1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 #include <linux/min_heap.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 static atomic_t nr_ksymbol_events __read_mostly; 389 static atomic_t nr_bpf_events __read_mostly; 390 391 static LIST_HEAD(pmus); 392 static DEFINE_MUTEX(pmus_lock); 393 static struct srcu_struct pmus_srcu; 394 static cpumask_var_t perf_online_mask; 395 396 /* 397 * perf event paranoia level: 398 * -1 - not paranoid at all 399 * 0 - disallow raw tracepoint access for unpriv 400 * 1 - disallow cpu events for unpriv 401 * 2 - disallow kernel profiling for unpriv 402 */ 403 int sysctl_perf_event_paranoid __read_mostly = 2; 404 405 /* Minimum for 512 kiB + 1 user control page */ 406 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 407 408 /* 409 * max perf event sample rate 410 */ 411 #define DEFAULT_MAX_SAMPLE_RATE 100000 412 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 413 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 414 415 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 416 417 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 418 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 419 420 static int perf_sample_allowed_ns __read_mostly = 421 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 422 423 static void update_perf_cpu_limits(void) 424 { 425 u64 tmp = perf_sample_period_ns; 426 427 tmp *= sysctl_perf_cpu_time_max_percent; 428 tmp = div_u64(tmp, 100); 429 if (!tmp) 430 tmp = 1; 431 432 WRITE_ONCE(perf_sample_allowed_ns, tmp); 433 } 434 435 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 436 437 int perf_proc_update_handler(struct ctl_table *table, int write, 438 void __user *buffer, size_t *lenp, 439 loff_t *ppos) 440 { 441 int ret; 442 int perf_cpu = sysctl_perf_cpu_time_max_percent; 443 /* 444 * If throttling is disabled don't allow the write: 445 */ 446 if (write && (perf_cpu == 100 || perf_cpu == 0)) 447 return -EINVAL; 448 449 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 450 if (ret || !write) 451 return ret; 452 453 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 454 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 455 update_perf_cpu_limits(); 456 457 return 0; 458 } 459 460 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 461 462 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 463 void __user *buffer, size_t *lenp, 464 loff_t *ppos) 465 { 466 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 467 468 if (ret || !write) 469 return ret; 470 471 if (sysctl_perf_cpu_time_max_percent == 100 || 472 sysctl_perf_cpu_time_max_percent == 0) { 473 printk(KERN_WARNING 474 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 475 WRITE_ONCE(perf_sample_allowed_ns, 0); 476 } else { 477 update_perf_cpu_limits(); 478 } 479 480 return 0; 481 } 482 483 /* 484 * perf samples are done in some very critical code paths (NMIs). 485 * If they take too much CPU time, the system can lock up and not 486 * get any real work done. This will drop the sample rate when 487 * we detect that events are taking too long. 488 */ 489 #define NR_ACCUMULATED_SAMPLES 128 490 static DEFINE_PER_CPU(u64, running_sample_length); 491 492 static u64 __report_avg; 493 static u64 __report_allowed; 494 495 static void perf_duration_warn(struct irq_work *w) 496 { 497 printk_ratelimited(KERN_INFO 498 "perf: interrupt took too long (%lld > %lld), lowering " 499 "kernel.perf_event_max_sample_rate to %d\n", 500 __report_avg, __report_allowed, 501 sysctl_perf_event_sample_rate); 502 } 503 504 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 505 506 void perf_sample_event_took(u64 sample_len_ns) 507 { 508 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 509 u64 running_len; 510 u64 avg_len; 511 u32 max; 512 513 if (max_len == 0) 514 return; 515 516 /* Decay the counter by 1 average sample. */ 517 running_len = __this_cpu_read(running_sample_length); 518 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 519 running_len += sample_len_ns; 520 __this_cpu_write(running_sample_length, running_len); 521 522 /* 523 * Note: this will be biased artifically low until we have 524 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 525 * from having to maintain a count. 526 */ 527 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 528 if (avg_len <= max_len) 529 return; 530 531 __report_avg = avg_len; 532 __report_allowed = max_len; 533 534 /* 535 * Compute a throttle threshold 25% below the current duration. 536 */ 537 avg_len += avg_len / 4; 538 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 539 if (avg_len < max) 540 max /= (u32)avg_len; 541 else 542 max = 1; 543 544 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 545 WRITE_ONCE(max_samples_per_tick, max); 546 547 sysctl_perf_event_sample_rate = max * HZ; 548 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 549 550 if (!irq_work_queue(&perf_duration_work)) { 551 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 552 "kernel.perf_event_max_sample_rate to %d\n", 553 __report_avg, __report_allowed, 554 sysctl_perf_event_sample_rate); 555 } 556 } 557 558 static atomic64_t perf_event_id; 559 560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 561 enum event_type_t event_type); 562 563 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 564 enum event_type_t event_type, 565 struct task_struct *task); 566 567 static void update_context_time(struct perf_event_context *ctx); 568 static u64 perf_event_time(struct perf_event *event); 569 570 void __weak perf_event_print_debug(void) { } 571 572 extern __weak const char *perf_pmu_name(void) 573 { 574 return "pmu"; 575 } 576 577 static inline u64 perf_clock(void) 578 { 579 return local_clock(); 580 } 581 582 static inline u64 perf_event_clock(struct perf_event *event) 583 { 584 return event->clock(); 585 } 586 587 /* 588 * State based event timekeeping... 589 * 590 * The basic idea is to use event->state to determine which (if any) time 591 * fields to increment with the current delta. This means we only need to 592 * update timestamps when we change state or when they are explicitly requested 593 * (read). 594 * 595 * Event groups make things a little more complicated, but not terribly so. The 596 * rules for a group are that if the group leader is OFF the entire group is 597 * OFF, irrespecive of what the group member states are. This results in 598 * __perf_effective_state(). 599 * 600 * A futher ramification is that when a group leader flips between OFF and 601 * !OFF, we need to update all group member times. 602 * 603 * 604 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 605 * need to make sure the relevant context time is updated before we try and 606 * update our timestamps. 607 */ 608 609 static __always_inline enum perf_event_state 610 __perf_effective_state(struct perf_event *event) 611 { 612 struct perf_event *leader = event->group_leader; 613 614 if (leader->state <= PERF_EVENT_STATE_OFF) 615 return leader->state; 616 617 return event->state; 618 } 619 620 static __always_inline void 621 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 622 { 623 enum perf_event_state state = __perf_effective_state(event); 624 u64 delta = now - event->tstamp; 625 626 *enabled = event->total_time_enabled; 627 if (state >= PERF_EVENT_STATE_INACTIVE) 628 *enabled += delta; 629 630 *running = event->total_time_running; 631 if (state >= PERF_EVENT_STATE_ACTIVE) 632 *running += delta; 633 } 634 635 static void perf_event_update_time(struct perf_event *event) 636 { 637 u64 now = perf_event_time(event); 638 639 __perf_update_times(event, now, &event->total_time_enabled, 640 &event->total_time_running); 641 event->tstamp = now; 642 } 643 644 static void perf_event_update_sibling_time(struct perf_event *leader) 645 { 646 struct perf_event *sibling; 647 648 for_each_sibling_event(sibling, leader) 649 perf_event_update_time(sibling); 650 } 651 652 static void 653 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 654 { 655 if (event->state == state) 656 return; 657 658 perf_event_update_time(event); 659 /* 660 * If a group leader gets enabled/disabled all its siblings 661 * are affected too. 662 */ 663 if ((event->state < 0) ^ (state < 0)) 664 perf_event_update_sibling_time(event); 665 666 WRITE_ONCE(event->state, state); 667 } 668 669 #ifdef CONFIG_CGROUP_PERF 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 struct perf_event_context *ctx = event->ctx; 675 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 676 677 /* @event doesn't care about cgroup */ 678 if (!event->cgrp) 679 return true; 680 681 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 682 if (!cpuctx->cgrp) 683 return false; 684 685 /* 686 * Cgroup scoping is recursive. An event enabled for a cgroup is 687 * also enabled for all its descendant cgroups. If @cpuctx's 688 * cgroup is a descendant of @event's (the test covers identity 689 * case), it's a match. 690 */ 691 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 692 event->cgrp->css.cgroup); 693 } 694 695 static inline void perf_detach_cgroup(struct perf_event *event) 696 { 697 css_put(&event->cgrp->css); 698 event->cgrp = NULL; 699 } 700 701 static inline int is_cgroup_event(struct perf_event *event) 702 { 703 return event->cgrp != NULL; 704 } 705 706 static inline u64 perf_cgroup_event_time(struct perf_event *event) 707 { 708 struct perf_cgroup_info *t; 709 710 t = per_cpu_ptr(event->cgrp->info, event->cpu); 711 return t->time; 712 } 713 714 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 715 { 716 struct perf_cgroup_info *info; 717 u64 now; 718 719 now = perf_clock(); 720 721 info = this_cpu_ptr(cgrp->info); 722 723 info->time += now - info->timestamp; 724 info->timestamp = now; 725 } 726 727 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 728 { 729 struct perf_cgroup *cgrp = cpuctx->cgrp; 730 struct cgroup_subsys_state *css; 731 732 if (cgrp) { 733 for (css = &cgrp->css; css; css = css->parent) { 734 cgrp = container_of(css, struct perf_cgroup, css); 735 __update_cgrp_time(cgrp); 736 } 737 } 738 } 739 740 static inline void update_cgrp_time_from_event(struct perf_event *event) 741 { 742 struct perf_cgroup *cgrp; 743 744 /* 745 * ensure we access cgroup data only when needed and 746 * when we know the cgroup is pinned (css_get) 747 */ 748 if (!is_cgroup_event(event)) 749 return; 750 751 cgrp = perf_cgroup_from_task(current, event->ctx); 752 /* 753 * Do not update time when cgroup is not active 754 */ 755 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 756 __update_cgrp_time(event->cgrp); 757 } 758 759 static inline void 760 perf_cgroup_set_timestamp(struct task_struct *task, 761 struct perf_event_context *ctx) 762 { 763 struct perf_cgroup *cgrp; 764 struct perf_cgroup_info *info; 765 struct cgroup_subsys_state *css; 766 767 /* 768 * ctx->lock held by caller 769 * ensure we do not access cgroup data 770 * unless we have the cgroup pinned (css_get) 771 */ 772 if (!task || !ctx->nr_cgroups) 773 return; 774 775 cgrp = perf_cgroup_from_task(task, ctx); 776 777 for (css = &cgrp->css; css; css = css->parent) { 778 cgrp = container_of(css, struct perf_cgroup, css); 779 info = this_cpu_ptr(cgrp->info); 780 info->timestamp = ctx->timestamp; 781 } 782 } 783 784 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 785 786 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 787 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 788 789 /* 790 * reschedule events based on the cgroup constraint of task. 791 * 792 * mode SWOUT : schedule out everything 793 * mode SWIN : schedule in based on cgroup for next 794 */ 795 static void perf_cgroup_switch(struct task_struct *task, int mode) 796 { 797 struct perf_cpu_context *cpuctx; 798 struct list_head *list; 799 unsigned long flags; 800 801 /* 802 * Disable interrupts and preemption to avoid this CPU's 803 * cgrp_cpuctx_entry to change under us. 804 */ 805 local_irq_save(flags); 806 807 list = this_cpu_ptr(&cgrp_cpuctx_list); 808 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 809 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 810 811 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 812 perf_pmu_disable(cpuctx->ctx.pmu); 813 814 if (mode & PERF_CGROUP_SWOUT) { 815 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 816 /* 817 * must not be done before ctxswout due 818 * to event_filter_match() in event_sched_out() 819 */ 820 cpuctx->cgrp = NULL; 821 } 822 823 if (mode & PERF_CGROUP_SWIN) { 824 WARN_ON_ONCE(cpuctx->cgrp); 825 /* 826 * set cgrp before ctxsw in to allow 827 * event_filter_match() to not have to pass 828 * task around 829 * we pass the cpuctx->ctx to perf_cgroup_from_task() 830 * because cgorup events are only per-cpu 831 */ 832 cpuctx->cgrp = perf_cgroup_from_task(task, 833 &cpuctx->ctx); 834 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 835 } 836 perf_pmu_enable(cpuctx->ctx.pmu); 837 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 838 } 839 840 local_irq_restore(flags); 841 } 842 843 static inline void perf_cgroup_sched_out(struct task_struct *task, 844 struct task_struct *next) 845 { 846 struct perf_cgroup *cgrp1; 847 struct perf_cgroup *cgrp2 = NULL; 848 849 rcu_read_lock(); 850 /* 851 * we come here when we know perf_cgroup_events > 0 852 * we do not need to pass the ctx here because we know 853 * we are holding the rcu lock 854 */ 855 cgrp1 = perf_cgroup_from_task(task, NULL); 856 cgrp2 = perf_cgroup_from_task(next, NULL); 857 858 /* 859 * only schedule out current cgroup events if we know 860 * that we are switching to a different cgroup. Otherwise, 861 * do no touch the cgroup events. 862 */ 863 if (cgrp1 != cgrp2) 864 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 865 866 rcu_read_unlock(); 867 } 868 869 static inline void perf_cgroup_sched_in(struct task_struct *prev, 870 struct task_struct *task) 871 { 872 struct perf_cgroup *cgrp1; 873 struct perf_cgroup *cgrp2 = NULL; 874 875 rcu_read_lock(); 876 /* 877 * we come here when we know perf_cgroup_events > 0 878 * we do not need to pass the ctx here because we know 879 * we are holding the rcu lock 880 */ 881 cgrp1 = perf_cgroup_from_task(task, NULL); 882 cgrp2 = perf_cgroup_from_task(prev, NULL); 883 884 /* 885 * only need to schedule in cgroup events if we are changing 886 * cgroup during ctxsw. Cgroup events were not scheduled 887 * out of ctxsw out if that was not the case. 888 */ 889 if (cgrp1 != cgrp2) 890 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 891 892 rcu_read_unlock(); 893 } 894 895 static int perf_cgroup_ensure_storage(struct perf_event *event, 896 struct cgroup_subsys_state *css) 897 { 898 struct perf_cpu_context *cpuctx; 899 struct perf_event **storage; 900 int cpu, heap_size, ret = 0; 901 902 /* 903 * Allow storage to have sufficent space for an iterator for each 904 * possibly nested cgroup plus an iterator for events with no cgroup. 905 */ 906 for (heap_size = 1; css; css = css->parent) 907 heap_size++; 908 909 for_each_possible_cpu(cpu) { 910 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 911 if (heap_size <= cpuctx->heap_size) 912 continue; 913 914 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 915 GFP_KERNEL, cpu_to_node(cpu)); 916 if (!storage) { 917 ret = -ENOMEM; 918 break; 919 } 920 921 raw_spin_lock_irq(&cpuctx->ctx.lock); 922 if (cpuctx->heap_size < heap_size) { 923 swap(cpuctx->heap, storage); 924 if (storage == cpuctx->heap_default) 925 storage = NULL; 926 cpuctx->heap_size = heap_size; 927 } 928 raw_spin_unlock_irq(&cpuctx->ctx.lock); 929 930 kfree(storage); 931 } 932 933 return ret; 934 } 935 936 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 937 struct perf_event_attr *attr, 938 struct perf_event *group_leader) 939 { 940 struct perf_cgroup *cgrp; 941 struct cgroup_subsys_state *css; 942 struct fd f = fdget(fd); 943 int ret = 0; 944 945 if (!f.file) 946 return -EBADF; 947 948 css = css_tryget_online_from_dir(f.file->f_path.dentry, 949 &perf_event_cgrp_subsys); 950 if (IS_ERR(css)) { 951 ret = PTR_ERR(css); 952 goto out; 953 } 954 955 ret = perf_cgroup_ensure_storage(event, css); 956 if (ret) 957 goto out; 958 959 cgrp = container_of(css, struct perf_cgroup, css); 960 event->cgrp = cgrp; 961 962 /* 963 * all events in a group must monitor 964 * the same cgroup because a task belongs 965 * to only one perf cgroup at a time 966 */ 967 if (group_leader && group_leader->cgrp != cgrp) { 968 perf_detach_cgroup(event); 969 ret = -EINVAL; 970 } 971 out: 972 fdput(f); 973 return ret; 974 } 975 976 static inline void 977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 978 { 979 struct perf_cgroup_info *t; 980 t = per_cpu_ptr(event->cgrp->info, event->cpu); 981 event->shadow_ctx_time = now - t->timestamp; 982 } 983 984 /* 985 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 986 * cleared when last cgroup event is removed. 987 */ 988 static inline void 989 list_update_cgroup_event(struct perf_event *event, 990 struct perf_event_context *ctx, bool add) 991 { 992 struct perf_cpu_context *cpuctx; 993 struct list_head *cpuctx_entry; 994 995 if (!is_cgroup_event(event)) 996 return; 997 998 /* 999 * Because cgroup events are always per-cpu events, 1000 * @ctx == &cpuctx->ctx. 1001 */ 1002 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1003 1004 /* 1005 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1006 * matching the event's cgroup, we must do this for every new event, 1007 * because if the first would mismatch, the second would not try again 1008 * and we would leave cpuctx->cgrp unset. 1009 */ 1010 if (add && !cpuctx->cgrp) { 1011 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1012 1013 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1014 cpuctx->cgrp = cgrp; 1015 } 1016 1017 if (add && ctx->nr_cgroups++) 1018 return; 1019 else if (!add && --ctx->nr_cgroups) 1020 return; 1021 1022 /* no cgroup running */ 1023 if (!add) 1024 cpuctx->cgrp = NULL; 1025 1026 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 1027 if (add) 1028 list_add(cpuctx_entry, 1029 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1030 else 1031 list_del(cpuctx_entry); 1032 } 1033 1034 #else /* !CONFIG_CGROUP_PERF */ 1035 1036 static inline bool 1037 perf_cgroup_match(struct perf_event *event) 1038 { 1039 return true; 1040 } 1041 1042 static inline void perf_detach_cgroup(struct perf_event *event) 1043 {} 1044 1045 static inline int is_cgroup_event(struct perf_event *event) 1046 { 1047 return 0; 1048 } 1049 1050 static inline void update_cgrp_time_from_event(struct perf_event *event) 1051 { 1052 } 1053 1054 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1055 { 1056 } 1057 1058 static inline void perf_cgroup_sched_out(struct task_struct *task, 1059 struct task_struct *next) 1060 { 1061 } 1062 1063 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1064 struct task_struct *task) 1065 { 1066 } 1067 1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1069 struct perf_event_attr *attr, 1070 struct perf_event *group_leader) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void 1076 perf_cgroup_set_timestamp(struct task_struct *task, 1077 struct perf_event_context *ctx) 1078 { 1079 } 1080 1081 static inline void 1082 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1083 { 1084 } 1085 1086 static inline void 1087 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1088 { 1089 } 1090 1091 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1092 { 1093 return 0; 1094 } 1095 1096 static inline void 1097 list_update_cgroup_event(struct perf_event *event, 1098 struct perf_event_context *ctx, bool add) 1099 { 1100 } 1101 1102 #endif 1103 1104 /* 1105 * set default to be dependent on timer tick just 1106 * like original code 1107 */ 1108 #define PERF_CPU_HRTIMER (1000 / HZ) 1109 /* 1110 * function must be called with interrupts disabled 1111 */ 1112 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1113 { 1114 struct perf_cpu_context *cpuctx; 1115 bool rotations; 1116 1117 lockdep_assert_irqs_disabled(); 1118 1119 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1120 rotations = perf_rotate_context(cpuctx); 1121 1122 raw_spin_lock(&cpuctx->hrtimer_lock); 1123 if (rotations) 1124 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1125 else 1126 cpuctx->hrtimer_active = 0; 1127 raw_spin_unlock(&cpuctx->hrtimer_lock); 1128 1129 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1130 } 1131 1132 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1133 { 1134 struct hrtimer *timer = &cpuctx->hrtimer; 1135 struct pmu *pmu = cpuctx->ctx.pmu; 1136 u64 interval; 1137 1138 /* no multiplexing needed for SW PMU */ 1139 if (pmu->task_ctx_nr == perf_sw_context) 1140 return; 1141 1142 /* 1143 * check default is sane, if not set then force to 1144 * default interval (1/tick) 1145 */ 1146 interval = pmu->hrtimer_interval_ms; 1147 if (interval < 1) 1148 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1149 1150 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1151 1152 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1153 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1154 timer->function = perf_mux_hrtimer_handler; 1155 } 1156 1157 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1158 { 1159 struct hrtimer *timer = &cpuctx->hrtimer; 1160 struct pmu *pmu = cpuctx->ctx.pmu; 1161 unsigned long flags; 1162 1163 /* not for SW PMU */ 1164 if (pmu->task_ctx_nr == perf_sw_context) 1165 return 0; 1166 1167 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1168 if (!cpuctx->hrtimer_active) { 1169 cpuctx->hrtimer_active = 1; 1170 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1171 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1172 } 1173 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1174 1175 return 0; 1176 } 1177 1178 void perf_pmu_disable(struct pmu *pmu) 1179 { 1180 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1181 if (!(*count)++) 1182 pmu->pmu_disable(pmu); 1183 } 1184 1185 void perf_pmu_enable(struct pmu *pmu) 1186 { 1187 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1188 if (!--(*count)) 1189 pmu->pmu_enable(pmu); 1190 } 1191 1192 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1193 1194 /* 1195 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1196 * perf_event_task_tick() are fully serialized because they're strictly cpu 1197 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1198 * disabled, while perf_event_task_tick is called from IRQ context. 1199 */ 1200 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1201 { 1202 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1203 1204 lockdep_assert_irqs_disabled(); 1205 1206 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1207 1208 list_add(&ctx->active_ctx_list, head); 1209 } 1210 1211 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1212 { 1213 lockdep_assert_irqs_disabled(); 1214 1215 WARN_ON(list_empty(&ctx->active_ctx_list)); 1216 1217 list_del_init(&ctx->active_ctx_list); 1218 } 1219 1220 static void get_ctx(struct perf_event_context *ctx) 1221 { 1222 refcount_inc(&ctx->refcount); 1223 } 1224 1225 static void free_ctx(struct rcu_head *head) 1226 { 1227 struct perf_event_context *ctx; 1228 1229 ctx = container_of(head, struct perf_event_context, rcu_head); 1230 kfree(ctx->task_ctx_data); 1231 kfree(ctx); 1232 } 1233 1234 static void put_ctx(struct perf_event_context *ctx) 1235 { 1236 if (refcount_dec_and_test(&ctx->refcount)) { 1237 if (ctx->parent_ctx) 1238 put_ctx(ctx->parent_ctx); 1239 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1240 put_task_struct(ctx->task); 1241 call_rcu(&ctx->rcu_head, free_ctx); 1242 } 1243 } 1244 1245 /* 1246 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1247 * perf_pmu_migrate_context() we need some magic. 1248 * 1249 * Those places that change perf_event::ctx will hold both 1250 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1251 * 1252 * Lock ordering is by mutex address. There are two other sites where 1253 * perf_event_context::mutex nests and those are: 1254 * 1255 * - perf_event_exit_task_context() [ child , 0 ] 1256 * perf_event_exit_event() 1257 * put_event() [ parent, 1 ] 1258 * 1259 * - perf_event_init_context() [ parent, 0 ] 1260 * inherit_task_group() 1261 * inherit_group() 1262 * inherit_event() 1263 * perf_event_alloc() 1264 * perf_init_event() 1265 * perf_try_init_event() [ child , 1 ] 1266 * 1267 * While it appears there is an obvious deadlock here -- the parent and child 1268 * nesting levels are inverted between the two. This is in fact safe because 1269 * life-time rules separate them. That is an exiting task cannot fork, and a 1270 * spawning task cannot (yet) exit. 1271 * 1272 * But remember that that these are parent<->child context relations, and 1273 * migration does not affect children, therefore these two orderings should not 1274 * interact. 1275 * 1276 * The change in perf_event::ctx does not affect children (as claimed above) 1277 * because the sys_perf_event_open() case will install a new event and break 1278 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1279 * concerned with cpuctx and that doesn't have children. 1280 * 1281 * The places that change perf_event::ctx will issue: 1282 * 1283 * perf_remove_from_context(); 1284 * synchronize_rcu(); 1285 * perf_install_in_context(); 1286 * 1287 * to affect the change. The remove_from_context() + synchronize_rcu() should 1288 * quiesce the event, after which we can install it in the new location. This 1289 * means that only external vectors (perf_fops, prctl) can perturb the event 1290 * while in transit. Therefore all such accessors should also acquire 1291 * perf_event_context::mutex to serialize against this. 1292 * 1293 * However; because event->ctx can change while we're waiting to acquire 1294 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1295 * function. 1296 * 1297 * Lock order: 1298 * cred_guard_mutex 1299 * task_struct::perf_event_mutex 1300 * perf_event_context::mutex 1301 * perf_event::child_mutex; 1302 * perf_event_context::lock 1303 * perf_event::mmap_mutex 1304 * mmap_sem 1305 * perf_addr_filters_head::lock 1306 * 1307 * cpu_hotplug_lock 1308 * pmus_lock 1309 * cpuctx->mutex / perf_event_context::mutex 1310 */ 1311 static struct perf_event_context * 1312 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1313 { 1314 struct perf_event_context *ctx; 1315 1316 again: 1317 rcu_read_lock(); 1318 ctx = READ_ONCE(event->ctx); 1319 if (!refcount_inc_not_zero(&ctx->refcount)) { 1320 rcu_read_unlock(); 1321 goto again; 1322 } 1323 rcu_read_unlock(); 1324 1325 mutex_lock_nested(&ctx->mutex, nesting); 1326 if (event->ctx != ctx) { 1327 mutex_unlock(&ctx->mutex); 1328 put_ctx(ctx); 1329 goto again; 1330 } 1331 1332 return ctx; 1333 } 1334 1335 static inline struct perf_event_context * 1336 perf_event_ctx_lock(struct perf_event *event) 1337 { 1338 return perf_event_ctx_lock_nested(event, 0); 1339 } 1340 1341 static void perf_event_ctx_unlock(struct perf_event *event, 1342 struct perf_event_context *ctx) 1343 { 1344 mutex_unlock(&ctx->mutex); 1345 put_ctx(ctx); 1346 } 1347 1348 /* 1349 * This must be done under the ctx->lock, such as to serialize against 1350 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1351 * calling scheduler related locks and ctx->lock nests inside those. 1352 */ 1353 static __must_check struct perf_event_context * 1354 unclone_ctx(struct perf_event_context *ctx) 1355 { 1356 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1357 1358 lockdep_assert_held(&ctx->lock); 1359 1360 if (parent_ctx) 1361 ctx->parent_ctx = NULL; 1362 ctx->generation++; 1363 1364 return parent_ctx; 1365 } 1366 1367 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1368 enum pid_type type) 1369 { 1370 u32 nr; 1371 /* 1372 * only top level events have the pid namespace they were created in 1373 */ 1374 if (event->parent) 1375 event = event->parent; 1376 1377 nr = __task_pid_nr_ns(p, type, event->ns); 1378 /* avoid -1 if it is idle thread or runs in another ns */ 1379 if (!nr && !pid_alive(p)) 1380 nr = -1; 1381 return nr; 1382 } 1383 1384 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1385 { 1386 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1387 } 1388 1389 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1390 { 1391 return perf_event_pid_type(event, p, PIDTYPE_PID); 1392 } 1393 1394 /* 1395 * If we inherit events we want to return the parent event id 1396 * to userspace. 1397 */ 1398 static u64 primary_event_id(struct perf_event *event) 1399 { 1400 u64 id = event->id; 1401 1402 if (event->parent) 1403 id = event->parent->id; 1404 1405 return id; 1406 } 1407 1408 /* 1409 * Get the perf_event_context for a task and lock it. 1410 * 1411 * This has to cope with with the fact that until it is locked, 1412 * the context could get moved to another task. 1413 */ 1414 static struct perf_event_context * 1415 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1416 { 1417 struct perf_event_context *ctx; 1418 1419 retry: 1420 /* 1421 * One of the few rules of preemptible RCU is that one cannot do 1422 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1423 * part of the read side critical section was irqs-enabled -- see 1424 * rcu_read_unlock_special(). 1425 * 1426 * Since ctx->lock nests under rq->lock we must ensure the entire read 1427 * side critical section has interrupts disabled. 1428 */ 1429 local_irq_save(*flags); 1430 rcu_read_lock(); 1431 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1432 if (ctx) { 1433 /* 1434 * If this context is a clone of another, it might 1435 * get swapped for another underneath us by 1436 * perf_event_task_sched_out, though the 1437 * rcu_read_lock() protects us from any context 1438 * getting freed. Lock the context and check if it 1439 * got swapped before we could get the lock, and retry 1440 * if so. If we locked the right context, then it 1441 * can't get swapped on us any more. 1442 */ 1443 raw_spin_lock(&ctx->lock); 1444 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1445 raw_spin_unlock(&ctx->lock); 1446 rcu_read_unlock(); 1447 local_irq_restore(*flags); 1448 goto retry; 1449 } 1450 1451 if (ctx->task == TASK_TOMBSTONE || 1452 !refcount_inc_not_zero(&ctx->refcount)) { 1453 raw_spin_unlock(&ctx->lock); 1454 ctx = NULL; 1455 } else { 1456 WARN_ON_ONCE(ctx->task != task); 1457 } 1458 } 1459 rcu_read_unlock(); 1460 if (!ctx) 1461 local_irq_restore(*flags); 1462 return ctx; 1463 } 1464 1465 /* 1466 * Get the context for a task and increment its pin_count so it 1467 * can't get swapped to another task. This also increments its 1468 * reference count so that the context can't get freed. 1469 */ 1470 static struct perf_event_context * 1471 perf_pin_task_context(struct task_struct *task, int ctxn) 1472 { 1473 struct perf_event_context *ctx; 1474 unsigned long flags; 1475 1476 ctx = perf_lock_task_context(task, ctxn, &flags); 1477 if (ctx) { 1478 ++ctx->pin_count; 1479 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1480 } 1481 return ctx; 1482 } 1483 1484 static void perf_unpin_context(struct perf_event_context *ctx) 1485 { 1486 unsigned long flags; 1487 1488 raw_spin_lock_irqsave(&ctx->lock, flags); 1489 --ctx->pin_count; 1490 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1491 } 1492 1493 /* 1494 * Update the record of the current time in a context. 1495 */ 1496 static void update_context_time(struct perf_event_context *ctx) 1497 { 1498 u64 now = perf_clock(); 1499 1500 ctx->time += now - ctx->timestamp; 1501 ctx->timestamp = now; 1502 } 1503 1504 static u64 perf_event_time(struct perf_event *event) 1505 { 1506 struct perf_event_context *ctx = event->ctx; 1507 1508 if (is_cgroup_event(event)) 1509 return perf_cgroup_event_time(event); 1510 1511 return ctx ? ctx->time : 0; 1512 } 1513 1514 static enum event_type_t get_event_type(struct perf_event *event) 1515 { 1516 struct perf_event_context *ctx = event->ctx; 1517 enum event_type_t event_type; 1518 1519 lockdep_assert_held(&ctx->lock); 1520 1521 /* 1522 * It's 'group type', really, because if our group leader is 1523 * pinned, so are we. 1524 */ 1525 if (event->group_leader != event) 1526 event = event->group_leader; 1527 1528 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1529 if (!ctx->task) 1530 event_type |= EVENT_CPU; 1531 1532 return event_type; 1533 } 1534 1535 /* 1536 * Helper function to initialize event group nodes. 1537 */ 1538 static void init_event_group(struct perf_event *event) 1539 { 1540 RB_CLEAR_NODE(&event->group_node); 1541 event->group_index = 0; 1542 } 1543 1544 /* 1545 * Extract pinned or flexible groups from the context 1546 * based on event attrs bits. 1547 */ 1548 static struct perf_event_groups * 1549 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1550 { 1551 if (event->attr.pinned) 1552 return &ctx->pinned_groups; 1553 else 1554 return &ctx->flexible_groups; 1555 } 1556 1557 /* 1558 * Helper function to initializes perf_event_group trees. 1559 */ 1560 static void perf_event_groups_init(struct perf_event_groups *groups) 1561 { 1562 groups->tree = RB_ROOT; 1563 groups->index = 0; 1564 } 1565 1566 /* 1567 * Compare function for event groups; 1568 * 1569 * Implements complex key that first sorts by CPU and then by virtual index 1570 * which provides ordering when rotating groups for the same CPU. 1571 */ 1572 static bool 1573 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1574 { 1575 if (left->cpu < right->cpu) 1576 return true; 1577 if (left->cpu > right->cpu) 1578 return false; 1579 1580 #ifdef CONFIG_CGROUP_PERF 1581 if (left->cgrp != right->cgrp) { 1582 if (!left->cgrp || !left->cgrp->css.cgroup) { 1583 /* 1584 * Left has no cgroup but right does, no cgroups come 1585 * first. 1586 */ 1587 return true; 1588 } 1589 if (!right->cgrp || !right->cgrp->css.cgroup) { 1590 /* 1591 * Right has no cgroup but left does, no cgroups come 1592 * first. 1593 */ 1594 return false; 1595 } 1596 /* Two dissimilar cgroups, order by id. */ 1597 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1598 return true; 1599 1600 return false; 1601 } 1602 #endif 1603 1604 if (left->group_index < right->group_index) 1605 return true; 1606 if (left->group_index > right->group_index) 1607 return false; 1608 1609 return false; 1610 } 1611 1612 /* 1613 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1614 * key (see perf_event_groups_less). This places it last inside the CPU 1615 * subtree. 1616 */ 1617 static void 1618 perf_event_groups_insert(struct perf_event_groups *groups, 1619 struct perf_event *event) 1620 { 1621 struct perf_event *node_event; 1622 struct rb_node *parent; 1623 struct rb_node **node; 1624 1625 event->group_index = ++groups->index; 1626 1627 node = &groups->tree.rb_node; 1628 parent = *node; 1629 1630 while (*node) { 1631 parent = *node; 1632 node_event = container_of(*node, struct perf_event, group_node); 1633 1634 if (perf_event_groups_less(event, node_event)) 1635 node = &parent->rb_left; 1636 else 1637 node = &parent->rb_right; 1638 } 1639 1640 rb_link_node(&event->group_node, parent, node); 1641 rb_insert_color(&event->group_node, &groups->tree); 1642 } 1643 1644 /* 1645 * Helper function to insert event into the pinned or flexible groups. 1646 */ 1647 static void 1648 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1649 { 1650 struct perf_event_groups *groups; 1651 1652 groups = get_event_groups(event, ctx); 1653 perf_event_groups_insert(groups, event); 1654 } 1655 1656 /* 1657 * Delete a group from a tree. 1658 */ 1659 static void 1660 perf_event_groups_delete(struct perf_event_groups *groups, 1661 struct perf_event *event) 1662 { 1663 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1664 RB_EMPTY_ROOT(&groups->tree)); 1665 1666 rb_erase(&event->group_node, &groups->tree); 1667 init_event_group(event); 1668 } 1669 1670 /* 1671 * Helper function to delete event from its groups. 1672 */ 1673 static void 1674 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1675 { 1676 struct perf_event_groups *groups; 1677 1678 groups = get_event_groups(event, ctx); 1679 perf_event_groups_delete(groups, event); 1680 } 1681 1682 /* 1683 * Get the leftmost event in the cpu/cgroup subtree. 1684 */ 1685 static struct perf_event * 1686 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1687 struct cgroup *cgrp) 1688 { 1689 struct perf_event *node_event = NULL, *match = NULL; 1690 struct rb_node *node = groups->tree.rb_node; 1691 #ifdef CONFIG_CGROUP_PERF 1692 u64 node_cgrp_id, cgrp_id = 0; 1693 1694 if (cgrp) 1695 cgrp_id = cgrp->kn->id; 1696 #endif 1697 1698 while (node) { 1699 node_event = container_of(node, struct perf_event, group_node); 1700 1701 if (cpu < node_event->cpu) { 1702 node = node->rb_left; 1703 continue; 1704 } 1705 if (cpu > node_event->cpu) { 1706 node = node->rb_right; 1707 continue; 1708 } 1709 #ifdef CONFIG_CGROUP_PERF 1710 node_cgrp_id = 0; 1711 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1712 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1713 1714 if (cgrp_id < node_cgrp_id) { 1715 node = node->rb_left; 1716 continue; 1717 } 1718 if (cgrp_id > node_cgrp_id) { 1719 node = node->rb_right; 1720 continue; 1721 } 1722 #endif 1723 match = node_event; 1724 node = node->rb_left; 1725 } 1726 1727 return match; 1728 } 1729 1730 /* 1731 * Like rb_entry_next_safe() for the @cpu subtree. 1732 */ 1733 static struct perf_event * 1734 perf_event_groups_next(struct perf_event *event) 1735 { 1736 struct perf_event *next; 1737 #ifdef CONFIG_CGROUP_PERF 1738 u64 curr_cgrp_id = 0; 1739 u64 next_cgrp_id = 0; 1740 #endif 1741 1742 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1743 if (next == NULL || next->cpu != event->cpu) 1744 return NULL; 1745 1746 #ifdef CONFIG_CGROUP_PERF 1747 if (event->cgrp && event->cgrp->css.cgroup) 1748 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1749 1750 if (next->cgrp && next->cgrp->css.cgroup) 1751 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1752 1753 if (curr_cgrp_id != next_cgrp_id) 1754 return NULL; 1755 #endif 1756 return next; 1757 } 1758 1759 /* 1760 * Iterate through the whole groups tree. 1761 */ 1762 #define perf_event_groups_for_each(event, groups) \ 1763 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1764 typeof(*event), group_node); event; \ 1765 event = rb_entry_safe(rb_next(&event->group_node), \ 1766 typeof(*event), group_node)) 1767 1768 /* 1769 * Add an event from the lists for its context. 1770 * Must be called with ctx->mutex and ctx->lock held. 1771 */ 1772 static void 1773 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1774 { 1775 lockdep_assert_held(&ctx->lock); 1776 1777 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1778 event->attach_state |= PERF_ATTACH_CONTEXT; 1779 1780 event->tstamp = perf_event_time(event); 1781 1782 /* 1783 * If we're a stand alone event or group leader, we go to the context 1784 * list, group events are kept attached to the group so that 1785 * perf_group_detach can, at all times, locate all siblings. 1786 */ 1787 if (event->group_leader == event) { 1788 event->group_caps = event->event_caps; 1789 add_event_to_groups(event, ctx); 1790 } 1791 1792 list_update_cgroup_event(event, ctx, true); 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->attr.inherit_stat) 1797 ctx->nr_stat++; 1798 1799 ctx->generation++; 1800 } 1801 1802 /* 1803 * Initialize event state based on the perf_event_attr::disabled. 1804 */ 1805 static inline void perf_event__state_init(struct perf_event *event) 1806 { 1807 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1808 PERF_EVENT_STATE_INACTIVE; 1809 } 1810 1811 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1812 { 1813 int entry = sizeof(u64); /* value */ 1814 int size = 0; 1815 int nr = 1; 1816 1817 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1818 size += sizeof(u64); 1819 1820 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1821 size += sizeof(u64); 1822 1823 if (event->attr.read_format & PERF_FORMAT_ID) 1824 entry += sizeof(u64); 1825 1826 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1827 nr += nr_siblings; 1828 size += sizeof(u64); 1829 } 1830 1831 size += entry * nr; 1832 event->read_size = size; 1833 } 1834 1835 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1836 { 1837 struct perf_sample_data *data; 1838 u16 size = 0; 1839 1840 if (sample_type & PERF_SAMPLE_IP) 1841 size += sizeof(data->ip); 1842 1843 if (sample_type & PERF_SAMPLE_ADDR) 1844 size += sizeof(data->addr); 1845 1846 if (sample_type & PERF_SAMPLE_PERIOD) 1847 size += sizeof(data->period); 1848 1849 if (sample_type & PERF_SAMPLE_WEIGHT) 1850 size += sizeof(data->weight); 1851 1852 if (sample_type & PERF_SAMPLE_READ) 1853 size += event->read_size; 1854 1855 if (sample_type & PERF_SAMPLE_DATA_SRC) 1856 size += sizeof(data->data_src.val); 1857 1858 if (sample_type & PERF_SAMPLE_TRANSACTION) 1859 size += sizeof(data->txn); 1860 1861 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1862 size += sizeof(data->phys_addr); 1863 1864 event->header_size = size; 1865 } 1866 1867 /* 1868 * Called at perf_event creation and when events are attached/detached from a 1869 * group. 1870 */ 1871 static void perf_event__header_size(struct perf_event *event) 1872 { 1873 __perf_event_read_size(event, 1874 event->group_leader->nr_siblings); 1875 __perf_event_header_size(event, event->attr.sample_type); 1876 } 1877 1878 static void perf_event__id_header_size(struct perf_event *event) 1879 { 1880 struct perf_sample_data *data; 1881 u64 sample_type = event->attr.sample_type; 1882 u16 size = 0; 1883 1884 if (sample_type & PERF_SAMPLE_TID) 1885 size += sizeof(data->tid_entry); 1886 1887 if (sample_type & PERF_SAMPLE_TIME) 1888 size += sizeof(data->time); 1889 1890 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1891 size += sizeof(data->id); 1892 1893 if (sample_type & PERF_SAMPLE_ID) 1894 size += sizeof(data->id); 1895 1896 if (sample_type & PERF_SAMPLE_STREAM_ID) 1897 size += sizeof(data->stream_id); 1898 1899 if (sample_type & PERF_SAMPLE_CPU) 1900 size += sizeof(data->cpu_entry); 1901 1902 event->id_header_size = size; 1903 } 1904 1905 static bool perf_event_validate_size(struct perf_event *event) 1906 { 1907 /* 1908 * The values computed here will be over-written when we actually 1909 * attach the event. 1910 */ 1911 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1912 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1913 perf_event__id_header_size(event); 1914 1915 /* 1916 * Sum the lot; should not exceed the 64k limit we have on records. 1917 * Conservative limit to allow for callchains and other variable fields. 1918 */ 1919 if (event->read_size + event->header_size + 1920 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1921 return false; 1922 1923 return true; 1924 } 1925 1926 static void perf_group_attach(struct perf_event *event) 1927 { 1928 struct perf_event *group_leader = event->group_leader, *pos; 1929 1930 lockdep_assert_held(&event->ctx->lock); 1931 1932 /* 1933 * We can have double attach due to group movement in perf_event_open. 1934 */ 1935 if (event->attach_state & PERF_ATTACH_GROUP) 1936 return; 1937 1938 event->attach_state |= PERF_ATTACH_GROUP; 1939 1940 if (group_leader == event) 1941 return; 1942 1943 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1944 1945 group_leader->group_caps &= event->event_caps; 1946 1947 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1948 group_leader->nr_siblings++; 1949 1950 perf_event__header_size(group_leader); 1951 1952 for_each_sibling_event(pos, group_leader) 1953 perf_event__header_size(pos); 1954 } 1955 1956 /* 1957 * Remove an event from the lists for its context. 1958 * Must be called with ctx->mutex and ctx->lock held. 1959 */ 1960 static void 1961 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1962 { 1963 WARN_ON_ONCE(event->ctx != ctx); 1964 lockdep_assert_held(&ctx->lock); 1965 1966 /* 1967 * We can have double detach due to exit/hot-unplug + close. 1968 */ 1969 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1970 return; 1971 1972 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1973 1974 list_update_cgroup_event(event, ctx, false); 1975 1976 ctx->nr_events--; 1977 if (event->attr.inherit_stat) 1978 ctx->nr_stat--; 1979 1980 list_del_rcu(&event->event_entry); 1981 1982 if (event->group_leader == event) 1983 del_event_from_groups(event, ctx); 1984 1985 /* 1986 * If event was in error state, then keep it 1987 * that way, otherwise bogus counts will be 1988 * returned on read(). The only way to get out 1989 * of error state is by explicit re-enabling 1990 * of the event 1991 */ 1992 if (event->state > PERF_EVENT_STATE_OFF) 1993 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1994 1995 ctx->generation++; 1996 } 1997 1998 static int 1999 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2000 { 2001 if (!has_aux(aux_event)) 2002 return 0; 2003 2004 if (!event->pmu->aux_output_match) 2005 return 0; 2006 2007 return event->pmu->aux_output_match(aux_event); 2008 } 2009 2010 static void put_event(struct perf_event *event); 2011 static void event_sched_out(struct perf_event *event, 2012 struct perf_cpu_context *cpuctx, 2013 struct perf_event_context *ctx); 2014 2015 static void perf_put_aux_event(struct perf_event *event) 2016 { 2017 struct perf_event_context *ctx = event->ctx; 2018 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2019 struct perf_event *iter; 2020 2021 /* 2022 * If event uses aux_event tear down the link 2023 */ 2024 if (event->aux_event) { 2025 iter = event->aux_event; 2026 event->aux_event = NULL; 2027 put_event(iter); 2028 return; 2029 } 2030 2031 /* 2032 * If the event is an aux_event, tear down all links to 2033 * it from other events. 2034 */ 2035 for_each_sibling_event(iter, event->group_leader) { 2036 if (iter->aux_event != event) 2037 continue; 2038 2039 iter->aux_event = NULL; 2040 put_event(event); 2041 2042 /* 2043 * If it's ACTIVE, schedule it out and put it into ERROR 2044 * state so that we don't try to schedule it again. Note 2045 * that perf_event_enable() will clear the ERROR status. 2046 */ 2047 event_sched_out(iter, cpuctx, ctx); 2048 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2049 } 2050 } 2051 2052 static bool perf_need_aux_event(struct perf_event *event) 2053 { 2054 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2055 } 2056 2057 static int perf_get_aux_event(struct perf_event *event, 2058 struct perf_event *group_leader) 2059 { 2060 /* 2061 * Our group leader must be an aux event if we want to be 2062 * an aux_output. This way, the aux event will precede its 2063 * aux_output events in the group, and therefore will always 2064 * schedule first. 2065 */ 2066 if (!group_leader) 2067 return 0; 2068 2069 /* 2070 * aux_output and aux_sample_size are mutually exclusive. 2071 */ 2072 if (event->attr.aux_output && event->attr.aux_sample_size) 2073 return 0; 2074 2075 if (event->attr.aux_output && 2076 !perf_aux_output_match(event, group_leader)) 2077 return 0; 2078 2079 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2080 return 0; 2081 2082 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2083 return 0; 2084 2085 /* 2086 * Link aux_outputs to their aux event; this is undone in 2087 * perf_group_detach() by perf_put_aux_event(). When the 2088 * group in torn down, the aux_output events loose their 2089 * link to the aux_event and can't schedule any more. 2090 */ 2091 event->aux_event = group_leader; 2092 2093 return 1; 2094 } 2095 2096 static inline struct list_head *get_event_list(struct perf_event *event) 2097 { 2098 struct perf_event_context *ctx = event->ctx; 2099 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2100 } 2101 2102 static void perf_group_detach(struct perf_event *event) 2103 { 2104 struct perf_event *sibling, *tmp; 2105 struct perf_event_context *ctx = event->ctx; 2106 2107 lockdep_assert_held(&ctx->lock); 2108 2109 /* 2110 * We can have double detach due to exit/hot-unplug + close. 2111 */ 2112 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2113 return; 2114 2115 event->attach_state &= ~PERF_ATTACH_GROUP; 2116 2117 perf_put_aux_event(event); 2118 2119 /* 2120 * If this is a sibling, remove it from its group. 2121 */ 2122 if (event->group_leader != event) { 2123 list_del_init(&event->sibling_list); 2124 event->group_leader->nr_siblings--; 2125 goto out; 2126 } 2127 2128 /* 2129 * If this was a group event with sibling events then 2130 * upgrade the siblings to singleton events by adding them 2131 * to whatever list we are on. 2132 */ 2133 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2134 2135 sibling->group_leader = sibling; 2136 list_del_init(&sibling->sibling_list); 2137 2138 /* Inherit group flags from the previous leader */ 2139 sibling->group_caps = event->group_caps; 2140 2141 if (!RB_EMPTY_NODE(&event->group_node)) { 2142 add_event_to_groups(sibling, event->ctx); 2143 2144 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2145 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2146 } 2147 2148 WARN_ON_ONCE(sibling->ctx != event->ctx); 2149 } 2150 2151 out: 2152 perf_event__header_size(event->group_leader); 2153 2154 for_each_sibling_event(tmp, event->group_leader) 2155 perf_event__header_size(tmp); 2156 } 2157 2158 static bool is_orphaned_event(struct perf_event *event) 2159 { 2160 return event->state == PERF_EVENT_STATE_DEAD; 2161 } 2162 2163 static inline int __pmu_filter_match(struct perf_event *event) 2164 { 2165 struct pmu *pmu = event->pmu; 2166 return pmu->filter_match ? pmu->filter_match(event) : 1; 2167 } 2168 2169 /* 2170 * Check whether we should attempt to schedule an event group based on 2171 * PMU-specific filtering. An event group can consist of HW and SW events, 2172 * potentially with a SW leader, so we must check all the filters, to 2173 * determine whether a group is schedulable: 2174 */ 2175 static inline int pmu_filter_match(struct perf_event *event) 2176 { 2177 struct perf_event *sibling; 2178 2179 if (!__pmu_filter_match(event)) 2180 return 0; 2181 2182 for_each_sibling_event(sibling, event) { 2183 if (!__pmu_filter_match(sibling)) 2184 return 0; 2185 } 2186 2187 return 1; 2188 } 2189 2190 static inline int 2191 event_filter_match(struct perf_event *event) 2192 { 2193 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2194 perf_cgroup_match(event) && pmu_filter_match(event); 2195 } 2196 2197 static void 2198 event_sched_out(struct perf_event *event, 2199 struct perf_cpu_context *cpuctx, 2200 struct perf_event_context *ctx) 2201 { 2202 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2203 2204 WARN_ON_ONCE(event->ctx != ctx); 2205 lockdep_assert_held(&ctx->lock); 2206 2207 if (event->state != PERF_EVENT_STATE_ACTIVE) 2208 return; 2209 2210 /* 2211 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2212 * we can schedule events _OUT_ individually through things like 2213 * __perf_remove_from_context(). 2214 */ 2215 list_del_init(&event->active_list); 2216 2217 perf_pmu_disable(event->pmu); 2218 2219 event->pmu->del(event, 0); 2220 event->oncpu = -1; 2221 2222 if (READ_ONCE(event->pending_disable) >= 0) { 2223 WRITE_ONCE(event->pending_disable, -1); 2224 state = PERF_EVENT_STATE_OFF; 2225 } 2226 perf_event_set_state(event, state); 2227 2228 if (!is_software_event(event)) 2229 cpuctx->active_oncpu--; 2230 if (!--ctx->nr_active) 2231 perf_event_ctx_deactivate(ctx); 2232 if (event->attr.freq && event->attr.sample_freq) 2233 ctx->nr_freq--; 2234 if (event->attr.exclusive || !cpuctx->active_oncpu) 2235 cpuctx->exclusive = 0; 2236 2237 perf_pmu_enable(event->pmu); 2238 } 2239 2240 static void 2241 group_sched_out(struct perf_event *group_event, 2242 struct perf_cpu_context *cpuctx, 2243 struct perf_event_context *ctx) 2244 { 2245 struct perf_event *event; 2246 2247 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2248 return; 2249 2250 perf_pmu_disable(ctx->pmu); 2251 2252 event_sched_out(group_event, cpuctx, ctx); 2253 2254 /* 2255 * Schedule out siblings (if any): 2256 */ 2257 for_each_sibling_event(event, group_event) 2258 event_sched_out(event, cpuctx, ctx); 2259 2260 perf_pmu_enable(ctx->pmu); 2261 2262 if (group_event->attr.exclusive) 2263 cpuctx->exclusive = 0; 2264 } 2265 2266 #define DETACH_GROUP 0x01UL 2267 2268 /* 2269 * Cross CPU call to remove a performance event 2270 * 2271 * We disable the event on the hardware level first. After that we 2272 * remove it from the context list. 2273 */ 2274 static void 2275 __perf_remove_from_context(struct perf_event *event, 2276 struct perf_cpu_context *cpuctx, 2277 struct perf_event_context *ctx, 2278 void *info) 2279 { 2280 unsigned long flags = (unsigned long)info; 2281 2282 if (ctx->is_active & EVENT_TIME) { 2283 update_context_time(ctx); 2284 update_cgrp_time_from_cpuctx(cpuctx); 2285 } 2286 2287 event_sched_out(event, cpuctx, ctx); 2288 if (flags & DETACH_GROUP) 2289 perf_group_detach(event); 2290 list_del_event(event, ctx); 2291 2292 if (!ctx->nr_events && ctx->is_active) { 2293 ctx->is_active = 0; 2294 ctx->rotate_necessary = 0; 2295 if (ctx->task) { 2296 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2297 cpuctx->task_ctx = NULL; 2298 } 2299 } 2300 } 2301 2302 /* 2303 * Remove the event from a task's (or a CPU's) list of events. 2304 * 2305 * If event->ctx is a cloned context, callers must make sure that 2306 * every task struct that event->ctx->task could possibly point to 2307 * remains valid. This is OK when called from perf_release since 2308 * that only calls us on the top-level context, which can't be a clone. 2309 * When called from perf_event_exit_task, it's OK because the 2310 * context has been detached from its task. 2311 */ 2312 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2313 { 2314 struct perf_event_context *ctx = event->ctx; 2315 2316 lockdep_assert_held(&ctx->mutex); 2317 2318 event_function_call(event, __perf_remove_from_context, (void *)flags); 2319 2320 /* 2321 * The above event_function_call() can NO-OP when it hits 2322 * TASK_TOMBSTONE. In that case we must already have been detached 2323 * from the context (by perf_event_exit_event()) but the grouping 2324 * might still be in-tact. 2325 */ 2326 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2327 if ((flags & DETACH_GROUP) && 2328 (event->attach_state & PERF_ATTACH_GROUP)) { 2329 /* 2330 * Since in that case we cannot possibly be scheduled, simply 2331 * detach now. 2332 */ 2333 raw_spin_lock_irq(&ctx->lock); 2334 perf_group_detach(event); 2335 raw_spin_unlock_irq(&ctx->lock); 2336 } 2337 } 2338 2339 /* 2340 * Cross CPU call to disable a performance event 2341 */ 2342 static void __perf_event_disable(struct perf_event *event, 2343 struct perf_cpu_context *cpuctx, 2344 struct perf_event_context *ctx, 2345 void *info) 2346 { 2347 if (event->state < PERF_EVENT_STATE_INACTIVE) 2348 return; 2349 2350 if (ctx->is_active & EVENT_TIME) { 2351 update_context_time(ctx); 2352 update_cgrp_time_from_event(event); 2353 } 2354 2355 if (event == event->group_leader) 2356 group_sched_out(event, cpuctx, ctx); 2357 else 2358 event_sched_out(event, cpuctx, ctx); 2359 2360 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2361 } 2362 2363 /* 2364 * Disable an event. 2365 * 2366 * If event->ctx is a cloned context, callers must make sure that 2367 * every task struct that event->ctx->task could possibly point to 2368 * remains valid. This condition is satisfied when called through 2369 * perf_event_for_each_child or perf_event_for_each because they 2370 * hold the top-level event's child_mutex, so any descendant that 2371 * goes to exit will block in perf_event_exit_event(). 2372 * 2373 * When called from perf_pending_event it's OK because event->ctx 2374 * is the current context on this CPU and preemption is disabled, 2375 * hence we can't get into perf_event_task_sched_out for this context. 2376 */ 2377 static void _perf_event_disable(struct perf_event *event) 2378 { 2379 struct perf_event_context *ctx = event->ctx; 2380 2381 raw_spin_lock_irq(&ctx->lock); 2382 if (event->state <= PERF_EVENT_STATE_OFF) { 2383 raw_spin_unlock_irq(&ctx->lock); 2384 return; 2385 } 2386 raw_spin_unlock_irq(&ctx->lock); 2387 2388 event_function_call(event, __perf_event_disable, NULL); 2389 } 2390 2391 void perf_event_disable_local(struct perf_event *event) 2392 { 2393 event_function_local(event, __perf_event_disable, NULL); 2394 } 2395 2396 /* 2397 * Strictly speaking kernel users cannot create groups and therefore this 2398 * interface does not need the perf_event_ctx_lock() magic. 2399 */ 2400 void perf_event_disable(struct perf_event *event) 2401 { 2402 struct perf_event_context *ctx; 2403 2404 ctx = perf_event_ctx_lock(event); 2405 _perf_event_disable(event); 2406 perf_event_ctx_unlock(event, ctx); 2407 } 2408 EXPORT_SYMBOL_GPL(perf_event_disable); 2409 2410 void perf_event_disable_inatomic(struct perf_event *event) 2411 { 2412 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2413 /* can fail, see perf_pending_event_disable() */ 2414 irq_work_queue(&event->pending); 2415 } 2416 2417 static void perf_set_shadow_time(struct perf_event *event, 2418 struct perf_event_context *ctx) 2419 { 2420 /* 2421 * use the correct time source for the time snapshot 2422 * 2423 * We could get by without this by leveraging the 2424 * fact that to get to this function, the caller 2425 * has most likely already called update_context_time() 2426 * and update_cgrp_time_xx() and thus both timestamp 2427 * are identical (or very close). Given that tstamp is, 2428 * already adjusted for cgroup, we could say that: 2429 * tstamp - ctx->timestamp 2430 * is equivalent to 2431 * tstamp - cgrp->timestamp. 2432 * 2433 * Then, in perf_output_read(), the calculation would 2434 * work with no changes because: 2435 * - event is guaranteed scheduled in 2436 * - no scheduled out in between 2437 * - thus the timestamp would be the same 2438 * 2439 * But this is a bit hairy. 2440 * 2441 * So instead, we have an explicit cgroup call to remain 2442 * within the time time source all along. We believe it 2443 * is cleaner and simpler to understand. 2444 */ 2445 if (is_cgroup_event(event)) 2446 perf_cgroup_set_shadow_time(event, event->tstamp); 2447 else 2448 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2449 } 2450 2451 #define MAX_INTERRUPTS (~0ULL) 2452 2453 static void perf_log_throttle(struct perf_event *event, int enable); 2454 static void perf_log_itrace_start(struct perf_event *event); 2455 2456 static int 2457 event_sched_in(struct perf_event *event, 2458 struct perf_cpu_context *cpuctx, 2459 struct perf_event_context *ctx) 2460 { 2461 int ret = 0; 2462 2463 WARN_ON_ONCE(event->ctx != ctx); 2464 2465 lockdep_assert_held(&ctx->lock); 2466 2467 if (event->state <= PERF_EVENT_STATE_OFF) 2468 return 0; 2469 2470 WRITE_ONCE(event->oncpu, smp_processor_id()); 2471 /* 2472 * Order event::oncpu write to happen before the ACTIVE state is 2473 * visible. This allows perf_event_{stop,read}() to observe the correct 2474 * ->oncpu if it sees ACTIVE. 2475 */ 2476 smp_wmb(); 2477 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2478 2479 /* 2480 * Unthrottle events, since we scheduled we might have missed several 2481 * ticks already, also for a heavily scheduling task there is little 2482 * guarantee it'll get a tick in a timely manner. 2483 */ 2484 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2485 perf_log_throttle(event, 1); 2486 event->hw.interrupts = 0; 2487 } 2488 2489 perf_pmu_disable(event->pmu); 2490 2491 perf_set_shadow_time(event, ctx); 2492 2493 perf_log_itrace_start(event); 2494 2495 if (event->pmu->add(event, PERF_EF_START)) { 2496 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2497 event->oncpu = -1; 2498 ret = -EAGAIN; 2499 goto out; 2500 } 2501 2502 if (!is_software_event(event)) 2503 cpuctx->active_oncpu++; 2504 if (!ctx->nr_active++) 2505 perf_event_ctx_activate(ctx); 2506 if (event->attr.freq && event->attr.sample_freq) 2507 ctx->nr_freq++; 2508 2509 if (event->attr.exclusive) 2510 cpuctx->exclusive = 1; 2511 2512 out: 2513 perf_pmu_enable(event->pmu); 2514 2515 return ret; 2516 } 2517 2518 static int 2519 group_sched_in(struct perf_event *group_event, 2520 struct perf_cpu_context *cpuctx, 2521 struct perf_event_context *ctx) 2522 { 2523 struct perf_event *event, *partial_group = NULL; 2524 struct pmu *pmu = ctx->pmu; 2525 2526 if (group_event->state == PERF_EVENT_STATE_OFF) 2527 return 0; 2528 2529 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2530 2531 if (event_sched_in(group_event, cpuctx, ctx)) { 2532 pmu->cancel_txn(pmu); 2533 perf_mux_hrtimer_restart(cpuctx); 2534 return -EAGAIN; 2535 } 2536 2537 /* 2538 * Schedule in siblings as one group (if any): 2539 */ 2540 for_each_sibling_event(event, group_event) { 2541 if (event_sched_in(event, cpuctx, ctx)) { 2542 partial_group = event; 2543 goto group_error; 2544 } 2545 } 2546 2547 if (!pmu->commit_txn(pmu)) 2548 return 0; 2549 2550 group_error: 2551 /* 2552 * Groups can be scheduled in as one unit only, so undo any 2553 * partial group before returning: 2554 * The events up to the failed event are scheduled out normally. 2555 */ 2556 for_each_sibling_event(event, group_event) { 2557 if (event == partial_group) 2558 break; 2559 2560 event_sched_out(event, cpuctx, ctx); 2561 } 2562 event_sched_out(group_event, cpuctx, ctx); 2563 2564 pmu->cancel_txn(pmu); 2565 2566 perf_mux_hrtimer_restart(cpuctx); 2567 2568 return -EAGAIN; 2569 } 2570 2571 /* 2572 * Work out whether we can put this event group on the CPU now. 2573 */ 2574 static int group_can_go_on(struct perf_event *event, 2575 struct perf_cpu_context *cpuctx, 2576 int can_add_hw) 2577 { 2578 /* 2579 * Groups consisting entirely of software events can always go on. 2580 */ 2581 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2582 return 1; 2583 /* 2584 * If an exclusive group is already on, no other hardware 2585 * events can go on. 2586 */ 2587 if (cpuctx->exclusive) 2588 return 0; 2589 /* 2590 * If this group is exclusive and there are already 2591 * events on the CPU, it can't go on. 2592 */ 2593 if (event->attr.exclusive && cpuctx->active_oncpu) 2594 return 0; 2595 /* 2596 * Otherwise, try to add it if all previous groups were able 2597 * to go on. 2598 */ 2599 return can_add_hw; 2600 } 2601 2602 static void add_event_to_ctx(struct perf_event *event, 2603 struct perf_event_context *ctx) 2604 { 2605 list_add_event(event, ctx); 2606 perf_group_attach(event); 2607 } 2608 2609 static void ctx_sched_out(struct perf_event_context *ctx, 2610 struct perf_cpu_context *cpuctx, 2611 enum event_type_t event_type); 2612 static void 2613 ctx_sched_in(struct perf_event_context *ctx, 2614 struct perf_cpu_context *cpuctx, 2615 enum event_type_t event_type, 2616 struct task_struct *task); 2617 2618 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2619 struct perf_event_context *ctx, 2620 enum event_type_t event_type) 2621 { 2622 if (!cpuctx->task_ctx) 2623 return; 2624 2625 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2626 return; 2627 2628 ctx_sched_out(ctx, cpuctx, event_type); 2629 } 2630 2631 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2632 struct perf_event_context *ctx, 2633 struct task_struct *task) 2634 { 2635 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2636 if (ctx) 2637 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2638 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2639 if (ctx) 2640 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2641 } 2642 2643 /* 2644 * We want to maintain the following priority of scheduling: 2645 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2646 * - task pinned (EVENT_PINNED) 2647 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2648 * - task flexible (EVENT_FLEXIBLE). 2649 * 2650 * In order to avoid unscheduling and scheduling back in everything every 2651 * time an event is added, only do it for the groups of equal priority and 2652 * below. 2653 * 2654 * This can be called after a batch operation on task events, in which case 2655 * event_type is a bit mask of the types of events involved. For CPU events, 2656 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2657 */ 2658 static void ctx_resched(struct perf_cpu_context *cpuctx, 2659 struct perf_event_context *task_ctx, 2660 enum event_type_t event_type) 2661 { 2662 enum event_type_t ctx_event_type; 2663 bool cpu_event = !!(event_type & EVENT_CPU); 2664 2665 /* 2666 * If pinned groups are involved, flexible groups also need to be 2667 * scheduled out. 2668 */ 2669 if (event_type & EVENT_PINNED) 2670 event_type |= EVENT_FLEXIBLE; 2671 2672 ctx_event_type = event_type & EVENT_ALL; 2673 2674 perf_pmu_disable(cpuctx->ctx.pmu); 2675 if (task_ctx) 2676 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2677 2678 /* 2679 * Decide which cpu ctx groups to schedule out based on the types 2680 * of events that caused rescheduling: 2681 * - EVENT_CPU: schedule out corresponding groups; 2682 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2683 * - otherwise, do nothing more. 2684 */ 2685 if (cpu_event) 2686 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2687 else if (ctx_event_type & EVENT_PINNED) 2688 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2689 2690 perf_event_sched_in(cpuctx, task_ctx, current); 2691 perf_pmu_enable(cpuctx->ctx.pmu); 2692 } 2693 2694 void perf_pmu_resched(struct pmu *pmu) 2695 { 2696 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2697 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2698 2699 perf_ctx_lock(cpuctx, task_ctx); 2700 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2701 perf_ctx_unlock(cpuctx, task_ctx); 2702 } 2703 2704 /* 2705 * Cross CPU call to install and enable a performance event 2706 * 2707 * Very similar to remote_function() + event_function() but cannot assume that 2708 * things like ctx->is_active and cpuctx->task_ctx are set. 2709 */ 2710 static int __perf_install_in_context(void *info) 2711 { 2712 struct perf_event *event = info; 2713 struct perf_event_context *ctx = event->ctx; 2714 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2715 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2716 bool reprogram = true; 2717 int ret = 0; 2718 2719 raw_spin_lock(&cpuctx->ctx.lock); 2720 if (ctx->task) { 2721 raw_spin_lock(&ctx->lock); 2722 task_ctx = ctx; 2723 2724 reprogram = (ctx->task == current); 2725 2726 /* 2727 * If the task is running, it must be running on this CPU, 2728 * otherwise we cannot reprogram things. 2729 * 2730 * If its not running, we don't care, ctx->lock will 2731 * serialize against it becoming runnable. 2732 */ 2733 if (task_curr(ctx->task) && !reprogram) { 2734 ret = -ESRCH; 2735 goto unlock; 2736 } 2737 2738 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2739 } else if (task_ctx) { 2740 raw_spin_lock(&task_ctx->lock); 2741 } 2742 2743 #ifdef CONFIG_CGROUP_PERF 2744 if (is_cgroup_event(event)) { 2745 /* 2746 * If the current cgroup doesn't match the event's 2747 * cgroup, we should not try to schedule it. 2748 */ 2749 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2750 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2751 event->cgrp->css.cgroup); 2752 } 2753 #endif 2754 2755 if (reprogram) { 2756 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2757 add_event_to_ctx(event, ctx); 2758 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2759 } else { 2760 add_event_to_ctx(event, ctx); 2761 } 2762 2763 unlock: 2764 perf_ctx_unlock(cpuctx, task_ctx); 2765 2766 return ret; 2767 } 2768 2769 static bool exclusive_event_installable(struct perf_event *event, 2770 struct perf_event_context *ctx); 2771 2772 /* 2773 * Attach a performance event to a context. 2774 * 2775 * Very similar to event_function_call, see comment there. 2776 */ 2777 static void 2778 perf_install_in_context(struct perf_event_context *ctx, 2779 struct perf_event *event, 2780 int cpu) 2781 { 2782 struct task_struct *task = READ_ONCE(ctx->task); 2783 2784 lockdep_assert_held(&ctx->mutex); 2785 2786 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2787 2788 if (event->cpu != -1) 2789 event->cpu = cpu; 2790 2791 /* 2792 * Ensures that if we can observe event->ctx, both the event and ctx 2793 * will be 'complete'. See perf_iterate_sb_cpu(). 2794 */ 2795 smp_store_release(&event->ctx, ctx); 2796 2797 /* 2798 * perf_event_attr::disabled events will not run and can be initialized 2799 * without IPI. Except when this is the first event for the context, in 2800 * that case we need the magic of the IPI to set ctx->is_active. 2801 * 2802 * The IOC_ENABLE that is sure to follow the creation of a disabled 2803 * event will issue the IPI and reprogram the hardware. 2804 */ 2805 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2806 raw_spin_lock_irq(&ctx->lock); 2807 if (ctx->task == TASK_TOMBSTONE) { 2808 raw_spin_unlock_irq(&ctx->lock); 2809 return; 2810 } 2811 add_event_to_ctx(event, ctx); 2812 raw_spin_unlock_irq(&ctx->lock); 2813 return; 2814 } 2815 2816 if (!task) { 2817 cpu_function_call(cpu, __perf_install_in_context, event); 2818 return; 2819 } 2820 2821 /* 2822 * Should not happen, we validate the ctx is still alive before calling. 2823 */ 2824 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2825 return; 2826 2827 /* 2828 * Installing events is tricky because we cannot rely on ctx->is_active 2829 * to be set in case this is the nr_events 0 -> 1 transition. 2830 * 2831 * Instead we use task_curr(), which tells us if the task is running. 2832 * However, since we use task_curr() outside of rq::lock, we can race 2833 * against the actual state. This means the result can be wrong. 2834 * 2835 * If we get a false positive, we retry, this is harmless. 2836 * 2837 * If we get a false negative, things are complicated. If we are after 2838 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2839 * value must be correct. If we're before, it doesn't matter since 2840 * perf_event_context_sched_in() will program the counter. 2841 * 2842 * However, this hinges on the remote context switch having observed 2843 * our task->perf_event_ctxp[] store, such that it will in fact take 2844 * ctx::lock in perf_event_context_sched_in(). 2845 * 2846 * We do this by task_function_call(), if the IPI fails to hit the task 2847 * we know any future context switch of task must see the 2848 * perf_event_ctpx[] store. 2849 */ 2850 2851 /* 2852 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2853 * task_cpu() load, such that if the IPI then does not find the task 2854 * running, a future context switch of that task must observe the 2855 * store. 2856 */ 2857 smp_mb(); 2858 again: 2859 if (!task_function_call(task, __perf_install_in_context, event)) 2860 return; 2861 2862 raw_spin_lock_irq(&ctx->lock); 2863 task = ctx->task; 2864 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2865 /* 2866 * Cannot happen because we already checked above (which also 2867 * cannot happen), and we hold ctx->mutex, which serializes us 2868 * against perf_event_exit_task_context(). 2869 */ 2870 raw_spin_unlock_irq(&ctx->lock); 2871 return; 2872 } 2873 /* 2874 * If the task is not running, ctx->lock will avoid it becoming so, 2875 * thus we can safely install the event. 2876 */ 2877 if (task_curr(task)) { 2878 raw_spin_unlock_irq(&ctx->lock); 2879 goto again; 2880 } 2881 add_event_to_ctx(event, ctx); 2882 raw_spin_unlock_irq(&ctx->lock); 2883 } 2884 2885 /* 2886 * Cross CPU call to enable a performance event 2887 */ 2888 static void __perf_event_enable(struct perf_event *event, 2889 struct perf_cpu_context *cpuctx, 2890 struct perf_event_context *ctx, 2891 void *info) 2892 { 2893 struct perf_event *leader = event->group_leader; 2894 struct perf_event_context *task_ctx; 2895 2896 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2897 event->state <= PERF_EVENT_STATE_ERROR) 2898 return; 2899 2900 if (ctx->is_active) 2901 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2902 2903 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2904 2905 if (!ctx->is_active) 2906 return; 2907 2908 if (!event_filter_match(event)) { 2909 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2910 return; 2911 } 2912 2913 /* 2914 * If the event is in a group and isn't the group leader, 2915 * then don't put it on unless the group is on. 2916 */ 2917 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2918 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2919 return; 2920 } 2921 2922 task_ctx = cpuctx->task_ctx; 2923 if (ctx->task) 2924 WARN_ON_ONCE(task_ctx != ctx); 2925 2926 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2927 } 2928 2929 /* 2930 * Enable an event. 2931 * 2932 * If event->ctx is a cloned context, callers must make sure that 2933 * every task struct that event->ctx->task could possibly point to 2934 * remains valid. This condition is satisfied when called through 2935 * perf_event_for_each_child or perf_event_for_each as described 2936 * for perf_event_disable. 2937 */ 2938 static void _perf_event_enable(struct perf_event *event) 2939 { 2940 struct perf_event_context *ctx = event->ctx; 2941 2942 raw_spin_lock_irq(&ctx->lock); 2943 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2944 event->state < PERF_EVENT_STATE_ERROR) { 2945 raw_spin_unlock_irq(&ctx->lock); 2946 return; 2947 } 2948 2949 /* 2950 * If the event is in error state, clear that first. 2951 * 2952 * That way, if we see the event in error state below, we know that it 2953 * has gone back into error state, as distinct from the task having 2954 * been scheduled away before the cross-call arrived. 2955 */ 2956 if (event->state == PERF_EVENT_STATE_ERROR) 2957 event->state = PERF_EVENT_STATE_OFF; 2958 raw_spin_unlock_irq(&ctx->lock); 2959 2960 event_function_call(event, __perf_event_enable, NULL); 2961 } 2962 2963 /* 2964 * See perf_event_disable(); 2965 */ 2966 void perf_event_enable(struct perf_event *event) 2967 { 2968 struct perf_event_context *ctx; 2969 2970 ctx = perf_event_ctx_lock(event); 2971 _perf_event_enable(event); 2972 perf_event_ctx_unlock(event, ctx); 2973 } 2974 EXPORT_SYMBOL_GPL(perf_event_enable); 2975 2976 struct stop_event_data { 2977 struct perf_event *event; 2978 unsigned int restart; 2979 }; 2980 2981 static int __perf_event_stop(void *info) 2982 { 2983 struct stop_event_data *sd = info; 2984 struct perf_event *event = sd->event; 2985 2986 /* if it's already INACTIVE, do nothing */ 2987 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2988 return 0; 2989 2990 /* matches smp_wmb() in event_sched_in() */ 2991 smp_rmb(); 2992 2993 /* 2994 * There is a window with interrupts enabled before we get here, 2995 * so we need to check again lest we try to stop another CPU's event. 2996 */ 2997 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2998 return -EAGAIN; 2999 3000 event->pmu->stop(event, PERF_EF_UPDATE); 3001 3002 /* 3003 * May race with the actual stop (through perf_pmu_output_stop()), 3004 * but it is only used for events with AUX ring buffer, and such 3005 * events will refuse to restart because of rb::aux_mmap_count==0, 3006 * see comments in perf_aux_output_begin(). 3007 * 3008 * Since this is happening on an event-local CPU, no trace is lost 3009 * while restarting. 3010 */ 3011 if (sd->restart) 3012 event->pmu->start(event, 0); 3013 3014 return 0; 3015 } 3016 3017 static int perf_event_stop(struct perf_event *event, int restart) 3018 { 3019 struct stop_event_data sd = { 3020 .event = event, 3021 .restart = restart, 3022 }; 3023 int ret = 0; 3024 3025 do { 3026 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3027 return 0; 3028 3029 /* matches smp_wmb() in event_sched_in() */ 3030 smp_rmb(); 3031 3032 /* 3033 * We only want to restart ACTIVE events, so if the event goes 3034 * inactive here (event->oncpu==-1), there's nothing more to do; 3035 * fall through with ret==-ENXIO. 3036 */ 3037 ret = cpu_function_call(READ_ONCE(event->oncpu), 3038 __perf_event_stop, &sd); 3039 } while (ret == -EAGAIN); 3040 3041 return ret; 3042 } 3043 3044 /* 3045 * In order to contain the amount of racy and tricky in the address filter 3046 * configuration management, it is a two part process: 3047 * 3048 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3049 * we update the addresses of corresponding vmas in 3050 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3051 * (p2) when an event is scheduled in (pmu::add), it calls 3052 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3053 * if the generation has changed since the previous call. 3054 * 3055 * If (p1) happens while the event is active, we restart it to force (p2). 3056 * 3057 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3058 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3059 * ioctl; 3060 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3061 * registered mapping, called for every new mmap(), with mm::mmap_sem down 3062 * for reading; 3063 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3064 * of exec. 3065 */ 3066 void perf_event_addr_filters_sync(struct perf_event *event) 3067 { 3068 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3069 3070 if (!has_addr_filter(event)) 3071 return; 3072 3073 raw_spin_lock(&ifh->lock); 3074 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3075 event->pmu->addr_filters_sync(event); 3076 event->hw.addr_filters_gen = event->addr_filters_gen; 3077 } 3078 raw_spin_unlock(&ifh->lock); 3079 } 3080 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3081 3082 static int _perf_event_refresh(struct perf_event *event, int refresh) 3083 { 3084 /* 3085 * not supported on inherited events 3086 */ 3087 if (event->attr.inherit || !is_sampling_event(event)) 3088 return -EINVAL; 3089 3090 atomic_add(refresh, &event->event_limit); 3091 _perf_event_enable(event); 3092 3093 return 0; 3094 } 3095 3096 /* 3097 * See perf_event_disable() 3098 */ 3099 int perf_event_refresh(struct perf_event *event, int refresh) 3100 { 3101 struct perf_event_context *ctx; 3102 int ret; 3103 3104 ctx = perf_event_ctx_lock(event); 3105 ret = _perf_event_refresh(event, refresh); 3106 perf_event_ctx_unlock(event, ctx); 3107 3108 return ret; 3109 } 3110 EXPORT_SYMBOL_GPL(perf_event_refresh); 3111 3112 static int perf_event_modify_breakpoint(struct perf_event *bp, 3113 struct perf_event_attr *attr) 3114 { 3115 int err; 3116 3117 _perf_event_disable(bp); 3118 3119 err = modify_user_hw_breakpoint_check(bp, attr, true); 3120 3121 if (!bp->attr.disabled) 3122 _perf_event_enable(bp); 3123 3124 return err; 3125 } 3126 3127 static int perf_event_modify_attr(struct perf_event *event, 3128 struct perf_event_attr *attr) 3129 { 3130 if (event->attr.type != attr->type) 3131 return -EINVAL; 3132 3133 switch (event->attr.type) { 3134 case PERF_TYPE_BREAKPOINT: 3135 return perf_event_modify_breakpoint(event, attr); 3136 default: 3137 /* Place holder for future additions. */ 3138 return -EOPNOTSUPP; 3139 } 3140 } 3141 3142 static void ctx_sched_out(struct perf_event_context *ctx, 3143 struct perf_cpu_context *cpuctx, 3144 enum event_type_t event_type) 3145 { 3146 struct perf_event *event, *tmp; 3147 int is_active = ctx->is_active; 3148 3149 lockdep_assert_held(&ctx->lock); 3150 3151 if (likely(!ctx->nr_events)) { 3152 /* 3153 * See __perf_remove_from_context(). 3154 */ 3155 WARN_ON_ONCE(ctx->is_active); 3156 if (ctx->task) 3157 WARN_ON_ONCE(cpuctx->task_ctx); 3158 return; 3159 } 3160 3161 ctx->is_active &= ~event_type; 3162 if (!(ctx->is_active & EVENT_ALL)) 3163 ctx->is_active = 0; 3164 3165 if (ctx->task) { 3166 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3167 if (!ctx->is_active) 3168 cpuctx->task_ctx = NULL; 3169 } 3170 3171 /* 3172 * Always update time if it was set; not only when it changes. 3173 * Otherwise we can 'forget' to update time for any but the last 3174 * context we sched out. For example: 3175 * 3176 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3177 * ctx_sched_out(.event_type = EVENT_PINNED) 3178 * 3179 * would only update time for the pinned events. 3180 */ 3181 if (is_active & EVENT_TIME) { 3182 /* update (and stop) ctx time */ 3183 update_context_time(ctx); 3184 update_cgrp_time_from_cpuctx(cpuctx); 3185 } 3186 3187 is_active ^= ctx->is_active; /* changed bits */ 3188 3189 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3190 return; 3191 3192 perf_pmu_disable(ctx->pmu); 3193 if (is_active & EVENT_PINNED) { 3194 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3195 group_sched_out(event, cpuctx, ctx); 3196 } 3197 3198 if (is_active & EVENT_FLEXIBLE) { 3199 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3200 group_sched_out(event, cpuctx, ctx); 3201 3202 /* 3203 * Since we cleared EVENT_FLEXIBLE, also clear 3204 * rotate_necessary, is will be reset by 3205 * ctx_flexible_sched_in() when needed. 3206 */ 3207 ctx->rotate_necessary = 0; 3208 } 3209 perf_pmu_enable(ctx->pmu); 3210 } 3211 3212 /* 3213 * Test whether two contexts are equivalent, i.e. whether they have both been 3214 * cloned from the same version of the same context. 3215 * 3216 * Equivalence is measured using a generation number in the context that is 3217 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3218 * and list_del_event(). 3219 */ 3220 static int context_equiv(struct perf_event_context *ctx1, 3221 struct perf_event_context *ctx2) 3222 { 3223 lockdep_assert_held(&ctx1->lock); 3224 lockdep_assert_held(&ctx2->lock); 3225 3226 /* Pinning disables the swap optimization */ 3227 if (ctx1->pin_count || ctx2->pin_count) 3228 return 0; 3229 3230 /* If ctx1 is the parent of ctx2 */ 3231 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3232 return 1; 3233 3234 /* If ctx2 is the parent of ctx1 */ 3235 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3236 return 1; 3237 3238 /* 3239 * If ctx1 and ctx2 have the same parent; we flatten the parent 3240 * hierarchy, see perf_event_init_context(). 3241 */ 3242 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3243 ctx1->parent_gen == ctx2->parent_gen) 3244 return 1; 3245 3246 /* Unmatched */ 3247 return 0; 3248 } 3249 3250 static void __perf_event_sync_stat(struct perf_event *event, 3251 struct perf_event *next_event) 3252 { 3253 u64 value; 3254 3255 if (!event->attr.inherit_stat) 3256 return; 3257 3258 /* 3259 * Update the event value, we cannot use perf_event_read() 3260 * because we're in the middle of a context switch and have IRQs 3261 * disabled, which upsets smp_call_function_single(), however 3262 * we know the event must be on the current CPU, therefore we 3263 * don't need to use it. 3264 */ 3265 if (event->state == PERF_EVENT_STATE_ACTIVE) 3266 event->pmu->read(event); 3267 3268 perf_event_update_time(event); 3269 3270 /* 3271 * In order to keep per-task stats reliable we need to flip the event 3272 * values when we flip the contexts. 3273 */ 3274 value = local64_read(&next_event->count); 3275 value = local64_xchg(&event->count, value); 3276 local64_set(&next_event->count, value); 3277 3278 swap(event->total_time_enabled, next_event->total_time_enabled); 3279 swap(event->total_time_running, next_event->total_time_running); 3280 3281 /* 3282 * Since we swizzled the values, update the user visible data too. 3283 */ 3284 perf_event_update_userpage(event); 3285 perf_event_update_userpage(next_event); 3286 } 3287 3288 static void perf_event_sync_stat(struct perf_event_context *ctx, 3289 struct perf_event_context *next_ctx) 3290 { 3291 struct perf_event *event, *next_event; 3292 3293 if (!ctx->nr_stat) 3294 return; 3295 3296 update_context_time(ctx); 3297 3298 event = list_first_entry(&ctx->event_list, 3299 struct perf_event, event_entry); 3300 3301 next_event = list_first_entry(&next_ctx->event_list, 3302 struct perf_event, event_entry); 3303 3304 while (&event->event_entry != &ctx->event_list && 3305 &next_event->event_entry != &next_ctx->event_list) { 3306 3307 __perf_event_sync_stat(event, next_event); 3308 3309 event = list_next_entry(event, event_entry); 3310 next_event = list_next_entry(next_event, event_entry); 3311 } 3312 } 3313 3314 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3315 struct task_struct *next) 3316 { 3317 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3318 struct perf_event_context *next_ctx; 3319 struct perf_event_context *parent, *next_parent; 3320 struct perf_cpu_context *cpuctx; 3321 int do_switch = 1; 3322 3323 if (likely(!ctx)) 3324 return; 3325 3326 cpuctx = __get_cpu_context(ctx); 3327 if (!cpuctx->task_ctx) 3328 return; 3329 3330 rcu_read_lock(); 3331 next_ctx = next->perf_event_ctxp[ctxn]; 3332 if (!next_ctx) 3333 goto unlock; 3334 3335 parent = rcu_dereference(ctx->parent_ctx); 3336 next_parent = rcu_dereference(next_ctx->parent_ctx); 3337 3338 /* If neither context have a parent context; they cannot be clones. */ 3339 if (!parent && !next_parent) 3340 goto unlock; 3341 3342 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3343 /* 3344 * Looks like the two contexts are clones, so we might be 3345 * able to optimize the context switch. We lock both 3346 * contexts and check that they are clones under the 3347 * lock (including re-checking that neither has been 3348 * uncloned in the meantime). It doesn't matter which 3349 * order we take the locks because no other cpu could 3350 * be trying to lock both of these tasks. 3351 */ 3352 raw_spin_lock(&ctx->lock); 3353 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3354 if (context_equiv(ctx, next_ctx)) { 3355 struct pmu *pmu = ctx->pmu; 3356 3357 WRITE_ONCE(ctx->task, next); 3358 WRITE_ONCE(next_ctx->task, task); 3359 3360 /* 3361 * PMU specific parts of task perf context can require 3362 * additional synchronization. As an example of such 3363 * synchronization see implementation details of Intel 3364 * LBR call stack data profiling; 3365 */ 3366 if (pmu->swap_task_ctx) 3367 pmu->swap_task_ctx(ctx, next_ctx); 3368 else 3369 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3370 3371 /* 3372 * RCU_INIT_POINTER here is safe because we've not 3373 * modified the ctx and the above modification of 3374 * ctx->task and ctx->task_ctx_data are immaterial 3375 * since those values are always verified under 3376 * ctx->lock which we're now holding. 3377 */ 3378 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3379 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3380 3381 do_switch = 0; 3382 3383 perf_event_sync_stat(ctx, next_ctx); 3384 } 3385 raw_spin_unlock(&next_ctx->lock); 3386 raw_spin_unlock(&ctx->lock); 3387 } 3388 unlock: 3389 rcu_read_unlock(); 3390 3391 if (do_switch) { 3392 raw_spin_lock(&ctx->lock); 3393 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3394 raw_spin_unlock(&ctx->lock); 3395 } 3396 } 3397 3398 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3399 3400 void perf_sched_cb_dec(struct pmu *pmu) 3401 { 3402 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3403 3404 this_cpu_dec(perf_sched_cb_usages); 3405 3406 if (!--cpuctx->sched_cb_usage) 3407 list_del(&cpuctx->sched_cb_entry); 3408 } 3409 3410 3411 void perf_sched_cb_inc(struct pmu *pmu) 3412 { 3413 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3414 3415 if (!cpuctx->sched_cb_usage++) 3416 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3417 3418 this_cpu_inc(perf_sched_cb_usages); 3419 } 3420 3421 /* 3422 * This function provides the context switch callback to the lower code 3423 * layer. It is invoked ONLY when the context switch callback is enabled. 3424 * 3425 * This callback is relevant even to per-cpu events; for example multi event 3426 * PEBS requires this to provide PID/TID information. This requires we flush 3427 * all queued PEBS records before we context switch to a new task. 3428 */ 3429 static void perf_pmu_sched_task(struct task_struct *prev, 3430 struct task_struct *next, 3431 bool sched_in) 3432 { 3433 struct perf_cpu_context *cpuctx; 3434 struct pmu *pmu; 3435 3436 if (prev == next) 3437 return; 3438 3439 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3440 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3441 3442 if (WARN_ON_ONCE(!pmu->sched_task)) 3443 continue; 3444 3445 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3446 perf_pmu_disable(pmu); 3447 3448 pmu->sched_task(cpuctx->task_ctx, sched_in); 3449 3450 perf_pmu_enable(pmu); 3451 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3452 } 3453 } 3454 3455 static void perf_event_switch(struct task_struct *task, 3456 struct task_struct *next_prev, bool sched_in); 3457 3458 #define for_each_task_context_nr(ctxn) \ 3459 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3460 3461 /* 3462 * Called from scheduler to remove the events of the current task, 3463 * with interrupts disabled. 3464 * 3465 * We stop each event and update the event value in event->count. 3466 * 3467 * This does not protect us against NMI, but disable() 3468 * sets the disabled bit in the control field of event _before_ 3469 * accessing the event control register. If a NMI hits, then it will 3470 * not restart the event. 3471 */ 3472 void __perf_event_task_sched_out(struct task_struct *task, 3473 struct task_struct *next) 3474 { 3475 int ctxn; 3476 3477 if (__this_cpu_read(perf_sched_cb_usages)) 3478 perf_pmu_sched_task(task, next, false); 3479 3480 if (atomic_read(&nr_switch_events)) 3481 perf_event_switch(task, next, false); 3482 3483 for_each_task_context_nr(ctxn) 3484 perf_event_context_sched_out(task, ctxn, next); 3485 3486 /* 3487 * if cgroup events exist on this CPU, then we need 3488 * to check if we have to switch out PMU state. 3489 * cgroup event are system-wide mode only 3490 */ 3491 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3492 perf_cgroup_sched_out(task, next); 3493 } 3494 3495 /* 3496 * Called with IRQs disabled 3497 */ 3498 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3499 enum event_type_t event_type) 3500 { 3501 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3502 } 3503 3504 static bool perf_less_group_idx(const void *l, const void *r) 3505 { 3506 const struct perf_event *le = l, *re = r; 3507 3508 return le->group_index < re->group_index; 3509 } 3510 3511 static void swap_ptr(void *l, void *r) 3512 { 3513 void **lp = l, **rp = r; 3514 3515 swap(*lp, *rp); 3516 } 3517 3518 static const struct min_heap_callbacks perf_min_heap = { 3519 .elem_size = sizeof(struct perf_event *), 3520 .less = perf_less_group_idx, 3521 .swp = swap_ptr, 3522 }; 3523 3524 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3525 { 3526 struct perf_event **itrs = heap->data; 3527 3528 if (event) { 3529 itrs[heap->nr] = event; 3530 heap->nr++; 3531 } 3532 } 3533 3534 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3535 struct perf_event_groups *groups, int cpu, 3536 int (*func)(struct perf_event *, void *), 3537 void *data) 3538 { 3539 #ifdef CONFIG_CGROUP_PERF 3540 struct cgroup_subsys_state *css = NULL; 3541 #endif 3542 /* Space for per CPU and/or any CPU event iterators. */ 3543 struct perf_event *itrs[2]; 3544 struct min_heap event_heap; 3545 struct perf_event **evt; 3546 int ret; 3547 3548 if (cpuctx) { 3549 event_heap = (struct min_heap){ 3550 .data = cpuctx->heap, 3551 .nr = 0, 3552 .size = cpuctx->heap_size, 3553 }; 3554 3555 lockdep_assert_held(&cpuctx->ctx.lock); 3556 3557 #ifdef CONFIG_CGROUP_PERF 3558 if (cpuctx->cgrp) 3559 css = &cpuctx->cgrp->css; 3560 #endif 3561 } else { 3562 event_heap = (struct min_heap){ 3563 .data = itrs, 3564 .nr = 0, 3565 .size = ARRAY_SIZE(itrs), 3566 }; 3567 /* Events not within a CPU context may be on any CPU. */ 3568 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3569 } 3570 evt = event_heap.data; 3571 3572 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3573 3574 #ifdef CONFIG_CGROUP_PERF 3575 for (; css; css = css->parent) 3576 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3577 #endif 3578 3579 min_heapify_all(&event_heap, &perf_min_heap); 3580 3581 while (event_heap.nr) { 3582 ret = func(*evt, data); 3583 if (ret) 3584 return ret; 3585 3586 *evt = perf_event_groups_next(*evt); 3587 if (*evt) 3588 min_heapify(&event_heap, 0, &perf_min_heap); 3589 else 3590 min_heap_pop(&event_heap, &perf_min_heap); 3591 } 3592 3593 return 0; 3594 } 3595 3596 static int merge_sched_in(struct perf_event *event, void *data) 3597 { 3598 struct perf_event_context *ctx = event->ctx; 3599 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3600 int *can_add_hw = data; 3601 3602 if (event->state <= PERF_EVENT_STATE_OFF) 3603 return 0; 3604 3605 if (!event_filter_match(event)) 3606 return 0; 3607 3608 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3609 if (!group_sched_in(event, cpuctx, ctx)) 3610 list_add_tail(&event->active_list, get_event_list(event)); 3611 } 3612 3613 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3614 if (event->attr.pinned) 3615 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3616 3617 *can_add_hw = 0; 3618 ctx->rotate_necessary = 1; 3619 } 3620 3621 return 0; 3622 } 3623 3624 static void 3625 ctx_pinned_sched_in(struct perf_event_context *ctx, 3626 struct perf_cpu_context *cpuctx) 3627 { 3628 int can_add_hw = 1; 3629 3630 if (ctx != &cpuctx->ctx) 3631 cpuctx = NULL; 3632 3633 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3634 smp_processor_id(), 3635 merge_sched_in, &can_add_hw); 3636 } 3637 3638 static void 3639 ctx_flexible_sched_in(struct perf_event_context *ctx, 3640 struct perf_cpu_context *cpuctx) 3641 { 3642 int can_add_hw = 1; 3643 3644 if (ctx != &cpuctx->ctx) 3645 cpuctx = NULL; 3646 3647 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3648 smp_processor_id(), 3649 merge_sched_in, &can_add_hw); 3650 } 3651 3652 static void 3653 ctx_sched_in(struct perf_event_context *ctx, 3654 struct perf_cpu_context *cpuctx, 3655 enum event_type_t event_type, 3656 struct task_struct *task) 3657 { 3658 int is_active = ctx->is_active; 3659 u64 now; 3660 3661 lockdep_assert_held(&ctx->lock); 3662 3663 if (likely(!ctx->nr_events)) 3664 return; 3665 3666 ctx->is_active |= (event_type | EVENT_TIME); 3667 if (ctx->task) { 3668 if (!is_active) 3669 cpuctx->task_ctx = ctx; 3670 else 3671 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3672 } 3673 3674 is_active ^= ctx->is_active; /* changed bits */ 3675 3676 if (is_active & EVENT_TIME) { 3677 /* start ctx time */ 3678 now = perf_clock(); 3679 ctx->timestamp = now; 3680 perf_cgroup_set_timestamp(task, ctx); 3681 } 3682 3683 /* 3684 * First go through the list and put on any pinned groups 3685 * in order to give them the best chance of going on. 3686 */ 3687 if (is_active & EVENT_PINNED) 3688 ctx_pinned_sched_in(ctx, cpuctx); 3689 3690 /* Then walk through the lower prio flexible groups */ 3691 if (is_active & EVENT_FLEXIBLE) 3692 ctx_flexible_sched_in(ctx, cpuctx); 3693 } 3694 3695 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3696 enum event_type_t event_type, 3697 struct task_struct *task) 3698 { 3699 struct perf_event_context *ctx = &cpuctx->ctx; 3700 3701 ctx_sched_in(ctx, cpuctx, event_type, task); 3702 } 3703 3704 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3705 struct task_struct *task) 3706 { 3707 struct perf_cpu_context *cpuctx; 3708 3709 cpuctx = __get_cpu_context(ctx); 3710 if (cpuctx->task_ctx == ctx) 3711 return; 3712 3713 perf_ctx_lock(cpuctx, ctx); 3714 /* 3715 * We must check ctx->nr_events while holding ctx->lock, such 3716 * that we serialize against perf_install_in_context(). 3717 */ 3718 if (!ctx->nr_events) 3719 goto unlock; 3720 3721 perf_pmu_disable(ctx->pmu); 3722 /* 3723 * We want to keep the following priority order: 3724 * cpu pinned (that don't need to move), task pinned, 3725 * cpu flexible, task flexible. 3726 * 3727 * However, if task's ctx is not carrying any pinned 3728 * events, no need to flip the cpuctx's events around. 3729 */ 3730 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3731 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3732 perf_event_sched_in(cpuctx, ctx, task); 3733 perf_pmu_enable(ctx->pmu); 3734 3735 unlock: 3736 perf_ctx_unlock(cpuctx, ctx); 3737 } 3738 3739 /* 3740 * Called from scheduler to add the events of the current task 3741 * with interrupts disabled. 3742 * 3743 * We restore the event value and then enable it. 3744 * 3745 * This does not protect us against NMI, but enable() 3746 * sets the enabled bit in the control field of event _before_ 3747 * accessing the event control register. If a NMI hits, then it will 3748 * keep the event running. 3749 */ 3750 void __perf_event_task_sched_in(struct task_struct *prev, 3751 struct task_struct *task) 3752 { 3753 struct perf_event_context *ctx; 3754 int ctxn; 3755 3756 /* 3757 * If cgroup events exist on this CPU, then we need to check if we have 3758 * to switch in PMU state; cgroup event are system-wide mode only. 3759 * 3760 * Since cgroup events are CPU events, we must schedule these in before 3761 * we schedule in the task events. 3762 */ 3763 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3764 perf_cgroup_sched_in(prev, task); 3765 3766 for_each_task_context_nr(ctxn) { 3767 ctx = task->perf_event_ctxp[ctxn]; 3768 if (likely(!ctx)) 3769 continue; 3770 3771 perf_event_context_sched_in(ctx, task); 3772 } 3773 3774 if (atomic_read(&nr_switch_events)) 3775 perf_event_switch(task, prev, true); 3776 3777 if (__this_cpu_read(perf_sched_cb_usages)) 3778 perf_pmu_sched_task(prev, task, true); 3779 } 3780 3781 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3782 { 3783 u64 frequency = event->attr.sample_freq; 3784 u64 sec = NSEC_PER_SEC; 3785 u64 divisor, dividend; 3786 3787 int count_fls, nsec_fls, frequency_fls, sec_fls; 3788 3789 count_fls = fls64(count); 3790 nsec_fls = fls64(nsec); 3791 frequency_fls = fls64(frequency); 3792 sec_fls = 30; 3793 3794 /* 3795 * We got @count in @nsec, with a target of sample_freq HZ 3796 * the target period becomes: 3797 * 3798 * @count * 10^9 3799 * period = ------------------- 3800 * @nsec * sample_freq 3801 * 3802 */ 3803 3804 /* 3805 * Reduce accuracy by one bit such that @a and @b converge 3806 * to a similar magnitude. 3807 */ 3808 #define REDUCE_FLS(a, b) \ 3809 do { \ 3810 if (a##_fls > b##_fls) { \ 3811 a >>= 1; \ 3812 a##_fls--; \ 3813 } else { \ 3814 b >>= 1; \ 3815 b##_fls--; \ 3816 } \ 3817 } while (0) 3818 3819 /* 3820 * Reduce accuracy until either term fits in a u64, then proceed with 3821 * the other, so that finally we can do a u64/u64 division. 3822 */ 3823 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3824 REDUCE_FLS(nsec, frequency); 3825 REDUCE_FLS(sec, count); 3826 } 3827 3828 if (count_fls + sec_fls > 64) { 3829 divisor = nsec * frequency; 3830 3831 while (count_fls + sec_fls > 64) { 3832 REDUCE_FLS(count, sec); 3833 divisor >>= 1; 3834 } 3835 3836 dividend = count * sec; 3837 } else { 3838 dividend = count * sec; 3839 3840 while (nsec_fls + frequency_fls > 64) { 3841 REDUCE_FLS(nsec, frequency); 3842 dividend >>= 1; 3843 } 3844 3845 divisor = nsec * frequency; 3846 } 3847 3848 if (!divisor) 3849 return dividend; 3850 3851 return div64_u64(dividend, divisor); 3852 } 3853 3854 static DEFINE_PER_CPU(int, perf_throttled_count); 3855 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3856 3857 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3858 { 3859 struct hw_perf_event *hwc = &event->hw; 3860 s64 period, sample_period; 3861 s64 delta; 3862 3863 period = perf_calculate_period(event, nsec, count); 3864 3865 delta = (s64)(period - hwc->sample_period); 3866 delta = (delta + 7) / 8; /* low pass filter */ 3867 3868 sample_period = hwc->sample_period + delta; 3869 3870 if (!sample_period) 3871 sample_period = 1; 3872 3873 hwc->sample_period = sample_period; 3874 3875 if (local64_read(&hwc->period_left) > 8*sample_period) { 3876 if (disable) 3877 event->pmu->stop(event, PERF_EF_UPDATE); 3878 3879 local64_set(&hwc->period_left, 0); 3880 3881 if (disable) 3882 event->pmu->start(event, PERF_EF_RELOAD); 3883 } 3884 } 3885 3886 /* 3887 * combine freq adjustment with unthrottling to avoid two passes over the 3888 * events. At the same time, make sure, having freq events does not change 3889 * the rate of unthrottling as that would introduce bias. 3890 */ 3891 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3892 int needs_unthr) 3893 { 3894 struct perf_event *event; 3895 struct hw_perf_event *hwc; 3896 u64 now, period = TICK_NSEC; 3897 s64 delta; 3898 3899 /* 3900 * only need to iterate over all events iff: 3901 * - context have events in frequency mode (needs freq adjust) 3902 * - there are events to unthrottle on this cpu 3903 */ 3904 if (!(ctx->nr_freq || needs_unthr)) 3905 return; 3906 3907 raw_spin_lock(&ctx->lock); 3908 perf_pmu_disable(ctx->pmu); 3909 3910 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3911 if (event->state != PERF_EVENT_STATE_ACTIVE) 3912 continue; 3913 3914 if (!event_filter_match(event)) 3915 continue; 3916 3917 perf_pmu_disable(event->pmu); 3918 3919 hwc = &event->hw; 3920 3921 if (hwc->interrupts == MAX_INTERRUPTS) { 3922 hwc->interrupts = 0; 3923 perf_log_throttle(event, 1); 3924 event->pmu->start(event, 0); 3925 } 3926 3927 if (!event->attr.freq || !event->attr.sample_freq) 3928 goto next; 3929 3930 /* 3931 * stop the event and update event->count 3932 */ 3933 event->pmu->stop(event, PERF_EF_UPDATE); 3934 3935 now = local64_read(&event->count); 3936 delta = now - hwc->freq_count_stamp; 3937 hwc->freq_count_stamp = now; 3938 3939 /* 3940 * restart the event 3941 * reload only if value has changed 3942 * we have stopped the event so tell that 3943 * to perf_adjust_period() to avoid stopping it 3944 * twice. 3945 */ 3946 if (delta > 0) 3947 perf_adjust_period(event, period, delta, false); 3948 3949 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3950 next: 3951 perf_pmu_enable(event->pmu); 3952 } 3953 3954 perf_pmu_enable(ctx->pmu); 3955 raw_spin_unlock(&ctx->lock); 3956 } 3957 3958 /* 3959 * Move @event to the tail of the @ctx's elegible events. 3960 */ 3961 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3962 { 3963 /* 3964 * Rotate the first entry last of non-pinned groups. Rotation might be 3965 * disabled by the inheritance code. 3966 */ 3967 if (ctx->rotate_disable) 3968 return; 3969 3970 perf_event_groups_delete(&ctx->flexible_groups, event); 3971 perf_event_groups_insert(&ctx->flexible_groups, event); 3972 } 3973 3974 /* pick an event from the flexible_groups to rotate */ 3975 static inline struct perf_event * 3976 ctx_event_to_rotate(struct perf_event_context *ctx) 3977 { 3978 struct perf_event *event; 3979 3980 /* pick the first active flexible event */ 3981 event = list_first_entry_or_null(&ctx->flexible_active, 3982 struct perf_event, active_list); 3983 3984 /* if no active flexible event, pick the first event */ 3985 if (!event) { 3986 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 3987 typeof(*event), group_node); 3988 } 3989 3990 /* 3991 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 3992 * finds there are unschedulable events, it will set it again. 3993 */ 3994 ctx->rotate_necessary = 0; 3995 3996 return event; 3997 } 3998 3999 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4000 { 4001 struct perf_event *cpu_event = NULL, *task_event = NULL; 4002 struct perf_event_context *task_ctx = NULL; 4003 int cpu_rotate, task_rotate; 4004 4005 /* 4006 * Since we run this from IRQ context, nobody can install new 4007 * events, thus the event count values are stable. 4008 */ 4009 4010 cpu_rotate = cpuctx->ctx.rotate_necessary; 4011 task_ctx = cpuctx->task_ctx; 4012 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4013 4014 if (!(cpu_rotate || task_rotate)) 4015 return false; 4016 4017 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4018 perf_pmu_disable(cpuctx->ctx.pmu); 4019 4020 if (task_rotate) 4021 task_event = ctx_event_to_rotate(task_ctx); 4022 if (cpu_rotate) 4023 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4024 4025 /* 4026 * As per the order given at ctx_resched() first 'pop' task flexible 4027 * and then, if needed CPU flexible. 4028 */ 4029 if (task_event || (task_ctx && cpu_event)) 4030 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4031 if (cpu_event) 4032 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4033 4034 if (task_event) 4035 rotate_ctx(task_ctx, task_event); 4036 if (cpu_event) 4037 rotate_ctx(&cpuctx->ctx, cpu_event); 4038 4039 perf_event_sched_in(cpuctx, task_ctx, current); 4040 4041 perf_pmu_enable(cpuctx->ctx.pmu); 4042 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4043 4044 return true; 4045 } 4046 4047 void perf_event_task_tick(void) 4048 { 4049 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4050 struct perf_event_context *ctx, *tmp; 4051 int throttled; 4052 4053 lockdep_assert_irqs_disabled(); 4054 4055 __this_cpu_inc(perf_throttled_seq); 4056 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4057 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4058 4059 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4060 perf_adjust_freq_unthr_context(ctx, throttled); 4061 } 4062 4063 static int event_enable_on_exec(struct perf_event *event, 4064 struct perf_event_context *ctx) 4065 { 4066 if (!event->attr.enable_on_exec) 4067 return 0; 4068 4069 event->attr.enable_on_exec = 0; 4070 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4071 return 0; 4072 4073 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4074 4075 return 1; 4076 } 4077 4078 /* 4079 * Enable all of a task's events that have been marked enable-on-exec. 4080 * This expects task == current. 4081 */ 4082 static void perf_event_enable_on_exec(int ctxn) 4083 { 4084 struct perf_event_context *ctx, *clone_ctx = NULL; 4085 enum event_type_t event_type = 0; 4086 struct perf_cpu_context *cpuctx; 4087 struct perf_event *event; 4088 unsigned long flags; 4089 int enabled = 0; 4090 4091 local_irq_save(flags); 4092 ctx = current->perf_event_ctxp[ctxn]; 4093 if (!ctx || !ctx->nr_events) 4094 goto out; 4095 4096 cpuctx = __get_cpu_context(ctx); 4097 perf_ctx_lock(cpuctx, ctx); 4098 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4099 list_for_each_entry(event, &ctx->event_list, event_entry) { 4100 enabled |= event_enable_on_exec(event, ctx); 4101 event_type |= get_event_type(event); 4102 } 4103 4104 /* 4105 * Unclone and reschedule this context if we enabled any event. 4106 */ 4107 if (enabled) { 4108 clone_ctx = unclone_ctx(ctx); 4109 ctx_resched(cpuctx, ctx, event_type); 4110 } else { 4111 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4112 } 4113 perf_ctx_unlock(cpuctx, ctx); 4114 4115 out: 4116 local_irq_restore(flags); 4117 4118 if (clone_ctx) 4119 put_ctx(clone_ctx); 4120 } 4121 4122 struct perf_read_data { 4123 struct perf_event *event; 4124 bool group; 4125 int ret; 4126 }; 4127 4128 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4129 { 4130 u16 local_pkg, event_pkg; 4131 4132 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4133 int local_cpu = smp_processor_id(); 4134 4135 event_pkg = topology_physical_package_id(event_cpu); 4136 local_pkg = topology_physical_package_id(local_cpu); 4137 4138 if (event_pkg == local_pkg) 4139 return local_cpu; 4140 } 4141 4142 return event_cpu; 4143 } 4144 4145 /* 4146 * Cross CPU call to read the hardware event 4147 */ 4148 static void __perf_event_read(void *info) 4149 { 4150 struct perf_read_data *data = info; 4151 struct perf_event *sub, *event = data->event; 4152 struct perf_event_context *ctx = event->ctx; 4153 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4154 struct pmu *pmu = event->pmu; 4155 4156 /* 4157 * If this is a task context, we need to check whether it is 4158 * the current task context of this cpu. If not it has been 4159 * scheduled out before the smp call arrived. In that case 4160 * event->count would have been updated to a recent sample 4161 * when the event was scheduled out. 4162 */ 4163 if (ctx->task && cpuctx->task_ctx != ctx) 4164 return; 4165 4166 raw_spin_lock(&ctx->lock); 4167 if (ctx->is_active & EVENT_TIME) { 4168 update_context_time(ctx); 4169 update_cgrp_time_from_event(event); 4170 } 4171 4172 perf_event_update_time(event); 4173 if (data->group) 4174 perf_event_update_sibling_time(event); 4175 4176 if (event->state != PERF_EVENT_STATE_ACTIVE) 4177 goto unlock; 4178 4179 if (!data->group) { 4180 pmu->read(event); 4181 data->ret = 0; 4182 goto unlock; 4183 } 4184 4185 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4186 4187 pmu->read(event); 4188 4189 for_each_sibling_event(sub, event) { 4190 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4191 /* 4192 * Use sibling's PMU rather than @event's since 4193 * sibling could be on different (eg: software) PMU. 4194 */ 4195 sub->pmu->read(sub); 4196 } 4197 } 4198 4199 data->ret = pmu->commit_txn(pmu); 4200 4201 unlock: 4202 raw_spin_unlock(&ctx->lock); 4203 } 4204 4205 static inline u64 perf_event_count(struct perf_event *event) 4206 { 4207 return local64_read(&event->count) + atomic64_read(&event->child_count); 4208 } 4209 4210 /* 4211 * NMI-safe method to read a local event, that is an event that 4212 * is: 4213 * - either for the current task, or for this CPU 4214 * - does not have inherit set, for inherited task events 4215 * will not be local and we cannot read them atomically 4216 * - must not have a pmu::count method 4217 */ 4218 int perf_event_read_local(struct perf_event *event, u64 *value, 4219 u64 *enabled, u64 *running) 4220 { 4221 unsigned long flags; 4222 int ret = 0; 4223 4224 /* 4225 * Disabling interrupts avoids all counter scheduling (context 4226 * switches, timer based rotation and IPIs). 4227 */ 4228 local_irq_save(flags); 4229 4230 /* 4231 * It must not be an event with inherit set, we cannot read 4232 * all child counters from atomic context. 4233 */ 4234 if (event->attr.inherit) { 4235 ret = -EOPNOTSUPP; 4236 goto out; 4237 } 4238 4239 /* If this is a per-task event, it must be for current */ 4240 if ((event->attach_state & PERF_ATTACH_TASK) && 4241 event->hw.target != current) { 4242 ret = -EINVAL; 4243 goto out; 4244 } 4245 4246 /* If this is a per-CPU event, it must be for this CPU */ 4247 if (!(event->attach_state & PERF_ATTACH_TASK) && 4248 event->cpu != smp_processor_id()) { 4249 ret = -EINVAL; 4250 goto out; 4251 } 4252 4253 /* If this is a pinned event it must be running on this CPU */ 4254 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4255 ret = -EBUSY; 4256 goto out; 4257 } 4258 4259 /* 4260 * If the event is currently on this CPU, its either a per-task event, 4261 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4262 * oncpu == -1). 4263 */ 4264 if (event->oncpu == smp_processor_id()) 4265 event->pmu->read(event); 4266 4267 *value = local64_read(&event->count); 4268 if (enabled || running) { 4269 u64 now = event->shadow_ctx_time + perf_clock(); 4270 u64 __enabled, __running; 4271 4272 __perf_update_times(event, now, &__enabled, &__running); 4273 if (enabled) 4274 *enabled = __enabled; 4275 if (running) 4276 *running = __running; 4277 } 4278 out: 4279 local_irq_restore(flags); 4280 4281 return ret; 4282 } 4283 4284 static int perf_event_read(struct perf_event *event, bool group) 4285 { 4286 enum perf_event_state state = READ_ONCE(event->state); 4287 int event_cpu, ret = 0; 4288 4289 /* 4290 * If event is enabled and currently active on a CPU, update the 4291 * value in the event structure: 4292 */ 4293 again: 4294 if (state == PERF_EVENT_STATE_ACTIVE) { 4295 struct perf_read_data data; 4296 4297 /* 4298 * Orders the ->state and ->oncpu loads such that if we see 4299 * ACTIVE we must also see the right ->oncpu. 4300 * 4301 * Matches the smp_wmb() from event_sched_in(). 4302 */ 4303 smp_rmb(); 4304 4305 event_cpu = READ_ONCE(event->oncpu); 4306 if ((unsigned)event_cpu >= nr_cpu_ids) 4307 return 0; 4308 4309 data = (struct perf_read_data){ 4310 .event = event, 4311 .group = group, 4312 .ret = 0, 4313 }; 4314 4315 preempt_disable(); 4316 event_cpu = __perf_event_read_cpu(event, event_cpu); 4317 4318 /* 4319 * Purposely ignore the smp_call_function_single() return 4320 * value. 4321 * 4322 * If event_cpu isn't a valid CPU it means the event got 4323 * scheduled out and that will have updated the event count. 4324 * 4325 * Therefore, either way, we'll have an up-to-date event count 4326 * after this. 4327 */ 4328 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4329 preempt_enable(); 4330 ret = data.ret; 4331 4332 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4333 struct perf_event_context *ctx = event->ctx; 4334 unsigned long flags; 4335 4336 raw_spin_lock_irqsave(&ctx->lock, flags); 4337 state = event->state; 4338 if (state != PERF_EVENT_STATE_INACTIVE) { 4339 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4340 goto again; 4341 } 4342 4343 /* 4344 * May read while context is not active (e.g., thread is 4345 * blocked), in that case we cannot update context time 4346 */ 4347 if (ctx->is_active & EVENT_TIME) { 4348 update_context_time(ctx); 4349 update_cgrp_time_from_event(event); 4350 } 4351 4352 perf_event_update_time(event); 4353 if (group) 4354 perf_event_update_sibling_time(event); 4355 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4356 } 4357 4358 return ret; 4359 } 4360 4361 /* 4362 * Initialize the perf_event context in a task_struct: 4363 */ 4364 static void __perf_event_init_context(struct perf_event_context *ctx) 4365 { 4366 raw_spin_lock_init(&ctx->lock); 4367 mutex_init(&ctx->mutex); 4368 INIT_LIST_HEAD(&ctx->active_ctx_list); 4369 perf_event_groups_init(&ctx->pinned_groups); 4370 perf_event_groups_init(&ctx->flexible_groups); 4371 INIT_LIST_HEAD(&ctx->event_list); 4372 INIT_LIST_HEAD(&ctx->pinned_active); 4373 INIT_LIST_HEAD(&ctx->flexible_active); 4374 refcount_set(&ctx->refcount, 1); 4375 } 4376 4377 static struct perf_event_context * 4378 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4379 { 4380 struct perf_event_context *ctx; 4381 4382 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4383 if (!ctx) 4384 return NULL; 4385 4386 __perf_event_init_context(ctx); 4387 if (task) 4388 ctx->task = get_task_struct(task); 4389 ctx->pmu = pmu; 4390 4391 return ctx; 4392 } 4393 4394 static struct task_struct * 4395 find_lively_task_by_vpid(pid_t vpid) 4396 { 4397 struct task_struct *task; 4398 4399 rcu_read_lock(); 4400 if (!vpid) 4401 task = current; 4402 else 4403 task = find_task_by_vpid(vpid); 4404 if (task) 4405 get_task_struct(task); 4406 rcu_read_unlock(); 4407 4408 if (!task) 4409 return ERR_PTR(-ESRCH); 4410 4411 return task; 4412 } 4413 4414 /* 4415 * Returns a matching context with refcount and pincount. 4416 */ 4417 static struct perf_event_context * 4418 find_get_context(struct pmu *pmu, struct task_struct *task, 4419 struct perf_event *event) 4420 { 4421 struct perf_event_context *ctx, *clone_ctx = NULL; 4422 struct perf_cpu_context *cpuctx; 4423 void *task_ctx_data = NULL; 4424 unsigned long flags; 4425 int ctxn, err; 4426 int cpu = event->cpu; 4427 4428 if (!task) { 4429 /* Must be root to operate on a CPU event: */ 4430 err = perf_allow_cpu(&event->attr); 4431 if (err) 4432 return ERR_PTR(err); 4433 4434 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4435 ctx = &cpuctx->ctx; 4436 get_ctx(ctx); 4437 ++ctx->pin_count; 4438 4439 return ctx; 4440 } 4441 4442 err = -EINVAL; 4443 ctxn = pmu->task_ctx_nr; 4444 if (ctxn < 0) 4445 goto errout; 4446 4447 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4448 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4449 if (!task_ctx_data) { 4450 err = -ENOMEM; 4451 goto errout; 4452 } 4453 } 4454 4455 retry: 4456 ctx = perf_lock_task_context(task, ctxn, &flags); 4457 if (ctx) { 4458 clone_ctx = unclone_ctx(ctx); 4459 ++ctx->pin_count; 4460 4461 if (task_ctx_data && !ctx->task_ctx_data) { 4462 ctx->task_ctx_data = task_ctx_data; 4463 task_ctx_data = NULL; 4464 } 4465 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4466 4467 if (clone_ctx) 4468 put_ctx(clone_ctx); 4469 } else { 4470 ctx = alloc_perf_context(pmu, task); 4471 err = -ENOMEM; 4472 if (!ctx) 4473 goto errout; 4474 4475 if (task_ctx_data) { 4476 ctx->task_ctx_data = task_ctx_data; 4477 task_ctx_data = NULL; 4478 } 4479 4480 err = 0; 4481 mutex_lock(&task->perf_event_mutex); 4482 /* 4483 * If it has already passed perf_event_exit_task(). 4484 * we must see PF_EXITING, it takes this mutex too. 4485 */ 4486 if (task->flags & PF_EXITING) 4487 err = -ESRCH; 4488 else if (task->perf_event_ctxp[ctxn]) 4489 err = -EAGAIN; 4490 else { 4491 get_ctx(ctx); 4492 ++ctx->pin_count; 4493 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4494 } 4495 mutex_unlock(&task->perf_event_mutex); 4496 4497 if (unlikely(err)) { 4498 put_ctx(ctx); 4499 4500 if (err == -EAGAIN) 4501 goto retry; 4502 goto errout; 4503 } 4504 } 4505 4506 kfree(task_ctx_data); 4507 return ctx; 4508 4509 errout: 4510 kfree(task_ctx_data); 4511 return ERR_PTR(err); 4512 } 4513 4514 static void perf_event_free_filter(struct perf_event *event); 4515 static void perf_event_free_bpf_prog(struct perf_event *event); 4516 4517 static void free_event_rcu(struct rcu_head *head) 4518 { 4519 struct perf_event *event; 4520 4521 event = container_of(head, struct perf_event, rcu_head); 4522 if (event->ns) 4523 put_pid_ns(event->ns); 4524 perf_event_free_filter(event); 4525 kfree(event); 4526 } 4527 4528 static void ring_buffer_attach(struct perf_event *event, 4529 struct perf_buffer *rb); 4530 4531 static void detach_sb_event(struct perf_event *event) 4532 { 4533 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4534 4535 raw_spin_lock(&pel->lock); 4536 list_del_rcu(&event->sb_list); 4537 raw_spin_unlock(&pel->lock); 4538 } 4539 4540 static bool is_sb_event(struct perf_event *event) 4541 { 4542 struct perf_event_attr *attr = &event->attr; 4543 4544 if (event->parent) 4545 return false; 4546 4547 if (event->attach_state & PERF_ATTACH_TASK) 4548 return false; 4549 4550 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4551 attr->comm || attr->comm_exec || 4552 attr->task || attr->ksymbol || 4553 attr->context_switch || 4554 attr->bpf_event) 4555 return true; 4556 return false; 4557 } 4558 4559 static void unaccount_pmu_sb_event(struct perf_event *event) 4560 { 4561 if (is_sb_event(event)) 4562 detach_sb_event(event); 4563 } 4564 4565 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4566 { 4567 if (event->parent) 4568 return; 4569 4570 if (is_cgroup_event(event)) 4571 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4572 } 4573 4574 #ifdef CONFIG_NO_HZ_FULL 4575 static DEFINE_SPINLOCK(nr_freq_lock); 4576 #endif 4577 4578 static void unaccount_freq_event_nohz(void) 4579 { 4580 #ifdef CONFIG_NO_HZ_FULL 4581 spin_lock(&nr_freq_lock); 4582 if (atomic_dec_and_test(&nr_freq_events)) 4583 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4584 spin_unlock(&nr_freq_lock); 4585 #endif 4586 } 4587 4588 static void unaccount_freq_event(void) 4589 { 4590 if (tick_nohz_full_enabled()) 4591 unaccount_freq_event_nohz(); 4592 else 4593 atomic_dec(&nr_freq_events); 4594 } 4595 4596 static void unaccount_event(struct perf_event *event) 4597 { 4598 bool dec = false; 4599 4600 if (event->parent) 4601 return; 4602 4603 if (event->attach_state & PERF_ATTACH_TASK) 4604 dec = true; 4605 if (event->attr.mmap || event->attr.mmap_data) 4606 atomic_dec(&nr_mmap_events); 4607 if (event->attr.comm) 4608 atomic_dec(&nr_comm_events); 4609 if (event->attr.namespaces) 4610 atomic_dec(&nr_namespaces_events); 4611 if (event->attr.task) 4612 atomic_dec(&nr_task_events); 4613 if (event->attr.freq) 4614 unaccount_freq_event(); 4615 if (event->attr.context_switch) { 4616 dec = true; 4617 atomic_dec(&nr_switch_events); 4618 } 4619 if (is_cgroup_event(event)) 4620 dec = true; 4621 if (has_branch_stack(event)) 4622 dec = true; 4623 if (event->attr.ksymbol) 4624 atomic_dec(&nr_ksymbol_events); 4625 if (event->attr.bpf_event) 4626 atomic_dec(&nr_bpf_events); 4627 4628 if (dec) { 4629 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4630 schedule_delayed_work(&perf_sched_work, HZ); 4631 } 4632 4633 unaccount_event_cpu(event, event->cpu); 4634 4635 unaccount_pmu_sb_event(event); 4636 } 4637 4638 static void perf_sched_delayed(struct work_struct *work) 4639 { 4640 mutex_lock(&perf_sched_mutex); 4641 if (atomic_dec_and_test(&perf_sched_count)) 4642 static_branch_disable(&perf_sched_events); 4643 mutex_unlock(&perf_sched_mutex); 4644 } 4645 4646 /* 4647 * The following implement mutual exclusion of events on "exclusive" pmus 4648 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4649 * at a time, so we disallow creating events that might conflict, namely: 4650 * 4651 * 1) cpu-wide events in the presence of per-task events, 4652 * 2) per-task events in the presence of cpu-wide events, 4653 * 3) two matching events on the same context. 4654 * 4655 * The former two cases are handled in the allocation path (perf_event_alloc(), 4656 * _free_event()), the latter -- before the first perf_install_in_context(). 4657 */ 4658 static int exclusive_event_init(struct perf_event *event) 4659 { 4660 struct pmu *pmu = event->pmu; 4661 4662 if (!is_exclusive_pmu(pmu)) 4663 return 0; 4664 4665 /* 4666 * Prevent co-existence of per-task and cpu-wide events on the 4667 * same exclusive pmu. 4668 * 4669 * Negative pmu::exclusive_cnt means there are cpu-wide 4670 * events on this "exclusive" pmu, positive means there are 4671 * per-task events. 4672 * 4673 * Since this is called in perf_event_alloc() path, event::ctx 4674 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4675 * to mean "per-task event", because unlike other attach states it 4676 * never gets cleared. 4677 */ 4678 if (event->attach_state & PERF_ATTACH_TASK) { 4679 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4680 return -EBUSY; 4681 } else { 4682 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4683 return -EBUSY; 4684 } 4685 4686 return 0; 4687 } 4688 4689 static void exclusive_event_destroy(struct perf_event *event) 4690 { 4691 struct pmu *pmu = event->pmu; 4692 4693 if (!is_exclusive_pmu(pmu)) 4694 return; 4695 4696 /* see comment in exclusive_event_init() */ 4697 if (event->attach_state & PERF_ATTACH_TASK) 4698 atomic_dec(&pmu->exclusive_cnt); 4699 else 4700 atomic_inc(&pmu->exclusive_cnt); 4701 } 4702 4703 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4704 { 4705 if ((e1->pmu == e2->pmu) && 4706 (e1->cpu == e2->cpu || 4707 e1->cpu == -1 || 4708 e2->cpu == -1)) 4709 return true; 4710 return false; 4711 } 4712 4713 static bool exclusive_event_installable(struct perf_event *event, 4714 struct perf_event_context *ctx) 4715 { 4716 struct perf_event *iter_event; 4717 struct pmu *pmu = event->pmu; 4718 4719 lockdep_assert_held(&ctx->mutex); 4720 4721 if (!is_exclusive_pmu(pmu)) 4722 return true; 4723 4724 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4725 if (exclusive_event_match(iter_event, event)) 4726 return false; 4727 } 4728 4729 return true; 4730 } 4731 4732 static void perf_addr_filters_splice(struct perf_event *event, 4733 struct list_head *head); 4734 4735 static void _free_event(struct perf_event *event) 4736 { 4737 irq_work_sync(&event->pending); 4738 4739 unaccount_event(event); 4740 4741 security_perf_event_free(event); 4742 4743 if (event->rb) { 4744 /* 4745 * Can happen when we close an event with re-directed output. 4746 * 4747 * Since we have a 0 refcount, perf_mmap_close() will skip 4748 * over us; possibly making our ring_buffer_put() the last. 4749 */ 4750 mutex_lock(&event->mmap_mutex); 4751 ring_buffer_attach(event, NULL); 4752 mutex_unlock(&event->mmap_mutex); 4753 } 4754 4755 if (is_cgroup_event(event)) 4756 perf_detach_cgroup(event); 4757 4758 if (!event->parent) { 4759 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4760 put_callchain_buffers(); 4761 } 4762 4763 perf_event_free_bpf_prog(event); 4764 perf_addr_filters_splice(event, NULL); 4765 kfree(event->addr_filter_ranges); 4766 4767 if (event->destroy) 4768 event->destroy(event); 4769 4770 /* 4771 * Must be after ->destroy(), due to uprobe_perf_close() using 4772 * hw.target. 4773 */ 4774 if (event->hw.target) 4775 put_task_struct(event->hw.target); 4776 4777 /* 4778 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4779 * all task references must be cleaned up. 4780 */ 4781 if (event->ctx) 4782 put_ctx(event->ctx); 4783 4784 exclusive_event_destroy(event); 4785 module_put(event->pmu->module); 4786 4787 call_rcu(&event->rcu_head, free_event_rcu); 4788 } 4789 4790 /* 4791 * Used to free events which have a known refcount of 1, such as in error paths 4792 * where the event isn't exposed yet and inherited events. 4793 */ 4794 static void free_event(struct perf_event *event) 4795 { 4796 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4797 "unexpected event refcount: %ld; ptr=%p\n", 4798 atomic_long_read(&event->refcount), event)) { 4799 /* leak to avoid use-after-free */ 4800 return; 4801 } 4802 4803 _free_event(event); 4804 } 4805 4806 /* 4807 * Remove user event from the owner task. 4808 */ 4809 static void perf_remove_from_owner(struct perf_event *event) 4810 { 4811 struct task_struct *owner; 4812 4813 rcu_read_lock(); 4814 /* 4815 * Matches the smp_store_release() in perf_event_exit_task(). If we 4816 * observe !owner it means the list deletion is complete and we can 4817 * indeed free this event, otherwise we need to serialize on 4818 * owner->perf_event_mutex. 4819 */ 4820 owner = READ_ONCE(event->owner); 4821 if (owner) { 4822 /* 4823 * Since delayed_put_task_struct() also drops the last 4824 * task reference we can safely take a new reference 4825 * while holding the rcu_read_lock(). 4826 */ 4827 get_task_struct(owner); 4828 } 4829 rcu_read_unlock(); 4830 4831 if (owner) { 4832 /* 4833 * If we're here through perf_event_exit_task() we're already 4834 * holding ctx->mutex which would be an inversion wrt. the 4835 * normal lock order. 4836 * 4837 * However we can safely take this lock because its the child 4838 * ctx->mutex. 4839 */ 4840 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4841 4842 /* 4843 * We have to re-check the event->owner field, if it is cleared 4844 * we raced with perf_event_exit_task(), acquiring the mutex 4845 * ensured they're done, and we can proceed with freeing the 4846 * event. 4847 */ 4848 if (event->owner) { 4849 list_del_init(&event->owner_entry); 4850 smp_store_release(&event->owner, NULL); 4851 } 4852 mutex_unlock(&owner->perf_event_mutex); 4853 put_task_struct(owner); 4854 } 4855 } 4856 4857 static void put_event(struct perf_event *event) 4858 { 4859 if (!atomic_long_dec_and_test(&event->refcount)) 4860 return; 4861 4862 _free_event(event); 4863 } 4864 4865 /* 4866 * Kill an event dead; while event:refcount will preserve the event 4867 * object, it will not preserve its functionality. Once the last 'user' 4868 * gives up the object, we'll destroy the thing. 4869 */ 4870 int perf_event_release_kernel(struct perf_event *event) 4871 { 4872 struct perf_event_context *ctx = event->ctx; 4873 struct perf_event *child, *tmp; 4874 LIST_HEAD(free_list); 4875 4876 /* 4877 * If we got here through err_file: fput(event_file); we will not have 4878 * attached to a context yet. 4879 */ 4880 if (!ctx) { 4881 WARN_ON_ONCE(event->attach_state & 4882 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4883 goto no_ctx; 4884 } 4885 4886 if (!is_kernel_event(event)) 4887 perf_remove_from_owner(event); 4888 4889 ctx = perf_event_ctx_lock(event); 4890 WARN_ON_ONCE(ctx->parent_ctx); 4891 perf_remove_from_context(event, DETACH_GROUP); 4892 4893 raw_spin_lock_irq(&ctx->lock); 4894 /* 4895 * Mark this event as STATE_DEAD, there is no external reference to it 4896 * anymore. 4897 * 4898 * Anybody acquiring event->child_mutex after the below loop _must_ 4899 * also see this, most importantly inherit_event() which will avoid 4900 * placing more children on the list. 4901 * 4902 * Thus this guarantees that we will in fact observe and kill _ALL_ 4903 * child events. 4904 */ 4905 event->state = PERF_EVENT_STATE_DEAD; 4906 raw_spin_unlock_irq(&ctx->lock); 4907 4908 perf_event_ctx_unlock(event, ctx); 4909 4910 again: 4911 mutex_lock(&event->child_mutex); 4912 list_for_each_entry(child, &event->child_list, child_list) { 4913 4914 /* 4915 * Cannot change, child events are not migrated, see the 4916 * comment with perf_event_ctx_lock_nested(). 4917 */ 4918 ctx = READ_ONCE(child->ctx); 4919 /* 4920 * Since child_mutex nests inside ctx::mutex, we must jump 4921 * through hoops. We start by grabbing a reference on the ctx. 4922 * 4923 * Since the event cannot get freed while we hold the 4924 * child_mutex, the context must also exist and have a !0 4925 * reference count. 4926 */ 4927 get_ctx(ctx); 4928 4929 /* 4930 * Now that we have a ctx ref, we can drop child_mutex, and 4931 * acquire ctx::mutex without fear of it going away. Then we 4932 * can re-acquire child_mutex. 4933 */ 4934 mutex_unlock(&event->child_mutex); 4935 mutex_lock(&ctx->mutex); 4936 mutex_lock(&event->child_mutex); 4937 4938 /* 4939 * Now that we hold ctx::mutex and child_mutex, revalidate our 4940 * state, if child is still the first entry, it didn't get freed 4941 * and we can continue doing so. 4942 */ 4943 tmp = list_first_entry_or_null(&event->child_list, 4944 struct perf_event, child_list); 4945 if (tmp == child) { 4946 perf_remove_from_context(child, DETACH_GROUP); 4947 list_move(&child->child_list, &free_list); 4948 /* 4949 * This matches the refcount bump in inherit_event(); 4950 * this can't be the last reference. 4951 */ 4952 put_event(event); 4953 } 4954 4955 mutex_unlock(&event->child_mutex); 4956 mutex_unlock(&ctx->mutex); 4957 put_ctx(ctx); 4958 goto again; 4959 } 4960 mutex_unlock(&event->child_mutex); 4961 4962 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4963 void *var = &child->ctx->refcount; 4964 4965 list_del(&child->child_list); 4966 free_event(child); 4967 4968 /* 4969 * Wake any perf_event_free_task() waiting for this event to be 4970 * freed. 4971 */ 4972 smp_mb(); /* pairs with wait_var_event() */ 4973 wake_up_var(var); 4974 } 4975 4976 no_ctx: 4977 put_event(event); /* Must be the 'last' reference */ 4978 return 0; 4979 } 4980 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4981 4982 /* 4983 * Called when the last reference to the file is gone. 4984 */ 4985 static int perf_release(struct inode *inode, struct file *file) 4986 { 4987 perf_event_release_kernel(file->private_data); 4988 return 0; 4989 } 4990 4991 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4992 { 4993 struct perf_event *child; 4994 u64 total = 0; 4995 4996 *enabled = 0; 4997 *running = 0; 4998 4999 mutex_lock(&event->child_mutex); 5000 5001 (void)perf_event_read(event, false); 5002 total += perf_event_count(event); 5003 5004 *enabled += event->total_time_enabled + 5005 atomic64_read(&event->child_total_time_enabled); 5006 *running += event->total_time_running + 5007 atomic64_read(&event->child_total_time_running); 5008 5009 list_for_each_entry(child, &event->child_list, child_list) { 5010 (void)perf_event_read(child, false); 5011 total += perf_event_count(child); 5012 *enabled += child->total_time_enabled; 5013 *running += child->total_time_running; 5014 } 5015 mutex_unlock(&event->child_mutex); 5016 5017 return total; 5018 } 5019 5020 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5021 { 5022 struct perf_event_context *ctx; 5023 u64 count; 5024 5025 ctx = perf_event_ctx_lock(event); 5026 count = __perf_event_read_value(event, enabled, running); 5027 perf_event_ctx_unlock(event, ctx); 5028 5029 return count; 5030 } 5031 EXPORT_SYMBOL_GPL(perf_event_read_value); 5032 5033 static int __perf_read_group_add(struct perf_event *leader, 5034 u64 read_format, u64 *values) 5035 { 5036 struct perf_event_context *ctx = leader->ctx; 5037 struct perf_event *sub; 5038 unsigned long flags; 5039 int n = 1; /* skip @nr */ 5040 int ret; 5041 5042 ret = perf_event_read(leader, true); 5043 if (ret) 5044 return ret; 5045 5046 raw_spin_lock_irqsave(&ctx->lock, flags); 5047 5048 /* 5049 * Since we co-schedule groups, {enabled,running} times of siblings 5050 * will be identical to those of the leader, so we only publish one 5051 * set. 5052 */ 5053 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5054 values[n++] += leader->total_time_enabled + 5055 atomic64_read(&leader->child_total_time_enabled); 5056 } 5057 5058 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5059 values[n++] += leader->total_time_running + 5060 atomic64_read(&leader->child_total_time_running); 5061 } 5062 5063 /* 5064 * Write {count,id} tuples for every sibling. 5065 */ 5066 values[n++] += perf_event_count(leader); 5067 if (read_format & PERF_FORMAT_ID) 5068 values[n++] = primary_event_id(leader); 5069 5070 for_each_sibling_event(sub, leader) { 5071 values[n++] += perf_event_count(sub); 5072 if (read_format & PERF_FORMAT_ID) 5073 values[n++] = primary_event_id(sub); 5074 } 5075 5076 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5077 return 0; 5078 } 5079 5080 static int perf_read_group(struct perf_event *event, 5081 u64 read_format, char __user *buf) 5082 { 5083 struct perf_event *leader = event->group_leader, *child; 5084 struct perf_event_context *ctx = leader->ctx; 5085 int ret; 5086 u64 *values; 5087 5088 lockdep_assert_held(&ctx->mutex); 5089 5090 values = kzalloc(event->read_size, GFP_KERNEL); 5091 if (!values) 5092 return -ENOMEM; 5093 5094 values[0] = 1 + leader->nr_siblings; 5095 5096 /* 5097 * By locking the child_mutex of the leader we effectively 5098 * lock the child list of all siblings.. XXX explain how. 5099 */ 5100 mutex_lock(&leader->child_mutex); 5101 5102 ret = __perf_read_group_add(leader, read_format, values); 5103 if (ret) 5104 goto unlock; 5105 5106 list_for_each_entry(child, &leader->child_list, child_list) { 5107 ret = __perf_read_group_add(child, read_format, values); 5108 if (ret) 5109 goto unlock; 5110 } 5111 5112 mutex_unlock(&leader->child_mutex); 5113 5114 ret = event->read_size; 5115 if (copy_to_user(buf, values, event->read_size)) 5116 ret = -EFAULT; 5117 goto out; 5118 5119 unlock: 5120 mutex_unlock(&leader->child_mutex); 5121 out: 5122 kfree(values); 5123 return ret; 5124 } 5125 5126 static int perf_read_one(struct perf_event *event, 5127 u64 read_format, char __user *buf) 5128 { 5129 u64 enabled, running; 5130 u64 values[4]; 5131 int n = 0; 5132 5133 values[n++] = __perf_event_read_value(event, &enabled, &running); 5134 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5135 values[n++] = enabled; 5136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5137 values[n++] = running; 5138 if (read_format & PERF_FORMAT_ID) 5139 values[n++] = primary_event_id(event); 5140 5141 if (copy_to_user(buf, values, n * sizeof(u64))) 5142 return -EFAULT; 5143 5144 return n * sizeof(u64); 5145 } 5146 5147 static bool is_event_hup(struct perf_event *event) 5148 { 5149 bool no_children; 5150 5151 if (event->state > PERF_EVENT_STATE_EXIT) 5152 return false; 5153 5154 mutex_lock(&event->child_mutex); 5155 no_children = list_empty(&event->child_list); 5156 mutex_unlock(&event->child_mutex); 5157 return no_children; 5158 } 5159 5160 /* 5161 * Read the performance event - simple non blocking version for now 5162 */ 5163 static ssize_t 5164 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5165 { 5166 u64 read_format = event->attr.read_format; 5167 int ret; 5168 5169 /* 5170 * Return end-of-file for a read on an event that is in 5171 * error state (i.e. because it was pinned but it couldn't be 5172 * scheduled on to the CPU at some point). 5173 */ 5174 if (event->state == PERF_EVENT_STATE_ERROR) 5175 return 0; 5176 5177 if (count < event->read_size) 5178 return -ENOSPC; 5179 5180 WARN_ON_ONCE(event->ctx->parent_ctx); 5181 if (read_format & PERF_FORMAT_GROUP) 5182 ret = perf_read_group(event, read_format, buf); 5183 else 5184 ret = perf_read_one(event, read_format, buf); 5185 5186 return ret; 5187 } 5188 5189 static ssize_t 5190 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5191 { 5192 struct perf_event *event = file->private_data; 5193 struct perf_event_context *ctx; 5194 int ret; 5195 5196 ret = security_perf_event_read(event); 5197 if (ret) 5198 return ret; 5199 5200 ctx = perf_event_ctx_lock(event); 5201 ret = __perf_read(event, buf, count); 5202 perf_event_ctx_unlock(event, ctx); 5203 5204 return ret; 5205 } 5206 5207 static __poll_t perf_poll(struct file *file, poll_table *wait) 5208 { 5209 struct perf_event *event = file->private_data; 5210 struct perf_buffer *rb; 5211 __poll_t events = EPOLLHUP; 5212 5213 poll_wait(file, &event->waitq, wait); 5214 5215 if (is_event_hup(event)) 5216 return events; 5217 5218 /* 5219 * Pin the event->rb by taking event->mmap_mutex; otherwise 5220 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5221 */ 5222 mutex_lock(&event->mmap_mutex); 5223 rb = event->rb; 5224 if (rb) 5225 events = atomic_xchg(&rb->poll, 0); 5226 mutex_unlock(&event->mmap_mutex); 5227 return events; 5228 } 5229 5230 static void _perf_event_reset(struct perf_event *event) 5231 { 5232 (void)perf_event_read(event, false); 5233 local64_set(&event->count, 0); 5234 perf_event_update_userpage(event); 5235 } 5236 5237 /* Assume it's not an event with inherit set. */ 5238 u64 perf_event_pause(struct perf_event *event, bool reset) 5239 { 5240 struct perf_event_context *ctx; 5241 u64 count; 5242 5243 ctx = perf_event_ctx_lock(event); 5244 WARN_ON_ONCE(event->attr.inherit); 5245 _perf_event_disable(event); 5246 count = local64_read(&event->count); 5247 if (reset) 5248 local64_set(&event->count, 0); 5249 perf_event_ctx_unlock(event, ctx); 5250 5251 return count; 5252 } 5253 EXPORT_SYMBOL_GPL(perf_event_pause); 5254 5255 /* 5256 * Holding the top-level event's child_mutex means that any 5257 * descendant process that has inherited this event will block 5258 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5259 * task existence requirements of perf_event_enable/disable. 5260 */ 5261 static void perf_event_for_each_child(struct perf_event *event, 5262 void (*func)(struct perf_event *)) 5263 { 5264 struct perf_event *child; 5265 5266 WARN_ON_ONCE(event->ctx->parent_ctx); 5267 5268 mutex_lock(&event->child_mutex); 5269 func(event); 5270 list_for_each_entry(child, &event->child_list, child_list) 5271 func(child); 5272 mutex_unlock(&event->child_mutex); 5273 } 5274 5275 static void perf_event_for_each(struct perf_event *event, 5276 void (*func)(struct perf_event *)) 5277 { 5278 struct perf_event_context *ctx = event->ctx; 5279 struct perf_event *sibling; 5280 5281 lockdep_assert_held(&ctx->mutex); 5282 5283 event = event->group_leader; 5284 5285 perf_event_for_each_child(event, func); 5286 for_each_sibling_event(sibling, event) 5287 perf_event_for_each_child(sibling, func); 5288 } 5289 5290 static void __perf_event_period(struct perf_event *event, 5291 struct perf_cpu_context *cpuctx, 5292 struct perf_event_context *ctx, 5293 void *info) 5294 { 5295 u64 value = *((u64 *)info); 5296 bool active; 5297 5298 if (event->attr.freq) { 5299 event->attr.sample_freq = value; 5300 } else { 5301 event->attr.sample_period = value; 5302 event->hw.sample_period = value; 5303 } 5304 5305 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5306 if (active) { 5307 perf_pmu_disable(ctx->pmu); 5308 /* 5309 * We could be throttled; unthrottle now to avoid the tick 5310 * trying to unthrottle while we already re-started the event. 5311 */ 5312 if (event->hw.interrupts == MAX_INTERRUPTS) { 5313 event->hw.interrupts = 0; 5314 perf_log_throttle(event, 1); 5315 } 5316 event->pmu->stop(event, PERF_EF_UPDATE); 5317 } 5318 5319 local64_set(&event->hw.period_left, 0); 5320 5321 if (active) { 5322 event->pmu->start(event, PERF_EF_RELOAD); 5323 perf_pmu_enable(ctx->pmu); 5324 } 5325 } 5326 5327 static int perf_event_check_period(struct perf_event *event, u64 value) 5328 { 5329 return event->pmu->check_period(event, value); 5330 } 5331 5332 static int _perf_event_period(struct perf_event *event, u64 value) 5333 { 5334 if (!is_sampling_event(event)) 5335 return -EINVAL; 5336 5337 if (!value) 5338 return -EINVAL; 5339 5340 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5341 return -EINVAL; 5342 5343 if (perf_event_check_period(event, value)) 5344 return -EINVAL; 5345 5346 if (!event->attr.freq && (value & (1ULL << 63))) 5347 return -EINVAL; 5348 5349 event_function_call(event, __perf_event_period, &value); 5350 5351 return 0; 5352 } 5353 5354 int perf_event_period(struct perf_event *event, u64 value) 5355 { 5356 struct perf_event_context *ctx; 5357 int ret; 5358 5359 ctx = perf_event_ctx_lock(event); 5360 ret = _perf_event_period(event, value); 5361 perf_event_ctx_unlock(event, ctx); 5362 5363 return ret; 5364 } 5365 EXPORT_SYMBOL_GPL(perf_event_period); 5366 5367 static const struct file_operations perf_fops; 5368 5369 static inline int perf_fget_light(int fd, struct fd *p) 5370 { 5371 struct fd f = fdget(fd); 5372 if (!f.file) 5373 return -EBADF; 5374 5375 if (f.file->f_op != &perf_fops) { 5376 fdput(f); 5377 return -EBADF; 5378 } 5379 *p = f; 5380 return 0; 5381 } 5382 5383 static int perf_event_set_output(struct perf_event *event, 5384 struct perf_event *output_event); 5385 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5386 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5387 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5388 struct perf_event_attr *attr); 5389 5390 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5391 { 5392 void (*func)(struct perf_event *); 5393 u32 flags = arg; 5394 5395 switch (cmd) { 5396 case PERF_EVENT_IOC_ENABLE: 5397 func = _perf_event_enable; 5398 break; 5399 case PERF_EVENT_IOC_DISABLE: 5400 func = _perf_event_disable; 5401 break; 5402 case PERF_EVENT_IOC_RESET: 5403 func = _perf_event_reset; 5404 break; 5405 5406 case PERF_EVENT_IOC_REFRESH: 5407 return _perf_event_refresh(event, arg); 5408 5409 case PERF_EVENT_IOC_PERIOD: 5410 { 5411 u64 value; 5412 5413 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5414 return -EFAULT; 5415 5416 return _perf_event_period(event, value); 5417 } 5418 case PERF_EVENT_IOC_ID: 5419 { 5420 u64 id = primary_event_id(event); 5421 5422 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5423 return -EFAULT; 5424 return 0; 5425 } 5426 5427 case PERF_EVENT_IOC_SET_OUTPUT: 5428 { 5429 int ret; 5430 if (arg != -1) { 5431 struct perf_event *output_event; 5432 struct fd output; 5433 ret = perf_fget_light(arg, &output); 5434 if (ret) 5435 return ret; 5436 output_event = output.file->private_data; 5437 ret = perf_event_set_output(event, output_event); 5438 fdput(output); 5439 } else { 5440 ret = perf_event_set_output(event, NULL); 5441 } 5442 return ret; 5443 } 5444 5445 case PERF_EVENT_IOC_SET_FILTER: 5446 return perf_event_set_filter(event, (void __user *)arg); 5447 5448 case PERF_EVENT_IOC_SET_BPF: 5449 return perf_event_set_bpf_prog(event, arg); 5450 5451 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5452 struct perf_buffer *rb; 5453 5454 rcu_read_lock(); 5455 rb = rcu_dereference(event->rb); 5456 if (!rb || !rb->nr_pages) { 5457 rcu_read_unlock(); 5458 return -EINVAL; 5459 } 5460 rb_toggle_paused(rb, !!arg); 5461 rcu_read_unlock(); 5462 return 0; 5463 } 5464 5465 case PERF_EVENT_IOC_QUERY_BPF: 5466 return perf_event_query_prog_array(event, (void __user *)arg); 5467 5468 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5469 struct perf_event_attr new_attr; 5470 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5471 &new_attr); 5472 5473 if (err) 5474 return err; 5475 5476 return perf_event_modify_attr(event, &new_attr); 5477 } 5478 default: 5479 return -ENOTTY; 5480 } 5481 5482 if (flags & PERF_IOC_FLAG_GROUP) 5483 perf_event_for_each(event, func); 5484 else 5485 perf_event_for_each_child(event, func); 5486 5487 return 0; 5488 } 5489 5490 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5491 { 5492 struct perf_event *event = file->private_data; 5493 struct perf_event_context *ctx; 5494 long ret; 5495 5496 /* Treat ioctl like writes as it is likely a mutating operation. */ 5497 ret = security_perf_event_write(event); 5498 if (ret) 5499 return ret; 5500 5501 ctx = perf_event_ctx_lock(event); 5502 ret = _perf_ioctl(event, cmd, arg); 5503 perf_event_ctx_unlock(event, ctx); 5504 5505 return ret; 5506 } 5507 5508 #ifdef CONFIG_COMPAT 5509 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5510 unsigned long arg) 5511 { 5512 switch (_IOC_NR(cmd)) { 5513 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5514 case _IOC_NR(PERF_EVENT_IOC_ID): 5515 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5516 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5517 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5518 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5519 cmd &= ~IOCSIZE_MASK; 5520 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5521 } 5522 break; 5523 } 5524 return perf_ioctl(file, cmd, arg); 5525 } 5526 #else 5527 # define perf_compat_ioctl NULL 5528 #endif 5529 5530 int perf_event_task_enable(void) 5531 { 5532 struct perf_event_context *ctx; 5533 struct perf_event *event; 5534 5535 mutex_lock(¤t->perf_event_mutex); 5536 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5537 ctx = perf_event_ctx_lock(event); 5538 perf_event_for_each_child(event, _perf_event_enable); 5539 perf_event_ctx_unlock(event, ctx); 5540 } 5541 mutex_unlock(¤t->perf_event_mutex); 5542 5543 return 0; 5544 } 5545 5546 int perf_event_task_disable(void) 5547 { 5548 struct perf_event_context *ctx; 5549 struct perf_event *event; 5550 5551 mutex_lock(¤t->perf_event_mutex); 5552 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5553 ctx = perf_event_ctx_lock(event); 5554 perf_event_for_each_child(event, _perf_event_disable); 5555 perf_event_ctx_unlock(event, ctx); 5556 } 5557 mutex_unlock(¤t->perf_event_mutex); 5558 5559 return 0; 5560 } 5561 5562 static int perf_event_index(struct perf_event *event) 5563 { 5564 if (event->hw.state & PERF_HES_STOPPED) 5565 return 0; 5566 5567 if (event->state != PERF_EVENT_STATE_ACTIVE) 5568 return 0; 5569 5570 return event->pmu->event_idx(event); 5571 } 5572 5573 static void calc_timer_values(struct perf_event *event, 5574 u64 *now, 5575 u64 *enabled, 5576 u64 *running) 5577 { 5578 u64 ctx_time; 5579 5580 *now = perf_clock(); 5581 ctx_time = event->shadow_ctx_time + *now; 5582 __perf_update_times(event, ctx_time, enabled, running); 5583 } 5584 5585 static void perf_event_init_userpage(struct perf_event *event) 5586 { 5587 struct perf_event_mmap_page *userpg; 5588 struct perf_buffer *rb; 5589 5590 rcu_read_lock(); 5591 rb = rcu_dereference(event->rb); 5592 if (!rb) 5593 goto unlock; 5594 5595 userpg = rb->user_page; 5596 5597 /* Allow new userspace to detect that bit 0 is deprecated */ 5598 userpg->cap_bit0_is_deprecated = 1; 5599 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5600 userpg->data_offset = PAGE_SIZE; 5601 userpg->data_size = perf_data_size(rb); 5602 5603 unlock: 5604 rcu_read_unlock(); 5605 } 5606 5607 void __weak arch_perf_update_userpage( 5608 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5609 { 5610 } 5611 5612 /* 5613 * Callers need to ensure there can be no nesting of this function, otherwise 5614 * the seqlock logic goes bad. We can not serialize this because the arch 5615 * code calls this from NMI context. 5616 */ 5617 void perf_event_update_userpage(struct perf_event *event) 5618 { 5619 struct perf_event_mmap_page *userpg; 5620 struct perf_buffer *rb; 5621 u64 enabled, running, now; 5622 5623 rcu_read_lock(); 5624 rb = rcu_dereference(event->rb); 5625 if (!rb) 5626 goto unlock; 5627 5628 /* 5629 * compute total_time_enabled, total_time_running 5630 * based on snapshot values taken when the event 5631 * was last scheduled in. 5632 * 5633 * we cannot simply called update_context_time() 5634 * because of locking issue as we can be called in 5635 * NMI context 5636 */ 5637 calc_timer_values(event, &now, &enabled, &running); 5638 5639 userpg = rb->user_page; 5640 /* 5641 * Disable preemption to guarantee consistent time stamps are stored to 5642 * the user page. 5643 */ 5644 preempt_disable(); 5645 ++userpg->lock; 5646 barrier(); 5647 userpg->index = perf_event_index(event); 5648 userpg->offset = perf_event_count(event); 5649 if (userpg->index) 5650 userpg->offset -= local64_read(&event->hw.prev_count); 5651 5652 userpg->time_enabled = enabled + 5653 atomic64_read(&event->child_total_time_enabled); 5654 5655 userpg->time_running = running + 5656 atomic64_read(&event->child_total_time_running); 5657 5658 arch_perf_update_userpage(event, userpg, now); 5659 5660 barrier(); 5661 ++userpg->lock; 5662 preempt_enable(); 5663 unlock: 5664 rcu_read_unlock(); 5665 } 5666 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5667 5668 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5669 { 5670 struct perf_event *event = vmf->vma->vm_file->private_data; 5671 struct perf_buffer *rb; 5672 vm_fault_t ret = VM_FAULT_SIGBUS; 5673 5674 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5675 if (vmf->pgoff == 0) 5676 ret = 0; 5677 return ret; 5678 } 5679 5680 rcu_read_lock(); 5681 rb = rcu_dereference(event->rb); 5682 if (!rb) 5683 goto unlock; 5684 5685 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5686 goto unlock; 5687 5688 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5689 if (!vmf->page) 5690 goto unlock; 5691 5692 get_page(vmf->page); 5693 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5694 vmf->page->index = vmf->pgoff; 5695 5696 ret = 0; 5697 unlock: 5698 rcu_read_unlock(); 5699 5700 return ret; 5701 } 5702 5703 static void ring_buffer_attach(struct perf_event *event, 5704 struct perf_buffer *rb) 5705 { 5706 struct perf_buffer *old_rb = NULL; 5707 unsigned long flags; 5708 5709 if (event->rb) { 5710 /* 5711 * Should be impossible, we set this when removing 5712 * event->rb_entry and wait/clear when adding event->rb_entry. 5713 */ 5714 WARN_ON_ONCE(event->rcu_pending); 5715 5716 old_rb = event->rb; 5717 spin_lock_irqsave(&old_rb->event_lock, flags); 5718 list_del_rcu(&event->rb_entry); 5719 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5720 5721 event->rcu_batches = get_state_synchronize_rcu(); 5722 event->rcu_pending = 1; 5723 } 5724 5725 if (rb) { 5726 if (event->rcu_pending) { 5727 cond_synchronize_rcu(event->rcu_batches); 5728 event->rcu_pending = 0; 5729 } 5730 5731 spin_lock_irqsave(&rb->event_lock, flags); 5732 list_add_rcu(&event->rb_entry, &rb->event_list); 5733 spin_unlock_irqrestore(&rb->event_lock, flags); 5734 } 5735 5736 /* 5737 * Avoid racing with perf_mmap_close(AUX): stop the event 5738 * before swizzling the event::rb pointer; if it's getting 5739 * unmapped, its aux_mmap_count will be 0 and it won't 5740 * restart. See the comment in __perf_pmu_output_stop(). 5741 * 5742 * Data will inevitably be lost when set_output is done in 5743 * mid-air, but then again, whoever does it like this is 5744 * not in for the data anyway. 5745 */ 5746 if (has_aux(event)) 5747 perf_event_stop(event, 0); 5748 5749 rcu_assign_pointer(event->rb, rb); 5750 5751 if (old_rb) { 5752 ring_buffer_put(old_rb); 5753 /* 5754 * Since we detached before setting the new rb, so that we 5755 * could attach the new rb, we could have missed a wakeup. 5756 * Provide it now. 5757 */ 5758 wake_up_all(&event->waitq); 5759 } 5760 } 5761 5762 static void ring_buffer_wakeup(struct perf_event *event) 5763 { 5764 struct perf_buffer *rb; 5765 5766 rcu_read_lock(); 5767 rb = rcu_dereference(event->rb); 5768 if (rb) { 5769 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5770 wake_up_all(&event->waitq); 5771 } 5772 rcu_read_unlock(); 5773 } 5774 5775 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5776 { 5777 struct perf_buffer *rb; 5778 5779 rcu_read_lock(); 5780 rb = rcu_dereference(event->rb); 5781 if (rb) { 5782 if (!refcount_inc_not_zero(&rb->refcount)) 5783 rb = NULL; 5784 } 5785 rcu_read_unlock(); 5786 5787 return rb; 5788 } 5789 5790 void ring_buffer_put(struct perf_buffer *rb) 5791 { 5792 if (!refcount_dec_and_test(&rb->refcount)) 5793 return; 5794 5795 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5796 5797 call_rcu(&rb->rcu_head, rb_free_rcu); 5798 } 5799 5800 static void perf_mmap_open(struct vm_area_struct *vma) 5801 { 5802 struct perf_event *event = vma->vm_file->private_data; 5803 5804 atomic_inc(&event->mmap_count); 5805 atomic_inc(&event->rb->mmap_count); 5806 5807 if (vma->vm_pgoff) 5808 atomic_inc(&event->rb->aux_mmap_count); 5809 5810 if (event->pmu->event_mapped) 5811 event->pmu->event_mapped(event, vma->vm_mm); 5812 } 5813 5814 static void perf_pmu_output_stop(struct perf_event *event); 5815 5816 /* 5817 * A buffer can be mmap()ed multiple times; either directly through the same 5818 * event, or through other events by use of perf_event_set_output(). 5819 * 5820 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5821 * the buffer here, where we still have a VM context. This means we need 5822 * to detach all events redirecting to us. 5823 */ 5824 static void perf_mmap_close(struct vm_area_struct *vma) 5825 { 5826 struct perf_event *event = vma->vm_file->private_data; 5827 5828 struct perf_buffer *rb = ring_buffer_get(event); 5829 struct user_struct *mmap_user = rb->mmap_user; 5830 int mmap_locked = rb->mmap_locked; 5831 unsigned long size = perf_data_size(rb); 5832 5833 if (event->pmu->event_unmapped) 5834 event->pmu->event_unmapped(event, vma->vm_mm); 5835 5836 /* 5837 * rb->aux_mmap_count will always drop before rb->mmap_count and 5838 * event->mmap_count, so it is ok to use event->mmap_mutex to 5839 * serialize with perf_mmap here. 5840 */ 5841 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5842 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5843 /* 5844 * Stop all AUX events that are writing to this buffer, 5845 * so that we can free its AUX pages and corresponding PMU 5846 * data. Note that after rb::aux_mmap_count dropped to zero, 5847 * they won't start any more (see perf_aux_output_begin()). 5848 */ 5849 perf_pmu_output_stop(event); 5850 5851 /* now it's safe to free the pages */ 5852 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5853 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5854 5855 /* this has to be the last one */ 5856 rb_free_aux(rb); 5857 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5858 5859 mutex_unlock(&event->mmap_mutex); 5860 } 5861 5862 atomic_dec(&rb->mmap_count); 5863 5864 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5865 goto out_put; 5866 5867 ring_buffer_attach(event, NULL); 5868 mutex_unlock(&event->mmap_mutex); 5869 5870 /* If there's still other mmap()s of this buffer, we're done. */ 5871 if (atomic_read(&rb->mmap_count)) 5872 goto out_put; 5873 5874 /* 5875 * No other mmap()s, detach from all other events that might redirect 5876 * into the now unreachable buffer. Somewhat complicated by the 5877 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5878 */ 5879 again: 5880 rcu_read_lock(); 5881 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5882 if (!atomic_long_inc_not_zero(&event->refcount)) { 5883 /* 5884 * This event is en-route to free_event() which will 5885 * detach it and remove it from the list. 5886 */ 5887 continue; 5888 } 5889 rcu_read_unlock(); 5890 5891 mutex_lock(&event->mmap_mutex); 5892 /* 5893 * Check we didn't race with perf_event_set_output() which can 5894 * swizzle the rb from under us while we were waiting to 5895 * acquire mmap_mutex. 5896 * 5897 * If we find a different rb; ignore this event, a next 5898 * iteration will no longer find it on the list. We have to 5899 * still restart the iteration to make sure we're not now 5900 * iterating the wrong list. 5901 */ 5902 if (event->rb == rb) 5903 ring_buffer_attach(event, NULL); 5904 5905 mutex_unlock(&event->mmap_mutex); 5906 put_event(event); 5907 5908 /* 5909 * Restart the iteration; either we're on the wrong list or 5910 * destroyed its integrity by doing a deletion. 5911 */ 5912 goto again; 5913 } 5914 rcu_read_unlock(); 5915 5916 /* 5917 * It could be there's still a few 0-ref events on the list; they'll 5918 * get cleaned up by free_event() -- they'll also still have their 5919 * ref on the rb and will free it whenever they are done with it. 5920 * 5921 * Aside from that, this buffer is 'fully' detached and unmapped, 5922 * undo the VM accounting. 5923 */ 5924 5925 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5926 &mmap_user->locked_vm); 5927 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5928 free_uid(mmap_user); 5929 5930 out_put: 5931 ring_buffer_put(rb); /* could be last */ 5932 } 5933 5934 static const struct vm_operations_struct perf_mmap_vmops = { 5935 .open = perf_mmap_open, 5936 .close = perf_mmap_close, /* non mergeable */ 5937 .fault = perf_mmap_fault, 5938 .page_mkwrite = perf_mmap_fault, 5939 }; 5940 5941 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5942 { 5943 struct perf_event *event = file->private_data; 5944 unsigned long user_locked, user_lock_limit; 5945 struct user_struct *user = current_user(); 5946 struct perf_buffer *rb = NULL; 5947 unsigned long locked, lock_limit; 5948 unsigned long vma_size; 5949 unsigned long nr_pages; 5950 long user_extra = 0, extra = 0; 5951 int ret = 0, flags = 0; 5952 5953 /* 5954 * Don't allow mmap() of inherited per-task counters. This would 5955 * create a performance issue due to all children writing to the 5956 * same rb. 5957 */ 5958 if (event->cpu == -1 && event->attr.inherit) 5959 return -EINVAL; 5960 5961 if (!(vma->vm_flags & VM_SHARED)) 5962 return -EINVAL; 5963 5964 ret = security_perf_event_read(event); 5965 if (ret) 5966 return ret; 5967 5968 vma_size = vma->vm_end - vma->vm_start; 5969 5970 if (vma->vm_pgoff == 0) { 5971 nr_pages = (vma_size / PAGE_SIZE) - 1; 5972 } else { 5973 /* 5974 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5975 * mapped, all subsequent mappings should have the same size 5976 * and offset. Must be above the normal perf buffer. 5977 */ 5978 u64 aux_offset, aux_size; 5979 5980 if (!event->rb) 5981 return -EINVAL; 5982 5983 nr_pages = vma_size / PAGE_SIZE; 5984 5985 mutex_lock(&event->mmap_mutex); 5986 ret = -EINVAL; 5987 5988 rb = event->rb; 5989 if (!rb) 5990 goto aux_unlock; 5991 5992 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5993 aux_size = READ_ONCE(rb->user_page->aux_size); 5994 5995 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5996 goto aux_unlock; 5997 5998 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5999 goto aux_unlock; 6000 6001 /* already mapped with a different offset */ 6002 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6003 goto aux_unlock; 6004 6005 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6006 goto aux_unlock; 6007 6008 /* already mapped with a different size */ 6009 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6010 goto aux_unlock; 6011 6012 if (!is_power_of_2(nr_pages)) 6013 goto aux_unlock; 6014 6015 if (!atomic_inc_not_zero(&rb->mmap_count)) 6016 goto aux_unlock; 6017 6018 if (rb_has_aux(rb)) { 6019 atomic_inc(&rb->aux_mmap_count); 6020 ret = 0; 6021 goto unlock; 6022 } 6023 6024 atomic_set(&rb->aux_mmap_count, 1); 6025 user_extra = nr_pages; 6026 6027 goto accounting; 6028 } 6029 6030 /* 6031 * If we have rb pages ensure they're a power-of-two number, so we 6032 * can do bitmasks instead of modulo. 6033 */ 6034 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6035 return -EINVAL; 6036 6037 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6038 return -EINVAL; 6039 6040 WARN_ON_ONCE(event->ctx->parent_ctx); 6041 again: 6042 mutex_lock(&event->mmap_mutex); 6043 if (event->rb) { 6044 if (event->rb->nr_pages != nr_pages) { 6045 ret = -EINVAL; 6046 goto unlock; 6047 } 6048 6049 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6050 /* 6051 * Raced against perf_mmap_close() through 6052 * perf_event_set_output(). Try again, hope for better 6053 * luck. 6054 */ 6055 mutex_unlock(&event->mmap_mutex); 6056 goto again; 6057 } 6058 6059 goto unlock; 6060 } 6061 6062 user_extra = nr_pages + 1; 6063 6064 accounting: 6065 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6066 6067 /* 6068 * Increase the limit linearly with more CPUs: 6069 */ 6070 user_lock_limit *= num_online_cpus(); 6071 6072 user_locked = atomic_long_read(&user->locked_vm); 6073 6074 /* 6075 * sysctl_perf_event_mlock may have changed, so that 6076 * user->locked_vm > user_lock_limit 6077 */ 6078 if (user_locked > user_lock_limit) 6079 user_locked = user_lock_limit; 6080 user_locked += user_extra; 6081 6082 if (user_locked > user_lock_limit) { 6083 /* 6084 * charge locked_vm until it hits user_lock_limit; 6085 * charge the rest from pinned_vm 6086 */ 6087 extra = user_locked - user_lock_limit; 6088 user_extra -= extra; 6089 } 6090 6091 lock_limit = rlimit(RLIMIT_MEMLOCK); 6092 lock_limit >>= PAGE_SHIFT; 6093 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6094 6095 if ((locked > lock_limit) && perf_is_paranoid() && 6096 !capable(CAP_IPC_LOCK)) { 6097 ret = -EPERM; 6098 goto unlock; 6099 } 6100 6101 WARN_ON(!rb && event->rb); 6102 6103 if (vma->vm_flags & VM_WRITE) 6104 flags |= RING_BUFFER_WRITABLE; 6105 6106 if (!rb) { 6107 rb = rb_alloc(nr_pages, 6108 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6109 event->cpu, flags); 6110 6111 if (!rb) { 6112 ret = -ENOMEM; 6113 goto unlock; 6114 } 6115 6116 atomic_set(&rb->mmap_count, 1); 6117 rb->mmap_user = get_current_user(); 6118 rb->mmap_locked = extra; 6119 6120 ring_buffer_attach(event, rb); 6121 6122 perf_event_init_userpage(event); 6123 perf_event_update_userpage(event); 6124 } else { 6125 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6126 event->attr.aux_watermark, flags); 6127 if (!ret) 6128 rb->aux_mmap_locked = extra; 6129 } 6130 6131 unlock: 6132 if (!ret) { 6133 atomic_long_add(user_extra, &user->locked_vm); 6134 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6135 6136 atomic_inc(&event->mmap_count); 6137 } else if (rb) { 6138 atomic_dec(&rb->mmap_count); 6139 } 6140 aux_unlock: 6141 mutex_unlock(&event->mmap_mutex); 6142 6143 /* 6144 * Since pinned accounting is per vm we cannot allow fork() to copy our 6145 * vma. 6146 */ 6147 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6148 vma->vm_ops = &perf_mmap_vmops; 6149 6150 if (event->pmu->event_mapped) 6151 event->pmu->event_mapped(event, vma->vm_mm); 6152 6153 return ret; 6154 } 6155 6156 static int perf_fasync(int fd, struct file *filp, int on) 6157 { 6158 struct inode *inode = file_inode(filp); 6159 struct perf_event *event = filp->private_data; 6160 int retval; 6161 6162 inode_lock(inode); 6163 retval = fasync_helper(fd, filp, on, &event->fasync); 6164 inode_unlock(inode); 6165 6166 if (retval < 0) 6167 return retval; 6168 6169 return 0; 6170 } 6171 6172 static const struct file_operations perf_fops = { 6173 .llseek = no_llseek, 6174 .release = perf_release, 6175 .read = perf_read, 6176 .poll = perf_poll, 6177 .unlocked_ioctl = perf_ioctl, 6178 .compat_ioctl = perf_compat_ioctl, 6179 .mmap = perf_mmap, 6180 .fasync = perf_fasync, 6181 }; 6182 6183 /* 6184 * Perf event wakeup 6185 * 6186 * If there's data, ensure we set the poll() state and publish everything 6187 * to user-space before waking everybody up. 6188 */ 6189 6190 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6191 { 6192 /* only the parent has fasync state */ 6193 if (event->parent) 6194 event = event->parent; 6195 return &event->fasync; 6196 } 6197 6198 void perf_event_wakeup(struct perf_event *event) 6199 { 6200 ring_buffer_wakeup(event); 6201 6202 if (event->pending_kill) { 6203 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6204 event->pending_kill = 0; 6205 } 6206 } 6207 6208 static void perf_pending_event_disable(struct perf_event *event) 6209 { 6210 int cpu = READ_ONCE(event->pending_disable); 6211 6212 if (cpu < 0) 6213 return; 6214 6215 if (cpu == smp_processor_id()) { 6216 WRITE_ONCE(event->pending_disable, -1); 6217 perf_event_disable_local(event); 6218 return; 6219 } 6220 6221 /* 6222 * CPU-A CPU-B 6223 * 6224 * perf_event_disable_inatomic() 6225 * @pending_disable = CPU-A; 6226 * irq_work_queue(); 6227 * 6228 * sched-out 6229 * @pending_disable = -1; 6230 * 6231 * sched-in 6232 * perf_event_disable_inatomic() 6233 * @pending_disable = CPU-B; 6234 * irq_work_queue(); // FAILS 6235 * 6236 * irq_work_run() 6237 * perf_pending_event() 6238 * 6239 * But the event runs on CPU-B and wants disabling there. 6240 */ 6241 irq_work_queue_on(&event->pending, cpu); 6242 } 6243 6244 static void perf_pending_event(struct irq_work *entry) 6245 { 6246 struct perf_event *event = container_of(entry, struct perf_event, pending); 6247 int rctx; 6248 6249 rctx = perf_swevent_get_recursion_context(); 6250 /* 6251 * If we 'fail' here, that's OK, it means recursion is already disabled 6252 * and we won't recurse 'further'. 6253 */ 6254 6255 perf_pending_event_disable(event); 6256 6257 if (event->pending_wakeup) { 6258 event->pending_wakeup = 0; 6259 perf_event_wakeup(event); 6260 } 6261 6262 if (rctx >= 0) 6263 perf_swevent_put_recursion_context(rctx); 6264 } 6265 6266 /* 6267 * We assume there is only KVM supporting the callbacks. 6268 * Later on, we might change it to a list if there is 6269 * another virtualization implementation supporting the callbacks. 6270 */ 6271 struct perf_guest_info_callbacks *perf_guest_cbs; 6272 6273 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6274 { 6275 perf_guest_cbs = cbs; 6276 return 0; 6277 } 6278 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6279 6280 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6281 { 6282 perf_guest_cbs = NULL; 6283 return 0; 6284 } 6285 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6286 6287 static void 6288 perf_output_sample_regs(struct perf_output_handle *handle, 6289 struct pt_regs *regs, u64 mask) 6290 { 6291 int bit; 6292 DECLARE_BITMAP(_mask, 64); 6293 6294 bitmap_from_u64(_mask, mask); 6295 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6296 u64 val; 6297 6298 val = perf_reg_value(regs, bit); 6299 perf_output_put(handle, val); 6300 } 6301 } 6302 6303 static void perf_sample_regs_user(struct perf_regs *regs_user, 6304 struct pt_regs *regs, 6305 struct pt_regs *regs_user_copy) 6306 { 6307 if (user_mode(regs)) { 6308 regs_user->abi = perf_reg_abi(current); 6309 regs_user->regs = regs; 6310 } else if (!(current->flags & PF_KTHREAD)) { 6311 perf_get_regs_user(regs_user, regs, regs_user_copy); 6312 } else { 6313 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6314 regs_user->regs = NULL; 6315 } 6316 } 6317 6318 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6319 struct pt_regs *regs) 6320 { 6321 regs_intr->regs = regs; 6322 regs_intr->abi = perf_reg_abi(current); 6323 } 6324 6325 6326 /* 6327 * Get remaining task size from user stack pointer. 6328 * 6329 * It'd be better to take stack vma map and limit this more 6330 * precisely, but there's no way to get it safely under interrupt, 6331 * so using TASK_SIZE as limit. 6332 */ 6333 static u64 perf_ustack_task_size(struct pt_regs *regs) 6334 { 6335 unsigned long addr = perf_user_stack_pointer(regs); 6336 6337 if (!addr || addr >= TASK_SIZE) 6338 return 0; 6339 6340 return TASK_SIZE - addr; 6341 } 6342 6343 static u16 6344 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6345 struct pt_regs *regs) 6346 { 6347 u64 task_size; 6348 6349 /* No regs, no stack pointer, no dump. */ 6350 if (!regs) 6351 return 0; 6352 6353 /* 6354 * Check if we fit in with the requested stack size into the: 6355 * - TASK_SIZE 6356 * If we don't, we limit the size to the TASK_SIZE. 6357 * 6358 * - remaining sample size 6359 * If we don't, we customize the stack size to 6360 * fit in to the remaining sample size. 6361 */ 6362 6363 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6364 stack_size = min(stack_size, (u16) task_size); 6365 6366 /* Current header size plus static size and dynamic size. */ 6367 header_size += 2 * sizeof(u64); 6368 6369 /* Do we fit in with the current stack dump size? */ 6370 if ((u16) (header_size + stack_size) < header_size) { 6371 /* 6372 * If we overflow the maximum size for the sample, 6373 * we customize the stack dump size to fit in. 6374 */ 6375 stack_size = USHRT_MAX - header_size - sizeof(u64); 6376 stack_size = round_up(stack_size, sizeof(u64)); 6377 } 6378 6379 return stack_size; 6380 } 6381 6382 static void 6383 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6384 struct pt_regs *regs) 6385 { 6386 /* Case of a kernel thread, nothing to dump */ 6387 if (!regs) { 6388 u64 size = 0; 6389 perf_output_put(handle, size); 6390 } else { 6391 unsigned long sp; 6392 unsigned int rem; 6393 u64 dyn_size; 6394 mm_segment_t fs; 6395 6396 /* 6397 * We dump: 6398 * static size 6399 * - the size requested by user or the best one we can fit 6400 * in to the sample max size 6401 * data 6402 * - user stack dump data 6403 * dynamic size 6404 * - the actual dumped size 6405 */ 6406 6407 /* Static size. */ 6408 perf_output_put(handle, dump_size); 6409 6410 /* Data. */ 6411 sp = perf_user_stack_pointer(regs); 6412 fs = get_fs(); 6413 set_fs(USER_DS); 6414 rem = __output_copy_user(handle, (void *) sp, dump_size); 6415 set_fs(fs); 6416 dyn_size = dump_size - rem; 6417 6418 perf_output_skip(handle, rem); 6419 6420 /* Dynamic size. */ 6421 perf_output_put(handle, dyn_size); 6422 } 6423 } 6424 6425 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6426 struct perf_sample_data *data, 6427 size_t size) 6428 { 6429 struct perf_event *sampler = event->aux_event; 6430 struct perf_buffer *rb; 6431 6432 data->aux_size = 0; 6433 6434 if (!sampler) 6435 goto out; 6436 6437 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6438 goto out; 6439 6440 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6441 goto out; 6442 6443 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6444 if (!rb) 6445 goto out; 6446 6447 /* 6448 * If this is an NMI hit inside sampling code, don't take 6449 * the sample. See also perf_aux_sample_output(). 6450 */ 6451 if (READ_ONCE(rb->aux_in_sampling)) { 6452 data->aux_size = 0; 6453 } else { 6454 size = min_t(size_t, size, perf_aux_size(rb)); 6455 data->aux_size = ALIGN(size, sizeof(u64)); 6456 } 6457 ring_buffer_put(rb); 6458 6459 out: 6460 return data->aux_size; 6461 } 6462 6463 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6464 struct perf_event *event, 6465 struct perf_output_handle *handle, 6466 unsigned long size) 6467 { 6468 unsigned long flags; 6469 long ret; 6470 6471 /* 6472 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6473 * paths. If we start calling them in NMI context, they may race with 6474 * the IRQ ones, that is, for example, re-starting an event that's just 6475 * been stopped, which is why we're using a separate callback that 6476 * doesn't change the event state. 6477 * 6478 * IRQs need to be disabled to prevent IPIs from racing with us. 6479 */ 6480 local_irq_save(flags); 6481 /* 6482 * Guard against NMI hits inside the critical section; 6483 * see also perf_prepare_sample_aux(). 6484 */ 6485 WRITE_ONCE(rb->aux_in_sampling, 1); 6486 barrier(); 6487 6488 ret = event->pmu->snapshot_aux(event, handle, size); 6489 6490 barrier(); 6491 WRITE_ONCE(rb->aux_in_sampling, 0); 6492 local_irq_restore(flags); 6493 6494 return ret; 6495 } 6496 6497 static void perf_aux_sample_output(struct perf_event *event, 6498 struct perf_output_handle *handle, 6499 struct perf_sample_data *data) 6500 { 6501 struct perf_event *sampler = event->aux_event; 6502 struct perf_buffer *rb; 6503 unsigned long pad; 6504 long size; 6505 6506 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6507 return; 6508 6509 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6510 if (!rb) 6511 return; 6512 6513 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6514 6515 /* 6516 * An error here means that perf_output_copy() failed (returned a 6517 * non-zero surplus that it didn't copy), which in its current 6518 * enlightened implementation is not possible. If that changes, we'd 6519 * like to know. 6520 */ 6521 if (WARN_ON_ONCE(size < 0)) 6522 goto out_put; 6523 6524 /* 6525 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6526 * perf_prepare_sample_aux(), so should not be more than that. 6527 */ 6528 pad = data->aux_size - size; 6529 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6530 pad = 8; 6531 6532 if (pad) { 6533 u64 zero = 0; 6534 perf_output_copy(handle, &zero, pad); 6535 } 6536 6537 out_put: 6538 ring_buffer_put(rb); 6539 } 6540 6541 static void __perf_event_header__init_id(struct perf_event_header *header, 6542 struct perf_sample_data *data, 6543 struct perf_event *event) 6544 { 6545 u64 sample_type = event->attr.sample_type; 6546 6547 data->type = sample_type; 6548 header->size += event->id_header_size; 6549 6550 if (sample_type & PERF_SAMPLE_TID) { 6551 /* namespace issues */ 6552 data->tid_entry.pid = perf_event_pid(event, current); 6553 data->tid_entry.tid = perf_event_tid(event, current); 6554 } 6555 6556 if (sample_type & PERF_SAMPLE_TIME) 6557 data->time = perf_event_clock(event); 6558 6559 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6560 data->id = primary_event_id(event); 6561 6562 if (sample_type & PERF_SAMPLE_STREAM_ID) 6563 data->stream_id = event->id; 6564 6565 if (sample_type & PERF_SAMPLE_CPU) { 6566 data->cpu_entry.cpu = raw_smp_processor_id(); 6567 data->cpu_entry.reserved = 0; 6568 } 6569 } 6570 6571 void perf_event_header__init_id(struct perf_event_header *header, 6572 struct perf_sample_data *data, 6573 struct perf_event *event) 6574 { 6575 if (event->attr.sample_id_all) 6576 __perf_event_header__init_id(header, data, event); 6577 } 6578 6579 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6580 struct perf_sample_data *data) 6581 { 6582 u64 sample_type = data->type; 6583 6584 if (sample_type & PERF_SAMPLE_TID) 6585 perf_output_put(handle, data->tid_entry); 6586 6587 if (sample_type & PERF_SAMPLE_TIME) 6588 perf_output_put(handle, data->time); 6589 6590 if (sample_type & PERF_SAMPLE_ID) 6591 perf_output_put(handle, data->id); 6592 6593 if (sample_type & PERF_SAMPLE_STREAM_ID) 6594 perf_output_put(handle, data->stream_id); 6595 6596 if (sample_type & PERF_SAMPLE_CPU) 6597 perf_output_put(handle, data->cpu_entry); 6598 6599 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6600 perf_output_put(handle, data->id); 6601 } 6602 6603 void perf_event__output_id_sample(struct perf_event *event, 6604 struct perf_output_handle *handle, 6605 struct perf_sample_data *sample) 6606 { 6607 if (event->attr.sample_id_all) 6608 __perf_event__output_id_sample(handle, sample); 6609 } 6610 6611 static void perf_output_read_one(struct perf_output_handle *handle, 6612 struct perf_event *event, 6613 u64 enabled, u64 running) 6614 { 6615 u64 read_format = event->attr.read_format; 6616 u64 values[4]; 6617 int n = 0; 6618 6619 values[n++] = perf_event_count(event); 6620 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6621 values[n++] = enabled + 6622 atomic64_read(&event->child_total_time_enabled); 6623 } 6624 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6625 values[n++] = running + 6626 atomic64_read(&event->child_total_time_running); 6627 } 6628 if (read_format & PERF_FORMAT_ID) 6629 values[n++] = primary_event_id(event); 6630 6631 __output_copy(handle, values, n * sizeof(u64)); 6632 } 6633 6634 static void perf_output_read_group(struct perf_output_handle *handle, 6635 struct perf_event *event, 6636 u64 enabled, u64 running) 6637 { 6638 struct perf_event *leader = event->group_leader, *sub; 6639 u64 read_format = event->attr.read_format; 6640 u64 values[5]; 6641 int n = 0; 6642 6643 values[n++] = 1 + leader->nr_siblings; 6644 6645 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6646 values[n++] = enabled; 6647 6648 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6649 values[n++] = running; 6650 6651 if ((leader != event) && 6652 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6653 leader->pmu->read(leader); 6654 6655 values[n++] = perf_event_count(leader); 6656 if (read_format & PERF_FORMAT_ID) 6657 values[n++] = primary_event_id(leader); 6658 6659 __output_copy(handle, values, n * sizeof(u64)); 6660 6661 for_each_sibling_event(sub, leader) { 6662 n = 0; 6663 6664 if ((sub != event) && 6665 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6666 sub->pmu->read(sub); 6667 6668 values[n++] = perf_event_count(sub); 6669 if (read_format & PERF_FORMAT_ID) 6670 values[n++] = primary_event_id(sub); 6671 6672 __output_copy(handle, values, n * sizeof(u64)); 6673 } 6674 } 6675 6676 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6677 PERF_FORMAT_TOTAL_TIME_RUNNING) 6678 6679 /* 6680 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6681 * 6682 * The problem is that its both hard and excessively expensive to iterate the 6683 * child list, not to mention that its impossible to IPI the children running 6684 * on another CPU, from interrupt/NMI context. 6685 */ 6686 static void perf_output_read(struct perf_output_handle *handle, 6687 struct perf_event *event) 6688 { 6689 u64 enabled = 0, running = 0, now; 6690 u64 read_format = event->attr.read_format; 6691 6692 /* 6693 * compute total_time_enabled, total_time_running 6694 * based on snapshot values taken when the event 6695 * was last scheduled in. 6696 * 6697 * we cannot simply called update_context_time() 6698 * because of locking issue as we are called in 6699 * NMI context 6700 */ 6701 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6702 calc_timer_values(event, &now, &enabled, &running); 6703 6704 if (event->attr.read_format & PERF_FORMAT_GROUP) 6705 perf_output_read_group(handle, event, enabled, running); 6706 else 6707 perf_output_read_one(handle, event, enabled, running); 6708 } 6709 6710 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6711 { 6712 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6713 } 6714 6715 void perf_output_sample(struct perf_output_handle *handle, 6716 struct perf_event_header *header, 6717 struct perf_sample_data *data, 6718 struct perf_event *event) 6719 { 6720 u64 sample_type = data->type; 6721 6722 perf_output_put(handle, *header); 6723 6724 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6725 perf_output_put(handle, data->id); 6726 6727 if (sample_type & PERF_SAMPLE_IP) 6728 perf_output_put(handle, data->ip); 6729 6730 if (sample_type & PERF_SAMPLE_TID) 6731 perf_output_put(handle, data->tid_entry); 6732 6733 if (sample_type & PERF_SAMPLE_TIME) 6734 perf_output_put(handle, data->time); 6735 6736 if (sample_type & PERF_SAMPLE_ADDR) 6737 perf_output_put(handle, data->addr); 6738 6739 if (sample_type & PERF_SAMPLE_ID) 6740 perf_output_put(handle, data->id); 6741 6742 if (sample_type & PERF_SAMPLE_STREAM_ID) 6743 perf_output_put(handle, data->stream_id); 6744 6745 if (sample_type & PERF_SAMPLE_CPU) 6746 perf_output_put(handle, data->cpu_entry); 6747 6748 if (sample_type & PERF_SAMPLE_PERIOD) 6749 perf_output_put(handle, data->period); 6750 6751 if (sample_type & PERF_SAMPLE_READ) 6752 perf_output_read(handle, event); 6753 6754 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6755 int size = 1; 6756 6757 size += data->callchain->nr; 6758 size *= sizeof(u64); 6759 __output_copy(handle, data->callchain, size); 6760 } 6761 6762 if (sample_type & PERF_SAMPLE_RAW) { 6763 struct perf_raw_record *raw = data->raw; 6764 6765 if (raw) { 6766 struct perf_raw_frag *frag = &raw->frag; 6767 6768 perf_output_put(handle, raw->size); 6769 do { 6770 if (frag->copy) { 6771 __output_custom(handle, frag->copy, 6772 frag->data, frag->size); 6773 } else { 6774 __output_copy(handle, frag->data, 6775 frag->size); 6776 } 6777 if (perf_raw_frag_last(frag)) 6778 break; 6779 frag = frag->next; 6780 } while (1); 6781 if (frag->pad) 6782 __output_skip(handle, NULL, frag->pad); 6783 } else { 6784 struct { 6785 u32 size; 6786 u32 data; 6787 } raw = { 6788 .size = sizeof(u32), 6789 .data = 0, 6790 }; 6791 perf_output_put(handle, raw); 6792 } 6793 } 6794 6795 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6796 if (data->br_stack) { 6797 size_t size; 6798 6799 size = data->br_stack->nr 6800 * sizeof(struct perf_branch_entry); 6801 6802 perf_output_put(handle, data->br_stack->nr); 6803 if (perf_sample_save_hw_index(event)) 6804 perf_output_put(handle, data->br_stack->hw_idx); 6805 perf_output_copy(handle, data->br_stack->entries, size); 6806 } else { 6807 /* 6808 * we always store at least the value of nr 6809 */ 6810 u64 nr = 0; 6811 perf_output_put(handle, nr); 6812 } 6813 } 6814 6815 if (sample_type & PERF_SAMPLE_REGS_USER) { 6816 u64 abi = data->regs_user.abi; 6817 6818 /* 6819 * If there are no regs to dump, notice it through 6820 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6821 */ 6822 perf_output_put(handle, abi); 6823 6824 if (abi) { 6825 u64 mask = event->attr.sample_regs_user; 6826 perf_output_sample_regs(handle, 6827 data->regs_user.regs, 6828 mask); 6829 } 6830 } 6831 6832 if (sample_type & PERF_SAMPLE_STACK_USER) { 6833 perf_output_sample_ustack(handle, 6834 data->stack_user_size, 6835 data->regs_user.regs); 6836 } 6837 6838 if (sample_type & PERF_SAMPLE_WEIGHT) 6839 perf_output_put(handle, data->weight); 6840 6841 if (sample_type & PERF_SAMPLE_DATA_SRC) 6842 perf_output_put(handle, data->data_src.val); 6843 6844 if (sample_type & PERF_SAMPLE_TRANSACTION) 6845 perf_output_put(handle, data->txn); 6846 6847 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6848 u64 abi = data->regs_intr.abi; 6849 /* 6850 * If there are no regs to dump, notice it through 6851 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6852 */ 6853 perf_output_put(handle, abi); 6854 6855 if (abi) { 6856 u64 mask = event->attr.sample_regs_intr; 6857 6858 perf_output_sample_regs(handle, 6859 data->regs_intr.regs, 6860 mask); 6861 } 6862 } 6863 6864 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6865 perf_output_put(handle, data->phys_addr); 6866 6867 if (sample_type & PERF_SAMPLE_AUX) { 6868 perf_output_put(handle, data->aux_size); 6869 6870 if (data->aux_size) 6871 perf_aux_sample_output(event, handle, data); 6872 } 6873 6874 if (!event->attr.watermark) { 6875 int wakeup_events = event->attr.wakeup_events; 6876 6877 if (wakeup_events) { 6878 struct perf_buffer *rb = handle->rb; 6879 int events = local_inc_return(&rb->events); 6880 6881 if (events >= wakeup_events) { 6882 local_sub(wakeup_events, &rb->events); 6883 local_inc(&rb->wakeup); 6884 } 6885 } 6886 } 6887 } 6888 6889 static u64 perf_virt_to_phys(u64 virt) 6890 { 6891 u64 phys_addr = 0; 6892 struct page *p = NULL; 6893 6894 if (!virt) 6895 return 0; 6896 6897 if (virt >= TASK_SIZE) { 6898 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6899 if (virt_addr_valid((void *)(uintptr_t)virt) && 6900 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6901 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6902 } else { 6903 /* 6904 * Walking the pages tables for user address. 6905 * Interrupts are disabled, so it prevents any tear down 6906 * of the page tables. 6907 * Try IRQ-safe __get_user_pages_fast first. 6908 * If failed, leave phys_addr as 0. 6909 */ 6910 if ((current->mm != NULL) && 6911 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6912 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6913 6914 if (p) 6915 put_page(p); 6916 } 6917 6918 return phys_addr; 6919 } 6920 6921 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6922 6923 struct perf_callchain_entry * 6924 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6925 { 6926 bool kernel = !event->attr.exclude_callchain_kernel; 6927 bool user = !event->attr.exclude_callchain_user; 6928 /* Disallow cross-task user callchains. */ 6929 bool crosstask = event->ctx->task && event->ctx->task != current; 6930 const u32 max_stack = event->attr.sample_max_stack; 6931 struct perf_callchain_entry *callchain; 6932 6933 if (!kernel && !user) 6934 return &__empty_callchain; 6935 6936 callchain = get_perf_callchain(regs, 0, kernel, user, 6937 max_stack, crosstask, true); 6938 return callchain ?: &__empty_callchain; 6939 } 6940 6941 void perf_prepare_sample(struct perf_event_header *header, 6942 struct perf_sample_data *data, 6943 struct perf_event *event, 6944 struct pt_regs *regs) 6945 { 6946 u64 sample_type = event->attr.sample_type; 6947 6948 header->type = PERF_RECORD_SAMPLE; 6949 header->size = sizeof(*header) + event->header_size; 6950 6951 header->misc = 0; 6952 header->misc |= perf_misc_flags(regs); 6953 6954 __perf_event_header__init_id(header, data, event); 6955 6956 if (sample_type & PERF_SAMPLE_IP) 6957 data->ip = perf_instruction_pointer(regs); 6958 6959 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6960 int size = 1; 6961 6962 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6963 data->callchain = perf_callchain(event, regs); 6964 6965 size += data->callchain->nr; 6966 6967 header->size += size * sizeof(u64); 6968 } 6969 6970 if (sample_type & PERF_SAMPLE_RAW) { 6971 struct perf_raw_record *raw = data->raw; 6972 int size; 6973 6974 if (raw) { 6975 struct perf_raw_frag *frag = &raw->frag; 6976 u32 sum = 0; 6977 6978 do { 6979 sum += frag->size; 6980 if (perf_raw_frag_last(frag)) 6981 break; 6982 frag = frag->next; 6983 } while (1); 6984 6985 size = round_up(sum + sizeof(u32), sizeof(u64)); 6986 raw->size = size - sizeof(u32); 6987 frag->pad = raw->size - sum; 6988 } else { 6989 size = sizeof(u64); 6990 } 6991 6992 header->size += size; 6993 } 6994 6995 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6996 int size = sizeof(u64); /* nr */ 6997 if (data->br_stack) { 6998 if (perf_sample_save_hw_index(event)) 6999 size += sizeof(u64); 7000 7001 size += data->br_stack->nr 7002 * sizeof(struct perf_branch_entry); 7003 } 7004 header->size += size; 7005 } 7006 7007 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7008 perf_sample_regs_user(&data->regs_user, regs, 7009 &data->regs_user_copy); 7010 7011 if (sample_type & PERF_SAMPLE_REGS_USER) { 7012 /* regs dump ABI info */ 7013 int size = sizeof(u64); 7014 7015 if (data->regs_user.regs) { 7016 u64 mask = event->attr.sample_regs_user; 7017 size += hweight64(mask) * sizeof(u64); 7018 } 7019 7020 header->size += size; 7021 } 7022 7023 if (sample_type & PERF_SAMPLE_STACK_USER) { 7024 /* 7025 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7026 * processed as the last one or have additional check added 7027 * in case new sample type is added, because we could eat 7028 * up the rest of the sample size. 7029 */ 7030 u16 stack_size = event->attr.sample_stack_user; 7031 u16 size = sizeof(u64); 7032 7033 stack_size = perf_sample_ustack_size(stack_size, header->size, 7034 data->regs_user.regs); 7035 7036 /* 7037 * If there is something to dump, add space for the dump 7038 * itself and for the field that tells the dynamic size, 7039 * which is how many have been actually dumped. 7040 */ 7041 if (stack_size) 7042 size += sizeof(u64) + stack_size; 7043 7044 data->stack_user_size = stack_size; 7045 header->size += size; 7046 } 7047 7048 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7049 /* regs dump ABI info */ 7050 int size = sizeof(u64); 7051 7052 perf_sample_regs_intr(&data->regs_intr, regs); 7053 7054 if (data->regs_intr.regs) { 7055 u64 mask = event->attr.sample_regs_intr; 7056 7057 size += hweight64(mask) * sizeof(u64); 7058 } 7059 7060 header->size += size; 7061 } 7062 7063 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7064 data->phys_addr = perf_virt_to_phys(data->addr); 7065 7066 if (sample_type & PERF_SAMPLE_AUX) { 7067 u64 size; 7068 7069 header->size += sizeof(u64); /* size */ 7070 7071 /* 7072 * Given the 16bit nature of header::size, an AUX sample can 7073 * easily overflow it, what with all the preceding sample bits. 7074 * Make sure this doesn't happen by using up to U16_MAX bytes 7075 * per sample in total (rounded down to 8 byte boundary). 7076 */ 7077 size = min_t(size_t, U16_MAX - header->size, 7078 event->attr.aux_sample_size); 7079 size = rounddown(size, 8); 7080 size = perf_prepare_sample_aux(event, data, size); 7081 7082 WARN_ON_ONCE(size + header->size > U16_MAX); 7083 header->size += size; 7084 } 7085 /* 7086 * If you're adding more sample types here, you likely need to do 7087 * something about the overflowing header::size, like repurpose the 7088 * lowest 3 bits of size, which should be always zero at the moment. 7089 * This raises a more important question, do we really need 512k sized 7090 * samples and why, so good argumentation is in order for whatever you 7091 * do here next. 7092 */ 7093 WARN_ON_ONCE(header->size & 7); 7094 } 7095 7096 static __always_inline int 7097 __perf_event_output(struct perf_event *event, 7098 struct perf_sample_data *data, 7099 struct pt_regs *regs, 7100 int (*output_begin)(struct perf_output_handle *, 7101 struct perf_event *, 7102 unsigned int)) 7103 { 7104 struct perf_output_handle handle; 7105 struct perf_event_header header; 7106 int err; 7107 7108 /* protect the callchain buffers */ 7109 rcu_read_lock(); 7110 7111 perf_prepare_sample(&header, data, event, regs); 7112 7113 err = output_begin(&handle, event, header.size); 7114 if (err) 7115 goto exit; 7116 7117 perf_output_sample(&handle, &header, data, event); 7118 7119 perf_output_end(&handle); 7120 7121 exit: 7122 rcu_read_unlock(); 7123 return err; 7124 } 7125 7126 void 7127 perf_event_output_forward(struct perf_event *event, 7128 struct perf_sample_data *data, 7129 struct pt_regs *regs) 7130 { 7131 __perf_event_output(event, data, regs, perf_output_begin_forward); 7132 } 7133 7134 void 7135 perf_event_output_backward(struct perf_event *event, 7136 struct perf_sample_data *data, 7137 struct pt_regs *regs) 7138 { 7139 __perf_event_output(event, data, regs, perf_output_begin_backward); 7140 } 7141 7142 int 7143 perf_event_output(struct perf_event *event, 7144 struct perf_sample_data *data, 7145 struct pt_regs *regs) 7146 { 7147 return __perf_event_output(event, data, regs, perf_output_begin); 7148 } 7149 7150 /* 7151 * read event_id 7152 */ 7153 7154 struct perf_read_event { 7155 struct perf_event_header header; 7156 7157 u32 pid; 7158 u32 tid; 7159 }; 7160 7161 static void 7162 perf_event_read_event(struct perf_event *event, 7163 struct task_struct *task) 7164 { 7165 struct perf_output_handle handle; 7166 struct perf_sample_data sample; 7167 struct perf_read_event read_event = { 7168 .header = { 7169 .type = PERF_RECORD_READ, 7170 .misc = 0, 7171 .size = sizeof(read_event) + event->read_size, 7172 }, 7173 .pid = perf_event_pid(event, task), 7174 .tid = perf_event_tid(event, task), 7175 }; 7176 int ret; 7177 7178 perf_event_header__init_id(&read_event.header, &sample, event); 7179 ret = perf_output_begin(&handle, event, read_event.header.size); 7180 if (ret) 7181 return; 7182 7183 perf_output_put(&handle, read_event); 7184 perf_output_read(&handle, event); 7185 perf_event__output_id_sample(event, &handle, &sample); 7186 7187 perf_output_end(&handle); 7188 } 7189 7190 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7191 7192 static void 7193 perf_iterate_ctx(struct perf_event_context *ctx, 7194 perf_iterate_f output, 7195 void *data, bool all) 7196 { 7197 struct perf_event *event; 7198 7199 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7200 if (!all) { 7201 if (event->state < PERF_EVENT_STATE_INACTIVE) 7202 continue; 7203 if (!event_filter_match(event)) 7204 continue; 7205 } 7206 7207 output(event, data); 7208 } 7209 } 7210 7211 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7212 { 7213 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7214 struct perf_event *event; 7215 7216 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7217 /* 7218 * Skip events that are not fully formed yet; ensure that 7219 * if we observe event->ctx, both event and ctx will be 7220 * complete enough. See perf_install_in_context(). 7221 */ 7222 if (!smp_load_acquire(&event->ctx)) 7223 continue; 7224 7225 if (event->state < PERF_EVENT_STATE_INACTIVE) 7226 continue; 7227 if (!event_filter_match(event)) 7228 continue; 7229 output(event, data); 7230 } 7231 } 7232 7233 /* 7234 * Iterate all events that need to receive side-band events. 7235 * 7236 * For new callers; ensure that account_pmu_sb_event() includes 7237 * your event, otherwise it might not get delivered. 7238 */ 7239 static void 7240 perf_iterate_sb(perf_iterate_f output, void *data, 7241 struct perf_event_context *task_ctx) 7242 { 7243 struct perf_event_context *ctx; 7244 int ctxn; 7245 7246 rcu_read_lock(); 7247 preempt_disable(); 7248 7249 /* 7250 * If we have task_ctx != NULL we only notify the task context itself. 7251 * The task_ctx is set only for EXIT events before releasing task 7252 * context. 7253 */ 7254 if (task_ctx) { 7255 perf_iterate_ctx(task_ctx, output, data, false); 7256 goto done; 7257 } 7258 7259 perf_iterate_sb_cpu(output, data); 7260 7261 for_each_task_context_nr(ctxn) { 7262 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7263 if (ctx) 7264 perf_iterate_ctx(ctx, output, data, false); 7265 } 7266 done: 7267 preempt_enable(); 7268 rcu_read_unlock(); 7269 } 7270 7271 /* 7272 * Clear all file-based filters at exec, they'll have to be 7273 * re-instated when/if these objects are mmapped again. 7274 */ 7275 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7276 { 7277 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7278 struct perf_addr_filter *filter; 7279 unsigned int restart = 0, count = 0; 7280 unsigned long flags; 7281 7282 if (!has_addr_filter(event)) 7283 return; 7284 7285 raw_spin_lock_irqsave(&ifh->lock, flags); 7286 list_for_each_entry(filter, &ifh->list, entry) { 7287 if (filter->path.dentry) { 7288 event->addr_filter_ranges[count].start = 0; 7289 event->addr_filter_ranges[count].size = 0; 7290 restart++; 7291 } 7292 7293 count++; 7294 } 7295 7296 if (restart) 7297 event->addr_filters_gen++; 7298 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7299 7300 if (restart) 7301 perf_event_stop(event, 1); 7302 } 7303 7304 void perf_event_exec(void) 7305 { 7306 struct perf_event_context *ctx; 7307 int ctxn; 7308 7309 rcu_read_lock(); 7310 for_each_task_context_nr(ctxn) { 7311 ctx = current->perf_event_ctxp[ctxn]; 7312 if (!ctx) 7313 continue; 7314 7315 perf_event_enable_on_exec(ctxn); 7316 7317 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7318 true); 7319 } 7320 rcu_read_unlock(); 7321 } 7322 7323 struct remote_output { 7324 struct perf_buffer *rb; 7325 int err; 7326 }; 7327 7328 static void __perf_event_output_stop(struct perf_event *event, void *data) 7329 { 7330 struct perf_event *parent = event->parent; 7331 struct remote_output *ro = data; 7332 struct perf_buffer *rb = ro->rb; 7333 struct stop_event_data sd = { 7334 .event = event, 7335 }; 7336 7337 if (!has_aux(event)) 7338 return; 7339 7340 if (!parent) 7341 parent = event; 7342 7343 /* 7344 * In case of inheritance, it will be the parent that links to the 7345 * ring-buffer, but it will be the child that's actually using it. 7346 * 7347 * We are using event::rb to determine if the event should be stopped, 7348 * however this may race with ring_buffer_attach() (through set_output), 7349 * which will make us skip the event that actually needs to be stopped. 7350 * So ring_buffer_attach() has to stop an aux event before re-assigning 7351 * its rb pointer. 7352 */ 7353 if (rcu_dereference(parent->rb) == rb) 7354 ro->err = __perf_event_stop(&sd); 7355 } 7356 7357 static int __perf_pmu_output_stop(void *info) 7358 { 7359 struct perf_event *event = info; 7360 struct pmu *pmu = event->ctx->pmu; 7361 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7362 struct remote_output ro = { 7363 .rb = event->rb, 7364 }; 7365 7366 rcu_read_lock(); 7367 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7368 if (cpuctx->task_ctx) 7369 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7370 &ro, false); 7371 rcu_read_unlock(); 7372 7373 return ro.err; 7374 } 7375 7376 static void perf_pmu_output_stop(struct perf_event *event) 7377 { 7378 struct perf_event *iter; 7379 int err, cpu; 7380 7381 restart: 7382 rcu_read_lock(); 7383 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7384 /* 7385 * For per-CPU events, we need to make sure that neither they 7386 * nor their children are running; for cpu==-1 events it's 7387 * sufficient to stop the event itself if it's active, since 7388 * it can't have children. 7389 */ 7390 cpu = iter->cpu; 7391 if (cpu == -1) 7392 cpu = READ_ONCE(iter->oncpu); 7393 7394 if (cpu == -1) 7395 continue; 7396 7397 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7398 if (err == -EAGAIN) { 7399 rcu_read_unlock(); 7400 goto restart; 7401 } 7402 } 7403 rcu_read_unlock(); 7404 } 7405 7406 /* 7407 * task tracking -- fork/exit 7408 * 7409 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7410 */ 7411 7412 struct perf_task_event { 7413 struct task_struct *task; 7414 struct perf_event_context *task_ctx; 7415 7416 struct { 7417 struct perf_event_header header; 7418 7419 u32 pid; 7420 u32 ppid; 7421 u32 tid; 7422 u32 ptid; 7423 u64 time; 7424 } event_id; 7425 }; 7426 7427 static int perf_event_task_match(struct perf_event *event) 7428 { 7429 return event->attr.comm || event->attr.mmap || 7430 event->attr.mmap2 || event->attr.mmap_data || 7431 event->attr.task; 7432 } 7433 7434 static void perf_event_task_output(struct perf_event *event, 7435 void *data) 7436 { 7437 struct perf_task_event *task_event = data; 7438 struct perf_output_handle handle; 7439 struct perf_sample_data sample; 7440 struct task_struct *task = task_event->task; 7441 int ret, size = task_event->event_id.header.size; 7442 7443 if (!perf_event_task_match(event)) 7444 return; 7445 7446 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7447 7448 ret = perf_output_begin(&handle, event, 7449 task_event->event_id.header.size); 7450 if (ret) 7451 goto out; 7452 7453 task_event->event_id.pid = perf_event_pid(event, task); 7454 task_event->event_id.ppid = perf_event_pid(event, current); 7455 7456 task_event->event_id.tid = perf_event_tid(event, task); 7457 task_event->event_id.ptid = perf_event_tid(event, current); 7458 7459 task_event->event_id.time = perf_event_clock(event); 7460 7461 perf_output_put(&handle, task_event->event_id); 7462 7463 perf_event__output_id_sample(event, &handle, &sample); 7464 7465 perf_output_end(&handle); 7466 out: 7467 task_event->event_id.header.size = size; 7468 } 7469 7470 static void perf_event_task(struct task_struct *task, 7471 struct perf_event_context *task_ctx, 7472 int new) 7473 { 7474 struct perf_task_event task_event; 7475 7476 if (!atomic_read(&nr_comm_events) && 7477 !atomic_read(&nr_mmap_events) && 7478 !atomic_read(&nr_task_events)) 7479 return; 7480 7481 task_event = (struct perf_task_event){ 7482 .task = task, 7483 .task_ctx = task_ctx, 7484 .event_id = { 7485 .header = { 7486 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7487 .misc = 0, 7488 .size = sizeof(task_event.event_id), 7489 }, 7490 /* .pid */ 7491 /* .ppid */ 7492 /* .tid */ 7493 /* .ptid */ 7494 /* .time */ 7495 }, 7496 }; 7497 7498 perf_iterate_sb(perf_event_task_output, 7499 &task_event, 7500 task_ctx); 7501 } 7502 7503 void perf_event_fork(struct task_struct *task) 7504 { 7505 perf_event_task(task, NULL, 1); 7506 perf_event_namespaces(task); 7507 } 7508 7509 /* 7510 * comm tracking 7511 */ 7512 7513 struct perf_comm_event { 7514 struct task_struct *task; 7515 char *comm; 7516 int comm_size; 7517 7518 struct { 7519 struct perf_event_header header; 7520 7521 u32 pid; 7522 u32 tid; 7523 } event_id; 7524 }; 7525 7526 static int perf_event_comm_match(struct perf_event *event) 7527 { 7528 return event->attr.comm; 7529 } 7530 7531 static void perf_event_comm_output(struct perf_event *event, 7532 void *data) 7533 { 7534 struct perf_comm_event *comm_event = data; 7535 struct perf_output_handle handle; 7536 struct perf_sample_data sample; 7537 int size = comm_event->event_id.header.size; 7538 int ret; 7539 7540 if (!perf_event_comm_match(event)) 7541 return; 7542 7543 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7544 ret = perf_output_begin(&handle, event, 7545 comm_event->event_id.header.size); 7546 7547 if (ret) 7548 goto out; 7549 7550 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7551 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7552 7553 perf_output_put(&handle, comm_event->event_id); 7554 __output_copy(&handle, comm_event->comm, 7555 comm_event->comm_size); 7556 7557 perf_event__output_id_sample(event, &handle, &sample); 7558 7559 perf_output_end(&handle); 7560 out: 7561 comm_event->event_id.header.size = size; 7562 } 7563 7564 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7565 { 7566 char comm[TASK_COMM_LEN]; 7567 unsigned int size; 7568 7569 memset(comm, 0, sizeof(comm)); 7570 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7571 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7572 7573 comm_event->comm = comm; 7574 comm_event->comm_size = size; 7575 7576 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7577 7578 perf_iterate_sb(perf_event_comm_output, 7579 comm_event, 7580 NULL); 7581 } 7582 7583 void perf_event_comm(struct task_struct *task, bool exec) 7584 { 7585 struct perf_comm_event comm_event; 7586 7587 if (!atomic_read(&nr_comm_events)) 7588 return; 7589 7590 comm_event = (struct perf_comm_event){ 7591 .task = task, 7592 /* .comm */ 7593 /* .comm_size */ 7594 .event_id = { 7595 .header = { 7596 .type = PERF_RECORD_COMM, 7597 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7598 /* .size */ 7599 }, 7600 /* .pid */ 7601 /* .tid */ 7602 }, 7603 }; 7604 7605 perf_event_comm_event(&comm_event); 7606 } 7607 7608 /* 7609 * namespaces tracking 7610 */ 7611 7612 struct perf_namespaces_event { 7613 struct task_struct *task; 7614 7615 struct { 7616 struct perf_event_header header; 7617 7618 u32 pid; 7619 u32 tid; 7620 u64 nr_namespaces; 7621 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7622 } event_id; 7623 }; 7624 7625 static int perf_event_namespaces_match(struct perf_event *event) 7626 { 7627 return event->attr.namespaces; 7628 } 7629 7630 static void perf_event_namespaces_output(struct perf_event *event, 7631 void *data) 7632 { 7633 struct perf_namespaces_event *namespaces_event = data; 7634 struct perf_output_handle handle; 7635 struct perf_sample_data sample; 7636 u16 header_size = namespaces_event->event_id.header.size; 7637 int ret; 7638 7639 if (!perf_event_namespaces_match(event)) 7640 return; 7641 7642 perf_event_header__init_id(&namespaces_event->event_id.header, 7643 &sample, event); 7644 ret = perf_output_begin(&handle, event, 7645 namespaces_event->event_id.header.size); 7646 if (ret) 7647 goto out; 7648 7649 namespaces_event->event_id.pid = perf_event_pid(event, 7650 namespaces_event->task); 7651 namespaces_event->event_id.tid = perf_event_tid(event, 7652 namespaces_event->task); 7653 7654 perf_output_put(&handle, namespaces_event->event_id); 7655 7656 perf_event__output_id_sample(event, &handle, &sample); 7657 7658 perf_output_end(&handle); 7659 out: 7660 namespaces_event->event_id.header.size = header_size; 7661 } 7662 7663 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7664 struct task_struct *task, 7665 const struct proc_ns_operations *ns_ops) 7666 { 7667 struct path ns_path; 7668 struct inode *ns_inode; 7669 int error; 7670 7671 error = ns_get_path(&ns_path, task, ns_ops); 7672 if (!error) { 7673 ns_inode = ns_path.dentry->d_inode; 7674 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7675 ns_link_info->ino = ns_inode->i_ino; 7676 path_put(&ns_path); 7677 } 7678 } 7679 7680 void perf_event_namespaces(struct task_struct *task) 7681 { 7682 struct perf_namespaces_event namespaces_event; 7683 struct perf_ns_link_info *ns_link_info; 7684 7685 if (!atomic_read(&nr_namespaces_events)) 7686 return; 7687 7688 namespaces_event = (struct perf_namespaces_event){ 7689 .task = task, 7690 .event_id = { 7691 .header = { 7692 .type = PERF_RECORD_NAMESPACES, 7693 .misc = 0, 7694 .size = sizeof(namespaces_event.event_id), 7695 }, 7696 /* .pid */ 7697 /* .tid */ 7698 .nr_namespaces = NR_NAMESPACES, 7699 /* .link_info[NR_NAMESPACES] */ 7700 }, 7701 }; 7702 7703 ns_link_info = namespaces_event.event_id.link_info; 7704 7705 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7706 task, &mntns_operations); 7707 7708 #ifdef CONFIG_USER_NS 7709 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7710 task, &userns_operations); 7711 #endif 7712 #ifdef CONFIG_NET_NS 7713 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7714 task, &netns_operations); 7715 #endif 7716 #ifdef CONFIG_UTS_NS 7717 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7718 task, &utsns_operations); 7719 #endif 7720 #ifdef CONFIG_IPC_NS 7721 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7722 task, &ipcns_operations); 7723 #endif 7724 #ifdef CONFIG_PID_NS 7725 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7726 task, &pidns_operations); 7727 #endif 7728 #ifdef CONFIG_CGROUPS 7729 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7730 task, &cgroupns_operations); 7731 #endif 7732 7733 perf_iterate_sb(perf_event_namespaces_output, 7734 &namespaces_event, 7735 NULL); 7736 } 7737 7738 /* 7739 * mmap tracking 7740 */ 7741 7742 struct perf_mmap_event { 7743 struct vm_area_struct *vma; 7744 7745 const char *file_name; 7746 int file_size; 7747 int maj, min; 7748 u64 ino; 7749 u64 ino_generation; 7750 u32 prot, flags; 7751 7752 struct { 7753 struct perf_event_header header; 7754 7755 u32 pid; 7756 u32 tid; 7757 u64 start; 7758 u64 len; 7759 u64 pgoff; 7760 } event_id; 7761 }; 7762 7763 static int perf_event_mmap_match(struct perf_event *event, 7764 void *data) 7765 { 7766 struct perf_mmap_event *mmap_event = data; 7767 struct vm_area_struct *vma = mmap_event->vma; 7768 int executable = vma->vm_flags & VM_EXEC; 7769 7770 return (!executable && event->attr.mmap_data) || 7771 (executable && (event->attr.mmap || event->attr.mmap2)); 7772 } 7773 7774 static void perf_event_mmap_output(struct perf_event *event, 7775 void *data) 7776 { 7777 struct perf_mmap_event *mmap_event = data; 7778 struct perf_output_handle handle; 7779 struct perf_sample_data sample; 7780 int size = mmap_event->event_id.header.size; 7781 u32 type = mmap_event->event_id.header.type; 7782 int ret; 7783 7784 if (!perf_event_mmap_match(event, data)) 7785 return; 7786 7787 if (event->attr.mmap2) { 7788 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7789 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7790 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7791 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7792 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7793 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7794 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7795 } 7796 7797 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7798 ret = perf_output_begin(&handle, event, 7799 mmap_event->event_id.header.size); 7800 if (ret) 7801 goto out; 7802 7803 mmap_event->event_id.pid = perf_event_pid(event, current); 7804 mmap_event->event_id.tid = perf_event_tid(event, current); 7805 7806 perf_output_put(&handle, mmap_event->event_id); 7807 7808 if (event->attr.mmap2) { 7809 perf_output_put(&handle, mmap_event->maj); 7810 perf_output_put(&handle, mmap_event->min); 7811 perf_output_put(&handle, mmap_event->ino); 7812 perf_output_put(&handle, mmap_event->ino_generation); 7813 perf_output_put(&handle, mmap_event->prot); 7814 perf_output_put(&handle, mmap_event->flags); 7815 } 7816 7817 __output_copy(&handle, mmap_event->file_name, 7818 mmap_event->file_size); 7819 7820 perf_event__output_id_sample(event, &handle, &sample); 7821 7822 perf_output_end(&handle); 7823 out: 7824 mmap_event->event_id.header.size = size; 7825 mmap_event->event_id.header.type = type; 7826 } 7827 7828 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7829 { 7830 struct vm_area_struct *vma = mmap_event->vma; 7831 struct file *file = vma->vm_file; 7832 int maj = 0, min = 0; 7833 u64 ino = 0, gen = 0; 7834 u32 prot = 0, flags = 0; 7835 unsigned int size; 7836 char tmp[16]; 7837 char *buf = NULL; 7838 char *name; 7839 7840 if (vma->vm_flags & VM_READ) 7841 prot |= PROT_READ; 7842 if (vma->vm_flags & VM_WRITE) 7843 prot |= PROT_WRITE; 7844 if (vma->vm_flags & VM_EXEC) 7845 prot |= PROT_EXEC; 7846 7847 if (vma->vm_flags & VM_MAYSHARE) 7848 flags = MAP_SHARED; 7849 else 7850 flags = MAP_PRIVATE; 7851 7852 if (vma->vm_flags & VM_DENYWRITE) 7853 flags |= MAP_DENYWRITE; 7854 if (vma->vm_flags & VM_MAYEXEC) 7855 flags |= MAP_EXECUTABLE; 7856 if (vma->vm_flags & VM_LOCKED) 7857 flags |= MAP_LOCKED; 7858 if (vma->vm_flags & VM_HUGETLB) 7859 flags |= MAP_HUGETLB; 7860 7861 if (file) { 7862 struct inode *inode; 7863 dev_t dev; 7864 7865 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7866 if (!buf) { 7867 name = "//enomem"; 7868 goto cpy_name; 7869 } 7870 /* 7871 * d_path() works from the end of the rb backwards, so we 7872 * need to add enough zero bytes after the string to handle 7873 * the 64bit alignment we do later. 7874 */ 7875 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7876 if (IS_ERR(name)) { 7877 name = "//toolong"; 7878 goto cpy_name; 7879 } 7880 inode = file_inode(vma->vm_file); 7881 dev = inode->i_sb->s_dev; 7882 ino = inode->i_ino; 7883 gen = inode->i_generation; 7884 maj = MAJOR(dev); 7885 min = MINOR(dev); 7886 7887 goto got_name; 7888 } else { 7889 if (vma->vm_ops && vma->vm_ops->name) { 7890 name = (char *) vma->vm_ops->name(vma); 7891 if (name) 7892 goto cpy_name; 7893 } 7894 7895 name = (char *)arch_vma_name(vma); 7896 if (name) 7897 goto cpy_name; 7898 7899 if (vma->vm_start <= vma->vm_mm->start_brk && 7900 vma->vm_end >= vma->vm_mm->brk) { 7901 name = "[heap]"; 7902 goto cpy_name; 7903 } 7904 if (vma->vm_start <= vma->vm_mm->start_stack && 7905 vma->vm_end >= vma->vm_mm->start_stack) { 7906 name = "[stack]"; 7907 goto cpy_name; 7908 } 7909 7910 name = "//anon"; 7911 goto cpy_name; 7912 } 7913 7914 cpy_name: 7915 strlcpy(tmp, name, sizeof(tmp)); 7916 name = tmp; 7917 got_name: 7918 /* 7919 * Since our buffer works in 8 byte units we need to align our string 7920 * size to a multiple of 8. However, we must guarantee the tail end is 7921 * zero'd out to avoid leaking random bits to userspace. 7922 */ 7923 size = strlen(name)+1; 7924 while (!IS_ALIGNED(size, sizeof(u64))) 7925 name[size++] = '\0'; 7926 7927 mmap_event->file_name = name; 7928 mmap_event->file_size = size; 7929 mmap_event->maj = maj; 7930 mmap_event->min = min; 7931 mmap_event->ino = ino; 7932 mmap_event->ino_generation = gen; 7933 mmap_event->prot = prot; 7934 mmap_event->flags = flags; 7935 7936 if (!(vma->vm_flags & VM_EXEC)) 7937 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7938 7939 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7940 7941 perf_iterate_sb(perf_event_mmap_output, 7942 mmap_event, 7943 NULL); 7944 7945 kfree(buf); 7946 } 7947 7948 /* 7949 * Check whether inode and address range match filter criteria. 7950 */ 7951 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7952 struct file *file, unsigned long offset, 7953 unsigned long size) 7954 { 7955 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7956 if (!filter->path.dentry) 7957 return false; 7958 7959 if (d_inode(filter->path.dentry) != file_inode(file)) 7960 return false; 7961 7962 if (filter->offset > offset + size) 7963 return false; 7964 7965 if (filter->offset + filter->size < offset) 7966 return false; 7967 7968 return true; 7969 } 7970 7971 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7972 struct vm_area_struct *vma, 7973 struct perf_addr_filter_range *fr) 7974 { 7975 unsigned long vma_size = vma->vm_end - vma->vm_start; 7976 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7977 struct file *file = vma->vm_file; 7978 7979 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7980 return false; 7981 7982 if (filter->offset < off) { 7983 fr->start = vma->vm_start; 7984 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7985 } else { 7986 fr->start = vma->vm_start + filter->offset - off; 7987 fr->size = min(vma->vm_end - fr->start, filter->size); 7988 } 7989 7990 return true; 7991 } 7992 7993 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7994 { 7995 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7996 struct vm_area_struct *vma = data; 7997 struct perf_addr_filter *filter; 7998 unsigned int restart = 0, count = 0; 7999 unsigned long flags; 8000 8001 if (!has_addr_filter(event)) 8002 return; 8003 8004 if (!vma->vm_file) 8005 return; 8006 8007 raw_spin_lock_irqsave(&ifh->lock, flags); 8008 list_for_each_entry(filter, &ifh->list, entry) { 8009 if (perf_addr_filter_vma_adjust(filter, vma, 8010 &event->addr_filter_ranges[count])) 8011 restart++; 8012 8013 count++; 8014 } 8015 8016 if (restart) 8017 event->addr_filters_gen++; 8018 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8019 8020 if (restart) 8021 perf_event_stop(event, 1); 8022 } 8023 8024 /* 8025 * Adjust all task's events' filters to the new vma 8026 */ 8027 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8028 { 8029 struct perf_event_context *ctx; 8030 int ctxn; 8031 8032 /* 8033 * Data tracing isn't supported yet and as such there is no need 8034 * to keep track of anything that isn't related to executable code: 8035 */ 8036 if (!(vma->vm_flags & VM_EXEC)) 8037 return; 8038 8039 rcu_read_lock(); 8040 for_each_task_context_nr(ctxn) { 8041 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8042 if (!ctx) 8043 continue; 8044 8045 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8046 } 8047 rcu_read_unlock(); 8048 } 8049 8050 void perf_event_mmap(struct vm_area_struct *vma) 8051 { 8052 struct perf_mmap_event mmap_event; 8053 8054 if (!atomic_read(&nr_mmap_events)) 8055 return; 8056 8057 mmap_event = (struct perf_mmap_event){ 8058 .vma = vma, 8059 /* .file_name */ 8060 /* .file_size */ 8061 .event_id = { 8062 .header = { 8063 .type = PERF_RECORD_MMAP, 8064 .misc = PERF_RECORD_MISC_USER, 8065 /* .size */ 8066 }, 8067 /* .pid */ 8068 /* .tid */ 8069 .start = vma->vm_start, 8070 .len = vma->vm_end - vma->vm_start, 8071 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8072 }, 8073 /* .maj (attr_mmap2 only) */ 8074 /* .min (attr_mmap2 only) */ 8075 /* .ino (attr_mmap2 only) */ 8076 /* .ino_generation (attr_mmap2 only) */ 8077 /* .prot (attr_mmap2 only) */ 8078 /* .flags (attr_mmap2 only) */ 8079 }; 8080 8081 perf_addr_filters_adjust(vma); 8082 perf_event_mmap_event(&mmap_event); 8083 } 8084 8085 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8086 unsigned long size, u64 flags) 8087 { 8088 struct perf_output_handle handle; 8089 struct perf_sample_data sample; 8090 struct perf_aux_event { 8091 struct perf_event_header header; 8092 u64 offset; 8093 u64 size; 8094 u64 flags; 8095 } rec = { 8096 .header = { 8097 .type = PERF_RECORD_AUX, 8098 .misc = 0, 8099 .size = sizeof(rec), 8100 }, 8101 .offset = head, 8102 .size = size, 8103 .flags = flags, 8104 }; 8105 int ret; 8106 8107 perf_event_header__init_id(&rec.header, &sample, event); 8108 ret = perf_output_begin(&handle, event, rec.header.size); 8109 8110 if (ret) 8111 return; 8112 8113 perf_output_put(&handle, rec); 8114 perf_event__output_id_sample(event, &handle, &sample); 8115 8116 perf_output_end(&handle); 8117 } 8118 8119 /* 8120 * Lost/dropped samples logging 8121 */ 8122 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8123 { 8124 struct perf_output_handle handle; 8125 struct perf_sample_data sample; 8126 int ret; 8127 8128 struct { 8129 struct perf_event_header header; 8130 u64 lost; 8131 } lost_samples_event = { 8132 .header = { 8133 .type = PERF_RECORD_LOST_SAMPLES, 8134 .misc = 0, 8135 .size = sizeof(lost_samples_event), 8136 }, 8137 .lost = lost, 8138 }; 8139 8140 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8141 8142 ret = perf_output_begin(&handle, event, 8143 lost_samples_event.header.size); 8144 if (ret) 8145 return; 8146 8147 perf_output_put(&handle, lost_samples_event); 8148 perf_event__output_id_sample(event, &handle, &sample); 8149 perf_output_end(&handle); 8150 } 8151 8152 /* 8153 * context_switch tracking 8154 */ 8155 8156 struct perf_switch_event { 8157 struct task_struct *task; 8158 struct task_struct *next_prev; 8159 8160 struct { 8161 struct perf_event_header header; 8162 u32 next_prev_pid; 8163 u32 next_prev_tid; 8164 } event_id; 8165 }; 8166 8167 static int perf_event_switch_match(struct perf_event *event) 8168 { 8169 return event->attr.context_switch; 8170 } 8171 8172 static void perf_event_switch_output(struct perf_event *event, void *data) 8173 { 8174 struct perf_switch_event *se = data; 8175 struct perf_output_handle handle; 8176 struct perf_sample_data sample; 8177 int ret; 8178 8179 if (!perf_event_switch_match(event)) 8180 return; 8181 8182 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8183 if (event->ctx->task) { 8184 se->event_id.header.type = PERF_RECORD_SWITCH; 8185 se->event_id.header.size = sizeof(se->event_id.header); 8186 } else { 8187 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8188 se->event_id.header.size = sizeof(se->event_id); 8189 se->event_id.next_prev_pid = 8190 perf_event_pid(event, se->next_prev); 8191 se->event_id.next_prev_tid = 8192 perf_event_tid(event, se->next_prev); 8193 } 8194 8195 perf_event_header__init_id(&se->event_id.header, &sample, event); 8196 8197 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8198 if (ret) 8199 return; 8200 8201 if (event->ctx->task) 8202 perf_output_put(&handle, se->event_id.header); 8203 else 8204 perf_output_put(&handle, se->event_id); 8205 8206 perf_event__output_id_sample(event, &handle, &sample); 8207 8208 perf_output_end(&handle); 8209 } 8210 8211 static void perf_event_switch(struct task_struct *task, 8212 struct task_struct *next_prev, bool sched_in) 8213 { 8214 struct perf_switch_event switch_event; 8215 8216 /* N.B. caller checks nr_switch_events != 0 */ 8217 8218 switch_event = (struct perf_switch_event){ 8219 .task = task, 8220 .next_prev = next_prev, 8221 .event_id = { 8222 .header = { 8223 /* .type */ 8224 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8225 /* .size */ 8226 }, 8227 /* .next_prev_pid */ 8228 /* .next_prev_tid */ 8229 }, 8230 }; 8231 8232 if (!sched_in && task->state == TASK_RUNNING) 8233 switch_event.event_id.header.misc |= 8234 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8235 8236 perf_iterate_sb(perf_event_switch_output, 8237 &switch_event, 8238 NULL); 8239 } 8240 8241 /* 8242 * IRQ throttle logging 8243 */ 8244 8245 static void perf_log_throttle(struct perf_event *event, int enable) 8246 { 8247 struct perf_output_handle handle; 8248 struct perf_sample_data sample; 8249 int ret; 8250 8251 struct { 8252 struct perf_event_header header; 8253 u64 time; 8254 u64 id; 8255 u64 stream_id; 8256 } throttle_event = { 8257 .header = { 8258 .type = PERF_RECORD_THROTTLE, 8259 .misc = 0, 8260 .size = sizeof(throttle_event), 8261 }, 8262 .time = perf_event_clock(event), 8263 .id = primary_event_id(event), 8264 .stream_id = event->id, 8265 }; 8266 8267 if (enable) 8268 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8269 8270 perf_event_header__init_id(&throttle_event.header, &sample, event); 8271 8272 ret = perf_output_begin(&handle, event, 8273 throttle_event.header.size); 8274 if (ret) 8275 return; 8276 8277 perf_output_put(&handle, throttle_event); 8278 perf_event__output_id_sample(event, &handle, &sample); 8279 perf_output_end(&handle); 8280 } 8281 8282 /* 8283 * ksymbol register/unregister tracking 8284 */ 8285 8286 struct perf_ksymbol_event { 8287 const char *name; 8288 int name_len; 8289 struct { 8290 struct perf_event_header header; 8291 u64 addr; 8292 u32 len; 8293 u16 ksym_type; 8294 u16 flags; 8295 } event_id; 8296 }; 8297 8298 static int perf_event_ksymbol_match(struct perf_event *event) 8299 { 8300 return event->attr.ksymbol; 8301 } 8302 8303 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8304 { 8305 struct perf_ksymbol_event *ksymbol_event = data; 8306 struct perf_output_handle handle; 8307 struct perf_sample_data sample; 8308 int ret; 8309 8310 if (!perf_event_ksymbol_match(event)) 8311 return; 8312 8313 perf_event_header__init_id(&ksymbol_event->event_id.header, 8314 &sample, event); 8315 ret = perf_output_begin(&handle, event, 8316 ksymbol_event->event_id.header.size); 8317 if (ret) 8318 return; 8319 8320 perf_output_put(&handle, ksymbol_event->event_id); 8321 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8322 perf_event__output_id_sample(event, &handle, &sample); 8323 8324 perf_output_end(&handle); 8325 } 8326 8327 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8328 const char *sym) 8329 { 8330 struct perf_ksymbol_event ksymbol_event; 8331 char name[KSYM_NAME_LEN]; 8332 u16 flags = 0; 8333 int name_len; 8334 8335 if (!atomic_read(&nr_ksymbol_events)) 8336 return; 8337 8338 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8339 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8340 goto err; 8341 8342 strlcpy(name, sym, KSYM_NAME_LEN); 8343 name_len = strlen(name) + 1; 8344 while (!IS_ALIGNED(name_len, sizeof(u64))) 8345 name[name_len++] = '\0'; 8346 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8347 8348 if (unregister) 8349 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8350 8351 ksymbol_event = (struct perf_ksymbol_event){ 8352 .name = name, 8353 .name_len = name_len, 8354 .event_id = { 8355 .header = { 8356 .type = PERF_RECORD_KSYMBOL, 8357 .size = sizeof(ksymbol_event.event_id) + 8358 name_len, 8359 }, 8360 .addr = addr, 8361 .len = len, 8362 .ksym_type = ksym_type, 8363 .flags = flags, 8364 }, 8365 }; 8366 8367 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8368 return; 8369 err: 8370 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8371 } 8372 8373 /* 8374 * bpf program load/unload tracking 8375 */ 8376 8377 struct perf_bpf_event { 8378 struct bpf_prog *prog; 8379 struct { 8380 struct perf_event_header header; 8381 u16 type; 8382 u16 flags; 8383 u32 id; 8384 u8 tag[BPF_TAG_SIZE]; 8385 } event_id; 8386 }; 8387 8388 static int perf_event_bpf_match(struct perf_event *event) 8389 { 8390 return event->attr.bpf_event; 8391 } 8392 8393 static void perf_event_bpf_output(struct perf_event *event, void *data) 8394 { 8395 struct perf_bpf_event *bpf_event = data; 8396 struct perf_output_handle handle; 8397 struct perf_sample_data sample; 8398 int ret; 8399 8400 if (!perf_event_bpf_match(event)) 8401 return; 8402 8403 perf_event_header__init_id(&bpf_event->event_id.header, 8404 &sample, event); 8405 ret = perf_output_begin(&handle, event, 8406 bpf_event->event_id.header.size); 8407 if (ret) 8408 return; 8409 8410 perf_output_put(&handle, bpf_event->event_id); 8411 perf_event__output_id_sample(event, &handle, &sample); 8412 8413 perf_output_end(&handle); 8414 } 8415 8416 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8417 enum perf_bpf_event_type type) 8418 { 8419 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8420 int i; 8421 8422 if (prog->aux->func_cnt == 0) { 8423 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8424 (u64)(unsigned long)prog->bpf_func, 8425 prog->jited_len, unregister, 8426 prog->aux->ksym.name); 8427 } else { 8428 for (i = 0; i < prog->aux->func_cnt; i++) { 8429 struct bpf_prog *subprog = prog->aux->func[i]; 8430 8431 perf_event_ksymbol( 8432 PERF_RECORD_KSYMBOL_TYPE_BPF, 8433 (u64)(unsigned long)subprog->bpf_func, 8434 subprog->jited_len, unregister, 8435 prog->aux->ksym.name); 8436 } 8437 } 8438 } 8439 8440 void perf_event_bpf_event(struct bpf_prog *prog, 8441 enum perf_bpf_event_type type, 8442 u16 flags) 8443 { 8444 struct perf_bpf_event bpf_event; 8445 8446 if (type <= PERF_BPF_EVENT_UNKNOWN || 8447 type >= PERF_BPF_EVENT_MAX) 8448 return; 8449 8450 switch (type) { 8451 case PERF_BPF_EVENT_PROG_LOAD: 8452 case PERF_BPF_EVENT_PROG_UNLOAD: 8453 if (atomic_read(&nr_ksymbol_events)) 8454 perf_event_bpf_emit_ksymbols(prog, type); 8455 break; 8456 default: 8457 break; 8458 } 8459 8460 if (!atomic_read(&nr_bpf_events)) 8461 return; 8462 8463 bpf_event = (struct perf_bpf_event){ 8464 .prog = prog, 8465 .event_id = { 8466 .header = { 8467 .type = PERF_RECORD_BPF_EVENT, 8468 .size = sizeof(bpf_event.event_id), 8469 }, 8470 .type = type, 8471 .flags = flags, 8472 .id = prog->aux->id, 8473 }, 8474 }; 8475 8476 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8477 8478 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8479 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8480 } 8481 8482 void perf_event_itrace_started(struct perf_event *event) 8483 { 8484 event->attach_state |= PERF_ATTACH_ITRACE; 8485 } 8486 8487 static void perf_log_itrace_start(struct perf_event *event) 8488 { 8489 struct perf_output_handle handle; 8490 struct perf_sample_data sample; 8491 struct perf_aux_event { 8492 struct perf_event_header header; 8493 u32 pid; 8494 u32 tid; 8495 } rec; 8496 int ret; 8497 8498 if (event->parent) 8499 event = event->parent; 8500 8501 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8502 event->attach_state & PERF_ATTACH_ITRACE) 8503 return; 8504 8505 rec.header.type = PERF_RECORD_ITRACE_START; 8506 rec.header.misc = 0; 8507 rec.header.size = sizeof(rec); 8508 rec.pid = perf_event_pid(event, current); 8509 rec.tid = perf_event_tid(event, current); 8510 8511 perf_event_header__init_id(&rec.header, &sample, event); 8512 ret = perf_output_begin(&handle, event, rec.header.size); 8513 8514 if (ret) 8515 return; 8516 8517 perf_output_put(&handle, rec); 8518 perf_event__output_id_sample(event, &handle, &sample); 8519 8520 perf_output_end(&handle); 8521 } 8522 8523 static int 8524 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8525 { 8526 struct hw_perf_event *hwc = &event->hw; 8527 int ret = 0; 8528 u64 seq; 8529 8530 seq = __this_cpu_read(perf_throttled_seq); 8531 if (seq != hwc->interrupts_seq) { 8532 hwc->interrupts_seq = seq; 8533 hwc->interrupts = 1; 8534 } else { 8535 hwc->interrupts++; 8536 if (unlikely(throttle 8537 && hwc->interrupts >= max_samples_per_tick)) { 8538 __this_cpu_inc(perf_throttled_count); 8539 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8540 hwc->interrupts = MAX_INTERRUPTS; 8541 perf_log_throttle(event, 0); 8542 ret = 1; 8543 } 8544 } 8545 8546 if (event->attr.freq) { 8547 u64 now = perf_clock(); 8548 s64 delta = now - hwc->freq_time_stamp; 8549 8550 hwc->freq_time_stamp = now; 8551 8552 if (delta > 0 && delta < 2*TICK_NSEC) 8553 perf_adjust_period(event, delta, hwc->last_period, true); 8554 } 8555 8556 return ret; 8557 } 8558 8559 int perf_event_account_interrupt(struct perf_event *event) 8560 { 8561 return __perf_event_account_interrupt(event, 1); 8562 } 8563 8564 /* 8565 * Generic event overflow handling, sampling. 8566 */ 8567 8568 static int __perf_event_overflow(struct perf_event *event, 8569 int throttle, struct perf_sample_data *data, 8570 struct pt_regs *regs) 8571 { 8572 int events = atomic_read(&event->event_limit); 8573 int ret = 0; 8574 8575 /* 8576 * Non-sampling counters might still use the PMI to fold short 8577 * hardware counters, ignore those. 8578 */ 8579 if (unlikely(!is_sampling_event(event))) 8580 return 0; 8581 8582 ret = __perf_event_account_interrupt(event, throttle); 8583 8584 /* 8585 * XXX event_limit might not quite work as expected on inherited 8586 * events 8587 */ 8588 8589 event->pending_kill = POLL_IN; 8590 if (events && atomic_dec_and_test(&event->event_limit)) { 8591 ret = 1; 8592 event->pending_kill = POLL_HUP; 8593 8594 perf_event_disable_inatomic(event); 8595 } 8596 8597 READ_ONCE(event->overflow_handler)(event, data, regs); 8598 8599 if (*perf_event_fasync(event) && event->pending_kill) { 8600 event->pending_wakeup = 1; 8601 irq_work_queue(&event->pending); 8602 } 8603 8604 return ret; 8605 } 8606 8607 int perf_event_overflow(struct perf_event *event, 8608 struct perf_sample_data *data, 8609 struct pt_regs *regs) 8610 { 8611 return __perf_event_overflow(event, 1, data, regs); 8612 } 8613 8614 /* 8615 * Generic software event infrastructure 8616 */ 8617 8618 struct swevent_htable { 8619 struct swevent_hlist *swevent_hlist; 8620 struct mutex hlist_mutex; 8621 int hlist_refcount; 8622 8623 /* Recursion avoidance in each contexts */ 8624 int recursion[PERF_NR_CONTEXTS]; 8625 }; 8626 8627 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8628 8629 /* 8630 * We directly increment event->count and keep a second value in 8631 * event->hw.period_left to count intervals. This period event 8632 * is kept in the range [-sample_period, 0] so that we can use the 8633 * sign as trigger. 8634 */ 8635 8636 u64 perf_swevent_set_period(struct perf_event *event) 8637 { 8638 struct hw_perf_event *hwc = &event->hw; 8639 u64 period = hwc->last_period; 8640 u64 nr, offset; 8641 s64 old, val; 8642 8643 hwc->last_period = hwc->sample_period; 8644 8645 again: 8646 old = val = local64_read(&hwc->period_left); 8647 if (val < 0) 8648 return 0; 8649 8650 nr = div64_u64(period + val, period); 8651 offset = nr * period; 8652 val -= offset; 8653 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8654 goto again; 8655 8656 return nr; 8657 } 8658 8659 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8660 struct perf_sample_data *data, 8661 struct pt_regs *regs) 8662 { 8663 struct hw_perf_event *hwc = &event->hw; 8664 int throttle = 0; 8665 8666 if (!overflow) 8667 overflow = perf_swevent_set_period(event); 8668 8669 if (hwc->interrupts == MAX_INTERRUPTS) 8670 return; 8671 8672 for (; overflow; overflow--) { 8673 if (__perf_event_overflow(event, throttle, 8674 data, regs)) { 8675 /* 8676 * We inhibit the overflow from happening when 8677 * hwc->interrupts == MAX_INTERRUPTS. 8678 */ 8679 break; 8680 } 8681 throttle = 1; 8682 } 8683 } 8684 8685 static void perf_swevent_event(struct perf_event *event, u64 nr, 8686 struct perf_sample_data *data, 8687 struct pt_regs *regs) 8688 { 8689 struct hw_perf_event *hwc = &event->hw; 8690 8691 local64_add(nr, &event->count); 8692 8693 if (!regs) 8694 return; 8695 8696 if (!is_sampling_event(event)) 8697 return; 8698 8699 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8700 data->period = nr; 8701 return perf_swevent_overflow(event, 1, data, regs); 8702 } else 8703 data->period = event->hw.last_period; 8704 8705 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8706 return perf_swevent_overflow(event, 1, data, regs); 8707 8708 if (local64_add_negative(nr, &hwc->period_left)) 8709 return; 8710 8711 perf_swevent_overflow(event, 0, data, regs); 8712 } 8713 8714 static int perf_exclude_event(struct perf_event *event, 8715 struct pt_regs *regs) 8716 { 8717 if (event->hw.state & PERF_HES_STOPPED) 8718 return 1; 8719 8720 if (regs) { 8721 if (event->attr.exclude_user && user_mode(regs)) 8722 return 1; 8723 8724 if (event->attr.exclude_kernel && !user_mode(regs)) 8725 return 1; 8726 } 8727 8728 return 0; 8729 } 8730 8731 static int perf_swevent_match(struct perf_event *event, 8732 enum perf_type_id type, 8733 u32 event_id, 8734 struct perf_sample_data *data, 8735 struct pt_regs *regs) 8736 { 8737 if (event->attr.type != type) 8738 return 0; 8739 8740 if (event->attr.config != event_id) 8741 return 0; 8742 8743 if (perf_exclude_event(event, regs)) 8744 return 0; 8745 8746 return 1; 8747 } 8748 8749 static inline u64 swevent_hash(u64 type, u32 event_id) 8750 { 8751 u64 val = event_id | (type << 32); 8752 8753 return hash_64(val, SWEVENT_HLIST_BITS); 8754 } 8755 8756 static inline struct hlist_head * 8757 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8758 { 8759 u64 hash = swevent_hash(type, event_id); 8760 8761 return &hlist->heads[hash]; 8762 } 8763 8764 /* For the read side: events when they trigger */ 8765 static inline struct hlist_head * 8766 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8767 { 8768 struct swevent_hlist *hlist; 8769 8770 hlist = rcu_dereference(swhash->swevent_hlist); 8771 if (!hlist) 8772 return NULL; 8773 8774 return __find_swevent_head(hlist, type, event_id); 8775 } 8776 8777 /* For the event head insertion and removal in the hlist */ 8778 static inline struct hlist_head * 8779 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8780 { 8781 struct swevent_hlist *hlist; 8782 u32 event_id = event->attr.config; 8783 u64 type = event->attr.type; 8784 8785 /* 8786 * Event scheduling is always serialized against hlist allocation 8787 * and release. Which makes the protected version suitable here. 8788 * The context lock guarantees that. 8789 */ 8790 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8791 lockdep_is_held(&event->ctx->lock)); 8792 if (!hlist) 8793 return NULL; 8794 8795 return __find_swevent_head(hlist, type, event_id); 8796 } 8797 8798 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8799 u64 nr, 8800 struct perf_sample_data *data, 8801 struct pt_regs *regs) 8802 { 8803 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8804 struct perf_event *event; 8805 struct hlist_head *head; 8806 8807 rcu_read_lock(); 8808 head = find_swevent_head_rcu(swhash, type, event_id); 8809 if (!head) 8810 goto end; 8811 8812 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8813 if (perf_swevent_match(event, type, event_id, data, regs)) 8814 perf_swevent_event(event, nr, data, regs); 8815 } 8816 end: 8817 rcu_read_unlock(); 8818 } 8819 8820 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8821 8822 int perf_swevent_get_recursion_context(void) 8823 { 8824 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8825 8826 return get_recursion_context(swhash->recursion); 8827 } 8828 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8829 8830 void perf_swevent_put_recursion_context(int rctx) 8831 { 8832 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8833 8834 put_recursion_context(swhash->recursion, rctx); 8835 } 8836 8837 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8838 { 8839 struct perf_sample_data data; 8840 8841 if (WARN_ON_ONCE(!regs)) 8842 return; 8843 8844 perf_sample_data_init(&data, addr, 0); 8845 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8846 } 8847 8848 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8849 { 8850 int rctx; 8851 8852 preempt_disable_notrace(); 8853 rctx = perf_swevent_get_recursion_context(); 8854 if (unlikely(rctx < 0)) 8855 goto fail; 8856 8857 ___perf_sw_event(event_id, nr, regs, addr); 8858 8859 perf_swevent_put_recursion_context(rctx); 8860 fail: 8861 preempt_enable_notrace(); 8862 } 8863 8864 static void perf_swevent_read(struct perf_event *event) 8865 { 8866 } 8867 8868 static int perf_swevent_add(struct perf_event *event, int flags) 8869 { 8870 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8871 struct hw_perf_event *hwc = &event->hw; 8872 struct hlist_head *head; 8873 8874 if (is_sampling_event(event)) { 8875 hwc->last_period = hwc->sample_period; 8876 perf_swevent_set_period(event); 8877 } 8878 8879 hwc->state = !(flags & PERF_EF_START); 8880 8881 head = find_swevent_head(swhash, event); 8882 if (WARN_ON_ONCE(!head)) 8883 return -EINVAL; 8884 8885 hlist_add_head_rcu(&event->hlist_entry, head); 8886 perf_event_update_userpage(event); 8887 8888 return 0; 8889 } 8890 8891 static void perf_swevent_del(struct perf_event *event, int flags) 8892 { 8893 hlist_del_rcu(&event->hlist_entry); 8894 } 8895 8896 static void perf_swevent_start(struct perf_event *event, int flags) 8897 { 8898 event->hw.state = 0; 8899 } 8900 8901 static void perf_swevent_stop(struct perf_event *event, int flags) 8902 { 8903 event->hw.state = PERF_HES_STOPPED; 8904 } 8905 8906 /* Deref the hlist from the update side */ 8907 static inline struct swevent_hlist * 8908 swevent_hlist_deref(struct swevent_htable *swhash) 8909 { 8910 return rcu_dereference_protected(swhash->swevent_hlist, 8911 lockdep_is_held(&swhash->hlist_mutex)); 8912 } 8913 8914 static void swevent_hlist_release(struct swevent_htable *swhash) 8915 { 8916 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8917 8918 if (!hlist) 8919 return; 8920 8921 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8922 kfree_rcu(hlist, rcu_head); 8923 } 8924 8925 static void swevent_hlist_put_cpu(int cpu) 8926 { 8927 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8928 8929 mutex_lock(&swhash->hlist_mutex); 8930 8931 if (!--swhash->hlist_refcount) 8932 swevent_hlist_release(swhash); 8933 8934 mutex_unlock(&swhash->hlist_mutex); 8935 } 8936 8937 static void swevent_hlist_put(void) 8938 { 8939 int cpu; 8940 8941 for_each_possible_cpu(cpu) 8942 swevent_hlist_put_cpu(cpu); 8943 } 8944 8945 static int swevent_hlist_get_cpu(int cpu) 8946 { 8947 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8948 int err = 0; 8949 8950 mutex_lock(&swhash->hlist_mutex); 8951 if (!swevent_hlist_deref(swhash) && 8952 cpumask_test_cpu(cpu, perf_online_mask)) { 8953 struct swevent_hlist *hlist; 8954 8955 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8956 if (!hlist) { 8957 err = -ENOMEM; 8958 goto exit; 8959 } 8960 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8961 } 8962 swhash->hlist_refcount++; 8963 exit: 8964 mutex_unlock(&swhash->hlist_mutex); 8965 8966 return err; 8967 } 8968 8969 static int swevent_hlist_get(void) 8970 { 8971 int err, cpu, failed_cpu; 8972 8973 mutex_lock(&pmus_lock); 8974 for_each_possible_cpu(cpu) { 8975 err = swevent_hlist_get_cpu(cpu); 8976 if (err) { 8977 failed_cpu = cpu; 8978 goto fail; 8979 } 8980 } 8981 mutex_unlock(&pmus_lock); 8982 return 0; 8983 fail: 8984 for_each_possible_cpu(cpu) { 8985 if (cpu == failed_cpu) 8986 break; 8987 swevent_hlist_put_cpu(cpu); 8988 } 8989 mutex_unlock(&pmus_lock); 8990 return err; 8991 } 8992 8993 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8994 8995 static void sw_perf_event_destroy(struct perf_event *event) 8996 { 8997 u64 event_id = event->attr.config; 8998 8999 WARN_ON(event->parent); 9000 9001 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9002 swevent_hlist_put(); 9003 } 9004 9005 static int perf_swevent_init(struct perf_event *event) 9006 { 9007 u64 event_id = event->attr.config; 9008 9009 if (event->attr.type != PERF_TYPE_SOFTWARE) 9010 return -ENOENT; 9011 9012 /* 9013 * no branch sampling for software events 9014 */ 9015 if (has_branch_stack(event)) 9016 return -EOPNOTSUPP; 9017 9018 switch (event_id) { 9019 case PERF_COUNT_SW_CPU_CLOCK: 9020 case PERF_COUNT_SW_TASK_CLOCK: 9021 return -ENOENT; 9022 9023 default: 9024 break; 9025 } 9026 9027 if (event_id >= PERF_COUNT_SW_MAX) 9028 return -ENOENT; 9029 9030 if (!event->parent) { 9031 int err; 9032 9033 err = swevent_hlist_get(); 9034 if (err) 9035 return err; 9036 9037 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9038 event->destroy = sw_perf_event_destroy; 9039 } 9040 9041 return 0; 9042 } 9043 9044 static struct pmu perf_swevent = { 9045 .task_ctx_nr = perf_sw_context, 9046 9047 .capabilities = PERF_PMU_CAP_NO_NMI, 9048 9049 .event_init = perf_swevent_init, 9050 .add = perf_swevent_add, 9051 .del = perf_swevent_del, 9052 .start = perf_swevent_start, 9053 .stop = perf_swevent_stop, 9054 .read = perf_swevent_read, 9055 }; 9056 9057 #ifdef CONFIG_EVENT_TRACING 9058 9059 static int perf_tp_filter_match(struct perf_event *event, 9060 struct perf_sample_data *data) 9061 { 9062 void *record = data->raw->frag.data; 9063 9064 /* only top level events have filters set */ 9065 if (event->parent) 9066 event = event->parent; 9067 9068 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9069 return 1; 9070 return 0; 9071 } 9072 9073 static int perf_tp_event_match(struct perf_event *event, 9074 struct perf_sample_data *data, 9075 struct pt_regs *regs) 9076 { 9077 if (event->hw.state & PERF_HES_STOPPED) 9078 return 0; 9079 /* 9080 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9081 */ 9082 if (event->attr.exclude_kernel && !user_mode(regs)) 9083 return 0; 9084 9085 if (!perf_tp_filter_match(event, data)) 9086 return 0; 9087 9088 return 1; 9089 } 9090 9091 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9092 struct trace_event_call *call, u64 count, 9093 struct pt_regs *regs, struct hlist_head *head, 9094 struct task_struct *task) 9095 { 9096 if (bpf_prog_array_valid(call)) { 9097 *(struct pt_regs **)raw_data = regs; 9098 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9099 perf_swevent_put_recursion_context(rctx); 9100 return; 9101 } 9102 } 9103 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9104 rctx, task); 9105 } 9106 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9107 9108 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9109 struct pt_regs *regs, struct hlist_head *head, int rctx, 9110 struct task_struct *task) 9111 { 9112 struct perf_sample_data data; 9113 struct perf_event *event; 9114 9115 struct perf_raw_record raw = { 9116 .frag = { 9117 .size = entry_size, 9118 .data = record, 9119 }, 9120 }; 9121 9122 perf_sample_data_init(&data, 0, 0); 9123 data.raw = &raw; 9124 9125 perf_trace_buf_update(record, event_type); 9126 9127 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9128 if (perf_tp_event_match(event, &data, regs)) 9129 perf_swevent_event(event, count, &data, regs); 9130 } 9131 9132 /* 9133 * If we got specified a target task, also iterate its context and 9134 * deliver this event there too. 9135 */ 9136 if (task && task != current) { 9137 struct perf_event_context *ctx; 9138 struct trace_entry *entry = record; 9139 9140 rcu_read_lock(); 9141 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9142 if (!ctx) 9143 goto unlock; 9144 9145 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9146 if (event->cpu != smp_processor_id()) 9147 continue; 9148 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9149 continue; 9150 if (event->attr.config != entry->type) 9151 continue; 9152 if (perf_tp_event_match(event, &data, regs)) 9153 perf_swevent_event(event, count, &data, regs); 9154 } 9155 unlock: 9156 rcu_read_unlock(); 9157 } 9158 9159 perf_swevent_put_recursion_context(rctx); 9160 } 9161 EXPORT_SYMBOL_GPL(perf_tp_event); 9162 9163 static void tp_perf_event_destroy(struct perf_event *event) 9164 { 9165 perf_trace_destroy(event); 9166 } 9167 9168 static int perf_tp_event_init(struct perf_event *event) 9169 { 9170 int err; 9171 9172 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9173 return -ENOENT; 9174 9175 /* 9176 * no branch sampling for tracepoint events 9177 */ 9178 if (has_branch_stack(event)) 9179 return -EOPNOTSUPP; 9180 9181 err = perf_trace_init(event); 9182 if (err) 9183 return err; 9184 9185 event->destroy = tp_perf_event_destroy; 9186 9187 return 0; 9188 } 9189 9190 static struct pmu perf_tracepoint = { 9191 .task_ctx_nr = perf_sw_context, 9192 9193 .event_init = perf_tp_event_init, 9194 .add = perf_trace_add, 9195 .del = perf_trace_del, 9196 .start = perf_swevent_start, 9197 .stop = perf_swevent_stop, 9198 .read = perf_swevent_read, 9199 }; 9200 9201 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9202 /* 9203 * Flags in config, used by dynamic PMU kprobe and uprobe 9204 * The flags should match following PMU_FORMAT_ATTR(). 9205 * 9206 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9207 * if not set, create kprobe/uprobe 9208 * 9209 * The following values specify a reference counter (or semaphore in the 9210 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9211 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9212 * 9213 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9214 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9215 */ 9216 enum perf_probe_config { 9217 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9218 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9219 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9220 }; 9221 9222 PMU_FORMAT_ATTR(retprobe, "config:0"); 9223 #endif 9224 9225 #ifdef CONFIG_KPROBE_EVENTS 9226 static struct attribute *kprobe_attrs[] = { 9227 &format_attr_retprobe.attr, 9228 NULL, 9229 }; 9230 9231 static struct attribute_group kprobe_format_group = { 9232 .name = "format", 9233 .attrs = kprobe_attrs, 9234 }; 9235 9236 static const struct attribute_group *kprobe_attr_groups[] = { 9237 &kprobe_format_group, 9238 NULL, 9239 }; 9240 9241 static int perf_kprobe_event_init(struct perf_event *event); 9242 static struct pmu perf_kprobe = { 9243 .task_ctx_nr = perf_sw_context, 9244 .event_init = perf_kprobe_event_init, 9245 .add = perf_trace_add, 9246 .del = perf_trace_del, 9247 .start = perf_swevent_start, 9248 .stop = perf_swevent_stop, 9249 .read = perf_swevent_read, 9250 .attr_groups = kprobe_attr_groups, 9251 }; 9252 9253 static int perf_kprobe_event_init(struct perf_event *event) 9254 { 9255 int err; 9256 bool is_retprobe; 9257 9258 if (event->attr.type != perf_kprobe.type) 9259 return -ENOENT; 9260 9261 if (!capable(CAP_SYS_ADMIN)) 9262 return -EACCES; 9263 9264 /* 9265 * no branch sampling for probe events 9266 */ 9267 if (has_branch_stack(event)) 9268 return -EOPNOTSUPP; 9269 9270 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9271 err = perf_kprobe_init(event, is_retprobe); 9272 if (err) 9273 return err; 9274 9275 event->destroy = perf_kprobe_destroy; 9276 9277 return 0; 9278 } 9279 #endif /* CONFIG_KPROBE_EVENTS */ 9280 9281 #ifdef CONFIG_UPROBE_EVENTS 9282 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9283 9284 static struct attribute *uprobe_attrs[] = { 9285 &format_attr_retprobe.attr, 9286 &format_attr_ref_ctr_offset.attr, 9287 NULL, 9288 }; 9289 9290 static struct attribute_group uprobe_format_group = { 9291 .name = "format", 9292 .attrs = uprobe_attrs, 9293 }; 9294 9295 static const struct attribute_group *uprobe_attr_groups[] = { 9296 &uprobe_format_group, 9297 NULL, 9298 }; 9299 9300 static int perf_uprobe_event_init(struct perf_event *event); 9301 static struct pmu perf_uprobe = { 9302 .task_ctx_nr = perf_sw_context, 9303 .event_init = perf_uprobe_event_init, 9304 .add = perf_trace_add, 9305 .del = perf_trace_del, 9306 .start = perf_swevent_start, 9307 .stop = perf_swevent_stop, 9308 .read = perf_swevent_read, 9309 .attr_groups = uprobe_attr_groups, 9310 }; 9311 9312 static int perf_uprobe_event_init(struct perf_event *event) 9313 { 9314 int err; 9315 unsigned long ref_ctr_offset; 9316 bool is_retprobe; 9317 9318 if (event->attr.type != perf_uprobe.type) 9319 return -ENOENT; 9320 9321 if (!capable(CAP_SYS_ADMIN)) 9322 return -EACCES; 9323 9324 /* 9325 * no branch sampling for probe events 9326 */ 9327 if (has_branch_stack(event)) 9328 return -EOPNOTSUPP; 9329 9330 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9331 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9332 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9333 if (err) 9334 return err; 9335 9336 event->destroy = perf_uprobe_destroy; 9337 9338 return 0; 9339 } 9340 #endif /* CONFIG_UPROBE_EVENTS */ 9341 9342 static inline void perf_tp_register(void) 9343 { 9344 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9345 #ifdef CONFIG_KPROBE_EVENTS 9346 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9347 #endif 9348 #ifdef CONFIG_UPROBE_EVENTS 9349 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9350 #endif 9351 } 9352 9353 static void perf_event_free_filter(struct perf_event *event) 9354 { 9355 ftrace_profile_free_filter(event); 9356 } 9357 9358 #ifdef CONFIG_BPF_SYSCALL 9359 static void bpf_overflow_handler(struct perf_event *event, 9360 struct perf_sample_data *data, 9361 struct pt_regs *regs) 9362 { 9363 struct bpf_perf_event_data_kern ctx = { 9364 .data = data, 9365 .event = event, 9366 }; 9367 int ret = 0; 9368 9369 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9370 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9371 goto out; 9372 rcu_read_lock(); 9373 ret = BPF_PROG_RUN(event->prog, &ctx); 9374 rcu_read_unlock(); 9375 out: 9376 __this_cpu_dec(bpf_prog_active); 9377 if (!ret) 9378 return; 9379 9380 event->orig_overflow_handler(event, data, regs); 9381 } 9382 9383 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9384 { 9385 struct bpf_prog *prog; 9386 9387 if (event->overflow_handler_context) 9388 /* hw breakpoint or kernel counter */ 9389 return -EINVAL; 9390 9391 if (event->prog) 9392 return -EEXIST; 9393 9394 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9395 if (IS_ERR(prog)) 9396 return PTR_ERR(prog); 9397 9398 event->prog = prog; 9399 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9400 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9401 return 0; 9402 } 9403 9404 static void perf_event_free_bpf_handler(struct perf_event *event) 9405 { 9406 struct bpf_prog *prog = event->prog; 9407 9408 if (!prog) 9409 return; 9410 9411 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9412 event->prog = NULL; 9413 bpf_prog_put(prog); 9414 } 9415 #else 9416 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9417 { 9418 return -EOPNOTSUPP; 9419 } 9420 static void perf_event_free_bpf_handler(struct perf_event *event) 9421 { 9422 } 9423 #endif 9424 9425 /* 9426 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9427 * with perf_event_open() 9428 */ 9429 static inline bool perf_event_is_tracing(struct perf_event *event) 9430 { 9431 if (event->pmu == &perf_tracepoint) 9432 return true; 9433 #ifdef CONFIG_KPROBE_EVENTS 9434 if (event->pmu == &perf_kprobe) 9435 return true; 9436 #endif 9437 #ifdef CONFIG_UPROBE_EVENTS 9438 if (event->pmu == &perf_uprobe) 9439 return true; 9440 #endif 9441 return false; 9442 } 9443 9444 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9445 { 9446 bool is_kprobe, is_tracepoint, is_syscall_tp; 9447 struct bpf_prog *prog; 9448 int ret; 9449 9450 if (!perf_event_is_tracing(event)) 9451 return perf_event_set_bpf_handler(event, prog_fd); 9452 9453 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9454 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9455 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9456 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9457 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9458 return -EINVAL; 9459 9460 prog = bpf_prog_get(prog_fd); 9461 if (IS_ERR(prog)) 9462 return PTR_ERR(prog); 9463 9464 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9465 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9466 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9467 /* valid fd, but invalid bpf program type */ 9468 bpf_prog_put(prog); 9469 return -EINVAL; 9470 } 9471 9472 /* Kprobe override only works for kprobes, not uprobes. */ 9473 if (prog->kprobe_override && 9474 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9475 bpf_prog_put(prog); 9476 return -EINVAL; 9477 } 9478 9479 if (is_tracepoint || is_syscall_tp) { 9480 int off = trace_event_get_offsets(event->tp_event); 9481 9482 if (prog->aux->max_ctx_offset > off) { 9483 bpf_prog_put(prog); 9484 return -EACCES; 9485 } 9486 } 9487 9488 ret = perf_event_attach_bpf_prog(event, prog); 9489 if (ret) 9490 bpf_prog_put(prog); 9491 return ret; 9492 } 9493 9494 static void perf_event_free_bpf_prog(struct perf_event *event) 9495 { 9496 if (!perf_event_is_tracing(event)) { 9497 perf_event_free_bpf_handler(event); 9498 return; 9499 } 9500 perf_event_detach_bpf_prog(event); 9501 } 9502 9503 #else 9504 9505 static inline void perf_tp_register(void) 9506 { 9507 } 9508 9509 static void perf_event_free_filter(struct perf_event *event) 9510 { 9511 } 9512 9513 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9514 { 9515 return -ENOENT; 9516 } 9517 9518 static void perf_event_free_bpf_prog(struct perf_event *event) 9519 { 9520 } 9521 #endif /* CONFIG_EVENT_TRACING */ 9522 9523 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9524 void perf_bp_event(struct perf_event *bp, void *data) 9525 { 9526 struct perf_sample_data sample; 9527 struct pt_regs *regs = data; 9528 9529 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9530 9531 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9532 perf_swevent_event(bp, 1, &sample, regs); 9533 } 9534 #endif 9535 9536 /* 9537 * Allocate a new address filter 9538 */ 9539 static struct perf_addr_filter * 9540 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9541 { 9542 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9543 struct perf_addr_filter *filter; 9544 9545 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9546 if (!filter) 9547 return NULL; 9548 9549 INIT_LIST_HEAD(&filter->entry); 9550 list_add_tail(&filter->entry, filters); 9551 9552 return filter; 9553 } 9554 9555 static void free_filters_list(struct list_head *filters) 9556 { 9557 struct perf_addr_filter *filter, *iter; 9558 9559 list_for_each_entry_safe(filter, iter, filters, entry) { 9560 path_put(&filter->path); 9561 list_del(&filter->entry); 9562 kfree(filter); 9563 } 9564 } 9565 9566 /* 9567 * Free existing address filters and optionally install new ones 9568 */ 9569 static void perf_addr_filters_splice(struct perf_event *event, 9570 struct list_head *head) 9571 { 9572 unsigned long flags; 9573 LIST_HEAD(list); 9574 9575 if (!has_addr_filter(event)) 9576 return; 9577 9578 /* don't bother with children, they don't have their own filters */ 9579 if (event->parent) 9580 return; 9581 9582 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9583 9584 list_splice_init(&event->addr_filters.list, &list); 9585 if (head) 9586 list_splice(head, &event->addr_filters.list); 9587 9588 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9589 9590 free_filters_list(&list); 9591 } 9592 9593 /* 9594 * Scan through mm's vmas and see if one of them matches the 9595 * @filter; if so, adjust filter's address range. 9596 * Called with mm::mmap_sem down for reading. 9597 */ 9598 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9599 struct mm_struct *mm, 9600 struct perf_addr_filter_range *fr) 9601 { 9602 struct vm_area_struct *vma; 9603 9604 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9605 if (!vma->vm_file) 9606 continue; 9607 9608 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9609 return; 9610 } 9611 } 9612 9613 /* 9614 * Update event's address range filters based on the 9615 * task's existing mappings, if any. 9616 */ 9617 static void perf_event_addr_filters_apply(struct perf_event *event) 9618 { 9619 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9620 struct task_struct *task = READ_ONCE(event->ctx->task); 9621 struct perf_addr_filter *filter; 9622 struct mm_struct *mm = NULL; 9623 unsigned int count = 0; 9624 unsigned long flags; 9625 9626 /* 9627 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9628 * will stop on the parent's child_mutex that our caller is also holding 9629 */ 9630 if (task == TASK_TOMBSTONE) 9631 return; 9632 9633 if (ifh->nr_file_filters) { 9634 mm = get_task_mm(event->ctx->task); 9635 if (!mm) 9636 goto restart; 9637 9638 down_read(&mm->mmap_sem); 9639 } 9640 9641 raw_spin_lock_irqsave(&ifh->lock, flags); 9642 list_for_each_entry(filter, &ifh->list, entry) { 9643 if (filter->path.dentry) { 9644 /* 9645 * Adjust base offset if the filter is associated to a 9646 * binary that needs to be mapped: 9647 */ 9648 event->addr_filter_ranges[count].start = 0; 9649 event->addr_filter_ranges[count].size = 0; 9650 9651 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9652 } else { 9653 event->addr_filter_ranges[count].start = filter->offset; 9654 event->addr_filter_ranges[count].size = filter->size; 9655 } 9656 9657 count++; 9658 } 9659 9660 event->addr_filters_gen++; 9661 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9662 9663 if (ifh->nr_file_filters) { 9664 up_read(&mm->mmap_sem); 9665 9666 mmput(mm); 9667 } 9668 9669 restart: 9670 perf_event_stop(event, 1); 9671 } 9672 9673 /* 9674 * Address range filtering: limiting the data to certain 9675 * instruction address ranges. Filters are ioctl()ed to us from 9676 * userspace as ascii strings. 9677 * 9678 * Filter string format: 9679 * 9680 * ACTION RANGE_SPEC 9681 * where ACTION is one of the 9682 * * "filter": limit the trace to this region 9683 * * "start": start tracing from this address 9684 * * "stop": stop tracing at this address/region; 9685 * RANGE_SPEC is 9686 * * for kernel addresses: <start address>[/<size>] 9687 * * for object files: <start address>[/<size>]@</path/to/object/file> 9688 * 9689 * if <size> is not specified or is zero, the range is treated as a single 9690 * address; not valid for ACTION=="filter". 9691 */ 9692 enum { 9693 IF_ACT_NONE = -1, 9694 IF_ACT_FILTER, 9695 IF_ACT_START, 9696 IF_ACT_STOP, 9697 IF_SRC_FILE, 9698 IF_SRC_KERNEL, 9699 IF_SRC_FILEADDR, 9700 IF_SRC_KERNELADDR, 9701 }; 9702 9703 enum { 9704 IF_STATE_ACTION = 0, 9705 IF_STATE_SOURCE, 9706 IF_STATE_END, 9707 }; 9708 9709 static const match_table_t if_tokens = { 9710 { IF_ACT_FILTER, "filter" }, 9711 { IF_ACT_START, "start" }, 9712 { IF_ACT_STOP, "stop" }, 9713 { IF_SRC_FILE, "%u/%u@%s" }, 9714 { IF_SRC_KERNEL, "%u/%u" }, 9715 { IF_SRC_FILEADDR, "%u@%s" }, 9716 { IF_SRC_KERNELADDR, "%u" }, 9717 { IF_ACT_NONE, NULL }, 9718 }; 9719 9720 /* 9721 * Address filter string parser 9722 */ 9723 static int 9724 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9725 struct list_head *filters) 9726 { 9727 struct perf_addr_filter *filter = NULL; 9728 char *start, *orig, *filename = NULL; 9729 substring_t args[MAX_OPT_ARGS]; 9730 int state = IF_STATE_ACTION, token; 9731 unsigned int kernel = 0; 9732 int ret = -EINVAL; 9733 9734 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9735 if (!fstr) 9736 return -ENOMEM; 9737 9738 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9739 static const enum perf_addr_filter_action_t actions[] = { 9740 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9741 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9742 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9743 }; 9744 ret = -EINVAL; 9745 9746 if (!*start) 9747 continue; 9748 9749 /* filter definition begins */ 9750 if (state == IF_STATE_ACTION) { 9751 filter = perf_addr_filter_new(event, filters); 9752 if (!filter) 9753 goto fail; 9754 } 9755 9756 token = match_token(start, if_tokens, args); 9757 switch (token) { 9758 case IF_ACT_FILTER: 9759 case IF_ACT_START: 9760 case IF_ACT_STOP: 9761 if (state != IF_STATE_ACTION) 9762 goto fail; 9763 9764 filter->action = actions[token]; 9765 state = IF_STATE_SOURCE; 9766 break; 9767 9768 case IF_SRC_KERNELADDR: 9769 case IF_SRC_KERNEL: 9770 kernel = 1; 9771 /* fall through */ 9772 9773 case IF_SRC_FILEADDR: 9774 case IF_SRC_FILE: 9775 if (state != IF_STATE_SOURCE) 9776 goto fail; 9777 9778 *args[0].to = 0; 9779 ret = kstrtoul(args[0].from, 0, &filter->offset); 9780 if (ret) 9781 goto fail; 9782 9783 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9784 *args[1].to = 0; 9785 ret = kstrtoul(args[1].from, 0, &filter->size); 9786 if (ret) 9787 goto fail; 9788 } 9789 9790 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9791 int fpos = token == IF_SRC_FILE ? 2 : 1; 9792 9793 filename = match_strdup(&args[fpos]); 9794 if (!filename) { 9795 ret = -ENOMEM; 9796 goto fail; 9797 } 9798 } 9799 9800 state = IF_STATE_END; 9801 break; 9802 9803 default: 9804 goto fail; 9805 } 9806 9807 /* 9808 * Filter definition is fully parsed, validate and install it. 9809 * Make sure that it doesn't contradict itself or the event's 9810 * attribute. 9811 */ 9812 if (state == IF_STATE_END) { 9813 ret = -EINVAL; 9814 if (kernel && event->attr.exclude_kernel) 9815 goto fail; 9816 9817 /* 9818 * ACTION "filter" must have a non-zero length region 9819 * specified. 9820 */ 9821 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9822 !filter->size) 9823 goto fail; 9824 9825 if (!kernel) { 9826 if (!filename) 9827 goto fail; 9828 9829 /* 9830 * For now, we only support file-based filters 9831 * in per-task events; doing so for CPU-wide 9832 * events requires additional context switching 9833 * trickery, since same object code will be 9834 * mapped at different virtual addresses in 9835 * different processes. 9836 */ 9837 ret = -EOPNOTSUPP; 9838 if (!event->ctx->task) 9839 goto fail_free_name; 9840 9841 /* look up the path and grab its inode */ 9842 ret = kern_path(filename, LOOKUP_FOLLOW, 9843 &filter->path); 9844 if (ret) 9845 goto fail_free_name; 9846 9847 kfree(filename); 9848 filename = NULL; 9849 9850 ret = -EINVAL; 9851 if (!filter->path.dentry || 9852 !S_ISREG(d_inode(filter->path.dentry) 9853 ->i_mode)) 9854 goto fail; 9855 9856 event->addr_filters.nr_file_filters++; 9857 } 9858 9859 /* ready to consume more filters */ 9860 state = IF_STATE_ACTION; 9861 filter = NULL; 9862 } 9863 } 9864 9865 if (state != IF_STATE_ACTION) 9866 goto fail; 9867 9868 kfree(orig); 9869 9870 return 0; 9871 9872 fail_free_name: 9873 kfree(filename); 9874 fail: 9875 free_filters_list(filters); 9876 kfree(orig); 9877 9878 return ret; 9879 } 9880 9881 static int 9882 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9883 { 9884 LIST_HEAD(filters); 9885 int ret; 9886 9887 /* 9888 * Since this is called in perf_ioctl() path, we're already holding 9889 * ctx::mutex. 9890 */ 9891 lockdep_assert_held(&event->ctx->mutex); 9892 9893 if (WARN_ON_ONCE(event->parent)) 9894 return -EINVAL; 9895 9896 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9897 if (ret) 9898 goto fail_clear_files; 9899 9900 ret = event->pmu->addr_filters_validate(&filters); 9901 if (ret) 9902 goto fail_free_filters; 9903 9904 /* remove existing filters, if any */ 9905 perf_addr_filters_splice(event, &filters); 9906 9907 /* install new filters */ 9908 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9909 9910 return ret; 9911 9912 fail_free_filters: 9913 free_filters_list(&filters); 9914 9915 fail_clear_files: 9916 event->addr_filters.nr_file_filters = 0; 9917 9918 return ret; 9919 } 9920 9921 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9922 { 9923 int ret = -EINVAL; 9924 char *filter_str; 9925 9926 filter_str = strndup_user(arg, PAGE_SIZE); 9927 if (IS_ERR(filter_str)) 9928 return PTR_ERR(filter_str); 9929 9930 #ifdef CONFIG_EVENT_TRACING 9931 if (perf_event_is_tracing(event)) { 9932 struct perf_event_context *ctx = event->ctx; 9933 9934 /* 9935 * Beware, here be dragons!! 9936 * 9937 * the tracepoint muck will deadlock against ctx->mutex, but 9938 * the tracepoint stuff does not actually need it. So 9939 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9940 * already have a reference on ctx. 9941 * 9942 * This can result in event getting moved to a different ctx, 9943 * but that does not affect the tracepoint state. 9944 */ 9945 mutex_unlock(&ctx->mutex); 9946 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9947 mutex_lock(&ctx->mutex); 9948 } else 9949 #endif 9950 if (has_addr_filter(event)) 9951 ret = perf_event_set_addr_filter(event, filter_str); 9952 9953 kfree(filter_str); 9954 return ret; 9955 } 9956 9957 /* 9958 * hrtimer based swevent callback 9959 */ 9960 9961 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9962 { 9963 enum hrtimer_restart ret = HRTIMER_RESTART; 9964 struct perf_sample_data data; 9965 struct pt_regs *regs; 9966 struct perf_event *event; 9967 u64 period; 9968 9969 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9970 9971 if (event->state != PERF_EVENT_STATE_ACTIVE) 9972 return HRTIMER_NORESTART; 9973 9974 event->pmu->read(event); 9975 9976 perf_sample_data_init(&data, 0, event->hw.last_period); 9977 regs = get_irq_regs(); 9978 9979 if (regs && !perf_exclude_event(event, regs)) { 9980 if (!(event->attr.exclude_idle && is_idle_task(current))) 9981 if (__perf_event_overflow(event, 1, &data, regs)) 9982 ret = HRTIMER_NORESTART; 9983 } 9984 9985 period = max_t(u64, 10000, event->hw.sample_period); 9986 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9987 9988 return ret; 9989 } 9990 9991 static void perf_swevent_start_hrtimer(struct perf_event *event) 9992 { 9993 struct hw_perf_event *hwc = &event->hw; 9994 s64 period; 9995 9996 if (!is_sampling_event(event)) 9997 return; 9998 9999 period = local64_read(&hwc->period_left); 10000 if (period) { 10001 if (period < 0) 10002 period = 10000; 10003 10004 local64_set(&hwc->period_left, 0); 10005 } else { 10006 period = max_t(u64, 10000, hwc->sample_period); 10007 } 10008 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10009 HRTIMER_MODE_REL_PINNED_HARD); 10010 } 10011 10012 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10013 { 10014 struct hw_perf_event *hwc = &event->hw; 10015 10016 if (is_sampling_event(event)) { 10017 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10018 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10019 10020 hrtimer_cancel(&hwc->hrtimer); 10021 } 10022 } 10023 10024 static void perf_swevent_init_hrtimer(struct perf_event *event) 10025 { 10026 struct hw_perf_event *hwc = &event->hw; 10027 10028 if (!is_sampling_event(event)) 10029 return; 10030 10031 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10032 hwc->hrtimer.function = perf_swevent_hrtimer; 10033 10034 /* 10035 * Since hrtimers have a fixed rate, we can do a static freq->period 10036 * mapping and avoid the whole period adjust feedback stuff. 10037 */ 10038 if (event->attr.freq) { 10039 long freq = event->attr.sample_freq; 10040 10041 event->attr.sample_period = NSEC_PER_SEC / freq; 10042 hwc->sample_period = event->attr.sample_period; 10043 local64_set(&hwc->period_left, hwc->sample_period); 10044 hwc->last_period = hwc->sample_period; 10045 event->attr.freq = 0; 10046 } 10047 } 10048 10049 /* 10050 * Software event: cpu wall time clock 10051 */ 10052 10053 static void cpu_clock_event_update(struct perf_event *event) 10054 { 10055 s64 prev; 10056 u64 now; 10057 10058 now = local_clock(); 10059 prev = local64_xchg(&event->hw.prev_count, now); 10060 local64_add(now - prev, &event->count); 10061 } 10062 10063 static void cpu_clock_event_start(struct perf_event *event, int flags) 10064 { 10065 local64_set(&event->hw.prev_count, local_clock()); 10066 perf_swevent_start_hrtimer(event); 10067 } 10068 10069 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10070 { 10071 perf_swevent_cancel_hrtimer(event); 10072 cpu_clock_event_update(event); 10073 } 10074 10075 static int cpu_clock_event_add(struct perf_event *event, int flags) 10076 { 10077 if (flags & PERF_EF_START) 10078 cpu_clock_event_start(event, flags); 10079 perf_event_update_userpage(event); 10080 10081 return 0; 10082 } 10083 10084 static void cpu_clock_event_del(struct perf_event *event, int flags) 10085 { 10086 cpu_clock_event_stop(event, flags); 10087 } 10088 10089 static void cpu_clock_event_read(struct perf_event *event) 10090 { 10091 cpu_clock_event_update(event); 10092 } 10093 10094 static int cpu_clock_event_init(struct perf_event *event) 10095 { 10096 if (event->attr.type != PERF_TYPE_SOFTWARE) 10097 return -ENOENT; 10098 10099 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10100 return -ENOENT; 10101 10102 /* 10103 * no branch sampling for software events 10104 */ 10105 if (has_branch_stack(event)) 10106 return -EOPNOTSUPP; 10107 10108 perf_swevent_init_hrtimer(event); 10109 10110 return 0; 10111 } 10112 10113 static struct pmu perf_cpu_clock = { 10114 .task_ctx_nr = perf_sw_context, 10115 10116 .capabilities = PERF_PMU_CAP_NO_NMI, 10117 10118 .event_init = cpu_clock_event_init, 10119 .add = cpu_clock_event_add, 10120 .del = cpu_clock_event_del, 10121 .start = cpu_clock_event_start, 10122 .stop = cpu_clock_event_stop, 10123 .read = cpu_clock_event_read, 10124 }; 10125 10126 /* 10127 * Software event: task time clock 10128 */ 10129 10130 static void task_clock_event_update(struct perf_event *event, u64 now) 10131 { 10132 u64 prev; 10133 s64 delta; 10134 10135 prev = local64_xchg(&event->hw.prev_count, now); 10136 delta = now - prev; 10137 local64_add(delta, &event->count); 10138 } 10139 10140 static void task_clock_event_start(struct perf_event *event, int flags) 10141 { 10142 local64_set(&event->hw.prev_count, event->ctx->time); 10143 perf_swevent_start_hrtimer(event); 10144 } 10145 10146 static void task_clock_event_stop(struct perf_event *event, int flags) 10147 { 10148 perf_swevent_cancel_hrtimer(event); 10149 task_clock_event_update(event, event->ctx->time); 10150 } 10151 10152 static int task_clock_event_add(struct perf_event *event, int flags) 10153 { 10154 if (flags & PERF_EF_START) 10155 task_clock_event_start(event, flags); 10156 perf_event_update_userpage(event); 10157 10158 return 0; 10159 } 10160 10161 static void task_clock_event_del(struct perf_event *event, int flags) 10162 { 10163 task_clock_event_stop(event, PERF_EF_UPDATE); 10164 } 10165 10166 static void task_clock_event_read(struct perf_event *event) 10167 { 10168 u64 now = perf_clock(); 10169 u64 delta = now - event->ctx->timestamp; 10170 u64 time = event->ctx->time + delta; 10171 10172 task_clock_event_update(event, time); 10173 } 10174 10175 static int task_clock_event_init(struct perf_event *event) 10176 { 10177 if (event->attr.type != PERF_TYPE_SOFTWARE) 10178 return -ENOENT; 10179 10180 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10181 return -ENOENT; 10182 10183 /* 10184 * no branch sampling for software events 10185 */ 10186 if (has_branch_stack(event)) 10187 return -EOPNOTSUPP; 10188 10189 perf_swevent_init_hrtimer(event); 10190 10191 return 0; 10192 } 10193 10194 static struct pmu perf_task_clock = { 10195 .task_ctx_nr = perf_sw_context, 10196 10197 .capabilities = PERF_PMU_CAP_NO_NMI, 10198 10199 .event_init = task_clock_event_init, 10200 .add = task_clock_event_add, 10201 .del = task_clock_event_del, 10202 .start = task_clock_event_start, 10203 .stop = task_clock_event_stop, 10204 .read = task_clock_event_read, 10205 }; 10206 10207 static void perf_pmu_nop_void(struct pmu *pmu) 10208 { 10209 } 10210 10211 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10212 { 10213 } 10214 10215 static int perf_pmu_nop_int(struct pmu *pmu) 10216 { 10217 return 0; 10218 } 10219 10220 static int perf_event_nop_int(struct perf_event *event, u64 value) 10221 { 10222 return 0; 10223 } 10224 10225 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10226 10227 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10228 { 10229 __this_cpu_write(nop_txn_flags, flags); 10230 10231 if (flags & ~PERF_PMU_TXN_ADD) 10232 return; 10233 10234 perf_pmu_disable(pmu); 10235 } 10236 10237 static int perf_pmu_commit_txn(struct pmu *pmu) 10238 { 10239 unsigned int flags = __this_cpu_read(nop_txn_flags); 10240 10241 __this_cpu_write(nop_txn_flags, 0); 10242 10243 if (flags & ~PERF_PMU_TXN_ADD) 10244 return 0; 10245 10246 perf_pmu_enable(pmu); 10247 return 0; 10248 } 10249 10250 static void perf_pmu_cancel_txn(struct pmu *pmu) 10251 { 10252 unsigned int flags = __this_cpu_read(nop_txn_flags); 10253 10254 __this_cpu_write(nop_txn_flags, 0); 10255 10256 if (flags & ~PERF_PMU_TXN_ADD) 10257 return; 10258 10259 perf_pmu_enable(pmu); 10260 } 10261 10262 static int perf_event_idx_default(struct perf_event *event) 10263 { 10264 return 0; 10265 } 10266 10267 /* 10268 * Ensures all contexts with the same task_ctx_nr have the same 10269 * pmu_cpu_context too. 10270 */ 10271 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10272 { 10273 struct pmu *pmu; 10274 10275 if (ctxn < 0) 10276 return NULL; 10277 10278 list_for_each_entry(pmu, &pmus, entry) { 10279 if (pmu->task_ctx_nr == ctxn) 10280 return pmu->pmu_cpu_context; 10281 } 10282 10283 return NULL; 10284 } 10285 10286 static void free_pmu_context(struct pmu *pmu) 10287 { 10288 /* 10289 * Static contexts such as perf_sw_context have a global lifetime 10290 * and may be shared between different PMUs. Avoid freeing them 10291 * when a single PMU is going away. 10292 */ 10293 if (pmu->task_ctx_nr > perf_invalid_context) 10294 return; 10295 10296 free_percpu(pmu->pmu_cpu_context); 10297 } 10298 10299 /* 10300 * Let userspace know that this PMU supports address range filtering: 10301 */ 10302 static ssize_t nr_addr_filters_show(struct device *dev, 10303 struct device_attribute *attr, 10304 char *page) 10305 { 10306 struct pmu *pmu = dev_get_drvdata(dev); 10307 10308 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10309 } 10310 DEVICE_ATTR_RO(nr_addr_filters); 10311 10312 static struct idr pmu_idr; 10313 10314 static ssize_t 10315 type_show(struct device *dev, struct device_attribute *attr, char *page) 10316 { 10317 struct pmu *pmu = dev_get_drvdata(dev); 10318 10319 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10320 } 10321 static DEVICE_ATTR_RO(type); 10322 10323 static ssize_t 10324 perf_event_mux_interval_ms_show(struct device *dev, 10325 struct device_attribute *attr, 10326 char *page) 10327 { 10328 struct pmu *pmu = dev_get_drvdata(dev); 10329 10330 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10331 } 10332 10333 static DEFINE_MUTEX(mux_interval_mutex); 10334 10335 static ssize_t 10336 perf_event_mux_interval_ms_store(struct device *dev, 10337 struct device_attribute *attr, 10338 const char *buf, size_t count) 10339 { 10340 struct pmu *pmu = dev_get_drvdata(dev); 10341 int timer, cpu, ret; 10342 10343 ret = kstrtoint(buf, 0, &timer); 10344 if (ret) 10345 return ret; 10346 10347 if (timer < 1) 10348 return -EINVAL; 10349 10350 /* same value, noting to do */ 10351 if (timer == pmu->hrtimer_interval_ms) 10352 return count; 10353 10354 mutex_lock(&mux_interval_mutex); 10355 pmu->hrtimer_interval_ms = timer; 10356 10357 /* update all cpuctx for this PMU */ 10358 cpus_read_lock(); 10359 for_each_online_cpu(cpu) { 10360 struct perf_cpu_context *cpuctx; 10361 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10362 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10363 10364 cpu_function_call(cpu, 10365 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10366 } 10367 cpus_read_unlock(); 10368 mutex_unlock(&mux_interval_mutex); 10369 10370 return count; 10371 } 10372 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10373 10374 static struct attribute *pmu_dev_attrs[] = { 10375 &dev_attr_type.attr, 10376 &dev_attr_perf_event_mux_interval_ms.attr, 10377 NULL, 10378 }; 10379 ATTRIBUTE_GROUPS(pmu_dev); 10380 10381 static int pmu_bus_running; 10382 static struct bus_type pmu_bus = { 10383 .name = "event_source", 10384 .dev_groups = pmu_dev_groups, 10385 }; 10386 10387 static void pmu_dev_release(struct device *dev) 10388 { 10389 kfree(dev); 10390 } 10391 10392 static int pmu_dev_alloc(struct pmu *pmu) 10393 { 10394 int ret = -ENOMEM; 10395 10396 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10397 if (!pmu->dev) 10398 goto out; 10399 10400 pmu->dev->groups = pmu->attr_groups; 10401 device_initialize(pmu->dev); 10402 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10403 if (ret) 10404 goto free_dev; 10405 10406 dev_set_drvdata(pmu->dev, pmu); 10407 pmu->dev->bus = &pmu_bus; 10408 pmu->dev->release = pmu_dev_release; 10409 ret = device_add(pmu->dev); 10410 if (ret) 10411 goto free_dev; 10412 10413 /* For PMUs with address filters, throw in an extra attribute: */ 10414 if (pmu->nr_addr_filters) 10415 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10416 10417 if (ret) 10418 goto del_dev; 10419 10420 if (pmu->attr_update) 10421 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10422 10423 if (ret) 10424 goto del_dev; 10425 10426 out: 10427 return ret; 10428 10429 del_dev: 10430 device_del(pmu->dev); 10431 10432 free_dev: 10433 put_device(pmu->dev); 10434 goto out; 10435 } 10436 10437 static struct lock_class_key cpuctx_mutex; 10438 static struct lock_class_key cpuctx_lock; 10439 10440 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10441 { 10442 int cpu, ret, max = PERF_TYPE_MAX; 10443 10444 mutex_lock(&pmus_lock); 10445 ret = -ENOMEM; 10446 pmu->pmu_disable_count = alloc_percpu(int); 10447 if (!pmu->pmu_disable_count) 10448 goto unlock; 10449 10450 pmu->type = -1; 10451 if (!name) 10452 goto skip_type; 10453 pmu->name = name; 10454 10455 if (type != PERF_TYPE_SOFTWARE) { 10456 if (type >= 0) 10457 max = type; 10458 10459 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10460 if (ret < 0) 10461 goto free_pdc; 10462 10463 WARN_ON(type >= 0 && ret != type); 10464 10465 type = ret; 10466 } 10467 pmu->type = type; 10468 10469 if (pmu_bus_running) { 10470 ret = pmu_dev_alloc(pmu); 10471 if (ret) 10472 goto free_idr; 10473 } 10474 10475 skip_type: 10476 if (pmu->task_ctx_nr == perf_hw_context) { 10477 static int hw_context_taken = 0; 10478 10479 /* 10480 * Other than systems with heterogeneous CPUs, it never makes 10481 * sense for two PMUs to share perf_hw_context. PMUs which are 10482 * uncore must use perf_invalid_context. 10483 */ 10484 if (WARN_ON_ONCE(hw_context_taken && 10485 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10486 pmu->task_ctx_nr = perf_invalid_context; 10487 10488 hw_context_taken = 1; 10489 } 10490 10491 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10492 if (pmu->pmu_cpu_context) 10493 goto got_cpu_context; 10494 10495 ret = -ENOMEM; 10496 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10497 if (!pmu->pmu_cpu_context) 10498 goto free_dev; 10499 10500 for_each_possible_cpu(cpu) { 10501 struct perf_cpu_context *cpuctx; 10502 10503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10504 __perf_event_init_context(&cpuctx->ctx); 10505 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10506 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10507 cpuctx->ctx.pmu = pmu; 10508 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10509 10510 __perf_mux_hrtimer_init(cpuctx, cpu); 10511 10512 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10513 cpuctx->heap = cpuctx->heap_default; 10514 } 10515 10516 got_cpu_context: 10517 if (!pmu->start_txn) { 10518 if (pmu->pmu_enable) { 10519 /* 10520 * If we have pmu_enable/pmu_disable calls, install 10521 * transaction stubs that use that to try and batch 10522 * hardware accesses. 10523 */ 10524 pmu->start_txn = perf_pmu_start_txn; 10525 pmu->commit_txn = perf_pmu_commit_txn; 10526 pmu->cancel_txn = perf_pmu_cancel_txn; 10527 } else { 10528 pmu->start_txn = perf_pmu_nop_txn; 10529 pmu->commit_txn = perf_pmu_nop_int; 10530 pmu->cancel_txn = perf_pmu_nop_void; 10531 } 10532 } 10533 10534 if (!pmu->pmu_enable) { 10535 pmu->pmu_enable = perf_pmu_nop_void; 10536 pmu->pmu_disable = perf_pmu_nop_void; 10537 } 10538 10539 if (!pmu->check_period) 10540 pmu->check_period = perf_event_nop_int; 10541 10542 if (!pmu->event_idx) 10543 pmu->event_idx = perf_event_idx_default; 10544 10545 /* 10546 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10547 * since these cannot be in the IDR. This way the linear search 10548 * is fast, provided a valid software event is provided. 10549 */ 10550 if (type == PERF_TYPE_SOFTWARE || !name) 10551 list_add_rcu(&pmu->entry, &pmus); 10552 else 10553 list_add_tail_rcu(&pmu->entry, &pmus); 10554 10555 atomic_set(&pmu->exclusive_cnt, 0); 10556 ret = 0; 10557 unlock: 10558 mutex_unlock(&pmus_lock); 10559 10560 return ret; 10561 10562 free_dev: 10563 device_del(pmu->dev); 10564 put_device(pmu->dev); 10565 10566 free_idr: 10567 if (pmu->type != PERF_TYPE_SOFTWARE) 10568 idr_remove(&pmu_idr, pmu->type); 10569 10570 free_pdc: 10571 free_percpu(pmu->pmu_disable_count); 10572 goto unlock; 10573 } 10574 EXPORT_SYMBOL_GPL(perf_pmu_register); 10575 10576 void perf_pmu_unregister(struct pmu *pmu) 10577 { 10578 mutex_lock(&pmus_lock); 10579 list_del_rcu(&pmu->entry); 10580 10581 /* 10582 * We dereference the pmu list under both SRCU and regular RCU, so 10583 * synchronize against both of those. 10584 */ 10585 synchronize_srcu(&pmus_srcu); 10586 synchronize_rcu(); 10587 10588 free_percpu(pmu->pmu_disable_count); 10589 if (pmu->type != PERF_TYPE_SOFTWARE) 10590 idr_remove(&pmu_idr, pmu->type); 10591 if (pmu_bus_running) { 10592 if (pmu->nr_addr_filters) 10593 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10594 device_del(pmu->dev); 10595 put_device(pmu->dev); 10596 } 10597 free_pmu_context(pmu); 10598 mutex_unlock(&pmus_lock); 10599 } 10600 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10601 10602 static inline bool has_extended_regs(struct perf_event *event) 10603 { 10604 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10605 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10606 } 10607 10608 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10609 { 10610 struct perf_event_context *ctx = NULL; 10611 int ret; 10612 10613 if (!try_module_get(pmu->module)) 10614 return -ENODEV; 10615 10616 /* 10617 * A number of pmu->event_init() methods iterate the sibling_list to, 10618 * for example, validate if the group fits on the PMU. Therefore, 10619 * if this is a sibling event, acquire the ctx->mutex to protect 10620 * the sibling_list. 10621 */ 10622 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10623 /* 10624 * This ctx->mutex can nest when we're called through 10625 * inheritance. See the perf_event_ctx_lock_nested() comment. 10626 */ 10627 ctx = perf_event_ctx_lock_nested(event->group_leader, 10628 SINGLE_DEPTH_NESTING); 10629 BUG_ON(!ctx); 10630 } 10631 10632 event->pmu = pmu; 10633 ret = pmu->event_init(event); 10634 10635 if (ctx) 10636 perf_event_ctx_unlock(event->group_leader, ctx); 10637 10638 if (!ret) { 10639 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10640 has_extended_regs(event)) 10641 ret = -EOPNOTSUPP; 10642 10643 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10644 event_has_any_exclude_flag(event)) 10645 ret = -EINVAL; 10646 10647 if (ret && event->destroy) 10648 event->destroy(event); 10649 } 10650 10651 if (ret) 10652 module_put(pmu->module); 10653 10654 return ret; 10655 } 10656 10657 static struct pmu *perf_init_event(struct perf_event *event) 10658 { 10659 int idx, type, ret; 10660 struct pmu *pmu; 10661 10662 idx = srcu_read_lock(&pmus_srcu); 10663 10664 /* Try parent's PMU first: */ 10665 if (event->parent && event->parent->pmu) { 10666 pmu = event->parent->pmu; 10667 ret = perf_try_init_event(pmu, event); 10668 if (!ret) 10669 goto unlock; 10670 } 10671 10672 /* 10673 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10674 * are often aliases for PERF_TYPE_RAW. 10675 */ 10676 type = event->attr.type; 10677 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10678 type = PERF_TYPE_RAW; 10679 10680 again: 10681 rcu_read_lock(); 10682 pmu = idr_find(&pmu_idr, type); 10683 rcu_read_unlock(); 10684 if (pmu) { 10685 ret = perf_try_init_event(pmu, event); 10686 if (ret == -ENOENT && event->attr.type != type) { 10687 type = event->attr.type; 10688 goto again; 10689 } 10690 10691 if (ret) 10692 pmu = ERR_PTR(ret); 10693 10694 goto unlock; 10695 } 10696 10697 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10698 ret = perf_try_init_event(pmu, event); 10699 if (!ret) 10700 goto unlock; 10701 10702 if (ret != -ENOENT) { 10703 pmu = ERR_PTR(ret); 10704 goto unlock; 10705 } 10706 } 10707 pmu = ERR_PTR(-ENOENT); 10708 unlock: 10709 srcu_read_unlock(&pmus_srcu, idx); 10710 10711 return pmu; 10712 } 10713 10714 static void attach_sb_event(struct perf_event *event) 10715 { 10716 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10717 10718 raw_spin_lock(&pel->lock); 10719 list_add_rcu(&event->sb_list, &pel->list); 10720 raw_spin_unlock(&pel->lock); 10721 } 10722 10723 /* 10724 * We keep a list of all !task (and therefore per-cpu) events 10725 * that need to receive side-band records. 10726 * 10727 * This avoids having to scan all the various PMU per-cpu contexts 10728 * looking for them. 10729 */ 10730 static void account_pmu_sb_event(struct perf_event *event) 10731 { 10732 if (is_sb_event(event)) 10733 attach_sb_event(event); 10734 } 10735 10736 static void account_event_cpu(struct perf_event *event, int cpu) 10737 { 10738 if (event->parent) 10739 return; 10740 10741 if (is_cgroup_event(event)) 10742 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10743 } 10744 10745 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10746 static void account_freq_event_nohz(void) 10747 { 10748 #ifdef CONFIG_NO_HZ_FULL 10749 /* Lock so we don't race with concurrent unaccount */ 10750 spin_lock(&nr_freq_lock); 10751 if (atomic_inc_return(&nr_freq_events) == 1) 10752 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10753 spin_unlock(&nr_freq_lock); 10754 #endif 10755 } 10756 10757 static void account_freq_event(void) 10758 { 10759 if (tick_nohz_full_enabled()) 10760 account_freq_event_nohz(); 10761 else 10762 atomic_inc(&nr_freq_events); 10763 } 10764 10765 10766 static void account_event(struct perf_event *event) 10767 { 10768 bool inc = false; 10769 10770 if (event->parent) 10771 return; 10772 10773 if (event->attach_state & PERF_ATTACH_TASK) 10774 inc = true; 10775 if (event->attr.mmap || event->attr.mmap_data) 10776 atomic_inc(&nr_mmap_events); 10777 if (event->attr.comm) 10778 atomic_inc(&nr_comm_events); 10779 if (event->attr.namespaces) 10780 atomic_inc(&nr_namespaces_events); 10781 if (event->attr.task) 10782 atomic_inc(&nr_task_events); 10783 if (event->attr.freq) 10784 account_freq_event(); 10785 if (event->attr.context_switch) { 10786 atomic_inc(&nr_switch_events); 10787 inc = true; 10788 } 10789 if (has_branch_stack(event)) 10790 inc = true; 10791 if (is_cgroup_event(event)) 10792 inc = true; 10793 if (event->attr.ksymbol) 10794 atomic_inc(&nr_ksymbol_events); 10795 if (event->attr.bpf_event) 10796 atomic_inc(&nr_bpf_events); 10797 10798 if (inc) { 10799 /* 10800 * We need the mutex here because static_branch_enable() 10801 * must complete *before* the perf_sched_count increment 10802 * becomes visible. 10803 */ 10804 if (atomic_inc_not_zero(&perf_sched_count)) 10805 goto enabled; 10806 10807 mutex_lock(&perf_sched_mutex); 10808 if (!atomic_read(&perf_sched_count)) { 10809 static_branch_enable(&perf_sched_events); 10810 /* 10811 * Guarantee that all CPUs observe they key change and 10812 * call the perf scheduling hooks before proceeding to 10813 * install events that need them. 10814 */ 10815 synchronize_rcu(); 10816 } 10817 /* 10818 * Now that we have waited for the sync_sched(), allow further 10819 * increments to by-pass the mutex. 10820 */ 10821 atomic_inc(&perf_sched_count); 10822 mutex_unlock(&perf_sched_mutex); 10823 } 10824 enabled: 10825 10826 account_event_cpu(event, event->cpu); 10827 10828 account_pmu_sb_event(event); 10829 } 10830 10831 /* 10832 * Allocate and initialize an event structure 10833 */ 10834 static struct perf_event * 10835 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10836 struct task_struct *task, 10837 struct perf_event *group_leader, 10838 struct perf_event *parent_event, 10839 perf_overflow_handler_t overflow_handler, 10840 void *context, int cgroup_fd) 10841 { 10842 struct pmu *pmu; 10843 struct perf_event *event; 10844 struct hw_perf_event *hwc; 10845 long err = -EINVAL; 10846 10847 if ((unsigned)cpu >= nr_cpu_ids) { 10848 if (!task || cpu != -1) 10849 return ERR_PTR(-EINVAL); 10850 } 10851 10852 event = kzalloc(sizeof(*event), GFP_KERNEL); 10853 if (!event) 10854 return ERR_PTR(-ENOMEM); 10855 10856 /* 10857 * Single events are their own group leaders, with an 10858 * empty sibling list: 10859 */ 10860 if (!group_leader) 10861 group_leader = event; 10862 10863 mutex_init(&event->child_mutex); 10864 INIT_LIST_HEAD(&event->child_list); 10865 10866 INIT_LIST_HEAD(&event->event_entry); 10867 INIT_LIST_HEAD(&event->sibling_list); 10868 INIT_LIST_HEAD(&event->active_list); 10869 init_event_group(event); 10870 INIT_LIST_HEAD(&event->rb_entry); 10871 INIT_LIST_HEAD(&event->active_entry); 10872 INIT_LIST_HEAD(&event->addr_filters.list); 10873 INIT_HLIST_NODE(&event->hlist_entry); 10874 10875 10876 init_waitqueue_head(&event->waitq); 10877 event->pending_disable = -1; 10878 init_irq_work(&event->pending, perf_pending_event); 10879 10880 mutex_init(&event->mmap_mutex); 10881 raw_spin_lock_init(&event->addr_filters.lock); 10882 10883 atomic_long_set(&event->refcount, 1); 10884 event->cpu = cpu; 10885 event->attr = *attr; 10886 event->group_leader = group_leader; 10887 event->pmu = NULL; 10888 event->oncpu = -1; 10889 10890 event->parent = parent_event; 10891 10892 event->ns = get_pid_ns(task_active_pid_ns(current)); 10893 event->id = atomic64_inc_return(&perf_event_id); 10894 10895 event->state = PERF_EVENT_STATE_INACTIVE; 10896 10897 if (task) { 10898 event->attach_state = PERF_ATTACH_TASK; 10899 /* 10900 * XXX pmu::event_init needs to know what task to account to 10901 * and we cannot use the ctx information because we need the 10902 * pmu before we get a ctx. 10903 */ 10904 event->hw.target = get_task_struct(task); 10905 } 10906 10907 event->clock = &local_clock; 10908 if (parent_event) 10909 event->clock = parent_event->clock; 10910 10911 if (!overflow_handler && parent_event) { 10912 overflow_handler = parent_event->overflow_handler; 10913 context = parent_event->overflow_handler_context; 10914 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10915 if (overflow_handler == bpf_overflow_handler) { 10916 struct bpf_prog *prog = parent_event->prog; 10917 10918 bpf_prog_inc(prog); 10919 event->prog = prog; 10920 event->orig_overflow_handler = 10921 parent_event->orig_overflow_handler; 10922 } 10923 #endif 10924 } 10925 10926 if (overflow_handler) { 10927 event->overflow_handler = overflow_handler; 10928 event->overflow_handler_context = context; 10929 } else if (is_write_backward(event)){ 10930 event->overflow_handler = perf_event_output_backward; 10931 event->overflow_handler_context = NULL; 10932 } else { 10933 event->overflow_handler = perf_event_output_forward; 10934 event->overflow_handler_context = NULL; 10935 } 10936 10937 perf_event__state_init(event); 10938 10939 pmu = NULL; 10940 10941 hwc = &event->hw; 10942 hwc->sample_period = attr->sample_period; 10943 if (attr->freq && attr->sample_freq) 10944 hwc->sample_period = 1; 10945 hwc->last_period = hwc->sample_period; 10946 10947 local64_set(&hwc->period_left, hwc->sample_period); 10948 10949 /* 10950 * We currently do not support PERF_SAMPLE_READ on inherited events. 10951 * See perf_output_read(). 10952 */ 10953 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10954 goto err_ns; 10955 10956 if (!has_branch_stack(event)) 10957 event->attr.branch_sample_type = 0; 10958 10959 pmu = perf_init_event(event); 10960 if (IS_ERR(pmu)) { 10961 err = PTR_ERR(pmu); 10962 goto err_ns; 10963 } 10964 10965 /* 10966 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 10967 * be different on other CPUs in the uncore mask. 10968 */ 10969 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 10970 err = -EINVAL; 10971 goto err_pmu; 10972 } 10973 10974 if (event->attr.aux_output && 10975 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 10976 err = -EOPNOTSUPP; 10977 goto err_pmu; 10978 } 10979 10980 if (cgroup_fd != -1) { 10981 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10982 if (err) 10983 goto err_pmu; 10984 } 10985 10986 err = exclusive_event_init(event); 10987 if (err) 10988 goto err_pmu; 10989 10990 if (has_addr_filter(event)) { 10991 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10992 sizeof(struct perf_addr_filter_range), 10993 GFP_KERNEL); 10994 if (!event->addr_filter_ranges) { 10995 err = -ENOMEM; 10996 goto err_per_task; 10997 } 10998 10999 /* 11000 * Clone the parent's vma offsets: they are valid until exec() 11001 * even if the mm is not shared with the parent. 11002 */ 11003 if (event->parent) { 11004 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11005 11006 raw_spin_lock_irq(&ifh->lock); 11007 memcpy(event->addr_filter_ranges, 11008 event->parent->addr_filter_ranges, 11009 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11010 raw_spin_unlock_irq(&ifh->lock); 11011 } 11012 11013 /* force hw sync on the address filters */ 11014 event->addr_filters_gen = 1; 11015 } 11016 11017 if (!event->parent) { 11018 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11019 err = get_callchain_buffers(attr->sample_max_stack); 11020 if (err) 11021 goto err_addr_filters; 11022 } 11023 } 11024 11025 err = security_perf_event_alloc(event); 11026 if (err) 11027 goto err_callchain_buffer; 11028 11029 /* symmetric to unaccount_event() in _free_event() */ 11030 account_event(event); 11031 11032 return event; 11033 11034 err_callchain_buffer: 11035 if (!event->parent) { 11036 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11037 put_callchain_buffers(); 11038 } 11039 err_addr_filters: 11040 kfree(event->addr_filter_ranges); 11041 11042 err_per_task: 11043 exclusive_event_destroy(event); 11044 11045 err_pmu: 11046 if (is_cgroup_event(event)) 11047 perf_detach_cgroup(event); 11048 if (event->destroy) 11049 event->destroy(event); 11050 module_put(pmu->module); 11051 err_ns: 11052 if (event->ns) 11053 put_pid_ns(event->ns); 11054 if (event->hw.target) 11055 put_task_struct(event->hw.target); 11056 kfree(event); 11057 11058 return ERR_PTR(err); 11059 } 11060 11061 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11062 struct perf_event_attr *attr) 11063 { 11064 u32 size; 11065 int ret; 11066 11067 /* Zero the full structure, so that a short copy will be nice. */ 11068 memset(attr, 0, sizeof(*attr)); 11069 11070 ret = get_user(size, &uattr->size); 11071 if (ret) 11072 return ret; 11073 11074 /* ABI compatibility quirk: */ 11075 if (!size) 11076 size = PERF_ATTR_SIZE_VER0; 11077 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11078 goto err_size; 11079 11080 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11081 if (ret) { 11082 if (ret == -E2BIG) 11083 goto err_size; 11084 return ret; 11085 } 11086 11087 attr->size = size; 11088 11089 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11090 return -EINVAL; 11091 11092 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11093 return -EINVAL; 11094 11095 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11096 return -EINVAL; 11097 11098 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11099 u64 mask = attr->branch_sample_type; 11100 11101 /* only using defined bits */ 11102 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11103 return -EINVAL; 11104 11105 /* at least one branch bit must be set */ 11106 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11107 return -EINVAL; 11108 11109 /* propagate priv level, when not set for branch */ 11110 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11111 11112 /* exclude_kernel checked on syscall entry */ 11113 if (!attr->exclude_kernel) 11114 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11115 11116 if (!attr->exclude_user) 11117 mask |= PERF_SAMPLE_BRANCH_USER; 11118 11119 if (!attr->exclude_hv) 11120 mask |= PERF_SAMPLE_BRANCH_HV; 11121 /* 11122 * adjust user setting (for HW filter setup) 11123 */ 11124 attr->branch_sample_type = mask; 11125 } 11126 /* privileged levels capture (kernel, hv): check permissions */ 11127 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11128 ret = perf_allow_kernel(attr); 11129 if (ret) 11130 return ret; 11131 } 11132 } 11133 11134 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11135 ret = perf_reg_validate(attr->sample_regs_user); 11136 if (ret) 11137 return ret; 11138 } 11139 11140 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11141 if (!arch_perf_have_user_stack_dump()) 11142 return -ENOSYS; 11143 11144 /* 11145 * We have __u32 type for the size, but so far 11146 * we can only use __u16 as maximum due to the 11147 * __u16 sample size limit. 11148 */ 11149 if (attr->sample_stack_user >= USHRT_MAX) 11150 return -EINVAL; 11151 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11152 return -EINVAL; 11153 } 11154 11155 if (!attr->sample_max_stack) 11156 attr->sample_max_stack = sysctl_perf_event_max_stack; 11157 11158 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11159 ret = perf_reg_validate(attr->sample_regs_intr); 11160 out: 11161 return ret; 11162 11163 err_size: 11164 put_user(sizeof(*attr), &uattr->size); 11165 ret = -E2BIG; 11166 goto out; 11167 } 11168 11169 static int 11170 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11171 { 11172 struct perf_buffer *rb = NULL; 11173 int ret = -EINVAL; 11174 11175 if (!output_event) 11176 goto set; 11177 11178 /* don't allow circular references */ 11179 if (event == output_event) 11180 goto out; 11181 11182 /* 11183 * Don't allow cross-cpu buffers 11184 */ 11185 if (output_event->cpu != event->cpu) 11186 goto out; 11187 11188 /* 11189 * If its not a per-cpu rb, it must be the same task. 11190 */ 11191 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11192 goto out; 11193 11194 /* 11195 * Mixing clocks in the same buffer is trouble you don't need. 11196 */ 11197 if (output_event->clock != event->clock) 11198 goto out; 11199 11200 /* 11201 * Either writing ring buffer from beginning or from end. 11202 * Mixing is not allowed. 11203 */ 11204 if (is_write_backward(output_event) != is_write_backward(event)) 11205 goto out; 11206 11207 /* 11208 * If both events generate aux data, they must be on the same PMU 11209 */ 11210 if (has_aux(event) && has_aux(output_event) && 11211 event->pmu != output_event->pmu) 11212 goto out; 11213 11214 set: 11215 mutex_lock(&event->mmap_mutex); 11216 /* Can't redirect output if we've got an active mmap() */ 11217 if (atomic_read(&event->mmap_count)) 11218 goto unlock; 11219 11220 if (output_event) { 11221 /* get the rb we want to redirect to */ 11222 rb = ring_buffer_get(output_event); 11223 if (!rb) 11224 goto unlock; 11225 } 11226 11227 ring_buffer_attach(event, rb); 11228 11229 ret = 0; 11230 unlock: 11231 mutex_unlock(&event->mmap_mutex); 11232 11233 out: 11234 return ret; 11235 } 11236 11237 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11238 { 11239 if (b < a) 11240 swap(a, b); 11241 11242 mutex_lock(a); 11243 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11244 } 11245 11246 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11247 { 11248 bool nmi_safe = false; 11249 11250 switch (clk_id) { 11251 case CLOCK_MONOTONIC: 11252 event->clock = &ktime_get_mono_fast_ns; 11253 nmi_safe = true; 11254 break; 11255 11256 case CLOCK_MONOTONIC_RAW: 11257 event->clock = &ktime_get_raw_fast_ns; 11258 nmi_safe = true; 11259 break; 11260 11261 case CLOCK_REALTIME: 11262 event->clock = &ktime_get_real_ns; 11263 break; 11264 11265 case CLOCK_BOOTTIME: 11266 event->clock = &ktime_get_boottime_ns; 11267 break; 11268 11269 case CLOCK_TAI: 11270 event->clock = &ktime_get_clocktai_ns; 11271 break; 11272 11273 default: 11274 return -EINVAL; 11275 } 11276 11277 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11278 return -EINVAL; 11279 11280 return 0; 11281 } 11282 11283 /* 11284 * Variation on perf_event_ctx_lock_nested(), except we take two context 11285 * mutexes. 11286 */ 11287 static struct perf_event_context * 11288 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11289 struct perf_event_context *ctx) 11290 { 11291 struct perf_event_context *gctx; 11292 11293 again: 11294 rcu_read_lock(); 11295 gctx = READ_ONCE(group_leader->ctx); 11296 if (!refcount_inc_not_zero(&gctx->refcount)) { 11297 rcu_read_unlock(); 11298 goto again; 11299 } 11300 rcu_read_unlock(); 11301 11302 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11303 11304 if (group_leader->ctx != gctx) { 11305 mutex_unlock(&ctx->mutex); 11306 mutex_unlock(&gctx->mutex); 11307 put_ctx(gctx); 11308 goto again; 11309 } 11310 11311 return gctx; 11312 } 11313 11314 /** 11315 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11316 * 11317 * @attr_uptr: event_id type attributes for monitoring/sampling 11318 * @pid: target pid 11319 * @cpu: target cpu 11320 * @group_fd: group leader event fd 11321 */ 11322 SYSCALL_DEFINE5(perf_event_open, 11323 struct perf_event_attr __user *, attr_uptr, 11324 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11325 { 11326 struct perf_event *group_leader = NULL, *output_event = NULL; 11327 struct perf_event *event, *sibling; 11328 struct perf_event_attr attr; 11329 struct perf_event_context *ctx, *uninitialized_var(gctx); 11330 struct file *event_file = NULL; 11331 struct fd group = {NULL, 0}; 11332 struct task_struct *task = NULL; 11333 struct pmu *pmu; 11334 int event_fd; 11335 int move_group = 0; 11336 int err; 11337 int f_flags = O_RDWR; 11338 int cgroup_fd = -1; 11339 11340 /* for future expandability... */ 11341 if (flags & ~PERF_FLAG_ALL) 11342 return -EINVAL; 11343 11344 /* Do we allow access to perf_event_open(2) ? */ 11345 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11346 if (err) 11347 return err; 11348 11349 err = perf_copy_attr(attr_uptr, &attr); 11350 if (err) 11351 return err; 11352 11353 if (!attr.exclude_kernel) { 11354 err = perf_allow_kernel(&attr); 11355 if (err) 11356 return err; 11357 } 11358 11359 if (attr.namespaces) { 11360 if (!capable(CAP_SYS_ADMIN)) 11361 return -EACCES; 11362 } 11363 11364 if (attr.freq) { 11365 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11366 return -EINVAL; 11367 } else { 11368 if (attr.sample_period & (1ULL << 63)) 11369 return -EINVAL; 11370 } 11371 11372 /* Only privileged users can get physical addresses */ 11373 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11374 err = perf_allow_kernel(&attr); 11375 if (err) 11376 return err; 11377 } 11378 11379 err = security_locked_down(LOCKDOWN_PERF); 11380 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11381 /* REGS_INTR can leak data, lockdown must prevent this */ 11382 return err; 11383 11384 err = 0; 11385 11386 /* 11387 * In cgroup mode, the pid argument is used to pass the fd 11388 * opened to the cgroup directory in cgroupfs. The cpu argument 11389 * designates the cpu on which to monitor threads from that 11390 * cgroup. 11391 */ 11392 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11393 return -EINVAL; 11394 11395 if (flags & PERF_FLAG_FD_CLOEXEC) 11396 f_flags |= O_CLOEXEC; 11397 11398 event_fd = get_unused_fd_flags(f_flags); 11399 if (event_fd < 0) 11400 return event_fd; 11401 11402 if (group_fd != -1) { 11403 err = perf_fget_light(group_fd, &group); 11404 if (err) 11405 goto err_fd; 11406 group_leader = group.file->private_data; 11407 if (flags & PERF_FLAG_FD_OUTPUT) 11408 output_event = group_leader; 11409 if (flags & PERF_FLAG_FD_NO_GROUP) 11410 group_leader = NULL; 11411 } 11412 11413 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11414 task = find_lively_task_by_vpid(pid); 11415 if (IS_ERR(task)) { 11416 err = PTR_ERR(task); 11417 goto err_group_fd; 11418 } 11419 } 11420 11421 if (task && group_leader && 11422 group_leader->attr.inherit != attr.inherit) { 11423 err = -EINVAL; 11424 goto err_task; 11425 } 11426 11427 if (task) { 11428 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 11429 if (err) 11430 goto err_task; 11431 11432 /* 11433 * Reuse ptrace permission checks for now. 11434 * 11435 * We must hold cred_guard_mutex across this and any potential 11436 * perf_install_in_context() call for this new event to 11437 * serialize against exec() altering our credentials (and the 11438 * perf_event_exit_task() that could imply). 11439 */ 11440 err = -EACCES; 11441 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11442 goto err_cred; 11443 } 11444 11445 if (flags & PERF_FLAG_PID_CGROUP) 11446 cgroup_fd = pid; 11447 11448 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11449 NULL, NULL, cgroup_fd); 11450 if (IS_ERR(event)) { 11451 err = PTR_ERR(event); 11452 goto err_cred; 11453 } 11454 11455 if (is_sampling_event(event)) { 11456 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11457 err = -EOPNOTSUPP; 11458 goto err_alloc; 11459 } 11460 } 11461 11462 /* 11463 * Special case software events and allow them to be part of 11464 * any hardware group. 11465 */ 11466 pmu = event->pmu; 11467 11468 if (attr.use_clockid) { 11469 err = perf_event_set_clock(event, attr.clockid); 11470 if (err) 11471 goto err_alloc; 11472 } 11473 11474 if (pmu->task_ctx_nr == perf_sw_context) 11475 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11476 11477 if (group_leader) { 11478 if (is_software_event(event) && 11479 !in_software_context(group_leader)) { 11480 /* 11481 * If the event is a sw event, but the group_leader 11482 * is on hw context. 11483 * 11484 * Allow the addition of software events to hw 11485 * groups, this is safe because software events 11486 * never fail to schedule. 11487 */ 11488 pmu = group_leader->ctx->pmu; 11489 } else if (!is_software_event(event) && 11490 is_software_event(group_leader) && 11491 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11492 /* 11493 * In case the group is a pure software group, and we 11494 * try to add a hardware event, move the whole group to 11495 * the hardware context. 11496 */ 11497 move_group = 1; 11498 } 11499 } 11500 11501 /* 11502 * Get the target context (task or percpu): 11503 */ 11504 ctx = find_get_context(pmu, task, event); 11505 if (IS_ERR(ctx)) { 11506 err = PTR_ERR(ctx); 11507 goto err_alloc; 11508 } 11509 11510 /* 11511 * Look up the group leader (we will attach this event to it): 11512 */ 11513 if (group_leader) { 11514 err = -EINVAL; 11515 11516 /* 11517 * Do not allow a recursive hierarchy (this new sibling 11518 * becoming part of another group-sibling): 11519 */ 11520 if (group_leader->group_leader != group_leader) 11521 goto err_context; 11522 11523 /* All events in a group should have the same clock */ 11524 if (group_leader->clock != event->clock) 11525 goto err_context; 11526 11527 /* 11528 * Make sure we're both events for the same CPU; 11529 * grouping events for different CPUs is broken; since 11530 * you can never concurrently schedule them anyhow. 11531 */ 11532 if (group_leader->cpu != event->cpu) 11533 goto err_context; 11534 11535 /* 11536 * Make sure we're both on the same task, or both 11537 * per-CPU events. 11538 */ 11539 if (group_leader->ctx->task != ctx->task) 11540 goto err_context; 11541 11542 /* 11543 * Do not allow to attach to a group in a different task 11544 * or CPU context. If we're moving SW events, we'll fix 11545 * this up later, so allow that. 11546 */ 11547 if (!move_group && group_leader->ctx != ctx) 11548 goto err_context; 11549 11550 /* 11551 * Only a group leader can be exclusive or pinned 11552 */ 11553 if (attr.exclusive || attr.pinned) 11554 goto err_context; 11555 } 11556 11557 if (output_event) { 11558 err = perf_event_set_output(event, output_event); 11559 if (err) 11560 goto err_context; 11561 } 11562 11563 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11564 f_flags); 11565 if (IS_ERR(event_file)) { 11566 err = PTR_ERR(event_file); 11567 event_file = NULL; 11568 goto err_context; 11569 } 11570 11571 if (move_group) { 11572 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11573 11574 if (gctx->task == TASK_TOMBSTONE) { 11575 err = -ESRCH; 11576 goto err_locked; 11577 } 11578 11579 /* 11580 * Check if we raced against another sys_perf_event_open() call 11581 * moving the software group underneath us. 11582 */ 11583 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11584 /* 11585 * If someone moved the group out from under us, check 11586 * if this new event wound up on the same ctx, if so 11587 * its the regular !move_group case, otherwise fail. 11588 */ 11589 if (gctx != ctx) { 11590 err = -EINVAL; 11591 goto err_locked; 11592 } else { 11593 perf_event_ctx_unlock(group_leader, gctx); 11594 move_group = 0; 11595 } 11596 } 11597 11598 /* 11599 * Failure to create exclusive events returns -EBUSY. 11600 */ 11601 err = -EBUSY; 11602 if (!exclusive_event_installable(group_leader, ctx)) 11603 goto err_locked; 11604 11605 for_each_sibling_event(sibling, group_leader) { 11606 if (!exclusive_event_installable(sibling, ctx)) 11607 goto err_locked; 11608 } 11609 } else { 11610 mutex_lock(&ctx->mutex); 11611 } 11612 11613 if (ctx->task == TASK_TOMBSTONE) { 11614 err = -ESRCH; 11615 goto err_locked; 11616 } 11617 11618 if (!perf_event_validate_size(event)) { 11619 err = -E2BIG; 11620 goto err_locked; 11621 } 11622 11623 if (!task) { 11624 /* 11625 * Check if the @cpu we're creating an event for is online. 11626 * 11627 * We use the perf_cpu_context::ctx::mutex to serialize against 11628 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11629 */ 11630 struct perf_cpu_context *cpuctx = 11631 container_of(ctx, struct perf_cpu_context, ctx); 11632 11633 if (!cpuctx->online) { 11634 err = -ENODEV; 11635 goto err_locked; 11636 } 11637 } 11638 11639 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11640 err = -EINVAL; 11641 goto err_locked; 11642 } 11643 11644 /* 11645 * Must be under the same ctx::mutex as perf_install_in_context(), 11646 * because we need to serialize with concurrent event creation. 11647 */ 11648 if (!exclusive_event_installable(event, ctx)) { 11649 err = -EBUSY; 11650 goto err_locked; 11651 } 11652 11653 WARN_ON_ONCE(ctx->parent_ctx); 11654 11655 /* 11656 * This is the point on no return; we cannot fail hereafter. This is 11657 * where we start modifying current state. 11658 */ 11659 11660 if (move_group) { 11661 /* 11662 * See perf_event_ctx_lock() for comments on the details 11663 * of swizzling perf_event::ctx. 11664 */ 11665 perf_remove_from_context(group_leader, 0); 11666 put_ctx(gctx); 11667 11668 for_each_sibling_event(sibling, group_leader) { 11669 perf_remove_from_context(sibling, 0); 11670 put_ctx(gctx); 11671 } 11672 11673 /* 11674 * Wait for everybody to stop referencing the events through 11675 * the old lists, before installing it on new lists. 11676 */ 11677 synchronize_rcu(); 11678 11679 /* 11680 * Install the group siblings before the group leader. 11681 * 11682 * Because a group leader will try and install the entire group 11683 * (through the sibling list, which is still in-tact), we can 11684 * end up with siblings installed in the wrong context. 11685 * 11686 * By installing siblings first we NO-OP because they're not 11687 * reachable through the group lists. 11688 */ 11689 for_each_sibling_event(sibling, group_leader) { 11690 perf_event__state_init(sibling); 11691 perf_install_in_context(ctx, sibling, sibling->cpu); 11692 get_ctx(ctx); 11693 } 11694 11695 /* 11696 * Removing from the context ends up with disabled 11697 * event. What we want here is event in the initial 11698 * startup state, ready to be add into new context. 11699 */ 11700 perf_event__state_init(group_leader); 11701 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11702 get_ctx(ctx); 11703 } 11704 11705 /* 11706 * Precalculate sample_data sizes; do while holding ctx::mutex such 11707 * that we're serialized against further additions and before 11708 * perf_install_in_context() which is the point the event is active and 11709 * can use these values. 11710 */ 11711 perf_event__header_size(event); 11712 perf_event__id_header_size(event); 11713 11714 event->owner = current; 11715 11716 perf_install_in_context(ctx, event, event->cpu); 11717 perf_unpin_context(ctx); 11718 11719 if (move_group) 11720 perf_event_ctx_unlock(group_leader, gctx); 11721 mutex_unlock(&ctx->mutex); 11722 11723 if (task) { 11724 mutex_unlock(&task->signal->cred_guard_mutex); 11725 put_task_struct(task); 11726 } 11727 11728 mutex_lock(¤t->perf_event_mutex); 11729 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11730 mutex_unlock(¤t->perf_event_mutex); 11731 11732 /* 11733 * Drop the reference on the group_event after placing the 11734 * new event on the sibling_list. This ensures destruction 11735 * of the group leader will find the pointer to itself in 11736 * perf_group_detach(). 11737 */ 11738 fdput(group); 11739 fd_install(event_fd, event_file); 11740 return event_fd; 11741 11742 err_locked: 11743 if (move_group) 11744 perf_event_ctx_unlock(group_leader, gctx); 11745 mutex_unlock(&ctx->mutex); 11746 /* err_file: */ 11747 fput(event_file); 11748 err_context: 11749 perf_unpin_context(ctx); 11750 put_ctx(ctx); 11751 err_alloc: 11752 /* 11753 * If event_file is set, the fput() above will have called ->release() 11754 * and that will take care of freeing the event. 11755 */ 11756 if (!event_file) 11757 free_event(event); 11758 err_cred: 11759 if (task) 11760 mutex_unlock(&task->signal->cred_guard_mutex); 11761 err_task: 11762 if (task) 11763 put_task_struct(task); 11764 err_group_fd: 11765 fdput(group); 11766 err_fd: 11767 put_unused_fd(event_fd); 11768 return err; 11769 } 11770 11771 /** 11772 * perf_event_create_kernel_counter 11773 * 11774 * @attr: attributes of the counter to create 11775 * @cpu: cpu in which the counter is bound 11776 * @task: task to profile (NULL for percpu) 11777 */ 11778 struct perf_event * 11779 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11780 struct task_struct *task, 11781 perf_overflow_handler_t overflow_handler, 11782 void *context) 11783 { 11784 struct perf_event_context *ctx; 11785 struct perf_event *event; 11786 int err; 11787 11788 /* 11789 * Grouping is not supported for kernel events, neither is 'AUX', 11790 * make sure the caller's intentions are adjusted. 11791 */ 11792 if (attr->aux_output) 11793 return ERR_PTR(-EINVAL); 11794 11795 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11796 overflow_handler, context, -1); 11797 if (IS_ERR(event)) { 11798 err = PTR_ERR(event); 11799 goto err; 11800 } 11801 11802 /* Mark owner so we could distinguish it from user events. */ 11803 event->owner = TASK_TOMBSTONE; 11804 11805 /* 11806 * Get the target context (task or percpu): 11807 */ 11808 ctx = find_get_context(event->pmu, task, event); 11809 if (IS_ERR(ctx)) { 11810 err = PTR_ERR(ctx); 11811 goto err_free; 11812 } 11813 11814 WARN_ON_ONCE(ctx->parent_ctx); 11815 mutex_lock(&ctx->mutex); 11816 if (ctx->task == TASK_TOMBSTONE) { 11817 err = -ESRCH; 11818 goto err_unlock; 11819 } 11820 11821 if (!task) { 11822 /* 11823 * Check if the @cpu we're creating an event for is online. 11824 * 11825 * We use the perf_cpu_context::ctx::mutex to serialize against 11826 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11827 */ 11828 struct perf_cpu_context *cpuctx = 11829 container_of(ctx, struct perf_cpu_context, ctx); 11830 if (!cpuctx->online) { 11831 err = -ENODEV; 11832 goto err_unlock; 11833 } 11834 } 11835 11836 if (!exclusive_event_installable(event, ctx)) { 11837 err = -EBUSY; 11838 goto err_unlock; 11839 } 11840 11841 perf_install_in_context(ctx, event, event->cpu); 11842 perf_unpin_context(ctx); 11843 mutex_unlock(&ctx->mutex); 11844 11845 return event; 11846 11847 err_unlock: 11848 mutex_unlock(&ctx->mutex); 11849 perf_unpin_context(ctx); 11850 put_ctx(ctx); 11851 err_free: 11852 free_event(event); 11853 err: 11854 return ERR_PTR(err); 11855 } 11856 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11857 11858 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11859 { 11860 struct perf_event_context *src_ctx; 11861 struct perf_event_context *dst_ctx; 11862 struct perf_event *event, *tmp; 11863 LIST_HEAD(events); 11864 11865 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11866 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11867 11868 /* 11869 * See perf_event_ctx_lock() for comments on the details 11870 * of swizzling perf_event::ctx. 11871 */ 11872 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11873 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11874 event_entry) { 11875 perf_remove_from_context(event, 0); 11876 unaccount_event_cpu(event, src_cpu); 11877 put_ctx(src_ctx); 11878 list_add(&event->migrate_entry, &events); 11879 } 11880 11881 /* 11882 * Wait for the events to quiesce before re-instating them. 11883 */ 11884 synchronize_rcu(); 11885 11886 /* 11887 * Re-instate events in 2 passes. 11888 * 11889 * Skip over group leaders and only install siblings on this first 11890 * pass, siblings will not get enabled without a leader, however a 11891 * leader will enable its siblings, even if those are still on the old 11892 * context. 11893 */ 11894 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11895 if (event->group_leader == event) 11896 continue; 11897 11898 list_del(&event->migrate_entry); 11899 if (event->state >= PERF_EVENT_STATE_OFF) 11900 event->state = PERF_EVENT_STATE_INACTIVE; 11901 account_event_cpu(event, dst_cpu); 11902 perf_install_in_context(dst_ctx, event, dst_cpu); 11903 get_ctx(dst_ctx); 11904 } 11905 11906 /* 11907 * Once all the siblings are setup properly, install the group leaders 11908 * to make it go. 11909 */ 11910 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11911 list_del(&event->migrate_entry); 11912 if (event->state >= PERF_EVENT_STATE_OFF) 11913 event->state = PERF_EVENT_STATE_INACTIVE; 11914 account_event_cpu(event, dst_cpu); 11915 perf_install_in_context(dst_ctx, event, dst_cpu); 11916 get_ctx(dst_ctx); 11917 } 11918 mutex_unlock(&dst_ctx->mutex); 11919 mutex_unlock(&src_ctx->mutex); 11920 } 11921 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11922 11923 static void sync_child_event(struct perf_event *child_event, 11924 struct task_struct *child) 11925 { 11926 struct perf_event *parent_event = child_event->parent; 11927 u64 child_val; 11928 11929 if (child_event->attr.inherit_stat) 11930 perf_event_read_event(child_event, child); 11931 11932 child_val = perf_event_count(child_event); 11933 11934 /* 11935 * Add back the child's count to the parent's count: 11936 */ 11937 atomic64_add(child_val, &parent_event->child_count); 11938 atomic64_add(child_event->total_time_enabled, 11939 &parent_event->child_total_time_enabled); 11940 atomic64_add(child_event->total_time_running, 11941 &parent_event->child_total_time_running); 11942 } 11943 11944 static void 11945 perf_event_exit_event(struct perf_event *child_event, 11946 struct perf_event_context *child_ctx, 11947 struct task_struct *child) 11948 { 11949 struct perf_event *parent_event = child_event->parent; 11950 11951 /* 11952 * Do not destroy the 'original' grouping; because of the context 11953 * switch optimization the original events could've ended up in a 11954 * random child task. 11955 * 11956 * If we were to destroy the original group, all group related 11957 * operations would cease to function properly after this random 11958 * child dies. 11959 * 11960 * Do destroy all inherited groups, we don't care about those 11961 * and being thorough is better. 11962 */ 11963 raw_spin_lock_irq(&child_ctx->lock); 11964 WARN_ON_ONCE(child_ctx->is_active); 11965 11966 if (parent_event) 11967 perf_group_detach(child_event); 11968 list_del_event(child_event, child_ctx); 11969 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11970 raw_spin_unlock_irq(&child_ctx->lock); 11971 11972 /* 11973 * Parent events are governed by their filedesc, retain them. 11974 */ 11975 if (!parent_event) { 11976 perf_event_wakeup(child_event); 11977 return; 11978 } 11979 /* 11980 * Child events can be cleaned up. 11981 */ 11982 11983 sync_child_event(child_event, child); 11984 11985 /* 11986 * Remove this event from the parent's list 11987 */ 11988 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11989 mutex_lock(&parent_event->child_mutex); 11990 list_del_init(&child_event->child_list); 11991 mutex_unlock(&parent_event->child_mutex); 11992 11993 /* 11994 * Kick perf_poll() for is_event_hup(). 11995 */ 11996 perf_event_wakeup(parent_event); 11997 free_event(child_event); 11998 put_event(parent_event); 11999 } 12000 12001 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12002 { 12003 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12004 struct perf_event *child_event, *next; 12005 12006 WARN_ON_ONCE(child != current); 12007 12008 child_ctx = perf_pin_task_context(child, ctxn); 12009 if (!child_ctx) 12010 return; 12011 12012 /* 12013 * In order to reduce the amount of tricky in ctx tear-down, we hold 12014 * ctx::mutex over the entire thing. This serializes against almost 12015 * everything that wants to access the ctx. 12016 * 12017 * The exception is sys_perf_event_open() / 12018 * perf_event_create_kernel_count() which does find_get_context() 12019 * without ctx::mutex (it cannot because of the move_group double mutex 12020 * lock thing). See the comments in perf_install_in_context(). 12021 */ 12022 mutex_lock(&child_ctx->mutex); 12023 12024 /* 12025 * In a single ctx::lock section, de-schedule the events and detach the 12026 * context from the task such that we cannot ever get it scheduled back 12027 * in. 12028 */ 12029 raw_spin_lock_irq(&child_ctx->lock); 12030 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12031 12032 /* 12033 * Now that the context is inactive, destroy the task <-> ctx relation 12034 * and mark the context dead. 12035 */ 12036 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12037 put_ctx(child_ctx); /* cannot be last */ 12038 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12039 put_task_struct(current); /* cannot be last */ 12040 12041 clone_ctx = unclone_ctx(child_ctx); 12042 raw_spin_unlock_irq(&child_ctx->lock); 12043 12044 if (clone_ctx) 12045 put_ctx(clone_ctx); 12046 12047 /* 12048 * Report the task dead after unscheduling the events so that we 12049 * won't get any samples after PERF_RECORD_EXIT. We can however still 12050 * get a few PERF_RECORD_READ events. 12051 */ 12052 perf_event_task(child, child_ctx, 0); 12053 12054 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12055 perf_event_exit_event(child_event, child_ctx, child); 12056 12057 mutex_unlock(&child_ctx->mutex); 12058 12059 put_ctx(child_ctx); 12060 } 12061 12062 /* 12063 * When a child task exits, feed back event values to parent events. 12064 * 12065 * Can be called with cred_guard_mutex held when called from 12066 * install_exec_creds(). 12067 */ 12068 void perf_event_exit_task(struct task_struct *child) 12069 { 12070 struct perf_event *event, *tmp; 12071 int ctxn; 12072 12073 mutex_lock(&child->perf_event_mutex); 12074 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12075 owner_entry) { 12076 list_del_init(&event->owner_entry); 12077 12078 /* 12079 * Ensure the list deletion is visible before we clear 12080 * the owner, closes a race against perf_release() where 12081 * we need to serialize on the owner->perf_event_mutex. 12082 */ 12083 smp_store_release(&event->owner, NULL); 12084 } 12085 mutex_unlock(&child->perf_event_mutex); 12086 12087 for_each_task_context_nr(ctxn) 12088 perf_event_exit_task_context(child, ctxn); 12089 12090 /* 12091 * The perf_event_exit_task_context calls perf_event_task 12092 * with child's task_ctx, which generates EXIT events for 12093 * child contexts and sets child->perf_event_ctxp[] to NULL. 12094 * At this point we need to send EXIT events to cpu contexts. 12095 */ 12096 perf_event_task(child, NULL, 0); 12097 } 12098 12099 static void perf_free_event(struct perf_event *event, 12100 struct perf_event_context *ctx) 12101 { 12102 struct perf_event *parent = event->parent; 12103 12104 if (WARN_ON_ONCE(!parent)) 12105 return; 12106 12107 mutex_lock(&parent->child_mutex); 12108 list_del_init(&event->child_list); 12109 mutex_unlock(&parent->child_mutex); 12110 12111 put_event(parent); 12112 12113 raw_spin_lock_irq(&ctx->lock); 12114 perf_group_detach(event); 12115 list_del_event(event, ctx); 12116 raw_spin_unlock_irq(&ctx->lock); 12117 free_event(event); 12118 } 12119 12120 /* 12121 * Free a context as created by inheritance by perf_event_init_task() below, 12122 * used by fork() in case of fail. 12123 * 12124 * Even though the task has never lived, the context and events have been 12125 * exposed through the child_list, so we must take care tearing it all down. 12126 */ 12127 void perf_event_free_task(struct task_struct *task) 12128 { 12129 struct perf_event_context *ctx; 12130 struct perf_event *event, *tmp; 12131 int ctxn; 12132 12133 for_each_task_context_nr(ctxn) { 12134 ctx = task->perf_event_ctxp[ctxn]; 12135 if (!ctx) 12136 continue; 12137 12138 mutex_lock(&ctx->mutex); 12139 raw_spin_lock_irq(&ctx->lock); 12140 /* 12141 * Destroy the task <-> ctx relation and mark the context dead. 12142 * 12143 * This is important because even though the task hasn't been 12144 * exposed yet the context has been (through child_list). 12145 */ 12146 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12147 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12148 put_task_struct(task); /* cannot be last */ 12149 raw_spin_unlock_irq(&ctx->lock); 12150 12151 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12152 perf_free_event(event, ctx); 12153 12154 mutex_unlock(&ctx->mutex); 12155 12156 /* 12157 * perf_event_release_kernel() could've stolen some of our 12158 * child events and still have them on its free_list. In that 12159 * case we must wait for these events to have been freed (in 12160 * particular all their references to this task must've been 12161 * dropped). 12162 * 12163 * Without this copy_process() will unconditionally free this 12164 * task (irrespective of its reference count) and 12165 * _free_event()'s put_task_struct(event->hw.target) will be a 12166 * use-after-free. 12167 * 12168 * Wait for all events to drop their context reference. 12169 */ 12170 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12171 put_ctx(ctx); /* must be last */ 12172 } 12173 } 12174 12175 void perf_event_delayed_put(struct task_struct *task) 12176 { 12177 int ctxn; 12178 12179 for_each_task_context_nr(ctxn) 12180 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12181 } 12182 12183 struct file *perf_event_get(unsigned int fd) 12184 { 12185 struct file *file = fget(fd); 12186 if (!file) 12187 return ERR_PTR(-EBADF); 12188 12189 if (file->f_op != &perf_fops) { 12190 fput(file); 12191 return ERR_PTR(-EBADF); 12192 } 12193 12194 return file; 12195 } 12196 12197 const struct perf_event *perf_get_event(struct file *file) 12198 { 12199 if (file->f_op != &perf_fops) 12200 return ERR_PTR(-EINVAL); 12201 12202 return file->private_data; 12203 } 12204 12205 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12206 { 12207 if (!event) 12208 return ERR_PTR(-EINVAL); 12209 12210 return &event->attr; 12211 } 12212 12213 /* 12214 * Inherit an event from parent task to child task. 12215 * 12216 * Returns: 12217 * - valid pointer on success 12218 * - NULL for orphaned events 12219 * - IS_ERR() on error 12220 */ 12221 static struct perf_event * 12222 inherit_event(struct perf_event *parent_event, 12223 struct task_struct *parent, 12224 struct perf_event_context *parent_ctx, 12225 struct task_struct *child, 12226 struct perf_event *group_leader, 12227 struct perf_event_context *child_ctx) 12228 { 12229 enum perf_event_state parent_state = parent_event->state; 12230 struct perf_event *child_event; 12231 unsigned long flags; 12232 12233 /* 12234 * Instead of creating recursive hierarchies of events, 12235 * we link inherited events back to the original parent, 12236 * which has a filp for sure, which we use as the reference 12237 * count: 12238 */ 12239 if (parent_event->parent) 12240 parent_event = parent_event->parent; 12241 12242 child_event = perf_event_alloc(&parent_event->attr, 12243 parent_event->cpu, 12244 child, 12245 group_leader, parent_event, 12246 NULL, NULL, -1); 12247 if (IS_ERR(child_event)) 12248 return child_event; 12249 12250 12251 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12252 !child_ctx->task_ctx_data) { 12253 struct pmu *pmu = child_event->pmu; 12254 12255 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12256 GFP_KERNEL); 12257 if (!child_ctx->task_ctx_data) { 12258 free_event(child_event); 12259 return ERR_PTR(-ENOMEM); 12260 } 12261 } 12262 12263 /* 12264 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12265 * must be under the same lock in order to serialize against 12266 * perf_event_release_kernel(), such that either we must observe 12267 * is_orphaned_event() or they will observe us on the child_list. 12268 */ 12269 mutex_lock(&parent_event->child_mutex); 12270 if (is_orphaned_event(parent_event) || 12271 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12272 mutex_unlock(&parent_event->child_mutex); 12273 /* task_ctx_data is freed with child_ctx */ 12274 free_event(child_event); 12275 return NULL; 12276 } 12277 12278 get_ctx(child_ctx); 12279 12280 /* 12281 * Make the child state follow the state of the parent event, 12282 * not its attr.disabled bit. We hold the parent's mutex, 12283 * so we won't race with perf_event_{en, dis}able_family. 12284 */ 12285 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12286 child_event->state = PERF_EVENT_STATE_INACTIVE; 12287 else 12288 child_event->state = PERF_EVENT_STATE_OFF; 12289 12290 if (parent_event->attr.freq) { 12291 u64 sample_period = parent_event->hw.sample_period; 12292 struct hw_perf_event *hwc = &child_event->hw; 12293 12294 hwc->sample_period = sample_period; 12295 hwc->last_period = sample_period; 12296 12297 local64_set(&hwc->period_left, sample_period); 12298 } 12299 12300 child_event->ctx = child_ctx; 12301 child_event->overflow_handler = parent_event->overflow_handler; 12302 child_event->overflow_handler_context 12303 = parent_event->overflow_handler_context; 12304 12305 /* 12306 * Precalculate sample_data sizes 12307 */ 12308 perf_event__header_size(child_event); 12309 perf_event__id_header_size(child_event); 12310 12311 /* 12312 * Link it up in the child's context: 12313 */ 12314 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12315 add_event_to_ctx(child_event, child_ctx); 12316 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12317 12318 /* 12319 * Link this into the parent event's child list 12320 */ 12321 list_add_tail(&child_event->child_list, &parent_event->child_list); 12322 mutex_unlock(&parent_event->child_mutex); 12323 12324 return child_event; 12325 } 12326 12327 /* 12328 * Inherits an event group. 12329 * 12330 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12331 * This matches with perf_event_release_kernel() removing all child events. 12332 * 12333 * Returns: 12334 * - 0 on success 12335 * - <0 on error 12336 */ 12337 static int inherit_group(struct perf_event *parent_event, 12338 struct task_struct *parent, 12339 struct perf_event_context *parent_ctx, 12340 struct task_struct *child, 12341 struct perf_event_context *child_ctx) 12342 { 12343 struct perf_event *leader; 12344 struct perf_event *sub; 12345 struct perf_event *child_ctr; 12346 12347 leader = inherit_event(parent_event, parent, parent_ctx, 12348 child, NULL, child_ctx); 12349 if (IS_ERR(leader)) 12350 return PTR_ERR(leader); 12351 /* 12352 * @leader can be NULL here because of is_orphaned_event(). In this 12353 * case inherit_event() will create individual events, similar to what 12354 * perf_group_detach() would do anyway. 12355 */ 12356 for_each_sibling_event(sub, parent_event) { 12357 child_ctr = inherit_event(sub, parent, parent_ctx, 12358 child, leader, child_ctx); 12359 if (IS_ERR(child_ctr)) 12360 return PTR_ERR(child_ctr); 12361 12362 if (sub->aux_event == parent_event && child_ctr && 12363 !perf_get_aux_event(child_ctr, leader)) 12364 return -EINVAL; 12365 } 12366 return 0; 12367 } 12368 12369 /* 12370 * Creates the child task context and tries to inherit the event-group. 12371 * 12372 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12373 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12374 * consistent with perf_event_release_kernel() removing all child events. 12375 * 12376 * Returns: 12377 * - 0 on success 12378 * - <0 on error 12379 */ 12380 static int 12381 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12382 struct perf_event_context *parent_ctx, 12383 struct task_struct *child, int ctxn, 12384 int *inherited_all) 12385 { 12386 int ret; 12387 struct perf_event_context *child_ctx; 12388 12389 if (!event->attr.inherit) { 12390 *inherited_all = 0; 12391 return 0; 12392 } 12393 12394 child_ctx = child->perf_event_ctxp[ctxn]; 12395 if (!child_ctx) { 12396 /* 12397 * This is executed from the parent task context, so 12398 * inherit events that have been marked for cloning. 12399 * First allocate and initialize a context for the 12400 * child. 12401 */ 12402 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12403 if (!child_ctx) 12404 return -ENOMEM; 12405 12406 child->perf_event_ctxp[ctxn] = child_ctx; 12407 } 12408 12409 ret = inherit_group(event, parent, parent_ctx, 12410 child, child_ctx); 12411 12412 if (ret) 12413 *inherited_all = 0; 12414 12415 return ret; 12416 } 12417 12418 /* 12419 * Initialize the perf_event context in task_struct 12420 */ 12421 static int perf_event_init_context(struct task_struct *child, int ctxn) 12422 { 12423 struct perf_event_context *child_ctx, *parent_ctx; 12424 struct perf_event_context *cloned_ctx; 12425 struct perf_event *event; 12426 struct task_struct *parent = current; 12427 int inherited_all = 1; 12428 unsigned long flags; 12429 int ret = 0; 12430 12431 if (likely(!parent->perf_event_ctxp[ctxn])) 12432 return 0; 12433 12434 /* 12435 * If the parent's context is a clone, pin it so it won't get 12436 * swapped under us. 12437 */ 12438 parent_ctx = perf_pin_task_context(parent, ctxn); 12439 if (!parent_ctx) 12440 return 0; 12441 12442 /* 12443 * No need to check if parent_ctx != NULL here; since we saw 12444 * it non-NULL earlier, the only reason for it to become NULL 12445 * is if we exit, and since we're currently in the middle of 12446 * a fork we can't be exiting at the same time. 12447 */ 12448 12449 /* 12450 * Lock the parent list. No need to lock the child - not PID 12451 * hashed yet and not running, so nobody can access it. 12452 */ 12453 mutex_lock(&parent_ctx->mutex); 12454 12455 /* 12456 * We dont have to disable NMIs - we are only looking at 12457 * the list, not manipulating it: 12458 */ 12459 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12460 ret = inherit_task_group(event, parent, parent_ctx, 12461 child, ctxn, &inherited_all); 12462 if (ret) 12463 goto out_unlock; 12464 } 12465 12466 /* 12467 * We can't hold ctx->lock when iterating the ->flexible_group list due 12468 * to allocations, but we need to prevent rotation because 12469 * rotate_ctx() will change the list from interrupt context. 12470 */ 12471 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12472 parent_ctx->rotate_disable = 1; 12473 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12474 12475 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12476 ret = inherit_task_group(event, parent, parent_ctx, 12477 child, ctxn, &inherited_all); 12478 if (ret) 12479 goto out_unlock; 12480 } 12481 12482 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12483 parent_ctx->rotate_disable = 0; 12484 12485 child_ctx = child->perf_event_ctxp[ctxn]; 12486 12487 if (child_ctx && inherited_all) { 12488 /* 12489 * Mark the child context as a clone of the parent 12490 * context, or of whatever the parent is a clone of. 12491 * 12492 * Note that if the parent is a clone, the holding of 12493 * parent_ctx->lock avoids it from being uncloned. 12494 */ 12495 cloned_ctx = parent_ctx->parent_ctx; 12496 if (cloned_ctx) { 12497 child_ctx->parent_ctx = cloned_ctx; 12498 child_ctx->parent_gen = parent_ctx->parent_gen; 12499 } else { 12500 child_ctx->parent_ctx = parent_ctx; 12501 child_ctx->parent_gen = parent_ctx->generation; 12502 } 12503 get_ctx(child_ctx->parent_ctx); 12504 } 12505 12506 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12507 out_unlock: 12508 mutex_unlock(&parent_ctx->mutex); 12509 12510 perf_unpin_context(parent_ctx); 12511 put_ctx(parent_ctx); 12512 12513 return ret; 12514 } 12515 12516 /* 12517 * Initialize the perf_event context in task_struct 12518 */ 12519 int perf_event_init_task(struct task_struct *child) 12520 { 12521 int ctxn, ret; 12522 12523 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12524 mutex_init(&child->perf_event_mutex); 12525 INIT_LIST_HEAD(&child->perf_event_list); 12526 12527 for_each_task_context_nr(ctxn) { 12528 ret = perf_event_init_context(child, ctxn); 12529 if (ret) { 12530 perf_event_free_task(child); 12531 return ret; 12532 } 12533 } 12534 12535 return 0; 12536 } 12537 12538 static void __init perf_event_init_all_cpus(void) 12539 { 12540 struct swevent_htable *swhash; 12541 int cpu; 12542 12543 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12544 12545 for_each_possible_cpu(cpu) { 12546 swhash = &per_cpu(swevent_htable, cpu); 12547 mutex_init(&swhash->hlist_mutex); 12548 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12549 12550 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12551 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12552 12553 #ifdef CONFIG_CGROUP_PERF 12554 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12555 #endif 12556 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12557 } 12558 } 12559 12560 static void perf_swevent_init_cpu(unsigned int cpu) 12561 { 12562 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12563 12564 mutex_lock(&swhash->hlist_mutex); 12565 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12566 struct swevent_hlist *hlist; 12567 12568 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12569 WARN_ON(!hlist); 12570 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12571 } 12572 mutex_unlock(&swhash->hlist_mutex); 12573 } 12574 12575 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12576 static void __perf_event_exit_context(void *__info) 12577 { 12578 struct perf_event_context *ctx = __info; 12579 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12580 struct perf_event *event; 12581 12582 raw_spin_lock(&ctx->lock); 12583 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12584 list_for_each_entry(event, &ctx->event_list, event_entry) 12585 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12586 raw_spin_unlock(&ctx->lock); 12587 } 12588 12589 static void perf_event_exit_cpu_context(int cpu) 12590 { 12591 struct perf_cpu_context *cpuctx; 12592 struct perf_event_context *ctx; 12593 struct pmu *pmu; 12594 12595 mutex_lock(&pmus_lock); 12596 list_for_each_entry(pmu, &pmus, entry) { 12597 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12598 ctx = &cpuctx->ctx; 12599 12600 mutex_lock(&ctx->mutex); 12601 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12602 cpuctx->online = 0; 12603 mutex_unlock(&ctx->mutex); 12604 } 12605 cpumask_clear_cpu(cpu, perf_online_mask); 12606 mutex_unlock(&pmus_lock); 12607 } 12608 #else 12609 12610 static void perf_event_exit_cpu_context(int cpu) { } 12611 12612 #endif 12613 12614 int perf_event_init_cpu(unsigned int cpu) 12615 { 12616 struct perf_cpu_context *cpuctx; 12617 struct perf_event_context *ctx; 12618 struct pmu *pmu; 12619 12620 perf_swevent_init_cpu(cpu); 12621 12622 mutex_lock(&pmus_lock); 12623 cpumask_set_cpu(cpu, perf_online_mask); 12624 list_for_each_entry(pmu, &pmus, entry) { 12625 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12626 ctx = &cpuctx->ctx; 12627 12628 mutex_lock(&ctx->mutex); 12629 cpuctx->online = 1; 12630 mutex_unlock(&ctx->mutex); 12631 } 12632 mutex_unlock(&pmus_lock); 12633 12634 return 0; 12635 } 12636 12637 int perf_event_exit_cpu(unsigned int cpu) 12638 { 12639 perf_event_exit_cpu_context(cpu); 12640 return 0; 12641 } 12642 12643 static int 12644 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12645 { 12646 int cpu; 12647 12648 for_each_online_cpu(cpu) 12649 perf_event_exit_cpu(cpu); 12650 12651 return NOTIFY_OK; 12652 } 12653 12654 /* 12655 * Run the perf reboot notifier at the very last possible moment so that 12656 * the generic watchdog code runs as long as possible. 12657 */ 12658 static struct notifier_block perf_reboot_notifier = { 12659 .notifier_call = perf_reboot, 12660 .priority = INT_MIN, 12661 }; 12662 12663 void __init perf_event_init(void) 12664 { 12665 int ret; 12666 12667 idr_init(&pmu_idr); 12668 12669 perf_event_init_all_cpus(); 12670 init_srcu_struct(&pmus_srcu); 12671 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12672 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12673 perf_pmu_register(&perf_task_clock, NULL, -1); 12674 perf_tp_register(); 12675 perf_event_init_cpu(smp_processor_id()); 12676 register_reboot_notifier(&perf_reboot_notifier); 12677 12678 ret = init_hw_breakpoint(); 12679 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12680 12681 /* 12682 * Build time assertion that we keep the data_head at the intended 12683 * location. IOW, validation we got the __reserved[] size right. 12684 */ 12685 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12686 != 1024); 12687 } 12688 12689 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12690 char *page) 12691 { 12692 struct perf_pmu_events_attr *pmu_attr = 12693 container_of(attr, struct perf_pmu_events_attr, attr); 12694 12695 if (pmu_attr->event_str) 12696 return sprintf(page, "%s\n", pmu_attr->event_str); 12697 12698 return 0; 12699 } 12700 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12701 12702 static int __init perf_event_sysfs_init(void) 12703 { 12704 struct pmu *pmu; 12705 int ret; 12706 12707 mutex_lock(&pmus_lock); 12708 12709 ret = bus_register(&pmu_bus); 12710 if (ret) 12711 goto unlock; 12712 12713 list_for_each_entry(pmu, &pmus, entry) { 12714 if (!pmu->name || pmu->type < 0) 12715 continue; 12716 12717 ret = pmu_dev_alloc(pmu); 12718 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12719 } 12720 pmu_bus_running = 1; 12721 ret = 0; 12722 12723 unlock: 12724 mutex_unlock(&pmus_lock); 12725 12726 return ret; 12727 } 12728 device_initcall(perf_event_sysfs_init); 12729 12730 #ifdef CONFIG_CGROUP_PERF 12731 static struct cgroup_subsys_state * 12732 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12733 { 12734 struct perf_cgroup *jc; 12735 12736 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12737 if (!jc) 12738 return ERR_PTR(-ENOMEM); 12739 12740 jc->info = alloc_percpu(struct perf_cgroup_info); 12741 if (!jc->info) { 12742 kfree(jc); 12743 return ERR_PTR(-ENOMEM); 12744 } 12745 12746 return &jc->css; 12747 } 12748 12749 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12750 { 12751 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12752 12753 free_percpu(jc->info); 12754 kfree(jc); 12755 } 12756 12757 static int __perf_cgroup_move(void *info) 12758 { 12759 struct task_struct *task = info; 12760 rcu_read_lock(); 12761 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12762 rcu_read_unlock(); 12763 return 0; 12764 } 12765 12766 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12767 { 12768 struct task_struct *task; 12769 struct cgroup_subsys_state *css; 12770 12771 cgroup_taskset_for_each(task, css, tset) 12772 task_function_call(task, __perf_cgroup_move, task); 12773 } 12774 12775 struct cgroup_subsys perf_event_cgrp_subsys = { 12776 .css_alloc = perf_cgroup_css_alloc, 12777 .css_free = perf_cgroup_css_free, 12778 .attach = perf_cgroup_attach, 12779 /* 12780 * Implicitly enable on dfl hierarchy so that perf events can 12781 * always be filtered by cgroup2 path as long as perf_event 12782 * controller is not mounted on a legacy hierarchy. 12783 */ 12784 .implicit_on_dfl = true, 12785 .threaded = true, 12786 }; 12787 #endif /* CONFIG_CGROUP_PERF */ 12788