1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 enum event_type_t { 159 EVENT_FLEXIBLE = 0x01, 160 EVENT_PINNED = 0x02, 161 EVENT_TIME = 0x04, 162 EVENT_FROZEN = 0x08, 163 /* see ctx_resched() for details */ 164 EVENT_CPU = 0x10, 165 EVENT_CGROUP = 0x20, 166 167 /* compound helpers */ 168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, 170 }; 171 172 static inline void __perf_ctx_lock(struct perf_event_context *ctx) 173 { 174 raw_spin_lock(&ctx->lock); 175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); 176 } 177 178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 179 struct perf_event_context *ctx) 180 { 181 __perf_ctx_lock(&cpuctx->ctx); 182 if (ctx) 183 __perf_ctx_lock(ctx); 184 } 185 186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx) 187 { 188 /* 189 * If ctx_sched_in() didn't again set any ALL flags, clean up 190 * after ctx_sched_out() by clearing is_active. 191 */ 192 if (ctx->is_active & EVENT_FROZEN) { 193 if (!(ctx->is_active & EVENT_ALL)) 194 ctx->is_active = 0; 195 else 196 ctx->is_active &= ~EVENT_FROZEN; 197 } 198 raw_spin_unlock(&ctx->lock); 199 } 200 201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 202 struct perf_event_context *ctx) 203 { 204 if (ctx) 205 __perf_ctx_unlock(ctx); 206 __perf_ctx_unlock(&cpuctx->ctx); 207 } 208 209 #define TASK_TOMBSTONE ((void *)-1L) 210 211 static bool is_kernel_event(struct perf_event *event) 212 { 213 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 214 } 215 216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 217 218 struct perf_event_context *perf_cpu_task_ctx(void) 219 { 220 lockdep_assert_irqs_disabled(); 221 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 222 } 223 224 /* 225 * On task ctx scheduling... 226 * 227 * When !ctx->nr_events a task context will not be scheduled. This means 228 * we can disable the scheduler hooks (for performance) without leaving 229 * pending task ctx state. 230 * 231 * This however results in two special cases: 232 * 233 * - removing the last event from a task ctx; this is relatively straight 234 * forward and is done in __perf_remove_from_context. 235 * 236 * - adding the first event to a task ctx; this is tricky because we cannot 237 * rely on ctx->is_active and therefore cannot use event_function_call(). 238 * See perf_install_in_context(). 239 * 240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 241 */ 242 243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 244 struct perf_event_context *, void *); 245 246 struct event_function_struct { 247 struct perf_event *event; 248 event_f func; 249 void *data; 250 }; 251 252 static int event_function(void *info) 253 { 254 struct event_function_struct *efs = info; 255 struct perf_event *event = efs->event; 256 struct perf_event_context *ctx = event->ctx; 257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 258 struct perf_event_context *task_ctx = cpuctx->task_ctx; 259 int ret = 0; 260 261 lockdep_assert_irqs_disabled(); 262 263 perf_ctx_lock(cpuctx, task_ctx); 264 /* 265 * Since we do the IPI call without holding ctx->lock things can have 266 * changed, double check we hit the task we set out to hit. 267 */ 268 if (ctx->task) { 269 if (ctx->task != current) { 270 ret = -ESRCH; 271 goto unlock; 272 } 273 274 /* 275 * We only use event_function_call() on established contexts, 276 * and event_function() is only ever called when active (or 277 * rather, we'll have bailed in task_function_call() or the 278 * above ctx->task != current test), therefore we must have 279 * ctx->is_active here. 280 */ 281 WARN_ON_ONCE(!ctx->is_active); 282 /* 283 * And since we have ctx->is_active, cpuctx->task_ctx must 284 * match. 285 */ 286 WARN_ON_ONCE(task_ctx != ctx); 287 } else { 288 WARN_ON_ONCE(&cpuctx->ctx != ctx); 289 } 290 291 efs->func(event, cpuctx, ctx, efs->data); 292 unlock: 293 perf_ctx_unlock(cpuctx, task_ctx); 294 295 return ret; 296 } 297 298 static void event_function_call(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 302 struct perf_cpu_context *cpuctx; 303 struct event_function_struct efs = { 304 .event = event, 305 .func = func, 306 .data = data, 307 }; 308 309 if (!event->parent) { 310 /* 311 * If this is a !child event, we must hold ctx::mutex to 312 * stabilize the event->ctx relation. See 313 * perf_event_ctx_lock(). 314 */ 315 lockdep_assert_held(&ctx->mutex); 316 } 317 318 if (!task) { 319 cpu_function_call(event->cpu, event_function, &efs); 320 return; 321 } 322 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 again: 327 if (!task_function_call(task, event_function, &efs)) 328 return; 329 330 local_irq_disable(); 331 cpuctx = this_cpu_ptr(&perf_cpu_context); 332 perf_ctx_lock(cpuctx, ctx); 333 /* 334 * Reload the task pointer, it might have been changed by 335 * a concurrent perf_event_context_sched_out(). 336 */ 337 task = ctx->task; 338 if (task == TASK_TOMBSTONE) 339 goto unlock; 340 if (ctx->is_active) { 341 perf_ctx_unlock(cpuctx, ctx); 342 local_irq_enable(); 343 goto again; 344 } 345 func(event, NULL, ctx, data); 346 unlock: 347 perf_ctx_unlock(cpuctx, ctx); 348 local_irq_enable(); 349 } 350 351 /* 352 * Similar to event_function_call() + event_function(), but hard assumes IRQs 353 * are already disabled and we're on the right CPU. 354 */ 355 static void event_function_local(struct perf_event *event, event_f func, void *data) 356 { 357 struct perf_event_context *ctx = event->ctx; 358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 359 struct task_struct *task = READ_ONCE(ctx->task); 360 struct perf_event_context *task_ctx = NULL; 361 362 lockdep_assert_irqs_disabled(); 363 364 if (task) { 365 if (task == TASK_TOMBSTONE) 366 return; 367 368 task_ctx = ctx; 369 } 370 371 perf_ctx_lock(cpuctx, task_ctx); 372 373 task = ctx->task; 374 if (task == TASK_TOMBSTONE) 375 goto unlock; 376 377 if (task) { 378 /* 379 * We must be either inactive or active and the right task, 380 * otherwise we're screwed, since we cannot IPI to somewhere 381 * else. 382 */ 383 if (ctx->is_active) { 384 if (WARN_ON_ONCE(task != current)) 385 goto unlock; 386 387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 388 goto unlock; 389 } 390 } else { 391 WARN_ON_ONCE(&cpuctx->ctx != ctx); 392 } 393 394 func(event, cpuctx, ctx, data); 395 unlock: 396 perf_ctx_unlock(cpuctx, task_ctx); 397 } 398 399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 400 PERF_FLAG_FD_OUTPUT |\ 401 PERF_FLAG_PID_CGROUP |\ 402 PERF_FLAG_FD_CLOEXEC) 403 404 /* 405 * branch priv levels that need permission checks 406 */ 407 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 408 (PERF_SAMPLE_BRANCH_KERNEL |\ 409 PERF_SAMPLE_BRANCH_HV) 410 411 /* 412 * perf_sched_events : >0 events exist 413 */ 414 415 static void perf_sched_delayed(struct work_struct *work); 416 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 418 static DEFINE_MUTEX(perf_sched_mutex); 419 static atomic_t perf_sched_count; 420 421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 422 423 static atomic_t nr_mmap_events __read_mostly; 424 static atomic_t nr_comm_events __read_mostly; 425 static atomic_t nr_namespaces_events __read_mostly; 426 static atomic_t nr_task_events __read_mostly; 427 static atomic_t nr_freq_events __read_mostly; 428 static atomic_t nr_switch_events __read_mostly; 429 static atomic_t nr_ksymbol_events __read_mostly; 430 static atomic_t nr_bpf_events __read_mostly; 431 static atomic_t nr_cgroup_events __read_mostly; 432 static atomic_t nr_text_poke_events __read_mostly; 433 static atomic_t nr_build_id_events __read_mostly; 434 435 static LIST_HEAD(pmus); 436 static DEFINE_MUTEX(pmus_lock); 437 static struct srcu_struct pmus_srcu; 438 static cpumask_var_t perf_online_mask; 439 static cpumask_var_t perf_online_core_mask; 440 static cpumask_var_t perf_online_die_mask; 441 static cpumask_var_t perf_online_cluster_mask; 442 static cpumask_var_t perf_online_pkg_mask; 443 static cpumask_var_t perf_online_sys_mask; 444 static struct kmem_cache *perf_event_cache; 445 446 /* 447 * perf event paranoia level: 448 * -1 - not paranoid at all 449 * 0 - disallow raw tracepoint access for unpriv 450 * 1 - disallow cpu events for unpriv 451 * 2 - disallow kernel profiling for unpriv 452 */ 453 int sysctl_perf_event_paranoid __read_mostly = 2; 454 455 /* Minimum for 512 kiB + 1 user control page */ 456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 457 458 /* 459 * max perf event sample rate 460 */ 461 #define DEFAULT_MAX_SAMPLE_RATE 100000 462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 464 465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 466 467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 469 470 static int perf_sample_allowed_ns __read_mostly = 471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 472 473 static void update_perf_cpu_limits(void) 474 { 475 u64 tmp = perf_sample_period_ns; 476 477 tmp *= sysctl_perf_cpu_time_max_percent; 478 tmp = div_u64(tmp, 100); 479 if (!tmp) 480 tmp = 1; 481 482 WRITE_ONCE(perf_sample_allowed_ns, tmp); 483 } 484 485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 486 487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 int perf_cpu = sysctl_perf_cpu_time_max_percent; 492 /* 493 * If throttling is disabled don't allow the write: 494 */ 495 if (write && (perf_cpu == 100 || perf_cpu == 0)) 496 return -EINVAL; 497 498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 499 if (ret || !write) 500 return ret; 501 502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 504 update_perf_cpu_limits(); 505 506 return 0; 507 } 508 509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 510 511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 516 if (ret || !write) 517 return ret; 518 519 if (sysctl_perf_cpu_time_max_percent == 100 || 520 sysctl_perf_cpu_time_max_percent == 0) { 521 printk(KERN_WARNING 522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 523 WRITE_ONCE(perf_sample_allowed_ns, 0); 524 } else { 525 update_perf_cpu_limits(); 526 } 527 528 return 0; 529 } 530 531 /* 532 * perf samples are done in some very critical code paths (NMIs). 533 * If they take too much CPU time, the system can lock up and not 534 * get any real work done. This will drop the sample rate when 535 * we detect that events are taking too long. 536 */ 537 #define NR_ACCUMULATED_SAMPLES 128 538 static DEFINE_PER_CPU(u64, running_sample_length); 539 540 static u64 __report_avg; 541 static u64 __report_allowed; 542 543 static void perf_duration_warn(struct irq_work *w) 544 { 545 printk_ratelimited(KERN_INFO 546 "perf: interrupt took too long (%lld > %lld), lowering " 547 "kernel.perf_event_max_sample_rate to %d\n", 548 __report_avg, __report_allowed, 549 sysctl_perf_event_sample_rate); 550 } 551 552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 553 554 void perf_sample_event_took(u64 sample_len_ns) 555 { 556 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 557 u64 running_len; 558 u64 avg_len; 559 u32 max; 560 561 if (max_len == 0) 562 return; 563 564 /* Decay the counter by 1 average sample. */ 565 running_len = __this_cpu_read(running_sample_length); 566 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 567 running_len += sample_len_ns; 568 __this_cpu_write(running_sample_length, running_len); 569 570 /* 571 * Note: this will be biased artificially low until we have 572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 573 * from having to maintain a count. 574 */ 575 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 576 if (avg_len <= max_len) 577 return; 578 579 __report_avg = avg_len; 580 __report_allowed = max_len; 581 582 /* 583 * Compute a throttle threshold 25% below the current duration. 584 */ 585 avg_len += avg_len / 4; 586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 587 if (avg_len < max) 588 max /= (u32)avg_len; 589 else 590 max = 1; 591 592 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 593 WRITE_ONCE(max_samples_per_tick, max); 594 595 sysctl_perf_event_sample_rate = max * HZ; 596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 597 598 if (!irq_work_queue(&perf_duration_work)) { 599 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 600 "kernel.perf_event_max_sample_rate to %d\n", 601 __report_avg, __report_allowed, 602 sysctl_perf_event_sample_rate); 603 } 604 } 605 606 static atomic64_t perf_event_id; 607 608 static void update_context_time(struct perf_event_context *ctx); 609 static u64 perf_event_time(struct perf_event *event); 610 611 void __weak perf_event_print_debug(void) { } 612 613 static inline u64 perf_clock(void) 614 { 615 return local_clock(); 616 } 617 618 static inline u64 perf_event_clock(struct perf_event *event) 619 { 620 return event->clock(); 621 } 622 623 /* 624 * State based event timekeeping... 625 * 626 * The basic idea is to use event->state to determine which (if any) time 627 * fields to increment with the current delta. This means we only need to 628 * update timestamps when we change state or when they are explicitly requested 629 * (read). 630 * 631 * Event groups make things a little more complicated, but not terribly so. The 632 * rules for a group are that if the group leader is OFF the entire group is 633 * OFF, irrespective of what the group member states are. This results in 634 * __perf_effective_state(). 635 * 636 * A further ramification is that when a group leader flips between OFF and 637 * !OFF, we need to update all group member times. 638 * 639 * 640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 641 * need to make sure the relevant context time is updated before we try and 642 * update our timestamps. 643 */ 644 645 static __always_inline enum perf_event_state 646 __perf_effective_state(struct perf_event *event) 647 { 648 struct perf_event *leader = event->group_leader; 649 650 if (leader->state <= PERF_EVENT_STATE_OFF) 651 return leader->state; 652 653 return event->state; 654 } 655 656 static __always_inline void 657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 658 { 659 enum perf_event_state state = __perf_effective_state(event); 660 u64 delta = now - event->tstamp; 661 662 *enabled = event->total_time_enabled; 663 if (state >= PERF_EVENT_STATE_INACTIVE) 664 *enabled += delta; 665 666 *running = event->total_time_running; 667 if (state >= PERF_EVENT_STATE_ACTIVE) 668 *running += delta; 669 } 670 671 static void perf_event_update_time(struct perf_event *event) 672 { 673 u64 now = perf_event_time(event); 674 675 __perf_update_times(event, now, &event->total_time_enabled, 676 &event->total_time_running); 677 event->tstamp = now; 678 } 679 680 static void perf_event_update_sibling_time(struct perf_event *leader) 681 { 682 struct perf_event *sibling; 683 684 for_each_sibling_event(sibling, leader) 685 perf_event_update_time(sibling); 686 } 687 688 static void 689 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 690 { 691 if (event->state == state) 692 return; 693 694 perf_event_update_time(event); 695 /* 696 * If a group leader gets enabled/disabled all its siblings 697 * are affected too. 698 */ 699 if ((event->state < 0) ^ (state < 0)) 700 perf_event_update_sibling_time(event); 701 702 WRITE_ONCE(event->state, state); 703 } 704 705 /* 706 * UP store-release, load-acquire 707 */ 708 709 #define __store_release(ptr, val) \ 710 do { \ 711 barrier(); \ 712 WRITE_ONCE(*(ptr), (val)); \ 713 } while (0) 714 715 #define __load_acquire(ptr) \ 716 ({ \ 717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 718 barrier(); \ 719 ___p; \ 720 }) 721 722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ 723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ 724 if (_cgroup && !_epc->nr_cgroups) \ 725 continue; \ 726 else if (_pmu && _epc->pmu != _pmu) \ 727 continue; \ 728 else 729 730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 731 { 732 struct perf_event_pmu_context *pmu_ctx; 733 734 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 735 perf_pmu_disable(pmu_ctx->pmu); 736 } 737 738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 739 { 740 struct perf_event_pmu_context *pmu_ctx; 741 742 for_each_epc(pmu_ctx, ctx, NULL, cgroup) 743 perf_pmu_enable(pmu_ctx->pmu); 744 } 745 746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); 748 749 #ifdef CONFIG_CGROUP_PERF 750 751 static inline bool 752 perf_cgroup_match(struct perf_event *event) 753 { 754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 755 756 /* @event doesn't care about cgroup */ 757 if (!event->cgrp) 758 return true; 759 760 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 761 if (!cpuctx->cgrp) 762 return false; 763 764 /* 765 * Cgroup scoping is recursive. An event enabled for a cgroup is 766 * also enabled for all its descendant cgroups. If @cpuctx's 767 * cgroup is a descendant of @event's (the test covers identity 768 * case), it's a match. 769 */ 770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 771 event->cgrp->css.cgroup); 772 } 773 774 static inline void perf_detach_cgroup(struct perf_event *event) 775 { 776 css_put(&event->cgrp->css); 777 event->cgrp = NULL; 778 } 779 780 static inline int is_cgroup_event(struct perf_event *event) 781 { 782 return event->cgrp != NULL; 783 } 784 785 static inline u64 perf_cgroup_event_time(struct perf_event *event) 786 { 787 struct perf_cgroup_info *t; 788 789 t = per_cpu_ptr(event->cgrp->info, event->cpu); 790 return t->time; 791 } 792 793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 794 { 795 struct perf_cgroup_info *t; 796 797 t = per_cpu_ptr(event->cgrp->info, event->cpu); 798 if (!__load_acquire(&t->active)) 799 return t->time; 800 now += READ_ONCE(t->timeoffset); 801 return now; 802 } 803 804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 805 { 806 if (adv) 807 info->time += now - info->timestamp; 808 info->timestamp = now; 809 /* 810 * see update_context_time() 811 */ 812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 813 } 814 815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 816 { 817 struct perf_cgroup *cgrp = cpuctx->cgrp; 818 struct cgroup_subsys_state *css; 819 struct perf_cgroup_info *info; 820 821 if (cgrp) { 822 u64 now = perf_clock(); 823 824 for (css = &cgrp->css; css; css = css->parent) { 825 cgrp = container_of(css, struct perf_cgroup, css); 826 info = this_cpu_ptr(cgrp->info); 827 828 __update_cgrp_time(info, now, true); 829 if (final) 830 __store_release(&info->active, 0); 831 } 832 } 833 } 834 835 static inline void update_cgrp_time_from_event(struct perf_event *event) 836 { 837 struct perf_cgroup_info *info; 838 839 /* 840 * ensure we access cgroup data only when needed and 841 * when we know the cgroup is pinned (css_get) 842 */ 843 if (!is_cgroup_event(event)) 844 return; 845 846 info = this_cpu_ptr(event->cgrp->info); 847 /* 848 * Do not update time when cgroup is not active 849 */ 850 if (info->active) 851 __update_cgrp_time(info, perf_clock(), true); 852 } 853 854 static inline void 855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 856 { 857 struct perf_event_context *ctx = &cpuctx->ctx; 858 struct perf_cgroup *cgrp = cpuctx->cgrp; 859 struct perf_cgroup_info *info; 860 struct cgroup_subsys_state *css; 861 862 /* 863 * ctx->lock held by caller 864 * ensure we do not access cgroup data 865 * unless we have the cgroup pinned (css_get) 866 */ 867 if (!cgrp) 868 return; 869 870 WARN_ON_ONCE(!ctx->nr_cgroups); 871 872 for (css = &cgrp->css; css; css = css->parent) { 873 cgrp = container_of(css, struct perf_cgroup, css); 874 info = this_cpu_ptr(cgrp->info); 875 __update_cgrp_time(info, ctx->timestamp, false); 876 __store_release(&info->active, 1); 877 } 878 } 879 880 /* 881 * reschedule events based on the cgroup constraint of task. 882 */ 883 static void perf_cgroup_switch(struct task_struct *task) 884 { 885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 886 struct perf_cgroup *cgrp; 887 888 /* 889 * cpuctx->cgrp is set when the first cgroup event enabled, 890 * and is cleared when the last cgroup event disabled. 891 */ 892 if (READ_ONCE(cpuctx->cgrp) == NULL) 893 return; 894 895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 896 897 cgrp = perf_cgroup_from_task(task, NULL); 898 if (READ_ONCE(cpuctx->cgrp) == cgrp) 899 return; 900 901 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 902 perf_ctx_disable(&cpuctx->ctx, true); 903 904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 905 /* 906 * must not be done before ctxswout due 907 * to update_cgrp_time_from_cpuctx() in 908 * ctx_sched_out() 909 */ 910 cpuctx->cgrp = cgrp; 911 /* 912 * set cgrp before ctxsw in to allow 913 * perf_cgroup_set_timestamp() in ctx_sched_in() 914 * to not have to pass task around 915 */ 916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); 917 918 perf_ctx_enable(&cpuctx->ctx, true); 919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 920 } 921 922 static int perf_cgroup_ensure_storage(struct perf_event *event, 923 struct cgroup_subsys_state *css) 924 { 925 struct perf_cpu_context *cpuctx; 926 struct perf_event **storage; 927 int cpu, heap_size, ret = 0; 928 929 /* 930 * Allow storage to have sufficient space for an iterator for each 931 * possibly nested cgroup plus an iterator for events with no cgroup. 932 */ 933 for (heap_size = 1; css; css = css->parent) 934 heap_size++; 935 936 for_each_possible_cpu(cpu) { 937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 938 if (heap_size <= cpuctx->heap_size) 939 continue; 940 941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 942 GFP_KERNEL, cpu_to_node(cpu)); 943 if (!storage) { 944 ret = -ENOMEM; 945 break; 946 } 947 948 raw_spin_lock_irq(&cpuctx->ctx.lock); 949 if (cpuctx->heap_size < heap_size) { 950 swap(cpuctx->heap, storage); 951 if (storage == cpuctx->heap_default) 952 storage = NULL; 953 cpuctx->heap_size = heap_size; 954 } 955 raw_spin_unlock_irq(&cpuctx->ctx.lock); 956 957 kfree(storage); 958 } 959 960 return ret; 961 } 962 963 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 964 struct perf_event_attr *attr, 965 struct perf_event *group_leader) 966 { 967 struct perf_cgroup *cgrp; 968 struct cgroup_subsys_state *css; 969 CLASS(fd, f)(fd); 970 int ret = 0; 971 972 if (fd_empty(f)) 973 return -EBADF; 974 975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, 976 &perf_event_cgrp_subsys); 977 if (IS_ERR(css)) 978 return PTR_ERR(css); 979 980 ret = perf_cgroup_ensure_storage(event, css); 981 if (ret) 982 return ret; 983 984 cgrp = container_of(css, struct perf_cgroup, css); 985 event->cgrp = cgrp; 986 987 /* 988 * all events in a group must monitor 989 * the same cgroup because a task belongs 990 * to only one perf cgroup at a time 991 */ 992 if (group_leader && group_leader->cgrp != cgrp) { 993 perf_detach_cgroup(event); 994 ret = -EINVAL; 995 } 996 return ret; 997 } 998 999 static inline void 1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1001 { 1002 struct perf_cpu_context *cpuctx; 1003 1004 if (!is_cgroup_event(event)) 1005 return; 1006 1007 event->pmu_ctx->nr_cgroups++; 1008 1009 /* 1010 * Because cgroup events are always per-cpu events, 1011 * @ctx == &cpuctx->ctx. 1012 */ 1013 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1014 1015 if (ctx->nr_cgroups++) 1016 return; 1017 1018 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 1019 } 1020 1021 static inline void 1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1023 { 1024 struct perf_cpu_context *cpuctx; 1025 1026 if (!is_cgroup_event(event)) 1027 return; 1028 1029 event->pmu_ctx->nr_cgroups--; 1030 1031 /* 1032 * Because cgroup events are always per-cpu events, 1033 * @ctx == &cpuctx->ctx. 1034 */ 1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1036 1037 if (--ctx->nr_cgroups) 1038 return; 1039 1040 cpuctx->cgrp = NULL; 1041 } 1042 1043 #else /* !CONFIG_CGROUP_PERF */ 1044 1045 static inline bool 1046 perf_cgroup_match(struct perf_event *event) 1047 { 1048 return true; 1049 } 1050 1051 static inline void perf_detach_cgroup(struct perf_event *event) 1052 {} 1053 1054 static inline int is_cgroup_event(struct perf_event *event) 1055 { 1056 return 0; 1057 } 1058 1059 static inline void update_cgrp_time_from_event(struct perf_event *event) 1060 { 1061 } 1062 1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1064 bool final) 1065 { 1066 } 1067 1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1069 struct perf_event_attr *attr, 1070 struct perf_event *group_leader) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void 1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1077 { 1078 } 1079 1080 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1081 { 1082 return 0; 1083 } 1084 1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1086 { 1087 return 0; 1088 } 1089 1090 static inline void 1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1092 { 1093 } 1094 1095 static inline void 1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1097 { 1098 } 1099 1100 static void perf_cgroup_switch(struct task_struct *task) 1101 { 1102 } 1103 #endif 1104 1105 /* 1106 * set default to be dependent on timer tick just 1107 * like original code 1108 */ 1109 #define PERF_CPU_HRTIMER (1000 / HZ) 1110 /* 1111 * function must be called with interrupts disabled 1112 */ 1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1114 { 1115 struct perf_cpu_pmu_context *cpc; 1116 bool rotations; 1117 1118 lockdep_assert_irqs_disabled(); 1119 1120 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1121 rotations = perf_rotate_context(cpc); 1122 1123 raw_spin_lock(&cpc->hrtimer_lock); 1124 if (rotations) 1125 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1126 else 1127 cpc->hrtimer_active = 0; 1128 raw_spin_unlock(&cpc->hrtimer_lock); 1129 1130 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1131 } 1132 1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1134 { 1135 struct hrtimer *timer = &cpc->hrtimer; 1136 struct pmu *pmu = cpc->epc.pmu; 1137 u64 interval; 1138 1139 /* 1140 * check default is sane, if not set then force to 1141 * default interval (1/tick) 1142 */ 1143 interval = pmu->hrtimer_interval_ms; 1144 if (interval < 1) 1145 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1146 1147 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1148 1149 raw_spin_lock_init(&cpc->hrtimer_lock); 1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1151 timer->function = perf_mux_hrtimer_handler; 1152 } 1153 1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1155 { 1156 struct hrtimer *timer = &cpc->hrtimer; 1157 unsigned long flags; 1158 1159 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1160 if (!cpc->hrtimer_active) { 1161 cpc->hrtimer_active = 1; 1162 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1163 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1164 } 1165 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1166 1167 return 0; 1168 } 1169 1170 static int perf_mux_hrtimer_restart_ipi(void *arg) 1171 { 1172 return perf_mux_hrtimer_restart(arg); 1173 } 1174 1175 void perf_pmu_disable(struct pmu *pmu) 1176 { 1177 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1178 if (!(*count)++) 1179 pmu->pmu_disable(pmu); 1180 } 1181 1182 void perf_pmu_enable(struct pmu *pmu) 1183 { 1184 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1185 if (!--(*count)) 1186 pmu->pmu_enable(pmu); 1187 } 1188 1189 static void perf_assert_pmu_disabled(struct pmu *pmu) 1190 { 1191 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1192 } 1193 1194 static void get_ctx(struct perf_event_context *ctx) 1195 { 1196 refcount_inc(&ctx->refcount); 1197 } 1198 1199 static void *alloc_task_ctx_data(struct pmu *pmu) 1200 { 1201 if (pmu->task_ctx_cache) 1202 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1203 1204 return NULL; 1205 } 1206 1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1208 { 1209 if (pmu->task_ctx_cache && task_ctx_data) 1210 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1211 } 1212 1213 static void free_ctx(struct rcu_head *head) 1214 { 1215 struct perf_event_context *ctx; 1216 1217 ctx = container_of(head, struct perf_event_context, rcu_head); 1218 kfree(ctx); 1219 } 1220 1221 static void put_ctx(struct perf_event_context *ctx) 1222 { 1223 if (refcount_dec_and_test(&ctx->refcount)) { 1224 if (ctx->parent_ctx) 1225 put_ctx(ctx->parent_ctx); 1226 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1227 put_task_struct(ctx->task); 1228 call_rcu(&ctx->rcu_head, free_ctx); 1229 } 1230 } 1231 1232 /* 1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1234 * perf_pmu_migrate_context() we need some magic. 1235 * 1236 * Those places that change perf_event::ctx will hold both 1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1238 * 1239 * Lock ordering is by mutex address. There are two other sites where 1240 * perf_event_context::mutex nests and those are: 1241 * 1242 * - perf_event_exit_task_context() [ child , 0 ] 1243 * perf_event_exit_event() 1244 * put_event() [ parent, 1 ] 1245 * 1246 * - perf_event_init_context() [ parent, 0 ] 1247 * inherit_task_group() 1248 * inherit_group() 1249 * inherit_event() 1250 * perf_event_alloc() 1251 * perf_init_event() 1252 * perf_try_init_event() [ child , 1 ] 1253 * 1254 * While it appears there is an obvious deadlock here -- the parent and child 1255 * nesting levels are inverted between the two. This is in fact safe because 1256 * life-time rules separate them. That is an exiting task cannot fork, and a 1257 * spawning task cannot (yet) exit. 1258 * 1259 * But remember that these are parent<->child context relations, and 1260 * migration does not affect children, therefore these two orderings should not 1261 * interact. 1262 * 1263 * The change in perf_event::ctx does not affect children (as claimed above) 1264 * because the sys_perf_event_open() case will install a new event and break 1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1266 * concerned with cpuctx and that doesn't have children. 1267 * 1268 * The places that change perf_event::ctx will issue: 1269 * 1270 * perf_remove_from_context(); 1271 * synchronize_rcu(); 1272 * perf_install_in_context(); 1273 * 1274 * to affect the change. The remove_from_context() + synchronize_rcu() should 1275 * quiesce the event, after which we can install it in the new location. This 1276 * means that only external vectors (perf_fops, prctl) can perturb the event 1277 * while in transit. Therefore all such accessors should also acquire 1278 * perf_event_context::mutex to serialize against this. 1279 * 1280 * However; because event->ctx can change while we're waiting to acquire 1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1282 * function. 1283 * 1284 * Lock order: 1285 * exec_update_lock 1286 * task_struct::perf_event_mutex 1287 * perf_event_context::mutex 1288 * perf_event::child_mutex; 1289 * perf_event_context::lock 1290 * mmap_lock 1291 * perf_event::mmap_mutex 1292 * perf_buffer::aux_mutex 1293 * perf_addr_filters_head::lock 1294 * 1295 * cpu_hotplug_lock 1296 * pmus_lock 1297 * cpuctx->mutex / perf_event_context::mutex 1298 */ 1299 static struct perf_event_context * 1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1301 { 1302 struct perf_event_context *ctx; 1303 1304 again: 1305 rcu_read_lock(); 1306 ctx = READ_ONCE(event->ctx); 1307 if (!refcount_inc_not_zero(&ctx->refcount)) { 1308 rcu_read_unlock(); 1309 goto again; 1310 } 1311 rcu_read_unlock(); 1312 1313 mutex_lock_nested(&ctx->mutex, nesting); 1314 if (event->ctx != ctx) { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 goto again; 1318 } 1319 1320 return ctx; 1321 } 1322 1323 static inline struct perf_event_context * 1324 perf_event_ctx_lock(struct perf_event *event) 1325 { 1326 return perf_event_ctx_lock_nested(event, 0); 1327 } 1328 1329 static void perf_event_ctx_unlock(struct perf_event *event, 1330 struct perf_event_context *ctx) 1331 { 1332 mutex_unlock(&ctx->mutex); 1333 put_ctx(ctx); 1334 } 1335 1336 /* 1337 * This must be done under the ctx->lock, such as to serialize against 1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1339 * calling scheduler related locks and ctx->lock nests inside those. 1340 */ 1341 static __must_check struct perf_event_context * 1342 unclone_ctx(struct perf_event_context *ctx) 1343 { 1344 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1345 1346 lockdep_assert_held(&ctx->lock); 1347 1348 if (parent_ctx) 1349 ctx->parent_ctx = NULL; 1350 ctx->generation++; 1351 1352 return parent_ctx; 1353 } 1354 1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1356 enum pid_type type) 1357 { 1358 u32 nr; 1359 /* 1360 * only top level events have the pid namespace they were created in 1361 */ 1362 if (event->parent) 1363 event = event->parent; 1364 1365 nr = __task_pid_nr_ns(p, type, event->ns); 1366 /* avoid -1 if it is idle thread or runs in another ns */ 1367 if (!nr && !pid_alive(p)) 1368 nr = -1; 1369 return nr; 1370 } 1371 1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1373 { 1374 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1375 } 1376 1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1378 { 1379 return perf_event_pid_type(event, p, PIDTYPE_PID); 1380 } 1381 1382 /* 1383 * If we inherit events we want to return the parent event id 1384 * to userspace. 1385 */ 1386 static u64 primary_event_id(struct perf_event *event) 1387 { 1388 u64 id = event->id; 1389 1390 if (event->parent) 1391 id = event->parent->id; 1392 1393 return id; 1394 } 1395 1396 /* 1397 * Get the perf_event_context for a task and lock it. 1398 * 1399 * This has to cope with the fact that until it is locked, 1400 * the context could get moved to another task. 1401 */ 1402 static struct perf_event_context * 1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1404 { 1405 struct perf_event_context *ctx; 1406 1407 retry: 1408 /* 1409 * One of the few rules of preemptible RCU is that one cannot do 1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1411 * part of the read side critical section was irqs-enabled -- see 1412 * rcu_read_unlock_special(). 1413 * 1414 * Since ctx->lock nests under rq->lock we must ensure the entire read 1415 * side critical section has interrupts disabled. 1416 */ 1417 local_irq_save(*flags); 1418 rcu_read_lock(); 1419 ctx = rcu_dereference(task->perf_event_ctxp); 1420 if (ctx) { 1421 /* 1422 * If this context is a clone of another, it might 1423 * get swapped for another underneath us by 1424 * perf_event_task_sched_out, though the 1425 * rcu_read_lock() protects us from any context 1426 * getting freed. Lock the context and check if it 1427 * got swapped before we could get the lock, and retry 1428 * if so. If we locked the right context, then it 1429 * can't get swapped on us any more. 1430 */ 1431 raw_spin_lock(&ctx->lock); 1432 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1433 raw_spin_unlock(&ctx->lock); 1434 rcu_read_unlock(); 1435 local_irq_restore(*flags); 1436 goto retry; 1437 } 1438 1439 if (ctx->task == TASK_TOMBSTONE || 1440 !refcount_inc_not_zero(&ctx->refcount)) { 1441 raw_spin_unlock(&ctx->lock); 1442 ctx = NULL; 1443 } else { 1444 WARN_ON_ONCE(ctx->task != task); 1445 } 1446 } 1447 rcu_read_unlock(); 1448 if (!ctx) 1449 local_irq_restore(*flags); 1450 return ctx; 1451 } 1452 1453 /* 1454 * Get the context for a task and increment its pin_count so it 1455 * can't get swapped to another task. This also increments its 1456 * reference count so that the context can't get freed. 1457 */ 1458 static struct perf_event_context * 1459 perf_pin_task_context(struct task_struct *task) 1460 { 1461 struct perf_event_context *ctx; 1462 unsigned long flags; 1463 1464 ctx = perf_lock_task_context(task, &flags); 1465 if (ctx) { 1466 ++ctx->pin_count; 1467 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1468 } 1469 return ctx; 1470 } 1471 1472 static void perf_unpin_context(struct perf_event_context *ctx) 1473 { 1474 unsigned long flags; 1475 1476 raw_spin_lock_irqsave(&ctx->lock, flags); 1477 --ctx->pin_count; 1478 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1479 } 1480 1481 /* 1482 * Update the record of the current time in a context. 1483 */ 1484 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1485 { 1486 u64 now = perf_clock(); 1487 1488 lockdep_assert_held(&ctx->lock); 1489 1490 if (adv) 1491 ctx->time += now - ctx->timestamp; 1492 ctx->timestamp = now; 1493 1494 /* 1495 * The above: time' = time + (now - timestamp), can be re-arranged 1496 * into: time` = now + (time - timestamp), which gives a single value 1497 * offset to compute future time without locks on. 1498 * 1499 * See perf_event_time_now(), which can be used from NMI context where 1500 * it's (obviously) not possible to acquire ctx->lock in order to read 1501 * both the above values in a consistent manner. 1502 */ 1503 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1504 } 1505 1506 static void update_context_time(struct perf_event_context *ctx) 1507 { 1508 __update_context_time(ctx, true); 1509 } 1510 1511 static u64 perf_event_time(struct perf_event *event) 1512 { 1513 struct perf_event_context *ctx = event->ctx; 1514 1515 if (unlikely(!ctx)) 1516 return 0; 1517 1518 if (is_cgroup_event(event)) 1519 return perf_cgroup_event_time(event); 1520 1521 return ctx->time; 1522 } 1523 1524 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1525 { 1526 struct perf_event_context *ctx = event->ctx; 1527 1528 if (unlikely(!ctx)) 1529 return 0; 1530 1531 if (is_cgroup_event(event)) 1532 return perf_cgroup_event_time_now(event, now); 1533 1534 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1535 return ctx->time; 1536 1537 now += READ_ONCE(ctx->timeoffset); 1538 return now; 1539 } 1540 1541 static enum event_type_t get_event_type(struct perf_event *event) 1542 { 1543 struct perf_event_context *ctx = event->ctx; 1544 enum event_type_t event_type; 1545 1546 lockdep_assert_held(&ctx->lock); 1547 1548 /* 1549 * It's 'group type', really, because if our group leader is 1550 * pinned, so are we. 1551 */ 1552 if (event->group_leader != event) 1553 event = event->group_leader; 1554 1555 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1556 if (!ctx->task) 1557 event_type |= EVENT_CPU; 1558 1559 return event_type; 1560 } 1561 1562 /* 1563 * Helper function to initialize event group nodes. 1564 */ 1565 static void init_event_group(struct perf_event *event) 1566 { 1567 RB_CLEAR_NODE(&event->group_node); 1568 event->group_index = 0; 1569 } 1570 1571 /* 1572 * Extract pinned or flexible groups from the context 1573 * based on event attrs bits. 1574 */ 1575 static struct perf_event_groups * 1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1577 { 1578 if (event->attr.pinned) 1579 return &ctx->pinned_groups; 1580 else 1581 return &ctx->flexible_groups; 1582 } 1583 1584 /* 1585 * Helper function to initializes perf_event_group trees. 1586 */ 1587 static void perf_event_groups_init(struct perf_event_groups *groups) 1588 { 1589 groups->tree = RB_ROOT; 1590 groups->index = 0; 1591 } 1592 1593 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1594 { 1595 struct cgroup *cgroup = NULL; 1596 1597 #ifdef CONFIG_CGROUP_PERF 1598 if (event->cgrp) 1599 cgroup = event->cgrp->css.cgroup; 1600 #endif 1601 1602 return cgroup; 1603 } 1604 1605 /* 1606 * Compare function for event groups; 1607 * 1608 * Implements complex key that first sorts by CPU and then by virtual index 1609 * which provides ordering when rotating groups for the same CPU. 1610 */ 1611 static __always_inline int 1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1613 const struct cgroup *left_cgroup, const u64 left_group_index, 1614 const struct perf_event *right) 1615 { 1616 if (left_cpu < right->cpu) 1617 return -1; 1618 if (left_cpu > right->cpu) 1619 return 1; 1620 1621 if (left_pmu) { 1622 if (left_pmu < right->pmu_ctx->pmu) 1623 return -1; 1624 if (left_pmu > right->pmu_ctx->pmu) 1625 return 1; 1626 } 1627 1628 #ifdef CONFIG_CGROUP_PERF 1629 { 1630 const struct cgroup *right_cgroup = event_cgroup(right); 1631 1632 if (left_cgroup != right_cgroup) { 1633 if (!left_cgroup) { 1634 /* 1635 * Left has no cgroup but right does, no 1636 * cgroups come first. 1637 */ 1638 return -1; 1639 } 1640 if (!right_cgroup) { 1641 /* 1642 * Right has no cgroup but left does, no 1643 * cgroups come first. 1644 */ 1645 return 1; 1646 } 1647 /* Two dissimilar cgroups, order by id. */ 1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1649 return -1; 1650 1651 return 1; 1652 } 1653 } 1654 #endif 1655 1656 if (left_group_index < right->group_index) 1657 return -1; 1658 if (left_group_index > right->group_index) 1659 return 1; 1660 1661 return 0; 1662 } 1663 1664 #define __node_2_pe(node) \ 1665 rb_entry((node), struct perf_event, group_node) 1666 1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1668 { 1669 struct perf_event *e = __node_2_pe(a); 1670 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1671 e->group_index, __node_2_pe(b)) < 0; 1672 } 1673 1674 struct __group_key { 1675 int cpu; 1676 struct pmu *pmu; 1677 struct cgroup *cgroup; 1678 }; 1679 1680 static inline int __group_cmp(const void *key, const struct rb_node *node) 1681 { 1682 const struct __group_key *a = key; 1683 const struct perf_event *b = __node_2_pe(node); 1684 1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1686 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1687 } 1688 1689 static inline int 1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1691 { 1692 const struct __group_key *a = key; 1693 const struct perf_event *b = __node_2_pe(node); 1694 1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1696 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1697 b->group_index, b); 1698 } 1699 1700 /* 1701 * Insert @event into @groups' tree; using 1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1704 */ 1705 static void 1706 perf_event_groups_insert(struct perf_event_groups *groups, 1707 struct perf_event *event) 1708 { 1709 event->group_index = ++groups->index; 1710 1711 rb_add(&event->group_node, &groups->tree, __group_less); 1712 } 1713 1714 /* 1715 * Helper function to insert event into the pinned or flexible groups. 1716 */ 1717 static void 1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1719 { 1720 struct perf_event_groups *groups; 1721 1722 groups = get_event_groups(event, ctx); 1723 perf_event_groups_insert(groups, event); 1724 } 1725 1726 /* 1727 * Delete a group from a tree. 1728 */ 1729 static void 1730 perf_event_groups_delete(struct perf_event_groups *groups, 1731 struct perf_event *event) 1732 { 1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1734 RB_EMPTY_ROOT(&groups->tree)); 1735 1736 rb_erase(&event->group_node, &groups->tree); 1737 init_event_group(event); 1738 } 1739 1740 /* 1741 * Helper function to delete event from its groups. 1742 */ 1743 static void 1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1745 { 1746 struct perf_event_groups *groups; 1747 1748 groups = get_event_groups(event, ctx); 1749 perf_event_groups_delete(groups, event); 1750 } 1751 1752 /* 1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1754 */ 1755 static struct perf_event * 1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1757 struct pmu *pmu, struct cgroup *cgrp) 1758 { 1759 struct __group_key key = { 1760 .cpu = cpu, 1761 .pmu = pmu, 1762 .cgroup = cgrp, 1763 }; 1764 struct rb_node *node; 1765 1766 node = rb_find_first(&key, &groups->tree, __group_cmp); 1767 if (node) 1768 return __node_2_pe(node); 1769 1770 return NULL; 1771 } 1772 1773 static struct perf_event * 1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1775 { 1776 struct __group_key key = { 1777 .cpu = event->cpu, 1778 .pmu = pmu, 1779 .cgroup = event_cgroup(event), 1780 }; 1781 struct rb_node *next; 1782 1783 next = rb_next_match(&key, &event->group_node, __group_cmp); 1784 if (next) 1785 return __node_2_pe(next); 1786 1787 return NULL; 1788 } 1789 1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1792 event; event = perf_event_groups_next(event, pmu)) 1793 1794 /* 1795 * Iterate through the whole groups tree. 1796 */ 1797 #define perf_event_groups_for_each(event, groups) \ 1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1799 typeof(*event), group_node); event; \ 1800 event = rb_entry_safe(rb_next(&event->group_node), \ 1801 typeof(*event), group_node)) 1802 1803 /* 1804 * Does the event attribute request inherit with PERF_SAMPLE_READ 1805 */ 1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) 1807 { 1808 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); 1809 } 1810 1811 /* 1812 * Add an event from the lists for its context. 1813 * Must be called with ctx->mutex and ctx->lock held. 1814 */ 1815 static void 1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1817 { 1818 lockdep_assert_held(&ctx->lock); 1819 1820 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1821 event->attach_state |= PERF_ATTACH_CONTEXT; 1822 1823 event->tstamp = perf_event_time(event); 1824 1825 /* 1826 * If we're a stand alone event or group leader, we go to the context 1827 * list, group events are kept attached to the group so that 1828 * perf_group_detach can, at all times, locate all siblings. 1829 */ 1830 if (event->group_leader == event) { 1831 event->group_caps = event->event_caps; 1832 add_event_to_groups(event, ctx); 1833 } 1834 1835 list_add_rcu(&event->event_entry, &ctx->event_list); 1836 ctx->nr_events++; 1837 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1838 ctx->nr_user++; 1839 if (event->attr.inherit_stat) 1840 ctx->nr_stat++; 1841 if (has_inherit_and_sample_read(&event->attr)) 1842 local_inc(&ctx->nr_no_switch_fast); 1843 1844 if (event->state > PERF_EVENT_STATE_OFF) 1845 perf_cgroup_event_enable(event, ctx); 1846 1847 ctx->generation++; 1848 event->pmu_ctx->nr_events++; 1849 } 1850 1851 /* 1852 * Initialize event state based on the perf_event_attr::disabled. 1853 */ 1854 static inline void perf_event__state_init(struct perf_event *event) 1855 { 1856 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1857 PERF_EVENT_STATE_INACTIVE; 1858 } 1859 1860 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1861 { 1862 int entry = sizeof(u64); /* value */ 1863 int size = 0; 1864 int nr = 1; 1865 1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1867 size += sizeof(u64); 1868 1869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1870 size += sizeof(u64); 1871 1872 if (read_format & PERF_FORMAT_ID) 1873 entry += sizeof(u64); 1874 1875 if (read_format & PERF_FORMAT_LOST) 1876 entry += sizeof(u64); 1877 1878 if (read_format & PERF_FORMAT_GROUP) { 1879 nr += nr_siblings; 1880 size += sizeof(u64); 1881 } 1882 1883 /* 1884 * Since perf_event_validate_size() limits this to 16k and inhibits 1885 * adding more siblings, this will never overflow. 1886 */ 1887 return size + nr * entry; 1888 } 1889 1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1891 { 1892 struct perf_sample_data *data; 1893 u16 size = 0; 1894 1895 if (sample_type & PERF_SAMPLE_IP) 1896 size += sizeof(data->ip); 1897 1898 if (sample_type & PERF_SAMPLE_ADDR) 1899 size += sizeof(data->addr); 1900 1901 if (sample_type & PERF_SAMPLE_PERIOD) 1902 size += sizeof(data->period); 1903 1904 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1905 size += sizeof(data->weight.full); 1906 1907 if (sample_type & PERF_SAMPLE_READ) 1908 size += event->read_size; 1909 1910 if (sample_type & PERF_SAMPLE_DATA_SRC) 1911 size += sizeof(data->data_src.val); 1912 1913 if (sample_type & PERF_SAMPLE_TRANSACTION) 1914 size += sizeof(data->txn); 1915 1916 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1917 size += sizeof(data->phys_addr); 1918 1919 if (sample_type & PERF_SAMPLE_CGROUP) 1920 size += sizeof(data->cgroup); 1921 1922 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1923 size += sizeof(data->data_page_size); 1924 1925 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1926 size += sizeof(data->code_page_size); 1927 1928 event->header_size = size; 1929 } 1930 1931 /* 1932 * Called at perf_event creation and when events are attached/detached from a 1933 * group. 1934 */ 1935 static void perf_event__header_size(struct perf_event *event) 1936 { 1937 event->read_size = 1938 __perf_event_read_size(event->attr.read_format, 1939 event->group_leader->nr_siblings); 1940 __perf_event_header_size(event, event->attr.sample_type); 1941 } 1942 1943 static void perf_event__id_header_size(struct perf_event *event) 1944 { 1945 struct perf_sample_data *data; 1946 u64 sample_type = event->attr.sample_type; 1947 u16 size = 0; 1948 1949 if (sample_type & PERF_SAMPLE_TID) 1950 size += sizeof(data->tid_entry); 1951 1952 if (sample_type & PERF_SAMPLE_TIME) 1953 size += sizeof(data->time); 1954 1955 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1956 size += sizeof(data->id); 1957 1958 if (sample_type & PERF_SAMPLE_ID) 1959 size += sizeof(data->id); 1960 1961 if (sample_type & PERF_SAMPLE_STREAM_ID) 1962 size += sizeof(data->stream_id); 1963 1964 if (sample_type & PERF_SAMPLE_CPU) 1965 size += sizeof(data->cpu_entry); 1966 1967 event->id_header_size = size; 1968 } 1969 1970 /* 1971 * Check that adding an event to the group does not result in anybody 1972 * overflowing the 64k event limit imposed by the output buffer. 1973 * 1974 * Specifically, check that the read_size for the event does not exceed 16k, 1975 * read_size being the one term that grows with groups size. Since read_size 1976 * depends on per-event read_format, also (re)check the existing events. 1977 * 1978 * This leaves 48k for the constant size fields and things like callchains, 1979 * branch stacks and register sets. 1980 */ 1981 static bool perf_event_validate_size(struct perf_event *event) 1982 { 1983 struct perf_event *sibling, *group_leader = event->group_leader; 1984 1985 if (__perf_event_read_size(event->attr.read_format, 1986 group_leader->nr_siblings + 1) > 16*1024) 1987 return false; 1988 1989 if (__perf_event_read_size(group_leader->attr.read_format, 1990 group_leader->nr_siblings + 1) > 16*1024) 1991 return false; 1992 1993 /* 1994 * When creating a new group leader, group_leader->ctx is initialized 1995 * after the size has been validated, but we cannot safely use 1996 * for_each_sibling_event() until group_leader->ctx is set. A new group 1997 * leader cannot have any siblings yet, so we can safely skip checking 1998 * the non-existent siblings. 1999 */ 2000 if (event == group_leader) 2001 return true; 2002 2003 for_each_sibling_event(sibling, group_leader) { 2004 if (__perf_event_read_size(sibling->attr.read_format, 2005 group_leader->nr_siblings + 1) > 16*1024) 2006 return false; 2007 } 2008 2009 return true; 2010 } 2011 2012 static void perf_group_attach(struct perf_event *event) 2013 { 2014 struct perf_event *group_leader = event->group_leader, *pos; 2015 2016 lockdep_assert_held(&event->ctx->lock); 2017 2018 /* 2019 * We can have double attach due to group movement (move_group) in 2020 * perf_event_open(). 2021 */ 2022 if (event->attach_state & PERF_ATTACH_GROUP) 2023 return; 2024 2025 event->attach_state |= PERF_ATTACH_GROUP; 2026 2027 if (group_leader == event) 2028 return; 2029 2030 WARN_ON_ONCE(group_leader->ctx != event->ctx); 2031 2032 group_leader->group_caps &= event->event_caps; 2033 2034 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 2035 group_leader->nr_siblings++; 2036 group_leader->group_generation++; 2037 2038 perf_event__header_size(group_leader); 2039 2040 for_each_sibling_event(pos, group_leader) 2041 perf_event__header_size(pos); 2042 } 2043 2044 /* 2045 * Remove an event from the lists for its context. 2046 * Must be called with ctx->mutex and ctx->lock held. 2047 */ 2048 static void 2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2050 { 2051 WARN_ON_ONCE(event->ctx != ctx); 2052 lockdep_assert_held(&ctx->lock); 2053 2054 /* 2055 * We can have double detach due to exit/hot-unplug + close. 2056 */ 2057 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2058 return; 2059 2060 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2061 2062 ctx->nr_events--; 2063 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2064 ctx->nr_user--; 2065 if (event->attr.inherit_stat) 2066 ctx->nr_stat--; 2067 if (has_inherit_and_sample_read(&event->attr)) 2068 local_dec(&ctx->nr_no_switch_fast); 2069 2070 list_del_rcu(&event->event_entry); 2071 2072 if (event->group_leader == event) 2073 del_event_from_groups(event, ctx); 2074 2075 /* 2076 * If event was in error state, then keep it 2077 * that way, otherwise bogus counts will be 2078 * returned on read(). The only way to get out 2079 * of error state is by explicit re-enabling 2080 * of the event 2081 */ 2082 if (event->state > PERF_EVENT_STATE_OFF) { 2083 perf_cgroup_event_disable(event, ctx); 2084 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2085 } 2086 2087 ctx->generation++; 2088 event->pmu_ctx->nr_events--; 2089 } 2090 2091 static int 2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2093 { 2094 if (!has_aux(aux_event)) 2095 return 0; 2096 2097 if (!event->pmu->aux_output_match) 2098 return 0; 2099 2100 return event->pmu->aux_output_match(aux_event); 2101 } 2102 2103 static void put_event(struct perf_event *event); 2104 static void event_sched_out(struct perf_event *event, 2105 struct perf_event_context *ctx); 2106 2107 static void perf_put_aux_event(struct perf_event *event) 2108 { 2109 struct perf_event_context *ctx = event->ctx; 2110 struct perf_event *iter; 2111 2112 /* 2113 * If event uses aux_event tear down the link 2114 */ 2115 if (event->aux_event) { 2116 iter = event->aux_event; 2117 event->aux_event = NULL; 2118 put_event(iter); 2119 return; 2120 } 2121 2122 /* 2123 * If the event is an aux_event, tear down all links to 2124 * it from other events. 2125 */ 2126 for_each_sibling_event(iter, event->group_leader) { 2127 if (iter->aux_event != event) 2128 continue; 2129 2130 iter->aux_event = NULL; 2131 put_event(event); 2132 2133 /* 2134 * If it's ACTIVE, schedule it out and put it into ERROR 2135 * state so that we don't try to schedule it again. Note 2136 * that perf_event_enable() will clear the ERROR status. 2137 */ 2138 event_sched_out(iter, ctx); 2139 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2140 } 2141 } 2142 2143 static bool perf_need_aux_event(struct perf_event *event) 2144 { 2145 return event->attr.aux_output || has_aux_action(event); 2146 } 2147 2148 static int perf_get_aux_event(struct perf_event *event, 2149 struct perf_event *group_leader) 2150 { 2151 /* 2152 * Our group leader must be an aux event if we want to be 2153 * an aux_output. This way, the aux event will precede its 2154 * aux_output events in the group, and therefore will always 2155 * schedule first. 2156 */ 2157 if (!group_leader) 2158 return 0; 2159 2160 /* 2161 * aux_output and aux_sample_size are mutually exclusive. 2162 */ 2163 if (event->attr.aux_output && event->attr.aux_sample_size) 2164 return 0; 2165 2166 if (event->attr.aux_output && 2167 !perf_aux_output_match(event, group_leader)) 2168 return 0; 2169 2170 if ((event->attr.aux_pause || event->attr.aux_resume) && 2171 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) 2172 return 0; 2173 2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2175 return 0; 2176 2177 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2178 return 0; 2179 2180 /* 2181 * Link aux_outputs to their aux event; this is undone in 2182 * perf_group_detach() by perf_put_aux_event(). When the 2183 * group in torn down, the aux_output events loose their 2184 * link to the aux_event and can't schedule any more. 2185 */ 2186 event->aux_event = group_leader; 2187 2188 return 1; 2189 } 2190 2191 static inline struct list_head *get_event_list(struct perf_event *event) 2192 { 2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2194 &event->pmu_ctx->flexible_active; 2195 } 2196 2197 /* 2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2199 * cannot exist on their own, schedule them out and move them into the ERROR 2200 * state. Also see _perf_event_enable(), it will not be able to recover 2201 * this ERROR state. 2202 */ 2203 static inline void perf_remove_sibling_event(struct perf_event *event) 2204 { 2205 event_sched_out(event, event->ctx); 2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2207 } 2208 2209 static void perf_group_detach(struct perf_event *event) 2210 { 2211 struct perf_event *leader = event->group_leader; 2212 struct perf_event *sibling, *tmp; 2213 struct perf_event_context *ctx = event->ctx; 2214 2215 lockdep_assert_held(&ctx->lock); 2216 2217 /* 2218 * We can have double detach due to exit/hot-unplug + close. 2219 */ 2220 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2221 return; 2222 2223 event->attach_state &= ~PERF_ATTACH_GROUP; 2224 2225 perf_put_aux_event(event); 2226 2227 /* 2228 * If this is a sibling, remove it from its group. 2229 */ 2230 if (leader != event) { 2231 list_del_init(&event->sibling_list); 2232 event->group_leader->nr_siblings--; 2233 event->group_leader->group_generation++; 2234 goto out; 2235 } 2236 2237 /* 2238 * If this was a group event with sibling events then 2239 * upgrade the siblings to singleton events by adding them 2240 * to whatever list we are on. 2241 */ 2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2243 2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2245 perf_remove_sibling_event(sibling); 2246 2247 sibling->group_leader = sibling; 2248 list_del_init(&sibling->sibling_list); 2249 2250 /* Inherit group flags from the previous leader */ 2251 sibling->group_caps = event->group_caps; 2252 2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2254 add_event_to_groups(sibling, event->ctx); 2255 2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2257 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2258 } 2259 2260 WARN_ON_ONCE(sibling->ctx != event->ctx); 2261 } 2262 2263 out: 2264 for_each_sibling_event(tmp, leader) 2265 perf_event__header_size(tmp); 2266 2267 perf_event__header_size(leader); 2268 } 2269 2270 static void sync_child_event(struct perf_event *child_event); 2271 2272 static void perf_child_detach(struct perf_event *event) 2273 { 2274 struct perf_event *parent_event = event->parent; 2275 2276 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2277 return; 2278 2279 event->attach_state &= ~PERF_ATTACH_CHILD; 2280 2281 if (WARN_ON_ONCE(!parent_event)) 2282 return; 2283 2284 lockdep_assert_held(&parent_event->child_mutex); 2285 2286 sync_child_event(event); 2287 list_del_init(&event->child_list); 2288 } 2289 2290 static bool is_orphaned_event(struct perf_event *event) 2291 { 2292 return event->state == PERF_EVENT_STATE_DEAD; 2293 } 2294 2295 static inline int 2296 event_filter_match(struct perf_event *event) 2297 { 2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2299 perf_cgroup_match(event); 2300 } 2301 2302 static void 2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2304 { 2305 struct perf_event_pmu_context *epc = event->pmu_ctx; 2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2308 2309 // XXX cpc serialization, probably per-cpu IRQ disabled 2310 2311 WARN_ON_ONCE(event->ctx != ctx); 2312 lockdep_assert_held(&ctx->lock); 2313 2314 if (event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 /* 2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2319 * we can schedule events _OUT_ individually through things like 2320 * __perf_remove_from_context(). 2321 */ 2322 list_del_init(&event->active_list); 2323 2324 perf_pmu_disable(event->pmu); 2325 2326 event->pmu->del(event, 0); 2327 event->oncpu = -1; 2328 2329 if (event->pending_disable) { 2330 event->pending_disable = 0; 2331 perf_cgroup_event_disable(event, ctx); 2332 state = PERF_EVENT_STATE_OFF; 2333 } 2334 2335 perf_event_set_state(event, state); 2336 2337 if (!is_software_event(event)) 2338 cpc->active_oncpu--; 2339 if (event->attr.freq && event->attr.sample_freq) { 2340 ctx->nr_freq--; 2341 epc->nr_freq--; 2342 } 2343 if (event->attr.exclusive || !cpc->active_oncpu) 2344 cpc->exclusive = 0; 2345 2346 perf_pmu_enable(event->pmu); 2347 } 2348 2349 static void 2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2351 { 2352 struct perf_event *event; 2353 2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2355 return; 2356 2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2358 2359 event_sched_out(group_event, ctx); 2360 2361 /* 2362 * Schedule out siblings (if any): 2363 */ 2364 for_each_sibling_event(event, group_event) 2365 event_sched_out(event, ctx); 2366 } 2367 2368 static inline void 2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) 2370 { 2371 if (ctx->is_active & EVENT_TIME) { 2372 if (ctx->is_active & EVENT_FROZEN) 2373 return; 2374 update_context_time(ctx); 2375 update_cgrp_time_from_cpuctx(cpuctx, final); 2376 } 2377 } 2378 2379 static inline void 2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2381 { 2382 __ctx_time_update(cpuctx, ctx, false); 2383 } 2384 2385 /* 2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). 2387 */ 2388 static inline void 2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) 2390 { 2391 ctx_time_update(cpuctx, ctx); 2392 if (ctx->is_active & EVENT_TIME) 2393 ctx->is_active |= EVENT_FROZEN; 2394 } 2395 2396 static inline void 2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) 2398 { 2399 if (ctx->is_active & EVENT_TIME) { 2400 if (ctx->is_active & EVENT_FROZEN) 2401 return; 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 } 2406 2407 #define DETACH_GROUP 0x01UL 2408 #define DETACH_CHILD 0x02UL 2409 #define DETACH_DEAD 0x04UL 2410 2411 /* 2412 * Cross CPU call to remove a performance event 2413 * 2414 * We disable the event on the hardware level first. After that we 2415 * remove it from the context list. 2416 */ 2417 static void 2418 __perf_remove_from_context(struct perf_event *event, 2419 struct perf_cpu_context *cpuctx, 2420 struct perf_event_context *ctx, 2421 void *info) 2422 { 2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2424 unsigned long flags = (unsigned long)info; 2425 2426 ctx_time_update(cpuctx, ctx); 2427 2428 /* 2429 * Ensure event_sched_out() switches to OFF, at the very least 2430 * this avoids raising perf_pending_task() at this time. 2431 */ 2432 if (flags & DETACH_DEAD) 2433 event->pending_disable = 1; 2434 event_sched_out(event, ctx); 2435 if (flags & DETACH_GROUP) 2436 perf_group_detach(event); 2437 if (flags & DETACH_CHILD) 2438 perf_child_detach(event); 2439 list_del_event(event, ctx); 2440 if (flags & DETACH_DEAD) 2441 event->state = PERF_EVENT_STATE_DEAD; 2442 2443 if (!pmu_ctx->nr_events) { 2444 pmu_ctx->rotate_necessary = 0; 2445 2446 if (ctx->task && ctx->is_active) { 2447 struct perf_cpu_pmu_context *cpc; 2448 2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2451 cpc->task_epc = NULL; 2452 } 2453 } 2454 2455 if (!ctx->nr_events && ctx->is_active) { 2456 if (ctx == &cpuctx->ctx) 2457 update_cgrp_time_from_cpuctx(cpuctx, true); 2458 2459 ctx->is_active = 0; 2460 if (ctx->task) { 2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2462 cpuctx->task_ctx = NULL; 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Remove the event from a task's (or a CPU's) list of events. 2469 * 2470 * If event->ctx is a cloned context, callers must make sure that 2471 * every task struct that event->ctx->task could possibly point to 2472 * remains valid. This is OK when called from perf_release since 2473 * that only calls us on the top-level context, which can't be a clone. 2474 * When called from perf_event_exit_task, it's OK because the 2475 * context has been detached from its task. 2476 */ 2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2478 { 2479 struct perf_event_context *ctx = event->ctx; 2480 2481 lockdep_assert_held(&ctx->mutex); 2482 2483 /* 2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2485 * to work in the face of TASK_TOMBSTONE, unlike every other 2486 * event_function_call() user. 2487 */ 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (!ctx->is_active) { 2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2491 ctx, (void *)flags); 2492 raw_spin_unlock_irq(&ctx->lock); 2493 return; 2494 } 2495 raw_spin_unlock_irq(&ctx->lock); 2496 2497 event_function_call(event, __perf_remove_from_context, (void *)flags); 2498 } 2499 2500 /* 2501 * Cross CPU call to disable a performance event 2502 */ 2503 static void __perf_event_disable(struct perf_event *event, 2504 struct perf_cpu_context *cpuctx, 2505 struct perf_event_context *ctx, 2506 void *info) 2507 { 2508 if (event->state < PERF_EVENT_STATE_INACTIVE) 2509 return; 2510 2511 perf_pmu_disable(event->pmu_ctx->pmu); 2512 ctx_time_update_event(ctx, event); 2513 2514 if (event == event->group_leader) 2515 group_sched_out(event, ctx); 2516 else 2517 event_sched_out(event, ctx); 2518 2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2520 perf_cgroup_event_disable(event, ctx); 2521 2522 perf_pmu_enable(event->pmu_ctx->pmu); 2523 } 2524 2525 /* 2526 * Disable an event. 2527 * 2528 * If event->ctx is a cloned context, callers must make sure that 2529 * every task struct that event->ctx->task could possibly point to 2530 * remains valid. This condition is satisfied when called through 2531 * perf_event_for_each_child or perf_event_for_each because they 2532 * hold the top-level event's child_mutex, so any descendant that 2533 * goes to exit will block in perf_event_exit_event(). 2534 * 2535 * When called from perf_pending_disable it's OK because event->ctx 2536 * is the current context on this CPU and preemption is disabled, 2537 * hence we can't get into perf_event_task_sched_out for this context. 2538 */ 2539 static void _perf_event_disable(struct perf_event *event) 2540 { 2541 struct perf_event_context *ctx = event->ctx; 2542 2543 raw_spin_lock_irq(&ctx->lock); 2544 if (event->state <= PERF_EVENT_STATE_OFF) { 2545 raw_spin_unlock_irq(&ctx->lock); 2546 return; 2547 } 2548 raw_spin_unlock_irq(&ctx->lock); 2549 2550 event_function_call(event, __perf_event_disable, NULL); 2551 } 2552 2553 void perf_event_disable_local(struct perf_event *event) 2554 { 2555 event_function_local(event, __perf_event_disable, NULL); 2556 } 2557 2558 /* 2559 * Strictly speaking kernel users cannot create groups and therefore this 2560 * interface does not need the perf_event_ctx_lock() magic. 2561 */ 2562 void perf_event_disable(struct perf_event *event) 2563 { 2564 struct perf_event_context *ctx; 2565 2566 ctx = perf_event_ctx_lock(event); 2567 _perf_event_disable(event); 2568 perf_event_ctx_unlock(event, ctx); 2569 } 2570 EXPORT_SYMBOL_GPL(perf_event_disable); 2571 2572 void perf_event_disable_inatomic(struct perf_event *event) 2573 { 2574 event->pending_disable = 1; 2575 irq_work_queue(&event->pending_disable_irq); 2576 } 2577 2578 #define MAX_INTERRUPTS (~0ULL) 2579 2580 static void perf_log_throttle(struct perf_event *event, int enable); 2581 static void perf_log_itrace_start(struct perf_event *event); 2582 2583 static int 2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 int ret = 0; 2589 2590 WARN_ON_ONCE(event->ctx != ctx); 2591 2592 lockdep_assert_held(&ctx->lock); 2593 2594 if (event->state <= PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 WRITE_ONCE(event->oncpu, smp_processor_id()); 2598 /* 2599 * Order event::oncpu write to happen before the ACTIVE state is 2600 * visible. This allows perf_event_{stop,read}() to observe the correct 2601 * ->oncpu if it sees ACTIVE. 2602 */ 2603 smp_wmb(); 2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2605 2606 /* 2607 * Unthrottle events, since we scheduled we might have missed several 2608 * ticks already, also for a heavily scheduling task there is little 2609 * guarantee it'll get a tick in a timely manner. 2610 */ 2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2612 perf_log_throttle(event, 1); 2613 event->hw.interrupts = 0; 2614 } 2615 2616 perf_pmu_disable(event->pmu); 2617 2618 perf_log_itrace_start(event); 2619 2620 if (event->pmu->add(event, PERF_EF_START)) { 2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2622 event->oncpu = -1; 2623 ret = -EAGAIN; 2624 goto out; 2625 } 2626 2627 if (!is_software_event(event)) 2628 cpc->active_oncpu++; 2629 if (event->attr.freq && event->attr.sample_freq) { 2630 ctx->nr_freq++; 2631 epc->nr_freq++; 2632 } 2633 if (event->attr.exclusive) 2634 cpc->exclusive = 1; 2635 2636 out: 2637 perf_pmu_enable(event->pmu); 2638 2639 return ret; 2640 } 2641 2642 static int 2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2644 { 2645 struct perf_event *event, *partial_group = NULL; 2646 struct pmu *pmu = group_event->pmu_ctx->pmu; 2647 2648 if (group_event->state == PERF_EVENT_STATE_OFF) 2649 return 0; 2650 2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2652 2653 if (event_sched_in(group_event, ctx)) 2654 goto error; 2655 2656 /* 2657 * Schedule in siblings as one group (if any): 2658 */ 2659 for_each_sibling_event(event, group_event) { 2660 if (event_sched_in(event, ctx)) { 2661 partial_group = event; 2662 goto group_error; 2663 } 2664 } 2665 2666 if (!pmu->commit_txn(pmu)) 2667 return 0; 2668 2669 group_error: 2670 /* 2671 * Groups can be scheduled in as one unit only, so undo any 2672 * partial group before returning: 2673 * The events up to the failed event are scheduled out normally. 2674 */ 2675 for_each_sibling_event(event, group_event) { 2676 if (event == partial_group) 2677 break; 2678 2679 event_sched_out(event, ctx); 2680 } 2681 event_sched_out(group_event, ctx); 2682 2683 error: 2684 pmu->cancel_txn(pmu); 2685 return -EAGAIN; 2686 } 2687 2688 /* 2689 * Work out whether we can put this event group on the CPU now. 2690 */ 2691 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2692 { 2693 struct perf_event_pmu_context *epc = event->pmu_ctx; 2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2695 2696 /* 2697 * Groups consisting entirely of software events can always go on. 2698 */ 2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2700 return 1; 2701 /* 2702 * If an exclusive group is already on, no other hardware 2703 * events can go on. 2704 */ 2705 if (cpc->exclusive) 2706 return 0; 2707 /* 2708 * If this group is exclusive and there are already 2709 * events on the CPU, it can't go on. 2710 */ 2711 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2712 return 0; 2713 /* 2714 * Otherwise, try to add it if all previous groups were able 2715 * to go on. 2716 */ 2717 return can_add_hw; 2718 } 2719 2720 static void add_event_to_ctx(struct perf_event *event, 2721 struct perf_event_context *ctx) 2722 { 2723 list_add_event(event, ctx); 2724 perf_group_attach(event); 2725 } 2726 2727 static void task_ctx_sched_out(struct perf_event_context *ctx, 2728 struct pmu *pmu, 2729 enum event_type_t event_type) 2730 { 2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2732 2733 if (!cpuctx->task_ctx) 2734 return; 2735 2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2737 return; 2738 2739 ctx_sched_out(ctx, pmu, event_type); 2740 } 2741 2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 struct pmu *pmu) 2745 { 2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); 2747 if (ctx) 2748 ctx_sched_in(ctx, pmu, EVENT_PINNED); 2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2750 if (ctx) 2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); 2752 } 2753 2754 /* 2755 * We want to maintain the following priority of scheduling: 2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2757 * - task pinned (EVENT_PINNED) 2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2759 * - task flexible (EVENT_FLEXIBLE). 2760 * 2761 * In order to avoid unscheduling and scheduling back in everything every 2762 * time an event is added, only do it for the groups of equal priority and 2763 * below. 2764 * 2765 * This can be called after a batch operation on task events, in which case 2766 * event_type is a bit mask of the types of events involved. For CPU events, 2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2768 */ 2769 static void ctx_resched(struct perf_cpu_context *cpuctx, 2770 struct perf_event_context *task_ctx, 2771 struct pmu *pmu, enum event_type_t event_type) 2772 { 2773 bool cpu_event = !!(event_type & EVENT_CPU); 2774 struct perf_event_pmu_context *epc; 2775 2776 /* 2777 * If pinned groups are involved, flexible groups also need to be 2778 * scheduled out. 2779 */ 2780 if (event_type & EVENT_PINNED) 2781 event_type |= EVENT_FLEXIBLE; 2782 2783 event_type &= EVENT_ALL; 2784 2785 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2786 perf_pmu_disable(epc->pmu); 2787 2788 if (task_ctx) { 2789 for_each_epc(epc, task_ctx, pmu, false) 2790 perf_pmu_disable(epc->pmu); 2791 2792 task_ctx_sched_out(task_ctx, pmu, event_type); 2793 } 2794 2795 /* 2796 * Decide which cpu ctx groups to schedule out based on the types 2797 * of events that caused rescheduling: 2798 * - EVENT_CPU: schedule out corresponding groups; 2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2800 * - otherwise, do nothing more. 2801 */ 2802 if (cpu_event) 2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type); 2804 else if (event_type & EVENT_PINNED) 2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); 2806 2807 perf_event_sched_in(cpuctx, task_ctx, pmu); 2808 2809 for_each_epc(epc, &cpuctx->ctx, pmu, false) 2810 perf_pmu_enable(epc->pmu); 2811 2812 if (task_ctx) { 2813 for_each_epc(epc, task_ctx, pmu, false) 2814 perf_pmu_enable(epc->pmu); 2815 } 2816 } 2817 2818 void perf_pmu_resched(struct pmu *pmu) 2819 { 2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2821 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2822 2823 perf_ctx_lock(cpuctx, task_ctx); 2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); 2825 perf_ctx_unlock(cpuctx, task_ctx); 2826 } 2827 2828 /* 2829 * Cross CPU call to install and enable a performance event 2830 * 2831 * Very similar to remote_function() + event_function() but cannot assume that 2832 * things like ctx->is_active and cpuctx->task_ctx are set. 2833 */ 2834 static int __perf_install_in_context(void *info) 2835 { 2836 struct perf_event *event = info; 2837 struct perf_event_context *ctx = event->ctx; 2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2839 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2840 bool reprogram = true; 2841 int ret = 0; 2842 2843 raw_spin_lock(&cpuctx->ctx.lock); 2844 if (ctx->task) { 2845 raw_spin_lock(&ctx->lock); 2846 task_ctx = ctx; 2847 2848 reprogram = (ctx->task == current); 2849 2850 /* 2851 * If the task is running, it must be running on this CPU, 2852 * otherwise we cannot reprogram things. 2853 * 2854 * If its not running, we don't care, ctx->lock will 2855 * serialize against it becoming runnable. 2856 */ 2857 if (task_curr(ctx->task) && !reprogram) { 2858 ret = -ESRCH; 2859 goto unlock; 2860 } 2861 2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2863 } else if (task_ctx) { 2864 raw_spin_lock(&task_ctx->lock); 2865 } 2866 2867 #ifdef CONFIG_CGROUP_PERF 2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2869 /* 2870 * If the current cgroup doesn't match the event's 2871 * cgroup, we should not try to schedule it. 2872 */ 2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2875 event->cgrp->css.cgroup); 2876 } 2877 #endif 2878 2879 if (reprogram) { 2880 ctx_time_freeze(cpuctx, ctx); 2881 add_event_to_ctx(event, ctx); 2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, 2883 get_event_type(event)); 2884 } else { 2885 add_event_to_ctx(event, ctx); 2886 } 2887 2888 unlock: 2889 perf_ctx_unlock(cpuctx, task_ctx); 2890 2891 return ret; 2892 } 2893 2894 static bool exclusive_event_installable(struct perf_event *event, 2895 struct perf_event_context *ctx); 2896 2897 /* 2898 * Attach a performance event to a context. 2899 * 2900 * Very similar to event_function_call, see comment there. 2901 */ 2902 static void 2903 perf_install_in_context(struct perf_event_context *ctx, 2904 struct perf_event *event, 2905 int cpu) 2906 { 2907 struct task_struct *task = READ_ONCE(ctx->task); 2908 2909 lockdep_assert_held(&ctx->mutex); 2910 2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2912 2913 if (event->cpu != -1) 2914 WARN_ON_ONCE(event->cpu != cpu); 2915 2916 /* 2917 * Ensures that if we can observe event->ctx, both the event and ctx 2918 * will be 'complete'. See perf_iterate_sb_cpu(). 2919 */ 2920 smp_store_release(&event->ctx, ctx); 2921 2922 /* 2923 * perf_event_attr::disabled events will not run and can be initialized 2924 * without IPI. Except when this is the first event for the context, in 2925 * that case we need the magic of the IPI to set ctx->is_active. 2926 * 2927 * The IOC_ENABLE that is sure to follow the creation of a disabled 2928 * event will issue the IPI and reprogram the hardware. 2929 */ 2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2931 ctx->nr_events && !is_cgroup_event(event)) { 2932 raw_spin_lock_irq(&ctx->lock); 2933 if (ctx->task == TASK_TOMBSTONE) { 2934 raw_spin_unlock_irq(&ctx->lock); 2935 return; 2936 } 2937 add_event_to_ctx(event, ctx); 2938 raw_spin_unlock_irq(&ctx->lock); 2939 return; 2940 } 2941 2942 if (!task) { 2943 cpu_function_call(cpu, __perf_install_in_context, event); 2944 return; 2945 } 2946 2947 /* 2948 * Should not happen, we validate the ctx is still alive before calling. 2949 */ 2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2951 return; 2952 2953 /* 2954 * Installing events is tricky because we cannot rely on ctx->is_active 2955 * to be set in case this is the nr_events 0 -> 1 transition. 2956 * 2957 * Instead we use task_curr(), which tells us if the task is running. 2958 * However, since we use task_curr() outside of rq::lock, we can race 2959 * against the actual state. This means the result can be wrong. 2960 * 2961 * If we get a false positive, we retry, this is harmless. 2962 * 2963 * If we get a false negative, things are complicated. If we are after 2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2965 * value must be correct. If we're before, it doesn't matter since 2966 * perf_event_context_sched_in() will program the counter. 2967 * 2968 * However, this hinges on the remote context switch having observed 2969 * our task->perf_event_ctxp[] store, such that it will in fact take 2970 * ctx::lock in perf_event_context_sched_in(). 2971 * 2972 * We do this by task_function_call(), if the IPI fails to hit the task 2973 * we know any future context switch of task must see the 2974 * perf_event_ctpx[] store. 2975 */ 2976 2977 /* 2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2979 * task_cpu() load, such that if the IPI then does not find the task 2980 * running, a future context switch of that task must observe the 2981 * store. 2982 */ 2983 smp_mb(); 2984 again: 2985 if (!task_function_call(task, __perf_install_in_context, event)) 2986 return; 2987 2988 raw_spin_lock_irq(&ctx->lock); 2989 task = ctx->task; 2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2991 /* 2992 * Cannot happen because we already checked above (which also 2993 * cannot happen), and we hold ctx->mutex, which serializes us 2994 * against perf_event_exit_task_context(). 2995 */ 2996 raw_spin_unlock_irq(&ctx->lock); 2997 return; 2998 } 2999 /* 3000 * If the task is not running, ctx->lock will avoid it becoming so, 3001 * thus we can safely install the event. 3002 */ 3003 if (task_curr(task)) { 3004 raw_spin_unlock_irq(&ctx->lock); 3005 goto again; 3006 } 3007 add_event_to_ctx(event, ctx); 3008 raw_spin_unlock_irq(&ctx->lock); 3009 } 3010 3011 /* 3012 * Cross CPU call to enable a performance event 3013 */ 3014 static void __perf_event_enable(struct perf_event *event, 3015 struct perf_cpu_context *cpuctx, 3016 struct perf_event_context *ctx, 3017 void *info) 3018 { 3019 struct perf_event *leader = event->group_leader; 3020 struct perf_event_context *task_ctx; 3021 3022 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3023 event->state <= PERF_EVENT_STATE_ERROR) 3024 return; 3025 3026 ctx_time_freeze(cpuctx, ctx); 3027 3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3029 perf_cgroup_event_enable(event, ctx); 3030 3031 if (!ctx->is_active) 3032 return; 3033 3034 if (!event_filter_match(event)) 3035 return; 3036 3037 /* 3038 * If the event is in a group and isn't the group leader, 3039 * then don't put it on unless the group is on. 3040 */ 3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 3042 return; 3043 3044 task_ctx = cpuctx->task_ctx; 3045 if (ctx->task) 3046 WARN_ON_ONCE(task_ctx != ctx); 3047 3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); 3049 } 3050 3051 /* 3052 * Enable an event. 3053 * 3054 * If event->ctx is a cloned context, callers must make sure that 3055 * every task struct that event->ctx->task could possibly point to 3056 * remains valid. This condition is satisfied when called through 3057 * perf_event_for_each_child or perf_event_for_each as described 3058 * for perf_event_disable. 3059 */ 3060 static void _perf_event_enable(struct perf_event *event) 3061 { 3062 struct perf_event_context *ctx = event->ctx; 3063 3064 raw_spin_lock_irq(&ctx->lock); 3065 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3066 event->state < PERF_EVENT_STATE_ERROR) { 3067 out: 3068 raw_spin_unlock_irq(&ctx->lock); 3069 return; 3070 } 3071 3072 /* 3073 * If the event is in error state, clear that first. 3074 * 3075 * That way, if we see the event in error state below, we know that it 3076 * has gone back into error state, as distinct from the task having 3077 * been scheduled away before the cross-call arrived. 3078 */ 3079 if (event->state == PERF_EVENT_STATE_ERROR) { 3080 /* 3081 * Detached SIBLING events cannot leave ERROR state. 3082 */ 3083 if (event->event_caps & PERF_EV_CAP_SIBLING && 3084 event->group_leader == event) 3085 goto out; 3086 3087 event->state = PERF_EVENT_STATE_OFF; 3088 } 3089 raw_spin_unlock_irq(&ctx->lock); 3090 3091 event_function_call(event, __perf_event_enable, NULL); 3092 } 3093 3094 /* 3095 * See perf_event_disable(); 3096 */ 3097 void perf_event_enable(struct perf_event *event) 3098 { 3099 struct perf_event_context *ctx; 3100 3101 ctx = perf_event_ctx_lock(event); 3102 _perf_event_enable(event); 3103 perf_event_ctx_unlock(event, ctx); 3104 } 3105 EXPORT_SYMBOL_GPL(perf_event_enable); 3106 3107 struct stop_event_data { 3108 struct perf_event *event; 3109 unsigned int restart; 3110 }; 3111 3112 static int __perf_event_stop(void *info) 3113 { 3114 struct stop_event_data *sd = info; 3115 struct perf_event *event = sd->event; 3116 3117 /* if it's already INACTIVE, do nothing */ 3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3119 return 0; 3120 3121 /* matches smp_wmb() in event_sched_in() */ 3122 smp_rmb(); 3123 3124 /* 3125 * There is a window with interrupts enabled before we get here, 3126 * so we need to check again lest we try to stop another CPU's event. 3127 */ 3128 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3129 return -EAGAIN; 3130 3131 event->pmu->stop(event, PERF_EF_UPDATE); 3132 3133 /* 3134 * May race with the actual stop (through perf_pmu_output_stop()), 3135 * but it is only used for events with AUX ring buffer, and such 3136 * events will refuse to restart because of rb::aux_mmap_count==0, 3137 * see comments in perf_aux_output_begin(). 3138 * 3139 * Since this is happening on an event-local CPU, no trace is lost 3140 * while restarting. 3141 */ 3142 if (sd->restart) 3143 event->pmu->start(event, 0); 3144 3145 return 0; 3146 } 3147 3148 static int perf_event_stop(struct perf_event *event, int restart) 3149 { 3150 struct stop_event_data sd = { 3151 .event = event, 3152 .restart = restart, 3153 }; 3154 int ret = 0; 3155 3156 do { 3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3158 return 0; 3159 3160 /* matches smp_wmb() in event_sched_in() */ 3161 smp_rmb(); 3162 3163 /* 3164 * We only want to restart ACTIVE events, so if the event goes 3165 * inactive here (event->oncpu==-1), there's nothing more to do; 3166 * fall through with ret==-ENXIO. 3167 */ 3168 ret = cpu_function_call(READ_ONCE(event->oncpu), 3169 __perf_event_stop, &sd); 3170 } while (ret == -EAGAIN); 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * In order to contain the amount of racy and tricky in the address filter 3177 * configuration management, it is a two part process: 3178 * 3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3180 * we update the addresses of corresponding vmas in 3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3182 * (p2) when an event is scheduled in (pmu::add), it calls 3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3184 * if the generation has changed since the previous call. 3185 * 3186 * If (p1) happens while the event is active, we restart it to force (p2). 3187 * 3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3190 * ioctl; 3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3193 * for reading; 3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3195 * of exec. 3196 */ 3197 void perf_event_addr_filters_sync(struct perf_event *event) 3198 { 3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3200 3201 if (!has_addr_filter(event)) 3202 return; 3203 3204 raw_spin_lock(&ifh->lock); 3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3206 event->pmu->addr_filters_sync(event); 3207 event->hw.addr_filters_gen = event->addr_filters_gen; 3208 } 3209 raw_spin_unlock(&ifh->lock); 3210 } 3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3212 3213 static int _perf_event_refresh(struct perf_event *event, int refresh) 3214 { 3215 /* 3216 * not supported on inherited events 3217 */ 3218 if (event->attr.inherit || !is_sampling_event(event)) 3219 return -EINVAL; 3220 3221 atomic_add(refresh, &event->event_limit); 3222 _perf_event_enable(event); 3223 3224 return 0; 3225 } 3226 3227 /* 3228 * See perf_event_disable() 3229 */ 3230 int perf_event_refresh(struct perf_event *event, int refresh) 3231 { 3232 struct perf_event_context *ctx; 3233 int ret; 3234 3235 ctx = perf_event_ctx_lock(event); 3236 ret = _perf_event_refresh(event, refresh); 3237 perf_event_ctx_unlock(event, ctx); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(perf_event_refresh); 3242 3243 static int perf_event_modify_breakpoint(struct perf_event *bp, 3244 struct perf_event_attr *attr) 3245 { 3246 int err; 3247 3248 _perf_event_disable(bp); 3249 3250 err = modify_user_hw_breakpoint_check(bp, attr, true); 3251 3252 if (!bp->attr.disabled) 3253 _perf_event_enable(bp); 3254 3255 return err; 3256 } 3257 3258 /* 3259 * Copy event-type-independent attributes that may be modified. 3260 */ 3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3262 const struct perf_event_attr *from) 3263 { 3264 to->sig_data = from->sig_data; 3265 } 3266 3267 static int perf_event_modify_attr(struct perf_event *event, 3268 struct perf_event_attr *attr) 3269 { 3270 int (*func)(struct perf_event *, struct perf_event_attr *); 3271 struct perf_event *child; 3272 int err; 3273 3274 if (event->attr.type != attr->type) 3275 return -EINVAL; 3276 3277 switch (event->attr.type) { 3278 case PERF_TYPE_BREAKPOINT: 3279 func = perf_event_modify_breakpoint; 3280 break; 3281 default: 3282 /* Place holder for future additions. */ 3283 return -EOPNOTSUPP; 3284 } 3285 3286 WARN_ON_ONCE(event->ctx->parent_ctx); 3287 3288 mutex_lock(&event->child_mutex); 3289 /* 3290 * Event-type-independent attributes must be copied before event-type 3291 * modification, which will validate that final attributes match the 3292 * source attributes after all relevant attributes have been copied. 3293 */ 3294 perf_event_modify_copy_attr(&event->attr, attr); 3295 err = func(event, attr); 3296 if (err) 3297 goto out; 3298 list_for_each_entry(child, &event->child_list, child_list) { 3299 perf_event_modify_copy_attr(&child->attr, attr); 3300 err = func(child, attr); 3301 if (err) 3302 goto out; 3303 } 3304 out: 3305 mutex_unlock(&event->child_mutex); 3306 return err; 3307 } 3308 3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3310 enum event_type_t event_type) 3311 { 3312 struct perf_event_context *ctx = pmu_ctx->ctx; 3313 struct perf_event *event, *tmp; 3314 struct pmu *pmu = pmu_ctx->pmu; 3315 3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) { 3317 struct perf_cpu_pmu_context *cpc; 3318 3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3321 cpc->task_epc = NULL; 3322 } 3323 3324 if (!(event_type & EVENT_ALL)) 3325 return; 3326 3327 perf_pmu_disable(pmu); 3328 if (event_type & EVENT_PINNED) { 3329 list_for_each_entry_safe(event, tmp, 3330 &pmu_ctx->pinned_active, 3331 active_list) 3332 group_sched_out(event, ctx); 3333 } 3334 3335 if (event_type & EVENT_FLEXIBLE) { 3336 list_for_each_entry_safe(event, tmp, 3337 &pmu_ctx->flexible_active, 3338 active_list) 3339 group_sched_out(event, ctx); 3340 /* 3341 * Since we cleared EVENT_FLEXIBLE, also clear 3342 * rotate_necessary, is will be reset by 3343 * ctx_flexible_sched_in() when needed. 3344 */ 3345 pmu_ctx->rotate_necessary = 0; 3346 } 3347 perf_pmu_enable(pmu); 3348 } 3349 3350 /* 3351 * Be very careful with the @pmu argument since this will change ctx state. 3352 * The @pmu argument works for ctx_resched(), because that is symmetric in 3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. 3354 * 3355 * However, if you were to be asymmetrical, you could end up with messed up 3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually 3357 * be active. 3358 */ 3359 static void 3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3361 { 3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3363 struct perf_event_pmu_context *pmu_ctx; 3364 int is_active = ctx->is_active; 3365 bool cgroup = event_type & EVENT_CGROUP; 3366 3367 event_type &= ~EVENT_CGROUP; 3368 3369 lockdep_assert_held(&ctx->lock); 3370 3371 if (likely(!ctx->nr_events)) { 3372 /* 3373 * See __perf_remove_from_context(). 3374 */ 3375 WARN_ON_ONCE(ctx->is_active); 3376 if (ctx->task) 3377 WARN_ON_ONCE(cpuctx->task_ctx); 3378 return; 3379 } 3380 3381 /* 3382 * Always update time if it was set; not only when it changes. 3383 * Otherwise we can 'forget' to update time for any but the last 3384 * context we sched out. For example: 3385 * 3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3387 * ctx_sched_out(.event_type = EVENT_PINNED) 3388 * 3389 * would only update time for the pinned events. 3390 */ 3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); 3392 3393 /* 3394 * CPU-release for the below ->is_active store, 3395 * see __load_acquire() in perf_event_time_now() 3396 */ 3397 barrier(); 3398 ctx->is_active &= ~event_type; 3399 3400 if (!(ctx->is_active & EVENT_ALL)) { 3401 /* 3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() 3403 * does not observe a hole. perf_ctx_unlock() will clean up. 3404 */ 3405 if (ctx->is_active & EVENT_FROZEN) 3406 ctx->is_active &= EVENT_TIME_FROZEN; 3407 else 3408 ctx->is_active = 0; 3409 } 3410 3411 if (ctx->task) { 3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3413 if (!(ctx->is_active & EVENT_ALL)) 3414 cpuctx->task_ctx = NULL; 3415 } 3416 3417 is_active ^= ctx->is_active; /* changed bits */ 3418 3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 3420 __pmu_ctx_sched_out(pmu_ctx, is_active); 3421 } 3422 3423 /* 3424 * Test whether two contexts are equivalent, i.e. whether they have both been 3425 * cloned from the same version of the same context. 3426 * 3427 * Equivalence is measured using a generation number in the context that is 3428 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3429 * and list_del_event(). 3430 */ 3431 static int context_equiv(struct perf_event_context *ctx1, 3432 struct perf_event_context *ctx2) 3433 { 3434 lockdep_assert_held(&ctx1->lock); 3435 lockdep_assert_held(&ctx2->lock); 3436 3437 /* Pinning disables the swap optimization */ 3438 if (ctx1->pin_count || ctx2->pin_count) 3439 return 0; 3440 3441 /* If ctx1 is the parent of ctx2 */ 3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3443 return 1; 3444 3445 /* If ctx2 is the parent of ctx1 */ 3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3447 return 1; 3448 3449 /* 3450 * If ctx1 and ctx2 have the same parent; we flatten the parent 3451 * hierarchy, see perf_event_init_context(). 3452 */ 3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3454 ctx1->parent_gen == ctx2->parent_gen) 3455 return 1; 3456 3457 /* Unmatched */ 3458 return 0; 3459 } 3460 3461 static void __perf_event_sync_stat(struct perf_event *event, 3462 struct perf_event *next_event) 3463 { 3464 u64 value; 3465 3466 if (!event->attr.inherit_stat) 3467 return; 3468 3469 /* 3470 * Update the event value, we cannot use perf_event_read() 3471 * because we're in the middle of a context switch and have IRQs 3472 * disabled, which upsets smp_call_function_single(), however 3473 * we know the event must be on the current CPU, therefore we 3474 * don't need to use it. 3475 */ 3476 if (event->state == PERF_EVENT_STATE_ACTIVE) 3477 event->pmu->read(event); 3478 3479 perf_event_update_time(event); 3480 3481 /* 3482 * In order to keep per-task stats reliable we need to flip the event 3483 * values when we flip the contexts. 3484 */ 3485 value = local64_read(&next_event->count); 3486 value = local64_xchg(&event->count, value); 3487 local64_set(&next_event->count, value); 3488 3489 swap(event->total_time_enabled, next_event->total_time_enabled); 3490 swap(event->total_time_running, next_event->total_time_running); 3491 3492 /* 3493 * Since we swizzled the values, update the user visible data too. 3494 */ 3495 perf_event_update_userpage(event); 3496 perf_event_update_userpage(next_event); 3497 } 3498 3499 static void perf_event_sync_stat(struct perf_event_context *ctx, 3500 struct perf_event_context *next_ctx) 3501 { 3502 struct perf_event *event, *next_event; 3503 3504 if (!ctx->nr_stat) 3505 return; 3506 3507 update_context_time(ctx); 3508 3509 event = list_first_entry(&ctx->event_list, 3510 struct perf_event, event_entry); 3511 3512 next_event = list_first_entry(&next_ctx->event_list, 3513 struct perf_event, event_entry); 3514 3515 while (&event->event_entry != &ctx->event_list && 3516 &next_event->event_entry != &next_ctx->event_list) { 3517 3518 __perf_event_sync_stat(event, next_event); 3519 3520 event = list_next_entry(event, event_entry); 3521 next_event = list_next_entry(next_event, event_entry); 3522 } 3523 } 3524 3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3528 !list_entry_is_head(pos1, head1, member) && \ 3529 !list_entry_is_head(pos2, head2, member); \ 3530 pos1 = list_next_entry(pos1, member), \ 3531 pos2 = list_next_entry(pos2, member)) 3532 3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3534 struct perf_event_context *next_ctx) 3535 { 3536 struct perf_event_pmu_context *prev_epc, *next_epc; 3537 3538 if (!prev_ctx->nr_task_data) 3539 return; 3540 3541 double_list_for_each_entry(prev_epc, next_epc, 3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3543 pmu_ctx_entry) { 3544 3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3546 continue; 3547 3548 /* 3549 * PMU specific parts of task perf context can require 3550 * additional synchronization. As an example of such 3551 * synchronization see implementation details of Intel 3552 * LBR call stack data profiling; 3553 */ 3554 if (prev_epc->pmu->swap_task_ctx) 3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3556 else 3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3558 } 3559 } 3560 3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3562 { 3563 struct perf_event_pmu_context *pmu_ctx; 3564 struct perf_cpu_pmu_context *cpc; 3565 3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3568 3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3571 } 3572 } 3573 3574 static void 3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3576 { 3577 struct perf_event_context *ctx = task->perf_event_ctxp; 3578 struct perf_event_context *next_ctx; 3579 struct perf_event_context *parent, *next_parent; 3580 int do_switch = 1; 3581 3582 if (likely(!ctx)) 3583 return; 3584 3585 rcu_read_lock(); 3586 next_ctx = rcu_dereference(next->perf_event_ctxp); 3587 if (!next_ctx) 3588 goto unlock; 3589 3590 parent = rcu_dereference(ctx->parent_ctx); 3591 next_parent = rcu_dereference(next_ctx->parent_ctx); 3592 3593 /* If neither context have a parent context; they cannot be clones. */ 3594 if (!parent && !next_parent) 3595 goto unlock; 3596 3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3598 /* 3599 * Looks like the two contexts are clones, so we might be 3600 * able to optimize the context switch. We lock both 3601 * contexts and check that they are clones under the 3602 * lock (including re-checking that neither has been 3603 * uncloned in the meantime). It doesn't matter which 3604 * order we take the locks because no other cpu could 3605 * be trying to lock both of these tasks. 3606 */ 3607 raw_spin_lock(&ctx->lock); 3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3609 if (context_equiv(ctx, next_ctx)) { 3610 3611 perf_ctx_disable(ctx, false); 3612 3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ 3614 if (local_read(&ctx->nr_no_switch_fast) || 3615 local_read(&next_ctx->nr_no_switch_fast)) { 3616 /* 3617 * Must not swap out ctx when there's pending 3618 * events that rely on the ctx->task relation. 3619 * 3620 * Likewise, when a context contains inherit + 3621 * SAMPLE_READ events they should be switched 3622 * out using the slow path so that they are 3623 * treated as if they were distinct contexts. 3624 */ 3625 raw_spin_unlock(&next_ctx->lock); 3626 rcu_read_unlock(); 3627 goto inside_switch; 3628 } 3629 3630 WRITE_ONCE(ctx->task, next); 3631 WRITE_ONCE(next_ctx->task, task); 3632 3633 perf_ctx_sched_task_cb(ctx, false); 3634 perf_event_swap_task_ctx_data(ctx, next_ctx); 3635 3636 perf_ctx_enable(ctx, false); 3637 3638 /* 3639 * RCU_INIT_POINTER here is safe because we've not 3640 * modified the ctx and the above modification of 3641 * ctx->task and ctx->task_ctx_data are immaterial 3642 * since those values are always verified under 3643 * ctx->lock which we're now holding. 3644 */ 3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3647 3648 do_switch = 0; 3649 3650 perf_event_sync_stat(ctx, next_ctx); 3651 } 3652 raw_spin_unlock(&next_ctx->lock); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 unlock: 3656 rcu_read_unlock(); 3657 3658 if (do_switch) { 3659 raw_spin_lock(&ctx->lock); 3660 perf_ctx_disable(ctx, false); 3661 3662 inside_switch: 3663 perf_ctx_sched_task_cb(ctx, false); 3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL); 3665 3666 perf_ctx_enable(ctx, false); 3667 raw_spin_unlock(&ctx->lock); 3668 } 3669 } 3670 3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3673 3674 void perf_sched_cb_dec(struct pmu *pmu) 3675 { 3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3677 3678 this_cpu_dec(perf_sched_cb_usages); 3679 barrier(); 3680 3681 if (!--cpc->sched_cb_usage) 3682 list_del(&cpc->sched_cb_entry); 3683 } 3684 3685 3686 void perf_sched_cb_inc(struct pmu *pmu) 3687 { 3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3689 3690 if (!cpc->sched_cb_usage++) 3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3692 3693 barrier(); 3694 this_cpu_inc(perf_sched_cb_usages); 3695 } 3696 3697 /* 3698 * This function provides the context switch callback to the lower code 3699 * layer. It is invoked ONLY when the context switch callback is enabled. 3700 * 3701 * This callback is relevant even to per-cpu events; for example multi event 3702 * PEBS requires this to provide PID/TID information. This requires we flush 3703 * all queued PEBS records before we context switch to a new task. 3704 */ 3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3706 { 3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3708 struct pmu *pmu; 3709 3710 pmu = cpc->epc.pmu; 3711 3712 /* software PMUs will not have sched_task */ 3713 if (WARN_ON_ONCE(!pmu->sched_task)) 3714 return; 3715 3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3717 perf_pmu_disable(pmu); 3718 3719 pmu->sched_task(cpc->task_epc, sched_in); 3720 3721 perf_pmu_enable(pmu); 3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3723 } 3724 3725 static void perf_pmu_sched_task(struct task_struct *prev, 3726 struct task_struct *next, 3727 bool sched_in) 3728 { 3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3730 struct perf_cpu_pmu_context *cpc; 3731 3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3733 if (prev == next || cpuctx->task_ctx) 3734 return; 3735 3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3737 __perf_pmu_sched_task(cpc, sched_in); 3738 } 3739 3740 static void perf_event_switch(struct task_struct *task, 3741 struct task_struct *next_prev, bool sched_in); 3742 3743 /* 3744 * Called from scheduler to remove the events of the current task, 3745 * with interrupts disabled. 3746 * 3747 * We stop each event and update the event value in event->count. 3748 * 3749 * This does not protect us against NMI, but disable() 3750 * sets the disabled bit in the control field of event _before_ 3751 * accessing the event control register. If a NMI hits, then it will 3752 * not restart the event. 3753 */ 3754 void __perf_event_task_sched_out(struct task_struct *task, 3755 struct task_struct *next) 3756 { 3757 if (__this_cpu_read(perf_sched_cb_usages)) 3758 perf_pmu_sched_task(task, next, false); 3759 3760 if (atomic_read(&nr_switch_events)) 3761 perf_event_switch(task, next, false); 3762 3763 perf_event_context_sched_out(task, next); 3764 3765 /* 3766 * if cgroup events exist on this CPU, then we need 3767 * to check if we have to switch out PMU state. 3768 * cgroup event are system-wide mode only 3769 */ 3770 perf_cgroup_switch(next); 3771 } 3772 3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3774 { 3775 const struct perf_event *le = *(const struct perf_event **)l; 3776 const struct perf_event *re = *(const struct perf_event **)r; 3777 3778 return le->group_index < re->group_index; 3779 } 3780 3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3782 3783 static const struct min_heap_callbacks perf_min_heap = { 3784 .less = perf_less_group_idx, 3785 .swp = NULL, 3786 }; 3787 3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3789 { 3790 struct perf_event **itrs = heap->data; 3791 3792 if (event) { 3793 itrs[heap->nr] = event; 3794 heap->nr++; 3795 } 3796 } 3797 3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3799 { 3800 struct perf_cpu_pmu_context *cpc; 3801 3802 if (!pmu_ctx->ctx->task) 3803 return; 3804 3805 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3806 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3807 cpc->task_epc = pmu_ctx; 3808 } 3809 3810 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3811 struct perf_event_groups *groups, int cpu, 3812 struct pmu *pmu, 3813 int (*func)(struct perf_event *, void *), 3814 void *data) 3815 { 3816 #ifdef CONFIG_CGROUP_PERF 3817 struct cgroup_subsys_state *css = NULL; 3818 #endif 3819 struct perf_cpu_context *cpuctx = NULL; 3820 /* Space for per CPU and/or any CPU event iterators. */ 3821 struct perf_event *itrs[2]; 3822 struct perf_event_min_heap event_heap; 3823 struct perf_event **evt; 3824 int ret; 3825 3826 if (pmu->filter && pmu->filter(pmu, cpu)) 3827 return 0; 3828 3829 if (!ctx->task) { 3830 cpuctx = this_cpu_ptr(&perf_cpu_context); 3831 event_heap = (struct perf_event_min_heap){ 3832 .data = cpuctx->heap, 3833 .nr = 0, 3834 .size = cpuctx->heap_size, 3835 }; 3836 3837 lockdep_assert_held(&cpuctx->ctx.lock); 3838 3839 #ifdef CONFIG_CGROUP_PERF 3840 if (cpuctx->cgrp) 3841 css = &cpuctx->cgrp->css; 3842 #endif 3843 } else { 3844 event_heap = (struct perf_event_min_heap){ 3845 .data = itrs, 3846 .nr = 0, 3847 .size = ARRAY_SIZE(itrs), 3848 }; 3849 /* Events not within a CPU context may be on any CPU. */ 3850 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3851 } 3852 evt = event_heap.data; 3853 3854 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3855 3856 #ifdef CONFIG_CGROUP_PERF 3857 for (; css; css = css->parent) 3858 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3859 #endif 3860 3861 if (event_heap.nr) { 3862 __link_epc((*evt)->pmu_ctx); 3863 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3864 } 3865 3866 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); 3867 3868 while (event_heap.nr) { 3869 ret = func(*evt, data); 3870 if (ret) 3871 return ret; 3872 3873 *evt = perf_event_groups_next(*evt, pmu); 3874 if (*evt) 3875 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); 3876 else 3877 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); 3878 } 3879 3880 return 0; 3881 } 3882 3883 /* 3884 * Because the userpage is strictly per-event (there is no concept of context, 3885 * so there cannot be a context indirection), every userpage must be updated 3886 * when context time starts :-( 3887 * 3888 * IOW, we must not miss EVENT_TIME edges. 3889 */ 3890 static inline bool event_update_userpage(struct perf_event *event) 3891 { 3892 if (likely(!atomic_read(&event->mmap_count))) 3893 return false; 3894 3895 perf_event_update_time(event); 3896 perf_event_update_userpage(event); 3897 3898 return true; 3899 } 3900 3901 static inline void group_update_userpage(struct perf_event *group_event) 3902 { 3903 struct perf_event *event; 3904 3905 if (!event_update_userpage(group_event)) 3906 return; 3907 3908 for_each_sibling_event(event, group_event) 3909 event_update_userpage(event); 3910 } 3911 3912 static int merge_sched_in(struct perf_event *event, void *data) 3913 { 3914 struct perf_event_context *ctx = event->ctx; 3915 int *can_add_hw = data; 3916 3917 if (event->state <= PERF_EVENT_STATE_OFF) 3918 return 0; 3919 3920 if (!event_filter_match(event)) 3921 return 0; 3922 3923 if (group_can_go_on(event, *can_add_hw)) { 3924 if (!group_sched_in(event, ctx)) 3925 list_add_tail(&event->active_list, get_event_list(event)); 3926 } 3927 3928 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3929 *can_add_hw = 0; 3930 if (event->attr.pinned) { 3931 perf_cgroup_event_disable(event, ctx); 3932 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3933 } else { 3934 struct perf_cpu_pmu_context *cpc; 3935 3936 event->pmu_ctx->rotate_necessary = 1; 3937 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3938 perf_mux_hrtimer_restart(cpc); 3939 group_update_userpage(event); 3940 } 3941 } 3942 3943 return 0; 3944 } 3945 3946 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3947 struct perf_event_groups *groups, 3948 struct pmu *pmu) 3949 { 3950 int can_add_hw = 1; 3951 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3952 merge_sched_in, &can_add_hw); 3953 } 3954 3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, 3956 enum event_type_t event_type) 3957 { 3958 struct perf_event_context *ctx = pmu_ctx->ctx; 3959 3960 if (event_type & EVENT_PINNED) 3961 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); 3962 if (event_type & EVENT_FLEXIBLE) 3963 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); 3964 } 3965 3966 static void 3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) 3968 { 3969 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3970 struct perf_event_pmu_context *pmu_ctx; 3971 int is_active = ctx->is_active; 3972 bool cgroup = event_type & EVENT_CGROUP; 3973 3974 event_type &= ~EVENT_CGROUP; 3975 3976 lockdep_assert_held(&ctx->lock); 3977 3978 if (likely(!ctx->nr_events)) 3979 return; 3980 3981 if (!(is_active & EVENT_TIME)) { 3982 /* start ctx time */ 3983 __update_context_time(ctx, false); 3984 perf_cgroup_set_timestamp(cpuctx); 3985 /* 3986 * CPU-release for the below ->is_active store, 3987 * see __load_acquire() in perf_event_time_now() 3988 */ 3989 barrier(); 3990 } 3991 3992 ctx->is_active |= (event_type | EVENT_TIME); 3993 if (ctx->task) { 3994 if (!(is_active & EVENT_ALL)) 3995 cpuctx->task_ctx = ctx; 3996 else 3997 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3998 } 3999 4000 is_active ^= ctx->is_active; /* changed bits */ 4001 4002 /* 4003 * First go through the list and put on any pinned groups 4004 * in order to give them the best chance of going on. 4005 */ 4006 if (is_active & EVENT_PINNED) { 4007 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4008 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); 4009 } 4010 4011 /* Then walk through the lower prio flexible groups */ 4012 if (is_active & EVENT_FLEXIBLE) { 4013 for_each_epc(pmu_ctx, ctx, pmu, cgroup) 4014 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); 4015 } 4016 } 4017 4018 static void perf_event_context_sched_in(struct task_struct *task) 4019 { 4020 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4021 struct perf_event_context *ctx; 4022 4023 rcu_read_lock(); 4024 ctx = rcu_dereference(task->perf_event_ctxp); 4025 if (!ctx) 4026 goto rcu_unlock; 4027 4028 if (cpuctx->task_ctx == ctx) { 4029 perf_ctx_lock(cpuctx, ctx); 4030 perf_ctx_disable(ctx, false); 4031 4032 perf_ctx_sched_task_cb(ctx, true); 4033 4034 perf_ctx_enable(ctx, false); 4035 perf_ctx_unlock(cpuctx, ctx); 4036 goto rcu_unlock; 4037 } 4038 4039 perf_ctx_lock(cpuctx, ctx); 4040 /* 4041 * We must check ctx->nr_events while holding ctx->lock, such 4042 * that we serialize against perf_install_in_context(). 4043 */ 4044 if (!ctx->nr_events) 4045 goto unlock; 4046 4047 perf_ctx_disable(ctx, false); 4048 /* 4049 * We want to keep the following priority order: 4050 * cpu pinned (that don't need to move), task pinned, 4051 * cpu flexible, task flexible. 4052 * 4053 * However, if task's ctx is not carrying any pinned 4054 * events, no need to flip the cpuctx's events around. 4055 */ 4056 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 4057 perf_ctx_disable(&cpuctx->ctx, false); 4058 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); 4059 } 4060 4061 perf_event_sched_in(cpuctx, ctx, NULL); 4062 4063 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 4064 4065 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 4066 perf_ctx_enable(&cpuctx->ctx, false); 4067 4068 perf_ctx_enable(ctx, false); 4069 4070 unlock: 4071 perf_ctx_unlock(cpuctx, ctx); 4072 rcu_unlock: 4073 rcu_read_unlock(); 4074 } 4075 4076 /* 4077 * Called from scheduler to add the events of the current task 4078 * with interrupts disabled. 4079 * 4080 * We restore the event value and then enable it. 4081 * 4082 * This does not protect us against NMI, but enable() 4083 * sets the enabled bit in the control field of event _before_ 4084 * accessing the event control register. If a NMI hits, then it will 4085 * keep the event running. 4086 */ 4087 void __perf_event_task_sched_in(struct task_struct *prev, 4088 struct task_struct *task) 4089 { 4090 perf_event_context_sched_in(task); 4091 4092 if (atomic_read(&nr_switch_events)) 4093 perf_event_switch(task, prev, true); 4094 4095 if (__this_cpu_read(perf_sched_cb_usages)) 4096 perf_pmu_sched_task(prev, task, true); 4097 } 4098 4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4100 { 4101 u64 frequency = event->attr.sample_freq; 4102 u64 sec = NSEC_PER_SEC; 4103 u64 divisor, dividend; 4104 4105 int count_fls, nsec_fls, frequency_fls, sec_fls; 4106 4107 count_fls = fls64(count); 4108 nsec_fls = fls64(nsec); 4109 frequency_fls = fls64(frequency); 4110 sec_fls = 30; 4111 4112 /* 4113 * We got @count in @nsec, with a target of sample_freq HZ 4114 * the target period becomes: 4115 * 4116 * @count * 10^9 4117 * period = ------------------- 4118 * @nsec * sample_freq 4119 * 4120 */ 4121 4122 /* 4123 * Reduce accuracy by one bit such that @a and @b converge 4124 * to a similar magnitude. 4125 */ 4126 #define REDUCE_FLS(a, b) \ 4127 do { \ 4128 if (a##_fls > b##_fls) { \ 4129 a >>= 1; \ 4130 a##_fls--; \ 4131 } else { \ 4132 b >>= 1; \ 4133 b##_fls--; \ 4134 } \ 4135 } while (0) 4136 4137 /* 4138 * Reduce accuracy until either term fits in a u64, then proceed with 4139 * the other, so that finally we can do a u64/u64 division. 4140 */ 4141 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4142 REDUCE_FLS(nsec, frequency); 4143 REDUCE_FLS(sec, count); 4144 } 4145 4146 if (count_fls + sec_fls > 64) { 4147 divisor = nsec * frequency; 4148 4149 while (count_fls + sec_fls > 64) { 4150 REDUCE_FLS(count, sec); 4151 divisor >>= 1; 4152 } 4153 4154 dividend = count * sec; 4155 } else { 4156 dividend = count * sec; 4157 4158 while (nsec_fls + frequency_fls > 64) { 4159 REDUCE_FLS(nsec, frequency); 4160 dividend >>= 1; 4161 } 4162 4163 divisor = nsec * frequency; 4164 } 4165 4166 if (!divisor) 4167 return dividend; 4168 4169 return div64_u64(dividend, divisor); 4170 } 4171 4172 static DEFINE_PER_CPU(int, perf_throttled_count); 4173 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4174 4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4176 { 4177 struct hw_perf_event *hwc = &event->hw; 4178 s64 period, sample_period; 4179 s64 delta; 4180 4181 period = perf_calculate_period(event, nsec, count); 4182 4183 delta = (s64)(period - hwc->sample_period); 4184 if (delta >= 0) 4185 delta += 7; 4186 else 4187 delta -= 7; 4188 delta /= 8; /* low pass filter */ 4189 4190 sample_period = hwc->sample_period + delta; 4191 4192 if (!sample_period) 4193 sample_period = 1; 4194 4195 hwc->sample_period = sample_period; 4196 4197 if (local64_read(&hwc->period_left) > 8*sample_period) { 4198 if (disable) 4199 event->pmu->stop(event, PERF_EF_UPDATE); 4200 4201 local64_set(&hwc->period_left, 0); 4202 4203 if (disable) 4204 event->pmu->start(event, PERF_EF_RELOAD); 4205 } 4206 } 4207 4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4209 { 4210 struct perf_event *event; 4211 struct hw_perf_event *hwc; 4212 u64 now, period = TICK_NSEC; 4213 s64 delta; 4214 4215 list_for_each_entry(event, event_list, active_list) { 4216 if (event->state != PERF_EVENT_STATE_ACTIVE) 4217 continue; 4218 4219 // XXX use visit thingy to avoid the -1,cpu match 4220 if (!event_filter_match(event)) 4221 continue; 4222 4223 hwc = &event->hw; 4224 4225 if (hwc->interrupts == MAX_INTERRUPTS) { 4226 hwc->interrupts = 0; 4227 perf_log_throttle(event, 1); 4228 if (!event->attr.freq || !event->attr.sample_freq) 4229 event->pmu->start(event, 0); 4230 } 4231 4232 if (!event->attr.freq || !event->attr.sample_freq) 4233 continue; 4234 4235 /* 4236 * stop the event and update event->count 4237 */ 4238 event->pmu->stop(event, PERF_EF_UPDATE); 4239 4240 now = local64_read(&event->count); 4241 delta = now - hwc->freq_count_stamp; 4242 hwc->freq_count_stamp = now; 4243 4244 /* 4245 * restart the event 4246 * reload only if value has changed 4247 * we have stopped the event so tell that 4248 * to perf_adjust_period() to avoid stopping it 4249 * twice. 4250 */ 4251 if (delta > 0) 4252 perf_adjust_period(event, period, delta, false); 4253 4254 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4255 } 4256 } 4257 4258 /* 4259 * combine freq adjustment with unthrottling to avoid two passes over the 4260 * events. At the same time, make sure, having freq events does not change 4261 * the rate of unthrottling as that would introduce bias. 4262 */ 4263 static void 4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4265 { 4266 struct perf_event_pmu_context *pmu_ctx; 4267 4268 /* 4269 * only need to iterate over all events iff: 4270 * - context have events in frequency mode (needs freq adjust) 4271 * - there are events to unthrottle on this cpu 4272 */ 4273 if (!(ctx->nr_freq || unthrottle)) 4274 return; 4275 4276 raw_spin_lock(&ctx->lock); 4277 4278 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4279 if (!(pmu_ctx->nr_freq || unthrottle)) 4280 continue; 4281 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4282 continue; 4283 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4284 continue; 4285 4286 perf_pmu_disable(pmu_ctx->pmu); 4287 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4288 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4289 perf_pmu_enable(pmu_ctx->pmu); 4290 } 4291 4292 raw_spin_unlock(&ctx->lock); 4293 } 4294 4295 /* 4296 * Move @event to the tail of the @ctx's elegible events. 4297 */ 4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4299 { 4300 /* 4301 * Rotate the first entry last of non-pinned groups. Rotation might be 4302 * disabled by the inheritance code. 4303 */ 4304 if (ctx->rotate_disable) 4305 return; 4306 4307 perf_event_groups_delete(&ctx->flexible_groups, event); 4308 perf_event_groups_insert(&ctx->flexible_groups, event); 4309 } 4310 4311 /* pick an event from the flexible_groups to rotate */ 4312 static inline struct perf_event * 4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4314 { 4315 struct perf_event *event; 4316 struct rb_node *node; 4317 struct rb_root *tree; 4318 struct __group_key key = { 4319 .pmu = pmu_ctx->pmu, 4320 }; 4321 4322 /* pick the first active flexible event */ 4323 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4324 struct perf_event, active_list); 4325 if (event) 4326 goto out; 4327 4328 /* if no active flexible event, pick the first event */ 4329 tree = &pmu_ctx->ctx->flexible_groups.tree; 4330 4331 if (!pmu_ctx->ctx->task) { 4332 key.cpu = smp_processor_id(); 4333 4334 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4335 if (node) 4336 event = __node_2_pe(node); 4337 goto out; 4338 } 4339 4340 key.cpu = -1; 4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4342 if (node) { 4343 event = __node_2_pe(node); 4344 goto out; 4345 } 4346 4347 key.cpu = smp_processor_id(); 4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4349 if (node) 4350 event = __node_2_pe(node); 4351 4352 out: 4353 /* 4354 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4355 * finds there are unschedulable events, it will set it again. 4356 */ 4357 pmu_ctx->rotate_necessary = 0; 4358 4359 return event; 4360 } 4361 4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4363 { 4364 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4365 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4366 struct perf_event *cpu_event = NULL, *task_event = NULL; 4367 int cpu_rotate, task_rotate; 4368 struct pmu *pmu; 4369 4370 /* 4371 * Since we run this from IRQ context, nobody can install new 4372 * events, thus the event count values are stable. 4373 */ 4374 4375 cpu_epc = &cpc->epc; 4376 pmu = cpu_epc->pmu; 4377 task_epc = cpc->task_epc; 4378 4379 cpu_rotate = cpu_epc->rotate_necessary; 4380 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4381 4382 if (!(cpu_rotate || task_rotate)) 4383 return false; 4384 4385 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4386 perf_pmu_disable(pmu); 4387 4388 if (task_rotate) 4389 task_event = ctx_event_to_rotate(task_epc); 4390 if (cpu_rotate) 4391 cpu_event = ctx_event_to_rotate(cpu_epc); 4392 4393 /* 4394 * As per the order given at ctx_resched() first 'pop' task flexible 4395 * and then, if needed CPU flexible. 4396 */ 4397 if (task_event || (task_epc && cpu_event)) { 4398 update_context_time(task_epc->ctx); 4399 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4400 } 4401 4402 if (cpu_event) { 4403 update_context_time(&cpuctx->ctx); 4404 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4405 rotate_ctx(&cpuctx->ctx, cpu_event); 4406 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); 4407 } 4408 4409 if (task_event) 4410 rotate_ctx(task_epc->ctx, task_event); 4411 4412 if (task_event || (task_epc && cpu_event)) 4413 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); 4414 4415 perf_pmu_enable(pmu); 4416 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4417 4418 return true; 4419 } 4420 4421 void perf_event_task_tick(void) 4422 { 4423 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4424 struct perf_event_context *ctx; 4425 int throttled; 4426 4427 lockdep_assert_irqs_disabled(); 4428 4429 __this_cpu_inc(perf_throttled_seq); 4430 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4431 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4432 4433 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4434 4435 rcu_read_lock(); 4436 ctx = rcu_dereference(current->perf_event_ctxp); 4437 if (ctx) 4438 perf_adjust_freq_unthr_context(ctx, !!throttled); 4439 rcu_read_unlock(); 4440 } 4441 4442 static int event_enable_on_exec(struct perf_event *event, 4443 struct perf_event_context *ctx) 4444 { 4445 if (!event->attr.enable_on_exec) 4446 return 0; 4447 4448 event->attr.enable_on_exec = 0; 4449 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4450 return 0; 4451 4452 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4453 4454 return 1; 4455 } 4456 4457 /* 4458 * Enable all of a task's events that have been marked enable-on-exec. 4459 * This expects task == current. 4460 */ 4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4462 { 4463 struct perf_event_context *clone_ctx = NULL; 4464 enum event_type_t event_type = 0; 4465 struct perf_cpu_context *cpuctx; 4466 struct perf_event *event; 4467 unsigned long flags; 4468 int enabled = 0; 4469 4470 local_irq_save(flags); 4471 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4472 goto out; 4473 4474 if (!ctx->nr_events) 4475 goto out; 4476 4477 cpuctx = this_cpu_ptr(&perf_cpu_context); 4478 perf_ctx_lock(cpuctx, ctx); 4479 ctx_time_freeze(cpuctx, ctx); 4480 4481 list_for_each_entry(event, &ctx->event_list, event_entry) { 4482 enabled |= event_enable_on_exec(event, ctx); 4483 event_type |= get_event_type(event); 4484 } 4485 4486 /* 4487 * Unclone and reschedule this context if we enabled any event. 4488 */ 4489 if (enabled) { 4490 clone_ctx = unclone_ctx(ctx); 4491 ctx_resched(cpuctx, ctx, NULL, event_type); 4492 } 4493 perf_ctx_unlock(cpuctx, ctx); 4494 4495 out: 4496 local_irq_restore(flags); 4497 4498 if (clone_ctx) 4499 put_ctx(clone_ctx); 4500 } 4501 4502 static void perf_remove_from_owner(struct perf_event *event); 4503 static void perf_event_exit_event(struct perf_event *event, 4504 struct perf_event_context *ctx); 4505 4506 /* 4507 * Removes all events from the current task that have been marked 4508 * remove-on-exec, and feeds their values back to parent events. 4509 */ 4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4511 { 4512 struct perf_event_context *clone_ctx = NULL; 4513 struct perf_event *event, *next; 4514 unsigned long flags; 4515 bool modified = false; 4516 4517 mutex_lock(&ctx->mutex); 4518 4519 if (WARN_ON_ONCE(ctx->task != current)) 4520 goto unlock; 4521 4522 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4523 if (!event->attr.remove_on_exec) 4524 continue; 4525 4526 if (!is_kernel_event(event)) 4527 perf_remove_from_owner(event); 4528 4529 modified = true; 4530 4531 perf_event_exit_event(event, ctx); 4532 } 4533 4534 raw_spin_lock_irqsave(&ctx->lock, flags); 4535 if (modified) 4536 clone_ctx = unclone_ctx(ctx); 4537 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4538 4539 unlock: 4540 mutex_unlock(&ctx->mutex); 4541 4542 if (clone_ctx) 4543 put_ctx(clone_ctx); 4544 } 4545 4546 struct perf_read_data { 4547 struct perf_event *event; 4548 bool group; 4549 int ret; 4550 }; 4551 4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); 4553 4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4555 { 4556 int local_cpu = smp_processor_id(); 4557 u16 local_pkg, event_pkg; 4558 4559 if ((unsigned)event_cpu >= nr_cpu_ids) 4560 return event_cpu; 4561 4562 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { 4563 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); 4564 4565 if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) 4566 return local_cpu; 4567 } 4568 4569 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4570 event_pkg = topology_physical_package_id(event_cpu); 4571 local_pkg = topology_physical_package_id(local_cpu); 4572 4573 if (event_pkg == local_pkg) 4574 return local_cpu; 4575 } 4576 4577 return event_cpu; 4578 } 4579 4580 /* 4581 * Cross CPU call to read the hardware event 4582 */ 4583 static void __perf_event_read(void *info) 4584 { 4585 struct perf_read_data *data = info; 4586 struct perf_event *sub, *event = data->event; 4587 struct perf_event_context *ctx = event->ctx; 4588 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4589 struct pmu *pmu = event->pmu; 4590 4591 /* 4592 * If this is a task context, we need to check whether it is 4593 * the current task context of this cpu. If not it has been 4594 * scheduled out before the smp call arrived. In that case 4595 * event->count would have been updated to a recent sample 4596 * when the event was scheduled out. 4597 */ 4598 if (ctx->task && cpuctx->task_ctx != ctx) 4599 return; 4600 4601 raw_spin_lock(&ctx->lock); 4602 ctx_time_update_event(ctx, event); 4603 4604 perf_event_update_time(event); 4605 if (data->group) 4606 perf_event_update_sibling_time(event); 4607 4608 if (event->state != PERF_EVENT_STATE_ACTIVE) 4609 goto unlock; 4610 4611 if (!data->group) { 4612 pmu->read(event); 4613 data->ret = 0; 4614 goto unlock; 4615 } 4616 4617 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4618 4619 pmu->read(event); 4620 4621 for_each_sibling_event(sub, event) { 4622 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4623 /* 4624 * Use sibling's PMU rather than @event's since 4625 * sibling could be on different (eg: software) PMU. 4626 */ 4627 sub->pmu->read(sub); 4628 } 4629 } 4630 4631 data->ret = pmu->commit_txn(pmu); 4632 4633 unlock: 4634 raw_spin_unlock(&ctx->lock); 4635 } 4636 4637 static inline u64 perf_event_count(struct perf_event *event, bool self) 4638 { 4639 if (self) 4640 return local64_read(&event->count); 4641 4642 return local64_read(&event->count) + atomic64_read(&event->child_count); 4643 } 4644 4645 static void calc_timer_values(struct perf_event *event, 4646 u64 *now, 4647 u64 *enabled, 4648 u64 *running) 4649 { 4650 u64 ctx_time; 4651 4652 *now = perf_clock(); 4653 ctx_time = perf_event_time_now(event, *now); 4654 __perf_update_times(event, ctx_time, enabled, running); 4655 } 4656 4657 /* 4658 * NMI-safe method to read a local event, that is an event that 4659 * is: 4660 * - either for the current task, or for this CPU 4661 * - does not have inherit set, for inherited task events 4662 * will not be local and we cannot read them atomically 4663 * - must not have a pmu::count method 4664 */ 4665 int perf_event_read_local(struct perf_event *event, u64 *value, 4666 u64 *enabled, u64 *running) 4667 { 4668 unsigned long flags; 4669 int event_oncpu; 4670 int event_cpu; 4671 int ret = 0; 4672 4673 /* 4674 * Disabling interrupts avoids all counter scheduling (context 4675 * switches, timer based rotation and IPIs). 4676 */ 4677 local_irq_save(flags); 4678 4679 /* 4680 * It must not be an event with inherit set, we cannot read 4681 * all child counters from atomic context. 4682 */ 4683 if (event->attr.inherit) { 4684 ret = -EOPNOTSUPP; 4685 goto out; 4686 } 4687 4688 /* If this is a per-task event, it must be for current */ 4689 if ((event->attach_state & PERF_ATTACH_TASK) && 4690 event->hw.target != current) { 4691 ret = -EINVAL; 4692 goto out; 4693 } 4694 4695 /* 4696 * Get the event CPU numbers, and adjust them to local if the event is 4697 * a per-package event that can be read locally 4698 */ 4699 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4700 event_cpu = __perf_event_read_cpu(event, event->cpu); 4701 4702 /* If this is a per-CPU event, it must be for this CPU */ 4703 if (!(event->attach_state & PERF_ATTACH_TASK) && 4704 event_cpu != smp_processor_id()) { 4705 ret = -EINVAL; 4706 goto out; 4707 } 4708 4709 /* If this is a pinned event it must be running on this CPU */ 4710 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4711 ret = -EBUSY; 4712 goto out; 4713 } 4714 4715 /* 4716 * If the event is currently on this CPU, its either a per-task event, 4717 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4718 * oncpu == -1). 4719 */ 4720 if (event_oncpu == smp_processor_id()) 4721 event->pmu->read(event); 4722 4723 *value = local64_read(&event->count); 4724 if (enabled || running) { 4725 u64 __enabled, __running, __now; 4726 4727 calc_timer_values(event, &__now, &__enabled, &__running); 4728 if (enabled) 4729 *enabled = __enabled; 4730 if (running) 4731 *running = __running; 4732 } 4733 out: 4734 local_irq_restore(flags); 4735 4736 return ret; 4737 } 4738 4739 static int perf_event_read(struct perf_event *event, bool group) 4740 { 4741 enum perf_event_state state = READ_ONCE(event->state); 4742 int event_cpu, ret = 0; 4743 4744 /* 4745 * If event is enabled and currently active on a CPU, update the 4746 * value in the event structure: 4747 */ 4748 again: 4749 if (state == PERF_EVENT_STATE_ACTIVE) { 4750 struct perf_read_data data; 4751 4752 /* 4753 * Orders the ->state and ->oncpu loads such that if we see 4754 * ACTIVE we must also see the right ->oncpu. 4755 * 4756 * Matches the smp_wmb() from event_sched_in(). 4757 */ 4758 smp_rmb(); 4759 4760 event_cpu = READ_ONCE(event->oncpu); 4761 if ((unsigned)event_cpu >= nr_cpu_ids) 4762 return 0; 4763 4764 data = (struct perf_read_data){ 4765 .event = event, 4766 .group = group, 4767 .ret = 0, 4768 }; 4769 4770 preempt_disable(); 4771 event_cpu = __perf_event_read_cpu(event, event_cpu); 4772 4773 /* 4774 * Purposely ignore the smp_call_function_single() return 4775 * value. 4776 * 4777 * If event_cpu isn't a valid CPU it means the event got 4778 * scheduled out and that will have updated the event count. 4779 * 4780 * Therefore, either way, we'll have an up-to-date event count 4781 * after this. 4782 */ 4783 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4784 preempt_enable(); 4785 ret = data.ret; 4786 4787 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4788 struct perf_event_context *ctx = event->ctx; 4789 unsigned long flags; 4790 4791 raw_spin_lock_irqsave(&ctx->lock, flags); 4792 state = event->state; 4793 if (state != PERF_EVENT_STATE_INACTIVE) { 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 goto again; 4796 } 4797 4798 /* 4799 * May read while context is not active (e.g., thread is 4800 * blocked), in that case we cannot update context time 4801 */ 4802 ctx_time_update_event(ctx, event); 4803 4804 perf_event_update_time(event); 4805 if (group) 4806 perf_event_update_sibling_time(event); 4807 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4808 } 4809 4810 return ret; 4811 } 4812 4813 /* 4814 * Initialize the perf_event context in a task_struct: 4815 */ 4816 static void __perf_event_init_context(struct perf_event_context *ctx) 4817 { 4818 raw_spin_lock_init(&ctx->lock); 4819 mutex_init(&ctx->mutex); 4820 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4821 perf_event_groups_init(&ctx->pinned_groups); 4822 perf_event_groups_init(&ctx->flexible_groups); 4823 INIT_LIST_HEAD(&ctx->event_list); 4824 refcount_set(&ctx->refcount, 1); 4825 } 4826 4827 static void 4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4829 { 4830 epc->pmu = pmu; 4831 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4832 INIT_LIST_HEAD(&epc->pinned_active); 4833 INIT_LIST_HEAD(&epc->flexible_active); 4834 atomic_set(&epc->refcount, 1); 4835 } 4836 4837 static struct perf_event_context * 4838 alloc_perf_context(struct task_struct *task) 4839 { 4840 struct perf_event_context *ctx; 4841 4842 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4843 if (!ctx) 4844 return NULL; 4845 4846 __perf_event_init_context(ctx); 4847 if (task) 4848 ctx->task = get_task_struct(task); 4849 4850 return ctx; 4851 } 4852 4853 static struct task_struct * 4854 find_lively_task_by_vpid(pid_t vpid) 4855 { 4856 struct task_struct *task; 4857 4858 rcu_read_lock(); 4859 if (!vpid) 4860 task = current; 4861 else 4862 task = find_task_by_vpid(vpid); 4863 if (task) 4864 get_task_struct(task); 4865 rcu_read_unlock(); 4866 4867 if (!task) 4868 return ERR_PTR(-ESRCH); 4869 4870 return task; 4871 } 4872 4873 /* 4874 * Returns a matching context with refcount and pincount. 4875 */ 4876 static struct perf_event_context * 4877 find_get_context(struct task_struct *task, struct perf_event *event) 4878 { 4879 struct perf_event_context *ctx, *clone_ctx = NULL; 4880 struct perf_cpu_context *cpuctx; 4881 unsigned long flags; 4882 int err; 4883 4884 if (!task) { 4885 /* Must be root to operate on a CPU event: */ 4886 err = perf_allow_cpu(&event->attr); 4887 if (err) 4888 return ERR_PTR(err); 4889 4890 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4891 ctx = &cpuctx->ctx; 4892 get_ctx(ctx); 4893 raw_spin_lock_irqsave(&ctx->lock, flags); 4894 ++ctx->pin_count; 4895 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4896 4897 return ctx; 4898 } 4899 4900 err = -EINVAL; 4901 retry: 4902 ctx = perf_lock_task_context(task, &flags); 4903 if (ctx) { 4904 clone_ctx = unclone_ctx(ctx); 4905 ++ctx->pin_count; 4906 4907 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4908 4909 if (clone_ctx) 4910 put_ctx(clone_ctx); 4911 } else { 4912 ctx = alloc_perf_context(task); 4913 err = -ENOMEM; 4914 if (!ctx) 4915 goto errout; 4916 4917 err = 0; 4918 mutex_lock(&task->perf_event_mutex); 4919 /* 4920 * If it has already passed perf_event_exit_task(). 4921 * we must see PF_EXITING, it takes this mutex too. 4922 */ 4923 if (task->flags & PF_EXITING) 4924 err = -ESRCH; 4925 else if (task->perf_event_ctxp) 4926 err = -EAGAIN; 4927 else { 4928 get_ctx(ctx); 4929 ++ctx->pin_count; 4930 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4931 } 4932 mutex_unlock(&task->perf_event_mutex); 4933 4934 if (unlikely(err)) { 4935 put_ctx(ctx); 4936 4937 if (err == -EAGAIN) 4938 goto retry; 4939 goto errout; 4940 } 4941 } 4942 4943 return ctx; 4944 4945 errout: 4946 return ERR_PTR(err); 4947 } 4948 4949 static struct perf_event_pmu_context * 4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4951 struct perf_event *event) 4952 { 4953 struct perf_event_pmu_context *new = NULL, *epc; 4954 void *task_ctx_data = NULL; 4955 4956 if (!ctx->task) { 4957 /* 4958 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4959 * relies on the fact that find_get_pmu_context() cannot fail 4960 * for CPU contexts. 4961 */ 4962 struct perf_cpu_pmu_context *cpc; 4963 4964 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4965 epc = &cpc->epc; 4966 raw_spin_lock_irq(&ctx->lock); 4967 if (!epc->ctx) { 4968 atomic_set(&epc->refcount, 1); 4969 epc->embedded = 1; 4970 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4971 epc->ctx = ctx; 4972 } else { 4973 WARN_ON_ONCE(epc->ctx != ctx); 4974 atomic_inc(&epc->refcount); 4975 } 4976 raw_spin_unlock_irq(&ctx->lock); 4977 return epc; 4978 } 4979 4980 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4981 if (!new) 4982 return ERR_PTR(-ENOMEM); 4983 4984 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4985 task_ctx_data = alloc_task_ctx_data(pmu); 4986 if (!task_ctx_data) { 4987 kfree(new); 4988 return ERR_PTR(-ENOMEM); 4989 } 4990 } 4991 4992 __perf_init_event_pmu_context(new, pmu); 4993 4994 /* 4995 * XXX 4996 * 4997 * lockdep_assert_held(&ctx->mutex); 4998 * 4999 * can't because perf_event_init_task() doesn't actually hold the 5000 * child_ctx->mutex. 5001 */ 5002 5003 raw_spin_lock_irq(&ctx->lock); 5004 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 5005 if (epc->pmu == pmu) { 5006 WARN_ON_ONCE(epc->ctx != ctx); 5007 atomic_inc(&epc->refcount); 5008 goto found_epc; 5009 } 5010 } 5011 5012 epc = new; 5013 new = NULL; 5014 5015 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 5016 epc->ctx = ctx; 5017 5018 found_epc: 5019 if (task_ctx_data && !epc->task_ctx_data) { 5020 epc->task_ctx_data = task_ctx_data; 5021 task_ctx_data = NULL; 5022 ctx->nr_task_data++; 5023 } 5024 raw_spin_unlock_irq(&ctx->lock); 5025 5026 free_task_ctx_data(pmu, task_ctx_data); 5027 kfree(new); 5028 5029 return epc; 5030 } 5031 5032 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 5033 { 5034 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 5035 } 5036 5037 static void free_epc_rcu(struct rcu_head *head) 5038 { 5039 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 5040 5041 kfree(epc->task_ctx_data); 5042 kfree(epc); 5043 } 5044 5045 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 5046 { 5047 struct perf_event_context *ctx = epc->ctx; 5048 unsigned long flags; 5049 5050 /* 5051 * XXX 5052 * 5053 * lockdep_assert_held(&ctx->mutex); 5054 * 5055 * can't because of the call-site in _free_event()/put_event() 5056 * which isn't always called under ctx->mutex. 5057 */ 5058 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 5059 return; 5060 5061 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 5062 5063 list_del_init(&epc->pmu_ctx_entry); 5064 epc->ctx = NULL; 5065 5066 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 5067 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 5068 5069 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5070 5071 if (epc->embedded) 5072 return; 5073 5074 call_rcu(&epc->rcu_head, free_epc_rcu); 5075 } 5076 5077 static void perf_event_free_filter(struct perf_event *event); 5078 5079 static void free_event_rcu(struct rcu_head *head) 5080 { 5081 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 5082 5083 if (event->ns) 5084 put_pid_ns(event->ns); 5085 perf_event_free_filter(event); 5086 kmem_cache_free(perf_event_cache, event); 5087 } 5088 5089 static void ring_buffer_attach(struct perf_event *event, 5090 struct perf_buffer *rb); 5091 5092 static void detach_sb_event(struct perf_event *event) 5093 { 5094 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5095 5096 raw_spin_lock(&pel->lock); 5097 list_del_rcu(&event->sb_list); 5098 raw_spin_unlock(&pel->lock); 5099 } 5100 5101 static bool is_sb_event(struct perf_event *event) 5102 { 5103 struct perf_event_attr *attr = &event->attr; 5104 5105 if (event->parent) 5106 return false; 5107 5108 if (event->attach_state & PERF_ATTACH_TASK) 5109 return false; 5110 5111 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5112 attr->comm || attr->comm_exec || 5113 attr->task || attr->ksymbol || 5114 attr->context_switch || attr->text_poke || 5115 attr->bpf_event) 5116 return true; 5117 return false; 5118 } 5119 5120 static void unaccount_pmu_sb_event(struct perf_event *event) 5121 { 5122 if (is_sb_event(event)) 5123 detach_sb_event(event); 5124 } 5125 5126 #ifdef CONFIG_NO_HZ_FULL 5127 static DEFINE_SPINLOCK(nr_freq_lock); 5128 #endif 5129 5130 static void unaccount_freq_event_nohz(void) 5131 { 5132 #ifdef CONFIG_NO_HZ_FULL 5133 spin_lock(&nr_freq_lock); 5134 if (atomic_dec_and_test(&nr_freq_events)) 5135 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5136 spin_unlock(&nr_freq_lock); 5137 #endif 5138 } 5139 5140 static void unaccount_freq_event(void) 5141 { 5142 if (tick_nohz_full_enabled()) 5143 unaccount_freq_event_nohz(); 5144 else 5145 atomic_dec(&nr_freq_events); 5146 } 5147 5148 static void unaccount_event(struct perf_event *event) 5149 { 5150 bool dec = false; 5151 5152 if (event->parent) 5153 return; 5154 5155 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5156 dec = true; 5157 if (event->attr.mmap || event->attr.mmap_data) 5158 atomic_dec(&nr_mmap_events); 5159 if (event->attr.build_id) 5160 atomic_dec(&nr_build_id_events); 5161 if (event->attr.comm) 5162 atomic_dec(&nr_comm_events); 5163 if (event->attr.namespaces) 5164 atomic_dec(&nr_namespaces_events); 5165 if (event->attr.cgroup) 5166 atomic_dec(&nr_cgroup_events); 5167 if (event->attr.task) 5168 atomic_dec(&nr_task_events); 5169 if (event->attr.freq) 5170 unaccount_freq_event(); 5171 if (event->attr.context_switch) { 5172 dec = true; 5173 atomic_dec(&nr_switch_events); 5174 } 5175 if (is_cgroup_event(event)) 5176 dec = true; 5177 if (has_branch_stack(event)) 5178 dec = true; 5179 if (event->attr.ksymbol) 5180 atomic_dec(&nr_ksymbol_events); 5181 if (event->attr.bpf_event) 5182 atomic_dec(&nr_bpf_events); 5183 if (event->attr.text_poke) 5184 atomic_dec(&nr_text_poke_events); 5185 5186 if (dec) { 5187 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5188 schedule_delayed_work(&perf_sched_work, HZ); 5189 } 5190 5191 unaccount_pmu_sb_event(event); 5192 } 5193 5194 static void perf_sched_delayed(struct work_struct *work) 5195 { 5196 mutex_lock(&perf_sched_mutex); 5197 if (atomic_dec_and_test(&perf_sched_count)) 5198 static_branch_disable(&perf_sched_events); 5199 mutex_unlock(&perf_sched_mutex); 5200 } 5201 5202 /* 5203 * The following implement mutual exclusion of events on "exclusive" pmus 5204 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5205 * at a time, so we disallow creating events that might conflict, namely: 5206 * 5207 * 1) cpu-wide events in the presence of per-task events, 5208 * 2) per-task events in the presence of cpu-wide events, 5209 * 3) two matching events on the same perf_event_context. 5210 * 5211 * The former two cases are handled in the allocation path (perf_event_alloc(), 5212 * _free_event()), the latter -- before the first perf_install_in_context(). 5213 */ 5214 static int exclusive_event_init(struct perf_event *event) 5215 { 5216 struct pmu *pmu = event->pmu; 5217 5218 if (!is_exclusive_pmu(pmu)) 5219 return 0; 5220 5221 /* 5222 * Prevent co-existence of per-task and cpu-wide events on the 5223 * same exclusive pmu. 5224 * 5225 * Negative pmu::exclusive_cnt means there are cpu-wide 5226 * events on this "exclusive" pmu, positive means there are 5227 * per-task events. 5228 * 5229 * Since this is called in perf_event_alloc() path, event::ctx 5230 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5231 * to mean "per-task event", because unlike other attach states it 5232 * never gets cleared. 5233 */ 5234 if (event->attach_state & PERF_ATTACH_TASK) { 5235 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5236 return -EBUSY; 5237 } else { 5238 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5239 return -EBUSY; 5240 } 5241 5242 return 0; 5243 } 5244 5245 static void exclusive_event_destroy(struct perf_event *event) 5246 { 5247 struct pmu *pmu = event->pmu; 5248 5249 if (!is_exclusive_pmu(pmu)) 5250 return; 5251 5252 /* see comment in exclusive_event_init() */ 5253 if (event->attach_state & PERF_ATTACH_TASK) 5254 atomic_dec(&pmu->exclusive_cnt); 5255 else 5256 atomic_inc(&pmu->exclusive_cnt); 5257 } 5258 5259 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5260 { 5261 if ((e1->pmu == e2->pmu) && 5262 (e1->cpu == e2->cpu || 5263 e1->cpu == -1 || 5264 e2->cpu == -1)) 5265 return true; 5266 return false; 5267 } 5268 5269 static bool exclusive_event_installable(struct perf_event *event, 5270 struct perf_event_context *ctx) 5271 { 5272 struct perf_event *iter_event; 5273 struct pmu *pmu = event->pmu; 5274 5275 lockdep_assert_held(&ctx->mutex); 5276 5277 if (!is_exclusive_pmu(pmu)) 5278 return true; 5279 5280 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5281 if (exclusive_event_match(iter_event, event)) 5282 return false; 5283 } 5284 5285 return true; 5286 } 5287 5288 static void perf_addr_filters_splice(struct perf_event *event, 5289 struct list_head *head); 5290 5291 static void perf_pending_task_sync(struct perf_event *event) 5292 { 5293 struct callback_head *head = &event->pending_task; 5294 5295 if (!event->pending_work) 5296 return; 5297 /* 5298 * If the task is queued to the current task's queue, we 5299 * obviously can't wait for it to complete. Simply cancel it. 5300 */ 5301 if (task_work_cancel(current, head)) { 5302 event->pending_work = 0; 5303 local_dec(&event->ctx->nr_no_switch_fast); 5304 return; 5305 } 5306 5307 /* 5308 * All accesses related to the event are within the same RCU section in 5309 * perf_pending_task(). The RCU grace period before the event is freed 5310 * will make sure all those accesses are complete by then. 5311 */ 5312 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5313 } 5314 5315 static void _free_event(struct perf_event *event) 5316 { 5317 irq_work_sync(&event->pending_irq); 5318 irq_work_sync(&event->pending_disable_irq); 5319 perf_pending_task_sync(event); 5320 5321 unaccount_event(event); 5322 5323 security_perf_event_free(event); 5324 5325 if (event->rb) { 5326 /* 5327 * Can happen when we close an event with re-directed output. 5328 * 5329 * Since we have a 0 refcount, perf_mmap_close() will skip 5330 * over us; possibly making our ring_buffer_put() the last. 5331 */ 5332 mutex_lock(&event->mmap_mutex); 5333 ring_buffer_attach(event, NULL); 5334 mutex_unlock(&event->mmap_mutex); 5335 } 5336 5337 if (is_cgroup_event(event)) 5338 perf_detach_cgroup(event); 5339 5340 if (!event->parent) { 5341 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5342 put_callchain_buffers(); 5343 } 5344 5345 perf_event_free_bpf_prog(event); 5346 perf_addr_filters_splice(event, NULL); 5347 kfree(event->addr_filter_ranges); 5348 5349 if (event->destroy) 5350 event->destroy(event); 5351 5352 /* 5353 * Must be after ->destroy(), due to uprobe_perf_close() using 5354 * hw.target. 5355 */ 5356 if (event->hw.target) 5357 put_task_struct(event->hw.target); 5358 5359 if (event->pmu_ctx) 5360 put_pmu_ctx(event->pmu_ctx); 5361 5362 /* 5363 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5364 * all task references must be cleaned up. 5365 */ 5366 if (event->ctx) 5367 put_ctx(event->ctx); 5368 5369 exclusive_event_destroy(event); 5370 module_put(event->pmu->module); 5371 5372 call_rcu(&event->rcu_head, free_event_rcu); 5373 } 5374 5375 /* 5376 * Used to free events which have a known refcount of 1, such as in error paths 5377 * where the event isn't exposed yet and inherited events. 5378 */ 5379 static void free_event(struct perf_event *event) 5380 { 5381 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5382 "unexpected event refcount: %ld; ptr=%p\n", 5383 atomic_long_read(&event->refcount), event)) { 5384 /* leak to avoid use-after-free */ 5385 return; 5386 } 5387 5388 _free_event(event); 5389 } 5390 5391 /* 5392 * Remove user event from the owner task. 5393 */ 5394 static void perf_remove_from_owner(struct perf_event *event) 5395 { 5396 struct task_struct *owner; 5397 5398 rcu_read_lock(); 5399 /* 5400 * Matches the smp_store_release() in perf_event_exit_task(). If we 5401 * observe !owner it means the list deletion is complete and we can 5402 * indeed free this event, otherwise we need to serialize on 5403 * owner->perf_event_mutex. 5404 */ 5405 owner = READ_ONCE(event->owner); 5406 if (owner) { 5407 /* 5408 * Since delayed_put_task_struct() also drops the last 5409 * task reference we can safely take a new reference 5410 * while holding the rcu_read_lock(). 5411 */ 5412 get_task_struct(owner); 5413 } 5414 rcu_read_unlock(); 5415 5416 if (owner) { 5417 /* 5418 * If we're here through perf_event_exit_task() we're already 5419 * holding ctx->mutex which would be an inversion wrt. the 5420 * normal lock order. 5421 * 5422 * However we can safely take this lock because its the child 5423 * ctx->mutex. 5424 */ 5425 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5426 5427 /* 5428 * We have to re-check the event->owner field, if it is cleared 5429 * we raced with perf_event_exit_task(), acquiring the mutex 5430 * ensured they're done, and we can proceed with freeing the 5431 * event. 5432 */ 5433 if (event->owner) { 5434 list_del_init(&event->owner_entry); 5435 smp_store_release(&event->owner, NULL); 5436 } 5437 mutex_unlock(&owner->perf_event_mutex); 5438 put_task_struct(owner); 5439 } 5440 } 5441 5442 static void put_event(struct perf_event *event) 5443 { 5444 if (!atomic_long_dec_and_test(&event->refcount)) 5445 return; 5446 5447 _free_event(event); 5448 } 5449 5450 /* 5451 * Kill an event dead; while event:refcount will preserve the event 5452 * object, it will not preserve its functionality. Once the last 'user' 5453 * gives up the object, we'll destroy the thing. 5454 */ 5455 int perf_event_release_kernel(struct perf_event *event) 5456 { 5457 struct perf_event_context *ctx = event->ctx; 5458 struct perf_event *child, *tmp; 5459 LIST_HEAD(free_list); 5460 5461 /* 5462 * If we got here through err_alloc: free_event(event); we will not 5463 * have attached to a context yet. 5464 */ 5465 if (!ctx) { 5466 WARN_ON_ONCE(event->attach_state & 5467 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5468 goto no_ctx; 5469 } 5470 5471 if (!is_kernel_event(event)) 5472 perf_remove_from_owner(event); 5473 5474 ctx = perf_event_ctx_lock(event); 5475 WARN_ON_ONCE(ctx->parent_ctx); 5476 5477 /* 5478 * Mark this event as STATE_DEAD, there is no external reference to it 5479 * anymore. 5480 * 5481 * Anybody acquiring event->child_mutex after the below loop _must_ 5482 * also see this, most importantly inherit_event() which will avoid 5483 * placing more children on the list. 5484 * 5485 * Thus this guarantees that we will in fact observe and kill _ALL_ 5486 * child events. 5487 */ 5488 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5489 5490 perf_event_ctx_unlock(event, ctx); 5491 5492 again: 5493 mutex_lock(&event->child_mutex); 5494 list_for_each_entry(child, &event->child_list, child_list) { 5495 void *var = NULL; 5496 5497 /* 5498 * Cannot change, child events are not migrated, see the 5499 * comment with perf_event_ctx_lock_nested(). 5500 */ 5501 ctx = READ_ONCE(child->ctx); 5502 /* 5503 * Since child_mutex nests inside ctx::mutex, we must jump 5504 * through hoops. We start by grabbing a reference on the ctx. 5505 * 5506 * Since the event cannot get freed while we hold the 5507 * child_mutex, the context must also exist and have a !0 5508 * reference count. 5509 */ 5510 get_ctx(ctx); 5511 5512 /* 5513 * Now that we have a ctx ref, we can drop child_mutex, and 5514 * acquire ctx::mutex without fear of it going away. Then we 5515 * can re-acquire child_mutex. 5516 */ 5517 mutex_unlock(&event->child_mutex); 5518 mutex_lock(&ctx->mutex); 5519 mutex_lock(&event->child_mutex); 5520 5521 /* 5522 * Now that we hold ctx::mutex and child_mutex, revalidate our 5523 * state, if child is still the first entry, it didn't get freed 5524 * and we can continue doing so. 5525 */ 5526 tmp = list_first_entry_or_null(&event->child_list, 5527 struct perf_event, child_list); 5528 if (tmp == child) { 5529 perf_remove_from_context(child, DETACH_GROUP); 5530 list_move(&child->child_list, &free_list); 5531 /* 5532 * This matches the refcount bump in inherit_event(); 5533 * this can't be the last reference. 5534 */ 5535 put_event(event); 5536 } else { 5537 var = &ctx->refcount; 5538 } 5539 5540 mutex_unlock(&event->child_mutex); 5541 mutex_unlock(&ctx->mutex); 5542 put_ctx(ctx); 5543 5544 if (var) { 5545 /* 5546 * If perf_event_free_task() has deleted all events from the 5547 * ctx while the child_mutex got released above, make sure to 5548 * notify about the preceding put_ctx(). 5549 */ 5550 smp_mb(); /* pairs with wait_var_event() */ 5551 wake_up_var(var); 5552 } 5553 goto again; 5554 } 5555 mutex_unlock(&event->child_mutex); 5556 5557 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5558 void *var = &child->ctx->refcount; 5559 5560 list_del(&child->child_list); 5561 free_event(child); 5562 5563 /* 5564 * Wake any perf_event_free_task() waiting for this event to be 5565 * freed. 5566 */ 5567 smp_mb(); /* pairs with wait_var_event() */ 5568 wake_up_var(var); 5569 } 5570 5571 no_ctx: 5572 put_event(event); /* Must be the 'last' reference */ 5573 return 0; 5574 } 5575 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5576 5577 /* 5578 * Called when the last reference to the file is gone. 5579 */ 5580 static int perf_release(struct inode *inode, struct file *file) 5581 { 5582 perf_event_release_kernel(file->private_data); 5583 return 0; 5584 } 5585 5586 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5587 { 5588 struct perf_event *child; 5589 u64 total = 0; 5590 5591 *enabled = 0; 5592 *running = 0; 5593 5594 mutex_lock(&event->child_mutex); 5595 5596 (void)perf_event_read(event, false); 5597 total += perf_event_count(event, false); 5598 5599 *enabled += event->total_time_enabled + 5600 atomic64_read(&event->child_total_time_enabled); 5601 *running += event->total_time_running + 5602 atomic64_read(&event->child_total_time_running); 5603 5604 list_for_each_entry(child, &event->child_list, child_list) { 5605 (void)perf_event_read(child, false); 5606 total += perf_event_count(child, false); 5607 *enabled += child->total_time_enabled; 5608 *running += child->total_time_running; 5609 } 5610 mutex_unlock(&event->child_mutex); 5611 5612 return total; 5613 } 5614 5615 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5616 { 5617 struct perf_event_context *ctx; 5618 u64 count; 5619 5620 ctx = perf_event_ctx_lock(event); 5621 count = __perf_event_read_value(event, enabled, running); 5622 perf_event_ctx_unlock(event, ctx); 5623 5624 return count; 5625 } 5626 EXPORT_SYMBOL_GPL(perf_event_read_value); 5627 5628 static int __perf_read_group_add(struct perf_event *leader, 5629 u64 read_format, u64 *values) 5630 { 5631 struct perf_event_context *ctx = leader->ctx; 5632 struct perf_event *sub, *parent; 5633 unsigned long flags; 5634 int n = 1; /* skip @nr */ 5635 int ret; 5636 5637 ret = perf_event_read(leader, true); 5638 if (ret) 5639 return ret; 5640 5641 raw_spin_lock_irqsave(&ctx->lock, flags); 5642 /* 5643 * Verify the grouping between the parent and child (inherited) 5644 * events is still in tact. 5645 * 5646 * Specifically: 5647 * - leader->ctx->lock pins leader->sibling_list 5648 * - parent->child_mutex pins parent->child_list 5649 * - parent->ctx->mutex pins parent->sibling_list 5650 * 5651 * Because parent->ctx != leader->ctx (and child_list nests inside 5652 * ctx->mutex), group destruction is not atomic between children, also 5653 * see perf_event_release_kernel(). Additionally, parent can grow the 5654 * group. 5655 * 5656 * Therefore it is possible to have parent and child groups in a 5657 * different configuration and summing over such a beast makes no sense 5658 * what so ever. 5659 * 5660 * Reject this. 5661 */ 5662 parent = leader->parent; 5663 if (parent && 5664 (parent->group_generation != leader->group_generation || 5665 parent->nr_siblings != leader->nr_siblings)) { 5666 ret = -ECHILD; 5667 goto unlock; 5668 } 5669 5670 /* 5671 * Since we co-schedule groups, {enabled,running} times of siblings 5672 * will be identical to those of the leader, so we only publish one 5673 * set. 5674 */ 5675 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5676 values[n++] += leader->total_time_enabled + 5677 atomic64_read(&leader->child_total_time_enabled); 5678 } 5679 5680 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5681 values[n++] += leader->total_time_running + 5682 atomic64_read(&leader->child_total_time_running); 5683 } 5684 5685 /* 5686 * Write {count,id} tuples for every sibling. 5687 */ 5688 values[n++] += perf_event_count(leader, false); 5689 if (read_format & PERF_FORMAT_ID) 5690 values[n++] = primary_event_id(leader); 5691 if (read_format & PERF_FORMAT_LOST) 5692 values[n++] = atomic64_read(&leader->lost_samples); 5693 5694 for_each_sibling_event(sub, leader) { 5695 values[n++] += perf_event_count(sub, false); 5696 if (read_format & PERF_FORMAT_ID) 5697 values[n++] = primary_event_id(sub); 5698 if (read_format & PERF_FORMAT_LOST) 5699 values[n++] = atomic64_read(&sub->lost_samples); 5700 } 5701 5702 unlock: 5703 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5704 return ret; 5705 } 5706 5707 static int perf_read_group(struct perf_event *event, 5708 u64 read_format, char __user *buf) 5709 { 5710 struct perf_event *leader = event->group_leader, *child; 5711 struct perf_event_context *ctx = leader->ctx; 5712 int ret; 5713 u64 *values; 5714 5715 lockdep_assert_held(&ctx->mutex); 5716 5717 values = kzalloc(event->read_size, GFP_KERNEL); 5718 if (!values) 5719 return -ENOMEM; 5720 5721 values[0] = 1 + leader->nr_siblings; 5722 5723 mutex_lock(&leader->child_mutex); 5724 5725 ret = __perf_read_group_add(leader, read_format, values); 5726 if (ret) 5727 goto unlock; 5728 5729 list_for_each_entry(child, &leader->child_list, child_list) { 5730 ret = __perf_read_group_add(child, read_format, values); 5731 if (ret) 5732 goto unlock; 5733 } 5734 5735 mutex_unlock(&leader->child_mutex); 5736 5737 ret = event->read_size; 5738 if (copy_to_user(buf, values, event->read_size)) 5739 ret = -EFAULT; 5740 goto out; 5741 5742 unlock: 5743 mutex_unlock(&leader->child_mutex); 5744 out: 5745 kfree(values); 5746 return ret; 5747 } 5748 5749 static int perf_read_one(struct perf_event *event, 5750 u64 read_format, char __user *buf) 5751 { 5752 u64 enabled, running; 5753 u64 values[5]; 5754 int n = 0; 5755 5756 values[n++] = __perf_event_read_value(event, &enabled, &running); 5757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5758 values[n++] = enabled; 5759 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5760 values[n++] = running; 5761 if (read_format & PERF_FORMAT_ID) 5762 values[n++] = primary_event_id(event); 5763 if (read_format & PERF_FORMAT_LOST) 5764 values[n++] = atomic64_read(&event->lost_samples); 5765 5766 if (copy_to_user(buf, values, n * sizeof(u64))) 5767 return -EFAULT; 5768 5769 return n * sizeof(u64); 5770 } 5771 5772 static bool is_event_hup(struct perf_event *event) 5773 { 5774 bool no_children; 5775 5776 if (event->state > PERF_EVENT_STATE_EXIT) 5777 return false; 5778 5779 mutex_lock(&event->child_mutex); 5780 no_children = list_empty(&event->child_list); 5781 mutex_unlock(&event->child_mutex); 5782 return no_children; 5783 } 5784 5785 /* 5786 * Read the performance event - simple non blocking version for now 5787 */ 5788 static ssize_t 5789 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5790 { 5791 u64 read_format = event->attr.read_format; 5792 int ret; 5793 5794 /* 5795 * Return end-of-file for a read on an event that is in 5796 * error state (i.e. because it was pinned but it couldn't be 5797 * scheduled on to the CPU at some point). 5798 */ 5799 if (event->state == PERF_EVENT_STATE_ERROR) 5800 return 0; 5801 5802 if (count < event->read_size) 5803 return -ENOSPC; 5804 5805 WARN_ON_ONCE(event->ctx->parent_ctx); 5806 if (read_format & PERF_FORMAT_GROUP) 5807 ret = perf_read_group(event, read_format, buf); 5808 else 5809 ret = perf_read_one(event, read_format, buf); 5810 5811 return ret; 5812 } 5813 5814 static ssize_t 5815 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5816 { 5817 struct perf_event *event = file->private_data; 5818 struct perf_event_context *ctx; 5819 int ret; 5820 5821 ret = security_perf_event_read(event); 5822 if (ret) 5823 return ret; 5824 5825 ctx = perf_event_ctx_lock(event); 5826 ret = __perf_read(event, buf, count); 5827 perf_event_ctx_unlock(event, ctx); 5828 5829 return ret; 5830 } 5831 5832 static __poll_t perf_poll(struct file *file, poll_table *wait) 5833 { 5834 struct perf_event *event = file->private_data; 5835 struct perf_buffer *rb; 5836 __poll_t events = EPOLLHUP; 5837 5838 poll_wait(file, &event->waitq, wait); 5839 5840 if (is_event_hup(event)) 5841 return events; 5842 5843 /* 5844 * Pin the event->rb by taking event->mmap_mutex; otherwise 5845 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5846 */ 5847 mutex_lock(&event->mmap_mutex); 5848 rb = event->rb; 5849 if (rb) 5850 events = atomic_xchg(&rb->poll, 0); 5851 mutex_unlock(&event->mmap_mutex); 5852 return events; 5853 } 5854 5855 static void _perf_event_reset(struct perf_event *event) 5856 { 5857 (void)perf_event_read(event, false); 5858 local64_set(&event->count, 0); 5859 perf_event_update_userpage(event); 5860 } 5861 5862 /* Assume it's not an event with inherit set. */ 5863 u64 perf_event_pause(struct perf_event *event, bool reset) 5864 { 5865 struct perf_event_context *ctx; 5866 u64 count; 5867 5868 ctx = perf_event_ctx_lock(event); 5869 WARN_ON_ONCE(event->attr.inherit); 5870 _perf_event_disable(event); 5871 count = local64_read(&event->count); 5872 if (reset) 5873 local64_set(&event->count, 0); 5874 perf_event_ctx_unlock(event, ctx); 5875 5876 return count; 5877 } 5878 EXPORT_SYMBOL_GPL(perf_event_pause); 5879 5880 /* 5881 * Holding the top-level event's child_mutex means that any 5882 * descendant process that has inherited this event will block 5883 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5884 * task existence requirements of perf_event_enable/disable. 5885 */ 5886 static void perf_event_for_each_child(struct perf_event *event, 5887 void (*func)(struct perf_event *)) 5888 { 5889 struct perf_event *child; 5890 5891 WARN_ON_ONCE(event->ctx->parent_ctx); 5892 5893 mutex_lock(&event->child_mutex); 5894 func(event); 5895 list_for_each_entry(child, &event->child_list, child_list) 5896 func(child); 5897 mutex_unlock(&event->child_mutex); 5898 } 5899 5900 static void perf_event_for_each(struct perf_event *event, 5901 void (*func)(struct perf_event *)) 5902 { 5903 struct perf_event_context *ctx = event->ctx; 5904 struct perf_event *sibling; 5905 5906 lockdep_assert_held(&ctx->mutex); 5907 5908 event = event->group_leader; 5909 5910 perf_event_for_each_child(event, func); 5911 for_each_sibling_event(sibling, event) 5912 perf_event_for_each_child(sibling, func); 5913 } 5914 5915 static void __perf_event_period(struct perf_event *event, 5916 struct perf_cpu_context *cpuctx, 5917 struct perf_event_context *ctx, 5918 void *info) 5919 { 5920 u64 value = *((u64 *)info); 5921 bool active; 5922 5923 if (event->attr.freq) { 5924 event->attr.sample_freq = value; 5925 } else { 5926 event->attr.sample_period = value; 5927 event->hw.sample_period = value; 5928 } 5929 5930 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5931 if (active) { 5932 perf_pmu_disable(event->pmu); 5933 /* 5934 * We could be throttled; unthrottle now to avoid the tick 5935 * trying to unthrottle while we already re-started the event. 5936 */ 5937 if (event->hw.interrupts == MAX_INTERRUPTS) { 5938 event->hw.interrupts = 0; 5939 perf_log_throttle(event, 1); 5940 } 5941 event->pmu->stop(event, PERF_EF_UPDATE); 5942 } 5943 5944 local64_set(&event->hw.period_left, 0); 5945 5946 if (active) { 5947 event->pmu->start(event, PERF_EF_RELOAD); 5948 perf_pmu_enable(event->pmu); 5949 } 5950 } 5951 5952 static int perf_event_check_period(struct perf_event *event, u64 value) 5953 { 5954 return event->pmu->check_period(event, value); 5955 } 5956 5957 static int _perf_event_period(struct perf_event *event, u64 value) 5958 { 5959 if (!is_sampling_event(event)) 5960 return -EINVAL; 5961 5962 if (!value) 5963 return -EINVAL; 5964 5965 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5966 return -EINVAL; 5967 5968 if (perf_event_check_period(event, value)) 5969 return -EINVAL; 5970 5971 if (!event->attr.freq && (value & (1ULL << 63))) 5972 return -EINVAL; 5973 5974 event_function_call(event, __perf_event_period, &value); 5975 5976 return 0; 5977 } 5978 5979 int perf_event_period(struct perf_event *event, u64 value) 5980 { 5981 struct perf_event_context *ctx; 5982 int ret; 5983 5984 ctx = perf_event_ctx_lock(event); 5985 ret = _perf_event_period(event, value); 5986 perf_event_ctx_unlock(event, ctx); 5987 5988 return ret; 5989 } 5990 EXPORT_SYMBOL_GPL(perf_event_period); 5991 5992 static const struct file_operations perf_fops; 5993 5994 static inline bool is_perf_file(struct fd f) 5995 { 5996 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; 5997 } 5998 5999 static int perf_event_set_output(struct perf_event *event, 6000 struct perf_event *output_event); 6001 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 6002 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6003 struct perf_event_attr *attr); 6004 6005 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 6006 { 6007 void (*func)(struct perf_event *); 6008 u32 flags = arg; 6009 6010 switch (cmd) { 6011 case PERF_EVENT_IOC_ENABLE: 6012 func = _perf_event_enable; 6013 break; 6014 case PERF_EVENT_IOC_DISABLE: 6015 func = _perf_event_disable; 6016 break; 6017 case PERF_EVENT_IOC_RESET: 6018 func = _perf_event_reset; 6019 break; 6020 6021 case PERF_EVENT_IOC_REFRESH: 6022 return _perf_event_refresh(event, arg); 6023 6024 case PERF_EVENT_IOC_PERIOD: 6025 { 6026 u64 value; 6027 6028 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 6029 return -EFAULT; 6030 6031 return _perf_event_period(event, value); 6032 } 6033 case PERF_EVENT_IOC_ID: 6034 { 6035 u64 id = primary_event_id(event); 6036 6037 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 6038 return -EFAULT; 6039 return 0; 6040 } 6041 6042 case PERF_EVENT_IOC_SET_OUTPUT: 6043 { 6044 CLASS(fd, output)(arg); // arg == -1 => empty 6045 struct perf_event *output_event = NULL; 6046 if (arg != -1) { 6047 if (!is_perf_file(output)) 6048 return -EBADF; 6049 output_event = fd_file(output)->private_data; 6050 } 6051 return perf_event_set_output(event, output_event); 6052 } 6053 6054 case PERF_EVENT_IOC_SET_FILTER: 6055 return perf_event_set_filter(event, (void __user *)arg); 6056 6057 case PERF_EVENT_IOC_SET_BPF: 6058 { 6059 struct bpf_prog *prog; 6060 int err; 6061 6062 prog = bpf_prog_get(arg); 6063 if (IS_ERR(prog)) 6064 return PTR_ERR(prog); 6065 6066 err = perf_event_set_bpf_prog(event, prog, 0); 6067 if (err) { 6068 bpf_prog_put(prog); 6069 return err; 6070 } 6071 6072 return 0; 6073 } 6074 6075 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6076 struct perf_buffer *rb; 6077 6078 rcu_read_lock(); 6079 rb = rcu_dereference(event->rb); 6080 if (!rb || !rb->nr_pages) { 6081 rcu_read_unlock(); 6082 return -EINVAL; 6083 } 6084 rb_toggle_paused(rb, !!arg); 6085 rcu_read_unlock(); 6086 return 0; 6087 } 6088 6089 case PERF_EVENT_IOC_QUERY_BPF: 6090 return perf_event_query_prog_array(event, (void __user *)arg); 6091 6092 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6093 struct perf_event_attr new_attr; 6094 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6095 &new_attr); 6096 6097 if (err) 6098 return err; 6099 6100 return perf_event_modify_attr(event, &new_attr); 6101 } 6102 default: 6103 return -ENOTTY; 6104 } 6105 6106 if (flags & PERF_IOC_FLAG_GROUP) 6107 perf_event_for_each(event, func); 6108 else 6109 perf_event_for_each_child(event, func); 6110 6111 return 0; 6112 } 6113 6114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6115 { 6116 struct perf_event *event = file->private_data; 6117 struct perf_event_context *ctx; 6118 long ret; 6119 6120 /* Treat ioctl like writes as it is likely a mutating operation. */ 6121 ret = security_perf_event_write(event); 6122 if (ret) 6123 return ret; 6124 6125 ctx = perf_event_ctx_lock(event); 6126 ret = _perf_ioctl(event, cmd, arg); 6127 perf_event_ctx_unlock(event, ctx); 6128 6129 return ret; 6130 } 6131 6132 #ifdef CONFIG_COMPAT 6133 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6134 unsigned long arg) 6135 { 6136 switch (_IOC_NR(cmd)) { 6137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6138 case _IOC_NR(PERF_EVENT_IOC_ID): 6139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6142 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6143 cmd &= ~IOCSIZE_MASK; 6144 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6145 } 6146 break; 6147 } 6148 return perf_ioctl(file, cmd, arg); 6149 } 6150 #else 6151 # define perf_compat_ioctl NULL 6152 #endif 6153 6154 int perf_event_task_enable(void) 6155 { 6156 struct perf_event_context *ctx; 6157 struct perf_event *event; 6158 6159 mutex_lock(¤t->perf_event_mutex); 6160 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6161 ctx = perf_event_ctx_lock(event); 6162 perf_event_for_each_child(event, _perf_event_enable); 6163 perf_event_ctx_unlock(event, ctx); 6164 } 6165 mutex_unlock(¤t->perf_event_mutex); 6166 6167 return 0; 6168 } 6169 6170 int perf_event_task_disable(void) 6171 { 6172 struct perf_event_context *ctx; 6173 struct perf_event *event; 6174 6175 mutex_lock(¤t->perf_event_mutex); 6176 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6177 ctx = perf_event_ctx_lock(event); 6178 perf_event_for_each_child(event, _perf_event_disable); 6179 perf_event_ctx_unlock(event, ctx); 6180 } 6181 mutex_unlock(¤t->perf_event_mutex); 6182 6183 return 0; 6184 } 6185 6186 static int perf_event_index(struct perf_event *event) 6187 { 6188 if (event->hw.state & PERF_HES_STOPPED) 6189 return 0; 6190 6191 if (event->state != PERF_EVENT_STATE_ACTIVE) 6192 return 0; 6193 6194 return event->pmu->event_idx(event); 6195 } 6196 6197 static void perf_event_init_userpage(struct perf_event *event) 6198 { 6199 struct perf_event_mmap_page *userpg; 6200 struct perf_buffer *rb; 6201 6202 rcu_read_lock(); 6203 rb = rcu_dereference(event->rb); 6204 if (!rb) 6205 goto unlock; 6206 6207 userpg = rb->user_page; 6208 6209 /* Allow new userspace to detect that bit 0 is deprecated */ 6210 userpg->cap_bit0_is_deprecated = 1; 6211 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6212 userpg->data_offset = PAGE_SIZE; 6213 userpg->data_size = perf_data_size(rb); 6214 6215 unlock: 6216 rcu_read_unlock(); 6217 } 6218 6219 void __weak arch_perf_update_userpage( 6220 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6221 { 6222 } 6223 6224 /* 6225 * Callers need to ensure there can be no nesting of this function, otherwise 6226 * the seqlock logic goes bad. We can not serialize this because the arch 6227 * code calls this from NMI context. 6228 */ 6229 void perf_event_update_userpage(struct perf_event *event) 6230 { 6231 struct perf_event_mmap_page *userpg; 6232 struct perf_buffer *rb; 6233 u64 enabled, running, now; 6234 6235 rcu_read_lock(); 6236 rb = rcu_dereference(event->rb); 6237 if (!rb) 6238 goto unlock; 6239 6240 /* 6241 * compute total_time_enabled, total_time_running 6242 * based on snapshot values taken when the event 6243 * was last scheduled in. 6244 * 6245 * we cannot simply called update_context_time() 6246 * because of locking issue as we can be called in 6247 * NMI context 6248 */ 6249 calc_timer_values(event, &now, &enabled, &running); 6250 6251 userpg = rb->user_page; 6252 /* 6253 * Disable preemption to guarantee consistent time stamps are stored to 6254 * the user page. 6255 */ 6256 preempt_disable(); 6257 ++userpg->lock; 6258 barrier(); 6259 userpg->index = perf_event_index(event); 6260 userpg->offset = perf_event_count(event, false); 6261 if (userpg->index) 6262 userpg->offset -= local64_read(&event->hw.prev_count); 6263 6264 userpg->time_enabled = enabled + 6265 atomic64_read(&event->child_total_time_enabled); 6266 6267 userpg->time_running = running + 6268 atomic64_read(&event->child_total_time_running); 6269 6270 arch_perf_update_userpage(event, userpg, now); 6271 6272 barrier(); 6273 ++userpg->lock; 6274 preempt_enable(); 6275 unlock: 6276 rcu_read_unlock(); 6277 } 6278 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6279 6280 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6281 { 6282 struct perf_event *event = vmf->vma->vm_file->private_data; 6283 struct perf_buffer *rb; 6284 vm_fault_t ret = VM_FAULT_SIGBUS; 6285 6286 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6287 if (vmf->pgoff == 0) 6288 ret = 0; 6289 return ret; 6290 } 6291 6292 rcu_read_lock(); 6293 rb = rcu_dereference(event->rb); 6294 if (!rb) 6295 goto unlock; 6296 6297 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6298 goto unlock; 6299 6300 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6301 if (!vmf->page) 6302 goto unlock; 6303 6304 get_page(vmf->page); 6305 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6306 vmf->page->index = vmf->pgoff; 6307 6308 ret = 0; 6309 unlock: 6310 rcu_read_unlock(); 6311 6312 return ret; 6313 } 6314 6315 static void ring_buffer_attach(struct perf_event *event, 6316 struct perf_buffer *rb) 6317 { 6318 struct perf_buffer *old_rb = NULL; 6319 unsigned long flags; 6320 6321 WARN_ON_ONCE(event->parent); 6322 6323 if (event->rb) { 6324 /* 6325 * Should be impossible, we set this when removing 6326 * event->rb_entry and wait/clear when adding event->rb_entry. 6327 */ 6328 WARN_ON_ONCE(event->rcu_pending); 6329 6330 old_rb = event->rb; 6331 spin_lock_irqsave(&old_rb->event_lock, flags); 6332 list_del_rcu(&event->rb_entry); 6333 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6334 6335 event->rcu_batches = get_state_synchronize_rcu(); 6336 event->rcu_pending = 1; 6337 } 6338 6339 if (rb) { 6340 if (event->rcu_pending) { 6341 cond_synchronize_rcu(event->rcu_batches); 6342 event->rcu_pending = 0; 6343 } 6344 6345 spin_lock_irqsave(&rb->event_lock, flags); 6346 list_add_rcu(&event->rb_entry, &rb->event_list); 6347 spin_unlock_irqrestore(&rb->event_lock, flags); 6348 } 6349 6350 /* 6351 * Avoid racing with perf_mmap_close(AUX): stop the event 6352 * before swizzling the event::rb pointer; if it's getting 6353 * unmapped, its aux_mmap_count will be 0 and it won't 6354 * restart. See the comment in __perf_pmu_output_stop(). 6355 * 6356 * Data will inevitably be lost when set_output is done in 6357 * mid-air, but then again, whoever does it like this is 6358 * not in for the data anyway. 6359 */ 6360 if (has_aux(event)) 6361 perf_event_stop(event, 0); 6362 6363 rcu_assign_pointer(event->rb, rb); 6364 6365 if (old_rb) { 6366 ring_buffer_put(old_rb); 6367 /* 6368 * Since we detached before setting the new rb, so that we 6369 * could attach the new rb, we could have missed a wakeup. 6370 * Provide it now. 6371 */ 6372 wake_up_all(&event->waitq); 6373 } 6374 } 6375 6376 static void ring_buffer_wakeup(struct perf_event *event) 6377 { 6378 struct perf_buffer *rb; 6379 6380 if (event->parent) 6381 event = event->parent; 6382 6383 rcu_read_lock(); 6384 rb = rcu_dereference(event->rb); 6385 if (rb) { 6386 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6387 wake_up_all(&event->waitq); 6388 } 6389 rcu_read_unlock(); 6390 } 6391 6392 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6393 { 6394 struct perf_buffer *rb; 6395 6396 if (event->parent) 6397 event = event->parent; 6398 6399 rcu_read_lock(); 6400 rb = rcu_dereference(event->rb); 6401 if (rb) { 6402 if (!refcount_inc_not_zero(&rb->refcount)) 6403 rb = NULL; 6404 } 6405 rcu_read_unlock(); 6406 6407 return rb; 6408 } 6409 6410 void ring_buffer_put(struct perf_buffer *rb) 6411 { 6412 if (!refcount_dec_and_test(&rb->refcount)) 6413 return; 6414 6415 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6416 6417 call_rcu(&rb->rcu_head, rb_free_rcu); 6418 } 6419 6420 static void perf_mmap_open(struct vm_area_struct *vma) 6421 { 6422 struct perf_event *event = vma->vm_file->private_data; 6423 6424 atomic_inc(&event->mmap_count); 6425 atomic_inc(&event->rb->mmap_count); 6426 6427 if (vma->vm_pgoff) 6428 atomic_inc(&event->rb->aux_mmap_count); 6429 6430 if (event->pmu->event_mapped) 6431 event->pmu->event_mapped(event, vma->vm_mm); 6432 } 6433 6434 static void perf_pmu_output_stop(struct perf_event *event); 6435 6436 /* 6437 * A buffer can be mmap()ed multiple times; either directly through the same 6438 * event, or through other events by use of perf_event_set_output(). 6439 * 6440 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6441 * the buffer here, where we still have a VM context. This means we need 6442 * to detach all events redirecting to us. 6443 */ 6444 static void perf_mmap_close(struct vm_area_struct *vma) 6445 { 6446 struct perf_event *event = vma->vm_file->private_data; 6447 struct perf_buffer *rb = ring_buffer_get(event); 6448 struct user_struct *mmap_user = rb->mmap_user; 6449 int mmap_locked = rb->mmap_locked; 6450 unsigned long size = perf_data_size(rb); 6451 bool detach_rest = false; 6452 6453 if (event->pmu->event_unmapped) 6454 event->pmu->event_unmapped(event, vma->vm_mm); 6455 6456 /* 6457 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6458 * to avoid complications. 6459 */ 6460 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6461 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6462 /* 6463 * Stop all AUX events that are writing to this buffer, 6464 * so that we can free its AUX pages and corresponding PMU 6465 * data. Note that after rb::aux_mmap_count dropped to zero, 6466 * they won't start any more (see perf_aux_output_begin()). 6467 */ 6468 perf_pmu_output_stop(event); 6469 6470 /* now it's safe to free the pages */ 6471 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6472 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6473 6474 /* this has to be the last one */ 6475 rb_free_aux(rb); 6476 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6477 6478 mutex_unlock(&rb->aux_mutex); 6479 } 6480 6481 if (atomic_dec_and_test(&rb->mmap_count)) 6482 detach_rest = true; 6483 6484 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6485 goto out_put; 6486 6487 ring_buffer_attach(event, NULL); 6488 mutex_unlock(&event->mmap_mutex); 6489 6490 /* If there's still other mmap()s of this buffer, we're done. */ 6491 if (!detach_rest) 6492 goto out_put; 6493 6494 /* 6495 * No other mmap()s, detach from all other events that might redirect 6496 * into the now unreachable buffer. Somewhat complicated by the 6497 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6498 */ 6499 again: 6500 rcu_read_lock(); 6501 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6502 if (!atomic_long_inc_not_zero(&event->refcount)) { 6503 /* 6504 * This event is en-route to free_event() which will 6505 * detach it and remove it from the list. 6506 */ 6507 continue; 6508 } 6509 rcu_read_unlock(); 6510 6511 mutex_lock(&event->mmap_mutex); 6512 /* 6513 * Check we didn't race with perf_event_set_output() which can 6514 * swizzle the rb from under us while we were waiting to 6515 * acquire mmap_mutex. 6516 * 6517 * If we find a different rb; ignore this event, a next 6518 * iteration will no longer find it on the list. We have to 6519 * still restart the iteration to make sure we're not now 6520 * iterating the wrong list. 6521 */ 6522 if (event->rb == rb) 6523 ring_buffer_attach(event, NULL); 6524 6525 mutex_unlock(&event->mmap_mutex); 6526 put_event(event); 6527 6528 /* 6529 * Restart the iteration; either we're on the wrong list or 6530 * destroyed its integrity by doing a deletion. 6531 */ 6532 goto again; 6533 } 6534 rcu_read_unlock(); 6535 6536 /* 6537 * It could be there's still a few 0-ref events on the list; they'll 6538 * get cleaned up by free_event() -- they'll also still have their 6539 * ref on the rb and will free it whenever they are done with it. 6540 * 6541 * Aside from that, this buffer is 'fully' detached and unmapped, 6542 * undo the VM accounting. 6543 */ 6544 6545 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6546 &mmap_user->locked_vm); 6547 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6548 free_uid(mmap_user); 6549 6550 out_put: 6551 ring_buffer_put(rb); /* could be last */ 6552 } 6553 6554 static const struct vm_operations_struct perf_mmap_vmops = { 6555 .open = perf_mmap_open, 6556 .close = perf_mmap_close, /* non mergeable */ 6557 .fault = perf_mmap_fault, 6558 .page_mkwrite = perf_mmap_fault, 6559 }; 6560 6561 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6562 { 6563 struct perf_event *event = file->private_data; 6564 unsigned long user_locked, user_lock_limit; 6565 struct user_struct *user = current_user(); 6566 struct mutex *aux_mutex = NULL; 6567 struct perf_buffer *rb = NULL; 6568 unsigned long locked, lock_limit; 6569 unsigned long vma_size; 6570 unsigned long nr_pages; 6571 long user_extra = 0, extra = 0; 6572 int ret = 0, flags = 0; 6573 6574 /* 6575 * Don't allow mmap() of inherited per-task counters. This would 6576 * create a performance issue due to all children writing to the 6577 * same rb. 6578 */ 6579 if (event->cpu == -1 && event->attr.inherit) 6580 return -EINVAL; 6581 6582 if (!(vma->vm_flags & VM_SHARED)) 6583 return -EINVAL; 6584 6585 ret = security_perf_event_read(event); 6586 if (ret) 6587 return ret; 6588 6589 vma_size = vma->vm_end - vma->vm_start; 6590 6591 if (vma->vm_pgoff == 0) { 6592 nr_pages = (vma_size / PAGE_SIZE) - 1; 6593 } else { 6594 /* 6595 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6596 * mapped, all subsequent mappings should have the same size 6597 * and offset. Must be above the normal perf buffer. 6598 */ 6599 u64 aux_offset, aux_size; 6600 6601 if (!event->rb) 6602 return -EINVAL; 6603 6604 nr_pages = vma_size / PAGE_SIZE; 6605 if (nr_pages > INT_MAX) 6606 return -ENOMEM; 6607 6608 mutex_lock(&event->mmap_mutex); 6609 ret = -EINVAL; 6610 6611 rb = event->rb; 6612 if (!rb) 6613 goto aux_unlock; 6614 6615 aux_mutex = &rb->aux_mutex; 6616 mutex_lock(aux_mutex); 6617 6618 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6619 aux_size = READ_ONCE(rb->user_page->aux_size); 6620 6621 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6622 goto aux_unlock; 6623 6624 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6625 goto aux_unlock; 6626 6627 /* already mapped with a different offset */ 6628 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6629 goto aux_unlock; 6630 6631 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6632 goto aux_unlock; 6633 6634 /* already mapped with a different size */ 6635 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6636 goto aux_unlock; 6637 6638 if (!is_power_of_2(nr_pages)) 6639 goto aux_unlock; 6640 6641 if (!atomic_inc_not_zero(&rb->mmap_count)) 6642 goto aux_unlock; 6643 6644 if (rb_has_aux(rb)) { 6645 atomic_inc(&rb->aux_mmap_count); 6646 ret = 0; 6647 goto unlock; 6648 } 6649 6650 atomic_set(&rb->aux_mmap_count, 1); 6651 user_extra = nr_pages; 6652 6653 goto accounting; 6654 } 6655 6656 /* 6657 * If we have rb pages ensure they're a power-of-two number, so we 6658 * can do bitmasks instead of modulo. 6659 */ 6660 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6661 return -EINVAL; 6662 6663 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6664 return -EINVAL; 6665 6666 WARN_ON_ONCE(event->ctx->parent_ctx); 6667 again: 6668 mutex_lock(&event->mmap_mutex); 6669 if (event->rb) { 6670 if (data_page_nr(event->rb) != nr_pages) { 6671 ret = -EINVAL; 6672 goto unlock; 6673 } 6674 6675 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6676 /* 6677 * Raced against perf_mmap_close(); remove the 6678 * event and try again. 6679 */ 6680 ring_buffer_attach(event, NULL); 6681 mutex_unlock(&event->mmap_mutex); 6682 goto again; 6683 } 6684 6685 goto unlock; 6686 } 6687 6688 user_extra = nr_pages + 1; 6689 6690 accounting: 6691 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6692 6693 /* 6694 * Increase the limit linearly with more CPUs: 6695 */ 6696 user_lock_limit *= num_online_cpus(); 6697 6698 user_locked = atomic_long_read(&user->locked_vm); 6699 6700 /* 6701 * sysctl_perf_event_mlock may have changed, so that 6702 * user->locked_vm > user_lock_limit 6703 */ 6704 if (user_locked > user_lock_limit) 6705 user_locked = user_lock_limit; 6706 user_locked += user_extra; 6707 6708 if (user_locked > user_lock_limit) { 6709 /* 6710 * charge locked_vm until it hits user_lock_limit; 6711 * charge the rest from pinned_vm 6712 */ 6713 extra = user_locked - user_lock_limit; 6714 user_extra -= extra; 6715 } 6716 6717 lock_limit = rlimit(RLIMIT_MEMLOCK); 6718 lock_limit >>= PAGE_SHIFT; 6719 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6720 6721 if ((locked > lock_limit) && perf_is_paranoid() && 6722 !capable(CAP_IPC_LOCK)) { 6723 ret = -EPERM; 6724 goto unlock; 6725 } 6726 6727 WARN_ON(!rb && event->rb); 6728 6729 if (vma->vm_flags & VM_WRITE) 6730 flags |= RING_BUFFER_WRITABLE; 6731 6732 if (!rb) { 6733 rb = rb_alloc(nr_pages, 6734 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6735 event->cpu, flags); 6736 6737 if (!rb) { 6738 ret = -ENOMEM; 6739 goto unlock; 6740 } 6741 6742 atomic_set(&rb->mmap_count, 1); 6743 rb->mmap_user = get_current_user(); 6744 rb->mmap_locked = extra; 6745 6746 ring_buffer_attach(event, rb); 6747 6748 perf_event_update_time(event); 6749 perf_event_init_userpage(event); 6750 perf_event_update_userpage(event); 6751 } else { 6752 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6753 event->attr.aux_watermark, flags); 6754 if (!ret) 6755 rb->aux_mmap_locked = extra; 6756 } 6757 6758 unlock: 6759 if (!ret) { 6760 atomic_long_add(user_extra, &user->locked_vm); 6761 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6762 6763 atomic_inc(&event->mmap_count); 6764 } else if (rb) { 6765 atomic_dec(&rb->mmap_count); 6766 } 6767 aux_unlock: 6768 if (aux_mutex) 6769 mutex_unlock(aux_mutex); 6770 mutex_unlock(&event->mmap_mutex); 6771 6772 /* 6773 * Since pinned accounting is per vm we cannot allow fork() to copy our 6774 * vma. 6775 */ 6776 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6777 vma->vm_ops = &perf_mmap_vmops; 6778 6779 if (event->pmu->event_mapped) 6780 event->pmu->event_mapped(event, vma->vm_mm); 6781 6782 return ret; 6783 } 6784 6785 static int perf_fasync(int fd, struct file *filp, int on) 6786 { 6787 struct inode *inode = file_inode(filp); 6788 struct perf_event *event = filp->private_data; 6789 int retval; 6790 6791 inode_lock(inode); 6792 retval = fasync_helper(fd, filp, on, &event->fasync); 6793 inode_unlock(inode); 6794 6795 if (retval < 0) 6796 return retval; 6797 6798 return 0; 6799 } 6800 6801 static const struct file_operations perf_fops = { 6802 .release = perf_release, 6803 .read = perf_read, 6804 .poll = perf_poll, 6805 .unlocked_ioctl = perf_ioctl, 6806 .compat_ioctl = perf_compat_ioctl, 6807 .mmap = perf_mmap, 6808 .fasync = perf_fasync, 6809 }; 6810 6811 /* 6812 * Perf event wakeup 6813 * 6814 * If there's data, ensure we set the poll() state and publish everything 6815 * to user-space before waking everybody up. 6816 */ 6817 6818 void perf_event_wakeup(struct perf_event *event) 6819 { 6820 ring_buffer_wakeup(event); 6821 6822 if (event->pending_kill) { 6823 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6824 event->pending_kill = 0; 6825 } 6826 } 6827 6828 static void perf_sigtrap(struct perf_event *event) 6829 { 6830 /* 6831 * We'd expect this to only occur if the irq_work is delayed and either 6832 * ctx->task or current has changed in the meantime. This can be the 6833 * case on architectures that do not implement arch_irq_work_raise(). 6834 */ 6835 if (WARN_ON_ONCE(event->ctx->task != current)) 6836 return; 6837 6838 /* 6839 * Both perf_pending_task() and perf_pending_irq() can race with the 6840 * task exiting. 6841 */ 6842 if (current->flags & PF_EXITING) 6843 return; 6844 6845 send_sig_perf((void __user *)event->pending_addr, 6846 event->orig_type, event->attr.sig_data); 6847 } 6848 6849 /* 6850 * Deliver the pending work in-event-context or follow the context. 6851 */ 6852 static void __perf_pending_disable(struct perf_event *event) 6853 { 6854 int cpu = READ_ONCE(event->oncpu); 6855 6856 /* 6857 * If the event isn't running; we done. event_sched_out() will have 6858 * taken care of things. 6859 */ 6860 if (cpu < 0) 6861 return; 6862 6863 /* 6864 * Yay, we hit home and are in the context of the event. 6865 */ 6866 if (cpu == smp_processor_id()) { 6867 if (event->pending_disable) { 6868 event->pending_disable = 0; 6869 perf_event_disable_local(event); 6870 } 6871 return; 6872 } 6873 6874 /* 6875 * CPU-A CPU-B 6876 * 6877 * perf_event_disable_inatomic() 6878 * @pending_disable = CPU-A; 6879 * irq_work_queue(); 6880 * 6881 * sched-out 6882 * @pending_disable = -1; 6883 * 6884 * sched-in 6885 * perf_event_disable_inatomic() 6886 * @pending_disable = CPU-B; 6887 * irq_work_queue(); // FAILS 6888 * 6889 * irq_work_run() 6890 * perf_pending_disable() 6891 * 6892 * But the event runs on CPU-B and wants disabling there. 6893 */ 6894 irq_work_queue_on(&event->pending_disable_irq, cpu); 6895 } 6896 6897 static void perf_pending_disable(struct irq_work *entry) 6898 { 6899 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6900 int rctx; 6901 6902 /* 6903 * If we 'fail' here, that's OK, it means recursion is already disabled 6904 * and we won't recurse 'further'. 6905 */ 6906 rctx = perf_swevent_get_recursion_context(); 6907 __perf_pending_disable(event); 6908 if (rctx >= 0) 6909 perf_swevent_put_recursion_context(rctx); 6910 } 6911 6912 static void perf_pending_irq(struct irq_work *entry) 6913 { 6914 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6915 int rctx; 6916 6917 /* 6918 * If we 'fail' here, that's OK, it means recursion is already disabled 6919 * and we won't recurse 'further'. 6920 */ 6921 rctx = perf_swevent_get_recursion_context(); 6922 6923 /* 6924 * The wakeup isn't bound to the context of the event -- it can happen 6925 * irrespective of where the event is. 6926 */ 6927 if (event->pending_wakeup) { 6928 event->pending_wakeup = 0; 6929 perf_event_wakeup(event); 6930 } 6931 6932 if (rctx >= 0) 6933 perf_swevent_put_recursion_context(rctx); 6934 } 6935 6936 static void perf_pending_task(struct callback_head *head) 6937 { 6938 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6939 int rctx; 6940 6941 /* 6942 * All accesses to the event must belong to the same implicit RCU read-side 6943 * critical section as the ->pending_work reset. See comment in 6944 * perf_pending_task_sync(). 6945 */ 6946 rcu_read_lock(); 6947 /* 6948 * If we 'fail' here, that's OK, it means recursion is already disabled 6949 * and we won't recurse 'further'. 6950 */ 6951 rctx = perf_swevent_get_recursion_context(); 6952 6953 if (event->pending_work) { 6954 event->pending_work = 0; 6955 perf_sigtrap(event); 6956 local_dec(&event->ctx->nr_no_switch_fast); 6957 rcuwait_wake_up(&event->pending_work_wait); 6958 } 6959 rcu_read_unlock(); 6960 6961 if (rctx >= 0) 6962 perf_swevent_put_recursion_context(rctx); 6963 } 6964 6965 #ifdef CONFIG_GUEST_PERF_EVENTS 6966 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6967 6968 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6969 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6970 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6971 6972 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6973 { 6974 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6975 return; 6976 6977 rcu_assign_pointer(perf_guest_cbs, cbs); 6978 static_call_update(__perf_guest_state, cbs->state); 6979 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6980 6981 /* Implementing ->handle_intel_pt_intr is optional. */ 6982 if (cbs->handle_intel_pt_intr) 6983 static_call_update(__perf_guest_handle_intel_pt_intr, 6984 cbs->handle_intel_pt_intr); 6985 } 6986 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6987 6988 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6989 { 6990 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6991 return; 6992 6993 rcu_assign_pointer(perf_guest_cbs, NULL); 6994 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6995 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6996 static_call_update(__perf_guest_handle_intel_pt_intr, 6997 (void *)&__static_call_return0); 6998 synchronize_rcu(); 6999 } 7000 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 7001 #endif 7002 7003 static bool should_sample_guest(struct perf_event *event) 7004 { 7005 return !event->attr.exclude_guest && perf_guest_state(); 7006 } 7007 7008 unsigned long perf_misc_flags(struct perf_event *event, 7009 struct pt_regs *regs) 7010 { 7011 if (should_sample_guest(event)) 7012 return perf_arch_guest_misc_flags(regs); 7013 7014 return perf_arch_misc_flags(regs); 7015 } 7016 7017 unsigned long perf_instruction_pointer(struct perf_event *event, 7018 struct pt_regs *regs) 7019 { 7020 if (should_sample_guest(event)) 7021 return perf_guest_get_ip(); 7022 7023 return perf_arch_instruction_pointer(regs); 7024 } 7025 7026 static void 7027 perf_output_sample_regs(struct perf_output_handle *handle, 7028 struct pt_regs *regs, u64 mask) 7029 { 7030 int bit; 7031 DECLARE_BITMAP(_mask, 64); 7032 7033 bitmap_from_u64(_mask, mask); 7034 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 7035 u64 val; 7036 7037 val = perf_reg_value(regs, bit); 7038 perf_output_put(handle, val); 7039 } 7040 } 7041 7042 static void perf_sample_regs_user(struct perf_regs *regs_user, 7043 struct pt_regs *regs) 7044 { 7045 if (user_mode(regs)) { 7046 regs_user->abi = perf_reg_abi(current); 7047 regs_user->regs = regs; 7048 } else if (!(current->flags & PF_KTHREAD)) { 7049 perf_get_regs_user(regs_user, regs); 7050 } else { 7051 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 7052 regs_user->regs = NULL; 7053 } 7054 } 7055 7056 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 7057 struct pt_regs *regs) 7058 { 7059 regs_intr->regs = regs; 7060 regs_intr->abi = perf_reg_abi(current); 7061 } 7062 7063 7064 /* 7065 * Get remaining task size from user stack pointer. 7066 * 7067 * It'd be better to take stack vma map and limit this more 7068 * precisely, but there's no way to get it safely under interrupt, 7069 * so using TASK_SIZE as limit. 7070 */ 7071 static u64 perf_ustack_task_size(struct pt_regs *regs) 7072 { 7073 unsigned long addr = perf_user_stack_pointer(regs); 7074 7075 if (!addr || addr >= TASK_SIZE) 7076 return 0; 7077 7078 return TASK_SIZE - addr; 7079 } 7080 7081 static u16 7082 perf_sample_ustack_size(u16 stack_size, u16 header_size, 7083 struct pt_regs *regs) 7084 { 7085 u64 task_size; 7086 7087 /* No regs, no stack pointer, no dump. */ 7088 if (!regs) 7089 return 0; 7090 7091 /* 7092 * Check if we fit in with the requested stack size into the: 7093 * - TASK_SIZE 7094 * If we don't, we limit the size to the TASK_SIZE. 7095 * 7096 * - remaining sample size 7097 * If we don't, we customize the stack size to 7098 * fit in to the remaining sample size. 7099 */ 7100 7101 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7102 stack_size = min(stack_size, (u16) task_size); 7103 7104 /* Current header size plus static size and dynamic size. */ 7105 header_size += 2 * sizeof(u64); 7106 7107 /* Do we fit in with the current stack dump size? */ 7108 if ((u16) (header_size + stack_size) < header_size) { 7109 /* 7110 * If we overflow the maximum size for the sample, 7111 * we customize the stack dump size to fit in. 7112 */ 7113 stack_size = USHRT_MAX - header_size - sizeof(u64); 7114 stack_size = round_up(stack_size, sizeof(u64)); 7115 } 7116 7117 return stack_size; 7118 } 7119 7120 static void 7121 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7122 struct pt_regs *regs) 7123 { 7124 /* Case of a kernel thread, nothing to dump */ 7125 if (!regs) { 7126 u64 size = 0; 7127 perf_output_put(handle, size); 7128 } else { 7129 unsigned long sp; 7130 unsigned int rem; 7131 u64 dyn_size; 7132 7133 /* 7134 * We dump: 7135 * static size 7136 * - the size requested by user or the best one we can fit 7137 * in to the sample max size 7138 * data 7139 * - user stack dump data 7140 * dynamic size 7141 * - the actual dumped size 7142 */ 7143 7144 /* Static size. */ 7145 perf_output_put(handle, dump_size); 7146 7147 /* Data. */ 7148 sp = perf_user_stack_pointer(regs); 7149 rem = __output_copy_user(handle, (void *) sp, dump_size); 7150 dyn_size = dump_size - rem; 7151 7152 perf_output_skip(handle, rem); 7153 7154 /* Dynamic size. */ 7155 perf_output_put(handle, dyn_size); 7156 } 7157 } 7158 7159 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7160 struct perf_sample_data *data, 7161 size_t size) 7162 { 7163 struct perf_event *sampler = event->aux_event; 7164 struct perf_buffer *rb; 7165 7166 data->aux_size = 0; 7167 7168 if (!sampler) 7169 goto out; 7170 7171 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7172 goto out; 7173 7174 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7175 goto out; 7176 7177 rb = ring_buffer_get(sampler); 7178 if (!rb) 7179 goto out; 7180 7181 /* 7182 * If this is an NMI hit inside sampling code, don't take 7183 * the sample. See also perf_aux_sample_output(). 7184 */ 7185 if (READ_ONCE(rb->aux_in_sampling)) { 7186 data->aux_size = 0; 7187 } else { 7188 size = min_t(size_t, size, perf_aux_size(rb)); 7189 data->aux_size = ALIGN(size, sizeof(u64)); 7190 } 7191 ring_buffer_put(rb); 7192 7193 out: 7194 return data->aux_size; 7195 } 7196 7197 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7198 struct perf_event *event, 7199 struct perf_output_handle *handle, 7200 unsigned long size) 7201 { 7202 unsigned long flags; 7203 long ret; 7204 7205 /* 7206 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7207 * paths. If we start calling them in NMI context, they may race with 7208 * the IRQ ones, that is, for example, re-starting an event that's just 7209 * been stopped, which is why we're using a separate callback that 7210 * doesn't change the event state. 7211 * 7212 * IRQs need to be disabled to prevent IPIs from racing with us. 7213 */ 7214 local_irq_save(flags); 7215 /* 7216 * Guard against NMI hits inside the critical section; 7217 * see also perf_prepare_sample_aux(). 7218 */ 7219 WRITE_ONCE(rb->aux_in_sampling, 1); 7220 barrier(); 7221 7222 ret = event->pmu->snapshot_aux(event, handle, size); 7223 7224 barrier(); 7225 WRITE_ONCE(rb->aux_in_sampling, 0); 7226 local_irq_restore(flags); 7227 7228 return ret; 7229 } 7230 7231 static void perf_aux_sample_output(struct perf_event *event, 7232 struct perf_output_handle *handle, 7233 struct perf_sample_data *data) 7234 { 7235 struct perf_event *sampler = event->aux_event; 7236 struct perf_buffer *rb; 7237 unsigned long pad; 7238 long size; 7239 7240 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7241 return; 7242 7243 rb = ring_buffer_get(sampler); 7244 if (!rb) 7245 return; 7246 7247 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7248 7249 /* 7250 * An error here means that perf_output_copy() failed (returned a 7251 * non-zero surplus that it didn't copy), which in its current 7252 * enlightened implementation is not possible. If that changes, we'd 7253 * like to know. 7254 */ 7255 if (WARN_ON_ONCE(size < 0)) 7256 goto out_put; 7257 7258 /* 7259 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7260 * perf_prepare_sample_aux(), so should not be more than that. 7261 */ 7262 pad = data->aux_size - size; 7263 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7264 pad = 8; 7265 7266 if (pad) { 7267 u64 zero = 0; 7268 perf_output_copy(handle, &zero, pad); 7269 } 7270 7271 out_put: 7272 ring_buffer_put(rb); 7273 } 7274 7275 /* 7276 * A set of common sample data types saved even for non-sample records 7277 * when event->attr.sample_id_all is set. 7278 */ 7279 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7280 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7281 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7282 7283 static void __perf_event_header__init_id(struct perf_sample_data *data, 7284 struct perf_event *event, 7285 u64 sample_type) 7286 { 7287 data->type = event->attr.sample_type; 7288 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7289 7290 if (sample_type & PERF_SAMPLE_TID) { 7291 /* namespace issues */ 7292 data->tid_entry.pid = perf_event_pid(event, current); 7293 data->tid_entry.tid = perf_event_tid(event, current); 7294 } 7295 7296 if (sample_type & PERF_SAMPLE_TIME) 7297 data->time = perf_event_clock(event); 7298 7299 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7300 data->id = primary_event_id(event); 7301 7302 if (sample_type & PERF_SAMPLE_STREAM_ID) 7303 data->stream_id = event->id; 7304 7305 if (sample_type & PERF_SAMPLE_CPU) { 7306 data->cpu_entry.cpu = raw_smp_processor_id(); 7307 data->cpu_entry.reserved = 0; 7308 } 7309 } 7310 7311 void perf_event_header__init_id(struct perf_event_header *header, 7312 struct perf_sample_data *data, 7313 struct perf_event *event) 7314 { 7315 if (event->attr.sample_id_all) { 7316 header->size += event->id_header_size; 7317 __perf_event_header__init_id(data, event, event->attr.sample_type); 7318 } 7319 } 7320 7321 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7322 struct perf_sample_data *data) 7323 { 7324 u64 sample_type = data->type; 7325 7326 if (sample_type & PERF_SAMPLE_TID) 7327 perf_output_put(handle, data->tid_entry); 7328 7329 if (sample_type & PERF_SAMPLE_TIME) 7330 perf_output_put(handle, data->time); 7331 7332 if (sample_type & PERF_SAMPLE_ID) 7333 perf_output_put(handle, data->id); 7334 7335 if (sample_type & PERF_SAMPLE_STREAM_ID) 7336 perf_output_put(handle, data->stream_id); 7337 7338 if (sample_type & PERF_SAMPLE_CPU) 7339 perf_output_put(handle, data->cpu_entry); 7340 7341 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7342 perf_output_put(handle, data->id); 7343 } 7344 7345 void perf_event__output_id_sample(struct perf_event *event, 7346 struct perf_output_handle *handle, 7347 struct perf_sample_data *sample) 7348 { 7349 if (event->attr.sample_id_all) 7350 __perf_event__output_id_sample(handle, sample); 7351 } 7352 7353 static void perf_output_read_one(struct perf_output_handle *handle, 7354 struct perf_event *event, 7355 u64 enabled, u64 running) 7356 { 7357 u64 read_format = event->attr.read_format; 7358 u64 values[5]; 7359 int n = 0; 7360 7361 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); 7362 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7363 values[n++] = enabled + 7364 atomic64_read(&event->child_total_time_enabled); 7365 } 7366 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7367 values[n++] = running + 7368 atomic64_read(&event->child_total_time_running); 7369 } 7370 if (read_format & PERF_FORMAT_ID) 7371 values[n++] = primary_event_id(event); 7372 if (read_format & PERF_FORMAT_LOST) 7373 values[n++] = atomic64_read(&event->lost_samples); 7374 7375 __output_copy(handle, values, n * sizeof(u64)); 7376 } 7377 7378 static void perf_output_read_group(struct perf_output_handle *handle, 7379 struct perf_event *event, 7380 u64 enabled, u64 running) 7381 { 7382 struct perf_event *leader = event->group_leader, *sub; 7383 u64 read_format = event->attr.read_format; 7384 unsigned long flags; 7385 u64 values[6]; 7386 int n = 0; 7387 bool self = has_inherit_and_sample_read(&event->attr); 7388 7389 /* 7390 * Disabling interrupts avoids all counter scheduling 7391 * (context switches, timer based rotation and IPIs). 7392 */ 7393 local_irq_save(flags); 7394 7395 values[n++] = 1 + leader->nr_siblings; 7396 7397 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7398 values[n++] = enabled; 7399 7400 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7401 values[n++] = running; 7402 7403 if ((leader != event) && 7404 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7405 leader->pmu->read(leader); 7406 7407 values[n++] = perf_event_count(leader, self); 7408 if (read_format & PERF_FORMAT_ID) 7409 values[n++] = primary_event_id(leader); 7410 if (read_format & PERF_FORMAT_LOST) 7411 values[n++] = atomic64_read(&leader->lost_samples); 7412 7413 __output_copy(handle, values, n * sizeof(u64)); 7414 7415 for_each_sibling_event(sub, leader) { 7416 n = 0; 7417 7418 if ((sub != event) && 7419 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7420 sub->pmu->read(sub); 7421 7422 values[n++] = perf_event_count(sub, self); 7423 if (read_format & PERF_FORMAT_ID) 7424 values[n++] = primary_event_id(sub); 7425 if (read_format & PERF_FORMAT_LOST) 7426 values[n++] = atomic64_read(&sub->lost_samples); 7427 7428 __output_copy(handle, values, n * sizeof(u64)); 7429 } 7430 7431 local_irq_restore(flags); 7432 } 7433 7434 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7435 PERF_FORMAT_TOTAL_TIME_RUNNING) 7436 7437 /* 7438 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7439 * 7440 * The problem is that its both hard and excessively expensive to iterate the 7441 * child list, not to mention that its impossible to IPI the children running 7442 * on another CPU, from interrupt/NMI context. 7443 * 7444 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread 7445 * counts rather than attempting to accumulate some value across all children on 7446 * all cores. 7447 */ 7448 static void perf_output_read(struct perf_output_handle *handle, 7449 struct perf_event *event) 7450 { 7451 u64 enabled = 0, running = 0, now; 7452 u64 read_format = event->attr.read_format; 7453 7454 /* 7455 * compute total_time_enabled, total_time_running 7456 * based on snapshot values taken when the event 7457 * was last scheduled in. 7458 * 7459 * we cannot simply called update_context_time() 7460 * because of locking issue as we are called in 7461 * NMI context 7462 */ 7463 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7464 calc_timer_values(event, &now, &enabled, &running); 7465 7466 if (event->attr.read_format & PERF_FORMAT_GROUP) 7467 perf_output_read_group(handle, event, enabled, running); 7468 else 7469 perf_output_read_one(handle, event, enabled, running); 7470 } 7471 7472 void perf_output_sample(struct perf_output_handle *handle, 7473 struct perf_event_header *header, 7474 struct perf_sample_data *data, 7475 struct perf_event *event) 7476 { 7477 u64 sample_type = data->type; 7478 7479 perf_output_put(handle, *header); 7480 7481 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7482 perf_output_put(handle, data->id); 7483 7484 if (sample_type & PERF_SAMPLE_IP) 7485 perf_output_put(handle, data->ip); 7486 7487 if (sample_type & PERF_SAMPLE_TID) 7488 perf_output_put(handle, data->tid_entry); 7489 7490 if (sample_type & PERF_SAMPLE_TIME) 7491 perf_output_put(handle, data->time); 7492 7493 if (sample_type & PERF_SAMPLE_ADDR) 7494 perf_output_put(handle, data->addr); 7495 7496 if (sample_type & PERF_SAMPLE_ID) 7497 perf_output_put(handle, data->id); 7498 7499 if (sample_type & PERF_SAMPLE_STREAM_ID) 7500 perf_output_put(handle, data->stream_id); 7501 7502 if (sample_type & PERF_SAMPLE_CPU) 7503 perf_output_put(handle, data->cpu_entry); 7504 7505 if (sample_type & PERF_SAMPLE_PERIOD) 7506 perf_output_put(handle, data->period); 7507 7508 if (sample_type & PERF_SAMPLE_READ) 7509 perf_output_read(handle, event); 7510 7511 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7512 int size = 1; 7513 7514 size += data->callchain->nr; 7515 size *= sizeof(u64); 7516 __output_copy(handle, data->callchain, size); 7517 } 7518 7519 if (sample_type & PERF_SAMPLE_RAW) { 7520 struct perf_raw_record *raw = data->raw; 7521 7522 if (raw) { 7523 struct perf_raw_frag *frag = &raw->frag; 7524 7525 perf_output_put(handle, raw->size); 7526 do { 7527 if (frag->copy) { 7528 __output_custom(handle, frag->copy, 7529 frag->data, frag->size); 7530 } else { 7531 __output_copy(handle, frag->data, 7532 frag->size); 7533 } 7534 if (perf_raw_frag_last(frag)) 7535 break; 7536 frag = frag->next; 7537 } while (1); 7538 if (frag->pad) 7539 __output_skip(handle, NULL, frag->pad); 7540 } else { 7541 struct { 7542 u32 size; 7543 u32 data; 7544 } raw = { 7545 .size = sizeof(u32), 7546 .data = 0, 7547 }; 7548 perf_output_put(handle, raw); 7549 } 7550 } 7551 7552 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7553 if (data->br_stack) { 7554 size_t size; 7555 7556 size = data->br_stack->nr 7557 * sizeof(struct perf_branch_entry); 7558 7559 perf_output_put(handle, data->br_stack->nr); 7560 if (branch_sample_hw_index(event)) 7561 perf_output_put(handle, data->br_stack->hw_idx); 7562 perf_output_copy(handle, data->br_stack->entries, size); 7563 /* 7564 * Add the extension space which is appended 7565 * right after the struct perf_branch_stack. 7566 */ 7567 if (data->br_stack_cntr) { 7568 size = data->br_stack->nr * sizeof(u64); 7569 perf_output_copy(handle, data->br_stack_cntr, size); 7570 } 7571 } else { 7572 /* 7573 * we always store at least the value of nr 7574 */ 7575 u64 nr = 0; 7576 perf_output_put(handle, nr); 7577 } 7578 } 7579 7580 if (sample_type & PERF_SAMPLE_REGS_USER) { 7581 u64 abi = data->regs_user.abi; 7582 7583 /* 7584 * If there are no regs to dump, notice it through 7585 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7586 */ 7587 perf_output_put(handle, abi); 7588 7589 if (abi) { 7590 u64 mask = event->attr.sample_regs_user; 7591 perf_output_sample_regs(handle, 7592 data->regs_user.regs, 7593 mask); 7594 } 7595 } 7596 7597 if (sample_type & PERF_SAMPLE_STACK_USER) { 7598 perf_output_sample_ustack(handle, 7599 data->stack_user_size, 7600 data->regs_user.regs); 7601 } 7602 7603 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7604 perf_output_put(handle, data->weight.full); 7605 7606 if (sample_type & PERF_SAMPLE_DATA_SRC) 7607 perf_output_put(handle, data->data_src.val); 7608 7609 if (sample_type & PERF_SAMPLE_TRANSACTION) 7610 perf_output_put(handle, data->txn); 7611 7612 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7613 u64 abi = data->regs_intr.abi; 7614 /* 7615 * If there are no regs to dump, notice it through 7616 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7617 */ 7618 perf_output_put(handle, abi); 7619 7620 if (abi) { 7621 u64 mask = event->attr.sample_regs_intr; 7622 7623 perf_output_sample_regs(handle, 7624 data->regs_intr.regs, 7625 mask); 7626 } 7627 } 7628 7629 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7630 perf_output_put(handle, data->phys_addr); 7631 7632 if (sample_type & PERF_SAMPLE_CGROUP) 7633 perf_output_put(handle, data->cgroup); 7634 7635 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7636 perf_output_put(handle, data->data_page_size); 7637 7638 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7639 perf_output_put(handle, data->code_page_size); 7640 7641 if (sample_type & PERF_SAMPLE_AUX) { 7642 perf_output_put(handle, data->aux_size); 7643 7644 if (data->aux_size) 7645 perf_aux_sample_output(event, handle, data); 7646 } 7647 7648 if (!event->attr.watermark) { 7649 int wakeup_events = event->attr.wakeup_events; 7650 7651 if (wakeup_events) { 7652 struct perf_buffer *rb = handle->rb; 7653 int events = local_inc_return(&rb->events); 7654 7655 if (events >= wakeup_events) { 7656 local_sub(wakeup_events, &rb->events); 7657 local_inc(&rb->wakeup); 7658 } 7659 } 7660 } 7661 } 7662 7663 static u64 perf_virt_to_phys(u64 virt) 7664 { 7665 u64 phys_addr = 0; 7666 7667 if (!virt) 7668 return 0; 7669 7670 if (virt >= TASK_SIZE) { 7671 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7672 if (virt_addr_valid((void *)(uintptr_t)virt) && 7673 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7674 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7675 } else { 7676 /* 7677 * Walking the pages tables for user address. 7678 * Interrupts are disabled, so it prevents any tear down 7679 * of the page tables. 7680 * Try IRQ-safe get_user_page_fast_only first. 7681 * If failed, leave phys_addr as 0. 7682 */ 7683 if (current->mm != NULL) { 7684 struct page *p; 7685 7686 pagefault_disable(); 7687 if (get_user_page_fast_only(virt, 0, &p)) { 7688 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7689 put_page(p); 7690 } 7691 pagefault_enable(); 7692 } 7693 } 7694 7695 return phys_addr; 7696 } 7697 7698 /* 7699 * Return the pagetable size of a given virtual address. 7700 */ 7701 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7702 { 7703 u64 size = 0; 7704 7705 #ifdef CONFIG_HAVE_GUP_FAST 7706 pgd_t *pgdp, pgd; 7707 p4d_t *p4dp, p4d; 7708 pud_t *pudp, pud; 7709 pmd_t *pmdp, pmd; 7710 pte_t *ptep, pte; 7711 7712 pgdp = pgd_offset(mm, addr); 7713 pgd = READ_ONCE(*pgdp); 7714 if (pgd_none(pgd)) 7715 return 0; 7716 7717 if (pgd_leaf(pgd)) 7718 return pgd_leaf_size(pgd); 7719 7720 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7721 p4d = READ_ONCE(*p4dp); 7722 if (!p4d_present(p4d)) 7723 return 0; 7724 7725 if (p4d_leaf(p4d)) 7726 return p4d_leaf_size(p4d); 7727 7728 pudp = pud_offset_lockless(p4dp, p4d, addr); 7729 pud = READ_ONCE(*pudp); 7730 if (!pud_present(pud)) 7731 return 0; 7732 7733 if (pud_leaf(pud)) 7734 return pud_leaf_size(pud); 7735 7736 pmdp = pmd_offset_lockless(pudp, pud, addr); 7737 again: 7738 pmd = pmdp_get_lockless(pmdp); 7739 if (!pmd_present(pmd)) 7740 return 0; 7741 7742 if (pmd_leaf(pmd)) 7743 return pmd_leaf_size(pmd); 7744 7745 ptep = pte_offset_map(&pmd, addr); 7746 if (!ptep) 7747 goto again; 7748 7749 pte = ptep_get_lockless(ptep); 7750 if (pte_present(pte)) 7751 size = __pte_leaf_size(pmd, pte); 7752 pte_unmap(ptep); 7753 #endif /* CONFIG_HAVE_GUP_FAST */ 7754 7755 return size; 7756 } 7757 7758 static u64 perf_get_page_size(unsigned long addr) 7759 { 7760 struct mm_struct *mm; 7761 unsigned long flags; 7762 u64 size; 7763 7764 if (!addr) 7765 return 0; 7766 7767 /* 7768 * Software page-table walkers must disable IRQs, 7769 * which prevents any tear down of the page tables. 7770 */ 7771 local_irq_save(flags); 7772 7773 mm = current->mm; 7774 if (!mm) { 7775 /* 7776 * For kernel threads and the like, use init_mm so that 7777 * we can find kernel memory. 7778 */ 7779 mm = &init_mm; 7780 } 7781 7782 size = perf_get_pgtable_size(mm, addr); 7783 7784 local_irq_restore(flags); 7785 7786 return size; 7787 } 7788 7789 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7790 7791 struct perf_callchain_entry * 7792 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7793 { 7794 bool kernel = !event->attr.exclude_callchain_kernel; 7795 bool user = !event->attr.exclude_callchain_user; 7796 /* Disallow cross-task user callchains. */ 7797 bool crosstask = event->ctx->task && event->ctx->task != current; 7798 const u32 max_stack = event->attr.sample_max_stack; 7799 struct perf_callchain_entry *callchain; 7800 7801 if (!kernel && !user) 7802 return &__empty_callchain; 7803 7804 callchain = get_perf_callchain(regs, 0, kernel, user, 7805 max_stack, crosstask, true); 7806 return callchain ?: &__empty_callchain; 7807 } 7808 7809 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7810 { 7811 return d * !!(flags & s); 7812 } 7813 7814 void perf_prepare_sample(struct perf_sample_data *data, 7815 struct perf_event *event, 7816 struct pt_regs *regs) 7817 { 7818 u64 sample_type = event->attr.sample_type; 7819 u64 filtered_sample_type; 7820 7821 /* 7822 * Add the sample flags that are dependent to others. And clear the 7823 * sample flags that have already been done by the PMU driver. 7824 */ 7825 filtered_sample_type = sample_type; 7826 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7827 PERF_SAMPLE_IP); 7828 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7829 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7830 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7831 PERF_SAMPLE_REGS_USER); 7832 filtered_sample_type &= ~data->sample_flags; 7833 7834 if (filtered_sample_type == 0) { 7835 /* Make sure it has the correct data->type for output */ 7836 data->type = event->attr.sample_type; 7837 return; 7838 } 7839 7840 __perf_event_header__init_id(data, event, filtered_sample_type); 7841 7842 if (filtered_sample_type & PERF_SAMPLE_IP) { 7843 data->ip = perf_instruction_pointer(event, regs); 7844 data->sample_flags |= PERF_SAMPLE_IP; 7845 } 7846 7847 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7848 perf_sample_save_callchain(data, event, regs); 7849 7850 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7851 data->raw = NULL; 7852 data->dyn_size += sizeof(u64); 7853 data->sample_flags |= PERF_SAMPLE_RAW; 7854 } 7855 7856 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7857 data->br_stack = NULL; 7858 data->dyn_size += sizeof(u64); 7859 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7860 } 7861 7862 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7863 perf_sample_regs_user(&data->regs_user, regs); 7864 7865 /* 7866 * It cannot use the filtered_sample_type here as REGS_USER can be set 7867 * by STACK_USER (using __cond_set() above) and we don't want to update 7868 * the dyn_size if it's not requested by users. 7869 */ 7870 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7871 /* regs dump ABI info */ 7872 int size = sizeof(u64); 7873 7874 if (data->regs_user.regs) { 7875 u64 mask = event->attr.sample_regs_user; 7876 size += hweight64(mask) * sizeof(u64); 7877 } 7878 7879 data->dyn_size += size; 7880 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7881 } 7882 7883 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7884 /* 7885 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7886 * processed as the last one or have additional check added 7887 * in case new sample type is added, because we could eat 7888 * up the rest of the sample size. 7889 */ 7890 u16 stack_size = event->attr.sample_stack_user; 7891 u16 header_size = perf_sample_data_size(data, event); 7892 u16 size = sizeof(u64); 7893 7894 stack_size = perf_sample_ustack_size(stack_size, header_size, 7895 data->regs_user.regs); 7896 7897 /* 7898 * If there is something to dump, add space for the dump 7899 * itself and for the field that tells the dynamic size, 7900 * which is how many have been actually dumped. 7901 */ 7902 if (stack_size) 7903 size += sizeof(u64) + stack_size; 7904 7905 data->stack_user_size = stack_size; 7906 data->dyn_size += size; 7907 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7908 } 7909 7910 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7911 data->weight.full = 0; 7912 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7913 } 7914 7915 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7916 data->data_src.val = PERF_MEM_NA; 7917 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7918 } 7919 7920 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7921 data->txn = 0; 7922 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7923 } 7924 7925 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7926 data->addr = 0; 7927 data->sample_flags |= PERF_SAMPLE_ADDR; 7928 } 7929 7930 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7931 /* regs dump ABI info */ 7932 int size = sizeof(u64); 7933 7934 perf_sample_regs_intr(&data->regs_intr, regs); 7935 7936 if (data->regs_intr.regs) { 7937 u64 mask = event->attr.sample_regs_intr; 7938 7939 size += hweight64(mask) * sizeof(u64); 7940 } 7941 7942 data->dyn_size += size; 7943 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7944 } 7945 7946 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7947 data->phys_addr = perf_virt_to_phys(data->addr); 7948 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7949 } 7950 7951 #ifdef CONFIG_CGROUP_PERF 7952 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7953 struct cgroup *cgrp; 7954 7955 /* protected by RCU */ 7956 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7957 data->cgroup = cgroup_id(cgrp); 7958 data->sample_flags |= PERF_SAMPLE_CGROUP; 7959 } 7960 #endif 7961 7962 /* 7963 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7964 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7965 * but the value will not dump to the userspace. 7966 */ 7967 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7968 data->data_page_size = perf_get_page_size(data->addr); 7969 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7970 } 7971 7972 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7973 data->code_page_size = perf_get_page_size(data->ip); 7974 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7975 } 7976 7977 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7978 u64 size; 7979 u16 header_size = perf_sample_data_size(data, event); 7980 7981 header_size += sizeof(u64); /* size */ 7982 7983 /* 7984 * Given the 16bit nature of header::size, an AUX sample can 7985 * easily overflow it, what with all the preceding sample bits. 7986 * Make sure this doesn't happen by using up to U16_MAX bytes 7987 * per sample in total (rounded down to 8 byte boundary). 7988 */ 7989 size = min_t(size_t, U16_MAX - header_size, 7990 event->attr.aux_sample_size); 7991 size = rounddown(size, 8); 7992 size = perf_prepare_sample_aux(event, data, size); 7993 7994 WARN_ON_ONCE(size + header_size > U16_MAX); 7995 data->dyn_size += size + sizeof(u64); /* size above */ 7996 data->sample_flags |= PERF_SAMPLE_AUX; 7997 } 7998 } 7999 8000 void perf_prepare_header(struct perf_event_header *header, 8001 struct perf_sample_data *data, 8002 struct perf_event *event, 8003 struct pt_regs *regs) 8004 { 8005 header->type = PERF_RECORD_SAMPLE; 8006 header->size = perf_sample_data_size(data, event); 8007 header->misc = perf_misc_flags(event, regs); 8008 8009 /* 8010 * If you're adding more sample types here, you likely need to do 8011 * something about the overflowing header::size, like repurpose the 8012 * lowest 3 bits of size, which should be always zero at the moment. 8013 * This raises a more important question, do we really need 512k sized 8014 * samples and why, so good argumentation is in order for whatever you 8015 * do here next. 8016 */ 8017 WARN_ON_ONCE(header->size & 7); 8018 } 8019 8020 static void __perf_event_aux_pause(struct perf_event *event, bool pause) 8021 { 8022 if (pause) { 8023 if (!event->hw.aux_paused) { 8024 event->hw.aux_paused = 1; 8025 event->pmu->stop(event, PERF_EF_PAUSE); 8026 } 8027 } else { 8028 if (event->hw.aux_paused) { 8029 event->hw.aux_paused = 0; 8030 event->pmu->start(event, PERF_EF_RESUME); 8031 } 8032 } 8033 } 8034 8035 static void perf_event_aux_pause(struct perf_event *event, bool pause) 8036 { 8037 struct perf_buffer *rb; 8038 8039 if (WARN_ON_ONCE(!event)) 8040 return; 8041 8042 rb = ring_buffer_get(event); 8043 if (!rb) 8044 return; 8045 8046 scoped_guard (irqsave) { 8047 /* 8048 * Guard against self-recursion here. Another event could trip 8049 * this same from NMI context. 8050 */ 8051 if (READ_ONCE(rb->aux_in_pause_resume)) 8052 break; 8053 8054 WRITE_ONCE(rb->aux_in_pause_resume, 1); 8055 barrier(); 8056 __perf_event_aux_pause(event, pause); 8057 barrier(); 8058 WRITE_ONCE(rb->aux_in_pause_resume, 0); 8059 } 8060 ring_buffer_put(rb); 8061 } 8062 8063 static __always_inline int 8064 __perf_event_output(struct perf_event *event, 8065 struct perf_sample_data *data, 8066 struct pt_regs *regs, 8067 int (*output_begin)(struct perf_output_handle *, 8068 struct perf_sample_data *, 8069 struct perf_event *, 8070 unsigned int)) 8071 { 8072 struct perf_output_handle handle; 8073 struct perf_event_header header; 8074 int err; 8075 8076 /* protect the callchain buffers */ 8077 rcu_read_lock(); 8078 8079 perf_prepare_sample(data, event, regs); 8080 perf_prepare_header(&header, data, event, regs); 8081 8082 err = output_begin(&handle, data, event, header.size); 8083 if (err) 8084 goto exit; 8085 8086 perf_output_sample(&handle, &header, data, event); 8087 8088 perf_output_end(&handle); 8089 8090 exit: 8091 rcu_read_unlock(); 8092 return err; 8093 } 8094 8095 void 8096 perf_event_output_forward(struct perf_event *event, 8097 struct perf_sample_data *data, 8098 struct pt_regs *regs) 8099 { 8100 __perf_event_output(event, data, regs, perf_output_begin_forward); 8101 } 8102 8103 void 8104 perf_event_output_backward(struct perf_event *event, 8105 struct perf_sample_data *data, 8106 struct pt_regs *regs) 8107 { 8108 __perf_event_output(event, data, regs, perf_output_begin_backward); 8109 } 8110 8111 int 8112 perf_event_output(struct perf_event *event, 8113 struct perf_sample_data *data, 8114 struct pt_regs *regs) 8115 { 8116 return __perf_event_output(event, data, regs, perf_output_begin); 8117 } 8118 8119 /* 8120 * read event_id 8121 */ 8122 8123 struct perf_read_event { 8124 struct perf_event_header header; 8125 8126 u32 pid; 8127 u32 tid; 8128 }; 8129 8130 static void 8131 perf_event_read_event(struct perf_event *event, 8132 struct task_struct *task) 8133 { 8134 struct perf_output_handle handle; 8135 struct perf_sample_data sample; 8136 struct perf_read_event read_event = { 8137 .header = { 8138 .type = PERF_RECORD_READ, 8139 .misc = 0, 8140 .size = sizeof(read_event) + event->read_size, 8141 }, 8142 .pid = perf_event_pid(event, task), 8143 .tid = perf_event_tid(event, task), 8144 }; 8145 int ret; 8146 8147 perf_event_header__init_id(&read_event.header, &sample, event); 8148 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8149 if (ret) 8150 return; 8151 8152 perf_output_put(&handle, read_event); 8153 perf_output_read(&handle, event); 8154 perf_event__output_id_sample(event, &handle, &sample); 8155 8156 perf_output_end(&handle); 8157 } 8158 8159 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8160 8161 static void 8162 perf_iterate_ctx(struct perf_event_context *ctx, 8163 perf_iterate_f output, 8164 void *data, bool all) 8165 { 8166 struct perf_event *event; 8167 8168 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8169 if (!all) { 8170 if (event->state < PERF_EVENT_STATE_INACTIVE) 8171 continue; 8172 if (!event_filter_match(event)) 8173 continue; 8174 } 8175 8176 output(event, data); 8177 } 8178 } 8179 8180 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8181 { 8182 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8183 struct perf_event *event; 8184 8185 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8186 /* 8187 * Skip events that are not fully formed yet; ensure that 8188 * if we observe event->ctx, both event and ctx will be 8189 * complete enough. See perf_install_in_context(). 8190 */ 8191 if (!smp_load_acquire(&event->ctx)) 8192 continue; 8193 8194 if (event->state < PERF_EVENT_STATE_INACTIVE) 8195 continue; 8196 if (!event_filter_match(event)) 8197 continue; 8198 output(event, data); 8199 } 8200 } 8201 8202 /* 8203 * Iterate all events that need to receive side-band events. 8204 * 8205 * For new callers; ensure that account_pmu_sb_event() includes 8206 * your event, otherwise it might not get delivered. 8207 */ 8208 static void 8209 perf_iterate_sb(perf_iterate_f output, void *data, 8210 struct perf_event_context *task_ctx) 8211 { 8212 struct perf_event_context *ctx; 8213 8214 rcu_read_lock(); 8215 preempt_disable(); 8216 8217 /* 8218 * If we have task_ctx != NULL we only notify the task context itself. 8219 * The task_ctx is set only for EXIT events before releasing task 8220 * context. 8221 */ 8222 if (task_ctx) { 8223 perf_iterate_ctx(task_ctx, output, data, false); 8224 goto done; 8225 } 8226 8227 perf_iterate_sb_cpu(output, data); 8228 8229 ctx = rcu_dereference(current->perf_event_ctxp); 8230 if (ctx) 8231 perf_iterate_ctx(ctx, output, data, false); 8232 done: 8233 preempt_enable(); 8234 rcu_read_unlock(); 8235 } 8236 8237 /* 8238 * Clear all file-based filters at exec, they'll have to be 8239 * re-instated when/if these objects are mmapped again. 8240 */ 8241 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8242 { 8243 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8244 struct perf_addr_filter *filter; 8245 unsigned int restart = 0, count = 0; 8246 unsigned long flags; 8247 8248 if (!has_addr_filter(event)) 8249 return; 8250 8251 raw_spin_lock_irqsave(&ifh->lock, flags); 8252 list_for_each_entry(filter, &ifh->list, entry) { 8253 if (filter->path.dentry) { 8254 event->addr_filter_ranges[count].start = 0; 8255 event->addr_filter_ranges[count].size = 0; 8256 restart++; 8257 } 8258 8259 count++; 8260 } 8261 8262 if (restart) 8263 event->addr_filters_gen++; 8264 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8265 8266 if (restart) 8267 perf_event_stop(event, 1); 8268 } 8269 8270 void perf_event_exec(void) 8271 { 8272 struct perf_event_context *ctx; 8273 8274 ctx = perf_pin_task_context(current); 8275 if (!ctx) 8276 return; 8277 8278 perf_event_enable_on_exec(ctx); 8279 perf_event_remove_on_exec(ctx); 8280 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8281 8282 perf_unpin_context(ctx); 8283 put_ctx(ctx); 8284 } 8285 8286 struct remote_output { 8287 struct perf_buffer *rb; 8288 int err; 8289 }; 8290 8291 static void __perf_event_output_stop(struct perf_event *event, void *data) 8292 { 8293 struct perf_event *parent = event->parent; 8294 struct remote_output *ro = data; 8295 struct perf_buffer *rb = ro->rb; 8296 struct stop_event_data sd = { 8297 .event = event, 8298 }; 8299 8300 if (!has_aux(event)) 8301 return; 8302 8303 if (!parent) 8304 parent = event; 8305 8306 /* 8307 * In case of inheritance, it will be the parent that links to the 8308 * ring-buffer, but it will be the child that's actually using it. 8309 * 8310 * We are using event::rb to determine if the event should be stopped, 8311 * however this may race with ring_buffer_attach() (through set_output), 8312 * which will make us skip the event that actually needs to be stopped. 8313 * So ring_buffer_attach() has to stop an aux event before re-assigning 8314 * its rb pointer. 8315 */ 8316 if (rcu_dereference(parent->rb) == rb) 8317 ro->err = __perf_event_stop(&sd); 8318 } 8319 8320 static int __perf_pmu_output_stop(void *info) 8321 { 8322 struct perf_event *event = info; 8323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8324 struct remote_output ro = { 8325 .rb = event->rb, 8326 }; 8327 8328 rcu_read_lock(); 8329 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8330 if (cpuctx->task_ctx) 8331 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8332 &ro, false); 8333 rcu_read_unlock(); 8334 8335 return ro.err; 8336 } 8337 8338 static void perf_pmu_output_stop(struct perf_event *event) 8339 { 8340 struct perf_event *iter; 8341 int err, cpu; 8342 8343 restart: 8344 rcu_read_lock(); 8345 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8346 /* 8347 * For per-CPU events, we need to make sure that neither they 8348 * nor their children are running; for cpu==-1 events it's 8349 * sufficient to stop the event itself if it's active, since 8350 * it can't have children. 8351 */ 8352 cpu = iter->cpu; 8353 if (cpu == -1) 8354 cpu = READ_ONCE(iter->oncpu); 8355 8356 if (cpu == -1) 8357 continue; 8358 8359 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8360 if (err == -EAGAIN) { 8361 rcu_read_unlock(); 8362 goto restart; 8363 } 8364 } 8365 rcu_read_unlock(); 8366 } 8367 8368 /* 8369 * task tracking -- fork/exit 8370 * 8371 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8372 */ 8373 8374 struct perf_task_event { 8375 struct task_struct *task; 8376 struct perf_event_context *task_ctx; 8377 8378 struct { 8379 struct perf_event_header header; 8380 8381 u32 pid; 8382 u32 ppid; 8383 u32 tid; 8384 u32 ptid; 8385 u64 time; 8386 } event_id; 8387 }; 8388 8389 static int perf_event_task_match(struct perf_event *event) 8390 { 8391 return event->attr.comm || event->attr.mmap || 8392 event->attr.mmap2 || event->attr.mmap_data || 8393 event->attr.task; 8394 } 8395 8396 static void perf_event_task_output(struct perf_event *event, 8397 void *data) 8398 { 8399 struct perf_task_event *task_event = data; 8400 struct perf_output_handle handle; 8401 struct perf_sample_data sample; 8402 struct task_struct *task = task_event->task; 8403 int ret, size = task_event->event_id.header.size; 8404 8405 if (!perf_event_task_match(event)) 8406 return; 8407 8408 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8409 8410 ret = perf_output_begin(&handle, &sample, event, 8411 task_event->event_id.header.size); 8412 if (ret) 8413 goto out; 8414 8415 task_event->event_id.pid = perf_event_pid(event, task); 8416 task_event->event_id.tid = perf_event_tid(event, task); 8417 8418 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8419 task_event->event_id.ppid = perf_event_pid(event, 8420 task->real_parent); 8421 task_event->event_id.ptid = perf_event_pid(event, 8422 task->real_parent); 8423 } else { /* PERF_RECORD_FORK */ 8424 task_event->event_id.ppid = perf_event_pid(event, current); 8425 task_event->event_id.ptid = perf_event_tid(event, current); 8426 } 8427 8428 task_event->event_id.time = perf_event_clock(event); 8429 8430 perf_output_put(&handle, task_event->event_id); 8431 8432 perf_event__output_id_sample(event, &handle, &sample); 8433 8434 perf_output_end(&handle); 8435 out: 8436 task_event->event_id.header.size = size; 8437 } 8438 8439 static void perf_event_task(struct task_struct *task, 8440 struct perf_event_context *task_ctx, 8441 int new) 8442 { 8443 struct perf_task_event task_event; 8444 8445 if (!atomic_read(&nr_comm_events) && 8446 !atomic_read(&nr_mmap_events) && 8447 !atomic_read(&nr_task_events)) 8448 return; 8449 8450 task_event = (struct perf_task_event){ 8451 .task = task, 8452 .task_ctx = task_ctx, 8453 .event_id = { 8454 .header = { 8455 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8456 .misc = 0, 8457 .size = sizeof(task_event.event_id), 8458 }, 8459 /* .pid */ 8460 /* .ppid */ 8461 /* .tid */ 8462 /* .ptid */ 8463 /* .time */ 8464 }, 8465 }; 8466 8467 perf_iterate_sb(perf_event_task_output, 8468 &task_event, 8469 task_ctx); 8470 } 8471 8472 void perf_event_fork(struct task_struct *task) 8473 { 8474 perf_event_task(task, NULL, 1); 8475 perf_event_namespaces(task); 8476 } 8477 8478 /* 8479 * comm tracking 8480 */ 8481 8482 struct perf_comm_event { 8483 struct task_struct *task; 8484 char *comm; 8485 int comm_size; 8486 8487 struct { 8488 struct perf_event_header header; 8489 8490 u32 pid; 8491 u32 tid; 8492 } event_id; 8493 }; 8494 8495 static int perf_event_comm_match(struct perf_event *event) 8496 { 8497 return event->attr.comm; 8498 } 8499 8500 static void perf_event_comm_output(struct perf_event *event, 8501 void *data) 8502 { 8503 struct perf_comm_event *comm_event = data; 8504 struct perf_output_handle handle; 8505 struct perf_sample_data sample; 8506 int size = comm_event->event_id.header.size; 8507 int ret; 8508 8509 if (!perf_event_comm_match(event)) 8510 return; 8511 8512 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8513 ret = perf_output_begin(&handle, &sample, event, 8514 comm_event->event_id.header.size); 8515 8516 if (ret) 8517 goto out; 8518 8519 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8520 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8521 8522 perf_output_put(&handle, comm_event->event_id); 8523 __output_copy(&handle, comm_event->comm, 8524 comm_event->comm_size); 8525 8526 perf_event__output_id_sample(event, &handle, &sample); 8527 8528 perf_output_end(&handle); 8529 out: 8530 comm_event->event_id.header.size = size; 8531 } 8532 8533 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8534 { 8535 char comm[TASK_COMM_LEN]; 8536 unsigned int size; 8537 8538 memset(comm, 0, sizeof(comm)); 8539 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8540 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8541 8542 comm_event->comm = comm; 8543 comm_event->comm_size = size; 8544 8545 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8546 8547 perf_iterate_sb(perf_event_comm_output, 8548 comm_event, 8549 NULL); 8550 } 8551 8552 void perf_event_comm(struct task_struct *task, bool exec) 8553 { 8554 struct perf_comm_event comm_event; 8555 8556 if (!atomic_read(&nr_comm_events)) 8557 return; 8558 8559 comm_event = (struct perf_comm_event){ 8560 .task = task, 8561 /* .comm */ 8562 /* .comm_size */ 8563 .event_id = { 8564 .header = { 8565 .type = PERF_RECORD_COMM, 8566 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8567 /* .size */ 8568 }, 8569 /* .pid */ 8570 /* .tid */ 8571 }, 8572 }; 8573 8574 perf_event_comm_event(&comm_event); 8575 } 8576 8577 /* 8578 * namespaces tracking 8579 */ 8580 8581 struct perf_namespaces_event { 8582 struct task_struct *task; 8583 8584 struct { 8585 struct perf_event_header header; 8586 8587 u32 pid; 8588 u32 tid; 8589 u64 nr_namespaces; 8590 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8591 } event_id; 8592 }; 8593 8594 static int perf_event_namespaces_match(struct perf_event *event) 8595 { 8596 return event->attr.namespaces; 8597 } 8598 8599 static void perf_event_namespaces_output(struct perf_event *event, 8600 void *data) 8601 { 8602 struct perf_namespaces_event *namespaces_event = data; 8603 struct perf_output_handle handle; 8604 struct perf_sample_data sample; 8605 u16 header_size = namespaces_event->event_id.header.size; 8606 int ret; 8607 8608 if (!perf_event_namespaces_match(event)) 8609 return; 8610 8611 perf_event_header__init_id(&namespaces_event->event_id.header, 8612 &sample, event); 8613 ret = perf_output_begin(&handle, &sample, event, 8614 namespaces_event->event_id.header.size); 8615 if (ret) 8616 goto out; 8617 8618 namespaces_event->event_id.pid = perf_event_pid(event, 8619 namespaces_event->task); 8620 namespaces_event->event_id.tid = perf_event_tid(event, 8621 namespaces_event->task); 8622 8623 perf_output_put(&handle, namespaces_event->event_id); 8624 8625 perf_event__output_id_sample(event, &handle, &sample); 8626 8627 perf_output_end(&handle); 8628 out: 8629 namespaces_event->event_id.header.size = header_size; 8630 } 8631 8632 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8633 struct task_struct *task, 8634 const struct proc_ns_operations *ns_ops) 8635 { 8636 struct path ns_path; 8637 struct inode *ns_inode; 8638 int error; 8639 8640 error = ns_get_path(&ns_path, task, ns_ops); 8641 if (!error) { 8642 ns_inode = ns_path.dentry->d_inode; 8643 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8644 ns_link_info->ino = ns_inode->i_ino; 8645 path_put(&ns_path); 8646 } 8647 } 8648 8649 void perf_event_namespaces(struct task_struct *task) 8650 { 8651 struct perf_namespaces_event namespaces_event; 8652 struct perf_ns_link_info *ns_link_info; 8653 8654 if (!atomic_read(&nr_namespaces_events)) 8655 return; 8656 8657 namespaces_event = (struct perf_namespaces_event){ 8658 .task = task, 8659 .event_id = { 8660 .header = { 8661 .type = PERF_RECORD_NAMESPACES, 8662 .misc = 0, 8663 .size = sizeof(namespaces_event.event_id), 8664 }, 8665 /* .pid */ 8666 /* .tid */ 8667 .nr_namespaces = NR_NAMESPACES, 8668 /* .link_info[NR_NAMESPACES] */ 8669 }, 8670 }; 8671 8672 ns_link_info = namespaces_event.event_id.link_info; 8673 8674 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8675 task, &mntns_operations); 8676 8677 #ifdef CONFIG_USER_NS 8678 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8679 task, &userns_operations); 8680 #endif 8681 #ifdef CONFIG_NET_NS 8682 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8683 task, &netns_operations); 8684 #endif 8685 #ifdef CONFIG_UTS_NS 8686 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8687 task, &utsns_operations); 8688 #endif 8689 #ifdef CONFIG_IPC_NS 8690 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8691 task, &ipcns_operations); 8692 #endif 8693 #ifdef CONFIG_PID_NS 8694 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8695 task, &pidns_operations); 8696 #endif 8697 #ifdef CONFIG_CGROUPS 8698 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8699 task, &cgroupns_operations); 8700 #endif 8701 8702 perf_iterate_sb(perf_event_namespaces_output, 8703 &namespaces_event, 8704 NULL); 8705 } 8706 8707 /* 8708 * cgroup tracking 8709 */ 8710 #ifdef CONFIG_CGROUP_PERF 8711 8712 struct perf_cgroup_event { 8713 char *path; 8714 int path_size; 8715 struct { 8716 struct perf_event_header header; 8717 u64 id; 8718 char path[]; 8719 } event_id; 8720 }; 8721 8722 static int perf_event_cgroup_match(struct perf_event *event) 8723 { 8724 return event->attr.cgroup; 8725 } 8726 8727 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8728 { 8729 struct perf_cgroup_event *cgroup_event = data; 8730 struct perf_output_handle handle; 8731 struct perf_sample_data sample; 8732 u16 header_size = cgroup_event->event_id.header.size; 8733 int ret; 8734 8735 if (!perf_event_cgroup_match(event)) 8736 return; 8737 8738 perf_event_header__init_id(&cgroup_event->event_id.header, 8739 &sample, event); 8740 ret = perf_output_begin(&handle, &sample, event, 8741 cgroup_event->event_id.header.size); 8742 if (ret) 8743 goto out; 8744 8745 perf_output_put(&handle, cgroup_event->event_id); 8746 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8747 8748 perf_event__output_id_sample(event, &handle, &sample); 8749 8750 perf_output_end(&handle); 8751 out: 8752 cgroup_event->event_id.header.size = header_size; 8753 } 8754 8755 static void perf_event_cgroup(struct cgroup *cgrp) 8756 { 8757 struct perf_cgroup_event cgroup_event; 8758 char path_enomem[16] = "//enomem"; 8759 char *pathname; 8760 size_t size; 8761 8762 if (!atomic_read(&nr_cgroup_events)) 8763 return; 8764 8765 cgroup_event = (struct perf_cgroup_event){ 8766 .event_id = { 8767 .header = { 8768 .type = PERF_RECORD_CGROUP, 8769 .misc = 0, 8770 .size = sizeof(cgroup_event.event_id), 8771 }, 8772 .id = cgroup_id(cgrp), 8773 }, 8774 }; 8775 8776 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8777 if (pathname == NULL) { 8778 cgroup_event.path = path_enomem; 8779 } else { 8780 /* just to be sure to have enough space for alignment */ 8781 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8782 cgroup_event.path = pathname; 8783 } 8784 8785 /* 8786 * Since our buffer works in 8 byte units we need to align our string 8787 * size to a multiple of 8. However, we must guarantee the tail end is 8788 * zero'd out to avoid leaking random bits to userspace. 8789 */ 8790 size = strlen(cgroup_event.path) + 1; 8791 while (!IS_ALIGNED(size, sizeof(u64))) 8792 cgroup_event.path[size++] = '\0'; 8793 8794 cgroup_event.event_id.header.size += size; 8795 cgroup_event.path_size = size; 8796 8797 perf_iterate_sb(perf_event_cgroup_output, 8798 &cgroup_event, 8799 NULL); 8800 8801 kfree(pathname); 8802 } 8803 8804 #endif 8805 8806 /* 8807 * mmap tracking 8808 */ 8809 8810 struct perf_mmap_event { 8811 struct vm_area_struct *vma; 8812 8813 const char *file_name; 8814 int file_size; 8815 int maj, min; 8816 u64 ino; 8817 u64 ino_generation; 8818 u32 prot, flags; 8819 u8 build_id[BUILD_ID_SIZE_MAX]; 8820 u32 build_id_size; 8821 8822 struct { 8823 struct perf_event_header header; 8824 8825 u32 pid; 8826 u32 tid; 8827 u64 start; 8828 u64 len; 8829 u64 pgoff; 8830 } event_id; 8831 }; 8832 8833 static int perf_event_mmap_match(struct perf_event *event, 8834 void *data) 8835 { 8836 struct perf_mmap_event *mmap_event = data; 8837 struct vm_area_struct *vma = mmap_event->vma; 8838 int executable = vma->vm_flags & VM_EXEC; 8839 8840 return (!executable && event->attr.mmap_data) || 8841 (executable && (event->attr.mmap || event->attr.mmap2)); 8842 } 8843 8844 static void perf_event_mmap_output(struct perf_event *event, 8845 void *data) 8846 { 8847 struct perf_mmap_event *mmap_event = data; 8848 struct perf_output_handle handle; 8849 struct perf_sample_data sample; 8850 int size = mmap_event->event_id.header.size; 8851 u32 type = mmap_event->event_id.header.type; 8852 bool use_build_id; 8853 int ret; 8854 8855 if (!perf_event_mmap_match(event, data)) 8856 return; 8857 8858 if (event->attr.mmap2) { 8859 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8860 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8861 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8862 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8863 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8864 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8865 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8866 } 8867 8868 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8869 ret = perf_output_begin(&handle, &sample, event, 8870 mmap_event->event_id.header.size); 8871 if (ret) 8872 goto out; 8873 8874 mmap_event->event_id.pid = perf_event_pid(event, current); 8875 mmap_event->event_id.tid = perf_event_tid(event, current); 8876 8877 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8878 8879 if (event->attr.mmap2 && use_build_id) 8880 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8881 8882 perf_output_put(&handle, mmap_event->event_id); 8883 8884 if (event->attr.mmap2) { 8885 if (use_build_id) { 8886 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8887 8888 __output_copy(&handle, size, 4); 8889 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8890 } else { 8891 perf_output_put(&handle, mmap_event->maj); 8892 perf_output_put(&handle, mmap_event->min); 8893 perf_output_put(&handle, mmap_event->ino); 8894 perf_output_put(&handle, mmap_event->ino_generation); 8895 } 8896 perf_output_put(&handle, mmap_event->prot); 8897 perf_output_put(&handle, mmap_event->flags); 8898 } 8899 8900 __output_copy(&handle, mmap_event->file_name, 8901 mmap_event->file_size); 8902 8903 perf_event__output_id_sample(event, &handle, &sample); 8904 8905 perf_output_end(&handle); 8906 out: 8907 mmap_event->event_id.header.size = size; 8908 mmap_event->event_id.header.type = type; 8909 } 8910 8911 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8912 { 8913 struct vm_area_struct *vma = mmap_event->vma; 8914 struct file *file = vma->vm_file; 8915 int maj = 0, min = 0; 8916 u64 ino = 0, gen = 0; 8917 u32 prot = 0, flags = 0; 8918 unsigned int size; 8919 char tmp[16]; 8920 char *buf = NULL; 8921 char *name = NULL; 8922 8923 if (vma->vm_flags & VM_READ) 8924 prot |= PROT_READ; 8925 if (vma->vm_flags & VM_WRITE) 8926 prot |= PROT_WRITE; 8927 if (vma->vm_flags & VM_EXEC) 8928 prot |= PROT_EXEC; 8929 8930 if (vma->vm_flags & VM_MAYSHARE) 8931 flags = MAP_SHARED; 8932 else 8933 flags = MAP_PRIVATE; 8934 8935 if (vma->vm_flags & VM_LOCKED) 8936 flags |= MAP_LOCKED; 8937 if (is_vm_hugetlb_page(vma)) 8938 flags |= MAP_HUGETLB; 8939 8940 if (file) { 8941 struct inode *inode; 8942 dev_t dev; 8943 8944 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8945 if (!buf) { 8946 name = "//enomem"; 8947 goto cpy_name; 8948 } 8949 /* 8950 * d_path() works from the end of the rb backwards, so we 8951 * need to add enough zero bytes after the string to handle 8952 * the 64bit alignment we do later. 8953 */ 8954 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8955 if (IS_ERR(name)) { 8956 name = "//toolong"; 8957 goto cpy_name; 8958 } 8959 inode = file_inode(vma->vm_file); 8960 dev = inode->i_sb->s_dev; 8961 ino = inode->i_ino; 8962 gen = inode->i_generation; 8963 maj = MAJOR(dev); 8964 min = MINOR(dev); 8965 8966 goto got_name; 8967 } else { 8968 if (vma->vm_ops && vma->vm_ops->name) 8969 name = (char *) vma->vm_ops->name(vma); 8970 if (!name) 8971 name = (char *)arch_vma_name(vma); 8972 if (!name) { 8973 if (vma_is_initial_heap(vma)) 8974 name = "[heap]"; 8975 else if (vma_is_initial_stack(vma)) 8976 name = "[stack]"; 8977 else 8978 name = "//anon"; 8979 } 8980 } 8981 8982 cpy_name: 8983 strscpy(tmp, name, sizeof(tmp)); 8984 name = tmp; 8985 got_name: 8986 /* 8987 * Since our buffer works in 8 byte units we need to align our string 8988 * size to a multiple of 8. However, we must guarantee the tail end is 8989 * zero'd out to avoid leaking random bits to userspace. 8990 */ 8991 size = strlen(name)+1; 8992 while (!IS_ALIGNED(size, sizeof(u64))) 8993 name[size++] = '\0'; 8994 8995 mmap_event->file_name = name; 8996 mmap_event->file_size = size; 8997 mmap_event->maj = maj; 8998 mmap_event->min = min; 8999 mmap_event->ino = ino; 9000 mmap_event->ino_generation = gen; 9001 mmap_event->prot = prot; 9002 mmap_event->flags = flags; 9003 9004 if (!(vma->vm_flags & VM_EXEC)) 9005 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 9006 9007 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 9008 9009 if (atomic_read(&nr_build_id_events)) 9010 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); 9011 9012 perf_iterate_sb(perf_event_mmap_output, 9013 mmap_event, 9014 NULL); 9015 9016 kfree(buf); 9017 } 9018 9019 /* 9020 * Check whether inode and address range match filter criteria. 9021 */ 9022 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 9023 struct file *file, unsigned long offset, 9024 unsigned long size) 9025 { 9026 /* d_inode(NULL) won't be equal to any mapped user-space file */ 9027 if (!filter->path.dentry) 9028 return false; 9029 9030 if (d_inode(filter->path.dentry) != file_inode(file)) 9031 return false; 9032 9033 if (filter->offset > offset + size) 9034 return false; 9035 9036 if (filter->offset + filter->size < offset) 9037 return false; 9038 9039 return true; 9040 } 9041 9042 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 9043 struct vm_area_struct *vma, 9044 struct perf_addr_filter_range *fr) 9045 { 9046 unsigned long vma_size = vma->vm_end - vma->vm_start; 9047 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 9048 struct file *file = vma->vm_file; 9049 9050 if (!perf_addr_filter_match(filter, file, off, vma_size)) 9051 return false; 9052 9053 if (filter->offset < off) { 9054 fr->start = vma->vm_start; 9055 fr->size = min(vma_size, filter->size - (off - filter->offset)); 9056 } else { 9057 fr->start = vma->vm_start + filter->offset - off; 9058 fr->size = min(vma->vm_end - fr->start, filter->size); 9059 } 9060 9061 return true; 9062 } 9063 9064 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 9065 { 9066 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9067 struct vm_area_struct *vma = data; 9068 struct perf_addr_filter *filter; 9069 unsigned int restart = 0, count = 0; 9070 unsigned long flags; 9071 9072 if (!has_addr_filter(event)) 9073 return; 9074 9075 if (!vma->vm_file) 9076 return; 9077 9078 raw_spin_lock_irqsave(&ifh->lock, flags); 9079 list_for_each_entry(filter, &ifh->list, entry) { 9080 if (perf_addr_filter_vma_adjust(filter, vma, 9081 &event->addr_filter_ranges[count])) 9082 restart++; 9083 9084 count++; 9085 } 9086 9087 if (restart) 9088 event->addr_filters_gen++; 9089 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9090 9091 if (restart) 9092 perf_event_stop(event, 1); 9093 } 9094 9095 /* 9096 * Adjust all task's events' filters to the new vma 9097 */ 9098 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 9099 { 9100 struct perf_event_context *ctx; 9101 9102 /* 9103 * Data tracing isn't supported yet and as such there is no need 9104 * to keep track of anything that isn't related to executable code: 9105 */ 9106 if (!(vma->vm_flags & VM_EXEC)) 9107 return; 9108 9109 rcu_read_lock(); 9110 ctx = rcu_dereference(current->perf_event_ctxp); 9111 if (ctx) 9112 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 9113 rcu_read_unlock(); 9114 } 9115 9116 void perf_event_mmap(struct vm_area_struct *vma) 9117 { 9118 struct perf_mmap_event mmap_event; 9119 9120 if (!atomic_read(&nr_mmap_events)) 9121 return; 9122 9123 mmap_event = (struct perf_mmap_event){ 9124 .vma = vma, 9125 /* .file_name */ 9126 /* .file_size */ 9127 .event_id = { 9128 .header = { 9129 .type = PERF_RECORD_MMAP, 9130 .misc = PERF_RECORD_MISC_USER, 9131 /* .size */ 9132 }, 9133 /* .pid */ 9134 /* .tid */ 9135 .start = vma->vm_start, 9136 .len = vma->vm_end - vma->vm_start, 9137 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 9138 }, 9139 /* .maj (attr_mmap2 only) */ 9140 /* .min (attr_mmap2 only) */ 9141 /* .ino (attr_mmap2 only) */ 9142 /* .ino_generation (attr_mmap2 only) */ 9143 /* .prot (attr_mmap2 only) */ 9144 /* .flags (attr_mmap2 only) */ 9145 }; 9146 9147 perf_addr_filters_adjust(vma); 9148 perf_event_mmap_event(&mmap_event); 9149 } 9150 9151 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9152 unsigned long size, u64 flags) 9153 { 9154 struct perf_output_handle handle; 9155 struct perf_sample_data sample; 9156 struct perf_aux_event { 9157 struct perf_event_header header; 9158 u64 offset; 9159 u64 size; 9160 u64 flags; 9161 } rec = { 9162 .header = { 9163 .type = PERF_RECORD_AUX, 9164 .misc = 0, 9165 .size = sizeof(rec), 9166 }, 9167 .offset = head, 9168 .size = size, 9169 .flags = flags, 9170 }; 9171 int ret; 9172 9173 perf_event_header__init_id(&rec.header, &sample, event); 9174 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9175 9176 if (ret) 9177 return; 9178 9179 perf_output_put(&handle, rec); 9180 perf_event__output_id_sample(event, &handle, &sample); 9181 9182 perf_output_end(&handle); 9183 } 9184 9185 /* 9186 * Lost/dropped samples logging 9187 */ 9188 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9189 { 9190 struct perf_output_handle handle; 9191 struct perf_sample_data sample; 9192 int ret; 9193 9194 struct { 9195 struct perf_event_header header; 9196 u64 lost; 9197 } lost_samples_event = { 9198 .header = { 9199 .type = PERF_RECORD_LOST_SAMPLES, 9200 .misc = 0, 9201 .size = sizeof(lost_samples_event), 9202 }, 9203 .lost = lost, 9204 }; 9205 9206 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9207 9208 ret = perf_output_begin(&handle, &sample, event, 9209 lost_samples_event.header.size); 9210 if (ret) 9211 return; 9212 9213 perf_output_put(&handle, lost_samples_event); 9214 perf_event__output_id_sample(event, &handle, &sample); 9215 perf_output_end(&handle); 9216 } 9217 9218 /* 9219 * context_switch tracking 9220 */ 9221 9222 struct perf_switch_event { 9223 struct task_struct *task; 9224 struct task_struct *next_prev; 9225 9226 struct { 9227 struct perf_event_header header; 9228 u32 next_prev_pid; 9229 u32 next_prev_tid; 9230 } event_id; 9231 }; 9232 9233 static int perf_event_switch_match(struct perf_event *event) 9234 { 9235 return event->attr.context_switch; 9236 } 9237 9238 static void perf_event_switch_output(struct perf_event *event, void *data) 9239 { 9240 struct perf_switch_event *se = data; 9241 struct perf_output_handle handle; 9242 struct perf_sample_data sample; 9243 int ret; 9244 9245 if (!perf_event_switch_match(event)) 9246 return; 9247 9248 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9249 if (event->ctx->task) { 9250 se->event_id.header.type = PERF_RECORD_SWITCH; 9251 se->event_id.header.size = sizeof(se->event_id.header); 9252 } else { 9253 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9254 se->event_id.header.size = sizeof(se->event_id); 9255 se->event_id.next_prev_pid = 9256 perf_event_pid(event, se->next_prev); 9257 se->event_id.next_prev_tid = 9258 perf_event_tid(event, se->next_prev); 9259 } 9260 9261 perf_event_header__init_id(&se->event_id.header, &sample, event); 9262 9263 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9264 if (ret) 9265 return; 9266 9267 if (event->ctx->task) 9268 perf_output_put(&handle, se->event_id.header); 9269 else 9270 perf_output_put(&handle, se->event_id); 9271 9272 perf_event__output_id_sample(event, &handle, &sample); 9273 9274 perf_output_end(&handle); 9275 } 9276 9277 static void perf_event_switch(struct task_struct *task, 9278 struct task_struct *next_prev, bool sched_in) 9279 { 9280 struct perf_switch_event switch_event; 9281 9282 /* N.B. caller checks nr_switch_events != 0 */ 9283 9284 switch_event = (struct perf_switch_event){ 9285 .task = task, 9286 .next_prev = next_prev, 9287 .event_id = { 9288 .header = { 9289 /* .type */ 9290 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9291 /* .size */ 9292 }, 9293 /* .next_prev_pid */ 9294 /* .next_prev_tid */ 9295 }, 9296 }; 9297 9298 if (!sched_in && task_is_runnable(task)) { 9299 switch_event.event_id.header.misc |= 9300 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9301 } 9302 9303 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9304 } 9305 9306 /* 9307 * IRQ throttle logging 9308 */ 9309 9310 static void perf_log_throttle(struct perf_event *event, int enable) 9311 { 9312 struct perf_output_handle handle; 9313 struct perf_sample_data sample; 9314 int ret; 9315 9316 struct { 9317 struct perf_event_header header; 9318 u64 time; 9319 u64 id; 9320 u64 stream_id; 9321 } throttle_event = { 9322 .header = { 9323 .type = PERF_RECORD_THROTTLE, 9324 .misc = 0, 9325 .size = sizeof(throttle_event), 9326 }, 9327 .time = perf_event_clock(event), 9328 .id = primary_event_id(event), 9329 .stream_id = event->id, 9330 }; 9331 9332 if (enable) 9333 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9334 9335 perf_event_header__init_id(&throttle_event.header, &sample, event); 9336 9337 ret = perf_output_begin(&handle, &sample, event, 9338 throttle_event.header.size); 9339 if (ret) 9340 return; 9341 9342 perf_output_put(&handle, throttle_event); 9343 perf_event__output_id_sample(event, &handle, &sample); 9344 perf_output_end(&handle); 9345 } 9346 9347 /* 9348 * ksymbol register/unregister tracking 9349 */ 9350 9351 struct perf_ksymbol_event { 9352 const char *name; 9353 int name_len; 9354 struct { 9355 struct perf_event_header header; 9356 u64 addr; 9357 u32 len; 9358 u16 ksym_type; 9359 u16 flags; 9360 } event_id; 9361 }; 9362 9363 static int perf_event_ksymbol_match(struct perf_event *event) 9364 { 9365 return event->attr.ksymbol; 9366 } 9367 9368 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9369 { 9370 struct perf_ksymbol_event *ksymbol_event = data; 9371 struct perf_output_handle handle; 9372 struct perf_sample_data sample; 9373 int ret; 9374 9375 if (!perf_event_ksymbol_match(event)) 9376 return; 9377 9378 perf_event_header__init_id(&ksymbol_event->event_id.header, 9379 &sample, event); 9380 ret = perf_output_begin(&handle, &sample, event, 9381 ksymbol_event->event_id.header.size); 9382 if (ret) 9383 return; 9384 9385 perf_output_put(&handle, ksymbol_event->event_id); 9386 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9387 perf_event__output_id_sample(event, &handle, &sample); 9388 9389 perf_output_end(&handle); 9390 } 9391 9392 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9393 const char *sym) 9394 { 9395 struct perf_ksymbol_event ksymbol_event; 9396 char name[KSYM_NAME_LEN]; 9397 u16 flags = 0; 9398 int name_len; 9399 9400 if (!atomic_read(&nr_ksymbol_events)) 9401 return; 9402 9403 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9404 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9405 goto err; 9406 9407 strscpy(name, sym, KSYM_NAME_LEN); 9408 name_len = strlen(name) + 1; 9409 while (!IS_ALIGNED(name_len, sizeof(u64))) 9410 name[name_len++] = '\0'; 9411 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9412 9413 if (unregister) 9414 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9415 9416 ksymbol_event = (struct perf_ksymbol_event){ 9417 .name = name, 9418 .name_len = name_len, 9419 .event_id = { 9420 .header = { 9421 .type = PERF_RECORD_KSYMBOL, 9422 .size = sizeof(ksymbol_event.event_id) + 9423 name_len, 9424 }, 9425 .addr = addr, 9426 .len = len, 9427 .ksym_type = ksym_type, 9428 .flags = flags, 9429 }, 9430 }; 9431 9432 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9433 return; 9434 err: 9435 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9436 } 9437 9438 /* 9439 * bpf program load/unload tracking 9440 */ 9441 9442 struct perf_bpf_event { 9443 struct bpf_prog *prog; 9444 struct { 9445 struct perf_event_header header; 9446 u16 type; 9447 u16 flags; 9448 u32 id; 9449 u8 tag[BPF_TAG_SIZE]; 9450 } event_id; 9451 }; 9452 9453 static int perf_event_bpf_match(struct perf_event *event) 9454 { 9455 return event->attr.bpf_event; 9456 } 9457 9458 static void perf_event_bpf_output(struct perf_event *event, void *data) 9459 { 9460 struct perf_bpf_event *bpf_event = data; 9461 struct perf_output_handle handle; 9462 struct perf_sample_data sample; 9463 int ret; 9464 9465 if (!perf_event_bpf_match(event)) 9466 return; 9467 9468 perf_event_header__init_id(&bpf_event->event_id.header, 9469 &sample, event); 9470 ret = perf_output_begin(&handle, &sample, event, 9471 bpf_event->event_id.header.size); 9472 if (ret) 9473 return; 9474 9475 perf_output_put(&handle, bpf_event->event_id); 9476 perf_event__output_id_sample(event, &handle, &sample); 9477 9478 perf_output_end(&handle); 9479 } 9480 9481 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9482 enum perf_bpf_event_type type) 9483 { 9484 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9485 int i; 9486 9487 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9488 (u64)(unsigned long)prog->bpf_func, 9489 prog->jited_len, unregister, 9490 prog->aux->ksym.name); 9491 9492 for (i = 1; i < prog->aux->func_cnt; i++) { 9493 struct bpf_prog *subprog = prog->aux->func[i]; 9494 9495 perf_event_ksymbol( 9496 PERF_RECORD_KSYMBOL_TYPE_BPF, 9497 (u64)(unsigned long)subprog->bpf_func, 9498 subprog->jited_len, unregister, 9499 subprog->aux->ksym.name); 9500 } 9501 } 9502 9503 void perf_event_bpf_event(struct bpf_prog *prog, 9504 enum perf_bpf_event_type type, 9505 u16 flags) 9506 { 9507 struct perf_bpf_event bpf_event; 9508 9509 switch (type) { 9510 case PERF_BPF_EVENT_PROG_LOAD: 9511 case PERF_BPF_EVENT_PROG_UNLOAD: 9512 if (atomic_read(&nr_ksymbol_events)) 9513 perf_event_bpf_emit_ksymbols(prog, type); 9514 break; 9515 default: 9516 return; 9517 } 9518 9519 if (!atomic_read(&nr_bpf_events)) 9520 return; 9521 9522 bpf_event = (struct perf_bpf_event){ 9523 .prog = prog, 9524 .event_id = { 9525 .header = { 9526 .type = PERF_RECORD_BPF_EVENT, 9527 .size = sizeof(bpf_event.event_id), 9528 }, 9529 .type = type, 9530 .flags = flags, 9531 .id = prog->aux->id, 9532 }, 9533 }; 9534 9535 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9536 9537 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9538 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9539 } 9540 9541 struct perf_text_poke_event { 9542 const void *old_bytes; 9543 const void *new_bytes; 9544 size_t pad; 9545 u16 old_len; 9546 u16 new_len; 9547 9548 struct { 9549 struct perf_event_header header; 9550 9551 u64 addr; 9552 } event_id; 9553 }; 9554 9555 static int perf_event_text_poke_match(struct perf_event *event) 9556 { 9557 return event->attr.text_poke; 9558 } 9559 9560 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9561 { 9562 struct perf_text_poke_event *text_poke_event = data; 9563 struct perf_output_handle handle; 9564 struct perf_sample_data sample; 9565 u64 padding = 0; 9566 int ret; 9567 9568 if (!perf_event_text_poke_match(event)) 9569 return; 9570 9571 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9572 9573 ret = perf_output_begin(&handle, &sample, event, 9574 text_poke_event->event_id.header.size); 9575 if (ret) 9576 return; 9577 9578 perf_output_put(&handle, text_poke_event->event_id); 9579 perf_output_put(&handle, text_poke_event->old_len); 9580 perf_output_put(&handle, text_poke_event->new_len); 9581 9582 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9583 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9584 9585 if (text_poke_event->pad) 9586 __output_copy(&handle, &padding, text_poke_event->pad); 9587 9588 perf_event__output_id_sample(event, &handle, &sample); 9589 9590 perf_output_end(&handle); 9591 } 9592 9593 void perf_event_text_poke(const void *addr, const void *old_bytes, 9594 size_t old_len, const void *new_bytes, size_t new_len) 9595 { 9596 struct perf_text_poke_event text_poke_event; 9597 size_t tot, pad; 9598 9599 if (!atomic_read(&nr_text_poke_events)) 9600 return; 9601 9602 tot = sizeof(text_poke_event.old_len) + old_len; 9603 tot += sizeof(text_poke_event.new_len) + new_len; 9604 pad = ALIGN(tot, sizeof(u64)) - tot; 9605 9606 text_poke_event = (struct perf_text_poke_event){ 9607 .old_bytes = old_bytes, 9608 .new_bytes = new_bytes, 9609 .pad = pad, 9610 .old_len = old_len, 9611 .new_len = new_len, 9612 .event_id = { 9613 .header = { 9614 .type = PERF_RECORD_TEXT_POKE, 9615 .misc = PERF_RECORD_MISC_KERNEL, 9616 .size = sizeof(text_poke_event.event_id) + tot + pad, 9617 }, 9618 .addr = (unsigned long)addr, 9619 }, 9620 }; 9621 9622 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9623 } 9624 9625 void perf_event_itrace_started(struct perf_event *event) 9626 { 9627 event->attach_state |= PERF_ATTACH_ITRACE; 9628 } 9629 9630 static void perf_log_itrace_start(struct perf_event *event) 9631 { 9632 struct perf_output_handle handle; 9633 struct perf_sample_data sample; 9634 struct perf_aux_event { 9635 struct perf_event_header header; 9636 u32 pid; 9637 u32 tid; 9638 } rec; 9639 int ret; 9640 9641 if (event->parent) 9642 event = event->parent; 9643 9644 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9645 event->attach_state & PERF_ATTACH_ITRACE) 9646 return; 9647 9648 rec.header.type = PERF_RECORD_ITRACE_START; 9649 rec.header.misc = 0; 9650 rec.header.size = sizeof(rec); 9651 rec.pid = perf_event_pid(event, current); 9652 rec.tid = perf_event_tid(event, current); 9653 9654 perf_event_header__init_id(&rec.header, &sample, event); 9655 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9656 9657 if (ret) 9658 return; 9659 9660 perf_output_put(&handle, rec); 9661 perf_event__output_id_sample(event, &handle, &sample); 9662 9663 perf_output_end(&handle); 9664 } 9665 9666 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9667 { 9668 struct perf_output_handle handle; 9669 struct perf_sample_data sample; 9670 struct perf_aux_event { 9671 struct perf_event_header header; 9672 u64 hw_id; 9673 } rec; 9674 int ret; 9675 9676 if (event->parent) 9677 event = event->parent; 9678 9679 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9680 rec.header.misc = 0; 9681 rec.header.size = sizeof(rec); 9682 rec.hw_id = hw_id; 9683 9684 perf_event_header__init_id(&rec.header, &sample, event); 9685 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9686 9687 if (ret) 9688 return; 9689 9690 perf_output_put(&handle, rec); 9691 perf_event__output_id_sample(event, &handle, &sample); 9692 9693 perf_output_end(&handle); 9694 } 9695 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9696 9697 static int 9698 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9699 { 9700 struct hw_perf_event *hwc = &event->hw; 9701 int ret = 0; 9702 u64 seq; 9703 9704 seq = __this_cpu_read(perf_throttled_seq); 9705 if (seq != hwc->interrupts_seq) { 9706 hwc->interrupts_seq = seq; 9707 hwc->interrupts = 1; 9708 } else { 9709 hwc->interrupts++; 9710 if (unlikely(throttle && 9711 hwc->interrupts > max_samples_per_tick)) { 9712 __this_cpu_inc(perf_throttled_count); 9713 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9714 hwc->interrupts = MAX_INTERRUPTS; 9715 perf_log_throttle(event, 0); 9716 ret = 1; 9717 } 9718 } 9719 9720 if (event->attr.freq) { 9721 u64 now = perf_clock(); 9722 s64 delta = now - hwc->freq_time_stamp; 9723 9724 hwc->freq_time_stamp = now; 9725 9726 if (delta > 0 && delta < 2*TICK_NSEC) 9727 perf_adjust_period(event, delta, hwc->last_period, true); 9728 } 9729 9730 return ret; 9731 } 9732 9733 int perf_event_account_interrupt(struct perf_event *event) 9734 { 9735 return __perf_event_account_interrupt(event, 1); 9736 } 9737 9738 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9739 { 9740 /* 9741 * Due to interrupt latency (AKA "skid"), we may enter the 9742 * kernel before taking an overflow, even if the PMU is only 9743 * counting user events. 9744 */ 9745 if (event->attr.exclude_kernel && !user_mode(regs)) 9746 return false; 9747 9748 return true; 9749 } 9750 9751 #ifdef CONFIG_BPF_SYSCALL 9752 static int bpf_overflow_handler(struct perf_event *event, 9753 struct perf_sample_data *data, 9754 struct pt_regs *regs) 9755 { 9756 struct bpf_perf_event_data_kern ctx = { 9757 .data = data, 9758 .event = event, 9759 }; 9760 struct bpf_prog *prog; 9761 int ret = 0; 9762 9763 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9764 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9765 goto out; 9766 rcu_read_lock(); 9767 prog = READ_ONCE(event->prog); 9768 if (prog) { 9769 perf_prepare_sample(data, event, regs); 9770 ret = bpf_prog_run(prog, &ctx); 9771 } 9772 rcu_read_unlock(); 9773 out: 9774 __this_cpu_dec(bpf_prog_active); 9775 9776 return ret; 9777 } 9778 9779 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9780 struct bpf_prog *prog, 9781 u64 bpf_cookie) 9782 { 9783 if (event->overflow_handler_context) 9784 /* hw breakpoint or kernel counter */ 9785 return -EINVAL; 9786 9787 if (event->prog) 9788 return -EEXIST; 9789 9790 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9791 return -EINVAL; 9792 9793 if (event->attr.precise_ip && 9794 prog->call_get_stack && 9795 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9796 event->attr.exclude_callchain_kernel || 9797 event->attr.exclude_callchain_user)) { 9798 /* 9799 * On perf_event with precise_ip, calling bpf_get_stack() 9800 * may trigger unwinder warnings and occasional crashes. 9801 * bpf_get_[stack|stackid] works around this issue by using 9802 * callchain attached to perf_sample_data. If the 9803 * perf_event does not full (kernel and user) callchain 9804 * attached to perf_sample_data, do not allow attaching BPF 9805 * program that calls bpf_get_[stack|stackid]. 9806 */ 9807 return -EPROTO; 9808 } 9809 9810 event->prog = prog; 9811 event->bpf_cookie = bpf_cookie; 9812 return 0; 9813 } 9814 9815 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9816 { 9817 struct bpf_prog *prog = event->prog; 9818 9819 if (!prog) 9820 return; 9821 9822 event->prog = NULL; 9823 bpf_prog_put(prog); 9824 } 9825 #else 9826 static inline int bpf_overflow_handler(struct perf_event *event, 9827 struct perf_sample_data *data, 9828 struct pt_regs *regs) 9829 { 9830 return 1; 9831 } 9832 9833 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9834 struct bpf_prog *prog, 9835 u64 bpf_cookie) 9836 { 9837 return -EOPNOTSUPP; 9838 } 9839 9840 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9841 { 9842 } 9843 #endif 9844 9845 /* 9846 * Generic event overflow handling, sampling. 9847 */ 9848 9849 static int __perf_event_overflow(struct perf_event *event, 9850 int throttle, struct perf_sample_data *data, 9851 struct pt_regs *regs) 9852 { 9853 int events = atomic_read(&event->event_limit); 9854 int ret = 0; 9855 9856 /* 9857 * Non-sampling counters might still use the PMI to fold short 9858 * hardware counters, ignore those. 9859 */ 9860 if (unlikely(!is_sampling_event(event))) 9861 return 0; 9862 9863 ret = __perf_event_account_interrupt(event, throttle); 9864 9865 if (event->attr.aux_pause) 9866 perf_event_aux_pause(event->aux_event, true); 9867 9868 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9869 !bpf_overflow_handler(event, data, regs)) 9870 goto out; 9871 9872 /* 9873 * XXX event_limit might not quite work as expected on inherited 9874 * events 9875 */ 9876 9877 event->pending_kill = POLL_IN; 9878 if (events && atomic_dec_and_test(&event->event_limit)) { 9879 ret = 1; 9880 event->pending_kill = POLL_HUP; 9881 perf_event_disable_inatomic(event); 9882 } 9883 9884 if (event->attr.sigtrap) { 9885 /* 9886 * The desired behaviour of sigtrap vs invalid samples is a bit 9887 * tricky; on the one hand, one should not loose the SIGTRAP if 9888 * it is the first event, on the other hand, we should also not 9889 * trigger the WARN or override the data address. 9890 */ 9891 bool valid_sample = sample_is_allowed(event, regs); 9892 unsigned int pending_id = 1; 9893 enum task_work_notify_mode notify_mode; 9894 9895 if (regs) 9896 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9897 9898 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9899 9900 if (!event->pending_work && 9901 !task_work_add(current, &event->pending_task, notify_mode)) { 9902 event->pending_work = pending_id; 9903 local_inc(&event->ctx->nr_no_switch_fast); 9904 9905 event->pending_addr = 0; 9906 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9907 event->pending_addr = data->addr; 9908 9909 } else if (event->attr.exclude_kernel && valid_sample) { 9910 /* 9911 * Should not be able to return to user space without 9912 * consuming pending_work; with exceptions: 9913 * 9914 * 1. Where !exclude_kernel, events can overflow again 9915 * in the kernel without returning to user space. 9916 * 9917 * 2. Events that can overflow again before the IRQ- 9918 * work without user space progress (e.g. hrtimer). 9919 * To approximate progress (with false negatives), 9920 * check 32-bit hash of the current IP. 9921 */ 9922 WARN_ON_ONCE(event->pending_work != pending_id); 9923 } 9924 } 9925 9926 READ_ONCE(event->overflow_handler)(event, data, regs); 9927 9928 if (*perf_event_fasync(event) && event->pending_kill) { 9929 event->pending_wakeup = 1; 9930 irq_work_queue(&event->pending_irq); 9931 } 9932 out: 9933 if (event->attr.aux_resume) 9934 perf_event_aux_pause(event->aux_event, false); 9935 9936 return ret; 9937 } 9938 9939 int perf_event_overflow(struct perf_event *event, 9940 struct perf_sample_data *data, 9941 struct pt_regs *regs) 9942 { 9943 return __perf_event_overflow(event, 1, data, regs); 9944 } 9945 9946 /* 9947 * Generic software event infrastructure 9948 */ 9949 9950 struct swevent_htable { 9951 struct swevent_hlist *swevent_hlist; 9952 struct mutex hlist_mutex; 9953 int hlist_refcount; 9954 }; 9955 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9956 9957 /* 9958 * We directly increment event->count and keep a second value in 9959 * event->hw.period_left to count intervals. This period event 9960 * is kept in the range [-sample_period, 0] so that we can use the 9961 * sign as trigger. 9962 */ 9963 9964 u64 perf_swevent_set_period(struct perf_event *event) 9965 { 9966 struct hw_perf_event *hwc = &event->hw; 9967 u64 period = hwc->last_period; 9968 u64 nr, offset; 9969 s64 old, val; 9970 9971 hwc->last_period = hwc->sample_period; 9972 9973 old = local64_read(&hwc->period_left); 9974 do { 9975 val = old; 9976 if (val < 0) 9977 return 0; 9978 9979 nr = div64_u64(period + val, period); 9980 offset = nr * period; 9981 val -= offset; 9982 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9983 9984 return nr; 9985 } 9986 9987 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9988 struct perf_sample_data *data, 9989 struct pt_regs *regs) 9990 { 9991 struct hw_perf_event *hwc = &event->hw; 9992 int throttle = 0; 9993 9994 if (!overflow) 9995 overflow = perf_swevent_set_period(event); 9996 9997 if (hwc->interrupts == MAX_INTERRUPTS) 9998 return; 9999 10000 for (; overflow; overflow--) { 10001 if (__perf_event_overflow(event, throttle, 10002 data, regs)) { 10003 /* 10004 * We inhibit the overflow from happening when 10005 * hwc->interrupts == MAX_INTERRUPTS. 10006 */ 10007 break; 10008 } 10009 throttle = 1; 10010 } 10011 } 10012 10013 static void perf_swevent_event(struct perf_event *event, u64 nr, 10014 struct perf_sample_data *data, 10015 struct pt_regs *regs) 10016 { 10017 struct hw_perf_event *hwc = &event->hw; 10018 10019 local64_add(nr, &event->count); 10020 10021 if (!regs) 10022 return; 10023 10024 if (!is_sampling_event(event)) 10025 return; 10026 10027 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 10028 data->period = nr; 10029 return perf_swevent_overflow(event, 1, data, regs); 10030 } else 10031 data->period = event->hw.last_period; 10032 10033 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 10034 return perf_swevent_overflow(event, 1, data, regs); 10035 10036 if (local64_add_negative(nr, &hwc->period_left)) 10037 return; 10038 10039 perf_swevent_overflow(event, 0, data, regs); 10040 } 10041 10042 static int perf_exclude_event(struct perf_event *event, 10043 struct pt_regs *regs) 10044 { 10045 if (event->hw.state & PERF_HES_STOPPED) 10046 return 1; 10047 10048 if (regs) { 10049 if (event->attr.exclude_user && user_mode(regs)) 10050 return 1; 10051 10052 if (event->attr.exclude_kernel && !user_mode(regs)) 10053 return 1; 10054 } 10055 10056 return 0; 10057 } 10058 10059 static int perf_swevent_match(struct perf_event *event, 10060 enum perf_type_id type, 10061 u32 event_id, 10062 struct perf_sample_data *data, 10063 struct pt_regs *regs) 10064 { 10065 if (event->attr.type != type) 10066 return 0; 10067 10068 if (event->attr.config != event_id) 10069 return 0; 10070 10071 if (perf_exclude_event(event, regs)) 10072 return 0; 10073 10074 return 1; 10075 } 10076 10077 static inline u64 swevent_hash(u64 type, u32 event_id) 10078 { 10079 u64 val = event_id | (type << 32); 10080 10081 return hash_64(val, SWEVENT_HLIST_BITS); 10082 } 10083 10084 static inline struct hlist_head * 10085 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 10086 { 10087 u64 hash = swevent_hash(type, event_id); 10088 10089 return &hlist->heads[hash]; 10090 } 10091 10092 /* For the read side: events when they trigger */ 10093 static inline struct hlist_head * 10094 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 10095 { 10096 struct swevent_hlist *hlist; 10097 10098 hlist = rcu_dereference(swhash->swevent_hlist); 10099 if (!hlist) 10100 return NULL; 10101 10102 return __find_swevent_head(hlist, type, event_id); 10103 } 10104 10105 /* For the event head insertion and removal in the hlist */ 10106 static inline struct hlist_head * 10107 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 10108 { 10109 struct swevent_hlist *hlist; 10110 u32 event_id = event->attr.config; 10111 u64 type = event->attr.type; 10112 10113 /* 10114 * Event scheduling is always serialized against hlist allocation 10115 * and release. Which makes the protected version suitable here. 10116 * The context lock guarantees that. 10117 */ 10118 hlist = rcu_dereference_protected(swhash->swevent_hlist, 10119 lockdep_is_held(&event->ctx->lock)); 10120 if (!hlist) 10121 return NULL; 10122 10123 return __find_swevent_head(hlist, type, event_id); 10124 } 10125 10126 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 10127 u64 nr, 10128 struct perf_sample_data *data, 10129 struct pt_regs *regs) 10130 { 10131 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10132 struct perf_event *event; 10133 struct hlist_head *head; 10134 10135 rcu_read_lock(); 10136 head = find_swevent_head_rcu(swhash, type, event_id); 10137 if (!head) 10138 goto end; 10139 10140 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10141 if (perf_swevent_match(event, type, event_id, data, regs)) 10142 perf_swevent_event(event, nr, data, regs); 10143 } 10144 end: 10145 rcu_read_unlock(); 10146 } 10147 10148 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10149 10150 int perf_swevent_get_recursion_context(void) 10151 { 10152 return get_recursion_context(current->perf_recursion); 10153 } 10154 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10155 10156 void perf_swevent_put_recursion_context(int rctx) 10157 { 10158 put_recursion_context(current->perf_recursion, rctx); 10159 } 10160 10161 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10162 { 10163 struct perf_sample_data data; 10164 10165 if (WARN_ON_ONCE(!regs)) 10166 return; 10167 10168 perf_sample_data_init(&data, addr, 0); 10169 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10170 } 10171 10172 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10173 { 10174 int rctx; 10175 10176 preempt_disable_notrace(); 10177 rctx = perf_swevent_get_recursion_context(); 10178 if (unlikely(rctx < 0)) 10179 goto fail; 10180 10181 ___perf_sw_event(event_id, nr, regs, addr); 10182 10183 perf_swevent_put_recursion_context(rctx); 10184 fail: 10185 preempt_enable_notrace(); 10186 } 10187 10188 static void perf_swevent_read(struct perf_event *event) 10189 { 10190 } 10191 10192 static int perf_swevent_add(struct perf_event *event, int flags) 10193 { 10194 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10195 struct hw_perf_event *hwc = &event->hw; 10196 struct hlist_head *head; 10197 10198 if (is_sampling_event(event)) { 10199 hwc->last_period = hwc->sample_period; 10200 perf_swevent_set_period(event); 10201 } 10202 10203 hwc->state = !(flags & PERF_EF_START); 10204 10205 head = find_swevent_head(swhash, event); 10206 if (WARN_ON_ONCE(!head)) 10207 return -EINVAL; 10208 10209 hlist_add_head_rcu(&event->hlist_entry, head); 10210 perf_event_update_userpage(event); 10211 10212 return 0; 10213 } 10214 10215 static void perf_swevent_del(struct perf_event *event, int flags) 10216 { 10217 hlist_del_rcu(&event->hlist_entry); 10218 } 10219 10220 static void perf_swevent_start(struct perf_event *event, int flags) 10221 { 10222 event->hw.state = 0; 10223 } 10224 10225 static void perf_swevent_stop(struct perf_event *event, int flags) 10226 { 10227 event->hw.state = PERF_HES_STOPPED; 10228 } 10229 10230 /* Deref the hlist from the update side */ 10231 static inline struct swevent_hlist * 10232 swevent_hlist_deref(struct swevent_htable *swhash) 10233 { 10234 return rcu_dereference_protected(swhash->swevent_hlist, 10235 lockdep_is_held(&swhash->hlist_mutex)); 10236 } 10237 10238 static void swevent_hlist_release(struct swevent_htable *swhash) 10239 { 10240 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10241 10242 if (!hlist) 10243 return; 10244 10245 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10246 kfree_rcu(hlist, rcu_head); 10247 } 10248 10249 static void swevent_hlist_put_cpu(int cpu) 10250 { 10251 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10252 10253 mutex_lock(&swhash->hlist_mutex); 10254 10255 if (!--swhash->hlist_refcount) 10256 swevent_hlist_release(swhash); 10257 10258 mutex_unlock(&swhash->hlist_mutex); 10259 } 10260 10261 static void swevent_hlist_put(void) 10262 { 10263 int cpu; 10264 10265 for_each_possible_cpu(cpu) 10266 swevent_hlist_put_cpu(cpu); 10267 } 10268 10269 static int swevent_hlist_get_cpu(int cpu) 10270 { 10271 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10272 int err = 0; 10273 10274 mutex_lock(&swhash->hlist_mutex); 10275 if (!swevent_hlist_deref(swhash) && 10276 cpumask_test_cpu(cpu, perf_online_mask)) { 10277 struct swevent_hlist *hlist; 10278 10279 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10280 if (!hlist) { 10281 err = -ENOMEM; 10282 goto exit; 10283 } 10284 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10285 } 10286 swhash->hlist_refcount++; 10287 exit: 10288 mutex_unlock(&swhash->hlist_mutex); 10289 10290 return err; 10291 } 10292 10293 static int swevent_hlist_get(void) 10294 { 10295 int err, cpu, failed_cpu; 10296 10297 mutex_lock(&pmus_lock); 10298 for_each_possible_cpu(cpu) { 10299 err = swevent_hlist_get_cpu(cpu); 10300 if (err) { 10301 failed_cpu = cpu; 10302 goto fail; 10303 } 10304 } 10305 mutex_unlock(&pmus_lock); 10306 return 0; 10307 fail: 10308 for_each_possible_cpu(cpu) { 10309 if (cpu == failed_cpu) 10310 break; 10311 swevent_hlist_put_cpu(cpu); 10312 } 10313 mutex_unlock(&pmus_lock); 10314 return err; 10315 } 10316 10317 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10318 10319 static void sw_perf_event_destroy(struct perf_event *event) 10320 { 10321 u64 event_id = event->attr.config; 10322 10323 WARN_ON(event->parent); 10324 10325 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10326 swevent_hlist_put(); 10327 } 10328 10329 static struct pmu perf_cpu_clock; /* fwd declaration */ 10330 static struct pmu perf_task_clock; 10331 10332 static int perf_swevent_init(struct perf_event *event) 10333 { 10334 u64 event_id = event->attr.config; 10335 10336 if (event->attr.type != PERF_TYPE_SOFTWARE) 10337 return -ENOENT; 10338 10339 /* 10340 * no branch sampling for software events 10341 */ 10342 if (has_branch_stack(event)) 10343 return -EOPNOTSUPP; 10344 10345 switch (event_id) { 10346 case PERF_COUNT_SW_CPU_CLOCK: 10347 event->attr.type = perf_cpu_clock.type; 10348 return -ENOENT; 10349 case PERF_COUNT_SW_TASK_CLOCK: 10350 event->attr.type = perf_task_clock.type; 10351 return -ENOENT; 10352 10353 default: 10354 break; 10355 } 10356 10357 if (event_id >= PERF_COUNT_SW_MAX) 10358 return -ENOENT; 10359 10360 if (!event->parent) { 10361 int err; 10362 10363 err = swevent_hlist_get(); 10364 if (err) 10365 return err; 10366 10367 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10368 event->destroy = sw_perf_event_destroy; 10369 } 10370 10371 return 0; 10372 } 10373 10374 static struct pmu perf_swevent = { 10375 .task_ctx_nr = perf_sw_context, 10376 10377 .capabilities = PERF_PMU_CAP_NO_NMI, 10378 10379 .event_init = perf_swevent_init, 10380 .add = perf_swevent_add, 10381 .del = perf_swevent_del, 10382 .start = perf_swevent_start, 10383 .stop = perf_swevent_stop, 10384 .read = perf_swevent_read, 10385 }; 10386 10387 #ifdef CONFIG_EVENT_TRACING 10388 10389 static void tp_perf_event_destroy(struct perf_event *event) 10390 { 10391 perf_trace_destroy(event); 10392 } 10393 10394 static int perf_tp_event_init(struct perf_event *event) 10395 { 10396 int err; 10397 10398 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10399 return -ENOENT; 10400 10401 /* 10402 * no branch sampling for tracepoint events 10403 */ 10404 if (has_branch_stack(event)) 10405 return -EOPNOTSUPP; 10406 10407 err = perf_trace_init(event); 10408 if (err) 10409 return err; 10410 10411 event->destroy = tp_perf_event_destroy; 10412 10413 return 0; 10414 } 10415 10416 static struct pmu perf_tracepoint = { 10417 .task_ctx_nr = perf_sw_context, 10418 10419 .event_init = perf_tp_event_init, 10420 .add = perf_trace_add, 10421 .del = perf_trace_del, 10422 .start = perf_swevent_start, 10423 .stop = perf_swevent_stop, 10424 .read = perf_swevent_read, 10425 }; 10426 10427 static int perf_tp_filter_match(struct perf_event *event, 10428 struct perf_sample_data *data) 10429 { 10430 void *record = data->raw->frag.data; 10431 10432 /* only top level events have filters set */ 10433 if (event->parent) 10434 event = event->parent; 10435 10436 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10437 return 1; 10438 return 0; 10439 } 10440 10441 static int perf_tp_event_match(struct perf_event *event, 10442 struct perf_sample_data *data, 10443 struct pt_regs *regs) 10444 { 10445 if (event->hw.state & PERF_HES_STOPPED) 10446 return 0; 10447 /* 10448 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10449 */ 10450 if (event->attr.exclude_kernel && !user_mode(regs)) 10451 return 0; 10452 10453 if (!perf_tp_filter_match(event, data)) 10454 return 0; 10455 10456 return 1; 10457 } 10458 10459 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10460 struct trace_event_call *call, u64 count, 10461 struct pt_regs *regs, struct hlist_head *head, 10462 struct task_struct *task) 10463 { 10464 if (bpf_prog_array_valid(call)) { 10465 *(struct pt_regs **)raw_data = regs; 10466 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10467 perf_swevent_put_recursion_context(rctx); 10468 return; 10469 } 10470 } 10471 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10472 rctx, task); 10473 } 10474 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10475 10476 static void __perf_tp_event_target_task(u64 count, void *record, 10477 struct pt_regs *regs, 10478 struct perf_sample_data *data, 10479 struct perf_event *event) 10480 { 10481 struct trace_entry *entry = record; 10482 10483 if (event->attr.config != entry->type) 10484 return; 10485 /* Cannot deliver synchronous signal to other task. */ 10486 if (event->attr.sigtrap) 10487 return; 10488 if (perf_tp_event_match(event, data, regs)) 10489 perf_swevent_event(event, count, data, regs); 10490 } 10491 10492 static void perf_tp_event_target_task(u64 count, void *record, 10493 struct pt_regs *regs, 10494 struct perf_sample_data *data, 10495 struct perf_event_context *ctx) 10496 { 10497 unsigned int cpu = smp_processor_id(); 10498 struct pmu *pmu = &perf_tracepoint; 10499 struct perf_event *event, *sibling; 10500 10501 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10502 __perf_tp_event_target_task(count, record, regs, data, event); 10503 for_each_sibling_event(sibling, event) 10504 __perf_tp_event_target_task(count, record, regs, data, sibling); 10505 } 10506 10507 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10508 __perf_tp_event_target_task(count, record, regs, data, event); 10509 for_each_sibling_event(sibling, event) 10510 __perf_tp_event_target_task(count, record, regs, data, sibling); 10511 } 10512 } 10513 10514 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10515 struct pt_regs *regs, struct hlist_head *head, int rctx, 10516 struct task_struct *task) 10517 { 10518 struct perf_sample_data data; 10519 struct perf_event *event; 10520 10521 struct perf_raw_record raw = { 10522 .frag = { 10523 .size = entry_size, 10524 .data = record, 10525 }, 10526 }; 10527 10528 perf_sample_data_init(&data, 0, 0); 10529 perf_sample_save_raw_data(&data, &raw); 10530 10531 perf_trace_buf_update(record, event_type); 10532 10533 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10534 if (perf_tp_event_match(event, &data, regs)) { 10535 perf_swevent_event(event, count, &data, regs); 10536 10537 /* 10538 * Here use the same on-stack perf_sample_data, 10539 * some members in data are event-specific and 10540 * need to be re-computed for different sweveents. 10541 * Re-initialize data->sample_flags safely to avoid 10542 * the problem that next event skips preparing data 10543 * because data->sample_flags is set. 10544 */ 10545 perf_sample_data_init(&data, 0, 0); 10546 perf_sample_save_raw_data(&data, &raw); 10547 } 10548 } 10549 10550 /* 10551 * If we got specified a target task, also iterate its context and 10552 * deliver this event there too. 10553 */ 10554 if (task && task != current) { 10555 struct perf_event_context *ctx; 10556 10557 rcu_read_lock(); 10558 ctx = rcu_dereference(task->perf_event_ctxp); 10559 if (!ctx) 10560 goto unlock; 10561 10562 raw_spin_lock(&ctx->lock); 10563 perf_tp_event_target_task(count, record, regs, &data, ctx); 10564 raw_spin_unlock(&ctx->lock); 10565 unlock: 10566 rcu_read_unlock(); 10567 } 10568 10569 perf_swevent_put_recursion_context(rctx); 10570 } 10571 EXPORT_SYMBOL_GPL(perf_tp_event); 10572 10573 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10574 /* 10575 * Flags in config, used by dynamic PMU kprobe and uprobe 10576 * The flags should match following PMU_FORMAT_ATTR(). 10577 * 10578 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10579 * if not set, create kprobe/uprobe 10580 * 10581 * The following values specify a reference counter (or semaphore in the 10582 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10583 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10584 * 10585 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10586 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10587 */ 10588 enum perf_probe_config { 10589 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10590 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10591 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10592 }; 10593 10594 PMU_FORMAT_ATTR(retprobe, "config:0"); 10595 #endif 10596 10597 #ifdef CONFIG_KPROBE_EVENTS 10598 static struct attribute *kprobe_attrs[] = { 10599 &format_attr_retprobe.attr, 10600 NULL, 10601 }; 10602 10603 static struct attribute_group kprobe_format_group = { 10604 .name = "format", 10605 .attrs = kprobe_attrs, 10606 }; 10607 10608 static const struct attribute_group *kprobe_attr_groups[] = { 10609 &kprobe_format_group, 10610 NULL, 10611 }; 10612 10613 static int perf_kprobe_event_init(struct perf_event *event); 10614 static struct pmu perf_kprobe = { 10615 .task_ctx_nr = perf_sw_context, 10616 .event_init = perf_kprobe_event_init, 10617 .add = perf_trace_add, 10618 .del = perf_trace_del, 10619 .start = perf_swevent_start, 10620 .stop = perf_swevent_stop, 10621 .read = perf_swevent_read, 10622 .attr_groups = kprobe_attr_groups, 10623 }; 10624 10625 static int perf_kprobe_event_init(struct perf_event *event) 10626 { 10627 int err; 10628 bool is_retprobe; 10629 10630 if (event->attr.type != perf_kprobe.type) 10631 return -ENOENT; 10632 10633 if (!perfmon_capable()) 10634 return -EACCES; 10635 10636 /* 10637 * no branch sampling for probe events 10638 */ 10639 if (has_branch_stack(event)) 10640 return -EOPNOTSUPP; 10641 10642 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10643 err = perf_kprobe_init(event, is_retprobe); 10644 if (err) 10645 return err; 10646 10647 event->destroy = perf_kprobe_destroy; 10648 10649 return 0; 10650 } 10651 #endif /* CONFIG_KPROBE_EVENTS */ 10652 10653 #ifdef CONFIG_UPROBE_EVENTS 10654 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10655 10656 static struct attribute *uprobe_attrs[] = { 10657 &format_attr_retprobe.attr, 10658 &format_attr_ref_ctr_offset.attr, 10659 NULL, 10660 }; 10661 10662 static struct attribute_group uprobe_format_group = { 10663 .name = "format", 10664 .attrs = uprobe_attrs, 10665 }; 10666 10667 static const struct attribute_group *uprobe_attr_groups[] = { 10668 &uprobe_format_group, 10669 NULL, 10670 }; 10671 10672 static int perf_uprobe_event_init(struct perf_event *event); 10673 static struct pmu perf_uprobe = { 10674 .task_ctx_nr = perf_sw_context, 10675 .event_init = perf_uprobe_event_init, 10676 .add = perf_trace_add, 10677 .del = perf_trace_del, 10678 .start = perf_swevent_start, 10679 .stop = perf_swevent_stop, 10680 .read = perf_swevent_read, 10681 .attr_groups = uprobe_attr_groups, 10682 }; 10683 10684 static int perf_uprobe_event_init(struct perf_event *event) 10685 { 10686 int err; 10687 unsigned long ref_ctr_offset; 10688 bool is_retprobe; 10689 10690 if (event->attr.type != perf_uprobe.type) 10691 return -ENOENT; 10692 10693 if (!perfmon_capable()) 10694 return -EACCES; 10695 10696 /* 10697 * no branch sampling for probe events 10698 */ 10699 if (has_branch_stack(event)) 10700 return -EOPNOTSUPP; 10701 10702 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10703 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10704 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10705 if (err) 10706 return err; 10707 10708 event->destroy = perf_uprobe_destroy; 10709 10710 return 0; 10711 } 10712 #endif /* CONFIG_UPROBE_EVENTS */ 10713 10714 static inline void perf_tp_register(void) 10715 { 10716 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10717 #ifdef CONFIG_KPROBE_EVENTS 10718 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10719 #endif 10720 #ifdef CONFIG_UPROBE_EVENTS 10721 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10722 #endif 10723 } 10724 10725 static void perf_event_free_filter(struct perf_event *event) 10726 { 10727 ftrace_profile_free_filter(event); 10728 } 10729 10730 /* 10731 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10732 * with perf_event_open() 10733 */ 10734 static inline bool perf_event_is_tracing(struct perf_event *event) 10735 { 10736 if (event->pmu == &perf_tracepoint) 10737 return true; 10738 #ifdef CONFIG_KPROBE_EVENTS 10739 if (event->pmu == &perf_kprobe) 10740 return true; 10741 #endif 10742 #ifdef CONFIG_UPROBE_EVENTS 10743 if (event->pmu == &perf_uprobe) 10744 return true; 10745 #endif 10746 return false; 10747 } 10748 10749 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10750 u64 bpf_cookie) 10751 { 10752 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10753 10754 if (!perf_event_is_tracing(event)) 10755 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10756 10757 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10758 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10759 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10760 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10761 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10762 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10763 return -EINVAL; 10764 10765 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10766 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10767 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10768 return -EINVAL; 10769 10770 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10771 /* only uprobe programs are allowed to be sleepable */ 10772 return -EINVAL; 10773 10774 /* Kprobe override only works for kprobes, not uprobes. */ 10775 if (prog->kprobe_override && !is_kprobe) 10776 return -EINVAL; 10777 10778 if (is_tracepoint || is_syscall_tp) { 10779 int off = trace_event_get_offsets(event->tp_event); 10780 10781 if (prog->aux->max_ctx_offset > off) 10782 return -EACCES; 10783 } 10784 10785 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10786 } 10787 10788 void perf_event_free_bpf_prog(struct perf_event *event) 10789 { 10790 if (!perf_event_is_tracing(event)) { 10791 perf_event_free_bpf_handler(event); 10792 return; 10793 } 10794 perf_event_detach_bpf_prog(event); 10795 } 10796 10797 #else 10798 10799 static inline void perf_tp_register(void) 10800 { 10801 } 10802 10803 static void perf_event_free_filter(struct perf_event *event) 10804 { 10805 } 10806 10807 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10808 u64 bpf_cookie) 10809 { 10810 return -ENOENT; 10811 } 10812 10813 void perf_event_free_bpf_prog(struct perf_event *event) 10814 { 10815 } 10816 #endif /* CONFIG_EVENT_TRACING */ 10817 10818 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10819 void perf_bp_event(struct perf_event *bp, void *data) 10820 { 10821 struct perf_sample_data sample; 10822 struct pt_regs *regs = data; 10823 10824 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10825 10826 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10827 perf_swevent_event(bp, 1, &sample, regs); 10828 } 10829 #endif 10830 10831 /* 10832 * Allocate a new address filter 10833 */ 10834 static struct perf_addr_filter * 10835 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10836 { 10837 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10838 struct perf_addr_filter *filter; 10839 10840 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10841 if (!filter) 10842 return NULL; 10843 10844 INIT_LIST_HEAD(&filter->entry); 10845 list_add_tail(&filter->entry, filters); 10846 10847 return filter; 10848 } 10849 10850 static void free_filters_list(struct list_head *filters) 10851 { 10852 struct perf_addr_filter *filter, *iter; 10853 10854 list_for_each_entry_safe(filter, iter, filters, entry) { 10855 path_put(&filter->path); 10856 list_del(&filter->entry); 10857 kfree(filter); 10858 } 10859 } 10860 10861 /* 10862 * Free existing address filters and optionally install new ones 10863 */ 10864 static void perf_addr_filters_splice(struct perf_event *event, 10865 struct list_head *head) 10866 { 10867 unsigned long flags; 10868 LIST_HEAD(list); 10869 10870 if (!has_addr_filter(event)) 10871 return; 10872 10873 /* don't bother with children, they don't have their own filters */ 10874 if (event->parent) 10875 return; 10876 10877 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10878 10879 list_splice_init(&event->addr_filters.list, &list); 10880 if (head) 10881 list_splice(head, &event->addr_filters.list); 10882 10883 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10884 10885 free_filters_list(&list); 10886 } 10887 10888 /* 10889 * Scan through mm's vmas and see if one of them matches the 10890 * @filter; if so, adjust filter's address range. 10891 * Called with mm::mmap_lock down for reading. 10892 */ 10893 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10894 struct mm_struct *mm, 10895 struct perf_addr_filter_range *fr) 10896 { 10897 struct vm_area_struct *vma; 10898 VMA_ITERATOR(vmi, mm, 0); 10899 10900 for_each_vma(vmi, vma) { 10901 if (!vma->vm_file) 10902 continue; 10903 10904 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10905 return; 10906 } 10907 } 10908 10909 /* 10910 * Update event's address range filters based on the 10911 * task's existing mappings, if any. 10912 */ 10913 static void perf_event_addr_filters_apply(struct perf_event *event) 10914 { 10915 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10916 struct task_struct *task = READ_ONCE(event->ctx->task); 10917 struct perf_addr_filter *filter; 10918 struct mm_struct *mm = NULL; 10919 unsigned int count = 0; 10920 unsigned long flags; 10921 10922 /* 10923 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10924 * will stop on the parent's child_mutex that our caller is also holding 10925 */ 10926 if (task == TASK_TOMBSTONE) 10927 return; 10928 10929 if (ifh->nr_file_filters) { 10930 mm = get_task_mm(task); 10931 if (!mm) 10932 goto restart; 10933 10934 mmap_read_lock(mm); 10935 } 10936 10937 raw_spin_lock_irqsave(&ifh->lock, flags); 10938 list_for_each_entry(filter, &ifh->list, entry) { 10939 if (filter->path.dentry) { 10940 /* 10941 * Adjust base offset if the filter is associated to a 10942 * binary that needs to be mapped: 10943 */ 10944 event->addr_filter_ranges[count].start = 0; 10945 event->addr_filter_ranges[count].size = 0; 10946 10947 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10948 } else { 10949 event->addr_filter_ranges[count].start = filter->offset; 10950 event->addr_filter_ranges[count].size = filter->size; 10951 } 10952 10953 count++; 10954 } 10955 10956 event->addr_filters_gen++; 10957 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10958 10959 if (ifh->nr_file_filters) { 10960 mmap_read_unlock(mm); 10961 10962 mmput(mm); 10963 } 10964 10965 restart: 10966 perf_event_stop(event, 1); 10967 } 10968 10969 /* 10970 * Address range filtering: limiting the data to certain 10971 * instruction address ranges. Filters are ioctl()ed to us from 10972 * userspace as ascii strings. 10973 * 10974 * Filter string format: 10975 * 10976 * ACTION RANGE_SPEC 10977 * where ACTION is one of the 10978 * * "filter": limit the trace to this region 10979 * * "start": start tracing from this address 10980 * * "stop": stop tracing at this address/region; 10981 * RANGE_SPEC is 10982 * * for kernel addresses: <start address>[/<size>] 10983 * * for object files: <start address>[/<size>]@</path/to/object/file> 10984 * 10985 * if <size> is not specified or is zero, the range is treated as a single 10986 * address; not valid for ACTION=="filter". 10987 */ 10988 enum { 10989 IF_ACT_NONE = -1, 10990 IF_ACT_FILTER, 10991 IF_ACT_START, 10992 IF_ACT_STOP, 10993 IF_SRC_FILE, 10994 IF_SRC_KERNEL, 10995 IF_SRC_FILEADDR, 10996 IF_SRC_KERNELADDR, 10997 }; 10998 10999 enum { 11000 IF_STATE_ACTION = 0, 11001 IF_STATE_SOURCE, 11002 IF_STATE_END, 11003 }; 11004 11005 static const match_table_t if_tokens = { 11006 { IF_ACT_FILTER, "filter" }, 11007 { IF_ACT_START, "start" }, 11008 { IF_ACT_STOP, "stop" }, 11009 { IF_SRC_FILE, "%u/%u@%s" }, 11010 { IF_SRC_KERNEL, "%u/%u" }, 11011 { IF_SRC_FILEADDR, "%u@%s" }, 11012 { IF_SRC_KERNELADDR, "%u" }, 11013 { IF_ACT_NONE, NULL }, 11014 }; 11015 11016 /* 11017 * Address filter string parser 11018 */ 11019 static int 11020 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 11021 struct list_head *filters) 11022 { 11023 struct perf_addr_filter *filter = NULL; 11024 char *start, *orig, *filename = NULL; 11025 substring_t args[MAX_OPT_ARGS]; 11026 int state = IF_STATE_ACTION, token; 11027 unsigned int kernel = 0; 11028 int ret = -EINVAL; 11029 11030 orig = fstr = kstrdup(fstr, GFP_KERNEL); 11031 if (!fstr) 11032 return -ENOMEM; 11033 11034 while ((start = strsep(&fstr, " ,\n")) != NULL) { 11035 static const enum perf_addr_filter_action_t actions[] = { 11036 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 11037 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 11038 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 11039 }; 11040 ret = -EINVAL; 11041 11042 if (!*start) 11043 continue; 11044 11045 /* filter definition begins */ 11046 if (state == IF_STATE_ACTION) { 11047 filter = perf_addr_filter_new(event, filters); 11048 if (!filter) 11049 goto fail; 11050 } 11051 11052 token = match_token(start, if_tokens, args); 11053 switch (token) { 11054 case IF_ACT_FILTER: 11055 case IF_ACT_START: 11056 case IF_ACT_STOP: 11057 if (state != IF_STATE_ACTION) 11058 goto fail; 11059 11060 filter->action = actions[token]; 11061 state = IF_STATE_SOURCE; 11062 break; 11063 11064 case IF_SRC_KERNELADDR: 11065 case IF_SRC_KERNEL: 11066 kernel = 1; 11067 fallthrough; 11068 11069 case IF_SRC_FILEADDR: 11070 case IF_SRC_FILE: 11071 if (state != IF_STATE_SOURCE) 11072 goto fail; 11073 11074 *args[0].to = 0; 11075 ret = kstrtoul(args[0].from, 0, &filter->offset); 11076 if (ret) 11077 goto fail; 11078 11079 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 11080 *args[1].to = 0; 11081 ret = kstrtoul(args[1].from, 0, &filter->size); 11082 if (ret) 11083 goto fail; 11084 } 11085 11086 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 11087 int fpos = token == IF_SRC_FILE ? 2 : 1; 11088 11089 kfree(filename); 11090 filename = match_strdup(&args[fpos]); 11091 if (!filename) { 11092 ret = -ENOMEM; 11093 goto fail; 11094 } 11095 } 11096 11097 state = IF_STATE_END; 11098 break; 11099 11100 default: 11101 goto fail; 11102 } 11103 11104 /* 11105 * Filter definition is fully parsed, validate and install it. 11106 * Make sure that it doesn't contradict itself or the event's 11107 * attribute. 11108 */ 11109 if (state == IF_STATE_END) { 11110 ret = -EINVAL; 11111 11112 /* 11113 * ACTION "filter" must have a non-zero length region 11114 * specified. 11115 */ 11116 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 11117 !filter->size) 11118 goto fail; 11119 11120 if (!kernel) { 11121 if (!filename) 11122 goto fail; 11123 11124 /* 11125 * For now, we only support file-based filters 11126 * in per-task events; doing so for CPU-wide 11127 * events requires additional context switching 11128 * trickery, since same object code will be 11129 * mapped at different virtual addresses in 11130 * different processes. 11131 */ 11132 ret = -EOPNOTSUPP; 11133 if (!event->ctx->task) 11134 goto fail; 11135 11136 /* look up the path and grab its inode */ 11137 ret = kern_path(filename, LOOKUP_FOLLOW, 11138 &filter->path); 11139 if (ret) 11140 goto fail; 11141 11142 ret = -EINVAL; 11143 if (!filter->path.dentry || 11144 !S_ISREG(d_inode(filter->path.dentry) 11145 ->i_mode)) 11146 goto fail; 11147 11148 event->addr_filters.nr_file_filters++; 11149 } 11150 11151 /* ready to consume more filters */ 11152 kfree(filename); 11153 filename = NULL; 11154 state = IF_STATE_ACTION; 11155 filter = NULL; 11156 kernel = 0; 11157 } 11158 } 11159 11160 if (state != IF_STATE_ACTION) 11161 goto fail; 11162 11163 kfree(filename); 11164 kfree(orig); 11165 11166 return 0; 11167 11168 fail: 11169 kfree(filename); 11170 free_filters_list(filters); 11171 kfree(orig); 11172 11173 return ret; 11174 } 11175 11176 static int 11177 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11178 { 11179 LIST_HEAD(filters); 11180 int ret; 11181 11182 /* 11183 * Since this is called in perf_ioctl() path, we're already holding 11184 * ctx::mutex. 11185 */ 11186 lockdep_assert_held(&event->ctx->mutex); 11187 11188 if (WARN_ON_ONCE(event->parent)) 11189 return -EINVAL; 11190 11191 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11192 if (ret) 11193 goto fail_clear_files; 11194 11195 ret = event->pmu->addr_filters_validate(&filters); 11196 if (ret) 11197 goto fail_free_filters; 11198 11199 /* remove existing filters, if any */ 11200 perf_addr_filters_splice(event, &filters); 11201 11202 /* install new filters */ 11203 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11204 11205 return ret; 11206 11207 fail_free_filters: 11208 free_filters_list(&filters); 11209 11210 fail_clear_files: 11211 event->addr_filters.nr_file_filters = 0; 11212 11213 return ret; 11214 } 11215 11216 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11217 { 11218 int ret = -EINVAL; 11219 char *filter_str; 11220 11221 filter_str = strndup_user(arg, PAGE_SIZE); 11222 if (IS_ERR(filter_str)) 11223 return PTR_ERR(filter_str); 11224 11225 #ifdef CONFIG_EVENT_TRACING 11226 if (perf_event_is_tracing(event)) { 11227 struct perf_event_context *ctx = event->ctx; 11228 11229 /* 11230 * Beware, here be dragons!! 11231 * 11232 * the tracepoint muck will deadlock against ctx->mutex, but 11233 * the tracepoint stuff does not actually need it. So 11234 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11235 * already have a reference on ctx. 11236 * 11237 * This can result in event getting moved to a different ctx, 11238 * but that does not affect the tracepoint state. 11239 */ 11240 mutex_unlock(&ctx->mutex); 11241 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11242 mutex_lock(&ctx->mutex); 11243 } else 11244 #endif 11245 if (has_addr_filter(event)) 11246 ret = perf_event_set_addr_filter(event, filter_str); 11247 11248 kfree(filter_str); 11249 return ret; 11250 } 11251 11252 /* 11253 * hrtimer based swevent callback 11254 */ 11255 11256 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11257 { 11258 enum hrtimer_restart ret = HRTIMER_RESTART; 11259 struct perf_sample_data data; 11260 struct pt_regs *regs; 11261 struct perf_event *event; 11262 u64 period; 11263 11264 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11265 11266 if (event->state != PERF_EVENT_STATE_ACTIVE) 11267 return HRTIMER_NORESTART; 11268 11269 event->pmu->read(event); 11270 11271 perf_sample_data_init(&data, 0, event->hw.last_period); 11272 regs = get_irq_regs(); 11273 11274 if (regs && !perf_exclude_event(event, regs)) { 11275 if (!(event->attr.exclude_idle && is_idle_task(current))) 11276 if (__perf_event_overflow(event, 1, &data, regs)) 11277 ret = HRTIMER_NORESTART; 11278 } 11279 11280 period = max_t(u64, 10000, event->hw.sample_period); 11281 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11282 11283 return ret; 11284 } 11285 11286 static void perf_swevent_start_hrtimer(struct perf_event *event) 11287 { 11288 struct hw_perf_event *hwc = &event->hw; 11289 s64 period; 11290 11291 if (!is_sampling_event(event)) 11292 return; 11293 11294 period = local64_read(&hwc->period_left); 11295 if (period) { 11296 if (period < 0) 11297 period = 10000; 11298 11299 local64_set(&hwc->period_left, 0); 11300 } else { 11301 period = max_t(u64, 10000, hwc->sample_period); 11302 } 11303 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11304 HRTIMER_MODE_REL_PINNED_HARD); 11305 } 11306 11307 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11308 { 11309 struct hw_perf_event *hwc = &event->hw; 11310 11311 if (is_sampling_event(event)) { 11312 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11313 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11314 11315 hrtimer_cancel(&hwc->hrtimer); 11316 } 11317 } 11318 11319 static void perf_swevent_init_hrtimer(struct perf_event *event) 11320 { 11321 struct hw_perf_event *hwc = &event->hw; 11322 11323 if (!is_sampling_event(event)) 11324 return; 11325 11326 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11327 hwc->hrtimer.function = perf_swevent_hrtimer; 11328 11329 /* 11330 * Since hrtimers have a fixed rate, we can do a static freq->period 11331 * mapping and avoid the whole period adjust feedback stuff. 11332 */ 11333 if (event->attr.freq) { 11334 long freq = event->attr.sample_freq; 11335 11336 event->attr.sample_period = NSEC_PER_SEC / freq; 11337 hwc->sample_period = event->attr.sample_period; 11338 local64_set(&hwc->period_left, hwc->sample_period); 11339 hwc->last_period = hwc->sample_period; 11340 event->attr.freq = 0; 11341 } 11342 } 11343 11344 /* 11345 * Software event: cpu wall time clock 11346 */ 11347 11348 static void cpu_clock_event_update(struct perf_event *event) 11349 { 11350 s64 prev; 11351 u64 now; 11352 11353 now = local_clock(); 11354 prev = local64_xchg(&event->hw.prev_count, now); 11355 local64_add(now - prev, &event->count); 11356 } 11357 11358 static void cpu_clock_event_start(struct perf_event *event, int flags) 11359 { 11360 local64_set(&event->hw.prev_count, local_clock()); 11361 perf_swevent_start_hrtimer(event); 11362 } 11363 11364 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11365 { 11366 perf_swevent_cancel_hrtimer(event); 11367 cpu_clock_event_update(event); 11368 } 11369 11370 static int cpu_clock_event_add(struct perf_event *event, int flags) 11371 { 11372 if (flags & PERF_EF_START) 11373 cpu_clock_event_start(event, flags); 11374 perf_event_update_userpage(event); 11375 11376 return 0; 11377 } 11378 11379 static void cpu_clock_event_del(struct perf_event *event, int flags) 11380 { 11381 cpu_clock_event_stop(event, flags); 11382 } 11383 11384 static void cpu_clock_event_read(struct perf_event *event) 11385 { 11386 cpu_clock_event_update(event); 11387 } 11388 11389 static int cpu_clock_event_init(struct perf_event *event) 11390 { 11391 if (event->attr.type != perf_cpu_clock.type) 11392 return -ENOENT; 11393 11394 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11395 return -ENOENT; 11396 11397 /* 11398 * no branch sampling for software events 11399 */ 11400 if (has_branch_stack(event)) 11401 return -EOPNOTSUPP; 11402 11403 perf_swevent_init_hrtimer(event); 11404 11405 return 0; 11406 } 11407 11408 static struct pmu perf_cpu_clock = { 11409 .task_ctx_nr = perf_sw_context, 11410 11411 .capabilities = PERF_PMU_CAP_NO_NMI, 11412 .dev = PMU_NULL_DEV, 11413 11414 .event_init = cpu_clock_event_init, 11415 .add = cpu_clock_event_add, 11416 .del = cpu_clock_event_del, 11417 .start = cpu_clock_event_start, 11418 .stop = cpu_clock_event_stop, 11419 .read = cpu_clock_event_read, 11420 }; 11421 11422 /* 11423 * Software event: task time clock 11424 */ 11425 11426 static void task_clock_event_update(struct perf_event *event, u64 now) 11427 { 11428 u64 prev; 11429 s64 delta; 11430 11431 prev = local64_xchg(&event->hw.prev_count, now); 11432 delta = now - prev; 11433 local64_add(delta, &event->count); 11434 } 11435 11436 static void task_clock_event_start(struct perf_event *event, int flags) 11437 { 11438 local64_set(&event->hw.prev_count, event->ctx->time); 11439 perf_swevent_start_hrtimer(event); 11440 } 11441 11442 static void task_clock_event_stop(struct perf_event *event, int flags) 11443 { 11444 perf_swevent_cancel_hrtimer(event); 11445 task_clock_event_update(event, event->ctx->time); 11446 } 11447 11448 static int task_clock_event_add(struct perf_event *event, int flags) 11449 { 11450 if (flags & PERF_EF_START) 11451 task_clock_event_start(event, flags); 11452 perf_event_update_userpage(event); 11453 11454 return 0; 11455 } 11456 11457 static void task_clock_event_del(struct perf_event *event, int flags) 11458 { 11459 task_clock_event_stop(event, PERF_EF_UPDATE); 11460 } 11461 11462 static void task_clock_event_read(struct perf_event *event) 11463 { 11464 u64 now = perf_clock(); 11465 u64 delta = now - event->ctx->timestamp; 11466 u64 time = event->ctx->time + delta; 11467 11468 task_clock_event_update(event, time); 11469 } 11470 11471 static int task_clock_event_init(struct perf_event *event) 11472 { 11473 if (event->attr.type != perf_task_clock.type) 11474 return -ENOENT; 11475 11476 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11477 return -ENOENT; 11478 11479 /* 11480 * no branch sampling for software events 11481 */ 11482 if (has_branch_stack(event)) 11483 return -EOPNOTSUPP; 11484 11485 perf_swevent_init_hrtimer(event); 11486 11487 return 0; 11488 } 11489 11490 static struct pmu perf_task_clock = { 11491 .task_ctx_nr = perf_sw_context, 11492 11493 .capabilities = PERF_PMU_CAP_NO_NMI, 11494 .dev = PMU_NULL_DEV, 11495 11496 .event_init = task_clock_event_init, 11497 .add = task_clock_event_add, 11498 .del = task_clock_event_del, 11499 .start = task_clock_event_start, 11500 .stop = task_clock_event_stop, 11501 .read = task_clock_event_read, 11502 }; 11503 11504 static void perf_pmu_nop_void(struct pmu *pmu) 11505 { 11506 } 11507 11508 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11509 { 11510 } 11511 11512 static int perf_pmu_nop_int(struct pmu *pmu) 11513 { 11514 return 0; 11515 } 11516 11517 static int perf_event_nop_int(struct perf_event *event, u64 value) 11518 { 11519 return 0; 11520 } 11521 11522 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11523 11524 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11525 { 11526 __this_cpu_write(nop_txn_flags, flags); 11527 11528 if (flags & ~PERF_PMU_TXN_ADD) 11529 return; 11530 11531 perf_pmu_disable(pmu); 11532 } 11533 11534 static int perf_pmu_commit_txn(struct pmu *pmu) 11535 { 11536 unsigned int flags = __this_cpu_read(nop_txn_flags); 11537 11538 __this_cpu_write(nop_txn_flags, 0); 11539 11540 if (flags & ~PERF_PMU_TXN_ADD) 11541 return 0; 11542 11543 perf_pmu_enable(pmu); 11544 return 0; 11545 } 11546 11547 static void perf_pmu_cancel_txn(struct pmu *pmu) 11548 { 11549 unsigned int flags = __this_cpu_read(nop_txn_flags); 11550 11551 __this_cpu_write(nop_txn_flags, 0); 11552 11553 if (flags & ~PERF_PMU_TXN_ADD) 11554 return; 11555 11556 perf_pmu_enable(pmu); 11557 } 11558 11559 static int perf_event_idx_default(struct perf_event *event) 11560 { 11561 return 0; 11562 } 11563 11564 static void free_pmu_context(struct pmu *pmu) 11565 { 11566 free_percpu(pmu->cpu_pmu_context); 11567 } 11568 11569 /* 11570 * Let userspace know that this PMU supports address range filtering: 11571 */ 11572 static ssize_t nr_addr_filters_show(struct device *dev, 11573 struct device_attribute *attr, 11574 char *page) 11575 { 11576 struct pmu *pmu = dev_get_drvdata(dev); 11577 11578 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11579 } 11580 DEVICE_ATTR_RO(nr_addr_filters); 11581 11582 static struct idr pmu_idr; 11583 11584 static ssize_t 11585 type_show(struct device *dev, struct device_attribute *attr, char *page) 11586 { 11587 struct pmu *pmu = dev_get_drvdata(dev); 11588 11589 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11590 } 11591 static DEVICE_ATTR_RO(type); 11592 11593 static ssize_t 11594 perf_event_mux_interval_ms_show(struct device *dev, 11595 struct device_attribute *attr, 11596 char *page) 11597 { 11598 struct pmu *pmu = dev_get_drvdata(dev); 11599 11600 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11601 } 11602 11603 static DEFINE_MUTEX(mux_interval_mutex); 11604 11605 static ssize_t 11606 perf_event_mux_interval_ms_store(struct device *dev, 11607 struct device_attribute *attr, 11608 const char *buf, size_t count) 11609 { 11610 struct pmu *pmu = dev_get_drvdata(dev); 11611 int timer, cpu, ret; 11612 11613 ret = kstrtoint(buf, 0, &timer); 11614 if (ret) 11615 return ret; 11616 11617 if (timer < 1) 11618 return -EINVAL; 11619 11620 /* same value, noting to do */ 11621 if (timer == pmu->hrtimer_interval_ms) 11622 return count; 11623 11624 mutex_lock(&mux_interval_mutex); 11625 pmu->hrtimer_interval_ms = timer; 11626 11627 /* update all cpuctx for this PMU */ 11628 cpus_read_lock(); 11629 for_each_online_cpu(cpu) { 11630 struct perf_cpu_pmu_context *cpc; 11631 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11632 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11633 11634 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11635 } 11636 cpus_read_unlock(); 11637 mutex_unlock(&mux_interval_mutex); 11638 11639 return count; 11640 } 11641 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11642 11643 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) 11644 { 11645 switch (scope) { 11646 case PERF_PMU_SCOPE_CORE: 11647 return topology_sibling_cpumask(cpu); 11648 case PERF_PMU_SCOPE_DIE: 11649 return topology_die_cpumask(cpu); 11650 case PERF_PMU_SCOPE_CLUSTER: 11651 return topology_cluster_cpumask(cpu); 11652 case PERF_PMU_SCOPE_PKG: 11653 return topology_core_cpumask(cpu); 11654 case PERF_PMU_SCOPE_SYS_WIDE: 11655 return cpu_online_mask; 11656 } 11657 11658 return NULL; 11659 } 11660 11661 static inline struct cpumask *perf_scope_cpumask(unsigned int scope) 11662 { 11663 switch (scope) { 11664 case PERF_PMU_SCOPE_CORE: 11665 return perf_online_core_mask; 11666 case PERF_PMU_SCOPE_DIE: 11667 return perf_online_die_mask; 11668 case PERF_PMU_SCOPE_CLUSTER: 11669 return perf_online_cluster_mask; 11670 case PERF_PMU_SCOPE_PKG: 11671 return perf_online_pkg_mask; 11672 case PERF_PMU_SCOPE_SYS_WIDE: 11673 return perf_online_sys_mask; 11674 } 11675 11676 return NULL; 11677 } 11678 11679 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, 11680 char *buf) 11681 { 11682 struct pmu *pmu = dev_get_drvdata(dev); 11683 struct cpumask *mask = perf_scope_cpumask(pmu->scope); 11684 11685 if (mask) 11686 return cpumap_print_to_pagebuf(true, buf, mask); 11687 return 0; 11688 } 11689 11690 static DEVICE_ATTR_RO(cpumask); 11691 11692 static struct attribute *pmu_dev_attrs[] = { 11693 &dev_attr_type.attr, 11694 &dev_attr_perf_event_mux_interval_ms.attr, 11695 &dev_attr_nr_addr_filters.attr, 11696 &dev_attr_cpumask.attr, 11697 NULL, 11698 }; 11699 11700 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11701 { 11702 struct device *dev = kobj_to_dev(kobj); 11703 struct pmu *pmu = dev_get_drvdata(dev); 11704 11705 if (n == 2 && !pmu->nr_addr_filters) 11706 return 0; 11707 11708 /* cpumask */ 11709 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) 11710 return 0; 11711 11712 return a->mode; 11713 } 11714 11715 static struct attribute_group pmu_dev_attr_group = { 11716 .is_visible = pmu_dev_is_visible, 11717 .attrs = pmu_dev_attrs, 11718 }; 11719 11720 static const struct attribute_group *pmu_dev_groups[] = { 11721 &pmu_dev_attr_group, 11722 NULL, 11723 }; 11724 11725 static int pmu_bus_running; 11726 static struct bus_type pmu_bus = { 11727 .name = "event_source", 11728 .dev_groups = pmu_dev_groups, 11729 }; 11730 11731 static void pmu_dev_release(struct device *dev) 11732 { 11733 kfree(dev); 11734 } 11735 11736 static int pmu_dev_alloc(struct pmu *pmu) 11737 { 11738 int ret = -ENOMEM; 11739 11740 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11741 if (!pmu->dev) 11742 goto out; 11743 11744 pmu->dev->groups = pmu->attr_groups; 11745 device_initialize(pmu->dev); 11746 11747 dev_set_drvdata(pmu->dev, pmu); 11748 pmu->dev->bus = &pmu_bus; 11749 pmu->dev->parent = pmu->parent; 11750 pmu->dev->release = pmu_dev_release; 11751 11752 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11753 if (ret) 11754 goto free_dev; 11755 11756 ret = device_add(pmu->dev); 11757 if (ret) 11758 goto free_dev; 11759 11760 if (pmu->attr_update) { 11761 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11762 if (ret) 11763 goto del_dev; 11764 } 11765 11766 out: 11767 return ret; 11768 11769 del_dev: 11770 device_del(pmu->dev); 11771 11772 free_dev: 11773 put_device(pmu->dev); 11774 goto out; 11775 } 11776 11777 static struct lock_class_key cpuctx_mutex; 11778 static struct lock_class_key cpuctx_lock; 11779 11780 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11781 { 11782 int cpu, ret, max = PERF_TYPE_MAX; 11783 11784 mutex_lock(&pmus_lock); 11785 ret = -ENOMEM; 11786 pmu->pmu_disable_count = alloc_percpu(int); 11787 if (!pmu->pmu_disable_count) 11788 goto unlock; 11789 11790 pmu->type = -1; 11791 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11792 ret = -EINVAL; 11793 goto free_pdc; 11794 } 11795 11796 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) { 11797 ret = -EINVAL; 11798 goto free_pdc; 11799 } 11800 11801 pmu->name = name; 11802 11803 if (type >= 0) 11804 max = type; 11805 11806 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11807 if (ret < 0) 11808 goto free_pdc; 11809 11810 WARN_ON(type >= 0 && ret != type); 11811 11812 type = ret; 11813 pmu->type = type; 11814 11815 if (pmu_bus_running && !pmu->dev) { 11816 ret = pmu_dev_alloc(pmu); 11817 if (ret) 11818 goto free_idr; 11819 } 11820 11821 ret = -ENOMEM; 11822 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11823 if (!pmu->cpu_pmu_context) 11824 goto free_dev; 11825 11826 for_each_possible_cpu(cpu) { 11827 struct perf_cpu_pmu_context *cpc; 11828 11829 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11830 __perf_init_event_pmu_context(&cpc->epc, pmu); 11831 __perf_mux_hrtimer_init(cpc, cpu); 11832 } 11833 11834 if (!pmu->start_txn) { 11835 if (pmu->pmu_enable) { 11836 /* 11837 * If we have pmu_enable/pmu_disable calls, install 11838 * transaction stubs that use that to try and batch 11839 * hardware accesses. 11840 */ 11841 pmu->start_txn = perf_pmu_start_txn; 11842 pmu->commit_txn = perf_pmu_commit_txn; 11843 pmu->cancel_txn = perf_pmu_cancel_txn; 11844 } else { 11845 pmu->start_txn = perf_pmu_nop_txn; 11846 pmu->commit_txn = perf_pmu_nop_int; 11847 pmu->cancel_txn = perf_pmu_nop_void; 11848 } 11849 } 11850 11851 if (!pmu->pmu_enable) { 11852 pmu->pmu_enable = perf_pmu_nop_void; 11853 pmu->pmu_disable = perf_pmu_nop_void; 11854 } 11855 11856 if (!pmu->check_period) 11857 pmu->check_period = perf_event_nop_int; 11858 11859 if (!pmu->event_idx) 11860 pmu->event_idx = perf_event_idx_default; 11861 11862 list_add_rcu(&pmu->entry, &pmus); 11863 atomic_set(&pmu->exclusive_cnt, 0); 11864 ret = 0; 11865 unlock: 11866 mutex_unlock(&pmus_lock); 11867 11868 return ret; 11869 11870 free_dev: 11871 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11872 device_del(pmu->dev); 11873 put_device(pmu->dev); 11874 } 11875 11876 free_idr: 11877 idr_remove(&pmu_idr, pmu->type); 11878 11879 free_pdc: 11880 free_percpu(pmu->pmu_disable_count); 11881 goto unlock; 11882 } 11883 EXPORT_SYMBOL_GPL(perf_pmu_register); 11884 11885 void perf_pmu_unregister(struct pmu *pmu) 11886 { 11887 mutex_lock(&pmus_lock); 11888 list_del_rcu(&pmu->entry); 11889 11890 /* 11891 * We dereference the pmu list under both SRCU and regular RCU, so 11892 * synchronize against both of those. 11893 */ 11894 synchronize_srcu(&pmus_srcu); 11895 synchronize_rcu(); 11896 11897 free_percpu(pmu->pmu_disable_count); 11898 idr_remove(&pmu_idr, pmu->type); 11899 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11900 if (pmu->nr_addr_filters) 11901 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11902 device_del(pmu->dev); 11903 put_device(pmu->dev); 11904 } 11905 free_pmu_context(pmu); 11906 mutex_unlock(&pmus_lock); 11907 } 11908 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11909 11910 static inline bool has_extended_regs(struct perf_event *event) 11911 { 11912 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11913 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11914 } 11915 11916 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11917 { 11918 struct perf_event_context *ctx = NULL; 11919 int ret; 11920 11921 if (!try_module_get(pmu->module)) 11922 return -ENODEV; 11923 11924 /* 11925 * A number of pmu->event_init() methods iterate the sibling_list to, 11926 * for example, validate if the group fits on the PMU. Therefore, 11927 * if this is a sibling event, acquire the ctx->mutex to protect 11928 * the sibling_list. 11929 */ 11930 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11931 /* 11932 * This ctx->mutex can nest when we're called through 11933 * inheritance. See the perf_event_ctx_lock_nested() comment. 11934 */ 11935 ctx = perf_event_ctx_lock_nested(event->group_leader, 11936 SINGLE_DEPTH_NESTING); 11937 BUG_ON(!ctx); 11938 } 11939 11940 event->pmu = pmu; 11941 ret = pmu->event_init(event); 11942 11943 if (ctx) 11944 perf_event_ctx_unlock(event->group_leader, ctx); 11945 11946 if (!ret) { 11947 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11948 has_extended_regs(event)) 11949 ret = -EOPNOTSUPP; 11950 11951 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11952 event_has_any_exclude_flag(event)) 11953 ret = -EINVAL; 11954 11955 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { 11956 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); 11957 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope); 11958 int cpu; 11959 11960 if (pmu_cpumask && cpumask) { 11961 cpu = cpumask_any_and(pmu_cpumask, cpumask); 11962 if (cpu >= nr_cpu_ids) 11963 ret = -ENODEV; 11964 else 11965 event->event_caps |= PERF_EV_CAP_READ_SCOPE; 11966 } else { 11967 ret = -ENODEV; 11968 } 11969 } 11970 11971 if (ret && event->destroy) 11972 event->destroy(event); 11973 } 11974 11975 if (ret) 11976 module_put(pmu->module); 11977 11978 return ret; 11979 } 11980 11981 static struct pmu *perf_init_event(struct perf_event *event) 11982 { 11983 bool extended_type = false; 11984 int idx, type, ret; 11985 struct pmu *pmu; 11986 11987 idx = srcu_read_lock(&pmus_srcu); 11988 11989 /* 11990 * Save original type before calling pmu->event_init() since certain 11991 * pmus overwrites event->attr.type to forward event to another pmu. 11992 */ 11993 event->orig_type = event->attr.type; 11994 11995 /* Try parent's PMU first: */ 11996 if (event->parent && event->parent->pmu) { 11997 pmu = event->parent->pmu; 11998 ret = perf_try_init_event(pmu, event); 11999 if (!ret) 12000 goto unlock; 12001 } 12002 12003 /* 12004 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 12005 * are often aliases for PERF_TYPE_RAW. 12006 */ 12007 type = event->attr.type; 12008 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 12009 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 12010 if (!type) { 12011 type = PERF_TYPE_RAW; 12012 } else { 12013 extended_type = true; 12014 event->attr.config &= PERF_HW_EVENT_MASK; 12015 } 12016 } 12017 12018 again: 12019 rcu_read_lock(); 12020 pmu = idr_find(&pmu_idr, type); 12021 rcu_read_unlock(); 12022 if (pmu) { 12023 if (event->attr.type != type && type != PERF_TYPE_RAW && 12024 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 12025 goto fail; 12026 12027 ret = perf_try_init_event(pmu, event); 12028 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 12029 type = event->attr.type; 12030 goto again; 12031 } 12032 12033 if (ret) 12034 pmu = ERR_PTR(ret); 12035 12036 goto unlock; 12037 } 12038 12039 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 12040 ret = perf_try_init_event(pmu, event); 12041 if (!ret) 12042 goto unlock; 12043 12044 if (ret != -ENOENT) { 12045 pmu = ERR_PTR(ret); 12046 goto unlock; 12047 } 12048 } 12049 fail: 12050 pmu = ERR_PTR(-ENOENT); 12051 unlock: 12052 srcu_read_unlock(&pmus_srcu, idx); 12053 12054 return pmu; 12055 } 12056 12057 static void attach_sb_event(struct perf_event *event) 12058 { 12059 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 12060 12061 raw_spin_lock(&pel->lock); 12062 list_add_rcu(&event->sb_list, &pel->list); 12063 raw_spin_unlock(&pel->lock); 12064 } 12065 12066 /* 12067 * We keep a list of all !task (and therefore per-cpu) events 12068 * that need to receive side-band records. 12069 * 12070 * This avoids having to scan all the various PMU per-cpu contexts 12071 * looking for them. 12072 */ 12073 static void account_pmu_sb_event(struct perf_event *event) 12074 { 12075 if (is_sb_event(event)) 12076 attach_sb_event(event); 12077 } 12078 12079 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 12080 static void account_freq_event_nohz(void) 12081 { 12082 #ifdef CONFIG_NO_HZ_FULL 12083 /* Lock so we don't race with concurrent unaccount */ 12084 spin_lock(&nr_freq_lock); 12085 if (atomic_inc_return(&nr_freq_events) == 1) 12086 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 12087 spin_unlock(&nr_freq_lock); 12088 #endif 12089 } 12090 12091 static void account_freq_event(void) 12092 { 12093 if (tick_nohz_full_enabled()) 12094 account_freq_event_nohz(); 12095 else 12096 atomic_inc(&nr_freq_events); 12097 } 12098 12099 12100 static void account_event(struct perf_event *event) 12101 { 12102 bool inc = false; 12103 12104 if (event->parent) 12105 return; 12106 12107 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 12108 inc = true; 12109 if (event->attr.mmap || event->attr.mmap_data) 12110 atomic_inc(&nr_mmap_events); 12111 if (event->attr.build_id) 12112 atomic_inc(&nr_build_id_events); 12113 if (event->attr.comm) 12114 atomic_inc(&nr_comm_events); 12115 if (event->attr.namespaces) 12116 atomic_inc(&nr_namespaces_events); 12117 if (event->attr.cgroup) 12118 atomic_inc(&nr_cgroup_events); 12119 if (event->attr.task) 12120 atomic_inc(&nr_task_events); 12121 if (event->attr.freq) 12122 account_freq_event(); 12123 if (event->attr.context_switch) { 12124 atomic_inc(&nr_switch_events); 12125 inc = true; 12126 } 12127 if (has_branch_stack(event)) 12128 inc = true; 12129 if (is_cgroup_event(event)) 12130 inc = true; 12131 if (event->attr.ksymbol) 12132 atomic_inc(&nr_ksymbol_events); 12133 if (event->attr.bpf_event) 12134 atomic_inc(&nr_bpf_events); 12135 if (event->attr.text_poke) 12136 atomic_inc(&nr_text_poke_events); 12137 12138 if (inc) { 12139 /* 12140 * We need the mutex here because static_branch_enable() 12141 * must complete *before* the perf_sched_count increment 12142 * becomes visible. 12143 */ 12144 if (atomic_inc_not_zero(&perf_sched_count)) 12145 goto enabled; 12146 12147 mutex_lock(&perf_sched_mutex); 12148 if (!atomic_read(&perf_sched_count)) { 12149 static_branch_enable(&perf_sched_events); 12150 /* 12151 * Guarantee that all CPUs observe they key change and 12152 * call the perf scheduling hooks before proceeding to 12153 * install events that need them. 12154 */ 12155 synchronize_rcu(); 12156 } 12157 /* 12158 * Now that we have waited for the sync_sched(), allow further 12159 * increments to by-pass the mutex. 12160 */ 12161 atomic_inc(&perf_sched_count); 12162 mutex_unlock(&perf_sched_mutex); 12163 } 12164 enabled: 12165 12166 account_pmu_sb_event(event); 12167 } 12168 12169 /* 12170 * Allocate and initialize an event structure 12171 */ 12172 static struct perf_event * 12173 perf_event_alloc(struct perf_event_attr *attr, int cpu, 12174 struct task_struct *task, 12175 struct perf_event *group_leader, 12176 struct perf_event *parent_event, 12177 perf_overflow_handler_t overflow_handler, 12178 void *context, int cgroup_fd) 12179 { 12180 struct pmu *pmu; 12181 struct perf_event *event; 12182 struct hw_perf_event *hwc; 12183 long err = -EINVAL; 12184 int node; 12185 12186 if ((unsigned)cpu >= nr_cpu_ids) { 12187 if (!task || cpu != -1) 12188 return ERR_PTR(-EINVAL); 12189 } 12190 if (attr->sigtrap && !task) { 12191 /* Requires a task: avoid signalling random tasks. */ 12192 return ERR_PTR(-EINVAL); 12193 } 12194 12195 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 12196 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 12197 node); 12198 if (!event) 12199 return ERR_PTR(-ENOMEM); 12200 12201 /* 12202 * Single events are their own group leaders, with an 12203 * empty sibling list: 12204 */ 12205 if (!group_leader) 12206 group_leader = event; 12207 12208 mutex_init(&event->child_mutex); 12209 INIT_LIST_HEAD(&event->child_list); 12210 12211 INIT_LIST_HEAD(&event->event_entry); 12212 INIT_LIST_HEAD(&event->sibling_list); 12213 INIT_LIST_HEAD(&event->active_list); 12214 init_event_group(event); 12215 INIT_LIST_HEAD(&event->rb_entry); 12216 INIT_LIST_HEAD(&event->active_entry); 12217 INIT_LIST_HEAD(&event->addr_filters.list); 12218 INIT_HLIST_NODE(&event->hlist_entry); 12219 12220 12221 init_waitqueue_head(&event->waitq); 12222 init_irq_work(&event->pending_irq, perf_pending_irq); 12223 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12224 init_task_work(&event->pending_task, perf_pending_task); 12225 rcuwait_init(&event->pending_work_wait); 12226 12227 mutex_init(&event->mmap_mutex); 12228 raw_spin_lock_init(&event->addr_filters.lock); 12229 12230 atomic_long_set(&event->refcount, 1); 12231 event->cpu = cpu; 12232 event->attr = *attr; 12233 event->group_leader = group_leader; 12234 event->pmu = NULL; 12235 event->oncpu = -1; 12236 12237 event->parent = parent_event; 12238 12239 event->ns = get_pid_ns(task_active_pid_ns(current)); 12240 event->id = atomic64_inc_return(&perf_event_id); 12241 12242 event->state = PERF_EVENT_STATE_INACTIVE; 12243 12244 if (parent_event) 12245 event->event_caps = parent_event->event_caps; 12246 12247 if (task) { 12248 event->attach_state = PERF_ATTACH_TASK; 12249 /* 12250 * XXX pmu::event_init needs to know what task to account to 12251 * and we cannot use the ctx information because we need the 12252 * pmu before we get a ctx. 12253 */ 12254 event->hw.target = get_task_struct(task); 12255 } 12256 12257 event->clock = &local_clock; 12258 if (parent_event) 12259 event->clock = parent_event->clock; 12260 12261 if (!overflow_handler && parent_event) { 12262 overflow_handler = parent_event->overflow_handler; 12263 context = parent_event->overflow_handler_context; 12264 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12265 if (parent_event->prog) { 12266 struct bpf_prog *prog = parent_event->prog; 12267 12268 bpf_prog_inc(prog); 12269 event->prog = prog; 12270 } 12271 #endif 12272 } 12273 12274 if (overflow_handler) { 12275 event->overflow_handler = overflow_handler; 12276 event->overflow_handler_context = context; 12277 } else if (is_write_backward(event)){ 12278 event->overflow_handler = perf_event_output_backward; 12279 event->overflow_handler_context = NULL; 12280 } else { 12281 event->overflow_handler = perf_event_output_forward; 12282 event->overflow_handler_context = NULL; 12283 } 12284 12285 perf_event__state_init(event); 12286 12287 pmu = NULL; 12288 12289 hwc = &event->hw; 12290 hwc->sample_period = attr->sample_period; 12291 if (attr->freq && attr->sample_freq) 12292 hwc->sample_period = 1; 12293 hwc->last_period = hwc->sample_period; 12294 12295 local64_set(&hwc->period_left, hwc->sample_period); 12296 12297 /* 12298 * We do not support PERF_SAMPLE_READ on inherited events unless 12299 * PERF_SAMPLE_TID is also selected, which allows inherited events to 12300 * collect per-thread samples. 12301 * See perf_output_read(). 12302 */ 12303 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) 12304 goto err_ns; 12305 12306 if (!has_branch_stack(event)) 12307 event->attr.branch_sample_type = 0; 12308 12309 pmu = perf_init_event(event); 12310 if (IS_ERR(pmu)) { 12311 err = PTR_ERR(pmu); 12312 goto err_ns; 12313 } 12314 12315 /* 12316 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12317 * events (they don't make sense as the cgroup will be different 12318 * on other CPUs in the uncore mask). 12319 */ 12320 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12321 err = -EINVAL; 12322 goto err_pmu; 12323 } 12324 12325 if (event->attr.aux_output && 12326 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || 12327 event->attr.aux_pause || event->attr.aux_resume)) { 12328 err = -EOPNOTSUPP; 12329 goto err_pmu; 12330 } 12331 12332 if (event->attr.aux_pause && event->attr.aux_resume) { 12333 err = -EINVAL; 12334 goto err_pmu; 12335 } 12336 12337 if (event->attr.aux_start_paused) { 12338 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) { 12339 err = -EOPNOTSUPP; 12340 goto err_pmu; 12341 } 12342 event->hw.aux_paused = 1; 12343 } 12344 12345 if (cgroup_fd != -1) { 12346 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12347 if (err) 12348 goto err_pmu; 12349 } 12350 12351 err = exclusive_event_init(event); 12352 if (err) 12353 goto err_pmu; 12354 12355 if (has_addr_filter(event)) { 12356 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12357 sizeof(struct perf_addr_filter_range), 12358 GFP_KERNEL); 12359 if (!event->addr_filter_ranges) { 12360 err = -ENOMEM; 12361 goto err_per_task; 12362 } 12363 12364 /* 12365 * Clone the parent's vma offsets: they are valid until exec() 12366 * even if the mm is not shared with the parent. 12367 */ 12368 if (event->parent) { 12369 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12370 12371 raw_spin_lock_irq(&ifh->lock); 12372 memcpy(event->addr_filter_ranges, 12373 event->parent->addr_filter_ranges, 12374 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12375 raw_spin_unlock_irq(&ifh->lock); 12376 } 12377 12378 /* force hw sync on the address filters */ 12379 event->addr_filters_gen = 1; 12380 } 12381 12382 if (!event->parent) { 12383 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12384 err = get_callchain_buffers(attr->sample_max_stack); 12385 if (err) 12386 goto err_addr_filters; 12387 } 12388 } 12389 12390 err = security_perf_event_alloc(event); 12391 if (err) 12392 goto err_callchain_buffer; 12393 12394 /* symmetric to unaccount_event() in _free_event() */ 12395 account_event(event); 12396 12397 return event; 12398 12399 err_callchain_buffer: 12400 if (!event->parent) { 12401 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12402 put_callchain_buffers(); 12403 } 12404 err_addr_filters: 12405 kfree(event->addr_filter_ranges); 12406 12407 err_per_task: 12408 exclusive_event_destroy(event); 12409 12410 err_pmu: 12411 if (is_cgroup_event(event)) 12412 perf_detach_cgroup(event); 12413 if (event->destroy) 12414 event->destroy(event); 12415 module_put(pmu->module); 12416 err_ns: 12417 if (event->hw.target) 12418 put_task_struct(event->hw.target); 12419 call_rcu(&event->rcu_head, free_event_rcu); 12420 12421 return ERR_PTR(err); 12422 } 12423 12424 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12425 struct perf_event_attr *attr) 12426 { 12427 u32 size; 12428 int ret; 12429 12430 /* Zero the full structure, so that a short copy will be nice. */ 12431 memset(attr, 0, sizeof(*attr)); 12432 12433 ret = get_user(size, &uattr->size); 12434 if (ret) 12435 return ret; 12436 12437 /* ABI compatibility quirk: */ 12438 if (!size) 12439 size = PERF_ATTR_SIZE_VER0; 12440 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12441 goto err_size; 12442 12443 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12444 if (ret) { 12445 if (ret == -E2BIG) 12446 goto err_size; 12447 return ret; 12448 } 12449 12450 attr->size = size; 12451 12452 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12453 return -EINVAL; 12454 12455 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12456 return -EINVAL; 12457 12458 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12459 return -EINVAL; 12460 12461 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12462 u64 mask = attr->branch_sample_type; 12463 12464 /* only using defined bits */ 12465 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12466 return -EINVAL; 12467 12468 /* at least one branch bit must be set */ 12469 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12470 return -EINVAL; 12471 12472 /* propagate priv level, when not set for branch */ 12473 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12474 12475 /* exclude_kernel checked on syscall entry */ 12476 if (!attr->exclude_kernel) 12477 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12478 12479 if (!attr->exclude_user) 12480 mask |= PERF_SAMPLE_BRANCH_USER; 12481 12482 if (!attr->exclude_hv) 12483 mask |= PERF_SAMPLE_BRANCH_HV; 12484 /* 12485 * adjust user setting (for HW filter setup) 12486 */ 12487 attr->branch_sample_type = mask; 12488 } 12489 /* privileged levels capture (kernel, hv): check permissions */ 12490 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12491 ret = perf_allow_kernel(attr); 12492 if (ret) 12493 return ret; 12494 } 12495 } 12496 12497 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12498 ret = perf_reg_validate(attr->sample_regs_user); 12499 if (ret) 12500 return ret; 12501 } 12502 12503 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12504 if (!arch_perf_have_user_stack_dump()) 12505 return -ENOSYS; 12506 12507 /* 12508 * We have __u32 type for the size, but so far 12509 * we can only use __u16 as maximum due to the 12510 * __u16 sample size limit. 12511 */ 12512 if (attr->sample_stack_user >= USHRT_MAX) 12513 return -EINVAL; 12514 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12515 return -EINVAL; 12516 } 12517 12518 if (!attr->sample_max_stack) 12519 attr->sample_max_stack = sysctl_perf_event_max_stack; 12520 12521 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12522 ret = perf_reg_validate(attr->sample_regs_intr); 12523 12524 #ifndef CONFIG_CGROUP_PERF 12525 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12526 return -EINVAL; 12527 #endif 12528 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12529 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12530 return -EINVAL; 12531 12532 if (!attr->inherit && attr->inherit_thread) 12533 return -EINVAL; 12534 12535 if (attr->remove_on_exec && attr->enable_on_exec) 12536 return -EINVAL; 12537 12538 if (attr->sigtrap && !attr->remove_on_exec) 12539 return -EINVAL; 12540 12541 out: 12542 return ret; 12543 12544 err_size: 12545 put_user(sizeof(*attr), &uattr->size); 12546 ret = -E2BIG; 12547 goto out; 12548 } 12549 12550 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12551 { 12552 if (b < a) 12553 swap(a, b); 12554 12555 mutex_lock(a); 12556 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12557 } 12558 12559 static int 12560 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12561 { 12562 struct perf_buffer *rb = NULL; 12563 int ret = -EINVAL; 12564 12565 if (!output_event) { 12566 mutex_lock(&event->mmap_mutex); 12567 goto set; 12568 } 12569 12570 /* don't allow circular references */ 12571 if (event == output_event) 12572 goto out; 12573 12574 /* 12575 * Don't allow cross-cpu buffers 12576 */ 12577 if (output_event->cpu != event->cpu) 12578 goto out; 12579 12580 /* 12581 * If its not a per-cpu rb, it must be the same task. 12582 */ 12583 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12584 goto out; 12585 12586 /* 12587 * Mixing clocks in the same buffer is trouble you don't need. 12588 */ 12589 if (output_event->clock != event->clock) 12590 goto out; 12591 12592 /* 12593 * Either writing ring buffer from beginning or from end. 12594 * Mixing is not allowed. 12595 */ 12596 if (is_write_backward(output_event) != is_write_backward(event)) 12597 goto out; 12598 12599 /* 12600 * If both events generate aux data, they must be on the same PMU 12601 */ 12602 if (has_aux(event) && has_aux(output_event) && 12603 event->pmu != output_event->pmu) 12604 goto out; 12605 12606 /* 12607 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12608 * output_event is already on rb->event_list, and the list iteration 12609 * restarts after every removal, it is guaranteed this new event is 12610 * observed *OR* if output_event is already removed, it's guaranteed we 12611 * observe !rb->mmap_count. 12612 */ 12613 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12614 set: 12615 /* Can't redirect output if we've got an active mmap() */ 12616 if (atomic_read(&event->mmap_count)) 12617 goto unlock; 12618 12619 if (output_event) { 12620 /* get the rb we want to redirect to */ 12621 rb = ring_buffer_get(output_event); 12622 if (!rb) 12623 goto unlock; 12624 12625 /* did we race against perf_mmap_close() */ 12626 if (!atomic_read(&rb->mmap_count)) { 12627 ring_buffer_put(rb); 12628 goto unlock; 12629 } 12630 } 12631 12632 ring_buffer_attach(event, rb); 12633 12634 ret = 0; 12635 unlock: 12636 mutex_unlock(&event->mmap_mutex); 12637 if (output_event) 12638 mutex_unlock(&output_event->mmap_mutex); 12639 12640 out: 12641 return ret; 12642 } 12643 12644 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12645 { 12646 bool nmi_safe = false; 12647 12648 switch (clk_id) { 12649 case CLOCK_MONOTONIC: 12650 event->clock = &ktime_get_mono_fast_ns; 12651 nmi_safe = true; 12652 break; 12653 12654 case CLOCK_MONOTONIC_RAW: 12655 event->clock = &ktime_get_raw_fast_ns; 12656 nmi_safe = true; 12657 break; 12658 12659 case CLOCK_REALTIME: 12660 event->clock = &ktime_get_real_ns; 12661 break; 12662 12663 case CLOCK_BOOTTIME: 12664 event->clock = &ktime_get_boottime_ns; 12665 break; 12666 12667 case CLOCK_TAI: 12668 event->clock = &ktime_get_clocktai_ns; 12669 break; 12670 12671 default: 12672 return -EINVAL; 12673 } 12674 12675 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12676 return -EINVAL; 12677 12678 return 0; 12679 } 12680 12681 static bool 12682 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12683 { 12684 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12685 bool is_capable = perfmon_capable(); 12686 12687 if (attr->sigtrap) { 12688 /* 12689 * perf_event_attr::sigtrap sends signals to the other task. 12690 * Require the current task to also have CAP_KILL. 12691 */ 12692 rcu_read_lock(); 12693 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12694 rcu_read_unlock(); 12695 12696 /* 12697 * If the required capabilities aren't available, checks for 12698 * ptrace permissions: upgrade to ATTACH, since sending signals 12699 * can effectively change the target task. 12700 */ 12701 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12702 } 12703 12704 /* 12705 * Preserve ptrace permission check for backwards compatibility. The 12706 * ptrace check also includes checks that the current task and other 12707 * task have matching uids, and is therefore not done here explicitly. 12708 */ 12709 return is_capable || ptrace_may_access(task, ptrace_mode); 12710 } 12711 12712 /** 12713 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12714 * 12715 * @attr_uptr: event_id type attributes for monitoring/sampling 12716 * @pid: target pid 12717 * @cpu: target cpu 12718 * @group_fd: group leader event fd 12719 * @flags: perf event open flags 12720 */ 12721 SYSCALL_DEFINE5(perf_event_open, 12722 struct perf_event_attr __user *, attr_uptr, 12723 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12724 { 12725 struct perf_event *group_leader = NULL, *output_event = NULL; 12726 struct perf_event_pmu_context *pmu_ctx; 12727 struct perf_event *event, *sibling; 12728 struct perf_event_attr attr; 12729 struct perf_event_context *ctx; 12730 struct file *event_file = NULL; 12731 struct task_struct *task = NULL; 12732 struct pmu *pmu; 12733 int event_fd; 12734 int move_group = 0; 12735 int err; 12736 int f_flags = O_RDWR; 12737 int cgroup_fd = -1; 12738 12739 /* for future expandability... */ 12740 if (flags & ~PERF_FLAG_ALL) 12741 return -EINVAL; 12742 12743 err = perf_copy_attr(attr_uptr, &attr); 12744 if (err) 12745 return err; 12746 12747 /* Do we allow access to perf_event_open(2) ? */ 12748 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12749 if (err) 12750 return err; 12751 12752 if (!attr.exclude_kernel) { 12753 err = perf_allow_kernel(&attr); 12754 if (err) 12755 return err; 12756 } 12757 12758 if (attr.namespaces) { 12759 if (!perfmon_capable()) 12760 return -EACCES; 12761 } 12762 12763 if (attr.freq) { 12764 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12765 return -EINVAL; 12766 } else { 12767 if (attr.sample_period & (1ULL << 63)) 12768 return -EINVAL; 12769 } 12770 12771 /* Only privileged users can get physical addresses */ 12772 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12773 err = perf_allow_kernel(&attr); 12774 if (err) 12775 return err; 12776 } 12777 12778 /* REGS_INTR can leak data, lockdown must prevent this */ 12779 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12780 err = security_locked_down(LOCKDOWN_PERF); 12781 if (err) 12782 return err; 12783 } 12784 12785 /* 12786 * In cgroup mode, the pid argument is used to pass the fd 12787 * opened to the cgroup directory in cgroupfs. The cpu argument 12788 * designates the cpu on which to monitor threads from that 12789 * cgroup. 12790 */ 12791 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12792 return -EINVAL; 12793 12794 if (flags & PERF_FLAG_FD_CLOEXEC) 12795 f_flags |= O_CLOEXEC; 12796 12797 event_fd = get_unused_fd_flags(f_flags); 12798 if (event_fd < 0) 12799 return event_fd; 12800 12801 CLASS(fd, group)(group_fd); // group_fd == -1 => empty 12802 if (group_fd != -1) { 12803 if (!is_perf_file(group)) { 12804 err = -EBADF; 12805 goto err_fd; 12806 } 12807 group_leader = fd_file(group)->private_data; 12808 if (flags & PERF_FLAG_FD_OUTPUT) 12809 output_event = group_leader; 12810 if (flags & PERF_FLAG_FD_NO_GROUP) 12811 group_leader = NULL; 12812 } 12813 12814 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12815 task = find_lively_task_by_vpid(pid); 12816 if (IS_ERR(task)) { 12817 err = PTR_ERR(task); 12818 goto err_fd; 12819 } 12820 } 12821 12822 if (task && group_leader && 12823 group_leader->attr.inherit != attr.inherit) { 12824 err = -EINVAL; 12825 goto err_task; 12826 } 12827 12828 if (flags & PERF_FLAG_PID_CGROUP) 12829 cgroup_fd = pid; 12830 12831 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12832 NULL, NULL, cgroup_fd); 12833 if (IS_ERR(event)) { 12834 err = PTR_ERR(event); 12835 goto err_task; 12836 } 12837 12838 if (is_sampling_event(event)) { 12839 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12840 err = -EOPNOTSUPP; 12841 goto err_alloc; 12842 } 12843 } 12844 12845 /* 12846 * Special case software events and allow them to be part of 12847 * any hardware group. 12848 */ 12849 pmu = event->pmu; 12850 12851 if (attr.use_clockid) { 12852 err = perf_event_set_clock(event, attr.clockid); 12853 if (err) 12854 goto err_alloc; 12855 } 12856 12857 if (pmu->task_ctx_nr == perf_sw_context) 12858 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12859 12860 if (task) { 12861 err = down_read_interruptible(&task->signal->exec_update_lock); 12862 if (err) 12863 goto err_alloc; 12864 12865 /* 12866 * We must hold exec_update_lock across this and any potential 12867 * perf_install_in_context() call for this new event to 12868 * serialize against exec() altering our credentials (and the 12869 * perf_event_exit_task() that could imply). 12870 */ 12871 err = -EACCES; 12872 if (!perf_check_permission(&attr, task)) 12873 goto err_cred; 12874 } 12875 12876 /* 12877 * Get the target context (task or percpu): 12878 */ 12879 ctx = find_get_context(task, event); 12880 if (IS_ERR(ctx)) { 12881 err = PTR_ERR(ctx); 12882 goto err_cred; 12883 } 12884 12885 mutex_lock(&ctx->mutex); 12886 12887 if (ctx->task == TASK_TOMBSTONE) { 12888 err = -ESRCH; 12889 goto err_locked; 12890 } 12891 12892 if (!task) { 12893 /* 12894 * Check if the @cpu we're creating an event for is online. 12895 * 12896 * We use the perf_cpu_context::ctx::mutex to serialize against 12897 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12898 */ 12899 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12900 12901 if (!cpuctx->online) { 12902 err = -ENODEV; 12903 goto err_locked; 12904 } 12905 } 12906 12907 if (group_leader) { 12908 err = -EINVAL; 12909 12910 /* 12911 * Do not allow a recursive hierarchy (this new sibling 12912 * becoming part of another group-sibling): 12913 */ 12914 if (group_leader->group_leader != group_leader) 12915 goto err_locked; 12916 12917 /* All events in a group should have the same clock */ 12918 if (group_leader->clock != event->clock) 12919 goto err_locked; 12920 12921 /* 12922 * Make sure we're both events for the same CPU; 12923 * grouping events for different CPUs is broken; since 12924 * you can never concurrently schedule them anyhow. 12925 */ 12926 if (group_leader->cpu != event->cpu) 12927 goto err_locked; 12928 12929 /* 12930 * Make sure we're both on the same context; either task or cpu. 12931 */ 12932 if (group_leader->ctx != ctx) 12933 goto err_locked; 12934 12935 /* 12936 * Only a group leader can be exclusive or pinned 12937 */ 12938 if (attr.exclusive || attr.pinned) 12939 goto err_locked; 12940 12941 if (is_software_event(event) && 12942 !in_software_context(group_leader)) { 12943 /* 12944 * If the event is a sw event, but the group_leader 12945 * is on hw context. 12946 * 12947 * Allow the addition of software events to hw 12948 * groups, this is safe because software events 12949 * never fail to schedule. 12950 * 12951 * Note the comment that goes with struct 12952 * perf_event_pmu_context. 12953 */ 12954 pmu = group_leader->pmu_ctx->pmu; 12955 } else if (!is_software_event(event)) { 12956 if (is_software_event(group_leader) && 12957 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12958 /* 12959 * In case the group is a pure software group, and we 12960 * try to add a hardware event, move the whole group to 12961 * the hardware context. 12962 */ 12963 move_group = 1; 12964 } 12965 12966 /* Don't allow group of multiple hw events from different pmus */ 12967 if (!in_software_context(group_leader) && 12968 group_leader->pmu_ctx->pmu != pmu) 12969 goto err_locked; 12970 } 12971 } 12972 12973 /* 12974 * Now that we're certain of the pmu; find the pmu_ctx. 12975 */ 12976 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12977 if (IS_ERR(pmu_ctx)) { 12978 err = PTR_ERR(pmu_ctx); 12979 goto err_locked; 12980 } 12981 event->pmu_ctx = pmu_ctx; 12982 12983 if (output_event) { 12984 err = perf_event_set_output(event, output_event); 12985 if (err) 12986 goto err_context; 12987 } 12988 12989 if (!perf_event_validate_size(event)) { 12990 err = -E2BIG; 12991 goto err_context; 12992 } 12993 12994 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12995 err = -EINVAL; 12996 goto err_context; 12997 } 12998 12999 /* 13000 * Must be under the same ctx::mutex as perf_install_in_context(), 13001 * because we need to serialize with concurrent event creation. 13002 */ 13003 if (!exclusive_event_installable(event, ctx)) { 13004 err = -EBUSY; 13005 goto err_context; 13006 } 13007 13008 WARN_ON_ONCE(ctx->parent_ctx); 13009 13010 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 13011 if (IS_ERR(event_file)) { 13012 err = PTR_ERR(event_file); 13013 event_file = NULL; 13014 goto err_context; 13015 } 13016 13017 /* 13018 * This is the point on no return; we cannot fail hereafter. This is 13019 * where we start modifying current state. 13020 */ 13021 13022 if (move_group) { 13023 perf_remove_from_context(group_leader, 0); 13024 put_pmu_ctx(group_leader->pmu_ctx); 13025 13026 for_each_sibling_event(sibling, group_leader) { 13027 perf_remove_from_context(sibling, 0); 13028 put_pmu_ctx(sibling->pmu_ctx); 13029 } 13030 13031 /* 13032 * Install the group siblings before the group leader. 13033 * 13034 * Because a group leader will try and install the entire group 13035 * (through the sibling list, which is still in-tact), we can 13036 * end up with siblings installed in the wrong context. 13037 * 13038 * By installing siblings first we NO-OP because they're not 13039 * reachable through the group lists. 13040 */ 13041 for_each_sibling_event(sibling, group_leader) { 13042 sibling->pmu_ctx = pmu_ctx; 13043 get_pmu_ctx(pmu_ctx); 13044 perf_event__state_init(sibling); 13045 perf_install_in_context(ctx, sibling, sibling->cpu); 13046 } 13047 13048 /* 13049 * Removing from the context ends up with disabled 13050 * event. What we want here is event in the initial 13051 * startup state, ready to be add into new context. 13052 */ 13053 group_leader->pmu_ctx = pmu_ctx; 13054 get_pmu_ctx(pmu_ctx); 13055 perf_event__state_init(group_leader); 13056 perf_install_in_context(ctx, group_leader, group_leader->cpu); 13057 } 13058 13059 /* 13060 * Precalculate sample_data sizes; do while holding ctx::mutex such 13061 * that we're serialized against further additions and before 13062 * perf_install_in_context() which is the point the event is active and 13063 * can use these values. 13064 */ 13065 perf_event__header_size(event); 13066 perf_event__id_header_size(event); 13067 13068 event->owner = current; 13069 13070 perf_install_in_context(ctx, event, event->cpu); 13071 perf_unpin_context(ctx); 13072 13073 mutex_unlock(&ctx->mutex); 13074 13075 if (task) { 13076 up_read(&task->signal->exec_update_lock); 13077 put_task_struct(task); 13078 } 13079 13080 mutex_lock(¤t->perf_event_mutex); 13081 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 13082 mutex_unlock(¤t->perf_event_mutex); 13083 13084 /* 13085 * File reference in group guarantees that group_leader has been 13086 * kept alive until we place the new event on the sibling_list. 13087 * This ensures destruction of the group leader will find 13088 * the pointer to itself in perf_group_detach(). 13089 */ 13090 fd_install(event_fd, event_file); 13091 return event_fd; 13092 13093 err_context: 13094 put_pmu_ctx(event->pmu_ctx); 13095 event->pmu_ctx = NULL; /* _free_event() */ 13096 err_locked: 13097 mutex_unlock(&ctx->mutex); 13098 perf_unpin_context(ctx); 13099 put_ctx(ctx); 13100 err_cred: 13101 if (task) 13102 up_read(&task->signal->exec_update_lock); 13103 err_alloc: 13104 free_event(event); 13105 err_task: 13106 if (task) 13107 put_task_struct(task); 13108 err_fd: 13109 put_unused_fd(event_fd); 13110 return err; 13111 } 13112 13113 /** 13114 * perf_event_create_kernel_counter 13115 * 13116 * @attr: attributes of the counter to create 13117 * @cpu: cpu in which the counter is bound 13118 * @task: task to profile (NULL for percpu) 13119 * @overflow_handler: callback to trigger when we hit the event 13120 * @context: context data could be used in overflow_handler callback 13121 */ 13122 struct perf_event * 13123 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 13124 struct task_struct *task, 13125 perf_overflow_handler_t overflow_handler, 13126 void *context) 13127 { 13128 struct perf_event_pmu_context *pmu_ctx; 13129 struct perf_event_context *ctx; 13130 struct perf_event *event; 13131 struct pmu *pmu; 13132 int err; 13133 13134 /* 13135 * Grouping is not supported for kernel events, neither is 'AUX', 13136 * make sure the caller's intentions are adjusted. 13137 */ 13138 if (attr->aux_output || attr->aux_action) 13139 return ERR_PTR(-EINVAL); 13140 13141 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 13142 overflow_handler, context, -1); 13143 if (IS_ERR(event)) { 13144 err = PTR_ERR(event); 13145 goto err; 13146 } 13147 13148 /* Mark owner so we could distinguish it from user events. */ 13149 event->owner = TASK_TOMBSTONE; 13150 pmu = event->pmu; 13151 13152 if (pmu->task_ctx_nr == perf_sw_context) 13153 event->event_caps |= PERF_EV_CAP_SOFTWARE; 13154 13155 /* 13156 * Get the target context (task or percpu): 13157 */ 13158 ctx = find_get_context(task, event); 13159 if (IS_ERR(ctx)) { 13160 err = PTR_ERR(ctx); 13161 goto err_alloc; 13162 } 13163 13164 WARN_ON_ONCE(ctx->parent_ctx); 13165 mutex_lock(&ctx->mutex); 13166 if (ctx->task == TASK_TOMBSTONE) { 13167 err = -ESRCH; 13168 goto err_unlock; 13169 } 13170 13171 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 13172 if (IS_ERR(pmu_ctx)) { 13173 err = PTR_ERR(pmu_ctx); 13174 goto err_unlock; 13175 } 13176 event->pmu_ctx = pmu_ctx; 13177 13178 if (!task) { 13179 /* 13180 * Check if the @cpu we're creating an event for is online. 13181 * 13182 * We use the perf_cpu_context::ctx::mutex to serialize against 13183 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 13184 */ 13185 struct perf_cpu_context *cpuctx = 13186 container_of(ctx, struct perf_cpu_context, ctx); 13187 if (!cpuctx->online) { 13188 err = -ENODEV; 13189 goto err_pmu_ctx; 13190 } 13191 } 13192 13193 if (!exclusive_event_installable(event, ctx)) { 13194 err = -EBUSY; 13195 goto err_pmu_ctx; 13196 } 13197 13198 perf_install_in_context(ctx, event, event->cpu); 13199 perf_unpin_context(ctx); 13200 mutex_unlock(&ctx->mutex); 13201 13202 return event; 13203 13204 err_pmu_ctx: 13205 put_pmu_ctx(pmu_ctx); 13206 event->pmu_ctx = NULL; /* _free_event() */ 13207 err_unlock: 13208 mutex_unlock(&ctx->mutex); 13209 perf_unpin_context(ctx); 13210 put_ctx(ctx); 13211 err_alloc: 13212 free_event(event); 13213 err: 13214 return ERR_PTR(err); 13215 } 13216 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 13217 13218 static void __perf_pmu_remove(struct perf_event_context *ctx, 13219 int cpu, struct pmu *pmu, 13220 struct perf_event_groups *groups, 13221 struct list_head *events) 13222 { 13223 struct perf_event *event, *sibling; 13224 13225 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 13226 perf_remove_from_context(event, 0); 13227 put_pmu_ctx(event->pmu_ctx); 13228 list_add(&event->migrate_entry, events); 13229 13230 for_each_sibling_event(sibling, event) { 13231 perf_remove_from_context(sibling, 0); 13232 put_pmu_ctx(sibling->pmu_ctx); 13233 list_add(&sibling->migrate_entry, events); 13234 } 13235 } 13236 } 13237 13238 static void __perf_pmu_install_event(struct pmu *pmu, 13239 struct perf_event_context *ctx, 13240 int cpu, struct perf_event *event) 13241 { 13242 struct perf_event_pmu_context *epc; 13243 struct perf_event_context *old_ctx = event->ctx; 13244 13245 get_ctx(ctx); /* normally find_get_context() */ 13246 13247 event->cpu = cpu; 13248 epc = find_get_pmu_context(pmu, ctx, event); 13249 event->pmu_ctx = epc; 13250 13251 if (event->state >= PERF_EVENT_STATE_OFF) 13252 event->state = PERF_EVENT_STATE_INACTIVE; 13253 perf_install_in_context(ctx, event, cpu); 13254 13255 /* 13256 * Now that event->ctx is updated and visible, put the old ctx. 13257 */ 13258 put_ctx(old_ctx); 13259 } 13260 13261 static void __perf_pmu_install(struct perf_event_context *ctx, 13262 int cpu, struct pmu *pmu, struct list_head *events) 13263 { 13264 struct perf_event *event, *tmp; 13265 13266 /* 13267 * Re-instate events in 2 passes. 13268 * 13269 * Skip over group leaders and only install siblings on this first 13270 * pass, siblings will not get enabled without a leader, however a 13271 * leader will enable its siblings, even if those are still on the old 13272 * context. 13273 */ 13274 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13275 if (event->group_leader == event) 13276 continue; 13277 13278 list_del(&event->migrate_entry); 13279 __perf_pmu_install_event(pmu, ctx, cpu, event); 13280 } 13281 13282 /* 13283 * Once all the siblings are setup properly, install the group leaders 13284 * to make it go. 13285 */ 13286 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13287 list_del(&event->migrate_entry); 13288 __perf_pmu_install_event(pmu, ctx, cpu, event); 13289 } 13290 } 13291 13292 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13293 { 13294 struct perf_event_context *src_ctx, *dst_ctx; 13295 LIST_HEAD(events); 13296 13297 /* 13298 * Since per-cpu context is persistent, no need to grab an extra 13299 * reference. 13300 */ 13301 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13302 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13303 13304 /* 13305 * See perf_event_ctx_lock() for comments on the details 13306 * of swizzling perf_event::ctx. 13307 */ 13308 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13309 13310 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13311 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13312 13313 if (!list_empty(&events)) { 13314 /* 13315 * Wait for the events to quiesce before re-instating them. 13316 */ 13317 synchronize_rcu(); 13318 13319 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13320 } 13321 13322 mutex_unlock(&dst_ctx->mutex); 13323 mutex_unlock(&src_ctx->mutex); 13324 } 13325 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13326 13327 static void sync_child_event(struct perf_event *child_event) 13328 { 13329 struct perf_event *parent_event = child_event->parent; 13330 u64 child_val; 13331 13332 if (child_event->attr.inherit_stat) { 13333 struct task_struct *task = child_event->ctx->task; 13334 13335 if (task && task != TASK_TOMBSTONE) 13336 perf_event_read_event(child_event, task); 13337 } 13338 13339 child_val = perf_event_count(child_event, false); 13340 13341 /* 13342 * Add back the child's count to the parent's count: 13343 */ 13344 atomic64_add(child_val, &parent_event->child_count); 13345 atomic64_add(child_event->total_time_enabled, 13346 &parent_event->child_total_time_enabled); 13347 atomic64_add(child_event->total_time_running, 13348 &parent_event->child_total_time_running); 13349 } 13350 13351 static void 13352 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13353 { 13354 struct perf_event *parent_event = event->parent; 13355 unsigned long detach_flags = 0; 13356 13357 if (parent_event) { 13358 /* 13359 * Do not destroy the 'original' grouping; because of the 13360 * context switch optimization the original events could've 13361 * ended up in a random child task. 13362 * 13363 * If we were to destroy the original group, all group related 13364 * operations would cease to function properly after this 13365 * random child dies. 13366 * 13367 * Do destroy all inherited groups, we don't care about those 13368 * and being thorough is better. 13369 */ 13370 detach_flags = DETACH_GROUP | DETACH_CHILD; 13371 mutex_lock(&parent_event->child_mutex); 13372 } 13373 13374 perf_remove_from_context(event, detach_flags); 13375 13376 raw_spin_lock_irq(&ctx->lock); 13377 if (event->state > PERF_EVENT_STATE_EXIT) 13378 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13379 raw_spin_unlock_irq(&ctx->lock); 13380 13381 /* 13382 * Child events can be freed. 13383 */ 13384 if (parent_event) { 13385 mutex_unlock(&parent_event->child_mutex); 13386 /* 13387 * Kick perf_poll() for is_event_hup(); 13388 */ 13389 perf_event_wakeup(parent_event); 13390 free_event(event); 13391 put_event(parent_event); 13392 return; 13393 } 13394 13395 /* 13396 * Parent events are governed by their filedesc, retain them. 13397 */ 13398 perf_event_wakeup(event); 13399 } 13400 13401 static void perf_event_exit_task_context(struct task_struct *child) 13402 { 13403 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13404 struct perf_event *child_event, *next; 13405 13406 WARN_ON_ONCE(child != current); 13407 13408 child_ctx = perf_pin_task_context(child); 13409 if (!child_ctx) 13410 return; 13411 13412 /* 13413 * In order to reduce the amount of tricky in ctx tear-down, we hold 13414 * ctx::mutex over the entire thing. This serializes against almost 13415 * everything that wants to access the ctx. 13416 * 13417 * The exception is sys_perf_event_open() / 13418 * perf_event_create_kernel_count() which does find_get_context() 13419 * without ctx::mutex (it cannot because of the move_group double mutex 13420 * lock thing). See the comments in perf_install_in_context(). 13421 */ 13422 mutex_lock(&child_ctx->mutex); 13423 13424 /* 13425 * In a single ctx::lock section, de-schedule the events and detach the 13426 * context from the task such that we cannot ever get it scheduled back 13427 * in. 13428 */ 13429 raw_spin_lock_irq(&child_ctx->lock); 13430 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL); 13431 13432 /* 13433 * Now that the context is inactive, destroy the task <-> ctx relation 13434 * and mark the context dead. 13435 */ 13436 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13437 put_ctx(child_ctx); /* cannot be last */ 13438 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13439 put_task_struct(current); /* cannot be last */ 13440 13441 clone_ctx = unclone_ctx(child_ctx); 13442 raw_spin_unlock_irq(&child_ctx->lock); 13443 13444 if (clone_ctx) 13445 put_ctx(clone_ctx); 13446 13447 /* 13448 * Report the task dead after unscheduling the events so that we 13449 * won't get any samples after PERF_RECORD_EXIT. We can however still 13450 * get a few PERF_RECORD_READ events. 13451 */ 13452 perf_event_task(child, child_ctx, 0); 13453 13454 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13455 perf_event_exit_event(child_event, child_ctx); 13456 13457 mutex_unlock(&child_ctx->mutex); 13458 13459 put_ctx(child_ctx); 13460 } 13461 13462 /* 13463 * When a child task exits, feed back event values to parent events. 13464 * 13465 * Can be called with exec_update_lock held when called from 13466 * setup_new_exec(). 13467 */ 13468 void perf_event_exit_task(struct task_struct *child) 13469 { 13470 struct perf_event *event, *tmp; 13471 13472 mutex_lock(&child->perf_event_mutex); 13473 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13474 owner_entry) { 13475 list_del_init(&event->owner_entry); 13476 13477 /* 13478 * Ensure the list deletion is visible before we clear 13479 * the owner, closes a race against perf_release() where 13480 * we need to serialize on the owner->perf_event_mutex. 13481 */ 13482 smp_store_release(&event->owner, NULL); 13483 } 13484 mutex_unlock(&child->perf_event_mutex); 13485 13486 perf_event_exit_task_context(child); 13487 13488 /* 13489 * The perf_event_exit_task_context calls perf_event_task 13490 * with child's task_ctx, which generates EXIT events for 13491 * child contexts and sets child->perf_event_ctxp[] to NULL. 13492 * At this point we need to send EXIT events to cpu contexts. 13493 */ 13494 perf_event_task(child, NULL, 0); 13495 } 13496 13497 static void perf_free_event(struct perf_event *event, 13498 struct perf_event_context *ctx) 13499 { 13500 struct perf_event *parent = event->parent; 13501 13502 if (WARN_ON_ONCE(!parent)) 13503 return; 13504 13505 mutex_lock(&parent->child_mutex); 13506 list_del_init(&event->child_list); 13507 mutex_unlock(&parent->child_mutex); 13508 13509 put_event(parent); 13510 13511 raw_spin_lock_irq(&ctx->lock); 13512 perf_group_detach(event); 13513 list_del_event(event, ctx); 13514 raw_spin_unlock_irq(&ctx->lock); 13515 free_event(event); 13516 } 13517 13518 /* 13519 * Free a context as created by inheritance by perf_event_init_task() below, 13520 * used by fork() in case of fail. 13521 * 13522 * Even though the task has never lived, the context and events have been 13523 * exposed through the child_list, so we must take care tearing it all down. 13524 */ 13525 void perf_event_free_task(struct task_struct *task) 13526 { 13527 struct perf_event_context *ctx; 13528 struct perf_event *event, *tmp; 13529 13530 ctx = rcu_access_pointer(task->perf_event_ctxp); 13531 if (!ctx) 13532 return; 13533 13534 mutex_lock(&ctx->mutex); 13535 raw_spin_lock_irq(&ctx->lock); 13536 /* 13537 * Destroy the task <-> ctx relation and mark the context dead. 13538 * 13539 * This is important because even though the task hasn't been 13540 * exposed yet the context has been (through child_list). 13541 */ 13542 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13543 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13544 put_task_struct(task); /* cannot be last */ 13545 raw_spin_unlock_irq(&ctx->lock); 13546 13547 13548 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13549 perf_free_event(event, ctx); 13550 13551 mutex_unlock(&ctx->mutex); 13552 13553 /* 13554 * perf_event_release_kernel() could've stolen some of our 13555 * child events and still have them on its free_list. In that 13556 * case we must wait for these events to have been freed (in 13557 * particular all their references to this task must've been 13558 * dropped). 13559 * 13560 * Without this copy_process() will unconditionally free this 13561 * task (irrespective of its reference count) and 13562 * _free_event()'s put_task_struct(event->hw.target) will be a 13563 * use-after-free. 13564 * 13565 * Wait for all events to drop their context reference. 13566 */ 13567 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13568 put_ctx(ctx); /* must be last */ 13569 } 13570 13571 void perf_event_delayed_put(struct task_struct *task) 13572 { 13573 WARN_ON_ONCE(task->perf_event_ctxp); 13574 } 13575 13576 struct file *perf_event_get(unsigned int fd) 13577 { 13578 struct file *file = fget(fd); 13579 if (!file) 13580 return ERR_PTR(-EBADF); 13581 13582 if (file->f_op != &perf_fops) { 13583 fput(file); 13584 return ERR_PTR(-EBADF); 13585 } 13586 13587 return file; 13588 } 13589 13590 const struct perf_event *perf_get_event(struct file *file) 13591 { 13592 if (file->f_op != &perf_fops) 13593 return ERR_PTR(-EINVAL); 13594 13595 return file->private_data; 13596 } 13597 13598 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13599 { 13600 if (!event) 13601 return ERR_PTR(-EINVAL); 13602 13603 return &event->attr; 13604 } 13605 13606 int perf_allow_kernel(struct perf_event_attr *attr) 13607 { 13608 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13609 return -EACCES; 13610 13611 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13612 } 13613 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13614 13615 /* 13616 * Inherit an event from parent task to child task. 13617 * 13618 * Returns: 13619 * - valid pointer on success 13620 * - NULL for orphaned events 13621 * - IS_ERR() on error 13622 */ 13623 static struct perf_event * 13624 inherit_event(struct perf_event *parent_event, 13625 struct task_struct *parent, 13626 struct perf_event_context *parent_ctx, 13627 struct task_struct *child, 13628 struct perf_event *group_leader, 13629 struct perf_event_context *child_ctx) 13630 { 13631 enum perf_event_state parent_state = parent_event->state; 13632 struct perf_event_pmu_context *pmu_ctx; 13633 struct perf_event *child_event; 13634 unsigned long flags; 13635 13636 /* 13637 * Instead of creating recursive hierarchies of events, 13638 * we link inherited events back to the original parent, 13639 * which has a filp for sure, which we use as the reference 13640 * count: 13641 */ 13642 if (parent_event->parent) 13643 parent_event = parent_event->parent; 13644 13645 child_event = perf_event_alloc(&parent_event->attr, 13646 parent_event->cpu, 13647 child, 13648 group_leader, parent_event, 13649 NULL, NULL, -1); 13650 if (IS_ERR(child_event)) 13651 return child_event; 13652 13653 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13654 if (IS_ERR(pmu_ctx)) { 13655 free_event(child_event); 13656 return ERR_CAST(pmu_ctx); 13657 } 13658 child_event->pmu_ctx = pmu_ctx; 13659 13660 /* 13661 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13662 * must be under the same lock in order to serialize against 13663 * perf_event_release_kernel(), such that either we must observe 13664 * is_orphaned_event() or they will observe us on the child_list. 13665 */ 13666 mutex_lock(&parent_event->child_mutex); 13667 if (is_orphaned_event(parent_event) || 13668 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13669 mutex_unlock(&parent_event->child_mutex); 13670 /* task_ctx_data is freed with child_ctx */ 13671 free_event(child_event); 13672 return NULL; 13673 } 13674 13675 get_ctx(child_ctx); 13676 13677 /* 13678 * Make the child state follow the state of the parent event, 13679 * not its attr.disabled bit. We hold the parent's mutex, 13680 * so we won't race with perf_event_{en, dis}able_family. 13681 */ 13682 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13683 child_event->state = PERF_EVENT_STATE_INACTIVE; 13684 else 13685 child_event->state = PERF_EVENT_STATE_OFF; 13686 13687 if (parent_event->attr.freq) { 13688 u64 sample_period = parent_event->hw.sample_period; 13689 struct hw_perf_event *hwc = &child_event->hw; 13690 13691 hwc->sample_period = sample_period; 13692 hwc->last_period = sample_period; 13693 13694 local64_set(&hwc->period_left, sample_period); 13695 } 13696 13697 child_event->ctx = child_ctx; 13698 child_event->overflow_handler = parent_event->overflow_handler; 13699 child_event->overflow_handler_context 13700 = parent_event->overflow_handler_context; 13701 13702 /* 13703 * Precalculate sample_data sizes 13704 */ 13705 perf_event__header_size(child_event); 13706 perf_event__id_header_size(child_event); 13707 13708 /* 13709 * Link it up in the child's context: 13710 */ 13711 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13712 add_event_to_ctx(child_event, child_ctx); 13713 child_event->attach_state |= PERF_ATTACH_CHILD; 13714 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13715 13716 /* 13717 * Link this into the parent event's child list 13718 */ 13719 list_add_tail(&child_event->child_list, &parent_event->child_list); 13720 mutex_unlock(&parent_event->child_mutex); 13721 13722 return child_event; 13723 } 13724 13725 /* 13726 * Inherits an event group. 13727 * 13728 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13729 * This matches with perf_event_release_kernel() removing all child events. 13730 * 13731 * Returns: 13732 * - 0 on success 13733 * - <0 on error 13734 */ 13735 static int inherit_group(struct perf_event *parent_event, 13736 struct task_struct *parent, 13737 struct perf_event_context *parent_ctx, 13738 struct task_struct *child, 13739 struct perf_event_context *child_ctx) 13740 { 13741 struct perf_event *leader; 13742 struct perf_event *sub; 13743 struct perf_event *child_ctr; 13744 13745 leader = inherit_event(parent_event, parent, parent_ctx, 13746 child, NULL, child_ctx); 13747 if (IS_ERR(leader)) 13748 return PTR_ERR(leader); 13749 /* 13750 * @leader can be NULL here because of is_orphaned_event(). In this 13751 * case inherit_event() will create individual events, similar to what 13752 * perf_group_detach() would do anyway. 13753 */ 13754 for_each_sibling_event(sub, parent_event) { 13755 child_ctr = inherit_event(sub, parent, parent_ctx, 13756 child, leader, child_ctx); 13757 if (IS_ERR(child_ctr)) 13758 return PTR_ERR(child_ctr); 13759 13760 if (sub->aux_event == parent_event && child_ctr && 13761 !perf_get_aux_event(child_ctr, leader)) 13762 return -EINVAL; 13763 } 13764 if (leader) 13765 leader->group_generation = parent_event->group_generation; 13766 return 0; 13767 } 13768 13769 /* 13770 * Creates the child task context and tries to inherit the event-group. 13771 * 13772 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13773 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13774 * consistent with perf_event_release_kernel() removing all child events. 13775 * 13776 * Returns: 13777 * - 0 on success 13778 * - <0 on error 13779 */ 13780 static int 13781 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13782 struct perf_event_context *parent_ctx, 13783 struct task_struct *child, 13784 u64 clone_flags, int *inherited_all) 13785 { 13786 struct perf_event_context *child_ctx; 13787 int ret; 13788 13789 if (!event->attr.inherit || 13790 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13791 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13792 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13793 *inherited_all = 0; 13794 return 0; 13795 } 13796 13797 child_ctx = child->perf_event_ctxp; 13798 if (!child_ctx) { 13799 /* 13800 * This is executed from the parent task context, so 13801 * inherit events that have been marked for cloning. 13802 * First allocate and initialize a context for the 13803 * child. 13804 */ 13805 child_ctx = alloc_perf_context(child); 13806 if (!child_ctx) 13807 return -ENOMEM; 13808 13809 child->perf_event_ctxp = child_ctx; 13810 } 13811 13812 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13813 if (ret) 13814 *inherited_all = 0; 13815 13816 return ret; 13817 } 13818 13819 /* 13820 * Initialize the perf_event context in task_struct 13821 */ 13822 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13823 { 13824 struct perf_event_context *child_ctx, *parent_ctx; 13825 struct perf_event_context *cloned_ctx; 13826 struct perf_event *event; 13827 struct task_struct *parent = current; 13828 int inherited_all = 1; 13829 unsigned long flags; 13830 int ret = 0; 13831 13832 if (likely(!parent->perf_event_ctxp)) 13833 return 0; 13834 13835 /* 13836 * If the parent's context is a clone, pin it so it won't get 13837 * swapped under us. 13838 */ 13839 parent_ctx = perf_pin_task_context(parent); 13840 if (!parent_ctx) 13841 return 0; 13842 13843 /* 13844 * No need to check if parent_ctx != NULL here; since we saw 13845 * it non-NULL earlier, the only reason for it to become NULL 13846 * is if we exit, and since we're currently in the middle of 13847 * a fork we can't be exiting at the same time. 13848 */ 13849 13850 /* 13851 * Lock the parent list. No need to lock the child - not PID 13852 * hashed yet and not running, so nobody can access it. 13853 */ 13854 mutex_lock(&parent_ctx->mutex); 13855 13856 /* 13857 * We dont have to disable NMIs - we are only looking at 13858 * the list, not manipulating it: 13859 */ 13860 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13861 ret = inherit_task_group(event, parent, parent_ctx, 13862 child, clone_flags, &inherited_all); 13863 if (ret) 13864 goto out_unlock; 13865 } 13866 13867 /* 13868 * We can't hold ctx->lock when iterating the ->flexible_group list due 13869 * to allocations, but we need to prevent rotation because 13870 * rotate_ctx() will change the list from interrupt context. 13871 */ 13872 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13873 parent_ctx->rotate_disable = 1; 13874 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13875 13876 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13877 ret = inherit_task_group(event, parent, parent_ctx, 13878 child, clone_flags, &inherited_all); 13879 if (ret) 13880 goto out_unlock; 13881 } 13882 13883 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13884 parent_ctx->rotate_disable = 0; 13885 13886 child_ctx = child->perf_event_ctxp; 13887 13888 if (child_ctx && inherited_all) { 13889 /* 13890 * Mark the child context as a clone of the parent 13891 * context, or of whatever the parent is a clone of. 13892 * 13893 * Note that if the parent is a clone, the holding of 13894 * parent_ctx->lock avoids it from being uncloned. 13895 */ 13896 cloned_ctx = parent_ctx->parent_ctx; 13897 if (cloned_ctx) { 13898 child_ctx->parent_ctx = cloned_ctx; 13899 child_ctx->parent_gen = parent_ctx->parent_gen; 13900 } else { 13901 child_ctx->parent_ctx = parent_ctx; 13902 child_ctx->parent_gen = parent_ctx->generation; 13903 } 13904 get_ctx(child_ctx->parent_ctx); 13905 } 13906 13907 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13908 out_unlock: 13909 mutex_unlock(&parent_ctx->mutex); 13910 13911 perf_unpin_context(parent_ctx); 13912 put_ctx(parent_ctx); 13913 13914 return ret; 13915 } 13916 13917 /* 13918 * Initialize the perf_event context in task_struct 13919 */ 13920 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13921 { 13922 int ret; 13923 13924 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13925 child->perf_event_ctxp = NULL; 13926 mutex_init(&child->perf_event_mutex); 13927 INIT_LIST_HEAD(&child->perf_event_list); 13928 13929 ret = perf_event_init_context(child, clone_flags); 13930 if (ret) { 13931 perf_event_free_task(child); 13932 return ret; 13933 } 13934 13935 return 0; 13936 } 13937 13938 static void __init perf_event_init_all_cpus(void) 13939 { 13940 struct swevent_htable *swhash; 13941 struct perf_cpu_context *cpuctx; 13942 int cpu; 13943 13944 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13945 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); 13946 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); 13947 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); 13948 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); 13949 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); 13950 13951 13952 for_each_possible_cpu(cpu) { 13953 swhash = &per_cpu(swevent_htable, cpu); 13954 mutex_init(&swhash->hlist_mutex); 13955 13956 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13957 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13958 13959 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13960 13961 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13962 __perf_event_init_context(&cpuctx->ctx); 13963 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13964 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13965 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13966 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13967 cpuctx->heap = cpuctx->heap_default; 13968 } 13969 } 13970 13971 static void perf_swevent_init_cpu(unsigned int cpu) 13972 { 13973 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13974 13975 mutex_lock(&swhash->hlist_mutex); 13976 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13977 struct swevent_hlist *hlist; 13978 13979 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13980 WARN_ON(!hlist); 13981 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13982 } 13983 mutex_unlock(&swhash->hlist_mutex); 13984 } 13985 13986 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13987 static void __perf_event_exit_context(void *__info) 13988 { 13989 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13990 struct perf_event_context *ctx = __info; 13991 struct perf_event *event; 13992 13993 raw_spin_lock(&ctx->lock); 13994 ctx_sched_out(ctx, NULL, EVENT_TIME); 13995 list_for_each_entry(event, &ctx->event_list, event_entry) 13996 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13997 raw_spin_unlock(&ctx->lock); 13998 } 13999 14000 static void perf_event_clear_cpumask(unsigned int cpu) 14001 { 14002 int target[PERF_PMU_MAX_SCOPE]; 14003 unsigned int scope; 14004 struct pmu *pmu; 14005 14006 cpumask_clear_cpu(cpu, perf_online_mask); 14007 14008 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14009 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14010 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); 14011 14012 target[scope] = -1; 14013 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14014 continue; 14015 14016 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) 14017 continue; 14018 target[scope] = cpumask_any_but(cpumask, cpu); 14019 if (target[scope] < nr_cpu_ids) 14020 cpumask_set_cpu(target[scope], pmu_cpumask); 14021 } 14022 14023 /* migrate */ 14024 list_for_each_entry(pmu, &pmus, entry) { 14025 if (pmu->scope == PERF_PMU_SCOPE_NONE || 14026 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) 14027 continue; 14028 14029 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) 14030 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); 14031 } 14032 } 14033 14034 static void perf_event_exit_cpu_context(int cpu) 14035 { 14036 struct perf_cpu_context *cpuctx; 14037 struct perf_event_context *ctx; 14038 14039 // XXX simplify cpuctx->online 14040 mutex_lock(&pmus_lock); 14041 /* 14042 * Clear the cpumasks, and migrate to other CPUs if possible. 14043 * Must be invoked before the __perf_event_exit_context. 14044 */ 14045 perf_event_clear_cpumask(cpu); 14046 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14047 ctx = &cpuctx->ctx; 14048 14049 mutex_lock(&ctx->mutex); 14050 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 14051 cpuctx->online = 0; 14052 mutex_unlock(&ctx->mutex); 14053 mutex_unlock(&pmus_lock); 14054 } 14055 #else 14056 14057 static void perf_event_exit_cpu_context(int cpu) { } 14058 14059 #endif 14060 14061 static void perf_event_setup_cpumask(unsigned int cpu) 14062 { 14063 struct cpumask *pmu_cpumask; 14064 unsigned int scope; 14065 14066 /* 14067 * Early boot stage, the cpumask hasn't been set yet. 14068 * The perf_online_<domain>_masks includes the first CPU of each domain. 14069 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. 14070 */ 14071 if (cpumask_empty(perf_online_mask)) { 14072 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14073 pmu_cpumask = perf_scope_cpumask(scope); 14074 if (WARN_ON_ONCE(!pmu_cpumask)) 14075 continue; 14076 cpumask_set_cpu(cpu, pmu_cpumask); 14077 } 14078 goto end; 14079 } 14080 14081 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { 14082 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); 14083 14084 pmu_cpumask = perf_scope_cpumask(scope); 14085 14086 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) 14087 continue; 14088 14089 if (!cpumask_empty(cpumask) && 14090 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) 14091 cpumask_set_cpu(cpu, pmu_cpumask); 14092 } 14093 end: 14094 cpumask_set_cpu(cpu, perf_online_mask); 14095 } 14096 14097 int perf_event_init_cpu(unsigned int cpu) 14098 { 14099 struct perf_cpu_context *cpuctx; 14100 struct perf_event_context *ctx; 14101 14102 perf_swevent_init_cpu(cpu); 14103 14104 mutex_lock(&pmus_lock); 14105 perf_event_setup_cpumask(cpu); 14106 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 14107 ctx = &cpuctx->ctx; 14108 14109 mutex_lock(&ctx->mutex); 14110 cpuctx->online = 1; 14111 mutex_unlock(&ctx->mutex); 14112 mutex_unlock(&pmus_lock); 14113 14114 return 0; 14115 } 14116 14117 int perf_event_exit_cpu(unsigned int cpu) 14118 { 14119 perf_event_exit_cpu_context(cpu); 14120 return 0; 14121 } 14122 14123 static int 14124 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 14125 { 14126 int cpu; 14127 14128 for_each_online_cpu(cpu) 14129 perf_event_exit_cpu(cpu); 14130 14131 return NOTIFY_OK; 14132 } 14133 14134 /* 14135 * Run the perf reboot notifier at the very last possible moment so that 14136 * the generic watchdog code runs as long as possible. 14137 */ 14138 static struct notifier_block perf_reboot_notifier = { 14139 .notifier_call = perf_reboot, 14140 .priority = INT_MIN, 14141 }; 14142 14143 void __init perf_event_init(void) 14144 { 14145 int ret; 14146 14147 idr_init(&pmu_idr); 14148 14149 perf_event_init_all_cpus(); 14150 init_srcu_struct(&pmus_srcu); 14151 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 14152 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 14153 perf_pmu_register(&perf_task_clock, "task_clock", -1); 14154 perf_tp_register(); 14155 perf_event_init_cpu(smp_processor_id()); 14156 register_reboot_notifier(&perf_reboot_notifier); 14157 14158 ret = init_hw_breakpoint(); 14159 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 14160 14161 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 14162 14163 /* 14164 * Build time assertion that we keep the data_head at the intended 14165 * location. IOW, validation we got the __reserved[] size right. 14166 */ 14167 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 14168 != 1024); 14169 } 14170 14171 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 14172 char *page) 14173 { 14174 struct perf_pmu_events_attr *pmu_attr = 14175 container_of(attr, struct perf_pmu_events_attr, attr); 14176 14177 if (pmu_attr->event_str) 14178 return sprintf(page, "%s\n", pmu_attr->event_str); 14179 14180 return 0; 14181 } 14182 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 14183 14184 static int __init perf_event_sysfs_init(void) 14185 { 14186 struct pmu *pmu; 14187 int ret; 14188 14189 mutex_lock(&pmus_lock); 14190 14191 ret = bus_register(&pmu_bus); 14192 if (ret) 14193 goto unlock; 14194 14195 list_for_each_entry(pmu, &pmus, entry) { 14196 if (pmu->dev) 14197 continue; 14198 14199 ret = pmu_dev_alloc(pmu); 14200 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 14201 } 14202 pmu_bus_running = 1; 14203 ret = 0; 14204 14205 unlock: 14206 mutex_unlock(&pmus_lock); 14207 14208 return ret; 14209 } 14210 device_initcall(perf_event_sysfs_init); 14211 14212 #ifdef CONFIG_CGROUP_PERF 14213 static struct cgroup_subsys_state * 14214 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 14215 { 14216 struct perf_cgroup *jc; 14217 14218 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 14219 if (!jc) 14220 return ERR_PTR(-ENOMEM); 14221 14222 jc->info = alloc_percpu(struct perf_cgroup_info); 14223 if (!jc->info) { 14224 kfree(jc); 14225 return ERR_PTR(-ENOMEM); 14226 } 14227 14228 return &jc->css; 14229 } 14230 14231 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 14232 { 14233 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 14234 14235 free_percpu(jc->info); 14236 kfree(jc); 14237 } 14238 14239 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 14240 { 14241 perf_event_cgroup(css->cgroup); 14242 return 0; 14243 } 14244 14245 static int __perf_cgroup_move(void *info) 14246 { 14247 struct task_struct *task = info; 14248 14249 preempt_disable(); 14250 perf_cgroup_switch(task); 14251 preempt_enable(); 14252 14253 return 0; 14254 } 14255 14256 static void perf_cgroup_attach(struct cgroup_taskset *tset) 14257 { 14258 struct task_struct *task; 14259 struct cgroup_subsys_state *css; 14260 14261 cgroup_taskset_for_each(task, css, tset) 14262 task_function_call(task, __perf_cgroup_move, task); 14263 } 14264 14265 struct cgroup_subsys perf_event_cgrp_subsys = { 14266 .css_alloc = perf_cgroup_css_alloc, 14267 .css_free = perf_cgroup_css_free, 14268 .css_online = perf_cgroup_css_online, 14269 .attach = perf_cgroup_attach, 14270 /* 14271 * Implicitly enable on dfl hierarchy so that perf events can 14272 * always be filtered by cgroup2 path as long as perf_event 14273 * controller is not mounted on a legacy hierarchy. 14274 */ 14275 .implicit_on_dfl = true, 14276 .threaded = true, 14277 }; 14278 #endif /* CONFIG_CGROUP_PERF */ 14279 14280 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 14281