1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) 2306 ctx->nr_freq--; 2307 if (event->attr.exclusive || !cpc->active_oncpu) 2308 cpc->exclusive = 0; 2309 2310 perf_pmu_enable(event->pmu); 2311 } 2312 2313 static void 2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2315 { 2316 struct perf_event *event; 2317 2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2319 return; 2320 2321 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2322 2323 event_sched_out(group_event, ctx); 2324 2325 /* 2326 * Schedule out siblings (if any): 2327 */ 2328 for_each_sibling_event(event, group_event) 2329 event_sched_out(event, ctx); 2330 } 2331 2332 #define DETACH_GROUP 0x01UL 2333 #define DETACH_CHILD 0x02UL 2334 #define DETACH_DEAD 0x04UL 2335 2336 /* 2337 * Cross CPU call to remove a performance event 2338 * 2339 * We disable the event on the hardware level first. After that we 2340 * remove it from the context list. 2341 */ 2342 static void 2343 __perf_remove_from_context(struct perf_event *event, 2344 struct perf_cpu_context *cpuctx, 2345 struct perf_event_context *ctx, 2346 void *info) 2347 { 2348 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2349 unsigned long flags = (unsigned long)info; 2350 2351 if (ctx->is_active & EVENT_TIME) { 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx, false); 2354 } 2355 2356 /* 2357 * Ensure event_sched_out() switches to OFF, at the very least 2358 * this avoids raising perf_pending_task() at this time. 2359 */ 2360 if (flags & DETACH_DEAD) 2361 event->pending_disable = 1; 2362 event_sched_out(event, ctx); 2363 if (flags & DETACH_GROUP) 2364 perf_group_detach(event); 2365 if (flags & DETACH_CHILD) 2366 perf_child_detach(event); 2367 list_del_event(event, ctx); 2368 if (flags & DETACH_DEAD) 2369 event->state = PERF_EVENT_STATE_DEAD; 2370 2371 if (!pmu_ctx->nr_events) { 2372 pmu_ctx->rotate_necessary = 0; 2373 2374 if (ctx->task && ctx->is_active) { 2375 struct perf_cpu_pmu_context *cpc; 2376 2377 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2378 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2379 cpc->task_epc = NULL; 2380 } 2381 } 2382 2383 if (!ctx->nr_events && ctx->is_active) { 2384 if (ctx == &cpuctx->ctx) 2385 update_cgrp_time_from_cpuctx(cpuctx, true); 2386 2387 ctx->is_active = 0; 2388 if (ctx->task) { 2389 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2390 cpuctx->task_ctx = NULL; 2391 } 2392 } 2393 } 2394 2395 /* 2396 * Remove the event from a task's (or a CPU's) list of events. 2397 * 2398 * If event->ctx is a cloned context, callers must make sure that 2399 * every task struct that event->ctx->task could possibly point to 2400 * remains valid. This is OK when called from perf_release since 2401 * that only calls us on the top-level context, which can't be a clone. 2402 * When called from perf_event_exit_task, it's OK because the 2403 * context has been detached from its task. 2404 */ 2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2406 { 2407 struct perf_event_context *ctx = event->ctx; 2408 2409 lockdep_assert_held(&ctx->mutex); 2410 2411 /* 2412 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2413 * to work in the face of TASK_TOMBSTONE, unlike every other 2414 * event_function_call() user. 2415 */ 2416 raw_spin_lock_irq(&ctx->lock); 2417 if (!ctx->is_active) { 2418 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2419 ctx, (void *)flags); 2420 raw_spin_unlock_irq(&ctx->lock); 2421 return; 2422 } 2423 raw_spin_unlock_irq(&ctx->lock); 2424 2425 event_function_call(event, __perf_remove_from_context, (void *)flags); 2426 } 2427 2428 /* 2429 * Cross CPU call to disable a performance event 2430 */ 2431 static void __perf_event_disable(struct perf_event *event, 2432 struct perf_cpu_context *cpuctx, 2433 struct perf_event_context *ctx, 2434 void *info) 2435 { 2436 if (event->state < PERF_EVENT_STATE_INACTIVE) 2437 return; 2438 2439 if (ctx->is_active & EVENT_TIME) { 2440 update_context_time(ctx); 2441 update_cgrp_time_from_event(event); 2442 } 2443 2444 perf_pmu_disable(event->pmu_ctx->pmu); 2445 2446 if (event == event->group_leader) 2447 group_sched_out(event, ctx); 2448 else 2449 event_sched_out(event, ctx); 2450 2451 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2452 perf_cgroup_event_disable(event, ctx); 2453 2454 perf_pmu_enable(event->pmu_ctx->pmu); 2455 } 2456 2457 /* 2458 * Disable an event. 2459 * 2460 * If event->ctx is a cloned context, callers must make sure that 2461 * every task struct that event->ctx->task could possibly point to 2462 * remains valid. This condition is satisfied when called through 2463 * perf_event_for_each_child or perf_event_for_each because they 2464 * hold the top-level event's child_mutex, so any descendant that 2465 * goes to exit will block in perf_event_exit_event(). 2466 * 2467 * When called from perf_pending_irq it's OK because event->ctx 2468 * is the current context on this CPU and preemption is disabled, 2469 * hence we can't get into perf_event_task_sched_out for this context. 2470 */ 2471 static void _perf_event_disable(struct perf_event *event) 2472 { 2473 struct perf_event_context *ctx = event->ctx; 2474 2475 raw_spin_lock_irq(&ctx->lock); 2476 if (event->state <= PERF_EVENT_STATE_OFF) { 2477 raw_spin_unlock_irq(&ctx->lock); 2478 return; 2479 } 2480 raw_spin_unlock_irq(&ctx->lock); 2481 2482 event_function_call(event, __perf_event_disable, NULL); 2483 } 2484 2485 void perf_event_disable_local(struct perf_event *event) 2486 { 2487 event_function_local(event, __perf_event_disable, NULL); 2488 } 2489 2490 /* 2491 * Strictly speaking kernel users cannot create groups and therefore this 2492 * interface does not need the perf_event_ctx_lock() magic. 2493 */ 2494 void perf_event_disable(struct perf_event *event) 2495 { 2496 struct perf_event_context *ctx; 2497 2498 ctx = perf_event_ctx_lock(event); 2499 _perf_event_disable(event); 2500 perf_event_ctx_unlock(event, ctx); 2501 } 2502 EXPORT_SYMBOL_GPL(perf_event_disable); 2503 2504 void perf_event_disable_inatomic(struct perf_event *event) 2505 { 2506 event->pending_disable = 1; 2507 irq_work_queue(&event->pending_irq); 2508 } 2509 2510 #define MAX_INTERRUPTS (~0ULL) 2511 2512 static void perf_log_throttle(struct perf_event *event, int enable); 2513 static void perf_log_itrace_start(struct perf_event *event); 2514 2515 static int 2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2517 { 2518 struct perf_event_pmu_context *epc = event->pmu_ctx; 2519 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2520 int ret = 0; 2521 2522 WARN_ON_ONCE(event->ctx != ctx); 2523 2524 lockdep_assert_held(&ctx->lock); 2525 2526 if (event->state <= PERF_EVENT_STATE_OFF) 2527 return 0; 2528 2529 WRITE_ONCE(event->oncpu, smp_processor_id()); 2530 /* 2531 * Order event::oncpu write to happen before the ACTIVE state is 2532 * visible. This allows perf_event_{stop,read}() to observe the correct 2533 * ->oncpu if it sees ACTIVE. 2534 */ 2535 smp_wmb(); 2536 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2537 2538 /* 2539 * Unthrottle events, since we scheduled we might have missed several 2540 * ticks already, also for a heavily scheduling task there is little 2541 * guarantee it'll get a tick in a timely manner. 2542 */ 2543 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2544 perf_log_throttle(event, 1); 2545 event->hw.interrupts = 0; 2546 } 2547 2548 perf_pmu_disable(event->pmu); 2549 2550 perf_log_itrace_start(event); 2551 2552 if (event->pmu->add(event, PERF_EF_START)) { 2553 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2554 event->oncpu = -1; 2555 ret = -EAGAIN; 2556 goto out; 2557 } 2558 2559 if (!is_software_event(event)) 2560 cpc->active_oncpu++; 2561 if (event->attr.freq && event->attr.sample_freq) 2562 ctx->nr_freq++; 2563 2564 if (event->attr.exclusive) 2565 cpc->exclusive = 1; 2566 2567 out: 2568 perf_pmu_enable(event->pmu); 2569 2570 return ret; 2571 } 2572 2573 static int 2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2575 { 2576 struct perf_event *event, *partial_group = NULL; 2577 struct pmu *pmu = group_event->pmu_ctx->pmu; 2578 2579 if (group_event->state == PERF_EVENT_STATE_OFF) 2580 return 0; 2581 2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2583 2584 if (event_sched_in(group_event, ctx)) 2585 goto error; 2586 2587 /* 2588 * Schedule in siblings as one group (if any): 2589 */ 2590 for_each_sibling_event(event, group_event) { 2591 if (event_sched_in(event, ctx)) { 2592 partial_group = event; 2593 goto group_error; 2594 } 2595 } 2596 2597 if (!pmu->commit_txn(pmu)) 2598 return 0; 2599 2600 group_error: 2601 /* 2602 * Groups can be scheduled in as one unit only, so undo any 2603 * partial group before returning: 2604 * The events up to the failed event are scheduled out normally. 2605 */ 2606 for_each_sibling_event(event, group_event) { 2607 if (event == partial_group) 2608 break; 2609 2610 event_sched_out(event, ctx); 2611 } 2612 event_sched_out(group_event, ctx); 2613 2614 error: 2615 pmu->cancel_txn(pmu); 2616 return -EAGAIN; 2617 } 2618 2619 /* 2620 * Work out whether we can put this event group on the CPU now. 2621 */ 2622 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2623 { 2624 struct perf_event_pmu_context *epc = event->pmu_ctx; 2625 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2626 2627 /* 2628 * Groups consisting entirely of software events can always go on. 2629 */ 2630 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2631 return 1; 2632 /* 2633 * If an exclusive group is already on, no other hardware 2634 * events can go on. 2635 */ 2636 if (cpc->exclusive) 2637 return 0; 2638 /* 2639 * If this group is exclusive and there are already 2640 * events on the CPU, it can't go on. 2641 */ 2642 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2643 return 0; 2644 /* 2645 * Otherwise, try to add it if all previous groups were able 2646 * to go on. 2647 */ 2648 return can_add_hw; 2649 } 2650 2651 static void add_event_to_ctx(struct perf_event *event, 2652 struct perf_event_context *ctx) 2653 { 2654 list_add_event(event, ctx); 2655 perf_group_attach(event); 2656 } 2657 2658 static void task_ctx_sched_out(struct perf_event_context *ctx, 2659 enum event_type_t event_type) 2660 { 2661 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2662 2663 if (!cpuctx->task_ctx) 2664 return; 2665 2666 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2667 return; 2668 2669 ctx_sched_out(ctx, event_type); 2670 } 2671 2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2673 struct perf_event_context *ctx) 2674 { 2675 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2676 if (ctx) 2677 ctx_sched_in(ctx, EVENT_PINNED); 2678 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2681 } 2682 2683 /* 2684 * We want to maintain the following priority of scheduling: 2685 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2686 * - task pinned (EVENT_PINNED) 2687 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2688 * - task flexible (EVENT_FLEXIBLE). 2689 * 2690 * In order to avoid unscheduling and scheduling back in everything every 2691 * time an event is added, only do it for the groups of equal priority and 2692 * below. 2693 * 2694 * This can be called after a batch operation on task events, in which case 2695 * event_type is a bit mask of the types of events involved. For CPU events, 2696 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2697 */ 2698 /* 2699 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2700 * event to the context or enabling existing event in the context. We can 2701 * probably optimize it by rescheduling only affected pmu_ctx. 2702 */ 2703 static void ctx_resched(struct perf_cpu_context *cpuctx, 2704 struct perf_event_context *task_ctx, 2705 enum event_type_t event_type) 2706 { 2707 bool cpu_event = !!(event_type & EVENT_CPU); 2708 2709 /* 2710 * If pinned groups are involved, flexible groups also need to be 2711 * scheduled out. 2712 */ 2713 if (event_type & EVENT_PINNED) 2714 event_type |= EVENT_FLEXIBLE; 2715 2716 event_type &= EVENT_ALL; 2717 2718 perf_ctx_disable(&cpuctx->ctx, false); 2719 if (task_ctx) { 2720 perf_ctx_disable(task_ctx, false); 2721 task_ctx_sched_out(task_ctx, event_type); 2722 } 2723 2724 /* 2725 * Decide which cpu ctx groups to schedule out based on the types 2726 * of events that caused rescheduling: 2727 * - EVENT_CPU: schedule out corresponding groups; 2728 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2729 * - otherwise, do nothing more. 2730 */ 2731 if (cpu_event) 2732 ctx_sched_out(&cpuctx->ctx, event_type); 2733 else if (event_type & EVENT_PINNED) 2734 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2735 2736 perf_event_sched_in(cpuctx, task_ctx); 2737 2738 perf_ctx_enable(&cpuctx->ctx, false); 2739 if (task_ctx) 2740 perf_ctx_enable(task_ctx, false); 2741 } 2742 2743 void perf_pmu_resched(struct pmu *pmu) 2744 { 2745 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2746 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2747 2748 perf_ctx_lock(cpuctx, task_ctx); 2749 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2750 perf_ctx_unlock(cpuctx, task_ctx); 2751 } 2752 2753 /* 2754 * Cross CPU call to install and enable a performance event 2755 * 2756 * Very similar to remote_function() + event_function() but cannot assume that 2757 * things like ctx->is_active and cpuctx->task_ctx are set. 2758 */ 2759 static int __perf_install_in_context(void *info) 2760 { 2761 struct perf_event *event = info; 2762 struct perf_event_context *ctx = event->ctx; 2763 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2764 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2765 bool reprogram = true; 2766 int ret = 0; 2767 2768 raw_spin_lock(&cpuctx->ctx.lock); 2769 if (ctx->task) { 2770 raw_spin_lock(&ctx->lock); 2771 task_ctx = ctx; 2772 2773 reprogram = (ctx->task == current); 2774 2775 /* 2776 * If the task is running, it must be running on this CPU, 2777 * otherwise we cannot reprogram things. 2778 * 2779 * If its not running, we don't care, ctx->lock will 2780 * serialize against it becoming runnable. 2781 */ 2782 if (task_curr(ctx->task) && !reprogram) { 2783 ret = -ESRCH; 2784 goto unlock; 2785 } 2786 2787 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2788 } else if (task_ctx) { 2789 raw_spin_lock(&task_ctx->lock); 2790 } 2791 2792 #ifdef CONFIG_CGROUP_PERF 2793 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2794 /* 2795 * If the current cgroup doesn't match the event's 2796 * cgroup, we should not try to schedule it. 2797 */ 2798 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2799 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2800 event->cgrp->css.cgroup); 2801 } 2802 #endif 2803 2804 if (reprogram) { 2805 ctx_sched_out(ctx, EVENT_TIME); 2806 add_event_to_ctx(event, ctx); 2807 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2808 } else { 2809 add_event_to_ctx(event, ctx); 2810 } 2811 2812 unlock: 2813 perf_ctx_unlock(cpuctx, task_ctx); 2814 2815 return ret; 2816 } 2817 2818 static bool exclusive_event_installable(struct perf_event *event, 2819 struct perf_event_context *ctx); 2820 2821 /* 2822 * Attach a performance event to a context. 2823 * 2824 * Very similar to event_function_call, see comment there. 2825 */ 2826 static void 2827 perf_install_in_context(struct perf_event_context *ctx, 2828 struct perf_event *event, 2829 int cpu) 2830 { 2831 struct task_struct *task = READ_ONCE(ctx->task); 2832 2833 lockdep_assert_held(&ctx->mutex); 2834 2835 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2836 2837 if (event->cpu != -1) 2838 WARN_ON_ONCE(event->cpu != cpu); 2839 2840 /* 2841 * Ensures that if we can observe event->ctx, both the event and ctx 2842 * will be 'complete'. See perf_iterate_sb_cpu(). 2843 */ 2844 smp_store_release(&event->ctx, ctx); 2845 2846 /* 2847 * perf_event_attr::disabled events will not run and can be initialized 2848 * without IPI. Except when this is the first event for the context, in 2849 * that case we need the magic of the IPI to set ctx->is_active. 2850 * 2851 * The IOC_ENABLE that is sure to follow the creation of a disabled 2852 * event will issue the IPI and reprogram the hardware. 2853 */ 2854 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2855 ctx->nr_events && !is_cgroup_event(event)) { 2856 raw_spin_lock_irq(&ctx->lock); 2857 if (ctx->task == TASK_TOMBSTONE) { 2858 raw_spin_unlock_irq(&ctx->lock); 2859 return; 2860 } 2861 add_event_to_ctx(event, ctx); 2862 raw_spin_unlock_irq(&ctx->lock); 2863 return; 2864 } 2865 2866 if (!task) { 2867 cpu_function_call(cpu, __perf_install_in_context, event); 2868 return; 2869 } 2870 2871 /* 2872 * Should not happen, we validate the ctx is still alive before calling. 2873 */ 2874 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2875 return; 2876 2877 /* 2878 * Installing events is tricky because we cannot rely on ctx->is_active 2879 * to be set in case this is the nr_events 0 -> 1 transition. 2880 * 2881 * Instead we use task_curr(), which tells us if the task is running. 2882 * However, since we use task_curr() outside of rq::lock, we can race 2883 * against the actual state. This means the result can be wrong. 2884 * 2885 * If we get a false positive, we retry, this is harmless. 2886 * 2887 * If we get a false negative, things are complicated. If we are after 2888 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2889 * value must be correct. If we're before, it doesn't matter since 2890 * perf_event_context_sched_in() will program the counter. 2891 * 2892 * However, this hinges on the remote context switch having observed 2893 * our task->perf_event_ctxp[] store, such that it will in fact take 2894 * ctx::lock in perf_event_context_sched_in(). 2895 * 2896 * We do this by task_function_call(), if the IPI fails to hit the task 2897 * we know any future context switch of task must see the 2898 * perf_event_ctpx[] store. 2899 */ 2900 2901 /* 2902 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2903 * task_cpu() load, such that if the IPI then does not find the task 2904 * running, a future context switch of that task must observe the 2905 * store. 2906 */ 2907 smp_mb(); 2908 again: 2909 if (!task_function_call(task, __perf_install_in_context, event)) 2910 return; 2911 2912 raw_spin_lock_irq(&ctx->lock); 2913 task = ctx->task; 2914 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2915 /* 2916 * Cannot happen because we already checked above (which also 2917 * cannot happen), and we hold ctx->mutex, which serializes us 2918 * against perf_event_exit_task_context(). 2919 */ 2920 raw_spin_unlock_irq(&ctx->lock); 2921 return; 2922 } 2923 /* 2924 * If the task is not running, ctx->lock will avoid it becoming so, 2925 * thus we can safely install the event. 2926 */ 2927 if (task_curr(task)) { 2928 raw_spin_unlock_irq(&ctx->lock); 2929 goto again; 2930 } 2931 add_event_to_ctx(event, ctx); 2932 raw_spin_unlock_irq(&ctx->lock); 2933 } 2934 2935 /* 2936 * Cross CPU call to enable a performance event 2937 */ 2938 static void __perf_event_enable(struct perf_event *event, 2939 struct perf_cpu_context *cpuctx, 2940 struct perf_event_context *ctx, 2941 void *info) 2942 { 2943 struct perf_event *leader = event->group_leader; 2944 struct perf_event_context *task_ctx; 2945 2946 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2947 event->state <= PERF_EVENT_STATE_ERROR) 2948 return; 2949 2950 if (ctx->is_active) 2951 ctx_sched_out(ctx, EVENT_TIME); 2952 2953 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2954 perf_cgroup_event_enable(event, ctx); 2955 2956 if (!ctx->is_active) 2957 return; 2958 2959 if (!event_filter_match(event)) { 2960 ctx_sched_in(ctx, EVENT_TIME); 2961 return; 2962 } 2963 2964 /* 2965 * If the event is in a group and isn't the group leader, 2966 * then don't put it on unless the group is on. 2967 */ 2968 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2969 ctx_sched_in(ctx, EVENT_TIME); 2970 return; 2971 } 2972 2973 task_ctx = cpuctx->task_ctx; 2974 if (ctx->task) 2975 WARN_ON_ONCE(task_ctx != ctx); 2976 2977 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2978 } 2979 2980 /* 2981 * Enable an event. 2982 * 2983 * If event->ctx is a cloned context, callers must make sure that 2984 * every task struct that event->ctx->task could possibly point to 2985 * remains valid. This condition is satisfied when called through 2986 * perf_event_for_each_child or perf_event_for_each as described 2987 * for perf_event_disable. 2988 */ 2989 static void _perf_event_enable(struct perf_event *event) 2990 { 2991 struct perf_event_context *ctx = event->ctx; 2992 2993 raw_spin_lock_irq(&ctx->lock); 2994 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2995 event->state < PERF_EVENT_STATE_ERROR) { 2996 out: 2997 raw_spin_unlock_irq(&ctx->lock); 2998 return; 2999 } 3000 3001 /* 3002 * If the event is in error state, clear that first. 3003 * 3004 * That way, if we see the event in error state below, we know that it 3005 * has gone back into error state, as distinct from the task having 3006 * been scheduled away before the cross-call arrived. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ERROR) { 3009 /* 3010 * Detached SIBLING events cannot leave ERROR state. 3011 */ 3012 if (event->event_caps & PERF_EV_CAP_SIBLING && 3013 event->group_leader == event) 3014 goto out; 3015 3016 event->state = PERF_EVENT_STATE_OFF; 3017 } 3018 raw_spin_unlock_irq(&ctx->lock); 3019 3020 event_function_call(event, __perf_event_enable, NULL); 3021 } 3022 3023 /* 3024 * See perf_event_disable(); 3025 */ 3026 void perf_event_enable(struct perf_event *event) 3027 { 3028 struct perf_event_context *ctx; 3029 3030 ctx = perf_event_ctx_lock(event); 3031 _perf_event_enable(event); 3032 perf_event_ctx_unlock(event, ctx); 3033 } 3034 EXPORT_SYMBOL_GPL(perf_event_enable); 3035 3036 struct stop_event_data { 3037 struct perf_event *event; 3038 unsigned int restart; 3039 }; 3040 3041 static int __perf_event_stop(void *info) 3042 { 3043 struct stop_event_data *sd = info; 3044 struct perf_event *event = sd->event; 3045 3046 /* if it's already INACTIVE, do nothing */ 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * There is a window with interrupts enabled before we get here, 3055 * so we need to check again lest we try to stop another CPU's event. 3056 */ 3057 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3058 return -EAGAIN; 3059 3060 event->pmu->stop(event, PERF_EF_UPDATE); 3061 3062 /* 3063 * May race with the actual stop (through perf_pmu_output_stop()), 3064 * but it is only used for events with AUX ring buffer, and such 3065 * events will refuse to restart because of rb::aux_mmap_count==0, 3066 * see comments in perf_aux_output_begin(). 3067 * 3068 * Since this is happening on an event-local CPU, no trace is lost 3069 * while restarting. 3070 */ 3071 if (sd->restart) 3072 event->pmu->start(event, 0); 3073 3074 return 0; 3075 } 3076 3077 static int perf_event_stop(struct perf_event *event, int restart) 3078 { 3079 struct stop_event_data sd = { 3080 .event = event, 3081 .restart = restart, 3082 }; 3083 int ret = 0; 3084 3085 do { 3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3087 return 0; 3088 3089 /* matches smp_wmb() in event_sched_in() */ 3090 smp_rmb(); 3091 3092 /* 3093 * We only want to restart ACTIVE events, so if the event goes 3094 * inactive here (event->oncpu==-1), there's nothing more to do; 3095 * fall through with ret==-ENXIO. 3096 */ 3097 ret = cpu_function_call(READ_ONCE(event->oncpu), 3098 __perf_event_stop, &sd); 3099 } while (ret == -EAGAIN); 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * In order to contain the amount of racy and tricky in the address filter 3106 * configuration management, it is a two part process: 3107 * 3108 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3109 * we update the addresses of corresponding vmas in 3110 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3111 * (p2) when an event is scheduled in (pmu::add), it calls 3112 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3113 * if the generation has changed since the previous call. 3114 * 3115 * If (p1) happens while the event is active, we restart it to force (p2). 3116 * 3117 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3118 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3119 * ioctl; 3120 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3121 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3122 * for reading; 3123 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3124 * of exec. 3125 */ 3126 void perf_event_addr_filters_sync(struct perf_event *event) 3127 { 3128 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3129 3130 if (!has_addr_filter(event)) 3131 return; 3132 3133 raw_spin_lock(&ifh->lock); 3134 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3135 event->pmu->addr_filters_sync(event); 3136 event->hw.addr_filters_gen = event->addr_filters_gen; 3137 } 3138 raw_spin_unlock(&ifh->lock); 3139 } 3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3141 3142 static int _perf_event_refresh(struct perf_event *event, int refresh) 3143 { 3144 /* 3145 * not supported on inherited events 3146 */ 3147 if (event->attr.inherit || !is_sampling_event(event)) 3148 return -EINVAL; 3149 3150 atomic_add(refresh, &event->event_limit); 3151 _perf_event_enable(event); 3152 3153 return 0; 3154 } 3155 3156 /* 3157 * See perf_event_disable() 3158 */ 3159 int perf_event_refresh(struct perf_event *event, int refresh) 3160 { 3161 struct perf_event_context *ctx; 3162 int ret; 3163 3164 ctx = perf_event_ctx_lock(event); 3165 ret = _perf_event_refresh(event, refresh); 3166 perf_event_ctx_unlock(event, ctx); 3167 3168 return ret; 3169 } 3170 EXPORT_SYMBOL_GPL(perf_event_refresh); 3171 3172 static int perf_event_modify_breakpoint(struct perf_event *bp, 3173 struct perf_event_attr *attr) 3174 { 3175 int err; 3176 3177 _perf_event_disable(bp); 3178 3179 err = modify_user_hw_breakpoint_check(bp, attr, true); 3180 3181 if (!bp->attr.disabled) 3182 _perf_event_enable(bp); 3183 3184 return err; 3185 } 3186 3187 /* 3188 * Copy event-type-independent attributes that may be modified. 3189 */ 3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3191 const struct perf_event_attr *from) 3192 { 3193 to->sig_data = from->sig_data; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 /* 3219 * Event-type-independent attributes must be copied before event-type 3220 * modification, which will validate that final attributes match the 3221 * source attributes after all relevant attributes have been copied. 3222 */ 3223 perf_event_modify_copy_attr(&event->attr, attr); 3224 err = func(event, attr); 3225 if (err) 3226 goto out; 3227 list_for_each_entry(child, &event->child_list, child_list) { 3228 perf_event_modify_copy_attr(&child->attr, attr); 3229 err = func(child, attr); 3230 if (err) 3231 goto out; 3232 } 3233 out: 3234 mutex_unlock(&event->child_mutex); 3235 return err; 3236 } 3237 3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3239 enum event_type_t event_type) 3240 { 3241 struct perf_event_context *ctx = pmu_ctx->ctx; 3242 struct perf_event *event, *tmp; 3243 struct pmu *pmu = pmu_ctx->pmu; 3244 3245 if (ctx->task && !ctx->is_active) { 3246 struct perf_cpu_pmu_context *cpc; 3247 3248 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3249 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3250 cpc->task_epc = NULL; 3251 } 3252 3253 if (!event_type) 3254 return; 3255 3256 perf_pmu_disable(pmu); 3257 if (event_type & EVENT_PINNED) { 3258 list_for_each_entry_safe(event, tmp, 3259 &pmu_ctx->pinned_active, 3260 active_list) 3261 group_sched_out(event, ctx); 3262 } 3263 3264 if (event_type & EVENT_FLEXIBLE) { 3265 list_for_each_entry_safe(event, tmp, 3266 &pmu_ctx->flexible_active, 3267 active_list) 3268 group_sched_out(event, ctx); 3269 /* 3270 * Since we cleared EVENT_FLEXIBLE, also clear 3271 * rotate_necessary, is will be reset by 3272 * ctx_flexible_sched_in() when needed. 3273 */ 3274 pmu_ctx->rotate_necessary = 0; 3275 } 3276 perf_pmu_enable(pmu); 3277 } 3278 3279 static void 3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3281 { 3282 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3283 struct perf_event_pmu_context *pmu_ctx; 3284 int is_active = ctx->is_active; 3285 bool cgroup = event_type & EVENT_CGROUP; 3286 3287 event_type &= ~EVENT_CGROUP; 3288 3289 lockdep_assert_held(&ctx->lock); 3290 3291 if (likely(!ctx->nr_events)) { 3292 /* 3293 * See __perf_remove_from_context(). 3294 */ 3295 WARN_ON_ONCE(ctx->is_active); 3296 if (ctx->task) 3297 WARN_ON_ONCE(cpuctx->task_ctx); 3298 return; 3299 } 3300 3301 /* 3302 * Always update time if it was set; not only when it changes. 3303 * Otherwise we can 'forget' to update time for any but the last 3304 * context we sched out. For example: 3305 * 3306 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3307 * ctx_sched_out(.event_type = EVENT_PINNED) 3308 * 3309 * would only update time for the pinned events. 3310 */ 3311 if (is_active & EVENT_TIME) { 3312 /* update (and stop) ctx time */ 3313 update_context_time(ctx); 3314 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3315 /* 3316 * CPU-release for the below ->is_active store, 3317 * see __load_acquire() in perf_event_time_now() 3318 */ 3319 barrier(); 3320 } 3321 3322 ctx->is_active &= ~event_type; 3323 if (!(ctx->is_active & EVENT_ALL)) 3324 ctx->is_active = 0; 3325 3326 if (ctx->task) { 3327 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3328 if (!ctx->is_active) 3329 cpuctx->task_ctx = NULL; 3330 } 3331 3332 is_active ^= ctx->is_active; /* changed bits */ 3333 3334 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3335 if (cgroup && !pmu_ctx->nr_cgroups) 3336 continue; 3337 __pmu_ctx_sched_out(pmu_ctx, is_active); 3338 } 3339 } 3340 3341 /* 3342 * Test whether two contexts are equivalent, i.e. whether they have both been 3343 * cloned from the same version of the same context. 3344 * 3345 * Equivalence is measured using a generation number in the context that is 3346 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3347 * and list_del_event(). 3348 */ 3349 static int context_equiv(struct perf_event_context *ctx1, 3350 struct perf_event_context *ctx2) 3351 { 3352 lockdep_assert_held(&ctx1->lock); 3353 lockdep_assert_held(&ctx2->lock); 3354 3355 /* Pinning disables the swap optimization */ 3356 if (ctx1->pin_count || ctx2->pin_count) 3357 return 0; 3358 3359 /* If ctx1 is the parent of ctx2 */ 3360 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3361 return 1; 3362 3363 /* If ctx2 is the parent of ctx1 */ 3364 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3365 return 1; 3366 3367 /* 3368 * If ctx1 and ctx2 have the same parent; we flatten the parent 3369 * hierarchy, see perf_event_init_context(). 3370 */ 3371 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3372 ctx1->parent_gen == ctx2->parent_gen) 3373 return 1; 3374 3375 /* Unmatched */ 3376 return 0; 3377 } 3378 3379 static void __perf_event_sync_stat(struct perf_event *event, 3380 struct perf_event *next_event) 3381 { 3382 u64 value; 3383 3384 if (!event->attr.inherit_stat) 3385 return; 3386 3387 /* 3388 * Update the event value, we cannot use perf_event_read() 3389 * because we're in the middle of a context switch and have IRQs 3390 * disabled, which upsets smp_call_function_single(), however 3391 * we know the event must be on the current CPU, therefore we 3392 * don't need to use it. 3393 */ 3394 if (event->state == PERF_EVENT_STATE_ACTIVE) 3395 event->pmu->read(event); 3396 3397 perf_event_update_time(event); 3398 3399 /* 3400 * In order to keep per-task stats reliable we need to flip the event 3401 * values when we flip the contexts. 3402 */ 3403 value = local64_read(&next_event->count); 3404 value = local64_xchg(&event->count, value); 3405 local64_set(&next_event->count, value); 3406 3407 swap(event->total_time_enabled, next_event->total_time_enabled); 3408 swap(event->total_time_running, next_event->total_time_running); 3409 3410 /* 3411 * Since we swizzled the values, update the user visible data too. 3412 */ 3413 perf_event_update_userpage(event); 3414 perf_event_update_userpage(next_event); 3415 } 3416 3417 static void perf_event_sync_stat(struct perf_event_context *ctx, 3418 struct perf_event_context *next_ctx) 3419 { 3420 struct perf_event *event, *next_event; 3421 3422 if (!ctx->nr_stat) 3423 return; 3424 3425 update_context_time(ctx); 3426 3427 event = list_first_entry(&ctx->event_list, 3428 struct perf_event, event_entry); 3429 3430 next_event = list_first_entry(&next_ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 while (&event->event_entry != &ctx->event_list && 3434 &next_event->event_entry != &next_ctx->event_list) { 3435 3436 __perf_event_sync_stat(event, next_event); 3437 3438 event = list_next_entry(event, event_entry); 3439 next_event = list_next_entry(next_event, event_entry); 3440 } 3441 } 3442 3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3444 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3445 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3446 !list_entry_is_head(pos1, head1, member) && \ 3447 !list_entry_is_head(pos2, head2, member); \ 3448 pos1 = list_next_entry(pos1, member), \ 3449 pos2 = list_next_entry(pos2, member)) 3450 3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3452 struct perf_event_context *next_ctx) 3453 { 3454 struct perf_event_pmu_context *prev_epc, *next_epc; 3455 3456 if (!prev_ctx->nr_task_data) 3457 return; 3458 3459 double_list_for_each_entry(prev_epc, next_epc, 3460 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3461 pmu_ctx_entry) { 3462 3463 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3464 continue; 3465 3466 /* 3467 * PMU specific parts of task perf context can require 3468 * additional synchronization. As an example of such 3469 * synchronization see implementation details of Intel 3470 * LBR call stack data profiling; 3471 */ 3472 if (prev_epc->pmu->swap_task_ctx) 3473 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3474 else 3475 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3476 } 3477 } 3478 3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3480 { 3481 struct perf_event_pmu_context *pmu_ctx; 3482 struct perf_cpu_pmu_context *cpc; 3483 3484 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3485 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3486 3487 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3488 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3489 } 3490 } 3491 3492 static void 3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3494 { 3495 struct perf_event_context *ctx = task->perf_event_ctxp; 3496 struct perf_event_context *next_ctx; 3497 struct perf_event_context *parent, *next_parent; 3498 int do_switch = 1; 3499 3500 if (likely(!ctx)) 3501 return; 3502 3503 rcu_read_lock(); 3504 next_ctx = rcu_dereference(next->perf_event_ctxp); 3505 if (!next_ctx) 3506 goto unlock; 3507 3508 parent = rcu_dereference(ctx->parent_ctx); 3509 next_parent = rcu_dereference(next_ctx->parent_ctx); 3510 3511 /* If neither context have a parent context; they cannot be clones. */ 3512 if (!parent && !next_parent) 3513 goto unlock; 3514 3515 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3516 /* 3517 * Looks like the two contexts are clones, so we might be 3518 * able to optimize the context switch. We lock both 3519 * contexts and check that they are clones under the 3520 * lock (including re-checking that neither has been 3521 * uncloned in the meantime). It doesn't matter which 3522 * order we take the locks because no other cpu could 3523 * be trying to lock both of these tasks. 3524 */ 3525 raw_spin_lock(&ctx->lock); 3526 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3527 if (context_equiv(ctx, next_ctx)) { 3528 3529 perf_ctx_disable(ctx, false); 3530 3531 /* PMIs are disabled; ctx->nr_pending is stable. */ 3532 if (local_read(&ctx->nr_pending) || 3533 local_read(&next_ctx->nr_pending)) { 3534 /* 3535 * Must not swap out ctx when there's pending 3536 * events that rely on the ctx->task relation. 3537 */ 3538 raw_spin_unlock(&next_ctx->lock); 3539 rcu_read_unlock(); 3540 goto inside_switch; 3541 } 3542 3543 WRITE_ONCE(ctx->task, next); 3544 WRITE_ONCE(next_ctx->task, task); 3545 3546 perf_ctx_sched_task_cb(ctx, false); 3547 perf_event_swap_task_ctx_data(ctx, next_ctx); 3548 3549 perf_ctx_enable(ctx, false); 3550 3551 /* 3552 * RCU_INIT_POINTER here is safe because we've not 3553 * modified the ctx and the above modification of 3554 * ctx->task and ctx->task_ctx_data are immaterial 3555 * since those values are always verified under 3556 * ctx->lock which we're now holding. 3557 */ 3558 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3559 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3560 3561 do_switch = 0; 3562 3563 perf_event_sync_stat(ctx, next_ctx); 3564 } 3565 raw_spin_unlock(&next_ctx->lock); 3566 raw_spin_unlock(&ctx->lock); 3567 } 3568 unlock: 3569 rcu_read_unlock(); 3570 3571 if (do_switch) { 3572 raw_spin_lock(&ctx->lock); 3573 perf_ctx_disable(ctx, false); 3574 3575 inside_switch: 3576 perf_ctx_sched_task_cb(ctx, false); 3577 task_ctx_sched_out(ctx, EVENT_ALL); 3578 3579 perf_ctx_enable(ctx, false); 3580 raw_spin_unlock(&ctx->lock); 3581 } 3582 } 3583 3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3586 3587 void perf_sched_cb_dec(struct pmu *pmu) 3588 { 3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3590 3591 this_cpu_dec(perf_sched_cb_usages); 3592 barrier(); 3593 3594 if (!--cpc->sched_cb_usage) 3595 list_del(&cpc->sched_cb_entry); 3596 } 3597 3598 3599 void perf_sched_cb_inc(struct pmu *pmu) 3600 { 3601 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3602 3603 if (!cpc->sched_cb_usage++) 3604 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3605 3606 barrier(); 3607 this_cpu_inc(perf_sched_cb_usages); 3608 } 3609 3610 /* 3611 * This function provides the context switch callback to the lower code 3612 * layer. It is invoked ONLY when the context switch callback is enabled. 3613 * 3614 * This callback is relevant even to per-cpu events; for example multi event 3615 * PEBS requires this to provide PID/TID information. This requires we flush 3616 * all queued PEBS records before we context switch to a new task. 3617 */ 3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3619 { 3620 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3621 struct pmu *pmu; 3622 3623 pmu = cpc->epc.pmu; 3624 3625 /* software PMUs will not have sched_task */ 3626 if (WARN_ON_ONCE(!pmu->sched_task)) 3627 return; 3628 3629 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3630 perf_pmu_disable(pmu); 3631 3632 pmu->sched_task(cpc->task_epc, sched_in); 3633 3634 perf_pmu_enable(pmu); 3635 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3636 } 3637 3638 static void perf_pmu_sched_task(struct task_struct *prev, 3639 struct task_struct *next, 3640 bool sched_in) 3641 { 3642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3643 struct perf_cpu_pmu_context *cpc; 3644 3645 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3646 if (prev == next || cpuctx->task_ctx) 3647 return; 3648 3649 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3650 __perf_pmu_sched_task(cpc, sched_in); 3651 } 3652 3653 static void perf_event_switch(struct task_struct *task, 3654 struct task_struct *next_prev, bool sched_in); 3655 3656 /* 3657 * Called from scheduler to remove the events of the current task, 3658 * with interrupts disabled. 3659 * 3660 * We stop each event and update the event value in event->count. 3661 * 3662 * This does not protect us against NMI, but disable() 3663 * sets the disabled bit in the control field of event _before_ 3664 * accessing the event control register. If a NMI hits, then it will 3665 * not restart the event. 3666 */ 3667 void __perf_event_task_sched_out(struct task_struct *task, 3668 struct task_struct *next) 3669 { 3670 if (__this_cpu_read(perf_sched_cb_usages)) 3671 perf_pmu_sched_task(task, next, false); 3672 3673 if (atomic_read(&nr_switch_events)) 3674 perf_event_switch(task, next, false); 3675 3676 perf_event_context_sched_out(task, next); 3677 3678 /* 3679 * if cgroup events exist on this CPU, then we need 3680 * to check if we have to switch out PMU state. 3681 * cgroup event are system-wide mode only 3682 */ 3683 perf_cgroup_switch(next); 3684 } 3685 3686 static bool perf_less_group_idx(const void *l, const void *r) 3687 { 3688 const struct perf_event *le = *(const struct perf_event **)l; 3689 const struct perf_event *re = *(const struct perf_event **)r; 3690 3691 return le->group_index < re->group_index; 3692 } 3693 3694 static void swap_ptr(void *l, void *r) 3695 { 3696 void **lp = l, **rp = r; 3697 3698 swap(*lp, *rp); 3699 } 3700 3701 static const struct min_heap_callbacks perf_min_heap = { 3702 .elem_size = sizeof(struct perf_event *), 3703 .less = perf_less_group_idx, 3704 .swp = swap_ptr, 3705 }; 3706 3707 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3708 { 3709 struct perf_event **itrs = heap->data; 3710 3711 if (event) { 3712 itrs[heap->nr] = event; 3713 heap->nr++; 3714 } 3715 } 3716 3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3718 { 3719 struct perf_cpu_pmu_context *cpc; 3720 3721 if (!pmu_ctx->ctx->task) 3722 return; 3723 3724 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3725 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3726 cpc->task_epc = pmu_ctx; 3727 } 3728 3729 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3730 struct perf_event_groups *groups, int cpu, 3731 struct pmu *pmu, 3732 int (*func)(struct perf_event *, void *), 3733 void *data) 3734 { 3735 #ifdef CONFIG_CGROUP_PERF 3736 struct cgroup_subsys_state *css = NULL; 3737 #endif 3738 struct perf_cpu_context *cpuctx = NULL; 3739 /* Space for per CPU and/or any CPU event iterators. */ 3740 struct perf_event *itrs[2]; 3741 struct min_heap event_heap; 3742 struct perf_event **evt; 3743 int ret; 3744 3745 if (pmu->filter && pmu->filter(pmu, cpu)) 3746 return 0; 3747 3748 if (!ctx->task) { 3749 cpuctx = this_cpu_ptr(&perf_cpu_context); 3750 event_heap = (struct min_heap){ 3751 .data = cpuctx->heap, 3752 .nr = 0, 3753 .size = cpuctx->heap_size, 3754 }; 3755 3756 lockdep_assert_held(&cpuctx->ctx.lock); 3757 3758 #ifdef CONFIG_CGROUP_PERF 3759 if (cpuctx->cgrp) 3760 css = &cpuctx->cgrp->css; 3761 #endif 3762 } else { 3763 event_heap = (struct min_heap){ 3764 .data = itrs, 3765 .nr = 0, 3766 .size = ARRAY_SIZE(itrs), 3767 }; 3768 /* Events not within a CPU context may be on any CPU. */ 3769 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3770 } 3771 evt = event_heap.data; 3772 3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3774 3775 #ifdef CONFIG_CGROUP_PERF 3776 for (; css; css = css->parent) 3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3778 #endif 3779 3780 if (event_heap.nr) { 3781 __link_epc((*evt)->pmu_ctx); 3782 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3783 } 3784 3785 min_heapify_all(&event_heap, &perf_min_heap); 3786 3787 while (event_heap.nr) { 3788 ret = func(*evt, data); 3789 if (ret) 3790 return ret; 3791 3792 *evt = perf_event_groups_next(*evt, pmu); 3793 if (*evt) 3794 min_heapify(&event_heap, 0, &perf_min_heap); 3795 else 3796 min_heap_pop(&event_heap, &perf_min_heap); 3797 } 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * Because the userpage is strictly per-event (there is no concept of context, 3804 * so there cannot be a context indirection), every userpage must be updated 3805 * when context time starts :-( 3806 * 3807 * IOW, we must not miss EVENT_TIME edges. 3808 */ 3809 static inline bool event_update_userpage(struct perf_event *event) 3810 { 3811 if (likely(!atomic_read(&event->mmap_count))) 3812 return false; 3813 3814 perf_event_update_time(event); 3815 perf_event_update_userpage(event); 3816 3817 return true; 3818 } 3819 3820 static inline void group_update_userpage(struct perf_event *group_event) 3821 { 3822 struct perf_event *event; 3823 3824 if (!event_update_userpage(group_event)) 3825 return; 3826 3827 for_each_sibling_event(event, group_event) 3828 event_update_userpage(event); 3829 } 3830 3831 static int merge_sched_in(struct perf_event *event, void *data) 3832 { 3833 struct perf_event_context *ctx = event->ctx; 3834 int *can_add_hw = data; 3835 3836 if (event->state <= PERF_EVENT_STATE_OFF) 3837 return 0; 3838 3839 if (!event_filter_match(event)) 3840 return 0; 3841 3842 if (group_can_go_on(event, *can_add_hw)) { 3843 if (!group_sched_in(event, ctx)) 3844 list_add_tail(&event->active_list, get_event_list(event)); 3845 } 3846 3847 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3848 *can_add_hw = 0; 3849 if (event->attr.pinned) { 3850 perf_cgroup_event_disable(event, ctx); 3851 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3852 } else { 3853 struct perf_cpu_pmu_context *cpc; 3854 3855 event->pmu_ctx->rotate_necessary = 1; 3856 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3857 perf_mux_hrtimer_restart(cpc); 3858 group_update_userpage(event); 3859 } 3860 } 3861 3862 return 0; 3863 } 3864 3865 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3866 struct perf_event_groups *groups, 3867 struct pmu *pmu) 3868 { 3869 int can_add_hw = 1; 3870 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3871 merge_sched_in, &can_add_hw); 3872 } 3873 3874 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3875 struct perf_event_groups *groups, 3876 bool cgroup) 3877 { 3878 struct perf_event_pmu_context *pmu_ctx; 3879 3880 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3881 if (cgroup && !pmu_ctx->nr_cgroups) 3882 continue; 3883 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3884 } 3885 } 3886 3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3888 struct pmu *pmu) 3889 { 3890 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3891 } 3892 3893 static void 3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3895 { 3896 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3897 int is_active = ctx->is_active; 3898 bool cgroup = event_type & EVENT_CGROUP; 3899 3900 event_type &= ~EVENT_CGROUP; 3901 3902 lockdep_assert_held(&ctx->lock); 3903 3904 if (likely(!ctx->nr_events)) 3905 return; 3906 3907 if (!(is_active & EVENT_TIME)) { 3908 /* start ctx time */ 3909 __update_context_time(ctx, false); 3910 perf_cgroup_set_timestamp(cpuctx); 3911 /* 3912 * CPU-release for the below ->is_active store, 3913 * see __load_acquire() in perf_event_time_now() 3914 */ 3915 barrier(); 3916 } 3917 3918 ctx->is_active |= (event_type | EVENT_TIME); 3919 if (ctx->task) { 3920 if (!is_active) 3921 cpuctx->task_ctx = ctx; 3922 else 3923 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3924 } 3925 3926 is_active ^= ctx->is_active; /* changed bits */ 3927 3928 /* 3929 * First go through the list and put on any pinned groups 3930 * in order to give them the best chance of going on. 3931 */ 3932 if (is_active & EVENT_PINNED) 3933 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3934 3935 /* Then walk through the lower prio flexible groups */ 3936 if (is_active & EVENT_FLEXIBLE) 3937 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3938 } 3939 3940 static void perf_event_context_sched_in(struct task_struct *task) 3941 { 3942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3943 struct perf_event_context *ctx; 3944 3945 rcu_read_lock(); 3946 ctx = rcu_dereference(task->perf_event_ctxp); 3947 if (!ctx) 3948 goto rcu_unlock; 3949 3950 if (cpuctx->task_ctx == ctx) { 3951 perf_ctx_lock(cpuctx, ctx); 3952 perf_ctx_disable(ctx, false); 3953 3954 perf_ctx_sched_task_cb(ctx, true); 3955 3956 perf_ctx_enable(ctx, false); 3957 perf_ctx_unlock(cpuctx, ctx); 3958 goto rcu_unlock; 3959 } 3960 3961 perf_ctx_lock(cpuctx, ctx); 3962 /* 3963 * We must check ctx->nr_events while holding ctx->lock, such 3964 * that we serialize against perf_install_in_context(). 3965 */ 3966 if (!ctx->nr_events) 3967 goto unlock; 3968 3969 perf_ctx_disable(ctx, false); 3970 /* 3971 * We want to keep the following priority order: 3972 * cpu pinned (that don't need to move), task pinned, 3973 * cpu flexible, task flexible. 3974 * 3975 * However, if task's ctx is not carrying any pinned 3976 * events, no need to flip the cpuctx's events around. 3977 */ 3978 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3979 perf_ctx_disable(&cpuctx->ctx, false); 3980 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3981 } 3982 3983 perf_event_sched_in(cpuctx, ctx); 3984 3985 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3986 3987 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3988 perf_ctx_enable(&cpuctx->ctx, false); 3989 3990 perf_ctx_enable(ctx, false); 3991 3992 unlock: 3993 perf_ctx_unlock(cpuctx, ctx); 3994 rcu_unlock: 3995 rcu_read_unlock(); 3996 } 3997 3998 /* 3999 * Called from scheduler to add the events of the current task 4000 * with interrupts disabled. 4001 * 4002 * We restore the event value and then enable it. 4003 * 4004 * This does not protect us against NMI, but enable() 4005 * sets the enabled bit in the control field of event _before_ 4006 * accessing the event control register. If a NMI hits, then it will 4007 * keep the event running. 4008 */ 4009 void __perf_event_task_sched_in(struct task_struct *prev, 4010 struct task_struct *task) 4011 { 4012 perf_event_context_sched_in(task); 4013 4014 if (atomic_read(&nr_switch_events)) 4015 perf_event_switch(task, prev, true); 4016 4017 if (__this_cpu_read(perf_sched_cb_usages)) 4018 perf_pmu_sched_task(prev, task, true); 4019 } 4020 4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4022 { 4023 u64 frequency = event->attr.sample_freq; 4024 u64 sec = NSEC_PER_SEC; 4025 u64 divisor, dividend; 4026 4027 int count_fls, nsec_fls, frequency_fls, sec_fls; 4028 4029 count_fls = fls64(count); 4030 nsec_fls = fls64(nsec); 4031 frequency_fls = fls64(frequency); 4032 sec_fls = 30; 4033 4034 /* 4035 * We got @count in @nsec, with a target of sample_freq HZ 4036 * the target period becomes: 4037 * 4038 * @count * 10^9 4039 * period = ------------------- 4040 * @nsec * sample_freq 4041 * 4042 */ 4043 4044 /* 4045 * Reduce accuracy by one bit such that @a and @b converge 4046 * to a similar magnitude. 4047 */ 4048 #define REDUCE_FLS(a, b) \ 4049 do { \ 4050 if (a##_fls > b##_fls) { \ 4051 a >>= 1; \ 4052 a##_fls--; \ 4053 } else { \ 4054 b >>= 1; \ 4055 b##_fls--; \ 4056 } \ 4057 } while (0) 4058 4059 /* 4060 * Reduce accuracy until either term fits in a u64, then proceed with 4061 * the other, so that finally we can do a u64/u64 division. 4062 */ 4063 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4064 REDUCE_FLS(nsec, frequency); 4065 REDUCE_FLS(sec, count); 4066 } 4067 4068 if (count_fls + sec_fls > 64) { 4069 divisor = nsec * frequency; 4070 4071 while (count_fls + sec_fls > 64) { 4072 REDUCE_FLS(count, sec); 4073 divisor >>= 1; 4074 } 4075 4076 dividend = count * sec; 4077 } else { 4078 dividend = count * sec; 4079 4080 while (nsec_fls + frequency_fls > 64) { 4081 REDUCE_FLS(nsec, frequency); 4082 dividend >>= 1; 4083 } 4084 4085 divisor = nsec * frequency; 4086 } 4087 4088 if (!divisor) 4089 return dividend; 4090 4091 return div64_u64(dividend, divisor); 4092 } 4093 4094 static DEFINE_PER_CPU(int, perf_throttled_count); 4095 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4096 4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4098 { 4099 struct hw_perf_event *hwc = &event->hw; 4100 s64 period, sample_period; 4101 s64 delta; 4102 4103 period = perf_calculate_period(event, nsec, count); 4104 4105 delta = (s64)(period - hwc->sample_period); 4106 delta = (delta + 7) / 8; /* low pass filter */ 4107 4108 sample_period = hwc->sample_period + delta; 4109 4110 if (!sample_period) 4111 sample_period = 1; 4112 4113 hwc->sample_period = sample_period; 4114 4115 if (local64_read(&hwc->period_left) > 8*sample_period) { 4116 if (disable) 4117 event->pmu->stop(event, PERF_EF_UPDATE); 4118 4119 local64_set(&hwc->period_left, 0); 4120 4121 if (disable) 4122 event->pmu->start(event, PERF_EF_RELOAD); 4123 } 4124 } 4125 4126 /* 4127 * combine freq adjustment with unthrottling to avoid two passes over the 4128 * events. At the same time, make sure, having freq events does not change 4129 * the rate of unthrottling as that would introduce bias. 4130 */ 4131 static void 4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4133 { 4134 struct perf_event *event; 4135 struct hw_perf_event *hwc; 4136 u64 now, period = TICK_NSEC; 4137 s64 delta; 4138 4139 /* 4140 * only need to iterate over all events iff: 4141 * - context have events in frequency mode (needs freq adjust) 4142 * - there are events to unthrottle on this cpu 4143 */ 4144 if (!(ctx->nr_freq || unthrottle)) 4145 return; 4146 4147 raw_spin_lock(&ctx->lock); 4148 4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4150 if (event->state != PERF_EVENT_STATE_ACTIVE) 4151 continue; 4152 4153 // XXX use visit thingy to avoid the -1,cpu match 4154 if (!event_filter_match(event)) 4155 continue; 4156 4157 perf_pmu_disable(event->pmu); 4158 4159 hwc = &event->hw; 4160 4161 if (hwc->interrupts == MAX_INTERRUPTS) { 4162 hwc->interrupts = 0; 4163 perf_log_throttle(event, 1); 4164 event->pmu->start(event, 0); 4165 } 4166 4167 if (!event->attr.freq || !event->attr.sample_freq) 4168 goto next; 4169 4170 /* 4171 * stop the event and update event->count 4172 */ 4173 event->pmu->stop(event, PERF_EF_UPDATE); 4174 4175 now = local64_read(&event->count); 4176 delta = now - hwc->freq_count_stamp; 4177 hwc->freq_count_stamp = now; 4178 4179 /* 4180 * restart the event 4181 * reload only if value has changed 4182 * we have stopped the event so tell that 4183 * to perf_adjust_period() to avoid stopping it 4184 * twice. 4185 */ 4186 if (delta > 0) 4187 perf_adjust_period(event, period, delta, false); 4188 4189 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4190 next: 4191 perf_pmu_enable(event->pmu); 4192 } 4193 4194 raw_spin_unlock(&ctx->lock); 4195 } 4196 4197 /* 4198 * Move @event to the tail of the @ctx's elegible events. 4199 */ 4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4201 { 4202 /* 4203 * Rotate the first entry last of non-pinned groups. Rotation might be 4204 * disabled by the inheritance code. 4205 */ 4206 if (ctx->rotate_disable) 4207 return; 4208 4209 perf_event_groups_delete(&ctx->flexible_groups, event); 4210 perf_event_groups_insert(&ctx->flexible_groups, event); 4211 } 4212 4213 /* pick an event from the flexible_groups to rotate */ 4214 static inline struct perf_event * 4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4216 { 4217 struct perf_event *event; 4218 struct rb_node *node; 4219 struct rb_root *tree; 4220 struct __group_key key = { 4221 .pmu = pmu_ctx->pmu, 4222 }; 4223 4224 /* pick the first active flexible event */ 4225 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4226 struct perf_event, active_list); 4227 if (event) 4228 goto out; 4229 4230 /* if no active flexible event, pick the first event */ 4231 tree = &pmu_ctx->ctx->flexible_groups.tree; 4232 4233 if (!pmu_ctx->ctx->task) { 4234 key.cpu = smp_processor_id(); 4235 4236 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4237 if (node) 4238 event = __node_2_pe(node); 4239 goto out; 4240 } 4241 4242 key.cpu = -1; 4243 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4244 if (node) { 4245 event = __node_2_pe(node); 4246 goto out; 4247 } 4248 4249 key.cpu = smp_processor_id(); 4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4251 if (node) 4252 event = __node_2_pe(node); 4253 4254 out: 4255 /* 4256 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4257 * finds there are unschedulable events, it will set it again. 4258 */ 4259 pmu_ctx->rotate_necessary = 0; 4260 4261 return event; 4262 } 4263 4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4265 { 4266 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4267 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4268 struct perf_event *cpu_event = NULL, *task_event = NULL; 4269 int cpu_rotate, task_rotate; 4270 struct pmu *pmu; 4271 4272 /* 4273 * Since we run this from IRQ context, nobody can install new 4274 * events, thus the event count values are stable. 4275 */ 4276 4277 cpu_epc = &cpc->epc; 4278 pmu = cpu_epc->pmu; 4279 task_epc = cpc->task_epc; 4280 4281 cpu_rotate = cpu_epc->rotate_necessary; 4282 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4283 4284 if (!(cpu_rotate || task_rotate)) 4285 return false; 4286 4287 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4288 perf_pmu_disable(pmu); 4289 4290 if (task_rotate) 4291 task_event = ctx_event_to_rotate(task_epc); 4292 if (cpu_rotate) 4293 cpu_event = ctx_event_to_rotate(cpu_epc); 4294 4295 /* 4296 * As per the order given at ctx_resched() first 'pop' task flexible 4297 * and then, if needed CPU flexible. 4298 */ 4299 if (task_event || (task_epc && cpu_event)) { 4300 update_context_time(task_epc->ctx); 4301 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4302 } 4303 4304 if (cpu_event) { 4305 update_context_time(&cpuctx->ctx); 4306 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4307 rotate_ctx(&cpuctx->ctx, cpu_event); 4308 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4309 } 4310 4311 if (task_event) 4312 rotate_ctx(task_epc->ctx, task_event); 4313 4314 if (task_event || (task_epc && cpu_event)) 4315 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4316 4317 perf_pmu_enable(pmu); 4318 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4319 4320 return true; 4321 } 4322 4323 void perf_event_task_tick(void) 4324 { 4325 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4326 struct perf_event_context *ctx; 4327 int throttled; 4328 4329 lockdep_assert_irqs_disabled(); 4330 4331 __this_cpu_inc(perf_throttled_seq); 4332 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4333 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4334 4335 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4336 4337 rcu_read_lock(); 4338 ctx = rcu_dereference(current->perf_event_ctxp); 4339 if (ctx) 4340 perf_adjust_freq_unthr_context(ctx, !!throttled); 4341 rcu_read_unlock(); 4342 } 4343 4344 static int event_enable_on_exec(struct perf_event *event, 4345 struct perf_event_context *ctx) 4346 { 4347 if (!event->attr.enable_on_exec) 4348 return 0; 4349 4350 event->attr.enable_on_exec = 0; 4351 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4352 return 0; 4353 4354 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4355 4356 return 1; 4357 } 4358 4359 /* 4360 * Enable all of a task's events that have been marked enable-on-exec. 4361 * This expects task == current. 4362 */ 4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4364 { 4365 struct perf_event_context *clone_ctx = NULL; 4366 enum event_type_t event_type = 0; 4367 struct perf_cpu_context *cpuctx; 4368 struct perf_event *event; 4369 unsigned long flags; 4370 int enabled = 0; 4371 4372 local_irq_save(flags); 4373 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4374 goto out; 4375 4376 if (!ctx->nr_events) 4377 goto out; 4378 4379 cpuctx = this_cpu_ptr(&perf_cpu_context); 4380 perf_ctx_lock(cpuctx, ctx); 4381 ctx_sched_out(ctx, EVENT_TIME); 4382 4383 list_for_each_entry(event, &ctx->event_list, event_entry) { 4384 enabled |= event_enable_on_exec(event, ctx); 4385 event_type |= get_event_type(event); 4386 } 4387 4388 /* 4389 * Unclone and reschedule this context if we enabled any event. 4390 */ 4391 if (enabled) { 4392 clone_ctx = unclone_ctx(ctx); 4393 ctx_resched(cpuctx, ctx, event_type); 4394 } else { 4395 ctx_sched_in(ctx, EVENT_TIME); 4396 } 4397 perf_ctx_unlock(cpuctx, ctx); 4398 4399 out: 4400 local_irq_restore(flags); 4401 4402 if (clone_ctx) 4403 put_ctx(clone_ctx); 4404 } 4405 4406 static void perf_remove_from_owner(struct perf_event *event); 4407 static void perf_event_exit_event(struct perf_event *event, 4408 struct perf_event_context *ctx); 4409 4410 /* 4411 * Removes all events from the current task that have been marked 4412 * remove-on-exec, and feeds their values back to parent events. 4413 */ 4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4415 { 4416 struct perf_event_context *clone_ctx = NULL; 4417 struct perf_event *event, *next; 4418 unsigned long flags; 4419 bool modified = false; 4420 4421 mutex_lock(&ctx->mutex); 4422 4423 if (WARN_ON_ONCE(ctx->task != current)) 4424 goto unlock; 4425 4426 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4427 if (!event->attr.remove_on_exec) 4428 continue; 4429 4430 if (!is_kernel_event(event)) 4431 perf_remove_from_owner(event); 4432 4433 modified = true; 4434 4435 perf_event_exit_event(event, ctx); 4436 } 4437 4438 raw_spin_lock_irqsave(&ctx->lock, flags); 4439 if (modified) 4440 clone_ctx = unclone_ctx(ctx); 4441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4442 4443 unlock: 4444 mutex_unlock(&ctx->mutex); 4445 4446 if (clone_ctx) 4447 put_ctx(clone_ctx); 4448 } 4449 4450 struct perf_read_data { 4451 struct perf_event *event; 4452 bool group; 4453 int ret; 4454 }; 4455 4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4457 { 4458 u16 local_pkg, event_pkg; 4459 4460 if ((unsigned)event_cpu >= nr_cpu_ids) 4461 return event_cpu; 4462 4463 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4464 int local_cpu = smp_processor_id(); 4465 4466 event_pkg = topology_physical_package_id(event_cpu); 4467 local_pkg = topology_physical_package_id(local_cpu); 4468 4469 if (event_pkg == local_pkg) 4470 return local_cpu; 4471 } 4472 4473 return event_cpu; 4474 } 4475 4476 /* 4477 * Cross CPU call to read the hardware event 4478 */ 4479 static void __perf_event_read(void *info) 4480 { 4481 struct perf_read_data *data = info; 4482 struct perf_event *sub, *event = data->event; 4483 struct perf_event_context *ctx = event->ctx; 4484 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4485 struct pmu *pmu = event->pmu; 4486 4487 /* 4488 * If this is a task context, we need to check whether it is 4489 * the current task context of this cpu. If not it has been 4490 * scheduled out before the smp call arrived. In that case 4491 * event->count would have been updated to a recent sample 4492 * when the event was scheduled out. 4493 */ 4494 if (ctx->task && cpuctx->task_ctx != ctx) 4495 return; 4496 4497 raw_spin_lock(&ctx->lock); 4498 if (ctx->is_active & EVENT_TIME) { 4499 update_context_time(ctx); 4500 update_cgrp_time_from_event(event); 4501 } 4502 4503 perf_event_update_time(event); 4504 if (data->group) 4505 perf_event_update_sibling_time(event); 4506 4507 if (event->state != PERF_EVENT_STATE_ACTIVE) 4508 goto unlock; 4509 4510 if (!data->group) { 4511 pmu->read(event); 4512 data->ret = 0; 4513 goto unlock; 4514 } 4515 4516 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4517 4518 pmu->read(event); 4519 4520 for_each_sibling_event(sub, event) { 4521 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4522 /* 4523 * Use sibling's PMU rather than @event's since 4524 * sibling could be on different (eg: software) PMU. 4525 */ 4526 sub->pmu->read(sub); 4527 } 4528 } 4529 4530 data->ret = pmu->commit_txn(pmu); 4531 4532 unlock: 4533 raw_spin_unlock(&ctx->lock); 4534 } 4535 4536 static inline u64 perf_event_count(struct perf_event *event) 4537 { 4538 return local64_read(&event->count) + atomic64_read(&event->child_count); 4539 } 4540 4541 static void calc_timer_values(struct perf_event *event, 4542 u64 *now, 4543 u64 *enabled, 4544 u64 *running) 4545 { 4546 u64 ctx_time; 4547 4548 *now = perf_clock(); 4549 ctx_time = perf_event_time_now(event, *now); 4550 __perf_update_times(event, ctx_time, enabled, running); 4551 } 4552 4553 /* 4554 * NMI-safe method to read a local event, that is an event that 4555 * is: 4556 * - either for the current task, or for this CPU 4557 * - does not have inherit set, for inherited task events 4558 * will not be local and we cannot read them atomically 4559 * - must not have a pmu::count method 4560 */ 4561 int perf_event_read_local(struct perf_event *event, u64 *value, 4562 u64 *enabled, u64 *running) 4563 { 4564 unsigned long flags; 4565 int event_oncpu; 4566 int event_cpu; 4567 int ret = 0; 4568 4569 /* 4570 * Disabling interrupts avoids all counter scheduling (context 4571 * switches, timer based rotation and IPIs). 4572 */ 4573 local_irq_save(flags); 4574 4575 /* 4576 * It must not be an event with inherit set, we cannot read 4577 * all child counters from atomic context. 4578 */ 4579 if (event->attr.inherit) { 4580 ret = -EOPNOTSUPP; 4581 goto out; 4582 } 4583 4584 /* If this is a per-task event, it must be for current */ 4585 if ((event->attach_state & PERF_ATTACH_TASK) && 4586 event->hw.target != current) { 4587 ret = -EINVAL; 4588 goto out; 4589 } 4590 4591 /* 4592 * Get the event CPU numbers, and adjust them to local if the event is 4593 * a per-package event that can be read locally 4594 */ 4595 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4596 event_cpu = __perf_event_read_cpu(event, event->cpu); 4597 4598 /* If this is a per-CPU event, it must be for this CPU */ 4599 if (!(event->attach_state & PERF_ATTACH_TASK) && 4600 event_cpu != smp_processor_id()) { 4601 ret = -EINVAL; 4602 goto out; 4603 } 4604 4605 /* If this is a pinned event it must be running on this CPU */ 4606 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4607 ret = -EBUSY; 4608 goto out; 4609 } 4610 4611 /* 4612 * If the event is currently on this CPU, its either a per-task event, 4613 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4614 * oncpu == -1). 4615 */ 4616 if (event_oncpu == smp_processor_id()) 4617 event->pmu->read(event); 4618 4619 *value = local64_read(&event->count); 4620 if (enabled || running) { 4621 u64 __enabled, __running, __now; 4622 4623 calc_timer_values(event, &__now, &__enabled, &__running); 4624 if (enabled) 4625 *enabled = __enabled; 4626 if (running) 4627 *running = __running; 4628 } 4629 out: 4630 local_irq_restore(flags); 4631 4632 return ret; 4633 } 4634 4635 static int perf_event_read(struct perf_event *event, bool group) 4636 { 4637 enum perf_event_state state = READ_ONCE(event->state); 4638 int event_cpu, ret = 0; 4639 4640 /* 4641 * If event is enabled and currently active on a CPU, update the 4642 * value in the event structure: 4643 */ 4644 again: 4645 if (state == PERF_EVENT_STATE_ACTIVE) { 4646 struct perf_read_data data; 4647 4648 /* 4649 * Orders the ->state and ->oncpu loads such that if we see 4650 * ACTIVE we must also see the right ->oncpu. 4651 * 4652 * Matches the smp_wmb() from event_sched_in(). 4653 */ 4654 smp_rmb(); 4655 4656 event_cpu = READ_ONCE(event->oncpu); 4657 if ((unsigned)event_cpu >= nr_cpu_ids) 4658 return 0; 4659 4660 data = (struct perf_read_data){ 4661 .event = event, 4662 .group = group, 4663 .ret = 0, 4664 }; 4665 4666 preempt_disable(); 4667 event_cpu = __perf_event_read_cpu(event, event_cpu); 4668 4669 /* 4670 * Purposely ignore the smp_call_function_single() return 4671 * value. 4672 * 4673 * If event_cpu isn't a valid CPU it means the event got 4674 * scheduled out and that will have updated the event count. 4675 * 4676 * Therefore, either way, we'll have an up-to-date event count 4677 * after this. 4678 */ 4679 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4680 preempt_enable(); 4681 ret = data.ret; 4682 4683 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4684 struct perf_event_context *ctx = event->ctx; 4685 unsigned long flags; 4686 4687 raw_spin_lock_irqsave(&ctx->lock, flags); 4688 state = event->state; 4689 if (state != PERF_EVENT_STATE_INACTIVE) { 4690 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4691 goto again; 4692 } 4693 4694 /* 4695 * May read while context is not active (e.g., thread is 4696 * blocked), in that case we cannot update context time 4697 */ 4698 if (ctx->is_active & EVENT_TIME) { 4699 update_context_time(ctx); 4700 update_cgrp_time_from_event(event); 4701 } 4702 4703 perf_event_update_time(event); 4704 if (group) 4705 perf_event_update_sibling_time(event); 4706 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4707 } 4708 4709 return ret; 4710 } 4711 4712 /* 4713 * Initialize the perf_event context in a task_struct: 4714 */ 4715 static void __perf_event_init_context(struct perf_event_context *ctx) 4716 { 4717 raw_spin_lock_init(&ctx->lock); 4718 mutex_init(&ctx->mutex); 4719 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4720 perf_event_groups_init(&ctx->pinned_groups); 4721 perf_event_groups_init(&ctx->flexible_groups); 4722 INIT_LIST_HEAD(&ctx->event_list); 4723 refcount_set(&ctx->refcount, 1); 4724 } 4725 4726 static void 4727 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4728 { 4729 epc->pmu = pmu; 4730 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4731 INIT_LIST_HEAD(&epc->pinned_active); 4732 INIT_LIST_HEAD(&epc->flexible_active); 4733 atomic_set(&epc->refcount, 1); 4734 } 4735 4736 static struct perf_event_context * 4737 alloc_perf_context(struct task_struct *task) 4738 { 4739 struct perf_event_context *ctx; 4740 4741 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4742 if (!ctx) 4743 return NULL; 4744 4745 __perf_event_init_context(ctx); 4746 if (task) 4747 ctx->task = get_task_struct(task); 4748 4749 return ctx; 4750 } 4751 4752 static struct task_struct * 4753 find_lively_task_by_vpid(pid_t vpid) 4754 { 4755 struct task_struct *task; 4756 4757 rcu_read_lock(); 4758 if (!vpid) 4759 task = current; 4760 else 4761 task = find_task_by_vpid(vpid); 4762 if (task) 4763 get_task_struct(task); 4764 rcu_read_unlock(); 4765 4766 if (!task) 4767 return ERR_PTR(-ESRCH); 4768 4769 return task; 4770 } 4771 4772 /* 4773 * Returns a matching context with refcount and pincount. 4774 */ 4775 static struct perf_event_context * 4776 find_get_context(struct task_struct *task, struct perf_event *event) 4777 { 4778 struct perf_event_context *ctx, *clone_ctx = NULL; 4779 struct perf_cpu_context *cpuctx; 4780 unsigned long flags; 4781 int err; 4782 4783 if (!task) { 4784 /* Must be root to operate on a CPU event: */ 4785 err = perf_allow_cpu(&event->attr); 4786 if (err) 4787 return ERR_PTR(err); 4788 4789 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4790 ctx = &cpuctx->ctx; 4791 get_ctx(ctx); 4792 raw_spin_lock_irqsave(&ctx->lock, flags); 4793 ++ctx->pin_count; 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 4796 return ctx; 4797 } 4798 4799 err = -EINVAL; 4800 retry: 4801 ctx = perf_lock_task_context(task, &flags); 4802 if (ctx) { 4803 clone_ctx = unclone_ctx(ctx); 4804 ++ctx->pin_count; 4805 4806 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4807 4808 if (clone_ctx) 4809 put_ctx(clone_ctx); 4810 } else { 4811 ctx = alloc_perf_context(task); 4812 err = -ENOMEM; 4813 if (!ctx) 4814 goto errout; 4815 4816 err = 0; 4817 mutex_lock(&task->perf_event_mutex); 4818 /* 4819 * If it has already passed perf_event_exit_task(). 4820 * we must see PF_EXITING, it takes this mutex too. 4821 */ 4822 if (task->flags & PF_EXITING) 4823 err = -ESRCH; 4824 else if (task->perf_event_ctxp) 4825 err = -EAGAIN; 4826 else { 4827 get_ctx(ctx); 4828 ++ctx->pin_count; 4829 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4830 } 4831 mutex_unlock(&task->perf_event_mutex); 4832 4833 if (unlikely(err)) { 4834 put_ctx(ctx); 4835 4836 if (err == -EAGAIN) 4837 goto retry; 4838 goto errout; 4839 } 4840 } 4841 4842 return ctx; 4843 4844 errout: 4845 return ERR_PTR(err); 4846 } 4847 4848 static struct perf_event_pmu_context * 4849 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4850 struct perf_event *event) 4851 { 4852 struct perf_event_pmu_context *new = NULL, *epc; 4853 void *task_ctx_data = NULL; 4854 4855 if (!ctx->task) { 4856 /* 4857 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4858 * relies on the fact that find_get_pmu_context() cannot fail 4859 * for CPU contexts. 4860 */ 4861 struct perf_cpu_pmu_context *cpc; 4862 4863 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4864 epc = &cpc->epc; 4865 raw_spin_lock_irq(&ctx->lock); 4866 if (!epc->ctx) { 4867 atomic_set(&epc->refcount, 1); 4868 epc->embedded = 1; 4869 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4870 epc->ctx = ctx; 4871 } else { 4872 WARN_ON_ONCE(epc->ctx != ctx); 4873 atomic_inc(&epc->refcount); 4874 } 4875 raw_spin_unlock_irq(&ctx->lock); 4876 return epc; 4877 } 4878 4879 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4880 if (!new) 4881 return ERR_PTR(-ENOMEM); 4882 4883 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4884 task_ctx_data = alloc_task_ctx_data(pmu); 4885 if (!task_ctx_data) { 4886 kfree(new); 4887 return ERR_PTR(-ENOMEM); 4888 } 4889 } 4890 4891 __perf_init_event_pmu_context(new, pmu); 4892 4893 /* 4894 * XXX 4895 * 4896 * lockdep_assert_held(&ctx->mutex); 4897 * 4898 * can't because perf_event_init_task() doesn't actually hold the 4899 * child_ctx->mutex. 4900 */ 4901 4902 raw_spin_lock_irq(&ctx->lock); 4903 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4904 if (epc->pmu == pmu) { 4905 WARN_ON_ONCE(epc->ctx != ctx); 4906 atomic_inc(&epc->refcount); 4907 goto found_epc; 4908 } 4909 } 4910 4911 epc = new; 4912 new = NULL; 4913 4914 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4915 epc->ctx = ctx; 4916 4917 found_epc: 4918 if (task_ctx_data && !epc->task_ctx_data) { 4919 epc->task_ctx_data = task_ctx_data; 4920 task_ctx_data = NULL; 4921 ctx->nr_task_data++; 4922 } 4923 raw_spin_unlock_irq(&ctx->lock); 4924 4925 free_task_ctx_data(pmu, task_ctx_data); 4926 kfree(new); 4927 4928 return epc; 4929 } 4930 4931 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4932 { 4933 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4934 } 4935 4936 static void free_epc_rcu(struct rcu_head *head) 4937 { 4938 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4939 4940 kfree(epc->task_ctx_data); 4941 kfree(epc); 4942 } 4943 4944 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4945 { 4946 struct perf_event_context *ctx = epc->ctx; 4947 unsigned long flags; 4948 4949 /* 4950 * XXX 4951 * 4952 * lockdep_assert_held(&ctx->mutex); 4953 * 4954 * can't because of the call-site in _free_event()/put_event() 4955 * which isn't always called under ctx->mutex. 4956 */ 4957 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4958 return; 4959 4960 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4961 4962 list_del_init(&epc->pmu_ctx_entry); 4963 epc->ctx = NULL; 4964 4965 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4966 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4967 4968 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4969 4970 if (epc->embedded) 4971 return; 4972 4973 call_rcu(&epc->rcu_head, free_epc_rcu); 4974 } 4975 4976 static void perf_event_free_filter(struct perf_event *event); 4977 4978 static void free_event_rcu(struct rcu_head *head) 4979 { 4980 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4981 4982 if (event->ns) 4983 put_pid_ns(event->ns); 4984 perf_event_free_filter(event); 4985 kmem_cache_free(perf_event_cache, event); 4986 } 4987 4988 static void ring_buffer_attach(struct perf_event *event, 4989 struct perf_buffer *rb); 4990 4991 static void detach_sb_event(struct perf_event *event) 4992 { 4993 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4994 4995 raw_spin_lock(&pel->lock); 4996 list_del_rcu(&event->sb_list); 4997 raw_spin_unlock(&pel->lock); 4998 } 4999 5000 static bool is_sb_event(struct perf_event *event) 5001 { 5002 struct perf_event_attr *attr = &event->attr; 5003 5004 if (event->parent) 5005 return false; 5006 5007 if (event->attach_state & PERF_ATTACH_TASK) 5008 return false; 5009 5010 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5011 attr->comm || attr->comm_exec || 5012 attr->task || attr->ksymbol || 5013 attr->context_switch || attr->text_poke || 5014 attr->bpf_event) 5015 return true; 5016 return false; 5017 } 5018 5019 static void unaccount_pmu_sb_event(struct perf_event *event) 5020 { 5021 if (is_sb_event(event)) 5022 detach_sb_event(event); 5023 } 5024 5025 #ifdef CONFIG_NO_HZ_FULL 5026 static DEFINE_SPINLOCK(nr_freq_lock); 5027 #endif 5028 5029 static void unaccount_freq_event_nohz(void) 5030 { 5031 #ifdef CONFIG_NO_HZ_FULL 5032 spin_lock(&nr_freq_lock); 5033 if (atomic_dec_and_test(&nr_freq_events)) 5034 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5035 spin_unlock(&nr_freq_lock); 5036 #endif 5037 } 5038 5039 static void unaccount_freq_event(void) 5040 { 5041 if (tick_nohz_full_enabled()) 5042 unaccount_freq_event_nohz(); 5043 else 5044 atomic_dec(&nr_freq_events); 5045 } 5046 5047 static void unaccount_event(struct perf_event *event) 5048 { 5049 bool dec = false; 5050 5051 if (event->parent) 5052 return; 5053 5054 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5055 dec = true; 5056 if (event->attr.mmap || event->attr.mmap_data) 5057 atomic_dec(&nr_mmap_events); 5058 if (event->attr.build_id) 5059 atomic_dec(&nr_build_id_events); 5060 if (event->attr.comm) 5061 atomic_dec(&nr_comm_events); 5062 if (event->attr.namespaces) 5063 atomic_dec(&nr_namespaces_events); 5064 if (event->attr.cgroup) 5065 atomic_dec(&nr_cgroup_events); 5066 if (event->attr.task) 5067 atomic_dec(&nr_task_events); 5068 if (event->attr.freq) 5069 unaccount_freq_event(); 5070 if (event->attr.context_switch) { 5071 dec = true; 5072 atomic_dec(&nr_switch_events); 5073 } 5074 if (is_cgroup_event(event)) 5075 dec = true; 5076 if (has_branch_stack(event)) 5077 dec = true; 5078 if (event->attr.ksymbol) 5079 atomic_dec(&nr_ksymbol_events); 5080 if (event->attr.bpf_event) 5081 atomic_dec(&nr_bpf_events); 5082 if (event->attr.text_poke) 5083 atomic_dec(&nr_text_poke_events); 5084 5085 if (dec) { 5086 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5087 schedule_delayed_work(&perf_sched_work, HZ); 5088 } 5089 5090 unaccount_pmu_sb_event(event); 5091 } 5092 5093 static void perf_sched_delayed(struct work_struct *work) 5094 { 5095 mutex_lock(&perf_sched_mutex); 5096 if (atomic_dec_and_test(&perf_sched_count)) 5097 static_branch_disable(&perf_sched_events); 5098 mutex_unlock(&perf_sched_mutex); 5099 } 5100 5101 /* 5102 * The following implement mutual exclusion of events on "exclusive" pmus 5103 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5104 * at a time, so we disallow creating events that might conflict, namely: 5105 * 5106 * 1) cpu-wide events in the presence of per-task events, 5107 * 2) per-task events in the presence of cpu-wide events, 5108 * 3) two matching events on the same perf_event_context. 5109 * 5110 * The former two cases are handled in the allocation path (perf_event_alloc(), 5111 * _free_event()), the latter -- before the first perf_install_in_context(). 5112 */ 5113 static int exclusive_event_init(struct perf_event *event) 5114 { 5115 struct pmu *pmu = event->pmu; 5116 5117 if (!is_exclusive_pmu(pmu)) 5118 return 0; 5119 5120 /* 5121 * Prevent co-existence of per-task and cpu-wide events on the 5122 * same exclusive pmu. 5123 * 5124 * Negative pmu::exclusive_cnt means there are cpu-wide 5125 * events on this "exclusive" pmu, positive means there are 5126 * per-task events. 5127 * 5128 * Since this is called in perf_event_alloc() path, event::ctx 5129 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5130 * to mean "per-task event", because unlike other attach states it 5131 * never gets cleared. 5132 */ 5133 if (event->attach_state & PERF_ATTACH_TASK) { 5134 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5135 return -EBUSY; 5136 } else { 5137 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5138 return -EBUSY; 5139 } 5140 5141 return 0; 5142 } 5143 5144 static void exclusive_event_destroy(struct perf_event *event) 5145 { 5146 struct pmu *pmu = event->pmu; 5147 5148 if (!is_exclusive_pmu(pmu)) 5149 return; 5150 5151 /* see comment in exclusive_event_init() */ 5152 if (event->attach_state & PERF_ATTACH_TASK) 5153 atomic_dec(&pmu->exclusive_cnt); 5154 else 5155 atomic_inc(&pmu->exclusive_cnt); 5156 } 5157 5158 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5159 { 5160 if ((e1->pmu == e2->pmu) && 5161 (e1->cpu == e2->cpu || 5162 e1->cpu == -1 || 5163 e2->cpu == -1)) 5164 return true; 5165 return false; 5166 } 5167 5168 static bool exclusive_event_installable(struct perf_event *event, 5169 struct perf_event_context *ctx) 5170 { 5171 struct perf_event *iter_event; 5172 struct pmu *pmu = event->pmu; 5173 5174 lockdep_assert_held(&ctx->mutex); 5175 5176 if (!is_exclusive_pmu(pmu)) 5177 return true; 5178 5179 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5180 if (exclusive_event_match(iter_event, event)) 5181 return false; 5182 } 5183 5184 return true; 5185 } 5186 5187 static void perf_addr_filters_splice(struct perf_event *event, 5188 struct list_head *head); 5189 5190 static void _free_event(struct perf_event *event) 5191 { 5192 irq_work_sync(&event->pending_irq); 5193 5194 unaccount_event(event); 5195 5196 security_perf_event_free(event); 5197 5198 if (event->rb) { 5199 /* 5200 * Can happen when we close an event with re-directed output. 5201 * 5202 * Since we have a 0 refcount, perf_mmap_close() will skip 5203 * over us; possibly making our ring_buffer_put() the last. 5204 */ 5205 mutex_lock(&event->mmap_mutex); 5206 ring_buffer_attach(event, NULL); 5207 mutex_unlock(&event->mmap_mutex); 5208 } 5209 5210 if (is_cgroup_event(event)) 5211 perf_detach_cgroup(event); 5212 5213 if (!event->parent) { 5214 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5215 put_callchain_buffers(); 5216 } 5217 5218 perf_event_free_bpf_prog(event); 5219 perf_addr_filters_splice(event, NULL); 5220 kfree(event->addr_filter_ranges); 5221 5222 if (event->destroy) 5223 event->destroy(event); 5224 5225 /* 5226 * Must be after ->destroy(), due to uprobe_perf_close() using 5227 * hw.target. 5228 */ 5229 if (event->hw.target) 5230 put_task_struct(event->hw.target); 5231 5232 if (event->pmu_ctx) 5233 put_pmu_ctx(event->pmu_ctx); 5234 5235 /* 5236 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5237 * all task references must be cleaned up. 5238 */ 5239 if (event->ctx) 5240 put_ctx(event->ctx); 5241 5242 exclusive_event_destroy(event); 5243 module_put(event->pmu->module); 5244 5245 call_rcu(&event->rcu_head, free_event_rcu); 5246 } 5247 5248 /* 5249 * Used to free events which have a known refcount of 1, such as in error paths 5250 * where the event isn't exposed yet and inherited events. 5251 */ 5252 static void free_event(struct perf_event *event) 5253 { 5254 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5255 "unexpected event refcount: %ld; ptr=%p\n", 5256 atomic_long_read(&event->refcount), event)) { 5257 /* leak to avoid use-after-free */ 5258 return; 5259 } 5260 5261 _free_event(event); 5262 } 5263 5264 /* 5265 * Remove user event from the owner task. 5266 */ 5267 static void perf_remove_from_owner(struct perf_event *event) 5268 { 5269 struct task_struct *owner; 5270 5271 rcu_read_lock(); 5272 /* 5273 * Matches the smp_store_release() in perf_event_exit_task(). If we 5274 * observe !owner it means the list deletion is complete and we can 5275 * indeed free this event, otherwise we need to serialize on 5276 * owner->perf_event_mutex. 5277 */ 5278 owner = READ_ONCE(event->owner); 5279 if (owner) { 5280 /* 5281 * Since delayed_put_task_struct() also drops the last 5282 * task reference we can safely take a new reference 5283 * while holding the rcu_read_lock(). 5284 */ 5285 get_task_struct(owner); 5286 } 5287 rcu_read_unlock(); 5288 5289 if (owner) { 5290 /* 5291 * If we're here through perf_event_exit_task() we're already 5292 * holding ctx->mutex which would be an inversion wrt. the 5293 * normal lock order. 5294 * 5295 * However we can safely take this lock because its the child 5296 * ctx->mutex. 5297 */ 5298 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5299 5300 /* 5301 * We have to re-check the event->owner field, if it is cleared 5302 * we raced with perf_event_exit_task(), acquiring the mutex 5303 * ensured they're done, and we can proceed with freeing the 5304 * event. 5305 */ 5306 if (event->owner) { 5307 list_del_init(&event->owner_entry); 5308 smp_store_release(&event->owner, NULL); 5309 } 5310 mutex_unlock(&owner->perf_event_mutex); 5311 put_task_struct(owner); 5312 } 5313 } 5314 5315 static void put_event(struct perf_event *event) 5316 { 5317 if (!atomic_long_dec_and_test(&event->refcount)) 5318 return; 5319 5320 _free_event(event); 5321 } 5322 5323 /* 5324 * Kill an event dead; while event:refcount will preserve the event 5325 * object, it will not preserve its functionality. Once the last 'user' 5326 * gives up the object, we'll destroy the thing. 5327 */ 5328 int perf_event_release_kernel(struct perf_event *event) 5329 { 5330 struct perf_event_context *ctx = event->ctx; 5331 struct perf_event *child, *tmp; 5332 LIST_HEAD(free_list); 5333 5334 /* 5335 * If we got here through err_alloc: free_event(event); we will not 5336 * have attached to a context yet. 5337 */ 5338 if (!ctx) { 5339 WARN_ON_ONCE(event->attach_state & 5340 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5341 goto no_ctx; 5342 } 5343 5344 if (!is_kernel_event(event)) 5345 perf_remove_from_owner(event); 5346 5347 ctx = perf_event_ctx_lock(event); 5348 WARN_ON_ONCE(ctx->parent_ctx); 5349 5350 /* 5351 * Mark this event as STATE_DEAD, there is no external reference to it 5352 * anymore. 5353 * 5354 * Anybody acquiring event->child_mutex after the below loop _must_ 5355 * also see this, most importantly inherit_event() which will avoid 5356 * placing more children on the list. 5357 * 5358 * Thus this guarantees that we will in fact observe and kill _ALL_ 5359 * child events. 5360 */ 5361 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5362 5363 perf_event_ctx_unlock(event, ctx); 5364 5365 again: 5366 mutex_lock(&event->child_mutex); 5367 list_for_each_entry(child, &event->child_list, child_list) { 5368 5369 /* 5370 * Cannot change, child events are not migrated, see the 5371 * comment with perf_event_ctx_lock_nested(). 5372 */ 5373 ctx = READ_ONCE(child->ctx); 5374 /* 5375 * Since child_mutex nests inside ctx::mutex, we must jump 5376 * through hoops. We start by grabbing a reference on the ctx. 5377 * 5378 * Since the event cannot get freed while we hold the 5379 * child_mutex, the context must also exist and have a !0 5380 * reference count. 5381 */ 5382 get_ctx(ctx); 5383 5384 /* 5385 * Now that we have a ctx ref, we can drop child_mutex, and 5386 * acquire ctx::mutex without fear of it going away. Then we 5387 * can re-acquire child_mutex. 5388 */ 5389 mutex_unlock(&event->child_mutex); 5390 mutex_lock(&ctx->mutex); 5391 mutex_lock(&event->child_mutex); 5392 5393 /* 5394 * Now that we hold ctx::mutex and child_mutex, revalidate our 5395 * state, if child is still the first entry, it didn't get freed 5396 * and we can continue doing so. 5397 */ 5398 tmp = list_first_entry_or_null(&event->child_list, 5399 struct perf_event, child_list); 5400 if (tmp == child) { 5401 perf_remove_from_context(child, DETACH_GROUP); 5402 list_move(&child->child_list, &free_list); 5403 /* 5404 * This matches the refcount bump in inherit_event(); 5405 * this can't be the last reference. 5406 */ 5407 put_event(event); 5408 } 5409 5410 mutex_unlock(&event->child_mutex); 5411 mutex_unlock(&ctx->mutex); 5412 put_ctx(ctx); 5413 goto again; 5414 } 5415 mutex_unlock(&event->child_mutex); 5416 5417 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5418 void *var = &child->ctx->refcount; 5419 5420 list_del(&child->child_list); 5421 free_event(child); 5422 5423 /* 5424 * Wake any perf_event_free_task() waiting for this event to be 5425 * freed. 5426 */ 5427 smp_mb(); /* pairs with wait_var_event() */ 5428 wake_up_var(var); 5429 } 5430 5431 no_ctx: 5432 put_event(event); /* Must be the 'last' reference */ 5433 return 0; 5434 } 5435 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5436 5437 /* 5438 * Called when the last reference to the file is gone. 5439 */ 5440 static int perf_release(struct inode *inode, struct file *file) 5441 { 5442 perf_event_release_kernel(file->private_data); 5443 return 0; 5444 } 5445 5446 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5447 { 5448 struct perf_event *child; 5449 u64 total = 0; 5450 5451 *enabled = 0; 5452 *running = 0; 5453 5454 mutex_lock(&event->child_mutex); 5455 5456 (void)perf_event_read(event, false); 5457 total += perf_event_count(event); 5458 5459 *enabled += event->total_time_enabled + 5460 atomic64_read(&event->child_total_time_enabled); 5461 *running += event->total_time_running + 5462 atomic64_read(&event->child_total_time_running); 5463 5464 list_for_each_entry(child, &event->child_list, child_list) { 5465 (void)perf_event_read(child, false); 5466 total += perf_event_count(child); 5467 *enabled += child->total_time_enabled; 5468 *running += child->total_time_running; 5469 } 5470 mutex_unlock(&event->child_mutex); 5471 5472 return total; 5473 } 5474 5475 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5476 { 5477 struct perf_event_context *ctx; 5478 u64 count; 5479 5480 ctx = perf_event_ctx_lock(event); 5481 count = __perf_event_read_value(event, enabled, running); 5482 perf_event_ctx_unlock(event, ctx); 5483 5484 return count; 5485 } 5486 EXPORT_SYMBOL_GPL(perf_event_read_value); 5487 5488 static int __perf_read_group_add(struct perf_event *leader, 5489 u64 read_format, u64 *values) 5490 { 5491 struct perf_event_context *ctx = leader->ctx; 5492 struct perf_event *sub, *parent; 5493 unsigned long flags; 5494 int n = 1; /* skip @nr */ 5495 int ret; 5496 5497 ret = perf_event_read(leader, true); 5498 if (ret) 5499 return ret; 5500 5501 raw_spin_lock_irqsave(&ctx->lock, flags); 5502 /* 5503 * Verify the grouping between the parent and child (inherited) 5504 * events is still in tact. 5505 * 5506 * Specifically: 5507 * - leader->ctx->lock pins leader->sibling_list 5508 * - parent->child_mutex pins parent->child_list 5509 * - parent->ctx->mutex pins parent->sibling_list 5510 * 5511 * Because parent->ctx != leader->ctx (and child_list nests inside 5512 * ctx->mutex), group destruction is not atomic between children, also 5513 * see perf_event_release_kernel(). Additionally, parent can grow the 5514 * group. 5515 * 5516 * Therefore it is possible to have parent and child groups in a 5517 * different configuration and summing over such a beast makes no sense 5518 * what so ever. 5519 * 5520 * Reject this. 5521 */ 5522 parent = leader->parent; 5523 if (parent && 5524 (parent->group_generation != leader->group_generation || 5525 parent->nr_siblings != leader->nr_siblings)) { 5526 ret = -ECHILD; 5527 goto unlock; 5528 } 5529 5530 /* 5531 * Since we co-schedule groups, {enabled,running} times of siblings 5532 * will be identical to those of the leader, so we only publish one 5533 * set. 5534 */ 5535 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5536 values[n++] += leader->total_time_enabled + 5537 atomic64_read(&leader->child_total_time_enabled); 5538 } 5539 5540 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5541 values[n++] += leader->total_time_running + 5542 atomic64_read(&leader->child_total_time_running); 5543 } 5544 5545 /* 5546 * Write {count,id} tuples for every sibling. 5547 */ 5548 values[n++] += perf_event_count(leader); 5549 if (read_format & PERF_FORMAT_ID) 5550 values[n++] = primary_event_id(leader); 5551 if (read_format & PERF_FORMAT_LOST) 5552 values[n++] = atomic64_read(&leader->lost_samples); 5553 5554 for_each_sibling_event(sub, leader) { 5555 values[n++] += perf_event_count(sub); 5556 if (read_format & PERF_FORMAT_ID) 5557 values[n++] = primary_event_id(sub); 5558 if (read_format & PERF_FORMAT_LOST) 5559 values[n++] = atomic64_read(&sub->lost_samples); 5560 } 5561 5562 unlock: 5563 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5564 return ret; 5565 } 5566 5567 static int perf_read_group(struct perf_event *event, 5568 u64 read_format, char __user *buf) 5569 { 5570 struct perf_event *leader = event->group_leader, *child; 5571 struct perf_event_context *ctx = leader->ctx; 5572 int ret; 5573 u64 *values; 5574 5575 lockdep_assert_held(&ctx->mutex); 5576 5577 values = kzalloc(event->read_size, GFP_KERNEL); 5578 if (!values) 5579 return -ENOMEM; 5580 5581 values[0] = 1 + leader->nr_siblings; 5582 5583 mutex_lock(&leader->child_mutex); 5584 5585 ret = __perf_read_group_add(leader, read_format, values); 5586 if (ret) 5587 goto unlock; 5588 5589 list_for_each_entry(child, &leader->child_list, child_list) { 5590 ret = __perf_read_group_add(child, read_format, values); 5591 if (ret) 5592 goto unlock; 5593 } 5594 5595 mutex_unlock(&leader->child_mutex); 5596 5597 ret = event->read_size; 5598 if (copy_to_user(buf, values, event->read_size)) 5599 ret = -EFAULT; 5600 goto out; 5601 5602 unlock: 5603 mutex_unlock(&leader->child_mutex); 5604 out: 5605 kfree(values); 5606 return ret; 5607 } 5608 5609 static int perf_read_one(struct perf_event *event, 5610 u64 read_format, char __user *buf) 5611 { 5612 u64 enabled, running; 5613 u64 values[5]; 5614 int n = 0; 5615 5616 values[n++] = __perf_event_read_value(event, &enabled, &running); 5617 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5618 values[n++] = enabled; 5619 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5620 values[n++] = running; 5621 if (read_format & PERF_FORMAT_ID) 5622 values[n++] = primary_event_id(event); 5623 if (read_format & PERF_FORMAT_LOST) 5624 values[n++] = atomic64_read(&event->lost_samples); 5625 5626 if (copy_to_user(buf, values, n * sizeof(u64))) 5627 return -EFAULT; 5628 5629 return n * sizeof(u64); 5630 } 5631 5632 static bool is_event_hup(struct perf_event *event) 5633 { 5634 bool no_children; 5635 5636 if (event->state > PERF_EVENT_STATE_EXIT) 5637 return false; 5638 5639 mutex_lock(&event->child_mutex); 5640 no_children = list_empty(&event->child_list); 5641 mutex_unlock(&event->child_mutex); 5642 return no_children; 5643 } 5644 5645 /* 5646 * Read the performance event - simple non blocking version for now 5647 */ 5648 static ssize_t 5649 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5650 { 5651 u64 read_format = event->attr.read_format; 5652 int ret; 5653 5654 /* 5655 * Return end-of-file for a read on an event that is in 5656 * error state (i.e. because it was pinned but it couldn't be 5657 * scheduled on to the CPU at some point). 5658 */ 5659 if (event->state == PERF_EVENT_STATE_ERROR) 5660 return 0; 5661 5662 if (count < event->read_size) 5663 return -ENOSPC; 5664 5665 WARN_ON_ONCE(event->ctx->parent_ctx); 5666 if (read_format & PERF_FORMAT_GROUP) 5667 ret = perf_read_group(event, read_format, buf); 5668 else 5669 ret = perf_read_one(event, read_format, buf); 5670 5671 return ret; 5672 } 5673 5674 static ssize_t 5675 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5676 { 5677 struct perf_event *event = file->private_data; 5678 struct perf_event_context *ctx; 5679 int ret; 5680 5681 ret = security_perf_event_read(event); 5682 if (ret) 5683 return ret; 5684 5685 ctx = perf_event_ctx_lock(event); 5686 ret = __perf_read(event, buf, count); 5687 perf_event_ctx_unlock(event, ctx); 5688 5689 return ret; 5690 } 5691 5692 static __poll_t perf_poll(struct file *file, poll_table *wait) 5693 { 5694 struct perf_event *event = file->private_data; 5695 struct perf_buffer *rb; 5696 __poll_t events = EPOLLHUP; 5697 5698 poll_wait(file, &event->waitq, wait); 5699 5700 if (is_event_hup(event)) 5701 return events; 5702 5703 /* 5704 * Pin the event->rb by taking event->mmap_mutex; otherwise 5705 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5706 */ 5707 mutex_lock(&event->mmap_mutex); 5708 rb = event->rb; 5709 if (rb) 5710 events = atomic_xchg(&rb->poll, 0); 5711 mutex_unlock(&event->mmap_mutex); 5712 return events; 5713 } 5714 5715 static void _perf_event_reset(struct perf_event *event) 5716 { 5717 (void)perf_event_read(event, false); 5718 local64_set(&event->count, 0); 5719 perf_event_update_userpage(event); 5720 } 5721 5722 /* Assume it's not an event with inherit set. */ 5723 u64 perf_event_pause(struct perf_event *event, bool reset) 5724 { 5725 struct perf_event_context *ctx; 5726 u64 count; 5727 5728 ctx = perf_event_ctx_lock(event); 5729 WARN_ON_ONCE(event->attr.inherit); 5730 _perf_event_disable(event); 5731 count = local64_read(&event->count); 5732 if (reset) 5733 local64_set(&event->count, 0); 5734 perf_event_ctx_unlock(event, ctx); 5735 5736 return count; 5737 } 5738 EXPORT_SYMBOL_GPL(perf_event_pause); 5739 5740 /* 5741 * Holding the top-level event's child_mutex means that any 5742 * descendant process that has inherited this event will block 5743 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5744 * task existence requirements of perf_event_enable/disable. 5745 */ 5746 static void perf_event_for_each_child(struct perf_event *event, 5747 void (*func)(struct perf_event *)) 5748 { 5749 struct perf_event *child; 5750 5751 WARN_ON_ONCE(event->ctx->parent_ctx); 5752 5753 mutex_lock(&event->child_mutex); 5754 func(event); 5755 list_for_each_entry(child, &event->child_list, child_list) 5756 func(child); 5757 mutex_unlock(&event->child_mutex); 5758 } 5759 5760 static void perf_event_for_each(struct perf_event *event, 5761 void (*func)(struct perf_event *)) 5762 { 5763 struct perf_event_context *ctx = event->ctx; 5764 struct perf_event *sibling; 5765 5766 lockdep_assert_held(&ctx->mutex); 5767 5768 event = event->group_leader; 5769 5770 perf_event_for_each_child(event, func); 5771 for_each_sibling_event(sibling, event) 5772 perf_event_for_each_child(sibling, func); 5773 } 5774 5775 static void __perf_event_period(struct perf_event *event, 5776 struct perf_cpu_context *cpuctx, 5777 struct perf_event_context *ctx, 5778 void *info) 5779 { 5780 u64 value = *((u64 *)info); 5781 bool active; 5782 5783 if (event->attr.freq) { 5784 event->attr.sample_freq = value; 5785 } else { 5786 event->attr.sample_period = value; 5787 event->hw.sample_period = value; 5788 } 5789 5790 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5791 if (active) { 5792 perf_pmu_disable(event->pmu); 5793 /* 5794 * We could be throttled; unthrottle now to avoid the tick 5795 * trying to unthrottle while we already re-started the event. 5796 */ 5797 if (event->hw.interrupts == MAX_INTERRUPTS) { 5798 event->hw.interrupts = 0; 5799 perf_log_throttle(event, 1); 5800 } 5801 event->pmu->stop(event, PERF_EF_UPDATE); 5802 } 5803 5804 local64_set(&event->hw.period_left, 0); 5805 5806 if (active) { 5807 event->pmu->start(event, PERF_EF_RELOAD); 5808 perf_pmu_enable(event->pmu); 5809 } 5810 } 5811 5812 static int perf_event_check_period(struct perf_event *event, u64 value) 5813 { 5814 return event->pmu->check_period(event, value); 5815 } 5816 5817 static int _perf_event_period(struct perf_event *event, u64 value) 5818 { 5819 if (!is_sampling_event(event)) 5820 return -EINVAL; 5821 5822 if (!value) 5823 return -EINVAL; 5824 5825 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5826 return -EINVAL; 5827 5828 if (perf_event_check_period(event, value)) 5829 return -EINVAL; 5830 5831 if (!event->attr.freq && (value & (1ULL << 63))) 5832 return -EINVAL; 5833 5834 event_function_call(event, __perf_event_period, &value); 5835 5836 return 0; 5837 } 5838 5839 int perf_event_period(struct perf_event *event, u64 value) 5840 { 5841 struct perf_event_context *ctx; 5842 int ret; 5843 5844 ctx = perf_event_ctx_lock(event); 5845 ret = _perf_event_period(event, value); 5846 perf_event_ctx_unlock(event, ctx); 5847 5848 return ret; 5849 } 5850 EXPORT_SYMBOL_GPL(perf_event_period); 5851 5852 static const struct file_operations perf_fops; 5853 5854 static inline int perf_fget_light(int fd, struct fd *p) 5855 { 5856 struct fd f = fdget(fd); 5857 if (!f.file) 5858 return -EBADF; 5859 5860 if (f.file->f_op != &perf_fops) { 5861 fdput(f); 5862 return -EBADF; 5863 } 5864 *p = f; 5865 return 0; 5866 } 5867 5868 static int perf_event_set_output(struct perf_event *event, 5869 struct perf_event *output_event); 5870 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5871 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5872 struct perf_event_attr *attr); 5873 5874 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5875 { 5876 void (*func)(struct perf_event *); 5877 u32 flags = arg; 5878 5879 switch (cmd) { 5880 case PERF_EVENT_IOC_ENABLE: 5881 func = _perf_event_enable; 5882 break; 5883 case PERF_EVENT_IOC_DISABLE: 5884 func = _perf_event_disable; 5885 break; 5886 case PERF_EVENT_IOC_RESET: 5887 func = _perf_event_reset; 5888 break; 5889 5890 case PERF_EVENT_IOC_REFRESH: 5891 return _perf_event_refresh(event, arg); 5892 5893 case PERF_EVENT_IOC_PERIOD: 5894 { 5895 u64 value; 5896 5897 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5898 return -EFAULT; 5899 5900 return _perf_event_period(event, value); 5901 } 5902 case PERF_EVENT_IOC_ID: 5903 { 5904 u64 id = primary_event_id(event); 5905 5906 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5907 return -EFAULT; 5908 return 0; 5909 } 5910 5911 case PERF_EVENT_IOC_SET_OUTPUT: 5912 { 5913 int ret; 5914 if (arg != -1) { 5915 struct perf_event *output_event; 5916 struct fd output; 5917 ret = perf_fget_light(arg, &output); 5918 if (ret) 5919 return ret; 5920 output_event = output.file->private_data; 5921 ret = perf_event_set_output(event, output_event); 5922 fdput(output); 5923 } else { 5924 ret = perf_event_set_output(event, NULL); 5925 } 5926 return ret; 5927 } 5928 5929 case PERF_EVENT_IOC_SET_FILTER: 5930 return perf_event_set_filter(event, (void __user *)arg); 5931 5932 case PERF_EVENT_IOC_SET_BPF: 5933 { 5934 struct bpf_prog *prog; 5935 int err; 5936 5937 prog = bpf_prog_get(arg); 5938 if (IS_ERR(prog)) 5939 return PTR_ERR(prog); 5940 5941 err = perf_event_set_bpf_prog(event, prog, 0); 5942 if (err) { 5943 bpf_prog_put(prog); 5944 return err; 5945 } 5946 5947 return 0; 5948 } 5949 5950 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5951 struct perf_buffer *rb; 5952 5953 rcu_read_lock(); 5954 rb = rcu_dereference(event->rb); 5955 if (!rb || !rb->nr_pages) { 5956 rcu_read_unlock(); 5957 return -EINVAL; 5958 } 5959 rb_toggle_paused(rb, !!arg); 5960 rcu_read_unlock(); 5961 return 0; 5962 } 5963 5964 case PERF_EVENT_IOC_QUERY_BPF: 5965 return perf_event_query_prog_array(event, (void __user *)arg); 5966 5967 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5968 struct perf_event_attr new_attr; 5969 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5970 &new_attr); 5971 5972 if (err) 5973 return err; 5974 5975 return perf_event_modify_attr(event, &new_attr); 5976 } 5977 default: 5978 return -ENOTTY; 5979 } 5980 5981 if (flags & PERF_IOC_FLAG_GROUP) 5982 perf_event_for_each(event, func); 5983 else 5984 perf_event_for_each_child(event, func); 5985 5986 return 0; 5987 } 5988 5989 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5990 { 5991 struct perf_event *event = file->private_data; 5992 struct perf_event_context *ctx; 5993 long ret; 5994 5995 /* Treat ioctl like writes as it is likely a mutating operation. */ 5996 ret = security_perf_event_write(event); 5997 if (ret) 5998 return ret; 5999 6000 ctx = perf_event_ctx_lock(event); 6001 ret = _perf_ioctl(event, cmd, arg); 6002 perf_event_ctx_unlock(event, ctx); 6003 6004 return ret; 6005 } 6006 6007 #ifdef CONFIG_COMPAT 6008 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6009 unsigned long arg) 6010 { 6011 switch (_IOC_NR(cmd)) { 6012 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6013 case _IOC_NR(PERF_EVENT_IOC_ID): 6014 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6015 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6016 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6017 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6018 cmd &= ~IOCSIZE_MASK; 6019 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6020 } 6021 break; 6022 } 6023 return perf_ioctl(file, cmd, arg); 6024 } 6025 #else 6026 # define perf_compat_ioctl NULL 6027 #endif 6028 6029 int perf_event_task_enable(void) 6030 { 6031 struct perf_event_context *ctx; 6032 struct perf_event *event; 6033 6034 mutex_lock(¤t->perf_event_mutex); 6035 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6036 ctx = perf_event_ctx_lock(event); 6037 perf_event_for_each_child(event, _perf_event_enable); 6038 perf_event_ctx_unlock(event, ctx); 6039 } 6040 mutex_unlock(¤t->perf_event_mutex); 6041 6042 return 0; 6043 } 6044 6045 int perf_event_task_disable(void) 6046 { 6047 struct perf_event_context *ctx; 6048 struct perf_event *event; 6049 6050 mutex_lock(¤t->perf_event_mutex); 6051 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6052 ctx = perf_event_ctx_lock(event); 6053 perf_event_for_each_child(event, _perf_event_disable); 6054 perf_event_ctx_unlock(event, ctx); 6055 } 6056 mutex_unlock(¤t->perf_event_mutex); 6057 6058 return 0; 6059 } 6060 6061 static int perf_event_index(struct perf_event *event) 6062 { 6063 if (event->hw.state & PERF_HES_STOPPED) 6064 return 0; 6065 6066 if (event->state != PERF_EVENT_STATE_ACTIVE) 6067 return 0; 6068 6069 return event->pmu->event_idx(event); 6070 } 6071 6072 static void perf_event_init_userpage(struct perf_event *event) 6073 { 6074 struct perf_event_mmap_page *userpg; 6075 struct perf_buffer *rb; 6076 6077 rcu_read_lock(); 6078 rb = rcu_dereference(event->rb); 6079 if (!rb) 6080 goto unlock; 6081 6082 userpg = rb->user_page; 6083 6084 /* Allow new userspace to detect that bit 0 is deprecated */ 6085 userpg->cap_bit0_is_deprecated = 1; 6086 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6087 userpg->data_offset = PAGE_SIZE; 6088 userpg->data_size = perf_data_size(rb); 6089 6090 unlock: 6091 rcu_read_unlock(); 6092 } 6093 6094 void __weak arch_perf_update_userpage( 6095 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6096 { 6097 } 6098 6099 /* 6100 * Callers need to ensure there can be no nesting of this function, otherwise 6101 * the seqlock logic goes bad. We can not serialize this because the arch 6102 * code calls this from NMI context. 6103 */ 6104 void perf_event_update_userpage(struct perf_event *event) 6105 { 6106 struct perf_event_mmap_page *userpg; 6107 struct perf_buffer *rb; 6108 u64 enabled, running, now; 6109 6110 rcu_read_lock(); 6111 rb = rcu_dereference(event->rb); 6112 if (!rb) 6113 goto unlock; 6114 6115 /* 6116 * compute total_time_enabled, total_time_running 6117 * based on snapshot values taken when the event 6118 * was last scheduled in. 6119 * 6120 * we cannot simply called update_context_time() 6121 * because of locking issue as we can be called in 6122 * NMI context 6123 */ 6124 calc_timer_values(event, &now, &enabled, &running); 6125 6126 userpg = rb->user_page; 6127 /* 6128 * Disable preemption to guarantee consistent time stamps are stored to 6129 * the user page. 6130 */ 6131 preempt_disable(); 6132 ++userpg->lock; 6133 barrier(); 6134 userpg->index = perf_event_index(event); 6135 userpg->offset = perf_event_count(event); 6136 if (userpg->index) 6137 userpg->offset -= local64_read(&event->hw.prev_count); 6138 6139 userpg->time_enabled = enabled + 6140 atomic64_read(&event->child_total_time_enabled); 6141 6142 userpg->time_running = running + 6143 atomic64_read(&event->child_total_time_running); 6144 6145 arch_perf_update_userpage(event, userpg, now); 6146 6147 barrier(); 6148 ++userpg->lock; 6149 preempt_enable(); 6150 unlock: 6151 rcu_read_unlock(); 6152 } 6153 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6154 6155 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6156 { 6157 struct perf_event *event = vmf->vma->vm_file->private_data; 6158 struct perf_buffer *rb; 6159 vm_fault_t ret = VM_FAULT_SIGBUS; 6160 6161 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6162 if (vmf->pgoff == 0) 6163 ret = 0; 6164 return ret; 6165 } 6166 6167 rcu_read_lock(); 6168 rb = rcu_dereference(event->rb); 6169 if (!rb) 6170 goto unlock; 6171 6172 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6173 goto unlock; 6174 6175 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6176 if (!vmf->page) 6177 goto unlock; 6178 6179 get_page(vmf->page); 6180 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6181 vmf->page->index = vmf->pgoff; 6182 6183 ret = 0; 6184 unlock: 6185 rcu_read_unlock(); 6186 6187 return ret; 6188 } 6189 6190 static void ring_buffer_attach(struct perf_event *event, 6191 struct perf_buffer *rb) 6192 { 6193 struct perf_buffer *old_rb = NULL; 6194 unsigned long flags; 6195 6196 WARN_ON_ONCE(event->parent); 6197 6198 if (event->rb) { 6199 /* 6200 * Should be impossible, we set this when removing 6201 * event->rb_entry and wait/clear when adding event->rb_entry. 6202 */ 6203 WARN_ON_ONCE(event->rcu_pending); 6204 6205 old_rb = event->rb; 6206 spin_lock_irqsave(&old_rb->event_lock, flags); 6207 list_del_rcu(&event->rb_entry); 6208 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6209 6210 event->rcu_batches = get_state_synchronize_rcu(); 6211 event->rcu_pending = 1; 6212 } 6213 6214 if (rb) { 6215 if (event->rcu_pending) { 6216 cond_synchronize_rcu(event->rcu_batches); 6217 event->rcu_pending = 0; 6218 } 6219 6220 spin_lock_irqsave(&rb->event_lock, flags); 6221 list_add_rcu(&event->rb_entry, &rb->event_list); 6222 spin_unlock_irqrestore(&rb->event_lock, flags); 6223 } 6224 6225 /* 6226 * Avoid racing with perf_mmap_close(AUX): stop the event 6227 * before swizzling the event::rb pointer; if it's getting 6228 * unmapped, its aux_mmap_count will be 0 and it won't 6229 * restart. See the comment in __perf_pmu_output_stop(). 6230 * 6231 * Data will inevitably be lost when set_output is done in 6232 * mid-air, but then again, whoever does it like this is 6233 * not in for the data anyway. 6234 */ 6235 if (has_aux(event)) 6236 perf_event_stop(event, 0); 6237 6238 rcu_assign_pointer(event->rb, rb); 6239 6240 if (old_rb) { 6241 ring_buffer_put(old_rb); 6242 /* 6243 * Since we detached before setting the new rb, so that we 6244 * could attach the new rb, we could have missed a wakeup. 6245 * Provide it now. 6246 */ 6247 wake_up_all(&event->waitq); 6248 } 6249 } 6250 6251 static void ring_buffer_wakeup(struct perf_event *event) 6252 { 6253 struct perf_buffer *rb; 6254 6255 if (event->parent) 6256 event = event->parent; 6257 6258 rcu_read_lock(); 6259 rb = rcu_dereference(event->rb); 6260 if (rb) { 6261 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6262 wake_up_all(&event->waitq); 6263 } 6264 rcu_read_unlock(); 6265 } 6266 6267 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6268 { 6269 struct perf_buffer *rb; 6270 6271 if (event->parent) 6272 event = event->parent; 6273 6274 rcu_read_lock(); 6275 rb = rcu_dereference(event->rb); 6276 if (rb) { 6277 if (!refcount_inc_not_zero(&rb->refcount)) 6278 rb = NULL; 6279 } 6280 rcu_read_unlock(); 6281 6282 return rb; 6283 } 6284 6285 void ring_buffer_put(struct perf_buffer *rb) 6286 { 6287 if (!refcount_dec_and_test(&rb->refcount)) 6288 return; 6289 6290 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6291 6292 call_rcu(&rb->rcu_head, rb_free_rcu); 6293 } 6294 6295 static void perf_mmap_open(struct vm_area_struct *vma) 6296 { 6297 struct perf_event *event = vma->vm_file->private_data; 6298 6299 atomic_inc(&event->mmap_count); 6300 atomic_inc(&event->rb->mmap_count); 6301 6302 if (vma->vm_pgoff) 6303 atomic_inc(&event->rb->aux_mmap_count); 6304 6305 if (event->pmu->event_mapped) 6306 event->pmu->event_mapped(event, vma->vm_mm); 6307 } 6308 6309 static void perf_pmu_output_stop(struct perf_event *event); 6310 6311 /* 6312 * A buffer can be mmap()ed multiple times; either directly through the same 6313 * event, or through other events by use of perf_event_set_output(). 6314 * 6315 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6316 * the buffer here, where we still have a VM context. This means we need 6317 * to detach all events redirecting to us. 6318 */ 6319 static void perf_mmap_close(struct vm_area_struct *vma) 6320 { 6321 struct perf_event *event = vma->vm_file->private_data; 6322 struct perf_buffer *rb = ring_buffer_get(event); 6323 struct user_struct *mmap_user = rb->mmap_user; 6324 int mmap_locked = rb->mmap_locked; 6325 unsigned long size = perf_data_size(rb); 6326 bool detach_rest = false; 6327 6328 if (event->pmu->event_unmapped) 6329 event->pmu->event_unmapped(event, vma->vm_mm); 6330 6331 /* 6332 * rb->aux_mmap_count will always drop before rb->mmap_count and 6333 * event->mmap_count, so it is ok to use event->mmap_mutex to 6334 * serialize with perf_mmap here. 6335 */ 6336 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6337 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6338 /* 6339 * Stop all AUX events that are writing to this buffer, 6340 * so that we can free its AUX pages and corresponding PMU 6341 * data. Note that after rb::aux_mmap_count dropped to zero, 6342 * they won't start any more (see perf_aux_output_begin()). 6343 */ 6344 perf_pmu_output_stop(event); 6345 6346 /* now it's safe to free the pages */ 6347 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6348 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6349 6350 /* this has to be the last one */ 6351 rb_free_aux(rb); 6352 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6353 6354 mutex_unlock(&event->mmap_mutex); 6355 } 6356 6357 if (atomic_dec_and_test(&rb->mmap_count)) 6358 detach_rest = true; 6359 6360 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6361 goto out_put; 6362 6363 ring_buffer_attach(event, NULL); 6364 mutex_unlock(&event->mmap_mutex); 6365 6366 /* If there's still other mmap()s of this buffer, we're done. */ 6367 if (!detach_rest) 6368 goto out_put; 6369 6370 /* 6371 * No other mmap()s, detach from all other events that might redirect 6372 * into the now unreachable buffer. Somewhat complicated by the 6373 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6374 */ 6375 again: 6376 rcu_read_lock(); 6377 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6378 if (!atomic_long_inc_not_zero(&event->refcount)) { 6379 /* 6380 * This event is en-route to free_event() which will 6381 * detach it and remove it from the list. 6382 */ 6383 continue; 6384 } 6385 rcu_read_unlock(); 6386 6387 mutex_lock(&event->mmap_mutex); 6388 /* 6389 * Check we didn't race with perf_event_set_output() which can 6390 * swizzle the rb from under us while we were waiting to 6391 * acquire mmap_mutex. 6392 * 6393 * If we find a different rb; ignore this event, a next 6394 * iteration will no longer find it on the list. We have to 6395 * still restart the iteration to make sure we're not now 6396 * iterating the wrong list. 6397 */ 6398 if (event->rb == rb) 6399 ring_buffer_attach(event, NULL); 6400 6401 mutex_unlock(&event->mmap_mutex); 6402 put_event(event); 6403 6404 /* 6405 * Restart the iteration; either we're on the wrong list or 6406 * destroyed its integrity by doing a deletion. 6407 */ 6408 goto again; 6409 } 6410 rcu_read_unlock(); 6411 6412 /* 6413 * It could be there's still a few 0-ref events on the list; they'll 6414 * get cleaned up by free_event() -- they'll also still have their 6415 * ref on the rb and will free it whenever they are done with it. 6416 * 6417 * Aside from that, this buffer is 'fully' detached and unmapped, 6418 * undo the VM accounting. 6419 */ 6420 6421 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6422 &mmap_user->locked_vm); 6423 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6424 free_uid(mmap_user); 6425 6426 out_put: 6427 ring_buffer_put(rb); /* could be last */ 6428 } 6429 6430 static const struct vm_operations_struct perf_mmap_vmops = { 6431 .open = perf_mmap_open, 6432 .close = perf_mmap_close, /* non mergeable */ 6433 .fault = perf_mmap_fault, 6434 .page_mkwrite = perf_mmap_fault, 6435 }; 6436 6437 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6438 { 6439 struct perf_event *event = file->private_data; 6440 unsigned long user_locked, user_lock_limit; 6441 struct user_struct *user = current_user(); 6442 struct perf_buffer *rb = NULL; 6443 unsigned long locked, lock_limit; 6444 unsigned long vma_size; 6445 unsigned long nr_pages; 6446 long user_extra = 0, extra = 0; 6447 int ret = 0, flags = 0; 6448 6449 /* 6450 * Don't allow mmap() of inherited per-task counters. This would 6451 * create a performance issue due to all children writing to the 6452 * same rb. 6453 */ 6454 if (event->cpu == -1 && event->attr.inherit) 6455 return -EINVAL; 6456 6457 if (!(vma->vm_flags & VM_SHARED)) 6458 return -EINVAL; 6459 6460 ret = security_perf_event_read(event); 6461 if (ret) 6462 return ret; 6463 6464 vma_size = vma->vm_end - vma->vm_start; 6465 6466 if (vma->vm_pgoff == 0) { 6467 nr_pages = (vma_size / PAGE_SIZE) - 1; 6468 } else { 6469 /* 6470 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6471 * mapped, all subsequent mappings should have the same size 6472 * and offset. Must be above the normal perf buffer. 6473 */ 6474 u64 aux_offset, aux_size; 6475 6476 if (!event->rb) 6477 return -EINVAL; 6478 6479 nr_pages = vma_size / PAGE_SIZE; 6480 6481 mutex_lock(&event->mmap_mutex); 6482 ret = -EINVAL; 6483 6484 rb = event->rb; 6485 if (!rb) 6486 goto aux_unlock; 6487 6488 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6489 aux_size = READ_ONCE(rb->user_page->aux_size); 6490 6491 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6492 goto aux_unlock; 6493 6494 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6495 goto aux_unlock; 6496 6497 /* already mapped with a different offset */ 6498 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6499 goto aux_unlock; 6500 6501 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6502 goto aux_unlock; 6503 6504 /* already mapped with a different size */ 6505 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6506 goto aux_unlock; 6507 6508 if (!is_power_of_2(nr_pages)) 6509 goto aux_unlock; 6510 6511 if (!atomic_inc_not_zero(&rb->mmap_count)) 6512 goto aux_unlock; 6513 6514 if (rb_has_aux(rb)) { 6515 atomic_inc(&rb->aux_mmap_count); 6516 ret = 0; 6517 goto unlock; 6518 } 6519 6520 atomic_set(&rb->aux_mmap_count, 1); 6521 user_extra = nr_pages; 6522 6523 goto accounting; 6524 } 6525 6526 /* 6527 * If we have rb pages ensure they're a power-of-two number, so we 6528 * can do bitmasks instead of modulo. 6529 */ 6530 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6531 return -EINVAL; 6532 6533 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6534 return -EINVAL; 6535 6536 WARN_ON_ONCE(event->ctx->parent_ctx); 6537 again: 6538 mutex_lock(&event->mmap_mutex); 6539 if (event->rb) { 6540 if (data_page_nr(event->rb) != nr_pages) { 6541 ret = -EINVAL; 6542 goto unlock; 6543 } 6544 6545 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6546 /* 6547 * Raced against perf_mmap_close(); remove the 6548 * event and try again. 6549 */ 6550 ring_buffer_attach(event, NULL); 6551 mutex_unlock(&event->mmap_mutex); 6552 goto again; 6553 } 6554 6555 goto unlock; 6556 } 6557 6558 user_extra = nr_pages + 1; 6559 6560 accounting: 6561 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6562 6563 /* 6564 * Increase the limit linearly with more CPUs: 6565 */ 6566 user_lock_limit *= num_online_cpus(); 6567 6568 user_locked = atomic_long_read(&user->locked_vm); 6569 6570 /* 6571 * sysctl_perf_event_mlock may have changed, so that 6572 * user->locked_vm > user_lock_limit 6573 */ 6574 if (user_locked > user_lock_limit) 6575 user_locked = user_lock_limit; 6576 user_locked += user_extra; 6577 6578 if (user_locked > user_lock_limit) { 6579 /* 6580 * charge locked_vm until it hits user_lock_limit; 6581 * charge the rest from pinned_vm 6582 */ 6583 extra = user_locked - user_lock_limit; 6584 user_extra -= extra; 6585 } 6586 6587 lock_limit = rlimit(RLIMIT_MEMLOCK); 6588 lock_limit >>= PAGE_SHIFT; 6589 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6590 6591 if ((locked > lock_limit) && perf_is_paranoid() && 6592 !capable(CAP_IPC_LOCK)) { 6593 ret = -EPERM; 6594 goto unlock; 6595 } 6596 6597 WARN_ON(!rb && event->rb); 6598 6599 if (vma->vm_flags & VM_WRITE) 6600 flags |= RING_BUFFER_WRITABLE; 6601 6602 if (!rb) { 6603 rb = rb_alloc(nr_pages, 6604 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6605 event->cpu, flags); 6606 6607 if (!rb) { 6608 ret = -ENOMEM; 6609 goto unlock; 6610 } 6611 6612 atomic_set(&rb->mmap_count, 1); 6613 rb->mmap_user = get_current_user(); 6614 rb->mmap_locked = extra; 6615 6616 ring_buffer_attach(event, rb); 6617 6618 perf_event_update_time(event); 6619 perf_event_init_userpage(event); 6620 perf_event_update_userpage(event); 6621 } else { 6622 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6623 event->attr.aux_watermark, flags); 6624 if (!ret) 6625 rb->aux_mmap_locked = extra; 6626 } 6627 6628 unlock: 6629 if (!ret) { 6630 atomic_long_add(user_extra, &user->locked_vm); 6631 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6632 6633 atomic_inc(&event->mmap_count); 6634 } else if (rb) { 6635 atomic_dec(&rb->mmap_count); 6636 } 6637 aux_unlock: 6638 mutex_unlock(&event->mmap_mutex); 6639 6640 /* 6641 * Since pinned accounting is per vm we cannot allow fork() to copy our 6642 * vma. 6643 */ 6644 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6645 vma->vm_ops = &perf_mmap_vmops; 6646 6647 if (event->pmu->event_mapped) 6648 event->pmu->event_mapped(event, vma->vm_mm); 6649 6650 return ret; 6651 } 6652 6653 static int perf_fasync(int fd, struct file *filp, int on) 6654 { 6655 struct inode *inode = file_inode(filp); 6656 struct perf_event *event = filp->private_data; 6657 int retval; 6658 6659 inode_lock(inode); 6660 retval = fasync_helper(fd, filp, on, &event->fasync); 6661 inode_unlock(inode); 6662 6663 if (retval < 0) 6664 return retval; 6665 6666 return 0; 6667 } 6668 6669 static const struct file_operations perf_fops = { 6670 .llseek = no_llseek, 6671 .release = perf_release, 6672 .read = perf_read, 6673 .poll = perf_poll, 6674 .unlocked_ioctl = perf_ioctl, 6675 .compat_ioctl = perf_compat_ioctl, 6676 .mmap = perf_mmap, 6677 .fasync = perf_fasync, 6678 }; 6679 6680 /* 6681 * Perf event wakeup 6682 * 6683 * If there's data, ensure we set the poll() state and publish everything 6684 * to user-space before waking everybody up. 6685 */ 6686 6687 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6688 { 6689 /* only the parent has fasync state */ 6690 if (event->parent) 6691 event = event->parent; 6692 return &event->fasync; 6693 } 6694 6695 void perf_event_wakeup(struct perf_event *event) 6696 { 6697 ring_buffer_wakeup(event); 6698 6699 if (event->pending_kill) { 6700 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6701 event->pending_kill = 0; 6702 } 6703 } 6704 6705 static void perf_sigtrap(struct perf_event *event) 6706 { 6707 /* 6708 * We'd expect this to only occur if the irq_work is delayed and either 6709 * ctx->task or current has changed in the meantime. This can be the 6710 * case on architectures that do not implement arch_irq_work_raise(). 6711 */ 6712 if (WARN_ON_ONCE(event->ctx->task != current)) 6713 return; 6714 6715 /* 6716 * Both perf_pending_task() and perf_pending_irq() can race with the 6717 * task exiting. 6718 */ 6719 if (current->flags & PF_EXITING) 6720 return; 6721 6722 send_sig_perf((void __user *)event->pending_addr, 6723 event->orig_type, event->attr.sig_data); 6724 } 6725 6726 /* 6727 * Deliver the pending work in-event-context or follow the context. 6728 */ 6729 static void __perf_pending_irq(struct perf_event *event) 6730 { 6731 int cpu = READ_ONCE(event->oncpu); 6732 6733 /* 6734 * If the event isn't running; we done. event_sched_out() will have 6735 * taken care of things. 6736 */ 6737 if (cpu < 0) 6738 return; 6739 6740 /* 6741 * Yay, we hit home and are in the context of the event. 6742 */ 6743 if (cpu == smp_processor_id()) { 6744 if (event->pending_sigtrap) { 6745 event->pending_sigtrap = 0; 6746 perf_sigtrap(event); 6747 local_dec(&event->ctx->nr_pending); 6748 } 6749 if (event->pending_disable) { 6750 event->pending_disable = 0; 6751 perf_event_disable_local(event); 6752 } 6753 return; 6754 } 6755 6756 /* 6757 * CPU-A CPU-B 6758 * 6759 * perf_event_disable_inatomic() 6760 * @pending_disable = CPU-A; 6761 * irq_work_queue(); 6762 * 6763 * sched-out 6764 * @pending_disable = -1; 6765 * 6766 * sched-in 6767 * perf_event_disable_inatomic() 6768 * @pending_disable = CPU-B; 6769 * irq_work_queue(); // FAILS 6770 * 6771 * irq_work_run() 6772 * perf_pending_irq() 6773 * 6774 * But the event runs on CPU-B and wants disabling there. 6775 */ 6776 irq_work_queue_on(&event->pending_irq, cpu); 6777 } 6778 6779 static void perf_pending_irq(struct irq_work *entry) 6780 { 6781 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6782 int rctx; 6783 6784 /* 6785 * If we 'fail' here, that's OK, it means recursion is already disabled 6786 * and we won't recurse 'further'. 6787 */ 6788 rctx = perf_swevent_get_recursion_context(); 6789 6790 /* 6791 * The wakeup isn't bound to the context of the event -- it can happen 6792 * irrespective of where the event is. 6793 */ 6794 if (event->pending_wakeup) { 6795 event->pending_wakeup = 0; 6796 perf_event_wakeup(event); 6797 } 6798 6799 __perf_pending_irq(event); 6800 6801 if (rctx >= 0) 6802 perf_swevent_put_recursion_context(rctx); 6803 } 6804 6805 static void perf_pending_task(struct callback_head *head) 6806 { 6807 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6808 int rctx; 6809 6810 /* 6811 * If we 'fail' here, that's OK, it means recursion is already disabled 6812 * and we won't recurse 'further'. 6813 */ 6814 preempt_disable_notrace(); 6815 rctx = perf_swevent_get_recursion_context(); 6816 6817 if (event->pending_work) { 6818 event->pending_work = 0; 6819 perf_sigtrap(event); 6820 local_dec(&event->ctx->nr_pending); 6821 } 6822 6823 if (rctx >= 0) 6824 perf_swevent_put_recursion_context(rctx); 6825 preempt_enable_notrace(); 6826 6827 put_event(event); 6828 } 6829 6830 #ifdef CONFIG_GUEST_PERF_EVENTS 6831 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6832 6833 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6834 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6835 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6836 6837 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6838 { 6839 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6840 return; 6841 6842 rcu_assign_pointer(perf_guest_cbs, cbs); 6843 static_call_update(__perf_guest_state, cbs->state); 6844 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6845 6846 /* Implementing ->handle_intel_pt_intr is optional. */ 6847 if (cbs->handle_intel_pt_intr) 6848 static_call_update(__perf_guest_handle_intel_pt_intr, 6849 cbs->handle_intel_pt_intr); 6850 } 6851 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6852 6853 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6854 { 6855 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6856 return; 6857 6858 rcu_assign_pointer(perf_guest_cbs, NULL); 6859 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6860 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6861 static_call_update(__perf_guest_handle_intel_pt_intr, 6862 (void *)&__static_call_return0); 6863 synchronize_rcu(); 6864 } 6865 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6866 #endif 6867 6868 static void 6869 perf_output_sample_regs(struct perf_output_handle *handle, 6870 struct pt_regs *regs, u64 mask) 6871 { 6872 int bit; 6873 DECLARE_BITMAP(_mask, 64); 6874 6875 bitmap_from_u64(_mask, mask); 6876 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6877 u64 val; 6878 6879 val = perf_reg_value(regs, bit); 6880 perf_output_put(handle, val); 6881 } 6882 } 6883 6884 static void perf_sample_regs_user(struct perf_regs *regs_user, 6885 struct pt_regs *regs) 6886 { 6887 if (user_mode(regs)) { 6888 regs_user->abi = perf_reg_abi(current); 6889 regs_user->regs = regs; 6890 } else if (!(current->flags & PF_KTHREAD)) { 6891 perf_get_regs_user(regs_user, regs); 6892 } else { 6893 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6894 regs_user->regs = NULL; 6895 } 6896 } 6897 6898 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6899 struct pt_regs *regs) 6900 { 6901 regs_intr->regs = regs; 6902 regs_intr->abi = perf_reg_abi(current); 6903 } 6904 6905 6906 /* 6907 * Get remaining task size from user stack pointer. 6908 * 6909 * It'd be better to take stack vma map and limit this more 6910 * precisely, but there's no way to get it safely under interrupt, 6911 * so using TASK_SIZE as limit. 6912 */ 6913 static u64 perf_ustack_task_size(struct pt_regs *regs) 6914 { 6915 unsigned long addr = perf_user_stack_pointer(regs); 6916 6917 if (!addr || addr >= TASK_SIZE) 6918 return 0; 6919 6920 return TASK_SIZE - addr; 6921 } 6922 6923 static u16 6924 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6925 struct pt_regs *regs) 6926 { 6927 u64 task_size; 6928 6929 /* No regs, no stack pointer, no dump. */ 6930 if (!regs) 6931 return 0; 6932 6933 /* 6934 * Check if we fit in with the requested stack size into the: 6935 * - TASK_SIZE 6936 * If we don't, we limit the size to the TASK_SIZE. 6937 * 6938 * - remaining sample size 6939 * If we don't, we customize the stack size to 6940 * fit in to the remaining sample size. 6941 */ 6942 6943 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6944 stack_size = min(stack_size, (u16) task_size); 6945 6946 /* Current header size plus static size and dynamic size. */ 6947 header_size += 2 * sizeof(u64); 6948 6949 /* Do we fit in with the current stack dump size? */ 6950 if ((u16) (header_size + stack_size) < header_size) { 6951 /* 6952 * If we overflow the maximum size for the sample, 6953 * we customize the stack dump size to fit in. 6954 */ 6955 stack_size = USHRT_MAX - header_size - sizeof(u64); 6956 stack_size = round_up(stack_size, sizeof(u64)); 6957 } 6958 6959 return stack_size; 6960 } 6961 6962 static void 6963 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6964 struct pt_regs *regs) 6965 { 6966 /* Case of a kernel thread, nothing to dump */ 6967 if (!regs) { 6968 u64 size = 0; 6969 perf_output_put(handle, size); 6970 } else { 6971 unsigned long sp; 6972 unsigned int rem; 6973 u64 dyn_size; 6974 6975 /* 6976 * We dump: 6977 * static size 6978 * - the size requested by user or the best one we can fit 6979 * in to the sample max size 6980 * data 6981 * - user stack dump data 6982 * dynamic size 6983 * - the actual dumped size 6984 */ 6985 6986 /* Static size. */ 6987 perf_output_put(handle, dump_size); 6988 6989 /* Data. */ 6990 sp = perf_user_stack_pointer(regs); 6991 rem = __output_copy_user(handle, (void *) sp, dump_size); 6992 dyn_size = dump_size - rem; 6993 6994 perf_output_skip(handle, rem); 6995 6996 /* Dynamic size. */ 6997 perf_output_put(handle, dyn_size); 6998 } 6999 } 7000 7001 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7002 struct perf_sample_data *data, 7003 size_t size) 7004 { 7005 struct perf_event *sampler = event->aux_event; 7006 struct perf_buffer *rb; 7007 7008 data->aux_size = 0; 7009 7010 if (!sampler) 7011 goto out; 7012 7013 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7014 goto out; 7015 7016 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7017 goto out; 7018 7019 rb = ring_buffer_get(sampler); 7020 if (!rb) 7021 goto out; 7022 7023 /* 7024 * If this is an NMI hit inside sampling code, don't take 7025 * the sample. See also perf_aux_sample_output(). 7026 */ 7027 if (READ_ONCE(rb->aux_in_sampling)) { 7028 data->aux_size = 0; 7029 } else { 7030 size = min_t(size_t, size, perf_aux_size(rb)); 7031 data->aux_size = ALIGN(size, sizeof(u64)); 7032 } 7033 ring_buffer_put(rb); 7034 7035 out: 7036 return data->aux_size; 7037 } 7038 7039 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7040 struct perf_event *event, 7041 struct perf_output_handle *handle, 7042 unsigned long size) 7043 { 7044 unsigned long flags; 7045 long ret; 7046 7047 /* 7048 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7049 * paths. If we start calling them in NMI context, they may race with 7050 * the IRQ ones, that is, for example, re-starting an event that's just 7051 * been stopped, which is why we're using a separate callback that 7052 * doesn't change the event state. 7053 * 7054 * IRQs need to be disabled to prevent IPIs from racing with us. 7055 */ 7056 local_irq_save(flags); 7057 /* 7058 * Guard against NMI hits inside the critical section; 7059 * see also perf_prepare_sample_aux(). 7060 */ 7061 WRITE_ONCE(rb->aux_in_sampling, 1); 7062 barrier(); 7063 7064 ret = event->pmu->snapshot_aux(event, handle, size); 7065 7066 barrier(); 7067 WRITE_ONCE(rb->aux_in_sampling, 0); 7068 local_irq_restore(flags); 7069 7070 return ret; 7071 } 7072 7073 static void perf_aux_sample_output(struct perf_event *event, 7074 struct perf_output_handle *handle, 7075 struct perf_sample_data *data) 7076 { 7077 struct perf_event *sampler = event->aux_event; 7078 struct perf_buffer *rb; 7079 unsigned long pad; 7080 long size; 7081 7082 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7083 return; 7084 7085 rb = ring_buffer_get(sampler); 7086 if (!rb) 7087 return; 7088 7089 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7090 7091 /* 7092 * An error here means that perf_output_copy() failed (returned a 7093 * non-zero surplus that it didn't copy), which in its current 7094 * enlightened implementation is not possible. If that changes, we'd 7095 * like to know. 7096 */ 7097 if (WARN_ON_ONCE(size < 0)) 7098 goto out_put; 7099 7100 /* 7101 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7102 * perf_prepare_sample_aux(), so should not be more than that. 7103 */ 7104 pad = data->aux_size - size; 7105 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7106 pad = 8; 7107 7108 if (pad) { 7109 u64 zero = 0; 7110 perf_output_copy(handle, &zero, pad); 7111 } 7112 7113 out_put: 7114 ring_buffer_put(rb); 7115 } 7116 7117 /* 7118 * A set of common sample data types saved even for non-sample records 7119 * when event->attr.sample_id_all is set. 7120 */ 7121 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7122 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7123 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7124 7125 static void __perf_event_header__init_id(struct perf_sample_data *data, 7126 struct perf_event *event, 7127 u64 sample_type) 7128 { 7129 data->type = event->attr.sample_type; 7130 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7131 7132 if (sample_type & PERF_SAMPLE_TID) { 7133 /* namespace issues */ 7134 data->tid_entry.pid = perf_event_pid(event, current); 7135 data->tid_entry.tid = perf_event_tid(event, current); 7136 } 7137 7138 if (sample_type & PERF_SAMPLE_TIME) 7139 data->time = perf_event_clock(event); 7140 7141 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7142 data->id = primary_event_id(event); 7143 7144 if (sample_type & PERF_SAMPLE_STREAM_ID) 7145 data->stream_id = event->id; 7146 7147 if (sample_type & PERF_SAMPLE_CPU) { 7148 data->cpu_entry.cpu = raw_smp_processor_id(); 7149 data->cpu_entry.reserved = 0; 7150 } 7151 } 7152 7153 void perf_event_header__init_id(struct perf_event_header *header, 7154 struct perf_sample_data *data, 7155 struct perf_event *event) 7156 { 7157 if (event->attr.sample_id_all) { 7158 header->size += event->id_header_size; 7159 __perf_event_header__init_id(data, event, event->attr.sample_type); 7160 } 7161 } 7162 7163 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7164 struct perf_sample_data *data) 7165 { 7166 u64 sample_type = data->type; 7167 7168 if (sample_type & PERF_SAMPLE_TID) 7169 perf_output_put(handle, data->tid_entry); 7170 7171 if (sample_type & PERF_SAMPLE_TIME) 7172 perf_output_put(handle, data->time); 7173 7174 if (sample_type & PERF_SAMPLE_ID) 7175 perf_output_put(handle, data->id); 7176 7177 if (sample_type & PERF_SAMPLE_STREAM_ID) 7178 perf_output_put(handle, data->stream_id); 7179 7180 if (sample_type & PERF_SAMPLE_CPU) 7181 perf_output_put(handle, data->cpu_entry); 7182 7183 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7184 perf_output_put(handle, data->id); 7185 } 7186 7187 void perf_event__output_id_sample(struct perf_event *event, 7188 struct perf_output_handle *handle, 7189 struct perf_sample_data *sample) 7190 { 7191 if (event->attr.sample_id_all) 7192 __perf_event__output_id_sample(handle, sample); 7193 } 7194 7195 static void perf_output_read_one(struct perf_output_handle *handle, 7196 struct perf_event *event, 7197 u64 enabled, u64 running) 7198 { 7199 u64 read_format = event->attr.read_format; 7200 u64 values[5]; 7201 int n = 0; 7202 7203 values[n++] = perf_event_count(event); 7204 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7205 values[n++] = enabled + 7206 atomic64_read(&event->child_total_time_enabled); 7207 } 7208 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7209 values[n++] = running + 7210 atomic64_read(&event->child_total_time_running); 7211 } 7212 if (read_format & PERF_FORMAT_ID) 7213 values[n++] = primary_event_id(event); 7214 if (read_format & PERF_FORMAT_LOST) 7215 values[n++] = atomic64_read(&event->lost_samples); 7216 7217 __output_copy(handle, values, n * sizeof(u64)); 7218 } 7219 7220 static void perf_output_read_group(struct perf_output_handle *handle, 7221 struct perf_event *event, 7222 u64 enabled, u64 running) 7223 { 7224 struct perf_event *leader = event->group_leader, *sub; 7225 u64 read_format = event->attr.read_format; 7226 unsigned long flags; 7227 u64 values[6]; 7228 int n = 0; 7229 7230 /* 7231 * Disabling interrupts avoids all counter scheduling 7232 * (context switches, timer based rotation and IPIs). 7233 */ 7234 local_irq_save(flags); 7235 7236 values[n++] = 1 + leader->nr_siblings; 7237 7238 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7239 values[n++] = enabled; 7240 7241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7242 values[n++] = running; 7243 7244 if ((leader != event) && 7245 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7246 leader->pmu->read(leader); 7247 7248 values[n++] = perf_event_count(leader); 7249 if (read_format & PERF_FORMAT_ID) 7250 values[n++] = primary_event_id(leader); 7251 if (read_format & PERF_FORMAT_LOST) 7252 values[n++] = atomic64_read(&leader->lost_samples); 7253 7254 __output_copy(handle, values, n * sizeof(u64)); 7255 7256 for_each_sibling_event(sub, leader) { 7257 n = 0; 7258 7259 if ((sub != event) && 7260 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7261 sub->pmu->read(sub); 7262 7263 values[n++] = perf_event_count(sub); 7264 if (read_format & PERF_FORMAT_ID) 7265 values[n++] = primary_event_id(sub); 7266 if (read_format & PERF_FORMAT_LOST) 7267 values[n++] = atomic64_read(&sub->lost_samples); 7268 7269 __output_copy(handle, values, n * sizeof(u64)); 7270 } 7271 7272 local_irq_restore(flags); 7273 } 7274 7275 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7276 PERF_FORMAT_TOTAL_TIME_RUNNING) 7277 7278 /* 7279 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7280 * 7281 * The problem is that its both hard and excessively expensive to iterate the 7282 * child list, not to mention that its impossible to IPI the children running 7283 * on another CPU, from interrupt/NMI context. 7284 */ 7285 static void perf_output_read(struct perf_output_handle *handle, 7286 struct perf_event *event) 7287 { 7288 u64 enabled = 0, running = 0, now; 7289 u64 read_format = event->attr.read_format; 7290 7291 /* 7292 * compute total_time_enabled, total_time_running 7293 * based on snapshot values taken when the event 7294 * was last scheduled in. 7295 * 7296 * we cannot simply called update_context_time() 7297 * because of locking issue as we are called in 7298 * NMI context 7299 */ 7300 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7301 calc_timer_values(event, &now, &enabled, &running); 7302 7303 if (event->attr.read_format & PERF_FORMAT_GROUP) 7304 perf_output_read_group(handle, event, enabled, running); 7305 else 7306 perf_output_read_one(handle, event, enabled, running); 7307 } 7308 7309 void perf_output_sample(struct perf_output_handle *handle, 7310 struct perf_event_header *header, 7311 struct perf_sample_data *data, 7312 struct perf_event *event) 7313 { 7314 u64 sample_type = data->type; 7315 7316 perf_output_put(handle, *header); 7317 7318 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7319 perf_output_put(handle, data->id); 7320 7321 if (sample_type & PERF_SAMPLE_IP) 7322 perf_output_put(handle, data->ip); 7323 7324 if (sample_type & PERF_SAMPLE_TID) 7325 perf_output_put(handle, data->tid_entry); 7326 7327 if (sample_type & PERF_SAMPLE_TIME) 7328 perf_output_put(handle, data->time); 7329 7330 if (sample_type & PERF_SAMPLE_ADDR) 7331 perf_output_put(handle, data->addr); 7332 7333 if (sample_type & PERF_SAMPLE_ID) 7334 perf_output_put(handle, data->id); 7335 7336 if (sample_type & PERF_SAMPLE_STREAM_ID) 7337 perf_output_put(handle, data->stream_id); 7338 7339 if (sample_type & PERF_SAMPLE_CPU) 7340 perf_output_put(handle, data->cpu_entry); 7341 7342 if (sample_type & PERF_SAMPLE_PERIOD) 7343 perf_output_put(handle, data->period); 7344 7345 if (sample_type & PERF_SAMPLE_READ) 7346 perf_output_read(handle, event); 7347 7348 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7349 int size = 1; 7350 7351 size += data->callchain->nr; 7352 size *= sizeof(u64); 7353 __output_copy(handle, data->callchain, size); 7354 } 7355 7356 if (sample_type & PERF_SAMPLE_RAW) { 7357 struct perf_raw_record *raw = data->raw; 7358 7359 if (raw) { 7360 struct perf_raw_frag *frag = &raw->frag; 7361 7362 perf_output_put(handle, raw->size); 7363 do { 7364 if (frag->copy) { 7365 __output_custom(handle, frag->copy, 7366 frag->data, frag->size); 7367 } else { 7368 __output_copy(handle, frag->data, 7369 frag->size); 7370 } 7371 if (perf_raw_frag_last(frag)) 7372 break; 7373 frag = frag->next; 7374 } while (1); 7375 if (frag->pad) 7376 __output_skip(handle, NULL, frag->pad); 7377 } else { 7378 struct { 7379 u32 size; 7380 u32 data; 7381 } raw = { 7382 .size = sizeof(u32), 7383 .data = 0, 7384 }; 7385 perf_output_put(handle, raw); 7386 } 7387 } 7388 7389 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7390 if (data->br_stack) { 7391 size_t size; 7392 7393 size = data->br_stack->nr 7394 * sizeof(struct perf_branch_entry); 7395 7396 perf_output_put(handle, data->br_stack->nr); 7397 if (branch_sample_hw_index(event)) 7398 perf_output_put(handle, data->br_stack->hw_idx); 7399 perf_output_copy(handle, data->br_stack->entries, size); 7400 } else { 7401 /* 7402 * we always store at least the value of nr 7403 */ 7404 u64 nr = 0; 7405 perf_output_put(handle, nr); 7406 } 7407 } 7408 7409 if (sample_type & PERF_SAMPLE_REGS_USER) { 7410 u64 abi = data->regs_user.abi; 7411 7412 /* 7413 * If there are no regs to dump, notice it through 7414 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7415 */ 7416 perf_output_put(handle, abi); 7417 7418 if (abi) { 7419 u64 mask = event->attr.sample_regs_user; 7420 perf_output_sample_regs(handle, 7421 data->regs_user.regs, 7422 mask); 7423 } 7424 } 7425 7426 if (sample_type & PERF_SAMPLE_STACK_USER) { 7427 perf_output_sample_ustack(handle, 7428 data->stack_user_size, 7429 data->regs_user.regs); 7430 } 7431 7432 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7433 perf_output_put(handle, data->weight.full); 7434 7435 if (sample_type & PERF_SAMPLE_DATA_SRC) 7436 perf_output_put(handle, data->data_src.val); 7437 7438 if (sample_type & PERF_SAMPLE_TRANSACTION) 7439 perf_output_put(handle, data->txn); 7440 7441 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7442 u64 abi = data->regs_intr.abi; 7443 /* 7444 * If there are no regs to dump, notice it through 7445 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7446 */ 7447 perf_output_put(handle, abi); 7448 7449 if (abi) { 7450 u64 mask = event->attr.sample_regs_intr; 7451 7452 perf_output_sample_regs(handle, 7453 data->regs_intr.regs, 7454 mask); 7455 } 7456 } 7457 7458 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7459 perf_output_put(handle, data->phys_addr); 7460 7461 if (sample_type & PERF_SAMPLE_CGROUP) 7462 perf_output_put(handle, data->cgroup); 7463 7464 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7465 perf_output_put(handle, data->data_page_size); 7466 7467 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7468 perf_output_put(handle, data->code_page_size); 7469 7470 if (sample_type & PERF_SAMPLE_AUX) { 7471 perf_output_put(handle, data->aux_size); 7472 7473 if (data->aux_size) 7474 perf_aux_sample_output(event, handle, data); 7475 } 7476 7477 if (!event->attr.watermark) { 7478 int wakeup_events = event->attr.wakeup_events; 7479 7480 if (wakeup_events) { 7481 struct perf_buffer *rb = handle->rb; 7482 int events = local_inc_return(&rb->events); 7483 7484 if (events >= wakeup_events) { 7485 local_sub(wakeup_events, &rb->events); 7486 local_inc(&rb->wakeup); 7487 } 7488 } 7489 } 7490 } 7491 7492 static u64 perf_virt_to_phys(u64 virt) 7493 { 7494 u64 phys_addr = 0; 7495 7496 if (!virt) 7497 return 0; 7498 7499 if (virt >= TASK_SIZE) { 7500 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7501 if (virt_addr_valid((void *)(uintptr_t)virt) && 7502 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7503 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7504 } else { 7505 /* 7506 * Walking the pages tables for user address. 7507 * Interrupts are disabled, so it prevents any tear down 7508 * of the page tables. 7509 * Try IRQ-safe get_user_page_fast_only first. 7510 * If failed, leave phys_addr as 0. 7511 */ 7512 if (current->mm != NULL) { 7513 struct page *p; 7514 7515 pagefault_disable(); 7516 if (get_user_page_fast_only(virt, 0, &p)) { 7517 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7518 put_page(p); 7519 } 7520 pagefault_enable(); 7521 } 7522 } 7523 7524 return phys_addr; 7525 } 7526 7527 /* 7528 * Return the pagetable size of a given virtual address. 7529 */ 7530 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7531 { 7532 u64 size = 0; 7533 7534 #ifdef CONFIG_HAVE_FAST_GUP 7535 pgd_t *pgdp, pgd; 7536 p4d_t *p4dp, p4d; 7537 pud_t *pudp, pud; 7538 pmd_t *pmdp, pmd; 7539 pte_t *ptep, pte; 7540 7541 pgdp = pgd_offset(mm, addr); 7542 pgd = READ_ONCE(*pgdp); 7543 if (pgd_none(pgd)) 7544 return 0; 7545 7546 if (pgd_leaf(pgd)) 7547 return pgd_leaf_size(pgd); 7548 7549 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7550 p4d = READ_ONCE(*p4dp); 7551 if (!p4d_present(p4d)) 7552 return 0; 7553 7554 if (p4d_leaf(p4d)) 7555 return p4d_leaf_size(p4d); 7556 7557 pudp = pud_offset_lockless(p4dp, p4d, addr); 7558 pud = READ_ONCE(*pudp); 7559 if (!pud_present(pud)) 7560 return 0; 7561 7562 if (pud_leaf(pud)) 7563 return pud_leaf_size(pud); 7564 7565 pmdp = pmd_offset_lockless(pudp, pud, addr); 7566 again: 7567 pmd = pmdp_get_lockless(pmdp); 7568 if (!pmd_present(pmd)) 7569 return 0; 7570 7571 if (pmd_leaf(pmd)) 7572 return pmd_leaf_size(pmd); 7573 7574 ptep = pte_offset_map(&pmd, addr); 7575 if (!ptep) 7576 goto again; 7577 7578 pte = ptep_get_lockless(ptep); 7579 if (pte_present(pte)) 7580 size = pte_leaf_size(pte); 7581 pte_unmap(ptep); 7582 #endif /* CONFIG_HAVE_FAST_GUP */ 7583 7584 return size; 7585 } 7586 7587 static u64 perf_get_page_size(unsigned long addr) 7588 { 7589 struct mm_struct *mm; 7590 unsigned long flags; 7591 u64 size; 7592 7593 if (!addr) 7594 return 0; 7595 7596 /* 7597 * Software page-table walkers must disable IRQs, 7598 * which prevents any tear down of the page tables. 7599 */ 7600 local_irq_save(flags); 7601 7602 mm = current->mm; 7603 if (!mm) { 7604 /* 7605 * For kernel threads and the like, use init_mm so that 7606 * we can find kernel memory. 7607 */ 7608 mm = &init_mm; 7609 } 7610 7611 size = perf_get_pgtable_size(mm, addr); 7612 7613 local_irq_restore(flags); 7614 7615 return size; 7616 } 7617 7618 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7619 7620 struct perf_callchain_entry * 7621 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7622 { 7623 bool kernel = !event->attr.exclude_callchain_kernel; 7624 bool user = !event->attr.exclude_callchain_user; 7625 /* Disallow cross-task user callchains. */ 7626 bool crosstask = event->ctx->task && event->ctx->task != current; 7627 const u32 max_stack = event->attr.sample_max_stack; 7628 struct perf_callchain_entry *callchain; 7629 7630 if (!kernel && !user) 7631 return &__empty_callchain; 7632 7633 callchain = get_perf_callchain(regs, 0, kernel, user, 7634 max_stack, crosstask, true); 7635 return callchain ?: &__empty_callchain; 7636 } 7637 7638 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7639 { 7640 return d * !!(flags & s); 7641 } 7642 7643 void perf_prepare_sample(struct perf_sample_data *data, 7644 struct perf_event *event, 7645 struct pt_regs *regs) 7646 { 7647 u64 sample_type = event->attr.sample_type; 7648 u64 filtered_sample_type; 7649 7650 /* 7651 * Add the sample flags that are dependent to others. And clear the 7652 * sample flags that have already been done by the PMU driver. 7653 */ 7654 filtered_sample_type = sample_type; 7655 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7656 PERF_SAMPLE_IP); 7657 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7658 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7659 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7660 PERF_SAMPLE_REGS_USER); 7661 filtered_sample_type &= ~data->sample_flags; 7662 7663 if (filtered_sample_type == 0) { 7664 /* Make sure it has the correct data->type for output */ 7665 data->type = event->attr.sample_type; 7666 return; 7667 } 7668 7669 __perf_event_header__init_id(data, event, filtered_sample_type); 7670 7671 if (filtered_sample_type & PERF_SAMPLE_IP) { 7672 data->ip = perf_instruction_pointer(regs); 7673 data->sample_flags |= PERF_SAMPLE_IP; 7674 } 7675 7676 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7677 perf_sample_save_callchain(data, event, regs); 7678 7679 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7680 data->raw = NULL; 7681 data->dyn_size += sizeof(u64); 7682 data->sample_flags |= PERF_SAMPLE_RAW; 7683 } 7684 7685 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7686 data->br_stack = NULL; 7687 data->dyn_size += sizeof(u64); 7688 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7689 } 7690 7691 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7692 perf_sample_regs_user(&data->regs_user, regs); 7693 7694 /* 7695 * It cannot use the filtered_sample_type here as REGS_USER can be set 7696 * by STACK_USER (using __cond_set() above) and we don't want to update 7697 * the dyn_size if it's not requested by users. 7698 */ 7699 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7700 /* regs dump ABI info */ 7701 int size = sizeof(u64); 7702 7703 if (data->regs_user.regs) { 7704 u64 mask = event->attr.sample_regs_user; 7705 size += hweight64(mask) * sizeof(u64); 7706 } 7707 7708 data->dyn_size += size; 7709 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7710 } 7711 7712 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7713 /* 7714 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7715 * processed as the last one or have additional check added 7716 * in case new sample type is added, because we could eat 7717 * up the rest of the sample size. 7718 */ 7719 u16 stack_size = event->attr.sample_stack_user; 7720 u16 header_size = perf_sample_data_size(data, event); 7721 u16 size = sizeof(u64); 7722 7723 stack_size = perf_sample_ustack_size(stack_size, header_size, 7724 data->regs_user.regs); 7725 7726 /* 7727 * If there is something to dump, add space for the dump 7728 * itself and for the field that tells the dynamic size, 7729 * which is how many have been actually dumped. 7730 */ 7731 if (stack_size) 7732 size += sizeof(u64) + stack_size; 7733 7734 data->stack_user_size = stack_size; 7735 data->dyn_size += size; 7736 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7737 } 7738 7739 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7740 data->weight.full = 0; 7741 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7742 } 7743 7744 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7745 data->data_src.val = PERF_MEM_NA; 7746 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7747 } 7748 7749 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7750 data->txn = 0; 7751 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7752 } 7753 7754 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7755 data->addr = 0; 7756 data->sample_flags |= PERF_SAMPLE_ADDR; 7757 } 7758 7759 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7760 /* regs dump ABI info */ 7761 int size = sizeof(u64); 7762 7763 perf_sample_regs_intr(&data->regs_intr, regs); 7764 7765 if (data->regs_intr.regs) { 7766 u64 mask = event->attr.sample_regs_intr; 7767 7768 size += hweight64(mask) * sizeof(u64); 7769 } 7770 7771 data->dyn_size += size; 7772 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7773 } 7774 7775 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7776 data->phys_addr = perf_virt_to_phys(data->addr); 7777 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7778 } 7779 7780 #ifdef CONFIG_CGROUP_PERF 7781 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7782 struct cgroup *cgrp; 7783 7784 /* protected by RCU */ 7785 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7786 data->cgroup = cgroup_id(cgrp); 7787 data->sample_flags |= PERF_SAMPLE_CGROUP; 7788 } 7789 #endif 7790 7791 /* 7792 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7793 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7794 * but the value will not dump to the userspace. 7795 */ 7796 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7797 data->data_page_size = perf_get_page_size(data->addr); 7798 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7799 } 7800 7801 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7802 data->code_page_size = perf_get_page_size(data->ip); 7803 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7804 } 7805 7806 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7807 u64 size; 7808 u16 header_size = perf_sample_data_size(data, event); 7809 7810 header_size += sizeof(u64); /* size */ 7811 7812 /* 7813 * Given the 16bit nature of header::size, an AUX sample can 7814 * easily overflow it, what with all the preceding sample bits. 7815 * Make sure this doesn't happen by using up to U16_MAX bytes 7816 * per sample in total (rounded down to 8 byte boundary). 7817 */ 7818 size = min_t(size_t, U16_MAX - header_size, 7819 event->attr.aux_sample_size); 7820 size = rounddown(size, 8); 7821 size = perf_prepare_sample_aux(event, data, size); 7822 7823 WARN_ON_ONCE(size + header_size > U16_MAX); 7824 data->dyn_size += size + sizeof(u64); /* size above */ 7825 data->sample_flags |= PERF_SAMPLE_AUX; 7826 } 7827 } 7828 7829 void perf_prepare_header(struct perf_event_header *header, 7830 struct perf_sample_data *data, 7831 struct perf_event *event, 7832 struct pt_regs *regs) 7833 { 7834 header->type = PERF_RECORD_SAMPLE; 7835 header->size = perf_sample_data_size(data, event); 7836 header->misc = perf_misc_flags(regs); 7837 7838 /* 7839 * If you're adding more sample types here, you likely need to do 7840 * something about the overflowing header::size, like repurpose the 7841 * lowest 3 bits of size, which should be always zero at the moment. 7842 * This raises a more important question, do we really need 512k sized 7843 * samples and why, so good argumentation is in order for whatever you 7844 * do here next. 7845 */ 7846 WARN_ON_ONCE(header->size & 7); 7847 } 7848 7849 static __always_inline int 7850 __perf_event_output(struct perf_event *event, 7851 struct perf_sample_data *data, 7852 struct pt_regs *regs, 7853 int (*output_begin)(struct perf_output_handle *, 7854 struct perf_sample_data *, 7855 struct perf_event *, 7856 unsigned int)) 7857 { 7858 struct perf_output_handle handle; 7859 struct perf_event_header header; 7860 int err; 7861 7862 /* protect the callchain buffers */ 7863 rcu_read_lock(); 7864 7865 perf_prepare_sample(data, event, regs); 7866 perf_prepare_header(&header, data, event, regs); 7867 7868 err = output_begin(&handle, data, event, header.size); 7869 if (err) 7870 goto exit; 7871 7872 perf_output_sample(&handle, &header, data, event); 7873 7874 perf_output_end(&handle); 7875 7876 exit: 7877 rcu_read_unlock(); 7878 return err; 7879 } 7880 7881 void 7882 perf_event_output_forward(struct perf_event *event, 7883 struct perf_sample_data *data, 7884 struct pt_regs *regs) 7885 { 7886 __perf_event_output(event, data, regs, perf_output_begin_forward); 7887 } 7888 7889 void 7890 perf_event_output_backward(struct perf_event *event, 7891 struct perf_sample_data *data, 7892 struct pt_regs *regs) 7893 { 7894 __perf_event_output(event, data, regs, perf_output_begin_backward); 7895 } 7896 7897 int 7898 perf_event_output(struct perf_event *event, 7899 struct perf_sample_data *data, 7900 struct pt_regs *regs) 7901 { 7902 return __perf_event_output(event, data, regs, perf_output_begin); 7903 } 7904 7905 /* 7906 * read event_id 7907 */ 7908 7909 struct perf_read_event { 7910 struct perf_event_header header; 7911 7912 u32 pid; 7913 u32 tid; 7914 }; 7915 7916 static void 7917 perf_event_read_event(struct perf_event *event, 7918 struct task_struct *task) 7919 { 7920 struct perf_output_handle handle; 7921 struct perf_sample_data sample; 7922 struct perf_read_event read_event = { 7923 .header = { 7924 .type = PERF_RECORD_READ, 7925 .misc = 0, 7926 .size = sizeof(read_event) + event->read_size, 7927 }, 7928 .pid = perf_event_pid(event, task), 7929 .tid = perf_event_tid(event, task), 7930 }; 7931 int ret; 7932 7933 perf_event_header__init_id(&read_event.header, &sample, event); 7934 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7935 if (ret) 7936 return; 7937 7938 perf_output_put(&handle, read_event); 7939 perf_output_read(&handle, event); 7940 perf_event__output_id_sample(event, &handle, &sample); 7941 7942 perf_output_end(&handle); 7943 } 7944 7945 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7946 7947 static void 7948 perf_iterate_ctx(struct perf_event_context *ctx, 7949 perf_iterate_f output, 7950 void *data, bool all) 7951 { 7952 struct perf_event *event; 7953 7954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7955 if (!all) { 7956 if (event->state < PERF_EVENT_STATE_INACTIVE) 7957 continue; 7958 if (!event_filter_match(event)) 7959 continue; 7960 } 7961 7962 output(event, data); 7963 } 7964 } 7965 7966 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7967 { 7968 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7969 struct perf_event *event; 7970 7971 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7972 /* 7973 * Skip events that are not fully formed yet; ensure that 7974 * if we observe event->ctx, both event and ctx will be 7975 * complete enough. See perf_install_in_context(). 7976 */ 7977 if (!smp_load_acquire(&event->ctx)) 7978 continue; 7979 7980 if (event->state < PERF_EVENT_STATE_INACTIVE) 7981 continue; 7982 if (!event_filter_match(event)) 7983 continue; 7984 output(event, data); 7985 } 7986 } 7987 7988 /* 7989 * Iterate all events that need to receive side-band events. 7990 * 7991 * For new callers; ensure that account_pmu_sb_event() includes 7992 * your event, otherwise it might not get delivered. 7993 */ 7994 static void 7995 perf_iterate_sb(perf_iterate_f output, void *data, 7996 struct perf_event_context *task_ctx) 7997 { 7998 struct perf_event_context *ctx; 7999 8000 rcu_read_lock(); 8001 preempt_disable(); 8002 8003 /* 8004 * If we have task_ctx != NULL we only notify the task context itself. 8005 * The task_ctx is set only for EXIT events before releasing task 8006 * context. 8007 */ 8008 if (task_ctx) { 8009 perf_iterate_ctx(task_ctx, output, data, false); 8010 goto done; 8011 } 8012 8013 perf_iterate_sb_cpu(output, data); 8014 8015 ctx = rcu_dereference(current->perf_event_ctxp); 8016 if (ctx) 8017 perf_iterate_ctx(ctx, output, data, false); 8018 done: 8019 preempt_enable(); 8020 rcu_read_unlock(); 8021 } 8022 8023 /* 8024 * Clear all file-based filters at exec, they'll have to be 8025 * re-instated when/if these objects are mmapped again. 8026 */ 8027 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8028 { 8029 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8030 struct perf_addr_filter *filter; 8031 unsigned int restart = 0, count = 0; 8032 unsigned long flags; 8033 8034 if (!has_addr_filter(event)) 8035 return; 8036 8037 raw_spin_lock_irqsave(&ifh->lock, flags); 8038 list_for_each_entry(filter, &ifh->list, entry) { 8039 if (filter->path.dentry) { 8040 event->addr_filter_ranges[count].start = 0; 8041 event->addr_filter_ranges[count].size = 0; 8042 restart++; 8043 } 8044 8045 count++; 8046 } 8047 8048 if (restart) 8049 event->addr_filters_gen++; 8050 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8051 8052 if (restart) 8053 perf_event_stop(event, 1); 8054 } 8055 8056 void perf_event_exec(void) 8057 { 8058 struct perf_event_context *ctx; 8059 8060 ctx = perf_pin_task_context(current); 8061 if (!ctx) 8062 return; 8063 8064 perf_event_enable_on_exec(ctx); 8065 perf_event_remove_on_exec(ctx); 8066 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8067 8068 perf_unpin_context(ctx); 8069 put_ctx(ctx); 8070 } 8071 8072 struct remote_output { 8073 struct perf_buffer *rb; 8074 int err; 8075 }; 8076 8077 static void __perf_event_output_stop(struct perf_event *event, void *data) 8078 { 8079 struct perf_event *parent = event->parent; 8080 struct remote_output *ro = data; 8081 struct perf_buffer *rb = ro->rb; 8082 struct stop_event_data sd = { 8083 .event = event, 8084 }; 8085 8086 if (!has_aux(event)) 8087 return; 8088 8089 if (!parent) 8090 parent = event; 8091 8092 /* 8093 * In case of inheritance, it will be the parent that links to the 8094 * ring-buffer, but it will be the child that's actually using it. 8095 * 8096 * We are using event::rb to determine if the event should be stopped, 8097 * however this may race with ring_buffer_attach() (through set_output), 8098 * which will make us skip the event that actually needs to be stopped. 8099 * So ring_buffer_attach() has to stop an aux event before re-assigning 8100 * its rb pointer. 8101 */ 8102 if (rcu_dereference(parent->rb) == rb) 8103 ro->err = __perf_event_stop(&sd); 8104 } 8105 8106 static int __perf_pmu_output_stop(void *info) 8107 { 8108 struct perf_event *event = info; 8109 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8110 struct remote_output ro = { 8111 .rb = event->rb, 8112 }; 8113 8114 rcu_read_lock(); 8115 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8116 if (cpuctx->task_ctx) 8117 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8118 &ro, false); 8119 rcu_read_unlock(); 8120 8121 return ro.err; 8122 } 8123 8124 static void perf_pmu_output_stop(struct perf_event *event) 8125 { 8126 struct perf_event *iter; 8127 int err, cpu; 8128 8129 restart: 8130 rcu_read_lock(); 8131 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8132 /* 8133 * For per-CPU events, we need to make sure that neither they 8134 * nor their children are running; for cpu==-1 events it's 8135 * sufficient to stop the event itself if it's active, since 8136 * it can't have children. 8137 */ 8138 cpu = iter->cpu; 8139 if (cpu == -1) 8140 cpu = READ_ONCE(iter->oncpu); 8141 8142 if (cpu == -1) 8143 continue; 8144 8145 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8146 if (err == -EAGAIN) { 8147 rcu_read_unlock(); 8148 goto restart; 8149 } 8150 } 8151 rcu_read_unlock(); 8152 } 8153 8154 /* 8155 * task tracking -- fork/exit 8156 * 8157 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8158 */ 8159 8160 struct perf_task_event { 8161 struct task_struct *task; 8162 struct perf_event_context *task_ctx; 8163 8164 struct { 8165 struct perf_event_header header; 8166 8167 u32 pid; 8168 u32 ppid; 8169 u32 tid; 8170 u32 ptid; 8171 u64 time; 8172 } event_id; 8173 }; 8174 8175 static int perf_event_task_match(struct perf_event *event) 8176 { 8177 return event->attr.comm || event->attr.mmap || 8178 event->attr.mmap2 || event->attr.mmap_data || 8179 event->attr.task; 8180 } 8181 8182 static void perf_event_task_output(struct perf_event *event, 8183 void *data) 8184 { 8185 struct perf_task_event *task_event = data; 8186 struct perf_output_handle handle; 8187 struct perf_sample_data sample; 8188 struct task_struct *task = task_event->task; 8189 int ret, size = task_event->event_id.header.size; 8190 8191 if (!perf_event_task_match(event)) 8192 return; 8193 8194 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8195 8196 ret = perf_output_begin(&handle, &sample, event, 8197 task_event->event_id.header.size); 8198 if (ret) 8199 goto out; 8200 8201 task_event->event_id.pid = perf_event_pid(event, task); 8202 task_event->event_id.tid = perf_event_tid(event, task); 8203 8204 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8205 task_event->event_id.ppid = perf_event_pid(event, 8206 task->real_parent); 8207 task_event->event_id.ptid = perf_event_pid(event, 8208 task->real_parent); 8209 } else { /* PERF_RECORD_FORK */ 8210 task_event->event_id.ppid = perf_event_pid(event, current); 8211 task_event->event_id.ptid = perf_event_tid(event, current); 8212 } 8213 8214 task_event->event_id.time = perf_event_clock(event); 8215 8216 perf_output_put(&handle, task_event->event_id); 8217 8218 perf_event__output_id_sample(event, &handle, &sample); 8219 8220 perf_output_end(&handle); 8221 out: 8222 task_event->event_id.header.size = size; 8223 } 8224 8225 static void perf_event_task(struct task_struct *task, 8226 struct perf_event_context *task_ctx, 8227 int new) 8228 { 8229 struct perf_task_event task_event; 8230 8231 if (!atomic_read(&nr_comm_events) && 8232 !atomic_read(&nr_mmap_events) && 8233 !atomic_read(&nr_task_events)) 8234 return; 8235 8236 task_event = (struct perf_task_event){ 8237 .task = task, 8238 .task_ctx = task_ctx, 8239 .event_id = { 8240 .header = { 8241 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8242 .misc = 0, 8243 .size = sizeof(task_event.event_id), 8244 }, 8245 /* .pid */ 8246 /* .ppid */ 8247 /* .tid */ 8248 /* .ptid */ 8249 /* .time */ 8250 }, 8251 }; 8252 8253 perf_iterate_sb(perf_event_task_output, 8254 &task_event, 8255 task_ctx); 8256 } 8257 8258 void perf_event_fork(struct task_struct *task) 8259 { 8260 perf_event_task(task, NULL, 1); 8261 perf_event_namespaces(task); 8262 } 8263 8264 /* 8265 * comm tracking 8266 */ 8267 8268 struct perf_comm_event { 8269 struct task_struct *task; 8270 char *comm; 8271 int comm_size; 8272 8273 struct { 8274 struct perf_event_header header; 8275 8276 u32 pid; 8277 u32 tid; 8278 } event_id; 8279 }; 8280 8281 static int perf_event_comm_match(struct perf_event *event) 8282 { 8283 return event->attr.comm; 8284 } 8285 8286 static void perf_event_comm_output(struct perf_event *event, 8287 void *data) 8288 { 8289 struct perf_comm_event *comm_event = data; 8290 struct perf_output_handle handle; 8291 struct perf_sample_data sample; 8292 int size = comm_event->event_id.header.size; 8293 int ret; 8294 8295 if (!perf_event_comm_match(event)) 8296 return; 8297 8298 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8299 ret = perf_output_begin(&handle, &sample, event, 8300 comm_event->event_id.header.size); 8301 8302 if (ret) 8303 goto out; 8304 8305 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8306 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8307 8308 perf_output_put(&handle, comm_event->event_id); 8309 __output_copy(&handle, comm_event->comm, 8310 comm_event->comm_size); 8311 8312 perf_event__output_id_sample(event, &handle, &sample); 8313 8314 perf_output_end(&handle); 8315 out: 8316 comm_event->event_id.header.size = size; 8317 } 8318 8319 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8320 { 8321 char comm[TASK_COMM_LEN]; 8322 unsigned int size; 8323 8324 memset(comm, 0, sizeof(comm)); 8325 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8326 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8327 8328 comm_event->comm = comm; 8329 comm_event->comm_size = size; 8330 8331 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8332 8333 perf_iterate_sb(perf_event_comm_output, 8334 comm_event, 8335 NULL); 8336 } 8337 8338 void perf_event_comm(struct task_struct *task, bool exec) 8339 { 8340 struct perf_comm_event comm_event; 8341 8342 if (!atomic_read(&nr_comm_events)) 8343 return; 8344 8345 comm_event = (struct perf_comm_event){ 8346 .task = task, 8347 /* .comm */ 8348 /* .comm_size */ 8349 .event_id = { 8350 .header = { 8351 .type = PERF_RECORD_COMM, 8352 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8353 /* .size */ 8354 }, 8355 /* .pid */ 8356 /* .tid */ 8357 }, 8358 }; 8359 8360 perf_event_comm_event(&comm_event); 8361 } 8362 8363 /* 8364 * namespaces tracking 8365 */ 8366 8367 struct perf_namespaces_event { 8368 struct task_struct *task; 8369 8370 struct { 8371 struct perf_event_header header; 8372 8373 u32 pid; 8374 u32 tid; 8375 u64 nr_namespaces; 8376 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8377 } event_id; 8378 }; 8379 8380 static int perf_event_namespaces_match(struct perf_event *event) 8381 { 8382 return event->attr.namespaces; 8383 } 8384 8385 static void perf_event_namespaces_output(struct perf_event *event, 8386 void *data) 8387 { 8388 struct perf_namespaces_event *namespaces_event = data; 8389 struct perf_output_handle handle; 8390 struct perf_sample_data sample; 8391 u16 header_size = namespaces_event->event_id.header.size; 8392 int ret; 8393 8394 if (!perf_event_namespaces_match(event)) 8395 return; 8396 8397 perf_event_header__init_id(&namespaces_event->event_id.header, 8398 &sample, event); 8399 ret = perf_output_begin(&handle, &sample, event, 8400 namespaces_event->event_id.header.size); 8401 if (ret) 8402 goto out; 8403 8404 namespaces_event->event_id.pid = perf_event_pid(event, 8405 namespaces_event->task); 8406 namespaces_event->event_id.tid = perf_event_tid(event, 8407 namespaces_event->task); 8408 8409 perf_output_put(&handle, namespaces_event->event_id); 8410 8411 perf_event__output_id_sample(event, &handle, &sample); 8412 8413 perf_output_end(&handle); 8414 out: 8415 namespaces_event->event_id.header.size = header_size; 8416 } 8417 8418 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8419 struct task_struct *task, 8420 const struct proc_ns_operations *ns_ops) 8421 { 8422 struct path ns_path; 8423 struct inode *ns_inode; 8424 int error; 8425 8426 error = ns_get_path(&ns_path, task, ns_ops); 8427 if (!error) { 8428 ns_inode = ns_path.dentry->d_inode; 8429 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8430 ns_link_info->ino = ns_inode->i_ino; 8431 path_put(&ns_path); 8432 } 8433 } 8434 8435 void perf_event_namespaces(struct task_struct *task) 8436 { 8437 struct perf_namespaces_event namespaces_event; 8438 struct perf_ns_link_info *ns_link_info; 8439 8440 if (!atomic_read(&nr_namespaces_events)) 8441 return; 8442 8443 namespaces_event = (struct perf_namespaces_event){ 8444 .task = task, 8445 .event_id = { 8446 .header = { 8447 .type = PERF_RECORD_NAMESPACES, 8448 .misc = 0, 8449 .size = sizeof(namespaces_event.event_id), 8450 }, 8451 /* .pid */ 8452 /* .tid */ 8453 .nr_namespaces = NR_NAMESPACES, 8454 /* .link_info[NR_NAMESPACES] */ 8455 }, 8456 }; 8457 8458 ns_link_info = namespaces_event.event_id.link_info; 8459 8460 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8461 task, &mntns_operations); 8462 8463 #ifdef CONFIG_USER_NS 8464 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8465 task, &userns_operations); 8466 #endif 8467 #ifdef CONFIG_NET_NS 8468 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8469 task, &netns_operations); 8470 #endif 8471 #ifdef CONFIG_UTS_NS 8472 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8473 task, &utsns_operations); 8474 #endif 8475 #ifdef CONFIG_IPC_NS 8476 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8477 task, &ipcns_operations); 8478 #endif 8479 #ifdef CONFIG_PID_NS 8480 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8481 task, &pidns_operations); 8482 #endif 8483 #ifdef CONFIG_CGROUPS 8484 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8485 task, &cgroupns_operations); 8486 #endif 8487 8488 perf_iterate_sb(perf_event_namespaces_output, 8489 &namespaces_event, 8490 NULL); 8491 } 8492 8493 /* 8494 * cgroup tracking 8495 */ 8496 #ifdef CONFIG_CGROUP_PERF 8497 8498 struct perf_cgroup_event { 8499 char *path; 8500 int path_size; 8501 struct { 8502 struct perf_event_header header; 8503 u64 id; 8504 char path[]; 8505 } event_id; 8506 }; 8507 8508 static int perf_event_cgroup_match(struct perf_event *event) 8509 { 8510 return event->attr.cgroup; 8511 } 8512 8513 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8514 { 8515 struct perf_cgroup_event *cgroup_event = data; 8516 struct perf_output_handle handle; 8517 struct perf_sample_data sample; 8518 u16 header_size = cgroup_event->event_id.header.size; 8519 int ret; 8520 8521 if (!perf_event_cgroup_match(event)) 8522 return; 8523 8524 perf_event_header__init_id(&cgroup_event->event_id.header, 8525 &sample, event); 8526 ret = perf_output_begin(&handle, &sample, event, 8527 cgroup_event->event_id.header.size); 8528 if (ret) 8529 goto out; 8530 8531 perf_output_put(&handle, cgroup_event->event_id); 8532 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8533 8534 perf_event__output_id_sample(event, &handle, &sample); 8535 8536 perf_output_end(&handle); 8537 out: 8538 cgroup_event->event_id.header.size = header_size; 8539 } 8540 8541 static void perf_event_cgroup(struct cgroup *cgrp) 8542 { 8543 struct perf_cgroup_event cgroup_event; 8544 char path_enomem[16] = "//enomem"; 8545 char *pathname; 8546 size_t size; 8547 8548 if (!atomic_read(&nr_cgroup_events)) 8549 return; 8550 8551 cgroup_event = (struct perf_cgroup_event){ 8552 .event_id = { 8553 .header = { 8554 .type = PERF_RECORD_CGROUP, 8555 .misc = 0, 8556 .size = sizeof(cgroup_event.event_id), 8557 }, 8558 .id = cgroup_id(cgrp), 8559 }, 8560 }; 8561 8562 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8563 if (pathname == NULL) { 8564 cgroup_event.path = path_enomem; 8565 } else { 8566 /* just to be sure to have enough space for alignment */ 8567 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8568 cgroup_event.path = pathname; 8569 } 8570 8571 /* 8572 * Since our buffer works in 8 byte units we need to align our string 8573 * size to a multiple of 8. However, we must guarantee the tail end is 8574 * zero'd out to avoid leaking random bits to userspace. 8575 */ 8576 size = strlen(cgroup_event.path) + 1; 8577 while (!IS_ALIGNED(size, sizeof(u64))) 8578 cgroup_event.path[size++] = '\0'; 8579 8580 cgroup_event.event_id.header.size += size; 8581 cgroup_event.path_size = size; 8582 8583 perf_iterate_sb(perf_event_cgroup_output, 8584 &cgroup_event, 8585 NULL); 8586 8587 kfree(pathname); 8588 } 8589 8590 #endif 8591 8592 /* 8593 * mmap tracking 8594 */ 8595 8596 struct perf_mmap_event { 8597 struct vm_area_struct *vma; 8598 8599 const char *file_name; 8600 int file_size; 8601 int maj, min; 8602 u64 ino; 8603 u64 ino_generation; 8604 u32 prot, flags; 8605 u8 build_id[BUILD_ID_SIZE_MAX]; 8606 u32 build_id_size; 8607 8608 struct { 8609 struct perf_event_header header; 8610 8611 u32 pid; 8612 u32 tid; 8613 u64 start; 8614 u64 len; 8615 u64 pgoff; 8616 } event_id; 8617 }; 8618 8619 static int perf_event_mmap_match(struct perf_event *event, 8620 void *data) 8621 { 8622 struct perf_mmap_event *mmap_event = data; 8623 struct vm_area_struct *vma = mmap_event->vma; 8624 int executable = vma->vm_flags & VM_EXEC; 8625 8626 return (!executable && event->attr.mmap_data) || 8627 (executable && (event->attr.mmap || event->attr.mmap2)); 8628 } 8629 8630 static void perf_event_mmap_output(struct perf_event *event, 8631 void *data) 8632 { 8633 struct perf_mmap_event *mmap_event = data; 8634 struct perf_output_handle handle; 8635 struct perf_sample_data sample; 8636 int size = mmap_event->event_id.header.size; 8637 u32 type = mmap_event->event_id.header.type; 8638 bool use_build_id; 8639 int ret; 8640 8641 if (!perf_event_mmap_match(event, data)) 8642 return; 8643 8644 if (event->attr.mmap2) { 8645 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8646 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8647 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8648 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8649 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8650 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8651 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8652 } 8653 8654 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8655 ret = perf_output_begin(&handle, &sample, event, 8656 mmap_event->event_id.header.size); 8657 if (ret) 8658 goto out; 8659 8660 mmap_event->event_id.pid = perf_event_pid(event, current); 8661 mmap_event->event_id.tid = perf_event_tid(event, current); 8662 8663 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8664 8665 if (event->attr.mmap2 && use_build_id) 8666 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8667 8668 perf_output_put(&handle, mmap_event->event_id); 8669 8670 if (event->attr.mmap2) { 8671 if (use_build_id) { 8672 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8673 8674 __output_copy(&handle, size, 4); 8675 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8676 } else { 8677 perf_output_put(&handle, mmap_event->maj); 8678 perf_output_put(&handle, mmap_event->min); 8679 perf_output_put(&handle, mmap_event->ino); 8680 perf_output_put(&handle, mmap_event->ino_generation); 8681 } 8682 perf_output_put(&handle, mmap_event->prot); 8683 perf_output_put(&handle, mmap_event->flags); 8684 } 8685 8686 __output_copy(&handle, mmap_event->file_name, 8687 mmap_event->file_size); 8688 8689 perf_event__output_id_sample(event, &handle, &sample); 8690 8691 perf_output_end(&handle); 8692 out: 8693 mmap_event->event_id.header.size = size; 8694 mmap_event->event_id.header.type = type; 8695 } 8696 8697 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8698 { 8699 struct vm_area_struct *vma = mmap_event->vma; 8700 struct file *file = vma->vm_file; 8701 int maj = 0, min = 0; 8702 u64 ino = 0, gen = 0; 8703 u32 prot = 0, flags = 0; 8704 unsigned int size; 8705 char tmp[16]; 8706 char *buf = NULL; 8707 char *name = NULL; 8708 8709 if (vma->vm_flags & VM_READ) 8710 prot |= PROT_READ; 8711 if (vma->vm_flags & VM_WRITE) 8712 prot |= PROT_WRITE; 8713 if (vma->vm_flags & VM_EXEC) 8714 prot |= PROT_EXEC; 8715 8716 if (vma->vm_flags & VM_MAYSHARE) 8717 flags = MAP_SHARED; 8718 else 8719 flags = MAP_PRIVATE; 8720 8721 if (vma->vm_flags & VM_LOCKED) 8722 flags |= MAP_LOCKED; 8723 if (is_vm_hugetlb_page(vma)) 8724 flags |= MAP_HUGETLB; 8725 8726 if (file) { 8727 struct inode *inode; 8728 dev_t dev; 8729 8730 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8731 if (!buf) { 8732 name = "//enomem"; 8733 goto cpy_name; 8734 } 8735 /* 8736 * d_path() works from the end of the rb backwards, so we 8737 * need to add enough zero bytes after the string to handle 8738 * the 64bit alignment we do later. 8739 */ 8740 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8741 if (IS_ERR(name)) { 8742 name = "//toolong"; 8743 goto cpy_name; 8744 } 8745 inode = file_inode(vma->vm_file); 8746 dev = inode->i_sb->s_dev; 8747 ino = inode->i_ino; 8748 gen = inode->i_generation; 8749 maj = MAJOR(dev); 8750 min = MINOR(dev); 8751 8752 goto got_name; 8753 } else { 8754 if (vma->vm_ops && vma->vm_ops->name) 8755 name = (char *) vma->vm_ops->name(vma); 8756 if (!name) 8757 name = (char *)arch_vma_name(vma); 8758 if (!name) { 8759 if (vma_is_initial_heap(vma)) 8760 name = "[heap]"; 8761 else if (vma_is_initial_stack(vma)) 8762 name = "[stack]"; 8763 else 8764 name = "//anon"; 8765 } 8766 } 8767 8768 cpy_name: 8769 strscpy(tmp, name, sizeof(tmp)); 8770 name = tmp; 8771 got_name: 8772 /* 8773 * Since our buffer works in 8 byte units we need to align our string 8774 * size to a multiple of 8. However, we must guarantee the tail end is 8775 * zero'd out to avoid leaking random bits to userspace. 8776 */ 8777 size = strlen(name)+1; 8778 while (!IS_ALIGNED(size, sizeof(u64))) 8779 name[size++] = '\0'; 8780 8781 mmap_event->file_name = name; 8782 mmap_event->file_size = size; 8783 mmap_event->maj = maj; 8784 mmap_event->min = min; 8785 mmap_event->ino = ino; 8786 mmap_event->ino_generation = gen; 8787 mmap_event->prot = prot; 8788 mmap_event->flags = flags; 8789 8790 if (!(vma->vm_flags & VM_EXEC)) 8791 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8792 8793 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8794 8795 if (atomic_read(&nr_build_id_events)) 8796 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8797 8798 perf_iterate_sb(perf_event_mmap_output, 8799 mmap_event, 8800 NULL); 8801 8802 kfree(buf); 8803 } 8804 8805 /* 8806 * Check whether inode and address range match filter criteria. 8807 */ 8808 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8809 struct file *file, unsigned long offset, 8810 unsigned long size) 8811 { 8812 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8813 if (!filter->path.dentry) 8814 return false; 8815 8816 if (d_inode(filter->path.dentry) != file_inode(file)) 8817 return false; 8818 8819 if (filter->offset > offset + size) 8820 return false; 8821 8822 if (filter->offset + filter->size < offset) 8823 return false; 8824 8825 return true; 8826 } 8827 8828 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8829 struct vm_area_struct *vma, 8830 struct perf_addr_filter_range *fr) 8831 { 8832 unsigned long vma_size = vma->vm_end - vma->vm_start; 8833 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8834 struct file *file = vma->vm_file; 8835 8836 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8837 return false; 8838 8839 if (filter->offset < off) { 8840 fr->start = vma->vm_start; 8841 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8842 } else { 8843 fr->start = vma->vm_start + filter->offset - off; 8844 fr->size = min(vma->vm_end - fr->start, filter->size); 8845 } 8846 8847 return true; 8848 } 8849 8850 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8851 { 8852 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8853 struct vm_area_struct *vma = data; 8854 struct perf_addr_filter *filter; 8855 unsigned int restart = 0, count = 0; 8856 unsigned long flags; 8857 8858 if (!has_addr_filter(event)) 8859 return; 8860 8861 if (!vma->vm_file) 8862 return; 8863 8864 raw_spin_lock_irqsave(&ifh->lock, flags); 8865 list_for_each_entry(filter, &ifh->list, entry) { 8866 if (perf_addr_filter_vma_adjust(filter, vma, 8867 &event->addr_filter_ranges[count])) 8868 restart++; 8869 8870 count++; 8871 } 8872 8873 if (restart) 8874 event->addr_filters_gen++; 8875 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8876 8877 if (restart) 8878 perf_event_stop(event, 1); 8879 } 8880 8881 /* 8882 * Adjust all task's events' filters to the new vma 8883 */ 8884 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8885 { 8886 struct perf_event_context *ctx; 8887 8888 /* 8889 * Data tracing isn't supported yet and as such there is no need 8890 * to keep track of anything that isn't related to executable code: 8891 */ 8892 if (!(vma->vm_flags & VM_EXEC)) 8893 return; 8894 8895 rcu_read_lock(); 8896 ctx = rcu_dereference(current->perf_event_ctxp); 8897 if (ctx) 8898 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8899 rcu_read_unlock(); 8900 } 8901 8902 void perf_event_mmap(struct vm_area_struct *vma) 8903 { 8904 struct perf_mmap_event mmap_event; 8905 8906 if (!atomic_read(&nr_mmap_events)) 8907 return; 8908 8909 mmap_event = (struct perf_mmap_event){ 8910 .vma = vma, 8911 /* .file_name */ 8912 /* .file_size */ 8913 .event_id = { 8914 .header = { 8915 .type = PERF_RECORD_MMAP, 8916 .misc = PERF_RECORD_MISC_USER, 8917 /* .size */ 8918 }, 8919 /* .pid */ 8920 /* .tid */ 8921 .start = vma->vm_start, 8922 .len = vma->vm_end - vma->vm_start, 8923 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8924 }, 8925 /* .maj (attr_mmap2 only) */ 8926 /* .min (attr_mmap2 only) */ 8927 /* .ino (attr_mmap2 only) */ 8928 /* .ino_generation (attr_mmap2 only) */ 8929 /* .prot (attr_mmap2 only) */ 8930 /* .flags (attr_mmap2 only) */ 8931 }; 8932 8933 perf_addr_filters_adjust(vma); 8934 perf_event_mmap_event(&mmap_event); 8935 } 8936 8937 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8938 unsigned long size, u64 flags) 8939 { 8940 struct perf_output_handle handle; 8941 struct perf_sample_data sample; 8942 struct perf_aux_event { 8943 struct perf_event_header header; 8944 u64 offset; 8945 u64 size; 8946 u64 flags; 8947 } rec = { 8948 .header = { 8949 .type = PERF_RECORD_AUX, 8950 .misc = 0, 8951 .size = sizeof(rec), 8952 }, 8953 .offset = head, 8954 .size = size, 8955 .flags = flags, 8956 }; 8957 int ret; 8958 8959 perf_event_header__init_id(&rec.header, &sample, event); 8960 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8961 8962 if (ret) 8963 return; 8964 8965 perf_output_put(&handle, rec); 8966 perf_event__output_id_sample(event, &handle, &sample); 8967 8968 perf_output_end(&handle); 8969 } 8970 8971 /* 8972 * Lost/dropped samples logging 8973 */ 8974 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8975 { 8976 struct perf_output_handle handle; 8977 struct perf_sample_data sample; 8978 int ret; 8979 8980 struct { 8981 struct perf_event_header header; 8982 u64 lost; 8983 } lost_samples_event = { 8984 .header = { 8985 .type = PERF_RECORD_LOST_SAMPLES, 8986 .misc = 0, 8987 .size = sizeof(lost_samples_event), 8988 }, 8989 .lost = lost, 8990 }; 8991 8992 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8993 8994 ret = perf_output_begin(&handle, &sample, event, 8995 lost_samples_event.header.size); 8996 if (ret) 8997 return; 8998 8999 perf_output_put(&handle, lost_samples_event); 9000 perf_event__output_id_sample(event, &handle, &sample); 9001 perf_output_end(&handle); 9002 } 9003 9004 /* 9005 * context_switch tracking 9006 */ 9007 9008 struct perf_switch_event { 9009 struct task_struct *task; 9010 struct task_struct *next_prev; 9011 9012 struct { 9013 struct perf_event_header header; 9014 u32 next_prev_pid; 9015 u32 next_prev_tid; 9016 } event_id; 9017 }; 9018 9019 static int perf_event_switch_match(struct perf_event *event) 9020 { 9021 return event->attr.context_switch; 9022 } 9023 9024 static void perf_event_switch_output(struct perf_event *event, void *data) 9025 { 9026 struct perf_switch_event *se = data; 9027 struct perf_output_handle handle; 9028 struct perf_sample_data sample; 9029 int ret; 9030 9031 if (!perf_event_switch_match(event)) 9032 return; 9033 9034 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9035 if (event->ctx->task) { 9036 se->event_id.header.type = PERF_RECORD_SWITCH; 9037 se->event_id.header.size = sizeof(se->event_id.header); 9038 } else { 9039 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9040 se->event_id.header.size = sizeof(se->event_id); 9041 se->event_id.next_prev_pid = 9042 perf_event_pid(event, se->next_prev); 9043 se->event_id.next_prev_tid = 9044 perf_event_tid(event, se->next_prev); 9045 } 9046 9047 perf_event_header__init_id(&se->event_id.header, &sample, event); 9048 9049 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9050 if (ret) 9051 return; 9052 9053 if (event->ctx->task) 9054 perf_output_put(&handle, se->event_id.header); 9055 else 9056 perf_output_put(&handle, se->event_id); 9057 9058 perf_event__output_id_sample(event, &handle, &sample); 9059 9060 perf_output_end(&handle); 9061 } 9062 9063 static void perf_event_switch(struct task_struct *task, 9064 struct task_struct *next_prev, bool sched_in) 9065 { 9066 struct perf_switch_event switch_event; 9067 9068 /* N.B. caller checks nr_switch_events != 0 */ 9069 9070 switch_event = (struct perf_switch_event){ 9071 .task = task, 9072 .next_prev = next_prev, 9073 .event_id = { 9074 .header = { 9075 /* .type */ 9076 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9077 /* .size */ 9078 }, 9079 /* .next_prev_pid */ 9080 /* .next_prev_tid */ 9081 }, 9082 }; 9083 9084 if (!sched_in && task->on_rq) { 9085 switch_event.event_id.header.misc |= 9086 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9087 } 9088 9089 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9090 } 9091 9092 /* 9093 * IRQ throttle logging 9094 */ 9095 9096 static void perf_log_throttle(struct perf_event *event, int enable) 9097 { 9098 struct perf_output_handle handle; 9099 struct perf_sample_data sample; 9100 int ret; 9101 9102 struct { 9103 struct perf_event_header header; 9104 u64 time; 9105 u64 id; 9106 u64 stream_id; 9107 } throttle_event = { 9108 .header = { 9109 .type = PERF_RECORD_THROTTLE, 9110 .misc = 0, 9111 .size = sizeof(throttle_event), 9112 }, 9113 .time = perf_event_clock(event), 9114 .id = primary_event_id(event), 9115 .stream_id = event->id, 9116 }; 9117 9118 if (enable) 9119 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9120 9121 perf_event_header__init_id(&throttle_event.header, &sample, event); 9122 9123 ret = perf_output_begin(&handle, &sample, event, 9124 throttle_event.header.size); 9125 if (ret) 9126 return; 9127 9128 perf_output_put(&handle, throttle_event); 9129 perf_event__output_id_sample(event, &handle, &sample); 9130 perf_output_end(&handle); 9131 } 9132 9133 /* 9134 * ksymbol register/unregister tracking 9135 */ 9136 9137 struct perf_ksymbol_event { 9138 const char *name; 9139 int name_len; 9140 struct { 9141 struct perf_event_header header; 9142 u64 addr; 9143 u32 len; 9144 u16 ksym_type; 9145 u16 flags; 9146 } event_id; 9147 }; 9148 9149 static int perf_event_ksymbol_match(struct perf_event *event) 9150 { 9151 return event->attr.ksymbol; 9152 } 9153 9154 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9155 { 9156 struct perf_ksymbol_event *ksymbol_event = data; 9157 struct perf_output_handle handle; 9158 struct perf_sample_data sample; 9159 int ret; 9160 9161 if (!perf_event_ksymbol_match(event)) 9162 return; 9163 9164 perf_event_header__init_id(&ksymbol_event->event_id.header, 9165 &sample, event); 9166 ret = perf_output_begin(&handle, &sample, event, 9167 ksymbol_event->event_id.header.size); 9168 if (ret) 9169 return; 9170 9171 perf_output_put(&handle, ksymbol_event->event_id); 9172 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9173 perf_event__output_id_sample(event, &handle, &sample); 9174 9175 perf_output_end(&handle); 9176 } 9177 9178 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9179 const char *sym) 9180 { 9181 struct perf_ksymbol_event ksymbol_event; 9182 char name[KSYM_NAME_LEN]; 9183 u16 flags = 0; 9184 int name_len; 9185 9186 if (!atomic_read(&nr_ksymbol_events)) 9187 return; 9188 9189 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9190 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9191 goto err; 9192 9193 strscpy(name, sym, KSYM_NAME_LEN); 9194 name_len = strlen(name) + 1; 9195 while (!IS_ALIGNED(name_len, sizeof(u64))) 9196 name[name_len++] = '\0'; 9197 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9198 9199 if (unregister) 9200 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9201 9202 ksymbol_event = (struct perf_ksymbol_event){ 9203 .name = name, 9204 .name_len = name_len, 9205 .event_id = { 9206 .header = { 9207 .type = PERF_RECORD_KSYMBOL, 9208 .size = sizeof(ksymbol_event.event_id) + 9209 name_len, 9210 }, 9211 .addr = addr, 9212 .len = len, 9213 .ksym_type = ksym_type, 9214 .flags = flags, 9215 }, 9216 }; 9217 9218 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9219 return; 9220 err: 9221 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9222 } 9223 9224 /* 9225 * bpf program load/unload tracking 9226 */ 9227 9228 struct perf_bpf_event { 9229 struct bpf_prog *prog; 9230 struct { 9231 struct perf_event_header header; 9232 u16 type; 9233 u16 flags; 9234 u32 id; 9235 u8 tag[BPF_TAG_SIZE]; 9236 } event_id; 9237 }; 9238 9239 static int perf_event_bpf_match(struct perf_event *event) 9240 { 9241 return event->attr.bpf_event; 9242 } 9243 9244 static void perf_event_bpf_output(struct perf_event *event, void *data) 9245 { 9246 struct perf_bpf_event *bpf_event = data; 9247 struct perf_output_handle handle; 9248 struct perf_sample_data sample; 9249 int ret; 9250 9251 if (!perf_event_bpf_match(event)) 9252 return; 9253 9254 perf_event_header__init_id(&bpf_event->event_id.header, 9255 &sample, event); 9256 ret = perf_output_begin(&handle, &sample, event, 9257 bpf_event->event_id.header.size); 9258 if (ret) 9259 return; 9260 9261 perf_output_put(&handle, bpf_event->event_id); 9262 perf_event__output_id_sample(event, &handle, &sample); 9263 9264 perf_output_end(&handle); 9265 } 9266 9267 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9268 enum perf_bpf_event_type type) 9269 { 9270 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9271 int i; 9272 9273 if (prog->aux->func_cnt == 0) { 9274 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9275 (u64)(unsigned long)prog->bpf_func, 9276 prog->jited_len, unregister, 9277 prog->aux->ksym.name); 9278 } else { 9279 for (i = 0; i < prog->aux->func_cnt; i++) { 9280 struct bpf_prog *subprog = prog->aux->func[i]; 9281 9282 perf_event_ksymbol( 9283 PERF_RECORD_KSYMBOL_TYPE_BPF, 9284 (u64)(unsigned long)subprog->bpf_func, 9285 subprog->jited_len, unregister, 9286 subprog->aux->ksym.name); 9287 } 9288 } 9289 } 9290 9291 void perf_event_bpf_event(struct bpf_prog *prog, 9292 enum perf_bpf_event_type type, 9293 u16 flags) 9294 { 9295 struct perf_bpf_event bpf_event; 9296 9297 if (type <= PERF_BPF_EVENT_UNKNOWN || 9298 type >= PERF_BPF_EVENT_MAX) 9299 return; 9300 9301 switch (type) { 9302 case PERF_BPF_EVENT_PROG_LOAD: 9303 case PERF_BPF_EVENT_PROG_UNLOAD: 9304 if (atomic_read(&nr_ksymbol_events)) 9305 perf_event_bpf_emit_ksymbols(prog, type); 9306 break; 9307 default: 9308 break; 9309 } 9310 9311 if (!atomic_read(&nr_bpf_events)) 9312 return; 9313 9314 bpf_event = (struct perf_bpf_event){ 9315 .prog = prog, 9316 .event_id = { 9317 .header = { 9318 .type = PERF_RECORD_BPF_EVENT, 9319 .size = sizeof(bpf_event.event_id), 9320 }, 9321 .type = type, 9322 .flags = flags, 9323 .id = prog->aux->id, 9324 }, 9325 }; 9326 9327 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9328 9329 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9330 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9331 } 9332 9333 struct perf_text_poke_event { 9334 const void *old_bytes; 9335 const void *new_bytes; 9336 size_t pad; 9337 u16 old_len; 9338 u16 new_len; 9339 9340 struct { 9341 struct perf_event_header header; 9342 9343 u64 addr; 9344 } event_id; 9345 }; 9346 9347 static int perf_event_text_poke_match(struct perf_event *event) 9348 { 9349 return event->attr.text_poke; 9350 } 9351 9352 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9353 { 9354 struct perf_text_poke_event *text_poke_event = data; 9355 struct perf_output_handle handle; 9356 struct perf_sample_data sample; 9357 u64 padding = 0; 9358 int ret; 9359 9360 if (!perf_event_text_poke_match(event)) 9361 return; 9362 9363 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9364 9365 ret = perf_output_begin(&handle, &sample, event, 9366 text_poke_event->event_id.header.size); 9367 if (ret) 9368 return; 9369 9370 perf_output_put(&handle, text_poke_event->event_id); 9371 perf_output_put(&handle, text_poke_event->old_len); 9372 perf_output_put(&handle, text_poke_event->new_len); 9373 9374 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9375 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9376 9377 if (text_poke_event->pad) 9378 __output_copy(&handle, &padding, text_poke_event->pad); 9379 9380 perf_event__output_id_sample(event, &handle, &sample); 9381 9382 perf_output_end(&handle); 9383 } 9384 9385 void perf_event_text_poke(const void *addr, const void *old_bytes, 9386 size_t old_len, const void *new_bytes, size_t new_len) 9387 { 9388 struct perf_text_poke_event text_poke_event; 9389 size_t tot, pad; 9390 9391 if (!atomic_read(&nr_text_poke_events)) 9392 return; 9393 9394 tot = sizeof(text_poke_event.old_len) + old_len; 9395 tot += sizeof(text_poke_event.new_len) + new_len; 9396 pad = ALIGN(tot, sizeof(u64)) - tot; 9397 9398 text_poke_event = (struct perf_text_poke_event){ 9399 .old_bytes = old_bytes, 9400 .new_bytes = new_bytes, 9401 .pad = pad, 9402 .old_len = old_len, 9403 .new_len = new_len, 9404 .event_id = { 9405 .header = { 9406 .type = PERF_RECORD_TEXT_POKE, 9407 .misc = PERF_RECORD_MISC_KERNEL, 9408 .size = sizeof(text_poke_event.event_id) + tot + pad, 9409 }, 9410 .addr = (unsigned long)addr, 9411 }, 9412 }; 9413 9414 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9415 } 9416 9417 void perf_event_itrace_started(struct perf_event *event) 9418 { 9419 event->attach_state |= PERF_ATTACH_ITRACE; 9420 } 9421 9422 static void perf_log_itrace_start(struct perf_event *event) 9423 { 9424 struct perf_output_handle handle; 9425 struct perf_sample_data sample; 9426 struct perf_aux_event { 9427 struct perf_event_header header; 9428 u32 pid; 9429 u32 tid; 9430 } rec; 9431 int ret; 9432 9433 if (event->parent) 9434 event = event->parent; 9435 9436 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9437 event->attach_state & PERF_ATTACH_ITRACE) 9438 return; 9439 9440 rec.header.type = PERF_RECORD_ITRACE_START; 9441 rec.header.misc = 0; 9442 rec.header.size = sizeof(rec); 9443 rec.pid = perf_event_pid(event, current); 9444 rec.tid = perf_event_tid(event, current); 9445 9446 perf_event_header__init_id(&rec.header, &sample, event); 9447 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9448 9449 if (ret) 9450 return; 9451 9452 perf_output_put(&handle, rec); 9453 perf_event__output_id_sample(event, &handle, &sample); 9454 9455 perf_output_end(&handle); 9456 } 9457 9458 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9459 { 9460 struct perf_output_handle handle; 9461 struct perf_sample_data sample; 9462 struct perf_aux_event { 9463 struct perf_event_header header; 9464 u64 hw_id; 9465 } rec; 9466 int ret; 9467 9468 if (event->parent) 9469 event = event->parent; 9470 9471 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9472 rec.header.misc = 0; 9473 rec.header.size = sizeof(rec); 9474 rec.hw_id = hw_id; 9475 9476 perf_event_header__init_id(&rec.header, &sample, event); 9477 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9478 9479 if (ret) 9480 return; 9481 9482 perf_output_put(&handle, rec); 9483 perf_event__output_id_sample(event, &handle, &sample); 9484 9485 perf_output_end(&handle); 9486 } 9487 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9488 9489 static int 9490 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9491 { 9492 struct hw_perf_event *hwc = &event->hw; 9493 int ret = 0; 9494 u64 seq; 9495 9496 seq = __this_cpu_read(perf_throttled_seq); 9497 if (seq != hwc->interrupts_seq) { 9498 hwc->interrupts_seq = seq; 9499 hwc->interrupts = 1; 9500 } else { 9501 hwc->interrupts++; 9502 if (unlikely(throttle && 9503 hwc->interrupts > max_samples_per_tick)) { 9504 __this_cpu_inc(perf_throttled_count); 9505 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9506 hwc->interrupts = MAX_INTERRUPTS; 9507 perf_log_throttle(event, 0); 9508 ret = 1; 9509 } 9510 } 9511 9512 if (event->attr.freq) { 9513 u64 now = perf_clock(); 9514 s64 delta = now - hwc->freq_time_stamp; 9515 9516 hwc->freq_time_stamp = now; 9517 9518 if (delta > 0 && delta < 2*TICK_NSEC) 9519 perf_adjust_period(event, delta, hwc->last_period, true); 9520 } 9521 9522 return ret; 9523 } 9524 9525 int perf_event_account_interrupt(struct perf_event *event) 9526 { 9527 return __perf_event_account_interrupt(event, 1); 9528 } 9529 9530 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9531 { 9532 /* 9533 * Due to interrupt latency (AKA "skid"), we may enter the 9534 * kernel before taking an overflow, even if the PMU is only 9535 * counting user events. 9536 */ 9537 if (event->attr.exclude_kernel && !user_mode(regs)) 9538 return false; 9539 9540 return true; 9541 } 9542 9543 /* 9544 * Generic event overflow handling, sampling. 9545 */ 9546 9547 static int __perf_event_overflow(struct perf_event *event, 9548 int throttle, struct perf_sample_data *data, 9549 struct pt_regs *regs) 9550 { 9551 int events = atomic_read(&event->event_limit); 9552 int ret = 0; 9553 9554 /* 9555 * Non-sampling counters might still use the PMI to fold short 9556 * hardware counters, ignore those. 9557 */ 9558 if (unlikely(!is_sampling_event(event))) 9559 return 0; 9560 9561 ret = __perf_event_account_interrupt(event, throttle); 9562 9563 /* 9564 * XXX event_limit might not quite work as expected on inherited 9565 * events 9566 */ 9567 9568 event->pending_kill = POLL_IN; 9569 if (events && atomic_dec_and_test(&event->event_limit)) { 9570 ret = 1; 9571 event->pending_kill = POLL_HUP; 9572 perf_event_disable_inatomic(event); 9573 } 9574 9575 if (event->attr.sigtrap) { 9576 /* 9577 * The desired behaviour of sigtrap vs invalid samples is a bit 9578 * tricky; on the one hand, one should not loose the SIGTRAP if 9579 * it is the first event, on the other hand, we should also not 9580 * trigger the WARN or override the data address. 9581 */ 9582 bool valid_sample = sample_is_allowed(event, regs); 9583 unsigned int pending_id = 1; 9584 9585 if (regs) 9586 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9587 if (!event->pending_sigtrap) { 9588 event->pending_sigtrap = pending_id; 9589 local_inc(&event->ctx->nr_pending); 9590 } else if (event->attr.exclude_kernel && valid_sample) { 9591 /* 9592 * Should not be able to return to user space without 9593 * consuming pending_sigtrap; with exceptions: 9594 * 9595 * 1. Where !exclude_kernel, events can overflow again 9596 * in the kernel without returning to user space. 9597 * 9598 * 2. Events that can overflow again before the IRQ- 9599 * work without user space progress (e.g. hrtimer). 9600 * To approximate progress (with false negatives), 9601 * check 32-bit hash of the current IP. 9602 */ 9603 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9604 } 9605 9606 event->pending_addr = 0; 9607 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9608 event->pending_addr = data->addr; 9609 irq_work_queue(&event->pending_irq); 9610 } 9611 9612 READ_ONCE(event->overflow_handler)(event, data, regs); 9613 9614 if (*perf_event_fasync(event) && event->pending_kill) { 9615 event->pending_wakeup = 1; 9616 irq_work_queue(&event->pending_irq); 9617 } 9618 9619 return ret; 9620 } 9621 9622 int perf_event_overflow(struct perf_event *event, 9623 struct perf_sample_data *data, 9624 struct pt_regs *regs) 9625 { 9626 return __perf_event_overflow(event, 1, data, regs); 9627 } 9628 9629 /* 9630 * Generic software event infrastructure 9631 */ 9632 9633 struct swevent_htable { 9634 struct swevent_hlist *swevent_hlist; 9635 struct mutex hlist_mutex; 9636 int hlist_refcount; 9637 9638 /* Recursion avoidance in each contexts */ 9639 int recursion[PERF_NR_CONTEXTS]; 9640 }; 9641 9642 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9643 9644 /* 9645 * We directly increment event->count and keep a second value in 9646 * event->hw.period_left to count intervals. This period event 9647 * is kept in the range [-sample_period, 0] so that we can use the 9648 * sign as trigger. 9649 */ 9650 9651 u64 perf_swevent_set_period(struct perf_event *event) 9652 { 9653 struct hw_perf_event *hwc = &event->hw; 9654 u64 period = hwc->last_period; 9655 u64 nr, offset; 9656 s64 old, val; 9657 9658 hwc->last_period = hwc->sample_period; 9659 9660 old = local64_read(&hwc->period_left); 9661 do { 9662 val = old; 9663 if (val < 0) 9664 return 0; 9665 9666 nr = div64_u64(period + val, period); 9667 offset = nr * period; 9668 val -= offset; 9669 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9670 9671 return nr; 9672 } 9673 9674 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9675 struct perf_sample_data *data, 9676 struct pt_regs *regs) 9677 { 9678 struct hw_perf_event *hwc = &event->hw; 9679 int throttle = 0; 9680 9681 if (!overflow) 9682 overflow = perf_swevent_set_period(event); 9683 9684 if (hwc->interrupts == MAX_INTERRUPTS) 9685 return; 9686 9687 for (; overflow; overflow--) { 9688 if (__perf_event_overflow(event, throttle, 9689 data, regs)) { 9690 /* 9691 * We inhibit the overflow from happening when 9692 * hwc->interrupts == MAX_INTERRUPTS. 9693 */ 9694 break; 9695 } 9696 throttle = 1; 9697 } 9698 } 9699 9700 static void perf_swevent_event(struct perf_event *event, u64 nr, 9701 struct perf_sample_data *data, 9702 struct pt_regs *regs) 9703 { 9704 struct hw_perf_event *hwc = &event->hw; 9705 9706 local64_add(nr, &event->count); 9707 9708 if (!regs) 9709 return; 9710 9711 if (!is_sampling_event(event)) 9712 return; 9713 9714 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9715 data->period = nr; 9716 return perf_swevent_overflow(event, 1, data, regs); 9717 } else 9718 data->period = event->hw.last_period; 9719 9720 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9721 return perf_swevent_overflow(event, 1, data, regs); 9722 9723 if (local64_add_negative(nr, &hwc->period_left)) 9724 return; 9725 9726 perf_swevent_overflow(event, 0, data, regs); 9727 } 9728 9729 static int perf_exclude_event(struct perf_event *event, 9730 struct pt_regs *regs) 9731 { 9732 if (event->hw.state & PERF_HES_STOPPED) 9733 return 1; 9734 9735 if (regs) { 9736 if (event->attr.exclude_user && user_mode(regs)) 9737 return 1; 9738 9739 if (event->attr.exclude_kernel && !user_mode(regs)) 9740 return 1; 9741 } 9742 9743 return 0; 9744 } 9745 9746 static int perf_swevent_match(struct perf_event *event, 9747 enum perf_type_id type, 9748 u32 event_id, 9749 struct perf_sample_data *data, 9750 struct pt_regs *regs) 9751 { 9752 if (event->attr.type != type) 9753 return 0; 9754 9755 if (event->attr.config != event_id) 9756 return 0; 9757 9758 if (perf_exclude_event(event, regs)) 9759 return 0; 9760 9761 return 1; 9762 } 9763 9764 static inline u64 swevent_hash(u64 type, u32 event_id) 9765 { 9766 u64 val = event_id | (type << 32); 9767 9768 return hash_64(val, SWEVENT_HLIST_BITS); 9769 } 9770 9771 static inline struct hlist_head * 9772 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9773 { 9774 u64 hash = swevent_hash(type, event_id); 9775 9776 return &hlist->heads[hash]; 9777 } 9778 9779 /* For the read side: events when they trigger */ 9780 static inline struct hlist_head * 9781 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9782 { 9783 struct swevent_hlist *hlist; 9784 9785 hlist = rcu_dereference(swhash->swevent_hlist); 9786 if (!hlist) 9787 return NULL; 9788 9789 return __find_swevent_head(hlist, type, event_id); 9790 } 9791 9792 /* For the event head insertion and removal in the hlist */ 9793 static inline struct hlist_head * 9794 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9795 { 9796 struct swevent_hlist *hlist; 9797 u32 event_id = event->attr.config; 9798 u64 type = event->attr.type; 9799 9800 /* 9801 * Event scheduling is always serialized against hlist allocation 9802 * and release. Which makes the protected version suitable here. 9803 * The context lock guarantees that. 9804 */ 9805 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9806 lockdep_is_held(&event->ctx->lock)); 9807 if (!hlist) 9808 return NULL; 9809 9810 return __find_swevent_head(hlist, type, event_id); 9811 } 9812 9813 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9814 u64 nr, 9815 struct perf_sample_data *data, 9816 struct pt_regs *regs) 9817 { 9818 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9819 struct perf_event *event; 9820 struct hlist_head *head; 9821 9822 rcu_read_lock(); 9823 head = find_swevent_head_rcu(swhash, type, event_id); 9824 if (!head) 9825 goto end; 9826 9827 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9828 if (perf_swevent_match(event, type, event_id, data, regs)) 9829 perf_swevent_event(event, nr, data, regs); 9830 } 9831 end: 9832 rcu_read_unlock(); 9833 } 9834 9835 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9836 9837 int perf_swevent_get_recursion_context(void) 9838 { 9839 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9840 9841 return get_recursion_context(swhash->recursion); 9842 } 9843 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9844 9845 void perf_swevent_put_recursion_context(int rctx) 9846 { 9847 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9848 9849 put_recursion_context(swhash->recursion, rctx); 9850 } 9851 9852 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9853 { 9854 struct perf_sample_data data; 9855 9856 if (WARN_ON_ONCE(!regs)) 9857 return; 9858 9859 perf_sample_data_init(&data, addr, 0); 9860 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9861 } 9862 9863 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9864 { 9865 int rctx; 9866 9867 preempt_disable_notrace(); 9868 rctx = perf_swevent_get_recursion_context(); 9869 if (unlikely(rctx < 0)) 9870 goto fail; 9871 9872 ___perf_sw_event(event_id, nr, regs, addr); 9873 9874 perf_swevent_put_recursion_context(rctx); 9875 fail: 9876 preempt_enable_notrace(); 9877 } 9878 9879 static void perf_swevent_read(struct perf_event *event) 9880 { 9881 } 9882 9883 static int perf_swevent_add(struct perf_event *event, int flags) 9884 { 9885 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9886 struct hw_perf_event *hwc = &event->hw; 9887 struct hlist_head *head; 9888 9889 if (is_sampling_event(event)) { 9890 hwc->last_period = hwc->sample_period; 9891 perf_swevent_set_period(event); 9892 } 9893 9894 hwc->state = !(flags & PERF_EF_START); 9895 9896 head = find_swevent_head(swhash, event); 9897 if (WARN_ON_ONCE(!head)) 9898 return -EINVAL; 9899 9900 hlist_add_head_rcu(&event->hlist_entry, head); 9901 perf_event_update_userpage(event); 9902 9903 return 0; 9904 } 9905 9906 static void perf_swevent_del(struct perf_event *event, int flags) 9907 { 9908 hlist_del_rcu(&event->hlist_entry); 9909 } 9910 9911 static void perf_swevent_start(struct perf_event *event, int flags) 9912 { 9913 event->hw.state = 0; 9914 } 9915 9916 static void perf_swevent_stop(struct perf_event *event, int flags) 9917 { 9918 event->hw.state = PERF_HES_STOPPED; 9919 } 9920 9921 /* Deref the hlist from the update side */ 9922 static inline struct swevent_hlist * 9923 swevent_hlist_deref(struct swevent_htable *swhash) 9924 { 9925 return rcu_dereference_protected(swhash->swevent_hlist, 9926 lockdep_is_held(&swhash->hlist_mutex)); 9927 } 9928 9929 static void swevent_hlist_release(struct swevent_htable *swhash) 9930 { 9931 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9932 9933 if (!hlist) 9934 return; 9935 9936 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9937 kfree_rcu(hlist, rcu_head); 9938 } 9939 9940 static void swevent_hlist_put_cpu(int cpu) 9941 { 9942 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9943 9944 mutex_lock(&swhash->hlist_mutex); 9945 9946 if (!--swhash->hlist_refcount) 9947 swevent_hlist_release(swhash); 9948 9949 mutex_unlock(&swhash->hlist_mutex); 9950 } 9951 9952 static void swevent_hlist_put(void) 9953 { 9954 int cpu; 9955 9956 for_each_possible_cpu(cpu) 9957 swevent_hlist_put_cpu(cpu); 9958 } 9959 9960 static int swevent_hlist_get_cpu(int cpu) 9961 { 9962 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9963 int err = 0; 9964 9965 mutex_lock(&swhash->hlist_mutex); 9966 if (!swevent_hlist_deref(swhash) && 9967 cpumask_test_cpu(cpu, perf_online_mask)) { 9968 struct swevent_hlist *hlist; 9969 9970 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9971 if (!hlist) { 9972 err = -ENOMEM; 9973 goto exit; 9974 } 9975 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9976 } 9977 swhash->hlist_refcount++; 9978 exit: 9979 mutex_unlock(&swhash->hlist_mutex); 9980 9981 return err; 9982 } 9983 9984 static int swevent_hlist_get(void) 9985 { 9986 int err, cpu, failed_cpu; 9987 9988 mutex_lock(&pmus_lock); 9989 for_each_possible_cpu(cpu) { 9990 err = swevent_hlist_get_cpu(cpu); 9991 if (err) { 9992 failed_cpu = cpu; 9993 goto fail; 9994 } 9995 } 9996 mutex_unlock(&pmus_lock); 9997 return 0; 9998 fail: 9999 for_each_possible_cpu(cpu) { 10000 if (cpu == failed_cpu) 10001 break; 10002 swevent_hlist_put_cpu(cpu); 10003 } 10004 mutex_unlock(&pmus_lock); 10005 return err; 10006 } 10007 10008 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10009 10010 static void sw_perf_event_destroy(struct perf_event *event) 10011 { 10012 u64 event_id = event->attr.config; 10013 10014 WARN_ON(event->parent); 10015 10016 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10017 swevent_hlist_put(); 10018 } 10019 10020 static struct pmu perf_cpu_clock; /* fwd declaration */ 10021 static struct pmu perf_task_clock; 10022 10023 static int perf_swevent_init(struct perf_event *event) 10024 { 10025 u64 event_id = event->attr.config; 10026 10027 if (event->attr.type != PERF_TYPE_SOFTWARE) 10028 return -ENOENT; 10029 10030 /* 10031 * no branch sampling for software events 10032 */ 10033 if (has_branch_stack(event)) 10034 return -EOPNOTSUPP; 10035 10036 switch (event_id) { 10037 case PERF_COUNT_SW_CPU_CLOCK: 10038 event->attr.type = perf_cpu_clock.type; 10039 return -ENOENT; 10040 case PERF_COUNT_SW_TASK_CLOCK: 10041 event->attr.type = perf_task_clock.type; 10042 return -ENOENT; 10043 10044 default: 10045 break; 10046 } 10047 10048 if (event_id >= PERF_COUNT_SW_MAX) 10049 return -ENOENT; 10050 10051 if (!event->parent) { 10052 int err; 10053 10054 err = swevent_hlist_get(); 10055 if (err) 10056 return err; 10057 10058 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10059 event->destroy = sw_perf_event_destroy; 10060 } 10061 10062 return 0; 10063 } 10064 10065 static struct pmu perf_swevent = { 10066 .task_ctx_nr = perf_sw_context, 10067 10068 .capabilities = PERF_PMU_CAP_NO_NMI, 10069 10070 .event_init = perf_swevent_init, 10071 .add = perf_swevent_add, 10072 .del = perf_swevent_del, 10073 .start = perf_swevent_start, 10074 .stop = perf_swevent_stop, 10075 .read = perf_swevent_read, 10076 }; 10077 10078 #ifdef CONFIG_EVENT_TRACING 10079 10080 static void tp_perf_event_destroy(struct perf_event *event) 10081 { 10082 perf_trace_destroy(event); 10083 } 10084 10085 static int perf_tp_event_init(struct perf_event *event) 10086 { 10087 int err; 10088 10089 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10090 return -ENOENT; 10091 10092 /* 10093 * no branch sampling for tracepoint events 10094 */ 10095 if (has_branch_stack(event)) 10096 return -EOPNOTSUPP; 10097 10098 err = perf_trace_init(event); 10099 if (err) 10100 return err; 10101 10102 event->destroy = tp_perf_event_destroy; 10103 10104 return 0; 10105 } 10106 10107 static struct pmu perf_tracepoint = { 10108 .task_ctx_nr = perf_sw_context, 10109 10110 .event_init = perf_tp_event_init, 10111 .add = perf_trace_add, 10112 .del = perf_trace_del, 10113 .start = perf_swevent_start, 10114 .stop = perf_swevent_stop, 10115 .read = perf_swevent_read, 10116 }; 10117 10118 static int perf_tp_filter_match(struct perf_event *event, 10119 struct perf_sample_data *data) 10120 { 10121 void *record = data->raw->frag.data; 10122 10123 /* only top level events have filters set */ 10124 if (event->parent) 10125 event = event->parent; 10126 10127 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10128 return 1; 10129 return 0; 10130 } 10131 10132 static int perf_tp_event_match(struct perf_event *event, 10133 struct perf_sample_data *data, 10134 struct pt_regs *regs) 10135 { 10136 if (event->hw.state & PERF_HES_STOPPED) 10137 return 0; 10138 /* 10139 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10140 */ 10141 if (event->attr.exclude_kernel && !user_mode(regs)) 10142 return 0; 10143 10144 if (!perf_tp_filter_match(event, data)) 10145 return 0; 10146 10147 return 1; 10148 } 10149 10150 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10151 struct trace_event_call *call, u64 count, 10152 struct pt_regs *regs, struct hlist_head *head, 10153 struct task_struct *task) 10154 { 10155 if (bpf_prog_array_valid(call)) { 10156 *(struct pt_regs **)raw_data = regs; 10157 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10158 perf_swevent_put_recursion_context(rctx); 10159 return; 10160 } 10161 } 10162 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10163 rctx, task); 10164 } 10165 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10166 10167 static void __perf_tp_event_target_task(u64 count, void *record, 10168 struct pt_regs *regs, 10169 struct perf_sample_data *data, 10170 struct perf_event *event) 10171 { 10172 struct trace_entry *entry = record; 10173 10174 if (event->attr.config != entry->type) 10175 return; 10176 /* Cannot deliver synchronous signal to other task. */ 10177 if (event->attr.sigtrap) 10178 return; 10179 if (perf_tp_event_match(event, data, regs)) 10180 perf_swevent_event(event, count, data, regs); 10181 } 10182 10183 static void perf_tp_event_target_task(u64 count, void *record, 10184 struct pt_regs *regs, 10185 struct perf_sample_data *data, 10186 struct perf_event_context *ctx) 10187 { 10188 unsigned int cpu = smp_processor_id(); 10189 struct pmu *pmu = &perf_tracepoint; 10190 struct perf_event *event, *sibling; 10191 10192 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10193 __perf_tp_event_target_task(count, record, regs, data, event); 10194 for_each_sibling_event(sibling, event) 10195 __perf_tp_event_target_task(count, record, regs, data, sibling); 10196 } 10197 10198 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10199 __perf_tp_event_target_task(count, record, regs, data, event); 10200 for_each_sibling_event(sibling, event) 10201 __perf_tp_event_target_task(count, record, regs, data, sibling); 10202 } 10203 } 10204 10205 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10206 struct pt_regs *regs, struct hlist_head *head, int rctx, 10207 struct task_struct *task) 10208 { 10209 struct perf_sample_data data; 10210 struct perf_event *event; 10211 10212 struct perf_raw_record raw = { 10213 .frag = { 10214 .size = entry_size, 10215 .data = record, 10216 }, 10217 }; 10218 10219 perf_sample_data_init(&data, 0, 0); 10220 perf_sample_save_raw_data(&data, &raw); 10221 10222 perf_trace_buf_update(record, event_type); 10223 10224 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10225 if (perf_tp_event_match(event, &data, regs)) { 10226 perf_swevent_event(event, count, &data, regs); 10227 10228 /* 10229 * Here use the same on-stack perf_sample_data, 10230 * some members in data are event-specific and 10231 * need to be re-computed for different sweveents. 10232 * Re-initialize data->sample_flags safely to avoid 10233 * the problem that next event skips preparing data 10234 * because data->sample_flags is set. 10235 */ 10236 perf_sample_data_init(&data, 0, 0); 10237 perf_sample_save_raw_data(&data, &raw); 10238 } 10239 } 10240 10241 /* 10242 * If we got specified a target task, also iterate its context and 10243 * deliver this event there too. 10244 */ 10245 if (task && task != current) { 10246 struct perf_event_context *ctx; 10247 10248 rcu_read_lock(); 10249 ctx = rcu_dereference(task->perf_event_ctxp); 10250 if (!ctx) 10251 goto unlock; 10252 10253 raw_spin_lock(&ctx->lock); 10254 perf_tp_event_target_task(count, record, regs, &data, ctx); 10255 raw_spin_unlock(&ctx->lock); 10256 unlock: 10257 rcu_read_unlock(); 10258 } 10259 10260 perf_swevent_put_recursion_context(rctx); 10261 } 10262 EXPORT_SYMBOL_GPL(perf_tp_event); 10263 10264 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10265 /* 10266 * Flags in config, used by dynamic PMU kprobe and uprobe 10267 * The flags should match following PMU_FORMAT_ATTR(). 10268 * 10269 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10270 * if not set, create kprobe/uprobe 10271 * 10272 * The following values specify a reference counter (or semaphore in the 10273 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10274 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10275 * 10276 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10277 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10278 */ 10279 enum perf_probe_config { 10280 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10281 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10282 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10283 }; 10284 10285 PMU_FORMAT_ATTR(retprobe, "config:0"); 10286 #endif 10287 10288 #ifdef CONFIG_KPROBE_EVENTS 10289 static struct attribute *kprobe_attrs[] = { 10290 &format_attr_retprobe.attr, 10291 NULL, 10292 }; 10293 10294 static struct attribute_group kprobe_format_group = { 10295 .name = "format", 10296 .attrs = kprobe_attrs, 10297 }; 10298 10299 static const struct attribute_group *kprobe_attr_groups[] = { 10300 &kprobe_format_group, 10301 NULL, 10302 }; 10303 10304 static int perf_kprobe_event_init(struct perf_event *event); 10305 static struct pmu perf_kprobe = { 10306 .task_ctx_nr = perf_sw_context, 10307 .event_init = perf_kprobe_event_init, 10308 .add = perf_trace_add, 10309 .del = perf_trace_del, 10310 .start = perf_swevent_start, 10311 .stop = perf_swevent_stop, 10312 .read = perf_swevent_read, 10313 .attr_groups = kprobe_attr_groups, 10314 }; 10315 10316 static int perf_kprobe_event_init(struct perf_event *event) 10317 { 10318 int err; 10319 bool is_retprobe; 10320 10321 if (event->attr.type != perf_kprobe.type) 10322 return -ENOENT; 10323 10324 if (!perfmon_capable()) 10325 return -EACCES; 10326 10327 /* 10328 * no branch sampling for probe events 10329 */ 10330 if (has_branch_stack(event)) 10331 return -EOPNOTSUPP; 10332 10333 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10334 err = perf_kprobe_init(event, is_retprobe); 10335 if (err) 10336 return err; 10337 10338 event->destroy = perf_kprobe_destroy; 10339 10340 return 0; 10341 } 10342 #endif /* CONFIG_KPROBE_EVENTS */ 10343 10344 #ifdef CONFIG_UPROBE_EVENTS 10345 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10346 10347 static struct attribute *uprobe_attrs[] = { 10348 &format_attr_retprobe.attr, 10349 &format_attr_ref_ctr_offset.attr, 10350 NULL, 10351 }; 10352 10353 static struct attribute_group uprobe_format_group = { 10354 .name = "format", 10355 .attrs = uprobe_attrs, 10356 }; 10357 10358 static const struct attribute_group *uprobe_attr_groups[] = { 10359 &uprobe_format_group, 10360 NULL, 10361 }; 10362 10363 static int perf_uprobe_event_init(struct perf_event *event); 10364 static struct pmu perf_uprobe = { 10365 .task_ctx_nr = perf_sw_context, 10366 .event_init = perf_uprobe_event_init, 10367 .add = perf_trace_add, 10368 .del = perf_trace_del, 10369 .start = perf_swevent_start, 10370 .stop = perf_swevent_stop, 10371 .read = perf_swevent_read, 10372 .attr_groups = uprobe_attr_groups, 10373 }; 10374 10375 static int perf_uprobe_event_init(struct perf_event *event) 10376 { 10377 int err; 10378 unsigned long ref_ctr_offset; 10379 bool is_retprobe; 10380 10381 if (event->attr.type != perf_uprobe.type) 10382 return -ENOENT; 10383 10384 if (!perfmon_capable()) 10385 return -EACCES; 10386 10387 /* 10388 * no branch sampling for probe events 10389 */ 10390 if (has_branch_stack(event)) 10391 return -EOPNOTSUPP; 10392 10393 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10394 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10395 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10396 if (err) 10397 return err; 10398 10399 event->destroy = perf_uprobe_destroy; 10400 10401 return 0; 10402 } 10403 #endif /* CONFIG_UPROBE_EVENTS */ 10404 10405 static inline void perf_tp_register(void) 10406 { 10407 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10408 #ifdef CONFIG_KPROBE_EVENTS 10409 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10410 #endif 10411 #ifdef CONFIG_UPROBE_EVENTS 10412 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10413 #endif 10414 } 10415 10416 static void perf_event_free_filter(struct perf_event *event) 10417 { 10418 ftrace_profile_free_filter(event); 10419 } 10420 10421 #ifdef CONFIG_BPF_SYSCALL 10422 static void bpf_overflow_handler(struct perf_event *event, 10423 struct perf_sample_data *data, 10424 struct pt_regs *regs) 10425 { 10426 struct bpf_perf_event_data_kern ctx = { 10427 .data = data, 10428 .event = event, 10429 }; 10430 struct bpf_prog *prog; 10431 int ret = 0; 10432 10433 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10434 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10435 goto out; 10436 rcu_read_lock(); 10437 prog = READ_ONCE(event->prog); 10438 if (prog) { 10439 perf_prepare_sample(data, event, regs); 10440 ret = bpf_prog_run(prog, &ctx); 10441 } 10442 rcu_read_unlock(); 10443 out: 10444 __this_cpu_dec(bpf_prog_active); 10445 if (!ret) 10446 return; 10447 10448 event->orig_overflow_handler(event, data, regs); 10449 } 10450 10451 static int perf_event_set_bpf_handler(struct perf_event *event, 10452 struct bpf_prog *prog, 10453 u64 bpf_cookie) 10454 { 10455 if (event->overflow_handler_context) 10456 /* hw breakpoint or kernel counter */ 10457 return -EINVAL; 10458 10459 if (event->prog) 10460 return -EEXIST; 10461 10462 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10463 return -EINVAL; 10464 10465 if (event->attr.precise_ip && 10466 prog->call_get_stack && 10467 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10468 event->attr.exclude_callchain_kernel || 10469 event->attr.exclude_callchain_user)) { 10470 /* 10471 * On perf_event with precise_ip, calling bpf_get_stack() 10472 * may trigger unwinder warnings and occasional crashes. 10473 * bpf_get_[stack|stackid] works around this issue by using 10474 * callchain attached to perf_sample_data. If the 10475 * perf_event does not full (kernel and user) callchain 10476 * attached to perf_sample_data, do not allow attaching BPF 10477 * program that calls bpf_get_[stack|stackid]. 10478 */ 10479 return -EPROTO; 10480 } 10481 10482 event->prog = prog; 10483 event->bpf_cookie = bpf_cookie; 10484 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10485 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10486 return 0; 10487 } 10488 10489 static void perf_event_free_bpf_handler(struct perf_event *event) 10490 { 10491 struct bpf_prog *prog = event->prog; 10492 10493 if (!prog) 10494 return; 10495 10496 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10497 event->prog = NULL; 10498 bpf_prog_put(prog); 10499 } 10500 #else 10501 static int perf_event_set_bpf_handler(struct perf_event *event, 10502 struct bpf_prog *prog, 10503 u64 bpf_cookie) 10504 { 10505 return -EOPNOTSUPP; 10506 } 10507 static void perf_event_free_bpf_handler(struct perf_event *event) 10508 { 10509 } 10510 #endif 10511 10512 /* 10513 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10514 * with perf_event_open() 10515 */ 10516 static inline bool perf_event_is_tracing(struct perf_event *event) 10517 { 10518 if (event->pmu == &perf_tracepoint) 10519 return true; 10520 #ifdef CONFIG_KPROBE_EVENTS 10521 if (event->pmu == &perf_kprobe) 10522 return true; 10523 #endif 10524 #ifdef CONFIG_UPROBE_EVENTS 10525 if (event->pmu == &perf_uprobe) 10526 return true; 10527 #endif 10528 return false; 10529 } 10530 10531 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10532 u64 bpf_cookie) 10533 { 10534 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10535 10536 if (!perf_event_is_tracing(event)) 10537 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10538 10539 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10540 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10541 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10542 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10543 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10544 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10545 return -EINVAL; 10546 10547 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10548 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10549 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10550 return -EINVAL; 10551 10552 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10553 /* only uprobe programs are allowed to be sleepable */ 10554 return -EINVAL; 10555 10556 /* Kprobe override only works for kprobes, not uprobes. */ 10557 if (prog->kprobe_override && !is_kprobe) 10558 return -EINVAL; 10559 10560 if (is_tracepoint || is_syscall_tp) { 10561 int off = trace_event_get_offsets(event->tp_event); 10562 10563 if (prog->aux->max_ctx_offset > off) 10564 return -EACCES; 10565 } 10566 10567 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10568 } 10569 10570 void perf_event_free_bpf_prog(struct perf_event *event) 10571 { 10572 if (!perf_event_is_tracing(event)) { 10573 perf_event_free_bpf_handler(event); 10574 return; 10575 } 10576 perf_event_detach_bpf_prog(event); 10577 } 10578 10579 #else 10580 10581 static inline void perf_tp_register(void) 10582 { 10583 } 10584 10585 static void perf_event_free_filter(struct perf_event *event) 10586 { 10587 } 10588 10589 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10590 u64 bpf_cookie) 10591 { 10592 return -ENOENT; 10593 } 10594 10595 void perf_event_free_bpf_prog(struct perf_event *event) 10596 { 10597 } 10598 #endif /* CONFIG_EVENT_TRACING */ 10599 10600 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10601 void perf_bp_event(struct perf_event *bp, void *data) 10602 { 10603 struct perf_sample_data sample; 10604 struct pt_regs *regs = data; 10605 10606 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10607 10608 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10609 perf_swevent_event(bp, 1, &sample, regs); 10610 } 10611 #endif 10612 10613 /* 10614 * Allocate a new address filter 10615 */ 10616 static struct perf_addr_filter * 10617 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10618 { 10619 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10620 struct perf_addr_filter *filter; 10621 10622 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10623 if (!filter) 10624 return NULL; 10625 10626 INIT_LIST_HEAD(&filter->entry); 10627 list_add_tail(&filter->entry, filters); 10628 10629 return filter; 10630 } 10631 10632 static void free_filters_list(struct list_head *filters) 10633 { 10634 struct perf_addr_filter *filter, *iter; 10635 10636 list_for_each_entry_safe(filter, iter, filters, entry) { 10637 path_put(&filter->path); 10638 list_del(&filter->entry); 10639 kfree(filter); 10640 } 10641 } 10642 10643 /* 10644 * Free existing address filters and optionally install new ones 10645 */ 10646 static void perf_addr_filters_splice(struct perf_event *event, 10647 struct list_head *head) 10648 { 10649 unsigned long flags; 10650 LIST_HEAD(list); 10651 10652 if (!has_addr_filter(event)) 10653 return; 10654 10655 /* don't bother with children, they don't have their own filters */ 10656 if (event->parent) 10657 return; 10658 10659 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10660 10661 list_splice_init(&event->addr_filters.list, &list); 10662 if (head) 10663 list_splice(head, &event->addr_filters.list); 10664 10665 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10666 10667 free_filters_list(&list); 10668 } 10669 10670 /* 10671 * Scan through mm's vmas and see if one of them matches the 10672 * @filter; if so, adjust filter's address range. 10673 * Called with mm::mmap_lock down for reading. 10674 */ 10675 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10676 struct mm_struct *mm, 10677 struct perf_addr_filter_range *fr) 10678 { 10679 struct vm_area_struct *vma; 10680 VMA_ITERATOR(vmi, mm, 0); 10681 10682 for_each_vma(vmi, vma) { 10683 if (!vma->vm_file) 10684 continue; 10685 10686 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10687 return; 10688 } 10689 } 10690 10691 /* 10692 * Update event's address range filters based on the 10693 * task's existing mappings, if any. 10694 */ 10695 static void perf_event_addr_filters_apply(struct perf_event *event) 10696 { 10697 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10698 struct task_struct *task = READ_ONCE(event->ctx->task); 10699 struct perf_addr_filter *filter; 10700 struct mm_struct *mm = NULL; 10701 unsigned int count = 0; 10702 unsigned long flags; 10703 10704 /* 10705 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10706 * will stop on the parent's child_mutex that our caller is also holding 10707 */ 10708 if (task == TASK_TOMBSTONE) 10709 return; 10710 10711 if (ifh->nr_file_filters) { 10712 mm = get_task_mm(task); 10713 if (!mm) 10714 goto restart; 10715 10716 mmap_read_lock(mm); 10717 } 10718 10719 raw_spin_lock_irqsave(&ifh->lock, flags); 10720 list_for_each_entry(filter, &ifh->list, entry) { 10721 if (filter->path.dentry) { 10722 /* 10723 * Adjust base offset if the filter is associated to a 10724 * binary that needs to be mapped: 10725 */ 10726 event->addr_filter_ranges[count].start = 0; 10727 event->addr_filter_ranges[count].size = 0; 10728 10729 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10730 } else { 10731 event->addr_filter_ranges[count].start = filter->offset; 10732 event->addr_filter_ranges[count].size = filter->size; 10733 } 10734 10735 count++; 10736 } 10737 10738 event->addr_filters_gen++; 10739 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10740 10741 if (ifh->nr_file_filters) { 10742 mmap_read_unlock(mm); 10743 10744 mmput(mm); 10745 } 10746 10747 restart: 10748 perf_event_stop(event, 1); 10749 } 10750 10751 /* 10752 * Address range filtering: limiting the data to certain 10753 * instruction address ranges. Filters are ioctl()ed to us from 10754 * userspace as ascii strings. 10755 * 10756 * Filter string format: 10757 * 10758 * ACTION RANGE_SPEC 10759 * where ACTION is one of the 10760 * * "filter": limit the trace to this region 10761 * * "start": start tracing from this address 10762 * * "stop": stop tracing at this address/region; 10763 * RANGE_SPEC is 10764 * * for kernel addresses: <start address>[/<size>] 10765 * * for object files: <start address>[/<size>]@</path/to/object/file> 10766 * 10767 * if <size> is not specified or is zero, the range is treated as a single 10768 * address; not valid for ACTION=="filter". 10769 */ 10770 enum { 10771 IF_ACT_NONE = -1, 10772 IF_ACT_FILTER, 10773 IF_ACT_START, 10774 IF_ACT_STOP, 10775 IF_SRC_FILE, 10776 IF_SRC_KERNEL, 10777 IF_SRC_FILEADDR, 10778 IF_SRC_KERNELADDR, 10779 }; 10780 10781 enum { 10782 IF_STATE_ACTION = 0, 10783 IF_STATE_SOURCE, 10784 IF_STATE_END, 10785 }; 10786 10787 static const match_table_t if_tokens = { 10788 { IF_ACT_FILTER, "filter" }, 10789 { IF_ACT_START, "start" }, 10790 { IF_ACT_STOP, "stop" }, 10791 { IF_SRC_FILE, "%u/%u@%s" }, 10792 { IF_SRC_KERNEL, "%u/%u" }, 10793 { IF_SRC_FILEADDR, "%u@%s" }, 10794 { IF_SRC_KERNELADDR, "%u" }, 10795 { IF_ACT_NONE, NULL }, 10796 }; 10797 10798 /* 10799 * Address filter string parser 10800 */ 10801 static int 10802 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10803 struct list_head *filters) 10804 { 10805 struct perf_addr_filter *filter = NULL; 10806 char *start, *orig, *filename = NULL; 10807 substring_t args[MAX_OPT_ARGS]; 10808 int state = IF_STATE_ACTION, token; 10809 unsigned int kernel = 0; 10810 int ret = -EINVAL; 10811 10812 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10813 if (!fstr) 10814 return -ENOMEM; 10815 10816 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10817 static const enum perf_addr_filter_action_t actions[] = { 10818 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10819 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10820 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10821 }; 10822 ret = -EINVAL; 10823 10824 if (!*start) 10825 continue; 10826 10827 /* filter definition begins */ 10828 if (state == IF_STATE_ACTION) { 10829 filter = perf_addr_filter_new(event, filters); 10830 if (!filter) 10831 goto fail; 10832 } 10833 10834 token = match_token(start, if_tokens, args); 10835 switch (token) { 10836 case IF_ACT_FILTER: 10837 case IF_ACT_START: 10838 case IF_ACT_STOP: 10839 if (state != IF_STATE_ACTION) 10840 goto fail; 10841 10842 filter->action = actions[token]; 10843 state = IF_STATE_SOURCE; 10844 break; 10845 10846 case IF_SRC_KERNELADDR: 10847 case IF_SRC_KERNEL: 10848 kernel = 1; 10849 fallthrough; 10850 10851 case IF_SRC_FILEADDR: 10852 case IF_SRC_FILE: 10853 if (state != IF_STATE_SOURCE) 10854 goto fail; 10855 10856 *args[0].to = 0; 10857 ret = kstrtoul(args[0].from, 0, &filter->offset); 10858 if (ret) 10859 goto fail; 10860 10861 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10862 *args[1].to = 0; 10863 ret = kstrtoul(args[1].from, 0, &filter->size); 10864 if (ret) 10865 goto fail; 10866 } 10867 10868 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10869 int fpos = token == IF_SRC_FILE ? 2 : 1; 10870 10871 kfree(filename); 10872 filename = match_strdup(&args[fpos]); 10873 if (!filename) { 10874 ret = -ENOMEM; 10875 goto fail; 10876 } 10877 } 10878 10879 state = IF_STATE_END; 10880 break; 10881 10882 default: 10883 goto fail; 10884 } 10885 10886 /* 10887 * Filter definition is fully parsed, validate and install it. 10888 * Make sure that it doesn't contradict itself or the event's 10889 * attribute. 10890 */ 10891 if (state == IF_STATE_END) { 10892 ret = -EINVAL; 10893 10894 /* 10895 * ACTION "filter" must have a non-zero length region 10896 * specified. 10897 */ 10898 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10899 !filter->size) 10900 goto fail; 10901 10902 if (!kernel) { 10903 if (!filename) 10904 goto fail; 10905 10906 /* 10907 * For now, we only support file-based filters 10908 * in per-task events; doing so for CPU-wide 10909 * events requires additional context switching 10910 * trickery, since same object code will be 10911 * mapped at different virtual addresses in 10912 * different processes. 10913 */ 10914 ret = -EOPNOTSUPP; 10915 if (!event->ctx->task) 10916 goto fail; 10917 10918 /* look up the path and grab its inode */ 10919 ret = kern_path(filename, LOOKUP_FOLLOW, 10920 &filter->path); 10921 if (ret) 10922 goto fail; 10923 10924 ret = -EINVAL; 10925 if (!filter->path.dentry || 10926 !S_ISREG(d_inode(filter->path.dentry) 10927 ->i_mode)) 10928 goto fail; 10929 10930 event->addr_filters.nr_file_filters++; 10931 } 10932 10933 /* ready to consume more filters */ 10934 kfree(filename); 10935 filename = NULL; 10936 state = IF_STATE_ACTION; 10937 filter = NULL; 10938 kernel = 0; 10939 } 10940 } 10941 10942 if (state != IF_STATE_ACTION) 10943 goto fail; 10944 10945 kfree(filename); 10946 kfree(orig); 10947 10948 return 0; 10949 10950 fail: 10951 kfree(filename); 10952 free_filters_list(filters); 10953 kfree(orig); 10954 10955 return ret; 10956 } 10957 10958 static int 10959 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10960 { 10961 LIST_HEAD(filters); 10962 int ret; 10963 10964 /* 10965 * Since this is called in perf_ioctl() path, we're already holding 10966 * ctx::mutex. 10967 */ 10968 lockdep_assert_held(&event->ctx->mutex); 10969 10970 if (WARN_ON_ONCE(event->parent)) 10971 return -EINVAL; 10972 10973 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10974 if (ret) 10975 goto fail_clear_files; 10976 10977 ret = event->pmu->addr_filters_validate(&filters); 10978 if (ret) 10979 goto fail_free_filters; 10980 10981 /* remove existing filters, if any */ 10982 perf_addr_filters_splice(event, &filters); 10983 10984 /* install new filters */ 10985 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10986 10987 return ret; 10988 10989 fail_free_filters: 10990 free_filters_list(&filters); 10991 10992 fail_clear_files: 10993 event->addr_filters.nr_file_filters = 0; 10994 10995 return ret; 10996 } 10997 10998 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10999 { 11000 int ret = -EINVAL; 11001 char *filter_str; 11002 11003 filter_str = strndup_user(arg, PAGE_SIZE); 11004 if (IS_ERR(filter_str)) 11005 return PTR_ERR(filter_str); 11006 11007 #ifdef CONFIG_EVENT_TRACING 11008 if (perf_event_is_tracing(event)) { 11009 struct perf_event_context *ctx = event->ctx; 11010 11011 /* 11012 * Beware, here be dragons!! 11013 * 11014 * the tracepoint muck will deadlock against ctx->mutex, but 11015 * the tracepoint stuff does not actually need it. So 11016 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11017 * already have a reference on ctx. 11018 * 11019 * This can result in event getting moved to a different ctx, 11020 * but that does not affect the tracepoint state. 11021 */ 11022 mutex_unlock(&ctx->mutex); 11023 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11024 mutex_lock(&ctx->mutex); 11025 } else 11026 #endif 11027 if (has_addr_filter(event)) 11028 ret = perf_event_set_addr_filter(event, filter_str); 11029 11030 kfree(filter_str); 11031 return ret; 11032 } 11033 11034 /* 11035 * hrtimer based swevent callback 11036 */ 11037 11038 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11039 { 11040 enum hrtimer_restart ret = HRTIMER_RESTART; 11041 struct perf_sample_data data; 11042 struct pt_regs *regs; 11043 struct perf_event *event; 11044 u64 period; 11045 11046 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11047 11048 if (event->state != PERF_EVENT_STATE_ACTIVE) 11049 return HRTIMER_NORESTART; 11050 11051 event->pmu->read(event); 11052 11053 perf_sample_data_init(&data, 0, event->hw.last_period); 11054 regs = get_irq_regs(); 11055 11056 if (regs && !perf_exclude_event(event, regs)) { 11057 if (!(event->attr.exclude_idle && is_idle_task(current))) 11058 if (__perf_event_overflow(event, 1, &data, regs)) 11059 ret = HRTIMER_NORESTART; 11060 } 11061 11062 period = max_t(u64, 10000, event->hw.sample_period); 11063 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11064 11065 return ret; 11066 } 11067 11068 static void perf_swevent_start_hrtimer(struct perf_event *event) 11069 { 11070 struct hw_perf_event *hwc = &event->hw; 11071 s64 period; 11072 11073 if (!is_sampling_event(event)) 11074 return; 11075 11076 period = local64_read(&hwc->period_left); 11077 if (period) { 11078 if (period < 0) 11079 period = 10000; 11080 11081 local64_set(&hwc->period_left, 0); 11082 } else { 11083 period = max_t(u64, 10000, hwc->sample_period); 11084 } 11085 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11086 HRTIMER_MODE_REL_PINNED_HARD); 11087 } 11088 11089 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11090 { 11091 struct hw_perf_event *hwc = &event->hw; 11092 11093 if (is_sampling_event(event)) { 11094 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11095 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11096 11097 hrtimer_cancel(&hwc->hrtimer); 11098 } 11099 } 11100 11101 static void perf_swevent_init_hrtimer(struct perf_event *event) 11102 { 11103 struct hw_perf_event *hwc = &event->hw; 11104 11105 if (!is_sampling_event(event)) 11106 return; 11107 11108 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11109 hwc->hrtimer.function = perf_swevent_hrtimer; 11110 11111 /* 11112 * Since hrtimers have a fixed rate, we can do a static freq->period 11113 * mapping and avoid the whole period adjust feedback stuff. 11114 */ 11115 if (event->attr.freq) { 11116 long freq = event->attr.sample_freq; 11117 11118 event->attr.sample_period = NSEC_PER_SEC / freq; 11119 hwc->sample_period = event->attr.sample_period; 11120 local64_set(&hwc->period_left, hwc->sample_period); 11121 hwc->last_period = hwc->sample_period; 11122 event->attr.freq = 0; 11123 } 11124 } 11125 11126 /* 11127 * Software event: cpu wall time clock 11128 */ 11129 11130 static void cpu_clock_event_update(struct perf_event *event) 11131 { 11132 s64 prev; 11133 u64 now; 11134 11135 now = local_clock(); 11136 prev = local64_xchg(&event->hw.prev_count, now); 11137 local64_add(now - prev, &event->count); 11138 } 11139 11140 static void cpu_clock_event_start(struct perf_event *event, int flags) 11141 { 11142 local64_set(&event->hw.prev_count, local_clock()); 11143 perf_swevent_start_hrtimer(event); 11144 } 11145 11146 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11147 { 11148 perf_swevent_cancel_hrtimer(event); 11149 cpu_clock_event_update(event); 11150 } 11151 11152 static int cpu_clock_event_add(struct perf_event *event, int flags) 11153 { 11154 if (flags & PERF_EF_START) 11155 cpu_clock_event_start(event, flags); 11156 perf_event_update_userpage(event); 11157 11158 return 0; 11159 } 11160 11161 static void cpu_clock_event_del(struct perf_event *event, int flags) 11162 { 11163 cpu_clock_event_stop(event, flags); 11164 } 11165 11166 static void cpu_clock_event_read(struct perf_event *event) 11167 { 11168 cpu_clock_event_update(event); 11169 } 11170 11171 static int cpu_clock_event_init(struct perf_event *event) 11172 { 11173 if (event->attr.type != perf_cpu_clock.type) 11174 return -ENOENT; 11175 11176 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11177 return -ENOENT; 11178 11179 /* 11180 * no branch sampling for software events 11181 */ 11182 if (has_branch_stack(event)) 11183 return -EOPNOTSUPP; 11184 11185 perf_swevent_init_hrtimer(event); 11186 11187 return 0; 11188 } 11189 11190 static struct pmu perf_cpu_clock = { 11191 .task_ctx_nr = perf_sw_context, 11192 11193 .capabilities = PERF_PMU_CAP_NO_NMI, 11194 .dev = PMU_NULL_DEV, 11195 11196 .event_init = cpu_clock_event_init, 11197 .add = cpu_clock_event_add, 11198 .del = cpu_clock_event_del, 11199 .start = cpu_clock_event_start, 11200 .stop = cpu_clock_event_stop, 11201 .read = cpu_clock_event_read, 11202 }; 11203 11204 /* 11205 * Software event: task time clock 11206 */ 11207 11208 static void task_clock_event_update(struct perf_event *event, u64 now) 11209 { 11210 u64 prev; 11211 s64 delta; 11212 11213 prev = local64_xchg(&event->hw.prev_count, now); 11214 delta = now - prev; 11215 local64_add(delta, &event->count); 11216 } 11217 11218 static void task_clock_event_start(struct perf_event *event, int flags) 11219 { 11220 local64_set(&event->hw.prev_count, event->ctx->time); 11221 perf_swevent_start_hrtimer(event); 11222 } 11223 11224 static void task_clock_event_stop(struct perf_event *event, int flags) 11225 { 11226 perf_swevent_cancel_hrtimer(event); 11227 task_clock_event_update(event, event->ctx->time); 11228 } 11229 11230 static int task_clock_event_add(struct perf_event *event, int flags) 11231 { 11232 if (flags & PERF_EF_START) 11233 task_clock_event_start(event, flags); 11234 perf_event_update_userpage(event); 11235 11236 return 0; 11237 } 11238 11239 static void task_clock_event_del(struct perf_event *event, int flags) 11240 { 11241 task_clock_event_stop(event, PERF_EF_UPDATE); 11242 } 11243 11244 static void task_clock_event_read(struct perf_event *event) 11245 { 11246 u64 now = perf_clock(); 11247 u64 delta = now - event->ctx->timestamp; 11248 u64 time = event->ctx->time + delta; 11249 11250 task_clock_event_update(event, time); 11251 } 11252 11253 static int task_clock_event_init(struct perf_event *event) 11254 { 11255 if (event->attr.type != perf_task_clock.type) 11256 return -ENOENT; 11257 11258 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11259 return -ENOENT; 11260 11261 /* 11262 * no branch sampling for software events 11263 */ 11264 if (has_branch_stack(event)) 11265 return -EOPNOTSUPP; 11266 11267 perf_swevent_init_hrtimer(event); 11268 11269 return 0; 11270 } 11271 11272 static struct pmu perf_task_clock = { 11273 .task_ctx_nr = perf_sw_context, 11274 11275 .capabilities = PERF_PMU_CAP_NO_NMI, 11276 .dev = PMU_NULL_DEV, 11277 11278 .event_init = task_clock_event_init, 11279 .add = task_clock_event_add, 11280 .del = task_clock_event_del, 11281 .start = task_clock_event_start, 11282 .stop = task_clock_event_stop, 11283 .read = task_clock_event_read, 11284 }; 11285 11286 static void perf_pmu_nop_void(struct pmu *pmu) 11287 { 11288 } 11289 11290 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11291 { 11292 } 11293 11294 static int perf_pmu_nop_int(struct pmu *pmu) 11295 { 11296 return 0; 11297 } 11298 11299 static int perf_event_nop_int(struct perf_event *event, u64 value) 11300 { 11301 return 0; 11302 } 11303 11304 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11305 11306 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11307 { 11308 __this_cpu_write(nop_txn_flags, flags); 11309 11310 if (flags & ~PERF_PMU_TXN_ADD) 11311 return; 11312 11313 perf_pmu_disable(pmu); 11314 } 11315 11316 static int perf_pmu_commit_txn(struct pmu *pmu) 11317 { 11318 unsigned int flags = __this_cpu_read(nop_txn_flags); 11319 11320 __this_cpu_write(nop_txn_flags, 0); 11321 11322 if (flags & ~PERF_PMU_TXN_ADD) 11323 return 0; 11324 11325 perf_pmu_enable(pmu); 11326 return 0; 11327 } 11328 11329 static void perf_pmu_cancel_txn(struct pmu *pmu) 11330 { 11331 unsigned int flags = __this_cpu_read(nop_txn_flags); 11332 11333 __this_cpu_write(nop_txn_flags, 0); 11334 11335 if (flags & ~PERF_PMU_TXN_ADD) 11336 return; 11337 11338 perf_pmu_enable(pmu); 11339 } 11340 11341 static int perf_event_idx_default(struct perf_event *event) 11342 { 11343 return 0; 11344 } 11345 11346 static void free_pmu_context(struct pmu *pmu) 11347 { 11348 free_percpu(pmu->cpu_pmu_context); 11349 } 11350 11351 /* 11352 * Let userspace know that this PMU supports address range filtering: 11353 */ 11354 static ssize_t nr_addr_filters_show(struct device *dev, 11355 struct device_attribute *attr, 11356 char *page) 11357 { 11358 struct pmu *pmu = dev_get_drvdata(dev); 11359 11360 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11361 } 11362 DEVICE_ATTR_RO(nr_addr_filters); 11363 11364 static struct idr pmu_idr; 11365 11366 static ssize_t 11367 type_show(struct device *dev, struct device_attribute *attr, char *page) 11368 { 11369 struct pmu *pmu = dev_get_drvdata(dev); 11370 11371 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11372 } 11373 static DEVICE_ATTR_RO(type); 11374 11375 static ssize_t 11376 perf_event_mux_interval_ms_show(struct device *dev, 11377 struct device_attribute *attr, 11378 char *page) 11379 { 11380 struct pmu *pmu = dev_get_drvdata(dev); 11381 11382 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11383 } 11384 11385 static DEFINE_MUTEX(mux_interval_mutex); 11386 11387 static ssize_t 11388 perf_event_mux_interval_ms_store(struct device *dev, 11389 struct device_attribute *attr, 11390 const char *buf, size_t count) 11391 { 11392 struct pmu *pmu = dev_get_drvdata(dev); 11393 int timer, cpu, ret; 11394 11395 ret = kstrtoint(buf, 0, &timer); 11396 if (ret) 11397 return ret; 11398 11399 if (timer < 1) 11400 return -EINVAL; 11401 11402 /* same value, noting to do */ 11403 if (timer == pmu->hrtimer_interval_ms) 11404 return count; 11405 11406 mutex_lock(&mux_interval_mutex); 11407 pmu->hrtimer_interval_ms = timer; 11408 11409 /* update all cpuctx for this PMU */ 11410 cpus_read_lock(); 11411 for_each_online_cpu(cpu) { 11412 struct perf_cpu_pmu_context *cpc; 11413 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11414 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11415 11416 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11417 } 11418 cpus_read_unlock(); 11419 mutex_unlock(&mux_interval_mutex); 11420 11421 return count; 11422 } 11423 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11424 11425 static struct attribute *pmu_dev_attrs[] = { 11426 &dev_attr_type.attr, 11427 &dev_attr_perf_event_mux_interval_ms.attr, 11428 NULL, 11429 }; 11430 ATTRIBUTE_GROUPS(pmu_dev); 11431 11432 static int pmu_bus_running; 11433 static struct bus_type pmu_bus = { 11434 .name = "event_source", 11435 .dev_groups = pmu_dev_groups, 11436 }; 11437 11438 static void pmu_dev_release(struct device *dev) 11439 { 11440 kfree(dev); 11441 } 11442 11443 static int pmu_dev_alloc(struct pmu *pmu) 11444 { 11445 int ret = -ENOMEM; 11446 11447 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11448 if (!pmu->dev) 11449 goto out; 11450 11451 pmu->dev->groups = pmu->attr_groups; 11452 device_initialize(pmu->dev); 11453 11454 dev_set_drvdata(pmu->dev, pmu); 11455 pmu->dev->bus = &pmu_bus; 11456 pmu->dev->parent = pmu->parent; 11457 pmu->dev->release = pmu_dev_release; 11458 11459 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11460 if (ret) 11461 goto free_dev; 11462 11463 ret = device_add(pmu->dev); 11464 if (ret) 11465 goto free_dev; 11466 11467 /* For PMUs with address filters, throw in an extra attribute: */ 11468 if (pmu->nr_addr_filters) 11469 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11470 11471 if (ret) 11472 goto del_dev; 11473 11474 if (pmu->attr_update) 11475 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11476 11477 if (ret) 11478 goto del_dev; 11479 11480 out: 11481 return ret; 11482 11483 del_dev: 11484 device_del(pmu->dev); 11485 11486 free_dev: 11487 put_device(pmu->dev); 11488 goto out; 11489 } 11490 11491 static struct lock_class_key cpuctx_mutex; 11492 static struct lock_class_key cpuctx_lock; 11493 11494 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11495 { 11496 int cpu, ret, max = PERF_TYPE_MAX; 11497 11498 mutex_lock(&pmus_lock); 11499 ret = -ENOMEM; 11500 pmu->pmu_disable_count = alloc_percpu(int); 11501 if (!pmu->pmu_disable_count) 11502 goto unlock; 11503 11504 pmu->type = -1; 11505 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11506 ret = -EINVAL; 11507 goto free_pdc; 11508 } 11509 11510 pmu->name = name; 11511 11512 if (type >= 0) 11513 max = type; 11514 11515 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11516 if (ret < 0) 11517 goto free_pdc; 11518 11519 WARN_ON(type >= 0 && ret != type); 11520 11521 type = ret; 11522 pmu->type = type; 11523 11524 if (pmu_bus_running && !pmu->dev) { 11525 ret = pmu_dev_alloc(pmu); 11526 if (ret) 11527 goto free_idr; 11528 } 11529 11530 ret = -ENOMEM; 11531 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11532 if (!pmu->cpu_pmu_context) 11533 goto free_dev; 11534 11535 for_each_possible_cpu(cpu) { 11536 struct perf_cpu_pmu_context *cpc; 11537 11538 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11539 __perf_init_event_pmu_context(&cpc->epc, pmu); 11540 __perf_mux_hrtimer_init(cpc, cpu); 11541 } 11542 11543 if (!pmu->start_txn) { 11544 if (pmu->pmu_enable) { 11545 /* 11546 * If we have pmu_enable/pmu_disable calls, install 11547 * transaction stubs that use that to try and batch 11548 * hardware accesses. 11549 */ 11550 pmu->start_txn = perf_pmu_start_txn; 11551 pmu->commit_txn = perf_pmu_commit_txn; 11552 pmu->cancel_txn = perf_pmu_cancel_txn; 11553 } else { 11554 pmu->start_txn = perf_pmu_nop_txn; 11555 pmu->commit_txn = perf_pmu_nop_int; 11556 pmu->cancel_txn = perf_pmu_nop_void; 11557 } 11558 } 11559 11560 if (!pmu->pmu_enable) { 11561 pmu->pmu_enable = perf_pmu_nop_void; 11562 pmu->pmu_disable = perf_pmu_nop_void; 11563 } 11564 11565 if (!pmu->check_period) 11566 pmu->check_period = perf_event_nop_int; 11567 11568 if (!pmu->event_idx) 11569 pmu->event_idx = perf_event_idx_default; 11570 11571 list_add_rcu(&pmu->entry, &pmus); 11572 atomic_set(&pmu->exclusive_cnt, 0); 11573 ret = 0; 11574 unlock: 11575 mutex_unlock(&pmus_lock); 11576 11577 return ret; 11578 11579 free_dev: 11580 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11581 device_del(pmu->dev); 11582 put_device(pmu->dev); 11583 } 11584 11585 free_idr: 11586 idr_remove(&pmu_idr, pmu->type); 11587 11588 free_pdc: 11589 free_percpu(pmu->pmu_disable_count); 11590 goto unlock; 11591 } 11592 EXPORT_SYMBOL_GPL(perf_pmu_register); 11593 11594 void perf_pmu_unregister(struct pmu *pmu) 11595 { 11596 mutex_lock(&pmus_lock); 11597 list_del_rcu(&pmu->entry); 11598 11599 /* 11600 * We dereference the pmu list under both SRCU and regular RCU, so 11601 * synchronize against both of those. 11602 */ 11603 synchronize_srcu(&pmus_srcu); 11604 synchronize_rcu(); 11605 11606 free_percpu(pmu->pmu_disable_count); 11607 idr_remove(&pmu_idr, pmu->type); 11608 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11609 if (pmu->nr_addr_filters) 11610 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11611 device_del(pmu->dev); 11612 put_device(pmu->dev); 11613 } 11614 free_pmu_context(pmu); 11615 mutex_unlock(&pmus_lock); 11616 } 11617 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11618 11619 static inline bool has_extended_regs(struct perf_event *event) 11620 { 11621 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11622 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11623 } 11624 11625 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11626 { 11627 struct perf_event_context *ctx = NULL; 11628 int ret; 11629 11630 if (!try_module_get(pmu->module)) 11631 return -ENODEV; 11632 11633 /* 11634 * A number of pmu->event_init() methods iterate the sibling_list to, 11635 * for example, validate if the group fits on the PMU. Therefore, 11636 * if this is a sibling event, acquire the ctx->mutex to protect 11637 * the sibling_list. 11638 */ 11639 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11640 /* 11641 * This ctx->mutex can nest when we're called through 11642 * inheritance. See the perf_event_ctx_lock_nested() comment. 11643 */ 11644 ctx = perf_event_ctx_lock_nested(event->group_leader, 11645 SINGLE_DEPTH_NESTING); 11646 BUG_ON(!ctx); 11647 } 11648 11649 event->pmu = pmu; 11650 ret = pmu->event_init(event); 11651 11652 if (ctx) 11653 perf_event_ctx_unlock(event->group_leader, ctx); 11654 11655 if (!ret) { 11656 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11657 has_extended_regs(event)) 11658 ret = -EOPNOTSUPP; 11659 11660 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11661 event_has_any_exclude_flag(event)) 11662 ret = -EINVAL; 11663 11664 if (ret && event->destroy) 11665 event->destroy(event); 11666 } 11667 11668 if (ret) 11669 module_put(pmu->module); 11670 11671 return ret; 11672 } 11673 11674 static struct pmu *perf_init_event(struct perf_event *event) 11675 { 11676 bool extended_type = false; 11677 int idx, type, ret; 11678 struct pmu *pmu; 11679 11680 idx = srcu_read_lock(&pmus_srcu); 11681 11682 /* 11683 * Save original type before calling pmu->event_init() since certain 11684 * pmus overwrites event->attr.type to forward event to another pmu. 11685 */ 11686 event->orig_type = event->attr.type; 11687 11688 /* Try parent's PMU first: */ 11689 if (event->parent && event->parent->pmu) { 11690 pmu = event->parent->pmu; 11691 ret = perf_try_init_event(pmu, event); 11692 if (!ret) 11693 goto unlock; 11694 } 11695 11696 /* 11697 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11698 * are often aliases for PERF_TYPE_RAW. 11699 */ 11700 type = event->attr.type; 11701 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11702 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11703 if (!type) { 11704 type = PERF_TYPE_RAW; 11705 } else { 11706 extended_type = true; 11707 event->attr.config &= PERF_HW_EVENT_MASK; 11708 } 11709 } 11710 11711 again: 11712 rcu_read_lock(); 11713 pmu = idr_find(&pmu_idr, type); 11714 rcu_read_unlock(); 11715 if (pmu) { 11716 if (event->attr.type != type && type != PERF_TYPE_RAW && 11717 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11718 goto fail; 11719 11720 ret = perf_try_init_event(pmu, event); 11721 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11722 type = event->attr.type; 11723 goto again; 11724 } 11725 11726 if (ret) 11727 pmu = ERR_PTR(ret); 11728 11729 goto unlock; 11730 } 11731 11732 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11733 ret = perf_try_init_event(pmu, event); 11734 if (!ret) 11735 goto unlock; 11736 11737 if (ret != -ENOENT) { 11738 pmu = ERR_PTR(ret); 11739 goto unlock; 11740 } 11741 } 11742 fail: 11743 pmu = ERR_PTR(-ENOENT); 11744 unlock: 11745 srcu_read_unlock(&pmus_srcu, idx); 11746 11747 return pmu; 11748 } 11749 11750 static void attach_sb_event(struct perf_event *event) 11751 { 11752 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11753 11754 raw_spin_lock(&pel->lock); 11755 list_add_rcu(&event->sb_list, &pel->list); 11756 raw_spin_unlock(&pel->lock); 11757 } 11758 11759 /* 11760 * We keep a list of all !task (and therefore per-cpu) events 11761 * that need to receive side-band records. 11762 * 11763 * This avoids having to scan all the various PMU per-cpu contexts 11764 * looking for them. 11765 */ 11766 static void account_pmu_sb_event(struct perf_event *event) 11767 { 11768 if (is_sb_event(event)) 11769 attach_sb_event(event); 11770 } 11771 11772 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11773 static void account_freq_event_nohz(void) 11774 { 11775 #ifdef CONFIG_NO_HZ_FULL 11776 /* Lock so we don't race with concurrent unaccount */ 11777 spin_lock(&nr_freq_lock); 11778 if (atomic_inc_return(&nr_freq_events) == 1) 11779 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11780 spin_unlock(&nr_freq_lock); 11781 #endif 11782 } 11783 11784 static void account_freq_event(void) 11785 { 11786 if (tick_nohz_full_enabled()) 11787 account_freq_event_nohz(); 11788 else 11789 atomic_inc(&nr_freq_events); 11790 } 11791 11792 11793 static void account_event(struct perf_event *event) 11794 { 11795 bool inc = false; 11796 11797 if (event->parent) 11798 return; 11799 11800 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11801 inc = true; 11802 if (event->attr.mmap || event->attr.mmap_data) 11803 atomic_inc(&nr_mmap_events); 11804 if (event->attr.build_id) 11805 atomic_inc(&nr_build_id_events); 11806 if (event->attr.comm) 11807 atomic_inc(&nr_comm_events); 11808 if (event->attr.namespaces) 11809 atomic_inc(&nr_namespaces_events); 11810 if (event->attr.cgroup) 11811 atomic_inc(&nr_cgroup_events); 11812 if (event->attr.task) 11813 atomic_inc(&nr_task_events); 11814 if (event->attr.freq) 11815 account_freq_event(); 11816 if (event->attr.context_switch) { 11817 atomic_inc(&nr_switch_events); 11818 inc = true; 11819 } 11820 if (has_branch_stack(event)) 11821 inc = true; 11822 if (is_cgroup_event(event)) 11823 inc = true; 11824 if (event->attr.ksymbol) 11825 atomic_inc(&nr_ksymbol_events); 11826 if (event->attr.bpf_event) 11827 atomic_inc(&nr_bpf_events); 11828 if (event->attr.text_poke) 11829 atomic_inc(&nr_text_poke_events); 11830 11831 if (inc) { 11832 /* 11833 * We need the mutex here because static_branch_enable() 11834 * must complete *before* the perf_sched_count increment 11835 * becomes visible. 11836 */ 11837 if (atomic_inc_not_zero(&perf_sched_count)) 11838 goto enabled; 11839 11840 mutex_lock(&perf_sched_mutex); 11841 if (!atomic_read(&perf_sched_count)) { 11842 static_branch_enable(&perf_sched_events); 11843 /* 11844 * Guarantee that all CPUs observe they key change and 11845 * call the perf scheduling hooks before proceeding to 11846 * install events that need them. 11847 */ 11848 synchronize_rcu(); 11849 } 11850 /* 11851 * Now that we have waited for the sync_sched(), allow further 11852 * increments to by-pass the mutex. 11853 */ 11854 atomic_inc(&perf_sched_count); 11855 mutex_unlock(&perf_sched_mutex); 11856 } 11857 enabled: 11858 11859 account_pmu_sb_event(event); 11860 } 11861 11862 /* 11863 * Allocate and initialize an event structure 11864 */ 11865 static struct perf_event * 11866 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11867 struct task_struct *task, 11868 struct perf_event *group_leader, 11869 struct perf_event *parent_event, 11870 perf_overflow_handler_t overflow_handler, 11871 void *context, int cgroup_fd) 11872 { 11873 struct pmu *pmu; 11874 struct perf_event *event; 11875 struct hw_perf_event *hwc; 11876 long err = -EINVAL; 11877 int node; 11878 11879 if ((unsigned)cpu >= nr_cpu_ids) { 11880 if (!task || cpu != -1) 11881 return ERR_PTR(-EINVAL); 11882 } 11883 if (attr->sigtrap && !task) { 11884 /* Requires a task: avoid signalling random tasks. */ 11885 return ERR_PTR(-EINVAL); 11886 } 11887 11888 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11889 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11890 node); 11891 if (!event) 11892 return ERR_PTR(-ENOMEM); 11893 11894 /* 11895 * Single events are their own group leaders, with an 11896 * empty sibling list: 11897 */ 11898 if (!group_leader) 11899 group_leader = event; 11900 11901 mutex_init(&event->child_mutex); 11902 INIT_LIST_HEAD(&event->child_list); 11903 11904 INIT_LIST_HEAD(&event->event_entry); 11905 INIT_LIST_HEAD(&event->sibling_list); 11906 INIT_LIST_HEAD(&event->active_list); 11907 init_event_group(event); 11908 INIT_LIST_HEAD(&event->rb_entry); 11909 INIT_LIST_HEAD(&event->active_entry); 11910 INIT_LIST_HEAD(&event->addr_filters.list); 11911 INIT_HLIST_NODE(&event->hlist_entry); 11912 11913 11914 init_waitqueue_head(&event->waitq); 11915 init_irq_work(&event->pending_irq, perf_pending_irq); 11916 init_task_work(&event->pending_task, perf_pending_task); 11917 11918 mutex_init(&event->mmap_mutex); 11919 raw_spin_lock_init(&event->addr_filters.lock); 11920 11921 atomic_long_set(&event->refcount, 1); 11922 event->cpu = cpu; 11923 event->attr = *attr; 11924 event->group_leader = group_leader; 11925 event->pmu = NULL; 11926 event->oncpu = -1; 11927 11928 event->parent = parent_event; 11929 11930 event->ns = get_pid_ns(task_active_pid_ns(current)); 11931 event->id = atomic64_inc_return(&perf_event_id); 11932 11933 event->state = PERF_EVENT_STATE_INACTIVE; 11934 11935 if (parent_event) 11936 event->event_caps = parent_event->event_caps; 11937 11938 if (task) { 11939 event->attach_state = PERF_ATTACH_TASK; 11940 /* 11941 * XXX pmu::event_init needs to know what task to account to 11942 * and we cannot use the ctx information because we need the 11943 * pmu before we get a ctx. 11944 */ 11945 event->hw.target = get_task_struct(task); 11946 } 11947 11948 event->clock = &local_clock; 11949 if (parent_event) 11950 event->clock = parent_event->clock; 11951 11952 if (!overflow_handler && parent_event) { 11953 overflow_handler = parent_event->overflow_handler; 11954 context = parent_event->overflow_handler_context; 11955 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11956 if (overflow_handler == bpf_overflow_handler) { 11957 struct bpf_prog *prog = parent_event->prog; 11958 11959 bpf_prog_inc(prog); 11960 event->prog = prog; 11961 event->orig_overflow_handler = 11962 parent_event->orig_overflow_handler; 11963 } 11964 #endif 11965 } 11966 11967 if (overflow_handler) { 11968 event->overflow_handler = overflow_handler; 11969 event->overflow_handler_context = context; 11970 } else if (is_write_backward(event)){ 11971 event->overflow_handler = perf_event_output_backward; 11972 event->overflow_handler_context = NULL; 11973 } else { 11974 event->overflow_handler = perf_event_output_forward; 11975 event->overflow_handler_context = NULL; 11976 } 11977 11978 perf_event__state_init(event); 11979 11980 pmu = NULL; 11981 11982 hwc = &event->hw; 11983 hwc->sample_period = attr->sample_period; 11984 if (attr->freq && attr->sample_freq) 11985 hwc->sample_period = 1; 11986 hwc->last_period = hwc->sample_period; 11987 11988 local64_set(&hwc->period_left, hwc->sample_period); 11989 11990 /* 11991 * We currently do not support PERF_SAMPLE_READ on inherited events. 11992 * See perf_output_read(). 11993 */ 11994 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11995 goto err_ns; 11996 11997 if (!has_branch_stack(event)) 11998 event->attr.branch_sample_type = 0; 11999 12000 pmu = perf_init_event(event); 12001 if (IS_ERR(pmu)) { 12002 err = PTR_ERR(pmu); 12003 goto err_ns; 12004 } 12005 12006 /* 12007 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12008 * events (they don't make sense as the cgroup will be different 12009 * on other CPUs in the uncore mask). 12010 */ 12011 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12012 err = -EINVAL; 12013 goto err_pmu; 12014 } 12015 12016 if (event->attr.aux_output && 12017 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12018 err = -EOPNOTSUPP; 12019 goto err_pmu; 12020 } 12021 12022 if (cgroup_fd != -1) { 12023 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12024 if (err) 12025 goto err_pmu; 12026 } 12027 12028 err = exclusive_event_init(event); 12029 if (err) 12030 goto err_pmu; 12031 12032 if (has_addr_filter(event)) { 12033 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12034 sizeof(struct perf_addr_filter_range), 12035 GFP_KERNEL); 12036 if (!event->addr_filter_ranges) { 12037 err = -ENOMEM; 12038 goto err_per_task; 12039 } 12040 12041 /* 12042 * Clone the parent's vma offsets: they are valid until exec() 12043 * even if the mm is not shared with the parent. 12044 */ 12045 if (event->parent) { 12046 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12047 12048 raw_spin_lock_irq(&ifh->lock); 12049 memcpy(event->addr_filter_ranges, 12050 event->parent->addr_filter_ranges, 12051 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12052 raw_spin_unlock_irq(&ifh->lock); 12053 } 12054 12055 /* force hw sync on the address filters */ 12056 event->addr_filters_gen = 1; 12057 } 12058 12059 if (!event->parent) { 12060 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12061 err = get_callchain_buffers(attr->sample_max_stack); 12062 if (err) 12063 goto err_addr_filters; 12064 } 12065 } 12066 12067 err = security_perf_event_alloc(event); 12068 if (err) 12069 goto err_callchain_buffer; 12070 12071 /* symmetric to unaccount_event() in _free_event() */ 12072 account_event(event); 12073 12074 return event; 12075 12076 err_callchain_buffer: 12077 if (!event->parent) { 12078 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12079 put_callchain_buffers(); 12080 } 12081 err_addr_filters: 12082 kfree(event->addr_filter_ranges); 12083 12084 err_per_task: 12085 exclusive_event_destroy(event); 12086 12087 err_pmu: 12088 if (is_cgroup_event(event)) 12089 perf_detach_cgroup(event); 12090 if (event->destroy) 12091 event->destroy(event); 12092 module_put(pmu->module); 12093 err_ns: 12094 if (event->hw.target) 12095 put_task_struct(event->hw.target); 12096 call_rcu(&event->rcu_head, free_event_rcu); 12097 12098 return ERR_PTR(err); 12099 } 12100 12101 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12102 struct perf_event_attr *attr) 12103 { 12104 u32 size; 12105 int ret; 12106 12107 /* Zero the full structure, so that a short copy will be nice. */ 12108 memset(attr, 0, sizeof(*attr)); 12109 12110 ret = get_user(size, &uattr->size); 12111 if (ret) 12112 return ret; 12113 12114 /* ABI compatibility quirk: */ 12115 if (!size) 12116 size = PERF_ATTR_SIZE_VER0; 12117 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12118 goto err_size; 12119 12120 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12121 if (ret) { 12122 if (ret == -E2BIG) 12123 goto err_size; 12124 return ret; 12125 } 12126 12127 attr->size = size; 12128 12129 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12130 return -EINVAL; 12131 12132 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12133 return -EINVAL; 12134 12135 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12136 return -EINVAL; 12137 12138 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12139 u64 mask = attr->branch_sample_type; 12140 12141 /* only using defined bits */ 12142 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12143 return -EINVAL; 12144 12145 /* at least one branch bit must be set */ 12146 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12147 return -EINVAL; 12148 12149 /* propagate priv level, when not set for branch */ 12150 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12151 12152 /* exclude_kernel checked on syscall entry */ 12153 if (!attr->exclude_kernel) 12154 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12155 12156 if (!attr->exclude_user) 12157 mask |= PERF_SAMPLE_BRANCH_USER; 12158 12159 if (!attr->exclude_hv) 12160 mask |= PERF_SAMPLE_BRANCH_HV; 12161 /* 12162 * adjust user setting (for HW filter setup) 12163 */ 12164 attr->branch_sample_type = mask; 12165 } 12166 /* privileged levels capture (kernel, hv): check permissions */ 12167 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12168 ret = perf_allow_kernel(attr); 12169 if (ret) 12170 return ret; 12171 } 12172 } 12173 12174 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12175 ret = perf_reg_validate(attr->sample_regs_user); 12176 if (ret) 12177 return ret; 12178 } 12179 12180 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12181 if (!arch_perf_have_user_stack_dump()) 12182 return -ENOSYS; 12183 12184 /* 12185 * We have __u32 type for the size, but so far 12186 * we can only use __u16 as maximum due to the 12187 * __u16 sample size limit. 12188 */ 12189 if (attr->sample_stack_user >= USHRT_MAX) 12190 return -EINVAL; 12191 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12192 return -EINVAL; 12193 } 12194 12195 if (!attr->sample_max_stack) 12196 attr->sample_max_stack = sysctl_perf_event_max_stack; 12197 12198 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12199 ret = perf_reg_validate(attr->sample_regs_intr); 12200 12201 #ifndef CONFIG_CGROUP_PERF 12202 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12203 return -EINVAL; 12204 #endif 12205 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12206 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12207 return -EINVAL; 12208 12209 if (!attr->inherit && attr->inherit_thread) 12210 return -EINVAL; 12211 12212 if (attr->remove_on_exec && attr->enable_on_exec) 12213 return -EINVAL; 12214 12215 if (attr->sigtrap && !attr->remove_on_exec) 12216 return -EINVAL; 12217 12218 out: 12219 return ret; 12220 12221 err_size: 12222 put_user(sizeof(*attr), &uattr->size); 12223 ret = -E2BIG; 12224 goto out; 12225 } 12226 12227 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12228 { 12229 if (b < a) 12230 swap(a, b); 12231 12232 mutex_lock(a); 12233 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12234 } 12235 12236 static int 12237 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12238 { 12239 struct perf_buffer *rb = NULL; 12240 int ret = -EINVAL; 12241 12242 if (!output_event) { 12243 mutex_lock(&event->mmap_mutex); 12244 goto set; 12245 } 12246 12247 /* don't allow circular references */ 12248 if (event == output_event) 12249 goto out; 12250 12251 /* 12252 * Don't allow cross-cpu buffers 12253 */ 12254 if (output_event->cpu != event->cpu) 12255 goto out; 12256 12257 /* 12258 * If its not a per-cpu rb, it must be the same task. 12259 */ 12260 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12261 goto out; 12262 12263 /* 12264 * Mixing clocks in the same buffer is trouble you don't need. 12265 */ 12266 if (output_event->clock != event->clock) 12267 goto out; 12268 12269 /* 12270 * Either writing ring buffer from beginning or from end. 12271 * Mixing is not allowed. 12272 */ 12273 if (is_write_backward(output_event) != is_write_backward(event)) 12274 goto out; 12275 12276 /* 12277 * If both events generate aux data, they must be on the same PMU 12278 */ 12279 if (has_aux(event) && has_aux(output_event) && 12280 event->pmu != output_event->pmu) 12281 goto out; 12282 12283 /* 12284 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12285 * output_event is already on rb->event_list, and the list iteration 12286 * restarts after every removal, it is guaranteed this new event is 12287 * observed *OR* if output_event is already removed, it's guaranteed we 12288 * observe !rb->mmap_count. 12289 */ 12290 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12291 set: 12292 /* Can't redirect output if we've got an active mmap() */ 12293 if (atomic_read(&event->mmap_count)) 12294 goto unlock; 12295 12296 if (output_event) { 12297 /* get the rb we want to redirect to */ 12298 rb = ring_buffer_get(output_event); 12299 if (!rb) 12300 goto unlock; 12301 12302 /* did we race against perf_mmap_close() */ 12303 if (!atomic_read(&rb->mmap_count)) { 12304 ring_buffer_put(rb); 12305 goto unlock; 12306 } 12307 } 12308 12309 ring_buffer_attach(event, rb); 12310 12311 ret = 0; 12312 unlock: 12313 mutex_unlock(&event->mmap_mutex); 12314 if (output_event) 12315 mutex_unlock(&output_event->mmap_mutex); 12316 12317 out: 12318 return ret; 12319 } 12320 12321 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12322 { 12323 bool nmi_safe = false; 12324 12325 switch (clk_id) { 12326 case CLOCK_MONOTONIC: 12327 event->clock = &ktime_get_mono_fast_ns; 12328 nmi_safe = true; 12329 break; 12330 12331 case CLOCK_MONOTONIC_RAW: 12332 event->clock = &ktime_get_raw_fast_ns; 12333 nmi_safe = true; 12334 break; 12335 12336 case CLOCK_REALTIME: 12337 event->clock = &ktime_get_real_ns; 12338 break; 12339 12340 case CLOCK_BOOTTIME: 12341 event->clock = &ktime_get_boottime_ns; 12342 break; 12343 12344 case CLOCK_TAI: 12345 event->clock = &ktime_get_clocktai_ns; 12346 break; 12347 12348 default: 12349 return -EINVAL; 12350 } 12351 12352 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12353 return -EINVAL; 12354 12355 return 0; 12356 } 12357 12358 static bool 12359 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12360 { 12361 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12362 bool is_capable = perfmon_capable(); 12363 12364 if (attr->sigtrap) { 12365 /* 12366 * perf_event_attr::sigtrap sends signals to the other task. 12367 * Require the current task to also have CAP_KILL. 12368 */ 12369 rcu_read_lock(); 12370 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12371 rcu_read_unlock(); 12372 12373 /* 12374 * If the required capabilities aren't available, checks for 12375 * ptrace permissions: upgrade to ATTACH, since sending signals 12376 * can effectively change the target task. 12377 */ 12378 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12379 } 12380 12381 /* 12382 * Preserve ptrace permission check for backwards compatibility. The 12383 * ptrace check also includes checks that the current task and other 12384 * task have matching uids, and is therefore not done here explicitly. 12385 */ 12386 return is_capable || ptrace_may_access(task, ptrace_mode); 12387 } 12388 12389 /** 12390 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12391 * 12392 * @attr_uptr: event_id type attributes for monitoring/sampling 12393 * @pid: target pid 12394 * @cpu: target cpu 12395 * @group_fd: group leader event fd 12396 * @flags: perf event open flags 12397 */ 12398 SYSCALL_DEFINE5(perf_event_open, 12399 struct perf_event_attr __user *, attr_uptr, 12400 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12401 { 12402 struct perf_event *group_leader = NULL, *output_event = NULL; 12403 struct perf_event_pmu_context *pmu_ctx; 12404 struct perf_event *event, *sibling; 12405 struct perf_event_attr attr; 12406 struct perf_event_context *ctx; 12407 struct file *event_file = NULL; 12408 struct fd group = {NULL, 0}; 12409 struct task_struct *task = NULL; 12410 struct pmu *pmu; 12411 int event_fd; 12412 int move_group = 0; 12413 int err; 12414 int f_flags = O_RDWR; 12415 int cgroup_fd = -1; 12416 12417 /* for future expandability... */ 12418 if (flags & ~PERF_FLAG_ALL) 12419 return -EINVAL; 12420 12421 err = perf_copy_attr(attr_uptr, &attr); 12422 if (err) 12423 return err; 12424 12425 /* Do we allow access to perf_event_open(2) ? */ 12426 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12427 if (err) 12428 return err; 12429 12430 if (!attr.exclude_kernel) { 12431 err = perf_allow_kernel(&attr); 12432 if (err) 12433 return err; 12434 } 12435 12436 if (attr.namespaces) { 12437 if (!perfmon_capable()) 12438 return -EACCES; 12439 } 12440 12441 if (attr.freq) { 12442 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12443 return -EINVAL; 12444 } else { 12445 if (attr.sample_period & (1ULL << 63)) 12446 return -EINVAL; 12447 } 12448 12449 /* Only privileged users can get physical addresses */ 12450 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12451 err = perf_allow_kernel(&attr); 12452 if (err) 12453 return err; 12454 } 12455 12456 /* REGS_INTR can leak data, lockdown must prevent this */ 12457 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12458 err = security_locked_down(LOCKDOWN_PERF); 12459 if (err) 12460 return err; 12461 } 12462 12463 /* 12464 * In cgroup mode, the pid argument is used to pass the fd 12465 * opened to the cgroup directory in cgroupfs. The cpu argument 12466 * designates the cpu on which to monitor threads from that 12467 * cgroup. 12468 */ 12469 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12470 return -EINVAL; 12471 12472 if (flags & PERF_FLAG_FD_CLOEXEC) 12473 f_flags |= O_CLOEXEC; 12474 12475 event_fd = get_unused_fd_flags(f_flags); 12476 if (event_fd < 0) 12477 return event_fd; 12478 12479 if (group_fd != -1) { 12480 err = perf_fget_light(group_fd, &group); 12481 if (err) 12482 goto err_fd; 12483 group_leader = group.file->private_data; 12484 if (flags & PERF_FLAG_FD_OUTPUT) 12485 output_event = group_leader; 12486 if (flags & PERF_FLAG_FD_NO_GROUP) 12487 group_leader = NULL; 12488 } 12489 12490 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12491 task = find_lively_task_by_vpid(pid); 12492 if (IS_ERR(task)) { 12493 err = PTR_ERR(task); 12494 goto err_group_fd; 12495 } 12496 } 12497 12498 if (task && group_leader && 12499 group_leader->attr.inherit != attr.inherit) { 12500 err = -EINVAL; 12501 goto err_task; 12502 } 12503 12504 if (flags & PERF_FLAG_PID_CGROUP) 12505 cgroup_fd = pid; 12506 12507 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12508 NULL, NULL, cgroup_fd); 12509 if (IS_ERR(event)) { 12510 err = PTR_ERR(event); 12511 goto err_task; 12512 } 12513 12514 if (is_sampling_event(event)) { 12515 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12516 err = -EOPNOTSUPP; 12517 goto err_alloc; 12518 } 12519 } 12520 12521 /* 12522 * Special case software events and allow them to be part of 12523 * any hardware group. 12524 */ 12525 pmu = event->pmu; 12526 12527 if (attr.use_clockid) { 12528 err = perf_event_set_clock(event, attr.clockid); 12529 if (err) 12530 goto err_alloc; 12531 } 12532 12533 if (pmu->task_ctx_nr == perf_sw_context) 12534 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12535 12536 if (task) { 12537 err = down_read_interruptible(&task->signal->exec_update_lock); 12538 if (err) 12539 goto err_alloc; 12540 12541 /* 12542 * We must hold exec_update_lock across this and any potential 12543 * perf_install_in_context() call for this new event to 12544 * serialize against exec() altering our credentials (and the 12545 * perf_event_exit_task() that could imply). 12546 */ 12547 err = -EACCES; 12548 if (!perf_check_permission(&attr, task)) 12549 goto err_cred; 12550 } 12551 12552 /* 12553 * Get the target context (task or percpu): 12554 */ 12555 ctx = find_get_context(task, event); 12556 if (IS_ERR(ctx)) { 12557 err = PTR_ERR(ctx); 12558 goto err_cred; 12559 } 12560 12561 mutex_lock(&ctx->mutex); 12562 12563 if (ctx->task == TASK_TOMBSTONE) { 12564 err = -ESRCH; 12565 goto err_locked; 12566 } 12567 12568 if (!task) { 12569 /* 12570 * Check if the @cpu we're creating an event for is online. 12571 * 12572 * We use the perf_cpu_context::ctx::mutex to serialize against 12573 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12574 */ 12575 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12576 12577 if (!cpuctx->online) { 12578 err = -ENODEV; 12579 goto err_locked; 12580 } 12581 } 12582 12583 if (group_leader) { 12584 err = -EINVAL; 12585 12586 /* 12587 * Do not allow a recursive hierarchy (this new sibling 12588 * becoming part of another group-sibling): 12589 */ 12590 if (group_leader->group_leader != group_leader) 12591 goto err_locked; 12592 12593 /* All events in a group should have the same clock */ 12594 if (group_leader->clock != event->clock) 12595 goto err_locked; 12596 12597 /* 12598 * Make sure we're both events for the same CPU; 12599 * grouping events for different CPUs is broken; since 12600 * you can never concurrently schedule them anyhow. 12601 */ 12602 if (group_leader->cpu != event->cpu) 12603 goto err_locked; 12604 12605 /* 12606 * Make sure we're both on the same context; either task or cpu. 12607 */ 12608 if (group_leader->ctx != ctx) 12609 goto err_locked; 12610 12611 /* 12612 * Only a group leader can be exclusive or pinned 12613 */ 12614 if (attr.exclusive || attr.pinned) 12615 goto err_locked; 12616 12617 if (is_software_event(event) && 12618 !in_software_context(group_leader)) { 12619 /* 12620 * If the event is a sw event, but the group_leader 12621 * is on hw context. 12622 * 12623 * Allow the addition of software events to hw 12624 * groups, this is safe because software events 12625 * never fail to schedule. 12626 * 12627 * Note the comment that goes with struct 12628 * perf_event_pmu_context. 12629 */ 12630 pmu = group_leader->pmu_ctx->pmu; 12631 } else if (!is_software_event(event)) { 12632 if (is_software_event(group_leader) && 12633 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12634 /* 12635 * In case the group is a pure software group, and we 12636 * try to add a hardware event, move the whole group to 12637 * the hardware context. 12638 */ 12639 move_group = 1; 12640 } 12641 12642 /* Don't allow group of multiple hw events from different pmus */ 12643 if (!in_software_context(group_leader) && 12644 group_leader->pmu_ctx->pmu != pmu) 12645 goto err_locked; 12646 } 12647 } 12648 12649 /* 12650 * Now that we're certain of the pmu; find the pmu_ctx. 12651 */ 12652 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12653 if (IS_ERR(pmu_ctx)) { 12654 err = PTR_ERR(pmu_ctx); 12655 goto err_locked; 12656 } 12657 event->pmu_ctx = pmu_ctx; 12658 12659 if (output_event) { 12660 err = perf_event_set_output(event, output_event); 12661 if (err) 12662 goto err_context; 12663 } 12664 12665 if (!perf_event_validate_size(event)) { 12666 err = -E2BIG; 12667 goto err_context; 12668 } 12669 12670 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12671 err = -EINVAL; 12672 goto err_context; 12673 } 12674 12675 /* 12676 * Must be under the same ctx::mutex as perf_install_in_context(), 12677 * because we need to serialize with concurrent event creation. 12678 */ 12679 if (!exclusive_event_installable(event, ctx)) { 12680 err = -EBUSY; 12681 goto err_context; 12682 } 12683 12684 WARN_ON_ONCE(ctx->parent_ctx); 12685 12686 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12687 if (IS_ERR(event_file)) { 12688 err = PTR_ERR(event_file); 12689 event_file = NULL; 12690 goto err_context; 12691 } 12692 12693 /* 12694 * This is the point on no return; we cannot fail hereafter. This is 12695 * where we start modifying current state. 12696 */ 12697 12698 if (move_group) { 12699 perf_remove_from_context(group_leader, 0); 12700 put_pmu_ctx(group_leader->pmu_ctx); 12701 12702 for_each_sibling_event(sibling, group_leader) { 12703 perf_remove_from_context(sibling, 0); 12704 put_pmu_ctx(sibling->pmu_ctx); 12705 } 12706 12707 /* 12708 * Install the group siblings before the group leader. 12709 * 12710 * Because a group leader will try and install the entire group 12711 * (through the sibling list, which is still in-tact), we can 12712 * end up with siblings installed in the wrong context. 12713 * 12714 * By installing siblings first we NO-OP because they're not 12715 * reachable through the group lists. 12716 */ 12717 for_each_sibling_event(sibling, group_leader) { 12718 sibling->pmu_ctx = pmu_ctx; 12719 get_pmu_ctx(pmu_ctx); 12720 perf_event__state_init(sibling); 12721 perf_install_in_context(ctx, sibling, sibling->cpu); 12722 } 12723 12724 /* 12725 * Removing from the context ends up with disabled 12726 * event. What we want here is event in the initial 12727 * startup state, ready to be add into new context. 12728 */ 12729 group_leader->pmu_ctx = pmu_ctx; 12730 get_pmu_ctx(pmu_ctx); 12731 perf_event__state_init(group_leader); 12732 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12733 } 12734 12735 /* 12736 * Precalculate sample_data sizes; do while holding ctx::mutex such 12737 * that we're serialized against further additions and before 12738 * perf_install_in_context() which is the point the event is active and 12739 * can use these values. 12740 */ 12741 perf_event__header_size(event); 12742 perf_event__id_header_size(event); 12743 12744 event->owner = current; 12745 12746 perf_install_in_context(ctx, event, event->cpu); 12747 perf_unpin_context(ctx); 12748 12749 mutex_unlock(&ctx->mutex); 12750 12751 if (task) { 12752 up_read(&task->signal->exec_update_lock); 12753 put_task_struct(task); 12754 } 12755 12756 mutex_lock(¤t->perf_event_mutex); 12757 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12758 mutex_unlock(¤t->perf_event_mutex); 12759 12760 /* 12761 * Drop the reference on the group_event after placing the 12762 * new event on the sibling_list. This ensures destruction 12763 * of the group leader will find the pointer to itself in 12764 * perf_group_detach(). 12765 */ 12766 fdput(group); 12767 fd_install(event_fd, event_file); 12768 return event_fd; 12769 12770 err_context: 12771 put_pmu_ctx(event->pmu_ctx); 12772 event->pmu_ctx = NULL; /* _free_event() */ 12773 err_locked: 12774 mutex_unlock(&ctx->mutex); 12775 perf_unpin_context(ctx); 12776 put_ctx(ctx); 12777 err_cred: 12778 if (task) 12779 up_read(&task->signal->exec_update_lock); 12780 err_alloc: 12781 free_event(event); 12782 err_task: 12783 if (task) 12784 put_task_struct(task); 12785 err_group_fd: 12786 fdput(group); 12787 err_fd: 12788 put_unused_fd(event_fd); 12789 return err; 12790 } 12791 12792 /** 12793 * perf_event_create_kernel_counter 12794 * 12795 * @attr: attributes of the counter to create 12796 * @cpu: cpu in which the counter is bound 12797 * @task: task to profile (NULL for percpu) 12798 * @overflow_handler: callback to trigger when we hit the event 12799 * @context: context data could be used in overflow_handler callback 12800 */ 12801 struct perf_event * 12802 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12803 struct task_struct *task, 12804 perf_overflow_handler_t overflow_handler, 12805 void *context) 12806 { 12807 struct perf_event_pmu_context *pmu_ctx; 12808 struct perf_event_context *ctx; 12809 struct perf_event *event; 12810 struct pmu *pmu; 12811 int err; 12812 12813 /* 12814 * Grouping is not supported for kernel events, neither is 'AUX', 12815 * make sure the caller's intentions are adjusted. 12816 */ 12817 if (attr->aux_output) 12818 return ERR_PTR(-EINVAL); 12819 12820 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12821 overflow_handler, context, -1); 12822 if (IS_ERR(event)) { 12823 err = PTR_ERR(event); 12824 goto err; 12825 } 12826 12827 /* Mark owner so we could distinguish it from user events. */ 12828 event->owner = TASK_TOMBSTONE; 12829 pmu = event->pmu; 12830 12831 if (pmu->task_ctx_nr == perf_sw_context) 12832 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12833 12834 /* 12835 * Get the target context (task or percpu): 12836 */ 12837 ctx = find_get_context(task, event); 12838 if (IS_ERR(ctx)) { 12839 err = PTR_ERR(ctx); 12840 goto err_alloc; 12841 } 12842 12843 WARN_ON_ONCE(ctx->parent_ctx); 12844 mutex_lock(&ctx->mutex); 12845 if (ctx->task == TASK_TOMBSTONE) { 12846 err = -ESRCH; 12847 goto err_unlock; 12848 } 12849 12850 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12851 if (IS_ERR(pmu_ctx)) { 12852 err = PTR_ERR(pmu_ctx); 12853 goto err_unlock; 12854 } 12855 event->pmu_ctx = pmu_ctx; 12856 12857 if (!task) { 12858 /* 12859 * Check if the @cpu we're creating an event for is online. 12860 * 12861 * We use the perf_cpu_context::ctx::mutex to serialize against 12862 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12863 */ 12864 struct perf_cpu_context *cpuctx = 12865 container_of(ctx, struct perf_cpu_context, ctx); 12866 if (!cpuctx->online) { 12867 err = -ENODEV; 12868 goto err_pmu_ctx; 12869 } 12870 } 12871 12872 if (!exclusive_event_installable(event, ctx)) { 12873 err = -EBUSY; 12874 goto err_pmu_ctx; 12875 } 12876 12877 perf_install_in_context(ctx, event, event->cpu); 12878 perf_unpin_context(ctx); 12879 mutex_unlock(&ctx->mutex); 12880 12881 return event; 12882 12883 err_pmu_ctx: 12884 put_pmu_ctx(pmu_ctx); 12885 event->pmu_ctx = NULL; /* _free_event() */ 12886 err_unlock: 12887 mutex_unlock(&ctx->mutex); 12888 perf_unpin_context(ctx); 12889 put_ctx(ctx); 12890 err_alloc: 12891 free_event(event); 12892 err: 12893 return ERR_PTR(err); 12894 } 12895 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12896 12897 static void __perf_pmu_remove(struct perf_event_context *ctx, 12898 int cpu, struct pmu *pmu, 12899 struct perf_event_groups *groups, 12900 struct list_head *events) 12901 { 12902 struct perf_event *event, *sibling; 12903 12904 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12905 perf_remove_from_context(event, 0); 12906 put_pmu_ctx(event->pmu_ctx); 12907 list_add(&event->migrate_entry, events); 12908 12909 for_each_sibling_event(sibling, event) { 12910 perf_remove_from_context(sibling, 0); 12911 put_pmu_ctx(sibling->pmu_ctx); 12912 list_add(&sibling->migrate_entry, events); 12913 } 12914 } 12915 } 12916 12917 static void __perf_pmu_install_event(struct pmu *pmu, 12918 struct perf_event_context *ctx, 12919 int cpu, struct perf_event *event) 12920 { 12921 struct perf_event_pmu_context *epc; 12922 struct perf_event_context *old_ctx = event->ctx; 12923 12924 get_ctx(ctx); /* normally find_get_context() */ 12925 12926 event->cpu = cpu; 12927 epc = find_get_pmu_context(pmu, ctx, event); 12928 event->pmu_ctx = epc; 12929 12930 if (event->state >= PERF_EVENT_STATE_OFF) 12931 event->state = PERF_EVENT_STATE_INACTIVE; 12932 perf_install_in_context(ctx, event, cpu); 12933 12934 /* 12935 * Now that event->ctx is updated and visible, put the old ctx. 12936 */ 12937 put_ctx(old_ctx); 12938 } 12939 12940 static void __perf_pmu_install(struct perf_event_context *ctx, 12941 int cpu, struct pmu *pmu, struct list_head *events) 12942 { 12943 struct perf_event *event, *tmp; 12944 12945 /* 12946 * Re-instate events in 2 passes. 12947 * 12948 * Skip over group leaders and only install siblings on this first 12949 * pass, siblings will not get enabled without a leader, however a 12950 * leader will enable its siblings, even if those are still on the old 12951 * context. 12952 */ 12953 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12954 if (event->group_leader == event) 12955 continue; 12956 12957 list_del(&event->migrate_entry); 12958 __perf_pmu_install_event(pmu, ctx, cpu, event); 12959 } 12960 12961 /* 12962 * Once all the siblings are setup properly, install the group leaders 12963 * to make it go. 12964 */ 12965 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12966 list_del(&event->migrate_entry); 12967 __perf_pmu_install_event(pmu, ctx, cpu, event); 12968 } 12969 } 12970 12971 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12972 { 12973 struct perf_event_context *src_ctx, *dst_ctx; 12974 LIST_HEAD(events); 12975 12976 /* 12977 * Since per-cpu context is persistent, no need to grab an extra 12978 * reference. 12979 */ 12980 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12981 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12982 12983 /* 12984 * See perf_event_ctx_lock() for comments on the details 12985 * of swizzling perf_event::ctx. 12986 */ 12987 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12988 12989 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12990 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12991 12992 if (!list_empty(&events)) { 12993 /* 12994 * Wait for the events to quiesce before re-instating them. 12995 */ 12996 synchronize_rcu(); 12997 12998 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12999 } 13000 13001 mutex_unlock(&dst_ctx->mutex); 13002 mutex_unlock(&src_ctx->mutex); 13003 } 13004 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13005 13006 static void sync_child_event(struct perf_event *child_event) 13007 { 13008 struct perf_event *parent_event = child_event->parent; 13009 u64 child_val; 13010 13011 if (child_event->attr.inherit_stat) { 13012 struct task_struct *task = child_event->ctx->task; 13013 13014 if (task && task != TASK_TOMBSTONE) 13015 perf_event_read_event(child_event, task); 13016 } 13017 13018 child_val = perf_event_count(child_event); 13019 13020 /* 13021 * Add back the child's count to the parent's count: 13022 */ 13023 atomic64_add(child_val, &parent_event->child_count); 13024 atomic64_add(child_event->total_time_enabled, 13025 &parent_event->child_total_time_enabled); 13026 atomic64_add(child_event->total_time_running, 13027 &parent_event->child_total_time_running); 13028 } 13029 13030 static void 13031 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13032 { 13033 struct perf_event *parent_event = event->parent; 13034 unsigned long detach_flags = 0; 13035 13036 if (parent_event) { 13037 /* 13038 * Do not destroy the 'original' grouping; because of the 13039 * context switch optimization the original events could've 13040 * ended up in a random child task. 13041 * 13042 * If we were to destroy the original group, all group related 13043 * operations would cease to function properly after this 13044 * random child dies. 13045 * 13046 * Do destroy all inherited groups, we don't care about those 13047 * and being thorough is better. 13048 */ 13049 detach_flags = DETACH_GROUP | DETACH_CHILD; 13050 mutex_lock(&parent_event->child_mutex); 13051 } 13052 13053 perf_remove_from_context(event, detach_flags); 13054 13055 raw_spin_lock_irq(&ctx->lock); 13056 if (event->state > PERF_EVENT_STATE_EXIT) 13057 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13058 raw_spin_unlock_irq(&ctx->lock); 13059 13060 /* 13061 * Child events can be freed. 13062 */ 13063 if (parent_event) { 13064 mutex_unlock(&parent_event->child_mutex); 13065 /* 13066 * Kick perf_poll() for is_event_hup(); 13067 */ 13068 perf_event_wakeup(parent_event); 13069 free_event(event); 13070 put_event(parent_event); 13071 return; 13072 } 13073 13074 /* 13075 * Parent events are governed by their filedesc, retain them. 13076 */ 13077 perf_event_wakeup(event); 13078 } 13079 13080 static void perf_event_exit_task_context(struct task_struct *child) 13081 { 13082 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13083 struct perf_event *child_event, *next; 13084 13085 WARN_ON_ONCE(child != current); 13086 13087 child_ctx = perf_pin_task_context(child); 13088 if (!child_ctx) 13089 return; 13090 13091 /* 13092 * In order to reduce the amount of tricky in ctx tear-down, we hold 13093 * ctx::mutex over the entire thing. This serializes against almost 13094 * everything that wants to access the ctx. 13095 * 13096 * The exception is sys_perf_event_open() / 13097 * perf_event_create_kernel_count() which does find_get_context() 13098 * without ctx::mutex (it cannot because of the move_group double mutex 13099 * lock thing). See the comments in perf_install_in_context(). 13100 */ 13101 mutex_lock(&child_ctx->mutex); 13102 13103 /* 13104 * In a single ctx::lock section, de-schedule the events and detach the 13105 * context from the task such that we cannot ever get it scheduled back 13106 * in. 13107 */ 13108 raw_spin_lock_irq(&child_ctx->lock); 13109 task_ctx_sched_out(child_ctx, EVENT_ALL); 13110 13111 /* 13112 * Now that the context is inactive, destroy the task <-> ctx relation 13113 * and mark the context dead. 13114 */ 13115 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13116 put_ctx(child_ctx); /* cannot be last */ 13117 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13118 put_task_struct(current); /* cannot be last */ 13119 13120 clone_ctx = unclone_ctx(child_ctx); 13121 raw_spin_unlock_irq(&child_ctx->lock); 13122 13123 if (clone_ctx) 13124 put_ctx(clone_ctx); 13125 13126 /* 13127 * Report the task dead after unscheduling the events so that we 13128 * won't get any samples after PERF_RECORD_EXIT. We can however still 13129 * get a few PERF_RECORD_READ events. 13130 */ 13131 perf_event_task(child, child_ctx, 0); 13132 13133 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13134 perf_event_exit_event(child_event, child_ctx); 13135 13136 mutex_unlock(&child_ctx->mutex); 13137 13138 put_ctx(child_ctx); 13139 } 13140 13141 /* 13142 * When a child task exits, feed back event values to parent events. 13143 * 13144 * Can be called with exec_update_lock held when called from 13145 * setup_new_exec(). 13146 */ 13147 void perf_event_exit_task(struct task_struct *child) 13148 { 13149 struct perf_event *event, *tmp; 13150 13151 mutex_lock(&child->perf_event_mutex); 13152 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13153 owner_entry) { 13154 list_del_init(&event->owner_entry); 13155 13156 /* 13157 * Ensure the list deletion is visible before we clear 13158 * the owner, closes a race against perf_release() where 13159 * we need to serialize on the owner->perf_event_mutex. 13160 */ 13161 smp_store_release(&event->owner, NULL); 13162 } 13163 mutex_unlock(&child->perf_event_mutex); 13164 13165 perf_event_exit_task_context(child); 13166 13167 /* 13168 * The perf_event_exit_task_context calls perf_event_task 13169 * with child's task_ctx, which generates EXIT events for 13170 * child contexts and sets child->perf_event_ctxp[] to NULL. 13171 * At this point we need to send EXIT events to cpu contexts. 13172 */ 13173 perf_event_task(child, NULL, 0); 13174 } 13175 13176 static void perf_free_event(struct perf_event *event, 13177 struct perf_event_context *ctx) 13178 { 13179 struct perf_event *parent = event->parent; 13180 13181 if (WARN_ON_ONCE(!parent)) 13182 return; 13183 13184 mutex_lock(&parent->child_mutex); 13185 list_del_init(&event->child_list); 13186 mutex_unlock(&parent->child_mutex); 13187 13188 put_event(parent); 13189 13190 raw_spin_lock_irq(&ctx->lock); 13191 perf_group_detach(event); 13192 list_del_event(event, ctx); 13193 raw_spin_unlock_irq(&ctx->lock); 13194 free_event(event); 13195 } 13196 13197 /* 13198 * Free a context as created by inheritance by perf_event_init_task() below, 13199 * used by fork() in case of fail. 13200 * 13201 * Even though the task has never lived, the context and events have been 13202 * exposed through the child_list, so we must take care tearing it all down. 13203 */ 13204 void perf_event_free_task(struct task_struct *task) 13205 { 13206 struct perf_event_context *ctx; 13207 struct perf_event *event, *tmp; 13208 13209 ctx = rcu_access_pointer(task->perf_event_ctxp); 13210 if (!ctx) 13211 return; 13212 13213 mutex_lock(&ctx->mutex); 13214 raw_spin_lock_irq(&ctx->lock); 13215 /* 13216 * Destroy the task <-> ctx relation and mark the context dead. 13217 * 13218 * This is important because even though the task hasn't been 13219 * exposed yet the context has been (through child_list). 13220 */ 13221 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13222 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13223 put_task_struct(task); /* cannot be last */ 13224 raw_spin_unlock_irq(&ctx->lock); 13225 13226 13227 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13228 perf_free_event(event, ctx); 13229 13230 mutex_unlock(&ctx->mutex); 13231 13232 /* 13233 * perf_event_release_kernel() could've stolen some of our 13234 * child events and still have them on its free_list. In that 13235 * case we must wait for these events to have been freed (in 13236 * particular all their references to this task must've been 13237 * dropped). 13238 * 13239 * Without this copy_process() will unconditionally free this 13240 * task (irrespective of its reference count) and 13241 * _free_event()'s put_task_struct(event->hw.target) will be a 13242 * use-after-free. 13243 * 13244 * Wait for all events to drop their context reference. 13245 */ 13246 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13247 put_ctx(ctx); /* must be last */ 13248 } 13249 13250 void perf_event_delayed_put(struct task_struct *task) 13251 { 13252 WARN_ON_ONCE(task->perf_event_ctxp); 13253 } 13254 13255 struct file *perf_event_get(unsigned int fd) 13256 { 13257 struct file *file = fget(fd); 13258 if (!file) 13259 return ERR_PTR(-EBADF); 13260 13261 if (file->f_op != &perf_fops) { 13262 fput(file); 13263 return ERR_PTR(-EBADF); 13264 } 13265 13266 return file; 13267 } 13268 13269 const struct perf_event *perf_get_event(struct file *file) 13270 { 13271 if (file->f_op != &perf_fops) 13272 return ERR_PTR(-EINVAL); 13273 13274 return file->private_data; 13275 } 13276 13277 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13278 { 13279 if (!event) 13280 return ERR_PTR(-EINVAL); 13281 13282 return &event->attr; 13283 } 13284 13285 /* 13286 * Inherit an event from parent task to child task. 13287 * 13288 * Returns: 13289 * - valid pointer on success 13290 * - NULL for orphaned events 13291 * - IS_ERR() on error 13292 */ 13293 static struct perf_event * 13294 inherit_event(struct perf_event *parent_event, 13295 struct task_struct *parent, 13296 struct perf_event_context *parent_ctx, 13297 struct task_struct *child, 13298 struct perf_event *group_leader, 13299 struct perf_event_context *child_ctx) 13300 { 13301 enum perf_event_state parent_state = parent_event->state; 13302 struct perf_event_pmu_context *pmu_ctx; 13303 struct perf_event *child_event; 13304 unsigned long flags; 13305 13306 /* 13307 * Instead of creating recursive hierarchies of events, 13308 * we link inherited events back to the original parent, 13309 * which has a filp for sure, which we use as the reference 13310 * count: 13311 */ 13312 if (parent_event->parent) 13313 parent_event = parent_event->parent; 13314 13315 child_event = perf_event_alloc(&parent_event->attr, 13316 parent_event->cpu, 13317 child, 13318 group_leader, parent_event, 13319 NULL, NULL, -1); 13320 if (IS_ERR(child_event)) 13321 return child_event; 13322 13323 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13324 if (IS_ERR(pmu_ctx)) { 13325 free_event(child_event); 13326 return ERR_CAST(pmu_ctx); 13327 } 13328 child_event->pmu_ctx = pmu_ctx; 13329 13330 /* 13331 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13332 * must be under the same lock in order to serialize against 13333 * perf_event_release_kernel(), such that either we must observe 13334 * is_orphaned_event() or they will observe us on the child_list. 13335 */ 13336 mutex_lock(&parent_event->child_mutex); 13337 if (is_orphaned_event(parent_event) || 13338 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13339 mutex_unlock(&parent_event->child_mutex); 13340 /* task_ctx_data is freed with child_ctx */ 13341 free_event(child_event); 13342 return NULL; 13343 } 13344 13345 get_ctx(child_ctx); 13346 13347 /* 13348 * Make the child state follow the state of the parent event, 13349 * not its attr.disabled bit. We hold the parent's mutex, 13350 * so we won't race with perf_event_{en, dis}able_family. 13351 */ 13352 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13353 child_event->state = PERF_EVENT_STATE_INACTIVE; 13354 else 13355 child_event->state = PERF_EVENT_STATE_OFF; 13356 13357 if (parent_event->attr.freq) { 13358 u64 sample_period = parent_event->hw.sample_period; 13359 struct hw_perf_event *hwc = &child_event->hw; 13360 13361 hwc->sample_period = sample_period; 13362 hwc->last_period = sample_period; 13363 13364 local64_set(&hwc->period_left, sample_period); 13365 } 13366 13367 child_event->ctx = child_ctx; 13368 child_event->overflow_handler = parent_event->overflow_handler; 13369 child_event->overflow_handler_context 13370 = parent_event->overflow_handler_context; 13371 13372 /* 13373 * Precalculate sample_data sizes 13374 */ 13375 perf_event__header_size(child_event); 13376 perf_event__id_header_size(child_event); 13377 13378 /* 13379 * Link it up in the child's context: 13380 */ 13381 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13382 add_event_to_ctx(child_event, child_ctx); 13383 child_event->attach_state |= PERF_ATTACH_CHILD; 13384 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13385 13386 /* 13387 * Link this into the parent event's child list 13388 */ 13389 list_add_tail(&child_event->child_list, &parent_event->child_list); 13390 mutex_unlock(&parent_event->child_mutex); 13391 13392 return child_event; 13393 } 13394 13395 /* 13396 * Inherits an event group. 13397 * 13398 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13399 * This matches with perf_event_release_kernel() removing all child events. 13400 * 13401 * Returns: 13402 * - 0 on success 13403 * - <0 on error 13404 */ 13405 static int inherit_group(struct perf_event *parent_event, 13406 struct task_struct *parent, 13407 struct perf_event_context *parent_ctx, 13408 struct task_struct *child, 13409 struct perf_event_context *child_ctx) 13410 { 13411 struct perf_event *leader; 13412 struct perf_event *sub; 13413 struct perf_event *child_ctr; 13414 13415 leader = inherit_event(parent_event, parent, parent_ctx, 13416 child, NULL, child_ctx); 13417 if (IS_ERR(leader)) 13418 return PTR_ERR(leader); 13419 /* 13420 * @leader can be NULL here because of is_orphaned_event(). In this 13421 * case inherit_event() will create individual events, similar to what 13422 * perf_group_detach() would do anyway. 13423 */ 13424 for_each_sibling_event(sub, parent_event) { 13425 child_ctr = inherit_event(sub, parent, parent_ctx, 13426 child, leader, child_ctx); 13427 if (IS_ERR(child_ctr)) 13428 return PTR_ERR(child_ctr); 13429 13430 if (sub->aux_event == parent_event && child_ctr && 13431 !perf_get_aux_event(child_ctr, leader)) 13432 return -EINVAL; 13433 } 13434 if (leader) 13435 leader->group_generation = parent_event->group_generation; 13436 return 0; 13437 } 13438 13439 /* 13440 * Creates the child task context and tries to inherit the event-group. 13441 * 13442 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13443 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13444 * consistent with perf_event_release_kernel() removing all child events. 13445 * 13446 * Returns: 13447 * - 0 on success 13448 * - <0 on error 13449 */ 13450 static int 13451 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13452 struct perf_event_context *parent_ctx, 13453 struct task_struct *child, 13454 u64 clone_flags, int *inherited_all) 13455 { 13456 struct perf_event_context *child_ctx; 13457 int ret; 13458 13459 if (!event->attr.inherit || 13460 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13461 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13462 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13463 *inherited_all = 0; 13464 return 0; 13465 } 13466 13467 child_ctx = child->perf_event_ctxp; 13468 if (!child_ctx) { 13469 /* 13470 * This is executed from the parent task context, so 13471 * inherit events that have been marked for cloning. 13472 * First allocate and initialize a context for the 13473 * child. 13474 */ 13475 child_ctx = alloc_perf_context(child); 13476 if (!child_ctx) 13477 return -ENOMEM; 13478 13479 child->perf_event_ctxp = child_ctx; 13480 } 13481 13482 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13483 if (ret) 13484 *inherited_all = 0; 13485 13486 return ret; 13487 } 13488 13489 /* 13490 * Initialize the perf_event context in task_struct 13491 */ 13492 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13493 { 13494 struct perf_event_context *child_ctx, *parent_ctx; 13495 struct perf_event_context *cloned_ctx; 13496 struct perf_event *event; 13497 struct task_struct *parent = current; 13498 int inherited_all = 1; 13499 unsigned long flags; 13500 int ret = 0; 13501 13502 if (likely(!parent->perf_event_ctxp)) 13503 return 0; 13504 13505 /* 13506 * If the parent's context is a clone, pin it so it won't get 13507 * swapped under us. 13508 */ 13509 parent_ctx = perf_pin_task_context(parent); 13510 if (!parent_ctx) 13511 return 0; 13512 13513 /* 13514 * No need to check if parent_ctx != NULL here; since we saw 13515 * it non-NULL earlier, the only reason for it to become NULL 13516 * is if we exit, and since we're currently in the middle of 13517 * a fork we can't be exiting at the same time. 13518 */ 13519 13520 /* 13521 * Lock the parent list. No need to lock the child - not PID 13522 * hashed yet and not running, so nobody can access it. 13523 */ 13524 mutex_lock(&parent_ctx->mutex); 13525 13526 /* 13527 * We dont have to disable NMIs - we are only looking at 13528 * the list, not manipulating it: 13529 */ 13530 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13531 ret = inherit_task_group(event, parent, parent_ctx, 13532 child, clone_flags, &inherited_all); 13533 if (ret) 13534 goto out_unlock; 13535 } 13536 13537 /* 13538 * We can't hold ctx->lock when iterating the ->flexible_group list due 13539 * to allocations, but we need to prevent rotation because 13540 * rotate_ctx() will change the list from interrupt context. 13541 */ 13542 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13543 parent_ctx->rotate_disable = 1; 13544 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13545 13546 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13547 ret = inherit_task_group(event, parent, parent_ctx, 13548 child, clone_flags, &inherited_all); 13549 if (ret) 13550 goto out_unlock; 13551 } 13552 13553 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13554 parent_ctx->rotate_disable = 0; 13555 13556 child_ctx = child->perf_event_ctxp; 13557 13558 if (child_ctx && inherited_all) { 13559 /* 13560 * Mark the child context as a clone of the parent 13561 * context, or of whatever the parent is a clone of. 13562 * 13563 * Note that if the parent is a clone, the holding of 13564 * parent_ctx->lock avoids it from being uncloned. 13565 */ 13566 cloned_ctx = parent_ctx->parent_ctx; 13567 if (cloned_ctx) { 13568 child_ctx->parent_ctx = cloned_ctx; 13569 child_ctx->parent_gen = parent_ctx->parent_gen; 13570 } else { 13571 child_ctx->parent_ctx = parent_ctx; 13572 child_ctx->parent_gen = parent_ctx->generation; 13573 } 13574 get_ctx(child_ctx->parent_ctx); 13575 } 13576 13577 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13578 out_unlock: 13579 mutex_unlock(&parent_ctx->mutex); 13580 13581 perf_unpin_context(parent_ctx); 13582 put_ctx(parent_ctx); 13583 13584 return ret; 13585 } 13586 13587 /* 13588 * Initialize the perf_event context in task_struct 13589 */ 13590 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13591 { 13592 int ret; 13593 13594 child->perf_event_ctxp = NULL; 13595 mutex_init(&child->perf_event_mutex); 13596 INIT_LIST_HEAD(&child->perf_event_list); 13597 13598 ret = perf_event_init_context(child, clone_flags); 13599 if (ret) { 13600 perf_event_free_task(child); 13601 return ret; 13602 } 13603 13604 return 0; 13605 } 13606 13607 static void __init perf_event_init_all_cpus(void) 13608 { 13609 struct swevent_htable *swhash; 13610 struct perf_cpu_context *cpuctx; 13611 int cpu; 13612 13613 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13614 13615 for_each_possible_cpu(cpu) { 13616 swhash = &per_cpu(swevent_htable, cpu); 13617 mutex_init(&swhash->hlist_mutex); 13618 13619 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13620 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13621 13622 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13623 13624 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13625 __perf_event_init_context(&cpuctx->ctx); 13626 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13627 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13628 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13629 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13630 cpuctx->heap = cpuctx->heap_default; 13631 } 13632 } 13633 13634 static void perf_swevent_init_cpu(unsigned int cpu) 13635 { 13636 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13637 13638 mutex_lock(&swhash->hlist_mutex); 13639 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13640 struct swevent_hlist *hlist; 13641 13642 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13643 WARN_ON(!hlist); 13644 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13645 } 13646 mutex_unlock(&swhash->hlist_mutex); 13647 } 13648 13649 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13650 static void __perf_event_exit_context(void *__info) 13651 { 13652 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13653 struct perf_event_context *ctx = __info; 13654 struct perf_event *event; 13655 13656 raw_spin_lock(&ctx->lock); 13657 ctx_sched_out(ctx, EVENT_TIME); 13658 list_for_each_entry(event, &ctx->event_list, event_entry) 13659 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13660 raw_spin_unlock(&ctx->lock); 13661 } 13662 13663 static void perf_event_exit_cpu_context(int cpu) 13664 { 13665 struct perf_cpu_context *cpuctx; 13666 struct perf_event_context *ctx; 13667 13668 // XXX simplify cpuctx->online 13669 mutex_lock(&pmus_lock); 13670 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13671 ctx = &cpuctx->ctx; 13672 13673 mutex_lock(&ctx->mutex); 13674 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13675 cpuctx->online = 0; 13676 mutex_unlock(&ctx->mutex); 13677 cpumask_clear_cpu(cpu, perf_online_mask); 13678 mutex_unlock(&pmus_lock); 13679 } 13680 #else 13681 13682 static void perf_event_exit_cpu_context(int cpu) { } 13683 13684 #endif 13685 13686 int perf_event_init_cpu(unsigned int cpu) 13687 { 13688 struct perf_cpu_context *cpuctx; 13689 struct perf_event_context *ctx; 13690 13691 perf_swevent_init_cpu(cpu); 13692 13693 mutex_lock(&pmus_lock); 13694 cpumask_set_cpu(cpu, perf_online_mask); 13695 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13696 ctx = &cpuctx->ctx; 13697 13698 mutex_lock(&ctx->mutex); 13699 cpuctx->online = 1; 13700 mutex_unlock(&ctx->mutex); 13701 mutex_unlock(&pmus_lock); 13702 13703 return 0; 13704 } 13705 13706 int perf_event_exit_cpu(unsigned int cpu) 13707 { 13708 perf_event_exit_cpu_context(cpu); 13709 return 0; 13710 } 13711 13712 static int 13713 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13714 { 13715 int cpu; 13716 13717 for_each_online_cpu(cpu) 13718 perf_event_exit_cpu(cpu); 13719 13720 return NOTIFY_OK; 13721 } 13722 13723 /* 13724 * Run the perf reboot notifier at the very last possible moment so that 13725 * the generic watchdog code runs as long as possible. 13726 */ 13727 static struct notifier_block perf_reboot_notifier = { 13728 .notifier_call = perf_reboot, 13729 .priority = INT_MIN, 13730 }; 13731 13732 void __init perf_event_init(void) 13733 { 13734 int ret; 13735 13736 idr_init(&pmu_idr); 13737 13738 perf_event_init_all_cpus(); 13739 init_srcu_struct(&pmus_srcu); 13740 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13741 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13742 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13743 perf_tp_register(); 13744 perf_event_init_cpu(smp_processor_id()); 13745 register_reboot_notifier(&perf_reboot_notifier); 13746 13747 ret = init_hw_breakpoint(); 13748 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13749 13750 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13751 13752 /* 13753 * Build time assertion that we keep the data_head at the intended 13754 * location. IOW, validation we got the __reserved[] size right. 13755 */ 13756 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13757 != 1024); 13758 } 13759 13760 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13761 char *page) 13762 { 13763 struct perf_pmu_events_attr *pmu_attr = 13764 container_of(attr, struct perf_pmu_events_attr, attr); 13765 13766 if (pmu_attr->event_str) 13767 return sprintf(page, "%s\n", pmu_attr->event_str); 13768 13769 return 0; 13770 } 13771 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13772 13773 static int __init perf_event_sysfs_init(void) 13774 { 13775 struct pmu *pmu; 13776 int ret; 13777 13778 mutex_lock(&pmus_lock); 13779 13780 ret = bus_register(&pmu_bus); 13781 if (ret) 13782 goto unlock; 13783 13784 list_for_each_entry(pmu, &pmus, entry) { 13785 if (pmu->dev) 13786 continue; 13787 13788 ret = pmu_dev_alloc(pmu); 13789 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13790 } 13791 pmu_bus_running = 1; 13792 ret = 0; 13793 13794 unlock: 13795 mutex_unlock(&pmus_lock); 13796 13797 return ret; 13798 } 13799 device_initcall(perf_event_sysfs_init); 13800 13801 #ifdef CONFIG_CGROUP_PERF 13802 static struct cgroup_subsys_state * 13803 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13804 { 13805 struct perf_cgroup *jc; 13806 13807 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13808 if (!jc) 13809 return ERR_PTR(-ENOMEM); 13810 13811 jc->info = alloc_percpu(struct perf_cgroup_info); 13812 if (!jc->info) { 13813 kfree(jc); 13814 return ERR_PTR(-ENOMEM); 13815 } 13816 13817 return &jc->css; 13818 } 13819 13820 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13821 { 13822 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13823 13824 free_percpu(jc->info); 13825 kfree(jc); 13826 } 13827 13828 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13829 { 13830 perf_event_cgroup(css->cgroup); 13831 return 0; 13832 } 13833 13834 static int __perf_cgroup_move(void *info) 13835 { 13836 struct task_struct *task = info; 13837 13838 preempt_disable(); 13839 perf_cgroup_switch(task); 13840 preempt_enable(); 13841 13842 return 0; 13843 } 13844 13845 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13846 { 13847 struct task_struct *task; 13848 struct cgroup_subsys_state *css; 13849 13850 cgroup_taskset_for_each(task, css, tset) 13851 task_function_call(task, __perf_cgroup_move, task); 13852 } 13853 13854 struct cgroup_subsys perf_event_cgrp_subsys = { 13855 .css_alloc = perf_cgroup_css_alloc, 13856 .css_free = perf_cgroup_css_free, 13857 .css_online = perf_cgroup_css_online, 13858 .attach = perf_cgroup_attach, 13859 /* 13860 * Implicitly enable on dfl hierarchy so that perf events can 13861 * always be filtered by cgroup2 path as long as perf_event 13862 * controller is not mounted on a legacy hierarchy. 13863 */ 13864 .implicit_on_dfl = true, 13865 .threaded = true, 13866 }; 13867 #endif /* CONFIG_CGROUP_PERF */ 13868 13869 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13870