xref: /linux/kernel/events/core.c (revision 86287543715ac2a6d92d561cc105d79306511457)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 #include <linux/min_heap.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 static atomic_t nr_ksymbol_events __read_mostly;
389 static atomic_t nr_bpf_events __read_mostly;
390 
391 static LIST_HEAD(pmus);
392 static DEFINE_MUTEX(pmus_lock);
393 static struct srcu_struct pmus_srcu;
394 static cpumask_var_t perf_online_mask;
395 
396 /*
397  * perf event paranoia level:
398  *  -1 - not paranoid at all
399  *   0 - disallow raw tracepoint access for unpriv
400  *   1 - disallow cpu events for unpriv
401  *   2 - disallow kernel profiling for unpriv
402  */
403 int sysctl_perf_event_paranoid __read_mostly = 2;
404 
405 /* Minimum for 512 kiB + 1 user control page */
406 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407 
408 /*
409  * max perf event sample rate
410  */
411 #define DEFAULT_MAX_SAMPLE_RATE		100000
412 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
413 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
414 
415 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
416 
417 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
418 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
419 
420 static int perf_sample_allowed_ns __read_mostly =
421 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
422 
423 static void update_perf_cpu_limits(void)
424 {
425 	u64 tmp = perf_sample_period_ns;
426 
427 	tmp *= sysctl_perf_cpu_time_max_percent;
428 	tmp = div_u64(tmp, 100);
429 	if (!tmp)
430 		tmp = 1;
431 
432 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 }
434 
435 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
436 
437 int perf_proc_update_handler(struct ctl_table *table, int write,
438 		void __user *buffer, size_t *lenp,
439 		loff_t *ppos)
440 {
441 	int ret;
442 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
443 	/*
444 	 * If throttling is disabled don't allow the write:
445 	 */
446 	if (write && (perf_cpu == 100 || perf_cpu == 0))
447 		return -EINVAL;
448 
449 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
450 	if (ret || !write)
451 		return ret;
452 
453 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
454 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
455 	update_perf_cpu_limits();
456 
457 	return 0;
458 }
459 
460 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
461 
462 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
463 				void __user *buffer, size_t *lenp,
464 				loff_t *ppos)
465 {
466 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
467 
468 	if (ret || !write)
469 		return ret;
470 
471 	if (sysctl_perf_cpu_time_max_percent == 100 ||
472 	    sysctl_perf_cpu_time_max_percent == 0) {
473 		printk(KERN_WARNING
474 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
475 		WRITE_ONCE(perf_sample_allowed_ns, 0);
476 	} else {
477 		update_perf_cpu_limits();
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * perf samples are done in some very critical code paths (NMIs).
485  * If they take too much CPU time, the system can lock up and not
486  * get any real work done.  This will drop the sample rate when
487  * we detect that events are taking too long.
488  */
489 #define NR_ACCUMULATED_SAMPLES 128
490 static DEFINE_PER_CPU(u64, running_sample_length);
491 
492 static u64 __report_avg;
493 static u64 __report_allowed;
494 
495 static void perf_duration_warn(struct irq_work *w)
496 {
497 	printk_ratelimited(KERN_INFO
498 		"perf: interrupt took too long (%lld > %lld), lowering "
499 		"kernel.perf_event_max_sample_rate to %d\n",
500 		__report_avg, __report_allowed,
501 		sysctl_perf_event_sample_rate);
502 }
503 
504 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
505 
506 void perf_sample_event_took(u64 sample_len_ns)
507 {
508 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
509 	u64 running_len;
510 	u64 avg_len;
511 	u32 max;
512 
513 	if (max_len == 0)
514 		return;
515 
516 	/* Decay the counter by 1 average sample. */
517 	running_len = __this_cpu_read(running_sample_length);
518 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
519 	running_len += sample_len_ns;
520 	__this_cpu_write(running_sample_length, running_len);
521 
522 	/*
523 	 * Note: this will be biased artifically low until we have
524 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
525 	 * from having to maintain a count.
526 	 */
527 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
528 	if (avg_len <= max_len)
529 		return;
530 
531 	__report_avg = avg_len;
532 	__report_allowed = max_len;
533 
534 	/*
535 	 * Compute a throttle threshold 25% below the current duration.
536 	 */
537 	avg_len += avg_len / 4;
538 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
539 	if (avg_len < max)
540 		max /= (u32)avg_len;
541 	else
542 		max = 1;
543 
544 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
545 	WRITE_ONCE(max_samples_per_tick, max);
546 
547 	sysctl_perf_event_sample_rate = max * HZ;
548 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
549 
550 	if (!irq_work_queue(&perf_duration_work)) {
551 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
552 			     "kernel.perf_event_max_sample_rate to %d\n",
553 			     __report_avg, __report_allowed,
554 			     sysctl_perf_event_sample_rate);
555 	}
556 }
557 
558 static atomic64_t perf_event_id;
559 
560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
561 			      enum event_type_t event_type);
562 
563 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
564 			     enum event_type_t event_type,
565 			     struct task_struct *task);
566 
567 static void update_context_time(struct perf_event_context *ctx);
568 static u64 perf_event_time(struct perf_event *event);
569 
570 void __weak perf_event_print_debug(void)	{ }
571 
572 extern __weak const char *perf_pmu_name(void)
573 {
574 	return "pmu";
575 }
576 
577 static inline u64 perf_clock(void)
578 {
579 	return local_clock();
580 }
581 
582 static inline u64 perf_event_clock(struct perf_event *event)
583 {
584 	return event->clock();
585 }
586 
587 /*
588  * State based event timekeeping...
589  *
590  * The basic idea is to use event->state to determine which (if any) time
591  * fields to increment with the current delta. This means we only need to
592  * update timestamps when we change state or when they are explicitly requested
593  * (read).
594  *
595  * Event groups make things a little more complicated, but not terribly so. The
596  * rules for a group are that if the group leader is OFF the entire group is
597  * OFF, irrespecive of what the group member states are. This results in
598  * __perf_effective_state().
599  *
600  * A futher ramification is that when a group leader flips between OFF and
601  * !OFF, we need to update all group member times.
602  *
603  *
604  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
605  * need to make sure the relevant context time is updated before we try and
606  * update our timestamps.
607  */
608 
609 static __always_inline enum perf_event_state
610 __perf_effective_state(struct perf_event *event)
611 {
612 	struct perf_event *leader = event->group_leader;
613 
614 	if (leader->state <= PERF_EVENT_STATE_OFF)
615 		return leader->state;
616 
617 	return event->state;
618 }
619 
620 static __always_inline void
621 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
622 {
623 	enum perf_event_state state = __perf_effective_state(event);
624 	u64 delta = now - event->tstamp;
625 
626 	*enabled = event->total_time_enabled;
627 	if (state >= PERF_EVENT_STATE_INACTIVE)
628 		*enabled += delta;
629 
630 	*running = event->total_time_running;
631 	if (state >= PERF_EVENT_STATE_ACTIVE)
632 		*running += delta;
633 }
634 
635 static void perf_event_update_time(struct perf_event *event)
636 {
637 	u64 now = perf_event_time(event);
638 
639 	__perf_update_times(event, now, &event->total_time_enabled,
640 					&event->total_time_running);
641 	event->tstamp = now;
642 }
643 
644 static void perf_event_update_sibling_time(struct perf_event *leader)
645 {
646 	struct perf_event *sibling;
647 
648 	for_each_sibling_event(sibling, leader)
649 		perf_event_update_time(sibling);
650 }
651 
652 static void
653 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
654 {
655 	if (event->state == state)
656 		return;
657 
658 	perf_event_update_time(event);
659 	/*
660 	 * If a group leader gets enabled/disabled all its siblings
661 	 * are affected too.
662 	 */
663 	if ((event->state < 0) ^ (state < 0))
664 		perf_event_update_sibling_time(event);
665 
666 	WRITE_ONCE(event->state, state);
667 }
668 
669 #ifdef CONFIG_CGROUP_PERF
670 
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 	struct perf_event_context *ctx = event->ctx;
675 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
676 
677 	/* @event doesn't care about cgroup */
678 	if (!event->cgrp)
679 		return true;
680 
681 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
682 	if (!cpuctx->cgrp)
683 		return false;
684 
685 	/*
686 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
687 	 * also enabled for all its descendant cgroups.  If @cpuctx's
688 	 * cgroup is a descendant of @event's (the test covers identity
689 	 * case), it's a match.
690 	 */
691 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
692 				    event->cgrp->css.cgroup);
693 }
694 
695 static inline void perf_detach_cgroup(struct perf_event *event)
696 {
697 	css_put(&event->cgrp->css);
698 	event->cgrp = NULL;
699 }
700 
701 static inline int is_cgroup_event(struct perf_event *event)
702 {
703 	return event->cgrp != NULL;
704 }
705 
706 static inline u64 perf_cgroup_event_time(struct perf_event *event)
707 {
708 	struct perf_cgroup_info *t;
709 
710 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
711 	return t->time;
712 }
713 
714 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
715 {
716 	struct perf_cgroup_info *info;
717 	u64 now;
718 
719 	now = perf_clock();
720 
721 	info = this_cpu_ptr(cgrp->info);
722 
723 	info->time += now - info->timestamp;
724 	info->timestamp = now;
725 }
726 
727 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
728 {
729 	struct perf_cgroup *cgrp = cpuctx->cgrp;
730 	struct cgroup_subsys_state *css;
731 
732 	if (cgrp) {
733 		for (css = &cgrp->css; css; css = css->parent) {
734 			cgrp = container_of(css, struct perf_cgroup, css);
735 			__update_cgrp_time(cgrp);
736 		}
737 	}
738 }
739 
740 static inline void update_cgrp_time_from_event(struct perf_event *event)
741 {
742 	struct perf_cgroup *cgrp;
743 
744 	/*
745 	 * ensure we access cgroup data only when needed and
746 	 * when we know the cgroup is pinned (css_get)
747 	 */
748 	if (!is_cgroup_event(event))
749 		return;
750 
751 	cgrp = perf_cgroup_from_task(current, event->ctx);
752 	/*
753 	 * Do not update time when cgroup is not active
754 	 */
755 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
756 		__update_cgrp_time(event->cgrp);
757 }
758 
759 static inline void
760 perf_cgroup_set_timestamp(struct task_struct *task,
761 			  struct perf_event_context *ctx)
762 {
763 	struct perf_cgroup *cgrp;
764 	struct perf_cgroup_info *info;
765 	struct cgroup_subsys_state *css;
766 
767 	/*
768 	 * ctx->lock held by caller
769 	 * ensure we do not access cgroup data
770 	 * unless we have the cgroup pinned (css_get)
771 	 */
772 	if (!task || !ctx->nr_cgroups)
773 		return;
774 
775 	cgrp = perf_cgroup_from_task(task, ctx);
776 
777 	for (css = &cgrp->css; css; css = css->parent) {
778 		cgrp = container_of(css, struct perf_cgroup, css);
779 		info = this_cpu_ptr(cgrp->info);
780 		info->timestamp = ctx->timestamp;
781 	}
782 }
783 
784 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
785 
786 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
787 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
788 
789 /*
790  * reschedule events based on the cgroup constraint of task.
791  *
792  * mode SWOUT : schedule out everything
793  * mode SWIN : schedule in based on cgroup for next
794  */
795 static void perf_cgroup_switch(struct task_struct *task, int mode)
796 {
797 	struct perf_cpu_context *cpuctx;
798 	struct list_head *list;
799 	unsigned long flags;
800 
801 	/*
802 	 * Disable interrupts and preemption to avoid this CPU's
803 	 * cgrp_cpuctx_entry to change under us.
804 	 */
805 	local_irq_save(flags);
806 
807 	list = this_cpu_ptr(&cgrp_cpuctx_list);
808 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
809 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
810 
811 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
812 		perf_pmu_disable(cpuctx->ctx.pmu);
813 
814 		if (mode & PERF_CGROUP_SWOUT) {
815 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
816 			/*
817 			 * must not be done before ctxswout due
818 			 * to event_filter_match() in event_sched_out()
819 			 */
820 			cpuctx->cgrp = NULL;
821 		}
822 
823 		if (mode & PERF_CGROUP_SWIN) {
824 			WARN_ON_ONCE(cpuctx->cgrp);
825 			/*
826 			 * set cgrp before ctxsw in to allow
827 			 * event_filter_match() to not have to pass
828 			 * task around
829 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
830 			 * because cgorup events are only per-cpu
831 			 */
832 			cpuctx->cgrp = perf_cgroup_from_task(task,
833 							     &cpuctx->ctx);
834 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
835 		}
836 		perf_pmu_enable(cpuctx->ctx.pmu);
837 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
838 	}
839 
840 	local_irq_restore(flags);
841 }
842 
843 static inline void perf_cgroup_sched_out(struct task_struct *task,
844 					 struct task_struct *next)
845 {
846 	struct perf_cgroup *cgrp1;
847 	struct perf_cgroup *cgrp2 = NULL;
848 
849 	rcu_read_lock();
850 	/*
851 	 * we come here when we know perf_cgroup_events > 0
852 	 * we do not need to pass the ctx here because we know
853 	 * we are holding the rcu lock
854 	 */
855 	cgrp1 = perf_cgroup_from_task(task, NULL);
856 	cgrp2 = perf_cgroup_from_task(next, NULL);
857 
858 	/*
859 	 * only schedule out current cgroup events if we know
860 	 * that we are switching to a different cgroup. Otherwise,
861 	 * do no touch the cgroup events.
862 	 */
863 	if (cgrp1 != cgrp2)
864 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
865 
866 	rcu_read_unlock();
867 }
868 
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 					struct task_struct *task)
871 {
872 	struct perf_cgroup *cgrp1;
873 	struct perf_cgroup *cgrp2 = NULL;
874 
875 	rcu_read_lock();
876 	/*
877 	 * we come here when we know perf_cgroup_events > 0
878 	 * we do not need to pass the ctx here because we know
879 	 * we are holding the rcu lock
880 	 */
881 	cgrp1 = perf_cgroup_from_task(task, NULL);
882 	cgrp2 = perf_cgroup_from_task(prev, NULL);
883 
884 	/*
885 	 * only need to schedule in cgroup events if we are changing
886 	 * cgroup during ctxsw. Cgroup events were not scheduled
887 	 * out of ctxsw out if that was not the case.
888 	 */
889 	if (cgrp1 != cgrp2)
890 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
891 
892 	rcu_read_unlock();
893 }
894 
895 static int perf_cgroup_ensure_storage(struct perf_event *event,
896 				struct cgroup_subsys_state *css)
897 {
898 	struct perf_cpu_context *cpuctx;
899 	struct perf_event **storage;
900 	int cpu, heap_size, ret = 0;
901 
902 	/*
903 	 * Allow storage to have sufficent space for an iterator for each
904 	 * possibly nested cgroup plus an iterator for events with no cgroup.
905 	 */
906 	for (heap_size = 1; css; css = css->parent)
907 		heap_size++;
908 
909 	for_each_possible_cpu(cpu) {
910 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
911 		if (heap_size <= cpuctx->heap_size)
912 			continue;
913 
914 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
915 				       GFP_KERNEL, cpu_to_node(cpu));
916 		if (!storage) {
917 			ret = -ENOMEM;
918 			break;
919 		}
920 
921 		raw_spin_lock_irq(&cpuctx->ctx.lock);
922 		if (cpuctx->heap_size < heap_size) {
923 			swap(cpuctx->heap, storage);
924 			if (storage == cpuctx->heap_default)
925 				storage = NULL;
926 			cpuctx->heap_size = heap_size;
927 		}
928 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
929 
930 		kfree(storage);
931 	}
932 
933 	return ret;
934 }
935 
936 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
937 				      struct perf_event_attr *attr,
938 				      struct perf_event *group_leader)
939 {
940 	struct perf_cgroup *cgrp;
941 	struct cgroup_subsys_state *css;
942 	struct fd f = fdget(fd);
943 	int ret = 0;
944 
945 	if (!f.file)
946 		return -EBADF;
947 
948 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
949 					 &perf_event_cgrp_subsys);
950 	if (IS_ERR(css)) {
951 		ret = PTR_ERR(css);
952 		goto out;
953 	}
954 
955 	ret = perf_cgroup_ensure_storage(event, css);
956 	if (ret)
957 		goto out;
958 
959 	cgrp = container_of(css, struct perf_cgroup, css);
960 	event->cgrp = cgrp;
961 
962 	/*
963 	 * all events in a group must monitor
964 	 * the same cgroup because a task belongs
965 	 * to only one perf cgroup at a time
966 	 */
967 	if (group_leader && group_leader->cgrp != cgrp) {
968 		perf_detach_cgroup(event);
969 		ret = -EINVAL;
970 	}
971 out:
972 	fdput(f);
973 	return ret;
974 }
975 
976 static inline void
977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
978 {
979 	struct perf_cgroup_info *t;
980 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
981 	event->shadow_ctx_time = now - t->timestamp;
982 }
983 
984 /*
985  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
986  * cleared when last cgroup event is removed.
987  */
988 static inline void
989 list_update_cgroup_event(struct perf_event *event,
990 			 struct perf_event_context *ctx, bool add)
991 {
992 	struct perf_cpu_context *cpuctx;
993 	struct list_head *cpuctx_entry;
994 
995 	if (!is_cgroup_event(event))
996 		return;
997 
998 	/*
999 	 * Because cgroup events are always per-cpu events,
1000 	 * @ctx == &cpuctx->ctx.
1001 	 */
1002 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003 
1004 	/*
1005 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006 	 * matching the event's cgroup, we must do this for every new event,
1007 	 * because if the first would mismatch, the second would not try again
1008 	 * and we would leave cpuctx->cgrp unset.
1009 	 */
1010 	if (add && !cpuctx->cgrp) {
1011 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012 
1013 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014 			cpuctx->cgrp = cgrp;
1015 	}
1016 
1017 	if (add && ctx->nr_cgroups++)
1018 		return;
1019 	else if (!add && --ctx->nr_cgroups)
1020 		return;
1021 
1022 	/* no cgroup running */
1023 	if (!add)
1024 		cpuctx->cgrp = NULL;
1025 
1026 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
1027 	if (add)
1028 		list_add(cpuctx_entry,
1029 			 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1030 	else
1031 		list_del(cpuctx_entry);
1032 }
1033 
1034 #else /* !CONFIG_CGROUP_PERF */
1035 
1036 static inline bool
1037 perf_cgroup_match(struct perf_event *event)
1038 {
1039 	return true;
1040 }
1041 
1042 static inline void perf_detach_cgroup(struct perf_event *event)
1043 {}
1044 
1045 static inline int is_cgroup_event(struct perf_event *event)
1046 {
1047 	return 0;
1048 }
1049 
1050 static inline void update_cgrp_time_from_event(struct perf_event *event)
1051 {
1052 }
1053 
1054 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1055 {
1056 }
1057 
1058 static inline void perf_cgroup_sched_out(struct task_struct *task,
1059 					 struct task_struct *next)
1060 {
1061 }
1062 
1063 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1064 					struct task_struct *task)
1065 {
1066 }
1067 
1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 				      struct perf_event_attr *attr,
1070 				      struct perf_event *group_leader)
1071 {
1072 	return -EINVAL;
1073 }
1074 
1075 static inline void
1076 perf_cgroup_set_timestamp(struct task_struct *task,
1077 			  struct perf_event_context *ctx)
1078 {
1079 }
1080 
1081 static inline void
1082 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1083 {
1084 }
1085 
1086 static inline void
1087 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1088 {
1089 }
1090 
1091 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1092 {
1093 	return 0;
1094 }
1095 
1096 static inline void
1097 list_update_cgroup_event(struct perf_event *event,
1098 			 struct perf_event_context *ctx, bool add)
1099 {
1100 }
1101 
1102 #endif
1103 
1104 /*
1105  * set default to be dependent on timer tick just
1106  * like original code
1107  */
1108 #define PERF_CPU_HRTIMER (1000 / HZ)
1109 /*
1110  * function must be called with interrupts disabled
1111  */
1112 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1113 {
1114 	struct perf_cpu_context *cpuctx;
1115 	bool rotations;
1116 
1117 	lockdep_assert_irqs_disabled();
1118 
1119 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1120 	rotations = perf_rotate_context(cpuctx);
1121 
1122 	raw_spin_lock(&cpuctx->hrtimer_lock);
1123 	if (rotations)
1124 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1125 	else
1126 		cpuctx->hrtimer_active = 0;
1127 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1128 
1129 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1130 }
1131 
1132 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1133 {
1134 	struct hrtimer *timer = &cpuctx->hrtimer;
1135 	struct pmu *pmu = cpuctx->ctx.pmu;
1136 	u64 interval;
1137 
1138 	/* no multiplexing needed for SW PMU */
1139 	if (pmu->task_ctx_nr == perf_sw_context)
1140 		return;
1141 
1142 	/*
1143 	 * check default is sane, if not set then force to
1144 	 * default interval (1/tick)
1145 	 */
1146 	interval = pmu->hrtimer_interval_ms;
1147 	if (interval < 1)
1148 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1149 
1150 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1151 
1152 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1153 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1154 	timer->function = perf_mux_hrtimer_handler;
1155 }
1156 
1157 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1158 {
1159 	struct hrtimer *timer = &cpuctx->hrtimer;
1160 	struct pmu *pmu = cpuctx->ctx.pmu;
1161 	unsigned long flags;
1162 
1163 	/* not for SW PMU */
1164 	if (pmu->task_ctx_nr == perf_sw_context)
1165 		return 0;
1166 
1167 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1168 	if (!cpuctx->hrtimer_active) {
1169 		cpuctx->hrtimer_active = 1;
1170 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1171 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	}
1173 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1174 
1175 	return 0;
1176 }
1177 
1178 void perf_pmu_disable(struct pmu *pmu)
1179 {
1180 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1181 	if (!(*count)++)
1182 		pmu->pmu_disable(pmu);
1183 }
1184 
1185 void perf_pmu_enable(struct pmu *pmu)
1186 {
1187 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1188 	if (!--(*count))
1189 		pmu->pmu_enable(pmu);
1190 }
1191 
1192 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1193 
1194 /*
1195  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1196  * perf_event_task_tick() are fully serialized because they're strictly cpu
1197  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1198  * disabled, while perf_event_task_tick is called from IRQ context.
1199  */
1200 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1201 {
1202 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1203 
1204 	lockdep_assert_irqs_disabled();
1205 
1206 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1207 
1208 	list_add(&ctx->active_ctx_list, head);
1209 }
1210 
1211 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1212 {
1213 	lockdep_assert_irqs_disabled();
1214 
1215 	WARN_ON(list_empty(&ctx->active_ctx_list));
1216 
1217 	list_del_init(&ctx->active_ctx_list);
1218 }
1219 
1220 static void get_ctx(struct perf_event_context *ctx)
1221 {
1222 	refcount_inc(&ctx->refcount);
1223 }
1224 
1225 static void free_ctx(struct rcu_head *head)
1226 {
1227 	struct perf_event_context *ctx;
1228 
1229 	ctx = container_of(head, struct perf_event_context, rcu_head);
1230 	kfree(ctx->task_ctx_data);
1231 	kfree(ctx);
1232 }
1233 
1234 static void put_ctx(struct perf_event_context *ctx)
1235 {
1236 	if (refcount_dec_and_test(&ctx->refcount)) {
1237 		if (ctx->parent_ctx)
1238 			put_ctx(ctx->parent_ctx);
1239 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1240 			put_task_struct(ctx->task);
1241 		call_rcu(&ctx->rcu_head, free_ctx);
1242 	}
1243 }
1244 
1245 /*
1246  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1247  * perf_pmu_migrate_context() we need some magic.
1248  *
1249  * Those places that change perf_event::ctx will hold both
1250  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1251  *
1252  * Lock ordering is by mutex address. There are two other sites where
1253  * perf_event_context::mutex nests and those are:
1254  *
1255  *  - perf_event_exit_task_context()	[ child , 0 ]
1256  *      perf_event_exit_event()
1257  *        put_event()			[ parent, 1 ]
1258  *
1259  *  - perf_event_init_context()		[ parent, 0 ]
1260  *      inherit_task_group()
1261  *        inherit_group()
1262  *          inherit_event()
1263  *            perf_event_alloc()
1264  *              perf_init_event()
1265  *                perf_try_init_event()	[ child , 1 ]
1266  *
1267  * While it appears there is an obvious deadlock here -- the parent and child
1268  * nesting levels are inverted between the two. This is in fact safe because
1269  * life-time rules separate them. That is an exiting task cannot fork, and a
1270  * spawning task cannot (yet) exit.
1271  *
1272  * But remember that that these are parent<->child context relations, and
1273  * migration does not affect children, therefore these two orderings should not
1274  * interact.
1275  *
1276  * The change in perf_event::ctx does not affect children (as claimed above)
1277  * because the sys_perf_event_open() case will install a new event and break
1278  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1279  * concerned with cpuctx and that doesn't have children.
1280  *
1281  * The places that change perf_event::ctx will issue:
1282  *
1283  *   perf_remove_from_context();
1284  *   synchronize_rcu();
1285  *   perf_install_in_context();
1286  *
1287  * to affect the change. The remove_from_context() + synchronize_rcu() should
1288  * quiesce the event, after which we can install it in the new location. This
1289  * means that only external vectors (perf_fops, prctl) can perturb the event
1290  * while in transit. Therefore all such accessors should also acquire
1291  * perf_event_context::mutex to serialize against this.
1292  *
1293  * However; because event->ctx can change while we're waiting to acquire
1294  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1295  * function.
1296  *
1297  * Lock order:
1298  *    cred_guard_mutex
1299  *	task_struct::perf_event_mutex
1300  *	  perf_event_context::mutex
1301  *	    perf_event::child_mutex;
1302  *	      perf_event_context::lock
1303  *	    perf_event::mmap_mutex
1304  *	    mmap_sem
1305  *	      perf_addr_filters_head::lock
1306  *
1307  *    cpu_hotplug_lock
1308  *      pmus_lock
1309  *	  cpuctx->mutex / perf_event_context::mutex
1310  */
1311 static struct perf_event_context *
1312 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1313 {
1314 	struct perf_event_context *ctx;
1315 
1316 again:
1317 	rcu_read_lock();
1318 	ctx = READ_ONCE(event->ctx);
1319 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1320 		rcu_read_unlock();
1321 		goto again;
1322 	}
1323 	rcu_read_unlock();
1324 
1325 	mutex_lock_nested(&ctx->mutex, nesting);
1326 	if (event->ctx != ctx) {
1327 		mutex_unlock(&ctx->mutex);
1328 		put_ctx(ctx);
1329 		goto again;
1330 	}
1331 
1332 	return ctx;
1333 }
1334 
1335 static inline struct perf_event_context *
1336 perf_event_ctx_lock(struct perf_event *event)
1337 {
1338 	return perf_event_ctx_lock_nested(event, 0);
1339 }
1340 
1341 static void perf_event_ctx_unlock(struct perf_event *event,
1342 				  struct perf_event_context *ctx)
1343 {
1344 	mutex_unlock(&ctx->mutex);
1345 	put_ctx(ctx);
1346 }
1347 
1348 /*
1349  * This must be done under the ctx->lock, such as to serialize against
1350  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1351  * calling scheduler related locks and ctx->lock nests inside those.
1352  */
1353 static __must_check struct perf_event_context *
1354 unclone_ctx(struct perf_event_context *ctx)
1355 {
1356 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1357 
1358 	lockdep_assert_held(&ctx->lock);
1359 
1360 	if (parent_ctx)
1361 		ctx->parent_ctx = NULL;
1362 	ctx->generation++;
1363 
1364 	return parent_ctx;
1365 }
1366 
1367 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1368 				enum pid_type type)
1369 {
1370 	u32 nr;
1371 	/*
1372 	 * only top level events have the pid namespace they were created in
1373 	 */
1374 	if (event->parent)
1375 		event = event->parent;
1376 
1377 	nr = __task_pid_nr_ns(p, type, event->ns);
1378 	/* avoid -1 if it is idle thread or runs in another ns */
1379 	if (!nr && !pid_alive(p))
1380 		nr = -1;
1381 	return nr;
1382 }
1383 
1384 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1385 {
1386 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1387 }
1388 
1389 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1390 {
1391 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1392 }
1393 
1394 /*
1395  * If we inherit events we want to return the parent event id
1396  * to userspace.
1397  */
1398 static u64 primary_event_id(struct perf_event *event)
1399 {
1400 	u64 id = event->id;
1401 
1402 	if (event->parent)
1403 		id = event->parent->id;
1404 
1405 	return id;
1406 }
1407 
1408 /*
1409  * Get the perf_event_context for a task and lock it.
1410  *
1411  * This has to cope with with the fact that until it is locked,
1412  * the context could get moved to another task.
1413  */
1414 static struct perf_event_context *
1415 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1416 {
1417 	struct perf_event_context *ctx;
1418 
1419 retry:
1420 	/*
1421 	 * One of the few rules of preemptible RCU is that one cannot do
1422 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1423 	 * part of the read side critical section was irqs-enabled -- see
1424 	 * rcu_read_unlock_special().
1425 	 *
1426 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1427 	 * side critical section has interrupts disabled.
1428 	 */
1429 	local_irq_save(*flags);
1430 	rcu_read_lock();
1431 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1432 	if (ctx) {
1433 		/*
1434 		 * If this context is a clone of another, it might
1435 		 * get swapped for another underneath us by
1436 		 * perf_event_task_sched_out, though the
1437 		 * rcu_read_lock() protects us from any context
1438 		 * getting freed.  Lock the context and check if it
1439 		 * got swapped before we could get the lock, and retry
1440 		 * if so.  If we locked the right context, then it
1441 		 * can't get swapped on us any more.
1442 		 */
1443 		raw_spin_lock(&ctx->lock);
1444 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1445 			raw_spin_unlock(&ctx->lock);
1446 			rcu_read_unlock();
1447 			local_irq_restore(*flags);
1448 			goto retry;
1449 		}
1450 
1451 		if (ctx->task == TASK_TOMBSTONE ||
1452 		    !refcount_inc_not_zero(&ctx->refcount)) {
1453 			raw_spin_unlock(&ctx->lock);
1454 			ctx = NULL;
1455 		} else {
1456 			WARN_ON_ONCE(ctx->task != task);
1457 		}
1458 	}
1459 	rcu_read_unlock();
1460 	if (!ctx)
1461 		local_irq_restore(*flags);
1462 	return ctx;
1463 }
1464 
1465 /*
1466  * Get the context for a task and increment its pin_count so it
1467  * can't get swapped to another task.  This also increments its
1468  * reference count so that the context can't get freed.
1469  */
1470 static struct perf_event_context *
1471 perf_pin_task_context(struct task_struct *task, int ctxn)
1472 {
1473 	struct perf_event_context *ctx;
1474 	unsigned long flags;
1475 
1476 	ctx = perf_lock_task_context(task, ctxn, &flags);
1477 	if (ctx) {
1478 		++ctx->pin_count;
1479 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1480 	}
1481 	return ctx;
1482 }
1483 
1484 static void perf_unpin_context(struct perf_event_context *ctx)
1485 {
1486 	unsigned long flags;
1487 
1488 	raw_spin_lock_irqsave(&ctx->lock, flags);
1489 	--ctx->pin_count;
1490 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1491 }
1492 
1493 /*
1494  * Update the record of the current time in a context.
1495  */
1496 static void update_context_time(struct perf_event_context *ctx)
1497 {
1498 	u64 now = perf_clock();
1499 
1500 	ctx->time += now - ctx->timestamp;
1501 	ctx->timestamp = now;
1502 }
1503 
1504 static u64 perf_event_time(struct perf_event *event)
1505 {
1506 	struct perf_event_context *ctx = event->ctx;
1507 
1508 	if (is_cgroup_event(event))
1509 		return perf_cgroup_event_time(event);
1510 
1511 	return ctx ? ctx->time : 0;
1512 }
1513 
1514 static enum event_type_t get_event_type(struct perf_event *event)
1515 {
1516 	struct perf_event_context *ctx = event->ctx;
1517 	enum event_type_t event_type;
1518 
1519 	lockdep_assert_held(&ctx->lock);
1520 
1521 	/*
1522 	 * It's 'group type', really, because if our group leader is
1523 	 * pinned, so are we.
1524 	 */
1525 	if (event->group_leader != event)
1526 		event = event->group_leader;
1527 
1528 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1529 	if (!ctx->task)
1530 		event_type |= EVENT_CPU;
1531 
1532 	return event_type;
1533 }
1534 
1535 /*
1536  * Helper function to initialize event group nodes.
1537  */
1538 static void init_event_group(struct perf_event *event)
1539 {
1540 	RB_CLEAR_NODE(&event->group_node);
1541 	event->group_index = 0;
1542 }
1543 
1544 /*
1545  * Extract pinned or flexible groups from the context
1546  * based on event attrs bits.
1547  */
1548 static struct perf_event_groups *
1549 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1550 {
1551 	if (event->attr.pinned)
1552 		return &ctx->pinned_groups;
1553 	else
1554 		return &ctx->flexible_groups;
1555 }
1556 
1557 /*
1558  * Helper function to initializes perf_event_group trees.
1559  */
1560 static void perf_event_groups_init(struct perf_event_groups *groups)
1561 {
1562 	groups->tree = RB_ROOT;
1563 	groups->index = 0;
1564 }
1565 
1566 /*
1567  * Compare function for event groups;
1568  *
1569  * Implements complex key that first sorts by CPU and then by virtual index
1570  * which provides ordering when rotating groups for the same CPU.
1571  */
1572 static bool
1573 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1574 {
1575 	if (left->cpu < right->cpu)
1576 		return true;
1577 	if (left->cpu > right->cpu)
1578 		return false;
1579 
1580 #ifdef CONFIG_CGROUP_PERF
1581 	if (left->cgrp != right->cgrp) {
1582 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1583 			/*
1584 			 * Left has no cgroup but right does, no cgroups come
1585 			 * first.
1586 			 */
1587 			return true;
1588 		}
1589 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1590 			/*
1591 			 * Right has no cgroup but left does, no cgroups come
1592 			 * first.
1593 			 */
1594 			return false;
1595 		}
1596 		/* Two dissimilar cgroups, order by id. */
1597 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1598 			return true;
1599 
1600 		return false;
1601 	}
1602 #endif
1603 
1604 	if (left->group_index < right->group_index)
1605 		return true;
1606 	if (left->group_index > right->group_index)
1607 		return false;
1608 
1609 	return false;
1610 }
1611 
1612 /*
1613  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1614  * key (see perf_event_groups_less). This places it last inside the CPU
1615  * subtree.
1616  */
1617 static void
1618 perf_event_groups_insert(struct perf_event_groups *groups,
1619 			 struct perf_event *event)
1620 {
1621 	struct perf_event *node_event;
1622 	struct rb_node *parent;
1623 	struct rb_node **node;
1624 
1625 	event->group_index = ++groups->index;
1626 
1627 	node = &groups->tree.rb_node;
1628 	parent = *node;
1629 
1630 	while (*node) {
1631 		parent = *node;
1632 		node_event = container_of(*node, struct perf_event, group_node);
1633 
1634 		if (perf_event_groups_less(event, node_event))
1635 			node = &parent->rb_left;
1636 		else
1637 			node = &parent->rb_right;
1638 	}
1639 
1640 	rb_link_node(&event->group_node, parent, node);
1641 	rb_insert_color(&event->group_node, &groups->tree);
1642 }
1643 
1644 /*
1645  * Helper function to insert event into the pinned or flexible groups.
1646  */
1647 static void
1648 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	struct perf_event_groups *groups;
1651 
1652 	groups = get_event_groups(event, ctx);
1653 	perf_event_groups_insert(groups, event);
1654 }
1655 
1656 /*
1657  * Delete a group from a tree.
1658  */
1659 static void
1660 perf_event_groups_delete(struct perf_event_groups *groups,
1661 			 struct perf_event *event)
1662 {
1663 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1664 		     RB_EMPTY_ROOT(&groups->tree));
1665 
1666 	rb_erase(&event->group_node, &groups->tree);
1667 	init_event_group(event);
1668 }
1669 
1670 /*
1671  * Helper function to delete event from its groups.
1672  */
1673 static void
1674 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1675 {
1676 	struct perf_event_groups *groups;
1677 
1678 	groups = get_event_groups(event, ctx);
1679 	perf_event_groups_delete(groups, event);
1680 }
1681 
1682 /*
1683  * Get the leftmost event in the cpu/cgroup subtree.
1684  */
1685 static struct perf_event *
1686 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1687 			struct cgroup *cgrp)
1688 {
1689 	struct perf_event *node_event = NULL, *match = NULL;
1690 	struct rb_node *node = groups->tree.rb_node;
1691 #ifdef CONFIG_CGROUP_PERF
1692 	u64 node_cgrp_id, cgrp_id = 0;
1693 
1694 	if (cgrp)
1695 		cgrp_id = cgrp->kn->id;
1696 #endif
1697 
1698 	while (node) {
1699 		node_event = container_of(node, struct perf_event, group_node);
1700 
1701 		if (cpu < node_event->cpu) {
1702 			node = node->rb_left;
1703 			continue;
1704 		}
1705 		if (cpu > node_event->cpu) {
1706 			node = node->rb_right;
1707 			continue;
1708 		}
1709 #ifdef CONFIG_CGROUP_PERF
1710 		node_cgrp_id = 0;
1711 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1712 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1713 
1714 		if (cgrp_id < node_cgrp_id) {
1715 			node = node->rb_left;
1716 			continue;
1717 		}
1718 		if (cgrp_id > node_cgrp_id) {
1719 			node = node->rb_right;
1720 			continue;
1721 		}
1722 #endif
1723 		match = node_event;
1724 		node = node->rb_left;
1725 	}
1726 
1727 	return match;
1728 }
1729 
1730 /*
1731  * Like rb_entry_next_safe() for the @cpu subtree.
1732  */
1733 static struct perf_event *
1734 perf_event_groups_next(struct perf_event *event)
1735 {
1736 	struct perf_event *next;
1737 #ifdef CONFIG_CGROUP_PERF
1738 	u64 curr_cgrp_id = 0;
1739 	u64 next_cgrp_id = 0;
1740 #endif
1741 
1742 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1743 	if (next == NULL || next->cpu != event->cpu)
1744 		return NULL;
1745 
1746 #ifdef CONFIG_CGROUP_PERF
1747 	if (event->cgrp && event->cgrp->css.cgroup)
1748 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1749 
1750 	if (next->cgrp && next->cgrp->css.cgroup)
1751 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1752 
1753 	if (curr_cgrp_id != next_cgrp_id)
1754 		return NULL;
1755 #endif
1756 	return next;
1757 }
1758 
1759 /*
1760  * Iterate through the whole groups tree.
1761  */
1762 #define perf_event_groups_for_each(event, groups)			\
1763 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1764 				typeof(*event), group_node); event;	\
1765 		event = rb_entry_safe(rb_next(&event->group_node),	\
1766 				typeof(*event), group_node))
1767 
1768 /*
1769  * Add an event from the lists for its context.
1770  * Must be called with ctx->mutex and ctx->lock held.
1771  */
1772 static void
1773 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1774 {
1775 	lockdep_assert_held(&ctx->lock);
1776 
1777 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1778 	event->attach_state |= PERF_ATTACH_CONTEXT;
1779 
1780 	event->tstamp = perf_event_time(event);
1781 
1782 	/*
1783 	 * If we're a stand alone event or group leader, we go to the context
1784 	 * list, group events are kept attached to the group so that
1785 	 * perf_group_detach can, at all times, locate all siblings.
1786 	 */
1787 	if (event->group_leader == event) {
1788 		event->group_caps = event->event_caps;
1789 		add_event_to_groups(event, ctx);
1790 	}
1791 
1792 	list_update_cgroup_event(event, ctx, true);
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->attr.inherit_stat)
1797 		ctx->nr_stat++;
1798 
1799 	ctx->generation++;
1800 }
1801 
1802 /*
1803  * Initialize event state based on the perf_event_attr::disabled.
1804  */
1805 static inline void perf_event__state_init(struct perf_event *event)
1806 {
1807 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1808 					      PERF_EVENT_STATE_INACTIVE;
1809 }
1810 
1811 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1812 {
1813 	int entry = sizeof(u64); /* value */
1814 	int size = 0;
1815 	int nr = 1;
1816 
1817 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1818 		size += sizeof(u64);
1819 
1820 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1821 		size += sizeof(u64);
1822 
1823 	if (event->attr.read_format & PERF_FORMAT_ID)
1824 		entry += sizeof(u64);
1825 
1826 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1827 		nr += nr_siblings;
1828 		size += sizeof(u64);
1829 	}
1830 
1831 	size += entry * nr;
1832 	event->read_size = size;
1833 }
1834 
1835 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1836 {
1837 	struct perf_sample_data *data;
1838 	u16 size = 0;
1839 
1840 	if (sample_type & PERF_SAMPLE_IP)
1841 		size += sizeof(data->ip);
1842 
1843 	if (sample_type & PERF_SAMPLE_ADDR)
1844 		size += sizeof(data->addr);
1845 
1846 	if (sample_type & PERF_SAMPLE_PERIOD)
1847 		size += sizeof(data->period);
1848 
1849 	if (sample_type & PERF_SAMPLE_WEIGHT)
1850 		size += sizeof(data->weight);
1851 
1852 	if (sample_type & PERF_SAMPLE_READ)
1853 		size += event->read_size;
1854 
1855 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1856 		size += sizeof(data->data_src.val);
1857 
1858 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1859 		size += sizeof(data->txn);
1860 
1861 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1862 		size += sizeof(data->phys_addr);
1863 
1864 	event->header_size = size;
1865 }
1866 
1867 /*
1868  * Called at perf_event creation and when events are attached/detached from a
1869  * group.
1870  */
1871 static void perf_event__header_size(struct perf_event *event)
1872 {
1873 	__perf_event_read_size(event,
1874 			       event->group_leader->nr_siblings);
1875 	__perf_event_header_size(event, event->attr.sample_type);
1876 }
1877 
1878 static void perf_event__id_header_size(struct perf_event *event)
1879 {
1880 	struct perf_sample_data *data;
1881 	u64 sample_type = event->attr.sample_type;
1882 	u16 size = 0;
1883 
1884 	if (sample_type & PERF_SAMPLE_TID)
1885 		size += sizeof(data->tid_entry);
1886 
1887 	if (sample_type & PERF_SAMPLE_TIME)
1888 		size += sizeof(data->time);
1889 
1890 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1891 		size += sizeof(data->id);
1892 
1893 	if (sample_type & PERF_SAMPLE_ID)
1894 		size += sizeof(data->id);
1895 
1896 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1897 		size += sizeof(data->stream_id);
1898 
1899 	if (sample_type & PERF_SAMPLE_CPU)
1900 		size += sizeof(data->cpu_entry);
1901 
1902 	event->id_header_size = size;
1903 }
1904 
1905 static bool perf_event_validate_size(struct perf_event *event)
1906 {
1907 	/*
1908 	 * The values computed here will be over-written when we actually
1909 	 * attach the event.
1910 	 */
1911 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1912 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1913 	perf_event__id_header_size(event);
1914 
1915 	/*
1916 	 * Sum the lot; should not exceed the 64k limit we have on records.
1917 	 * Conservative limit to allow for callchains and other variable fields.
1918 	 */
1919 	if (event->read_size + event->header_size +
1920 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1921 		return false;
1922 
1923 	return true;
1924 }
1925 
1926 static void perf_group_attach(struct perf_event *event)
1927 {
1928 	struct perf_event *group_leader = event->group_leader, *pos;
1929 
1930 	lockdep_assert_held(&event->ctx->lock);
1931 
1932 	/*
1933 	 * We can have double attach due to group movement in perf_event_open.
1934 	 */
1935 	if (event->attach_state & PERF_ATTACH_GROUP)
1936 		return;
1937 
1938 	event->attach_state |= PERF_ATTACH_GROUP;
1939 
1940 	if (group_leader == event)
1941 		return;
1942 
1943 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1944 
1945 	group_leader->group_caps &= event->event_caps;
1946 
1947 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1948 	group_leader->nr_siblings++;
1949 
1950 	perf_event__header_size(group_leader);
1951 
1952 	for_each_sibling_event(pos, group_leader)
1953 		perf_event__header_size(pos);
1954 }
1955 
1956 /*
1957  * Remove an event from the lists for its context.
1958  * Must be called with ctx->mutex and ctx->lock held.
1959  */
1960 static void
1961 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1962 {
1963 	WARN_ON_ONCE(event->ctx != ctx);
1964 	lockdep_assert_held(&ctx->lock);
1965 
1966 	/*
1967 	 * We can have double detach due to exit/hot-unplug + close.
1968 	 */
1969 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1970 		return;
1971 
1972 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1973 
1974 	list_update_cgroup_event(event, ctx, false);
1975 
1976 	ctx->nr_events--;
1977 	if (event->attr.inherit_stat)
1978 		ctx->nr_stat--;
1979 
1980 	list_del_rcu(&event->event_entry);
1981 
1982 	if (event->group_leader == event)
1983 		del_event_from_groups(event, ctx);
1984 
1985 	/*
1986 	 * If event was in error state, then keep it
1987 	 * that way, otherwise bogus counts will be
1988 	 * returned on read(). The only way to get out
1989 	 * of error state is by explicit re-enabling
1990 	 * of the event
1991 	 */
1992 	if (event->state > PERF_EVENT_STATE_OFF)
1993 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1994 
1995 	ctx->generation++;
1996 }
1997 
1998 static int
1999 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2000 {
2001 	if (!has_aux(aux_event))
2002 		return 0;
2003 
2004 	if (!event->pmu->aux_output_match)
2005 		return 0;
2006 
2007 	return event->pmu->aux_output_match(aux_event);
2008 }
2009 
2010 static void put_event(struct perf_event *event);
2011 static void event_sched_out(struct perf_event *event,
2012 			    struct perf_cpu_context *cpuctx,
2013 			    struct perf_event_context *ctx);
2014 
2015 static void perf_put_aux_event(struct perf_event *event)
2016 {
2017 	struct perf_event_context *ctx = event->ctx;
2018 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2019 	struct perf_event *iter;
2020 
2021 	/*
2022 	 * If event uses aux_event tear down the link
2023 	 */
2024 	if (event->aux_event) {
2025 		iter = event->aux_event;
2026 		event->aux_event = NULL;
2027 		put_event(iter);
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * If the event is an aux_event, tear down all links to
2033 	 * it from other events.
2034 	 */
2035 	for_each_sibling_event(iter, event->group_leader) {
2036 		if (iter->aux_event != event)
2037 			continue;
2038 
2039 		iter->aux_event = NULL;
2040 		put_event(event);
2041 
2042 		/*
2043 		 * If it's ACTIVE, schedule it out and put it into ERROR
2044 		 * state so that we don't try to schedule it again. Note
2045 		 * that perf_event_enable() will clear the ERROR status.
2046 		 */
2047 		event_sched_out(iter, cpuctx, ctx);
2048 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2049 	}
2050 }
2051 
2052 static bool perf_need_aux_event(struct perf_event *event)
2053 {
2054 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2055 }
2056 
2057 static int perf_get_aux_event(struct perf_event *event,
2058 			      struct perf_event *group_leader)
2059 {
2060 	/*
2061 	 * Our group leader must be an aux event if we want to be
2062 	 * an aux_output. This way, the aux event will precede its
2063 	 * aux_output events in the group, and therefore will always
2064 	 * schedule first.
2065 	 */
2066 	if (!group_leader)
2067 		return 0;
2068 
2069 	/*
2070 	 * aux_output and aux_sample_size are mutually exclusive.
2071 	 */
2072 	if (event->attr.aux_output && event->attr.aux_sample_size)
2073 		return 0;
2074 
2075 	if (event->attr.aux_output &&
2076 	    !perf_aux_output_match(event, group_leader))
2077 		return 0;
2078 
2079 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2080 		return 0;
2081 
2082 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2083 		return 0;
2084 
2085 	/*
2086 	 * Link aux_outputs to their aux event; this is undone in
2087 	 * perf_group_detach() by perf_put_aux_event(). When the
2088 	 * group in torn down, the aux_output events loose their
2089 	 * link to the aux_event and can't schedule any more.
2090 	 */
2091 	event->aux_event = group_leader;
2092 
2093 	return 1;
2094 }
2095 
2096 static inline struct list_head *get_event_list(struct perf_event *event)
2097 {
2098 	struct perf_event_context *ctx = event->ctx;
2099 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2100 }
2101 
2102 static void perf_group_detach(struct perf_event *event)
2103 {
2104 	struct perf_event *sibling, *tmp;
2105 	struct perf_event_context *ctx = event->ctx;
2106 
2107 	lockdep_assert_held(&ctx->lock);
2108 
2109 	/*
2110 	 * We can have double detach due to exit/hot-unplug + close.
2111 	 */
2112 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2113 		return;
2114 
2115 	event->attach_state &= ~PERF_ATTACH_GROUP;
2116 
2117 	perf_put_aux_event(event);
2118 
2119 	/*
2120 	 * If this is a sibling, remove it from its group.
2121 	 */
2122 	if (event->group_leader != event) {
2123 		list_del_init(&event->sibling_list);
2124 		event->group_leader->nr_siblings--;
2125 		goto out;
2126 	}
2127 
2128 	/*
2129 	 * If this was a group event with sibling events then
2130 	 * upgrade the siblings to singleton events by adding them
2131 	 * to whatever list we are on.
2132 	 */
2133 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2134 
2135 		sibling->group_leader = sibling;
2136 		list_del_init(&sibling->sibling_list);
2137 
2138 		/* Inherit group flags from the previous leader */
2139 		sibling->group_caps = event->group_caps;
2140 
2141 		if (!RB_EMPTY_NODE(&event->group_node)) {
2142 			add_event_to_groups(sibling, event->ctx);
2143 
2144 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2145 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2146 		}
2147 
2148 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2149 	}
2150 
2151 out:
2152 	perf_event__header_size(event->group_leader);
2153 
2154 	for_each_sibling_event(tmp, event->group_leader)
2155 		perf_event__header_size(tmp);
2156 }
2157 
2158 static bool is_orphaned_event(struct perf_event *event)
2159 {
2160 	return event->state == PERF_EVENT_STATE_DEAD;
2161 }
2162 
2163 static inline int __pmu_filter_match(struct perf_event *event)
2164 {
2165 	struct pmu *pmu = event->pmu;
2166 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2167 }
2168 
2169 /*
2170  * Check whether we should attempt to schedule an event group based on
2171  * PMU-specific filtering. An event group can consist of HW and SW events,
2172  * potentially with a SW leader, so we must check all the filters, to
2173  * determine whether a group is schedulable:
2174  */
2175 static inline int pmu_filter_match(struct perf_event *event)
2176 {
2177 	struct perf_event *sibling;
2178 
2179 	if (!__pmu_filter_match(event))
2180 		return 0;
2181 
2182 	for_each_sibling_event(sibling, event) {
2183 		if (!__pmu_filter_match(sibling))
2184 			return 0;
2185 	}
2186 
2187 	return 1;
2188 }
2189 
2190 static inline int
2191 event_filter_match(struct perf_event *event)
2192 {
2193 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2194 	       perf_cgroup_match(event) && pmu_filter_match(event);
2195 }
2196 
2197 static void
2198 event_sched_out(struct perf_event *event,
2199 		  struct perf_cpu_context *cpuctx,
2200 		  struct perf_event_context *ctx)
2201 {
2202 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2203 
2204 	WARN_ON_ONCE(event->ctx != ctx);
2205 	lockdep_assert_held(&ctx->lock);
2206 
2207 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2208 		return;
2209 
2210 	/*
2211 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2212 	 * we can schedule events _OUT_ individually through things like
2213 	 * __perf_remove_from_context().
2214 	 */
2215 	list_del_init(&event->active_list);
2216 
2217 	perf_pmu_disable(event->pmu);
2218 
2219 	event->pmu->del(event, 0);
2220 	event->oncpu = -1;
2221 
2222 	if (READ_ONCE(event->pending_disable) >= 0) {
2223 		WRITE_ONCE(event->pending_disable, -1);
2224 		state = PERF_EVENT_STATE_OFF;
2225 	}
2226 	perf_event_set_state(event, state);
2227 
2228 	if (!is_software_event(event))
2229 		cpuctx->active_oncpu--;
2230 	if (!--ctx->nr_active)
2231 		perf_event_ctx_deactivate(ctx);
2232 	if (event->attr.freq && event->attr.sample_freq)
2233 		ctx->nr_freq--;
2234 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2235 		cpuctx->exclusive = 0;
2236 
2237 	perf_pmu_enable(event->pmu);
2238 }
2239 
2240 static void
2241 group_sched_out(struct perf_event *group_event,
2242 		struct perf_cpu_context *cpuctx,
2243 		struct perf_event_context *ctx)
2244 {
2245 	struct perf_event *event;
2246 
2247 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2248 		return;
2249 
2250 	perf_pmu_disable(ctx->pmu);
2251 
2252 	event_sched_out(group_event, cpuctx, ctx);
2253 
2254 	/*
2255 	 * Schedule out siblings (if any):
2256 	 */
2257 	for_each_sibling_event(event, group_event)
2258 		event_sched_out(event, cpuctx, ctx);
2259 
2260 	perf_pmu_enable(ctx->pmu);
2261 
2262 	if (group_event->attr.exclusive)
2263 		cpuctx->exclusive = 0;
2264 }
2265 
2266 #define DETACH_GROUP	0x01UL
2267 
2268 /*
2269  * Cross CPU call to remove a performance event
2270  *
2271  * We disable the event on the hardware level first. After that we
2272  * remove it from the context list.
2273  */
2274 static void
2275 __perf_remove_from_context(struct perf_event *event,
2276 			   struct perf_cpu_context *cpuctx,
2277 			   struct perf_event_context *ctx,
2278 			   void *info)
2279 {
2280 	unsigned long flags = (unsigned long)info;
2281 
2282 	if (ctx->is_active & EVENT_TIME) {
2283 		update_context_time(ctx);
2284 		update_cgrp_time_from_cpuctx(cpuctx);
2285 	}
2286 
2287 	event_sched_out(event, cpuctx, ctx);
2288 	if (flags & DETACH_GROUP)
2289 		perf_group_detach(event);
2290 	list_del_event(event, ctx);
2291 
2292 	if (!ctx->nr_events && ctx->is_active) {
2293 		ctx->is_active = 0;
2294 		ctx->rotate_necessary = 0;
2295 		if (ctx->task) {
2296 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2297 			cpuctx->task_ctx = NULL;
2298 		}
2299 	}
2300 }
2301 
2302 /*
2303  * Remove the event from a task's (or a CPU's) list of events.
2304  *
2305  * If event->ctx is a cloned context, callers must make sure that
2306  * every task struct that event->ctx->task could possibly point to
2307  * remains valid.  This is OK when called from perf_release since
2308  * that only calls us on the top-level context, which can't be a clone.
2309  * When called from perf_event_exit_task, it's OK because the
2310  * context has been detached from its task.
2311  */
2312 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2313 {
2314 	struct perf_event_context *ctx = event->ctx;
2315 
2316 	lockdep_assert_held(&ctx->mutex);
2317 
2318 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2319 
2320 	/*
2321 	 * The above event_function_call() can NO-OP when it hits
2322 	 * TASK_TOMBSTONE. In that case we must already have been detached
2323 	 * from the context (by perf_event_exit_event()) but the grouping
2324 	 * might still be in-tact.
2325 	 */
2326 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2327 	if ((flags & DETACH_GROUP) &&
2328 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2329 		/*
2330 		 * Since in that case we cannot possibly be scheduled, simply
2331 		 * detach now.
2332 		 */
2333 		raw_spin_lock_irq(&ctx->lock);
2334 		perf_group_detach(event);
2335 		raw_spin_unlock_irq(&ctx->lock);
2336 	}
2337 }
2338 
2339 /*
2340  * Cross CPU call to disable a performance event
2341  */
2342 static void __perf_event_disable(struct perf_event *event,
2343 				 struct perf_cpu_context *cpuctx,
2344 				 struct perf_event_context *ctx,
2345 				 void *info)
2346 {
2347 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2348 		return;
2349 
2350 	if (ctx->is_active & EVENT_TIME) {
2351 		update_context_time(ctx);
2352 		update_cgrp_time_from_event(event);
2353 	}
2354 
2355 	if (event == event->group_leader)
2356 		group_sched_out(event, cpuctx, ctx);
2357 	else
2358 		event_sched_out(event, cpuctx, ctx);
2359 
2360 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2361 }
2362 
2363 /*
2364  * Disable an event.
2365  *
2366  * If event->ctx is a cloned context, callers must make sure that
2367  * every task struct that event->ctx->task could possibly point to
2368  * remains valid.  This condition is satisfied when called through
2369  * perf_event_for_each_child or perf_event_for_each because they
2370  * hold the top-level event's child_mutex, so any descendant that
2371  * goes to exit will block in perf_event_exit_event().
2372  *
2373  * When called from perf_pending_event it's OK because event->ctx
2374  * is the current context on this CPU and preemption is disabled,
2375  * hence we can't get into perf_event_task_sched_out for this context.
2376  */
2377 static void _perf_event_disable(struct perf_event *event)
2378 {
2379 	struct perf_event_context *ctx = event->ctx;
2380 
2381 	raw_spin_lock_irq(&ctx->lock);
2382 	if (event->state <= PERF_EVENT_STATE_OFF) {
2383 		raw_spin_unlock_irq(&ctx->lock);
2384 		return;
2385 	}
2386 	raw_spin_unlock_irq(&ctx->lock);
2387 
2388 	event_function_call(event, __perf_event_disable, NULL);
2389 }
2390 
2391 void perf_event_disable_local(struct perf_event *event)
2392 {
2393 	event_function_local(event, __perf_event_disable, NULL);
2394 }
2395 
2396 /*
2397  * Strictly speaking kernel users cannot create groups and therefore this
2398  * interface does not need the perf_event_ctx_lock() magic.
2399  */
2400 void perf_event_disable(struct perf_event *event)
2401 {
2402 	struct perf_event_context *ctx;
2403 
2404 	ctx = perf_event_ctx_lock(event);
2405 	_perf_event_disable(event);
2406 	perf_event_ctx_unlock(event, ctx);
2407 }
2408 EXPORT_SYMBOL_GPL(perf_event_disable);
2409 
2410 void perf_event_disable_inatomic(struct perf_event *event)
2411 {
2412 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2413 	/* can fail, see perf_pending_event_disable() */
2414 	irq_work_queue(&event->pending);
2415 }
2416 
2417 static void perf_set_shadow_time(struct perf_event *event,
2418 				 struct perf_event_context *ctx)
2419 {
2420 	/*
2421 	 * use the correct time source for the time snapshot
2422 	 *
2423 	 * We could get by without this by leveraging the
2424 	 * fact that to get to this function, the caller
2425 	 * has most likely already called update_context_time()
2426 	 * and update_cgrp_time_xx() and thus both timestamp
2427 	 * are identical (or very close). Given that tstamp is,
2428 	 * already adjusted for cgroup, we could say that:
2429 	 *    tstamp - ctx->timestamp
2430 	 * is equivalent to
2431 	 *    tstamp - cgrp->timestamp.
2432 	 *
2433 	 * Then, in perf_output_read(), the calculation would
2434 	 * work with no changes because:
2435 	 * - event is guaranteed scheduled in
2436 	 * - no scheduled out in between
2437 	 * - thus the timestamp would be the same
2438 	 *
2439 	 * But this is a bit hairy.
2440 	 *
2441 	 * So instead, we have an explicit cgroup call to remain
2442 	 * within the time time source all along. We believe it
2443 	 * is cleaner and simpler to understand.
2444 	 */
2445 	if (is_cgroup_event(event))
2446 		perf_cgroup_set_shadow_time(event, event->tstamp);
2447 	else
2448 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2449 }
2450 
2451 #define MAX_INTERRUPTS (~0ULL)
2452 
2453 static void perf_log_throttle(struct perf_event *event, int enable);
2454 static void perf_log_itrace_start(struct perf_event *event);
2455 
2456 static int
2457 event_sched_in(struct perf_event *event,
2458 		 struct perf_cpu_context *cpuctx,
2459 		 struct perf_event_context *ctx)
2460 {
2461 	int ret = 0;
2462 
2463 	WARN_ON_ONCE(event->ctx != ctx);
2464 
2465 	lockdep_assert_held(&ctx->lock);
2466 
2467 	if (event->state <= PERF_EVENT_STATE_OFF)
2468 		return 0;
2469 
2470 	WRITE_ONCE(event->oncpu, smp_processor_id());
2471 	/*
2472 	 * Order event::oncpu write to happen before the ACTIVE state is
2473 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2474 	 * ->oncpu if it sees ACTIVE.
2475 	 */
2476 	smp_wmb();
2477 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2478 
2479 	/*
2480 	 * Unthrottle events, since we scheduled we might have missed several
2481 	 * ticks already, also for a heavily scheduling task there is little
2482 	 * guarantee it'll get a tick in a timely manner.
2483 	 */
2484 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2485 		perf_log_throttle(event, 1);
2486 		event->hw.interrupts = 0;
2487 	}
2488 
2489 	perf_pmu_disable(event->pmu);
2490 
2491 	perf_set_shadow_time(event, ctx);
2492 
2493 	perf_log_itrace_start(event);
2494 
2495 	if (event->pmu->add(event, PERF_EF_START)) {
2496 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2497 		event->oncpu = -1;
2498 		ret = -EAGAIN;
2499 		goto out;
2500 	}
2501 
2502 	if (!is_software_event(event))
2503 		cpuctx->active_oncpu++;
2504 	if (!ctx->nr_active++)
2505 		perf_event_ctx_activate(ctx);
2506 	if (event->attr.freq && event->attr.sample_freq)
2507 		ctx->nr_freq++;
2508 
2509 	if (event->attr.exclusive)
2510 		cpuctx->exclusive = 1;
2511 
2512 out:
2513 	perf_pmu_enable(event->pmu);
2514 
2515 	return ret;
2516 }
2517 
2518 static int
2519 group_sched_in(struct perf_event *group_event,
2520 	       struct perf_cpu_context *cpuctx,
2521 	       struct perf_event_context *ctx)
2522 {
2523 	struct perf_event *event, *partial_group = NULL;
2524 	struct pmu *pmu = ctx->pmu;
2525 
2526 	if (group_event->state == PERF_EVENT_STATE_OFF)
2527 		return 0;
2528 
2529 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2530 
2531 	if (event_sched_in(group_event, cpuctx, ctx)) {
2532 		pmu->cancel_txn(pmu);
2533 		perf_mux_hrtimer_restart(cpuctx);
2534 		return -EAGAIN;
2535 	}
2536 
2537 	/*
2538 	 * Schedule in siblings as one group (if any):
2539 	 */
2540 	for_each_sibling_event(event, group_event) {
2541 		if (event_sched_in(event, cpuctx, ctx)) {
2542 			partial_group = event;
2543 			goto group_error;
2544 		}
2545 	}
2546 
2547 	if (!pmu->commit_txn(pmu))
2548 		return 0;
2549 
2550 group_error:
2551 	/*
2552 	 * Groups can be scheduled in as one unit only, so undo any
2553 	 * partial group before returning:
2554 	 * The events up to the failed event are scheduled out normally.
2555 	 */
2556 	for_each_sibling_event(event, group_event) {
2557 		if (event == partial_group)
2558 			break;
2559 
2560 		event_sched_out(event, cpuctx, ctx);
2561 	}
2562 	event_sched_out(group_event, cpuctx, ctx);
2563 
2564 	pmu->cancel_txn(pmu);
2565 
2566 	perf_mux_hrtimer_restart(cpuctx);
2567 
2568 	return -EAGAIN;
2569 }
2570 
2571 /*
2572  * Work out whether we can put this event group on the CPU now.
2573  */
2574 static int group_can_go_on(struct perf_event *event,
2575 			   struct perf_cpu_context *cpuctx,
2576 			   int can_add_hw)
2577 {
2578 	/*
2579 	 * Groups consisting entirely of software events can always go on.
2580 	 */
2581 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2582 		return 1;
2583 	/*
2584 	 * If an exclusive group is already on, no other hardware
2585 	 * events can go on.
2586 	 */
2587 	if (cpuctx->exclusive)
2588 		return 0;
2589 	/*
2590 	 * If this group is exclusive and there are already
2591 	 * events on the CPU, it can't go on.
2592 	 */
2593 	if (event->attr.exclusive && cpuctx->active_oncpu)
2594 		return 0;
2595 	/*
2596 	 * Otherwise, try to add it if all previous groups were able
2597 	 * to go on.
2598 	 */
2599 	return can_add_hw;
2600 }
2601 
2602 static void add_event_to_ctx(struct perf_event *event,
2603 			       struct perf_event_context *ctx)
2604 {
2605 	list_add_event(event, ctx);
2606 	perf_group_attach(event);
2607 }
2608 
2609 static void ctx_sched_out(struct perf_event_context *ctx,
2610 			  struct perf_cpu_context *cpuctx,
2611 			  enum event_type_t event_type);
2612 static void
2613 ctx_sched_in(struct perf_event_context *ctx,
2614 	     struct perf_cpu_context *cpuctx,
2615 	     enum event_type_t event_type,
2616 	     struct task_struct *task);
2617 
2618 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2619 			       struct perf_event_context *ctx,
2620 			       enum event_type_t event_type)
2621 {
2622 	if (!cpuctx->task_ctx)
2623 		return;
2624 
2625 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2626 		return;
2627 
2628 	ctx_sched_out(ctx, cpuctx, event_type);
2629 }
2630 
2631 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2632 				struct perf_event_context *ctx,
2633 				struct task_struct *task)
2634 {
2635 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2636 	if (ctx)
2637 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2638 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2639 	if (ctx)
2640 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2641 }
2642 
2643 /*
2644  * We want to maintain the following priority of scheduling:
2645  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2646  *  - task pinned (EVENT_PINNED)
2647  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2648  *  - task flexible (EVENT_FLEXIBLE).
2649  *
2650  * In order to avoid unscheduling and scheduling back in everything every
2651  * time an event is added, only do it for the groups of equal priority and
2652  * below.
2653  *
2654  * This can be called after a batch operation on task events, in which case
2655  * event_type is a bit mask of the types of events involved. For CPU events,
2656  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2657  */
2658 static void ctx_resched(struct perf_cpu_context *cpuctx,
2659 			struct perf_event_context *task_ctx,
2660 			enum event_type_t event_type)
2661 {
2662 	enum event_type_t ctx_event_type;
2663 	bool cpu_event = !!(event_type & EVENT_CPU);
2664 
2665 	/*
2666 	 * If pinned groups are involved, flexible groups also need to be
2667 	 * scheduled out.
2668 	 */
2669 	if (event_type & EVENT_PINNED)
2670 		event_type |= EVENT_FLEXIBLE;
2671 
2672 	ctx_event_type = event_type & EVENT_ALL;
2673 
2674 	perf_pmu_disable(cpuctx->ctx.pmu);
2675 	if (task_ctx)
2676 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2677 
2678 	/*
2679 	 * Decide which cpu ctx groups to schedule out based on the types
2680 	 * of events that caused rescheduling:
2681 	 *  - EVENT_CPU: schedule out corresponding groups;
2682 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2683 	 *  - otherwise, do nothing more.
2684 	 */
2685 	if (cpu_event)
2686 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2687 	else if (ctx_event_type & EVENT_PINNED)
2688 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2689 
2690 	perf_event_sched_in(cpuctx, task_ctx, current);
2691 	perf_pmu_enable(cpuctx->ctx.pmu);
2692 }
2693 
2694 void perf_pmu_resched(struct pmu *pmu)
2695 {
2696 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2697 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2698 
2699 	perf_ctx_lock(cpuctx, task_ctx);
2700 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2701 	perf_ctx_unlock(cpuctx, task_ctx);
2702 }
2703 
2704 /*
2705  * Cross CPU call to install and enable a performance event
2706  *
2707  * Very similar to remote_function() + event_function() but cannot assume that
2708  * things like ctx->is_active and cpuctx->task_ctx are set.
2709  */
2710 static int  __perf_install_in_context(void *info)
2711 {
2712 	struct perf_event *event = info;
2713 	struct perf_event_context *ctx = event->ctx;
2714 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2715 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2716 	bool reprogram = true;
2717 	int ret = 0;
2718 
2719 	raw_spin_lock(&cpuctx->ctx.lock);
2720 	if (ctx->task) {
2721 		raw_spin_lock(&ctx->lock);
2722 		task_ctx = ctx;
2723 
2724 		reprogram = (ctx->task == current);
2725 
2726 		/*
2727 		 * If the task is running, it must be running on this CPU,
2728 		 * otherwise we cannot reprogram things.
2729 		 *
2730 		 * If its not running, we don't care, ctx->lock will
2731 		 * serialize against it becoming runnable.
2732 		 */
2733 		if (task_curr(ctx->task) && !reprogram) {
2734 			ret = -ESRCH;
2735 			goto unlock;
2736 		}
2737 
2738 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2739 	} else if (task_ctx) {
2740 		raw_spin_lock(&task_ctx->lock);
2741 	}
2742 
2743 #ifdef CONFIG_CGROUP_PERF
2744 	if (is_cgroup_event(event)) {
2745 		/*
2746 		 * If the current cgroup doesn't match the event's
2747 		 * cgroup, we should not try to schedule it.
2748 		 */
2749 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2750 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2751 					event->cgrp->css.cgroup);
2752 	}
2753 #endif
2754 
2755 	if (reprogram) {
2756 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2757 		add_event_to_ctx(event, ctx);
2758 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2759 	} else {
2760 		add_event_to_ctx(event, ctx);
2761 	}
2762 
2763 unlock:
2764 	perf_ctx_unlock(cpuctx, task_ctx);
2765 
2766 	return ret;
2767 }
2768 
2769 static bool exclusive_event_installable(struct perf_event *event,
2770 					struct perf_event_context *ctx);
2771 
2772 /*
2773  * Attach a performance event to a context.
2774  *
2775  * Very similar to event_function_call, see comment there.
2776  */
2777 static void
2778 perf_install_in_context(struct perf_event_context *ctx,
2779 			struct perf_event *event,
2780 			int cpu)
2781 {
2782 	struct task_struct *task = READ_ONCE(ctx->task);
2783 
2784 	lockdep_assert_held(&ctx->mutex);
2785 
2786 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2787 
2788 	if (event->cpu != -1)
2789 		event->cpu = cpu;
2790 
2791 	/*
2792 	 * Ensures that if we can observe event->ctx, both the event and ctx
2793 	 * will be 'complete'. See perf_iterate_sb_cpu().
2794 	 */
2795 	smp_store_release(&event->ctx, ctx);
2796 
2797 	/*
2798 	 * perf_event_attr::disabled events will not run and can be initialized
2799 	 * without IPI. Except when this is the first event for the context, in
2800 	 * that case we need the magic of the IPI to set ctx->is_active.
2801 	 *
2802 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2803 	 * event will issue the IPI and reprogram the hardware.
2804 	 */
2805 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2806 		raw_spin_lock_irq(&ctx->lock);
2807 		if (ctx->task == TASK_TOMBSTONE) {
2808 			raw_spin_unlock_irq(&ctx->lock);
2809 			return;
2810 		}
2811 		add_event_to_ctx(event, ctx);
2812 		raw_spin_unlock_irq(&ctx->lock);
2813 		return;
2814 	}
2815 
2816 	if (!task) {
2817 		cpu_function_call(cpu, __perf_install_in_context, event);
2818 		return;
2819 	}
2820 
2821 	/*
2822 	 * Should not happen, we validate the ctx is still alive before calling.
2823 	 */
2824 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2825 		return;
2826 
2827 	/*
2828 	 * Installing events is tricky because we cannot rely on ctx->is_active
2829 	 * to be set in case this is the nr_events 0 -> 1 transition.
2830 	 *
2831 	 * Instead we use task_curr(), which tells us if the task is running.
2832 	 * However, since we use task_curr() outside of rq::lock, we can race
2833 	 * against the actual state. This means the result can be wrong.
2834 	 *
2835 	 * If we get a false positive, we retry, this is harmless.
2836 	 *
2837 	 * If we get a false negative, things are complicated. If we are after
2838 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2839 	 * value must be correct. If we're before, it doesn't matter since
2840 	 * perf_event_context_sched_in() will program the counter.
2841 	 *
2842 	 * However, this hinges on the remote context switch having observed
2843 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2844 	 * ctx::lock in perf_event_context_sched_in().
2845 	 *
2846 	 * We do this by task_function_call(), if the IPI fails to hit the task
2847 	 * we know any future context switch of task must see the
2848 	 * perf_event_ctpx[] store.
2849 	 */
2850 
2851 	/*
2852 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2853 	 * task_cpu() load, such that if the IPI then does not find the task
2854 	 * running, a future context switch of that task must observe the
2855 	 * store.
2856 	 */
2857 	smp_mb();
2858 again:
2859 	if (!task_function_call(task, __perf_install_in_context, event))
2860 		return;
2861 
2862 	raw_spin_lock_irq(&ctx->lock);
2863 	task = ctx->task;
2864 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2865 		/*
2866 		 * Cannot happen because we already checked above (which also
2867 		 * cannot happen), and we hold ctx->mutex, which serializes us
2868 		 * against perf_event_exit_task_context().
2869 		 */
2870 		raw_spin_unlock_irq(&ctx->lock);
2871 		return;
2872 	}
2873 	/*
2874 	 * If the task is not running, ctx->lock will avoid it becoming so,
2875 	 * thus we can safely install the event.
2876 	 */
2877 	if (task_curr(task)) {
2878 		raw_spin_unlock_irq(&ctx->lock);
2879 		goto again;
2880 	}
2881 	add_event_to_ctx(event, ctx);
2882 	raw_spin_unlock_irq(&ctx->lock);
2883 }
2884 
2885 /*
2886  * Cross CPU call to enable a performance event
2887  */
2888 static void __perf_event_enable(struct perf_event *event,
2889 				struct perf_cpu_context *cpuctx,
2890 				struct perf_event_context *ctx,
2891 				void *info)
2892 {
2893 	struct perf_event *leader = event->group_leader;
2894 	struct perf_event_context *task_ctx;
2895 
2896 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2897 	    event->state <= PERF_EVENT_STATE_ERROR)
2898 		return;
2899 
2900 	if (ctx->is_active)
2901 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2902 
2903 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2904 
2905 	if (!ctx->is_active)
2906 		return;
2907 
2908 	if (!event_filter_match(event)) {
2909 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2910 		return;
2911 	}
2912 
2913 	/*
2914 	 * If the event is in a group and isn't the group leader,
2915 	 * then don't put it on unless the group is on.
2916 	 */
2917 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2918 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2919 		return;
2920 	}
2921 
2922 	task_ctx = cpuctx->task_ctx;
2923 	if (ctx->task)
2924 		WARN_ON_ONCE(task_ctx != ctx);
2925 
2926 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2927 }
2928 
2929 /*
2930  * Enable an event.
2931  *
2932  * If event->ctx is a cloned context, callers must make sure that
2933  * every task struct that event->ctx->task could possibly point to
2934  * remains valid.  This condition is satisfied when called through
2935  * perf_event_for_each_child or perf_event_for_each as described
2936  * for perf_event_disable.
2937  */
2938 static void _perf_event_enable(struct perf_event *event)
2939 {
2940 	struct perf_event_context *ctx = event->ctx;
2941 
2942 	raw_spin_lock_irq(&ctx->lock);
2943 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 	    event->state <  PERF_EVENT_STATE_ERROR) {
2945 		raw_spin_unlock_irq(&ctx->lock);
2946 		return;
2947 	}
2948 
2949 	/*
2950 	 * If the event is in error state, clear that first.
2951 	 *
2952 	 * That way, if we see the event in error state below, we know that it
2953 	 * has gone back into error state, as distinct from the task having
2954 	 * been scheduled away before the cross-call arrived.
2955 	 */
2956 	if (event->state == PERF_EVENT_STATE_ERROR)
2957 		event->state = PERF_EVENT_STATE_OFF;
2958 	raw_spin_unlock_irq(&ctx->lock);
2959 
2960 	event_function_call(event, __perf_event_enable, NULL);
2961 }
2962 
2963 /*
2964  * See perf_event_disable();
2965  */
2966 void perf_event_enable(struct perf_event *event)
2967 {
2968 	struct perf_event_context *ctx;
2969 
2970 	ctx = perf_event_ctx_lock(event);
2971 	_perf_event_enable(event);
2972 	perf_event_ctx_unlock(event, ctx);
2973 }
2974 EXPORT_SYMBOL_GPL(perf_event_enable);
2975 
2976 struct stop_event_data {
2977 	struct perf_event	*event;
2978 	unsigned int		restart;
2979 };
2980 
2981 static int __perf_event_stop(void *info)
2982 {
2983 	struct stop_event_data *sd = info;
2984 	struct perf_event *event = sd->event;
2985 
2986 	/* if it's already INACTIVE, do nothing */
2987 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2988 		return 0;
2989 
2990 	/* matches smp_wmb() in event_sched_in() */
2991 	smp_rmb();
2992 
2993 	/*
2994 	 * There is a window with interrupts enabled before we get here,
2995 	 * so we need to check again lest we try to stop another CPU's event.
2996 	 */
2997 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2998 		return -EAGAIN;
2999 
3000 	event->pmu->stop(event, PERF_EF_UPDATE);
3001 
3002 	/*
3003 	 * May race with the actual stop (through perf_pmu_output_stop()),
3004 	 * but it is only used for events with AUX ring buffer, and such
3005 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3006 	 * see comments in perf_aux_output_begin().
3007 	 *
3008 	 * Since this is happening on an event-local CPU, no trace is lost
3009 	 * while restarting.
3010 	 */
3011 	if (sd->restart)
3012 		event->pmu->start(event, 0);
3013 
3014 	return 0;
3015 }
3016 
3017 static int perf_event_stop(struct perf_event *event, int restart)
3018 {
3019 	struct stop_event_data sd = {
3020 		.event		= event,
3021 		.restart	= restart,
3022 	};
3023 	int ret = 0;
3024 
3025 	do {
3026 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3027 			return 0;
3028 
3029 		/* matches smp_wmb() in event_sched_in() */
3030 		smp_rmb();
3031 
3032 		/*
3033 		 * We only want to restart ACTIVE events, so if the event goes
3034 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3035 		 * fall through with ret==-ENXIO.
3036 		 */
3037 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3038 					__perf_event_stop, &sd);
3039 	} while (ret == -EAGAIN);
3040 
3041 	return ret;
3042 }
3043 
3044 /*
3045  * In order to contain the amount of racy and tricky in the address filter
3046  * configuration management, it is a two part process:
3047  *
3048  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3049  *      we update the addresses of corresponding vmas in
3050  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3051  * (p2) when an event is scheduled in (pmu::add), it calls
3052  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3053  *      if the generation has changed since the previous call.
3054  *
3055  * If (p1) happens while the event is active, we restart it to force (p2).
3056  *
3057  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3058  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3059  *     ioctl;
3060  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3061  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3062  *     for reading;
3063  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3064  *     of exec.
3065  */
3066 void perf_event_addr_filters_sync(struct perf_event *event)
3067 {
3068 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3069 
3070 	if (!has_addr_filter(event))
3071 		return;
3072 
3073 	raw_spin_lock(&ifh->lock);
3074 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3075 		event->pmu->addr_filters_sync(event);
3076 		event->hw.addr_filters_gen = event->addr_filters_gen;
3077 	}
3078 	raw_spin_unlock(&ifh->lock);
3079 }
3080 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3081 
3082 static int _perf_event_refresh(struct perf_event *event, int refresh)
3083 {
3084 	/*
3085 	 * not supported on inherited events
3086 	 */
3087 	if (event->attr.inherit || !is_sampling_event(event))
3088 		return -EINVAL;
3089 
3090 	atomic_add(refresh, &event->event_limit);
3091 	_perf_event_enable(event);
3092 
3093 	return 0;
3094 }
3095 
3096 /*
3097  * See perf_event_disable()
3098  */
3099 int perf_event_refresh(struct perf_event *event, int refresh)
3100 {
3101 	struct perf_event_context *ctx;
3102 	int ret;
3103 
3104 	ctx = perf_event_ctx_lock(event);
3105 	ret = _perf_event_refresh(event, refresh);
3106 	perf_event_ctx_unlock(event, ctx);
3107 
3108 	return ret;
3109 }
3110 EXPORT_SYMBOL_GPL(perf_event_refresh);
3111 
3112 static int perf_event_modify_breakpoint(struct perf_event *bp,
3113 					 struct perf_event_attr *attr)
3114 {
3115 	int err;
3116 
3117 	_perf_event_disable(bp);
3118 
3119 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3120 
3121 	if (!bp->attr.disabled)
3122 		_perf_event_enable(bp);
3123 
3124 	return err;
3125 }
3126 
3127 static int perf_event_modify_attr(struct perf_event *event,
3128 				  struct perf_event_attr *attr)
3129 {
3130 	if (event->attr.type != attr->type)
3131 		return -EINVAL;
3132 
3133 	switch (event->attr.type) {
3134 	case PERF_TYPE_BREAKPOINT:
3135 		return perf_event_modify_breakpoint(event, attr);
3136 	default:
3137 		/* Place holder for future additions. */
3138 		return -EOPNOTSUPP;
3139 	}
3140 }
3141 
3142 static void ctx_sched_out(struct perf_event_context *ctx,
3143 			  struct perf_cpu_context *cpuctx,
3144 			  enum event_type_t event_type)
3145 {
3146 	struct perf_event *event, *tmp;
3147 	int is_active = ctx->is_active;
3148 
3149 	lockdep_assert_held(&ctx->lock);
3150 
3151 	if (likely(!ctx->nr_events)) {
3152 		/*
3153 		 * See __perf_remove_from_context().
3154 		 */
3155 		WARN_ON_ONCE(ctx->is_active);
3156 		if (ctx->task)
3157 			WARN_ON_ONCE(cpuctx->task_ctx);
3158 		return;
3159 	}
3160 
3161 	ctx->is_active &= ~event_type;
3162 	if (!(ctx->is_active & EVENT_ALL))
3163 		ctx->is_active = 0;
3164 
3165 	if (ctx->task) {
3166 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3167 		if (!ctx->is_active)
3168 			cpuctx->task_ctx = NULL;
3169 	}
3170 
3171 	/*
3172 	 * Always update time if it was set; not only when it changes.
3173 	 * Otherwise we can 'forget' to update time for any but the last
3174 	 * context we sched out. For example:
3175 	 *
3176 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3177 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3178 	 *
3179 	 * would only update time for the pinned events.
3180 	 */
3181 	if (is_active & EVENT_TIME) {
3182 		/* update (and stop) ctx time */
3183 		update_context_time(ctx);
3184 		update_cgrp_time_from_cpuctx(cpuctx);
3185 	}
3186 
3187 	is_active ^= ctx->is_active; /* changed bits */
3188 
3189 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3190 		return;
3191 
3192 	perf_pmu_disable(ctx->pmu);
3193 	if (is_active & EVENT_PINNED) {
3194 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3195 			group_sched_out(event, cpuctx, ctx);
3196 	}
3197 
3198 	if (is_active & EVENT_FLEXIBLE) {
3199 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3200 			group_sched_out(event, cpuctx, ctx);
3201 
3202 		/*
3203 		 * Since we cleared EVENT_FLEXIBLE, also clear
3204 		 * rotate_necessary, is will be reset by
3205 		 * ctx_flexible_sched_in() when needed.
3206 		 */
3207 		ctx->rotate_necessary = 0;
3208 	}
3209 	perf_pmu_enable(ctx->pmu);
3210 }
3211 
3212 /*
3213  * Test whether two contexts are equivalent, i.e. whether they have both been
3214  * cloned from the same version of the same context.
3215  *
3216  * Equivalence is measured using a generation number in the context that is
3217  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3218  * and list_del_event().
3219  */
3220 static int context_equiv(struct perf_event_context *ctx1,
3221 			 struct perf_event_context *ctx2)
3222 {
3223 	lockdep_assert_held(&ctx1->lock);
3224 	lockdep_assert_held(&ctx2->lock);
3225 
3226 	/* Pinning disables the swap optimization */
3227 	if (ctx1->pin_count || ctx2->pin_count)
3228 		return 0;
3229 
3230 	/* If ctx1 is the parent of ctx2 */
3231 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3232 		return 1;
3233 
3234 	/* If ctx2 is the parent of ctx1 */
3235 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3236 		return 1;
3237 
3238 	/*
3239 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3240 	 * hierarchy, see perf_event_init_context().
3241 	 */
3242 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3243 			ctx1->parent_gen == ctx2->parent_gen)
3244 		return 1;
3245 
3246 	/* Unmatched */
3247 	return 0;
3248 }
3249 
3250 static void __perf_event_sync_stat(struct perf_event *event,
3251 				     struct perf_event *next_event)
3252 {
3253 	u64 value;
3254 
3255 	if (!event->attr.inherit_stat)
3256 		return;
3257 
3258 	/*
3259 	 * Update the event value, we cannot use perf_event_read()
3260 	 * because we're in the middle of a context switch and have IRQs
3261 	 * disabled, which upsets smp_call_function_single(), however
3262 	 * we know the event must be on the current CPU, therefore we
3263 	 * don't need to use it.
3264 	 */
3265 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3266 		event->pmu->read(event);
3267 
3268 	perf_event_update_time(event);
3269 
3270 	/*
3271 	 * In order to keep per-task stats reliable we need to flip the event
3272 	 * values when we flip the contexts.
3273 	 */
3274 	value = local64_read(&next_event->count);
3275 	value = local64_xchg(&event->count, value);
3276 	local64_set(&next_event->count, value);
3277 
3278 	swap(event->total_time_enabled, next_event->total_time_enabled);
3279 	swap(event->total_time_running, next_event->total_time_running);
3280 
3281 	/*
3282 	 * Since we swizzled the values, update the user visible data too.
3283 	 */
3284 	perf_event_update_userpage(event);
3285 	perf_event_update_userpage(next_event);
3286 }
3287 
3288 static void perf_event_sync_stat(struct perf_event_context *ctx,
3289 				   struct perf_event_context *next_ctx)
3290 {
3291 	struct perf_event *event, *next_event;
3292 
3293 	if (!ctx->nr_stat)
3294 		return;
3295 
3296 	update_context_time(ctx);
3297 
3298 	event = list_first_entry(&ctx->event_list,
3299 				   struct perf_event, event_entry);
3300 
3301 	next_event = list_first_entry(&next_ctx->event_list,
3302 					struct perf_event, event_entry);
3303 
3304 	while (&event->event_entry != &ctx->event_list &&
3305 	       &next_event->event_entry != &next_ctx->event_list) {
3306 
3307 		__perf_event_sync_stat(event, next_event);
3308 
3309 		event = list_next_entry(event, event_entry);
3310 		next_event = list_next_entry(next_event, event_entry);
3311 	}
3312 }
3313 
3314 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3315 					 struct task_struct *next)
3316 {
3317 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3318 	struct perf_event_context *next_ctx;
3319 	struct perf_event_context *parent, *next_parent;
3320 	struct perf_cpu_context *cpuctx;
3321 	int do_switch = 1;
3322 
3323 	if (likely(!ctx))
3324 		return;
3325 
3326 	cpuctx = __get_cpu_context(ctx);
3327 	if (!cpuctx->task_ctx)
3328 		return;
3329 
3330 	rcu_read_lock();
3331 	next_ctx = next->perf_event_ctxp[ctxn];
3332 	if (!next_ctx)
3333 		goto unlock;
3334 
3335 	parent = rcu_dereference(ctx->parent_ctx);
3336 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3337 
3338 	/* If neither context have a parent context; they cannot be clones. */
3339 	if (!parent && !next_parent)
3340 		goto unlock;
3341 
3342 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3343 		/*
3344 		 * Looks like the two contexts are clones, so we might be
3345 		 * able to optimize the context switch.  We lock both
3346 		 * contexts and check that they are clones under the
3347 		 * lock (including re-checking that neither has been
3348 		 * uncloned in the meantime).  It doesn't matter which
3349 		 * order we take the locks because no other cpu could
3350 		 * be trying to lock both of these tasks.
3351 		 */
3352 		raw_spin_lock(&ctx->lock);
3353 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3354 		if (context_equiv(ctx, next_ctx)) {
3355 			struct pmu *pmu = ctx->pmu;
3356 
3357 			WRITE_ONCE(ctx->task, next);
3358 			WRITE_ONCE(next_ctx->task, task);
3359 
3360 			/*
3361 			 * PMU specific parts of task perf context can require
3362 			 * additional synchronization. As an example of such
3363 			 * synchronization see implementation details of Intel
3364 			 * LBR call stack data profiling;
3365 			 */
3366 			if (pmu->swap_task_ctx)
3367 				pmu->swap_task_ctx(ctx, next_ctx);
3368 			else
3369 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3370 
3371 			/*
3372 			 * RCU_INIT_POINTER here is safe because we've not
3373 			 * modified the ctx and the above modification of
3374 			 * ctx->task and ctx->task_ctx_data are immaterial
3375 			 * since those values are always verified under
3376 			 * ctx->lock which we're now holding.
3377 			 */
3378 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3379 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3380 
3381 			do_switch = 0;
3382 
3383 			perf_event_sync_stat(ctx, next_ctx);
3384 		}
3385 		raw_spin_unlock(&next_ctx->lock);
3386 		raw_spin_unlock(&ctx->lock);
3387 	}
3388 unlock:
3389 	rcu_read_unlock();
3390 
3391 	if (do_switch) {
3392 		raw_spin_lock(&ctx->lock);
3393 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3394 		raw_spin_unlock(&ctx->lock);
3395 	}
3396 }
3397 
3398 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3399 
3400 void perf_sched_cb_dec(struct pmu *pmu)
3401 {
3402 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3403 
3404 	this_cpu_dec(perf_sched_cb_usages);
3405 
3406 	if (!--cpuctx->sched_cb_usage)
3407 		list_del(&cpuctx->sched_cb_entry);
3408 }
3409 
3410 
3411 void perf_sched_cb_inc(struct pmu *pmu)
3412 {
3413 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3414 
3415 	if (!cpuctx->sched_cb_usage++)
3416 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3417 
3418 	this_cpu_inc(perf_sched_cb_usages);
3419 }
3420 
3421 /*
3422  * This function provides the context switch callback to the lower code
3423  * layer. It is invoked ONLY when the context switch callback is enabled.
3424  *
3425  * This callback is relevant even to per-cpu events; for example multi event
3426  * PEBS requires this to provide PID/TID information. This requires we flush
3427  * all queued PEBS records before we context switch to a new task.
3428  */
3429 static void perf_pmu_sched_task(struct task_struct *prev,
3430 				struct task_struct *next,
3431 				bool sched_in)
3432 {
3433 	struct perf_cpu_context *cpuctx;
3434 	struct pmu *pmu;
3435 
3436 	if (prev == next)
3437 		return;
3438 
3439 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3440 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3441 
3442 		if (WARN_ON_ONCE(!pmu->sched_task))
3443 			continue;
3444 
3445 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3446 		perf_pmu_disable(pmu);
3447 
3448 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3449 
3450 		perf_pmu_enable(pmu);
3451 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3452 	}
3453 }
3454 
3455 static void perf_event_switch(struct task_struct *task,
3456 			      struct task_struct *next_prev, bool sched_in);
3457 
3458 #define for_each_task_context_nr(ctxn)					\
3459 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3460 
3461 /*
3462  * Called from scheduler to remove the events of the current task,
3463  * with interrupts disabled.
3464  *
3465  * We stop each event and update the event value in event->count.
3466  *
3467  * This does not protect us against NMI, but disable()
3468  * sets the disabled bit in the control field of event _before_
3469  * accessing the event control register. If a NMI hits, then it will
3470  * not restart the event.
3471  */
3472 void __perf_event_task_sched_out(struct task_struct *task,
3473 				 struct task_struct *next)
3474 {
3475 	int ctxn;
3476 
3477 	if (__this_cpu_read(perf_sched_cb_usages))
3478 		perf_pmu_sched_task(task, next, false);
3479 
3480 	if (atomic_read(&nr_switch_events))
3481 		perf_event_switch(task, next, false);
3482 
3483 	for_each_task_context_nr(ctxn)
3484 		perf_event_context_sched_out(task, ctxn, next);
3485 
3486 	/*
3487 	 * if cgroup events exist on this CPU, then we need
3488 	 * to check if we have to switch out PMU state.
3489 	 * cgroup event are system-wide mode only
3490 	 */
3491 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3492 		perf_cgroup_sched_out(task, next);
3493 }
3494 
3495 /*
3496  * Called with IRQs disabled
3497  */
3498 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3499 			      enum event_type_t event_type)
3500 {
3501 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3502 }
3503 
3504 static bool perf_less_group_idx(const void *l, const void *r)
3505 {
3506 	const struct perf_event *le = l, *re = r;
3507 
3508 	return le->group_index < re->group_index;
3509 }
3510 
3511 static void swap_ptr(void *l, void *r)
3512 {
3513 	void **lp = l, **rp = r;
3514 
3515 	swap(*lp, *rp);
3516 }
3517 
3518 static const struct min_heap_callbacks perf_min_heap = {
3519 	.elem_size = sizeof(struct perf_event *),
3520 	.less = perf_less_group_idx,
3521 	.swp = swap_ptr,
3522 };
3523 
3524 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3525 {
3526 	struct perf_event **itrs = heap->data;
3527 
3528 	if (event) {
3529 		itrs[heap->nr] = event;
3530 		heap->nr++;
3531 	}
3532 }
3533 
3534 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3535 				struct perf_event_groups *groups, int cpu,
3536 				int (*func)(struct perf_event *, void *),
3537 				void *data)
3538 {
3539 #ifdef CONFIG_CGROUP_PERF
3540 	struct cgroup_subsys_state *css = NULL;
3541 #endif
3542 	/* Space for per CPU and/or any CPU event iterators. */
3543 	struct perf_event *itrs[2];
3544 	struct min_heap event_heap;
3545 	struct perf_event **evt;
3546 	int ret;
3547 
3548 	if (cpuctx) {
3549 		event_heap = (struct min_heap){
3550 			.data = cpuctx->heap,
3551 			.nr = 0,
3552 			.size = cpuctx->heap_size,
3553 		};
3554 
3555 		lockdep_assert_held(&cpuctx->ctx.lock);
3556 
3557 #ifdef CONFIG_CGROUP_PERF
3558 		if (cpuctx->cgrp)
3559 			css = &cpuctx->cgrp->css;
3560 #endif
3561 	} else {
3562 		event_heap = (struct min_heap){
3563 			.data = itrs,
3564 			.nr = 0,
3565 			.size = ARRAY_SIZE(itrs),
3566 		};
3567 		/* Events not within a CPU context may be on any CPU. */
3568 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3569 	}
3570 	evt = event_heap.data;
3571 
3572 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3573 
3574 #ifdef CONFIG_CGROUP_PERF
3575 	for (; css; css = css->parent)
3576 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3577 #endif
3578 
3579 	min_heapify_all(&event_heap, &perf_min_heap);
3580 
3581 	while (event_heap.nr) {
3582 		ret = func(*evt, data);
3583 		if (ret)
3584 			return ret;
3585 
3586 		*evt = perf_event_groups_next(*evt);
3587 		if (*evt)
3588 			min_heapify(&event_heap, 0, &perf_min_heap);
3589 		else
3590 			min_heap_pop(&event_heap, &perf_min_heap);
3591 	}
3592 
3593 	return 0;
3594 }
3595 
3596 static int merge_sched_in(struct perf_event *event, void *data)
3597 {
3598 	struct perf_event_context *ctx = event->ctx;
3599 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3600 	int *can_add_hw = data;
3601 
3602 	if (event->state <= PERF_EVENT_STATE_OFF)
3603 		return 0;
3604 
3605 	if (!event_filter_match(event))
3606 		return 0;
3607 
3608 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3609 		if (!group_sched_in(event, cpuctx, ctx))
3610 			list_add_tail(&event->active_list, get_event_list(event));
3611 	}
3612 
3613 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3614 		if (event->attr.pinned)
3615 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3616 
3617 		*can_add_hw = 0;
3618 		ctx->rotate_necessary = 1;
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 static void
3625 ctx_pinned_sched_in(struct perf_event_context *ctx,
3626 		    struct perf_cpu_context *cpuctx)
3627 {
3628 	int can_add_hw = 1;
3629 
3630 	if (ctx != &cpuctx->ctx)
3631 		cpuctx = NULL;
3632 
3633 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3634 			   smp_processor_id(),
3635 			   merge_sched_in, &can_add_hw);
3636 }
3637 
3638 static void
3639 ctx_flexible_sched_in(struct perf_event_context *ctx,
3640 		      struct perf_cpu_context *cpuctx)
3641 {
3642 	int can_add_hw = 1;
3643 
3644 	if (ctx != &cpuctx->ctx)
3645 		cpuctx = NULL;
3646 
3647 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3648 			   smp_processor_id(),
3649 			   merge_sched_in, &can_add_hw);
3650 }
3651 
3652 static void
3653 ctx_sched_in(struct perf_event_context *ctx,
3654 	     struct perf_cpu_context *cpuctx,
3655 	     enum event_type_t event_type,
3656 	     struct task_struct *task)
3657 {
3658 	int is_active = ctx->is_active;
3659 	u64 now;
3660 
3661 	lockdep_assert_held(&ctx->lock);
3662 
3663 	if (likely(!ctx->nr_events))
3664 		return;
3665 
3666 	ctx->is_active |= (event_type | EVENT_TIME);
3667 	if (ctx->task) {
3668 		if (!is_active)
3669 			cpuctx->task_ctx = ctx;
3670 		else
3671 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3672 	}
3673 
3674 	is_active ^= ctx->is_active; /* changed bits */
3675 
3676 	if (is_active & EVENT_TIME) {
3677 		/* start ctx time */
3678 		now = perf_clock();
3679 		ctx->timestamp = now;
3680 		perf_cgroup_set_timestamp(task, ctx);
3681 	}
3682 
3683 	/*
3684 	 * First go through the list and put on any pinned groups
3685 	 * in order to give them the best chance of going on.
3686 	 */
3687 	if (is_active & EVENT_PINNED)
3688 		ctx_pinned_sched_in(ctx, cpuctx);
3689 
3690 	/* Then walk through the lower prio flexible groups */
3691 	if (is_active & EVENT_FLEXIBLE)
3692 		ctx_flexible_sched_in(ctx, cpuctx);
3693 }
3694 
3695 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3696 			     enum event_type_t event_type,
3697 			     struct task_struct *task)
3698 {
3699 	struct perf_event_context *ctx = &cpuctx->ctx;
3700 
3701 	ctx_sched_in(ctx, cpuctx, event_type, task);
3702 }
3703 
3704 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3705 					struct task_struct *task)
3706 {
3707 	struct perf_cpu_context *cpuctx;
3708 
3709 	cpuctx = __get_cpu_context(ctx);
3710 	if (cpuctx->task_ctx == ctx)
3711 		return;
3712 
3713 	perf_ctx_lock(cpuctx, ctx);
3714 	/*
3715 	 * We must check ctx->nr_events while holding ctx->lock, such
3716 	 * that we serialize against perf_install_in_context().
3717 	 */
3718 	if (!ctx->nr_events)
3719 		goto unlock;
3720 
3721 	perf_pmu_disable(ctx->pmu);
3722 	/*
3723 	 * We want to keep the following priority order:
3724 	 * cpu pinned (that don't need to move), task pinned,
3725 	 * cpu flexible, task flexible.
3726 	 *
3727 	 * However, if task's ctx is not carrying any pinned
3728 	 * events, no need to flip the cpuctx's events around.
3729 	 */
3730 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3731 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3732 	perf_event_sched_in(cpuctx, ctx, task);
3733 	perf_pmu_enable(ctx->pmu);
3734 
3735 unlock:
3736 	perf_ctx_unlock(cpuctx, ctx);
3737 }
3738 
3739 /*
3740  * Called from scheduler to add the events of the current task
3741  * with interrupts disabled.
3742  *
3743  * We restore the event value and then enable it.
3744  *
3745  * This does not protect us against NMI, but enable()
3746  * sets the enabled bit in the control field of event _before_
3747  * accessing the event control register. If a NMI hits, then it will
3748  * keep the event running.
3749  */
3750 void __perf_event_task_sched_in(struct task_struct *prev,
3751 				struct task_struct *task)
3752 {
3753 	struct perf_event_context *ctx;
3754 	int ctxn;
3755 
3756 	/*
3757 	 * If cgroup events exist on this CPU, then we need to check if we have
3758 	 * to switch in PMU state; cgroup event are system-wide mode only.
3759 	 *
3760 	 * Since cgroup events are CPU events, we must schedule these in before
3761 	 * we schedule in the task events.
3762 	 */
3763 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3764 		perf_cgroup_sched_in(prev, task);
3765 
3766 	for_each_task_context_nr(ctxn) {
3767 		ctx = task->perf_event_ctxp[ctxn];
3768 		if (likely(!ctx))
3769 			continue;
3770 
3771 		perf_event_context_sched_in(ctx, task);
3772 	}
3773 
3774 	if (atomic_read(&nr_switch_events))
3775 		perf_event_switch(task, prev, true);
3776 
3777 	if (__this_cpu_read(perf_sched_cb_usages))
3778 		perf_pmu_sched_task(prev, task, true);
3779 }
3780 
3781 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3782 {
3783 	u64 frequency = event->attr.sample_freq;
3784 	u64 sec = NSEC_PER_SEC;
3785 	u64 divisor, dividend;
3786 
3787 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3788 
3789 	count_fls = fls64(count);
3790 	nsec_fls = fls64(nsec);
3791 	frequency_fls = fls64(frequency);
3792 	sec_fls = 30;
3793 
3794 	/*
3795 	 * We got @count in @nsec, with a target of sample_freq HZ
3796 	 * the target period becomes:
3797 	 *
3798 	 *             @count * 10^9
3799 	 * period = -------------------
3800 	 *          @nsec * sample_freq
3801 	 *
3802 	 */
3803 
3804 	/*
3805 	 * Reduce accuracy by one bit such that @a and @b converge
3806 	 * to a similar magnitude.
3807 	 */
3808 #define REDUCE_FLS(a, b)		\
3809 do {					\
3810 	if (a##_fls > b##_fls) {	\
3811 		a >>= 1;		\
3812 		a##_fls--;		\
3813 	} else {			\
3814 		b >>= 1;		\
3815 		b##_fls--;		\
3816 	}				\
3817 } while (0)
3818 
3819 	/*
3820 	 * Reduce accuracy until either term fits in a u64, then proceed with
3821 	 * the other, so that finally we can do a u64/u64 division.
3822 	 */
3823 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3824 		REDUCE_FLS(nsec, frequency);
3825 		REDUCE_FLS(sec, count);
3826 	}
3827 
3828 	if (count_fls + sec_fls > 64) {
3829 		divisor = nsec * frequency;
3830 
3831 		while (count_fls + sec_fls > 64) {
3832 			REDUCE_FLS(count, sec);
3833 			divisor >>= 1;
3834 		}
3835 
3836 		dividend = count * sec;
3837 	} else {
3838 		dividend = count * sec;
3839 
3840 		while (nsec_fls + frequency_fls > 64) {
3841 			REDUCE_FLS(nsec, frequency);
3842 			dividend >>= 1;
3843 		}
3844 
3845 		divisor = nsec * frequency;
3846 	}
3847 
3848 	if (!divisor)
3849 		return dividend;
3850 
3851 	return div64_u64(dividend, divisor);
3852 }
3853 
3854 static DEFINE_PER_CPU(int, perf_throttled_count);
3855 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3856 
3857 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3858 {
3859 	struct hw_perf_event *hwc = &event->hw;
3860 	s64 period, sample_period;
3861 	s64 delta;
3862 
3863 	period = perf_calculate_period(event, nsec, count);
3864 
3865 	delta = (s64)(period - hwc->sample_period);
3866 	delta = (delta + 7) / 8; /* low pass filter */
3867 
3868 	sample_period = hwc->sample_period + delta;
3869 
3870 	if (!sample_period)
3871 		sample_period = 1;
3872 
3873 	hwc->sample_period = sample_period;
3874 
3875 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3876 		if (disable)
3877 			event->pmu->stop(event, PERF_EF_UPDATE);
3878 
3879 		local64_set(&hwc->period_left, 0);
3880 
3881 		if (disable)
3882 			event->pmu->start(event, PERF_EF_RELOAD);
3883 	}
3884 }
3885 
3886 /*
3887  * combine freq adjustment with unthrottling to avoid two passes over the
3888  * events. At the same time, make sure, having freq events does not change
3889  * the rate of unthrottling as that would introduce bias.
3890  */
3891 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3892 					   int needs_unthr)
3893 {
3894 	struct perf_event *event;
3895 	struct hw_perf_event *hwc;
3896 	u64 now, period = TICK_NSEC;
3897 	s64 delta;
3898 
3899 	/*
3900 	 * only need to iterate over all events iff:
3901 	 * - context have events in frequency mode (needs freq adjust)
3902 	 * - there are events to unthrottle on this cpu
3903 	 */
3904 	if (!(ctx->nr_freq || needs_unthr))
3905 		return;
3906 
3907 	raw_spin_lock(&ctx->lock);
3908 	perf_pmu_disable(ctx->pmu);
3909 
3910 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3911 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3912 			continue;
3913 
3914 		if (!event_filter_match(event))
3915 			continue;
3916 
3917 		perf_pmu_disable(event->pmu);
3918 
3919 		hwc = &event->hw;
3920 
3921 		if (hwc->interrupts == MAX_INTERRUPTS) {
3922 			hwc->interrupts = 0;
3923 			perf_log_throttle(event, 1);
3924 			event->pmu->start(event, 0);
3925 		}
3926 
3927 		if (!event->attr.freq || !event->attr.sample_freq)
3928 			goto next;
3929 
3930 		/*
3931 		 * stop the event and update event->count
3932 		 */
3933 		event->pmu->stop(event, PERF_EF_UPDATE);
3934 
3935 		now = local64_read(&event->count);
3936 		delta = now - hwc->freq_count_stamp;
3937 		hwc->freq_count_stamp = now;
3938 
3939 		/*
3940 		 * restart the event
3941 		 * reload only if value has changed
3942 		 * we have stopped the event so tell that
3943 		 * to perf_adjust_period() to avoid stopping it
3944 		 * twice.
3945 		 */
3946 		if (delta > 0)
3947 			perf_adjust_period(event, period, delta, false);
3948 
3949 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3950 	next:
3951 		perf_pmu_enable(event->pmu);
3952 	}
3953 
3954 	perf_pmu_enable(ctx->pmu);
3955 	raw_spin_unlock(&ctx->lock);
3956 }
3957 
3958 /*
3959  * Move @event to the tail of the @ctx's elegible events.
3960  */
3961 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3962 {
3963 	/*
3964 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3965 	 * disabled by the inheritance code.
3966 	 */
3967 	if (ctx->rotate_disable)
3968 		return;
3969 
3970 	perf_event_groups_delete(&ctx->flexible_groups, event);
3971 	perf_event_groups_insert(&ctx->flexible_groups, event);
3972 }
3973 
3974 /* pick an event from the flexible_groups to rotate */
3975 static inline struct perf_event *
3976 ctx_event_to_rotate(struct perf_event_context *ctx)
3977 {
3978 	struct perf_event *event;
3979 
3980 	/* pick the first active flexible event */
3981 	event = list_first_entry_or_null(&ctx->flexible_active,
3982 					 struct perf_event, active_list);
3983 
3984 	/* if no active flexible event, pick the first event */
3985 	if (!event) {
3986 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3987 				      typeof(*event), group_node);
3988 	}
3989 
3990 	/*
3991 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3992 	 * finds there are unschedulable events, it will set it again.
3993 	 */
3994 	ctx->rotate_necessary = 0;
3995 
3996 	return event;
3997 }
3998 
3999 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4000 {
4001 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4002 	struct perf_event_context *task_ctx = NULL;
4003 	int cpu_rotate, task_rotate;
4004 
4005 	/*
4006 	 * Since we run this from IRQ context, nobody can install new
4007 	 * events, thus the event count values are stable.
4008 	 */
4009 
4010 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4011 	task_ctx = cpuctx->task_ctx;
4012 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4013 
4014 	if (!(cpu_rotate || task_rotate))
4015 		return false;
4016 
4017 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4018 	perf_pmu_disable(cpuctx->ctx.pmu);
4019 
4020 	if (task_rotate)
4021 		task_event = ctx_event_to_rotate(task_ctx);
4022 	if (cpu_rotate)
4023 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4024 
4025 	/*
4026 	 * As per the order given at ctx_resched() first 'pop' task flexible
4027 	 * and then, if needed CPU flexible.
4028 	 */
4029 	if (task_event || (task_ctx && cpu_event))
4030 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4031 	if (cpu_event)
4032 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4033 
4034 	if (task_event)
4035 		rotate_ctx(task_ctx, task_event);
4036 	if (cpu_event)
4037 		rotate_ctx(&cpuctx->ctx, cpu_event);
4038 
4039 	perf_event_sched_in(cpuctx, task_ctx, current);
4040 
4041 	perf_pmu_enable(cpuctx->ctx.pmu);
4042 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4043 
4044 	return true;
4045 }
4046 
4047 void perf_event_task_tick(void)
4048 {
4049 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4050 	struct perf_event_context *ctx, *tmp;
4051 	int throttled;
4052 
4053 	lockdep_assert_irqs_disabled();
4054 
4055 	__this_cpu_inc(perf_throttled_seq);
4056 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4057 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4058 
4059 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4060 		perf_adjust_freq_unthr_context(ctx, throttled);
4061 }
4062 
4063 static int event_enable_on_exec(struct perf_event *event,
4064 				struct perf_event_context *ctx)
4065 {
4066 	if (!event->attr.enable_on_exec)
4067 		return 0;
4068 
4069 	event->attr.enable_on_exec = 0;
4070 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4071 		return 0;
4072 
4073 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4074 
4075 	return 1;
4076 }
4077 
4078 /*
4079  * Enable all of a task's events that have been marked enable-on-exec.
4080  * This expects task == current.
4081  */
4082 static void perf_event_enable_on_exec(int ctxn)
4083 {
4084 	struct perf_event_context *ctx, *clone_ctx = NULL;
4085 	enum event_type_t event_type = 0;
4086 	struct perf_cpu_context *cpuctx;
4087 	struct perf_event *event;
4088 	unsigned long flags;
4089 	int enabled = 0;
4090 
4091 	local_irq_save(flags);
4092 	ctx = current->perf_event_ctxp[ctxn];
4093 	if (!ctx || !ctx->nr_events)
4094 		goto out;
4095 
4096 	cpuctx = __get_cpu_context(ctx);
4097 	perf_ctx_lock(cpuctx, ctx);
4098 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4099 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4100 		enabled |= event_enable_on_exec(event, ctx);
4101 		event_type |= get_event_type(event);
4102 	}
4103 
4104 	/*
4105 	 * Unclone and reschedule this context if we enabled any event.
4106 	 */
4107 	if (enabled) {
4108 		clone_ctx = unclone_ctx(ctx);
4109 		ctx_resched(cpuctx, ctx, event_type);
4110 	} else {
4111 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4112 	}
4113 	perf_ctx_unlock(cpuctx, ctx);
4114 
4115 out:
4116 	local_irq_restore(flags);
4117 
4118 	if (clone_ctx)
4119 		put_ctx(clone_ctx);
4120 }
4121 
4122 struct perf_read_data {
4123 	struct perf_event *event;
4124 	bool group;
4125 	int ret;
4126 };
4127 
4128 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4129 {
4130 	u16 local_pkg, event_pkg;
4131 
4132 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4133 		int local_cpu = smp_processor_id();
4134 
4135 		event_pkg = topology_physical_package_id(event_cpu);
4136 		local_pkg = topology_physical_package_id(local_cpu);
4137 
4138 		if (event_pkg == local_pkg)
4139 			return local_cpu;
4140 	}
4141 
4142 	return event_cpu;
4143 }
4144 
4145 /*
4146  * Cross CPU call to read the hardware event
4147  */
4148 static void __perf_event_read(void *info)
4149 {
4150 	struct perf_read_data *data = info;
4151 	struct perf_event *sub, *event = data->event;
4152 	struct perf_event_context *ctx = event->ctx;
4153 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4154 	struct pmu *pmu = event->pmu;
4155 
4156 	/*
4157 	 * If this is a task context, we need to check whether it is
4158 	 * the current task context of this cpu.  If not it has been
4159 	 * scheduled out before the smp call arrived.  In that case
4160 	 * event->count would have been updated to a recent sample
4161 	 * when the event was scheduled out.
4162 	 */
4163 	if (ctx->task && cpuctx->task_ctx != ctx)
4164 		return;
4165 
4166 	raw_spin_lock(&ctx->lock);
4167 	if (ctx->is_active & EVENT_TIME) {
4168 		update_context_time(ctx);
4169 		update_cgrp_time_from_event(event);
4170 	}
4171 
4172 	perf_event_update_time(event);
4173 	if (data->group)
4174 		perf_event_update_sibling_time(event);
4175 
4176 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4177 		goto unlock;
4178 
4179 	if (!data->group) {
4180 		pmu->read(event);
4181 		data->ret = 0;
4182 		goto unlock;
4183 	}
4184 
4185 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4186 
4187 	pmu->read(event);
4188 
4189 	for_each_sibling_event(sub, event) {
4190 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4191 			/*
4192 			 * Use sibling's PMU rather than @event's since
4193 			 * sibling could be on different (eg: software) PMU.
4194 			 */
4195 			sub->pmu->read(sub);
4196 		}
4197 	}
4198 
4199 	data->ret = pmu->commit_txn(pmu);
4200 
4201 unlock:
4202 	raw_spin_unlock(&ctx->lock);
4203 }
4204 
4205 static inline u64 perf_event_count(struct perf_event *event)
4206 {
4207 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4208 }
4209 
4210 /*
4211  * NMI-safe method to read a local event, that is an event that
4212  * is:
4213  *   - either for the current task, or for this CPU
4214  *   - does not have inherit set, for inherited task events
4215  *     will not be local and we cannot read them atomically
4216  *   - must not have a pmu::count method
4217  */
4218 int perf_event_read_local(struct perf_event *event, u64 *value,
4219 			  u64 *enabled, u64 *running)
4220 {
4221 	unsigned long flags;
4222 	int ret = 0;
4223 
4224 	/*
4225 	 * Disabling interrupts avoids all counter scheduling (context
4226 	 * switches, timer based rotation and IPIs).
4227 	 */
4228 	local_irq_save(flags);
4229 
4230 	/*
4231 	 * It must not be an event with inherit set, we cannot read
4232 	 * all child counters from atomic context.
4233 	 */
4234 	if (event->attr.inherit) {
4235 		ret = -EOPNOTSUPP;
4236 		goto out;
4237 	}
4238 
4239 	/* If this is a per-task event, it must be for current */
4240 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4241 	    event->hw.target != current) {
4242 		ret = -EINVAL;
4243 		goto out;
4244 	}
4245 
4246 	/* If this is a per-CPU event, it must be for this CPU */
4247 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4248 	    event->cpu != smp_processor_id()) {
4249 		ret = -EINVAL;
4250 		goto out;
4251 	}
4252 
4253 	/* If this is a pinned event it must be running on this CPU */
4254 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4255 		ret = -EBUSY;
4256 		goto out;
4257 	}
4258 
4259 	/*
4260 	 * If the event is currently on this CPU, its either a per-task event,
4261 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4262 	 * oncpu == -1).
4263 	 */
4264 	if (event->oncpu == smp_processor_id())
4265 		event->pmu->read(event);
4266 
4267 	*value = local64_read(&event->count);
4268 	if (enabled || running) {
4269 		u64 now = event->shadow_ctx_time + perf_clock();
4270 		u64 __enabled, __running;
4271 
4272 		__perf_update_times(event, now, &__enabled, &__running);
4273 		if (enabled)
4274 			*enabled = __enabled;
4275 		if (running)
4276 			*running = __running;
4277 	}
4278 out:
4279 	local_irq_restore(flags);
4280 
4281 	return ret;
4282 }
4283 
4284 static int perf_event_read(struct perf_event *event, bool group)
4285 {
4286 	enum perf_event_state state = READ_ONCE(event->state);
4287 	int event_cpu, ret = 0;
4288 
4289 	/*
4290 	 * If event is enabled and currently active on a CPU, update the
4291 	 * value in the event structure:
4292 	 */
4293 again:
4294 	if (state == PERF_EVENT_STATE_ACTIVE) {
4295 		struct perf_read_data data;
4296 
4297 		/*
4298 		 * Orders the ->state and ->oncpu loads such that if we see
4299 		 * ACTIVE we must also see the right ->oncpu.
4300 		 *
4301 		 * Matches the smp_wmb() from event_sched_in().
4302 		 */
4303 		smp_rmb();
4304 
4305 		event_cpu = READ_ONCE(event->oncpu);
4306 		if ((unsigned)event_cpu >= nr_cpu_ids)
4307 			return 0;
4308 
4309 		data = (struct perf_read_data){
4310 			.event = event,
4311 			.group = group,
4312 			.ret = 0,
4313 		};
4314 
4315 		preempt_disable();
4316 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4317 
4318 		/*
4319 		 * Purposely ignore the smp_call_function_single() return
4320 		 * value.
4321 		 *
4322 		 * If event_cpu isn't a valid CPU it means the event got
4323 		 * scheduled out and that will have updated the event count.
4324 		 *
4325 		 * Therefore, either way, we'll have an up-to-date event count
4326 		 * after this.
4327 		 */
4328 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4329 		preempt_enable();
4330 		ret = data.ret;
4331 
4332 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4333 		struct perf_event_context *ctx = event->ctx;
4334 		unsigned long flags;
4335 
4336 		raw_spin_lock_irqsave(&ctx->lock, flags);
4337 		state = event->state;
4338 		if (state != PERF_EVENT_STATE_INACTIVE) {
4339 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4340 			goto again;
4341 		}
4342 
4343 		/*
4344 		 * May read while context is not active (e.g., thread is
4345 		 * blocked), in that case we cannot update context time
4346 		 */
4347 		if (ctx->is_active & EVENT_TIME) {
4348 			update_context_time(ctx);
4349 			update_cgrp_time_from_event(event);
4350 		}
4351 
4352 		perf_event_update_time(event);
4353 		if (group)
4354 			perf_event_update_sibling_time(event);
4355 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4356 	}
4357 
4358 	return ret;
4359 }
4360 
4361 /*
4362  * Initialize the perf_event context in a task_struct:
4363  */
4364 static void __perf_event_init_context(struct perf_event_context *ctx)
4365 {
4366 	raw_spin_lock_init(&ctx->lock);
4367 	mutex_init(&ctx->mutex);
4368 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4369 	perf_event_groups_init(&ctx->pinned_groups);
4370 	perf_event_groups_init(&ctx->flexible_groups);
4371 	INIT_LIST_HEAD(&ctx->event_list);
4372 	INIT_LIST_HEAD(&ctx->pinned_active);
4373 	INIT_LIST_HEAD(&ctx->flexible_active);
4374 	refcount_set(&ctx->refcount, 1);
4375 }
4376 
4377 static struct perf_event_context *
4378 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4379 {
4380 	struct perf_event_context *ctx;
4381 
4382 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4383 	if (!ctx)
4384 		return NULL;
4385 
4386 	__perf_event_init_context(ctx);
4387 	if (task)
4388 		ctx->task = get_task_struct(task);
4389 	ctx->pmu = pmu;
4390 
4391 	return ctx;
4392 }
4393 
4394 static struct task_struct *
4395 find_lively_task_by_vpid(pid_t vpid)
4396 {
4397 	struct task_struct *task;
4398 
4399 	rcu_read_lock();
4400 	if (!vpid)
4401 		task = current;
4402 	else
4403 		task = find_task_by_vpid(vpid);
4404 	if (task)
4405 		get_task_struct(task);
4406 	rcu_read_unlock();
4407 
4408 	if (!task)
4409 		return ERR_PTR(-ESRCH);
4410 
4411 	return task;
4412 }
4413 
4414 /*
4415  * Returns a matching context with refcount and pincount.
4416  */
4417 static struct perf_event_context *
4418 find_get_context(struct pmu *pmu, struct task_struct *task,
4419 		struct perf_event *event)
4420 {
4421 	struct perf_event_context *ctx, *clone_ctx = NULL;
4422 	struct perf_cpu_context *cpuctx;
4423 	void *task_ctx_data = NULL;
4424 	unsigned long flags;
4425 	int ctxn, err;
4426 	int cpu = event->cpu;
4427 
4428 	if (!task) {
4429 		/* Must be root to operate on a CPU event: */
4430 		err = perf_allow_cpu(&event->attr);
4431 		if (err)
4432 			return ERR_PTR(err);
4433 
4434 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4435 		ctx = &cpuctx->ctx;
4436 		get_ctx(ctx);
4437 		++ctx->pin_count;
4438 
4439 		return ctx;
4440 	}
4441 
4442 	err = -EINVAL;
4443 	ctxn = pmu->task_ctx_nr;
4444 	if (ctxn < 0)
4445 		goto errout;
4446 
4447 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4448 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4449 		if (!task_ctx_data) {
4450 			err = -ENOMEM;
4451 			goto errout;
4452 		}
4453 	}
4454 
4455 retry:
4456 	ctx = perf_lock_task_context(task, ctxn, &flags);
4457 	if (ctx) {
4458 		clone_ctx = unclone_ctx(ctx);
4459 		++ctx->pin_count;
4460 
4461 		if (task_ctx_data && !ctx->task_ctx_data) {
4462 			ctx->task_ctx_data = task_ctx_data;
4463 			task_ctx_data = NULL;
4464 		}
4465 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4466 
4467 		if (clone_ctx)
4468 			put_ctx(clone_ctx);
4469 	} else {
4470 		ctx = alloc_perf_context(pmu, task);
4471 		err = -ENOMEM;
4472 		if (!ctx)
4473 			goto errout;
4474 
4475 		if (task_ctx_data) {
4476 			ctx->task_ctx_data = task_ctx_data;
4477 			task_ctx_data = NULL;
4478 		}
4479 
4480 		err = 0;
4481 		mutex_lock(&task->perf_event_mutex);
4482 		/*
4483 		 * If it has already passed perf_event_exit_task().
4484 		 * we must see PF_EXITING, it takes this mutex too.
4485 		 */
4486 		if (task->flags & PF_EXITING)
4487 			err = -ESRCH;
4488 		else if (task->perf_event_ctxp[ctxn])
4489 			err = -EAGAIN;
4490 		else {
4491 			get_ctx(ctx);
4492 			++ctx->pin_count;
4493 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4494 		}
4495 		mutex_unlock(&task->perf_event_mutex);
4496 
4497 		if (unlikely(err)) {
4498 			put_ctx(ctx);
4499 
4500 			if (err == -EAGAIN)
4501 				goto retry;
4502 			goto errout;
4503 		}
4504 	}
4505 
4506 	kfree(task_ctx_data);
4507 	return ctx;
4508 
4509 errout:
4510 	kfree(task_ctx_data);
4511 	return ERR_PTR(err);
4512 }
4513 
4514 static void perf_event_free_filter(struct perf_event *event);
4515 static void perf_event_free_bpf_prog(struct perf_event *event);
4516 
4517 static void free_event_rcu(struct rcu_head *head)
4518 {
4519 	struct perf_event *event;
4520 
4521 	event = container_of(head, struct perf_event, rcu_head);
4522 	if (event->ns)
4523 		put_pid_ns(event->ns);
4524 	perf_event_free_filter(event);
4525 	kfree(event);
4526 }
4527 
4528 static void ring_buffer_attach(struct perf_event *event,
4529 			       struct perf_buffer *rb);
4530 
4531 static void detach_sb_event(struct perf_event *event)
4532 {
4533 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4534 
4535 	raw_spin_lock(&pel->lock);
4536 	list_del_rcu(&event->sb_list);
4537 	raw_spin_unlock(&pel->lock);
4538 }
4539 
4540 static bool is_sb_event(struct perf_event *event)
4541 {
4542 	struct perf_event_attr *attr = &event->attr;
4543 
4544 	if (event->parent)
4545 		return false;
4546 
4547 	if (event->attach_state & PERF_ATTACH_TASK)
4548 		return false;
4549 
4550 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4551 	    attr->comm || attr->comm_exec ||
4552 	    attr->task || attr->ksymbol ||
4553 	    attr->context_switch ||
4554 	    attr->bpf_event)
4555 		return true;
4556 	return false;
4557 }
4558 
4559 static void unaccount_pmu_sb_event(struct perf_event *event)
4560 {
4561 	if (is_sb_event(event))
4562 		detach_sb_event(event);
4563 }
4564 
4565 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4566 {
4567 	if (event->parent)
4568 		return;
4569 
4570 	if (is_cgroup_event(event))
4571 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4572 }
4573 
4574 #ifdef CONFIG_NO_HZ_FULL
4575 static DEFINE_SPINLOCK(nr_freq_lock);
4576 #endif
4577 
4578 static void unaccount_freq_event_nohz(void)
4579 {
4580 #ifdef CONFIG_NO_HZ_FULL
4581 	spin_lock(&nr_freq_lock);
4582 	if (atomic_dec_and_test(&nr_freq_events))
4583 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4584 	spin_unlock(&nr_freq_lock);
4585 #endif
4586 }
4587 
4588 static void unaccount_freq_event(void)
4589 {
4590 	if (tick_nohz_full_enabled())
4591 		unaccount_freq_event_nohz();
4592 	else
4593 		atomic_dec(&nr_freq_events);
4594 }
4595 
4596 static void unaccount_event(struct perf_event *event)
4597 {
4598 	bool dec = false;
4599 
4600 	if (event->parent)
4601 		return;
4602 
4603 	if (event->attach_state & PERF_ATTACH_TASK)
4604 		dec = true;
4605 	if (event->attr.mmap || event->attr.mmap_data)
4606 		atomic_dec(&nr_mmap_events);
4607 	if (event->attr.comm)
4608 		atomic_dec(&nr_comm_events);
4609 	if (event->attr.namespaces)
4610 		atomic_dec(&nr_namespaces_events);
4611 	if (event->attr.task)
4612 		atomic_dec(&nr_task_events);
4613 	if (event->attr.freq)
4614 		unaccount_freq_event();
4615 	if (event->attr.context_switch) {
4616 		dec = true;
4617 		atomic_dec(&nr_switch_events);
4618 	}
4619 	if (is_cgroup_event(event))
4620 		dec = true;
4621 	if (has_branch_stack(event))
4622 		dec = true;
4623 	if (event->attr.ksymbol)
4624 		atomic_dec(&nr_ksymbol_events);
4625 	if (event->attr.bpf_event)
4626 		atomic_dec(&nr_bpf_events);
4627 
4628 	if (dec) {
4629 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4630 			schedule_delayed_work(&perf_sched_work, HZ);
4631 	}
4632 
4633 	unaccount_event_cpu(event, event->cpu);
4634 
4635 	unaccount_pmu_sb_event(event);
4636 }
4637 
4638 static void perf_sched_delayed(struct work_struct *work)
4639 {
4640 	mutex_lock(&perf_sched_mutex);
4641 	if (atomic_dec_and_test(&perf_sched_count))
4642 		static_branch_disable(&perf_sched_events);
4643 	mutex_unlock(&perf_sched_mutex);
4644 }
4645 
4646 /*
4647  * The following implement mutual exclusion of events on "exclusive" pmus
4648  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4649  * at a time, so we disallow creating events that might conflict, namely:
4650  *
4651  *  1) cpu-wide events in the presence of per-task events,
4652  *  2) per-task events in the presence of cpu-wide events,
4653  *  3) two matching events on the same context.
4654  *
4655  * The former two cases are handled in the allocation path (perf_event_alloc(),
4656  * _free_event()), the latter -- before the first perf_install_in_context().
4657  */
4658 static int exclusive_event_init(struct perf_event *event)
4659 {
4660 	struct pmu *pmu = event->pmu;
4661 
4662 	if (!is_exclusive_pmu(pmu))
4663 		return 0;
4664 
4665 	/*
4666 	 * Prevent co-existence of per-task and cpu-wide events on the
4667 	 * same exclusive pmu.
4668 	 *
4669 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4670 	 * events on this "exclusive" pmu, positive means there are
4671 	 * per-task events.
4672 	 *
4673 	 * Since this is called in perf_event_alloc() path, event::ctx
4674 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4675 	 * to mean "per-task event", because unlike other attach states it
4676 	 * never gets cleared.
4677 	 */
4678 	if (event->attach_state & PERF_ATTACH_TASK) {
4679 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4680 			return -EBUSY;
4681 	} else {
4682 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4683 			return -EBUSY;
4684 	}
4685 
4686 	return 0;
4687 }
4688 
4689 static void exclusive_event_destroy(struct perf_event *event)
4690 {
4691 	struct pmu *pmu = event->pmu;
4692 
4693 	if (!is_exclusive_pmu(pmu))
4694 		return;
4695 
4696 	/* see comment in exclusive_event_init() */
4697 	if (event->attach_state & PERF_ATTACH_TASK)
4698 		atomic_dec(&pmu->exclusive_cnt);
4699 	else
4700 		atomic_inc(&pmu->exclusive_cnt);
4701 }
4702 
4703 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4704 {
4705 	if ((e1->pmu == e2->pmu) &&
4706 	    (e1->cpu == e2->cpu ||
4707 	     e1->cpu == -1 ||
4708 	     e2->cpu == -1))
4709 		return true;
4710 	return false;
4711 }
4712 
4713 static bool exclusive_event_installable(struct perf_event *event,
4714 					struct perf_event_context *ctx)
4715 {
4716 	struct perf_event *iter_event;
4717 	struct pmu *pmu = event->pmu;
4718 
4719 	lockdep_assert_held(&ctx->mutex);
4720 
4721 	if (!is_exclusive_pmu(pmu))
4722 		return true;
4723 
4724 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4725 		if (exclusive_event_match(iter_event, event))
4726 			return false;
4727 	}
4728 
4729 	return true;
4730 }
4731 
4732 static void perf_addr_filters_splice(struct perf_event *event,
4733 				       struct list_head *head);
4734 
4735 static void _free_event(struct perf_event *event)
4736 {
4737 	irq_work_sync(&event->pending);
4738 
4739 	unaccount_event(event);
4740 
4741 	security_perf_event_free(event);
4742 
4743 	if (event->rb) {
4744 		/*
4745 		 * Can happen when we close an event with re-directed output.
4746 		 *
4747 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4748 		 * over us; possibly making our ring_buffer_put() the last.
4749 		 */
4750 		mutex_lock(&event->mmap_mutex);
4751 		ring_buffer_attach(event, NULL);
4752 		mutex_unlock(&event->mmap_mutex);
4753 	}
4754 
4755 	if (is_cgroup_event(event))
4756 		perf_detach_cgroup(event);
4757 
4758 	if (!event->parent) {
4759 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4760 			put_callchain_buffers();
4761 	}
4762 
4763 	perf_event_free_bpf_prog(event);
4764 	perf_addr_filters_splice(event, NULL);
4765 	kfree(event->addr_filter_ranges);
4766 
4767 	if (event->destroy)
4768 		event->destroy(event);
4769 
4770 	/*
4771 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4772 	 * hw.target.
4773 	 */
4774 	if (event->hw.target)
4775 		put_task_struct(event->hw.target);
4776 
4777 	/*
4778 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4779 	 * all task references must be cleaned up.
4780 	 */
4781 	if (event->ctx)
4782 		put_ctx(event->ctx);
4783 
4784 	exclusive_event_destroy(event);
4785 	module_put(event->pmu->module);
4786 
4787 	call_rcu(&event->rcu_head, free_event_rcu);
4788 }
4789 
4790 /*
4791  * Used to free events which have a known refcount of 1, such as in error paths
4792  * where the event isn't exposed yet and inherited events.
4793  */
4794 static void free_event(struct perf_event *event)
4795 {
4796 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4797 				"unexpected event refcount: %ld; ptr=%p\n",
4798 				atomic_long_read(&event->refcount), event)) {
4799 		/* leak to avoid use-after-free */
4800 		return;
4801 	}
4802 
4803 	_free_event(event);
4804 }
4805 
4806 /*
4807  * Remove user event from the owner task.
4808  */
4809 static void perf_remove_from_owner(struct perf_event *event)
4810 {
4811 	struct task_struct *owner;
4812 
4813 	rcu_read_lock();
4814 	/*
4815 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4816 	 * observe !owner it means the list deletion is complete and we can
4817 	 * indeed free this event, otherwise we need to serialize on
4818 	 * owner->perf_event_mutex.
4819 	 */
4820 	owner = READ_ONCE(event->owner);
4821 	if (owner) {
4822 		/*
4823 		 * Since delayed_put_task_struct() also drops the last
4824 		 * task reference we can safely take a new reference
4825 		 * while holding the rcu_read_lock().
4826 		 */
4827 		get_task_struct(owner);
4828 	}
4829 	rcu_read_unlock();
4830 
4831 	if (owner) {
4832 		/*
4833 		 * If we're here through perf_event_exit_task() we're already
4834 		 * holding ctx->mutex which would be an inversion wrt. the
4835 		 * normal lock order.
4836 		 *
4837 		 * However we can safely take this lock because its the child
4838 		 * ctx->mutex.
4839 		 */
4840 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4841 
4842 		/*
4843 		 * We have to re-check the event->owner field, if it is cleared
4844 		 * we raced with perf_event_exit_task(), acquiring the mutex
4845 		 * ensured they're done, and we can proceed with freeing the
4846 		 * event.
4847 		 */
4848 		if (event->owner) {
4849 			list_del_init(&event->owner_entry);
4850 			smp_store_release(&event->owner, NULL);
4851 		}
4852 		mutex_unlock(&owner->perf_event_mutex);
4853 		put_task_struct(owner);
4854 	}
4855 }
4856 
4857 static void put_event(struct perf_event *event)
4858 {
4859 	if (!atomic_long_dec_and_test(&event->refcount))
4860 		return;
4861 
4862 	_free_event(event);
4863 }
4864 
4865 /*
4866  * Kill an event dead; while event:refcount will preserve the event
4867  * object, it will not preserve its functionality. Once the last 'user'
4868  * gives up the object, we'll destroy the thing.
4869  */
4870 int perf_event_release_kernel(struct perf_event *event)
4871 {
4872 	struct perf_event_context *ctx = event->ctx;
4873 	struct perf_event *child, *tmp;
4874 	LIST_HEAD(free_list);
4875 
4876 	/*
4877 	 * If we got here through err_file: fput(event_file); we will not have
4878 	 * attached to a context yet.
4879 	 */
4880 	if (!ctx) {
4881 		WARN_ON_ONCE(event->attach_state &
4882 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4883 		goto no_ctx;
4884 	}
4885 
4886 	if (!is_kernel_event(event))
4887 		perf_remove_from_owner(event);
4888 
4889 	ctx = perf_event_ctx_lock(event);
4890 	WARN_ON_ONCE(ctx->parent_ctx);
4891 	perf_remove_from_context(event, DETACH_GROUP);
4892 
4893 	raw_spin_lock_irq(&ctx->lock);
4894 	/*
4895 	 * Mark this event as STATE_DEAD, there is no external reference to it
4896 	 * anymore.
4897 	 *
4898 	 * Anybody acquiring event->child_mutex after the below loop _must_
4899 	 * also see this, most importantly inherit_event() which will avoid
4900 	 * placing more children on the list.
4901 	 *
4902 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4903 	 * child events.
4904 	 */
4905 	event->state = PERF_EVENT_STATE_DEAD;
4906 	raw_spin_unlock_irq(&ctx->lock);
4907 
4908 	perf_event_ctx_unlock(event, ctx);
4909 
4910 again:
4911 	mutex_lock(&event->child_mutex);
4912 	list_for_each_entry(child, &event->child_list, child_list) {
4913 
4914 		/*
4915 		 * Cannot change, child events are not migrated, see the
4916 		 * comment with perf_event_ctx_lock_nested().
4917 		 */
4918 		ctx = READ_ONCE(child->ctx);
4919 		/*
4920 		 * Since child_mutex nests inside ctx::mutex, we must jump
4921 		 * through hoops. We start by grabbing a reference on the ctx.
4922 		 *
4923 		 * Since the event cannot get freed while we hold the
4924 		 * child_mutex, the context must also exist and have a !0
4925 		 * reference count.
4926 		 */
4927 		get_ctx(ctx);
4928 
4929 		/*
4930 		 * Now that we have a ctx ref, we can drop child_mutex, and
4931 		 * acquire ctx::mutex without fear of it going away. Then we
4932 		 * can re-acquire child_mutex.
4933 		 */
4934 		mutex_unlock(&event->child_mutex);
4935 		mutex_lock(&ctx->mutex);
4936 		mutex_lock(&event->child_mutex);
4937 
4938 		/*
4939 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4940 		 * state, if child is still the first entry, it didn't get freed
4941 		 * and we can continue doing so.
4942 		 */
4943 		tmp = list_first_entry_or_null(&event->child_list,
4944 					       struct perf_event, child_list);
4945 		if (tmp == child) {
4946 			perf_remove_from_context(child, DETACH_GROUP);
4947 			list_move(&child->child_list, &free_list);
4948 			/*
4949 			 * This matches the refcount bump in inherit_event();
4950 			 * this can't be the last reference.
4951 			 */
4952 			put_event(event);
4953 		}
4954 
4955 		mutex_unlock(&event->child_mutex);
4956 		mutex_unlock(&ctx->mutex);
4957 		put_ctx(ctx);
4958 		goto again;
4959 	}
4960 	mutex_unlock(&event->child_mutex);
4961 
4962 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4963 		void *var = &child->ctx->refcount;
4964 
4965 		list_del(&child->child_list);
4966 		free_event(child);
4967 
4968 		/*
4969 		 * Wake any perf_event_free_task() waiting for this event to be
4970 		 * freed.
4971 		 */
4972 		smp_mb(); /* pairs with wait_var_event() */
4973 		wake_up_var(var);
4974 	}
4975 
4976 no_ctx:
4977 	put_event(event); /* Must be the 'last' reference */
4978 	return 0;
4979 }
4980 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4981 
4982 /*
4983  * Called when the last reference to the file is gone.
4984  */
4985 static int perf_release(struct inode *inode, struct file *file)
4986 {
4987 	perf_event_release_kernel(file->private_data);
4988 	return 0;
4989 }
4990 
4991 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4992 {
4993 	struct perf_event *child;
4994 	u64 total = 0;
4995 
4996 	*enabled = 0;
4997 	*running = 0;
4998 
4999 	mutex_lock(&event->child_mutex);
5000 
5001 	(void)perf_event_read(event, false);
5002 	total += perf_event_count(event);
5003 
5004 	*enabled += event->total_time_enabled +
5005 			atomic64_read(&event->child_total_time_enabled);
5006 	*running += event->total_time_running +
5007 			atomic64_read(&event->child_total_time_running);
5008 
5009 	list_for_each_entry(child, &event->child_list, child_list) {
5010 		(void)perf_event_read(child, false);
5011 		total += perf_event_count(child);
5012 		*enabled += child->total_time_enabled;
5013 		*running += child->total_time_running;
5014 	}
5015 	mutex_unlock(&event->child_mutex);
5016 
5017 	return total;
5018 }
5019 
5020 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5021 {
5022 	struct perf_event_context *ctx;
5023 	u64 count;
5024 
5025 	ctx = perf_event_ctx_lock(event);
5026 	count = __perf_event_read_value(event, enabled, running);
5027 	perf_event_ctx_unlock(event, ctx);
5028 
5029 	return count;
5030 }
5031 EXPORT_SYMBOL_GPL(perf_event_read_value);
5032 
5033 static int __perf_read_group_add(struct perf_event *leader,
5034 					u64 read_format, u64 *values)
5035 {
5036 	struct perf_event_context *ctx = leader->ctx;
5037 	struct perf_event *sub;
5038 	unsigned long flags;
5039 	int n = 1; /* skip @nr */
5040 	int ret;
5041 
5042 	ret = perf_event_read(leader, true);
5043 	if (ret)
5044 		return ret;
5045 
5046 	raw_spin_lock_irqsave(&ctx->lock, flags);
5047 
5048 	/*
5049 	 * Since we co-schedule groups, {enabled,running} times of siblings
5050 	 * will be identical to those of the leader, so we only publish one
5051 	 * set.
5052 	 */
5053 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5054 		values[n++] += leader->total_time_enabled +
5055 			atomic64_read(&leader->child_total_time_enabled);
5056 	}
5057 
5058 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5059 		values[n++] += leader->total_time_running +
5060 			atomic64_read(&leader->child_total_time_running);
5061 	}
5062 
5063 	/*
5064 	 * Write {count,id} tuples for every sibling.
5065 	 */
5066 	values[n++] += perf_event_count(leader);
5067 	if (read_format & PERF_FORMAT_ID)
5068 		values[n++] = primary_event_id(leader);
5069 
5070 	for_each_sibling_event(sub, leader) {
5071 		values[n++] += perf_event_count(sub);
5072 		if (read_format & PERF_FORMAT_ID)
5073 			values[n++] = primary_event_id(sub);
5074 	}
5075 
5076 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077 	return 0;
5078 }
5079 
5080 static int perf_read_group(struct perf_event *event,
5081 				   u64 read_format, char __user *buf)
5082 {
5083 	struct perf_event *leader = event->group_leader, *child;
5084 	struct perf_event_context *ctx = leader->ctx;
5085 	int ret;
5086 	u64 *values;
5087 
5088 	lockdep_assert_held(&ctx->mutex);
5089 
5090 	values = kzalloc(event->read_size, GFP_KERNEL);
5091 	if (!values)
5092 		return -ENOMEM;
5093 
5094 	values[0] = 1 + leader->nr_siblings;
5095 
5096 	/*
5097 	 * By locking the child_mutex of the leader we effectively
5098 	 * lock the child list of all siblings.. XXX explain how.
5099 	 */
5100 	mutex_lock(&leader->child_mutex);
5101 
5102 	ret = __perf_read_group_add(leader, read_format, values);
5103 	if (ret)
5104 		goto unlock;
5105 
5106 	list_for_each_entry(child, &leader->child_list, child_list) {
5107 		ret = __perf_read_group_add(child, read_format, values);
5108 		if (ret)
5109 			goto unlock;
5110 	}
5111 
5112 	mutex_unlock(&leader->child_mutex);
5113 
5114 	ret = event->read_size;
5115 	if (copy_to_user(buf, values, event->read_size))
5116 		ret = -EFAULT;
5117 	goto out;
5118 
5119 unlock:
5120 	mutex_unlock(&leader->child_mutex);
5121 out:
5122 	kfree(values);
5123 	return ret;
5124 }
5125 
5126 static int perf_read_one(struct perf_event *event,
5127 				 u64 read_format, char __user *buf)
5128 {
5129 	u64 enabled, running;
5130 	u64 values[4];
5131 	int n = 0;
5132 
5133 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5134 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5135 		values[n++] = enabled;
5136 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5137 		values[n++] = running;
5138 	if (read_format & PERF_FORMAT_ID)
5139 		values[n++] = primary_event_id(event);
5140 
5141 	if (copy_to_user(buf, values, n * sizeof(u64)))
5142 		return -EFAULT;
5143 
5144 	return n * sizeof(u64);
5145 }
5146 
5147 static bool is_event_hup(struct perf_event *event)
5148 {
5149 	bool no_children;
5150 
5151 	if (event->state > PERF_EVENT_STATE_EXIT)
5152 		return false;
5153 
5154 	mutex_lock(&event->child_mutex);
5155 	no_children = list_empty(&event->child_list);
5156 	mutex_unlock(&event->child_mutex);
5157 	return no_children;
5158 }
5159 
5160 /*
5161  * Read the performance event - simple non blocking version for now
5162  */
5163 static ssize_t
5164 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5165 {
5166 	u64 read_format = event->attr.read_format;
5167 	int ret;
5168 
5169 	/*
5170 	 * Return end-of-file for a read on an event that is in
5171 	 * error state (i.e. because it was pinned but it couldn't be
5172 	 * scheduled on to the CPU at some point).
5173 	 */
5174 	if (event->state == PERF_EVENT_STATE_ERROR)
5175 		return 0;
5176 
5177 	if (count < event->read_size)
5178 		return -ENOSPC;
5179 
5180 	WARN_ON_ONCE(event->ctx->parent_ctx);
5181 	if (read_format & PERF_FORMAT_GROUP)
5182 		ret = perf_read_group(event, read_format, buf);
5183 	else
5184 		ret = perf_read_one(event, read_format, buf);
5185 
5186 	return ret;
5187 }
5188 
5189 static ssize_t
5190 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5191 {
5192 	struct perf_event *event = file->private_data;
5193 	struct perf_event_context *ctx;
5194 	int ret;
5195 
5196 	ret = security_perf_event_read(event);
5197 	if (ret)
5198 		return ret;
5199 
5200 	ctx = perf_event_ctx_lock(event);
5201 	ret = __perf_read(event, buf, count);
5202 	perf_event_ctx_unlock(event, ctx);
5203 
5204 	return ret;
5205 }
5206 
5207 static __poll_t perf_poll(struct file *file, poll_table *wait)
5208 {
5209 	struct perf_event *event = file->private_data;
5210 	struct perf_buffer *rb;
5211 	__poll_t events = EPOLLHUP;
5212 
5213 	poll_wait(file, &event->waitq, wait);
5214 
5215 	if (is_event_hup(event))
5216 		return events;
5217 
5218 	/*
5219 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5220 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5221 	 */
5222 	mutex_lock(&event->mmap_mutex);
5223 	rb = event->rb;
5224 	if (rb)
5225 		events = atomic_xchg(&rb->poll, 0);
5226 	mutex_unlock(&event->mmap_mutex);
5227 	return events;
5228 }
5229 
5230 static void _perf_event_reset(struct perf_event *event)
5231 {
5232 	(void)perf_event_read(event, false);
5233 	local64_set(&event->count, 0);
5234 	perf_event_update_userpage(event);
5235 }
5236 
5237 /* Assume it's not an event with inherit set. */
5238 u64 perf_event_pause(struct perf_event *event, bool reset)
5239 {
5240 	struct perf_event_context *ctx;
5241 	u64 count;
5242 
5243 	ctx = perf_event_ctx_lock(event);
5244 	WARN_ON_ONCE(event->attr.inherit);
5245 	_perf_event_disable(event);
5246 	count = local64_read(&event->count);
5247 	if (reset)
5248 		local64_set(&event->count, 0);
5249 	perf_event_ctx_unlock(event, ctx);
5250 
5251 	return count;
5252 }
5253 EXPORT_SYMBOL_GPL(perf_event_pause);
5254 
5255 /*
5256  * Holding the top-level event's child_mutex means that any
5257  * descendant process that has inherited this event will block
5258  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5259  * task existence requirements of perf_event_enable/disable.
5260  */
5261 static void perf_event_for_each_child(struct perf_event *event,
5262 					void (*func)(struct perf_event *))
5263 {
5264 	struct perf_event *child;
5265 
5266 	WARN_ON_ONCE(event->ctx->parent_ctx);
5267 
5268 	mutex_lock(&event->child_mutex);
5269 	func(event);
5270 	list_for_each_entry(child, &event->child_list, child_list)
5271 		func(child);
5272 	mutex_unlock(&event->child_mutex);
5273 }
5274 
5275 static void perf_event_for_each(struct perf_event *event,
5276 				  void (*func)(struct perf_event *))
5277 {
5278 	struct perf_event_context *ctx = event->ctx;
5279 	struct perf_event *sibling;
5280 
5281 	lockdep_assert_held(&ctx->mutex);
5282 
5283 	event = event->group_leader;
5284 
5285 	perf_event_for_each_child(event, func);
5286 	for_each_sibling_event(sibling, event)
5287 		perf_event_for_each_child(sibling, func);
5288 }
5289 
5290 static void __perf_event_period(struct perf_event *event,
5291 				struct perf_cpu_context *cpuctx,
5292 				struct perf_event_context *ctx,
5293 				void *info)
5294 {
5295 	u64 value = *((u64 *)info);
5296 	bool active;
5297 
5298 	if (event->attr.freq) {
5299 		event->attr.sample_freq = value;
5300 	} else {
5301 		event->attr.sample_period = value;
5302 		event->hw.sample_period = value;
5303 	}
5304 
5305 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5306 	if (active) {
5307 		perf_pmu_disable(ctx->pmu);
5308 		/*
5309 		 * We could be throttled; unthrottle now to avoid the tick
5310 		 * trying to unthrottle while we already re-started the event.
5311 		 */
5312 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5313 			event->hw.interrupts = 0;
5314 			perf_log_throttle(event, 1);
5315 		}
5316 		event->pmu->stop(event, PERF_EF_UPDATE);
5317 	}
5318 
5319 	local64_set(&event->hw.period_left, 0);
5320 
5321 	if (active) {
5322 		event->pmu->start(event, PERF_EF_RELOAD);
5323 		perf_pmu_enable(ctx->pmu);
5324 	}
5325 }
5326 
5327 static int perf_event_check_period(struct perf_event *event, u64 value)
5328 {
5329 	return event->pmu->check_period(event, value);
5330 }
5331 
5332 static int _perf_event_period(struct perf_event *event, u64 value)
5333 {
5334 	if (!is_sampling_event(event))
5335 		return -EINVAL;
5336 
5337 	if (!value)
5338 		return -EINVAL;
5339 
5340 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5341 		return -EINVAL;
5342 
5343 	if (perf_event_check_period(event, value))
5344 		return -EINVAL;
5345 
5346 	if (!event->attr.freq && (value & (1ULL << 63)))
5347 		return -EINVAL;
5348 
5349 	event_function_call(event, __perf_event_period, &value);
5350 
5351 	return 0;
5352 }
5353 
5354 int perf_event_period(struct perf_event *event, u64 value)
5355 {
5356 	struct perf_event_context *ctx;
5357 	int ret;
5358 
5359 	ctx = perf_event_ctx_lock(event);
5360 	ret = _perf_event_period(event, value);
5361 	perf_event_ctx_unlock(event, ctx);
5362 
5363 	return ret;
5364 }
5365 EXPORT_SYMBOL_GPL(perf_event_period);
5366 
5367 static const struct file_operations perf_fops;
5368 
5369 static inline int perf_fget_light(int fd, struct fd *p)
5370 {
5371 	struct fd f = fdget(fd);
5372 	if (!f.file)
5373 		return -EBADF;
5374 
5375 	if (f.file->f_op != &perf_fops) {
5376 		fdput(f);
5377 		return -EBADF;
5378 	}
5379 	*p = f;
5380 	return 0;
5381 }
5382 
5383 static int perf_event_set_output(struct perf_event *event,
5384 				 struct perf_event *output_event);
5385 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5386 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5387 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5388 			  struct perf_event_attr *attr);
5389 
5390 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5391 {
5392 	void (*func)(struct perf_event *);
5393 	u32 flags = arg;
5394 
5395 	switch (cmd) {
5396 	case PERF_EVENT_IOC_ENABLE:
5397 		func = _perf_event_enable;
5398 		break;
5399 	case PERF_EVENT_IOC_DISABLE:
5400 		func = _perf_event_disable;
5401 		break;
5402 	case PERF_EVENT_IOC_RESET:
5403 		func = _perf_event_reset;
5404 		break;
5405 
5406 	case PERF_EVENT_IOC_REFRESH:
5407 		return _perf_event_refresh(event, arg);
5408 
5409 	case PERF_EVENT_IOC_PERIOD:
5410 	{
5411 		u64 value;
5412 
5413 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5414 			return -EFAULT;
5415 
5416 		return _perf_event_period(event, value);
5417 	}
5418 	case PERF_EVENT_IOC_ID:
5419 	{
5420 		u64 id = primary_event_id(event);
5421 
5422 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5423 			return -EFAULT;
5424 		return 0;
5425 	}
5426 
5427 	case PERF_EVENT_IOC_SET_OUTPUT:
5428 	{
5429 		int ret;
5430 		if (arg != -1) {
5431 			struct perf_event *output_event;
5432 			struct fd output;
5433 			ret = perf_fget_light(arg, &output);
5434 			if (ret)
5435 				return ret;
5436 			output_event = output.file->private_data;
5437 			ret = perf_event_set_output(event, output_event);
5438 			fdput(output);
5439 		} else {
5440 			ret = perf_event_set_output(event, NULL);
5441 		}
5442 		return ret;
5443 	}
5444 
5445 	case PERF_EVENT_IOC_SET_FILTER:
5446 		return perf_event_set_filter(event, (void __user *)arg);
5447 
5448 	case PERF_EVENT_IOC_SET_BPF:
5449 		return perf_event_set_bpf_prog(event, arg);
5450 
5451 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5452 		struct perf_buffer *rb;
5453 
5454 		rcu_read_lock();
5455 		rb = rcu_dereference(event->rb);
5456 		if (!rb || !rb->nr_pages) {
5457 			rcu_read_unlock();
5458 			return -EINVAL;
5459 		}
5460 		rb_toggle_paused(rb, !!arg);
5461 		rcu_read_unlock();
5462 		return 0;
5463 	}
5464 
5465 	case PERF_EVENT_IOC_QUERY_BPF:
5466 		return perf_event_query_prog_array(event, (void __user *)arg);
5467 
5468 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5469 		struct perf_event_attr new_attr;
5470 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5471 					 &new_attr);
5472 
5473 		if (err)
5474 			return err;
5475 
5476 		return perf_event_modify_attr(event,  &new_attr);
5477 	}
5478 	default:
5479 		return -ENOTTY;
5480 	}
5481 
5482 	if (flags & PERF_IOC_FLAG_GROUP)
5483 		perf_event_for_each(event, func);
5484 	else
5485 		perf_event_for_each_child(event, func);
5486 
5487 	return 0;
5488 }
5489 
5490 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5491 {
5492 	struct perf_event *event = file->private_data;
5493 	struct perf_event_context *ctx;
5494 	long ret;
5495 
5496 	/* Treat ioctl like writes as it is likely a mutating operation. */
5497 	ret = security_perf_event_write(event);
5498 	if (ret)
5499 		return ret;
5500 
5501 	ctx = perf_event_ctx_lock(event);
5502 	ret = _perf_ioctl(event, cmd, arg);
5503 	perf_event_ctx_unlock(event, ctx);
5504 
5505 	return ret;
5506 }
5507 
5508 #ifdef CONFIG_COMPAT
5509 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5510 				unsigned long arg)
5511 {
5512 	switch (_IOC_NR(cmd)) {
5513 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5514 	case _IOC_NR(PERF_EVENT_IOC_ID):
5515 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5516 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5517 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5518 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5519 			cmd &= ~IOCSIZE_MASK;
5520 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5521 		}
5522 		break;
5523 	}
5524 	return perf_ioctl(file, cmd, arg);
5525 }
5526 #else
5527 # define perf_compat_ioctl NULL
5528 #endif
5529 
5530 int perf_event_task_enable(void)
5531 {
5532 	struct perf_event_context *ctx;
5533 	struct perf_event *event;
5534 
5535 	mutex_lock(&current->perf_event_mutex);
5536 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5537 		ctx = perf_event_ctx_lock(event);
5538 		perf_event_for_each_child(event, _perf_event_enable);
5539 		perf_event_ctx_unlock(event, ctx);
5540 	}
5541 	mutex_unlock(&current->perf_event_mutex);
5542 
5543 	return 0;
5544 }
5545 
5546 int perf_event_task_disable(void)
5547 {
5548 	struct perf_event_context *ctx;
5549 	struct perf_event *event;
5550 
5551 	mutex_lock(&current->perf_event_mutex);
5552 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5553 		ctx = perf_event_ctx_lock(event);
5554 		perf_event_for_each_child(event, _perf_event_disable);
5555 		perf_event_ctx_unlock(event, ctx);
5556 	}
5557 	mutex_unlock(&current->perf_event_mutex);
5558 
5559 	return 0;
5560 }
5561 
5562 static int perf_event_index(struct perf_event *event)
5563 {
5564 	if (event->hw.state & PERF_HES_STOPPED)
5565 		return 0;
5566 
5567 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5568 		return 0;
5569 
5570 	return event->pmu->event_idx(event);
5571 }
5572 
5573 static void calc_timer_values(struct perf_event *event,
5574 				u64 *now,
5575 				u64 *enabled,
5576 				u64 *running)
5577 {
5578 	u64 ctx_time;
5579 
5580 	*now = perf_clock();
5581 	ctx_time = event->shadow_ctx_time + *now;
5582 	__perf_update_times(event, ctx_time, enabled, running);
5583 }
5584 
5585 static void perf_event_init_userpage(struct perf_event *event)
5586 {
5587 	struct perf_event_mmap_page *userpg;
5588 	struct perf_buffer *rb;
5589 
5590 	rcu_read_lock();
5591 	rb = rcu_dereference(event->rb);
5592 	if (!rb)
5593 		goto unlock;
5594 
5595 	userpg = rb->user_page;
5596 
5597 	/* Allow new userspace to detect that bit 0 is deprecated */
5598 	userpg->cap_bit0_is_deprecated = 1;
5599 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5600 	userpg->data_offset = PAGE_SIZE;
5601 	userpg->data_size = perf_data_size(rb);
5602 
5603 unlock:
5604 	rcu_read_unlock();
5605 }
5606 
5607 void __weak arch_perf_update_userpage(
5608 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5609 {
5610 }
5611 
5612 /*
5613  * Callers need to ensure there can be no nesting of this function, otherwise
5614  * the seqlock logic goes bad. We can not serialize this because the arch
5615  * code calls this from NMI context.
5616  */
5617 void perf_event_update_userpage(struct perf_event *event)
5618 {
5619 	struct perf_event_mmap_page *userpg;
5620 	struct perf_buffer *rb;
5621 	u64 enabled, running, now;
5622 
5623 	rcu_read_lock();
5624 	rb = rcu_dereference(event->rb);
5625 	if (!rb)
5626 		goto unlock;
5627 
5628 	/*
5629 	 * compute total_time_enabled, total_time_running
5630 	 * based on snapshot values taken when the event
5631 	 * was last scheduled in.
5632 	 *
5633 	 * we cannot simply called update_context_time()
5634 	 * because of locking issue as we can be called in
5635 	 * NMI context
5636 	 */
5637 	calc_timer_values(event, &now, &enabled, &running);
5638 
5639 	userpg = rb->user_page;
5640 	/*
5641 	 * Disable preemption to guarantee consistent time stamps are stored to
5642 	 * the user page.
5643 	 */
5644 	preempt_disable();
5645 	++userpg->lock;
5646 	barrier();
5647 	userpg->index = perf_event_index(event);
5648 	userpg->offset = perf_event_count(event);
5649 	if (userpg->index)
5650 		userpg->offset -= local64_read(&event->hw.prev_count);
5651 
5652 	userpg->time_enabled = enabled +
5653 			atomic64_read(&event->child_total_time_enabled);
5654 
5655 	userpg->time_running = running +
5656 			atomic64_read(&event->child_total_time_running);
5657 
5658 	arch_perf_update_userpage(event, userpg, now);
5659 
5660 	barrier();
5661 	++userpg->lock;
5662 	preempt_enable();
5663 unlock:
5664 	rcu_read_unlock();
5665 }
5666 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5667 
5668 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5669 {
5670 	struct perf_event *event = vmf->vma->vm_file->private_data;
5671 	struct perf_buffer *rb;
5672 	vm_fault_t ret = VM_FAULT_SIGBUS;
5673 
5674 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5675 		if (vmf->pgoff == 0)
5676 			ret = 0;
5677 		return ret;
5678 	}
5679 
5680 	rcu_read_lock();
5681 	rb = rcu_dereference(event->rb);
5682 	if (!rb)
5683 		goto unlock;
5684 
5685 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5686 		goto unlock;
5687 
5688 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5689 	if (!vmf->page)
5690 		goto unlock;
5691 
5692 	get_page(vmf->page);
5693 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5694 	vmf->page->index   = vmf->pgoff;
5695 
5696 	ret = 0;
5697 unlock:
5698 	rcu_read_unlock();
5699 
5700 	return ret;
5701 }
5702 
5703 static void ring_buffer_attach(struct perf_event *event,
5704 			       struct perf_buffer *rb)
5705 {
5706 	struct perf_buffer *old_rb = NULL;
5707 	unsigned long flags;
5708 
5709 	if (event->rb) {
5710 		/*
5711 		 * Should be impossible, we set this when removing
5712 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5713 		 */
5714 		WARN_ON_ONCE(event->rcu_pending);
5715 
5716 		old_rb = event->rb;
5717 		spin_lock_irqsave(&old_rb->event_lock, flags);
5718 		list_del_rcu(&event->rb_entry);
5719 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5720 
5721 		event->rcu_batches = get_state_synchronize_rcu();
5722 		event->rcu_pending = 1;
5723 	}
5724 
5725 	if (rb) {
5726 		if (event->rcu_pending) {
5727 			cond_synchronize_rcu(event->rcu_batches);
5728 			event->rcu_pending = 0;
5729 		}
5730 
5731 		spin_lock_irqsave(&rb->event_lock, flags);
5732 		list_add_rcu(&event->rb_entry, &rb->event_list);
5733 		spin_unlock_irqrestore(&rb->event_lock, flags);
5734 	}
5735 
5736 	/*
5737 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5738 	 * before swizzling the event::rb pointer; if it's getting
5739 	 * unmapped, its aux_mmap_count will be 0 and it won't
5740 	 * restart. See the comment in __perf_pmu_output_stop().
5741 	 *
5742 	 * Data will inevitably be lost when set_output is done in
5743 	 * mid-air, but then again, whoever does it like this is
5744 	 * not in for the data anyway.
5745 	 */
5746 	if (has_aux(event))
5747 		perf_event_stop(event, 0);
5748 
5749 	rcu_assign_pointer(event->rb, rb);
5750 
5751 	if (old_rb) {
5752 		ring_buffer_put(old_rb);
5753 		/*
5754 		 * Since we detached before setting the new rb, so that we
5755 		 * could attach the new rb, we could have missed a wakeup.
5756 		 * Provide it now.
5757 		 */
5758 		wake_up_all(&event->waitq);
5759 	}
5760 }
5761 
5762 static void ring_buffer_wakeup(struct perf_event *event)
5763 {
5764 	struct perf_buffer *rb;
5765 
5766 	rcu_read_lock();
5767 	rb = rcu_dereference(event->rb);
5768 	if (rb) {
5769 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5770 			wake_up_all(&event->waitq);
5771 	}
5772 	rcu_read_unlock();
5773 }
5774 
5775 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5776 {
5777 	struct perf_buffer *rb;
5778 
5779 	rcu_read_lock();
5780 	rb = rcu_dereference(event->rb);
5781 	if (rb) {
5782 		if (!refcount_inc_not_zero(&rb->refcount))
5783 			rb = NULL;
5784 	}
5785 	rcu_read_unlock();
5786 
5787 	return rb;
5788 }
5789 
5790 void ring_buffer_put(struct perf_buffer *rb)
5791 {
5792 	if (!refcount_dec_and_test(&rb->refcount))
5793 		return;
5794 
5795 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5796 
5797 	call_rcu(&rb->rcu_head, rb_free_rcu);
5798 }
5799 
5800 static void perf_mmap_open(struct vm_area_struct *vma)
5801 {
5802 	struct perf_event *event = vma->vm_file->private_data;
5803 
5804 	atomic_inc(&event->mmap_count);
5805 	atomic_inc(&event->rb->mmap_count);
5806 
5807 	if (vma->vm_pgoff)
5808 		atomic_inc(&event->rb->aux_mmap_count);
5809 
5810 	if (event->pmu->event_mapped)
5811 		event->pmu->event_mapped(event, vma->vm_mm);
5812 }
5813 
5814 static void perf_pmu_output_stop(struct perf_event *event);
5815 
5816 /*
5817  * A buffer can be mmap()ed multiple times; either directly through the same
5818  * event, or through other events by use of perf_event_set_output().
5819  *
5820  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5821  * the buffer here, where we still have a VM context. This means we need
5822  * to detach all events redirecting to us.
5823  */
5824 static void perf_mmap_close(struct vm_area_struct *vma)
5825 {
5826 	struct perf_event *event = vma->vm_file->private_data;
5827 
5828 	struct perf_buffer *rb = ring_buffer_get(event);
5829 	struct user_struct *mmap_user = rb->mmap_user;
5830 	int mmap_locked = rb->mmap_locked;
5831 	unsigned long size = perf_data_size(rb);
5832 
5833 	if (event->pmu->event_unmapped)
5834 		event->pmu->event_unmapped(event, vma->vm_mm);
5835 
5836 	/*
5837 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5838 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5839 	 * serialize with perf_mmap here.
5840 	 */
5841 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5842 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5843 		/*
5844 		 * Stop all AUX events that are writing to this buffer,
5845 		 * so that we can free its AUX pages and corresponding PMU
5846 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5847 		 * they won't start any more (see perf_aux_output_begin()).
5848 		 */
5849 		perf_pmu_output_stop(event);
5850 
5851 		/* now it's safe to free the pages */
5852 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5853 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5854 
5855 		/* this has to be the last one */
5856 		rb_free_aux(rb);
5857 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5858 
5859 		mutex_unlock(&event->mmap_mutex);
5860 	}
5861 
5862 	atomic_dec(&rb->mmap_count);
5863 
5864 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5865 		goto out_put;
5866 
5867 	ring_buffer_attach(event, NULL);
5868 	mutex_unlock(&event->mmap_mutex);
5869 
5870 	/* If there's still other mmap()s of this buffer, we're done. */
5871 	if (atomic_read(&rb->mmap_count))
5872 		goto out_put;
5873 
5874 	/*
5875 	 * No other mmap()s, detach from all other events that might redirect
5876 	 * into the now unreachable buffer. Somewhat complicated by the
5877 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5878 	 */
5879 again:
5880 	rcu_read_lock();
5881 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5882 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5883 			/*
5884 			 * This event is en-route to free_event() which will
5885 			 * detach it and remove it from the list.
5886 			 */
5887 			continue;
5888 		}
5889 		rcu_read_unlock();
5890 
5891 		mutex_lock(&event->mmap_mutex);
5892 		/*
5893 		 * Check we didn't race with perf_event_set_output() which can
5894 		 * swizzle the rb from under us while we were waiting to
5895 		 * acquire mmap_mutex.
5896 		 *
5897 		 * If we find a different rb; ignore this event, a next
5898 		 * iteration will no longer find it on the list. We have to
5899 		 * still restart the iteration to make sure we're not now
5900 		 * iterating the wrong list.
5901 		 */
5902 		if (event->rb == rb)
5903 			ring_buffer_attach(event, NULL);
5904 
5905 		mutex_unlock(&event->mmap_mutex);
5906 		put_event(event);
5907 
5908 		/*
5909 		 * Restart the iteration; either we're on the wrong list or
5910 		 * destroyed its integrity by doing a deletion.
5911 		 */
5912 		goto again;
5913 	}
5914 	rcu_read_unlock();
5915 
5916 	/*
5917 	 * It could be there's still a few 0-ref events on the list; they'll
5918 	 * get cleaned up by free_event() -- they'll also still have their
5919 	 * ref on the rb and will free it whenever they are done with it.
5920 	 *
5921 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5922 	 * undo the VM accounting.
5923 	 */
5924 
5925 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5926 			&mmap_user->locked_vm);
5927 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5928 	free_uid(mmap_user);
5929 
5930 out_put:
5931 	ring_buffer_put(rb); /* could be last */
5932 }
5933 
5934 static const struct vm_operations_struct perf_mmap_vmops = {
5935 	.open		= perf_mmap_open,
5936 	.close		= perf_mmap_close, /* non mergeable */
5937 	.fault		= perf_mmap_fault,
5938 	.page_mkwrite	= perf_mmap_fault,
5939 };
5940 
5941 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5942 {
5943 	struct perf_event *event = file->private_data;
5944 	unsigned long user_locked, user_lock_limit;
5945 	struct user_struct *user = current_user();
5946 	struct perf_buffer *rb = NULL;
5947 	unsigned long locked, lock_limit;
5948 	unsigned long vma_size;
5949 	unsigned long nr_pages;
5950 	long user_extra = 0, extra = 0;
5951 	int ret = 0, flags = 0;
5952 
5953 	/*
5954 	 * Don't allow mmap() of inherited per-task counters. This would
5955 	 * create a performance issue due to all children writing to the
5956 	 * same rb.
5957 	 */
5958 	if (event->cpu == -1 && event->attr.inherit)
5959 		return -EINVAL;
5960 
5961 	if (!(vma->vm_flags & VM_SHARED))
5962 		return -EINVAL;
5963 
5964 	ret = security_perf_event_read(event);
5965 	if (ret)
5966 		return ret;
5967 
5968 	vma_size = vma->vm_end - vma->vm_start;
5969 
5970 	if (vma->vm_pgoff == 0) {
5971 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5972 	} else {
5973 		/*
5974 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5975 		 * mapped, all subsequent mappings should have the same size
5976 		 * and offset. Must be above the normal perf buffer.
5977 		 */
5978 		u64 aux_offset, aux_size;
5979 
5980 		if (!event->rb)
5981 			return -EINVAL;
5982 
5983 		nr_pages = vma_size / PAGE_SIZE;
5984 
5985 		mutex_lock(&event->mmap_mutex);
5986 		ret = -EINVAL;
5987 
5988 		rb = event->rb;
5989 		if (!rb)
5990 			goto aux_unlock;
5991 
5992 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5993 		aux_size = READ_ONCE(rb->user_page->aux_size);
5994 
5995 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5996 			goto aux_unlock;
5997 
5998 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5999 			goto aux_unlock;
6000 
6001 		/* already mapped with a different offset */
6002 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6003 			goto aux_unlock;
6004 
6005 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6006 			goto aux_unlock;
6007 
6008 		/* already mapped with a different size */
6009 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6010 			goto aux_unlock;
6011 
6012 		if (!is_power_of_2(nr_pages))
6013 			goto aux_unlock;
6014 
6015 		if (!atomic_inc_not_zero(&rb->mmap_count))
6016 			goto aux_unlock;
6017 
6018 		if (rb_has_aux(rb)) {
6019 			atomic_inc(&rb->aux_mmap_count);
6020 			ret = 0;
6021 			goto unlock;
6022 		}
6023 
6024 		atomic_set(&rb->aux_mmap_count, 1);
6025 		user_extra = nr_pages;
6026 
6027 		goto accounting;
6028 	}
6029 
6030 	/*
6031 	 * If we have rb pages ensure they're a power-of-two number, so we
6032 	 * can do bitmasks instead of modulo.
6033 	 */
6034 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6035 		return -EINVAL;
6036 
6037 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6038 		return -EINVAL;
6039 
6040 	WARN_ON_ONCE(event->ctx->parent_ctx);
6041 again:
6042 	mutex_lock(&event->mmap_mutex);
6043 	if (event->rb) {
6044 		if (event->rb->nr_pages != nr_pages) {
6045 			ret = -EINVAL;
6046 			goto unlock;
6047 		}
6048 
6049 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6050 			/*
6051 			 * Raced against perf_mmap_close() through
6052 			 * perf_event_set_output(). Try again, hope for better
6053 			 * luck.
6054 			 */
6055 			mutex_unlock(&event->mmap_mutex);
6056 			goto again;
6057 		}
6058 
6059 		goto unlock;
6060 	}
6061 
6062 	user_extra = nr_pages + 1;
6063 
6064 accounting:
6065 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6066 
6067 	/*
6068 	 * Increase the limit linearly with more CPUs:
6069 	 */
6070 	user_lock_limit *= num_online_cpus();
6071 
6072 	user_locked = atomic_long_read(&user->locked_vm);
6073 
6074 	/*
6075 	 * sysctl_perf_event_mlock may have changed, so that
6076 	 *     user->locked_vm > user_lock_limit
6077 	 */
6078 	if (user_locked > user_lock_limit)
6079 		user_locked = user_lock_limit;
6080 	user_locked += user_extra;
6081 
6082 	if (user_locked > user_lock_limit) {
6083 		/*
6084 		 * charge locked_vm until it hits user_lock_limit;
6085 		 * charge the rest from pinned_vm
6086 		 */
6087 		extra = user_locked - user_lock_limit;
6088 		user_extra -= extra;
6089 	}
6090 
6091 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6092 	lock_limit >>= PAGE_SHIFT;
6093 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6094 
6095 	if ((locked > lock_limit) && perf_is_paranoid() &&
6096 		!capable(CAP_IPC_LOCK)) {
6097 		ret = -EPERM;
6098 		goto unlock;
6099 	}
6100 
6101 	WARN_ON(!rb && event->rb);
6102 
6103 	if (vma->vm_flags & VM_WRITE)
6104 		flags |= RING_BUFFER_WRITABLE;
6105 
6106 	if (!rb) {
6107 		rb = rb_alloc(nr_pages,
6108 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6109 			      event->cpu, flags);
6110 
6111 		if (!rb) {
6112 			ret = -ENOMEM;
6113 			goto unlock;
6114 		}
6115 
6116 		atomic_set(&rb->mmap_count, 1);
6117 		rb->mmap_user = get_current_user();
6118 		rb->mmap_locked = extra;
6119 
6120 		ring_buffer_attach(event, rb);
6121 
6122 		perf_event_init_userpage(event);
6123 		perf_event_update_userpage(event);
6124 	} else {
6125 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6126 				   event->attr.aux_watermark, flags);
6127 		if (!ret)
6128 			rb->aux_mmap_locked = extra;
6129 	}
6130 
6131 unlock:
6132 	if (!ret) {
6133 		atomic_long_add(user_extra, &user->locked_vm);
6134 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6135 
6136 		atomic_inc(&event->mmap_count);
6137 	} else if (rb) {
6138 		atomic_dec(&rb->mmap_count);
6139 	}
6140 aux_unlock:
6141 	mutex_unlock(&event->mmap_mutex);
6142 
6143 	/*
6144 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6145 	 * vma.
6146 	 */
6147 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6148 	vma->vm_ops = &perf_mmap_vmops;
6149 
6150 	if (event->pmu->event_mapped)
6151 		event->pmu->event_mapped(event, vma->vm_mm);
6152 
6153 	return ret;
6154 }
6155 
6156 static int perf_fasync(int fd, struct file *filp, int on)
6157 {
6158 	struct inode *inode = file_inode(filp);
6159 	struct perf_event *event = filp->private_data;
6160 	int retval;
6161 
6162 	inode_lock(inode);
6163 	retval = fasync_helper(fd, filp, on, &event->fasync);
6164 	inode_unlock(inode);
6165 
6166 	if (retval < 0)
6167 		return retval;
6168 
6169 	return 0;
6170 }
6171 
6172 static const struct file_operations perf_fops = {
6173 	.llseek			= no_llseek,
6174 	.release		= perf_release,
6175 	.read			= perf_read,
6176 	.poll			= perf_poll,
6177 	.unlocked_ioctl		= perf_ioctl,
6178 	.compat_ioctl		= perf_compat_ioctl,
6179 	.mmap			= perf_mmap,
6180 	.fasync			= perf_fasync,
6181 };
6182 
6183 /*
6184  * Perf event wakeup
6185  *
6186  * If there's data, ensure we set the poll() state and publish everything
6187  * to user-space before waking everybody up.
6188  */
6189 
6190 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6191 {
6192 	/* only the parent has fasync state */
6193 	if (event->parent)
6194 		event = event->parent;
6195 	return &event->fasync;
6196 }
6197 
6198 void perf_event_wakeup(struct perf_event *event)
6199 {
6200 	ring_buffer_wakeup(event);
6201 
6202 	if (event->pending_kill) {
6203 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6204 		event->pending_kill = 0;
6205 	}
6206 }
6207 
6208 static void perf_pending_event_disable(struct perf_event *event)
6209 {
6210 	int cpu = READ_ONCE(event->pending_disable);
6211 
6212 	if (cpu < 0)
6213 		return;
6214 
6215 	if (cpu == smp_processor_id()) {
6216 		WRITE_ONCE(event->pending_disable, -1);
6217 		perf_event_disable_local(event);
6218 		return;
6219 	}
6220 
6221 	/*
6222 	 *  CPU-A			CPU-B
6223 	 *
6224 	 *  perf_event_disable_inatomic()
6225 	 *    @pending_disable = CPU-A;
6226 	 *    irq_work_queue();
6227 	 *
6228 	 *  sched-out
6229 	 *    @pending_disable = -1;
6230 	 *
6231 	 *				sched-in
6232 	 *				perf_event_disable_inatomic()
6233 	 *				  @pending_disable = CPU-B;
6234 	 *				  irq_work_queue(); // FAILS
6235 	 *
6236 	 *  irq_work_run()
6237 	 *    perf_pending_event()
6238 	 *
6239 	 * But the event runs on CPU-B and wants disabling there.
6240 	 */
6241 	irq_work_queue_on(&event->pending, cpu);
6242 }
6243 
6244 static void perf_pending_event(struct irq_work *entry)
6245 {
6246 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6247 	int rctx;
6248 
6249 	rctx = perf_swevent_get_recursion_context();
6250 	/*
6251 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6252 	 * and we won't recurse 'further'.
6253 	 */
6254 
6255 	perf_pending_event_disable(event);
6256 
6257 	if (event->pending_wakeup) {
6258 		event->pending_wakeup = 0;
6259 		perf_event_wakeup(event);
6260 	}
6261 
6262 	if (rctx >= 0)
6263 		perf_swevent_put_recursion_context(rctx);
6264 }
6265 
6266 /*
6267  * We assume there is only KVM supporting the callbacks.
6268  * Later on, we might change it to a list if there is
6269  * another virtualization implementation supporting the callbacks.
6270  */
6271 struct perf_guest_info_callbacks *perf_guest_cbs;
6272 
6273 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6274 {
6275 	perf_guest_cbs = cbs;
6276 	return 0;
6277 }
6278 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6279 
6280 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6281 {
6282 	perf_guest_cbs = NULL;
6283 	return 0;
6284 }
6285 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6286 
6287 static void
6288 perf_output_sample_regs(struct perf_output_handle *handle,
6289 			struct pt_regs *regs, u64 mask)
6290 {
6291 	int bit;
6292 	DECLARE_BITMAP(_mask, 64);
6293 
6294 	bitmap_from_u64(_mask, mask);
6295 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6296 		u64 val;
6297 
6298 		val = perf_reg_value(regs, bit);
6299 		perf_output_put(handle, val);
6300 	}
6301 }
6302 
6303 static void perf_sample_regs_user(struct perf_regs *regs_user,
6304 				  struct pt_regs *regs,
6305 				  struct pt_regs *regs_user_copy)
6306 {
6307 	if (user_mode(regs)) {
6308 		regs_user->abi = perf_reg_abi(current);
6309 		regs_user->regs = regs;
6310 	} else if (!(current->flags & PF_KTHREAD)) {
6311 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6312 	} else {
6313 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6314 		regs_user->regs = NULL;
6315 	}
6316 }
6317 
6318 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6319 				  struct pt_regs *regs)
6320 {
6321 	regs_intr->regs = regs;
6322 	regs_intr->abi  = perf_reg_abi(current);
6323 }
6324 
6325 
6326 /*
6327  * Get remaining task size from user stack pointer.
6328  *
6329  * It'd be better to take stack vma map and limit this more
6330  * precisely, but there's no way to get it safely under interrupt,
6331  * so using TASK_SIZE as limit.
6332  */
6333 static u64 perf_ustack_task_size(struct pt_regs *regs)
6334 {
6335 	unsigned long addr = perf_user_stack_pointer(regs);
6336 
6337 	if (!addr || addr >= TASK_SIZE)
6338 		return 0;
6339 
6340 	return TASK_SIZE - addr;
6341 }
6342 
6343 static u16
6344 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6345 			struct pt_regs *regs)
6346 {
6347 	u64 task_size;
6348 
6349 	/* No regs, no stack pointer, no dump. */
6350 	if (!regs)
6351 		return 0;
6352 
6353 	/*
6354 	 * Check if we fit in with the requested stack size into the:
6355 	 * - TASK_SIZE
6356 	 *   If we don't, we limit the size to the TASK_SIZE.
6357 	 *
6358 	 * - remaining sample size
6359 	 *   If we don't, we customize the stack size to
6360 	 *   fit in to the remaining sample size.
6361 	 */
6362 
6363 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6364 	stack_size = min(stack_size, (u16) task_size);
6365 
6366 	/* Current header size plus static size and dynamic size. */
6367 	header_size += 2 * sizeof(u64);
6368 
6369 	/* Do we fit in with the current stack dump size? */
6370 	if ((u16) (header_size + stack_size) < header_size) {
6371 		/*
6372 		 * If we overflow the maximum size for the sample,
6373 		 * we customize the stack dump size to fit in.
6374 		 */
6375 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6376 		stack_size = round_up(stack_size, sizeof(u64));
6377 	}
6378 
6379 	return stack_size;
6380 }
6381 
6382 static void
6383 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6384 			  struct pt_regs *regs)
6385 {
6386 	/* Case of a kernel thread, nothing to dump */
6387 	if (!regs) {
6388 		u64 size = 0;
6389 		perf_output_put(handle, size);
6390 	} else {
6391 		unsigned long sp;
6392 		unsigned int rem;
6393 		u64 dyn_size;
6394 		mm_segment_t fs;
6395 
6396 		/*
6397 		 * We dump:
6398 		 * static size
6399 		 *   - the size requested by user or the best one we can fit
6400 		 *     in to the sample max size
6401 		 * data
6402 		 *   - user stack dump data
6403 		 * dynamic size
6404 		 *   - the actual dumped size
6405 		 */
6406 
6407 		/* Static size. */
6408 		perf_output_put(handle, dump_size);
6409 
6410 		/* Data. */
6411 		sp = perf_user_stack_pointer(regs);
6412 		fs = get_fs();
6413 		set_fs(USER_DS);
6414 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6415 		set_fs(fs);
6416 		dyn_size = dump_size - rem;
6417 
6418 		perf_output_skip(handle, rem);
6419 
6420 		/* Dynamic size. */
6421 		perf_output_put(handle, dyn_size);
6422 	}
6423 }
6424 
6425 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6426 					  struct perf_sample_data *data,
6427 					  size_t size)
6428 {
6429 	struct perf_event *sampler = event->aux_event;
6430 	struct perf_buffer *rb;
6431 
6432 	data->aux_size = 0;
6433 
6434 	if (!sampler)
6435 		goto out;
6436 
6437 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6438 		goto out;
6439 
6440 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6441 		goto out;
6442 
6443 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6444 	if (!rb)
6445 		goto out;
6446 
6447 	/*
6448 	 * If this is an NMI hit inside sampling code, don't take
6449 	 * the sample. See also perf_aux_sample_output().
6450 	 */
6451 	if (READ_ONCE(rb->aux_in_sampling)) {
6452 		data->aux_size = 0;
6453 	} else {
6454 		size = min_t(size_t, size, perf_aux_size(rb));
6455 		data->aux_size = ALIGN(size, sizeof(u64));
6456 	}
6457 	ring_buffer_put(rb);
6458 
6459 out:
6460 	return data->aux_size;
6461 }
6462 
6463 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6464 			   struct perf_event *event,
6465 			   struct perf_output_handle *handle,
6466 			   unsigned long size)
6467 {
6468 	unsigned long flags;
6469 	long ret;
6470 
6471 	/*
6472 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6473 	 * paths. If we start calling them in NMI context, they may race with
6474 	 * the IRQ ones, that is, for example, re-starting an event that's just
6475 	 * been stopped, which is why we're using a separate callback that
6476 	 * doesn't change the event state.
6477 	 *
6478 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6479 	 */
6480 	local_irq_save(flags);
6481 	/*
6482 	 * Guard against NMI hits inside the critical section;
6483 	 * see also perf_prepare_sample_aux().
6484 	 */
6485 	WRITE_ONCE(rb->aux_in_sampling, 1);
6486 	barrier();
6487 
6488 	ret = event->pmu->snapshot_aux(event, handle, size);
6489 
6490 	barrier();
6491 	WRITE_ONCE(rb->aux_in_sampling, 0);
6492 	local_irq_restore(flags);
6493 
6494 	return ret;
6495 }
6496 
6497 static void perf_aux_sample_output(struct perf_event *event,
6498 				   struct perf_output_handle *handle,
6499 				   struct perf_sample_data *data)
6500 {
6501 	struct perf_event *sampler = event->aux_event;
6502 	struct perf_buffer *rb;
6503 	unsigned long pad;
6504 	long size;
6505 
6506 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6507 		return;
6508 
6509 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6510 	if (!rb)
6511 		return;
6512 
6513 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6514 
6515 	/*
6516 	 * An error here means that perf_output_copy() failed (returned a
6517 	 * non-zero surplus that it didn't copy), which in its current
6518 	 * enlightened implementation is not possible. If that changes, we'd
6519 	 * like to know.
6520 	 */
6521 	if (WARN_ON_ONCE(size < 0))
6522 		goto out_put;
6523 
6524 	/*
6525 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6526 	 * perf_prepare_sample_aux(), so should not be more than that.
6527 	 */
6528 	pad = data->aux_size - size;
6529 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6530 		pad = 8;
6531 
6532 	if (pad) {
6533 		u64 zero = 0;
6534 		perf_output_copy(handle, &zero, pad);
6535 	}
6536 
6537 out_put:
6538 	ring_buffer_put(rb);
6539 }
6540 
6541 static void __perf_event_header__init_id(struct perf_event_header *header,
6542 					 struct perf_sample_data *data,
6543 					 struct perf_event *event)
6544 {
6545 	u64 sample_type = event->attr.sample_type;
6546 
6547 	data->type = sample_type;
6548 	header->size += event->id_header_size;
6549 
6550 	if (sample_type & PERF_SAMPLE_TID) {
6551 		/* namespace issues */
6552 		data->tid_entry.pid = perf_event_pid(event, current);
6553 		data->tid_entry.tid = perf_event_tid(event, current);
6554 	}
6555 
6556 	if (sample_type & PERF_SAMPLE_TIME)
6557 		data->time = perf_event_clock(event);
6558 
6559 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6560 		data->id = primary_event_id(event);
6561 
6562 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6563 		data->stream_id = event->id;
6564 
6565 	if (sample_type & PERF_SAMPLE_CPU) {
6566 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6567 		data->cpu_entry.reserved = 0;
6568 	}
6569 }
6570 
6571 void perf_event_header__init_id(struct perf_event_header *header,
6572 				struct perf_sample_data *data,
6573 				struct perf_event *event)
6574 {
6575 	if (event->attr.sample_id_all)
6576 		__perf_event_header__init_id(header, data, event);
6577 }
6578 
6579 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6580 					   struct perf_sample_data *data)
6581 {
6582 	u64 sample_type = data->type;
6583 
6584 	if (sample_type & PERF_SAMPLE_TID)
6585 		perf_output_put(handle, data->tid_entry);
6586 
6587 	if (sample_type & PERF_SAMPLE_TIME)
6588 		perf_output_put(handle, data->time);
6589 
6590 	if (sample_type & PERF_SAMPLE_ID)
6591 		perf_output_put(handle, data->id);
6592 
6593 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6594 		perf_output_put(handle, data->stream_id);
6595 
6596 	if (sample_type & PERF_SAMPLE_CPU)
6597 		perf_output_put(handle, data->cpu_entry);
6598 
6599 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6600 		perf_output_put(handle, data->id);
6601 }
6602 
6603 void perf_event__output_id_sample(struct perf_event *event,
6604 				  struct perf_output_handle *handle,
6605 				  struct perf_sample_data *sample)
6606 {
6607 	if (event->attr.sample_id_all)
6608 		__perf_event__output_id_sample(handle, sample);
6609 }
6610 
6611 static void perf_output_read_one(struct perf_output_handle *handle,
6612 				 struct perf_event *event,
6613 				 u64 enabled, u64 running)
6614 {
6615 	u64 read_format = event->attr.read_format;
6616 	u64 values[4];
6617 	int n = 0;
6618 
6619 	values[n++] = perf_event_count(event);
6620 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6621 		values[n++] = enabled +
6622 			atomic64_read(&event->child_total_time_enabled);
6623 	}
6624 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6625 		values[n++] = running +
6626 			atomic64_read(&event->child_total_time_running);
6627 	}
6628 	if (read_format & PERF_FORMAT_ID)
6629 		values[n++] = primary_event_id(event);
6630 
6631 	__output_copy(handle, values, n * sizeof(u64));
6632 }
6633 
6634 static void perf_output_read_group(struct perf_output_handle *handle,
6635 			    struct perf_event *event,
6636 			    u64 enabled, u64 running)
6637 {
6638 	struct perf_event *leader = event->group_leader, *sub;
6639 	u64 read_format = event->attr.read_format;
6640 	u64 values[5];
6641 	int n = 0;
6642 
6643 	values[n++] = 1 + leader->nr_siblings;
6644 
6645 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6646 		values[n++] = enabled;
6647 
6648 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6649 		values[n++] = running;
6650 
6651 	if ((leader != event) &&
6652 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6653 		leader->pmu->read(leader);
6654 
6655 	values[n++] = perf_event_count(leader);
6656 	if (read_format & PERF_FORMAT_ID)
6657 		values[n++] = primary_event_id(leader);
6658 
6659 	__output_copy(handle, values, n * sizeof(u64));
6660 
6661 	for_each_sibling_event(sub, leader) {
6662 		n = 0;
6663 
6664 		if ((sub != event) &&
6665 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6666 			sub->pmu->read(sub);
6667 
6668 		values[n++] = perf_event_count(sub);
6669 		if (read_format & PERF_FORMAT_ID)
6670 			values[n++] = primary_event_id(sub);
6671 
6672 		__output_copy(handle, values, n * sizeof(u64));
6673 	}
6674 }
6675 
6676 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6677 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6678 
6679 /*
6680  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6681  *
6682  * The problem is that its both hard and excessively expensive to iterate the
6683  * child list, not to mention that its impossible to IPI the children running
6684  * on another CPU, from interrupt/NMI context.
6685  */
6686 static void perf_output_read(struct perf_output_handle *handle,
6687 			     struct perf_event *event)
6688 {
6689 	u64 enabled = 0, running = 0, now;
6690 	u64 read_format = event->attr.read_format;
6691 
6692 	/*
6693 	 * compute total_time_enabled, total_time_running
6694 	 * based on snapshot values taken when the event
6695 	 * was last scheduled in.
6696 	 *
6697 	 * we cannot simply called update_context_time()
6698 	 * because of locking issue as we are called in
6699 	 * NMI context
6700 	 */
6701 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6702 		calc_timer_values(event, &now, &enabled, &running);
6703 
6704 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6705 		perf_output_read_group(handle, event, enabled, running);
6706 	else
6707 		perf_output_read_one(handle, event, enabled, running);
6708 }
6709 
6710 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6711 {
6712 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6713 }
6714 
6715 void perf_output_sample(struct perf_output_handle *handle,
6716 			struct perf_event_header *header,
6717 			struct perf_sample_data *data,
6718 			struct perf_event *event)
6719 {
6720 	u64 sample_type = data->type;
6721 
6722 	perf_output_put(handle, *header);
6723 
6724 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6725 		perf_output_put(handle, data->id);
6726 
6727 	if (sample_type & PERF_SAMPLE_IP)
6728 		perf_output_put(handle, data->ip);
6729 
6730 	if (sample_type & PERF_SAMPLE_TID)
6731 		perf_output_put(handle, data->tid_entry);
6732 
6733 	if (sample_type & PERF_SAMPLE_TIME)
6734 		perf_output_put(handle, data->time);
6735 
6736 	if (sample_type & PERF_SAMPLE_ADDR)
6737 		perf_output_put(handle, data->addr);
6738 
6739 	if (sample_type & PERF_SAMPLE_ID)
6740 		perf_output_put(handle, data->id);
6741 
6742 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6743 		perf_output_put(handle, data->stream_id);
6744 
6745 	if (sample_type & PERF_SAMPLE_CPU)
6746 		perf_output_put(handle, data->cpu_entry);
6747 
6748 	if (sample_type & PERF_SAMPLE_PERIOD)
6749 		perf_output_put(handle, data->period);
6750 
6751 	if (sample_type & PERF_SAMPLE_READ)
6752 		perf_output_read(handle, event);
6753 
6754 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6755 		int size = 1;
6756 
6757 		size += data->callchain->nr;
6758 		size *= sizeof(u64);
6759 		__output_copy(handle, data->callchain, size);
6760 	}
6761 
6762 	if (sample_type & PERF_SAMPLE_RAW) {
6763 		struct perf_raw_record *raw = data->raw;
6764 
6765 		if (raw) {
6766 			struct perf_raw_frag *frag = &raw->frag;
6767 
6768 			perf_output_put(handle, raw->size);
6769 			do {
6770 				if (frag->copy) {
6771 					__output_custom(handle, frag->copy,
6772 							frag->data, frag->size);
6773 				} else {
6774 					__output_copy(handle, frag->data,
6775 						      frag->size);
6776 				}
6777 				if (perf_raw_frag_last(frag))
6778 					break;
6779 				frag = frag->next;
6780 			} while (1);
6781 			if (frag->pad)
6782 				__output_skip(handle, NULL, frag->pad);
6783 		} else {
6784 			struct {
6785 				u32	size;
6786 				u32	data;
6787 			} raw = {
6788 				.size = sizeof(u32),
6789 				.data = 0,
6790 			};
6791 			perf_output_put(handle, raw);
6792 		}
6793 	}
6794 
6795 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6796 		if (data->br_stack) {
6797 			size_t size;
6798 
6799 			size = data->br_stack->nr
6800 			     * sizeof(struct perf_branch_entry);
6801 
6802 			perf_output_put(handle, data->br_stack->nr);
6803 			if (perf_sample_save_hw_index(event))
6804 				perf_output_put(handle, data->br_stack->hw_idx);
6805 			perf_output_copy(handle, data->br_stack->entries, size);
6806 		} else {
6807 			/*
6808 			 * we always store at least the value of nr
6809 			 */
6810 			u64 nr = 0;
6811 			perf_output_put(handle, nr);
6812 		}
6813 	}
6814 
6815 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6816 		u64 abi = data->regs_user.abi;
6817 
6818 		/*
6819 		 * If there are no regs to dump, notice it through
6820 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6821 		 */
6822 		perf_output_put(handle, abi);
6823 
6824 		if (abi) {
6825 			u64 mask = event->attr.sample_regs_user;
6826 			perf_output_sample_regs(handle,
6827 						data->regs_user.regs,
6828 						mask);
6829 		}
6830 	}
6831 
6832 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6833 		perf_output_sample_ustack(handle,
6834 					  data->stack_user_size,
6835 					  data->regs_user.regs);
6836 	}
6837 
6838 	if (sample_type & PERF_SAMPLE_WEIGHT)
6839 		perf_output_put(handle, data->weight);
6840 
6841 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6842 		perf_output_put(handle, data->data_src.val);
6843 
6844 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6845 		perf_output_put(handle, data->txn);
6846 
6847 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6848 		u64 abi = data->regs_intr.abi;
6849 		/*
6850 		 * If there are no regs to dump, notice it through
6851 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6852 		 */
6853 		perf_output_put(handle, abi);
6854 
6855 		if (abi) {
6856 			u64 mask = event->attr.sample_regs_intr;
6857 
6858 			perf_output_sample_regs(handle,
6859 						data->regs_intr.regs,
6860 						mask);
6861 		}
6862 	}
6863 
6864 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6865 		perf_output_put(handle, data->phys_addr);
6866 
6867 	if (sample_type & PERF_SAMPLE_AUX) {
6868 		perf_output_put(handle, data->aux_size);
6869 
6870 		if (data->aux_size)
6871 			perf_aux_sample_output(event, handle, data);
6872 	}
6873 
6874 	if (!event->attr.watermark) {
6875 		int wakeup_events = event->attr.wakeup_events;
6876 
6877 		if (wakeup_events) {
6878 			struct perf_buffer *rb = handle->rb;
6879 			int events = local_inc_return(&rb->events);
6880 
6881 			if (events >= wakeup_events) {
6882 				local_sub(wakeup_events, &rb->events);
6883 				local_inc(&rb->wakeup);
6884 			}
6885 		}
6886 	}
6887 }
6888 
6889 static u64 perf_virt_to_phys(u64 virt)
6890 {
6891 	u64 phys_addr = 0;
6892 	struct page *p = NULL;
6893 
6894 	if (!virt)
6895 		return 0;
6896 
6897 	if (virt >= TASK_SIZE) {
6898 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6899 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6900 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6901 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6902 	} else {
6903 		/*
6904 		 * Walking the pages tables for user address.
6905 		 * Interrupts are disabled, so it prevents any tear down
6906 		 * of the page tables.
6907 		 * Try IRQ-safe __get_user_pages_fast first.
6908 		 * If failed, leave phys_addr as 0.
6909 		 */
6910 		if ((current->mm != NULL) &&
6911 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6912 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6913 
6914 		if (p)
6915 			put_page(p);
6916 	}
6917 
6918 	return phys_addr;
6919 }
6920 
6921 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6922 
6923 struct perf_callchain_entry *
6924 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6925 {
6926 	bool kernel = !event->attr.exclude_callchain_kernel;
6927 	bool user   = !event->attr.exclude_callchain_user;
6928 	/* Disallow cross-task user callchains. */
6929 	bool crosstask = event->ctx->task && event->ctx->task != current;
6930 	const u32 max_stack = event->attr.sample_max_stack;
6931 	struct perf_callchain_entry *callchain;
6932 
6933 	if (!kernel && !user)
6934 		return &__empty_callchain;
6935 
6936 	callchain = get_perf_callchain(regs, 0, kernel, user,
6937 				       max_stack, crosstask, true);
6938 	return callchain ?: &__empty_callchain;
6939 }
6940 
6941 void perf_prepare_sample(struct perf_event_header *header,
6942 			 struct perf_sample_data *data,
6943 			 struct perf_event *event,
6944 			 struct pt_regs *regs)
6945 {
6946 	u64 sample_type = event->attr.sample_type;
6947 
6948 	header->type = PERF_RECORD_SAMPLE;
6949 	header->size = sizeof(*header) + event->header_size;
6950 
6951 	header->misc = 0;
6952 	header->misc |= perf_misc_flags(regs);
6953 
6954 	__perf_event_header__init_id(header, data, event);
6955 
6956 	if (sample_type & PERF_SAMPLE_IP)
6957 		data->ip = perf_instruction_pointer(regs);
6958 
6959 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6960 		int size = 1;
6961 
6962 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6963 			data->callchain = perf_callchain(event, regs);
6964 
6965 		size += data->callchain->nr;
6966 
6967 		header->size += size * sizeof(u64);
6968 	}
6969 
6970 	if (sample_type & PERF_SAMPLE_RAW) {
6971 		struct perf_raw_record *raw = data->raw;
6972 		int size;
6973 
6974 		if (raw) {
6975 			struct perf_raw_frag *frag = &raw->frag;
6976 			u32 sum = 0;
6977 
6978 			do {
6979 				sum += frag->size;
6980 				if (perf_raw_frag_last(frag))
6981 					break;
6982 				frag = frag->next;
6983 			} while (1);
6984 
6985 			size = round_up(sum + sizeof(u32), sizeof(u64));
6986 			raw->size = size - sizeof(u32);
6987 			frag->pad = raw->size - sum;
6988 		} else {
6989 			size = sizeof(u64);
6990 		}
6991 
6992 		header->size += size;
6993 	}
6994 
6995 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6996 		int size = sizeof(u64); /* nr */
6997 		if (data->br_stack) {
6998 			if (perf_sample_save_hw_index(event))
6999 				size += sizeof(u64);
7000 
7001 			size += data->br_stack->nr
7002 			      * sizeof(struct perf_branch_entry);
7003 		}
7004 		header->size += size;
7005 	}
7006 
7007 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7008 		perf_sample_regs_user(&data->regs_user, regs,
7009 				      &data->regs_user_copy);
7010 
7011 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7012 		/* regs dump ABI info */
7013 		int size = sizeof(u64);
7014 
7015 		if (data->regs_user.regs) {
7016 			u64 mask = event->attr.sample_regs_user;
7017 			size += hweight64(mask) * sizeof(u64);
7018 		}
7019 
7020 		header->size += size;
7021 	}
7022 
7023 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7024 		/*
7025 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7026 		 * processed as the last one or have additional check added
7027 		 * in case new sample type is added, because we could eat
7028 		 * up the rest of the sample size.
7029 		 */
7030 		u16 stack_size = event->attr.sample_stack_user;
7031 		u16 size = sizeof(u64);
7032 
7033 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7034 						     data->regs_user.regs);
7035 
7036 		/*
7037 		 * If there is something to dump, add space for the dump
7038 		 * itself and for the field that tells the dynamic size,
7039 		 * which is how many have been actually dumped.
7040 		 */
7041 		if (stack_size)
7042 			size += sizeof(u64) + stack_size;
7043 
7044 		data->stack_user_size = stack_size;
7045 		header->size += size;
7046 	}
7047 
7048 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7049 		/* regs dump ABI info */
7050 		int size = sizeof(u64);
7051 
7052 		perf_sample_regs_intr(&data->regs_intr, regs);
7053 
7054 		if (data->regs_intr.regs) {
7055 			u64 mask = event->attr.sample_regs_intr;
7056 
7057 			size += hweight64(mask) * sizeof(u64);
7058 		}
7059 
7060 		header->size += size;
7061 	}
7062 
7063 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7064 		data->phys_addr = perf_virt_to_phys(data->addr);
7065 
7066 	if (sample_type & PERF_SAMPLE_AUX) {
7067 		u64 size;
7068 
7069 		header->size += sizeof(u64); /* size */
7070 
7071 		/*
7072 		 * Given the 16bit nature of header::size, an AUX sample can
7073 		 * easily overflow it, what with all the preceding sample bits.
7074 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7075 		 * per sample in total (rounded down to 8 byte boundary).
7076 		 */
7077 		size = min_t(size_t, U16_MAX - header->size,
7078 			     event->attr.aux_sample_size);
7079 		size = rounddown(size, 8);
7080 		size = perf_prepare_sample_aux(event, data, size);
7081 
7082 		WARN_ON_ONCE(size + header->size > U16_MAX);
7083 		header->size += size;
7084 	}
7085 	/*
7086 	 * If you're adding more sample types here, you likely need to do
7087 	 * something about the overflowing header::size, like repurpose the
7088 	 * lowest 3 bits of size, which should be always zero at the moment.
7089 	 * This raises a more important question, do we really need 512k sized
7090 	 * samples and why, so good argumentation is in order for whatever you
7091 	 * do here next.
7092 	 */
7093 	WARN_ON_ONCE(header->size & 7);
7094 }
7095 
7096 static __always_inline int
7097 __perf_event_output(struct perf_event *event,
7098 		    struct perf_sample_data *data,
7099 		    struct pt_regs *regs,
7100 		    int (*output_begin)(struct perf_output_handle *,
7101 					struct perf_event *,
7102 					unsigned int))
7103 {
7104 	struct perf_output_handle handle;
7105 	struct perf_event_header header;
7106 	int err;
7107 
7108 	/* protect the callchain buffers */
7109 	rcu_read_lock();
7110 
7111 	perf_prepare_sample(&header, data, event, regs);
7112 
7113 	err = output_begin(&handle, event, header.size);
7114 	if (err)
7115 		goto exit;
7116 
7117 	perf_output_sample(&handle, &header, data, event);
7118 
7119 	perf_output_end(&handle);
7120 
7121 exit:
7122 	rcu_read_unlock();
7123 	return err;
7124 }
7125 
7126 void
7127 perf_event_output_forward(struct perf_event *event,
7128 			 struct perf_sample_data *data,
7129 			 struct pt_regs *regs)
7130 {
7131 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7132 }
7133 
7134 void
7135 perf_event_output_backward(struct perf_event *event,
7136 			   struct perf_sample_data *data,
7137 			   struct pt_regs *regs)
7138 {
7139 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7140 }
7141 
7142 int
7143 perf_event_output(struct perf_event *event,
7144 		  struct perf_sample_data *data,
7145 		  struct pt_regs *regs)
7146 {
7147 	return __perf_event_output(event, data, regs, perf_output_begin);
7148 }
7149 
7150 /*
7151  * read event_id
7152  */
7153 
7154 struct perf_read_event {
7155 	struct perf_event_header	header;
7156 
7157 	u32				pid;
7158 	u32				tid;
7159 };
7160 
7161 static void
7162 perf_event_read_event(struct perf_event *event,
7163 			struct task_struct *task)
7164 {
7165 	struct perf_output_handle handle;
7166 	struct perf_sample_data sample;
7167 	struct perf_read_event read_event = {
7168 		.header = {
7169 			.type = PERF_RECORD_READ,
7170 			.misc = 0,
7171 			.size = sizeof(read_event) + event->read_size,
7172 		},
7173 		.pid = perf_event_pid(event, task),
7174 		.tid = perf_event_tid(event, task),
7175 	};
7176 	int ret;
7177 
7178 	perf_event_header__init_id(&read_event.header, &sample, event);
7179 	ret = perf_output_begin(&handle, event, read_event.header.size);
7180 	if (ret)
7181 		return;
7182 
7183 	perf_output_put(&handle, read_event);
7184 	perf_output_read(&handle, event);
7185 	perf_event__output_id_sample(event, &handle, &sample);
7186 
7187 	perf_output_end(&handle);
7188 }
7189 
7190 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7191 
7192 static void
7193 perf_iterate_ctx(struct perf_event_context *ctx,
7194 		   perf_iterate_f output,
7195 		   void *data, bool all)
7196 {
7197 	struct perf_event *event;
7198 
7199 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7200 		if (!all) {
7201 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7202 				continue;
7203 			if (!event_filter_match(event))
7204 				continue;
7205 		}
7206 
7207 		output(event, data);
7208 	}
7209 }
7210 
7211 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7212 {
7213 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7214 	struct perf_event *event;
7215 
7216 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7217 		/*
7218 		 * Skip events that are not fully formed yet; ensure that
7219 		 * if we observe event->ctx, both event and ctx will be
7220 		 * complete enough. See perf_install_in_context().
7221 		 */
7222 		if (!smp_load_acquire(&event->ctx))
7223 			continue;
7224 
7225 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7226 			continue;
7227 		if (!event_filter_match(event))
7228 			continue;
7229 		output(event, data);
7230 	}
7231 }
7232 
7233 /*
7234  * Iterate all events that need to receive side-band events.
7235  *
7236  * For new callers; ensure that account_pmu_sb_event() includes
7237  * your event, otherwise it might not get delivered.
7238  */
7239 static void
7240 perf_iterate_sb(perf_iterate_f output, void *data,
7241 	       struct perf_event_context *task_ctx)
7242 {
7243 	struct perf_event_context *ctx;
7244 	int ctxn;
7245 
7246 	rcu_read_lock();
7247 	preempt_disable();
7248 
7249 	/*
7250 	 * If we have task_ctx != NULL we only notify the task context itself.
7251 	 * The task_ctx is set only for EXIT events before releasing task
7252 	 * context.
7253 	 */
7254 	if (task_ctx) {
7255 		perf_iterate_ctx(task_ctx, output, data, false);
7256 		goto done;
7257 	}
7258 
7259 	perf_iterate_sb_cpu(output, data);
7260 
7261 	for_each_task_context_nr(ctxn) {
7262 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7263 		if (ctx)
7264 			perf_iterate_ctx(ctx, output, data, false);
7265 	}
7266 done:
7267 	preempt_enable();
7268 	rcu_read_unlock();
7269 }
7270 
7271 /*
7272  * Clear all file-based filters at exec, they'll have to be
7273  * re-instated when/if these objects are mmapped again.
7274  */
7275 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7276 {
7277 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7278 	struct perf_addr_filter *filter;
7279 	unsigned int restart = 0, count = 0;
7280 	unsigned long flags;
7281 
7282 	if (!has_addr_filter(event))
7283 		return;
7284 
7285 	raw_spin_lock_irqsave(&ifh->lock, flags);
7286 	list_for_each_entry(filter, &ifh->list, entry) {
7287 		if (filter->path.dentry) {
7288 			event->addr_filter_ranges[count].start = 0;
7289 			event->addr_filter_ranges[count].size = 0;
7290 			restart++;
7291 		}
7292 
7293 		count++;
7294 	}
7295 
7296 	if (restart)
7297 		event->addr_filters_gen++;
7298 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7299 
7300 	if (restart)
7301 		perf_event_stop(event, 1);
7302 }
7303 
7304 void perf_event_exec(void)
7305 {
7306 	struct perf_event_context *ctx;
7307 	int ctxn;
7308 
7309 	rcu_read_lock();
7310 	for_each_task_context_nr(ctxn) {
7311 		ctx = current->perf_event_ctxp[ctxn];
7312 		if (!ctx)
7313 			continue;
7314 
7315 		perf_event_enable_on_exec(ctxn);
7316 
7317 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7318 				   true);
7319 	}
7320 	rcu_read_unlock();
7321 }
7322 
7323 struct remote_output {
7324 	struct perf_buffer	*rb;
7325 	int			err;
7326 };
7327 
7328 static void __perf_event_output_stop(struct perf_event *event, void *data)
7329 {
7330 	struct perf_event *parent = event->parent;
7331 	struct remote_output *ro = data;
7332 	struct perf_buffer *rb = ro->rb;
7333 	struct stop_event_data sd = {
7334 		.event	= event,
7335 	};
7336 
7337 	if (!has_aux(event))
7338 		return;
7339 
7340 	if (!parent)
7341 		parent = event;
7342 
7343 	/*
7344 	 * In case of inheritance, it will be the parent that links to the
7345 	 * ring-buffer, but it will be the child that's actually using it.
7346 	 *
7347 	 * We are using event::rb to determine if the event should be stopped,
7348 	 * however this may race with ring_buffer_attach() (through set_output),
7349 	 * which will make us skip the event that actually needs to be stopped.
7350 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7351 	 * its rb pointer.
7352 	 */
7353 	if (rcu_dereference(parent->rb) == rb)
7354 		ro->err = __perf_event_stop(&sd);
7355 }
7356 
7357 static int __perf_pmu_output_stop(void *info)
7358 {
7359 	struct perf_event *event = info;
7360 	struct pmu *pmu = event->ctx->pmu;
7361 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7362 	struct remote_output ro = {
7363 		.rb	= event->rb,
7364 	};
7365 
7366 	rcu_read_lock();
7367 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7368 	if (cpuctx->task_ctx)
7369 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7370 				   &ro, false);
7371 	rcu_read_unlock();
7372 
7373 	return ro.err;
7374 }
7375 
7376 static void perf_pmu_output_stop(struct perf_event *event)
7377 {
7378 	struct perf_event *iter;
7379 	int err, cpu;
7380 
7381 restart:
7382 	rcu_read_lock();
7383 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7384 		/*
7385 		 * For per-CPU events, we need to make sure that neither they
7386 		 * nor their children are running; for cpu==-1 events it's
7387 		 * sufficient to stop the event itself if it's active, since
7388 		 * it can't have children.
7389 		 */
7390 		cpu = iter->cpu;
7391 		if (cpu == -1)
7392 			cpu = READ_ONCE(iter->oncpu);
7393 
7394 		if (cpu == -1)
7395 			continue;
7396 
7397 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7398 		if (err == -EAGAIN) {
7399 			rcu_read_unlock();
7400 			goto restart;
7401 		}
7402 	}
7403 	rcu_read_unlock();
7404 }
7405 
7406 /*
7407  * task tracking -- fork/exit
7408  *
7409  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7410  */
7411 
7412 struct perf_task_event {
7413 	struct task_struct		*task;
7414 	struct perf_event_context	*task_ctx;
7415 
7416 	struct {
7417 		struct perf_event_header	header;
7418 
7419 		u32				pid;
7420 		u32				ppid;
7421 		u32				tid;
7422 		u32				ptid;
7423 		u64				time;
7424 	} event_id;
7425 };
7426 
7427 static int perf_event_task_match(struct perf_event *event)
7428 {
7429 	return event->attr.comm  || event->attr.mmap ||
7430 	       event->attr.mmap2 || event->attr.mmap_data ||
7431 	       event->attr.task;
7432 }
7433 
7434 static void perf_event_task_output(struct perf_event *event,
7435 				   void *data)
7436 {
7437 	struct perf_task_event *task_event = data;
7438 	struct perf_output_handle handle;
7439 	struct perf_sample_data	sample;
7440 	struct task_struct *task = task_event->task;
7441 	int ret, size = task_event->event_id.header.size;
7442 
7443 	if (!perf_event_task_match(event))
7444 		return;
7445 
7446 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7447 
7448 	ret = perf_output_begin(&handle, event,
7449 				task_event->event_id.header.size);
7450 	if (ret)
7451 		goto out;
7452 
7453 	task_event->event_id.pid = perf_event_pid(event, task);
7454 	task_event->event_id.ppid = perf_event_pid(event, current);
7455 
7456 	task_event->event_id.tid = perf_event_tid(event, task);
7457 	task_event->event_id.ptid = perf_event_tid(event, current);
7458 
7459 	task_event->event_id.time = perf_event_clock(event);
7460 
7461 	perf_output_put(&handle, task_event->event_id);
7462 
7463 	perf_event__output_id_sample(event, &handle, &sample);
7464 
7465 	perf_output_end(&handle);
7466 out:
7467 	task_event->event_id.header.size = size;
7468 }
7469 
7470 static void perf_event_task(struct task_struct *task,
7471 			      struct perf_event_context *task_ctx,
7472 			      int new)
7473 {
7474 	struct perf_task_event task_event;
7475 
7476 	if (!atomic_read(&nr_comm_events) &&
7477 	    !atomic_read(&nr_mmap_events) &&
7478 	    !atomic_read(&nr_task_events))
7479 		return;
7480 
7481 	task_event = (struct perf_task_event){
7482 		.task	  = task,
7483 		.task_ctx = task_ctx,
7484 		.event_id    = {
7485 			.header = {
7486 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7487 				.misc = 0,
7488 				.size = sizeof(task_event.event_id),
7489 			},
7490 			/* .pid  */
7491 			/* .ppid */
7492 			/* .tid  */
7493 			/* .ptid */
7494 			/* .time */
7495 		},
7496 	};
7497 
7498 	perf_iterate_sb(perf_event_task_output,
7499 		       &task_event,
7500 		       task_ctx);
7501 }
7502 
7503 void perf_event_fork(struct task_struct *task)
7504 {
7505 	perf_event_task(task, NULL, 1);
7506 	perf_event_namespaces(task);
7507 }
7508 
7509 /*
7510  * comm tracking
7511  */
7512 
7513 struct perf_comm_event {
7514 	struct task_struct	*task;
7515 	char			*comm;
7516 	int			comm_size;
7517 
7518 	struct {
7519 		struct perf_event_header	header;
7520 
7521 		u32				pid;
7522 		u32				tid;
7523 	} event_id;
7524 };
7525 
7526 static int perf_event_comm_match(struct perf_event *event)
7527 {
7528 	return event->attr.comm;
7529 }
7530 
7531 static void perf_event_comm_output(struct perf_event *event,
7532 				   void *data)
7533 {
7534 	struct perf_comm_event *comm_event = data;
7535 	struct perf_output_handle handle;
7536 	struct perf_sample_data sample;
7537 	int size = comm_event->event_id.header.size;
7538 	int ret;
7539 
7540 	if (!perf_event_comm_match(event))
7541 		return;
7542 
7543 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7544 	ret = perf_output_begin(&handle, event,
7545 				comm_event->event_id.header.size);
7546 
7547 	if (ret)
7548 		goto out;
7549 
7550 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7551 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7552 
7553 	perf_output_put(&handle, comm_event->event_id);
7554 	__output_copy(&handle, comm_event->comm,
7555 				   comm_event->comm_size);
7556 
7557 	perf_event__output_id_sample(event, &handle, &sample);
7558 
7559 	perf_output_end(&handle);
7560 out:
7561 	comm_event->event_id.header.size = size;
7562 }
7563 
7564 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7565 {
7566 	char comm[TASK_COMM_LEN];
7567 	unsigned int size;
7568 
7569 	memset(comm, 0, sizeof(comm));
7570 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7571 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7572 
7573 	comm_event->comm = comm;
7574 	comm_event->comm_size = size;
7575 
7576 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7577 
7578 	perf_iterate_sb(perf_event_comm_output,
7579 		       comm_event,
7580 		       NULL);
7581 }
7582 
7583 void perf_event_comm(struct task_struct *task, bool exec)
7584 {
7585 	struct perf_comm_event comm_event;
7586 
7587 	if (!atomic_read(&nr_comm_events))
7588 		return;
7589 
7590 	comm_event = (struct perf_comm_event){
7591 		.task	= task,
7592 		/* .comm      */
7593 		/* .comm_size */
7594 		.event_id  = {
7595 			.header = {
7596 				.type = PERF_RECORD_COMM,
7597 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7598 				/* .size */
7599 			},
7600 			/* .pid */
7601 			/* .tid */
7602 		},
7603 	};
7604 
7605 	perf_event_comm_event(&comm_event);
7606 }
7607 
7608 /*
7609  * namespaces tracking
7610  */
7611 
7612 struct perf_namespaces_event {
7613 	struct task_struct		*task;
7614 
7615 	struct {
7616 		struct perf_event_header	header;
7617 
7618 		u32				pid;
7619 		u32				tid;
7620 		u64				nr_namespaces;
7621 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7622 	} event_id;
7623 };
7624 
7625 static int perf_event_namespaces_match(struct perf_event *event)
7626 {
7627 	return event->attr.namespaces;
7628 }
7629 
7630 static void perf_event_namespaces_output(struct perf_event *event,
7631 					 void *data)
7632 {
7633 	struct perf_namespaces_event *namespaces_event = data;
7634 	struct perf_output_handle handle;
7635 	struct perf_sample_data sample;
7636 	u16 header_size = namespaces_event->event_id.header.size;
7637 	int ret;
7638 
7639 	if (!perf_event_namespaces_match(event))
7640 		return;
7641 
7642 	perf_event_header__init_id(&namespaces_event->event_id.header,
7643 				   &sample, event);
7644 	ret = perf_output_begin(&handle, event,
7645 				namespaces_event->event_id.header.size);
7646 	if (ret)
7647 		goto out;
7648 
7649 	namespaces_event->event_id.pid = perf_event_pid(event,
7650 							namespaces_event->task);
7651 	namespaces_event->event_id.tid = perf_event_tid(event,
7652 							namespaces_event->task);
7653 
7654 	perf_output_put(&handle, namespaces_event->event_id);
7655 
7656 	perf_event__output_id_sample(event, &handle, &sample);
7657 
7658 	perf_output_end(&handle);
7659 out:
7660 	namespaces_event->event_id.header.size = header_size;
7661 }
7662 
7663 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7664 				   struct task_struct *task,
7665 				   const struct proc_ns_operations *ns_ops)
7666 {
7667 	struct path ns_path;
7668 	struct inode *ns_inode;
7669 	int error;
7670 
7671 	error = ns_get_path(&ns_path, task, ns_ops);
7672 	if (!error) {
7673 		ns_inode = ns_path.dentry->d_inode;
7674 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7675 		ns_link_info->ino = ns_inode->i_ino;
7676 		path_put(&ns_path);
7677 	}
7678 }
7679 
7680 void perf_event_namespaces(struct task_struct *task)
7681 {
7682 	struct perf_namespaces_event namespaces_event;
7683 	struct perf_ns_link_info *ns_link_info;
7684 
7685 	if (!atomic_read(&nr_namespaces_events))
7686 		return;
7687 
7688 	namespaces_event = (struct perf_namespaces_event){
7689 		.task	= task,
7690 		.event_id  = {
7691 			.header = {
7692 				.type = PERF_RECORD_NAMESPACES,
7693 				.misc = 0,
7694 				.size = sizeof(namespaces_event.event_id),
7695 			},
7696 			/* .pid */
7697 			/* .tid */
7698 			.nr_namespaces = NR_NAMESPACES,
7699 			/* .link_info[NR_NAMESPACES] */
7700 		},
7701 	};
7702 
7703 	ns_link_info = namespaces_event.event_id.link_info;
7704 
7705 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7706 			       task, &mntns_operations);
7707 
7708 #ifdef CONFIG_USER_NS
7709 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7710 			       task, &userns_operations);
7711 #endif
7712 #ifdef CONFIG_NET_NS
7713 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7714 			       task, &netns_operations);
7715 #endif
7716 #ifdef CONFIG_UTS_NS
7717 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7718 			       task, &utsns_operations);
7719 #endif
7720 #ifdef CONFIG_IPC_NS
7721 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7722 			       task, &ipcns_operations);
7723 #endif
7724 #ifdef CONFIG_PID_NS
7725 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7726 			       task, &pidns_operations);
7727 #endif
7728 #ifdef CONFIG_CGROUPS
7729 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7730 			       task, &cgroupns_operations);
7731 #endif
7732 
7733 	perf_iterate_sb(perf_event_namespaces_output,
7734 			&namespaces_event,
7735 			NULL);
7736 }
7737 
7738 /*
7739  * mmap tracking
7740  */
7741 
7742 struct perf_mmap_event {
7743 	struct vm_area_struct	*vma;
7744 
7745 	const char		*file_name;
7746 	int			file_size;
7747 	int			maj, min;
7748 	u64			ino;
7749 	u64			ino_generation;
7750 	u32			prot, flags;
7751 
7752 	struct {
7753 		struct perf_event_header	header;
7754 
7755 		u32				pid;
7756 		u32				tid;
7757 		u64				start;
7758 		u64				len;
7759 		u64				pgoff;
7760 	} event_id;
7761 };
7762 
7763 static int perf_event_mmap_match(struct perf_event *event,
7764 				 void *data)
7765 {
7766 	struct perf_mmap_event *mmap_event = data;
7767 	struct vm_area_struct *vma = mmap_event->vma;
7768 	int executable = vma->vm_flags & VM_EXEC;
7769 
7770 	return (!executable && event->attr.mmap_data) ||
7771 	       (executable && (event->attr.mmap || event->attr.mmap2));
7772 }
7773 
7774 static void perf_event_mmap_output(struct perf_event *event,
7775 				   void *data)
7776 {
7777 	struct perf_mmap_event *mmap_event = data;
7778 	struct perf_output_handle handle;
7779 	struct perf_sample_data sample;
7780 	int size = mmap_event->event_id.header.size;
7781 	u32 type = mmap_event->event_id.header.type;
7782 	int ret;
7783 
7784 	if (!perf_event_mmap_match(event, data))
7785 		return;
7786 
7787 	if (event->attr.mmap2) {
7788 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7789 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7790 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7791 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7792 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7793 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7794 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7795 	}
7796 
7797 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7798 	ret = perf_output_begin(&handle, event,
7799 				mmap_event->event_id.header.size);
7800 	if (ret)
7801 		goto out;
7802 
7803 	mmap_event->event_id.pid = perf_event_pid(event, current);
7804 	mmap_event->event_id.tid = perf_event_tid(event, current);
7805 
7806 	perf_output_put(&handle, mmap_event->event_id);
7807 
7808 	if (event->attr.mmap2) {
7809 		perf_output_put(&handle, mmap_event->maj);
7810 		perf_output_put(&handle, mmap_event->min);
7811 		perf_output_put(&handle, mmap_event->ino);
7812 		perf_output_put(&handle, mmap_event->ino_generation);
7813 		perf_output_put(&handle, mmap_event->prot);
7814 		perf_output_put(&handle, mmap_event->flags);
7815 	}
7816 
7817 	__output_copy(&handle, mmap_event->file_name,
7818 				   mmap_event->file_size);
7819 
7820 	perf_event__output_id_sample(event, &handle, &sample);
7821 
7822 	perf_output_end(&handle);
7823 out:
7824 	mmap_event->event_id.header.size = size;
7825 	mmap_event->event_id.header.type = type;
7826 }
7827 
7828 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7829 {
7830 	struct vm_area_struct *vma = mmap_event->vma;
7831 	struct file *file = vma->vm_file;
7832 	int maj = 0, min = 0;
7833 	u64 ino = 0, gen = 0;
7834 	u32 prot = 0, flags = 0;
7835 	unsigned int size;
7836 	char tmp[16];
7837 	char *buf = NULL;
7838 	char *name;
7839 
7840 	if (vma->vm_flags & VM_READ)
7841 		prot |= PROT_READ;
7842 	if (vma->vm_flags & VM_WRITE)
7843 		prot |= PROT_WRITE;
7844 	if (vma->vm_flags & VM_EXEC)
7845 		prot |= PROT_EXEC;
7846 
7847 	if (vma->vm_flags & VM_MAYSHARE)
7848 		flags = MAP_SHARED;
7849 	else
7850 		flags = MAP_PRIVATE;
7851 
7852 	if (vma->vm_flags & VM_DENYWRITE)
7853 		flags |= MAP_DENYWRITE;
7854 	if (vma->vm_flags & VM_MAYEXEC)
7855 		flags |= MAP_EXECUTABLE;
7856 	if (vma->vm_flags & VM_LOCKED)
7857 		flags |= MAP_LOCKED;
7858 	if (vma->vm_flags & VM_HUGETLB)
7859 		flags |= MAP_HUGETLB;
7860 
7861 	if (file) {
7862 		struct inode *inode;
7863 		dev_t dev;
7864 
7865 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7866 		if (!buf) {
7867 			name = "//enomem";
7868 			goto cpy_name;
7869 		}
7870 		/*
7871 		 * d_path() works from the end of the rb backwards, so we
7872 		 * need to add enough zero bytes after the string to handle
7873 		 * the 64bit alignment we do later.
7874 		 */
7875 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7876 		if (IS_ERR(name)) {
7877 			name = "//toolong";
7878 			goto cpy_name;
7879 		}
7880 		inode = file_inode(vma->vm_file);
7881 		dev = inode->i_sb->s_dev;
7882 		ino = inode->i_ino;
7883 		gen = inode->i_generation;
7884 		maj = MAJOR(dev);
7885 		min = MINOR(dev);
7886 
7887 		goto got_name;
7888 	} else {
7889 		if (vma->vm_ops && vma->vm_ops->name) {
7890 			name = (char *) vma->vm_ops->name(vma);
7891 			if (name)
7892 				goto cpy_name;
7893 		}
7894 
7895 		name = (char *)arch_vma_name(vma);
7896 		if (name)
7897 			goto cpy_name;
7898 
7899 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7900 				vma->vm_end >= vma->vm_mm->brk) {
7901 			name = "[heap]";
7902 			goto cpy_name;
7903 		}
7904 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7905 				vma->vm_end >= vma->vm_mm->start_stack) {
7906 			name = "[stack]";
7907 			goto cpy_name;
7908 		}
7909 
7910 		name = "//anon";
7911 		goto cpy_name;
7912 	}
7913 
7914 cpy_name:
7915 	strlcpy(tmp, name, sizeof(tmp));
7916 	name = tmp;
7917 got_name:
7918 	/*
7919 	 * Since our buffer works in 8 byte units we need to align our string
7920 	 * size to a multiple of 8. However, we must guarantee the tail end is
7921 	 * zero'd out to avoid leaking random bits to userspace.
7922 	 */
7923 	size = strlen(name)+1;
7924 	while (!IS_ALIGNED(size, sizeof(u64)))
7925 		name[size++] = '\0';
7926 
7927 	mmap_event->file_name = name;
7928 	mmap_event->file_size = size;
7929 	mmap_event->maj = maj;
7930 	mmap_event->min = min;
7931 	mmap_event->ino = ino;
7932 	mmap_event->ino_generation = gen;
7933 	mmap_event->prot = prot;
7934 	mmap_event->flags = flags;
7935 
7936 	if (!(vma->vm_flags & VM_EXEC))
7937 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7938 
7939 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7940 
7941 	perf_iterate_sb(perf_event_mmap_output,
7942 		       mmap_event,
7943 		       NULL);
7944 
7945 	kfree(buf);
7946 }
7947 
7948 /*
7949  * Check whether inode and address range match filter criteria.
7950  */
7951 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7952 				     struct file *file, unsigned long offset,
7953 				     unsigned long size)
7954 {
7955 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7956 	if (!filter->path.dentry)
7957 		return false;
7958 
7959 	if (d_inode(filter->path.dentry) != file_inode(file))
7960 		return false;
7961 
7962 	if (filter->offset > offset + size)
7963 		return false;
7964 
7965 	if (filter->offset + filter->size < offset)
7966 		return false;
7967 
7968 	return true;
7969 }
7970 
7971 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7972 					struct vm_area_struct *vma,
7973 					struct perf_addr_filter_range *fr)
7974 {
7975 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7976 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7977 	struct file *file = vma->vm_file;
7978 
7979 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7980 		return false;
7981 
7982 	if (filter->offset < off) {
7983 		fr->start = vma->vm_start;
7984 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7985 	} else {
7986 		fr->start = vma->vm_start + filter->offset - off;
7987 		fr->size = min(vma->vm_end - fr->start, filter->size);
7988 	}
7989 
7990 	return true;
7991 }
7992 
7993 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7994 {
7995 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7996 	struct vm_area_struct *vma = data;
7997 	struct perf_addr_filter *filter;
7998 	unsigned int restart = 0, count = 0;
7999 	unsigned long flags;
8000 
8001 	if (!has_addr_filter(event))
8002 		return;
8003 
8004 	if (!vma->vm_file)
8005 		return;
8006 
8007 	raw_spin_lock_irqsave(&ifh->lock, flags);
8008 	list_for_each_entry(filter, &ifh->list, entry) {
8009 		if (perf_addr_filter_vma_adjust(filter, vma,
8010 						&event->addr_filter_ranges[count]))
8011 			restart++;
8012 
8013 		count++;
8014 	}
8015 
8016 	if (restart)
8017 		event->addr_filters_gen++;
8018 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8019 
8020 	if (restart)
8021 		perf_event_stop(event, 1);
8022 }
8023 
8024 /*
8025  * Adjust all task's events' filters to the new vma
8026  */
8027 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8028 {
8029 	struct perf_event_context *ctx;
8030 	int ctxn;
8031 
8032 	/*
8033 	 * Data tracing isn't supported yet and as such there is no need
8034 	 * to keep track of anything that isn't related to executable code:
8035 	 */
8036 	if (!(vma->vm_flags & VM_EXEC))
8037 		return;
8038 
8039 	rcu_read_lock();
8040 	for_each_task_context_nr(ctxn) {
8041 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8042 		if (!ctx)
8043 			continue;
8044 
8045 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8046 	}
8047 	rcu_read_unlock();
8048 }
8049 
8050 void perf_event_mmap(struct vm_area_struct *vma)
8051 {
8052 	struct perf_mmap_event mmap_event;
8053 
8054 	if (!atomic_read(&nr_mmap_events))
8055 		return;
8056 
8057 	mmap_event = (struct perf_mmap_event){
8058 		.vma	= vma,
8059 		/* .file_name */
8060 		/* .file_size */
8061 		.event_id  = {
8062 			.header = {
8063 				.type = PERF_RECORD_MMAP,
8064 				.misc = PERF_RECORD_MISC_USER,
8065 				/* .size */
8066 			},
8067 			/* .pid */
8068 			/* .tid */
8069 			.start  = vma->vm_start,
8070 			.len    = vma->vm_end - vma->vm_start,
8071 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8072 		},
8073 		/* .maj (attr_mmap2 only) */
8074 		/* .min (attr_mmap2 only) */
8075 		/* .ino (attr_mmap2 only) */
8076 		/* .ino_generation (attr_mmap2 only) */
8077 		/* .prot (attr_mmap2 only) */
8078 		/* .flags (attr_mmap2 only) */
8079 	};
8080 
8081 	perf_addr_filters_adjust(vma);
8082 	perf_event_mmap_event(&mmap_event);
8083 }
8084 
8085 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8086 			  unsigned long size, u64 flags)
8087 {
8088 	struct perf_output_handle handle;
8089 	struct perf_sample_data sample;
8090 	struct perf_aux_event {
8091 		struct perf_event_header	header;
8092 		u64				offset;
8093 		u64				size;
8094 		u64				flags;
8095 	} rec = {
8096 		.header = {
8097 			.type = PERF_RECORD_AUX,
8098 			.misc = 0,
8099 			.size = sizeof(rec),
8100 		},
8101 		.offset		= head,
8102 		.size		= size,
8103 		.flags		= flags,
8104 	};
8105 	int ret;
8106 
8107 	perf_event_header__init_id(&rec.header, &sample, event);
8108 	ret = perf_output_begin(&handle, event, rec.header.size);
8109 
8110 	if (ret)
8111 		return;
8112 
8113 	perf_output_put(&handle, rec);
8114 	perf_event__output_id_sample(event, &handle, &sample);
8115 
8116 	perf_output_end(&handle);
8117 }
8118 
8119 /*
8120  * Lost/dropped samples logging
8121  */
8122 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8123 {
8124 	struct perf_output_handle handle;
8125 	struct perf_sample_data sample;
8126 	int ret;
8127 
8128 	struct {
8129 		struct perf_event_header	header;
8130 		u64				lost;
8131 	} lost_samples_event = {
8132 		.header = {
8133 			.type = PERF_RECORD_LOST_SAMPLES,
8134 			.misc = 0,
8135 			.size = sizeof(lost_samples_event),
8136 		},
8137 		.lost		= lost,
8138 	};
8139 
8140 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8141 
8142 	ret = perf_output_begin(&handle, event,
8143 				lost_samples_event.header.size);
8144 	if (ret)
8145 		return;
8146 
8147 	perf_output_put(&handle, lost_samples_event);
8148 	perf_event__output_id_sample(event, &handle, &sample);
8149 	perf_output_end(&handle);
8150 }
8151 
8152 /*
8153  * context_switch tracking
8154  */
8155 
8156 struct perf_switch_event {
8157 	struct task_struct	*task;
8158 	struct task_struct	*next_prev;
8159 
8160 	struct {
8161 		struct perf_event_header	header;
8162 		u32				next_prev_pid;
8163 		u32				next_prev_tid;
8164 	} event_id;
8165 };
8166 
8167 static int perf_event_switch_match(struct perf_event *event)
8168 {
8169 	return event->attr.context_switch;
8170 }
8171 
8172 static void perf_event_switch_output(struct perf_event *event, void *data)
8173 {
8174 	struct perf_switch_event *se = data;
8175 	struct perf_output_handle handle;
8176 	struct perf_sample_data sample;
8177 	int ret;
8178 
8179 	if (!perf_event_switch_match(event))
8180 		return;
8181 
8182 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8183 	if (event->ctx->task) {
8184 		se->event_id.header.type = PERF_RECORD_SWITCH;
8185 		se->event_id.header.size = sizeof(se->event_id.header);
8186 	} else {
8187 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8188 		se->event_id.header.size = sizeof(se->event_id);
8189 		se->event_id.next_prev_pid =
8190 					perf_event_pid(event, se->next_prev);
8191 		se->event_id.next_prev_tid =
8192 					perf_event_tid(event, se->next_prev);
8193 	}
8194 
8195 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8196 
8197 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
8198 	if (ret)
8199 		return;
8200 
8201 	if (event->ctx->task)
8202 		perf_output_put(&handle, se->event_id.header);
8203 	else
8204 		perf_output_put(&handle, se->event_id);
8205 
8206 	perf_event__output_id_sample(event, &handle, &sample);
8207 
8208 	perf_output_end(&handle);
8209 }
8210 
8211 static void perf_event_switch(struct task_struct *task,
8212 			      struct task_struct *next_prev, bool sched_in)
8213 {
8214 	struct perf_switch_event switch_event;
8215 
8216 	/* N.B. caller checks nr_switch_events != 0 */
8217 
8218 	switch_event = (struct perf_switch_event){
8219 		.task		= task,
8220 		.next_prev	= next_prev,
8221 		.event_id	= {
8222 			.header = {
8223 				/* .type */
8224 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8225 				/* .size */
8226 			},
8227 			/* .next_prev_pid */
8228 			/* .next_prev_tid */
8229 		},
8230 	};
8231 
8232 	if (!sched_in && task->state == TASK_RUNNING)
8233 		switch_event.event_id.header.misc |=
8234 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8235 
8236 	perf_iterate_sb(perf_event_switch_output,
8237 		       &switch_event,
8238 		       NULL);
8239 }
8240 
8241 /*
8242  * IRQ throttle logging
8243  */
8244 
8245 static void perf_log_throttle(struct perf_event *event, int enable)
8246 {
8247 	struct perf_output_handle handle;
8248 	struct perf_sample_data sample;
8249 	int ret;
8250 
8251 	struct {
8252 		struct perf_event_header	header;
8253 		u64				time;
8254 		u64				id;
8255 		u64				stream_id;
8256 	} throttle_event = {
8257 		.header = {
8258 			.type = PERF_RECORD_THROTTLE,
8259 			.misc = 0,
8260 			.size = sizeof(throttle_event),
8261 		},
8262 		.time		= perf_event_clock(event),
8263 		.id		= primary_event_id(event),
8264 		.stream_id	= event->id,
8265 	};
8266 
8267 	if (enable)
8268 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8269 
8270 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8271 
8272 	ret = perf_output_begin(&handle, event,
8273 				throttle_event.header.size);
8274 	if (ret)
8275 		return;
8276 
8277 	perf_output_put(&handle, throttle_event);
8278 	perf_event__output_id_sample(event, &handle, &sample);
8279 	perf_output_end(&handle);
8280 }
8281 
8282 /*
8283  * ksymbol register/unregister tracking
8284  */
8285 
8286 struct perf_ksymbol_event {
8287 	const char	*name;
8288 	int		name_len;
8289 	struct {
8290 		struct perf_event_header        header;
8291 		u64				addr;
8292 		u32				len;
8293 		u16				ksym_type;
8294 		u16				flags;
8295 	} event_id;
8296 };
8297 
8298 static int perf_event_ksymbol_match(struct perf_event *event)
8299 {
8300 	return event->attr.ksymbol;
8301 }
8302 
8303 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8304 {
8305 	struct perf_ksymbol_event *ksymbol_event = data;
8306 	struct perf_output_handle handle;
8307 	struct perf_sample_data sample;
8308 	int ret;
8309 
8310 	if (!perf_event_ksymbol_match(event))
8311 		return;
8312 
8313 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8314 				   &sample, event);
8315 	ret = perf_output_begin(&handle, event,
8316 				ksymbol_event->event_id.header.size);
8317 	if (ret)
8318 		return;
8319 
8320 	perf_output_put(&handle, ksymbol_event->event_id);
8321 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8322 	perf_event__output_id_sample(event, &handle, &sample);
8323 
8324 	perf_output_end(&handle);
8325 }
8326 
8327 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8328 			const char *sym)
8329 {
8330 	struct perf_ksymbol_event ksymbol_event;
8331 	char name[KSYM_NAME_LEN];
8332 	u16 flags = 0;
8333 	int name_len;
8334 
8335 	if (!atomic_read(&nr_ksymbol_events))
8336 		return;
8337 
8338 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8339 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8340 		goto err;
8341 
8342 	strlcpy(name, sym, KSYM_NAME_LEN);
8343 	name_len = strlen(name) + 1;
8344 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8345 		name[name_len++] = '\0';
8346 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8347 
8348 	if (unregister)
8349 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8350 
8351 	ksymbol_event = (struct perf_ksymbol_event){
8352 		.name = name,
8353 		.name_len = name_len,
8354 		.event_id = {
8355 			.header = {
8356 				.type = PERF_RECORD_KSYMBOL,
8357 				.size = sizeof(ksymbol_event.event_id) +
8358 					name_len,
8359 			},
8360 			.addr = addr,
8361 			.len = len,
8362 			.ksym_type = ksym_type,
8363 			.flags = flags,
8364 		},
8365 	};
8366 
8367 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8368 	return;
8369 err:
8370 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8371 }
8372 
8373 /*
8374  * bpf program load/unload tracking
8375  */
8376 
8377 struct perf_bpf_event {
8378 	struct bpf_prog	*prog;
8379 	struct {
8380 		struct perf_event_header        header;
8381 		u16				type;
8382 		u16				flags;
8383 		u32				id;
8384 		u8				tag[BPF_TAG_SIZE];
8385 	} event_id;
8386 };
8387 
8388 static int perf_event_bpf_match(struct perf_event *event)
8389 {
8390 	return event->attr.bpf_event;
8391 }
8392 
8393 static void perf_event_bpf_output(struct perf_event *event, void *data)
8394 {
8395 	struct perf_bpf_event *bpf_event = data;
8396 	struct perf_output_handle handle;
8397 	struct perf_sample_data sample;
8398 	int ret;
8399 
8400 	if (!perf_event_bpf_match(event))
8401 		return;
8402 
8403 	perf_event_header__init_id(&bpf_event->event_id.header,
8404 				   &sample, event);
8405 	ret = perf_output_begin(&handle, event,
8406 				bpf_event->event_id.header.size);
8407 	if (ret)
8408 		return;
8409 
8410 	perf_output_put(&handle, bpf_event->event_id);
8411 	perf_event__output_id_sample(event, &handle, &sample);
8412 
8413 	perf_output_end(&handle);
8414 }
8415 
8416 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8417 					 enum perf_bpf_event_type type)
8418 {
8419 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8420 	int i;
8421 
8422 	if (prog->aux->func_cnt == 0) {
8423 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8424 				   (u64)(unsigned long)prog->bpf_func,
8425 				   prog->jited_len, unregister,
8426 				   prog->aux->ksym.name);
8427 	} else {
8428 		for (i = 0; i < prog->aux->func_cnt; i++) {
8429 			struct bpf_prog *subprog = prog->aux->func[i];
8430 
8431 			perf_event_ksymbol(
8432 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8433 				(u64)(unsigned long)subprog->bpf_func,
8434 				subprog->jited_len, unregister,
8435 				prog->aux->ksym.name);
8436 		}
8437 	}
8438 }
8439 
8440 void perf_event_bpf_event(struct bpf_prog *prog,
8441 			  enum perf_bpf_event_type type,
8442 			  u16 flags)
8443 {
8444 	struct perf_bpf_event bpf_event;
8445 
8446 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8447 	    type >= PERF_BPF_EVENT_MAX)
8448 		return;
8449 
8450 	switch (type) {
8451 	case PERF_BPF_EVENT_PROG_LOAD:
8452 	case PERF_BPF_EVENT_PROG_UNLOAD:
8453 		if (atomic_read(&nr_ksymbol_events))
8454 			perf_event_bpf_emit_ksymbols(prog, type);
8455 		break;
8456 	default:
8457 		break;
8458 	}
8459 
8460 	if (!atomic_read(&nr_bpf_events))
8461 		return;
8462 
8463 	bpf_event = (struct perf_bpf_event){
8464 		.prog = prog,
8465 		.event_id = {
8466 			.header = {
8467 				.type = PERF_RECORD_BPF_EVENT,
8468 				.size = sizeof(bpf_event.event_id),
8469 			},
8470 			.type = type,
8471 			.flags = flags,
8472 			.id = prog->aux->id,
8473 		},
8474 	};
8475 
8476 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8477 
8478 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8479 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8480 }
8481 
8482 void perf_event_itrace_started(struct perf_event *event)
8483 {
8484 	event->attach_state |= PERF_ATTACH_ITRACE;
8485 }
8486 
8487 static void perf_log_itrace_start(struct perf_event *event)
8488 {
8489 	struct perf_output_handle handle;
8490 	struct perf_sample_data sample;
8491 	struct perf_aux_event {
8492 		struct perf_event_header        header;
8493 		u32				pid;
8494 		u32				tid;
8495 	} rec;
8496 	int ret;
8497 
8498 	if (event->parent)
8499 		event = event->parent;
8500 
8501 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8502 	    event->attach_state & PERF_ATTACH_ITRACE)
8503 		return;
8504 
8505 	rec.header.type	= PERF_RECORD_ITRACE_START;
8506 	rec.header.misc	= 0;
8507 	rec.header.size	= sizeof(rec);
8508 	rec.pid	= perf_event_pid(event, current);
8509 	rec.tid	= perf_event_tid(event, current);
8510 
8511 	perf_event_header__init_id(&rec.header, &sample, event);
8512 	ret = perf_output_begin(&handle, event, rec.header.size);
8513 
8514 	if (ret)
8515 		return;
8516 
8517 	perf_output_put(&handle, rec);
8518 	perf_event__output_id_sample(event, &handle, &sample);
8519 
8520 	perf_output_end(&handle);
8521 }
8522 
8523 static int
8524 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8525 {
8526 	struct hw_perf_event *hwc = &event->hw;
8527 	int ret = 0;
8528 	u64 seq;
8529 
8530 	seq = __this_cpu_read(perf_throttled_seq);
8531 	if (seq != hwc->interrupts_seq) {
8532 		hwc->interrupts_seq = seq;
8533 		hwc->interrupts = 1;
8534 	} else {
8535 		hwc->interrupts++;
8536 		if (unlikely(throttle
8537 			     && hwc->interrupts >= max_samples_per_tick)) {
8538 			__this_cpu_inc(perf_throttled_count);
8539 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8540 			hwc->interrupts = MAX_INTERRUPTS;
8541 			perf_log_throttle(event, 0);
8542 			ret = 1;
8543 		}
8544 	}
8545 
8546 	if (event->attr.freq) {
8547 		u64 now = perf_clock();
8548 		s64 delta = now - hwc->freq_time_stamp;
8549 
8550 		hwc->freq_time_stamp = now;
8551 
8552 		if (delta > 0 && delta < 2*TICK_NSEC)
8553 			perf_adjust_period(event, delta, hwc->last_period, true);
8554 	}
8555 
8556 	return ret;
8557 }
8558 
8559 int perf_event_account_interrupt(struct perf_event *event)
8560 {
8561 	return __perf_event_account_interrupt(event, 1);
8562 }
8563 
8564 /*
8565  * Generic event overflow handling, sampling.
8566  */
8567 
8568 static int __perf_event_overflow(struct perf_event *event,
8569 				   int throttle, struct perf_sample_data *data,
8570 				   struct pt_regs *regs)
8571 {
8572 	int events = atomic_read(&event->event_limit);
8573 	int ret = 0;
8574 
8575 	/*
8576 	 * Non-sampling counters might still use the PMI to fold short
8577 	 * hardware counters, ignore those.
8578 	 */
8579 	if (unlikely(!is_sampling_event(event)))
8580 		return 0;
8581 
8582 	ret = __perf_event_account_interrupt(event, throttle);
8583 
8584 	/*
8585 	 * XXX event_limit might not quite work as expected on inherited
8586 	 * events
8587 	 */
8588 
8589 	event->pending_kill = POLL_IN;
8590 	if (events && atomic_dec_and_test(&event->event_limit)) {
8591 		ret = 1;
8592 		event->pending_kill = POLL_HUP;
8593 
8594 		perf_event_disable_inatomic(event);
8595 	}
8596 
8597 	READ_ONCE(event->overflow_handler)(event, data, regs);
8598 
8599 	if (*perf_event_fasync(event) && event->pending_kill) {
8600 		event->pending_wakeup = 1;
8601 		irq_work_queue(&event->pending);
8602 	}
8603 
8604 	return ret;
8605 }
8606 
8607 int perf_event_overflow(struct perf_event *event,
8608 			  struct perf_sample_data *data,
8609 			  struct pt_regs *regs)
8610 {
8611 	return __perf_event_overflow(event, 1, data, regs);
8612 }
8613 
8614 /*
8615  * Generic software event infrastructure
8616  */
8617 
8618 struct swevent_htable {
8619 	struct swevent_hlist		*swevent_hlist;
8620 	struct mutex			hlist_mutex;
8621 	int				hlist_refcount;
8622 
8623 	/* Recursion avoidance in each contexts */
8624 	int				recursion[PERF_NR_CONTEXTS];
8625 };
8626 
8627 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8628 
8629 /*
8630  * We directly increment event->count and keep a second value in
8631  * event->hw.period_left to count intervals. This period event
8632  * is kept in the range [-sample_period, 0] so that we can use the
8633  * sign as trigger.
8634  */
8635 
8636 u64 perf_swevent_set_period(struct perf_event *event)
8637 {
8638 	struct hw_perf_event *hwc = &event->hw;
8639 	u64 period = hwc->last_period;
8640 	u64 nr, offset;
8641 	s64 old, val;
8642 
8643 	hwc->last_period = hwc->sample_period;
8644 
8645 again:
8646 	old = val = local64_read(&hwc->period_left);
8647 	if (val < 0)
8648 		return 0;
8649 
8650 	nr = div64_u64(period + val, period);
8651 	offset = nr * period;
8652 	val -= offset;
8653 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8654 		goto again;
8655 
8656 	return nr;
8657 }
8658 
8659 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8660 				    struct perf_sample_data *data,
8661 				    struct pt_regs *regs)
8662 {
8663 	struct hw_perf_event *hwc = &event->hw;
8664 	int throttle = 0;
8665 
8666 	if (!overflow)
8667 		overflow = perf_swevent_set_period(event);
8668 
8669 	if (hwc->interrupts == MAX_INTERRUPTS)
8670 		return;
8671 
8672 	for (; overflow; overflow--) {
8673 		if (__perf_event_overflow(event, throttle,
8674 					    data, regs)) {
8675 			/*
8676 			 * We inhibit the overflow from happening when
8677 			 * hwc->interrupts == MAX_INTERRUPTS.
8678 			 */
8679 			break;
8680 		}
8681 		throttle = 1;
8682 	}
8683 }
8684 
8685 static void perf_swevent_event(struct perf_event *event, u64 nr,
8686 			       struct perf_sample_data *data,
8687 			       struct pt_regs *regs)
8688 {
8689 	struct hw_perf_event *hwc = &event->hw;
8690 
8691 	local64_add(nr, &event->count);
8692 
8693 	if (!regs)
8694 		return;
8695 
8696 	if (!is_sampling_event(event))
8697 		return;
8698 
8699 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8700 		data->period = nr;
8701 		return perf_swevent_overflow(event, 1, data, regs);
8702 	} else
8703 		data->period = event->hw.last_period;
8704 
8705 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8706 		return perf_swevent_overflow(event, 1, data, regs);
8707 
8708 	if (local64_add_negative(nr, &hwc->period_left))
8709 		return;
8710 
8711 	perf_swevent_overflow(event, 0, data, regs);
8712 }
8713 
8714 static int perf_exclude_event(struct perf_event *event,
8715 			      struct pt_regs *regs)
8716 {
8717 	if (event->hw.state & PERF_HES_STOPPED)
8718 		return 1;
8719 
8720 	if (regs) {
8721 		if (event->attr.exclude_user && user_mode(regs))
8722 			return 1;
8723 
8724 		if (event->attr.exclude_kernel && !user_mode(regs))
8725 			return 1;
8726 	}
8727 
8728 	return 0;
8729 }
8730 
8731 static int perf_swevent_match(struct perf_event *event,
8732 				enum perf_type_id type,
8733 				u32 event_id,
8734 				struct perf_sample_data *data,
8735 				struct pt_regs *regs)
8736 {
8737 	if (event->attr.type != type)
8738 		return 0;
8739 
8740 	if (event->attr.config != event_id)
8741 		return 0;
8742 
8743 	if (perf_exclude_event(event, regs))
8744 		return 0;
8745 
8746 	return 1;
8747 }
8748 
8749 static inline u64 swevent_hash(u64 type, u32 event_id)
8750 {
8751 	u64 val = event_id | (type << 32);
8752 
8753 	return hash_64(val, SWEVENT_HLIST_BITS);
8754 }
8755 
8756 static inline struct hlist_head *
8757 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8758 {
8759 	u64 hash = swevent_hash(type, event_id);
8760 
8761 	return &hlist->heads[hash];
8762 }
8763 
8764 /* For the read side: events when they trigger */
8765 static inline struct hlist_head *
8766 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8767 {
8768 	struct swevent_hlist *hlist;
8769 
8770 	hlist = rcu_dereference(swhash->swevent_hlist);
8771 	if (!hlist)
8772 		return NULL;
8773 
8774 	return __find_swevent_head(hlist, type, event_id);
8775 }
8776 
8777 /* For the event head insertion and removal in the hlist */
8778 static inline struct hlist_head *
8779 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8780 {
8781 	struct swevent_hlist *hlist;
8782 	u32 event_id = event->attr.config;
8783 	u64 type = event->attr.type;
8784 
8785 	/*
8786 	 * Event scheduling is always serialized against hlist allocation
8787 	 * and release. Which makes the protected version suitable here.
8788 	 * The context lock guarantees that.
8789 	 */
8790 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8791 					  lockdep_is_held(&event->ctx->lock));
8792 	if (!hlist)
8793 		return NULL;
8794 
8795 	return __find_swevent_head(hlist, type, event_id);
8796 }
8797 
8798 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8799 				    u64 nr,
8800 				    struct perf_sample_data *data,
8801 				    struct pt_regs *regs)
8802 {
8803 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8804 	struct perf_event *event;
8805 	struct hlist_head *head;
8806 
8807 	rcu_read_lock();
8808 	head = find_swevent_head_rcu(swhash, type, event_id);
8809 	if (!head)
8810 		goto end;
8811 
8812 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8813 		if (perf_swevent_match(event, type, event_id, data, regs))
8814 			perf_swevent_event(event, nr, data, regs);
8815 	}
8816 end:
8817 	rcu_read_unlock();
8818 }
8819 
8820 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8821 
8822 int perf_swevent_get_recursion_context(void)
8823 {
8824 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8825 
8826 	return get_recursion_context(swhash->recursion);
8827 }
8828 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8829 
8830 void perf_swevent_put_recursion_context(int rctx)
8831 {
8832 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8833 
8834 	put_recursion_context(swhash->recursion, rctx);
8835 }
8836 
8837 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8838 {
8839 	struct perf_sample_data data;
8840 
8841 	if (WARN_ON_ONCE(!regs))
8842 		return;
8843 
8844 	perf_sample_data_init(&data, addr, 0);
8845 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8846 }
8847 
8848 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8849 {
8850 	int rctx;
8851 
8852 	preempt_disable_notrace();
8853 	rctx = perf_swevent_get_recursion_context();
8854 	if (unlikely(rctx < 0))
8855 		goto fail;
8856 
8857 	___perf_sw_event(event_id, nr, regs, addr);
8858 
8859 	perf_swevent_put_recursion_context(rctx);
8860 fail:
8861 	preempt_enable_notrace();
8862 }
8863 
8864 static void perf_swevent_read(struct perf_event *event)
8865 {
8866 }
8867 
8868 static int perf_swevent_add(struct perf_event *event, int flags)
8869 {
8870 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8871 	struct hw_perf_event *hwc = &event->hw;
8872 	struct hlist_head *head;
8873 
8874 	if (is_sampling_event(event)) {
8875 		hwc->last_period = hwc->sample_period;
8876 		perf_swevent_set_period(event);
8877 	}
8878 
8879 	hwc->state = !(flags & PERF_EF_START);
8880 
8881 	head = find_swevent_head(swhash, event);
8882 	if (WARN_ON_ONCE(!head))
8883 		return -EINVAL;
8884 
8885 	hlist_add_head_rcu(&event->hlist_entry, head);
8886 	perf_event_update_userpage(event);
8887 
8888 	return 0;
8889 }
8890 
8891 static void perf_swevent_del(struct perf_event *event, int flags)
8892 {
8893 	hlist_del_rcu(&event->hlist_entry);
8894 }
8895 
8896 static void perf_swevent_start(struct perf_event *event, int flags)
8897 {
8898 	event->hw.state = 0;
8899 }
8900 
8901 static void perf_swevent_stop(struct perf_event *event, int flags)
8902 {
8903 	event->hw.state = PERF_HES_STOPPED;
8904 }
8905 
8906 /* Deref the hlist from the update side */
8907 static inline struct swevent_hlist *
8908 swevent_hlist_deref(struct swevent_htable *swhash)
8909 {
8910 	return rcu_dereference_protected(swhash->swevent_hlist,
8911 					 lockdep_is_held(&swhash->hlist_mutex));
8912 }
8913 
8914 static void swevent_hlist_release(struct swevent_htable *swhash)
8915 {
8916 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8917 
8918 	if (!hlist)
8919 		return;
8920 
8921 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8922 	kfree_rcu(hlist, rcu_head);
8923 }
8924 
8925 static void swevent_hlist_put_cpu(int cpu)
8926 {
8927 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8928 
8929 	mutex_lock(&swhash->hlist_mutex);
8930 
8931 	if (!--swhash->hlist_refcount)
8932 		swevent_hlist_release(swhash);
8933 
8934 	mutex_unlock(&swhash->hlist_mutex);
8935 }
8936 
8937 static void swevent_hlist_put(void)
8938 {
8939 	int cpu;
8940 
8941 	for_each_possible_cpu(cpu)
8942 		swevent_hlist_put_cpu(cpu);
8943 }
8944 
8945 static int swevent_hlist_get_cpu(int cpu)
8946 {
8947 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8948 	int err = 0;
8949 
8950 	mutex_lock(&swhash->hlist_mutex);
8951 	if (!swevent_hlist_deref(swhash) &&
8952 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8953 		struct swevent_hlist *hlist;
8954 
8955 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8956 		if (!hlist) {
8957 			err = -ENOMEM;
8958 			goto exit;
8959 		}
8960 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8961 	}
8962 	swhash->hlist_refcount++;
8963 exit:
8964 	mutex_unlock(&swhash->hlist_mutex);
8965 
8966 	return err;
8967 }
8968 
8969 static int swevent_hlist_get(void)
8970 {
8971 	int err, cpu, failed_cpu;
8972 
8973 	mutex_lock(&pmus_lock);
8974 	for_each_possible_cpu(cpu) {
8975 		err = swevent_hlist_get_cpu(cpu);
8976 		if (err) {
8977 			failed_cpu = cpu;
8978 			goto fail;
8979 		}
8980 	}
8981 	mutex_unlock(&pmus_lock);
8982 	return 0;
8983 fail:
8984 	for_each_possible_cpu(cpu) {
8985 		if (cpu == failed_cpu)
8986 			break;
8987 		swevent_hlist_put_cpu(cpu);
8988 	}
8989 	mutex_unlock(&pmus_lock);
8990 	return err;
8991 }
8992 
8993 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8994 
8995 static void sw_perf_event_destroy(struct perf_event *event)
8996 {
8997 	u64 event_id = event->attr.config;
8998 
8999 	WARN_ON(event->parent);
9000 
9001 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9002 	swevent_hlist_put();
9003 }
9004 
9005 static int perf_swevent_init(struct perf_event *event)
9006 {
9007 	u64 event_id = event->attr.config;
9008 
9009 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9010 		return -ENOENT;
9011 
9012 	/*
9013 	 * no branch sampling for software events
9014 	 */
9015 	if (has_branch_stack(event))
9016 		return -EOPNOTSUPP;
9017 
9018 	switch (event_id) {
9019 	case PERF_COUNT_SW_CPU_CLOCK:
9020 	case PERF_COUNT_SW_TASK_CLOCK:
9021 		return -ENOENT;
9022 
9023 	default:
9024 		break;
9025 	}
9026 
9027 	if (event_id >= PERF_COUNT_SW_MAX)
9028 		return -ENOENT;
9029 
9030 	if (!event->parent) {
9031 		int err;
9032 
9033 		err = swevent_hlist_get();
9034 		if (err)
9035 			return err;
9036 
9037 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9038 		event->destroy = sw_perf_event_destroy;
9039 	}
9040 
9041 	return 0;
9042 }
9043 
9044 static struct pmu perf_swevent = {
9045 	.task_ctx_nr	= perf_sw_context,
9046 
9047 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9048 
9049 	.event_init	= perf_swevent_init,
9050 	.add		= perf_swevent_add,
9051 	.del		= perf_swevent_del,
9052 	.start		= perf_swevent_start,
9053 	.stop		= perf_swevent_stop,
9054 	.read		= perf_swevent_read,
9055 };
9056 
9057 #ifdef CONFIG_EVENT_TRACING
9058 
9059 static int perf_tp_filter_match(struct perf_event *event,
9060 				struct perf_sample_data *data)
9061 {
9062 	void *record = data->raw->frag.data;
9063 
9064 	/* only top level events have filters set */
9065 	if (event->parent)
9066 		event = event->parent;
9067 
9068 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9069 		return 1;
9070 	return 0;
9071 }
9072 
9073 static int perf_tp_event_match(struct perf_event *event,
9074 				struct perf_sample_data *data,
9075 				struct pt_regs *regs)
9076 {
9077 	if (event->hw.state & PERF_HES_STOPPED)
9078 		return 0;
9079 	/*
9080 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9081 	 */
9082 	if (event->attr.exclude_kernel && !user_mode(regs))
9083 		return 0;
9084 
9085 	if (!perf_tp_filter_match(event, data))
9086 		return 0;
9087 
9088 	return 1;
9089 }
9090 
9091 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9092 			       struct trace_event_call *call, u64 count,
9093 			       struct pt_regs *regs, struct hlist_head *head,
9094 			       struct task_struct *task)
9095 {
9096 	if (bpf_prog_array_valid(call)) {
9097 		*(struct pt_regs **)raw_data = regs;
9098 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9099 			perf_swevent_put_recursion_context(rctx);
9100 			return;
9101 		}
9102 	}
9103 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9104 		      rctx, task);
9105 }
9106 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9107 
9108 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9109 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9110 		   struct task_struct *task)
9111 {
9112 	struct perf_sample_data data;
9113 	struct perf_event *event;
9114 
9115 	struct perf_raw_record raw = {
9116 		.frag = {
9117 			.size = entry_size,
9118 			.data = record,
9119 		},
9120 	};
9121 
9122 	perf_sample_data_init(&data, 0, 0);
9123 	data.raw = &raw;
9124 
9125 	perf_trace_buf_update(record, event_type);
9126 
9127 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9128 		if (perf_tp_event_match(event, &data, regs))
9129 			perf_swevent_event(event, count, &data, regs);
9130 	}
9131 
9132 	/*
9133 	 * If we got specified a target task, also iterate its context and
9134 	 * deliver this event there too.
9135 	 */
9136 	if (task && task != current) {
9137 		struct perf_event_context *ctx;
9138 		struct trace_entry *entry = record;
9139 
9140 		rcu_read_lock();
9141 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9142 		if (!ctx)
9143 			goto unlock;
9144 
9145 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9146 			if (event->cpu != smp_processor_id())
9147 				continue;
9148 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9149 				continue;
9150 			if (event->attr.config != entry->type)
9151 				continue;
9152 			if (perf_tp_event_match(event, &data, regs))
9153 				perf_swevent_event(event, count, &data, regs);
9154 		}
9155 unlock:
9156 		rcu_read_unlock();
9157 	}
9158 
9159 	perf_swevent_put_recursion_context(rctx);
9160 }
9161 EXPORT_SYMBOL_GPL(perf_tp_event);
9162 
9163 static void tp_perf_event_destroy(struct perf_event *event)
9164 {
9165 	perf_trace_destroy(event);
9166 }
9167 
9168 static int perf_tp_event_init(struct perf_event *event)
9169 {
9170 	int err;
9171 
9172 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9173 		return -ENOENT;
9174 
9175 	/*
9176 	 * no branch sampling for tracepoint events
9177 	 */
9178 	if (has_branch_stack(event))
9179 		return -EOPNOTSUPP;
9180 
9181 	err = perf_trace_init(event);
9182 	if (err)
9183 		return err;
9184 
9185 	event->destroy = tp_perf_event_destroy;
9186 
9187 	return 0;
9188 }
9189 
9190 static struct pmu perf_tracepoint = {
9191 	.task_ctx_nr	= perf_sw_context,
9192 
9193 	.event_init	= perf_tp_event_init,
9194 	.add		= perf_trace_add,
9195 	.del		= perf_trace_del,
9196 	.start		= perf_swevent_start,
9197 	.stop		= perf_swevent_stop,
9198 	.read		= perf_swevent_read,
9199 };
9200 
9201 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9202 /*
9203  * Flags in config, used by dynamic PMU kprobe and uprobe
9204  * The flags should match following PMU_FORMAT_ATTR().
9205  *
9206  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9207  *                               if not set, create kprobe/uprobe
9208  *
9209  * The following values specify a reference counter (or semaphore in the
9210  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9211  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9212  *
9213  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9214  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9215  */
9216 enum perf_probe_config {
9217 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9218 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9219 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9220 };
9221 
9222 PMU_FORMAT_ATTR(retprobe, "config:0");
9223 #endif
9224 
9225 #ifdef CONFIG_KPROBE_EVENTS
9226 static struct attribute *kprobe_attrs[] = {
9227 	&format_attr_retprobe.attr,
9228 	NULL,
9229 };
9230 
9231 static struct attribute_group kprobe_format_group = {
9232 	.name = "format",
9233 	.attrs = kprobe_attrs,
9234 };
9235 
9236 static const struct attribute_group *kprobe_attr_groups[] = {
9237 	&kprobe_format_group,
9238 	NULL,
9239 };
9240 
9241 static int perf_kprobe_event_init(struct perf_event *event);
9242 static struct pmu perf_kprobe = {
9243 	.task_ctx_nr	= perf_sw_context,
9244 	.event_init	= perf_kprobe_event_init,
9245 	.add		= perf_trace_add,
9246 	.del		= perf_trace_del,
9247 	.start		= perf_swevent_start,
9248 	.stop		= perf_swevent_stop,
9249 	.read		= perf_swevent_read,
9250 	.attr_groups	= kprobe_attr_groups,
9251 };
9252 
9253 static int perf_kprobe_event_init(struct perf_event *event)
9254 {
9255 	int err;
9256 	bool is_retprobe;
9257 
9258 	if (event->attr.type != perf_kprobe.type)
9259 		return -ENOENT;
9260 
9261 	if (!capable(CAP_SYS_ADMIN))
9262 		return -EACCES;
9263 
9264 	/*
9265 	 * no branch sampling for probe events
9266 	 */
9267 	if (has_branch_stack(event))
9268 		return -EOPNOTSUPP;
9269 
9270 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9271 	err = perf_kprobe_init(event, is_retprobe);
9272 	if (err)
9273 		return err;
9274 
9275 	event->destroy = perf_kprobe_destroy;
9276 
9277 	return 0;
9278 }
9279 #endif /* CONFIG_KPROBE_EVENTS */
9280 
9281 #ifdef CONFIG_UPROBE_EVENTS
9282 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9283 
9284 static struct attribute *uprobe_attrs[] = {
9285 	&format_attr_retprobe.attr,
9286 	&format_attr_ref_ctr_offset.attr,
9287 	NULL,
9288 };
9289 
9290 static struct attribute_group uprobe_format_group = {
9291 	.name = "format",
9292 	.attrs = uprobe_attrs,
9293 };
9294 
9295 static const struct attribute_group *uprobe_attr_groups[] = {
9296 	&uprobe_format_group,
9297 	NULL,
9298 };
9299 
9300 static int perf_uprobe_event_init(struct perf_event *event);
9301 static struct pmu perf_uprobe = {
9302 	.task_ctx_nr	= perf_sw_context,
9303 	.event_init	= perf_uprobe_event_init,
9304 	.add		= perf_trace_add,
9305 	.del		= perf_trace_del,
9306 	.start		= perf_swevent_start,
9307 	.stop		= perf_swevent_stop,
9308 	.read		= perf_swevent_read,
9309 	.attr_groups	= uprobe_attr_groups,
9310 };
9311 
9312 static int perf_uprobe_event_init(struct perf_event *event)
9313 {
9314 	int err;
9315 	unsigned long ref_ctr_offset;
9316 	bool is_retprobe;
9317 
9318 	if (event->attr.type != perf_uprobe.type)
9319 		return -ENOENT;
9320 
9321 	if (!capable(CAP_SYS_ADMIN))
9322 		return -EACCES;
9323 
9324 	/*
9325 	 * no branch sampling for probe events
9326 	 */
9327 	if (has_branch_stack(event))
9328 		return -EOPNOTSUPP;
9329 
9330 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9331 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9332 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9333 	if (err)
9334 		return err;
9335 
9336 	event->destroy = perf_uprobe_destroy;
9337 
9338 	return 0;
9339 }
9340 #endif /* CONFIG_UPROBE_EVENTS */
9341 
9342 static inline void perf_tp_register(void)
9343 {
9344 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9345 #ifdef CONFIG_KPROBE_EVENTS
9346 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9347 #endif
9348 #ifdef CONFIG_UPROBE_EVENTS
9349 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9350 #endif
9351 }
9352 
9353 static void perf_event_free_filter(struct perf_event *event)
9354 {
9355 	ftrace_profile_free_filter(event);
9356 }
9357 
9358 #ifdef CONFIG_BPF_SYSCALL
9359 static void bpf_overflow_handler(struct perf_event *event,
9360 				 struct perf_sample_data *data,
9361 				 struct pt_regs *regs)
9362 {
9363 	struct bpf_perf_event_data_kern ctx = {
9364 		.data = data,
9365 		.event = event,
9366 	};
9367 	int ret = 0;
9368 
9369 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9370 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9371 		goto out;
9372 	rcu_read_lock();
9373 	ret = BPF_PROG_RUN(event->prog, &ctx);
9374 	rcu_read_unlock();
9375 out:
9376 	__this_cpu_dec(bpf_prog_active);
9377 	if (!ret)
9378 		return;
9379 
9380 	event->orig_overflow_handler(event, data, regs);
9381 }
9382 
9383 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9384 {
9385 	struct bpf_prog *prog;
9386 
9387 	if (event->overflow_handler_context)
9388 		/* hw breakpoint or kernel counter */
9389 		return -EINVAL;
9390 
9391 	if (event->prog)
9392 		return -EEXIST;
9393 
9394 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9395 	if (IS_ERR(prog))
9396 		return PTR_ERR(prog);
9397 
9398 	event->prog = prog;
9399 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9400 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9401 	return 0;
9402 }
9403 
9404 static void perf_event_free_bpf_handler(struct perf_event *event)
9405 {
9406 	struct bpf_prog *prog = event->prog;
9407 
9408 	if (!prog)
9409 		return;
9410 
9411 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9412 	event->prog = NULL;
9413 	bpf_prog_put(prog);
9414 }
9415 #else
9416 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9417 {
9418 	return -EOPNOTSUPP;
9419 }
9420 static void perf_event_free_bpf_handler(struct perf_event *event)
9421 {
9422 }
9423 #endif
9424 
9425 /*
9426  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9427  * with perf_event_open()
9428  */
9429 static inline bool perf_event_is_tracing(struct perf_event *event)
9430 {
9431 	if (event->pmu == &perf_tracepoint)
9432 		return true;
9433 #ifdef CONFIG_KPROBE_EVENTS
9434 	if (event->pmu == &perf_kprobe)
9435 		return true;
9436 #endif
9437 #ifdef CONFIG_UPROBE_EVENTS
9438 	if (event->pmu == &perf_uprobe)
9439 		return true;
9440 #endif
9441 	return false;
9442 }
9443 
9444 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9445 {
9446 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9447 	struct bpf_prog *prog;
9448 	int ret;
9449 
9450 	if (!perf_event_is_tracing(event))
9451 		return perf_event_set_bpf_handler(event, prog_fd);
9452 
9453 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9454 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9455 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9456 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9457 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9458 		return -EINVAL;
9459 
9460 	prog = bpf_prog_get(prog_fd);
9461 	if (IS_ERR(prog))
9462 		return PTR_ERR(prog);
9463 
9464 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9465 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9466 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9467 		/* valid fd, but invalid bpf program type */
9468 		bpf_prog_put(prog);
9469 		return -EINVAL;
9470 	}
9471 
9472 	/* Kprobe override only works for kprobes, not uprobes. */
9473 	if (prog->kprobe_override &&
9474 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9475 		bpf_prog_put(prog);
9476 		return -EINVAL;
9477 	}
9478 
9479 	if (is_tracepoint || is_syscall_tp) {
9480 		int off = trace_event_get_offsets(event->tp_event);
9481 
9482 		if (prog->aux->max_ctx_offset > off) {
9483 			bpf_prog_put(prog);
9484 			return -EACCES;
9485 		}
9486 	}
9487 
9488 	ret = perf_event_attach_bpf_prog(event, prog);
9489 	if (ret)
9490 		bpf_prog_put(prog);
9491 	return ret;
9492 }
9493 
9494 static void perf_event_free_bpf_prog(struct perf_event *event)
9495 {
9496 	if (!perf_event_is_tracing(event)) {
9497 		perf_event_free_bpf_handler(event);
9498 		return;
9499 	}
9500 	perf_event_detach_bpf_prog(event);
9501 }
9502 
9503 #else
9504 
9505 static inline void perf_tp_register(void)
9506 {
9507 }
9508 
9509 static void perf_event_free_filter(struct perf_event *event)
9510 {
9511 }
9512 
9513 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9514 {
9515 	return -ENOENT;
9516 }
9517 
9518 static void perf_event_free_bpf_prog(struct perf_event *event)
9519 {
9520 }
9521 #endif /* CONFIG_EVENT_TRACING */
9522 
9523 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9524 void perf_bp_event(struct perf_event *bp, void *data)
9525 {
9526 	struct perf_sample_data sample;
9527 	struct pt_regs *regs = data;
9528 
9529 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9530 
9531 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9532 		perf_swevent_event(bp, 1, &sample, regs);
9533 }
9534 #endif
9535 
9536 /*
9537  * Allocate a new address filter
9538  */
9539 static struct perf_addr_filter *
9540 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9541 {
9542 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9543 	struct perf_addr_filter *filter;
9544 
9545 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9546 	if (!filter)
9547 		return NULL;
9548 
9549 	INIT_LIST_HEAD(&filter->entry);
9550 	list_add_tail(&filter->entry, filters);
9551 
9552 	return filter;
9553 }
9554 
9555 static void free_filters_list(struct list_head *filters)
9556 {
9557 	struct perf_addr_filter *filter, *iter;
9558 
9559 	list_for_each_entry_safe(filter, iter, filters, entry) {
9560 		path_put(&filter->path);
9561 		list_del(&filter->entry);
9562 		kfree(filter);
9563 	}
9564 }
9565 
9566 /*
9567  * Free existing address filters and optionally install new ones
9568  */
9569 static void perf_addr_filters_splice(struct perf_event *event,
9570 				     struct list_head *head)
9571 {
9572 	unsigned long flags;
9573 	LIST_HEAD(list);
9574 
9575 	if (!has_addr_filter(event))
9576 		return;
9577 
9578 	/* don't bother with children, they don't have their own filters */
9579 	if (event->parent)
9580 		return;
9581 
9582 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9583 
9584 	list_splice_init(&event->addr_filters.list, &list);
9585 	if (head)
9586 		list_splice(head, &event->addr_filters.list);
9587 
9588 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9589 
9590 	free_filters_list(&list);
9591 }
9592 
9593 /*
9594  * Scan through mm's vmas and see if one of them matches the
9595  * @filter; if so, adjust filter's address range.
9596  * Called with mm::mmap_sem down for reading.
9597  */
9598 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9599 				   struct mm_struct *mm,
9600 				   struct perf_addr_filter_range *fr)
9601 {
9602 	struct vm_area_struct *vma;
9603 
9604 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9605 		if (!vma->vm_file)
9606 			continue;
9607 
9608 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9609 			return;
9610 	}
9611 }
9612 
9613 /*
9614  * Update event's address range filters based on the
9615  * task's existing mappings, if any.
9616  */
9617 static void perf_event_addr_filters_apply(struct perf_event *event)
9618 {
9619 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9620 	struct task_struct *task = READ_ONCE(event->ctx->task);
9621 	struct perf_addr_filter *filter;
9622 	struct mm_struct *mm = NULL;
9623 	unsigned int count = 0;
9624 	unsigned long flags;
9625 
9626 	/*
9627 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9628 	 * will stop on the parent's child_mutex that our caller is also holding
9629 	 */
9630 	if (task == TASK_TOMBSTONE)
9631 		return;
9632 
9633 	if (ifh->nr_file_filters) {
9634 		mm = get_task_mm(event->ctx->task);
9635 		if (!mm)
9636 			goto restart;
9637 
9638 		down_read(&mm->mmap_sem);
9639 	}
9640 
9641 	raw_spin_lock_irqsave(&ifh->lock, flags);
9642 	list_for_each_entry(filter, &ifh->list, entry) {
9643 		if (filter->path.dentry) {
9644 			/*
9645 			 * Adjust base offset if the filter is associated to a
9646 			 * binary that needs to be mapped:
9647 			 */
9648 			event->addr_filter_ranges[count].start = 0;
9649 			event->addr_filter_ranges[count].size = 0;
9650 
9651 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9652 		} else {
9653 			event->addr_filter_ranges[count].start = filter->offset;
9654 			event->addr_filter_ranges[count].size  = filter->size;
9655 		}
9656 
9657 		count++;
9658 	}
9659 
9660 	event->addr_filters_gen++;
9661 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9662 
9663 	if (ifh->nr_file_filters) {
9664 		up_read(&mm->mmap_sem);
9665 
9666 		mmput(mm);
9667 	}
9668 
9669 restart:
9670 	perf_event_stop(event, 1);
9671 }
9672 
9673 /*
9674  * Address range filtering: limiting the data to certain
9675  * instruction address ranges. Filters are ioctl()ed to us from
9676  * userspace as ascii strings.
9677  *
9678  * Filter string format:
9679  *
9680  * ACTION RANGE_SPEC
9681  * where ACTION is one of the
9682  *  * "filter": limit the trace to this region
9683  *  * "start": start tracing from this address
9684  *  * "stop": stop tracing at this address/region;
9685  * RANGE_SPEC is
9686  *  * for kernel addresses: <start address>[/<size>]
9687  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9688  *
9689  * if <size> is not specified or is zero, the range is treated as a single
9690  * address; not valid for ACTION=="filter".
9691  */
9692 enum {
9693 	IF_ACT_NONE = -1,
9694 	IF_ACT_FILTER,
9695 	IF_ACT_START,
9696 	IF_ACT_STOP,
9697 	IF_SRC_FILE,
9698 	IF_SRC_KERNEL,
9699 	IF_SRC_FILEADDR,
9700 	IF_SRC_KERNELADDR,
9701 };
9702 
9703 enum {
9704 	IF_STATE_ACTION = 0,
9705 	IF_STATE_SOURCE,
9706 	IF_STATE_END,
9707 };
9708 
9709 static const match_table_t if_tokens = {
9710 	{ IF_ACT_FILTER,	"filter" },
9711 	{ IF_ACT_START,		"start" },
9712 	{ IF_ACT_STOP,		"stop" },
9713 	{ IF_SRC_FILE,		"%u/%u@%s" },
9714 	{ IF_SRC_KERNEL,	"%u/%u" },
9715 	{ IF_SRC_FILEADDR,	"%u@%s" },
9716 	{ IF_SRC_KERNELADDR,	"%u" },
9717 	{ IF_ACT_NONE,		NULL },
9718 };
9719 
9720 /*
9721  * Address filter string parser
9722  */
9723 static int
9724 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9725 			     struct list_head *filters)
9726 {
9727 	struct perf_addr_filter *filter = NULL;
9728 	char *start, *orig, *filename = NULL;
9729 	substring_t args[MAX_OPT_ARGS];
9730 	int state = IF_STATE_ACTION, token;
9731 	unsigned int kernel = 0;
9732 	int ret = -EINVAL;
9733 
9734 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9735 	if (!fstr)
9736 		return -ENOMEM;
9737 
9738 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9739 		static const enum perf_addr_filter_action_t actions[] = {
9740 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9741 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9742 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9743 		};
9744 		ret = -EINVAL;
9745 
9746 		if (!*start)
9747 			continue;
9748 
9749 		/* filter definition begins */
9750 		if (state == IF_STATE_ACTION) {
9751 			filter = perf_addr_filter_new(event, filters);
9752 			if (!filter)
9753 				goto fail;
9754 		}
9755 
9756 		token = match_token(start, if_tokens, args);
9757 		switch (token) {
9758 		case IF_ACT_FILTER:
9759 		case IF_ACT_START:
9760 		case IF_ACT_STOP:
9761 			if (state != IF_STATE_ACTION)
9762 				goto fail;
9763 
9764 			filter->action = actions[token];
9765 			state = IF_STATE_SOURCE;
9766 			break;
9767 
9768 		case IF_SRC_KERNELADDR:
9769 		case IF_SRC_KERNEL:
9770 			kernel = 1;
9771 			/* fall through */
9772 
9773 		case IF_SRC_FILEADDR:
9774 		case IF_SRC_FILE:
9775 			if (state != IF_STATE_SOURCE)
9776 				goto fail;
9777 
9778 			*args[0].to = 0;
9779 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9780 			if (ret)
9781 				goto fail;
9782 
9783 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9784 				*args[1].to = 0;
9785 				ret = kstrtoul(args[1].from, 0, &filter->size);
9786 				if (ret)
9787 					goto fail;
9788 			}
9789 
9790 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9791 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9792 
9793 				filename = match_strdup(&args[fpos]);
9794 				if (!filename) {
9795 					ret = -ENOMEM;
9796 					goto fail;
9797 				}
9798 			}
9799 
9800 			state = IF_STATE_END;
9801 			break;
9802 
9803 		default:
9804 			goto fail;
9805 		}
9806 
9807 		/*
9808 		 * Filter definition is fully parsed, validate and install it.
9809 		 * Make sure that it doesn't contradict itself or the event's
9810 		 * attribute.
9811 		 */
9812 		if (state == IF_STATE_END) {
9813 			ret = -EINVAL;
9814 			if (kernel && event->attr.exclude_kernel)
9815 				goto fail;
9816 
9817 			/*
9818 			 * ACTION "filter" must have a non-zero length region
9819 			 * specified.
9820 			 */
9821 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9822 			    !filter->size)
9823 				goto fail;
9824 
9825 			if (!kernel) {
9826 				if (!filename)
9827 					goto fail;
9828 
9829 				/*
9830 				 * For now, we only support file-based filters
9831 				 * in per-task events; doing so for CPU-wide
9832 				 * events requires additional context switching
9833 				 * trickery, since same object code will be
9834 				 * mapped at different virtual addresses in
9835 				 * different processes.
9836 				 */
9837 				ret = -EOPNOTSUPP;
9838 				if (!event->ctx->task)
9839 					goto fail_free_name;
9840 
9841 				/* look up the path and grab its inode */
9842 				ret = kern_path(filename, LOOKUP_FOLLOW,
9843 						&filter->path);
9844 				if (ret)
9845 					goto fail_free_name;
9846 
9847 				kfree(filename);
9848 				filename = NULL;
9849 
9850 				ret = -EINVAL;
9851 				if (!filter->path.dentry ||
9852 				    !S_ISREG(d_inode(filter->path.dentry)
9853 					     ->i_mode))
9854 					goto fail;
9855 
9856 				event->addr_filters.nr_file_filters++;
9857 			}
9858 
9859 			/* ready to consume more filters */
9860 			state = IF_STATE_ACTION;
9861 			filter = NULL;
9862 		}
9863 	}
9864 
9865 	if (state != IF_STATE_ACTION)
9866 		goto fail;
9867 
9868 	kfree(orig);
9869 
9870 	return 0;
9871 
9872 fail_free_name:
9873 	kfree(filename);
9874 fail:
9875 	free_filters_list(filters);
9876 	kfree(orig);
9877 
9878 	return ret;
9879 }
9880 
9881 static int
9882 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9883 {
9884 	LIST_HEAD(filters);
9885 	int ret;
9886 
9887 	/*
9888 	 * Since this is called in perf_ioctl() path, we're already holding
9889 	 * ctx::mutex.
9890 	 */
9891 	lockdep_assert_held(&event->ctx->mutex);
9892 
9893 	if (WARN_ON_ONCE(event->parent))
9894 		return -EINVAL;
9895 
9896 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9897 	if (ret)
9898 		goto fail_clear_files;
9899 
9900 	ret = event->pmu->addr_filters_validate(&filters);
9901 	if (ret)
9902 		goto fail_free_filters;
9903 
9904 	/* remove existing filters, if any */
9905 	perf_addr_filters_splice(event, &filters);
9906 
9907 	/* install new filters */
9908 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9909 
9910 	return ret;
9911 
9912 fail_free_filters:
9913 	free_filters_list(&filters);
9914 
9915 fail_clear_files:
9916 	event->addr_filters.nr_file_filters = 0;
9917 
9918 	return ret;
9919 }
9920 
9921 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9922 {
9923 	int ret = -EINVAL;
9924 	char *filter_str;
9925 
9926 	filter_str = strndup_user(arg, PAGE_SIZE);
9927 	if (IS_ERR(filter_str))
9928 		return PTR_ERR(filter_str);
9929 
9930 #ifdef CONFIG_EVENT_TRACING
9931 	if (perf_event_is_tracing(event)) {
9932 		struct perf_event_context *ctx = event->ctx;
9933 
9934 		/*
9935 		 * Beware, here be dragons!!
9936 		 *
9937 		 * the tracepoint muck will deadlock against ctx->mutex, but
9938 		 * the tracepoint stuff does not actually need it. So
9939 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9940 		 * already have a reference on ctx.
9941 		 *
9942 		 * This can result in event getting moved to a different ctx,
9943 		 * but that does not affect the tracepoint state.
9944 		 */
9945 		mutex_unlock(&ctx->mutex);
9946 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9947 		mutex_lock(&ctx->mutex);
9948 	} else
9949 #endif
9950 	if (has_addr_filter(event))
9951 		ret = perf_event_set_addr_filter(event, filter_str);
9952 
9953 	kfree(filter_str);
9954 	return ret;
9955 }
9956 
9957 /*
9958  * hrtimer based swevent callback
9959  */
9960 
9961 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9962 {
9963 	enum hrtimer_restart ret = HRTIMER_RESTART;
9964 	struct perf_sample_data data;
9965 	struct pt_regs *regs;
9966 	struct perf_event *event;
9967 	u64 period;
9968 
9969 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9970 
9971 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9972 		return HRTIMER_NORESTART;
9973 
9974 	event->pmu->read(event);
9975 
9976 	perf_sample_data_init(&data, 0, event->hw.last_period);
9977 	regs = get_irq_regs();
9978 
9979 	if (regs && !perf_exclude_event(event, regs)) {
9980 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9981 			if (__perf_event_overflow(event, 1, &data, regs))
9982 				ret = HRTIMER_NORESTART;
9983 	}
9984 
9985 	period = max_t(u64, 10000, event->hw.sample_period);
9986 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9987 
9988 	return ret;
9989 }
9990 
9991 static void perf_swevent_start_hrtimer(struct perf_event *event)
9992 {
9993 	struct hw_perf_event *hwc = &event->hw;
9994 	s64 period;
9995 
9996 	if (!is_sampling_event(event))
9997 		return;
9998 
9999 	period = local64_read(&hwc->period_left);
10000 	if (period) {
10001 		if (period < 0)
10002 			period = 10000;
10003 
10004 		local64_set(&hwc->period_left, 0);
10005 	} else {
10006 		period = max_t(u64, 10000, hwc->sample_period);
10007 	}
10008 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10009 		      HRTIMER_MODE_REL_PINNED_HARD);
10010 }
10011 
10012 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10013 {
10014 	struct hw_perf_event *hwc = &event->hw;
10015 
10016 	if (is_sampling_event(event)) {
10017 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10018 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10019 
10020 		hrtimer_cancel(&hwc->hrtimer);
10021 	}
10022 }
10023 
10024 static void perf_swevent_init_hrtimer(struct perf_event *event)
10025 {
10026 	struct hw_perf_event *hwc = &event->hw;
10027 
10028 	if (!is_sampling_event(event))
10029 		return;
10030 
10031 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10032 	hwc->hrtimer.function = perf_swevent_hrtimer;
10033 
10034 	/*
10035 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10036 	 * mapping and avoid the whole period adjust feedback stuff.
10037 	 */
10038 	if (event->attr.freq) {
10039 		long freq = event->attr.sample_freq;
10040 
10041 		event->attr.sample_period = NSEC_PER_SEC / freq;
10042 		hwc->sample_period = event->attr.sample_period;
10043 		local64_set(&hwc->period_left, hwc->sample_period);
10044 		hwc->last_period = hwc->sample_period;
10045 		event->attr.freq = 0;
10046 	}
10047 }
10048 
10049 /*
10050  * Software event: cpu wall time clock
10051  */
10052 
10053 static void cpu_clock_event_update(struct perf_event *event)
10054 {
10055 	s64 prev;
10056 	u64 now;
10057 
10058 	now = local_clock();
10059 	prev = local64_xchg(&event->hw.prev_count, now);
10060 	local64_add(now - prev, &event->count);
10061 }
10062 
10063 static void cpu_clock_event_start(struct perf_event *event, int flags)
10064 {
10065 	local64_set(&event->hw.prev_count, local_clock());
10066 	perf_swevent_start_hrtimer(event);
10067 }
10068 
10069 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10070 {
10071 	perf_swevent_cancel_hrtimer(event);
10072 	cpu_clock_event_update(event);
10073 }
10074 
10075 static int cpu_clock_event_add(struct perf_event *event, int flags)
10076 {
10077 	if (flags & PERF_EF_START)
10078 		cpu_clock_event_start(event, flags);
10079 	perf_event_update_userpage(event);
10080 
10081 	return 0;
10082 }
10083 
10084 static void cpu_clock_event_del(struct perf_event *event, int flags)
10085 {
10086 	cpu_clock_event_stop(event, flags);
10087 }
10088 
10089 static void cpu_clock_event_read(struct perf_event *event)
10090 {
10091 	cpu_clock_event_update(event);
10092 }
10093 
10094 static int cpu_clock_event_init(struct perf_event *event)
10095 {
10096 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10097 		return -ENOENT;
10098 
10099 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10100 		return -ENOENT;
10101 
10102 	/*
10103 	 * no branch sampling for software events
10104 	 */
10105 	if (has_branch_stack(event))
10106 		return -EOPNOTSUPP;
10107 
10108 	perf_swevent_init_hrtimer(event);
10109 
10110 	return 0;
10111 }
10112 
10113 static struct pmu perf_cpu_clock = {
10114 	.task_ctx_nr	= perf_sw_context,
10115 
10116 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10117 
10118 	.event_init	= cpu_clock_event_init,
10119 	.add		= cpu_clock_event_add,
10120 	.del		= cpu_clock_event_del,
10121 	.start		= cpu_clock_event_start,
10122 	.stop		= cpu_clock_event_stop,
10123 	.read		= cpu_clock_event_read,
10124 };
10125 
10126 /*
10127  * Software event: task time clock
10128  */
10129 
10130 static void task_clock_event_update(struct perf_event *event, u64 now)
10131 {
10132 	u64 prev;
10133 	s64 delta;
10134 
10135 	prev = local64_xchg(&event->hw.prev_count, now);
10136 	delta = now - prev;
10137 	local64_add(delta, &event->count);
10138 }
10139 
10140 static void task_clock_event_start(struct perf_event *event, int flags)
10141 {
10142 	local64_set(&event->hw.prev_count, event->ctx->time);
10143 	perf_swevent_start_hrtimer(event);
10144 }
10145 
10146 static void task_clock_event_stop(struct perf_event *event, int flags)
10147 {
10148 	perf_swevent_cancel_hrtimer(event);
10149 	task_clock_event_update(event, event->ctx->time);
10150 }
10151 
10152 static int task_clock_event_add(struct perf_event *event, int flags)
10153 {
10154 	if (flags & PERF_EF_START)
10155 		task_clock_event_start(event, flags);
10156 	perf_event_update_userpage(event);
10157 
10158 	return 0;
10159 }
10160 
10161 static void task_clock_event_del(struct perf_event *event, int flags)
10162 {
10163 	task_clock_event_stop(event, PERF_EF_UPDATE);
10164 }
10165 
10166 static void task_clock_event_read(struct perf_event *event)
10167 {
10168 	u64 now = perf_clock();
10169 	u64 delta = now - event->ctx->timestamp;
10170 	u64 time = event->ctx->time + delta;
10171 
10172 	task_clock_event_update(event, time);
10173 }
10174 
10175 static int task_clock_event_init(struct perf_event *event)
10176 {
10177 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10178 		return -ENOENT;
10179 
10180 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10181 		return -ENOENT;
10182 
10183 	/*
10184 	 * no branch sampling for software events
10185 	 */
10186 	if (has_branch_stack(event))
10187 		return -EOPNOTSUPP;
10188 
10189 	perf_swevent_init_hrtimer(event);
10190 
10191 	return 0;
10192 }
10193 
10194 static struct pmu perf_task_clock = {
10195 	.task_ctx_nr	= perf_sw_context,
10196 
10197 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10198 
10199 	.event_init	= task_clock_event_init,
10200 	.add		= task_clock_event_add,
10201 	.del		= task_clock_event_del,
10202 	.start		= task_clock_event_start,
10203 	.stop		= task_clock_event_stop,
10204 	.read		= task_clock_event_read,
10205 };
10206 
10207 static void perf_pmu_nop_void(struct pmu *pmu)
10208 {
10209 }
10210 
10211 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10212 {
10213 }
10214 
10215 static int perf_pmu_nop_int(struct pmu *pmu)
10216 {
10217 	return 0;
10218 }
10219 
10220 static int perf_event_nop_int(struct perf_event *event, u64 value)
10221 {
10222 	return 0;
10223 }
10224 
10225 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10226 
10227 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10228 {
10229 	__this_cpu_write(nop_txn_flags, flags);
10230 
10231 	if (flags & ~PERF_PMU_TXN_ADD)
10232 		return;
10233 
10234 	perf_pmu_disable(pmu);
10235 }
10236 
10237 static int perf_pmu_commit_txn(struct pmu *pmu)
10238 {
10239 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10240 
10241 	__this_cpu_write(nop_txn_flags, 0);
10242 
10243 	if (flags & ~PERF_PMU_TXN_ADD)
10244 		return 0;
10245 
10246 	perf_pmu_enable(pmu);
10247 	return 0;
10248 }
10249 
10250 static void perf_pmu_cancel_txn(struct pmu *pmu)
10251 {
10252 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10253 
10254 	__this_cpu_write(nop_txn_flags, 0);
10255 
10256 	if (flags & ~PERF_PMU_TXN_ADD)
10257 		return;
10258 
10259 	perf_pmu_enable(pmu);
10260 }
10261 
10262 static int perf_event_idx_default(struct perf_event *event)
10263 {
10264 	return 0;
10265 }
10266 
10267 /*
10268  * Ensures all contexts with the same task_ctx_nr have the same
10269  * pmu_cpu_context too.
10270  */
10271 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10272 {
10273 	struct pmu *pmu;
10274 
10275 	if (ctxn < 0)
10276 		return NULL;
10277 
10278 	list_for_each_entry(pmu, &pmus, entry) {
10279 		if (pmu->task_ctx_nr == ctxn)
10280 			return pmu->pmu_cpu_context;
10281 	}
10282 
10283 	return NULL;
10284 }
10285 
10286 static void free_pmu_context(struct pmu *pmu)
10287 {
10288 	/*
10289 	 * Static contexts such as perf_sw_context have a global lifetime
10290 	 * and may be shared between different PMUs. Avoid freeing them
10291 	 * when a single PMU is going away.
10292 	 */
10293 	if (pmu->task_ctx_nr > perf_invalid_context)
10294 		return;
10295 
10296 	free_percpu(pmu->pmu_cpu_context);
10297 }
10298 
10299 /*
10300  * Let userspace know that this PMU supports address range filtering:
10301  */
10302 static ssize_t nr_addr_filters_show(struct device *dev,
10303 				    struct device_attribute *attr,
10304 				    char *page)
10305 {
10306 	struct pmu *pmu = dev_get_drvdata(dev);
10307 
10308 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10309 }
10310 DEVICE_ATTR_RO(nr_addr_filters);
10311 
10312 static struct idr pmu_idr;
10313 
10314 static ssize_t
10315 type_show(struct device *dev, struct device_attribute *attr, char *page)
10316 {
10317 	struct pmu *pmu = dev_get_drvdata(dev);
10318 
10319 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10320 }
10321 static DEVICE_ATTR_RO(type);
10322 
10323 static ssize_t
10324 perf_event_mux_interval_ms_show(struct device *dev,
10325 				struct device_attribute *attr,
10326 				char *page)
10327 {
10328 	struct pmu *pmu = dev_get_drvdata(dev);
10329 
10330 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10331 }
10332 
10333 static DEFINE_MUTEX(mux_interval_mutex);
10334 
10335 static ssize_t
10336 perf_event_mux_interval_ms_store(struct device *dev,
10337 				 struct device_attribute *attr,
10338 				 const char *buf, size_t count)
10339 {
10340 	struct pmu *pmu = dev_get_drvdata(dev);
10341 	int timer, cpu, ret;
10342 
10343 	ret = kstrtoint(buf, 0, &timer);
10344 	if (ret)
10345 		return ret;
10346 
10347 	if (timer < 1)
10348 		return -EINVAL;
10349 
10350 	/* same value, noting to do */
10351 	if (timer == pmu->hrtimer_interval_ms)
10352 		return count;
10353 
10354 	mutex_lock(&mux_interval_mutex);
10355 	pmu->hrtimer_interval_ms = timer;
10356 
10357 	/* update all cpuctx for this PMU */
10358 	cpus_read_lock();
10359 	for_each_online_cpu(cpu) {
10360 		struct perf_cpu_context *cpuctx;
10361 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10362 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10363 
10364 		cpu_function_call(cpu,
10365 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10366 	}
10367 	cpus_read_unlock();
10368 	mutex_unlock(&mux_interval_mutex);
10369 
10370 	return count;
10371 }
10372 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10373 
10374 static struct attribute *pmu_dev_attrs[] = {
10375 	&dev_attr_type.attr,
10376 	&dev_attr_perf_event_mux_interval_ms.attr,
10377 	NULL,
10378 };
10379 ATTRIBUTE_GROUPS(pmu_dev);
10380 
10381 static int pmu_bus_running;
10382 static struct bus_type pmu_bus = {
10383 	.name		= "event_source",
10384 	.dev_groups	= pmu_dev_groups,
10385 };
10386 
10387 static void pmu_dev_release(struct device *dev)
10388 {
10389 	kfree(dev);
10390 }
10391 
10392 static int pmu_dev_alloc(struct pmu *pmu)
10393 {
10394 	int ret = -ENOMEM;
10395 
10396 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10397 	if (!pmu->dev)
10398 		goto out;
10399 
10400 	pmu->dev->groups = pmu->attr_groups;
10401 	device_initialize(pmu->dev);
10402 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10403 	if (ret)
10404 		goto free_dev;
10405 
10406 	dev_set_drvdata(pmu->dev, pmu);
10407 	pmu->dev->bus = &pmu_bus;
10408 	pmu->dev->release = pmu_dev_release;
10409 	ret = device_add(pmu->dev);
10410 	if (ret)
10411 		goto free_dev;
10412 
10413 	/* For PMUs with address filters, throw in an extra attribute: */
10414 	if (pmu->nr_addr_filters)
10415 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10416 
10417 	if (ret)
10418 		goto del_dev;
10419 
10420 	if (pmu->attr_update)
10421 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10422 
10423 	if (ret)
10424 		goto del_dev;
10425 
10426 out:
10427 	return ret;
10428 
10429 del_dev:
10430 	device_del(pmu->dev);
10431 
10432 free_dev:
10433 	put_device(pmu->dev);
10434 	goto out;
10435 }
10436 
10437 static struct lock_class_key cpuctx_mutex;
10438 static struct lock_class_key cpuctx_lock;
10439 
10440 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10441 {
10442 	int cpu, ret, max = PERF_TYPE_MAX;
10443 
10444 	mutex_lock(&pmus_lock);
10445 	ret = -ENOMEM;
10446 	pmu->pmu_disable_count = alloc_percpu(int);
10447 	if (!pmu->pmu_disable_count)
10448 		goto unlock;
10449 
10450 	pmu->type = -1;
10451 	if (!name)
10452 		goto skip_type;
10453 	pmu->name = name;
10454 
10455 	if (type != PERF_TYPE_SOFTWARE) {
10456 		if (type >= 0)
10457 			max = type;
10458 
10459 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10460 		if (ret < 0)
10461 			goto free_pdc;
10462 
10463 		WARN_ON(type >= 0 && ret != type);
10464 
10465 		type = ret;
10466 	}
10467 	pmu->type = type;
10468 
10469 	if (pmu_bus_running) {
10470 		ret = pmu_dev_alloc(pmu);
10471 		if (ret)
10472 			goto free_idr;
10473 	}
10474 
10475 skip_type:
10476 	if (pmu->task_ctx_nr == perf_hw_context) {
10477 		static int hw_context_taken = 0;
10478 
10479 		/*
10480 		 * Other than systems with heterogeneous CPUs, it never makes
10481 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10482 		 * uncore must use perf_invalid_context.
10483 		 */
10484 		if (WARN_ON_ONCE(hw_context_taken &&
10485 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10486 			pmu->task_ctx_nr = perf_invalid_context;
10487 
10488 		hw_context_taken = 1;
10489 	}
10490 
10491 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10492 	if (pmu->pmu_cpu_context)
10493 		goto got_cpu_context;
10494 
10495 	ret = -ENOMEM;
10496 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10497 	if (!pmu->pmu_cpu_context)
10498 		goto free_dev;
10499 
10500 	for_each_possible_cpu(cpu) {
10501 		struct perf_cpu_context *cpuctx;
10502 
10503 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10504 		__perf_event_init_context(&cpuctx->ctx);
10505 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10506 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10507 		cpuctx->ctx.pmu = pmu;
10508 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10509 
10510 		__perf_mux_hrtimer_init(cpuctx, cpu);
10511 
10512 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10513 		cpuctx->heap = cpuctx->heap_default;
10514 	}
10515 
10516 got_cpu_context:
10517 	if (!pmu->start_txn) {
10518 		if (pmu->pmu_enable) {
10519 			/*
10520 			 * If we have pmu_enable/pmu_disable calls, install
10521 			 * transaction stubs that use that to try and batch
10522 			 * hardware accesses.
10523 			 */
10524 			pmu->start_txn  = perf_pmu_start_txn;
10525 			pmu->commit_txn = perf_pmu_commit_txn;
10526 			pmu->cancel_txn = perf_pmu_cancel_txn;
10527 		} else {
10528 			pmu->start_txn  = perf_pmu_nop_txn;
10529 			pmu->commit_txn = perf_pmu_nop_int;
10530 			pmu->cancel_txn = perf_pmu_nop_void;
10531 		}
10532 	}
10533 
10534 	if (!pmu->pmu_enable) {
10535 		pmu->pmu_enable  = perf_pmu_nop_void;
10536 		pmu->pmu_disable = perf_pmu_nop_void;
10537 	}
10538 
10539 	if (!pmu->check_period)
10540 		pmu->check_period = perf_event_nop_int;
10541 
10542 	if (!pmu->event_idx)
10543 		pmu->event_idx = perf_event_idx_default;
10544 
10545 	/*
10546 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10547 	 * since these cannot be in the IDR. This way the linear search
10548 	 * is fast, provided a valid software event is provided.
10549 	 */
10550 	if (type == PERF_TYPE_SOFTWARE || !name)
10551 		list_add_rcu(&pmu->entry, &pmus);
10552 	else
10553 		list_add_tail_rcu(&pmu->entry, &pmus);
10554 
10555 	atomic_set(&pmu->exclusive_cnt, 0);
10556 	ret = 0;
10557 unlock:
10558 	mutex_unlock(&pmus_lock);
10559 
10560 	return ret;
10561 
10562 free_dev:
10563 	device_del(pmu->dev);
10564 	put_device(pmu->dev);
10565 
10566 free_idr:
10567 	if (pmu->type != PERF_TYPE_SOFTWARE)
10568 		idr_remove(&pmu_idr, pmu->type);
10569 
10570 free_pdc:
10571 	free_percpu(pmu->pmu_disable_count);
10572 	goto unlock;
10573 }
10574 EXPORT_SYMBOL_GPL(perf_pmu_register);
10575 
10576 void perf_pmu_unregister(struct pmu *pmu)
10577 {
10578 	mutex_lock(&pmus_lock);
10579 	list_del_rcu(&pmu->entry);
10580 
10581 	/*
10582 	 * We dereference the pmu list under both SRCU and regular RCU, so
10583 	 * synchronize against both of those.
10584 	 */
10585 	synchronize_srcu(&pmus_srcu);
10586 	synchronize_rcu();
10587 
10588 	free_percpu(pmu->pmu_disable_count);
10589 	if (pmu->type != PERF_TYPE_SOFTWARE)
10590 		idr_remove(&pmu_idr, pmu->type);
10591 	if (pmu_bus_running) {
10592 		if (pmu->nr_addr_filters)
10593 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10594 		device_del(pmu->dev);
10595 		put_device(pmu->dev);
10596 	}
10597 	free_pmu_context(pmu);
10598 	mutex_unlock(&pmus_lock);
10599 }
10600 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10601 
10602 static inline bool has_extended_regs(struct perf_event *event)
10603 {
10604 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10605 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10606 }
10607 
10608 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10609 {
10610 	struct perf_event_context *ctx = NULL;
10611 	int ret;
10612 
10613 	if (!try_module_get(pmu->module))
10614 		return -ENODEV;
10615 
10616 	/*
10617 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10618 	 * for example, validate if the group fits on the PMU. Therefore,
10619 	 * if this is a sibling event, acquire the ctx->mutex to protect
10620 	 * the sibling_list.
10621 	 */
10622 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10623 		/*
10624 		 * This ctx->mutex can nest when we're called through
10625 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10626 		 */
10627 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10628 						 SINGLE_DEPTH_NESTING);
10629 		BUG_ON(!ctx);
10630 	}
10631 
10632 	event->pmu = pmu;
10633 	ret = pmu->event_init(event);
10634 
10635 	if (ctx)
10636 		perf_event_ctx_unlock(event->group_leader, ctx);
10637 
10638 	if (!ret) {
10639 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10640 		    has_extended_regs(event))
10641 			ret = -EOPNOTSUPP;
10642 
10643 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10644 		    event_has_any_exclude_flag(event))
10645 			ret = -EINVAL;
10646 
10647 		if (ret && event->destroy)
10648 			event->destroy(event);
10649 	}
10650 
10651 	if (ret)
10652 		module_put(pmu->module);
10653 
10654 	return ret;
10655 }
10656 
10657 static struct pmu *perf_init_event(struct perf_event *event)
10658 {
10659 	int idx, type, ret;
10660 	struct pmu *pmu;
10661 
10662 	idx = srcu_read_lock(&pmus_srcu);
10663 
10664 	/* Try parent's PMU first: */
10665 	if (event->parent && event->parent->pmu) {
10666 		pmu = event->parent->pmu;
10667 		ret = perf_try_init_event(pmu, event);
10668 		if (!ret)
10669 			goto unlock;
10670 	}
10671 
10672 	/*
10673 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10674 	 * are often aliases for PERF_TYPE_RAW.
10675 	 */
10676 	type = event->attr.type;
10677 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10678 		type = PERF_TYPE_RAW;
10679 
10680 again:
10681 	rcu_read_lock();
10682 	pmu = idr_find(&pmu_idr, type);
10683 	rcu_read_unlock();
10684 	if (pmu) {
10685 		ret = perf_try_init_event(pmu, event);
10686 		if (ret == -ENOENT && event->attr.type != type) {
10687 			type = event->attr.type;
10688 			goto again;
10689 		}
10690 
10691 		if (ret)
10692 			pmu = ERR_PTR(ret);
10693 
10694 		goto unlock;
10695 	}
10696 
10697 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10698 		ret = perf_try_init_event(pmu, event);
10699 		if (!ret)
10700 			goto unlock;
10701 
10702 		if (ret != -ENOENT) {
10703 			pmu = ERR_PTR(ret);
10704 			goto unlock;
10705 		}
10706 	}
10707 	pmu = ERR_PTR(-ENOENT);
10708 unlock:
10709 	srcu_read_unlock(&pmus_srcu, idx);
10710 
10711 	return pmu;
10712 }
10713 
10714 static void attach_sb_event(struct perf_event *event)
10715 {
10716 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10717 
10718 	raw_spin_lock(&pel->lock);
10719 	list_add_rcu(&event->sb_list, &pel->list);
10720 	raw_spin_unlock(&pel->lock);
10721 }
10722 
10723 /*
10724  * We keep a list of all !task (and therefore per-cpu) events
10725  * that need to receive side-band records.
10726  *
10727  * This avoids having to scan all the various PMU per-cpu contexts
10728  * looking for them.
10729  */
10730 static void account_pmu_sb_event(struct perf_event *event)
10731 {
10732 	if (is_sb_event(event))
10733 		attach_sb_event(event);
10734 }
10735 
10736 static void account_event_cpu(struct perf_event *event, int cpu)
10737 {
10738 	if (event->parent)
10739 		return;
10740 
10741 	if (is_cgroup_event(event))
10742 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10743 }
10744 
10745 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10746 static void account_freq_event_nohz(void)
10747 {
10748 #ifdef CONFIG_NO_HZ_FULL
10749 	/* Lock so we don't race with concurrent unaccount */
10750 	spin_lock(&nr_freq_lock);
10751 	if (atomic_inc_return(&nr_freq_events) == 1)
10752 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10753 	spin_unlock(&nr_freq_lock);
10754 #endif
10755 }
10756 
10757 static void account_freq_event(void)
10758 {
10759 	if (tick_nohz_full_enabled())
10760 		account_freq_event_nohz();
10761 	else
10762 		atomic_inc(&nr_freq_events);
10763 }
10764 
10765 
10766 static void account_event(struct perf_event *event)
10767 {
10768 	bool inc = false;
10769 
10770 	if (event->parent)
10771 		return;
10772 
10773 	if (event->attach_state & PERF_ATTACH_TASK)
10774 		inc = true;
10775 	if (event->attr.mmap || event->attr.mmap_data)
10776 		atomic_inc(&nr_mmap_events);
10777 	if (event->attr.comm)
10778 		atomic_inc(&nr_comm_events);
10779 	if (event->attr.namespaces)
10780 		atomic_inc(&nr_namespaces_events);
10781 	if (event->attr.task)
10782 		atomic_inc(&nr_task_events);
10783 	if (event->attr.freq)
10784 		account_freq_event();
10785 	if (event->attr.context_switch) {
10786 		atomic_inc(&nr_switch_events);
10787 		inc = true;
10788 	}
10789 	if (has_branch_stack(event))
10790 		inc = true;
10791 	if (is_cgroup_event(event))
10792 		inc = true;
10793 	if (event->attr.ksymbol)
10794 		atomic_inc(&nr_ksymbol_events);
10795 	if (event->attr.bpf_event)
10796 		atomic_inc(&nr_bpf_events);
10797 
10798 	if (inc) {
10799 		/*
10800 		 * We need the mutex here because static_branch_enable()
10801 		 * must complete *before* the perf_sched_count increment
10802 		 * becomes visible.
10803 		 */
10804 		if (atomic_inc_not_zero(&perf_sched_count))
10805 			goto enabled;
10806 
10807 		mutex_lock(&perf_sched_mutex);
10808 		if (!atomic_read(&perf_sched_count)) {
10809 			static_branch_enable(&perf_sched_events);
10810 			/*
10811 			 * Guarantee that all CPUs observe they key change and
10812 			 * call the perf scheduling hooks before proceeding to
10813 			 * install events that need them.
10814 			 */
10815 			synchronize_rcu();
10816 		}
10817 		/*
10818 		 * Now that we have waited for the sync_sched(), allow further
10819 		 * increments to by-pass the mutex.
10820 		 */
10821 		atomic_inc(&perf_sched_count);
10822 		mutex_unlock(&perf_sched_mutex);
10823 	}
10824 enabled:
10825 
10826 	account_event_cpu(event, event->cpu);
10827 
10828 	account_pmu_sb_event(event);
10829 }
10830 
10831 /*
10832  * Allocate and initialize an event structure
10833  */
10834 static struct perf_event *
10835 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10836 		 struct task_struct *task,
10837 		 struct perf_event *group_leader,
10838 		 struct perf_event *parent_event,
10839 		 perf_overflow_handler_t overflow_handler,
10840 		 void *context, int cgroup_fd)
10841 {
10842 	struct pmu *pmu;
10843 	struct perf_event *event;
10844 	struct hw_perf_event *hwc;
10845 	long err = -EINVAL;
10846 
10847 	if ((unsigned)cpu >= nr_cpu_ids) {
10848 		if (!task || cpu != -1)
10849 			return ERR_PTR(-EINVAL);
10850 	}
10851 
10852 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10853 	if (!event)
10854 		return ERR_PTR(-ENOMEM);
10855 
10856 	/*
10857 	 * Single events are their own group leaders, with an
10858 	 * empty sibling list:
10859 	 */
10860 	if (!group_leader)
10861 		group_leader = event;
10862 
10863 	mutex_init(&event->child_mutex);
10864 	INIT_LIST_HEAD(&event->child_list);
10865 
10866 	INIT_LIST_HEAD(&event->event_entry);
10867 	INIT_LIST_HEAD(&event->sibling_list);
10868 	INIT_LIST_HEAD(&event->active_list);
10869 	init_event_group(event);
10870 	INIT_LIST_HEAD(&event->rb_entry);
10871 	INIT_LIST_HEAD(&event->active_entry);
10872 	INIT_LIST_HEAD(&event->addr_filters.list);
10873 	INIT_HLIST_NODE(&event->hlist_entry);
10874 
10875 
10876 	init_waitqueue_head(&event->waitq);
10877 	event->pending_disable = -1;
10878 	init_irq_work(&event->pending, perf_pending_event);
10879 
10880 	mutex_init(&event->mmap_mutex);
10881 	raw_spin_lock_init(&event->addr_filters.lock);
10882 
10883 	atomic_long_set(&event->refcount, 1);
10884 	event->cpu		= cpu;
10885 	event->attr		= *attr;
10886 	event->group_leader	= group_leader;
10887 	event->pmu		= NULL;
10888 	event->oncpu		= -1;
10889 
10890 	event->parent		= parent_event;
10891 
10892 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10893 	event->id		= atomic64_inc_return(&perf_event_id);
10894 
10895 	event->state		= PERF_EVENT_STATE_INACTIVE;
10896 
10897 	if (task) {
10898 		event->attach_state = PERF_ATTACH_TASK;
10899 		/*
10900 		 * XXX pmu::event_init needs to know what task to account to
10901 		 * and we cannot use the ctx information because we need the
10902 		 * pmu before we get a ctx.
10903 		 */
10904 		event->hw.target = get_task_struct(task);
10905 	}
10906 
10907 	event->clock = &local_clock;
10908 	if (parent_event)
10909 		event->clock = parent_event->clock;
10910 
10911 	if (!overflow_handler && parent_event) {
10912 		overflow_handler = parent_event->overflow_handler;
10913 		context = parent_event->overflow_handler_context;
10914 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10915 		if (overflow_handler == bpf_overflow_handler) {
10916 			struct bpf_prog *prog = parent_event->prog;
10917 
10918 			bpf_prog_inc(prog);
10919 			event->prog = prog;
10920 			event->orig_overflow_handler =
10921 				parent_event->orig_overflow_handler;
10922 		}
10923 #endif
10924 	}
10925 
10926 	if (overflow_handler) {
10927 		event->overflow_handler	= overflow_handler;
10928 		event->overflow_handler_context = context;
10929 	} else if (is_write_backward(event)){
10930 		event->overflow_handler = perf_event_output_backward;
10931 		event->overflow_handler_context = NULL;
10932 	} else {
10933 		event->overflow_handler = perf_event_output_forward;
10934 		event->overflow_handler_context = NULL;
10935 	}
10936 
10937 	perf_event__state_init(event);
10938 
10939 	pmu = NULL;
10940 
10941 	hwc = &event->hw;
10942 	hwc->sample_period = attr->sample_period;
10943 	if (attr->freq && attr->sample_freq)
10944 		hwc->sample_period = 1;
10945 	hwc->last_period = hwc->sample_period;
10946 
10947 	local64_set(&hwc->period_left, hwc->sample_period);
10948 
10949 	/*
10950 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10951 	 * See perf_output_read().
10952 	 */
10953 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10954 		goto err_ns;
10955 
10956 	if (!has_branch_stack(event))
10957 		event->attr.branch_sample_type = 0;
10958 
10959 	pmu = perf_init_event(event);
10960 	if (IS_ERR(pmu)) {
10961 		err = PTR_ERR(pmu);
10962 		goto err_ns;
10963 	}
10964 
10965 	/*
10966 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10967 	 * be different on other CPUs in the uncore mask.
10968 	 */
10969 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10970 		err = -EINVAL;
10971 		goto err_pmu;
10972 	}
10973 
10974 	if (event->attr.aux_output &&
10975 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10976 		err = -EOPNOTSUPP;
10977 		goto err_pmu;
10978 	}
10979 
10980 	if (cgroup_fd != -1) {
10981 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10982 		if (err)
10983 			goto err_pmu;
10984 	}
10985 
10986 	err = exclusive_event_init(event);
10987 	if (err)
10988 		goto err_pmu;
10989 
10990 	if (has_addr_filter(event)) {
10991 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10992 						    sizeof(struct perf_addr_filter_range),
10993 						    GFP_KERNEL);
10994 		if (!event->addr_filter_ranges) {
10995 			err = -ENOMEM;
10996 			goto err_per_task;
10997 		}
10998 
10999 		/*
11000 		 * Clone the parent's vma offsets: they are valid until exec()
11001 		 * even if the mm is not shared with the parent.
11002 		 */
11003 		if (event->parent) {
11004 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11005 
11006 			raw_spin_lock_irq(&ifh->lock);
11007 			memcpy(event->addr_filter_ranges,
11008 			       event->parent->addr_filter_ranges,
11009 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11010 			raw_spin_unlock_irq(&ifh->lock);
11011 		}
11012 
11013 		/* force hw sync on the address filters */
11014 		event->addr_filters_gen = 1;
11015 	}
11016 
11017 	if (!event->parent) {
11018 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11019 			err = get_callchain_buffers(attr->sample_max_stack);
11020 			if (err)
11021 				goto err_addr_filters;
11022 		}
11023 	}
11024 
11025 	err = security_perf_event_alloc(event);
11026 	if (err)
11027 		goto err_callchain_buffer;
11028 
11029 	/* symmetric to unaccount_event() in _free_event() */
11030 	account_event(event);
11031 
11032 	return event;
11033 
11034 err_callchain_buffer:
11035 	if (!event->parent) {
11036 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11037 			put_callchain_buffers();
11038 	}
11039 err_addr_filters:
11040 	kfree(event->addr_filter_ranges);
11041 
11042 err_per_task:
11043 	exclusive_event_destroy(event);
11044 
11045 err_pmu:
11046 	if (is_cgroup_event(event))
11047 		perf_detach_cgroup(event);
11048 	if (event->destroy)
11049 		event->destroy(event);
11050 	module_put(pmu->module);
11051 err_ns:
11052 	if (event->ns)
11053 		put_pid_ns(event->ns);
11054 	if (event->hw.target)
11055 		put_task_struct(event->hw.target);
11056 	kfree(event);
11057 
11058 	return ERR_PTR(err);
11059 }
11060 
11061 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11062 			  struct perf_event_attr *attr)
11063 {
11064 	u32 size;
11065 	int ret;
11066 
11067 	/* Zero the full structure, so that a short copy will be nice. */
11068 	memset(attr, 0, sizeof(*attr));
11069 
11070 	ret = get_user(size, &uattr->size);
11071 	if (ret)
11072 		return ret;
11073 
11074 	/* ABI compatibility quirk: */
11075 	if (!size)
11076 		size = PERF_ATTR_SIZE_VER0;
11077 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11078 		goto err_size;
11079 
11080 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11081 	if (ret) {
11082 		if (ret == -E2BIG)
11083 			goto err_size;
11084 		return ret;
11085 	}
11086 
11087 	attr->size = size;
11088 
11089 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11090 		return -EINVAL;
11091 
11092 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11093 		return -EINVAL;
11094 
11095 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11096 		return -EINVAL;
11097 
11098 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11099 		u64 mask = attr->branch_sample_type;
11100 
11101 		/* only using defined bits */
11102 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11103 			return -EINVAL;
11104 
11105 		/* at least one branch bit must be set */
11106 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11107 			return -EINVAL;
11108 
11109 		/* propagate priv level, when not set for branch */
11110 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11111 
11112 			/* exclude_kernel checked on syscall entry */
11113 			if (!attr->exclude_kernel)
11114 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11115 
11116 			if (!attr->exclude_user)
11117 				mask |= PERF_SAMPLE_BRANCH_USER;
11118 
11119 			if (!attr->exclude_hv)
11120 				mask |= PERF_SAMPLE_BRANCH_HV;
11121 			/*
11122 			 * adjust user setting (for HW filter setup)
11123 			 */
11124 			attr->branch_sample_type = mask;
11125 		}
11126 		/* privileged levels capture (kernel, hv): check permissions */
11127 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11128 			ret = perf_allow_kernel(attr);
11129 			if (ret)
11130 				return ret;
11131 		}
11132 	}
11133 
11134 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11135 		ret = perf_reg_validate(attr->sample_regs_user);
11136 		if (ret)
11137 			return ret;
11138 	}
11139 
11140 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11141 		if (!arch_perf_have_user_stack_dump())
11142 			return -ENOSYS;
11143 
11144 		/*
11145 		 * We have __u32 type for the size, but so far
11146 		 * we can only use __u16 as maximum due to the
11147 		 * __u16 sample size limit.
11148 		 */
11149 		if (attr->sample_stack_user >= USHRT_MAX)
11150 			return -EINVAL;
11151 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11152 			return -EINVAL;
11153 	}
11154 
11155 	if (!attr->sample_max_stack)
11156 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11157 
11158 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11159 		ret = perf_reg_validate(attr->sample_regs_intr);
11160 out:
11161 	return ret;
11162 
11163 err_size:
11164 	put_user(sizeof(*attr), &uattr->size);
11165 	ret = -E2BIG;
11166 	goto out;
11167 }
11168 
11169 static int
11170 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11171 {
11172 	struct perf_buffer *rb = NULL;
11173 	int ret = -EINVAL;
11174 
11175 	if (!output_event)
11176 		goto set;
11177 
11178 	/* don't allow circular references */
11179 	if (event == output_event)
11180 		goto out;
11181 
11182 	/*
11183 	 * Don't allow cross-cpu buffers
11184 	 */
11185 	if (output_event->cpu != event->cpu)
11186 		goto out;
11187 
11188 	/*
11189 	 * If its not a per-cpu rb, it must be the same task.
11190 	 */
11191 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11192 		goto out;
11193 
11194 	/*
11195 	 * Mixing clocks in the same buffer is trouble you don't need.
11196 	 */
11197 	if (output_event->clock != event->clock)
11198 		goto out;
11199 
11200 	/*
11201 	 * Either writing ring buffer from beginning or from end.
11202 	 * Mixing is not allowed.
11203 	 */
11204 	if (is_write_backward(output_event) != is_write_backward(event))
11205 		goto out;
11206 
11207 	/*
11208 	 * If both events generate aux data, they must be on the same PMU
11209 	 */
11210 	if (has_aux(event) && has_aux(output_event) &&
11211 	    event->pmu != output_event->pmu)
11212 		goto out;
11213 
11214 set:
11215 	mutex_lock(&event->mmap_mutex);
11216 	/* Can't redirect output if we've got an active mmap() */
11217 	if (atomic_read(&event->mmap_count))
11218 		goto unlock;
11219 
11220 	if (output_event) {
11221 		/* get the rb we want to redirect to */
11222 		rb = ring_buffer_get(output_event);
11223 		if (!rb)
11224 			goto unlock;
11225 	}
11226 
11227 	ring_buffer_attach(event, rb);
11228 
11229 	ret = 0;
11230 unlock:
11231 	mutex_unlock(&event->mmap_mutex);
11232 
11233 out:
11234 	return ret;
11235 }
11236 
11237 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11238 {
11239 	if (b < a)
11240 		swap(a, b);
11241 
11242 	mutex_lock(a);
11243 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11244 }
11245 
11246 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11247 {
11248 	bool nmi_safe = false;
11249 
11250 	switch (clk_id) {
11251 	case CLOCK_MONOTONIC:
11252 		event->clock = &ktime_get_mono_fast_ns;
11253 		nmi_safe = true;
11254 		break;
11255 
11256 	case CLOCK_MONOTONIC_RAW:
11257 		event->clock = &ktime_get_raw_fast_ns;
11258 		nmi_safe = true;
11259 		break;
11260 
11261 	case CLOCK_REALTIME:
11262 		event->clock = &ktime_get_real_ns;
11263 		break;
11264 
11265 	case CLOCK_BOOTTIME:
11266 		event->clock = &ktime_get_boottime_ns;
11267 		break;
11268 
11269 	case CLOCK_TAI:
11270 		event->clock = &ktime_get_clocktai_ns;
11271 		break;
11272 
11273 	default:
11274 		return -EINVAL;
11275 	}
11276 
11277 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11278 		return -EINVAL;
11279 
11280 	return 0;
11281 }
11282 
11283 /*
11284  * Variation on perf_event_ctx_lock_nested(), except we take two context
11285  * mutexes.
11286  */
11287 static struct perf_event_context *
11288 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11289 			     struct perf_event_context *ctx)
11290 {
11291 	struct perf_event_context *gctx;
11292 
11293 again:
11294 	rcu_read_lock();
11295 	gctx = READ_ONCE(group_leader->ctx);
11296 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11297 		rcu_read_unlock();
11298 		goto again;
11299 	}
11300 	rcu_read_unlock();
11301 
11302 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11303 
11304 	if (group_leader->ctx != gctx) {
11305 		mutex_unlock(&ctx->mutex);
11306 		mutex_unlock(&gctx->mutex);
11307 		put_ctx(gctx);
11308 		goto again;
11309 	}
11310 
11311 	return gctx;
11312 }
11313 
11314 /**
11315  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11316  *
11317  * @attr_uptr:	event_id type attributes for monitoring/sampling
11318  * @pid:		target pid
11319  * @cpu:		target cpu
11320  * @group_fd:		group leader event fd
11321  */
11322 SYSCALL_DEFINE5(perf_event_open,
11323 		struct perf_event_attr __user *, attr_uptr,
11324 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11325 {
11326 	struct perf_event *group_leader = NULL, *output_event = NULL;
11327 	struct perf_event *event, *sibling;
11328 	struct perf_event_attr attr;
11329 	struct perf_event_context *ctx, *uninitialized_var(gctx);
11330 	struct file *event_file = NULL;
11331 	struct fd group = {NULL, 0};
11332 	struct task_struct *task = NULL;
11333 	struct pmu *pmu;
11334 	int event_fd;
11335 	int move_group = 0;
11336 	int err;
11337 	int f_flags = O_RDWR;
11338 	int cgroup_fd = -1;
11339 
11340 	/* for future expandability... */
11341 	if (flags & ~PERF_FLAG_ALL)
11342 		return -EINVAL;
11343 
11344 	/* Do we allow access to perf_event_open(2) ? */
11345 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11346 	if (err)
11347 		return err;
11348 
11349 	err = perf_copy_attr(attr_uptr, &attr);
11350 	if (err)
11351 		return err;
11352 
11353 	if (!attr.exclude_kernel) {
11354 		err = perf_allow_kernel(&attr);
11355 		if (err)
11356 			return err;
11357 	}
11358 
11359 	if (attr.namespaces) {
11360 		if (!capable(CAP_SYS_ADMIN))
11361 			return -EACCES;
11362 	}
11363 
11364 	if (attr.freq) {
11365 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11366 			return -EINVAL;
11367 	} else {
11368 		if (attr.sample_period & (1ULL << 63))
11369 			return -EINVAL;
11370 	}
11371 
11372 	/* Only privileged users can get physical addresses */
11373 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11374 		err = perf_allow_kernel(&attr);
11375 		if (err)
11376 			return err;
11377 	}
11378 
11379 	err = security_locked_down(LOCKDOWN_PERF);
11380 	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11381 		/* REGS_INTR can leak data, lockdown must prevent this */
11382 		return err;
11383 
11384 	err = 0;
11385 
11386 	/*
11387 	 * In cgroup mode, the pid argument is used to pass the fd
11388 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11389 	 * designates the cpu on which to monitor threads from that
11390 	 * cgroup.
11391 	 */
11392 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11393 		return -EINVAL;
11394 
11395 	if (flags & PERF_FLAG_FD_CLOEXEC)
11396 		f_flags |= O_CLOEXEC;
11397 
11398 	event_fd = get_unused_fd_flags(f_flags);
11399 	if (event_fd < 0)
11400 		return event_fd;
11401 
11402 	if (group_fd != -1) {
11403 		err = perf_fget_light(group_fd, &group);
11404 		if (err)
11405 			goto err_fd;
11406 		group_leader = group.file->private_data;
11407 		if (flags & PERF_FLAG_FD_OUTPUT)
11408 			output_event = group_leader;
11409 		if (flags & PERF_FLAG_FD_NO_GROUP)
11410 			group_leader = NULL;
11411 	}
11412 
11413 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11414 		task = find_lively_task_by_vpid(pid);
11415 		if (IS_ERR(task)) {
11416 			err = PTR_ERR(task);
11417 			goto err_group_fd;
11418 		}
11419 	}
11420 
11421 	if (task && group_leader &&
11422 	    group_leader->attr.inherit != attr.inherit) {
11423 		err = -EINVAL;
11424 		goto err_task;
11425 	}
11426 
11427 	if (task) {
11428 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11429 		if (err)
11430 			goto err_task;
11431 
11432 		/*
11433 		 * Reuse ptrace permission checks for now.
11434 		 *
11435 		 * We must hold cred_guard_mutex across this and any potential
11436 		 * perf_install_in_context() call for this new event to
11437 		 * serialize against exec() altering our credentials (and the
11438 		 * perf_event_exit_task() that could imply).
11439 		 */
11440 		err = -EACCES;
11441 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11442 			goto err_cred;
11443 	}
11444 
11445 	if (flags & PERF_FLAG_PID_CGROUP)
11446 		cgroup_fd = pid;
11447 
11448 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11449 				 NULL, NULL, cgroup_fd);
11450 	if (IS_ERR(event)) {
11451 		err = PTR_ERR(event);
11452 		goto err_cred;
11453 	}
11454 
11455 	if (is_sampling_event(event)) {
11456 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11457 			err = -EOPNOTSUPP;
11458 			goto err_alloc;
11459 		}
11460 	}
11461 
11462 	/*
11463 	 * Special case software events and allow them to be part of
11464 	 * any hardware group.
11465 	 */
11466 	pmu = event->pmu;
11467 
11468 	if (attr.use_clockid) {
11469 		err = perf_event_set_clock(event, attr.clockid);
11470 		if (err)
11471 			goto err_alloc;
11472 	}
11473 
11474 	if (pmu->task_ctx_nr == perf_sw_context)
11475 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11476 
11477 	if (group_leader) {
11478 		if (is_software_event(event) &&
11479 		    !in_software_context(group_leader)) {
11480 			/*
11481 			 * If the event is a sw event, but the group_leader
11482 			 * is on hw context.
11483 			 *
11484 			 * Allow the addition of software events to hw
11485 			 * groups, this is safe because software events
11486 			 * never fail to schedule.
11487 			 */
11488 			pmu = group_leader->ctx->pmu;
11489 		} else if (!is_software_event(event) &&
11490 			   is_software_event(group_leader) &&
11491 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11492 			/*
11493 			 * In case the group is a pure software group, and we
11494 			 * try to add a hardware event, move the whole group to
11495 			 * the hardware context.
11496 			 */
11497 			move_group = 1;
11498 		}
11499 	}
11500 
11501 	/*
11502 	 * Get the target context (task or percpu):
11503 	 */
11504 	ctx = find_get_context(pmu, task, event);
11505 	if (IS_ERR(ctx)) {
11506 		err = PTR_ERR(ctx);
11507 		goto err_alloc;
11508 	}
11509 
11510 	/*
11511 	 * Look up the group leader (we will attach this event to it):
11512 	 */
11513 	if (group_leader) {
11514 		err = -EINVAL;
11515 
11516 		/*
11517 		 * Do not allow a recursive hierarchy (this new sibling
11518 		 * becoming part of another group-sibling):
11519 		 */
11520 		if (group_leader->group_leader != group_leader)
11521 			goto err_context;
11522 
11523 		/* All events in a group should have the same clock */
11524 		if (group_leader->clock != event->clock)
11525 			goto err_context;
11526 
11527 		/*
11528 		 * Make sure we're both events for the same CPU;
11529 		 * grouping events for different CPUs is broken; since
11530 		 * you can never concurrently schedule them anyhow.
11531 		 */
11532 		if (group_leader->cpu != event->cpu)
11533 			goto err_context;
11534 
11535 		/*
11536 		 * Make sure we're both on the same task, or both
11537 		 * per-CPU events.
11538 		 */
11539 		if (group_leader->ctx->task != ctx->task)
11540 			goto err_context;
11541 
11542 		/*
11543 		 * Do not allow to attach to a group in a different task
11544 		 * or CPU context. If we're moving SW events, we'll fix
11545 		 * this up later, so allow that.
11546 		 */
11547 		if (!move_group && group_leader->ctx != ctx)
11548 			goto err_context;
11549 
11550 		/*
11551 		 * Only a group leader can be exclusive or pinned
11552 		 */
11553 		if (attr.exclusive || attr.pinned)
11554 			goto err_context;
11555 	}
11556 
11557 	if (output_event) {
11558 		err = perf_event_set_output(event, output_event);
11559 		if (err)
11560 			goto err_context;
11561 	}
11562 
11563 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11564 					f_flags);
11565 	if (IS_ERR(event_file)) {
11566 		err = PTR_ERR(event_file);
11567 		event_file = NULL;
11568 		goto err_context;
11569 	}
11570 
11571 	if (move_group) {
11572 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11573 
11574 		if (gctx->task == TASK_TOMBSTONE) {
11575 			err = -ESRCH;
11576 			goto err_locked;
11577 		}
11578 
11579 		/*
11580 		 * Check if we raced against another sys_perf_event_open() call
11581 		 * moving the software group underneath us.
11582 		 */
11583 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11584 			/*
11585 			 * If someone moved the group out from under us, check
11586 			 * if this new event wound up on the same ctx, if so
11587 			 * its the regular !move_group case, otherwise fail.
11588 			 */
11589 			if (gctx != ctx) {
11590 				err = -EINVAL;
11591 				goto err_locked;
11592 			} else {
11593 				perf_event_ctx_unlock(group_leader, gctx);
11594 				move_group = 0;
11595 			}
11596 		}
11597 
11598 		/*
11599 		 * Failure to create exclusive events returns -EBUSY.
11600 		 */
11601 		err = -EBUSY;
11602 		if (!exclusive_event_installable(group_leader, ctx))
11603 			goto err_locked;
11604 
11605 		for_each_sibling_event(sibling, group_leader) {
11606 			if (!exclusive_event_installable(sibling, ctx))
11607 				goto err_locked;
11608 		}
11609 	} else {
11610 		mutex_lock(&ctx->mutex);
11611 	}
11612 
11613 	if (ctx->task == TASK_TOMBSTONE) {
11614 		err = -ESRCH;
11615 		goto err_locked;
11616 	}
11617 
11618 	if (!perf_event_validate_size(event)) {
11619 		err = -E2BIG;
11620 		goto err_locked;
11621 	}
11622 
11623 	if (!task) {
11624 		/*
11625 		 * Check if the @cpu we're creating an event for is online.
11626 		 *
11627 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11628 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11629 		 */
11630 		struct perf_cpu_context *cpuctx =
11631 			container_of(ctx, struct perf_cpu_context, ctx);
11632 
11633 		if (!cpuctx->online) {
11634 			err = -ENODEV;
11635 			goto err_locked;
11636 		}
11637 	}
11638 
11639 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11640 		err = -EINVAL;
11641 		goto err_locked;
11642 	}
11643 
11644 	/*
11645 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11646 	 * because we need to serialize with concurrent event creation.
11647 	 */
11648 	if (!exclusive_event_installable(event, ctx)) {
11649 		err = -EBUSY;
11650 		goto err_locked;
11651 	}
11652 
11653 	WARN_ON_ONCE(ctx->parent_ctx);
11654 
11655 	/*
11656 	 * This is the point on no return; we cannot fail hereafter. This is
11657 	 * where we start modifying current state.
11658 	 */
11659 
11660 	if (move_group) {
11661 		/*
11662 		 * See perf_event_ctx_lock() for comments on the details
11663 		 * of swizzling perf_event::ctx.
11664 		 */
11665 		perf_remove_from_context(group_leader, 0);
11666 		put_ctx(gctx);
11667 
11668 		for_each_sibling_event(sibling, group_leader) {
11669 			perf_remove_from_context(sibling, 0);
11670 			put_ctx(gctx);
11671 		}
11672 
11673 		/*
11674 		 * Wait for everybody to stop referencing the events through
11675 		 * the old lists, before installing it on new lists.
11676 		 */
11677 		synchronize_rcu();
11678 
11679 		/*
11680 		 * Install the group siblings before the group leader.
11681 		 *
11682 		 * Because a group leader will try and install the entire group
11683 		 * (through the sibling list, which is still in-tact), we can
11684 		 * end up with siblings installed in the wrong context.
11685 		 *
11686 		 * By installing siblings first we NO-OP because they're not
11687 		 * reachable through the group lists.
11688 		 */
11689 		for_each_sibling_event(sibling, group_leader) {
11690 			perf_event__state_init(sibling);
11691 			perf_install_in_context(ctx, sibling, sibling->cpu);
11692 			get_ctx(ctx);
11693 		}
11694 
11695 		/*
11696 		 * Removing from the context ends up with disabled
11697 		 * event. What we want here is event in the initial
11698 		 * startup state, ready to be add into new context.
11699 		 */
11700 		perf_event__state_init(group_leader);
11701 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11702 		get_ctx(ctx);
11703 	}
11704 
11705 	/*
11706 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11707 	 * that we're serialized against further additions and before
11708 	 * perf_install_in_context() which is the point the event is active and
11709 	 * can use these values.
11710 	 */
11711 	perf_event__header_size(event);
11712 	perf_event__id_header_size(event);
11713 
11714 	event->owner = current;
11715 
11716 	perf_install_in_context(ctx, event, event->cpu);
11717 	perf_unpin_context(ctx);
11718 
11719 	if (move_group)
11720 		perf_event_ctx_unlock(group_leader, gctx);
11721 	mutex_unlock(&ctx->mutex);
11722 
11723 	if (task) {
11724 		mutex_unlock(&task->signal->cred_guard_mutex);
11725 		put_task_struct(task);
11726 	}
11727 
11728 	mutex_lock(&current->perf_event_mutex);
11729 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11730 	mutex_unlock(&current->perf_event_mutex);
11731 
11732 	/*
11733 	 * Drop the reference on the group_event after placing the
11734 	 * new event on the sibling_list. This ensures destruction
11735 	 * of the group leader will find the pointer to itself in
11736 	 * perf_group_detach().
11737 	 */
11738 	fdput(group);
11739 	fd_install(event_fd, event_file);
11740 	return event_fd;
11741 
11742 err_locked:
11743 	if (move_group)
11744 		perf_event_ctx_unlock(group_leader, gctx);
11745 	mutex_unlock(&ctx->mutex);
11746 /* err_file: */
11747 	fput(event_file);
11748 err_context:
11749 	perf_unpin_context(ctx);
11750 	put_ctx(ctx);
11751 err_alloc:
11752 	/*
11753 	 * If event_file is set, the fput() above will have called ->release()
11754 	 * and that will take care of freeing the event.
11755 	 */
11756 	if (!event_file)
11757 		free_event(event);
11758 err_cred:
11759 	if (task)
11760 		mutex_unlock(&task->signal->cred_guard_mutex);
11761 err_task:
11762 	if (task)
11763 		put_task_struct(task);
11764 err_group_fd:
11765 	fdput(group);
11766 err_fd:
11767 	put_unused_fd(event_fd);
11768 	return err;
11769 }
11770 
11771 /**
11772  * perf_event_create_kernel_counter
11773  *
11774  * @attr: attributes of the counter to create
11775  * @cpu: cpu in which the counter is bound
11776  * @task: task to profile (NULL for percpu)
11777  */
11778 struct perf_event *
11779 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11780 				 struct task_struct *task,
11781 				 perf_overflow_handler_t overflow_handler,
11782 				 void *context)
11783 {
11784 	struct perf_event_context *ctx;
11785 	struct perf_event *event;
11786 	int err;
11787 
11788 	/*
11789 	 * Grouping is not supported for kernel events, neither is 'AUX',
11790 	 * make sure the caller's intentions are adjusted.
11791 	 */
11792 	if (attr->aux_output)
11793 		return ERR_PTR(-EINVAL);
11794 
11795 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11796 				 overflow_handler, context, -1);
11797 	if (IS_ERR(event)) {
11798 		err = PTR_ERR(event);
11799 		goto err;
11800 	}
11801 
11802 	/* Mark owner so we could distinguish it from user events. */
11803 	event->owner = TASK_TOMBSTONE;
11804 
11805 	/*
11806 	 * Get the target context (task or percpu):
11807 	 */
11808 	ctx = find_get_context(event->pmu, task, event);
11809 	if (IS_ERR(ctx)) {
11810 		err = PTR_ERR(ctx);
11811 		goto err_free;
11812 	}
11813 
11814 	WARN_ON_ONCE(ctx->parent_ctx);
11815 	mutex_lock(&ctx->mutex);
11816 	if (ctx->task == TASK_TOMBSTONE) {
11817 		err = -ESRCH;
11818 		goto err_unlock;
11819 	}
11820 
11821 	if (!task) {
11822 		/*
11823 		 * Check if the @cpu we're creating an event for is online.
11824 		 *
11825 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11826 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11827 		 */
11828 		struct perf_cpu_context *cpuctx =
11829 			container_of(ctx, struct perf_cpu_context, ctx);
11830 		if (!cpuctx->online) {
11831 			err = -ENODEV;
11832 			goto err_unlock;
11833 		}
11834 	}
11835 
11836 	if (!exclusive_event_installable(event, ctx)) {
11837 		err = -EBUSY;
11838 		goto err_unlock;
11839 	}
11840 
11841 	perf_install_in_context(ctx, event, event->cpu);
11842 	perf_unpin_context(ctx);
11843 	mutex_unlock(&ctx->mutex);
11844 
11845 	return event;
11846 
11847 err_unlock:
11848 	mutex_unlock(&ctx->mutex);
11849 	perf_unpin_context(ctx);
11850 	put_ctx(ctx);
11851 err_free:
11852 	free_event(event);
11853 err:
11854 	return ERR_PTR(err);
11855 }
11856 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11857 
11858 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11859 {
11860 	struct perf_event_context *src_ctx;
11861 	struct perf_event_context *dst_ctx;
11862 	struct perf_event *event, *tmp;
11863 	LIST_HEAD(events);
11864 
11865 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11866 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11867 
11868 	/*
11869 	 * See perf_event_ctx_lock() for comments on the details
11870 	 * of swizzling perf_event::ctx.
11871 	 */
11872 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11873 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11874 				 event_entry) {
11875 		perf_remove_from_context(event, 0);
11876 		unaccount_event_cpu(event, src_cpu);
11877 		put_ctx(src_ctx);
11878 		list_add(&event->migrate_entry, &events);
11879 	}
11880 
11881 	/*
11882 	 * Wait for the events to quiesce before re-instating them.
11883 	 */
11884 	synchronize_rcu();
11885 
11886 	/*
11887 	 * Re-instate events in 2 passes.
11888 	 *
11889 	 * Skip over group leaders and only install siblings on this first
11890 	 * pass, siblings will not get enabled without a leader, however a
11891 	 * leader will enable its siblings, even if those are still on the old
11892 	 * context.
11893 	 */
11894 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11895 		if (event->group_leader == event)
11896 			continue;
11897 
11898 		list_del(&event->migrate_entry);
11899 		if (event->state >= PERF_EVENT_STATE_OFF)
11900 			event->state = PERF_EVENT_STATE_INACTIVE;
11901 		account_event_cpu(event, dst_cpu);
11902 		perf_install_in_context(dst_ctx, event, dst_cpu);
11903 		get_ctx(dst_ctx);
11904 	}
11905 
11906 	/*
11907 	 * Once all the siblings are setup properly, install the group leaders
11908 	 * to make it go.
11909 	 */
11910 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11911 		list_del(&event->migrate_entry);
11912 		if (event->state >= PERF_EVENT_STATE_OFF)
11913 			event->state = PERF_EVENT_STATE_INACTIVE;
11914 		account_event_cpu(event, dst_cpu);
11915 		perf_install_in_context(dst_ctx, event, dst_cpu);
11916 		get_ctx(dst_ctx);
11917 	}
11918 	mutex_unlock(&dst_ctx->mutex);
11919 	mutex_unlock(&src_ctx->mutex);
11920 }
11921 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11922 
11923 static void sync_child_event(struct perf_event *child_event,
11924 			       struct task_struct *child)
11925 {
11926 	struct perf_event *parent_event = child_event->parent;
11927 	u64 child_val;
11928 
11929 	if (child_event->attr.inherit_stat)
11930 		perf_event_read_event(child_event, child);
11931 
11932 	child_val = perf_event_count(child_event);
11933 
11934 	/*
11935 	 * Add back the child's count to the parent's count:
11936 	 */
11937 	atomic64_add(child_val, &parent_event->child_count);
11938 	atomic64_add(child_event->total_time_enabled,
11939 		     &parent_event->child_total_time_enabled);
11940 	atomic64_add(child_event->total_time_running,
11941 		     &parent_event->child_total_time_running);
11942 }
11943 
11944 static void
11945 perf_event_exit_event(struct perf_event *child_event,
11946 		      struct perf_event_context *child_ctx,
11947 		      struct task_struct *child)
11948 {
11949 	struct perf_event *parent_event = child_event->parent;
11950 
11951 	/*
11952 	 * Do not destroy the 'original' grouping; because of the context
11953 	 * switch optimization the original events could've ended up in a
11954 	 * random child task.
11955 	 *
11956 	 * If we were to destroy the original group, all group related
11957 	 * operations would cease to function properly after this random
11958 	 * child dies.
11959 	 *
11960 	 * Do destroy all inherited groups, we don't care about those
11961 	 * and being thorough is better.
11962 	 */
11963 	raw_spin_lock_irq(&child_ctx->lock);
11964 	WARN_ON_ONCE(child_ctx->is_active);
11965 
11966 	if (parent_event)
11967 		perf_group_detach(child_event);
11968 	list_del_event(child_event, child_ctx);
11969 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11970 	raw_spin_unlock_irq(&child_ctx->lock);
11971 
11972 	/*
11973 	 * Parent events are governed by their filedesc, retain them.
11974 	 */
11975 	if (!parent_event) {
11976 		perf_event_wakeup(child_event);
11977 		return;
11978 	}
11979 	/*
11980 	 * Child events can be cleaned up.
11981 	 */
11982 
11983 	sync_child_event(child_event, child);
11984 
11985 	/*
11986 	 * Remove this event from the parent's list
11987 	 */
11988 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11989 	mutex_lock(&parent_event->child_mutex);
11990 	list_del_init(&child_event->child_list);
11991 	mutex_unlock(&parent_event->child_mutex);
11992 
11993 	/*
11994 	 * Kick perf_poll() for is_event_hup().
11995 	 */
11996 	perf_event_wakeup(parent_event);
11997 	free_event(child_event);
11998 	put_event(parent_event);
11999 }
12000 
12001 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12002 {
12003 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12004 	struct perf_event *child_event, *next;
12005 
12006 	WARN_ON_ONCE(child != current);
12007 
12008 	child_ctx = perf_pin_task_context(child, ctxn);
12009 	if (!child_ctx)
12010 		return;
12011 
12012 	/*
12013 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12014 	 * ctx::mutex over the entire thing. This serializes against almost
12015 	 * everything that wants to access the ctx.
12016 	 *
12017 	 * The exception is sys_perf_event_open() /
12018 	 * perf_event_create_kernel_count() which does find_get_context()
12019 	 * without ctx::mutex (it cannot because of the move_group double mutex
12020 	 * lock thing). See the comments in perf_install_in_context().
12021 	 */
12022 	mutex_lock(&child_ctx->mutex);
12023 
12024 	/*
12025 	 * In a single ctx::lock section, de-schedule the events and detach the
12026 	 * context from the task such that we cannot ever get it scheduled back
12027 	 * in.
12028 	 */
12029 	raw_spin_lock_irq(&child_ctx->lock);
12030 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12031 
12032 	/*
12033 	 * Now that the context is inactive, destroy the task <-> ctx relation
12034 	 * and mark the context dead.
12035 	 */
12036 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12037 	put_ctx(child_ctx); /* cannot be last */
12038 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12039 	put_task_struct(current); /* cannot be last */
12040 
12041 	clone_ctx = unclone_ctx(child_ctx);
12042 	raw_spin_unlock_irq(&child_ctx->lock);
12043 
12044 	if (clone_ctx)
12045 		put_ctx(clone_ctx);
12046 
12047 	/*
12048 	 * Report the task dead after unscheduling the events so that we
12049 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12050 	 * get a few PERF_RECORD_READ events.
12051 	 */
12052 	perf_event_task(child, child_ctx, 0);
12053 
12054 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12055 		perf_event_exit_event(child_event, child_ctx, child);
12056 
12057 	mutex_unlock(&child_ctx->mutex);
12058 
12059 	put_ctx(child_ctx);
12060 }
12061 
12062 /*
12063  * When a child task exits, feed back event values to parent events.
12064  *
12065  * Can be called with cred_guard_mutex held when called from
12066  * install_exec_creds().
12067  */
12068 void perf_event_exit_task(struct task_struct *child)
12069 {
12070 	struct perf_event *event, *tmp;
12071 	int ctxn;
12072 
12073 	mutex_lock(&child->perf_event_mutex);
12074 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12075 				 owner_entry) {
12076 		list_del_init(&event->owner_entry);
12077 
12078 		/*
12079 		 * Ensure the list deletion is visible before we clear
12080 		 * the owner, closes a race against perf_release() where
12081 		 * we need to serialize on the owner->perf_event_mutex.
12082 		 */
12083 		smp_store_release(&event->owner, NULL);
12084 	}
12085 	mutex_unlock(&child->perf_event_mutex);
12086 
12087 	for_each_task_context_nr(ctxn)
12088 		perf_event_exit_task_context(child, ctxn);
12089 
12090 	/*
12091 	 * The perf_event_exit_task_context calls perf_event_task
12092 	 * with child's task_ctx, which generates EXIT events for
12093 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12094 	 * At this point we need to send EXIT events to cpu contexts.
12095 	 */
12096 	perf_event_task(child, NULL, 0);
12097 }
12098 
12099 static void perf_free_event(struct perf_event *event,
12100 			    struct perf_event_context *ctx)
12101 {
12102 	struct perf_event *parent = event->parent;
12103 
12104 	if (WARN_ON_ONCE(!parent))
12105 		return;
12106 
12107 	mutex_lock(&parent->child_mutex);
12108 	list_del_init(&event->child_list);
12109 	mutex_unlock(&parent->child_mutex);
12110 
12111 	put_event(parent);
12112 
12113 	raw_spin_lock_irq(&ctx->lock);
12114 	perf_group_detach(event);
12115 	list_del_event(event, ctx);
12116 	raw_spin_unlock_irq(&ctx->lock);
12117 	free_event(event);
12118 }
12119 
12120 /*
12121  * Free a context as created by inheritance by perf_event_init_task() below,
12122  * used by fork() in case of fail.
12123  *
12124  * Even though the task has never lived, the context and events have been
12125  * exposed through the child_list, so we must take care tearing it all down.
12126  */
12127 void perf_event_free_task(struct task_struct *task)
12128 {
12129 	struct perf_event_context *ctx;
12130 	struct perf_event *event, *tmp;
12131 	int ctxn;
12132 
12133 	for_each_task_context_nr(ctxn) {
12134 		ctx = task->perf_event_ctxp[ctxn];
12135 		if (!ctx)
12136 			continue;
12137 
12138 		mutex_lock(&ctx->mutex);
12139 		raw_spin_lock_irq(&ctx->lock);
12140 		/*
12141 		 * Destroy the task <-> ctx relation and mark the context dead.
12142 		 *
12143 		 * This is important because even though the task hasn't been
12144 		 * exposed yet the context has been (through child_list).
12145 		 */
12146 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12147 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12148 		put_task_struct(task); /* cannot be last */
12149 		raw_spin_unlock_irq(&ctx->lock);
12150 
12151 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12152 			perf_free_event(event, ctx);
12153 
12154 		mutex_unlock(&ctx->mutex);
12155 
12156 		/*
12157 		 * perf_event_release_kernel() could've stolen some of our
12158 		 * child events and still have them on its free_list. In that
12159 		 * case we must wait for these events to have been freed (in
12160 		 * particular all their references to this task must've been
12161 		 * dropped).
12162 		 *
12163 		 * Without this copy_process() will unconditionally free this
12164 		 * task (irrespective of its reference count) and
12165 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12166 		 * use-after-free.
12167 		 *
12168 		 * Wait for all events to drop their context reference.
12169 		 */
12170 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12171 		put_ctx(ctx); /* must be last */
12172 	}
12173 }
12174 
12175 void perf_event_delayed_put(struct task_struct *task)
12176 {
12177 	int ctxn;
12178 
12179 	for_each_task_context_nr(ctxn)
12180 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12181 }
12182 
12183 struct file *perf_event_get(unsigned int fd)
12184 {
12185 	struct file *file = fget(fd);
12186 	if (!file)
12187 		return ERR_PTR(-EBADF);
12188 
12189 	if (file->f_op != &perf_fops) {
12190 		fput(file);
12191 		return ERR_PTR(-EBADF);
12192 	}
12193 
12194 	return file;
12195 }
12196 
12197 const struct perf_event *perf_get_event(struct file *file)
12198 {
12199 	if (file->f_op != &perf_fops)
12200 		return ERR_PTR(-EINVAL);
12201 
12202 	return file->private_data;
12203 }
12204 
12205 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12206 {
12207 	if (!event)
12208 		return ERR_PTR(-EINVAL);
12209 
12210 	return &event->attr;
12211 }
12212 
12213 /*
12214  * Inherit an event from parent task to child task.
12215  *
12216  * Returns:
12217  *  - valid pointer on success
12218  *  - NULL for orphaned events
12219  *  - IS_ERR() on error
12220  */
12221 static struct perf_event *
12222 inherit_event(struct perf_event *parent_event,
12223 	      struct task_struct *parent,
12224 	      struct perf_event_context *parent_ctx,
12225 	      struct task_struct *child,
12226 	      struct perf_event *group_leader,
12227 	      struct perf_event_context *child_ctx)
12228 {
12229 	enum perf_event_state parent_state = parent_event->state;
12230 	struct perf_event *child_event;
12231 	unsigned long flags;
12232 
12233 	/*
12234 	 * Instead of creating recursive hierarchies of events,
12235 	 * we link inherited events back to the original parent,
12236 	 * which has a filp for sure, which we use as the reference
12237 	 * count:
12238 	 */
12239 	if (parent_event->parent)
12240 		parent_event = parent_event->parent;
12241 
12242 	child_event = perf_event_alloc(&parent_event->attr,
12243 					   parent_event->cpu,
12244 					   child,
12245 					   group_leader, parent_event,
12246 					   NULL, NULL, -1);
12247 	if (IS_ERR(child_event))
12248 		return child_event;
12249 
12250 
12251 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12252 	    !child_ctx->task_ctx_data) {
12253 		struct pmu *pmu = child_event->pmu;
12254 
12255 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12256 						   GFP_KERNEL);
12257 		if (!child_ctx->task_ctx_data) {
12258 			free_event(child_event);
12259 			return ERR_PTR(-ENOMEM);
12260 		}
12261 	}
12262 
12263 	/*
12264 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12265 	 * must be under the same lock in order to serialize against
12266 	 * perf_event_release_kernel(), such that either we must observe
12267 	 * is_orphaned_event() or they will observe us on the child_list.
12268 	 */
12269 	mutex_lock(&parent_event->child_mutex);
12270 	if (is_orphaned_event(parent_event) ||
12271 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12272 		mutex_unlock(&parent_event->child_mutex);
12273 		/* task_ctx_data is freed with child_ctx */
12274 		free_event(child_event);
12275 		return NULL;
12276 	}
12277 
12278 	get_ctx(child_ctx);
12279 
12280 	/*
12281 	 * Make the child state follow the state of the parent event,
12282 	 * not its attr.disabled bit.  We hold the parent's mutex,
12283 	 * so we won't race with perf_event_{en, dis}able_family.
12284 	 */
12285 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12286 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12287 	else
12288 		child_event->state = PERF_EVENT_STATE_OFF;
12289 
12290 	if (parent_event->attr.freq) {
12291 		u64 sample_period = parent_event->hw.sample_period;
12292 		struct hw_perf_event *hwc = &child_event->hw;
12293 
12294 		hwc->sample_period = sample_period;
12295 		hwc->last_period   = sample_period;
12296 
12297 		local64_set(&hwc->period_left, sample_period);
12298 	}
12299 
12300 	child_event->ctx = child_ctx;
12301 	child_event->overflow_handler = parent_event->overflow_handler;
12302 	child_event->overflow_handler_context
12303 		= parent_event->overflow_handler_context;
12304 
12305 	/*
12306 	 * Precalculate sample_data sizes
12307 	 */
12308 	perf_event__header_size(child_event);
12309 	perf_event__id_header_size(child_event);
12310 
12311 	/*
12312 	 * Link it up in the child's context:
12313 	 */
12314 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12315 	add_event_to_ctx(child_event, child_ctx);
12316 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12317 
12318 	/*
12319 	 * Link this into the parent event's child list
12320 	 */
12321 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12322 	mutex_unlock(&parent_event->child_mutex);
12323 
12324 	return child_event;
12325 }
12326 
12327 /*
12328  * Inherits an event group.
12329  *
12330  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12331  * This matches with perf_event_release_kernel() removing all child events.
12332  *
12333  * Returns:
12334  *  - 0 on success
12335  *  - <0 on error
12336  */
12337 static int inherit_group(struct perf_event *parent_event,
12338 	      struct task_struct *parent,
12339 	      struct perf_event_context *parent_ctx,
12340 	      struct task_struct *child,
12341 	      struct perf_event_context *child_ctx)
12342 {
12343 	struct perf_event *leader;
12344 	struct perf_event *sub;
12345 	struct perf_event *child_ctr;
12346 
12347 	leader = inherit_event(parent_event, parent, parent_ctx,
12348 				 child, NULL, child_ctx);
12349 	if (IS_ERR(leader))
12350 		return PTR_ERR(leader);
12351 	/*
12352 	 * @leader can be NULL here because of is_orphaned_event(). In this
12353 	 * case inherit_event() will create individual events, similar to what
12354 	 * perf_group_detach() would do anyway.
12355 	 */
12356 	for_each_sibling_event(sub, parent_event) {
12357 		child_ctr = inherit_event(sub, parent, parent_ctx,
12358 					    child, leader, child_ctx);
12359 		if (IS_ERR(child_ctr))
12360 			return PTR_ERR(child_ctr);
12361 
12362 		if (sub->aux_event == parent_event && child_ctr &&
12363 		    !perf_get_aux_event(child_ctr, leader))
12364 			return -EINVAL;
12365 	}
12366 	return 0;
12367 }
12368 
12369 /*
12370  * Creates the child task context and tries to inherit the event-group.
12371  *
12372  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12373  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12374  * consistent with perf_event_release_kernel() removing all child events.
12375  *
12376  * Returns:
12377  *  - 0 on success
12378  *  - <0 on error
12379  */
12380 static int
12381 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12382 		   struct perf_event_context *parent_ctx,
12383 		   struct task_struct *child, int ctxn,
12384 		   int *inherited_all)
12385 {
12386 	int ret;
12387 	struct perf_event_context *child_ctx;
12388 
12389 	if (!event->attr.inherit) {
12390 		*inherited_all = 0;
12391 		return 0;
12392 	}
12393 
12394 	child_ctx = child->perf_event_ctxp[ctxn];
12395 	if (!child_ctx) {
12396 		/*
12397 		 * This is executed from the parent task context, so
12398 		 * inherit events that have been marked for cloning.
12399 		 * First allocate and initialize a context for the
12400 		 * child.
12401 		 */
12402 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12403 		if (!child_ctx)
12404 			return -ENOMEM;
12405 
12406 		child->perf_event_ctxp[ctxn] = child_ctx;
12407 	}
12408 
12409 	ret = inherit_group(event, parent, parent_ctx,
12410 			    child, child_ctx);
12411 
12412 	if (ret)
12413 		*inherited_all = 0;
12414 
12415 	return ret;
12416 }
12417 
12418 /*
12419  * Initialize the perf_event context in task_struct
12420  */
12421 static int perf_event_init_context(struct task_struct *child, int ctxn)
12422 {
12423 	struct perf_event_context *child_ctx, *parent_ctx;
12424 	struct perf_event_context *cloned_ctx;
12425 	struct perf_event *event;
12426 	struct task_struct *parent = current;
12427 	int inherited_all = 1;
12428 	unsigned long flags;
12429 	int ret = 0;
12430 
12431 	if (likely(!parent->perf_event_ctxp[ctxn]))
12432 		return 0;
12433 
12434 	/*
12435 	 * If the parent's context is a clone, pin it so it won't get
12436 	 * swapped under us.
12437 	 */
12438 	parent_ctx = perf_pin_task_context(parent, ctxn);
12439 	if (!parent_ctx)
12440 		return 0;
12441 
12442 	/*
12443 	 * No need to check if parent_ctx != NULL here; since we saw
12444 	 * it non-NULL earlier, the only reason for it to become NULL
12445 	 * is if we exit, and since we're currently in the middle of
12446 	 * a fork we can't be exiting at the same time.
12447 	 */
12448 
12449 	/*
12450 	 * Lock the parent list. No need to lock the child - not PID
12451 	 * hashed yet and not running, so nobody can access it.
12452 	 */
12453 	mutex_lock(&parent_ctx->mutex);
12454 
12455 	/*
12456 	 * We dont have to disable NMIs - we are only looking at
12457 	 * the list, not manipulating it:
12458 	 */
12459 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12460 		ret = inherit_task_group(event, parent, parent_ctx,
12461 					 child, ctxn, &inherited_all);
12462 		if (ret)
12463 			goto out_unlock;
12464 	}
12465 
12466 	/*
12467 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12468 	 * to allocations, but we need to prevent rotation because
12469 	 * rotate_ctx() will change the list from interrupt context.
12470 	 */
12471 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12472 	parent_ctx->rotate_disable = 1;
12473 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12474 
12475 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12476 		ret = inherit_task_group(event, parent, parent_ctx,
12477 					 child, ctxn, &inherited_all);
12478 		if (ret)
12479 			goto out_unlock;
12480 	}
12481 
12482 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12483 	parent_ctx->rotate_disable = 0;
12484 
12485 	child_ctx = child->perf_event_ctxp[ctxn];
12486 
12487 	if (child_ctx && inherited_all) {
12488 		/*
12489 		 * Mark the child context as a clone of the parent
12490 		 * context, or of whatever the parent is a clone of.
12491 		 *
12492 		 * Note that if the parent is a clone, the holding of
12493 		 * parent_ctx->lock avoids it from being uncloned.
12494 		 */
12495 		cloned_ctx = parent_ctx->parent_ctx;
12496 		if (cloned_ctx) {
12497 			child_ctx->parent_ctx = cloned_ctx;
12498 			child_ctx->parent_gen = parent_ctx->parent_gen;
12499 		} else {
12500 			child_ctx->parent_ctx = parent_ctx;
12501 			child_ctx->parent_gen = parent_ctx->generation;
12502 		}
12503 		get_ctx(child_ctx->parent_ctx);
12504 	}
12505 
12506 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12507 out_unlock:
12508 	mutex_unlock(&parent_ctx->mutex);
12509 
12510 	perf_unpin_context(parent_ctx);
12511 	put_ctx(parent_ctx);
12512 
12513 	return ret;
12514 }
12515 
12516 /*
12517  * Initialize the perf_event context in task_struct
12518  */
12519 int perf_event_init_task(struct task_struct *child)
12520 {
12521 	int ctxn, ret;
12522 
12523 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12524 	mutex_init(&child->perf_event_mutex);
12525 	INIT_LIST_HEAD(&child->perf_event_list);
12526 
12527 	for_each_task_context_nr(ctxn) {
12528 		ret = perf_event_init_context(child, ctxn);
12529 		if (ret) {
12530 			perf_event_free_task(child);
12531 			return ret;
12532 		}
12533 	}
12534 
12535 	return 0;
12536 }
12537 
12538 static void __init perf_event_init_all_cpus(void)
12539 {
12540 	struct swevent_htable *swhash;
12541 	int cpu;
12542 
12543 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12544 
12545 	for_each_possible_cpu(cpu) {
12546 		swhash = &per_cpu(swevent_htable, cpu);
12547 		mutex_init(&swhash->hlist_mutex);
12548 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12549 
12550 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12551 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12552 
12553 #ifdef CONFIG_CGROUP_PERF
12554 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12555 #endif
12556 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12557 	}
12558 }
12559 
12560 static void perf_swevent_init_cpu(unsigned int cpu)
12561 {
12562 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12563 
12564 	mutex_lock(&swhash->hlist_mutex);
12565 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12566 		struct swevent_hlist *hlist;
12567 
12568 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12569 		WARN_ON(!hlist);
12570 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12571 	}
12572 	mutex_unlock(&swhash->hlist_mutex);
12573 }
12574 
12575 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12576 static void __perf_event_exit_context(void *__info)
12577 {
12578 	struct perf_event_context *ctx = __info;
12579 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12580 	struct perf_event *event;
12581 
12582 	raw_spin_lock(&ctx->lock);
12583 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12584 	list_for_each_entry(event, &ctx->event_list, event_entry)
12585 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12586 	raw_spin_unlock(&ctx->lock);
12587 }
12588 
12589 static void perf_event_exit_cpu_context(int cpu)
12590 {
12591 	struct perf_cpu_context *cpuctx;
12592 	struct perf_event_context *ctx;
12593 	struct pmu *pmu;
12594 
12595 	mutex_lock(&pmus_lock);
12596 	list_for_each_entry(pmu, &pmus, entry) {
12597 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12598 		ctx = &cpuctx->ctx;
12599 
12600 		mutex_lock(&ctx->mutex);
12601 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12602 		cpuctx->online = 0;
12603 		mutex_unlock(&ctx->mutex);
12604 	}
12605 	cpumask_clear_cpu(cpu, perf_online_mask);
12606 	mutex_unlock(&pmus_lock);
12607 }
12608 #else
12609 
12610 static void perf_event_exit_cpu_context(int cpu) { }
12611 
12612 #endif
12613 
12614 int perf_event_init_cpu(unsigned int cpu)
12615 {
12616 	struct perf_cpu_context *cpuctx;
12617 	struct perf_event_context *ctx;
12618 	struct pmu *pmu;
12619 
12620 	perf_swevent_init_cpu(cpu);
12621 
12622 	mutex_lock(&pmus_lock);
12623 	cpumask_set_cpu(cpu, perf_online_mask);
12624 	list_for_each_entry(pmu, &pmus, entry) {
12625 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12626 		ctx = &cpuctx->ctx;
12627 
12628 		mutex_lock(&ctx->mutex);
12629 		cpuctx->online = 1;
12630 		mutex_unlock(&ctx->mutex);
12631 	}
12632 	mutex_unlock(&pmus_lock);
12633 
12634 	return 0;
12635 }
12636 
12637 int perf_event_exit_cpu(unsigned int cpu)
12638 {
12639 	perf_event_exit_cpu_context(cpu);
12640 	return 0;
12641 }
12642 
12643 static int
12644 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12645 {
12646 	int cpu;
12647 
12648 	for_each_online_cpu(cpu)
12649 		perf_event_exit_cpu(cpu);
12650 
12651 	return NOTIFY_OK;
12652 }
12653 
12654 /*
12655  * Run the perf reboot notifier at the very last possible moment so that
12656  * the generic watchdog code runs as long as possible.
12657  */
12658 static struct notifier_block perf_reboot_notifier = {
12659 	.notifier_call = perf_reboot,
12660 	.priority = INT_MIN,
12661 };
12662 
12663 void __init perf_event_init(void)
12664 {
12665 	int ret;
12666 
12667 	idr_init(&pmu_idr);
12668 
12669 	perf_event_init_all_cpus();
12670 	init_srcu_struct(&pmus_srcu);
12671 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12672 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12673 	perf_pmu_register(&perf_task_clock, NULL, -1);
12674 	perf_tp_register();
12675 	perf_event_init_cpu(smp_processor_id());
12676 	register_reboot_notifier(&perf_reboot_notifier);
12677 
12678 	ret = init_hw_breakpoint();
12679 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12680 
12681 	/*
12682 	 * Build time assertion that we keep the data_head at the intended
12683 	 * location.  IOW, validation we got the __reserved[] size right.
12684 	 */
12685 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12686 		     != 1024);
12687 }
12688 
12689 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12690 			      char *page)
12691 {
12692 	struct perf_pmu_events_attr *pmu_attr =
12693 		container_of(attr, struct perf_pmu_events_attr, attr);
12694 
12695 	if (pmu_attr->event_str)
12696 		return sprintf(page, "%s\n", pmu_attr->event_str);
12697 
12698 	return 0;
12699 }
12700 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12701 
12702 static int __init perf_event_sysfs_init(void)
12703 {
12704 	struct pmu *pmu;
12705 	int ret;
12706 
12707 	mutex_lock(&pmus_lock);
12708 
12709 	ret = bus_register(&pmu_bus);
12710 	if (ret)
12711 		goto unlock;
12712 
12713 	list_for_each_entry(pmu, &pmus, entry) {
12714 		if (!pmu->name || pmu->type < 0)
12715 			continue;
12716 
12717 		ret = pmu_dev_alloc(pmu);
12718 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12719 	}
12720 	pmu_bus_running = 1;
12721 	ret = 0;
12722 
12723 unlock:
12724 	mutex_unlock(&pmus_lock);
12725 
12726 	return ret;
12727 }
12728 device_initcall(perf_event_sysfs_init);
12729 
12730 #ifdef CONFIG_CGROUP_PERF
12731 static struct cgroup_subsys_state *
12732 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12733 {
12734 	struct perf_cgroup *jc;
12735 
12736 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12737 	if (!jc)
12738 		return ERR_PTR(-ENOMEM);
12739 
12740 	jc->info = alloc_percpu(struct perf_cgroup_info);
12741 	if (!jc->info) {
12742 		kfree(jc);
12743 		return ERR_PTR(-ENOMEM);
12744 	}
12745 
12746 	return &jc->css;
12747 }
12748 
12749 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12750 {
12751 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12752 
12753 	free_percpu(jc->info);
12754 	kfree(jc);
12755 }
12756 
12757 static int __perf_cgroup_move(void *info)
12758 {
12759 	struct task_struct *task = info;
12760 	rcu_read_lock();
12761 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12762 	rcu_read_unlock();
12763 	return 0;
12764 }
12765 
12766 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12767 {
12768 	struct task_struct *task;
12769 	struct cgroup_subsys_state *css;
12770 
12771 	cgroup_taskset_for_each(task, css, tset)
12772 		task_function_call(task, __perf_cgroup_move, task);
12773 }
12774 
12775 struct cgroup_subsys perf_event_cgrp_subsys = {
12776 	.css_alloc	= perf_cgroup_css_alloc,
12777 	.css_free	= perf_cgroup_css_free,
12778 	.attach		= perf_cgroup_attach,
12779 	/*
12780 	 * Implicitly enable on dfl hierarchy so that perf events can
12781 	 * always be filtered by cgroup2 path as long as perf_event
12782 	 * controller is not mounted on a legacy hierarchy.
12783 	 */
12784 	.implicit_on_dfl = true,
12785 	.threaded	= true,
12786 };
12787 #endif /* CONFIG_CGROUP_PERF */
12788