1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artificially low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespective of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A further ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficient space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) { 2306 ctx->nr_freq--; 2307 epc->nr_freq--; 2308 } 2309 if (event->attr.exclusive || !cpc->active_oncpu) 2310 cpc->exclusive = 0; 2311 2312 perf_pmu_enable(event->pmu); 2313 } 2314 2315 static void 2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2317 { 2318 struct perf_event *event; 2319 2320 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2321 return; 2322 2323 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2324 2325 event_sched_out(group_event, ctx); 2326 2327 /* 2328 * Schedule out siblings (if any): 2329 */ 2330 for_each_sibling_event(event, group_event) 2331 event_sched_out(event, ctx); 2332 } 2333 2334 #define DETACH_GROUP 0x01UL 2335 #define DETACH_CHILD 0x02UL 2336 #define DETACH_DEAD 0x04UL 2337 2338 /* 2339 * Cross CPU call to remove a performance event 2340 * 2341 * We disable the event on the hardware level first. After that we 2342 * remove it from the context list. 2343 */ 2344 static void 2345 __perf_remove_from_context(struct perf_event *event, 2346 struct perf_cpu_context *cpuctx, 2347 struct perf_event_context *ctx, 2348 void *info) 2349 { 2350 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2351 unsigned long flags = (unsigned long)info; 2352 2353 if (ctx->is_active & EVENT_TIME) { 2354 update_context_time(ctx); 2355 update_cgrp_time_from_cpuctx(cpuctx, false); 2356 } 2357 2358 /* 2359 * Ensure event_sched_out() switches to OFF, at the very least 2360 * this avoids raising perf_pending_task() at this time. 2361 */ 2362 if (flags & DETACH_DEAD) 2363 event->pending_disable = 1; 2364 event_sched_out(event, ctx); 2365 if (flags & DETACH_GROUP) 2366 perf_group_detach(event); 2367 if (flags & DETACH_CHILD) 2368 perf_child_detach(event); 2369 list_del_event(event, ctx); 2370 if (flags & DETACH_DEAD) 2371 event->state = PERF_EVENT_STATE_DEAD; 2372 2373 if (!pmu_ctx->nr_events) { 2374 pmu_ctx->rotate_necessary = 0; 2375 2376 if (ctx->task && ctx->is_active) { 2377 struct perf_cpu_pmu_context *cpc; 2378 2379 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2380 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2381 cpc->task_epc = NULL; 2382 } 2383 } 2384 2385 if (!ctx->nr_events && ctx->is_active) { 2386 if (ctx == &cpuctx->ctx) 2387 update_cgrp_time_from_cpuctx(cpuctx, true); 2388 2389 ctx->is_active = 0; 2390 if (ctx->task) { 2391 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2392 cpuctx->task_ctx = NULL; 2393 } 2394 } 2395 } 2396 2397 /* 2398 * Remove the event from a task's (or a CPU's) list of events. 2399 * 2400 * If event->ctx is a cloned context, callers must make sure that 2401 * every task struct that event->ctx->task could possibly point to 2402 * remains valid. This is OK when called from perf_release since 2403 * that only calls us on the top-level context, which can't be a clone. 2404 * When called from perf_event_exit_task, it's OK because the 2405 * context has been detached from its task. 2406 */ 2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2408 { 2409 struct perf_event_context *ctx = event->ctx; 2410 2411 lockdep_assert_held(&ctx->mutex); 2412 2413 /* 2414 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2415 * to work in the face of TASK_TOMBSTONE, unlike every other 2416 * event_function_call() user. 2417 */ 2418 raw_spin_lock_irq(&ctx->lock); 2419 if (!ctx->is_active) { 2420 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2421 ctx, (void *)flags); 2422 raw_spin_unlock_irq(&ctx->lock); 2423 return; 2424 } 2425 raw_spin_unlock_irq(&ctx->lock); 2426 2427 event_function_call(event, __perf_remove_from_context, (void *)flags); 2428 } 2429 2430 /* 2431 * Cross CPU call to disable a performance event 2432 */ 2433 static void __perf_event_disable(struct perf_event *event, 2434 struct perf_cpu_context *cpuctx, 2435 struct perf_event_context *ctx, 2436 void *info) 2437 { 2438 if (event->state < PERF_EVENT_STATE_INACTIVE) 2439 return; 2440 2441 if (ctx->is_active & EVENT_TIME) { 2442 update_context_time(ctx); 2443 update_cgrp_time_from_event(event); 2444 } 2445 2446 perf_pmu_disable(event->pmu_ctx->pmu); 2447 2448 if (event == event->group_leader) 2449 group_sched_out(event, ctx); 2450 else 2451 event_sched_out(event, ctx); 2452 2453 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2454 perf_cgroup_event_disable(event, ctx); 2455 2456 perf_pmu_enable(event->pmu_ctx->pmu); 2457 } 2458 2459 /* 2460 * Disable an event. 2461 * 2462 * If event->ctx is a cloned context, callers must make sure that 2463 * every task struct that event->ctx->task could possibly point to 2464 * remains valid. This condition is satisfied when called through 2465 * perf_event_for_each_child or perf_event_for_each because they 2466 * hold the top-level event's child_mutex, so any descendant that 2467 * goes to exit will block in perf_event_exit_event(). 2468 * 2469 * When called from perf_pending_irq it's OK because event->ctx 2470 * is the current context on this CPU and preemption is disabled, 2471 * hence we can't get into perf_event_task_sched_out for this context. 2472 */ 2473 static void _perf_event_disable(struct perf_event *event) 2474 { 2475 struct perf_event_context *ctx = event->ctx; 2476 2477 raw_spin_lock_irq(&ctx->lock); 2478 if (event->state <= PERF_EVENT_STATE_OFF) { 2479 raw_spin_unlock_irq(&ctx->lock); 2480 return; 2481 } 2482 raw_spin_unlock_irq(&ctx->lock); 2483 2484 event_function_call(event, __perf_event_disable, NULL); 2485 } 2486 2487 void perf_event_disable_local(struct perf_event *event) 2488 { 2489 event_function_local(event, __perf_event_disable, NULL); 2490 } 2491 2492 /* 2493 * Strictly speaking kernel users cannot create groups and therefore this 2494 * interface does not need the perf_event_ctx_lock() magic. 2495 */ 2496 void perf_event_disable(struct perf_event *event) 2497 { 2498 struct perf_event_context *ctx; 2499 2500 ctx = perf_event_ctx_lock(event); 2501 _perf_event_disable(event); 2502 perf_event_ctx_unlock(event, ctx); 2503 } 2504 EXPORT_SYMBOL_GPL(perf_event_disable); 2505 2506 void perf_event_disable_inatomic(struct perf_event *event) 2507 { 2508 event->pending_disable = 1; 2509 irq_work_queue(&event->pending_irq); 2510 } 2511 2512 #define MAX_INTERRUPTS (~0ULL) 2513 2514 static void perf_log_throttle(struct perf_event *event, int enable); 2515 static void perf_log_itrace_start(struct perf_event *event); 2516 2517 static int 2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2519 { 2520 struct perf_event_pmu_context *epc = event->pmu_ctx; 2521 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2522 int ret = 0; 2523 2524 WARN_ON_ONCE(event->ctx != ctx); 2525 2526 lockdep_assert_held(&ctx->lock); 2527 2528 if (event->state <= PERF_EVENT_STATE_OFF) 2529 return 0; 2530 2531 WRITE_ONCE(event->oncpu, smp_processor_id()); 2532 /* 2533 * Order event::oncpu write to happen before the ACTIVE state is 2534 * visible. This allows perf_event_{stop,read}() to observe the correct 2535 * ->oncpu if it sees ACTIVE. 2536 */ 2537 smp_wmb(); 2538 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2539 2540 /* 2541 * Unthrottle events, since we scheduled we might have missed several 2542 * ticks already, also for a heavily scheduling task there is little 2543 * guarantee it'll get a tick in a timely manner. 2544 */ 2545 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2546 perf_log_throttle(event, 1); 2547 event->hw.interrupts = 0; 2548 } 2549 2550 perf_pmu_disable(event->pmu); 2551 2552 perf_log_itrace_start(event); 2553 2554 if (event->pmu->add(event, PERF_EF_START)) { 2555 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2556 event->oncpu = -1; 2557 ret = -EAGAIN; 2558 goto out; 2559 } 2560 2561 if (!is_software_event(event)) 2562 cpc->active_oncpu++; 2563 if (event->attr.freq && event->attr.sample_freq) { 2564 ctx->nr_freq++; 2565 epc->nr_freq++; 2566 } 2567 if (event->attr.exclusive) 2568 cpc->exclusive = 1; 2569 2570 out: 2571 perf_pmu_enable(event->pmu); 2572 2573 return ret; 2574 } 2575 2576 static int 2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2578 { 2579 struct perf_event *event, *partial_group = NULL; 2580 struct pmu *pmu = group_event->pmu_ctx->pmu; 2581 2582 if (group_event->state == PERF_EVENT_STATE_OFF) 2583 return 0; 2584 2585 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2586 2587 if (event_sched_in(group_event, ctx)) 2588 goto error; 2589 2590 /* 2591 * Schedule in siblings as one group (if any): 2592 */ 2593 for_each_sibling_event(event, group_event) { 2594 if (event_sched_in(event, ctx)) { 2595 partial_group = event; 2596 goto group_error; 2597 } 2598 } 2599 2600 if (!pmu->commit_txn(pmu)) 2601 return 0; 2602 2603 group_error: 2604 /* 2605 * Groups can be scheduled in as one unit only, so undo any 2606 * partial group before returning: 2607 * The events up to the failed event are scheduled out normally. 2608 */ 2609 for_each_sibling_event(event, group_event) { 2610 if (event == partial_group) 2611 break; 2612 2613 event_sched_out(event, ctx); 2614 } 2615 event_sched_out(group_event, ctx); 2616 2617 error: 2618 pmu->cancel_txn(pmu); 2619 return -EAGAIN; 2620 } 2621 2622 /* 2623 * Work out whether we can put this event group on the CPU now. 2624 */ 2625 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2626 { 2627 struct perf_event_pmu_context *epc = event->pmu_ctx; 2628 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2629 2630 /* 2631 * Groups consisting entirely of software events can always go on. 2632 */ 2633 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2634 return 1; 2635 /* 2636 * If an exclusive group is already on, no other hardware 2637 * events can go on. 2638 */ 2639 if (cpc->exclusive) 2640 return 0; 2641 /* 2642 * If this group is exclusive and there are already 2643 * events on the CPU, it can't go on. 2644 */ 2645 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2646 return 0; 2647 /* 2648 * Otherwise, try to add it if all previous groups were able 2649 * to go on. 2650 */ 2651 return can_add_hw; 2652 } 2653 2654 static void add_event_to_ctx(struct perf_event *event, 2655 struct perf_event_context *ctx) 2656 { 2657 list_add_event(event, ctx); 2658 perf_group_attach(event); 2659 } 2660 2661 static void task_ctx_sched_out(struct perf_event_context *ctx, 2662 enum event_type_t event_type) 2663 { 2664 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2665 2666 if (!cpuctx->task_ctx) 2667 return; 2668 2669 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2670 return; 2671 2672 ctx_sched_out(ctx, event_type); 2673 } 2674 2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2676 struct perf_event_context *ctx) 2677 { 2678 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_PINNED); 2681 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2682 if (ctx) 2683 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2684 } 2685 2686 /* 2687 * We want to maintain the following priority of scheduling: 2688 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2689 * - task pinned (EVENT_PINNED) 2690 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2691 * - task flexible (EVENT_FLEXIBLE). 2692 * 2693 * In order to avoid unscheduling and scheduling back in everything every 2694 * time an event is added, only do it for the groups of equal priority and 2695 * below. 2696 * 2697 * This can be called after a batch operation on task events, in which case 2698 * event_type is a bit mask of the types of events involved. For CPU events, 2699 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2700 */ 2701 /* 2702 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2703 * event to the context or enabling existing event in the context. We can 2704 * probably optimize it by rescheduling only affected pmu_ctx. 2705 */ 2706 static void ctx_resched(struct perf_cpu_context *cpuctx, 2707 struct perf_event_context *task_ctx, 2708 enum event_type_t event_type) 2709 { 2710 bool cpu_event = !!(event_type & EVENT_CPU); 2711 2712 /* 2713 * If pinned groups are involved, flexible groups also need to be 2714 * scheduled out. 2715 */ 2716 if (event_type & EVENT_PINNED) 2717 event_type |= EVENT_FLEXIBLE; 2718 2719 event_type &= EVENT_ALL; 2720 2721 perf_ctx_disable(&cpuctx->ctx, false); 2722 if (task_ctx) { 2723 perf_ctx_disable(task_ctx, false); 2724 task_ctx_sched_out(task_ctx, event_type); 2725 } 2726 2727 /* 2728 * Decide which cpu ctx groups to schedule out based on the types 2729 * of events that caused rescheduling: 2730 * - EVENT_CPU: schedule out corresponding groups; 2731 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2732 * - otherwise, do nothing more. 2733 */ 2734 if (cpu_event) 2735 ctx_sched_out(&cpuctx->ctx, event_type); 2736 else if (event_type & EVENT_PINNED) 2737 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2738 2739 perf_event_sched_in(cpuctx, task_ctx); 2740 2741 perf_ctx_enable(&cpuctx->ctx, false); 2742 if (task_ctx) 2743 perf_ctx_enable(task_ctx, false); 2744 } 2745 2746 void perf_pmu_resched(struct pmu *pmu) 2747 { 2748 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2749 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2750 2751 perf_ctx_lock(cpuctx, task_ctx); 2752 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2753 perf_ctx_unlock(cpuctx, task_ctx); 2754 } 2755 2756 /* 2757 * Cross CPU call to install and enable a performance event 2758 * 2759 * Very similar to remote_function() + event_function() but cannot assume that 2760 * things like ctx->is_active and cpuctx->task_ctx are set. 2761 */ 2762 static int __perf_install_in_context(void *info) 2763 { 2764 struct perf_event *event = info; 2765 struct perf_event_context *ctx = event->ctx; 2766 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2767 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2768 bool reprogram = true; 2769 int ret = 0; 2770 2771 raw_spin_lock(&cpuctx->ctx.lock); 2772 if (ctx->task) { 2773 raw_spin_lock(&ctx->lock); 2774 task_ctx = ctx; 2775 2776 reprogram = (ctx->task == current); 2777 2778 /* 2779 * If the task is running, it must be running on this CPU, 2780 * otherwise we cannot reprogram things. 2781 * 2782 * If its not running, we don't care, ctx->lock will 2783 * serialize against it becoming runnable. 2784 */ 2785 if (task_curr(ctx->task) && !reprogram) { 2786 ret = -ESRCH; 2787 goto unlock; 2788 } 2789 2790 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2791 } else if (task_ctx) { 2792 raw_spin_lock(&task_ctx->lock); 2793 } 2794 2795 #ifdef CONFIG_CGROUP_PERF 2796 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2797 /* 2798 * If the current cgroup doesn't match the event's 2799 * cgroup, we should not try to schedule it. 2800 */ 2801 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2802 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2803 event->cgrp->css.cgroup); 2804 } 2805 #endif 2806 2807 if (reprogram) { 2808 ctx_sched_out(ctx, EVENT_TIME); 2809 add_event_to_ctx(event, ctx); 2810 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2811 } else { 2812 add_event_to_ctx(event, ctx); 2813 } 2814 2815 unlock: 2816 perf_ctx_unlock(cpuctx, task_ctx); 2817 2818 return ret; 2819 } 2820 2821 static bool exclusive_event_installable(struct perf_event *event, 2822 struct perf_event_context *ctx); 2823 2824 /* 2825 * Attach a performance event to a context. 2826 * 2827 * Very similar to event_function_call, see comment there. 2828 */ 2829 static void 2830 perf_install_in_context(struct perf_event_context *ctx, 2831 struct perf_event *event, 2832 int cpu) 2833 { 2834 struct task_struct *task = READ_ONCE(ctx->task); 2835 2836 lockdep_assert_held(&ctx->mutex); 2837 2838 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2839 2840 if (event->cpu != -1) 2841 WARN_ON_ONCE(event->cpu != cpu); 2842 2843 /* 2844 * Ensures that if we can observe event->ctx, both the event and ctx 2845 * will be 'complete'. See perf_iterate_sb_cpu(). 2846 */ 2847 smp_store_release(&event->ctx, ctx); 2848 2849 /* 2850 * perf_event_attr::disabled events will not run and can be initialized 2851 * without IPI. Except when this is the first event for the context, in 2852 * that case we need the magic of the IPI to set ctx->is_active. 2853 * 2854 * The IOC_ENABLE that is sure to follow the creation of a disabled 2855 * event will issue the IPI and reprogram the hardware. 2856 */ 2857 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2858 ctx->nr_events && !is_cgroup_event(event)) { 2859 raw_spin_lock_irq(&ctx->lock); 2860 if (ctx->task == TASK_TOMBSTONE) { 2861 raw_spin_unlock_irq(&ctx->lock); 2862 return; 2863 } 2864 add_event_to_ctx(event, ctx); 2865 raw_spin_unlock_irq(&ctx->lock); 2866 return; 2867 } 2868 2869 if (!task) { 2870 cpu_function_call(cpu, __perf_install_in_context, event); 2871 return; 2872 } 2873 2874 /* 2875 * Should not happen, we validate the ctx is still alive before calling. 2876 */ 2877 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2878 return; 2879 2880 /* 2881 * Installing events is tricky because we cannot rely on ctx->is_active 2882 * to be set in case this is the nr_events 0 -> 1 transition. 2883 * 2884 * Instead we use task_curr(), which tells us if the task is running. 2885 * However, since we use task_curr() outside of rq::lock, we can race 2886 * against the actual state. This means the result can be wrong. 2887 * 2888 * If we get a false positive, we retry, this is harmless. 2889 * 2890 * If we get a false negative, things are complicated. If we are after 2891 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2892 * value must be correct. If we're before, it doesn't matter since 2893 * perf_event_context_sched_in() will program the counter. 2894 * 2895 * However, this hinges on the remote context switch having observed 2896 * our task->perf_event_ctxp[] store, such that it will in fact take 2897 * ctx::lock in perf_event_context_sched_in(). 2898 * 2899 * We do this by task_function_call(), if the IPI fails to hit the task 2900 * we know any future context switch of task must see the 2901 * perf_event_ctpx[] store. 2902 */ 2903 2904 /* 2905 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2906 * task_cpu() load, such that if the IPI then does not find the task 2907 * running, a future context switch of that task must observe the 2908 * store. 2909 */ 2910 smp_mb(); 2911 again: 2912 if (!task_function_call(task, __perf_install_in_context, event)) 2913 return; 2914 2915 raw_spin_lock_irq(&ctx->lock); 2916 task = ctx->task; 2917 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2918 /* 2919 * Cannot happen because we already checked above (which also 2920 * cannot happen), and we hold ctx->mutex, which serializes us 2921 * against perf_event_exit_task_context(). 2922 */ 2923 raw_spin_unlock_irq(&ctx->lock); 2924 return; 2925 } 2926 /* 2927 * If the task is not running, ctx->lock will avoid it becoming so, 2928 * thus we can safely install the event. 2929 */ 2930 if (task_curr(task)) { 2931 raw_spin_unlock_irq(&ctx->lock); 2932 goto again; 2933 } 2934 add_event_to_ctx(event, ctx); 2935 raw_spin_unlock_irq(&ctx->lock); 2936 } 2937 2938 /* 2939 * Cross CPU call to enable a performance event 2940 */ 2941 static void __perf_event_enable(struct perf_event *event, 2942 struct perf_cpu_context *cpuctx, 2943 struct perf_event_context *ctx, 2944 void *info) 2945 { 2946 struct perf_event *leader = event->group_leader; 2947 struct perf_event_context *task_ctx; 2948 2949 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2950 event->state <= PERF_EVENT_STATE_ERROR) 2951 return; 2952 2953 if (ctx->is_active) 2954 ctx_sched_out(ctx, EVENT_TIME); 2955 2956 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2957 perf_cgroup_event_enable(event, ctx); 2958 2959 if (!ctx->is_active) 2960 return; 2961 2962 if (!event_filter_match(event)) { 2963 ctx_sched_in(ctx, EVENT_TIME); 2964 return; 2965 } 2966 2967 /* 2968 * If the event is in a group and isn't the group leader, 2969 * then don't put it on unless the group is on. 2970 */ 2971 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2972 ctx_sched_in(ctx, EVENT_TIME); 2973 return; 2974 } 2975 2976 task_ctx = cpuctx->task_ctx; 2977 if (ctx->task) 2978 WARN_ON_ONCE(task_ctx != ctx); 2979 2980 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2981 } 2982 2983 /* 2984 * Enable an event. 2985 * 2986 * If event->ctx is a cloned context, callers must make sure that 2987 * every task struct that event->ctx->task could possibly point to 2988 * remains valid. This condition is satisfied when called through 2989 * perf_event_for_each_child or perf_event_for_each as described 2990 * for perf_event_disable. 2991 */ 2992 static void _perf_event_enable(struct perf_event *event) 2993 { 2994 struct perf_event_context *ctx = event->ctx; 2995 2996 raw_spin_lock_irq(&ctx->lock); 2997 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2998 event->state < PERF_EVENT_STATE_ERROR) { 2999 out: 3000 raw_spin_unlock_irq(&ctx->lock); 3001 return; 3002 } 3003 3004 /* 3005 * If the event is in error state, clear that first. 3006 * 3007 * That way, if we see the event in error state below, we know that it 3008 * has gone back into error state, as distinct from the task having 3009 * been scheduled away before the cross-call arrived. 3010 */ 3011 if (event->state == PERF_EVENT_STATE_ERROR) { 3012 /* 3013 * Detached SIBLING events cannot leave ERROR state. 3014 */ 3015 if (event->event_caps & PERF_EV_CAP_SIBLING && 3016 event->group_leader == event) 3017 goto out; 3018 3019 event->state = PERF_EVENT_STATE_OFF; 3020 } 3021 raw_spin_unlock_irq(&ctx->lock); 3022 3023 event_function_call(event, __perf_event_enable, NULL); 3024 } 3025 3026 /* 3027 * See perf_event_disable(); 3028 */ 3029 void perf_event_enable(struct perf_event *event) 3030 { 3031 struct perf_event_context *ctx; 3032 3033 ctx = perf_event_ctx_lock(event); 3034 _perf_event_enable(event); 3035 perf_event_ctx_unlock(event, ctx); 3036 } 3037 EXPORT_SYMBOL_GPL(perf_event_enable); 3038 3039 struct stop_event_data { 3040 struct perf_event *event; 3041 unsigned int restart; 3042 }; 3043 3044 static int __perf_event_stop(void *info) 3045 { 3046 struct stop_event_data *sd = info; 3047 struct perf_event *event = sd->event; 3048 3049 /* if it's already INACTIVE, do nothing */ 3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3051 return 0; 3052 3053 /* matches smp_wmb() in event_sched_in() */ 3054 smp_rmb(); 3055 3056 /* 3057 * There is a window with interrupts enabled before we get here, 3058 * so we need to check again lest we try to stop another CPU's event. 3059 */ 3060 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3061 return -EAGAIN; 3062 3063 event->pmu->stop(event, PERF_EF_UPDATE); 3064 3065 /* 3066 * May race with the actual stop (through perf_pmu_output_stop()), 3067 * but it is only used for events with AUX ring buffer, and such 3068 * events will refuse to restart because of rb::aux_mmap_count==0, 3069 * see comments in perf_aux_output_begin(). 3070 * 3071 * Since this is happening on an event-local CPU, no trace is lost 3072 * while restarting. 3073 */ 3074 if (sd->restart) 3075 event->pmu->start(event, 0); 3076 3077 return 0; 3078 } 3079 3080 static int perf_event_stop(struct perf_event *event, int restart) 3081 { 3082 struct stop_event_data sd = { 3083 .event = event, 3084 .restart = restart, 3085 }; 3086 int ret = 0; 3087 3088 do { 3089 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3090 return 0; 3091 3092 /* matches smp_wmb() in event_sched_in() */ 3093 smp_rmb(); 3094 3095 /* 3096 * We only want to restart ACTIVE events, so if the event goes 3097 * inactive here (event->oncpu==-1), there's nothing more to do; 3098 * fall through with ret==-ENXIO. 3099 */ 3100 ret = cpu_function_call(READ_ONCE(event->oncpu), 3101 __perf_event_stop, &sd); 3102 } while (ret == -EAGAIN); 3103 3104 return ret; 3105 } 3106 3107 /* 3108 * In order to contain the amount of racy and tricky in the address filter 3109 * configuration management, it is a two part process: 3110 * 3111 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3112 * we update the addresses of corresponding vmas in 3113 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3114 * (p2) when an event is scheduled in (pmu::add), it calls 3115 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3116 * if the generation has changed since the previous call. 3117 * 3118 * If (p1) happens while the event is active, we restart it to force (p2). 3119 * 3120 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3121 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3122 * ioctl; 3123 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3124 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3125 * for reading; 3126 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3127 * of exec. 3128 */ 3129 void perf_event_addr_filters_sync(struct perf_event *event) 3130 { 3131 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3132 3133 if (!has_addr_filter(event)) 3134 return; 3135 3136 raw_spin_lock(&ifh->lock); 3137 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3138 event->pmu->addr_filters_sync(event); 3139 event->hw.addr_filters_gen = event->addr_filters_gen; 3140 } 3141 raw_spin_unlock(&ifh->lock); 3142 } 3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3144 3145 static int _perf_event_refresh(struct perf_event *event, int refresh) 3146 { 3147 /* 3148 * not supported on inherited events 3149 */ 3150 if (event->attr.inherit || !is_sampling_event(event)) 3151 return -EINVAL; 3152 3153 atomic_add(refresh, &event->event_limit); 3154 _perf_event_enable(event); 3155 3156 return 0; 3157 } 3158 3159 /* 3160 * See perf_event_disable() 3161 */ 3162 int perf_event_refresh(struct perf_event *event, int refresh) 3163 { 3164 struct perf_event_context *ctx; 3165 int ret; 3166 3167 ctx = perf_event_ctx_lock(event); 3168 ret = _perf_event_refresh(event, refresh); 3169 perf_event_ctx_unlock(event, ctx); 3170 3171 return ret; 3172 } 3173 EXPORT_SYMBOL_GPL(perf_event_refresh); 3174 3175 static int perf_event_modify_breakpoint(struct perf_event *bp, 3176 struct perf_event_attr *attr) 3177 { 3178 int err; 3179 3180 _perf_event_disable(bp); 3181 3182 err = modify_user_hw_breakpoint_check(bp, attr, true); 3183 3184 if (!bp->attr.disabled) 3185 _perf_event_enable(bp); 3186 3187 return err; 3188 } 3189 3190 /* 3191 * Copy event-type-independent attributes that may be modified. 3192 */ 3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3194 const struct perf_event_attr *from) 3195 { 3196 to->sig_data = from->sig_data; 3197 } 3198 3199 static int perf_event_modify_attr(struct perf_event *event, 3200 struct perf_event_attr *attr) 3201 { 3202 int (*func)(struct perf_event *, struct perf_event_attr *); 3203 struct perf_event *child; 3204 int err; 3205 3206 if (event->attr.type != attr->type) 3207 return -EINVAL; 3208 3209 switch (event->attr.type) { 3210 case PERF_TYPE_BREAKPOINT: 3211 func = perf_event_modify_breakpoint; 3212 break; 3213 default: 3214 /* Place holder for future additions. */ 3215 return -EOPNOTSUPP; 3216 } 3217 3218 WARN_ON_ONCE(event->ctx->parent_ctx); 3219 3220 mutex_lock(&event->child_mutex); 3221 /* 3222 * Event-type-independent attributes must be copied before event-type 3223 * modification, which will validate that final attributes match the 3224 * source attributes after all relevant attributes have been copied. 3225 */ 3226 perf_event_modify_copy_attr(&event->attr, attr); 3227 err = func(event, attr); 3228 if (err) 3229 goto out; 3230 list_for_each_entry(child, &event->child_list, child_list) { 3231 perf_event_modify_copy_attr(&child->attr, attr); 3232 err = func(child, attr); 3233 if (err) 3234 goto out; 3235 } 3236 out: 3237 mutex_unlock(&event->child_mutex); 3238 return err; 3239 } 3240 3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3242 enum event_type_t event_type) 3243 { 3244 struct perf_event_context *ctx = pmu_ctx->ctx; 3245 struct perf_event *event, *tmp; 3246 struct pmu *pmu = pmu_ctx->pmu; 3247 3248 if (ctx->task && !ctx->is_active) { 3249 struct perf_cpu_pmu_context *cpc; 3250 3251 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3252 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3253 cpc->task_epc = NULL; 3254 } 3255 3256 if (!event_type) 3257 return; 3258 3259 perf_pmu_disable(pmu); 3260 if (event_type & EVENT_PINNED) { 3261 list_for_each_entry_safe(event, tmp, 3262 &pmu_ctx->pinned_active, 3263 active_list) 3264 group_sched_out(event, ctx); 3265 } 3266 3267 if (event_type & EVENT_FLEXIBLE) { 3268 list_for_each_entry_safe(event, tmp, 3269 &pmu_ctx->flexible_active, 3270 active_list) 3271 group_sched_out(event, ctx); 3272 /* 3273 * Since we cleared EVENT_FLEXIBLE, also clear 3274 * rotate_necessary, is will be reset by 3275 * ctx_flexible_sched_in() when needed. 3276 */ 3277 pmu_ctx->rotate_necessary = 0; 3278 } 3279 perf_pmu_enable(pmu); 3280 } 3281 3282 static void 3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3284 { 3285 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3286 struct perf_event_pmu_context *pmu_ctx; 3287 int is_active = ctx->is_active; 3288 bool cgroup = event_type & EVENT_CGROUP; 3289 3290 event_type &= ~EVENT_CGROUP; 3291 3292 lockdep_assert_held(&ctx->lock); 3293 3294 if (likely(!ctx->nr_events)) { 3295 /* 3296 * See __perf_remove_from_context(). 3297 */ 3298 WARN_ON_ONCE(ctx->is_active); 3299 if (ctx->task) 3300 WARN_ON_ONCE(cpuctx->task_ctx); 3301 return; 3302 } 3303 3304 /* 3305 * Always update time if it was set; not only when it changes. 3306 * Otherwise we can 'forget' to update time for any but the last 3307 * context we sched out. For example: 3308 * 3309 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3310 * ctx_sched_out(.event_type = EVENT_PINNED) 3311 * 3312 * would only update time for the pinned events. 3313 */ 3314 if (is_active & EVENT_TIME) { 3315 /* update (and stop) ctx time */ 3316 update_context_time(ctx); 3317 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3318 /* 3319 * CPU-release for the below ->is_active store, 3320 * see __load_acquire() in perf_event_time_now() 3321 */ 3322 barrier(); 3323 } 3324 3325 ctx->is_active &= ~event_type; 3326 if (!(ctx->is_active & EVENT_ALL)) 3327 ctx->is_active = 0; 3328 3329 if (ctx->task) { 3330 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3331 if (!ctx->is_active) 3332 cpuctx->task_ctx = NULL; 3333 } 3334 3335 is_active ^= ctx->is_active; /* changed bits */ 3336 3337 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3338 if (cgroup && !pmu_ctx->nr_cgroups) 3339 continue; 3340 __pmu_ctx_sched_out(pmu_ctx, is_active); 3341 } 3342 } 3343 3344 /* 3345 * Test whether two contexts are equivalent, i.e. whether they have both been 3346 * cloned from the same version of the same context. 3347 * 3348 * Equivalence is measured using a generation number in the context that is 3349 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3350 * and list_del_event(). 3351 */ 3352 static int context_equiv(struct perf_event_context *ctx1, 3353 struct perf_event_context *ctx2) 3354 { 3355 lockdep_assert_held(&ctx1->lock); 3356 lockdep_assert_held(&ctx2->lock); 3357 3358 /* Pinning disables the swap optimization */ 3359 if (ctx1->pin_count || ctx2->pin_count) 3360 return 0; 3361 3362 /* If ctx1 is the parent of ctx2 */ 3363 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3364 return 1; 3365 3366 /* If ctx2 is the parent of ctx1 */ 3367 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3368 return 1; 3369 3370 /* 3371 * If ctx1 and ctx2 have the same parent; we flatten the parent 3372 * hierarchy, see perf_event_init_context(). 3373 */ 3374 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3375 ctx1->parent_gen == ctx2->parent_gen) 3376 return 1; 3377 3378 /* Unmatched */ 3379 return 0; 3380 } 3381 3382 static void __perf_event_sync_stat(struct perf_event *event, 3383 struct perf_event *next_event) 3384 { 3385 u64 value; 3386 3387 if (!event->attr.inherit_stat) 3388 return; 3389 3390 /* 3391 * Update the event value, we cannot use perf_event_read() 3392 * because we're in the middle of a context switch and have IRQs 3393 * disabled, which upsets smp_call_function_single(), however 3394 * we know the event must be on the current CPU, therefore we 3395 * don't need to use it. 3396 */ 3397 if (event->state == PERF_EVENT_STATE_ACTIVE) 3398 event->pmu->read(event); 3399 3400 perf_event_update_time(event); 3401 3402 /* 3403 * In order to keep per-task stats reliable we need to flip the event 3404 * values when we flip the contexts. 3405 */ 3406 value = local64_read(&next_event->count); 3407 value = local64_xchg(&event->count, value); 3408 local64_set(&next_event->count, value); 3409 3410 swap(event->total_time_enabled, next_event->total_time_enabled); 3411 swap(event->total_time_running, next_event->total_time_running); 3412 3413 /* 3414 * Since we swizzled the values, update the user visible data too. 3415 */ 3416 perf_event_update_userpage(event); 3417 perf_event_update_userpage(next_event); 3418 } 3419 3420 static void perf_event_sync_stat(struct perf_event_context *ctx, 3421 struct perf_event_context *next_ctx) 3422 { 3423 struct perf_event *event, *next_event; 3424 3425 if (!ctx->nr_stat) 3426 return; 3427 3428 update_context_time(ctx); 3429 3430 event = list_first_entry(&ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 next_event = list_first_entry(&next_ctx->event_list, 3434 struct perf_event, event_entry); 3435 3436 while (&event->event_entry != &ctx->event_list && 3437 &next_event->event_entry != &next_ctx->event_list) { 3438 3439 __perf_event_sync_stat(event, next_event); 3440 3441 event = list_next_entry(event, event_entry); 3442 next_event = list_next_entry(next_event, event_entry); 3443 } 3444 } 3445 3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3447 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3448 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3449 !list_entry_is_head(pos1, head1, member) && \ 3450 !list_entry_is_head(pos2, head2, member); \ 3451 pos1 = list_next_entry(pos1, member), \ 3452 pos2 = list_next_entry(pos2, member)) 3453 3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3455 struct perf_event_context *next_ctx) 3456 { 3457 struct perf_event_pmu_context *prev_epc, *next_epc; 3458 3459 if (!prev_ctx->nr_task_data) 3460 return; 3461 3462 double_list_for_each_entry(prev_epc, next_epc, 3463 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3464 pmu_ctx_entry) { 3465 3466 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3467 continue; 3468 3469 /* 3470 * PMU specific parts of task perf context can require 3471 * additional synchronization. As an example of such 3472 * synchronization see implementation details of Intel 3473 * LBR call stack data profiling; 3474 */ 3475 if (prev_epc->pmu->swap_task_ctx) 3476 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3477 else 3478 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3479 } 3480 } 3481 3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3483 { 3484 struct perf_event_pmu_context *pmu_ctx; 3485 struct perf_cpu_pmu_context *cpc; 3486 3487 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3488 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3489 3490 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3491 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3492 } 3493 } 3494 3495 static void 3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3497 { 3498 struct perf_event_context *ctx = task->perf_event_ctxp; 3499 struct perf_event_context *next_ctx; 3500 struct perf_event_context *parent, *next_parent; 3501 int do_switch = 1; 3502 3503 if (likely(!ctx)) 3504 return; 3505 3506 rcu_read_lock(); 3507 next_ctx = rcu_dereference(next->perf_event_ctxp); 3508 if (!next_ctx) 3509 goto unlock; 3510 3511 parent = rcu_dereference(ctx->parent_ctx); 3512 next_parent = rcu_dereference(next_ctx->parent_ctx); 3513 3514 /* If neither context have a parent context; they cannot be clones. */ 3515 if (!parent && !next_parent) 3516 goto unlock; 3517 3518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3519 /* 3520 * Looks like the two contexts are clones, so we might be 3521 * able to optimize the context switch. We lock both 3522 * contexts and check that they are clones under the 3523 * lock (including re-checking that neither has been 3524 * uncloned in the meantime). It doesn't matter which 3525 * order we take the locks because no other cpu could 3526 * be trying to lock both of these tasks. 3527 */ 3528 raw_spin_lock(&ctx->lock); 3529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3530 if (context_equiv(ctx, next_ctx)) { 3531 3532 perf_ctx_disable(ctx, false); 3533 3534 /* PMIs are disabled; ctx->nr_pending is stable. */ 3535 if (local_read(&ctx->nr_pending) || 3536 local_read(&next_ctx->nr_pending)) { 3537 /* 3538 * Must not swap out ctx when there's pending 3539 * events that rely on the ctx->task relation. 3540 */ 3541 raw_spin_unlock(&next_ctx->lock); 3542 rcu_read_unlock(); 3543 goto inside_switch; 3544 } 3545 3546 WRITE_ONCE(ctx->task, next); 3547 WRITE_ONCE(next_ctx->task, task); 3548 3549 perf_ctx_sched_task_cb(ctx, false); 3550 perf_event_swap_task_ctx_data(ctx, next_ctx); 3551 3552 perf_ctx_enable(ctx, false); 3553 3554 /* 3555 * RCU_INIT_POINTER here is safe because we've not 3556 * modified the ctx and the above modification of 3557 * ctx->task and ctx->task_ctx_data are immaterial 3558 * since those values are always verified under 3559 * ctx->lock which we're now holding. 3560 */ 3561 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3562 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3563 3564 do_switch = 0; 3565 3566 perf_event_sync_stat(ctx, next_ctx); 3567 } 3568 raw_spin_unlock(&next_ctx->lock); 3569 raw_spin_unlock(&ctx->lock); 3570 } 3571 unlock: 3572 rcu_read_unlock(); 3573 3574 if (do_switch) { 3575 raw_spin_lock(&ctx->lock); 3576 perf_ctx_disable(ctx, false); 3577 3578 inside_switch: 3579 perf_ctx_sched_task_cb(ctx, false); 3580 task_ctx_sched_out(ctx, EVENT_ALL); 3581 3582 perf_ctx_enable(ctx, false); 3583 raw_spin_unlock(&ctx->lock); 3584 } 3585 } 3586 3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3589 3590 void perf_sched_cb_dec(struct pmu *pmu) 3591 { 3592 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3593 3594 this_cpu_dec(perf_sched_cb_usages); 3595 barrier(); 3596 3597 if (!--cpc->sched_cb_usage) 3598 list_del(&cpc->sched_cb_entry); 3599 } 3600 3601 3602 void perf_sched_cb_inc(struct pmu *pmu) 3603 { 3604 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3605 3606 if (!cpc->sched_cb_usage++) 3607 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3608 3609 barrier(); 3610 this_cpu_inc(perf_sched_cb_usages); 3611 } 3612 3613 /* 3614 * This function provides the context switch callback to the lower code 3615 * layer. It is invoked ONLY when the context switch callback is enabled. 3616 * 3617 * This callback is relevant even to per-cpu events; for example multi event 3618 * PEBS requires this to provide PID/TID information. This requires we flush 3619 * all queued PEBS records before we context switch to a new task. 3620 */ 3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3622 { 3623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3624 struct pmu *pmu; 3625 3626 pmu = cpc->epc.pmu; 3627 3628 /* software PMUs will not have sched_task */ 3629 if (WARN_ON_ONCE(!pmu->sched_task)) 3630 return; 3631 3632 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3633 perf_pmu_disable(pmu); 3634 3635 pmu->sched_task(cpc->task_epc, sched_in); 3636 3637 perf_pmu_enable(pmu); 3638 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3639 } 3640 3641 static void perf_pmu_sched_task(struct task_struct *prev, 3642 struct task_struct *next, 3643 bool sched_in) 3644 { 3645 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3646 struct perf_cpu_pmu_context *cpc; 3647 3648 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3649 if (prev == next || cpuctx->task_ctx) 3650 return; 3651 3652 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3653 __perf_pmu_sched_task(cpc, sched_in); 3654 } 3655 3656 static void perf_event_switch(struct task_struct *task, 3657 struct task_struct *next_prev, bool sched_in); 3658 3659 /* 3660 * Called from scheduler to remove the events of the current task, 3661 * with interrupts disabled. 3662 * 3663 * We stop each event and update the event value in event->count. 3664 * 3665 * This does not protect us against NMI, but disable() 3666 * sets the disabled bit in the control field of event _before_ 3667 * accessing the event control register. If a NMI hits, then it will 3668 * not restart the event. 3669 */ 3670 void __perf_event_task_sched_out(struct task_struct *task, 3671 struct task_struct *next) 3672 { 3673 if (__this_cpu_read(perf_sched_cb_usages)) 3674 perf_pmu_sched_task(task, next, false); 3675 3676 if (atomic_read(&nr_switch_events)) 3677 perf_event_switch(task, next, false); 3678 3679 perf_event_context_sched_out(task, next); 3680 3681 /* 3682 * if cgroup events exist on this CPU, then we need 3683 * to check if we have to switch out PMU state. 3684 * cgroup event are system-wide mode only 3685 */ 3686 perf_cgroup_switch(next); 3687 } 3688 3689 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3690 { 3691 const struct perf_event *le = *(const struct perf_event **)l; 3692 const struct perf_event *re = *(const struct perf_event **)r; 3693 3694 return le->group_index < re->group_index; 3695 } 3696 3697 static void swap_ptr(void *l, void *r, void __always_unused *args) 3698 { 3699 void **lp = l, **rp = r; 3700 3701 swap(*lp, *rp); 3702 } 3703 3704 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3705 3706 static const struct min_heap_callbacks perf_min_heap = { 3707 .less = perf_less_group_idx, 3708 .swp = swap_ptr, 3709 }; 3710 3711 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3712 { 3713 struct perf_event **itrs = heap->data; 3714 3715 if (event) { 3716 itrs[heap->nr] = event; 3717 heap->nr++; 3718 } 3719 } 3720 3721 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3722 { 3723 struct perf_cpu_pmu_context *cpc; 3724 3725 if (!pmu_ctx->ctx->task) 3726 return; 3727 3728 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3729 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3730 cpc->task_epc = pmu_ctx; 3731 } 3732 3733 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3734 struct perf_event_groups *groups, int cpu, 3735 struct pmu *pmu, 3736 int (*func)(struct perf_event *, void *), 3737 void *data) 3738 { 3739 #ifdef CONFIG_CGROUP_PERF 3740 struct cgroup_subsys_state *css = NULL; 3741 #endif 3742 struct perf_cpu_context *cpuctx = NULL; 3743 /* Space for per CPU and/or any CPU event iterators. */ 3744 struct perf_event *itrs[2]; 3745 struct perf_event_min_heap event_heap; 3746 struct perf_event **evt; 3747 int ret; 3748 3749 if (pmu->filter && pmu->filter(pmu, cpu)) 3750 return 0; 3751 3752 if (!ctx->task) { 3753 cpuctx = this_cpu_ptr(&perf_cpu_context); 3754 event_heap = (struct perf_event_min_heap){ 3755 .data = cpuctx->heap, 3756 .nr = 0, 3757 .size = cpuctx->heap_size, 3758 }; 3759 3760 lockdep_assert_held(&cpuctx->ctx.lock); 3761 3762 #ifdef CONFIG_CGROUP_PERF 3763 if (cpuctx->cgrp) 3764 css = &cpuctx->cgrp->css; 3765 #endif 3766 } else { 3767 event_heap = (struct perf_event_min_heap){ 3768 .data = itrs, 3769 .nr = 0, 3770 .size = ARRAY_SIZE(itrs), 3771 }; 3772 /* Events not within a CPU context may be on any CPU. */ 3773 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3774 } 3775 evt = event_heap.data; 3776 3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3778 3779 #ifdef CONFIG_CGROUP_PERF 3780 for (; css; css = css->parent) 3781 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3782 #endif 3783 3784 if (event_heap.nr) { 3785 __link_epc((*evt)->pmu_ctx); 3786 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3787 } 3788 3789 min_heapify_all(&event_heap, &perf_min_heap, NULL); 3790 3791 while (event_heap.nr) { 3792 ret = func(*evt, data); 3793 if (ret) 3794 return ret; 3795 3796 *evt = perf_event_groups_next(*evt, pmu); 3797 if (*evt) 3798 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL); 3799 else 3800 min_heap_pop(&event_heap, &perf_min_heap, NULL); 3801 } 3802 3803 return 0; 3804 } 3805 3806 /* 3807 * Because the userpage is strictly per-event (there is no concept of context, 3808 * so there cannot be a context indirection), every userpage must be updated 3809 * when context time starts :-( 3810 * 3811 * IOW, we must not miss EVENT_TIME edges. 3812 */ 3813 static inline bool event_update_userpage(struct perf_event *event) 3814 { 3815 if (likely(!atomic_read(&event->mmap_count))) 3816 return false; 3817 3818 perf_event_update_time(event); 3819 perf_event_update_userpage(event); 3820 3821 return true; 3822 } 3823 3824 static inline void group_update_userpage(struct perf_event *group_event) 3825 { 3826 struct perf_event *event; 3827 3828 if (!event_update_userpage(group_event)) 3829 return; 3830 3831 for_each_sibling_event(event, group_event) 3832 event_update_userpage(event); 3833 } 3834 3835 static int merge_sched_in(struct perf_event *event, void *data) 3836 { 3837 struct perf_event_context *ctx = event->ctx; 3838 int *can_add_hw = data; 3839 3840 if (event->state <= PERF_EVENT_STATE_OFF) 3841 return 0; 3842 3843 if (!event_filter_match(event)) 3844 return 0; 3845 3846 if (group_can_go_on(event, *can_add_hw)) { 3847 if (!group_sched_in(event, ctx)) 3848 list_add_tail(&event->active_list, get_event_list(event)); 3849 } 3850 3851 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3852 *can_add_hw = 0; 3853 if (event->attr.pinned) { 3854 perf_cgroup_event_disable(event, ctx); 3855 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3856 } else { 3857 struct perf_cpu_pmu_context *cpc; 3858 3859 event->pmu_ctx->rotate_necessary = 1; 3860 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3861 perf_mux_hrtimer_restart(cpc); 3862 group_update_userpage(event); 3863 } 3864 } 3865 3866 return 0; 3867 } 3868 3869 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3870 struct perf_event_groups *groups, 3871 struct pmu *pmu) 3872 { 3873 int can_add_hw = 1; 3874 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3875 merge_sched_in, &can_add_hw); 3876 } 3877 3878 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3879 struct perf_event_groups *groups, 3880 bool cgroup) 3881 { 3882 struct perf_event_pmu_context *pmu_ctx; 3883 3884 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3885 if (cgroup && !pmu_ctx->nr_cgroups) 3886 continue; 3887 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3888 } 3889 } 3890 3891 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3892 struct pmu *pmu) 3893 { 3894 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3895 } 3896 3897 static void 3898 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3899 { 3900 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3901 int is_active = ctx->is_active; 3902 bool cgroup = event_type & EVENT_CGROUP; 3903 3904 event_type &= ~EVENT_CGROUP; 3905 3906 lockdep_assert_held(&ctx->lock); 3907 3908 if (likely(!ctx->nr_events)) 3909 return; 3910 3911 if (!(is_active & EVENT_TIME)) { 3912 /* start ctx time */ 3913 __update_context_time(ctx, false); 3914 perf_cgroup_set_timestamp(cpuctx); 3915 /* 3916 * CPU-release for the below ->is_active store, 3917 * see __load_acquire() in perf_event_time_now() 3918 */ 3919 barrier(); 3920 } 3921 3922 ctx->is_active |= (event_type | EVENT_TIME); 3923 if (ctx->task) { 3924 if (!is_active) 3925 cpuctx->task_ctx = ctx; 3926 else 3927 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3928 } 3929 3930 is_active ^= ctx->is_active; /* changed bits */ 3931 3932 /* 3933 * First go through the list and put on any pinned groups 3934 * in order to give them the best chance of going on. 3935 */ 3936 if (is_active & EVENT_PINNED) 3937 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3938 3939 /* Then walk through the lower prio flexible groups */ 3940 if (is_active & EVENT_FLEXIBLE) 3941 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3942 } 3943 3944 static void perf_event_context_sched_in(struct task_struct *task) 3945 { 3946 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3947 struct perf_event_context *ctx; 3948 3949 rcu_read_lock(); 3950 ctx = rcu_dereference(task->perf_event_ctxp); 3951 if (!ctx) 3952 goto rcu_unlock; 3953 3954 if (cpuctx->task_ctx == ctx) { 3955 perf_ctx_lock(cpuctx, ctx); 3956 perf_ctx_disable(ctx, false); 3957 3958 perf_ctx_sched_task_cb(ctx, true); 3959 3960 perf_ctx_enable(ctx, false); 3961 perf_ctx_unlock(cpuctx, ctx); 3962 goto rcu_unlock; 3963 } 3964 3965 perf_ctx_lock(cpuctx, ctx); 3966 /* 3967 * We must check ctx->nr_events while holding ctx->lock, such 3968 * that we serialize against perf_install_in_context(). 3969 */ 3970 if (!ctx->nr_events) 3971 goto unlock; 3972 3973 perf_ctx_disable(ctx, false); 3974 /* 3975 * We want to keep the following priority order: 3976 * cpu pinned (that don't need to move), task pinned, 3977 * cpu flexible, task flexible. 3978 * 3979 * However, if task's ctx is not carrying any pinned 3980 * events, no need to flip the cpuctx's events around. 3981 */ 3982 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3983 perf_ctx_disable(&cpuctx->ctx, false); 3984 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3985 } 3986 3987 perf_event_sched_in(cpuctx, ctx); 3988 3989 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3990 3991 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3992 perf_ctx_enable(&cpuctx->ctx, false); 3993 3994 perf_ctx_enable(ctx, false); 3995 3996 unlock: 3997 perf_ctx_unlock(cpuctx, ctx); 3998 rcu_unlock: 3999 rcu_read_unlock(); 4000 } 4001 4002 /* 4003 * Called from scheduler to add the events of the current task 4004 * with interrupts disabled. 4005 * 4006 * We restore the event value and then enable it. 4007 * 4008 * This does not protect us against NMI, but enable() 4009 * sets the enabled bit in the control field of event _before_ 4010 * accessing the event control register. If a NMI hits, then it will 4011 * keep the event running. 4012 */ 4013 void __perf_event_task_sched_in(struct task_struct *prev, 4014 struct task_struct *task) 4015 { 4016 perf_event_context_sched_in(task); 4017 4018 if (atomic_read(&nr_switch_events)) 4019 perf_event_switch(task, prev, true); 4020 4021 if (__this_cpu_read(perf_sched_cb_usages)) 4022 perf_pmu_sched_task(prev, task, true); 4023 } 4024 4025 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4026 { 4027 u64 frequency = event->attr.sample_freq; 4028 u64 sec = NSEC_PER_SEC; 4029 u64 divisor, dividend; 4030 4031 int count_fls, nsec_fls, frequency_fls, sec_fls; 4032 4033 count_fls = fls64(count); 4034 nsec_fls = fls64(nsec); 4035 frequency_fls = fls64(frequency); 4036 sec_fls = 30; 4037 4038 /* 4039 * We got @count in @nsec, with a target of sample_freq HZ 4040 * the target period becomes: 4041 * 4042 * @count * 10^9 4043 * period = ------------------- 4044 * @nsec * sample_freq 4045 * 4046 */ 4047 4048 /* 4049 * Reduce accuracy by one bit such that @a and @b converge 4050 * to a similar magnitude. 4051 */ 4052 #define REDUCE_FLS(a, b) \ 4053 do { \ 4054 if (a##_fls > b##_fls) { \ 4055 a >>= 1; \ 4056 a##_fls--; \ 4057 } else { \ 4058 b >>= 1; \ 4059 b##_fls--; \ 4060 } \ 4061 } while (0) 4062 4063 /* 4064 * Reduce accuracy until either term fits in a u64, then proceed with 4065 * the other, so that finally we can do a u64/u64 division. 4066 */ 4067 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4068 REDUCE_FLS(nsec, frequency); 4069 REDUCE_FLS(sec, count); 4070 } 4071 4072 if (count_fls + sec_fls > 64) { 4073 divisor = nsec * frequency; 4074 4075 while (count_fls + sec_fls > 64) { 4076 REDUCE_FLS(count, sec); 4077 divisor >>= 1; 4078 } 4079 4080 dividend = count * sec; 4081 } else { 4082 dividend = count * sec; 4083 4084 while (nsec_fls + frequency_fls > 64) { 4085 REDUCE_FLS(nsec, frequency); 4086 dividend >>= 1; 4087 } 4088 4089 divisor = nsec * frequency; 4090 } 4091 4092 if (!divisor) 4093 return dividend; 4094 4095 return div64_u64(dividend, divisor); 4096 } 4097 4098 static DEFINE_PER_CPU(int, perf_throttled_count); 4099 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4100 4101 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4102 { 4103 struct hw_perf_event *hwc = &event->hw; 4104 s64 period, sample_period; 4105 s64 delta; 4106 4107 period = perf_calculate_period(event, nsec, count); 4108 4109 delta = (s64)(period - hwc->sample_period); 4110 delta = (delta + 7) / 8; /* low pass filter */ 4111 4112 sample_period = hwc->sample_period + delta; 4113 4114 if (!sample_period) 4115 sample_period = 1; 4116 4117 hwc->sample_period = sample_period; 4118 4119 if (local64_read(&hwc->period_left) > 8*sample_period) { 4120 if (disable) 4121 event->pmu->stop(event, PERF_EF_UPDATE); 4122 4123 local64_set(&hwc->period_left, 0); 4124 4125 if (disable) 4126 event->pmu->start(event, PERF_EF_RELOAD); 4127 } 4128 } 4129 4130 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4131 { 4132 struct perf_event *event; 4133 struct hw_perf_event *hwc; 4134 u64 now, period = TICK_NSEC; 4135 s64 delta; 4136 4137 list_for_each_entry(event, event_list, active_list) { 4138 if (event->state != PERF_EVENT_STATE_ACTIVE) 4139 continue; 4140 4141 // XXX use visit thingy to avoid the -1,cpu match 4142 if (!event_filter_match(event)) 4143 continue; 4144 4145 hwc = &event->hw; 4146 4147 if (hwc->interrupts == MAX_INTERRUPTS) { 4148 hwc->interrupts = 0; 4149 perf_log_throttle(event, 1); 4150 if (!event->attr.freq || !event->attr.sample_freq) 4151 event->pmu->start(event, 0); 4152 } 4153 4154 if (!event->attr.freq || !event->attr.sample_freq) 4155 continue; 4156 4157 /* 4158 * stop the event and update event->count 4159 */ 4160 event->pmu->stop(event, PERF_EF_UPDATE); 4161 4162 now = local64_read(&event->count); 4163 delta = now - hwc->freq_count_stamp; 4164 hwc->freq_count_stamp = now; 4165 4166 /* 4167 * restart the event 4168 * reload only if value has changed 4169 * we have stopped the event so tell that 4170 * to perf_adjust_period() to avoid stopping it 4171 * twice. 4172 */ 4173 if (delta > 0) 4174 perf_adjust_period(event, period, delta, false); 4175 4176 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4177 } 4178 } 4179 4180 /* 4181 * combine freq adjustment with unthrottling to avoid two passes over the 4182 * events. At the same time, make sure, having freq events does not change 4183 * the rate of unthrottling as that would introduce bias. 4184 */ 4185 static void 4186 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4187 { 4188 struct perf_event_pmu_context *pmu_ctx; 4189 4190 /* 4191 * only need to iterate over all events iff: 4192 * - context have events in frequency mode (needs freq adjust) 4193 * - there are events to unthrottle on this cpu 4194 */ 4195 if (!(ctx->nr_freq || unthrottle)) 4196 return; 4197 4198 raw_spin_lock(&ctx->lock); 4199 4200 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4201 if (!(pmu_ctx->nr_freq || unthrottle)) 4202 continue; 4203 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4204 continue; 4205 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4206 continue; 4207 4208 perf_pmu_disable(pmu_ctx->pmu); 4209 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4210 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4211 perf_pmu_enable(pmu_ctx->pmu); 4212 } 4213 4214 raw_spin_unlock(&ctx->lock); 4215 } 4216 4217 /* 4218 * Move @event to the tail of the @ctx's elegible events. 4219 */ 4220 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4221 { 4222 /* 4223 * Rotate the first entry last of non-pinned groups. Rotation might be 4224 * disabled by the inheritance code. 4225 */ 4226 if (ctx->rotate_disable) 4227 return; 4228 4229 perf_event_groups_delete(&ctx->flexible_groups, event); 4230 perf_event_groups_insert(&ctx->flexible_groups, event); 4231 } 4232 4233 /* pick an event from the flexible_groups to rotate */ 4234 static inline struct perf_event * 4235 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4236 { 4237 struct perf_event *event; 4238 struct rb_node *node; 4239 struct rb_root *tree; 4240 struct __group_key key = { 4241 .pmu = pmu_ctx->pmu, 4242 }; 4243 4244 /* pick the first active flexible event */ 4245 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4246 struct perf_event, active_list); 4247 if (event) 4248 goto out; 4249 4250 /* if no active flexible event, pick the first event */ 4251 tree = &pmu_ctx->ctx->flexible_groups.tree; 4252 4253 if (!pmu_ctx->ctx->task) { 4254 key.cpu = smp_processor_id(); 4255 4256 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4257 if (node) 4258 event = __node_2_pe(node); 4259 goto out; 4260 } 4261 4262 key.cpu = -1; 4263 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4264 if (node) { 4265 event = __node_2_pe(node); 4266 goto out; 4267 } 4268 4269 key.cpu = smp_processor_id(); 4270 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4271 if (node) 4272 event = __node_2_pe(node); 4273 4274 out: 4275 /* 4276 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4277 * finds there are unschedulable events, it will set it again. 4278 */ 4279 pmu_ctx->rotate_necessary = 0; 4280 4281 return event; 4282 } 4283 4284 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4285 { 4286 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4287 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4288 struct perf_event *cpu_event = NULL, *task_event = NULL; 4289 int cpu_rotate, task_rotate; 4290 struct pmu *pmu; 4291 4292 /* 4293 * Since we run this from IRQ context, nobody can install new 4294 * events, thus the event count values are stable. 4295 */ 4296 4297 cpu_epc = &cpc->epc; 4298 pmu = cpu_epc->pmu; 4299 task_epc = cpc->task_epc; 4300 4301 cpu_rotate = cpu_epc->rotate_necessary; 4302 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4303 4304 if (!(cpu_rotate || task_rotate)) 4305 return false; 4306 4307 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4308 perf_pmu_disable(pmu); 4309 4310 if (task_rotate) 4311 task_event = ctx_event_to_rotate(task_epc); 4312 if (cpu_rotate) 4313 cpu_event = ctx_event_to_rotate(cpu_epc); 4314 4315 /* 4316 * As per the order given at ctx_resched() first 'pop' task flexible 4317 * and then, if needed CPU flexible. 4318 */ 4319 if (task_event || (task_epc && cpu_event)) { 4320 update_context_time(task_epc->ctx); 4321 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4322 } 4323 4324 if (cpu_event) { 4325 update_context_time(&cpuctx->ctx); 4326 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4327 rotate_ctx(&cpuctx->ctx, cpu_event); 4328 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4329 } 4330 4331 if (task_event) 4332 rotate_ctx(task_epc->ctx, task_event); 4333 4334 if (task_event || (task_epc && cpu_event)) 4335 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4336 4337 perf_pmu_enable(pmu); 4338 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4339 4340 return true; 4341 } 4342 4343 void perf_event_task_tick(void) 4344 { 4345 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4346 struct perf_event_context *ctx; 4347 int throttled; 4348 4349 lockdep_assert_irqs_disabled(); 4350 4351 __this_cpu_inc(perf_throttled_seq); 4352 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4353 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4354 4355 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4356 4357 rcu_read_lock(); 4358 ctx = rcu_dereference(current->perf_event_ctxp); 4359 if (ctx) 4360 perf_adjust_freq_unthr_context(ctx, !!throttled); 4361 rcu_read_unlock(); 4362 } 4363 4364 static int event_enable_on_exec(struct perf_event *event, 4365 struct perf_event_context *ctx) 4366 { 4367 if (!event->attr.enable_on_exec) 4368 return 0; 4369 4370 event->attr.enable_on_exec = 0; 4371 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4372 return 0; 4373 4374 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4375 4376 return 1; 4377 } 4378 4379 /* 4380 * Enable all of a task's events that have been marked enable-on-exec. 4381 * This expects task == current. 4382 */ 4383 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4384 { 4385 struct perf_event_context *clone_ctx = NULL; 4386 enum event_type_t event_type = 0; 4387 struct perf_cpu_context *cpuctx; 4388 struct perf_event *event; 4389 unsigned long flags; 4390 int enabled = 0; 4391 4392 local_irq_save(flags); 4393 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4394 goto out; 4395 4396 if (!ctx->nr_events) 4397 goto out; 4398 4399 cpuctx = this_cpu_ptr(&perf_cpu_context); 4400 perf_ctx_lock(cpuctx, ctx); 4401 ctx_sched_out(ctx, EVENT_TIME); 4402 4403 list_for_each_entry(event, &ctx->event_list, event_entry) { 4404 enabled |= event_enable_on_exec(event, ctx); 4405 event_type |= get_event_type(event); 4406 } 4407 4408 /* 4409 * Unclone and reschedule this context if we enabled any event. 4410 */ 4411 if (enabled) { 4412 clone_ctx = unclone_ctx(ctx); 4413 ctx_resched(cpuctx, ctx, event_type); 4414 } else { 4415 ctx_sched_in(ctx, EVENT_TIME); 4416 } 4417 perf_ctx_unlock(cpuctx, ctx); 4418 4419 out: 4420 local_irq_restore(flags); 4421 4422 if (clone_ctx) 4423 put_ctx(clone_ctx); 4424 } 4425 4426 static void perf_remove_from_owner(struct perf_event *event); 4427 static void perf_event_exit_event(struct perf_event *event, 4428 struct perf_event_context *ctx); 4429 4430 /* 4431 * Removes all events from the current task that have been marked 4432 * remove-on-exec, and feeds their values back to parent events. 4433 */ 4434 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4435 { 4436 struct perf_event_context *clone_ctx = NULL; 4437 struct perf_event *event, *next; 4438 unsigned long flags; 4439 bool modified = false; 4440 4441 mutex_lock(&ctx->mutex); 4442 4443 if (WARN_ON_ONCE(ctx->task != current)) 4444 goto unlock; 4445 4446 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4447 if (!event->attr.remove_on_exec) 4448 continue; 4449 4450 if (!is_kernel_event(event)) 4451 perf_remove_from_owner(event); 4452 4453 modified = true; 4454 4455 perf_event_exit_event(event, ctx); 4456 } 4457 4458 raw_spin_lock_irqsave(&ctx->lock, flags); 4459 if (modified) 4460 clone_ctx = unclone_ctx(ctx); 4461 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4462 4463 unlock: 4464 mutex_unlock(&ctx->mutex); 4465 4466 if (clone_ctx) 4467 put_ctx(clone_ctx); 4468 } 4469 4470 struct perf_read_data { 4471 struct perf_event *event; 4472 bool group; 4473 int ret; 4474 }; 4475 4476 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4477 { 4478 u16 local_pkg, event_pkg; 4479 4480 if ((unsigned)event_cpu >= nr_cpu_ids) 4481 return event_cpu; 4482 4483 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4484 int local_cpu = smp_processor_id(); 4485 4486 event_pkg = topology_physical_package_id(event_cpu); 4487 local_pkg = topology_physical_package_id(local_cpu); 4488 4489 if (event_pkg == local_pkg) 4490 return local_cpu; 4491 } 4492 4493 return event_cpu; 4494 } 4495 4496 /* 4497 * Cross CPU call to read the hardware event 4498 */ 4499 static void __perf_event_read(void *info) 4500 { 4501 struct perf_read_data *data = info; 4502 struct perf_event *sub, *event = data->event; 4503 struct perf_event_context *ctx = event->ctx; 4504 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4505 struct pmu *pmu = event->pmu; 4506 4507 /* 4508 * If this is a task context, we need to check whether it is 4509 * the current task context of this cpu. If not it has been 4510 * scheduled out before the smp call arrived. In that case 4511 * event->count would have been updated to a recent sample 4512 * when the event was scheduled out. 4513 */ 4514 if (ctx->task && cpuctx->task_ctx != ctx) 4515 return; 4516 4517 raw_spin_lock(&ctx->lock); 4518 if (ctx->is_active & EVENT_TIME) { 4519 update_context_time(ctx); 4520 update_cgrp_time_from_event(event); 4521 } 4522 4523 perf_event_update_time(event); 4524 if (data->group) 4525 perf_event_update_sibling_time(event); 4526 4527 if (event->state != PERF_EVENT_STATE_ACTIVE) 4528 goto unlock; 4529 4530 if (!data->group) { 4531 pmu->read(event); 4532 data->ret = 0; 4533 goto unlock; 4534 } 4535 4536 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4537 4538 pmu->read(event); 4539 4540 for_each_sibling_event(sub, event) { 4541 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4542 /* 4543 * Use sibling's PMU rather than @event's since 4544 * sibling could be on different (eg: software) PMU. 4545 */ 4546 sub->pmu->read(sub); 4547 } 4548 } 4549 4550 data->ret = pmu->commit_txn(pmu); 4551 4552 unlock: 4553 raw_spin_unlock(&ctx->lock); 4554 } 4555 4556 static inline u64 perf_event_count(struct perf_event *event) 4557 { 4558 return local64_read(&event->count) + atomic64_read(&event->child_count); 4559 } 4560 4561 static void calc_timer_values(struct perf_event *event, 4562 u64 *now, 4563 u64 *enabled, 4564 u64 *running) 4565 { 4566 u64 ctx_time; 4567 4568 *now = perf_clock(); 4569 ctx_time = perf_event_time_now(event, *now); 4570 __perf_update_times(event, ctx_time, enabled, running); 4571 } 4572 4573 /* 4574 * NMI-safe method to read a local event, that is an event that 4575 * is: 4576 * - either for the current task, or for this CPU 4577 * - does not have inherit set, for inherited task events 4578 * will not be local and we cannot read them atomically 4579 * - must not have a pmu::count method 4580 */ 4581 int perf_event_read_local(struct perf_event *event, u64 *value, 4582 u64 *enabled, u64 *running) 4583 { 4584 unsigned long flags; 4585 int event_oncpu; 4586 int event_cpu; 4587 int ret = 0; 4588 4589 /* 4590 * Disabling interrupts avoids all counter scheduling (context 4591 * switches, timer based rotation and IPIs). 4592 */ 4593 local_irq_save(flags); 4594 4595 /* 4596 * It must not be an event with inherit set, we cannot read 4597 * all child counters from atomic context. 4598 */ 4599 if (event->attr.inherit) { 4600 ret = -EOPNOTSUPP; 4601 goto out; 4602 } 4603 4604 /* If this is a per-task event, it must be for current */ 4605 if ((event->attach_state & PERF_ATTACH_TASK) && 4606 event->hw.target != current) { 4607 ret = -EINVAL; 4608 goto out; 4609 } 4610 4611 /* 4612 * Get the event CPU numbers, and adjust them to local if the event is 4613 * a per-package event that can be read locally 4614 */ 4615 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4616 event_cpu = __perf_event_read_cpu(event, event->cpu); 4617 4618 /* If this is a per-CPU event, it must be for this CPU */ 4619 if (!(event->attach_state & PERF_ATTACH_TASK) && 4620 event_cpu != smp_processor_id()) { 4621 ret = -EINVAL; 4622 goto out; 4623 } 4624 4625 /* If this is a pinned event it must be running on this CPU */ 4626 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4627 ret = -EBUSY; 4628 goto out; 4629 } 4630 4631 /* 4632 * If the event is currently on this CPU, its either a per-task event, 4633 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4634 * oncpu == -1). 4635 */ 4636 if (event_oncpu == smp_processor_id()) 4637 event->pmu->read(event); 4638 4639 *value = local64_read(&event->count); 4640 if (enabled || running) { 4641 u64 __enabled, __running, __now; 4642 4643 calc_timer_values(event, &__now, &__enabled, &__running); 4644 if (enabled) 4645 *enabled = __enabled; 4646 if (running) 4647 *running = __running; 4648 } 4649 out: 4650 local_irq_restore(flags); 4651 4652 return ret; 4653 } 4654 4655 static int perf_event_read(struct perf_event *event, bool group) 4656 { 4657 enum perf_event_state state = READ_ONCE(event->state); 4658 int event_cpu, ret = 0; 4659 4660 /* 4661 * If event is enabled and currently active on a CPU, update the 4662 * value in the event structure: 4663 */ 4664 again: 4665 if (state == PERF_EVENT_STATE_ACTIVE) { 4666 struct perf_read_data data; 4667 4668 /* 4669 * Orders the ->state and ->oncpu loads such that if we see 4670 * ACTIVE we must also see the right ->oncpu. 4671 * 4672 * Matches the smp_wmb() from event_sched_in(). 4673 */ 4674 smp_rmb(); 4675 4676 event_cpu = READ_ONCE(event->oncpu); 4677 if ((unsigned)event_cpu >= nr_cpu_ids) 4678 return 0; 4679 4680 data = (struct perf_read_data){ 4681 .event = event, 4682 .group = group, 4683 .ret = 0, 4684 }; 4685 4686 preempt_disable(); 4687 event_cpu = __perf_event_read_cpu(event, event_cpu); 4688 4689 /* 4690 * Purposely ignore the smp_call_function_single() return 4691 * value. 4692 * 4693 * If event_cpu isn't a valid CPU it means the event got 4694 * scheduled out and that will have updated the event count. 4695 * 4696 * Therefore, either way, we'll have an up-to-date event count 4697 * after this. 4698 */ 4699 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4700 preempt_enable(); 4701 ret = data.ret; 4702 4703 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4704 struct perf_event_context *ctx = event->ctx; 4705 unsigned long flags; 4706 4707 raw_spin_lock_irqsave(&ctx->lock, flags); 4708 state = event->state; 4709 if (state != PERF_EVENT_STATE_INACTIVE) { 4710 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4711 goto again; 4712 } 4713 4714 /* 4715 * May read while context is not active (e.g., thread is 4716 * blocked), in that case we cannot update context time 4717 */ 4718 if (ctx->is_active & EVENT_TIME) { 4719 update_context_time(ctx); 4720 update_cgrp_time_from_event(event); 4721 } 4722 4723 perf_event_update_time(event); 4724 if (group) 4725 perf_event_update_sibling_time(event); 4726 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4727 } 4728 4729 return ret; 4730 } 4731 4732 /* 4733 * Initialize the perf_event context in a task_struct: 4734 */ 4735 static void __perf_event_init_context(struct perf_event_context *ctx) 4736 { 4737 raw_spin_lock_init(&ctx->lock); 4738 mutex_init(&ctx->mutex); 4739 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4740 perf_event_groups_init(&ctx->pinned_groups); 4741 perf_event_groups_init(&ctx->flexible_groups); 4742 INIT_LIST_HEAD(&ctx->event_list); 4743 refcount_set(&ctx->refcount, 1); 4744 } 4745 4746 static void 4747 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4748 { 4749 epc->pmu = pmu; 4750 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4751 INIT_LIST_HEAD(&epc->pinned_active); 4752 INIT_LIST_HEAD(&epc->flexible_active); 4753 atomic_set(&epc->refcount, 1); 4754 } 4755 4756 static struct perf_event_context * 4757 alloc_perf_context(struct task_struct *task) 4758 { 4759 struct perf_event_context *ctx; 4760 4761 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4762 if (!ctx) 4763 return NULL; 4764 4765 __perf_event_init_context(ctx); 4766 if (task) 4767 ctx->task = get_task_struct(task); 4768 4769 return ctx; 4770 } 4771 4772 static struct task_struct * 4773 find_lively_task_by_vpid(pid_t vpid) 4774 { 4775 struct task_struct *task; 4776 4777 rcu_read_lock(); 4778 if (!vpid) 4779 task = current; 4780 else 4781 task = find_task_by_vpid(vpid); 4782 if (task) 4783 get_task_struct(task); 4784 rcu_read_unlock(); 4785 4786 if (!task) 4787 return ERR_PTR(-ESRCH); 4788 4789 return task; 4790 } 4791 4792 /* 4793 * Returns a matching context with refcount and pincount. 4794 */ 4795 static struct perf_event_context * 4796 find_get_context(struct task_struct *task, struct perf_event *event) 4797 { 4798 struct perf_event_context *ctx, *clone_ctx = NULL; 4799 struct perf_cpu_context *cpuctx; 4800 unsigned long flags; 4801 int err; 4802 4803 if (!task) { 4804 /* Must be root to operate on a CPU event: */ 4805 err = perf_allow_cpu(&event->attr); 4806 if (err) 4807 return ERR_PTR(err); 4808 4809 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4810 ctx = &cpuctx->ctx; 4811 get_ctx(ctx); 4812 raw_spin_lock_irqsave(&ctx->lock, flags); 4813 ++ctx->pin_count; 4814 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4815 4816 return ctx; 4817 } 4818 4819 err = -EINVAL; 4820 retry: 4821 ctx = perf_lock_task_context(task, &flags); 4822 if (ctx) { 4823 clone_ctx = unclone_ctx(ctx); 4824 ++ctx->pin_count; 4825 4826 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4827 4828 if (clone_ctx) 4829 put_ctx(clone_ctx); 4830 } else { 4831 ctx = alloc_perf_context(task); 4832 err = -ENOMEM; 4833 if (!ctx) 4834 goto errout; 4835 4836 err = 0; 4837 mutex_lock(&task->perf_event_mutex); 4838 /* 4839 * If it has already passed perf_event_exit_task(). 4840 * we must see PF_EXITING, it takes this mutex too. 4841 */ 4842 if (task->flags & PF_EXITING) 4843 err = -ESRCH; 4844 else if (task->perf_event_ctxp) 4845 err = -EAGAIN; 4846 else { 4847 get_ctx(ctx); 4848 ++ctx->pin_count; 4849 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4850 } 4851 mutex_unlock(&task->perf_event_mutex); 4852 4853 if (unlikely(err)) { 4854 put_ctx(ctx); 4855 4856 if (err == -EAGAIN) 4857 goto retry; 4858 goto errout; 4859 } 4860 } 4861 4862 return ctx; 4863 4864 errout: 4865 return ERR_PTR(err); 4866 } 4867 4868 static struct perf_event_pmu_context * 4869 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4870 struct perf_event *event) 4871 { 4872 struct perf_event_pmu_context *new = NULL, *epc; 4873 void *task_ctx_data = NULL; 4874 4875 if (!ctx->task) { 4876 /* 4877 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4878 * relies on the fact that find_get_pmu_context() cannot fail 4879 * for CPU contexts. 4880 */ 4881 struct perf_cpu_pmu_context *cpc; 4882 4883 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4884 epc = &cpc->epc; 4885 raw_spin_lock_irq(&ctx->lock); 4886 if (!epc->ctx) { 4887 atomic_set(&epc->refcount, 1); 4888 epc->embedded = 1; 4889 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4890 epc->ctx = ctx; 4891 } else { 4892 WARN_ON_ONCE(epc->ctx != ctx); 4893 atomic_inc(&epc->refcount); 4894 } 4895 raw_spin_unlock_irq(&ctx->lock); 4896 return epc; 4897 } 4898 4899 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4900 if (!new) 4901 return ERR_PTR(-ENOMEM); 4902 4903 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4904 task_ctx_data = alloc_task_ctx_data(pmu); 4905 if (!task_ctx_data) { 4906 kfree(new); 4907 return ERR_PTR(-ENOMEM); 4908 } 4909 } 4910 4911 __perf_init_event_pmu_context(new, pmu); 4912 4913 /* 4914 * XXX 4915 * 4916 * lockdep_assert_held(&ctx->mutex); 4917 * 4918 * can't because perf_event_init_task() doesn't actually hold the 4919 * child_ctx->mutex. 4920 */ 4921 4922 raw_spin_lock_irq(&ctx->lock); 4923 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4924 if (epc->pmu == pmu) { 4925 WARN_ON_ONCE(epc->ctx != ctx); 4926 atomic_inc(&epc->refcount); 4927 goto found_epc; 4928 } 4929 } 4930 4931 epc = new; 4932 new = NULL; 4933 4934 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4935 epc->ctx = ctx; 4936 4937 found_epc: 4938 if (task_ctx_data && !epc->task_ctx_data) { 4939 epc->task_ctx_data = task_ctx_data; 4940 task_ctx_data = NULL; 4941 ctx->nr_task_data++; 4942 } 4943 raw_spin_unlock_irq(&ctx->lock); 4944 4945 free_task_ctx_data(pmu, task_ctx_data); 4946 kfree(new); 4947 4948 return epc; 4949 } 4950 4951 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4952 { 4953 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4954 } 4955 4956 static void free_epc_rcu(struct rcu_head *head) 4957 { 4958 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4959 4960 kfree(epc->task_ctx_data); 4961 kfree(epc); 4962 } 4963 4964 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4965 { 4966 struct perf_event_context *ctx = epc->ctx; 4967 unsigned long flags; 4968 4969 /* 4970 * XXX 4971 * 4972 * lockdep_assert_held(&ctx->mutex); 4973 * 4974 * can't because of the call-site in _free_event()/put_event() 4975 * which isn't always called under ctx->mutex. 4976 */ 4977 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4978 return; 4979 4980 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4981 4982 list_del_init(&epc->pmu_ctx_entry); 4983 epc->ctx = NULL; 4984 4985 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4986 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4987 4988 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4989 4990 if (epc->embedded) 4991 return; 4992 4993 call_rcu(&epc->rcu_head, free_epc_rcu); 4994 } 4995 4996 static void perf_event_free_filter(struct perf_event *event); 4997 4998 static void free_event_rcu(struct rcu_head *head) 4999 { 5000 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5001 5002 if (event->ns) 5003 put_pid_ns(event->ns); 5004 perf_event_free_filter(event); 5005 kmem_cache_free(perf_event_cache, event); 5006 } 5007 5008 static void ring_buffer_attach(struct perf_event *event, 5009 struct perf_buffer *rb); 5010 5011 static void detach_sb_event(struct perf_event *event) 5012 { 5013 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5014 5015 raw_spin_lock(&pel->lock); 5016 list_del_rcu(&event->sb_list); 5017 raw_spin_unlock(&pel->lock); 5018 } 5019 5020 static bool is_sb_event(struct perf_event *event) 5021 { 5022 struct perf_event_attr *attr = &event->attr; 5023 5024 if (event->parent) 5025 return false; 5026 5027 if (event->attach_state & PERF_ATTACH_TASK) 5028 return false; 5029 5030 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5031 attr->comm || attr->comm_exec || 5032 attr->task || attr->ksymbol || 5033 attr->context_switch || attr->text_poke || 5034 attr->bpf_event) 5035 return true; 5036 return false; 5037 } 5038 5039 static void unaccount_pmu_sb_event(struct perf_event *event) 5040 { 5041 if (is_sb_event(event)) 5042 detach_sb_event(event); 5043 } 5044 5045 #ifdef CONFIG_NO_HZ_FULL 5046 static DEFINE_SPINLOCK(nr_freq_lock); 5047 #endif 5048 5049 static void unaccount_freq_event_nohz(void) 5050 { 5051 #ifdef CONFIG_NO_HZ_FULL 5052 spin_lock(&nr_freq_lock); 5053 if (atomic_dec_and_test(&nr_freq_events)) 5054 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5055 spin_unlock(&nr_freq_lock); 5056 #endif 5057 } 5058 5059 static void unaccount_freq_event(void) 5060 { 5061 if (tick_nohz_full_enabled()) 5062 unaccount_freq_event_nohz(); 5063 else 5064 atomic_dec(&nr_freq_events); 5065 } 5066 5067 static void unaccount_event(struct perf_event *event) 5068 { 5069 bool dec = false; 5070 5071 if (event->parent) 5072 return; 5073 5074 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5075 dec = true; 5076 if (event->attr.mmap || event->attr.mmap_data) 5077 atomic_dec(&nr_mmap_events); 5078 if (event->attr.build_id) 5079 atomic_dec(&nr_build_id_events); 5080 if (event->attr.comm) 5081 atomic_dec(&nr_comm_events); 5082 if (event->attr.namespaces) 5083 atomic_dec(&nr_namespaces_events); 5084 if (event->attr.cgroup) 5085 atomic_dec(&nr_cgroup_events); 5086 if (event->attr.task) 5087 atomic_dec(&nr_task_events); 5088 if (event->attr.freq) 5089 unaccount_freq_event(); 5090 if (event->attr.context_switch) { 5091 dec = true; 5092 atomic_dec(&nr_switch_events); 5093 } 5094 if (is_cgroup_event(event)) 5095 dec = true; 5096 if (has_branch_stack(event)) 5097 dec = true; 5098 if (event->attr.ksymbol) 5099 atomic_dec(&nr_ksymbol_events); 5100 if (event->attr.bpf_event) 5101 atomic_dec(&nr_bpf_events); 5102 if (event->attr.text_poke) 5103 atomic_dec(&nr_text_poke_events); 5104 5105 if (dec) { 5106 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5107 schedule_delayed_work(&perf_sched_work, HZ); 5108 } 5109 5110 unaccount_pmu_sb_event(event); 5111 } 5112 5113 static void perf_sched_delayed(struct work_struct *work) 5114 { 5115 mutex_lock(&perf_sched_mutex); 5116 if (atomic_dec_and_test(&perf_sched_count)) 5117 static_branch_disable(&perf_sched_events); 5118 mutex_unlock(&perf_sched_mutex); 5119 } 5120 5121 /* 5122 * The following implement mutual exclusion of events on "exclusive" pmus 5123 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5124 * at a time, so we disallow creating events that might conflict, namely: 5125 * 5126 * 1) cpu-wide events in the presence of per-task events, 5127 * 2) per-task events in the presence of cpu-wide events, 5128 * 3) two matching events on the same perf_event_context. 5129 * 5130 * The former two cases are handled in the allocation path (perf_event_alloc(), 5131 * _free_event()), the latter -- before the first perf_install_in_context(). 5132 */ 5133 static int exclusive_event_init(struct perf_event *event) 5134 { 5135 struct pmu *pmu = event->pmu; 5136 5137 if (!is_exclusive_pmu(pmu)) 5138 return 0; 5139 5140 /* 5141 * Prevent co-existence of per-task and cpu-wide events on the 5142 * same exclusive pmu. 5143 * 5144 * Negative pmu::exclusive_cnt means there are cpu-wide 5145 * events on this "exclusive" pmu, positive means there are 5146 * per-task events. 5147 * 5148 * Since this is called in perf_event_alloc() path, event::ctx 5149 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5150 * to mean "per-task event", because unlike other attach states it 5151 * never gets cleared. 5152 */ 5153 if (event->attach_state & PERF_ATTACH_TASK) { 5154 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5155 return -EBUSY; 5156 } else { 5157 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5158 return -EBUSY; 5159 } 5160 5161 return 0; 5162 } 5163 5164 static void exclusive_event_destroy(struct perf_event *event) 5165 { 5166 struct pmu *pmu = event->pmu; 5167 5168 if (!is_exclusive_pmu(pmu)) 5169 return; 5170 5171 /* see comment in exclusive_event_init() */ 5172 if (event->attach_state & PERF_ATTACH_TASK) 5173 atomic_dec(&pmu->exclusive_cnt); 5174 else 5175 atomic_inc(&pmu->exclusive_cnt); 5176 } 5177 5178 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5179 { 5180 if ((e1->pmu == e2->pmu) && 5181 (e1->cpu == e2->cpu || 5182 e1->cpu == -1 || 5183 e2->cpu == -1)) 5184 return true; 5185 return false; 5186 } 5187 5188 static bool exclusive_event_installable(struct perf_event *event, 5189 struct perf_event_context *ctx) 5190 { 5191 struct perf_event *iter_event; 5192 struct pmu *pmu = event->pmu; 5193 5194 lockdep_assert_held(&ctx->mutex); 5195 5196 if (!is_exclusive_pmu(pmu)) 5197 return true; 5198 5199 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5200 if (exclusive_event_match(iter_event, event)) 5201 return false; 5202 } 5203 5204 return true; 5205 } 5206 5207 static void perf_addr_filters_splice(struct perf_event *event, 5208 struct list_head *head); 5209 5210 static void _free_event(struct perf_event *event) 5211 { 5212 irq_work_sync(&event->pending_irq); 5213 5214 unaccount_event(event); 5215 5216 security_perf_event_free(event); 5217 5218 if (event->rb) { 5219 /* 5220 * Can happen when we close an event with re-directed output. 5221 * 5222 * Since we have a 0 refcount, perf_mmap_close() will skip 5223 * over us; possibly making our ring_buffer_put() the last. 5224 */ 5225 mutex_lock(&event->mmap_mutex); 5226 ring_buffer_attach(event, NULL); 5227 mutex_unlock(&event->mmap_mutex); 5228 } 5229 5230 if (is_cgroup_event(event)) 5231 perf_detach_cgroup(event); 5232 5233 if (!event->parent) { 5234 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5235 put_callchain_buffers(); 5236 } 5237 5238 perf_event_free_bpf_prog(event); 5239 perf_addr_filters_splice(event, NULL); 5240 kfree(event->addr_filter_ranges); 5241 5242 if (event->destroy) 5243 event->destroy(event); 5244 5245 /* 5246 * Must be after ->destroy(), due to uprobe_perf_close() using 5247 * hw.target. 5248 */ 5249 if (event->hw.target) 5250 put_task_struct(event->hw.target); 5251 5252 if (event->pmu_ctx) 5253 put_pmu_ctx(event->pmu_ctx); 5254 5255 /* 5256 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5257 * all task references must be cleaned up. 5258 */ 5259 if (event->ctx) 5260 put_ctx(event->ctx); 5261 5262 exclusive_event_destroy(event); 5263 module_put(event->pmu->module); 5264 5265 call_rcu(&event->rcu_head, free_event_rcu); 5266 } 5267 5268 /* 5269 * Used to free events which have a known refcount of 1, such as in error paths 5270 * where the event isn't exposed yet and inherited events. 5271 */ 5272 static void free_event(struct perf_event *event) 5273 { 5274 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5275 "unexpected event refcount: %ld; ptr=%p\n", 5276 atomic_long_read(&event->refcount), event)) { 5277 /* leak to avoid use-after-free */ 5278 return; 5279 } 5280 5281 _free_event(event); 5282 } 5283 5284 /* 5285 * Remove user event from the owner task. 5286 */ 5287 static void perf_remove_from_owner(struct perf_event *event) 5288 { 5289 struct task_struct *owner; 5290 5291 rcu_read_lock(); 5292 /* 5293 * Matches the smp_store_release() in perf_event_exit_task(). If we 5294 * observe !owner it means the list deletion is complete and we can 5295 * indeed free this event, otherwise we need to serialize on 5296 * owner->perf_event_mutex. 5297 */ 5298 owner = READ_ONCE(event->owner); 5299 if (owner) { 5300 /* 5301 * Since delayed_put_task_struct() also drops the last 5302 * task reference we can safely take a new reference 5303 * while holding the rcu_read_lock(). 5304 */ 5305 get_task_struct(owner); 5306 } 5307 rcu_read_unlock(); 5308 5309 if (owner) { 5310 /* 5311 * If we're here through perf_event_exit_task() we're already 5312 * holding ctx->mutex which would be an inversion wrt. the 5313 * normal lock order. 5314 * 5315 * However we can safely take this lock because its the child 5316 * ctx->mutex. 5317 */ 5318 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5319 5320 /* 5321 * We have to re-check the event->owner field, if it is cleared 5322 * we raced with perf_event_exit_task(), acquiring the mutex 5323 * ensured they're done, and we can proceed with freeing the 5324 * event. 5325 */ 5326 if (event->owner) { 5327 list_del_init(&event->owner_entry); 5328 smp_store_release(&event->owner, NULL); 5329 } 5330 mutex_unlock(&owner->perf_event_mutex); 5331 put_task_struct(owner); 5332 } 5333 } 5334 5335 static void put_event(struct perf_event *event) 5336 { 5337 if (!atomic_long_dec_and_test(&event->refcount)) 5338 return; 5339 5340 _free_event(event); 5341 } 5342 5343 /* 5344 * Kill an event dead; while event:refcount will preserve the event 5345 * object, it will not preserve its functionality. Once the last 'user' 5346 * gives up the object, we'll destroy the thing. 5347 */ 5348 int perf_event_release_kernel(struct perf_event *event) 5349 { 5350 struct perf_event_context *ctx = event->ctx; 5351 struct perf_event *child, *tmp; 5352 LIST_HEAD(free_list); 5353 5354 /* 5355 * If we got here through err_alloc: free_event(event); we will not 5356 * have attached to a context yet. 5357 */ 5358 if (!ctx) { 5359 WARN_ON_ONCE(event->attach_state & 5360 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5361 goto no_ctx; 5362 } 5363 5364 if (!is_kernel_event(event)) 5365 perf_remove_from_owner(event); 5366 5367 ctx = perf_event_ctx_lock(event); 5368 WARN_ON_ONCE(ctx->parent_ctx); 5369 5370 /* 5371 * Mark this event as STATE_DEAD, there is no external reference to it 5372 * anymore. 5373 * 5374 * Anybody acquiring event->child_mutex after the below loop _must_ 5375 * also see this, most importantly inherit_event() which will avoid 5376 * placing more children on the list. 5377 * 5378 * Thus this guarantees that we will in fact observe and kill _ALL_ 5379 * child events. 5380 */ 5381 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5382 5383 perf_event_ctx_unlock(event, ctx); 5384 5385 again: 5386 mutex_lock(&event->child_mutex); 5387 list_for_each_entry(child, &event->child_list, child_list) { 5388 void *var = NULL; 5389 5390 /* 5391 * Cannot change, child events are not migrated, see the 5392 * comment with perf_event_ctx_lock_nested(). 5393 */ 5394 ctx = READ_ONCE(child->ctx); 5395 /* 5396 * Since child_mutex nests inside ctx::mutex, we must jump 5397 * through hoops. We start by grabbing a reference on the ctx. 5398 * 5399 * Since the event cannot get freed while we hold the 5400 * child_mutex, the context must also exist and have a !0 5401 * reference count. 5402 */ 5403 get_ctx(ctx); 5404 5405 /* 5406 * Now that we have a ctx ref, we can drop child_mutex, and 5407 * acquire ctx::mutex without fear of it going away. Then we 5408 * can re-acquire child_mutex. 5409 */ 5410 mutex_unlock(&event->child_mutex); 5411 mutex_lock(&ctx->mutex); 5412 mutex_lock(&event->child_mutex); 5413 5414 /* 5415 * Now that we hold ctx::mutex and child_mutex, revalidate our 5416 * state, if child is still the first entry, it didn't get freed 5417 * and we can continue doing so. 5418 */ 5419 tmp = list_first_entry_or_null(&event->child_list, 5420 struct perf_event, child_list); 5421 if (tmp == child) { 5422 perf_remove_from_context(child, DETACH_GROUP); 5423 list_move(&child->child_list, &free_list); 5424 /* 5425 * This matches the refcount bump in inherit_event(); 5426 * this can't be the last reference. 5427 */ 5428 put_event(event); 5429 } else { 5430 var = &ctx->refcount; 5431 } 5432 5433 mutex_unlock(&event->child_mutex); 5434 mutex_unlock(&ctx->mutex); 5435 put_ctx(ctx); 5436 5437 if (var) { 5438 /* 5439 * If perf_event_free_task() has deleted all events from the 5440 * ctx while the child_mutex got released above, make sure to 5441 * notify about the preceding put_ctx(). 5442 */ 5443 smp_mb(); /* pairs with wait_var_event() */ 5444 wake_up_var(var); 5445 } 5446 goto again; 5447 } 5448 mutex_unlock(&event->child_mutex); 5449 5450 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5451 void *var = &child->ctx->refcount; 5452 5453 list_del(&child->child_list); 5454 free_event(child); 5455 5456 /* 5457 * Wake any perf_event_free_task() waiting for this event to be 5458 * freed. 5459 */ 5460 smp_mb(); /* pairs with wait_var_event() */ 5461 wake_up_var(var); 5462 } 5463 5464 no_ctx: 5465 put_event(event); /* Must be the 'last' reference */ 5466 return 0; 5467 } 5468 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5469 5470 /* 5471 * Called when the last reference to the file is gone. 5472 */ 5473 static int perf_release(struct inode *inode, struct file *file) 5474 { 5475 perf_event_release_kernel(file->private_data); 5476 return 0; 5477 } 5478 5479 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5480 { 5481 struct perf_event *child; 5482 u64 total = 0; 5483 5484 *enabled = 0; 5485 *running = 0; 5486 5487 mutex_lock(&event->child_mutex); 5488 5489 (void)perf_event_read(event, false); 5490 total += perf_event_count(event); 5491 5492 *enabled += event->total_time_enabled + 5493 atomic64_read(&event->child_total_time_enabled); 5494 *running += event->total_time_running + 5495 atomic64_read(&event->child_total_time_running); 5496 5497 list_for_each_entry(child, &event->child_list, child_list) { 5498 (void)perf_event_read(child, false); 5499 total += perf_event_count(child); 5500 *enabled += child->total_time_enabled; 5501 *running += child->total_time_running; 5502 } 5503 mutex_unlock(&event->child_mutex); 5504 5505 return total; 5506 } 5507 5508 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5509 { 5510 struct perf_event_context *ctx; 5511 u64 count; 5512 5513 ctx = perf_event_ctx_lock(event); 5514 count = __perf_event_read_value(event, enabled, running); 5515 perf_event_ctx_unlock(event, ctx); 5516 5517 return count; 5518 } 5519 EXPORT_SYMBOL_GPL(perf_event_read_value); 5520 5521 static int __perf_read_group_add(struct perf_event *leader, 5522 u64 read_format, u64 *values) 5523 { 5524 struct perf_event_context *ctx = leader->ctx; 5525 struct perf_event *sub, *parent; 5526 unsigned long flags; 5527 int n = 1; /* skip @nr */ 5528 int ret; 5529 5530 ret = perf_event_read(leader, true); 5531 if (ret) 5532 return ret; 5533 5534 raw_spin_lock_irqsave(&ctx->lock, flags); 5535 /* 5536 * Verify the grouping between the parent and child (inherited) 5537 * events is still in tact. 5538 * 5539 * Specifically: 5540 * - leader->ctx->lock pins leader->sibling_list 5541 * - parent->child_mutex pins parent->child_list 5542 * - parent->ctx->mutex pins parent->sibling_list 5543 * 5544 * Because parent->ctx != leader->ctx (and child_list nests inside 5545 * ctx->mutex), group destruction is not atomic between children, also 5546 * see perf_event_release_kernel(). Additionally, parent can grow the 5547 * group. 5548 * 5549 * Therefore it is possible to have parent and child groups in a 5550 * different configuration and summing over such a beast makes no sense 5551 * what so ever. 5552 * 5553 * Reject this. 5554 */ 5555 parent = leader->parent; 5556 if (parent && 5557 (parent->group_generation != leader->group_generation || 5558 parent->nr_siblings != leader->nr_siblings)) { 5559 ret = -ECHILD; 5560 goto unlock; 5561 } 5562 5563 /* 5564 * Since we co-schedule groups, {enabled,running} times of siblings 5565 * will be identical to those of the leader, so we only publish one 5566 * set. 5567 */ 5568 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5569 values[n++] += leader->total_time_enabled + 5570 atomic64_read(&leader->child_total_time_enabled); 5571 } 5572 5573 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5574 values[n++] += leader->total_time_running + 5575 atomic64_read(&leader->child_total_time_running); 5576 } 5577 5578 /* 5579 * Write {count,id} tuples for every sibling. 5580 */ 5581 values[n++] += perf_event_count(leader); 5582 if (read_format & PERF_FORMAT_ID) 5583 values[n++] = primary_event_id(leader); 5584 if (read_format & PERF_FORMAT_LOST) 5585 values[n++] = atomic64_read(&leader->lost_samples); 5586 5587 for_each_sibling_event(sub, leader) { 5588 values[n++] += perf_event_count(sub); 5589 if (read_format & PERF_FORMAT_ID) 5590 values[n++] = primary_event_id(sub); 5591 if (read_format & PERF_FORMAT_LOST) 5592 values[n++] = atomic64_read(&sub->lost_samples); 5593 } 5594 5595 unlock: 5596 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5597 return ret; 5598 } 5599 5600 static int perf_read_group(struct perf_event *event, 5601 u64 read_format, char __user *buf) 5602 { 5603 struct perf_event *leader = event->group_leader, *child; 5604 struct perf_event_context *ctx = leader->ctx; 5605 int ret; 5606 u64 *values; 5607 5608 lockdep_assert_held(&ctx->mutex); 5609 5610 values = kzalloc(event->read_size, GFP_KERNEL); 5611 if (!values) 5612 return -ENOMEM; 5613 5614 values[0] = 1 + leader->nr_siblings; 5615 5616 mutex_lock(&leader->child_mutex); 5617 5618 ret = __perf_read_group_add(leader, read_format, values); 5619 if (ret) 5620 goto unlock; 5621 5622 list_for_each_entry(child, &leader->child_list, child_list) { 5623 ret = __perf_read_group_add(child, read_format, values); 5624 if (ret) 5625 goto unlock; 5626 } 5627 5628 mutex_unlock(&leader->child_mutex); 5629 5630 ret = event->read_size; 5631 if (copy_to_user(buf, values, event->read_size)) 5632 ret = -EFAULT; 5633 goto out; 5634 5635 unlock: 5636 mutex_unlock(&leader->child_mutex); 5637 out: 5638 kfree(values); 5639 return ret; 5640 } 5641 5642 static int perf_read_one(struct perf_event *event, 5643 u64 read_format, char __user *buf) 5644 { 5645 u64 enabled, running; 5646 u64 values[5]; 5647 int n = 0; 5648 5649 values[n++] = __perf_event_read_value(event, &enabled, &running); 5650 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5651 values[n++] = enabled; 5652 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5653 values[n++] = running; 5654 if (read_format & PERF_FORMAT_ID) 5655 values[n++] = primary_event_id(event); 5656 if (read_format & PERF_FORMAT_LOST) 5657 values[n++] = atomic64_read(&event->lost_samples); 5658 5659 if (copy_to_user(buf, values, n * sizeof(u64))) 5660 return -EFAULT; 5661 5662 return n * sizeof(u64); 5663 } 5664 5665 static bool is_event_hup(struct perf_event *event) 5666 { 5667 bool no_children; 5668 5669 if (event->state > PERF_EVENT_STATE_EXIT) 5670 return false; 5671 5672 mutex_lock(&event->child_mutex); 5673 no_children = list_empty(&event->child_list); 5674 mutex_unlock(&event->child_mutex); 5675 return no_children; 5676 } 5677 5678 /* 5679 * Read the performance event - simple non blocking version for now 5680 */ 5681 static ssize_t 5682 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5683 { 5684 u64 read_format = event->attr.read_format; 5685 int ret; 5686 5687 /* 5688 * Return end-of-file for a read on an event that is in 5689 * error state (i.e. because it was pinned but it couldn't be 5690 * scheduled on to the CPU at some point). 5691 */ 5692 if (event->state == PERF_EVENT_STATE_ERROR) 5693 return 0; 5694 5695 if (count < event->read_size) 5696 return -ENOSPC; 5697 5698 WARN_ON_ONCE(event->ctx->parent_ctx); 5699 if (read_format & PERF_FORMAT_GROUP) 5700 ret = perf_read_group(event, read_format, buf); 5701 else 5702 ret = perf_read_one(event, read_format, buf); 5703 5704 return ret; 5705 } 5706 5707 static ssize_t 5708 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5709 { 5710 struct perf_event *event = file->private_data; 5711 struct perf_event_context *ctx; 5712 int ret; 5713 5714 ret = security_perf_event_read(event); 5715 if (ret) 5716 return ret; 5717 5718 ctx = perf_event_ctx_lock(event); 5719 ret = __perf_read(event, buf, count); 5720 perf_event_ctx_unlock(event, ctx); 5721 5722 return ret; 5723 } 5724 5725 static __poll_t perf_poll(struct file *file, poll_table *wait) 5726 { 5727 struct perf_event *event = file->private_data; 5728 struct perf_buffer *rb; 5729 __poll_t events = EPOLLHUP; 5730 5731 poll_wait(file, &event->waitq, wait); 5732 5733 if (is_event_hup(event)) 5734 return events; 5735 5736 /* 5737 * Pin the event->rb by taking event->mmap_mutex; otherwise 5738 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5739 */ 5740 mutex_lock(&event->mmap_mutex); 5741 rb = event->rb; 5742 if (rb) 5743 events = atomic_xchg(&rb->poll, 0); 5744 mutex_unlock(&event->mmap_mutex); 5745 return events; 5746 } 5747 5748 static void _perf_event_reset(struct perf_event *event) 5749 { 5750 (void)perf_event_read(event, false); 5751 local64_set(&event->count, 0); 5752 perf_event_update_userpage(event); 5753 } 5754 5755 /* Assume it's not an event with inherit set. */ 5756 u64 perf_event_pause(struct perf_event *event, bool reset) 5757 { 5758 struct perf_event_context *ctx; 5759 u64 count; 5760 5761 ctx = perf_event_ctx_lock(event); 5762 WARN_ON_ONCE(event->attr.inherit); 5763 _perf_event_disable(event); 5764 count = local64_read(&event->count); 5765 if (reset) 5766 local64_set(&event->count, 0); 5767 perf_event_ctx_unlock(event, ctx); 5768 5769 return count; 5770 } 5771 EXPORT_SYMBOL_GPL(perf_event_pause); 5772 5773 /* 5774 * Holding the top-level event's child_mutex means that any 5775 * descendant process that has inherited this event will block 5776 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5777 * task existence requirements of perf_event_enable/disable. 5778 */ 5779 static void perf_event_for_each_child(struct perf_event *event, 5780 void (*func)(struct perf_event *)) 5781 { 5782 struct perf_event *child; 5783 5784 WARN_ON_ONCE(event->ctx->parent_ctx); 5785 5786 mutex_lock(&event->child_mutex); 5787 func(event); 5788 list_for_each_entry(child, &event->child_list, child_list) 5789 func(child); 5790 mutex_unlock(&event->child_mutex); 5791 } 5792 5793 static void perf_event_for_each(struct perf_event *event, 5794 void (*func)(struct perf_event *)) 5795 { 5796 struct perf_event_context *ctx = event->ctx; 5797 struct perf_event *sibling; 5798 5799 lockdep_assert_held(&ctx->mutex); 5800 5801 event = event->group_leader; 5802 5803 perf_event_for_each_child(event, func); 5804 for_each_sibling_event(sibling, event) 5805 perf_event_for_each_child(sibling, func); 5806 } 5807 5808 static void __perf_event_period(struct perf_event *event, 5809 struct perf_cpu_context *cpuctx, 5810 struct perf_event_context *ctx, 5811 void *info) 5812 { 5813 u64 value = *((u64 *)info); 5814 bool active; 5815 5816 if (event->attr.freq) { 5817 event->attr.sample_freq = value; 5818 } else { 5819 event->attr.sample_period = value; 5820 event->hw.sample_period = value; 5821 } 5822 5823 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5824 if (active) { 5825 perf_pmu_disable(event->pmu); 5826 /* 5827 * We could be throttled; unthrottle now to avoid the tick 5828 * trying to unthrottle while we already re-started the event. 5829 */ 5830 if (event->hw.interrupts == MAX_INTERRUPTS) { 5831 event->hw.interrupts = 0; 5832 perf_log_throttle(event, 1); 5833 } 5834 event->pmu->stop(event, PERF_EF_UPDATE); 5835 } 5836 5837 local64_set(&event->hw.period_left, 0); 5838 5839 if (active) { 5840 event->pmu->start(event, PERF_EF_RELOAD); 5841 perf_pmu_enable(event->pmu); 5842 } 5843 } 5844 5845 static int perf_event_check_period(struct perf_event *event, u64 value) 5846 { 5847 return event->pmu->check_period(event, value); 5848 } 5849 5850 static int _perf_event_period(struct perf_event *event, u64 value) 5851 { 5852 if (!is_sampling_event(event)) 5853 return -EINVAL; 5854 5855 if (!value) 5856 return -EINVAL; 5857 5858 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5859 return -EINVAL; 5860 5861 if (perf_event_check_period(event, value)) 5862 return -EINVAL; 5863 5864 if (!event->attr.freq && (value & (1ULL << 63))) 5865 return -EINVAL; 5866 5867 event_function_call(event, __perf_event_period, &value); 5868 5869 return 0; 5870 } 5871 5872 int perf_event_period(struct perf_event *event, u64 value) 5873 { 5874 struct perf_event_context *ctx; 5875 int ret; 5876 5877 ctx = perf_event_ctx_lock(event); 5878 ret = _perf_event_period(event, value); 5879 perf_event_ctx_unlock(event, ctx); 5880 5881 return ret; 5882 } 5883 EXPORT_SYMBOL_GPL(perf_event_period); 5884 5885 static const struct file_operations perf_fops; 5886 5887 static inline int perf_fget_light(int fd, struct fd *p) 5888 { 5889 struct fd f = fdget(fd); 5890 if (!f.file) 5891 return -EBADF; 5892 5893 if (f.file->f_op != &perf_fops) { 5894 fdput(f); 5895 return -EBADF; 5896 } 5897 *p = f; 5898 return 0; 5899 } 5900 5901 static int perf_event_set_output(struct perf_event *event, 5902 struct perf_event *output_event); 5903 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5904 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5905 struct perf_event_attr *attr); 5906 5907 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5908 { 5909 void (*func)(struct perf_event *); 5910 u32 flags = arg; 5911 5912 switch (cmd) { 5913 case PERF_EVENT_IOC_ENABLE: 5914 func = _perf_event_enable; 5915 break; 5916 case PERF_EVENT_IOC_DISABLE: 5917 func = _perf_event_disable; 5918 break; 5919 case PERF_EVENT_IOC_RESET: 5920 func = _perf_event_reset; 5921 break; 5922 5923 case PERF_EVENT_IOC_REFRESH: 5924 return _perf_event_refresh(event, arg); 5925 5926 case PERF_EVENT_IOC_PERIOD: 5927 { 5928 u64 value; 5929 5930 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5931 return -EFAULT; 5932 5933 return _perf_event_period(event, value); 5934 } 5935 case PERF_EVENT_IOC_ID: 5936 { 5937 u64 id = primary_event_id(event); 5938 5939 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5940 return -EFAULT; 5941 return 0; 5942 } 5943 5944 case PERF_EVENT_IOC_SET_OUTPUT: 5945 { 5946 int ret; 5947 if (arg != -1) { 5948 struct perf_event *output_event; 5949 struct fd output; 5950 ret = perf_fget_light(arg, &output); 5951 if (ret) 5952 return ret; 5953 output_event = output.file->private_data; 5954 ret = perf_event_set_output(event, output_event); 5955 fdput(output); 5956 } else { 5957 ret = perf_event_set_output(event, NULL); 5958 } 5959 return ret; 5960 } 5961 5962 case PERF_EVENT_IOC_SET_FILTER: 5963 return perf_event_set_filter(event, (void __user *)arg); 5964 5965 case PERF_EVENT_IOC_SET_BPF: 5966 { 5967 struct bpf_prog *prog; 5968 int err; 5969 5970 prog = bpf_prog_get(arg); 5971 if (IS_ERR(prog)) 5972 return PTR_ERR(prog); 5973 5974 err = perf_event_set_bpf_prog(event, prog, 0); 5975 if (err) { 5976 bpf_prog_put(prog); 5977 return err; 5978 } 5979 5980 return 0; 5981 } 5982 5983 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5984 struct perf_buffer *rb; 5985 5986 rcu_read_lock(); 5987 rb = rcu_dereference(event->rb); 5988 if (!rb || !rb->nr_pages) { 5989 rcu_read_unlock(); 5990 return -EINVAL; 5991 } 5992 rb_toggle_paused(rb, !!arg); 5993 rcu_read_unlock(); 5994 return 0; 5995 } 5996 5997 case PERF_EVENT_IOC_QUERY_BPF: 5998 return perf_event_query_prog_array(event, (void __user *)arg); 5999 6000 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6001 struct perf_event_attr new_attr; 6002 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6003 &new_attr); 6004 6005 if (err) 6006 return err; 6007 6008 return perf_event_modify_attr(event, &new_attr); 6009 } 6010 default: 6011 return -ENOTTY; 6012 } 6013 6014 if (flags & PERF_IOC_FLAG_GROUP) 6015 perf_event_for_each(event, func); 6016 else 6017 perf_event_for_each_child(event, func); 6018 6019 return 0; 6020 } 6021 6022 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6023 { 6024 struct perf_event *event = file->private_data; 6025 struct perf_event_context *ctx; 6026 long ret; 6027 6028 /* Treat ioctl like writes as it is likely a mutating operation. */ 6029 ret = security_perf_event_write(event); 6030 if (ret) 6031 return ret; 6032 6033 ctx = perf_event_ctx_lock(event); 6034 ret = _perf_ioctl(event, cmd, arg); 6035 perf_event_ctx_unlock(event, ctx); 6036 6037 return ret; 6038 } 6039 6040 #ifdef CONFIG_COMPAT 6041 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6042 unsigned long arg) 6043 { 6044 switch (_IOC_NR(cmd)) { 6045 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6046 case _IOC_NR(PERF_EVENT_IOC_ID): 6047 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6048 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6049 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6050 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6051 cmd &= ~IOCSIZE_MASK; 6052 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6053 } 6054 break; 6055 } 6056 return perf_ioctl(file, cmd, arg); 6057 } 6058 #else 6059 # define perf_compat_ioctl NULL 6060 #endif 6061 6062 int perf_event_task_enable(void) 6063 { 6064 struct perf_event_context *ctx; 6065 struct perf_event *event; 6066 6067 mutex_lock(¤t->perf_event_mutex); 6068 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6069 ctx = perf_event_ctx_lock(event); 6070 perf_event_for_each_child(event, _perf_event_enable); 6071 perf_event_ctx_unlock(event, ctx); 6072 } 6073 mutex_unlock(¤t->perf_event_mutex); 6074 6075 return 0; 6076 } 6077 6078 int perf_event_task_disable(void) 6079 { 6080 struct perf_event_context *ctx; 6081 struct perf_event *event; 6082 6083 mutex_lock(¤t->perf_event_mutex); 6084 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6085 ctx = perf_event_ctx_lock(event); 6086 perf_event_for_each_child(event, _perf_event_disable); 6087 perf_event_ctx_unlock(event, ctx); 6088 } 6089 mutex_unlock(¤t->perf_event_mutex); 6090 6091 return 0; 6092 } 6093 6094 static int perf_event_index(struct perf_event *event) 6095 { 6096 if (event->hw.state & PERF_HES_STOPPED) 6097 return 0; 6098 6099 if (event->state != PERF_EVENT_STATE_ACTIVE) 6100 return 0; 6101 6102 return event->pmu->event_idx(event); 6103 } 6104 6105 static void perf_event_init_userpage(struct perf_event *event) 6106 { 6107 struct perf_event_mmap_page *userpg; 6108 struct perf_buffer *rb; 6109 6110 rcu_read_lock(); 6111 rb = rcu_dereference(event->rb); 6112 if (!rb) 6113 goto unlock; 6114 6115 userpg = rb->user_page; 6116 6117 /* Allow new userspace to detect that bit 0 is deprecated */ 6118 userpg->cap_bit0_is_deprecated = 1; 6119 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6120 userpg->data_offset = PAGE_SIZE; 6121 userpg->data_size = perf_data_size(rb); 6122 6123 unlock: 6124 rcu_read_unlock(); 6125 } 6126 6127 void __weak arch_perf_update_userpage( 6128 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6129 { 6130 } 6131 6132 /* 6133 * Callers need to ensure there can be no nesting of this function, otherwise 6134 * the seqlock logic goes bad. We can not serialize this because the arch 6135 * code calls this from NMI context. 6136 */ 6137 void perf_event_update_userpage(struct perf_event *event) 6138 { 6139 struct perf_event_mmap_page *userpg; 6140 struct perf_buffer *rb; 6141 u64 enabled, running, now; 6142 6143 rcu_read_lock(); 6144 rb = rcu_dereference(event->rb); 6145 if (!rb) 6146 goto unlock; 6147 6148 /* 6149 * compute total_time_enabled, total_time_running 6150 * based on snapshot values taken when the event 6151 * was last scheduled in. 6152 * 6153 * we cannot simply called update_context_time() 6154 * because of locking issue as we can be called in 6155 * NMI context 6156 */ 6157 calc_timer_values(event, &now, &enabled, &running); 6158 6159 userpg = rb->user_page; 6160 /* 6161 * Disable preemption to guarantee consistent time stamps are stored to 6162 * the user page. 6163 */ 6164 preempt_disable(); 6165 ++userpg->lock; 6166 barrier(); 6167 userpg->index = perf_event_index(event); 6168 userpg->offset = perf_event_count(event); 6169 if (userpg->index) 6170 userpg->offset -= local64_read(&event->hw.prev_count); 6171 6172 userpg->time_enabled = enabled + 6173 atomic64_read(&event->child_total_time_enabled); 6174 6175 userpg->time_running = running + 6176 atomic64_read(&event->child_total_time_running); 6177 6178 arch_perf_update_userpage(event, userpg, now); 6179 6180 barrier(); 6181 ++userpg->lock; 6182 preempt_enable(); 6183 unlock: 6184 rcu_read_unlock(); 6185 } 6186 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6187 6188 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6189 { 6190 struct perf_event *event = vmf->vma->vm_file->private_data; 6191 struct perf_buffer *rb; 6192 vm_fault_t ret = VM_FAULT_SIGBUS; 6193 6194 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6195 if (vmf->pgoff == 0) 6196 ret = 0; 6197 return ret; 6198 } 6199 6200 rcu_read_lock(); 6201 rb = rcu_dereference(event->rb); 6202 if (!rb) 6203 goto unlock; 6204 6205 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6206 goto unlock; 6207 6208 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6209 if (!vmf->page) 6210 goto unlock; 6211 6212 get_page(vmf->page); 6213 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6214 vmf->page->index = vmf->pgoff; 6215 6216 ret = 0; 6217 unlock: 6218 rcu_read_unlock(); 6219 6220 return ret; 6221 } 6222 6223 static void ring_buffer_attach(struct perf_event *event, 6224 struct perf_buffer *rb) 6225 { 6226 struct perf_buffer *old_rb = NULL; 6227 unsigned long flags; 6228 6229 WARN_ON_ONCE(event->parent); 6230 6231 if (event->rb) { 6232 /* 6233 * Should be impossible, we set this when removing 6234 * event->rb_entry and wait/clear when adding event->rb_entry. 6235 */ 6236 WARN_ON_ONCE(event->rcu_pending); 6237 6238 old_rb = event->rb; 6239 spin_lock_irqsave(&old_rb->event_lock, flags); 6240 list_del_rcu(&event->rb_entry); 6241 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6242 6243 event->rcu_batches = get_state_synchronize_rcu(); 6244 event->rcu_pending = 1; 6245 } 6246 6247 if (rb) { 6248 if (event->rcu_pending) { 6249 cond_synchronize_rcu(event->rcu_batches); 6250 event->rcu_pending = 0; 6251 } 6252 6253 spin_lock_irqsave(&rb->event_lock, flags); 6254 list_add_rcu(&event->rb_entry, &rb->event_list); 6255 spin_unlock_irqrestore(&rb->event_lock, flags); 6256 } 6257 6258 /* 6259 * Avoid racing with perf_mmap_close(AUX): stop the event 6260 * before swizzling the event::rb pointer; if it's getting 6261 * unmapped, its aux_mmap_count will be 0 and it won't 6262 * restart. See the comment in __perf_pmu_output_stop(). 6263 * 6264 * Data will inevitably be lost when set_output is done in 6265 * mid-air, but then again, whoever does it like this is 6266 * not in for the data anyway. 6267 */ 6268 if (has_aux(event)) 6269 perf_event_stop(event, 0); 6270 6271 rcu_assign_pointer(event->rb, rb); 6272 6273 if (old_rb) { 6274 ring_buffer_put(old_rb); 6275 /* 6276 * Since we detached before setting the new rb, so that we 6277 * could attach the new rb, we could have missed a wakeup. 6278 * Provide it now. 6279 */ 6280 wake_up_all(&event->waitq); 6281 } 6282 } 6283 6284 static void ring_buffer_wakeup(struct perf_event *event) 6285 { 6286 struct perf_buffer *rb; 6287 6288 if (event->parent) 6289 event = event->parent; 6290 6291 rcu_read_lock(); 6292 rb = rcu_dereference(event->rb); 6293 if (rb) { 6294 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6295 wake_up_all(&event->waitq); 6296 } 6297 rcu_read_unlock(); 6298 } 6299 6300 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6301 { 6302 struct perf_buffer *rb; 6303 6304 if (event->parent) 6305 event = event->parent; 6306 6307 rcu_read_lock(); 6308 rb = rcu_dereference(event->rb); 6309 if (rb) { 6310 if (!refcount_inc_not_zero(&rb->refcount)) 6311 rb = NULL; 6312 } 6313 rcu_read_unlock(); 6314 6315 return rb; 6316 } 6317 6318 void ring_buffer_put(struct perf_buffer *rb) 6319 { 6320 if (!refcount_dec_and_test(&rb->refcount)) 6321 return; 6322 6323 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6324 6325 call_rcu(&rb->rcu_head, rb_free_rcu); 6326 } 6327 6328 static void perf_mmap_open(struct vm_area_struct *vma) 6329 { 6330 struct perf_event *event = vma->vm_file->private_data; 6331 6332 atomic_inc(&event->mmap_count); 6333 atomic_inc(&event->rb->mmap_count); 6334 6335 if (vma->vm_pgoff) 6336 atomic_inc(&event->rb->aux_mmap_count); 6337 6338 if (event->pmu->event_mapped) 6339 event->pmu->event_mapped(event, vma->vm_mm); 6340 } 6341 6342 static void perf_pmu_output_stop(struct perf_event *event); 6343 6344 /* 6345 * A buffer can be mmap()ed multiple times; either directly through the same 6346 * event, or through other events by use of perf_event_set_output(). 6347 * 6348 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6349 * the buffer here, where we still have a VM context. This means we need 6350 * to detach all events redirecting to us. 6351 */ 6352 static void perf_mmap_close(struct vm_area_struct *vma) 6353 { 6354 struct perf_event *event = vma->vm_file->private_data; 6355 struct perf_buffer *rb = ring_buffer_get(event); 6356 struct user_struct *mmap_user = rb->mmap_user; 6357 int mmap_locked = rb->mmap_locked; 6358 unsigned long size = perf_data_size(rb); 6359 bool detach_rest = false; 6360 6361 if (event->pmu->event_unmapped) 6362 event->pmu->event_unmapped(event, vma->vm_mm); 6363 6364 /* 6365 * rb->aux_mmap_count will always drop before rb->mmap_count and 6366 * event->mmap_count, so it is ok to use event->mmap_mutex to 6367 * serialize with perf_mmap here. 6368 */ 6369 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6370 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6371 /* 6372 * Stop all AUX events that are writing to this buffer, 6373 * so that we can free its AUX pages and corresponding PMU 6374 * data. Note that after rb::aux_mmap_count dropped to zero, 6375 * they won't start any more (see perf_aux_output_begin()). 6376 */ 6377 perf_pmu_output_stop(event); 6378 6379 /* now it's safe to free the pages */ 6380 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6381 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6382 6383 /* this has to be the last one */ 6384 rb_free_aux(rb); 6385 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6386 6387 mutex_unlock(&event->mmap_mutex); 6388 } 6389 6390 if (atomic_dec_and_test(&rb->mmap_count)) 6391 detach_rest = true; 6392 6393 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6394 goto out_put; 6395 6396 ring_buffer_attach(event, NULL); 6397 mutex_unlock(&event->mmap_mutex); 6398 6399 /* If there's still other mmap()s of this buffer, we're done. */ 6400 if (!detach_rest) 6401 goto out_put; 6402 6403 /* 6404 * No other mmap()s, detach from all other events that might redirect 6405 * into the now unreachable buffer. Somewhat complicated by the 6406 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6407 */ 6408 again: 6409 rcu_read_lock(); 6410 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6411 if (!atomic_long_inc_not_zero(&event->refcount)) { 6412 /* 6413 * This event is en-route to free_event() which will 6414 * detach it and remove it from the list. 6415 */ 6416 continue; 6417 } 6418 rcu_read_unlock(); 6419 6420 mutex_lock(&event->mmap_mutex); 6421 /* 6422 * Check we didn't race with perf_event_set_output() which can 6423 * swizzle the rb from under us while we were waiting to 6424 * acquire mmap_mutex. 6425 * 6426 * If we find a different rb; ignore this event, a next 6427 * iteration will no longer find it on the list. We have to 6428 * still restart the iteration to make sure we're not now 6429 * iterating the wrong list. 6430 */ 6431 if (event->rb == rb) 6432 ring_buffer_attach(event, NULL); 6433 6434 mutex_unlock(&event->mmap_mutex); 6435 put_event(event); 6436 6437 /* 6438 * Restart the iteration; either we're on the wrong list or 6439 * destroyed its integrity by doing a deletion. 6440 */ 6441 goto again; 6442 } 6443 rcu_read_unlock(); 6444 6445 /* 6446 * It could be there's still a few 0-ref events on the list; they'll 6447 * get cleaned up by free_event() -- they'll also still have their 6448 * ref on the rb and will free it whenever they are done with it. 6449 * 6450 * Aside from that, this buffer is 'fully' detached and unmapped, 6451 * undo the VM accounting. 6452 */ 6453 6454 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6455 &mmap_user->locked_vm); 6456 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6457 free_uid(mmap_user); 6458 6459 out_put: 6460 ring_buffer_put(rb); /* could be last */ 6461 } 6462 6463 static const struct vm_operations_struct perf_mmap_vmops = { 6464 .open = perf_mmap_open, 6465 .close = perf_mmap_close, /* non mergeable */ 6466 .fault = perf_mmap_fault, 6467 .page_mkwrite = perf_mmap_fault, 6468 }; 6469 6470 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6471 { 6472 struct perf_event *event = file->private_data; 6473 unsigned long user_locked, user_lock_limit; 6474 struct user_struct *user = current_user(); 6475 struct perf_buffer *rb = NULL; 6476 unsigned long locked, lock_limit; 6477 unsigned long vma_size; 6478 unsigned long nr_pages; 6479 long user_extra = 0, extra = 0; 6480 int ret = 0, flags = 0; 6481 6482 /* 6483 * Don't allow mmap() of inherited per-task counters. This would 6484 * create a performance issue due to all children writing to the 6485 * same rb. 6486 */ 6487 if (event->cpu == -1 && event->attr.inherit) 6488 return -EINVAL; 6489 6490 if (!(vma->vm_flags & VM_SHARED)) 6491 return -EINVAL; 6492 6493 ret = security_perf_event_read(event); 6494 if (ret) 6495 return ret; 6496 6497 vma_size = vma->vm_end - vma->vm_start; 6498 6499 if (vma->vm_pgoff == 0) { 6500 nr_pages = (vma_size / PAGE_SIZE) - 1; 6501 } else { 6502 /* 6503 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6504 * mapped, all subsequent mappings should have the same size 6505 * and offset. Must be above the normal perf buffer. 6506 */ 6507 u64 aux_offset, aux_size; 6508 6509 if (!event->rb) 6510 return -EINVAL; 6511 6512 nr_pages = vma_size / PAGE_SIZE; 6513 6514 mutex_lock(&event->mmap_mutex); 6515 ret = -EINVAL; 6516 6517 rb = event->rb; 6518 if (!rb) 6519 goto aux_unlock; 6520 6521 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6522 aux_size = READ_ONCE(rb->user_page->aux_size); 6523 6524 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6525 goto aux_unlock; 6526 6527 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6528 goto aux_unlock; 6529 6530 /* already mapped with a different offset */ 6531 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6532 goto aux_unlock; 6533 6534 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6535 goto aux_unlock; 6536 6537 /* already mapped with a different size */ 6538 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6539 goto aux_unlock; 6540 6541 if (!is_power_of_2(nr_pages)) 6542 goto aux_unlock; 6543 6544 if (!atomic_inc_not_zero(&rb->mmap_count)) 6545 goto aux_unlock; 6546 6547 if (rb_has_aux(rb)) { 6548 atomic_inc(&rb->aux_mmap_count); 6549 ret = 0; 6550 goto unlock; 6551 } 6552 6553 atomic_set(&rb->aux_mmap_count, 1); 6554 user_extra = nr_pages; 6555 6556 goto accounting; 6557 } 6558 6559 /* 6560 * If we have rb pages ensure they're a power-of-two number, so we 6561 * can do bitmasks instead of modulo. 6562 */ 6563 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6564 return -EINVAL; 6565 6566 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6567 return -EINVAL; 6568 6569 WARN_ON_ONCE(event->ctx->parent_ctx); 6570 again: 6571 mutex_lock(&event->mmap_mutex); 6572 if (event->rb) { 6573 if (data_page_nr(event->rb) != nr_pages) { 6574 ret = -EINVAL; 6575 goto unlock; 6576 } 6577 6578 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6579 /* 6580 * Raced against perf_mmap_close(); remove the 6581 * event and try again. 6582 */ 6583 ring_buffer_attach(event, NULL); 6584 mutex_unlock(&event->mmap_mutex); 6585 goto again; 6586 } 6587 6588 goto unlock; 6589 } 6590 6591 user_extra = nr_pages + 1; 6592 6593 accounting: 6594 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6595 6596 /* 6597 * Increase the limit linearly with more CPUs: 6598 */ 6599 user_lock_limit *= num_online_cpus(); 6600 6601 user_locked = atomic_long_read(&user->locked_vm); 6602 6603 /* 6604 * sysctl_perf_event_mlock may have changed, so that 6605 * user->locked_vm > user_lock_limit 6606 */ 6607 if (user_locked > user_lock_limit) 6608 user_locked = user_lock_limit; 6609 user_locked += user_extra; 6610 6611 if (user_locked > user_lock_limit) { 6612 /* 6613 * charge locked_vm until it hits user_lock_limit; 6614 * charge the rest from pinned_vm 6615 */ 6616 extra = user_locked - user_lock_limit; 6617 user_extra -= extra; 6618 } 6619 6620 lock_limit = rlimit(RLIMIT_MEMLOCK); 6621 lock_limit >>= PAGE_SHIFT; 6622 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6623 6624 if ((locked > lock_limit) && perf_is_paranoid() && 6625 !capable(CAP_IPC_LOCK)) { 6626 ret = -EPERM; 6627 goto unlock; 6628 } 6629 6630 WARN_ON(!rb && event->rb); 6631 6632 if (vma->vm_flags & VM_WRITE) 6633 flags |= RING_BUFFER_WRITABLE; 6634 6635 if (!rb) { 6636 rb = rb_alloc(nr_pages, 6637 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6638 event->cpu, flags); 6639 6640 if (!rb) { 6641 ret = -ENOMEM; 6642 goto unlock; 6643 } 6644 6645 atomic_set(&rb->mmap_count, 1); 6646 rb->mmap_user = get_current_user(); 6647 rb->mmap_locked = extra; 6648 6649 ring_buffer_attach(event, rb); 6650 6651 perf_event_update_time(event); 6652 perf_event_init_userpage(event); 6653 perf_event_update_userpage(event); 6654 } else { 6655 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6656 event->attr.aux_watermark, flags); 6657 if (!ret) 6658 rb->aux_mmap_locked = extra; 6659 } 6660 6661 unlock: 6662 if (!ret) { 6663 atomic_long_add(user_extra, &user->locked_vm); 6664 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6665 6666 atomic_inc(&event->mmap_count); 6667 } else if (rb) { 6668 atomic_dec(&rb->mmap_count); 6669 } 6670 aux_unlock: 6671 mutex_unlock(&event->mmap_mutex); 6672 6673 /* 6674 * Since pinned accounting is per vm we cannot allow fork() to copy our 6675 * vma. 6676 */ 6677 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6678 vma->vm_ops = &perf_mmap_vmops; 6679 6680 if (event->pmu->event_mapped) 6681 event->pmu->event_mapped(event, vma->vm_mm); 6682 6683 return ret; 6684 } 6685 6686 static int perf_fasync(int fd, struct file *filp, int on) 6687 { 6688 struct inode *inode = file_inode(filp); 6689 struct perf_event *event = filp->private_data; 6690 int retval; 6691 6692 inode_lock(inode); 6693 retval = fasync_helper(fd, filp, on, &event->fasync); 6694 inode_unlock(inode); 6695 6696 if (retval < 0) 6697 return retval; 6698 6699 return 0; 6700 } 6701 6702 static const struct file_operations perf_fops = { 6703 .llseek = no_llseek, 6704 .release = perf_release, 6705 .read = perf_read, 6706 .poll = perf_poll, 6707 .unlocked_ioctl = perf_ioctl, 6708 .compat_ioctl = perf_compat_ioctl, 6709 .mmap = perf_mmap, 6710 .fasync = perf_fasync, 6711 }; 6712 6713 /* 6714 * Perf event wakeup 6715 * 6716 * If there's data, ensure we set the poll() state and publish everything 6717 * to user-space before waking everybody up. 6718 */ 6719 6720 void perf_event_wakeup(struct perf_event *event) 6721 { 6722 ring_buffer_wakeup(event); 6723 6724 if (event->pending_kill) { 6725 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6726 event->pending_kill = 0; 6727 } 6728 } 6729 6730 static void perf_sigtrap(struct perf_event *event) 6731 { 6732 /* 6733 * We'd expect this to only occur if the irq_work is delayed and either 6734 * ctx->task or current has changed in the meantime. This can be the 6735 * case on architectures that do not implement arch_irq_work_raise(). 6736 */ 6737 if (WARN_ON_ONCE(event->ctx->task != current)) 6738 return; 6739 6740 /* 6741 * Both perf_pending_task() and perf_pending_irq() can race with the 6742 * task exiting. 6743 */ 6744 if (current->flags & PF_EXITING) 6745 return; 6746 6747 send_sig_perf((void __user *)event->pending_addr, 6748 event->orig_type, event->attr.sig_data); 6749 } 6750 6751 /* 6752 * Deliver the pending work in-event-context or follow the context. 6753 */ 6754 static void __perf_pending_irq(struct perf_event *event) 6755 { 6756 int cpu = READ_ONCE(event->oncpu); 6757 6758 /* 6759 * If the event isn't running; we done. event_sched_out() will have 6760 * taken care of things. 6761 */ 6762 if (cpu < 0) 6763 return; 6764 6765 /* 6766 * Yay, we hit home and are in the context of the event. 6767 */ 6768 if (cpu == smp_processor_id()) { 6769 if (event->pending_sigtrap) { 6770 event->pending_sigtrap = 0; 6771 perf_sigtrap(event); 6772 local_dec(&event->ctx->nr_pending); 6773 } 6774 if (event->pending_disable) { 6775 event->pending_disable = 0; 6776 perf_event_disable_local(event); 6777 } 6778 return; 6779 } 6780 6781 /* 6782 * CPU-A CPU-B 6783 * 6784 * perf_event_disable_inatomic() 6785 * @pending_disable = CPU-A; 6786 * irq_work_queue(); 6787 * 6788 * sched-out 6789 * @pending_disable = -1; 6790 * 6791 * sched-in 6792 * perf_event_disable_inatomic() 6793 * @pending_disable = CPU-B; 6794 * irq_work_queue(); // FAILS 6795 * 6796 * irq_work_run() 6797 * perf_pending_irq() 6798 * 6799 * But the event runs on CPU-B and wants disabling there. 6800 */ 6801 irq_work_queue_on(&event->pending_irq, cpu); 6802 } 6803 6804 static void perf_pending_irq(struct irq_work *entry) 6805 { 6806 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6807 int rctx; 6808 6809 /* 6810 * If we 'fail' here, that's OK, it means recursion is already disabled 6811 * and we won't recurse 'further'. 6812 */ 6813 rctx = perf_swevent_get_recursion_context(); 6814 6815 /* 6816 * The wakeup isn't bound to the context of the event -- it can happen 6817 * irrespective of where the event is. 6818 */ 6819 if (event->pending_wakeup) { 6820 event->pending_wakeup = 0; 6821 perf_event_wakeup(event); 6822 } 6823 6824 __perf_pending_irq(event); 6825 6826 if (rctx >= 0) 6827 perf_swevent_put_recursion_context(rctx); 6828 } 6829 6830 static void perf_pending_task(struct callback_head *head) 6831 { 6832 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6833 int rctx; 6834 6835 /* 6836 * If we 'fail' here, that's OK, it means recursion is already disabled 6837 * and we won't recurse 'further'. 6838 */ 6839 preempt_disable_notrace(); 6840 rctx = perf_swevent_get_recursion_context(); 6841 6842 if (event->pending_work) { 6843 event->pending_work = 0; 6844 perf_sigtrap(event); 6845 local_dec(&event->ctx->nr_pending); 6846 } 6847 6848 if (rctx >= 0) 6849 perf_swevent_put_recursion_context(rctx); 6850 preempt_enable_notrace(); 6851 6852 put_event(event); 6853 } 6854 6855 #ifdef CONFIG_GUEST_PERF_EVENTS 6856 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6857 6858 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6859 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6860 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6861 6862 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6863 { 6864 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6865 return; 6866 6867 rcu_assign_pointer(perf_guest_cbs, cbs); 6868 static_call_update(__perf_guest_state, cbs->state); 6869 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6870 6871 /* Implementing ->handle_intel_pt_intr is optional. */ 6872 if (cbs->handle_intel_pt_intr) 6873 static_call_update(__perf_guest_handle_intel_pt_intr, 6874 cbs->handle_intel_pt_intr); 6875 } 6876 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6877 6878 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6879 { 6880 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6881 return; 6882 6883 rcu_assign_pointer(perf_guest_cbs, NULL); 6884 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6885 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6886 static_call_update(__perf_guest_handle_intel_pt_intr, 6887 (void *)&__static_call_return0); 6888 synchronize_rcu(); 6889 } 6890 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6891 #endif 6892 6893 static void 6894 perf_output_sample_regs(struct perf_output_handle *handle, 6895 struct pt_regs *regs, u64 mask) 6896 { 6897 int bit; 6898 DECLARE_BITMAP(_mask, 64); 6899 6900 bitmap_from_u64(_mask, mask); 6901 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6902 u64 val; 6903 6904 val = perf_reg_value(regs, bit); 6905 perf_output_put(handle, val); 6906 } 6907 } 6908 6909 static void perf_sample_regs_user(struct perf_regs *regs_user, 6910 struct pt_regs *regs) 6911 { 6912 if (user_mode(regs)) { 6913 regs_user->abi = perf_reg_abi(current); 6914 regs_user->regs = regs; 6915 } else if (!(current->flags & PF_KTHREAD)) { 6916 perf_get_regs_user(regs_user, regs); 6917 } else { 6918 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6919 regs_user->regs = NULL; 6920 } 6921 } 6922 6923 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6924 struct pt_regs *regs) 6925 { 6926 regs_intr->regs = regs; 6927 regs_intr->abi = perf_reg_abi(current); 6928 } 6929 6930 6931 /* 6932 * Get remaining task size from user stack pointer. 6933 * 6934 * It'd be better to take stack vma map and limit this more 6935 * precisely, but there's no way to get it safely under interrupt, 6936 * so using TASK_SIZE as limit. 6937 */ 6938 static u64 perf_ustack_task_size(struct pt_regs *regs) 6939 { 6940 unsigned long addr = perf_user_stack_pointer(regs); 6941 6942 if (!addr || addr >= TASK_SIZE) 6943 return 0; 6944 6945 return TASK_SIZE - addr; 6946 } 6947 6948 static u16 6949 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6950 struct pt_regs *regs) 6951 { 6952 u64 task_size; 6953 6954 /* No regs, no stack pointer, no dump. */ 6955 if (!regs) 6956 return 0; 6957 6958 /* 6959 * Check if we fit in with the requested stack size into the: 6960 * - TASK_SIZE 6961 * If we don't, we limit the size to the TASK_SIZE. 6962 * 6963 * - remaining sample size 6964 * If we don't, we customize the stack size to 6965 * fit in to the remaining sample size. 6966 */ 6967 6968 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6969 stack_size = min(stack_size, (u16) task_size); 6970 6971 /* Current header size plus static size and dynamic size. */ 6972 header_size += 2 * sizeof(u64); 6973 6974 /* Do we fit in with the current stack dump size? */ 6975 if ((u16) (header_size + stack_size) < header_size) { 6976 /* 6977 * If we overflow the maximum size for the sample, 6978 * we customize the stack dump size to fit in. 6979 */ 6980 stack_size = USHRT_MAX - header_size - sizeof(u64); 6981 stack_size = round_up(stack_size, sizeof(u64)); 6982 } 6983 6984 return stack_size; 6985 } 6986 6987 static void 6988 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6989 struct pt_regs *regs) 6990 { 6991 /* Case of a kernel thread, nothing to dump */ 6992 if (!regs) { 6993 u64 size = 0; 6994 perf_output_put(handle, size); 6995 } else { 6996 unsigned long sp; 6997 unsigned int rem; 6998 u64 dyn_size; 6999 7000 /* 7001 * We dump: 7002 * static size 7003 * - the size requested by user or the best one we can fit 7004 * in to the sample max size 7005 * data 7006 * - user stack dump data 7007 * dynamic size 7008 * - the actual dumped size 7009 */ 7010 7011 /* Static size. */ 7012 perf_output_put(handle, dump_size); 7013 7014 /* Data. */ 7015 sp = perf_user_stack_pointer(regs); 7016 rem = __output_copy_user(handle, (void *) sp, dump_size); 7017 dyn_size = dump_size - rem; 7018 7019 perf_output_skip(handle, rem); 7020 7021 /* Dynamic size. */ 7022 perf_output_put(handle, dyn_size); 7023 } 7024 } 7025 7026 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7027 struct perf_sample_data *data, 7028 size_t size) 7029 { 7030 struct perf_event *sampler = event->aux_event; 7031 struct perf_buffer *rb; 7032 7033 data->aux_size = 0; 7034 7035 if (!sampler) 7036 goto out; 7037 7038 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7039 goto out; 7040 7041 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7042 goto out; 7043 7044 rb = ring_buffer_get(sampler); 7045 if (!rb) 7046 goto out; 7047 7048 /* 7049 * If this is an NMI hit inside sampling code, don't take 7050 * the sample. See also perf_aux_sample_output(). 7051 */ 7052 if (READ_ONCE(rb->aux_in_sampling)) { 7053 data->aux_size = 0; 7054 } else { 7055 size = min_t(size_t, size, perf_aux_size(rb)); 7056 data->aux_size = ALIGN(size, sizeof(u64)); 7057 } 7058 ring_buffer_put(rb); 7059 7060 out: 7061 return data->aux_size; 7062 } 7063 7064 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7065 struct perf_event *event, 7066 struct perf_output_handle *handle, 7067 unsigned long size) 7068 { 7069 unsigned long flags; 7070 long ret; 7071 7072 /* 7073 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7074 * paths. If we start calling them in NMI context, they may race with 7075 * the IRQ ones, that is, for example, re-starting an event that's just 7076 * been stopped, which is why we're using a separate callback that 7077 * doesn't change the event state. 7078 * 7079 * IRQs need to be disabled to prevent IPIs from racing with us. 7080 */ 7081 local_irq_save(flags); 7082 /* 7083 * Guard against NMI hits inside the critical section; 7084 * see also perf_prepare_sample_aux(). 7085 */ 7086 WRITE_ONCE(rb->aux_in_sampling, 1); 7087 barrier(); 7088 7089 ret = event->pmu->snapshot_aux(event, handle, size); 7090 7091 barrier(); 7092 WRITE_ONCE(rb->aux_in_sampling, 0); 7093 local_irq_restore(flags); 7094 7095 return ret; 7096 } 7097 7098 static void perf_aux_sample_output(struct perf_event *event, 7099 struct perf_output_handle *handle, 7100 struct perf_sample_data *data) 7101 { 7102 struct perf_event *sampler = event->aux_event; 7103 struct perf_buffer *rb; 7104 unsigned long pad; 7105 long size; 7106 7107 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7108 return; 7109 7110 rb = ring_buffer_get(sampler); 7111 if (!rb) 7112 return; 7113 7114 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7115 7116 /* 7117 * An error here means that perf_output_copy() failed (returned a 7118 * non-zero surplus that it didn't copy), which in its current 7119 * enlightened implementation is not possible. If that changes, we'd 7120 * like to know. 7121 */ 7122 if (WARN_ON_ONCE(size < 0)) 7123 goto out_put; 7124 7125 /* 7126 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7127 * perf_prepare_sample_aux(), so should not be more than that. 7128 */ 7129 pad = data->aux_size - size; 7130 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7131 pad = 8; 7132 7133 if (pad) { 7134 u64 zero = 0; 7135 perf_output_copy(handle, &zero, pad); 7136 } 7137 7138 out_put: 7139 ring_buffer_put(rb); 7140 } 7141 7142 /* 7143 * A set of common sample data types saved even for non-sample records 7144 * when event->attr.sample_id_all is set. 7145 */ 7146 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7147 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7148 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7149 7150 static void __perf_event_header__init_id(struct perf_sample_data *data, 7151 struct perf_event *event, 7152 u64 sample_type) 7153 { 7154 data->type = event->attr.sample_type; 7155 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7156 7157 if (sample_type & PERF_SAMPLE_TID) { 7158 /* namespace issues */ 7159 data->tid_entry.pid = perf_event_pid(event, current); 7160 data->tid_entry.tid = perf_event_tid(event, current); 7161 } 7162 7163 if (sample_type & PERF_SAMPLE_TIME) 7164 data->time = perf_event_clock(event); 7165 7166 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7167 data->id = primary_event_id(event); 7168 7169 if (sample_type & PERF_SAMPLE_STREAM_ID) 7170 data->stream_id = event->id; 7171 7172 if (sample_type & PERF_SAMPLE_CPU) { 7173 data->cpu_entry.cpu = raw_smp_processor_id(); 7174 data->cpu_entry.reserved = 0; 7175 } 7176 } 7177 7178 void perf_event_header__init_id(struct perf_event_header *header, 7179 struct perf_sample_data *data, 7180 struct perf_event *event) 7181 { 7182 if (event->attr.sample_id_all) { 7183 header->size += event->id_header_size; 7184 __perf_event_header__init_id(data, event, event->attr.sample_type); 7185 } 7186 } 7187 7188 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7189 struct perf_sample_data *data) 7190 { 7191 u64 sample_type = data->type; 7192 7193 if (sample_type & PERF_SAMPLE_TID) 7194 perf_output_put(handle, data->tid_entry); 7195 7196 if (sample_type & PERF_SAMPLE_TIME) 7197 perf_output_put(handle, data->time); 7198 7199 if (sample_type & PERF_SAMPLE_ID) 7200 perf_output_put(handle, data->id); 7201 7202 if (sample_type & PERF_SAMPLE_STREAM_ID) 7203 perf_output_put(handle, data->stream_id); 7204 7205 if (sample_type & PERF_SAMPLE_CPU) 7206 perf_output_put(handle, data->cpu_entry); 7207 7208 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7209 perf_output_put(handle, data->id); 7210 } 7211 7212 void perf_event__output_id_sample(struct perf_event *event, 7213 struct perf_output_handle *handle, 7214 struct perf_sample_data *sample) 7215 { 7216 if (event->attr.sample_id_all) 7217 __perf_event__output_id_sample(handle, sample); 7218 } 7219 7220 static void perf_output_read_one(struct perf_output_handle *handle, 7221 struct perf_event *event, 7222 u64 enabled, u64 running) 7223 { 7224 u64 read_format = event->attr.read_format; 7225 u64 values[5]; 7226 int n = 0; 7227 7228 values[n++] = perf_event_count(event); 7229 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7230 values[n++] = enabled + 7231 atomic64_read(&event->child_total_time_enabled); 7232 } 7233 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7234 values[n++] = running + 7235 atomic64_read(&event->child_total_time_running); 7236 } 7237 if (read_format & PERF_FORMAT_ID) 7238 values[n++] = primary_event_id(event); 7239 if (read_format & PERF_FORMAT_LOST) 7240 values[n++] = atomic64_read(&event->lost_samples); 7241 7242 __output_copy(handle, values, n * sizeof(u64)); 7243 } 7244 7245 static void perf_output_read_group(struct perf_output_handle *handle, 7246 struct perf_event *event, 7247 u64 enabled, u64 running) 7248 { 7249 struct perf_event *leader = event->group_leader, *sub; 7250 u64 read_format = event->attr.read_format; 7251 unsigned long flags; 7252 u64 values[6]; 7253 int n = 0; 7254 7255 /* 7256 * Disabling interrupts avoids all counter scheduling 7257 * (context switches, timer based rotation and IPIs). 7258 */ 7259 local_irq_save(flags); 7260 7261 values[n++] = 1 + leader->nr_siblings; 7262 7263 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7264 values[n++] = enabled; 7265 7266 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7267 values[n++] = running; 7268 7269 if ((leader != event) && 7270 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7271 leader->pmu->read(leader); 7272 7273 values[n++] = perf_event_count(leader); 7274 if (read_format & PERF_FORMAT_ID) 7275 values[n++] = primary_event_id(leader); 7276 if (read_format & PERF_FORMAT_LOST) 7277 values[n++] = atomic64_read(&leader->lost_samples); 7278 7279 __output_copy(handle, values, n * sizeof(u64)); 7280 7281 for_each_sibling_event(sub, leader) { 7282 n = 0; 7283 7284 if ((sub != event) && 7285 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7286 sub->pmu->read(sub); 7287 7288 values[n++] = perf_event_count(sub); 7289 if (read_format & PERF_FORMAT_ID) 7290 values[n++] = primary_event_id(sub); 7291 if (read_format & PERF_FORMAT_LOST) 7292 values[n++] = atomic64_read(&sub->lost_samples); 7293 7294 __output_copy(handle, values, n * sizeof(u64)); 7295 } 7296 7297 local_irq_restore(flags); 7298 } 7299 7300 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7301 PERF_FORMAT_TOTAL_TIME_RUNNING) 7302 7303 /* 7304 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7305 * 7306 * The problem is that its both hard and excessively expensive to iterate the 7307 * child list, not to mention that its impossible to IPI the children running 7308 * on another CPU, from interrupt/NMI context. 7309 */ 7310 static void perf_output_read(struct perf_output_handle *handle, 7311 struct perf_event *event) 7312 { 7313 u64 enabled = 0, running = 0, now; 7314 u64 read_format = event->attr.read_format; 7315 7316 /* 7317 * compute total_time_enabled, total_time_running 7318 * based on snapshot values taken when the event 7319 * was last scheduled in. 7320 * 7321 * we cannot simply called update_context_time() 7322 * because of locking issue as we are called in 7323 * NMI context 7324 */ 7325 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7326 calc_timer_values(event, &now, &enabled, &running); 7327 7328 if (event->attr.read_format & PERF_FORMAT_GROUP) 7329 perf_output_read_group(handle, event, enabled, running); 7330 else 7331 perf_output_read_one(handle, event, enabled, running); 7332 } 7333 7334 void perf_output_sample(struct perf_output_handle *handle, 7335 struct perf_event_header *header, 7336 struct perf_sample_data *data, 7337 struct perf_event *event) 7338 { 7339 u64 sample_type = data->type; 7340 7341 perf_output_put(handle, *header); 7342 7343 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7344 perf_output_put(handle, data->id); 7345 7346 if (sample_type & PERF_SAMPLE_IP) 7347 perf_output_put(handle, data->ip); 7348 7349 if (sample_type & PERF_SAMPLE_TID) 7350 perf_output_put(handle, data->tid_entry); 7351 7352 if (sample_type & PERF_SAMPLE_TIME) 7353 perf_output_put(handle, data->time); 7354 7355 if (sample_type & PERF_SAMPLE_ADDR) 7356 perf_output_put(handle, data->addr); 7357 7358 if (sample_type & PERF_SAMPLE_ID) 7359 perf_output_put(handle, data->id); 7360 7361 if (sample_type & PERF_SAMPLE_STREAM_ID) 7362 perf_output_put(handle, data->stream_id); 7363 7364 if (sample_type & PERF_SAMPLE_CPU) 7365 perf_output_put(handle, data->cpu_entry); 7366 7367 if (sample_type & PERF_SAMPLE_PERIOD) 7368 perf_output_put(handle, data->period); 7369 7370 if (sample_type & PERF_SAMPLE_READ) 7371 perf_output_read(handle, event); 7372 7373 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7374 int size = 1; 7375 7376 size += data->callchain->nr; 7377 size *= sizeof(u64); 7378 __output_copy(handle, data->callchain, size); 7379 } 7380 7381 if (sample_type & PERF_SAMPLE_RAW) { 7382 struct perf_raw_record *raw = data->raw; 7383 7384 if (raw) { 7385 struct perf_raw_frag *frag = &raw->frag; 7386 7387 perf_output_put(handle, raw->size); 7388 do { 7389 if (frag->copy) { 7390 __output_custom(handle, frag->copy, 7391 frag->data, frag->size); 7392 } else { 7393 __output_copy(handle, frag->data, 7394 frag->size); 7395 } 7396 if (perf_raw_frag_last(frag)) 7397 break; 7398 frag = frag->next; 7399 } while (1); 7400 if (frag->pad) 7401 __output_skip(handle, NULL, frag->pad); 7402 } else { 7403 struct { 7404 u32 size; 7405 u32 data; 7406 } raw = { 7407 .size = sizeof(u32), 7408 .data = 0, 7409 }; 7410 perf_output_put(handle, raw); 7411 } 7412 } 7413 7414 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7415 if (data->br_stack) { 7416 size_t size; 7417 7418 size = data->br_stack->nr 7419 * sizeof(struct perf_branch_entry); 7420 7421 perf_output_put(handle, data->br_stack->nr); 7422 if (branch_sample_hw_index(event)) 7423 perf_output_put(handle, data->br_stack->hw_idx); 7424 perf_output_copy(handle, data->br_stack->entries, size); 7425 /* 7426 * Add the extension space which is appended 7427 * right after the struct perf_branch_stack. 7428 */ 7429 if (data->br_stack_cntr) { 7430 size = data->br_stack->nr * sizeof(u64); 7431 perf_output_copy(handle, data->br_stack_cntr, size); 7432 } 7433 } else { 7434 /* 7435 * we always store at least the value of nr 7436 */ 7437 u64 nr = 0; 7438 perf_output_put(handle, nr); 7439 } 7440 } 7441 7442 if (sample_type & PERF_SAMPLE_REGS_USER) { 7443 u64 abi = data->regs_user.abi; 7444 7445 /* 7446 * If there are no regs to dump, notice it through 7447 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7448 */ 7449 perf_output_put(handle, abi); 7450 7451 if (abi) { 7452 u64 mask = event->attr.sample_regs_user; 7453 perf_output_sample_regs(handle, 7454 data->regs_user.regs, 7455 mask); 7456 } 7457 } 7458 7459 if (sample_type & PERF_SAMPLE_STACK_USER) { 7460 perf_output_sample_ustack(handle, 7461 data->stack_user_size, 7462 data->regs_user.regs); 7463 } 7464 7465 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7466 perf_output_put(handle, data->weight.full); 7467 7468 if (sample_type & PERF_SAMPLE_DATA_SRC) 7469 perf_output_put(handle, data->data_src.val); 7470 7471 if (sample_type & PERF_SAMPLE_TRANSACTION) 7472 perf_output_put(handle, data->txn); 7473 7474 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7475 u64 abi = data->regs_intr.abi; 7476 /* 7477 * If there are no regs to dump, notice it through 7478 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7479 */ 7480 perf_output_put(handle, abi); 7481 7482 if (abi) { 7483 u64 mask = event->attr.sample_regs_intr; 7484 7485 perf_output_sample_regs(handle, 7486 data->regs_intr.regs, 7487 mask); 7488 } 7489 } 7490 7491 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7492 perf_output_put(handle, data->phys_addr); 7493 7494 if (sample_type & PERF_SAMPLE_CGROUP) 7495 perf_output_put(handle, data->cgroup); 7496 7497 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7498 perf_output_put(handle, data->data_page_size); 7499 7500 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7501 perf_output_put(handle, data->code_page_size); 7502 7503 if (sample_type & PERF_SAMPLE_AUX) { 7504 perf_output_put(handle, data->aux_size); 7505 7506 if (data->aux_size) 7507 perf_aux_sample_output(event, handle, data); 7508 } 7509 7510 if (!event->attr.watermark) { 7511 int wakeup_events = event->attr.wakeup_events; 7512 7513 if (wakeup_events) { 7514 struct perf_buffer *rb = handle->rb; 7515 int events = local_inc_return(&rb->events); 7516 7517 if (events >= wakeup_events) { 7518 local_sub(wakeup_events, &rb->events); 7519 local_inc(&rb->wakeup); 7520 } 7521 } 7522 } 7523 } 7524 7525 static u64 perf_virt_to_phys(u64 virt) 7526 { 7527 u64 phys_addr = 0; 7528 7529 if (!virt) 7530 return 0; 7531 7532 if (virt >= TASK_SIZE) { 7533 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7534 if (virt_addr_valid((void *)(uintptr_t)virt) && 7535 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7536 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7537 } else { 7538 /* 7539 * Walking the pages tables for user address. 7540 * Interrupts are disabled, so it prevents any tear down 7541 * of the page tables. 7542 * Try IRQ-safe get_user_page_fast_only first. 7543 * If failed, leave phys_addr as 0. 7544 */ 7545 if (current->mm != NULL) { 7546 struct page *p; 7547 7548 pagefault_disable(); 7549 if (get_user_page_fast_only(virt, 0, &p)) { 7550 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7551 put_page(p); 7552 } 7553 pagefault_enable(); 7554 } 7555 } 7556 7557 return phys_addr; 7558 } 7559 7560 /* 7561 * Return the pagetable size of a given virtual address. 7562 */ 7563 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7564 { 7565 u64 size = 0; 7566 7567 #ifdef CONFIG_HAVE_GUP_FAST 7568 pgd_t *pgdp, pgd; 7569 p4d_t *p4dp, p4d; 7570 pud_t *pudp, pud; 7571 pmd_t *pmdp, pmd; 7572 pte_t *ptep, pte; 7573 7574 pgdp = pgd_offset(mm, addr); 7575 pgd = READ_ONCE(*pgdp); 7576 if (pgd_none(pgd)) 7577 return 0; 7578 7579 if (pgd_leaf(pgd)) 7580 return pgd_leaf_size(pgd); 7581 7582 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7583 p4d = READ_ONCE(*p4dp); 7584 if (!p4d_present(p4d)) 7585 return 0; 7586 7587 if (p4d_leaf(p4d)) 7588 return p4d_leaf_size(p4d); 7589 7590 pudp = pud_offset_lockless(p4dp, p4d, addr); 7591 pud = READ_ONCE(*pudp); 7592 if (!pud_present(pud)) 7593 return 0; 7594 7595 if (pud_leaf(pud)) 7596 return pud_leaf_size(pud); 7597 7598 pmdp = pmd_offset_lockless(pudp, pud, addr); 7599 again: 7600 pmd = pmdp_get_lockless(pmdp); 7601 if (!pmd_present(pmd)) 7602 return 0; 7603 7604 if (pmd_leaf(pmd)) 7605 return pmd_leaf_size(pmd); 7606 7607 ptep = pte_offset_map(&pmd, addr); 7608 if (!ptep) 7609 goto again; 7610 7611 pte = ptep_get_lockless(ptep); 7612 if (pte_present(pte)) 7613 size = pte_leaf_size(pte); 7614 pte_unmap(ptep); 7615 #endif /* CONFIG_HAVE_GUP_FAST */ 7616 7617 return size; 7618 } 7619 7620 static u64 perf_get_page_size(unsigned long addr) 7621 { 7622 struct mm_struct *mm; 7623 unsigned long flags; 7624 u64 size; 7625 7626 if (!addr) 7627 return 0; 7628 7629 /* 7630 * Software page-table walkers must disable IRQs, 7631 * which prevents any tear down of the page tables. 7632 */ 7633 local_irq_save(flags); 7634 7635 mm = current->mm; 7636 if (!mm) { 7637 /* 7638 * For kernel threads and the like, use init_mm so that 7639 * we can find kernel memory. 7640 */ 7641 mm = &init_mm; 7642 } 7643 7644 size = perf_get_pgtable_size(mm, addr); 7645 7646 local_irq_restore(flags); 7647 7648 return size; 7649 } 7650 7651 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7652 7653 struct perf_callchain_entry * 7654 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7655 { 7656 bool kernel = !event->attr.exclude_callchain_kernel; 7657 bool user = !event->attr.exclude_callchain_user; 7658 /* Disallow cross-task user callchains. */ 7659 bool crosstask = event->ctx->task && event->ctx->task != current; 7660 const u32 max_stack = event->attr.sample_max_stack; 7661 struct perf_callchain_entry *callchain; 7662 7663 if (!kernel && !user) 7664 return &__empty_callchain; 7665 7666 callchain = get_perf_callchain(regs, 0, kernel, user, 7667 max_stack, crosstask, true); 7668 return callchain ?: &__empty_callchain; 7669 } 7670 7671 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7672 { 7673 return d * !!(flags & s); 7674 } 7675 7676 void perf_prepare_sample(struct perf_sample_data *data, 7677 struct perf_event *event, 7678 struct pt_regs *regs) 7679 { 7680 u64 sample_type = event->attr.sample_type; 7681 u64 filtered_sample_type; 7682 7683 /* 7684 * Add the sample flags that are dependent to others. And clear the 7685 * sample flags that have already been done by the PMU driver. 7686 */ 7687 filtered_sample_type = sample_type; 7688 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7689 PERF_SAMPLE_IP); 7690 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7691 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7692 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7693 PERF_SAMPLE_REGS_USER); 7694 filtered_sample_type &= ~data->sample_flags; 7695 7696 if (filtered_sample_type == 0) { 7697 /* Make sure it has the correct data->type for output */ 7698 data->type = event->attr.sample_type; 7699 return; 7700 } 7701 7702 __perf_event_header__init_id(data, event, filtered_sample_type); 7703 7704 if (filtered_sample_type & PERF_SAMPLE_IP) { 7705 data->ip = perf_instruction_pointer(regs); 7706 data->sample_flags |= PERF_SAMPLE_IP; 7707 } 7708 7709 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7710 perf_sample_save_callchain(data, event, regs); 7711 7712 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7713 data->raw = NULL; 7714 data->dyn_size += sizeof(u64); 7715 data->sample_flags |= PERF_SAMPLE_RAW; 7716 } 7717 7718 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7719 data->br_stack = NULL; 7720 data->dyn_size += sizeof(u64); 7721 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7722 } 7723 7724 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7725 perf_sample_regs_user(&data->regs_user, regs); 7726 7727 /* 7728 * It cannot use the filtered_sample_type here as REGS_USER can be set 7729 * by STACK_USER (using __cond_set() above) and we don't want to update 7730 * the dyn_size if it's not requested by users. 7731 */ 7732 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7733 /* regs dump ABI info */ 7734 int size = sizeof(u64); 7735 7736 if (data->regs_user.regs) { 7737 u64 mask = event->attr.sample_regs_user; 7738 size += hweight64(mask) * sizeof(u64); 7739 } 7740 7741 data->dyn_size += size; 7742 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7743 } 7744 7745 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7746 /* 7747 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7748 * processed as the last one or have additional check added 7749 * in case new sample type is added, because we could eat 7750 * up the rest of the sample size. 7751 */ 7752 u16 stack_size = event->attr.sample_stack_user; 7753 u16 header_size = perf_sample_data_size(data, event); 7754 u16 size = sizeof(u64); 7755 7756 stack_size = perf_sample_ustack_size(stack_size, header_size, 7757 data->regs_user.regs); 7758 7759 /* 7760 * If there is something to dump, add space for the dump 7761 * itself and for the field that tells the dynamic size, 7762 * which is how many have been actually dumped. 7763 */ 7764 if (stack_size) 7765 size += sizeof(u64) + stack_size; 7766 7767 data->stack_user_size = stack_size; 7768 data->dyn_size += size; 7769 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7770 } 7771 7772 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7773 data->weight.full = 0; 7774 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7775 } 7776 7777 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7778 data->data_src.val = PERF_MEM_NA; 7779 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7780 } 7781 7782 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7783 data->txn = 0; 7784 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7785 } 7786 7787 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7788 data->addr = 0; 7789 data->sample_flags |= PERF_SAMPLE_ADDR; 7790 } 7791 7792 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7793 /* regs dump ABI info */ 7794 int size = sizeof(u64); 7795 7796 perf_sample_regs_intr(&data->regs_intr, regs); 7797 7798 if (data->regs_intr.regs) { 7799 u64 mask = event->attr.sample_regs_intr; 7800 7801 size += hweight64(mask) * sizeof(u64); 7802 } 7803 7804 data->dyn_size += size; 7805 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7806 } 7807 7808 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7809 data->phys_addr = perf_virt_to_phys(data->addr); 7810 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7811 } 7812 7813 #ifdef CONFIG_CGROUP_PERF 7814 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7815 struct cgroup *cgrp; 7816 7817 /* protected by RCU */ 7818 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7819 data->cgroup = cgroup_id(cgrp); 7820 data->sample_flags |= PERF_SAMPLE_CGROUP; 7821 } 7822 #endif 7823 7824 /* 7825 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7826 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7827 * but the value will not dump to the userspace. 7828 */ 7829 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7830 data->data_page_size = perf_get_page_size(data->addr); 7831 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7832 } 7833 7834 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7835 data->code_page_size = perf_get_page_size(data->ip); 7836 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7837 } 7838 7839 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7840 u64 size; 7841 u16 header_size = perf_sample_data_size(data, event); 7842 7843 header_size += sizeof(u64); /* size */ 7844 7845 /* 7846 * Given the 16bit nature of header::size, an AUX sample can 7847 * easily overflow it, what with all the preceding sample bits. 7848 * Make sure this doesn't happen by using up to U16_MAX bytes 7849 * per sample in total (rounded down to 8 byte boundary). 7850 */ 7851 size = min_t(size_t, U16_MAX - header_size, 7852 event->attr.aux_sample_size); 7853 size = rounddown(size, 8); 7854 size = perf_prepare_sample_aux(event, data, size); 7855 7856 WARN_ON_ONCE(size + header_size > U16_MAX); 7857 data->dyn_size += size + sizeof(u64); /* size above */ 7858 data->sample_flags |= PERF_SAMPLE_AUX; 7859 } 7860 } 7861 7862 void perf_prepare_header(struct perf_event_header *header, 7863 struct perf_sample_data *data, 7864 struct perf_event *event, 7865 struct pt_regs *regs) 7866 { 7867 header->type = PERF_RECORD_SAMPLE; 7868 header->size = perf_sample_data_size(data, event); 7869 header->misc = perf_misc_flags(regs); 7870 7871 /* 7872 * If you're adding more sample types here, you likely need to do 7873 * something about the overflowing header::size, like repurpose the 7874 * lowest 3 bits of size, which should be always zero at the moment. 7875 * This raises a more important question, do we really need 512k sized 7876 * samples and why, so good argumentation is in order for whatever you 7877 * do here next. 7878 */ 7879 WARN_ON_ONCE(header->size & 7); 7880 } 7881 7882 static __always_inline int 7883 __perf_event_output(struct perf_event *event, 7884 struct perf_sample_data *data, 7885 struct pt_regs *regs, 7886 int (*output_begin)(struct perf_output_handle *, 7887 struct perf_sample_data *, 7888 struct perf_event *, 7889 unsigned int)) 7890 { 7891 struct perf_output_handle handle; 7892 struct perf_event_header header; 7893 int err; 7894 7895 /* protect the callchain buffers */ 7896 rcu_read_lock(); 7897 7898 perf_prepare_sample(data, event, regs); 7899 perf_prepare_header(&header, data, event, regs); 7900 7901 err = output_begin(&handle, data, event, header.size); 7902 if (err) 7903 goto exit; 7904 7905 perf_output_sample(&handle, &header, data, event); 7906 7907 perf_output_end(&handle); 7908 7909 exit: 7910 rcu_read_unlock(); 7911 return err; 7912 } 7913 7914 void 7915 perf_event_output_forward(struct perf_event *event, 7916 struct perf_sample_data *data, 7917 struct pt_regs *regs) 7918 { 7919 __perf_event_output(event, data, regs, perf_output_begin_forward); 7920 } 7921 7922 void 7923 perf_event_output_backward(struct perf_event *event, 7924 struct perf_sample_data *data, 7925 struct pt_regs *regs) 7926 { 7927 __perf_event_output(event, data, regs, perf_output_begin_backward); 7928 } 7929 7930 int 7931 perf_event_output(struct perf_event *event, 7932 struct perf_sample_data *data, 7933 struct pt_regs *regs) 7934 { 7935 return __perf_event_output(event, data, regs, perf_output_begin); 7936 } 7937 7938 /* 7939 * read event_id 7940 */ 7941 7942 struct perf_read_event { 7943 struct perf_event_header header; 7944 7945 u32 pid; 7946 u32 tid; 7947 }; 7948 7949 static void 7950 perf_event_read_event(struct perf_event *event, 7951 struct task_struct *task) 7952 { 7953 struct perf_output_handle handle; 7954 struct perf_sample_data sample; 7955 struct perf_read_event read_event = { 7956 .header = { 7957 .type = PERF_RECORD_READ, 7958 .misc = 0, 7959 .size = sizeof(read_event) + event->read_size, 7960 }, 7961 .pid = perf_event_pid(event, task), 7962 .tid = perf_event_tid(event, task), 7963 }; 7964 int ret; 7965 7966 perf_event_header__init_id(&read_event.header, &sample, event); 7967 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7968 if (ret) 7969 return; 7970 7971 perf_output_put(&handle, read_event); 7972 perf_output_read(&handle, event); 7973 perf_event__output_id_sample(event, &handle, &sample); 7974 7975 perf_output_end(&handle); 7976 } 7977 7978 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7979 7980 static void 7981 perf_iterate_ctx(struct perf_event_context *ctx, 7982 perf_iterate_f output, 7983 void *data, bool all) 7984 { 7985 struct perf_event *event; 7986 7987 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7988 if (!all) { 7989 if (event->state < PERF_EVENT_STATE_INACTIVE) 7990 continue; 7991 if (!event_filter_match(event)) 7992 continue; 7993 } 7994 7995 output(event, data); 7996 } 7997 } 7998 7999 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8000 { 8001 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8002 struct perf_event *event; 8003 8004 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8005 /* 8006 * Skip events that are not fully formed yet; ensure that 8007 * if we observe event->ctx, both event and ctx will be 8008 * complete enough. See perf_install_in_context(). 8009 */ 8010 if (!smp_load_acquire(&event->ctx)) 8011 continue; 8012 8013 if (event->state < PERF_EVENT_STATE_INACTIVE) 8014 continue; 8015 if (!event_filter_match(event)) 8016 continue; 8017 output(event, data); 8018 } 8019 } 8020 8021 /* 8022 * Iterate all events that need to receive side-band events. 8023 * 8024 * For new callers; ensure that account_pmu_sb_event() includes 8025 * your event, otherwise it might not get delivered. 8026 */ 8027 static void 8028 perf_iterate_sb(perf_iterate_f output, void *data, 8029 struct perf_event_context *task_ctx) 8030 { 8031 struct perf_event_context *ctx; 8032 8033 rcu_read_lock(); 8034 preempt_disable(); 8035 8036 /* 8037 * If we have task_ctx != NULL we only notify the task context itself. 8038 * The task_ctx is set only for EXIT events before releasing task 8039 * context. 8040 */ 8041 if (task_ctx) { 8042 perf_iterate_ctx(task_ctx, output, data, false); 8043 goto done; 8044 } 8045 8046 perf_iterate_sb_cpu(output, data); 8047 8048 ctx = rcu_dereference(current->perf_event_ctxp); 8049 if (ctx) 8050 perf_iterate_ctx(ctx, output, data, false); 8051 done: 8052 preempt_enable(); 8053 rcu_read_unlock(); 8054 } 8055 8056 /* 8057 * Clear all file-based filters at exec, they'll have to be 8058 * re-instated when/if these objects are mmapped again. 8059 */ 8060 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8061 { 8062 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8063 struct perf_addr_filter *filter; 8064 unsigned int restart = 0, count = 0; 8065 unsigned long flags; 8066 8067 if (!has_addr_filter(event)) 8068 return; 8069 8070 raw_spin_lock_irqsave(&ifh->lock, flags); 8071 list_for_each_entry(filter, &ifh->list, entry) { 8072 if (filter->path.dentry) { 8073 event->addr_filter_ranges[count].start = 0; 8074 event->addr_filter_ranges[count].size = 0; 8075 restart++; 8076 } 8077 8078 count++; 8079 } 8080 8081 if (restart) 8082 event->addr_filters_gen++; 8083 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8084 8085 if (restart) 8086 perf_event_stop(event, 1); 8087 } 8088 8089 void perf_event_exec(void) 8090 { 8091 struct perf_event_context *ctx; 8092 8093 ctx = perf_pin_task_context(current); 8094 if (!ctx) 8095 return; 8096 8097 perf_event_enable_on_exec(ctx); 8098 perf_event_remove_on_exec(ctx); 8099 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8100 8101 perf_unpin_context(ctx); 8102 put_ctx(ctx); 8103 } 8104 8105 struct remote_output { 8106 struct perf_buffer *rb; 8107 int err; 8108 }; 8109 8110 static void __perf_event_output_stop(struct perf_event *event, void *data) 8111 { 8112 struct perf_event *parent = event->parent; 8113 struct remote_output *ro = data; 8114 struct perf_buffer *rb = ro->rb; 8115 struct stop_event_data sd = { 8116 .event = event, 8117 }; 8118 8119 if (!has_aux(event)) 8120 return; 8121 8122 if (!parent) 8123 parent = event; 8124 8125 /* 8126 * In case of inheritance, it will be the parent that links to the 8127 * ring-buffer, but it will be the child that's actually using it. 8128 * 8129 * We are using event::rb to determine if the event should be stopped, 8130 * however this may race with ring_buffer_attach() (through set_output), 8131 * which will make us skip the event that actually needs to be stopped. 8132 * So ring_buffer_attach() has to stop an aux event before re-assigning 8133 * its rb pointer. 8134 */ 8135 if (rcu_dereference(parent->rb) == rb) 8136 ro->err = __perf_event_stop(&sd); 8137 } 8138 8139 static int __perf_pmu_output_stop(void *info) 8140 { 8141 struct perf_event *event = info; 8142 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8143 struct remote_output ro = { 8144 .rb = event->rb, 8145 }; 8146 8147 rcu_read_lock(); 8148 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8149 if (cpuctx->task_ctx) 8150 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8151 &ro, false); 8152 rcu_read_unlock(); 8153 8154 return ro.err; 8155 } 8156 8157 static void perf_pmu_output_stop(struct perf_event *event) 8158 { 8159 struct perf_event *iter; 8160 int err, cpu; 8161 8162 restart: 8163 rcu_read_lock(); 8164 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8165 /* 8166 * For per-CPU events, we need to make sure that neither they 8167 * nor their children are running; for cpu==-1 events it's 8168 * sufficient to stop the event itself if it's active, since 8169 * it can't have children. 8170 */ 8171 cpu = iter->cpu; 8172 if (cpu == -1) 8173 cpu = READ_ONCE(iter->oncpu); 8174 8175 if (cpu == -1) 8176 continue; 8177 8178 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8179 if (err == -EAGAIN) { 8180 rcu_read_unlock(); 8181 goto restart; 8182 } 8183 } 8184 rcu_read_unlock(); 8185 } 8186 8187 /* 8188 * task tracking -- fork/exit 8189 * 8190 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8191 */ 8192 8193 struct perf_task_event { 8194 struct task_struct *task; 8195 struct perf_event_context *task_ctx; 8196 8197 struct { 8198 struct perf_event_header header; 8199 8200 u32 pid; 8201 u32 ppid; 8202 u32 tid; 8203 u32 ptid; 8204 u64 time; 8205 } event_id; 8206 }; 8207 8208 static int perf_event_task_match(struct perf_event *event) 8209 { 8210 return event->attr.comm || event->attr.mmap || 8211 event->attr.mmap2 || event->attr.mmap_data || 8212 event->attr.task; 8213 } 8214 8215 static void perf_event_task_output(struct perf_event *event, 8216 void *data) 8217 { 8218 struct perf_task_event *task_event = data; 8219 struct perf_output_handle handle; 8220 struct perf_sample_data sample; 8221 struct task_struct *task = task_event->task; 8222 int ret, size = task_event->event_id.header.size; 8223 8224 if (!perf_event_task_match(event)) 8225 return; 8226 8227 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8228 8229 ret = perf_output_begin(&handle, &sample, event, 8230 task_event->event_id.header.size); 8231 if (ret) 8232 goto out; 8233 8234 task_event->event_id.pid = perf_event_pid(event, task); 8235 task_event->event_id.tid = perf_event_tid(event, task); 8236 8237 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8238 task_event->event_id.ppid = perf_event_pid(event, 8239 task->real_parent); 8240 task_event->event_id.ptid = perf_event_pid(event, 8241 task->real_parent); 8242 } else { /* PERF_RECORD_FORK */ 8243 task_event->event_id.ppid = perf_event_pid(event, current); 8244 task_event->event_id.ptid = perf_event_tid(event, current); 8245 } 8246 8247 task_event->event_id.time = perf_event_clock(event); 8248 8249 perf_output_put(&handle, task_event->event_id); 8250 8251 perf_event__output_id_sample(event, &handle, &sample); 8252 8253 perf_output_end(&handle); 8254 out: 8255 task_event->event_id.header.size = size; 8256 } 8257 8258 static void perf_event_task(struct task_struct *task, 8259 struct perf_event_context *task_ctx, 8260 int new) 8261 { 8262 struct perf_task_event task_event; 8263 8264 if (!atomic_read(&nr_comm_events) && 8265 !atomic_read(&nr_mmap_events) && 8266 !atomic_read(&nr_task_events)) 8267 return; 8268 8269 task_event = (struct perf_task_event){ 8270 .task = task, 8271 .task_ctx = task_ctx, 8272 .event_id = { 8273 .header = { 8274 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8275 .misc = 0, 8276 .size = sizeof(task_event.event_id), 8277 }, 8278 /* .pid */ 8279 /* .ppid */ 8280 /* .tid */ 8281 /* .ptid */ 8282 /* .time */ 8283 }, 8284 }; 8285 8286 perf_iterate_sb(perf_event_task_output, 8287 &task_event, 8288 task_ctx); 8289 } 8290 8291 void perf_event_fork(struct task_struct *task) 8292 { 8293 perf_event_task(task, NULL, 1); 8294 perf_event_namespaces(task); 8295 } 8296 8297 /* 8298 * comm tracking 8299 */ 8300 8301 struct perf_comm_event { 8302 struct task_struct *task; 8303 char *comm; 8304 int comm_size; 8305 8306 struct { 8307 struct perf_event_header header; 8308 8309 u32 pid; 8310 u32 tid; 8311 } event_id; 8312 }; 8313 8314 static int perf_event_comm_match(struct perf_event *event) 8315 { 8316 return event->attr.comm; 8317 } 8318 8319 static void perf_event_comm_output(struct perf_event *event, 8320 void *data) 8321 { 8322 struct perf_comm_event *comm_event = data; 8323 struct perf_output_handle handle; 8324 struct perf_sample_data sample; 8325 int size = comm_event->event_id.header.size; 8326 int ret; 8327 8328 if (!perf_event_comm_match(event)) 8329 return; 8330 8331 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8332 ret = perf_output_begin(&handle, &sample, event, 8333 comm_event->event_id.header.size); 8334 8335 if (ret) 8336 goto out; 8337 8338 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8339 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8340 8341 perf_output_put(&handle, comm_event->event_id); 8342 __output_copy(&handle, comm_event->comm, 8343 comm_event->comm_size); 8344 8345 perf_event__output_id_sample(event, &handle, &sample); 8346 8347 perf_output_end(&handle); 8348 out: 8349 comm_event->event_id.header.size = size; 8350 } 8351 8352 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8353 { 8354 char comm[TASK_COMM_LEN]; 8355 unsigned int size; 8356 8357 memset(comm, 0, sizeof(comm)); 8358 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8359 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8360 8361 comm_event->comm = comm; 8362 comm_event->comm_size = size; 8363 8364 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8365 8366 perf_iterate_sb(perf_event_comm_output, 8367 comm_event, 8368 NULL); 8369 } 8370 8371 void perf_event_comm(struct task_struct *task, bool exec) 8372 { 8373 struct perf_comm_event comm_event; 8374 8375 if (!atomic_read(&nr_comm_events)) 8376 return; 8377 8378 comm_event = (struct perf_comm_event){ 8379 .task = task, 8380 /* .comm */ 8381 /* .comm_size */ 8382 .event_id = { 8383 .header = { 8384 .type = PERF_RECORD_COMM, 8385 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8386 /* .size */ 8387 }, 8388 /* .pid */ 8389 /* .tid */ 8390 }, 8391 }; 8392 8393 perf_event_comm_event(&comm_event); 8394 } 8395 8396 /* 8397 * namespaces tracking 8398 */ 8399 8400 struct perf_namespaces_event { 8401 struct task_struct *task; 8402 8403 struct { 8404 struct perf_event_header header; 8405 8406 u32 pid; 8407 u32 tid; 8408 u64 nr_namespaces; 8409 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8410 } event_id; 8411 }; 8412 8413 static int perf_event_namespaces_match(struct perf_event *event) 8414 { 8415 return event->attr.namespaces; 8416 } 8417 8418 static void perf_event_namespaces_output(struct perf_event *event, 8419 void *data) 8420 { 8421 struct perf_namespaces_event *namespaces_event = data; 8422 struct perf_output_handle handle; 8423 struct perf_sample_data sample; 8424 u16 header_size = namespaces_event->event_id.header.size; 8425 int ret; 8426 8427 if (!perf_event_namespaces_match(event)) 8428 return; 8429 8430 perf_event_header__init_id(&namespaces_event->event_id.header, 8431 &sample, event); 8432 ret = perf_output_begin(&handle, &sample, event, 8433 namespaces_event->event_id.header.size); 8434 if (ret) 8435 goto out; 8436 8437 namespaces_event->event_id.pid = perf_event_pid(event, 8438 namespaces_event->task); 8439 namespaces_event->event_id.tid = perf_event_tid(event, 8440 namespaces_event->task); 8441 8442 perf_output_put(&handle, namespaces_event->event_id); 8443 8444 perf_event__output_id_sample(event, &handle, &sample); 8445 8446 perf_output_end(&handle); 8447 out: 8448 namespaces_event->event_id.header.size = header_size; 8449 } 8450 8451 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8452 struct task_struct *task, 8453 const struct proc_ns_operations *ns_ops) 8454 { 8455 struct path ns_path; 8456 struct inode *ns_inode; 8457 int error; 8458 8459 error = ns_get_path(&ns_path, task, ns_ops); 8460 if (!error) { 8461 ns_inode = ns_path.dentry->d_inode; 8462 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8463 ns_link_info->ino = ns_inode->i_ino; 8464 path_put(&ns_path); 8465 } 8466 } 8467 8468 void perf_event_namespaces(struct task_struct *task) 8469 { 8470 struct perf_namespaces_event namespaces_event; 8471 struct perf_ns_link_info *ns_link_info; 8472 8473 if (!atomic_read(&nr_namespaces_events)) 8474 return; 8475 8476 namespaces_event = (struct perf_namespaces_event){ 8477 .task = task, 8478 .event_id = { 8479 .header = { 8480 .type = PERF_RECORD_NAMESPACES, 8481 .misc = 0, 8482 .size = sizeof(namespaces_event.event_id), 8483 }, 8484 /* .pid */ 8485 /* .tid */ 8486 .nr_namespaces = NR_NAMESPACES, 8487 /* .link_info[NR_NAMESPACES] */ 8488 }, 8489 }; 8490 8491 ns_link_info = namespaces_event.event_id.link_info; 8492 8493 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8494 task, &mntns_operations); 8495 8496 #ifdef CONFIG_USER_NS 8497 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8498 task, &userns_operations); 8499 #endif 8500 #ifdef CONFIG_NET_NS 8501 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8502 task, &netns_operations); 8503 #endif 8504 #ifdef CONFIG_UTS_NS 8505 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8506 task, &utsns_operations); 8507 #endif 8508 #ifdef CONFIG_IPC_NS 8509 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8510 task, &ipcns_operations); 8511 #endif 8512 #ifdef CONFIG_PID_NS 8513 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8514 task, &pidns_operations); 8515 #endif 8516 #ifdef CONFIG_CGROUPS 8517 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8518 task, &cgroupns_operations); 8519 #endif 8520 8521 perf_iterate_sb(perf_event_namespaces_output, 8522 &namespaces_event, 8523 NULL); 8524 } 8525 8526 /* 8527 * cgroup tracking 8528 */ 8529 #ifdef CONFIG_CGROUP_PERF 8530 8531 struct perf_cgroup_event { 8532 char *path; 8533 int path_size; 8534 struct { 8535 struct perf_event_header header; 8536 u64 id; 8537 char path[]; 8538 } event_id; 8539 }; 8540 8541 static int perf_event_cgroup_match(struct perf_event *event) 8542 { 8543 return event->attr.cgroup; 8544 } 8545 8546 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8547 { 8548 struct perf_cgroup_event *cgroup_event = data; 8549 struct perf_output_handle handle; 8550 struct perf_sample_data sample; 8551 u16 header_size = cgroup_event->event_id.header.size; 8552 int ret; 8553 8554 if (!perf_event_cgroup_match(event)) 8555 return; 8556 8557 perf_event_header__init_id(&cgroup_event->event_id.header, 8558 &sample, event); 8559 ret = perf_output_begin(&handle, &sample, event, 8560 cgroup_event->event_id.header.size); 8561 if (ret) 8562 goto out; 8563 8564 perf_output_put(&handle, cgroup_event->event_id); 8565 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8566 8567 perf_event__output_id_sample(event, &handle, &sample); 8568 8569 perf_output_end(&handle); 8570 out: 8571 cgroup_event->event_id.header.size = header_size; 8572 } 8573 8574 static void perf_event_cgroup(struct cgroup *cgrp) 8575 { 8576 struct perf_cgroup_event cgroup_event; 8577 char path_enomem[16] = "//enomem"; 8578 char *pathname; 8579 size_t size; 8580 8581 if (!atomic_read(&nr_cgroup_events)) 8582 return; 8583 8584 cgroup_event = (struct perf_cgroup_event){ 8585 .event_id = { 8586 .header = { 8587 .type = PERF_RECORD_CGROUP, 8588 .misc = 0, 8589 .size = sizeof(cgroup_event.event_id), 8590 }, 8591 .id = cgroup_id(cgrp), 8592 }, 8593 }; 8594 8595 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8596 if (pathname == NULL) { 8597 cgroup_event.path = path_enomem; 8598 } else { 8599 /* just to be sure to have enough space for alignment */ 8600 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8601 cgroup_event.path = pathname; 8602 } 8603 8604 /* 8605 * Since our buffer works in 8 byte units we need to align our string 8606 * size to a multiple of 8. However, we must guarantee the tail end is 8607 * zero'd out to avoid leaking random bits to userspace. 8608 */ 8609 size = strlen(cgroup_event.path) + 1; 8610 while (!IS_ALIGNED(size, sizeof(u64))) 8611 cgroup_event.path[size++] = '\0'; 8612 8613 cgroup_event.event_id.header.size += size; 8614 cgroup_event.path_size = size; 8615 8616 perf_iterate_sb(perf_event_cgroup_output, 8617 &cgroup_event, 8618 NULL); 8619 8620 kfree(pathname); 8621 } 8622 8623 #endif 8624 8625 /* 8626 * mmap tracking 8627 */ 8628 8629 struct perf_mmap_event { 8630 struct vm_area_struct *vma; 8631 8632 const char *file_name; 8633 int file_size; 8634 int maj, min; 8635 u64 ino; 8636 u64 ino_generation; 8637 u32 prot, flags; 8638 u8 build_id[BUILD_ID_SIZE_MAX]; 8639 u32 build_id_size; 8640 8641 struct { 8642 struct perf_event_header header; 8643 8644 u32 pid; 8645 u32 tid; 8646 u64 start; 8647 u64 len; 8648 u64 pgoff; 8649 } event_id; 8650 }; 8651 8652 static int perf_event_mmap_match(struct perf_event *event, 8653 void *data) 8654 { 8655 struct perf_mmap_event *mmap_event = data; 8656 struct vm_area_struct *vma = mmap_event->vma; 8657 int executable = vma->vm_flags & VM_EXEC; 8658 8659 return (!executable && event->attr.mmap_data) || 8660 (executable && (event->attr.mmap || event->attr.mmap2)); 8661 } 8662 8663 static void perf_event_mmap_output(struct perf_event *event, 8664 void *data) 8665 { 8666 struct perf_mmap_event *mmap_event = data; 8667 struct perf_output_handle handle; 8668 struct perf_sample_data sample; 8669 int size = mmap_event->event_id.header.size; 8670 u32 type = mmap_event->event_id.header.type; 8671 bool use_build_id; 8672 int ret; 8673 8674 if (!perf_event_mmap_match(event, data)) 8675 return; 8676 8677 if (event->attr.mmap2) { 8678 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8679 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8680 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8681 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8682 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8683 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8684 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8685 } 8686 8687 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8688 ret = perf_output_begin(&handle, &sample, event, 8689 mmap_event->event_id.header.size); 8690 if (ret) 8691 goto out; 8692 8693 mmap_event->event_id.pid = perf_event_pid(event, current); 8694 mmap_event->event_id.tid = perf_event_tid(event, current); 8695 8696 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8697 8698 if (event->attr.mmap2 && use_build_id) 8699 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8700 8701 perf_output_put(&handle, mmap_event->event_id); 8702 8703 if (event->attr.mmap2) { 8704 if (use_build_id) { 8705 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8706 8707 __output_copy(&handle, size, 4); 8708 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8709 } else { 8710 perf_output_put(&handle, mmap_event->maj); 8711 perf_output_put(&handle, mmap_event->min); 8712 perf_output_put(&handle, mmap_event->ino); 8713 perf_output_put(&handle, mmap_event->ino_generation); 8714 } 8715 perf_output_put(&handle, mmap_event->prot); 8716 perf_output_put(&handle, mmap_event->flags); 8717 } 8718 8719 __output_copy(&handle, mmap_event->file_name, 8720 mmap_event->file_size); 8721 8722 perf_event__output_id_sample(event, &handle, &sample); 8723 8724 perf_output_end(&handle); 8725 out: 8726 mmap_event->event_id.header.size = size; 8727 mmap_event->event_id.header.type = type; 8728 } 8729 8730 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8731 { 8732 struct vm_area_struct *vma = mmap_event->vma; 8733 struct file *file = vma->vm_file; 8734 int maj = 0, min = 0; 8735 u64 ino = 0, gen = 0; 8736 u32 prot = 0, flags = 0; 8737 unsigned int size; 8738 char tmp[16]; 8739 char *buf = NULL; 8740 char *name = NULL; 8741 8742 if (vma->vm_flags & VM_READ) 8743 prot |= PROT_READ; 8744 if (vma->vm_flags & VM_WRITE) 8745 prot |= PROT_WRITE; 8746 if (vma->vm_flags & VM_EXEC) 8747 prot |= PROT_EXEC; 8748 8749 if (vma->vm_flags & VM_MAYSHARE) 8750 flags = MAP_SHARED; 8751 else 8752 flags = MAP_PRIVATE; 8753 8754 if (vma->vm_flags & VM_LOCKED) 8755 flags |= MAP_LOCKED; 8756 if (is_vm_hugetlb_page(vma)) 8757 flags |= MAP_HUGETLB; 8758 8759 if (file) { 8760 struct inode *inode; 8761 dev_t dev; 8762 8763 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8764 if (!buf) { 8765 name = "//enomem"; 8766 goto cpy_name; 8767 } 8768 /* 8769 * d_path() works from the end of the rb backwards, so we 8770 * need to add enough zero bytes after the string to handle 8771 * the 64bit alignment we do later. 8772 */ 8773 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8774 if (IS_ERR(name)) { 8775 name = "//toolong"; 8776 goto cpy_name; 8777 } 8778 inode = file_inode(vma->vm_file); 8779 dev = inode->i_sb->s_dev; 8780 ino = inode->i_ino; 8781 gen = inode->i_generation; 8782 maj = MAJOR(dev); 8783 min = MINOR(dev); 8784 8785 goto got_name; 8786 } else { 8787 if (vma->vm_ops && vma->vm_ops->name) 8788 name = (char *) vma->vm_ops->name(vma); 8789 if (!name) 8790 name = (char *)arch_vma_name(vma); 8791 if (!name) { 8792 if (vma_is_initial_heap(vma)) 8793 name = "[heap]"; 8794 else if (vma_is_initial_stack(vma)) 8795 name = "[stack]"; 8796 else 8797 name = "//anon"; 8798 } 8799 } 8800 8801 cpy_name: 8802 strscpy(tmp, name, sizeof(tmp)); 8803 name = tmp; 8804 got_name: 8805 /* 8806 * Since our buffer works in 8 byte units we need to align our string 8807 * size to a multiple of 8. However, we must guarantee the tail end is 8808 * zero'd out to avoid leaking random bits to userspace. 8809 */ 8810 size = strlen(name)+1; 8811 while (!IS_ALIGNED(size, sizeof(u64))) 8812 name[size++] = '\0'; 8813 8814 mmap_event->file_name = name; 8815 mmap_event->file_size = size; 8816 mmap_event->maj = maj; 8817 mmap_event->min = min; 8818 mmap_event->ino = ino; 8819 mmap_event->ino_generation = gen; 8820 mmap_event->prot = prot; 8821 mmap_event->flags = flags; 8822 8823 if (!(vma->vm_flags & VM_EXEC)) 8824 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8825 8826 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8827 8828 if (atomic_read(&nr_build_id_events)) 8829 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8830 8831 perf_iterate_sb(perf_event_mmap_output, 8832 mmap_event, 8833 NULL); 8834 8835 kfree(buf); 8836 } 8837 8838 /* 8839 * Check whether inode and address range match filter criteria. 8840 */ 8841 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8842 struct file *file, unsigned long offset, 8843 unsigned long size) 8844 { 8845 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8846 if (!filter->path.dentry) 8847 return false; 8848 8849 if (d_inode(filter->path.dentry) != file_inode(file)) 8850 return false; 8851 8852 if (filter->offset > offset + size) 8853 return false; 8854 8855 if (filter->offset + filter->size < offset) 8856 return false; 8857 8858 return true; 8859 } 8860 8861 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8862 struct vm_area_struct *vma, 8863 struct perf_addr_filter_range *fr) 8864 { 8865 unsigned long vma_size = vma->vm_end - vma->vm_start; 8866 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8867 struct file *file = vma->vm_file; 8868 8869 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8870 return false; 8871 8872 if (filter->offset < off) { 8873 fr->start = vma->vm_start; 8874 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8875 } else { 8876 fr->start = vma->vm_start + filter->offset - off; 8877 fr->size = min(vma->vm_end - fr->start, filter->size); 8878 } 8879 8880 return true; 8881 } 8882 8883 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8884 { 8885 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8886 struct vm_area_struct *vma = data; 8887 struct perf_addr_filter *filter; 8888 unsigned int restart = 0, count = 0; 8889 unsigned long flags; 8890 8891 if (!has_addr_filter(event)) 8892 return; 8893 8894 if (!vma->vm_file) 8895 return; 8896 8897 raw_spin_lock_irqsave(&ifh->lock, flags); 8898 list_for_each_entry(filter, &ifh->list, entry) { 8899 if (perf_addr_filter_vma_adjust(filter, vma, 8900 &event->addr_filter_ranges[count])) 8901 restart++; 8902 8903 count++; 8904 } 8905 8906 if (restart) 8907 event->addr_filters_gen++; 8908 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8909 8910 if (restart) 8911 perf_event_stop(event, 1); 8912 } 8913 8914 /* 8915 * Adjust all task's events' filters to the new vma 8916 */ 8917 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8918 { 8919 struct perf_event_context *ctx; 8920 8921 /* 8922 * Data tracing isn't supported yet and as such there is no need 8923 * to keep track of anything that isn't related to executable code: 8924 */ 8925 if (!(vma->vm_flags & VM_EXEC)) 8926 return; 8927 8928 rcu_read_lock(); 8929 ctx = rcu_dereference(current->perf_event_ctxp); 8930 if (ctx) 8931 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8932 rcu_read_unlock(); 8933 } 8934 8935 void perf_event_mmap(struct vm_area_struct *vma) 8936 { 8937 struct perf_mmap_event mmap_event; 8938 8939 if (!atomic_read(&nr_mmap_events)) 8940 return; 8941 8942 mmap_event = (struct perf_mmap_event){ 8943 .vma = vma, 8944 /* .file_name */ 8945 /* .file_size */ 8946 .event_id = { 8947 .header = { 8948 .type = PERF_RECORD_MMAP, 8949 .misc = PERF_RECORD_MISC_USER, 8950 /* .size */ 8951 }, 8952 /* .pid */ 8953 /* .tid */ 8954 .start = vma->vm_start, 8955 .len = vma->vm_end - vma->vm_start, 8956 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8957 }, 8958 /* .maj (attr_mmap2 only) */ 8959 /* .min (attr_mmap2 only) */ 8960 /* .ino (attr_mmap2 only) */ 8961 /* .ino_generation (attr_mmap2 only) */ 8962 /* .prot (attr_mmap2 only) */ 8963 /* .flags (attr_mmap2 only) */ 8964 }; 8965 8966 perf_addr_filters_adjust(vma); 8967 perf_event_mmap_event(&mmap_event); 8968 } 8969 8970 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8971 unsigned long size, u64 flags) 8972 { 8973 struct perf_output_handle handle; 8974 struct perf_sample_data sample; 8975 struct perf_aux_event { 8976 struct perf_event_header header; 8977 u64 offset; 8978 u64 size; 8979 u64 flags; 8980 } rec = { 8981 .header = { 8982 .type = PERF_RECORD_AUX, 8983 .misc = 0, 8984 .size = sizeof(rec), 8985 }, 8986 .offset = head, 8987 .size = size, 8988 .flags = flags, 8989 }; 8990 int ret; 8991 8992 perf_event_header__init_id(&rec.header, &sample, event); 8993 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8994 8995 if (ret) 8996 return; 8997 8998 perf_output_put(&handle, rec); 8999 perf_event__output_id_sample(event, &handle, &sample); 9000 9001 perf_output_end(&handle); 9002 } 9003 9004 /* 9005 * Lost/dropped samples logging 9006 */ 9007 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9008 { 9009 struct perf_output_handle handle; 9010 struct perf_sample_data sample; 9011 int ret; 9012 9013 struct { 9014 struct perf_event_header header; 9015 u64 lost; 9016 } lost_samples_event = { 9017 .header = { 9018 .type = PERF_RECORD_LOST_SAMPLES, 9019 .misc = 0, 9020 .size = sizeof(lost_samples_event), 9021 }, 9022 .lost = lost, 9023 }; 9024 9025 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9026 9027 ret = perf_output_begin(&handle, &sample, event, 9028 lost_samples_event.header.size); 9029 if (ret) 9030 return; 9031 9032 perf_output_put(&handle, lost_samples_event); 9033 perf_event__output_id_sample(event, &handle, &sample); 9034 perf_output_end(&handle); 9035 } 9036 9037 /* 9038 * context_switch tracking 9039 */ 9040 9041 struct perf_switch_event { 9042 struct task_struct *task; 9043 struct task_struct *next_prev; 9044 9045 struct { 9046 struct perf_event_header header; 9047 u32 next_prev_pid; 9048 u32 next_prev_tid; 9049 } event_id; 9050 }; 9051 9052 static int perf_event_switch_match(struct perf_event *event) 9053 { 9054 return event->attr.context_switch; 9055 } 9056 9057 static void perf_event_switch_output(struct perf_event *event, void *data) 9058 { 9059 struct perf_switch_event *se = data; 9060 struct perf_output_handle handle; 9061 struct perf_sample_data sample; 9062 int ret; 9063 9064 if (!perf_event_switch_match(event)) 9065 return; 9066 9067 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9068 if (event->ctx->task) { 9069 se->event_id.header.type = PERF_RECORD_SWITCH; 9070 se->event_id.header.size = sizeof(se->event_id.header); 9071 } else { 9072 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9073 se->event_id.header.size = sizeof(se->event_id); 9074 se->event_id.next_prev_pid = 9075 perf_event_pid(event, se->next_prev); 9076 se->event_id.next_prev_tid = 9077 perf_event_tid(event, se->next_prev); 9078 } 9079 9080 perf_event_header__init_id(&se->event_id.header, &sample, event); 9081 9082 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9083 if (ret) 9084 return; 9085 9086 if (event->ctx->task) 9087 perf_output_put(&handle, se->event_id.header); 9088 else 9089 perf_output_put(&handle, se->event_id); 9090 9091 perf_event__output_id_sample(event, &handle, &sample); 9092 9093 perf_output_end(&handle); 9094 } 9095 9096 static void perf_event_switch(struct task_struct *task, 9097 struct task_struct *next_prev, bool sched_in) 9098 { 9099 struct perf_switch_event switch_event; 9100 9101 /* N.B. caller checks nr_switch_events != 0 */ 9102 9103 switch_event = (struct perf_switch_event){ 9104 .task = task, 9105 .next_prev = next_prev, 9106 .event_id = { 9107 .header = { 9108 /* .type */ 9109 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9110 /* .size */ 9111 }, 9112 /* .next_prev_pid */ 9113 /* .next_prev_tid */ 9114 }, 9115 }; 9116 9117 if (!sched_in && task->on_rq) { 9118 switch_event.event_id.header.misc |= 9119 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9120 } 9121 9122 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9123 } 9124 9125 /* 9126 * IRQ throttle logging 9127 */ 9128 9129 static void perf_log_throttle(struct perf_event *event, int enable) 9130 { 9131 struct perf_output_handle handle; 9132 struct perf_sample_data sample; 9133 int ret; 9134 9135 struct { 9136 struct perf_event_header header; 9137 u64 time; 9138 u64 id; 9139 u64 stream_id; 9140 } throttle_event = { 9141 .header = { 9142 .type = PERF_RECORD_THROTTLE, 9143 .misc = 0, 9144 .size = sizeof(throttle_event), 9145 }, 9146 .time = perf_event_clock(event), 9147 .id = primary_event_id(event), 9148 .stream_id = event->id, 9149 }; 9150 9151 if (enable) 9152 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9153 9154 perf_event_header__init_id(&throttle_event.header, &sample, event); 9155 9156 ret = perf_output_begin(&handle, &sample, event, 9157 throttle_event.header.size); 9158 if (ret) 9159 return; 9160 9161 perf_output_put(&handle, throttle_event); 9162 perf_event__output_id_sample(event, &handle, &sample); 9163 perf_output_end(&handle); 9164 } 9165 9166 /* 9167 * ksymbol register/unregister tracking 9168 */ 9169 9170 struct perf_ksymbol_event { 9171 const char *name; 9172 int name_len; 9173 struct { 9174 struct perf_event_header header; 9175 u64 addr; 9176 u32 len; 9177 u16 ksym_type; 9178 u16 flags; 9179 } event_id; 9180 }; 9181 9182 static int perf_event_ksymbol_match(struct perf_event *event) 9183 { 9184 return event->attr.ksymbol; 9185 } 9186 9187 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9188 { 9189 struct perf_ksymbol_event *ksymbol_event = data; 9190 struct perf_output_handle handle; 9191 struct perf_sample_data sample; 9192 int ret; 9193 9194 if (!perf_event_ksymbol_match(event)) 9195 return; 9196 9197 perf_event_header__init_id(&ksymbol_event->event_id.header, 9198 &sample, event); 9199 ret = perf_output_begin(&handle, &sample, event, 9200 ksymbol_event->event_id.header.size); 9201 if (ret) 9202 return; 9203 9204 perf_output_put(&handle, ksymbol_event->event_id); 9205 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9206 perf_event__output_id_sample(event, &handle, &sample); 9207 9208 perf_output_end(&handle); 9209 } 9210 9211 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9212 const char *sym) 9213 { 9214 struct perf_ksymbol_event ksymbol_event; 9215 char name[KSYM_NAME_LEN]; 9216 u16 flags = 0; 9217 int name_len; 9218 9219 if (!atomic_read(&nr_ksymbol_events)) 9220 return; 9221 9222 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9223 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9224 goto err; 9225 9226 strscpy(name, sym, KSYM_NAME_LEN); 9227 name_len = strlen(name) + 1; 9228 while (!IS_ALIGNED(name_len, sizeof(u64))) 9229 name[name_len++] = '\0'; 9230 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9231 9232 if (unregister) 9233 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9234 9235 ksymbol_event = (struct perf_ksymbol_event){ 9236 .name = name, 9237 .name_len = name_len, 9238 .event_id = { 9239 .header = { 9240 .type = PERF_RECORD_KSYMBOL, 9241 .size = sizeof(ksymbol_event.event_id) + 9242 name_len, 9243 }, 9244 .addr = addr, 9245 .len = len, 9246 .ksym_type = ksym_type, 9247 .flags = flags, 9248 }, 9249 }; 9250 9251 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9252 return; 9253 err: 9254 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9255 } 9256 9257 /* 9258 * bpf program load/unload tracking 9259 */ 9260 9261 struct perf_bpf_event { 9262 struct bpf_prog *prog; 9263 struct { 9264 struct perf_event_header header; 9265 u16 type; 9266 u16 flags; 9267 u32 id; 9268 u8 tag[BPF_TAG_SIZE]; 9269 } event_id; 9270 }; 9271 9272 static int perf_event_bpf_match(struct perf_event *event) 9273 { 9274 return event->attr.bpf_event; 9275 } 9276 9277 static void perf_event_bpf_output(struct perf_event *event, void *data) 9278 { 9279 struct perf_bpf_event *bpf_event = data; 9280 struct perf_output_handle handle; 9281 struct perf_sample_data sample; 9282 int ret; 9283 9284 if (!perf_event_bpf_match(event)) 9285 return; 9286 9287 perf_event_header__init_id(&bpf_event->event_id.header, 9288 &sample, event); 9289 ret = perf_output_begin(&handle, &sample, event, 9290 bpf_event->event_id.header.size); 9291 if (ret) 9292 return; 9293 9294 perf_output_put(&handle, bpf_event->event_id); 9295 perf_event__output_id_sample(event, &handle, &sample); 9296 9297 perf_output_end(&handle); 9298 } 9299 9300 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9301 enum perf_bpf_event_type type) 9302 { 9303 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9304 int i; 9305 9306 if (prog->aux->func_cnt == 0) { 9307 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9308 (u64)(unsigned long)prog->bpf_func, 9309 prog->jited_len, unregister, 9310 prog->aux->ksym.name); 9311 } else { 9312 for (i = 0; i < prog->aux->func_cnt; i++) { 9313 struct bpf_prog *subprog = prog->aux->func[i]; 9314 9315 perf_event_ksymbol( 9316 PERF_RECORD_KSYMBOL_TYPE_BPF, 9317 (u64)(unsigned long)subprog->bpf_func, 9318 subprog->jited_len, unregister, 9319 subprog->aux->ksym.name); 9320 } 9321 } 9322 } 9323 9324 void perf_event_bpf_event(struct bpf_prog *prog, 9325 enum perf_bpf_event_type type, 9326 u16 flags) 9327 { 9328 struct perf_bpf_event bpf_event; 9329 9330 switch (type) { 9331 case PERF_BPF_EVENT_PROG_LOAD: 9332 case PERF_BPF_EVENT_PROG_UNLOAD: 9333 if (atomic_read(&nr_ksymbol_events)) 9334 perf_event_bpf_emit_ksymbols(prog, type); 9335 break; 9336 default: 9337 return; 9338 } 9339 9340 if (!atomic_read(&nr_bpf_events)) 9341 return; 9342 9343 bpf_event = (struct perf_bpf_event){ 9344 .prog = prog, 9345 .event_id = { 9346 .header = { 9347 .type = PERF_RECORD_BPF_EVENT, 9348 .size = sizeof(bpf_event.event_id), 9349 }, 9350 .type = type, 9351 .flags = flags, 9352 .id = prog->aux->id, 9353 }, 9354 }; 9355 9356 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9357 9358 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9359 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9360 } 9361 9362 struct perf_text_poke_event { 9363 const void *old_bytes; 9364 const void *new_bytes; 9365 size_t pad; 9366 u16 old_len; 9367 u16 new_len; 9368 9369 struct { 9370 struct perf_event_header header; 9371 9372 u64 addr; 9373 } event_id; 9374 }; 9375 9376 static int perf_event_text_poke_match(struct perf_event *event) 9377 { 9378 return event->attr.text_poke; 9379 } 9380 9381 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9382 { 9383 struct perf_text_poke_event *text_poke_event = data; 9384 struct perf_output_handle handle; 9385 struct perf_sample_data sample; 9386 u64 padding = 0; 9387 int ret; 9388 9389 if (!perf_event_text_poke_match(event)) 9390 return; 9391 9392 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9393 9394 ret = perf_output_begin(&handle, &sample, event, 9395 text_poke_event->event_id.header.size); 9396 if (ret) 9397 return; 9398 9399 perf_output_put(&handle, text_poke_event->event_id); 9400 perf_output_put(&handle, text_poke_event->old_len); 9401 perf_output_put(&handle, text_poke_event->new_len); 9402 9403 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9404 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9405 9406 if (text_poke_event->pad) 9407 __output_copy(&handle, &padding, text_poke_event->pad); 9408 9409 perf_event__output_id_sample(event, &handle, &sample); 9410 9411 perf_output_end(&handle); 9412 } 9413 9414 void perf_event_text_poke(const void *addr, const void *old_bytes, 9415 size_t old_len, const void *new_bytes, size_t new_len) 9416 { 9417 struct perf_text_poke_event text_poke_event; 9418 size_t tot, pad; 9419 9420 if (!atomic_read(&nr_text_poke_events)) 9421 return; 9422 9423 tot = sizeof(text_poke_event.old_len) + old_len; 9424 tot += sizeof(text_poke_event.new_len) + new_len; 9425 pad = ALIGN(tot, sizeof(u64)) - tot; 9426 9427 text_poke_event = (struct perf_text_poke_event){ 9428 .old_bytes = old_bytes, 9429 .new_bytes = new_bytes, 9430 .pad = pad, 9431 .old_len = old_len, 9432 .new_len = new_len, 9433 .event_id = { 9434 .header = { 9435 .type = PERF_RECORD_TEXT_POKE, 9436 .misc = PERF_RECORD_MISC_KERNEL, 9437 .size = sizeof(text_poke_event.event_id) + tot + pad, 9438 }, 9439 .addr = (unsigned long)addr, 9440 }, 9441 }; 9442 9443 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9444 } 9445 9446 void perf_event_itrace_started(struct perf_event *event) 9447 { 9448 event->attach_state |= PERF_ATTACH_ITRACE; 9449 } 9450 9451 static void perf_log_itrace_start(struct perf_event *event) 9452 { 9453 struct perf_output_handle handle; 9454 struct perf_sample_data sample; 9455 struct perf_aux_event { 9456 struct perf_event_header header; 9457 u32 pid; 9458 u32 tid; 9459 } rec; 9460 int ret; 9461 9462 if (event->parent) 9463 event = event->parent; 9464 9465 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9466 event->attach_state & PERF_ATTACH_ITRACE) 9467 return; 9468 9469 rec.header.type = PERF_RECORD_ITRACE_START; 9470 rec.header.misc = 0; 9471 rec.header.size = sizeof(rec); 9472 rec.pid = perf_event_pid(event, current); 9473 rec.tid = perf_event_tid(event, current); 9474 9475 perf_event_header__init_id(&rec.header, &sample, event); 9476 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9477 9478 if (ret) 9479 return; 9480 9481 perf_output_put(&handle, rec); 9482 perf_event__output_id_sample(event, &handle, &sample); 9483 9484 perf_output_end(&handle); 9485 } 9486 9487 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9488 { 9489 struct perf_output_handle handle; 9490 struct perf_sample_data sample; 9491 struct perf_aux_event { 9492 struct perf_event_header header; 9493 u64 hw_id; 9494 } rec; 9495 int ret; 9496 9497 if (event->parent) 9498 event = event->parent; 9499 9500 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9501 rec.header.misc = 0; 9502 rec.header.size = sizeof(rec); 9503 rec.hw_id = hw_id; 9504 9505 perf_event_header__init_id(&rec.header, &sample, event); 9506 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9507 9508 if (ret) 9509 return; 9510 9511 perf_output_put(&handle, rec); 9512 perf_event__output_id_sample(event, &handle, &sample); 9513 9514 perf_output_end(&handle); 9515 } 9516 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9517 9518 static int 9519 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9520 { 9521 struct hw_perf_event *hwc = &event->hw; 9522 int ret = 0; 9523 u64 seq; 9524 9525 seq = __this_cpu_read(perf_throttled_seq); 9526 if (seq != hwc->interrupts_seq) { 9527 hwc->interrupts_seq = seq; 9528 hwc->interrupts = 1; 9529 } else { 9530 hwc->interrupts++; 9531 if (unlikely(throttle && 9532 hwc->interrupts > max_samples_per_tick)) { 9533 __this_cpu_inc(perf_throttled_count); 9534 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9535 hwc->interrupts = MAX_INTERRUPTS; 9536 perf_log_throttle(event, 0); 9537 ret = 1; 9538 } 9539 } 9540 9541 if (event->attr.freq) { 9542 u64 now = perf_clock(); 9543 s64 delta = now - hwc->freq_time_stamp; 9544 9545 hwc->freq_time_stamp = now; 9546 9547 if (delta > 0 && delta < 2*TICK_NSEC) 9548 perf_adjust_period(event, delta, hwc->last_period, true); 9549 } 9550 9551 return ret; 9552 } 9553 9554 int perf_event_account_interrupt(struct perf_event *event) 9555 { 9556 return __perf_event_account_interrupt(event, 1); 9557 } 9558 9559 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9560 { 9561 /* 9562 * Due to interrupt latency (AKA "skid"), we may enter the 9563 * kernel before taking an overflow, even if the PMU is only 9564 * counting user events. 9565 */ 9566 if (event->attr.exclude_kernel && !user_mode(regs)) 9567 return false; 9568 9569 return true; 9570 } 9571 9572 #ifdef CONFIG_BPF_SYSCALL 9573 static int bpf_overflow_handler(struct perf_event *event, 9574 struct perf_sample_data *data, 9575 struct pt_regs *regs) 9576 { 9577 struct bpf_perf_event_data_kern ctx = { 9578 .data = data, 9579 .event = event, 9580 }; 9581 struct bpf_prog *prog; 9582 int ret = 0; 9583 9584 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9585 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9586 goto out; 9587 rcu_read_lock(); 9588 prog = READ_ONCE(event->prog); 9589 if (prog) { 9590 perf_prepare_sample(data, event, regs); 9591 ret = bpf_prog_run(prog, &ctx); 9592 } 9593 rcu_read_unlock(); 9594 out: 9595 __this_cpu_dec(bpf_prog_active); 9596 9597 return ret; 9598 } 9599 9600 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9601 struct bpf_prog *prog, 9602 u64 bpf_cookie) 9603 { 9604 if (event->overflow_handler_context) 9605 /* hw breakpoint or kernel counter */ 9606 return -EINVAL; 9607 9608 if (event->prog) 9609 return -EEXIST; 9610 9611 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9612 return -EINVAL; 9613 9614 if (event->attr.precise_ip && 9615 prog->call_get_stack && 9616 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9617 event->attr.exclude_callchain_kernel || 9618 event->attr.exclude_callchain_user)) { 9619 /* 9620 * On perf_event with precise_ip, calling bpf_get_stack() 9621 * may trigger unwinder warnings and occasional crashes. 9622 * bpf_get_[stack|stackid] works around this issue by using 9623 * callchain attached to perf_sample_data. If the 9624 * perf_event does not full (kernel and user) callchain 9625 * attached to perf_sample_data, do not allow attaching BPF 9626 * program that calls bpf_get_[stack|stackid]. 9627 */ 9628 return -EPROTO; 9629 } 9630 9631 event->prog = prog; 9632 event->bpf_cookie = bpf_cookie; 9633 return 0; 9634 } 9635 9636 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9637 { 9638 struct bpf_prog *prog = event->prog; 9639 9640 if (!prog) 9641 return; 9642 9643 event->prog = NULL; 9644 bpf_prog_put(prog); 9645 } 9646 #else 9647 static inline int bpf_overflow_handler(struct perf_event *event, 9648 struct perf_sample_data *data, 9649 struct pt_regs *regs) 9650 { 9651 return 1; 9652 } 9653 9654 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9655 struct bpf_prog *prog, 9656 u64 bpf_cookie) 9657 { 9658 return -EOPNOTSUPP; 9659 } 9660 9661 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9662 { 9663 } 9664 #endif 9665 9666 /* 9667 * Generic event overflow handling, sampling. 9668 */ 9669 9670 static int __perf_event_overflow(struct perf_event *event, 9671 int throttle, struct perf_sample_data *data, 9672 struct pt_regs *regs) 9673 { 9674 int events = atomic_read(&event->event_limit); 9675 int ret = 0; 9676 9677 /* 9678 * Non-sampling counters might still use the PMI to fold short 9679 * hardware counters, ignore those. 9680 */ 9681 if (unlikely(!is_sampling_event(event))) 9682 return 0; 9683 9684 ret = __perf_event_account_interrupt(event, throttle); 9685 9686 if (event->prog && !bpf_overflow_handler(event, data, regs)) 9687 return ret; 9688 9689 /* 9690 * XXX event_limit might not quite work as expected on inherited 9691 * events 9692 */ 9693 9694 event->pending_kill = POLL_IN; 9695 if (events && atomic_dec_and_test(&event->event_limit)) { 9696 ret = 1; 9697 event->pending_kill = POLL_HUP; 9698 perf_event_disable_inatomic(event); 9699 } 9700 9701 if (event->attr.sigtrap) { 9702 /* 9703 * The desired behaviour of sigtrap vs invalid samples is a bit 9704 * tricky; on the one hand, one should not loose the SIGTRAP if 9705 * it is the first event, on the other hand, we should also not 9706 * trigger the WARN or override the data address. 9707 */ 9708 bool valid_sample = sample_is_allowed(event, regs); 9709 unsigned int pending_id = 1; 9710 9711 if (regs) 9712 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9713 if (!event->pending_sigtrap) { 9714 event->pending_sigtrap = pending_id; 9715 local_inc(&event->ctx->nr_pending); 9716 } else if (event->attr.exclude_kernel && valid_sample) { 9717 /* 9718 * Should not be able to return to user space without 9719 * consuming pending_sigtrap; with exceptions: 9720 * 9721 * 1. Where !exclude_kernel, events can overflow again 9722 * in the kernel without returning to user space. 9723 * 9724 * 2. Events that can overflow again before the IRQ- 9725 * work without user space progress (e.g. hrtimer). 9726 * To approximate progress (with false negatives), 9727 * check 32-bit hash of the current IP. 9728 */ 9729 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9730 } 9731 9732 event->pending_addr = 0; 9733 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9734 event->pending_addr = data->addr; 9735 irq_work_queue(&event->pending_irq); 9736 } 9737 9738 READ_ONCE(event->overflow_handler)(event, data, regs); 9739 9740 if (*perf_event_fasync(event) && event->pending_kill) { 9741 event->pending_wakeup = 1; 9742 irq_work_queue(&event->pending_irq); 9743 } 9744 9745 return ret; 9746 } 9747 9748 int perf_event_overflow(struct perf_event *event, 9749 struct perf_sample_data *data, 9750 struct pt_regs *regs) 9751 { 9752 return __perf_event_overflow(event, 1, data, regs); 9753 } 9754 9755 /* 9756 * Generic software event infrastructure 9757 */ 9758 9759 struct swevent_htable { 9760 struct swevent_hlist *swevent_hlist; 9761 struct mutex hlist_mutex; 9762 int hlist_refcount; 9763 9764 /* Recursion avoidance in each contexts */ 9765 int recursion[PERF_NR_CONTEXTS]; 9766 }; 9767 9768 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9769 9770 /* 9771 * We directly increment event->count and keep a second value in 9772 * event->hw.period_left to count intervals. This period event 9773 * is kept in the range [-sample_period, 0] so that we can use the 9774 * sign as trigger. 9775 */ 9776 9777 u64 perf_swevent_set_period(struct perf_event *event) 9778 { 9779 struct hw_perf_event *hwc = &event->hw; 9780 u64 period = hwc->last_period; 9781 u64 nr, offset; 9782 s64 old, val; 9783 9784 hwc->last_period = hwc->sample_period; 9785 9786 old = local64_read(&hwc->period_left); 9787 do { 9788 val = old; 9789 if (val < 0) 9790 return 0; 9791 9792 nr = div64_u64(period + val, period); 9793 offset = nr * period; 9794 val -= offset; 9795 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9796 9797 return nr; 9798 } 9799 9800 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9801 struct perf_sample_data *data, 9802 struct pt_regs *regs) 9803 { 9804 struct hw_perf_event *hwc = &event->hw; 9805 int throttle = 0; 9806 9807 if (!overflow) 9808 overflow = perf_swevent_set_period(event); 9809 9810 if (hwc->interrupts == MAX_INTERRUPTS) 9811 return; 9812 9813 for (; overflow; overflow--) { 9814 if (__perf_event_overflow(event, throttle, 9815 data, regs)) { 9816 /* 9817 * We inhibit the overflow from happening when 9818 * hwc->interrupts == MAX_INTERRUPTS. 9819 */ 9820 break; 9821 } 9822 throttle = 1; 9823 } 9824 } 9825 9826 static void perf_swevent_event(struct perf_event *event, u64 nr, 9827 struct perf_sample_data *data, 9828 struct pt_regs *regs) 9829 { 9830 struct hw_perf_event *hwc = &event->hw; 9831 9832 local64_add(nr, &event->count); 9833 9834 if (!regs) 9835 return; 9836 9837 if (!is_sampling_event(event)) 9838 return; 9839 9840 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9841 data->period = nr; 9842 return perf_swevent_overflow(event, 1, data, regs); 9843 } else 9844 data->period = event->hw.last_period; 9845 9846 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9847 return perf_swevent_overflow(event, 1, data, regs); 9848 9849 if (local64_add_negative(nr, &hwc->period_left)) 9850 return; 9851 9852 perf_swevent_overflow(event, 0, data, regs); 9853 } 9854 9855 static int perf_exclude_event(struct perf_event *event, 9856 struct pt_regs *regs) 9857 { 9858 if (event->hw.state & PERF_HES_STOPPED) 9859 return 1; 9860 9861 if (regs) { 9862 if (event->attr.exclude_user && user_mode(regs)) 9863 return 1; 9864 9865 if (event->attr.exclude_kernel && !user_mode(regs)) 9866 return 1; 9867 } 9868 9869 return 0; 9870 } 9871 9872 static int perf_swevent_match(struct perf_event *event, 9873 enum perf_type_id type, 9874 u32 event_id, 9875 struct perf_sample_data *data, 9876 struct pt_regs *regs) 9877 { 9878 if (event->attr.type != type) 9879 return 0; 9880 9881 if (event->attr.config != event_id) 9882 return 0; 9883 9884 if (perf_exclude_event(event, regs)) 9885 return 0; 9886 9887 return 1; 9888 } 9889 9890 static inline u64 swevent_hash(u64 type, u32 event_id) 9891 { 9892 u64 val = event_id | (type << 32); 9893 9894 return hash_64(val, SWEVENT_HLIST_BITS); 9895 } 9896 9897 static inline struct hlist_head * 9898 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9899 { 9900 u64 hash = swevent_hash(type, event_id); 9901 9902 return &hlist->heads[hash]; 9903 } 9904 9905 /* For the read side: events when they trigger */ 9906 static inline struct hlist_head * 9907 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9908 { 9909 struct swevent_hlist *hlist; 9910 9911 hlist = rcu_dereference(swhash->swevent_hlist); 9912 if (!hlist) 9913 return NULL; 9914 9915 return __find_swevent_head(hlist, type, event_id); 9916 } 9917 9918 /* For the event head insertion and removal in the hlist */ 9919 static inline struct hlist_head * 9920 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9921 { 9922 struct swevent_hlist *hlist; 9923 u32 event_id = event->attr.config; 9924 u64 type = event->attr.type; 9925 9926 /* 9927 * Event scheduling is always serialized against hlist allocation 9928 * and release. Which makes the protected version suitable here. 9929 * The context lock guarantees that. 9930 */ 9931 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9932 lockdep_is_held(&event->ctx->lock)); 9933 if (!hlist) 9934 return NULL; 9935 9936 return __find_swevent_head(hlist, type, event_id); 9937 } 9938 9939 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9940 u64 nr, 9941 struct perf_sample_data *data, 9942 struct pt_regs *regs) 9943 { 9944 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9945 struct perf_event *event; 9946 struct hlist_head *head; 9947 9948 rcu_read_lock(); 9949 head = find_swevent_head_rcu(swhash, type, event_id); 9950 if (!head) 9951 goto end; 9952 9953 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9954 if (perf_swevent_match(event, type, event_id, data, regs)) 9955 perf_swevent_event(event, nr, data, regs); 9956 } 9957 end: 9958 rcu_read_unlock(); 9959 } 9960 9961 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9962 9963 int perf_swevent_get_recursion_context(void) 9964 { 9965 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9966 9967 return get_recursion_context(swhash->recursion); 9968 } 9969 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9970 9971 void perf_swevent_put_recursion_context(int rctx) 9972 { 9973 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9974 9975 put_recursion_context(swhash->recursion, rctx); 9976 } 9977 9978 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9979 { 9980 struct perf_sample_data data; 9981 9982 if (WARN_ON_ONCE(!regs)) 9983 return; 9984 9985 perf_sample_data_init(&data, addr, 0); 9986 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9987 } 9988 9989 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9990 { 9991 int rctx; 9992 9993 preempt_disable_notrace(); 9994 rctx = perf_swevent_get_recursion_context(); 9995 if (unlikely(rctx < 0)) 9996 goto fail; 9997 9998 ___perf_sw_event(event_id, nr, regs, addr); 9999 10000 perf_swevent_put_recursion_context(rctx); 10001 fail: 10002 preempt_enable_notrace(); 10003 } 10004 10005 static void perf_swevent_read(struct perf_event *event) 10006 { 10007 } 10008 10009 static int perf_swevent_add(struct perf_event *event, int flags) 10010 { 10011 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10012 struct hw_perf_event *hwc = &event->hw; 10013 struct hlist_head *head; 10014 10015 if (is_sampling_event(event)) { 10016 hwc->last_period = hwc->sample_period; 10017 perf_swevent_set_period(event); 10018 } 10019 10020 hwc->state = !(flags & PERF_EF_START); 10021 10022 head = find_swevent_head(swhash, event); 10023 if (WARN_ON_ONCE(!head)) 10024 return -EINVAL; 10025 10026 hlist_add_head_rcu(&event->hlist_entry, head); 10027 perf_event_update_userpage(event); 10028 10029 return 0; 10030 } 10031 10032 static void perf_swevent_del(struct perf_event *event, int flags) 10033 { 10034 hlist_del_rcu(&event->hlist_entry); 10035 } 10036 10037 static void perf_swevent_start(struct perf_event *event, int flags) 10038 { 10039 event->hw.state = 0; 10040 } 10041 10042 static void perf_swevent_stop(struct perf_event *event, int flags) 10043 { 10044 event->hw.state = PERF_HES_STOPPED; 10045 } 10046 10047 /* Deref the hlist from the update side */ 10048 static inline struct swevent_hlist * 10049 swevent_hlist_deref(struct swevent_htable *swhash) 10050 { 10051 return rcu_dereference_protected(swhash->swevent_hlist, 10052 lockdep_is_held(&swhash->hlist_mutex)); 10053 } 10054 10055 static void swevent_hlist_release(struct swevent_htable *swhash) 10056 { 10057 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10058 10059 if (!hlist) 10060 return; 10061 10062 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10063 kfree_rcu(hlist, rcu_head); 10064 } 10065 10066 static void swevent_hlist_put_cpu(int cpu) 10067 { 10068 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10069 10070 mutex_lock(&swhash->hlist_mutex); 10071 10072 if (!--swhash->hlist_refcount) 10073 swevent_hlist_release(swhash); 10074 10075 mutex_unlock(&swhash->hlist_mutex); 10076 } 10077 10078 static void swevent_hlist_put(void) 10079 { 10080 int cpu; 10081 10082 for_each_possible_cpu(cpu) 10083 swevent_hlist_put_cpu(cpu); 10084 } 10085 10086 static int swevent_hlist_get_cpu(int cpu) 10087 { 10088 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10089 int err = 0; 10090 10091 mutex_lock(&swhash->hlist_mutex); 10092 if (!swevent_hlist_deref(swhash) && 10093 cpumask_test_cpu(cpu, perf_online_mask)) { 10094 struct swevent_hlist *hlist; 10095 10096 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10097 if (!hlist) { 10098 err = -ENOMEM; 10099 goto exit; 10100 } 10101 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10102 } 10103 swhash->hlist_refcount++; 10104 exit: 10105 mutex_unlock(&swhash->hlist_mutex); 10106 10107 return err; 10108 } 10109 10110 static int swevent_hlist_get(void) 10111 { 10112 int err, cpu, failed_cpu; 10113 10114 mutex_lock(&pmus_lock); 10115 for_each_possible_cpu(cpu) { 10116 err = swevent_hlist_get_cpu(cpu); 10117 if (err) { 10118 failed_cpu = cpu; 10119 goto fail; 10120 } 10121 } 10122 mutex_unlock(&pmus_lock); 10123 return 0; 10124 fail: 10125 for_each_possible_cpu(cpu) { 10126 if (cpu == failed_cpu) 10127 break; 10128 swevent_hlist_put_cpu(cpu); 10129 } 10130 mutex_unlock(&pmus_lock); 10131 return err; 10132 } 10133 10134 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10135 10136 static void sw_perf_event_destroy(struct perf_event *event) 10137 { 10138 u64 event_id = event->attr.config; 10139 10140 WARN_ON(event->parent); 10141 10142 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10143 swevent_hlist_put(); 10144 } 10145 10146 static struct pmu perf_cpu_clock; /* fwd declaration */ 10147 static struct pmu perf_task_clock; 10148 10149 static int perf_swevent_init(struct perf_event *event) 10150 { 10151 u64 event_id = event->attr.config; 10152 10153 if (event->attr.type != PERF_TYPE_SOFTWARE) 10154 return -ENOENT; 10155 10156 /* 10157 * no branch sampling for software events 10158 */ 10159 if (has_branch_stack(event)) 10160 return -EOPNOTSUPP; 10161 10162 switch (event_id) { 10163 case PERF_COUNT_SW_CPU_CLOCK: 10164 event->attr.type = perf_cpu_clock.type; 10165 return -ENOENT; 10166 case PERF_COUNT_SW_TASK_CLOCK: 10167 event->attr.type = perf_task_clock.type; 10168 return -ENOENT; 10169 10170 default: 10171 break; 10172 } 10173 10174 if (event_id >= PERF_COUNT_SW_MAX) 10175 return -ENOENT; 10176 10177 if (!event->parent) { 10178 int err; 10179 10180 err = swevent_hlist_get(); 10181 if (err) 10182 return err; 10183 10184 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10185 event->destroy = sw_perf_event_destroy; 10186 } 10187 10188 return 0; 10189 } 10190 10191 static struct pmu perf_swevent = { 10192 .task_ctx_nr = perf_sw_context, 10193 10194 .capabilities = PERF_PMU_CAP_NO_NMI, 10195 10196 .event_init = perf_swevent_init, 10197 .add = perf_swevent_add, 10198 .del = perf_swevent_del, 10199 .start = perf_swevent_start, 10200 .stop = perf_swevent_stop, 10201 .read = perf_swevent_read, 10202 }; 10203 10204 #ifdef CONFIG_EVENT_TRACING 10205 10206 static void tp_perf_event_destroy(struct perf_event *event) 10207 { 10208 perf_trace_destroy(event); 10209 } 10210 10211 static int perf_tp_event_init(struct perf_event *event) 10212 { 10213 int err; 10214 10215 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10216 return -ENOENT; 10217 10218 /* 10219 * no branch sampling for tracepoint events 10220 */ 10221 if (has_branch_stack(event)) 10222 return -EOPNOTSUPP; 10223 10224 err = perf_trace_init(event); 10225 if (err) 10226 return err; 10227 10228 event->destroy = tp_perf_event_destroy; 10229 10230 return 0; 10231 } 10232 10233 static struct pmu perf_tracepoint = { 10234 .task_ctx_nr = perf_sw_context, 10235 10236 .event_init = perf_tp_event_init, 10237 .add = perf_trace_add, 10238 .del = perf_trace_del, 10239 .start = perf_swevent_start, 10240 .stop = perf_swevent_stop, 10241 .read = perf_swevent_read, 10242 }; 10243 10244 static int perf_tp_filter_match(struct perf_event *event, 10245 struct perf_sample_data *data) 10246 { 10247 void *record = data->raw->frag.data; 10248 10249 /* only top level events have filters set */ 10250 if (event->parent) 10251 event = event->parent; 10252 10253 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10254 return 1; 10255 return 0; 10256 } 10257 10258 static int perf_tp_event_match(struct perf_event *event, 10259 struct perf_sample_data *data, 10260 struct pt_regs *regs) 10261 { 10262 if (event->hw.state & PERF_HES_STOPPED) 10263 return 0; 10264 /* 10265 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10266 */ 10267 if (event->attr.exclude_kernel && !user_mode(regs)) 10268 return 0; 10269 10270 if (!perf_tp_filter_match(event, data)) 10271 return 0; 10272 10273 return 1; 10274 } 10275 10276 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10277 struct trace_event_call *call, u64 count, 10278 struct pt_regs *regs, struct hlist_head *head, 10279 struct task_struct *task) 10280 { 10281 if (bpf_prog_array_valid(call)) { 10282 *(struct pt_regs **)raw_data = regs; 10283 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10284 perf_swevent_put_recursion_context(rctx); 10285 return; 10286 } 10287 } 10288 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10289 rctx, task); 10290 } 10291 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10292 10293 static void __perf_tp_event_target_task(u64 count, void *record, 10294 struct pt_regs *regs, 10295 struct perf_sample_data *data, 10296 struct perf_event *event) 10297 { 10298 struct trace_entry *entry = record; 10299 10300 if (event->attr.config != entry->type) 10301 return; 10302 /* Cannot deliver synchronous signal to other task. */ 10303 if (event->attr.sigtrap) 10304 return; 10305 if (perf_tp_event_match(event, data, regs)) 10306 perf_swevent_event(event, count, data, regs); 10307 } 10308 10309 static void perf_tp_event_target_task(u64 count, void *record, 10310 struct pt_regs *regs, 10311 struct perf_sample_data *data, 10312 struct perf_event_context *ctx) 10313 { 10314 unsigned int cpu = smp_processor_id(); 10315 struct pmu *pmu = &perf_tracepoint; 10316 struct perf_event *event, *sibling; 10317 10318 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10319 __perf_tp_event_target_task(count, record, regs, data, event); 10320 for_each_sibling_event(sibling, event) 10321 __perf_tp_event_target_task(count, record, regs, data, sibling); 10322 } 10323 10324 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10325 __perf_tp_event_target_task(count, record, regs, data, event); 10326 for_each_sibling_event(sibling, event) 10327 __perf_tp_event_target_task(count, record, regs, data, sibling); 10328 } 10329 } 10330 10331 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10332 struct pt_regs *regs, struct hlist_head *head, int rctx, 10333 struct task_struct *task) 10334 { 10335 struct perf_sample_data data; 10336 struct perf_event *event; 10337 10338 struct perf_raw_record raw = { 10339 .frag = { 10340 .size = entry_size, 10341 .data = record, 10342 }, 10343 }; 10344 10345 perf_sample_data_init(&data, 0, 0); 10346 perf_sample_save_raw_data(&data, &raw); 10347 10348 perf_trace_buf_update(record, event_type); 10349 10350 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10351 if (perf_tp_event_match(event, &data, regs)) { 10352 perf_swevent_event(event, count, &data, regs); 10353 10354 /* 10355 * Here use the same on-stack perf_sample_data, 10356 * some members in data are event-specific and 10357 * need to be re-computed for different sweveents. 10358 * Re-initialize data->sample_flags safely to avoid 10359 * the problem that next event skips preparing data 10360 * because data->sample_flags is set. 10361 */ 10362 perf_sample_data_init(&data, 0, 0); 10363 perf_sample_save_raw_data(&data, &raw); 10364 } 10365 } 10366 10367 /* 10368 * If we got specified a target task, also iterate its context and 10369 * deliver this event there too. 10370 */ 10371 if (task && task != current) { 10372 struct perf_event_context *ctx; 10373 10374 rcu_read_lock(); 10375 ctx = rcu_dereference(task->perf_event_ctxp); 10376 if (!ctx) 10377 goto unlock; 10378 10379 raw_spin_lock(&ctx->lock); 10380 perf_tp_event_target_task(count, record, regs, &data, ctx); 10381 raw_spin_unlock(&ctx->lock); 10382 unlock: 10383 rcu_read_unlock(); 10384 } 10385 10386 perf_swevent_put_recursion_context(rctx); 10387 } 10388 EXPORT_SYMBOL_GPL(perf_tp_event); 10389 10390 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10391 /* 10392 * Flags in config, used by dynamic PMU kprobe and uprobe 10393 * The flags should match following PMU_FORMAT_ATTR(). 10394 * 10395 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10396 * if not set, create kprobe/uprobe 10397 * 10398 * The following values specify a reference counter (or semaphore in the 10399 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10400 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10401 * 10402 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10403 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10404 */ 10405 enum perf_probe_config { 10406 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10407 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10408 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10409 }; 10410 10411 PMU_FORMAT_ATTR(retprobe, "config:0"); 10412 #endif 10413 10414 #ifdef CONFIG_KPROBE_EVENTS 10415 static struct attribute *kprobe_attrs[] = { 10416 &format_attr_retprobe.attr, 10417 NULL, 10418 }; 10419 10420 static struct attribute_group kprobe_format_group = { 10421 .name = "format", 10422 .attrs = kprobe_attrs, 10423 }; 10424 10425 static const struct attribute_group *kprobe_attr_groups[] = { 10426 &kprobe_format_group, 10427 NULL, 10428 }; 10429 10430 static int perf_kprobe_event_init(struct perf_event *event); 10431 static struct pmu perf_kprobe = { 10432 .task_ctx_nr = perf_sw_context, 10433 .event_init = perf_kprobe_event_init, 10434 .add = perf_trace_add, 10435 .del = perf_trace_del, 10436 .start = perf_swevent_start, 10437 .stop = perf_swevent_stop, 10438 .read = perf_swevent_read, 10439 .attr_groups = kprobe_attr_groups, 10440 }; 10441 10442 static int perf_kprobe_event_init(struct perf_event *event) 10443 { 10444 int err; 10445 bool is_retprobe; 10446 10447 if (event->attr.type != perf_kprobe.type) 10448 return -ENOENT; 10449 10450 if (!perfmon_capable()) 10451 return -EACCES; 10452 10453 /* 10454 * no branch sampling for probe events 10455 */ 10456 if (has_branch_stack(event)) 10457 return -EOPNOTSUPP; 10458 10459 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10460 err = perf_kprobe_init(event, is_retprobe); 10461 if (err) 10462 return err; 10463 10464 event->destroy = perf_kprobe_destroy; 10465 10466 return 0; 10467 } 10468 #endif /* CONFIG_KPROBE_EVENTS */ 10469 10470 #ifdef CONFIG_UPROBE_EVENTS 10471 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10472 10473 static struct attribute *uprobe_attrs[] = { 10474 &format_attr_retprobe.attr, 10475 &format_attr_ref_ctr_offset.attr, 10476 NULL, 10477 }; 10478 10479 static struct attribute_group uprobe_format_group = { 10480 .name = "format", 10481 .attrs = uprobe_attrs, 10482 }; 10483 10484 static const struct attribute_group *uprobe_attr_groups[] = { 10485 &uprobe_format_group, 10486 NULL, 10487 }; 10488 10489 static int perf_uprobe_event_init(struct perf_event *event); 10490 static struct pmu perf_uprobe = { 10491 .task_ctx_nr = perf_sw_context, 10492 .event_init = perf_uprobe_event_init, 10493 .add = perf_trace_add, 10494 .del = perf_trace_del, 10495 .start = perf_swevent_start, 10496 .stop = perf_swevent_stop, 10497 .read = perf_swevent_read, 10498 .attr_groups = uprobe_attr_groups, 10499 }; 10500 10501 static int perf_uprobe_event_init(struct perf_event *event) 10502 { 10503 int err; 10504 unsigned long ref_ctr_offset; 10505 bool is_retprobe; 10506 10507 if (event->attr.type != perf_uprobe.type) 10508 return -ENOENT; 10509 10510 if (!perfmon_capable()) 10511 return -EACCES; 10512 10513 /* 10514 * no branch sampling for probe events 10515 */ 10516 if (has_branch_stack(event)) 10517 return -EOPNOTSUPP; 10518 10519 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10520 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10521 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10522 if (err) 10523 return err; 10524 10525 event->destroy = perf_uprobe_destroy; 10526 10527 return 0; 10528 } 10529 #endif /* CONFIG_UPROBE_EVENTS */ 10530 10531 static inline void perf_tp_register(void) 10532 { 10533 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10534 #ifdef CONFIG_KPROBE_EVENTS 10535 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10536 #endif 10537 #ifdef CONFIG_UPROBE_EVENTS 10538 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10539 #endif 10540 } 10541 10542 static void perf_event_free_filter(struct perf_event *event) 10543 { 10544 ftrace_profile_free_filter(event); 10545 } 10546 10547 /* 10548 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10549 * with perf_event_open() 10550 */ 10551 static inline bool perf_event_is_tracing(struct perf_event *event) 10552 { 10553 if (event->pmu == &perf_tracepoint) 10554 return true; 10555 #ifdef CONFIG_KPROBE_EVENTS 10556 if (event->pmu == &perf_kprobe) 10557 return true; 10558 #endif 10559 #ifdef CONFIG_UPROBE_EVENTS 10560 if (event->pmu == &perf_uprobe) 10561 return true; 10562 #endif 10563 return false; 10564 } 10565 10566 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10567 u64 bpf_cookie) 10568 { 10569 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10570 10571 if (!perf_event_is_tracing(event)) 10572 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10573 10574 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10575 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10576 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10577 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10578 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10579 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10580 return -EINVAL; 10581 10582 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10583 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10584 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10585 return -EINVAL; 10586 10587 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10588 /* only uprobe programs are allowed to be sleepable */ 10589 return -EINVAL; 10590 10591 /* Kprobe override only works for kprobes, not uprobes. */ 10592 if (prog->kprobe_override && !is_kprobe) 10593 return -EINVAL; 10594 10595 if (is_tracepoint || is_syscall_tp) { 10596 int off = trace_event_get_offsets(event->tp_event); 10597 10598 if (prog->aux->max_ctx_offset > off) 10599 return -EACCES; 10600 } 10601 10602 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10603 } 10604 10605 void perf_event_free_bpf_prog(struct perf_event *event) 10606 { 10607 if (!perf_event_is_tracing(event)) { 10608 perf_event_free_bpf_handler(event); 10609 return; 10610 } 10611 perf_event_detach_bpf_prog(event); 10612 } 10613 10614 #else 10615 10616 static inline void perf_tp_register(void) 10617 { 10618 } 10619 10620 static void perf_event_free_filter(struct perf_event *event) 10621 { 10622 } 10623 10624 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10625 u64 bpf_cookie) 10626 { 10627 return -ENOENT; 10628 } 10629 10630 void perf_event_free_bpf_prog(struct perf_event *event) 10631 { 10632 } 10633 #endif /* CONFIG_EVENT_TRACING */ 10634 10635 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10636 void perf_bp_event(struct perf_event *bp, void *data) 10637 { 10638 struct perf_sample_data sample; 10639 struct pt_regs *regs = data; 10640 10641 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10642 10643 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10644 perf_swevent_event(bp, 1, &sample, regs); 10645 } 10646 #endif 10647 10648 /* 10649 * Allocate a new address filter 10650 */ 10651 static struct perf_addr_filter * 10652 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10653 { 10654 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10655 struct perf_addr_filter *filter; 10656 10657 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10658 if (!filter) 10659 return NULL; 10660 10661 INIT_LIST_HEAD(&filter->entry); 10662 list_add_tail(&filter->entry, filters); 10663 10664 return filter; 10665 } 10666 10667 static void free_filters_list(struct list_head *filters) 10668 { 10669 struct perf_addr_filter *filter, *iter; 10670 10671 list_for_each_entry_safe(filter, iter, filters, entry) { 10672 path_put(&filter->path); 10673 list_del(&filter->entry); 10674 kfree(filter); 10675 } 10676 } 10677 10678 /* 10679 * Free existing address filters and optionally install new ones 10680 */ 10681 static void perf_addr_filters_splice(struct perf_event *event, 10682 struct list_head *head) 10683 { 10684 unsigned long flags; 10685 LIST_HEAD(list); 10686 10687 if (!has_addr_filter(event)) 10688 return; 10689 10690 /* don't bother with children, they don't have their own filters */ 10691 if (event->parent) 10692 return; 10693 10694 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10695 10696 list_splice_init(&event->addr_filters.list, &list); 10697 if (head) 10698 list_splice(head, &event->addr_filters.list); 10699 10700 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10701 10702 free_filters_list(&list); 10703 } 10704 10705 /* 10706 * Scan through mm's vmas and see if one of them matches the 10707 * @filter; if so, adjust filter's address range. 10708 * Called with mm::mmap_lock down for reading. 10709 */ 10710 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10711 struct mm_struct *mm, 10712 struct perf_addr_filter_range *fr) 10713 { 10714 struct vm_area_struct *vma; 10715 VMA_ITERATOR(vmi, mm, 0); 10716 10717 for_each_vma(vmi, vma) { 10718 if (!vma->vm_file) 10719 continue; 10720 10721 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10722 return; 10723 } 10724 } 10725 10726 /* 10727 * Update event's address range filters based on the 10728 * task's existing mappings, if any. 10729 */ 10730 static void perf_event_addr_filters_apply(struct perf_event *event) 10731 { 10732 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10733 struct task_struct *task = READ_ONCE(event->ctx->task); 10734 struct perf_addr_filter *filter; 10735 struct mm_struct *mm = NULL; 10736 unsigned int count = 0; 10737 unsigned long flags; 10738 10739 /* 10740 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10741 * will stop on the parent's child_mutex that our caller is also holding 10742 */ 10743 if (task == TASK_TOMBSTONE) 10744 return; 10745 10746 if (ifh->nr_file_filters) { 10747 mm = get_task_mm(task); 10748 if (!mm) 10749 goto restart; 10750 10751 mmap_read_lock(mm); 10752 } 10753 10754 raw_spin_lock_irqsave(&ifh->lock, flags); 10755 list_for_each_entry(filter, &ifh->list, entry) { 10756 if (filter->path.dentry) { 10757 /* 10758 * Adjust base offset if the filter is associated to a 10759 * binary that needs to be mapped: 10760 */ 10761 event->addr_filter_ranges[count].start = 0; 10762 event->addr_filter_ranges[count].size = 0; 10763 10764 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10765 } else { 10766 event->addr_filter_ranges[count].start = filter->offset; 10767 event->addr_filter_ranges[count].size = filter->size; 10768 } 10769 10770 count++; 10771 } 10772 10773 event->addr_filters_gen++; 10774 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10775 10776 if (ifh->nr_file_filters) { 10777 mmap_read_unlock(mm); 10778 10779 mmput(mm); 10780 } 10781 10782 restart: 10783 perf_event_stop(event, 1); 10784 } 10785 10786 /* 10787 * Address range filtering: limiting the data to certain 10788 * instruction address ranges. Filters are ioctl()ed to us from 10789 * userspace as ascii strings. 10790 * 10791 * Filter string format: 10792 * 10793 * ACTION RANGE_SPEC 10794 * where ACTION is one of the 10795 * * "filter": limit the trace to this region 10796 * * "start": start tracing from this address 10797 * * "stop": stop tracing at this address/region; 10798 * RANGE_SPEC is 10799 * * for kernel addresses: <start address>[/<size>] 10800 * * for object files: <start address>[/<size>]@</path/to/object/file> 10801 * 10802 * if <size> is not specified or is zero, the range is treated as a single 10803 * address; not valid for ACTION=="filter". 10804 */ 10805 enum { 10806 IF_ACT_NONE = -1, 10807 IF_ACT_FILTER, 10808 IF_ACT_START, 10809 IF_ACT_STOP, 10810 IF_SRC_FILE, 10811 IF_SRC_KERNEL, 10812 IF_SRC_FILEADDR, 10813 IF_SRC_KERNELADDR, 10814 }; 10815 10816 enum { 10817 IF_STATE_ACTION = 0, 10818 IF_STATE_SOURCE, 10819 IF_STATE_END, 10820 }; 10821 10822 static const match_table_t if_tokens = { 10823 { IF_ACT_FILTER, "filter" }, 10824 { IF_ACT_START, "start" }, 10825 { IF_ACT_STOP, "stop" }, 10826 { IF_SRC_FILE, "%u/%u@%s" }, 10827 { IF_SRC_KERNEL, "%u/%u" }, 10828 { IF_SRC_FILEADDR, "%u@%s" }, 10829 { IF_SRC_KERNELADDR, "%u" }, 10830 { IF_ACT_NONE, NULL }, 10831 }; 10832 10833 /* 10834 * Address filter string parser 10835 */ 10836 static int 10837 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10838 struct list_head *filters) 10839 { 10840 struct perf_addr_filter *filter = NULL; 10841 char *start, *orig, *filename = NULL; 10842 substring_t args[MAX_OPT_ARGS]; 10843 int state = IF_STATE_ACTION, token; 10844 unsigned int kernel = 0; 10845 int ret = -EINVAL; 10846 10847 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10848 if (!fstr) 10849 return -ENOMEM; 10850 10851 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10852 static const enum perf_addr_filter_action_t actions[] = { 10853 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10854 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10855 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10856 }; 10857 ret = -EINVAL; 10858 10859 if (!*start) 10860 continue; 10861 10862 /* filter definition begins */ 10863 if (state == IF_STATE_ACTION) { 10864 filter = perf_addr_filter_new(event, filters); 10865 if (!filter) 10866 goto fail; 10867 } 10868 10869 token = match_token(start, if_tokens, args); 10870 switch (token) { 10871 case IF_ACT_FILTER: 10872 case IF_ACT_START: 10873 case IF_ACT_STOP: 10874 if (state != IF_STATE_ACTION) 10875 goto fail; 10876 10877 filter->action = actions[token]; 10878 state = IF_STATE_SOURCE; 10879 break; 10880 10881 case IF_SRC_KERNELADDR: 10882 case IF_SRC_KERNEL: 10883 kernel = 1; 10884 fallthrough; 10885 10886 case IF_SRC_FILEADDR: 10887 case IF_SRC_FILE: 10888 if (state != IF_STATE_SOURCE) 10889 goto fail; 10890 10891 *args[0].to = 0; 10892 ret = kstrtoul(args[0].from, 0, &filter->offset); 10893 if (ret) 10894 goto fail; 10895 10896 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10897 *args[1].to = 0; 10898 ret = kstrtoul(args[1].from, 0, &filter->size); 10899 if (ret) 10900 goto fail; 10901 } 10902 10903 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10904 int fpos = token == IF_SRC_FILE ? 2 : 1; 10905 10906 kfree(filename); 10907 filename = match_strdup(&args[fpos]); 10908 if (!filename) { 10909 ret = -ENOMEM; 10910 goto fail; 10911 } 10912 } 10913 10914 state = IF_STATE_END; 10915 break; 10916 10917 default: 10918 goto fail; 10919 } 10920 10921 /* 10922 * Filter definition is fully parsed, validate and install it. 10923 * Make sure that it doesn't contradict itself or the event's 10924 * attribute. 10925 */ 10926 if (state == IF_STATE_END) { 10927 ret = -EINVAL; 10928 10929 /* 10930 * ACTION "filter" must have a non-zero length region 10931 * specified. 10932 */ 10933 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10934 !filter->size) 10935 goto fail; 10936 10937 if (!kernel) { 10938 if (!filename) 10939 goto fail; 10940 10941 /* 10942 * For now, we only support file-based filters 10943 * in per-task events; doing so for CPU-wide 10944 * events requires additional context switching 10945 * trickery, since same object code will be 10946 * mapped at different virtual addresses in 10947 * different processes. 10948 */ 10949 ret = -EOPNOTSUPP; 10950 if (!event->ctx->task) 10951 goto fail; 10952 10953 /* look up the path and grab its inode */ 10954 ret = kern_path(filename, LOOKUP_FOLLOW, 10955 &filter->path); 10956 if (ret) 10957 goto fail; 10958 10959 ret = -EINVAL; 10960 if (!filter->path.dentry || 10961 !S_ISREG(d_inode(filter->path.dentry) 10962 ->i_mode)) 10963 goto fail; 10964 10965 event->addr_filters.nr_file_filters++; 10966 } 10967 10968 /* ready to consume more filters */ 10969 kfree(filename); 10970 filename = NULL; 10971 state = IF_STATE_ACTION; 10972 filter = NULL; 10973 kernel = 0; 10974 } 10975 } 10976 10977 if (state != IF_STATE_ACTION) 10978 goto fail; 10979 10980 kfree(filename); 10981 kfree(orig); 10982 10983 return 0; 10984 10985 fail: 10986 kfree(filename); 10987 free_filters_list(filters); 10988 kfree(orig); 10989 10990 return ret; 10991 } 10992 10993 static int 10994 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10995 { 10996 LIST_HEAD(filters); 10997 int ret; 10998 10999 /* 11000 * Since this is called in perf_ioctl() path, we're already holding 11001 * ctx::mutex. 11002 */ 11003 lockdep_assert_held(&event->ctx->mutex); 11004 11005 if (WARN_ON_ONCE(event->parent)) 11006 return -EINVAL; 11007 11008 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11009 if (ret) 11010 goto fail_clear_files; 11011 11012 ret = event->pmu->addr_filters_validate(&filters); 11013 if (ret) 11014 goto fail_free_filters; 11015 11016 /* remove existing filters, if any */ 11017 perf_addr_filters_splice(event, &filters); 11018 11019 /* install new filters */ 11020 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11021 11022 return ret; 11023 11024 fail_free_filters: 11025 free_filters_list(&filters); 11026 11027 fail_clear_files: 11028 event->addr_filters.nr_file_filters = 0; 11029 11030 return ret; 11031 } 11032 11033 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11034 { 11035 int ret = -EINVAL; 11036 char *filter_str; 11037 11038 filter_str = strndup_user(arg, PAGE_SIZE); 11039 if (IS_ERR(filter_str)) 11040 return PTR_ERR(filter_str); 11041 11042 #ifdef CONFIG_EVENT_TRACING 11043 if (perf_event_is_tracing(event)) { 11044 struct perf_event_context *ctx = event->ctx; 11045 11046 /* 11047 * Beware, here be dragons!! 11048 * 11049 * the tracepoint muck will deadlock against ctx->mutex, but 11050 * the tracepoint stuff does not actually need it. So 11051 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11052 * already have a reference on ctx. 11053 * 11054 * This can result in event getting moved to a different ctx, 11055 * but that does not affect the tracepoint state. 11056 */ 11057 mutex_unlock(&ctx->mutex); 11058 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11059 mutex_lock(&ctx->mutex); 11060 } else 11061 #endif 11062 if (has_addr_filter(event)) 11063 ret = perf_event_set_addr_filter(event, filter_str); 11064 11065 kfree(filter_str); 11066 return ret; 11067 } 11068 11069 /* 11070 * hrtimer based swevent callback 11071 */ 11072 11073 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11074 { 11075 enum hrtimer_restart ret = HRTIMER_RESTART; 11076 struct perf_sample_data data; 11077 struct pt_regs *regs; 11078 struct perf_event *event; 11079 u64 period; 11080 11081 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11082 11083 if (event->state != PERF_EVENT_STATE_ACTIVE) 11084 return HRTIMER_NORESTART; 11085 11086 event->pmu->read(event); 11087 11088 perf_sample_data_init(&data, 0, event->hw.last_period); 11089 regs = get_irq_regs(); 11090 11091 if (regs && !perf_exclude_event(event, regs)) { 11092 if (!(event->attr.exclude_idle && is_idle_task(current))) 11093 if (__perf_event_overflow(event, 1, &data, regs)) 11094 ret = HRTIMER_NORESTART; 11095 } 11096 11097 period = max_t(u64, 10000, event->hw.sample_period); 11098 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11099 11100 return ret; 11101 } 11102 11103 static void perf_swevent_start_hrtimer(struct perf_event *event) 11104 { 11105 struct hw_perf_event *hwc = &event->hw; 11106 s64 period; 11107 11108 if (!is_sampling_event(event)) 11109 return; 11110 11111 period = local64_read(&hwc->period_left); 11112 if (period) { 11113 if (period < 0) 11114 period = 10000; 11115 11116 local64_set(&hwc->period_left, 0); 11117 } else { 11118 period = max_t(u64, 10000, hwc->sample_period); 11119 } 11120 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11121 HRTIMER_MODE_REL_PINNED_HARD); 11122 } 11123 11124 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11125 { 11126 struct hw_perf_event *hwc = &event->hw; 11127 11128 if (is_sampling_event(event)) { 11129 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11130 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11131 11132 hrtimer_cancel(&hwc->hrtimer); 11133 } 11134 } 11135 11136 static void perf_swevent_init_hrtimer(struct perf_event *event) 11137 { 11138 struct hw_perf_event *hwc = &event->hw; 11139 11140 if (!is_sampling_event(event)) 11141 return; 11142 11143 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11144 hwc->hrtimer.function = perf_swevent_hrtimer; 11145 11146 /* 11147 * Since hrtimers have a fixed rate, we can do a static freq->period 11148 * mapping and avoid the whole period adjust feedback stuff. 11149 */ 11150 if (event->attr.freq) { 11151 long freq = event->attr.sample_freq; 11152 11153 event->attr.sample_period = NSEC_PER_SEC / freq; 11154 hwc->sample_period = event->attr.sample_period; 11155 local64_set(&hwc->period_left, hwc->sample_period); 11156 hwc->last_period = hwc->sample_period; 11157 event->attr.freq = 0; 11158 } 11159 } 11160 11161 /* 11162 * Software event: cpu wall time clock 11163 */ 11164 11165 static void cpu_clock_event_update(struct perf_event *event) 11166 { 11167 s64 prev; 11168 u64 now; 11169 11170 now = local_clock(); 11171 prev = local64_xchg(&event->hw.prev_count, now); 11172 local64_add(now - prev, &event->count); 11173 } 11174 11175 static void cpu_clock_event_start(struct perf_event *event, int flags) 11176 { 11177 local64_set(&event->hw.prev_count, local_clock()); 11178 perf_swevent_start_hrtimer(event); 11179 } 11180 11181 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11182 { 11183 perf_swevent_cancel_hrtimer(event); 11184 cpu_clock_event_update(event); 11185 } 11186 11187 static int cpu_clock_event_add(struct perf_event *event, int flags) 11188 { 11189 if (flags & PERF_EF_START) 11190 cpu_clock_event_start(event, flags); 11191 perf_event_update_userpage(event); 11192 11193 return 0; 11194 } 11195 11196 static void cpu_clock_event_del(struct perf_event *event, int flags) 11197 { 11198 cpu_clock_event_stop(event, flags); 11199 } 11200 11201 static void cpu_clock_event_read(struct perf_event *event) 11202 { 11203 cpu_clock_event_update(event); 11204 } 11205 11206 static int cpu_clock_event_init(struct perf_event *event) 11207 { 11208 if (event->attr.type != perf_cpu_clock.type) 11209 return -ENOENT; 11210 11211 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11212 return -ENOENT; 11213 11214 /* 11215 * no branch sampling for software events 11216 */ 11217 if (has_branch_stack(event)) 11218 return -EOPNOTSUPP; 11219 11220 perf_swevent_init_hrtimer(event); 11221 11222 return 0; 11223 } 11224 11225 static struct pmu perf_cpu_clock = { 11226 .task_ctx_nr = perf_sw_context, 11227 11228 .capabilities = PERF_PMU_CAP_NO_NMI, 11229 .dev = PMU_NULL_DEV, 11230 11231 .event_init = cpu_clock_event_init, 11232 .add = cpu_clock_event_add, 11233 .del = cpu_clock_event_del, 11234 .start = cpu_clock_event_start, 11235 .stop = cpu_clock_event_stop, 11236 .read = cpu_clock_event_read, 11237 }; 11238 11239 /* 11240 * Software event: task time clock 11241 */ 11242 11243 static void task_clock_event_update(struct perf_event *event, u64 now) 11244 { 11245 u64 prev; 11246 s64 delta; 11247 11248 prev = local64_xchg(&event->hw.prev_count, now); 11249 delta = now - prev; 11250 local64_add(delta, &event->count); 11251 } 11252 11253 static void task_clock_event_start(struct perf_event *event, int flags) 11254 { 11255 local64_set(&event->hw.prev_count, event->ctx->time); 11256 perf_swevent_start_hrtimer(event); 11257 } 11258 11259 static void task_clock_event_stop(struct perf_event *event, int flags) 11260 { 11261 perf_swevent_cancel_hrtimer(event); 11262 task_clock_event_update(event, event->ctx->time); 11263 } 11264 11265 static int task_clock_event_add(struct perf_event *event, int flags) 11266 { 11267 if (flags & PERF_EF_START) 11268 task_clock_event_start(event, flags); 11269 perf_event_update_userpage(event); 11270 11271 return 0; 11272 } 11273 11274 static void task_clock_event_del(struct perf_event *event, int flags) 11275 { 11276 task_clock_event_stop(event, PERF_EF_UPDATE); 11277 } 11278 11279 static void task_clock_event_read(struct perf_event *event) 11280 { 11281 u64 now = perf_clock(); 11282 u64 delta = now - event->ctx->timestamp; 11283 u64 time = event->ctx->time + delta; 11284 11285 task_clock_event_update(event, time); 11286 } 11287 11288 static int task_clock_event_init(struct perf_event *event) 11289 { 11290 if (event->attr.type != perf_task_clock.type) 11291 return -ENOENT; 11292 11293 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11294 return -ENOENT; 11295 11296 /* 11297 * no branch sampling for software events 11298 */ 11299 if (has_branch_stack(event)) 11300 return -EOPNOTSUPP; 11301 11302 perf_swevent_init_hrtimer(event); 11303 11304 return 0; 11305 } 11306 11307 static struct pmu perf_task_clock = { 11308 .task_ctx_nr = perf_sw_context, 11309 11310 .capabilities = PERF_PMU_CAP_NO_NMI, 11311 .dev = PMU_NULL_DEV, 11312 11313 .event_init = task_clock_event_init, 11314 .add = task_clock_event_add, 11315 .del = task_clock_event_del, 11316 .start = task_clock_event_start, 11317 .stop = task_clock_event_stop, 11318 .read = task_clock_event_read, 11319 }; 11320 11321 static void perf_pmu_nop_void(struct pmu *pmu) 11322 { 11323 } 11324 11325 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11326 { 11327 } 11328 11329 static int perf_pmu_nop_int(struct pmu *pmu) 11330 { 11331 return 0; 11332 } 11333 11334 static int perf_event_nop_int(struct perf_event *event, u64 value) 11335 { 11336 return 0; 11337 } 11338 11339 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11340 11341 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11342 { 11343 __this_cpu_write(nop_txn_flags, flags); 11344 11345 if (flags & ~PERF_PMU_TXN_ADD) 11346 return; 11347 11348 perf_pmu_disable(pmu); 11349 } 11350 11351 static int perf_pmu_commit_txn(struct pmu *pmu) 11352 { 11353 unsigned int flags = __this_cpu_read(nop_txn_flags); 11354 11355 __this_cpu_write(nop_txn_flags, 0); 11356 11357 if (flags & ~PERF_PMU_TXN_ADD) 11358 return 0; 11359 11360 perf_pmu_enable(pmu); 11361 return 0; 11362 } 11363 11364 static void perf_pmu_cancel_txn(struct pmu *pmu) 11365 { 11366 unsigned int flags = __this_cpu_read(nop_txn_flags); 11367 11368 __this_cpu_write(nop_txn_flags, 0); 11369 11370 if (flags & ~PERF_PMU_TXN_ADD) 11371 return; 11372 11373 perf_pmu_enable(pmu); 11374 } 11375 11376 static int perf_event_idx_default(struct perf_event *event) 11377 { 11378 return 0; 11379 } 11380 11381 static void free_pmu_context(struct pmu *pmu) 11382 { 11383 free_percpu(pmu->cpu_pmu_context); 11384 } 11385 11386 /* 11387 * Let userspace know that this PMU supports address range filtering: 11388 */ 11389 static ssize_t nr_addr_filters_show(struct device *dev, 11390 struct device_attribute *attr, 11391 char *page) 11392 { 11393 struct pmu *pmu = dev_get_drvdata(dev); 11394 11395 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11396 } 11397 DEVICE_ATTR_RO(nr_addr_filters); 11398 11399 static struct idr pmu_idr; 11400 11401 static ssize_t 11402 type_show(struct device *dev, struct device_attribute *attr, char *page) 11403 { 11404 struct pmu *pmu = dev_get_drvdata(dev); 11405 11406 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11407 } 11408 static DEVICE_ATTR_RO(type); 11409 11410 static ssize_t 11411 perf_event_mux_interval_ms_show(struct device *dev, 11412 struct device_attribute *attr, 11413 char *page) 11414 { 11415 struct pmu *pmu = dev_get_drvdata(dev); 11416 11417 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11418 } 11419 11420 static DEFINE_MUTEX(mux_interval_mutex); 11421 11422 static ssize_t 11423 perf_event_mux_interval_ms_store(struct device *dev, 11424 struct device_attribute *attr, 11425 const char *buf, size_t count) 11426 { 11427 struct pmu *pmu = dev_get_drvdata(dev); 11428 int timer, cpu, ret; 11429 11430 ret = kstrtoint(buf, 0, &timer); 11431 if (ret) 11432 return ret; 11433 11434 if (timer < 1) 11435 return -EINVAL; 11436 11437 /* same value, noting to do */ 11438 if (timer == pmu->hrtimer_interval_ms) 11439 return count; 11440 11441 mutex_lock(&mux_interval_mutex); 11442 pmu->hrtimer_interval_ms = timer; 11443 11444 /* update all cpuctx for this PMU */ 11445 cpus_read_lock(); 11446 for_each_online_cpu(cpu) { 11447 struct perf_cpu_pmu_context *cpc; 11448 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11449 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11450 11451 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11452 } 11453 cpus_read_unlock(); 11454 mutex_unlock(&mux_interval_mutex); 11455 11456 return count; 11457 } 11458 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11459 11460 static struct attribute *pmu_dev_attrs[] = { 11461 &dev_attr_type.attr, 11462 &dev_attr_perf_event_mux_interval_ms.attr, 11463 &dev_attr_nr_addr_filters.attr, 11464 NULL, 11465 }; 11466 11467 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11468 { 11469 struct device *dev = kobj_to_dev(kobj); 11470 struct pmu *pmu = dev_get_drvdata(dev); 11471 11472 if (n == 2 && !pmu->nr_addr_filters) 11473 return 0; 11474 11475 return a->mode; 11476 } 11477 11478 static struct attribute_group pmu_dev_attr_group = { 11479 .is_visible = pmu_dev_is_visible, 11480 .attrs = pmu_dev_attrs, 11481 }; 11482 11483 static const struct attribute_group *pmu_dev_groups[] = { 11484 &pmu_dev_attr_group, 11485 NULL, 11486 }; 11487 11488 static int pmu_bus_running; 11489 static struct bus_type pmu_bus = { 11490 .name = "event_source", 11491 .dev_groups = pmu_dev_groups, 11492 }; 11493 11494 static void pmu_dev_release(struct device *dev) 11495 { 11496 kfree(dev); 11497 } 11498 11499 static int pmu_dev_alloc(struct pmu *pmu) 11500 { 11501 int ret = -ENOMEM; 11502 11503 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11504 if (!pmu->dev) 11505 goto out; 11506 11507 pmu->dev->groups = pmu->attr_groups; 11508 device_initialize(pmu->dev); 11509 11510 dev_set_drvdata(pmu->dev, pmu); 11511 pmu->dev->bus = &pmu_bus; 11512 pmu->dev->parent = pmu->parent; 11513 pmu->dev->release = pmu_dev_release; 11514 11515 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11516 if (ret) 11517 goto free_dev; 11518 11519 ret = device_add(pmu->dev); 11520 if (ret) 11521 goto free_dev; 11522 11523 if (pmu->attr_update) { 11524 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11525 if (ret) 11526 goto del_dev; 11527 } 11528 11529 out: 11530 return ret; 11531 11532 del_dev: 11533 device_del(pmu->dev); 11534 11535 free_dev: 11536 put_device(pmu->dev); 11537 goto out; 11538 } 11539 11540 static struct lock_class_key cpuctx_mutex; 11541 static struct lock_class_key cpuctx_lock; 11542 11543 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11544 { 11545 int cpu, ret, max = PERF_TYPE_MAX; 11546 11547 mutex_lock(&pmus_lock); 11548 ret = -ENOMEM; 11549 pmu->pmu_disable_count = alloc_percpu(int); 11550 if (!pmu->pmu_disable_count) 11551 goto unlock; 11552 11553 pmu->type = -1; 11554 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11555 ret = -EINVAL; 11556 goto free_pdc; 11557 } 11558 11559 pmu->name = name; 11560 11561 if (type >= 0) 11562 max = type; 11563 11564 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11565 if (ret < 0) 11566 goto free_pdc; 11567 11568 WARN_ON(type >= 0 && ret != type); 11569 11570 type = ret; 11571 pmu->type = type; 11572 11573 if (pmu_bus_running && !pmu->dev) { 11574 ret = pmu_dev_alloc(pmu); 11575 if (ret) 11576 goto free_idr; 11577 } 11578 11579 ret = -ENOMEM; 11580 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11581 if (!pmu->cpu_pmu_context) 11582 goto free_dev; 11583 11584 for_each_possible_cpu(cpu) { 11585 struct perf_cpu_pmu_context *cpc; 11586 11587 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11588 __perf_init_event_pmu_context(&cpc->epc, pmu); 11589 __perf_mux_hrtimer_init(cpc, cpu); 11590 } 11591 11592 if (!pmu->start_txn) { 11593 if (pmu->pmu_enable) { 11594 /* 11595 * If we have pmu_enable/pmu_disable calls, install 11596 * transaction stubs that use that to try and batch 11597 * hardware accesses. 11598 */ 11599 pmu->start_txn = perf_pmu_start_txn; 11600 pmu->commit_txn = perf_pmu_commit_txn; 11601 pmu->cancel_txn = perf_pmu_cancel_txn; 11602 } else { 11603 pmu->start_txn = perf_pmu_nop_txn; 11604 pmu->commit_txn = perf_pmu_nop_int; 11605 pmu->cancel_txn = perf_pmu_nop_void; 11606 } 11607 } 11608 11609 if (!pmu->pmu_enable) { 11610 pmu->pmu_enable = perf_pmu_nop_void; 11611 pmu->pmu_disable = perf_pmu_nop_void; 11612 } 11613 11614 if (!pmu->check_period) 11615 pmu->check_period = perf_event_nop_int; 11616 11617 if (!pmu->event_idx) 11618 pmu->event_idx = perf_event_idx_default; 11619 11620 list_add_rcu(&pmu->entry, &pmus); 11621 atomic_set(&pmu->exclusive_cnt, 0); 11622 ret = 0; 11623 unlock: 11624 mutex_unlock(&pmus_lock); 11625 11626 return ret; 11627 11628 free_dev: 11629 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11630 device_del(pmu->dev); 11631 put_device(pmu->dev); 11632 } 11633 11634 free_idr: 11635 idr_remove(&pmu_idr, pmu->type); 11636 11637 free_pdc: 11638 free_percpu(pmu->pmu_disable_count); 11639 goto unlock; 11640 } 11641 EXPORT_SYMBOL_GPL(perf_pmu_register); 11642 11643 void perf_pmu_unregister(struct pmu *pmu) 11644 { 11645 mutex_lock(&pmus_lock); 11646 list_del_rcu(&pmu->entry); 11647 11648 /* 11649 * We dereference the pmu list under both SRCU and regular RCU, so 11650 * synchronize against both of those. 11651 */ 11652 synchronize_srcu(&pmus_srcu); 11653 synchronize_rcu(); 11654 11655 free_percpu(pmu->pmu_disable_count); 11656 idr_remove(&pmu_idr, pmu->type); 11657 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11658 if (pmu->nr_addr_filters) 11659 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11660 device_del(pmu->dev); 11661 put_device(pmu->dev); 11662 } 11663 free_pmu_context(pmu); 11664 mutex_unlock(&pmus_lock); 11665 } 11666 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11667 11668 static inline bool has_extended_regs(struct perf_event *event) 11669 { 11670 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11671 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11672 } 11673 11674 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11675 { 11676 struct perf_event_context *ctx = NULL; 11677 int ret; 11678 11679 if (!try_module_get(pmu->module)) 11680 return -ENODEV; 11681 11682 /* 11683 * A number of pmu->event_init() methods iterate the sibling_list to, 11684 * for example, validate if the group fits on the PMU. Therefore, 11685 * if this is a sibling event, acquire the ctx->mutex to protect 11686 * the sibling_list. 11687 */ 11688 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11689 /* 11690 * This ctx->mutex can nest when we're called through 11691 * inheritance. See the perf_event_ctx_lock_nested() comment. 11692 */ 11693 ctx = perf_event_ctx_lock_nested(event->group_leader, 11694 SINGLE_DEPTH_NESTING); 11695 BUG_ON(!ctx); 11696 } 11697 11698 event->pmu = pmu; 11699 ret = pmu->event_init(event); 11700 11701 if (ctx) 11702 perf_event_ctx_unlock(event->group_leader, ctx); 11703 11704 if (!ret) { 11705 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11706 has_extended_regs(event)) 11707 ret = -EOPNOTSUPP; 11708 11709 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11710 event_has_any_exclude_flag(event)) 11711 ret = -EINVAL; 11712 11713 if (ret && event->destroy) 11714 event->destroy(event); 11715 } 11716 11717 if (ret) 11718 module_put(pmu->module); 11719 11720 return ret; 11721 } 11722 11723 static struct pmu *perf_init_event(struct perf_event *event) 11724 { 11725 bool extended_type = false; 11726 int idx, type, ret; 11727 struct pmu *pmu; 11728 11729 idx = srcu_read_lock(&pmus_srcu); 11730 11731 /* 11732 * Save original type before calling pmu->event_init() since certain 11733 * pmus overwrites event->attr.type to forward event to another pmu. 11734 */ 11735 event->orig_type = event->attr.type; 11736 11737 /* Try parent's PMU first: */ 11738 if (event->parent && event->parent->pmu) { 11739 pmu = event->parent->pmu; 11740 ret = perf_try_init_event(pmu, event); 11741 if (!ret) 11742 goto unlock; 11743 } 11744 11745 /* 11746 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11747 * are often aliases for PERF_TYPE_RAW. 11748 */ 11749 type = event->attr.type; 11750 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11751 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11752 if (!type) { 11753 type = PERF_TYPE_RAW; 11754 } else { 11755 extended_type = true; 11756 event->attr.config &= PERF_HW_EVENT_MASK; 11757 } 11758 } 11759 11760 again: 11761 rcu_read_lock(); 11762 pmu = idr_find(&pmu_idr, type); 11763 rcu_read_unlock(); 11764 if (pmu) { 11765 if (event->attr.type != type && type != PERF_TYPE_RAW && 11766 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11767 goto fail; 11768 11769 ret = perf_try_init_event(pmu, event); 11770 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11771 type = event->attr.type; 11772 goto again; 11773 } 11774 11775 if (ret) 11776 pmu = ERR_PTR(ret); 11777 11778 goto unlock; 11779 } 11780 11781 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11782 ret = perf_try_init_event(pmu, event); 11783 if (!ret) 11784 goto unlock; 11785 11786 if (ret != -ENOENT) { 11787 pmu = ERR_PTR(ret); 11788 goto unlock; 11789 } 11790 } 11791 fail: 11792 pmu = ERR_PTR(-ENOENT); 11793 unlock: 11794 srcu_read_unlock(&pmus_srcu, idx); 11795 11796 return pmu; 11797 } 11798 11799 static void attach_sb_event(struct perf_event *event) 11800 { 11801 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11802 11803 raw_spin_lock(&pel->lock); 11804 list_add_rcu(&event->sb_list, &pel->list); 11805 raw_spin_unlock(&pel->lock); 11806 } 11807 11808 /* 11809 * We keep a list of all !task (and therefore per-cpu) events 11810 * that need to receive side-band records. 11811 * 11812 * This avoids having to scan all the various PMU per-cpu contexts 11813 * looking for them. 11814 */ 11815 static void account_pmu_sb_event(struct perf_event *event) 11816 { 11817 if (is_sb_event(event)) 11818 attach_sb_event(event); 11819 } 11820 11821 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11822 static void account_freq_event_nohz(void) 11823 { 11824 #ifdef CONFIG_NO_HZ_FULL 11825 /* Lock so we don't race with concurrent unaccount */ 11826 spin_lock(&nr_freq_lock); 11827 if (atomic_inc_return(&nr_freq_events) == 1) 11828 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11829 spin_unlock(&nr_freq_lock); 11830 #endif 11831 } 11832 11833 static void account_freq_event(void) 11834 { 11835 if (tick_nohz_full_enabled()) 11836 account_freq_event_nohz(); 11837 else 11838 atomic_inc(&nr_freq_events); 11839 } 11840 11841 11842 static void account_event(struct perf_event *event) 11843 { 11844 bool inc = false; 11845 11846 if (event->parent) 11847 return; 11848 11849 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11850 inc = true; 11851 if (event->attr.mmap || event->attr.mmap_data) 11852 atomic_inc(&nr_mmap_events); 11853 if (event->attr.build_id) 11854 atomic_inc(&nr_build_id_events); 11855 if (event->attr.comm) 11856 atomic_inc(&nr_comm_events); 11857 if (event->attr.namespaces) 11858 atomic_inc(&nr_namespaces_events); 11859 if (event->attr.cgroup) 11860 atomic_inc(&nr_cgroup_events); 11861 if (event->attr.task) 11862 atomic_inc(&nr_task_events); 11863 if (event->attr.freq) 11864 account_freq_event(); 11865 if (event->attr.context_switch) { 11866 atomic_inc(&nr_switch_events); 11867 inc = true; 11868 } 11869 if (has_branch_stack(event)) 11870 inc = true; 11871 if (is_cgroup_event(event)) 11872 inc = true; 11873 if (event->attr.ksymbol) 11874 atomic_inc(&nr_ksymbol_events); 11875 if (event->attr.bpf_event) 11876 atomic_inc(&nr_bpf_events); 11877 if (event->attr.text_poke) 11878 atomic_inc(&nr_text_poke_events); 11879 11880 if (inc) { 11881 /* 11882 * We need the mutex here because static_branch_enable() 11883 * must complete *before* the perf_sched_count increment 11884 * becomes visible. 11885 */ 11886 if (atomic_inc_not_zero(&perf_sched_count)) 11887 goto enabled; 11888 11889 mutex_lock(&perf_sched_mutex); 11890 if (!atomic_read(&perf_sched_count)) { 11891 static_branch_enable(&perf_sched_events); 11892 /* 11893 * Guarantee that all CPUs observe they key change and 11894 * call the perf scheduling hooks before proceeding to 11895 * install events that need them. 11896 */ 11897 synchronize_rcu(); 11898 } 11899 /* 11900 * Now that we have waited for the sync_sched(), allow further 11901 * increments to by-pass the mutex. 11902 */ 11903 atomic_inc(&perf_sched_count); 11904 mutex_unlock(&perf_sched_mutex); 11905 } 11906 enabled: 11907 11908 account_pmu_sb_event(event); 11909 } 11910 11911 /* 11912 * Allocate and initialize an event structure 11913 */ 11914 static struct perf_event * 11915 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11916 struct task_struct *task, 11917 struct perf_event *group_leader, 11918 struct perf_event *parent_event, 11919 perf_overflow_handler_t overflow_handler, 11920 void *context, int cgroup_fd) 11921 { 11922 struct pmu *pmu; 11923 struct perf_event *event; 11924 struct hw_perf_event *hwc; 11925 long err = -EINVAL; 11926 int node; 11927 11928 if ((unsigned)cpu >= nr_cpu_ids) { 11929 if (!task || cpu != -1) 11930 return ERR_PTR(-EINVAL); 11931 } 11932 if (attr->sigtrap && !task) { 11933 /* Requires a task: avoid signalling random tasks. */ 11934 return ERR_PTR(-EINVAL); 11935 } 11936 11937 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11938 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11939 node); 11940 if (!event) 11941 return ERR_PTR(-ENOMEM); 11942 11943 /* 11944 * Single events are their own group leaders, with an 11945 * empty sibling list: 11946 */ 11947 if (!group_leader) 11948 group_leader = event; 11949 11950 mutex_init(&event->child_mutex); 11951 INIT_LIST_HEAD(&event->child_list); 11952 11953 INIT_LIST_HEAD(&event->event_entry); 11954 INIT_LIST_HEAD(&event->sibling_list); 11955 INIT_LIST_HEAD(&event->active_list); 11956 init_event_group(event); 11957 INIT_LIST_HEAD(&event->rb_entry); 11958 INIT_LIST_HEAD(&event->active_entry); 11959 INIT_LIST_HEAD(&event->addr_filters.list); 11960 INIT_HLIST_NODE(&event->hlist_entry); 11961 11962 11963 init_waitqueue_head(&event->waitq); 11964 init_irq_work(&event->pending_irq, perf_pending_irq); 11965 init_task_work(&event->pending_task, perf_pending_task); 11966 11967 mutex_init(&event->mmap_mutex); 11968 raw_spin_lock_init(&event->addr_filters.lock); 11969 11970 atomic_long_set(&event->refcount, 1); 11971 event->cpu = cpu; 11972 event->attr = *attr; 11973 event->group_leader = group_leader; 11974 event->pmu = NULL; 11975 event->oncpu = -1; 11976 11977 event->parent = parent_event; 11978 11979 event->ns = get_pid_ns(task_active_pid_ns(current)); 11980 event->id = atomic64_inc_return(&perf_event_id); 11981 11982 event->state = PERF_EVENT_STATE_INACTIVE; 11983 11984 if (parent_event) 11985 event->event_caps = parent_event->event_caps; 11986 11987 if (task) { 11988 event->attach_state = PERF_ATTACH_TASK; 11989 /* 11990 * XXX pmu::event_init needs to know what task to account to 11991 * and we cannot use the ctx information because we need the 11992 * pmu before we get a ctx. 11993 */ 11994 event->hw.target = get_task_struct(task); 11995 } 11996 11997 event->clock = &local_clock; 11998 if (parent_event) 11999 event->clock = parent_event->clock; 12000 12001 if (!overflow_handler && parent_event) { 12002 overflow_handler = parent_event->overflow_handler; 12003 context = parent_event->overflow_handler_context; 12004 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12005 if (parent_event->prog) { 12006 struct bpf_prog *prog = parent_event->prog; 12007 12008 bpf_prog_inc(prog); 12009 event->prog = prog; 12010 } 12011 #endif 12012 } 12013 12014 if (overflow_handler) { 12015 event->overflow_handler = overflow_handler; 12016 event->overflow_handler_context = context; 12017 } else if (is_write_backward(event)){ 12018 event->overflow_handler = perf_event_output_backward; 12019 event->overflow_handler_context = NULL; 12020 } else { 12021 event->overflow_handler = perf_event_output_forward; 12022 event->overflow_handler_context = NULL; 12023 } 12024 12025 perf_event__state_init(event); 12026 12027 pmu = NULL; 12028 12029 hwc = &event->hw; 12030 hwc->sample_period = attr->sample_period; 12031 if (attr->freq && attr->sample_freq) 12032 hwc->sample_period = 1; 12033 hwc->last_period = hwc->sample_period; 12034 12035 local64_set(&hwc->period_left, hwc->sample_period); 12036 12037 /* 12038 * We currently do not support PERF_SAMPLE_READ on inherited events. 12039 * See perf_output_read(). 12040 */ 12041 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12042 goto err_ns; 12043 12044 if (!has_branch_stack(event)) 12045 event->attr.branch_sample_type = 0; 12046 12047 pmu = perf_init_event(event); 12048 if (IS_ERR(pmu)) { 12049 err = PTR_ERR(pmu); 12050 goto err_ns; 12051 } 12052 12053 /* 12054 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12055 * events (they don't make sense as the cgroup will be different 12056 * on other CPUs in the uncore mask). 12057 */ 12058 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12059 err = -EINVAL; 12060 goto err_pmu; 12061 } 12062 12063 if (event->attr.aux_output && 12064 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12065 err = -EOPNOTSUPP; 12066 goto err_pmu; 12067 } 12068 12069 if (cgroup_fd != -1) { 12070 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12071 if (err) 12072 goto err_pmu; 12073 } 12074 12075 err = exclusive_event_init(event); 12076 if (err) 12077 goto err_pmu; 12078 12079 if (has_addr_filter(event)) { 12080 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12081 sizeof(struct perf_addr_filter_range), 12082 GFP_KERNEL); 12083 if (!event->addr_filter_ranges) { 12084 err = -ENOMEM; 12085 goto err_per_task; 12086 } 12087 12088 /* 12089 * Clone the parent's vma offsets: they are valid until exec() 12090 * even if the mm is not shared with the parent. 12091 */ 12092 if (event->parent) { 12093 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12094 12095 raw_spin_lock_irq(&ifh->lock); 12096 memcpy(event->addr_filter_ranges, 12097 event->parent->addr_filter_ranges, 12098 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12099 raw_spin_unlock_irq(&ifh->lock); 12100 } 12101 12102 /* force hw sync on the address filters */ 12103 event->addr_filters_gen = 1; 12104 } 12105 12106 if (!event->parent) { 12107 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12108 err = get_callchain_buffers(attr->sample_max_stack); 12109 if (err) 12110 goto err_addr_filters; 12111 } 12112 } 12113 12114 err = security_perf_event_alloc(event); 12115 if (err) 12116 goto err_callchain_buffer; 12117 12118 /* symmetric to unaccount_event() in _free_event() */ 12119 account_event(event); 12120 12121 return event; 12122 12123 err_callchain_buffer: 12124 if (!event->parent) { 12125 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12126 put_callchain_buffers(); 12127 } 12128 err_addr_filters: 12129 kfree(event->addr_filter_ranges); 12130 12131 err_per_task: 12132 exclusive_event_destroy(event); 12133 12134 err_pmu: 12135 if (is_cgroup_event(event)) 12136 perf_detach_cgroup(event); 12137 if (event->destroy) 12138 event->destroy(event); 12139 module_put(pmu->module); 12140 err_ns: 12141 if (event->hw.target) 12142 put_task_struct(event->hw.target); 12143 call_rcu(&event->rcu_head, free_event_rcu); 12144 12145 return ERR_PTR(err); 12146 } 12147 12148 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12149 struct perf_event_attr *attr) 12150 { 12151 u32 size; 12152 int ret; 12153 12154 /* Zero the full structure, so that a short copy will be nice. */ 12155 memset(attr, 0, sizeof(*attr)); 12156 12157 ret = get_user(size, &uattr->size); 12158 if (ret) 12159 return ret; 12160 12161 /* ABI compatibility quirk: */ 12162 if (!size) 12163 size = PERF_ATTR_SIZE_VER0; 12164 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12165 goto err_size; 12166 12167 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12168 if (ret) { 12169 if (ret == -E2BIG) 12170 goto err_size; 12171 return ret; 12172 } 12173 12174 attr->size = size; 12175 12176 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12177 return -EINVAL; 12178 12179 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12180 return -EINVAL; 12181 12182 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12183 return -EINVAL; 12184 12185 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12186 u64 mask = attr->branch_sample_type; 12187 12188 /* only using defined bits */ 12189 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12190 return -EINVAL; 12191 12192 /* at least one branch bit must be set */ 12193 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12194 return -EINVAL; 12195 12196 /* propagate priv level, when not set for branch */ 12197 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12198 12199 /* exclude_kernel checked on syscall entry */ 12200 if (!attr->exclude_kernel) 12201 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12202 12203 if (!attr->exclude_user) 12204 mask |= PERF_SAMPLE_BRANCH_USER; 12205 12206 if (!attr->exclude_hv) 12207 mask |= PERF_SAMPLE_BRANCH_HV; 12208 /* 12209 * adjust user setting (for HW filter setup) 12210 */ 12211 attr->branch_sample_type = mask; 12212 } 12213 /* privileged levels capture (kernel, hv): check permissions */ 12214 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12215 ret = perf_allow_kernel(attr); 12216 if (ret) 12217 return ret; 12218 } 12219 } 12220 12221 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12222 ret = perf_reg_validate(attr->sample_regs_user); 12223 if (ret) 12224 return ret; 12225 } 12226 12227 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12228 if (!arch_perf_have_user_stack_dump()) 12229 return -ENOSYS; 12230 12231 /* 12232 * We have __u32 type for the size, but so far 12233 * we can only use __u16 as maximum due to the 12234 * __u16 sample size limit. 12235 */ 12236 if (attr->sample_stack_user >= USHRT_MAX) 12237 return -EINVAL; 12238 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12239 return -EINVAL; 12240 } 12241 12242 if (!attr->sample_max_stack) 12243 attr->sample_max_stack = sysctl_perf_event_max_stack; 12244 12245 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12246 ret = perf_reg_validate(attr->sample_regs_intr); 12247 12248 #ifndef CONFIG_CGROUP_PERF 12249 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12250 return -EINVAL; 12251 #endif 12252 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12253 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12254 return -EINVAL; 12255 12256 if (!attr->inherit && attr->inherit_thread) 12257 return -EINVAL; 12258 12259 if (attr->remove_on_exec && attr->enable_on_exec) 12260 return -EINVAL; 12261 12262 if (attr->sigtrap && !attr->remove_on_exec) 12263 return -EINVAL; 12264 12265 out: 12266 return ret; 12267 12268 err_size: 12269 put_user(sizeof(*attr), &uattr->size); 12270 ret = -E2BIG; 12271 goto out; 12272 } 12273 12274 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12275 { 12276 if (b < a) 12277 swap(a, b); 12278 12279 mutex_lock(a); 12280 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12281 } 12282 12283 static int 12284 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12285 { 12286 struct perf_buffer *rb = NULL; 12287 int ret = -EINVAL; 12288 12289 if (!output_event) { 12290 mutex_lock(&event->mmap_mutex); 12291 goto set; 12292 } 12293 12294 /* don't allow circular references */ 12295 if (event == output_event) 12296 goto out; 12297 12298 /* 12299 * Don't allow cross-cpu buffers 12300 */ 12301 if (output_event->cpu != event->cpu) 12302 goto out; 12303 12304 /* 12305 * If its not a per-cpu rb, it must be the same task. 12306 */ 12307 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12308 goto out; 12309 12310 /* 12311 * Mixing clocks in the same buffer is trouble you don't need. 12312 */ 12313 if (output_event->clock != event->clock) 12314 goto out; 12315 12316 /* 12317 * Either writing ring buffer from beginning or from end. 12318 * Mixing is not allowed. 12319 */ 12320 if (is_write_backward(output_event) != is_write_backward(event)) 12321 goto out; 12322 12323 /* 12324 * If both events generate aux data, they must be on the same PMU 12325 */ 12326 if (has_aux(event) && has_aux(output_event) && 12327 event->pmu != output_event->pmu) 12328 goto out; 12329 12330 /* 12331 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12332 * output_event is already on rb->event_list, and the list iteration 12333 * restarts after every removal, it is guaranteed this new event is 12334 * observed *OR* if output_event is already removed, it's guaranteed we 12335 * observe !rb->mmap_count. 12336 */ 12337 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12338 set: 12339 /* Can't redirect output if we've got an active mmap() */ 12340 if (atomic_read(&event->mmap_count)) 12341 goto unlock; 12342 12343 if (output_event) { 12344 /* get the rb we want to redirect to */ 12345 rb = ring_buffer_get(output_event); 12346 if (!rb) 12347 goto unlock; 12348 12349 /* did we race against perf_mmap_close() */ 12350 if (!atomic_read(&rb->mmap_count)) { 12351 ring_buffer_put(rb); 12352 goto unlock; 12353 } 12354 } 12355 12356 ring_buffer_attach(event, rb); 12357 12358 ret = 0; 12359 unlock: 12360 mutex_unlock(&event->mmap_mutex); 12361 if (output_event) 12362 mutex_unlock(&output_event->mmap_mutex); 12363 12364 out: 12365 return ret; 12366 } 12367 12368 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12369 { 12370 bool nmi_safe = false; 12371 12372 switch (clk_id) { 12373 case CLOCK_MONOTONIC: 12374 event->clock = &ktime_get_mono_fast_ns; 12375 nmi_safe = true; 12376 break; 12377 12378 case CLOCK_MONOTONIC_RAW: 12379 event->clock = &ktime_get_raw_fast_ns; 12380 nmi_safe = true; 12381 break; 12382 12383 case CLOCK_REALTIME: 12384 event->clock = &ktime_get_real_ns; 12385 break; 12386 12387 case CLOCK_BOOTTIME: 12388 event->clock = &ktime_get_boottime_ns; 12389 break; 12390 12391 case CLOCK_TAI: 12392 event->clock = &ktime_get_clocktai_ns; 12393 break; 12394 12395 default: 12396 return -EINVAL; 12397 } 12398 12399 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12400 return -EINVAL; 12401 12402 return 0; 12403 } 12404 12405 static bool 12406 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12407 { 12408 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12409 bool is_capable = perfmon_capable(); 12410 12411 if (attr->sigtrap) { 12412 /* 12413 * perf_event_attr::sigtrap sends signals to the other task. 12414 * Require the current task to also have CAP_KILL. 12415 */ 12416 rcu_read_lock(); 12417 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12418 rcu_read_unlock(); 12419 12420 /* 12421 * If the required capabilities aren't available, checks for 12422 * ptrace permissions: upgrade to ATTACH, since sending signals 12423 * can effectively change the target task. 12424 */ 12425 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12426 } 12427 12428 /* 12429 * Preserve ptrace permission check for backwards compatibility. The 12430 * ptrace check also includes checks that the current task and other 12431 * task have matching uids, and is therefore not done here explicitly. 12432 */ 12433 return is_capable || ptrace_may_access(task, ptrace_mode); 12434 } 12435 12436 /** 12437 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12438 * 12439 * @attr_uptr: event_id type attributes for monitoring/sampling 12440 * @pid: target pid 12441 * @cpu: target cpu 12442 * @group_fd: group leader event fd 12443 * @flags: perf event open flags 12444 */ 12445 SYSCALL_DEFINE5(perf_event_open, 12446 struct perf_event_attr __user *, attr_uptr, 12447 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12448 { 12449 struct perf_event *group_leader = NULL, *output_event = NULL; 12450 struct perf_event_pmu_context *pmu_ctx; 12451 struct perf_event *event, *sibling; 12452 struct perf_event_attr attr; 12453 struct perf_event_context *ctx; 12454 struct file *event_file = NULL; 12455 struct fd group = {NULL, 0}; 12456 struct task_struct *task = NULL; 12457 struct pmu *pmu; 12458 int event_fd; 12459 int move_group = 0; 12460 int err; 12461 int f_flags = O_RDWR; 12462 int cgroup_fd = -1; 12463 12464 /* for future expandability... */ 12465 if (flags & ~PERF_FLAG_ALL) 12466 return -EINVAL; 12467 12468 err = perf_copy_attr(attr_uptr, &attr); 12469 if (err) 12470 return err; 12471 12472 /* Do we allow access to perf_event_open(2) ? */ 12473 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12474 if (err) 12475 return err; 12476 12477 if (!attr.exclude_kernel) { 12478 err = perf_allow_kernel(&attr); 12479 if (err) 12480 return err; 12481 } 12482 12483 if (attr.namespaces) { 12484 if (!perfmon_capable()) 12485 return -EACCES; 12486 } 12487 12488 if (attr.freq) { 12489 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12490 return -EINVAL; 12491 } else { 12492 if (attr.sample_period & (1ULL << 63)) 12493 return -EINVAL; 12494 } 12495 12496 /* Only privileged users can get physical addresses */ 12497 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12498 err = perf_allow_kernel(&attr); 12499 if (err) 12500 return err; 12501 } 12502 12503 /* REGS_INTR can leak data, lockdown must prevent this */ 12504 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12505 err = security_locked_down(LOCKDOWN_PERF); 12506 if (err) 12507 return err; 12508 } 12509 12510 /* 12511 * In cgroup mode, the pid argument is used to pass the fd 12512 * opened to the cgroup directory in cgroupfs. The cpu argument 12513 * designates the cpu on which to monitor threads from that 12514 * cgroup. 12515 */ 12516 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12517 return -EINVAL; 12518 12519 if (flags & PERF_FLAG_FD_CLOEXEC) 12520 f_flags |= O_CLOEXEC; 12521 12522 event_fd = get_unused_fd_flags(f_flags); 12523 if (event_fd < 0) 12524 return event_fd; 12525 12526 if (group_fd != -1) { 12527 err = perf_fget_light(group_fd, &group); 12528 if (err) 12529 goto err_fd; 12530 group_leader = group.file->private_data; 12531 if (flags & PERF_FLAG_FD_OUTPUT) 12532 output_event = group_leader; 12533 if (flags & PERF_FLAG_FD_NO_GROUP) 12534 group_leader = NULL; 12535 } 12536 12537 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12538 task = find_lively_task_by_vpid(pid); 12539 if (IS_ERR(task)) { 12540 err = PTR_ERR(task); 12541 goto err_group_fd; 12542 } 12543 } 12544 12545 if (task && group_leader && 12546 group_leader->attr.inherit != attr.inherit) { 12547 err = -EINVAL; 12548 goto err_task; 12549 } 12550 12551 if (flags & PERF_FLAG_PID_CGROUP) 12552 cgroup_fd = pid; 12553 12554 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12555 NULL, NULL, cgroup_fd); 12556 if (IS_ERR(event)) { 12557 err = PTR_ERR(event); 12558 goto err_task; 12559 } 12560 12561 if (is_sampling_event(event)) { 12562 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12563 err = -EOPNOTSUPP; 12564 goto err_alloc; 12565 } 12566 } 12567 12568 /* 12569 * Special case software events and allow them to be part of 12570 * any hardware group. 12571 */ 12572 pmu = event->pmu; 12573 12574 if (attr.use_clockid) { 12575 err = perf_event_set_clock(event, attr.clockid); 12576 if (err) 12577 goto err_alloc; 12578 } 12579 12580 if (pmu->task_ctx_nr == perf_sw_context) 12581 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12582 12583 if (task) { 12584 err = down_read_interruptible(&task->signal->exec_update_lock); 12585 if (err) 12586 goto err_alloc; 12587 12588 /* 12589 * We must hold exec_update_lock across this and any potential 12590 * perf_install_in_context() call for this new event to 12591 * serialize against exec() altering our credentials (and the 12592 * perf_event_exit_task() that could imply). 12593 */ 12594 err = -EACCES; 12595 if (!perf_check_permission(&attr, task)) 12596 goto err_cred; 12597 } 12598 12599 /* 12600 * Get the target context (task or percpu): 12601 */ 12602 ctx = find_get_context(task, event); 12603 if (IS_ERR(ctx)) { 12604 err = PTR_ERR(ctx); 12605 goto err_cred; 12606 } 12607 12608 mutex_lock(&ctx->mutex); 12609 12610 if (ctx->task == TASK_TOMBSTONE) { 12611 err = -ESRCH; 12612 goto err_locked; 12613 } 12614 12615 if (!task) { 12616 /* 12617 * Check if the @cpu we're creating an event for is online. 12618 * 12619 * We use the perf_cpu_context::ctx::mutex to serialize against 12620 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12621 */ 12622 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12623 12624 if (!cpuctx->online) { 12625 err = -ENODEV; 12626 goto err_locked; 12627 } 12628 } 12629 12630 if (group_leader) { 12631 err = -EINVAL; 12632 12633 /* 12634 * Do not allow a recursive hierarchy (this new sibling 12635 * becoming part of another group-sibling): 12636 */ 12637 if (group_leader->group_leader != group_leader) 12638 goto err_locked; 12639 12640 /* All events in a group should have the same clock */ 12641 if (group_leader->clock != event->clock) 12642 goto err_locked; 12643 12644 /* 12645 * Make sure we're both events for the same CPU; 12646 * grouping events for different CPUs is broken; since 12647 * you can never concurrently schedule them anyhow. 12648 */ 12649 if (group_leader->cpu != event->cpu) 12650 goto err_locked; 12651 12652 /* 12653 * Make sure we're both on the same context; either task or cpu. 12654 */ 12655 if (group_leader->ctx != ctx) 12656 goto err_locked; 12657 12658 /* 12659 * Only a group leader can be exclusive or pinned 12660 */ 12661 if (attr.exclusive || attr.pinned) 12662 goto err_locked; 12663 12664 if (is_software_event(event) && 12665 !in_software_context(group_leader)) { 12666 /* 12667 * If the event is a sw event, but the group_leader 12668 * is on hw context. 12669 * 12670 * Allow the addition of software events to hw 12671 * groups, this is safe because software events 12672 * never fail to schedule. 12673 * 12674 * Note the comment that goes with struct 12675 * perf_event_pmu_context. 12676 */ 12677 pmu = group_leader->pmu_ctx->pmu; 12678 } else if (!is_software_event(event)) { 12679 if (is_software_event(group_leader) && 12680 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12681 /* 12682 * In case the group is a pure software group, and we 12683 * try to add a hardware event, move the whole group to 12684 * the hardware context. 12685 */ 12686 move_group = 1; 12687 } 12688 12689 /* Don't allow group of multiple hw events from different pmus */ 12690 if (!in_software_context(group_leader) && 12691 group_leader->pmu_ctx->pmu != pmu) 12692 goto err_locked; 12693 } 12694 } 12695 12696 /* 12697 * Now that we're certain of the pmu; find the pmu_ctx. 12698 */ 12699 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12700 if (IS_ERR(pmu_ctx)) { 12701 err = PTR_ERR(pmu_ctx); 12702 goto err_locked; 12703 } 12704 event->pmu_ctx = pmu_ctx; 12705 12706 if (output_event) { 12707 err = perf_event_set_output(event, output_event); 12708 if (err) 12709 goto err_context; 12710 } 12711 12712 if (!perf_event_validate_size(event)) { 12713 err = -E2BIG; 12714 goto err_context; 12715 } 12716 12717 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12718 err = -EINVAL; 12719 goto err_context; 12720 } 12721 12722 /* 12723 * Must be under the same ctx::mutex as perf_install_in_context(), 12724 * because we need to serialize with concurrent event creation. 12725 */ 12726 if (!exclusive_event_installable(event, ctx)) { 12727 err = -EBUSY; 12728 goto err_context; 12729 } 12730 12731 WARN_ON_ONCE(ctx->parent_ctx); 12732 12733 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12734 if (IS_ERR(event_file)) { 12735 err = PTR_ERR(event_file); 12736 event_file = NULL; 12737 goto err_context; 12738 } 12739 12740 /* 12741 * This is the point on no return; we cannot fail hereafter. This is 12742 * where we start modifying current state. 12743 */ 12744 12745 if (move_group) { 12746 perf_remove_from_context(group_leader, 0); 12747 put_pmu_ctx(group_leader->pmu_ctx); 12748 12749 for_each_sibling_event(sibling, group_leader) { 12750 perf_remove_from_context(sibling, 0); 12751 put_pmu_ctx(sibling->pmu_ctx); 12752 } 12753 12754 /* 12755 * Install the group siblings before the group leader. 12756 * 12757 * Because a group leader will try and install the entire group 12758 * (through the sibling list, which is still in-tact), we can 12759 * end up with siblings installed in the wrong context. 12760 * 12761 * By installing siblings first we NO-OP because they're not 12762 * reachable through the group lists. 12763 */ 12764 for_each_sibling_event(sibling, group_leader) { 12765 sibling->pmu_ctx = pmu_ctx; 12766 get_pmu_ctx(pmu_ctx); 12767 perf_event__state_init(sibling); 12768 perf_install_in_context(ctx, sibling, sibling->cpu); 12769 } 12770 12771 /* 12772 * Removing from the context ends up with disabled 12773 * event. What we want here is event in the initial 12774 * startup state, ready to be add into new context. 12775 */ 12776 group_leader->pmu_ctx = pmu_ctx; 12777 get_pmu_ctx(pmu_ctx); 12778 perf_event__state_init(group_leader); 12779 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12780 } 12781 12782 /* 12783 * Precalculate sample_data sizes; do while holding ctx::mutex such 12784 * that we're serialized against further additions and before 12785 * perf_install_in_context() which is the point the event is active and 12786 * can use these values. 12787 */ 12788 perf_event__header_size(event); 12789 perf_event__id_header_size(event); 12790 12791 event->owner = current; 12792 12793 perf_install_in_context(ctx, event, event->cpu); 12794 perf_unpin_context(ctx); 12795 12796 mutex_unlock(&ctx->mutex); 12797 12798 if (task) { 12799 up_read(&task->signal->exec_update_lock); 12800 put_task_struct(task); 12801 } 12802 12803 mutex_lock(¤t->perf_event_mutex); 12804 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12805 mutex_unlock(¤t->perf_event_mutex); 12806 12807 /* 12808 * Drop the reference on the group_event after placing the 12809 * new event on the sibling_list. This ensures destruction 12810 * of the group leader will find the pointer to itself in 12811 * perf_group_detach(). 12812 */ 12813 fdput(group); 12814 fd_install(event_fd, event_file); 12815 return event_fd; 12816 12817 err_context: 12818 put_pmu_ctx(event->pmu_ctx); 12819 event->pmu_ctx = NULL; /* _free_event() */ 12820 err_locked: 12821 mutex_unlock(&ctx->mutex); 12822 perf_unpin_context(ctx); 12823 put_ctx(ctx); 12824 err_cred: 12825 if (task) 12826 up_read(&task->signal->exec_update_lock); 12827 err_alloc: 12828 free_event(event); 12829 err_task: 12830 if (task) 12831 put_task_struct(task); 12832 err_group_fd: 12833 fdput(group); 12834 err_fd: 12835 put_unused_fd(event_fd); 12836 return err; 12837 } 12838 12839 /** 12840 * perf_event_create_kernel_counter 12841 * 12842 * @attr: attributes of the counter to create 12843 * @cpu: cpu in which the counter is bound 12844 * @task: task to profile (NULL for percpu) 12845 * @overflow_handler: callback to trigger when we hit the event 12846 * @context: context data could be used in overflow_handler callback 12847 */ 12848 struct perf_event * 12849 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12850 struct task_struct *task, 12851 perf_overflow_handler_t overflow_handler, 12852 void *context) 12853 { 12854 struct perf_event_pmu_context *pmu_ctx; 12855 struct perf_event_context *ctx; 12856 struct perf_event *event; 12857 struct pmu *pmu; 12858 int err; 12859 12860 /* 12861 * Grouping is not supported for kernel events, neither is 'AUX', 12862 * make sure the caller's intentions are adjusted. 12863 */ 12864 if (attr->aux_output) 12865 return ERR_PTR(-EINVAL); 12866 12867 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12868 overflow_handler, context, -1); 12869 if (IS_ERR(event)) { 12870 err = PTR_ERR(event); 12871 goto err; 12872 } 12873 12874 /* Mark owner so we could distinguish it from user events. */ 12875 event->owner = TASK_TOMBSTONE; 12876 pmu = event->pmu; 12877 12878 if (pmu->task_ctx_nr == perf_sw_context) 12879 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12880 12881 /* 12882 * Get the target context (task or percpu): 12883 */ 12884 ctx = find_get_context(task, event); 12885 if (IS_ERR(ctx)) { 12886 err = PTR_ERR(ctx); 12887 goto err_alloc; 12888 } 12889 12890 WARN_ON_ONCE(ctx->parent_ctx); 12891 mutex_lock(&ctx->mutex); 12892 if (ctx->task == TASK_TOMBSTONE) { 12893 err = -ESRCH; 12894 goto err_unlock; 12895 } 12896 12897 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12898 if (IS_ERR(pmu_ctx)) { 12899 err = PTR_ERR(pmu_ctx); 12900 goto err_unlock; 12901 } 12902 event->pmu_ctx = pmu_ctx; 12903 12904 if (!task) { 12905 /* 12906 * Check if the @cpu we're creating an event for is online. 12907 * 12908 * We use the perf_cpu_context::ctx::mutex to serialize against 12909 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12910 */ 12911 struct perf_cpu_context *cpuctx = 12912 container_of(ctx, struct perf_cpu_context, ctx); 12913 if (!cpuctx->online) { 12914 err = -ENODEV; 12915 goto err_pmu_ctx; 12916 } 12917 } 12918 12919 if (!exclusive_event_installable(event, ctx)) { 12920 err = -EBUSY; 12921 goto err_pmu_ctx; 12922 } 12923 12924 perf_install_in_context(ctx, event, event->cpu); 12925 perf_unpin_context(ctx); 12926 mutex_unlock(&ctx->mutex); 12927 12928 return event; 12929 12930 err_pmu_ctx: 12931 put_pmu_ctx(pmu_ctx); 12932 event->pmu_ctx = NULL; /* _free_event() */ 12933 err_unlock: 12934 mutex_unlock(&ctx->mutex); 12935 perf_unpin_context(ctx); 12936 put_ctx(ctx); 12937 err_alloc: 12938 free_event(event); 12939 err: 12940 return ERR_PTR(err); 12941 } 12942 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12943 12944 static void __perf_pmu_remove(struct perf_event_context *ctx, 12945 int cpu, struct pmu *pmu, 12946 struct perf_event_groups *groups, 12947 struct list_head *events) 12948 { 12949 struct perf_event *event, *sibling; 12950 12951 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12952 perf_remove_from_context(event, 0); 12953 put_pmu_ctx(event->pmu_ctx); 12954 list_add(&event->migrate_entry, events); 12955 12956 for_each_sibling_event(sibling, event) { 12957 perf_remove_from_context(sibling, 0); 12958 put_pmu_ctx(sibling->pmu_ctx); 12959 list_add(&sibling->migrate_entry, events); 12960 } 12961 } 12962 } 12963 12964 static void __perf_pmu_install_event(struct pmu *pmu, 12965 struct perf_event_context *ctx, 12966 int cpu, struct perf_event *event) 12967 { 12968 struct perf_event_pmu_context *epc; 12969 struct perf_event_context *old_ctx = event->ctx; 12970 12971 get_ctx(ctx); /* normally find_get_context() */ 12972 12973 event->cpu = cpu; 12974 epc = find_get_pmu_context(pmu, ctx, event); 12975 event->pmu_ctx = epc; 12976 12977 if (event->state >= PERF_EVENT_STATE_OFF) 12978 event->state = PERF_EVENT_STATE_INACTIVE; 12979 perf_install_in_context(ctx, event, cpu); 12980 12981 /* 12982 * Now that event->ctx is updated and visible, put the old ctx. 12983 */ 12984 put_ctx(old_ctx); 12985 } 12986 12987 static void __perf_pmu_install(struct perf_event_context *ctx, 12988 int cpu, struct pmu *pmu, struct list_head *events) 12989 { 12990 struct perf_event *event, *tmp; 12991 12992 /* 12993 * Re-instate events in 2 passes. 12994 * 12995 * Skip over group leaders and only install siblings on this first 12996 * pass, siblings will not get enabled without a leader, however a 12997 * leader will enable its siblings, even if those are still on the old 12998 * context. 12999 */ 13000 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13001 if (event->group_leader == event) 13002 continue; 13003 13004 list_del(&event->migrate_entry); 13005 __perf_pmu_install_event(pmu, ctx, cpu, event); 13006 } 13007 13008 /* 13009 * Once all the siblings are setup properly, install the group leaders 13010 * to make it go. 13011 */ 13012 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13013 list_del(&event->migrate_entry); 13014 __perf_pmu_install_event(pmu, ctx, cpu, event); 13015 } 13016 } 13017 13018 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13019 { 13020 struct perf_event_context *src_ctx, *dst_ctx; 13021 LIST_HEAD(events); 13022 13023 /* 13024 * Since per-cpu context is persistent, no need to grab an extra 13025 * reference. 13026 */ 13027 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13028 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13029 13030 /* 13031 * See perf_event_ctx_lock() for comments on the details 13032 * of swizzling perf_event::ctx. 13033 */ 13034 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13035 13036 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13037 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13038 13039 if (!list_empty(&events)) { 13040 /* 13041 * Wait for the events to quiesce before re-instating them. 13042 */ 13043 synchronize_rcu(); 13044 13045 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13046 } 13047 13048 mutex_unlock(&dst_ctx->mutex); 13049 mutex_unlock(&src_ctx->mutex); 13050 } 13051 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13052 13053 static void sync_child_event(struct perf_event *child_event) 13054 { 13055 struct perf_event *parent_event = child_event->parent; 13056 u64 child_val; 13057 13058 if (child_event->attr.inherit_stat) { 13059 struct task_struct *task = child_event->ctx->task; 13060 13061 if (task && task != TASK_TOMBSTONE) 13062 perf_event_read_event(child_event, task); 13063 } 13064 13065 child_val = perf_event_count(child_event); 13066 13067 /* 13068 * Add back the child's count to the parent's count: 13069 */ 13070 atomic64_add(child_val, &parent_event->child_count); 13071 atomic64_add(child_event->total_time_enabled, 13072 &parent_event->child_total_time_enabled); 13073 atomic64_add(child_event->total_time_running, 13074 &parent_event->child_total_time_running); 13075 } 13076 13077 static void 13078 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13079 { 13080 struct perf_event *parent_event = event->parent; 13081 unsigned long detach_flags = 0; 13082 13083 if (parent_event) { 13084 /* 13085 * Do not destroy the 'original' grouping; because of the 13086 * context switch optimization the original events could've 13087 * ended up in a random child task. 13088 * 13089 * If we were to destroy the original group, all group related 13090 * operations would cease to function properly after this 13091 * random child dies. 13092 * 13093 * Do destroy all inherited groups, we don't care about those 13094 * and being thorough is better. 13095 */ 13096 detach_flags = DETACH_GROUP | DETACH_CHILD; 13097 mutex_lock(&parent_event->child_mutex); 13098 } 13099 13100 perf_remove_from_context(event, detach_flags); 13101 13102 raw_spin_lock_irq(&ctx->lock); 13103 if (event->state > PERF_EVENT_STATE_EXIT) 13104 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13105 raw_spin_unlock_irq(&ctx->lock); 13106 13107 /* 13108 * Child events can be freed. 13109 */ 13110 if (parent_event) { 13111 mutex_unlock(&parent_event->child_mutex); 13112 /* 13113 * Kick perf_poll() for is_event_hup(); 13114 */ 13115 perf_event_wakeup(parent_event); 13116 free_event(event); 13117 put_event(parent_event); 13118 return; 13119 } 13120 13121 /* 13122 * Parent events are governed by their filedesc, retain them. 13123 */ 13124 perf_event_wakeup(event); 13125 } 13126 13127 static void perf_event_exit_task_context(struct task_struct *child) 13128 { 13129 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13130 struct perf_event *child_event, *next; 13131 13132 WARN_ON_ONCE(child != current); 13133 13134 child_ctx = perf_pin_task_context(child); 13135 if (!child_ctx) 13136 return; 13137 13138 /* 13139 * In order to reduce the amount of tricky in ctx tear-down, we hold 13140 * ctx::mutex over the entire thing. This serializes against almost 13141 * everything that wants to access the ctx. 13142 * 13143 * The exception is sys_perf_event_open() / 13144 * perf_event_create_kernel_count() which does find_get_context() 13145 * without ctx::mutex (it cannot because of the move_group double mutex 13146 * lock thing). See the comments in perf_install_in_context(). 13147 */ 13148 mutex_lock(&child_ctx->mutex); 13149 13150 /* 13151 * In a single ctx::lock section, de-schedule the events and detach the 13152 * context from the task such that we cannot ever get it scheduled back 13153 * in. 13154 */ 13155 raw_spin_lock_irq(&child_ctx->lock); 13156 task_ctx_sched_out(child_ctx, EVENT_ALL); 13157 13158 /* 13159 * Now that the context is inactive, destroy the task <-> ctx relation 13160 * and mark the context dead. 13161 */ 13162 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13163 put_ctx(child_ctx); /* cannot be last */ 13164 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13165 put_task_struct(current); /* cannot be last */ 13166 13167 clone_ctx = unclone_ctx(child_ctx); 13168 raw_spin_unlock_irq(&child_ctx->lock); 13169 13170 if (clone_ctx) 13171 put_ctx(clone_ctx); 13172 13173 /* 13174 * Report the task dead after unscheduling the events so that we 13175 * won't get any samples after PERF_RECORD_EXIT. We can however still 13176 * get a few PERF_RECORD_READ events. 13177 */ 13178 perf_event_task(child, child_ctx, 0); 13179 13180 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13181 perf_event_exit_event(child_event, child_ctx); 13182 13183 mutex_unlock(&child_ctx->mutex); 13184 13185 put_ctx(child_ctx); 13186 } 13187 13188 /* 13189 * When a child task exits, feed back event values to parent events. 13190 * 13191 * Can be called with exec_update_lock held when called from 13192 * setup_new_exec(). 13193 */ 13194 void perf_event_exit_task(struct task_struct *child) 13195 { 13196 struct perf_event *event, *tmp; 13197 13198 mutex_lock(&child->perf_event_mutex); 13199 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13200 owner_entry) { 13201 list_del_init(&event->owner_entry); 13202 13203 /* 13204 * Ensure the list deletion is visible before we clear 13205 * the owner, closes a race against perf_release() where 13206 * we need to serialize on the owner->perf_event_mutex. 13207 */ 13208 smp_store_release(&event->owner, NULL); 13209 } 13210 mutex_unlock(&child->perf_event_mutex); 13211 13212 perf_event_exit_task_context(child); 13213 13214 /* 13215 * The perf_event_exit_task_context calls perf_event_task 13216 * with child's task_ctx, which generates EXIT events for 13217 * child contexts and sets child->perf_event_ctxp[] to NULL. 13218 * At this point we need to send EXIT events to cpu contexts. 13219 */ 13220 perf_event_task(child, NULL, 0); 13221 } 13222 13223 static void perf_free_event(struct perf_event *event, 13224 struct perf_event_context *ctx) 13225 { 13226 struct perf_event *parent = event->parent; 13227 13228 if (WARN_ON_ONCE(!parent)) 13229 return; 13230 13231 mutex_lock(&parent->child_mutex); 13232 list_del_init(&event->child_list); 13233 mutex_unlock(&parent->child_mutex); 13234 13235 put_event(parent); 13236 13237 raw_spin_lock_irq(&ctx->lock); 13238 perf_group_detach(event); 13239 list_del_event(event, ctx); 13240 raw_spin_unlock_irq(&ctx->lock); 13241 free_event(event); 13242 } 13243 13244 /* 13245 * Free a context as created by inheritance by perf_event_init_task() below, 13246 * used by fork() in case of fail. 13247 * 13248 * Even though the task has never lived, the context and events have been 13249 * exposed through the child_list, so we must take care tearing it all down. 13250 */ 13251 void perf_event_free_task(struct task_struct *task) 13252 { 13253 struct perf_event_context *ctx; 13254 struct perf_event *event, *tmp; 13255 13256 ctx = rcu_access_pointer(task->perf_event_ctxp); 13257 if (!ctx) 13258 return; 13259 13260 mutex_lock(&ctx->mutex); 13261 raw_spin_lock_irq(&ctx->lock); 13262 /* 13263 * Destroy the task <-> ctx relation and mark the context dead. 13264 * 13265 * This is important because even though the task hasn't been 13266 * exposed yet the context has been (through child_list). 13267 */ 13268 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13269 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13270 put_task_struct(task); /* cannot be last */ 13271 raw_spin_unlock_irq(&ctx->lock); 13272 13273 13274 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13275 perf_free_event(event, ctx); 13276 13277 mutex_unlock(&ctx->mutex); 13278 13279 /* 13280 * perf_event_release_kernel() could've stolen some of our 13281 * child events and still have them on its free_list. In that 13282 * case we must wait for these events to have been freed (in 13283 * particular all their references to this task must've been 13284 * dropped). 13285 * 13286 * Without this copy_process() will unconditionally free this 13287 * task (irrespective of its reference count) and 13288 * _free_event()'s put_task_struct(event->hw.target) will be a 13289 * use-after-free. 13290 * 13291 * Wait for all events to drop their context reference. 13292 */ 13293 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13294 put_ctx(ctx); /* must be last */ 13295 } 13296 13297 void perf_event_delayed_put(struct task_struct *task) 13298 { 13299 WARN_ON_ONCE(task->perf_event_ctxp); 13300 } 13301 13302 struct file *perf_event_get(unsigned int fd) 13303 { 13304 struct file *file = fget(fd); 13305 if (!file) 13306 return ERR_PTR(-EBADF); 13307 13308 if (file->f_op != &perf_fops) { 13309 fput(file); 13310 return ERR_PTR(-EBADF); 13311 } 13312 13313 return file; 13314 } 13315 13316 const struct perf_event *perf_get_event(struct file *file) 13317 { 13318 if (file->f_op != &perf_fops) 13319 return ERR_PTR(-EINVAL); 13320 13321 return file->private_data; 13322 } 13323 13324 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13325 { 13326 if (!event) 13327 return ERR_PTR(-EINVAL); 13328 13329 return &event->attr; 13330 } 13331 13332 /* 13333 * Inherit an event from parent task to child task. 13334 * 13335 * Returns: 13336 * - valid pointer on success 13337 * - NULL for orphaned events 13338 * - IS_ERR() on error 13339 */ 13340 static struct perf_event * 13341 inherit_event(struct perf_event *parent_event, 13342 struct task_struct *parent, 13343 struct perf_event_context *parent_ctx, 13344 struct task_struct *child, 13345 struct perf_event *group_leader, 13346 struct perf_event_context *child_ctx) 13347 { 13348 enum perf_event_state parent_state = parent_event->state; 13349 struct perf_event_pmu_context *pmu_ctx; 13350 struct perf_event *child_event; 13351 unsigned long flags; 13352 13353 /* 13354 * Instead of creating recursive hierarchies of events, 13355 * we link inherited events back to the original parent, 13356 * which has a filp for sure, which we use as the reference 13357 * count: 13358 */ 13359 if (parent_event->parent) 13360 parent_event = parent_event->parent; 13361 13362 child_event = perf_event_alloc(&parent_event->attr, 13363 parent_event->cpu, 13364 child, 13365 group_leader, parent_event, 13366 NULL, NULL, -1); 13367 if (IS_ERR(child_event)) 13368 return child_event; 13369 13370 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13371 if (IS_ERR(pmu_ctx)) { 13372 free_event(child_event); 13373 return ERR_CAST(pmu_ctx); 13374 } 13375 child_event->pmu_ctx = pmu_ctx; 13376 13377 /* 13378 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13379 * must be under the same lock in order to serialize against 13380 * perf_event_release_kernel(), such that either we must observe 13381 * is_orphaned_event() or they will observe us on the child_list. 13382 */ 13383 mutex_lock(&parent_event->child_mutex); 13384 if (is_orphaned_event(parent_event) || 13385 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13386 mutex_unlock(&parent_event->child_mutex); 13387 /* task_ctx_data is freed with child_ctx */ 13388 free_event(child_event); 13389 return NULL; 13390 } 13391 13392 get_ctx(child_ctx); 13393 13394 /* 13395 * Make the child state follow the state of the parent event, 13396 * not its attr.disabled bit. We hold the parent's mutex, 13397 * so we won't race with perf_event_{en, dis}able_family. 13398 */ 13399 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13400 child_event->state = PERF_EVENT_STATE_INACTIVE; 13401 else 13402 child_event->state = PERF_EVENT_STATE_OFF; 13403 13404 if (parent_event->attr.freq) { 13405 u64 sample_period = parent_event->hw.sample_period; 13406 struct hw_perf_event *hwc = &child_event->hw; 13407 13408 hwc->sample_period = sample_period; 13409 hwc->last_period = sample_period; 13410 13411 local64_set(&hwc->period_left, sample_period); 13412 } 13413 13414 child_event->ctx = child_ctx; 13415 child_event->overflow_handler = parent_event->overflow_handler; 13416 child_event->overflow_handler_context 13417 = parent_event->overflow_handler_context; 13418 13419 /* 13420 * Precalculate sample_data sizes 13421 */ 13422 perf_event__header_size(child_event); 13423 perf_event__id_header_size(child_event); 13424 13425 /* 13426 * Link it up in the child's context: 13427 */ 13428 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13429 add_event_to_ctx(child_event, child_ctx); 13430 child_event->attach_state |= PERF_ATTACH_CHILD; 13431 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13432 13433 /* 13434 * Link this into the parent event's child list 13435 */ 13436 list_add_tail(&child_event->child_list, &parent_event->child_list); 13437 mutex_unlock(&parent_event->child_mutex); 13438 13439 return child_event; 13440 } 13441 13442 /* 13443 * Inherits an event group. 13444 * 13445 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13446 * This matches with perf_event_release_kernel() removing all child events. 13447 * 13448 * Returns: 13449 * - 0 on success 13450 * - <0 on error 13451 */ 13452 static int inherit_group(struct perf_event *parent_event, 13453 struct task_struct *parent, 13454 struct perf_event_context *parent_ctx, 13455 struct task_struct *child, 13456 struct perf_event_context *child_ctx) 13457 { 13458 struct perf_event *leader; 13459 struct perf_event *sub; 13460 struct perf_event *child_ctr; 13461 13462 leader = inherit_event(parent_event, parent, parent_ctx, 13463 child, NULL, child_ctx); 13464 if (IS_ERR(leader)) 13465 return PTR_ERR(leader); 13466 /* 13467 * @leader can be NULL here because of is_orphaned_event(). In this 13468 * case inherit_event() will create individual events, similar to what 13469 * perf_group_detach() would do anyway. 13470 */ 13471 for_each_sibling_event(sub, parent_event) { 13472 child_ctr = inherit_event(sub, parent, parent_ctx, 13473 child, leader, child_ctx); 13474 if (IS_ERR(child_ctr)) 13475 return PTR_ERR(child_ctr); 13476 13477 if (sub->aux_event == parent_event && child_ctr && 13478 !perf_get_aux_event(child_ctr, leader)) 13479 return -EINVAL; 13480 } 13481 if (leader) 13482 leader->group_generation = parent_event->group_generation; 13483 return 0; 13484 } 13485 13486 /* 13487 * Creates the child task context and tries to inherit the event-group. 13488 * 13489 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13490 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13491 * consistent with perf_event_release_kernel() removing all child events. 13492 * 13493 * Returns: 13494 * - 0 on success 13495 * - <0 on error 13496 */ 13497 static int 13498 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13499 struct perf_event_context *parent_ctx, 13500 struct task_struct *child, 13501 u64 clone_flags, int *inherited_all) 13502 { 13503 struct perf_event_context *child_ctx; 13504 int ret; 13505 13506 if (!event->attr.inherit || 13507 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13508 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13509 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13510 *inherited_all = 0; 13511 return 0; 13512 } 13513 13514 child_ctx = child->perf_event_ctxp; 13515 if (!child_ctx) { 13516 /* 13517 * This is executed from the parent task context, so 13518 * inherit events that have been marked for cloning. 13519 * First allocate and initialize a context for the 13520 * child. 13521 */ 13522 child_ctx = alloc_perf_context(child); 13523 if (!child_ctx) 13524 return -ENOMEM; 13525 13526 child->perf_event_ctxp = child_ctx; 13527 } 13528 13529 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13530 if (ret) 13531 *inherited_all = 0; 13532 13533 return ret; 13534 } 13535 13536 /* 13537 * Initialize the perf_event context in task_struct 13538 */ 13539 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13540 { 13541 struct perf_event_context *child_ctx, *parent_ctx; 13542 struct perf_event_context *cloned_ctx; 13543 struct perf_event *event; 13544 struct task_struct *parent = current; 13545 int inherited_all = 1; 13546 unsigned long flags; 13547 int ret = 0; 13548 13549 if (likely(!parent->perf_event_ctxp)) 13550 return 0; 13551 13552 /* 13553 * If the parent's context is a clone, pin it so it won't get 13554 * swapped under us. 13555 */ 13556 parent_ctx = perf_pin_task_context(parent); 13557 if (!parent_ctx) 13558 return 0; 13559 13560 /* 13561 * No need to check if parent_ctx != NULL here; since we saw 13562 * it non-NULL earlier, the only reason for it to become NULL 13563 * is if we exit, and since we're currently in the middle of 13564 * a fork we can't be exiting at the same time. 13565 */ 13566 13567 /* 13568 * Lock the parent list. No need to lock the child - not PID 13569 * hashed yet and not running, so nobody can access it. 13570 */ 13571 mutex_lock(&parent_ctx->mutex); 13572 13573 /* 13574 * We dont have to disable NMIs - we are only looking at 13575 * the list, not manipulating it: 13576 */ 13577 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13578 ret = inherit_task_group(event, parent, parent_ctx, 13579 child, clone_flags, &inherited_all); 13580 if (ret) 13581 goto out_unlock; 13582 } 13583 13584 /* 13585 * We can't hold ctx->lock when iterating the ->flexible_group list due 13586 * to allocations, but we need to prevent rotation because 13587 * rotate_ctx() will change the list from interrupt context. 13588 */ 13589 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13590 parent_ctx->rotate_disable = 1; 13591 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13592 13593 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13594 ret = inherit_task_group(event, parent, parent_ctx, 13595 child, clone_flags, &inherited_all); 13596 if (ret) 13597 goto out_unlock; 13598 } 13599 13600 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13601 parent_ctx->rotate_disable = 0; 13602 13603 child_ctx = child->perf_event_ctxp; 13604 13605 if (child_ctx && inherited_all) { 13606 /* 13607 * Mark the child context as a clone of the parent 13608 * context, or of whatever the parent is a clone of. 13609 * 13610 * Note that if the parent is a clone, the holding of 13611 * parent_ctx->lock avoids it from being uncloned. 13612 */ 13613 cloned_ctx = parent_ctx->parent_ctx; 13614 if (cloned_ctx) { 13615 child_ctx->parent_ctx = cloned_ctx; 13616 child_ctx->parent_gen = parent_ctx->parent_gen; 13617 } else { 13618 child_ctx->parent_ctx = parent_ctx; 13619 child_ctx->parent_gen = parent_ctx->generation; 13620 } 13621 get_ctx(child_ctx->parent_ctx); 13622 } 13623 13624 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13625 out_unlock: 13626 mutex_unlock(&parent_ctx->mutex); 13627 13628 perf_unpin_context(parent_ctx); 13629 put_ctx(parent_ctx); 13630 13631 return ret; 13632 } 13633 13634 /* 13635 * Initialize the perf_event context in task_struct 13636 */ 13637 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13638 { 13639 int ret; 13640 13641 child->perf_event_ctxp = NULL; 13642 mutex_init(&child->perf_event_mutex); 13643 INIT_LIST_HEAD(&child->perf_event_list); 13644 13645 ret = perf_event_init_context(child, clone_flags); 13646 if (ret) { 13647 perf_event_free_task(child); 13648 return ret; 13649 } 13650 13651 return 0; 13652 } 13653 13654 static void __init perf_event_init_all_cpus(void) 13655 { 13656 struct swevent_htable *swhash; 13657 struct perf_cpu_context *cpuctx; 13658 int cpu; 13659 13660 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13661 13662 for_each_possible_cpu(cpu) { 13663 swhash = &per_cpu(swevent_htable, cpu); 13664 mutex_init(&swhash->hlist_mutex); 13665 13666 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13667 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13668 13669 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13670 13671 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13672 __perf_event_init_context(&cpuctx->ctx); 13673 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13674 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13675 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13676 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13677 cpuctx->heap = cpuctx->heap_default; 13678 } 13679 } 13680 13681 static void perf_swevent_init_cpu(unsigned int cpu) 13682 { 13683 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13684 13685 mutex_lock(&swhash->hlist_mutex); 13686 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13687 struct swevent_hlist *hlist; 13688 13689 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13690 WARN_ON(!hlist); 13691 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13692 } 13693 mutex_unlock(&swhash->hlist_mutex); 13694 } 13695 13696 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13697 static void __perf_event_exit_context(void *__info) 13698 { 13699 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13700 struct perf_event_context *ctx = __info; 13701 struct perf_event *event; 13702 13703 raw_spin_lock(&ctx->lock); 13704 ctx_sched_out(ctx, EVENT_TIME); 13705 list_for_each_entry(event, &ctx->event_list, event_entry) 13706 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13707 raw_spin_unlock(&ctx->lock); 13708 } 13709 13710 static void perf_event_exit_cpu_context(int cpu) 13711 { 13712 struct perf_cpu_context *cpuctx; 13713 struct perf_event_context *ctx; 13714 13715 // XXX simplify cpuctx->online 13716 mutex_lock(&pmus_lock); 13717 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13718 ctx = &cpuctx->ctx; 13719 13720 mutex_lock(&ctx->mutex); 13721 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13722 cpuctx->online = 0; 13723 mutex_unlock(&ctx->mutex); 13724 cpumask_clear_cpu(cpu, perf_online_mask); 13725 mutex_unlock(&pmus_lock); 13726 } 13727 #else 13728 13729 static void perf_event_exit_cpu_context(int cpu) { } 13730 13731 #endif 13732 13733 int perf_event_init_cpu(unsigned int cpu) 13734 { 13735 struct perf_cpu_context *cpuctx; 13736 struct perf_event_context *ctx; 13737 13738 perf_swevent_init_cpu(cpu); 13739 13740 mutex_lock(&pmus_lock); 13741 cpumask_set_cpu(cpu, perf_online_mask); 13742 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13743 ctx = &cpuctx->ctx; 13744 13745 mutex_lock(&ctx->mutex); 13746 cpuctx->online = 1; 13747 mutex_unlock(&ctx->mutex); 13748 mutex_unlock(&pmus_lock); 13749 13750 return 0; 13751 } 13752 13753 int perf_event_exit_cpu(unsigned int cpu) 13754 { 13755 perf_event_exit_cpu_context(cpu); 13756 return 0; 13757 } 13758 13759 static int 13760 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13761 { 13762 int cpu; 13763 13764 for_each_online_cpu(cpu) 13765 perf_event_exit_cpu(cpu); 13766 13767 return NOTIFY_OK; 13768 } 13769 13770 /* 13771 * Run the perf reboot notifier at the very last possible moment so that 13772 * the generic watchdog code runs as long as possible. 13773 */ 13774 static struct notifier_block perf_reboot_notifier = { 13775 .notifier_call = perf_reboot, 13776 .priority = INT_MIN, 13777 }; 13778 13779 void __init perf_event_init(void) 13780 { 13781 int ret; 13782 13783 idr_init(&pmu_idr); 13784 13785 perf_event_init_all_cpus(); 13786 init_srcu_struct(&pmus_srcu); 13787 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13788 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13789 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13790 perf_tp_register(); 13791 perf_event_init_cpu(smp_processor_id()); 13792 register_reboot_notifier(&perf_reboot_notifier); 13793 13794 ret = init_hw_breakpoint(); 13795 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13796 13797 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13798 13799 /* 13800 * Build time assertion that we keep the data_head at the intended 13801 * location. IOW, validation we got the __reserved[] size right. 13802 */ 13803 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13804 != 1024); 13805 } 13806 13807 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13808 char *page) 13809 { 13810 struct perf_pmu_events_attr *pmu_attr = 13811 container_of(attr, struct perf_pmu_events_attr, attr); 13812 13813 if (pmu_attr->event_str) 13814 return sprintf(page, "%s\n", pmu_attr->event_str); 13815 13816 return 0; 13817 } 13818 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13819 13820 static int __init perf_event_sysfs_init(void) 13821 { 13822 struct pmu *pmu; 13823 int ret; 13824 13825 mutex_lock(&pmus_lock); 13826 13827 ret = bus_register(&pmu_bus); 13828 if (ret) 13829 goto unlock; 13830 13831 list_for_each_entry(pmu, &pmus, entry) { 13832 if (pmu->dev) 13833 continue; 13834 13835 ret = pmu_dev_alloc(pmu); 13836 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13837 } 13838 pmu_bus_running = 1; 13839 ret = 0; 13840 13841 unlock: 13842 mutex_unlock(&pmus_lock); 13843 13844 return ret; 13845 } 13846 device_initcall(perf_event_sysfs_init); 13847 13848 #ifdef CONFIG_CGROUP_PERF 13849 static struct cgroup_subsys_state * 13850 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13851 { 13852 struct perf_cgroup *jc; 13853 13854 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13855 if (!jc) 13856 return ERR_PTR(-ENOMEM); 13857 13858 jc->info = alloc_percpu(struct perf_cgroup_info); 13859 if (!jc->info) { 13860 kfree(jc); 13861 return ERR_PTR(-ENOMEM); 13862 } 13863 13864 return &jc->css; 13865 } 13866 13867 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13868 { 13869 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13870 13871 free_percpu(jc->info); 13872 kfree(jc); 13873 } 13874 13875 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13876 { 13877 perf_event_cgroup(css->cgroup); 13878 return 0; 13879 } 13880 13881 static int __perf_cgroup_move(void *info) 13882 { 13883 struct task_struct *task = info; 13884 13885 preempt_disable(); 13886 perf_cgroup_switch(task); 13887 preempt_enable(); 13888 13889 return 0; 13890 } 13891 13892 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13893 { 13894 struct task_struct *task; 13895 struct cgroup_subsys_state *css; 13896 13897 cgroup_taskset_for_each(task, css, tset) 13898 task_function_call(task, __perf_cgroup_move, task); 13899 } 13900 13901 struct cgroup_subsys perf_event_cgrp_subsys = { 13902 .css_alloc = perf_cgroup_css_alloc, 13903 .css_free = perf_cgroup_css_free, 13904 .css_online = perf_cgroup_css_online, 13905 .attach = perf_cgroup_attach, 13906 /* 13907 * Implicitly enable on dfl hierarchy so that perf events can 13908 * always be filtered by cgroup2 path as long as perf_event 13909 * controller is not mounted on a legacy hierarchy. 13910 */ 13911 .implicit_on_dfl = true, 13912 .threaded = true, 13913 }; 13914 #endif /* CONFIG_CGROUP_PERF */ 13915 13916 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13917