xref: /linux/kernel/events/core.c (revision 8520a98dbab61e9e340cdfb72dd17ccc8a98961e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
1944 static int perf_get_aux_event(struct perf_event *event,
1945 			      struct perf_event *group_leader)
1946 {
1947 	/*
1948 	 * Our group leader must be an aux event if we want to be
1949 	 * an aux_output. This way, the aux event will precede its
1950 	 * aux_output events in the group, and therefore will always
1951 	 * schedule first.
1952 	 */
1953 	if (!group_leader)
1954 		return 0;
1955 
1956 	if (!perf_aux_output_match(event, group_leader))
1957 		return 0;
1958 
1959 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 		return 0;
1961 
1962 	/*
1963 	 * Link aux_outputs to their aux event; this is undone in
1964 	 * perf_group_detach() by perf_put_aux_event(). When the
1965 	 * group in torn down, the aux_output events loose their
1966 	 * link to the aux_event and can't schedule any more.
1967 	 */
1968 	event->aux_event = group_leader;
1969 
1970 	return 1;
1971 }
1972 
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 	struct perf_event *sibling, *tmp;
1976 	struct perf_event_context *ctx = event->ctx;
1977 
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	/*
1981 	 * We can have double detach due to exit/hot-unplug + close.
1982 	 */
1983 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 		return;
1985 
1986 	event->attach_state &= ~PERF_ATTACH_GROUP;
1987 
1988 	perf_put_aux_event(event);
1989 
1990 	/*
1991 	 * If this is a sibling, remove it from its group.
1992 	 */
1993 	if (event->group_leader != event) {
1994 		list_del_init(&event->sibling_list);
1995 		event->group_leader->nr_siblings--;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * If this was a group event with sibling events then
2001 	 * upgrade the siblings to singleton events by adding them
2002 	 * to whatever list we are on.
2003 	 */
2004 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005 
2006 		sibling->group_leader = sibling;
2007 		list_del_init(&sibling->sibling_list);
2008 
2009 		/* Inherit group flags from the previous leader */
2010 		sibling->group_caps = event->group_caps;
2011 
2012 		if (!RB_EMPTY_NODE(&event->group_node)) {
2013 			add_event_to_groups(sibling, event->ctx);
2014 
2015 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 				struct list_head *list = sibling->attr.pinned ?
2017 					&ctx->pinned_active : &ctx->flexible_active;
2018 
2019 				list_add_tail(&sibling->active_list, list);
2020 			}
2021 		}
2022 
2023 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 	}
2025 
2026 out:
2027 	perf_event__header_size(event->group_leader);
2028 
2029 	for_each_sibling_event(tmp, event->group_leader)
2030 		perf_event__header_size(tmp);
2031 }
2032 
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 	return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037 
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 	struct pmu *pmu = event->pmu;
2041 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043 
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 	struct perf_event *sibling;
2053 
2054 	if (!__pmu_filter_match(event))
2055 		return 0;
2056 
2057 	for_each_sibling_event(sibling, event) {
2058 		if (!__pmu_filter_match(sibling))
2059 			return 0;
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 	       perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071 
2072 static void
2073 event_sched_out(struct perf_event *event,
2074 		  struct perf_cpu_context *cpuctx,
2075 		  struct perf_event_context *ctx)
2076 {
2077 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078 
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 		return;
2084 
2085 	/*
2086 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 	 * we can schedule events _OUT_ individually through things like
2088 	 * __perf_remove_from_context().
2089 	 */
2090 	list_del_init(&event->active_list);
2091 
2092 	perf_pmu_disable(event->pmu);
2093 
2094 	event->pmu->del(event, 0);
2095 	event->oncpu = -1;
2096 
2097 	if (READ_ONCE(event->pending_disable) >= 0) {
2098 		WRITE_ONCE(event->pending_disable, -1);
2099 		state = PERF_EVENT_STATE_OFF;
2100 	}
2101 	perf_event_set_state(event, state);
2102 
2103 	if (!is_software_event(event))
2104 		cpuctx->active_oncpu--;
2105 	if (!--ctx->nr_active)
2106 		perf_event_ctx_deactivate(ctx);
2107 	if (event->attr.freq && event->attr.sample_freq)
2108 		ctx->nr_freq--;
2109 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 		cpuctx->exclusive = 0;
2111 
2112 	perf_pmu_enable(event->pmu);
2113 }
2114 
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117 		struct perf_cpu_context *cpuctx,
2118 		struct perf_event_context *ctx)
2119 {
2120 	struct perf_event *event;
2121 
2122 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 		return;
2124 
2125 	perf_pmu_disable(ctx->pmu);
2126 
2127 	event_sched_out(group_event, cpuctx, ctx);
2128 
2129 	/*
2130 	 * Schedule out siblings (if any):
2131 	 */
2132 	for_each_sibling_event(event, group_event)
2133 		event_sched_out(event, cpuctx, ctx);
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 
2137 	if (group_event->attr.exclusive)
2138 		cpuctx->exclusive = 0;
2139 }
2140 
2141 #define DETACH_GROUP	0x01UL
2142 
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151 			   struct perf_cpu_context *cpuctx,
2152 			   struct perf_event_context *ctx,
2153 			   void *info)
2154 {
2155 	unsigned long flags = (unsigned long)info;
2156 
2157 	if (ctx->is_active & EVENT_TIME) {
2158 		update_context_time(ctx);
2159 		update_cgrp_time_from_cpuctx(cpuctx);
2160 	}
2161 
2162 	event_sched_out(event, cpuctx, ctx);
2163 	if (flags & DETACH_GROUP)
2164 		perf_group_detach(event);
2165 	list_del_event(event, ctx);
2166 
2167 	if (!ctx->nr_events && ctx->is_active) {
2168 		ctx->is_active = 0;
2169 		if (ctx->task) {
2170 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 			cpuctx->task_ctx = NULL;
2172 		}
2173 	}
2174 }
2175 
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 	struct perf_event_context *ctx = event->ctx;
2189 
2190 	lockdep_assert_held(&ctx->mutex);
2191 
2192 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2193 
2194 	/*
2195 	 * The above event_function_call() can NO-OP when it hits
2196 	 * TASK_TOMBSTONE. In that case we must already have been detached
2197 	 * from the context (by perf_event_exit_event()) but the grouping
2198 	 * might still be in-tact.
2199 	 */
2200 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 	if ((flags & DETACH_GROUP) &&
2202 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2203 		/*
2204 		 * Since in that case we cannot possibly be scheduled, simply
2205 		 * detach now.
2206 		 */
2207 		raw_spin_lock_irq(&ctx->lock);
2208 		perf_group_detach(event);
2209 		raw_spin_unlock_irq(&ctx->lock);
2210 	}
2211 }
2212 
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217 				 struct perf_cpu_context *cpuctx,
2218 				 struct perf_event_context *ctx,
2219 				 void *info)
2220 {
2221 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 		return;
2223 
2224 	if (ctx->is_active & EVENT_TIME) {
2225 		update_context_time(ctx);
2226 		update_cgrp_time_from_event(event);
2227 	}
2228 
2229 	if (event == event->group_leader)
2230 		group_sched_out(event, cpuctx, ctx);
2231 	else
2232 		event_sched_out(event, cpuctx, ctx);
2233 
2234 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236 
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisifed when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 	struct perf_event_context *ctx = event->ctx;
2254 
2255 	raw_spin_lock_irq(&ctx->lock);
2256 	if (event->state <= PERF_EVENT_STATE_OFF) {
2257 		raw_spin_unlock_irq(&ctx->lock);
2258 		return;
2259 	}
2260 	raw_spin_unlock_irq(&ctx->lock);
2261 
2262 	event_function_call(event, __perf_event_disable, NULL);
2263 }
2264 
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 	event_function_local(event, __perf_event_disable, NULL);
2268 }
2269 
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx;
2277 
2278 	ctx = perf_event_ctx_lock(event);
2279 	_perf_event_disable(event);
2280 	perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283 
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 	/* can fail, see perf_pending_event_disable() */
2288 	irq_work_queue(&event->pending);
2289 }
2290 
2291 static void perf_set_shadow_time(struct perf_event *event,
2292 				 struct perf_event_context *ctx)
2293 {
2294 	/*
2295 	 * use the correct time source for the time snapshot
2296 	 *
2297 	 * We could get by without this by leveraging the
2298 	 * fact that to get to this function, the caller
2299 	 * has most likely already called update_context_time()
2300 	 * and update_cgrp_time_xx() and thus both timestamp
2301 	 * are identical (or very close). Given that tstamp is,
2302 	 * already adjusted for cgroup, we could say that:
2303 	 *    tstamp - ctx->timestamp
2304 	 * is equivalent to
2305 	 *    tstamp - cgrp->timestamp.
2306 	 *
2307 	 * Then, in perf_output_read(), the calculation would
2308 	 * work with no changes because:
2309 	 * - event is guaranteed scheduled in
2310 	 * - no scheduled out in between
2311 	 * - thus the timestamp would be the same
2312 	 *
2313 	 * But this is a bit hairy.
2314 	 *
2315 	 * So instead, we have an explicit cgroup call to remain
2316 	 * within the time time source all along. We believe it
2317 	 * is cleaner and simpler to understand.
2318 	 */
2319 	if (is_cgroup_event(event))
2320 		perf_cgroup_set_shadow_time(event, event->tstamp);
2321 	else
2322 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324 
2325 #define MAX_INTERRUPTS (~0ULL)
2326 
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329 
2330 static int
2331 event_sched_in(struct perf_event *event,
2332 		 struct perf_cpu_context *cpuctx,
2333 		 struct perf_event_context *ctx)
2334 {
2335 	int ret = 0;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	if (event->state <= PERF_EVENT_STATE_OFF)
2340 		return 0;
2341 
2342 	WRITE_ONCE(event->oncpu, smp_processor_id());
2343 	/*
2344 	 * Order event::oncpu write to happen before the ACTIVE state is
2345 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 	 * ->oncpu if it sees ACTIVE.
2347 	 */
2348 	smp_wmb();
2349 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350 
2351 	/*
2352 	 * Unthrottle events, since we scheduled we might have missed several
2353 	 * ticks already, also for a heavily scheduling task there is little
2354 	 * guarantee it'll get a tick in a timely manner.
2355 	 */
2356 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 		perf_log_throttle(event, 1);
2358 		event->hw.interrupts = 0;
2359 	}
2360 
2361 	perf_pmu_disable(event->pmu);
2362 
2363 	perf_set_shadow_time(event, ctx);
2364 
2365 	perf_log_itrace_start(event);
2366 
2367 	if (event->pmu->add(event, PERF_EF_START)) {
2368 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 		event->oncpu = -1;
2370 		ret = -EAGAIN;
2371 		goto out;
2372 	}
2373 
2374 	if (!is_software_event(event))
2375 		cpuctx->active_oncpu++;
2376 	if (!ctx->nr_active++)
2377 		perf_event_ctx_activate(ctx);
2378 	if (event->attr.freq && event->attr.sample_freq)
2379 		ctx->nr_freq++;
2380 
2381 	if (event->attr.exclusive)
2382 		cpuctx->exclusive = 1;
2383 
2384 out:
2385 	perf_pmu_enable(event->pmu);
2386 
2387 	return ret;
2388 }
2389 
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392 	       struct perf_cpu_context *cpuctx,
2393 	       struct perf_event_context *ctx)
2394 {
2395 	struct perf_event *event, *partial_group = NULL;
2396 	struct pmu *pmu = ctx->pmu;
2397 
2398 	if (group_event->state == PERF_EVENT_STATE_OFF)
2399 		return 0;
2400 
2401 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402 
2403 	if (event_sched_in(group_event, cpuctx, ctx)) {
2404 		pmu->cancel_txn(pmu);
2405 		perf_mux_hrtimer_restart(cpuctx);
2406 		return -EAGAIN;
2407 	}
2408 
2409 	/*
2410 	 * Schedule in siblings as one group (if any):
2411 	 */
2412 	for_each_sibling_event(event, group_event) {
2413 		if (event_sched_in(event, cpuctx, ctx)) {
2414 			partial_group = event;
2415 			goto group_error;
2416 		}
2417 	}
2418 
2419 	if (!pmu->commit_txn(pmu))
2420 		return 0;
2421 
2422 group_error:
2423 	/*
2424 	 * Groups can be scheduled in as one unit only, so undo any
2425 	 * partial group before returning:
2426 	 * The events up to the failed event are scheduled out normally.
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event == partial_group)
2430 			break;
2431 
2432 		event_sched_out(event, cpuctx, ctx);
2433 	}
2434 	event_sched_out(group_event, cpuctx, ctx);
2435 
2436 	pmu->cancel_txn(pmu);
2437 
2438 	perf_mux_hrtimer_restart(cpuctx);
2439 
2440 	return -EAGAIN;
2441 }
2442 
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447 			   struct perf_cpu_context *cpuctx,
2448 			   int can_add_hw)
2449 {
2450 	/*
2451 	 * Groups consisting entirely of software events can always go on.
2452 	 */
2453 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 		return 1;
2455 	/*
2456 	 * If an exclusive group is already on, no other hardware
2457 	 * events can go on.
2458 	 */
2459 	if (cpuctx->exclusive)
2460 		return 0;
2461 	/*
2462 	 * If this group is exclusive and there are already
2463 	 * events on the CPU, it can't go on.
2464 	 */
2465 	if (event->attr.exclusive && cpuctx->active_oncpu)
2466 		return 0;
2467 	/*
2468 	 * Otherwise, try to add it if all previous groups were able
2469 	 * to go on.
2470 	 */
2471 	return can_add_hw;
2472 }
2473 
2474 static void add_event_to_ctx(struct perf_event *event,
2475 			       struct perf_event_context *ctx)
2476 {
2477 	list_add_event(event, ctx);
2478 	perf_group_attach(event);
2479 }
2480 
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 			  struct perf_cpu_context *cpuctx,
2483 			  enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 	     struct perf_cpu_context *cpuctx,
2487 	     enum event_type_t event_type,
2488 	     struct task_struct *task);
2489 
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 			       struct perf_event_context *ctx,
2492 			       enum event_type_t event_type)
2493 {
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 		return;
2499 
2500 	ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502 
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 				struct perf_event_context *ctx,
2505 				struct task_struct *task)
2506 {
2507 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 	if (ctx)
2509 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 	if (ctx)
2512 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514 
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 			struct perf_event_context *task_ctx,
2532 			enum event_type_t event_type)
2533 {
2534 	enum event_type_t ctx_event_type;
2535 	bool cpu_event = !!(event_type & EVENT_CPU);
2536 
2537 	/*
2538 	 * If pinned groups are involved, flexible groups also need to be
2539 	 * scheduled out.
2540 	 */
2541 	if (event_type & EVENT_PINNED)
2542 		event_type |= EVENT_FLEXIBLE;
2543 
2544 	ctx_event_type = event_type & EVENT_ALL;
2545 
2546 	perf_pmu_disable(cpuctx->ctx.pmu);
2547 	if (task_ctx)
2548 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549 
2550 	/*
2551 	 * Decide which cpu ctx groups to schedule out based on the types
2552 	 * of events that caused rescheduling:
2553 	 *  - EVENT_CPU: schedule out corresponding groups;
2554 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 	 *  - otherwise, do nothing more.
2556 	 */
2557 	if (cpu_event)
2558 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 	else if (ctx_event_type & EVENT_PINNED)
2560 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561 
2562 	perf_event_sched_in(cpuctx, task_ctx, current);
2563 	perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565 
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570 
2571 	perf_ctx_lock(cpuctx, task_ctx);
2572 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 	perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575 
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584 	struct perf_event *event = info;
2585 	struct perf_event_context *ctx = event->ctx;
2586 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 	bool reprogram = true;
2589 	int ret = 0;
2590 
2591 	raw_spin_lock(&cpuctx->ctx.lock);
2592 	if (ctx->task) {
2593 		raw_spin_lock(&ctx->lock);
2594 		task_ctx = ctx;
2595 
2596 		reprogram = (ctx->task == current);
2597 
2598 		/*
2599 		 * If the task is running, it must be running on this CPU,
2600 		 * otherwise we cannot reprogram things.
2601 		 *
2602 		 * If its not running, we don't care, ctx->lock will
2603 		 * serialize against it becoming runnable.
2604 		 */
2605 		if (task_curr(ctx->task) && !reprogram) {
2606 			ret = -ESRCH;
2607 			goto unlock;
2608 		}
2609 
2610 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 	} else if (task_ctx) {
2612 		raw_spin_lock(&task_ctx->lock);
2613 	}
2614 
2615 #ifdef CONFIG_CGROUP_PERF
2616 	if (is_cgroup_event(event)) {
2617 		/*
2618 		 * If the current cgroup doesn't match the event's
2619 		 * cgroup, we should not try to schedule it.
2620 		 */
2621 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 					event->cgrp->css.cgroup);
2624 	}
2625 #endif
2626 
2627 	if (reprogram) {
2628 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 		add_event_to_ctx(event, ctx);
2630 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 	} else {
2632 		add_event_to_ctx(event, ctx);
2633 	}
2634 
2635 unlock:
2636 	perf_ctx_unlock(cpuctx, task_ctx);
2637 
2638 	return ret;
2639 }
2640 
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 					struct perf_event_context *ctx);
2643 
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651 			struct perf_event *event,
2652 			int cpu)
2653 {
2654 	struct task_struct *task = READ_ONCE(ctx->task);
2655 
2656 	lockdep_assert_held(&ctx->mutex);
2657 
2658 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659 
2660 	if (event->cpu != -1)
2661 		event->cpu = cpu;
2662 
2663 	/*
2664 	 * Ensures that if we can observe event->ctx, both the event and ctx
2665 	 * will be 'complete'. See perf_iterate_sb_cpu().
2666 	 */
2667 	smp_store_release(&event->ctx, ctx);
2668 
2669 	if (!task) {
2670 		cpu_function_call(cpu, __perf_install_in_context, event);
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Should not happen, we validate the ctx is still alive before calling.
2676 	 */
2677 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 		return;
2679 
2680 	/*
2681 	 * Installing events is tricky because we cannot rely on ctx->is_active
2682 	 * to be set in case this is the nr_events 0 -> 1 transition.
2683 	 *
2684 	 * Instead we use task_curr(), which tells us if the task is running.
2685 	 * However, since we use task_curr() outside of rq::lock, we can race
2686 	 * against the actual state. This means the result can be wrong.
2687 	 *
2688 	 * If we get a false positive, we retry, this is harmless.
2689 	 *
2690 	 * If we get a false negative, things are complicated. If we are after
2691 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 	 * value must be correct. If we're before, it doesn't matter since
2693 	 * perf_event_context_sched_in() will program the counter.
2694 	 *
2695 	 * However, this hinges on the remote context switch having observed
2696 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 	 * ctx::lock in perf_event_context_sched_in().
2698 	 *
2699 	 * We do this by task_function_call(), if the IPI fails to hit the task
2700 	 * we know any future context switch of task must see the
2701 	 * perf_event_ctpx[] store.
2702 	 */
2703 
2704 	/*
2705 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 	 * task_cpu() load, such that if the IPI then does not find the task
2707 	 * running, a future context switch of that task must observe the
2708 	 * store.
2709 	 */
2710 	smp_mb();
2711 again:
2712 	if (!task_function_call(task, __perf_install_in_context, event))
2713 		return;
2714 
2715 	raw_spin_lock_irq(&ctx->lock);
2716 	task = ctx->task;
2717 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 		/*
2719 		 * Cannot happen because we already checked above (which also
2720 		 * cannot happen), and we hold ctx->mutex, which serializes us
2721 		 * against perf_event_exit_task_context().
2722 		 */
2723 		raw_spin_unlock_irq(&ctx->lock);
2724 		return;
2725 	}
2726 	/*
2727 	 * If the task is not running, ctx->lock will avoid it becoming so,
2728 	 * thus we can safely install the event.
2729 	 */
2730 	if (task_curr(task)) {
2731 		raw_spin_unlock_irq(&ctx->lock);
2732 		goto again;
2733 	}
2734 	add_event_to_ctx(event, ctx);
2735 	raw_spin_unlock_irq(&ctx->lock);
2736 }
2737 
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
2741 static void __perf_event_enable(struct perf_event *event,
2742 				struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				void *info)
2745 {
2746 	struct perf_event *leader = event->group_leader;
2747 	struct perf_event_context *task_ctx;
2748 
2749 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 	    event->state <= PERF_EVENT_STATE_ERROR)
2751 		return;
2752 
2753 	if (ctx->is_active)
2754 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755 
2756 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757 
2758 	if (!ctx->is_active)
2759 		return;
2760 
2761 	if (!event_filter_match(event)) {
2762 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * If the event is in a group and isn't the group leader,
2768 	 * then don't put it on unless the group is on.
2769 	 */
2770 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 		return;
2773 	}
2774 
2775 	task_ctx = cpuctx->task_ctx;
2776 	if (ctx->task)
2777 		WARN_ON_ONCE(task_ctx != ctx);
2778 
2779 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781 
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793 	struct perf_event_context *ctx = event->ctx;
2794 
2795 	raw_spin_lock_irq(&ctx->lock);
2796 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 	    event->state <  PERF_EVENT_STATE_ERROR) {
2798 		raw_spin_unlock_irq(&ctx->lock);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * If the event is in error state, clear that first.
2804 	 *
2805 	 * That way, if we see the event in error state below, we know that it
2806 	 * has gone back into error state, as distinct from the task having
2807 	 * been scheduled away before the cross-call arrived.
2808 	 */
2809 	if (event->state == PERF_EVENT_STATE_ERROR)
2810 		event->state = PERF_EVENT_STATE_OFF;
2811 	raw_spin_unlock_irq(&ctx->lock);
2812 
2813 	event_function_call(event, __perf_event_enable, NULL);
2814 }
2815 
2816 /*
2817  * See perf_event_disable();
2818  */
2819 void perf_event_enable(struct perf_event *event)
2820 {
2821 	struct perf_event_context *ctx;
2822 
2823 	ctx = perf_event_ctx_lock(event);
2824 	_perf_event_enable(event);
2825 	perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828 
2829 struct stop_event_data {
2830 	struct perf_event	*event;
2831 	unsigned int		restart;
2832 };
2833 
2834 static int __perf_event_stop(void *info)
2835 {
2836 	struct stop_event_data *sd = info;
2837 	struct perf_event *event = sd->event;
2838 
2839 	/* if it's already INACTIVE, do nothing */
2840 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 		return 0;
2842 
2843 	/* matches smp_wmb() in event_sched_in() */
2844 	smp_rmb();
2845 
2846 	/*
2847 	 * There is a window with interrupts enabled before we get here,
2848 	 * so we need to check again lest we try to stop another CPU's event.
2849 	 */
2850 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 		return -EAGAIN;
2852 
2853 	event->pmu->stop(event, PERF_EF_UPDATE);
2854 
2855 	/*
2856 	 * May race with the actual stop (through perf_pmu_output_stop()),
2857 	 * but it is only used for events with AUX ring buffer, and such
2858 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 	 * see comments in perf_aux_output_begin().
2860 	 *
2861 	 * Since this is happening on an event-local CPU, no trace is lost
2862 	 * while restarting.
2863 	 */
2864 	if (sd->restart)
2865 		event->pmu->start(event, 0);
2866 
2867 	return 0;
2868 }
2869 
2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872 	struct stop_event_data sd = {
2873 		.event		= event,
2874 		.restart	= restart,
2875 	};
2876 	int ret = 0;
2877 
2878 	do {
2879 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 			return 0;
2881 
2882 		/* matches smp_wmb() in event_sched_in() */
2883 		smp_rmb();
2884 
2885 		/*
2886 		 * We only want to restart ACTIVE events, so if the event goes
2887 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 		 * fall through with ret==-ENXIO.
2889 		 */
2890 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 					__perf_event_stop, &sd);
2892 	} while (ret == -EAGAIN);
2893 
2894 	return ret;
2895 }
2896 
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922 
2923 	if (!has_addr_filter(event))
2924 		return;
2925 
2926 	raw_spin_lock(&ifh->lock);
2927 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 		event->pmu->addr_filters_sync(event);
2929 		event->hw.addr_filters_gen = event->addr_filters_gen;
2930 	}
2931 	raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934 
2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937 	/*
2938 	 * not supported on inherited events
2939 	 */
2940 	if (event->attr.inherit || !is_sampling_event(event))
2941 		return -EINVAL;
2942 
2943 	atomic_add(refresh, &event->event_limit);
2944 	_perf_event_enable(event);
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * See perf_event_disable()
2951  */
2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954 	struct perf_event_context *ctx;
2955 	int ret;
2956 
2957 	ctx = perf_event_ctx_lock(event);
2958 	ret = _perf_event_refresh(event, refresh);
2959 	perf_event_ctx_unlock(event, ctx);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964 
2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 					 struct perf_event_attr *attr)
2967 {
2968 	int err;
2969 
2970 	_perf_event_disable(bp);
2971 
2972 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2973 
2974 	if (!bp->attr.disabled)
2975 		_perf_event_enable(bp);
2976 
2977 	return err;
2978 }
2979 
2980 static int perf_event_modify_attr(struct perf_event *event,
2981 				  struct perf_event_attr *attr)
2982 {
2983 	if (event->attr.type != attr->type)
2984 		return -EINVAL;
2985 
2986 	switch (event->attr.type) {
2987 	case PERF_TYPE_BREAKPOINT:
2988 		return perf_event_modify_breakpoint(event, attr);
2989 	default:
2990 		/* Place holder for future additions. */
2991 		return -EOPNOTSUPP;
2992 	}
2993 }
2994 
2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996 			  struct perf_cpu_context *cpuctx,
2997 			  enum event_type_t event_type)
2998 {
2999 	struct perf_event *event, *tmp;
3000 	int is_active = ctx->is_active;
3001 
3002 	lockdep_assert_held(&ctx->lock);
3003 
3004 	if (likely(!ctx->nr_events)) {
3005 		/*
3006 		 * See __perf_remove_from_context().
3007 		 */
3008 		WARN_ON_ONCE(ctx->is_active);
3009 		if (ctx->task)
3010 			WARN_ON_ONCE(cpuctx->task_ctx);
3011 		return;
3012 	}
3013 
3014 	ctx->is_active &= ~event_type;
3015 	if (!(ctx->is_active & EVENT_ALL))
3016 		ctx->is_active = 0;
3017 
3018 	if (ctx->task) {
3019 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 		if (!ctx->is_active)
3021 			cpuctx->task_ctx = NULL;
3022 	}
3023 
3024 	/*
3025 	 * Always update time if it was set; not only when it changes.
3026 	 * Otherwise we can 'forget' to update time for any but the last
3027 	 * context we sched out. For example:
3028 	 *
3029 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3031 	 *
3032 	 * would only update time for the pinned events.
3033 	 */
3034 	if (is_active & EVENT_TIME) {
3035 		/* update (and stop) ctx time */
3036 		update_context_time(ctx);
3037 		update_cgrp_time_from_cpuctx(cpuctx);
3038 	}
3039 
3040 	is_active ^= ctx->is_active; /* changed bits */
3041 
3042 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 		return;
3044 
3045 	/*
3046 	 * If we had been multiplexing, no rotations are necessary, now no events
3047 	 * are active.
3048 	 */
3049 	ctx->rotate_necessary = 0;
3050 
3051 	perf_pmu_disable(ctx->pmu);
3052 	if (is_active & EVENT_PINNED) {
3053 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 			group_sched_out(event, cpuctx, ctx);
3055 	}
3056 
3057 	if (is_active & EVENT_FLEXIBLE) {
3058 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 			group_sched_out(event, cpuctx, ctx);
3060 	}
3061 	perf_pmu_enable(ctx->pmu);
3062 }
3063 
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
3072 static int context_equiv(struct perf_event_context *ctx1,
3073 			 struct perf_event_context *ctx2)
3074 {
3075 	lockdep_assert_held(&ctx1->lock);
3076 	lockdep_assert_held(&ctx2->lock);
3077 
3078 	/* Pinning disables the swap optimization */
3079 	if (ctx1->pin_count || ctx2->pin_count)
3080 		return 0;
3081 
3082 	/* If ctx1 is the parent of ctx2 */
3083 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 		return 1;
3085 
3086 	/* If ctx2 is the parent of ctx1 */
3087 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 		return 1;
3089 
3090 	/*
3091 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 	 * hierarchy, see perf_event_init_context().
3093 	 */
3094 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 			ctx1->parent_gen == ctx2->parent_gen)
3096 		return 1;
3097 
3098 	/* Unmatched */
3099 	return 0;
3100 }
3101 
3102 static void __perf_event_sync_stat(struct perf_event *event,
3103 				     struct perf_event *next_event)
3104 {
3105 	u64 value;
3106 
3107 	if (!event->attr.inherit_stat)
3108 		return;
3109 
3110 	/*
3111 	 * Update the event value, we cannot use perf_event_read()
3112 	 * because we're in the middle of a context switch and have IRQs
3113 	 * disabled, which upsets smp_call_function_single(), however
3114 	 * we know the event must be on the current CPU, therefore we
3115 	 * don't need to use it.
3116 	 */
3117 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 		event->pmu->read(event);
3119 
3120 	perf_event_update_time(event);
3121 
3122 	/*
3123 	 * In order to keep per-task stats reliable we need to flip the event
3124 	 * values when we flip the contexts.
3125 	 */
3126 	value = local64_read(&next_event->count);
3127 	value = local64_xchg(&event->count, value);
3128 	local64_set(&next_event->count, value);
3129 
3130 	swap(event->total_time_enabled, next_event->total_time_enabled);
3131 	swap(event->total_time_running, next_event->total_time_running);
3132 
3133 	/*
3134 	 * Since we swizzled the values, update the user visible data too.
3135 	 */
3136 	perf_event_update_userpage(event);
3137 	perf_event_update_userpage(next_event);
3138 }
3139 
3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 				   struct perf_event_context *next_ctx)
3142 {
3143 	struct perf_event *event, *next_event;
3144 
3145 	if (!ctx->nr_stat)
3146 		return;
3147 
3148 	update_context_time(ctx);
3149 
3150 	event = list_first_entry(&ctx->event_list,
3151 				   struct perf_event, event_entry);
3152 
3153 	next_event = list_first_entry(&next_ctx->event_list,
3154 					struct perf_event, event_entry);
3155 
3156 	while (&event->event_entry != &ctx->event_list &&
3157 	       &next_event->event_entry != &next_ctx->event_list) {
3158 
3159 		__perf_event_sync_stat(event, next_event);
3160 
3161 		event = list_next_entry(event, event_entry);
3162 		next_event = list_next_entry(next_event, event_entry);
3163 	}
3164 }
3165 
3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 					 struct task_struct *next)
3168 {
3169 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 	struct perf_event_context *next_ctx;
3171 	struct perf_event_context *parent, *next_parent;
3172 	struct perf_cpu_context *cpuctx;
3173 	int do_switch = 1;
3174 
3175 	if (likely(!ctx))
3176 		return;
3177 
3178 	cpuctx = __get_cpu_context(ctx);
3179 	if (!cpuctx->task_ctx)
3180 		return;
3181 
3182 	rcu_read_lock();
3183 	next_ctx = next->perf_event_ctxp[ctxn];
3184 	if (!next_ctx)
3185 		goto unlock;
3186 
3187 	parent = rcu_dereference(ctx->parent_ctx);
3188 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3189 
3190 	/* If neither context have a parent context; they cannot be clones. */
3191 	if (!parent && !next_parent)
3192 		goto unlock;
3193 
3194 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 		/*
3196 		 * Looks like the two contexts are clones, so we might be
3197 		 * able to optimize the context switch.  We lock both
3198 		 * contexts and check that they are clones under the
3199 		 * lock (including re-checking that neither has been
3200 		 * uncloned in the meantime).  It doesn't matter which
3201 		 * order we take the locks because no other cpu could
3202 		 * be trying to lock both of these tasks.
3203 		 */
3204 		raw_spin_lock(&ctx->lock);
3205 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 		if (context_equiv(ctx, next_ctx)) {
3207 			WRITE_ONCE(ctx->task, next);
3208 			WRITE_ONCE(next_ctx->task, task);
3209 
3210 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211 
3212 			/*
3213 			 * RCU_INIT_POINTER here is safe because we've not
3214 			 * modified the ctx and the above modification of
3215 			 * ctx->task and ctx->task_ctx_data are immaterial
3216 			 * since those values are always verified under
3217 			 * ctx->lock which we're now holding.
3218 			 */
3219 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221 
3222 			do_switch = 0;
3223 
3224 			perf_event_sync_stat(ctx, next_ctx);
3225 		}
3226 		raw_spin_unlock(&next_ctx->lock);
3227 		raw_spin_unlock(&ctx->lock);
3228 	}
3229 unlock:
3230 	rcu_read_unlock();
3231 
3232 	if (do_switch) {
3233 		raw_spin_lock(&ctx->lock);
3234 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 		raw_spin_unlock(&ctx->lock);
3236 	}
3237 }
3238 
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240 
3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244 
3245 	this_cpu_dec(perf_sched_cb_usages);
3246 
3247 	if (!--cpuctx->sched_cb_usage)
3248 		list_del(&cpuctx->sched_cb_entry);
3249 }
3250 
3251 
3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255 
3256 	if (!cpuctx->sched_cb_usage++)
3257 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258 
3259 	this_cpu_inc(perf_sched_cb_usages);
3260 }
3261 
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271 				struct task_struct *next,
3272 				bool sched_in)
3273 {
3274 	struct perf_cpu_context *cpuctx;
3275 	struct pmu *pmu;
3276 
3277 	if (prev == next)
3278 		return;
3279 
3280 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282 
3283 		if (WARN_ON_ONCE(!pmu->sched_task))
3284 			continue;
3285 
3286 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 		perf_pmu_disable(pmu);
3288 
3289 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3290 
3291 		perf_pmu_enable(pmu);
3292 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 	}
3294 }
3295 
3296 static void perf_event_switch(struct task_struct *task,
3297 			      struct task_struct *next_prev, bool sched_in);
3298 
3299 #define for_each_task_context_nr(ctxn)					\
3300 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301 
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
3313 void __perf_event_task_sched_out(struct task_struct *task,
3314 				 struct task_struct *next)
3315 {
3316 	int ctxn;
3317 
3318 	if (__this_cpu_read(perf_sched_cb_usages))
3319 		perf_pmu_sched_task(task, next, false);
3320 
3321 	if (atomic_read(&nr_switch_events))
3322 		perf_event_switch(task, next, false);
3323 
3324 	for_each_task_context_nr(ctxn)
3325 		perf_event_context_sched_out(task, ctxn, next);
3326 
3327 	/*
3328 	 * if cgroup events exist on this CPU, then we need
3329 	 * to check if we have to switch out PMU state.
3330 	 * cgroup event are system-wide mode only
3331 	 */
3332 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 		perf_cgroup_sched_out(task, next);
3334 }
3335 
3336 /*
3337  * Called with IRQs disabled
3338  */
3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 			      enum event_type_t event_type)
3341 {
3342 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344 
3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 			      int (*func)(struct perf_event *, void *), void *data)
3347 {
3348 	struct perf_event **evt, *evt1, *evt2;
3349 	int ret;
3350 
3351 	evt1 = perf_event_groups_first(groups, -1);
3352 	evt2 = perf_event_groups_first(groups, cpu);
3353 
3354 	while (evt1 || evt2) {
3355 		if (evt1 && evt2) {
3356 			if (evt1->group_index < evt2->group_index)
3357 				evt = &evt1;
3358 			else
3359 				evt = &evt2;
3360 		} else if (evt1) {
3361 			evt = &evt1;
3362 		} else {
3363 			evt = &evt2;
3364 		}
3365 
3366 		ret = func(*evt, data);
3367 		if (ret)
3368 			return ret;
3369 
3370 		*evt = perf_event_groups_next(*evt);
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 struct sched_in_data {
3377 	struct perf_event_context *ctx;
3378 	struct perf_cpu_context *cpuctx;
3379 	int can_add_hw;
3380 };
3381 
3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384 	struct sched_in_data *sid = data;
3385 
3386 	if (event->state <= PERF_EVENT_STATE_OFF)
3387 		return 0;
3388 
3389 	if (!event_filter_match(event))
3390 		return 0;
3391 
3392 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 	}
3396 
3397 	/*
3398 	 * If this pinned group hasn't been scheduled,
3399 	 * put it in error state.
3400 	 */
3401 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403 
3404 	return 0;
3405 }
3406 
3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409 	struct sched_in_data *sid = data;
3410 
3411 	if (event->state <= PERF_EVENT_STATE_OFF)
3412 		return 0;
3413 
3414 	if (!event_filter_match(event))
3415 		return 0;
3416 
3417 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 		if (ret) {
3420 			sid->can_add_hw = 0;
3421 			sid->ctx->rotate_necessary = 1;
3422 			return 0;
3423 		}
3424 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static void
3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 		    struct perf_cpu_context *cpuctx)
3433 {
3434 	struct sched_in_data sid = {
3435 		.ctx = ctx,
3436 		.cpuctx = cpuctx,
3437 		.can_add_hw = 1,
3438 	};
3439 
3440 	visit_groups_merge(&ctx->pinned_groups,
3441 			   smp_processor_id(),
3442 			   pinned_sched_in, &sid);
3443 }
3444 
3445 static void
3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 		      struct perf_cpu_context *cpuctx)
3448 {
3449 	struct sched_in_data sid = {
3450 		.ctx = ctx,
3451 		.cpuctx = cpuctx,
3452 		.can_add_hw = 1,
3453 	};
3454 
3455 	visit_groups_merge(&ctx->flexible_groups,
3456 			   smp_processor_id(),
3457 			   flexible_sched_in, &sid);
3458 }
3459 
3460 static void
3461 ctx_sched_in(struct perf_event_context *ctx,
3462 	     struct perf_cpu_context *cpuctx,
3463 	     enum event_type_t event_type,
3464 	     struct task_struct *task)
3465 {
3466 	int is_active = ctx->is_active;
3467 	u64 now;
3468 
3469 	lockdep_assert_held(&ctx->lock);
3470 
3471 	if (likely(!ctx->nr_events))
3472 		return;
3473 
3474 	ctx->is_active |= (event_type | EVENT_TIME);
3475 	if (ctx->task) {
3476 		if (!is_active)
3477 			cpuctx->task_ctx = ctx;
3478 		else
3479 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 	}
3481 
3482 	is_active ^= ctx->is_active; /* changed bits */
3483 
3484 	if (is_active & EVENT_TIME) {
3485 		/* start ctx time */
3486 		now = perf_clock();
3487 		ctx->timestamp = now;
3488 		perf_cgroup_set_timestamp(task, ctx);
3489 	}
3490 
3491 	/*
3492 	 * First go through the list and put on any pinned groups
3493 	 * in order to give them the best chance of going on.
3494 	 */
3495 	if (is_active & EVENT_PINNED)
3496 		ctx_pinned_sched_in(ctx, cpuctx);
3497 
3498 	/* Then walk through the lower prio flexible groups */
3499 	if (is_active & EVENT_FLEXIBLE)
3500 		ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502 
3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 			     enum event_type_t event_type,
3505 			     struct task_struct *task)
3506 {
3507 	struct perf_event_context *ctx = &cpuctx->ctx;
3508 
3509 	ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511 
3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 					struct task_struct *task)
3514 {
3515 	struct perf_cpu_context *cpuctx;
3516 
3517 	cpuctx = __get_cpu_context(ctx);
3518 	if (cpuctx->task_ctx == ctx)
3519 		return;
3520 
3521 	perf_ctx_lock(cpuctx, ctx);
3522 	/*
3523 	 * We must check ctx->nr_events while holding ctx->lock, such
3524 	 * that we serialize against perf_install_in_context().
3525 	 */
3526 	if (!ctx->nr_events)
3527 		goto unlock;
3528 
3529 	perf_pmu_disable(ctx->pmu);
3530 	/*
3531 	 * We want to keep the following priority order:
3532 	 * cpu pinned (that don't need to move), task pinned,
3533 	 * cpu flexible, task flexible.
3534 	 *
3535 	 * However, if task's ctx is not carrying any pinned
3536 	 * events, no need to flip the cpuctx's events around.
3537 	 */
3538 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 	perf_event_sched_in(cpuctx, ctx, task);
3541 	perf_pmu_enable(ctx->pmu);
3542 
3543 unlock:
3544 	perf_ctx_unlock(cpuctx, ctx);
3545 }
3546 
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559 				struct task_struct *task)
3560 {
3561 	struct perf_event_context *ctx;
3562 	int ctxn;
3563 
3564 	/*
3565 	 * If cgroup events exist on this CPU, then we need to check if we have
3566 	 * to switch in PMU state; cgroup event are system-wide mode only.
3567 	 *
3568 	 * Since cgroup events are CPU events, we must schedule these in before
3569 	 * we schedule in the task events.
3570 	 */
3571 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 		perf_cgroup_sched_in(prev, task);
3573 
3574 	for_each_task_context_nr(ctxn) {
3575 		ctx = task->perf_event_ctxp[ctxn];
3576 		if (likely(!ctx))
3577 			continue;
3578 
3579 		perf_event_context_sched_in(ctx, task);
3580 	}
3581 
3582 	if (atomic_read(&nr_switch_events))
3583 		perf_event_switch(task, prev, true);
3584 
3585 	if (__this_cpu_read(perf_sched_cb_usages))
3586 		perf_pmu_sched_task(prev, task, true);
3587 }
3588 
3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591 	u64 frequency = event->attr.sample_freq;
3592 	u64 sec = NSEC_PER_SEC;
3593 	u64 divisor, dividend;
3594 
3595 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3596 
3597 	count_fls = fls64(count);
3598 	nsec_fls = fls64(nsec);
3599 	frequency_fls = fls64(frequency);
3600 	sec_fls = 30;
3601 
3602 	/*
3603 	 * We got @count in @nsec, with a target of sample_freq HZ
3604 	 * the target period becomes:
3605 	 *
3606 	 *             @count * 10^9
3607 	 * period = -------------------
3608 	 *          @nsec * sample_freq
3609 	 *
3610 	 */
3611 
3612 	/*
3613 	 * Reduce accuracy by one bit such that @a and @b converge
3614 	 * to a similar magnitude.
3615 	 */
3616 #define REDUCE_FLS(a, b)		\
3617 do {					\
3618 	if (a##_fls > b##_fls) {	\
3619 		a >>= 1;		\
3620 		a##_fls--;		\
3621 	} else {			\
3622 		b >>= 1;		\
3623 		b##_fls--;		\
3624 	}				\
3625 } while (0)
3626 
3627 	/*
3628 	 * Reduce accuracy until either term fits in a u64, then proceed with
3629 	 * the other, so that finally we can do a u64/u64 division.
3630 	 */
3631 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 		REDUCE_FLS(nsec, frequency);
3633 		REDUCE_FLS(sec, count);
3634 	}
3635 
3636 	if (count_fls + sec_fls > 64) {
3637 		divisor = nsec * frequency;
3638 
3639 		while (count_fls + sec_fls > 64) {
3640 			REDUCE_FLS(count, sec);
3641 			divisor >>= 1;
3642 		}
3643 
3644 		dividend = count * sec;
3645 	} else {
3646 		dividend = count * sec;
3647 
3648 		while (nsec_fls + frequency_fls > 64) {
3649 			REDUCE_FLS(nsec, frequency);
3650 			dividend >>= 1;
3651 		}
3652 
3653 		divisor = nsec * frequency;
3654 	}
3655 
3656 	if (!divisor)
3657 		return dividend;
3658 
3659 	return div64_u64(dividend, divisor);
3660 }
3661 
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664 
3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667 	struct hw_perf_event *hwc = &event->hw;
3668 	s64 period, sample_period;
3669 	s64 delta;
3670 
3671 	period = perf_calculate_period(event, nsec, count);
3672 
3673 	delta = (s64)(period - hwc->sample_period);
3674 	delta = (delta + 7) / 8; /* low pass filter */
3675 
3676 	sample_period = hwc->sample_period + delta;
3677 
3678 	if (!sample_period)
3679 		sample_period = 1;
3680 
3681 	hwc->sample_period = sample_period;
3682 
3683 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 		if (disable)
3685 			event->pmu->stop(event, PERF_EF_UPDATE);
3686 
3687 		local64_set(&hwc->period_left, 0);
3688 
3689 		if (disable)
3690 			event->pmu->start(event, PERF_EF_RELOAD);
3691 	}
3692 }
3693 
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 					   int needs_unthr)
3701 {
3702 	struct perf_event *event;
3703 	struct hw_perf_event *hwc;
3704 	u64 now, period = TICK_NSEC;
3705 	s64 delta;
3706 
3707 	/*
3708 	 * only need to iterate over all events iff:
3709 	 * - context have events in frequency mode (needs freq adjust)
3710 	 * - there are events to unthrottle on this cpu
3711 	 */
3712 	if (!(ctx->nr_freq || needs_unthr))
3713 		return;
3714 
3715 	raw_spin_lock(&ctx->lock);
3716 	perf_pmu_disable(ctx->pmu);
3717 
3718 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 			continue;
3721 
3722 		if (!event_filter_match(event))
3723 			continue;
3724 
3725 		perf_pmu_disable(event->pmu);
3726 
3727 		hwc = &event->hw;
3728 
3729 		if (hwc->interrupts == MAX_INTERRUPTS) {
3730 			hwc->interrupts = 0;
3731 			perf_log_throttle(event, 1);
3732 			event->pmu->start(event, 0);
3733 		}
3734 
3735 		if (!event->attr.freq || !event->attr.sample_freq)
3736 			goto next;
3737 
3738 		/*
3739 		 * stop the event and update event->count
3740 		 */
3741 		event->pmu->stop(event, PERF_EF_UPDATE);
3742 
3743 		now = local64_read(&event->count);
3744 		delta = now - hwc->freq_count_stamp;
3745 		hwc->freq_count_stamp = now;
3746 
3747 		/*
3748 		 * restart the event
3749 		 * reload only if value has changed
3750 		 * we have stopped the event so tell that
3751 		 * to perf_adjust_period() to avoid stopping it
3752 		 * twice.
3753 		 */
3754 		if (delta > 0)
3755 			perf_adjust_period(event, period, delta, false);
3756 
3757 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 	next:
3759 		perf_pmu_enable(event->pmu);
3760 	}
3761 
3762 	perf_pmu_enable(ctx->pmu);
3763 	raw_spin_unlock(&ctx->lock);
3764 }
3765 
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771 	/*
3772 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 	 * disabled by the inheritance code.
3774 	 */
3775 	if (ctx->rotate_disable)
3776 		return;
3777 
3778 	perf_event_groups_delete(&ctx->flexible_groups, event);
3779 	perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781 
3782 static inline struct perf_event *
3783 ctx_first_active(struct perf_event_context *ctx)
3784 {
3785 	return list_first_entry_or_null(&ctx->flexible_active,
3786 					struct perf_event, active_list);
3787 }
3788 
3789 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3790 {
3791 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3792 	struct perf_event_context *task_ctx = NULL;
3793 	int cpu_rotate, task_rotate;
3794 
3795 	/*
3796 	 * Since we run this from IRQ context, nobody can install new
3797 	 * events, thus the event count values are stable.
3798 	 */
3799 
3800 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3801 	task_ctx = cpuctx->task_ctx;
3802 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3803 
3804 	if (!(cpu_rotate || task_rotate))
3805 		return false;
3806 
3807 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3808 	perf_pmu_disable(cpuctx->ctx.pmu);
3809 
3810 	if (task_rotate)
3811 		task_event = ctx_first_active(task_ctx);
3812 	if (cpu_rotate)
3813 		cpu_event = ctx_first_active(&cpuctx->ctx);
3814 
3815 	/*
3816 	 * As per the order given at ctx_resched() first 'pop' task flexible
3817 	 * and then, if needed CPU flexible.
3818 	 */
3819 	if (task_event || (task_ctx && cpu_event))
3820 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3821 	if (cpu_event)
3822 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3823 
3824 	if (task_event)
3825 		rotate_ctx(task_ctx, task_event);
3826 	if (cpu_event)
3827 		rotate_ctx(&cpuctx->ctx, cpu_event);
3828 
3829 	perf_event_sched_in(cpuctx, task_ctx, current);
3830 
3831 	perf_pmu_enable(cpuctx->ctx.pmu);
3832 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3833 
3834 	return true;
3835 }
3836 
3837 void perf_event_task_tick(void)
3838 {
3839 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3840 	struct perf_event_context *ctx, *tmp;
3841 	int throttled;
3842 
3843 	lockdep_assert_irqs_disabled();
3844 
3845 	__this_cpu_inc(perf_throttled_seq);
3846 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3847 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3848 
3849 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3850 		perf_adjust_freq_unthr_context(ctx, throttled);
3851 }
3852 
3853 static int event_enable_on_exec(struct perf_event *event,
3854 				struct perf_event_context *ctx)
3855 {
3856 	if (!event->attr.enable_on_exec)
3857 		return 0;
3858 
3859 	event->attr.enable_on_exec = 0;
3860 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3861 		return 0;
3862 
3863 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3864 
3865 	return 1;
3866 }
3867 
3868 /*
3869  * Enable all of a task's events that have been marked enable-on-exec.
3870  * This expects task == current.
3871  */
3872 static void perf_event_enable_on_exec(int ctxn)
3873 {
3874 	struct perf_event_context *ctx, *clone_ctx = NULL;
3875 	enum event_type_t event_type = 0;
3876 	struct perf_cpu_context *cpuctx;
3877 	struct perf_event *event;
3878 	unsigned long flags;
3879 	int enabled = 0;
3880 
3881 	local_irq_save(flags);
3882 	ctx = current->perf_event_ctxp[ctxn];
3883 	if (!ctx || !ctx->nr_events)
3884 		goto out;
3885 
3886 	cpuctx = __get_cpu_context(ctx);
3887 	perf_ctx_lock(cpuctx, ctx);
3888 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3889 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3890 		enabled |= event_enable_on_exec(event, ctx);
3891 		event_type |= get_event_type(event);
3892 	}
3893 
3894 	/*
3895 	 * Unclone and reschedule this context if we enabled any event.
3896 	 */
3897 	if (enabled) {
3898 		clone_ctx = unclone_ctx(ctx);
3899 		ctx_resched(cpuctx, ctx, event_type);
3900 	} else {
3901 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3902 	}
3903 	perf_ctx_unlock(cpuctx, ctx);
3904 
3905 out:
3906 	local_irq_restore(flags);
3907 
3908 	if (clone_ctx)
3909 		put_ctx(clone_ctx);
3910 }
3911 
3912 struct perf_read_data {
3913 	struct perf_event *event;
3914 	bool group;
3915 	int ret;
3916 };
3917 
3918 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3919 {
3920 	u16 local_pkg, event_pkg;
3921 
3922 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3923 		int local_cpu = smp_processor_id();
3924 
3925 		event_pkg = topology_physical_package_id(event_cpu);
3926 		local_pkg = topology_physical_package_id(local_cpu);
3927 
3928 		if (event_pkg == local_pkg)
3929 			return local_cpu;
3930 	}
3931 
3932 	return event_cpu;
3933 }
3934 
3935 /*
3936  * Cross CPU call to read the hardware event
3937  */
3938 static void __perf_event_read(void *info)
3939 {
3940 	struct perf_read_data *data = info;
3941 	struct perf_event *sub, *event = data->event;
3942 	struct perf_event_context *ctx = event->ctx;
3943 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3944 	struct pmu *pmu = event->pmu;
3945 
3946 	/*
3947 	 * If this is a task context, we need to check whether it is
3948 	 * the current task context of this cpu.  If not it has been
3949 	 * scheduled out before the smp call arrived.  In that case
3950 	 * event->count would have been updated to a recent sample
3951 	 * when the event was scheduled out.
3952 	 */
3953 	if (ctx->task && cpuctx->task_ctx != ctx)
3954 		return;
3955 
3956 	raw_spin_lock(&ctx->lock);
3957 	if (ctx->is_active & EVENT_TIME) {
3958 		update_context_time(ctx);
3959 		update_cgrp_time_from_event(event);
3960 	}
3961 
3962 	perf_event_update_time(event);
3963 	if (data->group)
3964 		perf_event_update_sibling_time(event);
3965 
3966 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3967 		goto unlock;
3968 
3969 	if (!data->group) {
3970 		pmu->read(event);
3971 		data->ret = 0;
3972 		goto unlock;
3973 	}
3974 
3975 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3976 
3977 	pmu->read(event);
3978 
3979 	for_each_sibling_event(sub, event) {
3980 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3981 			/*
3982 			 * Use sibling's PMU rather than @event's since
3983 			 * sibling could be on different (eg: software) PMU.
3984 			 */
3985 			sub->pmu->read(sub);
3986 		}
3987 	}
3988 
3989 	data->ret = pmu->commit_txn(pmu);
3990 
3991 unlock:
3992 	raw_spin_unlock(&ctx->lock);
3993 }
3994 
3995 static inline u64 perf_event_count(struct perf_event *event)
3996 {
3997 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3998 }
3999 
4000 /*
4001  * NMI-safe method to read a local event, that is an event that
4002  * is:
4003  *   - either for the current task, or for this CPU
4004  *   - does not have inherit set, for inherited task events
4005  *     will not be local and we cannot read them atomically
4006  *   - must not have a pmu::count method
4007  */
4008 int perf_event_read_local(struct perf_event *event, u64 *value,
4009 			  u64 *enabled, u64 *running)
4010 {
4011 	unsigned long flags;
4012 	int ret = 0;
4013 
4014 	/*
4015 	 * Disabling interrupts avoids all counter scheduling (context
4016 	 * switches, timer based rotation and IPIs).
4017 	 */
4018 	local_irq_save(flags);
4019 
4020 	/*
4021 	 * It must not be an event with inherit set, we cannot read
4022 	 * all child counters from atomic context.
4023 	 */
4024 	if (event->attr.inherit) {
4025 		ret = -EOPNOTSUPP;
4026 		goto out;
4027 	}
4028 
4029 	/* If this is a per-task event, it must be for current */
4030 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4031 	    event->hw.target != current) {
4032 		ret = -EINVAL;
4033 		goto out;
4034 	}
4035 
4036 	/* If this is a per-CPU event, it must be for this CPU */
4037 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4038 	    event->cpu != smp_processor_id()) {
4039 		ret = -EINVAL;
4040 		goto out;
4041 	}
4042 
4043 	/* If this is a pinned event it must be running on this CPU */
4044 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4045 		ret = -EBUSY;
4046 		goto out;
4047 	}
4048 
4049 	/*
4050 	 * If the event is currently on this CPU, its either a per-task event,
4051 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4052 	 * oncpu == -1).
4053 	 */
4054 	if (event->oncpu == smp_processor_id())
4055 		event->pmu->read(event);
4056 
4057 	*value = local64_read(&event->count);
4058 	if (enabled || running) {
4059 		u64 now = event->shadow_ctx_time + perf_clock();
4060 		u64 __enabled, __running;
4061 
4062 		__perf_update_times(event, now, &__enabled, &__running);
4063 		if (enabled)
4064 			*enabled = __enabled;
4065 		if (running)
4066 			*running = __running;
4067 	}
4068 out:
4069 	local_irq_restore(flags);
4070 
4071 	return ret;
4072 }
4073 
4074 static int perf_event_read(struct perf_event *event, bool group)
4075 {
4076 	enum perf_event_state state = READ_ONCE(event->state);
4077 	int event_cpu, ret = 0;
4078 
4079 	/*
4080 	 * If event is enabled and currently active on a CPU, update the
4081 	 * value in the event structure:
4082 	 */
4083 again:
4084 	if (state == PERF_EVENT_STATE_ACTIVE) {
4085 		struct perf_read_data data;
4086 
4087 		/*
4088 		 * Orders the ->state and ->oncpu loads such that if we see
4089 		 * ACTIVE we must also see the right ->oncpu.
4090 		 *
4091 		 * Matches the smp_wmb() from event_sched_in().
4092 		 */
4093 		smp_rmb();
4094 
4095 		event_cpu = READ_ONCE(event->oncpu);
4096 		if ((unsigned)event_cpu >= nr_cpu_ids)
4097 			return 0;
4098 
4099 		data = (struct perf_read_data){
4100 			.event = event,
4101 			.group = group,
4102 			.ret = 0,
4103 		};
4104 
4105 		preempt_disable();
4106 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4107 
4108 		/*
4109 		 * Purposely ignore the smp_call_function_single() return
4110 		 * value.
4111 		 *
4112 		 * If event_cpu isn't a valid CPU it means the event got
4113 		 * scheduled out and that will have updated the event count.
4114 		 *
4115 		 * Therefore, either way, we'll have an up-to-date event count
4116 		 * after this.
4117 		 */
4118 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4119 		preempt_enable();
4120 		ret = data.ret;
4121 
4122 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4123 		struct perf_event_context *ctx = event->ctx;
4124 		unsigned long flags;
4125 
4126 		raw_spin_lock_irqsave(&ctx->lock, flags);
4127 		state = event->state;
4128 		if (state != PERF_EVENT_STATE_INACTIVE) {
4129 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4130 			goto again;
4131 		}
4132 
4133 		/*
4134 		 * May read while context is not active (e.g., thread is
4135 		 * blocked), in that case we cannot update context time
4136 		 */
4137 		if (ctx->is_active & EVENT_TIME) {
4138 			update_context_time(ctx);
4139 			update_cgrp_time_from_event(event);
4140 		}
4141 
4142 		perf_event_update_time(event);
4143 		if (group)
4144 			perf_event_update_sibling_time(event);
4145 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4146 	}
4147 
4148 	return ret;
4149 }
4150 
4151 /*
4152  * Initialize the perf_event context in a task_struct:
4153  */
4154 static void __perf_event_init_context(struct perf_event_context *ctx)
4155 {
4156 	raw_spin_lock_init(&ctx->lock);
4157 	mutex_init(&ctx->mutex);
4158 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4159 	perf_event_groups_init(&ctx->pinned_groups);
4160 	perf_event_groups_init(&ctx->flexible_groups);
4161 	INIT_LIST_HEAD(&ctx->event_list);
4162 	INIT_LIST_HEAD(&ctx->pinned_active);
4163 	INIT_LIST_HEAD(&ctx->flexible_active);
4164 	refcount_set(&ctx->refcount, 1);
4165 }
4166 
4167 static struct perf_event_context *
4168 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4169 {
4170 	struct perf_event_context *ctx;
4171 
4172 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4173 	if (!ctx)
4174 		return NULL;
4175 
4176 	__perf_event_init_context(ctx);
4177 	if (task) {
4178 		ctx->task = task;
4179 		get_task_struct(task);
4180 	}
4181 	ctx->pmu = pmu;
4182 
4183 	return ctx;
4184 }
4185 
4186 static struct task_struct *
4187 find_lively_task_by_vpid(pid_t vpid)
4188 {
4189 	struct task_struct *task;
4190 
4191 	rcu_read_lock();
4192 	if (!vpid)
4193 		task = current;
4194 	else
4195 		task = find_task_by_vpid(vpid);
4196 	if (task)
4197 		get_task_struct(task);
4198 	rcu_read_unlock();
4199 
4200 	if (!task)
4201 		return ERR_PTR(-ESRCH);
4202 
4203 	return task;
4204 }
4205 
4206 /*
4207  * Returns a matching context with refcount and pincount.
4208  */
4209 static struct perf_event_context *
4210 find_get_context(struct pmu *pmu, struct task_struct *task,
4211 		struct perf_event *event)
4212 {
4213 	struct perf_event_context *ctx, *clone_ctx = NULL;
4214 	struct perf_cpu_context *cpuctx;
4215 	void *task_ctx_data = NULL;
4216 	unsigned long flags;
4217 	int ctxn, err;
4218 	int cpu = event->cpu;
4219 
4220 	if (!task) {
4221 		/* Must be root to operate on a CPU event: */
4222 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4223 			return ERR_PTR(-EACCES);
4224 
4225 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4226 		ctx = &cpuctx->ctx;
4227 		get_ctx(ctx);
4228 		++ctx->pin_count;
4229 
4230 		return ctx;
4231 	}
4232 
4233 	err = -EINVAL;
4234 	ctxn = pmu->task_ctx_nr;
4235 	if (ctxn < 0)
4236 		goto errout;
4237 
4238 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4239 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4240 		if (!task_ctx_data) {
4241 			err = -ENOMEM;
4242 			goto errout;
4243 		}
4244 	}
4245 
4246 retry:
4247 	ctx = perf_lock_task_context(task, ctxn, &flags);
4248 	if (ctx) {
4249 		clone_ctx = unclone_ctx(ctx);
4250 		++ctx->pin_count;
4251 
4252 		if (task_ctx_data && !ctx->task_ctx_data) {
4253 			ctx->task_ctx_data = task_ctx_data;
4254 			task_ctx_data = NULL;
4255 		}
4256 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4257 
4258 		if (clone_ctx)
4259 			put_ctx(clone_ctx);
4260 	} else {
4261 		ctx = alloc_perf_context(pmu, task);
4262 		err = -ENOMEM;
4263 		if (!ctx)
4264 			goto errout;
4265 
4266 		if (task_ctx_data) {
4267 			ctx->task_ctx_data = task_ctx_data;
4268 			task_ctx_data = NULL;
4269 		}
4270 
4271 		err = 0;
4272 		mutex_lock(&task->perf_event_mutex);
4273 		/*
4274 		 * If it has already passed perf_event_exit_task().
4275 		 * we must see PF_EXITING, it takes this mutex too.
4276 		 */
4277 		if (task->flags & PF_EXITING)
4278 			err = -ESRCH;
4279 		else if (task->perf_event_ctxp[ctxn])
4280 			err = -EAGAIN;
4281 		else {
4282 			get_ctx(ctx);
4283 			++ctx->pin_count;
4284 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4285 		}
4286 		mutex_unlock(&task->perf_event_mutex);
4287 
4288 		if (unlikely(err)) {
4289 			put_ctx(ctx);
4290 
4291 			if (err == -EAGAIN)
4292 				goto retry;
4293 			goto errout;
4294 		}
4295 	}
4296 
4297 	kfree(task_ctx_data);
4298 	return ctx;
4299 
4300 errout:
4301 	kfree(task_ctx_data);
4302 	return ERR_PTR(err);
4303 }
4304 
4305 static void perf_event_free_filter(struct perf_event *event);
4306 static void perf_event_free_bpf_prog(struct perf_event *event);
4307 
4308 static void free_event_rcu(struct rcu_head *head)
4309 {
4310 	struct perf_event *event;
4311 
4312 	event = container_of(head, struct perf_event, rcu_head);
4313 	if (event->ns)
4314 		put_pid_ns(event->ns);
4315 	perf_event_free_filter(event);
4316 	kfree(event);
4317 }
4318 
4319 static void ring_buffer_attach(struct perf_event *event,
4320 			       struct ring_buffer *rb);
4321 
4322 static void detach_sb_event(struct perf_event *event)
4323 {
4324 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4325 
4326 	raw_spin_lock(&pel->lock);
4327 	list_del_rcu(&event->sb_list);
4328 	raw_spin_unlock(&pel->lock);
4329 }
4330 
4331 static bool is_sb_event(struct perf_event *event)
4332 {
4333 	struct perf_event_attr *attr = &event->attr;
4334 
4335 	if (event->parent)
4336 		return false;
4337 
4338 	if (event->attach_state & PERF_ATTACH_TASK)
4339 		return false;
4340 
4341 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4342 	    attr->comm || attr->comm_exec ||
4343 	    attr->task || attr->ksymbol ||
4344 	    attr->context_switch ||
4345 	    attr->bpf_event)
4346 		return true;
4347 	return false;
4348 }
4349 
4350 static void unaccount_pmu_sb_event(struct perf_event *event)
4351 {
4352 	if (is_sb_event(event))
4353 		detach_sb_event(event);
4354 }
4355 
4356 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4357 {
4358 	if (event->parent)
4359 		return;
4360 
4361 	if (is_cgroup_event(event))
4362 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4363 }
4364 
4365 #ifdef CONFIG_NO_HZ_FULL
4366 static DEFINE_SPINLOCK(nr_freq_lock);
4367 #endif
4368 
4369 static void unaccount_freq_event_nohz(void)
4370 {
4371 #ifdef CONFIG_NO_HZ_FULL
4372 	spin_lock(&nr_freq_lock);
4373 	if (atomic_dec_and_test(&nr_freq_events))
4374 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4375 	spin_unlock(&nr_freq_lock);
4376 #endif
4377 }
4378 
4379 static void unaccount_freq_event(void)
4380 {
4381 	if (tick_nohz_full_enabled())
4382 		unaccount_freq_event_nohz();
4383 	else
4384 		atomic_dec(&nr_freq_events);
4385 }
4386 
4387 static void unaccount_event(struct perf_event *event)
4388 {
4389 	bool dec = false;
4390 
4391 	if (event->parent)
4392 		return;
4393 
4394 	if (event->attach_state & PERF_ATTACH_TASK)
4395 		dec = true;
4396 	if (event->attr.mmap || event->attr.mmap_data)
4397 		atomic_dec(&nr_mmap_events);
4398 	if (event->attr.comm)
4399 		atomic_dec(&nr_comm_events);
4400 	if (event->attr.namespaces)
4401 		atomic_dec(&nr_namespaces_events);
4402 	if (event->attr.task)
4403 		atomic_dec(&nr_task_events);
4404 	if (event->attr.freq)
4405 		unaccount_freq_event();
4406 	if (event->attr.context_switch) {
4407 		dec = true;
4408 		atomic_dec(&nr_switch_events);
4409 	}
4410 	if (is_cgroup_event(event))
4411 		dec = true;
4412 	if (has_branch_stack(event))
4413 		dec = true;
4414 	if (event->attr.ksymbol)
4415 		atomic_dec(&nr_ksymbol_events);
4416 	if (event->attr.bpf_event)
4417 		atomic_dec(&nr_bpf_events);
4418 
4419 	if (dec) {
4420 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4421 			schedule_delayed_work(&perf_sched_work, HZ);
4422 	}
4423 
4424 	unaccount_event_cpu(event, event->cpu);
4425 
4426 	unaccount_pmu_sb_event(event);
4427 }
4428 
4429 static void perf_sched_delayed(struct work_struct *work)
4430 {
4431 	mutex_lock(&perf_sched_mutex);
4432 	if (atomic_dec_and_test(&perf_sched_count))
4433 		static_branch_disable(&perf_sched_events);
4434 	mutex_unlock(&perf_sched_mutex);
4435 }
4436 
4437 /*
4438  * The following implement mutual exclusion of events on "exclusive" pmus
4439  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4440  * at a time, so we disallow creating events that might conflict, namely:
4441  *
4442  *  1) cpu-wide events in the presence of per-task events,
4443  *  2) per-task events in the presence of cpu-wide events,
4444  *  3) two matching events on the same context.
4445  *
4446  * The former two cases are handled in the allocation path (perf_event_alloc(),
4447  * _free_event()), the latter -- before the first perf_install_in_context().
4448  */
4449 static int exclusive_event_init(struct perf_event *event)
4450 {
4451 	struct pmu *pmu = event->pmu;
4452 
4453 	if (!is_exclusive_pmu(pmu))
4454 		return 0;
4455 
4456 	/*
4457 	 * Prevent co-existence of per-task and cpu-wide events on the
4458 	 * same exclusive pmu.
4459 	 *
4460 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4461 	 * events on this "exclusive" pmu, positive means there are
4462 	 * per-task events.
4463 	 *
4464 	 * Since this is called in perf_event_alloc() path, event::ctx
4465 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4466 	 * to mean "per-task event", because unlike other attach states it
4467 	 * never gets cleared.
4468 	 */
4469 	if (event->attach_state & PERF_ATTACH_TASK) {
4470 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4471 			return -EBUSY;
4472 	} else {
4473 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4474 			return -EBUSY;
4475 	}
4476 
4477 	return 0;
4478 }
4479 
4480 static void exclusive_event_destroy(struct perf_event *event)
4481 {
4482 	struct pmu *pmu = event->pmu;
4483 
4484 	if (!is_exclusive_pmu(pmu))
4485 		return;
4486 
4487 	/* see comment in exclusive_event_init() */
4488 	if (event->attach_state & PERF_ATTACH_TASK)
4489 		atomic_dec(&pmu->exclusive_cnt);
4490 	else
4491 		atomic_inc(&pmu->exclusive_cnt);
4492 }
4493 
4494 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4495 {
4496 	if ((e1->pmu == e2->pmu) &&
4497 	    (e1->cpu == e2->cpu ||
4498 	     e1->cpu == -1 ||
4499 	     e2->cpu == -1))
4500 		return true;
4501 	return false;
4502 }
4503 
4504 static bool exclusive_event_installable(struct perf_event *event,
4505 					struct perf_event_context *ctx)
4506 {
4507 	struct perf_event *iter_event;
4508 	struct pmu *pmu = event->pmu;
4509 
4510 	lockdep_assert_held(&ctx->mutex);
4511 
4512 	if (!is_exclusive_pmu(pmu))
4513 		return true;
4514 
4515 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4516 		if (exclusive_event_match(iter_event, event))
4517 			return false;
4518 	}
4519 
4520 	return true;
4521 }
4522 
4523 static void perf_addr_filters_splice(struct perf_event *event,
4524 				       struct list_head *head);
4525 
4526 static void _free_event(struct perf_event *event)
4527 {
4528 	irq_work_sync(&event->pending);
4529 
4530 	unaccount_event(event);
4531 
4532 	if (event->rb) {
4533 		/*
4534 		 * Can happen when we close an event with re-directed output.
4535 		 *
4536 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4537 		 * over us; possibly making our ring_buffer_put() the last.
4538 		 */
4539 		mutex_lock(&event->mmap_mutex);
4540 		ring_buffer_attach(event, NULL);
4541 		mutex_unlock(&event->mmap_mutex);
4542 	}
4543 
4544 	if (is_cgroup_event(event))
4545 		perf_detach_cgroup(event);
4546 
4547 	if (!event->parent) {
4548 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4549 			put_callchain_buffers();
4550 	}
4551 
4552 	perf_event_free_bpf_prog(event);
4553 	perf_addr_filters_splice(event, NULL);
4554 	kfree(event->addr_filter_ranges);
4555 
4556 	if (event->destroy)
4557 		event->destroy(event);
4558 
4559 	/*
4560 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4561 	 * hw.target.
4562 	 */
4563 	if (event->hw.target)
4564 		put_task_struct(event->hw.target);
4565 
4566 	/*
4567 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4568 	 * all task references must be cleaned up.
4569 	 */
4570 	if (event->ctx)
4571 		put_ctx(event->ctx);
4572 
4573 	exclusive_event_destroy(event);
4574 	module_put(event->pmu->module);
4575 
4576 	call_rcu(&event->rcu_head, free_event_rcu);
4577 }
4578 
4579 /*
4580  * Used to free events which have a known refcount of 1, such as in error paths
4581  * where the event isn't exposed yet and inherited events.
4582  */
4583 static void free_event(struct perf_event *event)
4584 {
4585 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4586 				"unexpected event refcount: %ld; ptr=%p\n",
4587 				atomic_long_read(&event->refcount), event)) {
4588 		/* leak to avoid use-after-free */
4589 		return;
4590 	}
4591 
4592 	_free_event(event);
4593 }
4594 
4595 /*
4596  * Remove user event from the owner task.
4597  */
4598 static void perf_remove_from_owner(struct perf_event *event)
4599 {
4600 	struct task_struct *owner;
4601 
4602 	rcu_read_lock();
4603 	/*
4604 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4605 	 * observe !owner it means the list deletion is complete and we can
4606 	 * indeed free this event, otherwise we need to serialize on
4607 	 * owner->perf_event_mutex.
4608 	 */
4609 	owner = READ_ONCE(event->owner);
4610 	if (owner) {
4611 		/*
4612 		 * Since delayed_put_task_struct() also drops the last
4613 		 * task reference we can safely take a new reference
4614 		 * while holding the rcu_read_lock().
4615 		 */
4616 		get_task_struct(owner);
4617 	}
4618 	rcu_read_unlock();
4619 
4620 	if (owner) {
4621 		/*
4622 		 * If we're here through perf_event_exit_task() we're already
4623 		 * holding ctx->mutex which would be an inversion wrt. the
4624 		 * normal lock order.
4625 		 *
4626 		 * However we can safely take this lock because its the child
4627 		 * ctx->mutex.
4628 		 */
4629 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4630 
4631 		/*
4632 		 * We have to re-check the event->owner field, if it is cleared
4633 		 * we raced with perf_event_exit_task(), acquiring the mutex
4634 		 * ensured they're done, and we can proceed with freeing the
4635 		 * event.
4636 		 */
4637 		if (event->owner) {
4638 			list_del_init(&event->owner_entry);
4639 			smp_store_release(&event->owner, NULL);
4640 		}
4641 		mutex_unlock(&owner->perf_event_mutex);
4642 		put_task_struct(owner);
4643 	}
4644 }
4645 
4646 static void put_event(struct perf_event *event)
4647 {
4648 	if (!atomic_long_dec_and_test(&event->refcount))
4649 		return;
4650 
4651 	_free_event(event);
4652 }
4653 
4654 /*
4655  * Kill an event dead; while event:refcount will preserve the event
4656  * object, it will not preserve its functionality. Once the last 'user'
4657  * gives up the object, we'll destroy the thing.
4658  */
4659 int perf_event_release_kernel(struct perf_event *event)
4660 {
4661 	struct perf_event_context *ctx = event->ctx;
4662 	struct perf_event *child, *tmp;
4663 	LIST_HEAD(free_list);
4664 
4665 	/*
4666 	 * If we got here through err_file: fput(event_file); we will not have
4667 	 * attached to a context yet.
4668 	 */
4669 	if (!ctx) {
4670 		WARN_ON_ONCE(event->attach_state &
4671 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4672 		goto no_ctx;
4673 	}
4674 
4675 	if (!is_kernel_event(event))
4676 		perf_remove_from_owner(event);
4677 
4678 	ctx = perf_event_ctx_lock(event);
4679 	WARN_ON_ONCE(ctx->parent_ctx);
4680 	perf_remove_from_context(event, DETACH_GROUP);
4681 
4682 	raw_spin_lock_irq(&ctx->lock);
4683 	/*
4684 	 * Mark this event as STATE_DEAD, there is no external reference to it
4685 	 * anymore.
4686 	 *
4687 	 * Anybody acquiring event->child_mutex after the below loop _must_
4688 	 * also see this, most importantly inherit_event() which will avoid
4689 	 * placing more children on the list.
4690 	 *
4691 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4692 	 * child events.
4693 	 */
4694 	event->state = PERF_EVENT_STATE_DEAD;
4695 	raw_spin_unlock_irq(&ctx->lock);
4696 
4697 	perf_event_ctx_unlock(event, ctx);
4698 
4699 again:
4700 	mutex_lock(&event->child_mutex);
4701 	list_for_each_entry(child, &event->child_list, child_list) {
4702 
4703 		/*
4704 		 * Cannot change, child events are not migrated, see the
4705 		 * comment with perf_event_ctx_lock_nested().
4706 		 */
4707 		ctx = READ_ONCE(child->ctx);
4708 		/*
4709 		 * Since child_mutex nests inside ctx::mutex, we must jump
4710 		 * through hoops. We start by grabbing a reference on the ctx.
4711 		 *
4712 		 * Since the event cannot get freed while we hold the
4713 		 * child_mutex, the context must also exist and have a !0
4714 		 * reference count.
4715 		 */
4716 		get_ctx(ctx);
4717 
4718 		/*
4719 		 * Now that we have a ctx ref, we can drop child_mutex, and
4720 		 * acquire ctx::mutex without fear of it going away. Then we
4721 		 * can re-acquire child_mutex.
4722 		 */
4723 		mutex_unlock(&event->child_mutex);
4724 		mutex_lock(&ctx->mutex);
4725 		mutex_lock(&event->child_mutex);
4726 
4727 		/*
4728 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4729 		 * state, if child is still the first entry, it didn't get freed
4730 		 * and we can continue doing so.
4731 		 */
4732 		tmp = list_first_entry_or_null(&event->child_list,
4733 					       struct perf_event, child_list);
4734 		if (tmp == child) {
4735 			perf_remove_from_context(child, DETACH_GROUP);
4736 			list_move(&child->child_list, &free_list);
4737 			/*
4738 			 * This matches the refcount bump in inherit_event();
4739 			 * this can't be the last reference.
4740 			 */
4741 			put_event(event);
4742 		}
4743 
4744 		mutex_unlock(&event->child_mutex);
4745 		mutex_unlock(&ctx->mutex);
4746 		put_ctx(ctx);
4747 		goto again;
4748 	}
4749 	mutex_unlock(&event->child_mutex);
4750 
4751 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4752 		void *var = &child->ctx->refcount;
4753 
4754 		list_del(&child->child_list);
4755 		free_event(child);
4756 
4757 		/*
4758 		 * Wake any perf_event_free_task() waiting for this event to be
4759 		 * freed.
4760 		 */
4761 		smp_mb(); /* pairs with wait_var_event() */
4762 		wake_up_var(var);
4763 	}
4764 
4765 no_ctx:
4766 	put_event(event); /* Must be the 'last' reference */
4767 	return 0;
4768 }
4769 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4770 
4771 /*
4772  * Called when the last reference to the file is gone.
4773  */
4774 static int perf_release(struct inode *inode, struct file *file)
4775 {
4776 	perf_event_release_kernel(file->private_data);
4777 	return 0;
4778 }
4779 
4780 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4781 {
4782 	struct perf_event *child;
4783 	u64 total = 0;
4784 
4785 	*enabled = 0;
4786 	*running = 0;
4787 
4788 	mutex_lock(&event->child_mutex);
4789 
4790 	(void)perf_event_read(event, false);
4791 	total += perf_event_count(event);
4792 
4793 	*enabled += event->total_time_enabled +
4794 			atomic64_read(&event->child_total_time_enabled);
4795 	*running += event->total_time_running +
4796 			atomic64_read(&event->child_total_time_running);
4797 
4798 	list_for_each_entry(child, &event->child_list, child_list) {
4799 		(void)perf_event_read(child, false);
4800 		total += perf_event_count(child);
4801 		*enabled += child->total_time_enabled;
4802 		*running += child->total_time_running;
4803 	}
4804 	mutex_unlock(&event->child_mutex);
4805 
4806 	return total;
4807 }
4808 
4809 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4810 {
4811 	struct perf_event_context *ctx;
4812 	u64 count;
4813 
4814 	ctx = perf_event_ctx_lock(event);
4815 	count = __perf_event_read_value(event, enabled, running);
4816 	perf_event_ctx_unlock(event, ctx);
4817 
4818 	return count;
4819 }
4820 EXPORT_SYMBOL_GPL(perf_event_read_value);
4821 
4822 static int __perf_read_group_add(struct perf_event *leader,
4823 					u64 read_format, u64 *values)
4824 {
4825 	struct perf_event_context *ctx = leader->ctx;
4826 	struct perf_event *sub;
4827 	unsigned long flags;
4828 	int n = 1; /* skip @nr */
4829 	int ret;
4830 
4831 	ret = perf_event_read(leader, true);
4832 	if (ret)
4833 		return ret;
4834 
4835 	raw_spin_lock_irqsave(&ctx->lock, flags);
4836 
4837 	/*
4838 	 * Since we co-schedule groups, {enabled,running} times of siblings
4839 	 * will be identical to those of the leader, so we only publish one
4840 	 * set.
4841 	 */
4842 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4843 		values[n++] += leader->total_time_enabled +
4844 			atomic64_read(&leader->child_total_time_enabled);
4845 	}
4846 
4847 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4848 		values[n++] += leader->total_time_running +
4849 			atomic64_read(&leader->child_total_time_running);
4850 	}
4851 
4852 	/*
4853 	 * Write {count,id} tuples for every sibling.
4854 	 */
4855 	values[n++] += perf_event_count(leader);
4856 	if (read_format & PERF_FORMAT_ID)
4857 		values[n++] = primary_event_id(leader);
4858 
4859 	for_each_sibling_event(sub, leader) {
4860 		values[n++] += perf_event_count(sub);
4861 		if (read_format & PERF_FORMAT_ID)
4862 			values[n++] = primary_event_id(sub);
4863 	}
4864 
4865 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4866 	return 0;
4867 }
4868 
4869 static int perf_read_group(struct perf_event *event,
4870 				   u64 read_format, char __user *buf)
4871 {
4872 	struct perf_event *leader = event->group_leader, *child;
4873 	struct perf_event_context *ctx = leader->ctx;
4874 	int ret;
4875 	u64 *values;
4876 
4877 	lockdep_assert_held(&ctx->mutex);
4878 
4879 	values = kzalloc(event->read_size, GFP_KERNEL);
4880 	if (!values)
4881 		return -ENOMEM;
4882 
4883 	values[0] = 1 + leader->nr_siblings;
4884 
4885 	/*
4886 	 * By locking the child_mutex of the leader we effectively
4887 	 * lock the child list of all siblings.. XXX explain how.
4888 	 */
4889 	mutex_lock(&leader->child_mutex);
4890 
4891 	ret = __perf_read_group_add(leader, read_format, values);
4892 	if (ret)
4893 		goto unlock;
4894 
4895 	list_for_each_entry(child, &leader->child_list, child_list) {
4896 		ret = __perf_read_group_add(child, read_format, values);
4897 		if (ret)
4898 			goto unlock;
4899 	}
4900 
4901 	mutex_unlock(&leader->child_mutex);
4902 
4903 	ret = event->read_size;
4904 	if (copy_to_user(buf, values, event->read_size))
4905 		ret = -EFAULT;
4906 	goto out;
4907 
4908 unlock:
4909 	mutex_unlock(&leader->child_mutex);
4910 out:
4911 	kfree(values);
4912 	return ret;
4913 }
4914 
4915 static int perf_read_one(struct perf_event *event,
4916 				 u64 read_format, char __user *buf)
4917 {
4918 	u64 enabled, running;
4919 	u64 values[4];
4920 	int n = 0;
4921 
4922 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4923 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4924 		values[n++] = enabled;
4925 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4926 		values[n++] = running;
4927 	if (read_format & PERF_FORMAT_ID)
4928 		values[n++] = primary_event_id(event);
4929 
4930 	if (copy_to_user(buf, values, n * sizeof(u64)))
4931 		return -EFAULT;
4932 
4933 	return n * sizeof(u64);
4934 }
4935 
4936 static bool is_event_hup(struct perf_event *event)
4937 {
4938 	bool no_children;
4939 
4940 	if (event->state > PERF_EVENT_STATE_EXIT)
4941 		return false;
4942 
4943 	mutex_lock(&event->child_mutex);
4944 	no_children = list_empty(&event->child_list);
4945 	mutex_unlock(&event->child_mutex);
4946 	return no_children;
4947 }
4948 
4949 /*
4950  * Read the performance event - simple non blocking version for now
4951  */
4952 static ssize_t
4953 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4954 {
4955 	u64 read_format = event->attr.read_format;
4956 	int ret;
4957 
4958 	/*
4959 	 * Return end-of-file for a read on an event that is in
4960 	 * error state (i.e. because it was pinned but it couldn't be
4961 	 * scheduled on to the CPU at some point).
4962 	 */
4963 	if (event->state == PERF_EVENT_STATE_ERROR)
4964 		return 0;
4965 
4966 	if (count < event->read_size)
4967 		return -ENOSPC;
4968 
4969 	WARN_ON_ONCE(event->ctx->parent_ctx);
4970 	if (read_format & PERF_FORMAT_GROUP)
4971 		ret = perf_read_group(event, read_format, buf);
4972 	else
4973 		ret = perf_read_one(event, read_format, buf);
4974 
4975 	return ret;
4976 }
4977 
4978 static ssize_t
4979 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4980 {
4981 	struct perf_event *event = file->private_data;
4982 	struct perf_event_context *ctx;
4983 	int ret;
4984 
4985 	ctx = perf_event_ctx_lock(event);
4986 	ret = __perf_read(event, buf, count);
4987 	perf_event_ctx_unlock(event, ctx);
4988 
4989 	return ret;
4990 }
4991 
4992 static __poll_t perf_poll(struct file *file, poll_table *wait)
4993 {
4994 	struct perf_event *event = file->private_data;
4995 	struct ring_buffer *rb;
4996 	__poll_t events = EPOLLHUP;
4997 
4998 	poll_wait(file, &event->waitq, wait);
4999 
5000 	if (is_event_hup(event))
5001 		return events;
5002 
5003 	/*
5004 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5005 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5006 	 */
5007 	mutex_lock(&event->mmap_mutex);
5008 	rb = event->rb;
5009 	if (rb)
5010 		events = atomic_xchg(&rb->poll, 0);
5011 	mutex_unlock(&event->mmap_mutex);
5012 	return events;
5013 }
5014 
5015 static void _perf_event_reset(struct perf_event *event)
5016 {
5017 	(void)perf_event_read(event, false);
5018 	local64_set(&event->count, 0);
5019 	perf_event_update_userpage(event);
5020 }
5021 
5022 /*
5023  * Holding the top-level event's child_mutex means that any
5024  * descendant process that has inherited this event will block
5025  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5026  * task existence requirements of perf_event_enable/disable.
5027  */
5028 static void perf_event_for_each_child(struct perf_event *event,
5029 					void (*func)(struct perf_event *))
5030 {
5031 	struct perf_event *child;
5032 
5033 	WARN_ON_ONCE(event->ctx->parent_ctx);
5034 
5035 	mutex_lock(&event->child_mutex);
5036 	func(event);
5037 	list_for_each_entry(child, &event->child_list, child_list)
5038 		func(child);
5039 	mutex_unlock(&event->child_mutex);
5040 }
5041 
5042 static void perf_event_for_each(struct perf_event *event,
5043 				  void (*func)(struct perf_event *))
5044 {
5045 	struct perf_event_context *ctx = event->ctx;
5046 	struct perf_event *sibling;
5047 
5048 	lockdep_assert_held(&ctx->mutex);
5049 
5050 	event = event->group_leader;
5051 
5052 	perf_event_for_each_child(event, func);
5053 	for_each_sibling_event(sibling, event)
5054 		perf_event_for_each_child(sibling, func);
5055 }
5056 
5057 static void __perf_event_period(struct perf_event *event,
5058 				struct perf_cpu_context *cpuctx,
5059 				struct perf_event_context *ctx,
5060 				void *info)
5061 {
5062 	u64 value = *((u64 *)info);
5063 	bool active;
5064 
5065 	if (event->attr.freq) {
5066 		event->attr.sample_freq = value;
5067 	} else {
5068 		event->attr.sample_period = value;
5069 		event->hw.sample_period = value;
5070 	}
5071 
5072 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5073 	if (active) {
5074 		perf_pmu_disable(ctx->pmu);
5075 		/*
5076 		 * We could be throttled; unthrottle now to avoid the tick
5077 		 * trying to unthrottle while we already re-started the event.
5078 		 */
5079 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5080 			event->hw.interrupts = 0;
5081 			perf_log_throttle(event, 1);
5082 		}
5083 		event->pmu->stop(event, PERF_EF_UPDATE);
5084 	}
5085 
5086 	local64_set(&event->hw.period_left, 0);
5087 
5088 	if (active) {
5089 		event->pmu->start(event, PERF_EF_RELOAD);
5090 		perf_pmu_enable(ctx->pmu);
5091 	}
5092 }
5093 
5094 static int perf_event_check_period(struct perf_event *event, u64 value)
5095 {
5096 	return event->pmu->check_period(event, value);
5097 }
5098 
5099 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5100 {
5101 	u64 value;
5102 
5103 	if (!is_sampling_event(event))
5104 		return -EINVAL;
5105 
5106 	if (copy_from_user(&value, arg, sizeof(value)))
5107 		return -EFAULT;
5108 
5109 	if (!value)
5110 		return -EINVAL;
5111 
5112 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5113 		return -EINVAL;
5114 
5115 	if (perf_event_check_period(event, value))
5116 		return -EINVAL;
5117 
5118 	if (!event->attr.freq && (value & (1ULL << 63)))
5119 		return -EINVAL;
5120 
5121 	event_function_call(event, __perf_event_period, &value);
5122 
5123 	return 0;
5124 }
5125 
5126 static const struct file_operations perf_fops;
5127 
5128 static inline int perf_fget_light(int fd, struct fd *p)
5129 {
5130 	struct fd f = fdget(fd);
5131 	if (!f.file)
5132 		return -EBADF;
5133 
5134 	if (f.file->f_op != &perf_fops) {
5135 		fdput(f);
5136 		return -EBADF;
5137 	}
5138 	*p = f;
5139 	return 0;
5140 }
5141 
5142 static int perf_event_set_output(struct perf_event *event,
5143 				 struct perf_event *output_event);
5144 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5145 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5146 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5147 			  struct perf_event_attr *attr);
5148 
5149 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5150 {
5151 	void (*func)(struct perf_event *);
5152 	u32 flags = arg;
5153 
5154 	switch (cmd) {
5155 	case PERF_EVENT_IOC_ENABLE:
5156 		func = _perf_event_enable;
5157 		break;
5158 	case PERF_EVENT_IOC_DISABLE:
5159 		func = _perf_event_disable;
5160 		break;
5161 	case PERF_EVENT_IOC_RESET:
5162 		func = _perf_event_reset;
5163 		break;
5164 
5165 	case PERF_EVENT_IOC_REFRESH:
5166 		return _perf_event_refresh(event, arg);
5167 
5168 	case PERF_EVENT_IOC_PERIOD:
5169 		return perf_event_period(event, (u64 __user *)arg);
5170 
5171 	case PERF_EVENT_IOC_ID:
5172 	{
5173 		u64 id = primary_event_id(event);
5174 
5175 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5176 			return -EFAULT;
5177 		return 0;
5178 	}
5179 
5180 	case PERF_EVENT_IOC_SET_OUTPUT:
5181 	{
5182 		int ret;
5183 		if (arg != -1) {
5184 			struct perf_event *output_event;
5185 			struct fd output;
5186 			ret = perf_fget_light(arg, &output);
5187 			if (ret)
5188 				return ret;
5189 			output_event = output.file->private_data;
5190 			ret = perf_event_set_output(event, output_event);
5191 			fdput(output);
5192 		} else {
5193 			ret = perf_event_set_output(event, NULL);
5194 		}
5195 		return ret;
5196 	}
5197 
5198 	case PERF_EVENT_IOC_SET_FILTER:
5199 		return perf_event_set_filter(event, (void __user *)arg);
5200 
5201 	case PERF_EVENT_IOC_SET_BPF:
5202 		return perf_event_set_bpf_prog(event, arg);
5203 
5204 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5205 		struct ring_buffer *rb;
5206 
5207 		rcu_read_lock();
5208 		rb = rcu_dereference(event->rb);
5209 		if (!rb || !rb->nr_pages) {
5210 			rcu_read_unlock();
5211 			return -EINVAL;
5212 		}
5213 		rb_toggle_paused(rb, !!arg);
5214 		rcu_read_unlock();
5215 		return 0;
5216 	}
5217 
5218 	case PERF_EVENT_IOC_QUERY_BPF:
5219 		return perf_event_query_prog_array(event, (void __user *)arg);
5220 
5221 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5222 		struct perf_event_attr new_attr;
5223 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5224 					 &new_attr);
5225 
5226 		if (err)
5227 			return err;
5228 
5229 		return perf_event_modify_attr(event,  &new_attr);
5230 	}
5231 	default:
5232 		return -ENOTTY;
5233 	}
5234 
5235 	if (flags & PERF_IOC_FLAG_GROUP)
5236 		perf_event_for_each(event, func);
5237 	else
5238 		perf_event_for_each_child(event, func);
5239 
5240 	return 0;
5241 }
5242 
5243 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5244 {
5245 	struct perf_event *event = file->private_data;
5246 	struct perf_event_context *ctx;
5247 	long ret;
5248 
5249 	ctx = perf_event_ctx_lock(event);
5250 	ret = _perf_ioctl(event, cmd, arg);
5251 	perf_event_ctx_unlock(event, ctx);
5252 
5253 	return ret;
5254 }
5255 
5256 #ifdef CONFIG_COMPAT
5257 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5258 				unsigned long arg)
5259 {
5260 	switch (_IOC_NR(cmd)) {
5261 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5262 	case _IOC_NR(PERF_EVENT_IOC_ID):
5263 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5264 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5265 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5266 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5267 			cmd &= ~IOCSIZE_MASK;
5268 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5269 		}
5270 		break;
5271 	}
5272 	return perf_ioctl(file, cmd, arg);
5273 }
5274 #else
5275 # define perf_compat_ioctl NULL
5276 #endif
5277 
5278 int perf_event_task_enable(void)
5279 {
5280 	struct perf_event_context *ctx;
5281 	struct perf_event *event;
5282 
5283 	mutex_lock(&current->perf_event_mutex);
5284 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5285 		ctx = perf_event_ctx_lock(event);
5286 		perf_event_for_each_child(event, _perf_event_enable);
5287 		perf_event_ctx_unlock(event, ctx);
5288 	}
5289 	mutex_unlock(&current->perf_event_mutex);
5290 
5291 	return 0;
5292 }
5293 
5294 int perf_event_task_disable(void)
5295 {
5296 	struct perf_event_context *ctx;
5297 	struct perf_event *event;
5298 
5299 	mutex_lock(&current->perf_event_mutex);
5300 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5301 		ctx = perf_event_ctx_lock(event);
5302 		perf_event_for_each_child(event, _perf_event_disable);
5303 		perf_event_ctx_unlock(event, ctx);
5304 	}
5305 	mutex_unlock(&current->perf_event_mutex);
5306 
5307 	return 0;
5308 }
5309 
5310 static int perf_event_index(struct perf_event *event)
5311 {
5312 	if (event->hw.state & PERF_HES_STOPPED)
5313 		return 0;
5314 
5315 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5316 		return 0;
5317 
5318 	return event->pmu->event_idx(event);
5319 }
5320 
5321 static void calc_timer_values(struct perf_event *event,
5322 				u64 *now,
5323 				u64 *enabled,
5324 				u64 *running)
5325 {
5326 	u64 ctx_time;
5327 
5328 	*now = perf_clock();
5329 	ctx_time = event->shadow_ctx_time + *now;
5330 	__perf_update_times(event, ctx_time, enabled, running);
5331 }
5332 
5333 static void perf_event_init_userpage(struct perf_event *event)
5334 {
5335 	struct perf_event_mmap_page *userpg;
5336 	struct ring_buffer *rb;
5337 
5338 	rcu_read_lock();
5339 	rb = rcu_dereference(event->rb);
5340 	if (!rb)
5341 		goto unlock;
5342 
5343 	userpg = rb->user_page;
5344 
5345 	/* Allow new userspace to detect that bit 0 is deprecated */
5346 	userpg->cap_bit0_is_deprecated = 1;
5347 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5348 	userpg->data_offset = PAGE_SIZE;
5349 	userpg->data_size = perf_data_size(rb);
5350 
5351 unlock:
5352 	rcu_read_unlock();
5353 }
5354 
5355 void __weak arch_perf_update_userpage(
5356 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5357 {
5358 }
5359 
5360 /*
5361  * Callers need to ensure there can be no nesting of this function, otherwise
5362  * the seqlock logic goes bad. We can not serialize this because the arch
5363  * code calls this from NMI context.
5364  */
5365 void perf_event_update_userpage(struct perf_event *event)
5366 {
5367 	struct perf_event_mmap_page *userpg;
5368 	struct ring_buffer *rb;
5369 	u64 enabled, running, now;
5370 
5371 	rcu_read_lock();
5372 	rb = rcu_dereference(event->rb);
5373 	if (!rb)
5374 		goto unlock;
5375 
5376 	/*
5377 	 * compute total_time_enabled, total_time_running
5378 	 * based on snapshot values taken when the event
5379 	 * was last scheduled in.
5380 	 *
5381 	 * we cannot simply called update_context_time()
5382 	 * because of locking issue as we can be called in
5383 	 * NMI context
5384 	 */
5385 	calc_timer_values(event, &now, &enabled, &running);
5386 
5387 	userpg = rb->user_page;
5388 	/*
5389 	 * Disable preemption to guarantee consistent time stamps are stored to
5390 	 * the user page.
5391 	 */
5392 	preempt_disable();
5393 	++userpg->lock;
5394 	barrier();
5395 	userpg->index = perf_event_index(event);
5396 	userpg->offset = perf_event_count(event);
5397 	if (userpg->index)
5398 		userpg->offset -= local64_read(&event->hw.prev_count);
5399 
5400 	userpg->time_enabled = enabled +
5401 			atomic64_read(&event->child_total_time_enabled);
5402 
5403 	userpg->time_running = running +
5404 			atomic64_read(&event->child_total_time_running);
5405 
5406 	arch_perf_update_userpage(event, userpg, now);
5407 
5408 	barrier();
5409 	++userpg->lock;
5410 	preempt_enable();
5411 unlock:
5412 	rcu_read_unlock();
5413 }
5414 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5415 
5416 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5417 {
5418 	struct perf_event *event = vmf->vma->vm_file->private_data;
5419 	struct ring_buffer *rb;
5420 	vm_fault_t ret = VM_FAULT_SIGBUS;
5421 
5422 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5423 		if (vmf->pgoff == 0)
5424 			ret = 0;
5425 		return ret;
5426 	}
5427 
5428 	rcu_read_lock();
5429 	rb = rcu_dereference(event->rb);
5430 	if (!rb)
5431 		goto unlock;
5432 
5433 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5434 		goto unlock;
5435 
5436 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5437 	if (!vmf->page)
5438 		goto unlock;
5439 
5440 	get_page(vmf->page);
5441 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5442 	vmf->page->index   = vmf->pgoff;
5443 
5444 	ret = 0;
5445 unlock:
5446 	rcu_read_unlock();
5447 
5448 	return ret;
5449 }
5450 
5451 static void ring_buffer_attach(struct perf_event *event,
5452 			       struct ring_buffer *rb)
5453 {
5454 	struct ring_buffer *old_rb = NULL;
5455 	unsigned long flags;
5456 
5457 	if (event->rb) {
5458 		/*
5459 		 * Should be impossible, we set this when removing
5460 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5461 		 */
5462 		WARN_ON_ONCE(event->rcu_pending);
5463 
5464 		old_rb = event->rb;
5465 		spin_lock_irqsave(&old_rb->event_lock, flags);
5466 		list_del_rcu(&event->rb_entry);
5467 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5468 
5469 		event->rcu_batches = get_state_synchronize_rcu();
5470 		event->rcu_pending = 1;
5471 	}
5472 
5473 	if (rb) {
5474 		if (event->rcu_pending) {
5475 			cond_synchronize_rcu(event->rcu_batches);
5476 			event->rcu_pending = 0;
5477 		}
5478 
5479 		spin_lock_irqsave(&rb->event_lock, flags);
5480 		list_add_rcu(&event->rb_entry, &rb->event_list);
5481 		spin_unlock_irqrestore(&rb->event_lock, flags);
5482 	}
5483 
5484 	/*
5485 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5486 	 * before swizzling the event::rb pointer; if it's getting
5487 	 * unmapped, its aux_mmap_count will be 0 and it won't
5488 	 * restart. See the comment in __perf_pmu_output_stop().
5489 	 *
5490 	 * Data will inevitably be lost when set_output is done in
5491 	 * mid-air, but then again, whoever does it like this is
5492 	 * not in for the data anyway.
5493 	 */
5494 	if (has_aux(event))
5495 		perf_event_stop(event, 0);
5496 
5497 	rcu_assign_pointer(event->rb, rb);
5498 
5499 	if (old_rb) {
5500 		ring_buffer_put(old_rb);
5501 		/*
5502 		 * Since we detached before setting the new rb, so that we
5503 		 * could attach the new rb, we could have missed a wakeup.
5504 		 * Provide it now.
5505 		 */
5506 		wake_up_all(&event->waitq);
5507 	}
5508 }
5509 
5510 static void ring_buffer_wakeup(struct perf_event *event)
5511 {
5512 	struct ring_buffer *rb;
5513 
5514 	rcu_read_lock();
5515 	rb = rcu_dereference(event->rb);
5516 	if (rb) {
5517 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5518 			wake_up_all(&event->waitq);
5519 	}
5520 	rcu_read_unlock();
5521 }
5522 
5523 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5524 {
5525 	struct ring_buffer *rb;
5526 
5527 	rcu_read_lock();
5528 	rb = rcu_dereference(event->rb);
5529 	if (rb) {
5530 		if (!refcount_inc_not_zero(&rb->refcount))
5531 			rb = NULL;
5532 	}
5533 	rcu_read_unlock();
5534 
5535 	return rb;
5536 }
5537 
5538 void ring_buffer_put(struct ring_buffer *rb)
5539 {
5540 	if (!refcount_dec_and_test(&rb->refcount))
5541 		return;
5542 
5543 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5544 
5545 	call_rcu(&rb->rcu_head, rb_free_rcu);
5546 }
5547 
5548 static void perf_mmap_open(struct vm_area_struct *vma)
5549 {
5550 	struct perf_event *event = vma->vm_file->private_data;
5551 
5552 	atomic_inc(&event->mmap_count);
5553 	atomic_inc(&event->rb->mmap_count);
5554 
5555 	if (vma->vm_pgoff)
5556 		atomic_inc(&event->rb->aux_mmap_count);
5557 
5558 	if (event->pmu->event_mapped)
5559 		event->pmu->event_mapped(event, vma->vm_mm);
5560 }
5561 
5562 static void perf_pmu_output_stop(struct perf_event *event);
5563 
5564 /*
5565  * A buffer can be mmap()ed multiple times; either directly through the same
5566  * event, or through other events by use of perf_event_set_output().
5567  *
5568  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5569  * the buffer here, where we still have a VM context. This means we need
5570  * to detach all events redirecting to us.
5571  */
5572 static void perf_mmap_close(struct vm_area_struct *vma)
5573 {
5574 	struct perf_event *event = vma->vm_file->private_data;
5575 
5576 	struct ring_buffer *rb = ring_buffer_get(event);
5577 	struct user_struct *mmap_user = rb->mmap_user;
5578 	int mmap_locked = rb->mmap_locked;
5579 	unsigned long size = perf_data_size(rb);
5580 
5581 	if (event->pmu->event_unmapped)
5582 		event->pmu->event_unmapped(event, vma->vm_mm);
5583 
5584 	/*
5585 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5586 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5587 	 * serialize with perf_mmap here.
5588 	 */
5589 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5590 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5591 		/*
5592 		 * Stop all AUX events that are writing to this buffer,
5593 		 * so that we can free its AUX pages and corresponding PMU
5594 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5595 		 * they won't start any more (see perf_aux_output_begin()).
5596 		 */
5597 		perf_pmu_output_stop(event);
5598 
5599 		/* now it's safe to free the pages */
5600 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5601 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5602 
5603 		/* this has to be the last one */
5604 		rb_free_aux(rb);
5605 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5606 
5607 		mutex_unlock(&event->mmap_mutex);
5608 	}
5609 
5610 	atomic_dec(&rb->mmap_count);
5611 
5612 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5613 		goto out_put;
5614 
5615 	ring_buffer_attach(event, NULL);
5616 	mutex_unlock(&event->mmap_mutex);
5617 
5618 	/* If there's still other mmap()s of this buffer, we're done. */
5619 	if (atomic_read(&rb->mmap_count))
5620 		goto out_put;
5621 
5622 	/*
5623 	 * No other mmap()s, detach from all other events that might redirect
5624 	 * into the now unreachable buffer. Somewhat complicated by the
5625 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5626 	 */
5627 again:
5628 	rcu_read_lock();
5629 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5630 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5631 			/*
5632 			 * This event is en-route to free_event() which will
5633 			 * detach it and remove it from the list.
5634 			 */
5635 			continue;
5636 		}
5637 		rcu_read_unlock();
5638 
5639 		mutex_lock(&event->mmap_mutex);
5640 		/*
5641 		 * Check we didn't race with perf_event_set_output() which can
5642 		 * swizzle the rb from under us while we were waiting to
5643 		 * acquire mmap_mutex.
5644 		 *
5645 		 * If we find a different rb; ignore this event, a next
5646 		 * iteration will no longer find it on the list. We have to
5647 		 * still restart the iteration to make sure we're not now
5648 		 * iterating the wrong list.
5649 		 */
5650 		if (event->rb == rb)
5651 			ring_buffer_attach(event, NULL);
5652 
5653 		mutex_unlock(&event->mmap_mutex);
5654 		put_event(event);
5655 
5656 		/*
5657 		 * Restart the iteration; either we're on the wrong list or
5658 		 * destroyed its integrity by doing a deletion.
5659 		 */
5660 		goto again;
5661 	}
5662 	rcu_read_unlock();
5663 
5664 	/*
5665 	 * It could be there's still a few 0-ref events on the list; they'll
5666 	 * get cleaned up by free_event() -- they'll also still have their
5667 	 * ref on the rb and will free it whenever they are done with it.
5668 	 *
5669 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5670 	 * undo the VM accounting.
5671 	 */
5672 
5673 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5674 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5675 	free_uid(mmap_user);
5676 
5677 out_put:
5678 	ring_buffer_put(rb); /* could be last */
5679 }
5680 
5681 static const struct vm_operations_struct perf_mmap_vmops = {
5682 	.open		= perf_mmap_open,
5683 	.close		= perf_mmap_close, /* non mergeable */
5684 	.fault		= perf_mmap_fault,
5685 	.page_mkwrite	= perf_mmap_fault,
5686 };
5687 
5688 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5689 {
5690 	struct perf_event *event = file->private_data;
5691 	unsigned long user_locked, user_lock_limit;
5692 	struct user_struct *user = current_user();
5693 	unsigned long locked, lock_limit;
5694 	struct ring_buffer *rb = NULL;
5695 	unsigned long vma_size;
5696 	unsigned long nr_pages;
5697 	long user_extra = 0, extra = 0;
5698 	int ret = 0, flags = 0;
5699 
5700 	/*
5701 	 * Don't allow mmap() of inherited per-task counters. This would
5702 	 * create a performance issue due to all children writing to the
5703 	 * same rb.
5704 	 */
5705 	if (event->cpu == -1 && event->attr.inherit)
5706 		return -EINVAL;
5707 
5708 	if (!(vma->vm_flags & VM_SHARED))
5709 		return -EINVAL;
5710 
5711 	vma_size = vma->vm_end - vma->vm_start;
5712 
5713 	if (vma->vm_pgoff == 0) {
5714 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5715 	} else {
5716 		/*
5717 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5718 		 * mapped, all subsequent mappings should have the same size
5719 		 * and offset. Must be above the normal perf buffer.
5720 		 */
5721 		u64 aux_offset, aux_size;
5722 
5723 		if (!event->rb)
5724 			return -EINVAL;
5725 
5726 		nr_pages = vma_size / PAGE_SIZE;
5727 
5728 		mutex_lock(&event->mmap_mutex);
5729 		ret = -EINVAL;
5730 
5731 		rb = event->rb;
5732 		if (!rb)
5733 			goto aux_unlock;
5734 
5735 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5736 		aux_size = READ_ONCE(rb->user_page->aux_size);
5737 
5738 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5739 			goto aux_unlock;
5740 
5741 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5742 			goto aux_unlock;
5743 
5744 		/* already mapped with a different offset */
5745 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5746 			goto aux_unlock;
5747 
5748 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5749 			goto aux_unlock;
5750 
5751 		/* already mapped with a different size */
5752 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5753 			goto aux_unlock;
5754 
5755 		if (!is_power_of_2(nr_pages))
5756 			goto aux_unlock;
5757 
5758 		if (!atomic_inc_not_zero(&rb->mmap_count))
5759 			goto aux_unlock;
5760 
5761 		if (rb_has_aux(rb)) {
5762 			atomic_inc(&rb->aux_mmap_count);
5763 			ret = 0;
5764 			goto unlock;
5765 		}
5766 
5767 		atomic_set(&rb->aux_mmap_count, 1);
5768 		user_extra = nr_pages;
5769 
5770 		goto accounting;
5771 	}
5772 
5773 	/*
5774 	 * If we have rb pages ensure they're a power-of-two number, so we
5775 	 * can do bitmasks instead of modulo.
5776 	 */
5777 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5778 		return -EINVAL;
5779 
5780 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5781 		return -EINVAL;
5782 
5783 	WARN_ON_ONCE(event->ctx->parent_ctx);
5784 again:
5785 	mutex_lock(&event->mmap_mutex);
5786 	if (event->rb) {
5787 		if (event->rb->nr_pages != nr_pages) {
5788 			ret = -EINVAL;
5789 			goto unlock;
5790 		}
5791 
5792 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5793 			/*
5794 			 * Raced against perf_mmap_close() through
5795 			 * perf_event_set_output(). Try again, hope for better
5796 			 * luck.
5797 			 */
5798 			mutex_unlock(&event->mmap_mutex);
5799 			goto again;
5800 		}
5801 
5802 		goto unlock;
5803 	}
5804 
5805 	user_extra = nr_pages + 1;
5806 
5807 accounting:
5808 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5809 
5810 	/*
5811 	 * Increase the limit linearly with more CPUs:
5812 	 */
5813 	user_lock_limit *= num_online_cpus();
5814 
5815 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5816 
5817 	if (user_locked > user_lock_limit)
5818 		extra = user_locked - user_lock_limit;
5819 
5820 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5821 	lock_limit >>= PAGE_SHIFT;
5822 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5823 
5824 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5825 		!capable(CAP_IPC_LOCK)) {
5826 		ret = -EPERM;
5827 		goto unlock;
5828 	}
5829 
5830 	WARN_ON(!rb && event->rb);
5831 
5832 	if (vma->vm_flags & VM_WRITE)
5833 		flags |= RING_BUFFER_WRITABLE;
5834 
5835 	if (!rb) {
5836 		rb = rb_alloc(nr_pages,
5837 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5838 			      event->cpu, flags);
5839 
5840 		if (!rb) {
5841 			ret = -ENOMEM;
5842 			goto unlock;
5843 		}
5844 
5845 		atomic_set(&rb->mmap_count, 1);
5846 		rb->mmap_user = get_current_user();
5847 		rb->mmap_locked = extra;
5848 
5849 		ring_buffer_attach(event, rb);
5850 
5851 		perf_event_init_userpage(event);
5852 		perf_event_update_userpage(event);
5853 	} else {
5854 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5855 				   event->attr.aux_watermark, flags);
5856 		if (!ret)
5857 			rb->aux_mmap_locked = extra;
5858 	}
5859 
5860 unlock:
5861 	if (!ret) {
5862 		atomic_long_add(user_extra, &user->locked_vm);
5863 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5864 
5865 		atomic_inc(&event->mmap_count);
5866 	} else if (rb) {
5867 		atomic_dec(&rb->mmap_count);
5868 	}
5869 aux_unlock:
5870 	mutex_unlock(&event->mmap_mutex);
5871 
5872 	/*
5873 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5874 	 * vma.
5875 	 */
5876 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5877 	vma->vm_ops = &perf_mmap_vmops;
5878 
5879 	if (event->pmu->event_mapped)
5880 		event->pmu->event_mapped(event, vma->vm_mm);
5881 
5882 	return ret;
5883 }
5884 
5885 static int perf_fasync(int fd, struct file *filp, int on)
5886 {
5887 	struct inode *inode = file_inode(filp);
5888 	struct perf_event *event = filp->private_data;
5889 	int retval;
5890 
5891 	inode_lock(inode);
5892 	retval = fasync_helper(fd, filp, on, &event->fasync);
5893 	inode_unlock(inode);
5894 
5895 	if (retval < 0)
5896 		return retval;
5897 
5898 	return 0;
5899 }
5900 
5901 static const struct file_operations perf_fops = {
5902 	.llseek			= no_llseek,
5903 	.release		= perf_release,
5904 	.read			= perf_read,
5905 	.poll			= perf_poll,
5906 	.unlocked_ioctl		= perf_ioctl,
5907 	.compat_ioctl		= perf_compat_ioctl,
5908 	.mmap			= perf_mmap,
5909 	.fasync			= perf_fasync,
5910 };
5911 
5912 /*
5913  * Perf event wakeup
5914  *
5915  * If there's data, ensure we set the poll() state and publish everything
5916  * to user-space before waking everybody up.
5917  */
5918 
5919 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5920 {
5921 	/* only the parent has fasync state */
5922 	if (event->parent)
5923 		event = event->parent;
5924 	return &event->fasync;
5925 }
5926 
5927 void perf_event_wakeup(struct perf_event *event)
5928 {
5929 	ring_buffer_wakeup(event);
5930 
5931 	if (event->pending_kill) {
5932 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5933 		event->pending_kill = 0;
5934 	}
5935 }
5936 
5937 static void perf_pending_event_disable(struct perf_event *event)
5938 {
5939 	int cpu = READ_ONCE(event->pending_disable);
5940 
5941 	if (cpu < 0)
5942 		return;
5943 
5944 	if (cpu == smp_processor_id()) {
5945 		WRITE_ONCE(event->pending_disable, -1);
5946 		perf_event_disable_local(event);
5947 		return;
5948 	}
5949 
5950 	/*
5951 	 *  CPU-A			CPU-B
5952 	 *
5953 	 *  perf_event_disable_inatomic()
5954 	 *    @pending_disable = CPU-A;
5955 	 *    irq_work_queue();
5956 	 *
5957 	 *  sched-out
5958 	 *    @pending_disable = -1;
5959 	 *
5960 	 *				sched-in
5961 	 *				perf_event_disable_inatomic()
5962 	 *				  @pending_disable = CPU-B;
5963 	 *				  irq_work_queue(); // FAILS
5964 	 *
5965 	 *  irq_work_run()
5966 	 *    perf_pending_event()
5967 	 *
5968 	 * But the event runs on CPU-B and wants disabling there.
5969 	 */
5970 	irq_work_queue_on(&event->pending, cpu);
5971 }
5972 
5973 static void perf_pending_event(struct irq_work *entry)
5974 {
5975 	struct perf_event *event = container_of(entry, struct perf_event, pending);
5976 	int rctx;
5977 
5978 	rctx = perf_swevent_get_recursion_context();
5979 	/*
5980 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5981 	 * and we won't recurse 'further'.
5982 	 */
5983 
5984 	perf_pending_event_disable(event);
5985 
5986 	if (event->pending_wakeup) {
5987 		event->pending_wakeup = 0;
5988 		perf_event_wakeup(event);
5989 	}
5990 
5991 	if (rctx >= 0)
5992 		perf_swevent_put_recursion_context(rctx);
5993 }
5994 
5995 /*
5996  * We assume there is only KVM supporting the callbacks.
5997  * Later on, we might change it to a list if there is
5998  * another virtualization implementation supporting the callbacks.
5999  */
6000 struct perf_guest_info_callbacks *perf_guest_cbs;
6001 
6002 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6003 {
6004 	perf_guest_cbs = cbs;
6005 	return 0;
6006 }
6007 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6008 
6009 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6010 {
6011 	perf_guest_cbs = NULL;
6012 	return 0;
6013 }
6014 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6015 
6016 static void
6017 perf_output_sample_regs(struct perf_output_handle *handle,
6018 			struct pt_regs *regs, u64 mask)
6019 {
6020 	int bit;
6021 	DECLARE_BITMAP(_mask, 64);
6022 
6023 	bitmap_from_u64(_mask, mask);
6024 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6025 		u64 val;
6026 
6027 		val = perf_reg_value(regs, bit);
6028 		perf_output_put(handle, val);
6029 	}
6030 }
6031 
6032 static void perf_sample_regs_user(struct perf_regs *regs_user,
6033 				  struct pt_regs *regs,
6034 				  struct pt_regs *regs_user_copy)
6035 {
6036 	if (user_mode(regs)) {
6037 		regs_user->abi = perf_reg_abi(current);
6038 		regs_user->regs = regs;
6039 	} else if (!(current->flags & PF_KTHREAD)) {
6040 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6041 	} else {
6042 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6043 		regs_user->regs = NULL;
6044 	}
6045 }
6046 
6047 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6048 				  struct pt_regs *regs)
6049 {
6050 	regs_intr->regs = regs;
6051 	regs_intr->abi  = perf_reg_abi(current);
6052 }
6053 
6054 
6055 /*
6056  * Get remaining task size from user stack pointer.
6057  *
6058  * It'd be better to take stack vma map and limit this more
6059  * precisly, but there's no way to get it safely under interrupt,
6060  * so using TASK_SIZE as limit.
6061  */
6062 static u64 perf_ustack_task_size(struct pt_regs *regs)
6063 {
6064 	unsigned long addr = perf_user_stack_pointer(regs);
6065 
6066 	if (!addr || addr >= TASK_SIZE)
6067 		return 0;
6068 
6069 	return TASK_SIZE - addr;
6070 }
6071 
6072 static u16
6073 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6074 			struct pt_regs *regs)
6075 {
6076 	u64 task_size;
6077 
6078 	/* No regs, no stack pointer, no dump. */
6079 	if (!regs)
6080 		return 0;
6081 
6082 	/*
6083 	 * Check if we fit in with the requested stack size into the:
6084 	 * - TASK_SIZE
6085 	 *   If we don't, we limit the size to the TASK_SIZE.
6086 	 *
6087 	 * - remaining sample size
6088 	 *   If we don't, we customize the stack size to
6089 	 *   fit in to the remaining sample size.
6090 	 */
6091 
6092 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6093 	stack_size = min(stack_size, (u16) task_size);
6094 
6095 	/* Current header size plus static size and dynamic size. */
6096 	header_size += 2 * sizeof(u64);
6097 
6098 	/* Do we fit in with the current stack dump size? */
6099 	if ((u16) (header_size + stack_size) < header_size) {
6100 		/*
6101 		 * If we overflow the maximum size for the sample,
6102 		 * we customize the stack dump size to fit in.
6103 		 */
6104 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6105 		stack_size = round_up(stack_size, sizeof(u64));
6106 	}
6107 
6108 	return stack_size;
6109 }
6110 
6111 static void
6112 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6113 			  struct pt_regs *regs)
6114 {
6115 	/* Case of a kernel thread, nothing to dump */
6116 	if (!regs) {
6117 		u64 size = 0;
6118 		perf_output_put(handle, size);
6119 	} else {
6120 		unsigned long sp;
6121 		unsigned int rem;
6122 		u64 dyn_size;
6123 		mm_segment_t fs;
6124 
6125 		/*
6126 		 * We dump:
6127 		 * static size
6128 		 *   - the size requested by user or the best one we can fit
6129 		 *     in to the sample max size
6130 		 * data
6131 		 *   - user stack dump data
6132 		 * dynamic size
6133 		 *   - the actual dumped size
6134 		 */
6135 
6136 		/* Static size. */
6137 		perf_output_put(handle, dump_size);
6138 
6139 		/* Data. */
6140 		sp = perf_user_stack_pointer(regs);
6141 		fs = get_fs();
6142 		set_fs(USER_DS);
6143 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6144 		set_fs(fs);
6145 		dyn_size = dump_size - rem;
6146 
6147 		perf_output_skip(handle, rem);
6148 
6149 		/* Dynamic size. */
6150 		perf_output_put(handle, dyn_size);
6151 	}
6152 }
6153 
6154 static void __perf_event_header__init_id(struct perf_event_header *header,
6155 					 struct perf_sample_data *data,
6156 					 struct perf_event *event)
6157 {
6158 	u64 sample_type = event->attr.sample_type;
6159 
6160 	data->type = sample_type;
6161 	header->size += event->id_header_size;
6162 
6163 	if (sample_type & PERF_SAMPLE_TID) {
6164 		/* namespace issues */
6165 		data->tid_entry.pid = perf_event_pid(event, current);
6166 		data->tid_entry.tid = perf_event_tid(event, current);
6167 	}
6168 
6169 	if (sample_type & PERF_SAMPLE_TIME)
6170 		data->time = perf_event_clock(event);
6171 
6172 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6173 		data->id = primary_event_id(event);
6174 
6175 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6176 		data->stream_id = event->id;
6177 
6178 	if (sample_type & PERF_SAMPLE_CPU) {
6179 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6180 		data->cpu_entry.reserved = 0;
6181 	}
6182 }
6183 
6184 void perf_event_header__init_id(struct perf_event_header *header,
6185 				struct perf_sample_data *data,
6186 				struct perf_event *event)
6187 {
6188 	if (event->attr.sample_id_all)
6189 		__perf_event_header__init_id(header, data, event);
6190 }
6191 
6192 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6193 					   struct perf_sample_data *data)
6194 {
6195 	u64 sample_type = data->type;
6196 
6197 	if (sample_type & PERF_SAMPLE_TID)
6198 		perf_output_put(handle, data->tid_entry);
6199 
6200 	if (sample_type & PERF_SAMPLE_TIME)
6201 		perf_output_put(handle, data->time);
6202 
6203 	if (sample_type & PERF_SAMPLE_ID)
6204 		perf_output_put(handle, data->id);
6205 
6206 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6207 		perf_output_put(handle, data->stream_id);
6208 
6209 	if (sample_type & PERF_SAMPLE_CPU)
6210 		perf_output_put(handle, data->cpu_entry);
6211 
6212 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6213 		perf_output_put(handle, data->id);
6214 }
6215 
6216 void perf_event__output_id_sample(struct perf_event *event,
6217 				  struct perf_output_handle *handle,
6218 				  struct perf_sample_data *sample)
6219 {
6220 	if (event->attr.sample_id_all)
6221 		__perf_event__output_id_sample(handle, sample);
6222 }
6223 
6224 static void perf_output_read_one(struct perf_output_handle *handle,
6225 				 struct perf_event *event,
6226 				 u64 enabled, u64 running)
6227 {
6228 	u64 read_format = event->attr.read_format;
6229 	u64 values[4];
6230 	int n = 0;
6231 
6232 	values[n++] = perf_event_count(event);
6233 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6234 		values[n++] = enabled +
6235 			atomic64_read(&event->child_total_time_enabled);
6236 	}
6237 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6238 		values[n++] = running +
6239 			atomic64_read(&event->child_total_time_running);
6240 	}
6241 	if (read_format & PERF_FORMAT_ID)
6242 		values[n++] = primary_event_id(event);
6243 
6244 	__output_copy(handle, values, n * sizeof(u64));
6245 }
6246 
6247 static void perf_output_read_group(struct perf_output_handle *handle,
6248 			    struct perf_event *event,
6249 			    u64 enabled, u64 running)
6250 {
6251 	struct perf_event *leader = event->group_leader, *sub;
6252 	u64 read_format = event->attr.read_format;
6253 	u64 values[5];
6254 	int n = 0;
6255 
6256 	values[n++] = 1 + leader->nr_siblings;
6257 
6258 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6259 		values[n++] = enabled;
6260 
6261 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6262 		values[n++] = running;
6263 
6264 	if ((leader != event) &&
6265 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6266 		leader->pmu->read(leader);
6267 
6268 	values[n++] = perf_event_count(leader);
6269 	if (read_format & PERF_FORMAT_ID)
6270 		values[n++] = primary_event_id(leader);
6271 
6272 	__output_copy(handle, values, n * sizeof(u64));
6273 
6274 	for_each_sibling_event(sub, leader) {
6275 		n = 0;
6276 
6277 		if ((sub != event) &&
6278 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6279 			sub->pmu->read(sub);
6280 
6281 		values[n++] = perf_event_count(sub);
6282 		if (read_format & PERF_FORMAT_ID)
6283 			values[n++] = primary_event_id(sub);
6284 
6285 		__output_copy(handle, values, n * sizeof(u64));
6286 	}
6287 }
6288 
6289 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6290 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6291 
6292 /*
6293  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6294  *
6295  * The problem is that its both hard and excessively expensive to iterate the
6296  * child list, not to mention that its impossible to IPI the children running
6297  * on another CPU, from interrupt/NMI context.
6298  */
6299 static void perf_output_read(struct perf_output_handle *handle,
6300 			     struct perf_event *event)
6301 {
6302 	u64 enabled = 0, running = 0, now;
6303 	u64 read_format = event->attr.read_format;
6304 
6305 	/*
6306 	 * compute total_time_enabled, total_time_running
6307 	 * based on snapshot values taken when the event
6308 	 * was last scheduled in.
6309 	 *
6310 	 * we cannot simply called update_context_time()
6311 	 * because of locking issue as we are called in
6312 	 * NMI context
6313 	 */
6314 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6315 		calc_timer_values(event, &now, &enabled, &running);
6316 
6317 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6318 		perf_output_read_group(handle, event, enabled, running);
6319 	else
6320 		perf_output_read_one(handle, event, enabled, running);
6321 }
6322 
6323 void perf_output_sample(struct perf_output_handle *handle,
6324 			struct perf_event_header *header,
6325 			struct perf_sample_data *data,
6326 			struct perf_event *event)
6327 {
6328 	u64 sample_type = data->type;
6329 
6330 	perf_output_put(handle, *header);
6331 
6332 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6333 		perf_output_put(handle, data->id);
6334 
6335 	if (sample_type & PERF_SAMPLE_IP)
6336 		perf_output_put(handle, data->ip);
6337 
6338 	if (sample_type & PERF_SAMPLE_TID)
6339 		perf_output_put(handle, data->tid_entry);
6340 
6341 	if (sample_type & PERF_SAMPLE_TIME)
6342 		perf_output_put(handle, data->time);
6343 
6344 	if (sample_type & PERF_SAMPLE_ADDR)
6345 		perf_output_put(handle, data->addr);
6346 
6347 	if (sample_type & PERF_SAMPLE_ID)
6348 		perf_output_put(handle, data->id);
6349 
6350 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6351 		perf_output_put(handle, data->stream_id);
6352 
6353 	if (sample_type & PERF_SAMPLE_CPU)
6354 		perf_output_put(handle, data->cpu_entry);
6355 
6356 	if (sample_type & PERF_SAMPLE_PERIOD)
6357 		perf_output_put(handle, data->period);
6358 
6359 	if (sample_type & PERF_SAMPLE_READ)
6360 		perf_output_read(handle, event);
6361 
6362 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6363 		int size = 1;
6364 
6365 		size += data->callchain->nr;
6366 		size *= sizeof(u64);
6367 		__output_copy(handle, data->callchain, size);
6368 	}
6369 
6370 	if (sample_type & PERF_SAMPLE_RAW) {
6371 		struct perf_raw_record *raw = data->raw;
6372 
6373 		if (raw) {
6374 			struct perf_raw_frag *frag = &raw->frag;
6375 
6376 			perf_output_put(handle, raw->size);
6377 			do {
6378 				if (frag->copy) {
6379 					__output_custom(handle, frag->copy,
6380 							frag->data, frag->size);
6381 				} else {
6382 					__output_copy(handle, frag->data,
6383 						      frag->size);
6384 				}
6385 				if (perf_raw_frag_last(frag))
6386 					break;
6387 				frag = frag->next;
6388 			} while (1);
6389 			if (frag->pad)
6390 				__output_skip(handle, NULL, frag->pad);
6391 		} else {
6392 			struct {
6393 				u32	size;
6394 				u32	data;
6395 			} raw = {
6396 				.size = sizeof(u32),
6397 				.data = 0,
6398 			};
6399 			perf_output_put(handle, raw);
6400 		}
6401 	}
6402 
6403 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6404 		if (data->br_stack) {
6405 			size_t size;
6406 
6407 			size = data->br_stack->nr
6408 			     * sizeof(struct perf_branch_entry);
6409 
6410 			perf_output_put(handle, data->br_stack->nr);
6411 			perf_output_copy(handle, data->br_stack->entries, size);
6412 		} else {
6413 			/*
6414 			 * we always store at least the value of nr
6415 			 */
6416 			u64 nr = 0;
6417 			perf_output_put(handle, nr);
6418 		}
6419 	}
6420 
6421 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6422 		u64 abi = data->regs_user.abi;
6423 
6424 		/*
6425 		 * If there are no regs to dump, notice it through
6426 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6427 		 */
6428 		perf_output_put(handle, abi);
6429 
6430 		if (abi) {
6431 			u64 mask = event->attr.sample_regs_user;
6432 			perf_output_sample_regs(handle,
6433 						data->regs_user.regs,
6434 						mask);
6435 		}
6436 	}
6437 
6438 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6439 		perf_output_sample_ustack(handle,
6440 					  data->stack_user_size,
6441 					  data->regs_user.regs);
6442 	}
6443 
6444 	if (sample_type & PERF_SAMPLE_WEIGHT)
6445 		perf_output_put(handle, data->weight);
6446 
6447 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6448 		perf_output_put(handle, data->data_src.val);
6449 
6450 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6451 		perf_output_put(handle, data->txn);
6452 
6453 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6454 		u64 abi = data->regs_intr.abi;
6455 		/*
6456 		 * If there are no regs to dump, notice it through
6457 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6458 		 */
6459 		perf_output_put(handle, abi);
6460 
6461 		if (abi) {
6462 			u64 mask = event->attr.sample_regs_intr;
6463 
6464 			perf_output_sample_regs(handle,
6465 						data->regs_intr.regs,
6466 						mask);
6467 		}
6468 	}
6469 
6470 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6471 		perf_output_put(handle, data->phys_addr);
6472 
6473 	if (!event->attr.watermark) {
6474 		int wakeup_events = event->attr.wakeup_events;
6475 
6476 		if (wakeup_events) {
6477 			struct ring_buffer *rb = handle->rb;
6478 			int events = local_inc_return(&rb->events);
6479 
6480 			if (events >= wakeup_events) {
6481 				local_sub(wakeup_events, &rb->events);
6482 				local_inc(&rb->wakeup);
6483 			}
6484 		}
6485 	}
6486 }
6487 
6488 static u64 perf_virt_to_phys(u64 virt)
6489 {
6490 	u64 phys_addr = 0;
6491 	struct page *p = NULL;
6492 
6493 	if (!virt)
6494 		return 0;
6495 
6496 	if (virt >= TASK_SIZE) {
6497 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6498 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6499 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6500 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6501 	} else {
6502 		/*
6503 		 * Walking the pages tables for user address.
6504 		 * Interrupts are disabled, so it prevents any tear down
6505 		 * of the page tables.
6506 		 * Try IRQ-safe __get_user_pages_fast first.
6507 		 * If failed, leave phys_addr as 0.
6508 		 */
6509 		if ((current->mm != NULL) &&
6510 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6511 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6512 
6513 		if (p)
6514 			put_page(p);
6515 	}
6516 
6517 	return phys_addr;
6518 }
6519 
6520 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6521 
6522 struct perf_callchain_entry *
6523 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6524 {
6525 	bool kernel = !event->attr.exclude_callchain_kernel;
6526 	bool user   = !event->attr.exclude_callchain_user;
6527 	/* Disallow cross-task user callchains. */
6528 	bool crosstask = event->ctx->task && event->ctx->task != current;
6529 	const u32 max_stack = event->attr.sample_max_stack;
6530 	struct perf_callchain_entry *callchain;
6531 
6532 	if (!kernel && !user)
6533 		return &__empty_callchain;
6534 
6535 	callchain = get_perf_callchain(regs, 0, kernel, user,
6536 				       max_stack, crosstask, true);
6537 	return callchain ?: &__empty_callchain;
6538 }
6539 
6540 void perf_prepare_sample(struct perf_event_header *header,
6541 			 struct perf_sample_data *data,
6542 			 struct perf_event *event,
6543 			 struct pt_regs *regs)
6544 {
6545 	u64 sample_type = event->attr.sample_type;
6546 
6547 	header->type = PERF_RECORD_SAMPLE;
6548 	header->size = sizeof(*header) + event->header_size;
6549 
6550 	header->misc = 0;
6551 	header->misc |= perf_misc_flags(regs);
6552 
6553 	__perf_event_header__init_id(header, data, event);
6554 
6555 	if (sample_type & PERF_SAMPLE_IP)
6556 		data->ip = perf_instruction_pointer(regs);
6557 
6558 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6559 		int size = 1;
6560 
6561 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6562 			data->callchain = perf_callchain(event, regs);
6563 
6564 		size += data->callchain->nr;
6565 
6566 		header->size += size * sizeof(u64);
6567 	}
6568 
6569 	if (sample_type & PERF_SAMPLE_RAW) {
6570 		struct perf_raw_record *raw = data->raw;
6571 		int size;
6572 
6573 		if (raw) {
6574 			struct perf_raw_frag *frag = &raw->frag;
6575 			u32 sum = 0;
6576 
6577 			do {
6578 				sum += frag->size;
6579 				if (perf_raw_frag_last(frag))
6580 					break;
6581 				frag = frag->next;
6582 			} while (1);
6583 
6584 			size = round_up(sum + sizeof(u32), sizeof(u64));
6585 			raw->size = size - sizeof(u32);
6586 			frag->pad = raw->size - sum;
6587 		} else {
6588 			size = sizeof(u64);
6589 		}
6590 
6591 		header->size += size;
6592 	}
6593 
6594 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6595 		int size = sizeof(u64); /* nr */
6596 		if (data->br_stack) {
6597 			size += data->br_stack->nr
6598 			      * sizeof(struct perf_branch_entry);
6599 		}
6600 		header->size += size;
6601 	}
6602 
6603 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6604 		perf_sample_regs_user(&data->regs_user, regs,
6605 				      &data->regs_user_copy);
6606 
6607 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6608 		/* regs dump ABI info */
6609 		int size = sizeof(u64);
6610 
6611 		if (data->regs_user.regs) {
6612 			u64 mask = event->attr.sample_regs_user;
6613 			size += hweight64(mask) * sizeof(u64);
6614 		}
6615 
6616 		header->size += size;
6617 	}
6618 
6619 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6620 		/*
6621 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6622 		 * processed as the last one or have additional check added
6623 		 * in case new sample type is added, because we could eat
6624 		 * up the rest of the sample size.
6625 		 */
6626 		u16 stack_size = event->attr.sample_stack_user;
6627 		u16 size = sizeof(u64);
6628 
6629 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6630 						     data->regs_user.regs);
6631 
6632 		/*
6633 		 * If there is something to dump, add space for the dump
6634 		 * itself and for the field that tells the dynamic size,
6635 		 * which is how many have been actually dumped.
6636 		 */
6637 		if (stack_size)
6638 			size += sizeof(u64) + stack_size;
6639 
6640 		data->stack_user_size = stack_size;
6641 		header->size += size;
6642 	}
6643 
6644 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6645 		/* regs dump ABI info */
6646 		int size = sizeof(u64);
6647 
6648 		perf_sample_regs_intr(&data->regs_intr, regs);
6649 
6650 		if (data->regs_intr.regs) {
6651 			u64 mask = event->attr.sample_regs_intr;
6652 
6653 			size += hweight64(mask) * sizeof(u64);
6654 		}
6655 
6656 		header->size += size;
6657 	}
6658 
6659 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6660 		data->phys_addr = perf_virt_to_phys(data->addr);
6661 }
6662 
6663 static __always_inline int
6664 __perf_event_output(struct perf_event *event,
6665 		    struct perf_sample_data *data,
6666 		    struct pt_regs *regs,
6667 		    int (*output_begin)(struct perf_output_handle *,
6668 					struct perf_event *,
6669 					unsigned int))
6670 {
6671 	struct perf_output_handle handle;
6672 	struct perf_event_header header;
6673 	int err;
6674 
6675 	/* protect the callchain buffers */
6676 	rcu_read_lock();
6677 
6678 	perf_prepare_sample(&header, data, event, regs);
6679 
6680 	err = output_begin(&handle, event, header.size);
6681 	if (err)
6682 		goto exit;
6683 
6684 	perf_output_sample(&handle, &header, data, event);
6685 
6686 	perf_output_end(&handle);
6687 
6688 exit:
6689 	rcu_read_unlock();
6690 	return err;
6691 }
6692 
6693 void
6694 perf_event_output_forward(struct perf_event *event,
6695 			 struct perf_sample_data *data,
6696 			 struct pt_regs *regs)
6697 {
6698 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6699 }
6700 
6701 void
6702 perf_event_output_backward(struct perf_event *event,
6703 			   struct perf_sample_data *data,
6704 			   struct pt_regs *regs)
6705 {
6706 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6707 }
6708 
6709 int
6710 perf_event_output(struct perf_event *event,
6711 		  struct perf_sample_data *data,
6712 		  struct pt_regs *regs)
6713 {
6714 	return __perf_event_output(event, data, regs, perf_output_begin);
6715 }
6716 
6717 /*
6718  * read event_id
6719  */
6720 
6721 struct perf_read_event {
6722 	struct perf_event_header	header;
6723 
6724 	u32				pid;
6725 	u32				tid;
6726 };
6727 
6728 static void
6729 perf_event_read_event(struct perf_event *event,
6730 			struct task_struct *task)
6731 {
6732 	struct perf_output_handle handle;
6733 	struct perf_sample_data sample;
6734 	struct perf_read_event read_event = {
6735 		.header = {
6736 			.type = PERF_RECORD_READ,
6737 			.misc = 0,
6738 			.size = sizeof(read_event) + event->read_size,
6739 		},
6740 		.pid = perf_event_pid(event, task),
6741 		.tid = perf_event_tid(event, task),
6742 	};
6743 	int ret;
6744 
6745 	perf_event_header__init_id(&read_event.header, &sample, event);
6746 	ret = perf_output_begin(&handle, event, read_event.header.size);
6747 	if (ret)
6748 		return;
6749 
6750 	perf_output_put(&handle, read_event);
6751 	perf_output_read(&handle, event);
6752 	perf_event__output_id_sample(event, &handle, &sample);
6753 
6754 	perf_output_end(&handle);
6755 }
6756 
6757 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6758 
6759 static void
6760 perf_iterate_ctx(struct perf_event_context *ctx,
6761 		   perf_iterate_f output,
6762 		   void *data, bool all)
6763 {
6764 	struct perf_event *event;
6765 
6766 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6767 		if (!all) {
6768 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6769 				continue;
6770 			if (!event_filter_match(event))
6771 				continue;
6772 		}
6773 
6774 		output(event, data);
6775 	}
6776 }
6777 
6778 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6779 {
6780 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6781 	struct perf_event *event;
6782 
6783 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6784 		/*
6785 		 * Skip events that are not fully formed yet; ensure that
6786 		 * if we observe event->ctx, both event and ctx will be
6787 		 * complete enough. See perf_install_in_context().
6788 		 */
6789 		if (!smp_load_acquire(&event->ctx))
6790 			continue;
6791 
6792 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6793 			continue;
6794 		if (!event_filter_match(event))
6795 			continue;
6796 		output(event, data);
6797 	}
6798 }
6799 
6800 /*
6801  * Iterate all events that need to receive side-band events.
6802  *
6803  * For new callers; ensure that account_pmu_sb_event() includes
6804  * your event, otherwise it might not get delivered.
6805  */
6806 static void
6807 perf_iterate_sb(perf_iterate_f output, void *data,
6808 	       struct perf_event_context *task_ctx)
6809 {
6810 	struct perf_event_context *ctx;
6811 	int ctxn;
6812 
6813 	rcu_read_lock();
6814 	preempt_disable();
6815 
6816 	/*
6817 	 * If we have task_ctx != NULL we only notify the task context itself.
6818 	 * The task_ctx is set only for EXIT events before releasing task
6819 	 * context.
6820 	 */
6821 	if (task_ctx) {
6822 		perf_iterate_ctx(task_ctx, output, data, false);
6823 		goto done;
6824 	}
6825 
6826 	perf_iterate_sb_cpu(output, data);
6827 
6828 	for_each_task_context_nr(ctxn) {
6829 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6830 		if (ctx)
6831 			perf_iterate_ctx(ctx, output, data, false);
6832 	}
6833 done:
6834 	preempt_enable();
6835 	rcu_read_unlock();
6836 }
6837 
6838 /*
6839  * Clear all file-based filters at exec, they'll have to be
6840  * re-instated when/if these objects are mmapped again.
6841  */
6842 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6843 {
6844 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6845 	struct perf_addr_filter *filter;
6846 	unsigned int restart = 0, count = 0;
6847 	unsigned long flags;
6848 
6849 	if (!has_addr_filter(event))
6850 		return;
6851 
6852 	raw_spin_lock_irqsave(&ifh->lock, flags);
6853 	list_for_each_entry(filter, &ifh->list, entry) {
6854 		if (filter->path.dentry) {
6855 			event->addr_filter_ranges[count].start = 0;
6856 			event->addr_filter_ranges[count].size = 0;
6857 			restart++;
6858 		}
6859 
6860 		count++;
6861 	}
6862 
6863 	if (restart)
6864 		event->addr_filters_gen++;
6865 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6866 
6867 	if (restart)
6868 		perf_event_stop(event, 1);
6869 }
6870 
6871 void perf_event_exec(void)
6872 {
6873 	struct perf_event_context *ctx;
6874 	int ctxn;
6875 
6876 	rcu_read_lock();
6877 	for_each_task_context_nr(ctxn) {
6878 		ctx = current->perf_event_ctxp[ctxn];
6879 		if (!ctx)
6880 			continue;
6881 
6882 		perf_event_enable_on_exec(ctxn);
6883 
6884 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6885 				   true);
6886 	}
6887 	rcu_read_unlock();
6888 }
6889 
6890 struct remote_output {
6891 	struct ring_buffer	*rb;
6892 	int			err;
6893 };
6894 
6895 static void __perf_event_output_stop(struct perf_event *event, void *data)
6896 {
6897 	struct perf_event *parent = event->parent;
6898 	struct remote_output *ro = data;
6899 	struct ring_buffer *rb = ro->rb;
6900 	struct stop_event_data sd = {
6901 		.event	= event,
6902 	};
6903 
6904 	if (!has_aux(event))
6905 		return;
6906 
6907 	if (!parent)
6908 		parent = event;
6909 
6910 	/*
6911 	 * In case of inheritance, it will be the parent that links to the
6912 	 * ring-buffer, but it will be the child that's actually using it.
6913 	 *
6914 	 * We are using event::rb to determine if the event should be stopped,
6915 	 * however this may race with ring_buffer_attach() (through set_output),
6916 	 * which will make us skip the event that actually needs to be stopped.
6917 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6918 	 * its rb pointer.
6919 	 */
6920 	if (rcu_dereference(parent->rb) == rb)
6921 		ro->err = __perf_event_stop(&sd);
6922 }
6923 
6924 static int __perf_pmu_output_stop(void *info)
6925 {
6926 	struct perf_event *event = info;
6927 	struct pmu *pmu = event->pmu;
6928 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6929 	struct remote_output ro = {
6930 		.rb	= event->rb,
6931 	};
6932 
6933 	rcu_read_lock();
6934 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6935 	if (cpuctx->task_ctx)
6936 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6937 				   &ro, false);
6938 	rcu_read_unlock();
6939 
6940 	return ro.err;
6941 }
6942 
6943 static void perf_pmu_output_stop(struct perf_event *event)
6944 {
6945 	struct perf_event *iter;
6946 	int err, cpu;
6947 
6948 restart:
6949 	rcu_read_lock();
6950 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6951 		/*
6952 		 * For per-CPU events, we need to make sure that neither they
6953 		 * nor their children are running; for cpu==-1 events it's
6954 		 * sufficient to stop the event itself if it's active, since
6955 		 * it can't have children.
6956 		 */
6957 		cpu = iter->cpu;
6958 		if (cpu == -1)
6959 			cpu = READ_ONCE(iter->oncpu);
6960 
6961 		if (cpu == -1)
6962 			continue;
6963 
6964 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6965 		if (err == -EAGAIN) {
6966 			rcu_read_unlock();
6967 			goto restart;
6968 		}
6969 	}
6970 	rcu_read_unlock();
6971 }
6972 
6973 /*
6974  * task tracking -- fork/exit
6975  *
6976  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6977  */
6978 
6979 struct perf_task_event {
6980 	struct task_struct		*task;
6981 	struct perf_event_context	*task_ctx;
6982 
6983 	struct {
6984 		struct perf_event_header	header;
6985 
6986 		u32				pid;
6987 		u32				ppid;
6988 		u32				tid;
6989 		u32				ptid;
6990 		u64				time;
6991 	} event_id;
6992 };
6993 
6994 static int perf_event_task_match(struct perf_event *event)
6995 {
6996 	return event->attr.comm  || event->attr.mmap ||
6997 	       event->attr.mmap2 || event->attr.mmap_data ||
6998 	       event->attr.task;
6999 }
7000 
7001 static void perf_event_task_output(struct perf_event *event,
7002 				   void *data)
7003 {
7004 	struct perf_task_event *task_event = data;
7005 	struct perf_output_handle handle;
7006 	struct perf_sample_data	sample;
7007 	struct task_struct *task = task_event->task;
7008 	int ret, size = task_event->event_id.header.size;
7009 
7010 	if (!perf_event_task_match(event))
7011 		return;
7012 
7013 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7014 
7015 	ret = perf_output_begin(&handle, event,
7016 				task_event->event_id.header.size);
7017 	if (ret)
7018 		goto out;
7019 
7020 	task_event->event_id.pid = perf_event_pid(event, task);
7021 	task_event->event_id.ppid = perf_event_pid(event, current);
7022 
7023 	task_event->event_id.tid = perf_event_tid(event, task);
7024 	task_event->event_id.ptid = perf_event_tid(event, current);
7025 
7026 	task_event->event_id.time = perf_event_clock(event);
7027 
7028 	perf_output_put(&handle, task_event->event_id);
7029 
7030 	perf_event__output_id_sample(event, &handle, &sample);
7031 
7032 	perf_output_end(&handle);
7033 out:
7034 	task_event->event_id.header.size = size;
7035 }
7036 
7037 static void perf_event_task(struct task_struct *task,
7038 			      struct perf_event_context *task_ctx,
7039 			      int new)
7040 {
7041 	struct perf_task_event task_event;
7042 
7043 	if (!atomic_read(&nr_comm_events) &&
7044 	    !atomic_read(&nr_mmap_events) &&
7045 	    !atomic_read(&nr_task_events))
7046 		return;
7047 
7048 	task_event = (struct perf_task_event){
7049 		.task	  = task,
7050 		.task_ctx = task_ctx,
7051 		.event_id    = {
7052 			.header = {
7053 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7054 				.misc = 0,
7055 				.size = sizeof(task_event.event_id),
7056 			},
7057 			/* .pid  */
7058 			/* .ppid */
7059 			/* .tid  */
7060 			/* .ptid */
7061 			/* .time */
7062 		},
7063 	};
7064 
7065 	perf_iterate_sb(perf_event_task_output,
7066 		       &task_event,
7067 		       task_ctx);
7068 }
7069 
7070 void perf_event_fork(struct task_struct *task)
7071 {
7072 	perf_event_task(task, NULL, 1);
7073 	perf_event_namespaces(task);
7074 }
7075 
7076 /*
7077  * comm tracking
7078  */
7079 
7080 struct perf_comm_event {
7081 	struct task_struct	*task;
7082 	char			*comm;
7083 	int			comm_size;
7084 
7085 	struct {
7086 		struct perf_event_header	header;
7087 
7088 		u32				pid;
7089 		u32				tid;
7090 	} event_id;
7091 };
7092 
7093 static int perf_event_comm_match(struct perf_event *event)
7094 {
7095 	return event->attr.comm;
7096 }
7097 
7098 static void perf_event_comm_output(struct perf_event *event,
7099 				   void *data)
7100 {
7101 	struct perf_comm_event *comm_event = data;
7102 	struct perf_output_handle handle;
7103 	struct perf_sample_data sample;
7104 	int size = comm_event->event_id.header.size;
7105 	int ret;
7106 
7107 	if (!perf_event_comm_match(event))
7108 		return;
7109 
7110 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7111 	ret = perf_output_begin(&handle, event,
7112 				comm_event->event_id.header.size);
7113 
7114 	if (ret)
7115 		goto out;
7116 
7117 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7118 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7119 
7120 	perf_output_put(&handle, comm_event->event_id);
7121 	__output_copy(&handle, comm_event->comm,
7122 				   comm_event->comm_size);
7123 
7124 	perf_event__output_id_sample(event, &handle, &sample);
7125 
7126 	perf_output_end(&handle);
7127 out:
7128 	comm_event->event_id.header.size = size;
7129 }
7130 
7131 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7132 {
7133 	char comm[TASK_COMM_LEN];
7134 	unsigned int size;
7135 
7136 	memset(comm, 0, sizeof(comm));
7137 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7138 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7139 
7140 	comm_event->comm = comm;
7141 	comm_event->comm_size = size;
7142 
7143 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7144 
7145 	perf_iterate_sb(perf_event_comm_output,
7146 		       comm_event,
7147 		       NULL);
7148 }
7149 
7150 void perf_event_comm(struct task_struct *task, bool exec)
7151 {
7152 	struct perf_comm_event comm_event;
7153 
7154 	if (!atomic_read(&nr_comm_events))
7155 		return;
7156 
7157 	comm_event = (struct perf_comm_event){
7158 		.task	= task,
7159 		/* .comm      */
7160 		/* .comm_size */
7161 		.event_id  = {
7162 			.header = {
7163 				.type = PERF_RECORD_COMM,
7164 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7165 				/* .size */
7166 			},
7167 			/* .pid */
7168 			/* .tid */
7169 		},
7170 	};
7171 
7172 	perf_event_comm_event(&comm_event);
7173 }
7174 
7175 /*
7176  * namespaces tracking
7177  */
7178 
7179 struct perf_namespaces_event {
7180 	struct task_struct		*task;
7181 
7182 	struct {
7183 		struct perf_event_header	header;
7184 
7185 		u32				pid;
7186 		u32				tid;
7187 		u64				nr_namespaces;
7188 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7189 	} event_id;
7190 };
7191 
7192 static int perf_event_namespaces_match(struct perf_event *event)
7193 {
7194 	return event->attr.namespaces;
7195 }
7196 
7197 static void perf_event_namespaces_output(struct perf_event *event,
7198 					 void *data)
7199 {
7200 	struct perf_namespaces_event *namespaces_event = data;
7201 	struct perf_output_handle handle;
7202 	struct perf_sample_data sample;
7203 	u16 header_size = namespaces_event->event_id.header.size;
7204 	int ret;
7205 
7206 	if (!perf_event_namespaces_match(event))
7207 		return;
7208 
7209 	perf_event_header__init_id(&namespaces_event->event_id.header,
7210 				   &sample, event);
7211 	ret = perf_output_begin(&handle, event,
7212 				namespaces_event->event_id.header.size);
7213 	if (ret)
7214 		goto out;
7215 
7216 	namespaces_event->event_id.pid = perf_event_pid(event,
7217 							namespaces_event->task);
7218 	namespaces_event->event_id.tid = perf_event_tid(event,
7219 							namespaces_event->task);
7220 
7221 	perf_output_put(&handle, namespaces_event->event_id);
7222 
7223 	perf_event__output_id_sample(event, &handle, &sample);
7224 
7225 	perf_output_end(&handle);
7226 out:
7227 	namespaces_event->event_id.header.size = header_size;
7228 }
7229 
7230 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7231 				   struct task_struct *task,
7232 				   const struct proc_ns_operations *ns_ops)
7233 {
7234 	struct path ns_path;
7235 	struct inode *ns_inode;
7236 	void *error;
7237 
7238 	error = ns_get_path(&ns_path, task, ns_ops);
7239 	if (!error) {
7240 		ns_inode = ns_path.dentry->d_inode;
7241 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7242 		ns_link_info->ino = ns_inode->i_ino;
7243 		path_put(&ns_path);
7244 	}
7245 }
7246 
7247 void perf_event_namespaces(struct task_struct *task)
7248 {
7249 	struct perf_namespaces_event namespaces_event;
7250 	struct perf_ns_link_info *ns_link_info;
7251 
7252 	if (!atomic_read(&nr_namespaces_events))
7253 		return;
7254 
7255 	namespaces_event = (struct perf_namespaces_event){
7256 		.task	= task,
7257 		.event_id  = {
7258 			.header = {
7259 				.type = PERF_RECORD_NAMESPACES,
7260 				.misc = 0,
7261 				.size = sizeof(namespaces_event.event_id),
7262 			},
7263 			/* .pid */
7264 			/* .tid */
7265 			.nr_namespaces = NR_NAMESPACES,
7266 			/* .link_info[NR_NAMESPACES] */
7267 		},
7268 	};
7269 
7270 	ns_link_info = namespaces_event.event_id.link_info;
7271 
7272 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7273 			       task, &mntns_operations);
7274 
7275 #ifdef CONFIG_USER_NS
7276 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7277 			       task, &userns_operations);
7278 #endif
7279 #ifdef CONFIG_NET_NS
7280 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7281 			       task, &netns_operations);
7282 #endif
7283 #ifdef CONFIG_UTS_NS
7284 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7285 			       task, &utsns_operations);
7286 #endif
7287 #ifdef CONFIG_IPC_NS
7288 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7289 			       task, &ipcns_operations);
7290 #endif
7291 #ifdef CONFIG_PID_NS
7292 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7293 			       task, &pidns_operations);
7294 #endif
7295 #ifdef CONFIG_CGROUPS
7296 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7297 			       task, &cgroupns_operations);
7298 #endif
7299 
7300 	perf_iterate_sb(perf_event_namespaces_output,
7301 			&namespaces_event,
7302 			NULL);
7303 }
7304 
7305 /*
7306  * mmap tracking
7307  */
7308 
7309 struct perf_mmap_event {
7310 	struct vm_area_struct	*vma;
7311 
7312 	const char		*file_name;
7313 	int			file_size;
7314 	int			maj, min;
7315 	u64			ino;
7316 	u64			ino_generation;
7317 	u32			prot, flags;
7318 
7319 	struct {
7320 		struct perf_event_header	header;
7321 
7322 		u32				pid;
7323 		u32				tid;
7324 		u64				start;
7325 		u64				len;
7326 		u64				pgoff;
7327 	} event_id;
7328 };
7329 
7330 static int perf_event_mmap_match(struct perf_event *event,
7331 				 void *data)
7332 {
7333 	struct perf_mmap_event *mmap_event = data;
7334 	struct vm_area_struct *vma = mmap_event->vma;
7335 	int executable = vma->vm_flags & VM_EXEC;
7336 
7337 	return (!executable && event->attr.mmap_data) ||
7338 	       (executable && (event->attr.mmap || event->attr.mmap2));
7339 }
7340 
7341 static void perf_event_mmap_output(struct perf_event *event,
7342 				   void *data)
7343 {
7344 	struct perf_mmap_event *mmap_event = data;
7345 	struct perf_output_handle handle;
7346 	struct perf_sample_data sample;
7347 	int size = mmap_event->event_id.header.size;
7348 	u32 type = mmap_event->event_id.header.type;
7349 	int ret;
7350 
7351 	if (!perf_event_mmap_match(event, data))
7352 		return;
7353 
7354 	if (event->attr.mmap2) {
7355 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7356 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7357 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7358 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7359 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7360 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7361 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7362 	}
7363 
7364 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7365 	ret = perf_output_begin(&handle, event,
7366 				mmap_event->event_id.header.size);
7367 	if (ret)
7368 		goto out;
7369 
7370 	mmap_event->event_id.pid = perf_event_pid(event, current);
7371 	mmap_event->event_id.tid = perf_event_tid(event, current);
7372 
7373 	perf_output_put(&handle, mmap_event->event_id);
7374 
7375 	if (event->attr.mmap2) {
7376 		perf_output_put(&handle, mmap_event->maj);
7377 		perf_output_put(&handle, mmap_event->min);
7378 		perf_output_put(&handle, mmap_event->ino);
7379 		perf_output_put(&handle, mmap_event->ino_generation);
7380 		perf_output_put(&handle, mmap_event->prot);
7381 		perf_output_put(&handle, mmap_event->flags);
7382 	}
7383 
7384 	__output_copy(&handle, mmap_event->file_name,
7385 				   mmap_event->file_size);
7386 
7387 	perf_event__output_id_sample(event, &handle, &sample);
7388 
7389 	perf_output_end(&handle);
7390 out:
7391 	mmap_event->event_id.header.size = size;
7392 	mmap_event->event_id.header.type = type;
7393 }
7394 
7395 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7396 {
7397 	struct vm_area_struct *vma = mmap_event->vma;
7398 	struct file *file = vma->vm_file;
7399 	int maj = 0, min = 0;
7400 	u64 ino = 0, gen = 0;
7401 	u32 prot = 0, flags = 0;
7402 	unsigned int size;
7403 	char tmp[16];
7404 	char *buf = NULL;
7405 	char *name;
7406 
7407 	if (vma->vm_flags & VM_READ)
7408 		prot |= PROT_READ;
7409 	if (vma->vm_flags & VM_WRITE)
7410 		prot |= PROT_WRITE;
7411 	if (vma->vm_flags & VM_EXEC)
7412 		prot |= PROT_EXEC;
7413 
7414 	if (vma->vm_flags & VM_MAYSHARE)
7415 		flags = MAP_SHARED;
7416 	else
7417 		flags = MAP_PRIVATE;
7418 
7419 	if (vma->vm_flags & VM_DENYWRITE)
7420 		flags |= MAP_DENYWRITE;
7421 	if (vma->vm_flags & VM_MAYEXEC)
7422 		flags |= MAP_EXECUTABLE;
7423 	if (vma->vm_flags & VM_LOCKED)
7424 		flags |= MAP_LOCKED;
7425 	if (vma->vm_flags & VM_HUGETLB)
7426 		flags |= MAP_HUGETLB;
7427 
7428 	if (file) {
7429 		struct inode *inode;
7430 		dev_t dev;
7431 
7432 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7433 		if (!buf) {
7434 			name = "//enomem";
7435 			goto cpy_name;
7436 		}
7437 		/*
7438 		 * d_path() works from the end of the rb backwards, so we
7439 		 * need to add enough zero bytes after the string to handle
7440 		 * the 64bit alignment we do later.
7441 		 */
7442 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7443 		if (IS_ERR(name)) {
7444 			name = "//toolong";
7445 			goto cpy_name;
7446 		}
7447 		inode = file_inode(vma->vm_file);
7448 		dev = inode->i_sb->s_dev;
7449 		ino = inode->i_ino;
7450 		gen = inode->i_generation;
7451 		maj = MAJOR(dev);
7452 		min = MINOR(dev);
7453 
7454 		goto got_name;
7455 	} else {
7456 		if (vma->vm_ops && vma->vm_ops->name) {
7457 			name = (char *) vma->vm_ops->name(vma);
7458 			if (name)
7459 				goto cpy_name;
7460 		}
7461 
7462 		name = (char *)arch_vma_name(vma);
7463 		if (name)
7464 			goto cpy_name;
7465 
7466 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7467 				vma->vm_end >= vma->vm_mm->brk) {
7468 			name = "[heap]";
7469 			goto cpy_name;
7470 		}
7471 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7472 				vma->vm_end >= vma->vm_mm->start_stack) {
7473 			name = "[stack]";
7474 			goto cpy_name;
7475 		}
7476 
7477 		name = "//anon";
7478 		goto cpy_name;
7479 	}
7480 
7481 cpy_name:
7482 	strlcpy(tmp, name, sizeof(tmp));
7483 	name = tmp;
7484 got_name:
7485 	/*
7486 	 * Since our buffer works in 8 byte units we need to align our string
7487 	 * size to a multiple of 8. However, we must guarantee the tail end is
7488 	 * zero'd out to avoid leaking random bits to userspace.
7489 	 */
7490 	size = strlen(name)+1;
7491 	while (!IS_ALIGNED(size, sizeof(u64)))
7492 		name[size++] = '\0';
7493 
7494 	mmap_event->file_name = name;
7495 	mmap_event->file_size = size;
7496 	mmap_event->maj = maj;
7497 	mmap_event->min = min;
7498 	mmap_event->ino = ino;
7499 	mmap_event->ino_generation = gen;
7500 	mmap_event->prot = prot;
7501 	mmap_event->flags = flags;
7502 
7503 	if (!(vma->vm_flags & VM_EXEC))
7504 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7505 
7506 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7507 
7508 	perf_iterate_sb(perf_event_mmap_output,
7509 		       mmap_event,
7510 		       NULL);
7511 
7512 	kfree(buf);
7513 }
7514 
7515 /*
7516  * Check whether inode and address range match filter criteria.
7517  */
7518 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7519 				     struct file *file, unsigned long offset,
7520 				     unsigned long size)
7521 {
7522 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7523 	if (!filter->path.dentry)
7524 		return false;
7525 
7526 	if (d_inode(filter->path.dentry) != file_inode(file))
7527 		return false;
7528 
7529 	if (filter->offset > offset + size)
7530 		return false;
7531 
7532 	if (filter->offset + filter->size < offset)
7533 		return false;
7534 
7535 	return true;
7536 }
7537 
7538 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7539 					struct vm_area_struct *vma,
7540 					struct perf_addr_filter_range *fr)
7541 {
7542 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7543 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7544 	struct file *file = vma->vm_file;
7545 
7546 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7547 		return false;
7548 
7549 	if (filter->offset < off) {
7550 		fr->start = vma->vm_start;
7551 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7552 	} else {
7553 		fr->start = vma->vm_start + filter->offset - off;
7554 		fr->size = min(vma->vm_end - fr->start, filter->size);
7555 	}
7556 
7557 	return true;
7558 }
7559 
7560 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7561 {
7562 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7563 	struct vm_area_struct *vma = data;
7564 	struct perf_addr_filter *filter;
7565 	unsigned int restart = 0, count = 0;
7566 	unsigned long flags;
7567 
7568 	if (!has_addr_filter(event))
7569 		return;
7570 
7571 	if (!vma->vm_file)
7572 		return;
7573 
7574 	raw_spin_lock_irqsave(&ifh->lock, flags);
7575 	list_for_each_entry(filter, &ifh->list, entry) {
7576 		if (perf_addr_filter_vma_adjust(filter, vma,
7577 						&event->addr_filter_ranges[count]))
7578 			restart++;
7579 
7580 		count++;
7581 	}
7582 
7583 	if (restart)
7584 		event->addr_filters_gen++;
7585 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7586 
7587 	if (restart)
7588 		perf_event_stop(event, 1);
7589 }
7590 
7591 /*
7592  * Adjust all task's events' filters to the new vma
7593  */
7594 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7595 {
7596 	struct perf_event_context *ctx;
7597 	int ctxn;
7598 
7599 	/*
7600 	 * Data tracing isn't supported yet and as such there is no need
7601 	 * to keep track of anything that isn't related to executable code:
7602 	 */
7603 	if (!(vma->vm_flags & VM_EXEC))
7604 		return;
7605 
7606 	rcu_read_lock();
7607 	for_each_task_context_nr(ctxn) {
7608 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7609 		if (!ctx)
7610 			continue;
7611 
7612 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7613 	}
7614 	rcu_read_unlock();
7615 }
7616 
7617 void perf_event_mmap(struct vm_area_struct *vma)
7618 {
7619 	struct perf_mmap_event mmap_event;
7620 
7621 	if (!atomic_read(&nr_mmap_events))
7622 		return;
7623 
7624 	mmap_event = (struct perf_mmap_event){
7625 		.vma	= vma,
7626 		/* .file_name */
7627 		/* .file_size */
7628 		.event_id  = {
7629 			.header = {
7630 				.type = PERF_RECORD_MMAP,
7631 				.misc = PERF_RECORD_MISC_USER,
7632 				/* .size */
7633 			},
7634 			/* .pid */
7635 			/* .tid */
7636 			.start  = vma->vm_start,
7637 			.len    = vma->vm_end - vma->vm_start,
7638 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7639 		},
7640 		/* .maj (attr_mmap2 only) */
7641 		/* .min (attr_mmap2 only) */
7642 		/* .ino (attr_mmap2 only) */
7643 		/* .ino_generation (attr_mmap2 only) */
7644 		/* .prot (attr_mmap2 only) */
7645 		/* .flags (attr_mmap2 only) */
7646 	};
7647 
7648 	perf_addr_filters_adjust(vma);
7649 	perf_event_mmap_event(&mmap_event);
7650 }
7651 
7652 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7653 			  unsigned long size, u64 flags)
7654 {
7655 	struct perf_output_handle handle;
7656 	struct perf_sample_data sample;
7657 	struct perf_aux_event {
7658 		struct perf_event_header	header;
7659 		u64				offset;
7660 		u64				size;
7661 		u64				flags;
7662 	} rec = {
7663 		.header = {
7664 			.type = PERF_RECORD_AUX,
7665 			.misc = 0,
7666 			.size = sizeof(rec),
7667 		},
7668 		.offset		= head,
7669 		.size		= size,
7670 		.flags		= flags,
7671 	};
7672 	int ret;
7673 
7674 	perf_event_header__init_id(&rec.header, &sample, event);
7675 	ret = perf_output_begin(&handle, event, rec.header.size);
7676 
7677 	if (ret)
7678 		return;
7679 
7680 	perf_output_put(&handle, rec);
7681 	perf_event__output_id_sample(event, &handle, &sample);
7682 
7683 	perf_output_end(&handle);
7684 }
7685 
7686 /*
7687  * Lost/dropped samples logging
7688  */
7689 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7690 {
7691 	struct perf_output_handle handle;
7692 	struct perf_sample_data sample;
7693 	int ret;
7694 
7695 	struct {
7696 		struct perf_event_header	header;
7697 		u64				lost;
7698 	} lost_samples_event = {
7699 		.header = {
7700 			.type = PERF_RECORD_LOST_SAMPLES,
7701 			.misc = 0,
7702 			.size = sizeof(lost_samples_event),
7703 		},
7704 		.lost		= lost,
7705 	};
7706 
7707 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7708 
7709 	ret = perf_output_begin(&handle, event,
7710 				lost_samples_event.header.size);
7711 	if (ret)
7712 		return;
7713 
7714 	perf_output_put(&handle, lost_samples_event);
7715 	perf_event__output_id_sample(event, &handle, &sample);
7716 	perf_output_end(&handle);
7717 }
7718 
7719 /*
7720  * context_switch tracking
7721  */
7722 
7723 struct perf_switch_event {
7724 	struct task_struct	*task;
7725 	struct task_struct	*next_prev;
7726 
7727 	struct {
7728 		struct perf_event_header	header;
7729 		u32				next_prev_pid;
7730 		u32				next_prev_tid;
7731 	} event_id;
7732 };
7733 
7734 static int perf_event_switch_match(struct perf_event *event)
7735 {
7736 	return event->attr.context_switch;
7737 }
7738 
7739 static void perf_event_switch_output(struct perf_event *event, void *data)
7740 {
7741 	struct perf_switch_event *se = data;
7742 	struct perf_output_handle handle;
7743 	struct perf_sample_data sample;
7744 	int ret;
7745 
7746 	if (!perf_event_switch_match(event))
7747 		return;
7748 
7749 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7750 	if (event->ctx->task) {
7751 		se->event_id.header.type = PERF_RECORD_SWITCH;
7752 		se->event_id.header.size = sizeof(se->event_id.header);
7753 	} else {
7754 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7755 		se->event_id.header.size = sizeof(se->event_id);
7756 		se->event_id.next_prev_pid =
7757 					perf_event_pid(event, se->next_prev);
7758 		se->event_id.next_prev_tid =
7759 					perf_event_tid(event, se->next_prev);
7760 	}
7761 
7762 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7763 
7764 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7765 	if (ret)
7766 		return;
7767 
7768 	if (event->ctx->task)
7769 		perf_output_put(&handle, se->event_id.header);
7770 	else
7771 		perf_output_put(&handle, se->event_id);
7772 
7773 	perf_event__output_id_sample(event, &handle, &sample);
7774 
7775 	perf_output_end(&handle);
7776 }
7777 
7778 static void perf_event_switch(struct task_struct *task,
7779 			      struct task_struct *next_prev, bool sched_in)
7780 {
7781 	struct perf_switch_event switch_event;
7782 
7783 	/* N.B. caller checks nr_switch_events != 0 */
7784 
7785 	switch_event = (struct perf_switch_event){
7786 		.task		= task,
7787 		.next_prev	= next_prev,
7788 		.event_id	= {
7789 			.header = {
7790 				/* .type */
7791 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7792 				/* .size */
7793 			},
7794 			/* .next_prev_pid */
7795 			/* .next_prev_tid */
7796 		},
7797 	};
7798 
7799 	if (!sched_in && task->state == TASK_RUNNING)
7800 		switch_event.event_id.header.misc |=
7801 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7802 
7803 	perf_iterate_sb(perf_event_switch_output,
7804 		       &switch_event,
7805 		       NULL);
7806 }
7807 
7808 /*
7809  * IRQ throttle logging
7810  */
7811 
7812 static void perf_log_throttle(struct perf_event *event, int enable)
7813 {
7814 	struct perf_output_handle handle;
7815 	struct perf_sample_data sample;
7816 	int ret;
7817 
7818 	struct {
7819 		struct perf_event_header	header;
7820 		u64				time;
7821 		u64				id;
7822 		u64				stream_id;
7823 	} throttle_event = {
7824 		.header = {
7825 			.type = PERF_RECORD_THROTTLE,
7826 			.misc = 0,
7827 			.size = sizeof(throttle_event),
7828 		},
7829 		.time		= perf_event_clock(event),
7830 		.id		= primary_event_id(event),
7831 		.stream_id	= event->id,
7832 	};
7833 
7834 	if (enable)
7835 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7836 
7837 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7838 
7839 	ret = perf_output_begin(&handle, event,
7840 				throttle_event.header.size);
7841 	if (ret)
7842 		return;
7843 
7844 	perf_output_put(&handle, throttle_event);
7845 	perf_event__output_id_sample(event, &handle, &sample);
7846 	perf_output_end(&handle);
7847 }
7848 
7849 /*
7850  * ksymbol register/unregister tracking
7851  */
7852 
7853 struct perf_ksymbol_event {
7854 	const char	*name;
7855 	int		name_len;
7856 	struct {
7857 		struct perf_event_header        header;
7858 		u64				addr;
7859 		u32				len;
7860 		u16				ksym_type;
7861 		u16				flags;
7862 	} event_id;
7863 };
7864 
7865 static int perf_event_ksymbol_match(struct perf_event *event)
7866 {
7867 	return event->attr.ksymbol;
7868 }
7869 
7870 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7871 {
7872 	struct perf_ksymbol_event *ksymbol_event = data;
7873 	struct perf_output_handle handle;
7874 	struct perf_sample_data sample;
7875 	int ret;
7876 
7877 	if (!perf_event_ksymbol_match(event))
7878 		return;
7879 
7880 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7881 				   &sample, event);
7882 	ret = perf_output_begin(&handle, event,
7883 				ksymbol_event->event_id.header.size);
7884 	if (ret)
7885 		return;
7886 
7887 	perf_output_put(&handle, ksymbol_event->event_id);
7888 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7889 	perf_event__output_id_sample(event, &handle, &sample);
7890 
7891 	perf_output_end(&handle);
7892 }
7893 
7894 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7895 			const char *sym)
7896 {
7897 	struct perf_ksymbol_event ksymbol_event;
7898 	char name[KSYM_NAME_LEN];
7899 	u16 flags = 0;
7900 	int name_len;
7901 
7902 	if (!atomic_read(&nr_ksymbol_events))
7903 		return;
7904 
7905 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7906 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7907 		goto err;
7908 
7909 	strlcpy(name, sym, KSYM_NAME_LEN);
7910 	name_len = strlen(name) + 1;
7911 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7912 		name[name_len++] = '\0';
7913 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7914 
7915 	if (unregister)
7916 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7917 
7918 	ksymbol_event = (struct perf_ksymbol_event){
7919 		.name = name,
7920 		.name_len = name_len,
7921 		.event_id = {
7922 			.header = {
7923 				.type = PERF_RECORD_KSYMBOL,
7924 				.size = sizeof(ksymbol_event.event_id) +
7925 					name_len,
7926 			},
7927 			.addr = addr,
7928 			.len = len,
7929 			.ksym_type = ksym_type,
7930 			.flags = flags,
7931 		},
7932 	};
7933 
7934 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7935 	return;
7936 err:
7937 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7938 }
7939 
7940 /*
7941  * bpf program load/unload tracking
7942  */
7943 
7944 struct perf_bpf_event {
7945 	struct bpf_prog	*prog;
7946 	struct {
7947 		struct perf_event_header        header;
7948 		u16				type;
7949 		u16				flags;
7950 		u32				id;
7951 		u8				tag[BPF_TAG_SIZE];
7952 	} event_id;
7953 };
7954 
7955 static int perf_event_bpf_match(struct perf_event *event)
7956 {
7957 	return event->attr.bpf_event;
7958 }
7959 
7960 static void perf_event_bpf_output(struct perf_event *event, void *data)
7961 {
7962 	struct perf_bpf_event *bpf_event = data;
7963 	struct perf_output_handle handle;
7964 	struct perf_sample_data sample;
7965 	int ret;
7966 
7967 	if (!perf_event_bpf_match(event))
7968 		return;
7969 
7970 	perf_event_header__init_id(&bpf_event->event_id.header,
7971 				   &sample, event);
7972 	ret = perf_output_begin(&handle, event,
7973 				bpf_event->event_id.header.size);
7974 	if (ret)
7975 		return;
7976 
7977 	perf_output_put(&handle, bpf_event->event_id);
7978 	perf_event__output_id_sample(event, &handle, &sample);
7979 
7980 	perf_output_end(&handle);
7981 }
7982 
7983 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7984 					 enum perf_bpf_event_type type)
7985 {
7986 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7987 	char sym[KSYM_NAME_LEN];
7988 	int i;
7989 
7990 	if (prog->aux->func_cnt == 0) {
7991 		bpf_get_prog_name(prog, sym);
7992 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7993 				   (u64)(unsigned long)prog->bpf_func,
7994 				   prog->jited_len, unregister, sym);
7995 	} else {
7996 		for (i = 0; i < prog->aux->func_cnt; i++) {
7997 			struct bpf_prog *subprog = prog->aux->func[i];
7998 
7999 			bpf_get_prog_name(subprog, sym);
8000 			perf_event_ksymbol(
8001 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8002 				(u64)(unsigned long)subprog->bpf_func,
8003 				subprog->jited_len, unregister, sym);
8004 		}
8005 	}
8006 }
8007 
8008 void perf_event_bpf_event(struct bpf_prog *prog,
8009 			  enum perf_bpf_event_type type,
8010 			  u16 flags)
8011 {
8012 	struct perf_bpf_event bpf_event;
8013 
8014 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8015 	    type >= PERF_BPF_EVENT_MAX)
8016 		return;
8017 
8018 	switch (type) {
8019 	case PERF_BPF_EVENT_PROG_LOAD:
8020 	case PERF_BPF_EVENT_PROG_UNLOAD:
8021 		if (atomic_read(&nr_ksymbol_events))
8022 			perf_event_bpf_emit_ksymbols(prog, type);
8023 		break;
8024 	default:
8025 		break;
8026 	}
8027 
8028 	if (!atomic_read(&nr_bpf_events))
8029 		return;
8030 
8031 	bpf_event = (struct perf_bpf_event){
8032 		.prog = prog,
8033 		.event_id = {
8034 			.header = {
8035 				.type = PERF_RECORD_BPF_EVENT,
8036 				.size = sizeof(bpf_event.event_id),
8037 			},
8038 			.type = type,
8039 			.flags = flags,
8040 			.id = prog->aux->id,
8041 		},
8042 	};
8043 
8044 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8045 
8046 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8047 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8048 }
8049 
8050 void perf_event_itrace_started(struct perf_event *event)
8051 {
8052 	event->attach_state |= PERF_ATTACH_ITRACE;
8053 }
8054 
8055 static void perf_log_itrace_start(struct perf_event *event)
8056 {
8057 	struct perf_output_handle handle;
8058 	struct perf_sample_data sample;
8059 	struct perf_aux_event {
8060 		struct perf_event_header        header;
8061 		u32				pid;
8062 		u32				tid;
8063 	} rec;
8064 	int ret;
8065 
8066 	if (event->parent)
8067 		event = event->parent;
8068 
8069 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8070 	    event->attach_state & PERF_ATTACH_ITRACE)
8071 		return;
8072 
8073 	rec.header.type	= PERF_RECORD_ITRACE_START;
8074 	rec.header.misc	= 0;
8075 	rec.header.size	= sizeof(rec);
8076 	rec.pid	= perf_event_pid(event, current);
8077 	rec.tid	= perf_event_tid(event, current);
8078 
8079 	perf_event_header__init_id(&rec.header, &sample, event);
8080 	ret = perf_output_begin(&handle, event, rec.header.size);
8081 
8082 	if (ret)
8083 		return;
8084 
8085 	perf_output_put(&handle, rec);
8086 	perf_event__output_id_sample(event, &handle, &sample);
8087 
8088 	perf_output_end(&handle);
8089 }
8090 
8091 static int
8092 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8093 {
8094 	struct hw_perf_event *hwc = &event->hw;
8095 	int ret = 0;
8096 	u64 seq;
8097 
8098 	seq = __this_cpu_read(perf_throttled_seq);
8099 	if (seq != hwc->interrupts_seq) {
8100 		hwc->interrupts_seq = seq;
8101 		hwc->interrupts = 1;
8102 	} else {
8103 		hwc->interrupts++;
8104 		if (unlikely(throttle
8105 			     && hwc->interrupts >= max_samples_per_tick)) {
8106 			__this_cpu_inc(perf_throttled_count);
8107 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8108 			hwc->interrupts = MAX_INTERRUPTS;
8109 			perf_log_throttle(event, 0);
8110 			ret = 1;
8111 		}
8112 	}
8113 
8114 	if (event->attr.freq) {
8115 		u64 now = perf_clock();
8116 		s64 delta = now - hwc->freq_time_stamp;
8117 
8118 		hwc->freq_time_stamp = now;
8119 
8120 		if (delta > 0 && delta < 2*TICK_NSEC)
8121 			perf_adjust_period(event, delta, hwc->last_period, true);
8122 	}
8123 
8124 	return ret;
8125 }
8126 
8127 int perf_event_account_interrupt(struct perf_event *event)
8128 {
8129 	return __perf_event_account_interrupt(event, 1);
8130 }
8131 
8132 /*
8133  * Generic event overflow handling, sampling.
8134  */
8135 
8136 static int __perf_event_overflow(struct perf_event *event,
8137 				   int throttle, struct perf_sample_data *data,
8138 				   struct pt_regs *regs)
8139 {
8140 	int events = atomic_read(&event->event_limit);
8141 	int ret = 0;
8142 
8143 	/*
8144 	 * Non-sampling counters might still use the PMI to fold short
8145 	 * hardware counters, ignore those.
8146 	 */
8147 	if (unlikely(!is_sampling_event(event)))
8148 		return 0;
8149 
8150 	ret = __perf_event_account_interrupt(event, throttle);
8151 
8152 	/*
8153 	 * XXX event_limit might not quite work as expected on inherited
8154 	 * events
8155 	 */
8156 
8157 	event->pending_kill = POLL_IN;
8158 	if (events && atomic_dec_and_test(&event->event_limit)) {
8159 		ret = 1;
8160 		event->pending_kill = POLL_HUP;
8161 
8162 		perf_event_disable_inatomic(event);
8163 	}
8164 
8165 	READ_ONCE(event->overflow_handler)(event, data, regs);
8166 
8167 	if (*perf_event_fasync(event) && event->pending_kill) {
8168 		event->pending_wakeup = 1;
8169 		irq_work_queue(&event->pending);
8170 	}
8171 
8172 	return ret;
8173 }
8174 
8175 int perf_event_overflow(struct perf_event *event,
8176 			  struct perf_sample_data *data,
8177 			  struct pt_regs *regs)
8178 {
8179 	return __perf_event_overflow(event, 1, data, regs);
8180 }
8181 
8182 /*
8183  * Generic software event infrastructure
8184  */
8185 
8186 struct swevent_htable {
8187 	struct swevent_hlist		*swevent_hlist;
8188 	struct mutex			hlist_mutex;
8189 	int				hlist_refcount;
8190 
8191 	/* Recursion avoidance in each contexts */
8192 	int				recursion[PERF_NR_CONTEXTS];
8193 };
8194 
8195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8196 
8197 /*
8198  * We directly increment event->count and keep a second value in
8199  * event->hw.period_left to count intervals. This period event
8200  * is kept in the range [-sample_period, 0] so that we can use the
8201  * sign as trigger.
8202  */
8203 
8204 u64 perf_swevent_set_period(struct perf_event *event)
8205 {
8206 	struct hw_perf_event *hwc = &event->hw;
8207 	u64 period = hwc->last_period;
8208 	u64 nr, offset;
8209 	s64 old, val;
8210 
8211 	hwc->last_period = hwc->sample_period;
8212 
8213 again:
8214 	old = val = local64_read(&hwc->period_left);
8215 	if (val < 0)
8216 		return 0;
8217 
8218 	nr = div64_u64(period + val, period);
8219 	offset = nr * period;
8220 	val -= offset;
8221 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8222 		goto again;
8223 
8224 	return nr;
8225 }
8226 
8227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8228 				    struct perf_sample_data *data,
8229 				    struct pt_regs *regs)
8230 {
8231 	struct hw_perf_event *hwc = &event->hw;
8232 	int throttle = 0;
8233 
8234 	if (!overflow)
8235 		overflow = perf_swevent_set_period(event);
8236 
8237 	if (hwc->interrupts == MAX_INTERRUPTS)
8238 		return;
8239 
8240 	for (; overflow; overflow--) {
8241 		if (__perf_event_overflow(event, throttle,
8242 					    data, regs)) {
8243 			/*
8244 			 * We inhibit the overflow from happening when
8245 			 * hwc->interrupts == MAX_INTERRUPTS.
8246 			 */
8247 			break;
8248 		}
8249 		throttle = 1;
8250 	}
8251 }
8252 
8253 static void perf_swevent_event(struct perf_event *event, u64 nr,
8254 			       struct perf_sample_data *data,
8255 			       struct pt_regs *regs)
8256 {
8257 	struct hw_perf_event *hwc = &event->hw;
8258 
8259 	local64_add(nr, &event->count);
8260 
8261 	if (!regs)
8262 		return;
8263 
8264 	if (!is_sampling_event(event))
8265 		return;
8266 
8267 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8268 		data->period = nr;
8269 		return perf_swevent_overflow(event, 1, data, regs);
8270 	} else
8271 		data->period = event->hw.last_period;
8272 
8273 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8274 		return perf_swevent_overflow(event, 1, data, regs);
8275 
8276 	if (local64_add_negative(nr, &hwc->period_left))
8277 		return;
8278 
8279 	perf_swevent_overflow(event, 0, data, regs);
8280 }
8281 
8282 static int perf_exclude_event(struct perf_event *event,
8283 			      struct pt_regs *regs)
8284 {
8285 	if (event->hw.state & PERF_HES_STOPPED)
8286 		return 1;
8287 
8288 	if (regs) {
8289 		if (event->attr.exclude_user && user_mode(regs))
8290 			return 1;
8291 
8292 		if (event->attr.exclude_kernel && !user_mode(regs))
8293 			return 1;
8294 	}
8295 
8296 	return 0;
8297 }
8298 
8299 static int perf_swevent_match(struct perf_event *event,
8300 				enum perf_type_id type,
8301 				u32 event_id,
8302 				struct perf_sample_data *data,
8303 				struct pt_regs *regs)
8304 {
8305 	if (event->attr.type != type)
8306 		return 0;
8307 
8308 	if (event->attr.config != event_id)
8309 		return 0;
8310 
8311 	if (perf_exclude_event(event, regs))
8312 		return 0;
8313 
8314 	return 1;
8315 }
8316 
8317 static inline u64 swevent_hash(u64 type, u32 event_id)
8318 {
8319 	u64 val = event_id | (type << 32);
8320 
8321 	return hash_64(val, SWEVENT_HLIST_BITS);
8322 }
8323 
8324 static inline struct hlist_head *
8325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8326 {
8327 	u64 hash = swevent_hash(type, event_id);
8328 
8329 	return &hlist->heads[hash];
8330 }
8331 
8332 /* For the read side: events when they trigger */
8333 static inline struct hlist_head *
8334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8335 {
8336 	struct swevent_hlist *hlist;
8337 
8338 	hlist = rcu_dereference(swhash->swevent_hlist);
8339 	if (!hlist)
8340 		return NULL;
8341 
8342 	return __find_swevent_head(hlist, type, event_id);
8343 }
8344 
8345 /* For the event head insertion and removal in the hlist */
8346 static inline struct hlist_head *
8347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8348 {
8349 	struct swevent_hlist *hlist;
8350 	u32 event_id = event->attr.config;
8351 	u64 type = event->attr.type;
8352 
8353 	/*
8354 	 * Event scheduling is always serialized against hlist allocation
8355 	 * and release. Which makes the protected version suitable here.
8356 	 * The context lock guarantees that.
8357 	 */
8358 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8359 					  lockdep_is_held(&event->ctx->lock));
8360 	if (!hlist)
8361 		return NULL;
8362 
8363 	return __find_swevent_head(hlist, type, event_id);
8364 }
8365 
8366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8367 				    u64 nr,
8368 				    struct perf_sample_data *data,
8369 				    struct pt_regs *regs)
8370 {
8371 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8372 	struct perf_event *event;
8373 	struct hlist_head *head;
8374 
8375 	rcu_read_lock();
8376 	head = find_swevent_head_rcu(swhash, type, event_id);
8377 	if (!head)
8378 		goto end;
8379 
8380 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8381 		if (perf_swevent_match(event, type, event_id, data, regs))
8382 			perf_swevent_event(event, nr, data, regs);
8383 	}
8384 end:
8385 	rcu_read_unlock();
8386 }
8387 
8388 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8389 
8390 int perf_swevent_get_recursion_context(void)
8391 {
8392 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8393 
8394 	return get_recursion_context(swhash->recursion);
8395 }
8396 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8397 
8398 void perf_swevent_put_recursion_context(int rctx)
8399 {
8400 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8401 
8402 	put_recursion_context(swhash->recursion, rctx);
8403 }
8404 
8405 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8406 {
8407 	struct perf_sample_data data;
8408 
8409 	if (WARN_ON_ONCE(!regs))
8410 		return;
8411 
8412 	perf_sample_data_init(&data, addr, 0);
8413 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8414 }
8415 
8416 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8417 {
8418 	int rctx;
8419 
8420 	preempt_disable_notrace();
8421 	rctx = perf_swevent_get_recursion_context();
8422 	if (unlikely(rctx < 0))
8423 		goto fail;
8424 
8425 	___perf_sw_event(event_id, nr, regs, addr);
8426 
8427 	perf_swevent_put_recursion_context(rctx);
8428 fail:
8429 	preempt_enable_notrace();
8430 }
8431 
8432 static void perf_swevent_read(struct perf_event *event)
8433 {
8434 }
8435 
8436 static int perf_swevent_add(struct perf_event *event, int flags)
8437 {
8438 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8439 	struct hw_perf_event *hwc = &event->hw;
8440 	struct hlist_head *head;
8441 
8442 	if (is_sampling_event(event)) {
8443 		hwc->last_period = hwc->sample_period;
8444 		perf_swevent_set_period(event);
8445 	}
8446 
8447 	hwc->state = !(flags & PERF_EF_START);
8448 
8449 	head = find_swevent_head(swhash, event);
8450 	if (WARN_ON_ONCE(!head))
8451 		return -EINVAL;
8452 
8453 	hlist_add_head_rcu(&event->hlist_entry, head);
8454 	perf_event_update_userpage(event);
8455 
8456 	return 0;
8457 }
8458 
8459 static void perf_swevent_del(struct perf_event *event, int flags)
8460 {
8461 	hlist_del_rcu(&event->hlist_entry);
8462 }
8463 
8464 static void perf_swevent_start(struct perf_event *event, int flags)
8465 {
8466 	event->hw.state = 0;
8467 }
8468 
8469 static void perf_swevent_stop(struct perf_event *event, int flags)
8470 {
8471 	event->hw.state = PERF_HES_STOPPED;
8472 }
8473 
8474 /* Deref the hlist from the update side */
8475 static inline struct swevent_hlist *
8476 swevent_hlist_deref(struct swevent_htable *swhash)
8477 {
8478 	return rcu_dereference_protected(swhash->swevent_hlist,
8479 					 lockdep_is_held(&swhash->hlist_mutex));
8480 }
8481 
8482 static void swevent_hlist_release(struct swevent_htable *swhash)
8483 {
8484 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8485 
8486 	if (!hlist)
8487 		return;
8488 
8489 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8490 	kfree_rcu(hlist, rcu_head);
8491 }
8492 
8493 static void swevent_hlist_put_cpu(int cpu)
8494 {
8495 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8496 
8497 	mutex_lock(&swhash->hlist_mutex);
8498 
8499 	if (!--swhash->hlist_refcount)
8500 		swevent_hlist_release(swhash);
8501 
8502 	mutex_unlock(&swhash->hlist_mutex);
8503 }
8504 
8505 static void swevent_hlist_put(void)
8506 {
8507 	int cpu;
8508 
8509 	for_each_possible_cpu(cpu)
8510 		swevent_hlist_put_cpu(cpu);
8511 }
8512 
8513 static int swevent_hlist_get_cpu(int cpu)
8514 {
8515 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8516 	int err = 0;
8517 
8518 	mutex_lock(&swhash->hlist_mutex);
8519 	if (!swevent_hlist_deref(swhash) &&
8520 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8521 		struct swevent_hlist *hlist;
8522 
8523 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8524 		if (!hlist) {
8525 			err = -ENOMEM;
8526 			goto exit;
8527 		}
8528 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8529 	}
8530 	swhash->hlist_refcount++;
8531 exit:
8532 	mutex_unlock(&swhash->hlist_mutex);
8533 
8534 	return err;
8535 }
8536 
8537 static int swevent_hlist_get(void)
8538 {
8539 	int err, cpu, failed_cpu;
8540 
8541 	mutex_lock(&pmus_lock);
8542 	for_each_possible_cpu(cpu) {
8543 		err = swevent_hlist_get_cpu(cpu);
8544 		if (err) {
8545 			failed_cpu = cpu;
8546 			goto fail;
8547 		}
8548 	}
8549 	mutex_unlock(&pmus_lock);
8550 	return 0;
8551 fail:
8552 	for_each_possible_cpu(cpu) {
8553 		if (cpu == failed_cpu)
8554 			break;
8555 		swevent_hlist_put_cpu(cpu);
8556 	}
8557 	mutex_unlock(&pmus_lock);
8558 	return err;
8559 }
8560 
8561 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8562 
8563 static void sw_perf_event_destroy(struct perf_event *event)
8564 {
8565 	u64 event_id = event->attr.config;
8566 
8567 	WARN_ON(event->parent);
8568 
8569 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8570 	swevent_hlist_put();
8571 }
8572 
8573 static int perf_swevent_init(struct perf_event *event)
8574 {
8575 	u64 event_id = event->attr.config;
8576 
8577 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8578 		return -ENOENT;
8579 
8580 	/*
8581 	 * no branch sampling for software events
8582 	 */
8583 	if (has_branch_stack(event))
8584 		return -EOPNOTSUPP;
8585 
8586 	switch (event_id) {
8587 	case PERF_COUNT_SW_CPU_CLOCK:
8588 	case PERF_COUNT_SW_TASK_CLOCK:
8589 		return -ENOENT;
8590 
8591 	default:
8592 		break;
8593 	}
8594 
8595 	if (event_id >= PERF_COUNT_SW_MAX)
8596 		return -ENOENT;
8597 
8598 	if (!event->parent) {
8599 		int err;
8600 
8601 		err = swevent_hlist_get();
8602 		if (err)
8603 			return err;
8604 
8605 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8606 		event->destroy = sw_perf_event_destroy;
8607 	}
8608 
8609 	return 0;
8610 }
8611 
8612 static struct pmu perf_swevent = {
8613 	.task_ctx_nr	= perf_sw_context,
8614 
8615 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8616 
8617 	.event_init	= perf_swevent_init,
8618 	.add		= perf_swevent_add,
8619 	.del		= perf_swevent_del,
8620 	.start		= perf_swevent_start,
8621 	.stop		= perf_swevent_stop,
8622 	.read		= perf_swevent_read,
8623 };
8624 
8625 #ifdef CONFIG_EVENT_TRACING
8626 
8627 static int perf_tp_filter_match(struct perf_event *event,
8628 				struct perf_sample_data *data)
8629 {
8630 	void *record = data->raw->frag.data;
8631 
8632 	/* only top level events have filters set */
8633 	if (event->parent)
8634 		event = event->parent;
8635 
8636 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8637 		return 1;
8638 	return 0;
8639 }
8640 
8641 static int perf_tp_event_match(struct perf_event *event,
8642 				struct perf_sample_data *data,
8643 				struct pt_regs *regs)
8644 {
8645 	if (event->hw.state & PERF_HES_STOPPED)
8646 		return 0;
8647 	/*
8648 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8649 	 */
8650 	if (event->attr.exclude_kernel && !user_mode(regs))
8651 		return 0;
8652 
8653 	if (!perf_tp_filter_match(event, data))
8654 		return 0;
8655 
8656 	return 1;
8657 }
8658 
8659 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8660 			       struct trace_event_call *call, u64 count,
8661 			       struct pt_regs *regs, struct hlist_head *head,
8662 			       struct task_struct *task)
8663 {
8664 	if (bpf_prog_array_valid(call)) {
8665 		*(struct pt_regs **)raw_data = regs;
8666 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8667 			perf_swevent_put_recursion_context(rctx);
8668 			return;
8669 		}
8670 	}
8671 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8672 		      rctx, task);
8673 }
8674 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8675 
8676 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8677 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8678 		   struct task_struct *task)
8679 {
8680 	struct perf_sample_data data;
8681 	struct perf_event *event;
8682 
8683 	struct perf_raw_record raw = {
8684 		.frag = {
8685 			.size = entry_size,
8686 			.data = record,
8687 		},
8688 	};
8689 
8690 	perf_sample_data_init(&data, 0, 0);
8691 	data.raw = &raw;
8692 
8693 	perf_trace_buf_update(record, event_type);
8694 
8695 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8696 		if (perf_tp_event_match(event, &data, regs))
8697 			perf_swevent_event(event, count, &data, regs);
8698 	}
8699 
8700 	/*
8701 	 * If we got specified a target task, also iterate its context and
8702 	 * deliver this event there too.
8703 	 */
8704 	if (task && task != current) {
8705 		struct perf_event_context *ctx;
8706 		struct trace_entry *entry = record;
8707 
8708 		rcu_read_lock();
8709 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8710 		if (!ctx)
8711 			goto unlock;
8712 
8713 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8714 			if (event->cpu != smp_processor_id())
8715 				continue;
8716 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8717 				continue;
8718 			if (event->attr.config != entry->type)
8719 				continue;
8720 			if (perf_tp_event_match(event, &data, regs))
8721 				perf_swevent_event(event, count, &data, regs);
8722 		}
8723 unlock:
8724 		rcu_read_unlock();
8725 	}
8726 
8727 	perf_swevent_put_recursion_context(rctx);
8728 }
8729 EXPORT_SYMBOL_GPL(perf_tp_event);
8730 
8731 static void tp_perf_event_destroy(struct perf_event *event)
8732 {
8733 	perf_trace_destroy(event);
8734 }
8735 
8736 static int perf_tp_event_init(struct perf_event *event)
8737 {
8738 	int err;
8739 
8740 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8741 		return -ENOENT;
8742 
8743 	/*
8744 	 * no branch sampling for tracepoint events
8745 	 */
8746 	if (has_branch_stack(event))
8747 		return -EOPNOTSUPP;
8748 
8749 	err = perf_trace_init(event);
8750 	if (err)
8751 		return err;
8752 
8753 	event->destroy = tp_perf_event_destroy;
8754 
8755 	return 0;
8756 }
8757 
8758 static struct pmu perf_tracepoint = {
8759 	.task_ctx_nr	= perf_sw_context,
8760 
8761 	.event_init	= perf_tp_event_init,
8762 	.add		= perf_trace_add,
8763 	.del		= perf_trace_del,
8764 	.start		= perf_swevent_start,
8765 	.stop		= perf_swevent_stop,
8766 	.read		= perf_swevent_read,
8767 };
8768 
8769 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8770 /*
8771  * Flags in config, used by dynamic PMU kprobe and uprobe
8772  * The flags should match following PMU_FORMAT_ATTR().
8773  *
8774  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8775  *                               if not set, create kprobe/uprobe
8776  *
8777  * The following values specify a reference counter (or semaphore in the
8778  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8779  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8780  *
8781  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8782  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8783  */
8784 enum perf_probe_config {
8785 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8786 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8787 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8788 };
8789 
8790 PMU_FORMAT_ATTR(retprobe, "config:0");
8791 #endif
8792 
8793 #ifdef CONFIG_KPROBE_EVENTS
8794 static struct attribute *kprobe_attrs[] = {
8795 	&format_attr_retprobe.attr,
8796 	NULL,
8797 };
8798 
8799 static struct attribute_group kprobe_format_group = {
8800 	.name = "format",
8801 	.attrs = kprobe_attrs,
8802 };
8803 
8804 static const struct attribute_group *kprobe_attr_groups[] = {
8805 	&kprobe_format_group,
8806 	NULL,
8807 };
8808 
8809 static int perf_kprobe_event_init(struct perf_event *event);
8810 static struct pmu perf_kprobe = {
8811 	.task_ctx_nr	= perf_sw_context,
8812 	.event_init	= perf_kprobe_event_init,
8813 	.add		= perf_trace_add,
8814 	.del		= perf_trace_del,
8815 	.start		= perf_swevent_start,
8816 	.stop		= perf_swevent_stop,
8817 	.read		= perf_swevent_read,
8818 	.attr_groups	= kprobe_attr_groups,
8819 };
8820 
8821 static int perf_kprobe_event_init(struct perf_event *event)
8822 {
8823 	int err;
8824 	bool is_retprobe;
8825 
8826 	if (event->attr.type != perf_kprobe.type)
8827 		return -ENOENT;
8828 
8829 	if (!capable(CAP_SYS_ADMIN))
8830 		return -EACCES;
8831 
8832 	/*
8833 	 * no branch sampling for probe events
8834 	 */
8835 	if (has_branch_stack(event))
8836 		return -EOPNOTSUPP;
8837 
8838 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8839 	err = perf_kprobe_init(event, is_retprobe);
8840 	if (err)
8841 		return err;
8842 
8843 	event->destroy = perf_kprobe_destroy;
8844 
8845 	return 0;
8846 }
8847 #endif /* CONFIG_KPROBE_EVENTS */
8848 
8849 #ifdef CONFIG_UPROBE_EVENTS
8850 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8851 
8852 static struct attribute *uprobe_attrs[] = {
8853 	&format_attr_retprobe.attr,
8854 	&format_attr_ref_ctr_offset.attr,
8855 	NULL,
8856 };
8857 
8858 static struct attribute_group uprobe_format_group = {
8859 	.name = "format",
8860 	.attrs = uprobe_attrs,
8861 };
8862 
8863 static const struct attribute_group *uprobe_attr_groups[] = {
8864 	&uprobe_format_group,
8865 	NULL,
8866 };
8867 
8868 static int perf_uprobe_event_init(struct perf_event *event);
8869 static struct pmu perf_uprobe = {
8870 	.task_ctx_nr	= perf_sw_context,
8871 	.event_init	= perf_uprobe_event_init,
8872 	.add		= perf_trace_add,
8873 	.del		= perf_trace_del,
8874 	.start		= perf_swevent_start,
8875 	.stop		= perf_swevent_stop,
8876 	.read		= perf_swevent_read,
8877 	.attr_groups	= uprobe_attr_groups,
8878 };
8879 
8880 static int perf_uprobe_event_init(struct perf_event *event)
8881 {
8882 	int err;
8883 	unsigned long ref_ctr_offset;
8884 	bool is_retprobe;
8885 
8886 	if (event->attr.type != perf_uprobe.type)
8887 		return -ENOENT;
8888 
8889 	if (!capable(CAP_SYS_ADMIN))
8890 		return -EACCES;
8891 
8892 	/*
8893 	 * no branch sampling for probe events
8894 	 */
8895 	if (has_branch_stack(event))
8896 		return -EOPNOTSUPP;
8897 
8898 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8899 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8900 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8901 	if (err)
8902 		return err;
8903 
8904 	event->destroy = perf_uprobe_destroy;
8905 
8906 	return 0;
8907 }
8908 #endif /* CONFIG_UPROBE_EVENTS */
8909 
8910 static inline void perf_tp_register(void)
8911 {
8912 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8913 #ifdef CONFIG_KPROBE_EVENTS
8914 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8915 #endif
8916 #ifdef CONFIG_UPROBE_EVENTS
8917 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8918 #endif
8919 }
8920 
8921 static void perf_event_free_filter(struct perf_event *event)
8922 {
8923 	ftrace_profile_free_filter(event);
8924 }
8925 
8926 #ifdef CONFIG_BPF_SYSCALL
8927 static void bpf_overflow_handler(struct perf_event *event,
8928 				 struct perf_sample_data *data,
8929 				 struct pt_regs *regs)
8930 {
8931 	struct bpf_perf_event_data_kern ctx = {
8932 		.data = data,
8933 		.event = event,
8934 	};
8935 	int ret = 0;
8936 
8937 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8938 	preempt_disable();
8939 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8940 		goto out;
8941 	rcu_read_lock();
8942 	ret = BPF_PROG_RUN(event->prog, &ctx);
8943 	rcu_read_unlock();
8944 out:
8945 	__this_cpu_dec(bpf_prog_active);
8946 	preempt_enable();
8947 	if (!ret)
8948 		return;
8949 
8950 	event->orig_overflow_handler(event, data, regs);
8951 }
8952 
8953 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8954 {
8955 	struct bpf_prog *prog;
8956 
8957 	if (event->overflow_handler_context)
8958 		/* hw breakpoint or kernel counter */
8959 		return -EINVAL;
8960 
8961 	if (event->prog)
8962 		return -EEXIST;
8963 
8964 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8965 	if (IS_ERR(prog))
8966 		return PTR_ERR(prog);
8967 
8968 	event->prog = prog;
8969 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8970 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8971 	return 0;
8972 }
8973 
8974 static void perf_event_free_bpf_handler(struct perf_event *event)
8975 {
8976 	struct bpf_prog *prog = event->prog;
8977 
8978 	if (!prog)
8979 		return;
8980 
8981 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8982 	event->prog = NULL;
8983 	bpf_prog_put(prog);
8984 }
8985 #else
8986 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8987 {
8988 	return -EOPNOTSUPP;
8989 }
8990 static void perf_event_free_bpf_handler(struct perf_event *event)
8991 {
8992 }
8993 #endif
8994 
8995 /*
8996  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8997  * with perf_event_open()
8998  */
8999 static inline bool perf_event_is_tracing(struct perf_event *event)
9000 {
9001 	if (event->pmu == &perf_tracepoint)
9002 		return true;
9003 #ifdef CONFIG_KPROBE_EVENTS
9004 	if (event->pmu == &perf_kprobe)
9005 		return true;
9006 #endif
9007 #ifdef CONFIG_UPROBE_EVENTS
9008 	if (event->pmu == &perf_uprobe)
9009 		return true;
9010 #endif
9011 	return false;
9012 }
9013 
9014 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9015 {
9016 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9017 	struct bpf_prog *prog;
9018 	int ret;
9019 
9020 	if (!perf_event_is_tracing(event))
9021 		return perf_event_set_bpf_handler(event, prog_fd);
9022 
9023 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9024 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9025 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9026 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9027 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9028 		return -EINVAL;
9029 
9030 	prog = bpf_prog_get(prog_fd);
9031 	if (IS_ERR(prog))
9032 		return PTR_ERR(prog);
9033 
9034 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9035 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9036 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9037 		/* valid fd, but invalid bpf program type */
9038 		bpf_prog_put(prog);
9039 		return -EINVAL;
9040 	}
9041 
9042 	/* Kprobe override only works for kprobes, not uprobes. */
9043 	if (prog->kprobe_override &&
9044 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9045 		bpf_prog_put(prog);
9046 		return -EINVAL;
9047 	}
9048 
9049 	if (is_tracepoint || is_syscall_tp) {
9050 		int off = trace_event_get_offsets(event->tp_event);
9051 
9052 		if (prog->aux->max_ctx_offset > off) {
9053 			bpf_prog_put(prog);
9054 			return -EACCES;
9055 		}
9056 	}
9057 
9058 	ret = perf_event_attach_bpf_prog(event, prog);
9059 	if (ret)
9060 		bpf_prog_put(prog);
9061 	return ret;
9062 }
9063 
9064 static void perf_event_free_bpf_prog(struct perf_event *event)
9065 {
9066 	if (!perf_event_is_tracing(event)) {
9067 		perf_event_free_bpf_handler(event);
9068 		return;
9069 	}
9070 	perf_event_detach_bpf_prog(event);
9071 }
9072 
9073 #else
9074 
9075 static inline void perf_tp_register(void)
9076 {
9077 }
9078 
9079 static void perf_event_free_filter(struct perf_event *event)
9080 {
9081 }
9082 
9083 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9084 {
9085 	return -ENOENT;
9086 }
9087 
9088 static void perf_event_free_bpf_prog(struct perf_event *event)
9089 {
9090 }
9091 #endif /* CONFIG_EVENT_TRACING */
9092 
9093 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9094 void perf_bp_event(struct perf_event *bp, void *data)
9095 {
9096 	struct perf_sample_data sample;
9097 	struct pt_regs *regs = data;
9098 
9099 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9100 
9101 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9102 		perf_swevent_event(bp, 1, &sample, regs);
9103 }
9104 #endif
9105 
9106 /*
9107  * Allocate a new address filter
9108  */
9109 static struct perf_addr_filter *
9110 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9111 {
9112 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9113 	struct perf_addr_filter *filter;
9114 
9115 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9116 	if (!filter)
9117 		return NULL;
9118 
9119 	INIT_LIST_HEAD(&filter->entry);
9120 	list_add_tail(&filter->entry, filters);
9121 
9122 	return filter;
9123 }
9124 
9125 static void free_filters_list(struct list_head *filters)
9126 {
9127 	struct perf_addr_filter *filter, *iter;
9128 
9129 	list_for_each_entry_safe(filter, iter, filters, entry) {
9130 		path_put(&filter->path);
9131 		list_del(&filter->entry);
9132 		kfree(filter);
9133 	}
9134 }
9135 
9136 /*
9137  * Free existing address filters and optionally install new ones
9138  */
9139 static void perf_addr_filters_splice(struct perf_event *event,
9140 				     struct list_head *head)
9141 {
9142 	unsigned long flags;
9143 	LIST_HEAD(list);
9144 
9145 	if (!has_addr_filter(event))
9146 		return;
9147 
9148 	/* don't bother with children, they don't have their own filters */
9149 	if (event->parent)
9150 		return;
9151 
9152 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9153 
9154 	list_splice_init(&event->addr_filters.list, &list);
9155 	if (head)
9156 		list_splice(head, &event->addr_filters.list);
9157 
9158 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9159 
9160 	free_filters_list(&list);
9161 }
9162 
9163 /*
9164  * Scan through mm's vmas and see if one of them matches the
9165  * @filter; if so, adjust filter's address range.
9166  * Called with mm::mmap_sem down for reading.
9167  */
9168 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9169 				   struct mm_struct *mm,
9170 				   struct perf_addr_filter_range *fr)
9171 {
9172 	struct vm_area_struct *vma;
9173 
9174 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9175 		if (!vma->vm_file)
9176 			continue;
9177 
9178 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9179 			return;
9180 	}
9181 }
9182 
9183 /*
9184  * Update event's address range filters based on the
9185  * task's existing mappings, if any.
9186  */
9187 static void perf_event_addr_filters_apply(struct perf_event *event)
9188 {
9189 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9190 	struct task_struct *task = READ_ONCE(event->ctx->task);
9191 	struct perf_addr_filter *filter;
9192 	struct mm_struct *mm = NULL;
9193 	unsigned int count = 0;
9194 	unsigned long flags;
9195 
9196 	/*
9197 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9198 	 * will stop on the parent's child_mutex that our caller is also holding
9199 	 */
9200 	if (task == TASK_TOMBSTONE)
9201 		return;
9202 
9203 	if (ifh->nr_file_filters) {
9204 		mm = get_task_mm(event->ctx->task);
9205 		if (!mm)
9206 			goto restart;
9207 
9208 		down_read(&mm->mmap_sem);
9209 	}
9210 
9211 	raw_spin_lock_irqsave(&ifh->lock, flags);
9212 	list_for_each_entry(filter, &ifh->list, entry) {
9213 		if (filter->path.dentry) {
9214 			/*
9215 			 * Adjust base offset if the filter is associated to a
9216 			 * binary that needs to be mapped:
9217 			 */
9218 			event->addr_filter_ranges[count].start = 0;
9219 			event->addr_filter_ranges[count].size = 0;
9220 
9221 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9222 		} else {
9223 			event->addr_filter_ranges[count].start = filter->offset;
9224 			event->addr_filter_ranges[count].size  = filter->size;
9225 		}
9226 
9227 		count++;
9228 	}
9229 
9230 	event->addr_filters_gen++;
9231 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9232 
9233 	if (ifh->nr_file_filters) {
9234 		up_read(&mm->mmap_sem);
9235 
9236 		mmput(mm);
9237 	}
9238 
9239 restart:
9240 	perf_event_stop(event, 1);
9241 }
9242 
9243 /*
9244  * Address range filtering: limiting the data to certain
9245  * instruction address ranges. Filters are ioctl()ed to us from
9246  * userspace as ascii strings.
9247  *
9248  * Filter string format:
9249  *
9250  * ACTION RANGE_SPEC
9251  * where ACTION is one of the
9252  *  * "filter": limit the trace to this region
9253  *  * "start": start tracing from this address
9254  *  * "stop": stop tracing at this address/region;
9255  * RANGE_SPEC is
9256  *  * for kernel addresses: <start address>[/<size>]
9257  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9258  *
9259  * if <size> is not specified or is zero, the range is treated as a single
9260  * address; not valid for ACTION=="filter".
9261  */
9262 enum {
9263 	IF_ACT_NONE = -1,
9264 	IF_ACT_FILTER,
9265 	IF_ACT_START,
9266 	IF_ACT_STOP,
9267 	IF_SRC_FILE,
9268 	IF_SRC_KERNEL,
9269 	IF_SRC_FILEADDR,
9270 	IF_SRC_KERNELADDR,
9271 };
9272 
9273 enum {
9274 	IF_STATE_ACTION = 0,
9275 	IF_STATE_SOURCE,
9276 	IF_STATE_END,
9277 };
9278 
9279 static const match_table_t if_tokens = {
9280 	{ IF_ACT_FILTER,	"filter" },
9281 	{ IF_ACT_START,		"start" },
9282 	{ IF_ACT_STOP,		"stop" },
9283 	{ IF_SRC_FILE,		"%u/%u@%s" },
9284 	{ IF_SRC_KERNEL,	"%u/%u" },
9285 	{ IF_SRC_FILEADDR,	"%u@%s" },
9286 	{ IF_SRC_KERNELADDR,	"%u" },
9287 	{ IF_ACT_NONE,		NULL },
9288 };
9289 
9290 /*
9291  * Address filter string parser
9292  */
9293 static int
9294 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9295 			     struct list_head *filters)
9296 {
9297 	struct perf_addr_filter *filter = NULL;
9298 	char *start, *orig, *filename = NULL;
9299 	substring_t args[MAX_OPT_ARGS];
9300 	int state = IF_STATE_ACTION, token;
9301 	unsigned int kernel = 0;
9302 	int ret = -EINVAL;
9303 
9304 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9305 	if (!fstr)
9306 		return -ENOMEM;
9307 
9308 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9309 		static const enum perf_addr_filter_action_t actions[] = {
9310 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9311 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9312 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9313 		};
9314 		ret = -EINVAL;
9315 
9316 		if (!*start)
9317 			continue;
9318 
9319 		/* filter definition begins */
9320 		if (state == IF_STATE_ACTION) {
9321 			filter = perf_addr_filter_new(event, filters);
9322 			if (!filter)
9323 				goto fail;
9324 		}
9325 
9326 		token = match_token(start, if_tokens, args);
9327 		switch (token) {
9328 		case IF_ACT_FILTER:
9329 		case IF_ACT_START:
9330 		case IF_ACT_STOP:
9331 			if (state != IF_STATE_ACTION)
9332 				goto fail;
9333 
9334 			filter->action = actions[token];
9335 			state = IF_STATE_SOURCE;
9336 			break;
9337 
9338 		case IF_SRC_KERNELADDR:
9339 		case IF_SRC_KERNEL:
9340 			kernel = 1;
9341 			/* fall through */
9342 
9343 		case IF_SRC_FILEADDR:
9344 		case IF_SRC_FILE:
9345 			if (state != IF_STATE_SOURCE)
9346 				goto fail;
9347 
9348 			*args[0].to = 0;
9349 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9350 			if (ret)
9351 				goto fail;
9352 
9353 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9354 				*args[1].to = 0;
9355 				ret = kstrtoul(args[1].from, 0, &filter->size);
9356 				if (ret)
9357 					goto fail;
9358 			}
9359 
9360 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9361 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9362 
9363 				filename = match_strdup(&args[fpos]);
9364 				if (!filename) {
9365 					ret = -ENOMEM;
9366 					goto fail;
9367 				}
9368 			}
9369 
9370 			state = IF_STATE_END;
9371 			break;
9372 
9373 		default:
9374 			goto fail;
9375 		}
9376 
9377 		/*
9378 		 * Filter definition is fully parsed, validate and install it.
9379 		 * Make sure that it doesn't contradict itself or the event's
9380 		 * attribute.
9381 		 */
9382 		if (state == IF_STATE_END) {
9383 			ret = -EINVAL;
9384 			if (kernel && event->attr.exclude_kernel)
9385 				goto fail;
9386 
9387 			/*
9388 			 * ACTION "filter" must have a non-zero length region
9389 			 * specified.
9390 			 */
9391 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9392 			    !filter->size)
9393 				goto fail;
9394 
9395 			if (!kernel) {
9396 				if (!filename)
9397 					goto fail;
9398 
9399 				/*
9400 				 * For now, we only support file-based filters
9401 				 * in per-task events; doing so for CPU-wide
9402 				 * events requires additional context switching
9403 				 * trickery, since same object code will be
9404 				 * mapped at different virtual addresses in
9405 				 * different processes.
9406 				 */
9407 				ret = -EOPNOTSUPP;
9408 				if (!event->ctx->task)
9409 					goto fail_free_name;
9410 
9411 				/* look up the path and grab its inode */
9412 				ret = kern_path(filename, LOOKUP_FOLLOW,
9413 						&filter->path);
9414 				if (ret)
9415 					goto fail_free_name;
9416 
9417 				kfree(filename);
9418 				filename = NULL;
9419 
9420 				ret = -EINVAL;
9421 				if (!filter->path.dentry ||
9422 				    !S_ISREG(d_inode(filter->path.dentry)
9423 					     ->i_mode))
9424 					goto fail;
9425 
9426 				event->addr_filters.nr_file_filters++;
9427 			}
9428 
9429 			/* ready to consume more filters */
9430 			state = IF_STATE_ACTION;
9431 			filter = NULL;
9432 		}
9433 	}
9434 
9435 	if (state != IF_STATE_ACTION)
9436 		goto fail;
9437 
9438 	kfree(orig);
9439 
9440 	return 0;
9441 
9442 fail_free_name:
9443 	kfree(filename);
9444 fail:
9445 	free_filters_list(filters);
9446 	kfree(orig);
9447 
9448 	return ret;
9449 }
9450 
9451 static int
9452 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9453 {
9454 	LIST_HEAD(filters);
9455 	int ret;
9456 
9457 	/*
9458 	 * Since this is called in perf_ioctl() path, we're already holding
9459 	 * ctx::mutex.
9460 	 */
9461 	lockdep_assert_held(&event->ctx->mutex);
9462 
9463 	if (WARN_ON_ONCE(event->parent))
9464 		return -EINVAL;
9465 
9466 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9467 	if (ret)
9468 		goto fail_clear_files;
9469 
9470 	ret = event->pmu->addr_filters_validate(&filters);
9471 	if (ret)
9472 		goto fail_free_filters;
9473 
9474 	/* remove existing filters, if any */
9475 	perf_addr_filters_splice(event, &filters);
9476 
9477 	/* install new filters */
9478 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9479 
9480 	return ret;
9481 
9482 fail_free_filters:
9483 	free_filters_list(&filters);
9484 
9485 fail_clear_files:
9486 	event->addr_filters.nr_file_filters = 0;
9487 
9488 	return ret;
9489 }
9490 
9491 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9492 {
9493 	int ret = -EINVAL;
9494 	char *filter_str;
9495 
9496 	filter_str = strndup_user(arg, PAGE_SIZE);
9497 	if (IS_ERR(filter_str))
9498 		return PTR_ERR(filter_str);
9499 
9500 #ifdef CONFIG_EVENT_TRACING
9501 	if (perf_event_is_tracing(event)) {
9502 		struct perf_event_context *ctx = event->ctx;
9503 
9504 		/*
9505 		 * Beware, here be dragons!!
9506 		 *
9507 		 * the tracepoint muck will deadlock against ctx->mutex, but
9508 		 * the tracepoint stuff does not actually need it. So
9509 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9510 		 * already have a reference on ctx.
9511 		 *
9512 		 * This can result in event getting moved to a different ctx,
9513 		 * but that does not affect the tracepoint state.
9514 		 */
9515 		mutex_unlock(&ctx->mutex);
9516 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9517 		mutex_lock(&ctx->mutex);
9518 	} else
9519 #endif
9520 	if (has_addr_filter(event))
9521 		ret = perf_event_set_addr_filter(event, filter_str);
9522 
9523 	kfree(filter_str);
9524 	return ret;
9525 }
9526 
9527 /*
9528  * hrtimer based swevent callback
9529  */
9530 
9531 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9532 {
9533 	enum hrtimer_restart ret = HRTIMER_RESTART;
9534 	struct perf_sample_data data;
9535 	struct pt_regs *regs;
9536 	struct perf_event *event;
9537 	u64 period;
9538 
9539 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9540 
9541 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9542 		return HRTIMER_NORESTART;
9543 
9544 	event->pmu->read(event);
9545 
9546 	perf_sample_data_init(&data, 0, event->hw.last_period);
9547 	regs = get_irq_regs();
9548 
9549 	if (regs && !perf_exclude_event(event, regs)) {
9550 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9551 			if (__perf_event_overflow(event, 1, &data, regs))
9552 				ret = HRTIMER_NORESTART;
9553 	}
9554 
9555 	period = max_t(u64, 10000, event->hw.sample_period);
9556 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9557 
9558 	return ret;
9559 }
9560 
9561 static void perf_swevent_start_hrtimer(struct perf_event *event)
9562 {
9563 	struct hw_perf_event *hwc = &event->hw;
9564 	s64 period;
9565 
9566 	if (!is_sampling_event(event))
9567 		return;
9568 
9569 	period = local64_read(&hwc->period_left);
9570 	if (period) {
9571 		if (period < 0)
9572 			period = 10000;
9573 
9574 		local64_set(&hwc->period_left, 0);
9575 	} else {
9576 		period = max_t(u64, 10000, hwc->sample_period);
9577 	}
9578 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9579 		      HRTIMER_MODE_REL_PINNED);
9580 }
9581 
9582 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9583 {
9584 	struct hw_perf_event *hwc = &event->hw;
9585 
9586 	if (is_sampling_event(event)) {
9587 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9588 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9589 
9590 		hrtimer_cancel(&hwc->hrtimer);
9591 	}
9592 }
9593 
9594 static void perf_swevent_init_hrtimer(struct perf_event *event)
9595 {
9596 	struct hw_perf_event *hwc = &event->hw;
9597 
9598 	if (!is_sampling_event(event))
9599 		return;
9600 
9601 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9602 	hwc->hrtimer.function = perf_swevent_hrtimer;
9603 
9604 	/*
9605 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9606 	 * mapping and avoid the whole period adjust feedback stuff.
9607 	 */
9608 	if (event->attr.freq) {
9609 		long freq = event->attr.sample_freq;
9610 
9611 		event->attr.sample_period = NSEC_PER_SEC / freq;
9612 		hwc->sample_period = event->attr.sample_period;
9613 		local64_set(&hwc->period_left, hwc->sample_period);
9614 		hwc->last_period = hwc->sample_period;
9615 		event->attr.freq = 0;
9616 	}
9617 }
9618 
9619 /*
9620  * Software event: cpu wall time clock
9621  */
9622 
9623 static void cpu_clock_event_update(struct perf_event *event)
9624 {
9625 	s64 prev;
9626 	u64 now;
9627 
9628 	now = local_clock();
9629 	prev = local64_xchg(&event->hw.prev_count, now);
9630 	local64_add(now - prev, &event->count);
9631 }
9632 
9633 static void cpu_clock_event_start(struct perf_event *event, int flags)
9634 {
9635 	local64_set(&event->hw.prev_count, local_clock());
9636 	perf_swevent_start_hrtimer(event);
9637 }
9638 
9639 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9640 {
9641 	perf_swevent_cancel_hrtimer(event);
9642 	cpu_clock_event_update(event);
9643 }
9644 
9645 static int cpu_clock_event_add(struct perf_event *event, int flags)
9646 {
9647 	if (flags & PERF_EF_START)
9648 		cpu_clock_event_start(event, flags);
9649 	perf_event_update_userpage(event);
9650 
9651 	return 0;
9652 }
9653 
9654 static void cpu_clock_event_del(struct perf_event *event, int flags)
9655 {
9656 	cpu_clock_event_stop(event, flags);
9657 }
9658 
9659 static void cpu_clock_event_read(struct perf_event *event)
9660 {
9661 	cpu_clock_event_update(event);
9662 }
9663 
9664 static int cpu_clock_event_init(struct perf_event *event)
9665 {
9666 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9667 		return -ENOENT;
9668 
9669 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9670 		return -ENOENT;
9671 
9672 	/*
9673 	 * no branch sampling for software events
9674 	 */
9675 	if (has_branch_stack(event))
9676 		return -EOPNOTSUPP;
9677 
9678 	perf_swevent_init_hrtimer(event);
9679 
9680 	return 0;
9681 }
9682 
9683 static struct pmu perf_cpu_clock = {
9684 	.task_ctx_nr	= perf_sw_context,
9685 
9686 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9687 
9688 	.event_init	= cpu_clock_event_init,
9689 	.add		= cpu_clock_event_add,
9690 	.del		= cpu_clock_event_del,
9691 	.start		= cpu_clock_event_start,
9692 	.stop		= cpu_clock_event_stop,
9693 	.read		= cpu_clock_event_read,
9694 };
9695 
9696 /*
9697  * Software event: task time clock
9698  */
9699 
9700 static void task_clock_event_update(struct perf_event *event, u64 now)
9701 {
9702 	u64 prev;
9703 	s64 delta;
9704 
9705 	prev = local64_xchg(&event->hw.prev_count, now);
9706 	delta = now - prev;
9707 	local64_add(delta, &event->count);
9708 }
9709 
9710 static void task_clock_event_start(struct perf_event *event, int flags)
9711 {
9712 	local64_set(&event->hw.prev_count, event->ctx->time);
9713 	perf_swevent_start_hrtimer(event);
9714 }
9715 
9716 static void task_clock_event_stop(struct perf_event *event, int flags)
9717 {
9718 	perf_swevent_cancel_hrtimer(event);
9719 	task_clock_event_update(event, event->ctx->time);
9720 }
9721 
9722 static int task_clock_event_add(struct perf_event *event, int flags)
9723 {
9724 	if (flags & PERF_EF_START)
9725 		task_clock_event_start(event, flags);
9726 	perf_event_update_userpage(event);
9727 
9728 	return 0;
9729 }
9730 
9731 static void task_clock_event_del(struct perf_event *event, int flags)
9732 {
9733 	task_clock_event_stop(event, PERF_EF_UPDATE);
9734 }
9735 
9736 static void task_clock_event_read(struct perf_event *event)
9737 {
9738 	u64 now = perf_clock();
9739 	u64 delta = now - event->ctx->timestamp;
9740 	u64 time = event->ctx->time + delta;
9741 
9742 	task_clock_event_update(event, time);
9743 }
9744 
9745 static int task_clock_event_init(struct perf_event *event)
9746 {
9747 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9748 		return -ENOENT;
9749 
9750 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9751 		return -ENOENT;
9752 
9753 	/*
9754 	 * no branch sampling for software events
9755 	 */
9756 	if (has_branch_stack(event))
9757 		return -EOPNOTSUPP;
9758 
9759 	perf_swevent_init_hrtimer(event);
9760 
9761 	return 0;
9762 }
9763 
9764 static struct pmu perf_task_clock = {
9765 	.task_ctx_nr	= perf_sw_context,
9766 
9767 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9768 
9769 	.event_init	= task_clock_event_init,
9770 	.add		= task_clock_event_add,
9771 	.del		= task_clock_event_del,
9772 	.start		= task_clock_event_start,
9773 	.stop		= task_clock_event_stop,
9774 	.read		= task_clock_event_read,
9775 };
9776 
9777 static void perf_pmu_nop_void(struct pmu *pmu)
9778 {
9779 }
9780 
9781 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9782 {
9783 }
9784 
9785 static int perf_pmu_nop_int(struct pmu *pmu)
9786 {
9787 	return 0;
9788 }
9789 
9790 static int perf_event_nop_int(struct perf_event *event, u64 value)
9791 {
9792 	return 0;
9793 }
9794 
9795 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9796 
9797 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9798 {
9799 	__this_cpu_write(nop_txn_flags, flags);
9800 
9801 	if (flags & ~PERF_PMU_TXN_ADD)
9802 		return;
9803 
9804 	perf_pmu_disable(pmu);
9805 }
9806 
9807 static int perf_pmu_commit_txn(struct pmu *pmu)
9808 {
9809 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9810 
9811 	__this_cpu_write(nop_txn_flags, 0);
9812 
9813 	if (flags & ~PERF_PMU_TXN_ADD)
9814 		return 0;
9815 
9816 	perf_pmu_enable(pmu);
9817 	return 0;
9818 }
9819 
9820 static void perf_pmu_cancel_txn(struct pmu *pmu)
9821 {
9822 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9823 
9824 	__this_cpu_write(nop_txn_flags, 0);
9825 
9826 	if (flags & ~PERF_PMU_TXN_ADD)
9827 		return;
9828 
9829 	perf_pmu_enable(pmu);
9830 }
9831 
9832 static int perf_event_idx_default(struct perf_event *event)
9833 {
9834 	return 0;
9835 }
9836 
9837 /*
9838  * Ensures all contexts with the same task_ctx_nr have the same
9839  * pmu_cpu_context too.
9840  */
9841 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9842 {
9843 	struct pmu *pmu;
9844 
9845 	if (ctxn < 0)
9846 		return NULL;
9847 
9848 	list_for_each_entry(pmu, &pmus, entry) {
9849 		if (pmu->task_ctx_nr == ctxn)
9850 			return pmu->pmu_cpu_context;
9851 	}
9852 
9853 	return NULL;
9854 }
9855 
9856 static void free_pmu_context(struct pmu *pmu)
9857 {
9858 	/*
9859 	 * Static contexts such as perf_sw_context have a global lifetime
9860 	 * and may be shared between different PMUs. Avoid freeing them
9861 	 * when a single PMU is going away.
9862 	 */
9863 	if (pmu->task_ctx_nr > perf_invalid_context)
9864 		return;
9865 
9866 	free_percpu(pmu->pmu_cpu_context);
9867 }
9868 
9869 /*
9870  * Let userspace know that this PMU supports address range filtering:
9871  */
9872 static ssize_t nr_addr_filters_show(struct device *dev,
9873 				    struct device_attribute *attr,
9874 				    char *page)
9875 {
9876 	struct pmu *pmu = dev_get_drvdata(dev);
9877 
9878 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9879 }
9880 DEVICE_ATTR_RO(nr_addr_filters);
9881 
9882 static struct idr pmu_idr;
9883 
9884 static ssize_t
9885 type_show(struct device *dev, struct device_attribute *attr, char *page)
9886 {
9887 	struct pmu *pmu = dev_get_drvdata(dev);
9888 
9889 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9890 }
9891 static DEVICE_ATTR_RO(type);
9892 
9893 static ssize_t
9894 perf_event_mux_interval_ms_show(struct device *dev,
9895 				struct device_attribute *attr,
9896 				char *page)
9897 {
9898 	struct pmu *pmu = dev_get_drvdata(dev);
9899 
9900 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9901 }
9902 
9903 static DEFINE_MUTEX(mux_interval_mutex);
9904 
9905 static ssize_t
9906 perf_event_mux_interval_ms_store(struct device *dev,
9907 				 struct device_attribute *attr,
9908 				 const char *buf, size_t count)
9909 {
9910 	struct pmu *pmu = dev_get_drvdata(dev);
9911 	int timer, cpu, ret;
9912 
9913 	ret = kstrtoint(buf, 0, &timer);
9914 	if (ret)
9915 		return ret;
9916 
9917 	if (timer < 1)
9918 		return -EINVAL;
9919 
9920 	/* same value, noting to do */
9921 	if (timer == pmu->hrtimer_interval_ms)
9922 		return count;
9923 
9924 	mutex_lock(&mux_interval_mutex);
9925 	pmu->hrtimer_interval_ms = timer;
9926 
9927 	/* update all cpuctx for this PMU */
9928 	cpus_read_lock();
9929 	for_each_online_cpu(cpu) {
9930 		struct perf_cpu_context *cpuctx;
9931 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9932 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9933 
9934 		cpu_function_call(cpu,
9935 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9936 	}
9937 	cpus_read_unlock();
9938 	mutex_unlock(&mux_interval_mutex);
9939 
9940 	return count;
9941 }
9942 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9943 
9944 static struct attribute *pmu_dev_attrs[] = {
9945 	&dev_attr_type.attr,
9946 	&dev_attr_perf_event_mux_interval_ms.attr,
9947 	NULL,
9948 };
9949 ATTRIBUTE_GROUPS(pmu_dev);
9950 
9951 static int pmu_bus_running;
9952 static struct bus_type pmu_bus = {
9953 	.name		= "event_source",
9954 	.dev_groups	= pmu_dev_groups,
9955 };
9956 
9957 static void pmu_dev_release(struct device *dev)
9958 {
9959 	kfree(dev);
9960 }
9961 
9962 static int pmu_dev_alloc(struct pmu *pmu)
9963 {
9964 	int ret = -ENOMEM;
9965 
9966 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9967 	if (!pmu->dev)
9968 		goto out;
9969 
9970 	pmu->dev->groups = pmu->attr_groups;
9971 	device_initialize(pmu->dev);
9972 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9973 	if (ret)
9974 		goto free_dev;
9975 
9976 	dev_set_drvdata(pmu->dev, pmu);
9977 	pmu->dev->bus = &pmu_bus;
9978 	pmu->dev->release = pmu_dev_release;
9979 	ret = device_add(pmu->dev);
9980 	if (ret)
9981 		goto free_dev;
9982 
9983 	/* For PMUs with address filters, throw in an extra attribute: */
9984 	if (pmu->nr_addr_filters)
9985 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9986 
9987 	if (ret)
9988 		goto del_dev;
9989 
9990 	if (pmu->attr_update)
9991 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9992 
9993 	if (ret)
9994 		goto del_dev;
9995 
9996 out:
9997 	return ret;
9998 
9999 del_dev:
10000 	device_del(pmu->dev);
10001 
10002 free_dev:
10003 	put_device(pmu->dev);
10004 	goto out;
10005 }
10006 
10007 static struct lock_class_key cpuctx_mutex;
10008 static struct lock_class_key cpuctx_lock;
10009 
10010 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10011 {
10012 	int cpu, ret;
10013 
10014 	mutex_lock(&pmus_lock);
10015 	ret = -ENOMEM;
10016 	pmu->pmu_disable_count = alloc_percpu(int);
10017 	if (!pmu->pmu_disable_count)
10018 		goto unlock;
10019 
10020 	pmu->type = -1;
10021 	if (!name)
10022 		goto skip_type;
10023 	pmu->name = name;
10024 
10025 	if (type < 0) {
10026 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10027 		if (type < 0) {
10028 			ret = type;
10029 			goto free_pdc;
10030 		}
10031 	}
10032 	pmu->type = type;
10033 
10034 	if (pmu_bus_running) {
10035 		ret = pmu_dev_alloc(pmu);
10036 		if (ret)
10037 			goto free_idr;
10038 	}
10039 
10040 skip_type:
10041 	if (pmu->task_ctx_nr == perf_hw_context) {
10042 		static int hw_context_taken = 0;
10043 
10044 		/*
10045 		 * Other than systems with heterogeneous CPUs, it never makes
10046 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10047 		 * uncore must use perf_invalid_context.
10048 		 */
10049 		if (WARN_ON_ONCE(hw_context_taken &&
10050 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10051 			pmu->task_ctx_nr = perf_invalid_context;
10052 
10053 		hw_context_taken = 1;
10054 	}
10055 
10056 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10057 	if (pmu->pmu_cpu_context)
10058 		goto got_cpu_context;
10059 
10060 	ret = -ENOMEM;
10061 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10062 	if (!pmu->pmu_cpu_context)
10063 		goto free_dev;
10064 
10065 	for_each_possible_cpu(cpu) {
10066 		struct perf_cpu_context *cpuctx;
10067 
10068 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10069 		__perf_event_init_context(&cpuctx->ctx);
10070 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10071 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10072 		cpuctx->ctx.pmu = pmu;
10073 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10074 
10075 		__perf_mux_hrtimer_init(cpuctx, cpu);
10076 	}
10077 
10078 got_cpu_context:
10079 	if (!pmu->start_txn) {
10080 		if (pmu->pmu_enable) {
10081 			/*
10082 			 * If we have pmu_enable/pmu_disable calls, install
10083 			 * transaction stubs that use that to try and batch
10084 			 * hardware accesses.
10085 			 */
10086 			pmu->start_txn  = perf_pmu_start_txn;
10087 			pmu->commit_txn = perf_pmu_commit_txn;
10088 			pmu->cancel_txn = perf_pmu_cancel_txn;
10089 		} else {
10090 			pmu->start_txn  = perf_pmu_nop_txn;
10091 			pmu->commit_txn = perf_pmu_nop_int;
10092 			pmu->cancel_txn = perf_pmu_nop_void;
10093 		}
10094 	}
10095 
10096 	if (!pmu->pmu_enable) {
10097 		pmu->pmu_enable  = perf_pmu_nop_void;
10098 		pmu->pmu_disable = perf_pmu_nop_void;
10099 	}
10100 
10101 	if (!pmu->check_period)
10102 		pmu->check_period = perf_event_nop_int;
10103 
10104 	if (!pmu->event_idx)
10105 		pmu->event_idx = perf_event_idx_default;
10106 
10107 	list_add_rcu(&pmu->entry, &pmus);
10108 	atomic_set(&pmu->exclusive_cnt, 0);
10109 	ret = 0;
10110 unlock:
10111 	mutex_unlock(&pmus_lock);
10112 
10113 	return ret;
10114 
10115 free_dev:
10116 	device_del(pmu->dev);
10117 	put_device(pmu->dev);
10118 
10119 free_idr:
10120 	if (pmu->type >= PERF_TYPE_MAX)
10121 		idr_remove(&pmu_idr, pmu->type);
10122 
10123 free_pdc:
10124 	free_percpu(pmu->pmu_disable_count);
10125 	goto unlock;
10126 }
10127 EXPORT_SYMBOL_GPL(perf_pmu_register);
10128 
10129 void perf_pmu_unregister(struct pmu *pmu)
10130 {
10131 	mutex_lock(&pmus_lock);
10132 	list_del_rcu(&pmu->entry);
10133 
10134 	/*
10135 	 * We dereference the pmu list under both SRCU and regular RCU, so
10136 	 * synchronize against both of those.
10137 	 */
10138 	synchronize_srcu(&pmus_srcu);
10139 	synchronize_rcu();
10140 
10141 	free_percpu(pmu->pmu_disable_count);
10142 	if (pmu->type >= PERF_TYPE_MAX)
10143 		idr_remove(&pmu_idr, pmu->type);
10144 	if (pmu_bus_running) {
10145 		if (pmu->nr_addr_filters)
10146 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10147 		device_del(pmu->dev);
10148 		put_device(pmu->dev);
10149 	}
10150 	free_pmu_context(pmu);
10151 	mutex_unlock(&pmus_lock);
10152 }
10153 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10154 
10155 static inline bool has_extended_regs(struct perf_event *event)
10156 {
10157 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10158 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10159 }
10160 
10161 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10162 {
10163 	struct perf_event_context *ctx = NULL;
10164 	int ret;
10165 
10166 	if (!try_module_get(pmu->module))
10167 		return -ENODEV;
10168 
10169 	/*
10170 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10171 	 * for example, validate if the group fits on the PMU. Therefore,
10172 	 * if this is a sibling event, acquire the ctx->mutex to protect
10173 	 * the sibling_list.
10174 	 */
10175 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10176 		/*
10177 		 * This ctx->mutex can nest when we're called through
10178 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10179 		 */
10180 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10181 						 SINGLE_DEPTH_NESTING);
10182 		BUG_ON(!ctx);
10183 	}
10184 
10185 	event->pmu = pmu;
10186 	ret = pmu->event_init(event);
10187 
10188 	if (ctx)
10189 		perf_event_ctx_unlock(event->group_leader, ctx);
10190 
10191 	if (!ret) {
10192 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10193 		    has_extended_regs(event))
10194 			ret = -EOPNOTSUPP;
10195 
10196 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10197 		    event_has_any_exclude_flag(event))
10198 			ret = -EINVAL;
10199 
10200 		if (ret && event->destroy)
10201 			event->destroy(event);
10202 	}
10203 
10204 	if (ret)
10205 		module_put(pmu->module);
10206 
10207 	return ret;
10208 }
10209 
10210 static struct pmu *perf_init_event(struct perf_event *event)
10211 {
10212 	struct pmu *pmu;
10213 	int idx;
10214 	int ret;
10215 
10216 	idx = srcu_read_lock(&pmus_srcu);
10217 
10218 	/* Try parent's PMU first: */
10219 	if (event->parent && event->parent->pmu) {
10220 		pmu = event->parent->pmu;
10221 		ret = perf_try_init_event(pmu, event);
10222 		if (!ret)
10223 			goto unlock;
10224 	}
10225 
10226 	rcu_read_lock();
10227 	pmu = idr_find(&pmu_idr, event->attr.type);
10228 	rcu_read_unlock();
10229 	if (pmu) {
10230 		ret = perf_try_init_event(pmu, event);
10231 		if (ret)
10232 			pmu = ERR_PTR(ret);
10233 		goto unlock;
10234 	}
10235 
10236 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10237 		ret = perf_try_init_event(pmu, event);
10238 		if (!ret)
10239 			goto unlock;
10240 
10241 		if (ret != -ENOENT) {
10242 			pmu = ERR_PTR(ret);
10243 			goto unlock;
10244 		}
10245 	}
10246 	pmu = ERR_PTR(-ENOENT);
10247 unlock:
10248 	srcu_read_unlock(&pmus_srcu, idx);
10249 
10250 	return pmu;
10251 }
10252 
10253 static void attach_sb_event(struct perf_event *event)
10254 {
10255 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10256 
10257 	raw_spin_lock(&pel->lock);
10258 	list_add_rcu(&event->sb_list, &pel->list);
10259 	raw_spin_unlock(&pel->lock);
10260 }
10261 
10262 /*
10263  * We keep a list of all !task (and therefore per-cpu) events
10264  * that need to receive side-band records.
10265  *
10266  * This avoids having to scan all the various PMU per-cpu contexts
10267  * looking for them.
10268  */
10269 static void account_pmu_sb_event(struct perf_event *event)
10270 {
10271 	if (is_sb_event(event))
10272 		attach_sb_event(event);
10273 }
10274 
10275 static void account_event_cpu(struct perf_event *event, int cpu)
10276 {
10277 	if (event->parent)
10278 		return;
10279 
10280 	if (is_cgroup_event(event))
10281 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10282 }
10283 
10284 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10285 static void account_freq_event_nohz(void)
10286 {
10287 #ifdef CONFIG_NO_HZ_FULL
10288 	/* Lock so we don't race with concurrent unaccount */
10289 	spin_lock(&nr_freq_lock);
10290 	if (atomic_inc_return(&nr_freq_events) == 1)
10291 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10292 	spin_unlock(&nr_freq_lock);
10293 #endif
10294 }
10295 
10296 static void account_freq_event(void)
10297 {
10298 	if (tick_nohz_full_enabled())
10299 		account_freq_event_nohz();
10300 	else
10301 		atomic_inc(&nr_freq_events);
10302 }
10303 
10304 
10305 static void account_event(struct perf_event *event)
10306 {
10307 	bool inc = false;
10308 
10309 	if (event->parent)
10310 		return;
10311 
10312 	if (event->attach_state & PERF_ATTACH_TASK)
10313 		inc = true;
10314 	if (event->attr.mmap || event->attr.mmap_data)
10315 		atomic_inc(&nr_mmap_events);
10316 	if (event->attr.comm)
10317 		atomic_inc(&nr_comm_events);
10318 	if (event->attr.namespaces)
10319 		atomic_inc(&nr_namespaces_events);
10320 	if (event->attr.task)
10321 		atomic_inc(&nr_task_events);
10322 	if (event->attr.freq)
10323 		account_freq_event();
10324 	if (event->attr.context_switch) {
10325 		atomic_inc(&nr_switch_events);
10326 		inc = true;
10327 	}
10328 	if (has_branch_stack(event))
10329 		inc = true;
10330 	if (is_cgroup_event(event))
10331 		inc = true;
10332 	if (event->attr.ksymbol)
10333 		atomic_inc(&nr_ksymbol_events);
10334 	if (event->attr.bpf_event)
10335 		atomic_inc(&nr_bpf_events);
10336 
10337 	if (inc) {
10338 		/*
10339 		 * We need the mutex here because static_branch_enable()
10340 		 * must complete *before* the perf_sched_count increment
10341 		 * becomes visible.
10342 		 */
10343 		if (atomic_inc_not_zero(&perf_sched_count))
10344 			goto enabled;
10345 
10346 		mutex_lock(&perf_sched_mutex);
10347 		if (!atomic_read(&perf_sched_count)) {
10348 			static_branch_enable(&perf_sched_events);
10349 			/*
10350 			 * Guarantee that all CPUs observe they key change and
10351 			 * call the perf scheduling hooks before proceeding to
10352 			 * install events that need them.
10353 			 */
10354 			synchronize_rcu();
10355 		}
10356 		/*
10357 		 * Now that we have waited for the sync_sched(), allow further
10358 		 * increments to by-pass the mutex.
10359 		 */
10360 		atomic_inc(&perf_sched_count);
10361 		mutex_unlock(&perf_sched_mutex);
10362 	}
10363 enabled:
10364 
10365 	account_event_cpu(event, event->cpu);
10366 
10367 	account_pmu_sb_event(event);
10368 }
10369 
10370 /*
10371  * Allocate and initialize an event structure
10372  */
10373 static struct perf_event *
10374 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10375 		 struct task_struct *task,
10376 		 struct perf_event *group_leader,
10377 		 struct perf_event *parent_event,
10378 		 perf_overflow_handler_t overflow_handler,
10379 		 void *context, int cgroup_fd)
10380 {
10381 	struct pmu *pmu;
10382 	struct perf_event *event;
10383 	struct hw_perf_event *hwc;
10384 	long err = -EINVAL;
10385 
10386 	if ((unsigned)cpu >= nr_cpu_ids) {
10387 		if (!task || cpu != -1)
10388 			return ERR_PTR(-EINVAL);
10389 	}
10390 
10391 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10392 	if (!event)
10393 		return ERR_PTR(-ENOMEM);
10394 
10395 	/*
10396 	 * Single events are their own group leaders, with an
10397 	 * empty sibling list:
10398 	 */
10399 	if (!group_leader)
10400 		group_leader = event;
10401 
10402 	mutex_init(&event->child_mutex);
10403 	INIT_LIST_HEAD(&event->child_list);
10404 
10405 	INIT_LIST_HEAD(&event->event_entry);
10406 	INIT_LIST_HEAD(&event->sibling_list);
10407 	INIT_LIST_HEAD(&event->active_list);
10408 	init_event_group(event);
10409 	INIT_LIST_HEAD(&event->rb_entry);
10410 	INIT_LIST_HEAD(&event->active_entry);
10411 	INIT_LIST_HEAD(&event->addr_filters.list);
10412 	INIT_HLIST_NODE(&event->hlist_entry);
10413 
10414 
10415 	init_waitqueue_head(&event->waitq);
10416 	event->pending_disable = -1;
10417 	init_irq_work(&event->pending, perf_pending_event);
10418 
10419 	mutex_init(&event->mmap_mutex);
10420 	raw_spin_lock_init(&event->addr_filters.lock);
10421 
10422 	atomic_long_set(&event->refcount, 1);
10423 	event->cpu		= cpu;
10424 	event->attr		= *attr;
10425 	event->group_leader	= group_leader;
10426 	event->pmu		= NULL;
10427 	event->oncpu		= -1;
10428 
10429 	event->parent		= parent_event;
10430 
10431 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10432 	event->id		= atomic64_inc_return(&perf_event_id);
10433 
10434 	event->state		= PERF_EVENT_STATE_INACTIVE;
10435 
10436 	if (task) {
10437 		event->attach_state = PERF_ATTACH_TASK;
10438 		/*
10439 		 * XXX pmu::event_init needs to know what task to account to
10440 		 * and we cannot use the ctx information because we need the
10441 		 * pmu before we get a ctx.
10442 		 */
10443 		get_task_struct(task);
10444 		event->hw.target = task;
10445 	}
10446 
10447 	event->clock = &local_clock;
10448 	if (parent_event)
10449 		event->clock = parent_event->clock;
10450 
10451 	if (!overflow_handler && parent_event) {
10452 		overflow_handler = parent_event->overflow_handler;
10453 		context = parent_event->overflow_handler_context;
10454 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10455 		if (overflow_handler == bpf_overflow_handler) {
10456 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10457 
10458 			if (IS_ERR(prog)) {
10459 				err = PTR_ERR(prog);
10460 				goto err_ns;
10461 			}
10462 			event->prog = prog;
10463 			event->orig_overflow_handler =
10464 				parent_event->orig_overflow_handler;
10465 		}
10466 #endif
10467 	}
10468 
10469 	if (overflow_handler) {
10470 		event->overflow_handler	= overflow_handler;
10471 		event->overflow_handler_context = context;
10472 	} else if (is_write_backward(event)){
10473 		event->overflow_handler = perf_event_output_backward;
10474 		event->overflow_handler_context = NULL;
10475 	} else {
10476 		event->overflow_handler = perf_event_output_forward;
10477 		event->overflow_handler_context = NULL;
10478 	}
10479 
10480 	perf_event__state_init(event);
10481 
10482 	pmu = NULL;
10483 
10484 	hwc = &event->hw;
10485 	hwc->sample_period = attr->sample_period;
10486 	if (attr->freq && attr->sample_freq)
10487 		hwc->sample_period = 1;
10488 	hwc->last_period = hwc->sample_period;
10489 
10490 	local64_set(&hwc->period_left, hwc->sample_period);
10491 
10492 	/*
10493 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10494 	 * See perf_output_read().
10495 	 */
10496 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10497 		goto err_ns;
10498 
10499 	if (!has_branch_stack(event))
10500 		event->attr.branch_sample_type = 0;
10501 
10502 	if (cgroup_fd != -1) {
10503 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10504 		if (err)
10505 			goto err_ns;
10506 	}
10507 
10508 	pmu = perf_init_event(event);
10509 	if (IS_ERR(pmu)) {
10510 		err = PTR_ERR(pmu);
10511 		goto err_ns;
10512 	}
10513 
10514 	if (event->attr.aux_output &&
10515 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10516 		err = -EOPNOTSUPP;
10517 		goto err_pmu;
10518 	}
10519 
10520 	err = exclusive_event_init(event);
10521 	if (err)
10522 		goto err_pmu;
10523 
10524 	if (has_addr_filter(event)) {
10525 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10526 						    sizeof(struct perf_addr_filter_range),
10527 						    GFP_KERNEL);
10528 		if (!event->addr_filter_ranges) {
10529 			err = -ENOMEM;
10530 			goto err_per_task;
10531 		}
10532 
10533 		/*
10534 		 * Clone the parent's vma offsets: they are valid until exec()
10535 		 * even if the mm is not shared with the parent.
10536 		 */
10537 		if (event->parent) {
10538 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10539 
10540 			raw_spin_lock_irq(&ifh->lock);
10541 			memcpy(event->addr_filter_ranges,
10542 			       event->parent->addr_filter_ranges,
10543 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10544 			raw_spin_unlock_irq(&ifh->lock);
10545 		}
10546 
10547 		/* force hw sync on the address filters */
10548 		event->addr_filters_gen = 1;
10549 	}
10550 
10551 	if (!event->parent) {
10552 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10553 			err = get_callchain_buffers(attr->sample_max_stack);
10554 			if (err)
10555 				goto err_addr_filters;
10556 		}
10557 	}
10558 
10559 	/* symmetric to unaccount_event() in _free_event() */
10560 	account_event(event);
10561 
10562 	return event;
10563 
10564 err_addr_filters:
10565 	kfree(event->addr_filter_ranges);
10566 
10567 err_per_task:
10568 	exclusive_event_destroy(event);
10569 
10570 err_pmu:
10571 	if (event->destroy)
10572 		event->destroy(event);
10573 	module_put(pmu->module);
10574 err_ns:
10575 	if (is_cgroup_event(event))
10576 		perf_detach_cgroup(event);
10577 	if (event->ns)
10578 		put_pid_ns(event->ns);
10579 	if (event->hw.target)
10580 		put_task_struct(event->hw.target);
10581 	kfree(event);
10582 
10583 	return ERR_PTR(err);
10584 }
10585 
10586 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10587 			  struct perf_event_attr *attr)
10588 {
10589 	u32 size;
10590 	int ret;
10591 
10592 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10593 		return -EFAULT;
10594 
10595 	/*
10596 	 * zero the full structure, so that a short copy will be nice.
10597 	 */
10598 	memset(attr, 0, sizeof(*attr));
10599 
10600 	ret = get_user(size, &uattr->size);
10601 	if (ret)
10602 		return ret;
10603 
10604 	if (size > PAGE_SIZE)	/* silly large */
10605 		goto err_size;
10606 
10607 	if (!size)		/* abi compat */
10608 		size = PERF_ATTR_SIZE_VER0;
10609 
10610 	if (size < PERF_ATTR_SIZE_VER0)
10611 		goto err_size;
10612 
10613 	/*
10614 	 * If we're handed a bigger struct than we know of,
10615 	 * ensure all the unknown bits are 0 - i.e. new
10616 	 * user-space does not rely on any kernel feature
10617 	 * extensions we dont know about yet.
10618 	 */
10619 	if (size > sizeof(*attr)) {
10620 		unsigned char __user *addr;
10621 		unsigned char __user *end;
10622 		unsigned char val;
10623 
10624 		addr = (void __user *)uattr + sizeof(*attr);
10625 		end  = (void __user *)uattr + size;
10626 
10627 		for (; addr < end; addr++) {
10628 			ret = get_user(val, addr);
10629 			if (ret)
10630 				return ret;
10631 			if (val)
10632 				goto err_size;
10633 		}
10634 		size = sizeof(*attr);
10635 	}
10636 
10637 	ret = copy_from_user(attr, uattr, size);
10638 	if (ret)
10639 		return -EFAULT;
10640 
10641 	attr->size = size;
10642 
10643 	if (attr->__reserved_1)
10644 		return -EINVAL;
10645 
10646 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10647 		return -EINVAL;
10648 
10649 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10650 		return -EINVAL;
10651 
10652 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10653 		u64 mask = attr->branch_sample_type;
10654 
10655 		/* only using defined bits */
10656 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10657 			return -EINVAL;
10658 
10659 		/* at least one branch bit must be set */
10660 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10661 			return -EINVAL;
10662 
10663 		/* propagate priv level, when not set for branch */
10664 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10665 
10666 			/* exclude_kernel checked on syscall entry */
10667 			if (!attr->exclude_kernel)
10668 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10669 
10670 			if (!attr->exclude_user)
10671 				mask |= PERF_SAMPLE_BRANCH_USER;
10672 
10673 			if (!attr->exclude_hv)
10674 				mask |= PERF_SAMPLE_BRANCH_HV;
10675 			/*
10676 			 * adjust user setting (for HW filter setup)
10677 			 */
10678 			attr->branch_sample_type = mask;
10679 		}
10680 		/* privileged levels capture (kernel, hv): check permissions */
10681 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10682 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10683 			return -EACCES;
10684 	}
10685 
10686 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10687 		ret = perf_reg_validate(attr->sample_regs_user);
10688 		if (ret)
10689 			return ret;
10690 	}
10691 
10692 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10693 		if (!arch_perf_have_user_stack_dump())
10694 			return -ENOSYS;
10695 
10696 		/*
10697 		 * We have __u32 type for the size, but so far
10698 		 * we can only use __u16 as maximum due to the
10699 		 * __u16 sample size limit.
10700 		 */
10701 		if (attr->sample_stack_user >= USHRT_MAX)
10702 			return -EINVAL;
10703 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10704 			return -EINVAL;
10705 	}
10706 
10707 	if (!attr->sample_max_stack)
10708 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10709 
10710 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10711 		ret = perf_reg_validate(attr->sample_regs_intr);
10712 out:
10713 	return ret;
10714 
10715 err_size:
10716 	put_user(sizeof(*attr), &uattr->size);
10717 	ret = -E2BIG;
10718 	goto out;
10719 }
10720 
10721 static int
10722 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10723 {
10724 	struct ring_buffer *rb = NULL;
10725 	int ret = -EINVAL;
10726 
10727 	if (!output_event)
10728 		goto set;
10729 
10730 	/* don't allow circular references */
10731 	if (event == output_event)
10732 		goto out;
10733 
10734 	/*
10735 	 * Don't allow cross-cpu buffers
10736 	 */
10737 	if (output_event->cpu != event->cpu)
10738 		goto out;
10739 
10740 	/*
10741 	 * If its not a per-cpu rb, it must be the same task.
10742 	 */
10743 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10744 		goto out;
10745 
10746 	/*
10747 	 * Mixing clocks in the same buffer is trouble you don't need.
10748 	 */
10749 	if (output_event->clock != event->clock)
10750 		goto out;
10751 
10752 	/*
10753 	 * Either writing ring buffer from beginning or from end.
10754 	 * Mixing is not allowed.
10755 	 */
10756 	if (is_write_backward(output_event) != is_write_backward(event))
10757 		goto out;
10758 
10759 	/*
10760 	 * If both events generate aux data, they must be on the same PMU
10761 	 */
10762 	if (has_aux(event) && has_aux(output_event) &&
10763 	    event->pmu != output_event->pmu)
10764 		goto out;
10765 
10766 set:
10767 	mutex_lock(&event->mmap_mutex);
10768 	/* Can't redirect output if we've got an active mmap() */
10769 	if (atomic_read(&event->mmap_count))
10770 		goto unlock;
10771 
10772 	if (output_event) {
10773 		/* get the rb we want to redirect to */
10774 		rb = ring_buffer_get(output_event);
10775 		if (!rb)
10776 			goto unlock;
10777 	}
10778 
10779 	ring_buffer_attach(event, rb);
10780 
10781 	ret = 0;
10782 unlock:
10783 	mutex_unlock(&event->mmap_mutex);
10784 
10785 out:
10786 	return ret;
10787 }
10788 
10789 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10790 {
10791 	if (b < a)
10792 		swap(a, b);
10793 
10794 	mutex_lock(a);
10795 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10796 }
10797 
10798 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10799 {
10800 	bool nmi_safe = false;
10801 
10802 	switch (clk_id) {
10803 	case CLOCK_MONOTONIC:
10804 		event->clock = &ktime_get_mono_fast_ns;
10805 		nmi_safe = true;
10806 		break;
10807 
10808 	case CLOCK_MONOTONIC_RAW:
10809 		event->clock = &ktime_get_raw_fast_ns;
10810 		nmi_safe = true;
10811 		break;
10812 
10813 	case CLOCK_REALTIME:
10814 		event->clock = &ktime_get_real_ns;
10815 		break;
10816 
10817 	case CLOCK_BOOTTIME:
10818 		event->clock = &ktime_get_boottime_ns;
10819 		break;
10820 
10821 	case CLOCK_TAI:
10822 		event->clock = &ktime_get_clocktai_ns;
10823 		break;
10824 
10825 	default:
10826 		return -EINVAL;
10827 	}
10828 
10829 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10830 		return -EINVAL;
10831 
10832 	return 0;
10833 }
10834 
10835 /*
10836  * Variation on perf_event_ctx_lock_nested(), except we take two context
10837  * mutexes.
10838  */
10839 static struct perf_event_context *
10840 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10841 			     struct perf_event_context *ctx)
10842 {
10843 	struct perf_event_context *gctx;
10844 
10845 again:
10846 	rcu_read_lock();
10847 	gctx = READ_ONCE(group_leader->ctx);
10848 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10849 		rcu_read_unlock();
10850 		goto again;
10851 	}
10852 	rcu_read_unlock();
10853 
10854 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10855 
10856 	if (group_leader->ctx != gctx) {
10857 		mutex_unlock(&ctx->mutex);
10858 		mutex_unlock(&gctx->mutex);
10859 		put_ctx(gctx);
10860 		goto again;
10861 	}
10862 
10863 	return gctx;
10864 }
10865 
10866 /**
10867  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10868  *
10869  * @attr_uptr:	event_id type attributes for monitoring/sampling
10870  * @pid:		target pid
10871  * @cpu:		target cpu
10872  * @group_fd:		group leader event fd
10873  */
10874 SYSCALL_DEFINE5(perf_event_open,
10875 		struct perf_event_attr __user *, attr_uptr,
10876 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10877 {
10878 	struct perf_event *group_leader = NULL, *output_event = NULL;
10879 	struct perf_event *event, *sibling;
10880 	struct perf_event_attr attr;
10881 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10882 	struct file *event_file = NULL;
10883 	struct fd group = {NULL, 0};
10884 	struct task_struct *task = NULL;
10885 	struct pmu *pmu;
10886 	int event_fd;
10887 	int move_group = 0;
10888 	int err;
10889 	int f_flags = O_RDWR;
10890 	int cgroup_fd = -1;
10891 
10892 	/* for future expandability... */
10893 	if (flags & ~PERF_FLAG_ALL)
10894 		return -EINVAL;
10895 
10896 	err = perf_copy_attr(attr_uptr, &attr);
10897 	if (err)
10898 		return err;
10899 
10900 	if (!attr.exclude_kernel) {
10901 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10902 			return -EACCES;
10903 	}
10904 
10905 	if (attr.namespaces) {
10906 		if (!capable(CAP_SYS_ADMIN))
10907 			return -EACCES;
10908 	}
10909 
10910 	if (attr.freq) {
10911 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10912 			return -EINVAL;
10913 	} else {
10914 		if (attr.sample_period & (1ULL << 63))
10915 			return -EINVAL;
10916 	}
10917 
10918 	/* Only privileged users can get physical addresses */
10919 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10920 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10921 		return -EACCES;
10922 
10923 	/*
10924 	 * In cgroup mode, the pid argument is used to pass the fd
10925 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10926 	 * designates the cpu on which to monitor threads from that
10927 	 * cgroup.
10928 	 */
10929 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10930 		return -EINVAL;
10931 
10932 	if (flags & PERF_FLAG_FD_CLOEXEC)
10933 		f_flags |= O_CLOEXEC;
10934 
10935 	event_fd = get_unused_fd_flags(f_flags);
10936 	if (event_fd < 0)
10937 		return event_fd;
10938 
10939 	if (group_fd != -1) {
10940 		err = perf_fget_light(group_fd, &group);
10941 		if (err)
10942 			goto err_fd;
10943 		group_leader = group.file->private_data;
10944 		if (flags & PERF_FLAG_FD_OUTPUT)
10945 			output_event = group_leader;
10946 		if (flags & PERF_FLAG_FD_NO_GROUP)
10947 			group_leader = NULL;
10948 	}
10949 
10950 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10951 		task = find_lively_task_by_vpid(pid);
10952 		if (IS_ERR(task)) {
10953 			err = PTR_ERR(task);
10954 			goto err_group_fd;
10955 		}
10956 	}
10957 
10958 	if (task && group_leader &&
10959 	    group_leader->attr.inherit != attr.inherit) {
10960 		err = -EINVAL;
10961 		goto err_task;
10962 	}
10963 
10964 	if (task) {
10965 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10966 		if (err)
10967 			goto err_task;
10968 
10969 		/*
10970 		 * Reuse ptrace permission checks for now.
10971 		 *
10972 		 * We must hold cred_guard_mutex across this and any potential
10973 		 * perf_install_in_context() call for this new event to
10974 		 * serialize against exec() altering our credentials (and the
10975 		 * perf_event_exit_task() that could imply).
10976 		 */
10977 		err = -EACCES;
10978 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10979 			goto err_cred;
10980 	}
10981 
10982 	if (flags & PERF_FLAG_PID_CGROUP)
10983 		cgroup_fd = pid;
10984 
10985 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10986 				 NULL, NULL, cgroup_fd);
10987 	if (IS_ERR(event)) {
10988 		err = PTR_ERR(event);
10989 		goto err_cred;
10990 	}
10991 
10992 	if (is_sampling_event(event)) {
10993 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10994 			err = -EOPNOTSUPP;
10995 			goto err_alloc;
10996 		}
10997 	}
10998 
10999 	/*
11000 	 * Special case software events and allow them to be part of
11001 	 * any hardware group.
11002 	 */
11003 	pmu = event->pmu;
11004 
11005 	if (attr.use_clockid) {
11006 		err = perf_event_set_clock(event, attr.clockid);
11007 		if (err)
11008 			goto err_alloc;
11009 	}
11010 
11011 	if (pmu->task_ctx_nr == perf_sw_context)
11012 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11013 
11014 	if (group_leader) {
11015 		if (is_software_event(event) &&
11016 		    !in_software_context(group_leader)) {
11017 			/*
11018 			 * If the event is a sw event, but the group_leader
11019 			 * is on hw context.
11020 			 *
11021 			 * Allow the addition of software events to hw
11022 			 * groups, this is safe because software events
11023 			 * never fail to schedule.
11024 			 */
11025 			pmu = group_leader->ctx->pmu;
11026 		} else if (!is_software_event(event) &&
11027 			   is_software_event(group_leader) &&
11028 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11029 			/*
11030 			 * In case the group is a pure software group, and we
11031 			 * try to add a hardware event, move the whole group to
11032 			 * the hardware context.
11033 			 */
11034 			move_group = 1;
11035 		}
11036 	}
11037 
11038 	/*
11039 	 * Get the target context (task or percpu):
11040 	 */
11041 	ctx = find_get_context(pmu, task, event);
11042 	if (IS_ERR(ctx)) {
11043 		err = PTR_ERR(ctx);
11044 		goto err_alloc;
11045 	}
11046 
11047 	/*
11048 	 * Look up the group leader (we will attach this event to it):
11049 	 */
11050 	if (group_leader) {
11051 		err = -EINVAL;
11052 
11053 		/*
11054 		 * Do not allow a recursive hierarchy (this new sibling
11055 		 * becoming part of another group-sibling):
11056 		 */
11057 		if (group_leader->group_leader != group_leader)
11058 			goto err_context;
11059 
11060 		/* All events in a group should have the same clock */
11061 		if (group_leader->clock != event->clock)
11062 			goto err_context;
11063 
11064 		/*
11065 		 * Make sure we're both events for the same CPU;
11066 		 * grouping events for different CPUs is broken; since
11067 		 * you can never concurrently schedule them anyhow.
11068 		 */
11069 		if (group_leader->cpu != event->cpu)
11070 			goto err_context;
11071 
11072 		/*
11073 		 * Make sure we're both on the same task, or both
11074 		 * per-CPU events.
11075 		 */
11076 		if (group_leader->ctx->task != ctx->task)
11077 			goto err_context;
11078 
11079 		/*
11080 		 * Do not allow to attach to a group in a different task
11081 		 * or CPU context. If we're moving SW events, we'll fix
11082 		 * this up later, so allow that.
11083 		 */
11084 		if (!move_group && group_leader->ctx != ctx)
11085 			goto err_context;
11086 
11087 		/*
11088 		 * Only a group leader can be exclusive or pinned
11089 		 */
11090 		if (attr.exclusive || attr.pinned)
11091 			goto err_context;
11092 	}
11093 
11094 	if (output_event) {
11095 		err = perf_event_set_output(event, output_event);
11096 		if (err)
11097 			goto err_context;
11098 	}
11099 
11100 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11101 					f_flags);
11102 	if (IS_ERR(event_file)) {
11103 		err = PTR_ERR(event_file);
11104 		event_file = NULL;
11105 		goto err_context;
11106 	}
11107 
11108 	if (move_group) {
11109 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11110 
11111 		if (gctx->task == TASK_TOMBSTONE) {
11112 			err = -ESRCH;
11113 			goto err_locked;
11114 		}
11115 
11116 		/*
11117 		 * Check if we raced against another sys_perf_event_open() call
11118 		 * moving the software group underneath us.
11119 		 */
11120 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11121 			/*
11122 			 * If someone moved the group out from under us, check
11123 			 * if this new event wound up on the same ctx, if so
11124 			 * its the regular !move_group case, otherwise fail.
11125 			 */
11126 			if (gctx != ctx) {
11127 				err = -EINVAL;
11128 				goto err_locked;
11129 			} else {
11130 				perf_event_ctx_unlock(group_leader, gctx);
11131 				move_group = 0;
11132 			}
11133 		}
11134 
11135 		/*
11136 		 * Failure to create exclusive events returns -EBUSY.
11137 		 */
11138 		err = -EBUSY;
11139 		if (!exclusive_event_installable(group_leader, ctx))
11140 			goto err_locked;
11141 
11142 		for_each_sibling_event(sibling, group_leader) {
11143 			if (!exclusive_event_installable(sibling, ctx))
11144 				goto err_locked;
11145 		}
11146 	} else {
11147 		mutex_lock(&ctx->mutex);
11148 	}
11149 
11150 	if (ctx->task == TASK_TOMBSTONE) {
11151 		err = -ESRCH;
11152 		goto err_locked;
11153 	}
11154 
11155 	if (!perf_event_validate_size(event)) {
11156 		err = -E2BIG;
11157 		goto err_locked;
11158 	}
11159 
11160 	if (!task) {
11161 		/*
11162 		 * Check if the @cpu we're creating an event for is online.
11163 		 *
11164 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11165 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11166 		 */
11167 		struct perf_cpu_context *cpuctx =
11168 			container_of(ctx, struct perf_cpu_context, ctx);
11169 
11170 		if (!cpuctx->online) {
11171 			err = -ENODEV;
11172 			goto err_locked;
11173 		}
11174 	}
11175 
11176 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11177 		goto err_locked;
11178 
11179 	/*
11180 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11181 	 * because we need to serialize with concurrent event creation.
11182 	 */
11183 	if (!exclusive_event_installable(event, ctx)) {
11184 		err = -EBUSY;
11185 		goto err_locked;
11186 	}
11187 
11188 	WARN_ON_ONCE(ctx->parent_ctx);
11189 
11190 	/*
11191 	 * This is the point on no return; we cannot fail hereafter. This is
11192 	 * where we start modifying current state.
11193 	 */
11194 
11195 	if (move_group) {
11196 		/*
11197 		 * See perf_event_ctx_lock() for comments on the details
11198 		 * of swizzling perf_event::ctx.
11199 		 */
11200 		perf_remove_from_context(group_leader, 0);
11201 		put_ctx(gctx);
11202 
11203 		for_each_sibling_event(sibling, group_leader) {
11204 			perf_remove_from_context(sibling, 0);
11205 			put_ctx(gctx);
11206 		}
11207 
11208 		/*
11209 		 * Wait for everybody to stop referencing the events through
11210 		 * the old lists, before installing it on new lists.
11211 		 */
11212 		synchronize_rcu();
11213 
11214 		/*
11215 		 * Install the group siblings before the group leader.
11216 		 *
11217 		 * Because a group leader will try and install the entire group
11218 		 * (through the sibling list, which is still in-tact), we can
11219 		 * end up with siblings installed in the wrong context.
11220 		 *
11221 		 * By installing siblings first we NO-OP because they're not
11222 		 * reachable through the group lists.
11223 		 */
11224 		for_each_sibling_event(sibling, group_leader) {
11225 			perf_event__state_init(sibling);
11226 			perf_install_in_context(ctx, sibling, sibling->cpu);
11227 			get_ctx(ctx);
11228 		}
11229 
11230 		/*
11231 		 * Removing from the context ends up with disabled
11232 		 * event. What we want here is event in the initial
11233 		 * startup state, ready to be add into new context.
11234 		 */
11235 		perf_event__state_init(group_leader);
11236 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11237 		get_ctx(ctx);
11238 	}
11239 
11240 	/*
11241 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11242 	 * that we're serialized against further additions and before
11243 	 * perf_install_in_context() which is the point the event is active and
11244 	 * can use these values.
11245 	 */
11246 	perf_event__header_size(event);
11247 	perf_event__id_header_size(event);
11248 
11249 	event->owner = current;
11250 
11251 	perf_install_in_context(ctx, event, event->cpu);
11252 	perf_unpin_context(ctx);
11253 
11254 	if (move_group)
11255 		perf_event_ctx_unlock(group_leader, gctx);
11256 	mutex_unlock(&ctx->mutex);
11257 
11258 	if (task) {
11259 		mutex_unlock(&task->signal->cred_guard_mutex);
11260 		put_task_struct(task);
11261 	}
11262 
11263 	mutex_lock(&current->perf_event_mutex);
11264 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11265 	mutex_unlock(&current->perf_event_mutex);
11266 
11267 	/*
11268 	 * Drop the reference on the group_event after placing the
11269 	 * new event on the sibling_list. This ensures destruction
11270 	 * of the group leader will find the pointer to itself in
11271 	 * perf_group_detach().
11272 	 */
11273 	fdput(group);
11274 	fd_install(event_fd, event_file);
11275 	return event_fd;
11276 
11277 err_locked:
11278 	if (move_group)
11279 		perf_event_ctx_unlock(group_leader, gctx);
11280 	mutex_unlock(&ctx->mutex);
11281 /* err_file: */
11282 	fput(event_file);
11283 err_context:
11284 	perf_unpin_context(ctx);
11285 	put_ctx(ctx);
11286 err_alloc:
11287 	/*
11288 	 * If event_file is set, the fput() above will have called ->release()
11289 	 * and that will take care of freeing the event.
11290 	 */
11291 	if (!event_file)
11292 		free_event(event);
11293 err_cred:
11294 	if (task)
11295 		mutex_unlock(&task->signal->cred_guard_mutex);
11296 err_task:
11297 	if (task)
11298 		put_task_struct(task);
11299 err_group_fd:
11300 	fdput(group);
11301 err_fd:
11302 	put_unused_fd(event_fd);
11303 	return err;
11304 }
11305 
11306 /**
11307  * perf_event_create_kernel_counter
11308  *
11309  * @attr: attributes of the counter to create
11310  * @cpu: cpu in which the counter is bound
11311  * @task: task to profile (NULL for percpu)
11312  */
11313 struct perf_event *
11314 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11315 				 struct task_struct *task,
11316 				 perf_overflow_handler_t overflow_handler,
11317 				 void *context)
11318 {
11319 	struct perf_event_context *ctx;
11320 	struct perf_event *event;
11321 	int err;
11322 
11323 	/*
11324 	 * Get the target context (task or percpu):
11325 	 */
11326 
11327 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11328 				 overflow_handler, context, -1);
11329 	if (IS_ERR(event)) {
11330 		err = PTR_ERR(event);
11331 		goto err;
11332 	}
11333 
11334 	/* Mark owner so we could distinguish it from user events. */
11335 	event->owner = TASK_TOMBSTONE;
11336 
11337 	ctx = find_get_context(event->pmu, task, event);
11338 	if (IS_ERR(ctx)) {
11339 		err = PTR_ERR(ctx);
11340 		goto err_free;
11341 	}
11342 
11343 	WARN_ON_ONCE(ctx->parent_ctx);
11344 	mutex_lock(&ctx->mutex);
11345 	if (ctx->task == TASK_TOMBSTONE) {
11346 		err = -ESRCH;
11347 		goto err_unlock;
11348 	}
11349 
11350 	if (!task) {
11351 		/*
11352 		 * Check if the @cpu we're creating an event for is online.
11353 		 *
11354 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11355 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11356 		 */
11357 		struct perf_cpu_context *cpuctx =
11358 			container_of(ctx, struct perf_cpu_context, ctx);
11359 		if (!cpuctx->online) {
11360 			err = -ENODEV;
11361 			goto err_unlock;
11362 		}
11363 	}
11364 
11365 	if (!exclusive_event_installable(event, ctx)) {
11366 		err = -EBUSY;
11367 		goto err_unlock;
11368 	}
11369 
11370 	perf_install_in_context(ctx, event, event->cpu);
11371 	perf_unpin_context(ctx);
11372 	mutex_unlock(&ctx->mutex);
11373 
11374 	return event;
11375 
11376 err_unlock:
11377 	mutex_unlock(&ctx->mutex);
11378 	perf_unpin_context(ctx);
11379 	put_ctx(ctx);
11380 err_free:
11381 	free_event(event);
11382 err:
11383 	return ERR_PTR(err);
11384 }
11385 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11386 
11387 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11388 {
11389 	struct perf_event_context *src_ctx;
11390 	struct perf_event_context *dst_ctx;
11391 	struct perf_event *event, *tmp;
11392 	LIST_HEAD(events);
11393 
11394 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11395 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11396 
11397 	/*
11398 	 * See perf_event_ctx_lock() for comments on the details
11399 	 * of swizzling perf_event::ctx.
11400 	 */
11401 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11402 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11403 				 event_entry) {
11404 		perf_remove_from_context(event, 0);
11405 		unaccount_event_cpu(event, src_cpu);
11406 		put_ctx(src_ctx);
11407 		list_add(&event->migrate_entry, &events);
11408 	}
11409 
11410 	/*
11411 	 * Wait for the events to quiesce before re-instating them.
11412 	 */
11413 	synchronize_rcu();
11414 
11415 	/*
11416 	 * Re-instate events in 2 passes.
11417 	 *
11418 	 * Skip over group leaders and only install siblings on this first
11419 	 * pass, siblings will not get enabled without a leader, however a
11420 	 * leader will enable its siblings, even if those are still on the old
11421 	 * context.
11422 	 */
11423 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11424 		if (event->group_leader == event)
11425 			continue;
11426 
11427 		list_del(&event->migrate_entry);
11428 		if (event->state >= PERF_EVENT_STATE_OFF)
11429 			event->state = PERF_EVENT_STATE_INACTIVE;
11430 		account_event_cpu(event, dst_cpu);
11431 		perf_install_in_context(dst_ctx, event, dst_cpu);
11432 		get_ctx(dst_ctx);
11433 	}
11434 
11435 	/*
11436 	 * Once all the siblings are setup properly, install the group leaders
11437 	 * to make it go.
11438 	 */
11439 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11440 		list_del(&event->migrate_entry);
11441 		if (event->state >= PERF_EVENT_STATE_OFF)
11442 			event->state = PERF_EVENT_STATE_INACTIVE;
11443 		account_event_cpu(event, dst_cpu);
11444 		perf_install_in_context(dst_ctx, event, dst_cpu);
11445 		get_ctx(dst_ctx);
11446 	}
11447 	mutex_unlock(&dst_ctx->mutex);
11448 	mutex_unlock(&src_ctx->mutex);
11449 }
11450 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11451 
11452 static void sync_child_event(struct perf_event *child_event,
11453 			       struct task_struct *child)
11454 {
11455 	struct perf_event *parent_event = child_event->parent;
11456 	u64 child_val;
11457 
11458 	if (child_event->attr.inherit_stat)
11459 		perf_event_read_event(child_event, child);
11460 
11461 	child_val = perf_event_count(child_event);
11462 
11463 	/*
11464 	 * Add back the child's count to the parent's count:
11465 	 */
11466 	atomic64_add(child_val, &parent_event->child_count);
11467 	atomic64_add(child_event->total_time_enabled,
11468 		     &parent_event->child_total_time_enabled);
11469 	atomic64_add(child_event->total_time_running,
11470 		     &parent_event->child_total_time_running);
11471 }
11472 
11473 static void
11474 perf_event_exit_event(struct perf_event *child_event,
11475 		      struct perf_event_context *child_ctx,
11476 		      struct task_struct *child)
11477 {
11478 	struct perf_event *parent_event = child_event->parent;
11479 
11480 	/*
11481 	 * Do not destroy the 'original' grouping; because of the context
11482 	 * switch optimization the original events could've ended up in a
11483 	 * random child task.
11484 	 *
11485 	 * If we were to destroy the original group, all group related
11486 	 * operations would cease to function properly after this random
11487 	 * child dies.
11488 	 *
11489 	 * Do destroy all inherited groups, we don't care about those
11490 	 * and being thorough is better.
11491 	 */
11492 	raw_spin_lock_irq(&child_ctx->lock);
11493 	WARN_ON_ONCE(child_ctx->is_active);
11494 
11495 	if (parent_event)
11496 		perf_group_detach(child_event);
11497 	list_del_event(child_event, child_ctx);
11498 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11499 	raw_spin_unlock_irq(&child_ctx->lock);
11500 
11501 	/*
11502 	 * Parent events are governed by their filedesc, retain them.
11503 	 */
11504 	if (!parent_event) {
11505 		perf_event_wakeup(child_event);
11506 		return;
11507 	}
11508 	/*
11509 	 * Child events can be cleaned up.
11510 	 */
11511 
11512 	sync_child_event(child_event, child);
11513 
11514 	/*
11515 	 * Remove this event from the parent's list
11516 	 */
11517 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11518 	mutex_lock(&parent_event->child_mutex);
11519 	list_del_init(&child_event->child_list);
11520 	mutex_unlock(&parent_event->child_mutex);
11521 
11522 	/*
11523 	 * Kick perf_poll() for is_event_hup().
11524 	 */
11525 	perf_event_wakeup(parent_event);
11526 	free_event(child_event);
11527 	put_event(parent_event);
11528 }
11529 
11530 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11531 {
11532 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11533 	struct perf_event *child_event, *next;
11534 
11535 	WARN_ON_ONCE(child != current);
11536 
11537 	child_ctx = perf_pin_task_context(child, ctxn);
11538 	if (!child_ctx)
11539 		return;
11540 
11541 	/*
11542 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11543 	 * ctx::mutex over the entire thing. This serializes against almost
11544 	 * everything that wants to access the ctx.
11545 	 *
11546 	 * The exception is sys_perf_event_open() /
11547 	 * perf_event_create_kernel_count() which does find_get_context()
11548 	 * without ctx::mutex (it cannot because of the move_group double mutex
11549 	 * lock thing). See the comments in perf_install_in_context().
11550 	 */
11551 	mutex_lock(&child_ctx->mutex);
11552 
11553 	/*
11554 	 * In a single ctx::lock section, de-schedule the events and detach the
11555 	 * context from the task such that we cannot ever get it scheduled back
11556 	 * in.
11557 	 */
11558 	raw_spin_lock_irq(&child_ctx->lock);
11559 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11560 
11561 	/*
11562 	 * Now that the context is inactive, destroy the task <-> ctx relation
11563 	 * and mark the context dead.
11564 	 */
11565 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11566 	put_ctx(child_ctx); /* cannot be last */
11567 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11568 	put_task_struct(current); /* cannot be last */
11569 
11570 	clone_ctx = unclone_ctx(child_ctx);
11571 	raw_spin_unlock_irq(&child_ctx->lock);
11572 
11573 	if (clone_ctx)
11574 		put_ctx(clone_ctx);
11575 
11576 	/*
11577 	 * Report the task dead after unscheduling the events so that we
11578 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11579 	 * get a few PERF_RECORD_READ events.
11580 	 */
11581 	perf_event_task(child, child_ctx, 0);
11582 
11583 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11584 		perf_event_exit_event(child_event, child_ctx, child);
11585 
11586 	mutex_unlock(&child_ctx->mutex);
11587 
11588 	put_ctx(child_ctx);
11589 }
11590 
11591 /*
11592  * When a child task exits, feed back event values to parent events.
11593  *
11594  * Can be called with cred_guard_mutex held when called from
11595  * install_exec_creds().
11596  */
11597 void perf_event_exit_task(struct task_struct *child)
11598 {
11599 	struct perf_event *event, *tmp;
11600 	int ctxn;
11601 
11602 	mutex_lock(&child->perf_event_mutex);
11603 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11604 				 owner_entry) {
11605 		list_del_init(&event->owner_entry);
11606 
11607 		/*
11608 		 * Ensure the list deletion is visible before we clear
11609 		 * the owner, closes a race against perf_release() where
11610 		 * we need to serialize on the owner->perf_event_mutex.
11611 		 */
11612 		smp_store_release(&event->owner, NULL);
11613 	}
11614 	mutex_unlock(&child->perf_event_mutex);
11615 
11616 	for_each_task_context_nr(ctxn)
11617 		perf_event_exit_task_context(child, ctxn);
11618 
11619 	/*
11620 	 * The perf_event_exit_task_context calls perf_event_task
11621 	 * with child's task_ctx, which generates EXIT events for
11622 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11623 	 * At this point we need to send EXIT events to cpu contexts.
11624 	 */
11625 	perf_event_task(child, NULL, 0);
11626 }
11627 
11628 static void perf_free_event(struct perf_event *event,
11629 			    struct perf_event_context *ctx)
11630 {
11631 	struct perf_event *parent = event->parent;
11632 
11633 	if (WARN_ON_ONCE(!parent))
11634 		return;
11635 
11636 	mutex_lock(&parent->child_mutex);
11637 	list_del_init(&event->child_list);
11638 	mutex_unlock(&parent->child_mutex);
11639 
11640 	put_event(parent);
11641 
11642 	raw_spin_lock_irq(&ctx->lock);
11643 	perf_group_detach(event);
11644 	list_del_event(event, ctx);
11645 	raw_spin_unlock_irq(&ctx->lock);
11646 	free_event(event);
11647 }
11648 
11649 /*
11650  * Free a context as created by inheritance by perf_event_init_task() below,
11651  * used by fork() in case of fail.
11652  *
11653  * Even though the task has never lived, the context and events have been
11654  * exposed through the child_list, so we must take care tearing it all down.
11655  */
11656 void perf_event_free_task(struct task_struct *task)
11657 {
11658 	struct perf_event_context *ctx;
11659 	struct perf_event *event, *tmp;
11660 	int ctxn;
11661 
11662 	for_each_task_context_nr(ctxn) {
11663 		ctx = task->perf_event_ctxp[ctxn];
11664 		if (!ctx)
11665 			continue;
11666 
11667 		mutex_lock(&ctx->mutex);
11668 		raw_spin_lock_irq(&ctx->lock);
11669 		/*
11670 		 * Destroy the task <-> ctx relation and mark the context dead.
11671 		 *
11672 		 * This is important because even though the task hasn't been
11673 		 * exposed yet the context has been (through child_list).
11674 		 */
11675 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11676 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11677 		put_task_struct(task); /* cannot be last */
11678 		raw_spin_unlock_irq(&ctx->lock);
11679 
11680 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11681 			perf_free_event(event, ctx);
11682 
11683 		mutex_unlock(&ctx->mutex);
11684 
11685 		/*
11686 		 * perf_event_release_kernel() could've stolen some of our
11687 		 * child events and still have them on its free_list. In that
11688 		 * case we must wait for these events to have been freed (in
11689 		 * particular all their references to this task must've been
11690 		 * dropped).
11691 		 *
11692 		 * Without this copy_process() will unconditionally free this
11693 		 * task (irrespective of its reference count) and
11694 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11695 		 * use-after-free.
11696 		 *
11697 		 * Wait for all events to drop their context reference.
11698 		 */
11699 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11700 		put_ctx(ctx); /* must be last */
11701 	}
11702 }
11703 
11704 void perf_event_delayed_put(struct task_struct *task)
11705 {
11706 	int ctxn;
11707 
11708 	for_each_task_context_nr(ctxn)
11709 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11710 }
11711 
11712 struct file *perf_event_get(unsigned int fd)
11713 {
11714 	struct file *file = fget(fd);
11715 	if (!file)
11716 		return ERR_PTR(-EBADF);
11717 
11718 	if (file->f_op != &perf_fops) {
11719 		fput(file);
11720 		return ERR_PTR(-EBADF);
11721 	}
11722 
11723 	return file;
11724 }
11725 
11726 const struct perf_event *perf_get_event(struct file *file)
11727 {
11728 	if (file->f_op != &perf_fops)
11729 		return ERR_PTR(-EINVAL);
11730 
11731 	return file->private_data;
11732 }
11733 
11734 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11735 {
11736 	if (!event)
11737 		return ERR_PTR(-EINVAL);
11738 
11739 	return &event->attr;
11740 }
11741 
11742 /*
11743  * Inherit an event from parent task to child task.
11744  *
11745  * Returns:
11746  *  - valid pointer on success
11747  *  - NULL for orphaned events
11748  *  - IS_ERR() on error
11749  */
11750 static struct perf_event *
11751 inherit_event(struct perf_event *parent_event,
11752 	      struct task_struct *parent,
11753 	      struct perf_event_context *parent_ctx,
11754 	      struct task_struct *child,
11755 	      struct perf_event *group_leader,
11756 	      struct perf_event_context *child_ctx)
11757 {
11758 	enum perf_event_state parent_state = parent_event->state;
11759 	struct perf_event *child_event;
11760 	unsigned long flags;
11761 
11762 	/*
11763 	 * Instead of creating recursive hierarchies of events,
11764 	 * we link inherited events back to the original parent,
11765 	 * which has a filp for sure, which we use as the reference
11766 	 * count:
11767 	 */
11768 	if (parent_event->parent)
11769 		parent_event = parent_event->parent;
11770 
11771 	child_event = perf_event_alloc(&parent_event->attr,
11772 					   parent_event->cpu,
11773 					   child,
11774 					   group_leader, parent_event,
11775 					   NULL, NULL, -1);
11776 	if (IS_ERR(child_event))
11777 		return child_event;
11778 
11779 
11780 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11781 	    !child_ctx->task_ctx_data) {
11782 		struct pmu *pmu = child_event->pmu;
11783 
11784 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11785 						   GFP_KERNEL);
11786 		if (!child_ctx->task_ctx_data) {
11787 			free_event(child_event);
11788 			return NULL;
11789 		}
11790 	}
11791 
11792 	/*
11793 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11794 	 * must be under the same lock in order to serialize against
11795 	 * perf_event_release_kernel(), such that either we must observe
11796 	 * is_orphaned_event() or they will observe us on the child_list.
11797 	 */
11798 	mutex_lock(&parent_event->child_mutex);
11799 	if (is_orphaned_event(parent_event) ||
11800 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11801 		mutex_unlock(&parent_event->child_mutex);
11802 		/* task_ctx_data is freed with child_ctx */
11803 		free_event(child_event);
11804 		return NULL;
11805 	}
11806 
11807 	get_ctx(child_ctx);
11808 
11809 	/*
11810 	 * Make the child state follow the state of the parent event,
11811 	 * not its attr.disabled bit.  We hold the parent's mutex,
11812 	 * so we won't race with perf_event_{en, dis}able_family.
11813 	 */
11814 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11815 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11816 	else
11817 		child_event->state = PERF_EVENT_STATE_OFF;
11818 
11819 	if (parent_event->attr.freq) {
11820 		u64 sample_period = parent_event->hw.sample_period;
11821 		struct hw_perf_event *hwc = &child_event->hw;
11822 
11823 		hwc->sample_period = sample_period;
11824 		hwc->last_period   = sample_period;
11825 
11826 		local64_set(&hwc->period_left, sample_period);
11827 	}
11828 
11829 	child_event->ctx = child_ctx;
11830 	child_event->overflow_handler = parent_event->overflow_handler;
11831 	child_event->overflow_handler_context
11832 		= parent_event->overflow_handler_context;
11833 
11834 	/*
11835 	 * Precalculate sample_data sizes
11836 	 */
11837 	perf_event__header_size(child_event);
11838 	perf_event__id_header_size(child_event);
11839 
11840 	/*
11841 	 * Link it up in the child's context:
11842 	 */
11843 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11844 	add_event_to_ctx(child_event, child_ctx);
11845 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11846 
11847 	/*
11848 	 * Link this into the parent event's child list
11849 	 */
11850 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11851 	mutex_unlock(&parent_event->child_mutex);
11852 
11853 	return child_event;
11854 }
11855 
11856 /*
11857  * Inherits an event group.
11858  *
11859  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11860  * This matches with perf_event_release_kernel() removing all child events.
11861  *
11862  * Returns:
11863  *  - 0 on success
11864  *  - <0 on error
11865  */
11866 static int inherit_group(struct perf_event *parent_event,
11867 	      struct task_struct *parent,
11868 	      struct perf_event_context *parent_ctx,
11869 	      struct task_struct *child,
11870 	      struct perf_event_context *child_ctx)
11871 {
11872 	struct perf_event *leader;
11873 	struct perf_event *sub;
11874 	struct perf_event *child_ctr;
11875 
11876 	leader = inherit_event(parent_event, parent, parent_ctx,
11877 				 child, NULL, child_ctx);
11878 	if (IS_ERR(leader))
11879 		return PTR_ERR(leader);
11880 	/*
11881 	 * @leader can be NULL here because of is_orphaned_event(). In this
11882 	 * case inherit_event() will create individual events, similar to what
11883 	 * perf_group_detach() would do anyway.
11884 	 */
11885 	for_each_sibling_event(sub, parent_event) {
11886 		child_ctr = inherit_event(sub, parent, parent_ctx,
11887 					    child, leader, child_ctx);
11888 		if (IS_ERR(child_ctr))
11889 			return PTR_ERR(child_ctr);
11890 	}
11891 	return 0;
11892 }
11893 
11894 /*
11895  * Creates the child task context and tries to inherit the event-group.
11896  *
11897  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11898  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11899  * consistent with perf_event_release_kernel() removing all child events.
11900  *
11901  * Returns:
11902  *  - 0 on success
11903  *  - <0 on error
11904  */
11905 static int
11906 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11907 		   struct perf_event_context *parent_ctx,
11908 		   struct task_struct *child, int ctxn,
11909 		   int *inherited_all)
11910 {
11911 	int ret;
11912 	struct perf_event_context *child_ctx;
11913 
11914 	if (!event->attr.inherit) {
11915 		*inherited_all = 0;
11916 		return 0;
11917 	}
11918 
11919 	child_ctx = child->perf_event_ctxp[ctxn];
11920 	if (!child_ctx) {
11921 		/*
11922 		 * This is executed from the parent task context, so
11923 		 * inherit events that have been marked for cloning.
11924 		 * First allocate and initialize a context for the
11925 		 * child.
11926 		 */
11927 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11928 		if (!child_ctx)
11929 			return -ENOMEM;
11930 
11931 		child->perf_event_ctxp[ctxn] = child_ctx;
11932 	}
11933 
11934 	ret = inherit_group(event, parent, parent_ctx,
11935 			    child, child_ctx);
11936 
11937 	if (ret)
11938 		*inherited_all = 0;
11939 
11940 	return ret;
11941 }
11942 
11943 /*
11944  * Initialize the perf_event context in task_struct
11945  */
11946 static int perf_event_init_context(struct task_struct *child, int ctxn)
11947 {
11948 	struct perf_event_context *child_ctx, *parent_ctx;
11949 	struct perf_event_context *cloned_ctx;
11950 	struct perf_event *event;
11951 	struct task_struct *parent = current;
11952 	int inherited_all = 1;
11953 	unsigned long flags;
11954 	int ret = 0;
11955 
11956 	if (likely(!parent->perf_event_ctxp[ctxn]))
11957 		return 0;
11958 
11959 	/*
11960 	 * If the parent's context is a clone, pin it so it won't get
11961 	 * swapped under us.
11962 	 */
11963 	parent_ctx = perf_pin_task_context(parent, ctxn);
11964 	if (!parent_ctx)
11965 		return 0;
11966 
11967 	/*
11968 	 * No need to check if parent_ctx != NULL here; since we saw
11969 	 * it non-NULL earlier, the only reason for it to become NULL
11970 	 * is if we exit, and since we're currently in the middle of
11971 	 * a fork we can't be exiting at the same time.
11972 	 */
11973 
11974 	/*
11975 	 * Lock the parent list. No need to lock the child - not PID
11976 	 * hashed yet and not running, so nobody can access it.
11977 	 */
11978 	mutex_lock(&parent_ctx->mutex);
11979 
11980 	/*
11981 	 * We dont have to disable NMIs - we are only looking at
11982 	 * the list, not manipulating it:
11983 	 */
11984 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11985 		ret = inherit_task_group(event, parent, parent_ctx,
11986 					 child, ctxn, &inherited_all);
11987 		if (ret)
11988 			goto out_unlock;
11989 	}
11990 
11991 	/*
11992 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11993 	 * to allocations, but we need to prevent rotation because
11994 	 * rotate_ctx() will change the list from interrupt context.
11995 	 */
11996 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11997 	parent_ctx->rotate_disable = 1;
11998 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11999 
12000 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12001 		ret = inherit_task_group(event, parent, parent_ctx,
12002 					 child, ctxn, &inherited_all);
12003 		if (ret)
12004 			goto out_unlock;
12005 	}
12006 
12007 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12008 	parent_ctx->rotate_disable = 0;
12009 
12010 	child_ctx = child->perf_event_ctxp[ctxn];
12011 
12012 	if (child_ctx && inherited_all) {
12013 		/*
12014 		 * Mark the child context as a clone of the parent
12015 		 * context, or of whatever the parent is a clone of.
12016 		 *
12017 		 * Note that if the parent is a clone, the holding of
12018 		 * parent_ctx->lock avoids it from being uncloned.
12019 		 */
12020 		cloned_ctx = parent_ctx->parent_ctx;
12021 		if (cloned_ctx) {
12022 			child_ctx->parent_ctx = cloned_ctx;
12023 			child_ctx->parent_gen = parent_ctx->parent_gen;
12024 		} else {
12025 			child_ctx->parent_ctx = parent_ctx;
12026 			child_ctx->parent_gen = parent_ctx->generation;
12027 		}
12028 		get_ctx(child_ctx->parent_ctx);
12029 	}
12030 
12031 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12032 out_unlock:
12033 	mutex_unlock(&parent_ctx->mutex);
12034 
12035 	perf_unpin_context(parent_ctx);
12036 	put_ctx(parent_ctx);
12037 
12038 	return ret;
12039 }
12040 
12041 /*
12042  * Initialize the perf_event context in task_struct
12043  */
12044 int perf_event_init_task(struct task_struct *child)
12045 {
12046 	int ctxn, ret;
12047 
12048 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12049 	mutex_init(&child->perf_event_mutex);
12050 	INIT_LIST_HEAD(&child->perf_event_list);
12051 
12052 	for_each_task_context_nr(ctxn) {
12053 		ret = perf_event_init_context(child, ctxn);
12054 		if (ret) {
12055 			perf_event_free_task(child);
12056 			return ret;
12057 		}
12058 	}
12059 
12060 	return 0;
12061 }
12062 
12063 static void __init perf_event_init_all_cpus(void)
12064 {
12065 	struct swevent_htable *swhash;
12066 	int cpu;
12067 
12068 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12069 
12070 	for_each_possible_cpu(cpu) {
12071 		swhash = &per_cpu(swevent_htable, cpu);
12072 		mutex_init(&swhash->hlist_mutex);
12073 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12074 
12075 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12076 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12077 
12078 #ifdef CONFIG_CGROUP_PERF
12079 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12080 #endif
12081 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12082 	}
12083 }
12084 
12085 static void perf_swevent_init_cpu(unsigned int cpu)
12086 {
12087 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12088 
12089 	mutex_lock(&swhash->hlist_mutex);
12090 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12091 		struct swevent_hlist *hlist;
12092 
12093 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12094 		WARN_ON(!hlist);
12095 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12096 	}
12097 	mutex_unlock(&swhash->hlist_mutex);
12098 }
12099 
12100 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12101 static void __perf_event_exit_context(void *__info)
12102 {
12103 	struct perf_event_context *ctx = __info;
12104 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12105 	struct perf_event *event;
12106 
12107 	raw_spin_lock(&ctx->lock);
12108 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12109 	list_for_each_entry(event, &ctx->event_list, event_entry)
12110 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12111 	raw_spin_unlock(&ctx->lock);
12112 }
12113 
12114 static void perf_event_exit_cpu_context(int cpu)
12115 {
12116 	struct perf_cpu_context *cpuctx;
12117 	struct perf_event_context *ctx;
12118 	struct pmu *pmu;
12119 
12120 	mutex_lock(&pmus_lock);
12121 	list_for_each_entry(pmu, &pmus, entry) {
12122 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12123 		ctx = &cpuctx->ctx;
12124 
12125 		mutex_lock(&ctx->mutex);
12126 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12127 		cpuctx->online = 0;
12128 		mutex_unlock(&ctx->mutex);
12129 	}
12130 	cpumask_clear_cpu(cpu, perf_online_mask);
12131 	mutex_unlock(&pmus_lock);
12132 }
12133 #else
12134 
12135 static void perf_event_exit_cpu_context(int cpu) { }
12136 
12137 #endif
12138 
12139 int perf_event_init_cpu(unsigned int cpu)
12140 {
12141 	struct perf_cpu_context *cpuctx;
12142 	struct perf_event_context *ctx;
12143 	struct pmu *pmu;
12144 
12145 	perf_swevent_init_cpu(cpu);
12146 
12147 	mutex_lock(&pmus_lock);
12148 	cpumask_set_cpu(cpu, perf_online_mask);
12149 	list_for_each_entry(pmu, &pmus, entry) {
12150 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12151 		ctx = &cpuctx->ctx;
12152 
12153 		mutex_lock(&ctx->mutex);
12154 		cpuctx->online = 1;
12155 		mutex_unlock(&ctx->mutex);
12156 	}
12157 	mutex_unlock(&pmus_lock);
12158 
12159 	return 0;
12160 }
12161 
12162 int perf_event_exit_cpu(unsigned int cpu)
12163 {
12164 	perf_event_exit_cpu_context(cpu);
12165 	return 0;
12166 }
12167 
12168 static int
12169 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12170 {
12171 	int cpu;
12172 
12173 	for_each_online_cpu(cpu)
12174 		perf_event_exit_cpu(cpu);
12175 
12176 	return NOTIFY_OK;
12177 }
12178 
12179 /*
12180  * Run the perf reboot notifier at the very last possible moment so that
12181  * the generic watchdog code runs as long as possible.
12182  */
12183 static struct notifier_block perf_reboot_notifier = {
12184 	.notifier_call = perf_reboot,
12185 	.priority = INT_MIN,
12186 };
12187 
12188 void __init perf_event_init(void)
12189 {
12190 	int ret;
12191 
12192 	idr_init(&pmu_idr);
12193 
12194 	perf_event_init_all_cpus();
12195 	init_srcu_struct(&pmus_srcu);
12196 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12197 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12198 	perf_pmu_register(&perf_task_clock, NULL, -1);
12199 	perf_tp_register();
12200 	perf_event_init_cpu(smp_processor_id());
12201 	register_reboot_notifier(&perf_reboot_notifier);
12202 
12203 	ret = init_hw_breakpoint();
12204 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12205 
12206 	/*
12207 	 * Build time assertion that we keep the data_head at the intended
12208 	 * location.  IOW, validation we got the __reserved[] size right.
12209 	 */
12210 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12211 		     != 1024);
12212 }
12213 
12214 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12215 			      char *page)
12216 {
12217 	struct perf_pmu_events_attr *pmu_attr =
12218 		container_of(attr, struct perf_pmu_events_attr, attr);
12219 
12220 	if (pmu_attr->event_str)
12221 		return sprintf(page, "%s\n", pmu_attr->event_str);
12222 
12223 	return 0;
12224 }
12225 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12226 
12227 static int __init perf_event_sysfs_init(void)
12228 {
12229 	struct pmu *pmu;
12230 	int ret;
12231 
12232 	mutex_lock(&pmus_lock);
12233 
12234 	ret = bus_register(&pmu_bus);
12235 	if (ret)
12236 		goto unlock;
12237 
12238 	list_for_each_entry(pmu, &pmus, entry) {
12239 		if (!pmu->name || pmu->type < 0)
12240 			continue;
12241 
12242 		ret = pmu_dev_alloc(pmu);
12243 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12244 	}
12245 	pmu_bus_running = 1;
12246 	ret = 0;
12247 
12248 unlock:
12249 	mutex_unlock(&pmus_lock);
12250 
12251 	return ret;
12252 }
12253 device_initcall(perf_event_sysfs_init);
12254 
12255 #ifdef CONFIG_CGROUP_PERF
12256 static struct cgroup_subsys_state *
12257 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12258 {
12259 	struct perf_cgroup *jc;
12260 
12261 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12262 	if (!jc)
12263 		return ERR_PTR(-ENOMEM);
12264 
12265 	jc->info = alloc_percpu(struct perf_cgroup_info);
12266 	if (!jc->info) {
12267 		kfree(jc);
12268 		return ERR_PTR(-ENOMEM);
12269 	}
12270 
12271 	return &jc->css;
12272 }
12273 
12274 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12275 {
12276 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12277 
12278 	free_percpu(jc->info);
12279 	kfree(jc);
12280 }
12281 
12282 static int __perf_cgroup_move(void *info)
12283 {
12284 	struct task_struct *task = info;
12285 	rcu_read_lock();
12286 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12287 	rcu_read_unlock();
12288 	return 0;
12289 }
12290 
12291 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12292 {
12293 	struct task_struct *task;
12294 	struct cgroup_subsys_state *css;
12295 
12296 	cgroup_taskset_for_each(task, css, tset)
12297 		task_function_call(task, __perf_cgroup_move, task);
12298 }
12299 
12300 struct cgroup_subsys perf_event_cgrp_subsys = {
12301 	.css_alloc	= perf_cgroup_css_alloc,
12302 	.css_free	= perf_cgroup_css_free,
12303 	.attach		= perf_cgroup_attach,
12304 	/*
12305 	 * Implicitly enable on dfl hierarchy so that perf events can
12306 	 * always be filtered by cgroup2 path as long as perf_event
12307 	 * controller is not mounted on a legacy hierarchy.
12308 	 */
12309 	.implicit_on_dfl = true,
12310 	.threaded	= true,
12311 };
12312 #endif /* CONFIG_CGROUP_PERF */
12313