1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static int 1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 1892 { 1893 if (!has_aux(aux_event)) 1894 return 0; 1895 1896 if (!event->pmu->aux_output_match) 1897 return 0; 1898 1899 return event->pmu->aux_output_match(aux_event); 1900 } 1901 1902 static void put_event(struct perf_event *event); 1903 static void event_sched_out(struct perf_event *event, 1904 struct perf_cpu_context *cpuctx, 1905 struct perf_event_context *ctx); 1906 1907 static void perf_put_aux_event(struct perf_event *event) 1908 { 1909 struct perf_event_context *ctx = event->ctx; 1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1911 struct perf_event *iter; 1912 1913 /* 1914 * If event uses aux_event tear down the link 1915 */ 1916 if (event->aux_event) { 1917 iter = event->aux_event; 1918 event->aux_event = NULL; 1919 put_event(iter); 1920 return; 1921 } 1922 1923 /* 1924 * If the event is an aux_event, tear down all links to 1925 * it from other events. 1926 */ 1927 for_each_sibling_event(iter, event->group_leader) { 1928 if (iter->aux_event != event) 1929 continue; 1930 1931 iter->aux_event = NULL; 1932 put_event(event); 1933 1934 /* 1935 * If it's ACTIVE, schedule it out and put it into ERROR 1936 * state so that we don't try to schedule it again. Note 1937 * that perf_event_enable() will clear the ERROR status. 1938 */ 1939 event_sched_out(iter, cpuctx, ctx); 1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 1941 } 1942 } 1943 1944 static int perf_get_aux_event(struct perf_event *event, 1945 struct perf_event *group_leader) 1946 { 1947 /* 1948 * Our group leader must be an aux event if we want to be 1949 * an aux_output. This way, the aux event will precede its 1950 * aux_output events in the group, and therefore will always 1951 * schedule first. 1952 */ 1953 if (!group_leader) 1954 return 0; 1955 1956 if (!perf_aux_output_match(event, group_leader)) 1957 return 0; 1958 1959 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 1960 return 0; 1961 1962 /* 1963 * Link aux_outputs to their aux event; this is undone in 1964 * perf_group_detach() by perf_put_aux_event(). When the 1965 * group in torn down, the aux_output events loose their 1966 * link to the aux_event and can't schedule any more. 1967 */ 1968 event->aux_event = group_leader; 1969 1970 return 1; 1971 } 1972 1973 static void perf_group_detach(struct perf_event *event) 1974 { 1975 struct perf_event *sibling, *tmp; 1976 struct perf_event_context *ctx = event->ctx; 1977 1978 lockdep_assert_held(&ctx->lock); 1979 1980 /* 1981 * We can have double detach due to exit/hot-unplug + close. 1982 */ 1983 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1984 return; 1985 1986 event->attach_state &= ~PERF_ATTACH_GROUP; 1987 1988 perf_put_aux_event(event); 1989 1990 /* 1991 * If this is a sibling, remove it from its group. 1992 */ 1993 if (event->group_leader != event) { 1994 list_del_init(&event->sibling_list); 1995 event->group_leader->nr_siblings--; 1996 goto out; 1997 } 1998 1999 /* 2000 * If this was a group event with sibling events then 2001 * upgrade the siblings to singleton events by adding them 2002 * to whatever list we are on. 2003 */ 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2005 2006 sibling->group_leader = sibling; 2007 list_del_init(&sibling->sibling_list); 2008 2009 /* Inherit group flags from the previous leader */ 2010 sibling->group_caps = event->group_caps; 2011 2012 if (!RB_EMPTY_NODE(&event->group_node)) { 2013 add_event_to_groups(sibling, event->ctx); 2014 2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 2016 struct list_head *list = sibling->attr.pinned ? 2017 &ctx->pinned_active : &ctx->flexible_active; 2018 2019 list_add_tail(&sibling->active_list, list); 2020 } 2021 } 2022 2023 WARN_ON_ONCE(sibling->ctx != event->ctx); 2024 } 2025 2026 out: 2027 perf_event__header_size(event->group_leader); 2028 2029 for_each_sibling_event(tmp, event->group_leader) 2030 perf_event__header_size(tmp); 2031 } 2032 2033 static bool is_orphaned_event(struct perf_event *event) 2034 { 2035 return event->state == PERF_EVENT_STATE_DEAD; 2036 } 2037 2038 static inline int __pmu_filter_match(struct perf_event *event) 2039 { 2040 struct pmu *pmu = event->pmu; 2041 return pmu->filter_match ? pmu->filter_match(event) : 1; 2042 } 2043 2044 /* 2045 * Check whether we should attempt to schedule an event group based on 2046 * PMU-specific filtering. An event group can consist of HW and SW events, 2047 * potentially with a SW leader, so we must check all the filters, to 2048 * determine whether a group is schedulable: 2049 */ 2050 static inline int pmu_filter_match(struct perf_event *event) 2051 { 2052 struct perf_event *sibling; 2053 2054 if (!__pmu_filter_match(event)) 2055 return 0; 2056 2057 for_each_sibling_event(sibling, event) { 2058 if (!__pmu_filter_match(sibling)) 2059 return 0; 2060 } 2061 2062 return 1; 2063 } 2064 2065 static inline int 2066 event_filter_match(struct perf_event *event) 2067 { 2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2069 perf_cgroup_match(event) && pmu_filter_match(event); 2070 } 2071 2072 static void 2073 event_sched_out(struct perf_event *event, 2074 struct perf_cpu_context *cpuctx, 2075 struct perf_event_context *ctx) 2076 { 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2078 2079 WARN_ON_ONCE(event->ctx != ctx); 2080 lockdep_assert_held(&ctx->lock); 2081 2082 if (event->state != PERF_EVENT_STATE_ACTIVE) 2083 return; 2084 2085 /* 2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2087 * we can schedule events _OUT_ individually through things like 2088 * __perf_remove_from_context(). 2089 */ 2090 list_del_init(&event->active_list); 2091 2092 perf_pmu_disable(event->pmu); 2093 2094 event->pmu->del(event, 0); 2095 event->oncpu = -1; 2096 2097 if (READ_ONCE(event->pending_disable) >= 0) { 2098 WRITE_ONCE(event->pending_disable, -1); 2099 state = PERF_EVENT_STATE_OFF; 2100 } 2101 perf_event_set_state(event, state); 2102 2103 if (!is_software_event(event)) 2104 cpuctx->active_oncpu--; 2105 if (!--ctx->nr_active) 2106 perf_event_ctx_deactivate(ctx); 2107 if (event->attr.freq && event->attr.sample_freq) 2108 ctx->nr_freq--; 2109 if (event->attr.exclusive || !cpuctx->active_oncpu) 2110 cpuctx->exclusive = 0; 2111 2112 perf_pmu_enable(event->pmu); 2113 } 2114 2115 static void 2116 group_sched_out(struct perf_event *group_event, 2117 struct perf_cpu_context *cpuctx, 2118 struct perf_event_context *ctx) 2119 { 2120 struct perf_event *event; 2121 2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2123 return; 2124 2125 perf_pmu_disable(ctx->pmu); 2126 2127 event_sched_out(group_event, cpuctx, ctx); 2128 2129 /* 2130 * Schedule out siblings (if any): 2131 */ 2132 for_each_sibling_event(event, group_event) 2133 event_sched_out(event, cpuctx, ctx); 2134 2135 perf_pmu_enable(ctx->pmu); 2136 2137 if (group_event->attr.exclusive) 2138 cpuctx->exclusive = 0; 2139 } 2140 2141 #define DETACH_GROUP 0x01UL 2142 2143 /* 2144 * Cross CPU call to remove a performance event 2145 * 2146 * We disable the event on the hardware level first. After that we 2147 * remove it from the context list. 2148 */ 2149 static void 2150 __perf_remove_from_context(struct perf_event *event, 2151 struct perf_cpu_context *cpuctx, 2152 struct perf_event_context *ctx, 2153 void *info) 2154 { 2155 unsigned long flags = (unsigned long)info; 2156 2157 if (ctx->is_active & EVENT_TIME) { 2158 update_context_time(ctx); 2159 update_cgrp_time_from_cpuctx(cpuctx); 2160 } 2161 2162 event_sched_out(event, cpuctx, ctx); 2163 if (flags & DETACH_GROUP) 2164 perf_group_detach(event); 2165 list_del_event(event, ctx); 2166 2167 if (!ctx->nr_events && ctx->is_active) { 2168 ctx->is_active = 0; 2169 if (ctx->task) { 2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2171 cpuctx->task_ctx = NULL; 2172 } 2173 } 2174 } 2175 2176 /* 2177 * Remove the event from a task's (or a CPU's) list of events. 2178 * 2179 * If event->ctx is a cloned context, callers must make sure that 2180 * every task struct that event->ctx->task could possibly point to 2181 * remains valid. This is OK when called from perf_release since 2182 * that only calls us on the top-level context, which can't be a clone. 2183 * When called from perf_event_exit_task, it's OK because the 2184 * context has been detached from its task. 2185 */ 2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2187 { 2188 struct perf_event_context *ctx = event->ctx; 2189 2190 lockdep_assert_held(&ctx->mutex); 2191 2192 event_function_call(event, __perf_remove_from_context, (void *)flags); 2193 2194 /* 2195 * The above event_function_call() can NO-OP when it hits 2196 * TASK_TOMBSTONE. In that case we must already have been detached 2197 * from the context (by perf_event_exit_event()) but the grouping 2198 * might still be in-tact. 2199 */ 2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2201 if ((flags & DETACH_GROUP) && 2202 (event->attach_state & PERF_ATTACH_GROUP)) { 2203 /* 2204 * Since in that case we cannot possibly be scheduled, simply 2205 * detach now. 2206 */ 2207 raw_spin_lock_irq(&ctx->lock); 2208 perf_group_detach(event); 2209 raw_spin_unlock_irq(&ctx->lock); 2210 } 2211 } 2212 2213 /* 2214 * Cross CPU call to disable a performance event 2215 */ 2216 static void __perf_event_disable(struct perf_event *event, 2217 struct perf_cpu_context *cpuctx, 2218 struct perf_event_context *ctx, 2219 void *info) 2220 { 2221 if (event->state < PERF_EVENT_STATE_INACTIVE) 2222 return; 2223 2224 if (ctx->is_active & EVENT_TIME) { 2225 update_context_time(ctx); 2226 update_cgrp_time_from_event(event); 2227 } 2228 2229 if (event == event->group_leader) 2230 group_sched_out(event, cpuctx, ctx); 2231 else 2232 event_sched_out(event, cpuctx, ctx); 2233 2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2235 } 2236 2237 /* 2238 * Disable an event. 2239 * 2240 * If event->ctx is a cloned context, callers must make sure that 2241 * every task struct that event->ctx->task could possibly point to 2242 * remains valid. This condition is satisifed when called through 2243 * perf_event_for_each_child or perf_event_for_each because they 2244 * hold the top-level event's child_mutex, so any descendant that 2245 * goes to exit will block in perf_event_exit_event(). 2246 * 2247 * When called from perf_pending_event it's OK because event->ctx 2248 * is the current context on this CPU and preemption is disabled, 2249 * hence we can't get into perf_event_task_sched_out for this context. 2250 */ 2251 static void _perf_event_disable(struct perf_event *event) 2252 { 2253 struct perf_event_context *ctx = event->ctx; 2254 2255 raw_spin_lock_irq(&ctx->lock); 2256 if (event->state <= PERF_EVENT_STATE_OFF) { 2257 raw_spin_unlock_irq(&ctx->lock); 2258 return; 2259 } 2260 raw_spin_unlock_irq(&ctx->lock); 2261 2262 event_function_call(event, __perf_event_disable, NULL); 2263 } 2264 2265 void perf_event_disable_local(struct perf_event *event) 2266 { 2267 event_function_local(event, __perf_event_disable, NULL); 2268 } 2269 2270 /* 2271 * Strictly speaking kernel users cannot create groups and therefore this 2272 * interface does not need the perf_event_ctx_lock() magic. 2273 */ 2274 void perf_event_disable(struct perf_event *event) 2275 { 2276 struct perf_event_context *ctx; 2277 2278 ctx = perf_event_ctx_lock(event); 2279 _perf_event_disable(event); 2280 perf_event_ctx_unlock(event, ctx); 2281 } 2282 EXPORT_SYMBOL_GPL(perf_event_disable); 2283 2284 void perf_event_disable_inatomic(struct perf_event *event) 2285 { 2286 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2287 /* can fail, see perf_pending_event_disable() */ 2288 irq_work_queue(&event->pending); 2289 } 2290 2291 static void perf_set_shadow_time(struct perf_event *event, 2292 struct perf_event_context *ctx) 2293 { 2294 /* 2295 * use the correct time source for the time snapshot 2296 * 2297 * We could get by without this by leveraging the 2298 * fact that to get to this function, the caller 2299 * has most likely already called update_context_time() 2300 * and update_cgrp_time_xx() and thus both timestamp 2301 * are identical (or very close). Given that tstamp is, 2302 * already adjusted for cgroup, we could say that: 2303 * tstamp - ctx->timestamp 2304 * is equivalent to 2305 * tstamp - cgrp->timestamp. 2306 * 2307 * Then, in perf_output_read(), the calculation would 2308 * work with no changes because: 2309 * - event is guaranteed scheduled in 2310 * - no scheduled out in between 2311 * - thus the timestamp would be the same 2312 * 2313 * But this is a bit hairy. 2314 * 2315 * So instead, we have an explicit cgroup call to remain 2316 * within the time time source all along. We believe it 2317 * is cleaner and simpler to understand. 2318 */ 2319 if (is_cgroup_event(event)) 2320 perf_cgroup_set_shadow_time(event, event->tstamp); 2321 else 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2323 } 2324 2325 #define MAX_INTERRUPTS (~0ULL) 2326 2327 static void perf_log_throttle(struct perf_event *event, int enable); 2328 static void perf_log_itrace_start(struct perf_event *event); 2329 2330 static int 2331 event_sched_in(struct perf_event *event, 2332 struct perf_cpu_context *cpuctx, 2333 struct perf_event_context *ctx) 2334 { 2335 int ret = 0; 2336 2337 lockdep_assert_held(&ctx->lock); 2338 2339 if (event->state <= PERF_EVENT_STATE_OFF) 2340 return 0; 2341 2342 WRITE_ONCE(event->oncpu, smp_processor_id()); 2343 /* 2344 * Order event::oncpu write to happen before the ACTIVE state is 2345 * visible. This allows perf_event_{stop,read}() to observe the correct 2346 * ->oncpu if it sees ACTIVE. 2347 */ 2348 smp_wmb(); 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2350 2351 /* 2352 * Unthrottle events, since we scheduled we might have missed several 2353 * ticks already, also for a heavily scheduling task there is little 2354 * guarantee it'll get a tick in a timely manner. 2355 */ 2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2357 perf_log_throttle(event, 1); 2358 event->hw.interrupts = 0; 2359 } 2360 2361 perf_pmu_disable(event->pmu); 2362 2363 perf_set_shadow_time(event, ctx); 2364 2365 perf_log_itrace_start(event); 2366 2367 if (event->pmu->add(event, PERF_EF_START)) { 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2369 event->oncpu = -1; 2370 ret = -EAGAIN; 2371 goto out; 2372 } 2373 2374 if (!is_software_event(event)) 2375 cpuctx->active_oncpu++; 2376 if (!ctx->nr_active++) 2377 perf_event_ctx_activate(ctx); 2378 if (event->attr.freq && event->attr.sample_freq) 2379 ctx->nr_freq++; 2380 2381 if (event->attr.exclusive) 2382 cpuctx->exclusive = 1; 2383 2384 out: 2385 perf_pmu_enable(event->pmu); 2386 2387 return ret; 2388 } 2389 2390 static int 2391 group_sched_in(struct perf_event *group_event, 2392 struct perf_cpu_context *cpuctx, 2393 struct perf_event_context *ctx) 2394 { 2395 struct perf_event *event, *partial_group = NULL; 2396 struct pmu *pmu = ctx->pmu; 2397 2398 if (group_event->state == PERF_EVENT_STATE_OFF) 2399 return 0; 2400 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2402 2403 if (event_sched_in(group_event, cpuctx, ctx)) { 2404 pmu->cancel_txn(pmu); 2405 perf_mux_hrtimer_restart(cpuctx); 2406 return -EAGAIN; 2407 } 2408 2409 /* 2410 * Schedule in siblings as one group (if any): 2411 */ 2412 for_each_sibling_event(event, group_event) { 2413 if (event_sched_in(event, cpuctx, ctx)) { 2414 partial_group = event; 2415 goto group_error; 2416 } 2417 } 2418 2419 if (!pmu->commit_txn(pmu)) 2420 return 0; 2421 2422 group_error: 2423 /* 2424 * Groups can be scheduled in as one unit only, so undo any 2425 * partial group before returning: 2426 * The events up to the failed event are scheduled out normally. 2427 */ 2428 for_each_sibling_event(event, group_event) { 2429 if (event == partial_group) 2430 break; 2431 2432 event_sched_out(event, cpuctx, ctx); 2433 } 2434 event_sched_out(group_event, cpuctx, ctx); 2435 2436 pmu->cancel_txn(pmu); 2437 2438 perf_mux_hrtimer_restart(cpuctx); 2439 2440 return -EAGAIN; 2441 } 2442 2443 /* 2444 * Work out whether we can put this event group on the CPU now. 2445 */ 2446 static int group_can_go_on(struct perf_event *event, 2447 struct perf_cpu_context *cpuctx, 2448 int can_add_hw) 2449 { 2450 /* 2451 * Groups consisting entirely of software events can always go on. 2452 */ 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2454 return 1; 2455 /* 2456 * If an exclusive group is already on, no other hardware 2457 * events can go on. 2458 */ 2459 if (cpuctx->exclusive) 2460 return 0; 2461 /* 2462 * If this group is exclusive and there are already 2463 * events on the CPU, it can't go on. 2464 */ 2465 if (event->attr.exclusive && cpuctx->active_oncpu) 2466 return 0; 2467 /* 2468 * Otherwise, try to add it if all previous groups were able 2469 * to go on. 2470 */ 2471 return can_add_hw; 2472 } 2473 2474 static void add_event_to_ctx(struct perf_event *event, 2475 struct perf_event_context *ctx) 2476 { 2477 list_add_event(event, ctx); 2478 perf_group_attach(event); 2479 } 2480 2481 static void ctx_sched_out(struct perf_event_context *ctx, 2482 struct perf_cpu_context *cpuctx, 2483 enum event_type_t event_type); 2484 static void 2485 ctx_sched_in(struct perf_event_context *ctx, 2486 struct perf_cpu_context *cpuctx, 2487 enum event_type_t event_type, 2488 struct task_struct *task); 2489 2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2491 struct perf_event_context *ctx, 2492 enum event_type_t event_type) 2493 { 2494 if (!cpuctx->task_ctx) 2495 return; 2496 2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2498 return; 2499 2500 ctx_sched_out(ctx, cpuctx, event_type); 2501 } 2502 2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2504 struct perf_event_context *ctx, 2505 struct task_struct *task) 2506 { 2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2508 if (ctx) 2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2511 if (ctx) 2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2513 } 2514 2515 /* 2516 * We want to maintain the following priority of scheduling: 2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2518 * - task pinned (EVENT_PINNED) 2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2520 * - task flexible (EVENT_FLEXIBLE). 2521 * 2522 * In order to avoid unscheduling and scheduling back in everything every 2523 * time an event is added, only do it for the groups of equal priority and 2524 * below. 2525 * 2526 * This can be called after a batch operation on task events, in which case 2527 * event_type is a bit mask of the types of events involved. For CPU events, 2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2529 */ 2530 static void ctx_resched(struct perf_cpu_context *cpuctx, 2531 struct perf_event_context *task_ctx, 2532 enum event_type_t event_type) 2533 { 2534 enum event_type_t ctx_event_type; 2535 bool cpu_event = !!(event_type & EVENT_CPU); 2536 2537 /* 2538 * If pinned groups are involved, flexible groups also need to be 2539 * scheduled out. 2540 */ 2541 if (event_type & EVENT_PINNED) 2542 event_type |= EVENT_FLEXIBLE; 2543 2544 ctx_event_type = event_type & EVENT_ALL; 2545 2546 perf_pmu_disable(cpuctx->ctx.pmu); 2547 if (task_ctx) 2548 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2549 2550 /* 2551 * Decide which cpu ctx groups to schedule out based on the types 2552 * of events that caused rescheduling: 2553 * - EVENT_CPU: schedule out corresponding groups; 2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2555 * - otherwise, do nothing more. 2556 */ 2557 if (cpu_event) 2558 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2559 else if (ctx_event_type & EVENT_PINNED) 2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2561 2562 perf_event_sched_in(cpuctx, task_ctx, current); 2563 perf_pmu_enable(cpuctx->ctx.pmu); 2564 } 2565 2566 void perf_pmu_resched(struct pmu *pmu) 2567 { 2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2569 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2570 2571 perf_ctx_lock(cpuctx, task_ctx); 2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2573 perf_ctx_unlock(cpuctx, task_ctx); 2574 } 2575 2576 /* 2577 * Cross CPU call to install and enable a performance event 2578 * 2579 * Very similar to remote_function() + event_function() but cannot assume that 2580 * things like ctx->is_active and cpuctx->task_ctx are set. 2581 */ 2582 static int __perf_install_in_context(void *info) 2583 { 2584 struct perf_event *event = info; 2585 struct perf_event_context *ctx = event->ctx; 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2588 bool reprogram = true; 2589 int ret = 0; 2590 2591 raw_spin_lock(&cpuctx->ctx.lock); 2592 if (ctx->task) { 2593 raw_spin_lock(&ctx->lock); 2594 task_ctx = ctx; 2595 2596 reprogram = (ctx->task == current); 2597 2598 /* 2599 * If the task is running, it must be running on this CPU, 2600 * otherwise we cannot reprogram things. 2601 * 2602 * If its not running, we don't care, ctx->lock will 2603 * serialize against it becoming runnable. 2604 */ 2605 if (task_curr(ctx->task) && !reprogram) { 2606 ret = -ESRCH; 2607 goto unlock; 2608 } 2609 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2611 } else if (task_ctx) { 2612 raw_spin_lock(&task_ctx->lock); 2613 } 2614 2615 #ifdef CONFIG_CGROUP_PERF 2616 if (is_cgroup_event(event)) { 2617 /* 2618 * If the current cgroup doesn't match the event's 2619 * cgroup, we should not try to schedule it. 2620 */ 2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2623 event->cgrp->css.cgroup); 2624 } 2625 #endif 2626 2627 if (reprogram) { 2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2629 add_event_to_ctx(event, ctx); 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2631 } else { 2632 add_event_to_ctx(event, ctx); 2633 } 2634 2635 unlock: 2636 perf_ctx_unlock(cpuctx, task_ctx); 2637 2638 return ret; 2639 } 2640 2641 static bool exclusive_event_installable(struct perf_event *event, 2642 struct perf_event_context *ctx); 2643 2644 /* 2645 * Attach a performance event to a context. 2646 * 2647 * Very similar to event_function_call, see comment there. 2648 */ 2649 static void 2650 perf_install_in_context(struct perf_event_context *ctx, 2651 struct perf_event *event, 2652 int cpu) 2653 { 2654 struct task_struct *task = READ_ONCE(ctx->task); 2655 2656 lockdep_assert_held(&ctx->mutex); 2657 2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2659 2660 if (event->cpu != -1) 2661 event->cpu = cpu; 2662 2663 /* 2664 * Ensures that if we can observe event->ctx, both the event and ctx 2665 * will be 'complete'. See perf_iterate_sb_cpu(). 2666 */ 2667 smp_store_release(&event->ctx, ctx); 2668 2669 if (!task) { 2670 cpu_function_call(cpu, __perf_install_in_context, event); 2671 return; 2672 } 2673 2674 /* 2675 * Should not happen, we validate the ctx is still alive before calling. 2676 */ 2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2678 return; 2679 2680 /* 2681 * Installing events is tricky because we cannot rely on ctx->is_active 2682 * to be set in case this is the nr_events 0 -> 1 transition. 2683 * 2684 * Instead we use task_curr(), which tells us if the task is running. 2685 * However, since we use task_curr() outside of rq::lock, we can race 2686 * against the actual state. This means the result can be wrong. 2687 * 2688 * If we get a false positive, we retry, this is harmless. 2689 * 2690 * If we get a false negative, things are complicated. If we are after 2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2692 * value must be correct. If we're before, it doesn't matter since 2693 * perf_event_context_sched_in() will program the counter. 2694 * 2695 * However, this hinges on the remote context switch having observed 2696 * our task->perf_event_ctxp[] store, such that it will in fact take 2697 * ctx::lock in perf_event_context_sched_in(). 2698 * 2699 * We do this by task_function_call(), if the IPI fails to hit the task 2700 * we know any future context switch of task must see the 2701 * perf_event_ctpx[] store. 2702 */ 2703 2704 /* 2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2706 * task_cpu() load, such that if the IPI then does not find the task 2707 * running, a future context switch of that task must observe the 2708 * store. 2709 */ 2710 smp_mb(); 2711 again: 2712 if (!task_function_call(task, __perf_install_in_context, event)) 2713 return; 2714 2715 raw_spin_lock_irq(&ctx->lock); 2716 task = ctx->task; 2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2718 /* 2719 * Cannot happen because we already checked above (which also 2720 * cannot happen), and we hold ctx->mutex, which serializes us 2721 * against perf_event_exit_task_context(). 2722 */ 2723 raw_spin_unlock_irq(&ctx->lock); 2724 return; 2725 } 2726 /* 2727 * If the task is not running, ctx->lock will avoid it becoming so, 2728 * thus we can safely install the event. 2729 */ 2730 if (task_curr(task)) { 2731 raw_spin_unlock_irq(&ctx->lock); 2732 goto again; 2733 } 2734 add_event_to_ctx(event, ctx); 2735 raw_spin_unlock_irq(&ctx->lock); 2736 } 2737 2738 /* 2739 * Cross CPU call to enable a performance event 2740 */ 2741 static void __perf_event_enable(struct perf_event *event, 2742 struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 void *info) 2745 { 2746 struct perf_event *leader = event->group_leader; 2747 struct perf_event_context *task_ctx; 2748 2749 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2750 event->state <= PERF_EVENT_STATE_ERROR) 2751 return; 2752 2753 if (ctx->is_active) 2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2755 2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2757 2758 if (!ctx->is_active) 2759 return; 2760 2761 if (!event_filter_match(event)) { 2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2763 return; 2764 } 2765 2766 /* 2767 * If the event is in a group and isn't the group leader, 2768 * then don't put it on unless the group is on. 2769 */ 2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2772 return; 2773 } 2774 2775 task_ctx = cpuctx->task_ctx; 2776 if (ctx->task) 2777 WARN_ON_ONCE(task_ctx != ctx); 2778 2779 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2780 } 2781 2782 /* 2783 * Enable an event. 2784 * 2785 * If event->ctx is a cloned context, callers must make sure that 2786 * every task struct that event->ctx->task could possibly point to 2787 * remains valid. This condition is satisfied when called through 2788 * perf_event_for_each_child or perf_event_for_each as described 2789 * for perf_event_disable. 2790 */ 2791 static void _perf_event_enable(struct perf_event *event) 2792 { 2793 struct perf_event_context *ctx = event->ctx; 2794 2795 raw_spin_lock_irq(&ctx->lock); 2796 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2797 event->state < PERF_EVENT_STATE_ERROR) { 2798 raw_spin_unlock_irq(&ctx->lock); 2799 return; 2800 } 2801 2802 /* 2803 * If the event is in error state, clear that first. 2804 * 2805 * That way, if we see the event in error state below, we know that it 2806 * has gone back into error state, as distinct from the task having 2807 * been scheduled away before the cross-call arrived. 2808 */ 2809 if (event->state == PERF_EVENT_STATE_ERROR) 2810 event->state = PERF_EVENT_STATE_OFF; 2811 raw_spin_unlock_irq(&ctx->lock); 2812 2813 event_function_call(event, __perf_event_enable, NULL); 2814 } 2815 2816 /* 2817 * See perf_event_disable(); 2818 */ 2819 void perf_event_enable(struct perf_event *event) 2820 { 2821 struct perf_event_context *ctx; 2822 2823 ctx = perf_event_ctx_lock(event); 2824 _perf_event_enable(event); 2825 perf_event_ctx_unlock(event, ctx); 2826 } 2827 EXPORT_SYMBOL_GPL(perf_event_enable); 2828 2829 struct stop_event_data { 2830 struct perf_event *event; 2831 unsigned int restart; 2832 }; 2833 2834 static int __perf_event_stop(void *info) 2835 { 2836 struct stop_event_data *sd = info; 2837 struct perf_event *event = sd->event; 2838 2839 /* if it's already INACTIVE, do nothing */ 2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2841 return 0; 2842 2843 /* matches smp_wmb() in event_sched_in() */ 2844 smp_rmb(); 2845 2846 /* 2847 * There is a window with interrupts enabled before we get here, 2848 * so we need to check again lest we try to stop another CPU's event. 2849 */ 2850 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2851 return -EAGAIN; 2852 2853 event->pmu->stop(event, PERF_EF_UPDATE); 2854 2855 /* 2856 * May race with the actual stop (through perf_pmu_output_stop()), 2857 * but it is only used for events with AUX ring buffer, and such 2858 * events will refuse to restart because of rb::aux_mmap_count==0, 2859 * see comments in perf_aux_output_begin(). 2860 * 2861 * Since this is happening on an event-local CPU, no trace is lost 2862 * while restarting. 2863 */ 2864 if (sd->restart) 2865 event->pmu->start(event, 0); 2866 2867 return 0; 2868 } 2869 2870 static int perf_event_stop(struct perf_event *event, int restart) 2871 { 2872 struct stop_event_data sd = { 2873 .event = event, 2874 .restart = restart, 2875 }; 2876 int ret = 0; 2877 2878 do { 2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2880 return 0; 2881 2882 /* matches smp_wmb() in event_sched_in() */ 2883 smp_rmb(); 2884 2885 /* 2886 * We only want to restart ACTIVE events, so if the event goes 2887 * inactive here (event->oncpu==-1), there's nothing more to do; 2888 * fall through with ret==-ENXIO. 2889 */ 2890 ret = cpu_function_call(READ_ONCE(event->oncpu), 2891 __perf_event_stop, &sd); 2892 } while (ret == -EAGAIN); 2893 2894 return ret; 2895 } 2896 2897 /* 2898 * In order to contain the amount of racy and tricky in the address filter 2899 * configuration management, it is a two part process: 2900 * 2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2902 * we update the addresses of corresponding vmas in 2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2904 * (p2) when an event is scheduled in (pmu::add), it calls 2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2906 * if the generation has changed since the previous call. 2907 * 2908 * If (p1) happens while the event is active, we restart it to force (p2). 2909 * 2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2912 * ioctl; 2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2915 * for reading; 2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2917 * of exec. 2918 */ 2919 void perf_event_addr_filters_sync(struct perf_event *event) 2920 { 2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2922 2923 if (!has_addr_filter(event)) 2924 return; 2925 2926 raw_spin_lock(&ifh->lock); 2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2928 event->pmu->addr_filters_sync(event); 2929 event->hw.addr_filters_gen = event->addr_filters_gen; 2930 } 2931 raw_spin_unlock(&ifh->lock); 2932 } 2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2934 2935 static int _perf_event_refresh(struct perf_event *event, int refresh) 2936 { 2937 /* 2938 * not supported on inherited events 2939 */ 2940 if (event->attr.inherit || !is_sampling_event(event)) 2941 return -EINVAL; 2942 2943 atomic_add(refresh, &event->event_limit); 2944 _perf_event_enable(event); 2945 2946 return 0; 2947 } 2948 2949 /* 2950 * See perf_event_disable() 2951 */ 2952 int perf_event_refresh(struct perf_event *event, int refresh) 2953 { 2954 struct perf_event_context *ctx; 2955 int ret; 2956 2957 ctx = perf_event_ctx_lock(event); 2958 ret = _perf_event_refresh(event, refresh); 2959 perf_event_ctx_unlock(event, ctx); 2960 2961 return ret; 2962 } 2963 EXPORT_SYMBOL_GPL(perf_event_refresh); 2964 2965 static int perf_event_modify_breakpoint(struct perf_event *bp, 2966 struct perf_event_attr *attr) 2967 { 2968 int err; 2969 2970 _perf_event_disable(bp); 2971 2972 err = modify_user_hw_breakpoint_check(bp, attr, true); 2973 2974 if (!bp->attr.disabled) 2975 _perf_event_enable(bp); 2976 2977 return err; 2978 } 2979 2980 static int perf_event_modify_attr(struct perf_event *event, 2981 struct perf_event_attr *attr) 2982 { 2983 if (event->attr.type != attr->type) 2984 return -EINVAL; 2985 2986 switch (event->attr.type) { 2987 case PERF_TYPE_BREAKPOINT: 2988 return perf_event_modify_breakpoint(event, attr); 2989 default: 2990 /* Place holder for future additions. */ 2991 return -EOPNOTSUPP; 2992 } 2993 } 2994 2995 static void ctx_sched_out(struct perf_event_context *ctx, 2996 struct perf_cpu_context *cpuctx, 2997 enum event_type_t event_type) 2998 { 2999 struct perf_event *event, *tmp; 3000 int is_active = ctx->is_active; 3001 3002 lockdep_assert_held(&ctx->lock); 3003 3004 if (likely(!ctx->nr_events)) { 3005 /* 3006 * See __perf_remove_from_context(). 3007 */ 3008 WARN_ON_ONCE(ctx->is_active); 3009 if (ctx->task) 3010 WARN_ON_ONCE(cpuctx->task_ctx); 3011 return; 3012 } 3013 3014 ctx->is_active &= ~event_type; 3015 if (!(ctx->is_active & EVENT_ALL)) 3016 ctx->is_active = 0; 3017 3018 if (ctx->task) { 3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3020 if (!ctx->is_active) 3021 cpuctx->task_ctx = NULL; 3022 } 3023 3024 /* 3025 * Always update time if it was set; not only when it changes. 3026 * Otherwise we can 'forget' to update time for any but the last 3027 * context we sched out. For example: 3028 * 3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3030 * ctx_sched_out(.event_type = EVENT_PINNED) 3031 * 3032 * would only update time for the pinned events. 3033 */ 3034 if (is_active & EVENT_TIME) { 3035 /* update (and stop) ctx time */ 3036 update_context_time(ctx); 3037 update_cgrp_time_from_cpuctx(cpuctx); 3038 } 3039 3040 is_active ^= ctx->is_active; /* changed bits */ 3041 3042 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3043 return; 3044 3045 /* 3046 * If we had been multiplexing, no rotations are necessary, now no events 3047 * are active. 3048 */ 3049 ctx->rotate_necessary = 0; 3050 3051 perf_pmu_disable(ctx->pmu); 3052 if (is_active & EVENT_PINNED) { 3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3054 group_sched_out(event, cpuctx, ctx); 3055 } 3056 3057 if (is_active & EVENT_FLEXIBLE) { 3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3059 group_sched_out(event, cpuctx, ctx); 3060 } 3061 perf_pmu_enable(ctx->pmu); 3062 } 3063 3064 /* 3065 * Test whether two contexts are equivalent, i.e. whether they have both been 3066 * cloned from the same version of the same context. 3067 * 3068 * Equivalence is measured using a generation number in the context that is 3069 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3070 * and list_del_event(). 3071 */ 3072 static int context_equiv(struct perf_event_context *ctx1, 3073 struct perf_event_context *ctx2) 3074 { 3075 lockdep_assert_held(&ctx1->lock); 3076 lockdep_assert_held(&ctx2->lock); 3077 3078 /* Pinning disables the swap optimization */ 3079 if (ctx1->pin_count || ctx2->pin_count) 3080 return 0; 3081 3082 /* If ctx1 is the parent of ctx2 */ 3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3084 return 1; 3085 3086 /* If ctx2 is the parent of ctx1 */ 3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3088 return 1; 3089 3090 /* 3091 * If ctx1 and ctx2 have the same parent; we flatten the parent 3092 * hierarchy, see perf_event_init_context(). 3093 */ 3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3095 ctx1->parent_gen == ctx2->parent_gen) 3096 return 1; 3097 3098 /* Unmatched */ 3099 return 0; 3100 } 3101 3102 static void __perf_event_sync_stat(struct perf_event *event, 3103 struct perf_event *next_event) 3104 { 3105 u64 value; 3106 3107 if (!event->attr.inherit_stat) 3108 return; 3109 3110 /* 3111 * Update the event value, we cannot use perf_event_read() 3112 * because we're in the middle of a context switch and have IRQs 3113 * disabled, which upsets smp_call_function_single(), however 3114 * we know the event must be on the current CPU, therefore we 3115 * don't need to use it. 3116 */ 3117 if (event->state == PERF_EVENT_STATE_ACTIVE) 3118 event->pmu->read(event); 3119 3120 perf_event_update_time(event); 3121 3122 /* 3123 * In order to keep per-task stats reliable we need to flip the event 3124 * values when we flip the contexts. 3125 */ 3126 value = local64_read(&next_event->count); 3127 value = local64_xchg(&event->count, value); 3128 local64_set(&next_event->count, value); 3129 3130 swap(event->total_time_enabled, next_event->total_time_enabled); 3131 swap(event->total_time_running, next_event->total_time_running); 3132 3133 /* 3134 * Since we swizzled the values, update the user visible data too. 3135 */ 3136 perf_event_update_userpage(event); 3137 perf_event_update_userpage(next_event); 3138 } 3139 3140 static void perf_event_sync_stat(struct perf_event_context *ctx, 3141 struct perf_event_context *next_ctx) 3142 { 3143 struct perf_event *event, *next_event; 3144 3145 if (!ctx->nr_stat) 3146 return; 3147 3148 update_context_time(ctx); 3149 3150 event = list_first_entry(&ctx->event_list, 3151 struct perf_event, event_entry); 3152 3153 next_event = list_first_entry(&next_ctx->event_list, 3154 struct perf_event, event_entry); 3155 3156 while (&event->event_entry != &ctx->event_list && 3157 &next_event->event_entry != &next_ctx->event_list) { 3158 3159 __perf_event_sync_stat(event, next_event); 3160 3161 event = list_next_entry(event, event_entry); 3162 next_event = list_next_entry(next_event, event_entry); 3163 } 3164 } 3165 3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3167 struct task_struct *next) 3168 { 3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3170 struct perf_event_context *next_ctx; 3171 struct perf_event_context *parent, *next_parent; 3172 struct perf_cpu_context *cpuctx; 3173 int do_switch = 1; 3174 3175 if (likely(!ctx)) 3176 return; 3177 3178 cpuctx = __get_cpu_context(ctx); 3179 if (!cpuctx->task_ctx) 3180 return; 3181 3182 rcu_read_lock(); 3183 next_ctx = next->perf_event_ctxp[ctxn]; 3184 if (!next_ctx) 3185 goto unlock; 3186 3187 parent = rcu_dereference(ctx->parent_ctx); 3188 next_parent = rcu_dereference(next_ctx->parent_ctx); 3189 3190 /* If neither context have a parent context; they cannot be clones. */ 3191 if (!parent && !next_parent) 3192 goto unlock; 3193 3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3195 /* 3196 * Looks like the two contexts are clones, so we might be 3197 * able to optimize the context switch. We lock both 3198 * contexts and check that they are clones under the 3199 * lock (including re-checking that neither has been 3200 * uncloned in the meantime). It doesn't matter which 3201 * order we take the locks because no other cpu could 3202 * be trying to lock both of these tasks. 3203 */ 3204 raw_spin_lock(&ctx->lock); 3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3206 if (context_equiv(ctx, next_ctx)) { 3207 WRITE_ONCE(ctx->task, next); 3208 WRITE_ONCE(next_ctx->task, task); 3209 3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3211 3212 /* 3213 * RCU_INIT_POINTER here is safe because we've not 3214 * modified the ctx and the above modification of 3215 * ctx->task and ctx->task_ctx_data are immaterial 3216 * since those values are always verified under 3217 * ctx->lock which we're now holding. 3218 */ 3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3221 3222 do_switch = 0; 3223 3224 perf_event_sync_stat(ctx, next_ctx); 3225 } 3226 raw_spin_unlock(&next_ctx->lock); 3227 raw_spin_unlock(&ctx->lock); 3228 } 3229 unlock: 3230 rcu_read_unlock(); 3231 3232 if (do_switch) { 3233 raw_spin_lock(&ctx->lock); 3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3235 raw_spin_unlock(&ctx->lock); 3236 } 3237 } 3238 3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3240 3241 void perf_sched_cb_dec(struct pmu *pmu) 3242 { 3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3244 3245 this_cpu_dec(perf_sched_cb_usages); 3246 3247 if (!--cpuctx->sched_cb_usage) 3248 list_del(&cpuctx->sched_cb_entry); 3249 } 3250 3251 3252 void perf_sched_cb_inc(struct pmu *pmu) 3253 { 3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3255 3256 if (!cpuctx->sched_cb_usage++) 3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3258 3259 this_cpu_inc(perf_sched_cb_usages); 3260 } 3261 3262 /* 3263 * This function provides the context switch callback to the lower code 3264 * layer. It is invoked ONLY when the context switch callback is enabled. 3265 * 3266 * This callback is relevant even to per-cpu events; for example multi event 3267 * PEBS requires this to provide PID/TID information. This requires we flush 3268 * all queued PEBS records before we context switch to a new task. 3269 */ 3270 static void perf_pmu_sched_task(struct task_struct *prev, 3271 struct task_struct *next, 3272 bool sched_in) 3273 { 3274 struct perf_cpu_context *cpuctx; 3275 struct pmu *pmu; 3276 3277 if (prev == next) 3278 return; 3279 3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3282 3283 if (WARN_ON_ONCE(!pmu->sched_task)) 3284 continue; 3285 3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3287 perf_pmu_disable(pmu); 3288 3289 pmu->sched_task(cpuctx->task_ctx, sched_in); 3290 3291 perf_pmu_enable(pmu); 3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3293 } 3294 } 3295 3296 static void perf_event_switch(struct task_struct *task, 3297 struct task_struct *next_prev, bool sched_in); 3298 3299 #define for_each_task_context_nr(ctxn) \ 3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3301 3302 /* 3303 * Called from scheduler to remove the events of the current task, 3304 * with interrupts disabled. 3305 * 3306 * We stop each event and update the event value in event->count. 3307 * 3308 * This does not protect us against NMI, but disable() 3309 * sets the disabled bit in the control field of event _before_ 3310 * accessing the event control register. If a NMI hits, then it will 3311 * not restart the event. 3312 */ 3313 void __perf_event_task_sched_out(struct task_struct *task, 3314 struct task_struct *next) 3315 { 3316 int ctxn; 3317 3318 if (__this_cpu_read(perf_sched_cb_usages)) 3319 perf_pmu_sched_task(task, next, false); 3320 3321 if (atomic_read(&nr_switch_events)) 3322 perf_event_switch(task, next, false); 3323 3324 for_each_task_context_nr(ctxn) 3325 perf_event_context_sched_out(task, ctxn, next); 3326 3327 /* 3328 * if cgroup events exist on this CPU, then we need 3329 * to check if we have to switch out PMU state. 3330 * cgroup event are system-wide mode only 3331 */ 3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3333 perf_cgroup_sched_out(task, next); 3334 } 3335 3336 /* 3337 * Called with IRQs disabled 3338 */ 3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3340 enum event_type_t event_type) 3341 { 3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3343 } 3344 3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3346 int (*func)(struct perf_event *, void *), void *data) 3347 { 3348 struct perf_event **evt, *evt1, *evt2; 3349 int ret; 3350 3351 evt1 = perf_event_groups_first(groups, -1); 3352 evt2 = perf_event_groups_first(groups, cpu); 3353 3354 while (evt1 || evt2) { 3355 if (evt1 && evt2) { 3356 if (evt1->group_index < evt2->group_index) 3357 evt = &evt1; 3358 else 3359 evt = &evt2; 3360 } else if (evt1) { 3361 evt = &evt1; 3362 } else { 3363 evt = &evt2; 3364 } 3365 3366 ret = func(*evt, data); 3367 if (ret) 3368 return ret; 3369 3370 *evt = perf_event_groups_next(*evt); 3371 } 3372 3373 return 0; 3374 } 3375 3376 struct sched_in_data { 3377 struct perf_event_context *ctx; 3378 struct perf_cpu_context *cpuctx; 3379 int can_add_hw; 3380 }; 3381 3382 static int pinned_sched_in(struct perf_event *event, void *data) 3383 { 3384 struct sched_in_data *sid = data; 3385 3386 if (event->state <= PERF_EVENT_STATE_OFF) 3387 return 0; 3388 3389 if (!event_filter_match(event)) 3390 return 0; 3391 3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3395 } 3396 3397 /* 3398 * If this pinned group hasn't been scheduled, 3399 * put it in error state. 3400 */ 3401 if (event->state == PERF_EVENT_STATE_INACTIVE) 3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3403 3404 return 0; 3405 } 3406 3407 static int flexible_sched_in(struct perf_event *event, void *data) 3408 { 3409 struct sched_in_data *sid = data; 3410 3411 if (event->state <= PERF_EVENT_STATE_OFF) 3412 return 0; 3413 3414 if (!event_filter_match(event)) 3415 return 0; 3416 3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3419 if (ret) { 3420 sid->can_add_hw = 0; 3421 sid->ctx->rotate_necessary = 1; 3422 return 0; 3423 } 3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3425 } 3426 3427 return 0; 3428 } 3429 3430 static void 3431 ctx_pinned_sched_in(struct perf_event_context *ctx, 3432 struct perf_cpu_context *cpuctx) 3433 { 3434 struct sched_in_data sid = { 3435 .ctx = ctx, 3436 .cpuctx = cpuctx, 3437 .can_add_hw = 1, 3438 }; 3439 3440 visit_groups_merge(&ctx->pinned_groups, 3441 smp_processor_id(), 3442 pinned_sched_in, &sid); 3443 } 3444 3445 static void 3446 ctx_flexible_sched_in(struct perf_event_context *ctx, 3447 struct perf_cpu_context *cpuctx) 3448 { 3449 struct sched_in_data sid = { 3450 .ctx = ctx, 3451 .cpuctx = cpuctx, 3452 .can_add_hw = 1, 3453 }; 3454 3455 visit_groups_merge(&ctx->flexible_groups, 3456 smp_processor_id(), 3457 flexible_sched_in, &sid); 3458 } 3459 3460 static void 3461 ctx_sched_in(struct perf_event_context *ctx, 3462 struct perf_cpu_context *cpuctx, 3463 enum event_type_t event_type, 3464 struct task_struct *task) 3465 { 3466 int is_active = ctx->is_active; 3467 u64 now; 3468 3469 lockdep_assert_held(&ctx->lock); 3470 3471 if (likely(!ctx->nr_events)) 3472 return; 3473 3474 ctx->is_active |= (event_type | EVENT_TIME); 3475 if (ctx->task) { 3476 if (!is_active) 3477 cpuctx->task_ctx = ctx; 3478 else 3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3480 } 3481 3482 is_active ^= ctx->is_active; /* changed bits */ 3483 3484 if (is_active & EVENT_TIME) { 3485 /* start ctx time */ 3486 now = perf_clock(); 3487 ctx->timestamp = now; 3488 perf_cgroup_set_timestamp(task, ctx); 3489 } 3490 3491 /* 3492 * First go through the list and put on any pinned groups 3493 * in order to give them the best chance of going on. 3494 */ 3495 if (is_active & EVENT_PINNED) 3496 ctx_pinned_sched_in(ctx, cpuctx); 3497 3498 /* Then walk through the lower prio flexible groups */ 3499 if (is_active & EVENT_FLEXIBLE) 3500 ctx_flexible_sched_in(ctx, cpuctx); 3501 } 3502 3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3504 enum event_type_t event_type, 3505 struct task_struct *task) 3506 { 3507 struct perf_event_context *ctx = &cpuctx->ctx; 3508 3509 ctx_sched_in(ctx, cpuctx, event_type, task); 3510 } 3511 3512 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3513 struct task_struct *task) 3514 { 3515 struct perf_cpu_context *cpuctx; 3516 3517 cpuctx = __get_cpu_context(ctx); 3518 if (cpuctx->task_ctx == ctx) 3519 return; 3520 3521 perf_ctx_lock(cpuctx, ctx); 3522 /* 3523 * We must check ctx->nr_events while holding ctx->lock, such 3524 * that we serialize against perf_install_in_context(). 3525 */ 3526 if (!ctx->nr_events) 3527 goto unlock; 3528 3529 perf_pmu_disable(ctx->pmu); 3530 /* 3531 * We want to keep the following priority order: 3532 * cpu pinned (that don't need to move), task pinned, 3533 * cpu flexible, task flexible. 3534 * 3535 * However, if task's ctx is not carrying any pinned 3536 * events, no need to flip the cpuctx's events around. 3537 */ 3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3540 perf_event_sched_in(cpuctx, ctx, task); 3541 perf_pmu_enable(ctx->pmu); 3542 3543 unlock: 3544 perf_ctx_unlock(cpuctx, ctx); 3545 } 3546 3547 /* 3548 * Called from scheduler to add the events of the current task 3549 * with interrupts disabled. 3550 * 3551 * We restore the event value and then enable it. 3552 * 3553 * This does not protect us against NMI, but enable() 3554 * sets the enabled bit in the control field of event _before_ 3555 * accessing the event control register. If a NMI hits, then it will 3556 * keep the event running. 3557 */ 3558 void __perf_event_task_sched_in(struct task_struct *prev, 3559 struct task_struct *task) 3560 { 3561 struct perf_event_context *ctx; 3562 int ctxn; 3563 3564 /* 3565 * If cgroup events exist on this CPU, then we need to check if we have 3566 * to switch in PMU state; cgroup event are system-wide mode only. 3567 * 3568 * Since cgroup events are CPU events, we must schedule these in before 3569 * we schedule in the task events. 3570 */ 3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3572 perf_cgroup_sched_in(prev, task); 3573 3574 for_each_task_context_nr(ctxn) { 3575 ctx = task->perf_event_ctxp[ctxn]; 3576 if (likely(!ctx)) 3577 continue; 3578 3579 perf_event_context_sched_in(ctx, task); 3580 } 3581 3582 if (atomic_read(&nr_switch_events)) 3583 perf_event_switch(task, prev, true); 3584 3585 if (__this_cpu_read(perf_sched_cb_usages)) 3586 perf_pmu_sched_task(prev, task, true); 3587 } 3588 3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3590 { 3591 u64 frequency = event->attr.sample_freq; 3592 u64 sec = NSEC_PER_SEC; 3593 u64 divisor, dividend; 3594 3595 int count_fls, nsec_fls, frequency_fls, sec_fls; 3596 3597 count_fls = fls64(count); 3598 nsec_fls = fls64(nsec); 3599 frequency_fls = fls64(frequency); 3600 sec_fls = 30; 3601 3602 /* 3603 * We got @count in @nsec, with a target of sample_freq HZ 3604 * the target period becomes: 3605 * 3606 * @count * 10^9 3607 * period = ------------------- 3608 * @nsec * sample_freq 3609 * 3610 */ 3611 3612 /* 3613 * Reduce accuracy by one bit such that @a and @b converge 3614 * to a similar magnitude. 3615 */ 3616 #define REDUCE_FLS(a, b) \ 3617 do { \ 3618 if (a##_fls > b##_fls) { \ 3619 a >>= 1; \ 3620 a##_fls--; \ 3621 } else { \ 3622 b >>= 1; \ 3623 b##_fls--; \ 3624 } \ 3625 } while (0) 3626 3627 /* 3628 * Reduce accuracy until either term fits in a u64, then proceed with 3629 * the other, so that finally we can do a u64/u64 division. 3630 */ 3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3632 REDUCE_FLS(nsec, frequency); 3633 REDUCE_FLS(sec, count); 3634 } 3635 3636 if (count_fls + sec_fls > 64) { 3637 divisor = nsec * frequency; 3638 3639 while (count_fls + sec_fls > 64) { 3640 REDUCE_FLS(count, sec); 3641 divisor >>= 1; 3642 } 3643 3644 dividend = count * sec; 3645 } else { 3646 dividend = count * sec; 3647 3648 while (nsec_fls + frequency_fls > 64) { 3649 REDUCE_FLS(nsec, frequency); 3650 dividend >>= 1; 3651 } 3652 3653 divisor = nsec * frequency; 3654 } 3655 3656 if (!divisor) 3657 return dividend; 3658 3659 return div64_u64(dividend, divisor); 3660 } 3661 3662 static DEFINE_PER_CPU(int, perf_throttled_count); 3663 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3664 3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3666 { 3667 struct hw_perf_event *hwc = &event->hw; 3668 s64 period, sample_period; 3669 s64 delta; 3670 3671 period = perf_calculate_period(event, nsec, count); 3672 3673 delta = (s64)(period - hwc->sample_period); 3674 delta = (delta + 7) / 8; /* low pass filter */ 3675 3676 sample_period = hwc->sample_period + delta; 3677 3678 if (!sample_period) 3679 sample_period = 1; 3680 3681 hwc->sample_period = sample_period; 3682 3683 if (local64_read(&hwc->period_left) > 8*sample_period) { 3684 if (disable) 3685 event->pmu->stop(event, PERF_EF_UPDATE); 3686 3687 local64_set(&hwc->period_left, 0); 3688 3689 if (disable) 3690 event->pmu->start(event, PERF_EF_RELOAD); 3691 } 3692 } 3693 3694 /* 3695 * combine freq adjustment with unthrottling to avoid two passes over the 3696 * events. At the same time, make sure, having freq events does not change 3697 * the rate of unthrottling as that would introduce bias. 3698 */ 3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3700 int needs_unthr) 3701 { 3702 struct perf_event *event; 3703 struct hw_perf_event *hwc; 3704 u64 now, period = TICK_NSEC; 3705 s64 delta; 3706 3707 /* 3708 * only need to iterate over all events iff: 3709 * - context have events in frequency mode (needs freq adjust) 3710 * - there are events to unthrottle on this cpu 3711 */ 3712 if (!(ctx->nr_freq || needs_unthr)) 3713 return; 3714 3715 raw_spin_lock(&ctx->lock); 3716 perf_pmu_disable(ctx->pmu); 3717 3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3719 if (event->state != PERF_EVENT_STATE_ACTIVE) 3720 continue; 3721 3722 if (!event_filter_match(event)) 3723 continue; 3724 3725 perf_pmu_disable(event->pmu); 3726 3727 hwc = &event->hw; 3728 3729 if (hwc->interrupts == MAX_INTERRUPTS) { 3730 hwc->interrupts = 0; 3731 perf_log_throttle(event, 1); 3732 event->pmu->start(event, 0); 3733 } 3734 3735 if (!event->attr.freq || !event->attr.sample_freq) 3736 goto next; 3737 3738 /* 3739 * stop the event and update event->count 3740 */ 3741 event->pmu->stop(event, PERF_EF_UPDATE); 3742 3743 now = local64_read(&event->count); 3744 delta = now - hwc->freq_count_stamp; 3745 hwc->freq_count_stamp = now; 3746 3747 /* 3748 * restart the event 3749 * reload only if value has changed 3750 * we have stopped the event so tell that 3751 * to perf_adjust_period() to avoid stopping it 3752 * twice. 3753 */ 3754 if (delta > 0) 3755 perf_adjust_period(event, period, delta, false); 3756 3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3758 next: 3759 perf_pmu_enable(event->pmu); 3760 } 3761 3762 perf_pmu_enable(ctx->pmu); 3763 raw_spin_unlock(&ctx->lock); 3764 } 3765 3766 /* 3767 * Move @event to the tail of the @ctx's elegible events. 3768 */ 3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3770 { 3771 /* 3772 * Rotate the first entry last of non-pinned groups. Rotation might be 3773 * disabled by the inheritance code. 3774 */ 3775 if (ctx->rotate_disable) 3776 return; 3777 3778 perf_event_groups_delete(&ctx->flexible_groups, event); 3779 perf_event_groups_insert(&ctx->flexible_groups, event); 3780 } 3781 3782 static inline struct perf_event * 3783 ctx_first_active(struct perf_event_context *ctx) 3784 { 3785 return list_first_entry_or_null(&ctx->flexible_active, 3786 struct perf_event, active_list); 3787 } 3788 3789 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3790 { 3791 struct perf_event *cpu_event = NULL, *task_event = NULL; 3792 struct perf_event_context *task_ctx = NULL; 3793 int cpu_rotate, task_rotate; 3794 3795 /* 3796 * Since we run this from IRQ context, nobody can install new 3797 * events, thus the event count values are stable. 3798 */ 3799 3800 cpu_rotate = cpuctx->ctx.rotate_necessary; 3801 task_ctx = cpuctx->task_ctx; 3802 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3803 3804 if (!(cpu_rotate || task_rotate)) 3805 return false; 3806 3807 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3808 perf_pmu_disable(cpuctx->ctx.pmu); 3809 3810 if (task_rotate) 3811 task_event = ctx_first_active(task_ctx); 3812 if (cpu_rotate) 3813 cpu_event = ctx_first_active(&cpuctx->ctx); 3814 3815 /* 3816 * As per the order given at ctx_resched() first 'pop' task flexible 3817 * and then, if needed CPU flexible. 3818 */ 3819 if (task_event || (task_ctx && cpu_event)) 3820 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3821 if (cpu_event) 3822 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3823 3824 if (task_event) 3825 rotate_ctx(task_ctx, task_event); 3826 if (cpu_event) 3827 rotate_ctx(&cpuctx->ctx, cpu_event); 3828 3829 perf_event_sched_in(cpuctx, task_ctx, current); 3830 3831 perf_pmu_enable(cpuctx->ctx.pmu); 3832 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3833 3834 return true; 3835 } 3836 3837 void perf_event_task_tick(void) 3838 { 3839 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3840 struct perf_event_context *ctx, *tmp; 3841 int throttled; 3842 3843 lockdep_assert_irqs_disabled(); 3844 3845 __this_cpu_inc(perf_throttled_seq); 3846 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3847 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3848 3849 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3850 perf_adjust_freq_unthr_context(ctx, throttled); 3851 } 3852 3853 static int event_enable_on_exec(struct perf_event *event, 3854 struct perf_event_context *ctx) 3855 { 3856 if (!event->attr.enable_on_exec) 3857 return 0; 3858 3859 event->attr.enable_on_exec = 0; 3860 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3861 return 0; 3862 3863 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3864 3865 return 1; 3866 } 3867 3868 /* 3869 * Enable all of a task's events that have been marked enable-on-exec. 3870 * This expects task == current. 3871 */ 3872 static void perf_event_enable_on_exec(int ctxn) 3873 { 3874 struct perf_event_context *ctx, *clone_ctx = NULL; 3875 enum event_type_t event_type = 0; 3876 struct perf_cpu_context *cpuctx; 3877 struct perf_event *event; 3878 unsigned long flags; 3879 int enabled = 0; 3880 3881 local_irq_save(flags); 3882 ctx = current->perf_event_ctxp[ctxn]; 3883 if (!ctx || !ctx->nr_events) 3884 goto out; 3885 3886 cpuctx = __get_cpu_context(ctx); 3887 perf_ctx_lock(cpuctx, ctx); 3888 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3889 list_for_each_entry(event, &ctx->event_list, event_entry) { 3890 enabled |= event_enable_on_exec(event, ctx); 3891 event_type |= get_event_type(event); 3892 } 3893 3894 /* 3895 * Unclone and reschedule this context if we enabled any event. 3896 */ 3897 if (enabled) { 3898 clone_ctx = unclone_ctx(ctx); 3899 ctx_resched(cpuctx, ctx, event_type); 3900 } else { 3901 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3902 } 3903 perf_ctx_unlock(cpuctx, ctx); 3904 3905 out: 3906 local_irq_restore(flags); 3907 3908 if (clone_ctx) 3909 put_ctx(clone_ctx); 3910 } 3911 3912 struct perf_read_data { 3913 struct perf_event *event; 3914 bool group; 3915 int ret; 3916 }; 3917 3918 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3919 { 3920 u16 local_pkg, event_pkg; 3921 3922 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3923 int local_cpu = smp_processor_id(); 3924 3925 event_pkg = topology_physical_package_id(event_cpu); 3926 local_pkg = topology_physical_package_id(local_cpu); 3927 3928 if (event_pkg == local_pkg) 3929 return local_cpu; 3930 } 3931 3932 return event_cpu; 3933 } 3934 3935 /* 3936 * Cross CPU call to read the hardware event 3937 */ 3938 static void __perf_event_read(void *info) 3939 { 3940 struct perf_read_data *data = info; 3941 struct perf_event *sub, *event = data->event; 3942 struct perf_event_context *ctx = event->ctx; 3943 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3944 struct pmu *pmu = event->pmu; 3945 3946 /* 3947 * If this is a task context, we need to check whether it is 3948 * the current task context of this cpu. If not it has been 3949 * scheduled out before the smp call arrived. In that case 3950 * event->count would have been updated to a recent sample 3951 * when the event was scheduled out. 3952 */ 3953 if (ctx->task && cpuctx->task_ctx != ctx) 3954 return; 3955 3956 raw_spin_lock(&ctx->lock); 3957 if (ctx->is_active & EVENT_TIME) { 3958 update_context_time(ctx); 3959 update_cgrp_time_from_event(event); 3960 } 3961 3962 perf_event_update_time(event); 3963 if (data->group) 3964 perf_event_update_sibling_time(event); 3965 3966 if (event->state != PERF_EVENT_STATE_ACTIVE) 3967 goto unlock; 3968 3969 if (!data->group) { 3970 pmu->read(event); 3971 data->ret = 0; 3972 goto unlock; 3973 } 3974 3975 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3976 3977 pmu->read(event); 3978 3979 for_each_sibling_event(sub, event) { 3980 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3981 /* 3982 * Use sibling's PMU rather than @event's since 3983 * sibling could be on different (eg: software) PMU. 3984 */ 3985 sub->pmu->read(sub); 3986 } 3987 } 3988 3989 data->ret = pmu->commit_txn(pmu); 3990 3991 unlock: 3992 raw_spin_unlock(&ctx->lock); 3993 } 3994 3995 static inline u64 perf_event_count(struct perf_event *event) 3996 { 3997 return local64_read(&event->count) + atomic64_read(&event->child_count); 3998 } 3999 4000 /* 4001 * NMI-safe method to read a local event, that is an event that 4002 * is: 4003 * - either for the current task, or for this CPU 4004 * - does not have inherit set, for inherited task events 4005 * will not be local and we cannot read them atomically 4006 * - must not have a pmu::count method 4007 */ 4008 int perf_event_read_local(struct perf_event *event, u64 *value, 4009 u64 *enabled, u64 *running) 4010 { 4011 unsigned long flags; 4012 int ret = 0; 4013 4014 /* 4015 * Disabling interrupts avoids all counter scheduling (context 4016 * switches, timer based rotation and IPIs). 4017 */ 4018 local_irq_save(flags); 4019 4020 /* 4021 * It must not be an event with inherit set, we cannot read 4022 * all child counters from atomic context. 4023 */ 4024 if (event->attr.inherit) { 4025 ret = -EOPNOTSUPP; 4026 goto out; 4027 } 4028 4029 /* If this is a per-task event, it must be for current */ 4030 if ((event->attach_state & PERF_ATTACH_TASK) && 4031 event->hw.target != current) { 4032 ret = -EINVAL; 4033 goto out; 4034 } 4035 4036 /* If this is a per-CPU event, it must be for this CPU */ 4037 if (!(event->attach_state & PERF_ATTACH_TASK) && 4038 event->cpu != smp_processor_id()) { 4039 ret = -EINVAL; 4040 goto out; 4041 } 4042 4043 /* If this is a pinned event it must be running on this CPU */ 4044 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4045 ret = -EBUSY; 4046 goto out; 4047 } 4048 4049 /* 4050 * If the event is currently on this CPU, its either a per-task event, 4051 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4052 * oncpu == -1). 4053 */ 4054 if (event->oncpu == smp_processor_id()) 4055 event->pmu->read(event); 4056 4057 *value = local64_read(&event->count); 4058 if (enabled || running) { 4059 u64 now = event->shadow_ctx_time + perf_clock(); 4060 u64 __enabled, __running; 4061 4062 __perf_update_times(event, now, &__enabled, &__running); 4063 if (enabled) 4064 *enabled = __enabled; 4065 if (running) 4066 *running = __running; 4067 } 4068 out: 4069 local_irq_restore(flags); 4070 4071 return ret; 4072 } 4073 4074 static int perf_event_read(struct perf_event *event, bool group) 4075 { 4076 enum perf_event_state state = READ_ONCE(event->state); 4077 int event_cpu, ret = 0; 4078 4079 /* 4080 * If event is enabled and currently active on a CPU, update the 4081 * value in the event structure: 4082 */ 4083 again: 4084 if (state == PERF_EVENT_STATE_ACTIVE) { 4085 struct perf_read_data data; 4086 4087 /* 4088 * Orders the ->state and ->oncpu loads such that if we see 4089 * ACTIVE we must also see the right ->oncpu. 4090 * 4091 * Matches the smp_wmb() from event_sched_in(). 4092 */ 4093 smp_rmb(); 4094 4095 event_cpu = READ_ONCE(event->oncpu); 4096 if ((unsigned)event_cpu >= nr_cpu_ids) 4097 return 0; 4098 4099 data = (struct perf_read_data){ 4100 .event = event, 4101 .group = group, 4102 .ret = 0, 4103 }; 4104 4105 preempt_disable(); 4106 event_cpu = __perf_event_read_cpu(event, event_cpu); 4107 4108 /* 4109 * Purposely ignore the smp_call_function_single() return 4110 * value. 4111 * 4112 * If event_cpu isn't a valid CPU it means the event got 4113 * scheduled out and that will have updated the event count. 4114 * 4115 * Therefore, either way, we'll have an up-to-date event count 4116 * after this. 4117 */ 4118 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4119 preempt_enable(); 4120 ret = data.ret; 4121 4122 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4123 struct perf_event_context *ctx = event->ctx; 4124 unsigned long flags; 4125 4126 raw_spin_lock_irqsave(&ctx->lock, flags); 4127 state = event->state; 4128 if (state != PERF_EVENT_STATE_INACTIVE) { 4129 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4130 goto again; 4131 } 4132 4133 /* 4134 * May read while context is not active (e.g., thread is 4135 * blocked), in that case we cannot update context time 4136 */ 4137 if (ctx->is_active & EVENT_TIME) { 4138 update_context_time(ctx); 4139 update_cgrp_time_from_event(event); 4140 } 4141 4142 perf_event_update_time(event); 4143 if (group) 4144 perf_event_update_sibling_time(event); 4145 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4146 } 4147 4148 return ret; 4149 } 4150 4151 /* 4152 * Initialize the perf_event context in a task_struct: 4153 */ 4154 static void __perf_event_init_context(struct perf_event_context *ctx) 4155 { 4156 raw_spin_lock_init(&ctx->lock); 4157 mutex_init(&ctx->mutex); 4158 INIT_LIST_HEAD(&ctx->active_ctx_list); 4159 perf_event_groups_init(&ctx->pinned_groups); 4160 perf_event_groups_init(&ctx->flexible_groups); 4161 INIT_LIST_HEAD(&ctx->event_list); 4162 INIT_LIST_HEAD(&ctx->pinned_active); 4163 INIT_LIST_HEAD(&ctx->flexible_active); 4164 refcount_set(&ctx->refcount, 1); 4165 } 4166 4167 static struct perf_event_context * 4168 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4169 { 4170 struct perf_event_context *ctx; 4171 4172 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4173 if (!ctx) 4174 return NULL; 4175 4176 __perf_event_init_context(ctx); 4177 if (task) { 4178 ctx->task = task; 4179 get_task_struct(task); 4180 } 4181 ctx->pmu = pmu; 4182 4183 return ctx; 4184 } 4185 4186 static struct task_struct * 4187 find_lively_task_by_vpid(pid_t vpid) 4188 { 4189 struct task_struct *task; 4190 4191 rcu_read_lock(); 4192 if (!vpid) 4193 task = current; 4194 else 4195 task = find_task_by_vpid(vpid); 4196 if (task) 4197 get_task_struct(task); 4198 rcu_read_unlock(); 4199 4200 if (!task) 4201 return ERR_PTR(-ESRCH); 4202 4203 return task; 4204 } 4205 4206 /* 4207 * Returns a matching context with refcount and pincount. 4208 */ 4209 static struct perf_event_context * 4210 find_get_context(struct pmu *pmu, struct task_struct *task, 4211 struct perf_event *event) 4212 { 4213 struct perf_event_context *ctx, *clone_ctx = NULL; 4214 struct perf_cpu_context *cpuctx; 4215 void *task_ctx_data = NULL; 4216 unsigned long flags; 4217 int ctxn, err; 4218 int cpu = event->cpu; 4219 4220 if (!task) { 4221 /* Must be root to operate on a CPU event: */ 4222 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4223 return ERR_PTR(-EACCES); 4224 4225 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4226 ctx = &cpuctx->ctx; 4227 get_ctx(ctx); 4228 ++ctx->pin_count; 4229 4230 return ctx; 4231 } 4232 4233 err = -EINVAL; 4234 ctxn = pmu->task_ctx_nr; 4235 if (ctxn < 0) 4236 goto errout; 4237 4238 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4239 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4240 if (!task_ctx_data) { 4241 err = -ENOMEM; 4242 goto errout; 4243 } 4244 } 4245 4246 retry: 4247 ctx = perf_lock_task_context(task, ctxn, &flags); 4248 if (ctx) { 4249 clone_ctx = unclone_ctx(ctx); 4250 ++ctx->pin_count; 4251 4252 if (task_ctx_data && !ctx->task_ctx_data) { 4253 ctx->task_ctx_data = task_ctx_data; 4254 task_ctx_data = NULL; 4255 } 4256 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4257 4258 if (clone_ctx) 4259 put_ctx(clone_ctx); 4260 } else { 4261 ctx = alloc_perf_context(pmu, task); 4262 err = -ENOMEM; 4263 if (!ctx) 4264 goto errout; 4265 4266 if (task_ctx_data) { 4267 ctx->task_ctx_data = task_ctx_data; 4268 task_ctx_data = NULL; 4269 } 4270 4271 err = 0; 4272 mutex_lock(&task->perf_event_mutex); 4273 /* 4274 * If it has already passed perf_event_exit_task(). 4275 * we must see PF_EXITING, it takes this mutex too. 4276 */ 4277 if (task->flags & PF_EXITING) 4278 err = -ESRCH; 4279 else if (task->perf_event_ctxp[ctxn]) 4280 err = -EAGAIN; 4281 else { 4282 get_ctx(ctx); 4283 ++ctx->pin_count; 4284 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4285 } 4286 mutex_unlock(&task->perf_event_mutex); 4287 4288 if (unlikely(err)) { 4289 put_ctx(ctx); 4290 4291 if (err == -EAGAIN) 4292 goto retry; 4293 goto errout; 4294 } 4295 } 4296 4297 kfree(task_ctx_data); 4298 return ctx; 4299 4300 errout: 4301 kfree(task_ctx_data); 4302 return ERR_PTR(err); 4303 } 4304 4305 static void perf_event_free_filter(struct perf_event *event); 4306 static void perf_event_free_bpf_prog(struct perf_event *event); 4307 4308 static void free_event_rcu(struct rcu_head *head) 4309 { 4310 struct perf_event *event; 4311 4312 event = container_of(head, struct perf_event, rcu_head); 4313 if (event->ns) 4314 put_pid_ns(event->ns); 4315 perf_event_free_filter(event); 4316 kfree(event); 4317 } 4318 4319 static void ring_buffer_attach(struct perf_event *event, 4320 struct ring_buffer *rb); 4321 4322 static void detach_sb_event(struct perf_event *event) 4323 { 4324 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4325 4326 raw_spin_lock(&pel->lock); 4327 list_del_rcu(&event->sb_list); 4328 raw_spin_unlock(&pel->lock); 4329 } 4330 4331 static bool is_sb_event(struct perf_event *event) 4332 { 4333 struct perf_event_attr *attr = &event->attr; 4334 4335 if (event->parent) 4336 return false; 4337 4338 if (event->attach_state & PERF_ATTACH_TASK) 4339 return false; 4340 4341 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4342 attr->comm || attr->comm_exec || 4343 attr->task || attr->ksymbol || 4344 attr->context_switch || 4345 attr->bpf_event) 4346 return true; 4347 return false; 4348 } 4349 4350 static void unaccount_pmu_sb_event(struct perf_event *event) 4351 { 4352 if (is_sb_event(event)) 4353 detach_sb_event(event); 4354 } 4355 4356 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4357 { 4358 if (event->parent) 4359 return; 4360 4361 if (is_cgroup_event(event)) 4362 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4363 } 4364 4365 #ifdef CONFIG_NO_HZ_FULL 4366 static DEFINE_SPINLOCK(nr_freq_lock); 4367 #endif 4368 4369 static void unaccount_freq_event_nohz(void) 4370 { 4371 #ifdef CONFIG_NO_HZ_FULL 4372 spin_lock(&nr_freq_lock); 4373 if (atomic_dec_and_test(&nr_freq_events)) 4374 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4375 spin_unlock(&nr_freq_lock); 4376 #endif 4377 } 4378 4379 static void unaccount_freq_event(void) 4380 { 4381 if (tick_nohz_full_enabled()) 4382 unaccount_freq_event_nohz(); 4383 else 4384 atomic_dec(&nr_freq_events); 4385 } 4386 4387 static void unaccount_event(struct perf_event *event) 4388 { 4389 bool dec = false; 4390 4391 if (event->parent) 4392 return; 4393 4394 if (event->attach_state & PERF_ATTACH_TASK) 4395 dec = true; 4396 if (event->attr.mmap || event->attr.mmap_data) 4397 atomic_dec(&nr_mmap_events); 4398 if (event->attr.comm) 4399 atomic_dec(&nr_comm_events); 4400 if (event->attr.namespaces) 4401 atomic_dec(&nr_namespaces_events); 4402 if (event->attr.task) 4403 atomic_dec(&nr_task_events); 4404 if (event->attr.freq) 4405 unaccount_freq_event(); 4406 if (event->attr.context_switch) { 4407 dec = true; 4408 atomic_dec(&nr_switch_events); 4409 } 4410 if (is_cgroup_event(event)) 4411 dec = true; 4412 if (has_branch_stack(event)) 4413 dec = true; 4414 if (event->attr.ksymbol) 4415 atomic_dec(&nr_ksymbol_events); 4416 if (event->attr.bpf_event) 4417 atomic_dec(&nr_bpf_events); 4418 4419 if (dec) { 4420 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4421 schedule_delayed_work(&perf_sched_work, HZ); 4422 } 4423 4424 unaccount_event_cpu(event, event->cpu); 4425 4426 unaccount_pmu_sb_event(event); 4427 } 4428 4429 static void perf_sched_delayed(struct work_struct *work) 4430 { 4431 mutex_lock(&perf_sched_mutex); 4432 if (atomic_dec_and_test(&perf_sched_count)) 4433 static_branch_disable(&perf_sched_events); 4434 mutex_unlock(&perf_sched_mutex); 4435 } 4436 4437 /* 4438 * The following implement mutual exclusion of events on "exclusive" pmus 4439 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4440 * at a time, so we disallow creating events that might conflict, namely: 4441 * 4442 * 1) cpu-wide events in the presence of per-task events, 4443 * 2) per-task events in the presence of cpu-wide events, 4444 * 3) two matching events on the same context. 4445 * 4446 * The former two cases are handled in the allocation path (perf_event_alloc(), 4447 * _free_event()), the latter -- before the first perf_install_in_context(). 4448 */ 4449 static int exclusive_event_init(struct perf_event *event) 4450 { 4451 struct pmu *pmu = event->pmu; 4452 4453 if (!is_exclusive_pmu(pmu)) 4454 return 0; 4455 4456 /* 4457 * Prevent co-existence of per-task and cpu-wide events on the 4458 * same exclusive pmu. 4459 * 4460 * Negative pmu::exclusive_cnt means there are cpu-wide 4461 * events on this "exclusive" pmu, positive means there are 4462 * per-task events. 4463 * 4464 * Since this is called in perf_event_alloc() path, event::ctx 4465 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4466 * to mean "per-task event", because unlike other attach states it 4467 * never gets cleared. 4468 */ 4469 if (event->attach_state & PERF_ATTACH_TASK) { 4470 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4471 return -EBUSY; 4472 } else { 4473 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4474 return -EBUSY; 4475 } 4476 4477 return 0; 4478 } 4479 4480 static void exclusive_event_destroy(struct perf_event *event) 4481 { 4482 struct pmu *pmu = event->pmu; 4483 4484 if (!is_exclusive_pmu(pmu)) 4485 return; 4486 4487 /* see comment in exclusive_event_init() */ 4488 if (event->attach_state & PERF_ATTACH_TASK) 4489 atomic_dec(&pmu->exclusive_cnt); 4490 else 4491 atomic_inc(&pmu->exclusive_cnt); 4492 } 4493 4494 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4495 { 4496 if ((e1->pmu == e2->pmu) && 4497 (e1->cpu == e2->cpu || 4498 e1->cpu == -1 || 4499 e2->cpu == -1)) 4500 return true; 4501 return false; 4502 } 4503 4504 static bool exclusive_event_installable(struct perf_event *event, 4505 struct perf_event_context *ctx) 4506 { 4507 struct perf_event *iter_event; 4508 struct pmu *pmu = event->pmu; 4509 4510 lockdep_assert_held(&ctx->mutex); 4511 4512 if (!is_exclusive_pmu(pmu)) 4513 return true; 4514 4515 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4516 if (exclusive_event_match(iter_event, event)) 4517 return false; 4518 } 4519 4520 return true; 4521 } 4522 4523 static void perf_addr_filters_splice(struct perf_event *event, 4524 struct list_head *head); 4525 4526 static void _free_event(struct perf_event *event) 4527 { 4528 irq_work_sync(&event->pending); 4529 4530 unaccount_event(event); 4531 4532 if (event->rb) { 4533 /* 4534 * Can happen when we close an event with re-directed output. 4535 * 4536 * Since we have a 0 refcount, perf_mmap_close() will skip 4537 * over us; possibly making our ring_buffer_put() the last. 4538 */ 4539 mutex_lock(&event->mmap_mutex); 4540 ring_buffer_attach(event, NULL); 4541 mutex_unlock(&event->mmap_mutex); 4542 } 4543 4544 if (is_cgroup_event(event)) 4545 perf_detach_cgroup(event); 4546 4547 if (!event->parent) { 4548 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4549 put_callchain_buffers(); 4550 } 4551 4552 perf_event_free_bpf_prog(event); 4553 perf_addr_filters_splice(event, NULL); 4554 kfree(event->addr_filter_ranges); 4555 4556 if (event->destroy) 4557 event->destroy(event); 4558 4559 /* 4560 * Must be after ->destroy(), due to uprobe_perf_close() using 4561 * hw.target. 4562 */ 4563 if (event->hw.target) 4564 put_task_struct(event->hw.target); 4565 4566 /* 4567 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4568 * all task references must be cleaned up. 4569 */ 4570 if (event->ctx) 4571 put_ctx(event->ctx); 4572 4573 exclusive_event_destroy(event); 4574 module_put(event->pmu->module); 4575 4576 call_rcu(&event->rcu_head, free_event_rcu); 4577 } 4578 4579 /* 4580 * Used to free events which have a known refcount of 1, such as in error paths 4581 * where the event isn't exposed yet and inherited events. 4582 */ 4583 static void free_event(struct perf_event *event) 4584 { 4585 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4586 "unexpected event refcount: %ld; ptr=%p\n", 4587 atomic_long_read(&event->refcount), event)) { 4588 /* leak to avoid use-after-free */ 4589 return; 4590 } 4591 4592 _free_event(event); 4593 } 4594 4595 /* 4596 * Remove user event from the owner task. 4597 */ 4598 static void perf_remove_from_owner(struct perf_event *event) 4599 { 4600 struct task_struct *owner; 4601 4602 rcu_read_lock(); 4603 /* 4604 * Matches the smp_store_release() in perf_event_exit_task(). If we 4605 * observe !owner it means the list deletion is complete and we can 4606 * indeed free this event, otherwise we need to serialize on 4607 * owner->perf_event_mutex. 4608 */ 4609 owner = READ_ONCE(event->owner); 4610 if (owner) { 4611 /* 4612 * Since delayed_put_task_struct() also drops the last 4613 * task reference we can safely take a new reference 4614 * while holding the rcu_read_lock(). 4615 */ 4616 get_task_struct(owner); 4617 } 4618 rcu_read_unlock(); 4619 4620 if (owner) { 4621 /* 4622 * If we're here through perf_event_exit_task() we're already 4623 * holding ctx->mutex which would be an inversion wrt. the 4624 * normal lock order. 4625 * 4626 * However we can safely take this lock because its the child 4627 * ctx->mutex. 4628 */ 4629 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4630 4631 /* 4632 * We have to re-check the event->owner field, if it is cleared 4633 * we raced with perf_event_exit_task(), acquiring the mutex 4634 * ensured they're done, and we can proceed with freeing the 4635 * event. 4636 */ 4637 if (event->owner) { 4638 list_del_init(&event->owner_entry); 4639 smp_store_release(&event->owner, NULL); 4640 } 4641 mutex_unlock(&owner->perf_event_mutex); 4642 put_task_struct(owner); 4643 } 4644 } 4645 4646 static void put_event(struct perf_event *event) 4647 { 4648 if (!atomic_long_dec_and_test(&event->refcount)) 4649 return; 4650 4651 _free_event(event); 4652 } 4653 4654 /* 4655 * Kill an event dead; while event:refcount will preserve the event 4656 * object, it will not preserve its functionality. Once the last 'user' 4657 * gives up the object, we'll destroy the thing. 4658 */ 4659 int perf_event_release_kernel(struct perf_event *event) 4660 { 4661 struct perf_event_context *ctx = event->ctx; 4662 struct perf_event *child, *tmp; 4663 LIST_HEAD(free_list); 4664 4665 /* 4666 * If we got here through err_file: fput(event_file); we will not have 4667 * attached to a context yet. 4668 */ 4669 if (!ctx) { 4670 WARN_ON_ONCE(event->attach_state & 4671 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4672 goto no_ctx; 4673 } 4674 4675 if (!is_kernel_event(event)) 4676 perf_remove_from_owner(event); 4677 4678 ctx = perf_event_ctx_lock(event); 4679 WARN_ON_ONCE(ctx->parent_ctx); 4680 perf_remove_from_context(event, DETACH_GROUP); 4681 4682 raw_spin_lock_irq(&ctx->lock); 4683 /* 4684 * Mark this event as STATE_DEAD, there is no external reference to it 4685 * anymore. 4686 * 4687 * Anybody acquiring event->child_mutex after the below loop _must_ 4688 * also see this, most importantly inherit_event() which will avoid 4689 * placing more children on the list. 4690 * 4691 * Thus this guarantees that we will in fact observe and kill _ALL_ 4692 * child events. 4693 */ 4694 event->state = PERF_EVENT_STATE_DEAD; 4695 raw_spin_unlock_irq(&ctx->lock); 4696 4697 perf_event_ctx_unlock(event, ctx); 4698 4699 again: 4700 mutex_lock(&event->child_mutex); 4701 list_for_each_entry(child, &event->child_list, child_list) { 4702 4703 /* 4704 * Cannot change, child events are not migrated, see the 4705 * comment with perf_event_ctx_lock_nested(). 4706 */ 4707 ctx = READ_ONCE(child->ctx); 4708 /* 4709 * Since child_mutex nests inside ctx::mutex, we must jump 4710 * through hoops. We start by grabbing a reference on the ctx. 4711 * 4712 * Since the event cannot get freed while we hold the 4713 * child_mutex, the context must also exist and have a !0 4714 * reference count. 4715 */ 4716 get_ctx(ctx); 4717 4718 /* 4719 * Now that we have a ctx ref, we can drop child_mutex, and 4720 * acquire ctx::mutex without fear of it going away. Then we 4721 * can re-acquire child_mutex. 4722 */ 4723 mutex_unlock(&event->child_mutex); 4724 mutex_lock(&ctx->mutex); 4725 mutex_lock(&event->child_mutex); 4726 4727 /* 4728 * Now that we hold ctx::mutex and child_mutex, revalidate our 4729 * state, if child is still the first entry, it didn't get freed 4730 * and we can continue doing so. 4731 */ 4732 tmp = list_first_entry_or_null(&event->child_list, 4733 struct perf_event, child_list); 4734 if (tmp == child) { 4735 perf_remove_from_context(child, DETACH_GROUP); 4736 list_move(&child->child_list, &free_list); 4737 /* 4738 * This matches the refcount bump in inherit_event(); 4739 * this can't be the last reference. 4740 */ 4741 put_event(event); 4742 } 4743 4744 mutex_unlock(&event->child_mutex); 4745 mutex_unlock(&ctx->mutex); 4746 put_ctx(ctx); 4747 goto again; 4748 } 4749 mutex_unlock(&event->child_mutex); 4750 4751 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4752 void *var = &child->ctx->refcount; 4753 4754 list_del(&child->child_list); 4755 free_event(child); 4756 4757 /* 4758 * Wake any perf_event_free_task() waiting for this event to be 4759 * freed. 4760 */ 4761 smp_mb(); /* pairs with wait_var_event() */ 4762 wake_up_var(var); 4763 } 4764 4765 no_ctx: 4766 put_event(event); /* Must be the 'last' reference */ 4767 return 0; 4768 } 4769 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4770 4771 /* 4772 * Called when the last reference to the file is gone. 4773 */ 4774 static int perf_release(struct inode *inode, struct file *file) 4775 { 4776 perf_event_release_kernel(file->private_data); 4777 return 0; 4778 } 4779 4780 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4781 { 4782 struct perf_event *child; 4783 u64 total = 0; 4784 4785 *enabled = 0; 4786 *running = 0; 4787 4788 mutex_lock(&event->child_mutex); 4789 4790 (void)perf_event_read(event, false); 4791 total += perf_event_count(event); 4792 4793 *enabled += event->total_time_enabled + 4794 atomic64_read(&event->child_total_time_enabled); 4795 *running += event->total_time_running + 4796 atomic64_read(&event->child_total_time_running); 4797 4798 list_for_each_entry(child, &event->child_list, child_list) { 4799 (void)perf_event_read(child, false); 4800 total += perf_event_count(child); 4801 *enabled += child->total_time_enabled; 4802 *running += child->total_time_running; 4803 } 4804 mutex_unlock(&event->child_mutex); 4805 4806 return total; 4807 } 4808 4809 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4810 { 4811 struct perf_event_context *ctx; 4812 u64 count; 4813 4814 ctx = perf_event_ctx_lock(event); 4815 count = __perf_event_read_value(event, enabled, running); 4816 perf_event_ctx_unlock(event, ctx); 4817 4818 return count; 4819 } 4820 EXPORT_SYMBOL_GPL(perf_event_read_value); 4821 4822 static int __perf_read_group_add(struct perf_event *leader, 4823 u64 read_format, u64 *values) 4824 { 4825 struct perf_event_context *ctx = leader->ctx; 4826 struct perf_event *sub; 4827 unsigned long flags; 4828 int n = 1; /* skip @nr */ 4829 int ret; 4830 4831 ret = perf_event_read(leader, true); 4832 if (ret) 4833 return ret; 4834 4835 raw_spin_lock_irqsave(&ctx->lock, flags); 4836 4837 /* 4838 * Since we co-schedule groups, {enabled,running} times of siblings 4839 * will be identical to those of the leader, so we only publish one 4840 * set. 4841 */ 4842 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4843 values[n++] += leader->total_time_enabled + 4844 atomic64_read(&leader->child_total_time_enabled); 4845 } 4846 4847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4848 values[n++] += leader->total_time_running + 4849 atomic64_read(&leader->child_total_time_running); 4850 } 4851 4852 /* 4853 * Write {count,id} tuples for every sibling. 4854 */ 4855 values[n++] += perf_event_count(leader); 4856 if (read_format & PERF_FORMAT_ID) 4857 values[n++] = primary_event_id(leader); 4858 4859 for_each_sibling_event(sub, leader) { 4860 values[n++] += perf_event_count(sub); 4861 if (read_format & PERF_FORMAT_ID) 4862 values[n++] = primary_event_id(sub); 4863 } 4864 4865 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4866 return 0; 4867 } 4868 4869 static int perf_read_group(struct perf_event *event, 4870 u64 read_format, char __user *buf) 4871 { 4872 struct perf_event *leader = event->group_leader, *child; 4873 struct perf_event_context *ctx = leader->ctx; 4874 int ret; 4875 u64 *values; 4876 4877 lockdep_assert_held(&ctx->mutex); 4878 4879 values = kzalloc(event->read_size, GFP_KERNEL); 4880 if (!values) 4881 return -ENOMEM; 4882 4883 values[0] = 1 + leader->nr_siblings; 4884 4885 /* 4886 * By locking the child_mutex of the leader we effectively 4887 * lock the child list of all siblings.. XXX explain how. 4888 */ 4889 mutex_lock(&leader->child_mutex); 4890 4891 ret = __perf_read_group_add(leader, read_format, values); 4892 if (ret) 4893 goto unlock; 4894 4895 list_for_each_entry(child, &leader->child_list, child_list) { 4896 ret = __perf_read_group_add(child, read_format, values); 4897 if (ret) 4898 goto unlock; 4899 } 4900 4901 mutex_unlock(&leader->child_mutex); 4902 4903 ret = event->read_size; 4904 if (copy_to_user(buf, values, event->read_size)) 4905 ret = -EFAULT; 4906 goto out; 4907 4908 unlock: 4909 mutex_unlock(&leader->child_mutex); 4910 out: 4911 kfree(values); 4912 return ret; 4913 } 4914 4915 static int perf_read_one(struct perf_event *event, 4916 u64 read_format, char __user *buf) 4917 { 4918 u64 enabled, running; 4919 u64 values[4]; 4920 int n = 0; 4921 4922 values[n++] = __perf_event_read_value(event, &enabled, &running); 4923 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4924 values[n++] = enabled; 4925 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4926 values[n++] = running; 4927 if (read_format & PERF_FORMAT_ID) 4928 values[n++] = primary_event_id(event); 4929 4930 if (copy_to_user(buf, values, n * sizeof(u64))) 4931 return -EFAULT; 4932 4933 return n * sizeof(u64); 4934 } 4935 4936 static bool is_event_hup(struct perf_event *event) 4937 { 4938 bool no_children; 4939 4940 if (event->state > PERF_EVENT_STATE_EXIT) 4941 return false; 4942 4943 mutex_lock(&event->child_mutex); 4944 no_children = list_empty(&event->child_list); 4945 mutex_unlock(&event->child_mutex); 4946 return no_children; 4947 } 4948 4949 /* 4950 * Read the performance event - simple non blocking version for now 4951 */ 4952 static ssize_t 4953 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4954 { 4955 u64 read_format = event->attr.read_format; 4956 int ret; 4957 4958 /* 4959 * Return end-of-file for a read on an event that is in 4960 * error state (i.e. because it was pinned but it couldn't be 4961 * scheduled on to the CPU at some point). 4962 */ 4963 if (event->state == PERF_EVENT_STATE_ERROR) 4964 return 0; 4965 4966 if (count < event->read_size) 4967 return -ENOSPC; 4968 4969 WARN_ON_ONCE(event->ctx->parent_ctx); 4970 if (read_format & PERF_FORMAT_GROUP) 4971 ret = perf_read_group(event, read_format, buf); 4972 else 4973 ret = perf_read_one(event, read_format, buf); 4974 4975 return ret; 4976 } 4977 4978 static ssize_t 4979 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4980 { 4981 struct perf_event *event = file->private_data; 4982 struct perf_event_context *ctx; 4983 int ret; 4984 4985 ctx = perf_event_ctx_lock(event); 4986 ret = __perf_read(event, buf, count); 4987 perf_event_ctx_unlock(event, ctx); 4988 4989 return ret; 4990 } 4991 4992 static __poll_t perf_poll(struct file *file, poll_table *wait) 4993 { 4994 struct perf_event *event = file->private_data; 4995 struct ring_buffer *rb; 4996 __poll_t events = EPOLLHUP; 4997 4998 poll_wait(file, &event->waitq, wait); 4999 5000 if (is_event_hup(event)) 5001 return events; 5002 5003 /* 5004 * Pin the event->rb by taking event->mmap_mutex; otherwise 5005 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5006 */ 5007 mutex_lock(&event->mmap_mutex); 5008 rb = event->rb; 5009 if (rb) 5010 events = atomic_xchg(&rb->poll, 0); 5011 mutex_unlock(&event->mmap_mutex); 5012 return events; 5013 } 5014 5015 static void _perf_event_reset(struct perf_event *event) 5016 { 5017 (void)perf_event_read(event, false); 5018 local64_set(&event->count, 0); 5019 perf_event_update_userpage(event); 5020 } 5021 5022 /* 5023 * Holding the top-level event's child_mutex means that any 5024 * descendant process that has inherited this event will block 5025 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5026 * task existence requirements of perf_event_enable/disable. 5027 */ 5028 static void perf_event_for_each_child(struct perf_event *event, 5029 void (*func)(struct perf_event *)) 5030 { 5031 struct perf_event *child; 5032 5033 WARN_ON_ONCE(event->ctx->parent_ctx); 5034 5035 mutex_lock(&event->child_mutex); 5036 func(event); 5037 list_for_each_entry(child, &event->child_list, child_list) 5038 func(child); 5039 mutex_unlock(&event->child_mutex); 5040 } 5041 5042 static void perf_event_for_each(struct perf_event *event, 5043 void (*func)(struct perf_event *)) 5044 { 5045 struct perf_event_context *ctx = event->ctx; 5046 struct perf_event *sibling; 5047 5048 lockdep_assert_held(&ctx->mutex); 5049 5050 event = event->group_leader; 5051 5052 perf_event_for_each_child(event, func); 5053 for_each_sibling_event(sibling, event) 5054 perf_event_for_each_child(sibling, func); 5055 } 5056 5057 static void __perf_event_period(struct perf_event *event, 5058 struct perf_cpu_context *cpuctx, 5059 struct perf_event_context *ctx, 5060 void *info) 5061 { 5062 u64 value = *((u64 *)info); 5063 bool active; 5064 5065 if (event->attr.freq) { 5066 event->attr.sample_freq = value; 5067 } else { 5068 event->attr.sample_period = value; 5069 event->hw.sample_period = value; 5070 } 5071 5072 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5073 if (active) { 5074 perf_pmu_disable(ctx->pmu); 5075 /* 5076 * We could be throttled; unthrottle now to avoid the tick 5077 * trying to unthrottle while we already re-started the event. 5078 */ 5079 if (event->hw.interrupts == MAX_INTERRUPTS) { 5080 event->hw.interrupts = 0; 5081 perf_log_throttle(event, 1); 5082 } 5083 event->pmu->stop(event, PERF_EF_UPDATE); 5084 } 5085 5086 local64_set(&event->hw.period_left, 0); 5087 5088 if (active) { 5089 event->pmu->start(event, PERF_EF_RELOAD); 5090 perf_pmu_enable(ctx->pmu); 5091 } 5092 } 5093 5094 static int perf_event_check_period(struct perf_event *event, u64 value) 5095 { 5096 return event->pmu->check_period(event, value); 5097 } 5098 5099 static int perf_event_period(struct perf_event *event, u64 __user *arg) 5100 { 5101 u64 value; 5102 5103 if (!is_sampling_event(event)) 5104 return -EINVAL; 5105 5106 if (copy_from_user(&value, arg, sizeof(value))) 5107 return -EFAULT; 5108 5109 if (!value) 5110 return -EINVAL; 5111 5112 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5113 return -EINVAL; 5114 5115 if (perf_event_check_period(event, value)) 5116 return -EINVAL; 5117 5118 if (!event->attr.freq && (value & (1ULL << 63))) 5119 return -EINVAL; 5120 5121 event_function_call(event, __perf_event_period, &value); 5122 5123 return 0; 5124 } 5125 5126 static const struct file_operations perf_fops; 5127 5128 static inline int perf_fget_light(int fd, struct fd *p) 5129 { 5130 struct fd f = fdget(fd); 5131 if (!f.file) 5132 return -EBADF; 5133 5134 if (f.file->f_op != &perf_fops) { 5135 fdput(f); 5136 return -EBADF; 5137 } 5138 *p = f; 5139 return 0; 5140 } 5141 5142 static int perf_event_set_output(struct perf_event *event, 5143 struct perf_event *output_event); 5144 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5145 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5146 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5147 struct perf_event_attr *attr); 5148 5149 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5150 { 5151 void (*func)(struct perf_event *); 5152 u32 flags = arg; 5153 5154 switch (cmd) { 5155 case PERF_EVENT_IOC_ENABLE: 5156 func = _perf_event_enable; 5157 break; 5158 case PERF_EVENT_IOC_DISABLE: 5159 func = _perf_event_disable; 5160 break; 5161 case PERF_EVENT_IOC_RESET: 5162 func = _perf_event_reset; 5163 break; 5164 5165 case PERF_EVENT_IOC_REFRESH: 5166 return _perf_event_refresh(event, arg); 5167 5168 case PERF_EVENT_IOC_PERIOD: 5169 return perf_event_period(event, (u64 __user *)arg); 5170 5171 case PERF_EVENT_IOC_ID: 5172 { 5173 u64 id = primary_event_id(event); 5174 5175 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5176 return -EFAULT; 5177 return 0; 5178 } 5179 5180 case PERF_EVENT_IOC_SET_OUTPUT: 5181 { 5182 int ret; 5183 if (arg != -1) { 5184 struct perf_event *output_event; 5185 struct fd output; 5186 ret = perf_fget_light(arg, &output); 5187 if (ret) 5188 return ret; 5189 output_event = output.file->private_data; 5190 ret = perf_event_set_output(event, output_event); 5191 fdput(output); 5192 } else { 5193 ret = perf_event_set_output(event, NULL); 5194 } 5195 return ret; 5196 } 5197 5198 case PERF_EVENT_IOC_SET_FILTER: 5199 return perf_event_set_filter(event, (void __user *)arg); 5200 5201 case PERF_EVENT_IOC_SET_BPF: 5202 return perf_event_set_bpf_prog(event, arg); 5203 5204 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5205 struct ring_buffer *rb; 5206 5207 rcu_read_lock(); 5208 rb = rcu_dereference(event->rb); 5209 if (!rb || !rb->nr_pages) { 5210 rcu_read_unlock(); 5211 return -EINVAL; 5212 } 5213 rb_toggle_paused(rb, !!arg); 5214 rcu_read_unlock(); 5215 return 0; 5216 } 5217 5218 case PERF_EVENT_IOC_QUERY_BPF: 5219 return perf_event_query_prog_array(event, (void __user *)arg); 5220 5221 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5222 struct perf_event_attr new_attr; 5223 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5224 &new_attr); 5225 5226 if (err) 5227 return err; 5228 5229 return perf_event_modify_attr(event, &new_attr); 5230 } 5231 default: 5232 return -ENOTTY; 5233 } 5234 5235 if (flags & PERF_IOC_FLAG_GROUP) 5236 perf_event_for_each(event, func); 5237 else 5238 perf_event_for_each_child(event, func); 5239 5240 return 0; 5241 } 5242 5243 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5244 { 5245 struct perf_event *event = file->private_data; 5246 struct perf_event_context *ctx; 5247 long ret; 5248 5249 ctx = perf_event_ctx_lock(event); 5250 ret = _perf_ioctl(event, cmd, arg); 5251 perf_event_ctx_unlock(event, ctx); 5252 5253 return ret; 5254 } 5255 5256 #ifdef CONFIG_COMPAT 5257 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5258 unsigned long arg) 5259 { 5260 switch (_IOC_NR(cmd)) { 5261 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5262 case _IOC_NR(PERF_EVENT_IOC_ID): 5263 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5264 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5265 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5266 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5267 cmd &= ~IOCSIZE_MASK; 5268 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5269 } 5270 break; 5271 } 5272 return perf_ioctl(file, cmd, arg); 5273 } 5274 #else 5275 # define perf_compat_ioctl NULL 5276 #endif 5277 5278 int perf_event_task_enable(void) 5279 { 5280 struct perf_event_context *ctx; 5281 struct perf_event *event; 5282 5283 mutex_lock(¤t->perf_event_mutex); 5284 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5285 ctx = perf_event_ctx_lock(event); 5286 perf_event_for_each_child(event, _perf_event_enable); 5287 perf_event_ctx_unlock(event, ctx); 5288 } 5289 mutex_unlock(¤t->perf_event_mutex); 5290 5291 return 0; 5292 } 5293 5294 int perf_event_task_disable(void) 5295 { 5296 struct perf_event_context *ctx; 5297 struct perf_event *event; 5298 5299 mutex_lock(¤t->perf_event_mutex); 5300 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5301 ctx = perf_event_ctx_lock(event); 5302 perf_event_for_each_child(event, _perf_event_disable); 5303 perf_event_ctx_unlock(event, ctx); 5304 } 5305 mutex_unlock(¤t->perf_event_mutex); 5306 5307 return 0; 5308 } 5309 5310 static int perf_event_index(struct perf_event *event) 5311 { 5312 if (event->hw.state & PERF_HES_STOPPED) 5313 return 0; 5314 5315 if (event->state != PERF_EVENT_STATE_ACTIVE) 5316 return 0; 5317 5318 return event->pmu->event_idx(event); 5319 } 5320 5321 static void calc_timer_values(struct perf_event *event, 5322 u64 *now, 5323 u64 *enabled, 5324 u64 *running) 5325 { 5326 u64 ctx_time; 5327 5328 *now = perf_clock(); 5329 ctx_time = event->shadow_ctx_time + *now; 5330 __perf_update_times(event, ctx_time, enabled, running); 5331 } 5332 5333 static void perf_event_init_userpage(struct perf_event *event) 5334 { 5335 struct perf_event_mmap_page *userpg; 5336 struct ring_buffer *rb; 5337 5338 rcu_read_lock(); 5339 rb = rcu_dereference(event->rb); 5340 if (!rb) 5341 goto unlock; 5342 5343 userpg = rb->user_page; 5344 5345 /* Allow new userspace to detect that bit 0 is deprecated */ 5346 userpg->cap_bit0_is_deprecated = 1; 5347 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5348 userpg->data_offset = PAGE_SIZE; 5349 userpg->data_size = perf_data_size(rb); 5350 5351 unlock: 5352 rcu_read_unlock(); 5353 } 5354 5355 void __weak arch_perf_update_userpage( 5356 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5357 { 5358 } 5359 5360 /* 5361 * Callers need to ensure there can be no nesting of this function, otherwise 5362 * the seqlock logic goes bad. We can not serialize this because the arch 5363 * code calls this from NMI context. 5364 */ 5365 void perf_event_update_userpage(struct perf_event *event) 5366 { 5367 struct perf_event_mmap_page *userpg; 5368 struct ring_buffer *rb; 5369 u64 enabled, running, now; 5370 5371 rcu_read_lock(); 5372 rb = rcu_dereference(event->rb); 5373 if (!rb) 5374 goto unlock; 5375 5376 /* 5377 * compute total_time_enabled, total_time_running 5378 * based on snapshot values taken when the event 5379 * was last scheduled in. 5380 * 5381 * we cannot simply called update_context_time() 5382 * because of locking issue as we can be called in 5383 * NMI context 5384 */ 5385 calc_timer_values(event, &now, &enabled, &running); 5386 5387 userpg = rb->user_page; 5388 /* 5389 * Disable preemption to guarantee consistent time stamps are stored to 5390 * the user page. 5391 */ 5392 preempt_disable(); 5393 ++userpg->lock; 5394 barrier(); 5395 userpg->index = perf_event_index(event); 5396 userpg->offset = perf_event_count(event); 5397 if (userpg->index) 5398 userpg->offset -= local64_read(&event->hw.prev_count); 5399 5400 userpg->time_enabled = enabled + 5401 atomic64_read(&event->child_total_time_enabled); 5402 5403 userpg->time_running = running + 5404 atomic64_read(&event->child_total_time_running); 5405 5406 arch_perf_update_userpage(event, userpg, now); 5407 5408 barrier(); 5409 ++userpg->lock; 5410 preempt_enable(); 5411 unlock: 5412 rcu_read_unlock(); 5413 } 5414 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5415 5416 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5417 { 5418 struct perf_event *event = vmf->vma->vm_file->private_data; 5419 struct ring_buffer *rb; 5420 vm_fault_t ret = VM_FAULT_SIGBUS; 5421 5422 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5423 if (vmf->pgoff == 0) 5424 ret = 0; 5425 return ret; 5426 } 5427 5428 rcu_read_lock(); 5429 rb = rcu_dereference(event->rb); 5430 if (!rb) 5431 goto unlock; 5432 5433 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5434 goto unlock; 5435 5436 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5437 if (!vmf->page) 5438 goto unlock; 5439 5440 get_page(vmf->page); 5441 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5442 vmf->page->index = vmf->pgoff; 5443 5444 ret = 0; 5445 unlock: 5446 rcu_read_unlock(); 5447 5448 return ret; 5449 } 5450 5451 static void ring_buffer_attach(struct perf_event *event, 5452 struct ring_buffer *rb) 5453 { 5454 struct ring_buffer *old_rb = NULL; 5455 unsigned long flags; 5456 5457 if (event->rb) { 5458 /* 5459 * Should be impossible, we set this when removing 5460 * event->rb_entry and wait/clear when adding event->rb_entry. 5461 */ 5462 WARN_ON_ONCE(event->rcu_pending); 5463 5464 old_rb = event->rb; 5465 spin_lock_irqsave(&old_rb->event_lock, flags); 5466 list_del_rcu(&event->rb_entry); 5467 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5468 5469 event->rcu_batches = get_state_synchronize_rcu(); 5470 event->rcu_pending = 1; 5471 } 5472 5473 if (rb) { 5474 if (event->rcu_pending) { 5475 cond_synchronize_rcu(event->rcu_batches); 5476 event->rcu_pending = 0; 5477 } 5478 5479 spin_lock_irqsave(&rb->event_lock, flags); 5480 list_add_rcu(&event->rb_entry, &rb->event_list); 5481 spin_unlock_irqrestore(&rb->event_lock, flags); 5482 } 5483 5484 /* 5485 * Avoid racing with perf_mmap_close(AUX): stop the event 5486 * before swizzling the event::rb pointer; if it's getting 5487 * unmapped, its aux_mmap_count will be 0 and it won't 5488 * restart. See the comment in __perf_pmu_output_stop(). 5489 * 5490 * Data will inevitably be lost when set_output is done in 5491 * mid-air, but then again, whoever does it like this is 5492 * not in for the data anyway. 5493 */ 5494 if (has_aux(event)) 5495 perf_event_stop(event, 0); 5496 5497 rcu_assign_pointer(event->rb, rb); 5498 5499 if (old_rb) { 5500 ring_buffer_put(old_rb); 5501 /* 5502 * Since we detached before setting the new rb, so that we 5503 * could attach the new rb, we could have missed a wakeup. 5504 * Provide it now. 5505 */ 5506 wake_up_all(&event->waitq); 5507 } 5508 } 5509 5510 static void ring_buffer_wakeup(struct perf_event *event) 5511 { 5512 struct ring_buffer *rb; 5513 5514 rcu_read_lock(); 5515 rb = rcu_dereference(event->rb); 5516 if (rb) { 5517 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5518 wake_up_all(&event->waitq); 5519 } 5520 rcu_read_unlock(); 5521 } 5522 5523 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5524 { 5525 struct ring_buffer *rb; 5526 5527 rcu_read_lock(); 5528 rb = rcu_dereference(event->rb); 5529 if (rb) { 5530 if (!refcount_inc_not_zero(&rb->refcount)) 5531 rb = NULL; 5532 } 5533 rcu_read_unlock(); 5534 5535 return rb; 5536 } 5537 5538 void ring_buffer_put(struct ring_buffer *rb) 5539 { 5540 if (!refcount_dec_and_test(&rb->refcount)) 5541 return; 5542 5543 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5544 5545 call_rcu(&rb->rcu_head, rb_free_rcu); 5546 } 5547 5548 static void perf_mmap_open(struct vm_area_struct *vma) 5549 { 5550 struct perf_event *event = vma->vm_file->private_data; 5551 5552 atomic_inc(&event->mmap_count); 5553 atomic_inc(&event->rb->mmap_count); 5554 5555 if (vma->vm_pgoff) 5556 atomic_inc(&event->rb->aux_mmap_count); 5557 5558 if (event->pmu->event_mapped) 5559 event->pmu->event_mapped(event, vma->vm_mm); 5560 } 5561 5562 static void perf_pmu_output_stop(struct perf_event *event); 5563 5564 /* 5565 * A buffer can be mmap()ed multiple times; either directly through the same 5566 * event, or through other events by use of perf_event_set_output(). 5567 * 5568 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5569 * the buffer here, where we still have a VM context. This means we need 5570 * to detach all events redirecting to us. 5571 */ 5572 static void perf_mmap_close(struct vm_area_struct *vma) 5573 { 5574 struct perf_event *event = vma->vm_file->private_data; 5575 5576 struct ring_buffer *rb = ring_buffer_get(event); 5577 struct user_struct *mmap_user = rb->mmap_user; 5578 int mmap_locked = rb->mmap_locked; 5579 unsigned long size = perf_data_size(rb); 5580 5581 if (event->pmu->event_unmapped) 5582 event->pmu->event_unmapped(event, vma->vm_mm); 5583 5584 /* 5585 * rb->aux_mmap_count will always drop before rb->mmap_count and 5586 * event->mmap_count, so it is ok to use event->mmap_mutex to 5587 * serialize with perf_mmap here. 5588 */ 5589 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5590 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5591 /* 5592 * Stop all AUX events that are writing to this buffer, 5593 * so that we can free its AUX pages and corresponding PMU 5594 * data. Note that after rb::aux_mmap_count dropped to zero, 5595 * they won't start any more (see perf_aux_output_begin()). 5596 */ 5597 perf_pmu_output_stop(event); 5598 5599 /* now it's safe to free the pages */ 5600 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5601 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5602 5603 /* this has to be the last one */ 5604 rb_free_aux(rb); 5605 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5606 5607 mutex_unlock(&event->mmap_mutex); 5608 } 5609 5610 atomic_dec(&rb->mmap_count); 5611 5612 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5613 goto out_put; 5614 5615 ring_buffer_attach(event, NULL); 5616 mutex_unlock(&event->mmap_mutex); 5617 5618 /* If there's still other mmap()s of this buffer, we're done. */ 5619 if (atomic_read(&rb->mmap_count)) 5620 goto out_put; 5621 5622 /* 5623 * No other mmap()s, detach from all other events that might redirect 5624 * into the now unreachable buffer. Somewhat complicated by the 5625 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5626 */ 5627 again: 5628 rcu_read_lock(); 5629 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5630 if (!atomic_long_inc_not_zero(&event->refcount)) { 5631 /* 5632 * This event is en-route to free_event() which will 5633 * detach it and remove it from the list. 5634 */ 5635 continue; 5636 } 5637 rcu_read_unlock(); 5638 5639 mutex_lock(&event->mmap_mutex); 5640 /* 5641 * Check we didn't race with perf_event_set_output() which can 5642 * swizzle the rb from under us while we were waiting to 5643 * acquire mmap_mutex. 5644 * 5645 * If we find a different rb; ignore this event, a next 5646 * iteration will no longer find it on the list. We have to 5647 * still restart the iteration to make sure we're not now 5648 * iterating the wrong list. 5649 */ 5650 if (event->rb == rb) 5651 ring_buffer_attach(event, NULL); 5652 5653 mutex_unlock(&event->mmap_mutex); 5654 put_event(event); 5655 5656 /* 5657 * Restart the iteration; either we're on the wrong list or 5658 * destroyed its integrity by doing a deletion. 5659 */ 5660 goto again; 5661 } 5662 rcu_read_unlock(); 5663 5664 /* 5665 * It could be there's still a few 0-ref events on the list; they'll 5666 * get cleaned up by free_event() -- they'll also still have their 5667 * ref on the rb and will free it whenever they are done with it. 5668 * 5669 * Aside from that, this buffer is 'fully' detached and unmapped, 5670 * undo the VM accounting. 5671 */ 5672 5673 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5674 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5675 free_uid(mmap_user); 5676 5677 out_put: 5678 ring_buffer_put(rb); /* could be last */ 5679 } 5680 5681 static const struct vm_operations_struct perf_mmap_vmops = { 5682 .open = perf_mmap_open, 5683 .close = perf_mmap_close, /* non mergeable */ 5684 .fault = perf_mmap_fault, 5685 .page_mkwrite = perf_mmap_fault, 5686 }; 5687 5688 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5689 { 5690 struct perf_event *event = file->private_data; 5691 unsigned long user_locked, user_lock_limit; 5692 struct user_struct *user = current_user(); 5693 unsigned long locked, lock_limit; 5694 struct ring_buffer *rb = NULL; 5695 unsigned long vma_size; 5696 unsigned long nr_pages; 5697 long user_extra = 0, extra = 0; 5698 int ret = 0, flags = 0; 5699 5700 /* 5701 * Don't allow mmap() of inherited per-task counters. This would 5702 * create a performance issue due to all children writing to the 5703 * same rb. 5704 */ 5705 if (event->cpu == -1 && event->attr.inherit) 5706 return -EINVAL; 5707 5708 if (!(vma->vm_flags & VM_SHARED)) 5709 return -EINVAL; 5710 5711 vma_size = vma->vm_end - vma->vm_start; 5712 5713 if (vma->vm_pgoff == 0) { 5714 nr_pages = (vma_size / PAGE_SIZE) - 1; 5715 } else { 5716 /* 5717 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5718 * mapped, all subsequent mappings should have the same size 5719 * and offset. Must be above the normal perf buffer. 5720 */ 5721 u64 aux_offset, aux_size; 5722 5723 if (!event->rb) 5724 return -EINVAL; 5725 5726 nr_pages = vma_size / PAGE_SIZE; 5727 5728 mutex_lock(&event->mmap_mutex); 5729 ret = -EINVAL; 5730 5731 rb = event->rb; 5732 if (!rb) 5733 goto aux_unlock; 5734 5735 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5736 aux_size = READ_ONCE(rb->user_page->aux_size); 5737 5738 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5739 goto aux_unlock; 5740 5741 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5742 goto aux_unlock; 5743 5744 /* already mapped with a different offset */ 5745 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5746 goto aux_unlock; 5747 5748 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5749 goto aux_unlock; 5750 5751 /* already mapped with a different size */ 5752 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5753 goto aux_unlock; 5754 5755 if (!is_power_of_2(nr_pages)) 5756 goto aux_unlock; 5757 5758 if (!atomic_inc_not_zero(&rb->mmap_count)) 5759 goto aux_unlock; 5760 5761 if (rb_has_aux(rb)) { 5762 atomic_inc(&rb->aux_mmap_count); 5763 ret = 0; 5764 goto unlock; 5765 } 5766 5767 atomic_set(&rb->aux_mmap_count, 1); 5768 user_extra = nr_pages; 5769 5770 goto accounting; 5771 } 5772 5773 /* 5774 * If we have rb pages ensure they're a power-of-two number, so we 5775 * can do bitmasks instead of modulo. 5776 */ 5777 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5778 return -EINVAL; 5779 5780 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5781 return -EINVAL; 5782 5783 WARN_ON_ONCE(event->ctx->parent_ctx); 5784 again: 5785 mutex_lock(&event->mmap_mutex); 5786 if (event->rb) { 5787 if (event->rb->nr_pages != nr_pages) { 5788 ret = -EINVAL; 5789 goto unlock; 5790 } 5791 5792 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5793 /* 5794 * Raced against perf_mmap_close() through 5795 * perf_event_set_output(). Try again, hope for better 5796 * luck. 5797 */ 5798 mutex_unlock(&event->mmap_mutex); 5799 goto again; 5800 } 5801 5802 goto unlock; 5803 } 5804 5805 user_extra = nr_pages + 1; 5806 5807 accounting: 5808 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5809 5810 /* 5811 * Increase the limit linearly with more CPUs: 5812 */ 5813 user_lock_limit *= num_online_cpus(); 5814 5815 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5816 5817 if (user_locked > user_lock_limit) 5818 extra = user_locked - user_lock_limit; 5819 5820 lock_limit = rlimit(RLIMIT_MEMLOCK); 5821 lock_limit >>= PAGE_SHIFT; 5822 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5823 5824 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5825 !capable(CAP_IPC_LOCK)) { 5826 ret = -EPERM; 5827 goto unlock; 5828 } 5829 5830 WARN_ON(!rb && event->rb); 5831 5832 if (vma->vm_flags & VM_WRITE) 5833 flags |= RING_BUFFER_WRITABLE; 5834 5835 if (!rb) { 5836 rb = rb_alloc(nr_pages, 5837 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5838 event->cpu, flags); 5839 5840 if (!rb) { 5841 ret = -ENOMEM; 5842 goto unlock; 5843 } 5844 5845 atomic_set(&rb->mmap_count, 1); 5846 rb->mmap_user = get_current_user(); 5847 rb->mmap_locked = extra; 5848 5849 ring_buffer_attach(event, rb); 5850 5851 perf_event_init_userpage(event); 5852 perf_event_update_userpage(event); 5853 } else { 5854 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5855 event->attr.aux_watermark, flags); 5856 if (!ret) 5857 rb->aux_mmap_locked = extra; 5858 } 5859 5860 unlock: 5861 if (!ret) { 5862 atomic_long_add(user_extra, &user->locked_vm); 5863 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5864 5865 atomic_inc(&event->mmap_count); 5866 } else if (rb) { 5867 atomic_dec(&rb->mmap_count); 5868 } 5869 aux_unlock: 5870 mutex_unlock(&event->mmap_mutex); 5871 5872 /* 5873 * Since pinned accounting is per vm we cannot allow fork() to copy our 5874 * vma. 5875 */ 5876 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5877 vma->vm_ops = &perf_mmap_vmops; 5878 5879 if (event->pmu->event_mapped) 5880 event->pmu->event_mapped(event, vma->vm_mm); 5881 5882 return ret; 5883 } 5884 5885 static int perf_fasync(int fd, struct file *filp, int on) 5886 { 5887 struct inode *inode = file_inode(filp); 5888 struct perf_event *event = filp->private_data; 5889 int retval; 5890 5891 inode_lock(inode); 5892 retval = fasync_helper(fd, filp, on, &event->fasync); 5893 inode_unlock(inode); 5894 5895 if (retval < 0) 5896 return retval; 5897 5898 return 0; 5899 } 5900 5901 static const struct file_operations perf_fops = { 5902 .llseek = no_llseek, 5903 .release = perf_release, 5904 .read = perf_read, 5905 .poll = perf_poll, 5906 .unlocked_ioctl = perf_ioctl, 5907 .compat_ioctl = perf_compat_ioctl, 5908 .mmap = perf_mmap, 5909 .fasync = perf_fasync, 5910 }; 5911 5912 /* 5913 * Perf event wakeup 5914 * 5915 * If there's data, ensure we set the poll() state and publish everything 5916 * to user-space before waking everybody up. 5917 */ 5918 5919 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5920 { 5921 /* only the parent has fasync state */ 5922 if (event->parent) 5923 event = event->parent; 5924 return &event->fasync; 5925 } 5926 5927 void perf_event_wakeup(struct perf_event *event) 5928 { 5929 ring_buffer_wakeup(event); 5930 5931 if (event->pending_kill) { 5932 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5933 event->pending_kill = 0; 5934 } 5935 } 5936 5937 static void perf_pending_event_disable(struct perf_event *event) 5938 { 5939 int cpu = READ_ONCE(event->pending_disable); 5940 5941 if (cpu < 0) 5942 return; 5943 5944 if (cpu == smp_processor_id()) { 5945 WRITE_ONCE(event->pending_disable, -1); 5946 perf_event_disable_local(event); 5947 return; 5948 } 5949 5950 /* 5951 * CPU-A CPU-B 5952 * 5953 * perf_event_disable_inatomic() 5954 * @pending_disable = CPU-A; 5955 * irq_work_queue(); 5956 * 5957 * sched-out 5958 * @pending_disable = -1; 5959 * 5960 * sched-in 5961 * perf_event_disable_inatomic() 5962 * @pending_disable = CPU-B; 5963 * irq_work_queue(); // FAILS 5964 * 5965 * irq_work_run() 5966 * perf_pending_event() 5967 * 5968 * But the event runs on CPU-B and wants disabling there. 5969 */ 5970 irq_work_queue_on(&event->pending, cpu); 5971 } 5972 5973 static void perf_pending_event(struct irq_work *entry) 5974 { 5975 struct perf_event *event = container_of(entry, struct perf_event, pending); 5976 int rctx; 5977 5978 rctx = perf_swevent_get_recursion_context(); 5979 /* 5980 * If we 'fail' here, that's OK, it means recursion is already disabled 5981 * and we won't recurse 'further'. 5982 */ 5983 5984 perf_pending_event_disable(event); 5985 5986 if (event->pending_wakeup) { 5987 event->pending_wakeup = 0; 5988 perf_event_wakeup(event); 5989 } 5990 5991 if (rctx >= 0) 5992 perf_swevent_put_recursion_context(rctx); 5993 } 5994 5995 /* 5996 * We assume there is only KVM supporting the callbacks. 5997 * Later on, we might change it to a list if there is 5998 * another virtualization implementation supporting the callbacks. 5999 */ 6000 struct perf_guest_info_callbacks *perf_guest_cbs; 6001 6002 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6003 { 6004 perf_guest_cbs = cbs; 6005 return 0; 6006 } 6007 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6008 6009 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6010 { 6011 perf_guest_cbs = NULL; 6012 return 0; 6013 } 6014 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6015 6016 static void 6017 perf_output_sample_regs(struct perf_output_handle *handle, 6018 struct pt_regs *regs, u64 mask) 6019 { 6020 int bit; 6021 DECLARE_BITMAP(_mask, 64); 6022 6023 bitmap_from_u64(_mask, mask); 6024 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6025 u64 val; 6026 6027 val = perf_reg_value(regs, bit); 6028 perf_output_put(handle, val); 6029 } 6030 } 6031 6032 static void perf_sample_regs_user(struct perf_regs *regs_user, 6033 struct pt_regs *regs, 6034 struct pt_regs *regs_user_copy) 6035 { 6036 if (user_mode(regs)) { 6037 regs_user->abi = perf_reg_abi(current); 6038 regs_user->regs = regs; 6039 } else if (!(current->flags & PF_KTHREAD)) { 6040 perf_get_regs_user(regs_user, regs, regs_user_copy); 6041 } else { 6042 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6043 regs_user->regs = NULL; 6044 } 6045 } 6046 6047 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6048 struct pt_regs *regs) 6049 { 6050 regs_intr->regs = regs; 6051 regs_intr->abi = perf_reg_abi(current); 6052 } 6053 6054 6055 /* 6056 * Get remaining task size from user stack pointer. 6057 * 6058 * It'd be better to take stack vma map and limit this more 6059 * precisly, but there's no way to get it safely under interrupt, 6060 * so using TASK_SIZE as limit. 6061 */ 6062 static u64 perf_ustack_task_size(struct pt_regs *regs) 6063 { 6064 unsigned long addr = perf_user_stack_pointer(regs); 6065 6066 if (!addr || addr >= TASK_SIZE) 6067 return 0; 6068 6069 return TASK_SIZE - addr; 6070 } 6071 6072 static u16 6073 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6074 struct pt_regs *regs) 6075 { 6076 u64 task_size; 6077 6078 /* No regs, no stack pointer, no dump. */ 6079 if (!regs) 6080 return 0; 6081 6082 /* 6083 * Check if we fit in with the requested stack size into the: 6084 * - TASK_SIZE 6085 * If we don't, we limit the size to the TASK_SIZE. 6086 * 6087 * - remaining sample size 6088 * If we don't, we customize the stack size to 6089 * fit in to the remaining sample size. 6090 */ 6091 6092 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6093 stack_size = min(stack_size, (u16) task_size); 6094 6095 /* Current header size plus static size and dynamic size. */ 6096 header_size += 2 * sizeof(u64); 6097 6098 /* Do we fit in with the current stack dump size? */ 6099 if ((u16) (header_size + stack_size) < header_size) { 6100 /* 6101 * If we overflow the maximum size for the sample, 6102 * we customize the stack dump size to fit in. 6103 */ 6104 stack_size = USHRT_MAX - header_size - sizeof(u64); 6105 stack_size = round_up(stack_size, sizeof(u64)); 6106 } 6107 6108 return stack_size; 6109 } 6110 6111 static void 6112 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6113 struct pt_regs *regs) 6114 { 6115 /* Case of a kernel thread, nothing to dump */ 6116 if (!regs) { 6117 u64 size = 0; 6118 perf_output_put(handle, size); 6119 } else { 6120 unsigned long sp; 6121 unsigned int rem; 6122 u64 dyn_size; 6123 mm_segment_t fs; 6124 6125 /* 6126 * We dump: 6127 * static size 6128 * - the size requested by user or the best one we can fit 6129 * in to the sample max size 6130 * data 6131 * - user stack dump data 6132 * dynamic size 6133 * - the actual dumped size 6134 */ 6135 6136 /* Static size. */ 6137 perf_output_put(handle, dump_size); 6138 6139 /* Data. */ 6140 sp = perf_user_stack_pointer(regs); 6141 fs = get_fs(); 6142 set_fs(USER_DS); 6143 rem = __output_copy_user(handle, (void *) sp, dump_size); 6144 set_fs(fs); 6145 dyn_size = dump_size - rem; 6146 6147 perf_output_skip(handle, rem); 6148 6149 /* Dynamic size. */ 6150 perf_output_put(handle, dyn_size); 6151 } 6152 } 6153 6154 static void __perf_event_header__init_id(struct perf_event_header *header, 6155 struct perf_sample_data *data, 6156 struct perf_event *event) 6157 { 6158 u64 sample_type = event->attr.sample_type; 6159 6160 data->type = sample_type; 6161 header->size += event->id_header_size; 6162 6163 if (sample_type & PERF_SAMPLE_TID) { 6164 /* namespace issues */ 6165 data->tid_entry.pid = perf_event_pid(event, current); 6166 data->tid_entry.tid = perf_event_tid(event, current); 6167 } 6168 6169 if (sample_type & PERF_SAMPLE_TIME) 6170 data->time = perf_event_clock(event); 6171 6172 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6173 data->id = primary_event_id(event); 6174 6175 if (sample_type & PERF_SAMPLE_STREAM_ID) 6176 data->stream_id = event->id; 6177 6178 if (sample_type & PERF_SAMPLE_CPU) { 6179 data->cpu_entry.cpu = raw_smp_processor_id(); 6180 data->cpu_entry.reserved = 0; 6181 } 6182 } 6183 6184 void perf_event_header__init_id(struct perf_event_header *header, 6185 struct perf_sample_data *data, 6186 struct perf_event *event) 6187 { 6188 if (event->attr.sample_id_all) 6189 __perf_event_header__init_id(header, data, event); 6190 } 6191 6192 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6193 struct perf_sample_data *data) 6194 { 6195 u64 sample_type = data->type; 6196 6197 if (sample_type & PERF_SAMPLE_TID) 6198 perf_output_put(handle, data->tid_entry); 6199 6200 if (sample_type & PERF_SAMPLE_TIME) 6201 perf_output_put(handle, data->time); 6202 6203 if (sample_type & PERF_SAMPLE_ID) 6204 perf_output_put(handle, data->id); 6205 6206 if (sample_type & PERF_SAMPLE_STREAM_ID) 6207 perf_output_put(handle, data->stream_id); 6208 6209 if (sample_type & PERF_SAMPLE_CPU) 6210 perf_output_put(handle, data->cpu_entry); 6211 6212 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6213 perf_output_put(handle, data->id); 6214 } 6215 6216 void perf_event__output_id_sample(struct perf_event *event, 6217 struct perf_output_handle *handle, 6218 struct perf_sample_data *sample) 6219 { 6220 if (event->attr.sample_id_all) 6221 __perf_event__output_id_sample(handle, sample); 6222 } 6223 6224 static void perf_output_read_one(struct perf_output_handle *handle, 6225 struct perf_event *event, 6226 u64 enabled, u64 running) 6227 { 6228 u64 read_format = event->attr.read_format; 6229 u64 values[4]; 6230 int n = 0; 6231 6232 values[n++] = perf_event_count(event); 6233 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6234 values[n++] = enabled + 6235 atomic64_read(&event->child_total_time_enabled); 6236 } 6237 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6238 values[n++] = running + 6239 atomic64_read(&event->child_total_time_running); 6240 } 6241 if (read_format & PERF_FORMAT_ID) 6242 values[n++] = primary_event_id(event); 6243 6244 __output_copy(handle, values, n * sizeof(u64)); 6245 } 6246 6247 static void perf_output_read_group(struct perf_output_handle *handle, 6248 struct perf_event *event, 6249 u64 enabled, u64 running) 6250 { 6251 struct perf_event *leader = event->group_leader, *sub; 6252 u64 read_format = event->attr.read_format; 6253 u64 values[5]; 6254 int n = 0; 6255 6256 values[n++] = 1 + leader->nr_siblings; 6257 6258 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6259 values[n++] = enabled; 6260 6261 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6262 values[n++] = running; 6263 6264 if ((leader != event) && 6265 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6266 leader->pmu->read(leader); 6267 6268 values[n++] = perf_event_count(leader); 6269 if (read_format & PERF_FORMAT_ID) 6270 values[n++] = primary_event_id(leader); 6271 6272 __output_copy(handle, values, n * sizeof(u64)); 6273 6274 for_each_sibling_event(sub, leader) { 6275 n = 0; 6276 6277 if ((sub != event) && 6278 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6279 sub->pmu->read(sub); 6280 6281 values[n++] = perf_event_count(sub); 6282 if (read_format & PERF_FORMAT_ID) 6283 values[n++] = primary_event_id(sub); 6284 6285 __output_copy(handle, values, n * sizeof(u64)); 6286 } 6287 } 6288 6289 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6290 PERF_FORMAT_TOTAL_TIME_RUNNING) 6291 6292 /* 6293 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6294 * 6295 * The problem is that its both hard and excessively expensive to iterate the 6296 * child list, not to mention that its impossible to IPI the children running 6297 * on another CPU, from interrupt/NMI context. 6298 */ 6299 static void perf_output_read(struct perf_output_handle *handle, 6300 struct perf_event *event) 6301 { 6302 u64 enabled = 0, running = 0, now; 6303 u64 read_format = event->attr.read_format; 6304 6305 /* 6306 * compute total_time_enabled, total_time_running 6307 * based on snapshot values taken when the event 6308 * was last scheduled in. 6309 * 6310 * we cannot simply called update_context_time() 6311 * because of locking issue as we are called in 6312 * NMI context 6313 */ 6314 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6315 calc_timer_values(event, &now, &enabled, &running); 6316 6317 if (event->attr.read_format & PERF_FORMAT_GROUP) 6318 perf_output_read_group(handle, event, enabled, running); 6319 else 6320 perf_output_read_one(handle, event, enabled, running); 6321 } 6322 6323 void perf_output_sample(struct perf_output_handle *handle, 6324 struct perf_event_header *header, 6325 struct perf_sample_data *data, 6326 struct perf_event *event) 6327 { 6328 u64 sample_type = data->type; 6329 6330 perf_output_put(handle, *header); 6331 6332 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6333 perf_output_put(handle, data->id); 6334 6335 if (sample_type & PERF_SAMPLE_IP) 6336 perf_output_put(handle, data->ip); 6337 6338 if (sample_type & PERF_SAMPLE_TID) 6339 perf_output_put(handle, data->tid_entry); 6340 6341 if (sample_type & PERF_SAMPLE_TIME) 6342 perf_output_put(handle, data->time); 6343 6344 if (sample_type & PERF_SAMPLE_ADDR) 6345 perf_output_put(handle, data->addr); 6346 6347 if (sample_type & PERF_SAMPLE_ID) 6348 perf_output_put(handle, data->id); 6349 6350 if (sample_type & PERF_SAMPLE_STREAM_ID) 6351 perf_output_put(handle, data->stream_id); 6352 6353 if (sample_type & PERF_SAMPLE_CPU) 6354 perf_output_put(handle, data->cpu_entry); 6355 6356 if (sample_type & PERF_SAMPLE_PERIOD) 6357 perf_output_put(handle, data->period); 6358 6359 if (sample_type & PERF_SAMPLE_READ) 6360 perf_output_read(handle, event); 6361 6362 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6363 int size = 1; 6364 6365 size += data->callchain->nr; 6366 size *= sizeof(u64); 6367 __output_copy(handle, data->callchain, size); 6368 } 6369 6370 if (sample_type & PERF_SAMPLE_RAW) { 6371 struct perf_raw_record *raw = data->raw; 6372 6373 if (raw) { 6374 struct perf_raw_frag *frag = &raw->frag; 6375 6376 perf_output_put(handle, raw->size); 6377 do { 6378 if (frag->copy) { 6379 __output_custom(handle, frag->copy, 6380 frag->data, frag->size); 6381 } else { 6382 __output_copy(handle, frag->data, 6383 frag->size); 6384 } 6385 if (perf_raw_frag_last(frag)) 6386 break; 6387 frag = frag->next; 6388 } while (1); 6389 if (frag->pad) 6390 __output_skip(handle, NULL, frag->pad); 6391 } else { 6392 struct { 6393 u32 size; 6394 u32 data; 6395 } raw = { 6396 .size = sizeof(u32), 6397 .data = 0, 6398 }; 6399 perf_output_put(handle, raw); 6400 } 6401 } 6402 6403 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6404 if (data->br_stack) { 6405 size_t size; 6406 6407 size = data->br_stack->nr 6408 * sizeof(struct perf_branch_entry); 6409 6410 perf_output_put(handle, data->br_stack->nr); 6411 perf_output_copy(handle, data->br_stack->entries, size); 6412 } else { 6413 /* 6414 * we always store at least the value of nr 6415 */ 6416 u64 nr = 0; 6417 perf_output_put(handle, nr); 6418 } 6419 } 6420 6421 if (sample_type & PERF_SAMPLE_REGS_USER) { 6422 u64 abi = data->regs_user.abi; 6423 6424 /* 6425 * If there are no regs to dump, notice it through 6426 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6427 */ 6428 perf_output_put(handle, abi); 6429 6430 if (abi) { 6431 u64 mask = event->attr.sample_regs_user; 6432 perf_output_sample_regs(handle, 6433 data->regs_user.regs, 6434 mask); 6435 } 6436 } 6437 6438 if (sample_type & PERF_SAMPLE_STACK_USER) { 6439 perf_output_sample_ustack(handle, 6440 data->stack_user_size, 6441 data->regs_user.regs); 6442 } 6443 6444 if (sample_type & PERF_SAMPLE_WEIGHT) 6445 perf_output_put(handle, data->weight); 6446 6447 if (sample_type & PERF_SAMPLE_DATA_SRC) 6448 perf_output_put(handle, data->data_src.val); 6449 6450 if (sample_type & PERF_SAMPLE_TRANSACTION) 6451 perf_output_put(handle, data->txn); 6452 6453 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6454 u64 abi = data->regs_intr.abi; 6455 /* 6456 * If there are no regs to dump, notice it through 6457 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6458 */ 6459 perf_output_put(handle, abi); 6460 6461 if (abi) { 6462 u64 mask = event->attr.sample_regs_intr; 6463 6464 perf_output_sample_regs(handle, 6465 data->regs_intr.regs, 6466 mask); 6467 } 6468 } 6469 6470 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6471 perf_output_put(handle, data->phys_addr); 6472 6473 if (!event->attr.watermark) { 6474 int wakeup_events = event->attr.wakeup_events; 6475 6476 if (wakeup_events) { 6477 struct ring_buffer *rb = handle->rb; 6478 int events = local_inc_return(&rb->events); 6479 6480 if (events >= wakeup_events) { 6481 local_sub(wakeup_events, &rb->events); 6482 local_inc(&rb->wakeup); 6483 } 6484 } 6485 } 6486 } 6487 6488 static u64 perf_virt_to_phys(u64 virt) 6489 { 6490 u64 phys_addr = 0; 6491 struct page *p = NULL; 6492 6493 if (!virt) 6494 return 0; 6495 6496 if (virt >= TASK_SIZE) { 6497 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6498 if (virt_addr_valid((void *)(uintptr_t)virt) && 6499 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6500 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6501 } else { 6502 /* 6503 * Walking the pages tables for user address. 6504 * Interrupts are disabled, so it prevents any tear down 6505 * of the page tables. 6506 * Try IRQ-safe __get_user_pages_fast first. 6507 * If failed, leave phys_addr as 0. 6508 */ 6509 if ((current->mm != NULL) && 6510 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6511 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6512 6513 if (p) 6514 put_page(p); 6515 } 6516 6517 return phys_addr; 6518 } 6519 6520 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6521 6522 struct perf_callchain_entry * 6523 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6524 { 6525 bool kernel = !event->attr.exclude_callchain_kernel; 6526 bool user = !event->attr.exclude_callchain_user; 6527 /* Disallow cross-task user callchains. */ 6528 bool crosstask = event->ctx->task && event->ctx->task != current; 6529 const u32 max_stack = event->attr.sample_max_stack; 6530 struct perf_callchain_entry *callchain; 6531 6532 if (!kernel && !user) 6533 return &__empty_callchain; 6534 6535 callchain = get_perf_callchain(regs, 0, kernel, user, 6536 max_stack, crosstask, true); 6537 return callchain ?: &__empty_callchain; 6538 } 6539 6540 void perf_prepare_sample(struct perf_event_header *header, 6541 struct perf_sample_data *data, 6542 struct perf_event *event, 6543 struct pt_regs *regs) 6544 { 6545 u64 sample_type = event->attr.sample_type; 6546 6547 header->type = PERF_RECORD_SAMPLE; 6548 header->size = sizeof(*header) + event->header_size; 6549 6550 header->misc = 0; 6551 header->misc |= perf_misc_flags(regs); 6552 6553 __perf_event_header__init_id(header, data, event); 6554 6555 if (sample_type & PERF_SAMPLE_IP) 6556 data->ip = perf_instruction_pointer(regs); 6557 6558 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6559 int size = 1; 6560 6561 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6562 data->callchain = perf_callchain(event, regs); 6563 6564 size += data->callchain->nr; 6565 6566 header->size += size * sizeof(u64); 6567 } 6568 6569 if (sample_type & PERF_SAMPLE_RAW) { 6570 struct perf_raw_record *raw = data->raw; 6571 int size; 6572 6573 if (raw) { 6574 struct perf_raw_frag *frag = &raw->frag; 6575 u32 sum = 0; 6576 6577 do { 6578 sum += frag->size; 6579 if (perf_raw_frag_last(frag)) 6580 break; 6581 frag = frag->next; 6582 } while (1); 6583 6584 size = round_up(sum + sizeof(u32), sizeof(u64)); 6585 raw->size = size - sizeof(u32); 6586 frag->pad = raw->size - sum; 6587 } else { 6588 size = sizeof(u64); 6589 } 6590 6591 header->size += size; 6592 } 6593 6594 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6595 int size = sizeof(u64); /* nr */ 6596 if (data->br_stack) { 6597 size += data->br_stack->nr 6598 * sizeof(struct perf_branch_entry); 6599 } 6600 header->size += size; 6601 } 6602 6603 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6604 perf_sample_regs_user(&data->regs_user, regs, 6605 &data->regs_user_copy); 6606 6607 if (sample_type & PERF_SAMPLE_REGS_USER) { 6608 /* regs dump ABI info */ 6609 int size = sizeof(u64); 6610 6611 if (data->regs_user.regs) { 6612 u64 mask = event->attr.sample_regs_user; 6613 size += hweight64(mask) * sizeof(u64); 6614 } 6615 6616 header->size += size; 6617 } 6618 6619 if (sample_type & PERF_SAMPLE_STACK_USER) { 6620 /* 6621 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6622 * processed as the last one or have additional check added 6623 * in case new sample type is added, because we could eat 6624 * up the rest of the sample size. 6625 */ 6626 u16 stack_size = event->attr.sample_stack_user; 6627 u16 size = sizeof(u64); 6628 6629 stack_size = perf_sample_ustack_size(stack_size, header->size, 6630 data->regs_user.regs); 6631 6632 /* 6633 * If there is something to dump, add space for the dump 6634 * itself and for the field that tells the dynamic size, 6635 * which is how many have been actually dumped. 6636 */ 6637 if (stack_size) 6638 size += sizeof(u64) + stack_size; 6639 6640 data->stack_user_size = stack_size; 6641 header->size += size; 6642 } 6643 6644 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6645 /* regs dump ABI info */ 6646 int size = sizeof(u64); 6647 6648 perf_sample_regs_intr(&data->regs_intr, regs); 6649 6650 if (data->regs_intr.regs) { 6651 u64 mask = event->attr.sample_regs_intr; 6652 6653 size += hweight64(mask) * sizeof(u64); 6654 } 6655 6656 header->size += size; 6657 } 6658 6659 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6660 data->phys_addr = perf_virt_to_phys(data->addr); 6661 } 6662 6663 static __always_inline int 6664 __perf_event_output(struct perf_event *event, 6665 struct perf_sample_data *data, 6666 struct pt_regs *regs, 6667 int (*output_begin)(struct perf_output_handle *, 6668 struct perf_event *, 6669 unsigned int)) 6670 { 6671 struct perf_output_handle handle; 6672 struct perf_event_header header; 6673 int err; 6674 6675 /* protect the callchain buffers */ 6676 rcu_read_lock(); 6677 6678 perf_prepare_sample(&header, data, event, regs); 6679 6680 err = output_begin(&handle, event, header.size); 6681 if (err) 6682 goto exit; 6683 6684 perf_output_sample(&handle, &header, data, event); 6685 6686 perf_output_end(&handle); 6687 6688 exit: 6689 rcu_read_unlock(); 6690 return err; 6691 } 6692 6693 void 6694 perf_event_output_forward(struct perf_event *event, 6695 struct perf_sample_data *data, 6696 struct pt_regs *regs) 6697 { 6698 __perf_event_output(event, data, regs, perf_output_begin_forward); 6699 } 6700 6701 void 6702 perf_event_output_backward(struct perf_event *event, 6703 struct perf_sample_data *data, 6704 struct pt_regs *regs) 6705 { 6706 __perf_event_output(event, data, regs, perf_output_begin_backward); 6707 } 6708 6709 int 6710 perf_event_output(struct perf_event *event, 6711 struct perf_sample_data *data, 6712 struct pt_regs *regs) 6713 { 6714 return __perf_event_output(event, data, regs, perf_output_begin); 6715 } 6716 6717 /* 6718 * read event_id 6719 */ 6720 6721 struct perf_read_event { 6722 struct perf_event_header header; 6723 6724 u32 pid; 6725 u32 tid; 6726 }; 6727 6728 static void 6729 perf_event_read_event(struct perf_event *event, 6730 struct task_struct *task) 6731 { 6732 struct perf_output_handle handle; 6733 struct perf_sample_data sample; 6734 struct perf_read_event read_event = { 6735 .header = { 6736 .type = PERF_RECORD_READ, 6737 .misc = 0, 6738 .size = sizeof(read_event) + event->read_size, 6739 }, 6740 .pid = perf_event_pid(event, task), 6741 .tid = perf_event_tid(event, task), 6742 }; 6743 int ret; 6744 6745 perf_event_header__init_id(&read_event.header, &sample, event); 6746 ret = perf_output_begin(&handle, event, read_event.header.size); 6747 if (ret) 6748 return; 6749 6750 perf_output_put(&handle, read_event); 6751 perf_output_read(&handle, event); 6752 perf_event__output_id_sample(event, &handle, &sample); 6753 6754 perf_output_end(&handle); 6755 } 6756 6757 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6758 6759 static void 6760 perf_iterate_ctx(struct perf_event_context *ctx, 6761 perf_iterate_f output, 6762 void *data, bool all) 6763 { 6764 struct perf_event *event; 6765 6766 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6767 if (!all) { 6768 if (event->state < PERF_EVENT_STATE_INACTIVE) 6769 continue; 6770 if (!event_filter_match(event)) 6771 continue; 6772 } 6773 6774 output(event, data); 6775 } 6776 } 6777 6778 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6779 { 6780 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6781 struct perf_event *event; 6782 6783 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6784 /* 6785 * Skip events that are not fully formed yet; ensure that 6786 * if we observe event->ctx, both event and ctx will be 6787 * complete enough. See perf_install_in_context(). 6788 */ 6789 if (!smp_load_acquire(&event->ctx)) 6790 continue; 6791 6792 if (event->state < PERF_EVENT_STATE_INACTIVE) 6793 continue; 6794 if (!event_filter_match(event)) 6795 continue; 6796 output(event, data); 6797 } 6798 } 6799 6800 /* 6801 * Iterate all events that need to receive side-band events. 6802 * 6803 * For new callers; ensure that account_pmu_sb_event() includes 6804 * your event, otherwise it might not get delivered. 6805 */ 6806 static void 6807 perf_iterate_sb(perf_iterate_f output, void *data, 6808 struct perf_event_context *task_ctx) 6809 { 6810 struct perf_event_context *ctx; 6811 int ctxn; 6812 6813 rcu_read_lock(); 6814 preempt_disable(); 6815 6816 /* 6817 * If we have task_ctx != NULL we only notify the task context itself. 6818 * The task_ctx is set only for EXIT events before releasing task 6819 * context. 6820 */ 6821 if (task_ctx) { 6822 perf_iterate_ctx(task_ctx, output, data, false); 6823 goto done; 6824 } 6825 6826 perf_iterate_sb_cpu(output, data); 6827 6828 for_each_task_context_nr(ctxn) { 6829 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6830 if (ctx) 6831 perf_iterate_ctx(ctx, output, data, false); 6832 } 6833 done: 6834 preempt_enable(); 6835 rcu_read_unlock(); 6836 } 6837 6838 /* 6839 * Clear all file-based filters at exec, they'll have to be 6840 * re-instated when/if these objects are mmapped again. 6841 */ 6842 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6843 { 6844 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6845 struct perf_addr_filter *filter; 6846 unsigned int restart = 0, count = 0; 6847 unsigned long flags; 6848 6849 if (!has_addr_filter(event)) 6850 return; 6851 6852 raw_spin_lock_irqsave(&ifh->lock, flags); 6853 list_for_each_entry(filter, &ifh->list, entry) { 6854 if (filter->path.dentry) { 6855 event->addr_filter_ranges[count].start = 0; 6856 event->addr_filter_ranges[count].size = 0; 6857 restart++; 6858 } 6859 6860 count++; 6861 } 6862 6863 if (restart) 6864 event->addr_filters_gen++; 6865 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6866 6867 if (restart) 6868 perf_event_stop(event, 1); 6869 } 6870 6871 void perf_event_exec(void) 6872 { 6873 struct perf_event_context *ctx; 6874 int ctxn; 6875 6876 rcu_read_lock(); 6877 for_each_task_context_nr(ctxn) { 6878 ctx = current->perf_event_ctxp[ctxn]; 6879 if (!ctx) 6880 continue; 6881 6882 perf_event_enable_on_exec(ctxn); 6883 6884 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6885 true); 6886 } 6887 rcu_read_unlock(); 6888 } 6889 6890 struct remote_output { 6891 struct ring_buffer *rb; 6892 int err; 6893 }; 6894 6895 static void __perf_event_output_stop(struct perf_event *event, void *data) 6896 { 6897 struct perf_event *parent = event->parent; 6898 struct remote_output *ro = data; 6899 struct ring_buffer *rb = ro->rb; 6900 struct stop_event_data sd = { 6901 .event = event, 6902 }; 6903 6904 if (!has_aux(event)) 6905 return; 6906 6907 if (!parent) 6908 parent = event; 6909 6910 /* 6911 * In case of inheritance, it will be the parent that links to the 6912 * ring-buffer, but it will be the child that's actually using it. 6913 * 6914 * We are using event::rb to determine if the event should be stopped, 6915 * however this may race with ring_buffer_attach() (through set_output), 6916 * which will make us skip the event that actually needs to be stopped. 6917 * So ring_buffer_attach() has to stop an aux event before re-assigning 6918 * its rb pointer. 6919 */ 6920 if (rcu_dereference(parent->rb) == rb) 6921 ro->err = __perf_event_stop(&sd); 6922 } 6923 6924 static int __perf_pmu_output_stop(void *info) 6925 { 6926 struct perf_event *event = info; 6927 struct pmu *pmu = event->pmu; 6928 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6929 struct remote_output ro = { 6930 .rb = event->rb, 6931 }; 6932 6933 rcu_read_lock(); 6934 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6935 if (cpuctx->task_ctx) 6936 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6937 &ro, false); 6938 rcu_read_unlock(); 6939 6940 return ro.err; 6941 } 6942 6943 static void perf_pmu_output_stop(struct perf_event *event) 6944 { 6945 struct perf_event *iter; 6946 int err, cpu; 6947 6948 restart: 6949 rcu_read_lock(); 6950 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6951 /* 6952 * For per-CPU events, we need to make sure that neither they 6953 * nor their children are running; for cpu==-1 events it's 6954 * sufficient to stop the event itself if it's active, since 6955 * it can't have children. 6956 */ 6957 cpu = iter->cpu; 6958 if (cpu == -1) 6959 cpu = READ_ONCE(iter->oncpu); 6960 6961 if (cpu == -1) 6962 continue; 6963 6964 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6965 if (err == -EAGAIN) { 6966 rcu_read_unlock(); 6967 goto restart; 6968 } 6969 } 6970 rcu_read_unlock(); 6971 } 6972 6973 /* 6974 * task tracking -- fork/exit 6975 * 6976 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6977 */ 6978 6979 struct perf_task_event { 6980 struct task_struct *task; 6981 struct perf_event_context *task_ctx; 6982 6983 struct { 6984 struct perf_event_header header; 6985 6986 u32 pid; 6987 u32 ppid; 6988 u32 tid; 6989 u32 ptid; 6990 u64 time; 6991 } event_id; 6992 }; 6993 6994 static int perf_event_task_match(struct perf_event *event) 6995 { 6996 return event->attr.comm || event->attr.mmap || 6997 event->attr.mmap2 || event->attr.mmap_data || 6998 event->attr.task; 6999 } 7000 7001 static void perf_event_task_output(struct perf_event *event, 7002 void *data) 7003 { 7004 struct perf_task_event *task_event = data; 7005 struct perf_output_handle handle; 7006 struct perf_sample_data sample; 7007 struct task_struct *task = task_event->task; 7008 int ret, size = task_event->event_id.header.size; 7009 7010 if (!perf_event_task_match(event)) 7011 return; 7012 7013 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7014 7015 ret = perf_output_begin(&handle, event, 7016 task_event->event_id.header.size); 7017 if (ret) 7018 goto out; 7019 7020 task_event->event_id.pid = perf_event_pid(event, task); 7021 task_event->event_id.ppid = perf_event_pid(event, current); 7022 7023 task_event->event_id.tid = perf_event_tid(event, task); 7024 task_event->event_id.ptid = perf_event_tid(event, current); 7025 7026 task_event->event_id.time = perf_event_clock(event); 7027 7028 perf_output_put(&handle, task_event->event_id); 7029 7030 perf_event__output_id_sample(event, &handle, &sample); 7031 7032 perf_output_end(&handle); 7033 out: 7034 task_event->event_id.header.size = size; 7035 } 7036 7037 static void perf_event_task(struct task_struct *task, 7038 struct perf_event_context *task_ctx, 7039 int new) 7040 { 7041 struct perf_task_event task_event; 7042 7043 if (!atomic_read(&nr_comm_events) && 7044 !atomic_read(&nr_mmap_events) && 7045 !atomic_read(&nr_task_events)) 7046 return; 7047 7048 task_event = (struct perf_task_event){ 7049 .task = task, 7050 .task_ctx = task_ctx, 7051 .event_id = { 7052 .header = { 7053 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7054 .misc = 0, 7055 .size = sizeof(task_event.event_id), 7056 }, 7057 /* .pid */ 7058 /* .ppid */ 7059 /* .tid */ 7060 /* .ptid */ 7061 /* .time */ 7062 }, 7063 }; 7064 7065 perf_iterate_sb(perf_event_task_output, 7066 &task_event, 7067 task_ctx); 7068 } 7069 7070 void perf_event_fork(struct task_struct *task) 7071 { 7072 perf_event_task(task, NULL, 1); 7073 perf_event_namespaces(task); 7074 } 7075 7076 /* 7077 * comm tracking 7078 */ 7079 7080 struct perf_comm_event { 7081 struct task_struct *task; 7082 char *comm; 7083 int comm_size; 7084 7085 struct { 7086 struct perf_event_header header; 7087 7088 u32 pid; 7089 u32 tid; 7090 } event_id; 7091 }; 7092 7093 static int perf_event_comm_match(struct perf_event *event) 7094 { 7095 return event->attr.comm; 7096 } 7097 7098 static void perf_event_comm_output(struct perf_event *event, 7099 void *data) 7100 { 7101 struct perf_comm_event *comm_event = data; 7102 struct perf_output_handle handle; 7103 struct perf_sample_data sample; 7104 int size = comm_event->event_id.header.size; 7105 int ret; 7106 7107 if (!perf_event_comm_match(event)) 7108 return; 7109 7110 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7111 ret = perf_output_begin(&handle, event, 7112 comm_event->event_id.header.size); 7113 7114 if (ret) 7115 goto out; 7116 7117 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7118 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7119 7120 perf_output_put(&handle, comm_event->event_id); 7121 __output_copy(&handle, comm_event->comm, 7122 comm_event->comm_size); 7123 7124 perf_event__output_id_sample(event, &handle, &sample); 7125 7126 perf_output_end(&handle); 7127 out: 7128 comm_event->event_id.header.size = size; 7129 } 7130 7131 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7132 { 7133 char comm[TASK_COMM_LEN]; 7134 unsigned int size; 7135 7136 memset(comm, 0, sizeof(comm)); 7137 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7138 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7139 7140 comm_event->comm = comm; 7141 comm_event->comm_size = size; 7142 7143 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7144 7145 perf_iterate_sb(perf_event_comm_output, 7146 comm_event, 7147 NULL); 7148 } 7149 7150 void perf_event_comm(struct task_struct *task, bool exec) 7151 { 7152 struct perf_comm_event comm_event; 7153 7154 if (!atomic_read(&nr_comm_events)) 7155 return; 7156 7157 comm_event = (struct perf_comm_event){ 7158 .task = task, 7159 /* .comm */ 7160 /* .comm_size */ 7161 .event_id = { 7162 .header = { 7163 .type = PERF_RECORD_COMM, 7164 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7165 /* .size */ 7166 }, 7167 /* .pid */ 7168 /* .tid */ 7169 }, 7170 }; 7171 7172 perf_event_comm_event(&comm_event); 7173 } 7174 7175 /* 7176 * namespaces tracking 7177 */ 7178 7179 struct perf_namespaces_event { 7180 struct task_struct *task; 7181 7182 struct { 7183 struct perf_event_header header; 7184 7185 u32 pid; 7186 u32 tid; 7187 u64 nr_namespaces; 7188 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7189 } event_id; 7190 }; 7191 7192 static int perf_event_namespaces_match(struct perf_event *event) 7193 { 7194 return event->attr.namespaces; 7195 } 7196 7197 static void perf_event_namespaces_output(struct perf_event *event, 7198 void *data) 7199 { 7200 struct perf_namespaces_event *namespaces_event = data; 7201 struct perf_output_handle handle; 7202 struct perf_sample_data sample; 7203 u16 header_size = namespaces_event->event_id.header.size; 7204 int ret; 7205 7206 if (!perf_event_namespaces_match(event)) 7207 return; 7208 7209 perf_event_header__init_id(&namespaces_event->event_id.header, 7210 &sample, event); 7211 ret = perf_output_begin(&handle, event, 7212 namespaces_event->event_id.header.size); 7213 if (ret) 7214 goto out; 7215 7216 namespaces_event->event_id.pid = perf_event_pid(event, 7217 namespaces_event->task); 7218 namespaces_event->event_id.tid = perf_event_tid(event, 7219 namespaces_event->task); 7220 7221 perf_output_put(&handle, namespaces_event->event_id); 7222 7223 perf_event__output_id_sample(event, &handle, &sample); 7224 7225 perf_output_end(&handle); 7226 out: 7227 namespaces_event->event_id.header.size = header_size; 7228 } 7229 7230 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7231 struct task_struct *task, 7232 const struct proc_ns_operations *ns_ops) 7233 { 7234 struct path ns_path; 7235 struct inode *ns_inode; 7236 void *error; 7237 7238 error = ns_get_path(&ns_path, task, ns_ops); 7239 if (!error) { 7240 ns_inode = ns_path.dentry->d_inode; 7241 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7242 ns_link_info->ino = ns_inode->i_ino; 7243 path_put(&ns_path); 7244 } 7245 } 7246 7247 void perf_event_namespaces(struct task_struct *task) 7248 { 7249 struct perf_namespaces_event namespaces_event; 7250 struct perf_ns_link_info *ns_link_info; 7251 7252 if (!atomic_read(&nr_namespaces_events)) 7253 return; 7254 7255 namespaces_event = (struct perf_namespaces_event){ 7256 .task = task, 7257 .event_id = { 7258 .header = { 7259 .type = PERF_RECORD_NAMESPACES, 7260 .misc = 0, 7261 .size = sizeof(namespaces_event.event_id), 7262 }, 7263 /* .pid */ 7264 /* .tid */ 7265 .nr_namespaces = NR_NAMESPACES, 7266 /* .link_info[NR_NAMESPACES] */ 7267 }, 7268 }; 7269 7270 ns_link_info = namespaces_event.event_id.link_info; 7271 7272 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7273 task, &mntns_operations); 7274 7275 #ifdef CONFIG_USER_NS 7276 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7277 task, &userns_operations); 7278 #endif 7279 #ifdef CONFIG_NET_NS 7280 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7281 task, &netns_operations); 7282 #endif 7283 #ifdef CONFIG_UTS_NS 7284 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7285 task, &utsns_operations); 7286 #endif 7287 #ifdef CONFIG_IPC_NS 7288 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7289 task, &ipcns_operations); 7290 #endif 7291 #ifdef CONFIG_PID_NS 7292 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7293 task, &pidns_operations); 7294 #endif 7295 #ifdef CONFIG_CGROUPS 7296 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7297 task, &cgroupns_operations); 7298 #endif 7299 7300 perf_iterate_sb(perf_event_namespaces_output, 7301 &namespaces_event, 7302 NULL); 7303 } 7304 7305 /* 7306 * mmap tracking 7307 */ 7308 7309 struct perf_mmap_event { 7310 struct vm_area_struct *vma; 7311 7312 const char *file_name; 7313 int file_size; 7314 int maj, min; 7315 u64 ino; 7316 u64 ino_generation; 7317 u32 prot, flags; 7318 7319 struct { 7320 struct perf_event_header header; 7321 7322 u32 pid; 7323 u32 tid; 7324 u64 start; 7325 u64 len; 7326 u64 pgoff; 7327 } event_id; 7328 }; 7329 7330 static int perf_event_mmap_match(struct perf_event *event, 7331 void *data) 7332 { 7333 struct perf_mmap_event *mmap_event = data; 7334 struct vm_area_struct *vma = mmap_event->vma; 7335 int executable = vma->vm_flags & VM_EXEC; 7336 7337 return (!executable && event->attr.mmap_data) || 7338 (executable && (event->attr.mmap || event->attr.mmap2)); 7339 } 7340 7341 static void perf_event_mmap_output(struct perf_event *event, 7342 void *data) 7343 { 7344 struct perf_mmap_event *mmap_event = data; 7345 struct perf_output_handle handle; 7346 struct perf_sample_data sample; 7347 int size = mmap_event->event_id.header.size; 7348 u32 type = mmap_event->event_id.header.type; 7349 int ret; 7350 7351 if (!perf_event_mmap_match(event, data)) 7352 return; 7353 7354 if (event->attr.mmap2) { 7355 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7356 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7357 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7358 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7359 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7360 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7361 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7362 } 7363 7364 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7365 ret = perf_output_begin(&handle, event, 7366 mmap_event->event_id.header.size); 7367 if (ret) 7368 goto out; 7369 7370 mmap_event->event_id.pid = perf_event_pid(event, current); 7371 mmap_event->event_id.tid = perf_event_tid(event, current); 7372 7373 perf_output_put(&handle, mmap_event->event_id); 7374 7375 if (event->attr.mmap2) { 7376 perf_output_put(&handle, mmap_event->maj); 7377 perf_output_put(&handle, mmap_event->min); 7378 perf_output_put(&handle, mmap_event->ino); 7379 perf_output_put(&handle, mmap_event->ino_generation); 7380 perf_output_put(&handle, mmap_event->prot); 7381 perf_output_put(&handle, mmap_event->flags); 7382 } 7383 7384 __output_copy(&handle, mmap_event->file_name, 7385 mmap_event->file_size); 7386 7387 perf_event__output_id_sample(event, &handle, &sample); 7388 7389 perf_output_end(&handle); 7390 out: 7391 mmap_event->event_id.header.size = size; 7392 mmap_event->event_id.header.type = type; 7393 } 7394 7395 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7396 { 7397 struct vm_area_struct *vma = mmap_event->vma; 7398 struct file *file = vma->vm_file; 7399 int maj = 0, min = 0; 7400 u64 ino = 0, gen = 0; 7401 u32 prot = 0, flags = 0; 7402 unsigned int size; 7403 char tmp[16]; 7404 char *buf = NULL; 7405 char *name; 7406 7407 if (vma->vm_flags & VM_READ) 7408 prot |= PROT_READ; 7409 if (vma->vm_flags & VM_WRITE) 7410 prot |= PROT_WRITE; 7411 if (vma->vm_flags & VM_EXEC) 7412 prot |= PROT_EXEC; 7413 7414 if (vma->vm_flags & VM_MAYSHARE) 7415 flags = MAP_SHARED; 7416 else 7417 flags = MAP_PRIVATE; 7418 7419 if (vma->vm_flags & VM_DENYWRITE) 7420 flags |= MAP_DENYWRITE; 7421 if (vma->vm_flags & VM_MAYEXEC) 7422 flags |= MAP_EXECUTABLE; 7423 if (vma->vm_flags & VM_LOCKED) 7424 flags |= MAP_LOCKED; 7425 if (vma->vm_flags & VM_HUGETLB) 7426 flags |= MAP_HUGETLB; 7427 7428 if (file) { 7429 struct inode *inode; 7430 dev_t dev; 7431 7432 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7433 if (!buf) { 7434 name = "//enomem"; 7435 goto cpy_name; 7436 } 7437 /* 7438 * d_path() works from the end of the rb backwards, so we 7439 * need to add enough zero bytes after the string to handle 7440 * the 64bit alignment we do later. 7441 */ 7442 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7443 if (IS_ERR(name)) { 7444 name = "//toolong"; 7445 goto cpy_name; 7446 } 7447 inode = file_inode(vma->vm_file); 7448 dev = inode->i_sb->s_dev; 7449 ino = inode->i_ino; 7450 gen = inode->i_generation; 7451 maj = MAJOR(dev); 7452 min = MINOR(dev); 7453 7454 goto got_name; 7455 } else { 7456 if (vma->vm_ops && vma->vm_ops->name) { 7457 name = (char *) vma->vm_ops->name(vma); 7458 if (name) 7459 goto cpy_name; 7460 } 7461 7462 name = (char *)arch_vma_name(vma); 7463 if (name) 7464 goto cpy_name; 7465 7466 if (vma->vm_start <= vma->vm_mm->start_brk && 7467 vma->vm_end >= vma->vm_mm->brk) { 7468 name = "[heap]"; 7469 goto cpy_name; 7470 } 7471 if (vma->vm_start <= vma->vm_mm->start_stack && 7472 vma->vm_end >= vma->vm_mm->start_stack) { 7473 name = "[stack]"; 7474 goto cpy_name; 7475 } 7476 7477 name = "//anon"; 7478 goto cpy_name; 7479 } 7480 7481 cpy_name: 7482 strlcpy(tmp, name, sizeof(tmp)); 7483 name = tmp; 7484 got_name: 7485 /* 7486 * Since our buffer works in 8 byte units we need to align our string 7487 * size to a multiple of 8. However, we must guarantee the tail end is 7488 * zero'd out to avoid leaking random bits to userspace. 7489 */ 7490 size = strlen(name)+1; 7491 while (!IS_ALIGNED(size, sizeof(u64))) 7492 name[size++] = '\0'; 7493 7494 mmap_event->file_name = name; 7495 mmap_event->file_size = size; 7496 mmap_event->maj = maj; 7497 mmap_event->min = min; 7498 mmap_event->ino = ino; 7499 mmap_event->ino_generation = gen; 7500 mmap_event->prot = prot; 7501 mmap_event->flags = flags; 7502 7503 if (!(vma->vm_flags & VM_EXEC)) 7504 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7505 7506 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7507 7508 perf_iterate_sb(perf_event_mmap_output, 7509 mmap_event, 7510 NULL); 7511 7512 kfree(buf); 7513 } 7514 7515 /* 7516 * Check whether inode and address range match filter criteria. 7517 */ 7518 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7519 struct file *file, unsigned long offset, 7520 unsigned long size) 7521 { 7522 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7523 if (!filter->path.dentry) 7524 return false; 7525 7526 if (d_inode(filter->path.dentry) != file_inode(file)) 7527 return false; 7528 7529 if (filter->offset > offset + size) 7530 return false; 7531 7532 if (filter->offset + filter->size < offset) 7533 return false; 7534 7535 return true; 7536 } 7537 7538 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7539 struct vm_area_struct *vma, 7540 struct perf_addr_filter_range *fr) 7541 { 7542 unsigned long vma_size = vma->vm_end - vma->vm_start; 7543 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7544 struct file *file = vma->vm_file; 7545 7546 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7547 return false; 7548 7549 if (filter->offset < off) { 7550 fr->start = vma->vm_start; 7551 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7552 } else { 7553 fr->start = vma->vm_start + filter->offset - off; 7554 fr->size = min(vma->vm_end - fr->start, filter->size); 7555 } 7556 7557 return true; 7558 } 7559 7560 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7561 { 7562 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7563 struct vm_area_struct *vma = data; 7564 struct perf_addr_filter *filter; 7565 unsigned int restart = 0, count = 0; 7566 unsigned long flags; 7567 7568 if (!has_addr_filter(event)) 7569 return; 7570 7571 if (!vma->vm_file) 7572 return; 7573 7574 raw_spin_lock_irqsave(&ifh->lock, flags); 7575 list_for_each_entry(filter, &ifh->list, entry) { 7576 if (perf_addr_filter_vma_adjust(filter, vma, 7577 &event->addr_filter_ranges[count])) 7578 restart++; 7579 7580 count++; 7581 } 7582 7583 if (restart) 7584 event->addr_filters_gen++; 7585 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7586 7587 if (restart) 7588 perf_event_stop(event, 1); 7589 } 7590 7591 /* 7592 * Adjust all task's events' filters to the new vma 7593 */ 7594 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7595 { 7596 struct perf_event_context *ctx; 7597 int ctxn; 7598 7599 /* 7600 * Data tracing isn't supported yet and as such there is no need 7601 * to keep track of anything that isn't related to executable code: 7602 */ 7603 if (!(vma->vm_flags & VM_EXEC)) 7604 return; 7605 7606 rcu_read_lock(); 7607 for_each_task_context_nr(ctxn) { 7608 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7609 if (!ctx) 7610 continue; 7611 7612 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7613 } 7614 rcu_read_unlock(); 7615 } 7616 7617 void perf_event_mmap(struct vm_area_struct *vma) 7618 { 7619 struct perf_mmap_event mmap_event; 7620 7621 if (!atomic_read(&nr_mmap_events)) 7622 return; 7623 7624 mmap_event = (struct perf_mmap_event){ 7625 .vma = vma, 7626 /* .file_name */ 7627 /* .file_size */ 7628 .event_id = { 7629 .header = { 7630 .type = PERF_RECORD_MMAP, 7631 .misc = PERF_RECORD_MISC_USER, 7632 /* .size */ 7633 }, 7634 /* .pid */ 7635 /* .tid */ 7636 .start = vma->vm_start, 7637 .len = vma->vm_end - vma->vm_start, 7638 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7639 }, 7640 /* .maj (attr_mmap2 only) */ 7641 /* .min (attr_mmap2 only) */ 7642 /* .ino (attr_mmap2 only) */ 7643 /* .ino_generation (attr_mmap2 only) */ 7644 /* .prot (attr_mmap2 only) */ 7645 /* .flags (attr_mmap2 only) */ 7646 }; 7647 7648 perf_addr_filters_adjust(vma); 7649 perf_event_mmap_event(&mmap_event); 7650 } 7651 7652 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7653 unsigned long size, u64 flags) 7654 { 7655 struct perf_output_handle handle; 7656 struct perf_sample_data sample; 7657 struct perf_aux_event { 7658 struct perf_event_header header; 7659 u64 offset; 7660 u64 size; 7661 u64 flags; 7662 } rec = { 7663 .header = { 7664 .type = PERF_RECORD_AUX, 7665 .misc = 0, 7666 .size = sizeof(rec), 7667 }, 7668 .offset = head, 7669 .size = size, 7670 .flags = flags, 7671 }; 7672 int ret; 7673 7674 perf_event_header__init_id(&rec.header, &sample, event); 7675 ret = perf_output_begin(&handle, event, rec.header.size); 7676 7677 if (ret) 7678 return; 7679 7680 perf_output_put(&handle, rec); 7681 perf_event__output_id_sample(event, &handle, &sample); 7682 7683 perf_output_end(&handle); 7684 } 7685 7686 /* 7687 * Lost/dropped samples logging 7688 */ 7689 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7690 { 7691 struct perf_output_handle handle; 7692 struct perf_sample_data sample; 7693 int ret; 7694 7695 struct { 7696 struct perf_event_header header; 7697 u64 lost; 7698 } lost_samples_event = { 7699 .header = { 7700 .type = PERF_RECORD_LOST_SAMPLES, 7701 .misc = 0, 7702 .size = sizeof(lost_samples_event), 7703 }, 7704 .lost = lost, 7705 }; 7706 7707 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7708 7709 ret = perf_output_begin(&handle, event, 7710 lost_samples_event.header.size); 7711 if (ret) 7712 return; 7713 7714 perf_output_put(&handle, lost_samples_event); 7715 perf_event__output_id_sample(event, &handle, &sample); 7716 perf_output_end(&handle); 7717 } 7718 7719 /* 7720 * context_switch tracking 7721 */ 7722 7723 struct perf_switch_event { 7724 struct task_struct *task; 7725 struct task_struct *next_prev; 7726 7727 struct { 7728 struct perf_event_header header; 7729 u32 next_prev_pid; 7730 u32 next_prev_tid; 7731 } event_id; 7732 }; 7733 7734 static int perf_event_switch_match(struct perf_event *event) 7735 { 7736 return event->attr.context_switch; 7737 } 7738 7739 static void perf_event_switch_output(struct perf_event *event, void *data) 7740 { 7741 struct perf_switch_event *se = data; 7742 struct perf_output_handle handle; 7743 struct perf_sample_data sample; 7744 int ret; 7745 7746 if (!perf_event_switch_match(event)) 7747 return; 7748 7749 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7750 if (event->ctx->task) { 7751 se->event_id.header.type = PERF_RECORD_SWITCH; 7752 se->event_id.header.size = sizeof(se->event_id.header); 7753 } else { 7754 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7755 se->event_id.header.size = sizeof(se->event_id); 7756 se->event_id.next_prev_pid = 7757 perf_event_pid(event, se->next_prev); 7758 se->event_id.next_prev_tid = 7759 perf_event_tid(event, se->next_prev); 7760 } 7761 7762 perf_event_header__init_id(&se->event_id.header, &sample, event); 7763 7764 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7765 if (ret) 7766 return; 7767 7768 if (event->ctx->task) 7769 perf_output_put(&handle, se->event_id.header); 7770 else 7771 perf_output_put(&handle, se->event_id); 7772 7773 perf_event__output_id_sample(event, &handle, &sample); 7774 7775 perf_output_end(&handle); 7776 } 7777 7778 static void perf_event_switch(struct task_struct *task, 7779 struct task_struct *next_prev, bool sched_in) 7780 { 7781 struct perf_switch_event switch_event; 7782 7783 /* N.B. caller checks nr_switch_events != 0 */ 7784 7785 switch_event = (struct perf_switch_event){ 7786 .task = task, 7787 .next_prev = next_prev, 7788 .event_id = { 7789 .header = { 7790 /* .type */ 7791 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7792 /* .size */ 7793 }, 7794 /* .next_prev_pid */ 7795 /* .next_prev_tid */ 7796 }, 7797 }; 7798 7799 if (!sched_in && task->state == TASK_RUNNING) 7800 switch_event.event_id.header.misc |= 7801 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7802 7803 perf_iterate_sb(perf_event_switch_output, 7804 &switch_event, 7805 NULL); 7806 } 7807 7808 /* 7809 * IRQ throttle logging 7810 */ 7811 7812 static void perf_log_throttle(struct perf_event *event, int enable) 7813 { 7814 struct perf_output_handle handle; 7815 struct perf_sample_data sample; 7816 int ret; 7817 7818 struct { 7819 struct perf_event_header header; 7820 u64 time; 7821 u64 id; 7822 u64 stream_id; 7823 } throttle_event = { 7824 .header = { 7825 .type = PERF_RECORD_THROTTLE, 7826 .misc = 0, 7827 .size = sizeof(throttle_event), 7828 }, 7829 .time = perf_event_clock(event), 7830 .id = primary_event_id(event), 7831 .stream_id = event->id, 7832 }; 7833 7834 if (enable) 7835 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7836 7837 perf_event_header__init_id(&throttle_event.header, &sample, event); 7838 7839 ret = perf_output_begin(&handle, event, 7840 throttle_event.header.size); 7841 if (ret) 7842 return; 7843 7844 perf_output_put(&handle, throttle_event); 7845 perf_event__output_id_sample(event, &handle, &sample); 7846 perf_output_end(&handle); 7847 } 7848 7849 /* 7850 * ksymbol register/unregister tracking 7851 */ 7852 7853 struct perf_ksymbol_event { 7854 const char *name; 7855 int name_len; 7856 struct { 7857 struct perf_event_header header; 7858 u64 addr; 7859 u32 len; 7860 u16 ksym_type; 7861 u16 flags; 7862 } event_id; 7863 }; 7864 7865 static int perf_event_ksymbol_match(struct perf_event *event) 7866 { 7867 return event->attr.ksymbol; 7868 } 7869 7870 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7871 { 7872 struct perf_ksymbol_event *ksymbol_event = data; 7873 struct perf_output_handle handle; 7874 struct perf_sample_data sample; 7875 int ret; 7876 7877 if (!perf_event_ksymbol_match(event)) 7878 return; 7879 7880 perf_event_header__init_id(&ksymbol_event->event_id.header, 7881 &sample, event); 7882 ret = perf_output_begin(&handle, event, 7883 ksymbol_event->event_id.header.size); 7884 if (ret) 7885 return; 7886 7887 perf_output_put(&handle, ksymbol_event->event_id); 7888 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7889 perf_event__output_id_sample(event, &handle, &sample); 7890 7891 perf_output_end(&handle); 7892 } 7893 7894 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7895 const char *sym) 7896 { 7897 struct perf_ksymbol_event ksymbol_event; 7898 char name[KSYM_NAME_LEN]; 7899 u16 flags = 0; 7900 int name_len; 7901 7902 if (!atomic_read(&nr_ksymbol_events)) 7903 return; 7904 7905 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7906 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7907 goto err; 7908 7909 strlcpy(name, sym, KSYM_NAME_LEN); 7910 name_len = strlen(name) + 1; 7911 while (!IS_ALIGNED(name_len, sizeof(u64))) 7912 name[name_len++] = '\0'; 7913 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7914 7915 if (unregister) 7916 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7917 7918 ksymbol_event = (struct perf_ksymbol_event){ 7919 .name = name, 7920 .name_len = name_len, 7921 .event_id = { 7922 .header = { 7923 .type = PERF_RECORD_KSYMBOL, 7924 .size = sizeof(ksymbol_event.event_id) + 7925 name_len, 7926 }, 7927 .addr = addr, 7928 .len = len, 7929 .ksym_type = ksym_type, 7930 .flags = flags, 7931 }, 7932 }; 7933 7934 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7935 return; 7936 err: 7937 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7938 } 7939 7940 /* 7941 * bpf program load/unload tracking 7942 */ 7943 7944 struct perf_bpf_event { 7945 struct bpf_prog *prog; 7946 struct { 7947 struct perf_event_header header; 7948 u16 type; 7949 u16 flags; 7950 u32 id; 7951 u8 tag[BPF_TAG_SIZE]; 7952 } event_id; 7953 }; 7954 7955 static int perf_event_bpf_match(struct perf_event *event) 7956 { 7957 return event->attr.bpf_event; 7958 } 7959 7960 static void perf_event_bpf_output(struct perf_event *event, void *data) 7961 { 7962 struct perf_bpf_event *bpf_event = data; 7963 struct perf_output_handle handle; 7964 struct perf_sample_data sample; 7965 int ret; 7966 7967 if (!perf_event_bpf_match(event)) 7968 return; 7969 7970 perf_event_header__init_id(&bpf_event->event_id.header, 7971 &sample, event); 7972 ret = perf_output_begin(&handle, event, 7973 bpf_event->event_id.header.size); 7974 if (ret) 7975 return; 7976 7977 perf_output_put(&handle, bpf_event->event_id); 7978 perf_event__output_id_sample(event, &handle, &sample); 7979 7980 perf_output_end(&handle); 7981 } 7982 7983 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7984 enum perf_bpf_event_type type) 7985 { 7986 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7987 char sym[KSYM_NAME_LEN]; 7988 int i; 7989 7990 if (prog->aux->func_cnt == 0) { 7991 bpf_get_prog_name(prog, sym); 7992 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7993 (u64)(unsigned long)prog->bpf_func, 7994 prog->jited_len, unregister, sym); 7995 } else { 7996 for (i = 0; i < prog->aux->func_cnt; i++) { 7997 struct bpf_prog *subprog = prog->aux->func[i]; 7998 7999 bpf_get_prog_name(subprog, sym); 8000 perf_event_ksymbol( 8001 PERF_RECORD_KSYMBOL_TYPE_BPF, 8002 (u64)(unsigned long)subprog->bpf_func, 8003 subprog->jited_len, unregister, sym); 8004 } 8005 } 8006 } 8007 8008 void perf_event_bpf_event(struct bpf_prog *prog, 8009 enum perf_bpf_event_type type, 8010 u16 flags) 8011 { 8012 struct perf_bpf_event bpf_event; 8013 8014 if (type <= PERF_BPF_EVENT_UNKNOWN || 8015 type >= PERF_BPF_EVENT_MAX) 8016 return; 8017 8018 switch (type) { 8019 case PERF_BPF_EVENT_PROG_LOAD: 8020 case PERF_BPF_EVENT_PROG_UNLOAD: 8021 if (atomic_read(&nr_ksymbol_events)) 8022 perf_event_bpf_emit_ksymbols(prog, type); 8023 break; 8024 default: 8025 break; 8026 } 8027 8028 if (!atomic_read(&nr_bpf_events)) 8029 return; 8030 8031 bpf_event = (struct perf_bpf_event){ 8032 .prog = prog, 8033 .event_id = { 8034 .header = { 8035 .type = PERF_RECORD_BPF_EVENT, 8036 .size = sizeof(bpf_event.event_id), 8037 }, 8038 .type = type, 8039 .flags = flags, 8040 .id = prog->aux->id, 8041 }, 8042 }; 8043 8044 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8045 8046 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8047 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8048 } 8049 8050 void perf_event_itrace_started(struct perf_event *event) 8051 { 8052 event->attach_state |= PERF_ATTACH_ITRACE; 8053 } 8054 8055 static void perf_log_itrace_start(struct perf_event *event) 8056 { 8057 struct perf_output_handle handle; 8058 struct perf_sample_data sample; 8059 struct perf_aux_event { 8060 struct perf_event_header header; 8061 u32 pid; 8062 u32 tid; 8063 } rec; 8064 int ret; 8065 8066 if (event->parent) 8067 event = event->parent; 8068 8069 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8070 event->attach_state & PERF_ATTACH_ITRACE) 8071 return; 8072 8073 rec.header.type = PERF_RECORD_ITRACE_START; 8074 rec.header.misc = 0; 8075 rec.header.size = sizeof(rec); 8076 rec.pid = perf_event_pid(event, current); 8077 rec.tid = perf_event_tid(event, current); 8078 8079 perf_event_header__init_id(&rec.header, &sample, event); 8080 ret = perf_output_begin(&handle, event, rec.header.size); 8081 8082 if (ret) 8083 return; 8084 8085 perf_output_put(&handle, rec); 8086 perf_event__output_id_sample(event, &handle, &sample); 8087 8088 perf_output_end(&handle); 8089 } 8090 8091 static int 8092 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8093 { 8094 struct hw_perf_event *hwc = &event->hw; 8095 int ret = 0; 8096 u64 seq; 8097 8098 seq = __this_cpu_read(perf_throttled_seq); 8099 if (seq != hwc->interrupts_seq) { 8100 hwc->interrupts_seq = seq; 8101 hwc->interrupts = 1; 8102 } else { 8103 hwc->interrupts++; 8104 if (unlikely(throttle 8105 && hwc->interrupts >= max_samples_per_tick)) { 8106 __this_cpu_inc(perf_throttled_count); 8107 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8108 hwc->interrupts = MAX_INTERRUPTS; 8109 perf_log_throttle(event, 0); 8110 ret = 1; 8111 } 8112 } 8113 8114 if (event->attr.freq) { 8115 u64 now = perf_clock(); 8116 s64 delta = now - hwc->freq_time_stamp; 8117 8118 hwc->freq_time_stamp = now; 8119 8120 if (delta > 0 && delta < 2*TICK_NSEC) 8121 perf_adjust_period(event, delta, hwc->last_period, true); 8122 } 8123 8124 return ret; 8125 } 8126 8127 int perf_event_account_interrupt(struct perf_event *event) 8128 { 8129 return __perf_event_account_interrupt(event, 1); 8130 } 8131 8132 /* 8133 * Generic event overflow handling, sampling. 8134 */ 8135 8136 static int __perf_event_overflow(struct perf_event *event, 8137 int throttle, struct perf_sample_data *data, 8138 struct pt_regs *regs) 8139 { 8140 int events = atomic_read(&event->event_limit); 8141 int ret = 0; 8142 8143 /* 8144 * Non-sampling counters might still use the PMI to fold short 8145 * hardware counters, ignore those. 8146 */ 8147 if (unlikely(!is_sampling_event(event))) 8148 return 0; 8149 8150 ret = __perf_event_account_interrupt(event, throttle); 8151 8152 /* 8153 * XXX event_limit might not quite work as expected on inherited 8154 * events 8155 */ 8156 8157 event->pending_kill = POLL_IN; 8158 if (events && atomic_dec_and_test(&event->event_limit)) { 8159 ret = 1; 8160 event->pending_kill = POLL_HUP; 8161 8162 perf_event_disable_inatomic(event); 8163 } 8164 8165 READ_ONCE(event->overflow_handler)(event, data, regs); 8166 8167 if (*perf_event_fasync(event) && event->pending_kill) { 8168 event->pending_wakeup = 1; 8169 irq_work_queue(&event->pending); 8170 } 8171 8172 return ret; 8173 } 8174 8175 int perf_event_overflow(struct perf_event *event, 8176 struct perf_sample_data *data, 8177 struct pt_regs *regs) 8178 { 8179 return __perf_event_overflow(event, 1, data, regs); 8180 } 8181 8182 /* 8183 * Generic software event infrastructure 8184 */ 8185 8186 struct swevent_htable { 8187 struct swevent_hlist *swevent_hlist; 8188 struct mutex hlist_mutex; 8189 int hlist_refcount; 8190 8191 /* Recursion avoidance in each contexts */ 8192 int recursion[PERF_NR_CONTEXTS]; 8193 }; 8194 8195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8196 8197 /* 8198 * We directly increment event->count and keep a second value in 8199 * event->hw.period_left to count intervals. This period event 8200 * is kept in the range [-sample_period, 0] so that we can use the 8201 * sign as trigger. 8202 */ 8203 8204 u64 perf_swevent_set_period(struct perf_event *event) 8205 { 8206 struct hw_perf_event *hwc = &event->hw; 8207 u64 period = hwc->last_period; 8208 u64 nr, offset; 8209 s64 old, val; 8210 8211 hwc->last_period = hwc->sample_period; 8212 8213 again: 8214 old = val = local64_read(&hwc->period_left); 8215 if (val < 0) 8216 return 0; 8217 8218 nr = div64_u64(period + val, period); 8219 offset = nr * period; 8220 val -= offset; 8221 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8222 goto again; 8223 8224 return nr; 8225 } 8226 8227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8228 struct perf_sample_data *data, 8229 struct pt_regs *regs) 8230 { 8231 struct hw_perf_event *hwc = &event->hw; 8232 int throttle = 0; 8233 8234 if (!overflow) 8235 overflow = perf_swevent_set_period(event); 8236 8237 if (hwc->interrupts == MAX_INTERRUPTS) 8238 return; 8239 8240 for (; overflow; overflow--) { 8241 if (__perf_event_overflow(event, throttle, 8242 data, regs)) { 8243 /* 8244 * We inhibit the overflow from happening when 8245 * hwc->interrupts == MAX_INTERRUPTS. 8246 */ 8247 break; 8248 } 8249 throttle = 1; 8250 } 8251 } 8252 8253 static void perf_swevent_event(struct perf_event *event, u64 nr, 8254 struct perf_sample_data *data, 8255 struct pt_regs *regs) 8256 { 8257 struct hw_perf_event *hwc = &event->hw; 8258 8259 local64_add(nr, &event->count); 8260 8261 if (!regs) 8262 return; 8263 8264 if (!is_sampling_event(event)) 8265 return; 8266 8267 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8268 data->period = nr; 8269 return perf_swevent_overflow(event, 1, data, regs); 8270 } else 8271 data->period = event->hw.last_period; 8272 8273 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8274 return perf_swevent_overflow(event, 1, data, regs); 8275 8276 if (local64_add_negative(nr, &hwc->period_left)) 8277 return; 8278 8279 perf_swevent_overflow(event, 0, data, regs); 8280 } 8281 8282 static int perf_exclude_event(struct perf_event *event, 8283 struct pt_regs *regs) 8284 { 8285 if (event->hw.state & PERF_HES_STOPPED) 8286 return 1; 8287 8288 if (regs) { 8289 if (event->attr.exclude_user && user_mode(regs)) 8290 return 1; 8291 8292 if (event->attr.exclude_kernel && !user_mode(regs)) 8293 return 1; 8294 } 8295 8296 return 0; 8297 } 8298 8299 static int perf_swevent_match(struct perf_event *event, 8300 enum perf_type_id type, 8301 u32 event_id, 8302 struct perf_sample_data *data, 8303 struct pt_regs *regs) 8304 { 8305 if (event->attr.type != type) 8306 return 0; 8307 8308 if (event->attr.config != event_id) 8309 return 0; 8310 8311 if (perf_exclude_event(event, regs)) 8312 return 0; 8313 8314 return 1; 8315 } 8316 8317 static inline u64 swevent_hash(u64 type, u32 event_id) 8318 { 8319 u64 val = event_id | (type << 32); 8320 8321 return hash_64(val, SWEVENT_HLIST_BITS); 8322 } 8323 8324 static inline struct hlist_head * 8325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8326 { 8327 u64 hash = swevent_hash(type, event_id); 8328 8329 return &hlist->heads[hash]; 8330 } 8331 8332 /* For the read side: events when they trigger */ 8333 static inline struct hlist_head * 8334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8335 { 8336 struct swevent_hlist *hlist; 8337 8338 hlist = rcu_dereference(swhash->swevent_hlist); 8339 if (!hlist) 8340 return NULL; 8341 8342 return __find_swevent_head(hlist, type, event_id); 8343 } 8344 8345 /* For the event head insertion and removal in the hlist */ 8346 static inline struct hlist_head * 8347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8348 { 8349 struct swevent_hlist *hlist; 8350 u32 event_id = event->attr.config; 8351 u64 type = event->attr.type; 8352 8353 /* 8354 * Event scheduling is always serialized against hlist allocation 8355 * and release. Which makes the protected version suitable here. 8356 * The context lock guarantees that. 8357 */ 8358 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8359 lockdep_is_held(&event->ctx->lock)); 8360 if (!hlist) 8361 return NULL; 8362 8363 return __find_swevent_head(hlist, type, event_id); 8364 } 8365 8366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8367 u64 nr, 8368 struct perf_sample_data *data, 8369 struct pt_regs *regs) 8370 { 8371 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8372 struct perf_event *event; 8373 struct hlist_head *head; 8374 8375 rcu_read_lock(); 8376 head = find_swevent_head_rcu(swhash, type, event_id); 8377 if (!head) 8378 goto end; 8379 8380 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8381 if (perf_swevent_match(event, type, event_id, data, regs)) 8382 perf_swevent_event(event, nr, data, regs); 8383 } 8384 end: 8385 rcu_read_unlock(); 8386 } 8387 8388 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8389 8390 int perf_swevent_get_recursion_context(void) 8391 { 8392 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8393 8394 return get_recursion_context(swhash->recursion); 8395 } 8396 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8397 8398 void perf_swevent_put_recursion_context(int rctx) 8399 { 8400 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8401 8402 put_recursion_context(swhash->recursion, rctx); 8403 } 8404 8405 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8406 { 8407 struct perf_sample_data data; 8408 8409 if (WARN_ON_ONCE(!regs)) 8410 return; 8411 8412 perf_sample_data_init(&data, addr, 0); 8413 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8414 } 8415 8416 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8417 { 8418 int rctx; 8419 8420 preempt_disable_notrace(); 8421 rctx = perf_swevent_get_recursion_context(); 8422 if (unlikely(rctx < 0)) 8423 goto fail; 8424 8425 ___perf_sw_event(event_id, nr, regs, addr); 8426 8427 perf_swevent_put_recursion_context(rctx); 8428 fail: 8429 preempt_enable_notrace(); 8430 } 8431 8432 static void perf_swevent_read(struct perf_event *event) 8433 { 8434 } 8435 8436 static int perf_swevent_add(struct perf_event *event, int flags) 8437 { 8438 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8439 struct hw_perf_event *hwc = &event->hw; 8440 struct hlist_head *head; 8441 8442 if (is_sampling_event(event)) { 8443 hwc->last_period = hwc->sample_period; 8444 perf_swevent_set_period(event); 8445 } 8446 8447 hwc->state = !(flags & PERF_EF_START); 8448 8449 head = find_swevent_head(swhash, event); 8450 if (WARN_ON_ONCE(!head)) 8451 return -EINVAL; 8452 8453 hlist_add_head_rcu(&event->hlist_entry, head); 8454 perf_event_update_userpage(event); 8455 8456 return 0; 8457 } 8458 8459 static void perf_swevent_del(struct perf_event *event, int flags) 8460 { 8461 hlist_del_rcu(&event->hlist_entry); 8462 } 8463 8464 static void perf_swevent_start(struct perf_event *event, int flags) 8465 { 8466 event->hw.state = 0; 8467 } 8468 8469 static void perf_swevent_stop(struct perf_event *event, int flags) 8470 { 8471 event->hw.state = PERF_HES_STOPPED; 8472 } 8473 8474 /* Deref the hlist from the update side */ 8475 static inline struct swevent_hlist * 8476 swevent_hlist_deref(struct swevent_htable *swhash) 8477 { 8478 return rcu_dereference_protected(swhash->swevent_hlist, 8479 lockdep_is_held(&swhash->hlist_mutex)); 8480 } 8481 8482 static void swevent_hlist_release(struct swevent_htable *swhash) 8483 { 8484 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8485 8486 if (!hlist) 8487 return; 8488 8489 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8490 kfree_rcu(hlist, rcu_head); 8491 } 8492 8493 static void swevent_hlist_put_cpu(int cpu) 8494 { 8495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8496 8497 mutex_lock(&swhash->hlist_mutex); 8498 8499 if (!--swhash->hlist_refcount) 8500 swevent_hlist_release(swhash); 8501 8502 mutex_unlock(&swhash->hlist_mutex); 8503 } 8504 8505 static void swevent_hlist_put(void) 8506 { 8507 int cpu; 8508 8509 for_each_possible_cpu(cpu) 8510 swevent_hlist_put_cpu(cpu); 8511 } 8512 8513 static int swevent_hlist_get_cpu(int cpu) 8514 { 8515 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8516 int err = 0; 8517 8518 mutex_lock(&swhash->hlist_mutex); 8519 if (!swevent_hlist_deref(swhash) && 8520 cpumask_test_cpu(cpu, perf_online_mask)) { 8521 struct swevent_hlist *hlist; 8522 8523 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8524 if (!hlist) { 8525 err = -ENOMEM; 8526 goto exit; 8527 } 8528 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8529 } 8530 swhash->hlist_refcount++; 8531 exit: 8532 mutex_unlock(&swhash->hlist_mutex); 8533 8534 return err; 8535 } 8536 8537 static int swevent_hlist_get(void) 8538 { 8539 int err, cpu, failed_cpu; 8540 8541 mutex_lock(&pmus_lock); 8542 for_each_possible_cpu(cpu) { 8543 err = swevent_hlist_get_cpu(cpu); 8544 if (err) { 8545 failed_cpu = cpu; 8546 goto fail; 8547 } 8548 } 8549 mutex_unlock(&pmus_lock); 8550 return 0; 8551 fail: 8552 for_each_possible_cpu(cpu) { 8553 if (cpu == failed_cpu) 8554 break; 8555 swevent_hlist_put_cpu(cpu); 8556 } 8557 mutex_unlock(&pmus_lock); 8558 return err; 8559 } 8560 8561 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8562 8563 static void sw_perf_event_destroy(struct perf_event *event) 8564 { 8565 u64 event_id = event->attr.config; 8566 8567 WARN_ON(event->parent); 8568 8569 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8570 swevent_hlist_put(); 8571 } 8572 8573 static int perf_swevent_init(struct perf_event *event) 8574 { 8575 u64 event_id = event->attr.config; 8576 8577 if (event->attr.type != PERF_TYPE_SOFTWARE) 8578 return -ENOENT; 8579 8580 /* 8581 * no branch sampling for software events 8582 */ 8583 if (has_branch_stack(event)) 8584 return -EOPNOTSUPP; 8585 8586 switch (event_id) { 8587 case PERF_COUNT_SW_CPU_CLOCK: 8588 case PERF_COUNT_SW_TASK_CLOCK: 8589 return -ENOENT; 8590 8591 default: 8592 break; 8593 } 8594 8595 if (event_id >= PERF_COUNT_SW_MAX) 8596 return -ENOENT; 8597 8598 if (!event->parent) { 8599 int err; 8600 8601 err = swevent_hlist_get(); 8602 if (err) 8603 return err; 8604 8605 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8606 event->destroy = sw_perf_event_destroy; 8607 } 8608 8609 return 0; 8610 } 8611 8612 static struct pmu perf_swevent = { 8613 .task_ctx_nr = perf_sw_context, 8614 8615 .capabilities = PERF_PMU_CAP_NO_NMI, 8616 8617 .event_init = perf_swevent_init, 8618 .add = perf_swevent_add, 8619 .del = perf_swevent_del, 8620 .start = perf_swevent_start, 8621 .stop = perf_swevent_stop, 8622 .read = perf_swevent_read, 8623 }; 8624 8625 #ifdef CONFIG_EVENT_TRACING 8626 8627 static int perf_tp_filter_match(struct perf_event *event, 8628 struct perf_sample_data *data) 8629 { 8630 void *record = data->raw->frag.data; 8631 8632 /* only top level events have filters set */ 8633 if (event->parent) 8634 event = event->parent; 8635 8636 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8637 return 1; 8638 return 0; 8639 } 8640 8641 static int perf_tp_event_match(struct perf_event *event, 8642 struct perf_sample_data *data, 8643 struct pt_regs *regs) 8644 { 8645 if (event->hw.state & PERF_HES_STOPPED) 8646 return 0; 8647 /* 8648 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8649 */ 8650 if (event->attr.exclude_kernel && !user_mode(regs)) 8651 return 0; 8652 8653 if (!perf_tp_filter_match(event, data)) 8654 return 0; 8655 8656 return 1; 8657 } 8658 8659 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8660 struct trace_event_call *call, u64 count, 8661 struct pt_regs *regs, struct hlist_head *head, 8662 struct task_struct *task) 8663 { 8664 if (bpf_prog_array_valid(call)) { 8665 *(struct pt_regs **)raw_data = regs; 8666 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8667 perf_swevent_put_recursion_context(rctx); 8668 return; 8669 } 8670 } 8671 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8672 rctx, task); 8673 } 8674 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8675 8676 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8677 struct pt_regs *regs, struct hlist_head *head, int rctx, 8678 struct task_struct *task) 8679 { 8680 struct perf_sample_data data; 8681 struct perf_event *event; 8682 8683 struct perf_raw_record raw = { 8684 .frag = { 8685 .size = entry_size, 8686 .data = record, 8687 }, 8688 }; 8689 8690 perf_sample_data_init(&data, 0, 0); 8691 data.raw = &raw; 8692 8693 perf_trace_buf_update(record, event_type); 8694 8695 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8696 if (perf_tp_event_match(event, &data, regs)) 8697 perf_swevent_event(event, count, &data, regs); 8698 } 8699 8700 /* 8701 * If we got specified a target task, also iterate its context and 8702 * deliver this event there too. 8703 */ 8704 if (task && task != current) { 8705 struct perf_event_context *ctx; 8706 struct trace_entry *entry = record; 8707 8708 rcu_read_lock(); 8709 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8710 if (!ctx) 8711 goto unlock; 8712 8713 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8714 if (event->cpu != smp_processor_id()) 8715 continue; 8716 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8717 continue; 8718 if (event->attr.config != entry->type) 8719 continue; 8720 if (perf_tp_event_match(event, &data, regs)) 8721 perf_swevent_event(event, count, &data, regs); 8722 } 8723 unlock: 8724 rcu_read_unlock(); 8725 } 8726 8727 perf_swevent_put_recursion_context(rctx); 8728 } 8729 EXPORT_SYMBOL_GPL(perf_tp_event); 8730 8731 static void tp_perf_event_destroy(struct perf_event *event) 8732 { 8733 perf_trace_destroy(event); 8734 } 8735 8736 static int perf_tp_event_init(struct perf_event *event) 8737 { 8738 int err; 8739 8740 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8741 return -ENOENT; 8742 8743 /* 8744 * no branch sampling for tracepoint events 8745 */ 8746 if (has_branch_stack(event)) 8747 return -EOPNOTSUPP; 8748 8749 err = perf_trace_init(event); 8750 if (err) 8751 return err; 8752 8753 event->destroy = tp_perf_event_destroy; 8754 8755 return 0; 8756 } 8757 8758 static struct pmu perf_tracepoint = { 8759 .task_ctx_nr = perf_sw_context, 8760 8761 .event_init = perf_tp_event_init, 8762 .add = perf_trace_add, 8763 .del = perf_trace_del, 8764 .start = perf_swevent_start, 8765 .stop = perf_swevent_stop, 8766 .read = perf_swevent_read, 8767 }; 8768 8769 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8770 /* 8771 * Flags in config, used by dynamic PMU kprobe and uprobe 8772 * The flags should match following PMU_FORMAT_ATTR(). 8773 * 8774 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8775 * if not set, create kprobe/uprobe 8776 * 8777 * The following values specify a reference counter (or semaphore in the 8778 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8779 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8780 * 8781 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8782 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8783 */ 8784 enum perf_probe_config { 8785 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8786 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8787 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8788 }; 8789 8790 PMU_FORMAT_ATTR(retprobe, "config:0"); 8791 #endif 8792 8793 #ifdef CONFIG_KPROBE_EVENTS 8794 static struct attribute *kprobe_attrs[] = { 8795 &format_attr_retprobe.attr, 8796 NULL, 8797 }; 8798 8799 static struct attribute_group kprobe_format_group = { 8800 .name = "format", 8801 .attrs = kprobe_attrs, 8802 }; 8803 8804 static const struct attribute_group *kprobe_attr_groups[] = { 8805 &kprobe_format_group, 8806 NULL, 8807 }; 8808 8809 static int perf_kprobe_event_init(struct perf_event *event); 8810 static struct pmu perf_kprobe = { 8811 .task_ctx_nr = perf_sw_context, 8812 .event_init = perf_kprobe_event_init, 8813 .add = perf_trace_add, 8814 .del = perf_trace_del, 8815 .start = perf_swevent_start, 8816 .stop = perf_swevent_stop, 8817 .read = perf_swevent_read, 8818 .attr_groups = kprobe_attr_groups, 8819 }; 8820 8821 static int perf_kprobe_event_init(struct perf_event *event) 8822 { 8823 int err; 8824 bool is_retprobe; 8825 8826 if (event->attr.type != perf_kprobe.type) 8827 return -ENOENT; 8828 8829 if (!capable(CAP_SYS_ADMIN)) 8830 return -EACCES; 8831 8832 /* 8833 * no branch sampling for probe events 8834 */ 8835 if (has_branch_stack(event)) 8836 return -EOPNOTSUPP; 8837 8838 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8839 err = perf_kprobe_init(event, is_retprobe); 8840 if (err) 8841 return err; 8842 8843 event->destroy = perf_kprobe_destroy; 8844 8845 return 0; 8846 } 8847 #endif /* CONFIG_KPROBE_EVENTS */ 8848 8849 #ifdef CONFIG_UPROBE_EVENTS 8850 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8851 8852 static struct attribute *uprobe_attrs[] = { 8853 &format_attr_retprobe.attr, 8854 &format_attr_ref_ctr_offset.attr, 8855 NULL, 8856 }; 8857 8858 static struct attribute_group uprobe_format_group = { 8859 .name = "format", 8860 .attrs = uprobe_attrs, 8861 }; 8862 8863 static const struct attribute_group *uprobe_attr_groups[] = { 8864 &uprobe_format_group, 8865 NULL, 8866 }; 8867 8868 static int perf_uprobe_event_init(struct perf_event *event); 8869 static struct pmu perf_uprobe = { 8870 .task_ctx_nr = perf_sw_context, 8871 .event_init = perf_uprobe_event_init, 8872 .add = perf_trace_add, 8873 .del = perf_trace_del, 8874 .start = perf_swevent_start, 8875 .stop = perf_swevent_stop, 8876 .read = perf_swevent_read, 8877 .attr_groups = uprobe_attr_groups, 8878 }; 8879 8880 static int perf_uprobe_event_init(struct perf_event *event) 8881 { 8882 int err; 8883 unsigned long ref_ctr_offset; 8884 bool is_retprobe; 8885 8886 if (event->attr.type != perf_uprobe.type) 8887 return -ENOENT; 8888 8889 if (!capable(CAP_SYS_ADMIN)) 8890 return -EACCES; 8891 8892 /* 8893 * no branch sampling for probe events 8894 */ 8895 if (has_branch_stack(event)) 8896 return -EOPNOTSUPP; 8897 8898 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8899 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8900 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8901 if (err) 8902 return err; 8903 8904 event->destroy = perf_uprobe_destroy; 8905 8906 return 0; 8907 } 8908 #endif /* CONFIG_UPROBE_EVENTS */ 8909 8910 static inline void perf_tp_register(void) 8911 { 8912 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8913 #ifdef CONFIG_KPROBE_EVENTS 8914 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8915 #endif 8916 #ifdef CONFIG_UPROBE_EVENTS 8917 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8918 #endif 8919 } 8920 8921 static void perf_event_free_filter(struct perf_event *event) 8922 { 8923 ftrace_profile_free_filter(event); 8924 } 8925 8926 #ifdef CONFIG_BPF_SYSCALL 8927 static void bpf_overflow_handler(struct perf_event *event, 8928 struct perf_sample_data *data, 8929 struct pt_regs *regs) 8930 { 8931 struct bpf_perf_event_data_kern ctx = { 8932 .data = data, 8933 .event = event, 8934 }; 8935 int ret = 0; 8936 8937 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8938 preempt_disable(); 8939 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8940 goto out; 8941 rcu_read_lock(); 8942 ret = BPF_PROG_RUN(event->prog, &ctx); 8943 rcu_read_unlock(); 8944 out: 8945 __this_cpu_dec(bpf_prog_active); 8946 preempt_enable(); 8947 if (!ret) 8948 return; 8949 8950 event->orig_overflow_handler(event, data, regs); 8951 } 8952 8953 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8954 { 8955 struct bpf_prog *prog; 8956 8957 if (event->overflow_handler_context) 8958 /* hw breakpoint or kernel counter */ 8959 return -EINVAL; 8960 8961 if (event->prog) 8962 return -EEXIST; 8963 8964 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8965 if (IS_ERR(prog)) 8966 return PTR_ERR(prog); 8967 8968 event->prog = prog; 8969 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8970 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8971 return 0; 8972 } 8973 8974 static void perf_event_free_bpf_handler(struct perf_event *event) 8975 { 8976 struct bpf_prog *prog = event->prog; 8977 8978 if (!prog) 8979 return; 8980 8981 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8982 event->prog = NULL; 8983 bpf_prog_put(prog); 8984 } 8985 #else 8986 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8987 { 8988 return -EOPNOTSUPP; 8989 } 8990 static void perf_event_free_bpf_handler(struct perf_event *event) 8991 { 8992 } 8993 #endif 8994 8995 /* 8996 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8997 * with perf_event_open() 8998 */ 8999 static inline bool perf_event_is_tracing(struct perf_event *event) 9000 { 9001 if (event->pmu == &perf_tracepoint) 9002 return true; 9003 #ifdef CONFIG_KPROBE_EVENTS 9004 if (event->pmu == &perf_kprobe) 9005 return true; 9006 #endif 9007 #ifdef CONFIG_UPROBE_EVENTS 9008 if (event->pmu == &perf_uprobe) 9009 return true; 9010 #endif 9011 return false; 9012 } 9013 9014 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9015 { 9016 bool is_kprobe, is_tracepoint, is_syscall_tp; 9017 struct bpf_prog *prog; 9018 int ret; 9019 9020 if (!perf_event_is_tracing(event)) 9021 return perf_event_set_bpf_handler(event, prog_fd); 9022 9023 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9024 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9025 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9026 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9027 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9028 return -EINVAL; 9029 9030 prog = bpf_prog_get(prog_fd); 9031 if (IS_ERR(prog)) 9032 return PTR_ERR(prog); 9033 9034 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9035 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9036 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9037 /* valid fd, but invalid bpf program type */ 9038 bpf_prog_put(prog); 9039 return -EINVAL; 9040 } 9041 9042 /* Kprobe override only works for kprobes, not uprobes. */ 9043 if (prog->kprobe_override && 9044 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9045 bpf_prog_put(prog); 9046 return -EINVAL; 9047 } 9048 9049 if (is_tracepoint || is_syscall_tp) { 9050 int off = trace_event_get_offsets(event->tp_event); 9051 9052 if (prog->aux->max_ctx_offset > off) { 9053 bpf_prog_put(prog); 9054 return -EACCES; 9055 } 9056 } 9057 9058 ret = perf_event_attach_bpf_prog(event, prog); 9059 if (ret) 9060 bpf_prog_put(prog); 9061 return ret; 9062 } 9063 9064 static void perf_event_free_bpf_prog(struct perf_event *event) 9065 { 9066 if (!perf_event_is_tracing(event)) { 9067 perf_event_free_bpf_handler(event); 9068 return; 9069 } 9070 perf_event_detach_bpf_prog(event); 9071 } 9072 9073 #else 9074 9075 static inline void perf_tp_register(void) 9076 { 9077 } 9078 9079 static void perf_event_free_filter(struct perf_event *event) 9080 { 9081 } 9082 9083 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9084 { 9085 return -ENOENT; 9086 } 9087 9088 static void perf_event_free_bpf_prog(struct perf_event *event) 9089 { 9090 } 9091 #endif /* CONFIG_EVENT_TRACING */ 9092 9093 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9094 void perf_bp_event(struct perf_event *bp, void *data) 9095 { 9096 struct perf_sample_data sample; 9097 struct pt_regs *regs = data; 9098 9099 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9100 9101 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9102 perf_swevent_event(bp, 1, &sample, regs); 9103 } 9104 #endif 9105 9106 /* 9107 * Allocate a new address filter 9108 */ 9109 static struct perf_addr_filter * 9110 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9111 { 9112 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9113 struct perf_addr_filter *filter; 9114 9115 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9116 if (!filter) 9117 return NULL; 9118 9119 INIT_LIST_HEAD(&filter->entry); 9120 list_add_tail(&filter->entry, filters); 9121 9122 return filter; 9123 } 9124 9125 static void free_filters_list(struct list_head *filters) 9126 { 9127 struct perf_addr_filter *filter, *iter; 9128 9129 list_for_each_entry_safe(filter, iter, filters, entry) { 9130 path_put(&filter->path); 9131 list_del(&filter->entry); 9132 kfree(filter); 9133 } 9134 } 9135 9136 /* 9137 * Free existing address filters and optionally install new ones 9138 */ 9139 static void perf_addr_filters_splice(struct perf_event *event, 9140 struct list_head *head) 9141 { 9142 unsigned long flags; 9143 LIST_HEAD(list); 9144 9145 if (!has_addr_filter(event)) 9146 return; 9147 9148 /* don't bother with children, they don't have their own filters */ 9149 if (event->parent) 9150 return; 9151 9152 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9153 9154 list_splice_init(&event->addr_filters.list, &list); 9155 if (head) 9156 list_splice(head, &event->addr_filters.list); 9157 9158 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9159 9160 free_filters_list(&list); 9161 } 9162 9163 /* 9164 * Scan through mm's vmas and see if one of them matches the 9165 * @filter; if so, adjust filter's address range. 9166 * Called with mm::mmap_sem down for reading. 9167 */ 9168 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9169 struct mm_struct *mm, 9170 struct perf_addr_filter_range *fr) 9171 { 9172 struct vm_area_struct *vma; 9173 9174 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9175 if (!vma->vm_file) 9176 continue; 9177 9178 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9179 return; 9180 } 9181 } 9182 9183 /* 9184 * Update event's address range filters based on the 9185 * task's existing mappings, if any. 9186 */ 9187 static void perf_event_addr_filters_apply(struct perf_event *event) 9188 { 9189 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9190 struct task_struct *task = READ_ONCE(event->ctx->task); 9191 struct perf_addr_filter *filter; 9192 struct mm_struct *mm = NULL; 9193 unsigned int count = 0; 9194 unsigned long flags; 9195 9196 /* 9197 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9198 * will stop on the parent's child_mutex that our caller is also holding 9199 */ 9200 if (task == TASK_TOMBSTONE) 9201 return; 9202 9203 if (ifh->nr_file_filters) { 9204 mm = get_task_mm(event->ctx->task); 9205 if (!mm) 9206 goto restart; 9207 9208 down_read(&mm->mmap_sem); 9209 } 9210 9211 raw_spin_lock_irqsave(&ifh->lock, flags); 9212 list_for_each_entry(filter, &ifh->list, entry) { 9213 if (filter->path.dentry) { 9214 /* 9215 * Adjust base offset if the filter is associated to a 9216 * binary that needs to be mapped: 9217 */ 9218 event->addr_filter_ranges[count].start = 0; 9219 event->addr_filter_ranges[count].size = 0; 9220 9221 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9222 } else { 9223 event->addr_filter_ranges[count].start = filter->offset; 9224 event->addr_filter_ranges[count].size = filter->size; 9225 } 9226 9227 count++; 9228 } 9229 9230 event->addr_filters_gen++; 9231 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9232 9233 if (ifh->nr_file_filters) { 9234 up_read(&mm->mmap_sem); 9235 9236 mmput(mm); 9237 } 9238 9239 restart: 9240 perf_event_stop(event, 1); 9241 } 9242 9243 /* 9244 * Address range filtering: limiting the data to certain 9245 * instruction address ranges. Filters are ioctl()ed to us from 9246 * userspace as ascii strings. 9247 * 9248 * Filter string format: 9249 * 9250 * ACTION RANGE_SPEC 9251 * where ACTION is one of the 9252 * * "filter": limit the trace to this region 9253 * * "start": start tracing from this address 9254 * * "stop": stop tracing at this address/region; 9255 * RANGE_SPEC is 9256 * * for kernel addresses: <start address>[/<size>] 9257 * * for object files: <start address>[/<size>]@</path/to/object/file> 9258 * 9259 * if <size> is not specified or is zero, the range is treated as a single 9260 * address; not valid for ACTION=="filter". 9261 */ 9262 enum { 9263 IF_ACT_NONE = -1, 9264 IF_ACT_FILTER, 9265 IF_ACT_START, 9266 IF_ACT_STOP, 9267 IF_SRC_FILE, 9268 IF_SRC_KERNEL, 9269 IF_SRC_FILEADDR, 9270 IF_SRC_KERNELADDR, 9271 }; 9272 9273 enum { 9274 IF_STATE_ACTION = 0, 9275 IF_STATE_SOURCE, 9276 IF_STATE_END, 9277 }; 9278 9279 static const match_table_t if_tokens = { 9280 { IF_ACT_FILTER, "filter" }, 9281 { IF_ACT_START, "start" }, 9282 { IF_ACT_STOP, "stop" }, 9283 { IF_SRC_FILE, "%u/%u@%s" }, 9284 { IF_SRC_KERNEL, "%u/%u" }, 9285 { IF_SRC_FILEADDR, "%u@%s" }, 9286 { IF_SRC_KERNELADDR, "%u" }, 9287 { IF_ACT_NONE, NULL }, 9288 }; 9289 9290 /* 9291 * Address filter string parser 9292 */ 9293 static int 9294 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9295 struct list_head *filters) 9296 { 9297 struct perf_addr_filter *filter = NULL; 9298 char *start, *orig, *filename = NULL; 9299 substring_t args[MAX_OPT_ARGS]; 9300 int state = IF_STATE_ACTION, token; 9301 unsigned int kernel = 0; 9302 int ret = -EINVAL; 9303 9304 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9305 if (!fstr) 9306 return -ENOMEM; 9307 9308 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9309 static const enum perf_addr_filter_action_t actions[] = { 9310 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9311 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9312 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9313 }; 9314 ret = -EINVAL; 9315 9316 if (!*start) 9317 continue; 9318 9319 /* filter definition begins */ 9320 if (state == IF_STATE_ACTION) { 9321 filter = perf_addr_filter_new(event, filters); 9322 if (!filter) 9323 goto fail; 9324 } 9325 9326 token = match_token(start, if_tokens, args); 9327 switch (token) { 9328 case IF_ACT_FILTER: 9329 case IF_ACT_START: 9330 case IF_ACT_STOP: 9331 if (state != IF_STATE_ACTION) 9332 goto fail; 9333 9334 filter->action = actions[token]; 9335 state = IF_STATE_SOURCE; 9336 break; 9337 9338 case IF_SRC_KERNELADDR: 9339 case IF_SRC_KERNEL: 9340 kernel = 1; 9341 /* fall through */ 9342 9343 case IF_SRC_FILEADDR: 9344 case IF_SRC_FILE: 9345 if (state != IF_STATE_SOURCE) 9346 goto fail; 9347 9348 *args[0].to = 0; 9349 ret = kstrtoul(args[0].from, 0, &filter->offset); 9350 if (ret) 9351 goto fail; 9352 9353 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9354 *args[1].to = 0; 9355 ret = kstrtoul(args[1].from, 0, &filter->size); 9356 if (ret) 9357 goto fail; 9358 } 9359 9360 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9361 int fpos = token == IF_SRC_FILE ? 2 : 1; 9362 9363 filename = match_strdup(&args[fpos]); 9364 if (!filename) { 9365 ret = -ENOMEM; 9366 goto fail; 9367 } 9368 } 9369 9370 state = IF_STATE_END; 9371 break; 9372 9373 default: 9374 goto fail; 9375 } 9376 9377 /* 9378 * Filter definition is fully parsed, validate and install it. 9379 * Make sure that it doesn't contradict itself or the event's 9380 * attribute. 9381 */ 9382 if (state == IF_STATE_END) { 9383 ret = -EINVAL; 9384 if (kernel && event->attr.exclude_kernel) 9385 goto fail; 9386 9387 /* 9388 * ACTION "filter" must have a non-zero length region 9389 * specified. 9390 */ 9391 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9392 !filter->size) 9393 goto fail; 9394 9395 if (!kernel) { 9396 if (!filename) 9397 goto fail; 9398 9399 /* 9400 * For now, we only support file-based filters 9401 * in per-task events; doing so for CPU-wide 9402 * events requires additional context switching 9403 * trickery, since same object code will be 9404 * mapped at different virtual addresses in 9405 * different processes. 9406 */ 9407 ret = -EOPNOTSUPP; 9408 if (!event->ctx->task) 9409 goto fail_free_name; 9410 9411 /* look up the path and grab its inode */ 9412 ret = kern_path(filename, LOOKUP_FOLLOW, 9413 &filter->path); 9414 if (ret) 9415 goto fail_free_name; 9416 9417 kfree(filename); 9418 filename = NULL; 9419 9420 ret = -EINVAL; 9421 if (!filter->path.dentry || 9422 !S_ISREG(d_inode(filter->path.dentry) 9423 ->i_mode)) 9424 goto fail; 9425 9426 event->addr_filters.nr_file_filters++; 9427 } 9428 9429 /* ready to consume more filters */ 9430 state = IF_STATE_ACTION; 9431 filter = NULL; 9432 } 9433 } 9434 9435 if (state != IF_STATE_ACTION) 9436 goto fail; 9437 9438 kfree(orig); 9439 9440 return 0; 9441 9442 fail_free_name: 9443 kfree(filename); 9444 fail: 9445 free_filters_list(filters); 9446 kfree(orig); 9447 9448 return ret; 9449 } 9450 9451 static int 9452 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9453 { 9454 LIST_HEAD(filters); 9455 int ret; 9456 9457 /* 9458 * Since this is called in perf_ioctl() path, we're already holding 9459 * ctx::mutex. 9460 */ 9461 lockdep_assert_held(&event->ctx->mutex); 9462 9463 if (WARN_ON_ONCE(event->parent)) 9464 return -EINVAL; 9465 9466 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9467 if (ret) 9468 goto fail_clear_files; 9469 9470 ret = event->pmu->addr_filters_validate(&filters); 9471 if (ret) 9472 goto fail_free_filters; 9473 9474 /* remove existing filters, if any */ 9475 perf_addr_filters_splice(event, &filters); 9476 9477 /* install new filters */ 9478 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9479 9480 return ret; 9481 9482 fail_free_filters: 9483 free_filters_list(&filters); 9484 9485 fail_clear_files: 9486 event->addr_filters.nr_file_filters = 0; 9487 9488 return ret; 9489 } 9490 9491 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9492 { 9493 int ret = -EINVAL; 9494 char *filter_str; 9495 9496 filter_str = strndup_user(arg, PAGE_SIZE); 9497 if (IS_ERR(filter_str)) 9498 return PTR_ERR(filter_str); 9499 9500 #ifdef CONFIG_EVENT_TRACING 9501 if (perf_event_is_tracing(event)) { 9502 struct perf_event_context *ctx = event->ctx; 9503 9504 /* 9505 * Beware, here be dragons!! 9506 * 9507 * the tracepoint muck will deadlock against ctx->mutex, but 9508 * the tracepoint stuff does not actually need it. So 9509 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9510 * already have a reference on ctx. 9511 * 9512 * This can result in event getting moved to a different ctx, 9513 * but that does not affect the tracepoint state. 9514 */ 9515 mutex_unlock(&ctx->mutex); 9516 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9517 mutex_lock(&ctx->mutex); 9518 } else 9519 #endif 9520 if (has_addr_filter(event)) 9521 ret = perf_event_set_addr_filter(event, filter_str); 9522 9523 kfree(filter_str); 9524 return ret; 9525 } 9526 9527 /* 9528 * hrtimer based swevent callback 9529 */ 9530 9531 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9532 { 9533 enum hrtimer_restart ret = HRTIMER_RESTART; 9534 struct perf_sample_data data; 9535 struct pt_regs *regs; 9536 struct perf_event *event; 9537 u64 period; 9538 9539 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9540 9541 if (event->state != PERF_EVENT_STATE_ACTIVE) 9542 return HRTIMER_NORESTART; 9543 9544 event->pmu->read(event); 9545 9546 perf_sample_data_init(&data, 0, event->hw.last_period); 9547 regs = get_irq_regs(); 9548 9549 if (regs && !perf_exclude_event(event, regs)) { 9550 if (!(event->attr.exclude_idle && is_idle_task(current))) 9551 if (__perf_event_overflow(event, 1, &data, regs)) 9552 ret = HRTIMER_NORESTART; 9553 } 9554 9555 period = max_t(u64, 10000, event->hw.sample_period); 9556 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9557 9558 return ret; 9559 } 9560 9561 static void perf_swevent_start_hrtimer(struct perf_event *event) 9562 { 9563 struct hw_perf_event *hwc = &event->hw; 9564 s64 period; 9565 9566 if (!is_sampling_event(event)) 9567 return; 9568 9569 period = local64_read(&hwc->period_left); 9570 if (period) { 9571 if (period < 0) 9572 period = 10000; 9573 9574 local64_set(&hwc->period_left, 0); 9575 } else { 9576 period = max_t(u64, 10000, hwc->sample_period); 9577 } 9578 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9579 HRTIMER_MODE_REL_PINNED); 9580 } 9581 9582 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9583 { 9584 struct hw_perf_event *hwc = &event->hw; 9585 9586 if (is_sampling_event(event)) { 9587 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9588 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9589 9590 hrtimer_cancel(&hwc->hrtimer); 9591 } 9592 } 9593 9594 static void perf_swevent_init_hrtimer(struct perf_event *event) 9595 { 9596 struct hw_perf_event *hwc = &event->hw; 9597 9598 if (!is_sampling_event(event)) 9599 return; 9600 9601 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9602 hwc->hrtimer.function = perf_swevent_hrtimer; 9603 9604 /* 9605 * Since hrtimers have a fixed rate, we can do a static freq->period 9606 * mapping and avoid the whole period adjust feedback stuff. 9607 */ 9608 if (event->attr.freq) { 9609 long freq = event->attr.sample_freq; 9610 9611 event->attr.sample_period = NSEC_PER_SEC / freq; 9612 hwc->sample_period = event->attr.sample_period; 9613 local64_set(&hwc->period_left, hwc->sample_period); 9614 hwc->last_period = hwc->sample_period; 9615 event->attr.freq = 0; 9616 } 9617 } 9618 9619 /* 9620 * Software event: cpu wall time clock 9621 */ 9622 9623 static void cpu_clock_event_update(struct perf_event *event) 9624 { 9625 s64 prev; 9626 u64 now; 9627 9628 now = local_clock(); 9629 prev = local64_xchg(&event->hw.prev_count, now); 9630 local64_add(now - prev, &event->count); 9631 } 9632 9633 static void cpu_clock_event_start(struct perf_event *event, int flags) 9634 { 9635 local64_set(&event->hw.prev_count, local_clock()); 9636 perf_swevent_start_hrtimer(event); 9637 } 9638 9639 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9640 { 9641 perf_swevent_cancel_hrtimer(event); 9642 cpu_clock_event_update(event); 9643 } 9644 9645 static int cpu_clock_event_add(struct perf_event *event, int flags) 9646 { 9647 if (flags & PERF_EF_START) 9648 cpu_clock_event_start(event, flags); 9649 perf_event_update_userpage(event); 9650 9651 return 0; 9652 } 9653 9654 static void cpu_clock_event_del(struct perf_event *event, int flags) 9655 { 9656 cpu_clock_event_stop(event, flags); 9657 } 9658 9659 static void cpu_clock_event_read(struct perf_event *event) 9660 { 9661 cpu_clock_event_update(event); 9662 } 9663 9664 static int cpu_clock_event_init(struct perf_event *event) 9665 { 9666 if (event->attr.type != PERF_TYPE_SOFTWARE) 9667 return -ENOENT; 9668 9669 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9670 return -ENOENT; 9671 9672 /* 9673 * no branch sampling for software events 9674 */ 9675 if (has_branch_stack(event)) 9676 return -EOPNOTSUPP; 9677 9678 perf_swevent_init_hrtimer(event); 9679 9680 return 0; 9681 } 9682 9683 static struct pmu perf_cpu_clock = { 9684 .task_ctx_nr = perf_sw_context, 9685 9686 .capabilities = PERF_PMU_CAP_NO_NMI, 9687 9688 .event_init = cpu_clock_event_init, 9689 .add = cpu_clock_event_add, 9690 .del = cpu_clock_event_del, 9691 .start = cpu_clock_event_start, 9692 .stop = cpu_clock_event_stop, 9693 .read = cpu_clock_event_read, 9694 }; 9695 9696 /* 9697 * Software event: task time clock 9698 */ 9699 9700 static void task_clock_event_update(struct perf_event *event, u64 now) 9701 { 9702 u64 prev; 9703 s64 delta; 9704 9705 prev = local64_xchg(&event->hw.prev_count, now); 9706 delta = now - prev; 9707 local64_add(delta, &event->count); 9708 } 9709 9710 static void task_clock_event_start(struct perf_event *event, int flags) 9711 { 9712 local64_set(&event->hw.prev_count, event->ctx->time); 9713 perf_swevent_start_hrtimer(event); 9714 } 9715 9716 static void task_clock_event_stop(struct perf_event *event, int flags) 9717 { 9718 perf_swevent_cancel_hrtimer(event); 9719 task_clock_event_update(event, event->ctx->time); 9720 } 9721 9722 static int task_clock_event_add(struct perf_event *event, int flags) 9723 { 9724 if (flags & PERF_EF_START) 9725 task_clock_event_start(event, flags); 9726 perf_event_update_userpage(event); 9727 9728 return 0; 9729 } 9730 9731 static void task_clock_event_del(struct perf_event *event, int flags) 9732 { 9733 task_clock_event_stop(event, PERF_EF_UPDATE); 9734 } 9735 9736 static void task_clock_event_read(struct perf_event *event) 9737 { 9738 u64 now = perf_clock(); 9739 u64 delta = now - event->ctx->timestamp; 9740 u64 time = event->ctx->time + delta; 9741 9742 task_clock_event_update(event, time); 9743 } 9744 9745 static int task_clock_event_init(struct perf_event *event) 9746 { 9747 if (event->attr.type != PERF_TYPE_SOFTWARE) 9748 return -ENOENT; 9749 9750 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9751 return -ENOENT; 9752 9753 /* 9754 * no branch sampling for software events 9755 */ 9756 if (has_branch_stack(event)) 9757 return -EOPNOTSUPP; 9758 9759 perf_swevent_init_hrtimer(event); 9760 9761 return 0; 9762 } 9763 9764 static struct pmu perf_task_clock = { 9765 .task_ctx_nr = perf_sw_context, 9766 9767 .capabilities = PERF_PMU_CAP_NO_NMI, 9768 9769 .event_init = task_clock_event_init, 9770 .add = task_clock_event_add, 9771 .del = task_clock_event_del, 9772 .start = task_clock_event_start, 9773 .stop = task_clock_event_stop, 9774 .read = task_clock_event_read, 9775 }; 9776 9777 static void perf_pmu_nop_void(struct pmu *pmu) 9778 { 9779 } 9780 9781 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9782 { 9783 } 9784 9785 static int perf_pmu_nop_int(struct pmu *pmu) 9786 { 9787 return 0; 9788 } 9789 9790 static int perf_event_nop_int(struct perf_event *event, u64 value) 9791 { 9792 return 0; 9793 } 9794 9795 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9796 9797 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9798 { 9799 __this_cpu_write(nop_txn_flags, flags); 9800 9801 if (flags & ~PERF_PMU_TXN_ADD) 9802 return; 9803 9804 perf_pmu_disable(pmu); 9805 } 9806 9807 static int perf_pmu_commit_txn(struct pmu *pmu) 9808 { 9809 unsigned int flags = __this_cpu_read(nop_txn_flags); 9810 9811 __this_cpu_write(nop_txn_flags, 0); 9812 9813 if (flags & ~PERF_PMU_TXN_ADD) 9814 return 0; 9815 9816 perf_pmu_enable(pmu); 9817 return 0; 9818 } 9819 9820 static void perf_pmu_cancel_txn(struct pmu *pmu) 9821 { 9822 unsigned int flags = __this_cpu_read(nop_txn_flags); 9823 9824 __this_cpu_write(nop_txn_flags, 0); 9825 9826 if (flags & ~PERF_PMU_TXN_ADD) 9827 return; 9828 9829 perf_pmu_enable(pmu); 9830 } 9831 9832 static int perf_event_idx_default(struct perf_event *event) 9833 { 9834 return 0; 9835 } 9836 9837 /* 9838 * Ensures all contexts with the same task_ctx_nr have the same 9839 * pmu_cpu_context too. 9840 */ 9841 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9842 { 9843 struct pmu *pmu; 9844 9845 if (ctxn < 0) 9846 return NULL; 9847 9848 list_for_each_entry(pmu, &pmus, entry) { 9849 if (pmu->task_ctx_nr == ctxn) 9850 return pmu->pmu_cpu_context; 9851 } 9852 9853 return NULL; 9854 } 9855 9856 static void free_pmu_context(struct pmu *pmu) 9857 { 9858 /* 9859 * Static contexts such as perf_sw_context have a global lifetime 9860 * and may be shared between different PMUs. Avoid freeing them 9861 * when a single PMU is going away. 9862 */ 9863 if (pmu->task_ctx_nr > perf_invalid_context) 9864 return; 9865 9866 free_percpu(pmu->pmu_cpu_context); 9867 } 9868 9869 /* 9870 * Let userspace know that this PMU supports address range filtering: 9871 */ 9872 static ssize_t nr_addr_filters_show(struct device *dev, 9873 struct device_attribute *attr, 9874 char *page) 9875 { 9876 struct pmu *pmu = dev_get_drvdata(dev); 9877 9878 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9879 } 9880 DEVICE_ATTR_RO(nr_addr_filters); 9881 9882 static struct idr pmu_idr; 9883 9884 static ssize_t 9885 type_show(struct device *dev, struct device_attribute *attr, char *page) 9886 { 9887 struct pmu *pmu = dev_get_drvdata(dev); 9888 9889 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9890 } 9891 static DEVICE_ATTR_RO(type); 9892 9893 static ssize_t 9894 perf_event_mux_interval_ms_show(struct device *dev, 9895 struct device_attribute *attr, 9896 char *page) 9897 { 9898 struct pmu *pmu = dev_get_drvdata(dev); 9899 9900 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9901 } 9902 9903 static DEFINE_MUTEX(mux_interval_mutex); 9904 9905 static ssize_t 9906 perf_event_mux_interval_ms_store(struct device *dev, 9907 struct device_attribute *attr, 9908 const char *buf, size_t count) 9909 { 9910 struct pmu *pmu = dev_get_drvdata(dev); 9911 int timer, cpu, ret; 9912 9913 ret = kstrtoint(buf, 0, &timer); 9914 if (ret) 9915 return ret; 9916 9917 if (timer < 1) 9918 return -EINVAL; 9919 9920 /* same value, noting to do */ 9921 if (timer == pmu->hrtimer_interval_ms) 9922 return count; 9923 9924 mutex_lock(&mux_interval_mutex); 9925 pmu->hrtimer_interval_ms = timer; 9926 9927 /* update all cpuctx for this PMU */ 9928 cpus_read_lock(); 9929 for_each_online_cpu(cpu) { 9930 struct perf_cpu_context *cpuctx; 9931 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9932 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9933 9934 cpu_function_call(cpu, 9935 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9936 } 9937 cpus_read_unlock(); 9938 mutex_unlock(&mux_interval_mutex); 9939 9940 return count; 9941 } 9942 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9943 9944 static struct attribute *pmu_dev_attrs[] = { 9945 &dev_attr_type.attr, 9946 &dev_attr_perf_event_mux_interval_ms.attr, 9947 NULL, 9948 }; 9949 ATTRIBUTE_GROUPS(pmu_dev); 9950 9951 static int pmu_bus_running; 9952 static struct bus_type pmu_bus = { 9953 .name = "event_source", 9954 .dev_groups = pmu_dev_groups, 9955 }; 9956 9957 static void pmu_dev_release(struct device *dev) 9958 { 9959 kfree(dev); 9960 } 9961 9962 static int pmu_dev_alloc(struct pmu *pmu) 9963 { 9964 int ret = -ENOMEM; 9965 9966 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9967 if (!pmu->dev) 9968 goto out; 9969 9970 pmu->dev->groups = pmu->attr_groups; 9971 device_initialize(pmu->dev); 9972 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9973 if (ret) 9974 goto free_dev; 9975 9976 dev_set_drvdata(pmu->dev, pmu); 9977 pmu->dev->bus = &pmu_bus; 9978 pmu->dev->release = pmu_dev_release; 9979 ret = device_add(pmu->dev); 9980 if (ret) 9981 goto free_dev; 9982 9983 /* For PMUs with address filters, throw in an extra attribute: */ 9984 if (pmu->nr_addr_filters) 9985 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9986 9987 if (ret) 9988 goto del_dev; 9989 9990 if (pmu->attr_update) 9991 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 9992 9993 if (ret) 9994 goto del_dev; 9995 9996 out: 9997 return ret; 9998 9999 del_dev: 10000 device_del(pmu->dev); 10001 10002 free_dev: 10003 put_device(pmu->dev); 10004 goto out; 10005 } 10006 10007 static struct lock_class_key cpuctx_mutex; 10008 static struct lock_class_key cpuctx_lock; 10009 10010 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10011 { 10012 int cpu, ret; 10013 10014 mutex_lock(&pmus_lock); 10015 ret = -ENOMEM; 10016 pmu->pmu_disable_count = alloc_percpu(int); 10017 if (!pmu->pmu_disable_count) 10018 goto unlock; 10019 10020 pmu->type = -1; 10021 if (!name) 10022 goto skip_type; 10023 pmu->name = name; 10024 10025 if (type < 0) { 10026 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 10027 if (type < 0) { 10028 ret = type; 10029 goto free_pdc; 10030 } 10031 } 10032 pmu->type = type; 10033 10034 if (pmu_bus_running) { 10035 ret = pmu_dev_alloc(pmu); 10036 if (ret) 10037 goto free_idr; 10038 } 10039 10040 skip_type: 10041 if (pmu->task_ctx_nr == perf_hw_context) { 10042 static int hw_context_taken = 0; 10043 10044 /* 10045 * Other than systems with heterogeneous CPUs, it never makes 10046 * sense for two PMUs to share perf_hw_context. PMUs which are 10047 * uncore must use perf_invalid_context. 10048 */ 10049 if (WARN_ON_ONCE(hw_context_taken && 10050 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10051 pmu->task_ctx_nr = perf_invalid_context; 10052 10053 hw_context_taken = 1; 10054 } 10055 10056 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10057 if (pmu->pmu_cpu_context) 10058 goto got_cpu_context; 10059 10060 ret = -ENOMEM; 10061 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10062 if (!pmu->pmu_cpu_context) 10063 goto free_dev; 10064 10065 for_each_possible_cpu(cpu) { 10066 struct perf_cpu_context *cpuctx; 10067 10068 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10069 __perf_event_init_context(&cpuctx->ctx); 10070 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10071 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10072 cpuctx->ctx.pmu = pmu; 10073 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10074 10075 __perf_mux_hrtimer_init(cpuctx, cpu); 10076 } 10077 10078 got_cpu_context: 10079 if (!pmu->start_txn) { 10080 if (pmu->pmu_enable) { 10081 /* 10082 * If we have pmu_enable/pmu_disable calls, install 10083 * transaction stubs that use that to try and batch 10084 * hardware accesses. 10085 */ 10086 pmu->start_txn = perf_pmu_start_txn; 10087 pmu->commit_txn = perf_pmu_commit_txn; 10088 pmu->cancel_txn = perf_pmu_cancel_txn; 10089 } else { 10090 pmu->start_txn = perf_pmu_nop_txn; 10091 pmu->commit_txn = perf_pmu_nop_int; 10092 pmu->cancel_txn = perf_pmu_nop_void; 10093 } 10094 } 10095 10096 if (!pmu->pmu_enable) { 10097 pmu->pmu_enable = perf_pmu_nop_void; 10098 pmu->pmu_disable = perf_pmu_nop_void; 10099 } 10100 10101 if (!pmu->check_period) 10102 pmu->check_period = perf_event_nop_int; 10103 10104 if (!pmu->event_idx) 10105 pmu->event_idx = perf_event_idx_default; 10106 10107 list_add_rcu(&pmu->entry, &pmus); 10108 atomic_set(&pmu->exclusive_cnt, 0); 10109 ret = 0; 10110 unlock: 10111 mutex_unlock(&pmus_lock); 10112 10113 return ret; 10114 10115 free_dev: 10116 device_del(pmu->dev); 10117 put_device(pmu->dev); 10118 10119 free_idr: 10120 if (pmu->type >= PERF_TYPE_MAX) 10121 idr_remove(&pmu_idr, pmu->type); 10122 10123 free_pdc: 10124 free_percpu(pmu->pmu_disable_count); 10125 goto unlock; 10126 } 10127 EXPORT_SYMBOL_GPL(perf_pmu_register); 10128 10129 void perf_pmu_unregister(struct pmu *pmu) 10130 { 10131 mutex_lock(&pmus_lock); 10132 list_del_rcu(&pmu->entry); 10133 10134 /* 10135 * We dereference the pmu list under both SRCU and regular RCU, so 10136 * synchronize against both of those. 10137 */ 10138 synchronize_srcu(&pmus_srcu); 10139 synchronize_rcu(); 10140 10141 free_percpu(pmu->pmu_disable_count); 10142 if (pmu->type >= PERF_TYPE_MAX) 10143 idr_remove(&pmu_idr, pmu->type); 10144 if (pmu_bus_running) { 10145 if (pmu->nr_addr_filters) 10146 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10147 device_del(pmu->dev); 10148 put_device(pmu->dev); 10149 } 10150 free_pmu_context(pmu); 10151 mutex_unlock(&pmus_lock); 10152 } 10153 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10154 10155 static inline bool has_extended_regs(struct perf_event *event) 10156 { 10157 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10158 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10159 } 10160 10161 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10162 { 10163 struct perf_event_context *ctx = NULL; 10164 int ret; 10165 10166 if (!try_module_get(pmu->module)) 10167 return -ENODEV; 10168 10169 /* 10170 * A number of pmu->event_init() methods iterate the sibling_list to, 10171 * for example, validate if the group fits on the PMU. Therefore, 10172 * if this is a sibling event, acquire the ctx->mutex to protect 10173 * the sibling_list. 10174 */ 10175 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10176 /* 10177 * This ctx->mutex can nest when we're called through 10178 * inheritance. See the perf_event_ctx_lock_nested() comment. 10179 */ 10180 ctx = perf_event_ctx_lock_nested(event->group_leader, 10181 SINGLE_DEPTH_NESTING); 10182 BUG_ON(!ctx); 10183 } 10184 10185 event->pmu = pmu; 10186 ret = pmu->event_init(event); 10187 10188 if (ctx) 10189 perf_event_ctx_unlock(event->group_leader, ctx); 10190 10191 if (!ret) { 10192 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10193 has_extended_regs(event)) 10194 ret = -EOPNOTSUPP; 10195 10196 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10197 event_has_any_exclude_flag(event)) 10198 ret = -EINVAL; 10199 10200 if (ret && event->destroy) 10201 event->destroy(event); 10202 } 10203 10204 if (ret) 10205 module_put(pmu->module); 10206 10207 return ret; 10208 } 10209 10210 static struct pmu *perf_init_event(struct perf_event *event) 10211 { 10212 struct pmu *pmu; 10213 int idx; 10214 int ret; 10215 10216 idx = srcu_read_lock(&pmus_srcu); 10217 10218 /* Try parent's PMU first: */ 10219 if (event->parent && event->parent->pmu) { 10220 pmu = event->parent->pmu; 10221 ret = perf_try_init_event(pmu, event); 10222 if (!ret) 10223 goto unlock; 10224 } 10225 10226 rcu_read_lock(); 10227 pmu = idr_find(&pmu_idr, event->attr.type); 10228 rcu_read_unlock(); 10229 if (pmu) { 10230 ret = perf_try_init_event(pmu, event); 10231 if (ret) 10232 pmu = ERR_PTR(ret); 10233 goto unlock; 10234 } 10235 10236 list_for_each_entry_rcu(pmu, &pmus, entry) { 10237 ret = perf_try_init_event(pmu, event); 10238 if (!ret) 10239 goto unlock; 10240 10241 if (ret != -ENOENT) { 10242 pmu = ERR_PTR(ret); 10243 goto unlock; 10244 } 10245 } 10246 pmu = ERR_PTR(-ENOENT); 10247 unlock: 10248 srcu_read_unlock(&pmus_srcu, idx); 10249 10250 return pmu; 10251 } 10252 10253 static void attach_sb_event(struct perf_event *event) 10254 { 10255 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10256 10257 raw_spin_lock(&pel->lock); 10258 list_add_rcu(&event->sb_list, &pel->list); 10259 raw_spin_unlock(&pel->lock); 10260 } 10261 10262 /* 10263 * We keep a list of all !task (and therefore per-cpu) events 10264 * that need to receive side-band records. 10265 * 10266 * This avoids having to scan all the various PMU per-cpu contexts 10267 * looking for them. 10268 */ 10269 static void account_pmu_sb_event(struct perf_event *event) 10270 { 10271 if (is_sb_event(event)) 10272 attach_sb_event(event); 10273 } 10274 10275 static void account_event_cpu(struct perf_event *event, int cpu) 10276 { 10277 if (event->parent) 10278 return; 10279 10280 if (is_cgroup_event(event)) 10281 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10282 } 10283 10284 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10285 static void account_freq_event_nohz(void) 10286 { 10287 #ifdef CONFIG_NO_HZ_FULL 10288 /* Lock so we don't race with concurrent unaccount */ 10289 spin_lock(&nr_freq_lock); 10290 if (atomic_inc_return(&nr_freq_events) == 1) 10291 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10292 spin_unlock(&nr_freq_lock); 10293 #endif 10294 } 10295 10296 static void account_freq_event(void) 10297 { 10298 if (tick_nohz_full_enabled()) 10299 account_freq_event_nohz(); 10300 else 10301 atomic_inc(&nr_freq_events); 10302 } 10303 10304 10305 static void account_event(struct perf_event *event) 10306 { 10307 bool inc = false; 10308 10309 if (event->parent) 10310 return; 10311 10312 if (event->attach_state & PERF_ATTACH_TASK) 10313 inc = true; 10314 if (event->attr.mmap || event->attr.mmap_data) 10315 atomic_inc(&nr_mmap_events); 10316 if (event->attr.comm) 10317 atomic_inc(&nr_comm_events); 10318 if (event->attr.namespaces) 10319 atomic_inc(&nr_namespaces_events); 10320 if (event->attr.task) 10321 atomic_inc(&nr_task_events); 10322 if (event->attr.freq) 10323 account_freq_event(); 10324 if (event->attr.context_switch) { 10325 atomic_inc(&nr_switch_events); 10326 inc = true; 10327 } 10328 if (has_branch_stack(event)) 10329 inc = true; 10330 if (is_cgroup_event(event)) 10331 inc = true; 10332 if (event->attr.ksymbol) 10333 atomic_inc(&nr_ksymbol_events); 10334 if (event->attr.bpf_event) 10335 atomic_inc(&nr_bpf_events); 10336 10337 if (inc) { 10338 /* 10339 * We need the mutex here because static_branch_enable() 10340 * must complete *before* the perf_sched_count increment 10341 * becomes visible. 10342 */ 10343 if (atomic_inc_not_zero(&perf_sched_count)) 10344 goto enabled; 10345 10346 mutex_lock(&perf_sched_mutex); 10347 if (!atomic_read(&perf_sched_count)) { 10348 static_branch_enable(&perf_sched_events); 10349 /* 10350 * Guarantee that all CPUs observe they key change and 10351 * call the perf scheduling hooks before proceeding to 10352 * install events that need them. 10353 */ 10354 synchronize_rcu(); 10355 } 10356 /* 10357 * Now that we have waited for the sync_sched(), allow further 10358 * increments to by-pass the mutex. 10359 */ 10360 atomic_inc(&perf_sched_count); 10361 mutex_unlock(&perf_sched_mutex); 10362 } 10363 enabled: 10364 10365 account_event_cpu(event, event->cpu); 10366 10367 account_pmu_sb_event(event); 10368 } 10369 10370 /* 10371 * Allocate and initialize an event structure 10372 */ 10373 static struct perf_event * 10374 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10375 struct task_struct *task, 10376 struct perf_event *group_leader, 10377 struct perf_event *parent_event, 10378 perf_overflow_handler_t overflow_handler, 10379 void *context, int cgroup_fd) 10380 { 10381 struct pmu *pmu; 10382 struct perf_event *event; 10383 struct hw_perf_event *hwc; 10384 long err = -EINVAL; 10385 10386 if ((unsigned)cpu >= nr_cpu_ids) { 10387 if (!task || cpu != -1) 10388 return ERR_PTR(-EINVAL); 10389 } 10390 10391 event = kzalloc(sizeof(*event), GFP_KERNEL); 10392 if (!event) 10393 return ERR_PTR(-ENOMEM); 10394 10395 /* 10396 * Single events are their own group leaders, with an 10397 * empty sibling list: 10398 */ 10399 if (!group_leader) 10400 group_leader = event; 10401 10402 mutex_init(&event->child_mutex); 10403 INIT_LIST_HEAD(&event->child_list); 10404 10405 INIT_LIST_HEAD(&event->event_entry); 10406 INIT_LIST_HEAD(&event->sibling_list); 10407 INIT_LIST_HEAD(&event->active_list); 10408 init_event_group(event); 10409 INIT_LIST_HEAD(&event->rb_entry); 10410 INIT_LIST_HEAD(&event->active_entry); 10411 INIT_LIST_HEAD(&event->addr_filters.list); 10412 INIT_HLIST_NODE(&event->hlist_entry); 10413 10414 10415 init_waitqueue_head(&event->waitq); 10416 event->pending_disable = -1; 10417 init_irq_work(&event->pending, perf_pending_event); 10418 10419 mutex_init(&event->mmap_mutex); 10420 raw_spin_lock_init(&event->addr_filters.lock); 10421 10422 atomic_long_set(&event->refcount, 1); 10423 event->cpu = cpu; 10424 event->attr = *attr; 10425 event->group_leader = group_leader; 10426 event->pmu = NULL; 10427 event->oncpu = -1; 10428 10429 event->parent = parent_event; 10430 10431 event->ns = get_pid_ns(task_active_pid_ns(current)); 10432 event->id = atomic64_inc_return(&perf_event_id); 10433 10434 event->state = PERF_EVENT_STATE_INACTIVE; 10435 10436 if (task) { 10437 event->attach_state = PERF_ATTACH_TASK; 10438 /* 10439 * XXX pmu::event_init needs to know what task to account to 10440 * and we cannot use the ctx information because we need the 10441 * pmu before we get a ctx. 10442 */ 10443 get_task_struct(task); 10444 event->hw.target = task; 10445 } 10446 10447 event->clock = &local_clock; 10448 if (parent_event) 10449 event->clock = parent_event->clock; 10450 10451 if (!overflow_handler && parent_event) { 10452 overflow_handler = parent_event->overflow_handler; 10453 context = parent_event->overflow_handler_context; 10454 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10455 if (overflow_handler == bpf_overflow_handler) { 10456 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10457 10458 if (IS_ERR(prog)) { 10459 err = PTR_ERR(prog); 10460 goto err_ns; 10461 } 10462 event->prog = prog; 10463 event->orig_overflow_handler = 10464 parent_event->orig_overflow_handler; 10465 } 10466 #endif 10467 } 10468 10469 if (overflow_handler) { 10470 event->overflow_handler = overflow_handler; 10471 event->overflow_handler_context = context; 10472 } else if (is_write_backward(event)){ 10473 event->overflow_handler = perf_event_output_backward; 10474 event->overflow_handler_context = NULL; 10475 } else { 10476 event->overflow_handler = perf_event_output_forward; 10477 event->overflow_handler_context = NULL; 10478 } 10479 10480 perf_event__state_init(event); 10481 10482 pmu = NULL; 10483 10484 hwc = &event->hw; 10485 hwc->sample_period = attr->sample_period; 10486 if (attr->freq && attr->sample_freq) 10487 hwc->sample_period = 1; 10488 hwc->last_period = hwc->sample_period; 10489 10490 local64_set(&hwc->period_left, hwc->sample_period); 10491 10492 /* 10493 * We currently do not support PERF_SAMPLE_READ on inherited events. 10494 * See perf_output_read(). 10495 */ 10496 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10497 goto err_ns; 10498 10499 if (!has_branch_stack(event)) 10500 event->attr.branch_sample_type = 0; 10501 10502 if (cgroup_fd != -1) { 10503 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10504 if (err) 10505 goto err_ns; 10506 } 10507 10508 pmu = perf_init_event(event); 10509 if (IS_ERR(pmu)) { 10510 err = PTR_ERR(pmu); 10511 goto err_ns; 10512 } 10513 10514 if (event->attr.aux_output && 10515 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 10516 err = -EOPNOTSUPP; 10517 goto err_pmu; 10518 } 10519 10520 err = exclusive_event_init(event); 10521 if (err) 10522 goto err_pmu; 10523 10524 if (has_addr_filter(event)) { 10525 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10526 sizeof(struct perf_addr_filter_range), 10527 GFP_KERNEL); 10528 if (!event->addr_filter_ranges) { 10529 err = -ENOMEM; 10530 goto err_per_task; 10531 } 10532 10533 /* 10534 * Clone the parent's vma offsets: they are valid until exec() 10535 * even if the mm is not shared with the parent. 10536 */ 10537 if (event->parent) { 10538 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10539 10540 raw_spin_lock_irq(&ifh->lock); 10541 memcpy(event->addr_filter_ranges, 10542 event->parent->addr_filter_ranges, 10543 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10544 raw_spin_unlock_irq(&ifh->lock); 10545 } 10546 10547 /* force hw sync on the address filters */ 10548 event->addr_filters_gen = 1; 10549 } 10550 10551 if (!event->parent) { 10552 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10553 err = get_callchain_buffers(attr->sample_max_stack); 10554 if (err) 10555 goto err_addr_filters; 10556 } 10557 } 10558 10559 /* symmetric to unaccount_event() in _free_event() */ 10560 account_event(event); 10561 10562 return event; 10563 10564 err_addr_filters: 10565 kfree(event->addr_filter_ranges); 10566 10567 err_per_task: 10568 exclusive_event_destroy(event); 10569 10570 err_pmu: 10571 if (event->destroy) 10572 event->destroy(event); 10573 module_put(pmu->module); 10574 err_ns: 10575 if (is_cgroup_event(event)) 10576 perf_detach_cgroup(event); 10577 if (event->ns) 10578 put_pid_ns(event->ns); 10579 if (event->hw.target) 10580 put_task_struct(event->hw.target); 10581 kfree(event); 10582 10583 return ERR_PTR(err); 10584 } 10585 10586 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10587 struct perf_event_attr *attr) 10588 { 10589 u32 size; 10590 int ret; 10591 10592 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10593 return -EFAULT; 10594 10595 /* 10596 * zero the full structure, so that a short copy will be nice. 10597 */ 10598 memset(attr, 0, sizeof(*attr)); 10599 10600 ret = get_user(size, &uattr->size); 10601 if (ret) 10602 return ret; 10603 10604 if (size > PAGE_SIZE) /* silly large */ 10605 goto err_size; 10606 10607 if (!size) /* abi compat */ 10608 size = PERF_ATTR_SIZE_VER0; 10609 10610 if (size < PERF_ATTR_SIZE_VER0) 10611 goto err_size; 10612 10613 /* 10614 * If we're handed a bigger struct than we know of, 10615 * ensure all the unknown bits are 0 - i.e. new 10616 * user-space does not rely on any kernel feature 10617 * extensions we dont know about yet. 10618 */ 10619 if (size > sizeof(*attr)) { 10620 unsigned char __user *addr; 10621 unsigned char __user *end; 10622 unsigned char val; 10623 10624 addr = (void __user *)uattr + sizeof(*attr); 10625 end = (void __user *)uattr + size; 10626 10627 for (; addr < end; addr++) { 10628 ret = get_user(val, addr); 10629 if (ret) 10630 return ret; 10631 if (val) 10632 goto err_size; 10633 } 10634 size = sizeof(*attr); 10635 } 10636 10637 ret = copy_from_user(attr, uattr, size); 10638 if (ret) 10639 return -EFAULT; 10640 10641 attr->size = size; 10642 10643 if (attr->__reserved_1) 10644 return -EINVAL; 10645 10646 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10647 return -EINVAL; 10648 10649 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10650 return -EINVAL; 10651 10652 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10653 u64 mask = attr->branch_sample_type; 10654 10655 /* only using defined bits */ 10656 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10657 return -EINVAL; 10658 10659 /* at least one branch bit must be set */ 10660 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10661 return -EINVAL; 10662 10663 /* propagate priv level, when not set for branch */ 10664 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10665 10666 /* exclude_kernel checked on syscall entry */ 10667 if (!attr->exclude_kernel) 10668 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10669 10670 if (!attr->exclude_user) 10671 mask |= PERF_SAMPLE_BRANCH_USER; 10672 10673 if (!attr->exclude_hv) 10674 mask |= PERF_SAMPLE_BRANCH_HV; 10675 /* 10676 * adjust user setting (for HW filter setup) 10677 */ 10678 attr->branch_sample_type = mask; 10679 } 10680 /* privileged levels capture (kernel, hv): check permissions */ 10681 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10682 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10683 return -EACCES; 10684 } 10685 10686 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10687 ret = perf_reg_validate(attr->sample_regs_user); 10688 if (ret) 10689 return ret; 10690 } 10691 10692 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10693 if (!arch_perf_have_user_stack_dump()) 10694 return -ENOSYS; 10695 10696 /* 10697 * We have __u32 type for the size, but so far 10698 * we can only use __u16 as maximum due to the 10699 * __u16 sample size limit. 10700 */ 10701 if (attr->sample_stack_user >= USHRT_MAX) 10702 return -EINVAL; 10703 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10704 return -EINVAL; 10705 } 10706 10707 if (!attr->sample_max_stack) 10708 attr->sample_max_stack = sysctl_perf_event_max_stack; 10709 10710 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10711 ret = perf_reg_validate(attr->sample_regs_intr); 10712 out: 10713 return ret; 10714 10715 err_size: 10716 put_user(sizeof(*attr), &uattr->size); 10717 ret = -E2BIG; 10718 goto out; 10719 } 10720 10721 static int 10722 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10723 { 10724 struct ring_buffer *rb = NULL; 10725 int ret = -EINVAL; 10726 10727 if (!output_event) 10728 goto set; 10729 10730 /* don't allow circular references */ 10731 if (event == output_event) 10732 goto out; 10733 10734 /* 10735 * Don't allow cross-cpu buffers 10736 */ 10737 if (output_event->cpu != event->cpu) 10738 goto out; 10739 10740 /* 10741 * If its not a per-cpu rb, it must be the same task. 10742 */ 10743 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10744 goto out; 10745 10746 /* 10747 * Mixing clocks in the same buffer is trouble you don't need. 10748 */ 10749 if (output_event->clock != event->clock) 10750 goto out; 10751 10752 /* 10753 * Either writing ring buffer from beginning or from end. 10754 * Mixing is not allowed. 10755 */ 10756 if (is_write_backward(output_event) != is_write_backward(event)) 10757 goto out; 10758 10759 /* 10760 * If both events generate aux data, they must be on the same PMU 10761 */ 10762 if (has_aux(event) && has_aux(output_event) && 10763 event->pmu != output_event->pmu) 10764 goto out; 10765 10766 set: 10767 mutex_lock(&event->mmap_mutex); 10768 /* Can't redirect output if we've got an active mmap() */ 10769 if (atomic_read(&event->mmap_count)) 10770 goto unlock; 10771 10772 if (output_event) { 10773 /* get the rb we want to redirect to */ 10774 rb = ring_buffer_get(output_event); 10775 if (!rb) 10776 goto unlock; 10777 } 10778 10779 ring_buffer_attach(event, rb); 10780 10781 ret = 0; 10782 unlock: 10783 mutex_unlock(&event->mmap_mutex); 10784 10785 out: 10786 return ret; 10787 } 10788 10789 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10790 { 10791 if (b < a) 10792 swap(a, b); 10793 10794 mutex_lock(a); 10795 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10796 } 10797 10798 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10799 { 10800 bool nmi_safe = false; 10801 10802 switch (clk_id) { 10803 case CLOCK_MONOTONIC: 10804 event->clock = &ktime_get_mono_fast_ns; 10805 nmi_safe = true; 10806 break; 10807 10808 case CLOCK_MONOTONIC_RAW: 10809 event->clock = &ktime_get_raw_fast_ns; 10810 nmi_safe = true; 10811 break; 10812 10813 case CLOCK_REALTIME: 10814 event->clock = &ktime_get_real_ns; 10815 break; 10816 10817 case CLOCK_BOOTTIME: 10818 event->clock = &ktime_get_boottime_ns; 10819 break; 10820 10821 case CLOCK_TAI: 10822 event->clock = &ktime_get_clocktai_ns; 10823 break; 10824 10825 default: 10826 return -EINVAL; 10827 } 10828 10829 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10830 return -EINVAL; 10831 10832 return 0; 10833 } 10834 10835 /* 10836 * Variation on perf_event_ctx_lock_nested(), except we take two context 10837 * mutexes. 10838 */ 10839 static struct perf_event_context * 10840 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10841 struct perf_event_context *ctx) 10842 { 10843 struct perf_event_context *gctx; 10844 10845 again: 10846 rcu_read_lock(); 10847 gctx = READ_ONCE(group_leader->ctx); 10848 if (!refcount_inc_not_zero(&gctx->refcount)) { 10849 rcu_read_unlock(); 10850 goto again; 10851 } 10852 rcu_read_unlock(); 10853 10854 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10855 10856 if (group_leader->ctx != gctx) { 10857 mutex_unlock(&ctx->mutex); 10858 mutex_unlock(&gctx->mutex); 10859 put_ctx(gctx); 10860 goto again; 10861 } 10862 10863 return gctx; 10864 } 10865 10866 /** 10867 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10868 * 10869 * @attr_uptr: event_id type attributes for monitoring/sampling 10870 * @pid: target pid 10871 * @cpu: target cpu 10872 * @group_fd: group leader event fd 10873 */ 10874 SYSCALL_DEFINE5(perf_event_open, 10875 struct perf_event_attr __user *, attr_uptr, 10876 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10877 { 10878 struct perf_event *group_leader = NULL, *output_event = NULL; 10879 struct perf_event *event, *sibling; 10880 struct perf_event_attr attr; 10881 struct perf_event_context *ctx, *uninitialized_var(gctx); 10882 struct file *event_file = NULL; 10883 struct fd group = {NULL, 0}; 10884 struct task_struct *task = NULL; 10885 struct pmu *pmu; 10886 int event_fd; 10887 int move_group = 0; 10888 int err; 10889 int f_flags = O_RDWR; 10890 int cgroup_fd = -1; 10891 10892 /* for future expandability... */ 10893 if (flags & ~PERF_FLAG_ALL) 10894 return -EINVAL; 10895 10896 err = perf_copy_attr(attr_uptr, &attr); 10897 if (err) 10898 return err; 10899 10900 if (!attr.exclude_kernel) { 10901 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10902 return -EACCES; 10903 } 10904 10905 if (attr.namespaces) { 10906 if (!capable(CAP_SYS_ADMIN)) 10907 return -EACCES; 10908 } 10909 10910 if (attr.freq) { 10911 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10912 return -EINVAL; 10913 } else { 10914 if (attr.sample_period & (1ULL << 63)) 10915 return -EINVAL; 10916 } 10917 10918 /* Only privileged users can get physical addresses */ 10919 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10920 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10921 return -EACCES; 10922 10923 /* 10924 * In cgroup mode, the pid argument is used to pass the fd 10925 * opened to the cgroup directory in cgroupfs. The cpu argument 10926 * designates the cpu on which to monitor threads from that 10927 * cgroup. 10928 */ 10929 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10930 return -EINVAL; 10931 10932 if (flags & PERF_FLAG_FD_CLOEXEC) 10933 f_flags |= O_CLOEXEC; 10934 10935 event_fd = get_unused_fd_flags(f_flags); 10936 if (event_fd < 0) 10937 return event_fd; 10938 10939 if (group_fd != -1) { 10940 err = perf_fget_light(group_fd, &group); 10941 if (err) 10942 goto err_fd; 10943 group_leader = group.file->private_data; 10944 if (flags & PERF_FLAG_FD_OUTPUT) 10945 output_event = group_leader; 10946 if (flags & PERF_FLAG_FD_NO_GROUP) 10947 group_leader = NULL; 10948 } 10949 10950 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10951 task = find_lively_task_by_vpid(pid); 10952 if (IS_ERR(task)) { 10953 err = PTR_ERR(task); 10954 goto err_group_fd; 10955 } 10956 } 10957 10958 if (task && group_leader && 10959 group_leader->attr.inherit != attr.inherit) { 10960 err = -EINVAL; 10961 goto err_task; 10962 } 10963 10964 if (task) { 10965 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10966 if (err) 10967 goto err_task; 10968 10969 /* 10970 * Reuse ptrace permission checks for now. 10971 * 10972 * We must hold cred_guard_mutex across this and any potential 10973 * perf_install_in_context() call for this new event to 10974 * serialize against exec() altering our credentials (and the 10975 * perf_event_exit_task() that could imply). 10976 */ 10977 err = -EACCES; 10978 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10979 goto err_cred; 10980 } 10981 10982 if (flags & PERF_FLAG_PID_CGROUP) 10983 cgroup_fd = pid; 10984 10985 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10986 NULL, NULL, cgroup_fd); 10987 if (IS_ERR(event)) { 10988 err = PTR_ERR(event); 10989 goto err_cred; 10990 } 10991 10992 if (is_sampling_event(event)) { 10993 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10994 err = -EOPNOTSUPP; 10995 goto err_alloc; 10996 } 10997 } 10998 10999 /* 11000 * Special case software events and allow them to be part of 11001 * any hardware group. 11002 */ 11003 pmu = event->pmu; 11004 11005 if (attr.use_clockid) { 11006 err = perf_event_set_clock(event, attr.clockid); 11007 if (err) 11008 goto err_alloc; 11009 } 11010 11011 if (pmu->task_ctx_nr == perf_sw_context) 11012 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11013 11014 if (group_leader) { 11015 if (is_software_event(event) && 11016 !in_software_context(group_leader)) { 11017 /* 11018 * If the event is a sw event, but the group_leader 11019 * is on hw context. 11020 * 11021 * Allow the addition of software events to hw 11022 * groups, this is safe because software events 11023 * never fail to schedule. 11024 */ 11025 pmu = group_leader->ctx->pmu; 11026 } else if (!is_software_event(event) && 11027 is_software_event(group_leader) && 11028 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11029 /* 11030 * In case the group is a pure software group, and we 11031 * try to add a hardware event, move the whole group to 11032 * the hardware context. 11033 */ 11034 move_group = 1; 11035 } 11036 } 11037 11038 /* 11039 * Get the target context (task or percpu): 11040 */ 11041 ctx = find_get_context(pmu, task, event); 11042 if (IS_ERR(ctx)) { 11043 err = PTR_ERR(ctx); 11044 goto err_alloc; 11045 } 11046 11047 /* 11048 * Look up the group leader (we will attach this event to it): 11049 */ 11050 if (group_leader) { 11051 err = -EINVAL; 11052 11053 /* 11054 * Do not allow a recursive hierarchy (this new sibling 11055 * becoming part of another group-sibling): 11056 */ 11057 if (group_leader->group_leader != group_leader) 11058 goto err_context; 11059 11060 /* All events in a group should have the same clock */ 11061 if (group_leader->clock != event->clock) 11062 goto err_context; 11063 11064 /* 11065 * Make sure we're both events for the same CPU; 11066 * grouping events for different CPUs is broken; since 11067 * you can never concurrently schedule them anyhow. 11068 */ 11069 if (group_leader->cpu != event->cpu) 11070 goto err_context; 11071 11072 /* 11073 * Make sure we're both on the same task, or both 11074 * per-CPU events. 11075 */ 11076 if (group_leader->ctx->task != ctx->task) 11077 goto err_context; 11078 11079 /* 11080 * Do not allow to attach to a group in a different task 11081 * or CPU context. If we're moving SW events, we'll fix 11082 * this up later, so allow that. 11083 */ 11084 if (!move_group && group_leader->ctx != ctx) 11085 goto err_context; 11086 11087 /* 11088 * Only a group leader can be exclusive or pinned 11089 */ 11090 if (attr.exclusive || attr.pinned) 11091 goto err_context; 11092 } 11093 11094 if (output_event) { 11095 err = perf_event_set_output(event, output_event); 11096 if (err) 11097 goto err_context; 11098 } 11099 11100 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11101 f_flags); 11102 if (IS_ERR(event_file)) { 11103 err = PTR_ERR(event_file); 11104 event_file = NULL; 11105 goto err_context; 11106 } 11107 11108 if (move_group) { 11109 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11110 11111 if (gctx->task == TASK_TOMBSTONE) { 11112 err = -ESRCH; 11113 goto err_locked; 11114 } 11115 11116 /* 11117 * Check if we raced against another sys_perf_event_open() call 11118 * moving the software group underneath us. 11119 */ 11120 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11121 /* 11122 * If someone moved the group out from under us, check 11123 * if this new event wound up on the same ctx, if so 11124 * its the regular !move_group case, otherwise fail. 11125 */ 11126 if (gctx != ctx) { 11127 err = -EINVAL; 11128 goto err_locked; 11129 } else { 11130 perf_event_ctx_unlock(group_leader, gctx); 11131 move_group = 0; 11132 } 11133 } 11134 11135 /* 11136 * Failure to create exclusive events returns -EBUSY. 11137 */ 11138 err = -EBUSY; 11139 if (!exclusive_event_installable(group_leader, ctx)) 11140 goto err_locked; 11141 11142 for_each_sibling_event(sibling, group_leader) { 11143 if (!exclusive_event_installable(sibling, ctx)) 11144 goto err_locked; 11145 } 11146 } else { 11147 mutex_lock(&ctx->mutex); 11148 } 11149 11150 if (ctx->task == TASK_TOMBSTONE) { 11151 err = -ESRCH; 11152 goto err_locked; 11153 } 11154 11155 if (!perf_event_validate_size(event)) { 11156 err = -E2BIG; 11157 goto err_locked; 11158 } 11159 11160 if (!task) { 11161 /* 11162 * Check if the @cpu we're creating an event for is online. 11163 * 11164 * We use the perf_cpu_context::ctx::mutex to serialize against 11165 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11166 */ 11167 struct perf_cpu_context *cpuctx = 11168 container_of(ctx, struct perf_cpu_context, ctx); 11169 11170 if (!cpuctx->online) { 11171 err = -ENODEV; 11172 goto err_locked; 11173 } 11174 } 11175 11176 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader)) 11177 goto err_locked; 11178 11179 /* 11180 * Must be under the same ctx::mutex as perf_install_in_context(), 11181 * because we need to serialize with concurrent event creation. 11182 */ 11183 if (!exclusive_event_installable(event, ctx)) { 11184 err = -EBUSY; 11185 goto err_locked; 11186 } 11187 11188 WARN_ON_ONCE(ctx->parent_ctx); 11189 11190 /* 11191 * This is the point on no return; we cannot fail hereafter. This is 11192 * where we start modifying current state. 11193 */ 11194 11195 if (move_group) { 11196 /* 11197 * See perf_event_ctx_lock() for comments on the details 11198 * of swizzling perf_event::ctx. 11199 */ 11200 perf_remove_from_context(group_leader, 0); 11201 put_ctx(gctx); 11202 11203 for_each_sibling_event(sibling, group_leader) { 11204 perf_remove_from_context(sibling, 0); 11205 put_ctx(gctx); 11206 } 11207 11208 /* 11209 * Wait for everybody to stop referencing the events through 11210 * the old lists, before installing it on new lists. 11211 */ 11212 synchronize_rcu(); 11213 11214 /* 11215 * Install the group siblings before the group leader. 11216 * 11217 * Because a group leader will try and install the entire group 11218 * (through the sibling list, which is still in-tact), we can 11219 * end up with siblings installed in the wrong context. 11220 * 11221 * By installing siblings first we NO-OP because they're not 11222 * reachable through the group lists. 11223 */ 11224 for_each_sibling_event(sibling, group_leader) { 11225 perf_event__state_init(sibling); 11226 perf_install_in_context(ctx, sibling, sibling->cpu); 11227 get_ctx(ctx); 11228 } 11229 11230 /* 11231 * Removing from the context ends up with disabled 11232 * event. What we want here is event in the initial 11233 * startup state, ready to be add into new context. 11234 */ 11235 perf_event__state_init(group_leader); 11236 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11237 get_ctx(ctx); 11238 } 11239 11240 /* 11241 * Precalculate sample_data sizes; do while holding ctx::mutex such 11242 * that we're serialized against further additions and before 11243 * perf_install_in_context() which is the point the event is active and 11244 * can use these values. 11245 */ 11246 perf_event__header_size(event); 11247 perf_event__id_header_size(event); 11248 11249 event->owner = current; 11250 11251 perf_install_in_context(ctx, event, event->cpu); 11252 perf_unpin_context(ctx); 11253 11254 if (move_group) 11255 perf_event_ctx_unlock(group_leader, gctx); 11256 mutex_unlock(&ctx->mutex); 11257 11258 if (task) { 11259 mutex_unlock(&task->signal->cred_guard_mutex); 11260 put_task_struct(task); 11261 } 11262 11263 mutex_lock(¤t->perf_event_mutex); 11264 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11265 mutex_unlock(¤t->perf_event_mutex); 11266 11267 /* 11268 * Drop the reference on the group_event after placing the 11269 * new event on the sibling_list. This ensures destruction 11270 * of the group leader will find the pointer to itself in 11271 * perf_group_detach(). 11272 */ 11273 fdput(group); 11274 fd_install(event_fd, event_file); 11275 return event_fd; 11276 11277 err_locked: 11278 if (move_group) 11279 perf_event_ctx_unlock(group_leader, gctx); 11280 mutex_unlock(&ctx->mutex); 11281 /* err_file: */ 11282 fput(event_file); 11283 err_context: 11284 perf_unpin_context(ctx); 11285 put_ctx(ctx); 11286 err_alloc: 11287 /* 11288 * If event_file is set, the fput() above will have called ->release() 11289 * and that will take care of freeing the event. 11290 */ 11291 if (!event_file) 11292 free_event(event); 11293 err_cred: 11294 if (task) 11295 mutex_unlock(&task->signal->cred_guard_mutex); 11296 err_task: 11297 if (task) 11298 put_task_struct(task); 11299 err_group_fd: 11300 fdput(group); 11301 err_fd: 11302 put_unused_fd(event_fd); 11303 return err; 11304 } 11305 11306 /** 11307 * perf_event_create_kernel_counter 11308 * 11309 * @attr: attributes of the counter to create 11310 * @cpu: cpu in which the counter is bound 11311 * @task: task to profile (NULL for percpu) 11312 */ 11313 struct perf_event * 11314 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11315 struct task_struct *task, 11316 perf_overflow_handler_t overflow_handler, 11317 void *context) 11318 { 11319 struct perf_event_context *ctx; 11320 struct perf_event *event; 11321 int err; 11322 11323 /* 11324 * Get the target context (task or percpu): 11325 */ 11326 11327 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11328 overflow_handler, context, -1); 11329 if (IS_ERR(event)) { 11330 err = PTR_ERR(event); 11331 goto err; 11332 } 11333 11334 /* Mark owner so we could distinguish it from user events. */ 11335 event->owner = TASK_TOMBSTONE; 11336 11337 ctx = find_get_context(event->pmu, task, event); 11338 if (IS_ERR(ctx)) { 11339 err = PTR_ERR(ctx); 11340 goto err_free; 11341 } 11342 11343 WARN_ON_ONCE(ctx->parent_ctx); 11344 mutex_lock(&ctx->mutex); 11345 if (ctx->task == TASK_TOMBSTONE) { 11346 err = -ESRCH; 11347 goto err_unlock; 11348 } 11349 11350 if (!task) { 11351 /* 11352 * Check if the @cpu we're creating an event for is online. 11353 * 11354 * We use the perf_cpu_context::ctx::mutex to serialize against 11355 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11356 */ 11357 struct perf_cpu_context *cpuctx = 11358 container_of(ctx, struct perf_cpu_context, ctx); 11359 if (!cpuctx->online) { 11360 err = -ENODEV; 11361 goto err_unlock; 11362 } 11363 } 11364 11365 if (!exclusive_event_installable(event, ctx)) { 11366 err = -EBUSY; 11367 goto err_unlock; 11368 } 11369 11370 perf_install_in_context(ctx, event, event->cpu); 11371 perf_unpin_context(ctx); 11372 mutex_unlock(&ctx->mutex); 11373 11374 return event; 11375 11376 err_unlock: 11377 mutex_unlock(&ctx->mutex); 11378 perf_unpin_context(ctx); 11379 put_ctx(ctx); 11380 err_free: 11381 free_event(event); 11382 err: 11383 return ERR_PTR(err); 11384 } 11385 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11386 11387 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11388 { 11389 struct perf_event_context *src_ctx; 11390 struct perf_event_context *dst_ctx; 11391 struct perf_event *event, *tmp; 11392 LIST_HEAD(events); 11393 11394 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11395 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11396 11397 /* 11398 * See perf_event_ctx_lock() for comments on the details 11399 * of swizzling perf_event::ctx. 11400 */ 11401 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11402 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11403 event_entry) { 11404 perf_remove_from_context(event, 0); 11405 unaccount_event_cpu(event, src_cpu); 11406 put_ctx(src_ctx); 11407 list_add(&event->migrate_entry, &events); 11408 } 11409 11410 /* 11411 * Wait for the events to quiesce before re-instating them. 11412 */ 11413 synchronize_rcu(); 11414 11415 /* 11416 * Re-instate events in 2 passes. 11417 * 11418 * Skip over group leaders and only install siblings on this first 11419 * pass, siblings will not get enabled without a leader, however a 11420 * leader will enable its siblings, even if those are still on the old 11421 * context. 11422 */ 11423 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11424 if (event->group_leader == event) 11425 continue; 11426 11427 list_del(&event->migrate_entry); 11428 if (event->state >= PERF_EVENT_STATE_OFF) 11429 event->state = PERF_EVENT_STATE_INACTIVE; 11430 account_event_cpu(event, dst_cpu); 11431 perf_install_in_context(dst_ctx, event, dst_cpu); 11432 get_ctx(dst_ctx); 11433 } 11434 11435 /* 11436 * Once all the siblings are setup properly, install the group leaders 11437 * to make it go. 11438 */ 11439 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11440 list_del(&event->migrate_entry); 11441 if (event->state >= PERF_EVENT_STATE_OFF) 11442 event->state = PERF_EVENT_STATE_INACTIVE; 11443 account_event_cpu(event, dst_cpu); 11444 perf_install_in_context(dst_ctx, event, dst_cpu); 11445 get_ctx(dst_ctx); 11446 } 11447 mutex_unlock(&dst_ctx->mutex); 11448 mutex_unlock(&src_ctx->mutex); 11449 } 11450 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11451 11452 static void sync_child_event(struct perf_event *child_event, 11453 struct task_struct *child) 11454 { 11455 struct perf_event *parent_event = child_event->parent; 11456 u64 child_val; 11457 11458 if (child_event->attr.inherit_stat) 11459 perf_event_read_event(child_event, child); 11460 11461 child_val = perf_event_count(child_event); 11462 11463 /* 11464 * Add back the child's count to the parent's count: 11465 */ 11466 atomic64_add(child_val, &parent_event->child_count); 11467 atomic64_add(child_event->total_time_enabled, 11468 &parent_event->child_total_time_enabled); 11469 atomic64_add(child_event->total_time_running, 11470 &parent_event->child_total_time_running); 11471 } 11472 11473 static void 11474 perf_event_exit_event(struct perf_event *child_event, 11475 struct perf_event_context *child_ctx, 11476 struct task_struct *child) 11477 { 11478 struct perf_event *parent_event = child_event->parent; 11479 11480 /* 11481 * Do not destroy the 'original' grouping; because of the context 11482 * switch optimization the original events could've ended up in a 11483 * random child task. 11484 * 11485 * If we were to destroy the original group, all group related 11486 * operations would cease to function properly after this random 11487 * child dies. 11488 * 11489 * Do destroy all inherited groups, we don't care about those 11490 * and being thorough is better. 11491 */ 11492 raw_spin_lock_irq(&child_ctx->lock); 11493 WARN_ON_ONCE(child_ctx->is_active); 11494 11495 if (parent_event) 11496 perf_group_detach(child_event); 11497 list_del_event(child_event, child_ctx); 11498 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11499 raw_spin_unlock_irq(&child_ctx->lock); 11500 11501 /* 11502 * Parent events are governed by their filedesc, retain them. 11503 */ 11504 if (!parent_event) { 11505 perf_event_wakeup(child_event); 11506 return; 11507 } 11508 /* 11509 * Child events can be cleaned up. 11510 */ 11511 11512 sync_child_event(child_event, child); 11513 11514 /* 11515 * Remove this event from the parent's list 11516 */ 11517 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11518 mutex_lock(&parent_event->child_mutex); 11519 list_del_init(&child_event->child_list); 11520 mutex_unlock(&parent_event->child_mutex); 11521 11522 /* 11523 * Kick perf_poll() for is_event_hup(). 11524 */ 11525 perf_event_wakeup(parent_event); 11526 free_event(child_event); 11527 put_event(parent_event); 11528 } 11529 11530 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11531 { 11532 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11533 struct perf_event *child_event, *next; 11534 11535 WARN_ON_ONCE(child != current); 11536 11537 child_ctx = perf_pin_task_context(child, ctxn); 11538 if (!child_ctx) 11539 return; 11540 11541 /* 11542 * In order to reduce the amount of tricky in ctx tear-down, we hold 11543 * ctx::mutex over the entire thing. This serializes against almost 11544 * everything that wants to access the ctx. 11545 * 11546 * The exception is sys_perf_event_open() / 11547 * perf_event_create_kernel_count() which does find_get_context() 11548 * without ctx::mutex (it cannot because of the move_group double mutex 11549 * lock thing). See the comments in perf_install_in_context(). 11550 */ 11551 mutex_lock(&child_ctx->mutex); 11552 11553 /* 11554 * In a single ctx::lock section, de-schedule the events and detach the 11555 * context from the task such that we cannot ever get it scheduled back 11556 * in. 11557 */ 11558 raw_spin_lock_irq(&child_ctx->lock); 11559 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11560 11561 /* 11562 * Now that the context is inactive, destroy the task <-> ctx relation 11563 * and mark the context dead. 11564 */ 11565 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11566 put_ctx(child_ctx); /* cannot be last */ 11567 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11568 put_task_struct(current); /* cannot be last */ 11569 11570 clone_ctx = unclone_ctx(child_ctx); 11571 raw_spin_unlock_irq(&child_ctx->lock); 11572 11573 if (clone_ctx) 11574 put_ctx(clone_ctx); 11575 11576 /* 11577 * Report the task dead after unscheduling the events so that we 11578 * won't get any samples after PERF_RECORD_EXIT. We can however still 11579 * get a few PERF_RECORD_READ events. 11580 */ 11581 perf_event_task(child, child_ctx, 0); 11582 11583 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11584 perf_event_exit_event(child_event, child_ctx, child); 11585 11586 mutex_unlock(&child_ctx->mutex); 11587 11588 put_ctx(child_ctx); 11589 } 11590 11591 /* 11592 * When a child task exits, feed back event values to parent events. 11593 * 11594 * Can be called with cred_guard_mutex held when called from 11595 * install_exec_creds(). 11596 */ 11597 void perf_event_exit_task(struct task_struct *child) 11598 { 11599 struct perf_event *event, *tmp; 11600 int ctxn; 11601 11602 mutex_lock(&child->perf_event_mutex); 11603 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11604 owner_entry) { 11605 list_del_init(&event->owner_entry); 11606 11607 /* 11608 * Ensure the list deletion is visible before we clear 11609 * the owner, closes a race against perf_release() where 11610 * we need to serialize on the owner->perf_event_mutex. 11611 */ 11612 smp_store_release(&event->owner, NULL); 11613 } 11614 mutex_unlock(&child->perf_event_mutex); 11615 11616 for_each_task_context_nr(ctxn) 11617 perf_event_exit_task_context(child, ctxn); 11618 11619 /* 11620 * The perf_event_exit_task_context calls perf_event_task 11621 * with child's task_ctx, which generates EXIT events for 11622 * child contexts and sets child->perf_event_ctxp[] to NULL. 11623 * At this point we need to send EXIT events to cpu contexts. 11624 */ 11625 perf_event_task(child, NULL, 0); 11626 } 11627 11628 static void perf_free_event(struct perf_event *event, 11629 struct perf_event_context *ctx) 11630 { 11631 struct perf_event *parent = event->parent; 11632 11633 if (WARN_ON_ONCE(!parent)) 11634 return; 11635 11636 mutex_lock(&parent->child_mutex); 11637 list_del_init(&event->child_list); 11638 mutex_unlock(&parent->child_mutex); 11639 11640 put_event(parent); 11641 11642 raw_spin_lock_irq(&ctx->lock); 11643 perf_group_detach(event); 11644 list_del_event(event, ctx); 11645 raw_spin_unlock_irq(&ctx->lock); 11646 free_event(event); 11647 } 11648 11649 /* 11650 * Free a context as created by inheritance by perf_event_init_task() below, 11651 * used by fork() in case of fail. 11652 * 11653 * Even though the task has never lived, the context and events have been 11654 * exposed through the child_list, so we must take care tearing it all down. 11655 */ 11656 void perf_event_free_task(struct task_struct *task) 11657 { 11658 struct perf_event_context *ctx; 11659 struct perf_event *event, *tmp; 11660 int ctxn; 11661 11662 for_each_task_context_nr(ctxn) { 11663 ctx = task->perf_event_ctxp[ctxn]; 11664 if (!ctx) 11665 continue; 11666 11667 mutex_lock(&ctx->mutex); 11668 raw_spin_lock_irq(&ctx->lock); 11669 /* 11670 * Destroy the task <-> ctx relation and mark the context dead. 11671 * 11672 * This is important because even though the task hasn't been 11673 * exposed yet the context has been (through child_list). 11674 */ 11675 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11676 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11677 put_task_struct(task); /* cannot be last */ 11678 raw_spin_unlock_irq(&ctx->lock); 11679 11680 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11681 perf_free_event(event, ctx); 11682 11683 mutex_unlock(&ctx->mutex); 11684 11685 /* 11686 * perf_event_release_kernel() could've stolen some of our 11687 * child events and still have them on its free_list. In that 11688 * case we must wait for these events to have been freed (in 11689 * particular all their references to this task must've been 11690 * dropped). 11691 * 11692 * Without this copy_process() will unconditionally free this 11693 * task (irrespective of its reference count) and 11694 * _free_event()'s put_task_struct(event->hw.target) will be a 11695 * use-after-free. 11696 * 11697 * Wait for all events to drop their context reference. 11698 */ 11699 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 11700 put_ctx(ctx); /* must be last */ 11701 } 11702 } 11703 11704 void perf_event_delayed_put(struct task_struct *task) 11705 { 11706 int ctxn; 11707 11708 for_each_task_context_nr(ctxn) 11709 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11710 } 11711 11712 struct file *perf_event_get(unsigned int fd) 11713 { 11714 struct file *file = fget(fd); 11715 if (!file) 11716 return ERR_PTR(-EBADF); 11717 11718 if (file->f_op != &perf_fops) { 11719 fput(file); 11720 return ERR_PTR(-EBADF); 11721 } 11722 11723 return file; 11724 } 11725 11726 const struct perf_event *perf_get_event(struct file *file) 11727 { 11728 if (file->f_op != &perf_fops) 11729 return ERR_PTR(-EINVAL); 11730 11731 return file->private_data; 11732 } 11733 11734 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11735 { 11736 if (!event) 11737 return ERR_PTR(-EINVAL); 11738 11739 return &event->attr; 11740 } 11741 11742 /* 11743 * Inherit an event from parent task to child task. 11744 * 11745 * Returns: 11746 * - valid pointer on success 11747 * - NULL for orphaned events 11748 * - IS_ERR() on error 11749 */ 11750 static struct perf_event * 11751 inherit_event(struct perf_event *parent_event, 11752 struct task_struct *parent, 11753 struct perf_event_context *parent_ctx, 11754 struct task_struct *child, 11755 struct perf_event *group_leader, 11756 struct perf_event_context *child_ctx) 11757 { 11758 enum perf_event_state parent_state = parent_event->state; 11759 struct perf_event *child_event; 11760 unsigned long flags; 11761 11762 /* 11763 * Instead of creating recursive hierarchies of events, 11764 * we link inherited events back to the original parent, 11765 * which has a filp for sure, which we use as the reference 11766 * count: 11767 */ 11768 if (parent_event->parent) 11769 parent_event = parent_event->parent; 11770 11771 child_event = perf_event_alloc(&parent_event->attr, 11772 parent_event->cpu, 11773 child, 11774 group_leader, parent_event, 11775 NULL, NULL, -1); 11776 if (IS_ERR(child_event)) 11777 return child_event; 11778 11779 11780 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11781 !child_ctx->task_ctx_data) { 11782 struct pmu *pmu = child_event->pmu; 11783 11784 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11785 GFP_KERNEL); 11786 if (!child_ctx->task_ctx_data) { 11787 free_event(child_event); 11788 return NULL; 11789 } 11790 } 11791 11792 /* 11793 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11794 * must be under the same lock in order to serialize against 11795 * perf_event_release_kernel(), such that either we must observe 11796 * is_orphaned_event() or they will observe us on the child_list. 11797 */ 11798 mutex_lock(&parent_event->child_mutex); 11799 if (is_orphaned_event(parent_event) || 11800 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11801 mutex_unlock(&parent_event->child_mutex); 11802 /* task_ctx_data is freed with child_ctx */ 11803 free_event(child_event); 11804 return NULL; 11805 } 11806 11807 get_ctx(child_ctx); 11808 11809 /* 11810 * Make the child state follow the state of the parent event, 11811 * not its attr.disabled bit. We hold the parent's mutex, 11812 * so we won't race with perf_event_{en, dis}able_family. 11813 */ 11814 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11815 child_event->state = PERF_EVENT_STATE_INACTIVE; 11816 else 11817 child_event->state = PERF_EVENT_STATE_OFF; 11818 11819 if (parent_event->attr.freq) { 11820 u64 sample_period = parent_event->hw.sample_period; 11821 struct hw_perf_event *hwc = &child_event->hw; 11822 11823 hwc->sample_period = sample_period; 11824 hwc->last_period = sample_period; 11825 11826 local64_set(&hwc->period_left, sample_period); 11827 } 11828 11829 child_event->ctx = child_ctx; 11830 child_event->overflow_handler = parent_event->overflow_handler; 11831 child_event->overflow_handler_context 11832 = parent_event->overflow_handler_context; 11833 11834 /* 11835 * Precalculate sample_data sizes 11836 */ 11837 perf_event__header_size(child_event); 11838 perf_event__id_header_size(child_event); 11839 11840 /* 11841 * Link it up in the child's context: 11842 */ 11843 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11844 add_event_to_ctx(child_event, child_ctx); 11845 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11846 11847 /* 11848 * Link this into the parent event's child list 11849 */ 11850 list_add_tail(&child_event->child_list, &parent_event->child_list); 11851 mutex_unlock(&parent_event->child_mutex); 11852 11853 return child_event; 11854 } 11855 11856 /* 11857 * Inherits an event group. 11858 * 11859 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11860 * This matches with perf_event_release_kernel() removing all child events. 11861 * 11862 * Returns: 11863 * - 0 on success 11864 * - <0 on error 11865 */ 11866 static int inherit_group(struct perf_event *parent_event, 11867 struct task_struct *parent, 11868 struct perf_event_context *parent_ctx, 11869 struct task_struct *child, 11870 struct perf_event_context *child_ctx) 11871 { 11872 struct perf_event *leader; 11873 struct perf_event *sub; 11874 struct perf_event *child_ctr; 11875 11876 leader = inherit_event(parent_event, parent, parent_ctx, 11877 child, NULL, child_ctx); 11878 if (IS_ERR(leader)) 11879 return PTR_ERR(leader); 11880 /* 11881 * @leader can be NULL here because of is_orphaned_event(). In this 11882 * case inherit_event() will create individual events, similar to what 11883 * perf_group_detach() would do anyway. 11884 */ 11885 for_each_sibling_event(sub, parent_event) { 11886 child_ctr = inherit_event(sub, parent, parent_ctx, 11887 child, leader, child_ctx); 11888 if (IS_ERR(child_ctr)) 11889 return PTR_ERR(child_ctr); 11890 } 11891 return 0; 11892 } 11893 11894 /* 11895 * Creates the child task context and tries to inherit the event-group. 11896 * 11897 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11898 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11899 * consistent with perf_event_release_kernel() removing all child events. 11900 * 11901 * Returns: 11902 * - 0 on success 11903 * - <0 on error 11904 */ 11905 static int 11906 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11907 struct perf_event_context *parent_ctx, 11908 struct task_struct *child, int ctxn, 11909 int *inherited_all) 11910 { 11911 int ret; 11912 struct perf_event_context *child_ctx; 11913 11914 if (!event->attr.inherit) { 11915 *inherited_all = 0; 11916 return 0; 11917 } 11918 11919 child_ctx = child->perf_event_ctxp[ctxn]; 11920 if (!child_ctx) { 11921 /* 11922 * This is executed from the parent task context, so 11923 * inherit events that have been marked for cloning. 11924 * First allocate and initialize a context for the 11925 * child. 11926 */ 11927 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11928 if (!child_ctx) 11929 return -ENOMEM; 11930 11931 child->perf_event_ctxp[ctxn] = child_ctx; 11932 } 11933 11934 ret = inherit_group(event, parent, parent_ctx, 11935 child, child_ctx); 11936 11937 if (ret) 11938 *inherited_all = 0; 11939 11940 return ret; 11941 } 11942 11943 /* 11944 * Initialize the perf_event context in task_struct 11945 */ 11946 static int perf_event_init_context(struct task_struct *child, int ctxn) 11947 { 11948 struct perf_event_context *child_ctx, *parent_ctx; 11949 struct perf_event_context *cloned_ctx; 11950 struct perf_event *event; 11951 struct task_struct *parent = current; 11952 int inherited_all = 1; 11953 unsigned long flags; 11954 int ret = 0; 11955 11956 if (likely(!parent->perf_event_ctxp[ctxn])) 11957 return 0; 11958 11959 /* 11960 * If the parent's context is a clone, pin it so it won't get 11961 * swapped under us. 11962 */ 11963 parent_ctx = perf_pin_task_context(parent, ctxn); 11964 if (!parent_ctx) 11965 return 0; 11966 11967 /* 11968 * No need to check if parent_ctx != NULL here; since we saw 11969 * it non-NULL earlier, the only reason for it to become NULL 11970 * is if we exit, and since we're currently in the middle of 11971 * a fork we can't be exiting at the same time. 11972 */ 11973 11974 /* 11975 * Lock the parent list. No need to lock the child - not PID 11976 * hashed yet and not running, so nobody can access it. 11977 */ 11978 mutex_lock(&parent_ctx->mutex); 11979 11980 /* 11981 * We dont have to disable NMIs - we are only looking at 11982 * the list, not manipulating it: 11983 */ 11984 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11985 ret = inherit_task_group(event, parent, parent_ctx, 11986 child, ctxn, &inherited_all); 11987 if (ret) 11988 goto out_unlock; 11989 } 11990 11991 /* 11992 * We can't hold ctx->lock when iterating the ->flexible_group list due 11993 * to allocations, but we need to prevent rotation because 11994 * rotate_ctx() will change the list from interrupt context. 11995 */ 11996 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11997 parent_ctx->rotate_disable = 1; 11998 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11999 12000 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12001 ret = inherit_task_group(event, parent, parent_ctx, 12002 child, ctxn, &inherited_all); 12003 if (ret) 12004 goto out_unlock; 12005 } 12006 12007 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12008 parent_ctx->rotate_disable = 0; 12009 12010 child_ctx = child->perf_event_ctxp[ctxn]; 12011 12012 if (child_ctx && inherited_all) { 12013 /* 12014 * Mark the child context as a clone of the parent 12015 * context, or of whatever the parent is a clone of. 12016 * 12017 * Note that if the parent is a clone, the holding of 12018 * parent_ctx->lock avoids it from being uncloned. 12019 */ 12020 cloned_ctx = parent_ctx->parent_ctx; 12021 if (cloned_ctx) { 12022 child_ctx->parent_ctx = cloned_ctx; 12023 child_ctx->parent_gen = parent_ctx->parent_gen; 12024 } else { 12025 child_ctx->parent_ctx = parent_ctx; 12026 child_ctx->parent_gen = parent_ctx->generation; 12027 } 12028 get_ctx(child_ctx->parent_ctx); 12029 } 12030 12031 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12032 out_unlock: 12033 mutex_unlock(&parent_ctx->mutex); 12034 12035 perf_unpin_context(parent_ctx); 12036 put_ctx(parent_ctx); 12037 12038 return ret; 12039 } 12040 12041 /* 12042 * Initialize the perf_event context in task_struct 12043 */ 12044 int perf_event_init_task(struct task_struct *child) 12045 { 12046 int ctxn, ret; 12047 12048 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12049 mutex_init(&child->perf_event_mutex); 12050 INIT_LIST_HEAD(&child->perf_event_list); 12051 12052 for_each_task_context_nr(ctxn) { 12053 ret = perf_event_init_context(child, ctxn); 12054 if (ret) { 12055 perf_event_free_task(child); 12056 return ret; 12057 } 12058 } 12059 12060 return 0; 12061 } 12062 12063 static void __init perf_event_init_all_cpus(void) 12064 { 12065 struct swevent_htable *swhash; 12066 int cpu; 12067 12068 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12069 12070 for_each_possible_cpu(cpu) { 12071 swhash = &per_cpu(swevent_htable, cpu); 12072 mutex_init(&swhash->hlist_mutex); 12073 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12074 12075 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12076 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12077 12078 #ifdef CONFIG_CGROUP_PERF 12079 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12080 #endif 12081 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12082 } 12083 } 12084 12085 static void perf_swevent_init_cpu(unsigned int cpu) 12086 { 12087 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12088 12089 mutex_lock(&swhash->hlist_mutex); 12090 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12091 struct swevent_hlist *hlist; 12092 12093 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12094 WARN_ON(!hlist); 12095 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12096 } 12097 mutex_unlock(&swhash->hlist_mutex); 12098 } 12099 12100 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12101 static void __perf_event_exit_context(void *__info) 12102 { 12103 struct perf_event_context *ctx = __info; 12104 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12105 struct perf_event *event; 12106 12107 raw_spin_lock(&ctx->lock); 12108 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12109 list_for_each_entry(event, &ctx->event_list, event_entry) 12110 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12111 raw_spin_unlock(&ctx->lock); 12112 } 12113 12114 static void perf_event_exit_cpu_context(int cpu) 12115 { 12116 struct perf_cpu_context *cpuctx; 12117 struct perf_event_context *ctx; 12118 struct pmu *pmu; 12119 12120 mutex_lock(&pmus_lock); 12121 list_for_each_entry(pmu, &pmus, entry) { 12122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12123 ctx = &cpuctx->ctx; 12124 12125 mutex_lock(&ctx->mutex); 12126 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12127 cpuctx->online = 0; 12128 mutex_unlock(&ctx->mutex); 12129 } 12130 cpumask_clear_cpu(cpu, perf_online_mask); 12131 mutex_unlock(&pmus_lock); 12132 } 12133 #else 12134 12135 static void perf_event_exit_cpu_context(int cpu) { } 12136 12137 #endif 12138 12139 int perf_event_init_cpu(unsigned int cpu) 12140 { 12141 struct perf_cpu_context *cpuctx; 12142 struct perf_event_context *ctx; 12143 struct pmu *pmu; 12144 12145 perf_swevent_init_cpu(cpu); 12146 12147 mutex_lock(&pmus_lock); 12148 cpumask_set_cpu(cpu, perf_online_mask); 12149 list_for_each_entry(pmu, &pmus, entry) { 12150 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12151 ctx = &cpuctx->ctx; 12152 12153 mutex_lock(&ctx->mutex); 12154 cpuctx->online = 1; 12155 mutex_unlock(&ctx->mutex); 12156 } 12157 mutex_unlock(&pmus_lock); 12158 12159 return 0; 12160 } 12161 12162 int perf_event_exit_cpu(unsigned int cpu) 12163 { 12164 perf_event_exit_cpu_context(cpu); 12165 return 0; 12166 } 12167 12168 static int 12169 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12170 { 12171 int cpu; 12172 12173 for_each_online_cpu(cpu) 12174 perf_event_exit_cpu(cpu); 12175 12176 return NOTIFY_OK; 12177 } 12178 12179 /* 12180 * Run the perf reboot notifier at the very last possible moment so that 12181 * the generic watchdog code runs as long as possible. 12182 */ 12183 static struct notifier_block perf_reboot_notifier = { 12184 .notifier_call = perf_reboot, 12185 .priority = INT_MIN, 12186 }; 12187 12188 void __init perf_event_init(void) 12189 { 12190 int ret; 12191 12192 idr_init(&pmu_idr); 12193 12194 perf_event_init_all_cpus(); 12195 init_srcu_struct(&pmus_srcu); 12196 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12197 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12198 perf_pmu_register(&perf_task_clock, NULL, -1); 12199 perf_tp_register(); 12200 perf_event_init_cpu(smp_processor_id()); 12201 register_reboot_notifier(&perf_reboot_notifier); 12202 12203 ret = init_hw_breakpoint(); 12204 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12205 12206 /* 12207 * Build time assertion that we keep the data_head at the intended 12208 * location. IOW, validation we got the __reserved[] size right. 12209 */ 12210 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12211 != 1024); 12212 } 12213 12214 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12215 char *page) 12216 { 12217 struct perf_pmu_events_attr *pmu_attr = 12218 container_of(attr, struct perf_pmu_events_attr, attr); 12219 12220 if (pmu_attr->event_str) 12221 return sprintf(page, "%s\n", pmu_attr->event_str); 12222 12223 return 0; 12224 } 12225 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12226 12227 static int __init perf_event_sysfs_init(void) 12228 { 12229 struct pmu *pmu; 12230 int ret; 12231 12232 mutex_lock(&pmus_lock); 12233 12234 ret = bus_register(&pmu_bus); 12235 if (ret) 12236 goto unlock; 12237 12238 list_for_each_entry(pmu, &pmus, entry) { 12239 if (!pmu->name || pmu->type < 0) 12240 continue; 12241 12242 ret = pmu_dev_alloc(pmu); 12243 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12244 } 12245 pmu_bus_running = 1; 12246 ret = 0; 12247 12248 unlock: 12249 mutex_unlock(&pmus_lock); 12250 12251 return ret; 12252 } 12253 device_initcall(perf_event_sysfs_init); 12254 12255 #ifdef CONFIG_CGROUP_PERF 12256 static struct cgroup_subsys_state * 12257 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12258 { 12259 struct perf_cgroup *jc; 12260 12261 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12262 if (!jc) 12263 return ERR_PTR(-ENOMEM); 12264 12265 jc->info = alloc_percpu(struct perf_cgroup_info); 12266 if (!jc->info) { 12267 kfree(jc); 12268 return ERR_PTR(-ENOMEM); 12269 } 12270 12271 return &jc->css; 12272 } 12273 12274 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12275 { 12276 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12277 12278 free_percpu(jc->info); 12279 kfree(jc); 12280 } 12281 12282 static int __perf_cgroup_move(void *info) 12283 { 12284 struct task_struct *task = info; 12285 rcu_read_lock(); 12286 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12287 rcu_read_unlock(); 12288 return 0; 12289 } 12290 12291 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12292 { 12293 struct task_struct *task; 12294 struct cgroup_subsys_state *css; 12295 12296 cgroup_taskset_for_each(task, css, tset) 12297 task_function_call(task, __perf_cgroup_move, task); 12298 } 12299 12300 struct cgroup_subsys perf_event_cgrp_subsys = { 12301 .css_alloc = perf_cgroup_css_alloc, 12302 .css_free = perf_cgroup_css_free, 12303 .attach = perf_cgroup_attach, 12304 /* 12305 * Implicitly enable on dfl hierarchy so that perf events can 12306 * always be filtered by cgroup2 path as long as perf_event 12307 * controller is not mounted on a legacy hierarchy. 12308 */ 12309 .implicit_on_dfl = true, 12310 .threaded = true, 12311 }; 12312 #endif /* CONFIG_CGROUP_PERF */ 12313