583 	if (f.file->f_op != &perf_fops) {
3584 		fdput(f);
3585 		return -EBADF;
3586 	}
3587 	*p = f;
3588 	return 0;
3589 }
3590 
3591 static int perf_event_set_output(struct perf_event *event,
3592 				 struct perf_event *output_event);
3593 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3594 
3595 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3596 {
3597 	struct perf_event *event = file->private_data;
3598 	void (*func)(struct perf_event *);
3599 	u32 flags = arg;
3600 
3601 	switch (cmd) {
3602 	case PERF_EVENT_IOC_ENABLE:
3603 		func = perf_event_enable;
3604 		break;
3605 	case PERF_EVENT_IOC_DISABLE:
3606 		func = perf_event_disable;
3607 		break;
3608 	case PERF_EVENT_IOC_RESET:
3609 		func = perf_event_reset;
3610 		break;
3611 
3612 	case PERF_EVENT_IOC_REFRESH:
3613 		return perf_event_refresh(event, arg);
3614 
3615 	case PERF_EVENT_IOC_PERIOD:
3616 		return perf_event_period(event, (u64 __user *)arg);
3617 
3618 	case PERF_EVENT_IOC_ID:
3619 	{
3620 		u64 id = primary_event_id(event);
3621 
3622 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3623 			return -EFAULT;
3624 		return 0;
3625 	}
3626 
3627 	case PERF_EVENT_IOC_SET_OUTPUT:
3628 	{
3629 		int ret;
3630 		if (arg != -1) {
3631 			struct perf_event *output_event;
3632 			struct fd output;
3633 			ret = perf_fget_light(arg, &output);
3634 			if (ret)
3635 				return ret;
3636 			output_event = output.file->private_data;
3637 			ret = perf_event_set_output(event, output_event);
3638 			fdput(output);
3639 		} else {
3640 			ret = perf_event_set_output(event, NULL);
3641 		}
3642 		return ret;
3643 	}
3644 
3645 	case PERF_EVENT_IOC_SET_FILTER:
3646 		return perf_event_set_filter(event, (void __user *)arg);
3647 
3648 	default:
3649 		return -ENOTTY;
3650 	}
3651 
3652 	if (flags & PERF_IOC_FLAG_GROUP)
3653 		perf_event_for_each(event, func);
3654 	else
3655 		perf_event_for_each_child(event, func);
3656 
3657 	return 0;
3658 }
3659 
3660 int perf_event_task_enable(void)
3661 {
3662 	struct perf_event *event;
3663 
3664 	mutex_lock(&current->perf_event_mutex);
3665 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3666 		perf_event_for_each_child(event, perf_event_enable);
3667 	mutex_unlock(&current->perf_event_mutex);
3668 
3669 	return 0;
3670 }
3671 
3672 int perf_event_task_disable(void)
3673 {
3674 	struct perf_event *event;
3675 
3676 	mutex_lock(&current->perf_event_mutex);
3677 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3678 		perf_event_for_each_child(event, perf_event_disable);
3679 	mutex_unlock(&current->perf_event_mutex);
3680 
3681 	return 0;
3682 }
3683 
3684 static int perf_event_index(struct perf_event *event)
3685 {
3686 	if (event->hw.state & PERF_HES_STOPPED)
3687 		return 0;
3688 
3689 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3690 		return 0;
3691 
3692 	return event->pmu->event_idx(event);
3693 }
3694 
3695 static void calc_timer_values(struct perf_event *event,
3696 				u64 *now,
3697 				u64 *enabled,
3698 				u64 *running)
3699 {
3700 	u64 ctx_time;
3701 
3702 	*now = perf_clock();
3703 	ctx_time = event->shadow_ctx_time + *now;
3704 	*enabled = ctx_time - event->tstamp_enabled;
3705 	*running = ctx_time - event->tstamp_running;
3706 }
3707 
3708 static void perf_event_init_userpage(struct perf_event *event)
3709 {
3710 	struct perf_event_mmap_page *userpg;
3711 	struct ring_buffer *rb;
3712 
3713 	rcu_read_lock();
3714 	rb = rcu_dereference(event->rb);
3715 	if (!rb)
3716 		goto unlock;
3717 
3718 	userpg = rb->user_page;
3719 
3720 	/* Allow new userspace to detect that bit 0 is deprecated */
3721 	userpg->cap_bit0_is_deprecated = 1;
3722 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3723 
3724 unlock:
3725 	rcu_read_unlock();
3726 }
3727 
3728 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3729 {
3730 }
3731 
3732 /*
3733  * Callers need to ensure there can be no nesting of this function, otherwise
3734  * the seqlock logic goes bad. We can not serialize this because the arch
3735  * code calls this from NMI context.
3736  */
3737 void perf_event_update_userpage(struct perf_event *event)
3738 {
3739 	struct perf_event_mmap_page *userpg;
3740 	struct ring_buffer *rb;
3741 	u64 enabled, running, now;
3742 
3743 	rcu_read_lock();
3744 	rb = rcu_dereference(event->rb);
3745 	if (!rb)
3746 		goto unlock;
3747 
3748 	/*
3749 	 * compute total_time_enabled, total_time_running
3750 	 * based on snapshot values taken when the event
3751 	 * was last scheduled in.
3752 	 *
3753 	 * we cannot simply called update_context_time()
3754 	 * because of locking issue as we can be called in
3755 	 * NMI context
3756 	 */
3757 	calc_timer_values(event, &now, &enabled, &running);
3758 
3759 	userpg = rb->user_page;
3760 	/*
3761 	 * Disable preemption so as to not let the corresponding user-space
3762 	 * spin too long if we get preempted.
3763 	 */
3764 	preempt_disable();
3765 	++userpg->lock;
3766 	barrier();
3767 	userpg->index = perf_event_index(event);
3768 	userpg->offset = perf_event_count(event);
3769 	if (userpg->index)
3770 		userpg->offset -= local64_read(&event->hw.prev_count);
3771 
3772 	userpg->time_enabled = enabled +
3773 			atomic64_read(&event->child_total_time_enabled);
3774 
3775 	userpg->time_running = running +
3776 			atomic64_read(&event->child_total_time_running);
3777 
3778 	arch_perf_update_userpage(userpg, now);
3779 
3780 	barrier();
3781 	++userpg->lock;
3782 	preempt_enable();
3783 unlock:
3784 	rcu_read_unlock();
3785 }
3786 
3787 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3788 {
3789 	struct perf_event *event = vma->vm_file->private_data;
3790 	struct ring_buffer *rb;
3791 	int ret = VM_FAULT_SIGBUS;
3792 
3793 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3794 		if (vmf->pgoff == 0)
3795 			ret = 0;
3796 		return ret;
3797 	}
3798 
3799 	rcu_read_lock();
3800 	rb = rcu_dereference(event->rb);
3801 	if (!rb)
3802 		goto unlock;
3803 
3804 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3805 		goto unlock;
3806 
3807 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3808 	if (!vmf->page)
3809 		goto unlock;
3810 
3811 	get_page(vmf->page);
3812 	vmf->page->mapping = vma->vm_file->f_mapping;
3813 	vmf->page->index   = vmf->pgoff;
3814 
3815 	ret = 0;
3816 unlock:
3817 	rcu_read_unlock();
3818 
3819 	return ret;
3820 }
3821 
3822 static void ring_buffer_attach(struct perf_event *event,
3823 			       struct ring_buffer *rb)
3824 {
3825 	unsigned long flags;
3826 
3827 	if (!list_empty(&event->rb_entry))
3828 		return;
3829 
3830 	spin_lock_irqsave(&rb->event_lock, flags);
3831 	if (list_empty(&event->rb_entry))
3832 		list_add(&event->rb_entry, &rb->event_list);
3833 	spin_unlock_irqrestore(&rb->event_lock, flags);
3834 }
3835 
3836 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3837 {
3838 	unsigned long flags;
3839 
3840 	if (list_empty(&event->rb_entry))
3841 		return;
3842 
3843 	spin_lock_irqsave(&rb->event_lock, flags);
3844 	list_del_init(&event->rb_entry);
3845 	wake_up_all(&event->waitq);
3846 	spin_unlock_irqrestore(&rb->event_lock, flags);
3847 }
3848 
3849 static void ring_buffer_wakeup(struct perf_event *event)
3850 {
3851 	struct ring_buffer *rb;
3852 
3853 	rcu_read_lock();
3854 	rb = rcu_dereference(event->rb);
3855 	if (rb) {
3856 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3857 			wake_up_all(&event->waitq);
3858 	}
3859 	rcu_read_unlock();
3860 }
3861 
3862 static void rb_free_rcu(struct rcu_head *rcu_head)
3863 {
3864 	struct ring_buffer *rb;
3865 
3866 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3867 	rb_free(rb);
3868 }
3869 
3870 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3871 {
3872 	struct ring_buffer *rb;
3873 
3874 	rcu_read_lock();
3875 	rb = rcu_dereference(event->rb);
3876 	if (rb) {
3877 		if (!atomic_inc_not_zero(&rb->refcount))
3878 			rb = NULL;
3879 	}
3880 	rcu_read_unlock();
3881 
3882 	return rb;
3883 }
3884 
3885 static void ring_buffer_put(struct ring_buffer *rb)
3886 {
3887 	if (!atomic_dec_and_test(&rb->refcount))
3888 		return;
3889 
3890 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3891 
3892 	call_rcu(&rb->rcu_head, rb_free_rcu);
3893 }
3894 
3895 static void perf_mmap_open(struct vm_area_struct *vma)
3896 {
3897 	struct perf_event *event = vma->vm_file->private_data;
3898 
3899 	atomic_inc(&event->mmap_count);
3900 	atomic_inc(&event->rb->mmap_count);
3901 }
3902 
3903 /*
3904  * A buffer can be mmap()ed multiple times; either directly through the same
3905  * event, or through other events by use of perf_event_set_output().
3906  *
3907  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3908  * the buffer here, where we still have a VM context. This means we need
3909  * to detach all events redirecting to us.
3910  */
3911 static void perf_mmap_close(struct vm_area_struct *vma)
3912 {
3913 	struct perf_event *event = vma->vm_file->private_data;
3914 
3915 	struct ring_buffer *rb = event->rb;
3916 	struct user_struct *mmap_user = rb->mmap_user;
3917 	int mmap_locked = rb->mmap_locked;
3918 	unsigned long size = perf_data_size(rb);
3919 
3920 	atomic_dec(&rb->mmap_count);
3921 
3922 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3923 		return;
3924 
3925 	/* Detach current event from the buffer. */
3926 	rcu_assign_pointer(event->rb, NULL);
3927 	ring_buffer_detach(event, rb);
3928 	mutex_unlock(&event->mmap_mutex);
3929 
3930 	/* If there's still other mmap()s of this buffer, we're done. */
3931 	if (atomic_read(&rb->mmap_count)) {
3932 		ring_buffer_put(rb); /* can't be last */
3933 		return;
3934 	}
3935 
3936 	/*
3937 	 * No other mmap()s, detach from all other events that might redirect
3938 	 * into the now unreachable buffer. Somewhat complicated by the
3939 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3940 	 */
3941 again:
3942 	rcu_read_lock();
3943 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3944 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3945 			/*
3946 			 * This event is en-route to free_event() which will
3947 			 * detach it and remove it from the list.
3948 			 */
3949 			continue;
3950 		}
3951 		rcu_read_unlock();
3952 
3953 		mutex_lock(&event->mmap_mutex);
3954 		/*
3955 		 * Check we didn't race with perf_event_set_output() which can
3956 		 * swizzle the rb from under us while we were waiting to
3957 		 * acquire mmap_mutex.
3958 		 *
3959 		 * If we find a different rb; ignore this event, a next
3960 		 * iteration will no longer find it on the list. We have to
3961 		 * still restart the iteration to make sure we're not now
3962 		 * iterating the wrong list.
3963 		 */
3964 		if (event->rb == rb) {
3965 			rcu_assign_pointer(event->rb, NULL);
3966 			ring_buffer_detach(event, rb);
3967 			ring_buffer_put(rb); /* can't be last, we still have one */
3968 		}
3969 		mutex_unlock(&event->mmap_mutex);
3970 		put_event(event);
3971 
3972 		/*
3973 		 * Restart the iteration; either we're on the wrong list or
3974 		 * destroyed its integrity by doing a deletion.
3975 		 */
3976 		goto again;
3977 	}
3978 	rcu_read_unlock();
3979 
3980 	/*
3981 	 * It could be there's still a few 0-ref events on the list; they'll
3982 	 * get cleaned up by free_event() -- they'll also still have their
3983 	 * ref on the rb and will free it whenever they are done with it.
3984 	 *
3985 	 * Aside from that, this buffer is 'fully' detached and unmapped,
3986 	 * undo the VM accounting.
3987 	 */
3988 
3989 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3990 	vma->vm_mm->pinned_vm -= mmap_locked;
3991 	free_uid(mmap_user);
3992 
3993 	ring_buffer_put(rb); /* could be last */
3994 }
3995 
3996 static const struct vm_operations_struct perf_mmap_vmops = {
3997 	.open		= perf_mmap_open,
3998 	.close		= perf_mmap_close,
3999 	.fault		= perf_mmap_fault,
4000 	.page_mkwrite	= perf_mmap_fault,
4001 };
4002 
4003 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4004 {
4005 	struct perf_event *event = file->private_data;
4006 	unsigned long user_locked, user_lock_limit;
4007 	struct user_struct *user = current_user();
4008 	unsigned long locked, lock_limit;
4009 	struct ring_buffer *rb;
4010 	unsigned long vma_size;
4011 	unsigned long nr_pages;
4012 	long user_extra, extra;
4013 	int ret = 0, flags = 0;
4014 
4015 	/*
4016 	 * Don't allow mmap() of inherited per-task counters. This would
4017 	 * create a performance issue due to all children writing to the
4018 	 * same rb.
4019 	 */
4020 	if (event->cpu == -1 && event->attr.inherit)
4021 		return -EINVAL;
4022 
4023 	if (!(vma->vm_flags & VM_SHARED))
4024 		return -EINVAL;
4025 
4026 	vma_size = vma->vm_end - vma->vm_start;
4027 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4028 
4029 	/*
4030 	 * If we have rb pages ensure they're a power-of-two number, so we
4031 	 * can do bitmasks instead of modulo.
4032 	 */
4033 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4034 		return -EINVAL;
4035 
4036 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4037 		return -EINVAL;
4038 
4039 	if (vma->vm_pgoff != 0)
4040 		return -EINVAL;
4041 
4042 	WARN_ON_ONCE(event->ctx->parent_ctx);
4043 again:
4044 	mutex_lock(&event->mmap_mutex);
4045 	if (event->rb) {
4046 		if (event->rb->nr_pages != nr_pages) {
4047 			ret = -EINVAL;
4048 			goto unlock;
4049 		}
4050 
4051 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4052 			/*
4053 			 * Raced against perf_mmap_close() through
4054 			 * perf_event_set_output(). Try again, hope for better
4055 			 * luck.
4056 			 */
4057 			mutex_unlock(&event->mmap_mutex);
4058 			goto again;
4059 		}
4060 
4061 		goto unlock;
4062 	}
4063 
4064 	user_extra = nr_pages + 1;
4065 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4066 
4067 	/*
4068 	 * Increase the limit linearly with more CPUs:
4069 	 */
4070 	user_lock_limit *= num_online_cpus();
4071 
4072 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4073 
4074 	extra = 0;
4075 	if (user_locked > user_lock_limit)
4076 		extra = user_locked - user_lock_limit;
4077 
4078 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4079 	lock_limit >>= PAGE_SHIFT;
4080 	locked = vma->vm_mm->pinned_vm + extra;
4081 
4082 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4083 		!capable(CAP_IPC_LOCK)) {
4084 		ret = -EPERM;
4085 		goto unlock;
4086 	}
4087 
4088 	WARN_ON(event->rb);
4089 
4090 	if (vma->vm_flags & VM_WRITE)
4091 		flags |= RING_BUFFER_WRITABLE;
4092 
4093 	rb = rb_alloc(nr_pages,
4094 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4095 		event->cpu, flags);
4096 
4097 	if (!rb) {
4098 		ret = -ENOMEM;
4099 		goto unlock;
4100 	}
4101 
4102 	atomic_set(&rb->mmap_count, 1);
4103 	rb->mmap_locked = extra;
4104 	rb->mmap_user = get_current_user();
4105 
4106 	atomic_long_add(user_extra, &user->locked_vm);
4107 	vma->vm_mm->pinned_vm += extra;
4108 
4109 	ring_buffer_attach(event, rb);
4110 	rcu_assign_pointer(event->rb, rb);
4111 
4112 	perf_event_init_userpage(event);
4113 	perf_event_update_userpage(event);
4114 
4115 unlock:
4116 	if (!ret)
4117 		atomic_inc(&event->mmap_count);
4118 	mutex_unlock(&event->mmap_mutex);
4119 
4120 	/*
4121 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4122 	 * vma.
4123 	 */
4124 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4125 	vma->vm_ops = &perf_mmap_vmops;
4126 
4127 	return ret;
4128 }
4129 
4130 static int perf_fasync(int fd, struct file *filp, int on)
4131 {
4132 	struct inode *inode = file_inode(filp);
4133 	struct perf_event *event = filp->private_data;
4134 	int retval;
4135 
4136 	mutex_lock(&inode->i_mutex);
4137 	retval = fasync_helper(fd, filp, on, &event->fasync);
4138 	mutex_unlock(&inode->i_mutex);
4139 
4140 	if (retval < 0)
4141 		return retval;
4142 
4143 	return 0;
4144 }
4145 
4146 static const struct file_operations perf_fops = {
4147 	.llseek			= no_llseek,
4148 	.release		= perf_release,
4149 	.read			= perf_read,
4150 	.poll			= perf_poll,
4151 	.unlocked_ioctl		= perf_ioctl,
4152 	.compat_ioctl		= perf_ioctl,
4153 	.mmap			= perf_mmap,
4154 	.fasync			= perf_fasync,
4155 };
4156 
4157 /*
4158  * Perf event wakeup
4159  *
4160  * If there's data, ensure we set the poll() state and publish everything
4161  * to user-space before waking everybody up.
4162  */
4163 
4164 void perf_event_wakeup(struct perf_event *event)
4165 {
4166 	ring_buffer_wakeup(event);
4167 
4168 	if (event->pending_kill) {
4169 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4170 		event->pending_kill = 0;
4171 	}
4172 }
4173 
4174 static void perf_pending_event(struct irq_work *entry)
4175 {
4176 	struct perf_event *event = container_of(entry,
4177 			struct perf_event, pending);
4178 
4179 	if (event->pending_disable) {
4180 		event->pending_disable = 0;
4181 		__perf_event_disable(event);
4182 	}
4183 
4184 	if (event->pending_wakeup) {
4185 		event->pending_wakeup = 0;
4186 		perf_event_wakeup(event);
4187 	}
4188 }
4189 
4190 /*
4191  * We assume there is only KVM supporting the callbacks.
4192  * Later on, we might change it to a list if there is
4193  * another virtualization implementation supporting the callbacks.
4194  */
4195 struct perf_guest_info_callbacks *perf_guest_cbs;
4196 
4197 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4198 {
4199 	perf_guest_cbs = cbs;
4200 	return 0;
4201 }
4202 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4203 
4204 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4205 {
4206 	perf_guest_cbs = NULL;
4207 	return 0;
4208 }
4209 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4210 
4211 static void
4212 perf_output_sample_regs(struct perf_output_handle *handle,
4213 			struct pt_regs *regs, u64 mask)
4214 {
4215 	int bit;
4216 
4217 	for_each_set_bit(bit, (const unsigned long *) &mask,
4218 			 sizeof(mask) * BITS_PER_BYTE) {
4219 		u64 val;
4220 
4221 		val = perf_reg_value(regs, bit);
4222 		perf_output_put(handle, val);
4223 	}
4224 }
4225 
4226 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4227 				  struct pt_regs *regs)
4228 {
4229 	if (!user_mode(regs)) {
4230 		if (current->mm)
4231 			regs = task_pt_regs(current);
4232 		else
4233 			regs = NULL;
4234 	}
4235 
4236 	if (regs) {
4237 		regs_user->regs = regs;
4238 		regs_user->abi  = perf_reg_abi(current);
4239 	}
4240 }
4241 
4242 /*
4243  * Get remaining task size from user stack pointer.
4244  *
4245  * It'd be better to take stack vma map and limit this more
4246  * precisly, but there's no way to get it safely under interrupt,
4247  * so using TASK_SIZE as limit.
4248  */
4249 static u64 perf_ustack_task_size(struct pt_regs *regs)
4250 {
4251 	unsigned long addr = perf_user_stack_pointer(regs);
4252 
4253 	if (!addr || addr >= TASK_SIZE)
4254 		return 0;
4255 
4256 	return TASK_SIZE - addr;
4257 }
4258 
4259 static u16
4260 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4261 			struct pt_regs *regs)
4262 {
4263 	u64 task_size;
4264 
4265 	/* No regs, no stack pointer, no dump. */
4266 	if (!regs)
4267 		return 0;
4268 
4269 	/*
4270 	 * Check if we fit in with the requested stack size into the:
4271 	 * - TASK_SIZE
4272 	 *   If we don't, we limit the size to the TASK_SIZE.
4273 	 *
4274 	 * - remaining sample size
4275 	 *   If we don't, we customize the stack size to
4276 	 *   fit in to the remaining sample size.
4277 	 */
4278 
4279 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4280 	stack_size = min(stack_size, (u16) task_size);
4281 
4282 	/* Current header size plus static size and dynamic size. */
4283 	header_size += 2 * sizeof(u64);
4284 
4285 	/* Do we fit in with the current stack dump size? */
4286 	if ((u16) (header_size + stack_size) < header_size) {
4287 		/*
4288 		 * If we overflow the maximum size for the sample,
4289 		 * we customize the stack dump size to fit in.
4290 		 */
4291 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4292 		stack_size = round_up(stack_size, sizeof(u64));
4293 	}
4294 
4295 	return stack_size;
4296 }
4297 
4298 static void
4299 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4300 			  struct pt_regs *regs)
4301 {
4302 	/* Case of a kernel thread, nothing to dump */
4303 	if (!regs) {
4304 		u64 size = 0;
4305 		perf_output_put(handle, size);
4306 	} else {
4307 		unsigned long sp;
4308 		unsigned int rem;
4309 		u64 dyn_size;
4310 
4311 		/*
4312 		 * We dump:
4313 		 * static size
4314 		 *   - the size requested by user or the best one we can fit
4315 		 *     in to the sample max size
4316 		 * data
4317 		 *   - user stack dump data
4318 		 * dynamic size
4319 		 *   - the actual dumped size
4320 		 */
4321 
4322 		/* Static size. */
4323 		perf_output_put(handle, dump_size);
4324 
4325 		/* Data. */
4326 		sp = perf_user_stack_pointer(regs);
4327 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4328 		dyn_size = dump_size - rem;
4329 
4330 		perf_output_skip(handle, rem);
4331 
4332 		/* Dynamic size. */
4333 		perf_output_put(handle, dyn_size);
4334 	}
4335 }
4336 
4337 static void __perf_event_header__init_id(struct perf_event_header *header,
4338 					 struct perf_sample_data *data,
4339 					 struct perf_event *event)
4340 {
4341 	u64 sample_type = event->attr.sample_type;
4342 
4343 	data->type = sample_type;
4344 	header->size += event->id_header_size;
4345 
4346 	if (sample_type & PERF_SAMPLE_TID) {
4347 		/* namespace issues */
4348 		data->tid_entry.pid = perf_event_pid(event, current);
4349 		data->tid_entry.tid = perf_event_tid(event, current);
4350 	}
4351 
4352 	if (sample_type & PERF_SAMPLE_TIME)
4353 		data->time = perf_clock();
4354 
4355 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4356 		data->id = primary_event_id(event);
4357 
4358 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4359 		data->stream_id = event->id;
4360 
4361 	if (sample_type & PERF_SAMPLE_CPU) {
4362 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4363 		data->cpu_entry.reserved = 0;
4364 	}
4365 }
4366 
4367 void perf_event_header__init_id(struct perf_event_header *header,
4368 				struct perf_sample_data *data,
4369 				struct perf_event *event)
4370 {
4371 	if (event->attr.sample_id_all)
4372 		__perf_event_header__init_id(header, data, event);
4373 }
4374 
4375 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4376 					   struct perf_sample_data *data)
4377 {
4378 	u64 sample_type = data->type;
4379 
4380 	if (sample_type & PERF_SAMPLE_TID)
4381 		perf_output_put(handle, data->tid_entry);
4382 
4383 	if (sample_type & PERF_SAMPLE_TIME)
4384 		perf_output_put(handle, data->time);
4385 
4386 	if (sample_type & PERF_SAMPLE_ID)
4387 		perf_output_put(handle, data->id);
4388 
4389 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4390 		perf_output_put(handle, data->stream_id);
4391 
4392 	if (sample_type & PERF_SAMPLE_CPU)
4393 		perf_output_put(handle, data->cpu_entry);
4394 
4395 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4396 		perf_output_put(handle, data->id);
4397 }
4398 
4399 void perf_event__output_id_sample(struct perf_event *event,
4400 				  struct perf_output_handle *handle,
4401 				  struct perf_sample_data *sample)
4402 {
4403 	if (event->attr.sample_id_all)
4404 		__perf_event__output_id_sample(handle, sample);
4405 }
4406 
4407 static void perf_output_read_one(struct perf_output_handle *handle,
4408 				 struct perf_event *event,
4409 				 u64 enabled, u64 running)
4410 {
4411 	u64 read_format = event->attr.read_format;
4412 	u64 values[4];
4413 	int n = 0;
4414 
4415 	values[n++] = perf_event_count(event);
4416 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4417 		values[n++] = enabled +
4418 			atomic64_read(&event->child_total_time_enabled);
4419 	}
4420 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4421 		values[n++] = running +
4422 			atomic64_read(&event->child_total_time_running);
4423 	}
4424 	if (read_format & PERF_FORMAT_ID)
4425 		values[n++] = primary_event_id(event);
4426 
4427 	__output_copy(handle, values, n * sizeof(u64));
4428 }
4429 
4430 /*
4431  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4432  */
4433 static void perf_output_read_group(struct perf_output_handle *handle,
4434 			    struct perf_event *event,
4435 			    u64 enabled, u64 running)
4436 {
4437 	struct perf_event *leader = event->group_leader, *sub;
4438 	u64 read_format = event->attr.read_format;
4439 	u64 values[5];
4440 	int n = 0;
4441 
4442 	values[n++] = 1 + leader->nr_siblings;
4443 
4444 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4445 		values[n++] = enabled;
4446 
4447 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448 		values[n++] = running;
4449 
4450 	if (leader != event)
4451 		leader->pmu->read(leader);
4452 
4453 	values[n++] = perf_event_count(leader);
4454 	if (read_format & PERF_FORMAT_ID)
4455 		values[n++] = primary_event_id(leader);
4456 
4457 	__output_copy(handle, values, n * sizeof(u64));
4458 
4459 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4460 		n = 0;
4461 
4462 		if ((sub != event) &&
4463 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4464 			sub->pmu->read(sub);
4465 
4466 		values[n++] = perf_event_count(sub);
4467 		if (read_format & PERF_FORMAT_ID)
4468 			values[n++] = primary_event_id(sub);
4469 
4470 		__output_copy(handle, values, n * sizeof(u64));
4471 	}
4472 }
4473 
4474 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4475 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4476 
4477 static void perf_output_read(struct perf_output_handle *handle,
4478 			     struct perf_event *event)
4479 {
4480 	u64 enabled = 0, running = 0, now;
4481 	u64 read_format = event->attr.read_format;
4482 
4483 	/*
4484 	 * compute total_time_enabled, total_time_running
4485 	 * based on snapshot values taken when the event
4486 	 * was last scheduled in.
4487 	 *
4488 	 * we cannot simply called update_context_time()
4489 	 * because of locking issue as we are called in
4490 	 * NMI context
4491 	 */
4492 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4493 		calc_timer_values(event, &now, &enabled, &running);
4494 
4495 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4496 		perf_output_read_group(handle, event, enabled, running);
4497 	else
4498 		perf_output_read_one(handle, event, enabled, running);
4499 }
4500 
4501 void perf_output_sample(struct perf_output_handle *handle,
4502 			struct perf_event_header *header,
4503 			struct perf_sample_data *data,
4504 			struct perf_event *event)
4505 {
4506 	u64 sample_type = data->type;
4507 
4508 	perf_output_put(handle, *header);
4509 
4510 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4511 		perf_output_put(handle, data->id);
4512 
4513 	if (sample_type & PERF_SAMPLE_IP)
4514 		perf_output_put(handle, data->ip);
4515 
4516 	if (sample_type & PERF_SAMPLE_TID)
4517 		perf_output_put(handle, data->tid_entry);
4518 
4519 	if (sample_type & PERF_SAMPLE_TIME)
4520 		perf_output_put(handle, data->time);
4521 
4522 	if (sample_type & PERF_SAMPLE_ADDR)
4523 		perf_output_put(handle, data->addr);
4524 
4525 	if (sample_type & PERF_SAMPLE_ID)
4526 		perf_output_put(handle, data->id);
4527 
4528 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4529 		perf_output_put(handle, data->stream_id);
4530 
4531 	if (sample_type & PERF_SAMPLE_CPU)
4532 		perf_output_put(handle, data->cpu_entry);
4533 
4534 	if (sample_type & PERF_SAMPLE_PERIOD)
4535 		perf_output_put(handle, data->period);
4536 
4537 	if (sample_type & PERF_SAMPLE_READ)
4538 		perf_output_read(handle, event);
4539 
4540 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4541 		if (data->callchain) {
4542 			int size = 1;
4543 
4544 			if (data->callchain)
4545 				size += data->callchain->nr;
4546 
4547 			size *= sizeof(u64);
4548 
4549 			__output_copy(handle, data->callchain, size);
4550 		} else {
4551 			u64 nr = 0;
4552 			perf_output_put(handle, nr);
4553 		}
4554 	}
4555 
4556 	if (sample_type & PERF_SAMPLE_RAW) {
4557 		if (data->raw) {
4558 			perf_output_put(handle, data->raw->size);
4559 			__output_copy(handle, data->raw->data,
4560 					   data->raw->size);
4561 		} else {
4562 			struct {
4563 				u32	size;
4564 				u32	data;
4565 			} raw = {
4566 				.size = sizeof(u32),
4567 				.data = 0,
4568 			};
4569 			perf_output_put(handle, raw);
4570 		}
4571 	}
4572 
4573 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4574 		if (data->br_stack) {
4575 			size_t size;
4576 
4577 			size = data->br_stack->nr
4578 			     * sizeof(struct perf_branch_entry);
4579 
4580 			perf_output_put(handle, data->br_stack->nr);
4581 			perf_output_copy(handle, data->br_stack->entries, size);
4582 		} else {
4583 			/*
4584 			 * we always store at least the value of nr
4585 			 */
4586 			u64 nr = 0;
4587 			perf_output_put(handle, nr);
4588 		}
4589 	}
4590 
4591 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4592 		u64 abi = data->regs_user.abi;
4593 
4594 		/*
4595 		 * If there are no regs to dump, notice it through
4596 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4597 		 */
4598 		perf_output_put(handle, abi);
4599 
4600 		if (abi) {
4601 			u64 mask = event->attr.sample_regs_user;
4602 			perf_output_sample_regs(handle,
4603 						data->regs_user.regs,
4604 						mask);
4605 		}
4606 	}
4607 
4608 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4609 		perf_output_sample_ustack(handle,
4610 					  data->stack_user_size,
4611 					  data->regs_user.regs);
4612 	}
4613 
4614 	if (sample_type & PERF_SAMPLE_WEIGHT)
4615 		perf_output_put(handle, data->weight);
4616 
4617 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4618 		perf_output_put(handle, data->data_src.val);
4619 
4620 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4621 		perf_output_put(handle, data->txn);
4622 
4623 	if (!event->attr.watermark) {
4624 		int wakeup_events = event->attr.wakeup_events;
4625 
4626 		if (wakeup_events) {
4627 			struct ring_buffer *rb = handle->rb;
4628 			int events = local_inc_return(&rb->events);
4629 
4630 			if (events >= wakeup_events) {
4631 				local_sub(wakeup_events, &rb->events);
4632 				local_inc(&rb->wakeup);
4633 			}
4634 		}
4635 	}
4636 }
4637 
4638 void perf_prepare_sample(struct perf_event_header *header,
4639 			 struct perf_sample_data *data,
4640 			 struct perf_event *event,
4641 			 struct pt_regs *regs)
4642 {
4643 	u64 sample_type = event->attr.sample_type;
4644 
4645 	header->type = PERF_RECORD_SAMPLE;
4646 	header->size = sizeof(*header) + event->header_size;
4647 
4648 	header->misc = 0;
4649 	header->misc |= perf_misc_flags(regs);
4650 
4651 	__perf_event_header__init_id(header, data, event);
4652 
4653 	if (sample_type & PERF_SAMPLE_IP)
4654 		data->ip = perf_instruction_pointer(regs);
4655 
4656 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4657 		int size = 1;
4658 
4659 		data->callchain = perf_callchain(event, regs);
4660 
4661 		if (data->callchain)
4662 			size += data->callchain->nr;
4663 
4664 		header->size += size * sizeof(u64);
4665 	}
4666 
4667 	if (sample_type & PERF_SAMPLE_RAW) {
4668 		int size = sizeof(u32);
4669 
4670 		if (data->raw)
4671 			size += data->raw->size;
4672 		else
4673 			size += sizeof(u32);
4674 
4675 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4676 		header->size += size;
4677 	}
4678 
4679 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4680 		int size = sizeof(u64); /* nr */
4681 		if (data->br_stack) {
4682 			size += data->br_stack->nr
4683 			      * sizeof(struct perf_branch_entry);
4684 		}
4685 		header->size += size;
4686 	}
4687 
4688 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4689 		/* regs dump ABI info */
4690 		int size = sizeof(u64);
4691 
4692 		perf_sample_regs_user(&data->regs_user, regs);
4693 
4694 		if (data->regs_user.regs) {
4695 			u64 mask = event->attr.sample_regs_user;
4696 			size += hweight64(mask) * sizeof(u64);
4697 		}
4698 
4699 		header->size += size;
4700 	}
4701 
4702 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4703 		/*
4704 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4705 		 * processed as the last one or have additional check added
4706 		 * in case new sample type is added, because we could eat
4707 		 * up the rest of the sample size.
4708 		 */
4709 		struct perf_regs_user *uregs = &data->regs_user;
4710 		u16 stack_size = event->attr.sample_stack_user;
4711 		u16 size = sizeof(u64);
4712 
4713 		if (!uregs->abi)
4714 			perf_sample_regs_user(uregs, regs);
4715 
4716 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4717 						     uregs->regs);
4718 
4719 		/*
4720 		 * If there is something to dump, add space for the dump
4721 		 * itself and for the field that tells the dynamic size,
4722 		 * which is how many have been actually dumped.
4723 		 */
4724 		if (stack_size)
4725 			size += sizeof(u64) + stack_size;
4726 
4727 		data->stack_user_size = stack_size;
4728 		header->size += size;
4729 	}
4730 }
4731 
4732 static void perf_event_output(struct perf_event *event,
4733 				struct perf_sample_data *data,
4734 				struct pt_regs *regs)
4735 {
4736 	struct perf_output_handle handle;
4737 	struct perf_event_header header;
4738 
4739 	/* protect the callchain buffers */
4740 	rcu_read_lock();
4741 
4742 	perf_prepare_sample(&header, data, event, regs);
4743 
4744 	if (perf_output_begin(&handle, event, header.size))
4745 		goto exit;
4746 
4747 	perf_output_sample(&handle, &header, data, event);
4748 
4749 	perf_output_end(&handle);
4750 
4751 exit:
4752 	rcu_read_unlock();
4753 }
4754 
4755 /*
4756  * read event_id
4757  */
4758 
4759 struct perf_read_event {
4760 	struct perf_event_header	header;
4761 
4762 	u32				pid;
4763 	u32				tid;
4764 };
4765 
4766 static void
4767 perf_event_read_event(struct perf_event *event,
4768 			struct task_struct *task)
4769 {
4770 	struct perf_output_handle handle;
4771 	struct perf_sample_data sample;
4772 	struct perf_read_event read_event = {
4773 		.header = {
4774 			.type = PERF_RECORD_READ,
4775 			.misc = 0,
4776 			.size = sizeof(read_event) + event->read_size,
4777 		},
4778 		.pid = perf_event_pid(event, task),
4779 		.tid = perf_event_tid(event, task),
4780 	};
4781 	int ret;
4782 
4783 	perf_event_header__init_id(&read_event.header, &sample, event);
4784 	ret = perf_output_begin(&handle, event, read_event.header.size);
4785 	if (ret)
4786 		return;
4787 
4788 	perf_output_put(&handle, read_event);
4789 	perf_output_read(&handle, event);
4790 	perf_event__output_id_sample(event, &handle, &sample);
4791 
4792 	perf_output_end(&handle);
4793 }
4794 
4795 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4796 
4797 static void
4798 perf_event_aux_ctx(struct perf_event_context *ctx,
4799 		   perf_event_aux_output_cb output,
4800 		   void *data)
4801 {
4802 	struct perf_event *event;
4803 
4804 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4805 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4806 			continue;
4807 		if (!event_filter_match(event))
4808 			continue;
4809 		output(event, data);
4810 	}
4811 }
4812 
4813 static void
4814 perf_event_aux(perf_event_aux_output_cb output, void *data,
4815 	       struct perf_event_context *task_ctx)
4816 {
4817 	struct perf_cpu_context *cpuctx;
4818 	struct perf_event_context *ctx;
4819 	struct pmu *pmu;
4820 	int ctxn;
4821 
4822 	rcu_read_lock();
4823 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4824 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4825 		if (cpuctx->unique_pmu != pmu)
4826 			goto next;
4827 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4828 		if (task_ctx)
4829 			goto next;
4830 		ctxn = pmu->task_ctx_nr;
4831 		if (ctxn < 0)
4832 			goto next;
4833 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4834 		if (ctx)
4835 			perf_event_aux_ctx(ctx, output, data);
4836 next:
4837 		put_cpu_ptr(pmu->pmu_cpu_context);
4838 	}
4839 
4840 	if (task_ctx) {
4841 		preempt_disable();
4842 		perf_event_aux_ctx(task_ctx, output, data);
4843 		preempt_enable();
4844 	}
4845 	rcu_read_unlock();
4846 }
4847 
4848 /*
4849  * task tracking -- fork/exit
4850  *
4851  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4852  */
4853 
4854 struct perf_task_event {
4855 	struct task_struct		*task;
4856 	struct perf_event_context	*task_ctx;
4857 
4858 	struct {
4859 		struct perf_event_header	header;
4860 
4861 		u32				pid;
4862 		u32				ppid;
4863 		u32				tid;
4864 		u32				ptid;
4865 		u64				time;
4866 	} event_id;
4867 };
4868 
4869 static int perf_event_task_match(struct perf_event *event)
4870 {
4871 	return event->attr.comm  || event->attr.mmap ||
4872 	       event->attr.mmap2 || event->attr.mmap_data ||
4873 	       event->attr.task;
4874 }
4875 
4876 static void perf_event_task_output(struct perf_event *event,
4877 				   void *data)
4878 {
4879 	struct perf_task_event *task_event = data;
4880 	struct perf_output_handle handle;
4881 	struct perf_sample_data	sample;
4882 	struct task_struct *task = task_event->task;
4883 	int ret, size = task_event->event_id.header.size;
4884 
4885 	if (!perf_event_task_match(event))
4886 		return;
4887 
4888 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4889 
4890 	ret = perf_output_begin(&handle, event,
4891 				task_event->event_id.header.size);
4892 	if (ret)
4893 		goto out;
4894 
4895 	task_event->event_id.pid = perf_event_pid(event, task);
4896 	task_event->event_id.ppid = perf_event_pid(event, current);
4897 
4898 	task_event->event_id.tid = perf_event_tid(event, task);
4899 	task_event->event_id.ptid = perf_event_tid(event, current);
4900 
4901 	perf_output_put(&handle, task_event->event_id);
4902 
4903 	perf_event__output_id_sample(event, &handle, &sample);
4904 
4905 	perf_output_end(&handle);
4906 out:
4907 	task_event->event_id.header.size = size;
4908 }
4909 
4910 static void perf_event_task(struct task_struct *task,
4911 			      struct perf_event_context *task_ctx,
4912 			      int new)
4913 {
4914 	struct perf_task_event task_event;
4915 
4916 	if (!atomic_read(&nr_comm_events) &&
4917 	    !atomic_read(&nr_mmap_events) &&
4918 	    !atomic_read(&nr_task_events))
4919 		return;
4920 
4921 	task_event = (struct perf_task_event){
4922 		.task	  = task,
4923 		.task_ctx = task_ctx,
4924 		.event_id    = {
4925 			.header = {
4926 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4927 				.misc = 0,
4928 				.size = sizeof(task_event.event_id),
4929 			},
4930 			/* .pid  */
4931 			/* .ppid */
4932 			/* .tid  */
4933 			/* .ptid */
4934 			.time = perf_clock(),
4935 		},
4936 	};
4937 
4938 	perf_event_aux(perf_event_task_output,
4939 		       &task_event,
4940 		       task_ctx);
4941 }
4942 
4943 void perf_event_fork(struct task_struct *task)
4944 {
4945 	perf_event_task(task, NULL, 1);
4946 }
4947 
4948 /*
4949  * comm tracking
4950  */
4951 
4952 struct perf_comm_event {
4953 	struct task_struct	*task;
4954 	char			*comm;
4955 	int			comm_size;
4956 
4957 	struct {
4958 		struct perf_event_header	header;
4959 
4960 		u32				pid;
4961 		u32				tid;
4962 	} event_id;
4963 };
4964 
4965 static int perf_event_comm_match(struct perf_event *event)
4966 {
4967 	return event->attr.comm;
4968 }
4969 
4970 static void perf_event_comm_output(struct perf_event *event,
4971 				   void *data)
4972 {
4973 	struct perf_comm_event *comm_event = data;
4974 	struct perf_output_handle handle;
4975 	struct perf_sample_data sample;
4976 	int size = comm_event->event_id.header.size;
4977 	int ret;
4978 
4979 	if (!perf_event_comm_match(event))
4980 		return;
4981 
4982 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4983 	ret = perf_output_begin(&handle, event,
4984 				comm_event->event_id.header.size);
4985 
4986 	if (ret)
4987 		goto out;
4988 
4989 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4990 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4991 
4992 	perf_output_put(&handle, comm_event->event_id);
4993 	__output_copy(&handle, comm_event->comm,
4994 				   comm_event->comm_size);
4995 
4996 	perf_event__output_id_sample(event, &handle, &sample);
4997 
4998 	perf_output_end(&handle);
4999 out:
5000 	comm_event->event_id.header.size = size;
5001 }
5002 
5003 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5004 {
5005 	char comm[TASK_COMM_LEN];
5006 	unsigned int size;
5007 
5008 	memset(comm, 0, sizeof(comm));
5009 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5010 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5011 
5012 	comm_event->comm = comm;
5013 	comm_event->comm_size = size;
5014 
5015 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5016 
5017 	perf_event_aux(perf_event_comm_output,
5018 		       comm_event,
5019 		       NULL);
5020 }
5021 
5022 void perf_event_comm(struct task_struct *task)
5023 {
5024 	struct perf_comm_event comm_event;
5025 	struct perf_event_context *ctx;
5026 	int ctxn;
5027 
5028 	rcu_read_lock();
5029 	for_each_task_context_nr(ctxn) {
5030 		ctx = task->perf_event_ctxp[ctxn];
5031 		if (!ctx)
5032 			continue;
5033 
5034 		perf_event_enable_on_exec(ctx);
5035 	}
5036 	rcu_read_unlock();
5037 
5038 	if (!atomic_read(&nr_comm_events))
5039 		return;
5040 
5041 	comm_event = (struct perf_comm_event){
5042 		.task	= task,
5043 		/* .comm      */
5044 		/* .comm_size */
5045 		.event_id  = {
5046 			.header = {
5047 				.type = PERF_RECORD_COMM,
5048 				.misc = 0,
5049 				/* .size */
5050 			},
5051 			/* .pid */
5052 			/* .tid */
5053 		},
5054 	};
5055 
5056 	perf_event_comm_event(&comm_event);
5057 }
5058 
5059 /*
5060  * mmap tracking
5061  */
5062 
5063 struct perf_mmap_event {
5064 	struct vm_area_struct	*vma;
5065 
5066 	const char		*file_name;
5067 	int			file_size;
5068 	int			maj, min;
5069 	u64			ino;
5070 	u64			ino_generation;
5071 
5072 	struct {
5073 		struct perf_event_header	header;
5074 
5075 		u32				pid;
5076 		u32				tid;
5077 		u64				start;
5078 		u64				len;
5079 		u64				pgoff;
5080 	} event_id;
5081 };
5082 
5083 static int perf_event_mmap_match(struct perf_event *event,
5084 				 void *data)
5085 {
5086 	struct perf_mmap_event *mmap_event = data;
5087 	struct vm_area_struct *vma = mmap_event->vma;
5088 	int executable = vma->vm_flags & VM_EXEC;
5089 
5090 	return (!executable && event->attr.mmap_data) ||
5091 	       (executable && (event->attr.mmap || event->attr.mmap2));
5092 }
5093 
5094 static void perf_event_mmap_output(struct perf_event *event,
5095 				   void *data)
5096 {
5097 	struct perf_mmap_event *mmap_event = data;
5098 	struct perf_output_handle handle;
5099 	struct perf_sample_data sample;
5100 	int size = mmap_event->event_id.header.size;
5101 	int ret;
5102 
5103 	if (!perf_event_mmap_match(event, data))
5104 		return;
5105 
5106 	if (event->attr.mmap2) {
5107 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5108 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5109 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5110 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5111 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5112 	}
5113 
5114 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5115 	ret = perf_output_begin(&handle, event,
5116 				mmap_event->event_id.header.size);
5117 	if (ret)
5118 		goto out;
5119 
5120 	mmap_event->event_id.pid = perf_event_pid(event, current);
5121 	mmap_event->event_id.tid = perf_event_tid(event, current);
5122 
5123 	perf_output_put(&handle, mmap_event->event_id);
5124 
5125 	if (event->attr.mmap2) {
5126 		perf_output_put(&handle, mmap_event->maj);
5127 		perf_output_put(&handle, mmap_event->min);
5128 		perf_output_put(&handle, mmap_event->ino);
5129 		perf_output_put(&handle, mmap_event->ino_generation);
5130 	}
5131 
5132 	__output_copy(&handle, mmap_event->file_name,
5133 				   mmap_event->file_size);
5134 
5135 	perf_event__output_id_sample(event, &handle, &sample);
5136 
5137 	perf_output_end(&handle);
5138 out:
5139 	mmap_event->event_id.header.size = size;
5140 }
5141 
5142 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5143 {
5144 	struct vm_area_struct *vma = mmap_event->vma;
5145 	struct file *file = vma->vm_file;
5146 	int maj = 0, min = 0;
5147 	u64 ino = 0, gen = 0;
5148 	unsigned int size;
5149 	char tmp[16];
5150 	char *buf = NULL;
5151 	char *name;
5152 
5153 	if (file) {
5154 		struct inode *inode;
5155 		dev_t dev;
5156 
5157 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5158 		if (!buf) {
5159 			name = "//enomem";
5160 			goto cpy_name;
5161 		}
5162 		/*
5163 		 * d_path() works from the end of the rb backwards, so we
5164 		 * need to add enough zero bytes after the string to handle
5165 		 * the 64bit alignment we do later.
5166 		 */
5167 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5168 		if (IS_ERR(name)) {
5169 			name = "//toolong";
5170 			goto cpy_name;
5171 		}
5172 		inode = file_inode(vma->vm_file);
5173 		dev = inode->i_sb->s_dev;
5174 		ino = inode->i_ino;
5175 		gen = inode->i_generation;
5176 		maj = MAJOR(dev);
5177 		min = MINOR(dev);
5178 		goto got_name;
5179 	} else {
5180 		name = (char *)arch_vma_name(vma);
5181 		if (name)
5182 			goto cpy_name;
5183 
5184 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5185 				vma->vm_end >= vma->vm_mm->brk) {
5186 			name = "[heap]";
5187 			goto cpy_name;
5188 		}
5189 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5190 				vma->vm_end >= vma->vm_mm->start_stack) {
5191 			name = "[stack]";
5192 			goto cpy_name;
5193 		}
5194 
5195 		name = "//anon";
5196 		goto cpy_name;
5197 	}
5198 
5199 cpy_name:
5200 	strlcpy(tmp, name, sizeof(tmp));
5201 	name = tmp;
5202 got_name:
5203 	/*
5204 	 * Since our buffer works in 8 byte units we need to align our string
5205 	 * size to a multiple of 8. However, we must guarantee the tail end is
5206 	 * zero'd out to avoid leaking random bits to userspace.
5207 	 */
5208 	size = strlen(name)+1;
5209 	while (!IS_ALIGNED(size, sizeof(u64)))
5210 		name[size++] = '\0';
5211 
5212 	mmap_event->file_name = name;
5213 	mmap_event->file_size = size;
5214 	mmap_event->maj = maj;
5215 	mmap_event->min = min;
5216 	mmap_event->ino = ino;
5217 	mmap_event->ino_generation = gen;
5218 
5219 	if (!(vma->vm_flags & VM_EXEC))
5220 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5221 
5222 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5223 
5224 	perf_event_aux(perf_event_mmap_output,
5225 		       mmap_event,
5226 		       NULL);
5227 
5228 	kfree(buf);
5229 }
5230 
5231 void perf_event_mmap(struct vm_area_struct *vma)
5232 {
5233 	struct perf_mmap_event mmap_event;
5234 
5235 	if (!atomic_read(&nr_mmap_events))
5236 		return;
5237 
5238 	mmap_event = (struct perf_mmap_event){
5239 		.vma	= vma,
5240 		/* .file_name */
5241 		/* .file_size */
5242 		.event_id  = {
5243 			.header = {
5244 				.type = PERF_RECORD_MMAP,
5245 				.misc = PERF_RECORD_MISC_USER,
5246 				/* .size */
5247 			},
5248 			/* .pid */
5249 			/* .tid */
5250 			.start  = vma->vm_start,
5251 			.len    = vma->vm_end - vma->vm_start,
5252 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5253 		},
5254 		/* .maj (attr_mmap2 only) */
5255 		/* .min (attr_mmap2 only) */
5256 		/* .ino (attr_mmap2 only) */
5257 		/* .ino_generation (attr_mmap2 only) */
5258 	};
5259 
5260 	perf_event_mmap_event(&mmap_event);
5261 }
5262 
5263 /*
5264  * IRQ throttle logging
5265  */
5266 
5267 static void perf_log_throttle(struct perf_event *event, int enable)
5268 {
5269 	struct perf_output_handle handle;
5270 	struct perf_sample_data sample;
5271 	int ret;
5272 
5273 	struct {
5274 		struct perf_event_header	header;
5275 		u64				time;
5276 		u64				id;
5277 		u64				stream_id;
5278 	} throttle_event = {
5279 		.header = {
5280 			.type = PERF_RECORD_THROTTLE,
5281 			.misc = 0,
5282 			.size = sizeof(throttle_event),
5283 		},
5284 		.time		= perf_clock(),
5285 		.id		= primary_event_id(event),
5286 		.stream_id	= event->id,
5287 	};
5288 
5289 	if (enable)
5290 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5291 
5292 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5293 
5294 	ret = perf_output_begin(&handle, event,
5295 				throttle_event.header.size);
5296 	if (ret)
5297 		return;
5298 
5299 	perf_output_put(&handle, throttle_event);
5300 	perf_event__output_id_sample(event, &handle, &sample);
5301 	perf_output_end(&handle);
5302 }
5303 
5304 /*
5305  * Generic event overflow handling, sampling.
5306  */
5307 
5308 static int __perf_event_overflow(struct perf_event *event,
5309 				   int throttle, struct perf_sample_data *data,
5310 				   struct pt_regs *regs)
5311 {
5312 	int events = atomic_read(&event->event_limit);
5313 	struct hw_perf_event *hwc = &event->hw;
5314 	u64 seq;
5315 	int ret = 0;
5316 
5317 	/*
5318 	 * Non-sampling counters might still use the PMI to fold short
5319 	 * hardware counters, ignore those.
5320 	 */
5321 	if (unlikely(!is_sampling_event(event)))
5322 		return 0;
5323 
5324 	seq = __this_cpu_read(perf_throttled_seq);
5325 	if (seq != hwc->interrupts_seq) {
5326 		hwc->interrupts_seq = seq;
5327 		hwc->interrupts = 1;
5328 	} else {
5329 		hwc->interrupts++;
5330 		if (unlikely(throttle
5331 			     && hwc->interrupts >= max_samples_per_tick)) {
5332 			__this_cpu_inc(perf_throttled_count);
5333 			hwc->interrupts = MAX_INTERRUPTS;
5334 			perf_log_throttle(event, 0);
5335 			tick_nohz_full_kick();
5336 			ret = 1;
5337 		}
5338 	}
5339 
5340 	if (event->attr.freq) {
5341 		u64 now = perf_clock();
5342 		s64 delta = now - hwc->freq_time_stamp;
5343 
5344 		hwc->freq_time_stamp = now;
5345 
5346 		if (delta > 0 && delta < 2*TICK_NSEC)
5347 			perf_adjust_period(event, delta, hwc->last_period, true);
5348 	}
5349 
5350 	/*
5351 	 * XXX event_limit might not quite work as expected on inherited
5352 	 * events
5353 	 */
5354 
5355 	event->pending_kill = POLL_IN;
5356 	if (events && atomic_dec_and_test(&event->event_limit)) {
5357 		ret = 1;
5358 		event->pending_kill = POLL_HUP;
5359 		event->pending_disable = 1;
5360 		irq_work_queue(&event->pending);
5361 	}
5362 
5363 	if (event->overflow_handler)
5364 		event->overflow_handler(event, data, regs);
5365 	else
5366 		perf_event_output(event, data, regs);
5367 
5368 	if (event->fasync && event->pending_kill) {
5369 		event->pending_wakeup = 1;
5370 		irq_work_queue(&event->pending);
5371 	}
5372 
5373 	return ret;
5374 }
5375 
5376 int perf_event_overflow(struct perf_event *event,
5377 			  struct perf_sample_data *data,
5378 			  struct pt_regs *regs)
5379 {
5380 	return __perf_event_overflow(event, 1, data, regs);
5381 }
5382 
5383 /*
5384  * Generic software event infrastructure
5385  */
5386 
5387 struct swevent_htable {
5388 	struct swevent_hlist		*swevent_hlist;
5389 	struct mutex			hlist_mutex;
5390 	int				hlist_refcount;
5391 
5392 	/* Recursion avoidance in each contexts */
5393 	int				recursion[PERF_NR_CONTEXTS];
5394 };
5395 
5396 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5397 
5398 /*
5399  * We directly increment event->count and keep a second value in
5400  * event->hw.period_left to count intervals. This period event
5401  * is kept in the range [-sample_period, 0] so that we can use the
5402  * sign as trigger.
5403  */
5404 
5405 u64 perf_swevent_set_period(struct perf_event *event)
5406 {
5407 	struct hw_perf_event *hwc = &event->hw;
5408 	u64 period = hwc->last_period;
5409 	u64 nr, offset;
5410 	s64 old, val;
5411 
5412 	hwc->last_period = hwc->sample_period;
5413 
5414 again:
5415 	old = val = local64_read(&hwc->period_left);
5416 	if (val < 0)
5417 		return 0;
5418 
5419 	nr = div64_u64(period + val, period);
5420 	offset = nr * period;
5421 	val -= offset;
5422 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5423 		goto again;
5424 
5425 	return nr;
5426 }
5427 
5428 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5429 				    struct perf_sample_data *data,
5430 				    struct pt_regs *regs)
5431 {
5432 	struct hw_perf_event *hwc = &event->hw;
5433 	int throttle = 0;
5434 
5435 	if (!overflow)
5436 		overflow = perf_swevent_set_period(event);
5437 
5438 	if (hwc->interrupts == MAX_INTERRUPTS)
5439 		return;
5440 
5441 	for (; overflow; overflow--) {
5442 		if (__perf_event_overflow(event, throttle,
5443 					    data, regs)) {
5444 			/*
5445 			 * We inhibit the overflow from happening when
5446 			 * hwc->interrupts == MAX_INTERRUPTS.
5447 			 */
5448 			break;
5449 		}
5450 		throttle = 1;
5451 	}
5452 }
5453 
5454 static void perf_swevent_event(struct perf_event *event, u64 nr,
5455 			       struct perf_sample_data *data,
5456 			       struct pt_regs *regs)
5457 {
5458 	struct hw_perf_event *hwc = &event->hw;
5459 
5460 	local64_add(nr, &event->count);
5461 
5462 	if (!regs)
5463 		return;
5464 
5465 	if (!is_sampling_event(event))
5466 		return;
5467 
5468 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5469 		data->period = nr;
5470 		return perf_swevent_overflow(event, 1, data, regs);
5471 	} else
5472 		data->period = event->hw.last_period;
5473 
5474 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5475 		return perf_swevent_overflow(event, 1, data, regs);
5476 
5477 	if (local64_add_negative(nr, &hwc->period_left))
5478 		return;
5479 
5480 	perf_swevent_overflow(event, 0, data, regs);
5481 }
5482 
5483 static int perf_exclude_event(struct perf_event *event,
5484 			      struct pt_regs *regs)
5485 {
5486 	if (event->hw.state & PERF_HES_STOPPED)
5487 		return 1;
5488 
5489 	if (regs) {
5490 		if (event->attr.exclude_user && user_mode(regs))
5491 			return 1;
5492 
5493 		if (event->attr.exclude_kernel && !user_mode(regs))
5494 			return 1;
5495 	}
5496 
5497 	return 0;
5498 }
5499 
5500 static int perf_swevent_match(struct perf_event *event,
5501 				enum perf_type_id type,
5502 				u32 event_id,
5503 				struct perf_sample_data *data,
5504 				struct pt_regs *regs)
5505 {
5506 	if (event->attr.type != type)
5507 		return 0;
5508 
5509 	if (event->attr.config != event_id)
5510 		return 0;
5511 
5512 	if (perf_exclude_event(event, regs))
5513 		return 0;
5514 
5515 	return 1;
5516 }
5517 
5518 static inline u64 swevent_hash(u64 type, u32 event_id)
5519 {
5520 	u64 val = event_id | (type << 32);
5521 
5522 	return hash_64(val, SWEVENT_HLIST_BITS);
5523 }
5524 
5525 static inline struct hlist_head *
5526 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5527 {
5528 	u64 hash = swevent_hash(type, event_id);
5529 
5530 	return &hlist->heads[hash];
5531 }
5532 
5533 /* For the read side: events when they trigger */
5534 static inline struct hlist_head *
5535 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5536 {
5537 	struct swevent_hlist *hlist;
5538 
5539 	hlist = rcu_dereference(swhash->swevent_hlist);
5540 	if (!hlist)
5541 		return NULL;
5542 
5543 	return __find_swevent_head(hlist, type, event_id);
5544 }
5545 
5546 /* For the event head insertion and removal in the hlist */
5547 static inline struct hlist_head *
5548 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5549 {
5550 	struct swevent_hlist *hlist;
5551 	u32 event_id = event->attr.config;
5552 	u64 type = event->attr.type;
5553 
5554 	/*
5555 	 * Event scheduling is always serialized against hlist allocation
5556 	 * and release. Which makes the protected version suitable here.
5557 	 * The context lock guarantees that.
5558 	 */
5559 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5560 					  lockdep_is_held(&event->ctx->lock));
5561 	if (!hlist)
5562 		return NULL;
5563 
5564 	return __find_swevent_head(hlist, type, event_id);
5565 }
5566 
5567 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5568 				    u64 nr,
5569 				    struct perf_sample_data *data,
5570 				    struct pt_regs *regs)
5571 {
5572 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5573 	struct perf_event *event;
5574 	struct hlist_head *head;
5575 
5576 	rcu_read_lock();
5577 	head = find_swevent_head_rcu(swhash, type, event_id);
5578 	if (!head)
5579 		goto end;
5580 
5581 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5582 		if (perf_swevent_match(event, type, event_id, data, regs))
5583 			perf_swevent_event(event, nr, data, regs);
5584 	}
5585 end:
5586 	rcu_read_unlock();
5587 }
5588 
5589 int perf_swevent_get_recursion_context(void)
5590 {
5591 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5592 
5593 	return get_recursion_context(swhash->recursion);
5594 }
5595 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5596 
5597 inline void perf_swevent_put_recursion_context(int rctx)
5598 {
5599 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5600 
5601 	put_recursion_context(swhash->recursion, rctx);
5602 }
5603 
5604 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5605 {
5606 	struct perf_sample_data data;
5607 	int rctx;
5608 
5609 	preempt_disable_notrace();
5610 	rctx = perf_swevent_get_recursion_context();
5611 	if (rctx < 0)
5612 		return;
5613 
5614 	perf_sample_data_init(&data, addr, 0);
5615 
5616 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5617 
5618 	perf_swevent_put_recursion_context(rctx);
5619 	preempt_enable_notrace();
5620 }
5621 
5622 static void perf_swevent_read(struct perf_event *event)
5623 {
5624 }
5625 
5626 static int perf_swevent_add(struct perf_event *event, int flags)
5627 {
5628 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5629 	struct hw_perf_event *hwc = &event->hw;
5630 	struct hlist_head *head;
5631 
5632 	if (is_sampling_event(event)) {
5633 		hwc->last_period = hwc->sample_period;
5634 		perf_swevent_set_period(event);
5635 	}
5636 
5637 	hwc->state = !(flags & PERF_EF_START);
5638 
5639 	head = find_swevent_head(swhash, event);
5640 	if (WARN_ON_ONCE(!head))
5641 		return -EINVAL;
5642 
5643 	hlist_add_head_rcu(&event->hlist_entry, head);
5644 
5645 	return 0;
5646 }
5647 
5648 static void perf_swevent_del(struct perf_event *event, int flags)
5649 {
5650 	hlist_del_rcu(&event->hlist_entry);
5651 }
5652 
5653 static void perf_swevent_start(struct perf_event *event, int flags)
5654 {
5655 	event->hw.state = 0;
5656 }
5657 
5658 static void perf_swevent_stop(struct perf_event *event, int flags)
5659 {
5660 	event->hw.state = PERF_HES_STOPPED;
5661 }
5662 
5663 /* Deref the hlist from the update side */
5664 static inline struct swevent_hlist *
5665 swevent_hlist_deref(struct swevent_htable *swhash)
5666 {
5667 	return rcu_dereference_protected(swhash->swevent_hlist,
5668 					 lockdep_is_held(&swhash->hlist_mutex));
5669 }
5670 
5671 static void swevent_hlist_release(struct swevent_htable *swhash)
5672 {
5673 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5674 
5675 	if (!hlist)
5676 		return;
5677 
5678 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5679 	kfree_rcu(hlist, rcu_head);
5680 }
5681 
5682 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5683 {
5684 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5685 
5686 	mutex_lock(&swhash->hlist_mutex);
5687 
5688 	if (!--swhash->hlist_refcount)
5689 		swevent_hlist_release(swhash);
5690 
5691 	mutex_unlock(&swhash->hlist_mutex);
5692 }
5693 
5694 static void swevent_hlist_put(struct perf_event *event)
5695 {
5696 	int cpu;
5697 
5698 	for_each_possible_cpu(cpu)
5699 		swevent_hlist_put_cpu(event, cpu);
5700 }
5701 
5702 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5703 {
5704 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5705 	int err = 0;
5706 
5707 	mutex_lock(&swhash->hlist_mutex);
5708 
5709 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5710 		struct swevent_hlist *hlist;
5711 
5712 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5713 		if (!hlist) {
5714 			err = -ENOMEM;
5715 			goto exit;
5716 		}
5717 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5718 	}
5719 	swhash->hlist_refcount++;
5720 exit:
5721 	mutex_unlock(&swhash->hlist_mutex);
5722 
5723 	return err;
5724 }
5725 
5726 static int swevent_hlist_get(struct perf_event *event)
5727 {
5728 	int err;
5729 	int cpu, failed_cpu;
5730 
5731 	get_online_cpus();
5732 	for_each_possible_cpu(cpu) {
5733 		err = swevent_hlist_get_cpu(event, cpu);
5734 		if (err) {
5735 			failed_cpu = cpu;
5736 			goto fail;
5737 		}
5738 	}
5739 	put_online_cpus();
5740 
5741 	return 0;
5742 fail:
5743 	for_each_possible_cpu(cpu) {
5744 		if (cpu == failed_cpu)
5745 			break;
5746 		swevent_hlist_put_cpu(event, cpu);
5747 	}
5748 
5749 	put_online_cpus();
5750 	return err;
5751 }
5752 
5753 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5754 
5755 static void sw_perf_event_destroy(struct perf_event *event)
5756 {
5757 	u64 event_id = event->attr.config;
5758 
5759 	WARN_ON(event->parent);
5760 
5761 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5762 	swevent_hlist_put(event);
5763 }
5764 
5765 static int perf_swevent_init(struct perf_event *event)
5766 {
5767 	u64 event_id = event->attr.config;
5768 
5769 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5770 		return -ENOENT;
5771 
5772 	/*
5773 	 * no branch sampling for software events
5774 	 */
5775 	if (has_branch_stack(event))
5776 		return -EOPNOTSUPP;
5777 
5778 	switch (event_id) {
5779 	case PERF_COUNT_SW_CPU_CLOCK:
5780 	case PERF_COUNT_SW_TASK_CLOCK:
5781 		return -ENOENT;
5782 
5783 	default:
5784 		break;
5785 	}
5786 
5787 	if (event_id >= PERF_COUNT_SW_MAX)
5788 		return -ENOENT;
5789 
5790 	if (!event->parent) {
5791 		int err;
5792 
5793 		err = swevent_hlist_get(event);
5794 		if (err)
5795 			return err;
5796 
5797 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5798 		event->destroy = sw_perf_event_destroy;
5799 	}
5800 
5801 	return 0;
5802 }
5803 
5804 static int perf_swevent_event_idx(struct perf_event *event)
5805 {
5806 	return 0;
5807 }
5808 
5809 static struct pmu perf_swevent = {
5810 	.task_ctx_nr	= perf_sw_context,
5811 
5812 	.event_init	= perf_swevent_init,
5813 	.add		= perf_swevent_add,
5814 	.del		= perf_swevent_del,
5815 	.start		= perf_swevent_start,
5816 	.stop		= perf_swevent_stop,
5817 	.read		= perf_swevent_read,
5818 
5819 	.event_idx	= perf_swevent_event_idx,
5820 };
5821 
5822 #ifdef CONFIG_EVENT_TRACING
5823 
5824 static int perf_tp_filter_match(struct perf_event *event,
5825 				struct perf_sample_data *data)
5826 {
5827 	void *record = data->raw->data;
5828 
5829 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5830 		return 1;
5831 	return 0;
5832 }
5833 
5834 static int perf_tp_event_match(struct perf_event *event,
5835 				struct perf_sample_data *data,
5836 				struct pt_regs *regs)
5837 {
5838 	if (event->hw.state & PERF_HES_STOPPED)
5839 		return 0;
5840 	/*
5841 	 * All tracepoints are from kernel-space.
5842 	 */
5843 	if (event->attr.exclude_kernel)
5844 		return 0;
5845 
5846 	if (!perf_tp_filter_match(event, data))
5847 		return 0;
5848 
5849 	return 1;
5850 }
5851 
5852 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5853 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5854 		   struct task_struct *task)
5855 {
5856 	struct perf_sample_data data;
5857 	struct perf_event *event;
5858 
5859 	struct perf_raw_record raw = {
5860 		.size = entry_size,
5861 		.data = record,
5862 	};
5863 
5864 	perf_sample_data_init(&data, addr, 0);
5865 	data.raw = &raw;
5866 
5867 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5868 		if (perf_tp_event_match(event, &data, regs))
5869 			perf_swevent_event(event, count, &data, regs);
5870 	}
5871 
5872 	/*
5873 	 * If we got specified a target task, also iterate its context and
5874 	 * deliver this event there too.
5875 	 */
5876 	if (task && task != current) {
5877 		struct perf_event_context *ctx;
5878 		struct trace_entry *entry = record;
5879 
5880 		rcu_read_lock();
5881 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5882 		if (!ctx)
5883 			goto unlock;
5884 
5885 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5886 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5887 				continue;
5888 			if (event->attr.config != entry->type)
5889 				continue;
5890 			if (perf_tp_event_match(event, &data, regs))
5891 				perf_swevent_event(event, count, &data, regs);
5892 		}
5893 unlock:
5894 		rcu_read_unlock();
5895 	}
5896 
5897 	perf_swevent_put_recursion_context(rctx);
5898 }
5899 EXPORT_SYMBOL_GPL(perf_tp_event);
5900 
5901 static void tp_perf_event_destroy(struct perf_event *event)
5902 {
5903 	perf_trace_destroy(event);
5904 }
5905 
5906 static int perf_tp_event_init(struct perf_event *event)
5907 {
5908 	int err;
5909 
5910 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5911 		return -ENOENT;
5912 
5913 	/*
5914 	 * no branch sampling for tracepoint events
5915 	 */
5916 	if (has_branch_stack(event))
5917 		return -EOPNOTSUPP;
5918 
5919 	err = perf_trace_init(event);
5920 	if (err)
5921 		return err;
5922 
5923 	event->destroy = tp_perf_event_destroy;
5924 
5925 	return 0;
5926 }
5927 
5928 static struct pmu perf_tracepoint = {
5929 	.task_ctx_nr	= perf_sw_context,
5930 
5931 	.event_init	= perf_tp_event_init,
5932 	.add		= perf_trace_add,
5933 	.del		= perf_trace_del,
5934 	.start		= perf_swevent_start,
5935 	.stop		= perf_swevent_stop,
5936 	.read		= perf_swevent_read,
5937 
5938 	.event_idx	= perf_swevent_event_idx,
5939 };
5940 
5941 static inline void perf_tp_register(void)
5942 {
5943 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5944 }
5945 
5946 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5947 {
5948 	char *filter_str;
5949 	int ret;
5950 
5951 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5952 		return -EINVAL;
5953 
5954 	filter_str = strndup_user(arg, PAGE_SIZE);
5955 	if (IS_ERR(filter_str))
5956 		return PTR_ERR(filter_str);
5957 
5958 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5959 
5960 	kfree(filter_str);
5961 	return ret;
5962 }
5963 
5964 static void perf_event_free_filter(struct perf_event *event)
5965 {
5966 	ftrace_profile_free_filter(event);
5967 }
5968 
5969 #else
5970 
5971 static inline void perf_tp_register(void)
5972 {
5973 }
5974 
5975 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5976 {
5977 	return -ENOENT;
5978 }
5979 
5980 static void perf_event_free_filter(struct perf_event *event)
5981 {
5982 }
5983 
5984 #endif /* CONFIG_EVENT_TRACING */
5985 
5986 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5987 void perf_bp_event(struct perf_event *bp, void *data)
5988 {
5989 	struct perf_sample_data sample;
5990 	struct pt_regs *regs = data;
5991 
5992 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5993 
5994 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5995 		perf_swevent_event(bp, 1, &sample, regs);
5996 }
5997 #endif
5998 
5999 /*
6000  * hrtimer based swevent callback
6001  */
6002 
6003 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6004 {
6005 	enum hrtimer_restart ret = HRTIMER_RESTART;
6006 	struct perf_sample_data data;
6007 	struct pt_regs *regs;
6008 	struct perf_event *event;
6009 	u64 period;
6010 
6011 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6012 
6013 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6014 		return HRTIMER_NORESTART;
6015 
6016 	event->pmu->read(event);
6017 
6018 	perf_sample_data_init(&data, 0, event->hw.last_period);
6019 	regs = get_irq_regs();
6020 
6021 	if (regs && !perf_exclude_event(event, regs)) {
6022 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6023 			if (__perf_event_overflow(event, 1, &data, regs))
6024 				ret = HRTIMER_NORESTART;
6025 	}
6026 
6027 	period = max_t(u64, 10000, event->hw.sample_period);
6028 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6029 
6030 	return ret;
6031 }
6032 
6033 static void perf_swevent_start_hrtimer(struct perf_event *event)
6034 {
6035 	struct hw_perf_event *hwc = &event->hw;
6036 	s64 period;
6037 
6038 	if (!is_sampling_event(event))
6039 		return;
6040 
6041 	period = local64_read(&hwc->period_left);
6042 	if (period) {
6043 		if (period < 0)
6044 			period = 10000;
6045 
6046 		local64_set(&hwc->period_left, 0);
6047 	} else {
6048 		period = max_t(u64, 10000, hwc->sample_period);
6049 	}
6050 	__hrtimer_start_range_ns(&hwc->hrtimer,
6051 				ns_to_ktime(period), 0,
6052 				HRTIMER_MODE_REL_PINNED, 0);
6053 }
6054 
6055 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6056 {
6057 	struct hw_perf_event *hwc = &event->hw;
6058 
6059 	if (is_sampling_event(event)) {
6060 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6061 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6062 
6063 		hrtimer_cancel(&hwc->hrtimer);
6064 	}
6065 }
6066 
6067 static void perf_swevent_init_hrtimer(struct perf_event *event)
6068 {
6069 	struct hw_perf_event *hwc = &event->hw;
6070 
6071 	if (!is_sampling_event(event))
6072 		return;
6073 
6074 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6075 	hwc->hrtimer.function = perf_swevent_hrtimer;
6076 
6077 	/*
6078 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6079 	 * mapping and avoid the whole period adjust feedback stuff.
6080 	 */
6081 	if (event->attr.freq) {
6082 		long freq = event->attr.sample_freq;
6083 
6084 		event->attr.sample_period = NSEC_PER_SEC / freq;
6085 		hwc->sample_period = event->attr.sample_period;
6086 		local64_set(&hwc->period_left, hwc->sample_period);
6087 		hwc->last_period = hwc->sample_period;
6088 		event->attr.freq = 0;
6089 	}
6090 }
6091 
6092 /*
6093  * Software event: cpu wall time clock
6094  */
6095 
6096 static void cpu_clock_event_update(struct perf_event *event)
6097 {
6098 	s64 prev;
6099 	u64 now;
6100 
6101 	now = local_clock();
6102 	prev = local64_xchg(&event->hw.prev_count, now);
6103 	local64_add(now - prev, &event->count);
6104 }
6105 
6106 static void cpu_clock_event_start(struct perf_event *event, int flags)
6107 {
6108 	local64_set(&event->hw.prev_count, local_clock());
6109 	perf_swevent_start_hrtimer(event);
6110 }
6111 
6112 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6113 {
6114 	perf_swevent_cancel_hrtimer(event);
6115 	cpu_clock_event_update(event);
6116 }
6117 
6118 static int cpu_clock_event_add(struct perf_event *event, int flags)
6119 {
6120 	if (flags & PERF_EF_START)
6121 		cpu_clock_event_start(event, flags);
6122 
6123 	return 0;
6124 }
6125 
6126 static void cpu_clock_event_del(struct perf_event *event, int flags)
6127 {
6128 	cpu_clock_event_stop(event, flags);
6129 }
6130 
6131 static void cpu_clock_event_read(struct perf_event *event)
6132 {
6133 	cpu_clock_event_update(event);
6134 }
6135 
6136 static int cpu_clock_event_init(struct perf_event *event)
6137 {
6138 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6139 		return -ENOENT;
6140 
6141 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6142 		return -ENOENT;
6143 
6144 	/*
6145 	 * no branch sampling for software events
6146 	 */
6147 	if (has_branch_stack(event))
6148 		return -EOPNOTSUPP;
6149 
6150 	perf_swevent_init_hrtimer(event);
6151 
6152 	return 0;
6153 }
6154 
6155 static struct pmu perf_cpu_clock = {
6156 	.task_ctx_nr	= perf_sw_context,
6157 
6158 	.event_init	= cpu_clock_event_init,
6159 	.add		= cpu_clock_event_add,
6160 	.del		= cpu_clock_event_del,
6161 	.start		= cpu_clock_event_start,
6162 	.stop		= cpu_clock_event_stop,
6163 	.read		= cpu_clock_event_read,
6164 
6165 	.event_idx	= perf_swevent_event_idx,
6166 };
6167 
6168 /*
6169  * Software event: task time clock
6170  */
6171 
6172 static void task_clock_event_update(struct perf_event *event, u64 now)
6173 {
6174 	u64 prev;
6175 	s64 delta;
6176 
6177 	prev = local64_xchg(&event->hw.prev_count, now);
6178 	delta = now - prev;
6179 	local64_add(delta, &event->count);
6180 }
6181 
6182 static void task_clock_event_start(struct perf_event *event, int flags)
6183 {
6184 	local64_set(&event->hw.prev_count, event->ctx->time);
6185 	perf_swevent_start_hrtimer(event);
6186 }
6187 
6188 static void task_clock_event_stop(struct perf_event *event, int flags)
6189 {
6190 	perf_swevent_cancel_hrtimer(event);
6191 	task_clock_event_update(event, event->ctx->time);
6192 }
6193 
6194 static int task_clock_event_add(struct perf_event *event, int flags)
6195 {
6196 	if (flags & PERF_EF_START)
6197 		task_clock_event_start(event, flags);
6198 
6199 	return 0;
6200 }
6201 
6202 static void task_clock_event_del(struct perf_event *event, int flags)
6203 {
6204 	task_clock_event_stop(event, PERF_EF_UPDATE);
6205 }
6206 
6207 static void task_clock_event_read(struct perf_event *event)
6208 {
6209 	u64 now = perf_clock();
6210 	u64 delta = now - event->ctx->timestamp;
6211 	u64 time = event->ctx->time + delta;
6212 
6213 	task_clock_event_update(event, time);
6214 }
6215 
6216 static int task_clock_event_init(struct perf_event *event)
6217 {
6218 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6219 		return -ENOENT;
6220 
6221 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6222 		return -ENOENT;
6223 
6224 	/*
6225 	 * no branch sampling for software events
6226 	 */
6227 	if (has_branch_stack(event))
6228 		return -EOPNOTSUPP;
6229 
6230 	perf_swevent_init_hrtimer(event);
6231 
6232 	return 0;
6233 }
6234 
6235 static struct pmu perf_task_clock = {
6236 	.task_ctx_nr	= perf_sw_context,
6237 
6238 	.event_init	= task_clock_event_init,
6239 	.add		= task_clock_event_add,
6240 	.del		= task_clock_event_del,
6241 	.start		= task_clock_event_start,
6242 	.stop		= task_clock_event_stop,
6243 	.read		= task_clock_event_read,
6244 
6245 	.event_idx	= perf_swevent_event_idx,
6246 };
6247 
6248 static void perf_pmu_nop_void(struct pmu *pmu)
6249 {
6250 }
6251 
6252 static int perf_pmu_nop_int(struct pmu *pmu)
6253 {
6254 	return 0;
6255 }
6256 
6257 static void perf_pmu_start_txn(struct pmu *pmu)
6258 {
6259 	perf_pmu_disable(pmu);
6260 }
6261 
6262 static int perf_pmu_commit_txn(struct pmu *pmu)
6263 {
6264 	perf_pmu_enable(pmu);
6265 	return 0;
6266 }
6267 
6268 static void perf_pmu_cancel_txn(struct pmu *pmu)
6269 {
6270 	perf_pmu_enable(pmu);
6271 }
6272 
6273 static int perf_event_idx_default(struct perf_event *event)
6274 {
6275 	return event->hw.idx + 1;
6276 }
6277 
6278 /*
6279  * Ensures all contexts with the same task_ctx_nr have the same
6280  * pmu_cpu_context too.
6281  */
6282 static void *find_pmu_context(int ctxn)
6283 {
6284 	struct pmu *pmu;
6285 
6286 	if (ctxn < 0)
6287 		return NULL;
6288 
6289 	list_for_each_entry(pmu, &pmus, entry) {
6290 		if (pmu->task_ctx_nr == ctxn)
6291 			return pmu->pmu_cpu_context;
6292 	}
6293 
6294 	return NULL;
6295 }
6296 
6297 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6298 {
6299 	int cpu;
6300 
6301 	for_each_possible_cpu(cpu) {
6302 		struct perf_cpu_context *cpuctx;
6303 
6304 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6305 
6306 		if (cpuctx->unique_pmu == old_pmu)
6307 			cpuctx->unique_pmu = pmu;
6308 	}
6309 }
6310 
6311 static void free_pmu_context(struct pmu *pmu)
6312 {
6313 	struct pmu *i;
6314 
6315 	mutex_lock(&pmus_lock);
6316 	/*
6317 	 * Like a real lame refcount.
6318 	 */
6319 	list_for_each_entry(i, &pmus, entry) {
6320 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6321 			update_pmu_context(i, pmu);
6322 			goto out;
6323 		}
6324 	}
6325 
6326 	free_percpu(pmu->pmu_cpu_context);
6327 out:
6328 	mutex_unlock(&pmus_lock);
6329 }
6330 static struct idr pmu_idr;
6331 
6332 static ssize_t
6333 type_show(struct device *dev, struct device_attribute *attr, char *page)
6334 {
6335 	struct pmu *pmu = dev_get_drvdata(dev);
6336 
6337 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6338 }
6339 static DEVICE_ATTR_RO(type);
6340 
6341 static ssize_t
6342 perf_event_mux_interval_ms_show(struct device *dev,
6343 				struct device_attribute *attr,
6344 				char *page)
6345 {
6346 	struct pmu *pmu = dev_get_drvdata(dev);
6347 
6348 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6349 }
6350 
6351 static ssize_t
6352 perf_event_mux_interval_ms_store(struct device *dev,
6353 				 struct device_attribute *attr,
6354 				 const char *buf, size_t count)
6355 {
6356 	struct pmu *pmu = dev_get_drvdata(dev);
6357 	int timer, cpu, ret;
6358 
6359 	ret = kstrtoint(buf, 0, &timer);
6360 	if (ret)
6361 		return ret;
6362 
6363 	if (timer < 1)
6364 		return -EINVAL;
6365 
6366 	/* same value, noting to do */
6367 	if (timer == pmu->hrtimer_interval_ms)
6368 		return count;
6369 
6370 	pmu->hrtimer_interval_ms = timer;
6371 
6372 	/* update all cpuctx for this PMU */
6373 	for_each_possible_cpu(cpu) {
6374 		struct perf_cpu_context *cpuctx;
6375 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6376 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6377 
6378 		if (hrtimer_active(&cpuctx->hrtimer))
6379 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6380 	}
6381 
6382 	return count;
6383 }
6384 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6385 
6386 static struct attribute *pmu_dev_attrs[] = {
6387 	&dev_attr_type.attr,
6388 	&dev_attr_perf_event_mux_interval_ms.attr,
6389 	NULL,
6390 };
6391 ATTRIBUTE_GROUPS(pmu_dev);
6392 
6393 static int pmu_bus_running;
6394 static struct bus_type pmu_bus = {
6395 	.name		= "event_source",
6396 	.dev_groups	= pmu_dev_groups,
6397 };
6398 
6399 static void pmu_dev_release(struct device *dev)
6400 {
6401 	kfree(dev);
6402 }
6403 
6404 static int pmu_dev_alloc(struct pmu *pmu)
6405 {
6406 	int ret = -ENOMEM;
6407 
6408 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6409 	if (!pmu->dev)
6410 		goto out;
6411 
6412 	pmu->dev->groups = pmu->attr_groups;
6413 	device_initialize(pmu->dev);
6414 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6415 	if (ret)
6416 		goto free_dev;
6417 
6418 	dev_set_drvdata(pmu->dev, pmu);
6419 	pmu->dev->bus = &pmu_bus;
6420 	pmu->dev->release = pmu_dev_release;
6421 	ret = device_add(pmu->dev);
6422 	if (ret)
6423 		goto free_dev;
6424 
6425 out:
6426 	return ret;
6427 
6428 free_dev:
6429 	put_device(pmu->dev);
6430 	goto out;
6431 }
6432 
6433 static struct lock_class_key cpuctx_mutex;
6434 static struct lock_class_key cpuctx_lock;
6435 
6436 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6437 {
6438 	int cpu, ret;
6439 
6440 	mutex_lock(&pmus_lock);
6441 	ret = -ENOMEM;
6442 	pmu->pmu_disable_count = alloc_percpu(int);
6443 	if (!pmu->pmu_disable_count)
6444 		goto unlock;
6445 
6446 	pmu->type = -1;
6447 	if (!name)
6448 		goto skip_type;
6449 	pmu->name = name;
6450 
6451 	if (type < 0) {
6452 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6453 		if (type < 0) {
6454 			ret = type;
6455 			goto free_pdc;
6456 		}
6457 	}
6458 	pmu->type = type;
6459 
6460 	if (pmu_bus_running) {
6461 		ret = pmu_dev_alloc(pmu);
6462 		if (ret)
6463 			goto free_idr;
6464 	}
6465 
6466 skip_type:
6467 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6468 	if (pmu->pmu_cpu_context)
6469 		goto got_cpu_context;
6470 
6471 	ret = -ENOMEM;
6472 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6473 	if (!pmu->pmu_cpu_context)
6474 		goto free_dev;
6475 
6476 	for_each_possible_cpu(cpu) {
6477 		struct perf_cpu_context *cpuctx;
6478 
6479 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6480 		__perf_event_init_context(&cpuctx->ctx);
6481 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6482 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6483 		cpuctx->ctx.type = cpu_context;
6484 		cpuctx->ctx.pmu = pmu;
6485 
6486 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6487 
6488 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6489 		cpuctx->unique_pmu = pmu;
6490 	}
6491 
6492 got_cpu_context:
6493 	if (!pmu->start_txn) {
6494 		if (pmu->pmu_enable) {
6495 			/*
6496 			 * If we have pmu_enable/pmu_disable calls, install
6497 			 * transaction stubs that use that to try and batch
6498 			 * hardware accesses.
6499 			 */
6500 			pmu->start_txn  = perf_pmu_start_txn;
6501 			pmu->commit_txn = perf_pmu_commit_txn;
6502 			pmu->cancel_txn = perf_pmu_cancel_txn;
6503 		} else {
6504 			pmu->start_txn  = perf_pmu_nop_void;
6505 			pmu->commit_txn = perf_pmu_nop_int;
6506 			pmu->cancel_txn = perf_pmu_nop_void;
6507 		}
6508 	}
6509 
6510 	if (!pmu->pmu_enable) {
6511 		pmu->pmu_enable  = perf_pmu_nop_void;
6512 		pmu->pmu_disable = perf_pmu_nop_void;
6513 	}
6514 
6515 	if (!pmu->event_idx)
6516 		pmu->event_idx = perf_event_idx_default;
6517 
6518 	list_add_rcu(&pmu->entry, &pmus);
6519 	ret = 0;
6520 unlock:
6521 	mutex_unlock(&pmus_lock);
6522 
6523 	return ret;
6524 
6525 free_dev:
6526 	device_del(pmu->dev);
6527 	put_device(pmu->dev);
6528 
6529 free_idr:
6530 	if (pmu->type >= PERF_TYPE_MAX)
6531 		idr_remove(&pmu_idr, pmu->type);
6532 
6533 free_pdc:
6534 	free_percpu(pmu->pmu_disable_count);
6535 	goto unlock;
6536 }
6537 
6538 void perf_pmu_unregister(struct pmu *pmu)
6539 {
6540 	mutex_lock(&pmus_lock);
6541 	list_del_rcu(&pmu->entry);
6542 	mutex_unlock(&pmus_lock);
6543 
6544 	/*
6545 	 * We dereference the pmu list under both SRCU and regular RCU, so
6546 	 * synchronize against both of those.
6547 	 */
6548 	synchronize_srcu(&pmus_srcu);
6549 	synchronize_rcu();
6550 
6551 	free_percpu(pmu->pmu_disable_count);
6552 	if (pmu->type >= PERF_TYPE_MAX)
6553 		idr_remove(&pmu_idr, pmu->type);
6554 	device_del(pmu->dev);
6555 	put_device(pmu->dev);
6556 	free_pmu_context(pmu);
6557 }
6558 
6559 struct pmu *perf_init_event(struct perf_event *event)
6560 {
6561 	struct pmu *pmu = NULL;
6562 	int idx;
6563 	int ret;
6564 
6565 	idx = srcu_read_lock(&pmus_srcu);
6566 
6567 	rcu_read_lock();
6568 	pmu = idr_find(&pmu_idr, event->attr.type);
6569 	rcu_read_unlock();
6570 	if (pmu) {
6571 		event->pmu = pmu;
6572 		ret = pmu->event_init(event);
6573 		if (ret)
6574 			pmu = ERR_PTR(ret);
6575 		goto unlock;
6576 	}
6577 
6578 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6579 		event->pmu = pmu;
6580 		ret = pmu->event_init(event);
6581 		if (!ret)
6582 			goto unlock;
6583 
6584 		if (ret != -ENOENT) {
6585 			pmu = ERR_PTR(ret);
6586 			goto unlock;
6587 		}
6588 	}
6589 	pmu = ERR_PTR(-ENOENT);
6590 unlock:
6591 	srcu_read_unlock(&pmus_srcu, idx);
6592 
6593 	return pmu;
6594 }
6595 
6596 static void account_event_cpu(struct perf_event *event, int cpu)
6597 {
6598 	if (event->parent)
6599 		return;
6600 
6601 	if (has_branch_stack(event)) {
6602 		if (!(event->attach_state & PERF_ATTACH_TASK))
6603 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6604 	}
6605 	if (is_cgroup_event(event))
6606 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6607 }
6608 
6609 static void account_event(struct perf_event *event)
6610 {
6611 	if (event->parent)
6612 		return;
6613 
6614 	if (event->attach_state & PERF_ATTACH_TASK)
6615 		static_key_slow_inc(&perf_sched_events.key);
6616 	if (event->attr.mmap || event->attr.mmap_data)
6617 		atomic_inc(&nr_mmap_events);
6618 	if (event->attr.comm)
6619 		atomic_inc(&nr_comm_events);
6620 	if (event->attr.task)
6621 		atomic_inc(&nr_task_events);
6622 	if (event->attr.freq) {
6623 		if (atomic_inc_return(&nr_freq_events) == 1)
6624 			tick_nohz_full_kick_all();
6625 	}
6626 	if (has_branch_stack(event))
6627 		static_key_slow_inc(&perf_sched_events.key);
6628 	if (is_cgroup_event(event))
6629 		static_key_slow_inc(&perf_sched_events.key);
6630 
6631 	account_event_cpu(event, event->cpu);
6632 }
6633 
6634 /*
6635  * Allocate and initialize a event structure
6636  */
6637 static struct perf_event *
6638 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6639 		 struct task_struct *task,
6640 		 struct perf_event *group_leader,
6641 		 struct perf_event *parent_event,
6642 		 perf_overflow_handler_t overflow_handler,
6643 		 void *context)
6644 {
6645 	struct pmu *pmu;
6646 	struct perf_event *event;
6647 	struct hw_perf_event *hwc;
6648 	long err = -EINVAL;
6649 
6650 	if ((unsigned)cpu >= nr_cpu_ids) {
6651 		if (!task || cpu != -1)
6652 			return ERR_PTR(-EINVAL);
6653 	}
6654 
6655 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6656 	if (!event)
6657 		return ERR_PTR(-ENOMEM);
6658 
6659 	/*
6660 	 * Single events are their own group leaders, with an
6661 	 * empty sibling list:
6662 	 */
6663 	if (!group_leader)
6664 		group_leader = event;
6665 
6666 	mutex_init(&event->child_mutex);
6667 	INIT_LIST_HEAD(&event->child_list);
6668 
6669 	INIT_LIST_HEAD(&event->group_entry);
6670 	INIT_LIST_HEAD(&event->event_entry);
6671 	INIT_LIST_HEAD(&event->sibling_list);
6672 	INIT_LIST_HEAD(&event->rb_entry);
6673 
6674 	init_waitqueue_head(&event->waitq);
6675 	init_irq_work(&event->pending, perf_pending_event);
6676 
6677 	mutex_init(&event->mmap_mutex);
6678 
6679 	atomic_long_set(&event->refcount, 1);
6680 	event->cpu		= cpu;
6681 	event->attr		= *attr;
6682 	event->group_leader	= group_leader;
6683 	event->pmu		= NULL;
6684 	event->oncpu		= -1;
6685 
6686 	event->parent		= parent_event;
6687 
6688 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6689 	event->id		= atomic64_inc_return(&perf_event_id);
6690 
6691 	event->state		= PERF_EVENT_STATE_INACTIVE;
6692 
6693 	if (task) {
6694 		event->attach_state = PERF_ATTACH_TASK;
6695 
6696 		if (attr->type == PERF_TYPE_TRACEPOINT)
6697 			event->hw.tp_target = task;
6698 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6699 		/*
6700 		 * hw_breakpoint is a bit difficult here..
6701 		 */
6702 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6703 			event->hw.bp_target = task;
6704 #endif
6705 	}
6706 
6707 	if (!overflow_handler && parent_event) {
6708 		overflow_handler = parent_event->overflow_handler;
6709 		context = parent_event->overflow_handler_context;
6710 	}
6711 
6712 	event->overflow_handler	= overflow_handler;
6713 	event->overflow_handler_context = context;
6714 
6715 	perf_event__state_init(event);
6716 
6717 	pmu = NULL;
6718 
6719 	hwc = &event->hw;
6720 	hwc->sample_period = attr->sample_period;
6721 	if (attr->freq && attr->sample_freq)
6722 		hwc->sample_period = 1;
6723 	hwc->last_period = hwc->sample_period;
6724 
6725 	local64_set(&hwc->period_left, hwc->sample_period);
6726 
6727 	/*
6728 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6729 	 */
6730 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6731 		goto err_ns;
6732 
6733 	pmu = perf_init_event(event);
6734 	if (!pmu)
6735 		goto err_ns;
6736 	else if (IS_ERR(pmu)) {
6737 		err = PTR_ERR(pmu);
6738 		goto err_ns;
6739 	}
6740 
6741 	if (!event->parent) {
6742 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6743 			err = get_callchain_buffers();
6744 			if (err)
6745 				goto err_pmu;
6746 		}
6747 	}
6748 
6749 	return event;
6750 
6751 err_pmu:
6752 	if (event->destroy)
6753 		event->destroy(event);
6754 err_ns:
6755 	if (event->ns)
6756 		put_pid_ns(event->ns);
6757 	kfree(event);
6758 
6759 	return ERR_PTR(err);
6760 }
6761 
6762 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6763 			  struct perf_event_attr *attr)
6764 {
6765 	u32 size;
6766 	int ret;
6767 
6768 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6769 		return -EFAULT;
6770 
6771 	/*
6772 	 * zero the full structure, so that a short copy will be nice.
6773 	 */
6774 	memset(attr, 0, sizeof(*attr));
6775 
6776 	ret = get_user(size, &uattr->size);
6777 	if (ret)
6778 		return ret;
6779 
6780 	if (size > PAGE_SIZE)	/* silly large */
6781 		goto err_size;
6782 
6783 	if (!size)		/* abi compat */
6784 		size = PERF_ATTR_SIZE_VER0;
6785 
6786 	if (size < PERF_ATTR_SIZE_VER0)
6787 		goto err_size;
6788 
6789 	/*
6790 	 * If we're handed a bigger struct than we know of,
6791 	 * ensure all the unknown bits are 0 - i.e. new
6792 	 * user-space does not rely on any kernel feature
6793 	 * extensions we dont know about yet.
6794 	 */
6795 	if (size > sizeof(*attr)) {
6796 		unsigned char __user *addr;
6797 		unsigned char __user *end;
6798 		unsigned char val;
6799 
6800 		addr = (void __user *)uattr + sizeof(*attr);
6801 		end  = (void __user *)uattr + size;
6802 
6803 		for (; addr < end; addr++) {
6804 			ret = get_user(val, addr);
6805 			if (ret)
6806 				return ret;
6807 			if (val)
6808 				goto err_size;
6809 		}
6810 		size = sizeof(*attr);
6811 	}
6812 
6813 	ret = copy_from_user(attr, uattr, size);
6814 	if (ret)
6815 		return -EFAULT;
6816 
6817 	/* disabled for now */
6818 	if (attr->mmap2)
6819 		return -EINVAL;
6820 
6821 	if (attr->__reserved_1)
6822 		return -EINVAL;
6823 
6824 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6825 		return -EINVAL;
6826 
6827 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6828 		return -EINVAL;
6829 
6830 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6831 		u64 mask = attr->branch_sample_type;
6832 
6833 		/* only using defined bits */
6834 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6835 			return -EINVAL;
6836 
6837 		/* at least one branch bit must be set */
6838 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6839 			return -EINVAL;
6840 
6841 		/* propagate priv level, when not set for branch */
6842 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6843 
6844 			/* exclude_kernel checked on syscall entry */
6845 			if (!attr->exclude_kernel)
6846 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6847 
6848 			if (!attr->exclude_user)
6849 				mask |= PERF_SAMPLE_BRANCH_USER;
6850 
6851 			if (!attr->exclude_hv)
6852 				mask |= PERF_SAMPLE_BRANCH_HV;
6853 			/*
6854 			 * adjust user setting (for HW filter setup)
6855 			 */
6856 			attr->branch_sample_type = mask;
6857 		}
6858 		/* privileged levels capture (kernel, hv): check permissions */
6859 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6860 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6861 			return -EACCES;
6862 	}
6863 
6864 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6865 		ret = perf_reg_validate(attr->sample_regs_user);
6866 		if (ret)
6867 			return ret;
6868 	}
6869 
6870 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6871 		if (!arch_perf_have_user_stack_dump())
6872 			return -ENOSYS;
6873 
6874 		/*
6875 		 * We have __u32 type for the size, but so far
6876 		 * we can only use __u16 as maximum due to the
6877 		 * __u16 sample size limit.
6878 		 */
6879 		if (attr->sample_stack_user >= USHRT_MAX)
6880 			ret = -EINVAL;
6881 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6882 			ret = -EINVAL;
6883 	}
6884 
6885 out:
6886 	return ret;
6887 
6888 err_size:
6889 	put_user(sizeof(*attr), &uattr->size);
6890 	ret = -E2BIG;
6891 	goto out;
6892 }
6893 
6894 static int
6895 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6896 {
6897 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6898 	int ret = -EINVAL;
6899 
6900 	if (!output_event)
6901 		goto set;
6902 
6903 	/* don't allow circular references */
6904 	if (event == output_event)
6905 		goto out;
6906 
6907 	/*
6908 	 * Don't allow cross-cpu buffers
6909 	 */
6910 	if (output_event->cpu != event->cpu)
6911 		goto out;
6912 
6913 	/*
6914 	 * If its not a per-cpu rb, it must be the same task.
6915 	 */
6916 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6917 		goto out;
6918 
6919 set:
6920 	mutex_lock(&event->mmap_mutex);
6921 	/* Can't redirect output if we've got an active mmap() */
6922 	if (atomic_read(&event->mmap_count))
6923 		goto unlock;
6924 
6925 	old_rb = event->rb;
6926 
6927 	if (output_event) {
6928 		/* get the rb we want to redirect to */
6929 		rb = ring_buffer_get(output_event);
6930 		if (!rb)
6931 			goto unlock;
6932 	}
6933 
6934 	if (old_rb)
6935 		ring_buffer_detach(event, old_rb);
6936 
6937 	if (rb)
6938 		ring_buffer_attach(event, rb);
6939 
6940 	rcu_assign_pointer(event->rb, rb);
6941 
6942 	if (old_rb) {
6943 		ring_buffer_put(old_rb);
6944 		/*
6945 		 * Since we detached before setting the new rb, so that we
6946 		 * could attach the new rb, we could have missed a wakeup.
6947 		 * Provide it now.
6948 		 */
6949 		wake_up_all(&event->waitq);
6950 	}
6951 
6952 	ret = 0;
6953 unlock:
6954 	mutex_unlock(&event->mmap_mutex);
6955 
6956 out:
6957 	return ret;
6958 }
6959 
6960 /**
6961  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6962  *
6963  * @attr_uptr:	event_id type attributes for monitoring/sampling
6964  * @pid:		target pid
6965  * @cpu:		target cpu
6966  * @group_fd:		group leader event fd
6967  */
6968 SYSCALL_DEFINE5(perf_event_open,
6969 		struct perf_event_attr __user *, attr_uptr,
6970 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6971 {
6972 	struct perf_event *group_leader = NULL, *output_event = NULL;
6973 	struct perf_event *event, *sibling;
6974 	struct perf_event_attr attr;
6975 	struct perf_event_context *ctx;
6976 	struct file *event_file = NULL;
6977 	struct fd group = {NULL, 0};
6978 	struct task_struct *task = NULL;
6979 	struct pmu *pmu;
6980 	int event_fd;
6981 	int move_group = 0;
6982 	int err;
6983 
6984 	/* for future expandability... */
6985 	if (flags & ~PERF_FLAG_ALL)
6986 		return -EINVAL;
6987 
6988 	err = perf_copy_attr(attr_uptr, &attr);
6989 	if (err)
6990 		return err;
6991 
6992 	if (!attr.exclude_kernel) {
6993 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6994 			return -EACCES;
6995 	}
6996 
6997 	if (attr.freq) {
6998 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6999 			return -EINVAL;
7000 	}
7001 
7002 	/*
7003 	 * In cgroup mode, the pid argument is used to pass the fd
7004 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7005 	 * designates the cpu on which to monitor threads from that
7006 	 * cgroup.
7007 	 */
7008 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7009 		return -EINVAL;
7010 
7011 	event_fd = get_unused_fd();
7012 	if (event_fd < 0)
7013 		return event_fd;
7014 
7015 	if (group_fd != -1) {
7016 		err = perf_fget_light(group_fd, &group);
7017 		if (err)
7018 			goto err_fd;
7019 		group_leader = group.file->private_data;
7020 		if (flags & PERF_FLAG_FD_OUTPUT)
7021 			output_event = group_leader;
7022 		if (flags & PERF_FLAG_FD_NO_GROUP)
7023 			group_leader = NULL;
7024 	}
7025 
7026 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7027 		task = find_lively_task_by_vpid(pid);
7028 		if (IS_ERR(task)) {
7029 			err = PTR_ERR(task);
7030 			goto err_group_fd;
7031 		}
7032 	}
7033 
7034 	get_online_cpus();
7035 
7036 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7037 				 NULL, NULL);
7038 	if (IS_ERR(event)) {
7039 		err = PTR_ERR(event);
7040 		goto err_task;
7041 	}
7042 
7043 	if (flags & PERF_FLAG_PID_CGROUP) {
7044 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7045 		if (err) {
7046 			__free_event(event);
7047 			goto err_task;
7048 		}
7049 	}
7050 
7051 	account_event(event);
7052 
7053 	/*
7054 	 * Special case software events and allow them to be part of
7055 	 * any hardware group.
7056 	 */
7057 	pmu = event->pmu;
7058 
7059 	if (group_leader &&
7060 	    (is_software_event(event) != is_software_event(group_leader))) {
7061 		if (is_software_event(event)) {
7062 			/*
7063 			 * If event and group_leader are not both a software
7064 			 * event, and event is, then group leader is not.
7065 			 *
7066 			 * Allow the addition of software events to !software
7067 			 * groups, this is safe because software events never
7068 			 * fail to schedule.
7069 			 */
7070 			pmu = group_leader->pmu;
7071 		} else if (is_software_event(group_leader) &&
7072 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7073 			/*
7074 			 * In case the group is a pure software group, and we
7075 			 * try to add a hardware event, move the whole group to
7076 			 * the hardware context.
7077 			 */
7078 			move_group = 1;
7079 		}
7080 	}
7081 
7082 	/*
7083 	 * Get the target context (task or percpu):
7084 	 */
7085 	ctx = find_get_context(pmu, task, event->cpu);
7086 	if (IS_ERR(ctx)) {
7087 		err = PTR_ERR(ctx);
7088 		goto err_alloc;
7089 	}
7090 
7091 	if (task) {
7092 		put_task_struct(task);
7093 		task = NULL;
7094 	}
7095 
7096 	/*
7097 	 * Look up the group leader (we will attach this event to it):
7098 	 */
7099 	if (group_leader) {
7100 		err = -EINVAL;
7101 
7102 		/*
7103 		 * Do not allow a recursive hierarchy (this new sibling
7104 		 * becoming part of another group-sibling):
7105 		 */
7106 		if (group_leader->group_leader != group_leader)
7107 			goto err_context;
7108 		/*
7109 		 * Do not allow to attach to a group in a different
7110 		 * task or CPU context:
7111 		 */
7112 		if (move_group) {
7113 			if (group_leader->ctx->type != ctx->type)
7114 				goto err_context;
7115 		} else {
7116 			if (group_leader->ctx != ctx)
7117 				goto err_context;
7118 		}
7119 
7120 		/*
7121 		 * Only a group leader can be exclusive or pinned
7122 		 */
7123 		if (attr.exclusive || attr.pinned)
7124 			goto err_context;
7125 	}
7126 
7127 	if (output_event) {
7128 		err = perf_event_set_output(event, output_event);
7129 		if (err)
7130 			goto err_context;
7131 	}
7132 
7133 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7134 	if (IS_ERR(event_file)) {
7135 		err = PTR_ERR(event_file);
7136 		goto err_context;
7137 	}
7138 
7139 	if (move_group) {
7140 		struct perf_event_context *gctx = group_leader->ctx;
7141 
7142 		mutex_lock(&gctx->mutex);
7143 		perf_remove_from_context(group_leader);
7144 
7145 		/*
7146 		 * Removing from the context ends up with disabled
7147 		 * event. What we want here is event in the initial
7148 		 * startup state, ready to be add into new context.
7149 		 */
7150 		perf_event__state_init(group_leader);
7151 		list_for_each_entry(sibling, &group_leader->sibling_list,
7152 				    group_entry) {
7153 			perf_remove_from_context(sibling);
7154 			perf_event__state_init(sibling);
7155 			put_ctx(gctx);
7156 		}
7157 		mutex_unlock(&gctx->mutex);
7158 		put_ctx(gctx);
7159 	}
7160 
7161 	WARN_ON_ONCE(ctx->parent_ctx);
7162 	mutex_lock(&ctx->mutex);
7163 
7164 	if (move_group) {
7165 		synchronize_rcu();
7166 		perf_install_in_context(ctx, group_leader, event->cpu);
7167 		get_ctx(ctx);
7168 		list_for_each_entry(sibling, &group_leader->sibling_list,
7169 				    group_entry) {
7170 			perf_install_in_context(ctx, sibling, event->cpu);
7171 			get_ctx(ctx);
7172 		}
7173 	}
7174 
7175 	perf_install_in_context(ctx, event, event->cpu);
7176 	perf_unpin_context(ctx);
7177 	mutex_unlock(&ctx->mutex);
7178 
7179 	put_online_cpus();
7180 
7181 	event->owner = current;
7182 
7183 	mutex_lock(&current->perf_event_mutex);
7184 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7185 	mutex_unlock(&current->perf_event_mutex);
7186 
7187 	/*
7188 	 * Precalculate sample_data sizes
7189 	 */
7190 	perf_event__header_size(event);
7191 	perf_event__id_header_size(event);
7192 
7193 	/*
7194 	 * Drop the reference on the group_event after placing the
7195 	 * new event on the sibling_list. This ensures destruction
7196 	 * of the group leader will find the pointer to itself in
7197 	 * perf_group_detach().
7198 	 */
7199 	fdput(group);
7200 	fd_install(event_fd, event_file);
7201 	return event_fd;
7202 
7203 err_context:
7204 	perf_unpin_context(ctx);
7205 	put_ctx(ctx);
7206 err_alloc:
7207 	free_event(event);
7208 err_task:
7209 	put_online_cpus();
7210 	if (task)
7211 		put_task_struct(task);
7212 err_group_fd:
7213 	fdput(group);
7214 err_fd:
7215 	put_unused_fd(event_fd);
7216 	return err;
7217 }
7218 
7219 /**
7220  * perf_event_create_kernel_counter
7221  *
7222  * @attr: attributes of the counter to create
7223  * @cpu: cpu in which the counter is bound
7224  * @task: task to profile (NULL for percpu)
7225  */
7226 struct perf_event *
7227 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7228 				 struct task_struct *task,
7229 				 perf_overflow_handler_t overflow_handler,
7230 				 void *context)
7231 {
7232 	struct perf_event_context *ctx;
7233 	struct perf_event *event;
7234 	int err;
7235 
7236 	/*
7237 	 * Get the target context (task or percpu):
7238 	 */
7239 
7240 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7241 				 overflow_handler, context);
7242 	if (IS_ERR(event)) {
7243 		err = PTR_ERR(event);
7244 		goto err;
7245 	}
7246 
7247 	account_event(event);
7248 
7249 	ctx = find_get_context(event->pmu, task, cpu);
7250 	if (IS_ERR(ctx)) {
7251 		err = PTR_ERR(ctx);
7252 		goto err_free;
7253 	}
7254 
7255 	WARN_ON_ONCE(ctx->parent_ctx);
7256 	mutex_lock(&ctx->mutex);
7257 	perf_install_in_context(ctx, event, cpu);
7258 	perf_unpin_context(ctx);
7259 	mutex_unlock(&ctx->mutex);
7260 
7261 	return event;
7262 
7263 err_free:
7264 	free_event(event);
7265 err:
7266 	return ERR_PTR(err);
7267 }
7268 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7269 
7270 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7271 {
7272 	struct perf_event_context *src_ctx;
7273 	struct perf_event_context *dst_ctx;
7274 	struct perf_event *event, *tmp;
7275 	LIST_HEAD(events);
7276 
7277 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7278 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7279 
7280 	mutex_lock(&src_ctx->mutex);
7281 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7282 				 event_entry) {
7283 		perf_remove_from_context(event);
7284 		unaccount_event_cpu(event, src_cpu);
7285 		put_ctx(src_ctx);
7286 		list_add(&event->migrate_entry, &events);
7287 	}
7288 	mutex_unlock(&src_ctx->mutex);
7289 
7290 	synchronize_rcu();
7291 
7292 	mutex_lock(&dst_ctx->mutex);
7293 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7294 		list_del(&event->migrate_entry);
7295 		if (event->state >= PERF_EVENT_STATE_OFF)
7296 			event->state = PERF_EVENT_STATE_INACTIVE;
7297 		account_event_cpu(event, dst_cpu);
7298 		perf_install_in_context(dst_ctx, event, dst_cpu);
7299 		get_ctx(dst_ctx);
7300 	}
7301 	mutex_unlock(&dst_ctx->mutex);
7302 }
7303 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7304 
7305 static void sync_child_event(struct perf_event *child_event,
7306 			       struct task_struct *child)
7307 {
7308 	struct perf_event *parent_event = child_event->parent;
7309 	u64 child_val;
7310 
7311 	if (child_event->attr.inherit_stat)
7312 		perf_event_read_event(child_event, child);
7313 
7314 	child_val = perf_event_count(child_event);
7315 
7316 	/*
7317 	 * Add back the child's count to the parent's count:
7318 	 */
7319 	atomic64_add(child_val, &parent_event->child_count);
7320 	atomic64_add(child_event->total_time_enabled,
7321 		     &parent_event->child_total_time_enabled);
7322 	atomic64_add(child_event->total_time_running,
7323 		     &parent_event->child_total_time_running);
7324 
7325 	/*
7326 	 * Remove this event from the parent's list
7327 	 */
7328 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7329 	mutex_lock(&parent_event->child_mutex);
7330 	list_del_init(&child_event->child_list);
7331 	mutex_unlock(&parent_event->child_mutex);
7332 
7333 	/*
7334 	 * Release the parent event, if this was the last
7335 	 * reference to it.
7336 	 */
7337 	put_event(parent_event);
7338 }
7339 
7340 static void
7341 __perf_event_exit_task(struct perf_event *child_event,
7342 			 struct perf_event_context *child_ctx,
7343 			 struct task_struct *child)
7344 {
7345 	if (child_event->parent) {
7346 		raw_spin_lock_irq(&child_ctx->lock);
7347 		perf_group_detach(child_event);
7348 		raw_spin_unlock_irq(&child_ctx->lock);
7349 	}
7350 
7351 	perf_remove_from_context(child_event);
7352 
7353 	/*
7354 	 * It can happen that the parent exits first, and has events
7355 	 * that are still around due to the child reference. These
7356 	 * events need to be zapped.
7357 	 */
7358 	if (child_event->parent) {
7359 		sync_child_event(child_event, child);
7360 		free_event(child_event);
7361 	}
7362 }
7363 
7364 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7365 {
7366 	struct perf_event *child_event, *tmp;
7367 	struct perf_event_context *child_ctx;
7368 	unsigned long flags;
7369 
7370 	if (likely(!child->perf_event_ctxp[ctxn])) {
7371 		perf_event_task(child, NULL, 0);
7372 		return;
7373 	}
7374 
7375 	local_irq_save(flags);
7376 	/*
7377 	 * We can't reschedule here because interrupts are disabled,
7378 	 * and either child is current or it is a task that can't be
7379 	 * scheduled, so we are now safe from rescheduling changing
7380 	 * our context.
7381 	 */
7382 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7383 
7384 	/*
7385 	 * Take the context lock here so that if find_get_context is
7386 	 * reading child->perf_event_ctxp, we wait until it has
7387 	 * incremented the context's refcount before we do put_ctx below.
7388 	 */
7389 	raw_spin_lock(&child_ctx->lock);
7390 	task_ctx_sched_out(child_ctx);
7391 	child->perf_event_ctxp[ctxn] = NULL;
7392 	/*
7393 	 * If this context is a clone; unclone it so it can't get
7394 	 * swapped to another process while we're removing all
7395 	 * the events from it.
7396 	 */
7397 	unclone_ctx(child_ctx);
7398 	update_context_time(child_ctx);
7399 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7400 
7401 	/*
7402 	 * Report the task dead after unscheduling the events so that we
7403 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7404 	 * get a few PERF_RECORD_READ events.
7405 	 */
7406 	perf_event_task(child, child_ctx, 0);
7407 
7408 	/*
7409 	 * We can recurse on the same lock type through:
7410 	 *
7411 	 *   __perf_event_exit_task()
7412 	 *     sync_child_event()
7413 	 *       put_event()
7414 	 *         mutex_lock(&ctx->mutex)
7415 	 *
7416 	 * But since its the parent context it won't be the same instance.
7417 	 */
7418 	mutex_lock(&child_ctx->mutex);
7419 
7420 again:
7421 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7422 				 group_entry)
7423 		__perf_event_exit_task(child_event, child_ctx, child);
7424 
7425 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7426 				 group_entry)
7427 		__perf_event_exit_task(child_event, child_ctx, child);
7428 
7429 	/*
7430 	 * If the last event was a group event, it will have appended all
7431 	 * its siblings to the list, but we obtained 'tmp' before that which
7432 	 * will still point to the list head terminating the iteration.
7433 	 */
7434 	if (!list_empty(&child_ctx->pinned_groups) ||
7435 	    !list_empty(&child_ctx->flexible_groups))
7436 		goto again;
7437 
7438 	mutex_unlock(&child_ctx->mutex);
7439 
7440 	put_ctx(child_ctx);
7441 }
7442 
7443 /*
7444  * When a child task exits, feed back event values to parent events.
7445  */
7446 void perf_event_exit_task(struct task_struct *child)
7447 {
7448 	struct perf_event *event, *tmp;
7449 	int ctxn;
7450 
7451 	mutex_lock(&child->perf_event_mutex);
7452 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7453 				 owner_entry) {
7454 		list_del_init(&event->owner_entry);
7455 
7456 		/*
7457 		 * Ensure the list deletion is visible before we clear
7458 		 * the owner, closes a race against perf_release() where
7459 		 * we need to serialize on the owner->perf_event_mutex.
7460 		 */
7461 		smp_wmb();
7462 		event->owner = NULL;
7463 	}
7464 	mutex_unlock(&child->perf_event_mutex);
7465 
7466 	for_each_task_context_nr(ctxn)
7467 		perf_event_exit_task_context(child, ctxn);
7468 }
7469 
7470 static void perf_free_event(struct perf_event *event,
7471 			    struct perf_event_context *ctx)
7472 {
7473 	struct perf_event *parent = event->parent;
7474 
7475 	if (WARN_ON_ONCE(!parent))
7476 		return;
7477 
7478 	mutex_lock(&parent->child_mutex);
7479 	list_del_init(&event->child_list);
7480 	mutex_unlock(&parent->child_mutex);
7481 
7482 	put_event(parent);
7483 
7484 	perf_group_detach(event);
7485 	list_del_event(event, ctx);
7486 	free_event(event);
7487 }
7488 
7489 /*
7490  * free an unexposed, unused context as created by inheritance by
7491  * perf_event_init_task below, used by fork() in case of fail.
7492  */
7493 void perf_event_free_task(struct task_struct *task)
7494 {
7495 	struct perf_event_context *ctx;
7496 	struct perf_event *event, *tmp;
7497 	int ctxn;
7498 
7499 	for_each_task_context_nr(ctxn) {
7500 		ctx = task->perf_event_ctxp[ctxn];
7501 		if (!ctx)
7502 			continue;
7503 
7504 		mutex_lock(&ctx->mutex);
7505 again:
7506 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7507 				group_entry)
7508 			perf_free_event(event, ctx);
7509 
7510 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7511 				group_entry)
7512 			perf_free_event(event, ctx);
7513 
7514 		if (!list_empty(&ctx->pinned_groups) ||
7515 				!list_empty(&ctx->flexible_groups))
7516 			goto again;
7517 
7518 		mutex_unlock(&ctx->mutex);
7519 
7520 		put_ctx(ctx);
7521 	}
7522 }
7523 
7524 void perf_event_delayed_put(struct task_struct *task)
7525 {
7526 	int ctxn;
7527 
7528 	for_each_task_context_nr(ctxn)
7529 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7530 }
7531 
7532 /*
7533  * inherit a event from parent task to child task:
7534  */
7535 static struct perf_event *
7536 inherit_event(struct perf_event *parent_event,
7537 	      struct task_struct *parent,
7538 	      struct perf_event_context *parent_ctx,
7539 	      struct task_struct *child,
7540 	      struct perf_event *group_leader,
7541 	      struct perf_event_context *child_ctx)
7542 {
7543 	struct perf_event *child_event;
7544 	unsigned long flags;
7545 
7546 	/*
7547 	 * Instead of creating recursive hierarchies of events,
7548 	 * we link inherited events back to the original parent,
7549 	 * which has a filp for sure, which we use as the reference
7550 	 * count:
7551 	 */
7552 	if (parent_event->parent)
7553 		parent_event = parent_event->parent;
7554 
7555 	child_event = perf_event_alloc(&parent_event->attr,
7556 					   parent_event->cpu,
7557 					   child,
7558 					   group_leader, parent_event,
7559 				           NULL, NULL);
7560 	if (IS_ERR(child_event))
7561 		return child_event;
7562 
7563 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7564 		free_event(child_event);
7565 		return NULL;
7566 	}
7567 
7568 	get_ctx(child_ctx);
7569 
7570 	/*
7571 	 * Make the child state follow the state of the parent event,
7572 	 * not its attr.disabled bit.  We hold the parent's mutex,
7573 	 * so we won't race with perf_event_{en, dis}able_family.
7574 	 */
7575 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7576 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7577 	else
7578 		child_event->state = PERF_EVENT_STATE_OFF;
7579 
7580 	if (parent_event->attr.freq) {
7581 		u64 sample_period = parent_event->hw.sample_period;
7582 		struct hw_perf_event *hwc = &child_event->hw;
7583 
7584 		hwc->sample_period = sample_period;
7585 		hwc->last_period   = sample_period;
7586 
7587 		local64_set(&hwc->period_left, sample_period);
7588 	}
7589 
7590 	child_event->ctx = child_ctx;
7591 	child_event->overflow_handler = parent_event->overflow_handler;
7592 	child_event->overflow_handler_context
7593 		= parent_event->overflow_handler_context;
7594 
7595 	/*
7596 	 * Precalculate sample_data sizes
7597 	 */
7598 	perf_event__header_size(child_event);
7599 	perf_event__id_header_size(child_event);
7600 
7601 	/*
7602 	 * Link it up in the child's context:
7603 	 */
7604 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7605 	add_event_to_ctx(child_event, child_ctx);
7606 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7607 
7608 	/*
7609 	 * Link this into the parent event's child list
7610 	 */
7611 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7612 	mutex_lock(&parent_event->child_mutex);
7613 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7614 	mutex_unlock(&parent_event->child_mutex);
7615 
7616 	return child_event;
7617 }
7618 
7619 static int inherit_group(struct perf_event *parent_event,
7620 	      struct task_struct *parent,
7621 	      struct perf_event_context *parent_ctx,
7622 	      struct task_struct *child,
7623 	      struct perf_event_context *child_ctx)
7624 {
7625 	struct perf_event *leader;
7626 	struct perf_event *sub;
7627 	struct perf_event *child_ctr;
7628 
7629 	leader = inherit_event(parent_event, parent, parent_ctx,
7630 				 child, NULL, child_ctx);
7631 	if (IS_ERR(leader))
7632 		return PTR_ERR(leader);
7633 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7634 		child_ctr = inherit_event(sub, parent, parent_ctx,
7635 					    child, leader, child_ctx);
7636 		if (IS_ERR(child_ctr))
7637 			return PTR_ERR(child_ctr);
7638 	}
7639 	return 0;
7640 }
7641 
7642 static int
7643 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7644 		   struct perf_event_context *parent_ctx,
7645 		   struct task_struct *child, int ctxn,
7646 		   int *inherited_all)
7647 {
7648 	int ret;
7649 	struct perf_event_context *child_ctx;
7650 
7651 	if (!event->attr.inherit) {
7652 		*inherited_all = 0;
7653 		return 0;
7654 	}
7655 
7656 	child_ctx = child->perf_event_ctxp[ctxn];
7657 	if (!child_ctx) {
7658 		/*
7659 		 * This is executed from the parent task context, so
7660 		 * inherit events that have been marked for cloning.
7661 		 * First allocate and initialize a context for the
7662 		 * child.
7663 		 */
7664 
7665 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7666 		if (!child_ctx)
7667 			return -ENOMEM;
7668 
7669 		child->perf_event_ctxp[ctxn] = child_ctx;
7670 	}
7671 
7672 	ret = inherit_group(event, parent, parent_ctx,
7673 			    child, child_ctx);
7674 
7675 	if (ret)
7676 		*inherited_all = 0;
7677 
7678 	return ret;
7679 }
7680 
7681 /*
7682  * Initialize the perf_event context in task_struct
7683  */
7684 int perf_event_init_context(struct task_struct *child, int ctxn)
7685 {
7686 	struct perf_event_context *child_ctx, *parent_ctx;
7687 	struct perf_event_context *cloned_ctx;
7688 	struct perf_event *event;
7689 	struct task_struct *parent = current;
7690 	int inherited_all = 1;
7691 	unsigned long flags;
7692 	int ret = 0;
7693 
7694 	if (likely(!parent->perf_event_ctxp[ctxn]))
7695 		return 0;
7696 
7697 	/*
7698 	 * If the parent's context is a clone, pin it so it won't get
7699 	 * swapped under us.
7700 	 */
7701 	parent_ctx = perf_pin_task_context(parent, ctxn);
7702 
7703 	/*
7704 	 * No need to check if parent_ctx != NULL here; since we saw
7705 	 * it non-NULL earlier, the only reason for it to become NULL
7706 	 * is if we exit, and since we're currently in the middle of
7707 	 * a fork we can't be exiting at the same time.
7708 	 */
7709 
7710 	/*
7711 	 * Lock the parent list. No need to lock the child - not PID
7712 	 * hashed yet and not running, so nobody can access it.
7713 	 */
7714 	mutex_lock(&parent_ctx->mutex);
7715 
7716 	/*
7717 	 * We dont have to disable NMIs - we are only looking at
7718 	 * the list, not manipulating it:
7719 	 */
7720 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7721 		ret = inherit_task_group(event, parent, parent_ctx,
7722 					 child, ctxn, &inherited_all);
7723 		if (ret)
7724 			break;
7725 	}
7726 
7727 	/*
7728 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7729 	 * to allocations, but we need to prevent rotation because
7730 	 * rotate_ctx() will change the list from interrupt context.
7731 	 */
7732 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7733 	parent_ctx->rotate_disable = 1;
7734 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7735 
7736 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7737 		ret = inherit_task_group(event, parent, parent_ctx,
7738 					 child, ctxn, &inherited_all);
7739 		if (ret)
7740 			break;
7741 	}
7742 
7743 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7744 	parent_ctx->rotate_disable = 0;
7745 
7746 	child_ctx = child->perf_event_ctxp[ctxn];
7747 
7748 	if (child_ctx && inherited_all) {
7749 		/*
7750 		 * Mark the child context as a clone of the parent
7751 		 * context, or of whatever the parent is a clone of.
7752 		 *
7753 		 * Note that if the parent is a clone, the holding of
7754 		 * parent_ctx->lock avoids it from being uncloned.
7755 		 */
7756 		cloned_ctx = parent_ctx->parent_ctx;
7757 		if (cloned_ctx) {
7758 			child_ctx->parent_ctx = cloned_ctx;
7759 			child_ctx->parent_gen = parent_ctx->parent_gen;
7760 		} else {
7761 			child_ctx->parent_ctx = parent_ctx;
7762 			child_ctx->parent_gen = parent_ctx->generation;
7763 		}
7764 		get_ctx(child_ctx->parent_ctx);
7765 	}
7766 
7767 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7768 	mutex_unlock(&parent_ctx->mutex);
7769 
7770 	perf_unpin_context(parent_ctx);
7771 	put_ctx(parent_ctx);
7772 
7773 	return ret;
7774 }
7775 
7776 /*
7777  * Initialize the perf_event context in task_struct
7778  */
7779 int perf_event_init_task(struct task_struct *child)
7780 {
7781 	int ctxn, ret;
7782 
7783 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7784 	mutex_init(&child->perf_event_mutex);
7785 	INIT_LIST_HEAD(&child->perf_event_list);
7786 
7787 	for_each_task_context_nr(ctxn) {
7788 		ret = perf_event_init_context(child, ctxn);
7789 		if (ret)
7790 			return ret;
7791 	}
7792 
7793 	return 0;
7794 }
7795 
7796 static void __init perf_event_init_all_cpus(void)
7797 {
7798 	struct swevent_htable *swhash;
7799 	int cpu;
7800 
7801 	for_each_possible_cpu(cpu) {
7802 		swhash = &per_cpu(swevent_htable, cpu);
7803 		mutex_init(&swhash->hlist_mutex);
7804 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7805 	}
7806 }
7807 
7808 static void perf_event_init_cpu(int cpu)
7809 {
7810 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7811 
7812 	mutex_lock(&swhash->hlist_mutex);
7813 	if (swhash->hlist_refcount > 0) {
7814 		struct swevent_hlist *hlist;
7815 
7816 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7817 		WARN_ON(!hlist);
7818 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7819 	}
7820 	mutex_unlock(&swhash->hlist_mutex);
7821 }
7822 
7823 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7824 static void perf_pmu_rotate_stop(struct pmu *pmu)
7825 {
7826 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7827 
7828 	WARN_ON(!irqs_disabled());
7829 
7830 	list_del_init(&cpuctx->rotation_list);
7831 }
7832 
7833 static void __perf_event_exit_context(void *__info)
7834 {
7835 	struct perf_event_context *ctx = __info;
7836 	struct perf_event *event, *tmp;
7837 
7838 	perf_pmu_rotate_stop(ctx->pmu);
7839 
7840 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7841 		__perf_remove_from_context(event);
7842 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7843 		__perf_remove_from_context(event);
7844 }
7845 
7846 static void perf_event_exit_cpu_context(int cpu)
7847 {
7848 	struct perf_event_context *ctx;
7849 	struct pmu *pmu;
7850 	int idx;
7851 
7852 	idx = srcu_read_lock(&pmus_srcu);
7853 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7854 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7855 
7856 		mutex_lock(&ctx->mutex);
7857 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7858 		mutex_unlock(&ctx->mutex);
7859 	}
7860 	srcu_read_unlock(&pmus_srcu, idx);
7861 }
7862 
7863 static void perf_event_exit_cpu(int cpu)
7864 {
7865 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7866 
7867 	mutex_lock(&swhash->hlist_mutex);
7868 	swevent_hlist_release(swhash);
7869 	mutex_unlock(&swhash->hlist_mutex);
7870 
7871 	perf_event_exit_cpu_context(cpu);
7872 }
7873 #else
7874 static inline void perf_event_exit_cpu(int cpu) { }
7875 #endif
7876 
7877 static int
7878 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7879 {
7880 	int cpu;
7881 
7882 	for_each_online_cpu(cpu)
7883 		perf_event_exit_cpu(cpu);
7884 
7885 	return NOTIFY_OK;
7886 }
7887 
7888 /*
7889  * Run the perf reboot notifier at the very last possible moment so that
7890  * the generic watchdog code runs as long as possible.
7891  */
7892 static struct notifier_block perf_reboot_notifier = {
7893 	.notifier_call = perf_reboot,
7894 	.priority = INT_MIN,
7895 };
7896 
7897 static int
7898 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7899 {
7900 	unsigned int cpu = (long)hcpu;
7901 
7902 	switch (action & ~CPU_TASKS_FROZEN) {
7903 
7904 	case CPU_UP_PREPARE:
7905 	case CPU_DOWN_FAILED:
7906 		perf_event_init_cpu(cpu);
7907 		break;
7908 
7909 	case CPU_UP_CANCELED:
7910 	case CPU_DOWN_PREPARE:
7911 		perf_event_exit_cpu(cpu);
7912 		break;
7913 	default:
7914 		break;
7915 	}
7916 
7917 	return NOTIFY_OK;
7918 }
7919 
7920 void __init perf_event_init(void)
7921 {
7922 	int ret;
7923 
7924 	idr_init(&pmu_idr);
7925 
7926 	perf_event_init_all_cpus();
7927 	init_srcu_struct(&pmus_srcu);
7928 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7929 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7930 	perf_pmu_register(&perf_task_clock, NULL, -1);
7931 	perf_tp_register();
7932 	perf_cpu_notifier(perf_cpu_notify);
7933 	register_reboot_notifier(&perf_reboot_notifier);
7934 
7935 	ret = init_hw_breakpoint();
7936 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7937 
7938 	/* do not patch jump label more than once per second */
7939 	jump_label_rate_limit(&perf_sched_events, HZ);
7940 
7941 	/*
7942 	 * Build time assertion that we keep the data_head at the intended
7943 	 * location.  IOW, validation we got the __reserved[] size right.
7944 	 */
7945 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7946 		     != 1024);
7947 }
7948 
7949 static int __init perf_event_sysfs_init(void)
7950 {
7951 	struct pmu *pmu;
7952 	int ret;
7953 
7954 	mutex_lock(&pmus_lock);
7955 
7956 	ret = bus_register(&pmu_bus);
7957 	if (ret)
7958 		goto unlock;
7959 
7960 	list_for_each_entry(pmu, &pmus, entry) {
7961 		if (!pmu->name || pmu->type < 0)
7962 			continue;
7963 
7964 		ret = pmu_dev_alloc(pmu);
7965 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7966 	}
7967 	pmu_bus_running = 1;
7968 	ret = 0;
7969 
7970 unlock:
7971 	mutex_unlock(&pmus_lock);
7972 
7973 	return ret;
7974 }
7975 device_initcall(perf_event_sysfs_init);
7976 
7977 #ifdef CONFIG_CGROUP_PERF
7978 static struct cgroup_subsys_state *
7979 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7980 {
7981 	struct perf_cgroup *jc;
7982 
7983 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7984 	if (!jc)
7985 		return ERR_PTR(-ENOMEM);
7986 
7987 	jc->info = alloc_percpu(struct perf_cgroup_info);
7988 	if (!jc->info) {
7989 		kfree(jc);
7990 		return ERR_PTR(-ENOMEM);
7991 	}
7992 
7993 	return &jc->css;
7994 }
7995 
7996 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7997 {
7998 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7999 
8000 	free_percpu(jc->info);
8001 	kfree(jc);
8002 }
8003 
8004 static int __perf_cgroup_move(void *info)
8005 {
8006 	struct task_struct *task = info;
8007 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8008 	return 0;
8009 }
8010 
8011 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8012 			       struct cgroup_taskset *tset)
8013 {
8014 	struct task_struct *task;
8015 
8016 	cgroup_taskset_for_each(task, css, tset)
8017 		task_function_call(task, __perf_cgroup_move, task);
8018 }
8019 
8020 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8021 			     struct cgroup_subsys_state *old_css,
8022 			     struct task_struct *task)
8023 {
8024 	/*
8025 	 * cgroup_exit() is called in the copy_process() failure path.
8026 	 * Ignore this case since the task hasn't ran yet, this avoids
8027 	 * trying to poke a half freed task state from generic code.
8028 	 */
8029 	if (!(task->flags & PF_EXITING))
8030 		return;
8031 
8032 	task_function_call(task, __perf_cgroup_move, task);
8033 }
8034 
8035 struct cgroup_subsys perf_subsys = {
8036 	.name		= "perf_event",
8037 	.subsys_id	= perf_subsys_id,
8038 	.css_alloc	= perf_cgroup_css_alloc,
8039 	.css_free	= perf_cgroup_css_free,
8040 	.exit		= perf_cgroup_exit,
8041 	.attach		= perf_cgroup_attach,
8042 };
8043 #endif /* CONFIG_CGROUP_PERF */
8044