1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 #ifdef CONFIG_CGROUP_PERF 586 587 static inline bool 588 perf_cgroup_match(struct perf_event *event) 589 { 590 struct perf_event_context *ctx = event->ctx; 591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 592 593 /* @event doesn't care about cgroup */ 594 if (!event->cgrp) 595 return true; 596 597 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 598 if (!cpuctx->cgrp) 599 return false; 600 601 /* 602 * Cgroup scoping is recursive. An event enabled for a cgroup is 603 * also enabled for all its descendant cgroups. If @cpuctx's 604 * cgroup is a descendant of @event's (the test covers identity 605 * case), it's a match. 606 */ 607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 608 event->cgrp->css.cgroup); 609 } 610 611 static inline void perf_detach_cgroup(struct perf_event *event) 612 { 613 css_put(&event->cgrp->css); 614 event->cgrp = NULL; 615 } 616 617 static inline int is_cgroup_event(struct perf_event *event) 618 { 619 return event->cgrp != NULL; 620 } 621 622 static inline u64 perf_cgroup_event_time(struct perf_event *event) 623 { 624 struct perf_cgroup_info *t; 625 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 return t->time; 628 } 629 630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 631 { 632 struct perf_cgroup_info *info; 633 u64 now; 634 635 now = perf_clock(); 636 637 info = this_cpu_ptr(cgrp->info); 638 639 info->time += now - info->timestamp; 640 info->timestamp = now; 641 } 642 643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 644 { 645 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 646 if (cgrp_out) 647 __update_cgrp_time(cgrp_out); 648 } 649 650 static inline void update_cgrp_time_from_event(struct perf_event *event) 651 { 652 struct perf_cgroup *cgrp; 653 654 /* 655 * ensure we access cgroup data only when needed and 656 * when we know the cgroup is pinned (css_get) 657 */ 658 if (!is_cgroup_event(event)) 659 return; 660 661 cgrp = perf_cgroup_from_task(current, event->ctx); 662 /* 663 * Do not update time when cgroup is not active 664 */ 665 if (cgrp == event->cgrp) 666 __update_cgrp_time(event->cgrp); 667 } 668 669 static inline void 670 perf_cgroup_set_timestamp(struct task_struct *task, 671 struct perf_event_context *ctx) 672 { 673 struct perf_cgroup *cgrp; 674 struct perf_cgroup_info *info; 675 676 /* 677 * ctx->lock held by caller 678 * ensure we do not access cgroup data 679 * unless we have the cgroup pinned (css_get) 680 */ 681 if (!task || !ctx->nr_cgroups) 682 return; 683 684 cgrp = perf_cgroup_from_task(task, ctx); 685 info = this_cpu_ptr(cgrp->info); 686 info->timestamp = ctx->timestamp; 687 } 688 689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 690 691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 693 694 /* 695 * reschedule events based on the cgroup constraint of task. 696 * 697 * mode SWOUT : schedule out everything 698 * mode SWIN : schedule in based on cgroup for next 699 */ 700 static void perf_cgroup_switch(struct task_struct *task, int mode) 701 { 702 struct perf_cpu_context *cpuctx; 703 struct list_head *list; 704 unsigned long flags; 705 706 /* 707 * Disable interrupts and preemption to avoid this CPU's 708 * cgrp_cpuctx_entry to change under us. 709 */ 710 local_irq_save(flags); 711 712 list = this_cpu_ptr(&cgrp_cpuctx_list); 713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 715 716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 717 perf_pmu_disable(cpuctx->ctx.pmu); 718 719 if (mode & PERF_CGROUP_SWOUT) { 720 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 721 /* 722 * must not be done before ctxswout due 723 * to event_filter_match() in event_sched_out() 724 */ 725 cpuctx->cgrp = NULL; 726 } 727 728 if (mode & PERF_CGROUP_SWIN) { 729 WARN_ON_ONCE(cpuctx->cgrp); 730 /* 731 * set cgrp before ctxsw in to allow 732 * event_filter_match() to not have to pass 733 * task around 734 * we pass the cpuctx->ctx to perf_cgroup_from_task() 735 * because cgorup events are only per-cpu 736 */ 737 cpuctx->cgrp = perf_cgroup_from_task(task, 738 &cpuctx->ctx); 739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 740 } 741 perf_pmu_enable(cpuctx->ctx.pmu); 742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 743 } 744 745 local_irq_restore(flags); 746 } 747 748 static inline void perf_cgroup_sched_out(struct task_struct *task, 749 struct task_struct *next) 750 { 751 struct perf_cgroup *cgrp1; 752 struct perf_cgroup *cgrp2 = NULL; 753 754 rcu_read_lock(); 755 /* 756 * we come here when we know perf_cgroup_events > 0 757 * we do not need to pass the ctx here because we know 758 * we are holding the rcu lock 759 */ 760 cgrp1 = perf_cgroup_from_task(task, NULL); 761 cgrp2 = perf_cgroup_from_task(next, NULL); 762 763 /* 764 * only schedule out current cgroup events if we know 765 * that we are switching to a different cgroup. Otherwise, 766 * do no touch the cgroup events. 767 */ 768 if (cgrp1 != cgrp2) 769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 770 771 rcu_read_unlock(); 772 } 773 774 static inline void perf_cgroup_sched_in(struct task_struct *prev, 775 struct task_struct *task) 776 { 777 struct perf_cgroup *cgrp1; 778 struct perf_cgroup *cgrp2 = NULL; 779 780 rcu_read_lock(); 781 /* 782 * we come here when we know perf_cgroup_events > 0 783 * we do not need to pass the ctx here because we know 784 * we are holding the rcu lock 785 */ 786 cgrp1 = perf_cgroup_from_task(task, NULL); 787 cgrp2 = perf_cgroup_from_task(prev, NULL); 788 789 /* 790 * only need to schedule in cgroup events if we are changing 791 * cgroup during ctxsw. Cgroup events were not scheduled 792 * out of ctxsw out if that was not the case. 793 */ 794 if (cgrp1 != cgrp2) 795 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 796 797 rcu_read_unlock(); 798 } 799 800 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 801 struct perf_event_attr *attr, 802 struct perf_event *group_leader) 803 { 804 struct perf_cgroup *cgrp; 805 struct cgroup_subsys_state *css; 806 struct fd f = fdget(fd); 807 int ret = 0; 808 809 if (!f.file) 810 return -EBADF; 811 812 css = css_tryget_online_from_dir(f.file->f_path.dentry, 813 &perf_event_cgrp_subsys); 814 if (IS_ERR(css)) { 815 ret = PTR_ERR(css); 816 goto out; 817 } 818 819 cgrp = container_of(css, struct perf_cgroup, css); 820 event->cgrp = cgrp; 821 822 /* 823 * all events in a group must monitor 824 * the same cgroup because a task belongs 825 * to only one perf cgroup at a time 826 */ 827 if (group_leader && group_leader->cgrp != cgrp) { 828 perf_detach_cgroup(event); 829 ret = -EINVAL; 830 } 831 out: 832 fdput(f); 833 return ret; 834 } 835 836 static inline void 837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 838 { 839 struct perf_cgroup_info *t; 840 t = per_cpu_ptr(event->cgrp->info, event->cpu); 841 event->shadow_ctx_time = now - t->timestamp; 842 } 843 844 static inline void 845 perf_cgroup_defer_enabled(struct perf_event *event) 846 { 847 /* 848 * when the current task's perf cgroup does not match 849 * the event's, we need to remember to call the 850 * perf_mark_enable() function the first time a task with 851 * a matching perf cgroup is scheduled in. 852 */ 853 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 854 event->cgrp_defer_enabled = 1; 855 } 856 857 static inline void 858 perf_cgroup_mark_enabled(struct perf_event *event, 859 struct perf_event_context *ctx) 860 { 861 struct perf_event *sub; 862 u64 tstamp = perf_event_time(event); 863 864 if (!event->cgrp_defer_enabled) 865 return; 866 867 event->cgrp_defer_enabled = 0; 868 869 event->tstamp_enabled = tstamp - event->total_time_enabled; 870 list_for_each_entry(sub, &event->sibling_list, group_entry) { 871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 872 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 873 sub->cgrp_defer_enabled = 0; 874 } 875 } 876 } 877 878 /* 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 880 * cleared when last cgroup event is removed. 881 */ 882 static inline void 883 list_update_cgroup_event(struct perf_event *event, 884 struct perf_event_context *ctx, bool add) 885 { 886 struct perf_cpu_context *cpuctx; 887 struct list_head *cpuctx_entry; 888 889 if (!is_cgroup_event(event)) 890 return; 891 892 if (add && ctx->nr_cgroups++) 893 return; 894 else if (!add && --ctx->nr_cgroups) 895 return; 896 /* 897 * Because cgroup events are always per-cpu events, 898 * this will always be called from the right CPU. 899 */ 900 cpuctx = __get_cpu_context(ctx); 901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 903 if (add) { 904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 905 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 906 cpuctx->cgrp = event->cgrp; 907 } else { 908 list_del(cpuctx_entry); 909 cpuctx->cgrp = NULL; 910 } 911 } 912 913 #else /* !CONFIG_CGROUP_PERF */ 914 915 static inline bool 916 perf_cgroup_match(struct perf_event *event) 917 { 918 return true; 919 } 920 921 static inline void perf_detach_cgroup(struct perf_event *event) 922 {} 923 924 static inline int is_cgroup_event(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disabled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1253 enum pid_type type) 1254 { 1255 u32 nr; 1256 /* 1257 * only top level events have the pid namespace they were created in 1258 */ 1259 if (event->parent) 1260 event = event->parent; 1261 1262 nr = __task_pid_nr_ns(p, type, event->ns); 1263 /* avoid -1 if it is idle thread or runs in another ns */ 1264 if (!nr && !pid_alive(p)) 1265 nr = -1; 1266 return nr; 1267 } 1268 1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1270 { 1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1272 } 1273 1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1275 { 1276 return perf_event_pid_type(event, p, PIDTYPE_PID); 1277 } 1278 1279 /* 1280 * If we inherit events we want to return the parent event id 1281 * to userspace. 1282 */ 1283 static u64 primary_event_id(struct perf_event *event) 1284 { 1285 u64 id = event->id; 1286 1287 if (event->parent) 1288 id = event->parent->id; 1289 1290 return id; 1291 } 1292 1293 /* 1294 * Get the perf_event_context for a task and lock it. 1295 * 1296 * This has to cope with with the fact that until it is locked, 1297 * the context could get moved to another task. 1298 */ 1299 static struct perf_event_context * 1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1301 { 1302 struct perf_event_context *ctx; 1303 1304 retry: 1305 /* 1306 * One of the few rules of preemptible RCU is that one cannot do 1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1308 * part of the read side critical section was irqs-enabled -- see 1309 * rcu_read_unlock_special(). 1310 * 1311 * Since ctx->lock nests under rq->lock we must ensure the entire read 1312 * side critical section has interrupts disabled. 1313 */ 1314 local_irq_save(*flags); 1315 rcu_read_lock(); 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1317 if (ctx) { 1318 /* 1319 * If this context is a clone of another, it might 1320 * get swapped for another underneath us by 1321 * perf_event_task_sched_out, though the 1322 * rcu_read_lock() protects us from any context 1323 * getting freed. Lock the context and check if it 1324 * got swapped before we could get the lock, and retry 1325 * if so. If we locked the right context, then it 1326 * can't get swapped on us any more. 1327 */ 1328 raw_spin_lock(&ctx->lock); 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1330 raw_spin_unlock(&ctx->lock); 1331 rcu_read_unlock(); 1332 local_irq_restore(*flags); 1333 goto retry; 1334 } 1335 1336 if (ctx->task == TASK_TOMBSTONE || 1337 !atomic_inc_not_zero(&ctx->refcount)) { 1338 raw_spin_unlock(&ctx->lock); 1339 ctx = NULL; 1340 } else { 1341 WARN_ON_ONCE(ctx->task != task); 1342 } 1343 } 1344 rcu_read_unlock(); 1345 if (!ctx) 1346 local_irq_restore(*flags); 1347 return ctx; 1348 } 1349 1350 /* 1351 * Get the context for a task and increment its pin_count so it 1352 * can't get swapped to another task. This also increments its 1353 * reference count so that the context can't get freed. 1354 */ 1355 static struct perf_event_context * 1356 perf_pin_task_context(struct task_struct *task, int ctxn) 1357 { 1358 struct perf_event_context *ctx; 1359 unsigned long flags; 1360 1361 ctx = perf_lock_task_context(task, ctxn, &flags); 1362 if (ctx) { 1363 ++ctx->pin_count; 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1365 } 1366 return ctx; 1367 } 1368 1369 static void perf_unpin_context(struct perf_event_context *ctx) 1370 { 1371 unsigned long flags; 1372 1373 raw_spin_lock_irqsave(&ctx->lock, flags); 1374 --ctx->pin_count; 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1376 } 1377 1378 /* 1379 * Update the record of the current time in a context. 1380 */ 1381 static void update_context_time(struct perf_event_context *ctx) 1382 { 1383 u64 now = perf_clock(); 1384 1385 ctx->time += now - ctx->timestamp; 1386 ctx->timestamp = now; 1387 } 1388 1389 static u64 perf_event_time(struct perf_event *event) 1390 { 1391 struct perf_event_context *ctx = event->ctx; 1392 1393 if (is_cgroup_event(event)) 1394 return perf_cgroup_event_time(event); 1395 1396 return ctx ? ctx->time : 0; 1397 } 1398 1399 /* 1400 * Update the total_time_enabled and total_time_running fields for a event. 1401 */ 1402 static void update_event_times(struct perf_event *event) 1403 { 1404 struct perf_event_context *ctx = event->ctx; 1405 u64 run_end; 1406 1407 lockdep_assert_held(&ctx->lock); 1408 1409 if (event->state < PERF_EVENT_STATE_INACTIVE || 1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1411 return; 1412 1413 /* 1414 * in cgroup mode, time_enabled represents 1415 * the time the event was enabled AND active 1416 * tasks were in the monitored cgroup. This is 1417 * independent of the activity of the context as 1418 * there may be a mix of cgroup and non-cgroup events. 1419 * 1420 * That is why we treat cgroup events differently 1421 * here. 1422 */ 1423 if (is_cgroup_event(event)) 1424 run_end = perf_cgroup_event_time(event); 1425 else if (ctx->is_active) 1426 run_end = ctx->time; 1427 else 1428 run_end = event->tstamp_stopped; 1429 1430 event->total_time_enabled = run_end - event->tstamp_enabled; 1431 1432 if (event->state == PERF_EVENT_STATE_INACTIVE) 1433 run_end = event->tstamp_stopped; 1434 else 1435 run_end = perf_event_time(event); 1436 1437 event->total_time_running = run_end - event->tstamp_running; 1438 1439 } 1440 1441 /* 1442 * Update total_time_enabled and total_time_running for all events in a group. 1443 */ 1444 static void update_group_times(struct perf_event *leader) 1445 { 1446 struct perf_event *event; 1447 1448 update_event_times(leader); 1449 list_for_each_entry(event, &leader->sibling_list, group_entry) 1450 update_event_times(event); 1451 } 1452 1453 static enum event_type_t get_event_type(struct perf_event *event) 1454 { 1455 struct perf_event_context *ctx = event->ctx; 1456 enum event_type_t event_type; 1457 1458 lockdep_assert_held(&ctx->lock); 1459 1460 /* 1461 * It's 'group type', really, because if our group leader is 1462 * pinned, so are we. 1463 */ 1464 if (event->group_leader != event) 1465 event = event->group_leader; 1466 1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1468 if (!ctx->task) 1469 event_type |= EVENT_CPU; 1470 1471 return event_type; 1472 } 1473 1474 static struct list_head * 1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1476 { 1477 if (event->attr.pinned) 1478 return &ctx->pinned_groups; 1479 else 1480 return &ctx->flexible_groups; 1481 } 1482 1483 /* 1484 * Add a event from the lists for its context. 1485 * Must be called with ctx->mutex and ctx->lock held. 1486 */ 1487 static void 1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1489 { 1490 lockdep_assert_held(&ctx->lock); 1491 1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1493 event->attach_state |= PERF_ATTACH_CONTEXT; 1494 1495 /* 1496 * If we're a stand alone event or group leader, we go to the context 1497 * list, group events are kept attached to the group so that 1498 * perf_group_detach can, at all times, locate all siblings. 1499 */ 1500 if (event->group_leader == event) { 1501 struct list_head *list; 1502 1503 event->group_caps = event->event_caps; 1504 1505 list = ctx_group_list(event, ctx); 1506 list_add_tail(&event->group_entry, list); 1507 } 1508 1509 list_update_cgroup_event(event, ctx, true); 1510 1511 list_add_rcu(&event->event_entry, &ctx->event_list); 1512 ctx->nr_events++; 1513 if (event->attr.inherit_stat) 1514 ctx->nr_stat++; 1515 1516 ctx->generation++; 1517 } 1518 1519 /* 1520 * Initialize event state based on the perf_event_attr::disabled. 1521 */ 1522 static inline void perf_event__state_init(struct perf_event *event) 1523 { 1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1525 PERF_EVENT_STATE_INACTIVE; 1526 } 1527 1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1529 { 1530 int entry = sizeof(u64); /* value */ 1531 int size = 0; 1532 int nr = 1; 1533 1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1535 size += sizeof(u64); 1536 1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1538 size += sizeof(u64); 1539 1540 if (event->attr.read_format & PERF_FORMAT_ID) 1541 entry += sizeof(u64); 1542 1543 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1544 nr += nr_siblings; 1545 size += sizeof(u64); 1546 } 1547 1548 size += entry * nr; 1549 event->read_size = size; 1550 } 1551 1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1553 { 1554 struct perf_sample_data *data; 1555 u16 size = 0; 1556 1557 if (sample_type & PERF_SAMPLE_IP) 1558 size += sizeof(data->ip); 1559 1560 if (sample_type & PERF_SAMPLE_ADDR) 1561 size += sizeof(data->addr); 1562 1563 if (sample_type & PERF_SAMPLE_PERIOD) 1564 size += sizeof(data->period); 1565 1566 if (sample_type & PERF_SAMPLE_WEIGHT) 1567 size += sizeof(data->weight); 1568 1569 if (sample_type & PERF_SAMPLE_READ) 1570 size += event->read_size; 1571 1572 if (sample_type & PERF_SAMPLE_DATA_SRC) 1573 size += sizeof(data->data_src.val); 1574 1575 if (sample_type & PERF_SAMPLE_TRANSACTION) 1576 size += sizeof(data->txn); 1577 1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1579 size += sizeof(data->phys_addr); 1580 1581 event->header_size = size; 1582 } 1583 1584 /* 1585 * Called at perf_event creation and when events are attached/detached from a 1586 * group. 1587 */ 1588 static void perf_event__header_size(struct perf_event *event) 1589 { 1590 __perf_event_read_size(event, 1591 event->group_leader->nr_siblings); 1592 __perf_event_header_size(event, event->attr.sample_type); 1593 } 1594 1595 static void perf_event__id_header_size(struct perf_event *event) 1596 { 1597 struct perf_sample_data *data; 1598 u64 sample_type = event->attr.sample_type; 1599 u16 size = 0; 1600 1601 if (sample_type & PERF_SAMPLE_TID) 1602 size += sizeof(data->tid_entry); 1603 1604 if (sample_type & PERF_SAMPLE_TIME) 1605 size += sizeof(data->time); 1606 1607 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1608 size += sizeof(data->id); 1609 1610 if (sample_type & PERF_SAMPLE_ID) 1611 size += sizeof(data->id); 1612 1613 if (sample_type & PERF_SAMPLE_STREAM_ID) 1614 size += sizeof(data->stream_id); 1615 1616 if (sample_type & PERF_SAMPLE_CPU) 1617 size += sizeof(data->cpu_entry); 1618 1619 event->id_header_size = size; 1620 } 1621 1622 static bool perf_event_validate_size(struct perf_event *event) 1623 { 1624 /* 1625 * The values computed here will be over-written when we actually 1626 * attach the event. 1627 */ 1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1630 perf_event__id_header_size(event); 1631 1632 /* 1633 * Sum the lot; should not exceed the 64k limit we have on records. 1634 * Conservative limit to allow for callchains and other variable fields. 1635 */ 1636 if (event->read_size + event->header_size + 1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1638 return false; 1639 1640 return true; 1641 } 1642 1643 static void perf_group_attach(struct perf_event *event) 1644 { 1645 struct perf_event *group_leader = event->group_leader, *pos; 1646 1647 lockdep_assert_held(&event->ctx->lock); 1648 1649 /* 1650 * We can have double attach due to group movement in perf_event_open. 1651 */ 1652 if (event->attach_state & PERF_ATTACH_GROUP) 1653 return; 1654 1655 event->attach_state |= PERF_ATTACH_GROUP; 1656 1657 if (group_leader == event) 1658 return; 1659 1660 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1661 1662 group_leader->group_caps &= event->event_caps; 1663 1664 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1665 group_leader->nr_siblings++; 1666 1667 perf_event__header_size(group_leader); 1668 1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1670 perf_event__header_size(pos); 1671 } 1672 1673 /* 1674 * Remove a event from the lists for its context. 1675 * Must be called with ctx->mutex and ctx->lock held. 1676 */ 1677 static void 1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1679 { 1680 WARN_ON_ONCE(event->ctx != ctx); 1681 lockdep_assert_held(&ctx->lock); 1682 1683 /* 1684 * We can have double detach due to exit/hot-unplug + close. 1685 */ 1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1687 return; 1688 1689 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1690 1691 list_update_cgroup_event(event, ctx, false); 1692 1693 ctx->nr_events--; 1694 if (event->attr.inherit_stat) 1695 ctx->nr_stat--; 1696 1697 list_del_rcu(&event->event_entry); 1698 1699 if (event->group_leader == event) 1700 list_del_init(&event->group_entry); 1701 1702 update_group_times(event); 1703 1704 /* 1705 * If event was in error state, then keep it 1706 * that way, otherwise bogus counts will be 1707 * returned on read(). The only way to get out 1708 * of error state is by explicit re-enabling 1709 * of the event 1710 */ 1711 if (event->state > PERF_EVENT_STATE_OFF) 1712 event->state = PERF_EVENT_STATE_OFF; 1713 1714 ctx->generation++; 1715 } 1716 1717 static void perf_group_detach(struct perf_event *event) 1718 { 1719 struct perf_event *sibling, *tmp; 1720 struct list_head *list = NULL; 1721 1722 lockdep_assert_held(&event->ctx->lock); 1723 1724 /* 1725 * We can have double detach due to exit/hot-unplug + close. 1726 */ 1727 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1728 return; 1729 1730 event->attach_state &= ~PERF_ATTACH_GROUP; 1731 1732 /* 1733 * If this is a sibling, remove it from its group. 1734 */ 1735 if (event->group_leader != event) { 1736 list_del_init(&event->group_entry); 1737 event->group_leader->nr_siblings--; 1738 goto out; 1739 } 1740 1741 if (!list_empty(&event->group_entry)) 1742 list = &event->group_entry; 1743 1744 /* 1745 * If this was a group event with sibling events then 1746 * upgrade the siblings to singleton events by adding them 1747 * to whatever list we are on. 1748 */ 1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1750 if (list) 1751 list_move_tail(&sibling->group_entry, list); 1752 sibling->group_leader = sibling; 1753 1754 /* Inherit group flags from the previous leader */ 1755 sibling->group_caps = event->group_caps; 1756 1757 WARN_ON_ONCE(sibling->ctx != event->ctx); 1758 } 1759 1760 out: 1761 perf_event__header_size(event->group_leader); 1762 1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1764 perf_event__header_size(tmp); 1765 } 1766 1767 static bool is_orphaned_event(struct perf_event *event) 1768 { 1769 return event->state == PERF_EVENT_STATE_DEAD; 1770 } 1771 1772 static inline int __pmu_filter_match(struct perf_event *event) 1773 { 1774 struct pmu *pmu = event->pmu; 1775 return pmu->filter_match ? pmu->filter_match(event) : 1; 1776 } 1777 1778 /* 1779 * Check whether we should attempt to schedule an event group based on 1780 * PMU-specific filtering. An event group can consist of HW and SW events, 1781 * potentially with a SW leader, so we must check all the filters, to 1782 * determine whether a group is schedulable: 1783 */ 1784 static inline int pmu_filter_match(struct perf_event *event) 1785 { 1786 struct perf_event *child; 1787 1788 if (!__pmu_filter_match(event)) 1789 return 0; 1790 1791 list_for_each_entry(child, &event->sibling_list, group_entry) { 1792 if (!__pmu_filter_match(child)) 1793 return 0; 1794 } 1795 1796 return 1; 1797 } 1798 1799 static inline int 1800 event_filter_match(struct perf_event *event) 1801 { 1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1803 perf_cgroup_match(event) && pmu_filter_match(event); 1804 } 1805 1806 static void 1807 event_sched_out(struct perf_event *event, 1808 struct perf_cpu_context *cpuctx, 1809 struct perf_event_context *ctx) 1810 { 1811 u64 tstamp = perf_event_time(event); 1812 u64 delta; 1813 1814 WARN_ON_ONCE(event->ctx != ctx); 1815 lockdep_assert_held(&ctx->lock); 1816 1817 /* 1818 * An event which could not be activated because of 1819 * filter mismatch still needs to have its timings 1820 * maintained, otherwise bogus information is return 1821 * via read() for time_enabled, time_running: 1822 */ 1823 if (event->state == PERF_EVENT_STATE_INACTIVE && 1824 !event_filter_match(event)) { 1825 delta = tstamp - event->tstamp_stopped; 1826 event->tstamp_running += delta; 1827 event->tstamp_stopped = tstamp; 1828 } 1829 1830 if (event->state != PERF_EVENT_STATE_ACTIVE) 1831 return; 1832 1833 perf_pmu_disable(event->pmu); 1834 1835 event->tstamp_stopped = tstamp; 1836 event->pmu->del(event, 0); 1837 event->oncpu = -1; 1838 event->state = PERF_EVENT_STATE_INACTIVE; 1839 if (event->pending_disable) { 1840 event->pending_disable = 0; 1841 event->state = PERF_EVENT_STATE_OFF; 1842 } 1843 1844 if (!is_software_event(event)) 1845 cpuctx->active_oncpu--; 1846 if (!--ctx->nr_active) 1847 perf_event_ctx_deactivate(ctx); 1848 if (event->attr.freq && event->attr.sample_freq) 1849 ctx->nr_freq--; 1850 if (event->attr.exclusive || !cpuctx->active_oncpu) 1851 cpuctx->exclusive = 0; 1852 1853 perf_pmu_enable(event->pmu); 1854 } 1855 1856 static void 1857 group_sched_out(struct perf_event *group_event, 1858 struct perf_cpu_context *cpuctx, 1859 struct perf_event_context *ctx) 1860 { 1861 struct perf_event *event; 1862 int state = group_event->state; 1863 1864 perf_pmu_disable(ctx->pmu); 1865 1866 event_sched_out(group_event, cpuctx, ctx); 1867 1868 /* 1869 * Schedule out siblings (if any): 1870 */ 1871 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1872 event_sched_out(event, cpuctx, ctx); 1873 1874 perf_pmu_enable(ctx->pmu); 1875 1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1877 cpuctx->exclusive = 0; 1878 } 1879 1880 #define DETACH_GROUP 0x01UL 1881 1882 /* 1883 * Cross CPU call to remove a performance event 1884 * 1885 * We disable the event on the hardware level first. After that we 1886 * remove it from the context list. 1887 */ 1888 static void 1889 __perf_remove_from_context(struct perf_event *event, 1890 struct perf_cpu_context *cpuctx, 1891 struct perf_event_context *ctx, 1892 void *info) 1893 { 1894 unsigned long flags = (unsigned long)info; 1895 1896 event_sched_out(event, cpuctx, ctx); 1897 if (flags & DETACH_GROUP) 1898 perf_group_detach(event); 1899 list_del_event(event, ctx); 1900 1901 if (!ctx->nr_events && ctx->is_active) { 1902 ctx->is_active = 0; 1903 if (ctx->task) { 1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1905 cpuctx->task_ctx = NULL; 1906 } 1907 } 1908 } 1909 1910 /* 1911 * Remove the event from a task's (or a CPU's) list of events. 1912 * 1913 * If event->ctx is a cloned context, callers must make sure that 1914 * every task struct that event->ctx->task could possibly point to 1915 * remains valid. This is OK when called from perf_release since 1916 * that only calls us on the top-level context, which can't be a clone. 1917 * When called from perf_event_exit_task, it's OK because the 1918 * context has been detached from its task. 1919 */ 1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1921 { 1922 struct perf_event_context *ctx = event->ctx; 1923 1924 lockdep_assert_held(&ctx->mutex); 1925 1926 event_function_call(event, __perf_remove_from_context, (void *)flags); 1927 1928 /* 1929 * The above event_function_call() can NO-OP when it hits 1930 * TASK_TOMBSTONE. In that case we must already have been detached 1931 * from the context (by perf_event_exit_event()) but the grouping 1932 * might still be in-tact. 1933 */ 1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1935 if ((flags & DETACH_GROUP) && 1936 (event->attach_state & PERF_ATTACH_GROUP)) { 1937 /* 1938 * Since in that case we cannot possibly be scheduled, simply 1939 * detach now. 1940 */ 1941 raw_spin_lock_irq(&ctx->lock); 1942 perf_group_detach(event); 1943 raw_spin_unlock_irq(&ctx->lock); 1944 } 1945 } 1946 1947 /* 1948 * Cross CPU call to disable a performance event 1949 */ 1950 static void __perf_event_disable(struct perf_event *event, 1951 struct perf_cpu_context *cpuctx, 1952 struct perf_event_context *ctx, 1953 void *info) 1954 { 1955 if (event->state < PERF_EVENT_STATE_INACTIVE) 1956 return; 1957 1958 update_context_time(ctx); 1959 update_cgrp_time_from_event(event); 1960 update_group_times(event); 1961 if (event == event->group_leader) 1962 group_sched_out(event, cpuctx, ctx); 1963 else 1964 event_sched_out(event, cpuctx, ctx); 1965 event->state = PERF_EVENT_STATE_OFF; 1966 } 1967 1968 /* 1969 * Disable a event. 1970 * 1971 * If event->ctx is a cloned context, callers must make sure that 1972 * every task struct that event->ctx->task could possibly point to 1973 * remains valid. This condition is satisifed when called through 1974 * perf_event_for_each_child or perf_event_for_each because they 1975 * hold the top-level event's child_mutex, so any descendant that 1976 * goes to exit will block in perf_event_exit_event(). 1977 * 1978 * When called from perf_pending_event it's OK because event->ctx 1979 * is the current context on this CPU and preemption is disabled, 1980 * hence we can't get into perf_event_task_sched_out for this context. 1981 */ 1982 static void _perf_event_disable(struct perf_event *event) 1983 { 1984 struct perf_event_context *ctx = event->ctx; 1985 1986 raw_spin_lock_irq(&ctx->lock); 1987 if (event->state <= PERF_EVENT_STATE_OFF) { 1988 raw_spin_unlock_irq(&ctx->lock); 1989 return; 1990 } 1991 raw_spin_unlock_irq(&ctx->lock); 1992 1993 event_function_call(event, __perf_event_disable, NULL); 1994 } 1995 1996 void perf_event_disable_local(struct perf_event *event) 1997 { 1998 event_function_local(event, __perf_event_disable, NULL); 1999 } 2000 2001 /* 2002 * Strictly speaking kernel users cannot create groups and therefore this 2003 * interface does not need the perf_event_ctx_lock() magic. 2004 */ 2005 void perf_event_disable(struct perf_event *event) 2006 { 2007 struct perf_event_context *ctx; 2008 2009 ctx = perf_event_ctx_lock(event); 2010 _perf_event_disable(event); 2011 perf_event_ctx_unlock(event, ctx); 2012 } 2013 EXPORT_SYMBOL_GPL(perf_event_disable); 2014 2015 void perf_event_disable_inatomic(struct perf_event *event) 2016 { 2017 event->pending_disable = 1; 2018 irq_work_queue(&event->pending); 2019 } 2020 2021 static void perf_set_shadow_time(struct perf_event *event, 2022 struct perf_event_context *ctx, 2023 u64 tstamp) 2024 { 2025 /* 2026 * use the correct time source for the time snapshot 2027 * 2028 * We could get by without this by leveraging the 2029 * fact that to get to this function, the caller 2030 * has most likely already called update_context_time() 2031 * and update_cgrp_time_xx() and thus both timestamp 2032 * are identical (or very close). Given that tstamp is, 2033 * already adjusted for cgroup, we could say that: 2034 * tstamp - ctx->timestamp 2035 * is equivalent to 2036 * tstamp - cgrp->timestamp. 2037 * 2038 * Then, in perf_output_read(), the calculation would 2039 * work with no changes because: 2040 * - event is guaranteed scheduled in 2041 * - no scheduled out in between 2042 * - thus the timestamp would be the same 2043 * 2044 * But this is a bit hairy. 2045 * 2046 * So instead, we have an explicit cgroup call to remain 2047 * within the time time source all along. We believe it 2048 * is cleaner and simpler to understand. 2049 */ 2050 if (is_cgroup_event(event)) 2051 perf_cgroup_set_shadow_time(event, tstamp); 2052 else 2053 event->shadow_ctx_time = tstamp - ctx->timestamp; 2054 } 2055 2056 #define MAX_INTERRUPTS (~0ULL) 2057 2058 static void perf_log_throttle(struct perf_event *event, int enable); 2059 static void perf_log_itrace_start(struct perf_event *event); 2060 2061 static int 2062 event_sched_in(struct perf_event *event, 2063 struct perf_cpu_context *cpuctx, 2064 struct perf_event_context *ctx) 2065 { 2066 u64 tstamp = perf_event_time(event); 2067 int ret = 0; 2068 2069 lockdep_assert_held(&ctx->lock); 2070 2071 if (event->state <= PERF_EVENT_STATE_OFF) 2072 return 0; 2073 2074 WRITE_ONCE(event->oncpu, smp_processor_id()); 2075 /* 2076 * Order event::oncpu write to happen before the ACTIVE state 2077 * is visible. 2078 */ 2079 smp_wmb(); 2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2081 2082 /* 2083 * Unthrottle events, since we scheduled we might have missed several 2084 * ticks already, also for a heavily scheduling task there is little 2085 * guarantee it'll get a tick in a timely manner. 2086 */ 2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2088 perf_log_throttle(event, 1); 2089 event->hw.interrupts = 0; 2090 } 2091 2092 /* 2093 * The new state must be visible before we turn it on in the hardware: 2094 */ 2095 smp_wmb(); 2096 2097 perf_pmu_disable(event->pmu); 2098 2099 perf_set_shadow_time(event, ctx, tstamp); 2100 2101 perf_log_itrace_start(event); 2102 2103 if (event->pmu->add(event, PERF_EF_START)) { 2104 event->state = PERF_EVENT_STATE_INACTIVE; 2105 event->oncpu = -1; 2106 ret = -EAGAIN; 2107 goto out; 2108 } 2109 2110 event->tstamp_running += tstamp - event->tstamp_stopped; 2111 2112 if (!is_software_event(event)) 2113 cpuctx->active_oncpu++; 2114 if (!ctx->nr_active++) 2115 perf_event_ctx_activate(ctx); 2116 if (event->attr.freq && event->attr.sample_freq) 2117 ctx->nr_freq++; 2118 2119 if (event->attr.exclusive) 2120 cpuctx->exclusive = 1; 2121 2122 out: 2123 perf_pmu_enable(event->pmu); 2124 2125 return ret; 2126 } 2127 2128 static int 2129 group_sched_in(struct perf_event *group_event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx) 2132 { 2133 struct perf_event *event, *partial_group = NULL; 2134 struct pmu *pmu = ctx->pmu; 2135 u64 now = ctx->time; 2136 bool simulate = false; 2137 2138 if (group_event->state == PERF_EVENT_STATE_OFF) 2139 return 0; 2140 2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2142 2143 if (event_sched_in(group_event, cpuctx, ctx)) { 2144 pmu->cancel_txn(pmu); 2145 perf_mux_hrtimer_restart(cpuctx); 2146 return -EAGAIN; 2147 } 2148 2149 /* 2150 * Schedule in siblings as one group (if any): 2151 */ 2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2153 if (event_sched_in(event, cpuctx, ctx)) { 2154 partial_group = event; 2155 goto group_error; 2156 } 2157 } 2158 2159 if (!pmu->commit_txn(pmu)) 2160 return 0; 2161 2162 group_error: 2163 /* 2164 * Groups can be scheduled in as one unit only, so undo any 2165 * partial group before returning: 2166 * The events up to the failed event are scheduled out normally, 2167 * tstamp_stopped will be updated. 2168 * 2169 * The failed events and the remaining siblings need to have 2170 * their timings updated as if they had gone thru event_sched_in() 2171 * and event_sched_out(). This is required to get consistent timings 2172 * across the group. This also takes care of the case where the group 2173 * could never be scheduled by ensuring tstamp_stopped is set to mark 2174 * the time the event was actually stopped, such that time delta 2175 * calculation in update_event_times() is correct. 2176 */ 2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2178 if (event == partial_group) 2179 simulate = true; 2180 2181 if (simulate) { 2182 event->tstamp_running += now - event->tstamp_stopped; 2183 event->tstamp_stopped = now; 2184 } else { 2185 event_sched_out(event, cpuctx, ctx); 2186 } 2187 } 2188 event_sched_out(group_event, cpuctx, ctx); 2189 2190 pmu->cancel_txn(pmu); 2191 2192 perf_mux_hrtimer_restart(cpuctx); 2193 2194 return -EAGAIN; 2195 } 2196 2197 /* 2198 * Work out whether we can put this event group on the CPU now. 2199 */ 2200 static int group_can_go_on(struct perf_event *event, 2201 struct perf_cpu_context *cpuctx, 2202 int can_add_hw) 2203 { 2204 /* 2205 * Groups consisting entirely of software events can always go on. 2206 */ 2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2208 return 1; 2209 /* 2210 * If an exclusive group is already on, no other hardware 2211 * events can go on. 2212 */ 2213 if (cpuctx->exclusive) 2214 return 0; 2215 /* 2216 * If this group is exclusive and there are already 2217 * events on the CPU, it can't go on. 2218 */ 2219 if (event->attr.exclusive && cpuctx->active_oncpu) 2220 return 0; 2221 /* 2222 * Otherwise, try to add it if all previous groups were able 2223 * to go on. 2224 */ 2225 return can_add_hw; 2226 } 2227 2228 /* 2229 * Complement to update_event_times(). This computes the tstamp_* values to 2230 * continue 'enabled' state from @now, and effectively discards the time 2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or 2232 * just switched (context) time base). 2233 * 2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and 2235 * cannot have been scheduled in yet. And going into INACTIVE state means 2236 * '@event->tstamp_stopped = @now'. 2237 * 2238 * Thus given the rules of update_event_times(): 2239 * 2240 * total_time_enabled = tstamp_stopped - tstamp_enabled 2241 * total_time_running = tstamp_stopped - tstamp_running 2242 * 2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new 2244 * tstamp_* values. 2245 */ 2246 static void __perf_event_enable_time(struct perf_event *event, u64 now) 2247 { 2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE); 2249 2250 event->tstamp_stopped = now; 2251 event->tstamp_enabled = now - event->total_time_enabled; 2252 event->tstamp_running = now - event->total_time_running; 2253 } 2254 2255 static void add_event_to_ctx(struct perf_event *event, 2256 struct perf_event_context *ctx) 2257 { 2258 u64 tstamp = perf_event_time(event); 2259 2260 list_add_event(event, ctx); 2261 perf_group_attach(event); 2262 /* 2263 * We can be called with event->state == STATE_OFF when we create with 2264 * .disabled = 1. In that case the IOC_ENABLE will call this function. 2265 */ 2266 if (event->state == PERF_EVENT_STATE_INACTIVE) 2267 __perf_event_enable_time(event, tstamp); 2268 } 2269 2270 static void ctx_sched_out(struct perf_event_context *ctx, 2271 struct perf_cpu_context *cpuctx, 2272 enum event_type_t event_type); 2273 static void 2274 ctx_sched_in(struct perf_event_context *ctx, 2275 struct perf_cpu_context *cpuctx, 2276 enum event_type_t event_type, 2277 struct task_struct *task); 2278 2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2280 struct perf_event_context *ctx, 2281 enum event_type_t event_type) 2282 { 2283 if (!cpuctx->task_ctx) 2284 return; 2285 2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2287 return; 2288 2289 ctx_sched_out(ctx, cpuctx, event_type); 2290 } 2291 2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2293 struct perf_event_context *ctx, 2294 struct task_struct *task) 2295 { 2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2297 if (ctx) 2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2300 if (ctx) 2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2302 } 2303 2304 /* 2305 * We want to maintain the following priority of scheduling: 2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2307 * - task pinned (EVENT_PINNED) 2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2309 * - task flexible (EVENT_FLEXIBLE). 2310 * 2311 * In order to avoid unscheduling and scheduling back in everything every 2312 * time an event is added, only do it for the groups of equal priority and 2313 * below. 2314 * 2315 * This can be called after a batch operation on task events, in which case 2316 * event_type is a bit mask of the types of events involved. For CPU events, 2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2318 */ 2319 static void ctx_resched(struct perf_cpu_context *cpuctx, 2320 struct perf_event_context *task_ctx, 2321 enum event_type_t event_type) 2322 { 2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2324 bool cpu_event = !!(event_type & EVENT_CPU); 2325 2326 /* 2327 * If pinned groups are involved, flexible groups also need to be 2328 * scheduled out. 2329 */ 2330 if (event_type & EVENT_PINNED) 2331 event_type |= EVENT_FLEXIBLE; 2332 2333 perf_pmu_disable(cpuctx->ctx.pmu); 2334 if (task_ctx) 2335 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2336 2337 /* 2338 * Decide which cpu ctx groups to schedule out based on the types 2339 * of events that caused rescheduling: 2340 * - EVENT_CPU: schedule out corresponding groups; 2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2342 * - otherwise, do nothing more. 2343 */ 2344 if (cpu_event) 2345 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2346 else if (ctx_event_type & EVENT_PINNED) 2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2348 2349 perf_event_sched_in(cpuctx, task_ctx, current); 2350 perf_pmu_enable(cpuctx->ctx.pmu); 2351 } 2352 2353 /* 2354 * Cross CPU call to install and enable a performance event 2355 * 2356 * Very similar to remote_function() + event_function() but cannot assume that 2357 * things like ctx->is_active and cpuctx->task_ctx are set. 2358 */ 2359 static int __perf_install_in_context(void *info) 2360 { 2361 struct perf_event *event = info; 2362 struct perf_event_context *ctx = event->ctx; 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2364 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2365 bool reprogram = true; 2366 int ret = 0; 2367 2368 raw_spin_lock(&cpuctx->ctx.lock); 2369 if (ctx->task) { 2370 raw_spin_lock(&ctx->lock); 2371 task_ctx = ctx; 2372 2373 reprogram = (ctx->task == current); 2374 2375 /* 2376 * If the task is running, it must be running on this CPU, 2377 * otherwise we cannot reprogram things. 2378 * 2379 * If its not running, we don't care, ctx->lock will 2380 * serialize against it becoming runnable. 2381 */ 2382 if (task_curr(ctx->task) && !reprogram) { 2383 ret = -ESRCH; 2384 goto unlock; 2385 } 2386 2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2388 } else if (task_ctx) { 2389 raw_spin_lock(&task_ctx->lock); 2390 } 2391 2392 if (reprogram) { 2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2394 add_event_to_ctx(event, ctx); 2395 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2396 } else { 2397 add_event_to_ctx(event, ctx); 2398 } 2399 2400 unlock: 2401 perf_ctx_unlock(cpuctx, task_ctx); 2402 2403 return ret; 2404 } 2405 2406 /* 2407 * Attach a performance event to a context. 2408 * 2409 * Very similar to event_function_call, see comment there. 2410 */ 2411 static void 2412 perf_install_in_context(struct perf_event_context *ctx, 2413 struct perf_event *event, 2414 int cpu) 2415 { 2416 struct task_struct *task = READ_ONCE(ctx->task); 2417 2418 lockdep_assert_held(&ctx->mutex); 2419 2420 if (event->cpu != -1) 2421 event->cpu = cpu; 2422 2423 /* 2424 * Ensures that if we can observe event->ctx, both the event and ctx 2425 * will be 'complete'. See perf_iterate_sb_cpu(). 2426 */ 2427 smp_store_release(&event->ctx, ctx); 2428 2429 if (!task) { 2430 cpu_function_call(cpu, __perf_install_in_context, event); 2431 return; 2432 } 2433 2434 /* 2435 * Should not happen, we validate the ctx is still alive before calling. 2436 */ 2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2438 return; 2439 2440 /* 2441 * Installing events is tricky because we cannot rely on ctx->is_active 2442 * to be set in case this is the nr_events 0 -> 1 transition. 2443 * 2444 * Instead we use task_curr(), which tells us if the task is running. 2445 * However, since we use task_curr() outside of rq::lock, we can race 2446 * against the actual state. This means the result can be wrong. 2447 * 2448 * If we get a false positive, we retry, this is harmless. 2449 * 2450 * If we get a false negative, things are complicated. If we are after 2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2452 * value must be correct. If we're before, it doesn't matter since 2453 * perf_event_context_sched_in() will program the counter. 2454 * 2455 * However, this hinges on the remote context switch having observed 2456 * our task->perf_event_ctxp[] store, such that it will in fact take 2457 * ctx::lock in perf_event_context_sched_in(). 2458 * 2459 * We do this by task_function_call(), if the IPI fails to hit the task 2460 * we know any future context switch of task must see the 2461 * perf_event_ctpx[] store. 2462 */ 2463 2464 /* 2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2466 * task_cpu() load, such that if the IPI then does not find the task 2467 * running, a future context switch of that task must observe the 2468 * store. 2469 */ 2470 smp_mb(); 2471 again: 2472 if (!task_function_call(task, __perf_install_in_context, event)) 2473 return; 2474 2475 raw_spin_lock_irq(&ctx->lock); 2476 task = ctx->task; 2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2478 /* 2479 * Cannot happen because we already checked above (which also 2480 * cannot happen), and we hold ctx->mutex, which serializes us 2481 * against perf_event_exit_task_context(). 2482 */ 2483 raw_spin_unlock_irq(&ctx->lock); 2484 return; 2485 } 2486 /* 2487 * If the task is not running, ctx->lock will avoid it becoming so, 2488 * thus we can safely install the event. 2489 */ 2490 if (task_curr(task)) { 2491 raw_spin_unlock_irq(&ctx->lock); 2492 goto again; 2493 } 2494 add_event_to_ctx(event, ctx); 2495 raw_spin_unlock_irq(&ctx->lock); 2496 } 2497 2498 /* 2499 * Put a event into inactive state and update time fields. 2500 * Enabling the leader of a group effectively enables all 2501 * the group members that aren't explicitly disabled, so we 2502 * have to update their ->tstamp_enabled also. 2503 * Note: this works for group members as well as group leaders 2504 * since the non-leader members' sibling_lists will be empty. 2505 */ 2506 static void __perf_event_mark_enabled(struct perf_event *event) 2507 { 2508 struct perf_event *sub; 2509 u64 tstamp = perf_event_time(event); 2510 2511 event->state = PERF_EVENT_STATE_INACTIVE; 2512 __perf_event_enable_time(event, tstamp); 2513 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2514 /* XXX should not be > INACTIVE if event isn't */ 2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2516 __perf_event_enable_time(sub, tstamp); 2517 } 2518 } 2519 2520 /* 2521 * Cross CPU call to enable a performance event 2522 */ 2523 static void __perf_event_enable(struct perf_event *event, 2524 struct perf_cpu_context *cpuctx, 2525 struct perf_event_context *ctx, 2526 void *info) 2527 { 2528 struct perf_event *leader = event->group_leader; 2529 struct perf_event_context *task_ctx; 2530 2531 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2532 event->state <= PERF_EVENT_STATE_ERROR) 2533 return; 2534 2535 if (ctx->is_active) 2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2537 2538 __perf_event_mark_enabled(event); 2539 2540 if (!ctx->is_active) 2541 return; 2542 2543 if (!event_filter_match(event)) { 2544 if (is_cgroup_event(event)) 2545 perf_cgroup_defer_enabled(event); 2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2547 return; 2548 } 2549 2550 /* 2551 * If the event is in a group and isn't the group leader, 2552 * then don't put it on unless the group is on. 2553 */ 2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2556 return; 2557 } 2558 2559 task_ctx = cpuctx->task_ctx; 2560 if (ctx->task) 2561 WARN_ON_ONCE(task_ctx != ctx); 2562 2563 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2564 } 2565 2566 /* 2567 * Enable a event. 2568 * 2569 * If event->ctx is a cloned context, callers must make sure that 2570 * every task struct that event->ctx->task could possibly point to 2571 * remains valid. This condition is satisfied when called through 2572 * perf_event_for_each_child or perf_event_for_each as described 2573 * for perf_event_disable. 2574 */ 2575 static void _perf_event_enable(struct perf_event *event) 2576 { 2577 struct perf_event_context *ctx = event->ctx; 2578 2579 raw_spin_lock_irq(&ctx->lock); 2580 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2581 event->state < PERF_EVENT_STATE_ERROR) { 2582 raw_spin_unlock_irq(&ctx->lock); 2583 return; 2584 } 2585 2586 /* 2587 * If the event is in error state, clear that first. 2588 * 2589 * That way, if we see the event in error state below, we know that it 2590 * has gone back into error state, as distinct from the task having 2591 * been scheduled away before the cross-call arrived. 2592 */ 2593 if (event->state == PERF_EVENT_STATE_ERROR) 2594 event->state = PERF_EVENT_STATE_OFF; 2595 raw_spin_unlock_irq(&ctx->lock); 2596 2597 event_function_call(event, __perf_event_enable, NULL); 2598 } 2599 2600 /* 2601 * See perf_event_disable(); 2602 */ 2603 void perf_event_enable(struct perf_event *event) 2604 { 2605 struct perf_event_context *ctx; 2606 2607 ctx = perf_event_ctx_lock(event); 2608 _perf_event_enable(event); 2609 perf_event_ctx_unlock(event, ctx); 2610 } 2611 EXPORT_SYMBOL_GPL(perf_event_enable); 2612 2613 struct stop_event_data { 2614 struct perf_event *event; 2615 unsigned int restart; 2616 }; 2617 2618 static int __perf_event_stop(void *info) 2619 { 2620 struct stop_event_data *sd = info; 2621 struct perf_event *event = sd->event; 2622 2623 /* if it's already INACTIVE, do nothing */ 2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2625 return 0; 2626 2627 /* matches smp_wmb() in event_sched_in() */ 2628 smp_rmb(); 2629 2630 /* 2631 * There is a window with interrupts enabled before we get here, 2632 * so we need to check again lest we try to stop another CPU's event. 2633 */ 2634 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2635 return -EAGAIN; 2636 2637 event->pmu->stop(event, PERF_EF_UPDATE); 2638 2639 /* 2640 * May race with the actual stop (through perf_pmu_output_stop()), 2641 * but it is only used for events with AUX ring buffer, and such 2642 * events will refuse to restart because of rb::aux_mmap_count==0, 2643 * see comments in perf_aux_output_begin(). 2644 * 2645 * Since this is happening on a event-local CPU, no trace is lost 2646 * while restarting. 2647 */ 2648 if (sd->restart) 2649 event->pmu->start(event, 0); 2650 2651 return 0; 2652 } 2653 2654 static int perf_event_stop(struct perf_event *event, int restart) 2655 { 2656 struct stop_event_data sd = { 2657 .event = event, 2658 .restart = restart, 2659 }; 2660 int ret = 0; 2661 2662 do { 2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2664 return 0; 2665 2666 /* matches smp_wmb() in event_sched_in() */ 2667 smp_rmb(); 2668 2669 /* 2670 * We only want to restart ACTIVE events, so if the event goes 2671 * inactive here (event->oncpu==-1), there's nothing more to do; 2672 * fall through with ret==-ENXIO. 2673 */ 2674 ret = cpu_function_call(READ_ONCE(event->oncpu), 2675 __perf_event_stop, &sd); 2676 } while (ret == -EAGAIN); 2677 2678 return ret; 2679 } 2680 2681 /* 2682 * In order to contain the amount of racy and tricky in the address filter 2683 * configuration management, it is a two part process: 2684 * 2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2686 * we update the addresses of corresponding vmas in 2687 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2688 * (p2) when an event is scheduled in (pmu::add), it calls 2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2690 * if the generation has changed since the previous call. 2691 * 2692 * If (p1) happens while the event is active, we restart it to force (p2). 2693 * 2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2696 * ioctl; 2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2699 * for reading; 2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2701 * of exec. 2702 */ 2703 void perf_event_addr_filters_sync(struct perf_event *event) 2704 { 2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2706 2707 if (!has_addr_filter(event)) 2708 return; 2709 2710 raw_spin_lock(&ifh->lock); 2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2712 event->pmu->addr_filters_sync(event); 2713 event->hw.addr_filters_gen = event->addr_filters_gen; 2714 } 2715 raw_spin_unlock(&ifh->lock); 2716 } 2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2718 2719 static int _perf_event_refresh(struct perf_event *event, int refresh) 2720 { 2721 /* 2722 * not supported on inherited events 2723 */ 2724 if (event->attr.inherit || !is_sampling_event(event)) 2725 return -EINVAL; 2726 2727 atomic_add(refresh, &event->event_limit); 2728 _perf_event_enable(event); 2729 2730 return 0; 2731 } 2732 2733 /* 2734 * See perf_event_disable() 2735 */ 2736 int perf_event_refresh(struct perf_event *event, int refresh) 2737 { 2738 struct perf_event_context *ctx; 2739 int ret; 2740 2741 ctx = perf_event_ctx_lock(event); 2742 ret = _perf_event_refresh(event, refresh); 2743 perf_event_ctx_unlock(event, ctx); 2744 2745 return ret; 2746 } 2747 EXPORT_SYMBOL_GPL(perf_event_refresh); 2748 2749 static void ctx_sched_out(struct perf_event_context *ctx, 2750 struct perf_cpu_context *cpuctx, 2751 enum event_type_t event_type) 2752 { 2753 int is_active = ctx->is_active; 2754 struct perf_event *event; 2755 2756 lockdep_assert_held(&ctx->lock); 2757 2758 if (likely(!ctx->nr_events)) { 2759 /* 2760 * See __perf_remove_from_context(). 2761 */ 2762 WARN_ON_ONCE(ctx->is_active); 2763 if (ctx->task) 2764 WARN_ON_ONCE(cpuctx->task_ctx); 2765 return; 2766 } 2767 2768 ctx->is_active &= ~event_type; 2769 if (!(ctx->is_active & EVENT_ALL)) 2770 ctx->is_active = 0; 2771 2772 if (ctx->task) { 2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2774 if (!ctx->is_active) 2775 cpuctx->task_ctx = NULL; 2776 } 2777 2778 /* 2779 * Always update time if it was set; not only when it changes. 2780 * Otherwise we can 'forget' to update time for any but the last 2781 * context we sched out. For example: 2782 * 2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2784 * ctx_sched_out(.event_type = EVENT_PINNED) 2785 * 2786 * would only update time for the pinned events. 2787 */ 2788 if (is_active & EVENT_TIME) { 2789 /* update (and stop) ctx time */ 2790 update_context_time(ctx); 2791 update_cgrp_time_from_cpuctx(cpuctx); 2792 } 2793 2794 is_active ^= ctx->is_active; /* changed bits */ 2795 2796 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2797 return; 2798 2799 perf_pmu_disable(ctx->pmu); 2800 if (is_active & EVENT_PINNED) { 2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2802 group_sched_out(event, cpuctx, ctx); 2803 } 2804 2805 if (is_active & EVENT_FLEXIBLE) { 2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2807 group_sched_out(event, cpuctx, ctx); 2808 } 2809 perf_pmu_enable(ctx->pmu); 2810 } 2811 2812 /* 2813 * Test whether two contexts are equivalent, i.e. whether they have both been 2814 * cloned from the same version of the same context. 2815 * 2816 * Equivalence is measured using a generation number in the context that is 2817 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2818 * and list_del_event(). 2819 */ 2820 static int context_equiv(struct perf_event_context *ctx1, 2821 struct perf_event_context *ctx2) 2822 { 2823 lockdep_assert_held(&ctx1->lock); 2824 lockdep_assert_held(&ctx2->lock); 2825 2826 /* Pinning disables the swap optimization */ 2827 if (ctx1->pin_count || ctx2->pin_count) 2828 return 0; 2829 2830 /* If ctx1 is the parent of ctx2 */ 2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2832 return 1; 2833 2834 /* If ctx2 is the parent of ctx1 */ 2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2836 return 1; 2837 2838 /* 2839 * If ctx1 and ctx2 have the same parent; we flatten the parent 2840 * hierarchy, see perf_event_init_context(). 2841 */ 2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2843 ctx1->parent_gen == ctx2->parent_gen) 2844 return 1; 2845 2846 /* Unmatched */ 2847 return 0; 2848 } 2849 2850 static void __perf_event_sync_stat(struct perf_event *event, 2851 struct perf_event *next_event) 2852 { 2853 u64 value; 2854 2855 if (!event->attr.inherit_stat) 2856 return; 2857 2858 /* 2859 * Update the event value, we cannot use perf_event_read() 2860 * because we're in the middle of a context switch and have IRQs 2861 * disabled, which upsets smp_call_function_single(), however 2862 * we know the event must be on the current CPU, therefore we 2863 * don't need to use it. 2864 */ 2865 switch (event->state) { 2866 case PERF_EVENT_STATE_ACTIVE: 2867 event->pmu->read(event); 2868 /* fall-through */ 2869 2870 case PERF_EVENT_STATE_INACTIVE: 2871 update_event_times(event); 2872 break; 2873 2874 default: 2875 break; 2876 } 2877 2878 /* 2879 * In order to keep per-task stats reliable we need to flip the event 2880 * values when we flip the contexts. 2881 */ 2882 value = local64_read(&next_event->count); 2883 value = local64_xchg(&event->count, value); 2884 local64_set(&next_event->count, value); 2885 2886 swap(event->total_time_enabled, next_event->total_time_enabled); 2887 swap(event->total_time_running, next_event->total_time_running); 2888 2889 /* 2890 * Since we swizzled the values, update the user visible data too. 2891 */ 2892 perf_event_update_userpage(event); 2893 perf_event_update_userpage(next_event); 2894 } 2895 2896 static void perf_event_sync_stat(struct perf_event_context *ctx, 2897 struct perf_event_context *next_ctx) 2898 { 2899 struct perf_event *event, *next_event; 2900 2901 if (!ctx->nr_stat) 2902 return; 2903 2904 update_context_time(ctx); 2905 2906 event = list_first_entry(&ctx->event_list, 2907 struct perf_event, event_entry); 2908 2909 next_event = list_first_entry(&next_ctx->event_list, 2910 struct perf_event, event_entry); 2911 2912 while (&event->event_entry != &ctx->event_list && 2913 &next_event->event_entry != &next_ctx->event_list) { 2914 2915 __perf_event_sync_stat(event, next_event); 2916 2917 event = list_next_entry(event, event_entry); 2918 next_event = list_next_entry(next_event, event_entry); 2919 } 2920 } 2921 2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2923 struct task_struct *next) 2924 { 2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2926 struct perf_event_context *next_ctx; 2927 struct perf_event_context *parent, *next_parent; 2928 struct perf_cpu_context *cpuctx; 2929 int do_switch = 1; 2930 2931 if (likely(!ctx)) 2932 return; 2933 2934 cpuctx = __get_cpu_context(ctx); 2935 if (!cpuctx->task_ctx) 2936 return; 2937 2938 rcu_read_lock(); 2939 next_ctx = next->perf_event_ctxp[ctxn]; 2940 if (!next_ctx) 2941 goto unlock; 2942 2943 parent = rcu_dereference(ctx->parent_ctx); 2944 next_parent = rcu_dereference(next_ctx->parent_ctx); 2945 2946 /* If neither context have a parent context; they cannot be clones. */ 2947 if (!parent && !next_parent) 2948 goto unlock; 2949 2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2951 /* 2952 * Looks like the two contexts are clones, so we might be 2953 * able to optimize the context switch. We lock both 2954 * contexts and check that they are clones under the 2955 * lock (including re-checking that neither has been 2956 * uncloned in the meantime). It doesn't matter which 2957 * order we take the locks because no other cpu could 2958 * be trying to lock both of these tasks. 2959 */ 2960 raw_spin_lock(&ctx->lock); 2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2962 if (context_equiv(ctx, next_ctx)) { 2963 WRITE_ONCE(ctx->task, next); 2964 WRITE_ONCE(next_ctx->task, task); 2965 2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2967 2968 /* 2969 * RCU_INIT_POINTER here is safe because we've not 2970 * modified the ctx and the above modification of 2971 * ctx->task and ctx->task_ctx_data are immaterial 2972 * since those values are always verified under 2973 * ctx->lock which we're now holding. 2974 */ 2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2977 2978 do_switch = 0; 2979 2980 perf_event_sync_stat(ctx, next_ctx); 2981 } 2982 raw_spin_unlock(&next_ctx->lock); 2983 raw_spin_unlock(&ctx->lock); 2984 } 2985 unlock: 2986 rcu_read_unlock(); 2987 2988 if (do_switch) { 2989 raw_spin_lock(&ctx->lock); 2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2991 raw_spin_unlock(&ctx->lock); 2992 } 2993 } 2994 2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2996 2997 void perf_sched_cb_dec(struct pmu *pmu) 2998 { 2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3000 3001 this_cpu_dec(perf_sched_cb_usages); 3002 3003 if (!--cpuctx->sched_cb_usage) 3004 list_del(&cpuctx->sched_cb_entry); 3005 } 3006 3007 3008 void perf_sched_cb_inc(struct pmu *pmu) 3009 { 3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3011 3012 if (!cpuctx->sched_cb_usage++) 3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3014 3015 this_cpu_inc(perf_sched_cb_usages); 3016 } 3017 3018 /* 3019 * This function provides the context switch callback to the lower code 3020 * layer. It is invoked ONLY when the context switch callback is enabled. 3021 * 3022 * This callback is relevant even to per-cpu events; for example multi event 3023 * PEBS requires this to provide PID/TID information. This requires we flush 3024 * all queued PEBS records before we context switch to a new task. 3025 */ 3026 static void perf_pmu_sched_task(struct task_struct *prev, 3027 struct task_struct *next, 3028 bool sched_in) 3029 { 3030 struct perf_cpu_context *cpuctx; 3031 struct pmu *pmu; 3032 3033 if (prev == next) 3034 return; 3035 3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3038 3039 if (WARN_ON_ONCE(!pmu->sched_task)) 3040 continue; 3041 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3043 perf_pmu_disable(pmu); 3044 3045 pmu->sched_task(cpuctx->task_ctx, sched_in); 3046 3047 perf_pmu_enable(pmu); 3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3049 } 3050 } 3051 3052 static void perf_event_switch(struct task_struct *task, 3053 struct task_struct *next_prev, bool sched_in); 3054 3055 #define for_each_task_context_nr(ctxn) \ 3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3057 3058 /* 3059 * Called from scheduler to remove the events of the current task, 3060 * with interrupts disabled. 3061 * 3062 * We stop each event and update the event value in event->count. 3063 * 3064 * This does not protect us against NMI, but disable() 3065 * sets the disabled bit in the control field of event _before_ 3066 * accessing the event control register. If a NMI hits, then it will 3067 * not restart the event. 3068 */ 3069 void __perf_event_task_sched_out(struct task_struct *task, 3070 struct task_struct *next) 3071 { 3072 int ctxn; 3073 3074 if (__this_cpu_read(perf_sched_cb_usages)) 3075 perf_pmu_sched_task(task, next, false); 3076 3077 if (atomic_read(&nr_switch_events)) 3078 perf_event_switch(task, next, false); 3079 3080 for_each_task_context_nr(ctxn) 3081 perf_event_context_sched_out(task, ctxn, next); 3082 3083 /* 3084 * if cgroup events exist on this CPU, then we need 3085 * to check if we have to switch out PMU state. 3086 * cgroup event are system-wide mode only 3087 */ 3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3089 perf_cgroup_sched_out(task, next); 3090 } 3091 3092 /* 3093 * Called with IRQs disabled 3094 */ 3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3096 enum event_type_t event_type) 3097 { 3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3099 } 3100 3101 static void 3102 ctx_pinned_sched_in(struct perf_event_context *ctx, 3103 struct perf_cpu_context *cpuctx) 3104 { 3105 struct perf_event *event; 3106 3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3108 if (event->state <= PERF_EVENT_STATE_OFF) 3109 continue; 3110 if (!event_filter_match(event)) 3111 continue; 3112 3113 /* may need to reset tstamp_enabled */ 3114 if (is_cgroup_event(event)) 3115 perf_cgroup_mark_enabled(event, ctx); 3116 3117 if (group_can_go_on(event, cpuctx, 1)) 3118 group_sched_in(event, cpuctx, ctx); 3119 3120 /* 3121 * If this pinned group hasn't been scheduled, 3122 * put it in error state. 3123 */ 3124 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3125 update_group_times(event); 3126 event->state = PERF_EVENT_STATE_ERROR; 3127 } 3128 } 3129 } 3130 3131 static void 3132 ctx_flexible_sched_in(struct perf_event_context *ctx, 3133 struct perf_cpu_context *cpuctx) 3134 { 3135 struct perf_event *event; 3136 int can_add_hw = 1; 3137 3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3139 /* Ignore events in OFF or ERROR state */ 3140 if (event->state <= PERF_EVENT_STATE_OFF) 3141 continue; 3142 /* 3143 * Listen to the 'cpu' scheduling filter constraint 3144 * of events: 3145 */ 3146 if (!event_filter_match(event)) 3147 continue; 3148 3149 /* may need to reset tstamp_enabled */ 3150 if (is_cgroup_event(event)) 3151 perf_cgroup_mark_enabled(event, ctx); 3152 3153 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3154 if (group_sched_in(event, cpuctx, ctx)) 3155 can_add_hw = 0; 3156 } 3157 } 3158 } 3159 3160 static void 3161 ctx_sched_in(struct perf_event_context *ctx, 3162 struct perf_cpu_context *cpuctx, 3163 enum event_type_t event_type, 3164 struct task_struct *task) 3165 { 3166 int is_active = ctx->is_active; 3167 u64 now; 3168 3169 lockdep_assert_held(&ctx->lock); 3170 3171 if (likely(!ctx->nr_events)) 3172 return; 3173 3174 ctx->is_active |= (event_type | EVENT_TIME); 3175 if (ctx->task) { 3176 if (!is_active) 3177 cpuctx->task_ctx = ctx; 3178 else 3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3180 } 3181 3182 is_active ^= ctx->is_active; /* changed bits */ 3183 3184 if (is_active & EVENT_TIME) { 3185 /* start ctx time */ 3186 now = perf_clock(); 3187 ctx->timestamp = now; 3188 perf_cgroup_set_timestamp(task, ctx); 3189 } 3190 3191 /* 3192 * First go through the list and put on any pinned groups 3193 * in order to give them the best chance of going on. 3194 */ 3195 if (is_active & EVENT_PINNED) 3196 ctx_pinned_sched_in(ctx, cpuctx); 3197 3198 /* Then walk through the lower prio flexible groups */ 3199 if (is_active & EVENT_FLEXIBLE) 3200 ctx_flexible_sched_in(ctx, cpuctx); 3201 } 3202 3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3204 enum event_type_t event_type, 3205 struct task_struct *task) 3206 { 3207 struct perf_event_context *ctx = &cpuctx->ctx; 3208 3209 ctx_sched_in(ctx, cpuctx, event_type, task); 3210 } 3211 3212 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3213 struct task_struct *task) 3214 { 3215 struct perf_cpu_context *cpuctx; 3216 3217 cpuctx = __get_cpu_context(ctx); 3218 if (cpuctx->task_ctx == ctx) 3219 return; 3220 3221 perf_ctx_lock(cpuctx, ctx); 3222 /* 3223 * We must check ctx->nr_events while holding ctx->lock, such 3224 * that we serialize against perf_install_in_context(). 3225 */ 3226 if (!ctx->nr_events) 3227 goto unlock; 3228 3229 perf_pmu_disable(ctx->pmu); 3230 /* 3231 * We want to keep the following priority order: 3232 * cpu pinned (that don't need to move), task pinned, 3233 * cpu flexible, task flexible. 3234 * 3235 * However, if task's ctx is not carrying any pinned 3236 * events, no need to flip the cpuctx's events around. 3237 */ 3238 if (!list_empty(&ctx->pinned_groups)) 3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3240 perf_event_sched_in(cpuctx, ctx, task); 3241 perf_pmu_enable(ctx->pmu); 3242 3243 unlock: 3244 perf_ctx_unlock(cpuctx, ctx); 3245 } 3246 3247 /* 3248 * Called from scheduler to add the events of the current task 3249 * with interrupts disabled. 3250 * 3251 * We restore the event value and then enable it. 3252 * 3253 * This does not protect us against NMI, but enable() 3254 * sets the enabled bit in the control field of event _before_ 3255 * accessing the event control register. If a NMI hits, then it will 3256 * keep the event running. 3257 */ 3258 void __perf_event_task_sched_in(struct task_struct *prev, 3259 struct task_struct *task) 3260 { 3261 struct perf_event_context *ctx; 3262 int ctxn; 3263 3264 /* 3265 * If cgroup events exist on this CPU, then we need to check if we have 3266 * to switch in PMU state; cgroup event are system-wide mode only. 3267 * 3268 * Since cgroup events are CPU events, we must schedule these in before 3269 * we schedule in the task events. 3270 */ 3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3272 perf_cgroup_sched_in(prev, task); 3273 3274 for_each_task_context_nr(ctxn) { 3275 ctx = task->perf_event_ctxp[ctxn]; 3276 if (likely(!ctx)) 3277 continue; 3278 3279 perf_event_context_sched_in(ctx, task); 3280 } 3281 3282 if (atomic_read(&nr_switch_events)) 3283 perf_event_switch(task, prev, true); 3284 3285 if (__this_cpu_read(perf_sched_cb_usages)) 3286 perf_pmu_sched_task(prev, task, true); 3287 } 3288 3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3290 { 3291 u64 frequency = event->attr.sample_freq; 3292 u64 sec = NSEC_PER_SEC; 3293 u64 divisor, dividend; 3294 3295 int count_fls, nsec_fls, frequency_fls, sec_fls; 3296 3297 count_fls = fls64(count); 3298 nsec_fls = fls64(nsec); 3299 frequency_fls = fls64(frequency); 3300 sec_fls = 30; 3301 3302 /* 3303 * We got @count in @nsec, with a target of sample_freq HZ 3304 * the target period becomes: 3305 * 3306 * @count * 10^9 3307 * period = ------------------- 3308 * @nsec * sample_freq 3309 * 3310 */ 3311 3312 /* 3313 * Reduce accuracy by one bit such that @a and @b converge 3314 * to a similar magnitude. 3315 */ 3316 #define REDUCE_FLS(a, b) \ 3317 do { \ 3318 if (a##_fls > b##_fls) { \ 3319 a >>= 1; \ 3320 a##_fls--; \ 3321 } else { \ 3322 b >>= 1; \ 3323 b##_fls--; \ 3324 } \ 3325 } while (0) 3326 3327 /* 3328 * Reduce accuracy until either term fits in a u64, then proceed with 3329 * the other, so that finally we can do a u64/u64 division. 3330 */ 3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3332 REDUCE_FLS(nsec, frequency); 3333 REDUCE_FLS(sec, count); 3334 } 3335 3336 if (count_fls + sec_fls > 64) { 3337 divisor = nsec * frequency; 3338 3339 while (count_fls + sec_fls > 64) { 3340 REDUCE_FLS(count, sec); 3341 divisor >>= 1; 3342 } 3343 3344 dividend = count * sec; 3345 } else { 3346 dividend = count * sec; 3347 3348 while (nsec_fls + frequency_fls > 64) { 3349 REDUCE_FLS(nsec, frequency); 3350 dividend >>= 1; 3351 } 3352 3353 divisor = nsec * frequency; 3354 } 3355 3356 if (!divisor) 3357 return dividend; 3358 3359 return div64_u64(dividend, divisor); 3360 } 3361 3362 static DEFINE_PER_CPU(int, perf_throttled_count); 3363 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3364 3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3366 { 3367 struct hw_perf_event *hwc = &event->hw; 3368 s64 period, sample_period; 3369 s64 delta; 3370 3371 period = perf_calculate_period(event, nsec, count); 3372 3373 delta = (s64)(period - hwc->sample_period); 3374 delta = (delta + 7) / 8; /* low pass filter */ 3375 3376 sample_period = hwc->sample_period + delta; 3377 3378 if (!sample_period) 3379 sample_period = 1; 3380 3381 hwc->sample_period = sample_period; 3382 3383 if (local64_read(&hwc->period_left) > 8*sample_period) { 3384 if (disable) 3385 event->pmu->stop(event, PERF_EF_UPDATE); 3386 3387 local64_set(&hwc->period_left, 0); 3388 3389 if (disable) 3390 event->pmu->start(event, PERF_EF_RELOAD); 3391 } 3392 } 3393 3394 /* 3395 * combine freq adjustment with unthrottling to avoid two passes over the 3396 * events. At the same time, make sure, having freq events does not change 3397 * the rate of unthrottling as that would introduce bias. 3398 */ 3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3400 int needs_unthr) 3401 { 3402 struct perf_event *event; 3403 struct hw_perf_event *hwc; 3404 u64 now, period = TICK_NSEC; 3405 s64 delta; 3406 3407 /* 3408 * only need to iterate over all events iff: 3409 * - context have events in frequency mode (needs freq adjust) 3410 * - there are events to unthrottle on this cpu 3411 */ 3412 if (!(ctx->nr_freq || needs_unthr)) 3413 return; 3414 3415 raw_spin_lock(&ctx->lock); 3416 perf_pmu_disable(ctx->pmu); 3417 3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3419 if (event->state != PERF_EVENT_STATE_ACTIVE) 3420 continue; 3421 3422 if (!event_filter_match(event)) 3423 continue; 3424 3425 perf_pmu_disable(event->pmu); 3426 3427 hwc = &event->hw; 3428 3429 if (hwc->interrupts == MAX_INTERRUPTS) { 3430 hwc->interrupts = 0; 3431 perf_log_throttle(event, 1); 3432 event->pmu->start(event, 0); 3433 } 3434 3435 if (!event->attr.freq || !event->attr.sample_freq) 3436 goto next; 3437 3438 /* 3439 * stop the event and update event->count 3440 */ 3441 event->pmu->stop(event, PERF_EF_UPDATE); 3442 3443 now = local64_read(&event->count); 3444 delta = now - hwc->freq_count_stamp; 3445 hwc->freq_count_stamp = now; 3446 3447 /* 3448 * restart the event 3449 * reload only if value has changed 3450 * we have stopped the event so tell that 3451 * to perf_adjust_period() to avoid stopping it 3452 * twice. 3453 */ 3454 if (delta > 0) 3455 perf_adjust_period(event, period, delta, false); 3456 3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3458 next: 3459 perf_pmu_enable(event->pmu); 3460 } 3461 3462 perf_pmu_enable(ctx->pmu); 3463 raw_spin_unlock(&ctx->lock); 3464 } 3465 3466 /* 3467 * Round-robin a context's events: 3468 */ 3469 static void rotate_ctx(struct perf_event_context *ctx) 3470 { 3471 /* 3472 * Rotate the first entry last of non-pinned groups. Rotation might be 3473 * disabled by the inheritance code. 3474 */ 3475 if (!ctx->rotate_disable) 3476 list_rotate_left(&ctx->flexible_groups); 3477 } 3478 3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3480 { 3481 struct perf_event_context *ctx = NULL; 3482 int rotate = 0; 3483 3484 if (cpuctx->ctx.nr_events) { 3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3486 rotate = 1; 3487 } 3488 3489 ctx = cpuctx->task_ctx; 3490 if (ctx && ctx->nr_events) { 3491 if (ctx->nr_events != ctx->nr_active) 3492 rotate = 1; 3493 } 3494 3495 if (!rotate) 3496 goto done; 3497 3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3499 perf_pmu_disable(cpuctx->ctx.pmu); 3500 3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3502 if (ctx) 3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3504 3505 rotate_ctx(&cpuctx->ctx); 3506 if (ctx) 3507 rotate_ctx(ctx); 3508 3509 perf_event_sched_in(cpuctx, ctx, current); 3510 3511 perf_pmu_enable(cpuctx->ctx.pmu); 3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3513 done: 3514 3515 return rotate; 3516 } 3517 3518 void perf_event_task_tick(void) 3519 { 3520 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3521 struct perf_event_context *ctx, *tmp; 3522 int throttled; 3523 3524 WARN_ON(!irqs_disabled()); 3525 3526 __this_cpu_inc(perf_throttled_seq); 3527 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3529 3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3531 perf_adjust_freq_unthr_context(ctx, throttled); 3532 } 3533 3534 static int event_enable_on_exec(struct perf_event *event, 3535 struct perf_event_context *ctx) 3536 { 3537 if (!event->attr.enable_on_exec) 3538 return 0; 3539 3540 event->attr.enable_on_exec = 0; 3541 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3542 return 0; 3543 3544 __perf_event_mark_enabled(event); 3545 3546 return 1; 3547 } 3548 3549 /* 3550 * Enable all of a task's events that have been marked enable-on-exec. 3551 * This expects task == current. 3552 */ 3553 static void perf_event_enable_on_exec(int ctxn) 3554 { 3555 struct perf_event_context *ctx, *clone_ctx = NULL; 3556 enum event_type_t event_type = 0; 3557 struct perf_cpu_context *cpuctx; 3558 struct perf_event *event; 3559 unsigned long flags; 3560 int enabled = 0; 3561 3562 local_irq_save(flags); 3563 ctx = current->perf_event_ctxp[ctxn]; 3564 if (!ctx || !ctx->nr_events) 3565 goto out; 3566 3567 cpuctx = __get_cpu_context(ctx); 3568 perf_ctx_lock(cpuctx, ctx); 3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3570 list_for_each_entry(event, &ctx->event_list, event_entry) { 3571 enabled |= event_enable_on_exec(event, ctx); 3572 event_type |= get_event_type(event); 3573 } 3574 3575 /* 3576 * Unclone and reschedule this context if we enabled any event. 3577 */ 3578 if (enabled) { 3579 clone_ctx = unclone_ctx(ctx); 3580 ctx_resched(cpuctx, ctx, event_type); 3581 } else { 3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3583 } 3584 perf_ctx_unlock(cpuctx, ctx); 3585 3586 out: 3587 local_irq_restore(flags); 3588 3589 if (clone_ctx) 3590 put_ctx(clone_ctx); 3591 } 3592 3593 struct perf_read_data { 3594 struct perf_event *event; 3595 bool group; 3596 int ret; 3597 }; 3598 3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3600 { 3601 u16 local_pkg, event_pkg; 3602 3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3604 int local_cpu = smp_processor_id(); 3605 3606 event_pkg = topology_physical_package_id(event_cpu); 3607 local_pkg = topology_physical_package_id(local_cpu); 3608 3609 if (event_pkg == local_pkg) 3610 return local_cpu; 3611 } 3612 3613 return event_cpu; 3614 } 3615 3616 /* 3617 * Cross CPU call to read the hardware event 3618 */ 3619 static void __perf_event_read(void *info) 3620 { 3621 struct perf_read_data *data = info; 3622 struct perf_event *sub, *event = data->event; 3623 struct perf_event_context *ctx = event->ctx; 3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3625 struct pmu *pmu = event->pmu; 3626 3627 /* 3628 * If this is a task context, we need to check whether it is 3629 * the current task context of this cpu. If not it has been 3630 * scheduled out before the smp call arrived. In that case 3631 * event->count would have been updated to a recent sample 3632 * when the event was scheduled out. 3633 */ 3634 if (ctx->task && cpuctx->task_ctx != ctx) 3635 return; 3636 3637 raw_spin_lock(&ctx->lock); 3638 if (ctx->is_active) { 3639 update_context_time(ctx); 3640 update_cgrp_time_from_event(event); 3641 } 3642 3643 update_event_times(event); 3644 if (event->state != PERF_EVENT_STATE_ACTIVE) 3645 goto unlock; 3646 3647 if (!data->group) { 3648 pmu->read(event); 3649 data->ret = 0; 3650 goto unlock; 3651 } 3652 3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3654 3655 pmu->read(event); 3656 3657 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3658 update_event_times(sub); 3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3660 /* 3661 * Use sibling's PMU rather than @event's since 3662 * sibling could be on different (eg: software) PMU. 3663 */ 3664 sub->pmu->read(sub); 3665 } 3666 } 3667 3668 data->ret = pmu->commit_txn(pmu); 3669 3670 unlock: 3671 raw_spin_unlock(&ctx->lock); 3672 } 3673 3674 static inline u64 perf_event_count(struct perf_event *event) 3675 { 3676 return local64_read(&event->count) + atomic64_read(&event->child_count); 3677 } 3678 3679 /* 3680 * NMI-safe method to read a local event, that is an event that 3681 * is: 3682 * - either for the current task, or for this CPU 3683 * - does not have inherit set, for inherited task events 3684 * will not be local and we cannot read them atomically 3685 * - must not have a pmu::count method 3686 */ 3687 int perf_event_read_local(struct perf_event *event, u64 *value, 3688 u64 *enabled, u64 *running) 3689 { 3690 unsigned long flags; 3691 int ret = 0; 3692 u64 now; 3693 3694 /* 3695 * Disabling interrupts avoids all counter scheduling (context 3696 * switches, timer based rotation and IPIs). 3697 */ 3698 local_irq_save(flags); 3699 3700 /* 3701 * It must not be an event with inherit set, we cannot read 3702 * all child counters from atomic context. 3703 */ 3704 if (event->attr.inherit) { 3705 ret = -EOPNOTSUPP; 3706 goto out; 3707 } 3708 3709 /* If this is a per-task event, it must be for current */ 3710 if ((event->attach_state & PERF_ATTACH_TASK) && 3711 event->hw.target != current) { 3712 ret = -EINVAL; 3713 goto out; 3714 } 3715 3716 /* If this is a per-CPU event, it must be for this CPU */ 3717 if (!(event->attach_state & PERF_ATTACH_TASK) && 3718 event->cpu != smp_processor_id()) { 3719 ret = -EINVAL; 3720 goto out; 3721 } 3722 3723 now = event->shadow_ctx_time + perf_clock(); 3724 if (enabled) 3725 *enabled = now - event->tstamp_enabled; 3726 /* 3727 * If the event is currently on this CPU, its either a per-task event, 3728 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3729 * oncpu == -1). 3730 */ 3731 if (event->oncpu == smp_processor_id()) { 3732 event->pmu->read(event); 3733 if (running) 3734 *running = now - event->tstamp_running; 3735 } else if (running) { 3736 *running = event->total_time_running; 3737 } 3738 3739 *value = local64_read(&event->count); 3740 out: 3741 local_irq_restore(flags); 3742 3743 return ret; 3744 } 3745 3746 static int perf_event_read(struct perf_event *event, bool group) 3747 { 3748 int event_cpu, ret = 0; 3749 3750 /* 3751 * If event is enabled and currently active on a CPU, update the 3752 * value in the event structure: 3753 */ 3754 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3755 struct perf_read_data data = { 3756 .event = event, 3757 .group = group, 3758 .ret = 0, 3759 }; 3760 3761 event_cpu = READ_ONCE(event->oncpu); 3762 if ((unsigned)event_cpu >= nr_cpu_ids) 3763 return 0; 3764 3765 preempt_disable(); 3766 event_cpu = __perf_event_read_cpu(event, event_cpu); 3767 3768 /* 3769 * Purposely ignore the smp_call_function_single() return 3770 * value. 3771 * 3772 * If event_cpu isn't a valid CPU it means the event got 3773 * scheduled out and that will have updated the event count. 3774 * 3775 * Therefore, either way, we'll have an up-to-date event count 3776 * after this. 3777 */ 3778 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3779 preempt_enable(); 3780 ret = data.ret; 3781 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3782 struct perf_event_context *ctx = event->ctx; 3783 unsigned long flags; 3784 3785 raw_spin_lock_irqsave(&ctx->lock, flags); 3786 /* 3787 * may read while context is not active 3788 * (e.g., thread is blocked), in that case 3789 * we cannot update context time 3790 */ 3791 if (ctx->is_active) { 3792 update_context_time(ctx); 3793 update_cgrp_time_from_event(event); 3794 } 3795 if (group) 3796 update_group_times(event); 3797 else 3798 update_event_times(event); 3799 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3800 } 3801 3802 return ret; 3803 } 3804 3805 /* 3806 * Initialize the perf_event context in a task_struct: 3807 */ 3808 static void __perf_event_init_context(struct perf_event_context *ctx) 3809 { 3810 raw_spin_lock_init(&ctx->lock); 3811 mutex_init(&ctx->mutex); 3812 INIT_LIST_HEAD(&ctx->active_ctx_list); 3813 INIT_LIST_HEAD(&ctx->pinned_groups); 3814 INIT_LIST_HEAD(&ctx->flexible_groups); 3815 INIT_LIST_HEAD(&ctx->event_list); 3816 atomic_set(&ctx->refcount, 1); 3817 } 3818 3819 static struct perf_event_context * 3820 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3821 { 3822 struct perf_event_context *ctx; 3823 3824 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3825 if (!ctx) 3826 return NULL; 3827 3828 __perf_event_init_context(ctx); 3829 if (task) { 3830 ctx->task = task; 3831 get_task_struct(task); 3832 } 3833 ctx->pmu = pmu; 3834 3835 return ctx; 3836 } 3837 3838 static struct task_struct * 3839 find_lively_task_by_vpid(pid_t vpid) 3840 { 3841 struct task_struct *task; 3842 3843 rcu_read_lock(); 3844 if (!vpid) 3845 task = current; 3846 else 3847 task = find_task_by_vpid(vpid); 3848 if (task) 3849 get_task_struct(task); 3850 rcu_read_unlock(); 3851 3852 if (!task) 3853 return ERR_PTR(-ESRCH); 3854 3855 return task; 3856 } 3857 3858 /* 3859 * Returns a matching context with refcount and pincount. 3860 */ 3861 static struct perf_event_context * 3862 find_get_context(struct pmu *pmu, struct task_struct *task, 3863 struct perf_event *event) 3864 { 3865 struct perf_event_context *ctx, *clone_ctx = NULL; 3866 struct perf_cpu_context *cpuctx; 3867 void *task_ctx_data = NULL; 3868 unsigned long flags; 3869 int ctxn, err; 3870 int cpu = event->cpu; 3871 3872 if (!task) { 3873 /* Must be root to operate on a CPU event: */ 3874 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3875 return ERR_PTR(-EACCES); 3876 3877 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3878 ctx = &cpuctx->ctx; 3879 get_ctx(ctx); 3880 ++ctx->pin_count; 3881 3882 return ctx; 3883 } 3884 3885 err = -EINVAL; 3886 ctxn = pmu->task_ctx_nr; 3887 if (ctxn < 0) 3888 goto errout; 3889 3890 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3891 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3892 if (!task_ctx_data) { 3893 err = -ENOMEM; 3894 goto errout; 3895 } 3896 } 3897 3898 retry: 3899 ctx = perf_lock_task_context(task, ctxn, &flags); 3900 if (ctx) { 3901 clone_ctx = unclone_ctx(ctx); 3902 ++ctx->pin_count; 3903 3904 if (task_ctx_data && !ctx->task_ctx_data) { 3905 ctx->task_ctx_data = task_ctx_data; 3906 task_ctx_data = NULL; 3907 } 3908 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3909 3910 if (clone_ctx) 3911 put_ctx(clone_ctx); 3912 } else { 3913 ctx = alloc_perf_context(pmu, task); 3914 err = -ENOMEM; 3915 if (!ctx) 3916 goto errout; 3917 3918 if (task_ctx_data) { 3919 ctx->task_ctx_data = task_ctx_data; 3920 task_ctx_data = NULL; 3921 } 3922 3923 err = 0; 3924 mutex_lock(&task->perf_event_mutex); 3925 /* 3926 * If it has already passed perf_event_exit_task(). 3927 * we must see PF_EXITING, it takes this mutex too. 3928 */ 3929 if (task->flags & PF_EXITING) 3930 err = -ESRCH; 3931 else if (task->perf_event_ctxp[ctxn]) 3932 err = -EAGAIN; 3933 else { 3934 get_ctx(ctx); 3935 ++ctx->pin_count; 3936 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3937 } 3938 mutex_unlock(&task->perf_event_mutex); 3939 3940 if (unlikely(err)) { 3941 put_ctx(ctx); 3942 3943 if (err == -EAGAIN) 3944 goto retry; 3945 goto errout; 3946 } 3947 } 3948 3949 kfree(task_ctx_data); 3950 return ctx; 3951 3952 errout: 3953 kfree(task_ctx_data); 3954 return ERR_PTR(err); 3955 } 3956 3957 static void perf_event_free_filter(struct perf_event *event); 3958 static void perf_event_free_bpf_prog(struct perf_event *event); 3959 3960 static void free_event_rcu(struct rcu_head *head) 3961 { 3962 struct perf_event *event; 3963 3964 event = container_of(head, struct perf_event, rcu_head); 3965 if (event->ns) 3966 put_pid_ns(event->ns); 3967 perf_event_free_filter(event); 3968 kfree(event); 3969 } 3970 3971 static void ring_buffer_attach(struct perf_event *event, 3972 struct ring_buffer *rb); 3973 3974 static void detach_sb_event(struct perf_event *event) 3975 { 3976 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3977 3978 raw_spin_lock(&pel->lock); 3979 list_del_rcu(&event->sb_list); 3980 raw_spin_unlock(&pel->lock); 3981 } 3982 3983 static bool is_sb_event(struct perf_event *event) 3984 { 3985 struct perf_event_attr *attr = &event->attr; 3986 3987 if (event->parent) 3988 return false; 3989 3990 if (event->attach_state & PERF_ATTACH_TASK) 3991 return false; 3992 3993 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3994 attr->comm || attr->comm_exec || 3995 attr->task || 3996 attr->context_switch) 3997 return true; 3998 return false; 3999 } 4000 4001 static void unaccount_pmu_sb_event(struct perf_event *event) 4002 { 4003 if (is_sb_event(event)) 4004 detach_sb_event(event); 4005 } 4006 4007 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4008 { 4009 if (event->parent) 4010 return; 4011 4012 if (is_cgroup_event(event)) 4013 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4014 } 4015 4016 #ifdef CONFIG_NO_HZ_FULL 4017 static DEFINE_SPINLOCK(nr_freq_lock); 4018 #endif 4019 4020 static void unaccount_freq_event_nohz(void) 4021 { 4022 #ifdef CONFIG_NO_HZ_FULL 4023 spin_lock(&nr_freq_lock); 4024 if (atomic_dec_and_test(&nr_freq_events)) 4025 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4026 spin_unlock(&nr_freq_lock); 4027 #endif 4028 } 4029 4030 static void unaccount_freq_event(void) 4031 { 4032 if (tick_nohz_full_enabled()) 4033 unaccount_freq_event_nohz(); 4034 else 4035 atomic_dec(&nr_freq_events); 4036 } 4037 4038 static void unaccount_event(struct perf_event *event) 4039 { 4040 bool dec = false; 4041 4042 if (event->parent) 4043 return; 4044 4045 if (event->attach_state & PERF_ATTACH_TASK) 4046 dec = true; 4047 if (event->attr.mmap || event->attr.mmap_data) 4048 atomic_dec(&nr_mmap_events); 4049 if (event->attr.comm) 4050 atomic_dec(&nr_comm_events); 4051 if (event->attr.namespaces) 4052 atomic_dec(&nr_namespaces_events); 4053 if (event->attr.task) 4054 atomic_dec(&nr_task_events); 4055 if (event->attr.freq) 4056 unaccount_freq_event(); 4057 if (event->attr.context_switch) { 4058 dec = true; 4059 atomic_dec(&nr_switch_events); 4060 } 4061 if (is_cgroup_event(event)) 4062 dec = true; 4063 if (has_branch_stack(event)) 4064 dec = true; 4065 4066 if (dec) { 4067 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4068 schedule_delayed_work(&perf_sched_work, HZ); 4069 } 4070 4071 unaccount_event_cpu(event, event->cpu); 4072 4073 unaccount_pmu_sb_event(event); 4074 } 4075 4076 static void perf_sched_delayed(struct work_struct *work) 4077 { 4078 mutex_lock(&perf_sched_mutex); 4079 if (atomic_dec_and_test(&perf_sched_count)) 4080 static_branch_disable(&perf_sched_events); 4081 mutex_unlock(&perf_sched_mutex); 4082 } 4083 4084 /* 4085 * The following implement mutual exclusion of events on "exclusive" pmus 4086 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4087 * at a time, so we disallow creating events that might conflict, namely: 4088 * 4089 * 1) cpu-wide events in the presence of per-task events, 4090 * 2) per-task events in the presence of cpu-wide events, 4091 * 3) two matching events on the same context. 4092 * 4093 * The former two cases are handled in the allocation path (perf_event_alloc(), 4094 * _free_event()), the latter -- before the first perf_install_in_context(). 4095 */ 4096 static int exclusive_event_init(struct perf_event *event) 4097 { 4098 struct pmu *pmu = event->pmu; 4099 4100 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4101 return 0; 4102 4103 /* 4104 * Prevent co-existence of per-task and cpu-wide events on the 4105 * same exclusive pmu. 4106 * 4107 * Negative pmu::exclusive_cnt means there are cpu-wide 4108 * events on this "exclusive" pmu, positive means there are 4109 * per-task events. 4110 * 4111 * Since this is called in perf_event_alloc() path, event::ctx 4112 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4113 * to mean "per-task event", because unlike other attach states it 4114 * never gets cleared. 4115 */ 4116 if (event->attach_state & PERF_ATTACH_TASK) { 4117 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4118 return -EBUSY; 4119 } else { 4120 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4121 return -EBUSY; 4122 } 4123 4124 return 0; 4125 } 4126 4127 static void exclusive_event_destroy(struct perf_event *event) 4128 { 4129 struct pmu *pmu = event->pmu; 4130 4131 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4132 return; 4133 4134 /* see comment in exclusive_event_init() */ 4135 if (event->attach_state & PERF_ATTACH_TASK) 4136 atomic_dec(&pmu->exclusive_cnt); 4137 else 4138 atomic_inc(&pmu->exclusive_cnt); 4139 } 4140 4141 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4142 { 4143 if ((e1->pmu == e2->pmu) && 4144 (e1->cpu == e2->cpu || 4145 e1->cpu == -1 || 4146 e2->cpu == -1)) 4147 return true; 4148 return false; 4149 } 4150 4151 /* Called under the same ctx::mutex as perf_install_in_context() */ 4152 static bool exclusive_event_installable(struct perf_event *event, 4153 struct perf_event_context *ctx) 4154 { 4155 struct perf_event *iter_event; 4156 struct pmu *pmu = event->pmu; 4157 4158 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4159 return true; 4160 4161 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4162 if (exclusive_event_match(iter_event, event)) 4163 return false; 4164 } 4165 4166 return true; 4167 } 4168 4169 static void perf_addr_filters_splice(struct perf_event *event, 4170 struct list_head *head); 4171 4172 static void _free_event(struct perf_event *event) 4173 { 4174 irq_work_sync(&event->pending); 4175 4176 unaccount_event(event); 4177 4178 if (event->rb) { 4179 /* 4180 * Can happen when we close an event with re-directed output. 4181 * 4182 * Since we have a 0 refcount, perf_mmap_close() will skip 4183 * over us; possibly making our ring_buffer_put() the last. 4184 */ 4185 mutex_lock(&event->mmap_mutex); 4186 ring_buffer_attach(event, NULL); 4187 mutex_unlock(&event->mmap_mutex); 4188 } 4189 4190 if (is_cgroup_event(event)) 4191 perf_detach_cgroup(event); 4192 4193 if (!event->parent) { 4194 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4195 put_callchain_buffers(); 4196 } 4197 4198 perf_event_free_bpf_prog(event); 4199 perf_addr_filters_splice(event, NULL); 4200 kfree(event->addr_filters_offs); 4201 4202 if (event->destroy) 4203 event->destroy(event); 4204 4205 if (event->ctx) 4206 put_ctx(event->ctx); 4207 4208 exclusive_event_destroy(event); 4209 module_put(event->pmu->module); 4210 4211 call_rcu(&event->rcu_head, free_event_rcu); 4212 } 4213 4214 /* 4215 * Used to free events which have a known refcount of 1, such as in error paths 4216 * where the event isn't exposed yet and inherited events. 4217 */ 4218 static void free_event(struct perf_event *event) 4219 { 4220 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4221 "unexpected event refcount: %ld; ptr=%p\n", 4222 atomic_long_read(&event->refcount), event)) { 4223 /* leak to avoid use-after-free */ 4224 return; 4225 } 4226 4227 _free_event(event); 4228 } 4229 4230 /* 4231 * Remove user event from the owner task. 4232 */ 4233 static void perf_remove_from_owner(struct perf_event *event) 4234 { 4235 struct task_struct *owner; 4236 4237 rcu_read_lock(); 4238 /* 4239 * Matches the smp_store_release() in perf_event_exit_task(). If we 4240 * observe !owner it means the list deletion is complete and we can 4241 * indeed free this event, otherwise we need to serialize on 4242 * owner->perf_event_mutex. 4243 */ 4244 owner = lockless_dereference(event->owner); 4245 if (owner) { 4246 /* 4247 * Since delayed_put_task_struct() also drops the last 4248 * task reference we can safely take a new reference 4249 * while holding the rcu_read_lock(). 4250 */ 4251 get_task_struct(owner); 4252 } 4253 rcu_read_unlock(); 4254 4255 if (owner) { 4256 /* 4257 * If we're here through perf_event_exit_task() we're already 4258 * holding ctx->mutex which would be an inversion wrt. the 4259 * normal lock order. 4260 * 4261 * However we can safely take this lock because its the child 4262 * ctx->mutex. 4263 */ 4264 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4265 4266 /* 4267 * We have to re-check the event->owner field, if it is cleared 4268 * we raced with perf_event_exit_task(), acquiring the mutex 4269 * ensured they're done, and we can proceed with freeing the 4270 * event. 4271 */ 4272 if (event->owner) { 4273 list_del_init(&event->owner_entry); 4274 smp_store_release(&event->owner, NULL); 4275 } 4276 mutex_unlock(&owner->perf_event_mutex); 4277 put_task_struct(owner); 4278 } 4279 } 4280 4281 static void put_event(struct perf_event *event) 4282 { 4283 if (!atomic_long_dec_and_test(&event->refcount)) 4284 return; 4285 4286 _free_event(event); 4287 } 4288 4289 /* 4290 * Kill an event dead; while event:refcount will preserve the event 4291 * object, it will not preserve its functionality. Once the last 'user' 4292 * gives up the object, we'll destroy the thing. 4293 */ 4294 int perf_event_release_kernel(struct perf_event *event) 4295 { 4296 struct perf_event_context *ctx = event->ctx; 4297 struct perf_event *child, *tmp; 4298 4299 /* 4300 * If we got here through err_file: fput(event_file); we will not have 4301 * attached to a context yet. 4302 */ 4303 if (!ctx) { 4304 WARN_ON_ONCE(event->attach_state & 4305 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4306 goto no_ctx; 4307 } 4308 4309 if (!is_kernel_event(event)) 4310 perf_remove_from_owner(event); 4311 4312 ctx = perf_event_ctx_lock(event); 4313 WARN_ON_ONCE(ctx->parent_ctx); 4314 perf_remove_from_context(event, DETACH_GROUP); 4315 4316 raw_spin_lock_irq(&ctx->lock); 4317 /* 4318 * Mark this event as STATE_DEAD, there is no external reference to it 4319 * anymore. 4320 * 4321 * Anybody acquiring event->child_mutex after the below loop _must_ 4322 * also see this, most importantly inherit_event() which will avoid 4323 * placing more children on the list. 4324 * 4325 * Thus this guarantees that we will in fact observe and kill _ALL_ 4326 * child events. 4327 */ 4328 event->state = PERF_EVENT_STATE_DEAD; 4329 raw_spin_unlock_irq(&ctx->lock); 4330 4331 perf_event_ctx_unlock(event, ctx); 4332 4333 again: 4334 mutex_lock(&event->child_mutex); 4335 list_for_each_entry(child, &event->child_list, child_list) { 4336 4337 /* 4338 * Cannot change, child events are not migrated, see the 4339 * comment with perf_event_ctx_lock_nested(). 4340 */ 4341 ctx = lockless_dereference(child->ctx); 4342 /* 4343 * Since child_mutex nests inside ctx::mutex, we must jump 4344 * through hoops. We start by grabbing a reference on the ctx. 4345 * 4346 * Since the event cannot get freed while we hold the 4347 * child_mutex, the context must also exist and have a !0 4348 * reference count. 4349 */ 4350 get_ctx(ctx); 4351 4352 /* 4353 * Now that we have a ctx ref, we can drop child_mutex, and 4354 * acquire ctx::mutex without fear of it going away. Then we 4355 * can re-acquire child_mutex. 4356 */ 4357 mutex_unlock(&event->child_mutex); 4358 mutex_lock(&ctx->mutex); 4359 mutex_lock(&event->child_mutex); 4360 4361 /* 4362 * Now that we hold ctx::mutex and child_mutex, revalidate our 4363 * state, if child is still the first entry, it didn't get freed 4364 * and we can continue doing so. 4365 */ 4366 tmp = list_first_entry_or_null(&event->child_list, 4367 struct perf_event, child_list); 4368 if (tmp == child) { 4369 perf_remove_from_context(child, DETACH_GROUP); 4370 list_del(&child->child_list); 4371 free_event(child); 4372 /* 4373 * This matches the refcount bump in inherit_event(); 4374 * this can't be the last reference. 4375 */ 4376 put_event(event); 4377 } 4378 4379 mutex_unlock(&event->child_mutex); 4380 mutex_unlock(&ctx->mutex); 4381 put_ctx(ctx); 4382 goto again; 4383 } 4384 mutex_unlock(&event->child_mutex); 4385 4386 no_ctx: 4387 put_event(event); /* Must be the 'last' reference */ 4388 return 0; 4389 } 4390 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4391 4392 /* 4393 * Called when the last reference to the file is gone. 4394 */ 4395 static int perf_release(struct inode *inode, struct file *file) 4396 { 4397 perf_event_release_kernel(file->private_data); 4398 return 0; 4399 } 4400 4401 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4402 { 4403 struct perf_event *child; 4404 u64 total = 0; 4405 4406 *enabled = 0; 4407 *running = 0; 4408 4409 mutex_lock(&event->child_mutex); 4410 4411 (void)perf_event_read(event, false); 4412 total += perf_event_count(event); 4413 4414 *enabled += event->total_time_enabled + 4415 atomic64_read(&event->child_total_time_enabled); 4416 *running += event->total_time_running + 4417 atomic64_read(&event->child_total_time_running); 4418 4419 list_for_each_entry(child, &event->child_list, child_list) { 4420 (void)perf_event_read(child, false); 4421 total += perf_event_count(child); 4422 *enabled += child->total_time_enabled; 4423 *running += child->total_time_running; 4424 } 4425 mutex_unlock(&event->child_mutex); 4426 4427 return total; 4428 } 4429 EXPORT_SYMBOL_GPL(perf_event_read_value); 4430 4431 static int __perf_read_group_add(struct perf_event *leader, 4432 u64 read_format, u64 *values) 4433 { 4434 struct perf_event_context *ctx = leader->ctx; 4435 struct perf_event *sub; 4436 unsigned long flags; 4437 int n = 1; /* skip @nr */ 4438 int ret; 4439 4440 ret = perf_event_read(leader, true); 4441 if (ret) 4442 return ret; 4443 4444 /* 4445 * Since we co-schedule groups, {enabled,running} times of siblings 4446 * will be identical to those of the leader, so we only publish one 4447 * set. 4448 */ 4449 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4450 values[n++] += leader->total_time_enabled + 4451 atomic64_read(&leader->child_total_time_enabled); 4452 } 4453 4454 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4455 values[n++] += leader->total_time_running + 4456 atomic64_read(&leader->child_total_time_running); 4457 } 4458 4459 /* 4460 * Write {count,id} tuples for every sibling. 4461 */ 4462 values[n++] += perf_event_count(leader); 4463 if (read_format & PERF_FORMAT_ID) 4464 values[n++] = primary_event_id(leader); 4465 4466 raw_spin_lock_irqsave(&ctx->lock, flags); 4467 4468 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4469 values[n++] += perf_event_count(sub); 4470 if (read_format & PERF_FORMAT_ID) 4471 values[n++] = primary_event_id(sub); 4472 } 4473 4474 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4475 return 0; 4476 } 4477 4478 static int perf_read_group(struct perf_event *event, 4479 u64 read_format, char __user *buf) 4480 { 4481 struct perf_event *leader = event->group_leader, *child; 4482 struct perf_event_context *ctx = leader->ctx; 4483 int ret; 4484 u64 *values; 4485 4486 lockdep_assert_held(&ctx->mutex); 4487 4488 values = kzalloc(event->read_size, GFP_KERNEL); 4489 if (!values) 4490 return -ENOMEM; 4491 4492 values[0] = 1 + leader->nr_siblings; 4493 4494 /* 4495 * By locking the child_mutex of the leader we effectively 4496 * lock the child list of all siblings.. XXX explain how. 4497 */ 4498 mutex_lock(&leader->child_mutex); 4499 4500 ret = __perf_read_group_add(leader, read_format, values); 4501 if (ret) 4502 goto unlock; 4503 4504 list_for_each_entry(child, &leader->child_list, child_list) { 4505 ret = __perf_read_group_add(child, read_format, values); 4506 if (ret) 4507 goto unlock; 4508 } 4509 4510 mutex_unlock(&leader->child_mutex); 4511 4512 ret = event->read_size; 4513 if (copy_to_user(buf, values, event->read_size)) 4514 ret = -EFAULT; 4515 goto out; 4516 4517 unlock: 4518 mutex_unlock(&leader->child_mutex); 4519 out: 4520 kfree(values); 4521 return ret; 4522 } 4523 4524 static int perf_read_one(struct perf_event *event, 4525 u64 read_format, char __user *buf) 4526 { 4527 u64 enabled, running; 4528 u64 values[4]; 4529 int n = 0; 4530 4531 values[n++] = perf_event_read_value(event, &enabled, &running); 4532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4533 values[n++] = enabled; 4534 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4535 values[n++] = running; 4536 if (read_format & PERF_FORMAT_ID) 4537 values[n++] = primary_event_id(event); 4538 4539 if (copy_to_user(buf, values, n * sizeof(u64))) 4540 return -EFAULT; 4541 4542 return n * sizeof(u64); 4543 } 4544 4545 static bool is_event_hup(struct perf_event *event) 4546 { 4547 bool no_children; 4548 4549 if (event->state > PERF_EVENT_STATE_EXIT) 4550 return false; 4551 4552 mutex_lock(&event->child_mutex); 4553 no_children = list_empty(&event->child_list); 4554 mutex_unlock(&event->child_mutex); 4555 return no_children; 4556 } 4557 4558 /* 4559 * Read the performance event - simple non blocking version for now 4560 */ 4561 static ssize_t 4562 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4563 { 4564 u64 read_format = event->attr.read_format; 4565 int ret; 4566 4567 /* 4568 * Return end-of-file for a read on a event that is in 4569 * error state (i.e. because it was pinned but it couldn't be 4570 * scheduled on to the CPU at some point). 4571 */ 4572 if (event->state == PERF_EVENT_STATE_ERROR) 4573 return 0; 4574 4575 if (count < event->read_size) 4576 return -ENOSPC; 4577 4578 WARN_ON_ONCE(event->ctx->parent_ctx); 4579 if (read_format & PERF_FORMAT_GROUP) 4580 ret = perf_read_group(event, read_format, buf); 4581 else 4582 ret = perf_read_one(event, read_format, buf); 4583 4584 return ret; 4585 } 4586 4587 static ssize_t 4588 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4589 { 4590 struct perf_event *event = file->private_data; 4591 struct perf_event_context *ctx; 4592 int ret; 4593 4594 ctx = perf_event_ctx_lock(event); 4595 ret = __perf_read(event, buf, count); 4596 perf_event_ctx_unlock(event, ctx); 4597 4598 return ret; 4599 } 4600 4601 static unsigned int perf_poll(struct file *file, poll_table *wait) 4602 { 4603 struct perf_event *event = file->private_data; 4604 struct ring_buffer *rb; 4605 unsigned int events = POLLHUP; 4606 4607 poll_wait(file, &event->waitq, wait); 4608 4609 if (is_event_hup(event)) 4610 return events; 4611 4612 /* 4613 * Pin the event->rb by taking event->mmap_mutex; otherwise 4614 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4615 */ 4616 mutex_lock(&event->mmap_mutex); 4617 rb = event->rb; 4618 if (rb) 4619 events = atomic_xchg(&rb->poll, 0); 4620 mutex_unlock(&event->mmap_mutex); 4621 return events; 4622 } 4623 4624 static void _perf_event_reset(struct perf_event *event) 4625 { 4626 (void)perf_event_read(event, false); 4627 local64_set(&event->count, 0); 4628 perf_event_update_userpage(event); 4629 } 4630 4631 /* 4632 * Holding the top-level event's child_mutex means that any 4633 * descendant process that has inherited this event will block 4634 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4635 * task existence requirements of perf_event_enable/disable. 4636 */ 4637 static void perf_event_for_each_child(struct perf_event *event, 4638 void (*func)(struct perf_event *)) 4639 { 4640 struct perf_event *child; 4641 4642 WARN_ON_ONCE(event->ctx->parent_ctx); 4643 4644 mutex_lock(&event->child_mutex); 4645 func(event); 4646 list_for_each_entry(child, &event->child_list, child_list) 4647 func(child); 4648 mutex_unlock(&event->child_mutex); 4649 } 4650 4651 static void perf_event_for_each(struct perf_event *event, 4652 void (*func)(struct perf_event *)) 4653 { 4654 struct perf_event_context *ctx = event->ctx; 4655 struct perf_event *sibling; 4656 4657 lockdep_assert_held(&ctx->mutex); 4658 4659 event = event->group_leader; 4660 4661 perf_event_for_each_child(event, func); 4662 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4663 perf_event_for_each_child(sibling, func); 4664 } 4665 4666 static void __perf_event_period(struct perf_event *event, 4667 struct perf_cpu_context *cpuctx, 4668 struct perf_event_context *ctx, 4669 void *info) 4670 { 4671 u64 value = *((u64 *)info); 4672 bool active; 4673 4674 if (event->attr.freq) { 4675 event->attr.sample_freq = value; 4676 } else { 4677 event->attr.sample_period = value; 4678 event->hw.sample_period = value; 4679 } 4680 4681 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4682 if (active) { 4683 perf_pmu_disable(ctx->pmu); 4684 /* 4685 * We could be throttled; unthrottle now to avoid the tick 4686 * trying to unthrottle while we already re-started the event. 4687 */ 4688 if (event->hw.interrupts == MAX_INTERRUPTS) { 4689 event->hw.interrupts = 0; 4690 perf_log_throttle(event, 1); 4691 } 4692 event->pmu->stop(event, PERF_EF_UPDATE); 4693 } 4694 4695 local64_set(&event->hw.period_left, 0); 4696 4697 if (active) { 4698 event->pmu->start(event, PERF_EF_RELOAD); 4699 perf_pmu_enable(ctx->pmu); 4700 } 4701 } 4702 4703 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4704 { 4705 u64 value; 4706 4707 if (!is_sampling_event(event)) 4708 return -EINVAL; 4709 4710 if (copy_from_user(&value, arg, sizeof(value))) 4711 return -EFAULT; 4712 4713 if (!value) 4714 return -EINVAL; 4715 4716 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4717 return -EINVAL; 4718 4719 event_function_call(event, __perf_event_period, &value); 4720 4721 return 0; 4722 } 4723 4724 static const struct file_operations perf_fops; 4725 4726 static inline int perf_fget_light(int fd, struct fd *p) 4727 { 4728 struct fd f = fdget(fd); 4729 if (!f.file) 4730 return -EBADF; 4731 4732 if (f.file->f_op != &perf_fops) { 4733 fdput(f); 4734 return -EBADF; 4735 } 4736 *p = f; 4737 return 0; 4738 } 4739 4740 static int perf_event_set_output(struct perf_event *event, 4741 struct perf_event *output_event); 4742 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4743 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4744 4745 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4746 { 4747 void (*func)(struct perf_event *); 4748 u32 flags = arg; 4749 4750 switch (cmd) { 4751 case PERF_EVENT_IOC_ENABLE: 4752 func = _perf_event_enable; 4753 break; 4754 case PERF_EVENT_IOC_DISABLE: 4755 func = _perf_event_disable; 4756 break; 4757 case PERF_EVENT_IOC_RESET: 4758 func = _perf_event_reset; 4759 break; 4760 4761 case PERF_EVENT_IOC_REFRESH: 4762 return _perf_event_refresh(event, arg); 4763 4764 case PERF_EVENT_IOC_PERIOD: 4765 return perf_event_period(event, (u64 __user *)arg); 4766 4767 case PERF_EVENT_IOC_ID: 4768 { 4769 u64 id = primary_event_id(event); 4770 4771 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4772 return -EFAULT; 4773 return 0; 4774 } 4775 4776 case PERF_EVENT_IOC_SET_OUTPUT: 4777 { 4778 int ret; 4779 if (arg != -1) { 4780 struct perf_event *output_event; 4781 struct fd output; 4782 ret = perf_fget_light(arg, &output); 4783 if (ret) 4784 return ret; 4785 output_event = output.file->private_data; 4786 ret = perf_event_set_output(event, output_event); 4787 fdput(output); 4788 } else { 4789 ret = perf_event_set_output(event, NULL); 4790 } 4791 return ret; 4792 } 4793 4794 case PERF_EVENT_IOC_SET_FILTER: 4795 return perf_event_set_filter(event, (void __user *)arg); 4796 4797 case PERF_EVENT_IOC_SET_BPF: 4798 return perf_event_set_bpf_prog(event, arg); 4799 4800 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4801 struct ring_buffer *rb; 4802 4803 rcu_read_lock(); 4804 rb = rcu_dereference(event->rb); 4805 if (!rb || !rb->nr_pages) { 4806 rcu_read_unlock(); 4807 return -EINVAL; 4808 } 4809 rb_toggle_paused(rb, !!arg); 4810 rcu_read_unlock(); 4811 return 0; 4812 } 4813 default: 4814 return -ENOTTY; 4815 } 4816 4817 if (flags & PERF_IOC_FLAG_GROUP) 4818 perf_event_for_each(event, func); 4819 else 4820 perf_event_for_each_child(event, func); 4821 4822 return 0; 4823 } 4824 4825 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4826 { 4827 struct perf_event *event = file->private_data; 4828 struct perf_event_context *ctx; 4829 long ret; 4830 4831 ctx = perf_event_ctx_lock(event); 4832 ret = _perf_ioctl(event, cmd, arg); 4833 perf_event_ctx_unlock(event, ctx); 4834 4835 return ret; 4836 } 4837 4838 #ifdef CONFIG_COMPAT 4839 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4840 unsigned long arg) 4841 { 4842 switch (_IOC_NR(cmd)) { 4843 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4844 case _IOC_NR(PERF_EVENT_IOC_ID): 4845 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4846 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4847 cmd &= ~IOCSIZE_MASK; 4848 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4849 } 4850 break; 4851 } 4852 return perf_ioctl(file, cmd, arg); 4853 } 4854 #else 4855 # define perf_compat_ioctl NULL 4856 #endif 4857 4858 int perf_event_task_enable(void) 4859 { 4860 struct perf_event_context *ctx; 4861 struct perf_event *event; 4862 4863 mutex_lock(¤t->perf_event_mutex); 4864 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4865 ctx = perf_event_ctx_lock(event); 4866 perf_event_for_each_child(event, _perf_event_enable); 4867 perf_event_ctx_unlock(event, ctx); 4868 } 4869 mutex_unlock(¤t->perf_event_mutex); 4870 4871 return 0; 4872 } 4873 4874 int perf_event_task_disable(void) 4875 { 4876 struct perf_event_context *ctx; 4877 struct perf_event *event; 4878 4879 mutex_lock(¤t->perf_event_mutex); 4880 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4881 ctx = perf_event_ctx_lock(event); 4882 perf_event_for_each_child(event, _perf_event_disable); 4883 perf_event_ctx_unlock(event, ctx); 4884 } 4885 mutex_unlock(¤t->perf_event_mutex); 4886 4887 return 0; 4888 } 4889 4890 static int perf_event_index(struct perf_event *event) 4891 { 4892 if (event->hw.state & PERF_HES_STOPPED) 4893 return 0; 4894 4895 if (event->state != PERF_EVENT_STATE_ACTIVE) 4896 return 0; 4897 4898 return event->pmu->event_idx(event); 4899 } 4900 4901 static void calc_timer_values(struct perf_event *event, 4902 u64 *now, 4903 u64 *enabled, 4904 u64 *running) 4905 { 4906 u64 ctx_time; 4907 4908 *now = perf_clock(); 4909 ctx_time = event->shadow_ctx_time + *now; 4910 *enabled = ctx_time - event->tstamp_enabled; 4911 *running = ctx_time - event->tstamp_running; 4912 } 4913 4914 static void perf_event_init_userpage(struct perf_event *event) 4915 { 4916 struct perf_event_mmap_page *userpg; 4917 struct ring_buffer *rb; 4918 4919 rcu_read_lock(); 4920 rb = rcu_dereference(event->rb); 4921 if (!rb) 4922 goto unlock; 4923 4924 userpg = rb->user_page; 4925 4926 /* Allow new userspace to detect that bit 0 is deprecated */ 4927 userpg->cap_bit0_is_deprecated = 1; 4928 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4929 userpg->data_offset = PAGE_SIZE; 4930 userpg->data_size = perf_data_size(rb); 4931 4932 unlock: 4933 rcu_read_unlock(); 4934 } 4935 4936 void __weak arch_perf_update_userpage( 4937 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4938 { 4939 } 4940 4941 /* 4942 * Callers need to ensure there can be no nesting of this function, otherwise 4943 * the seqlock logic goes bad. We can not serialize this because the arch 4944 * code calls this from NMI context. 4945 */ 4946 void perf_event_update_userpage(struct perf_event *event) 4947 { 4948 struct perf_event_mmap_page *userpg; 4949 struct ring_buffer *rb; 4950 u64 enabled, running, now; 4951 4952 rcu_read_lock(); 4953 rb = rcu_dereference(event->rb); 4954 if (!rb) 4955 goto unlock; 4956 4957 /* 4958 * compute total_time_enabled, total_time_running 4959 * based on snapshot values taken when the event 4960 * was last scheduled in. 4961 * 4962 * we cannot simply called update_context_time() 4963 * because of locking issue as we can be called in 4964 * NMI context 4965 */ 4966 calc_timer_values(event, &now, &enabled, &running); 4967 4968 userpg = rb->user_page; 4969 /* 4970 * Disable preemption so as to not let the corresponding user-space 4971 * spin too long if we get preempted. 4972 */ 4973 preempt_disable(); 4974 ++userpg->lock; 4975 barrier(); 4976 userpg->index = perf_event_index(event); 4977 userpg->offset = perf_event_count(event); 4978 if (userpg->index) 4979 userpg->offset -= local64_read(&event->hw.prev_count); 4980 4981 userpg->time_enabled = enabled + 4982 atomic64_read(&event->child_total_time_enabled); 4983 4984 userpg->time_running = running + 4985 atomic64_read(&event->child_total_time_running); 4986 4987 arch_perf_update_userpage(event, userpg, now); 4988 4989 barrier(); 4990 ++userpg->lock; 4991 preempt_enable(); 4992 unlock: 4993 rcu_read_unlock(); 4994 } 4995 4996 static int perf_mmap_fault(struct vm_fault *vmf) 4997 { 4998 struct perf_event *event = vmf->vma->vm_file->private_data; 4999 struct ring_buffer *rb; 5000 int ret = VM_FAULT_SIGBUS; 5001 5002 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5003 if (vmf->pgoff == 0) 5004 ret = 0; 5005 return ret; 5006 } 5007 5008 rcu_read_lock(); 5009 rb = rcu_dereference(event->rb); 5010 if (!rb) 5011 goto unlock; 5012 5013 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5014 goto unlock; 5015 5016 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5017 if (!vmf->page) 5018 goto unlock; 5019 5020 get_page(vmf->page); 5021 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5022 vmf->page->index = vmf->pgoff; 5023 5024 ret = 0; 5025 unlock: 5026 rcu_read_unlock(); 5027 5028 return ret; 5029 } 5030 5031 static void ring_buffer_attach(struct perf_event *event, 5032 struct ring_buffer *rb) 5033 { 5034 struct ring_buffer *old_rb = NULL; 5035 unsigned long flags; 5036 5037 if (event->rb) { 5038 /* 5039 * Should be impossible, we set this when removing 5040 * event->rb_entry and wait/clear when adding event->rb_entry. 5041 */ 5042 WARN_ON_ONCE(event->rcu_pending); 5043 5044 old_rb = event->rb; 5045 spin_lock_irqsave(&old_rb->event_lock, flags); 5046 list_del_rcu(&event->rb_entry); 5047 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5048 5049 event->rcu_batches = get_state_synchronize_rcu(); 5050 event->rcu_pending = 1; 5051 } 5052 5053 if (rb) { 5054 if (event->rcu_pending) { 5055 cond_synchronize_rcu(event->rcu_batches); 5056 event->rcu_pending = 0; 5057 } 5058 5059 spin_lock_irqsave(&rb->event_lock, flags); 5060 list_add_rcu(&event->rb_entry, &rb->event_list); 5061 spin_unlock_irqrestore(&rb->event_lock, flags); 5062 } 5063 5064 /* 5065 * Avoid racing with perf_mmap_close(AUX): stop the event 5066 * before swizzling the event::rb pointer; if it's getting 5067 * unmapped, its aux_mmap_count will be 0 and it won't 5068 * restart. See the comment in __perf_pmu_output_stop(). 5069 * 5070 * Data will inevitably be lost when set_output is done in 5071 * mid-air, but then again, whoever does it like this is 5072 * not in for the data anyway. 5073 */ 5074 if (has_aux(event)) 5075 perf_event_stop(event, 0); 5076 5077 rcu_assign_pointer(event->rb, rb); 5078 5079 if (old_rb) { 5080 ring_buffer_put(old_rb); 5081 /* 5082 * Since we detached before setting the new rb, so that we 5083 * could attach the new rb, we could have missed a wakeup. 5084 * Provide it now. 5085 */ 5086 wake_up_all(&event->waitq); 5087 } 5088 } 5089 5090 static void ring_buffer_wakeup(struct perf_event *event) 5091 { 5092 struct ring_buffer *rb; 5093 5094 rcu_read_lock(); 5095 rb = rcu_dereference(event->rb); 5096 if (rb) { 5097 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5098 wake_up_all(&event->waitq); 5099 } 5100 rcu_read_unlock(); 5101 } 5102 5103 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5104 { 5105 struct ring_buffer *rb; 5106 5107 rcu_read_lock(); 5108 rb = rcu_dereference(event->rb); 5109 if (rb) { 5110 if (!atomic_inc_not_zero(&rb->refcount)) 5111 rb = NULL; 5112 } 5113 rcu_read_unlock(); 5114 5115 return rb; 5116 } 5117 5118 void ring_buffer_put(struct ring_buffer *rb) 5119 { 5120 if (!atomic_dec_and_test(&rb->refcount)) 5121 return; 5122 5123 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5124 5125 call_rcu(&rb->rcu_head, rb_free_rcu); 5126 } 5127 5128 static void perf_mmap_open(struct vm_area_struct *vma) 5129 { 5130 struct perf_event *event = vma->vm_file->private_data; 5131 5132 atomic_inc(&event->mmap_count); 5133 atomic_inc(&event->rb->mmap_count); 5134 5135 if (vma->vm_pgoff) 5136 atomic_inc(&event->rb->aux_mmap_count); 5137 5138 if (event->pmu->event_mapped) 5139 event->pmu->event_mapped(event, vma->vm_mm); 5140 } 5141 5142 static void perf_pmu_output_stop(struct perf_event *event); 5143 5144 /* 5145 * A buffer can be mmap()ed multiple times; either directly through the same 5146 * event, or through other events by use of perf_event_set_output(). 5147 * 5148 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5149 * the buffer here, where we still have a VM context. This means we need 5150 * to detach all events redirecting to us. 5151 */ 5152 static void perf_mmap_close(struct vm_area_struct *vma) 5153 { 5154 struct perf_event *event = vma->vm_file->private_data; 5155 5156 struct ring_buffer *rb = ring_buffer_get(event); 5157 struct user_struct *mmap_user = rb->mmap_user; 5158 int mmap_locked = rb->mmap_locked; 5159 unsigned long size = perf_data_size(rb); 5160 5161 if (event->pmu->event_unmapped) 5162 event->pmu->event_unmapped(event, vma->vm_mm); 5163 5164 /* 5165 * rb->aux_mmap_count will always drop before rb->mmap_count and 5166 * event->mmap_count, so it is ok to use event->mmap_mutex to 5167 * serialize with perf_mmap here. 5168 */ 5169 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5170 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5171 /* 5172 * Stop all AUX events that are writing to this buffer, 5173 * so that we can free its AUX pages and corresponding PMU 5174 * data. Note that after rb::aux_mmap_count dropped to zero, 5175 * they won't start any more (see perf_aux_output_begin()). 5176 */ 5177 perf_pmu_output_stop(event); 5178 5179 /* now it's safe to free the pages */ 5180 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5181 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5182 5183 /* this has to be the last one */ 5184 rb_free_aux(rb); 5185 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5186 5187 mutex_unlock(&event->mmap_mutex); 5188 } 5189 5190 atomic_dec(&rb->mmap_count); 5191 5192 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5193 goto out_put; 5194 5195 ring_buffer_attach(event, NULL); 5196 mutex_unlock(&event->mmap_mutex); 5197 5198 /* If there's still other mmap()s of this buffer, we're done. */ 5199 if (atomic_read(&rb->mmap_count)) 5200 goto out_put; 5201 5202 /* 5203 * No other mmap()s, detach from all other events that might redirect 5204 * into the now unreachable buffer. Somewhat complicated by the 5205 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5206 */ 5207 again: 5208 rcu_read_lock(); 5209 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5210 if (!atomic_long_inc_not_zero(&event->refcount)) { 5211 /* 5212 * This event is en-route to free_event() which will 5213 * detach it and remove it from the list. 5214 */ 5215 continue; 5216 } 5217 rcu_read_unlock(); 5218 5219 mutex_lock(&event->mmap_mutex); 5220 /* 5221 * Check we didn't race with perf_event_set_output() which can 5222 * swizzle the rb from under us while we were waiting to 5223 * acquire mmap_mutex. 5224 * 5225 * If we find a different rb; ignore this event, a next 5226 * iteration will no longer find it on the list. We have to 5227 * still restart the iteration to make sure we're not now 5228 * iterating the wrong list. 5229 */ 5230 if (event->rb == rb) 5231 ring_buffer_attach(event, NULL); 5232 5233 mutex_unlock(&event->mmap_mutex); 5234 put_event(event); 5235 5236 /* 5237 * Restart the iteration; either we're on the wrong list or 5238 * destroyed its integrity by doing a deletion. 5239 */ 5240 goto again; 5241 } 5242 rcu_read_unlock(); 5243 5244 /* 5245 * It could be there's still a few 0-ref events on the list; they'll 5246 * get cleaned up by free_event() -- they'll also still have their 5247 * ref on the rb and will free it whenever they are done with it. 5248 * 5249 * Aside from that, this buffer is 'fully' detached and unmapped, 5250 * undo the VM accounting. 5251 */ 5252 5253 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5254 vma->vm_mm->pinned_vm -= mmap_locked; 5255 free_uid(mmap_user); 5256 5257 out_put: 5258 ring_buffer_put(rb); /* could be last */ 5259 } 5260 5261 static const struct vm_operations_struct perf_mmap_vmops = { 5262 .open = perf_mmap_open, 5263 .close = perf_mmap_close, /* non mergable */ 5264 .fault = perf_mmap_fault, 5265 .page_mkwrite = perf_mmap_fault, 5266 }; 5267 5268 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5269 { 5270 struct perf_event *event = file->private_data; 5271 unsigned long user_locked, user_lock_limit; 5272 struct user_struct *user = current_user(); 5273 unsigned long locked, lock_limit; 5274 struct ring_buffer *rb = NULL; 5275 unsigned long vma_size; 5276 unsigned long nr_pages; 5277 long user_extra = 0, extra = 0; 5278 int ret = 0, flags = 0; 5279 5280 /* 5281 * Don't allow mmap() of inherited per-task counters. This would 5282 * create a performance issue due to all children writing to the 5283 * same rb. 5284 */ 5285 if (event->cpu == -1 && event->attr.inherit) 5286 return -EINVAL; 5287 5288 if (!(vma->vm_flags & VM_SHARED)) 5289 return -EINVAL; 5290 5291 vma_size = vma->vm_end - vma->vm_start; 5292 5293 if (vma->vm_pgoff == 0) { 5294 nr_pages = (vma_size / PAGE_SIZE) - 1; 5295 } else { 5296 /* 5297 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5298 * mapped, all subsequent mappings should have the same size 5299 * and offset. Must be above the normal perf buffer. 5300 */ 5301 u64 aux_offset, aux_size; 5302 5303 if (!event->rb) 5304 return -EINVAL; 5305 5306 nr_pages = vma_size / PAGE_SIZE; 5307 5308 mutex_lock(&event->mmap_mutex); 5309 ret = -EINVAL; 5310 5311 rb = event->rb; 5312 if (!rb) 5313 goto aux_unlock; 5314 5315 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5316 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5317 5318 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5319 goto aux_unlock; 5320 5321 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5322 goto aux_unlock; 5323 5324 /* already mapped with a different offset */ 5325 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5326 goto aux_unlock; 5327 5328 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5329 goto aux_unlock; 5330 5331 /* already mapped with a different size */ 5332 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5333 goto aux_unlock; 5334 5335 if (!is_power_of_2(nr_pages)) 5336 goto aux_unlock; 5337 5338 if (!atomic_inc_not_zero(&rb->mmap_count)) 5339 goto aux_unlock; 5340 5341 if (rb_has_aux(rb)) { 5342 atomic_inc(&rb->aux_mmap_count); 5343 ret = 0; 5344 goto unlock; 5345 } 5346 5347 atomic_set(&rb->aux_mmap_count, 1); 5348 user_extra = nr_pages; 5349 5350 goto accounting; 5351 } 5352 5353 /* 5354 * If we have rb pages ensure they're a power-of-two number, so we 5355 * can do bitmasks instead of modulo. 5356 */ 5357 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5358 return -EINVAL; 5359 5360 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5361 return -EINVAL; 5362 5363 WARN_ON_ONCE(event->ctx->parent_ctx); 5364 again: 5365 mutex_lock(&event->mmap_mutex); 5366 if (event->rb) { 5367 if (event->rb->nr_pages != nr_pages) { 5368 ret = -EINVAL; 5369 goto unlock; 5370 } 5371 5372 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5373 /* 5374 * Raced against perf_mmap_close() through 5375 * perf_event_set_output(). Try again, hope for better 5376 * luck. 5377 */ 5378 mutex_unlock(&event->mmap_mutex); 5379 goto again; 5380 } 5381 5382 goto unlock; 5383 } 5384 5385 user_extra = nr_pages + 1; 5386 5387 accounting: 5388 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5389 5390 /* 5391 * Increase the limit linearly with more CPUs: 5392 */ 5393 user_lock_limit *= num_online_cpus(); 5394 5395 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5396 5397 if (user_locked > user_lock_limit) 5398 extra = user_locked - user_lock_limit; 5399 5400 lock_limit = rlimit(RLIMIT_MEMLOCK); 5401 lock_limit >>= PAGE_SHIFT; 5402 locked = vma->vm_mm->pinned_vm + extra; 5403 5404 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5405 !capable(CAP_IPC_LOCK)) { 5406 ret = -EPERM; 5407 goto unlock; 5408 } 5409 5410 WARN_ON(!rb && event->rb); 5411 5412 if (vma->vm_flags & VM_WRITE) 5413 flags |= RING_BUFFER_WRITABLE; 5414 5415 if (!rb) { 5416 rb = rb_alloc(nr_pages, 5417 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5418 event->cpu, flags); 5419 5420 if (!rb) { 5421 ret = -ENOMEM; 5422 goto unlock; 5423 } 5424 5425 atomic_set(&rb->mmap_count, 1); 5426 rb->mmap_user = get_current_user(); 5427 rb->mmap_locked = extra; 5428 5429 ring_buffer_attach(event, rb); 5430 5431 perf_event_init_userpage(event); 5432 perf_event_update_userpage(event); 5433 } else { 5434 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5435 event->attr.aux_watermark, flags); 5436 if (!ret) 5437 rb->aux_mmap_locked = extra; 5438 } 5439 5440 unlock: 5441 if (!ret) { 5442 atomic_long_add(user_extra, &user->locked_vm); 5443 vma->vm_mm->pinned_vm += extra; 5444 5445 atomic_inc(&event->mmap_count); 5446 } else if (rb) { 5447 atomic_dec(&rb->mmap_count); 5448 } 5449 aux_unlock: 5450 mutex_unlock(&event->mmap_mutex); 5451 5452 /* 5453 * Since pinned accounting is per vm we cannot allow fork() to copy our 5454 * vma. 5455 */ 5456 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5457 vma->vm_ops = &perf_mmap_vmops; 5458 5459 if (event->pmu->event_mapped) 5460 event->pmu->event_mapped(event, vma->vm_mm); 5461 5462 return ret; 5463 } 5464 5465 static int perf_fasync(int fd, struct file *filp, int on) 5466 { 5467 struct inode *inode = file_inode(filp); 5468 struct perf_event *event = filp->private_data; 5469 int retval; 5470 5471 inode_lock(inode); 5472 retval = fasync_helper(fd, filp, on, &event->fasync); 5473 inode_unlock(inode); 5474 5475 if (retval < 0) 5476 return retval; 5477 5478 return 0; 5479 } 5480 5481 static const struct file_operations perf_fops = { 5482 .llseek = no_llseek, 5483 .release = perf_release, 5484 .read = perf_read, 5485 .poll = perf_poll, 5486 .unlocked_ioctl = perf_ioctl, 5487 .compat_ioctl = perf_compat_ioctl, 5488 .mmap = perf_mmap, 5489 .fasync = perf_fasync, 5490 }; 5491 5492 /* 5493 * Perf event wakeup 5494 * 5495 * If there's data, ensure we set the poll() state and publish everything 5496 * to user-space before waking everybody up. 5497 */ 5498 5499 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5500 { 5501 /* only the parent has fasync state */ 5502 if (event->parent) 5503 event = event->parent; 5504 return &event->fasync; 5505 } 5506 5507 void perf_event_wakeup(struct perf_event *event) 5508 { 5509 ring_buffer_wakeup(event); 5510 5511 if (event->pending_kill) { 5512 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5513 event->pending_kill = 0; 5514 } 5515 } 5516 5517 static void perf_pending_event(struct irq_work *entry) 5518 { 5519 struct perf_event *event = container_of(entry, 5520 struct perf_event, pending); 5521 int rctx; 5522 5523 rctx = perf_swevent_get_recursion_context(); 5524 /* 5525 * If we 'fail' here, that's OK, it means recursion is already disabled 5526 * and we won't recurse 'further'. 5527 */ 5528 5529 if (event->pending_disable) { 5530 event->pending_disable = 0; 5531 perf_event_disable_local(event); 5532 } 5533 5534 if (event->pending_wakeup) { 5535 event->pending_wakeup = 0; 5536 perf_event_wakeup(event); 5537 } 5538 5539 if (rctx >= 0) 5540 perf_swevent_put_recursion_context(rctx); 5541 } 5542 5543 /* 5544 * We assume there is only KVM supporting the callbacks. 5545 * Later on, we might change it to a list if there is 5546 * another virtualization implementation supporting the callbacks. 5547 */ 5548 struct perf_guest_info_callbacks *perf_guest_cbs; 5549 5550 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5551 { 5552 perf_guest_cbs = cbs; 5553 return 0; 5554 } 5555 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5556 5557 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5558 { 5559 perf_guest_cbs = NULL; 5560 return 0; 5561 } 5562 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5563 5564 static void 5565 perf_output_sample_regs(struct perf_output_handle *handle, 5566 struct pt_regs *regs, u64 mask) 5567 { 5568 int bit; 5569 DECLARE_BITMAP(_mask, 64); 5570 5571 bitmap_from_u64(_mask, mask); 5572 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5573 u64 val; 5574 5575 val = perf_reg_value(regs, bit); 5576 perf_output_put(handle, val); 5577 } 5578 } 5579 5580 static void perf_sample_regs_user(struct perf_regs *regs_user, 5581 struct pt_regs *regs, 5582 struct pt_regs *regs_user_copy) 5583 { 5584 if (user_mode(regs)) { 5585 regs_user->abi = perf_reg_abi(current); 5586 regs_user->regs = regs; 5587 } else if (current->mm) { 5588 perf_get_regs_user(regs_user, regs, regs_user_copy); 5589 } else { 5590 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5591 regs_user->regs = NULL; 5592 } 5593 } 5594 5595 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5596 struct pt_regs *regs) 5597 { 5598 regs_intr->regs = regs; 5599 regs_intr->abi = perf_reg_abi(current); 5600 } 5601 5602 5603 /* 5604 * Get remaining task size from user stack pointer. 5605 * 5606 * It'd be better to take stack vma map and limit this more 5607 * precisly, but there's no way to get it safely under interrupt, 5608 * so using TASK_SIZE as limit. 5609 */ 5610 static u64 perf_ustack_task_size(struct pt_regs *regs) 5611 { 5612 unsigned long addr = perf_user_stack_pointer(regs); 5613 5614 if (!addr || addr >= TASK_SIZE) 5615 return 0; 5616 5617 return TASK_SIZE - addr; 5618 } 5619 5620 static u16 5621 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5622 struct pt_regs *regs) 5623 { 5624 u64 task_size; 5625 5626 /* No regs, no stack pointer, no dump. */ 5627 if (!regs) 5628 return 0; 5629 5630 /* 5631 * Check if we fit in with the requested stack size into the: 5632 * - TASK_SIZE 5633 * If we don't, we limit the size to the TASK_SIZE. 5634 * 5635 * - remaining sample size 5636 * If we don't, we customize the stack size to 5637 * fit in to the remaining sample size. 5638 */ 5639 5640 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5641 stack_size = min(stack_size, (u16) task_size); 5642 5643 /* Current header size plus static size and dynamic size. */ 5644 header_size += 2 * sizeof(u64); 5645 5646 /* Do we fit in with the current stack dump size? */ 5647 if ((u16) (header_size + stack_size) < header_size) { 5648 /* 5649 * If we overflow the maximum size for the sample, 5650 * we customize the stack dump size to fit in. 5651 */ 5652 stack_size = USHRT_MAX - header_size - sizeof(u64); 5653 stack_size = round_up(stack_size, sizeof(u64)); 5654 } 5655 5656 return stack_size; 5657 } 5658 5659 static void 5660 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5661 struct pt_regs *regs) 5662 { 5663 /* Case of a kernel thread, nothing to dump */ 5664 if (!regs) { 5665 u64 size = 0; 5666 perf_output_put(handle, size); 5667 } else { 5668 unsigned long sp; 5669 unsigned int rem; 5670 u64 dyn_size; 5671 5672 /* 5673 * We dump: 5674 * static size 5675 * - the size requested by user or the best one we can fit 5676 * in to the sample max size 5677 * data 5678 * - user stack dump data 5679 * dynamic size 5680 * - the actual dumped size 5681 */ 5682 5683 /* Static size. */ 5684 perf_output_put(handle, dump_size); 5685 5686 /* Data. */ 5687 sp = perf_user_stack_pointer(regs); 5688 rem = __output_copy_user(handle, (void *) sp, dump_size); 5689 dyn_size = dump_size - rem; 5690 5691 perf_output_skip(handle, rem); 5692 5693 /* Dynamic size. */ 5694 perf_output_put(handle, dyn_size); 5695 } 5696 } 5697 5698 static void __perf_event_header__init_id(struct perf_event_header *header, 5699 struct perf_sample_data *data, 5700 struct perf_event *event) 5701 { 5702 u64 sample_type = event->attr.sample_type; 5703 5704 data->type = sample_type; 5705 header->size += event->id_header_size; 5706 5707 if (sample_type & PERF_SAMPLE_TID) { 5708 /* namespace issues */ 5709 data->tid_entry.pid = perf_event_pid(event, current); 5710 data->tid_entry.tid = perf_event_tid(event, current); 5711 } 5712 5713 if (sample_type & PERF_SAMPLE_TIME) 5714 data->time = perf_event_clock(event); 5715 5716 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5717 data->id = primary_event_id(event); 5718 5719 if (sample_type & PERF_SAMPLE_STREAM_ID) 5720 data->stream_id = event->id; 5721 5722 if (sample_type & PERF_SAMPLE_CPU) { 5723 data->cpu_entry.cpu = raw_smp_processor_id(); 5724 data->cpu_entry.reserved = 0; 5725 } 5726 } 5727 5728 void perf_event_header__init_id(struct perf_event_header *header, 5729 struct perf_sample_data *data, 5730 struct perf_event *event) 5731 { 5732 if (event->attr.sample_id_all) 5733 __perf_event_header__init_id(header, data, event); 5734 } 5735 5736 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5737 struct perf_sample_data *data) 5738 { 5739 u64 sample_type = data->type; 5740 5741 if (sample_type & PERF_SAMPLE_TID) 5742 perf_output_put(handle, data->tid_entry); 5743 5744 if (sample_type & PERF_SAMPLE_TIME) 5745 perf_output_put(handle, data->time); 5746 5747 if (sample_type & PERF_SAMPLE_ID) 5748 perf_output_put(handle, data->id); 5749 5750 if (sample_type & PERF_SAMPLE_STREAM_ID) 5751 perf_output_put(handle, data->stream_id); 5752 5753 if (sample_type & PERF_SAMPLE_CPU) 5754 perf_output_put(handle, data->cpu_entry); 5755 5756 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5757 perf_output_put(handle, data->id); 5758 } 5759 5760 void perf_event__output_id_sample(struct perf_event *event, 5761 struct perf_output_handle *handle, 5762 struct perf_sample_data *sample) 5763 { 5764 if (event->attr.sample_id_all) 5765 __perf_event__output_id_sample(handle, sample); 5766 } 5767 5768 static void perf_output_read_one(struct perf_output_handle *handle, 5769 struct perf_event *event, 5770 u64 enabled, u64 running) 5771 { 5772 u64 read_format = event->attr.read_format; 5773 u64 values[4]; 5774 int n = 0; 5775 5776 values[n++] = perf_event_count(event); 5777 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5778 values[n++] = enabled + 5779 atomic64_read(&event->child_total_time_enabled); 5780 } 5781 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5782 values[n++] = running + 5783 atomic64_read(&event->child_total_time_running); 5784 } 5785 if (read_format & PERF_FORMAT_ID) 5786 values[n++] = primary_event_id(event); 5787 5788 __output_copy(handle, values, n * sizeof(u64)); 5789 } 5790 5791 static void perf_output_read_group(struct perf_output_handle *handle, 5792 struct perf_event *event, 5793 u64 enabled, u64 running) 5794 { 5795 struct perf_event *leader = event->group_leader, *sub; 5796 u64 read_format = event->attr.read_format; 5797 u64 values[5]; 5798 int n = 0; 5799 5800 values[n++] = 1 + leader->nr_siblings; 5801 5802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5803 values[n++] = enabled; 5804 5805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5806 values[n++] = running; 5807 5808 if (leader != event) 5809 leader->pmu->read(leader); 5810 5811 values[n++] = perf_event_count(leader); 5812 if (read_format & PERF_FORMAT_ID) 5813 values[n++] = primary_event_id(leader); 5814 5815 __output_copy(handle, values, n * sizeof(u64)); 5816 5817 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5818 n = 0; 5819 5820 if ((sub != event) && 5821 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5822 sub->pmu->read(sub); 5823 5824 values[n++] = perf_event_count(sub); 5825 if (read_format & PERF_FORMAT_ID) 5826 values[n++] = primary_event_id(sub); 5827 5828 __output_copy(handle, values, n * sizeof(u64)); 5829 } 5830 } 5831 5832 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5833 PERF_FORMAT_TOTAL_TIME_RUNNING) 5834 5835 /* 5836 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5837 * 5838 * The problem is that its both hard and excessively expensive to iterate the 5839 * child list, not to mention that its impossible to IPI the children running 5840 * on another CPU, from interrupt/NMI context. 5841 */ 5842 static void perf_output_read(struct perf_output_handle *handle, 5843 struct perf_event *event) 5844 { 5845 u64 enabled = 0, running = 0, now; 5846 u64 read_format = event->attr.read_format; 5847 5848 /* 5849 * compute total_time_enabled, total_time_running 5850 * based on snapshot values taken when the event 5851 * was last scheduled in. 5852 * 5853 * we cannot simply called update_context_time() 5854 * because of locking issue as we are called in 5855 * NMI context 5856 */ 5857 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5858 calc_timer_values(event, &now, &enabled, &running); 5859 5860 if (event->attr.read_format & PERF_FORMAT_GROUP) 5861 perf_output_read_group(handle, event, enabled, running); 5862 else 5863 perf_output_read_one(handle, event, enabled, running); 5864 } 5865 5866 void perf_output_sample(struct perf_output_handle *handle, 5867 struct perf_event_header *header, 5868 struct perf_sample_data *data, 5869 struct perf_event *event) 5870 { 5871 u64 sample_type = data->type; 5872 5873 perf_output_put(handle, *header); 5874 5875 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5876 perf_output_put(handle, data->id); 5877 5878 if (sample_type & PERF_SAMPLE_IP) 5879 perf_output_put(handle, data->ip); 5880 5881 if (sample_type & PERF_SAMPLE_TID) 5882 perf_output_put(handle, data->tid_entry); 5883 5884 if (sample_type & PERF_SAMPLE_TIME) 5885 perf_output_put(handle, data->time); 5886 5887 if (sample_type & PERF_SAMPLE_ADDR) 5888 perf_output_put(handle, data->addr); 5889 5890 if (sample_type & PERF_SAMPLE_ID) 5891 perf_output_put(handle, data->id); 5892 5893 if (sample_type & PERF_SAMPLE_STREAM_ID) 5894 perf_output_put(handle, data->stream_id); 5895 5896 if (sample_type & PERF_SAMPLE_CPU) 5897 perf_output_put(handle, data->cpu_entry); 5898 5899 if (sample_type & PERF_SAMPLE_PERIOD) 5900 perf_output_put(handle, data->period); 5901 5902 if (sample_type & PERF_SAMPLE_READ) 5903 perf_output_read(handle, event); 5904 5905 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5906 if (data->callchain) { 5907 int size = 1; 5908 5909 if (data->callchain) 5910 size += data->callchain->nr; 5911 5912 size *= sizeof(u64); 5913 5914 __output_copy(handle, data->callchain, size); 5915 } else { 5916 u64 nr = 0; 5917 perf_output_put(handle, nr); 5918 } 5919 } 5920 5921 if (sample_type & PERF_SAMPLE_RAW) { 5922 struct perf_raw_record *raw = data->raw; 5923 5924 if (raw) { 5925 struct perf_raw_frag *frag = &raw->frag; 5926 5927 perf_output_put(handle, raw->size); 5928 do { 5929 if (frag->copy) { 5930 __output_custom(handle, frag->copy, 5931 frag->data, frag->size); 5932 } else { 5933 __output_copy(handle, frag->data, 5934 frag->size); 5935 } 5936 if (perf_raw_frag_last(frag)) 5937 break; 5938 frag = frag->next; 5939 } while (1); 5940 if (frag->pad) 5941 __output_skip(handle, NULL, frag->pad); 5942 } else { 5943 struct { 5944 u32 size; 5945 u32 data; 5946 } raw = { 5947 .size = sizeof(u32), 5948 .data = 0, 5949 }; 5950 perf_output_put(handle, raw); 5951 } 5952 } 5953 5954 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5955 if (data->br_stack) { 5956 size_t size; 5957 5958 size = data->br_stack->nr 5959 * sizeof(struct perf_branch_entry); 5960 5961 perf_output_put(handle, data->br_stack->nr); 5962 perf_output_copy(handle, data->br_stack->entries, size); 5963 } else { 5964 /* 5965 * we always store at least the value of nr 5966 */ 5967 u64 nr = 0; 5968 perf_output_put(handle, nr); 5969 } 5970 } 5971 5972 if (sample_type & PERF_SAMPLE_REGS_USER) { 5973 u64 abi = data->regs_user.abi; 5974 5975 /* 5976 * If there are no regs to dump, notice it through 5977 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5978 */ 5979 perf_output_put(handle, abi); 5980 5981 if (abi) { 5982 u64 mask = event->attr.sample_regs_user; 5983 perf_output_sample_regs(handle, 5984 data->regs_user.regs, 5985 mask); 5986 } 5987 } 5988 5989 if (sample_type & PERF_SAMPLE_STACK_USER) { 5990 perf_output_sample_ustack(handle, 5991 data->stack_user_size, 5992 data->regs_user.regs); 5993 } 5994 5995 if (sample_type & PERF_SAMPLE_WEIGHT) 5996 perf_output_put(handle, data->weight); 5997 5998 if (sample_type & PERF_SAMPLE_DATA_SRC) 5999 perf_output_put(handle, data->data_src.val); 6000 6001 if (sample_type & PERF_SAMPLE_TRANSACTION) 6002 perf_output_put(handle, data->txn); 6003 6004 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6005 u64 abi = data->regs_intr.abi; 6006 /* 6007 * If there are no regs to dump, notice it through 6008 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6009 */ 6010 perf_output_put(handle, abi); 6011 6012 if (abi) { 6013 u64 mask = event->attr.sample_regs_intr; 6014 6015 perf_output_sample_regs(handle, 6016 data->regs_intr.regs, 6017 mask); 6018 } 6019 } 6020 6021 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6022 perf_output_put(handle, data->phys_addr); 6023 6024 if (!event->attr.watermark) { 6025 int wakeup_events = event->attr.wakeup_events; 6026 6027 if (wakeup_events) { 6028 struct ring_buffer *rb = handle->rb; 6029 int events = local_inc_return(&rb->events); 6030 6031 if (events >= wakeup_events) { 6032 local_sub(wakeup_events, &rb->events); 6033 local_inc(&rb->wakeup); 6034 } 6035 } 6036 } 6037 } 6038 6039 static u64 perf_virt_to_phys(u64 virt) 6040 { 6041 u64 phys_addr = 0; 6042 struct page *p = NULL; 6043 6044 if (!virt) 6045 return 0; 6046 6047 if (virt >= TASK_SIZE) { 6048 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6049 if (virt_addr_valid((void *)(uintptr_t)virt) && 6050 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6051 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6052 } else { 6053 /* 6054 * Walking the pages tables for user address. 6055 * Interrupts are disabled, so it prevents any tear down 6056 * of the page tables. 6057 * Try IRQ-safe __get_user_pages_fast first. 6058 * If failed, leave phys_addr as 0. 6059 */ 6060 if ((current->mm != NULL) && 6061 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6062 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6063 6064 if (p) 6065 put_page(p); 6066 } 6067 6068 return phys_addr; 6069 } 6070 6071 void perf_prepare_sample(struct perf_event_header *header, 6072 struct perf_sample_data *data, 6073 struct perf_event *event, 6074 struct pt_regs *regs) 6075 { 6076 u64 sample_type = event->attr.sample_type; 6077 6078 header->type = PERF_RECORD_SAMPLE; 6079 header->size = sizeof(*header) + event->header_size; 6080 6081 header->misc = 0; 6082 header->misc |= perf_misc_flags(regs); 6083 6084 __perf_event_header__init_id(header, data, event); 6085 6086 if (sample_type & PERF_SAMPLE_IP) 6087 data->ip = perf_instruction_pointer(regs); 6088 6089 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6090 int size = 1; 6091 6092 data->callchain = perf_callchain(event, regs); 6093 6094 if (data->callchain) 6095 size += data->callchain->nr; 6096 6097 header->size += size * sizeof(u64); 6098 } 6099 6100 if (sample_type & PERF_SAMPLE_RAW) { 6101 struct perf_raw_record *raw = data->raw; 6102 int size; 6103 6104 if (raw) { 6105 struct perf_raw_frag *frag = &raw->frag; 6106 u32 sum = 0; 6107 6108 do { 6109 sum += frag->size; 6110 if (perf_raw_frag_last(frag)) 6111 break; 6112 frag = frag->next; 6113 } while (1); 6114 6115 size = round_up(sum + sizeof(u32), sizeof(u64)); 6116 raw->size = size - sizeof(u32); 6117 frag->pad = raw->size - sum; 6118 } else { 6119 size = sizeof(u64); 6120 } 6121 6122 header->size += size; 6123 } 6124 6125 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6126 int size = sizeof(u64); /* nr */ 6127 if (data->br_stack) { 6128 size += data->br_stack->nr 6129 * sizeof(struct perf_branch_entry); 6130 } 6131 header->size += size; 6132 } 6133 6134 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6135 perf_sample_regs_user(&data->regs_user, regs, 6136 &data->regs_user_copy); 6137 6138 if (sample_type & PERF_SAMPLE_REGS_USER) { 6139 /* regs dump ABI info */ 6140 int size = sizeof(u64); 6141 6142 if (data->regs_user.regs) { 6143 u64 mask = event->attr.sample_regs_user; 6144 size += hweight64(mask) * sizeof(u64); 6145 } 6146 6147 header->size += size; 6148 } 6149 6150 if (sample_type & PERF_SAMPLE_STACK_USER) { 6151 /* 6152 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6153 * processed as the last one or have additional check added 6154 * in case new sample type is added, because we could eat 6155 * up the rest of the sample size. 6156 */ 6157 u16 stack_size = event->attr.sample_stack_user; 6158 u16 size = sizeof(u64); 6159 6160 stack_size = perf_sample_ustack_size(stack_size, header->size, 6161 data->regs_user.regs); 6162 6163 /* 6164 * If there is something to dump, add space for the dump 6165 * itself and for the field that tells the dynamic size, 6166 * which is how many have been actually dumped. 6167 */ 6168 if (stack_size) 6169 size += sizeof(u64) + stack_size; 6170 6171 data->stack_user_size = stack_size; 6172 header->size += size; 6173 } 6174 6175 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6176 /* regs dump ABI info */ 6177 int size = sizeof(u64); 6178 6179 perf_sample_regs_intr(&data->regs_intr, regs); 6180 6181 if (data->regs_intr.regs) { 6182 u64 mask = event->attr.sample_regs_intr; 6183 6184 size += hweight64(mask) * sizeof(u64); 6185 } 6186 6187 header->size += size; 6188 } 6189 6190 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6191 data->phys_addr = perf_virt_to_phys(data->addr); 6192 } 6193 6194 static void __always_inline 6195 __perf_event_output(struct perf_event *event, 6196 struct perf_sample_data *data, 6197 struct pt_regs *regs, 6198 int (*output_begin)(struct perf_output_handle *, 6199 struct perf_event *, 6200 unsigned int)) 6201 { 6202 struct perf_output_handle handle; 6203 struct perf_event_header header; 6204 6205 /* protect the callchain buffers */ 6206 rcu_read_lock(); 6207 6208 perf_prepare_sample(&header, data, event, regs); 6209 6210 if (output_begin(&handle, event, header.size)) 6211 goto exit; 6212 6213 perf_output_sample(&handle, &header, data, event); 6214 6215 perf_output_end(&handle); 6216 6217 exit: 6218 rcu_read_unlock(); 6219 } 6220 6221 void 6222 perf_event_output_forward(struct perf_event *event, 6223 struct perf_sample_data *data, 6224 struct pt_regs *regs) 6225 { 6226 __perf_event_output(event, data, regs, perf_output_begin_forward); 6227 } 6228 6229 void 6230 perf_event_output_backward(struct perf_event *event, 6231 struct perf_sample_data *data, 6232 struct pt_regs *regs) 6233 { 6234 __perf_event_output(event, data, regs, perf_output_begin_backward); 6235 } 6236 6237 void 6238 perf_event_output(struct perf_event *event, 6239 struct perf_sample_data *data, 6240 struct pt_regs *regs) 6241 { 6242 __perf_event_output(event, data, regs, perf_output_begin); 6243 } 6244 6245 /* 6246 * read event_id 6247 */ 6248 6249 struct perf_read_event { 6250 struct perf_event_header header; 6251 6252 u32 pid; 6253 u32 tid; 6254 }; 6255 6256 static void 6257 perf_event_read_event(struct perf_event *event, 6258 struct task_struct *task) 6259 { 6260 struct perf_output_handle handle; 6261 struct perf_sample_data sample; 6262 struct perf_read_event read_event = { 6263 .header = { 6264 .type = PERF_RECORD_READ, 6265 .misc = 0, 6266 .size = sizeof(read_event) + event->read_size, 6267 }, 6268 .pid = perf_event_pid(event, task), 6269 .tid = perf_event_tid(event, task), 6270 }; 6271 int ret; 6272 6273 perf_event_header__init_id(&read_event.header, &sample, event); 6274 ret = perf_output_begin(&handle, event, read_event.header.size); 6275 if (ret) 6276 return; 6277 6278 perf_output_put(&handle, read_event); 6279 perf_output_read(&handle, event); 6280 perf_event__output_id_sample(event, &handle, &sample); 6281 6282 perf_output_end(&handle); 6283 } 6284 6285 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6286 6287 static void 6288 perf_iterate_ctx(struct perf_event_context *ctx, 6289 perf_iterate_f output, 6290 void *data, bool all) 6291 { 6292 struct perf_event *event; 6293 6294 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6295 if (!all) { 6296 if (event->state < PERF_EVENT_STATE_INACTIVE) 6297 continue; 6298 if (!event_filter_match(event)) 6299 continue; 6300 } 6301 6302 output(event, data); 6303 } 6304 } 6305 6306 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6307 { 6308 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6309 struct perf_event *event; 6310 6311 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6312 /* 6313 * Skip events that are not fully formed yet; ensure that 6314 * if we observe event->ctx, both event and ctx will be 6315 * complete enough. See perf_install_in_context(). 6316 */ 6317 if (!smp_load_acquire(&event->ctx)) 6318 continue; 6319 6320 if (event->state < PERF_EVENT_STATE_INACTIVE) 6321 continue; 6322 if (!event_filter_match(event)) 6323 continue; 6324 output(event, data); 6325 } 6326 } 6327 6328 /* 6329 * Iterate all events that need to receive side-band events. 6330 * 6331 * For new callers; ensure that account_pmu_sb_event() includes 6332 * your event, otherwise it might not get delivered. 6333 */ 6334 static void 6335 perf_iterate_sb(perf_iterate_f output, void *data, 6336 struct perf_event_context *task_ctx) 6337 { 6338 struct perf_event_context *ctx; 6339 int ctxn; 6340 6341 rcu_read_lock(); 6342 preempt_disable(); 6343 6344 /* 6345 * If we have task_ctx != NULL we only notify the task context itself. 6346 * The task_ctx is set only for EXIT events before releasing task 6347 * context. 6348 */ 6349 if (task_ctx) { 6350 perf_iterate_ctx(task_ctx, output, data, false); 6351 goto done; 6352 } 6353 6354 perf_iterate_sb_cpu(output, data); 6355 6356 for_each_task_context_nr(ctxn) { 6357 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6358 if (ctx) 6359 perf_iterate_ctx(ctx, output, data, false); 6360 } 6361 done: 6362 preempt_enable(); 6363 rcu_read_unlock(); 6364 } 6365 6366 /* 6367 * Clear all file-based filters at exec, they'll have to be 6368 * re-instated when/if these objects are mmapped again. 6369 */ 6370 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6371 { 6372 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6373 struct perf_addr_filter *filter; 6374 unsigned int restart = 0, count = 0; 6375 unsigned long flags; 6376 6377 if (!has_addr_filter(event)) 6378 return; 6379 6380 raw_spin_lock_irqsave(&ifh->lock, flags); 6381 list_for_each_entry(filter, &ifh->list, entry) { 6382 if (filter->inode) { 6383 event->addr_filters_offs[count] = 0; 6384 restart++; 6385 } 6386 6387 count++; 6388 } 6389 6390 if (restart) 6391 event->addr_filters_gen++; 6392 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6393 6394 if (restart) 6395 perf_event_stop(event, 1); 6396 } 6397 6398 void perf_event_exec(void) 6399 { 6400 struct perf_event_context *ctx; 6401 int ctxn; 6402 6403 rcu_read_lock(); 6404 for_each_task_context_nr(ctxn) { 6405 ctx = current->perf_event_ctxp[ctxn]; 6406 if (!ctx) 6407 continue; 6408 6409 perf_event_enable_on_exec(ctxn); 6410 6411 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6412 true); 6413 } 6414 rcu_read_unlock(); 6415 } 6416 6417 struct remote_output { 6418 struct ring_buffer *rb; 6419 int err; 6420 }; 6421 6422 static void __perf_event_output_stop(struct perf_event *event, void *data) 6423 { 6424 struct perf_event *parent = event->parent; 6425 struct remote_output *ro = data; 6426 struct ring_buffer *rb = ro->rb; 6427 struct stop_event_data sd = { 6428 .event = event, 6429 }; 6430 6431 if (!has_aux(event)) 6432 return; 6433 6434 if (!parent) 6435 parent = event; 6436 6437 /* 6438 * In case of inheritance, it will be the parent that links to the 6439 * ring-buffer, but it will be the child that's actually using it. 6440 * 6441 * We are using event::rb to determine if the event should be stopped, 6442 * however this may race with ring_buffer_attach() (through set_output), 6443 * which will make us skip the event that actually needs to be stopped. 6444 * So ring_buffer_attach() has to stop an aux event before re-assigning 6445 * its rb pointer. 6446 */ 6447 if (rcu_dereference(parent->rb) == rb) 6448 ro->err = __perf_event_stop(&sd); 6449 } 6450 6451 static int __perf_pmu_output_stop(void *info) 6452 { 6453 struct perf_event *event = info; 6454 struct pmu *pmu = event->pmu; 6455 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6456 struct remote_output ro = { 6457 .rb = event->rb, 6458 }; 6459 6460 rcu_read_lock(); 6461 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6462 if (cpuctx->task_ctx) 6463 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6464 &ro, false); 6465 rcu_read_unlock(); 6466 6467 return ro.err; 6468 } 6469 6470 static void perf_pmu_output_stop(struct perf_event *event) 6471 { 6472 struct perf_event *iter; 6473 int err, cpu; 6474 6475 restart: 6476 rcu_read_lock(); 6477 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6478 /* 6479 * For per-CPU events, we need to make sure that neither they 6480 * nor their children are running; for cpu==-1 events it's 6481 * sufficient to stop the event itself if it's active, since 6482 * it can't have children. 6483 */ 6484 cpu = iter->cpu; 6485 if (cpu == -1) 6486 cpu = READ_ONCE(iter->oncpu); 6487 6488 if (cpu == -1) 6489 continue; 6490 6491 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6492 if (err == -EAGAIN) { 6493 rcu_read_unlock(); 6494 goto restart; 6495 } 6496 } 6497 rcu_read_unlock(); 6498 } 6499 6500 /* 6501 * task tracking -- fork/exit 6502 * 6503 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6504 */ 6505 6506 struct perf_task_event { 6507 struct task_struct *task; 6508 struct perf_event_context *task_ctx; 6509 6510 struct { 6511 struct perf_event_header header; 6512 6513 u32 pid; 6514 u32 ppid; 6515 u32 tid; 6516 u32 ptid; 6517 u64 time; 6518 } event_id; 6519 }; 6520 6521 static int perf_event_task_match(struct perf_event *event) 6522 { 6523 return event->attr.comm || event->attr.mmap || 6524 event->attr.mmap2 || event->attr.mmap_data || 6525 event->attr.task; 6526 } 6527 6528 static void perf_event_task_output(struct perf_event *event, 6529 void *data) 6530 { 6531 struct perf_task_event *task_event = data; 6532 struct perf_output_handle handle; 6533 struct perf_sample_data sample; 6534 struct task_struct *task = task_event->task; 6535 int ret, size = task_event->event_id.header.size; 6536 6537 if (!perf_event_task_match(event)) 6538 return; 6539 6540 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6541 6542 ret = perf_output_begin(&handle, event, 6543 task_event->event_id.header.size); 6544 if (ret) 6545 goto out; 6546 6547 task_event->event_id.pid = perf_event_pid(event, task); 6548 task_event->event_id.ppid = perf_event_pid(event, current); 6549 6550 task_event->event_id.tid = perf_event_tid(event, task); 6551 task_event->event_id.ptid = perf_event_tid(event, current); 6552 6553 task_event->event_id.time = perf_event_clock(event); 6554 6555 perf_output_put(&handle, task_event->event_id); 6556 6557 perf_event__output_id_sample(event, &handle, &sample); 6558 6559 perf_output_end(&handle); 6560 out: 6561 task_event->event_id.header.size = size; 6562 } 6563 6564 static void perf_event_task(struct task_struct *task, 6565 struct perf_event_context *task_ctx, 6566 int new) 6567 { 6568 struct perf_task_event task_event; 6569 6570 if (!atomic_read(&nr_comm_events) && 6571 !atomic_read(&nr_mmap_events) && 6572 !atomic_read(&nr_task_events)) 6573 return; 6574 6575 task_event = (struct perf_task_event){ 6576 .task = task, 6577 .task_ctx = task_ctx, 6578 .event_id = { 6579 .header = { 6580 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6581 .misc = 0, 6582 .size = sizeof(task_event.event_id), 6583 }, 6584 /* .pid */ 6585 /* .ppid */ 6586 /* .tid */ 6587 /* .ptid */ 6588 /* .time */ 6589 }, 6590 }; 6591 6592 perf_iterate_sb(perf_event_task_output, 6593 &task_event, 6594 task_ctx); 6595 } 6596 6597 void perf_event_fork(struct task_struct *task) 6598 { 6599 perf_event_task(task, NULL, 1); 6600 perf_event_namespaces(task); 6601 } 6602 6603 /* 6604 * comm tracking 6605 */ 6606 6607 struct perf_comm_event { 6608 struct task_struct *task; 6609 char *comm; 6610 int comm_size; 6611 6612 struct { 6613 struct perf_event_header header; 6614 6615 u32 pid; 6616 u32 tid; 6617 } event_id; 6618 }; 6619 6620 static int perf_event_comm_match(struct perf_event *event) 6621 { 6622 return event->attr.comm; 6623 } 6624 6625 static void perf_event_comm_output(struct perf_event *event, 6626 void *data) 6627 { 6628 struct perf_comm_event *comm_event = data; 6629 struct perf_output_handle handle; 6630 struct perf_sample_data sample; 6631 int size = comm_event->event_id.header.size; 6632 int ret; 6633 6634 if (!perf_event_comm_match(event)) 6635 return; 6636 6637 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6638 ret = perf_output_begin(&handle, event, 6639 comm_event->event_id.header.size); 6640 6641 if (ret) 6642 goto out; 6643 6644 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6645 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6646 6647 perf_output_put(&handle, comm_event->event_id); 6648 __output_copy(&handle, comm_event->comm, 6649 comm_event->comm_size); 6650 6651 perf_event__output_id_sample(event, &handle, &sample); 6652 6653 perf_output_end(&handle); 6654 out: 6655 comm_event->event_id.header.size = size; 6656 } 6657 6658 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6659 { 6660 char comm[TASK_COMM_LEN]; 6661 unsigned int size; 6662 6663 memset(comm, 0, sizeof(comm)); 6664 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6665 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6666 6667 comm_event->comm = comm; 6668 comm_event->comm_size = size; 6669 6670 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6671 6672 perf_iterate_sb(perf_event_comm_output, 6673 comm_event, 6674 NULL); 6675 } 6676 6677 void perf_event_comm(struct task_struct *task, bool exec) 6678 { 6679 struct perf_comm_event comm_event; 6680 6681 if (!atomic_read(&nr_comm_events)) 6682 return; 6683 6684 comm_event = (struct perf_comm_event){ 6685 .task = task, 6686 /* .comm */ 6687 /* .comm_size */ 6688 .event_id = { 6689 .header = { 6690 .type = PERF_RECORD_COMM, 6691 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6692 /* .size */ 6693 }, 6694 /* .pid */ 6695 /* .tid */ 6696 }, 6697 }; 6698 6699 perf_event_comm_event(&comm_event); 6700 } 6701 6702 /* 6703 * namespaces tracking 6704 */ 6705 6706 struct perf_namespaces_event { 6707 struct task_struct *task; 6708 6709 struct { 6710 struct perf_event_header header; 6711 6712 u32 pid; 6713 u32 tid; 6714 u64 nr_namespaces; 6715 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6716 } event_id; 6717 }; 6718 6719 static int perf_event_namespaces_match(struct perf_event *event) 6720 { 6721 return event->attr.namespaces; 6722 } 6723 6724 static void perf_event_namespaces_output(struct perf_event *event, 6725 void *data) 6726 { 6727 struct perf_namespaces_event *namespaces_event = data; 6728 struct perf_output_handle handle; 6729 struct perf_sample_data sample; 6730 int ret; 6731 6732 if (!perf_event_namespaces_match(event)) 6733 return; 6734 6735 perf_event_header__init_id(&namespaces_event->event_id.header, 6736 &sample, event); 6737 ret = perf_output_begin(&handle, event, 6738 namespaces_event->event_id.header.size); 6739 if (ret) 6740 return; 6741 6742 namespaces_event->event_id.pid = perf_event_pid(event, 6743 namespaces_event->task); 6744 namespaces_event->event_id.tid = perf_event_tid(event, 6745 namespaces_event->task); 6746 6747 perf_output_put(&handle, namespaces_event->event_id); 6748 6749 perf_event__output_id_sample(event, &handle, &sample); 6750 6751 perf_output_end(&handle); 6752 } 6753 6754 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6755 struct task_struct *task, 6756 const struct proc_ns_operations *ns_ops) 6757 { 6758 struct path ns_path; 6759 struct inode *ns_inode; 6760 void *error; 6761 6762 error = ns_get_path(&ns_path, task, ns_ops); 6763 if (!error) { 6764 ns_inode = ns_path.dentry->d_inode; 6765 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6766 ns_link_info->ino = ns_inode->i_ino; 6767 } 6768 } 6769 6770 void perf_event_namespaces(struct task_struct *task) 6771 { 6772 struct perf_namespaces_event namespaces_event; 6773 struct perf_ns_link_info *ns_link_info; 6774 6775 if (!atomic_read(&nr_namespaces_events)) 6776 return; 6777 6778 namespaces_event = (struct perf_namespaces_event){ 6779 .task = task, 6780 .event_id = { 6781 .header = { 6782 .type = PERF_RECORD_NAMESPACES, 6783 .misc = 0, 6784 .size = sizeof(namespaces_event.event_id), 6785 }, 6786 /* .pid */ 6787 /* .tid */ 6788 .nr_namespaces = NR_NAMESPACES, 6789 /* .link_info[NR_NAMESPACES] */ 6790 }, 6791 }; 6792 6793 ns_link_info = namespaces_event.event_id.link_info; 6794 6795 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6796 task, &mntns_operations); 6797 6798 #ifdef CONFIG_USER_NS 6799 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6800 task, &userns_operations); 6801 #endif 6802 #ifdef CONFIG_NET_NS 6803 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6804 task, &netns_operations); 6805 #endif 6806 #ifdef CONFIG_UTS_NS 6807 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6808 task, &utsns_operations); 6809 #endif 6810 #ifdef CONFIG_IPC_NS 6811 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6812 task, &ipcns_operations); 6813 #endif 6814 #ifdef CONFIG_PID_NS 6815 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6816 task, &pidns_operations); 6817 #endif 6818 #ifdef CONFIG_CGROUPS 6819 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6820 task, &cgroupns_operations); 6821 #endif 6822 6823 perf_iterate_sb(perf_event_namespaces_output, 6824 &namespaces_event, 6825 NULL); 6826 } 6827 6828 /* 6829 * mmap tracking 6830 */ 6831 6832 struct perf_mmap_event { 6833 struct vm_area_struct *vma; 6834 6835 const char *file_name; 6836 int file_size; 6837 int maj, min; 6838 u64 ino; 6839 u64 ino_generation; 6840 u32 prot, flags; 6841 6842 struct { 6843 struct perf_event_header header; 6844 6845 u32 pid; 6846 u32 tid; 6847 u64 start; 6848 u64 len; 6849 u64 pgoff; 6850 } event_id; 6851 }; 6852 6853 static int perf_event_mmap_match(struct perf_event *event, 6854 void *data) 6855 { 6856 struct perf_mmap_event *mmap_event = data; 6857 struct vm_area_struct *vma = mmap_event->vma; 6858 int executable = vma->vm_flags & VM_EXEC; 6859 6860 return (!executable && event->attr.mmap_data) || 6861 (executable && (event->attr.mmap || event->attr.mmap2)); 6862 } 6863 6864 static void perf_event_mmap_output(struct perf_event *event, 6865 void *data) 6866 { 6867 struct perf_mmap_event *mmap_event = data; 6868 struct perf_output_handle handle; 6869 struct perf_sample_data sample; 6870 int size = mmap_event->event_id.header.size; 6871 int ret; 6872 6873 if (!perf_event_mmap_match(event, data)) 6874 return; 6875 6876 if (event->attr.mmap2) { 6877 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6878 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6879 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6880 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6881 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6882 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6883 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6884 } 6885 6886 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6887 ret = perf_output_begin(&handle, event, 6888 mmap_event->event_id.header.size); 6889 if (ret) 6890 goto out; 6891 6892 mmap_event->event_id.pid = perf_event_pid(event, current); 6893 mmap_event->event_id.tid = perf_event_tid(event, current); 6894 6895 perf_output_put(&handle, mmap_event->event_id); 6896 6897 if (event->attr.mmap2) { 6898 perf_output_put(&handle, mmap_event->maj); 6899 perf_output_put(&handle, mmap_event->min); 6900 perf_output_put(&handle, mmap_event->ino); 6901 perf_output_put(&handle, mmap_event->ino_generation); 6902 perf_output_put(&handle, mmap_event->prot); 6903 perf_output_put(&handle, mmap_event->flags); 6904 } 6905 6906 __output_copy(&handle, mmap_event->file_name, 6907 mmap_event->file_size); 6908 6909 perf_event__output_id_sample(event, &handle, &sample); 6910 6911 perf_output_end(&handle); 6912 out: 6913 mmap_event->event_id.header.size = size; 6914 } 6915 6916 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6917 { 6918 struct vm_area_struct *vma = mmap_event->vma; 6919 struct file *file = vma->vm_file; 6920 int maj = 0, min = 0; 6921 u64 ino = 0, gen = 0; 6922 u32 prot = 0, flags = 0; 6923 unsigned int size; 6924 char tmp[16]; 6925 char *buf = NULL; 6926 char *name; 6927 6928 if (vma->vm_flags & VM_READ) 6929 prot |= PROT_READ; 6930 if (vma->vm_flags & VM_WRITE) 6931 prot |= PROT_WRITE; 6932 if (vma->vm_flags & VM_EXEC) 6933 prot |= PROT_EXEC; 6934 6935 if (vma->vm_flags & VM_MAYSHARE) 6936 flags = MAP_SHARED; 6937 else 6938 flags = MAP_PRIVATE; 6939 6940 if (vma->vm_flags & VM_DENYWRITE) 6941 flags |= MAP_DENYWRITE; 6942 if (vma->vm_flags & VM_MAYEXEC) 6943 flags |= MAP_EXECUTABLE; 6944 if (vma->vm_flags & VM_LOCKED) 6945 flags |= MAP_LOCKED; 6946 if (vma->vm_flags & VM_HUGETLB) 6947 flags |= MAP_HUGETLB; 6948 6949 if (file) { 6950 struct inode *inode; 6951 dev_t dev; 6952 6953 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6954 if (!buf) { 6955 name = "//enomem"; 6956 goto cpy_name; 6957 } 6958 /* 6959 * d_path() works from the end of the rb backwards, so we 6960 * need to add enough zero bytes after the string to handle 6961 * the 64bit alignment we do later. 6962 */ 6963 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6964 if (IS_ERR(name)) { 6965 name = "//toolong"; 6966 goto cpy_name; 6967 } 6968 inode = file_inode(vma->vm_file); 6969 dev = inode->i_sb->s_dev; 6970 ino = inode->i_ino; 6971 gen = inode->i_generation; 6972 maj = MAJOR(dev); 6973 min = MINOR(dev); 6974 6975 goto got_name; 6976 } else { 6977 if (vma->vm_ops && vma->vm_ops->name) { 6978 name = (char *) vma->vm_ops->name(vma); 6979 if (name) 6980 goto cpy_name; 6981 } 6982 6983 name = (char *)arch_vma_name(vma); 6984 if (name) 6985 goto cpy_name; 6986 6987 if (vma->vm_start <= vma->vm_mm->start_brk && 6988 vma->vm_end >= vma->vm_mm->brk) { 6989 name = "[heap]"; 6990 goto cpy_name; 6991 } 6992 if (vma->vm_start <= vma->vm_mm->start_stack && 6993 vma->vm_end >= vma->vm_mm->start_stack) { 6994 name = "[stack]"; 6995 goto cpy_name; 6996 } 6997 6998 name = "//anon"; 6999 goto cpy_name; 7000 } 7001 7002 cpy_name: 7003 strlcpy(tmp, name, sizeof(tmp)); 7004 name = tmp; 7005 got_name: 7006 /* 7007 * Since our buffer works in 8 byte units we need to align our string 7008 * size to a multiple of 8. However, we must guarantee the tail end is 7009 * zero'd out to avoid leaking random bits to userspace. 7010 */ 7011 size = strlen(name)+1; 7012 while (!IS_ALIGNED(size, sizeof(u64))) 7013 name[size++] = '\0'; 7014 7015 mmap_event->file_name = name; 7016 mmap_event->file_size = size; 7017 mmap_event->maj = maj; 7018 mmap_event->min = min; 7019 mmap_event->ino = ino; 7020 mmap_event->ino_generation = gen; 7021 mmap_event->prot = prot; 7022 mmap_event->flags = flags; 7023 7024 if (!(vma->vm_flags & VM_EXEC)) 7025 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7026 7027 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7028 7029 perf_iterate_sb(perf_event_mmap_output, 7030 mmap_event, 7031 NULL); 7032 7033 kfree(buf); 7034 } 7035 7036 /* 7037 * Check whether inode and address range match filter criteria. 7038 */ 7039 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7040 struct file *file, unsigned long offset, 7041 unsigned long size) 7042 { 7043 if (filter->inode != file_inode(file)) 7044 return false; 7045 7046 if (filter->offset > offset + size) 7047 return false; 7048 7049 if (filter->offset + filter->size < offset) 7050 return false; 7051 7052 return true; 7053 } 7054 7055 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7056 { 7057 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7058 struct vm_area_struct *vma = data; 7059 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7060 struct file *file = vma->vm_file; 7061 struct perf_addr_filter *filter; 7062 unsigned int restart = 0, count = 0; 7063 7064 if (!has_addr_filter(event)) 7065 return; 7066 7067 if (!file) 7068 return; 7069 7070 raw_spin_lock_irqsave(&ifh->lock, flags); 7071 list_for_each_entry(filter, &ifh->list, entry) { 7072 if (perf_addr_filter_match(filter, file, off, 7073 vma->vm_end - vma->vm_start)) { 7074 event->addr_filters_offs[count] = vma->vm_start; 7075 restart++; 7076 } 7077 7078 count++; 7079 } 7080 7081 if (restart) 7082 event->addr_filters_gen++; 7083 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7084 7085 if (restart) 7086 perf_event_stop(event, 1); 7087 } 7088 7089 /* 7090 * Adjust all task's events' filters to the new vma 7091 */ 7092 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7093 { 7094 struct perf_event_context *ctx; 7095 int ctxn; 7096 7097 /* 7098 * Data tracing isn't supported yet and as such there is no need 7099 * to keep track of anything that isn't related to executable code: 7100 */ 7101 if (!(vma->vm_flags & VM_EXEC)) 7102 return; 7103 7104 rcu_read_lock(); 7105 for_each_task_context_nr(ctxn) { 7106 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7107 if (!ctx) 7108 continue; 7109 7110 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7111 } 7112 rcu_read_unlock(); 7113 } 7114 7115 void perf_event_mmap(struct vm_area_struct *vma) 7116 { 7117 struct perf_mmap_event mmap_event; 7118 7119 if (!atomic_read(&nr_mmap_events)) 7120 return; 7121 7122 mmap_event = (struct perf_mmap_event){ 7123 .vma = vma, 7124 /* .file_name */ 7125 /* .file_size */ 7126 .event_id = { 7127 .header = { 7128 .type = PERF_RECORD_MMAP, 7129 .misc = PERF_RECORD_MISC_USER, 7130 /* .size */ 7131 }, 7132 /* .pid */ 7133 /* .tid */ 7134 .start = vma->vm_start, 7135 .len = vma->vm_end - vma->vm_start, 7136 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7137 }, 7138 /* .maj (attr_mmap2 only) */ 7139 /* .min (attr_mmap2 only) */ 7140 /* .ino (attr_mmap2 only) */ 7141 /* .ino_generation (attr_mmap2 only) */ 7142 /* .prot (attr_mmap2 only) */ 7143 /* .flags (attr_mmap2 only) */ 7144 }; 7145 7146 perf_addr_filters_adjust(vma); 7147 perf_event_mmap_event(&mmap_event); 7148 } 7149 7150 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7151 unsigned long size, u64 flags) 7152 { 7153 struct perf_output_handle handle; 7154 struct perf_sample_data sample; 7155 struct perf_aux_event { 7156 struct perf_event_header header; 7157 u64 offset; 7158 u64 size; 7159 u64 flags; 7160 } rec = { 7161 .header = { 7162 .type = PERF_RECORD_AUX, 7163 .misc = 0, 7164 .size = sizeof(rec), 7165 }, 7166 .offset = head, 7167 .size = size, 7168 .flags = flags, 7169 }; 7170 int ret; 7171 7172 perf_event_header__init_id(&rec.header, &sample, event); 7173 ret = perf_output_begin(&handle, event, rec.header.size); 7174 7175 if (ret) 7176 return; 7177 7178 perf_output_put(&handle, rec); 7179 perf_event__output_id_sample(event, &handle, &sample); 7180 7181 perf_output_end(&handle); 7182 } 7183 7184 /* 7185 * Lost/dropped samples logging 7186 */ 7187 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7188 { 7189 struct perf_output_handle handle; 7190 struct perf_sample_data sample; 7191 int ret; 7192 7193 struct { 7194 struct perf_event_header header; 7195 u64 lost; 7196 } lost_samples_event = { 7197 .header = { 7198 .type = PERF_RECORD_LOST_SAMPLES, 7199 .misc = 0, 7200 .size = sizeof(lost_samples_event), 7201 }, 7202 .lost = lost, 7203 }; 7204 7205 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7206 7207 ret = perf_output_begin(&handle, event, 7208 lost_samples_event.header.size); 7209 if (ret) 7210 return; 7211 7212 perf_output_put(&handle, lost_samples_event); 7213 perf_event__output_id_sample(event, &handle, &sample); 7214 perf_output_end(&handle); 7215 } 7216 7217 /* 7218 * context_switch tracking 7219 */ 7220 7221 struct perf_switch_event { 7222 struct task_struct *task; 7223 struct task_struct *next_prev; 7224 7225 struct { 7226 struct perf_event_header header; 7227 u32 next_prev_pid; 7228 u32 next_prev_tid; 7229 } event_id; 7230 }; 7231 7232 static int perf_event_switch_match(struct perf_event *event) 7233 { 7234 return event->attr.context_switch; 7235 } 7236 7237 static void perf_event_switch_output(struct perf_event *event, void *data) 7238 { 7239 struct perf_switch_event *se = data; 7240 struct perf_output_handle handle; 7241 struct perf_sample_data sample; 7242 int ret; 7243 7244 if (!perf_event_switch_match(event)) 7245 return; 7246 7247 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7248 if (event->ctx->task) { 7249 se->event_id.header.type = PERF_RECORD_SWITCH; 7250 se->event_id.header.size = sizeof(se->event_id.header); 7251 } else { 7252 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7253 se->event_id.header.size = sizeof(se->event_id); 7254 se->event_id.next_prev_pid = 7255 perf_event_pid(event, se->next_prev); 7256 se->event_id.next_prev_tid = 7257 perf_event_tid(event, se->next_prev); 7258 } 7259 7260 perf_event_header__init_id(&se->event_id.header, &sample, event); 7261 7262 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7263 if (ret) 7264 return; 7265 7266 if (event->ctx->task) 7267 perf_output_put(&handle, se->event_id.header); 7268 else 7269 perf_output_put(&handle, se->event_id); 7270 7271 perf_event__output_id_sample(event, &handle, &sample); 7272 7273 perf_output_end(&handle); 7274 } 7275 7276 static void perf_event_switch(struct task_struct *task, 7277 struct task_struct *next_prev, bool sched_in) 7278 { 7279 struct perf_switch_event switch_event; 7280 7281 /* N.B. caller checks nr_switch_events != 0 */ 7282 7283 switch_event = (struct perf_switch_event){ 7284 .task = task, 7285 .next_prev = next_prev, 7286 .event_id = { 7287 .header = { 7288 /* .type */ 7289 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7290 /* .size */ 7291 }, 7292 /* .next_prev_pid */ 7293 /* .next_prev_tid */ 7294 }, 7295 }; 7296 7297 perf_iterate_sb(perf_event_switch_output, 7298 &switch_event, 7299 NULL); 7300 } 7301 7302 /* 7303 * IRQ throttle logging 7304 */ 7305 7306 static void perf_log_throttle(struct perf_event *event, int enable) 7307 { 7308 struct perf_output_handle handle; 7309 struct perf_sample_data sample; 7310 int ret; 7311 7312 struct { 7313 struct perf_event_header header; 7314 u64 time; 7315 u64 id; 7316 u64 stream_id; 7317 } throttle_event = { 7318 .header = { 7319 .type = PERF_RECORD_THROTTLE, 7320 .misc = 0, 7321 .size = sizeof(throttle_event), 7322 }, 7323 .time = perf_event_clock(event), 7324 .id = primary_event_id(event), 7325 .stream_id = event->id, 7326 }; 7327 7328 if (enable) 7329 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7330 7331 perf_event_header__init_id(&throttle_event.header, &sample, event); 7332 7333 ret = perf_output_begin(&handle, event, 7334 throttle_event.header.size); 7335 if (ret) 7336 return; 7337 7338 perf_output_put(&handle, throttle_event); 7339 perf_event__output_id_sample(event, &handle, &sample); 7340 perf_output_end(&handle); 7341 } 7342 7343 void perf_event_itrace_started(struct perf_event *event) 7344 { 7345 event->attach_state |= PERF_ATTACH_ITRACE; 7346 } 7347 7348 static void perf_log_itrace_start(struct perf_event *event) 7349 { 7350 struct perf_output_handle handle; 7351 struct perf_sample_data sample; 7352 struct perf_aux_event { 7353 struct perf_event_header header; 7354 u32 pid; 7355 u32 tid; 7356 } rec; 7357 int ret; 7358 7359 if (event->parent) 7360 event = event->parent; 7361 7362 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7363 event->attach_state & PERF_ATTACH_ITRACE) 7364 return; 7365 7366 rec.header.type = PERF_RECORD_ITRACE_START; 7367 rec.header.misc = 0; 7368 rec.header.size = sizeof(rec); 7369 rec.pid = perf_event_pid(event, current); 7370 rec.tid = perf_event_tid(event, current); 7371 7372 perf_event_header__init_id(&rec.header, &sample, event); 7373 ret = perf_output_begin(&handle, event, rec.header.size); 7374 7375 if (ret) 7376 return; 7377 7378 perf_output_put(&handle, rec); 7379 perf_event__output_id_sample(event, &handle, &sample); 7380 7381 perf_output_end(&handle); 7382 } 7383 7384 static int 7385 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7386 { 7387 struct hw_perf_event *hwc = &event->hw; 7388 int ret = 0; 7389 u64 seq; 7390 7391 seq = __this_cpu_read(perf_throttled_seq); 7392 if (seq != hwc->interrupts_seq) { 7393 hwc->interrupts_seq = seq; 7394 hwc->interrupts = 1; 7395 } else { 7396 hwc->interrupts++; 7397 if (unlikely(throttle 7398 && hwc->interrupts >= max_samples_per_tick)) { 7399 __this_cpu_inc(perf_throttled_count); 7400 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7401 hwc->interrupts = MAX_INTERRUPTS; 7402 perf_log_throttle(event, 0); 7403 ret = 1; 7404 } 7405 } 7406 7407 if (event->attr.freq) { 7408 u64 now = perf_clock(); 7409 s64 delta = now - hwc->freq_time_stamp; 7410 7411 hwc->freq_time_stamp = now; 7412 7413 if (delta > 0 && delta < 2*TICK_NSEC) 7414 perf_adjust_period(event, delta, hwc->last_period, true); 7415 } 7416 7417 return ret; 7418 } 7419 7420 int perf_event_account_interrupt(struct perf_event *event) 7421 { 7422 return __perf_event_account_interrupt(event, 1); 7423 } 7424 7425 /* 7426 * Generic event overflow handling, sampling. 7427 */ 7428 7429 static int __perf_event_overflow(struct perf_event *event, 7430 int throttle, struct perf_sample_data *data, 7431 struct pt_regs *regs) 7432 { 7433 int events = atomic_read(&event->event_limit); 7434 int ret = 0; 7435 7436 /* 7437 * Non-sampling counters might still use the PMI to fold short 7438 * hardware counters, ignore those. 7439 */ 7440 if (unlikely(!is_sampling_event(event))) 7441 return 0; 7442 7443 ret = __perf_event_account_interrupt(event, throttle); 7444 7445 /* 7446 * XXX event_limit might not quite work as expected on inherited 7447 * events 7448 */ 7449 7450 event->pending_kill = POLL_IN; 7451 if (events && atomic_dec_and_test(&event->event_limit)) { 7452 ret = 1; 7453 event->pending_kill = POLL_HUP; 7454 7455 perf_event_disable_inatomic(event); 7456 } 7457 7458 READ_ONCE(event->overflow_handler)(event, data, regs); 7459 7460 if (*perf_event_fasync(event) && event->pending_kill) { 7461 event->pending_wakeup = 1; 7462 irq_work_queue(&event->pending); 7463 } 7464 7465 return ret; 7466 } 7467 7468 int perf_event_overflow(struct perf_event *event, 7469 struct perf_sample_data *data, 7470 struct pt_regs *regs) 7471 { 7472 return __perf_event_overflow(event, 1, data, regs); 7473 } 7474 7475 /* 7476 * Generic software event infrastructure 7477 */ 7478 7479 struct swevent_htable { 7480 struct swevent_hlist *swevent_hlist; 7481 struct mutex hlist_mutex; 7482 int hlist_refcount; 7483 7484 /* Recursion avoidance in each contexts */ 7485 int recursion[PERF_NR_CONTEXTS]; 7486 }; 7487 7488 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7489 7490 /* 7491 * We directly increment event->count and keep a second value in 7492 * event->hw.period_left to count intervals. This period event 7493 * is kept in the range [-sample_period, 0] so that we can use the 7494 * sign as trigger. 7495 */ 7496 7497 u64 perf_swevent_set_period(struct perf_event *event) 7498 { 7499 struct hw_perf_event *hwc = &event->hw; 7500 u64 period = hwc->last_period; 7501 u64 nr, offset; 7502 s64 old, val; 7503 7504 hwc->last_period = hwc->sample_period; 7505 7506 again: 7507 old = val = local64_read(&hwc->period_left); 7508 if (val < 0) 7509 return 0; 7510 7511 nr = div64_u64(period + val, period); 7512 offset = nr * period; 7513 val -= offset; 7514 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7515 goto again; 7516 7517 return nr; 7518 } 7519 7520 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7521 struct perf_sample_data *data, 7522 struct pt_regs *regs) 7523 { 7524 struct hw_perf_event *hwc = &event->hw; 7525 int throttle = 0; 7526 7527 if (!overflow) 7528 overflow = perf_swevent_set_period(event); 7529 7530 if (hwc->interrupts == MAX_INTERRUPTS) 7531 return; 7532 7533 for (; overflow; overflow--) { 7534 if (__perf_event_overflow(event, throttle, 7535 data, regs)) { 7536 /* 7537 * We inhibit the overflow from happening when 7538 * hwc->interrupts == MAX_INTERRUPTS. 7539 */ 7540 break; 7541 } 7542 throttle = 1; 7543 } 7544 } 7545 7546 static void perf_swevent_event(struct perf_event *event, u64 nr, 7547 struct perf_sample_data *data, 7548 struct pt_regs *regs) 7549 { 7550 struct hw_perf_event *hwc = &event->hw; 7551 7552 local64_add(nr, &event->count); 7553 7554 if (!regs) 7555 return; 7556 7557 if (!is_sampling_event(event)) 7558 return; 7559 7560 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7561 data->period = nr; 7562 return perf_swevent_overflow(event, 1, data, regs); 7563 } else 7564 data->period = event->hw.last_period; 7565 7566 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7567 return perf_swevent_overflow(event, 1, data, regs); 7568 7569 if (local64_add_negative(nr, &hwc->period_left)) 7570 return; 7571 7572 perf_swevent_overflow(event, 0, data, regs); 7573 } 7574 7575 static int perf_exclude_event(struct perf_event *event, 7576 struct pt_regs *regs) 7577 { 7578 if (event->hw.state & PERF_HES_STOPPED) 7579 return 1; 7580 7581 if (regs) { 7582 if (event->attr.exclude_user && user_mode(regs)) 7583 return 1; 7584 7585 if (event->attr.exclude_kernel && !user_mode(regs)) 7586 return 1; 7587 } 7588 7589 return 0; 7590 } 7591 7592 static int perf_swevent_match(struct perf_event *event, 7593 enum perf_type_id type, 7594 u32 event_id, 7595 struct perf_sample_data *data, 7596 struct pt_regs *regs) 7597 { 7598 if (event->attr.type != type) 7599 return 0; 7600 7601 if (event->attr.config != event_id) 7602 return 0; 7603 7604 if (perf_exclude_event(event, regs)) 7605 return 0; 7606 7607 return 1; 7608 } 7609 7610 static inline u64 swevent_hash(u64 type, u32 event_id) 7611 { 7612 u64 val = event_id | (type << 32); 7613 7614 return hash_64(val, SWEVENT_HLIST_BITS); 7615 } 7616 7617 static inline struct hlist_head * 7618 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7619 { 7620 u64 hash = swevent_hash(type, event_id); 7621 7622 return &hlist->heads[hash]; 7623 } 7624 7625 /* For the read side: events when they trigger */ 7626 static inline struct hlist_head * 7627 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7628 { 7629 struct swevent_hlist *hlist; 7630 7631 hlist = rcu_dereference(swhash->swevent_hlist); 7632 if (!hlist) 7633 return NULL; 7634 7635 return __find_swevent_head(hlist, type, event_id); 7636 } 7637 7638 /* For the event head insertion and removal in the hlist */ 7639 static inline struct hlist_head * 7640 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7641 { 7642 struct swevent_hlist *hlist; 7643 u32 event_id = event->attr.config; 7644 u64 type = event->attr.type; 7645 7646 /* 7647 * Event scheduling is always serialized against hlist allocation 7648 * and release. Which makes the protected version suitable here. 7649 * The context lock guarantees that. 7650 */ 7651 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7652 lockdep_is_held(&event->ctx->lock)); 7653 if (!hlist) 7654 return NULL; 7655 7656 return __find_swevent_head(hlist, type, event_id); 7657 } 7658 7659 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7660 u64 nr, 7661 struct perf_sample_data *data, 7662 struct pt_regs *regs) 7663 { 7664 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7665 struct perf_event *event; 7666 struct hlist_head *head; 7667 7668 rcu_read_lock(); 7669 head = find_swevent_head_rcu(swhash, type, event_id); 7670 if (!head) 7671 goto end; 7672 7673 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7674 if (perf_swevent_match(event, type, event_id, data, regs)) 7675 perf_swevent_event(event, nr, data, regs); 7676 } 7677 end: 7678 rcu_read_unlock(); 7679 } 7680 7681 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7682 7683 int perf_swevent_get_recursion_context(void) 7684 { 7685 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7686 7687 return get_recursion_context(swhash->recursion); 7688 } 7689 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7690 7691 void perf_swevent_put_recursion_context(int rctx) 7692 { 7693 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7694 7695 put_recursion_context(swhash->recursion, rctx); 7696 } 7697 7698 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7699 { 7700 struct perf_sample_data data; 7701 7702 if (WARN_ON_ONCE(!regs)) 7703 return; 7704 7705 perf_sample_data_init(&data, addr, 0); 7706 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7707 } 7708 7709 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7710 { 7711 int rctx; 7712 7713 preempt_disable_notrace(); 7714 rctx = perf_swevent_get_recursion_context(); 7715 if (unlikely(rctx < 0)) 7716 goto fail; 7717 7718 ___perf_sw_event(event_id, nr, regs, addr); 7719 7720 perf_swevent_put_recursion_context(rctx); 7721 fail: 7722 preempt_enable_notrace(); 7723 } 7724 7725 static void perf_swevent_read(struct perf_event *event) 7726 { 7727 } 7728 7729 static int perf_swevent_add(struct perf_event *event, int flags) 7730 { 7731 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7732 struct hw_perf_event *hwc = &event->hw; 7733 struct hlist_head *head; 7734 7735 if (is_sampling_event(event)) { 7736 hwc->last_period = hwc->sample_period; 7737 perf_swevent_set_period(event); 7738 } 7739 7740 hwc->state = !(flags & PERF_EF_START); 7741 7742 head = find_swevent_head(swhash, event); 7743 if (WARN_ON_ONCE(!head)) 7744 return -EINVAL; 7745 7746 hlist_add_head_rcu(&event->hlist_entry, head); 7747 perf_event_update_userpage(event); 7748 7749 return 0; 7750 } 7751 7752 static void perf_swevent_del(struct perf_event *event, int flags) 7753 { 7754 hlist_del_rcu(&event->hlist_entry); 7755 } 7756 7757 static void perf_swevent_start(struct perf_event *event, int flags) 7758 { 7759 event->hw.state = 0; 7760 } 7761 7762 static void perf_swevent_stop(struct perf_event *event, int flags) 7763 { 7764 event->hw.state = PERF_HES_STOPPED; 7765 } 7766 7767 /* Deref the hlist from the update side */ 7768 static inline struct swevent_hlist * 7769 swevent_hlist_deref(struct swevent_htable *swhash) 7770 { 7771 return rcu_dereference_protected(swhash->swevent_hlist, 7772 lockdep_is_held(&swhash->hlist_mutex)); 7773 } 7774 7775 static void swevent_hlist_release(struct swevent_htable *swhash) 7776 { 7777 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7778 7779 if (!hlist) 7780 return; 7781 7782 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7783 kfree_rcu(hlist, rcu_head); 7784 } 7785 7786 static void swevent_hlist_put_cpu(int cpu) 7787 { 7788 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7789 7790 mutex_lock(&swhash->hlist_mutex); 7791 7792 if (!--swhash->hlist_refcount) 7793 swevent_hlist_release(swhash); 7794 7795 mutex_unlock(&swhash->hlist_mutex); 7796 } 7797 7798 static void swevent_hlist_put(void) 7799 { 7800 int cpu; 7801 7802 for_each_possible_cpu(cpu) 7803 swevent_hlist_put_cpu(cpu); 7804 } 7805 7806 static int swevent_hlist_get_cpu(int cpu) 7807 { 7808 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7809 int err = 0; 7810 7811 mutex_lock(&swhash->hlist_mutex); 7812 if (!swevent_hlist_deref(swhash) && 7813 cpumask_test_cpu(cpu, perf_online_mask)) { 7814 struct swevent_hlist *hlist; 7815 7816 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7817 if (!hlist) { 7818 err = -ENOMEM; 7819 goto exit; 7820 } 7821 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7822 } 7823 swhash->hlist_refcount++; 7824 exit: 7825 mutex_unlock(&swhash->hlist_mutex); 7826 7827 return err; 7828 } 7829 7830 static int swevent_hlist_get(void) 7831 { 7832 int err, cpu, failed_cpu; 7833 7834 mutex_lock(&pmus_lock); 7835 for_each_possible_cpu(cpu) { 7836 err = swevent_hlist_get_cpu(cpu); 7837 if (err) { 7838 failed_cpu = cpu; 7839 goto fail; 7840 } 7841 } 7842 mutex_unlock(&pmus_lock); 7843 return 0; 7844 fail: 7845 for_each_possible_cpu(cpu) { 7846 if (cpu == failed_cpu) 7847 break; 7848 swevent_hlist_put_cpu(cpu); 7849 } 7850 mutex_unlock(&pmus_lock); 7851 return err; 7852 } 7853 7854 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7855 7856 static void sw_perf_event_destroy(struct perf_event *event) 7857 { 7858 u64 event_id = event->attr.config; 7859 7860 WARN_ON(event->parent); 7861 7862 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7863 swevent_hlist_put(); 7864 } 7865 7866 static int perf_swevent_init(struct perf_event *event) 7867 { 7868 u64 event_id = event->attr.config; 7869 7870 if (event->attr.type != PERF_TYPE_SOFTWARE) 7871 return -ENOENT; 7872 7873 /* 7874 * no branch sampling for software events 7875 */ 7876 if (has_branch_stack(event)) 7877 return -EOPNOTSUPP; 7878 7879 switch (event_id) { 7880 case PERF_COUNT_SW_CPU_CLOCK: 7881 case PERF_COUNT_SW_TASK_CLOCK: 7882 return -ENOENT; 7883 7884 default: 7885 break; 7886 } 7887 7888 if (event_id >= PERF_COUNT_SW_MAX) 7889 return -ENOENT; 7890 7891 if (!event->parent) { 7892 int err; 7893 7894 err = swevent_hlist_get(); 7895 if (err) 7896 return err; 7897 7898 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7899 event->destroy = sw_perf_event_destroy; 7900 } 7901 7902 return 0; 7903 } 7904 7905 static struct pmu perf_swevent = { 7906 .task_ctx_nr = perf_sw_context, 7907 7908 .capabilities = PERF_PMU_CAP_NO_NMI, 7909 7910 .event_init = perf_swevent_init, 7911 .add = perf_swevent_add, 7912 .del = perf_swevent_del, 7913 .start = perf_swevent_start, 7914 .stop = perf_swevent_stop, 7915 .read = perf_swevent_read, 7916 }; 7917 7918 #ifdef CONFIG_EVENT_TRACING 7919 7920 static int perf_tp_filter_match(struct perf_event *event, 7921 struct perf_sample_data *data) 7922 { 7923 void *record = data->raw->frag.data; 7924 7925 /* only top level events have filters set */ 7926 if (event->parent) 7927 event = event->parent; 7928 7929 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7930 return 1; 7931 return 0; 7932 } 7933 7934 static int perf_tp_event_match(struct perf_event *event, 7935 struct perf_sample_data *data, 7936 struct pt_regs *regs) 7937 { 7938 if (event->hw.state & PERF_HES_STOPPED) 7939 return 0; 7940 /* 7941 * All tracepoints are from kernel-space. 7942 */ 7943 if (event->attr.exclude_kernel) 7944 return 0; 7945 7946 if (!perf_tp_filter_match(event, data)) 7947 return 0; 7948 7949 return 1; 7950 } 7951 7952 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7953 struct trace_event_call *call, u64 count, 7954 struct pt_regs *regs, struct hlist_head *head, 7955 struct task_struct *task) 7956 { 7957 struct bpf_prog *prog = call->prog; 7958 7959 if (prog) { 7960 *(struct pt_regs **)raw_data = regs; 7961 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7962 perf_swevent_put_recursion_context(rctx); 7963 return; 7964 } 7965 } 7966 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7967 rctx, task, NULL); 7968 } 7969 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7970 7971 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7972 struct pt_regs *regs, struct hlist_head *head, int rctx, 7973 struct task_struct *task, struct perf_event *event) 7974 { 7975 struct perf_sample_data data; 7976 7977 struct perf_raw_record raw = { 7978 .frag = { 7979 .size = entry_size, 7980 .data = record, 7981 }, 7982 }; 7983 7984 perf_sample_data_init(&data, 0, 0); 7985 data.raw = &raw; 7986 7987 perf_trace_buf_update(record, event_type); 7988 7989 /* Use the given event instead of the hlist */ 7990 if (event) { 7991 if (perf_tp_event_match(event, &data, regs)) 7992 perf_swevent_event(event, count, &data, regs); 7993 } else { 7994 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7995 if (perf_tp_event_match(event, &data, regs)) 7996 perf_swevent_event(event, count, &data, regs); 7997 } 7998 } 7999 8000 /* 8001 * If we got specified a target task, also iterate its context and 8002 * deliver this event there too. 8003 */ 8004 if (task && task != current) { 8005 struct perf_event_context *ctx; 8006 struct trace_entry *entry = record; 8007 8008 rcu_read_lock(); 8009 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8010 if (!ctx) 8011 goto unlock; 8012 8013 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8014 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8015 continue; 8016 if (event->attr.config != entry->type) 8017 continue; 8018 if (perf_tp_event_match(event, &data, regs)) 8019 perf_swevent_event(event, count, &data, regs); 8020 } 8021 unlock: 8022 rcu_read_unlock(); 8023 } 8024 8025 perf_swevent_put_recursion_context(rctx); 8026 } 8027 EXPORT_SYMBOL_GPL(perf_tp_event); 8028 8029 static void tp_perf_event_destroy(struct perf_event *event) 8030 { 8031 perf_trace_destroy(event); 8032 } 8033 8034 static int perf_tp_event_init(struct perf_event *event) 8035 { 8036 int err; 8037 8038 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8039 return -ENOENT; 8040 8041 /* 8042 * no branch sampling for tracepoint events 8043 */ 8044 if (has_branch_stack(event)) 8045 return -EOPNOTSUPP; 8046 8047 err = perf_trace_init(event); 8048 if (err) 8049 return err; 8050 8051 event->destroy = tp_perf_event_destroy; 8052 8053 return 0; 8054 } 8055 8056 static struct pmu perf_tracepoint = { 8057 .task_ctx_nr = perf_sw_context, 8058 8059 .event_init = perf_tp_event_init, 8060 .add = perf_trace_add, 8061 .del = perf_trace_del, 8062 .start = perf_swevent_start, 8063 .stop = perf_swevent_stop, 8064 .read = perf_swevent_read, 8065 }; 8066 8067 static inline void perf_tp_register(void) 8068 { 8069 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8070 } 8071 8072 static void perf_event_free_filter(struct perf_event *event) 8073 { 8074 ftrace_profile_free_filter(event); 8075 } 8076 8077 #ifdef CONFIG_BPF_SYSCALL 8078 static void bpf_overflow_handler(struct perf_event *event, 8079 struct perf_sample_data *data, 8080 struct pt_regs *regs) 8081 { 8082 struct bpf_perf_event_data_kern ctx = { 8083 .data = data, 8084 .regs = regs, 8085 .event = event, 8086 }; 8087 int ret = 0; 8088 8089 preempt_disable(); 8090 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8091 goto out; 8092 rcu_read_lock(); 8093 ret = BPF_PROG_RUN(event->prog, &ctx); 8094 rcu_read_unlock(); 8095 out: 8096 __this_cpu_dec(bpf_prog_active); 8097 preempt_enable(); 8098 if (!ret) 8099 return; 8100 8101 event->orig_overflow_handler(event, data, regs); 8102 } 8103 8104 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8105 { 8106 struct bpf_prog *prog; 8107 8108 if (event->overflow_handler_context) 8109 /* hw breakpoint or kernel counter */ 8110 return -EINVAL; 8111 8112 if (event->prog) 8113 return -EEXIST; 8114 8115 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8116 if (IS_ERR(prog)) 8117 return PTR_ERR(prog); 8118 8119 event->prog = prog; 8120 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8121 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8122 return 0; 8123 } 8124 8125 static void perf_event_free_bpf_handler(struct perf_event *event) 8126 { 8127 struct bpf_prog *prog = event->prog; 8128 8129 if (!prog) 8130 return; 8131 8132 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8133 event->prog = NULL; 8134 bpf_prog_put(prog); 8135 } 8136 #else 8137 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8138 { 8139 return -EOPNOTSUPP; 8140 } 8141 static void perf_event_free_bpf_handler(struct perf_event *event) 8142 { 8143 } 8144 #endif 8145 8146 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8147 { 8148 bool is_kprobe, is_tracepoint, is_syscall_tp; 8149 struct bpf_prog *prog; 8150 8151 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8152 return perf_event_set_bpf_handler(event, prog_fd); 8153 8154 if (event->tp_event->prog) 8155 return -EEXIST; 8156 8157 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8158 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8159 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8160 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8161 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8162 return -EINVAL; 8163 8164 prog = bpf_prog_get(prog_fd); 8165 if (IS_ERR(prog)) 8166 return PTR_ERR(prog); 8167 8168 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8169 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8170 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8171 /* valid fd, but invalid bpf program type */ 8172 bpf_prog_put(prog); 8173 return -EINVAL; 8174 } 8175 8176 if (is_tracepoint || is_syscall_tp) { 8177 int off = trace_event_get_offsets(event->tp_event); 8178 8179 if (prog->aux->max_ctx_offset > off) { 8180 bpf_prog_put(prog); 8181 return -EACCES; 8182 } 8183 } 8184 event->tp_event->prog = prog; 8185 event->tp_event->bpf_prog_owner = event; 8186 8187 return 0; 8188 } 8189 8190 static void perf_event_free_bpf_prog(struct perf_event *event) 8191 { 8192 struct bpf_prog *prog; 8193 8194 perf_event_free_bpf_handler(event); 8195 8196 if (!event->tp_event) 8197 return; 8198 8199 prog = event->tp_event->prog; 8200 if (prog && event->tp_event->bpf_prog_owner == event) { 8201 event->tp_event->prog = NULL; 8202 bpf_prog_put(prog); 8203 } 8204 } 8205 8206 #else 8207 8208 static inline void perf_tp_register(void) 8209 { 8210 } 8211 8212 static void perf_event_free_filter(struct perf_event *event) 8213 { 8214 } 8215 8216 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8217 { 8218 return -ENOENT; 8219 } 8220 8221 static void perf_event_free_bpf_prog(struct perf_event *event) 8222 { 8223 } 8224 #endif /* CONFIG_EVENT_TRACING */ 8225 8226 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8227 void perf_bp_event(struct perf_event *bp, void *data) 8228 { 8229 struct perf_sample_data sample; 8230 struct pt_regs *regs = data; 8231 8232 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8233 8234 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8235 perf_swevent_event(bp, 1, &sample, regs); 8236 } 8237 #endif 8238 8239 /* 8240 * Allocate a new address filter 8241 */ 8242 static struct perf_addr_filter * 8243 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8244 { 8245 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8246 struct perf_addr_filter *filter; 8247 8248 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8249 if (!filter) 8250 return NULL; 8251 8252 INIT_LIST_HEAD(&filter->entry); 8253 list_add_tail(&filter->entry, filters); 8254 8255 return filter; 8256 } 8257 8258 static void free_filters_list(struct list_head *filters) 8259 { 8260 struct perf_addr_filter *filter, *iter; 8261 8262 list_for_each_entry_safe(filter, iter, filters, entry) { 8263 if (filter->inode) 8264 iput(filter->inode); 8265 list_del(&filter->entry); 8266 kfree(filter); 8267 } 8268 } 8269 8270 /* 8271 * Free existing address filters and optionally install new ones 8272 */ 8273 static void perf_addr_filters_splice(struct perf_event *event, 8274 struct list_head *head) 8275 { 8276 unsigned long flags; 8277 LIST_HEAD(list); 8278 8279 if (!has_addr_filter(event)) 8280 return; 8281 8282 /* don't bother with children, they don't have their own filters */ 8283 if (event->parent) 8284 return; 8285 8286 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8287 8288 list_splice_init(&event->addr_filters.list, &list); 8289 if (head) 8290 list_splice(head, &event->addr_filters.list); 8291 8292 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8293 8294 free_filters_list(&list); 8295 } 8296 8297 /* 8298 * Scan through mm's vmas and see if one of them matches the 8299 * @filter; if so, adjust filter's address range. 8300 * Called with mm::mmap_sem down for reading. 8301 */ 8302 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8303 struct mm_struct *mm) 8304 { 8305 struct vm_area_struct *vma; 8306 8307 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8308 struct file *file = vma->vm_file; 8309 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8310 unsigned long vma_size = vma->vm_end - vma->vm_start; 8311 8312 if (!file) 8313 continue; 8314 8315 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8316 continue; 8317 8318 return vma->vm_start; 8319 } 8320 8321 return 0; 8322 } 8323 8324 /* 8325 * Update event's address range filters based on the 8326 * task's existing mappings, if any. 8327 */ 8328 static void perf_event_addr_filters_apply(struct perf_event *event) 8329 { 8330 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8331 struct task_struct *task = READ_ONCE(event->ctx->task); 8332 struct perf_addr_filter *filter; 8333 struct mm_struct *mm = NULL; 8334 unsigned int count = 0; 8335 unsigned long flags; 8336 8337 /* 8338 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8339 * will stop on the parent's child_mutex that our caller is also holding 8340 */ 8341 if (task == TASK_TOMBSTONE) 8342 return; 8343 8344 if (!ifh->nr_file_filters) 8345 return; 8346 8347 mm = get_task_mm(event->ctx->task); 8348 if (!mm) 8349 goto restart; 8350 8351 down_read(&mm->mmap_sem); 8352 8353 raw_spin_lock_irqsave(&ifh->lock, flags); 8354 list_for_each_entry(filter, &ifh->list, entry) { 8355 event->addr_filters_offs[count] = 0; 8356 8357 /* 8358 * Adjust base offset if the filter is associated to a binary 8359 * that needs to be mapped: 8360 */ 8361 if (filter->inode) 8362 event->addr_filters_offs[count] = 8363 perf_addr_filter_apply(filter, mm); 8364 8365 count++; 8366 } 8367 8368 event->addr_filters_gen++; 8369 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8370 8371 up_read(&mm->mmap_sem); 8372 8373 mmput(mm); 8374 8375 restart: 8376 perf_event_stop(event, 1); 8377 } 8378 8379 /* 8380 * Address range filtering: limiting the data to certain 8381 * instruction address ranges. Filters are ioctl()ed to us from 8382 * userspace as ascii strings. 8383 * 8384 * Filter string format: 8385 * 8386 * ACTION RANGE_SPEC 8387 * where ACTION is one of the 8388 * * "filter": limit the trace to this region 8389 * * "start": start tracing from this address 8390 * * "stop": stop tracing at this address/region; 8391 * RANGE_SPEC is 8392 * * for kernel addresses: <start address>[/<size>] 8393 * * for object files: <start address>[/<size>]@</path/to/object/file> 8394 * 8395 * if <size> is not specified, the range is treated as a single address. 8396 */ 8397 enum { 8398 IF_ACT_NONE = -1, 8399 IF_ACT_FILTER, 8400 IF_ACT_START, 8401 IF_ACT_STOP, 8402 IF_SRC_FILE, 8403 IF_SRC_KERNEL, 8404 IF_SRC_FILEADDR, 8405 IF_SRC_KERNELADDR, 8406 }; 8407 8408 enum { 8409 IF_STATE_ACTION = 0, 8410 IF_STATE_SOURCE, 8411 IF_STATE_END, 8412 }; 8413 8414 static const match_table_t if_tokens = { 8415 { IF_ACT_FILTER, "filter" }, 8416 { IF_ACT_START, "start" }, 8417 { IF_ACT_STOP, "stop" }, 8418 { IF_SRC_FILE, "%u/%u@%s" }, 8419 { IF_SRC_KERNEL, "%u/%u" }, 8420 { IF_SRC_FILEADDR, "%u@%s" }, 8421 { IF_SRC_KERNELADDR, "%u" }, 8422 { IF_ACT_NONE, NULL }, 8423 }; 8424 8425 /* 8426 * Address filter string parser 8427 */ 8428 static int 8429 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8430 struct list_head *filters) 8431 { 8432 struct perf_addr_filter *filter = NULL; 8433 char *start, *orig, *filename = NULL; 8434 struct path path; 8435 substring_t args[MAX_OPT_ARGS]; 8436 int state = IF_STATE_ACTION, token; 8437 unsigned int kernel = 0; 8438 int ret = -EINVAL; 8439 8440 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8441 if (!fstr) 8442 return -ENOMEM; 8443 8444 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8445 ret = -EINVAL; 8446 8447 if (!*start) 8448 continue; 8449 8450 /* filter definition begins */ 8451 if (state == IF_STATE_ACTION) { 8452 filter = perf_addr_filter_new(event, filters); 8453 if (!filter) 8454 goto fail; 8455 } 8456 8457 token = match_token(start, if_tokens, args); 8458 switch (token) { 8459 case IF_ACT_FILTER: 8460 case IF_ACT_START: 8461 filter->filter = 1; 8462 8463 case IF_ACT_STOP: 8464 if (state != IF_STATE_ACTION) 8465 goto fail; 8466 8467 state = IF_STATE_SOURCE; 8468 break; 8469 8470 case IF_SRC_KERNELADDR: 8471 case IF_SRC_KERNEL: 8472 kernel = 1; 8473 8474 case IF_SRC_FILEADDR: 8475 case IF_SRC_FILE: 8476 if (state != IF_STATE_SOURCE) 8477 goto fail; 8478 8479 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8480 filter->range = 1; 8481 8482 *args[0].to = 0; 8483 ret = kstrtoul(args[0].from, 0, &filter->offset); 8484 if (ret) 8485 goto fail; 8486 8487 if (filter->range) { 8488 *args[1].to = 0; 8489 ret = kstrtoul(args[1].from, 0, &filter->size); 8490 if (ret) 8491 goto fail; 8492 } 8493 8494 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8495 int fpos = filter->range ? 2 : 1; 8496 8497 filename = match_strdup(&args[fpos]); 8498 if (!filename) { 8499 ret = -ENOMEM; 8500 goto fail; 8501 } 8502 } 8503 8504 state = IF_STATE_END; 8505 break; 8506 8507 default: 8508 goto fail; 8509 } 8510 8511 /* 8512 * Filter definition is fully parsed, validate and install it. 8513 * Make sure that it doesn't contradict itself or the event's 8514 * attribute. 8515 */ 8516 if (state == IF_STATE_END) { 8517 ret = -EINVAL; 8518 if (kernel && event->attr.exclude_kernel) 8519 goto fail; 8520 8521 if (!kernel) { 8522 if (!filename) 8523 goto fail; 8524 8525 /* 8526 * For now, we only support file-based filters 8527 * in per-task events; doing so for CPU-wide 8528 * events requires additional context switching 8529 * trickery, since same object code will be 8530 * mapped at different virtual addresses in 8531 * different processes. 8532 */ 8533 ret = -EOPNOTSUPP; 8534 if (!event->ctx->task) 8535 goto fail_free_name; 8536 8537 /* look up the path and grab its inode */ 8538 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8539 if (ret) 8540 goto fail_free_name; 8541 8542 filter->inode = igrab(d_inode(path.dentry)); 8543 path_put(&path); 8544 kfree(filename); 8545 filename = NULL; 8546 8547 ret = -EINVAL; 8548 if (!filter->inode || 8549 !S_ISREG(filter->inode->i_mode)) 8550 /* free_filters_list() will iput() */ 8551 goto fail; 8552 8553 event->addr_filters.nr_file_filters++; 8554 } 8555 8556 /* ready to consume more filters */ 8557 state = IF_STATE_ACTION; 8558 filter = NULL; 8559 } 8560 } 8561 8562 if (state != IF_STATE_ACTION) 8563 goto fail; 8564 8565 kfree(orig); 8566 8567 return 0; 8568 8569 fail_free_name: 8570 kfree(filename); 8571 fail: 8572 free_filters_list(filters); 8573 kfree(orig); 8574 8575 return ret; 8576 } 8577 8578 static int 8579 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8580 { 8581 LIST_HEAD(filters); 8582 int ret; 8583 8584 /* 8585 * Since this is called in perf_ioctl() path, we're already holding 8586 * ctx::mutex. 8587 */ 8588 lockdep_assert_held(&event->ctx->mutex); 8589 8590 if (WARN_ON_ONCE(event->parent)) 8591 return -EINVAL; 8592 8593 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8594 if (ret) 8595 goto fail_clear_files; 8596 8597 ret = event->pmu->addr_filters_validate(&filters); 8598 if (ret) 8599 goto fail_free_filters; 8600 8601 /* remove existing filters, if any */ 8602 perf_addr_filters_splice(event, &filters); 8603 8604 /* install new filters */ 8605 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8606 8607 return ret; 8608 8609 fail_free_filters: 8610 free_filters_list(&filters); 8611 8612 fail_clear_files: 8613 event->addr_filters.nr_file_filters = 0; 8614 8615 return ret; 8616 } 8617 8618 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8619 { 8620 char *filter_str; 8621 int ret = -EINVAL; 8622 8623 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8624 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8625 !has_addr_filter(event)) 8626 return -EINVAL; 8627 8628 filter_str = strndup_user(arg, PAGE_SIZE); 8629 if (IS_ERR(filter_str)) 8630 return PTR_ERR(filter_str); 8631 8632 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8633 event->attr.type == PERF_TYPE_TRACEPOINT) 8634 ret = ftrace_profile_set_filter(event, event->attr.config, 8635 filter_str); 8636 else if (has_addr_filter(event)) 8637 ret = perf_event_set_addr_filter(event, filter_str); 8638 8639 kfree(filter_str); 8640 return ret; 8641 } 8642 8643 /* 8644 * hrtimer based swevent callback 8645 */ 8646 8647 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8648 { 8649 enum hrtimer_restart ret = HRTIMER_RESTART; 8650 struct perf_sample_data data; 8651 struct pt_regs *regs; 8652 struct perf_event *event; 8653 u64 period; 8654 8655 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8656 8657 if (event->state != PERF_EVENT_STATE_ACTIVE) 8658 return HRTIMER_NORESTART; 8659 8660 event->pmu->read(event); 8661 8662 perf_sample_data_init(&data, 0, event->hw.last_period); 8663 regs = get_irq_regs(); 8664 8665 if (regs && !perf_exclude_event(event, regs)) { 8666 if (!(event->attr.exclude_idle && is_idle_task(current))) 8667 if (__perf_event_overflow(event, 1, &data, regs)) 8668 ret = HRTIMER_NORESTART; 8669 } 8670 8671 period = max_t(u64, 10000, event->hw.sample_period); 8672 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8673 8674 return ret; 8675 } 8676 8677 static void perf_swevent_start_hrtimer(struct perf_event *event) 8678 { 8679 struct hw_perf_event *hwc = &event->hw; 8680 s64 period; 8681 8682 if (!is_sampling_event(event)) 8683 return; 8684 8685 period = local64_read(&hwc->period_left); 8686 if (period) { 8687 if (period < 0) 8688 period = 10000; 8689 8690 local64_set(&hwc->period_left, 0); 8691 } else { 8692 period = max_t(u64, 10000, hwc->sample_period); 8693 } 8694 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8695 HRTIMER_MODE_REL_PINNED); 8696 } 8697 8698 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8699 { 8700 struct hw_perf_event *hwc = &event->hw; 8701 8702 if (is_sampling_event(event)) { 8703 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8704 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8705 8706 hrtimer_cancel(&hwc->hrtimer); 8707 } 8708 } 8709 8710 static void perf_swevent_init_hrtimer(struct perf_event *event) 8711 { 8712 struct hw_perf_event *hwc = &event->hw; 8713 8714 if (!is_sampling_event(event)) 8715 return; 8716 8717 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8718 hwc->hrtimer.function = perf_swevent_hrtimer; 8719 8720 /* 8721 * Since hrtimers have a fixed rate, we can do a static freq->period 8722 * mapping and avoid the whole period adjust feedback stuff. 8723 */ 8724 if (event->attr.freq) { 8725 long freq = event->attr.sample_freq; 8726 8727 event->attr.sample_period = NSEC_PER_SEC / freq; 8728 hwc->sample_period = event->attr.sample_period; 8729 local64_set(&hwc->period_left, hwc->sample_period); 8730 hwc->last_period = hwc->sample_period; 8731 event->attr.freq = 0; 8732 } 8733 } 8734 8735 /* 8736 * Software event: cpu wall time clock 8737 */ 8738 8739 static void cpu_clock_event_update(struct perf_event *event) 8740 { 8741 s64 prev; 8742 u64 now; 8743 8744 now = local_clock(); 8745 prev = local64_xchg(&event->hw.prev_count, now); 8746 local64_add(now - prev, &event->count); 8747 } 8748 8749 static void cpu_clock_event_start(struct perf_event *event, int flags) 8750 { 8751 local64_set(&event->hw.prev_count, local_clock()); 8752 perf_swevent_start_hrtimer(event); 8753 } 8754 8755 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8756 { 8757 perf_swevent_cancel_hrtimer(event); 8758 cpu_clock_event_update(event); 8759 } 8760 8761 static int cpu_clock_event_add(struct perf_event *event, int flags) 8762 { 8763 if (flags & PERF_EF_START) 8764 cpu_clock_event_start(event, flags); 8765 perf_event_update_userpage(event); 8766 8767 return 0; 8768 } 8769 8770 static void cpu_clock_event_del(struct perf_event *event, int flags) 8771 { 8772 cpu_clock_event_stop(event, flags); 8773 } 8774 8775 static void cpu_clock_event_read(struct perf_event *event) 8776 { 8777 cpu_clock_event_update(event); 8778 } 8779 8780 static int cpu_clock_event_init(struct perf_event *event) 8781 { 8782 if (event->attr.type != PERF_TYPE_SOFTWARE) 8783 return -ENOENT; 8784 8785 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8786 return -ENOENT; 8787 8788 /* 8789 * no branch sampling for software events 8790 */ 8791 if (has_branch_stack(event)) 8792 return -EOPNOTSUPP; 8793 8794 perf_swevent_init_hrtimer(event); 8795 8796 return 0; 8797 } 8798 8799 static struct pmu perf_cpu_clock = { 8800 .task_ctx_nr = perf_sw_context, 8801 8802 .capabilities = PERF_PMU_CAP_NO_NMI, 8803 8804 .event_init = cpu_clock_event_init, 8805 .add = cpu_clock_event_add, 8806 .del = cpu_clock_event_del, 8807 .start = cpu_clock_event_start, 8808 .stop = cpu_clock_event_stop, 8809 .read = cpu_clock_event_read, 8810 }; 8811 8812 /* 8813 * Software event: task time clock 8814 */ 8815 8816 static void task_clock_event_update(struct perf_event *event, u64 now) 8817 { 8818 u64 prev; 8819 s64 delta; 8820 8821 prev = local64_xchg(&event->hw.prev_count, now); 8822 delta = now - prev; 8823 local64_add(delta, &event->count); 8824 } 8825 8826 static void task_clock_event_start(struct perf_event *event, int flags) 8827 { 8828 local64_set(&event->hw.prev_count, event->ctx->time); 8829 perf_swevent_start_hrtimer(event); 8830 } 8831 8832 static void task_clock_event_stop(struct perf_event *event, int flags) 8833 { 8834 perf_swevent_cancel_hrtimer(event); 8835 task_clock_event_update(event, event->ctx->time); 8836 } 8837 8838 static int task_clock_event_add(struct perf_event *event, int flags) 8839 { 8840 if (flags & PERF_EF_START) 8841 task_clock_event_start(event, flags); 8842 perf_event_update_userpage(event); 8843 8844 return 0; 8845 } 8846 8847 static void task_clock_event_del(struct perf_event *event, int flags) 8848 { 8849 task_clock_event_stop(event, PERF_EF_UPDATE); 8850 } 8851 8852 static void task_clock_event_read(struct perf_event *event) 8853 { 8854 u64 now = perf_clock(); 8855 u64 delta = now - event->ctx->timestamp; 8856 u64 time = event->ctx->time + delta; 8857 8858 task_clock_event_update(event, time); 8859 } 8860 8861 static int task_clock_event_init(struct perf_event *event) 8862 { 8863 if (event->attr.type != PERF_TYPE_SOFTWARE) 8864 return -ENOENT; 8865 8866 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8867 return -ENOENT; 8868 8869 /* 8870 * no branch sampling for software events 8871 */ 8872 if (has_branch_stack(event)) 8873 return -EOPNOTSUPP; 8874 8875 perf_swevent_init_hrtimer(event); 8876 8877 return 0; 8878 } 8879 8880 static struct pmu perf_task_clock = { 8881 .task_ctx_nr = perf_sw_context, 8882 8883 .capabilities = PERF_PMU_CAP_NO_NMI, 8884 8885 .event_init = task_clock_event_init, 8886 .add = task_clock_event_add, 8887 .del = task_clock_event_del, 8888 .start = task_clock_event_start, 8889 .stop = task_clock_event_stop, 8890 .read = task_clock_event_read, 8891 }; 8892 8893 static void perf_pmu_nop_void(struct pmu *pmu) 8894 { 8895 } 8896 8897 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8898 { 8899 } 8900 8901 static int perf_pmu_nop_int(struct pmu *pmu) 8902 { 8903 return 0; 8904 } 8905 8906 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8907 8908 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8909 { 8910 __this_cpu_write(nop_txn_flags, flags); 8911 8912 if (flags & ~PERF_PMU_TXN_ADD) 8913 return; 8914 8915 perf_pmu_disable(pmu); 8916 } 8917 8918 static int perf_pmu_commit_txn(struct pmu *pmu) 8919 { 8920 unsigned int flags = __this_cpu_read(nop_txn_flags); 8921 8922 __this_cpu_write(nop_txn_flags, 0); 8923 8924 if (flags & ~PERF_PMU_TXN_ADD) 8925 return 0; 8926 8927 perf_pmu_enable(pmu); 8928 return 0; 8929 } 8930 8931 static void perf_pmu_cancel_txn(struct pmu *pmu) 8932 { 8933 unsigned int flags = __this_cpu_read(nop_txn_flags); 8934 8935 __this_cpu_write(nop_txn_flags, 0); 8936 8937 if (flags & ~PERF_PMU_TXN_ADD) 8938 return; 8939 8940 perf_pmu_enable(pmu); 8941 } 8942 8943 static int perf_event_idx_default(struct perf_event *event) 8944 { 8945 return 0; 8946 } 8947 8948 /* 8949 * Ensures all contexts with the same task_ctx_nr have the same 8950 * pmu_cpu_context too. 8951 */ 8952 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8953 { 8954 struct pmu *pmu; 8955 8956 if (ctxn < 0) 8957 return NULL; 8958 8959 list_for_each_entry(pmu, &pmus, entry) { 8960 if (pmu->task_ctx_nr == ctxn) 8961 return pmu->pmu_cpu_context; 8962 } 8963 8964 return NULL; 8965 } 8966 8967 static void free_pmu_context(struct pmu *pmu) 8968 { 8969 mutex_lock(&pmus_lock); 8970 free_percpu(pmu->pmu_cpu_context); 8971 mutex_unlock(&pmus_lock); 8972 } 8973 8974 /* 8975 * Let userspace know that this PMU supports address range filtering: 8976 */ 8977 static ssize_t nr_addr_filters_show(struct device *dev, 8978 struct device_attribute *attr, 8979 char *page) 8980 { 8981 struct pmu *pmu = dev_get_drvdata(dev); 8982 8983 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8984 } 8985 DEVICE_ATTR_RO(nr_addr_filters); 8986 8987 static struct idr pmu_idr; 8988 8989 static ssize_t 8990 type_show(struct device *dev, struct device_attribute *attr, char *page) 8991 { 8992 struct pmu *pmu = dev_get_drvdata(dev); 8993 8994 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8995 } 8996 static DEVICE_ATTR_RO(type); 8997 8998 static ssize_t 8999 perf_event_mux_interval_ms_show(struct device *dev, 9000 struct device_attribute *attr, 9001 char *page) 9002 { 9003 struct pmu *pmu = dev_get_drvdata(dev); 9004 9005 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9006 } 9007 9008 static DEFINE_MUTEX(mux_interval_mutex); 9009 9010 static ssize_t 9011 perf_event_mux_interval_ms_store(struct device *dev, 9012 struct device_attribute *attr, 9013 const char *buf, size_t count) 9014 { 9015 struct pmu *pmu = dev_get_drvdata(dev); 9016 int timer, cpu, ret; 9017 9018 ret = kstrtoint(buf, 0, &timer); 9019 if (ret) 9020 return ret; 9021 9022 if (timer < 1) 9023 return -EINVAL; 9024 9025 /* same value, noting to do */ 9026 if (timer == pmu->hrtimer_interval_ms) 9027 return count; 9028 9029 mutex_lock(&mux_interval_mutex); 9030 pmu->hrtimer_interval_ms = timer; 9031 9032 /* update all cpuctx for this PMU */ 9033 cpus_read_lock(); 9034 for_each_online_cpu(cpu) { 9035 struct perf_cpu_context *cpuctx; 9036 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9037 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9038 9039 cpu_function_call(cpu, 9040 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9041 } 9042 cpus_read_unlock(); 9043 mutex_unlock(&mux_interval_mutex); 9044 9045 return count; 9046 } 9047 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9048 9049 static struct attribute *pmu_dev_attrs[] = { 9050 &dev_attr_type.attr, 9051 &dev_attr_perf_event_mux_interval_ms.attr, 9052 NULL, 9053 }; 9054 ATTRIBUTE_GROUPS(pmu_dev); 9055 9056 static int pmu_bus_running; 9057 static struct bus_type pmu_bus = { 9058 .name = "event_source", 9059 .dev_groups = pmu_dev_groups, 9060 }; 9061 9062 static void pmu_dev_release(struct device *dev) 9063 { 9064 kfree(dev); 9065 } 9066 9067 static int pmu_dev_alloc(struct pmu *pmu) 9068 { 9069 int ret = -ENOMEM; 9070 9071 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9072 if (!pmu->dev) 9073 goto out; 9074 9075 pmu->dev->groups = pmu->attr_groups; 9076 device_initialize(pmu->dev); 9077 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9078 if (ret) 9079 goto free_dev; 9080 9081 dev_set_drvdata(pmu->dev, pmu); 9082 pmu->dev->bus = &pmu_bus; 9083 pmu->dev->release = pmu_dev_release; 9084 ret = device_add(pmu->dev); 9085 if (ret) 9086 goto free_dev; 9087 9088 /* For PMUs with address filters, throw in an extra attribute: */ 9089 if (pmu->nr_addr_filters) 9090 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9091 9092 if (ret) 9093 goto del_dev; 9094 9095 out: 9096 return ret; 9097 9098 del_dev: 9099 device_del(pmu->dev); 9100 9101 free_dev: 9102 put_device(pmu->dev); 9103 goto out; 9104 } 9105 9106 static struct lock_class_key cpuctx_mutex; 9107 static struct lock_class_key cpuctx_lock; 9108 9109 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9110 { 9111 int cpu, ret; 9112 9113 mutex_lock(&pmus_lock); 9114 ret = -ENOMEM; 9115 pmu->pmu_disable_count = alloc_percpu(int); 9116 if (!pmu->pmu_disable_count) 9117 goto unlock; 9118 9119 pmu->type = -1; 9120 if (!name) 9121 goto skip_type; 9122 pmu->name = name; 9123 9124 if (type < 0) { 9125 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9126 if (type < 0) { 9127 ret = type; 9128 goto free_pdc; 9129 } 9130 } 9131 pmu->type = type; 9132 9133 if (pmu_bus_running) { 9134 ret = pmu_dev_alloc(pmu); 9135 if (ret) 9136 goto free_idr; 9137 } 9138 9139 skip_type: 9140 if (pmu->task_ctx_nr == perf_hw_context) { 9141 static int hw_context_taken = 0; 9142 9143 /* 9144 * Other than systems with heterogeneous CPUs, it never makes 9145 * sense for two PMUs to share perf_hw_context. PMUs which are 9146 * uncore must use perf_invalid_context. 9147 */ 9148 if (WARN_ON_ONCE(hw_context_taken && 9149 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9150 pmu->task_ctx_nr = perf_invalid_context; 9151 9152 hw_context_taken = 1; 9153 } 9154 9155 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9156 if (pmu->pmu_cpu_context) 9157 goto got_cpu_context; 9158 9159 ret = -ENOMEM; 9160 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9161 if (!pmu->pmu_cpu_context) 9162 goto free_dev; 9163 9164 for_each_possible_cpu(cpu) { 9165 struct perf_cpu_context *cpuctx; 9166 9167 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9168 __perf_event_init_context(&cpuctx->ctx); 9169 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9170 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9171 cpuctx->ctx.pmu = pmu; 9172 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9173 9174 __perf_mux_hrtimer_init(cpuctx, cpu); 9175 } 9176 9177 got_cpu_context: 9178 if (!pmu->start_txn) { 9179 if (pmu->pmu_enable) { 9180 /* 9181 * If we have pmu_enable/pmu_disable calls, install 9182 * transaction stubs that use that to try and batch 9183 * hardware accesses. 9184 */ 9185 pmu->start_txn = perf_pmu_start_txn; 9186 pmu->commit_txn = perf_pmu_commit_txn; 9187 pmu->cancel_txn = perf_pmu_cancel_txn; 9188 } else { 9189 pmu->start_txn = perf_pmu_nop_txn; 9190 pmu->commit_txn = perf_pmu_nop_int; 9191 pmu->cancel_txn = perf_pmu_nop_void; 9192 } 9193 } 9194 9195 if (!pmu->pmu_enable) { 9196 pmu->pmu_enable = perf_pmu_nop_void; 9197 pmu->pmu_disable = perf_pmu_nop_void; 9198 } 9199 9200 if (!pmu->event_idx) 9201 pmu->event_idx = perf_event_idx_default; 9202 9203 list_add_rcu(&pmu->entry, &pmus); 9204 atomic_set(&pmu->exclusive_cnt, 0); 9205 ret = 0; 9206 unlock: 9207 mutex_unlock(&pmus_lock); 9208 9209 return ret; 9210 9211 free_dev: 9212 device_del(pmu->dev); 9213 put_device(pmu->dev); 9214 9215 free_idr: 9216 if (pmu->type >= PERF_TYPE_MAX) 9217 idr_remove(&pmu_idr, pmu->type); 9218 9219 free_pdc: 9220 free_percpu(pmu->pmu_disable_count); 9221 goto unlock; 9222 } 9223 EXPORT_SYMBOL_GPL(perf_pmu_register); 9224 9225 void perf_pmu_unregister(struct pmu *pmu) 9226 { 9227 int remove_device; 9228 9229 mutex_lock(&pmus_lock); 9230 remove_device = pmu_bus_running; 9231 list_del_rcu(&pmu->entry); 9232 mutex_unlock(&pmus_lock); 9233 9234 /* 9235 * We dereference the pmu list under both SRCU and regular RCU, so 9236 * synchronize against both of those. 9237 */ 9238 synchronize_srcu(&pmus_srcu); 9239 synchronize_rcu(); 9240 9241 free_percpu(pmu->pmu_disable_count); 9242 if (pmu->type >= PERF_TYPE_MAX) 9243 idr_remove(&pmu_idr, pmu->type); 9244 if (remove_device) { 9245 if (pmu->nr_addr_filters) 9246 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9247 device_del(pmu->dev); 9248 put_device(pmu->dev); 9249 } 9250 free_pmu_context(pmu); 9251 } 9252 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9253 9254 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9255 { 9256 struct perf_event_context *ctx = NULL; 9257 int ret; 9258 9259 if (!try_module_get(pmu->module)) 9260 return -ENODEV; 9261 9262 if (event->group_leader != event) { 9263 /* 9264 * This ctx->mutex can nest when we're called through 9265 * inheritance. See the perf_event_ctx_lock_nested() comment. 9266 */ 9267 ctx = perf_event_ctx_lock_nested(event->group_leader, 9268 SINGLE_DEPTH_NESTING); 9269 BUG_ON(!ctx); 9270 } 9271 9272 event->pmu = pmu; 9273 ret = pmu->event_init(event); 9274 9275 if (ctx) 9276 perf_event_ctx_unlock(event->group_leader, ctx); 9277 9278 if (ret) 9279 module_put(pmu->module); 9280 9281 return ret; 9282 } 9283 9284 static struct pmu *perf_init_event(struct perf_event *event) 9285 { 9286 struct pmu *pmu; 9287 int idx; 9288 int ret; 9289 9290 idx = srcu_read_lock(&pmus_srcu); 9291 9292 /* Try parent's PMU first: */ 9293 if (event->parent && event->parent->pmu) { 9294 pmu = event->parent->pmu; 9295 ret = perf_try_init_event(pmu, event); 9296 if (!ret) 9297 goto unlock; 9298 } 9299 9300 rcu_read_lock(); 9301 pmu = idr_find(&pmu_idr, event->attr.type); 9302 rcu_read_unlock(); 9303 if (pmu) { 9304 ret = perf_try_init_event(pmu, event); 9305 if (ret) 9306 pmu = ERR_PTR(ret); 9307 goto unlock; 9308 } 9309 9310 list_for_each_entry_rcu(pmu, &pmus, entry) { 9311 ret = perf_try_init_event(pmu, event); 9312 if (!ret) 9313 goto unlock; 9314 9315 if (ret != -ENOENT) { 9316 pmu = ERR_PTR(ret); 9317 goto unlock; 9318 } 9319 } 9320 pmu = ERR_PTR(-ENOENT); 9321 unlock: 9322 srcu_read_unlock(&pmus_srcu, idx); 9323 9324 return pmu; 9325 } 9326 9327 static void attach_sb_event(struct perf_event *event) 9328 { 9329 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9330 9331 raw_spin_lock(&pel->lock); 9332 list_add_rcu(&event->sb_list, &pel->list); 9333 raw_spin_unlock(&pel->lock); 9334 } 9335 9336 /* 9337 * We keep a list of all !task (and therefore per-cpu) events 9338 * that need to receive side-band records. 9339 * 9340 * This avoids having to scan all the various PMU per-cpu contexts 9341 * looking for them. 9342 */ 9343 static void account_pmu_sb_event(struct perf_event *event) 9344 { 9345 if (is_sb_event(event)) 9346 attach_sb_event(event); 9347 } 9348 9349 static void account_event_cpu(struct perf_event *event, int cpu) 9350 { 9351 if (event->parent) 9352 return; 9353 9354 if (is_cgroup_event(event)) 9355 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9356 } 9357 9358 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9359 static void account_freq_event_nohz(void) 9360 { 9361 #ifdef CONFIG_NO_HZ_FULL 9362 /* Lock so we don't race with concurrent unaccount */ 9363 spin_lock(&nr_freq_lock); 9364 if (atomic_inc_return(&nr_freq_events) == 1) 9365 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9366 spin_unlock(&nr_freq_lock); 9367 #endif 9368 } 9369 9370 static void account_freq_event(void) 9371 { 9372 if (tick_nohz_full_enabled()) 9373 account_freq_event_nohz(); 9374 else 9375 atomic_inc(&nr_freq_events); 9376 } 9377 9378 9379 static void account_event(struct perf_event *event) 9380 { 9381 bool inc = false; 9382 9383 if (event->parent) 9384 return; 9385 9386 if (event->attach_state & PERF_ATTACH_TASK) 9387 inc = true; 9388 if (event->attr.mmap || event->attr.mmap_data) 9389 atomic_inc(&nr_mmap_events); 9390 if (event->attr.comm) 9391 atomic_inc(&nr_comm_events); 9392 if (event->attr.namespaces) 9393 atomic_inc(&nr_namespaces_events); 9394 if (event->attr.task) 9395 atomic_inc(&nr_task_events); 9396 if (event->attr.freq) 9397 account_freq_event(); 9398 if (event->attr.context_switch) { 9399 atomic_inc(&nr_switch_events); 9400 inc = true; 9401 } 9402 if (has_branch_stack(event)) 9403 inc = true; 9404 if (is_cgroup_event(event)) 9405 inc = true; 9406 9407 if (inc) { 9408 if (atomic_inc_not_zero(&perf_sched_count)) 9409 goto enabled; 9410 9411 mutex_lock(&perf_sched_mutex); 9412 if (!atomic_read(&perf_sched_count)) { 9413 static_branch_enable(&perf_sched_events); 9414 /* 9415 * Guarantee that all CPUs observe they key change and 9416 * call the perf scheduling hooks before proceeding to 9417 * install events that need them. 9418 */ 9419 synchronize_sched(); 9420 } 9421 /* 9422 * Now that we have waited for the sync_sched(), allow further 9423 * increments to by-pass the mutex. 9424 */ 9425 atomic_inc(&perf_sched_count); 9426 mutex_unlock(&perf_sched_mutex); 9427 } 9428 enabled: 9429 9430 account_event_cpu(event, event->cpu); 9431 9432 account_pmu_sb_event(event); 9433 } 9434 9435 /* 9436 * Allocate and initialize a event structure 9437 */ 9438 static struct perf_event * 9439 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9440 struct task_struct *task, 9441 struct perf_event *group_leader, 9442 struct perf_event *parent_event, 9443 perf_overflow_handler_t overflow_handler, 9444 void *context, int cgroup_fd) 9445 { 9446 struct pmu *pmu; 9447 struct perf_event *event; 9448 struct hw_perf_event *hwc; 9449 long err = -EINVAL; 9450 9451 if ((unsigned)cpu >= nr_cpu_ids) { 9452 if (!task || cpu != -1) 9453 return ERR_PTR(-EINVAL); 9454 } 9455 9456 event = kzalloc(sizeof(*event), GFP_KERNEL); 9457 if (!event) 9458 return ERR_PTR(-ENOMEM); 9459 9460 /* 9461 * Single events are their own group leaders, with an 9462 * empty sibling list: 9463 */ 9464 if (!group_leader) 9465 group_leader = event; 9466 9467 mutex_init(&event->child_mutex); 9468 INIT_LIST_HEAD(&event->child_list); 9469 9470 INIT_LIST_HEAD(&event->group_entry); 9471 INIT_LIST_HEAD(&event->event_entry); 9472 INIT_LIST_HEAD(&event->sibling_list); 9473 INIT_LIST_HEAD(&event->rb_entry); 9474 INIT_LIST_HEAD(&event->active_entry); 9475 INIT_LIST_HEAD(&event->addr_filters.list); 9476 INIT_HLIST_NODE(&event->hlist_entry); 9477 9478 9479 init_waitqueue_head(&event->waitq); 9480 init_irq_work(&event->pending, perf_pending_event); 9481 9482 mutex_init(&event->mmap_mutex); 9483 raw_spin_lock_init(&event->addr_filters.lock); 9484 9485 atomic_long_set(&event->refcount, 1); 9486 event->cpu = cpu; 9487 event->attr = *attr; 9488 event->group_leader = group_leader; 9489 event->pmu = NULL; 9490 event->oncpu = -1; 9491 9492 event->parent = parent_event; 9493 9494 event->ns = get_pid_ns(task_active_pid_ns(current)); 9495 event->id = atomic64_inc_return(&perf_event_id); 9496 9497 event->state = PERF_EVENT_STATE_INACTIVE; 9498 9499 if (task) { 9500 event->attach_state = PERF_ATTACH_TASK; 9501 /* 9502 * XXX pmu::event_init needs to know what task to account to 9503 * and we cannot use the ctx information because we need the 9504 * pmu before we get a ctx. 9505 */ 9506 event->hw.target = task; 9507 } 9508 9509 event->clock = &local_clock; 9510 if (parent_event) 9511 event->clock = parent_event->clock; 9512 9513 if (!overflow_handler && parent_event) { 9514 overflow_handler = parent_event->overflow_handler; 9515 context = parent_event->overflow_handler_context; 9516 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9517 if (overflow_handler == bpf_overflow_handler) { 9518 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9519 9520 if (IS_ERR(prog)) { 9521 err = PTR_ERR(prog); 9522 goto err_ns; 9523 } 9524 event->prog = prog; 9525 event->orig_overflow_handler = 9526 parent_event->orig_overflow_handler; 9527 } 9528 #endif 9529 } 9530 9531 if (overflow_handler) { 9532 event->overflow_handler = overflow_handler; 9533 event->overflow_handler_context = context; 9534 } else if (is_write_backward(event)){ 9535 event->overflow_handler = perf_event_output_backward; 9536 event->overflow_handler_context = NULL; 9537 } else { 9538 event->overflow_handler = perf_event_output_forward; 9539 event->overflow_handler_context = NULL; 9540 } 9541 9542 perf_event__state_init(event); 9543 9544 pmu = NULL; 9545 9546 hwc = &event->hw; 9547 hwc->sample_period = attr->sample_period; 9548 if (attr->freq && attr->sample_freq) 9549 hwc->sample_period = 1; 9550 hwc->last_period = hwc->sample_period; 9551 9552 local64_set(&hwc->period_left, hwc->sample_period); 9553 9554 /* 9555 * We currently do not support PERF_SAMPLE_READ on inherited events. 9556 * See perf_output_read(). 9557 */ 9558 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9559 goto err_ns; 9560 9561 if (!has_branch_stack(event)) 9562 event->attr.branch_sample_type = 0; 9563 9564 if (cgroup_fd != -1) { 9565 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9566 if (err) 9567 goto err_ns; 9568 } 9569 9570 pmu = perf_init_event(event); 9571 if (IS_ERR(pmu)) { 9572 err = PTR_ERR(pmu); 9573 goto err_ns; 9574 } 9575 9576 err = exclusive_event_init(event); 9577 if (err) 9578 goto err_pmu; 9579 9580 if (has_addr_filter(event)) { 9581 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9582 sizeof(unsigned long), 9583 GFP_KERNEL); 9584 if (!event->addr_filters_offs) { 9585 err = -ENOMEM; 9586 goto err_per_task; 9587 } 9588 9589 /* force hw sync on the address filters */ 9590 event->addr_filters_gen = 1; 9591 } 9592 9593 if (!event->parent) { 9594 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9595 err = get_callchain_buffers(attr->sample_max_stack); 9596 if (err) 9597 goto err_addr_filters; 9598 } 9599 } 9600 9601 /* symmetric to unaccount_event() in _free_event() */ 9602 account_event(event); 9603 9604 return event; 9605 9606 err_addr_filters: 9607 kfree(event->addr_filters_offs); 9608 9609 err_per_task: 9610 exclusive_event_destroy(event); 9611 9612 err_pmu: 9613 if (event->destroy) 9614 event->destroy(event); 9615 module_put(pmu->module); 9616 err_ns: 9617 if (is_cgroup_event(event)) 9618 perf_detach_cgroup(event); 9619 if (event->ns) 9620 put_pid_ns(event->ns); 9621 kfree(event); 9622 9623 return ERR_PTR(err); 9624 } 9625 9626 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9627 struct perf_event_attr *attr) 9628 { 9629 u32 size; 9630 int ret; 9631 9632 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9633 return -EFAULT; 9634 9635 /* 9636 * zero the full structure, so that a short copy will be nice. 9637 */ 9638 memset(attr, 0, sizeof(*attr)); 9639 9640 ret = get_user(size, &uattr->size); 9641 if (ret) 9642 return ret; 9643 9644 if (size > PAGE_SIZE) /* silly large */ 9645 goto err_size; 9646 9647 if (!size) /* abi compat */ 9648 size = PERF_ATTR_SIZE_VER0; 9649 9650 if (size < PERF_ATTR_SIZE_VER0) 9651 goto err_size; 9652 9653 /* 9654 * If we're handed a bigger struct than we know of, 9655 * ensure all the unknown bits are 0 - i.e. new 9656 * user-space does not rely on any kernel feature 9657 * extensions we dont know about yet. 9658 */ 9659 if (size > sizeof(*attr)) { 9660 unsigned char __user *addr; 9661 unsigned char __user *end; 9662 unsigned char val; 9663 9664 addr = (void __user *)uattr + sizeof(*attr); 9665 end = (void __user *)uattr + size; 9666 9667 for (; addr < end; addr++) { 9668 ret = get_user(val, addr); 9669 if (ret) 9670 return ret; 9671 if (val) 9672 goto err_size; 9673 } 9674 size = sizeof(*attr); 9675 } 9676 9677 ret = copy_from_user(attr, uattr, size); 9678 if (ret) 9679 return -EFAULT; 9680 9681 attr->size = size; 9682 9683 if (attr->__reserved_1) 9684 return -EINVAL; 9685 9686 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9687 return -EINVAL; 9688 9689 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9690 return -EINVAL; 9691 9692 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9693 u64 mask = attr->branch_sample_type; 9694 9695 /* only using defined bits */ 9696 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9697 return -EINVAL; 9698 9699 /* at least one branch bit must be set */ 9700 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9701 return -EINVAL; 9702 9703 /* propagate priv level, when not set for branch */ 9704 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9705 9706 /* exclude_kernel checked on syscall entry */ 9707 if (!attr->exclude_kernel) 9708 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9709 9710 if (!attr->exclude_user) 9711 mask |= PERF_SAMPLE_BRANCH_USER; 9712 9713 if (!attr->exclude_hv) 9714 mask |= PERF_SAMPLE_BRANCH_HV; 9715 /* 9716 * adjust user setting (for HW filter setup) 9717 */ 9718 attr->branch_sample_type = mask; 9719 } 9720 /* privileged levels capture (kernel, hv): check permissions */ 9721 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9722 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9723 return -EACCES; 9724 } 9725 9726 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9727 ret = perf_reg_validate(attr->sample_regs_user); 9728 if (ret) 9729 return ret; 9730 } 9731 9732 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9733 if (!arch_perf_have_user_stack_dump()) 9734 return -ENOSYS; 9735 9736 /* 9737 * We have __u32 type for the size, but so far 9738 * we can only use __u16 as maximum due to the 9739 * __u16 sample size limit. 9740 */ 9741 if (attr->sample_stack_user >= USHRT_MAX) 9742 ret = -EINVAL; 9743 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9744 ret = -EINVAL; 9745 } 9746 9747 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9748 ret = perf_reg_validate(attr->sample_regs_intr); 9749 out: 9750 return ret; 9751 9752 err_size: 9753 put_user(sizeof(*attr), &uattr->size); 9754 ret = -E2BIG; 9755 goto out; 9756 } 9757 9758 static int 9759 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9760 { 9761 struct ring_buffer *rb = NULL; 9762 int ret = -EINVAL; 9763 9764 if (!output_event) 9765 goto set; 9766 9767 /* don't allow circular references */ 9768 if (event == output_event) 9769 goto out; 9770 9771 /* 9772 * Don't allow cross-cpu buffers 9773 */ 9774 if (output_event->cpu != event->cpu) 9775 goto out; 9776 9777 /* 9778 * If its not a per-cpu rb, it must be the same task. 9779 */ 9780 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9781 goto out; 9782 9783 /* 9784 * Mixing clocks in the same buffer is trouble you don't need. 9785 */ 9786 if (output_event->clock != event->clock) 9787 goto out; 9788 9789 /* 9790 * Either writing ring buffer from beginning or from end. 9791 * Mixing is not allowed. 9792 */ 9793 if (is_write_backward(output_event) != is_write_backward(event)) 9794 goto out; 9795 9796 /* 9797 * If both events generate aux data, they must be on the same PMU 9798 */ 9799 if (has_aux(event) && has_aux(output_event) && 9800 event->pmu != output_event->pmu) 9801 goto out; 9802 9803 set: 9804 mutex_lock(&event->mmap_mutex); 9805 /* Can't redirect output if we've got an active mmap() */ 9806 if (atomic_read(&event->mmap_count)) 9807 goto unlock; 9808 9809 if (output_event) { 9810 /* get the rb we want to redirect to */ 9811 rb = ring_buffer_get(output_event); 9812 if (!rb) 9813 goto unlock; 9814 } 9815 9816 ring_buffer_attach(event, rb); 9817 9818 ret = 0; 9819 unlock: 9820 mutex_unlock(&event->mmap_mutex); 9821 9822 out: 9823 return ret; 9824 } 9825 9826 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9827 { 9828 if (b < a) 9829 swap(a, b); 9830 9831 mutex_lock(a); 9832 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9833 } 9834 9835 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9836 { 9837 bool nmi_safe = false; 9838 9839 switch (clk_id) { 9840 case CLOCK_MONOTONIC: 9841 event->clock = &ktime_get_mono_fast_ns; 9842 nmi_safe = true; 9843 break; 9844 9845 case CLOCK_MONOTONIC_RAW: 9846 event->clock = &ktime_get_raw_fast_ns; 9847 nmi_safe = true; 9848 break; 9849 9850 case CLOCK_REALTIME: 9851 event->clock = &ktime_get_real_ns; 9852 break; 9853 9854 case CLOCK_BOOTTIME: 9855 event->clock = &ktime_get_boot_ns; 9856 break; 9857 9858 case CLOCK_TAI: 9859 event->clock = &ktime_get_tai_ns; 9860 break; 9861 9862 default: 9863 return -EINVAL; 9864 } 9865 9866 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9867 return -EINVAL; 9868 9869 return 0; 9870 } 9871 9872 /* 9873 * Variation on perf_event_ctx_lock_nested(), except we take two context 9874 * mutexes. 9875 */ 9876 static struct perf_event_context * 9877 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9878 struct perf_event_context *ctx) 9879 { 9880 struct perf_event_context *gctx; 9881 9882 again: 9883 rcu_read_lock(); 9884 gctx = READ_ONCE(group_leader->ctx); 9885 if (!atomic_inc_not_zero(&gctx->refcount)) { 9886 rcu_read_unlock(); 9887 goto again; 9888 } 9889 rcu_read_unlock(); 9890 9891 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9892 9893 if (group_leader->ctx != gctx) { 9894 mutex_unlock(&ctx->mutex); 9895 mutex_unlock(&gctx->mutex); 9896 put_ctx(gctx); 9897 goto again; 9898 } 9899 9900 return gctx; 9901 } 9902 9903 /** 9904 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9905 * 9906 * @attr_uptr: event_id type attributes for monitoring/sampling 9907 * @pid: target pid 9908 * @cpu: target cpu 9909 * @group_fd: group leader event fd 9910 */ 9911 SYSCALL_DEFINE5(perf_event_open, 9912 struct perf_event_attr __user *, attr_uptr, 9913 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9914 { 9915 struct perf_event *group_leader = NULL, *output_event = NULL; 9916 struct perf_event *event, *sibling; 9917 struct perf_event_attr attr; 9918 struct perf_event_context *ctx, *uninitialized_var(gctx); 9919 struct file *event_file = NULL; 9920 struct fd group = {NULL, 0}; 9921 struct task_struct *task = NULL; 9922 struct pmu *pmu; 9923 int event_fd; 9924 int move_group = 0; 9925 int err; 9926 int f_flags = O_RDWR; 9927 int cgroup_fd = -1; 9928 9929 /* for future expandability... */ 9930 if (flags & ~PERF_FLAG_ALL) 9931 return -EINVAL; 9932 9933 err = perf_copy_attr(attr_uptr, &attr); 9934 if (err) 9935 return err; 9936 9937 if (!attr.exclude_kernel) { 9938 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9939 return -EACCES; 9940 } 9941 9942 if (attr.namespaces) { 9943 if (!capable(CAP_SYS_ADMIN)) 9944 return -EACCES; 9945 } 9946 9947 if (attr.freq) { 9948 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9949 return -EINVAL; 9950 } else { 9951 if (attr.sample_period & (1ULL << 63)) 9952 return -EINVAL; 9953 } 9954 9955 /* Only privileged users can get physical addresses */ 9956 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 9957 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9958 return -EACCES; 9959 9960 if (!attr.sample_max_stack) 9961 attr.sample_max_stack = sysctl_perf_event_max_stack; 9962 9963 /* 9964 * In cgroup mode, the pid argument is used to pass the fd 9965 * opened to the cgroup directory in cgroupfs. The cpu argument 9966 * designates the cpu on which to monitor threads from that 9967 * cgroup. 9968 */ 9969 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9970 return -EINVAL; 9971 9972 if (flags & PERF_FLAG_FD_CLOEXEC) 9973 f_flags |= O_CLOEXEC; 9974 9975 event_fd = get_unused_fd_flags(f_flags); 9976 if (event_fd < 0) 9977 return event_fd; 9978 9979 if (group_fd != -1) { 9980 err = perf_fget_light(group_fd, &group); 9981 if (err) 9982 goto err_fd; 9983 group_leader = group.file->private_data; 9984 if (flags & PERF_FLAG_FD_OUTPUT) 9985 output_event = group_leader; 9986 if (flags & PERF_FLAG_FD_NO_GROUP) 9987 group_leader = NULL; 9988 } 9989 9990 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9991 task = find_lively_task_by_vpid(pid); 9992 if (IS_ERR(task)) { 9993 err = PTR_ERR(task); 9994 goto err_group_fd; 9995 } 9996 } 9997 9998 if (task && group_leader && 9999 group_leader->attr.inherit != attr.inherit) { 10000 err = -EINVAL; 10001 goto err_task; 10002 } 10003 10004 if (task) { 10005 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10006 if (err) 10007 goto err_task; 10008 10009 /* 10010 * Reuse ptrace permission checks for now. 10011 * 10012 * We must hold cred_guard_mutex across this and any potential 10013 * perf_install_in_context() call for this new event to 10014 * serialize against exec() altering our credentials (and the 10015 * perf_event_exit_task() that could imply). 10016 */ 10017 err = -EACCES; 10018 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10019 goto err_cred; 10020 } 10021 10022 if (flags & PERF_FLAG_PID_CGROUP) 10023 cgroup_fd = pid; 10024 10025 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10026 NULL, NULL, cgroup_fd); 10027 if (IS_ERR(event)) { 10028 err = PTR_ERR(event); 10029 goto err_cred; 10030 } 10031 10032 if (is_sampling_event(event)) { 10033 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10034 err = -EOPNOTSUPP; 10035 goto err_alloc; 10036 } 10037 } 10038 10039 /* 10040 * Special case software events and allow them to be part of 10041 * any hardware group. 10042 */ 10043 pmu = event->pmu; 10044 10045 if (attr.use_clockid) { 10046 err = perf_event_set_clock(event, attr.clockid); 10047 if (err) 10048 goto err_alloc; 10049 } 10050 10051 if (pmu->task_ctx_nr == perf_sw_context) 10052 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10053 10054 if (group_leader && 10055 (is_software_event(event) != is_software_event(group_leader))) { 10056 if (is_software_event(event)) { 10057 /* 10058 * If event and group_leader are not both a software 10059 * event, and event is, then group leader is not. 10060 * 10061 * Allow the addition of software events to !software 10062 * groups, this is safe because software events never 10063 * fail to schedule. 10064 */ 10065 pmu = group_leader->pmu; 10066 } else if (is_software_event(group_leader) && 10067 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10068 /* 10069 * In case the group is a pure software group, and we 10070 * try to add a hardware event, move the whole group to 10071 * the hardware context. 10072 */ 10073 move_group = 1; 10074 } 10075 } 10076 10077 /* 10078 * Get the target context (task or percpu): 10079 */ 10080 ctx = find_get_context(pmu, task, event); 10081 if (IS_ERR(ctx)) { 10082 err = PTR_ERR(ctx); 10083 goto err_alloc; 10084 } 10085 10086 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10087 err = -EBUSY; 10088 goto err_context; 10089 } 10090 10091 /* 10092 * Look up the group leader (we will attach this event to it): 10093 */ 10094 if (group_leader) { 10095 err = -EINVAL; 10096 10097 /* 10098 * Do not allow a recursive hierarchy (this new sibling 10099 * becoming part of another group-sibling): 10100 */ 10101 if (group_leader->group_leader != group_leader) 10102 goto err_context; 10103 10104 /* All events in a group should have the same clock */ 10105 if (group_leader->clock != event->clock) 10106 goto err_context; 10107 10108 /* 10109 * Make sure we're both events for the same CPU; 10110 * grouping events for different CPUs is broken; since 10111 * you can never concurrently schedule them anyhow. 10112 */ 10113 if (group_leader->cpu != event->cpu) 10114 goto err_context; 10115 10116 /* 10117 * Make sure we're both on the same task, or both 10118 * per-CPU events. 10119 */ 10120 if (group_leader->ctx->task != ctx->task) 10121 goto err_context; 10122 10123 /* 10124 * Do not allow to attach to a group in a different task 10125 * or CPU context. If we're moving SW events, we'll fix 10126 * this up later, so allow that. 10127 */ 10128 if (!move_group && group_leader->ctx != ctx) 10129 goto err_context; 10130 10131 /* 10132 * Only a group leader can be exclusive or pinned 10133 */ 10134 if (attr.exclusive || attr.pinned) 10135 goto err_context; 10136 } 10137 10138 if (output_event) { 10139 err = perf_event_set_output(event, output_event); 10140 if (err) 10141 goto err_context; 10142 } 10143 10144 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10145 f_flags); 10146 if (IS_ERR(event_file)) { 10147 err = PTR_ERR(event_file); 10148 event_file = NULL; 10149 goto err_context; 10150 } 10151 10152 if (move_group) { 10153 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10154 10155 if (gctx->task == TASK_TOMBSTONE) { 10156 err = -ESRCH; 10157 goto err_locked; 10158 } 10159 10160 /* 10161 * Check if we raced against another sys_perf_event_open() call 10162 * moving the software group underneath us. 10163 */ 10164 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10165 /* 10166 * If someone moved the group out from under us, check 10167 * if this new event wound up on the same ctx, if so 10168 * its the regular !move_group case, otherwise fail. 10169 */ 10170 if (gctx != ctx) { 10171 err = -EINVAL; 10172 goto err_locked; 10173 } else { 10174 perf_event_ctx_unlock(group_leader, gctx); 10175 move_group = 0; 10176 } 10177 } 10178 } else { 10179 mutex_lock(&ctx->mutex); 10180 } 10181 10182 if (ctx->task == TASK_TOMBSTONE) { 10183 err = -ESRCH; 10184 goto err_locked; 10185 } 10186 10187 if (!perf_event_validate_size(event)) { 10188 err = -E2BIG; 10189 goto err_locked; 10190 } 10191 10192 if (!task) { 10193 /* 10194 * Check if the @cpu we're creating an event for is online. 10195 * 10196 * We use the perf_cpu_context::ctx::mutex to serialize against 10197 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10198 */ 10199 struct perf_cpu_context *cpuctx = 10200 container_of(ctx, struct perf_cpu_context, ctx); 10201 10202 if (!cpuctx->online) { 10203 err = -ENODEV; 10204 goto err_locked; 10205 } 10206 } 10207 10208 10209 /* 10210 * Must be under the same ctx::mutex as perf_install_in_context(), 10211 * because we need to serialize with concurrent event creation. 10212 */ 10213 if (!exclusive_event_installable(event, ctx)) { 10214 /* exclusive and group stuff are assumed mutually exclusive */ 10215 WARN_ON_ONCE(move_group); 10216 10217 err = -EBUSY; 10218 goto err_locked; 10219 } 10220 10221 WARN_ON_ONCE(ctx->parent_ctx); 10222 10223 /* 10224 * This is the point on no return; we cannot fail hereafter. This is 10225 * where we start modifying current state. 10226 */ 10227 10228 if (move_group) { 10229 /* 10230 * See perf_event_ctx_lock() for comments on the details 10231 * of swizzling perf_event::ctx. 10232 */ 10233 perf_remove_from_context(group_leader, 0); 10234 put_ctx(gctx); 10235 10236 list_for_each_entry(sibling, &group_leader->sibling_list, 10237 group_entry) { 10238 perf_remove_from_context(sibling, 0); 10239 put_ctx(gctx); 10240 } 10241 10242 /* 10243 * Wait for everybody to stop referencing the events through 10244 * the old lists, before installing it on new lists. 10245 */ 10246 synchronize_rcu(); 10247 10248 /* 10249 * Install the group siblings before the group leader. 10250 * 10251 * Because a group leader will try and install the entire group 10252 * (through the sibling list, which is still in-tact), we can 10253 * end up with siblings installed in the wrong context. 10254 * 10255 * By installing siblings first we NO-OP because they're not 10256 * reachable through the group lists. 10257 */ 10258 list_for_each_entry(sibling, &group_leader->sibling_list, 10259 group_entry) { 10260 perf_event__state_init(sibling); 10261 perf_install_in_context(ctx, sibling, sibling->cpu); 10262 get_ctx(ctx); 10263 } 10264 10265 /* 10266 * Removing from the context ends up with disabled 10267 * event. What we want here is event in the initial 10268 * startup state, ready to be add into new context. 10269 */ 10270 perf_event__state_init(group_leader); 10271 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10272 get_ctx(ctx); 10273 } 10274 10275 /* 10276 * Precalculate sample_data sizes; do while holding ctx::mutex such 10277 * that we're serialized against further additions and before 10278 * perf_install_in_context() which is the point the event is active and 10279 * can use these values. 10280 */ 10281 perf_event__header_size(event); 10282 perf_event__id_header_size(event); 10283 10284 event->owner = current; 10285 10286 perf_install_in_context(ctx, event, event->cpu); 10287 perf_unpin_context(ctx); 10288 10289 if (move_group) 10290 perf_event_ctx_unlock(group_leader, gctx); 10291 mutex_unlock(&ctx->mutex); 10292 10293 if (task) { 10294 mutex_unlock(&task->signal->cred_guard_mutex); 10295 put_task_struct(task); 10296 } 10297 10298 mutex_lock(¤t->perf_event_mutex); 10299 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10300 mutex_unlock(¤t->perf_event_mutex); 10301 10302 /* 10303 * Drop the reference on the group_event after placing the 10304 * new event on the sibling_list. This ensures destruction 10305 * of the group leader will find the pointer to itself in 10306 * perf_group_detach(). 10307 */ 10308 fdput(group); 10309 fd_install(event_fd, event_file); 10310 return event_fd; 10311 10312 err_locked: 10313 if (move_group) 10314 perf_event_ctx_unlock(group_leader, gctx); 10315 mutex_unlock(&ctx->mutex); 10316 /* err_file: */ 10317 fput(event_file); 10318 err_context: 10319 perf_unpin_context(ctx); 10320 put_ctx(ctx); 10321 err_alloc: 10322 /* 10323 * If event_file is set, the fput() above will have called ->release() 10324 * and that will take care of freeing the event. 10325 */ 10326 if (!event_file) 10327 free_event(event); 10328 err_cred: 10329 if (task) 10330 mutex_unlock(&task->signal->cred_guard_mutex); 10331 err_task: 10332 if (task) 10333 put_task_struct(task); 10334 err_group_fd: 10335 fdput(group); 10336 err_fd: 10337 put_unused_fd(event_fd); 10338 return err; 10339 } 10340 10341 /** 10342 * perf_event_create_kernel_counter 10343 * 10344 * @attr: attributes of the counter to create 10345 * @cpu: cpu in which the counter is bound 10346 * @task: task to profile (NULL for percpu) 10347 */ 10348 struct perf_event * 10349 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10350 struct task_struct *task, 10351 perf_overflow_handler_t overflow_handler, 10352 void *context) 10353 { 10354 struct perf_event_context *ctx; 10355 struct perf_event *event; 10356 int err; 10357 10358 /* 10359 * Get the target context (task or percpu): 10360 */ 10361 10362 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10363 overflow_handler, context, -1); 10364 if (IS_ERR(event)) { 10365 err = PTR_ERR(event); 10366 goto err; 10367 } 10368 10369 /* Mark owner so we could distinguish it from user events. */ 10370 event->owner = TASK_TOMBSTONE; 10371 10372 ctx = find_get_context(event->pmu, task, event); 10373 if (IS_ERR(ctx)) { 10374 err = PTR_ERR(ctx); 10375 goto err_free; 10376 } 10377 10378 WARN_ON_ONCE(ctx->parent_ctx); 10379 mutex_lock(&ctx->mutex); 10380 if (ctx->task == TASK_TOMBSTONE) { 10381 err = -ESRCH; 10382 goto err_unlock; 10383 } 10384 10385 if (!task) { 10386 /* 10387 * Check if the @cpu we're creating an event for is online. 10388 * 10389 * We use the perf_cpu_context::ctx::mutex to serialize against 10390 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10391 */ 10392 struct perf_cpu_context *cpuctx = 10393 container_of(ctx, struct perf_cpu_context, ctx); 10394 if (!cpuctx->online) { 10395 err = -ENODEV; 10396 goto err_unlock; 10397 } 10398 } 10399 10400 if (!exclusive_event_installable(event, ctx)) { 10401 err = -EBUSY; 10402 goto err_unlock; 10403 } 10404 10405 perf_install_in_context(ctx, event, cpu); 10406 perf_unpin_context(ctx); 10407 mutex_unlock(&ctx->mutex); 10408 10409 return event; 10410 10411 err_unlock: 10412 mutex_unlock(&ctx->mutex); 10413 perf_unpin_context(ctx); 10414 put_ctx(ctx); 10415 err_free: 10416 free_event(event); 10417 err: 10418 return ERR_PTR(err); 10419 } 10420 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10421 10422 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10423 { 10424 struct perf_event_context *src_ctx; 10425 struct perf_event_context *dst_ctx; 10426 struct perf_event *event, *tmp; 10427 LIST_HEAD(events); 10428 10429 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10430 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10431 10432 /* 10433 * See perf_event_ctx_lock() for comments on the details 10434 * of swizzling perf_event::ctx. 10435 */ 10436 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10437 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10438 event_entry) { 10439 perf_remove_from_context(event, 0); 10440 unaccount_event_cpu(event, src_cpu); 10441 put_ctx(src_ctx); 10442 list_add(&event->migrate_entry, &events); 10443 } 10444 10445 /* 10446 * Wait for the events to quiesce before re-instating them. 10447 */ 10448 synchronize_rcu(); 10449 10450 /* 10451 * Re-instate events in 2 passes. 10452 * 10453 * Skip over group leaders and only install siblings on this first 10454 * pass, siblings will not get enabled without a leader, however a 10455 * leader will enable its siblings, even if those are still on the old 10456 * context. 10457 */ 10458 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10459 if (event->group_leader == event) 10460 continue; 10461 10462 list_del(&event->migrate_entry); 10463 if (event->state >= PERF_EVENT_STATE_OFF) 10464 event->state = PERF_EVENT_STATE_INACTIVE; 10465 account_event_cpu(event, dst_cpu); 10466 perf_install_in_context(dst_ctx, event, dst_cpu); 10467 get_ctx(dst_ctx); 10468 } 10469 10470 /* 10471 * Once all the siblings are setup properly, install the group leaders 10472 * to make it go. 10473 */ 10474 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10475 list_del(&event->migrate_entry); 10476 if (event->state >= PERF_EVENT_STATE_OFF) 10477 event->state = PERF_EVENT_STATE_INACTIVE; 10478 account_event_cpu(event, dst_cpu); 10479 perf_install_in_context(dst_ctx, event, dst_cpu); 10480 get_ctx(dst_ctx); 10481 } 10482 mutex_unlock(&dst_ctx->mutex); 10483 mutex_unlock(&src_ctx->mutex); 10484 } 10485 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10486 10487 static void sync_child_event(struct perf_event *child_event, 10488 struct task_struct *child) 10489 { 10490 struct perf_event *parent_event = child_event->parent; 10491 u64 child_val; 10492 10493 if (child_event->attr.inherit_stat) 10494 perf_event_read_event(child_event, child); 10495 10496 child_val = perf_event_count(child_event); 10497 10498 /* 10499 * Add back the child's count to the parent's count: 10500 */ 10501 atomic64_add(child_val, &parent_event->child_count); 10502 atomic64_add(child_event->total_time_enabled, 10503 &parent_event->child_total_time_enabled); 10504 atomic64_add(child_event->total_time_running, 10505 &parent_event->child_total_time_running); 10506 } 10507 10508 static void 10509 perf_event_exit_event(struct perf_event *child_event, 10510 struct perf_event_context *child_ctx, 10511 struct task_struct *child) 10512 { 10513 struct perf_event *parent_event = child_event->parent; 10514 10515 /* 10516 * Do not destroy the 'original' grouping; because of the context 10517 * switch optimization the original events could've ended up in a 10518 * random child task. 10519 * 10520 * If we were to destroy the original group, all group related 10521 * operations would cease to function properly after this random 10522 * child dies. 10523 * 10524 * Do destroy all inherited groups, we don't care about those 10525 * and being thorough is better. 10526 */ 10527 raw_spin_lock_irq(&child_ctx->lock); 10528 WARN_ON_ONCE(child_ctx->is_active); 10529 10530 if (parent_event) 10531 perf_group_detach(child_event); 10532 list_del_event(child_event, child_ctx); 10533 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10534 raw_spin_unlock_irq(&child_ctx->lock); 10535 10536 /* 10537 * Parent events are governed by their filedesc, retain them. 10538 */ 10539 if (!parent_event) { 10540 perf_event_wakeup(child_event); 10541 return; 10542 } 10543 /* 10544 * Child events can be cleaned up. 10545 */ 10546 10547 sync_child_event(child_event, child); 10548 10549 /* 10550 * Remove this event from the parent's list 10551 */ 10552 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10553 mutex_lock(&parent_event->child_mutex); 10554 list_del_init(&child_event->child_list); 10555 mutex_unlock(&parent_event->child_mutex); 10556 10557 /* 10558 * Kick perf_poll() for is_event_hup(). 10559 */ 10560 perf_event_wakeup(parent_event); 10561 free_event(child_event); 10562 put_event(parent_event); 10563 } 10564 10565 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10566 { 10567 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10568 struct perf_event *child_event, *next; 10569 10570 WARN_ON_ONCE(child != current); 10571 10572 child_ctx = perf_pin_task_context(child, ctxn); 10573 if (!child_ctx) 10574 return; 10575 10576 /* 10577 * In order to reduce the amount of tricky in ctx tear-down, we hold 10578 * ctx::mutex over the entire thing. This serializes against almost 10579 * everything that wants to access the ctx. 10580 * 10581 * The exception is sys_perf_event_open() / 10582 * perf_event_create_kernel_count() which does find_get_context() 10583 * without ctx::mutex (it cannot because of the move_group double mutex 10584 * lock thing). See the comments in perf_install_in_context(). 10585 */ 10586 mutex_lock(&child_ctx->mutex); 10587 10588 /* 10589 * In a single ctx::lock section, de-schedule the events and detach the 10590 * context from the task such that we cannot ever get it scheduled back 10591 * in. 10592 */ 10593 raw_spin_lock_irq(&child_ctx->lock); 10594 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10595 10596 /* 10597 * Now that the context is inactive, destroy the task <-> ctx relation 10598 * and mark the context dead. 10599 */ 10600 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10601 put_ctx(child_ctx); /* cannot be last */ 10602 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10603 put_task_struct(current); /* cannot be last */ 10604 10605 clone_ctx = unclone_ctx(child_ctx); 10606 raw_spin_unlock_irq(&child_ctx->lock); 10607 10608 if (clone_ctx) 10609 put_ctx(clone_ctx); 10610 10611 /* 10612 * Report the task dead after unscheduling the events so that we 10613 * won't get any samples after PERF_RECORD_EXIT. We can however still 10614 * get a few PERF_RECORD_READ events. 10615 */ 10616 perf_event_task(child, child_ctx, 0); 10617 10618 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10619 perf_event_exit_event(child_event, child_ctx, child); 10620 10621 mutex_unlock(&child_ctx->mutex); 10622 10623 put_ctx(child_ctx); 10624 } 10625 10626 /* 10627 * When a child task exits, feed back event values to parent events. 10628 * 10629 * Can be called with cred_guard_mutex held when called from 10630 * install_exec_creds(). 10631 */ 10632 void perf_event_exit_task(struct task_struct *child) 10633 { 10634 struct perf_event *event, *tmp; 10635 int ctxn; 10636 10637 mutex_lock(&child->perf_event_mutex); 10638 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10639 owner_entry) { 10640 list_del_init(&event->owner_entry); 10641 10642 /* 10643 * Ensure the list deletion is visible before we clear 10644 * the owner, closes a race against perf_release() where 10645 * we need to serialize on the owner->perf_event_mutex. 10646 */ 10647 smp_store_release(&event->owner, NULL); 10648 } 10649 mutex_unlock(&child->perf_event_mutex); 10650 10651 for_each_task_context_nr(ctxn) 10652 perf_event_exit_task_context(child, ctxn); 10653 10654 /* 10655 * The perf_event_exit_task_context calls perf_event_task 10656 * with child's task_ctx, which generates EXIT events for 10657 * child contexts and sets child->perf_event_ctxp[] to NULL. 10658 * At this point we need to send EXIT events to cpu contexts. 10659 */ 10660 perf_event_task(child, NULL, 0); 10661 } 10662 10663 static void perf_free_event(struct perf_event *event, 10664 struct perf_event_context *ctx) 10665 { 10666 struct perf_event *parent = event->parent; 10667 10668 if (WARN_ON_ONCE(!parent)) 10669 return; 10670 10671 mutex_lock(&parent->child_mutex); 10672 list_del_init(&event->child_list); 10673 mutex_unlock(&parent->child_mutex); 10674 10675 put_event(parent); 10676 10677 raw_spin_lock_irq(&ctx->lock); 10678 perf_group_detach(event); 10679 list_del_event(event, ctx); 10680 raw_spin_unlock_irq(&ctx->lock); 10681 free_event(event); 10682 } 10683 10684 /* 10685 * Free an unexposed, unused context as created by inheritance by 10686 * perf_event_init_task below, used by fork() in case of fail. 10687 * 10688 * Not all locks are strictly required, but take them anyway to be nice and 10689 * help out with the lockdep assertions. 10690 */ 10691 void perf_event_free_task(struct task_struct *task) 10692 { 10693 struct perf_event_context *ctx; 10694 struct perf_event *event, *tmp; 10695 int ctxn; 10696 10697 for_each_task_context_nr(ctxn) { 10698 ctx = task->perf_event_ctxp[ctxn]; 10699 if (!ctx) 10700 continue; 10701 10702 mutex_lock(&ctx->mutex); 10703 raw_spin_lock_irq(&ctx->lock); 10704 /* 10705 * Destroy the task <-> ctx relation and mark the context dead. 10706 * 10707 * This is important because even though the task hasn't been 10708 * exposed yet the context has been (through child_list). 10709 */ 10710 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10711 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10712 put_task_struct(task); /* cannot be last */ 10713 raw_spin_unlock_irq(&ctx->lock); 10714 10715 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10716 perf_free_event(event, ctx); 10717 10718 mutex_unlock(&ctx->mutex); 10719 put_ctx(ctx); 10720 } 10721 } 10722 10723 void perf_event_delayed_put(struct task_struct *task) 10724 { 10725 int ctxn; 10726 10727 for_each_task_context_nr(ctxn) 10728 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10729 } 10730 10731 struct file *perf_event_get(unsigned int fd) 10732 { 10733 struct file *file; 10734 10735 file = fget_raw(fd); 10736 if (!file) 10737 return ERR_PTR(-EBADF); 10738 10739 if (file->f_op != &perf_fops) { 10740 fput(file); 10741 return ERR_PTR(-EBADF); 10742 } 10743 10744 return file; 10745 } 10746 10747 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10748 { 10749 if (!event) 10750 return ERR_PTR(-EINVAL); 10751 10752 return &event->attr; 10753 } 10754 10755 /* 10756 * Inherit a event from parent task to child task. 10757 * 10758 * Returns: 10759 * - valid pointer on success 10760 * - NULL for orphaned events 10761 * - IS_ERR() on error 10762 */ 10763 static struct perf_event * 10764 inherit_event(struct perf_event *parent_event, 10765 struct task_struct *parent, 10766 struct perf_event_context *parent_ctx, 10767 struct task_struct *child, 10768 struct perf_event *group_leader, 10769 struct perf_event_context *child_ctx) 10770 { 10771 enum perf_event_active_state parent_state = parent_event->state; 10772 struct perf_event *child_event; 10773 unsigned long flags; 10774 10775 /* 10776 * Instead of creating recursive hierarchies of events, 10777 * we link inherited events back to the original parent, 10778 * which has a filp for sure, which we use as the reference 10779 * count: 10780 */ 10781 if (parent_event->parent) 10782 parent_event = parent_event->parent; 10783 10784 child_event = perf_event_alloc(&parent_event->attr, 10785 parent_event->cpu, 10786 child, 10787 group_leader, parent_event, 10788 NULL, NULL, -1); 10789 if (IS_ERR(child_event)) 10790 return child_event; 10791 10792 /* 10793 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10794 * must be under the same lock in order to serialize against 10795 * perf_event_release_kernel(), such that either we must observe 10796 * is_orphaned_event() or they will observe us on the child_list. 10797 */ 10798 mutex_lock(&parent_event->child_mutex); 10799 if (is_orphaned_event(parent_event) || 10800 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10801 mutex_unlock(&parent_event->child_mutex); 10802 free_event(child_event); 10803 return NULL; 10804 } 10805 10806 get_ctx(child_ctx); 10807 10808 /* 10809 * Make the child state follow the state of the parent event, 10810 * not its attr.disabled bit. We hold the parent's mutex, 10811 * so we won't race with perf_event_{en, dis}able_family. 10812 */ 10813 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10814 child_event->state = PERF_EVENT_STATE_INACTIVE; 10815 else 10816 child_event->state = PERF_EVENT_STATE_OFF; 10817 10818 if (parent_event->attr.freq) { 10819 u64 sample_period = parent_event->hw.sample_period; 10820 struct hw_perf_event *hwc = &child_event->hw; 10821 10822 hwc->sample_period = sample_period; 10823 hwc->last_period = sample_period; 10824 10825 local64_set(&hwc->period_left, sample_period); 10826 } 10827 10828 child_event->ctx = child_ctx; 10829 child_event->overflow_handler = parent_event->overflow_handler; 10830 child_event->overflow_handler_context 10831 = parent_event->overflow_handler_context; 10832 10833 /* 10834 * Precalculate sample_data sizes 10835 */ 10836 perf_event__header_size(child_event); 10837 perf_event__id_header_size(child_event); 10838 10839 /* 10840 * Link it up in the child's context: 10841 */ 10842 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10843 add_event_to_ctx(child_event, child_ctx); 10844 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10845 10846 /* 10847 * Link this into the parent event's child list 10848 */ 10849 list_add_tail(&child_event->child_list, &parent_event->child_list); 10850 mutex_unlock(&parent_event->child_mutex); 10851 10852 return child_event; 10853 } 10854 10855 /* 10856 * Inherits an event group. 10857 * 10858 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10859 * This matches with perf_event_release_kernel() removing all child events. 10860 * 10861 * Returns: 10862 * - 0 on success 10863 * - <0 on error 10864 */ 10865 static int inherit_group(struct perf_event *parent_event, 10866 struct task_struct *parent, 10867 struct perf_event_context *parent_ctx, 10868 struct task_struct *child, 10869 struct perf_event_context *child_ctx) 10870 { 10871 struct perf_event *leader; 10872 struct perf_event *sub; 10873 struct perf_event *child_ctr; 10874 10875 leader = inherit_event(parent_event, parent, parent_ctx, 10876 child, NULL, child_ctx); 10877 if (IS_ERR(leader)) 10878 return PTR_ERR(leader); 10879 /* 10880 * @leader can be NULL here because of is_orphaned_event(). In this 10881 * case inherit_event() will create individual events, similar to what 10882 * perf_group_detach() would do anyway. 10883 */ 10884 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10885 child_ctr = inherit_event(sub, parent, parent_ctx, 10886 child, leader, child_ctx); 10887 if (IS_ERR(child_ctr)) 10888 return PTR_ERR(child_ctr); 10889 } 10890 return 0; 10891 } 10892 10893 /* 10894 * Creates the child task context and tries to inherit the event-group. 10895 * 10896 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10897 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10898 * consistent with perf_event_release_kernel() removing all child events. 10899 * 10900 * Returns: 10901 * - 0 on success 10902 * - <0 on error 10903 */ 10904 static int 10905 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10906 struct perf_event_context *parent_ctx, 10907 struct task_struct *child, int ctxn, 10908 int *inherited_all) 10909 { 10910 int ret; 10911 struct perf_event_context *child_ctx; 10912 10913 if (!event->attr.inherit) { 10914 *inherited_all = 0; 10915 return 0; 10916 } 10917 10918 child_ctx = child->perf_event_ctxp[ctxn]; 10919 if (!child_ctx) { 10920 /* 10921 * This is executed from the parent task context, so 10922 * inherit events that have been marked for cloning. 10923 * First allocate and initialize a context for the 10924 * child. 10925 */ 10926 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10927 if (!child_ctx) 10928 return -ENOMEM; 10929 10930 child->perf_event_ctxp[ctxn] = child_ctx; 10931 } 10932 10933 ret = inherit_group(event, parent, parent_ctx, 10934 child, child_ctx); 10935 10936 if (ret) 10937 *inherited_all = 0; 10938 10939 return ret; 10940 } 10941 10942 /* 10943 * Initialize the perf_event context in task_struct 10944 */ 10945 static int perf_event_init_context(struct task_struct *child, int ctxn) 10946 { 10947 struct perf_event_context *child_ctx, *parent_ctx; 10948 struct perf_event_context *cloned_ctx; 10949 struct perf_event *event; 10950 struct task_struct *parent = current; 10951 int inherited_all = 1; 10952 unsigned long flags; 10953 int ret = 0; 10954 10955 if (likely(!parent->perf_event_ctxp[ctxn])) 10956 return 0; 10957 10958 /* 10959 * If the parent's context is a clone, pin it so it won't get 10960 * swapped under us. 10961 */ 10962 parent_ctx = perf_pin_task_context(parent, ctxn); 10963 if (!parent_ctx) 10964 return 0; 10965 10966 /* 10967 * No need to check if parent_ctx != NULL here; since we saw 10968 * it non-NULL earlier, the only reason for it to become NULL 10969 * is if we exit, and since we're currently in the middle of 10970 * a fork we can't be exiting at the same time. 10971 */ 10972 10973 /* 10974 * Lock the parent list. No need to lock the child - not PID 10975 * hashed yet and not running, so nobody can access it. 10976 */ 10977 mutex_lock(&parent_ctx->mutex); 10978 10979 /* 10980 * We dont have to disable NMIs - we are only looking at 10981 * the list, not manipulating it: 10982 */ 10983 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10984 ret = inherit_task_group(event, parent, parent_ctx, 10985 child, ctxn, &inherited_all); 10986 if (ret) 10987 goto out_unlock; 10988 } 10989 10990 /* 10991 * We can't hold ctx->lock when iterating the ->flexible_group list due 10992 * to allocations, but we need to prevent rotation because 10993 * rotate_ctx() will change the list from interrupt context. 10994 */ 10995 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10996 parent_ctx->rotate_disable = 1; 10997 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10998 10999 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 11000 ret = inherit_task_group(event, parent, parent_ctx, 11001 child, ctxn, &inherited_all); 11002 if (ret) 11003 goto out_unlock; 11004 } 11005 11006 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11007 parent_ctx->rotate_disable = 0; 11008 11009 child_ctx = child->perf_event_ctxp[ctxn]; 11010 11011 if (child_ctx && inherited_all) { 11012 /* 11013 * Mark the child context as a clone of the parent 11014 * context, or of whatever the parent is a clone of. 11015 * 11016 * Note that if the parent is a clone, the holding of 11017 * parent_ctx->lock avoids it from being uncloned. 11018 */ 11019 cloned_ctx = parent_ctx->parent_ctx; 11020 if (cloned_ctx) { 11021 child_ctx->parent_ctx = cloned_ctx; 11022 child_ctx->parent_gen = parent_ctx->parent_gen; 11023 } else { 11024 child_ctx->parent_ctx = parent_ctx; 11025 child_ctx->parent_gen = parent_ctx->generation; 11026 } 11027 get_ctx(child_ctx->parent_ctx); 11028 } 11029 11030 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11031 out_unlock: 11032 mutex_unlock(&parent_ctx->mutex); 11033 11034 perf_unpin_context(parent_ctx); 11035 put_ctx(parent_ctx); 11036 11037 return ret; 11038 } 11039 11040 /* 11041 * Initialize the perf_event context in task_struct 11042 */ 11043 int perf_event_init_task(struct task_struct *child) 11044 { 11045 int ctxn, ret; 11046 11047 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11048 mutex_init(&child->perf_event_mutex); 11049 INIT_LIST_HEAD(&child->perf_event_list); 11050 11051 for_each_task_context_nr(ctxn) { 11052 ret = perf_event_init_context(child, ctxn); 11053 if (ret) { 11054 perf_event_free_task(child); 11055 return ret; 11056 } 11057 } 11058 11059 return 0; 11060 } 11061 11062 static void __init perf_event_init_all_cpus(void) 11063 { 11064 struct swevent_htable *swhash; 11065 int cpu; 11066 11067 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11068 11069 for_each_possible_cpu(cpu) { 11070 swhash = &per_cpu(swevent_htable, cpu); 11071 mutex_init(&swhash->hlist_mutex); 11072 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11073 11074 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11075 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11076 11077 #ifdef CONFIG_CGROUP_PERF 11078 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11079 #endif 11080 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11081 } 11082 } 11083 11084 void perf_swevent_init_cpu(unsigned int cpu) 11085 { 11086 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11087 11088 mutex_lock(&swhash->hlist_mutex); 11089 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11090 struct swevent_hlist *hlist; 11091 11092 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11093 WARN_ON(!hlist); 11094 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11095 } 11096 mutex_unlock(&swhash->hlist_mutex); 11097 } 11098 11099 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11100 static void __perf_event_exit_context(void *__info) 11101 { 11102 struct perf_event_context *ctx = __info; 11103 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11104 struct perf_event *event; 11105 11106 raw_spin_lock(&ctx->lock); 11107 list_for_each_entry(event, &ctx->event_list, event_entry) 11108 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11109 raw_spin_unlock(&ctx->lock); 11110 } 11111 11112 static void perf_event_exit_cpu_context(int cpu) 11113 { 11114 struct perf_cpu_context *cpuctx; 11115 struct perf_event_context *ctx; 11116 struct pmu *pmu; 11117 11118 mutex_lock(&pmus_lock); 11119 list_for_each_entry(pmu, &pmus, entry) { 11120 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11121 ctx = &cpuctx->ctx; 11122 11123 mutex_lock(&ctx->mutex); 11124 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11125 cpuctx->online = 0; 11126 mutex_unlock(&ctx->mutex); 11127 } 11128 cpumask_clear_cpu(cpu, perf_online_mask); 11129 mutex_unlock(&pmus_lock); 11130 } 11131 #else 11132 11133 static void perf_event_exit_cpu_context(int cpu) { } 11134 11135 #endif 11136 11137 int perf_event_init_cpu(unsigned int cpu) 11138 { 11139 struct perf_cpu_context *cpuctx; 11140 struct perf_event_context *ctx; 11141 struct pmu *pmu; 11142 11143 perf_swevent_init_cpu(cpu); 11144 11145 mutex_lock(&pmus_lock); 11146 cpumask_set_cpu(cpu, perf_online_mask); 11147 list_for_each_entry(pmu, &pmus, entry) { 11148 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11149 ctx = &cpuctx->ctx; 11150 11151 mutex_lock(&ctx->mutex); 11152 cpuctx->online = 1; 11153 mutex_unlock(&ctx->mutex); 11154 } 11155 mutex_unlock(&pmus_lock); 11156 11157 return 0; 11158 } 11159 11160 int perf_event_exit_cpu(unsigned int cpu) 11161 { 11162 perf_event_exit_cpu_context(cpu); 11163 return 0; 11164 } 11165 11166 static int 11167 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11168 { 11169 int cpu; 11170 11171 for_each_online_cpu(cpu) 11172 perf_event_exit_cpu(cpu); 11173 11174 return NOTIFY_OK; 11175 } 11176 11177 /* 11178 * Run the perf reboot notifier at the very last possible moment so that 11179 * the generic watchdog code runs as long as possible. 11180 */ 11181 static struct notifier_block perf_reboot_notifier = { 11182 .notifier_call = perf_reboot, 11183 .priority = INT_MIN, 11184 }; 11185 11186 void __init perf_event_init(void) 11187 { 11188 int ret; 11189 11190 idr_init(&pmu_idr); 11191 11192 perf_event_init_all_cpus(); 11193 init_srcu_struct(&pmus_srcu); 11194 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11195 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11196 perf_pmu_register(&perf_task_clock, NULL, -1); 11197 perf_tp_register(); 11198 perf_event_init_cpu(smp_processor_id()); 11199 register_reboot_notifier(&perf_reboot_notifier); 11200 11201 ret = init_hw_breakpoint(); 11202 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11203 11204 /* 11205 * Build time assertion that we keep the data_head at the intended 11206 * location. IOW, validation we got the __reserved[] size right. 11207 */ 11208 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11209 != 1024); 11210 } 11211 11212 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11213 char *page) 11214 { 11215 struct perf_pmu_events_attr *pmu_attr = 11216 container_of(attr, struct perf_pmu_events_attr, attr); 11217 11218 if (pmu_attr->event_str) 11219 return sprintf(page, "%s\n", pmu_attr->event_str); 11220 11221 return 0; 11222 } 11223 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11224 11225 static int __init perf_event_sysfs_init(void) 11226 { 11227 struct pmu *pmu; 11228 int ret; 11229 11230 mutex_lock(&pmus_lock); 11231 11232 ret = bus_register(&pmu_bus); 11233 if (ret) 11234 goto unlock; 11235 11236 list_for_each_entry(pmu, &pmus, entry) { 11237 if (!pmu->name || pmu->type < 0) 11238 continue; 11239 11240 ret = pmu_dev_alloc(pmu); 11241 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11242 } 11243 pmu_bus_running = 1; 11244 ret = 0; 11245 11246 unlock: 11247 mutex_unlock(&pmus_lock); 11248 11249 return ret; 11250 } 11251 device_initcall(perf_event_sysfs_init); 11252 11253 #ifdef CONFIG_CGROUP_PERF 11254 static struct cgroup_subsys_state * 11255 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11256 { 11257 struct perf_cgroup *jc; 11258 11259 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11260 if (!jc) 11261 return ERR_PTR(-ENOMEM); 11262 11263 jc->info = alloc_percpu(struct perf_cgroup_info); 11264 if (!jc->info) { 11265 kfree(jc); 11266 return ERR_PTR(-ENOMEM); 11267 } 11268 11269 return &jc->css; 11270 } 11271 11272 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11273 { 11274 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11275 11276 free_percpu(jc->info); 11277 kfree(jc); 11278 } 11279 11280 static int __perf_cgroup_move(void *info) 11281 { 11282 struct task_struct *task = info; 11283 rcu_read_lock(); 11284 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11285 rcu_read_unlock(); 11286 return 0; 11287 } 11288 11289 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11290 { 11291 struct task_struct *task; 11292 struct cgroup_subsys_state *css; 11293 11294 cgroup_taskset_for_each(task, css, tset) 11295 task_function_call(task, __perf_cgroup_move, task); 11296 } 11297 11298 struct cgroup_subsys perf_event_cgrp_subsys = { 11299 .css_alloc = perf_cgroup_css_alloc, 11300 .css_free = perf_cgroup_css_free, 11301 .attach = perf_cgroup_attach, 11302 /* 11303 * Implicitly enable on dfl hierarchy so that perf events can 11304 * always be filtered by cgroup2 path as long as perf_event 11305 * controller is not mounted on a legacy hierarchy. 11306 */ 11307 .implicit_on_dfl = true, 11308 .threaded = true, 11309 }; 11310 #endif /* CONFIG_CGROUP_PERF */ 11311