xref: /linux/kernel/events/core.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 #include <linux/unwind_deferred.h>
60 
61 #include "internal.h"
62 
63 #include <asm/irq_regs.h>
64 
65 typedef int (*remote_function_f)(void *);
66 
67 struct remote_function_call {
68 	struct task_struct	*p;
69 	remote_function_f	func;
70 	void			*info;
71 	int			ret;
72 };
73 
74 static void remote_function(void *data)
75 {
76 	struct remote_function_call *tfc = data;
77 	struct task_struct *p = tfc->p;
78 
79 	if (p) {
80 		/* -EAGAIN */
81 		if (task_cpu(p) != smp_processor_id())
82 			return;
83 
84 		/*
85 		 * Now that we're on right CPU with IRQs disabled, we can test
86 		 * if we hit the right task without races.
87 		 */
88 
89 		tfc->ret = -ESRCH; /* No such (running) process */
90 		if (p != current)
91 			return;
92 	}
93 
94 	tfc->ret = tfc->func(tfc->info);
95 }
96 
97 /**
98  * task_function_call - call a function on the cpu on which a task runs
99  * @p:		the task to evaluate
100  * @func:	the function to be called
101  * @info:	the function call argument
102  *
103  * Calls the function @func when the task is currently running. This might
104  * be on the current CPU, which just calls the function directly.  This will
105  * retry due to any failures in smp_call_function_single(), such as if the
106  * task_cpu() goes offline concurrently.
107  *
108  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
109  */
110 static int
111 task_function_call(struct task_struct *p, remote_function_f func, void *info)
112 {
113 	struct remote_function_call data = {
114 		.p	= p,
115 		.func	= func,
116 		.info	= info,
117 		.ret	= -EAGAIN,
118 	};
119 	int ret;
120 
121 	for (;;) {
122 		ret = smp_call_function_single(task_cpu(p), remote_function,
123 					       &data, 1);
124 		if (!ret)
125 			ret = data.ret;
126 
127 		if (ret != -EAGAIN)
128 			break;
129 
130 		cond_resched();
131 	}
132 
133 	return ret;
134 }
135 
136 /**
137  * cpu_function_call - call a function on the cpu
138  * @cpu:	target cpu to queue this function
139  * @func:	the function to be called
140  * @info:	the function call argument
141  *
142  * Calls the function @func on the remote cpu.
143  *
144  * returns: @func return value or -ENXIO when the cpu is offline
145  */
146 static int cpu_function_call(int cpu, remote_function_f func, void *info)
147 {
148 	struct remote_function_call data = {
149 		.p	= NULL,
150 		.func	= func,
151 		.info	= info,
152 		.ret	= -ENXIO, /* No such CPU */
153 	};
154 
155 	smp_call_function_single(cpu, remote_function, &data, 1);
156 
157 	return data.ret;
158 }
159 
160 enum event_type_t {
161 	EVENT_FLEXIBLE	= 0x01,
162 	EVENT_PINNED	= 0x02,
163 	EVENT_TIME	= 0x04,
164 	EVENT_FROZEN	= 0x08,
165 	/* see ctx_resched() for details */
166 	EVENT_CPU	= 0x10,
167 	EVENT_CGROUP	= 0x20,
168 
169 	/* compound helpers */
170 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
171 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
172 };
173 
174 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
175 {
176 	raw_spin_lock(&ctx->lock);
177 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
178 }
179 
180 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
181 			  struct perf_event_context *ctx)
182 {
183 	__perf_ctx_lock(&cpuctx->ctx);
184 	if (ctx)
185 		__perf_ctx_lock(ctx);
186 }
187 
188 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
189 {
190 	/*
191 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
192 	 * after ctx_sched_out() by clearing is_active.
193 	 */
194 	if (ctx->is_active & EVENT_FROZEN) {
195 		if (!(ctx->is_active & EVENT_ALL))
196 			ctx->is_active = 0;
197 		else
198 			ctx->is_active &= ~EVENT_FROZEN;
199 	}
200 	raw_spin_unlock(&ctx->lock);
201 }
202 
203 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
204 			    struct perf_event_context *ctx)
205 {
206 	if (ctx)
207 		__perf_ctx_unlock(ctx);
208 	__perf_ctx_unlock(&cpuctx->ctx);
209 }
210 
211 typedef struct {
212 	struct perf_cpu_context *cpuctx;
213 	struct perf_event_context *ctx;
214 } class_perf_ctx_lock_t;
215 
216 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
217 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
218 
219 static inline class_perf_ctx_lock_t
220 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
221 				struct perf_event_context *ctx)
222 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
223 
224 #define TASK_TOMBSTONE ((void *)-1L)
225 
226 static bool is_kernel_event(struct perf_event *event)
227 {
228 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
229 }
230 
231 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
232 
233 struct perf_event_context *perf_cpu_task_ctx(void)
234 {
235 	lockdep_assert_irqs_disabled();
236 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
237 }
238 
239 /*
240  * On task ctx scheduling...
241  *
242  * When !ctx->nr_events a task context will not be scheduled. This means
243  * we can disable the scheduler hooks (for performance) without leaving
244  * pending task ctx state.
245  *
246  * This however results in two special cases:
247  *
248  *  - removing the last event from a task ctx; this is relatively straight
249  *    forward and is done in __perf_remove_from_context.
250  *
251  *  - adding the first event to a task ctx; this is tricky because we cannot
252  *    rely on ctx->is_active and therefore cannot use event_function_call().
253  *    See perf_install_in_context().
254  *
255  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
256  */
257 
258 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
259 			struct perf_event_context *, void *);
260 
261 struct event_function_struct {
262 	struct perf_event *event;
263 	event_f func;
264 	void *data;
265 };
266 
267 static int event_function(void *info)
268 {
269 	struct event_function_struct *efs = info;
270 	struct perf_event *event = efs->event;
271 	struct perf_event_context *ctx = event->ctx;
272 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
273 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
274 	int ret = 0;
275 
276 	lockdep_assert_irqs_disabled();
277 
278 	perf_ctx_lock(cpuctx, task_ctx);
279 	/*
280 	 * Since we do the IPI call without holding ctx->lock things can have
281 	 * changed, double check we hit the task we set out to hit.
282 	 */
283 	if (ctx->task) {
284 		if (ctx->task != current) {
285 			ret = -ESRCH;
286 			goto unlock;
287 		}
288 
289 		/*
290 		 * We only use event_function_call() on established contexts,
291 		 * and event_function() is only ever called when active (or
292 		 * rather, we'll have bailed in task_function_call() or the
293 		 * above ctx->task != current test), therefore we must have
294 		 * ctx->is_active here.
295 		 */
296 		WARN_ON_ONCE(!ctx->is_active);
297 		/*
298 		 * And since we have ctx->is_active, cpuctx->task_ctx must
299 		 * match.
300 		 */
301 		WARN_ON_ONCE(task_ctx != ctx);
302 	} else {
303 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
304 	}
305 
306 	efs->func(event, cpuctx, ctx, efs->data);
307 unlock:
308 	perf_ctx_unlock(cpuctx, task_ctx);
309 
310 	return ret;
311 }
312 
313 static void event_function_call(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
317 	struct perf_cpu_context *cpuctx;
318 	struct event_function_struct efs = {
319 		.event = event,
320 		.func = func,
321 		.data = data,
322 	};
323 
324 	if (!event->parent) {
325 		/*
326 		 * If this is a !child event, we must hold ctx::mutex to
327 		 * stabilize the event->ctx relation. See
328 		 * perf_event_ctx_lock().
329 		 */
330 		lockdep_assert_held(&ctx->mutex);
331 	}
332 
333 	if (!task) {
334 		cpu_function_call(event->cpu, event_function, &efs);
335 		return;
336 	}
337 
338 	if (task == TASK_TOMBSTONE)
339 		return;
340 
341 again:
342 	if (!task_function_call(task, event_function, &efs))
343 		return;
344 
345 	local_irq_disable();
346 	cpuctx = this_cpu_ptr(&perf_cpu_context);
347 	perf_ctx_lock(cpuctx, ctx);
348 	/*
349 	 * Reload the task pointer, it might have been changed by
350 	 * a concurrent perf_event_context_sched_out().
351 	 */
352 	task = ctx->task;
353 	if (task == TASK_TOMBSTONE)
354 		goto unlock;
355 	if (ctx->is_active) {
356 		perf_ctx_unlock(cpuctx, ctx);
357 		local_irq_enable();
358 		goto again;
359 	}
360 	func(event, NULL, ctx, data);
361 unlock:
362 	perf_ctx_unlock(cpuctx, ctx);
363 	local_irq_enable();
364 }
365 
366 /*
367  * Similar to event_function_call() + event_function(), but hard assumes IRQs
368  * are already disabled and we're on the right CPU.
369  */
370 static void event_function_local(struct perf_event *event, event_f func, void *data)
371 {
372 	struct perf_event_context *ctx = event->ctx;
373 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
374 	struct task_struct *task = READ_ONCE(ctx->task);
375 	struct perf_event_context *task_ctx = NULL;
376 
377 	lockdep_assert_irqs_disabled();
378 
379 	if (task) {
380 		if (task == TASK_TOMBSTONE)
381 			return;
382 
383 		task_ctx = ctx;
384 	}
385 
386 	perf_ctx_lock(cpuctx, task_ctx);
387 
388 	task = ctx->task;
389 	if (task == TASK_TOMBSTONE)
390 		goto unlock;
391 
392 	if (task) {
393 		/*
394 		 * We must be either inactive or active and the right task,
395 		 * otherwise we're screwed, since we cannot IPI to somewhere
396 		 * else.
397 		 */
398 		if (ctx->is_active) {
399 			if (WARN_ON_ONCE(task != current))
400 				goto unlock;
401 
402 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
403 				goto unlock;
404 		}
405 	} else {
406 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
407 	}
408 
409 	func(event, cpuctx, ctx, data);
410 unlock:
411 	perf_ctx_unlock(cpuctx, task_ctx);
412 }
413 
414 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
415 		       PERF_FLAG_FD_OUTPUT  |\
416 		       PERF_FLAG_PID_CGROUP |\
417 		       PERF_FLAG_FD_CLOEXEC)
418 
419 /*
420  * branch priv levels that need permission checks
421  */
422 #define PERF_SAMPLE_BRANCH_PERM_PLM \
423 	(PERF_SAMPLE_BRANCH_KERNEL |\
424 	 PERF_SAMPLE_BRANCH_HV)
425 
426 /*
427  * perf_sched_events : >0 events exist
428  */
429 
430 static void perf_sched_delayed(struct work_struct *work);
431 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
432 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
433 static DEFINE_MUTEX(perf_sched_mutex);
434 static atomic_t perf_sched_count;
435 
436 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
437 
438 static atomic_t nr_mmap_events __read_mostly;
439 static atomic_t nr_comm_events __read_mostly;
440 static atomic_t nr_namespaces_events __read_mostly;
441 static atomic_t nr_task_events __read_mostly;
442 static atomic_t nr_freq_events __read_mostly;
443 static atomic_t nr_switch_events __read_mostly;
444 static atomic_t nr_ksymbol_events __read_mostly;
445 static atomic_t nr_bpf_events __read_mostly;
446 static atomic_t nr_cgroup_events __read_mostly;
447 static atomic_t nr_text_poke_events __read_mostly;
448 static atomic_t nr_build_id_events __read_mostly;
449 
450 static LIST_HEAD(pmus);
451 static DEFINE_MUTEX(pmus_lock);
452 static struct srcu_struct pmus_srcu;
453 static cpumask_var_t perf_online_mask;
454 static cpumask_var_t perf_online_core_mask;
455 static cpumask_var_t perf_online_die_mask;
456 static cpumask_var_t perf_online_cluster_mask;
457 static cpumask_var_t perf_online_pkg_mask;
458 static cpumask_var_t perf_online_sys_mask;
459 static struct kmem_cache *perf_event_cache;
460 
461 /*
462  * perf event paranoia level:
463  *  -1 - not paranoid at all
464  *   0 - disallow raw tracepoint access for unpriv
465  *   1 - disallow cpu events for unpriv
466  *   2 - disallow kernel profiling for unpriv
467  */
468 int sysctl_perf_event_paranoid __read_mostly = 2;
469 
470 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
471 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
472 
473 /*
474  * max perf event sample rate
475  */
476 #define DEFAULT_MAX_SAMPLE_RATE		100000
477 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
478 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
479 
480 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
481 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
482 
483 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
484 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
485 
486 static int perf_sample_allowed_ns __read_mostly =
487 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
488 
489 static void update_perf_cpu_limits(void)
490 {
491 	u64 tmp = perf_sample_period_ns;
492 
493 	tmp *= sysctl_perf_cpu_time_max_percent;
494 	tmp = div_u64(tmp, 100);
495 	if (!tmp)
496 		tmp = 1;
497 
498 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
499 }
500 
501 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
502 
503 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
504 				       void *buffer, size_t *lenp, loff_t *ppos)
505 {
506 	int ret;
507 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
508 	/*
509 	 * If throttling is disabled don't allow the write:
510 	 */
511 	if (write && (perf_cpu == 100 || perf_cpu == 0))
512 		return -EINVAL;
513 
514 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 	if (ret || !write)
516 		return ret;
517 
518 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
519 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
520 	update_perf_cpu_limits();
521 
522 	return 0;
523 }
524 
525 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
526 		void *buffer, size_t *lenp, loff_t *ppos)
527 {
528 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
529 
530 	if (ret || !write)
531 		return ret;
532 
533 	if (sysctl_perf_cpu_time_max_percent == 100 ||
534 	    sysctl_perf_cpu_time_max_percent == 0) {
535 		printk(KERN_WARNING
536 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
537 		WRITE_ONCE(perf_sample_allowed_ns, 0);
538 	} else {
539 		update_perf_cpu_limits();
540 	}
541 
542 	return 0;
543 }
544 
545 static const struct ctl_table events_core_sysctl_table[] = {
546 	/*
547 	 * User-space relies on this file as a feature check for
548 	 * perf_events being enabled. It's an ABI, do not remove!
549 	 */
550 	{
551 		.procname	= "perf_event_paranoid",
552 		.data		= &sysctl_perf_event_paranoid,
553 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
554 		.mode		= 0644,
555 		.proc_handler	= proc_dointvec,
556 	},
557 	{
558 		.procname	= "perf_event_mlock_kb",
559 		.data		= &sysctl_perf_event_mlock,
560 		.maxlen		= sizeof(sysctl_perf_event_mlock),
561 		.mode		= 0644,
562 		.proc_handler	= proc_dointvec,
563 	},
564 	{
565 		.procname	= "perf_event_max_sample_rate",
566 		.data		= &sysctl_perf_event_sample_rate,
567 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
568 		.mode		= 0644,
569 		.proc_handler	= perf_event_max_sample_rate_handler,
570 		.extra1		= SYSCTL_ONE,
571 	},
572 	{
573 		.procname	= "perf_cpu_time_max_percent",
574 		.data		= &sysctl_perf_cpu_time_max_percent,
575 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
576 		.mode		= 0644,
577 		.proc_handler	= perf_cpu_time_max_percent_handler,
578 		.extra1		= SYSCTL_ZERO,
579 		.extra2		= SYSCTL_ONE_HUNDRED,
580 	},
581 };
582 
583 static int __init init_events_core_sysctls(void)
584 {
585 	register_sysctl_init("kernel", events_core_sysctl_table);
586 	return 0;
587 }
588 core_initcall(init_events_core_sysctls);
589 
590 
591 /*
592  * perf samples are done in some very critical code paths (NMIs).
593  * If they take too much CPU time, the system can lock up and not
594  * get any real work done.  This will drop the sample rate when
595  * we detect that events are taking too long.
596  */
597 #define NR_ACCUMULATED_SAMPLES 128
598 static DEFINE_PER_CPU(u64, running_sample_length);
599 
600 static u64 __report_avg;
601 static u64 __report_allowed;
602 
603 static void perf_duration_warn(struct irq_work *w)
604 {
605 	printk_ratelimited(KERN_INFO
606 		"perf: interrupt took too long (%lld > %lld), lowering "
607 		"kernel.perf_event_max_sample_rate to %d\n",
608 		__report_avg, __report_allowed,
609 		sysctl_perf_event_sample_rate);
610 }
611 
612 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
613 
614 void perf_sample_event_took(u64 sample_len_ns)
615 {
616 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
617 	u64 running_len;
618 	u64 avg_len;
619 	u32 max;
620 
621 	if (max_len == 0)
622 		return;
623 
624 	/* Decay the counter by 1 average sample. */
625 	running_len = __this_cpu_read(running_sample_length);
626 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
627 	running_len += sample_len_ns;
628 	__this_cpu_write(running_sample_length, running_len);
629 
630 	/*
631 	 * Note: this will be biased artificially low until we have
632 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
633 	 * from having to maintain a count.
634 	 */
635 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
636 	if (avg_len <= max_len)
637 		return;
638 
639 	__report_avg = avg_len;
640 	__report_allowed = max_len;
641 
642 	/*
643 	 * Compute a throttle threshold 25% below the current duration.
644 	 */
645 	avg_len += avg_len / 4;
646 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
647 	if (avg_len < max)
648 		max /= (u32)avg_len;
649 	else
650 		max = 1;
651 
652 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
653 	WRITE_ONCE(max_samples_per_tick, max);
654 
655 	sysctl_perf_event_sample_rate = max * HZ;
656 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
657 
658 	if (!irq_work_queue(&perf_duration_work)) {
659 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
660 			     "kernel.perf_event_max_sample_rate to %d\n",
661 			     __report_avg, __report_allowed,
662 			     sysctl_perf_event_sample_rate);
663 	}
664 }
665 
666 static atomic64_t perf_event_id;
667 
668 static void update_context_time(struct perf_event_context *ctx);
669 static u64 perf_event_time(struct perf_event *event);
670 
671 void __weak perf_event_print_debug(void)	{ }
672 
673 static inline u64 perf_clock(void)
674 {
675 	return local_clock();
676 }
677 
678 static inline u64 perf_event_clock(struct perf_event *event)
679 {
680 	return event->clock();
681 }
682 
683 /*
684  * State based event timekeeping...
685  *
686  * The basic idea is to use event->state to determine which (if any) time
687  * fields to increment with the current delta. This means we only need to
688  * update timestamps when we change state or when they are explicitly requested
689  * (read).
690  *
691  * Event groups make things a little more complicated, but not terribly so. The
692  * rules for a group are that if the group leader is OFF the entire group is
693  * OFF, irrespective of what the group member states are. This results in
694  * __perf_effective_state().
695  *
696  * A further ramification is that when a group leader flips between OFF and
697  * !OFF, we need to update all group member times.
698  *
699  *
700  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
701  * need to make sure the relevant context time is updated before we try and
702  * update our timestamps.
703  */
704 
705 static __always_inline enum perf_event_state
706 __perf_effective_state(struct perf_event *event)
707 {
708 	struct perf_event *leader = event->group_leader;
709 
710 	if (leader->state <= PERF_EVENT_STATE_OFF)
711 		return leader->state;
712 
713 	return event->state;
714 }
715 
716 static __always_inline void
717 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
718 {
719 	enum perf_event_state state = __perf_effective_state(event);
720 	u64 delta = now - event->tstamp;
721 
722 	*enabled = event->total_time_enabled;
723 	if (state >= PERF_EVENT_STATE_INACTIVE)
724 		*enabled += delta;
725 
726 	*running = event->total_time_running;
727 	if (state >= PERF_EVENT_STATE_ACTIVE)
728 		*running += delta;
729 }
730 
731 static void perf_event_update_time(struct perf_event *event)
732 {
733 	u64 now = perf_event_time(event);
734 
735 	__perf_update_times(event, now, &event->total_time_enabled,
736 					&event->total_time_running);
737 	event->tstamp = now;
738 }
739 
740 static void perf_event_update_sibling_time(struct perf_event *leader)
741 {
742 	struct perf_event *sibling;
743 
744 	for_each_sibling_event(sibling, leader)
745 		perf_event_update_time(sibling);
746 }
747 
748 static void
749 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
750 {
751 	if (event->state == state)
752 		return;
753 
754 	perf_event_update_time(event);
755 	/*
756 	 * If a group leader gets enabled/disabled all its siblings
757 	 * are affected too.
758 	 */
759 	if ((event->state < 0) ^ (state < 0))
760 		perf_event_update_sibling_time(event);
761 
762 	WRITE_ONCE(event->state, state);
763 }
764 
765 /*
766  * UP store-release, load-acquire
767  */
768 
769 #define __store_release(ptr, val)					\
770 do {									\
771 	barrier();							\
772 	WRITE_ONCE(*(ptr), (val));					\
773 } while (0)
774 
775 #define __load_acquire(ptr)						\
776 ({									\
777 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
778 	barrier();							\
779 	___p;								\
780 })
781 
782 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
783 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
784 		if (_cgroup && !_epc->nr_cgroups)			\
785 			continue;					\
786 		else if (_pmu && _epc->pmu != _pmu)			\
787 			continue;					\
788 		else
789 
790 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
791 {
792 	struct perf_event_pmu_context *pmu_ctx;
793 
794 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
795 		perf_pmu_disable(pmu_ctx->pmu);
796 }
797 
798 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
799 {
800 	struct perf_event_pmu_context *pmu_ctx;
801 
802 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
803 		perf_pmu_enable(pmu_ctx->pmu);
804 }
805 
806 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
807 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
808 
809 #ifdef CONFIG_CGROUP_PERF
810 
811 static inline bool
812 perf_cgroup_match(struct perf_event *event)
813 {
814 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
815 
816 	/* @event doesn't care about cgroup */
817 	if (!event->cgrp)
818 		return true;
819 
820 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
821 	if (!cpuctx->cgrp)
822 		return false;
823 
824 	/*
825 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
826 	 * also enabled for all its descendant cgroups.  If @cpuctx's
827 	 * cgroup is a descendant of @event's (the test covers identity
828 	 * case), it's a match.
829 	 */
830 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
831 				    event->cgrp->css.cgroup);
832 }
833 
834 static inline void perf_detach_cgroup(struct perf_event *event)
835 {
836 	css_put(&event->cgrp->css);
837 	event->cgrp = NULL;
838 }
839 
840 static inline int is_cgroup_event(struct perf_event *event)
841 {
842 	return event->cgrp != NULL;
843 }
844 
845 static inline u64 perf_cgroup_event_time(struct perf_event *event)
846 {
847 	struct perf_cgroup_info *t;
848 
849 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
850 	return t->time;
851 }
852 
853 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
854 {
855 	struct perf_cgroup_info *t;
856 
857 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
858 	if (!__load_acquire(&t->active))
859 		return t->time;
860 	now += READ_ONCE(t->timeoffset);
861 	return now;
862 }
863 
864 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
865 {
866 	if (adv)
867 		info->time += now - info->timestamp;
868 	info->timestamp = now;
869 	/*
870 	 * see update_context_time()
871 	 */
872 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
873 }
874 
875 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
876 {
877 	struct perf_cgroup *cgrp = cpuctx->cgrp;
878 	struct cgroup_subsys_state *css;
879 	struct perf_cgroup_info *info;
880 
881 	if (cgrp) {
882 		u64 now = perf_clock();
883 
884 		for (css = &cgrp->css; css; css = css->parent) {
885 			cgrp = container_of(css, struct perf_cgroup, css);
886 			info = this_cpu_ptr(cgrp->info);
887 
888 			__update_cgrp_time(info, now, true);
889 			if (final)
890 				__store_release(&info->active, 0);
891 		}
892 	}
893 }
894 
895 static inline void update_cgrp_time_from_event(struct perf_event *event)
896 {
897 	struct perf_cgroup_info *info;
898 
899 	/*
900 	 * ensure we access cgroup data only when needed and
901 	 * when we know the cgroup is pinned (css_get)
902 	 */
903 	if (!is_cgroup_event(event))
904 		return;
905 
906 	info = this_cpu_ptr(event->cgrp->info);
907 	/*
908 	 * Do not update time when cgroup is not active
909 	 */
910 	if (info->active)
911 		__update_cgrp_time(info, perf_clock(), true);
912 }
913 
914 static inline void
915 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
916 {
917 	struct perf_event_context *ctx = &cpuctx->ctx;
918 	struct perf_cgroup *cgrp = cpuctx->cgrp;
919 	struct perf_cgroup_info *info;
920 	struct cgroup_subsys_state *css;
921 
922 	/*
923 	 * ctx->lock held by caller
924 	 * ensure we do not access cgroup data
925 	 * unless we have the cgroup pinned (css_get)
926 	 */
927 	if (!cgrp)
928 		return;
929 
930 	WARN_ON_ONCE(!ctx->nr_cgroups);
931 
932 	for (css = &cgrp->css; css; css = css->parent) {
933 		cgrp = container_of(css, struct perf_cgroup, css);
934 		info = this_cpu_ptr(cgrp->info);
935 		__update_cgrp_time(info, ctx->timestamp, false);
936 		__store_release(&info->active, 1);
937 	}
938 }
939 
940 /*
941  * reschedule events based on the cgroup constraint of task.
942  */
943 static void perf_cgroup_switch(struct task_struct *task)
944 {
945 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
946 	struct perf_cgroup *cgrp;
947 
948 	/*
949 	 * cpuctx->cgrp is set when the first cgroup event enabled,
950 	 * and is cleared when the last cgroup event disabled.
951 	 */
952 	if (READ_ONCE(cpuctx->cgrp) == NULL)
953 		return;
954 
955 	cgrp = perf_cgroup_from_task(task, NULL);
956 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
957 		return;
958 
959 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
960 	/*
961 	 * Re-check, could've raced vs perf_remove_from_context().
962 	 */
963 	if (READ_ONCE(cpuctx->cgrp) == NULL)
964 		return;
965 
966 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
967 
968 	perf_ctx_disable(&cpuctx->ctx, true);
969 
970 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
971 	/*
972 	 * must not be done before ctxswout due
973 	 * to update_cgrp_time_from_cpuctx() in
974 	 * ctx_sched_out()
975 	 */
976 	cpuctx->cgrp = cgrp;
977 	/*
978 	 * set cgrp before ctxsw in to allow
979 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
980 	 * to not have to pass task around
981 	 */
982 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
983 
984 	perf_ctx_enable(&cpuctx->ctx, true);
985 }
986 
987 static int perf_cgroup_ensure_storage(struct perf_event *event,
988 				struct cgroup_subsys_state *css)
989 {
990 	struct perf_cpu_context *cpuctx;
991 	struct perf_event **storage;
992 	int cpu, heap_size, ret = 0;
993 
994 	/*
995 	 * Allow storage to have sufficient space for an iterator for each
996 	 * possibly nested cgroup plus an iterator for events with no cgroup.
997 	 */
998 	for (heap_size = 1; css; css = css->parent)
999 		heap_size++;
1000 
1001 	for_each_possible_cpu(cpu) {
1002 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1003 		if (heap_size <= cpuctx->heap_size)
1004 			continue;
1005 
1006 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1007 				       GFP_KERNEL, cpu_to_node(cpu));
1008 		if (!storage) {
1009 			ret = -ENOMEM;
1010 			break;
1011 		}
1012 
1013 		raw_spin_lock_irq(&cpuctx->ctx.lock);
1014 		if (cpuctx->heap_size < heap_size) {
1015 			swap(cpuctx->heap, storage);
1016 			if (storage == cpuctx->heap_default)
1017 				storage = NULL;
1018 			cpuctx->heap_size = heap_size;
1019 		}
1020 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1021 
1022 		kfree(storage);
1023 	}
1024 
1025 	return ret;
1026 }
1027 
1028 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1029 				      struct perf_event_attr *attr,
1030 				      struct perf_event *group_leader)
1031 {
1032 	struct perf_cgroup *cgrp;
1033 	struct cgroup_subsys_state *css;
1034 	CLASS(fd, f)(fd);
1035 	int ret = 0;
1036 
1037 	if (fd_empty(f))
1038 		return -EBADF;
1039 
1040 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1041 					 &perf_event_cgrp_subsys);
1042 	if (IS_ERR(css))
1043 		return PTR_ERR(css);
1044 
1045 	ret = perf_cgroup_ensure_storage(event, css);
1046 	if (ret)
1047 		return ret;
1048 
1049 	cgrp = container_of(css, struct perf_cgroup, css);
1050 	event->cgrp = cgrp;
1051 
1052 	/*
1053 	 * all events in a group must monitor
1054 	 * the same cgroup because a task belongs
1055 	 * to only one perf cgroup at a time
1056 	 */
1057 	if (group_leader && group_leader->cgrp != cgrp) {
1058 		perf_detach_cgroup(event);
1059 		ret = -EINVAL;
1060 	}
1061 	return ret;
1062 }
1063 
1064 static inline void
1065 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 
1069 	if (!is_cgroup_event(event))
1070 		return;
1071 
1072 	event->pmu_ctx->nr_cgroups++;
1073 
1074 	/*
1075 	 * Because cgroup events are always per-cpu events,
1076 	 * @ctx == &cpuctx->ctx.
1077 	 */
1078 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1079 
1080 	if (ctx->nr_cgroups++)
1081 		return;
1082 
1083 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1084 }
1085 
1086 static inline void
1087 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1088 {
1089 	struct perf_cpu_context *cpuctx;
1090 
1091 	if (!is_cgroup_event(event))
1092 		return;
1093 
1094 	event->pmu_ctx->nr_cgroups--;
1095 
1096 	/*
1097 	 * Because cgroup events are always per-cpu events,
1098 	 * @ctx == &cpuctx->ctx.
1099 	 */
1100 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1101 
1102 	if (--ctx->nr_cgroups)
1103 		return;
1104 
1105 	cpuctx->cgrp = NULL;
1106 }
1107 
1108 #else /* !CONFIG_CGROUP_PERF */
1109 
1110 static inline bool
1111 perf_cgroup_match(struct perf_event *event)
1112 {
1113 	return true;
1114 }
1115 
1116 static inline void perf_detach_cgroup(struct perf_event *event)
1117 {}
1118 
1119 static inline int is_cgroup_event(struct perf_event *event)
1120 {
1121 	return 0;
1122 }
1123 
1124 static inline void update_cgrp_time_from_event(struct perf_event *event)
1125 {
1126 }
1127 
1128 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1129 						bool final)
1130 {
1131 }
1132 
1133 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1134 				      struct perf_event_attr *attr,
1135 				      struct perf_event *group_leader)
1136 {
1137 	return -EINVAL;
1138 }
1139 
1140 static inline void
1141 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1142 {
1143 }
1144 
1145 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1146 {
1147 	return 0;
1148 }
1149 
1150 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline void
1156 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1157 {
1158 }
1159 
1160 static inline void
1161 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1162 {
1163 }
1164 
1165 static void perf_cgroup_switch(struct task_struct *task)
1166 {
1167 }
1168 #endif
1169 
1170 /*
1171  * set default to be dependent on timer tick just
1172  * like original code
1173  */
1174 #define PERF_CPU_HRTIMER (1000 / HZ)
1175 /*
1176  * function must be called with interrupts disabled
1177  */
1178 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1179 {
1180 	struct perf_cpu_pmu_context *cpc;
1181 	bool rotations;
1182 
1183 	lockdep_assert_irqs_disabled();
1184 
1185 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1186 	rotations = perf_rotate_context(cpc);
1187 
1188 	raw_spin_lock(&cpc->hrtimer_lock);
1189 	if (rotations)
1190 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1191 	else
1192 		cpc->hrtimer_active = 0;
1193 	raw_spin_unlock(&cpc->hrtimer_lock);
1194 
1195 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1196 }
1197 
1198 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1199 {
1200 	struct hrtimer *timer = &cpc->hrtimer;
1201 	struct pmu *pmu = cpc->epc.pmu;
1202 	u64 interval;
1203 
1204 	/*
1205 	 * check default is sane, if not set then force to
1206 	 * default interval (1/tick)
1207 	 */
1208 	interval = pmu->hrtimer_interval_ms;
1209 	if (interval < 1)
1210 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1211 
1212 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1213 
1214 	raw_spin_lock_init(&cpc->hrtimer_lock);
1215 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1216 		      HRTIMER_MODE_ABS_PINNED_HARD);
1217 }
1218 
1219 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1220 {
1221 	struct hrtimer *timer = &cpc->hrtimer;
1222 	unsigned long flags;
1223 
1224 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1225 	if (!cpc->hrtimer_active) {
1226 		cpc->hrtimer_active = 1;
1227 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1228 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1229 	}
1230 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1231 
1232 	return 0;
1233 }
1234 
1235 static int perf_mux_hrtimer_restart_ipi(void *arg)
1236 {
1237 	return perf_mux_hrtimer_restart(arg);
1238 }
1239 
1240 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1241 {
1242 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1243 }
1244 
1245 void perf_pmu_disable(struct pmu *pmu)
1246 {
1247 	int *count = &this_cpc(pmu)->pmu_disable_count;
1248 	if (!(*count)++)
1249 		pmu->pmu_disable(pmu);
1250 }
1251 
1252 void perf_pmu_enable(struct pmu *pmu)
1253 {
1254 	int *count = &this_cpc(pmu)->pmu_disable_count;
1255 	if (!--(*count))
1256 		pmu->pmu_enable(pmu);
1257 }
1258 
1259 static void perf_assert_pmu_disabled(struct pmu *pmu)
1260 {
1261 	int *count = &this_cpc(pmu)->pmu_disable_count;
1262 	WARN_ON_ONCE(*count == 0);
1263 }
1264 
1265 static inline void perf_pmu_read(struct perf_event *event)
1266 {
1267 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1268 		event->pmu->read(event);
1269 }
1270 
1271 static void get_ctx(struct perf_event_context *ctx)
1272 {
1273 	refcount_inc(&ctx->refcount);
1274 }
1275 
1276 static void free_ctx(struct rcu_head *head)
1277 {
1278 	struct perf_event_context *ctx;
1279 
1280 	ctx = container_of(head, struct perf_event_context, rcu_head);
1281 	kfree(ctx);
1282 }
1283 
1284 static void put_ctx(struct perf_event_context *ctx)
1285 {
1286 	if (refcount_dec_and_test(&ctx->refcount)) {
1287 		if (ctx->parent_ctx)
1288 			put_ctx(ctx->parent_ctx);
1289 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1290 			put_task_struct(ctx->task);
1291 		call_rcu(&ctx->rcu_head, free_ctx);
1292 	} else {
1293 		smp_mb__after_atomic(); /* pairs with wait_var_event() */
1294 		if (ctx->task == TASK_TOMBSTONE)
1295 			wake_up_var(&ctx->refcount);
1296 	}
1297 }
1298 
1299 /*
1300  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1301  * perf_pmu_migrate_context() we need some magic.
1302  *
1303  * Those places that change perf_event::ctx will hold both
1304  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1305  *
1306  * Lock ordering is by mutex address. There are two other sites where
1307  * perf_event_context::mutex nests and those are:
1308  *
1309  *  - perf_event_exit_task_context()	[ child , 0 ]
1310  *      perf_event_exit_event()
1311  *        put_event()			[ parent, 1 ]
1312  *
1313  *  - perf_event_init_context()		[ parent, 0 ]
1314  *      inherit_task_group()
1315  *        inherit_group()
1316  *          inherit_event()
1317  *            perf_event_alloc()
1318  *              perf_init_event()
1319  *                perf_try_init_event()	[ child , 1 ]
1320  *
1321  * While it appears there is an obvious deadlock here -- the parent and child
1322  * nesting levels are inverted between the two. This is in fact safe because
1323  * life-time rules separate them. That is an exiting task cannot fork, and a
1324  * spawning task cannot (yet) exit.
1325  *
1326  * But remember that these are parent<->child context relations, and
1327  * migration does not affect children, therefore these two orderings should not
1328  * interact.
1329  *
1330  * The change in perf_event::ctx does not affect children (as claimed above)
1331  * because the sys_perf_event_open() case will install a new event and break
1332  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1333  * concerned with cpuctx and that doesn't have children.
1334  *
1335  * The places that change perf_event::ctx will issue:
1336  *
1337  *   perf_remove_from_context();
1338  *   synchronize_rcu();
1339  *   perf_install_in_context();
1340  *
1341  * to affect the change. The remove_from_context() + synchronize_rcu() should
1342  * quiesce the event, after which we can install it in the new location. This
1343  * means that only external vectors (perf_fops, prctl) can perturb the event
1344  * while in transit. Therefore all such accessors should also acquire
1345  * perf_event_context::mutex to serialize against this.
1346  *
1347  * However; because event->ctx can change while we're waiting to acquire
1348  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1349  * function.
1350  *
1351  * Lock order:
1352  *    exec_update_lock
1353  *	task_struct::perf_event_mutex
1354  *	  perf_event_context::mutex
1355  *	    perf_event::child_mutex;
1356  *	      perf_event_context::lock
1357  *	    mmap_lock
1358  *	      perf_event::mmap_mutex
1359  *	        perf_buffer::aux_mutex
1360  *	      perf_addr_filters_head::lock
1361  *
1362  *    cpu_hotplug_lock
1363  *      pmus_lock
1364  *	  cpuctx->mutex / perf_event_context::mutex
1365  */
1366 static struct perf_event_context *
1367 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1368 {
1369 	struct perf_event_context *ctx;
1370 
1371 again:
1372 	rcu_read_lock();
1373 	ctx = READ_ONCE(event->ctx);
1374 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1375 		rcu_read_unlock();
1376 		goto again;
1377 	}
1378 	rcu_read_unlock();
1379 
1380 	mutex_lock_nested(&ctx->mutex, nesting);
1381 	if (event->ctx != ctx) {
1382 		mutex_unlock(&ctx->mutex);
1383 		put_ctx(ctx);
1384 		goto again;
1385 	}
1386 
1387 	return ctx;
1388 }
1389 
1390 static inline struct perf_event_context *
1391 perf_event_ctx_lock(struct perf_event *event)
1392 {
1393 	return perf_event_ctx_lock_nested(event, 0);
1394 }
1395 
1396 static void perf_event_ctx_unlock(struct perf_event *event,
1397 				  struct perf_event_context *ctx)
1398 {
1399 	mutex_unlock(&ctx->mutex);
1400 	put_ctx(ctx);
1401 }
1402 
1403 /*
1404  * This must be done under the ctx->lock, such as to serialize against
1405  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1406  * calling scheduler related locks and ctx->lock nests inside those.
1407  */
1408 static __must_check struct perf_event_context *
1409 unclone_ctx(struct perf_event_context *ctx)
1410 {
1411 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1412 
1413 	lockdep_assert_held(&ctx->lock);
1414 
1415 	if (parent_ctx)
1416 		ctx->parent_ctx = NULL;
1417 	ctx->generation++;
1418 
1419 	return parent_ctx;
1420 }
1421 
1422 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1423 				enum pid_type type)
1424 {
1425 	u32 nr;
1426 	/*
1427 	 * only top level events have the pid namespace they were created in
1428 	 */
1429 	if (event->parent)
1430 		event = event->parent;
1431 
1432 	nr = __task_pid_nr_ns(p, type, event->ns);
1433 	/* avoid -1 if it is idle thread or runs in another ns */
1434 	if (!nr && !pid_alive(p))
1435 		nr = -1;
1436 	return nr;
1437 }
1438 
1439 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1440 {
1441 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1442 }
1443 
1444 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1445 {
1446 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1447 }
1448 
1449 /*
1450  * If we inherit events we want to return the parent event id
1451  * to userspace.
1452  */
1453 static u64 primary_event_id(struct perf_event *event)
1454 {
1455 	u64 id = event->id;
1456 
1457 	if (event->parent)
1458 		id = event->parent->id;
1459 
1460 	return id;
1461 }
1462 
1463 /*
1464  * Get the perf_event_context for a task and lock it.
1465  *
1466  * This has to cope with the fact that until it is locked,
1467  * the context could get moved to another task.
1468  */
1469 static struct perf_event_context *
1470 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1471 {
1472 	struct perf_event_context *ctx;
1473 
1474 retry:
1475 	/*
1476 	 * One of the few rules of preemptible RCU is that one cannot do
1477 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1478 	 * part of the read side critical section was irqs-enabled -- see
1479 	 * rcu_read_unlock_special().
1480 	 *
1481 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1482 	 * side critical section has interrupts disabled.
1483 	 */
1484 	local_irq_save(*flags);
1485 	rcu_read_lock();
1486 	ctx = rcu_dereference(task->perf_event_ctxp);
1487 	if (ctx) {
1488 		/*
1489 		 * If this context is a clone of another, it might
1490 		 * get swapped for another underneath us by
1491 		 * perf_event_task_sched_out, though the
1492 		 * rcu_read_lock() protects us from any context
1493 		 * getting freed.  Lock the context and check if it
1494 		 * got swapped before we could get the lock, and retry
1495 		 * if so.  If we locked the right context, then it
1496 		 * can't get swapped on us any more.
1497 		 */
1498 		raw_spin_lock(&ctx->lock);
1499 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1500 			raw_spin_unlock(&ctx->lock);
1501 			rcu_read_unlock();
1502 			local_irq_restore(*flags);
1503 			goto retry;
1504 		}
1505 
1506 		if (ctx->task == TASK_TOMBSTONE ||
1507 		    !refcount_inc_not_zero(&ctx->refcount)) {
1508 			raw_spin_unlock(&ctx->lock);
1509 			ctx = NULL;
1510 		} else {
1511 			WARN_ON_ONCE(ctx->task != task);
1512 		}
1513 	}
1514 	rcu_read_unlock();
1515 	if (!ctx)
1516 		local_irq_restore(*flags);
1517 	return ctx;
1518 }
1519 
1520 /*
1521  * Get the context for a task and increment its pin_count so it
1522  * can't get swapped to another task.  This also increments its
1523  * reference count so that the context can't get freed.
1524  */
1525 static struct perf_event_context *
1526 perf_pin_task_context(struct task_struct *task)
1527 {
1528 	struct perf_event_context *ctx;
1529 	unsigned long flags;
1530 
1531 	ctx = perf_lock_task_context(task, &flags);
1532 	if (ctx) {
1533 		++ctx->pin_count;
1534 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1535 	}
1536 	return ctx;
1537 }
1538 
1539 static void perf_unpin_context(struct perf_event_context *ctx)
1540 {
1541 	unsigned long flags;
1542 
1543 	raw_spin_lock_irqsave(&ctx->lock, flags);
1544 	--ctx->pin_count;
1545 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1546 }
1547 
1548 /*
1549  * Update the record of the current time in a context.
1550  */
1551 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1552 {
1553 	u64 now = perf_clock();
1554 
1555 	lockdep_assert_held(&ctx->lock);
1556 
1557 	if (adv)
1558 		ctx->time += now - ctx->timestamp;
1559 	ctx->timestamp = now;
1560 
1561 	/*
1562 	 * The above: time' = time + (now - timestamp), can be re-arranged
1563 	 * into: time` = now + (time - timestamp), which gives a single value
1564 	 * offset to compute future time without locks on.
1565 	 *
1566 	 * See perf_event_time_now(), which can be used from NMI context where
1567 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1568 	 * both the above values in a consistent manner.
1569 	 */
1570 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1571 }
1572 
1573 static void update_context_time(struct perf_event_context *ctx)
1574 {
1575 	__update_context_time(ctx, true);
1576 }
1577 
1578 static u64 perf_event_time(struct perf_event *event)
1579 {
1580 	struct perf_event_context *ctx = event->ctx;
1581 
1582 	if (unlikely(!ctx))
1583 		return 0;
1584 
1585 	if (is_cgroup_event(event))
1586 		return perf_cgroup_event_time(event);
1587 
1588 	return ctx->time;
1589 }
1590 
1591 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1592 {
1593 	struct perf_event_context *ctx = event->ctx;
1594 
1595 	if (unlikely(!ctx))
1596 		return 0;
1597 
1598 	if (is_cgroup_event(event))
1599 		return perf_cgroup_event_time_now(event, now);
1600 
1601 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1602 		return ctx->time;
1603 
1604 	now += READ_ONCE(ctx->timeoffset);
1605 	return now;
1606 }
1607 
1608 static enum event_type_t get_event_type(struct perf_event *event)
1609 {
1610 	struct perf_event_context *ctx = event->ctx;
1611 	enum event_type_t event_type;
1612 
1613 	lockdep_assert_held(&ctx->lock);
1614 
1615 	/*
1616 	 * It's 'group type', really, because if our group leader is
1617 	 * pinned, so are we.
1618 	 */
1619 	if (event->group_leader != event)
1620 		event = event->group_leader;
1621 
1622 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1623 	if (!ctx->task)
1624 		event_type |= EVENT_CPU;
1625 
1626 	return event_type;
1627 }
1628 
1629 /*
1630  * Helper function to initialize event group nodes.
1631  */
1632 static void init_event_group(struct perf_event *event)
1633 {
1634 	RB_CLEAR_NODE(&event->group_node);
1635 	event->group_index = 0;
1636 }
1637 
1638 /*
1639  * Extract pinned or flexible groups from the context
1640  * based on event attrs bits.
1641  */
1642 static struct perf_event_groups *
1643 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1644 {
1645 	if (event->attr.pinned)
1646 		return &ctx->pinned_groups;
1647 	else
1648 		return &ctx->flexible_groups;
1649 }
1650 
1651 /*
1652  * Helper function to initializes perf_event_group trees.
1653  */
1654 static void perf_event_groups_init(struct perf_event_groups *groups)
1655 {
1656 	groups->tree = RB_ROOT;
1657 	groups->index = 0;
1658 }
1659 
1660 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1661 {
1662 	struct cgroup *cgroup = NULL;
1663 
1664 #ifdef CONFIG_CGROUP_PERF
1665 	if (event->cgrp)
1666 		cgroup = event->cgrp->css.cgroup;
1667 #endif
1668 
1669 	return cgroup;
1670 }
1671 
1672 /*
1673  * Compare function for event groups;
1674  *
1675  * Implements complex key that first sorts by CPU and then by virtual index
1676  * which provides ordering when rotating groups for the same CPU.
1677  */
1678 static __always_inline int
1679 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1680 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1681 		      const struct perf_event *right)
1682 {
1683 	if (left_cpu < right->cpu)
1684 		return -1;
1685 	if (left_cpu > right->cpu)
1686 		return 1;
1687 
1688 	if (left_pmu) {
1689 		if (left_pmu < right->pmu_ctx->pmu)
1690 			return -1;
1691 		if (left_pmu > right->pmu_ctx->pmu)
1692 			return 1;
1693 	}
1694 
1695 #ifdef CONFIG_CGROUP_PERF
1696 	{
1697 		const struct cgroup *right_cgroup = event_cgroup(right);
1698 
1699 		if (left_cgroup != right_cgroup) {
1700 			if (!left_cgroup) {
1701 				/*
1702 				 * Left has no cgroup but right does, no
1703 				 * cgroups come first.
1704 				 */
1705 				return -1;
1706 			}
1707 			if (!right_cgroup) {
1708 				/*
1709 				 * Right has no cgroup but left does, no
1710 				 * cgroups come first.
1711 				 */
1712 				return 1;
1713 			}
1714 			/* Two dissimilar cgroups, order by id. */
1715 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1716 				return -1;
1717 
1718 			return 1;
1719 		}
1720 	}
1721 #endif
1722 
1723 	if (left_group_index < right->group_index)
1724 		return -1;
1725 	if (left_group_index > right->group_index)
1726 		return 1;
1727 
1728 	return 0;
1729 }
1730 
1731 #define __node_2_pe(node) \
1732 	rb_entry((node), struct perf_event, group_node)
1733 
1734 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1735 {
1736 	struct perf_event *e = __node_2_pe(a);
1737 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1738 				     e->group_index, __node_2_pe(b)) < 0;
1739 }
1740 
1741 struct __group_key {
1742 	int cpu;
1743 	struct pmu *pmu;
1744 	struct cgroup *cgroup;
1745 };
1746 
1747 static inline int __group_cmp(const void *key, const struct rb_node *node)
1748 {
1749 	const struct __group_key *a = key;
1750 	const struct perf_event *b = __node_2_pe(node);
1751 
1752 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1753 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1754 }
1755 
1756 static inline int
1757 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1758 {
1759 	const struct __group_key *a = key;
1760 	const struct perf_event *b = __node_2_pe(node);
1761 
1762 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1763 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1764 				     b->group_index, b);
1765 }
1766 
1767 /*
1768  * Insert @event into @groups' tree; using
1769  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1770  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1771  */
1772 static void
1773 perf_event_groups_insert(struct perf_event_groups *groups,
1774 			 struct perf_event *event)
1775 {
1776 	event->group_index = ++groups->index;
1777 
1778 	rb_add(&event->group_node, &groups->tree, __group_less);
1779 }
1780 
1781 /*
1782  * Helper function to insert event into the pinned or flexible groups.
1783  */
1784 static void
1785 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787 	struct perf_event_groups *groups;
1788 
1789 	groups = get_event_groups(event, ctx);
1790 	perf_event_groups_insert(groups, event);
1791 }
1792 
1793 /*
1794  * Delete a group from a tree.
1795  */
1796 static void
1797 perf_event_groups_delete(struct perf_event_groups *groups,
1798 			 struct perf_event *event)
1799 {
1800 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1801 		     RB_EMPTY_ROOT(&groups->tree));
1802 
1803 	rb_erase(&event->group_node, &groups->tree);
1804 	init_event_group(event);
1805 }
1806 
1807 /*
1808  * Helper function to delete event from its groups.
1809  */
1810 static void
1811 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1812 {
1813 	struct perf_event_groups *groups;
1814 
1815 	groups = get_event_groups(event, ctx);
1816 	perf_event_groups_delete(groups, event);
1817 }
1818 
1819 /*
1820  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1821  */
1822 static struct perf_event *
1823 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1824 			struct pmu *pmu, struct cgroup *cgrp)
1825 {
1826 	struct __group_key key = {
1827 		.cpu = cpu,
1828 		.pmu = pmu,
1829 		.cgroup = cgrp,
1830 	};
1831 	struct rb_node *node;
1832 
1833 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1834 	if (node)
1835 		return __node_2_pe(node);
1836 
1837 	return NULL;
1838 }
1839 
1840 static struct perf_event *
1841 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1842 {
1843 	struct __group_key key = {
1844 		.cpu = event->cpu,
1845 		.pmu = pmu,
1846 		.cgroup = event_cgroup(event),
1847 	};
1848 	struct rb_node *next;
1849 
1850 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1851 	if (next)
1852 		return __node_2_pe(next);
1853 
1854 	return NULL;
1855 }
1856 
1857 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1858 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1859 	     event; event = perf_event_groups_next(event, pmu))
1860 
1861 /*
1862  * Iterate through the whole groups tree.
1863  */
1864 #define perf_event_groups_for_each(event, groups)			\
1865 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1866 				typeof(*event), group_node); event;	\
1867 		event = rb_entry_safe(rb_next(&event->group_node),	\
1868 				typeof(*event), group_node))
1869 
1870 /*
1871  * Does the event attribute request inherit with PERF_SAMPLE_READ
1872  */
1873 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1874 {
1875 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1876 }
1877 
1878 /*
1879  * Add an event from the lists for its context.
1880  * Must be called with ctx->mutex and ctx->lock held.
1881  */
1882 static void
1883 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1884 {
1885 	lockdep_assert_held(&ctx->lock);
1886 
1887 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1888 	event->attach_state |= PERF_ATTACH_CONTEXT;
1889 
1890 	event->tstamp = perf_event_time(event);
1891 
1892 	/*
1893 	 * If we're a stand alone event or group leader, we go to the context
1894 	 * list, group events are kept attached to the group so that
1895 	 * perf_group_detach can, at all times, locate all siblings.
1896 	 */
1897 	if (event->group_leader == event) {
1898 		event->group_caps = event->event_caps;
1899 		add_event_to_groups(event, ctx);
1900 	}
1901 
1902 	list_add_rcu(&event->event_entry, &ctx->event_list);
1903 	ctx->nr_events++;
1904 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1905 		ctx->nr_user++;
1906 	if (event->attr.inherit_stat)
1907 		ctx->nr_stat++;
1908 	if (has_inherit_and_sample_read(&event->attr))
1909 		local_inc(&ctx->nr_no_switch_fast);
1910 
1911 	if (event->state > PERF_EVENT_STATE_OFF)
1912 		perf_cgroup_event_enable(event, ctx);
1913 
1914 	ctx->generation++;
1915 	event->pmu_ctx->nr_events++;
1916 }
1917 
1918 /*
1919  * Initialize event state based on the perf_event_attr::disabled.
1920  */
1921 static inline void perf_event__state_init(struct perf_event *event)
1922 {
1923 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1924 					      PERF_EVENT_STATE_INACTIVE;
1925 }
1926 
1927 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1928 {
1929 	int entry = sizeof(u64); /* value */
1930 	int size = 0;
1931 	int nr = 1;
1932 
1933 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1934 		size += sizeof(u64);
1935 
1936 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1937 		size += sizeof(u64);
1938 
1939 	if (read_format & PERF_FORMAT_ID)
1940 		entry += sizeof(u64);
1941 
1942 	if (read_format & PERF_FORMAT_LOST)
1943 		entry += sizeof(u64);
1944 
1945 	if (read_format & PERF_FORMAT_GROUP) {
1946 		nr += nr_siblings;
1947 		size += sizeof(u64);
1948 	}
1949 
1950 	/*
1951 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1952 	 * adding more siblings, this will never overflow.
1953 	 */
1954 	return size + nr * entry;
1955 }
1956 
1957 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1958 {
1959 	struct perf_sample_data *data;
1960 	u16 size = 0;
1961 
1962 	if (sample_type & PERF_SAMPLE_IP)
1963 		size += sizeof(data->ip);
1964 
1965 	if (sample_type & PERF_SAMPLE_ADDR)
1966 		size += sizeof(data->addr);
1967 
1968 	if (sample_type & PERF_SAMPLE_PERIOD)
1969 		size += sizeof(data->period);
1970 
1971 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1972 		size += sizeof(data->weight.full);
1973 
1974 	if (sample_type & PERF_SAMPLE_READ)
1975 		size += event->read_size;
1976 
1977 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1978 		size += sizeof(data->data_src.val);
1979 
1980 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1981 		size += sizeof(data->txn);
1982 
1983 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1984 		size += sizeof(data->phys_addr);
1985 
1986 	if (sample_type & PERF_SAMPLE_CGROUP)
1987 		size += sizeof(data->cgroup);
1988 
1989 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1990 		size += sizeof(data->data_page_size);
1991 
1992 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1993 		size += sizeof(data->code_page_size);
1994 
1995 	event->header_size = size;
1996 }
1997 
1998 /*
1999  * Called at perf_event creation and when events are attached/detached from a
2000  * group.
2001  */
2002 static void perf_event__header_size(struct perf_event *event)
2003 {
2004 	event->read_size =
2005 		__perf_event_read_size(event->attr.read_format,
2006 				       event->group_leader->nr_siblings);
2007 	__perf_event_header_size(event, event->attr.sample_type);
2008 }
2009 
2010 static void perf_event__id_header_size(struct perf_event *event)
2011 {
2012 	struct perf_sample_data *data;
2013 	u64 sample_type = event->attr.sample_type;
2014 	u16 size = 0;
2015 
2016 	if (sample_type & PERF_SAMPLE_TID)
2017 		size += sizeof(data->tid_entry);
2018 
2019 	if (sample_type & PERF_SAMPLE_TIME)
2020 		size += sizeof(data->time);
2021 
2022 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2023 		size += sizeof(data->id);
2024 
2025 	if (sample_type & PERF_SAMPLE_ID)
2026 		size += sizeof(data->id);
2027 
2028 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2029 		size += sizeof(data->stream_id);
2030 
2031 	if (sample_type & PERF_SAMPLE_CPU)
2032 		size += sizeof(data->cpu_entry);
2033 
2034 	event->id_header_size = size;
2035 }
2036 
2037 /*
2038  * Check that adding an event to the group does not result in anybody
2039  * overflowing the 64k event limit imposed by the output buffer.
2040  *
2041  * Specifically, check that the read_size for the event does not exceed 16k,
2042  * read_size being the one term that grows with groups size. Since read_size
2043  * depends on per-event read_format, also (re)check the existing events.
2044  *
2045  * This leaves 48k for the constant size fields and things like callchains,
2046  * branch stacks and register sets.
2047  */
2048 static bool perf_event_validate_size(struct perf_event *event)
2049 {
2050 	struct perf_event *sibling, *group_leader = event->group_leader;
2051 
2052 	if (__perf_event_read_size(event->attr.read_format,
2053 				   group_leader->nr_siblings + 1) > 16*1024)
2054 		return false;
2055 
2056 	if (__perf_event_read_size(group_leader->attr.read_format,
2057 				   group_leader->nr_siblings + 1) > 16*1024)
2058 		return false;
2059 
2060 	/*
2061 	 * When creating a new group leader, group_leader->ctx is initialized
2062 	 * after the size has been validated, but we cannot safely use
2063 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2064 	 * leader cannot have any siblings yet, so we can safely skip checking
2065 	 * the non-existent siblings.
2066 	 */
2067 	if (event == group_leader)
2068 		return true;
2069 
2070 	for_each_sibling_event(sibling, group_leader) {
2071 		if (__perf_event_read_size(sibling->attr.read_format,
2072 					   group_leader->nr_siblings + 1) > 16*1024)
2073 			return false;
2074 	}
2075 
2076 	return true;
2077 }
2078 
2079 static void perf_group_attach(struct perf_event *event)
2080 {
2081 	struct perf_event *group_leader = event->group_leader, *pos;
2082 
2083 	lockdep_assert_held(&event->ctx->lock);
2084 
2085 	/*
2086 	 * We can have double attach due to group movement (move_group) in
2087 	 * perf_event_open().
2088 	 */
2089 	if (event->attach_state & PERF_ATTACH_GROUP)
2090 		return;
2091 
2092 	event->attach_state |= PERF_ATTACH_GROUP;
2093 
2094 	if (group_leader == event)
2095 		return;
2096 
2097 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2098 
2099 	group_leader->group_caps &= event->event_caps;
2100 
2101 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2102 	group_leader->nr_siblings++;
2103 	group_leader->group_generation++;
2104 
2105 	perf_event__header_size(group_leader);
2106 
2107 	for_each_sibling_event(pos, group_leader)
2108 		perf_event__header_size(pos);
2109 }
2110 
2111 /*
2112  * Remove an event from the lists for its context.
2113  * Must be called with ctx->mutex and ctx->lock held.
2114  */
2115 static void
2116 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2117 {
2118 	WARN_ON_ONCE(event->ctx != ctx);
2119 	lockdep_assert_held(&ctx->lock);
2120 
2121 	/*
2122 	 * We can have double detach due to exit/hot-unplug + close.
2123 	 */
2124 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2125 		return;
2126 
2127 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2128 
2129 	ctx->nr_events--;
2130 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2131 		ctx->nr_user--;
2132 	if (event->attr.inherit_stat)
2133 		ctx->nr_stat--;
2134 	if (has_inherit_and_sample_read(&event->attr))
2135 		local_dec(&ctx->nr_no_switch_fast);
2136 
2137 	list_del_rcu(&event->event_entry);
2138 
2139 	if (event->group_leader == event)
2140 		del_event_from_groups(event, ctx);
2141 
2142 	ctx->generation++;
2143 	event->pmu_ctx->nr_events--;
2144 }
2145 
2146 static int
2147 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2148 {
2149 	if (!has_aux(aux_event))
2150 		return 0;
2151 
2152 	if (!event->pmu->aux_output_match)
2153 		return 0;
2154 
2155 	return event->pmu->aux_output_match(aux_event);
2156 }
2157 
2158 static void put_event(struct perf_event *event);
2159 static void __event_disable(struct perf_event *event,
2160 			    struct perf_event_context *ctx,
2161 			    enum perf_event_state state);
2162 
2163 static void perf_put_aux_event(struct perf_event *event)
2164 {
2165 	struct perf_event_context *ctx = event->ctx;
2166 	struct perf_event *iter;
2167 
2168 	/*
2169 	 * If event uses aux_event tear down the link
2170 	 */
2171 	if (event->aux_event) {
2172 		iter = event->aux_event;
2173 		event->aux_event = NULL;
2174 		put_event(iter);
2175 		return;
2176 	}
2177 
2178 	/*
2179 	 * If the event is an aux_event, tear down all links to
2180 	 * it from other events.
2181 	 */
2182 	for_each_sibling_event(iter, event) {
2183 		if (iter->aux_event != event)
2184 			continue;
2185 
2186 		iter->aux_event = NULL;
2187 		put_event(event);
2188 
2189 		/*
2190 		 * If it's ACTIVE, schedule it out and put it into ERROR
2191 		 * state so that we don't try to schedule it again. Note
2192 		 * that perf_event_enable() will clear the ERROR status.
2193 		 */
2194 		__event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2195 	}
2196 }
2197 
2198 static bool perf_need_aux_event(struct perf_event *event)
2199 {
2200 	return event->attr.aux_output || has_aux_action(event);
2201 }
2202 
2203 static int perf_get_aux_event(struct perf_event *event,
2204 			      struct perf_event *group_leader)
2205 {
2206 	/*
2207 	 * Our group leader must be an aux event if we want to be
2208 	 * an aux_output. This way, the aux event will precede its
2209 	 * aux_output events in the group, and therefore will always
2210 	 * schedule first.
2211 	 */
2212 	if (!group_leader)
2213 		return 0;
2214 
2215 	/*
2216 	 * aux_output and aux_sample_size are mutually exclusive.
2217 	 */
2218 	if (event->attr.aux_output && event->attr.aux_sample_size)
2219 		return 0;
2220 
2221 	if (event->attr.aux_output &&
2222 	    !perf_aux_output_match(event, group_leader))
2223 		return 0;
2224 
2225 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2226 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2227 		return 0;
2228 
2229 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2230 		return 0;
2231 
2232 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2233 		return 0;
2234 
2235 	/*
2236 	 * Link aux_outputs to their aux event; this is undone in
2237 	 * perf_group_detach() by perf_put_aux_event(). When the
2238 	 * group in torn down, the aux_output events loose their
2239 	 * link to the aux_event and can't schedule any more.
2240 	 */
2241 	event->aux_event = group_leader;
2242 
2243 	return 1;
2244 }
2245 
2246 static inline struct list_head *get_event_list(struct perf_event *event)
2247 {
2248 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2249 				    &event->pmu_ctx->flexible_active;
2250 }
2251 
2252 static void perf_group_detach(struct perf_event *event)
2253 {
2254 	struct perf_event *leader = event->group_leader;
2255 	struct perf_event *sibling, *tmp;
2256 	struct perf_event_context *ctx = event->ctx;
2257 
2258 	lockdep_assert_held(&ctx->lock);
2259 
2260 	/*
2261 	 * We can have double detach due to exit/hot-unplug + close.
2262 	 */
2263 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2264 		return;
2265 
2266 	event->attach_state &= ~PERF_ATTACH_GROUP;
2267 
2268 	perf_put_aux_event(event);
2269 
2270 	/*
2271 	 * If this is a sibling, remove it from its group.
2272 	 */
2273 	if (leader != event) {
2274 		list_del_init(&event->sibling_list);
2275 		event->group_leader->nr_siblings--;
2276 		event->group_leader->group_generation++;
2277 		goto out;
2278 	}
2279 
2280 	/*
2281 	 * If this was a group event with sibling events then
2282 	 * upgrade the siblings to singleton events by adding them
2283 	 * to whatever list we are on.
2284 	 */
2285 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2286 
2287 		/*
2288 		 * Events that have PERF_EV_CAP_SIBLING require being part of
2289 		 * a group and cannot exist on their own, schedule them out
2290 		 * and move them into the ERROR state. Also see
2291 		 * _perf_event_enable(), it will not be able to recover this
2292 		 * ERROR state.
2293 		 */
2294 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2295 			__event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2296 
2297 		sibling->group_leader = sibling;
2298 		list_del_init(&sibling->sibling_list);
2299 
2300 		/* Inherit group flags from the previous leader */
2301 		sibling->group_caps = event->group_caps;
2302 
2303 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2304 			add_event_to_groups(sibling, event->ctx);
2305 
2306 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2307 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2308 		}
2309 
2310 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2311 	}
2312 
2313 out:
2314 	for_each_sibling_event(tmp, leader)
2315 		perf_event__header_size(tmp);
2316 
2317 	perf_event__header_size(leader);
2318 }
2319 
2320 static void sync_child_event(struct perf_event *child_event);
2321 
2322 static void perf_child_detach(struct perf_event *event)
2323 {
2324 	struct perf_event *parent_event = event->parent;
2325 
2326 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2327 		return;
2328 
2329 	event->attach_state &= ~PERF_ATTACH_CHILD;
2330 
2331 	if (WARN_ON_ONCE(!parent_event))
2332 		return;
2333 
2334 	/*
2335 	 * Can't check this from an IPI, the holder is likey another CPU.
2336 	 *
2337 	lockdep_assert_held(&parent_event->child_mutex);
2338 	 */
2339 
2340 	sync_child_event(event);
2341 	list_del_init(&event->child_list);
2342 }
2343 
2344 static bool is_orphaned_event(struct perf_event *event)
2345 {
2346 	return event->state == PERF_EVENT_STATE_DEAD;
2347 }
2348 
2349 static inline int
2350 event_filter_match(struct perf_event *event)
2351 {
2352 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2353 	       perf_cgroup_match(event);
2354 }
2355 
2356 static inline bool is_event_in_freq_mode(struct perf_event *event)
2357 {
2358 	return event->attr.freq && event->attr.sample_freq;
2359 }
2360 
2361 static void
2362 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2363 {
2364 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2365 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2366 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2367 
2368 	// XXX cpc serialization, probably per-cpu IRQ disabled
2369 
2370 	WARN_ON_ONCE(event->ctx != ctx);
2371 	lockdep_assert_held(&ctx->lock);
2372 
2373 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2374 		return;
2375 
2376 	/*
2377 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2378 	 * we can schedule events _OUT_ individually through things like
2379 	 * __perf_remove_from_context().
2380 	 */
2381 	list_del_init(&event->active_list);
2382 
2383 	perf_pmu_disable(event->pmu);
2384 
2385 	event->pmu->del(event, 0);
2386 	event->oncpu = -1;
2387 
2388 	if (event->pending_disable) {
2389 		event->pending_disable = 0;
2390 		perf_cgroup_event_disable(event, ctx);
2391 		state = PERF_EVENT_STATE_OFF;
2392 	}
2393 
2394 	perf_event_set_state(event, state);
2395 
2396 	if (!is_software_event(event))
2397 		cpc->active_oncpu--;
2398 	if (is_event_in_freq_mode(event)) {
2399 		ctx->nr_freq--;
2400 		epc->nr_freq--;
2401 	}
2402 	if (event->attr.exclusive || !cpc->active_oncpu)
2403 		cpc->exclusive = 0;
2404 
2405 	perf_pmu_enable(event->pmu);
2406 }
2407 
2408 static void
2409 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2410 {
2411 	struct perf_event *event;
2412 
2413 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2414 		return;
2415 
2416 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2417 
2418 	event_sched_out(group_event, ctx);
2419 
2420 	/*
2421 	 * Schedule out siblings (if any):
2422 	 */
2423 	for_each_sibling_event(event, group_event)
2424 		event_sched_out(event, ctx);
2425 }
2426 
2427 static inline void
2428 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2429 {
2430 	if (ctx->is_active & EVENT_TIME) {
2431 		if (ctx->is_active & EVENT_FROZEN)
2432 			return;
2433 		update_context_time(ctx);
2434 		update_cgrp_time_from_cpuctx(cpuctx, final);
2435 	}
2436 }
2437 
2438 static inline void
2439 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2440 {
2441 	__ctx_time_update(cpuctx, ctx, false);
2442 }
2443 
2444 /*
2445  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2446  */
2447 static inline void
2448 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2449 {
2450 	ctx_time_update(cpuctx, ctx);
2451 	if (ctx->is_active & EVENT_TIME)
2452 		ctx->is_active |= EVENT_FROZEN;
2453 }
2454 
2455 static inline void
2456 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2457 {
2458 	if (ctx->is_active & EVENT_TIME) {
2459 		if (ctx->is_active & EVENT_FROZEN)
2460 			return;
2461 		update_context_time(ctx);
2462 		update_cgrp_time_from_event(event);
2463 	}
2464 }
2465 
2466 #define DETACH_GROUP	0x01UL
2467 #define DETACH_CHILD	0x02UL
2468 #define DETACH_EXIT	0x04UL
2469 #define DETACH_REVOKE	0x08UL
2470 #define DETACH_DEAD	0x10UL
2471 
2472 /*
2473  * Cross CPU call to remove a performance event
2474  *
2475  * We disable the event on the hardware level first. After that we
2476  * remove it from the context list.
2477  */
2478 static void
2479 __perf_remove_from_context(struct perf_event *event,
2480 			   struct perf_cpu_context *cpuctx,
2481 			   struct perf_event_context *ctx,
2482 			   void *info)
2483 {
2484 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2485 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2486 	unsigned long flags = (unsigned long)info;
2487 
2488 	ctx_time_update(cpuctx, ctx);
2489 
2490 	/*
2491 	 * Ensure event_sched_out() switches to OFF, at the very least
2492 	 * this avoids raising perf_pending_task() at this time.
2493 	 */
2494 	if (flags & DETACH_EXIT)
2495 		state = PERF_EVENT_STATE_EXIT;
2496 	if (flags & DETACH_REVOKE)
2497 		state = PERF_EVENT_STATE_REVOKED;
2498 	if (flags & DETACH_DEAD)
2499 		state = PERF_EVENT_STATE_DEAD;
2500 
2501 	event_sched_out(event, ctx);
2502 
2503 	if (event->state > PERF_EVENT_STATE_OFF)
2504 		perf_cgroup_event_disable(event, ctx);
2505 
2506 	perf_event_set_state(event, min(event->state, state));
2507 
2508 	if (flags & DETACH_GROUP)
2509 		perf_group_detach(event);
2510 	if (flags & DETACH_CHILD)
2511 		perf_child_detach(event);
2512 	list_del_event(event, ctx);
2513 
2514 	if (!pmu_ctx->nr_events) {
2515 		pmu_ctx->rotate_necessary = 0;
2516 
2517 		if (ctx->task && ctx->is_active) {
2518 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2519 
2520 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2521 			cpc->task_epc = NULL;
2522 		}
2523 	}
2524 
2525 	if (!ctx->nr_events && ctx->is_active) {
2526 		if (ctx == &cpuctx->ctx)
2527 			update_cgrp_time_from_cpuctx(cpuctx, true);
2528 
2529 		ctx->is_active = 0;
2530 		if (ctx->task) {
2531 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2532 			cpuctx->task_ctx = NULL;
2533 		}
2534 	}
2535 }
2536 
2537 /*
2538  * Remove the event from a task's (or a CPU's) list of events.
2539  *
2540  * If event->ctx is a cloned context, callers must make sure that
2541  * every task struct that event->ctx->task could possibly point to
2542  * remains valid.  This is OK when called from perf_release since
2543  * that only calls us on the top-level context, which can't be a clone.
2544  * When called from perf_event_exit_task, it's OK because the
2545  * context has been detached from its task.
2546  */
2547 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2548 {
2549 	struct perf_event_context *ctx = event->ctx;
2550 
2551 	lockdep_assert_held(&ctx->mutex);
2552 
2553 	/*
2554 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2555 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2556 	 * event_function_call() user.
2557 	 */
2558 	raw_spin_lock_irq(&ctx->lock);
2559 	if (!ctx->is_active) {
2560 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2561 					   ctx, (void *)flags);
2562 		raw_spin_unlock_irq(&ctx->lock);
2563 		return;
2564 	}
2565 	raw_spin_unlock_irq(&ctx->lock);
2566 
2567 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2568 }
2569 
2570 static void __event_disable(struct perf_event *event,
2571 			    struct perf_event_context *ctx,
2572 			    enum perf_event_state state)
2573 {
2574 	event_sched_out(event, ctx);
2575 	perf_cgroup_event_disable(event, ctx);
2576 	perf_event_set_state(event, state);
2577 }
2578 
2579 /*
2580  * Cross CPU call to disable a performance event
2581  */
2582 static void __perf_event_disable(struct perf_event *event,
2583 				 struct perf_cpu_context *cpuctx,
2584 				 struct perf_event_context *ctx,
2585 				 void *info)
2586 {
2587 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2588 		return;
2589 
2590 	perf_pmu_disable(event->pmu_ctx->pmu);
2591 	ctx_time_update_event(ctx, event);
2592 
2593 	/*
2594 	 * When disabling a group leader, the whole group becomes ineligible
2595 	 * to run, so schedule out the full group.
2596 	 */
2597 	if (event == event->group_leader)
2598 		group_sched_out(event, ctx);
2599 
2600 	/*
2601 	 * But only mark the leader OFF; the siblings will remain
2602 	 * INACTIVE.
2603 	 */
2604 	__event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2605 
2606 	perf_pmu_enable(event->pmu_ctx->pmu);
2607 }
2608 
2609 /*
2610  * Disable an event.
2611  *
2612  * If event->ctx is a cloned context, callers must make sure that
2613  * every task struct that event->ctx->task could possibly point to
2614  * remains valid.  This condition is satisfied when called through
2615  * perf_event_for_each_child or perf_event_for_each because they
2616  * hold the top-level event's child_mutex, so any descendant that
2617  * goes to exit will block in perf_event_exit_event().
2618  *
2619  * When called from perf_pending_disable it's OK because event->ctx
2620  * is the current context on this CPU and preemption is disabled,
2621  * hence we can't get into perf_event_task_sched_out for this context.
2622  */
2623 static void _perf_event_disable(struct perf_event *event)
2624 {
2625 	struct perf_event_context *ctx = event->ctx;
2626 
2627 	raw_spin_lock_irq(&ctx->lock);
2628 	if (event->state <= PERF_EVENT_STATE_OFF) {
2629 		raw_spin_unlock_irq(&ctx->lock);
2630 		return;
2631 	}
2632 	raw_spin_unlock_irq(&ctx->lock);
2633 
2634 	event_function_call(event, __perf_event_disable, NULL);
2635 }
2636 
2637 void perf_event_disable_local(struct perf_event *event)
2638 {
2639 	event_function_local(event, __perf_event_disable, NULL);
2640 }
2641 
2642 /*
2643  * Strictly speaking kernel users cannot create groups and therefore this
2644  * interface does not need the perf_event_ctx_lock() magic.
2645  */
2646 void perf_event_disable(struct perf_event *event)
2647 {
2648 	struct perf_event_context *ctx;
2649 
2650 	ctx = perf_event_ctx_lock(event);
2651 	_perf_event_disable(event);
2652 	perf_event_ctx_unlock(event, ctx);
2653 }
2654 EXPORT_SYMBOL_GPL(perf_event_disable);
2655 
2656 void perf_event_disable_inatomic(struct perf_event *event)
2657 {
2658 	event->pending_disable = 1;
2659 	irq_work_queue(&event->pending_disable_irq);
2660 }
2661 
2662 #define MAX_INTERRUPTS (~0ULL)
2663 
2664 static void perf_log_throttle(struct perf_event *event, int enable);
2665 static void perf_log_itrace_start(struct perf_event *event);
2666 
2667 static void perf_event_unthrottle(struct perf_event *event, bool start)
2668 {
2669 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2670 		return;
2671 
2672 	event->hw.interrupts = 0;
2673 	if (start)
2674 		event->pmu->start(event, 0);
2675 	if (event == event->group_leader)
2676 		perf_log_throttle(event, 1);
2677 }
2678 
2679 static void perf_event_throttle(struct perf_event *event)
2680 {
2681 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2682 		return;
2683 
2684 	event->hw.interrupts = MAX_INTERRUPTS;
2685 	event->pmu->stop(event, 0);
2686 	if (event == event->group_leader)
2687 		perf_log_throttle(event, 0);
2688 }
2689 
2690 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2691 {
2692 	struct perf_event *sibling, *leader = event->group_leader;
2693 
2694 	perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2695 	for_each_sibling_event(sibling, leader)
2696 		perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2697 }
2698 
2699 static void perf_event_throttle_group(struct perf_event *event)
2700 {
2701 	struct perf_event *sibling, *leader = event->group_leader;
2702 
2703 	perf_event_throttle(leader);
2704 	for_each_sibling_event(sibling, leader)
2705 		perf_event_throttle(sibling);
2706 }
2707 
2708 static int
2709 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2710 {
2711 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2712 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2713 	int ret = 0;
2714 
2715 	WARN_ON_ONCE(event->ctx != ctx);
2716 
2717 	lockdep_assert_held(&ctx->lock);
2718 
2719 	if (event->state <= PERF_EVENT_STATE_OFF)
2720 		return 0;
2721 
2722 	WRITE_ONCE(event->oncpu, smp_processor_id());
2723 	/*
2724 	 * Order event::oncpu write to happen before the ACTIVE state is
2725 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2726 	 * ->oncpu if it sees ACTIVE.
2727 	 */
2728 	smp_wmb();
2729 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2730 
2731 	/*
2732 	 * Unthrottle events, since we scheduled we might have missed several
2733 	 * ticks already, also for a heavily scheduling task there is little
2734 	 * guarantee it'll get a tick in a timely manner.
2735 	 */
2736 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2737 		perf_event_unthrottle(event, false);
2738 
2739 	perf_pmu_disable(event->pmu);
2740 
2741 	perf_log_itrace_start(event);
2742 
2743 	if (event->pmu->add(event, PERF_EF_START)) {
2744 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2745 		event->oncpu = -1;
2746 		ret = -EAGAIN;
2747 		goto out;
2748 	}
2749 
2750 	if (!is_software_event(event))
2751 		cpc->active_oncpu++;
2752 	if (is_event_in_freq_mode(event)) {
2753 		ctx->nr_freq++;
2754 		epc->nr_freq++;
2755 	}
2756 	if (event->attr.exclusive)
2757 		cpc->exclusive = 1;
2758 
2759 out:
2760 	perf_pmu_enable(event->pmu);
2761 
2762 	return ret;
2763 }
2764 
2765 static int
2766 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2767 {
2768 	struct perf_event *event, *partial_group = NULL;
2769 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2770 
2771 	if (group_event->state == PERF_EVENT_STATE_OFF)
2772 		return 0;
2773 
2774 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2775 
2776 	if (event_sched_in(group_event, ctx))
2777 		goto error;
2778 
2779 	/*
2780 	 * Schedule in siblings as one group (if any):
2781 	 */
2782 	for_each_sibling_event(event, group_event) {
2783 		if (event_sched_in(event, ctx)) {
2784 			partial_group = event;
2785 			goto group_error;
2786 		}
2787 	}
2788 
2789 	if (!pmu->commit_txn(pmu))
2790 		return 0;
2791 
2792 group_error:
2793 	/*
2794 	 * Groups can be scheduled in as one unit only, so undo any
2795 	 * partial group before returning:
2796 	 * The events up to the failed event are scheduled out normally.
2797 	 */
2798 	for_each_sibling_event(event, group_event) {
2799 		if (event == partial_group)
2800 			break;
2801 
2802 		event_sched_out(event, ctx);
2803 	}
2804 	event_sched_out(group_event, ctx);
2805 
2806 error:
2807 	pmu->cancel_txn(pmu);
2808 	return -EAGAIN;
2809 }
2810 
2811 /*
2812  * Work out whether we can put this event group on the CPU now.
2813  */
2814 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2815 {
2816 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2817 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2818 
2819 	/*
2820 	 * Groups consisting entirely of software events can always go on.
2821 	 */
2822 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2823 		return 1;
2824 	/*
2825 	 * If an exclusive group is already on, no other hardware
2826 	 * events can go on.
2827 	 */
2828 	if (cpc->exclusive)
2829 		return 0;
2830 	/*
2831 	 * If this group is exclusive and there are already
2832 	 * events on the CPU, it can't go on.
2833 	 */
2834 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2835 		return 0;
2836 	/*
2837 	 * Otherwise, try to add it if all previous groups were able
2838 	 * to go on.
2839 	 */
2840 	return can_add_hw;
2841 }
2842 
2843 static void add_event_to_ctx(struct perf_event *event,
2844 			       struct perf_event_context *ctx)
2845 {
2846 	list_add_event(event, ctx);
2847 	perf_group_attach(event);
2848 }
2849 
2850 static void task_ctx_sched_out(struct perf_event_context *ctx,
2851 			       struct pmu *pmu,
2852 			       enum event_type_t event_type)
2853 {
2854 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2855 
2856 	if (!cpuctx->task_ctx)
2857 		return;
2858 
2859 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2860 		return;
2861 
2862 	ctx_sched_out(ctx, pmu, event_type);
2863 }
2864 
2865 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2866 				struct perf_event_context *ctx,
2867 				struct pmu *pmu)
2868 {
2869 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2870 	if (ctx)
2871 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2872 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2873 	if (ctx)
2874 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2875 }
2876 
2877 /*
2878  * We want to maintain the following priority of scheduling:
2879  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2880  *  - task pinned (EVENT_PINNED)
2881  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2882  *  - task flexible (EVENT_FLEXIBLE).
2883  *
2884  * In order to avoid unscheduling and scheduling back in everything every
2885  * time an event is added, only do it for the groups of equal priority and
2886  * below.
2887  *
2888  * This can be called after a batch operation on task events, in which case
2889  * event_type is a bit mask of the types of events involved. For CPU events,
2890  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2891  */
2892 static void ctx_resched(struct perf_cpu_context *cpuctx,
2893 			struct perf_event_context *task_ctx,
2894 			struct pmu *pmu, enum event_type_t event_type)
2895 {
2896 	bool cpu_event = !!(event_type & EVENT_CPU);
2897 	struct perf_event_pmu_context *epc;
2898 
2899 	/*
2900 	 * If pinned groups are involved, flexible groups also need to be
2901 	 * scheduled out.
2902 	 */
2903 	if (event_type & EVENT_PINNED)
2904 		event_type |= EVENT_FLEXIBLE;
2905 
2906 	event_type &= EVENT_ALL;
2907 
2908 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2909 		perf_pmu_disable(epc->pmu);
2910 
2911 	if (task_ctx) {
2912 		for_each_epc(epc, task_ctx, pmu, false)
2913 			perf_pmu_disable(epc->pmu);
2914 
2915 		task_ctx_sched_out(task_ctx, pmu, event_type);
2916 	}
2917 
2918 	/*
2919 	 * Decide which cpu ctx groups to schedule out based on the types
2920 	 * of events that caused rescheduling:
2921 	 *  - EVENT_CPU: schedule out corresponding groups;
2922 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2923 	 *  - otherwise, do nothing more.
2924 	 */
2925 	if (cpu_event)
2926 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2927 	else if (event_type & EVENT_PINNED)
2928 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2929 
2930 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2931 
2932 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2933 		perf_pmu_enable(epc->pmu);
2934 
2935 	if (task_ctx) {
2936 		for_each_epc(epc, task_ctx, pmu, false)
2937 			perf_pmu_enable(epc->pmu);
2938 	}
2939 }
2940 
2941 void perf_pmu_resched(struct pmu *pmu)
2942 {
2943 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2944 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2945 
2946 	perf_ctx_lock(cpuctx, task_ctx);
2947 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2948 	perf_ctx_unlock(cpuctx, task_ctx);
2949 }
2950 
2951 /*
2952  * Cross CPU call to install and enable a performance event
2953  *
2954  * Very similar to remote_function() + event_function() but cannot assume that
2955  * things like ctx->is_active and cpuctx->task_ctx are set.
2956  */
2957 static int  __perf_install_in_context(void *info)
2958 {
2959 	struct perf_event *event = info;
2960 	struct perf_event_context *ctx = event->ctx;
2961 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2962 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2963 	bool reprogram = true;
2964 	int ret = 0;
2965 
2966 	raw_spin_lock(&cpuctx->ctx.lock);
2967 	if (ctx->task) {
2968 		raw_spin_lock(&ctx->lock);
2969 		task_ctx = ctx;
2970 
2971 		reprogram = (ctx->task == current);
2972 
2973 		/*
2974 		 * If the task is running, it must be running on this CPU,
2975 		 * otherwise we cannot reprogram things.
2976 		 *
2977 		 * If its not running, we don't care, ctx->lock will
2978 		 * serialize against it becoming runnable.
2979 		 */
2980 		if (task_curr(ctx->task) && !reprogram) {
2981 			ret = -ESRCH;
2982 			goto unlock;
2983 		}
2984 
2985 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2986 	} else if (task_ctx) {
2987 		raw_spin_lock(&task_ctx->lock);
2988 	}
2989 
2990 #ifdef CONFIG_CGROUP_PERF
2991 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2992 		/*
2993 		 * If the current cgroup doesn't match the event's
2994 		 * cgroup, we should not try to schedule it.
2995 		 */
2996 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2997 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2998 					event->cgrp->css.cgroup);
2999 	}
3000 #endif
3001 
3002 	if (reprogram) {
3003 		ctx_time_freeze(cpuctx, ctx);
3004 		add_event_to_ctx(event, ctx);
3005 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3006 			    get_event_type(event));
3007 	} else {
3008 		add_event_to_ctx(event, ctx);
3009 	}
3010 
3011 unlock:
3012 	perf_ctx_unlock(cpuctx, task_ctx);
3013 
3014 	return ret;
3015 }
3016 
3017 static bool exclusive_event_installable(struct perf_event *event,
3018 					struct perf_event_context *ctx);
3019 
3020 /*
3021  * Attach a performance event to a context.
3022  *
3023  * Very similar to event_function_call, see comment there.
3024  */
3025 static void
3026 perf_install_in_context(struct perf_event_context *ctx,
3027 			struct perf_event *event,
3028 			int cpu)
3029 {
3030 	struct task_struct *task = READ_ONCE(ctx->task);
3031 
3032 	lockdep_assert_held(&ctx->mutex);
3033 
3034 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3035 
3036 	if (event->cpu != -1)
3037 		WARN_ON_ONCE(event->cpu != cpu);
3038 
3039 	/*
3040 	 * Ensures that if we can observe event->ctx, both the event and ctx
3041 	 * will be 'complete'. See perf_iterate_sb_cpu().
3042 	 */
3043 	smp_store_release(&event->ctx, ctx);
3044 
3045 	/*
3046 	 * perf_event_attr::disabled events will not run and can be initialized
3047 	 * without IPI. Except when this is the first event for the context, in
3048 	 * that case we need the magic of the IPI to set ctx->is_active.
3049 	 *
3050 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
3051 	 * event will issue the IPI and reprogram the hardware.
3052 	 */
3053 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3054 	    ctx->nr_events && !is_cgroup_event(event)) {
3055 		raw_spin_lock_irq(&ctx->lock);
3056 		if (ctx->task == TASK_TOMBSTONE) {
3057 			raw_spin_unlock_irq(&ctx->lock);
3058 			return;
3059 		}
3060 		add_event_to_ctx(event, ctx);
3061 		raw_spin_unlock_irq(&ctx->lock);
3062 		return;
3063 	}
3064 
3065 	if (!task) {
3066 		cpu_function_call(cpu, __perf_install_in_context, event);
3067 		return;
3068 	}
3069 
3070 	/*
3071 	 * Should not happen, we validate the ctx is still alive before calling.
3072 	 */
3073 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3074 		return;
3075 
3076 	/*
3077 	 * Installing events is tricky because we cannot rely on ctx->is_active
3078 	 * to be set in case this is the nr_events 0 -> 1 transition.
3079 	 *
3080 	 * Instead we use task_curr(), which tells us if the task is running.
3081 	 * However, since we use task_curr() outside of rq::lock, we can race
3082 	 * against the actual state. This means the result can be wrong.
3083 	 *
3084 	 * If we get a false positive, we retry, this is harmless.
3085 	 *
3086 	 * If we get a false negative, things are complicated. If we are after
3087 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3088 	 * value must be correct. If we're before, it doesn't matter since
3089 	 * perf_event_context_sched_in() will program the counter.
3090 	 *
3091 	 * However, this hinges on the remote context switch having observed
3092 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3093 	 * ctx::lock in perf_event_context_sched_in().
3094 	 *
3095 	 * We do this by task_function_call(), if the IPI fails to hit the task
3096 	 * we know any future context switch of task must see the
3097 	 * perf_event_ctpx[] store.
3098 	 */
3099 
3100 	/*
3101 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3102 	 * task_cpu() load, such that if the IPI then does not find the task
3103 	 * running, a future context switch of that task must observe the
3104 	 * store.
3105 	 */
3106 	smp_mb();
3107 again:
3108 	if (!task_function_call(task, __perf_install_in_context, event))
3109 		return;
3110 
3111 	raw_spin_lock_irq(&ctx->lock);
3112 	task = ctx->task;
3113 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3114 		/*
3115 		 * Cannot happen because we already checked above (which also
3116 		 * cannot happen), and we hold ctx->mutex, which serializes us
3117 		 * against perf_event_exit_task_context().
3118 		 */
3119 		raw_spin_unlock_irq(&ctx->lock);
3120 		return;
3121 	}
3122 	/*
3123 	 * If the task is not running, ctx->lock will avoid it becoming so,
3124 	 * thus we can safely install the event.
3125 	 */
3126 	if (task_curr(task)) {
3127 		raw_spin_unlock_irq(&ctx->lock);
3128 		goto again;
3129 	}
3130 	add_event_to_ctx(event, ctx);
3131 	raw_spin_unlock_irq(&ctx->lock);
3132 }
3133 
3134 /*
3135  * Cross CPU call to enable a performance event
3136  */
3137 static void __perf_event_enable(struct perf_event *event,
3138 				struct perf_cpu_context *cpuctx,
3139 				struct perf_event_context *ctx,
3140 				void *info)
3141 {
3142 	struct perf_event *leader = event->group_leader;
3143 	struct perf_event_context *task_ctx;
3144 
3145 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3146 	    event->state <= PERF_EVENT_STATE_ERROR)
3147 		return;
3148 
3149 	ctx_time_freeze(cpuctx, ctx);
3150 
3151 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3152 	perf_cgroup_event_enable(event, ctx);
3153 
3154 	if (!ctx->is_active)
3155 		return;
3156 
3157 	if (!event_filter_match(event))
3158 		return;
3159 
3160 	/*
3161 	 * If the event is in a group and isn't the group leader,
3162 	 * then don't put it on unless the group is on.
3163 	 */
3164 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3165 		return;
3166 
3167 	task_ctx = cpuctx->task_ctx;
3168 	if (ctx->task)
3169 		WARN_ON_ONCE(task_ctx != ctx);
3170 
3171 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3172 }
3173 
3174 /*
3175  * Enable an event.
3176  *
3177  * If event->ctx is a cloned context, callers must make sure that
3178  * every task struct that event->ctx->task could possibly point to
3179  * remains valid.  This condition is satisfied when called through
3180  * perf_event_for_each_child or perf_event_for_each as described
3181  * for perf_event_disable.
3182  */
3183 static void _perf_event_enable(struct perf_event *event)
3184 {
3185 	struct perf_event_context *ctx = event->ctx;
3186 
3187 	raw_spin_lock_irq(&ctx->lock);
3188 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3189 	    event->state <  PERF_EVENT_STATE_ERROR) {
3190 out:
3191 		raw_spin_unlock_irq(&ctx->lock);
3192 		return;
3193 	}
3194 
3195 	/*
3196 	 * If the event is in error state, clear that first.
3197 	 *
3198 	 * That way, if we see the event in error state below, we know that it
3199 	 * has gone back into error state, as distinct from the task having
3200 	 * been scheduled away before the cross-call arrived.
3201 	 */
3202 	if (event->state == PERF_EVENT_STATE_ERROR) {
3203 		/*
3204 		 * Detached SIBLING events cannot leave ERROR state.
3205 		 */
3206 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3207 		    event->group_leader == event)
3208 			goto out;
3209 
3210 		event->state = PERF_EVENT_STATE_OFF;
3211 	}
3212 	raw_spin_unlock_irq(&ctx->lock);
3213 
3214 	event_function_call(event, __perf_event_enable, NULL);
3215 }
3216 
3217 /*
3218  * See perf_event_disable();
3219  */
3220 void perf_event_enable(struct perf_event *event)
3221 {
3222 	struct perf_event_context *ctx;
3223 
3224 	ctx = perf_event_ctx_lock(event);
3225 	_perf_event_enable(event);
3226 	perf_event_ctx_unlock(event, ctx);
3227 }
3228 EXPORT_SYMBOL_GPL(perf_event_enable);
3229 
3230 struct stop_event_data {
3231 	struct perf_event	*event;
3232 	unsigned int		restart;
3233 };
3234 
3235 static int __perf_event_stop(void *info)
3236 {
3237 	struct stop_event_data *sd = info;
3238 	struct perf_event *event = sd->event;
3239 
3240 	/* if it's already INACTIVE, do nothing */
3241 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3242 		return 0;
3243 
3244 	/* matches smp_wmb() in event_sched_in() */
3245 	smp_rmb();
3246 
3247 	/*
3248 	 * There is a window with interrupts enabled before we get here,
3249 	 * so we need to check again lest we try to stop another CPU's event.
3250 	 */
3251 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3252 		return -EAGAIN;
3253 
3254 	event->pmu->stop(event, PERF_EF_UPDATE);
3255 
3256 	/*
3257 	 * May race with the actual stop (through perf_pmu_output_stop()),
3258 	 * but it is only used for events with AUX ring buffer, and such
3259 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3260 	 * see comments in perf_aux_output_begin().
3261 	 *
3262 	 * Since this is happening on an event-local CPU, no trace is lost
3263 	 * while restarting.
3264 	 */
3265 	if (sd->restart)
3266 		event->pmu->start(event, 0);
3267 
3268 	return 0;
3269 }
3270 
3271 static int perf_event_stop(struct perf_event *event, int restart)
3272 {
3273 	struct stop_event_data sd = {
3274 		.event		= event,
3275 		.restart	= restart,
3276 	};
3277 	int ret = 0;
3278 
3279 	do {
3280 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3281 			return 0;
3282 
3283 		/* matches smp_wmb() in event_sched_in() */
3284 		smp_rmb();
3285 
3286 		/*
3287 		 * We only want to restart ACTIVE events, so if the event goes
3288 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3289 		 * fall through with ret==-ENXIO.
3290 		 */
3291 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3292 					__perf_event_stop, &sd);
3293 	} while (ret == -EAGAIN);
3294 
3295 	return ret;
3296 }
3297 
3298 /*
3299  * In order to contain the amount of racy and tricky in the address filter
3300  * configuration management, it is a two part process:
3301  *
3302  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3303  *      we update the addresses of corresponding vmas in
3304  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3305  * (p2) when an event is scheduled in (pmu::add), it calls
3306  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3307  *      if the generation has changed since the previous call.
3308  *
3309  * If (p1) happens while the event is active, we restart it to force (p2).
3310  *
3311  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3312  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3313  *     ioctl;
3314  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3315  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3316  *     for reading;
3317  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3318  *     of exec.
3319  */
3320 void perf_event_addr_filters_sync(struct perf_event *event)
3321 {
3322 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3323 
3324 	if (!has_addr_filter(event))
3325 		return;
3326 
3327 	raw_spin_lock(&ifh->lock);
3328 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3329 		event->pmu->addr_filters_sync(event);
3330 		event->hw.addr_filters_gen = event->addr_filters_gen;
3331 	}
3332 	raw_spin_unlock(&ifh->lock);
3333 }
3334 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3335 
3336 static int _perf_event_refresh(struct perf_event *event, int refresh)
3337 {
3338 	/*
3339 	 * not supported on inherited events
3340 	 */
3341 	if (event->attr.inherit || !is_sampling_event(event))
3342 		return -EINVAL;
3343 
3344 	atomic_add(refresh, &event->event_limit);
3345 	_perf_event_enable(event);
3346 
3347 	return 0;
3348 }
3349 
3350 /*
3351  * See perf_event_disable()
3352  */
3353 int perf_event_refresh(struct perf_event *event, int refresh)
3354 {
3355 	struct perf_event_context *ctx;
3356 	int ret;
3357 
3358 	ctx = perf_event_ctx_lock(event);
3359 	ret = _perf_event_refresh(event, refresh);
3360 	perf_event_ctx_unlock(event, ctx);
3361 
3362 	return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(perf_event_refresh);
3365 
3366 static int perf_event_modify_breakpoint(struct perf_event *bp,
3367 					 struct perf_event_attr *attr)
3368 {
3369 	int err;
3370 
3371 	_perf_event_disable(bp);
3372 
3373 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3374 
3375 	if (!bp->attr.disabled)
3376 		_perf_event_enable(bp);
3377 
3378 	return err;
3379 }
3380 
3381 /*
3382  * Copy event-type-independent attributes that may be modified.
3383  */
3384 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3385 					const struct perf_event_attr *from)
3386 {
3387 	to->sig_data = from->sig_data;
3388 }
3389 
3390 static int perf_event_modify_attr(struct perf_event *event,
3391 				  struct perf_event_attr *attr)
3392 {
3393 	int (*func)(struct perf_event *, struct perf_event_attr *);
3394 	struct perf_event *child;
3395 	int err;
3396 
3397 	if (event->attr.type != attr->type)
3398 		return -EINVAL;
3399 
3400 	switch (event->attr.type) {
3401 	case PERF_TYPE_BREAKPOINT:
3402 		func = perf_event_modify_breakpoint;
3403 		break;
3404 	default:
3405 		/* Place holder for future additions. */
3406 		return -EOPNOTSUPP;
3407 	}
3408 
3409 	WARN_ON_ONCE(event->ctx->parent_ctx);
3410 
3411 	mutex_lock(&event->child_mutex);
3412 	/*
3413 	 * Event-type-independent attributes must be copied before event-type
3414 	 * modification, which will validate that final attributes match the
3415 	 * source attributes after all relevant attributes have been copied.
3416 	 */
3417 	perf_event_modify_copy_attr(&event->attr, attr);
3418 	err = func(event, attr);
3419 	if (err)
3420 		goto out;
3421 	list_for_each_entry(child, &event->child_list, child_list) {
3422 		perf_event_modify_copy_attr(&child->attr, attr);
3423 		err = func(child, attr);
3424 		if (err)
3425 			goto out;
3426 	}
3427 out:
3428 	mutex_unlock(&event->child_mutex);
3429 	return err;
3430 }
3431 
3432 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3433 				enum event_type_t event_type)
3434 {
3435 	struct perf_event_context *ctx = pmu_ctx->ctx;
3436 	struct perf_event *event, *tmp;
3437 	struct pmu *pmu = pmu_ctx->pmu;
3438 
3439 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3440 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3441 
3442 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3443 		cpc->task_epc = NULL;
3444 	}
3445 
3446 	if (!(event_type & EVENT_ALL))
3447 		return;
3448 
3449 	perf_pmu_disable(pmu);
3450 	if (event_type & EVENT_PINNED) {
3451 		list_for_each_entry_safe(event, tmp,
3452 					 &pmu_ctx->pinned_active,
3453 					 active_list)
3454 			group_sched_out(event, ctx);
3455 	}
3456 
3457 	if (event_type & EVENT_FLEXIBLE) {
3458 		list_for_each_entry_safe(event, tmp,
3459 					 &pmu_ctx->flexible_active,
3460 					 active_list)
3461 			group_sched_out(event, ctx);
3462 		/*
3463 		 * Since we cleared EVENT_FLEXIBLE, also clear
3464 		 * rotate_necessary, is will be reset by
3465 		 * ctx_flexible_sched_in() when needed.
3466 		 */
3467 		pmu_ctx->rotate_necessary = 0;
3468 	}
3469 	perf_pmu_enable(pmu);
3470 }
3471 
3472 /*
3473  * Be very careful with the @pmu argument since this will change ctx state.
3474  * The @pmu argument works for ctx_resched(), because that is symmetric in
3475  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3476  *
3477  * However, if you were to be asymmetrical, you could end up with messed up
3478  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3479  * be active.
3480  */
3481 static void
3482 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3483 {
3484 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3485 	struct perf_event_pmu_context *pmu_ctx;
3486 	int is_active = ctx->is_active;
3487 	bool cgroup = event_type & EVENT_CGROUP;
3488 
3489 	event_type &= ~EVENT_CGROUP;
3490 
3491 	lockdep_assert_held(&ctx->lock);
3492 
3493 	if (likely(!ctx->nr_events)) {
3494 		/*
3495 		 * See __perf_remove_from_context().
3496 		 */
3497 		WARN_ON_ONCE(ctx->is_active);
3498 		if (ctx->task)
3499 			WARN_ON_ONCE(cpuctx->task_ctx);
3500 		return;
3501 	}
3502 
3503 	/*
3504 	 * Always update time if it was set; not only when it changes.
3505 	 * Otherwise we can 'forget' to update time for any but the last
3506 	 * context we sched out. For example:
3507 	 *
3508 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3509 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3510 	 *
3511 	 * would only update time for the pinned events.
3512 	 */
3513 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3514 
3515 	/*
3516 	 * CPU-release for the below ->is_active store,
3517 	 * see __load_acquire() in perf_event_time_now()
3518 	 */
3519 	barrier();
3520 	ctx->is_active &= ~event_type;
3521 
3522 	if (!(ctx->is_active & EVENT_ALL)) {
3523 		/*
3524 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3525 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3526 		 */
3527 		if (ctx->is_active & EVENT_FROZEN)
3528 			ctx->is_active &= EVENT_TIME_FROZEN;
3529 		else
3530 			ctx->is_active = 0;
3531 	}
3532 
3533 	if (ctx->task) {
3534 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3535 		if (!(ctx->is_active & EVENT_ALL))
3536 			cpuctx->task_ctx = NULL;
3537 	}
3538 
3539 	is_active ^= ctx->is_active; /* changed bits */
3540 
3541 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3542 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3543 }
3544 
3545 /*
3546  * Test whether two contexts are equivalent, i.e. whether they have both been
3547  * cloned from the same version of the same context.
3548  *
3549  * Equivalence is measured using a generation number in the context that is
3550  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3551  * and list_del_event().
3552  */
3553 static int context_equiv(struct perf_event_context *ctx1,
3554 			 struct perf_event_context *ctx2)
3555 {
3556 	lockdep_assert_held(&ctx1->lock);
3557 	lockdep_assert_held(&ctx2->lock);
3558 
3559 	/* Pinning disables the swap optimization */
3560 	if (ctx1->pin_count || ctx2->pin_count)
3561 		return 0;
3562 
3563 	/* If ctx1 is the parent of ctx2 */
3564 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3565 		return 1;
3566 
3567 	/* If ctx2 is the parent of ctx1 */
3568 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3569 		return 1;
3570 
3571 	/*
3572 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3573 	 * hierarchy, see perf_event_init_context().
3574 	 */
3575 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3576 			ctx1->parent_gen == ctx2->parent_gen)
3577 		return 1;
3578 
3579 	/* Unmatched */
3580 	return 0;
3581 }
3582 
3583 static void __perf_event_sync_stat(struct perf_event *event,
3584 				     struct perf_event *next_event)
3585 {
3586 	u64 value;
3587 
3588 	if (!event->attr.inherit_stat)
3589 		return;
3590 
3591 	/*
3592 	 * Update the event value, we cannot use perf_event_read()
3593 	 * because we're in the middle of a context switch and have IRQs
3594 	 * disabled, which upsets smp_call_function_single(), however
3595 	 * we know the event must be on the current CPU, therefore we
3596 	 * don't need to use it.
3597 	 */
3598 	perf_pmu_read(event);
3599 
3600 	perf_event_update_time(event);
3601 
3602 	/*
3603 	 * In order to keep per-task stats reliable we need to flip the event
3604 	 * values when we flip the contexts.
3605 	 */
3606 	value = local64_read(&next_event->count);
3607 	value = local64_xchg(&event->count, value);
3608 	local64_set(&next_event->count, value);
3609 
3610 	swap(event->total_time_enabled, next_event->total_time_enabled);
3611 	swap(event->total_time_running, next_event->total_time_running);
3612 
3613 	/*
3614 	 * Since we swizzled the values, update the user visible data too.
3615 	 */
3616 	perf_event_update_userpage(event);
3617 	perf_event_update_userpage(next_event);
3618 }
3619 
3620 static void perf_event_sync_stat(struct perf_event_context *ctx,
3621 				   struct perf_event_context *next_ctx)
3622 {
3623 	struct perf_event *event, *next_event;
3624 
3625 	if (!ctx->nr_stat)
3626 		return;
3627 
3628 	update_context_time(ctx);
3629 
3630 	event = list_first_entry(&ctx->event_list,
3631 				   struct perf_event, event_entry);
3632 
3633 	next_event = list_first_entry(&next_ctx->event_list,
3634 					struct perf_event, event_entry);
3635 
3636 	while (&event->event_entry != &ctx->event_list &&
3637 	       &next_event->event_entry != &next_ctx->event_list) {
3638 
3639 		__perf_event_sync_stat(event, next_event);
3640 
3641 		event = list_next_entry(event, event_entry);
3642 		next_event = list_next_entry(next_event, event_entry);
3643 	}
3644 }
3645 
3646 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3647 				   struct task_struct *task, bool sched_in)
3648 {
3649 	struct perf_event_pmu_context *pmu_ctx;
3650 	struct perf_cpu_pmu_context *cpc;
3651 
3652 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3653 		cpc = this_cpc(pmu_ctx->pmu);
3654 
3655 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3656 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3657 	}
3658 }
3659 
3660 static void
3661 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3662 {
3663 	struct perf_event_context *ctx = task->perf_event_ctxp;
3664 	struct perf_event_context *next_ctx;
3665 	struct perf_event_context *parent, *next_parent;
3666 	int do_switch = 1;
3667 
3668 	if (likely(!ctx))
3669 		return;
3670 
3671 	rcu_read_lock();
3672 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3673 	if (!next_ctx)
3674 		goto unlock;
3675 
3676 	parent = rcu_dereference(ctx->parent_ctx);
3677 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3678 
3679 	/* If neither context have a parent context; they cannot be clones. */
3680 	if (!parent && !next_parent)
3681 		goto unlock;
3682 
3683 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3684 		/*
3685 		 * Looks like the two contexts are clones, so we might be
3686 		 * able to optimize the context switch.  We lock both
3687 		 * contexts and check that they are clones under the
3688 		 * lock (including re-checking that neither has been
3689 		 * uncloned in the meantime).  It doesn't matter which
3690 		 * order we take the locks because no other cpu could
3691 		 * be trying to lock both of these tasks.
3692 		 */
3693 		raw_spin_lock(&ctx->lock);
3694 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3695 		if (context_equiv(ctx, next_ctx)) {
3696 
3697 			perf_ctx_disable(ctx, false);
3698 
3699 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3700 			if (local_read(&ctx->nr_no_switch_fast) ||
3701 			    local_read(&next_ctx->nr_no_switch_fast)) {
3702 				/*
3703 				 * Must not swap out ctx when there's pending
3704 				 * events that rely on the ctx->task relation.
3705 				 *
3706 				 * Likewise, when a context contains inherit +
3707 				 * SAMPLE_READ events they should be switched
3708 				 * out using the slow path so that they are
3709 				 * treated as if they were distinct contexts.
3710 				 */
3711 				raw_spin_unlock(&next_ctx->lock);
3712 				rcu_read_unlock();
3713 				goto inside_switch;
3714 			}
3715 
3716 			WRITE_ONCE(ctx->task, next);
3717 			WRITE_ONCE(next_ctx->task, task);
3718 
3719 			perf_ctx_sched_task_cb(ctx, task, false);
3720 
3721 			perf_ctx_enable(ctx, false);
3722 
3723 			/*
3724 			 * RCU_INIT_POINTER here is safe because we've not
3725 			 * modified the ctx and the above modification of
3726 			 * ctx->task is immaterial since this value is
3727 			 * always verified under ctx->lock which we're now
3728 			 * holding.
3729 			 */
3730 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3731 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3732 
3733 			do_switch = 0;
3734 
3735 			perf_event_sync_stat(ctx, next_ctx);
3736 		}
3737 		raw_spin_unlock(&next_ctx->lock);
3738 		raw_spin_unlock(&ctx->lock);
3739 	}
3740 unlock:
3741 	rcu_read_unlock();
3742 
3743 	if (do_switch) {
3744 		raw_spin_lock(&ctx->lock);
3745 		perf_ctx_disable(ctx, false);
3746 
3747 inside_switch:
3748 		perf_ctx_sched_task_cb(ctx, task, false);
3749 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3750 
3751 		perf_ctx_enable(ctx, false);
3752 		raw_spin_unlock(&ctx->lock);
3753 	}
3754 }
3755 
3756 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3757 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3758 
3759 void perf_sched_cb_dec(struct pmu *pmu)
3760 {
3761 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3762 
3763 	this_cpu_dec(perf_sched_cb_usages);
3764 	barrier();
3765 
3766 	if (!--cpc->sched_cb_usage)
3767 		list_del(&cpc->sched_cb_entry);
3768 }
3769 
3770 
3771 void perf_sched_cb_inc(struct pmu *pmu)
3772 {
3773 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3774 
3775 	if (!cpc->sched_cb_usage++)
3776 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3777 
3778 	barrier();
3779 	this_cpu_inc(perf_sched_cb_usages);
3780 }
3781 
3782 /*
3783  * This function provides the context switch callback to the lower code
3784  * layer. It is invoked ONLY when the context switch callback is enabled.
3785  *
3786  * This callback is relevant even to per-cpu events; for example multi event
3787  * PEBS requires this to provide PID/TID information. This requires we flush
3788  * all queued PEBS records before we context switch to a new task.
3789  */
3790 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3791 				  struct task_struct *task, bool sched_in)
3792 {
3793 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3794 	struct pmu *pmu;
3795 
3796 	pmu = cpc->epc.pmu;
3797 
3798 	/* software PMUs will not have sched_task */
3799 	if (WARN_ON_ONCE(!pmu->sched_task))
3800 		return;
3801 
3802 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3803 	perf_pmu_disable(pmu);
3804 
3805 	pmu->sched_task(cpc->task_epc, task, sched_in);
3806 
3807 	perf_pmu_enable(pmu);
3808 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3809 }
3810 
3811 static void perf_pmu_sched_task(struct task_struct *prev,
3812 				struct task_struct *next,
3813 				bool sched_in)
3814 {
3815 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3816 	struct perf_cpu_pmu_context *cpc;
3817 
3818 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3819 	if (prev == next || cpuctx->task_ctx)
3820 		return;
3821 
3822 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3823 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3824 }
3825 
3826 static void perf_event_switch(struct task_struct *task,
3827 			      struct task_struct *next_prev, bool sched_in);
3828 
3829 /*
3830  * Called from scheduler to remove the events of the current task,
3831  * with interrupts disabled.
3832  *
3833  * We stop each event and update the event value in event->count.
3834  *
3835  * This does not protect us against NMI, but disable()
3836  * sets the disabled bit in the control field of event _before_
3837  * accessing the event control register. If a NMI hits, then it will
3838  * not restart the event.
3839  */
3840 void __perf_event_task_sched_out(struct task_struct *task,
3841 				 struct task_struct *next)
3842 {
3843 	if (__this_cpu_read(perf_sched_cb_usages))
3844 		perf_pmu_sched_task(task, next, false);
3845 
3846 	if (atomic_read(&nr_switch_events))
3847 		perf_event_switch(task, next, false);
3848 
3849 	perf_event_context_sched_out(task, next);
3850 
3851 	/*
3852 	 * if cgroup events exist on this CPU, then we need
3853 	 * to check if we have to switch out PMU state.
3854 	 * cgroup event are system-wide mode only
3855 	 */
3856 	perf_cgroup_switch(next);
3857 }
3858 
3859 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3860 {
3861 	const struct perf_event *le = *(const struct perf_event **)l;
3862 	const struct perf_event *re = *(const struct perf_event **)r;
3863 
3864 	return le->group_index < re->group_index;
3865 }
3866 
3867 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3868 
3869 static const struct min_heap_callbacks perf_min_heap = {
3870 	.less = perf_less_group_idx,
3871 	.swp = NULL,
3872 };
3873 
3874 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3875 {
3876 	struct perf_event **itrs = heap->data;
3877 
3878 	if (event) {
3879 		itrs[heap->nr] = event;
3880 		heap->nr++;
3881 	}
3882 }
3883 
3884 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3885 {
3886 	struct perf_cpu_pmu_context *cpc;
3887 
3888 	if (!pmu_ctx->ctx->task)
3889 		return;
3890 
3891 	cpc = this_cpc(pmu_ctx->pmu);
3892 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3893 	cpc->task_epc = pmu_ctx;
3894 }
3895 
3896 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3897 				struct perf_event_groups *groups, int cpu,
3898 				struct pmu *pmu,
3899 				int (*func)(struct perf_event *, void *),
3900 				void *data)
3901 {
3902 #ifdef CONFIG_CGROUP_PERF
3903 	struct cgroup_subsys_state *css = NULL;
3904 #endif
3905 	struct perf_cpu_context *cpuctx = NULL;
3906 	/* Space for per CPU and/or any CPU event iterators. */
3907 	struct perf_event *itrs[2];
3908 	struct perf_event_min_heap event_heap;
3909 	struct perf_event **evt;
3910 	int ret;
3911 
3912 	if (pmu->filter && pmu->filter(pmu, cpu))
3913 		return 0;
3914 
3915 	if (!ctx->task) {
3916 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3917 		event_heap = (struct perf_event_min_heap){
3918 			.data = cpuctx->heap,
3919 			.nr = 0,
3920 			.size = cpuctx->heap_size,
3921 		};
3922 
3923 		lockdep_assert_held(&cpuctx->ctx.lock);
3924 
3925 #ifdef CONFIG_CGROUP_PERF
3926 		if (cpuctx->cgrp)
3927 			css = &cpuctx->cgrp->css;
3928 #endif
3929 	} else {
3930 		event_heap = (struct perf_event_min_heap){
3931 			.data = itrs,
3932 			.nr = 0,
3933 			.size = ARRAY_SIZE(itrs),
3934 		};
3935 		/* Events not within a CPU context may be on any CPU. */
3936 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3937 	}
3938 	evt = event_heap.data;
3939 
3940 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3941 
3942 #ifdef CONFIG_CGROUP_PERF
3943 	for (; css; css = css->parent)
3944 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3945 #endif
3946 
3947 	if (event_heap.nr) {
3948 		__link_epc((*evt)->pmu_ctx);
3949 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3950 	}
3951 
3952 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3953 
3954 	while (event_heap.nr) {
3955 		ret = func(*evt, data);
3956 		if (ret)
3957 			return ret;
3958 
3959 		*evt = perf_event_groups_next(*evt, pmu);
3960 		if (*evt)
3961 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3962 		else
3963 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3964 	}
3965 
3966 	return 0;
3967 }
3968 
3969 /*
3970  * Because the userpage is strictly per-event (there is no concept of context,
3971  * so there cannot be a context indirection), every userpage must be updated
3972  * when context time starts :-(
3973  *
3974  * IOW, we must not miss EVENT_TIME edges.
3975  */
3976 static inline bool event_update_userpage(struct perf_event *event)
3977 {
3978 	if (likely(!refcount_read(&event->mmap_count)))
3979 		return false;
3980 
3981 	perf_event_update_time(event);
3982 	perf_event_update_userpage(event);
3983 
3984 	return true;
3985 }
3986 
3987 static inline void group_update_userpage(struct perf_event *group_event)
3988 {
3989 	struct perf_event *event;
3990 
3991 	if (!event_update_userpage(group_event))
3992 		return;
3993 
3994 	for_each_sibling_event(event, group_event)
3995 		event_update_userpage(event);
3996 }
3997 
3998 static int merge_sched_in(struct perf_event *event, void *data)
3999 {
4000 	struct perf_event_context *ctx = event->ctx;
4001 	int *can_add_hw = data;
4002 
4003 	if (event->state <= PERF_EVENT_STATE_OFF)
4004 		return 0;
4005 
4006 	if (!event_filter_match(event))
4007 		return 0;
4008 
4009 	if (group_can_go_on(event, *can_add_hw)) {
4010 		if (!group_sched_in(event, ctx))
4011 			list_add_tail(&event->active_list, get_event_list(event));
4012 	}
4013 
4014 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
4015 		*can_add_hw = 0;
4016 		if (event->attr.pinned) {
4017 			perf_cgroup_event_disable(event, ctx);
4018 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4019 
4020 			if (*perf_event_fasync(event))
4021 				event->pending_kill = POLL_ERR;
4022 
4023 			perf_event_wakeup(event);
4024 		} else {
4025 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4026 
4027 			event->pmu_ctx->rotate_necessary = 1;
4028 			perf_mux_hrtimer_restart(cpc);
4029 			group_update_userpage(event);
4030 		}
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4037 				struct perf_event_groups *groups,
4038 				struct pmu *pmu)
4039 {
4040 	int can_add_hw = 1;
4041 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4042 			   merge_sched_in, &can_add_hw);
4043 }
4044 
4045 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4046 			       enum event_type_t event_type)
4047 {
4048 	struct perf_event_context *ctx = pmu_ctx->ctx;
4049 
4050 	if (event_type & EVENT_PINNED)
4051 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4052 	if (event_type & EVENT_FLEXIBLE)
4053 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4054 }
4055 
4056 static void
4057 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4058 {
4059 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4060 	struct perf_event_pmu_context *pmu_ctx;
4061 	int is_active = ctx->is_active;
4062 	bool cgroup = event_type & EVENT_CGROUP;
4063 
4064 	event_type &= ~EVENT_CGROUP;
4065 
4066 	lockdep_assert_held(&ctx->lock);
4067 
4068 	if (likely(!ctx->nr_events))
4069 		return;
4070 
4071 	if (!(is_active & EVENT_TIME)) {
4072 		/* start ctx time */
4073 		__update_context_time(ctx, false);
4074 		perf_cgroup_set_timestamp(cpuctx);
4075 		/*
4076 		 * CPU-release for the below ->is_active store,
4077 		 * see __load_acquire() in perf_event_time_now()
4078 		 */
4079 		barrier();
4080 	}
4081 
4082 	ctx->is_active |= (event_type | EVENT_TIME);
4083 	if (ctx->task) {
4084 		if (!(is_active & EVENT_ALL))
4085 			cpuctx->task_ctx = ctx;
4086 		else
4087 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4088 	}
4089 
4090 	is_active ^= ctx->is_active; /* changed bits */
4091 
4092 	/*
4093 	 * First go through the list and put on any pinned groups
4094 	 * in order to give them the best chance of going on.
4095 	 */
4096 	if (is_active & EVENT_PINNED) {
4097 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4098 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4099 	}
4100 
4101 	/* Then walk through the lower prio flexible groups */
4102 	if (is_active & EVENT_FLEXIBLE) {
4103 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4104 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4105 	}
4106 }
4107 
4108 static void perf_event_context_sched_in(struct task_struct *task)
4109 {
4110 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4111 	struct perf_event_context *ctx;
4112 
4113 	rcu_read_lock();
4114 	ctx = rcu_dereference(task->perf_event_ctxp);
4115 	if (!ctx)
4116 		goto rcu_unlock;
4117 
4118 	if (cpuctx->task_ctx == ctx) {
4119 		perf_ctx_lock(cpuctx, ctx);
4120 		perf_ctx_disable(ctx, false);
4121 
4122 		perf_ctx_sched_task_cb(ctx, task, true);
4123 
4124 		perf_ctx_enable(ctx, false);
4125 		perf_ctx_unlock(cpuctx, ctx);
4126 		goto rcu_unlock;
4127 	}
4128 
4129 	perf_ctx_lock(cpuctx, ctx);
4130 	/*
4131 	 * We must check ctx->nr_events while holding ctx->lock, such
4132 	 * that we serialize against perf_install_in_context().
4133 	 */
4134 	if (!ctx->nr_events)
4135 		goto unlock;
4136 
4137 	perf_ctx_disable(ctx, false);
4138 	/*
4139 	 * We want to keep the following priority order:
4140 	 * cpu pinned (that don't need to move), task pinned,
4141 	 * cpu flexible, task flexible.
4142 	 *
4143 	 * However, if task's ctx is not carrying any pinned
4144 	 * events, no need to flip the cpuctx's events around.
4145 	 */
4146 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4147 		perf_ctx_disable(&cpuctx->ctx, false);
4148 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4149 	}
4150 
4151 	perf_event_sched_in(cpuctx, ctx, NULL);
4152 
4153 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4154 
4155 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4156 		perf_ctx_enable(&cpuctx->ctx, false);
4157 
4158 	perf_ctx_enable(ctx, false);
4159 
4160 unlock:
4161 	perf_ctx_unlock(cpuctx, ctx);
4162 rcu_unlock:
4163 	rcu_read_unlock();
4164 }
4165 
4166 /*
4167  * Called from scheduler to add the events of the current task
4168  * with interrupts disabled.
4169  *
4170  * We restore the event value and then enable it.
4171  *
4172  * This does not protect us against NMI, but enable()
4173  * sets the enabled bit in the control field of event _before_
4174  * accessing the event control register. If a NMI hits, then it will
4175  * keep the event running.
4176  */
4177 void __perf_event_task_sched_in(struct task_struct *prev,
4178 				struct task_struct *task)
4179 {
4180 	perf_event_context_sched_in(task);
4181 
4182 	if (atomic_read(&nr_switch_events))
4183 		perf_event_switch(task, prev, true);
4184 
4185 	if (__this_cpu_read(perf_sched_cb_usages))
4186 		perf_pmu_sched_task(prev, task, true);
4187 }
4188 
4189 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4190 {
4191 	u64 frequency = event->attr.sample_freq;
4192 	u64 sec = NSEC_PER_SEC;
4193 	u64 divisor, dividend;
4194 
4195 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4196 
4197 	count_fls = fls64(count);
4198 	nsec_fls = fls64(nsec);
4199 	frequency_fls = fls64(frequency);
4200 	sec_fls = 30;
4201 
4202 	/*
4203 	 * We got @count in @nsec, with a target of sample_freq HZ
4204 	 * the target period becomes:
4205 	 *
4206 	 *             @count * 10^9
4207 	 * period = -------------------
4208 	 *          @nsec * sample_freq
4209 	 *
4210 	 */
4211 
4212 	/*
4213 	 * Reduce accuracy by one bit such that @a and @b converge
4214 	 * to a similar magnitude.
4215 	 */
4216 #define REDUCE_FLS(a, b)		\
4217 do {					\
4218 	if (a##_fls > b##_fls) {	\
4219 		a >>= 1;		\
4220 		a##_fls--;		\
4221 	} else {			\
4222 		b >>= 1;		\
4223 		b##_fls--;		\
4224 	}				\
4225 } while (0)
4226 
4227 	/*
4228 	 * Reduce accuracy until either term fits in a u64, then proceed with
4229 	 * the other, so that finally we can do a u64/u64 division.
4230 	 */
4231 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4232 		REDUCE_FLS(nsec, frequency);
4233 		REDUCE_FLS(sec, count);
4234 	}
4235 
4236 	if (count_fls + sec_fls > 64) {
4237 		divisor = nsec * frequency;
4238 
4239 		while (count_fls + sec_fls > 64) {
4240 			REDUCE_FLS(count, sec);
4241 			divisor >>= 1;
4242 		}
4243 
4244 		dividend = count * sec;
4245 	} else {
4246 		dividend = count * sec;
4247 
4248 		while (nsec_fls + frequency_fls > 64) {
4249 			REDUCE_FLS(nsec, frequency);
4250 			dividend >>= 1;
4251 		}
4252 
4253 		divisor = nsec * frequency;
4254 	}
4255 
4256 	if (!divisor)
4257 		return dividend;
4258 
4259 	return div64_u64(dividend, divisor);
4260 }
4261 
4262 static DEFINE_PER_CPU(int, perf_throttled_count);
4263 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4264 
4265 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4266 {
4267 	struct hw_perf_event *hwc = &event->hw;
4268 	s64 period, sample_period;
4269 	s64 delta;
4270 
4271 	period = perf_calculate_period(event, nsec, count);
4272 
4273 	delta = (s64)(period - hwc->sample_period);
4274 	if (delta >= 0)
4275 		delta += 7;
4276 	else
4277 		delta -= 7;
4278 	delta /= 8; /* low pass filter */
4279 
4280 	sample_period = hwc->sample_period + delta;
4281 
4282 	if (!sample_period)
4283 		sample_period = 1;
4284 
4285 	hwc->sample_period = sample_period;
4286 
4287 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4288 		if (disable)
4289 			event->pmu->stop(event, PERF_EF_UPDATE);
4290 
4291 		local64_set(&hwc->period_left, 0);
4292 
4293 		if (disable)
4294 			event->pmu->start(event, PERF_EF_RELOAD);
4295 	}
4296 }
4297 
4298 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4299 {
4300 	struct perf_event *event;
4301 	struct hw_perf_event *hwc;
4302 	u64 now, period = TICK_NSEC;
4303 	s64 delta;
4304 
4305 	list_for_each_entry(event, event_list, active_list) {
4306 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4307 			continue;
4308 
4309 		// XXX use visit thingy to avoid the -1,cpu match
4310 		if (!event_filter_match(event))
4311 			continue;
4312 
4313 		hwc = &event->hw;
4314 
4315 		if (hwc->interrupts == MAX_INTERRUPTS)
4316 			perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4317 
4318 		if (!is_event_in_freq_mode(event))
4319 			continue;
4320 
4321 		/*
4322 		 * stop the event and update event->count
4323 		 */
4324 		event->pmu->stop(event, PERF_EF_UPDATE);
4325 
4326 		now = local64_read(&event->count);
4327 		delta = now - hwc->freq_count_stamp;
4328 		hwc->freq_count_stamp = now;
4329 
4330 		/*
4331 		 * restart the event
4332 		 * reload only if value has changed
4333 		 * we have stopped the event so tell that
4334 		 * to perf_adjust_period() to avoid stopping it
4335 		 * twice.
4336 		 */
4337 		if (delta > 0)
4338 			perf_adjust_period(event, period, delta, false);
4339 
4340 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4341 	}
4342 }
4343 
4344 /*
4345  * combine freq adjustment with unthrottling to avoid two passes over the
4346  * events. At the same time, make sure, having freq events does not change
4347  * the rate of unthrottling as that would introduce bias.
4348  */
4349 static void
4350 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4351 {
4352 	struct perf_event_pmu_context *pmu_ctx;
4353 
4354 	/*
4355 	 * only need to iterate over all events iff:
4356 	 * - context have events in frequency mode (needs freq adjust)
4357 	 * - there are events to unthrottle on this cpu
4358 	 */
4359 	if (!(ctx->nr_freq || unthrottle))
4360 		return;
4361 
4362 	raw_spin_lock(&ctx->lock);
4363 
4364 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4365 		if (!(pmu_ctx->nr_freq || unthrottle))
4366 			continue;
4367 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4368 			continue;
4369 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4370 			continue;
4371 
4372 		perf_pmu_disable(pmu_ctx->pmu);
4373 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4374 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4375 		perf_pmu_enable(pmu_ctx->pmu);
4376 	}
4377 
4378 	raw_spin_unlock(&ctx->lock);
4379 }
4380 
4381 /*
4382  * Move @event to the tail of the @ctx's elegible events.
4383  */
4384 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4385 {
4386 	/*
4387 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4388 	 * disabled by the inheritance code.
4389 	 */
4390 	if (ctx->rotate_disable)
4391 		return;
4392 
4393 	perf_event_groups_delete(&ctx->flexible_groups, event);
4394 	perf_event_groups_insert(&ctx->flexible_groups, event);
4395 }
4396 
4397 /* pick an event from the flexible_groups to rotate */
4398 static inline struct perf_event *
4399 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4400 {
4401 	struct perf_event *event;
4402 	struct rb_node *node;
4403 	struct rb_root *tree;
4404 	struct __group_key key = {
4405 		.pmu = pmu_ctx->pmu,
4406 	};
4407 
4408 	/* pick the first active flexible event */
4409 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4410 					 struct perf_event, active_list);
4411 	if (event)
4412 		goto out;
4413 
4414 	/* if no active flexible event, pick the first event */
4415 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4416 
4417 	if (!pmu_ctx->ctx->task) {
4418 		key.cpu = smp_processor_id();
4419 
4420 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4421 		if (node)
4422 			event = __node_2_pe(node);
4423 		goto out;
4424 	}
4425 
4426 	key.cpu = -1;
4427 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4428 	if (node) {
4429 		event = __node_2_pe(node);
4430 		goto out;
4431 	}
4432 
4433 	key.cpu = smp_processor_id();
4434 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4435 	if (node)
4436 		event = __node_2_pe(node);
4437 
4438 out:
4439 	/*
4440 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4441 	 * finds there are unschedulable events, it will set it again.
4442 	 */
4443 	pmu_ctx->rotate_necessary = 0;
4444 
4445 	return event;
4446 }
4447 
4448 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4449 {
4450 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4451 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4452 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4453 	int cpu_rotate, task_rotate;
4454 	struct pmu *pmu;
4455 
4456 	/*
4457 	 * Since we run this from IRQ context, nobody can install new
4458 	 * events, thus the event count values are stable.
4459 	 */
4460 
4461 	cpu_epc = &cpc->epc;
4462 	pmu = cpu_epc->pmu;
4463 	task_epc = cpc->task_epc;
4464 
4465 	cpu_rotate = cpu_epc->rotate_necessary;
4466 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4467 
4468 	if (!(cpu_rotate || task_rotate))
4469 		return false;
4470 
4471 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4472 	perf_pmu_disable(pmu);
4473 
4474 	if (task_rotate)
4475 		task_event = ctx_event_to_rotate(task_epc);
4476 	if (cpu_rotate)
4477 		cpu_event = ctx_event_to_rotate(cpu_epc);
4478 
4479 	/*
4480 	 * As per the order given at ctx_resched() first 'pop' task flexible
4481 	 * and then, if needed CPU flexible.
4482 	 */
4483 	if (task_event || (task_epc && cpu_event)) {
4484 		update_context_time(task_epc->ctx);
4485 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4486 	}
4487 
4488 	if (cpu_event) {
4489 		update_context_time(&cpuctx->ctx);
4490 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4491 		rotate_ctx(&cpuctx->ctx, cpu_event);
4492 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4493 	}
4494 
4495 	if (task_event)
4496 		rotate_ctx(task_epc->ctx, task_event);
4497 
4498 	if (task_event || (task_epc && cpu_event))
4499 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4500 
4501 	perf_pmu_enable(pmu);
4502 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4503 
4504 	return true;
4505 }
4506 
4507 void perf_event_task_tick(void)
4508 {
4509 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4510 	struct perf_event_context *ctx;
4511 	int throttled;
4512 
4513 	lockdep_assert_irqs_disabled();
4514 
4515 	__this_cpu_inc(perf_throttled_seq);
4516 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4517 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4518 
4519 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4520 
4521 	rcu_read_lock();
4522 	ctx = rcu_dereference(current->perf_event_ctxp);
4523 	if (ctx)
4524 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4525 	rcu_read_unlock();
4526 }
4527 
4528 static int event_enable_on_exec(struct perf_event *event,
4529 				struct perf_event_context *ctx)
4530 {
4531 	if (!event->attr.enable_on_exec)
4532 		return 0;
4533 
4534 	event->attr.enable_on_exec = 0;
4535 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4536 		return 0;
4537 
4538 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4539 
4540 	return 1;
4541 }
4542 
4543 /*
4544  * Enable all of a task's events that have been marked enable-on-exec.
4545  * This expects task == current.
4546  */
4547 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4548 {
4549 	struct perf_event_context *clone_ctx = NULL;
4550 	enum event_type_t event_type = 0;
4551 	struct perf_cpu_context *cpuctx;
4552 	struct perf_event *event;
4553 	unsigned long flags;
4554 	int enabled = 0;
4555 
4556 	local_irq_save(flags);
4557 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4558 		goto out;
4559 
4560 	if (!ctx->nr_events)
4561 		goto out;
4562 
4563 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4564 	perf_ctx_lock(cpuctx, ctx);
4565 	ctx_time_freeze(cpuctx, ctx);
4566 
4567 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4568 		enabled |= event_enable_on_exec(event, ctx);
4569 		event_type |= get_event_type(event);
4570 	}
4571 
4572 	/*
4573 	 * Unclone and reschedule this context if we enabled any event.
4574 	 */
4575 	if (enabled) {
4576 		clone_ctx = unclone_ctx(ctx);
4577 		ctx_resched(cpuctx, ctx, NULL, event_type);
4578 	}
4579 	perf_ctx_unlock(cpuctx, ctx);
4580 
4581 out:
4582 	local_irq_restore(flags);
4583 
4584 	if (clone_ctx)
4585 		put_ctx(clone_ctx);
4586 }
4587 
4588 static void perf_remove_from_owner(struct perf_event *event);
4589 static void perf_event_exit_event(struct perf_event *event,
4590 				  struct perf_event_context *ctx,
4591 				  bool revoke);
4592 
4593 /*
4594  * Removes all events from the current task that have been marked
4595  * remove-on-exec, and feeds their values back to parent events.
4596  */
4597 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4598 {
4599 	struct perf_event_context *clone_ctx = NULL;
4600 	struct perf_event *event, *next;
4601 	unsigned long flags;
4602 	bool modified = false;
4603 
4604 	mutex_lock(&ctx->mutex);
4605 
4606 	if (WARN_ON_ONCE(ctx->task != current))
4607 		goto unlock;
4608 
4609 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4610 		if (!event->attr.remove_on_exec)
4611 			continue;
4612 
4613 		if (!is_kernel_event(event))
4614 			perf_remove_from_owner(event);
4615 
4616 		modified = true;
4617 
4618 		perf_event_exit_event(event, ctx, false);
4619 	}
4620 
4621 	raw_spin_lock_irqsave(&ctx->lock, flags);
4622 	if (modified)
4623 		clone_ctx = unclone_ctx(ctx);
4624 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4625 
4626 unlock:
4627 	mutex_unlock(&ctx->mutex);
4628 
4629 	if (clone_ctx)
4630 		put_ctx(clone_ctx);
4631 }
4632 
4633 struct perf_read_data {
4634 	struct perf_event *event;
4635 	bool group;
4636 	int ret;
4637 };
4638 
4639 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4640 
4641 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4642 {
4643 	int local_cpu = smp_processor_id();
4644 	u16 local_pkg, event_pkg;
4645 
4646 	if ((unsigned)event_cpu >= nr_cpu_ids)
4647 		return event_cpu;
4648 
4649 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4650 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4651 
4652 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4653 			return local_cpu;
4654 	}
4655 
4656 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4657 		event_pkg = topology_physical_package_id(event_cpu);
4658 		local_pkg = topology_physical_package_id(local_cpu);
4659 
4660 		if (event_pkg == local_pkg)
4661 			return local_cpu;
4662 	}
4663 
4664 	return event_cpu;
4665 }
4666 
4667 /*
4668  * Cross CPU call to read the hardware event
4669  */
4670 static void __perf_event_read(void *info)
4671 {
4672 	struct perf_read_data *data = info;
4673 	struct perf_event *sub, *event = data->event;
4674 	struct perf_event_context *ctx = event->ctx;
4675 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4676 	struct pmu *pmu = event->pmu;
4677 
4678 	/*
4679 	 * If this is a task context, we need to check whether it is
4680 	 * the current task context of this cpu.  If not it has been
4681 	 * scheduled out before the smp call arrived.  In that case
4682 	 * event->count would have been updated to a recent sample
4683 	 * when the event was scheduled out.
4684 	 */
4685 	if (ctx->task && cpuctx->task_ctx != ctx)
4686 		return;
4687 
4688 	raw_spin_lock(&ctx->lock);
4689 	ctx_time_update_event(ctx, event);
4690 
4691 	perf_event_update_time(event);
4692 	if (data->group)
4693 		perf_event_update_sibling_time(event);
4694 
4695 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4696 		goto unlock;
4697 
4698 	if (!data->group) {
4699 		pmu->read(event);
4700 		data->ret = 0;
4701 		goto unlock;
4702 	}
4703 
4704 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4705 
4706 	pmu->read(event);
4707 
4708 	for_each_sibling_event(sub, event)
4709 		perf_pmu_read(sub);
4710 
4711 	data->ret = pmu->commit_txn(pmu);
4712 
4713 unlock:
4714 	raw_spin_unlock(&ctx->lock);
4715 }
4716 
4717 static inline u64 perf_event_count(struct perf_event *event, bool self)
4718 {
4719 	if (self)
4720 		return local64_read(&event->count);
4721 
4722 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4723 }
4724 
4725 static void calc_timer_values(struct perf_event *event,
4726 				u64 *now,
4727 				u64 *enabled,
4728 				u64 *running)
4729 {
4730 	u64 ctx_time;
4731 
4732 	*now = perf_clock();
4733 	ctx_time = perf_event_time_now(event, *now);
4734 	__perf_update_times(event, ctx_time, enabled, running);
4735 }
4736 
4737 /*
4738  * NMI-safe method to read a local event, that is an event that
4739  * is:
4740  *   - either for the current task, or for this CPU
4741  *   - does not have inherit set, for inherited task events
4742  *     will not be local and we cannot read them atomically
4743  *   - must not have a pmu::count method
4744  */
4745 int perf_event_read_local(struct perf_event *event, u64 *value,
4746 			  u64 *enabled, u64 *running)
4747 {
4748 	unsigned long flags;
4749 	int event_oncpu;
4750 	int event_cpu;
4751 	int ret = 0;
4752 
4753 	/*
4754 	 * Disabling interrupts avoids all counter scheduling (context
4755 	 * switches, timer based rotation and IPIs).
4756 	 */
4757 	local_irq_save(flags);
4758 
4759 	/*
4760 	 * It must not be an event with inherit set, we cannot read
4761 	 * all child counters from atomic context.
4762 	 */
4763 	if (event->attr.inherit) {
4764 		ret = -EOPNOTSUPP;
4765 		goto out;
4766 	}
4767 
4768 	/* If this is a per-task event, it must be for current */
4769 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4770 	    event->hw.target != current) {
4771 		ret = -EINVAL;
4772 		goto out;
4773 	}
4774 
4775 	/*
4776 	 * Get the event CPU numbers, and adjust them to local if the event is
4777 	 * a per-package event that can be read locally
4778 	 */
4779 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4780 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4781 
4782 	/* If this is a per-CPU event, it must be for this CPU */
4783 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4784 	    event_cpu != smp_processor_id()) {
4785 		ret = -EINVAL;
4786 		goto out;
4787 	}
4788 
4789 	/* If this is a pinned event it must be running on this CPU */
4790 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4791 		ret = -EBUSY;
4792 		goto out;
4793 	}
4794 
4795 	/*
4796 	 * If the event is currently on this CPU, its either a per-task event,
4797 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4798 	 * oncpu == -1).
4799 	 */
4800 	if (event_oncpu == smp_processor_id())
4801 		event->pmu->read(event);
4802 
4803 	*value = local64_read(&event->count);
4804 	if (enabled || running) {
4805 		u64 __enabled, __running, __now;
4806 
4807 		calc_timer_values(event, &__now, &__enabled, &__running);
4808 		if (enabled)
4809 			*enabled = __enabled;
4810 		if (running)
4811 			*running = __running;
4812 	}
4813 out:
4814 	local_irq_restore(flags);
4815 
4816 	return ret;
4817 }
4818 
4819 static int perf_event_read(struct perf_event *event, bool group)
4820 {
4821 	enum perf_event_state state = READ_ONCE(event->state);
4822 	int event_cpu, ret = 0;
4823 
4824 	/*
4825 	 * If event is enabled and currently active on a CPU, update the
4826 	 * value in the event structure:
4827 	 */
4828 again:
4829 	if (state == PERF_EVENT_STATE_ACTIVE) {
4830 		struct perf_read_data data;
4831 
4832 		/*
4833 		 * Orders the ->state and ->oncpu loads such that if we see
4834 		 * ACTIVE we must also see the right ->oncpu.
4835 		 *
4836 		 * Matches the smp_wmb() from event_sched_in().
4837 		 */
4838 		smp_rmb();
4839 
4840 		event_cpu = READ_ONCE(event->oncpu);
4841 		if ((unsigned)event_cpu >= nr_cpu_ids)
4842 			return 0;
4843 
4844 		data = (struct perf_read_data){
4845 			.event = event,
4846 			.group = group,
4847 			.ret = 0,
4848 		};
4849 
4850 		preempt_disable();
4851 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4852 
4853 		/*
4854 		 * Purposely ignore the smp_call_function_single() return
4855 		 * value.
4856 		 *
4857 		 * If event_cpu isn't a valid CPU it means the event got
4858 		 * scheduled out and that will have updated the event count.
4859 		 *
4860 		 * Therefore, either way, we'll have an up-to-date event count
4861 		 * after this.
4862 		 */
4863 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4864 		preempt_enable();
4865 		ret = data.ret;
4866 
4867 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4868 		struct perf_event_context *ctx = event->ctx;
4869 		unsigned long flags;
4870 
4871 		raw_spin_lock_irqsave(&ctx->lock, flags);
4872 		state = event->state;
4873 		if (state != PERF_EVENT_STATE_INACTIVE) {
4874 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4875 			goto again;
4876 		}
4877 
4878 		/*
4879 		 * May read while context is not active (e.g., thread is
4880 		 * blocked), in that case we cannot update context time
4881 		 */
4882 		ctx_time_update_event(ctx, event);
4883 
4884 		perf_event_update_time(event);
4885 		if (group)
4886 			perf_event_update_sibling_time(event);
4887 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4888 	}
4889 
4890 	return ret;
4891 }
4892 
4893 /*
4894  * Initialize the perf_event context in a task_struct:
4895  */
4896 static void __perf_event_init_context(struct perf_event_context *ctx)
4897 {
4898 	raw_spin_lock_init(&ctx->lock);
4899 	mutex_init(&ctx->mutex);
4900 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4901 	perf_event_groups_init(&ctx->pinned_groups);
4902 	perf_event_groups_init(&ctx->flexible_groups);
4903 	INIT_LIST_HEAD(&ctx->event_list);
4904 	refcount_set(&ctx->refcount, 1);
4905 }
4906 
4907 static void
4908 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4909 {
4910 	epc->pmu = pmu;
4911 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4912 	INIT_LIST_HEAD(&epc->pinned_active);
4913 	INIT_LIST_HEAD(&epc->flexible_active);
4914 	atomic_set(&epc->refcount, 1);
4915 }
4916 
4917 static struct perf_event_context *
4918 alloc_perf_context(struct task_struct *task)
4919 {
4920 	struct perf_event_context *ctx;
4921 
4922 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4923 	if (!ctx)
4924 		return NULL;
4925 
4926 	__perf_event_init_context(ctx);
4927 	if (task)
4928 		ctx->task = get_task_struct(task);
4929 
4930 	return ctx;
4931 }
4932 
4933 static struct task_struct *
4934 find_lively_task_by_vpid(pid_t vpid)
4935 {
4936 	struct task_struct *task;
4937 
4938 	rcu_read_lock();
4939 	if (!vpid)
4940 		task = current;
4941 	else
4942 		task = find_task_by_vpid(vpid);
4943 	if (task)
4944 		get_task_struct(task);
4945 	rcu_read_unlock();
4946 
4947 	if (!task)
4948 		return ERR_PTR(-ESRCH);
4949 
4950 	return task;
4951 }
4952 
4953 /*
4954  * Returns a matching context with refcount and pincount.
4955  */
4956 static struct perf_event_context *
4957 find_get_context(struct task_struct *task, struct perf_event *event)
4958 {
4959 	struct perf_event_context *ctx, *clone_ctx = NULL;
4960 	struct perf_cpu_context *cpuctx;
4961 	unsigned long flags;
4962 	int err;
4963 
4964 	if (!task) {
4965 		/* Must be root to operate on a CPU event: */
4966 		err = perf_allow_cpu();
4967 		if (err)
4968 			return ERR_PTR(err);
4969 
4970 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4971 		ctx = &cpuctx->ctx;
4972 		get_ctx(ctx);
4973 		raw_spin_lock_irqsave(&ctx->lock, flags);
4974 		++ctx->pin_count;
4975 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4976 
4977 		return ctx;
4978 	}
4979 
4980 	err = -EINVAL;
4981 retry:
4982 	ctx = perf_lock_task_context(task, &flags);
4983 	if (ctx) {
4984 		clone_ctx = unclone_ctx(ctx);
4985 		++ctx->pin_count;
4986 
4987 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988 
4989 		if (clone_ctx)
4990 			put_ctx(clone_ctx);
4991 	} else {
4992 		ctx = alloc_perf_context(task);
4993 		err = -ENOMEM;
4994 		if (!ctx)
4995 			goto errout;
4996 
4997 		err = 0;
4998 		mutex_lock(&task->perf_event_mutex);
4999 		/*
5000 		 * If it has already passed perf_event_exit_task().
5001 		 * we must see PF_EXITING, it takes this mutex too.
5002 		 */
5003 		if (task->flags & PF_EXITING)
5004 			err = -ESRCH;
5005 		else if (task->perf_event_ctxp)
5006 			err = -EAGAIN;
5007 		else {
5008 			get_ctx(ctx);
5009 			++ctx->pin_count;
5010 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
5011 		}
5012 		mutex_unlock(&task->perf_event_mutex);
5013 
5014 		if (unlikely(err)) {
5015 			put_ctx(ctx);
5016 
5017 			if (err == -EAGAIN)
5018 				goto retry;
5019 			goto errout;
5020 		}
5021 	}
5022 
5023 	return ctx;
5024 
5025 errout:
5026 	return ERR_PTR(err);
5027 }
5028 
5029 static struct perf_event_pmu_context *
5030 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5031 		     struct perf_event *event)
5032 {
5033 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5034 
5035 	if (!ctx->task) {
5036 		/*
5037 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5038 		 * relies on the fact that find_get_pmu_context() cannot fail
5039 		 * for CPU contexts.
5040 		 */
5041 		struct perf_cpu_pmu_context *cpc;
5042 
5043 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5044 		epc = &cpc->epc;
5045 		raw_spin_lock_irq(&ctx->lock);
5046 		if (!epc->ctx) {
5047 			/*
5048 			 * One extra reference for the pmu; see perf_pmu_free().
5049 			 */
5050 			atomic_set(&epc->refcount, 2);
5051 			epc->embedded = 1;
5052 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5053 			epc->ctx = ctx;
5054 		} else {
5055 			WARN_ON_ONCE(epc->ctx != ctx);
5056 			atomic_inc(&epc->refcount);
5057 		}
5058 		raw_spin_unlock_irq(&ctx->lock);
5059 		return epc;
5060 	}
5061 
5062 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5063 	if (!new)
5064 		return ERR_PTR(-ENOMEM);
5065 
5066 	__perf_init_event_pmu_context(new, pmu);
5067 
5068 	/*
5069 	 * XXX
5070 	 *
5071 	 * lockdep_assert_held(&ctx->mutex);
5072 	 *
5073 	 * can't because perf_event_init_task() doesn't actually hold the
5074 	 * child_ctx->mutex.
5075 	 */
5076 
5077 	raw_spin_lock_irq(&ctx->lock);
5078 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5079 		if (epc->pmu == pmu) {
5080 			WARN_ON_ONCE(epc->ctx != ctx);
5081 			atomic_inc(&epc->refcount);
5082 			goto found_epc;
5083 		}
5084 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5085 		if (!pos && epc->pmu->type > pmu->type)
5086 			pos = epc;
5087 	}
5088 
5089 	epc = new;
5090 	new = NULL;
5091 
5092 	if (!pos)
5093 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5094 	else
5095 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5096 
5097 	epc->ctx = ctx;
5098 
5099 found_epc:
5100 	raw_spin_unlock_irq(&ctx->lock);
5101 	kfree(new);
5102 
5103 	return epc;
5104 }
5105 
5106 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5107 {
5108 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5109 }
5110 
5111 static void free_cpc_rcu(struct rcu_head *head)
5112 {
5113 	struct perf_cpu_pmu_context *cpc =
5114 		container_of(head, typeof(*cpc), epc.rcu_head);
5115 
5116 	kfree(cpc);
5117 }
5118 
5119 static void free_epc_rcu(struct rcu_head *head)
5120 {
5121 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5122 
5123 	kfree(epc);
5124 }
5125 
5126 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5127 {
5128 	struct perf_event_context *ctx = epc->ctx;
5129 	unsigned long flags;
5130 
5131 	/*
5132 	 * XXX
5133 	 *
5134 	 * lockdep_assert_held(&ctx->mutex);
5135 	 *
5136 	 * can't because of the call-site in _free_event()/put_event()
5137 	 * which isn't always called under ctx->mutex.
5138 	 */
5139 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5140 		return;
5141 
5142 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5143 
5144 	list_del_init(&epc->pmu_ctx_entry);
5145 	epc->ctx = NULL;
5146 
5147 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5148 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5149 
5150 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5151 
5152 	if (epc->embedded) {
5153 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5154 		return;
5155 	}
5156 
5157 	call_rcu(&epc->rcu_head, free_epc_rcu);
5158 }
5159 
5160 static void perf_event_free_filter(struct perf_event *event);
5161 
5162 static void free_event_rcu(struct rcu_head *head)
5163 {
5164 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5165 
5166 	if (event->ns)
5167 		put_pid_ns(event->ns);
5168 	perf_event_free_filter(event);
5169 	kmem_cache_free(perf_event_cache, event);
5170 }
5171 
5172 static void ring_buffer_attach(struct perf_event *event,
5173 			       struct perf_buffer *rb);
5174 
5175 static void detach_sb_event(struct perf_event *event)
5176 {
5177 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5178 
5179 	raw_spin_lock(&pel->lock);
5180 	list_del_rcu(&event->sb_list);
5181 	raw_spin_unlock(&pel->lock);
5182 }
5183 
5184 static bool is_sb_event(struct perf_event *event)
5185 {
5186 	struct perf_event_attr *attr = &event->attr;
5187 
5188 	if (event->parent)
5189 		return false;
5190 
5191 	if (event->attach_state & PERF_ATTACH_TASK)
5192 		return false;
5193 
5194 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5195 	    attr->comm || attr->comm_exec ||
5196 	    attr->task || attr->ksymbol ||
5197 	    attr->context_switch || attr->text_poke ||
5198 	    attr->bpf_event)
5199 		return true;
5200 
5201 	return false;
5202 }
5203 
5204 static void unaccount_pmu_sb_event(struct perf_event *event)
5205 {
5206 	if (is_sb_event(event))
5207 		detach_sb_event(event);
5208 }
5209 
5210 #ifdef CONFIG_NO_HZ_FULL
5211 static DEFINE_SPINLOCK(nr_freq_lock);
5212 #endif
5213 
5214 static void unaccount_freq_event_nohz(void)
5215 {
5216 #ifdef CONFIG_NO_HZ_FULL
5217 	spin_lock(&nr_freq_lock);
5218 	if (atomic_dec_and_test(&nr_freq_events))
5219 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5220 	spin_unlock(&nr_freq_lock);
5221 #endif
5222 }
5223 
5224 static void unaccount_freq_event(void)
5225 {
5226 	if (tick_nohz_full_enabled())
5227 		unaccount_freq_event_nohz();
5228 	else
5229 		atomic_dec(&nr_freq_events);
5230 }
5231 
5232 
5233 static struct perf_ctx_data *
5234 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5235 {
5236 	struct perf_ctx_data *cd;
5237 
5238 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5239 	if (!cd)
5240 		return NULL;
5241 
5242 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5243 	if (!cd->data) {
5244 		kfree(cd);
5245 		return NULL;
5246 	}
5247 
5248 	cd->global = global;
5249 	cd->ctx_cache = ctx_cache;
5250 	refcount_set(&cd->refcount, 1);
5251 
5252 	return cd;
5253 }
5254 
5255 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5256 {
5257 	kmem_cache_free(cd->ctx_cache, cd->data);
5258 	kfree(cd);
5259 }
5260 
5261 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5262 {
5263 	struct perf_ctx_data *cd;
5264 
5265 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5266 	free_perf_ctx_data(cd);
5267 }
5268 
5269 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5270 {
5271 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5272 }
5273 
5274 static int
5275 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5276 		     bool global)
5277 {
5278 	struct perf_ctx_data *cd, *old = NULL;
5279 
5280 	cd = alloc_perf_ctx_data(ctx_cache, global);
5281 	if (!cd)
5282 		return -ENOMEM;
5283 
5284 	for (;;) {
5285 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5286 			if (old)
5287 				perf_free_ctx_data_rcu(old);
5288 			return 0;
5289 		}
5290 
5291 		if (!old) {
5292 			/*
5293 			 * After seeing a dead @old, we raced with
5294 			 * removal and lost, try again to install @cd.
5295 			 */
5296 			continue;
5297 		}
5298 
5299 		if (refcount_inc_not_zero(&old->refcount)) {
5300 			free_perf_ctx_data(cd); /* unused */
5301 			return 0;
5302 		}
5303 
5304 		/*
5305 		 * @old is a dead object, refcount==0 is stable, try and
5306 		 * replace it with @cd.
5307 		 */
5308 	}
5309 	return 0;
5310 }
5311 
5312 static void __detach_global_ctx_data(void);
5313 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5314 static refcount_t global_ctx_data_ref;
5315 
5316 static int
5317 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5318 {
5319 	struct task_struct *g, *p;
5320 	struct perf_ctx_data *cd;
5321 	int ret;
5322 
5323 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5324 		return 0;
5325 
5326 	guard(percpu_write)(&global_ctx_data_rwsem);
5327 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5328 		return 0;
5329 again:
5330 	/* Allocate everything */
5331 	scoped_guard (rcu) {
5332 		for_each_process_thread(g, p) {
5333 			cd = rcu_dereference(p->perf_ctx_data);
5334 			if (cd && !cd->global) {
5335 				cd->global = 1;
5336 				if (!refcount_inc_not_zero(&cd->refcount))
5337 					cd = NULL;
5338 			}
5339 			if (!cd) {
5340 				get_task_struct(p);
5341 				goto alloc;
5342 			}
5343 		}
5344 	}
5345 
5346 	refcount_set(&global_ctx_data_ref, 1);
5347 
5348 	return 0;
5349 alloc:
5350 	ret = attach_task_ctx_data(p, ctx_cache, true);
5351 	put_task_struct(p);
5352 	if (ret) {
5353 		__detach_global_ctx_data();
5354 		return ret;
5355 	}
5356 	goto again;
5357 }
5358 
5359 static int
5360 attach_perf_ctx_data(struct perf_event *event)
5361 {
5362 	struct task_struct *task = event->hw.target;
5363 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5364 	int ret;
5365 
5366 	if (!ctx_cache)
5367 		return -ENOMEM;
5368 
5369 	if (task)
5370 		return attach_task_ctx_data(task, ctx_cache, false);
5371 
5372 	ret = attach_global_ctx_data(ctx_cache);
5373 	if (ret)
5374 		return ret;
5375 
5376 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5377 	return 0;
5378 }
5379 
5380 static void
5381 detach_task_ctx_data(struct task_struct *p)
5382 {
5383 	struct perf_ctx_data *cd;
5384 
5385 	scoped_guard (rcu) {
5386 		cd = rcu_dereference(p->perf_ctx_data);
5387 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5388 			return;
5389 	}
5390 
5391 	/*
5392 	 * The old ctx_data may be lost because of the race.
5393 	 * Nothing is required to do for the case.
5394 	 * See attach_task_ctx_data().
5395 	 */
5396 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5397 		perf_free_ctx_data_rcu(cd);
5398 }
5399 
5400 static void __detach_global_ctx_data(void)
5401 {
5402 	struct task_struct *g, *p;
5403 	struct perf_ctx_data *cd;
5404 
5405 again:
5406 	scoped_guard (rcu) {
5407 		for_each_process_thread(g, p) {
5408 			cd = rcu_dereference(p->perf_ctx_data);
5409 			if (!cd || !cd->global)
5410 				continue;
5411 			cd->global = 0;
5412 			get_task_struct(p);
5413 			goto detach;
5414 		}
5415 	}
5416 	return;
5417 detach:
5418 	detach_task_ctx_data(p);
5419 	put_task_struct(p);
5420 	goto again;
5421 }
5422 
5423 static void detach_global_ctx_data(void)
5424 {
5425 	if (refcount_dec_not_one(&global_ctx_data_ref))
5426 		return;
5427 
5428 	guard(percpu_write)(&global_ctx_data_rwsem);
5429 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5430 		return;
5431 
5432 	/* remove everything */
5433 	__detach_global_ctx_data();
5434 }
5435 
5436 static void detach_perf_ctx_data(struct perf_event *event)
5437 {
5438 	struct task_struct *task = event->hw.target;
5439 
5440 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5441 
5442 	if (task)
5443 		return detach_task_ctx_data(task);
5444 
5445 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5446 		detach_global_ctx_data();
5447 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5448 	}
5449 }
5450 
5451 static void unaccount_event(struct perf_event *event)
5452 {
5453 	bool dec = false;
5454 
5455 	if (event->parent)
5456 		return;
5457 
5458 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5459 		dec = true;
5460 	if (event->attr.mmap || event->attr.mmap_data)
5461 		atomic_dec(&nr_mmap_events);
5462 	if (event->attr.build_id)
5463 		atomic_dec(&nr_build_id_events);
5464 	if (event->attr.comm)
5465 		atomic_dec(&nr_comm_events);
5466 	if (event->attr.namespaces)
5467 		atomic_dec(&nr_namespaces_events);
5468 	if (event->attr.cgroup)
5469 		atomic_dec(&nr_cgroup_events);
5470 	if (event->attr.task)
5471 		atomic_dec(&nr_task_events);
5472 	if (event->attr.freq)
5473 		unaccount_freq_event();
5474 	if (event->attr.context_switch) {
5475 		dec = true;
5476 		atomic_dec(&nr_switch_events);
5477 	}
5478 	if (is_cgroup_event(event))
5479 		dec = true;
5480 	if (has_branch_stack(event))
5481 		dec = true;
5482 	if (event->attr.ksymbol)
5483 		atomic_dec(&nr_ksymbol_events);
5484 	if (event->attr.bpf_event)
5485 		atomic_dec(&nr_bpf_events);
5486 	if (event->attr.text_poke)
5487 		atomic_dec(&nr_text_poke_events);
5488 
5489 	if (dec) {
5490 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5491 			schedule_delayed_work(&perf_sched_work, HZ);
5492 	}
5493 
5494 	unaccount_pmu_sb_event(event);
5495 }
5496 
5497 static void perf_sched_delayed(struct work_struct *work)
5498 {
5499 	mutex_lock(&perf_sched_mutex);
5500 	if (atomic_dec_and_test(&perf_sched_count))
5501 		static_branch_disable(&perf_sched_events);
5502 	mutex_unlock(&perf_sched_mutex);
5503 }
5504 
5505 /*
5506  * The following implement mutual exclusion of events on "exclusive" pmus
5507  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5508  * at a time, so we disallow creating events that might conflict, namely:
5509  *
5510  *  1) cpu-wide events in the presence of per-task events,
5511  *  2) per-task events in the presence of cpu-wide events,
5512  *  3) two matching events on the same perf_event_context.
5513  *
5514  * The former two cases are handled in the allocation path (perf_event_alloc(),
5515  * _free_event()), the latter -- before the first perf_install_in_context().
5516  */
5517 static int exclusive_event_init(struct perf_event *event)
5518 {
5519 	struct pmu *pmu = event->pmu;
5520 
5521 	if (!is_exclusive_pmu(pmu))
5522 		return 0;
5523 
5524 	/*
5525 	 * Prevent co-existence of per-task and cpu-wide events on the
5526 	 * same exclusive pmu.
5527 	 *
5528 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5529 	 * events on this "exclusive" pmu, positive means there are
5530 	 * per-task events.
5531 	 *
5532 	 * Since this is called in perf_event_alloc() path, event::ctx
5533 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5534 	 * to mean "per-task event", because unlike other attach states it
5535 	 * never gets cleared.
5536 	 */
5537 	if (event->attach_state & PERF_ATTACH_TASK) {
5538 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5539 			return -EBUSY;
5540 	} else {
5541 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5542 			return -EBUSY;
5543 	}
5544 
5545 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5546 
5547 	return 0;
5548 }
5549 
5550 static void exclusive_event_destroy(struct perf_event *event)
5551 {
5552 	struct pmu *pmu = event->pmu;
5553 
5554 	/* see comment in exclusive_event_init() */
5555 	if (event->attach_state & PERF_ATTACH_TASK)
5556 		atomic_dec(&pmu->exclusive_cnt);
5557 	else
5558 		atomic_inc(&pmu->exclusive_cnt);
5559 
5560 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5561 }
5562 
5563 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5564 {
5565 	if ((e1->pmu == e2->pmu) &&
5566 	    (e1->cpu == e2->cpu ||
5567 	     e1->cpu == -1 ||
5568 	     e2->cpu == -1))
5569 		return true;
5570 	return false;
5571 }
5572 
5573 static bool exclusive_event_installable(struct perf_event *event,
5574 					struct perf_event_context *ctx)
5575 {
5576 	struct perf_event *iter_event;
5577 	struct pmu *pmu = event->pmu;
5578 
5579 	lockdep_assert_held(&ctx->mutex);
5580 
5581 	if (!is_exclusive_pmu(pmu))
5582 		return true;
5583 
5584 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5585 		if (exclusive_event_match(iter_event, event))
5586 			return false;
5587 	}
5588 
5589 	return true;
5590 }
5591 
5592 static void perf_free_addr_filters(struct perf_event *event);
5593 
5594 /* vs perf_event_alloc() error */
5595 static void __free_event(struct perf_event *event)
5596 {
5597 	struct pmu *pmu = event->pmu;
5598 
5599 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5600 		put_callchain_buffers();
5601 
5602 	kfree(event->addr_filter_ranges);
5603 
5604 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5605 		exclusive_event_destroy(event);
5606 
5607 	if (is_cgroup_event(event))
5608 		perf_detach_cgroup(event);
5609 
5610 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5611 		detach_perf_ctx_data(event);
5612 
5613 	if (event->destroy)
5614 		event->destroy(event);
5615 
5616 	/*
5617 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5618 	 * hw.target.
5619 	 */
5620 	if (event->hw.target)
5621 		put_task_struct(event->hw.target);
5622 
5623 	if (event->pmu_ctx) {
5624 		/*
5625 		 * put_pmu_ctx() needs an event->ctx reference, because of
5626 		 * epc->ctx.
5627 		 */
5628 		WARN_ON_ONCE(!pmu);
5629 		WARN_ON_ONCE(!event->ctx);
5630 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5631 		put_pmu_ctx(event->pmu_ctx);
5632 	}
5633 
5634 	/*
5635 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5636 	 * particular all task references must be cleaned up.
5637 	 */
5638 	if (event->ctx)
5639 		put_ctx(event->ctx);
5640 
5641 	if (pmu) {
5642 		module_put(pmu->module);
5643 		scoped_guard (spinlock, &pmu->events_lock) {
5644 			list_del(&event->pmu_list);
5645 			wake_up_var(pmu);
5646 		}
5647 	}
5648 
5649 	call_rcu(&event->rcu_head, free_event_rcu);
5650 }
5651 
5652 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5653 
5654 /* vs perf_event_alloc() success */
5655 static void _free_event(struct perf_event *event)
5656 {
5657 	irq_work_sync(&event->pending_irq);
5658 	irq_work_sync(&event->pending_disable_irq);
5659 
5660 	unaccount_event(event);
5661 
5662 	security_perf_event_free(event);
5663 
5664 	if (event->rb) {
5665 		/*
5666 		 * Can happen when we close an event with re-directed output.
5667 		 *
5668 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5669 		 * over us; possibly making our ring_buffer_put() the last.
5670 		 */
5671 		mutex_lock(&event->mmap_mutex);
5672 		ring_buffer_attach(event, NULL);
5673 		mutex_unlock(&event->mmap_mutex);
5674 	}
5675 
5676 	perf_event_free_bpf_prog(event);
5677 	perf_free_addr_filters(event);
5678 
5679 	__free_event(event);
5680 }
5681 
5682 /*
5683  * Used to free events which have a known refcount of 1, such as in error paths
5684  * of inherited events.
5685  */
5686 static void free_event(struct perf_event *event)
5687 {
5688 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5689 				     "unexpected event refcount: %ld; ptr=%p\n",
5690 				     atomic_long_read(&event->refcount), event)) {
5691 		/* leak to avoid use-after-free */
5692 		return;
5693 	}
5694 
5695 	_free_event(event);
5696 }
5697 
5698 /*
5699  * Remove user event from the owner task.
5700  */
5701 static void perf_remove_from_owner(struct perf_event *event)
5702 {
5703 	struct task_struct *owner;
5704 
5705 	rcu_read_lock();
5706 	/*
5707 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5708 	 * observe !owner it means the list deletion is complete and we can
5709 	 * indeed free this event, otherwise we need to serialize on
5710 	 * owner->perf_event_mutex.
5711 	 */
5712 	owner = READ_ONCE(event->owner);
5713 	if (owner) {
5714 		/*
5715 		 * Since delayed_put_task_struct() also drops the last
5716 		 * task reference we can safely take a new reference
5717 		 * while holding the rcu_read_lock().
5718 		 */
5719 		get_task_struct(owner);
5720 	}
5721 	rcu_read_unlock();
5722 
5723 	if (owner) {
5724 		/*
5725 		 * If we're here through perf_event_exit_task() we're already
5726 		 * holding ctx->mutex which would be an inversion wrt. the
5727 		 * normal lock order.
5728 		 *
5729 		 * However we can safely take this lock because its the child
5730 		 * ctx->mutex.
5731 		 */
5732 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5733 
5734 		/*
5735 		 * We have to re-check the event->owner field, if it is cleared
5736 		 * we raced with perf_event_exit_task(), acquiring the mutex
5737 		 * ensured they're done, and we can proceed with freeing the
5738 		 * event.
5739 		 */
5740 		if (event->owner) {
5741 			list_del_init(&event->owner_entry);
5742 			smp_store_release(&event->owner, NULL);
5743 		}
5744 		mutex_unlock(&owner->perf_event_mutex);
5745 		put_task_struct(owner);
5746 	}
5747 }
5748 
5749 static void put_event(struct perf_event *event)
5750 {
5751 	struct perf_event *parent;
5752 
5753 	if (!atomic_long_dec_and_test(&event->refcount))
5754 		return;
5755 
5756 	parent = event->parent;
5757 	_free_event(event);
5758 
5759 	/* Matches the refcount bump in inherit_event() */
5760 	if (parent)
5761 		put_event(parent);
5762 }
5763 
5764 /*
5765  * Kill an event dead; while event:refcount will preserve the event
5766  * object, it will not preserve its functionality. Once the last 'user'
5767  * gives up the object, we'll destroy the thing.
5768  */
5769 int perf_event_release_kernel(struct perf_event *event)
5770 {
5771 	struct perf_event_context *ctx = event->ctx;
5772 	struct perf_event *child, *tmp;
5773 
5774 	/*
5775 	 * If we got here through err_alloc: free_event(event); we will not
5776 	 * have attached to a context yet.
5777 	 */
5778 	if (!ctx) {
5779 		WARN_ON_ONCE(event->attach_state &
5780 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5781 		goto no_ctx;
5782 	}
5783 
5784 	if (!is_kernel_event(event))
5785 		perf_remove_from_owner(event);
5786 
5787 	ctx = perf_event_ctx_lock(event);
5788 	WARN_ON_ONCE(ctx->parent_ctx);
5789 
5790 	/*
5791 	 * Mark this event as STATE_DEAD, there is no external reference to it
5792 	 * anymore.
5793 	 *
5794 	 * Anybody acquiring event->child_mutex after the below loop _must_
5795 	 * also see this, most importantly inherit_event() which will avoid
5796 	 * placing more children on the list.
5797 	 *
5798 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5799 	 * child events.
5800 	 */
5801 	if (event->state > PERF_EVENT_STATE_REVOKED) {
5802 		perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5803 	} else {
5804 		event->state = PERF_EVENT_STATE_DEAD;
5805 	}
5806 
5807 	perf_event_ctx_unlock(event, ctx);
5808 
5809 again:
5810 	mutex_lock(&event->child_mutex);
5811 	list_for_each_entry(child, &event->child_list, child_list) {
5812 		/*
5813 		 * Cannot change, child events are not migrated, see the
5814 		 * comment with perf_event_ctx_lock_nested().
5815 		 */
5816 		ctx = READ_ONCE(child->ctx);
5817 		/*
5818 		 * Since child_mutex nests inside ctx::mutex, we must jump
5819 		 * through hoops. We start by grabbing a reference on the ctx.
5820 		 *
5821 		 * Since the event cannot get freed while we hold the
5822 		 * child_mutex, the context must also exist and have a !0
5823 		 * reference count.
5824 		 */
5825 		get_ctx(ctx);
5826 
5827 		/*
5828 		 * Now that we have a ctx ref, we can drop child_mutex, and
5829 		 * acquire ctx::mutex without fear of it going away. Then we
5830 		 * can re-acquire child_mutex.
5831 		 */
5832 		mutex_unlock(&event->child_mutex);
5833 		mutex_lock(&ctx->mutex);
5834 		mutex_lock(&event->child_mutex);
5835 
5836 		/*
5837 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5838 		 * state, if child is still the first entry, it didn't get freed
5839 		 * and we can continue doing so.
5840 		 */
5841 		tmp = list_first_entry_or_null(&event->child_list,
5842 					       struct perf_event, child_list);
5843 		if (tmp == child) {
5844 			perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5845 		} else {
5846 			child = NULL;
5847 		}
5848 
5849 		mutex_unlock(&event->child_mutex);
5850 		mutex_unlock(&ctx->mutex);
5851 
5852 		if (child) {
5853 			/* Last reference unless ->pending_task work is pending */
5854 			put_event(child);
5855 		}
5856 		put_ctx(ctx);
5857 
5858 		goto again;
5859 	}
5860 	mutex_unlock(&event->child_mutex);
5861 
5862 no_ctx:
5863 	/*
5864 	 * Last reference unless ->pending_task work is pending on this event
5865 	 * or any of its children.
5866 	 */
5867 	put_event(event);
5868 	return 0;
5869 }
5870 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5871 
5872 /*
5873  * Called when the last reference to the file is gone.
5874  */
5875 static int perf_release(struct inode *inode, struct file *file)
5876 {
5877 	perf_event_release_kernel(file->private_data);
5878 	return 0;
5879 }
5880 
5881 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5882 {
5883 	struct perf_event *child;
5884 	u64 total = 0;
5885 
5886 	*enabled = 0;
5887 	*running = 0;
5888 
5889 	mutex_lock(&event->child_mutex);
5890 
5891 	(void)perf_event_read(event, false);
5892 	total += perf_event_count(event, false);
5893 
5894 	*enabled += event->total_time_enabled +
5895 			atomic64_read(&event->child_total_time_enabled);
5896 	*running += event->total_time_running +
5897 			atomic64_read(&event->child_total_time_running);
5898 
5899 	list_for_each_entry(child, &event->child_list, child_list) {
5900 		(void)perf_event_read(child, false);
5901 		total += perf_event_count(child, false);
5902 		*enabled += child->total_time_enabled;
5903 		*running += child->total_time_running;
5904 	}
5905 	mutex_unlock(&event->child_mutex);
5906 
5907 	return total;
5908 }
5909 
5910 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5911 {
5912 	struct perf_event_context *ctx;
5913 	u64 count;
5914 
5915 	ctx = perf_event_ctx_lock(event);
5916 	count = __perf_event_read_value(event, enabled, running);
5917 	perf_event_ctx_unlock(event, ctx);
5918 
5919 	return count;
5920 }
5921 EXPORT_SYMBOL_GPL(perf_event_read_value);
5922 
5923 static int __perf_read_group_add(struct perf_event *leader,
5924 					u64 read_format, u64 *values)
5925 {
5926 	struct perf_event_context *ctx = leader->ctx;
5927 	struct perf_event *sub, *parent;
5928 	unsigned long flags;
5929 	int n = 1; /* skip @nr */
5930 	int ret;
5931 
5932 	ret = perf_event_read(leader, true);
5933 	if (ret)
5934 		return ret;
5935 
5936 	raw_spin_lock_irqsave(&ctx->lock, flags);
5937 	/*
5938 	 * Verify the grouping between the parent and child (inherited)
5939 	 * events is still in tact.
5940 	 *
5941 	 * Specifically:
5942 	 *  - leader->ctx->lock pins leader->sibling_list
5943 	 *  - parent->child_mutex pins parent->child_list
5944 	 *  - parent->ctx->mutex pins parent->sibling_list
5945 	 *
5946 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5947 	 * ctx->mutex), group destruction is not atomic between children, also
5948 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5949 	 * group.
5950 	 *
5951 	 * Therefore it is possible to have parent and child groups in a
5952 	 * different configuration and summing over such a beast makes no sense
5953 	 * what so ever.
5954 	 *
5955 	 * Reject this.
5956 	 */
5957 	parent = leader->parent;
5958 	if (parent &&
5959 	    (parent->group_generation != leader->group_generation ||
5960 	     parent->nr_siblings != leader->nr_siblings)) {
5961 		ret = -ECHILD;
5962 		goto unlock;
5963 	}
5964 
5965 	/*
5966 	 * Since we co-schedule groups, {enabled,running} times of siblings
5967 	 * will be identical to those of the leader, so we only publish one
5968 	 * set.
5969 	 */
5970 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5971 		values[n++] += leader->total_time_enabled +
5972 			atomic64_read(&leader->child_total_time_enabled);
5973 	}
5974 
5975 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5976 		values[n++] += leader->total_time_running +
5977 			atomic64_read(&leader->child_total_time_running);
5978 	}
5979 
5980 	/*
5981 	 * Write {count,id} tuples for every sibling.
5982 	 */
5983 	values[n++] += perf_event_count(leader, false);
5984 	if (read_format & PERF_FORMAT_ID)
5985 		values[n++] = primary_event_id(leader);
5986 	if (read_format & PERF_FORMAT_LOST)
5987 		values[n++] = atomic64_read(&leader->lost_samples);
5988 
5989 	for_each_sibling_event(sub, leader) {
5990 		values[n++] += perf_event_count(sub, false);
5991 		if (read_format & PERF_FORMAT_ID)
5992 			values[n++] = primary_event_id(sub);
5993 		if (read_format & PERF_FORMAT_LOST)
5994 			values[n++] = atomic64_read(&sub->lost_samples);
5995 	}
5996 
5997 unlock:
5998 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5999 	return ret;
6000 }
6001 
6002 static int perf_read_group(struct perf_event *event,
6003 				   u64 read_format, char __user *buf)
6004 {
6005 	struct perf_event *leader = event->group_leader, *child;
6006 	struct perf_event_context *ctx = leader->ctx;
6007 	int ret;
6008 	u64 *values;
6009 
6010 	lockdep_assert_held(&ctx->mutex);
6011 
6012 	values = kzalloc(event->read_size, GFP_KERNEL);
6013 	if (!values)
6014 		return -ENOMEM;
6015 
6016 	values[0] = 1 + leader->nr_siblings;
6017 
6018 	mutex_lock(&leader->child_mutex);
6019 
6020 	ret = __perf_read_group_add(leader, read_format, values);
6021 	if (ret)
6022 		goto unlock;
6023 
6024 	list_for_each_entry(child, &leader->child_list, child_list) {
6025 		ret = __perf_read_group_add(child, read_format, values);
6026 		if (ret)
6027 			goto unlock;
6028 	}
6029 
6030 	mutex_unlock(&leader->child_mutex);
6031 
6032 	ret = event->read_size;
6033 	if (copy_to_user(buf, values, event->read_size))
6034 		ret = -EFAULT;
6035 	goto out;
6036 
6037 unlock:
6038 	mutex_unlock(&leader->child_mutex);
6039 out:
6040 	kfree(values);
6041 	return ret;
6042 }
6043 
6044 static int perf_read_one(struct perf_event *event,
6045 				 u64 read_format, char __user *buf)
6046 {
6047 	u64 enabled, running;
6048 	u64 values[5];
6049 	int n = 0;
6050 
6051 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6052 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6053 		values[n++] = enabled;
6054 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6055 		values[n++] = running;
6056 	if (read_format & PERF_FORMAT_ID)
6057 		values[n++] = primary_event_id(event);
6058 	if (read_format & PERF_FORMAT_LOST)
6059 		values[n++] = atomic64_read(&event->lost_samples);
6060 
6061 	if (copy_to_user(buf, values, n * sizeof(u64)))
6062 		return -EFAULT;
6063 
6064 	return n * sizeof(u64);
6065 }
6066 
6067 static bool is_event_hup(struct perf_event *event)
6068 {
6069 	bool no_children;
6070 
6071 	if (event->state > PERF_EVENT_STATE_EXIT)
6072 		return false;
6073 
6074 	mutex_lock(&event->child_mutex);
6075 	no_children = list_empty(&event->child_list);
6076 	mutex_unlock(&event->child_mutex);
6077 	return no_children;
6078 }
6079 
6080 /*
6081  * Read the performance event - simple non blocking version for now
6082  */
6083 static ssize_t
6084 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6085 {
6086 	u64 read_format = event->attr.read_format;
6087 	int ret;
6088 
6089 	/*
6090 	 * Return end-of-file for a read on an event that is in
6091 	 * error state (i.e. because it was pinned but it couldn't be
6092 	 * scheduled on to the CPU at some point).
6093 	 */
6094 	if (event->state == PERF_EVENT_STATE_ERROR)
6095 		return 0;
6096 
6097 	if (count < event->read_size)
6098 		return -ENOSPC;
6099 
6100 	WARN_ON_ONCE(event->ctx->parent_ctx);
6101 	if (read_format & PERF_FORMAT_GROUP)
6102 		ret = perf_read_group(event, read_format, buf);
6103 	else
6104 		ret = perf_read_one(event, read_format, buf);
6105 
6106 	return ret;
6107 }
6108 
6109 static ssize_t
6110 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6111 {
6112 	struct perf_event *event = file->private_data;
6113 	struct perf_event_context *ctx;
6114 	int ret;
6115 
6116 	ret = security_perf_event_read(event);
6117 	if (ret)
6118 		return ret;
6119 
6120 	ctx = perf_event_ctx_lock(event);
6121 	ret = __perf_read(event, buf, count);
6122 	perf_event_ctx_unlock(event, ctx);
6123 
6124 	return ret;
6125 }
6126 
6127 static __poll_t perf_poll(struct file *file, poll_table *wait)
6128 {
6129 	struct perf_event *event = file->private_data;
6130 	struct perf_buffer *rb;
6131 	__poll_t events = EPOLLHUP;
6132 
6133 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6134 		return EPOLLERR;
6135 
6136 	poll_wait(file, &event->waitq, wait);
6137 
6138 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6139 		return EPOLLERR;
6140 
6141 	if (is_event_hup(event))
6142 		return events;
6143 
6144 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6145 		     event->attr.pinned))
6146 		return EPOLLERR;
6147 
6148 	/*
6149 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6150 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6151 	 */
6152 	mutex_lock(&event->mmap_mutex);
6153 	rb = event->rb;
6154 	if (rb)
6155 		events = atomic_xchg(&rb->poll, 0);
6156 	mutex_unlock(&event->mmap_mutex);
6157 	return events;
6158 }
6159 
6160 static void _perf_event_reset(struct perf_event *event)
6161 {
6162 	(void)perf_event_read(event, false);
6163 	local64_set(&event->count, 0);
6164 	perf_event_update_userpage(event);
6165 }
6166 
6167 /* Assume it's not an event with inherit set. */
6168 u64 perf_event_pause(struct perf_event *event, bool reset)
6169 {
6170 	struct perf_event_context *ctx;
6171 	u64 count;
6172 
6173 	ctx = perf_event_ctx_lock(event);
6174 	WARN_ON_ONCE(event->attr.inherit);
6175 	_perf_event_disable(event);
6176 	count = local64_read(&event->count);
6177 	if (reset)
6178 		local64_set(&event->count, 0);
6179 	perf_event_ctx_unlock(event, ctx);
6180 
6181 	return count;
6182 }
6183 EXPORT_SYMBOL_GPL(perf_event_pause);
6184 
6185 /*
6186  * Holding the top-level event's child_mutex means that any
6187  * descendant process that has inherited this event will block
6188  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6189  * task existence requirements of perf_event_enable/disable.
6190  */
6191 static void perf_event_for_each_child(struct perf_event *event,
6192 					void (*func)(struct perf_event *))
6193 {
6194 	struct perf_event *child;
6195 
6196 	WARN_ON_ONCE(event->ctx->parent_ctx);
6197 
6198 	mutex_lock(&event->child_mutex);
6199 	func(event);
6200 	list_for_each_entry(child, &event->child_list, child_list)
6201 		func(child);
6202 	mutex_unlock(&event->child_mutex);
6203 }
6204 
6205 static void perf_event_for_each(struct perf_event *event,
6206 				  void (*func)(struct perf_event *))
6207 {
6208 	struct perf_event_context *ctx = event->ctx;
6209 	struct perf_event *sibling;
6210 
6211 	lockdep_assert_held(&ctx->mutex);
6212 
6213 	event = event->group_leader;
6214 
6215 	perf_event_for_each_child(event, func);
6216 	for_each_sibling_event(sibling, event)
6217 		perf_event_for_each_child(sibling, func);
6218 }
6219 
6220 static void __perf_event_period(struct perf_event *event,
6221 				struct perf_cpu_context *cpuctx,
6222 				struct perf_event_context *ctx,
6223 				void *info)
6224 {
6225 	u64 value = *((u64 *)info);
6226 	bool active;
6227 
6228 	if (event->attr.freq) {
6229 		event->attr.sample_freq = value;
6230 	} else {
6231 		event->attr.sample_period = value;
6232 		event->hw.sample_period = value;
6233 	}
6234 
6235 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6236 	if (active) {
6237 		perf_pmu_disable(event->pmu);
6238 		event->pmu->stop(event, PERF_EF_UPDATE);
6239 	}
6240 
6241 	local64_set(&event->hw.period_left, 0);
6242 
6243 	if (active) {
6244 		event->pmu->start(event, PERF_EF_RELOAD);
6245 		/*
6246 		 * Once the period is force-reset, the event starts immediately.
6247 		 * But the event/group could be throttled. Unthrottle the
6248 		 * event/group now to avoid the next tick trying to unthrottle
6249 		 * while we already re-started the event/group.
6250 		 */
6251 		if (event->hw.interrupts == MAX_INTERRUPTS)
6252 			perf_event_unthrottle_group(event, true);
6253 		perf_pmu_enable(event->pmu);
6254 	}
6255 }
6256 
6257 static int perf_event_check_period(struct perf_event *event, u64 value)
6258 {
6259 	return event->pmu->check_period(event, value);
6260 }
6261 
6262 static int _perf_event_period(struct perf_event *event, u64 value)
6263 {
6264 	if (!is_sampling_event(event))
6265 		return -EINVAL;
6266 
6267 	if (!value)
6268 		return -EINVAL;
6269 
6270 	if (event->attr.freq) {
6271 		if (value > sysctl_perf_event_sample_rate)
6272 			return -EINVAL;
6273 	} else {
6274 		if (perf_event_check_period(event, value))
6275 			return -EINVAL;
6276 		if (value & (1ULL << 63))
6277 			return -EINVAL;
6278 	}
6279 
6280 	event_function_call(event, __perf_event_period, &value);
6281 
6282 	return 0;
6283 }
6284 
6285 int perf_event_period(struct perf_event *event, u64 value)
6286 {
6287 	struct perf_event_context *ctx;
6288 	int ret;
6289 
6290 	ctx = perf_event_ctx_lock(event);
6291 	ret = _perf_event_period(event, value);
6292 	perf_event_ctx_unlock(event, ctx);
6293 
6294 	return ret;
6295 }
6296 EXPORT_SYMBOL_GPL(perf_event_period);
6297 
6298 static const struct file_operations perf_fops;
6299 
6300 static inline bool is_perf_file(struct fd f)
6301 {
6302 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6303 }
6304 
6305 static int perf_event_set_output(struct perf_event *event,
6306 				 struct perf_event *output_event);
6307 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6308 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6309 			  struct perf_event_attr *attr);
6310 static int __perf_event_set_bpf_prog(struct perf_event *event,
6311 				     struct bpf_prog *prog,
6312 				     u64 bpf_cookie);
6313 
6314 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6315 {
6316 	void (*func)(struct perf_event *);
6317 	u32 flags = arg;
6318 
6319 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6320 		return -ENODEV;
6321 
6322 	switch (cmd) {
6323 	case PERF_EVENT_IOC_ENABLE:
6324 		func = _perf_event_enable;
6325 		break;
6326 	case PERF_EVENT_IOC_DISABLE:
6327 		func = _perf_event_disable;
6328 		break;
6329 	case PERF_EVENT_IOC_RESET:
6330 		func = _perf_event_reset;
6331 		break;
6332 
6333 	case PERF_EVENT_IOC_REFRESH:
6334 		return _perf_event_refresh(event, arg);
6335 
6336 	case PERF_EVENT_IOC_PERIOD:
6337 	{
6338 		u64 value;
6339 
6340 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6341 			return -EFAULT;
6342 
6343 		return _perf_event_period(event, value);
6344 	}
6345 	case PERF_EVENT_IOC_ID:
6346 	{
6347 		u64 id = primary_event_id(event);
6348 
6349 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6350 			return -EFAULT;
6351 		return 0;
6352 	}
6353 
6354 	case PERF_EVENT_IOC_SET_OUTPUT:
6355 	{
6356 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6357 		struct perf_event *output_event = NULL;
6358 		if (arg != -1) {
6359 			if (!is_perf_file(output))
6360 				return -EBADF;
6361 			output_event = fd_file(output)->private_data;
6362 		}
6363 		return perf_event_set_output(event, output_event);
6364 	}
6365 
6366 	case PERF_EVENT_IOC_SET_FILTER:
6367 		return perf_event_set_filter(event, (void __user *)arg);
6368 
6369 	case PERF_EVENT_IOC_SET_BPF:
6370 	{
6371 		struct bpf_prog *prog;
6372 		int err;
6373 
6374 		prog = bpf_prog_get(arg);
6375 		if (IS_ERR(prog))
6376 			return PTR_ERR(prog);
6377 
6378 		err = __perf_event_set_bpf_prog(event, prog, 0);
6379 		if (err) {
6380 			bpf_prog_put(prog);
6381 			return err;
6382 		}
6383 
6384 		return 0;
6385 	}
6386 
6387 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6388 		struct perf_buffer *rb;
6389 
6390 		rcu_read_lock();
6391 		rb = rcu_dereference(event->rb);
6392 		if (!rb || !rb->nr_pages) {
6393 			rcu_read_unlock();
6394 			return -EINVAL;
6395 		}
6396 		rb_toggle_paused(rb, !!arg);
6397 		rcu_read_unlock();
6398 		return 0;
6399 	}
6400 
6401 	case PERF_EVENT_IOC_QUERY_BPF:
6402 		return perf_event_query_prog_array(event, (void __user *)arg);
6403 
6404 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6405 		struct perf_event_attr new_attr;
6406 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6407 					 &new_attr);
6408 
6409 		if (err)
6410 			return err;
6411 
6412 		return perf_event_modify_attr(event,  &new_attr);
6413 	}
6414 	default:
6415 		return -ENOTTY;
6416 	}
6417 
6418 	if (flags & PERF_IOC_FLAG_GROUP)
6419 		perf_event_for_each(event, func);
6420 	else
6421 		perf_event_for_each_child(event, func);
6422 
6423 	return 0;
6424 }
6425 
6426 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6427 {
6428 	struct perf_event *event = file->private_data;
6429 	struct perf_event_context *ctx;
6430 	long ret;
6431 
6432 	/* Treat ioctl like writes as it is likely a mutating operation. */
6433 	ret = security_perf_event_write(event);
6434 	if (ret)
6435 		return ret;
6436 
6437 	ctx = perf_event_ctx_lock(event);
6438 	ret = _perf_ioctl(event, cmd, arg);
6439 	perf_event_ctx_unlock(event, ctx);
6440 
6441 	return ret;
6442 }
6443 
6444 #ifdef CONFIG_COMPAT
6445 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6446 				unsigned long arg)
6447 {
6448 	switch (_IOC_NR(cmd)) {
6449 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6450 	case _IOC_NR(PERF_EVENT_IOC_ID):
6451 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6452 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6453 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6454 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6455 			cmd &= ~IOCSIZE_MASK;
6456 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6457 		}
6458 		break;
6459 	}
6460 	return perf_ioctl(file, cmd, arg);
6461 }
6462 #else
6463 # define perf_compat_ioctl NULL
6464 #endif
6465 
6466 int perf_event_task_enable(void)
6467 {
6468 	struct perf_event_context *ctx;
6469 	struct perf_event *event;
6470 
6471 	mutex_lock(&current->perf_event_mutex);
6472 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6473 		ctx = perf_event_ctx_lock(event);
6474 		perf_event_for_each_child(event, _perf_event_enable);
6475 		perf_event_ctx_unlock(event, ctx);
6476 	}
6477 	mutex_unlock(&current->perf_event_mutex);
6478 
6479 	return 0;
6480 }
6481 
6482 int perf_event_task_disable(void)
6483 {
6484 	struct perf_event_context *ctx;
6485 	struct perf_event *event;
6486 
6487 	mutex_lock(&current->perf_event_mutex);
6488 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6489 		ctx = perf_event_ctx_lock(event);
6490 		perf_event_for_each_child(event, _perf_event_disable);
6491 		perf_event_ctx_unlock(event, ctx);
6492 	}
6493 	mutex_unlock(&current->perf_event_mutex);
6494 
6495 	return 0;
6496 }
6497 
6498 static int perf_event_index(struct perf_event *event)
6499 {
6500 	if (event->hw.state & PERF_HES_STOPPED)
6501 		return 0;
6502 
6503 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6504 		return 0;
6505 
6506 	return event->pmu->event_idx(event);
6507 }
6508 
6509 static void perf_event_init_userpage(struct perf_event *event)
6510 {
6511 	struct perf_event_mmap_page *userpg;
6512 	struct perf_buffer *rb;
6513 
6514 	rcu_read_lock();
6515 	rb = rcu_dereference(event->rb);
6516 	if (!rb)
6517 		goto unlock;
6518 
6519 	userpg = rb->user_page;
6520 
6521 	/* Allow new userspace to detect that bit 0 is deprecated */
6522 	userpg->cap_bit0_is_deprecated = 1;
6523 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6524 	userpg->data_offset = PAGE_SIZE;
6525 	userpg->data_size = perf_data_size(rb);
6526 
6527 unlock:
6528 	rcu_read_unlock();
6529 }
6530 
6531 void __weak arch_perf_update_userpage(
6532 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6533 {
6534 }
6535 
6536 /*
6537  * Callers need to ensure there can be no nesting of this function, otherwise
6538  * the seqlock logic goes bad. We can not serialize this because the arch
6539  * code calls this from NMI context.
6540  */
6541 void perf_event_update_userpage(struct perf_event *event)
6542 {
6543 	struct perf_event_mmap_page *userpg;
6544 	struct perf_buffer *rb;
6545 	u64 enabled, running, now;
6546 
6547 	rcu_read_lock();
6548 	rb = rcu_dereference(event->rb);
6549 	if (!rb)
6550 		goto unlock;
6551 
6552 	/*
6553 	 * compute total_time_enabled, total_time_running
6554 	 * based on snapshot values taken when the event
6555 	 * was last scheduled in.
6556 	 *
6557 	 * we cannot simply called update_context_time()
6558 	 * because of locking issue as we can be called in
6559 	 * NMI context
6560 	 */
6561 	calc_timer_values(event, &now, &enabled, &running);
6562 
6563 	userpg = rb->user_page;
6564 	/*
6565 	 * Disable preemption to guarantee consistent time stamps are stored to
6566 	 * the user page.
6567 	 */
6568 	preempt_disable();
6569 	++userpg->lock;
6570 	barrier();
6571 	userpg->index = perf_event_index(event);
6572 	userpg->offset = perf_event_count(event, false);
6573 	if (userpg->index)
6574 		userpg->offset -= local64_read(&event->hw.prev_count);
6575 
6576 	userpg->time_enabled = enabled +
6577 			atomic64_read(&event->child_total_time_enabled);
6578 
6579 	userpg->time_running = running +
6580 			atomic64_read(&event->child_total_time_running);
6581 
6582 	arch_perf_update_userpage(event, userpg, now);
6583 
6584 	barrier();
6585 	++userpg->lock;
6586 	preempt_enable();
6587 unlock:
6588 	rcu_read_unlock();
6589 }
6590 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6591 
6592 static void ring_buffer_attach(struct perf_event *event,
6593 			       struct perf_buffer *rb)
6594 {
6595 	struct perf_buffer *old_rb = NULL;
6596 	unsigned long flags;
6597 
6598 	WARN_ON_ONCE(event->parent);
6599 
6600 	if (event->rb) {
6601 		/*
6602 		 * Should be impossible, we set this when removing
6603 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6604 		 */
6605 		WARN_ON_ONCE(event->rcu_pending);
6606 
6607 		old_rb = event->rb;
6608 		spin_lock_irqsave(&old_rb->event_lock, flags);
6609 		list_del_rcu(&event->rb_entry);
6610 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6611 
6612 		event->rcu_batches = get_state_synchronize_rcu();
6613 		event->rcu_pending = 1;
6614 	}
6615 
6616 	if (rb) {
6617 		if (event->rcu_pending) {
6618 			cond_synchronize_rcu(event->rcu_batches);
6619 			event->rcu_pending = 0;
6620 		}
6621 
6622 		spin_lock_irqsave(&rb->event_lock, flags);
6623 		list_add_rcu(&event->rb_entry, &rb->event_list);
6624 		spin_unlock_irqrestore(&rb->event_lock, flags);
6625 	}
6626 
6627 	/*
6628 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6629 	 * before swizzling the event::rb pointer; if it's getting
6630 	 * unmapped, its aux_mmap_count will be 0 and it won't
6631 	 * restart. See the comment in __perf_pmu_output_stop().
6632 	 *
6633 	 * Data will inevitably be lost when set_output is done in
6634 	 * mid-air, but then again, whoever does it like this is
6635 	 * not in for the data anyway.
6636 	 */
6637 	if (has_aux(event))
6638 		perf_event_stop(event, 0);
6639 
6640 	rcu_assign_pointer(event->rb, rb);
6641 
6642 	if (old_rb) {
6643 		ring_buffer_put(old_rb);
6644 		/*
6645 		 * Since we detached before setting the new rb, so that we
6646 		 * could attach the new rb, we could have missed a wakeup.
6647 		 * Provide it now.
6648 		 */
6649 		wake_up_all(&event->waitq);
6650 	}
6651 }
6652 
6653 static void ring_buffer_wakeup(struct perf_event *event)
6654 {
6655 	struct perf_buffer *rb;
6656 
6657 	if (event->parent)
6658 		event = event->parent;
6659 
6660 	rcu_read_lock();
6661 	rb = rcu_dereference(event->rb);
6662 	if (rb) {
6663 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6664 			wake_up_all(&event->waitq);
6665 	}
6666 	rcu_read_unlock();
6667 }
6668 
6669 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6670 {
6671 	struct perf_buffer *rb;
6672 
6673 	if (event->parent)
6674 		event = event->parent;
6675 
6676 	rcu_read_lock();
6677 	rb = rcu_dereference(event->rb);
6678 	if (rb) {
6679 		if (!refcount_inc_not_zero(&rb->refcount))
6680 			rb = NULL;
6681 	}
6682 	rcu_read_unlock();
6683 
6684 	return rb;
6685 }
6686 
6687 void ring_buffer_put(struct perf_buffer *rb)
6688 {
6689 	if (!refcount_dec_and_test(&rb->refcount))
6690 		return;
6691 
6692 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6693 
6694 	call_rcu(&rb->rcu_head, rb_free_rcu);
6695 }
6696 
6697 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6698 
6699 #define get_mapped(event, func)			\
6700 ({	struct pmu *pmu;			\
6701 	mapped_f f = NULL;			\
6702 	guard(rcu)();				\
6703 	pmu = READ_ONCE(event->pmu);		\
6704 	if (pmu)				\
6705 		f = pmu->func;			\
6706 	f;					\
6707 })
6708 
6709 static void perf_mmap_open(struct vm_area_struct *vma)
6710 {
6711 	struct perf_event *event = vma->vm_file->private_data;
6712 	mapped_f mapped = get_mapped(event, event_mapped);
6713 
6714 	refcount_inc(&event->mmap_count);
6715 	refcount_inc(&event->rb->mmap_count);
6716 
6717 	if (vma->vm_pgoff)
6718 		refcount_inc(&event->rb->aux_mmap_count);
6719 
6720 	if (mapped)
6721 		mapped(event, vma->vm_mm);
6722 }
6723 
6724 static void perf_pmu_output_stop(struct perf_event *event);
6725 
6726 /*
6727  * A buffer can be mmap()ed multiple times; either directly through the same
6728  * event, or through other events by use of perf_event_set_output().
6729  *
6730  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6731  * the buffer here, where we still have a VM context. This means we need
6732  * to detach all events redirecting to us.
6733  */
6734 static void perf_mmap_close(struct vm_area_struct *vma)
6735 {
6736 	struct perf_event *event = vma->vm_file->private_data;
6737 	mapped_f unmapped = get_mapped(event, event_unmapped);
6738 	struct perf_buffer *rb = ring_buffer_get(event);
6739 	struct user_struct *mmap_user = rb->mmap_user;
6740 	int mmap_locked = rb->mmap_locked;
6741 	unsigned long size = perf_data_size(rb);
6742 	bool detach_rest = false;
6743 
6744 	/* FIXIES vs perf_pmu_unregister() */
6745 	if (unmapped)
6746 		unmapped(event, vma->vm_mm);
6747 
6748 	/*
6749 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6750 	 * to avoid complications.
6751 	 */
6752 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6753 	    refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6754 		/*
6755 		 * Stop all AUX events that are writing to this buffer,
6756 		 * so that we can free its AUX pages and corresponding PMU
6757 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6758 		 * they won't start any more (see perf_aux_output_begin()).
6759 		 */
6760 		perf_pmu_output_stop(event);
6761 
6762 		/* now it's safe to free the pages */
6763 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6764 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6765 
6766 		/* this has to be the last one */
6767 		rb_free_aux(rb);
6768 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6769 
6770 		mutex_unlock(&rb->aux_mutex);
6771 	}
6772 
6773 	if (refcount_dec_and_test(&rb->mmap_count))
6774 		detach_rest = true;
6775 
6776 	if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6777 		goto out_put;
6778 
6779 	ring_buffer_attach(event, NULL);
6780 	mutex_unlock(&event->mmap_mutex);
6781 
6782 	/* If there's still other mmap()s of this buffer, we're done. */
6783 	if (!detach_rest)
6784 		goto out_put;
6785 
6786 	/*
6787 	 * No other mmap()s, detach from all other events that might redirect
6788 	 * into the now unreachable buffer. Somewhat complicated by the
6789 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6790 	 */
6791 again:
6792 	rcu_read_lock();
6793 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6794 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6795 			/*
6796 			 * This event is en-route to free_event() which will
6797 			 * detach it and remove it from the list.
6798 			 */
6799 			continue;
6800 		}
6801 		rcu_read_unlock();
6802 
6803 		mutex_lock(&event->mmap_mutex);
6804 		/*
6805 		 * Check we didn't race with perf_event_set_output() which can
6806 		 * swizzle the rb from under us while we were waiting to
6807 		 * acquire mmap_mutex.
6808 		 *
6809 		 * If we find a different rb; ignore this event, a next
6810 		 * iteration will no longer find it on the list. We have to
6811 		 * still restart the iteration to make sure we're not now
6812 		 * iterating the wrong list.
6813 		 */
6814 		if (event->rb == rb)
6815 			ring_buffer_attach(event, NULL);
6816 
6817 		mutex_unlock(&event->mmap_mutex);
6818 		put_event(event);
6819 
6820 		/*
6821 		 * Restart the iteration; either we're on the wrong list or
6822 		 * destroyed its integrity by doing a deletion.
6823 		 */
6824 		goto again;
6825 	}
6826 	rcu_read_unlock();
6827 
6828 	/*
6829 	 * It could be there's still a few 0-ref events on the list; they'll
6830 	 * get cleaned up by free_event() -- they'll also still have their
6831 	 * ref on the rb and will free it whenever they are done with it.
6832 	 *
6833 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6834 	 * undo the VM accounting.
6835 	 */
6836 
6837 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6838 			&mmap_user->locked_vm);
6839 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6840 	free_uid(mmap_user);
6841 
6842 out_put:
6843 	ring_buffer_put(rb); /* could be last */
6844 }
6845 
6846 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6847 {
6848 	/* The first page is the user control page, others are read-only. */
6849 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6850 }
6851 
6852 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6853 {
6854 	/*
6855 	 * Forbid splitting perf mappings to prevent refcount leaks due to
6856 	 * the resulting non-matching offsets and sizes. See open()/close().
6857 	 */
6858 	return -EINVAL;
6859 }
6860 
6861 static const struct vm_operations_struct perf_mmap_vmops = {
6862 	.open		= perf_mmap_open,
6863 	.close		= perf_mmap_close, /* non mergeable */
6864 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6865 	.may_split	= perf_mmap_may_split,
6866 };
6867 
6868 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6869 {
6870 	unsigned long nr_pages = vma_pages(vma);
6871 	int err = 0;
6872 	unsigned long pagenum;
6873 
6874 	/*
6875 	 * We map this as a VM_PFNMAP VMA.
6876 	 *
6877 	 * This is not ideal as this is designed broadly for mappings of PFNs
6878 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6879 	 * !pfn_valid(pfn).
6880 	 *
6881 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6882 	 * which would more ideally be mapped using vm_insert_page() or a
6883 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6884 	 *
6885 	 * However this won't work here, because:
6886 	 *
6887 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6888 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6889 	 *    indicate that this should be mapped CoW in order that the
6890 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6891 	 *    rest R/O as desired.
6892 	 *
6893 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6894 	 *    vm_normal_page() returning a struct page * pointer, which means
6895 	 *    vm_ops->page_mkwrite() will be invoked rather than
6896 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6897 	 *    to work around retry logic in the fault handler, however this
6898 	 *    field is no longer allowed to be used within struct page.
6899 	 *
6900 	 * 3. Having a struct page * made available in the fault logic also
6901 	 *    means that the page gets put on the rmap and becomes
6902 	 *    inappropriately accessible and subject to map and ref counting.
6903 	 *
6904 	 * Ideally we would have a mechanism that could explicitly express our
6905 	 * desires, but this is not currently the case, so we instead use
6906 	 * VM_PFNMAP.
6907 	 *
6908 	 * We manage the lifetime of these mappings with internal refcounts (see
6909 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6910 	 * this mapping is maintained correctly.
6911 	 */
6912 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6913 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6914 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6915 
6916 		if (page == NULL) {
6917 			err = -EINVAL;
6918 			break;
6919 		}
6920 
6921 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6922 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6923 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6924 		if (err)
6925 			break;
6926 	}
6927 
6928 #ifdef CONFIG_MMU
6929 	/* Clear any partial mappings on error. */
6930 	if (err)
6931 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6932 #endif
6933 
6934 	return err;
6935 }
6936 
6937 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra)
6938 {
6939 	unsigned long user_locked, user_lock_limit, locked, lock_limit;
6940 	struct user_struct *user = current_user();
6941 
6942 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6943 	/* Increase the limit linearly with more CPUs */
6944 	user_lock_limit *= num_online_cpus();
6945 
6946 	user_locked = atomic_long_read(&user->locked_vm);
6947 
6948 	/*
6949 	 * sysctl_perf_event_mlock may have changed, so that
6950 	 *     user->locked_vm > user_lock_limit
6951 	 */
6952 	if (user_locked > user_lock_limit)
6953 		user_locked = user_lock_limit;
6954 	user_locked += *user_extra;
6955 
6956 	if (user_locked > user_lock_limit) {
6957 		/*
6958 		 * charge locked_vm until it hits user_lock_limit;
6959 		 * charge the rest from pinned_vm
6960 		 */
6961 		*extra = user_locked - user_lock_limit;
6962 		*user_extra -= *extra;
6963 	}
6964 
6965 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6966 	lock_limit >>= PAGE_SHIFT;
6967 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra;
6968 
6969 	return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK);
6970 }
6971 
6972 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra)
6973 {
6974 	struct user_struct *user = current_user();
6975 
6976 	atomic_long_add(user_extra, &user->locked_vm);
6977 	atomic64_add(extra, &vma->vm_mm->pinned_vm);
6978 }
6979 
6980 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event,
6981 			unsigned long nr_pages)
6982 {
6983 	long extra = 0, user_extra = nr_pages;
6984 	struct perf_buffer *rb;
6985 	int rb_flags = 0;
6986 
6987 	nr_pages -= 1;
6988 
6989 	/*
6990 	 * If we have rb pages ensure they're a power-of-two number, so we
6991 	 * can do bitmasks instead of modulo.
6992 	 */
6993 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6994 		return -EINVAL;
6995 
6996 	WARN_ON_ONCE(event->ctx->parent_ctx);
6997 
6998 	if (event->rb) {
6999 		if (data_page_nr(event->rb) != nr_pages)
7000 			return -EINVAL;
7001 
7002 		if (refcount_inc_not_zero(&event->rb->mmap_count)) {
7003 			/*
7004 			 * Success -- managed to mmap() the same buffer
7005 			 * multiple times.
7006 			 */
7007 			perf_mmap_account(vma, user_extra, extra);
7008 			refcount_inc(&event->mmap_count);
7009 			return 0;
7010 		}
7011 
7012 		/*
7013 		 * Raced against perf_mmap_close()'s
7014 		 * refcount_dec_and_mutex_lock() remove the
7015 		 * event and continue as if !event->rb
7016 		 */
7017 		ring_buffer_attach(event, NULL);
7018 	}
7019 
7020 	if (!perf_mmap_calc_limits(vma, &user_extra, &extra))
7021 		return -EPERM;
7022 
7023 	if (vma->vm_flags & VM_WRITE)
7024 		rb_flags |= RING_BUFFER_WRITABLE;
7025 
7026 	rb = rb_alloc(nr_pages,
7027 		      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7028 		      event->cpu, rb_flags);
7029 
7030 	if (!rb)
7031 		return -ENOMEM;
7032 
7033 	refcount_set(&rb->mmap_count, 1);
7034 	rb->mmap_user = get_current_user();
7035 	rb->mmap_locked = extra;
7036 
7037 	ring_buffer_attach(event, rb);
7038 
7039 	perf_event_update_time(event);
7040 	perf_event_init_userpage(event);
7041 	perf_event_update_userpage(event);
7042 
7043 	perf_mmap_account(vma, user_extra, extra);
7044 	refcount_set(&event->mmap_count, 1);
7045 
7046 	return 0;
7047 }
7048 
7049 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event,
7050 			 unsigned long nr_pages)
7051 {
7052 	long extra = 0, user_extra = nr_pages;
7053 	u64 aux_offset, aux_size;
7054 	struct perf_buffer *rb;
7055 	int ret, rb_flags = 0;
7056 
7057 	rb = event->rb;
7058 	if (!rb)
7059 		return -EINVAL;
7060 
7061 	guard(mutex)(&rb->aux_mutex);
7062 
7063 	/*
7064 	 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7065 	 * mapped, all subsequent mappings should have the same size
7066 	 * and offset. Must be above the normal perf buffer.
7067 	 */
7068 	aux_offset = READ_ONCE(rb->user_page->aux_offset);
7069 	aux_size = READ_ONCE(rb->user_page->aux_size);
7070 
7071 	if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7072 		return -EINVAL;
7073 
7074 	if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7075 		return -EINVAL;
7076 
7077 	/* already mapped with a different offset */
7078 	if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7079 		return -EINVAL;
7080 
7081 	if (aux_size != nr_pages * PAGE_SIZE)
7082 		return -EINVAL;
7083 
7084 	/* already mapped with a different size */
7085 	if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7086 		return -EINVAL;
7087 
7088 	if (!is_power_of_2(nr_pages))
7089 		return -EINVAL;
7090 
7091 	if (!refcount_inc_not_zero(&rb->mmap_count))
7092 		return -EINVAL;
7093 
7094 	if (rb_has_aux(rb)) {
7095 		refcount_inc(&rb->aux_mmap_count);
7096 
7097 	} else {
7098 		if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) {
7099 			refcount_dec(&rb->mmap_count);
7100 			return -EPERM;
7101 		}
7102 
7103 		WARN_ON(!rb && event->rb);
7104 
7105 		if (vma->vm_flags & VM_WRITE)
7106 			rb_flags |= RING_BUFFER_WRITABLE;
7107 
7108 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7109 				   event->attr.aux_watermark, rb_flags);
7110 		if (ret) {
7111 			refcount_dec(&rb->mmap_count);
7112 			return ret;
7113 		}
7114 
7115 		refcount_set(&rb->aux_mmap_count, 1);
7116 		rb->aux_mmap_locked = extra;
7117 	}
7118 
7119 	perf_mmap_account(vma, user_extra, extra);
7120 	refcount_inc(&event->mmap_count);
7121 
7122 	return 0;
7123 }
7124 
7125 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
7126 {
7127 	struct perf_event *event = file->private_data;
7128 	unsigned long vma_size, nr_pages;
7129 	mapped_f mapped;
7130 	int ret;
7131 
7132 	/*
7133 	 * Don't allow mmap() of inherited per-task counters. This would
7134 	 * create a performance issue due to all children writing to the
7135 	 * same rb.
7136 	 */
7137 	if (event->cpu == -1 && event->attr.inherit)
7138 		return -EINVAL;
7139 
7140 	if (!(vma->vm_flags & VM_SHARED))
7141 		return -EINVAL;
7142 
7143 	ret = security_perf_event_read(event);
7144 	if (ret)
7145 		return ret;
7146 
7147 	vma_size = vma->vm_end - vma->vm_start;
7148 	nr_pages = vma_size / PAGE_SIZE;
7149 
7150 	if (nr_pages > INT_MAX)
7151 		return -ENOMEM;
7152 
7153 	if (vma_size != PAGE_SIZE * nr_pages)
7154 		return -EINVAL;
7155 
7156 	scoped_guard (mutex, &event->mmap_mutex) {
7157 		/*
7158 		 * This relies on __pmu_detach_event() taking mmap_mutex after marking
7159 		 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
7160 		 * will detach the rb created here.
7161 		 */
7162 		if (event->state <= PERF_EVENT_STATE_REVOKED)
7163 			return -ENODEV;
7164 
7165 		if (vma->vm_pgoff == 0)
7166 			ret = perf_mmap_rb(vma, event, nr_pages);
7167 		else
7168 			ret = perf_mmap_aux(vma, event, nr_pages);
7169 		if (ret)
7170 			return ret;
7171 	}
7172 
7173 	/*
7174 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7175 	 * vma.
7176 	 */
7177 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7178 	vma->vm_ops = &perf_mmap_vmops;
7179 
7180 	mapped = get_mapped(event, event_mapped);
7181 	if (mapped)
7182 		mapped(event, vma->vm_mm);
7183 
7184 	/*
7185 	 * Try to map it into the page table. On fail, invoke
7186 	 * perf_mmap_close() to undo the above, as the callsite expects
7187 	 * full cleanup in this case and therefore does not invoke
7188 	 * vmops::close().
7189 	 */
7190 	ret = map_range(event->rb, vma);
7191 	if (ret)
7192 		perf_mmap_close(vma);
7193 
7194 	return ret;
7195 }
7196 
7197 static int perf_fasync(int fd, struct file *filp, int on)
7198 {
7199 	struct inode *inode = file_inode(filp);
7200 	struct perf_event *event = filp->private_data;
7201 	int retval;
7202 
7203 	if (event->state <= PERF_EVENT_STATE_REVOKED)
7204 		return -ENODEV;
7205 
7206 	inode_lock(inode);
7207 	retval = fasync_helper(fd, filp, on, &event->fasync);
7208 	inode_unlock(inode);
7209 
7210 	if (retval < 0)
7211 		return retval;
7212 
7213 	return 0;
7214 }
7215 
7216 static const struct file_operations perf_fops = {
7217 	.release		= perf_release,
7218 	.read			= perf_read,
7219 	.poll			= perf_poll,
7220 	.unlocked_ioctl		= perf_ioctl,
7221 	.compat_ioctl		= perf_compat_ioctl,
7222 	.mmap			= perf_mmap,
7223 	.fasync			= perf_fasync,
7224 };
7225 
7226 /*
7227  * Perf event wakeup
7228  *
7229  * If there's data, ensure we set the poll() state and publish everything
7230  * to user-space before waking everybody up.
7231  */
7232 
7233 void perf_event_wakeup(struct perf_event *event)
7234 {
7235 	ring_buffer_wakeup(event);
7236 
7237 	if (event->pending_kill) {
7238 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7239 		event->pending_kill = 0;
7240 	}
7241 }
7242 
7243 static void perf_sigtrap(struct perf_event *event)
7244 {
7245 	/*
7246 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7247 	 * task exiting.
7248 	 */
7249 	if (current->flags & PF_EXITING)
7250 		return;
7251 
7252 	/*
7253 	 * We'd expect this to only occur if the irq_work is delayed and either
7254 	 * ctx->task or current has changed in the meantime. This can be the
7255 	 * case on architectures that do not implement arch_irq_work_raise().
7256 	 */
7257 	if (WARN_ON_ONCE(event->ctx->task != current))
7258 		return;
7259 
7260 	send_sig_perf((void __user *)event->pending_addr,
7261 		      event->orig_type, event->attr.sig_data);
7262 }
7263 
7264 /*
7265  * Deliver the pending work in-event-context or follow the context.
7266  */
7267 static void __perf_pending_disable(struct perf_event *event)
7268 {
7269 	int cpu = READ_ONCE(event->oncpu);
7270 
7271 	/*
7272 	 * If the event isn't running; we done. event_sched_out() will have
7273 	 * taken care of things.
7274 	 */
7275 	if (cpu < 0)
7276 		return;
7277 
7278 	/*
7279 	 * Yay, we hit home and are in the context of the event.
7280 	 */
7281 	if (cpu == smp_processor_id()) {
7282 		if (event->pending_disable) {
7283 			event->pending_disable = 0;
7284 			perf_event_disable_local(event);
7285 		}
7286 		return;
7287 	}
7288 
7289 	/*
7290 	 *  CPU-A			CPU-B
7291 	 *
7292 	 *  perf_event_disable_inatomic()
7293 	 *    @pending_disable = 1;
7294 	 *    irq_work_queue();
7295 	 *
7296 	 *  sched-out
7297 	 *    @pending_disable = 0;
7298 	 *
7299 	 *				sched-in
7300 	 *				perf_event_disable_inatomic()
7301 	 *				  @pending_disable = 1;
7302 	 *				  irq_work_queue(); // FAILS
7303 	 *
7304 	 *  irq_work_run()
7305 	 *    perf_pending_disable()
7306 	 *
7307 	 * But the event runs on CPU-B and wants disabling there.
7308 	 */
7309 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7310 }
7311 
7312 static void perf_pending_disable(struct irq_work *entry)
7313 {
7314 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7315 	int rctx;
7316 
7317 	/*
7318 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7319 	 * and we won't recurse 'further'.
7320 	 */
7321 	rctx = perf_swevent_get_recursion_context();
7322 	__perf_pending_disable(event);
7323 	if (rctx >= 0)
7324 		perf_swevent_put_recursion_context(rctx);
7325 }
7326 
7327 static void perf_pending_irq(struct irq_work *entry)
7328 {
7329 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7330 	int rctx;
7331 
7332 	/*
7333 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7334 	 * and we won't recurse 'further'.
7335 	 */
7336 	rctx = perf_swevent_get_recursion_context();
7337 
7338 	/*
7339 	 * The wakeup isn't bound to the context of the event -- it can happen
7340 	 * irrespective of where the event is.
7341 	 */
7342 	if (event->pending_wakeup) {
7343 		event->pending_wakeup = 0;
7344 		perf_event_wakeup(event);
7345 	}
7346 
7347 	if (rctx >= 0)
7348 		perf_swevent_put_recursion_context(rctx);
7349 }
7350 
7351 static void perf_pending_task(struct callback_head *head)
7352 {
7353 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7354 	int rctx;
7355 
7356 	/*
7357 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7358 	 * and we won't recurse 'further'.
7359 	 */
7360 	rctx = perf_swevent_get_recursion_context();
7361 
7362 	if (event->pending_work) {
7363 		event->pending_work = 0;
7364 		perf_sigtrap(event);
7365 		local_dec(&event->ctx->nr_no_switch_fast);
7366 	}
7367 	put_event(event);
7368 
7369 	if (rctx >= 0)
7370 		perf_swevent_put_recursion_context(rctx);
7371 }
7372 
7373 #ifdef CONFIG_GUEST_PERF_EVENTS
7374 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7375 
7376 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7377 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7378 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7379 
7380 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7381 {
7382 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7383 		return;
7384 
7385 	rcu_assign_pointer(perf_guest_cbs, cbs);
7386 	static_call_update(__perf_guest_state, cbs->state);
7387 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7388 
7389 	/* Implementing ->handle_intel_pt_intr is optional. */
7390 	if (cbs->handle_intel_pt_intr)
7391 		static_call_update(__perf_guest_handle_intel_pt_intr,
7392 				   cbs->handle_intel_pt_intr);
7393 }
7394 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7395 
7396 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7397 {
7398 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7399 		return;
7400 
7401 	rcu_assign_pointer(perf_guest_cbs, NULL);
7402 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7403 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7404 	static_call_update(__perf_guest_handle_intel_pt_intr,
7405 			   (void *)&__static_call_return0);
7406 	synchronize_rcu();
7407 }
7408 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7409 #endif
7410 
7411 static bool should_sample_guest(struct perf_event *event)
7412 {
7413 	return !event->attr.exclude_guest && perf_guest_state();
7414 }
7415 
7416 unsigned long perf_misc_flags(struct perf_event *event,
7417 			      struct pt_regs *regs)
7418 {
7419 	if (should_sample_guest(event))
7420 		return perf_arch_guest_misc_flags(regs);
7421 
7422 	return perf_arch_misc_flags(regs);
7423 }
7424 
7425 unsigned long perf_instruction_pointer(struct perf_event *event,
7426 				       struct pt_regs *regs)
7427 {
7428 	if (should_sample_guest(event))
7429 		return perf_guest_get_ip();
7430 
7431 	return perf_arch_instruction_pointer(regs);
7432 }
7433 
7434 static void
7435 perf_output_sample_regs(struct perf_output_handle *handle,
7436 			struct pt_regs *regs, u64 mask)
7437 {
7438 	int bit;
7439 	DECLARE_BITMAP(_mask, 64);
7440 
7441 	bitmap_from_u64(_mask, mask);
7442 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7443 		u64 val;
7444 
7445 		val = perf_reg_value(regs, bit);
7446 		perf_output_put(handle, val);
7447 	}
7448 }
7449 
7450 static void perf_sample_regs_user(struct perf_regs *regs_user,
7451 				  struct pt_regs *regs)
7452 {
7453 	if (user_mode(regs)) {
7454 		regs_user->abi = perf_reg_abi(current);
7455 		regs_user->regs = regs;
7456 	} else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
7457 		perf_get_regs_user(regs_user, regs);
7458 	} else {
7459 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7460 		regs_user->regs = NULL;
7461 	}
7462 }
7463 
7464 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7465 				  struct pt_regs *regs)
7466 {
7467 	regs_intr->regs = regs;
7468 	regs_intr->abi  = perf_reg_abi(current);
7469 }
7470 
7471 
7472 /*
7473  * Get remaining task size from user stack pointer.
7474  *
7475  * It'd be better to take stack vma map and limit this more
7476  * precisely, but there's no way to get it safely under interrupt,
7477  * so using TASK_SIZE as limit.
7478  */
7479 static u64 perf_ustack_task_size(struct pt_regs *regs)
7480 {
7481 	unsigned long addr = perf_user_stack_pointer(regs);
7482 
7483 	if (!addr || addr >= TASK_SIZE)
7484 		return 0;
7485 
7486 	return TASK_SIZE - addr;
7487 }
7488 
7489 static u16
7490 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7491 			struct pt_regs *regs)
7492 {
7493 	u64 task_size;
7494 
7495 	/* No regs, no stack pointer, no dump. */
7496 	if (!regs)
7497 		return 0;
7498 
7499 	/* No mm, no stack, no dump. */
7500 	if (!current->mm)
7501 		return 0;
7502 
7503 	/*
7504 	 * Check if we fit in with the requested stack size into the:
7505 	 * - TASK_SIZE
7506 	 *   If we don't, we limit the size to the TASK_SIZE.
7507 	 *
7508 	 * - remaining sample size
7509 	 *   If we don't, we customize the stack size to
7510 	 *   fit in to the remaining sample size.
7511 	 */
7512 
7513 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7514 	stack_size = min(stack_size, (u16) task_size);
7515 
7516 	/* Current header size plus static size and dynamic size. */
7517 	header_size += 2 * sizeof(u64);
7518 
7519 	/* Do we fit in with the current stack dump size? */
7520 	if ((u16) (header_size + stack_size) < header_size) {
7521 		/*
7522 		 * If we overflow the maximum size for the sample,
7523 		 * we customize the stack dump size to fit in.
7524 		 */
7525 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7526 		stack_size = round_up(stack_size, sizeof(u64));
7527 	}
7528 
7529 	return stack_size;
7530 }
7531 
7532 static void
7533 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7534 			  struct pt_regs *regs)
7535 {
7536 	/* Case of a kernel thread, nothing to dump */
7537 	if (!regs) {
7538 		u64 size = 0;
7539 		perf_output_put(handle, size);
7540 	} else {
7541 		unsigned long sp;
7542 		unsigned int rem;
7543 		u64 dyn_size;
7544 
7545 		/*
7546 		 * We dump:
7547 		 * static size
7548 		 *   - the size requested by user or the best one we can fit
7549 		 *     in to the sample max size
7550 		 * data
7551 		 *   - user stack dump data
7552 		 * dynamic size
7553 		 *   - the actual dumped size
7554 		 */
7555 
7556 		/* Static size. */
7557 		perf_output_put(handle, dump_size);
7558 
7559 		/* Data. */
7560 		sp = perf_user_stack_pointer(regs);
7561 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7562 		dyn_size = dump_size - rem;
7563 
7564 		perf_output_skip(handle, rem);
7565 
7566 		/* Dynamic size. */
7567 		perf_output_put(handle, dyn_size);
7568 	}
7569 }
7570 
7571 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7572 					  struct perf_sample_data *data,
7573 					  size_t size)
7574 {
7575 	struct perf_event *sampler = event->aux_event;
7576 	struct perf_buffer *rb;
7577 
7578 	data->aux_size = 0;
7579 
7580 	if (!sampler)
7581 		goto out;
7582 
7583 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7584 		goto out;
7585 
7586 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7587 		goto out;
7588 
7589 	rb = ring_buffer_get(sampler);
7590 	if (!rb)
7591 		goto out;
7592 
7593 	/*
7594 	 * If this is an NMI hit inside sampling code, don't take
7595 	 * the sample. See also perf_aux_sample_output().
7596 	 */
7597 	if (READ_ONCE(rb->aux_in_sampling)) {
7598 		data->aux_size = 0;
7599 	} else {
7600 		size = min_t(size_t, size, perf_aux_size(rb));
7601 		data->aux_size = ALIGN(size, sizeof(u64));
7602 	}
7603 	ring_buffer_put(rb);
7604 
7605 out:
7606 	return data->aux_size;
7607 }
7608 
7609 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7610                                  struct perf_event *event,
7611                                  struct perf_output_handle *handle,
7612                                  unsigned long size)
7613 {
7614 	unsigned long flags;
7615 	long ret;
7616 
7617 	/*
7618 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7619 	 * paths. If we start calling them in NMI context, they may race with
7620 	 * the IRQ ones, that is, for example, re-starting an event that's just
7621 	 * been stopped, which is why we're using a separate callback that
7622 	 * doesn't change the event state.
7623 	 *
7624 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7625 	 */
7626 	local_irq_save(flags);
7627 	/*
7628 	 * Guard against NMI hits inside the critical section;
7629 	 * see also perf_prepare_sample_aux().
7630 	 */
7631 	WRITE_ONCE(rb->aux_in_sampling, 1);
7632 	barrier();
7633 
7634 	ret = event->pmu->snapshot_aux(event, handle, size);
7635 
7636 	barrier();
7637 	WRITE_ONCE(rb->aux_in_sampling, 0);
7638 	local_irq_restore(flags);
7639 
7640 	return ret;
7641 }
7642 
7643 static void perf_aux_sample_output(struct perf_event *event,
7644 				   struct perf_output_handle *handle,
7645 				   struct perf_sample_data *data)
7646 {
7647 	struct perf_event *sampler = event->aux_event;
7648 	struct perf_buffer *rb;
7649 	unsigned long pad;
7650 	long size;
7651 
7652 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7653 		return;
7654 
7655 	rb = ring_buffer_get(sampler);
7656 	if (!rb)
7657 		return;
7658 
7659 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7660 
7661 	/*
7662 	 * An error here means that perf_output_copy() failed (returned a
7663 	 * non-zero surplus that it didn't copy), which in its current
7664 	 * enlightened implementation is not possible. If that changes, we'd
7665 	 * like to know.
7666 	 */
7667 	if (WARN_ON_ONCE(size < 0))
7668 		goto out_put;
7669 
7670 	/*
7671 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7672 	 * perf_prepare_sample_aux(), so should not be more than that.
7673 	 */
7674 	pad = data->aux_size - size;
7675 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7676 		pad = 8;
7677 
7678 	if (pad) {
7679 		u64 zero = 0;
7680 		perf_output_copy(handle, &zero, pad);
7681 	}
7682 
7683 out_put:
7684 	ring_buffer_put(rb);
7685 }
7686 
7687 /*
7688  * A set of common sample data types saved even for non-sample records
7689  * when event->attr.sample_id_all is set.
7690  */
7691 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7692 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7693 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7694 
7695 static void __perf_event_header__init_id(struct perf_sample_data *data,
7696 					 struct perf_event *event,
7697 					 u64 sample_type)
7698 {
7699 	data->type = event->attr.sample_type;
7700 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7701 
7702 	if (sample_type & PERF_SAMPLE_TID) {
7703 		/* namespace issues */
7704 		data->tid_entry.pid = perf_event_pid(event, current);
7705 		data->tid_entry.tid = perf_event_tid(event, current);
7706 	}
7707 
7708 	if (sample_type & PERF_SAMPLE_TIME)
7709 		data->time = perf_event_clock(event);
7710 
7711 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7712 		data->id = primary_event_id(event);
7713 
7714 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7715 		data->stream_id = event->id;
7716 
7717 	if (sample_type & PERF_SAMPLE_CPU) {
7718 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7719 		data->cpu_entry.reserved = 0;
7720 	}
7721 }
7722 
7723 void perf_event_header__init_id(struct perf_event_header *header,
7724 				struct perf_sample_data *data,
7725 				struct perf_event *event)
7726 {
7727 	if (event->attr.sample_id_all) {
7728 		header->size += event->id_header_size;
7729 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7730 	}
7731 }
7732 
7733 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7734 					   struct perf_sample_data *data)
7735 {
7736 	u64 sample_type = data->type;
7737 
7738 	if (sample_type & PERF_SAMPLE_TID)
7739 		perf_output_put(handle, data->tid_entry);
7740 
7741 	if (sample_type & PERF_SAMPLE_TIME)
7742 		perf_output_put(handle, data->time);
7743 
7744 	if (sample_type & PERF_SAMPLE_ID)
7745 		perf_output_put(handle, data->id);
7746 
7747 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7748 		perf_output_put(handle, data->stream_id);
7749 
7750 	if (sample_type & PERF_SAMPLE_CPU)
7751 		perf_output_put(handle, data->cpu_entry);
7752 
7753 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7754 		perf_output_put(handle, data->id);
7755 }
7756 
7757 void perf_event__output_id_sample(struct perf_event *event,
7758 				  struct perf_output_handle *handle,
7759 				  struct perf_sample_data *sample)
7760 {
7761 	if (event->attr.sample_id_all)
7762 		__perf_event__output_id_sample(handle, sample);
7763 }
7764 
7765 static void perf_output_read_one(struct perf_output_handle *handle,
7766 				 struct perf_event *event,
7767 				 u64 enabled, u64 running)
7768 {
7769 	u64 read_format = event->attr.read_format;
7770 	u64 values[5];
7771 	int n = 0;
7772 
7773 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7774 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7775 		values[n++] = enabled +
7776 			atomic64_read(&event->child_total_time_enabled);
7777 	}
7778 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7779 		values[n++] = running +
7780 			atomic64_read(&event->child_total_time_running);
7781 	}
7782 	if (read_format & PERF_FORMAT_ID)
7783 		values[n++] = primary_event_id(event);
7784 	if (read_format & PERF_FORMAT_LOST)
7785 		values[n++] = atomic64_read(&event->lost_samples);
7786 
7787 	__output_copy(handle, values, n * sizeof(u64));
7788 }
7789 
7790 static void perf_output_read_group(struct perf_output_handle *handle,
7791 				   struct perf_event *event,
7792 				   u64 enabled, u64 running)
7793 {
7794 	struct perf_event *leader = event->group_leader, *sub;
7795 	u64 read_format = event->attr.read_format;
7796 	unsigned long flags;
7797 	u64 values[6];
7798 	int n = 0;
7799 	bool self = has_inherit_and_sample_read(&event->attr);
7800 
7801 	/*
7802 	 * Disabling interrupts avoids all counter scheduling
7803 	 * (context switches, timer based rotation and IPIs).
7804 	 */
7805 	local_irq_save(flags);
7806 
7807 	values[n++] = 1 + leader->nr_siblings;
7808 
7809 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7810 		values[n++] = enabled;
7811 
7812 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7813 		values[n++] = running;
7814 
7815 	if ((leader != event) && !handle->skip_read)
7816 		perf_pmu_read(leader);
7817 
7818 	values[n++] = perf_event_count(leader, self);
7819 	if (read_format & PERF_FORMAT_ID)
7820 		values[n++] = primary_event_id(leader);
7821 	if (read_format & PERF_FORMAT_LOST)
7822 		values[n++] = atomic64_read(&leader->lost_samples);
7823 
7824 	__output_copy(handle, values, n * sizeof(u64));
7825 
7826 	for_each_sibling_event(sub, leader) {
7827 		n = 0;
7828 
7829 		if ((sub != event) && !handle->skip_read)
7830 			perf_pmu_read(sub);
7831 
7832 		values[n++] = perf_event_count(sub, self);
7833 		if (read_format & PERF_FORMAT_ID)
7834 			values[n++] = primary_event_id(sub);
7835 		if (read_format & PERF_FORMAT_LOST)
7836 			values[n++] = atomic64_read(&sub->lost_samples);
7837 
7838 		__output_copy(handle, values, n * sizeof(u64));
7839 	}
7840 
7841 	local_irq_restore(flags);
7842 }
7843 
7844 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7845 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7846 
7847 /*
7848  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7849  *
7850  * The problem is that its both hard and excessively expensive to iterate the
7851  * child list, not to mention that its impossible to IPI the children running
7852  * on another CPU, from interrupt/NMI context.
7853  *
7854  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7855  * counts rather than attempting to accumulate some value across all children on
7856  * all cores.
7857  */
7858 static void perf_output_read(struct perf_output_handle *handle,
7859 			     struct perf_event *event)
7860 {
7861 	u64 enabled = 0, running = 0, now;
7862 	u64 read_format = event->attr.read_format;
7863 
7864 	/*
7865 	 * compute total_time_enabled, total_time_running
7866 	 * based on snapshot values taken when the event
7867 	 * was last scheduled in.
7868 	 *
7869 	 * we cannot simply called update_context_time()
7870 	 * because of locking issue as we are called in
7871 	 * NMI context
7872 	 */
7873 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7874 		calc_timer_values(event, &now, &enabled, &running);
7875 
7876 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7877 		perf_output_read_group(handle, event, enabled, running);
7878 	else
7879 		perf_output_read_one(handle, event, enabled, running);
7880 }
7881 
7882 void perf_output_sample(struct perf_output_handle *handle,
7883 			struct perf_event_header *header,
7884 			struct perf_sample_data *data,
7885 			struct perf_event *event)
7886 {
7887 	u64 sample_type = data->type;
7888 
7889 	if (data->sample_flags & PERF_SAMPLE_READ)
7890 		handle->skip_read = 1;
7891 
7892 	perf_output_put(handle, *header);
7893 
7894 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7895 		perf_output_put(handle, data->id);
7896 
7897 	if (sample_type & PERF_SAMPLE_IP)
7898 		perf_output_put(handle, data->ip);
7899 
7900 	if (sample_type & PERF_SAMPLE_TID)
7901 		perf_output_put(handle, data->tid_entry);
7902 
7903 	if (sample_type & PERF_SAMPLE_TIME)
7904 		perf_output_put(handle, data->time);
7905 
7906 	if (sample_type & PERF_SAMPLE_ADDR)
7907 		perf_output_put(handle, data->addr);
7908 
7909 	if (sample_type & PERF_SAMPLE_ID)
7910 		perf_output_put(handle, data->id);
7911 
7912 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7913 		perf_output_put(handle, data->stream_id);
7914 
7915 	if (sample_type & PERF_SAMPLE_CPU)
7916 		perf_output_put(handle, data->cpu_entry);
7917 
7918 	if (sample_type & PERF_SAMPLE_PERIOD)
7919 		perf_output_put(handle, data->period);
7920 
7921 	if (sample_type & PERF_SAMPLE_READ)
7922 		perf_output_read(handle, event);
7923 
7924 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7925 		int size = 1;
7926 
7927 		size += data->callchain->nr;
7928 		size *= sizeof(u64);
7929 		__output_copy(handle, data->callchain, size);
7930 	}
7931 
7932 	if (sample_type & PERF_SAMPLE_RAW) {
7933 		struct perf_raw_record *raw = data->raw;
7934 
7935 		if (raw) {
7936 			struct perf_raw_frag *frag = &raw->frag;
7937 
7938 			perf_output_put(handle, raw->size);
7939 			do {
7940 				if (frag->copy) {
7941 					__output_custom(handle, frag->copy,
7942 							frag->data, frag->size);
7943 				} else {
7944 					__output_copy(handle, frag->data,
7945 						      frag->size);
7946 				}
7947 				if (perf_raw_frag_last(frag))
7948 					break;
7949 				frag = frag->next;
7950 			} while (1);
7951 			if (frag->pad)
7952 				__output_skip(handle, NULL, frag->pad);
7953 		} else {
7954 			struct {
7955 				u32	size;
7956 				u32	data;
7957 			} raw = {
7958 				.size = sizeof(u32),
7959 				.data = 0,
7960 			};
7961 			perf_output_put(handle, raw);
7962 		}
7963 	}
7964 
7965 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7966 		if (data->br_stack) {
7967 			size_t size;
7968 
7969 			size = data->br_stack->nr
7970 			     * sizeof(struct perf_branch_entry);
7971 
7972 			perf_output_put(handle, data->br_stack->nr);
7973 			if (branch_sample_hw_index(event))
7974 				perf_output_put(handle, data->br_stack->hw_idx);
7975 			perf_output_copy(handle, data->br_stack->entries, size);
7976 			/*
7977 			 * Add the extension space which is appended
7978 			 * right after the struct perf_branch_stack.
7979 			 */
7980 			if (data->br_stack_cntr) {
7981 				size = data->br_stack->nr * sizeof(u64);
7982 				perf_output_copy(handle, data->br_stack_cntr, size);
7983 			}
7984 		} else {
7985 			/*
7986 			 * we always store at least the value of nr
7987 			 */
7988 			u64 nr = 0;
7989 			perf_output_put(handle, nr);
7990 		}
7991 	}
7992 
7993 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7994 		u64 abi = data->regs_user.abi;
7995 
7996 		/*
7997 		 * If there are no regs to dump, notice it through
7998 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7999 		 */
8000 		perf_output_put(handle, abi);
8001 
8002 		if (abi) {
8003 			u64 mask = event->attr.sample_regs_user;
8004 			perf_output_sample_regs(handle,
8005 						data->regs_user.regs,
8006 						mask);
8007 		}
8008 	}
8009 
8010 	if (sample_type & PERF_SAMPLE_STACK_USER) {
8011 		perf_output_sample_ustack(handle,
8012 					  data->stack_user_size,
8013 					  data->regs_user.regs);
8014 	}
8015 
8016 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8017 		perf_output_put(handle, data->weight.full);
8018 
8019 	if (sample_type & PERF_SAMPLE_DATA_SRC)
8020 		perf_output_put(handle, data->data_src.val);
8021 
8022 	if (sample_type & PERF_SAMPLE_TRANSACTION)
8023 		perf_output_put(handle, data->txn);
8024 
8025 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
8026 		u64 abi = data->regs_intr.abi;
8027 		/*
8028 		 * If there are no regs to dump, notice it through
8029 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8030 		 */
8031 		perf_output_put(handle, abi);
8032 
8033 		if (abi) {
8034 			u64 mask = event->attr.sample_regs_intr;
8035 
8036 			perf_output_sample_regs(handle,
8037 						data->regs_intr.regs,
8038 						mask);
8039 		}
8040 	}
8041 
8042 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8043 		perf_output_put(handle, data->phys_addr);
8044 
8045 	if (sample_type & PERF_SAMPLE_CGROUP)
8046 		perf_output_put(handle, data->cgroup);
8047 
8048 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8049 		perf_output_put(handle, data->data_page_size);
8050 
8051 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8052 		perf_output_put(handle, data->code_page_size);
8053 
8054 	if (sample_type & PERF_SAMPLE_AUX) {
8055 		perf_output_put(handle, data->aux_size);
8056 
8057 		if (data->aux_size)
8058 			perf_aux_sample_output(event, handle, data);
8059 	}
8060 
8061 	if (!event->attr.watermark) {
8062 		int wakeup_events = event->attr.wakeup_events;
8063 
8064 		if (wakeup_events) {
8065 			struct perf_buffer *rb = handle->rb;
8066 			int events = local_inc_return(&rb->events);
8067 
8068 			if (events >= wakeup_events) {
8069 				local_sub(wakeup_events, &rb->events);
8070 				local_inc(&rb->wakeup);
8071 			}
8072 		}
8073 	}
8074 }
8075 
8076 static u64 perf_virt_to_phys(u64 virt)
8077 {
8078 	u64 phys_addr = 0;
8079 
8080 	if (!virt)
8081 		return 0;
8082 
8083 	if (virt >= TASK_SIZE) {
8084 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
8085 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
8086 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
8087 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8088 	} else {
8089 		/*
8090 		 * Walking the pages tables for user address.
8091 		 * Interrupts are disabled, so it prevents any tear down
8092 		 * of the page tables.
8093 		 * Try IRQ-safe get_user_page_fast_only first.
8094 		 * If failed, leave phys_addr as 0.
8095 		 */
8096 		if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
8097 			struct page *p;
8098 
8099 			pagefault_disable();
8100 			if (get_user_page_fast_only(virt, 0, &p)) {
8101 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8102 				put_page(p);
8103 			}
8104 			pagefault_enable();
8105 		}
8106 	}
8107 
8108 	return phys_addr;
8109 }
8110 
8111 /*
8112  * Return the pagetable size of a given virtual address.
8113  */
8114 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8115 {
8116 	u64 size = 0;
8117 
8118 #ifdef CONFIG_HAVE_GUP_FAST
8119 	pgd_t *pgdp, pgd;
8120 	p4d_t *p4dp, p4d;
8121 	pud_t *pudp, pud;
8122 	pmd_t *pmdp, pmd;
8123 	pte_t *ptep, pte;
8124 
8125 	pgdp = pgd_offset(mm, addr);
8126 	pgd = READ_ONCE(*pgdp);
8127 	if (pgd_none(pgd))
8128 		return 0;
8129 
8130 	if (pgd_leaf(pgd))
8131 		return pgd_leaf_size(pgd);
8132 
8133 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8134 	p4d = READ_ONCE(*p4dp);
8135 	if (!p4d_present(p4d))
8136 		return 0;
8137 
8138 	if (p4d_leaf(p4d))
8139 		return p4d_leaf_size(p4d);
8140 
8141 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8142 	pud = READ_ONCE(*pudp);
8143 	if (!pud_present(pud))
8144 		return 0;
8145 
8146 	if (pud_leaf(pud))
8147 		return pud_leaf_size(pud);
8148 
8149 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8150 again:
8151 	pmd = pmdp_get_lockless(pmdp);
8152 	if (!pmd_present(pmd))
8153 		return 0;
8154 
8155 	if (pmd_leaf(pmd))
8156 		return pmd_leaf_size(pmd);
8157 
8158 	ptep = pte_offset_map(&pmd, addr);
8159 	if (!ptep)
8160 		goto again;
8161 
8162 	pte = ptep_get_lockless(ptep);
8163 	if (pte_present(pte))
8164 		size = __pte_leaf_size(pmd, pte);
8165 	pte_unmap(ptep);
8166 #endif /* CONFIG_HAVE_GUP_FAST */
8167 
8168 	return size;
8169 }
8170 
8171 static u64 perf_get_page_size(unsigned long addr)
8172 {
8173 	struct mm_struct *mm;
8174 	unsigned long flags;
8175 	u64 size;
8176 
8177 	if (!addr)
8178 		return 0;
8179 
8180 	/*
8181 	 * Software page-table walkers must disable IRQs,
8182 	 * which prevents any tear down of the page tables.
8183 	 */
8184 	local_irq_save(flags);
8185 
8186 	mm = current->mm;
8187 	if (!mm) {
8188 		/*
8189 		 * For kernel threads and the like, use init_mm so that
8190 		 * we can find kernel memory.
8191 		 */
8192 		mm = &init_mm;
8193 	}
8194 
8195 	size = perf_get_pgtable_size(mm, addr);
8196 
8197 	local_irq_restore(flags);
8198 
8199 	return size;
8200 }
8201 
8202 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8203 
8204 static struct unwind_work perf_unwind_work;
8205 
8206 struct perf_callchain_entry *
8207 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8208 {
8209 	bool kernel = !event->attr.exclude_callchain_kernel;
8210 	bool user   = !event->attr.exclude_callchain_user &&
8211 		!(current->flags & (PF_KTHREAD | PF_USER_WORKER));
8212 	/* Disallow cross-task user callchains. */
8213 	bool crosstask = event->ctx->task && event->ctx->task != current;
8214 	bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user &&
8215 			  event->attr.defer_callchain;
8216 	const u32 max_stack = event->attr.sample_max_stack;
8217 	struct perf_callchain_entry *callchain;
8218 	u64 defer_cookie;
8219 
8220 	if (!current->mm)
8221 		user = false;
8222 
8223 	if (!kernel && !user)
8224 		return &__empty_callchain;
8225 
8226 	if (!(user && defer_user && !crosstask &&
8227 	      unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0))
8228 		defer_cookie = 0;
8229 
8230 	callchain = get_perf_callchain(regs, kernel, user, max_stack,
8231 				       crosstask, true, defer_cookie);
8232 
8233 	return callchain ?: &__empty_callchain;
8234 }
8235 
8236 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8237 {
8238 	return d * !!(flags & s);
8239 }
8240 
8241 void perf_prepare_sample(struct perf_sample_data *data,
8242 			 struct perf_event *event,
8243 			 struct pt_regs *regs)
8244 {
8245 	u64 sample_type = event->attr.sample_type;
8246 	u64 filtered_sample_type;
8247 
8248 	/*
8249 	 * Add the sample flags that are dependent to others.  And clear the
8250 	 * sample flags that have already been done by the PMU driver.
8251 	 */
8252 	filtered_sample_type = sample_type;
8253 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8254 					   PERF_SAMPLE_IP);
8255 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8256 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8257 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8258 					   PERF_SAMPLE_REGS_USER);
8259 	filtered_sample_type &= ~data->sample_flags;
8260 
8261 	if (filtered_sample_type == 0) {
8262 		/* Make sure it has the correct data->type for output */
8263 		data->type = event->attr.sample_type;
8264 		return;
8265 	}
8266 
8267 	__perf_event_header__init_id(data, event, filtered_sample_type);
8268 
8269 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8270 		data->ip = perf_instruction_pointer(event, regs);
8271 		data->sample_flags |= PERF_SAMPLE_IP;
8272 	}
8273 
8274 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8275 		perf_sample_save_callchain(data, event, regs);
8276 
8277 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8278 		data->raw = NULL;
8279 		data->dyn_size += sizeof(u64);
8280 		data->sample_flags |= PERF_SAMPLE_RAW;
8281 	}
8282 
8283 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8284 		data->br_stack = NULL;
8285 		data->dyn_size += sizeof(u64);
8286 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8287 	}
8288 
8289 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8290 		perf_sample_regs_user(&data->regs_user, regs);
8291 
8292 	/*
8293 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8294 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8295 	 * the dyn_size if it's not requested by users.
8296 	 */
8297 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8298 		/* regs dump ABI info */
8299 		int size = sizeof(u64);
8300 
8301 		if (data->regs_user.regs) {
8302 			u64 mask = event->attr.sample_regs_user;
8303 			size += hweight64(mask) * sizeof(u64);
8304 		}
8305 
8306 		data->dyn_size += size;
8307 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8308 	}
8309 
8310 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8311 		/*
8312 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8313 		 * processed as the last one or have additional check added
8314 		 * in case new sample type is added, because we could eat
8315 		 * up the rest of the sample size.
8316 		 */
8317 		u16 stack_size = event->attr.sample_stack_user;
8318 		u16 header_size = perf_sample_data_size(data, event);
8319 		u16 size = sizeof(u64);
8320 
8321 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8322 						     data->regs_user.regs);
8323 
8324 		/*
8325 		 * If there is something to dump, add space for the dump
8326 		 * itself and for the field that tells the dynamic size,
8327 		 * which is how many have been actually dumped.
8328 		 */
8329 		if (stack_size)
8330 			size += sizeof(u64) + stack_size;
8331 
8332 		data->stack_user_size = stack_size;
8333 		data->dyn_size += size;
8334 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8335 	}
8336 
8337 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8338 		data->weight.full = 0;
8339 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8340 	}
8341 
8342 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8343 		data->data_src.val = PERF_MEM_NA;
8344 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8345 	}
8346 
8347 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8348 		data->txn = 0;
8349 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8350 	}
8351 
8352 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8353 		data->addr = 0;
8354 		data->sample_flags |= PERF_SAMPLE_ADDR;
8355 	}
8356 
8357 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8358 		/* regs dump ABI info */
8359 		int size = sizeof(u64);
8360 
8361 		perf_sample_regs_intr(&data->regs_intr, regs);
8362 
8363 		if (data->regs_intr.regs) {
8364 			u64 mask = event->attr.sample_regs_intr;
8365 
8366 			size += hweight64(mask) * sizeof(u64);
8367 		}
8368 
8369 		data->dyn_size += size;
8370 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8371 	}
8372 
8373 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8374 		data->phys_addr = perf_virt_to_phys(data->addr);
8375 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8376 	}
8377 
8378 #ifdef CONFIG_CGROUP_PERF
8379 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8380 		struct cgroup *cgrp;
8381 
8382 		/* protected by RCU */
8383 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8384 		data->cgroup = cgroup_id(cgrp);
8385 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8386 	}
8387 #endif
8388 
8389 	/*
8390 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8391 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8392 	 * but the value will not dump to the userspace.
8393 	 */
8394 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8395 		data->data_page_size = perf_get_page_size(data->addr);
8396 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8397 	}
8398 
8399 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8400 		data->code_page_size = perf_get_page_size(data->ip);
8401 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8402 	}
8403 
8404 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8405 		u64 size;
8406 		u16 header_size = perf_sample_data_size(data, event);
8407 
8408 		header_size += sizeof(u64); /* size */
8409 
8410 		/*
8411 		 * Given the 16bit nature of header::size, an AUX sample can
8412 		 * easily overflow it, what with all the preceding sample bits.
8413 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8414 		 * per sample in total (rounded down to 8 byte boundary).
8415 		 */
8416 		size = min_t(size_t, U16_MAX - header_size,
8417 			     event->attr.aux_sample_size);
8418 		size = rounddown(size, 8);
8419 		size = perf_prepare_sample_aux(event, data, size);
8420 
8421 		WARN_ON_ONCE(size + header_size > U16_MAX);
8422 		data->dyn_size += size + sizeof(u64); /* size above */
8423 		data->sample_flags |= PERF_SAMPLE_AUX;
8424 	}
8425 }
8426 
8427 void perf_prepare_header(struct perf_event_header *header,
8428 			 struct perf_sample_data *data,
8429 			 struct perf_event *event,
8430 			 struct pt_regs *regs)
8431 {
8432 	header->type = PERF_RECORD_SAMPLE;
8433 	header->size = perf_sample_data_size(data, event);
8434 	header->misc = perf_misc_flags(event, regs);
8435 
8436 	/*
8437 	 * If you're adding more sample types here, you likely need to do
8438 	 * something about the overflowing header::size, like repurpose the
8439 	 * lowest 3 bits of size, which should be always zero at the moment.
8440 	 * This raises a more important question, do we really need 512k sized
8441 	 * samples and why, so good argumentation is in order for whatever you
8442 	 * do here next.
8443 	 */
8444 	WARN_ON_ONCE(header->size & 7);
8445 }
8446 
8447 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8448 {
8449 	if (pause) {
8450 		if (!event->hw.aux_paused) {
8451 			event->hw.aux_paused = 1;
8452 			event->pmu->stop(event, PERF_EF_PAUSE);
8453 		}
8454 	} else {
8455 		if (event->hw.aux_paused) {
8456 			event->hw.aux_paused = 0;
8457 			event->pmu->start(event, PERF_EF_RESUME);
8458 		}
8459 	}
8460 }
8461 
8462 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8463 {
8464 	struct perf_buffer *rb;
8465 
8466 	if (WARN_ON_ONCE(!event))
8467 		return;
8468 
8469 	rb = ring_buffer_get(event);
8470 	if (!rb)
8471 		return;
8472 
8473 	scoped_guard (irqsave) {
8474 		/*
8475 		 * Guard against self-recursion here. Another event could trip
8476 		 * this same from NMI context.
8477 		 */
8478 		if (READ_ONCE(rb->aux_in_pause_resume))
8479 			break;
8480 
8481 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8482 		barrier();
8483 		__perf_event_aux_pause(event, pause);
8484 		barrier();
8485 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8486 	}
8487 	ring_buffer_put(rb);
8488 }
8489 
8490 static __always_inline int
8491 __perf_event_output(struct perf_event *event,
8492 		    struct perf_sample_data *data,
8493 		    struct pt_regs *regs,
8494 		    int (*output_begin)(struct perf_output_handle *,
8495 					struct perf_sample_data *,
8496 					struct perf_event *,
8497 					unsigned int))
8498 {
8499 	struct perf_output_handle handle;
8500 	struct perf_event_header header;
8501 	int err;
8502 
8503 	/* protect the callchain buffers */
8504 	rcu_read_lock();
8505 
8506 	perf_prepare_sample(data, event, regs);
8507 	perf_prepare_header(&header, data, event, regs);
8508 
8509 	err = output_begin(&handle, data, event, header.size);
8510 	if (err)
8511 		goto exit;
8512 
8513 	perf_output_sample(&handle, &header, data, event);
8514 
8515 	perf_output_end(&handle);
8516 
8517 exit:
8518 	rcu_read_unlock();
8519 	return err;
8520 }
8521 
8522 void
8523 perf_event_output_forward(struct perf_event *event,
8524 			 struct perf_sample_data *data,
8525 			 struct pt_regs *regs)
8526 {
8527 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8528 }
8529 
8530 void
8531 perf_event_output_backward(struct perf_event *event,
8532 			   struct perf_sample_data *data,
8533 			   struct pt_regs *regs)
8534 {
8535 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8536 }
8537 
8538 int
8539 perf_event_output(struct perf_event *event,
8540 		  struct perf_sample_data *data,
8541 		  struct pt_regs *regs)
8542 {
8543 	return __perf_event_output(event, data, regs, perf_output_begin);
8544 }
8545 
8546 /*
8547  * read event_id
8548  */
8549 
8550 struct perf_read_event {
8551 	struct perf_event_header	header;
8552 
8553 	u32				pid;
8554 	u32				tid;
8555 };
8556 
8557 static void
8558 perf_event_read_event(struct perf_event *event,
8559 			struct task_struct *task)
8560 {
8561 	struct perf_output_handle handle;
8562 	struct perf_sample_data sample;
8563 	struct perf_read_event read_event = {
8564 		.header = {
8565 			.type = PERF_RECORD_READ,
8566 			.misc = 0,
8567 			.size = sizeof(read_event) + event->read_size,
8568 		},
8569 		.pid = perf_event_pid(event, task),
8570 		.tid = perf_event_tid(event, task),
8571 	};
8572 	int ret;
8573 
8574 	perf_event_header__init_id(&read_event.header, &sample, event);
8575 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8576 	if (ret)
8577 		return;
8578 
8579 	perf_output_put(&handle, read_event);
8580 	perf_output_read(&handle, event);
8581 	perf_event__output_id_sample(event, &handle, &sample);
8582 
8583 	perf_output_end(&handle);
8584 }
8585 
8586 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8587 
8588 static void
8589 perf_iterate_ctx(struct perf_event_context *ctx,
8590 		   perf_iterate_f output,
8591 		   void *data, bool all)
8592 {
8593 	struct perf_event *event;
8594 
8595 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8596 		if (!all) {
8597 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8598 				continue;
8599 			if (!event_filter_match(event))
8600 				continue;
8601 		}
8602 
8603 		output(event, data);
8604 	}
8605 }
8606 
8607 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8608 {
8609 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8610 	struct perf_event *event;
8611 
8612 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8613 		/*
8614 		 * Skip events that are not fully formed yet; ensure that
8615 		 * if we observe event->ctx, both event and ctx will be
8616 		 * complete enough. See perf_install_in_context().
8617 		 */
8618 		if (!smp_load_acquire(&event->ctx))
8619 			continue;
8620 
8621 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8622 			continue;
8623 		if (!event_filter_match(event))
8624 			continue;
8625 		output(event, data);
8626 	}
8627 }
8628 
8629 /*
8630  * Iterate all events that need to receive side-band events.
8631  *
8632  * For new callers; ensure that account_pmu_sb_event() includes
8633  * your event, otherwise it might not get delivered.
8634  */
8635 static void
8636 perf_iterate_sb(perf_iterate_f output, void *data,
8637 	       struct perf_event_context *task_ctx)
8638 {
8639 	struct perf_event_context *ctx;
8640 
8641 	rcu_read_lock();
8642 	preempt_disable();
8643 
8644 	/*
8645 	 * If we have task_ctx != NULL we only notify the task context itself.
8646 	 * The task_ctx is set only for EXIT events before releasing task
8647 	 * context.
8648 	 */
8649 	if (task_ctx) {
8650 		perf_iterate_ctx(task_ctx, output, data, false);
8651 		goto done;
8652 	}
8653 
8654 	perf_iterate_sb_cpu(output, data);
8655 
8656 	ctx = rcu_dereference(current->perf_event_ctxp);
8657 	if (ctx)
8658 		perf_iterate_ctx(ctx, output, data, false);
8659 done:
8660 	preempt_enable();
8661 	rcu_read_unlock();
8662 }
8663 
8664 /*
8665  * Clear all file-based filters at exec, they'll have to be
8666  * re-instated when/if these objects are mmapped again.
8667  */
8668 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8669 {
8670 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8671 	struct perf_addr_filter *filter;
8672 	unsigned int restart = 0, count = 0;
8673 	unsigned long flags;
8674 
8675 	if (!has_addr_filter(event))
8676 		return;
8677 
8678 	raw_spin_lock_irqsave(&ifh->lock, flags);
8679 	list_for_each_entry(filter, &ifh->list, entry) {
8680 		if (filter->path.dentry) {
8681 			event->addr_filter_ranges[count].start = 0;
8682 			event->addr_filter_ranges[count].size = 0;
8683 			restart++;
8684 		}
8685 
8686 		count++;
8687 	}
8688 
8689 	if (restart)
8690 		event->addr_filters_gen++;
8691 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8692 
8693 	if (restart)
8694 		perf_event_stop(event, 1);
8695 }
8696 
8697 void perf_event_exec(void)
8698 {
8699 	struct perf_event_context *ctx;
8700 
8701 	ctx = perf_pin_task_context(current);
8702 	if (!ctx)
8703 		return;
8704 
8705 	perf_event_enable_on_exec(ctx);
8706 	perf_event_remove_on_exec(ctx);
8707 	scoped_guard(rcu)
8708 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8709 
8710 	perf_unpin_context(ctx);
8711 	put_ctx(ctx);
8712 }
8713 
8714 struct remote_output {
8715 	struct perf_buffer	*rb;
8716 	int			err;
8717 };
8718 
8719 static void __perf_event_output_stop(struct perf_event *event, void *data)
8720 {
8721 	struct perf_event *parent = event->parent;
8722 	struct remote_output *ro = data;
8723 	struct perf_buffer *rb = ro->rb;
8724 	struct stop_event_data sd = {
8725 		.event	= event,
8726 	};
8727 
8728 	if (!has_aux(event))
8729 		return;
8730 
8731 	if (!parent)
8732 		parent = event;
8733 
8734 	/*
8735 	 * In case of inheritance, it will be the parent that links to the
8736 	 * ring-buffer, but it will be the child that's actually using it.
8737 	 *
8738 	 * We are using event::rb to determine if the event should be stopped,
8739 	 * however this may race with ring_buffer_attach() (through set_output),
8740 	 * which will make us skip the event that actually needs to be stopped.
8741 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8742 	 * its rb pointer.
8743 	 */
8744 	if (rcu_dereference(parent->rb) == rb)
8745 		ro->err = __perf_event_stop(&sd);
8746 }
8747 
8748 static int __perf_pmu_output_stop(void *info)
8749 {
8750 	struct perf_event *event = info;
8751 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8752 	struct remote_output ro = {
8753 		.rb	= event->rb,
8754 	};
8755 
8756 	rcu_read_lock();
8757 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8758 	if (cpuctx->task_ctx)
8759 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8760 				   &ro, false);
8761 	rcu_read_unlock();
8762 
8763 	return ro.err;
8764 }
8765 
8766 static void perf_pmu_output_stop(struct perf_event *event)
8767 {
8768 	struct perf_event *iter;
8769 	int err, cpu;
8770 
8771 restart:
8772 	rcu_read_lock();
8773 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8774 		/*
8775 		 * For per-CPU events, we need to make sure that neither they
8776 		 * nor their children are running; for cpu==-1 events it's
8777 		 * sufficient to stop the event itself if it's active, since
8778 		 * it can't have children.
8779 		 */
8780 		cpu = iter->cpu;
8781 		if (cpu == -1)
8782 			cpu = READ_ONCE(iter->oncpu);
8783 
8784 		if (cpu == -1)
8785 			continue;
8786 
8787 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8788 		if (err == -EAGAIN) {
8789 			rcu_read_unlock();
8790 			goto restart;
8791 		}
8792 	}
8793 	rcu_read_unlock();
8794 }
8795 
8796 /*
8797  * task tracking -- fork/exit
8798  *
8799  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8800  */
8801 
8802 struct perf_task_event {
8803 	struct task_struct		*task;
8804 	struct perf_event_context	*task_ctx;
8805 
8806 	struct {
8807 		struct perf_event_header	header;
8808 
8809 		u32				pid;
8810 		u32				ppid;
8811 		u32				tid;
8812 		u32				ptid;
8813 		u64				time;
8814 	} event_id;
8815 };
8816 
8817 static int perf_event_task_match(struct perf_event *event)
8818 {
8819 	return event->attr.comm  || event->attr.mmap ||
8820 	       event->attr.mmap2 || event->attr.mmap_data ||
8821 	       event->attr.task;
8822 }
8823 
8824 static void perf_event_task_output(struct perf_event *event,
8825 				   void *data)
8826 {
8827 	struct perf_task_event *task_event = data;
8828 	struct perf_output_handle handle;
8829 	struct perf_sample_data	sample;
8830 	struct task_struct *task = task_event->task;
8831 	int ret, size = task_event->event_id.header.size;
8832 
8833 	if (!perf_event_task_match(event))
8834 		return;
8835 
8836 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8837 
8838 	ret = perf_output_begin(&handle, &sample, event,
8839 				task_event->event_id.header.size);
8840 	if (ret)
8841 		goto out;
8842 
8843 	task_event->event_id.pid = perf_event_pid(event, task);
8844 	task_event->event_id.tid = perf_event_tid(event, task);
8845 
8846 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8847 		task_event->event_id.ppid = perf_event_pid(event,
8848 							task->real_parent);
8849 		task_event->event_id.ptid = perf_event_pid(event,
8850 							task->real_parent);
8851 	} else {  /* PERF_RECORD_FORK */
8852 		task_event->event_id.ppid = perf_event_pid(event, current);
8853 		task_event->event_id.ptid = perf_event_tid(event, current);
8854 	}
8855 
8856 	task_event->event_id.time = perf_event_clock(event);
8857 
8858 	perf_output_put(&handle, task_event->event_id);
8859 
8860 	perf_event__output_id_sample(event, &handle, &sample);
8861 
8862 	perf_output_end(&handle);
8863 out:
8864 	task_event->event_id.header.size = size;
8865 }
8866 
8867 static void perf_event_task(struct task_struct *task,
8868 			      struct perf_event_context *task_ctx,
8869 			      int new)
8870 {
8871 	struct perf_task_event task_event;
8872 
8873 	if (!atomic_read(&nr_comm_events) &&
8874 	    !atomic_read(&nr_mmap_events) &&
8875 	    !atomic_read(&nr_task_events))
8876 		return;
8877 
8878 	task_event = (struct perf_task_event){
8879 		.task	  = task,
8880 		.task_ctx = task_ctx,
8881 		.event_id    = {
8882 			.header = {
8883 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8884 				.misc = 0,
8885 				.size = sizeof(task_event.event_id),
8886 			},
8887 			/* .pid  */
8888 			/* .ppid */
8889 			/* .tid  */
8890 			/* .ptid */
8891 			/* .time */
8892 		},
8893 	};
8894 
8895 	perf_iterate_sb(perf_event_task_output,
8896 		       &task_event,
8897 		       task_ctx);
8898 }
8899 
8900 /*
8901  * Allocate data for a new task when profiling system-wide
8902  * events which require PMU specific data
8903  */
8904 static void
8905 perf_event_alloc_task_data(struct task_struct *child,
8906 			   struct task_struct *parent)
8907 {
8908 	struct kmem_cache *ctx_cache = NULL;
8909 	struct perf_ctx_data *cd;
8910 
8911 	if (!refcount_read(&global_ctx_data_ref))
8912 		return;
8913 
8914 	scoped_guard (rcu) {
8915 		cd = rcu_dereference(parent->perf_ctx_data);
8916 		if (cd)
8917 			ctx_cache = cd->ctx_cache;
8918 	}
8919 
8920 	if (!ctx_cache)
8921 		return;
8922 
8923 	guard(percpu_read)(&global_ctx_data_rwsem);
8924 	scoped_guard (rcu) {
8925 		cd = rcu_dereference(child->perf_ctx_data);
8926 		if (!cd) {
8927 			/*
8928 			 * A system-wide event may be unaccount,
8929 			 * when attaching the perf_ctx_data.
8930 			 */
8931 			if (!refcount_read(&global_ctx_data_ref))
8932 				return;
8933 			goto attach;
8934 		}
8935 
8936 		if (!cd->global) {
8937 			cd->global = 1;
8938 			refcount_inc(&cd->refcount);
8939 		}
8940 	}
8941 
8942 	return;
8943 attach:
8944 	attach_task_ctx_data(child, ctx_cache, true);
8945 }
8946 
8947 void perf_event_fork(struct task_struct *task)
8948 {
8949 	perf_event_task(task, NULL, 1);
8950 	perf_event_namespaces(task);
8951 	perf_event_alloc_task_data(task, current);
8952 }
8953 
8954 /*
8955  * comm tracking
8956  */
8957 
8958 struct perf_comm_event {
8959 	struct task_struct	*task;
8960 	char			*comm;
8961 	int			comm_size;
8962 
8963 	struct {
8964 		struct perf_event_header	header;
8965 
8966 		u32				pid;
8967 		u32				tid;
8968 	} event_id;
8969 };
8970 
8971 static int perf_event_comm_match(struct perf_event *event)
8972 {
8973 	return event->attr.comm;
8974 }
8975 
8976 static void perf_event_comm_output(struct perf_event *event,
8977 				   void *data)
8978 {
8979 	struct perf_comm_event *comm_event = data;
8980 	struct perf_output_handle handle;
8981 	struct perf_sample_data sample;
8982 	int size = comm_event->event_id.header.size;
8983 	int ret;
8984 
8985 	if (!perf_event_comm_match(event))
8986 		return;
8987 
8988 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8989 	ret = perf_output_begin(&handle, &sample, event,
8990 				comm_event->event_id.header.size);
8991 
8992 	if (ret)
8993 		goto out;
8994 
8995 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8996 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8997 
8998 	perf_output_put(&handle, comm_event->event_id);
8999 	__output_copy(&handle, comm_event->comm,
9000 				   comm_event->comm_size);
9001 
9002 	perf_event__output_id_sample(event, &handle, &sample);
9003 
9004 	perf_output_end(&handle);
9005 out:
9006 	comm_event->event_id.header.size = size;
9007 }
9008 
9009 static void perf_event_comm_event(struct perf_comm_event *comm_event)
9010 {
9011 	char comm[TASK_COMM_LEN];
9012 	unsigned int size;
9013 
9014 	memset(comm, 0, sizeof(comm));
9015 	strscpy(comm, comm_event->task->comm);
9016 	size = ALIGN(strlen(comm)+1, sizeof(u64));
9017 
9018 	comm_event->comm = comm;
9019 	comm_event->comm_size = size;
9020 
9021 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
9022 
9023 	perf_iterate_sb(perf_event_comm_output,
9024 		       comm_event,
9025 		       NULL);
9026 }
9027 
9028 void perf_event_comm(struct task_struct *task, bool exec)
9029 {
9030 	struct perf_comm_event comm_event;
9031 
9032 	if (!atomic_read(&nr_comm_events))
9033 		return;
9034 
9035 	comm_event = (struct perf_comm_event){
9036 		.task	= task,
9037 		/* .comm      */
9038 		/* .comm_size */
9039 		.event_id  = {
9040 			.header = {
9041 				.type = PERF_RECORD_COMM,
9042 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9043 				/* .size */
9044 			},
9045 			/* .pid */
9046 			/* .tid */
9047 		},
9048 	};
9049 
9050 	perf_event_comm_event(&comm_event);
9051 }
9052 
9053 /*
9054  * namespaces tracking
9055  */
9056 
9057 struct perf_namespaces_event {
9058 	struct task_struct		*task;
9059 
9060 	struct {
9061 		struct perf_event_header	header;
9062 
9063 		u32				pid;
9064 		u32				tid;
9065 		u64				nr_namespaces;
9066 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
9067 	} event_id;
9068 };
9069 
9070 static int perf_event_namespaces_match(struct perf_event *event)
9071 {
9072 	return event->attr.namespaces;
9073 }
9074 
9075 static void perf_event_namespaces_output(struct perf_event *event,
9076 					 void *data)
9077 {
9078 	struct perf_namespaces_event *namespaces_event = data;
9079 	struct perf_output_handle handle;
9080 	struct perf_sample_data sample;
9081 	u16 header_size = namespaces_event->event_id.header.size;
9082 	int ret;
9083 
9084 	if (!perf_event_namespaces_match(event))
9085 		return;
9086 
9087 	perf_event_header__init_id(&namespaces_event->event_id.header,
9088 				   &sample, event);
9089 	ret = perf_output_begin(&handle, &sample, event,
9090 				namespaces_event->event_id.header.size);
9091 	if (ret)
9092 		goto out;
9093 
9094 	namespaces_event->event_id.pid = perf_event_pid(event,
9095 							namespaces_event->task);
9096 	namespaces_event->event_id.tid = perf_event_tid(event,
9097 							namespaces_event->task);
9098 
9099 	perf_output_put(&handle, namespaces_event->event_id);
9100 
9101 	perf_event__output_id_sample(event, &handle, &sample);
9102 
9103 	perf_output_end(&handle);
9104 out:
9105 	namespaces_event->event_id.header.size = header_size;
9106 }
9107 
9108 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9109 				   struct task_struct *task,
9110 				   const struct proc_ns_operations *ns_ops)
9111 {
9112 	struct path ns_path;
9113 	struct inode *ns_inode;
9114 	int error;
9115 
9116 	error = ns_get_path(&ns_path, task, ns_ops);
9117 	if (!error) {
9118 		ns_inode = ns_path.dentry->d_inode;
9119 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9120 		ns_link_info->ino = ns_inode->i_ino;
9121 		path_put(&ns_path);
9122 	}
9123 }
9124 
9125 void perf_event_namespaces(struct task_struct *task)
9126 {
9127 	struct perf_namespaces_event namespaces_event;
9128 	struct perf_ns_link_info *ns_link_info;
9129 
9130 	if (!atomic_read(&nr_namespaces_events))
9131 		return;
9132 
9133 	namespaces_event = (struct perf_namespaces_event){
9134 		.task	= task,
9135 		.event_id  = {
9136 			.header = {
9137 				.type = PERF_RECORD_NAMESPACES,
9138 				.misc = 0,
9139 				.size = sizeof(namespaces_event.event_id),
9140 			},
9141 			/* .pid */
9142 			/* .tid */
9143 			.nr_namespaces = NR_NAMESPACES,
9144 			/* .link_info[NR_NAMESPACES] */
9145 		},
9146 	};
9147 
9148 	ns_link_info = namespaces_event.event_id.link_info;
9149 
9150 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9151 			       task, &mntns_operations);
9152 
9153 #ifdef CONFIG_USER_NS
9154 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9155 			       task, &userns_operations);
9156 #endif
9157 #ifdef CONFIG_NET_NS
9158 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9159 			       task, &netns_operations);
9160 #endif
9161 #ifdef CONFIG_UTS_NS
9162 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9163 			       task, &utsns_operations);
9164 #endif
9165 #ifdef CONFIG_IPC_NS
9166 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9167 			       task, &ipcns_operations);
9168 #endif
9169 #ifdef CONFIG_PID_NS
9170 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9171 			       task, &pidns_operations);
9172 #endif
9173 #ifdef CONFIG_CGROUPS
9174 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9175 			       task, &cgroupns_operations);
9176 #endif
9177 
9178 	perf_iterate_sb(perf_event_namespaces_output,
9179 			&namespaces_event,
9180 			NULL);
9181 }
9182 
9183 /*
9184  * cgroup tracking
9185  */
9186 #ifdef CONFIG_CGROUP_PERF
9187 
9188 struct perf_cgroup_event {
9189 	char				*path;
9190 	int				path_size;
9191 	struct {
9192 		struct perf_event_header	header;
9193 		u64				id;
9194 		char				path[];
9195 	} event_id;
9196 };
9197 
9198 static int perf_event_cgroup_match(struct perf_event *event)
9199 {
9200 	return event->attr.cgroup;
9201 }
9202 
9203 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9204 {
9205 	struct perf_cgroup_event *cgroup_event = data;
9206 	struct perf_output_handle handle;
9207 	struct perf_sample_data sample;
9208 	u16 header_size = cgroup_event->event_id.header.size;
9209 	int ret;
9210 
9211 	if (!perf_event_cgroup_match(event))
9212 		return;
9213 
9214 	perf_event_header__init_id(&cgroup_event->event_id.header,
9215 				   &sample, event);
9216 	ret = perf_output_begin(&handle, &sample, event,
9217 				cgroup_event->event_id.header.size);
9218 	if (ret)
9219 		goto out;
9220 
9221 	perf_output_put(&handle, cgroup_event->event_id);
9222 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9223 
9224 	perf_event__output_id_sample(event, &handle, &sample);
9225 
9226 	perf_output_end(&handle);
9227 out:
9228 	cgroup_event->event_id.header.size = header_size;
9229 }
9230 
9231 static void perf_event_cgroup(struct cgroup *cgrp)
9232 {
9233 	struct perf_cgroup_event cgroup_event;
9234 	char path_enomem[16] = "//enomem";
9235 	char *pathname;
9236 	size_t size;
9237 
9238 	if (!atomic_read(&nr_cgroup_events))
9239 		return;
9240 
9241 	cgroup_event = (struct perf_cgroup_event){
9242 		.event_id  = {
9243 			.header = {
9244 				.type = PERF_RECORD_CGROUP,
9245 				.misc = 0,
9246 				.size = sizeof(cgroup_event.event_id),
9247 			},
9248 			.id = cgroup_id(cgrp),
9249 		},
9250 	};
9251 
9252 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9253 	if (pathname == NULL) {
9254 		cgroup_event.path = path_enomem;
9255 	} else {
9256 		/* just to be sure to have enough space for alignment */
9257 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9258 		cgroup_event.path = pathname;
9259 	}
9260 
9261 	/*
9262 	 * Since our buffer works in 8 byte units we need to align our string
9263 	 * size to a multiple of 8. However, we must guarantee the tail end is
9264 	 * zero'd out to avoid leaking random bits to userspace.
9265 	 */
9266 	size = strlen(cgroup_event.path) + 1;
9267 	while (!IS_ALIGNED(size, sizeof(u64)))
9268 		cgroup_event.path[size++] = '\0';
9269 
9270 	cgroup_event.event_id.header.size += size;
9271 	cgroup_event.path_size = size;
9272 
9273 	perf_iterate_sb(perf_event_cgroup_output,
9274 			&cgroup_event,
9275 			NULL);
9276 
9277 	kfree(pathname);
9278 }
9279 
9280 #endif
9281 
9282 /*
9283  * mmap tracking
9284  */
9285 
9286 struct perf_mmap_event {
9287 	struct vm_area_struct	*vma;
9288 
9289 	const char		*file_name;
9290 	int			file_size;
9291 	int			maj, min;
9292 	u64			ino;
9293 	u64			ino_generation;
9294 	u32			prot, flags;
9295 	u8			build_id[BUILD_ID_SIZE_MAX];
9296 	u32			build_id_size;
9297 
9298 	struct {
9299 		struct perf_event_header	header;
9300 
9301 		u32				pid;
9302 		u32				tid;
9303 		u64				start;
9304 		u64				len;
9305 		u64				pgoff;
9306 	} event_id;
9307 };
9308 
9309 static int perf_event_mmap_match(struct perf_event *event,
9310 				 void *data)
9311 {
9312 	struct perf_mmap_event *mmap_event = data;
9313 	struct vm_area_struct *vma = mmap_event->vma;
9314 	int executable = vma->vm_flags & VM_EXEC;
9315 
9316 	return (!executable && event->attr.mmap_data) ||
9317 	       (executable && (event->attr.mmap || event->attr.mmap2));
9318 }
9319 
9320 static void perf_event_mmap_output(struct perf_event *event,
9321 				   void *data)
9322 {
9323 	struct perf_mmap_event *mmap_event = data;
9324 	struct perf_output_handle handle;
9325 	struct perf_sample_data sample;
9326 	int size = mmap_event->event_id.header.size;
9327 	u32 type = mmap_event->event_id.header.type;
9328 	bool use_build_id;
9329 	int ret;
9330 
9331 	if (!perf_event_mmap_match(event, data))
9332 		return;
9333 
9334 	if (event->attr.mmap2) {
9335 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9336 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9337 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9338 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9339 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9340 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9341 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9342 	}
9343 
9344 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9345 	ret = perf_output_begin(&handle, &sample, event,
9346 				mmap_event->event_id.header.size);
9347 	if (ret)
9348 		goto out;
9349 
9350 	mmap_event->event_id.pid = perf_event_pid(event, current);
9351 	mmap_event->event_id.tid = perf_event_tid(event, current);
9352 
9353 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9354 
9355 	if (event->attr.mmap2 && use_build_id)
9356 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9357 
9358 	perf_output_put(&handle, mmap_event->event_id);
9359 
9360 	if (event->attr.mmap2) {
9361 		if (use_build_id) {
9362 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9363 
9364 			__output_copy(&handle, size, 4);
9365 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9366 		} else {
9367 			perf_output_put(&handle, mmap_event->maj);
9368 			perf_output_put(&handle, mmap_event->min);
9369 			perf_output_put(&handle, mmap_event->ino);
9370 			perf_output_put(&handle, mmap_event->ino_generation);
9371 		}
9372 		perf_output_put(&handle, mmap_event->prot);
9373 		perf_output_put(&handle, mmap_event->flags);
9374 	}
9375 
9376 	__output_copy(&handle, mmap_event->file_name,
9377 				   mmap_event->file_size);
9378 
9379 	perf_event__output_id_sample(event, &handle, &sample);
9380 
9381 	perf_output_end(&handle);
9382 out:
9383 	mmap_event->event_id.header.size = size;
9384 	mmap_event->event_id.header.type = type;
9385 }
9386 
9387 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9388 {
9389 	struct vm_area_struct *vma = mmap_event->vma;
9390 	struct file *file = vma->vm_file;
9391 	int maj = 0, min = 0;
9392 	u64 ino = 0, gen = 0;
9393 	u32 prot = 0, flags = 0;
9394 	unsigned int size;
9395 	char tmp[16];
9396 	char *buf = NULL;
9397 	char *name = NULL;
9398 
9399 	if (vma->vm_flags & VM_READ)
9400 		prot |= PROT_READ;
9401 	if (vma->vm_flags & VM_WRITE)
9402 		prot |= PROT_WRITE;
9403 	if (vma->vm_flags & VM_EXEC)
9404 		prot |= PROT_EXEC;
9405 
9406 	if (vma->vm_flags & VM_MAYSHARE)
9407 		flags = MAP_SHARED;
9408 	else
9409 		flags = MAP_PRIVATE;
9410 
9411 	if (vma->vm_flags & VM_LOCKED)
9412 		flags |= MAP_LOCKED;
9413 	if (is_vm_hugetlb_page(vma))
9414 		flags |= MAP_HUGETLB;
9415 
9416 	if (file) {
9417 		const struct inode *inode;
9418 		dev_t dev;
9419 
9420 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9421 		if (!buf) {
9422 			name = "//enomem";
9423 			goto cpy_name;
9424 		}
9425 		/*
9426 		 * d_path() works from the end of the rb backwards, so we
9427 		 * need to add enough zero bytes after the string to handle
9428 		 * the 64bit alignment we do later.
9429 		 */
9430 		name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64));
9431 		if (IS_ERR(name)) {
9432 			name = "//toolong";
9433 			goto cpy_name;
9434 		}
9435 		inode = file_user_inode(vma->vm_file);
9436 		dev = inode->i_sb->s_dev;
9437 		ino = inode->i_ino;
9438 		gen = inode->i_generation;
9439 		maj = MAJOR(dev);
9440 		min = MINOR(dev);
9441 
9442 		goto got_name;
9443 	} else {
9444 		if (vma->vm_ops && vma->vm_ops->name)
9445 			name = (char *) vma->vm_ops->name(vma);
9446 		if (!name)
9447 			name = (char *)arch_vma_name(vma);
9448 		if (!name) {
9449 			if (vma_is_initial_heap(vma))
9450 				name = "[heap]";
9451 			else if (vma_is_initial_stack(vma))
9452 				name = "[stack]";
9453 			else
9454 				name = "//anon";
9455 		}
9456 	}
9457 
9458 cpy_name:
9459 	strscpy(tmp, name);
9460 	name = tmp;
9461 got_name:
9462 	/*
9463 	 * Since our buffer works in 8 byte units we need to align our string
9464 	 * size to a multiple of 8. However, we must guarantee the tail end is
9465 	 * zero'd out to avoid leaking random bits to userspace.
9466 	 */
9467 	size = strlen(name)+1;
9468 	while (!IS_ALIGNED(size, sizeof(u64)))
9469 		name[size++] = '\0';
9470 
9471 	mmap_event->file_name = name;
9472 	mmap_event->file_size = size;
9473 	mmap_event->maj = maj;
9474 	mmap_event->min = min;
9475 	mmap_event->ino = ino;
9476 	mmap_event->ino_generation = gen;
9477 	mmap_event->prot = prot;
9478 	mmap_event->flags = flags;
9479 
9480 	if (!(vma->vm_flags & VM_EXEC))
9481 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9482 
9483 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9484 
9485 	if (atomic_read(&nr_build_id_events))
9486 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9487 
9488 	perf_iterate_sb(perf_event_mmap_output,
9489 		       mmap_event,
9490 		       NULL);
9491 
9492 	kfree(buf);
9493 }
9494 
9495 /*
9496  * Check whether inode and address range match filter criteria.
9497  */
9498 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9499 				     struct file *file, unsigned long offset,
9500 				     unsigned long size)
9501 {
9502 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9503 	if (!filter->path.dentry)
9504 		return false;
9505 
9506 	if (d_inode(filter->path.dentry) != file_user_inode(file))
9507 		return false;
9508 
9509 	if (filter->offset > offset + size)
9510 		return false;
9511 
9512 	if (filter->offset + filter->size < offset)
9513 		return false;
9514 
9515 	return true;
9516 }
9517 
9518 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9519 					struct vm_area_struct *vma,
9520 					struct perf_addr_filter_range *fr)
9521 {
9522 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9523 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9524 	struct file *file = vma->vm_file;
9525 
9526 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9527 		return false;
9528 
9529 	if (filter->offset < off) {
9530 		fr->start = vma->vm_start;
9531 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9532 	} else {
9533 		fr->start = vma->vm_start + filter->offset - off;
9534 		fr->size = min(vma->vm_end - fr->start, filter->size);
9535 	}
9536 
9537 	return true;
9538 }
9539 
9540 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9541 {
9542 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9543 	struct vm_area_struct *vma = data;
9544 	struct perf_addr_filter *filter;
9545 	unsigned int restart = 0, count = 0;
9546 	unsigned long flags;
9547 
9548 	if (!has_addr_filter(event))
9549 		return;
9550 
9551 	if (!vma->vm_file)
9552 		return;
9553 
9554 	raw_spin_lock_irqsave(&ifh->lock, flags);
9555 	list_for_each_entry(filter, &ifh->list, entry) {
9556 		if (perf_addr_filter_vma_adjust(filter, vma,
9557 						&event->addr_filter_ranges[count]))
9558 			restart++;
9559 
9560 		count++;
9561 	}
9562 
9563 	if (restart)
9564 		event->addr_filters_gen++;
9565 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9566 
9567 	if (restart)
9568 		perf_event_stop(event, 1);
9569 }
9570 
9571 /*
9572  * Adjust all task's events' filters to the new vma
9573  */
9574 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9575 {
9576 	struct perf_event_context *ctx;
9577 
9578 	/*
9579 	 * Data tracing isn't supported yet and as such there is no need
9580 	 * to keep track of anything that isn't related to executable code:
9581 	 */
9582 	if (!(vma->vm_flags & VM_EXEC))
9583 		return;
9584 
9585 	rcu_read_lock();
9586 	ctx = rcu_dereference(current->perf_event_ctxp);
9587 	if (ctx)
9588 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9589 	rcu_read_unlock();
9590 }
9591 
9592 void perf_event_mmap(struct vm_area_struct *vma)
9593 {
9594 	struct perf_mmap_event mmap_event;
9595 
9596 	if (!atomic_read(&nr_mmap_events))
9597 		return;
9598 
9599 	mmap_event = (struct perf_mmap_event){
9600 		.vma	= vma,
9601 		/* .file_name */
9602 		/* .file_size */
9603 		.event_id  = {
9604 			.header = {
9605 				.type = PERF_RECORD_MMAP,
9606 				.misc = PERF_RECORD_MISC_USER,
9607 				/* .size */
9608 			},
9609 			/* .pid */
9610 			/* .tid */
9611 			.start  = vma->vm_start,
9612 			.len    = vma->vm_end - vma->vm_start,
9613 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9614 		},
9615 		/* .maj (attr_mmap2 only) */
9616 		/* .min (attr_mmap2 only) */
9617 		/* .ino (attr_mmap2 only) */
9618 		/* .ino_generation (attr_mmap2 only) */
9619 		/* .prot (attr_mmap2 only) */
9620 		/* .flags (attr_mmap2 only) */
9621 	};
9622 
9623 	perf_addr_filters_adjust(vma);
9624 	perf_event_mmap_event(&mmap_event);
9625 }
9626 
9627 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9628 			  unsigned long size, u64 flags)
9629 {
9630 	struct perf_output_handle handle;
9631 	struct perf_sample_data sample;
9632 	struct perf_aux_event {
9633 		struct perf_event_header	header;
9634 		u64				offset;
9635 		u64				size;
9636 		u64				flags;
9637 	} rec = {
9638 		.header = {
9639 			.type = PERF_RECORD_AUX,
9640 			.misc = 0,
9641 			.size = sizeof(rec),
9642 		},
9643 		.offset		= head,
9644 		.size		= size,
9645 		.flags		= flags,
9646 	};
9647 	int ret;
9648 
9649 	perf_event_header__init_id(&rec.header, &sample, event);
9650 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9651 
9652 	if (ret)
9653 		return;
9654 
9655 	perf_output_put(&handle, rec);
9656 	perf_event__output_id_sample(event, &handle, &sample);
9657 
9658 	perf_output_end(&handle);
9659 }
9660 
9661 /*
9662  * Lost/dropped samples logging
9663  */
9664 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9665 {
9666 	struct perf_output_handle handle;
9667 	struct perf_sample_data sample;
9668 	int ret;
9669 
9670 	struct {
9671 		struct perf_event_header	header;
9672 		u64				lost;
9673 	} lost_samples_event = {
9674 		.header = {
9675 			.type = PERF_RECORD_LOST_SAMPLES,
9676 			.misc = 0,
9677 			.size = sizeof(lost_samples_event),
9678 		},
9679 		.lost		= lost,
9680 	};
9681 
9682 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9683 
9684 	ret = perf_output_begin(&handle, &sample, event,
9685 				lost_samples_event.header.size);
9686 	if (ret)
9687 		return;
9688 
9689 	perf_output_put(&handle, lost_samples_event);
9690 	perf_event__output_id_sample(event, &handle, &sample);
9691 	perf_output_end(&handle);
9692 }
9693 
9694 /*
9695  * context_switch tracking
9696  */
9697 
9698 struct perf_switch_event {
9699 	struct task_struct	*task;
9700 	struct task_struct	*next_prev;
9701 
9702 	struct {
9703 		struct perf_event_header	header;
9704 		u32				next_prev_pid;
9705 		u32				next_prev_tid;
9706 	} event_id;
9707 };
9708 
9709 static int perf_event_switch_match(struct perf_event *event)
9710 {
9711 	return event->attr.context_switch;
9712 }
9713 
9714 static void perf_event_switch_output(struct perf_event *event, void *data)
9715 {
9716 	struct perf_switch_event *se = data;
9717 	struct perf_output_handle handle;
9718 	struct perf_sample_data sample;
9719 	int ret;
9720 
9721 	if (!perf_event_switch_match(event))
9722 		return;
9723 
9724 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9725 	if (event->ctx->task) {
9726 		se->event_id.header.type = PERF_RECORD_SWITCH;
9727 		se->event_id.header.size = sizeof(se->event_id.header);
9728 	} else {
9729 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9730 		se->event_id.header.size = sizeof(se->event_id);
9731 		se->event_id.next_prev_pid =
9732 					perf_event_pid(event, se->next_prev);
9733 		se->event_id.next_prev_tid =
9734 					perf_event_tid(event, se->next_prev);
9735 	}
9736 
9737 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9738 
9739 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9740 	if (ret)
9741 		return;
9742 
9743 	if (event->ctx->task)
9744 		perf_output_put(&handle, se->event_id.header);
9745 	else
9746 		perf_output_put(&handle, se->event_id);
9747 
9748 	perf_event__output_id_sample(event, &handle, &sample);
9749 
9750 	perf_output_end(&handle);
9751 }
9752 
9753 static void perf_event_switch(struct task_struct *task,
9754 			      struct task_struct *next_prev, bool sched_in)
9755 {
9756 	struct perf_switch_event switch_event;
9757 
9758 	/* N.B. caller checks nr_switch_events != 0 */
9759 
9760 	switch_event = (struct perf_switch_event){
9761 		.task		= task,
9762 		.next_prev	= next_prev,
9763 		.event_id	= {
9764 			.header = {
9765 				/* .type */
9766 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9767 				/* .size */
9768 			},
9769 			/* .next_prev_pid */
9770 			/* .next_prev_tid */
9771 		},
9772 	};
9773 
9774 	if (!sched_in && task_is_runnable(task)) {
9775 		switch_event.event_id.header.misc |=
9776 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9777 	}
9778 
9779 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9780 }
9781 
9782 /*
9783  * IRQ throttle logging
9784  */
9785 
9786 static void perf_log_throttle(struct perf_event *event, int enable)
9787 {
9788 	struct perf_output_handle handle;
9789 	struct perf_sample_data sample;
9790 	int ret;
9791 
9792 	struct {
9793 		struct perf_event_header	header;
9794 		u64				time;
9795 		u64				id;
9796 		u64				stream_id;
9797 	} throttle_event = {
9798 		.header = {
9799 			.type = PERF_RECORD_THROTTLE,
9800 			.misc = 0,
9801 			.size = sizeof(throttle_event),
9802 		},
9803 		.time		= perf_event_clock(event),
9804 		.id		= primary_event_id(event),
9805 		.stream_id	= event->id,
9806 	};
9807 
9808 	if (enable)
9809 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9810 
9811 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9812 
9813 	ret = perf_output_begin(&handle, &sample, event,
9814 				throttle_event.header.size);
9815 	if (ret)
9816 		return;
9817 
9818 	perf_output_put(&handle, throttle_event);
9819 	perf_event__output_id_sample(event, &handle, &sample);
9820 	perf_output_end(&handle);
9821 }
9822 
9823 /*
9824  * ksymbol register/unregister tracking
9825  */
9826 
9827 struct perf_ksymbol_event {
9828 	const char	*name;
9829 	int		name_len;
9830 	struct {
9831 		struct perf_event_header        header;
9832 		u64				addr;
9833 		u32				len;
9834 		u16				ksym_type;
9835 		u16				flags;
9836 	} event_id;
9837 };
9838 
9839 static int perf_event_ksymbol_match(struct perf_event *event)
9840 {
9841 	return event->attr.ksymbol;
9842 }
9843 
9844 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9845 {
9846 	struct perf_ksymbol_event *ksymbol_event = data;
9847 	struct perf_output_handle handle;
9848 	struct perf_sample_data sample;
9849 	int ret;
9850 
9851 	if (!perf_event_ksymbol_match(event))
9852 		return;
9853 
9854 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9855 				   &sample, event);
9856 	ret = perf_output_begin(&handle, &sample, event,
9857 				ksymbol_event->event_id.header.size);
9858 	if (ret)
9859 		return;
9860 
9861 	perf_output_put(&handle, ksymbol_event->event_id);
9862 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9863 	perf_event__output_id_sample(event, &handle, &sample);
9864 
9865 	perf_output_end(&handle);
9866 }
9867 
9868 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9869 			const char *sym)
9870 {
9871 	struct perf_ksymbol_event ksymbol_event;
9872 	char name[KSYM_NAME_LEN];
9873 	u16 flags = 0;
9874 	int name_len;
9875 
9876 	if (!atomic_read(&nr_ksymbol_events))
9877 		return;
9878 
9879 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9880 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9881 		goto err;
9882 
9883 	strscpy(name, sym);
9884 	name_len = strlen(name) + 1;
9885 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9886 		name[name_len++] = '\0';
9887 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9888 
9889 	if (unregister)
9890 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9891 
9892 	ksymbol_event = (struct perf_ksymbol_event){
9893 		.name = name,
9894 		.name_len = name_len,
9895 		.event_id = {
9896 			.header = {
9897 				.type = PERF_RECORD_KSYMBOL,
9898 				.size = sizeof(ksymbol_event.event_id) +
9899 					name_len,
9900 			},
9901 			.addr = addr,
9902 			.len = len,
9903 			.ksym_type = ksym_type,
9904 			.flags = flags,
9905 		},
9906 	};
9907 
9908 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9909 	return;
9910 err:
9911 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9912 }
9913 
9914 /*
9915  * bpf program load/unload tracking
9916  */
9917 
9918 struct perf_bpf_event {
9919 	struct bpf_prog	*prog;
9920 	struct {
9921 		struct perf_event_header        header;
9922 		u16				type;
9923 		u16				flags;
9924 		u32				id;
9925 		u8				tag[BPF_TAG_SIZE];
9926 	} event_id;
9927 };
9928 
9929 static int perf_event_bpf_match(struct perf_event *event)
9930 {
9931 	return event->attr.bpf_event;
9932 }
9933 
9934 static void perf_event_bpf_output(struct perf_event *event, void *data)
9935 {
9936 	struct perf_bpf_event *bpf_event = data;
9937 	struct perf_output_handle handle;
9938 	struct perf_sample_data sample;
9939 	int ret;
9940 
9941 	if (!perf_event_bpf_match(event))
9942 		return;
9943 
9944 	perf_event_header__init_id(&bpf_event->event_id.header,
9945 				   &sample, event);
9946 	ret = perf_output_begin(&handle, &sample, event,
9947 				bpf_event->event_id.header.size);
9948 	if (ret)
9949 		return;
9950 
9951 	perf_output_put(&handle, bpf_event->event_id);
9952 	perf_event__output_id_sample(event, &handle, &sample);
9953 
9954 	perf_output_end(&handle);
9955 }
9956 
9957 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9958 					 enum perf_bpf_event_type type)
9959 {
9960 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9961 	int i;
9962 
9963 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9964 			   (u64)(unsigned long)prog->bpf_func,
9965 			   prog->jited_len, unregister,
9966 			   prog->aux->ksym.name);
9967 
9968 	for (i = 1; i < prog->aux->func_cnt; i++) {
9969 		struct bpf_prog *subprog = prog->aux->func[i];
9970 
9971 		perf_event_ksymbol(
9972 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9973 			(u64)(unsigned long)subprog->bpf_func,
9974 			subprog->jited_len, unregister,
9975 			subprog->aux->ksym.name);
9976 	}
9977 }
9978 
9979 void perf_event_bpf_event(struct bpf_prog *prog,
9980 			  enum perf_bpf_event_type type,
9981 			  u16 flags)
9982 {
9983 	struct perf_bpf_event bpf_event;
9984 
9985 	switch (type) {
9986 	case PERF_BPF_EVENT_PROG_LOAD:
9987 	case PERF_BPF_EVENT_PROG_UNLOAD:
9988 		if (atomic_read(&nr_ksymbol_events))
9989 			perf_event_bpf_emit_ksymbols(prog, type);
9990 		break;
9991 	default:
9992 		return;
9993 	}
9994 
9995 	if (!atomic_read(&nr_bpf_events))
9996 		return;
9997 
9998 	bpf_event = (struct perf_bpf_event){
9999 		.prog = prog,
10000 		.event_id = {
10001 			.header = {
10002 				.type = PERF_RECORD_BPF_EVENT,
10003 				.size = sizeof(bpf_event.event_id),
10004 			},
10005 			.type = type,
10006 			.flags = flags,
10007 			.id = prog->aux->id,
10008 		},
10009 	};
10010 
10011 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
10012 
10013 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
10014 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
10015 }
10016 
10017 struct perf_callchain_deferred_event {
10018 	struct unwind_stacktrace *trace;
10019 	struct {
10020 		struct perf_event_header	header;
10021 		u64				cookie;
10022 		u64				nr;
10023 		u64				ips[];
10024 	} event;
10025 };
10026 
10027 static void perf_callchain_deferred_output(struct perf_event *event, void *data)
10028 {
10029 	struct perf_callchain_deferred_event *deferred_event = data;
10030 	struct perf_output_handle handle;
10031 	struct perf_sample_data sample;
10032 	int ret, size = deferred_event->event.header.size;
10033 
10034 	if (!event->attr.defer_output)
10035 		return;
10036 
10037 	/* XXX do we really need sample_id_all for this ??? */
10038 	perf_event_header__init_id(&deferred_event->event.header, &sample, event);
10039 
10040 	ret = perf_output_begin(&handle, &sample, event,
10041 				deferred_event->event.header.size);
10042 	if (ret)
10043 		goto out;
10044 
10045 	perf_output_put(&handle, deferred_event->event);
10046 	for (int i = 0; i < deferred_event->trace->nr; i++) {
10047 		u64 entry = deferred_event->trace->entries[i];
10048 		perf_output_put(&handle, entry);
10049 	}
10050 	perf_event__output_id_sample(event, &handle, &sample);
10051 
10052 	perf_output_end(&handle);
10053 out:
10054 	deferred_event->event.header.size = size;
10055 }
10056 
10057 static void perf_unwind_deferred_callback(struct unwind_work *work,
10058 					 struct unwind_stacktrace *trace, u64 cookie)
10059 {
10060 	struct perf_callchain_deferred_event deferred_event = {
10061 		.trace = trace,
10062 		.event = {
10063 			.header = {
10064 				.type = PERF_RECORD_CALLCHAIN_DEFERRED,
10065 				.misc = PERF_RECORD_MISC_USER,
10066 				.size = sizeof(deferred_event.event) +
10067 					(trace->nr * sizeof(u64)),
10068 			},
10069 			.cookie = cookie,
10070 			.nr = trace->nr,
10071 		},
10072 	};
10073 
10074 	perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL);
10075 }
10076 
10077 struct perf_text_poke_event {
10078 	const void		*old_bytes;
10079 	const void		*new_bytes;
10080 	size_t			pad;
10081 	u16			old_len;
10082 	u16			new_len;
10083 
10084 	struct {
10085 		struct perf_event_header	header;
10086 
10087 		u64				addr;
10088 	} event_id;
10089 };
10090 
10091 static int perf_event_text_poke_match(struct perf_event *event)
10092 {
10093 	return event->attr.text_poke;
10094 }
10095 
10096 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10097 {
10098 	struct perf_text_poke_event *text_poke_event = data;
10099 	struct perf_output_handle handle;
10100 	struct perf_sample_data sample;
10101 	u64 padding = 0;
10102 	int ret;
10103 
10104 	if (!perf_event_text_poke_match(event))
10105 		return;
10106 
10107 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10108 
10109 	ret = perf_output_begin(&handle, &sample, event,
10110 				text_poke_event->event_id.header.size);
10111 	if (ret)
10112 		return;
10113 
10114 	perf_output_put(&handle, text_poke_event->event_id);
10115 	perf_output_put(&handle, text_poke_event->old_len);
10116 	perf_output_put(&handle, text_poke_event->new_len);
10117 
10118 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10119 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10120 
10121 	if (text_poke_event->pad)
10122 		__output_copy(&handle, &padding, text_poke_event->pad);
10123 
10124 	perf_event__output_id_sample(event, &handle, &sample);
10125 
10126 	perf_output_end(&handle);
10127 }
10128 
10129 void perf_event_text_poke(const void *addr, const void *old_bytes,
10130 			  size_t old_len, const void *new_bytes, size_t new_len)
10131 {
10132 	struct perf_text_poke_event text_poke_event;
10133 	size_t tot, pad;
10134 
10135 	if (!atomic_read(&nr_text_poke_events))
10136 		return;
10137 
10138 	tot  = sizeof(text_poke_event.old_len) + old_len;
10139 	tot += sizeof(text_poke_event.new_len) + new_len;
10140 	pad  = ALIGN(tot, sizeof(u64)) - tot;
10141 
10142 	text_poke_event = (struct perf_text_poke_event){
10143 		.old_bytes    = old_bytes,
10144 		.new_bytes    = new_bytes,
10145 		.pad          = pad,
10146 		.old_len      = old_len,
10147 		.new_len      = new_len,
10148 		.event_id  = {
10149 			.header = {
10150 				.type = PERF_RECORD_TEXT_POKE,
10151 				.misc = PERF_RECORD_MISC_KERNEL,
10152 				.size = sizeof(text_poke_event.event_id) + tot + pad,
10153 			},
10154 			.addr = (unsigned long)addr,
10155 		},
10156 	};
10157 
10158 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10159 }
10160 
10161 void perf_event_itrace_started(struct perf_event *event)
10162 {
10163 	WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10164 }
10165 
10166 static void perf_log_itrace_start(struct perf_event *event)
10167 {
10168 	struct perf_output_handle handle;
10169 	struct perf_sample_data sample;
10170 	struct perf_aux_event {
10171 		struct perf_event_header        header;
10172 		u32				pid;
10173 		u32				tid;
10174 	} rec;
10175 	int ret;
10176 
10177 	if (event->parent)
10178 		event = event->parent;
10179 
10180 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10181 	    event->attach_state & PERF_ATTACH_ITRACE)
10182 		return;
10183 
10184 	rec.header.type	= PERF_RECORD_ITRACE_START;
10185 	rec.header.misc	= 0;
10186 	rec.header.size	= sizeof(rec);
10187 	rec.pid	= perf_event_pid(event, current);
10188 	rec.tid	= perf_event_tid(event, current);
10189 
10190 	perf_event_header__init_id(&rec.header, &sample, event);
10191 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10192 
10193 	if (ret)
10194 		return;
10195 
10196 	perf_output_put(&handle, rec);
10197 	perf_event__output_id_sample(event, &handle, &sample);
10198 
10199 	perf_output_end(&handle);
10200 }
10201 
10202 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10203 {
10204 	struct perf_output_handle handle;
10205 	struct perf_sample_data sample;
10206 	struct perf_aux_event {
10207 		struct perf_event_header        header;
10208 		u64				hw_id;
10209 	} rec;
10210 	int ret;
10211 
10212 	if (event->parent)
10213 		event = event->parent;
10214 
10215 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10216 	rec.header.misc	= 0;
10217 	rec.header.size	= sizeof(rec);
10218 	rec.hw_id	= hw_id;
10219 
10220 	perf_event_header__init_id(&rec.header, &sample, event);
10221 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10222 
10223 	if (ret)
10224 		return;
10225 
10226 	perf_output_put(&handle, rec);
10227 	perf_event__output_id_sample(event, &handle, &sample);
10228 
10229 	perf_output_end(&handle);
10230 }
10231 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10232 
10233 static int
10234 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10235 {
10236 	struct hw_perf_event *hwc = &event->hw;
10237 	int ret = 0;
10238 	u64 seq;
10239 
10240 	seq = __this_cpu_read(perf_throttled_seq);
10241 	if (seq != hwc->interrupts_seq) {
10242 		hwc->interrupts_seq = seq;
10243 		hwc->interrupts = 1;
10244 	} else {
10245 		hwc->interrupts++;
10246 	}
10247 
10248 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10249 		__this_cpu_inc(perf_throttled_count);
10250 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10251 		perf_event_throttle_group(event);
10252 		ret = 1;
10253 	}
10254 
10255 	if (event->attr.freq) {
10256 		u64 now = perf_clock();
10257 		s64 delta = now - hwc->freq_time_stamp;
10258 
10259 		hwc->freq_time_stamp = now;
10260 
10261 		if (delta > 0 && delta < 2*TICK_NSEC)
10262 			perf_adjust_period(event, delta, hwc->last_period, true);
10263 	}
10264 
10265 	return ret;
10266 }
10267 
10268 int perf_event_account_interrupt(struct perf_event *event)
10269 {
10270 	return __perf_event_account_interrupt(event, 1);
10271 }
10272 
10273 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10274 {
10275 	/*
10276 	 * Due to interrupt latency (AKA "skid"), we may enter the
10277 	 * kernel before taking an overflow, even if the PMU is only
10278 	 * counting user events.
10279 	 */
10280 	if (event->attr.exclude_kernel && !user_mode(regs))
10281 		return false;
10282 
10283 	return true;
10284 }
10285 
10286 #ifdef CONFIG_BPF_SYSCALL
10287 static int bpf_overflow_handler(struct perf_event *event,
10288 				struct perf_sample_data *data,
10289 				struct pt_regs *regs)
10290 {
10291 	struct bpf_perf_event_data_kern ctx = {
10292 		.data = data,
10293 		.event = event,
10294 	};
10295 	struct bpf_prog *prog;
10296 	int ret = 0;
10297 
10298 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10299 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10300 		goto out;
10301 	rcu_read_lock();
10302 	prog = READ_ONCE(event->prog);
10303 	if (prog) {
10304 		perf_prepare_sample(data, event, regs);
10305 		ret = bpf_prog_run(prog, &ctx);
10306 	}
10307 	rcu_read_unlock();
10308 out:
10309 	__this_cpu_dec(bpf_prog_active);
10310 
10311 	return ret;
10312 }
10313 
10314 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10315 					     struct bpf_prog *prog,
10316 					     u64 bpf_cookie)
10317 {
10318 	if (event->overflow_handler_context)
10319 		/* hw breakpoint or kernel counter */
10320 		return -EINVAL;
10321 
10322 	if (event->prog)
10323 		return -EEXIST;
10324 
10325 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10326 		return -EINVAL;
10327 
10328 	if (event->attr.precise_ip &&
10329 	    prog->call_get_stack &&
10330 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10331 	     event->attr.exclude_callchain_kernel ||
10332 	     event->attr.exclude_callchain_user)) {
10333 		/*
10334 		 * On perf_event with precise_ip, calling bpf_get_stack()
10335 		 * may trigger unwinder warnings and occasional crashes.
10336 		 * bpf_get_[stack|stackid] works around this issue by using
10337 		 * callchain attached to perf_sample_data. If the
10338 		 * perf_event does not full (kernel and user) callchain
10339 		 * attached to perf_sample_data, do not allow attaching BPF
10340 		 * program that calls bpf_get_[stack|stackid].
10341 		 */
10342 		return -EPROTO;
10343 	}
10344 
10345 	event->prog = prog;
10346 	event->bpf_cookie = bpf_cookie;
10347 	return 0;
10348 }
10349 
10350 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10351 {
10352 	struct bpf_prog *prog = event->prog;
10353 
10354 	if (!prog)
10355 		return;
10356 
10357 	event->prog = NULL;
10358 	bpf_prog_put(prog);
10359 }
10360 #else
10361 static inline int bpf_overflow_handler(struct perf_event *event,
10362 				       struct perf_sample_data *data,
10363 				       struct pt_regs *regs)
10364 {
10365 	return 1;
10366 }
10367 
10368 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10369 					     struct bpf_prog *prog,
10370 					     u64 bpf_cookie)
10371 {
10372 	return -EOPNOTSUPP;
10373 }
10374 
10375 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10376 {
10377 }
10378 #endif
10379 
10380 /*
10381  * Generic event overflow handling, sampling.
10382  */
10383 
10384 static int __perf_event_overflow(struct perf_event *event,
10385 				 int throttle, struct perf_sample_data *data,
10386 				 struct pt_regs *regs)
10387 {
10388 	int events = atomic_read(&event->event_limit);
10389 	int ret = 0;
10390 
10391 	/*
10392 	 * Non-sampling counters might still use the PMI to fold short
10393 	 * hardware counters, ignore those.
10394 	 */
10395 	if (unlikely(!is_sampling_event(event)))
10396 		return 0;
10397 
10398 	ret = __perf_event_account_interrupt(event, throttle);
10399 
10400 	if (event->attr.aux_pause)
10401 		perf_event_aux_pause(event->aux_event, true);
10402 
10403 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10404 	    !bpf_overflow_handler(event, data, regs))
10405 		goto out;
10406 
10407 	/*
10408 	 * XXX event_limit might not quite work as expected on inherited
10409 	 * events
10410 	 */
10411 
10412 	event->pending_kill = POLL_IN;
10413 	if (events && atomic_dec_and_test(&event->event_limit)) {
10414 		ret = 1;
10415 		event->pending_kill = POLL_HUP;
10416 		perf_event_disable_inatomic(event);
10417 		event->pmu->stop(event, 0);
10418 	}
10419 
10420 	if (event->attr.sigtrap) {
10421 		/*
10422 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10423 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10424 		 * it is the first event, on the other hand, we should also not
10425 		 * trigger the WARN or override the data address.
10426 		 */
10427 		bool valid_sample = sample_is_allowed(event, regs);
10428 		unsigned int pending_id = 1;
10429 		enum task_work_notify_mode notify_mode;
10430 
10431 		if (regs)
10432 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10433 
10434 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10435 
10436 		if (!event->pending_work &&
10437 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10438 			event->pending_work = pending_id;
10439 			local_inc(&event->ctx->nr_no_switch_fast);
10440 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10441 
10442 			event->pending_addr = 0;
10443 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10444 				event->pending_addr = data->addr;
10445 
10446 		} else if (event->attr.exclude_kernel && valid_sample) {
10447 			/*
10448 			 * Should not be able to return to user space without
10449 			 * consuming pending_work; with exceptions:
10450 			 *
10451 			 *  1. Where !exclude_kernel, events can overflow again
10452 			 *     in the kernel without returning to user space.
10453 			 *
10454 			 *  2. Events that can overflow again before the IRQ-
10455 			 *     work without user space progress (e.g. hrtimer).
10456 			 *     To approximate progress (with false negatives),
10457 			 *     check 32-bit hash of the current IP.
10458 			 */
10459 			WARN_ON_ONCE(event->pending_work != pending_id);
10460 		}
10461 	}
10462 
10463 	READ_ONCE(event->overflow_handler)(event, data, regs);
10464 
10465 	if (*perf_event_fasync(event) && event->pending_kill) {
10466 		event->pending_wakeup = 1;
10467 		irq_work_queue(&event->pending_irq);
10468 	}
10469 out:
10470 	if (event->attr.aux_resume)
10471 		perf_event_aux_pause(event->aux_event, false);
10472 
10473 	return ret;
10474 }
10475 
10476 int perf_event_overflow(struct perf_event *event,
10477 			struct perf_sample_data *data,
10478 			struct pt_regs *regs)
10479 {
10480 	return __perf_event_overflow(event, 1, data, regs);
10481 }
10482 
10483 /*
10484  * Generic software event infrastructure
10485  */
10486 
10487 struct swevent_htable {
10488 	struct swevent_hlist		*swevent_hlist;
10489 	struct mutex			hlist_mutex;
10490 	int				hlist_refcount;
10491 };
10492 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10493 
10494 /*
10495  * We directly increment event->count and keep a second value in
10496  * event->hw.period_left to count intervals. This period event
10497  * is kept in the range [-sample_period, 0] so that we can use the
10498  * sign as trigger.
10499  */
10500 
10501 u64 perf_swevent_set_period(struct perf_event *event)
10502 {
10503 	struct hw_perf_event *hwc = &event->hw;
10504 	u64 period = hwc->last_period;
10505 	u64 nr, offset;
10506 	s64 old, val;
10507 
10508 	hwc->last_period = hwc->sample_period;
10509 
10510 	old = local64_read(&hwc->period_left);
10511 	do {
10512 		val = old;
10513 		if (val < 0)
10514 			return 0;
10515 
10516 		nr = div64_u64(period + val, period);
10517 		offset = nr * period;
10518 		val -= offset;
10519 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10520 
10521 	return nr;
10522 }
10523 
10524 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10525 				    struct perf_sample_data *data,
10526 				    struct pt_regs *regs)
10527 {
10528 	struct hw_perf_event *hwc = &event->hw;
10529 	int throttle = 0;
10530 
10531 	if (!overflow)
10532 		overflow = perf_swevent_set_period(event);
10533 
10534 	if (hwc->interrupts == MAX_INTERRUPTS)
10535 		return;
10536 
10537 	for (; overflow; overflow--) {
10538 		if (__perf_event_overflow(event, throttle,
10539 					    data, regs)) {
10540 			/*
10541 			 * We inhibit the overflow from happening when
10542 			 * hwc->interrupts == MAX_INTERRUPTS.
10543 			 */
10544 			break;
10545 		}
10546 		throttle = 1;
10547 	}
10548 }
10549 
10550 static void perf_swevent_event(struct perf_event *event, u64 nr,
10551 			       struct perf_sample_data *data,
10552 			       struct pt_regs *regs)
10553 {
10554 	struct hw_perf_event *hwc = &event->hw;
10555 
10556 	local64_add(nr, &event->count);
10557 
10558 	if (!regs)
10559 		return;
10560 
10561 	if (!is_sampling_event(event))
10562 		return;
10563 
10564 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10565 		data->period = nr;
10566 		return perf_swevent_overflow(event, 1, data, regs);
10567 	} else
10568 		data->period = event->hw.last_period;
10569 
10570 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10571 		return perf_swevent_overflow(event, 1, data, regs);
10572 
10573 	if (local64_add_negative(nr, &hwc->period_left))
10574 		return;
10575 
10576 	perf_swevent_overflow(event, 0, data, regs);
10577 }
10578 
10579 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10580 {
10581 	if (event->hw.state & PERF_HES_STOPPED)
10582 		return 1;
10583 
10584 	if (regs) {
10585 		if (event->attr.exclude_user && user_mode(regs))
10586 			return 1;
10587 
10588 		if (event->attr.exclude_kernel && !user_mode(regs))
10589 			return 1;
10590 	}
10591 
10592 	return 0;
10593 }
10594 
10595 static int perf_swevent_match(struct perf_event *event,
10596 				enum perf_type_id type,
10597 				u32 event_id,
10598 				struct perf_sample_data *data,
10599 				struct pt_regs *regs)
10600 {
10601 	if (event->attr.type != type)
10602 		return 0;
10603 
10604 	if (event->attr.config != event_id)
10605 		return 0;
10606 
10607 	if (perf_exclude_event(event, regs))
10608 		return 0;
10609 
10610 	return 1;
10611 }
10612 
10613 static inline u64 swevent_hash(u64 type, u32 event_id)
10614 {
10615 	u64 val = event_id | (type << 32);
10616 
10617 	return hash_64(val, SWEVENT_HLIST_BITS);
10618 }
10619 
10620 static inline struct hlist_head *
10621 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10622 {
10623 	u64 hash = swevent_hash(type, event_id);
10624 
10625 	return &hlist->heads[hash];
10626 }
10627 
10628 /* For the read side: events when they trigger */
10629 static inline struct hlist_head *
10630 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10631 {
10632 	struct swevent_hlist *hlist;
10633 
10634 	hlist = rcu_dereference(swhash->swevent_hlist);
10635 	if (!hlist)
10636 		return NULL;
10637 
10638 	return __find_swevent_head(hlist, type, event_id);
10639 }
10640 
10641 /* For the event head insertion and removal in the hlist */
10642 static inline struct hlist_head *
10643 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10644 {
10645 	struct swevent_hlist *hlist;
10646 	u32 event_id = event->attr.config;
10647 	u64 type = event->attr.type;
10648 
10649 	/*
10650 	 * Event scheduling is always serialized against hlist allocation
10651 	 * and release. Which makes the protected version suitable here.
10652 	 * The context lock guarantees that.
10653 	 */
10654 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10655 					  lockdep_is_held(&event->ctx->lock));
10656 	if (!hlist)
10657 		return NULL;
10658 
10659 	return __find_swevent_head(hlist, type, event_id);
10660 }
10661 
10662 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10663 				    u64 nr,
10664 				    struct perf_sample_data *data,
10665 				    struct pt_regs *regs)
10666 {
10667 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10668 	struct perf_event *event;
10669 	struct hlist_head *head;
10670 
10671 	rcu_read_lock();
10672 	head = find_swevent_head_rcu(swhash, type, event_id);
10673 	if (!head)
10674 		goto end;
10675 
10676 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10677 		if (perf_swevent_match(event, type, event_id, data, regs))
10678 			perf_swevent_event(event, nr, data, regs);
10679 	}
10680 end:
10681 	rcu_read_unlock();
10682 }
10683 
10684 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10685 
10686 int perf_swevent_get_recursion_context(void)
10687 {
10688 	return get_recursion_context(current->perf_recursion);
10689 }
10690 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10691 
10692 void perf_swevent_put_recursion_context(int rctx)
10693 {
10694 	put_recursion_context(current->perf_recursion, rctx);
10695 }
10696 
10697 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10698 {
10699 	struct perf_sample_data data;
10700 
10701 	if (WARN_ON_ONCE(!regs))
10702 		return;
10703 
10704 	perf_sample_data_init(&data, addr, 0);
10705 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10706 }
10707 
10708 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10709 {
10710 	int rctx;
10711 
10712 	preempt_disable_notrace();
10713 	rctx = perf_swevent_get_recursion_context();
10714 	if (unlikely(rctx < 0))
10715 		goto fail;
10716 
10717 	___perf_sw_event(event_id, nr, regs, addr);
10718 
10719 	perf_swevent_put_recursion_context(rctx);
10720 fail:
10721 	preempt_enable_notrace();
10722 }
10723 
10724 static void perf_swevent_read(struct perf_event *event)
10725 {
10726 }
10727 
10728 static int perf_swevent_add(struct perf_event *event, int flags)
10729 {
10730 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10731 	struct hw_perf_event *hwc = &event->hw;
10732 	struct hlist_head *head;
10733 
10734 	if (is_sampling_event(event)) {
10735 		hwc->last_period = hwc->sample_period;
10736 		perf_swevent_set_period(event);
10737 	}
10738 
10739 	hwc->state = !(flags & PERF_EF_START);
10740 
10741 	head = find_swevent_head(swhash, event);
10742 	if (WARN_ON_ONCE(!head))
10743 		return -EINVAL;
10744 
10745 	hlist_add_head_rcu(&event->hlist_entry, head);
10746 	perf_event_update_userpage(event);
10747 
10748 	return 0;
10749 }
10750 
10751 static void perf_swevent_del(struct perf_event *event, int flags)
10752 {
10753 	hlist_del_rcu(&event->hlist_entry);
10754 }
10755 
10756 static void perf_swevent_start(struct perf_event *event, int flags)
10757 {
10758 	event->hw.state = 0;
10759 }
10760 
10761 static void perf_swevent_stop(struct perf_event *event, int flags)
10762 {
10763 	event->hw.state = PERF_HES_STOPPED;
10764 }
10765 
10766 /* Deref the hlist from the update side */
10767 static inline struct swevent_hlist *
10768 swevent_hlist_deref(struct swevent_htable *swhash)
10769 {
10770 	return rcu_dereference_protected(swhash->swevent_hlist,
10771 					 lockdep_is_held(&swhash->hlist_mutex));
10772 }
10773 
10774 static void swevent_hlist_release(struct swevent_htable *swhash)
10775 {
10776 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10777 
10778 	if (!hlist)
10779 		return;
10780 
10781 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10782 	kfree_rcu(hlist, rcu_head);
10783 }
10784 
10785 static void swevent_hlist_put_cpu(int cpu)
10786 {
10787 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10788 
10789 	mutex_lock(&swhash->hlist_mutex);
10790 
10791 	if (!--swhash->hlist_refcount)
10792 		swevent_hlist_release(swhash);
10793 
10794 	mutex_unlock(&swhash->hlist_mutex);
10795 }
10796 
10797 static void swevent_hlist_put(void)
10798 {
10799 	int cpu;
10800 
10801 	for_each_possible_cpu(cpu)
10802 		swevent_hlist_put_cpu(cpu);
10803 }
10804 
10805 static int swevent_hlist_get_cpu(int cpu)
10806 {
10807 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10808 	int err = 0;
10809 
10810 	mutex_lock(&swhash->hlist_mutex);
10811 	if (!swevent_hlist_deref(swhash) &&
10812 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10813 		struct swevent_hlist *hlist;
10814 
10815 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10816 		if (!hlist) {
10817 			err = -ENOMEM;
10818 			goto exit;
10819 		}
10820 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10821 	}
10822 	swhash->hlist_refcount++;
10823 exit:
10824 	mutex_unlock(&swhash->hlist_mutex);
10825 
10826 	return err;
10827 }
10828 
10829 static int swevent_hlist_get(void)
10830 {
10831 	int err, cpu, failed_cpu;
10832 
10833 	mutex_lock(&pmus_lock);
10834 	for_each_possible_cpu(cpu) {
10835 		err = swevent_hlist_get_cpu(cpu);
10836 		if (err) {
10837 			failed_cpu = cpu;
10838 			goto fail;
10839 		}
10840 	}
10841 	mutex_unlock(&pmus_lock);
10842 	return 0;
10843 fail:
10844 	for_each_possible_cpu(cpu) {
10845 		if (cpu == failed_cpu)
10846 			break;
10847 		swevent_hlist_put_cpu(cpu);
10848 	}
10849 	mutex_unlock(&pmus_lock);
10850 	return err;
10851 }
10852 
10853 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10854 
10855 static void sw_perf_event_destroy(struct perf_event *event)
10856 {
10857 	u64 event_id = event->attr.config;
10858 
10859 	WARN_ON(event->parent);
10860 
10861 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10862 	swevent_hlist_put();
10863 }
10864 
10865 static struct pmu perf_cpu_clock; /* fwd declaration */
10866 static struct pmu perf_task_clock;
10867 
10868 static int perf_swevent_init(struct perf_event *event)
10869 {
10870 	u64 event_id = event->attr.config;
10871 
10872 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10873 		return -ENOENT;
10874 
10875 	/*
10876 	 * no branch sampling for software events
10877 	 */
10878 	if (has_branch_stack(event))
10879 		return -EOPNOTSUPP;
10880 
10881 	switch (event_id) {
10882 	case PERF_COUNT_SW_CPU_CLOCK:
10883 		event->attr.type = perf_cpu_clock.type;
10884 		return -ENOENT;
10885 	case PERF_COUNT_SW_TASK_CLOCK:
10886 		event->attr.type = perf_task_clock.type;
10887 		return -ENOENT;
10888 
10889 	default:
10890 		break;
10891 	}
10892 
10893 	if (event_id >= PERF_COUNT_SW_MAX)
10894 		return -ENOENT;
10895 
10896 	if (!event->parent) {
10897 		int err;
10898 
10899 		err = swevent_hlist_get();
10900 		if (err)
10901 			return err;
10902 
10903 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10904 		event->destroy = sw_perf_event_destroy;
10905 	}
10906 
10907 	return 0;
10908 }
10909 
10910 static struct pmu perf_swevent = {
10911 	.task_ctx_nr	= perf_sw_context,
10912 
10913 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10914 
10915 	.event_init	= perf_swevent_init,
10916 	.add		= perf_swevent_add,
10917 	.del		= perf_swevent_del,
10918 	.start		= perf_swevent_start,
10919 	.stop		= perf_swevent_stop,
10920 	.read		= perf_swevent_read,
10921 };
10922 
10923 #ifdef CONFIG_EVENT_TRACING
10924 
10925 static void tp_perf_event_destroy(struct perf_event *event)
10926 {
10927 	perf_trace_destroy(event);
10928 }
10929 
10930 static int perf_tp_event_init(struct perf_event *event)
10931 {
10932 	int err;
10933 
10934 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10935 		return -ENOENT;
10936 
10937 	/*
10938 	 * no branch sampling for tracepoint events
10939 	 */
10940 	if (has_branch_stack(event))
10941 		return -EOPNOTSUPP;
10942 
10943 	err = perf_trace_init(event);
10944 	if (err)
10945 		return err;
10946 
10947 	event->destroy = tp_perf_event_destroy;
10948 
10949 	return 0;
10950 }
10951 
10952 static struct pmu perf_tracepoint = {
10953 	.task_ctx_nr	= perf_sw_context,
10954 
10955 	.event_init	= perf_tp_event_init,
10956 	.add		= perf_trace_add,
10957 	.del		= perf_trace_del,
10958 	.start		= perf_swevent_start,
10959 	.stop		= perf_swevent_stop,
10960 	.read		= perf_swevent_read,
10961 };
10962 
10963 static int perf_tp_filter_match(struct perf_event *event,
10964 				struct perf_raw_record *raw)
10965 {
10966 	void *record = raw->frag.data;
10967 
10968 	/* only top level events have filters set */
10969 	if (event->parent)
10970 		event = event->parent;
10971 
10972 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10973 		return 1;
10974 	return 0;
10975 }
10976 
10977 static int perf_tp_event_match(struct perf_event *event,
10978 				struct perf_raw_record *raw,
10979 				struct pt_regs *regs)
10980 {
10981 	if (event->hw.state & PERF_HES_STOPPED)
10982 		return 0;
10983 	/*
10984 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10985 	 */
10986 	if (event->attr.exclude_kernel && !user_mode(regs))
10987 		return 0;
10988 
10989 	if (!perf_tp_filter_match(event, raw))
10990 		return 0;
10991 
10992 	return 1;
10993 }
10994 
10995 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10996 			       struct trace_event_call *call, u64 count,
10997 			       struct pt_regs *regs, struct hlist_head *head,
10998 			       struct task_struct *task)
10999 {
11000 	if (bpf_prog_array_valid(call)) {
11001 		*(struct pt_regs **)raw_data = regs;
11002 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
11003 			perf_swevent_put_recursion_context(rctx);
11004 			return;
11005 		}
11006 	}
11007 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
11008 		      rctx, task);
11009 }
11010 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
11011 
11012 static void __perf_tp_event_target_task(u64 count, void *record,
11013 					struct pt_regs *regs,
11014 					struct perf_sample_data *data,
11015 					struct perf_raw_record *raw,
11016 					struct perf_event *event)
11017 {
11018 	struct trace_entry *entry = record;
11019 
11020 	if (event->attr.config != entry->type)
11021 		return;
11022 	/* Cannot deliver synchronous signal to other task. */
11023 	if (event->attr.sigtrap)
11024 		return;
11025 	if (perf_tp_event_match(event, raw, regs)) {
11026 		perf_sample_data_init(data, 0, 0);
11027 		perf_sample_save_raw_data(data, event, raw);
11028 		perf_swevent_event(event, count, data, regs);
11029 	}
11030 }
11031 
11032 static void perf_tp_event_target_task(u64 count, void *record,
11033 				      struct pt_regs *regs,
11034 				      struct perf_sample_data *data,
11035 				      struct perf_raw_record *raw,
11036 				      struct perf_event_context *ctx)
11037 {
11038 	unsigned int cpu = smp_processor_id();
11039 	struct pmu *pmu = &perf_tracepoint;
11040 	struct perf_event *event, *sibling;
11041 
11042 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
11043 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
11044 		for_each_sibling_event(sibling, event)
11045 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11046 	}
11047 
11048 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
11049 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
11050 		for_each_sibling_event(sibling, event)
11051 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11052 	}
11053 }
11054 
11055 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
11056 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
11057 		   struct task_struct *task)
11058 {
11059 	struct perf_sample_data data;
11060 	struct perf_event *event;
11061 
11062 	struct perf_raw_record raw = {
11063 		.frag = {
11064 			.size = entry_size,
11065 			.data = record,
11066 		},
11067 	};
11068 
11069 	perf_trace_buf_update(record, event_type);
11070 
11071 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
11072 		if (perf_tp_event_match(event, &raw, regs)) {
11073 			/*
11074 			 * Here use the same on-stack perf_sample_data,
11075 			 * some members in data are event-specific and
11076 			 * need to be re-computed for different sweveents.
11077 			 * Re-initialize data->sample_flags safely to avoid
11078 			 * the problem that next event skips preparing data
11079 			 * because data->sample_flags is set.
11080 			 */
11081 			perf_sample_data_init(&data, 0, 0);
11082 			perf_sample_save_raw_data(&data, event, &raw);
11083 			perf_swevent_event(event, count, &data, regs);
11084 		}
11085 	}
11086 
11087 	/*
11088 	 * If we got specified a target task, also iterate its context and
11089 	 * deliver this event there too.
11090 	 */
11091 	if (task && task != current) {
11092 		struct perf_event_context *ctx;
11093 
11094 		rcu_read_lock();
11095 		ctx = rcu_dereference(task->perf_event_ctxp);
11096 		if (!ctx)
11097 			goto unlock;
11098 
11099 		raw_spin_lock(&ctx->lock);
11100 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11101 		raw_spin_unlock(&ctx->lock);
11102 unlock:
11103 		rcu_read_unlock();
11104 	}
11105 
11106 	perf_swevent_put_recursion_context(rctx);
11107 }
11108 EXPORT_SYMBOL_GPL(perf_tp_event);
11109 
11110 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11111 /*
11112  * Flags in config, used by dynamic PMU kprobe and uprobe
11113  * The flags should match following PMU_FORMAT_ATTR().
11114  *
11115  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11116  *                               if not set, create kprobe/uprobe
11117  *
11118  * The following values specify a reference counter (or semaphore in the
11119  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11120  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11121  *
11122  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
11123  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
11124  */
11125 enum perf_probe_config {
11126 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
11127 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11128 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11129 };
11130 
11131 PMU_FORMAT_ATTR(retprobe, "config:0");
11132 #endif
11133 
11134 #ifdef CONFIG_KPROBE_EVENTS
11135 static struct attribute *kprobe_attrs[] = {
11136 	&format_attr_retprobe.attr,
11137 	NULL,
11138 };
11139 
11140 static struct attribute_group kprobe_format_group = {
11141 	.name = "format",
11142 	.attrs = kprobe_attrs,
11143 };
11144 
11145 static const struct attribute_group *kprobe_attr_groups[] = {
11146 	&kprobe_format_group,
11147 	NULL,
11148 };
11149 
11150 static int perf_kprobe_event_init(struct perf_event *event);
11151 static struct pmu perf_kprobe = {
11152 	.task_ctx_nr	= perf_sw_context,
11153 	.event_init	= perf_kprobe_event_init,
11154 	.add		= perf_trace_add,
11155 	.del		= perf_trace_del,
11156 	.start		= perf_swevent_start,
11157 	.stop		= perf_swevent_stop,
11158 	.read		= perf_swevent_read,
11159 	.attr_groups	= kprobe_attr_groups,
11160 };
11161 
11162 static int perf_kprobe_event_init(struct perf_event *event)
11163 {
11164 	int err;
11165 	bool is_retprobe;
11166 
11167 	if (event->attr.type != perf_kprobe.type)
11168 		return -ENOENT;
11169 
11170 	if (!perfmon_capable())
11171 		return -EACCES;
11172 
11173 	/*
11174 	 * no branch sampling for probe events
11175 	 */
11176 	if (has_branch_stack(event))
11177 		return -EOPNOTSUPP;
11178 
11179 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11180 	err = perf_kprobe_init(event, is_retprobe);
11181 	if (err)
11182 		return err;
11183 
11184 	event->destroy = perf_kprobe_destroy;
11185 
11186 	return 0;
11187 }
11188 #endif /* CONFIG_KPROBE_EVENTS */
11189 
11190 #ifdef CONFIG_UPROBE_EVENTS
11191 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11192 
11193 static struct attribute *uprobe_attrs[] = {
11194 	&format_attr_retprobe.attr,
11195 	&format_attr_ref_ctr_offset.attr,
11196 	NULL,
11197 };
11198 
11199 static struct attribute_group uprobe_format_group = {
11200 	.name = "format",
11201 	.attrs = uprobe_attrs,
11202 };
11203 
11204 static const struct attribute_group *uprobe_attr_groups[] = {
11205 	&uprobe_format_group,
11206 	NULL,
11207 };
11208 
11209 static int perf_uprobe_event_init(struct perf_event *event);
11210 static struct pmu perf_uprobe = {
11211 	.task_ctx_nr	= perf_sw_context,
11212 	.event_init	= perf_uprobe_event_init,
11213 	.add		= perf_trace_add,
11214 	.del		= perf_trace_del,
11215 	.start		= perf_swevent_start,
11216 	.stop		= perf_swevent_stop,
11217 	.read		= perf_swevent_read,
11218 	.attr_groups	= uprobe_attr_groups,
11219 };
11220 
11221 static int perf_uprobe_event_init(struct perf_event *event)
11222 {
11223 	int err;
11224 	unsigned long ref_ctr_offset;
11225 	bool is_retprobe;
11226 
11227 	if (event->attr.type != perf_uprobe.type)
11228 		return -ENOENT;
11229 
11230 	if (!capable(CAP_SYS_ADMIN))
11231 		return -EACCES;
11232 
11233 	/*
11234 	 * no branch sampling for probe events
11235 	 */
11236 	if (has_branch_stack(event))
11237 		return -EOPNOTSUPP;
11238 
11239 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11240 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11241 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11242 	if (err)
11243 		return err;
11244 
11245 	event->destroy = perf_uprobe_destroy;
11246 
11247 	return 0;
11248 }
11249 #endif /* CONFIG_UPROBE_EVENTS */
11250 
11251 static inline void perf_tp_register(void)
11252 {
11253 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11254 #ifdef CONFIG_KPROBE_EVENTS
11255 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11256 #endif
11257 #ifdef CONFIG_UPROBE_EVENTS
11258 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11259 #endif
11260 }
11261 
11262 static void perf_event_free_filter(struct perf_event *event)
11263 {
11264 	ftrace_profile_free_filter(event);
11265 }
11266 
11267 /*
11268  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11269  * with perf_event_open()
11270  */
11271 static inline bool perf_event_is_tracing(struct perf_event *event)
11272 {
11273 	if (event->pmu == &perf_tracepoint)
11274 		return true;
11275 #ifdef CONFIG_KPROBE_EVENTS
11276 	if (event->pmu == &perf_kprobe)
11277 		return true;
11278 #endif
11279 #ifdef CONFIG_UPROBE_EVENTS
11280 	if (event->pmu == &perf_uprobe)
11281 		return true;
11282 #endif
11283 	return false;
11284 }
11285 
11286 static int __perf_event_set_bpf_prog(struct perf_event *event,
11287 				     struct bpf_prog *prog,
11288 				     u64 bpf_cookie)
11289 {
11290 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11291 
11292 	if (event->state <= PERF_EVENT_STATE_REVOKED)
11293 		return -ENODEV;
11294 
11295 	if (!perf_event_is_tracing(event))
11296 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11297 
11298 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11299 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11300 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11301 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11302 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11303 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11304 		return -EINVAL;
11305 
11306 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11307 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11308 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11309 		return -EINVAL;
11310 
11311 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11312 		/* only uprobe programs are allowed to be sleepable */
11313 		return -EINVAL;
11314 
11315 	/* Kprobe override only works for kprobes, not uprobes. */
11316 	if (prog->kprobe_override && !is_kprobe)
11317 		return -EINVAL;
11318 
11319 	/* Writing to context allowed only for uprobes. */
11320 	if (prog->aux->kprobe_write_ctx && !is_uprobe)
11321 		return -EINVAL;
11322 
11323 	if (is_tracepoint || is_syscall_tp) {
11324 		int off = trace_event_get_offsets(event->tp_event);
11325 
11326 		if (prog->aux->max_ctx_offset > off)
11327 			return -EACCES;
11328 	}
11329 
11330 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11331 }
11332 
11333 int perf_event_set_bpf_prog(struct perf_event *event,
11334 			    struct bpf_prog *prog,
11335 			    u64 bpf_cookie)
11336 {
11337 	struct perf_event_context *ctx;
11338 	int ret;
11339 
11340 	ctx = perf_event_ctx_lock(event);
11341 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11342 	perf_event_ctx_unlock(event, ctx);
11343 
11344 	return ret;
11345 }
11346 
11347 void perf_event_free_bpf_prog(struct perf_event *event)
11348 {
11349 	if (!event->prog)
11350 		return;
11351 
11352 	if (!perf_event_is_tracing(event)) {
11353 		perf_event_free_bpf_handler(event);
11354 		return;
11355 	}
11356 	perf_event_detach_bpf_prog(event);
11357 }
11358 
11359 #else
11360 
11361 static inline void perf_tp_register(void)
11362 {
11363 }
11364 
11365 static void perf_event_free_filter(struct perf_event *event)
11366 {
11367 }
11368 
11369 static int __perf_event_set_bpf_prog(struct perf_event *event,
11370 				     struct bpf_prog *prog,
11371 				     u64 bpf_cookie)
11372 {
11373 	return -ENOENT;
11374 }
11375 
11376 int perf_event_set_bpf_prog(struct perf_event *event,
11377 			    struct bpf_prog *prog,
11378 			    u64 bpf_cookie)
11379 {
11380 	return -ENOENT;
11381 }
11382 
11383 void perf_event_free_bpf_prog(struct perf_event *event)
11384 {
11385 }
11386 #endif /* CONFIG_EVENT_TRACING */
11387 
11388 #ifdef CONFIG_HAVE_HW_BREAKPOINT
11389 void perf_bp_event(struct perf_event *bp, void *data)
11390 {
11391 	struct perf_sample_data sample;
11392 	struct pt_regs *regs = data;
11393 
11394 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11395 
11396 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11397 		perf_swevent_event(bp, 1, &sample, regs);
11398 }
11399 #endif
11400 
11401 /*
11402  * Allocate a new address filter
11403  */
11404 static struct perf_addr_filter *
11405 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11406 {
11407 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11408 	struct perf_addr_filter *filter;
11409 
11410 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11411 	if (!filter)
11412 		return NULL;
11413 
11414 	INIT_LIST_HEAD(&filter->entry);
11415 	list_add_tail(&filter->entry, filters);
11416 
11417 	return filter;
11418 }
11419 
11420 static void free_filters_list(struct list_head *filters)
11421 {
11422 	struct perf_addr_filter *filter, *iter;
11423 
11424 	list_for_each_entry_safe(filter, iter, filters, entry) {
11425 		path_put(&filter->path);
11426 		list_del(&filter->entry);
11427 		kfree(filter);
11428 	}
11429 }
11430 
11431 /*
11432  * Free existing address filters and optionally install new ones
11433  */
11434 static void perf_addr_filters_splice(struct perf_event *event,
11435 				     struct list_head *head)
11436 {
11437 	unsigned long flags;
11438 	LIST_HEAD(list);
11439 
11440 	if (!has_addr_filter(event))
11441 		return;
11442 
11443 	/* don't bother with children, they don't have their own filters */
11444 	if (event->parent)
11445 		return;
11446 
11447 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11448 
11449 	list_splice_init(&event->addr_filters.list, &list);
11450 	if (head)
11451 		list_splice(head, &event->addr_filters.list);
11452 
11453 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11454 
11455 	free_filters_list(&list);
11456 }
11457 
11458 static void perf_free_addr_filters(struct perf_event *event)
11459 {
11460 	/*
11461 	 * Used during free paths, there is no concurrency.
11462 	 */
11463 	if (list_empty(&event->addr_filters.list))
11464 		return;
11465 
11466 	perf_addr_filters_splice(event, NULL);
11467 }
11468 
11469 /*
11470  * Scan through mm's vmas and see if one of them matches the
11471  * @filter; if so, adjust filter's address range.
11472  * Called with mm::mmap_lock down for reading.
11473  */
11474 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11475 				   struct mm_struct *mm,
11476 				   struct perf_addr_filter_range *fr)
11477 {
11478 	struct vm_area_struct *vma;
11479 	VMA_ITERATOR(vmi, mm, 0);
11480 
11481 	for_each_vma(vmi, vma) {
11482 		if (!vma->vm_file)
11483 			continue;
11484 
11485 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11486 			return;
11487 	}
11488 }
11489 
11490 /*
11491  * Update event's address range filters based on the
11492  * task's existing mappings, if any.
11493  */
11494 static void perf_event_addr_filters_apply(struct perf_event *event)
11495 {
11496 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11497 	struct task_struct *task = READ_ONCE(event->ctx->task);
11498 	struct perf_addr_filter *filter;
11499 	struct mm_struct *mm = NULL;
11500 	unsigned int count = 0;
11501 	unsigned long flags;
11502 
11503 	/*
11504 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11505 	 * will stop on the parent's child_mutex that our caller is also holding
11506 	 */
11507 	if (task == TASK_TOMBSTONE)
11508 		return;
11509 
11510 	if (ifh->nr_file_filters) {
11511 		mm = get_task_mm(task);
11512 		if (!mm)
11513 			goto restart;
11514 
11515 		mmap_read_lock(mm);
11516 	}
11517 
11518 	raw_spin_lock_irqsave(&ifh->lock, flags);
11519 	list_for_each_entry(filter, &ifh->list, entry) {
11520 		if (filter->path.dentry) {
11521 			/*
11522 			 * Adjust base offset if the filter is associated to a
11523 			 * binary that needs to be mapped:
11524 			 */
11525 			event->addr_filter_ranges[count].start = 0;
11526 			event->addr_filter_ranges[count].size = 0;
11527 
11528 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11529 		} else {
11530 			event->addr_filter_ranges[count].start = filter->offset;
11531 			event->addr_filter_ranges[count].size  = filter->size;
11532 		}
11533 
11534 		count++;
11535 	}
11536 
11537 	event->addr_filters_gen++;
11538 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11539 
11540 	if (ifh->nr_file_filters) {
11541 		mmap_read_unlock(mm);
11542 
11543 		mmput(mm);
11544 	}
11545 
11546 restart:
11547 	perf_event_stop(event, 1);
11548 }
11549 
11550 /*
11551  * Address range filtering: limiting the data to certain
11552  * instruction address ranges. Filters are ioctl()ed to us from
11553  * userspace as ascii strings.
11554  *
11555  * Filter string format:
11556  *
11557  * ACTION RANGE_SPEC
11558  * where ACTION is one of the
11559  *  * "filter": limit the trace to this region
11560  *  * "start": start tracing from this address
11561  *  * "stop": stop tracing at this address/region;
11562  * RANGE_SPEC is
11563  *  * for kernel addresses: <start address>[/<size>]
11564  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11565  *
11566  * if <size> is not specified or is zero, the range is treated as a single
11567  * address; not valid for ACTION=="filter".
11568  */
11569 enum {
11570 	IF_ACT_NONE = -1,
11571 	IF_ACT_FILTER,
11572 	IF_ACT_START,
11573 	IF_ACT_STOP,
11574 	IF_SRC_FILE,
11575 	IF_SRC_KERNEL,
11576 	IF_SRC_FILEADDR,
11577 	IF_SRC_KERNELADDR,
11578 };
11579 
11580 enum {
11581 	IF_STATE_ACTION = 0,
11582 	IF_STATE_SOURCE,
11583 	IF_STATE_END,
11584 };
11585 
11586 static const match_table_t if_tokens = {
11587 	{ IF_ACT_FILTER,	"filter" },
11588 	{ IF_ACT_START,		"start" },
11589 	{ IF_ACT_STOP,		"stop" },
11590 	{ IF_SRC_FILE,		"%u/%u@%s" },
11591 	{ IF_SRC_KERNEL,	"%u/%u" },
11592 	{ IF_SRC_FILEADDR,	"%u@%s" },
11593 	{ IF_SRC_KERNELADDR,	"%u" },
11594 	{ IF_ACT_NONE,		NULL },
11595 };
11596 
11597 /*
11598  * Address filter string parser
11599  */
11600 static int
11601 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11602 			     struct list_head *filters)
11603 {
11604 	struct perf_addr_filter *filter = NULL;
11605 	char *start, *orig, *filename = NULL;
11606 	substring_t args[MAX_OPT_ARGS];
11607 	int state = IF_STATE_ACTION, token;
11608 	unsigned int kernel = 0;
11609 	int ret = -EINVAL;
11610 
11611 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11612 	if (!fstr)
11613 		return -ENOMEM;
11614 
11615 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11616 		static const enum perf_addr_filter_action_t actions[] = {
11617 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11618 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11619 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11620 		};
11621 		ret = -EINVAL;
11622 
11623 		if (!*start)
11624 			continue;
11625 
11626 		/* filter definition begins */
11627 		if (state == IF_STATE_ACTION) {
11628 			filter = perf_addr_filter_new(event, filters);
11629 			if (!filter)
11630 				goto fail;
11631 		}
11632 
11633 		token = match_token(start, if_tokens, args);
11634 		switch (token) {
11635 		case IF_ACT_FILTER:
11636 		case IF_ACT_START:
11637 		case IF_ACT_STOP:
11638 			if (state != IF_STATE_ACTION)
11639 				goto fail;
11640 
11641 			filter->action = actions[token];
11642 			state = IF_STATE_SOURCE;
11643 			break;
11644 
11645 		case IF_SRC_KERNELADDR:
11646 		case IF_SRC_KERNEL:
11647 			kernel = 1;
11648 			fallthrough;
11649 
11650 		case IF_SRC_FILEADDR:
11651 		case IF_SRC_FILE:
11652 			if (state != IF_STATE_SOURCE)
11653 				goto fail;
11654 
11655 			*args[0].to = 0;
11656 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11657 			if (ret)
11658 				goto fail;
11659 
11660 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11661 				*args[1].to = 0;
11662 				ret = kstrtoul(args[1].from, 0, &filter->size);
11663 				if (ret)
11664 					goto fail;
11665 			}
11666 
11667 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11668 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11669 
11670 				kfree(filename);
11671 				filename = match_strdup(&args[fpos]);
11672 				if (!filename) {
11673 					ret = -ENOMEM;
11674 					goto fail;
11675 				}
11676 			}
11677 
11678 			state = IF_STATE_END;
11679 			break;
11680 
11681 		default:
11682 			goto fail;
11683 		}
11684 
11685 		/*
11686 		 * Filter definition is fully parsed, validate and install it.
11687 		 * Make sure that it doesn't contradict itself or the event's
11688 		 * attribute.
11689 		 */
11690 		if (state == IF_STATE_END) {
11691 			ret = -EINVAL;
11692 
11693 			/*
11694 			 * ACTION "filter" must have a non-zero length region
11695 			 * specified.
11696 			 */
11697 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11698 			    !filter->size)
11699 				goto fail;
11700 
11701 			if (!kernel) {
11702 				if (!filename)
11703 					goto fail;
11704 
11705 				/*
11706 				 * For now, we only support file-based filters
11707 				 * in per-task events; doing so for CPU-wide
11708 				 * events requires additional context switching
11709 				 * trickery, since same object code will be
11710 				 * mapped at different virtual addresses in
11711 				 * different processes.
11712 				 */
11713 				ret = -EOPNOTSUPP;
11714 				if (!event->ctx->task)
11715 					goto fail;
11716 
11717 				/* look up the path and grab its inode */
11718 				ret = kern_path(filename, LOOKUP_FOLLOW,
11719 						&filter->path);
11720 				if (ret)
11721 					goto fail;
11722 
11723 				ret = -EINVAL;
11724 				if (!filter->path.dentry ||
11725 				    !S_ISREG(d_inode(filter->path.dentry)
11726 					     ->i_mode))
11727 					goto fail;
11728 
11729 				event->addr_filters.nr_file_filters++;
11730 			}
11731 
11732 			/* ready to consume more filters */
11733 			kfree(filename);
11734 			filename = NULL;
11735 			state = IF_STATE_ACTION;
11736 			filter = NULL;
11737 			kernel = 0;
11738 		}
11739 	}
11740 
11741 	if (state != IF_STATE_ACTION)
11742 		goto fail;
11743 
11744 	kfree(filename);
11745 	kfree(orig);
11746 
11747 	return 0;
11748 
11749 fail:
11750 	kfree(filename);
11751 	free_filters_list(filters);
11752 	kfree(orig);
11753 
11754 	return ret;
11755 }
11756 
11757 static int
11758 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11759 {
11760 	LIST_HEAD(filters);
11761 	int ret;
11762 
11763 	/*
11764 	 * Since this is called in perf_ioctl() path, we're already holding
11765 	 * ctx::mutex.
11766 	 */
11767 	lockdep_assert_held(&event->ctx->mutex);
11768 
11769 	if (WARN_ON_ONCE(event->parent))
11770 		return -EINVAL;
11771 
11772 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11773 	if (ret)
11774 		goto fail_clear_files;
11775 
11776 	ret = event->pmu->addr_filters_validate(&filters);
11777 	if (ret)
11778 		goto fail_free_filters;
11779 
11780 	/* remove existing filters, if any */
11781 	perf_addr_filters_splice(event, &filters);
11782 
11783 	/* install new filters */
11784 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11785 
11786 	return ret;
11787 
11788 fail_free_filters:
11789 	free_filters_list(&filters);
11790 
11791 fail_clear_files:
11792 	event->addr_filters.nr_file_filters = 0;
11793 
11794 	return ret;
11795 }
11796 
11797 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11798 {
11799 	int ret = -EINVAL;
11800 	char *filter_str;
11801 
11802 	filter_str = strndup_user(arg, PAGE_SIZE);
11803 	if (IS_ERR(filter_str))
11804 		return PTR_ERR(filter_str);
11805 
11806 #ifdef CONFIG_EVENT_TRACING
11807 	if (perf_event_is_tracing(event)) {
11808 		struct perf_event_context *ctx = event->ctx;
11809 
11810 		/*
11811 		 * Beware, here be dragons!!
11812 		 *
11813 		 * the tracepoint muck will deadlock against ctx->mutex, but
11814 		 * the tracepoint stuff does not actually need it. So
11815 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11816 		 * already have a reference on ctx.
11817 		 *
11818 		 * This can result in event getting moved to a different ctx,
11819 		 * but that does not affect the tracepoint state.
11820 		 */
11821 		mutex_unlock(&ctx->mutex);
11822 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11823 		mutex_lock(&ctx->mutex);
11824 	} else
11825 #endif
11826 	if (has_addr_filter(event))
11827 		ret = perf_event_set_addr_filter(event, filter_str);
11828 
11829 	kfree(filter_str);
11830 	return ret;
11831 }
11832 
11833 /*
11834  * hrtimer based swevent callback
11835  */
11836 
11837 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11838 {
11839 	enum hrtimer_restart ret = HRTIMER_RESTART;
11840 	struct perf_sample_data data;
11841 	struct pt_regs *regs;
11842 	struct perf_event *event;
11843 	u64 period;
11844 
11845 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11846 
11847 	if (event->state != PERF_EVENT_STATE_ACTIVE ||
11848 	    event->hw.state & PERF_HES_STOPPED)
11849 		return HRTIMER_NORESTART;
11850 
11851 	event->pmu->read(event);
11852 
11853 	perf_sample_data_init(&data, 0, event->hw.last_period);
11854 	regs = get_irq_regs();
11855 
11856 	if (regs && !perf_exclude_event(event, regs)) {
11857 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11858 			if (__perf_event_overflow(event, 1, &data, regs))
11859 				ret = HRTIMER_NORESTART;
11860 	}
11861 
11862 	period = max_t(u64, 10000, event->hw.sample_period);
11863 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11864 
11865 	return ret;
11866 }
11867 
11868 static void perf_swevent_start_hrtimer(struct perf_event *event)
11869 {
11870 	struct hw_perf_event *hwc = &event->hw;
11871 	s64 period;
11872 
11873 	if (!is_sampling_event(event))
11874 		return;
11875 
11876 	period = local64_read(&hwc->period_left);
11877 	if (period) {
11878 		if (period < 0)
11879 			period = 10000;
11880 
11881 		local64_set(&hwc->period_left, 0);
11882 	} else {
11883 		period = max_t(u64, 10000, hwc->sample_period);
11884 	}
11885 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11886 		      HRTIMER_MODE_REL_PINNED_HARD);
11887 }
11888 
11889 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11890 {
11891 	struct hw_perf_event *hwc = &event->hw;
11892 
11893 	/*
11894 	 * Careful: this function can be triggered in the hrtimer handler,
11895 	 * for cpu-clock events, so hrtimer_cancel() would cause a
11896 	 * deadlock.
11897 	 *
11898 	 * So use hrtimer_try_to_cancel() to try to stop the hrtimer,
11899 	 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag,
11900 	 * which guarantees that perf_swevent_hrtimer() will stop the
11901 	 * hrtimer once it sees the PERF_HES_STOPPED flag.
11902 	 */
11903 	if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
11904 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11905 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11906 
11907 		hrtimer_try_to_cancel(&hwc->hrtimer);
11908 	}
11909 }
11910 
11911 static void perf_swevent_init_hrtimer(struct perf_event *event)
11912 {
11913 	struct hw_perf_event *hwc = &event->hw;
11914 
11915 	if (!is_sampling_event(event))
11916 		return;
11917 
11918 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11919 
11920 	/*
11921 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11922 	 * mapping and avoid the whole period adjust feedback stuff.
11923 	 */
11924 	if (event->attr.freq) {
11925 		long freq = event->attr.sample_freq;
11926 
11927 		event->attr.sample_period = NSEC_PER_SEC / freq;
11928 		hwc->sample_period = event->attr.sample_period;
11929 		local64_set(&hwc->period_left, hwc->sample_period);
11930 		hwc->last_period = hwc->sample_period;
11931 		event->attr.freq = 0;
11932 	}
11933 }
11934 
11935 /*
11936  * Software event: cpu wall time clock
11937  */
11938 
11939 static void cpu_clock_event_update(struct perf_event *event)
11940 {
11941 	s64 prev;
11942 	u64 now;
11943 
11944 	now = local_clock();
11945 	prev = local64_xchg(&event->hw.prev_count, now);
11946 	local64_add(now - prev, &event->count);
11947 }
11948 
11949 static void cpu_clock_event_start(struct perf_event *event, int flags)
11950 {
11951 	event->hw.state = 0;
11952 	local64_set(&event->hw.prev_count, local_clock());
11953 	perf_swevent_start_hrtimer(event);
11954 }
11955 
11956 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11957 {
11958 	event->hw.state = PERF_HES_STOPPED;
11959 	perf_swevent_cancel_hrtimer(event);
11960 	if (flags & PERF_EF_UPDATE)
11961 		cpu_clock_event_update(event);
11962 }
11963 
11964 static int cpu_clock_event_add(struct perf_event *event, int flags)
11965 {
11966 	if (flags & PERF_EF_START)
11967 		cpu_clock_event_start(event, flags);
11968 	perf_event_update_userpage(event);
11969 
11970 	return 0;
11971 }
11972 
11973 static void cpu_clock_event_del(struct perf_event *event, int flags)
11974 {
11975 	cpu_clock_event_stop(event, PERF_EF_UPDATE);
11976 }
11977 
11978 static void cpu_clock_event_read(struct perf_event *event)
11979 {
11980 	cpu_clock_event_update(event);
11981 }
11982 
11983 static int cpu_clock_event_init(struct perf_event *event)
11984 {
11985 	if (event->attr.type != perf_cpu_clock.type)
11986 		return -ENOENT;
11987 
11988 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11989 		return -ENOENT;
11990 
11991 	/*
11992 	 * no branch sampling for software events
11993 	 */
11994 	if (has_branch_stack(event))
11995 		return -EOPNOTSUPP;
11996 
11997 	perf_swevent_init_hrtimer(event);
11998 
11999 	return 0;
12000 }
12001 
12002 static struct pmu perf_cpu_clock = {
12003 	.task_ctx_nr	= perf_sw_context,
12004 
12005 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12006 	.dev		= PMU_NULL_DEV,
12007 
12008 	.event_init	= cpu_clock_event_init,
12009 	.add		= cpu_clock_event_add,
12010 	.del		= cpu_clock_event_del,
12011 	.start		= cpu_clock_event_start,
12012 	.stop		= cpu_clock_event_stop,
12013 	.read		= cpu_clock_event_read,
12014 };
12015 
12016 /*
12017  * Software event: task time clock
12018  */
12019 
12020 static void task_clock_event_update(struct perf_event *event, u64 now)
12021 {
12022 	u64 prev;
12023 	s64 delta;
12024 
12025 	prev = local64_xchg(&event->hw.prev_count, now);
12026 	delta = now - prev;
12027 	local64_add(delta, &event->count);
12028 }
12029 
12030 static void task_clock_event_start(struct perf_event *event, int flags)
12031 {
12032 	event->hw.state = 0;
12033 	local64_set(&event->hw.prev_count, event->ctx->time);
12034 	perf_swevent_start_hrtimer(event);
12035 }
12036 
12037 static void task_clock_event_stop(struct perf_event *event, int flags)
12038 {
12039 	event->hw.state = PERF_HES_STOPPED;
12040 	perf_swevent_cancel_hrtimer(event);
12041 	if (flags & PERF_EF_UPDATE)
12042 		task_clock_event_update(event, event->ctx->time);
12043 }
12044 
12045 static int task_clock_event_add(struct perf_event *event, int flags)
12046 {
12047 	if (flags & PERF_EF_START)
12048 		task_clock_event_start(event, flags);
12049 	perf_event_update_userpage(event);
12050 
12051 	return 0;
12052 }
12053 
12054 static void task_clock_event_del(struct perf_event *event, int flags)
12055 {
12056 	task_clock_event_stop(event, PERF_EF_UPDATE);
12057 }
12058 
12059 static void task_clock_event_read(struct perf_event *event)
12060 {
12061 	u64 now = perf_clock();
12062 	u64 delta = now - event->ctx->timestamp;
12063 	u64 time = event->ctx->time + delta;
12064 
12065 	task_clock_event_update(event, time);
12066 }
12067 
12068 static int task_clock_event_init(struct perf_event *event)
12069 {
12070 	if (event->attr.type != perf_task_clock.type)
12071 		return -ENOENT;
12072 
12073 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
12074 		return -ENOENT;
12075 
12076 	/*
12077 	 * no branch sampling for software events
12078 	 */
12079 	if (has_branch_stack(event))
12080 		return -EOPNOTSUPP;
12081 
12082 	perf_swevent_init_hrtimer(event);
12083 
12084 	return 0;
12085 }
12086 
12087 static struct pmu perf_task_clock = {
12088 	.task_ctx_nr	= perf_sw_context,
12089 
12090 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12091 	.dev		= PMU_NULL_DEV,
12092 
12093 	.event_init	= task_clock_event_init,
12094 	.add		= task_clock_event_add,
12095 	.del		= task_clock_event_del,
12096 	.start		= task_clock_event_start,
12097 	.stop		= task_clock_event_stop,
12098 	.read		= task_clock_event_read,
12099 };
12100 
12101 static void perf_pmu_nop_void(struct pmu *pmu)
12102 {
12103 }
12104 
12105 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12106 {
12107 }
12108 
12109 static int perf_pmu_nop_int(struct pmu *pmu)
12110 {
12111 	return 0;
12112 }
12113 
12114 static int perf_event_nop_int(struct perf_event *event, u64 value)
12115 {
12116 	return 0;
12117 }
12118 
12119 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12120 
12121 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12122 {
12123 	__this_cpu_write(nop_txn_flags, flags);
12124 
12125 	if (flags & ~PERF_PMU_TXN_ADD)
12126 		return;
12127 
12128 	perf_pmu_disable(pmu);
12129 }
12130 
12131 static int perf_pmu_commit_txn(struct pmu *pmu)
12132 {
12133 	unsigned int flags = __this_cpu_read(nop_txn_flags);
12134 
12135 	__this_cpu_write(nop_txn_flags, 0);
12136 
12137 	if (flags & ~PERF_PMU_TXN_ADD)
12138 		return 0;
12139 
12140 	perf_pmu_enable(pmu);
12141 	return 0;
12142 }
12143 
12144 static void perf_pmu_cancel_txn(struct pmu *pmu)
12145 {
12146 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
12147 
12148 	__this_cpu_write(nop_txn_flags, 0);
12149 
12150 	if (flags & ~PERF_PMU_TXN_ADD)
12151 		return;
12152 
12153 	perf_pmu_enable(pmu);
12154 }
12155 
12156 static int perf_event_idx_default(struct perf_event *event)
12157 {
12158 	return 0;
12159 }
12160 
12161 /*
12162  * Let userspace know that this PMU supports address range filtering:
12163  */
12164 static ssize_t nr_addr_filters_show(struct device *dev,
12165 				    struct device_attribute *attr,
12166 				    char *page)
12167 {
12168 	struct pmu *pmu = dev_get_drvdata(dev);
12169 
12170 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12171 }
12172 DEVICE_ATTR_RO(nr_addr_filters);
12173 
12174 static struct idr pmu_idr;
12175 
12176 static ssize_t
12177 type_show(struct device *dev, struct device_attribute *attr, char *page)
12178 {
12179 	struct pmu *pmu = dev_get_drvdata(dev);
12180 
12181 	return sysfs_emit(page, "%d\n", pmu->type);
12182 }
12183 static DEVICE_ATTR_RO(type);
12184 
12185 static ssize_t
12186 perf_event_mux_interval_ms_show(struct device *dev,
12187 				struct device_attribute *attr,
12188 				char *page)
12189 {
12190 	struct pmu *pmu = dev_get_drvdata(dev);
12191 
12192 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12193 }
12194 
12195 static DEFINE_MUTEX(mux_interval_mutex);
12196 
12197 static ssize_t
12198 perf_event_mux_interval_ms_store(struct device *dev,
12199 				 struct device_attribute *attr,
12200 				 const char *buf, size_t count)
12201 {
12202 	struct pmu *pmu = dev_get_drvdata(dev);
12203 	int timer, cpu, ret;
12204 
12205 	ret = kstrtoint(buf, 0, &timer);
12206 	if (ret)
12207 		return ret;
12208 
12209 	if (timer < 1)
12210 		return -EINVAL;
12211 
12212 	/* same value, noting to do */
12213 	if (timer == pmu->hrtimer_interval_ms)
12214 		return count;
12215 
12216 	mutex_lock(&mux_interval_mutex);
12217 	pmu->hrtimer_interval_ms = timer;
12218 
12219 	/* update all cpuctx for this PMU */
12220 	cpus_read_lock();
12221 	for_each_online_cpu(cpu) {
12222 		struct perf_cpu_pmu_context *cpc;
12223 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12224 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12225 
12226 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12227 	}
12228 	cpus_read_unlock();
12229 	mutex_unlock(&mux_interval_mutex);
12230 
12231 	return count;
12232 }
12233 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12234 
12235 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12236 {
12237 	switch (scope) {
12238 	case PERF_PMU_SCOPE_CORE:
12239 		return topology_sibling_cpumask(cpu);
12240 	case PERF_PMU_SCOPE_DIE:
12241 		return topology_die_cpumask(cpu);
12242 	case PERF_PMU_SCOPE_CLUSTER:
12243 		return topology_cluster_cpumask(cpu);
12244 	case PERF_PMU_SCOPE_PKG:
12245 		return topology_core_cpumask(cpu);
12246 	case PERF_PMU_SCOPE_SYS_WIDE:
12247 		return cpu_online_mask;
12248 	}
12249 
12250 	return NULL;
12251 }
12252 
12253 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12254 {
12255 	switch (scope) {
12256 	case PERF_PMU_SCOPE_CORE:
12257 		return perf_online_core_mask;
12258 	case PERF_PMU_SCOPE_DIE:
12259 		return perf_online_die_mask;
12260 	case PERF_PMU_SCOPE_CLUSTER:
12261 		return perf_online_cluster_mask;
12262 	case PERF_PMU_SCOPE_PKG:
12263 		return perf_online_pkg_mask;
12264 	case PERF_PMU_SCOPE_SYS_WIDE:
12265 		return perf_online_sys_mask;
12266 	}
12267 
12268 	return NULL;
12269 }
12270 
12271 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12272 			    char *buf)
12273 {
12274 	struct pmu *pmu = dev_get_drvdata(dev);
12275 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12276 
12277 	if (mask)
12278 		return cpumap_print_to_pagebuf(true, buf, mask);
12279 	return 0;
12280 }
12281 
12282 static DEVICE_ATTR_RO(cpumask);
12283 
12284 static struct attribute *pmu_dev_attrs[] = {
12285 	&dev_attr_type.attr,
12286 	&dev_attr_perf_event_mux_interval_ms.attr,
12287 	&dev_attr_nr_addr_filters.attr,
12288 	&dev_attr_cpumask.attr,
12289 	NULL,
12290 };
12291 
12292 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12293 {
12294 	struct device *dev = kobj_to_dev(kobj);
12295 	struct pmu *pmu = dev_get_drvdata(dev);
12296 
12297 	if (n == 2 && !pmu->nr_addr_filters)
12298 		return 0;
12299 
12300 	/* cpumask */
12301 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12302 		return 0;
12303 
12304 	return a->mode;
12305 }
12306 
12307 static struct attribute_group pmu_dev_attr_group = {
12308 	.is_visible = pmu_dev_is_visible,
12309 	.attrs = pmu_dev_attrs,
12310 };
12311 
12312 static const struct attribute_group *pmu_dev_groups[] = {
12313 	&pmu_dev_attr_group,
12314 	NULL,
12315 };
12316 
12317 static int pmu_bus_running;
12318 static const struct bus_type pmu_bus = {
12319 	.name		= "event_source",
12320 	.dev_groups	= pmu_dev_groups,
12321 };
12322 
12323 static void pmu_dev_release(struct device *dev)
12324 {
12325 	kfree(dev);
12326 }
12327 
12328 static int pmu_dev_alloc(struct pmu *pmu)
12329 {
12330 	int ret = -ENOMEM;
12331 
12332 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12333 	if (!pmu->dev)
12334 		goto out;
12335 
12336 	pmu->dev->groups = pmu->attr_groups;
12337 	device_initialize(pmu->dev);
12338 
12339 	dev_set_drvdata(pmu->dev, pmu);
12340 	pmu->dev->bus = &pmu_bus;
12341 	pmu->dev->parent = pmu->parent;
12342 	pmu->dev->release = pmu_dev_release;
12343 
12344 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12345 	if (ret)
12346 		goto free_dev;
12347 
12348 	ret = device_add(pmu->dev);
12349 	if (ret)
12350 		goto free_dev;
12351 
12352 	if (pmu->attr_update) {
12353 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12354 		if (ret)
12355 			goto del_dev;
12356 	}
12357 
12358 out:
12359 	return ret;
12360 
12361 del_dev:
12362 	device_del(pmu->dev);
12363 
12364 free_dev:
12365 	put_device(pmu->dev);
12366 	pmu->dev = NULL;
12367 	goto out;
12368 }
12369 
12370 static struct lock_class_key cpuctx_mutex;
12371 static struct lock_class_key cpuctx_lock;
12372 
12373 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12374 {
12375 	void *tmp, *val = idr_find(idr, id);
12376 
12377 	if (val != old)
12378 		return false;
12379 
12380 	tmp = idr_replace(idr, new, id);
12381 	if (IS_ERR(tmp))
12382 		return false;
12383 
12384 	WARN_ON_ONCE(tmp != val);
12385 	return true;
12386 }
12387 
12388 static void perf_pmu_free(struct pmu *pmu)
12389 {
12390 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12391 		if (pmu->nr_addr_filters)
12392 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12393 		device_del(pmu->dev);
12394 		put_device(pmu->dev);
12395 	}
12396 
12397 	if (pmu->cpu_pmu_context) {
12398 		int cpu;
12399 
12400 		for_each_possible_cpu(cpu) {
12401 			struct perf_cpu_pmu_context *cpc;
12402 
12403 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12404 			if (!cpc)
12405 				continue;
12406 			if (cpc->epc.embedded) {
12407 				/* refcount managed */
12408 				put_pmu_ctx(&cpc->epc);
12409 				continue;
12410 			}
12411 			kfree(cpc);
12412 		}
12413 		free_percpu(pmu->cpu_pmu_context);
12414 	}
12415 }
12416 
12417 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12418 
12419 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12420 {
12421 	int cpu, max = PERF_TYPE_MAX;
12422 
12423 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12424 	guard(mutex)(&pmus_lock);
12425 
12426 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12427 		return -EINVAL;
12428 
12429 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12430 		      "Can not register a pmu with an invalid scope.\n"))
12431 		return -EINVAL;
12432 
12433 	pmu->name = name;
12434 
12435 	if (type >= 0)
12436 		max = type;
12437 
12438 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12439 	if (pmu_type.id < 0)
12440 		return pmu_type.id;
12441 
12442 	WARN_ON(type >= 0 && pmu_type.id != type);
12443 
12444 	pmu->type = pmu_type.id;
12445 	atomic_set(&pmu->exclusive_cnt, 0);
12446 
12447 	if (pmu_bus_running && !pmu->dev) {
12448 		int ret = pmu_dev_alloc(pmu);
12449 		if (ret)
12450 			return ret;
12451 	}
12452 
12453 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12454 	if (!pmu->cpu_pmu_context)
12455 		return -ENOMEM;
12456 
12457 	for_each_possible_cpu(cpu) {
12458 		struct perf_cpu_pmu_context *cpc =
12459 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12460 				     GFP_KERNEL | __GFP_ZERO,
12461 				     cpu_to_node(cpu));
12462 
12463 		if (!cpc)
12464 			return -ENOMEM;
12465 
12466 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12467 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12468 		__perf_mux_hrtimer_init(cpc, cpu);
12469 	}
12470 
12471 	if (!pmu->start_txn) {
12472 		if (pmu->pmu_enable) {
12473 			/*
12474 			 * If we have pmu_enable/pmu_disable calls, install
12475 			 * transaction stubs that use that to try and batch
12476 			 * hardware accesses.
12477 			 */
12478 			pmu->start_txn  = perf_pmu_start_txn;
12479 			pmu->commit_txn = perf_pmu_commit_txn;
12480 			pmu->cancel_txn = perf_pmu_cancel_txn;
12481 		} else {
12482 			pmu->start_txn  = perf_pmu_nop_txn;
12483 			pmu->commit_txn = perf_pmu_nop_int;
12484 			pmu->cancel_txn = perf_pmu_nop_void;
12485 		}
12486 	}
12487 
12488 	if (!pmu->pmu_enable) {
12489 		pmu->pmu_enable  = perf_pmu_nop_void;
12490 		pmu->pmu_disable = perf_pmu_nop_void;
12491 	}
12492 
12493 	if (!pmu->check_period)
12494 		pmu->check_period = perf_event_nop_int;
12495 
12496 	if (!pmu->event_idx)
12497 		pmu->event_idx = perf_event_idx_default;
12498 
12499 	INIT_LIST_HEAD(&pmu->events);
12500 	spin_lock_init(&pmu->events_lock);
12501 
12502 	/*
12503 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12504 	 */
12505 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12506 		return -EINVAL;
12507 	list_add_rcu(&pmu->entry, &pmus);
12508 
12509 	take_idr_id(pmu_type);
12510 	_pmu = no_free_ptr(pmu); // let it rip
12511 	return 0;
12512 }
12513 EXPORT_SYMBOL_GPL(perf_pmu_register);
12514 
12515 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12516 			       struct perf_event_context *ctx)
12517 {
12518 	/*
12519 	 * De-schedule the event and mark it REVOKED.
12520 	 */
12521 	perf_event_exit_event(event, ctx, true);
12522 
12523 	/*
12524 	 * All _free_event() bits that rely on event->pmu:
12525 	 *
12526 	 * Notably, perf_mmap() relies on the ordering here.
12527 	 */
12528 	scoped_guard (mutex, &event->mmap_mutex) {
12529 		WARN_ON_ONCE(pmu->event_unmapped);
12530 		/*
12531 		 * Mostly an empty lock sequence, such that perf_mmap(), which
12532 		 * relies on mmap_mutex, is sure to observe the state change.
12533 		 */
12534 	}
12535 
12536 	perf_event_free_bpf_prog(event);
12537 	perf_free_addr_filters(event);
12538 
12539 	if (event->destroy) {
12540 		event->destroy(event);
12541 		event->destroy = NULL;
12542 	}
12543 
12544 	if (event->pmu_ctx) {
12545 		put_pmu_ctx(event->pmu_ctx);
12546 		event->pmu_ctx = NULL;
12547 	}
12548 
12549 	exclusive_event_destroy(event);
12550 	module_put(pmu->module);
12551 
12552 	event->pmu = NULL; /* force fault instead of UAF */
12553 }
12554 
12555 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12556 {
12557 	struct perf_event_context *ctx;
12558 
12559 	ctx = perf_event_ctx_lock(event);
12560 	__pmu_detach_event(pmu, event, ctx);
12561 	perf_event_ctx_unlock(event, ctx);
12562 
12563 	scoped_guard (spinlock, &pmu->events_lock)
12564 		list_del(&event->pmu_list);
12565 }
12566 
12567 static struct perf_event *pmu_get_event(struct pmu *pmu)
12568 {
12569 	struct perf_event *event;
12570 
12571 	guard(spinlock)(&pmu->events_lock);
12572 	list_for_each_entry(event, &pmu->events, pmu_list) {
12573 		if (atomic_long_inc_not_zero(&event->refcount))
12574 			return event;
12575 	}
12576 
12577 	return NULL;
12578 }
12579 
12580 static bool pmu_empty(struct pmu *pmu)
12581 {
12582 	guard(spinlock)(&pmu->events_lock);
12583 	return list_empty(&pmu->events);
12584 }
12585 
12586 static void pmu_detach_events(struct pmu *pmu)
12587 {
12588 	struct perf_event *event;
12589 
12590 	for (;;) {
12591 		event = pmu_get_event(pmu);
12592 		if (!event)
12593 			break;
12594 
12595 		pmu_detach_event(pmu, event);
12596 		put_event(event);
12597 	}
12598 
12599 	/*
12600 	 * wait for pending _free_event()s
12601 	 */
12602 	wait_var_event(pmu, pmu_empty(pmu));
12603 }
12604 
12605 int perf_pmu_unregister(struct pmu *pmu)
12606 {
12607 	scoped_guard (mutex, &pmus_lock) {
12608 		if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12609 			return -EINVAL;
12610 
12611 		list_del_rcu(&pmu->entry);
12612 	}
12613 
12614 	/*
12615 	 * We dereference the pmu list under both SRCU and regular RCU, so
12616 	 * synchronize against both of those.
12617 	 *
12618 	 * Notably, the entirety of event creation, from perf_init_event()
12619 	 * (which will now fail, because of the above) until
12620 	 * perf_install_in_context() should be under SRCU such that
12621 	 * this synchronizes against event creation. This avoids trying to
12622 	 * detach events that are not fully formed.
12623 	 */
12624 	synchronize_srcu(&pmus_srcu);
12625 	synchronize_rcu();
12626 
12627 	if (pmu->event_unmapped && !pmu_empty(pmu)) {
12628 		/*
12629 		 * Can't force remove events when pmu::event_unmapped()
12630 		 * is used in perf_mmap_close().
12631 		 */
12632 		guard(mutex)(&pmus_lock);
12633 		idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12634 		list_add_rcu(&pmu->entry, &pmus);
12635 		return -EBUSY;
12636 	}
12637 
12638 	scoped_guard (mutex, &pmus_lock)
12639 		idr_remove(&pmu_idr, pmu->type);
12640 
12641 	/*
12642 	 * PMU is removed from the pmus list, so no new events will
12643 	 * be created, now take care of the existing ones.
12644 	 */
12645 	pmu_detach_events(pmu);
12646 
12647 	/*
12648 	 * PMU is unused, make it go away.
12649 	 */
12650 	perf_pmu_free(pmu);
12651 	return 0;
12652 }
12653 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12654 
12655 static inline bool has_extended_regs(struct perf_event *event)
12656 {
12657 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12658 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12659 }
12660 
12661 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12662 {
12663 	struct perf_event_context *ctx = NULL;
12664 	int ret;
12665 
12666 	if (!try_module_get(pmu->module))
12667 		return -ENODEV;
12668 
12669 	/*
12670 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12671 	 * for example, validate if the group fits on the PMU. Therefore,
12672 	 * if this is a sibling event, acquire the ctx->mutex to protect
12673 	 * the sibling_list.
12674 	 */
12675 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12676 		/*
12677 		 * This ctx->mutex can nest when we're called through
12678 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12679 		 */
12680 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12681 						 SINGLE_DEPTH_NESTING);
12682 		BUG_ON(!ctx);
12683 	}
12684 
12685 	event->pmu = pmu;
12686 	ret = pmu->event_init(event);
12687 
12688 	if (ctx)
12689 		perf_event_ctx_unlock(event->group_leader, ctx);
12690 
12691 	if (ret)
12692 		goto err_pmu;
12693 
12694 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12695 	    has_extended_regs(event)) {
12696 		ret = -EOPNOTSUPP;
12697 		goto err_destroy;
12698 	}
12699 
12700 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12701 	    event_has_any_exclude_flag(event)) {
12702 		ret = -EINVAL;
12703 		goto err_destroy;
12704 	}
12705 
12706 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12707 		const struct cpumask *cpumask;
12708 		struct cpumask *pmu_cpumask;
12709 		int cpu;
12710 
12711 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12712 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12713 
12714 		ret = -ENODEV;
12715 		if (!pmu_cpumask || !cpumask)
12716 			goto err_destroy;
12717 
12718 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12719 		if (cpu >= nr_cpu_ids)
12720 			goto err_destroy;
12721 
12722 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12723 	}
12724 
12725 	return 0;
12726 
12727 err_destroy:
12728 	if (event->destroy) {
12729 		event->destroy(event);
12730 		event->destroy = NULL;
12731 	}
12732 
12733 err_pmu:
12734 	event->pmu = NULL;
12735 	module_put(pmu->module);
12736 	return ret;
12737 }
12738 
12739 static struct pmu *perf_init_event(struct perf_event *event)
12740 {
12741 	bool extended_type = false;
12742 	struct pmu *pmu;
12743 	int type, ret;
12744 
12745 	guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12746 
12747 	/*
12748 	 * Save original type before calling pmu->event_init() since certain
12749 	 * pmus overwrites event->attr.type to forward event to another pmu.
12750 	 */
12751 	event->orig_type = event->attr.type;
12752 
12753 	/* Try parent's PMU first: */
12754 	if (event->parent && event->parent->pmu) {
12755 		pmu = event->parent->pmu;
12756 		ret = perf_try_init_event(pmu, event);
12757 		if (!ret)
12758 			return pmu;
12759 	}
12760 
12761 	/*
12762 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12763 	 * are often aliases for PERF_TYPE_RAW.
12764 	 */
12765 	type = event->attr.type;
12766 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12767 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12768 		if (!type) {
12769 			type = PERF_TYPE_RAW;
12770 		} else {
12771 			extended_type = true;
12772 			event->attr.config &= PERF_HW_EVENT_MASK;
12773 		}
12774 	}
12775 
12776 again:
12777 	scoped_guard (rcu)
12778 		pmu = idr_find(&pmu_idr, type);
12779 	if (pmu) {
12780 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12781 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12782 			return ERR_PTR(-ENOENT);
12783 
12784 		ret = perf_try_init_event(pmu, event);
12785 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12786 			type = event->attr.type;
12787 			goto again;
12788 		}
12789 
12790 		if (ret)
12791 			return ERR_PTR(ret);
12792 
12793 		return pmu;
12794 	}
12795 
12796 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12797 		ret = perf_try_init_event(pmu, event);
12798 		if (!ret)
12799 			return pmu;
12800 
12801 		if (ret != -ENOENT)
12802 			return ERR_PTR(ret);
12803 	}
12804 
12805 	return ERR_PTR(-ENOENT);
12806 }
12807 
12808 static void attach_sb_event(struct perf_event *event)
12809 {
12810 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12811 
12812 	raw_spin_lock(&pel->lock);
12813 	list_add_rcu(&event->sb_list, &pel->list);
12814 	raw_spin_unlock(&pel->lock);
12815 }
12816 
12817 /*
12818  * We keep a list of all !task (and therefore per-cpu) events
12819  * that need to receive side-band records.
12820  *
12821  * This avoids having to scan all the various PMU per-cpu contexts
12822  * looking for them.
12823  */
12824 static void account_pmu_sb_event(struct perf_event *event)
12825 {
12826 	if (is_sb_event(event))
12827 		attach_sb_event(event);
12828 }
12829 
12830 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12831 static void account_freq_event_nohz(void)
12832 {
12833 #ifdef CONFIG_NO_HZ_FULL
12834 	/* Lock so we don't race with concurrent unaccount */
12835 	spin_lock(&nr_freq_lock);
12836 	if (atomic_inc_return(&nr_freq_events) == 1)
12837 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12838 	spin_unlock(&nr_freq_lock);
12839 #endif
12840 }
12841 
12842 static void account_freq_event(void)
12843 {
12844 	if (tick_nohz_full_enabled())
12845 		account_freq_event_nohz();
12846 	else
12847 		atomic_inc(&nr_freq_events);
12848 }
12849 
12850 
12851 static void account_event(struct perf_event *event)
12852 {
12853 	bool inc = false;
12854 
12855 	if (event->parent)
12856 		return;
12857 
12858 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12859 		inc = true;
12860 	if (event->attr.mmap || event->attr.mmap_data)
12861 		atomic_inc(&nr_mmap_events);
12862 	if (event->attr.build_id)
12863 		atomic_inc(&nr_build_id_events);
12864 	if (event->attr.comm)
12865 		atomic_inc(&nr_comm_events);
12866 	if (event->attr.namespaces)
12867 		atomic_inc(&nr_namespaces_events);
12868 	if (event->attr.cgroup)
12869 		atomic_inc(&nr_cgroup_events);
12870 	if (event->attr.task)
12871 		atomic_inc(&nr_task_events);
12872 	if (event->attr.freq)
12873 		account_freq_event();
12874 	if (event->attr.context_switch) {
12875 		atomic_inc(&nr_switch_events);
12876 		inc = true;
12877 	}
12878 	if (has_branch_stack(event))
12879 		inc = true;
12880 	if (is_cgroup_event(event))
12881 		inc = true;
12882 	if (event->attr.ksymbol)
12883 		atomic_inc(&nr_ksymbol_events);
12884 	if (event->attr.bpf_event)
12885 		atomic_inc(&nr_bpf_events);
12886 	if (event->attr.text_poke)
12887 		atomic_inc(&nr_text_poke_events);
12888 
12889 	if (inc) {
12890 		/*
12891 		 * We need the mutex here because static_branch_enable()
12892 		 * must complete *before* the perf_sched_count increment
12893 		 * becomes visible.
12894 		 */
12895 		if (atomic_inc_not_zero(&perf_sched_count))
12896 			goto enabled;
12897 
12898 		mutex_lock(&perf_sched_mutex);
12899 		if (!atomic_read(&perf_sched_count)) {
12900 			static_branch_enable(&perf_sched_events);
12901 			/*
12902 			 * Guarantee that all CPUs observe they key change and
12903 			 * call the perf scheduling hooks before proceeding to
12904 			 * install events that need them.
12905 			 */
12906 			synchronize_rcu();
12907 		}
12908 		/*
12909 		 * Now that we have waited for the sync_sched(), allow further
12910 		 * increments to by-pass the mutex.
12911 		 */
12912 		atomic_inc(&perf_sched_count);
12913 		mutex_unlock(&perf_sched_mutex);
12914 	}
12915 enabled:
12916 
12917 	account_pmu_sb_event(event);
12918 }
12919 
12920 /*
12921  * Allocate and initialize an event structure
12922  */
12923 static struct perf_event *
12924 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12925 		 struct task_struct *task,
12926 		 struct perf_event *group_leader,
12927 		 struct perf_event *parent_event,
12928 		 perf_overflow_handler_t overflow_handler,
12929 		 void *context, int cgroup_fd)
12930 {
12931 	struct pmu *pmu;
12932 	struct hw_perf_event *hwc;
12933 	long err = -EINVAL;
12934 	int node;
12935 
12936 	if ((unsigned)cpu >= nr_cpu_ids) {
12937 		if (!task || cpu != -1)
12938 			return ERR_PTR(-EINVAL);
12939 	}
12940 	if (attr->sigtrap && !task) {
12941 		/* Requires a task: avoid signalling random tasks. */
12942 		return ERR_PTR(-EINVAL);
12943 	}
12944 
12945 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12946 	struct perf_event *event __free(__free_event) =
12947 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12948 	if (!event)
12949 		return ERR_PTR(-ENOMEM);
12950 
12951 	/*
12952 	 * Single events are their own group leaders, with an
12953 	 * empty sibling list:
12954 	 */
12955 	if (!group_leader)
12956 		group_leader = event;
12957 
12958 	mutex_init(&event->child_mutex);
12959 	INIT_LIST_HEAD(&event->child_list);
12960 
12961 	INIT_LIST_HEAD(&event->event_entry);
12962 	INIT_LIST_HEAD(&event->sibling_list);
12963 	INIT_LIST_HEAD(&event->active_list);
12964 	init_event_group(event);
12965 	INIT_LIST_HEAD(&event->rb_entry);
12966 	INIT_LIST_HEAD(&event->active_entry);
12967 	INIT_LIST_HEAD(&event->addr_filters.list);
12968 	INIT_HLIST_NODE(&event->hlist_entry);
12969 	INIT_LIST_HEAD(&event->pmu_list);
12970 
12971 
12972 	init_waitqueue_head(&event->waitq);
12973 	init_irq_work(&event->pending_irq, perf_pending_irq);
12974 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12975 	init_task_work(&event->pending_task, perf_pending_task);
12976 
12977 	mutex_init(&event->mmap_mutex);
12978 	raw_spin_lock_init(&event->addr_filters.lock);
12979 
12980 	atomic_long_set(&event->refcount, 1);
12981 	event->cpu		= cpu;
12982 	event->attr		= *attr;
12983 	event->group_leader	= group_leader;
12984 	event->pmu		= NULL;
12985 	event->oncpu		= -1;
12986 
12987 	event->parent		= parent_event;
12988 
12989 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12990 	event->id		= atomic64_inc_return(&perf_event_id);
12991 
12992 	event->state		= PERF_EVENT_STATE_INACTIVE;
12993 
12994 	if (parent_event)
12995 		event->event_caps = parent_event->event_caps;
12996 
12997 	if (task) {
12998 		event->attach_state = PERF_ATTACH_TASK;
12999 		/*
13000 		 * XXX pmu::event_init needs to know what task to account to
13001 		 * and we cannot use the ctx information because we need the
13002 		 * pmu before we get a ctx.
13003 		 */
13004 		event->hw.target = get_task_struct(task);
13005 	}
13006 
13007 	event->clock = &local_clock;
13008 	if (parent_event)
13009 		event->clock = parent_event->clock;
13010 
13011 	if (!overflow_handler && parent_event) {
13012 		overflow_handler = parent_event->overflow_handler;
13013 		context = parent_event->overflow_handler_context;
13014 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
13015 		if (parent_event->prog) {
13016 			struct bpf_prog *prog = parent_event->prog;
13017 
13018 			bpf_prog_inc(prog);
13019 			event->prog = prog;
13020 		}
13021 #endif
13022 	}
13023 
13024 	if (overflow_handler) {
13025 		event->overflow_handler	= overflow_handler;
13026 		event->overflow_handler_context = context;
13027 	} else if (is_write_backward(event)){
13028 		event->overflow_handler = perf_event_output_backward;
13029 		event->overflow_handler_context = NULL;
13030 	} else {
13031 		event->overflow_handler = perf_event_output_forward;
13032 		event->overflow_handler_context = NULL;
13033 	}
13034 
13035 	perf_event__state_init(event);
13036 
13037 	pmu = NULL;
13038 
13039 	hwc = &event->hw;
13040 	hwc->sample_period = attr->sample_period;
13041 	if (is_event_in_freq_mode(event))
13042 		hwc->sample_period = 1;
13043 	hwc->last_period = hwc->sample_period;
13044 
13045 	local64_set(&hwc->period_left, hwc->sample_period);
13046 
13047 	/*
13048 	 * We do not support PERF_SAMPLE_READ on inherited events unless
13049 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
13050 	 * collect per-thread samples.
13051 	 * See perf_output_read().
13052 	 */
13053 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
13054 		return ERR_PTR(-EINVAL);
13055 
13056 	if (!has_branch_stack(event))
13057 		event->attr.branch_sample_type = 0;
13058 
13059 	pmu = perf_init_event(event);
13060 	if (IS_ERR(pmu))
13061 		return (void*)pmu;
13062 
13063 	/*
13064 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
13065 	 * The attach should be right after the perf_init_event().
13066 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
13067 	 * perf_ctx_data because of the other errors between them.
13068 	 */
13069 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
13070 		err = attach_perf_ctx_data(event);
13071 		if (err)
13072 			return ERR_PTR(err);
13073 	}
13074 
13075 	/*
13076 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
13077 	 * events (they don't make sense as the cgroup will be different
13078 	 * on other CPUs in the uncore mask).
13079 	 */
13080 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
13081 		return ERR_PTR(-EINVAL);
13082 
13083 	if (event->attr.aux_output &&
13084 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
13085 	     event->attr.aux_pause || event->attr.aux_resume))
13086 		return ERR_PTR(-EOPNOTSUPP);
13087 
13088 	if (event->attr.aux_pause && event->attr.aux_resume)
13089 		return ERR_PTR(-EINVAL);
13090 
13091 	if (event->attr.aux_start_paused) {
13092 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
13093 			return ERR_PTR(-EOPNOTSUPP);
13094 		event->hw.aux_paused = 1;
13095 	}
13096 
13097 	if (cgroup_fd != -1) {
13098 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13099 		if (err)
13100 			return ERR_PTR(err);
13101 	}
13102 
13103 	err = exclusive_event_init(event);
13104 	if (err)
13105 		return ERR_PTR(err);
13106 
13107 	if (has_addr_filter(event)) {
13108 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13109 						    sizeof(struct perf_addr_filter_range),
13110 						    GFP_KERNEL);
13111 		if (!event->addr_filter_ranges)
13112 			return ERR_PTR(-ENOMEM);
13113 
13114 		/*
13115 		 * Clone the parent's vma offsets: they are valid until exec()
13116 		 * even if the mm is not shared with the parent.
13117 		 */
13118 		if (event->parent) {
13119 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13120 
13121 			raw_spin_lock_irq(&ifh->lock);
13122 			memcpy(event->addr_filter_ranges,
13123 			       event->parent->addr_filter_ranges,
13124 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13125 			raw_spin_unlock_irq(&ifh->lock);
13126 		}
13127 
13128 		/* force hw sync on the address filters */
13129 		event->addr_filters_gen = 1;
13130 	}
13131 
13132 	if (!event->parent) {
13133 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13134 			err = get_callchain_buffers(attr->sample_max_stack);
13135 			if (err)
13136 				return ERR_PTR(err);
13137 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
13138 		}
13139 	}
13140 
13141 	err = security_perf_event_alloc(event);
13142 	if (err)
13143 		return ERR_PTR(err);
13144 
13145 	/* symmetric to unaccount_event() in _free_event() */
13146 	account_event(event);
13147 
13148 	/*
13149 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13150 	 */
13151 	lockdep_assert_held(&pmus_srcu);
13152 	scoped_guard (spinlock, &pmu->events_lock)
13153 		list_add(&event->pmu_list, &pmu->events);
13154 
13155 	return_ptr(event);
13156 }
13157 
13158 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13159 			  struct perf_event_attr *attr)
13160 {
13161 	u32 size;
13162 	int ret;
13163 
13164 	/* Zero the full structure, so that a short copy will be nice. */
13165 	memset(attr, 0, sizeof(*attr));
13166 
13167 	ret = get_user(size, &uattr->size);
13168 	if (ret)
13169 		return ret;
13170 
13171 	/* ABI compatibility quirk: */
13172 	if (!size)
13173 		size = PERF_ATTR_SIZE_VER0;
13174 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13175 		goto err_size;
13176 
13177 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13178 	if (ret) {
13179 		if (ret == -E2BIG)
13180 			goto err_size;
13181 		return ret;
13182 	}
13183 
13184 	attr->size = size;
13185 
13186 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13187 		return -EINVAL;
13188 
13189 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13190 		return -EINVAL;
13191 
13192 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13193 		return -EINVAL;
13194 
13195 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13196 		u64 mask = attr->branch_sample_type;
13197 
13198 		/* only using defined bits */
13199 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13200 			return -EINVAL;
13201 
13202 		/* at least one branch bit must be set */
13203 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13204 			return -EINVAL;
13205 
13206 		/* propagate priv level, when not set for branch */
13207 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13208 
13209 			/* exclude_kernel checked on syscall entry */
13210 			if (!attr->exclude_kernel)
13211 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
13212 
13213 			if (!attr->exclude_user)
13214 				mask |= PERF_SAMPLE_BRANCH_USER;
13215 
13216 			if (!attr->exclude_hv)
13217 				mask |= PERF_SAMPLE_BRANCH_HV;
13218 			/*
13219 			 * adjust user setting (for HW filter setup)
13220 			 */
13221 			attr->branch_sample_type = mask;
13222 		}
13223 		/* privileged levels capture (kernel, hv): check permissions */
13224 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13225 			ret = perf_allow_kernel();
13226 			if (ret)
13227 				return ret;
13228 		}
13229 	}
13230 
13231 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13232 		ret = perf_reg_validate(attr->sample_regs_user);
13233 		if (ret)
13234 			return ret;
13235 	}
13236 
13237 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13238 		if (!arch_perf_have_user_stack_dump())
13239 			return -ENOSYS;
13240 
13241 		/*
13242 		 * We have __u32 type for the size, but so far
13243 		 * we can only use __u16 as maximum due to the
13244 		 * __u16 sample size limit.
13245 		 */
13246 		if (attr->sample_stack_user >= USHRT_MAX)
13247 			return -EINVAL;
13248 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13249 			return -EINVAL;
13250 	}
13251 
13252 	if (!attr->sample_max_stack)
13253 		attr->sample_max_stack = sysctl_perf_event_max_stack;
13254 
13255 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13256 		ret = perf_reg_validate(attr->sample_regs_intr);
13257 
13258 #ifndef CONFIG_CGROUP_PERF
13259 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
13260 		return -EINVAL;
13261 #endif
13262 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13263 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13264 		return -EINVAL;
13265 
13266 	if (!attr->inherit && attr->inherit_thread)
13267 		return -EINVAL;
13268 
13269 	if (attr->remove_on_exec && attr->enable_on_exec)
13270 		return -EINVAL;
13271 
13272 	if (attr->sigtrap && !attr->remove_on_exec)
13273 		return -EINVAL;
13274 
13275 out:
13276 	return ret;
13277 
13278 err_size:
13279 	put_user(sizeof(*attr), &uattr->size);
13280 	ret = -E2BIG;
13281 	goto out;
13282 }
13283 
13284 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13285 {
13286 	if (b < a)
13287 		swap(a, b);
13288 
13289 	mutex_lock(a);
13290 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13291 }
13292 
13293 static int
13294 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13295 {
13296 	struct perf_buffer *rb = NULL;
13297 	int ret = -EINVAL;
13298 
13299 	if (!output_event) {
13300 		mutex_lock(&event->mmap_mutex);
13301 		goto set;
13302 	}
13303 
13304 	/* don't allow circular references */
13305 	if (event == output_event)
13306 		goto out;
13307 
13308 	/*
13309 	 * Don't allow cross-cpu buffers
13310 	 */
13311 	if (output_event->cpu != event->cpu)
13312 		goto out;
13313 
13314 	/*
13315 	 * If its not a per-cpu rb, it must be the same task.
13316 	 */
13317 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13318 		goto out;
13319 
13320 	/*
13321 	 * Mixing clocks in the same buffer is trouble you don't need.
13322 	 */
13323 	if (output_event->clock != event->clock)
13324 		goto out;
13325 
13326 	/*
13327 	 * Either writing ring buffer from beginning or from end.
13328 	 * Mixing is not allowed.
13329 	 */
13330 	if (is_write_backward(output_event) != is_write_backward(event))
13331 		goto out;
13332 
13333 	/*
13334 	 * If both events generate aux data, they must be on the same PMU
13335 	 */
13336 	if (has_aux(event) && has_aux(output_event) &&
13337 	    event->pmu != output_event->pmu)
13338 		goto out;
13339 
13340 	/*
13341 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
13342 	 * output_event is already on rb->event_list, and the list iteration
13343 	 * restarts after every removal, it is guaranteed this new event is
13344 	 * observed *OR* if output_event is already removed, it's guaranteed we
13345 	 * observe !rb->mmap_count.
13346 	 */
13347 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13348 set:
13349 	/* Can't redirect output if we've got an active mmap() */
13350 	if (refcount_read(&event->mmap_count))
13351 		goto unlock;
13352 
13353 	if (output_event) {
13354 		if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13355 			goto unlock;
13356 
13357 		/* get the rb we want to redirect to */
13358 		rb = ring_buffer_get(output_event);
13359 		if (!rb)
13360 			goto unlock;
13361 
13362 		/* did we race against perf_mmap_close() */
13363 		if (!refcount_read(&rb->mmap_count)) {
13364 			ring_buffer_put(rb);
13365 			goto unlock;
13366 		}
13367 	}
13368 
13369 	ring_buffer_attach(event, rb);
13370 
13371 	ret = 0;
13372 unlock:
13373 	mutex_unlock(&event->mmap_mutex);
13374 	if (output_event)
13375 		mutex_unlock(&output_event->mmap_mutex);
13376 
13377 out:
13378 	return ret;
13379 }
13380 
13381 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13382 {
13383 	bool nmi_safe = false;
13384 
13385 	switch (clk_id) {
13386 	case CLOCK_MONOTONIC:
13387 		event->clock = &ktime_get_mono_fast_ns;
13388 		nmi_safe = true;
13389 		break;
13390 
13391 	case CLOCK_MONOTONIC_RAW:
13392 		event->clock = &ktime_get_raw_fast_ns;
13393 		nmi_safe = true;
13394 		break;
13395 
13396 	case CLOCK_REALTIME:
13397 		event->clock = &ktime_get_real_ns;
13398 		break;
13399 
13400 	case CLOCK_BOOTTIME:
13401 		event->clock = &ktime_get_boottime_ns;
13402 		break;
13403 
13404 	case CLOCK_TAI:
13405 		event->clock = &ktime_get_clocktai_ns;
13406 		break;
13407 
13408 	default:
13409 		return -EINVAL;
13410 	}
13411 
13412 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13413 		return -EINVAL;
13414 
13415 	return 0;
13416 }
13417 
13418 static bool
13419 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13420 {
13421 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13422 	bool is_capable = perfmon_capable();
13423 
13424 	if (attr->sigtrap) {
13425 		/*
13426 		 * perf_event_attr::sigtrap sends signals to the other task.
13427 		 * Require the current task to also have CAP_KILL.
13428 		 */
13429 		rcu_read_lock();
13430 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13431 		rcu_read_unlock();
13432 
13433 		/*
13434 		 * If the required capabilities aren't available, checks for
13435 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13436 		 * can effectively change the target task.
13437 		 */
13438 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13439 	}
13440 
13441 	/*
13442 	 * Preserve ptrace permission check for backwards compatibility. The
13443 	 * ptrace check also includes checks that the current task and other
13444 	 * task have matching uids, and is therefore not done here explicitly.
13445 	 */
13446 	return is_capable || ptrace_may_access(task, ptrace_mode);
13447 }
13448 
13449 /**
13450  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13451  *
13452  * @attr_uptr:	event_id type attributes for monitoring/sampling
13453  * @pid:		target pid
13454  * @cpu:		target cpu
13455  * @group_fd:		group leader event fd
13456  * @flags:		perf event open flags
13457  */
13458 SYSCALL_DEFINE5(perf_event_open,
13459 		struct perf_event_attr __user *, attr_uptr,
13460 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13461 {
13462 	struct perf_event *group_leader = NULL, *output_event = NULL;
13463 	struct perf_event_pmu_context *pmu_ctx;
13464 	struct perf_event *event, *sibling;
13465 	struct perf_event_attr attr;
13466 	struct perf_event_context *ctx;
13467 	struct file *event_file = NULL;
13468 	struct task_struct *task = NULL;
13469 	struct pmu *pmu;
13470 	int event_fd;
13471 	int move_group = 0;
13472 	int err;
13473 	int f_flags = O_RDWR;
13474 	int cgroup_fd = -1;
13475 
13476 	/* for future expandability... */
13477 	if (flags & ~PERF_FLAG_ALL)
13478 		return -EINVAL;
13479 
13480 	err = perf_copy_attr(attr_uptr, &attr);
13481 	if (err)
13482 		return err;
13483 
13484 	/* Do we allow access to perf_event_open(2) ? */
13485 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13486 	if (err)
13487 		return err;
13488 
13489 	if (!attr.exclude_kernel) {
13490 		err = perf_allow_kernel();
13491 		if (err)
13492 			return err;
13493 	}
13494 
13495 	if (attr.namespaces) {
13496 		if (!perfmon_capable())
13497 			return -EACCES;
13498 	}
13499 
13500 	if (attr.freq) {
13501 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13502 			return -EINVAL;
13503 	} else {
13504 		if (attr.sample_period & (1ULL << 63))
13505 			return -EINVAL;
13506 	}
13507 
13508 	/* Only privileged users can get physical addresses */
13509 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13510 		err = perf_allow_kernel();
13511 		if (err)
13512 			return err;
13513 	}
13514 
13515 	/* REGS_INTR can leak data, lockdown must prevent this */
13516 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13517 		err = security_locked_down(LOCKDOWN_PERF);
13518 		if (err)
13519 			return err;
13520 	}
13521 
13522 	/*
13523 	 * In cgroup mode, the pid argument is used to pass the fd
13524 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13525 	 * designates the cpu on which to monitor threads from that
13526 	 * cgroup.
13527 	 */
13528 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13529 		return -EINVAL;
13530 
13531 	if (flags & PERF_FLAG_FD_CLOEXEC)
13532 		f_flags |= O_CLOEXEC;
13533 
13534 	event_fd = get_unused_fd_flags(f_flags);
13535 	if (event_fd < 0)
13536 		return event_fd;
13537 
13538 	/*
13539 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13540 	 */
13541 	guard(srcu)(&pmus_srcu);
13542 
13543 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13544 	if (group_fd != -1) {
13545 		if (!is_perf_file(group)) {
13546 			err = -EBADF;
13547 			goto err_fd;
13548 		}
13549 		group_leader = fd_file(group)->private_data;
13550 		if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13551 			err = -ENODEV;
13552 			goto err_fd;
13553 		}
13554 		if (flags & PERF_FLAG_FD_OUTPUT)
13555 			output_event = group_leader;
13556 		if (flags & PERF_FLAG_FD_NO_GROUP)
13557 			group_leader = NULL;
13558 	}
13559 
13560 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13561 		task = find_lively_task_by_vpid(pid);
13562 		if (IS_ERR(task)) {
13563 			err = PTR_ERR(task);
13564 			goto err_fd;
13565 		}
13566 	}
13567 
13568 	if (task && group_leader &&
13569 	    group_leader->attr.inherit != attr.inherit) {
13570 		err = -EINVAL;
13571 		goto err_task;
13572 	}
13573 
13574 	if (flags & PERF_FLAG_PID_CGROUP)
13575 		cgroup_fd = pid;
13576 
13577 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13578 				 NULL, NULL, cgroup_fd);
13579 	if (IS_ERR(event)) {
13580 		err = PTR_ERR(event);
13581 		goto err_task;
13582 	}
13583 
13584 	if (is_sampling_event(event)) {
13585 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13586 			err = -EOPNOTSUPP;
13587 			goto err_alloc;
13588 		}
13589 	}
13590 
13591 	/*
13592 	 * Special case software events and allow them to be part of
13593 	 * any hardware group.
13594 	 */
13595 	pmu = event->pmu;
13596 
13597 	if (attr.use_clockid) {
13598 		err = perf_event_set_clock(event, attr.clockid);
13599 		if (err)
13600 			goto err_alloc;
13601 	}
13602 
13603 	if (pmu->task_ctx_nr == perf_sw_context)
13604 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13605 
13606 	if (task) {
13607 		err = down_read_interruptible(&task->signal->exec_update_lock);
13608 		if (err)
13609 			goto err_alloc;
13610 
13611 		/*
13612 		 * We must hold exec_update_lock across this and any potential
13613 		 * perf_install_in_context() call for this new event to
13614 		 * serialize against exec() altering our credentials (and the
13615 		 * perf_event_exit_task() that could imply).
13616 		 */
13617 		err = -EACCES;
13618 		if (!perf_check_permission(&attr, task))
13619 			goto err_cred;
13620 	}
13621 
13622 	/*
13623 	 * Get the target context (task or percpu):
13624 	 */
13625 	ctx = find_get_context(task, event);
13626 	if (IS_ERR(ctx)) {
13627 		err = PTR_ERR(ctx);
13628 		goto err_cred;
13629 	}
13630 
13631 	mutex_lock(&ctx->mutex);
13632 
13633 	if (ctx->task == TASK_TOMBSTONE) {
13634 		err = -ESRCH;
13635 		goto err_locked;
13636 	}
13637 
13638 	if (!task) {
13639 		/*
13640 		 * Check if the @cpu we're creating an event for is online.
13641 		 *
13642 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13643 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13644 		 */
13645 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13646 
13647 		if (!cpuctx->online) {
13648 			err = -ENODEV;
13649 			goto err_locked;
13650 		}
13651 	}
13652 
13653 	if (group_leader) {
13654 		err = -EINVAL;
13655 
13656 		/*
13657 		 * Do not allow a recursive hierarchy (this new sibling
13658 		 * becoming part of another group-sibling):
13659 		 */
13660 		if (group_leader->group_leader != group_leader)
13661 			goto err_locked;
13662 
13663 		/* All events in a group should have the same clock */
13664 		if (group_leader->clock != event->clock)
13665 			goto err_locked;
13666 
13667 		/*
13668 		 * Make sure we're both events for the same CPU;
13669 		 * grouping events for different CPUs is broken; since
13670 		 * you can never concurrently schedule them anyhow.
13671 		 */
13672 		if (group_leader->cpu != event->cpu)
13673 			goto err_locked;
13674 
13675 		/*
13676 		 * Make sure we're both on the same context; either task or cpu.
13677 		 */
13678 		if (group_leader->ctx != ctx)
13679 			goto err_locked;
13680 
13681 		/*
13682 		 * Only a group leader can be exclusive or pinned
13683 		 */
13684 		if (attr.exclusive || attr.pinned)
13685 			goto err_locked;
13686 
13687 		if (is_software_event(event) &&
13688 		    !in_software_context(group_leader)) {
13689 			/*
13690 			 * If the event is a sw event, but the group_leader
13691 			 * is on hw context.
13692 			 *
13693 			 * Allow the addition of software events to hw
13694 			 * groups, this is safe because software events
13695 			 * never fail to schedule.
13696 			 *
13697 			 * Note the comment that goes with struct
13698 			 * perf_event_pmu_context.
13699 			 */
13700 			pmu = group_leader->pmu_ctx->pmu;
13701 		} else if (!is_software_event(event)) {
13702 			if (is_software_event(group_leader) &&
13703 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13704 				/*
13705 				 * In case the group is a pure software group, and we
13706 				 * try to add a hardware event, move the whole group to
13707 				 * the hardware context.
13708 				 */
13709 				move_group = 1;
13710 			}
13711 
13712 			/* Don't allow group of multiple hw events from different pmus */
13713 			if (!in_software_context(group_leader) &&
13714 			    group_leader->pmu_ctx->pmu != pmu)
13715 				goto err_locked;
13716 		}
13717 	}
13718 
13719 	/*
13720 	 * Now that we're certain of the pmu; find the pmu_ctx.
13721 	 */
13722 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13723 	if (IS_ERR(pmu_ctx)) {
13724 		err = PTR_ERR(pmu_ctx);
13725 		goto err_locked;
13726 	}
13727 	event->pmu_ctx = pmu_ctx;
13728 
13729 	if (output_event) {
13730 		err = perf_event_set_output(event, output_event);
13731 		if (err)
13732 			goto err_context;
13733 	}
13734 
13735 	if (!perf_event_validate_size(event)) {
13736 		err = -E2BIG;
13737 		goto err_context;
13738 	}
13739 
13740 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13741 		err = -EINVAL;
13742 		goto err_context;
13743 	}
13744 
13745 	/*
13746 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13747 	 * because we need to serialize with concurrent event creation.
13748 	 */
13749 	if (!exclusive_event_installable(event, ctx)) {
13750 		err = -EBUSY;
13751 		goto err_context;
13752 	}
13753 
13754 	WARN_ON_ONCE(ctx->parent_ctx);
13755 
13756 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13757 	if (IS_ERR(event_file)) {
13758 		err = PTR_ERR(event_file);
13759 		event_file = NULL;
13760 		goto err_context;
13761 	}
13762 
13763 	/*
13764 	 * This is the point on no return; we cannot fail hereafter. This is
13765 	 * where we start modifying current state.
13766 	 */
13767 
13768 	if (move_group) {
13769 		perf_remove_from_context(group_leader, 0);
13770 		put_pmu_ctx(group_leader->pmu_ctx);
13771 
13772 		for_each_sibling_event(sibling, group_leader) {
13773 			perf_remove_from_context(sibling, 0);
13774 			put_pmu_ctx(sibling->pmu_ctx);
13775 		}
13776 
13777 		/*
13778 		 * Install the group siblings before the group leader.
13779 		 *
13780 		 * Because a group leader will try and install the entire group
13781 		 * (through the sibling list, which is still in-tact), we can
13782 		 * end up with siblings installed in the wrong context.
13783 		 *
13784 		 * By installing siblings first we NO-OP because they're not
13785 		 * reachable through the group lists.
13786 		 */
13787 		for_each_sibling_event(sibling, group_leader) {
13788 			sibling->pmu_ctx = pmu_ctx;
13789 			get_pmu_ctx(pmu_ctx);
13790 			perf_event__state_init(sibling);
13791 			perf_install_in_context(ctx, sibling, sibling->cpu);
13792 		}
13793 
13794 		/*
13795 		 * Removing from the context ends up with disabled
13796 		 * event. What we want here is event in the initial
13797 		 * startup state, ready to be add into new context.
13798 		 */
13799 		group_leader->pmu_ctx = pmu_ctx;
13800 		get_pmu_ctx(pmu_ctx);
13801 		perf_event__state_init(group_leader);
13802 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13803 	}
13804 
13805 	/*
13806 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13807 	 * that we're serialized against further additions and before
13808 	 * perf_install_in_context() which is the point the event is active and
13809 	 * can use these values.
13810 	 */
13811 	perf_event__header_size(event);
13812 	perf_event__id_header_size(event);
13813 
13814 	event->owner = current;
13815 
13816 	perf_install_in_context(ctx, event, event->cpu);
13817 	perf_unpin_context(ctx);
13818 
13819 	mutex_unlock(&ctx->mutex);
13820 
13821 	if (task) {
13822 		up_read(&task->signal->exec_update_lock);
13823 		put_task_struct(task);
13824 	}
13825 
13826 	mutex_lock(&current->perf_event_mutex);
13827 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13828 	mutex_unlock(&current->perf_event_mutex);
13829 
13830 	/*
13831 	 * File reference in group guarantees that group_leader has been
13832 	 * kept alive until we place the new event on the sibling_list.
13833 	 * This ensures destruction of the group leader will find
13834 	 * the pointer to itself in perf_group_detach().
13835 	 */
13836 	fd_install(event_fd, event_file);
13837 	return event_fd;
13838 
13839 err_context:
13840 	put_pmu_ctx(event->pmu_ctx);
13841 	event->pmu_ctx = NULL; /* _free_event() */
13842 err_locked:
13843 	mutex_unlock(&ctx->mutex);
13844 	perf_unpin_context(ctx);
13845 	put_ctx(ctx);
13846 err_cred:
13847 	if (task)
13848 		up_read(&task->signal->exec_update_lock);
13849 err_alloc:
13850 	put_event(event);
13851 err_task:
13852 	if (task)
13853 		put_task_struct(task);
13854 err_fd:
13855 	put_unused_fd(event_fd);
13856 	return err;
13857 }
13858 
13859 /**
13860  * perf_event_create_kernel_counter
13861  *
13862  * @attr: attributes of the counter to create
13863  * @cpu: cpu in which the counter is bound
13864  * @task: task to profile (NULL for percpu)
13865  * @overflow_handler: callback to trigger when we hit the event
13866  * @context: context data could be used in overflow_handler callback
13867  */
13868 struct perf_event *
13869 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13870 				 struct task_struct *task,
13871 				 perf_overflow_handler_t overflow_handler,
13872 				 void *context)
13873 {
13874 	struct perf_event_pmu_context *pmu_ctx;
13875 	struct perf_event_context *ctx;
13876 	struct perf_event *event;
13877 	struct pmu *pmu;
13878 	int err;
13879 
13880 	/*
13881 	 * Grouping is not supported for kernel events, neither is 'AUX',
13882 	 * make sure the caller's intentions are adjusted.
13883 	 */
13884 	if (attr->aux_output || attr->aux_action)
13885 		return ERR_PTR(-EINVAL);
13886 
13887 	/*
13888 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13889 	 */
13890 	guard(srcu)(&pmus_srcu);
13891 
13892 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13893 				 overflow_handler, context, -1);
13894 	if (IS_ERR(event)) {
13895 		err = PTR_ERR(event);
13896 		goto err;
13897 	}
13898 
13899 	/* Mark owner so we could distinguish it from user events. */
13900 	event->owner = TASK_TOMBSTONE;
13901 	pmu = event->pmu;
13902 
13903 	if (pmu->task_ctx_nr == perf_sw_context)
13904 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13905 
13906 	/*
13907 	 * Get the target context (task or percpu):
13908 	 */
13909 	ctx = find_get_context(task, event);
13910 	if (IS_ERR(ctx)) {
13911 		err = PTR_ERR(ctx);
13912 		goto err_alloc;
13913 	}
13914 
13915 	WARN_ON_ONCE(ctx->parent_ctx);
13916 	mutex_lock(&ctx->mutex);
13917 	if (ctx->task == TASK_TOMBSTONE) {
13918 		err = -ESRCH;
13919 		goto err_unlock;
13920 	}
13921 
13922 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13923 	if (IS_ERR(pmu_ctx)) {
13924 		err = PTR_ERR(pmu_ctx);
13925 		goto err_unlock;
13926 	}
13927 	event->pmu_ctx = pmu_ctx;
13928 
13929 	if (!task) {
13930 		/*
13931 		 * Check if the @cpu we're creating an event for is online.
13932 		 *
13933 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13934 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13935 		 */
13936 		struct perf_cpu_context *cpuctx =
13937 			container_of(ctx, struct perf_cpu_context, ctx);
13938 		if (!cpuctx->online) {
13939 			err = -ENODEV;
13940 			goto err_pmu_ctx;
13941 		}
13942 	}
13943 
13944 	if (!exclusive_event_installable(event, ctx)) {
13945 		err = -EBUSY;
13946 		goto err_pmu_ctx;
13947 	}
13948 
13949 	perf_install_in_context(ctx, event, event->cpu);
13950 	perf_unpin_context(ctx);
13951 	mutex_unlock(&ctx->mutex);
13952 
13953 	return event;
13954 
13955 err_pmu_ctx:
13956 	put_pmu_ctx(pmu_ctx);
13957 	event->pmu_ctx = NULL; /* _free_event() */
13958 err_unlock:
13959 	mutex_unlock(&ctx->mutex);
13960 	perf_unpin_context(ctx);
13961 	put_ctx(ctx);
13962 err_alloc:
13963 	put_event(event);
13964 err:
13965 	return ERR_PTR(err);
13966 }
13967 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13968 
13969 static void __perf_pmu_remove(struct perf_event_context *ctx,
13970 			      int cpu, struct pmu *pmu,
13971 			      struct perf_event_groups *groups,
13972 			      struct list_head *events)
13973 {
13974 	struct perf_event *event, *sibling;
13975 
13976 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13977 		perf_remove_from_context(event, 0);
13978 		put_pmu_ctx(event->pmu_ctx);
13979 		list_add(&event->migrate_entry, events);
13980 
13981 		for_each_sibling_event(sibling, event) {
13982 			perf_remove_from_context(sibling, 0);
13983 			put_pmu_ctx(sibling->pmu_ctx);
13984 			list_add(&sibling->migrate_entry, events);
13985 		}
13986 	}
13987 }
13988 
13989 static void __perf_pmu_install_event(struct pmu *pmu,
13990 				     struct perf_event_context *ctx,
13991 				     int cpu, struct perf_event *event)
13992 {
13993 	struct perf_event_pmu_context *epc;
13994 	struct perf_event_context *old_ctx = event->ctx;
13995 
13996 	get_ctx(ctx); /* normally find_get_context() */
13997 
13998 	event->cpu = cpu;
13999 	epc = find_get_pmu_context(pmu, ctx, event);
14000 	event->pmu_ctx = epc;
14001 
14002 	if (event->state >= PERF_EVENT_STATE_OFF)
14003 		event->state = PERF_EVENT_STATE_INACTIVE;
14004 	perf_install_in_context(ctx, event, cpu);
14005 
14006 	/*
14007 	 * Now that event->ctx is updated and visible, put the old ctx.
14008 	 */
14009 	put_ctx(old_ctx);
14010 }
14011 
14012 static void __perf_pmu_install(struct perf_event_context *ctx,
14013 			       int cpu, struct pmu *pmu, struct list_head *events)
14014 {
14015 	struct perf_event *event, *tmp;
14016 
14017 	/*
14018 	 * Re-instate events in 2 passes.
14019 	 *
14020 	 * Skip over group leaders and only install siblings on this first
14021 	 * pass, siblings will not get enabled without a leader, however a
14022 	 * leader will enable its siblings, even if those are still on the old
14023 	 * context.
14024 	 */
14025 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14026 		if (event->group_leader == event)
14027 			continue;
14028 
14029 		list_del(&event->migrate_entry);
14030 		__perf_pmu_install_event(pmu, ctx, cpu, event);
14031 	}
14032 
14033 	/*
14034 	 * Once all the siblings are setup properly, install the group leaders
14035 	 * to make it go.
14036 	 */
14037 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14038 		list_del(&event->migrate_entry);
14039 		__perf_pmu_install_event(pmu, ctx, cpu, event);
14040 	}
14041 }
14042 
14043 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
14044 {
14045 	struct perf_event_context *src_ctx, *dst_ctx;
14046 	LIST_HEAD(events);
14047 
14048 	/*
14049 	 * Since per-cpu context is persistent, no need to grab an extra
14050 	 * reference.
14051 	 */
14052 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
14053 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
14054 
14055 	/*
14056 	 * See perf_event_ctx_lock() for comments on the details
14057 	 * of swizzling perf_event::ctx.
14058 	 */
14059 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
14060 
14061 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
14062 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
14063 
14064 	if (!list_empty(&events)) {
14065 		/*
14066 		 * Wait for the events to quiesce before re-instating them.
14067 		 */
14068 		synchronize_rcu();
14069 
14070 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
14071 	}
14072 
14073 	mutex_unlock(&dst_ctx->mutex);
14074 	mutex_unlock(&src_ctx->mutex);
14075 }
14076 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
14077 
14078 static void sync_child_event(struct perf_event *child_event)
14079 {
14080 	struct perf_event *parent_event = child_event->parent;
14081 	u64 child_val;
14082 
14083 	if (child_event->attr.inherit_stat) {
14084 		struct task_struct *task = child_event->ctx->task;
14085 
14086 		if (task && task != TASK_TOMBSTONE)
14087 			perf_event_read_event(child_event, task);
14088 	}
14089 
14090 	child_val = perf_event_count(child_event, false);
14091 
14092 	/*
14093 	 * Add back the child's count to the parent's count:
14094 	 */
14095 	atomic64_add(child_val, &parent_event->child_count);
14096 	atomic64_add(child_event->total_time_enabled,
14097 		     &parent_event->child_total_time_enabled);
14098 	atomic64_add(child_event->total_time_running,
14099 		     &parent_event->child_total_time_running);
14100 }
14101 
14102 static void
14103 perf_event_exit_event(struct perf_event *event,
14104 		      struct perf_event_context *ctx, bool revoke)
14105 {
14106 	struct perf_event *parent_event = event->parent;
14107 	unsigned long detach_flags = DETACH_EXIT;
14108 	unsigned int attach_state;
14109 
14110 	if (parent_event) {
14111 		/*
14112 		 * Do not destroy the 'original' grouping; because of the
14113 		 * context switch optimization the original events could've
14114 		 * ended up in a random child task.
14115 		 *
14116 		 * If we were to destroy the original group, all group related
14117 		 * operations would cease to function properly after this
14118 		 * random child dies.
14119 		 *
14120 		 * Do destroy all inherited groups, we don't care about those
14121 		 * and being thorough is better.
14122 		 */
14123 		detach_flags |= DETACH_GROUP | DETACH_CHILD;
14124 		mutex_lock(&parent_event->child_mutex);
14125 		/* PERF_ATTACH_ITRACE might be set concurrently */
14126 		attach_state = READ_ONCE(event->attach_state);
14127 	}
14128 
14129 	if (revoke)
14130 		detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14131 
14132 	perf_remove_from_context(event, detach_flags);
14133 	/*
14134 	 * Child events can be freed.
14135 	 */
14136 	if (parent_event) {
14137 		mutex_unlock(&parent_event->child_mutex);
14138 
14139 		/*
14140 		 * Match the refcount initialization. Make sure it doesn't happen
14141 		 * twice if pmu_detach_event() calls it on an already exited task.
14142 		 */
14143 		if (attach_state & PERF_ATTACH_CHILD) {
14144 			/*
14145 			 * Kick perf_poll() for is_event_hup();
14146 			 */
14147 			perf_event_wakeup(parent_event);
14148 			/*
14149 			 * pmu_detach_event() will have an extra refcount.
14150 			 * perf_pending_task() might have one too.
14151 			 */
14152 			put_event(event);
14153 		}
14154 
14155 		return;
14156 	}
14157 
14158 	/*
14159 	 * Parent events are governed by their filedesc, retain them.
14160 	 */
14161 	perf_event_wakeup(event);
14162 }
14163 
14164 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14165 {
14166 	struct perf_event_context *ctx, *clone_ctx = NULL;
14167 	struct perf_event *child_event, *next;
14168 
14169 	ctx = perf_pin_task_context(task);
14170 	if (!ctx)
14171 		return;
14172 
14173 	/*
14174 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
14175 	 * ctx::mutex over the entire thing. This serializes against almost
14176 	 * everything that wants to access the ctx.
14177 	 *
14178 	 * The exception is sys_perf_event_open() /
14179 	 * perf_event_create_kernel_count() which does find_get_context()
14180 	 * without ctx::mutex (it cannot because of the move_group double mutex
14181 	 * lock thing). See the comments in perf_install_in_context().
14182 	 */
14183 	mutex_lock(&ctx->mutex);
14184 
14185 	/*
14186 	 * In a single ctx::lock section, de-schedule the events and detach the
14187 	 * context from the task such that we cannot ever get it scheduled back
14188 	 * in.
14189 	 */
14190 	raw_spin_lock_irq(&ctx->lock);
14191 	if (exit)
14192 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14193 
14194 	/*
14195 	 * Now that the context is inactive, destroy the task <-> ctx relation
14196 	 * and mark the context dead.
14197 	 */
14198 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14199 	put_ctx(ctx); /* cannot be last */
14200 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14201 	put_task_struct(task); /* cannot be last */
14202 
14203 	clone_ctx = unclone_ctx(ctx);
14204 	raw_spin_unlock_irq(&ctx->lock);
14205 
14206 	if (clone_ctx)
14207 		put_ctx(clone_ctx);
14208 
14209 	/*
14210 	 * Report the task dead after unscheduling the events so that we
14211 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
14212 	 * get a few PERF_RECORD_READ events.
14213 	 */
14214 	if (exit)
14215 		perf_event_task(task, ctx, 0);
14216 
14217 	list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14218 		perf_event_exit_event(child_event, ctx, false);
14219 
14220 	mutex_unlock(&ctx->mutex);
14221 
14222 	if (!exit) {
14223 		/*
14224 		 * perf_event_release_kernel() could still have a reference on
14225 		 * this context. In that case we must wait for these events to
14226 		 * have been freed (in particular all their references to this
14227 		 * task must've been dropped).
14228 		 *
14229 		 * Without this copy_process() will unconditionally free this
14230 		 * task (irrespective of its reference count) and
14231 		 * _free_event()'s put_task_struct(event->hw.target) will be a
14232 		 * use-after-free.
14233 		 *
14234 		 * Wait for all events to drop their context reference.
14235 		 */
14236 		wait_var_event(&ctx->refcount,
14237 			       refcount_read(&ctx->refcount) == 1);
14238 	}
14239 	put_ctx(ctx);
14240 }
14241 
14242 /*
14243  * When a task exits, feed back event values to parent events.
14244  *
14245  * Can be called with exec_update_lock held when called from
14246  * setup_new_exec().
14247  */
14248 void perf_event_exit_task(struct task_struct *task)
14249 {
14250 	struct perf_event *event, *tmp;
14251 
14252 	WARN_ON_ONCE(task != current);
14253 
14254 	mutex_lock(&task->perf_event_mutex);
14255 	list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14256 				 owner_entry) {
14257 		list_del_init(&event->owner_entry);
14258 
14259 		/*
14260 		 * Ensure the list deletion is visible before we clear
14261 		 * the owner, closes a race against perf_release() where
14262 		 * we need to serialize on the owner->perf_event_mutex.
14263 		 */
14264 		smp_store_release(&event->owner, NULL);
14265 	}
14266 	mutex_unlock(&task->perf_event_mutex);
14267 
14268 	perf_event_exit_task_context(task, true);
14269 
14270 	/*
14271 	 * The perf_event_exit_task_context calls perf_event_task
14272 	 * with task's task_ctx, which generates EXIT events for
14273 	 * task contexts and sets task->perf_event_ctxp[] to NULL.
14274 	 * At this point we need to send EXIT events to cpu contexts.
14275 	 */
14276 	perf_event_task(task, NULL, 0);
14277 
14278 	/*
14279 	 * Detach the perf_ctx_data for the system-wide event.
14280 	 */
14281 	guard(percpu_read)(&global_ctx_data_rwsem);
14282 	detach_task_ctx_data(task);
14283 }
14284 
14285 /*
14286  * Free a context as created by inheritance by perf_event_init_task() below,
14287  * used by fork() in case of fail.
14288  *
14289  * Even though the task has never lived, the context and events have been
14290  * exposed through the child_list, so we must take care tearing it all down.
14291  */
14292 void perf_event_free_task(struct task_struct *task)
14293 {
14294 	perf_event_exit_task_context(task, false);
14295 }
14296 
14297 void perf_event_delayed_put(struct task_struct *task)
14298 {
14299 	WARN_ON_ONCE(task->perf_event_ctxp);
14300 }
14301 
14302 struct file *perf_event_get(unsigned int fd)
14303 {
14304 	struct file *file = fget(fd);
14305 	if (!file)
14306 		return ERR_PTR(-EBADF);
14307 
14308 	if (file->f_op != &perf_fops) {
14309 		fput(file);
14310 		return ERR_PTR(-EBADF);
14311 	}
14312 
14313 	return file;
14314 }
14315 
14316 const struct perf_event *perf_get_event(struct file *file)
14317 {
14318 	if (file->f_op != &perf_fops)
14319 		return ERR_PTR(-EINVAL);
14320 
14321 	return file->private_data;
14322 }
14323 
14324 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14325 {
14326 	if (!event)
14327 		return ERR_PTR(-EINVAL);
14328 
14329 	return &event->attr;
14330 }
14331 
14332 int perf_allow_kernel(void)
14333 {
14334 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14335 		return -EACCES;
14336 
14337 	return security_perf_event_open(PERF_SECURITY_KERNEL);
14338 }
14339 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14340 
14341 /*
14342  * Inherit an event from parent task to child task.
14343  *
14344  * Returns:
14345  *  - valid pointer on success
14346  *  - NULL for orphaned events
14347  *  - IS_ERR() on error
14348  */
14349 static struct perf_event *
14350 inherit_event(struct perf_event *parent_event,
14351 	      struct task_struct *parent,
14352 	      struct perf_event_context *parent_ctx,
14353 	      struct task_struct *child,
14354 	      struct perf_event *group_leader,
14355 	      struct perf_event_context *child_ctx)
14356 {
14357 	enum perf_event_state parent_state = parent_event->state;
14358 	struct perf_event_pmu_context *pmu_ctx;
14359 	struct perf_event *child_event;
14360 	unsigned long flags;
14361 
14362 	/*
14363 	 * Instead of creating recursive hierarchies of events,
14364 	 * we link inherited events back to the original parent,
14365 	 * which has a filp for sure, which we use as the reference
14366 	 * count:
14367 	 */
14368 	if (parent_event->parent)
14369 		parent_event = parent_event->parent;
14370 
14371 	if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14372 		return NULL;
14373 
14374 	/*
14375 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14376 	 */
14377 	guard(srcu)(&pmus_srcu);
14378 
14379 	child_event = perf_event_alloc(&parent_event->attr,
14380 					   parent_event->cpu,
14381 					   child,
14382 					   group_leader, parent_event,
14383 					   NULL, NULL, -1);
14384 	if (IS_ERR(child_event))
14385 		return child_event;
14386 
14387 	get_ctx(child_ctx);
14388 	child_event->ctx = child_ctx;
14389 
14390 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14391 	if (IS_ERR(pmu_ctx)) {
14392 		free_event(child_event);
14393 		return ERR_CAST(pmu_ctx);
14394 	}
14395 	child_event->pmu_ctx = pmu_ctx;
14396 
14397 	/*
14398 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14399 	 * must be under the same lock in order to serialize against
14400 	 * perf_event_release_kernel(), such that either we must observe
14401 	 * is_orphaned_event() or they will observe us on the child_list.
14402 	 */
14403 	mutex_lock(&parent_event->child_mutex);
14404 	if (is_orphaned_event(parent_event) ||
14405 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14406 		mutex_unlock(&parent_event->child_mutex);
14407 		free_event(child_event);
14408 		return NULL;
14409 	}
14410 
14411 	/*
14412 	 * Make the child state follow the state of the parent event,
14413 	 * not its attr.disabled bit.  We hold the parent's mutex,
14414 	 * so we won't race with perf_event_{en, dis}able_family.
14415 	 */
14416 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14417 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14418 	else
14419 		child_event->state = PERF_EVENT_STATE_OFF;
14420 
14421 	if (parent_event->attr.freq) {
14422 		u64 sample_period = parent_event->hw.sample_period;
14423 		struct hw_perf_event *hwc = &child_event->hw;
14424 
14425 		hwc->sample_period = sample_period;
14426 		hwc->last_period   = sample_period;
14427 
14428 		local64_set(&hwc->period_left, sample_period);
14429 	}
14430 
14431 	child_event->overflow_handler = parent_event->overflow_handler;
14432 	child_event->overflow_handler_context
14433 		= parent_event->overflow_handler_context;
14434 
14435 	/*
14436 	 * Precalculate sample_data sizes
14437 	 */
14438 	perf_event__header_size(child_event);
14439 	perf_event__id_header_size(child_event);
14440 
14441 	/*
14442 	 * Link it up in the child's context:
14443 	 */
14444 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14445 	add_event_to_ctx(child_event, child_ctx);
14446 	child_event->attach_state |= PERF_ATTACH_CHILD;
14447 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14448 
14449 	/*
14450 	 * Link this into the parent event's child list
14451 	 */
14452 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14453 	mutex_unlock(&parent_event->child_mutex);
14454 
14455 	return child_event;
14456 }
14457 
14458 /*
14459  * Inherits an event group.
14460  *
14461  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14462  * This matches with perf_event_release_kernel() removing all child events.
14463  *
14464  * Returns:
14465  *  - 0 on success
14466  *  - <0 on error
14467  */
14468 static int inherit_group(struct perf_event *parent_event,
14469 	      struct task_struct *parent,
14470 	      struct perf_event_context *parent_ctx,
14471 	      struct task_struct *child,
14472 	      struct perf_event_context *child_ctx)
14473 {
14474 	struct perf_event *leader;
14475 	struct perf_event *sub;
14476 	struct perf_event *child_ctr;
14477 
14478 	leader = inherit_event(parent_event, parent, parent_ctx,
14479 				 child, NULL, child_ctx);
14480 	if (IS_ERR(leader))
14481 		return PTR_ERR(leader);
14482 	/*
14483 	 * @leader can be NULL here because of is_orphaned_event(). In this
14484 	 * case inherit_event() will create individual events, similar to what
14485 	 * perf_group_detach() would do anyway.
14486 	 */
14487 	for_each_sibling_event(sub, parent_event) {
14488 		child_ctr = inherit_event(sub, parent, parent_ctx,
14489 					    child, leader, child_ctx);
14490 		if (IS_ERR(child_ctr))
14491 			return PTR_ERR(child_ctr);
14492 
14493 		if (sub->aux_event == parent_event && child_ctr &&
14494 		    !perf_get_aux_event(child_ctr, leader))
14495 			return -EINVAL;
14496 	}
14497 	if (leader)
14498 		leader->group_generation = parent_event->group_generation;
14499 	return 0;
14500 }
14501 
14502 /*
14503  * Creates the child task context and tries to inherit the event-group.
14504  *
14505  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14506  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14507  * consistent with perf_event_release_kernel() removing all child events.
14508  *
14509  * Returns:
14510  *  - 0 on success
14511  *  - <0 on error
14512  */
14513 static int
14514 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14515 		   struct perf_event_context *parent_ctx,
14516 		   struct task_struct *child,
14517 		   u64 clone_flags, int *inherited_all)
14518 {
14519 	struct perf_event_context *child_ctx;
14520 	int ret;
14521 
14522 	if (!event->attr.inherit ||
14523 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14524 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14525 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14526 		*inherited_all = 0;
14527 		return 0;
14528 	}
14529 
14530 	child_ctx = child->perf_event_ctxp;
14531 	if (!child_ctx) {
14532 		/*
14533 		 * This is executed from the parent task context, so
14534 		 * inherit events that have been marked for cloning.
14535 		 * First allocate and initialize a context for the
14536 		 * child.
14537 		 */
14538 		child_ctx = alloc_perf_context(child);
14539 		if (!child_ctx)
14540 			return -ENOMEM;
14541 
14542 		child->perf_event_ctxp = child_ctx;
14543 	}
14544 
14545 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14546 	if (ret)
14547 		*inherited_all = 0;
14548 
14549 	return ret;
14550 }
14551 
14552 /*
14553  * Initialize the perf_event context in task_struct
14554  */
14555 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14556 {
14557 	struct perf_event_context *child_ctx, *parent_ctx;
14558 	struct perf_event_context *cloned_ctx;
14559 	struct perf_event *event;
14560 	struct task_struct *parent = current;
14561 	int inherited_all = 1;
14562 	unsigned long flags;
14563 	int ret = 0;
14564 
14565 	if (likely(!parent->perf_event_ctxp))
14566 		return 0;
14567 
14568 	/*
14569 	 * If the parent's context is a clone, pin it so it won't get
14570 	 * swapped under us.
14571 	 */
14572 	parent_ctx = perf_pin_task_context(parent);
14573 	if (!parent_ctx)
14574 		return 0;
14575 
14576 	/*
14577 	 * No need to check if parent_ctx != NULL here; since we saw
14578 	 * it non-NULL earlier, the only reason for it to become NULL
14579 	 * is if we exit, and since we're currently in the middle of
14580 	 * a fork we can't be exiting at the same time.
14581 	 */
14582 
14583 	/*
14584 	 * Lock the parent list. No need to lock the child - not PID
14585 	 * hashed yet and not running, so nobody can access it.
14586 	 */
14587 	mutex_lock(&parent_ctx->mutex);
14588 
14589 	/*
14590 	 * We dont have to disable NMIs - we are only looking at
14591 	 * the list, not manipulating it:
14592 	 */
14593 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14594 		ret = inherit_task_group(event, parent, parent_ctx,
14595 					 child, clone_flags, &inherited_all);
14596 		if (ret)
14597 			goto out_unlock;
14598 	}
14599 
14600 	/*
14601 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14602 	 * to allocations, but we need to prevent rotation because
14603 	 * rotate_ctx() will change the list from interrupt context.
14604 	 */
14605 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14606 	parent_ctx->rotate_disable = 1;
14607 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14608 
14609 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14610 		ret = inherit_task_group(event, parent, parent_ctx,
14611 					 child, clone_flags, &inherited_all);
14612 		if (ret)
14613 			goto out_unlock;
14614 	}
14615 
14616 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14617 	parent_ctx->rotate_disable = 0;
14618 
14619 	child_ctx = child->perf_event_ctxp;
14620 
14621 	if (child_ctx && inherited_all) {
14622 		/*
14623 		 * Mark the child context as a clone of the parent
14624 		 * context, or of whatever the parent is a clone of.
14625 		 *
14626 		 * Note that if the parent is a clone, the holding of
14627 		 * parent_ctx->lock avoids it from being uncloned.
14628 		 */
14629 		cloned_ctx = parent_ctx->parent_ctx;
14630 		if (cloned_ctx) {
14631 			child_ctx->parent_ctx = cloned_ctx;
14632 			child_ctx->parent_gen = parent_ctx->parent_gen;
14633 		} else {
14634 			child_ctx->parent_ctx = parent_ctx;
14635 			child_ctx->parent_gen = parent_ctx->generation;
14636 		}
14637 		get_ctx(child_ctx->parent_ctx);
14638 	}
14639 
14640 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14641 out_unlock:
14642 	mutex_unlock(&parent_ctx->mutex);
14643 
14644 	perf_unpin_context(parent_ctx);
14645 	put_ctx(parent_ctx);
14646 
14647 	return ret;
14648 }
14649 
14650 /*
14651  * Initialize the perf_event context in task_struct
14652  */
14653 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14654 {
14655 	int ret;
14656 
14657 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14658 	child->perf_event_ctxp = NULL;
14659 	mutex_init(&child->perf_event_mutex);
14660 	INIT_LIST_HEAD(&child->perf_event_list);
14661 	child->perf_ctx_data = NULL;
14662 
14663 	ret = perf_event_init_context(child, clone_flags);
14664 	if (ret) {
14665 		perf_event_free_task(child);
14666 		return ret;
14667 	}
14668 
14669 	return 0;
14670 }
14671 
14672 static void __init perf_event_init_all_cpus(void)
14673 {
14674 	struct swevent_htable *swhash;
14675 	struct perf_cpu_context *cpuctx;
14676 	int cpu;
14677 
14678 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14679 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14680 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14681 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14682 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14683 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14684 
14685 
14686 	for_each_possible_cpu(cpu) {
14687 		swhash = &per_cpu(swevent_htable, cpu);
14688 		mutex_init(&swhash->hlist_mutex);
14689 
14690 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14691 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14692 
14693 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14694 
14695 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14696 		__perf_event_init_context(&cpuctx->ctx);
14697 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14698 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14699 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14700 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14701 		cpuctx->heap = cpuctx->heap_default;
14702 	}
14703 }
14704 
14705 static void perf_swevent_init_cpu(unsigned int cpu)
14706 {
14707 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14708 
14709 	mutex_lock(&swhash->hlist_mutex);
14710 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14711 		struct swevent_hlist *hlist;
14712 
14713 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14714 		WARN_ON(!hlist);
14715 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14716 	}
14717 	mutex_unlock(&swhash->hlist_mutex);
14718 }
14719 
14720 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
14721 static void __perf_event_exit_context(void *__info)
14722 {
14723 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14724 	struct perf_event_context *ctx = __info;
14725 	struct perf_event *event;
14726 
14727 	raw_spin_lock(&ctx->lock);
14728 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14729 	list_for_each_entry(event, &ctx->event_list, event_entry)
14730 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14731 	raw_spin_unlock(&ctx->lock);
14732 }
14733 
14734 static void perf_event_clear_cpumask(unsigned int cpu)
14735 {
14736 	int target[PERF_PMU_MAX_SCOPE];
14737 	unsigned int scope;
14738 	struct pmu *pmu;
14739 
14740 	cpumask_clear_cpu(cpu, perf_online_mask);
14741 
14742 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14743 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14744 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14745 
14746 		target[scope] = -1;
14747 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14748 			continue;
14749 
14750 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14751 			continue;
14752 		target[scope] = cpumask_any_but(cpumask, cpu);
14753 		if (target[scope] < nr_cpu_ids)
14754 			cpumask_set_cpu(target[scope], pmu_cpumask);
14755 	}
14756 
14757 	/* migrate */
14758 	list_for_each_entry(pmu, &pmus, entry) {
14759 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14760 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14761 			continue;
14762 
14763 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14764 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14765 	}
14766 }
14767 
14768 static void perf_event_exit_cpu_context(int cpu)
14769 {
14770 	struct perf_cpu_context *cpuctx;
14771 	struct perf_event_context *ctx;
14772 
14773 	// XXX simplify cpuctx->online
14774 	mutex_lock(&pmus_lock);
14775 	/*
14776 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14777 	 * Must be invoked before the __perf_event_exit_context.
14778 	 */
14779 	perf_event_clear_cpumask(cpu);
14780 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14781 	ctx = &cpuctx->ctx;
14782 
14783 	mutex_lock(&ctx->mutex);
14784 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14785 	cpuctx->online = 0;
14786 	mutex_unlock(&ctx->mutex);
14787 	mutex_unlock(&pmus_lock);
14788 }
14789 #else
14790 
14791 static void perf_event_exit_cpu_context(int cpu) { }
14792 
14793 #endif
14794 
14795 static void perf_event_setup_cpumask(unsigned int cpu)
14796 {
14797 	struct cpumask *pmu_cpumask;
14798 	unsigned int scope;
14799 
14800 	/*
14801 	 * Early boot stage, the cpumask hasn't been set yet.
14802 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14803 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14804 	 */
14805 	if (cpumask_empty(perf_online_mask)) {
14806 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14807 			pmu_cpumask = perf_scope_cpumask(scope);
14808 			if (WARN_ON_ONCE(!pmu_cpumask))
14809 				continue;
14810 			cpumask_set_cpu(cpu, pmu_cpumask);
14811 		}
14812 		goto end;
14813 	}
14814 
14815 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14816 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14817 
14818 		pmu_cpumask = perf_scope_cpumask(scope);
14819 
14820 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14821 			continue;
14822 
14823 		if (!cpumask_empty(cpumask) &&
14824 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14825 			cpumask_set_cpu(cpu, pmu_cpumask);
14826 	}
14827 end:
14828 	cpumask_set_cpu(cpu, perf_online_mask);
14829 }
14830 
14831 int perf_event_init_cpu(unsigned int cpu)
14832 {
14833 	struct perf_cpu_context *cpuctx;
14834 	struct perf_event_context *ctx;
14835 
14836 	perf_swevent_init_cpu(cpu);
14837 
14838 	mutex_lock(&pmus_lock);
14839 	perf_event_setup_cpumask(cpu);
14840 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14841 	ctx = &cpuctx->ctx;
14842 
14843 	mutex_lock(&ctx->mutex);
14844 	cpuctx->online = 1;
14845 	mutex_unlock(&ctx->mutex);
14846 	mutex_unlock(&pmus_lock);
14847 
14848 	return 0;
14849 }
14850 
14851 int perf_event_exit_cpu(unsigned int cpu)
14852 {
14853 	perf_event_exit_cpu_context(cpu);
14854 	return 0;
14855 }
14856 
14857 static int
14858 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14859 {
14860 	int cpu;
14861 
14862 	for_each_online_cpu(cpu)
14863 		perf_event_exit_cpu(cpu);
14864 
14865 	return NOTIFY_OK;
14866 }
14867 
14868 /*
14869  * Run the perf reboot notifier at the very last possible moment so that
14870  * the generic watchdog code runs as long as possible.
14871  */
14872 static struct notifier_block perf_reboot_notifier = {
14873 	.notifier_call = perf_reboot,
14874 	.priority = INT_MIN,
14875 };
14876 
14877 void __init perf_event_init(void)
14878 {
14879 	int ret;
14880 
14881 	idr_init(&pmu_idr);
14882 
14883 	unwind_deferred_init(&perf_unwind_work,
14884 			     perf_unwind_deferred_callback);
14885 
14886 	perf_event_init_all_cpus();
14887 	init_srcu_struct(&pmus_srcu);
14888 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14889 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14890 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14891 	perf_tp_register();
14892 	perf_event_init_cpu(smp_processor_id());
14893 	register_reboot_notifier(&perf_reboot_notifier);
14894 
14895 	ret = init_hw_breakpoint();
14896 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14897 
14898 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14899 
14900 	/*
14901 	 * Build time assertion that we keep the data_head at the intended
14902 	 * location.  IOW, validation we got the __reserved[] size right.
14903 	 */
14904 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14905 		     != 1024);
14906 }
14907 
14908 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14909 			      char *page)
14910 {
14911 	struct perf_pmu_events_attr *pmu_attr =
14912 		container_of(attr, struct perf_pmu_events_attr, attr);
14913 
14914 	if (pmu_attr->event_str)
14915 		return sprintf(page, "%s\n", pmu_attr->event_str);
14916 
14917 	return 0;
14918 }
14919 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14920 
14921 static int __init perf_event_sysfs_init(void)
14922 {
14923 	struct pmu *pmu;
14924 	int ret;
14925 
14926 	mutex_lock(&pmus_lock);
14927 
14928 	ret = bus_register(&pmu_bus);
14929 	if (ret)
14930 		goto unlock;
14931 
14932 	list_for_each_entry(pmu, &pmus, entry) {
14933 		if (pmu->dev)
14934 			continue;
14935 
14936 		ret = pmu_dev_alloc(pmu);
14937 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14938 	}
14939 	pmu_bus_running = 1;
14940 	ret = 0;
14941 
14942 unlock:
14943 	mutex_unlock(&pmus_lock);
14944 
14945 	return ret;
14946 }
14947 device_initcall(perf_event_sysfs_init);
14948 
14949 #ifdef CONFIG_CGROUP_PERF
14950 static struct cgroup_subsys_state *
14951 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14952 {
14953 	struct perf_cgroup *jc;
14954 
14955 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14956 	if (!jc)
14957 		return ERR_PTR(-ENOMEM);
14958 
14959 	jc->info = alloc_percpu(struct perf_cgroup_info);
14960 	if (!jc->info) {
14961 		kfree(jc);
14962 		return ERR_PTR(-ENOMEM);
14963 	}
14964 
14965 	return &jc->css;
14966 }
14967 
14968 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14969 {
14970 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14971 
14972 	free_percpu(jc->info);
14973 	kfree(jc);
14974 }
14975 
14976 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14977 {
14978 	perf_event_cgroup(css->cgroup);
14979 	return 0;
14980 }
14981 
14982 static int __perf_cgroup_move(void *info)
14983 {
14984 	struct task_struct *task = info;
14985 
14986 	preempt_disable();
14987 	perf_cgroup_switch(task);
14988 	preempt_enable();
14989 
14990 	return 0;
14991 }
14992 
14993 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14994 {
14995 	struct task_struct *task;
14996 	struct cgroup_subsys_state *css;
14997 
14998 	cgroup_taskset_for_each(task, css, tset)
14999 		task_function_call(task, __perf_cgroup_move, task);
15000 }
15001 
15002 struct cgroup_subsys perf_event_cgrp_subsys = {
15003 	.css_alloc	= perf_cgroup_css_alloc,
15004 	.css_free	= perf_cgroup_css_free,
15005 	.css_online	= perf_cgroup_css_online,
15006 	.attach		= perf_cgroup_attach,
15007 	/*
15008 	 * Implicitly enable on dfl hierarchy so that perf events can
15009 	 * always be filtered by cgroup2 path as long as perf_event
15010 	 * controller is not mounted on a legacy hierarchy.
15011 	 */
15012 	.implicit_on_dfl = true,
15013 	.threaded	= true,
15014 };
15015 #endif /* CONFIG_CGROUP_PERF */
15016 
15017 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
15018