1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 55 #include "internal.h" 56 57 #include <asm/irq_regs.h> 58 59 typedef int (*remote_function_f)(void *); 60 61 struct remote_function_call { 62 struct task_struct *p; 63 remote_function_f func; 64 void *info; 65 int ret; 66 }; 67 68 static void remote_function(void *data) 69 { 70 struct remote_function_call *tfc = data; 71 struct task_struct *p = tfc->p; 72 73 if (p) { 74 /* -EAGAIN */ 75 if (task_cpu(p) != smp_processor_id()) 76 return; 77 78 /* 79 * Now that we're on right CPU with IRQs disabled, we can test 80 * if we hit the right task without races. 81 */ 82 83 tfc->ret = -ESRCH; /* No such (running) process */ 84 if (p != current) 85 return; 86 } 87 88 tfc->ret = tfc->func(tfc->info); 89 } 90 91 /** 92 * task_function_call - call a function on the cpu on which a task runs 93 * @p: the task to evaluate 94 * @func: the function to be called 95 * @info: the function call argument 96 * 97 * Calls the function @func when the task is currently running. This might 98 * be on the current CPU, which just calls the function directly 99 * 100 * returns: @func return value, or 101 * -ESRCH - when the process isn't running 102 * -EAGAIN - when the process moved away 103 */ 104 static int 105 task_function_call(struct task_struct *p, remote_function_f func, void *info) 106 { 107 struct remote_function_call data = { 108 .p = p, 109 .func = func, 110 .info = info, 111 .ret = -EAGAIN, 112 }; 113 int ret; 114 115 do { 116 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 117 if (!ret) 118 ret = data.ret; 119 } while (ret == -EAGAIN); 120 121 return ret; 122 } 123 124 /** 125 * cpu_function_call - call a function on the cpu 126 * @func: the function to be called 127 * @info: the function call argument 128 * 129 * Calls the function @func on the remote cpu. 130 * 131 * returns: @func return value or -ENXIO when the cpu is offline 132 */ 133 static int cpu_function_call(int cpu, remote_function_f func, void *info) 134 { 135 struct remote_function_call data = { 136 .p = NULL, 137 .func = func, 138 .info = info, 139 .ret = -ENXIO, /* No such CPU */ 140 }; 141 142 smp_call_function_single(cpu, remote_function, &data, 1); 143 144 return data.ret; 145 } 146 147 static inline struct perf_cpu_context * 148 __get_cpu_context(struct perf_event_context *ctx) 149 { 150 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 151 } 152 153 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 154 struct perf_event_context *ctx) 155 { 156 raw_spin_lock(&cpuctx->ctx.lock); 157 if (ctx) 158 raw_spin_lock(&ctx->lock); 159 } 160 161 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 162 struct perf_event_context *ctx) 163 { 164 if (ctx) 165 raw_spin_unlock(&ctx->lock); 166 raw_spin_unlock(&cpuctx->ctx.lock); 167 } 168 169 #define TASK_TOMBSTONE ((void *)-1L) 170 171 static bool is_kernel_event(struct perf_event *event) 172 { 173 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 174 } 175 176 /* 177 * On task ctx scheduling... 178 * 179 * When !ctx->nr_events a task context will not be scheduled. This means 180 * we can disable the scheduler hooks (for performance) without leaving 181 * pending task ctx state. 182 * 183 * This however results in two special cases: 184 * 185 * - removing the last event from a task ctx; this is relatively straight 186 * forward and is done in __perf_remove_from_context. 187 * 188 * - adding the first event to a task ctx; this is tricky because we cannot 189 * rely on ctx->is_active and therefore cannot use event_function_call(). 190 * See perf_install_in_context(). 191 * 192 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 193 */ 194 195 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 196 struct perf_event_context *, void *); 197 198 struct event_function_struct { 199 struct perf_event *event; 200 event_f func; 201 void *data; 202 }; 203 204 static int event_function(void *info) 205 { 206 struct event_function_struct *efs = info; 207 struct perf_event *event = efs->event; 208 struct perf_event_context *ctx = event->ctx; 209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 210 struct perf_event_context *task_ctx = cpuctx->task_ctx; 211 int ret = 0; 212 213 lockdep_assert_irqs_disabled(); 214 215 perf_ctx_lock(cpuctx, task_ctx); 216 /* 217 * Since we do the IPI call without holding ctx->lock things can have 218 * changed, double check we hit the task we set out to hit. 219 */ 220 if (ctx->task) { 221 if (ctx->task != current) { 222 ret = -ESRCH; 223 goto unlock; 224 } 225 226 /* 227 * We only use event_function_call() on established contexts, 228 * and event_function() is only ever called when active (or 229 * rather, we'll have bailed in task_function_call() or the 230 * above ctx->task != current test), therefore we must have 231 * ctx->is_active here. 232 */ 233 WARN_ON_ONCE(!ctx->is_active); 234 /* 235 * And since we have ctx->is_active, cpuctx->task_ctx must 236 * match. 237 */ 238 WARN_ON_ONCE(task_ctx != ctx); 239 } else { 240 WARN_ON_ONCE(&cpuctx->ctx != ctx); 241 } 242 243 efs->func(event, cpuctx, ctx, efs->data); 244 unlock: 245 perf_ctx_unlock(cpuctx, task_ctx); 246 247 return ret; 248 } 249 250 static void event_function_call(struct perf_event *event, event_f func, void *data) 251 { 252 struct perf_event_context *ctx = event->ctx; 253 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 254 struct event_function_struct efs = { 255 .event = event, 256 .func = func, 257 .data = data, 258 }; 259 260 if (!event->parent) { 261 /* 262 * If this is a !child event, we must hold ctx::mutex to 263 * stabilize the the event->ctx relation. See 264 * perf_event_ctx_lock(). 265 */ 266 lockdep_assert_held(&ctx->mutex); 267 } 268 269 if (!task) { 270 cpu_function_call(event->cpu, event_function, &efs); 271 return; 272 } 273 274 if (task == TASK_TOMBSTONE) 275 return; 276 277 again: 278 if (!task_function_call(task, event_function, &efs)) 279 return; 280 281 raw_spin_lock_irq(&ctx->lock); 282 /* 283 * Reload the task pointer, it might have been changed by 284 * a concurrent perf_event_context_sched_out(). 285 */ 286 task = ctx->task; 287 if (task == TASK_TOMBSTONE) { 288 raw_spin_unlock_irq(&ctx->lock); 289 return; 290 } 291 if (ctx->is_active) { 292 raw_spin_unlock_irq(&ctx->lock); 293 goto again; 294 } 295 func(event, NULL, ctx, data); 296 raw_spin_unlock_irq(&ctx->lock); 297 } 298 299 /* 300 * Similar to event_function_call() + event_function(), but hard assumes IRQs 301 * are already disabled and we're on the right CPU. 302 */ 303 static void event_function_local(struct perf_event *event, event_f func, void *data) 304 { 305 struct perf_event_context *ctx = event->ctx; 306 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 307 struct task_struct *task = READ_ONCE(ctx->task); 308 struct perf_event_context *task_ctx = NULL; 309 310 lockdep_assert_irqs_disabled(); 311 312 if (task) { 313 if (task == TASK_TOMBSTONE) 314 return; 315 316 task_ctx = ctx; 317 } 318 319 perf_ctx_lock(cpuctx, task_ctx); 320 321 task = ctx->task; 322 if (task == TASK_TOMBSTONE) 323 goto unlock; 324 325 if (task) { 326 /* 327 * We must be either inactive or active and the right task, 328 * otherwise we're screwed, since we cannot IPI to somewhere 329 * else. 330 */ 331 if (ctx->is_active) { 332 if (WARN_ON_ONCE(task != current)) 333 goto unlock; 334 335 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 336 goto unlock; 337 } 338 } else { 339 WARN_ON_ONCE(&cpuctx->ctx != ctx); 340 } 341 342 func(event, cpuctx, ctx, data); 343 unlock: 344 perf_ctx_unlock(cpuctx, task_ctx); 345 } 346 347 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 348 PERF_FLAG_FD_OUTPUT |\ 349 PERF_FLAG_PID_CGROUP |\ 350 PERF_FLAG_FD_CLOEXEC) 351 352 /* 353 * branch priv levels that need permission checks 354 */ 355 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 356 (PERF_SAMPLE_BRANCH_KERNEL |\ 357 PERF_SAMPLE_BRANCH_HV) 358 359 enum event_type_t { 360 EVENT_FLEXIBLE = 0x1, 361 EVENT_PINNED = 0x2, 362 EVENT_TIME = 0x4, 363 /* see ctx_resched() for details */ 364 EVENT_CPU = 0x8, 365 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 366 }; 367 368 /* 369 * perf_sched_events : >0 events exist 370 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 371 */ 372 373 static void perf_sched_delayed(struct work_struct *work); 374 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 375 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 376 static DEFINE_MUTEX(perf_sched_mutex); 377 static atomic_t perf_sched_count; 378 379 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 380 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 381 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 382 383 static atomic_t nr_mmap_events __read_mostly; 384 static atomic_t nr_comm_events __read_mostly; 385 static atomic_t nr_namespaces_events __read_mostly; 386 static atomic_t nr_task_events __read_mostly; 387 static atomic_t nr_freq_events __read_mostly; 388 static atomic_t nr_switch_events __read_mostly; 389 static atomic_t nr_ksymbol_events __read_mostly; 390 static atomic_t nr_bpf_events __read_mostly; 391 static atomic_t nr_cgroup_events __read_mostly; 392 393 static LIST_HEAD(pmus); 394 static DEFINE_MUTEX(pmus_lock); 395 static struct srcu_struct pmus_srcu; 396 static cpumask_var_t perf_online_mask; 397 398 /* 399 * perf event paranoia level: 400 * -1 - not paranoid at all 401 * 0 - disallow raw tracepoint access for unpriv 402 * 1 - disallow cpu events for unpriv 403 * 2 - disallow kernel profiling for unpriv 404 */ 405 int sysctl_perf_event_paranoid __read_mostly = 2; 406 407 /* Minimum for 512 kiB + 1 user control page */ 408 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 409 410 /* 411 * max perf event sample rate 412 */ 413 #define DEFAULT_MAX_SAMPLE_RATE 100000 414 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 415 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 416 417 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 418 419 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 420 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 421 422 static int perf_sample_allowed_ns __read_mostly = 423 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 424 425 static void update_perf_cpu_limits(void) 426 { 427 u64 tmp = perf_sample_period_ns; 428 429 tmp *= sysctl_perf_cpu_time_max_percent; 430 tmp = div_u64(tmp, 100); 431 if (!tmp) 432 tmp = 1; 433 434 WRITE_ONCE(perf_sample_allowed_ns, tmp); 435 } 436 437 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 438 439 int perf_proc_update_handler(struct ctl_table *table, int write, 440 void *buffer, size_t *lenp, loff_t *ppos) 441 { 442 int ret; 443 int perf_cpu = sysctl_perf_cpu_time_max_percent; 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (write && (perf_cpu == 100 || perf_cpu == 0)) 448 return -EINVAL; 449 450 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 451 if (ret || !write) 452 return ret; 453 454 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 455 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 456 update_perf_cpu_limits(); 457 458 return 0; 459 } 460 461 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 462 463 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 464 void *buffer, size_t *lenp, loff_t *ppos) 465 { 466 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 467 468 if (ret || !write) 469 return ret; 470 471 if (sysctl_perf_cpu_time_max_percent == 100 || 472 sysctl_perf_cpu_time_max_percent == 0) { 473 printk(KERN_WARNING 474 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 475 WRITE_ONCE(perf_sample_allowed_ns, 0); 476 } else { 477 update_perf_cpu_limits(); 478 } 479 480 return 0; 481 } 482 483 /* 484 * perf samples are done in some very critical code paths (NMIs). 485 * If they take too much CPU time, the system can lock up and not 486 * get any real work done. This will drop the sample rate when 487 * we detect that events are taking too long. 488 */ 489 #define NR_ACCUMULATED_SAMPLES 128 490 static DEFINE_PER_CPU(u64, running_sample_length); 491 492 static u64 __report_avg; 493 static u64 __report_allowed; 494 495 static void perf_duration_warn(struct irq_work *w) 496 { 497 printk_ratelimited(KERN_INFO 498 "perf: interrupt took too long (%lld > %lld), lowering " 499 "kernel.perf_event_max_sample_rate to %d\n", 500 __report_avg, __report_allowed, 501 sysctl_perf_event_sample_rate); 502 } 503 504 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 505 506 void perf_sample_event_took(u64 sample_len_ns) 507 { 508 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 509 u64 running_len; 510 u64 avg_len; 511 u32 max; 512 513 if (max_len == 0) 514 return; 515 516 /* Decay the counter by 1 average sample. */ 517 running_len = __this_cpu_read(running_sample_length); 518 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 519 running_len += sample_len_ns; 520 __this_cpu_write(running_sample_length, running_len); 521 522 /* 523 * Note: this will be biased artifically low until we have 524 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 525 * from having to maintain a count. 526 */ 527 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 528 if (avg_len <= max_len) 529 return; 530 531 __report_avg = avg_len; 532 __report_allowed = max_len; 533 534 /* 535 * Compute a throttle threshold 25% below the current duration. 536 */ 537 avg_len += avg_len / 4; 538 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 539 if (avg_len < max) 540 max /= (u32)avg_len; 541 else 542 max = 1; 543 544 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 545 WRITE_ONCE(max_samples_per_tick, max); 546 547 sysctl_perf_event_sample_rate = max * HZ; 548 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 549 550 if (!irq_work_queue(&perf_duration_work)) { 551 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 552 "kernel.perf_event_max_sample_rate to %d\n", 553 __report_avg, __report_allowed, 554 sysctl_perf_event_sample_rate); 555 } 556 } 557 558 static atomic64_t perf_event_id; 559 560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 561 enum event_type_t event_type); 562 563 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 564 enum event_type_t event_type, 565 struct task_struct *task); 566 567 static void update_context_time(struct perf_event_context *ctx); 568 static u64 perf_event_time(struct perf_event *event); 569 570 void __weak perf_event_print_debug(void) { } 571 572 extern __weak const char *perf_pmu_name(void) 573 { 574 return "pmu"; 575 } 576 577 static inline u64 perf_clock(void) 578 { 579 return local_clock(); 580 } 581 582 static inline u64 perf_event_clock(struct perf_event *event) 583 { 584 return event->clock(); 585 } 586 587 /* 588 * State based event timekeeping... 589 * 590 * The basic idea is to use event->state to determine which (if any) time 591 * fields to increment with the current delta. This means we only need to 592 * update timestamps when we change state or when they are explicitly requested 593 * (read). 594 * 595 * Event groups make things a little more complicated, but not terribly so. The 596 * rules for a group are that if the group leader is OFF the entire group is 597 * OFF, irrespecive of what the group member states are. This results in 598 * __perf_effective_state(). 599 * 600 * A futher ramification is that when a group leader flips between OFF and 601 * !OFF, we need to update all group member times. 602 * 603 * 604 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 605 * need to make sure the relevant context time is updated before we try and 606 * update our timestamps. 607 */ 608 609 static __always_inline enum perf_event_state 610 __perf_effective_state(struct perf_event *event) 611 { 612 struct perf_event *leader = event->group_leader; 613 614 if (leader->state <= PERF_EVENT_STATE_OFF) 615 return leader->state; 616 617 return event->state; 618 } 619 620 static __always_inline void 621 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 622 { 623 enum perf_event_state state = __perf_effective_state(event); 624 u64 delta = now - event->tstamp; 625 626 *enabled = event->total_time_enabled; 627 if (state >= PERF_EVENT_STATE_INACTIVE) 628 *enabled += delta; 629 630 *running = event->total_time_running; 631 if (state >= PERF_EVENT_STATE_ACTIVE) 632 *running += delta; 633 } 634 635 static void perf_event_update_time(struct perf_event *event) 636 { 637 u64 now = perf_event_time(event); 638 639 __perf_update_times(event, now, &event->total_time_enabled, 640 &event->total_time_running); 641 event->tstamp = now; 642 } 643 644 static void perf_event_update_sibling_time(struct perf_event *leader) 645 { 646 struct perf_event *sibling; 647 648 for_each_sibling_event(sibling, leader) 649 perf_event_update_time(sibling); 650 } 651 652 static void 653 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 654 { 655 if (event->state == state) 656 return; 657 658 perf_event_update_time(event); 659 /* 660 * If a group leader gets enabled/disabled all its siblings 661 * are affected too. 662 */ 663 if ((event->state < 0) ^ (state < 0)) 664 perf_event_update_sibling_time(event); 665 666 WRITE_ONCE(event->state, state); 667 } 668 669 #ifdef CONFIG_CGROUP_PERF 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 struct perf_event_context *ctx = event->ctx; 675 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 676 677 /* @event doesn't care about cgroup */ 678 if (!event->cgrp) 679 return true; 680 681 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 682 if (!cpuctx->cgrp) 683 return false; 684 685 /* 686 * Cgroup scoping is recursive. An event enabled for a cgroup is 687 * also enabled for all its descendant cgroups. If @cpuctx's 688 * cgroup is a descendant of @event's (the test covers identity 689 * case), it's a match. 690 */ 691 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 692 event->cgrp->css.cgroup); 693 } 694 695 static inline void perf_detach_cgroup(struct perf_event *event) 696 { 697 css_put(&event->cgrp->css); 698 event->cgrp = NULL; 699 } 700 701 static inline int is_cgroup_event(struct perf_event *event) 702 { 703 return event->cgrp != NULL; 704 } 705 706 static inline u64 perf_cgroup_event_time(struct perf_event *event) 707 { 708 struct perf_cgroup_info *t; 709 710 t = per_cpu_ptr(event->cgrp->info, event->cpu); 711 return t->time; 712 } 713 714 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 715 { 716 struct perf_cgroup_info *info; 717 u64 now; 718 719 now = perf_clock(); 720 721 info = this_cpu_ptr(cgrp->info); 722 723 info->time += now - info->timestamp; 724 info->timestamp = now; 725 } 726 727 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 728 { 729 struct perf_cgroup *cgrp = cpuctx->cgrp; 730 struct cgroup_subsys_state *css; 731 732 if (cgrp) { 733 for (css = &cgrp->css; css; css = css->parent) { 734 cgrp = container_of(css, struct perf_cgroup, css); 735 __update_cgrp_time(cgrp); 736 } 737 } 738 } 739 740 static inline void update_cgrp_time_from_event(struct perf_event *event) 741 { 742 struct perf_cgroup *cgrp; 743 744 /* 745 * ensure we access cgroup data only when needed and 746 * when we know the cgroup is pinned (css_get) 747 */ 748 if (!is_cgroup_event(event)) 749 return; 750 751 cgrp = perf_cgroup_from_task(current, event->ctx); 752 /* 753 * Do not update time when cgroup is not active 754 */ 755 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 756 __update_cgrp_time(event->cgrp); 757 } 758 759 static inline void 760 perf_cgroup_set_timestamp(struct task_struct *task, 761 struct perf_event_context *ctx) 762 { 763 struct perf_cgroup *cgrp; 764 struct perf_cgroup_info *info; 765 struct cgroup_subsys_state *css; 766 767 /* 768 * ctx->lock held by caller 769 * ensure we do not access cgroup data 770 * unless we have the cgroup pinned (css_get) 771 */ 772 if (!task || !ctx->nr_cgroups) 773 return; 774 775 cgrp = perf_cgroup_from_task(task, ctx); 776 777 for (css = &cgrp->css; css; css = css->parent) { 778 cgrp = container_of(css, struct perf_cgroup, css); 779 info = this_cpu_ptr(cgrp->info); 780 info->timestamp = ctx->timestamp; 781 } 782 } 783 784 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 785 786 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 787 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 788 789 /* 790 * reschedule events based on the cgroup constraint of task. 791 * 792 * mode SWOUT : schedule out everything 793 * mode SWIN : schedule in based on cgroup for next 794 */ 795 static void perf_cgroup_switch(struct task_struct *task, int mode) 796 { 797 struct perf_cpu_context *cpuctx; 798 struct list_head *list; 799 unsigned long flags; 800 801 /* 802 * Disable interrupts and preemption to avoid this CPU's 803 * cgrp_cpuctx_entry to change under us. 804 */ 805 local_irq_save(flags); 806 807 list = this_cpu_ptr(&cgrp_cpuctx_list); 808 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 809 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 810 811 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 812 perf_pmu_disable(cpuctx->ctx.pmu); 813 814 if (mode & PERF_CGROUP_SWOUT) { 815 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 816 /* 817 * must not be done before ctxswout due 818 * to event_filter_match() in event_sched_out() 819 */ 820 cpuctx->cgrp = NULL; 821 } 822 823 if (mode & PERF_CGROUP_SWIN) { 824 WARN_ON_ONCE(cpuctx->cgrp); 825 /* 826 * set cgrp before ctxsw in to allow 827 * event_filter_match() to not have to pass 828 * task around 829 * we pass the cpuctx->ctx to perf_cgroup_from_task() 830 * because cgorup events are only per-cpu 831 */ 832 cpuctx->cgrp = perf_cgroup_from_task(task, 833 &cpuctx->ctx); 834 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 835 } 836 perf_pmu_enable(cpuctx->ctx.pmu); 837 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 838 } 839 840 local_irq_restore(flags); 841 } 842 843 static inline void perf_cgroup_sched_out(struct task_struct *task, 844 struct task_struct *next) 845 { 846 struct perf_cgroup *cgrp1; 847 struct perf_cgroup *cgrp2 = NULL; 848 849 rcu_read_lock(); 850 /* 851 * we come here when we know perf_cgroup_events > 0 852 * we do not need to pass the ctx here because we know 853 * we are holding the rcu lock 854 */ 855 cgrp1 = perf_cgroup_from_task(task, NULL); 856 cgrp2 = perf_cgroup_from_task(next, NULL); 857 858 /* 859 * only schedule out current cgroup events if we know 860 * that we are switching to a different cgroup. Otherwise, 861 * do no touch the cgroup events. 862 */ 863 if (cgrp1 != cgrp2) 864 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 865 866 rcu_read_unlock(); 867 } 868 869 static inline void perf_cgroup_sched_in(struct task_struct *prev, 870 struct task_struct *task) 871 { 872 struct perf_cgroup *cgrp1; 873 struct perf_cgroup *cgrp2 = NULL; 874 875 rcu_read_lock(); 876 /* 877 * we come here when we know perf_cgroup_events > 0 878 * we do not need to pass the ctx here because we know 879 * we are holding the rcu lock 880 */ 881 cgrp1 = perf_cgroup_from_task(task, NULL); 882 cgrp2 = perf_cgroup_from_task(prev, NULL); 883 884 /* 885 * only need to schedule in cgroup events if we are changing 886 * cgroup during ctxsw. Cgroup events were not scheduled 887 * out of ctxsw out if that was not the case. 888 */ 889 if (cgrp1 != cgrp2) 890 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 891 892 rcu_read_unlock(); 893 } 894 895 static int perf_cgroup_ensure_storage(struct perf_event *event, 896 struct cgroup_subsys_state *css) 897 { 898 struct perf_cpu_context *cpuctx; 899 struct perf_event **storage; 900 int cpu, heap_size, ret = 0; 901 902 /* 903 * Allow storage to have sufficent space for an iterator for each 904 * possibly nested cgroup plus an iterator for events with no cgroup. 905 */ 906 for (heap_size = 1; css; css = css->parent) 907 heap_size++; 908 909 for_each_possible_cpu(cpu) { 910 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 911 if (heap_size <= cpuctx->heap_size) 912 continue; 913 914 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 915 GFP_KERNEL, cpu_to_node(cpu)); 916 if (!storage) { 917 ret = -ENOMEM; 918 break; 919 } 920 921 raw_spin_lock_irq(&cpuctx->ctx.lock); 922 if (cpuctx->heap_size < heap_size) { 923 swap(cpuctx->heap, storage); 924 if (storage == cpuctx->heap_default) 925 storage = NULL; 926 cpuctx->heap_size = heap_size; 927 } 928 raw_spin_unlock_irq(&cpuctx->ctx.lock); 929 930 kfree(storage); 931 } 932 933 return ret; 934 } 935 936 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 937 struct perf_event_attr *attr, 938 struct perf_event *group_leader) 939 { 940 struct perf_cgroup *cgrp; 941 struct cgroup_subsys_state *css; 942 struct fd f = fdget(fd); 943 int ret = 0; 944 945 if (!f.file) 946 return -EBADF; 947 948 css = css_tryget_online_from_dir(f.file->f_path.dentry, 949 &perf_event_cgrp_subsys); 950 if (IS_ERR(css)) { 951 ret = PTR_ERR(css); 952 goto out; 953 } 954 955 ret = perf_cgroup_ensure_storage(event, css); 956 if (ret) 957 goto out; 958 959 cgrp = container_of(css, struct perf_cgroup, css); 960 event->cgrp = cgrp; 961 962 /* 963 * all events in a group must monitor 964 * the same cgroup because a task belongs 965 * to only one perf cgroup at a time 966 */ 967 if (group_leader && group_leader->cgrp != cgrp) { 968 perf_detach_cgroup(event); 969 ret = -EINVAL; 970 } 971 out: 972 fdput(f); 973 return ret; 974 } 975 976 static inline void 977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 978 { 979 struct perf_cgroup_info *t; 980 t = per_cpu_ptr(event->cgrp->info, event->cpu); 981 event->shadow_ctx_time = now - t->timestamp; 982 } 983 984 static inline void 985 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 986 { 987 struct perf_cpu_context *cpuctx; 988 989 if (!is_cgroup_event(event)) 990 return; 991 992 /* 993 * Because cgroup events are always per-cpu events, 994 * @ctx == &cpuctx->ctx. 995 */ 996 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 997 998 /* 999 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1000 * matching the event's cgroup, we must do this for every new event, 1001 * because if the first would mismatch, the second would not try again 1002 * and we would leave cpuctx->cgrp unset. 1003 */ 1004 if (ctx->is_active && !cpuctx->cgrp) { 1005 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1006 1007 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1008 cpuctx->cgrp = cgrp; 1009 } 1010 1011 if (ctx->nr_cgroups++) 1012 return; 1013 1014 list_add(&cpuctx->cgrp_cpuctx_entry, 1015 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1016 } 1017 1018 static inline void 1019 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1020 { 1021 struct perf_cpu_context *cpuctx; 1022 1023 if (!is_cgroup_event(event)) 1024 return; 1025 1026 /* 1027 * Because cgroup events are always per-cpu events, 1028 * @ctx == &cpuctx->ctx. 1029 */ 1030 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1031 1032 if (--ctx->nr_cgroups) 1033 return; 1034 1035 if (ctx->is_active && cpuctx->cgrp) 1036 cpuctx->cgrp = NULL; 1037 1038 list_del(&cpuctx->cgrp_cpuctx_entry); 1039 } 1040 1041 #else /* !CONFIG_CGROUP_PERF */ 1042 1043 static inline bool 1044 perf_cgroup_match(struct perf_event *event) 1045 { 1046 return true; 1047 } 1048 1049 static inline void perf_detach_cgroup(struct perf_event *event) 1050 {} 1051 1052 static inline int is_cgroup_event(struct perf_event *event) 1053 { 1054 return 0; 1055 } 1056 1057 static inline void update_cgrp_time_from_event(struct perf_event *event) 1058 { 1059 } 1060 1061 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1062 { 1063 } 1064 1065 static inline void perf_cgroup_sched_out(struct task_struct *task, 1066 struct task_struct *next) 1067 { 1068 } 1069 1070 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1071 struct task_struct *task) 1072 { 1073 } 1074 1075 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1076 struct perf_event_attr *attr, 1077 struct perf_event *group_leader) 1078 { 1079 return -EINVAL; 1080 } 1081 1082 static inline void 1083 perf_cgroup_set_timestamp(struct task_struct *task, 1084 struct perf_event_context *ctx) 1085 { 1086 } 1087 1088 static inline void 1089 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1090 { 1091 } 1092 1093 static inline void 1094 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1095 { 1096 } 1097 1098 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1099 { 1100 return 0; 1101 } 1102 1103 static inline void 1104 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1105 { 1106 } 1107 1108 static inline void 1109 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1110 { 1111 } 1112 #endif 1113 1114 /* 1115 * set default to be dependent on timer tick just 1116 * like original code 1117 */ 1118 #define PERF_CPU_HRTIMER (1000 / HZ) 1119 /* 1120 * function must be called with interrupts disabled 1121 */ 1122 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1123 { 1124 struct perf_cpu_context *cpuctx; 1125 bool rotations; 1126 1127 lockdep_assert_irqs_disabled(); 1128 1129 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1130 rotations = perf_rotate_context(cpuctx); 1131 1132 raw_spin_lock(&cpuctx->hrtimer_lock); 1133 if (rotations) 1134 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1135 else 1136 cpuctx->hrtimer_active = 0; 1137 raw_spin_unlock(&cpuctx->hrtimer_lock); 1138 1139 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1140 } 1141 1142 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1143 { 1144 struct hrtimer *timer = &cpuctx->hrtimer; 1145 struct pmu *pmu = cpuctx->ctx.pmu; 1146 u64 interval; 1147 1148 /* no multiplexing needed for SW PMU */ 1149 if (pmu->task_ctx_nr == perf_sw_context) 1150 return; 1151 1152 /* 1153 * check default is sane, if not set then force to 1154 * default interval (1/tick) 1155 */ 1156 interval = pmu->hrtimer_interval_ms; 1157 if (interval < 1) 1158 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1159 1160 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1161 1162 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1163 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1164 timer->function = perf_mux_hrtimer_handler; 1165 } 1166 1167 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1168 { 1169 struct hrtimer *timer = &cpuctx->hrtimer; 1170 struct pmu *pmu = cpuctx->ctx.pmu; 1171 unsigned long flags; 1172 1173 /* not for SW PMU */ 1174 if (pmu->task_ctx_nr == perf_sw_context) 1175 return 0; 1176 1177 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1178 if (!cpuctx->hrtimer_active) { 1179 cpuctx->hrtimer_active = 1; 1180 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1181 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1182 } 1183 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1184 1185 return 0; 1186 } 1187 1188 void perf_pmu_disable(struct pmu *pmu) 1189 { 1190 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1191 if (!(*count)++) 1192 pmu->pmu_disable(pmu); 1193 } 1194 1195 void perf_pmu_enable(struct pmu *pmu) 1196 { 1197 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1198 if (!--(*count)) 1199 pmu->pmu_enable(pmu); 1200 } 1201 1202 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1203 1204 /* 1205 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1206 * perf_event_task_tick() are fully serialized because they're strictly cpu 1207 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1208 * disabled, while perf_event_task_tick is called from IRQ context. 1209 */ 1210 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1211 { 1212 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1213 1214 lockdep_assert_irqs_disabled(); 1215 1216 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1217 1218 list_add(&ctx->active_ctx_list, head); 1219 } 1220 1221 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1222 { 1223 lockdep_assert_irqs_disabled(); 1224 1225 WARN_ON(list_empty(&ctx->active_ctx_list)); 1226 1227 list_del_init(&ctx->active_ctx_list); 1228 } 1229 1230 static void get_ctx(struct perf_event_context *ctx) 1231 { 1232 refcount_inc(&ctx->refcount); 1233 } 1234 1235 static void free_ctx(struct rcu_head *head) 1236 { 1237 struct perf_event_context *ctx; 1238 1239 ctx = container_of(head, struct perf_event_context, rcu_head); 1240 kfree(ctx->task_ctx_data); 1241 kfree(ctx); 1242 } 1243 1244 static void put_ctx(struct perf_event_context *ctx) 1245 { 1246 if (refcount_dec_and_test(&ctx->refcount)) { 1247 if (ctx->parent_ctx) 1248 put_ctx(ctx->parent_ctx); 1249 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1250 put_task_struct(ctx->task); 1251 call_rcu(&ctx->rcu_head, free_ctx); 1252 } 1253 } 1254 1255 /* 1256 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1257 * perf_pmu_migrate_context() we need some magic. 1258 * 1259 * Those places that change perf_event::ctx will hold both 1260 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1261 * 1262 * Lock ordering is by mutex address. There are two other sites where 1263 * perf_event_context::mutex nests and those are: 1264 * 1265 * - perf_event_exit_task_context() [ child , 0 ] 1266 * perf_event_exit_event() 1267 * put_event() [ parent, 1 ] 1268 * 1269 * - perf_event_init_context() [ parent, 0 ] 1270 * inherit_task_group() 1271 * inherit_group() 1272 * inherit_event() 1273 * perf_event_alloc() 1274 * perf_init_event() 1275 * perf_try_init_event() [ child , 1 ] 1276 * 1277 * While it appears there is an obvious deadlock here -- the parent and child 1278 * nesting levels are inverted between the two. This is in fact safe because 1279 * life-time rules separate them. That is an exiting task cannot fork, and a 1280 * spawning task cannot (yet) exit. 1281 * 1282 * But remember that that these are parent<->child context relations, and 1283 * migration does not affect children, therefore these two orderings should not 1284 * interact. 1285 * 1286 * The change in perf_event::ctx does not affect children (as claimed above) 1287 * because the sys_perf_event_open() case will install a new event and break 1288 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1289 * concerned with cpuctx and that doesn't have children. 1290 * 1291 * The places that change perf_event::ctx will issue: 1292 * 1293 * perf_remove_from_context(); 1294 * synchronize_rcu(); 1295 * perf_install_in_context(); 1296 * 1297 * to affect the change. The remove_from_context() + synchronize_rcu() should 1298 * quiesce the event, after which we can install it in the new location. This 1299 * means that only external vectors (perf_fops, prctl) can perturb the event 1300 * while in transit. Therefore all such accessors should also acquire 1301 * perf_event_context::mutex to serialize against this. 1302 * 1303 * However; because event->ctx can change while we're waiting to acquire 1304 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1305 * function. 1306 * 1307 * Lock order: 1308 * exec_update_mutex 1309 * task_struct::perf_event_mutex 1310 * perf_event_context::mutex 1311 * perf_event::child_mutex; 1312 * perf_event_context::lock 1313 * perf_event::mmap_mutex 1314 * mmap_sem 1315 * perf_addr_filters_head::lock 1316 * 1317 * cpu_hotplug_lock 1318 * pmus_lock 1319 * cpuctx->mutex / perf_event_context::mutex 1320 */ 1321 static struct perf_event_context * 1322 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1323 { 1324 struct perf_event_context *ctx; 1325 1326 again: 1327 rcu_read_lock(); 1328 ctx = READ_ONCE(event->ctx); 1329 if (!refcount_inc_not_zero(&ctx->refcount)) { 1330 rcu_read_unlock(); 1331 goto again; 1332 } 1333 rcu_read_unlock(); 1334 1335 mutex_lock_nested(&ctx->mutex, nesting); 1336 if (event->ctx != ctx) { 1337 mutex_unlock(&ctx->mutex); 1338 put_ctx(ctx); 1339 goto again; 1340 } 1341 1342 return ctx; 1343 } 1344 1345 static inline struct perf_event_context * 1346 perf_event_ctx_lock(struct perf_event *event) 1347 { 1348 return perf_event_ctx_lock_nested(event, 0); 1349 } 1350 1351 static void perf_event_ctx_unlock(struct perf_event *event, 1352 struct perf_event_context *ctx) 1353 { 1354 mutex_unlock(&ctx->mutex); 1355 put_ctx(ctx); 1356 } 1357 1358 /* 1359 * This must be done under the ctx->lock, such as to serialize against 1360 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1361 * calling scheduler related locks and ctx->lock nests inside those. 1362 */ 1363 static __must_check struct perf_event_context * 1364 unclone_ctx(struct perf_event_context *ctx) 1365 { 1366 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1367 1368 lockdep_assert_held(&ctx->lock); 1369 1370 if (parent_ctx) 1371 ctx->parent_ctx = NULL; 1372 ctx->generation++; 1373 1374 return parent_ctx; 1375 } 1376 1377 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1378 enum pid_type type) 1379 { 1380 u32 nr; 1381 /* 1382 * only top level events have the pid namespace they were created in 1383 */ 1384 if (event->parent) 1385 event = event->parent; 1386 1387 nr = __task_pid_nr_ns(p, type, event->ns); 1388 /* avoid -1 if it is idle thread or runs in another ns */ 1389 if (!nr && !pid_alive(p)) 1390 nr = -1; 1391 return nr; 1392 } 1393 1394 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1395 { 1396 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1397 } 1398 1399 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1400 { 1401 return perf_event_pid_type(event, p, PIDTYPE_PID); 1402 } 1403 1404 /* 1405 * If we inherit events we want to return the parent event id 1406 * to userspace. 1407 */ 1408 static u64 primary_event_id(struct perf_event *event) 1409 { 1410 u64 id = event->id; 1411 1412 if (event->parent) 1413 id = event->parent->id; 1414 1415 return id; 1416 } 1417 1418 /* 1419 * Get the perf_event_context for a task and lock it. 1420 * 1421 * This has to cope with with the fact that until it is locked, 1422 * the context could get moved to another task. 1423 */ 1424 static struct perf_event_context * 1425 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1426 { 1427 struct perf_event_context *ctx; 1428 1429 retry: 1430 /* 1431 * One of the few rules of preemptible RCU is that one cannot do 1432 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1433 * part of the read side critical section was irqs-enabled -- see 1434 * rcu_read_unlock_special(). 1435 * 1436 * Since ctx->lock nests under rq->lock we must ensure the entire read 1437 * side critical section has interrupts disabled. 1438 */ 1439 local_irq_save(*flags); 1440 rcu_read_lock(); 1441 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1442 if (ctx) { 1443 /* 1444 * If this context is a clone of another, it might 1445 * get swapped for another underneath us by 1446 * perf_event_task_sched_out, though the 1447 * rcu_read_lock() protects us from any context 1448 * getting freed. Lock the context and check if it 1449 * got swapped before we could get the lock, and retry 1450 * if so. If we locked the right context, then it 1451 * can't get swapped on us any more. 1452 */ 1453 raw_spin_lock(&ctx->lock); 1454 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1455 raw_spin_unlock(&ctx->lock); 1456 rcu_read_unlock(); 1457 local_irq_restore(*flags); 1458 goto retry; 1459 } 1460 1461 if (ctx->task == TASK_TOMBSTONE || 1462 !refcount_inc_not_zero(&ctx->refcount)) { 1463 raw_spin_unlock(&ctx->lock); 1464 ctx = NULL; 1465 } else { 1466 WARN_ON_ONCE(ctx->task != task); 1467 } 1468 } 1469 rcu_read_unlock(); 1470 if (!ctx) 1471 local_irq_restore(*flags); 1472 return ctx; 1473 } 1474 1475 /* 1476 * Get the context for a task and increment its pin_count so it 1477 * can't get swapped to another task. This also increments its 1478 * reference count so that the context can't get freed. 1479 */ 1480 static struct perf_event_context * 1481 perf_pin_task_context(struct task_struct *task, int ctxn) 1482 { 1483 struct perf_event_context *ctx; 1484 unsigned long flags; 1485 1486 ctx = perf_lock_task_context(task, ctxn, &flags); 1487 if (ctx) { 1488 ++ctx->pin_count; 1489 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1490 } 1491 return ctx; 1492 } 1493 1494 static void perf_unpin_context(struct perf_event_context *ctx) 1495 { 1496 unsigned long flags; 1497 1498 raw_spin_lock_irqsave(&ctx->lock, flags); 1499 --ctx->pin_count; 1500 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1501 } 1502 1503 /* 1504 * Update the record of the current time in a context. 1505 */ 1506 static void update_context_time(struct perf_event_context *ctx) 1507 { 1508 u64 now = perf_clock(); 1509 1510 ctx->time += now - ctx->timestamp; 1511 ctx->timestamp = now; 1512 } 1513 1514 static u64 perf_event_time(struct perf_event *event) 1515 { 1516 struct perf_event_context *ctx = event->ctx; 1517 1518 if (is_cgroup_event(event)) 1519 return perf_cgroup_event_time(event); 1520 1521 return ctx ? ctx->time : 0; 1522 } 1523 1524 static enum event_type_t get_event_type(struct perf_event *event) 1525 { 1526 struct perf_event_context *ctx = event->ctx; 1527 enum event_type_t event_type; 1528 1529 lockdep_assert_held(&ctx->lock); 1530 1531 /* 1532 * It's 'group type', really, because if our group leader is 1533 * pinned, so are we. 1534 */ 1535 if (event->group_leader != event) 1536 event = event->group_leader; 1537 1538 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1539 if (!ctx->task) 1540 event_type |= EVENT_CPU; 1541 1542 return event_type; 1543 } 1544 1545 /* 1546 * Helper function to initialize event group nodes. 1547 */ 1548 static void init_event_group(struct perf_event *event) 1549 { 1550 RB_CLEAR_NODE(&event->group_node); 1551 event->group_index = 0; 1552 } 1553 1554 /* 1555 * Extract pinned or flexible groups from the context 1556 * based on event attrs bits. 1557 */ 1558 static struct perf_event_groups * 1559 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1560 { 1561 if (event->attr.pinned) 1562 return &ctx->pinned_groups; 1563 else 1564 return &ctx->flexible_groups; 1565 } 1566 1567 /* 1568 * Helper function to initializes perf_event_group trees. 1569 */ 1570 static void perf_event_groups_init(struct perf_event_groups *groups) 1571 { 1572 groups->tree = RB_ROOT; 1573 groups->index = 0; 1574 } 1575 1576 /* 1577 * Compare function for event groups; 1578 * 1579 * Implements complex key that first sorts by CPU and then by virtual index 1580 * which provides ordering when rotating groups for the same CPU. 1581 */ 1582 static bool 1583 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1584 { 1585 if (left->cpu < right->cpu) 1586 return true; 1587 if (left->cpu > right->cpu) 1588 return false; 1589 1590 #ifdef CONFIG_CGROUP_PERF 1591 if (left->cgrp != right->cgrp) { 1592 if (!left->cgrp || !left->cgrp->css.cgroup) { 1593 /* 1594 * Left has no cgroup but right does, no cgroups come 1595 * first. 1596 */ 1597 return true; 1598 } 1599 if (!right->cgrp || !right->cgrp->css.cgroup) { 1600 /* 1601 * Right has no cgroup but left does, no cgroups come 1602 * first. 1603 */ 1604 return false; 1605 } 1606 /* Two dissimilar cgroups, order by id. */ 1607 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1608 return true; 1609 1610 return false; 1611 } 1612 #endif 1613 1614 if (left->group_index < right->group_index) 1615 return true; 1616 if (left->group_index > right->group_index) 1617 return false; 1618 1619 return false; 1620 } 1621 1622 /* 1623 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1624 * key (see perf_event_groups_less). This places it last inside the CPU 1625 * subtree. 1626 */ 1627 static void 1628 perf_event_groups_insert(struct perf_event_groups *groups, 1629 struct perf_event *event) 1630 { 1631 struct perf_event *node_event; 1632 struct rb_node *parent; 1633 struct rb_node **node; 1634 1635 event->group_index = ++groups->index; 1636 1637 node = &groups->tree.rb_node; 1638 parent = *node; 1639 1640 while (*node) { 1641 parent = *node; 1642 node_event = container_of(*node, struct perf_event, group_node); 1643 1644 if (perf_event_groups_less(event, node_event)) 1645 node = &parent->rb_left; 1646 else 1647 node = &parent->rb_right; 1648 } 1649 1650 rb_link_node(&event->group_node, parent, node); 1651 rb_insert_color(&event->group_node, &groups->tree); 1652 } 1653 1654 /* 1655 * Helper function to insert event into the pinned or flexible groups. 1656 */ 1657 static void 1658 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1659 { 1660 struct perf_event_groups *groups; 1661 1662 groups = get_event_groups(event, ctx); 1663 perf_event_groups_insert(groups, event); 1664 } 1665 1666 /* 1667 * Delete a group from a tree. 1668 */ 1669 static void 1670 perf_event_groups_delete(struct perf_event_groups *groups, 1671 struct perf_event *event) 1672 { 1673 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1674 RB_EMPTY_ROOT(&groups->tree)); 1675 1676 rb_erase(&event->group_node, &groups->tree); 1677 init_event_group(event); 1678 } 1679 1680 /* 1681 * Helper function to delete event from its groups. 1682 */ 1683 static void 1684 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1685 { 1686 struct perf_event_groups *groups; 1687 1688 groups = get_event_groups(event, ctx); 1689 perf_event_groups_delete(groups, event); 1690 } 1691 1692 /* 1693 * Get the leftmost event in the cpu/cgroup subtree. 1694 */ 1695 static struct perf_event * 1696 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1697 struct cgroup *cgrp) 1698 { 1699 struct perf_event *node_event = NULL, *match = NULL; 1700 struct rb_node *node = groups->tree.rb_node; 1701 #ifdef CONFIG_CGROUP_PERF 1702 u64 node_cgrp_id, cgrp_id = 0; 1703 1704 if (cgrp) 1705 cgrp_id = cgrp->kn->id; 1706 #endif 1707 1708 while (node) { 1709 node_event = container_of(node, struct perf_event, group_node); 1710 1711 if (cpu < node_event->cpu) { 1712 node = node->rb_left; 1713 continue; 1714 } 1715 if (cpu > node_event->cpu) { 1716 node = node->rb_right; 1717 continue; 1718 } 1719 #ifdef CONFIG_CGROUP_PERF 1720 node_cgrp_id = 0; 1721 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1722 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1723 1724 if (cgrp_id < node_cgrp_id) { 1725 node = node->rb_left; 1726 continue; 1727 } 1728 if (cgrp_id > node_cgrp_id) { 1729 node = node->rb_right; 1730 continue; 1731 } 1732 #endif 1733 match = node_event; 1734 node = node->rb_left; 1735 } 1736 1737 return match; 1738 } 1739 1740 /* 1741 * Like rb_entry_next_safe() for the @cpu subtree. 1742 */ 1743 static struct perf_event * 1744 perf_event_groups_next(struct perf_event *event) 1745 { 1746 struct perf_event *next; 1747 #ifdef CONFIG_CGROUP_PERF 1748 u64 curr_cgrp_id = 0; 1749 u64 next_cgrp_id = 0; 1750 #endif 1751 1752 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1753 if (next == NULL || next->cpu != event->cpu) 1754 return NULL; 1755 1756 #ifdef CONFIG_CGROUP_PERF 1757 if (event->cgrp && event->cgrp->css.cgroup) 1758 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1759 1760 if (next->cgrp && next->cgrp->css.cgroup) 1761 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1762 1763 if (curr_cgrp_id != next_cgrp_id) 1764 return NULL; 1765 #endif 1766 return next; 1767 } 1768 1769 /* 1770 * Iterate through the whole groups tree. 1771 */ 1772 #define perf_event_groups_for_each(event, groups) \ 1773 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1774 typeof(*event), group_node); event; \ 1775 event = rb_entry_safe(rb_next(&event->group_node), \ 1776 typeof(*event), group_node)) 1777 1778 /* 1779 * Add an event from the lists for its context. 1780 * Must be called with ctx->mutex and ctx->lock held. 1781 */ 1782 static void 1783 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1784 { 1785 lockdep_assert_held(&ctx->lock); 1786 1787 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1788 event->attach_state |= PERF_ATTACH_CONTEXT; 1789 1790 event->tstamp = perf_event_time(event); 1791 1792 /* 1793 * If we're a stand alone event or group leader, we go to the context 1794 * list, group events are kept attached to the group so that 1795 * perf_group_detach can, at all times, locate all siblings. 1796 */ 1797 if (event->group_leader == event) { 1798 event->group_caps = event->event_caps; 1799 add_event_to_groups(event, ctx); 1800 } 1801 1802 list_add_rcu(&event->event_entry, &ctx->event_list); 1803 ctx->nr_events++; 1804 if (event->attr.inherit_stat) 1805 ctx->nr_stat++; 1806 1807 if (event->state > PERF_EVENT_STATE_OFF) 1808 perf_cgroup_event_enable(event, ctx); 1809 1810 ctx->generation++; 1811 } 1812 1813 /* 1814 * Initialize event state based on the perf_event_attr::disabled. 1815 */ 1816 static inline void perf_event__state_init(struct perf_event *event) 1817 { 1818 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1819 PERF_EVENT_STATE_INACTIVE; 1820 } 1821 1822 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1823 { 1824 int entry = sizeof(u64); /* value */ 1825 int size = 0; 1826 int nr = 1; 1827 1828 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1829 size += sizeof(u64); 1830 1831 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1832 size += sizeof(u64); 1833 1834 if (event->attr.read_format & PERF_FORMAT_ID) 1835 entry += sizeof(u64); 1836 1837 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1838 nr += nr_siblings; 1839 size += sizeof(u64); 1840 } 1841 1842 size += entry * nr; 1843 event->read_size = size; 1844 } 1845 1846 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1847 { 1848 struct perf_sample_data *data; 1849 u16 size = 0; 1850 1851 if (sample_type & PERF_SAMPLE_IP) 1852 size += sizeof(data->ip); 1853 1854 if (sample_type & PERF_SAMPLE_ADDR) 1855 size += sizeof(data->addr); 1856 1857 if (sample_type & PERF_SAMPLE_PERIOD) 1858 size += sizeof(data->period); 1859 1860 if (sample_type & PERF_SAMPLE_WEIGHT) 1861 size += sizeof(data->weight); 1862 1863 if (sample_type & PERF_SAMPLE_READ) 1864 size += event->read_size; 1865 1866 if (sample_type & PERF_SAMPLE_DATA_SRC) 1867 size += sizeof(data->data_src.val); 1868 1869 if (sample_type & PERF_SAMPLE_TRANSACTION) 1870 size += sizeof(data->txn); 1871 1872 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1873 size += sizeof(data->phys_addr); 1874 1875 if (sample_type & PERF_SAMPLE_CGROUP) 1876 size += sizeof(data->cgroup); 1877 1878 event->header_size = size; 1879 } 1880 1881 /* 1882 * Called at perf_event creation and when events are attached/detached from a 1883 * group. 1884 */ 1885 static void perf_event__header_size(struct perf_event *event) 1886 { 1887 __perf_event_read_size(event, 1888 event->group_leader->nr_siblings); 1889 __perf_event_header_size(event, event->attr.sample_type); 1890 } 1891 1892 static void perf_event__id_header_size(struct perf_event *event) 1893 { 1894 struct perf_sample_data *data; 1895 u64 sample_type = event->attr.sample_type; 1896 u16 size = 0; 1897 1898 if (sample_type & PERF_SAMPLE_TID) 1899 size += sizeof(data->tid_entry); 1900 1901 if (sample_type & PERF_SAMPLE_TIME) 1902 size += sizeof(data->time); 1903 1904 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1905 size += sizeof(data->id); 1906 1907 if (sample_type & PERF_SAMPLE_ID) 1908 size += sizeof(data->id); 1909 1910 if (sample_type & PERF_SAMPLE_STREAM_ID) 1911 size += sizeof(data->stream_id); 1912 1913 if (sample_type & PERF_SAMPLE_CPU) 1914 size += sizeof(data->cpu_entry); 1915 1916 event->id_header_size = size; 1917 } 1918 1919 static bool perf_event_validate_size(struct perf_event *event) 1920 { 1921 /* 1922 * The values computed here will be over-written when we actually 1923 * attach the event. 1924 */ 1925 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1926 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1927 perf_event__id_header_size(event); 1928 1929 /* 1930 * Sum the lot; should not exceed the 64k limit we have on records. 1931 * Conservative limit to allow for callchains and other variable fields. 1932 */ 1933 if (event->read_size + event->header_size + 1934 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1935 return false; 1936 1937 return true; 1938 } 1939 1940 static void perf_group_attach(struct perf_event *event) 1941 { 1942 struct perf_event *group_leader = event->group_leader, *pos; 1943 1944 lockdep_assert_held(&event->ctx->lock); 1945 1946 /* 1947 * We can have double attach due to group movement in perf_event_open. 1948 */ 1949 if (event->attach_state & PERF_ATTACH_GROUP) 1950 return; 1951 1952 event->attach_state |= PERF_ATTACH_GROUP; 1953 1954 if (group_leader == event) 1955 return; 1956 1957 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1958 1959 group_leader->group_caps &= event->event_caps; 1960 1961 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1962 group_leader->nr_siblings++; 1963 1964 perf_event__header_size(group_leader); 1965 1966 for_each_sibling_event(pos, group_leader) 1967 perf_event__header_size(pos); 1968 } 1969 1970 /* 1971 * Remove an event from the lists for its context. 1972 * Must be called with ctx->mutex and ctx->lock held. 1973 */ 1974 static void 1975 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1976 { 1977 WARN_ON_ONCE(event->ctx != ctx); 1978 lockdep_assert_held(&ctx->lock); 1979 1980 /* 1981 * We can have double detach due to exit/hot-unplug + close. 1982 */ 1983 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1984 return; 1985 1986 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1987 1988 ctx->nr_events--; 1989 if (event->attr.inherit_stat) 1990 ctx->nr_stat--; 1991 1992 list_del_rcu(&event->event_entry); 1993 1994 if (event->group_leader == event) 1995 del_event_from_groups(event, ctx); 1996 1997 /* 1998 * If event was in error state, then keep it 1999 * that way, otherwise bogus counts will be 2000 * returned on read(). The only way to get out 2001 * of error state is by explicit re-enabling 2002 * of the event 2003 */ 2004 if (event->state > PERF_EVENT_STATE_OFF) { 2005 perf_cgroup_event_disable(event, ctx); 2006 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2007 } 2008 2009 ctx->generation++; 2010 } 2011 2012 static int 2013 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2014 { 2015 if (!has_aux(aux_event)) 2016 return 0; 2017 2018 if (!event->pmu->aux_output_match) 2019 return 0; 2020 2021 return event->pmu->aux_output_match(aux_event); 2022 } 2023 2024 static void put_event(struct perf_event *event); 2025 static void event_sched_out(struct perf_event *event, 2026 struct perf_cpu_context *cpuctx, 2027 struct perf_event_context *ctx); 2028 2029 static void perf_put_aux_event(struct perf_event *event) 2030 { 2031 struct perf_event_context *ctx = event->ctx; 2032 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2033 struct perf_event *iter; 2034 2035 /* 2036 * If event uses aux_event tear down the link 2037 */ 2038 if (event->aux_event) { 2039 iter = event->aux_event; 2040 event->aux_event = NULL; 2041 put_event(iter); 2042 return; 2043 } 2044 2045 /* 2046 * If the event is an aux_event, tear down all links to 2047 * it from other events. 2048 */ 2049 for_each_sibling_event(iter, event->group_leader) { 2050 if (iter->aux_event != event) 2051 continue; 2052 2053 iter->aux_event = NULL; 2054 put_event(event); 2055 2056 /* 2057 * If it's ACTIVE, schedule it out and put it into ERROR 2058 * state so that we don't try to schedule it again. Note 2059 * that perf_event_enable() will clear the ERROR status. 2060 */ 2061 event_sched_out(iter, cpuctx, ctx); 2062 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2063 } 2064 } 2065 2066 static bool perf_need_aux_event(struct perf_event *event) 2067 { 2068 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2069 } 2070 2071 static int perf_get_aux_event(struct perf_event *event, 2072 struct perf_event *group_leader) 2073 { 2074 /* 2075 * Our group leader must be an aux event if we want to be 2076 * an aux_output. This way, the aux event will precede its 2077 * aux_output events in the group, and therefore will always 2078 * schedule first. 2079 */ 2080 if (!group_leader) 2081 return 0; 2082 2083 /* 2084 * aux_output and aux_sample_size are mutually exclusive. 2085 */ 2086 if (event->attr.aux_output && event->attr.aux_sample_size) 2087 return 0; 2088 2089 if (event->attr.aux_output && 2090 !perf_aux_output_match(event, group_leader)) 2091 return 0; 2092 2093 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2094 return 0; 2095 2096 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2097 return 0; 2098 2099 /* 2100 * Link aux_outputs to their aux event; this is undone in 2101 * perf_group_detach() by perf_put_aux_event(). When the 2102 * group in torn down, the aux_output events loose their 2103 * link to the aux_event and can't schedule any more. 2104 */ 2105 event->aux_event = group_leader; 2106 2107 return 1; 2108 } 2109 2110 static inline struct list_head *get_event_list(struct perf_event *event) 2111 { 2112 struct perf_event_context *ctx = event->ctx; 2113 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2114 } 2115 2116 static void perf_group_detach(struct perf_event *event) 2117 { 2118 struct perf_event *sibling, *tmp; 2119 struct perf_event_context *ctx = event->ctx; 2120 2121 lockdep_assert_held(&ctx->lock); 2122 2123 /* 2124 * We can have double detach due to exit/hot-unplug + close. 2125 */ 2126 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2127 return; 2128 2129 event->attach_state &= ~PERF_ATTACH_GROUP; 2130 2131 perf_put_aux_event(event); 2132 2133 /* 2134 * If this is a sibling, remove it from its group. 2135 */ 2136 if (event->group_leader != event) { 2137 list_del_init(&event->sibling_list); 2138 event->group_leader->nr_siblings--; 2139 goto out; 2140 } 2141 2142 /* 2143 * If this was a group event with sibling events then 2144 * upgrade the siblings to singleton events by adding them 2145 * to whatever list we are on. 2146 */ 2147 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2148 2149 sibling->group_leader = sibling; 2150 list_del_init(&sibling->sibling_list); 2151 2152 /* Inherit group flags from the previous leader */ 2153 sibling->group_caps = event->group_caps; 2154 2155 if (!RB_EMPTY_NODE(&event->group_node)) { 2156 add_event_to_groups(sibling, event->ctx); 2157 2158 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2159 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2160 } 2161 2162 WARN_ON_ONCE(sibling->ctx != event->ctx); 2163 } 2164 2165 out: 2166 perf_event__header_size(event->group_leader); 2167 2168 for_each_sibling_event(tmp, event->group_leader) 2169 perf_event__header_size(tmp); 2170 } 2171 2172 static bool is_orphaned_event(struct perf_event *event) 2173 { 2174 return event->state == PERF_EVENT_STATE_DEAD; 2175 } 2176 2177 static inline int __pmu_filter_match(struct perf_event *event) 2178 { 2179 struct pmu *pmu = event->pmu; 2180 return pmu->filter_match ? pmu->filter_match(event) : 1; 2181 } 2182 2183 /* 2184 * Check whether we should attempt to schedule an event group based on 2185 * PMU-specific filtering. An event group can consist of HW and SW events, 2186 * potentially with a SW leader, so we must check all the filters, to 2187 * determine whether a group is schedulable: 2188 */ 2189 static inline int pmu_filter_match(struct perf_event *event) 2190 { 2191 struct perf_event *sibling; 2192 2193 if (!__pmu_filter_match(event)) 2194 return 0; 2195 2196 for_each_sibling_event(sibling, event) { 2197 if (!__pmu_filter_match(sibling)) 2198 return 0; 2199 } 2200 2201 return 1; 2202 } 2203 2204 static inline int 2205 event_filter_match(struct perf_event *event) 2206 { 2207 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2208 perf_cgroup_match(event) && pmu_filter_match(event); 2209 } 2210 2211 static void 2212 event_sched_out(struct perf_event *event, 2213 struct perf_cpu_context *cpuctx, 2214 struct perf_event_context *ctx) 2215 { 2216 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2217 2218 WARN_ON_ONCE(event->ctx != ctx); 2219 lockdep_assert_held(&ctx->lock); 2220 2221 if (event->state != PERF_EVENT_STATE_ACTIVE) 2222 return; 2223 2224 /* 2225 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2226 * we can schedule events _OUT_ individually through things like 2227 * __perf_remove_from_context(). 2228 */ 2229 list_del_init(&event->active_list); 2230 2231 perf_pmu_disable(event->pmu); 2232 2233 event->pmu->del(event, 0); 2234 event->oncpu = -1; 2235 2236 if (READ_ONCE(event->pending_disable) >= 0) { 2237 WRITE_ONCE(event->pending_disable, -1); 2238 perf_cgroup_event_disable(event, ctx); 2239 state = PERF_EVENT_STATE_OFF; 2240 } 2241 perf_event_set_state(event, state); 2242 2243 if (!is_software_event(event)) 2244 cpuctx->active_oncpu--; 2245 if (!--ctx->nr_active) 2246 perf_event_ctx_deactivate(ctx); 2247 if (event->attr.freq && event->attr.sample_freq) 2248 ctx->nr_freq--; 2249 if (event->attr.exclusive || !cpuctx->active_oncpu) 2250 cpuctx->exclusive = 0; 2251 2252 perf_pmu_enable(event->pmu); 2253 } 2254 2255 static void 2256 group_sched_out(struct perf_event *group_event, 2257 struct perf_cpu_context *cpuctx, 2258 struct perf_event_context *ctx) 2259 { 2260 struct perf_event *event; 2261 2262 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2263 return; 2264 2265 perf_pmu_disable(ctx->pmu); 2266 2267 event_sched_out(group_event, cpuctx, ctx); 2268 2269 /* 2270 * Schedule out siblings (if any): 2271 */ 2272 for_each_sibling_event(event, group_event) 2273 event_sched_out(event, cpuctx, ctx); 2274 2275 perf_pmu_enable(ctx->pmu); 2276 2277 if (group_event->attr.exclusive) 2278 cpuctx->exclusive = 0; 2279 } 2280 2281 #define DETACH_GROUP 0x01UL 2282 2283 /* 2284 * Cross CPU call to remove a performance event 2285 * 2286 * We disable the event on the hardware level first. After that we 2287 * remove it from the context list. 2288 */ 2289 static void 2290 __perf_remove_from_context(struct perf_event *event, 2291 struct perf_cpu_context *cpuctx, 2292 struct perf_event_context *ctx, 2293 void *info) 2294 { 2295 unsigned long flags = (unsigned long)info; 2296 2297 if (ctx->is_active & EVENT_TIME) { 2298 update_context_time(ctx); 2299 update_cgrp_time_from_cpuctx(cpuctx); 2300 } 2301 2302 event_sched_out(event, cpuctx, ctx); 2303 if (flags & DETACH_GROUP) 2304 perf_group_detach(event); 2305 list_del_event(event, ctx); 2306 2307 if (!ctx->nr_events && ctx->is_active) { 2308 ctx->is_active = 0; 2309 ctx->rotate_necessary = 0; 2310 if (ctx->task) { 2311 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2312 cpuctx->task_ctx = NULL; 2313 } 2314 } 2315 } 2316 2317 /* 2318 * Remove the event from a task's (or a CPU's) list of events. 2319 * 2320 * If event->ctx is a cloned context, callers must make sure that 2321 * every task struct that event->ctx->task could possibly point to 2322 * remains valid. This is OK when called from perf_release since 2323 * that only calls us on the top-level context, which can't be a clone. 2324 * When called from perf_event_exit_task, it's OK because the 2325 * context has been detached from its task. 2326 */ 2327 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2328 { 2329 struct perf_event_context *ctx = event->ctx; 2330 2331 lockdep_assert_held(&ctx->mutex); 2332 2333 event_function_call(event, __perf_remove_from_context, (void *)flags); 2334 2335 /* 2336 * The above event_function_call() can NO-OP when it hits 2337 * TASK_TOMBSTONE. In that case we must already have been detached 2338 * from the context (by perf_event_exit_event()) but the grouping 2339 * might still be in-tact. 2340 */ 2341 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2342 if ((flags & DETACH_GROUP) && 2343 (event->attach_state & PERF_ATTACH_GROUP)) { 2344 /* 2345 * Since in that case we cannot possibly be scheduled, simply 2346 * detach now. 2347 */ 2348 raw_spin_lock_irq(&ctx->lock); 2349 perf_group_detach(event); 2350 raw_spin_unlock_irq(&ctx->lock); 2351 } 2352 } 2353 2354 /* 2355 * Cross CPU call to disable a performance event 2356 */ 2357 static void __perf_event_disable(struct perf_event *event, 2358 struct perf_cpu_context *cpuctx, 2359 struct perf_event_context *ctx, 2360 void *info) 2361 { 2362 if (event->state < PERF_EVENT_STATE_INACTIVE) 2363 return; 2364 2365 if (ctx->is_active & EVENT_TIME) { 2366 update_context_time(ctx); 2367 update_cgrp_time_from_event(event); 2368 } 2369 2370 if (event == event->group_leader) 2371 group_sched_out(event, cpuctx, ctx); 2372 else 2373 event_sched_out(event, cpuctx, ctx); 2374 2375 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2376 perf_cgroup_event_disable(event, ctx); 2377 } 2378 2379 /* 2380 * Disable an event. 2381 * 2382 * If event->ctx is a cloned context, callers must make sure that 2383 * every task struct that event->ctx->task could possibly point to 2384 * remains valid. This condition is satisfied when called through 2385 * perf_event_for_each_child or perf_event_for_each because they 2386 * hold the top-level event's child_mutex, so any descendant that 2387 * goes to exit will block in perf_event_exit_event(). 2388 * 2389 * When called from perf_pending_event it's OK because event->ctx 2390 * is the current context on this CPU and preemption is disabled, 2391 * hence we can't get into perf_event_task_sched_out for this context. 2392 */ 2393 static void _perf_event_disable(struct perf_event *event) 2394 { 2395 struct perf_event_context *ctx = event->ctx; 2396 2397 raw_spin_lock_irq(&ctx->lock); 2398 if (event->state <= PERF_EVENT_STATE_OFF) { 2399 raw_spin_unlock_irq(&ctx->lock); 2400 return; 2401 } 2402 raw_spin_unlock_irq(&ctx->lock); 2403 2404 event_function_call(event, __perf_event_disable, NULL); 2405 } 2406 2407 void perf_event_disable_local(struct perf_event *event) 2408 { 2409 event_function_local(event, __perf_event_disable, NULL); 2410 } 2411 2412 /* 2413 * Strictly speaking kernel users cannot create groups and therefore this 2414 * interface does not need the perf_event_ctx_lock() magic. 2415 */ 2416 void perf_event_disable(struct perf_event *event) 2417 { 2418 struct perf_event_context *ctx; 2419 2420 ctx = perf_event_ctx_lock(event); 2421 _perf_event_disable(event); 2422 perf_event_ctx_unlock(event, ctx); 2423 } 2424 EXPORT_SYMBOL_GPL(perf_event_disable); 2425 2426 void perf_event_disable_inatomic(struct perf_event *event) 2427 { 2428 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2429 /* can fail, see perf_pending_event_disable() */ 2430 irq_work_queue(&event->pending); 2431 } 2432 2433 static void perf_set_shadow_time(struct perf_event *event, 2434 struct perf_event_context *ctx) 2435 { 2436 /* 2437 * use the correct time source for the time snapshot 2438 * 2439 * We could get by without this by leveraging the 2440 * fact that to get to this function, the caller 2441 * has most likely already called update_context_time() 2442 * and update_cgrp_time_xx() and thus both timestamp 2443 * are identical (or very close). Given that tstamp is, 2444 * already adjusted for cgroup, we could say that: 2445 * tstamp - ctx->timestamp 2446 * is equivalent to 2447 * tstamp - cgrp->timestamp. 2448 * 2449 * Then, in perf_output_read(), the calculation would 2450 * work with no changes because: 2451 * - event is guaranteed scheduled in 2452 * - no scheduled out in between 2453 * - thus the timestamp would be the same 2454 * 2455 * But this is a bit hairy. 2456 * 2457 * So instead, we have an explicit cgroup call to remain 2458 * within the time time source all along. We believe it 2459 * is cleaner and simpler to understand. 2460 */ 2461 if (is_cgroup_event(event)) 2462 perf_cgroup_set_shadow_time(event, event->tstamp); 2463 else 2464 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2465 } 2466 2467 #define MAX_INTERRUPTS (~0ULL) 2468 2469 static void perf_log_throttle(struct perf_event *event, int enable); 2470 static void perf_log_itrace_start(struct perf_event *event); 2471 2472 static int 2473 event_sched_in(struct perf_event *event, 2474 struct perf_cpu_context *cpuctx, 2475 struct perf_event_context *ctx) 2476 { 2477 int ret = 0; 2478 2479 WARN_ON_ONCE(event->ctx != ctx); 2480 2481 lockdep_assert_held(&ctx->lock); 2482 2483 if (event->state <= PERF_EVENT_STATE_OFF) 2484 return 0; 2485 2486 WRITE_ONCE(event->oncpu, smp_processor_id()); 2487 /* 2488 * Order event::oncpu write to happen before the ACTIVE state is 2489 * visible. This allows perf_event_{stop,read}() to observe the correct 2490 * ->oncpu if it sees ACTIVE. 2491 */ 2492 smp_wmb(); 2493 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2494 2495 /* 2496 * Unthrottle events, since we scheduled we might have missed several 2497 * ticks already, also for a heavily scheduling task there is little 2498 * guarantee it'll get a tick in a timely manner. 2499 */ 2500 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2501 perf_log_throttle(event, 1); 2502 event->hw.interrupts = 0; 2503 } 2504 2505 perf_pmu_disable(event->pmu); 2506 2507 perf_set_shadow_time(event, ctx); 2508 2509 perf_log_itrace_start(event); 2510 2511 if (event->pmu->add(event, PERF_EF_START)) { 2512 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2513 event->oncpu = -1; 2514 ret = -EAGAIN; 2515 goto out; 2516 } 2517 2518 if (!is_software_event(event)) 2519 cpuctx->active_oncpu++; 2520 if (!ctx->nr_active++) 2521 perf_event_ctx_activate(ctx); 2522 if (event->attr.freq && event->attr.sample_freq) 2523 ctx->nr_freq++; 2524 2525 if (event->attr.exclusive) 2526 cpuctx->exclusive = 1; 2527 2528 out: 2529 perf_pmu_enable(event->pmu); 2530 2531 return ret; 2532 } 2533 2534 static int 2535 group_sched_in(struct perf_event *group_event, 2536 struct perf_cpu_context *cpuctx, 2537 struct perf_event_context *ctx) 2538 { 2539 struct perf_event *event, *partial_group = NULL; 2540 struct pmu *pmu = ctx->pmu; 2541 2542 if (group_event->state == PERF_EVENT_STATE_OFF) 2543 return 0; 2544 2545 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2546 2547 if (event_sched_in(group_event, cpuctx, ctx)) { 2548 pmu->cancel_txn(pmu); 2549 perf_mux_hrtimer_restart(cpuctx); 2550 return -EAGAIN; 2551 } 2552 2553 /* 2554 * Schedule in siblings as one group (if any): 2555 */ 2556 for_each_sibling_event(event, group_event) { 2557 if (event_sched_in(event, cpuctx, ctx)) { 2558 partial_group = event; 2559 goto group_error; 2560 } 2561 } 2562 2563 if (!pmu->commit_txn(pmu)) 2564 return 0; 2565 2566 group_error: 2567 /* 2568 * Groups can be scheduled in as one unit only, so undo any 2569 * partial group before returning: 2570 * The events up to the failed event are scheduled out normally. 2571 */ 2572 for_each_sibling_event(event, group_event) { 2573 if (event == partial_group) 2574 break; 2575 2576 event_sched_out(event, cpuctx, ctx); 2577 } 2578 event_sched_out(group_event, cpuctx, ctx); 2579 2580 pmu->cancel_txn(pmu); 2581 2582 perf_mux_hrtimer_restart(cpuctx); 2583 2584 return -EAGAIN; 2585 } 2586 2587 /* 2588 * Work out whether we can put this event group on the CPU now. 2589 */ 2590 static int group_can_go_on(struct perf_event *event, 2591 struct perf_cpu_context *cpuctx, 2592 int can_add_hw) 2593 { 2594 /* 2595 * Groups consisting entirely of software events can always go on. 2596 */ 2597 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2598 return 1; 2599 /* 2600 * If an exclusive group is already on, no other hardware 2601 * events can go on. 2602 */ 2603 if (cpuctx->exclusive) 2604 return 0; 2605 /* 2606 * If this group is exclusive and there are already 2607 * events on the CPU, it can't go on. 2608 */ 2609 if (event->attr.exclusive && cpuctx->active_oncpu) 2610 return 0; 2611 /* 2612 * Otherwise, try to add it if all previous groups were able 2613 * to go on. 2614 */ 2615 return can_add_hw; 2616 } 2617 2618 static void add_event_to_ctx(struct perf_event *event, 2619 struct perf_event_context *ctx) 2620 { 2621 list_add_event(event, ctx); 2622 perf_group_attach(event); 2623 } 2624 2625 static void ctx_sched_out(struct perf_event_context *ctx, 2626 struct perf_cpu_context *cpuctx, 2627 enum event_type_t event_type); 2628 static void 2629 ctx_sched_in(struct perf_event_context *ctx, 2630 struct perf_cpu_context *cpuctx, 2631 enum event_type_t event_type, 2632 struct task_struct *task); 2633 2634 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2635 struct perf_event_context *ctx, 2636 enum event_type_t event_type) 2637 { 2638 if (!cpuctx->task_ctx) 2639 return; 2640 2641 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2642 return; 2643 2644 ctx_sched_out(ctx, cpuctx, event_type); 2645 } 2646 2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2648 struct perf_event_context *ctx, 2649 struct task_struct *task) 2650 { 2651 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2652 if (ctx) 2653 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2654 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2655 if (ctx) 2656 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2657 } 2658 2659 /* 2660 * We want to maintain the following priority of scheduling: 2661 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2662 * - task pinned (EVENT_PINNED) 2663 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2664 * - task flexible (EVENT_FLEXIBLE). 2665 * 2666 * In order to avoid unscheduling and scheduling back in everything every 2667 * time an event is added, only do it for the groups of equal priority and 2668 * below. 2669 * 2670 * This can be called after a batch operation on task events, in which case 2671 * event_type is a bit mask of the types of events involved. For CPU events, 2672 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2673 */ 2674 static void ctx_resched(struct perf_cpu_context *cpuctx, 2675 struct perf_event_context *task_ctx, 2676 enum event_type_t event_type) 2677 { 2678 enum event_type_t ctx_event_type; 2679 bool cpu_event = !!(event_type & EVENT_CPU); 2680 2681 /* 2682 * If pinned groups are involved, flexible groups also need to be 2683 * scheduled out. 2684 */ 2685 if (event_type & EVENT_PINNED) 2686 event_type |= EVENT_FLEXIBLE; 2687 2688 ctx_event_type = event_type & EVENT_ALL; 2689 2690 perf_pmu_disable(cpuctx->ctx.pmu); 2691 if (task_ctx) 2692 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2693 2694 /* 2695 * Decide which cpu ctx groups to schedule out based on the types 2696 * of events that caused rescheduling: 2697 * - EVENT_CPU: schedule out corresponding groups; 2698 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2699 * - otherwise, do nothing more. 2700 */ 2701 if (cpu_event) 2702 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2703 else if (ctx_event_type & EVENT_PINNED) 2704 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2705 2706 perf_event_sched_in(cpuctx, task_ctx, current); 2707 perf_pmu_enable(cpuctx->ctx.pmu); 2708 } 2709 2710 void perf_pmu_resched(struct pmu *pmu) 2711 { 2712 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2713 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2714 2715 perf_ctx_lock(cpuctx, task_ctx); 2716 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2717 perf_ctx_unlock(cpuctx, task_ctx); 2718 } 2719 2720 /* 2721 * Cross CPU call to install and enable a performance event 2722 * 2723 * Very similar to remote_function() + event_function() but cannot assume that 2724 * things like ctx->is_active and cpuctx->task_ctx are set. 2725 */ 2726 static int __perf_install_in_context(void *info) 2727 { 2728 struct perf_event *event = info; 2729 struct perf_event_context *ctx = event->ctx; 2730 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2731 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2732 bool reprogram = true; 2733 int ret = 0; 2734 2735 raw_spin_lock(&cpuctx->ctx.lock); 2736 if (ctx->task) { 2737 raw_spin_lock(&ctx->lock); 2738 task_ctx = ctx; 2739 2740 reprogram = (ctx->task == current); 2741 2742 /* 2743 * If the task is running, it must be running on this CPU, 2744 * otherwise we cannot reprogram things. 2745 * 2746 * If its not running, we don't care, ctx->lock will 2747 * serialize against it becoming runnable. 2748 */ 2749 if (task_curr(ctx->task) && !reprogram) { 2750 ret = -ESRCH; 2751 goto unlock; 2752 } 2753 2754 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2755 } else if (task_ctx) { 2756 raw_spin_lock(&task_ctx->lock); 2757 } 2758 2759 #ifdef CONFIG_CGROUP_PERF 2760 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2761 /* 2762 * If the current cgroup doesn't match the event's 2763 * cgroup, we should not try to schedule it. 2764 */ 2765 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2766 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2767 event->cgrp->css.cgroup); 2768 } 2769 #endif 2770 2771 if (reprogram) { 2772 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2773 add_event_to_ctx(event, ctx); 2774 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2775 } else { 2776 add_event_to_ctx(event, ctx); 2777 } 2778 2779 unlock: 2780 perf_ctx_unlock(cpuctx, task_ctx); 2781 2782 return ret; 2783 } 2784 2785 static bool exclusive_event_installable(struct perf_event *event, 2786 struct perf_event_context *ctx); 2787 2788 /* 2789 * Attach a performance event to a context. 2790 * 2791 * Very similar to event_function_call, see comment there. 2792 */ 2793 static void 2794 perf_install_in_context(struct perf_event_context *ctx, 2795 struct perf_event *event, 2796 int cpu) 2797 { 2798 struct task_struct *task = READ_ONCE(ctx->task); 2799 2800 lockdep_assert_held(&ctx->mutex); 2801 2802 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2803 2804 if (event->cpu != -1) 2805 event->cpu = cpu; 2806 2807 /* 2808 * Ensures that if we can observe event->ctx, both the event and ctx 2809 * will be 'complete'. See perf_iterate_sb_cpu(). 2810 */ 2811 smp_store_release(&event->ctx, ctx); 2812 2813 /* 2814 * perf_event_attr::disabled events will not run and can be initialized 2815 * without IPI. Except when this is the first event for the context, in 2816 * that case we need the magic of the IPI to set ctx->is_active. 2817 * 2818 * The IOC_ENABLE that is sure to follow the creation of a disabled 2819 * event will issue the IPI and reprogram the hardware. 2820 */ 2821 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2822 raw_spin_lock_irq(&ctx->lock); 2823 if (ctx->task == TASK_TOMBSTONE) { 2824 raw_spin_unlock_irq(&ctx->lock); 2825 return; 2826 } 2827 add_event_to_ctx(event, ctx); 2828 raw_spin_unlock_irq(&ctx->lock); 2829 return; 2830 } 2831 2832 if (!task) { 2833 cpu_function_call(cpu, __perf_install_in_context, event); 2834 return; 2835 } 2836 2837 /* 2838 * Should not happen, we validate the ctx is still alive before calling. 2839 */ 2840 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2841 return; 2842 2843 /* 2844 * Installing events is tricky because we cannot rely on ctx->is_active 2845 * to be set in case this is the nr_events 0 -> 1 transition. 2846 * 2847 * Instead we use task_curr(), which tells us if the task is running. 2848 * However, since we use task_curr() outside of rq::lock, we can race 2849 * against the actual state. This means the result can be wrong. 2850 * 2851 * If we get a false positive, we retry, this is harmless. 2852 * 2853 * If we get a false negative, things are complicated. If we are after 2854 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2855 * value must be correct. If we're before, it doesn't matter since 2856 * perf_event_context_sched_in() will program the counter. 2857 * 2858 * However, this hinges on the remote context switch having observed 2859 * our task->perf_event_ctxp[] store, such that it will in fact take 2860 * ctx::lock in perf_event_context_sched_in(). 2861 * 2862 * We do this by task_function_call(), if the IPI fails to hit the task 2863 * we know any future context switch of task must see the 2864 * perf_event_ctpx[] store. 2865 */ 2866 2867 /* 2868 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2869 * task_cpu() load, such that if the IPI then does not find the task 2870 * running, a future context switch of that task must observe the 2871 * store. 2872 */ 2873 smp_mb(); 2874 again: 2875 if (!task_function_call(task, __perf_install_in_context, event)) 2876 return; 2877 2878 raw_spin_lock_irq(&ctx->lock); 2879 task = ctx->task; 2880 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2881 /* 2882 * Cannot happen because we already checked above (which also 2883 * cannot happen), and we hold ctx->mutex, which serializes us 2884 * against perf_event_exit_task_context(). 2885 */ 2886 raw_spin_unlock_irq(&ctx->lock); 2887 return; 2888 } 2889 /* 2890 * If the task is not running, ctx->lock will avoid it becoming so, 2891 * thus we can safely install the event. 2892 */ 2893 if (task_curr(task)) { 2894 raw_spin_unlock_irq(&ctx->lock); 2895 goto again; 2896 } 2897 add_event_to_ctx(event, ctx); 2898 raw_spin_unlock_irq(&ctx->lock); 2899 } 2900 2901 /* 2902 * Cross CPU call to enable a performance event 2903 */ 2904 static void __perf_event_enable(struct perf_event *event, 2905 struct perf_cpu_context *cpuctx, 2906 struct perf_event_context *ctx, 2907 void *info) 2908 { 2909 struct perf_event *leader = event->group_leader; 2910 struct perf_event_context *task_ctx; 2911 2912 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2913 event->state <= PERF_EVENT_STATE_ERROR) 2914 return; 2915 2916 if (ctx->is_active) 2917 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2918 2919 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2920 perf_cgroup_event_enable(event, ctx); 2921 2922 if (!ctx->is_active) 2923 return; 2924 2925 if (!event_filter_match(event)) { 2926 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2927 return; 2928 } 2929 2930 /* 2931 * If the event is in a group and isn't the group leader, 2932 * then don't put it on unless the group is on. 2933 */ 2934 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2935 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2936 return; 2937 } 2938 2939 task_ctx = cpuctx->task_ctx; 2940 if (ctx->task) 2941 WARN_ON_ONCE(task_ctx != ctx); 2942 2943 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2944 } 2945 2946 /* 2947 * Enable an event. 2948 * 2949 * If event->ctx is a cloned context, callers must make sure that 2950 * every task struct that event->ctx->task could possibly point to 2951 * remains valid. This condition is satisfied when called through 2952 * perf_event_for_each_child or perf_event_for_each as described 2953 * for perf_event_disable. 2954 */ 2955 static void _perf_event_enable(struct perf_event *event) 2956 { 2957 struct perf_event_context *ctx = event->ctx; 2958 2959 raw_spin_lock_irq(&ctx->lock); 2960 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2961 event->state < PERF_EVENT_STATE_ERROR) { 2962 raw_spin_unlock_irq(&ctx->lock); 2963 return; 2964 } 2965 2966 /* 2967 * If the event is in error state, clear that first. 2968 * 2969 * That way, if we see the event in error state below, we know that it 2970 * has gone back into error state, as distinct from the task having 2971 * been scheduled away before the cross-call arrived. 2972 */ 2973 if (event->state == PERF_EVENT_STATE_ERROR) 2974 event->state = PERF_EVENT_STATE_OFF; 2975 raw_spin_unlock_irq(&ctx->lock); 2976 2977 event_function_call(event, __perf_event_enable, NULL); 2978 } 2979 2980 /* 2981 * See perf_event_disable(); 2982 */ 2983 void perf_event_enable(struct perf_event *event) 2984 { 2985 struct perf_event_context *ctx; 2986 2987 ctx = perf_event_ctx_lock(event); 2988 _perf_event_enable(event); 2989 perf_event_ctx_unlock(event, ctx); 2990 } 2991 EXPORT_SYMBOL_GPL(perf_event_enable); 2992 2993 struct stop_event_data { 2994 struct perf_event *event; 2995 unsigned int restart; 2996 }; 2997 2998 static int __perf_event_stop(void *info) 2999 { 3000 struct stop_event_data *sd = info; 3001 struct perf_event *event = sd->event; 3002 3003 /* if it's already INACTIVE, do nothing */ 3004 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3005 return 0; 3006 3007 /* matches smp_wmb() in event_sched_in() */ 3008 smp_rmb(); 3009 3010 /* 3011 * There is a window with interrupts enabled before we get here, 3012 * so we need to check again lest we try to stop another CPU's event. 3013 */ 3014 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3015 return -EAGAIN; 3016 3017 event->pmu->stop(event, PERF_EF_UPDATE); 3018 3019 /* 3020 * May race with the actual stop (through perf_pmu_output_stop()), 3021 * but it is only used for events with AUX ring buffer, and such 3022 * events will refuse to restart because of rb::aux_mmap_count==0, 3023 * see comments in perf_aux_output_begin(). 3024 * 3025 * Since this is happening on an event-local CPU, no trace is lost 3026 * while restarting. 3027 */ 3028 if (sd->restart) 3029 event->pmu->start(event, 0); 3030 3031 return 0; 3032 } 3033 3034 static int perf_event_stop(struct perf_event *event, int restart) 3035 { 3036 struct stop_event_data sd = { 3037 .event = event, 3038 .restart = restart, 3039 }; 3040 int ret = 0; 3041 3042 do { 3043 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3044 return 0; 3045 3046 /* matches smp_wmb() in event_sched_in() */ 3047 smp_rmb(); 3048 3049 /* 3050 * We only want to restart ACTIVE events, so if the event goes 3051 * inactive here (event->oncpu==-1), there's nothing more to do; 3052 * fall through with ret==-ENXIO. 3053 */ 3054 ret = cpu_function_call(READ_ONCE(event->oncpu), 3055 __perf_event_stop, &sd); 3056 } while (ret == -EAGAIN); 3057 3058 return ret; 3059 } 3060 3061 /* 3062 * In order to contain the amount of racy and tricky in the address filter 3063 * configuration management, it is a two part process: 3064 * 3065 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3066 * we update the addresses of corresponding vmas in 3067 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3068 * (p2) when an event is scheduled in (pmu::add), it calls 3069 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3070 * if the generation has changed since the previous call. 3071 * 3072 * If (p1) happens while the event is active, we restart it to force (p2). 3073 * 3074 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3075 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3076 * ioctl; 3077 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3078 * registered mapping, called for every new mmap(), with mm::mmap_sem down 3079 * for reading; 3080 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3081 * of exec. 3082 */ 3083 void perf_event_addr_filters_sync(struct perf_event *event) 3084 { 3085 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3086 3087 if (!has_addr_filter(event)) 3088 return; 3089 3090 raw_spin_lock(&ifh->lock); 3091 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3092 event->pmu->addr_filters_sync(event); 3093 event->hw.addr_filters_gen = event->addr_filters_gen; 3094 } 3095 raw_spin_unlock(&ifh->lock); 3096 } 3097 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3098 3099 static int _perf_event_refresh(struct perf_event *event, int refresh) 3100 { 3101 /* 3102 * not supported on inherited events 3103 */ 3104 if (event->attr.inherit || !is_sampling_event(event)) 3105 return -EINVAL; 3106 3107 atomic_add(refresh, &event->event_limit); 3108 _perf_event_enable(event); 3109 3110 return 0; 3111 } 3112 3113 /* 3114 * See perf_event_disable() 3115 */ 3116 int perf_event_refresh(struct perf_event *event, int refresh) 3117 { 3118 struct perf_event_context *ctx; 3119 int ret; 3120 3121 ctx = perf_event_ctx_lock(event); 3122 ret = _perf_event_refresh(event, refresh); 3123 perf_event_ctx_unlock(event, ctx); 3124 3125 return ret; 3126 } 3127 EXPORT_SYMBOL_GPL(perf_event_refresh); 3128 3129 static int perf_event_modify_breakpoint(struct perf_event *bp, 3130 struct perf_event_attr *attr) 3131 { 3132 int err; 3133 3134 _perf_event_disable(bp); 3135 3136 err = modify_user_hw_breakpoint_check(bp, attr, true); 3137 3138 if (!bp->attr.disabled) 3139 _perf_event_enable(bp); 3140 3141 return err; 3142 } 3143 3144 static int perf_event_modify_attr(struct perf_event *event, 3145 struct perf_event_attr *attr) 3146 { 3147 if (event->attr.type != attr->type) 3148 return -EINVAL; 3149 3150 switch (event->attr.type) { 3151 case PERF_TYPE_BREAKPOINT: 3152 return perf_event_modify_breakpoint(event, attr); 3153 default: 3154 /* Place holder for future additions. */ 3155 return -EOPNOTSUPP; 3156 } 3157 } 3158 3159 static void ctx_sched_out(struct perf_event_context *ctx, 3160 struct perf_cpu_context *cpuctx, 3161 enum event_type_t event_type) 3162 { 3163 struct perf_event *event, *tmp; 3164 int is_active = ctx->is_active; 3165 3166 lockdep_assert_held(&ctx->lock); 3167 3168 if (likely(!ctx->nr_events)) { 3169 /* 3170 * See __perf_remove_from_context(). 3171 */ 3172 WARN_ON_ONCE(ctx->is_active); 3173 if (ctx->task) 3174 WARN_ON_ONCE(cpuctx->task_ctx); 3175 return; 3176 } 3177 3178 ctx->is_active &= ~event_type; 3179 if (!(ctx->is_active & EVENT_ALL)) 3180 ctx->is_active = 0; 3181 3182 if (ctx->task) { 3183 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3184 if (!ctx->is_active) 3185 cpuctx->task_ctx = NULL; 3186 } 3187 3188 /* 3189 * Always update time if it was set; not only when it changes. 3190 * Otherwise we can 'forget' to update time for any but the last 3191 * context we sched out. For example: 3192 * 3193 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3194 * ctx_sched_out(.event_type = EVENT_PINNED) 3195 * 3196 * would only update time for the pinned events. 3197 */ 3198 if (is_active & EVENT_TIME) { 3199 /* update (and stop) ctx time */ 3200 update_context_time(ctx); 3201 update_cgrp_time_from_cpuctx(cpuctx); 3202 } 3203 3204 is_active ^= ctx->is_active; /* changed bits */ 3205 3206 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3207 return; 3208 3209 perf_pmu_disable(ctx->pmu); 3210 if (is_active & EVENT_PINNED) { 3211 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3212 group_sched_out(event, cpuctx, ctx); 3213 } 3214 3215 if (is_active & EVENT_FLEXIBLE) { 3216 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3217 group_sched_out(event, cpuctx, ctx); 3218 3219 /* 3220 * Since we cleared EVENT_FLEXIBLE, also clear 3221 * rotate_necessary, is will be reset by 3222 * ctx_flexible_sched_in() when needed. 3223 */ 3224 ctx->rotate_necessary = 0; 3225 } 3226 perf_pmu_enable(ctx->pmu); 3227 } 3228 3229 /* 3230 * Test whether two contexts are equivalent, i.e. whether they have both been 3231 * cloned from the same version of the same context. 3232 * 3233 * Equivalence is measured using a generation number in the context that is 3234 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3235 * and list_del_event(). 3236 */ 3237 static int context_equiv(struct perf_event_context *ctx1, 3238 struct perf_event_context *ctx2) 3239 { 3240 lockdep_assert_held(&ctx1->lock); 3241 lockdep_assert_held(&ctx2->lock); 3242 3243 /* Pinning disables the swap optimization */ 3244 if (ctx1->pin_count || ctx2->pin_count) 3245 return 0; 3246 3247 /* If ctx1 is the parent of ctx2 */ 3248 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3249 return 1; 3250 3251 /* If ctx2 is the parent of ctx1 */ 3252 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3253 return 1; 3254 3255 /* 3256 * If ctx1 and ctx2 have the same parent; we flatten the parent 3257 * hierarchy, see perf_event_init_context(). 3258 */ 3259 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3260 ctx1->parent_gen == ctx2->parent_gen) 3261 return 1; 3262 3263 /* Unmatched */ 3264 return 0; 3265 } 3266 3267 static void __perf_event_sync_stat(struct perf_event *event, 3268 struct perf_event *next_event) 3269 { 3270 u64 value; 3271 3272 if (!event->attr.inherit_stat) 3273 return; 3274 3275 /* 3276 * Update the event value, we cannot use perf_event_read() 3277 * because we're in the middle of a context switch and have IRQs 3278 * disabled, which upsets smp_call_function_single(), however 3279 * we know the event must be on the current CPU, therefore we 3280 * don't need to use it. 3281 */ 3282 if (event->state == PERF_EVENT_STATE_ACTIVE) 3283 event->pmu->read(event); 3284 3285 perf_event_update_time(event); 3286 3287 /* 3288 * In order to keep per-task stats reliable we need to flip the event 3289 * values when we flip the contexts. 3290 */ 3291 value = local64_read(&next_event->count); 3292 value = local64_xchg(&event->count, value); 3293 local64_set(&next_event->count, value); 3294 3295 swap(event->total_time_enabled, next_event->total_time_enabled); 3296 swap(event->total_time_running, next_event->total_time_running); 3297 3298 /* 3299 * Since we swizzled the values, update the user visible data too. 3300 */ 3301 perf_event_update_userpage(event); 3302 perf_event_update_userpage(next_event); 3303 } 3304 3305 static void perf_event_sync_stat(struct perf_event_context *ctx, 3306 struct perf_event_context *next_ctx) 3307 { 3308 struct perf_event *event, *next_event; 3309 3310 if (!ctx->nr_stat) 3311 return; 3312 3313 update_context_time(ctx); 3314 3315 event = list_first_entry(&ctx->event_list, 3316 struct perf_event, event_entry); 3317 3318 next_event = list_first_entry(&next_ctx->event_list, 3319 struct perf_event, event_entry); 3320 3321 while (&event->event_entry != &ctx->event_list && 3322 &next_event->event_entry != &next_ctx->event_list) { 3323 3324 __perf_event_sync_stat(event, next_event); 3325 3326 event = list_next_entry(event, event_entry); 3327 next_event = list_next_entry(next_event, event_entry); 3328 } 3329 } 3330 3331 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3332 struct task_struct *next) 3333 { 3334 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3335 struct perf_event_context *next_ctx; 3336 struct perf_event_context *parent, *next_parent; 3337 struct perf_cpu_context *cpuctx; 3338 int do_switch = 1; 3339 3340 if (likely(!ctx)) 3341 return; 3342 3343 cpuctx = __get_cpu_context(ctx); 3344 if (!cpuctx->task_ctx) 3345 return; 3346 3347 rcu_read_lock(); 3348 next_ctx = next->perf_event_ctxp[ctxn]; 3349 if (!next_ctx) 3350 goto unlock; 3351 3352 parent = rcu_dereference(ctx->parent_ctx); 3353 next_parent = rcu_dereference(next_ctx->parent_ctx); 3354 3355 /* If neither context have a parent context; they cannot be clones. */ 3356 if (!parent && !next_parent) 3357 goto unlock; 3358 3359 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3360 /* 3361 * Looks like the two contexts are clones, so we might be 3362 * able to optimize the context switch. We lock both 3363 * contexts and check that they are clones under the 3364 * lock (including re-checking that neither has been 3365 * uncloned in the meantime). It doesn't matter which 3366 * order we take the locks because no other cpu could 3367 * be trying to lock both of these tasks. 3368 */ 3369 raw_spin_lock(&ctx->lock); 3370 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3371 if (context_equiv(ctx, next_ctx)) { 3372 struct pmu *pmu = ctx->pmu; 3373 3374 WRITE_ONCE(ctx->task, next); 3375 WRITE_ONCE(next_ctx->task, task); 3376 3377 /* 3378 * PMU specific parts of task perf context can require 3379 * additional synchronization. As an example of such 3380 * synchronization see implementation details of Intel 3381 * LBR call stack data profiling; 3382 */ 3383 if (pmu->swap_task_ctx) 3384 pmu->swap_task_ctx(ctx, next_ctx); 3385 else 3386 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3387 3388 /* 3389 * RCU_INIT_POINTER here is safe because we've not 3390 * modified the ctx and the above modification of 3391 * ctx->task and ctx->task_ctx_data are immaterial 3392 * since those values are always verified under 3393 * ctx->lock which we're now holding. 3394 */ 3395 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3396 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3397 3398 do_switch = 0; 3399 3400 perf_event_sync_stat(ctx, next_ctx); 3401 } 3402 raw_spin_unlock(&next_ctx->lock); 3403 raw_spin_unlock(&ctx->lock); 3404 } 3405 unlock: 3406 rcu_read_unlock(); 3407 3408 if (do_switch) { 3409 raw_spin_lock(&ctx->lock); 3410 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3411 raw_spin_unlock(&ctx->lock); 3412 } 3413 } 3414 3415 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3416 3417 void perf_sched_cb_dec(struct pmu *pmu) 3418 { 3419 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3420 3421 this_cpu_dec(perf_sched_cb_usages); 3422 3423 if (!--cpuctx->sched_cb_usage) 3424 list_del(&cpuctx->sched_cb_entry); 3425 } 3426 3427 3428 void perf_sched_cb_inc(struct pmu *pmu) 3429 { 3430 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3431 3432 if (!cpuctx->sched_cb_usage++) 3433 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3434 3435 this_cpu_inc(perf_sched_cb_usages); 3436 } 3437 3438 /* 3439 * This function provides the context switch callback to the lower code 3440 * layer. It is invoked ONLY when the context switch callback is enabled. 3441 * 3442 * This callback is relevant even to per-cpu events; for example multi event 3443 * PEBS requires this to provide PID/TID information. This requires we flush 3444 * all queued PEBS records before we context switch to a new task. 3445 */ 3446 static void perf_pmu_sched_task(struct task_struct *prev, 3447 struct task_struct *next, 3448 bool sched_in) 3449 { 3450 struct perf_cpu_context *cpuctx; 3451 struct pmu *pmu; 3452 3453 if (prev == next) 3454 return; 3455 3456 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3457 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3458 3459 if (WARN_ON_ONCE(!pmu->sched_task)) 3460 continue; 3461 3462 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3463 perf_pmu_disable(pmu); 3464 3465 pmu->sched_task(cpuctx->task_ctx, sched_in); 3466 3467 perf_pmu_enable(pmu); 3468 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3469 } 3470 } 3471 3472 static void perf_event_switch(struct task_struct *task, 3473 struct task_struct *next_prev, bool sched_in); 3474 3475 #define for_each_task_context_nr(ctxn) \ 3476 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3477 3478 /* 3479 * Called from scheduler to remove the events of the current task, 3480 * with interrupts disabled. 3481 * 3482 * We stop each event and update the event value in event->count. 3483 * 3484 * This does not protect us against NMI, but disable() 3485 * sets the disabled bit in the control field of event _before_ 3486 * accessing the event control register. If a NMI hits, then it will 3487 * not restart the event. 3488 */ 3489 void __perf_event_task_sched_out(struct task_struct *task, 3490 struct task_struct *next) 3491 { 3492 int ctxn; 3493 3494 if (__this_cpu_read(perf_sched_cb_usages)) 3495 perf_pmu_sched_task(task, next, false); 3496 3497 if (atomic_read(&nr_switch_events)) 3498 perf_event_switch(task, next, false); 3499 3500 for_each_task_context_nr(ctxn) 3501 perf_event_context_sched_out(task, ctxn, next); 3502 3503 /* 3504 * if cgroup events exist on this CPU, then we need 3505 * to check if we have to switch out PMU state. 3506 * cgroup event are system-wide mode only 3507 */ 3508 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3509 perf_cgroup_sched_out(task, next); 3510 } 3511 3512 /* 3513 * Called with IRQs disabled 3514 */ 3515 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3516 enum event_type_t event_type) 3517 { 3518 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3519 } 3520 3521 static bool perf_less_group_idx(const void *l, const void *r) 3522 { 3523 const struct perf_event *le = *(const struct perf_event **)l; 3524 const struct perf_event *re = *(const struct perf_event **)r; 3525 3526 return le->group_index < re->group_index; 3527 } 3528 3529 static void swap_ptr(void *l, void *r) 3530 { 3531 void **lp = l, **rp = r; 3532 3533 swap(*lp, *rp); 3534 } 3535 3536 static const struct min_heap_callbacks perf_min_heap = { 3537 .elem_size = sizeof(struct perf_event *), 3538 .less = perf_less_group_idx, 3539 .swp = swap_ptr, 3540 }; 3541 3542 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3543 { 3544 struct perf_event **itrs = heap->data; 3545 3546 if (event) { 3547 itrs[heap->nr] = event; 3548 heap->nr++; 3549 } 3550 } 3551 3552 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3553 struct perf_event_groups *groups, int cpu, 3554 int (*func)(struct perf_event *, void *), 3555 void *data) 3556 { 3557 #ifdef CONFIG_CGROUP_PERF 3558 struct cgroup_subsys_state *css = NULL; 3559 #endif 3560 /* Space for per CPU and/or any CPU event iterators. */ 3561 struct perf_event *itrs[2]; 3562 struct min_heap event_heap; 3563 struct perf_event **evt; 3564 int ret; 3565 3566 if (cpuctx) { 3567 event_heap = (struct min_heap){ 3568 .data = cpuctx->heap, 3569 .nr = 0, 3570 .size = cpuctx->heap_size, 3571 }; 3572 3573 lockdep_assert_held(&cpuctx->ctx.lock); 3574 3575 #ifdef CONFIG_CGROUP_PERF 3576 if (cpuctx->cgrp) 3577 css = &cpuctx->cgrp->css; 3578 #endif 3579 } else { 3580 event_heap = (struct min_heap){ 3581 .data = itrs, 3582 .nr = 0, 3583 .size = ARRAY_SIZE(itrs), 3584 }; 3585 /* Events not within a CPU context may be on any CPU. */ 3586 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3587 } 3588 evt = event_heap.data; 3589 3590 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3591 3592 #ifdef CONFIG_CGROUP_PERF 3593 for (; css; css = css->parent) 3594 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3595 #endif 3596 3597 min_heapify_all(&event_heap, &perf_min_heap); 3598 3599 while (event_heap.nr) { 3600 ret = func(*evt, data); 3601 if (ret) 3602 return ret; 3603 3604 *evt = perf_event_groups_next(*evt); 3605 if (*evt) 3606 min_heapify(&event_heap, 0, &perf_min_heap); 3607 else 3608 min_heap_pop(&event_heap, &perf_min_heap); 3609 } 3610 3611 return 0; 3612 } 3613 3614 static int merge_sched_in(struct perf_event *event, void *data) 3615 { 3616 struct perf_event_context *ctx = event->ctx; 3617 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3618 int *can_add_hw = data; 3619 3620 if (event->state <= PERF_EVENT_STATE_OFF) 3621 return 0; 3622 3623 if (!event_filter_match(event)) 3624 return 0; 3625 3626 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3627 if (!group_sched_in(event, cpuctx, ctx)) 3628 list_add_tail(&event->active_list, get_event_list(event)); 3629 } 3630 3631 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3632 if (event->attr.pinned) { 3633 perf_cgroup_event_disable(event, ctx); 3634 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3635 } 3636 3637 *can_add_hw = 0; 3638 ctx->rotate_necessary = 1; 3639 } 3640 3641 return 0; 3642 } 3643 3644 static void 3645 ctx_pinned_sched_in(struct perf_event_context *ctx, 3646 struct perf_cpu_context *cpuctx) 3647 { 3648 int can_add_hw = 1; 3649 3650 if (ctx != &cpuctx->ctx) 3651 cpuctx = NULL; 3652 3653 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3654 smp_processor_id(), 3655 merge_sched_in, &can_add_hw); 3656 } 3657 3658 static void 3659 ctx_flexible_sched_in(struct perf_event_context *ctx, 3660 struct perf_cpu_context *cpuctx) 3661 { 3662 int can_add_hw = 1; 3663 3664 if (ctx != &cpuctx->ctx) 3665 cpuctx = NULL; 3666 3667 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3668 smp_processor_id(), 3669 merge_sched_in, &can_add_hw); 3670 } 3671 3672 static void 3673 ctx_sched_in(struct perf_event_context *ctx, 3674 struct perf_cpu_context *cpuctx, 3675 enum event_type_t event_type, 3676 struct task_struct *task) 3677 { 3678 int is_active = ctx->is_active; 3679 u64 now; 3680 3681 lockdep_assert_held(&ctx->lock); 3682 3683 if (likely(!ctx->nr_events)) 3684 return; 3685 3686 ctx->is_active |= (event_type | EVENT_TIME); 3687 if (ctx->task) { 3688 if (!is_active) 3689 cpuctx->task_ctx = ctx; 3690 else 3691 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3692 } 3693 3694 is_active ^= ctx->is_active; /* changed bits */ 3695 3696 if (is_active & EVENT_TIME) { 3697 /* start ctx time */ 3698 now = perf_clock(); 3699 ctx->timestamp = now; 3700 perf_cgroup_set_timestamp(task, ctx); 3701 } 3702 3703 /* 3704 * First go through the list and put on any pinned groups 3705 * in order to give them the best chance of going on. 3706 */ 3707 if (is_active & EVENT_PINNED) 3708 ctx_pinned_sched_in(ctx, cpuctx); 3709 3710 /* Then walk through the lower prio flexible groups */ 3711 if (is_active & EVENT_FLEXIBLE) 3712 ctx_flexible_sched_in(ctx, cpuctx); 3713 } 3714 3715 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3716 enum event_type_t event_type, 3717 struct task_struct *task) 3718 { 3719 struct perf_event_context *ctx = &cpuctx->ctx; 3720 3721 ctx_sched_in(ctx, cpuctx, event_type, task); 3722 } 3723 3724 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3725 struct task_struct *task) 3726 { 3727 struct perf_cpu_context *cpuctx; 3728 3729 cpuctx = __get_cpu_context(ctx); 3730 if (cpuctx->task_ctx == ctx) 3731 return; 3732 3733 perf_ctx_lock(cpuctx, ctx); 3734 /* 3735 * We must check ctx->nr_events while holding ctx->lock, such 3736 * that we serialize against perf_install_in_context(). 3737 */ 3738 if (!ctx->nr_events) 3739 goto unlock; 3740 3741 perf_pmu_disable(ctx->pmu); 3742 /* 3743 * We want to keep the following priority order: 3744 * cpu pinned (that don't need to move), task pinned, 3745 * cpu flexible, task flexible. 3746 * 3747 * However, if task's ctx is not carrying any pinned 3748 * events, no need to flip the cpuctx's events around. 3749 */ 3750 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3751 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3752 perf_event_sched_in(cpuctx, ctx, task); 3753 perf_pmu_enable(ctx->pmu); 3754 3755 unlock: 3756 perf_ctx_unlock(cpuctx, ctx); 3757 } 3758 3759 /* 3760 * Called from scheduler to add the events of the current task 3761 * with interrupts disabled. 3762 * 3763 * We restore the event value and then enable it. 3764 * 3765 * This does not protect us against NMI, but enable() 3766 * sets the enabled bit in the control field of event _before_ 3767 * accessing the event control register. If a NMI hits, then it will 3768 * keep the event running. 3769 */ 3770 void __perf_event_task_sched_in(struct task_struct *prev, 3771 struct task_struct *task) 3772 { 3773 struct perf_event_context *ctx; 3774 int ctxn; 3775 3776 /* 3777 * If cgroup events exist on this CPU, then we need to check if we have 3778 * to switch in PMU state; cgroup event are system-wide mode only. 3779 * 3780 * Since cgroup events are CPU events, we must schedule these in before 3781 * we schedule in the task events. 3782 */ 3783 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3784 perf_cgroup_sched_in(prev, task); 3785 3786 for_each_task_context_nr(ctxn) { 3787 ctx = task->perf_event_ctxp[ctxn]; 3788 if (likely(!ctx)) 3789 continue; 3790 3791 perf_event_context_sched_in(ctx, task); 3792 } 3793 3794 if (atomic_read(&nr_switch_events)) 3795 perf_event_switch(task, prev, true); 3796 3797 if (__this_cpu_read(perf_sched_cb_usages)) 3798 perf_pmu_sched_task(prev, task, true); 3799 } 3800 3801 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3802 { 3803 u64 frequency = event->attr.sample_freq; 3804 u64 sec = NSEC_PER_SEC; 3805 u64 divisor, dividend; 3806 3807 int count_fls, nsec_fls, frequency_fls, sec_fls; 3808 3809 count_fls = fls64(count); 3810 nsec_fls = fls64(nsec); 3811 frequency_fls = fls64(frequency); 3812 sec_fls = 30; 3813 3814 /* 3815 * We got @count in @nsec, with a target of sample_freq HZ 3816 * the target period becomes: 3817 * 3818 * @count * 10^9 3819 * period = ------------------- 3820 * @nsec * sample_freq 3821 * 3822 */ 3823 3824 /* 3825 * Reduce accuracy by one bit such that @a and @b converge 3826 * to a similar magnitude. 3827 */ 3828 #define REDUCE_FLS(a, b) \ 3829 do { \ 3830 if (a##_fls > b##_fls) { \ 3831 a >>= 1; \ 3832 a##_fls--; \ 3833 } else { \ 3834 b >>= 1; \ 3835 b##_fls--; \ 3836 } \ 3837 } while (0) 3838 3839 /* 3840 * Reduce accuracy until either term fits in a u64, then proceed with 3841 * the other, so that finally we can do a u64/u64 division. 3842 */ 3843 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3844 REDUCE_FLS(nsec, frequency); 3845 REDUCE_FLS(sec, count); 3846 } 3847 3848 if (count_fls + sec_fls > 64) { 3849 divisor = nsec * frequency; 3850 3851 while (count_fls + sec_fls > 64) { 3852 REDUCE_FLS(count, sec); 3853 divisor >>= 1; 3854 } 3855 3856 dividend = count * sec; 3857 } else { 3858 dividend = count * sec; 3859 3860 while (nsec_fls + frequency_fls > 64) { 3861 REDUCE_FLS(nsec, frequency); 3862 dividend >>= 1; 3863 } 3864 3865 divisor = nsec * frequency; 3866 } 3867 3868 if (!divisor) 3869 return dividend; 3870 3871 return div64_u64(dividend, divisor); 3872 } 3873 3874 static DEFINE_PER_CPU(int, perf_throttled_count); 3875 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3876 3877 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3878 { 3879 struct hw_perf_event *hwc = &event->hw; 3880 s64 period, sample_period; 3881 s64 delta; 3882 3883 period = perf_calculate_period(event, nsec, count); 3884 3885 delta = (s64)(period - hwc->sample_period); 3886 delta = (delta + 7) / 8; /* low pass filter */ 3887 3888 sample_period = hwc->sample_period + delta; 3889 3890 if (!sample_period) 3891 sample_period = 1; 3892 3893 hwc->sample_period = sample_period; 3894 3895 if (local64_read(&hwc->period_left) > 8*sample_period) { 3896 if (disable) 3897 event->pmu->stop(event, PERF_EF_UPDATE); 3898 3899 local64_set(&hwc->period_left, 0); 3900 3901 if (disable) 3902 event->pmu->start(event, PERF_EF_RELOAD); 3903 } 3904 } 3905 3906 /* 3907 * combine freq adjustment with unthrottling to avoid two passes over the 3908 * events. At the same time, make sure, having freq events does not change 3909 * the rate of unthrottling as that would introduce bias. 3910 */ 3911 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3912 int needs_unthr) 3913 { 3914 struct perf_event *event; 3915 struct hw_perf_event *hwc; 3916 u64 now, period = TICK_NSEC; 3917 s64 delta; 3918 3919 /* 3920 * only need to iterate over all events iff: 3921 * - context have events in frequency mode (needs freq adjust) 3922 * - there are events to unthrottle on this cpu 3923 */ 3924 if (!(ctx->nr_freq || needs_unthr)) 3925 return; 3926 3927 raw_spin_lock(&ctx->lock); 3928 perf_pmu_disable(ctx->pmu); 3929 3930 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3931 if (event->state != PERF_EVENT_STATE_ACTIVE) 3932 continue; 3933 3934 if (!event_filter_match(event)) 3935 continue; 3936 3937 perf_pmu_disable(event->pmu); 3938 3939 hwc = &event->hw; 3940 3941 if (hwc->interrupts == MAX_INTERRUPTS) { 3942 hwc->interrupts = 0; 3943 perf_log_throttle(event, 1); 3944 event->pmu->start(event, 0); 3945 } 3946 3947 if (!event->attr.freq || !event->attr.sample_freq) 3948 goto next; 3949 3950 /* 3951 * stop the event and update event->count 3952 */ 3953 event->pmu->stop(event, PERF_EF_UPDATE); 3954 3955 now = local64_read(&event->count); 3956 delta = now - hwc->freq_count_stamp; 3957 hwc->freq_count_stamp = now; 3958 3959 /* 3960 * restart the event 3961 * reload only if value has changed 3962 * we have stopped the event so tell that 3963 * to perf_adjust_period() to avoid stopping it 3964 * twice. 3965 */ 3966 if (delta > 0) 3967 perf_adjust_period(event, period, delta, false); 3968 3969 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3970 next: 3971 perf_pmu_enable(event->pmu); 3972 } 3973 3974 perf_pmu_enable(ctx->pmu); 3975 raw_spin_unlock(&ctx->lock); 3976 } 3977 3978 /* 3979 * Move @event to the tail of the @ctx's elegible events. 3980 */ 3981 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3982 { 3983 /* 3984 * Rotate the first entry last of non-pinned groups. Rotation might be 3985 * disabled by the inheritance code. 3986 */ 3987 if (ctx->rotate_disable) 3988 return; 3989 3990 perf_event_groups_delete(&ctx->flexible_groups, event); 3991 perf_event_groups_insert(&ctx->flexible_groups, event); 3992 } 3993 3994 /* pick an event from the flexible_groups to rotate */ 3995 static inline struct perf_event * 3996 ctx_event_to_rotate(struct perf_event_context *ctx) 3997 { 3998 struct perf_event *event; 3999 4000 /* pick the first active flexible event */ 4001 event = list_first_entry_or_null(&ctx->flexible_active, 4002 struct perf_event, active_list); 4003 4004 /* if no active flexible event, pick the first event */ 4005 if (!event) { 4006 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4007 typeof(*event), group_node); 4008 } 4009 4010 /* 4011 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4012 * finds there are unschedulable events, it will set it again. 4013 */ 4014 ctx->rotate_necessary = 0; 4015 4016 return event; 4017 } 4018 4019 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4020 { 4021 struct perf_event *cpu_event = NULL, *task_event = NULL; 4022 struct perf_event_context *task_ctx = NULL; 4023 int cpu_rotate, task_rotate; 4024 4025 /* 4026 * Since we run this from IRQ context, nobody can install new 4027 * events, thus the event count values are stable. 4028 */ 4029 4030 cpu_rotate = cpuctx->ctx.rotate_necessary; 4031 task_ctx = cpuctx->task_ctx; 4032 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4033 4034 if (!(cpu_rotate || task_rotate)) 4035 return false; 4036 4037 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4038 perf_pmu_disable(cpuctx->ctx.pmu); 4039 4040 if (task_rotate) 4041 task_event = ctx_event_to_rotate(task_ctx); 4042 if (cpu_rotate) 4043 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4044 4045 /* 4046 * As per the order given at ctx_resched() first 'pop' task flexible 4047 * and then, if needed CPU flexible. 4048 */ 4049 if (task_event || (task_ctx && cpu_event)) 4050 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4051 if (cpu_event) 4052 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4053 4054 if (task_event) 4055 rotate_ctx(task_ctx, task_event); 4056 if (cpu_event) 4057 rotate_ctx(&cpuctx->ctx, cpu_event); 4058 4059 perf_event_sched_in(cpuctx, task_ctx, current); 4060 4061 perf_pmu_enable(cpuctx->ctx.pmu); 4062 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4063 4064 return true; 4065 } 4066 4067 void perf_event_task_tick(void) 4068 { 4069 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4070 struct perf_event_context *ctx, *tmp; 4071 int throttled; 4072 4073 lockdep_assert_irqs_disabled(); 4074 4075 __this_cpu_inc(perf_throttled_seq); 4076 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4077 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4078 4079 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4080 perf_adjust_freq_unthr_context(ctx, throttled); 4081 } 4082 4083 static int event_enable_on_exec(struct perf_event *event, 4084 struct perf_event_context *ctx) 4085 { 4086 if (!event->attr.enable_on_exec) 4087 return 0; 4088 4089 event->attr.enable_on_exec = 0; 4090 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4091 return 0; 4092 4093 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4094 4095 return 1; 4096 } 4097 4098 /* 4099 * Enable all of a task's events that have been marked enable-on-exec. 4100 * This expects task == current. 4101 */ 4102 static void perf_event_enable_on_exec(int ctxn) 4103 { 4104 struct perf_event_context *ctx, *clone_ctx = NULL; 4105 enum event_type_t event_type = 0; 4106 struct perf_cpu_context *cpuctx; 4107 struct perf_event *event; 4108 unsigned long flags; 4109 int enabled = 0; 4110 4111 local_irq_save(flags); 4112 ctx = current->perf_event_ctxp[ctxn]; 4113 if (!ctx || !ctx->nr_events) 4114 goto out; 4115 4116 cpuctx = __get_cpu_context(ctx); 4117 perf_ctx_lock(cpuctx, ctx); 4118 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4119 list_for_each_entry(event, &ctx->event_list, event_entry) { 4120 enabled |= event_enable_on_exec(event, ctx); 4121 event_type |= get_event_type(event); 4122 } 4123 4124 /* 4125 * Unclone and reschedule this context if we enabled any event. 4126 */ 4127 if (enabled) { 4128 clone_ctx = unclone_ctx(ctx); 4129 ctx_resched(cpuctx, ctx, event_type); 4130 } else { 4131 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4132 } 4133 perf_ctx_unlock(cpuctx, ctx); 4134 4135 out: 4136 local_irq_restore(flags); 4137 4138 if (clone_ctx) 4139 put_ctx(clone_ctx); 4140 } 4141 4142 struct perf_read_data { 4143 struct perf_event *event; 4144 bool group; 4145 int ret; 4146 }; 4147 4148 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4149 { 4150 u16 local_pkg, event_pkg; 4151 4152 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4153 int local_cpu = smp_processor_id(); 4154 4155 event_pkg = topology_physical_package_id(event_cpu); 4156 local_pkg = topology_physical_package_id(local_cpu); 4157 4158 if (event_pkg == local_pkg) 4159 return local_cpu; 4160 } 4161 4162 return event_cpu; 4163 } 4164 4165 /* 4166 * Cross CPU call to read the hardware event 4167 */ 4168 static void __perf_event_read(void *info) 4169 { 4170 struct perf_read_data *data = info; 4171 struct perf_event *sub, *event = data->event; 4172 struct perf_event_context *ctx = event->ctx; 4173 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4174 struct pmu *pmu = event->pmu; 4175 4176 /* 4177 * If this is a task context, we need to check whether it is 4178 * the current task context of this cpu. If not it has been 4179 * scheduled out before the smp call arrived. In that case 4180 * event->count would have been updated to a recent sample 4181 * when the event was scheduled out. 4182 */ 4183 if (ctx->task && cpuctx->task_ctx != ctx) 4184 return; 4185 4186 raw_spin_lock(&ctx->lock); 4187 if (ctx->is_active & EVENT_TIME) { 4188 update_context_time(ctx); 4189 update_cgrp_time_from_event(event); 4190 } 4191 4192 perf_event_update_time(event); 4193 if (data->group) 4194 perf_event_update_sibling_time(event); 4195 4196 if (event->state != PERF_EVENT_STATE_ACTIVE) 4197 goto unlock; 4198 4199 if (!data->group) { 4200 pmu->read(event); 4201 data->ret = 0; 4202 goto unlock; 4203 } 4204 4205 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4206 4207 pmu->read(event); 4208 4209 for_each_sibling_event(sub, event) { 4210 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4211 /* 4212 * Use sibling's PMU rather than @event's since 4213 * sibling could be on different (eg: software) PMU. 4214 */ 4215 sub->pmu->read(sub); 4216 } 4217 } 4218 4219 data->ret = pmu->commit_txn(pmu); 4220 4221 unlock: 4222 raw_spin_unlock(&ctx->lock); 4223 } 4224 4225 static inline u64 perf_event_count(struct perf_event *event) 4226 { 4227 return local64_read(&event->count) + atomic64_read(&event->child_count); 4228 } 4229 4230 /* 4231 * NMI-safe method to read a local event, that is an event that 4232 * is: 4233 * - either for the current task, or for this CPU 4234 * - does not have inherit set, for inherited task events 4235 * will not be local and we cannot read them atomically 4236 * - must not have a pmu::count method 4237 */ 4238 int perf_event_read_local(struct perf_event *event, u64 *value, 4239 u64 *enabled, u64 *running) 4240 { 4241 unsigned long flags; 4242 int ret = 0; 4243 4244 /* 4245 * Disabling interrupts avoids all counter scheduling (context 4246 * switches, timer based rotation and IPIs). 4247 */ 4248 local_irq_save(flags); 4249 4250 /* 4251 * It must not be an event with inherit set, we cannot read 4252 * all child counters from atomic context. 4253 */ 4254 if (event->attr.inherit) { 4255 ret = -EOPNOTSUPP; 4256 goto out; 4257 } 4258 4259 /* If this is a per-task event, it must be for current */ 4260 if ((event->attach_state & PERF_ATTACH_TASK) && 4261 event->hw.target != current) { 4262 ret = -EINVAL; 4263 goto out; 4264 } 4265 4266 /* If this is a per-CPU event, it must be for this CPU */ 4267 if (!(event->attach_state & PERF_ATTACH_TASK) && 4268 event->cpu != smp_processor_id()) { 4269 ret = -EINVAL; 4270 goto out; 4271 } 4272 4273 /* If this is a pinned event it must be running on this CPU */ 4274 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4275 ret = -EBUSY; 4276 goto out; 4277 } 4278 4279 /* 4280 * If the event is currently on this CPU, its either a per-task event, 4281 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4282 * oncpu == -1). 4283 */ 4284 if (event->oncpu == smp_processor_id()) 4285 event->pmu->read(event); 4286 4287 *value = local64_read(&event->count); 4288 if (enabled || running) { 4289 u64 now = event->shadow_ctx_time + perf_clock(); 4290 u64 __enabled, __running; 4291 4292 __perf_update_times(event, now, &__enabled, &__running); 4293 if (enabled) 4294 *enabled = __enabled; 4295 if (running) 4296 *running = __running; 4297 } 4298 out: 4299 local_irq_restore(flags); 4300 4301 return ret; 4302 } 4303 4304 static int perf_event_read(struct perf_event *event, bool group) 4305 { 4306 enum perf_event_state state = READ_ONCE(event->state); 4307 int event_cpu, ret = 0; 4308 4309 /* 4310 * If event is enabled and currently active on a CPU, update the 4311 * value in the event structure: 4312 */ 4313 again: 4314 if (state == PERF_EVENT_STATE_ACTIVE) { 4315 struct perf_read_data data; 4316 4317 /* 4318 * Orders the ->state and ->oncpu loads such that if we see 4319 * ACTIVE we must also see the right ->oncpu. 4320 * 4321 * Matches the smp_wmb() from event_sched_in(). 4322 */ 4323 smp_rmb(); 4324 4325 event_cpu = READ_ONCE(event->oncpu); 4326 if ((unsigned)event_cpu >= nr_cpu_ids) 4327 return 0; 4328 4329 data = (struct perf_read_data){ 4330 .event = event, 4331 .group = group, 4332 .ret = 0, 4333 }; 4334 4335 preempt_disable(); 4336 event_cpu = __perf_event_read_cpu(event, event_cpu); 4337 4338 /* 4339 * Purposely ignore the smp_call_function_single() return 4340 * value. 4341 * 4342 * If event_cpu isn't a valid CPU it means the event got 4343 * scheduled out and that will have updated the event count. 4344 * 4345 * Therefore, either way, we'll have an up-to-date event count 4346 * after this. 4347 */ 4348 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4349 preempt_enable(); 4350 ret = data.ret; 4351 4352 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4353 struct perf_event_context *ctx = event->ctx; 4354 unsigned long flags; 4355 4356 raw_spin_lock_irqsave(&ctx->lock, flags); 4357 state = event->state; 4358 if (state != PERF_EVENT_STATE_INACTIVE) { 4359 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4360 goto again; 4361 } 4362 4363 /* 4364 * May read while context is not active (e.g., thread is 4365 * blocked), in that case we cannot update context time 4366 */ 4367 if (ctx->is_active & EVENT_TIME) { 4368 update_context_time(ctx); 4369 update_cgrp_time_from_event(event); 4370 } 4371 4372 perf_event_update_time(event); 4373 if (group) 4374 perf_event_update_sibling_time(event); 4375 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4376 } 4377 4378 return ret; 4379 } 4380 4381 /* 4382 * Initialize the perf_event context in a task_struct: 4383 */ 4384 static void __perf_event_init_context(struct perf_event_context *ctx) 4385 { 4386 raw_spin_lock_init(&ctx->lock); 4387 mutex_init(&ctx->mutex); 4388 INIT_LIST_HEAD(&ctx->active_ctx_list); 4389 perf_event_groups_init(&ctx->pinned_groups); 4390 perf_event_groups_init(&ctx->flexible_groups); 4391 INIT_LIST_HEAD(&ctx->event_list); 4392 INIT_LIST_HEAD(&ctx->pinned_active); 4393 INIT_LIST_HEAD(&ctx->flexible_active); 4394 refcount_set(&ctx->refcount, 1); 4395 } 4396 4397 static struct perf_event_context * 4398 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4399 { 4400 struct perf_event_context *ctx; 4401 4402 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4403 if (!ctx) 4404 return NULL; 4405 4406 __perf_event_init_context(ctx); 4407 if (task) 4408 ctx->task = get_task_struct(task); 4409 ctx->pmu = pmu; 4410 4411 return ctx; 4412 } 4413 4414 static struct task_struct * 4415 find_lively_task_by_vpid(pid_t vpid) 4416 { 4417 struct task_struct *task; 4418 4419 rcu_read_lock(); 4420 if (!vpid) 4421 task = current; 4422 else 4423 task = find_task_by_vpid(vpid); 4424 if (task) 4425 get_task_struct(task); 4426 rcu_read_unlock(); 4427 4428 if (!task) 4429 return ERR_PTR(-ESRCH); 4430 4431 return task; 4432 } 4433 4434 /* 4435 * Returns a matching context with refcount and pincount. 4436 */ 4437 static struct perf_event_context * 4438 find_get_context(struct pmu *pmu, struct task_struct *task, 4439 struct perf_event *event) 4440 { 4441 struct perf_event_context *ctx, *clone_ctx = NULL; 4442 struct perf_cpu_context *cpuctx; 4443 void *task_ctx_data = NULL; 4444 unsigned long flags; 4445 int ctxn, err; 4446 int cpu = event->cpu; 4447 4448 if (!task) { 4449 /* Must be root to operate on a CPU event: */ 4450 err = perf_allow_cpu(&event->attr); 4451 if (err) 4452 return ERR_PTR(err); 4453 4454 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4455 ctx = &cpuctx->ctx; 4456 get_ctx(ctx); 4457 ++ctx->pin_count; 4458 4459 return ctx; 4460 } 4461 4462 err = -EINVAL; 4463 ctxn = pmu->task_ctx_nr; 4464 if (ctxn < 0) 4465 goto errout; 4466 4467 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4468 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4469 if (!task_ctx_data) { 4470 err = -ENOMEM; 4471 goto errout; 4472 } 4473 } 4474 4475 retry: 4476 ctx = perf_lock_task_context(task, ctxn, &flags); 4477 if (ctx) { 4478 clone_ctx = unclone_ctx(ctx); 4479 ++ctx->pin_count; 4480 4481 if (task_ctx_data && !ctx->task_ctx_data) { 4482 ctx->task_ctx_data = task_ctx_data; 4483 task_ctx_data = NULL; 4484 } 4485 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4486 4487 if (clone_ctx) 4488 put_ctx(clone_ctx); 4489 } else { 4490 ctx = alloc_perf_context(pmu, task); 4491 err = -ENOMEM; 4492 if (!ctx) 4493 goto errout; 4494 4495 if (task_ctx_data) { 4496 ctx->task_ctx_data = task_ctx_data; 4497 task_ctx_data = NULL; 4498 } 4499 4500 err = 0; 4501 mutex_lock(&task->perf_event_mutex); 4502 /* 4503 * If it has already passed perf_event_exit_task(). 4504 * we must see PF_EXITING, it takes this mutex too. 4505 */ 4506 if (task->flags & PF_EXITING) 4507 err = -ESRCH; 4508 else if (task->perf_event_ctxp[ctxn]) 4509 err = -EAGAIN; 4510 else { 4511 get_ctx(ctx); 4512 ++ctx->pin_count; 4513 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4514 } 4515 mutex_unlock(&task->perf_event_mutex); 4516 4517 if (unlikely(err)) { 4518 put_ctx(ctx); 4519 4520 if (err == -EAGAIN) 4521 goto retry; 4522 goto errout; 4523 } 4524 } 4525 4526 kfree(task_ctx_data); 4527 return ctx; 4528 4529 errout: 4530 kfree(task_ctx_data); 4531 return ERR_PTR(err); 4532 } 4533 4534 static void perf_event_free_filter(struct perf_event *event); 4535 static void perf_event_free_bpf_prog(struct perf_event *event); 4536 4537 static void free_event_rcu(struct rcu_head *head) 4538 { 4539 struct perf_event *event; 4540 4541 event = container_of(head, struct perf_event, rcu_head); 4542 if (event->ns) 4543 put_pid_ns(event->ns); 4544 perf_event_free_filter(event); 4545 kfree(event); 4546 } 4547 4548 static void ring_buffer_attach(struct perf_event *event, 4549 struct perf_buffer *rb); 4550 4551 static void detach_sb_event(struct perf_event *event) 4552 { 4553 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4554 4555 raw_spin_lock(&pel->lock); 4556 list_del_rcu(&event->sb_list); 4557 raw_spin_unlock(&pel->lock); 4558 } 4559 4560 static bool is_sb_event(struct perf_event *event) 4561 { 4562 struct perf_event_attr *attr = &event->attr; 4563 4564 if (event->parent) 4565 return false; 4566 4567 if (event->attach_state & PERF_ATTACH_TASK) 4568 return false; 4569 4570 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4571 attr->comm || attr->comm_exec || 4572 attr->task || attr->ksymbol || 4573 attr->context_switch || 4574 attr->bpf_event) 4575 return true; 4576 return false; 4577 } 4578 4579 static void unaccount_pmu_sb_event(struct perf_event *event) 4580 { 4581 if (is_sb_event(event)) 4582 detach_sb_event(event); 4583 } 4584 4585 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4586 { 4587 if (event->parent) 4588 return; 4589 4590 if (is_cgroup_event(event)) 4591 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4592 } 4593 4594 #ifdef CONFIG_NO_HZ_FULL 4595 static DEFINE_SPINLOCK(nr_freq_lock); 4596 #endif 4597 4598 static void unaccount_freq_event_nohz(void) 4599 { 4600 #ifdef CONFIG_NO_HZ_FULL 4601 spin_lock(&nr_freq_lock); 4602 if (atomic_dec_and_test(&nr_freq_events)) 4603 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4604 spin_unlock(&nr_freq_lock); 4605 #endif 4606 } 4607 4608 static void unaccount_freq_event(void) 4609 { 4610 if (tick_nohz_full_enabled()) 4611 unaccount_freq_event_nohz(); 4612 else 4613 atomic_dec(&nr_freq_events); 4614 } 4615 4616 static void unaccount_event(struct perf_event *event) 4617 { 4618 bool dec = false; 4619 4620 if (event->parent) 4621 return; 4622 4623 if (event->attach_state & PERF_ATTACH_TASK) 4624 dec = true; 4625 if (event->attr.mmap || event->attr.mmap_data) 4626 atomic_dec(&nr_mmap_events); 4627 if (event->attr.comm) 4628 atomic_dec(&nr_comm_events); 4629 if (event->attr.namespaces) 4630 atomic_dec(&nr_namespaces_events); 4631 if (event->attr.cgroup) 4632 atomic_dec(&nr_cgroup_events); 4633 if (event->attr.task) 4634 atomic_dec(&nr_task_events); 4635 if (event->attr.freq) 4636 unaccount_freq_event(); 4637 if (event->attr.context_switch) { 4638 dec = true; 4639 atomic_dec(&nr_switch_events); 4640 } 4641 if (is_cgroup_event(event)) 4642 dec = true; 4643 if (has_branch_stack(event)) 4644 dec = true; 4645 if (event->attr.ksymbol) 4646 atomic_dec(&nr_ksymbol_events); 4647 if (event->attr.bpf_event) 4648 atomic_dec(&nr_bpf_events); 4649 4650 if (dec) { 4651 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4652 schedule_delayed_work(&perf_sched_work, HZ); 4653 } 4654 4655 unaccount_event_cpu(event, event->cpu); 4656 4657 unaccount_pmu_sb_event(event); 4658 } 4659 4660 static void perf_sched_delayed(struct work_struct *work) 4661 { 4662 mutex_lock(&perf_sched_mutex); 4663 if (atomic_dec_and_test(&perf_sched_count)) 4664 static_branch_disable(&perf_sched_events); 4665 mutex_unlock(&perf_sched_mutex); 4666 } 4667 4668 /* 4669 * The following implement mutual exclusion of events on "exclusive" pmus 4670 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4671 * at a time, so we disallow creating events that might conflict, namely: 4672 * 4673 * 1) cpu-wide events in the presence of per-task events, 4674 * 2) per-task events in the presence of cpu-wide events, 4675 * 3) two matching events on the same context. 4676 * 4677 * The former two cases are handled in the allocation path (perf_event_alloc(), 4678 * _free_event()), the latter -- before the first perf_install_in_context(). 4679 */ 4680 static int exclusive_event_init(struct perf_event *event) 4681 { 4682 struct pmu *pmu = event->pmu; 4683 4684 if (!is_exclusive_pmu(pmu)) 4685 return 0; 4686 4687 /* 4688 * Prevent co-existence of per-task and cpu-wide events on the 4689 * same exclusive pmu. 4690 * 4691 * Negative pmu::exclusive_cnt means there are cpu-wide 4692 * events on this "exclusive" pmu, positive means there are 4693 * per-task events. 4694 * 4695 * Since this is called in perf_event_alloc() path, event::ctx 4696 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4697 * to mean "per-task event", because unlike other attach states it 4698 * never gets cleared. 4699 */ 4700 if (event->attach_state & PERF_ATTACH_TASK) { 4701 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4702 return -EBUSY; 4703 } else { 4704 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4705 return -EBUSY; 4706 } 4707 4708 return 0; 4709 } 4710 4711 static void exclusive_event_destroy(struct perf_event *event) 4712 { 4713 struct pmu *pmu = event->pmu; 4714 4715 if (!is_exclusive_pmu(pmu)) 4716 return; 4717 4718 /* see comment in exclusive_event_init() */ 4719 if (event->attach_state & PERF_ATTACH_TASK) 4720 atomic_dec(&pmu->exclusive_cnt); 4721 else 4722 atomic_inc(&pmu->exclusive_cnt); 4723 } 4724 4725 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4726 { 4727 if ((e1->pmu == e2->pmu) && 4728 (e1->cpu == e2->cpu || 4729 e1->cpu == -1 || 4730 e2->cpu == -1)) 4731 return true; 4732 return false; 4733 } 4734 4735 static bool exclusive_event_installable(struct perf_event *event, 4736 struct perf_event_context *ctx) 4737 { 4738 struct perf_event *iter_event; 4739 struct pmu *pmu = event->pmu; 4740 4741 lockdep_assert_held(&ctx->mutex); 4742 4743 if (!is_exclusive_pmu(pmu)) 4744 return true; 4745 4746 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4747 if (exclusive_event_match(iter_event, event)) 4748 return false; 4749 } 4750 4751 return true; 4752 } 4753 4754 static void perf_addr_filters_splice(struct perf_event *event, 4755 struct list_head *head); 4756 4757 static void _free_event(struct perf_event *event) 4758 { 4759 irq_work_sync(&event->pending); 4760 4761 unaccount_event(event); 4762 4763 security_perf_event_free(event); 4764 4765 if (event->rb) { 4766 /* 4767 * Can happen when we close an event with re-directed output. 4768 * 4769 * Since we have a 0 refcount, perf_mmap_close() will skip 4770 * over us; possibly making our ring_buffer_put() the last. 4771 */ 4772 mutex_lock(&event->mmap_mutex); 4773 ring_buffer_attach(event, NULL); 4774 mutex_unlock(&event->mmap_mutex); 4775 } 4776 4777 if (is_cgroup_event(event)) 4778 perf_detach_cgroup(event); 4779 4780 if (!event->parent) { 4781 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4782 put_callchain_buffers(); 4783 } 4784 4785 perf_event_free_bpf_prog(event); 4786 perf_addr_filters_splice(event, NULL); 4787 kfree(event->addr_filter_ranges); 4788 4789 if (event->destroy) 4790 event->destroy(event); 4791 4792 /* 4793 * Must be after ->destroy(), due to uprobe_perf_close() using 4794 * hw.target. 4795 */ 4796 if (event->hw.target) 4797 put_task_struct(event->hw.target); 4798 4799 /* 4800 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4801 * all task references must be cleaned up. 4802 */ 4803 if (event->ctx) 4804 put_ctx(event->ctx); 4805 4806 exclusive_event_destroy(event); 4807 module_put(event->pmu->module); 4808 4809 call_rcu(&event->rcu_head, free_event_rcu); 4810 } 4811 4812 /* 4813 * Used to free events which have a known refcount of 1, such as in error paths 4814 * where the event isn't exposed yet and inherited events. 4815 */ 4816 static void free_event(struct perf_event *event) 4817 { 4818 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4819 "unexpected event refcount: %ld; ptr=%p\n", 4820 atomic_long_read(&event->refcount), event)) { 4821 /* leak to avoid use-after-free */ 4822 return; 4823 } 4824 4825 _free_event(event); 4826 } 4827 4828 /* 4829 * Remove user event from the owner task. 4830 */ 4831 static void perf_remove_from_owner(struct perf_event *event) 4832 { 4833 struct task_struct *owner; 4834 4835 rcu_read_lock(); 4836 /* 4837 * Matches the smp_store_release() in perf_event_exit_task(). If we 4838 * observe !owner it means the list deletion is complete and we can 4839 * indeed free this event, otherwise we need to serialize on 4840 * owner->perf_event_mutex. 4841 */ 4842 owner = READ_ONCE(event->owner); 4843 if (owner) { 4844 /* 4845 * Since delayed_put_task_struct() also drops the last 4846 * task reference we can safely take a new reference 4847 * while holding the rcu_read_lock(). 4848 */ 4849 get_task_struct(owner); 4850 } 4851 rcu_read_unlock(); 4852 4853 if (owner) { 4854 /* 4855 * If we're here through perf_event_exit_task() we're already 4856 * holding ctx->mutex which would be an inversion wrt. the 4857 * normal lock order. 4858 * 4859 * However we can safely take this lock because its the child 4860 * ctx->mutex. 4861 */ 4862 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4863 4864 /* 4865 * We have to re-check the event->owner field, if it is cleared 4866 * we raced with perf_event_exit_task(), acquiring the mutex 4867 * ensured they're done, and we can proceed with freeing the 4868 * event. 4869 */ 4870 if (event->owner) { 4871 list_del_init(&event->owner_entry); 4872 smp_store_release(&event->owner, NULL); 4873 } 4874 mutex_unlock(&owner->perf_event_mutex); 4875 put_task_struct(owner); 4876 } 4877 } 4878 4879 static void put_event(struct perf_event *event) 4880 { 4881 if (!atomic_long_dec_and_test(&event->refcount)) 4882 return; 4883 4884 _free_event(event); 4885 } 4886 4887 /* 4888 * Kill an event dead; while event:refcount will preserve the event 4889 * object, it will not preserve its functionality. Once the last 'user' 4890 * gives up the object, we'll destroy the thing. 4891 */ 4892 int perf_event_release_kernel(struct perf_event *event) 4893 { 4894 struct perf_event_context *ctx = event->ctx; 4895 struct perf_event *child, *tmp; 4896 LIST_HEAD(free_list); 4897 4898 /* 4899 * If we got here through err_file: fput(event_file); we will not have 4900 * attached to a context yet. 4901 */ 4902 if (!ctx) { 4903 WARN_ON_ONCE(event->attach_state & 4904 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4905 goto no_ctx; 4906 } 4907 4908 if (!is_kernel_event(event)) 4909 perf_remove_from_owner(event); 4910 4911 ctx = perf_event_ctx_lock(event); 4912 WARN_ON_ONCE(ctx->parent_ctx); 4913 perf_remove_from_context(event, DETACH_GROUP); 4914 4915 raw_spin_lock_irq(&ctx->lock); 4916 /* 4917 * Mark this event as STATE_DEAD, there is no external reference to it 4918 * anymore. 4919 * 4920 * Anybody acquiring event->child_mutex after the below loop _must_ 4921 * also see this, most importantly inherit_event() which will avoid 4922 * placing more children on the list. 4923 * 4924 * Thus this guarantees that we will in fact observe and kill _ALL_ 4925 * child events. 4926 */ 4927 event->state = PERF_EVENT_STATE_DEAD; 4928 raw_spin_unlock_irq(&ctx->lock); 4929 4930 perf_event_ctx_unlock(event, ctx); 4931 4932 again: 4933 mutex_lock(&event->child_mutex); 4934 list_for_each_entry(child, &event->child_list, child_list) { 4935 4936 /* 4937 * Cannot change, child events are not migrated, see the 4938 * comment with perf_event_ctx_lock_nested(). 4939 */ 4940 ctx = READ_ONCE(child->ctx); 4941 /* 4942 * Since child_mutex nests inside ctx::mutex, we must jump 4943 * through hoops. We start by grabbing a reference on the ctx. 4944 * 4945 * Since the event cannot get freed while we hold the 4946 * child_mutex, the context must also exist and have a !0 4947 * reference count. 4948 */ 4949 get_ctx(ctx); 4950 4951 /* 4952 * Now that we have a ctx ref, we can drop child_mutex, and 4953 * acquire ctx::mutex without fear of it going away. Then we 4954 * can re-acquire child_mutex. 4955 */ 4956 mutex_unlock(&event->child_mutex); 4957 mutex_lock(&ctx->mutex); 4958 mutex_lock(&event->child_mutex); 4959 4960 /* 4961 * Now that we hold ctx::mutex and child_mutex, revalidate our 4962 * state, if child is still the first entry, it didn't get freed 4963 * and we can continue doing so. 4964 */ 4965 tmp = list_first_entry_or_null(&event->child_list, 4966 struct perf_event, child_list); 4967 if (tmp == child) { 4968 perf_remove_from_context(child, DETACH_GROUP); 4969 list_move(&child->child_list, &free_list); 4970 /* 4971 * This matches the refcount bump in inherit_event(); 4972 * this can't be the last reference. 4973 */ 4974 put_event(event); 4975 } 4976 4977 mutex_unlock(&event->child_mutex); 4978 mutex_unlock(&ctx->mutex); 4979 put_ctx(ctx); 4980 goto again; 4981 } 4982 mutex_unlock(&event->child_mutex); 4983 4984 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4985 void *var = &child->ctx->refcount; 4986 4987 list_del(&child->child_list); 4988 free_event(child); 4989 4990 /* 4991 * Wake any perf_event_free_task() waiting for this event to be 4992 * freed. 4993 */ 4994 smp_mb(); /* pairs with wait_var_event() */ 4995 wake_up_var(var); 4996 } 4997 4998 no_ctx: 4999 put_event(event); /* Must be the 'last' reference */ 5000 return 0; 5001 } 5002 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5003 5004 /* 5005 * Called when the last reference to the file is gone. 5006 */ 5007 static int perf_release(struct inode *inode, struct file *file) 5008 { 5009 perf_event_release_kernel(file->private_data); 5010 return 0; 5011 } 5012 5013 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5014 { 5015 struct perf_event *child; 5016 u64 total = 0; 5017 5018 *enabled = 0; 5019 *running = 0; 5020 5021 mutex_lock(&event->child_mutex); 5022 5023 (void)perf_event_read(event, false); 5024 total += perf_event_count(event); 5025 5026 *enabled += event->total_time_enabled + 5027 atomic64_read(&event->child_total_time_enabled); 5028 *running += event->total_time_running + 5029 atomic64_read(&event->child_total_time_running); 5030 5031 list_for_each_entry(child, &event->child_list, child_list) { 5032 (void)perf_event_read(child, false); 5033 total += perf_event_count(child); 5034 *enabled += child->total_time_enabled; 5035 *running += child->total_time_running; 5036 } 5037 mutex_unlock(&event->child_mutex); 5038 5039 return total; 5040 } 5041 5042 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5043 { 5044 struct perf_event_context *ctx; 5045 u64 count; 5046 5047 ctx = perf_event_ctx_lock(event); 5048 count = __perf_event_read_value(event, enabled, running); 5049 perf_event_ctx_unlock(event, ctx); 5050 5051 return count; 5052 } 5053 EXPORT_SYMBOL_GPL(perf_event_read_value); 5054 5055 static int __perf_read_group_add(struct perf_event *leader, 5056 u64 read_format, u64 *values) 5057 { 5058 struct perf_event_context *ctx = leader->ctx; 5059 struct perf_event *sub; 5060 unsigned long flags; 5061 int n = 1; /* skip @nr */ 5062 int ret; 5063 5064 ret = perf_event_read(leader, true); 5065 if (ret) 5066 return ret; 5067 5068 raw_spin_lock_irqsave(&ctx->lock, flags); 5069 5070 /* 5071 * Since we co-schedule groups, {enabled,running} times of siblings 5072 * will be identical to those of the leader, so we only publish one 5073 * set. 5074 */ 5075 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5076 values[n++] += leader->total_time_enabled + 5077 atomic64_read(&leader->child_total_time_enabled); 5078 } 5079 5080 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5081 values[n++] += leader->total_time_running + 5082 atomic64_read(&leader->child_total_time_running); 5083 } 5084 5085 /* 5086 * Write {count,id} tuples for every sibling. 5087 */ 5088 values[n++] += perf_event_count(leader); 5089 if (read_format & PERF_FORMAT_ID) 5090 values[n++] = primary_event_id(leader); 5091 5092 for_each_sibling_event(sub, leader) { 5093 values[n++] += perf_event_count(sub); 5094 if (read_format & PERF_FORMAT_ID) 5095 values[n++] = primary_event_id(sub); 5096 } 5097 5098 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5099 return 0; 5100 } 5101 5102 static int perf_read_group(struct perf_event *event, 5103 u64 read_format, char __user *buf) 5104 { 5105 struct perf_event *leader = event->group_leader, *child; 5106 struct perf_event_context *ctx = leader->ctx; 5107 int ret; 5108 u64 *values; 5109 5110 lockdep_assert_held(&ctx->mutex); 5111 5112 values = kzalloc(event->read_size, GFP_KERNEL); 5113 if (!values) 5114 return -ENOMEM; 5115 5116 values[0] = 1 + leader->nr_siblings; 5117 5118 /* 5119 * By locking the child_mutex of the leader we effectively 5120 * lock the child list of all siblings.. XXX explain how. 5121 */ 5122 mutex_lock(&leader->child_mutex); 5123 5124 ret = __perf_read_group_add(leader, read_format, values); 5125 if (ret) 5126 goto unlock; 5127 5128 list_for_each_entry(child, &leader->child_list, child_list) { 5129 ret = __perf_read_group_add(child, read_format, values); 5130 if (ret) 5131 goto unlock; 5132 } 5133 5134 mutex_unlock(&leader->child_mutex); 5135 5136 ret = event->read_size; 5137 if (copy_to_user(buf, values, event->read_size)) 5138 ret = -EFAULT; 5139 goto out; 5140 5141 unlock: 5142 mutex_unlock(&leader->child_mutex); 5143 out: 5144 kfree(values); 5145 return ret; 5146 } 5147 5148 static int perf_read_one(struct perf_event *event, 5149 u64 read_format, char __user *buf) 5150 { 5151 u64 enabled, running; 5152 u64 values[4]; 5153 int n = 0; 5154 5155 values[n++] = __perf_event_read_value(event, &enabled, &running); 5156 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5157 values[n++] = enabled; 5158 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5159 values[n++] = running; 5160 if (read_format & PERF_FORMAT_ID) 5161 values[n++] = primary_event_id(event); 5162 5163 if (copy_to_user(buf, values, n * sizeof(u64))) 5164 return -EFAULT; 5165 5166 return n * sizeof(u64); 5167 } 5168 5169 static bool is_event_hup(struct perf_event *event) 5170 { 5171 bool no_children; 5172 5173 if (event->state > PERF_EVENT_STATE_EXIT) 5174 return false; 5175 5176 mutex_lock(&event->child_mutex); 5177 no_children = list_empty(&event->child_list); 5178 mutex_unlock(&event->child_mutex); 5179 return no_children; 5180 } 5181 5182 /* 5183 * Read the performance event - simple non blocking version for now 5184 */ 5185 static ssize_t 5186 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5187 { 5188 u64 read_format = event->attr.read_format; 5189 int ret; 5190 5191 /* 5192 * Return end-of-file for a read on an event that is in 5193 * error state (i.e. because it was pinned but it couldn't be 5194 * scheduled on to the CPU at some point). 5195 */ 5196 if (event->state == PERF_EVENT_STATE_ERROR) 5197 return 0; 5198 5199 if (count < event->read_size) 5200 return -ENOSPC; 5201 5202 WARN_ON_ONCE(event->ctx->parent_ctx); 5203 if (read_format & PERF_FORMAT_GROUP) 5204 ret = perf_read_group(event, read_format, buf); 5205 else 5206 ret = perf_read_one(event, read_format, buf); 5207 5208 return ret; 5209 } 5210 5211 static ssize_t 5212 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5213 { 5214 struct perf_event *event = file->private_data; 5215 struct perf_event_context *ctx; 5216 int ret; 5217 5218 ret = security_perf_event_read(event); 5219 if (ret) 5220 return ret; 5221 5222 ctx = perf_event_ctx_lock(event); 5223 ret = __perf_read(event, buf, count); 5224 perf_event_ctx_unlock(event, ctx); 5225 5226 return ret; 5227 } 5228 5229 static __poll_t perf_poll(struct file *file, poll_table *wait) 5230 { 5231 struct perf_event *event = file->private_data; 5232 struct perf_buffer *rb; 5233 __poll_t events = EPOLLHUP; 5234 5235 poll_wait(file, &event->waitq, wait); 5236 5237 if (is_event_hup(event)) 5238 return events; 5239 5240 /* 5241 * Pin the event->rb by taking event->mmap_mutex; otherwise 5242 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5243 */ 5244 mutex_lock(&event->mmap_mutex); 5245 rb = event->rb; 5246 if (rb) 5247 events = atomic_xchg(&rb->poll, 0); 5248 mutex_unlock(&event->mmap_mutex); 5249 return events; 5250 } 5251 5252 static void _perf_event_reset(struct perf_event *event) 5253 { 5254 (void)perf_event_read(event, false); 5255 local64_set(&event->count, 0); 5256 perf_event_update_userpage(event); 5257 } 5258 5259 /* Assume it's not an event with inherit set. */ 5260 u64 perf_event_pause(struct perf_event *event, bool reset) 5261 { 5262 struct perf_event_context *ctx; 5263 u64 count; 5264 5265 ctx = perf_event_ctx_lock(event); 5266 WARN_ON_ONCE(event->attr.inherit); 5267 _perf_event_disable(event); 5268 count = local64_read(&event->count); 5269 if (reset) 5270 local64_set(&event->count, 0); 5271 perf_event_ctx_unlock(event, ctx); 5272 5273 return count; 5274 } 5275 EXPORT_SYMBOL_GPL(perf_event_pause); 5276 5277 /* 5278 * Holding the top-level event's child_mutex means that any 5279 * descendant process that has inherited this event will block 5280 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5281 * task existence requirements of perf_event_enable/disable. 5282 */ 5283 static void perf_event_for_each_child(struct perf_event *event, 5284 void (*func)(struct perf_event *)) 5285 { 5286 struct perf_event *child; 5287 5288 WARN_ON_ONCE(event->ctx->parent_ctx); 5289 5290 mutex_lock(&event->child_mutex); 5291 func(event); 5292 list_for_each_entry(child, &event->child_list, child_list) 5293 func(child); 5294 mutex_unlock(&event->child_mutex); 5295 } 5296 5297 static void perf_event_for_each(struct perf_event *event, 5298 void (*func)(struct perf_event *)) 5299 { 5300 struct perf_event_context *ctx = event->ctx; 5301 struct perf_event *sibling; 5302 5303 lockdep_assert_held(&ctx->mutex); 5304 5305 event = event->group_leader; 5306 5307 perf_event_for_each_child(event, func); 5308 for_each_sibling_event(sibling, event) 5309 perf_event_for_each_child(sibling, func); 5310 } 5311 5312 static void __perf_event_period(struct perf_event *event, 5313 struct perf_cpu_context *cpuctx, 5314 struct perf_event_context *ctx, 5315 void *info) 5316 { 5317 u64 value = *((u64 *)info); 5318 bool active; 5319 5320 if (event->attr.freq) { 5321 event->attr.sample_freq = value; 5322 } else { 5323 event->attr.sample_period = value; 5324 event->hw.sample_period = value; 5325 } 5326 5327 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5328 if (active) { 5329 perf_pmu_disable(ctx->pmu); 5330 /* 5331 * We could be throttled; unthrottle now to avoid the tick 5332 * trying to unthrottle while we already re-started the event. 5333 */ 5334 if (event->hw.interrupts == MAX_INTERRUPTS) { 5335 event->hw.interrupts = 0; 5336 perf_log_throttle(event, 1); 5337 } 5338 event->pmu->stop(event, PERF_EF_UPDATE); 5339 } 5340 5341 local64_set(&event->hw.period_left, 0); 5342 5343 if (active) { 5344 event->pmu->start(event, PERF_EF_RELOAD); 5345 perf_pmu_enable(ctx->pmu); 5346 } 5347 } 5348 5349 static int perf_event_check_period(struct perf_event *event, u64 value) 5350 { 5351 return event->pmu->check_period(event, value); 5352 } 5353 5354 static int _perf_event_period(struct perf_event *event, u64 value) 5355 { 5356 if (!is_sampling_event(event)) 5357 return -EINVAL; 5358 5359 if (!value) 5360 return -EINVAL; 5361 5362 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5363 return -EINVAL; 5364 5365 if (perf_event_check_period(event, value)) 5366 return -EINVAL; 5367 5368 if (!event->attr.freq && (value & (1ULL << 63))) 5369 return -EINVAL; 5370 5371 event_function_call(event, __perf_event_period, &value); 5372 5373 return 0; 5374 } 5375 5376 int perf_event_period(struct perf_event *event, u64 value) 5377 { 5378 struct perf_event_context *ctx; 5379 int ret; 5380 5381 ctx = perf_event_ctx_lock(event); 5382 ret = _perf_event_period(event, value); 5383 perf_event_ctx_unlock(event, ctx); 5384 5385 return ret; 5386 } 5387 EXPORT_SYMBOL_GPL(perf_event_period); 5388 5389 static const struct file_operations perf_fops; 5390 5391 static inline int perf_fget_light(int fd, struct fd *p) 5392 { 5393 struct fd f = fdget(fd); 5394 if (!f.file) 5395 return -EBADF; 5396 5397 if (f.file->f_op != &perf_fops) { 5398 fdput(f); 5399 return -EBADF; 5400 } 5401 *p = f; 5402 return 0; 5403 } 5404 5405 static int perf_event_set_output(struct perf_event *event, 5406 struct perf_event *output_event); 5407 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5408 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5409 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5410 struct perf_event_attr *attr); 5411 5412 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5413 { 5414 void (*func)(struct perf_event *); 5415 u32 flags = arg; 5416 5417 switch (cmd) { 5418 case PERF_EVENT_IOC_ENABLE: 5419 func = _perf_event_enable; 5420 break; 5421 case PERF_EVENT_IOC_DISABLE: 5422 func = _perf_event_disable; 5423 break; 5424 case PERF_EVENT_IOC_RESET: 5425 func = _perf_event_reset; 5426 break; 5427 5428 case PERF_EVENT_IOC_REFRESH: 5429 return _perf_event_refresh(event, arg); 5430 5431 case PERF_EVENT_IOC_PERIOD: 5432 { 5433 u64 value; 5434 5435 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5436 return -EFAULT; 5437 5438 return _perf_event_period(event, value); 5439 } 5440 case PERF_EVENT_IOC_ID: 5441 { 5442 u64 id = primary_event_id(event); 5443 5444 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5445 return -EFAULT; 5446 return 0; 5447 } 5448 5449 case PERF_EVENT_IOC_SET_OUTPUT: 5450 { 5451 int ret; 5452 if (arg != -1) { 5453 struct perf_event *output_event; 5454 struct fd output; 5455 ret = perf_fget_light(arg, &output); 5456 if (ret) 5457 return ret; 5458 output_event = output.file->private_data; 5459 ret = perf_event_set_output(event, output_event); 5460 fdput(output); 5461 } else { 5462 ret = perf_event_set_output(event, NULL); 5463 } 5464 return ret; 5465 } 5466 5467 case PERF_EVENT_IOC_SET_FILTER: 5468 return perf_event_set_filter(event, (void __user *)arg); 5469 5470 case PERF_EVENT_IOC_SET_BPF: 5471 return perf_event_set_bpf_prog(event, arg); 5472 5473 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5474 struct perf_buffer *rb; 5475 5476 rcu_read_lock(); 5477 rb = rcu_dereference(event->rb); 5478 if (!rb || !rb->nr_pages) { 5479 rcu_read_unlock(); 5480 return -EINVAL; 5481 } 5482 rb_toggle_paused(rb, !!arg); 5483 rcu_read_unlock(); 5484 return 0; 5485 } 5486 5487 case PERF_EVENT_IOC_QUERY_BPF: 5488 return perf_event_query_prog_array(event, (void __user *)arg); 5489 5490 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5491 struct perf_event_attr new_attr; 5492 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5493 &new_attr); 5494 5495 if (err) 5496 return err; 5497 5498 return perf_event_modify_attr(event, &new_attr); 5499 } 5500 default: 5501 return -ENOTTY; 5502 } 5503 5504 if (flags & PERF_IOC_FLAG_GROUP) 5505 perf_event_for_each(event, func); 5506 else 5507 perf_event_for_each_child(event, func); 5508 5509 return 0; 5510 } 5511 5512 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5513 { 5514 struct perf_event *event = file->private_data; 5515 struct perf_event_context *ctx; 5516 long ret; 5517 5518 /* Treat ioctl like writes as it is likely a mutating operation. */ 5519 ret = security_perf_event_write(event); 5520 if (ret) 5521 return ret; 5522 5523 ctx = perf_event_ctx_lock(event); 5524 ret = _perf_ioctl(event, cmd, arg); 5525 perf_event_ctx_unlock(event, ctx); 5526 5527 return ret; 5528 } 5529 5530 #ifdef CONFIG_COMPAT 5531 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5532 unsigned long arg) 5533 { 5534 switch (_IOC_NR(cmd)) { 5535 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5536 case _IOC_NR(PERF_EVENT_IOC_ID): 5537 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5538 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5539 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5540 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5541 cmd &= ~IOCSIZE_MASK; 5542 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5543 } 5544 break; 5545 } 5546 return perf_ioctl(file, cmd, arg); 5547 } 5548 #else 5549 # define perf_compat_ioctl NULL 5550 #endif 5551 5552 int perf_event_task_enable(void) 5553 { 5554 struct perf_event_context *ctx; 5555 struct perf_event *event; 5556 5557 mutex_lock(¤t->perf_event_mutex); 5558 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5559 ctx = perf_event_ctx_lock(event); 5560 perf_event_for_each_child(event, _perf_event_enable); 5561 perf_event_ctx_unlock(event, ctx); 5562 } 5563 mutex_unlock(¤t->perf_event_mutex); 5564 5565 return 0; 5566 } 5567 5568 int perf_event_task_disable(void) 5569 { 5570 struct perf_event_context *ctx; 5571 struct perf_event *event; 5572 5573 mutex_lock(¤t->perf_event_mutex); 5574 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5575 ctx = perf_event_ctx_lock(event); 5576 perf_event_for_each_child(event, _perf_event_disable); 5577 perf_event_ctx_unlock(event, ctx); 5578 } 5579 mutex_unlock(¤t->perf_event_mutex); 5580 5581 return 0; 5582 } 5583 5584 static int perf_event_index(struct perf_event *event) 5585 { 5586 if (event->hw.state & PERF_HES_STOPPED) 5587 return 0; 5588 5589 if (event->state != PERF_EVENT_STATE_ACTIVE) 5590 return 0; 5591 5592 return event->pmu->event_idx(event); 5593 } 5594 5595 static void calc_timer_values(struct perf_event *event, 5596 u64 *now, 5597 u64 *enabled, 5598 u64 *running) 5599 { 5600 u64 ctx_time; 5601 5602 *now = perf_clock(); 5603 ctx_time = event->shadow_ctx_time + *now; 5604 __perf_update_times(event, ctx_time, enabled, running); 5605 } 5606 5607 static void perf_event_init_userpage(struct perf_event *event) 5608 { 5609 struct perf_event_mmap_page *userpg; 5610 struct perf_buffer *rb; 5611 5612 rcu_read_lock(); 5613 rb = rcu_dereference(event->rb); 5614 if (!rb) 5615 goto unlock; 5616 5617 userpg = rb->user_page; 5618 5619 /* Allow new userspace to detect that bit 0 is deprecated */ 5620 userpg->cap_bit0_is_deprecated = 1; 5621 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5622 userpg->data_offset = PAGE_SIZE; 5623 userpg->data_size = perf_data_size(rb); 5624 5625 unlock: 5626 rcu_read_unlock(); 5627 } 5628 5629 void __weak arch_perf_update_userpage( 5630 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5631 { 5632 } 5633 5634 /* 5635 * Callers need to ensure there can be no nesting of this function, otherwise 5636 * the seqlock logic goes bad. We can not serialize this because the arch 5637 * code calls this from NMI context. 5638 */ 5639 void perf_event_update_userpage(struct perf_event *event) 5640 { 5641 struct perf_event_mmap_page *userpg; 5642 struct perf_buffer *rb; 5643 u64 enabled, running, now; 5644 5645 rcu_read_lock(); 5646 rb = rcu_dereference(event->rb); 5647 if (!rb) 5648 goto unlock; 5649 5650 /* 5651 * compute total_time_enabled, total_time_running 5652 * based on snapshot values taken when the event 5653 * was last scheduled in. 5654 * 5655 * we cannot simply called update_context_time() 5656 * because of locking issue as we can be called in 5657 * NMI context 5658 */ 5659 calc_timer_values(event, &now, &enabled, &running); 5660 5661 userpg = rb->user_page; 5662 /* 5663 * Disable preemption to guarantee consistent time stamps are stored to 5664 * the user page. 5665 */ 5666 preempt_disable(); 5667 ++userpg->lock; 5668 barrier(); 5669 userpg->index = perf_event_index(event); 5670 userpg->offset = perf_event_count(event); 5671 if (userpg->index) 5672 userpg->offset -= local64_read(&event->hw.prev_count); 5673 5674 userpg->time_enabled = enabled + 5675 atomic64_read(&event->child_total_time_enabled); 5676 5677 userpg->time_running = running + 5678 atomic64_read(&event->child_total_time_running); 5679 5680 arch_perf_update_userpage(event, userpg, now); 5681 5682 barrier(); 5683 ++userpg->lock; 5684 preempt_enable(); 5685 unlock: 5686 rcu_read_unlock(); 5687 } 5688 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5689 5690 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5691 { 5692 struct perf_event *event = vmf->vma->vm_file->private_data; 5693 struct perf_buffer *rb; 5694 vm_fault_t ret = VM_FAULT_SIGBUS; 5695 5696 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5697 if (vmf->pgoff == 0) 5698 ret = 0; 5699 return ret; 5700 } 5701 5702 rcu_read_lock(); 5703 rb = rcu_dereference(event->rb); 5704 if (!rb) 5705 goto unlock; 5706 5707 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5708 goto unlock; 5709 5710 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5711 if (!vmf->page) 5712 goto unlock; 5713 5714 get_page(vmf->page); 5715 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5716 vmf->page->index = vmf->pgoff; 5717 5718 ret = 0; 5719 unlock: 5720 rcu_read_unlock(); 5721 5722 return ret; 5723 } 5724 5725 static void ring_buffer_attach(struct perf_event *event, 5726 struct perf_buffer *rb) 5727 { 5728 struct perf_buffer *old_rb = NULL; 5729 unsigned long flags; 5730 5731 if (event->rb) { 5732 /* 5733 * Should be impossible, we set this when removing 5734 * event->rb_entry and wait/clear when adding event->rb_entry. 5735 */ 5736 WARN_ON_ONCE(event->rcu_pending); 5737 5738 old_rb = event->rb; 5739 spin_lock_irqsave(&old_rb->event_lock, flags); 5740 list_del_rcu(&event->rb_entry); 5741 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5742 5743 event->rcu_batches = get_state_synchronize_rcu(); 5744 event->rcu_pending = 1; 5745 } 5746 5747 if (rb) { 5748 if (event->rcu_pending) { 5749 cond_synchronize_rcu(event->rcu_batches); 5750 event->rcu_pending = 0; 5751 } 5752 5753 spin_lock_irqsave(&rb->event_lock, flags); 5754 list_add_rcu(&event->rb_entry, &rb->event_list); 5755 spin_unlock_irqrestore(&rb->event_lock, flags); 5756 } 5757 5758 /* 5759 * Avoid racing with perf_mmap_close(AUX): stop the event 5760 * before swizzling the event::rb pointer; if it's getting 5761 * unmapped, its aux_mmap_count will be 0 and it won't 5762 * restart. See the comment in __perf_pmu_output_stop(). 5763 * 5764 * Data will inevitably be lost when set_output is done in 5765 * mid-air, but then again, whoever does it like this is 5766 * not in for the data anyway. 5767 */ 5768 if (has_aux(event)) 5769 perf_event_stop(event, 0); 5770 5771 rcu_assign_pointer(event->rb, rb); 5772 5773 if (old_rb) { 5774 ring_buffer_put(old_rb); 5775 /* 5776 * Since we detached before setting the new rb, so that we 5777 * could attach the new rb, we could have missed a wakeup. 5778 * Provide it now. 5779 */ 5780 wake_up_all(&event->waitq); 5781 } 5782 } 5783 5784 static void ring_buffer_wakeup(struct perf_event *event) 5785 { 5786 struct perf_buffer *rb; 5787 5788 rcu_read_lock(); 5789 rb = rcu_dereference(event->rb); 5790 if (rb) { 5791 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5792 wake_up_all(&event->waitq); 5793 } 5794 rcu_read_unlock(); 5795 } 5796 5797 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5798 { 5799 struct perf_buffer *rb; 5800 5801 rcu_read_lock(); 5802 rb = rcu_dereference(event->rb); 5803 if (rb) { 5804 if (!refcount_inc_not_zero(&rb->refcount)) 5805 rb = NULL; 5806 } 5807 rcu_read_unlock(); 5808 5809 return rb; 5810 } 5811 5812 void ring_buffer_put(struct perf_buffer *rb) 5813 { 5814 if (!refcount_dec_and_test(&rb->refcount)) 5815 return; 5816 5817 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5818 5819 call_rcu(&rb->rcu_head, rb_free_rcu); 5820 } 5821 5822 static void perf_mmap_open(struct vm_area_struct *vma) 5823 { 5824 struct perf_event *event = vma->vm_file->private_data; 5825 5826 atomic_inc(&event->mmap_count); 5827 atomic_inc(&event->rb->mmap_count); 5828 5829 if (vma->vm_pgoff) 5830 atomic_inc(&event->rb->aux_mmap_count); 5831 5832 if (event->pmu->event_mapped) 5833 event->pmu->event_mapped(event, vma->vm_mm); 5834 } 5835 5836 static void perf_pmu_output_stop(struct perf_event *event); 5837 5838 /* 5839 * A buffer can be mmap()ed multiple times; either directly through the same 5840 * event, or through other events by use of perf_event_set_output(). 5841 * 5842 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5843 * the buffer here, where we still have a VM context. This means we need 5844 * to detach all events redirecting to us. 5845 */ 5846 static void perf_mmap_close(struct vm_area_struct *vma) 5847 { 5848 struct perf_event *event = vma->vm_file->private_data; 5849 5850 struct perf_buffer *rb = ring_buffer_get(event); 5851 struct user_struct *mmap_user = rb->mmap_user; 5852 int mmap_locked = rb->mmap_locked; 5853 unsigned long size = perf_data_size(rb); 5854 5855 if (event->pmu->event_unmapped) 5856 event->pmu->event_unmapped(event, vma->vm_mm); 5857 5858 /* 5859 * rb->aux_mmap_count will always drop before rb->mmap_count and 5860 * event->mmap_count, so it is ok to use event->mmap_mutex to 5861 * serialize with perf_mmap here. 5862 */ 5863 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5864 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5865 /* 5866 * Stop all AUX events that are writing to this buffer, 5867 * so that we can free its AUX pages and corresponding PMU 5868 * data. Note that after rb::aux_mmap_count dropped to zero, 5869 * they won't start any more (see perf_aux_output_begin()). 5870 */ 5871 perf_pmu_output_stop(event); 5872 5873 /* now it's safe to free the pages */ 5874 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5875 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5876 5877 /* this has to be the last one */ 5878 rb_free_aux(rb); 5879 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5880 5881 mutex_unlock(&event->mmap_mutex); 5882 } 5883 5884 atomic_dec(&rb->mmap_count); 5885 5886 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5887 goto out_put; 5888 5889 ring_buffer_attach(event, NULL); 5890 mutex_unlock(&event->mmap_mutex); 5891 5892 /* If there's still other mmap()s of this buffer, we're done. */ 5893 if (atomic_read(&rb->mmap_count)) 5894 goto out_put; 5895 5896 /* 5897 * No other mmap()s, detach from all other events that might redirect 5898 * into the now unreachable buffer. Somewhat complicated by the 5899 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5900 */ 5901 again: 5902 rcu_read_lock(); 5903 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5904 if (!atomic_long_inc_not_zero(&event->refcount)) { 5905 /* 5906 * This event is en-route to free_event() which will 5907 * detach it and remove it from the list. 5908 */ 5909 continue; 5910 } 5911 rcu_read_unlock(); 5912 5913 mutex_lock(&event->mmap_mutex); 5914 /* 5915 * Check we didn't race with perf_event_set_output() which can 5916 * swizzle the rb from under us while we were waiting to 5917 * acquire mmap_mutex. 5918 * 5919 * If we find a different rb; ignore this event, a next 5920 * iteration will no longer find it on the list. We have to 5921 * still restart the iteration to make sure we're not now 5922 * iterating the wrong list. 5923 */ 5924 if (event->rb == rb) 5925 ring_buffer_attach(event, NULL); 5926 5927 mutex_unlock(&event->mmap_mutex); 5928 put_event(event); 5929 5930 /* 5931 * Restart the iteration; either we're on the wrong list or 5932 * destroyed its integrity by doing a deletion. 5933 */ 5934 goto again; 5935 } 5936 rcu_read_unlock(); 5937 5938 /* 5939 * It could be there's still a few 0-ref events on the list; they'll 5940 * get cleaned up by free_event() -- they'll also still have their 5941 * ref on the rb and will free it whenever they are done with it. 5942 * 5943 * Aside from that, this buffer is 'fully' detached and unmapped, 5944 * undo the VM accounting. 5945 */ 5946 5947 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5948 &mmap_user->locked_vm); 5949 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5950 free_uid(mmap_user); 5951 5952 out_put: 5953 ring_buffer_put(rb); /* could be last */ 5954 } 5955 5956 static const struct vm_operations_struct perf_mmap_vmops = { 5957 .open = perf_mmap_open, 5958 .close = perf_mmap_close, /* non mergeable */ 5959 .fault = perf_mmap_fault, 5960 .page_mkwrite = perf_mmap_fault, 5961 }; 5962 5963 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5964 { 5965 struct perf_event *event = file->private_data; 5966 unsigned long user_locked, user_lock_limit; 5967 struct user_struct *user = current_user(); 5968 struct perf_buffer *rb = NULL; 5969 unsigned long locked, lock_limit; 5970 unsigned long vma_size; 5971 unsigned long nr_pages; 5972 long user_extra = 0, extra = 0; 5973 int ret = 0, flags = 0; 5974 5975 /* 5976 * Don't allow mmap() of inherited per-task counters. This would 5977 * create a performance issue due to all children writing to the 5978 * same rb. 5979 */ 5980 if (event->cpu == -1 && event->attr.inherit) 5981 return -EINVAL; 5982 5983 if (!(vma->vm_flags & VM_SHARED)) 5984 return -EINVAL; 5985 5986 ret = security_perf_event_read(event); 5987 if (ret) 5988 return ret; 5989 5990 vma_size = vma->vm_end - vma->vm_start; 5991 5992 if (vma->vm_pgoff == 0) { 5993 nr_pages = (vma_size / PAGE_SIZE) - 1; 5994 } else { 5995 /* 5996 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5997 * mapped, all subsequent mappings should have the same size 5998 * and offset. Must be above the normal perf buffer. 5999 */ 6000 u64 aux_offset, aux_size; 6001 6002 if (!event->rb) 6003 return -EINVAL; 6004 6005 nr_pages = vma_size / PAGE_SIZE; 6006 6007 mutex_lock(&event->mmap_mutex); 6008 ret = -EINVAL; 6009 6010 rb = event->rb; 6011 if (!rb) 6012 goto aux_unlock; 6013 6014 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6015 aux_size = READ_ONCE(rb->user_page->aux_size); 6016 6017 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6018 goto aux_unlock; 6019 6020 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6021 goto aux_unlock; 6022 6023 /* already mapped with a different offset */ 6024 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6025 goto aux_unlock; 6026 6027 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6028 goto aux_unlock; 6029 6030 /* already mapped with a different size */ 6031 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6032 goto aux_unlock; 6033 6034 if (!is_power_of_2(nr_pages)) 6035 goto aux_unlock; 6036 6037 if (!atomic_inc_not_zero(&rb->mmap_count)) 6038 goto aux_unlock; 6039 6040 if (rb_has_aux(rb)) { 6041 atomic_inc(&rb->aux_mmap_count); 6042 ret = 0; 6043 goto unlock; 6044 } 6045 6046 atomic_set(&rb->aux_mmap_count, 1); 6047 user_extra = nr_pages; 6048 6049 goto accounting; 6050 } 6051 6052 /* 6053 * If we have rb pages ensure they're a power-of-two number, so we 6054 * can do bitmasks instead of modulo. 6055 */ 6056 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6057 return -EINVAL; 6058 6059 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6060 return -EINVAL; 6061 6062 WARN_ON_ONCE(event->ctx->parent_ctx); 6063 again: 6064 mutex_lock(&event->mmap_mutex); 6065 if (event->rb) { 6066 if (event->rb->nr_pages != nr_pages) { 6067 ret = -EINVAL; 6068 goto unlock; 6069 } 6070 6071 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6072 /* 6073 * Raced against perf_mmap_close() through 6074 * perf_event_set_output(). Try again, hope for better 6075 * luck. 6076 */ 6077 mutex_unlock(&event->mmap_mutex); 6078 goto again; 6079 } 6080 6081 goto unlock; 6082 } 6083 6084 user_extra = nr_pages + 1; 6085 6086 accounting: 6087 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6088 6089 /* 6090 * Increase the limit linearly with more CPUs: 6091 */ 6092 user_lock_limit *= num_online_cpus(); 6093 6094 user_locked = atomic_long_read(&user->locked_vm); 6095 6096 /* 6097 * sysctl_perf_event_mlock may have changed, so that 6098 * user->locked_vm > user_lock_limit 6099 */ 6100 if (user_locked > user_lock_limit) 6101 user_locked = user_lock_limit; 6102 user_locked += user_extra; 6103 6104 if (user_locked > user_lock_limit) { 6105 /* 6106 * charge locked_vm until it hits user_lock_limit; 6107 * charge the rest from pinned_vm 6108 */ 6109 extra = user_locked - user_lock_limit; 6110 user_extra -= extra; 6111 } 6112 6113 lock_limit = rlimit(RLIMIT_MEMLOCK); 6114 lock_limit >>= PAGE_SHIFT; 6115 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6116 6117 if ((locked > lock_limit) && perf_is_paranoid() && 6118 !capable(CAP_IPC_LOCK)) { 6119 ret = -EPERM; 6120 goto unlock; 6121 } 6122 6123 WARN_ON(!rb && event->rb); 6124 6125 if (vma->vm_flags & VM_WRITE) 6126 flags |= RING_BUFFER_WRITABLE; 6127 6128 if (!rb) { 6129 rb = rb_alloc(nr_pages, 6130 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6131 event->cpu, flags); 6132 6133 if (!rb) { 6134 ret = -ENOMEM; 6135 goto unlock; 6136 } 6137 6138 atomic_set(&rb->mmap_count, 1); 6139 rb->mmap_user = get_current_user(); 6140 rb->mmap_locked = extra; 6141 6142 ring_buffer_attach(event, rb); 6143 6144 perf_event_init_userpage(event); 6145 perf_event_update_userpage(event); 6146 } else { 6147 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6148 event->attr.aux_watermark, flags); 6149 if (!ret) 6150 rb->aux_mmap_locked = extra; 6151 } 6152 6153 unlock: 6154 if (!ret) { 6155 atomic_long_add(user_extra, &user->locked_vm); 6156 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6157 6158 atomic_inc(&event->mmap_count); 6159 } else if (rb) { 6160 atomic_dec(&rb->mmap_count); 6161 } 6162 aux_unlock: 6163 mutex_unlock(&event->mmap_mutex); 6164 6165 /* 6166 * Since pinned accounting is per vm we cannot allow fork() to copy our 6167 * vma. 6168 */ 6169 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6170 vma->vm_ops = &perf_mmap_vmops; 6171 6172 if (event->pmu->event_mapped) 6173 event->pmu->event_mapped(event, vma->vm_mm); 6174 6175 return ret; 6176 } 6177 6178 static int perf_fasync(int fd, struct file *filp, int on) 6179 { 6180 struct inode *inode = file_inode(filp); 6181 struct perf_event *event = filp->private_data; 6182 int retval; 6183 6184 inode_lock(inode); 6185 retval = fasync_helper(fd, filp, on, &event->fasync); 6186 inode_unlock(inode); 6187 6188 if (retval < 0) 6189 return retval; 6190 6191 return 0; 6192 } 6193 6194 static const struct file_operations perf_fops = { 6195 .llseek = no_llseek, 6196 .release = perf_release, 6197 .read = perf_read, 6198 .poll = perf_poll, 6199 .unlocked_ioctl = perf_ioctl, 6200 .compat_ioctl = perf_compat_ioctl, 6201 .mmap = perf_mmap, 6202 .fasync = perf_fasync, 6203 }; 6204 6205 /* 6206 * Perf event wakeup 6207 * 6208 * If there's data, ensure we set the poll() state and publish everything 6209 * to user-space before waking everybody up. 6210 */ 6211 6212 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6213 { 6214 /* only the parent has fasync state */ 6215 if (event->parent) 6216 event = event->parent; 6217 return &event->fasync; 6218 } 6219 6220 void perf_event_wakeup(struct perf_event *event) 6221 { 6222 ring_buffer_wakeup(event); 6223 6224 if (event->pending_kill) { 6225 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6226 event->pending_kill = 0; 6227 } 6228 } 6229 6230 static void perf_pending_event_disable(struct perf_event *event) 6231 { 6232 int cpu = READ_ONCE(event->pending_disable); 6233 6234 if (cpu < 0) 6235 return; 6236 6237 if (cpu == smp_processor_id()) { 6238 WRITE_ONCE(event->pending_disable, -1); 6239 perf_event_disable_local(event); 6240 return; 6241 } 6242 6243 /* 6244 * CPU-A CPU-B 6245 * 6246 * perf_event_disable_inatomic() 6247 * @pending_disable = CPU-A; 6248 * irq_work_queue(); 6249 * 6250 * sched-out 6251 * @pending_disable = -1; 6252 * 6253 * sched-in 6254 * perf_event_disable_inatomic() 6255 * @pending_disable = CPU-B; 6256 * irq_work_queue(); // FAILS 6257 * 6258 * irq_work_run() 6259 * perf_pending_event() 6260 * 6261 * But the event runs on CPU-B and wants disabling there. 6262 */ 6263 irq_work_queue_on(&event->pending, cpu); 6264 } 6265 6266 static void perf_pending_event(struct irq_work *entry) 6267 { 6268 struct perf_event *event = container_of(entry, struct perf_event, pending); 6269 int rctx; 6270 6271 rctx = perf_swevent_get_recursion_context(); 6272 /* 6273 * If we 'fail' here, that's OK, it means recursion is already disabled 6274 * and we won't recurse 'further'. 6275 */ 6276 6277 perf_pending_event_disable(event); 6278 6279 if (event->pending_wakeup) { 6280 event->pending_wakeup = 0; 6281 perf_event_wakeup(event); 6282 } 6283 6284 if (rctx >= 0) 6285 perf_swevent_put_recursion_context(rctx); 6286 } 6287 6288 /* 6289 * We assume there is only KVM supporting the callbacks. 6290 * Later on, we might change it to a list if there is 6291 * another virtualization implementation supporting the callbacks. 6292 */ 6293 struct perf_guest_info_callbacks *perf_guest_cbs; 6294 6295 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6296 { 6297 perf_guest_cbs = cbs; 6298 return 0; 6299 } 6300 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6301 6302 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6303 { 6304 perf_guest_cbs = NULL; 6305 return 0; 6306 } 6307 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6308 6309 static void 6310 perf_output_sample_regs(struct perf_output_handle *handle, 6311 struct pt_regs *regs, u64 mask) 6312 { 6313 int bit; 6314 DECLARE_BITMAP(_mask, 64); 6315 6316 bitmap_from_u64(_mask, mask); 6317 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6318 u64 val; 6319 6320 val = perf_reg_value(regs, bit); 6321 perf_output_put(handle, val); 6322 } 6323 } 6324 6325 static void perf_sample_regs_user(struct perf_regs *regs_user, 6326 struct pt_regs *regs, 6327 struct pt_regs *regs_user_copy) 6328 { 6329 if (user_mode(regs)) { 6330 regs_user->abi = perf_reg_abi(current); 6331 regs_user->regs = regs; 6332 } else if (!(current->flags & PF_KTHREAD)) { 6333 perf_get_regs_user(regs_user, regs, regs_user_copy); 6334 } else { 6335 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6336 regs_user->regs = NULL; 6337 } 6338 } 6339 6340 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6341 struct pt_regs *regs) 6342 { 6343 regs_intr->regs = regs; 6344 regs_intr->abi = perf_reg_abi(current); 6345 } 6346 6347 6348 /* 6349 * Get remaining task size from user stack pointer. 6350 * 6351 * It'd be better to take stack vma map and limit this more 6352 * precisely, but there's no way to get it safely under interrupt, 6353 * so using TASK_SIZE as limit. 6354 */ 6355 static u64 perf_ustack_task_size(struct pt_regs *regs) 6356 { 6357 unsigned long addr = perf_user_stack_pointer(regs); 6358 6359 if (!addr || addr >= TASK_SIZE) 6360 return 0; 6361 6362 return TASK_SIZE - addr; 6363 } 6364 6365 static u16 6366 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6367 struct pt_regs *regs) 6368 { 6369 u64 task_size; 6370 6371 /* No regs, no stack pointer, no dump. */ 6372 if (!regs) 6373 return 0; 6374 6375 /* 6376 * Check if we fit in with the requested stack size into the: 6377 * - TASK_SIZE 6378 * If we don't, we limit the size to the TASK_SIZE. 6379 * 6380 * - remaining sample size 6381 * If we don't, we customize the stack size to 6382 * fit in to the remaining sample size. 6383 */ 6384 6385 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6386 stack_size = min(stack_size, (u16) task_size); 6387 6388 /* Current header size plus static size and dynamic size. */ 6389 header_size += 2 * sizeof(u64); 6390 6391 /* Do we fit in with the current stack dump size? */ 6392 if ((u16) (header_size + stack_size) < header_size) { 6393 /* 6394 * If we overflow the maximum size for the sample, 6395 * we customize the stack dump size to fit in. 6396 */ 6397 stack_size = USHRT_MAX - header_size - sizeof(u64); 6398 stack_size = round_up(stack_size, sizeof(u64)); 6399 } 6400 6401 return stack_size; 6402 } 6403 6404 static void 6405 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6406 struct pt_regs *regs) 6407 { 6408 /* Case of a kernel thread, nothing to dump */ 6409 if (!regs) { 6410 u64 size = 0; 6411 perf_output_put(handle, size); 6412 } else { 6413 unsigned long sp; 6414 unsigned int rem; 6415 u64 dyn_size; 6416 mm_segment_t fs; 6417 6418 /* 6419 * We dump: 6420 * static size 6421 * - the size requested by user or the best one we can fit 6422 * in to the sample max size 6423 * data 6424 * - user stack dump data 6425 * dynamic size 6426 * - the actual dumped size 6427 */ 6428 6429 /* Static size. */ 6430 perf_output_put(handle, dump_size); 6431 6432 /* Data. */ 6433 sp = perf_user_stack_pointer(regs); 6434 fs = get_fs(); 6435 set_fs(USER_DS); 6436 rem = __output_copy_user(handle, (void *) sp, dump_size); 6437 set_fs(fs); 6438 dyn_size = dump_size - rem; 6439 6440 perf_output_skip(handle, rem); 6441 6442 /* Dynamic size. */ 6443 perf_output_put(handle, dyn_size); 6444 } 6445 } 6446 6447 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6448 struct perf_sample_data *data, 6449 size_t size) 6450 { 6451 struct perf_event *sampler = event->aux_event; 6452 struct perf_buffer *rb; 6453 6454 data->aux_size = 0; 6455 6456 if (!sampler) 6457 goto out; 6458 6459 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6460 goto out; 6461 6462 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6463 goto out; 6464 6465 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6466 if (!rb) 6467 goto out; 6468 6469 /* 6470 * If this is an NMI hit inside sampling code, don't take 6471 * the sample. See also perf_aux_sample_output(). 6472 */ 6473 if (READ_ONCE(rb->aux_in_sampling)) { 6474 data->aux_size = 0; 6475 } else { 6476 size = min_t(size_t, size, perf_aux_size(rb)); 6477 data->aux_size = ALIGN(size, sizeof(u64)); 6478 } 6479 ring_buffer_put(rb); 6480 6481 out: 6482 return data->aux_size; 6483 } 6484 6485 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6486 struct perf_event *event, 6487 struct perf_output_handle *handle, 6488 unsigned long size) 6489 { 6490 unsigned long flags; 6491 long ret; 6492 6493 /* 6494 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6495 * paths. If we start calling them in NMI context, they may race with 6496 * the IRQ ones, that is, for example, re-starting an event that's just 6497 * been stopped, which is why we're using a separate callback that 6498 * doesn't change the event state. 6499 * 6500 * IRQs need to be disabled to prevent IPIs from racing with us. 6501 */ 6502 local_irq_save(flags); 6503 /* 6504 * Guard against NMI hits inside the critical section; 6505 * see also perf_prepare_sample_aux(). 6506 */ 6507 WRITE_ONCE(rb->aux_in_sampling, 1); 6508 barrier(); 6509 6510 ret = event->pmu->snapshot_aux(event, handle, size); 6511 6512 barrier(); 6513 WRITE_ONCE(rb->aux_in_sampling, 0); 6514 local_irq_restore(flags); 6515 6516 return ret; 6517 } 6518 6519 static void perf_aux_sample_output(struct perf_event *event, 6520 struct perf_output_handle *handle, 6521 struct perf_sample_data *data) 6522 { 6523 struct perf_event *sampler = event->aux_event; 6524 struct perf_buffer *rb; 6525 unsigned long pad; 6526 long size; 6527 6528 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6529 return; 6530 6531 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6532 if (!rb) 6533 return; 6534 6535 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6536 6537 /* 6538 * An error here means that perf_output_copy() failed (returned a 6539 * non-zero surplus that it didn't copy), which in its current 6540 * enlightened implementation is not possible. If that changes, we'd 6541 * like to know. 6542 */ 6543 if (WARN_ON_ONCE(size < 0)) 6544 goto out_put; 6545 6546 /* 6547 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6548 * perf_prepare_sample_aux(), so should not be more than that. 6549 */ 6550 pad = data->aux_size - size; 6551 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6552 pad = 8; 6553 6554 if (pad) { 6555 u64 zero = 0; 6556 perf_output_copy(handle, &zero, pad); 6557 } 6558 6559 out_put: 6560 ring_buffer_put(rb); 6561 } 6562 6563 static void __perf_event_header__init_id(struct perf_event_header *header, 6564 struct perf_sample_data *data, 6565 struct perf_event *event) 6566 { 6567 u64 sample_type = event->attr.sample_type; 6568 6569 data->type = sample_type; 6570 header->size += event->id_header_size; 6571 6572 if (sample_type & PERF_SAMPLE_TID) { 6573 /* namespace issues */ 6574 data->tid_entry.pid = perf_event_pid(event, current); 6575 data->tid_entry.tid = perf_event_tid(event, current); 6576 } 6577 6578 if (sample_type & PERF_SAMPLE_TIME) 6579 data->time = perf_event_clock(event); 6580 6581 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6582 data->id = primary_event_id(event); 6583 6584 if (sample_type & PERF_SAMPLE_STREAM_ID) 6585 data->stream_id = event->id; 6586 6587 if (sample_type & PERF_SAMPLE_CPU) { 6588 data->cpu_entry.cpu = raw_smp_processor_id(); 6589 data->cpu_entry.reserved = 0; 6590 } 6591 } 6592 6593 void perf_event_header__init_id(struct perf_event_header *header, 6594 struct perf_sample_data *data, 6595 struct perf_event *event) 6596 { 6597 if (event->attr.sample_id_all) 6598 __perf_event_header__init_id(header, data, event); 6599 } 6600 6601 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6602 struct perf_sample_data *data) 6603 { 6604 u64 sample_type = data->type; 6605 6606 if (sample_type & PERF_SAMPLE_TID) 6607 perf_output_put(handle, data->tid_entry); 6608 6609 if (sample_type & PERF_SAMPLE_TIME) 6610 perf_output_put(handle, data->time); 6611 6612 if (sample_type & PERF_SAMPLE_ID) 6613 perf_output_put(handle, data->id); 6614 6615 if (sample_type & PERF_SAMPLE_STREAM_ID) 6616 perf_output_put(handle, data->stream_id); 6617 6618 if (sample_type & PERF_SAMPLE_CPU) 6619 perf_output_put(handle, data->cpu_entry); 6620 6621 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6622 perf_output_put(handle, data->id); 6623 } 6624 6625 void perf_event__output_id_sample(struct perf_event *event, 6626 struct perf_output_handle *handle, 6627 struct perf_sample_data *sample) 6628 { 6629 if (event->attr.sample_id_all) 6630 __perf_event__output_id_sample(handle, sample); 6631 } 6632 6633 static void perf_output_read_one(struct perf_output_handle *handle, 6634 struct perf_event *event, 6635 u64 enabled, u64 running) 6636 { 6637 u64 read_format = event->attr.read_format; 6638 u64 values[4]; 6639 int n = 0; 6640 6641 values[n++] = perf_event_count(event); 6642 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6643 values[n++] = enabled + 6644 atomic64_read(&event->child_total_time_enabled); 6645 } 6646 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6647 values[n++] = running + 6648 atomic64_read(&event->child_total_time_running); 6649 } 6650 if (read_format & PERF_FORMAT_ID) 6651 values[n++] = primary_event_id(event); 6652 6653 __output_copy(handle, values, n * sizeof(u64)); 6654 } 6655 6656 static void perf_output_read_group(struct perf_output_handle *handle, 6657 struct perf_event *event, 6658 u64 enabled, u64 running) 6659 { 6660 struct perf_event *leader = event->group_leader, *sub; 6661 u64 read_format = event->attr.read_format; 6662 u64 values[5]; 6663 int n = 0; 6664 6665 values[n++] = 1 + leader->nr_siblings; 6666 6667 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6668 values[n++] = enabled; 6669 6670 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6671 values[n++] = running; 6672 6673 if ((leader != event) && 6674 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6675 leader->pmu->read(leader); 6676 6677 values[n++] = perf_event_count(leader); 6678 if (read_format & PERF_FORMAT_ID) 6679 values[n++] = primary_event_id(leader); 6680 6681 __output_copy(handle, values, n * sizeof(u64)); 6682 6683 for_each_sibling_event(sub, leader) { 6684 n = 0; 6685 6686 if ((sub != event) && 6687 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6688 sub->pmu->read(sub); 6689 6690 values[n++] = perf_event_count(sub); 6691 if (read_format & PERF_FORMAT_ID) 6692 values[n++] = primary_event_id(sub); 6693 6694 __output_copy(handle, values, n * sizeof(u64)); 6695 } 6696 } 6697 6698 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6699 PERF_FORMAT_TOTAL_TIME_RUNNING) 6700 6701 /* 6702 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6703 * 6704 * The problem is that its both hard and excessively expensive to iterate the 6705 * child list, not to mention that its impossible to IPI the children running 6706 * on another CPU, from interrupt/NMI context. 6707 */ 6708 static void perf_output_read(struct perf_output_handle *handle, 6709 struct perf_event *event) 6710 { 6711 u64 enabled = 0, running = 0, now; 6712 u64 read_format = event->attr.read_format; 6713 6714 /* 6715 * compute total_time_enabled, total_time_running 6716 * based on snapshot values taken when the event 6717 * was last scheduled in. 6718 * 6719 * we cannot simply called update_context_time() 6720 * because of locking issue as we are called in 6721 * NMI context 6722 */ 6723 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6724 calc_timer_values(event, &now, &enabled, &running); 6725 6726 if (event->attr.read_format & PERF_FORMAT_GROUP) 6727 perf_output_read_group(handle, event, enabled, running); 6728 else 6729 perf_output_read_one(handle, event, enabled, running); 6730 } 6731 6732 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6733 { 6734 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6735 } 6736 6737 void perf_output_sample(struct perf_output_handle *handle, 6738 struct perf_event_header *header, 6739 struct perf_sample_data *data, 6740 struct perf_event *event) 6741 { 6742 u64 sample_type = data->type; 6743 6744 perf_output_put(handle, *header); 6745 6746 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6747 perf_output_put(handle, data->id); 6748 6749 if (sample_type & PERF_SAMPLE_IP) 6750 perf_output_put(handle, data->ip); 6751 6752 if (sample_type & PERF_SAMPLE_TID) 6753 perf_output_put(handle, data->tid_entry); 6754 6755 if (sample_type & PERF_SAMPLE_TIME) 6756 perf_output_put(handle, data->time); 6757 6758 if (sample_type & PERF_SAMPLE_ADDR) 6759 perf_output_put(handle, data->addr); 6760 6761 if (sample_type & PERF_SAMPLE_ID) 6762 perf_output_put(handle, data->id); 6763 6764 if (sample_type & PERF_SAMPLE_STREAM_ID) 6765 perf_output_put(handle, data->stream_id); 6766 6767 if (sample_type & PERF_SAMPLE_CPU) 6768 perf_output_put(handle, data->cpu_entry); 6769 6770 if (sample_type & PERF_SAMPLE_PERIOD) 6771 perf_output_put(handle, data->period); 6772 6773 if (sample_type & PERF_SAMPLE_READ) 6774 perf_output_read(handle, event); 6775 6776 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6777 int size = 1; 6778 6779 size += data->callchain->nr; 6780 size *= sizeof(u64); 6781 __output_copy(handle, data->callchain, size); 6782 } 6783 6784 if (sample_type & PERF_SAMPLE_RAW) { 6785 struct perf_raw_record *raw = data->raw; 6786 6787 if (raw) { 6788 struct perf_raw_frag *frag = &raw->frag; 6789 6790 perf_output_put(handle, raw->size); 6791 do { 6792 if (frag->copy) { 6793 __output_custom(handle, frag->copy, 6794 frag->data, frag->size); 6795 } else { 6796 __output_copy(handle, frag->data, 6797 frag->size); 6798 } 6799 if (perf_raw_frag_last(frag)) 6800 break; 6801 frag = frag->next; 6802 } while (1); 6803 if (frag->pad) 6804 __output_skip(handle, NULL, frag->pad); 6805 } else { 6806 struct { 6807 u32 size; 6808 u32 data; 6809 } raw = { 6810 .size = sizeof(u32), 6811 .data = 0, 6812 }; 6813 perf_output_put(handle, raw); 6814 } 6815 } 6816 6817 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6818 if (data->br_stack) { 6819 size_t size; 6820 6821 size = data->br_stack->nr 6822 * sizeof(struct perf_branch_entry); 6823 6824 perf_output_put(handle, data->br_stack->nr); 6825 if (perf_sample_save_hw_index(event)) 6826 perf_output_put(handle, data->br_stack->hw_idx); 6827 perf_output_copy(handle, data->br_stack->entries, size); 6828 } else { 6829 /* 6830 * we always store at least the value of nr 6831 */ 6832 u64 nr = 0; 6833 perf_output_put(handle, nr); 6834 } 6835 } 6836 6837 if (sample_type & PERF_SAMPLE_REGS_USER) { 6838 u64 abi = data->regs_user.abi; 6839 6840 /* 6841 * If there are no regs to dump, notice it through 6842 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6843 */ 6844 perf_output_put(handle, abi); 6845 6846 if (abi) { 6847 u64 mask = event->attr.sample_regs_user; 6848 perf_output_sample_regs(handle, 6849 data->regs_user.regs, 6850 mask); 6851 } 6852 } 6853 6854 if (sample_type & PERF_SAMPLE_STACK_USER) { 6855 perf_output_sample_ustack(handle, 6856 data->stack_user_size, 6857 data->regs_user.regs); 6858 } 6859 6860 if (sample_type & PERF_SAMPLE_WEIGHT) 6861 perf_output_put(handle, data->weight); 6862 6863 if (sample_type & PERF_SAMPLE_DATA_SRC) 6864 perf_output_put(handle, data->data_src.val); 6865 6866 if (sample_type & PERF_SAMPLE_TRANSACTION) 6867 perf_output_put(handle, data->txn); 6868 6869 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6870 u64 abi = data->regs_intr.abi; 6871 /* 6872 * If there are no regs to dump, notice it through 6873 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6874 */ 6875 perf_output_put(handle, abi); 6876 6877 if (abi) { 6878 u64 mask = event->attr.sample_regs_intr; 6879 6880 perf_output_sample_regs(handle, 6881 data->regs_intr.regs, 6882 mask); 6883 } 6884 } 6885 6886 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6887 perf_output_put(handle, data->phys_addr); 6888 6889 if (sample_type & PERF_SAMPLE_CGROUP) 6890 perf_output_put(handle, data->cgroup); 6891 6892 if (sample_type & PERF_SAMPLE_AUX) { 6893 perf_output_put(handle, data->aux_size); 6894 6895 if (data->aux_size) 6896 perf_aux_sample_output(event, handle, data); 6897 } 6898 6899 if (!event->attr.watermark) { 6900 int wakeup_events = event->attr.wakeup_events; 6901 6902 if (wakeup_events) { 6903 struct perf_buffer *rb = handle->rb; 6904 int events = local_inc_return(&rb->events); 6905 6906 if (events >= wakeup_events) { 6907 local_sub(wakeup_events, &rb->events); 6908 local_inc(&rb->wakeup); 6909 } 6910 } 6911 } 6912 } 6913 6914 static u64 perf_virt_to_phys(u64 virt) 6915 { 6916 u64 phys_addr = 0; 6917 struct page *p = NULL; 6918 6919 if (!virt) 6920 return 0; 6921 6922 if (virt >= TASK_SIZE) { 6923 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6924 if (virt_addr_valid((void *)(uintptr_t)virt) && 6925 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6926 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6927 } else { 6928 /* 6929 * Walking the pages tables for user address. 6930 * Interrupts are disabled, so it prevents any tear down 6931 * of the page tables. 6932 * Try IRQ-safe __get_user_pages_fast first. 6933 * If failed, leave phys_addr as 0. 6934 */ 6935 if (current->mm != NULL) { 6936 pagefault_disable(); 6937 if (__get_user_pages_fast(virt, 1, 0, &p) == 1) 6938 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6939 pagefault_enable(); 6940 } 6941 6942 if (p) 6943 put_page(p); 6944 } 6945 6946 return phys_addr; 6947 } 6948 6949 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6950 6951 struct perf_callchain_entry * 6952 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6953 { 6954 bool kernel = !event->attr.exclude_callchain_kernel; 6955 bool user = !event->attr.exclude_callchain_user; 6956 /* Disallow cross-task user callchains. */ 6957 bool crosstask = event->ctx->task && event->ctx->task != current; 6958 const u32 max_stack = event->attr.sample_max_stack; 6959 struct perf_callchain_entry *callchain; 6960 6961 if (!kernel && !user) 6962 return &__empty_callchain; 6963 6964 callchain = get_perf_callchain(regs, 0, kernel, user, 6965 max_stack, crosstask, true); 6966 return callchain ?: &__empty_callchain; 6967 } 6968 6969 void perf_prepare_sample(struct perf_event_header *header, 6970 struct perf_sample_data *data, 6971 struct perf_event *event, 6972 struct pt_regs *regs) 6973 { 6974 u64 sample_type = event->attr.sample_type; 6975 6976 header->type = PERF_RECORD_SAMPLE; 6977 header->size = sizeof(*header) + event->header_size; 6978 6979 header->misc = 0; 6980 header->misc |= perf_misc_flags(regs); 6981 6982 __perf_event_header__init_id(header, data, event); 6983 6984 if (sample_type & PERF_SAMPLE_IP) 6985 data->ip = perf_instruction_pointer(regs); 6986 6987 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6988 int size = 1; 6989 6990 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6991 data->callchain = perf_callchain(event, regs); 6992 6993 size += data->callchain->nr; 6994 6995 header->size += size * sizeof(u64); 6996 } 6997 6998 if (sample_type & PERF_SAMPLE_RAW) { 6999 struct perf_raw_record *raw = data->raw; 7000 int size; 7001 7002 if (raw) { 7003 struct perf_raw_frag *frag = &raw->frag; 7004 u32 sum = 0; 7005 7006 do { 7007 sum += frag->size; 7008 if (perf_raw_frag_last(frag)) 7009 break; 7010 frag = frag->next; 7011 } while (1); 7012 7013 size = round_up(sum + sizeof(u32), sizeof(u64)); 7014 raw->size = size - sizeof(u32); 7015 frag->pad = raw->size - sum; 7016 } else { 7017 size = sizeof(u64); 7018 } 7019 7020 header->size += size; 7021 } 7022 7023 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7024 int size = sizeof(u64); /* nr */ 7025 if (data->br_stack) { 7026 if (perf_sample_save_hw_index(event)) 7027 size += sizeof(u64); 7028 7029 size += data->br_stack->nr 7030 * sizeof(struct perf_branch_entry); 7031 } 7032 header->size += size; 7033 } 7034 7035 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7036 perf_sample_regs_user(&data->regs_user, regs, 7037 &data->regs_user_copy); 7038 7039 if (sample_type & PERF_SAMPLE_REGS_USER) { 7040 /* regs dump ABI info */ 7041 int size = sizeof(u64); 7042 7043 if (data->regs_user.regs) { 7044 u64 mask = event->attr.sample_regs_user; 7045 size += hweight64(mask) * sizeof(u64); 7046 } 7047 7048 header->size += size; 7049 } 7050 7051 if (sample_type & PERF_SAMPLE_STACK_USER) { 7052 /* 7053 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7054 * processed as the last one or have additional check added 7055 * in case new sample type is added, because we could eat 7056 * up the rest of the sample size. 7057 */ 7058 u16 stack_size = event->attr.sample_stack_user; 7059 u16 size = sizeof(u64); 7060 7061 stack_size = perf_sample_ustack_size(stack_size, header->size, 7062 data->regs_user.regs); 7063 7064 /* 7065 * If there is something to dump, add space for the dump 7066 * itself and for the field that tells the dynamic size, 7067 * which is how many have been actually dumped. 7068 */ 7069 if (stack_size) 7070 size += sizeof(u64) + stack_size; 7071 7072 data->stack_user_size = stack_size; 7073 header->size += size; 7074 } 7075 7076 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7077 /* regs dump ABI info */ 7078 int size = sizeof(u64); 7079 7080 perf_sample_regs_intr(&data->regs_intr, regs); 7081 7082 if (data->regs_intr.regs) { 7083 u64 mask = event->attr.sample_regs_intr; 7084 7085 size += hweight64(mask) * sizeof(u64); 7086 } 7087 7088 header->size += size; 7089 } 7090 7091 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7092 data->phys_addr = perf_virt_to_phys(data->addr); 7093 7094 #ifdef CONFIG_CGROUP_PERF 7095 if (sample_type & PERF_SAMPLE_CGROUP) { 7096 struct cgroup *cgrp; 7097 7098 /* protected by RCU */ 7099 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7100 data->cgroup = cgroup_id(cgrp); 7101 } 7102 #endif 7103 7104 if (sample_type & PERF_SAMPLE_AUX) { 7105 u64 size; 7106 7107 header->size += sizeof(u64); /* size */ 7108 7109 /* 7110 * Given the 16bit nature of header::size, an AUX sample can 7111 * easily overflow it, what with all the preceding sample bits. 7112 * Make sure this doesn't happen by using up to U16_MAX bytes 7113 * per sample in total (rounded down to 8 byte boundary). 7114 */ 7115 size = min_t(size_t, U16_MAX - header->size, 7116 event->attr.aux_sample_size); 7117 size = rounddown(size, 8); 7118 size = perf_prepare_sample_aux(event, data, size); 7119 7120 WARN_ON_ONCE(size + header->size > U16_MAX); 7121 header->size += size; 7122 } 7123 /* 7124 * If you're adding more sample types here, you likely need to do 7125 * something about the overflowing header::size, like repurpose the 7126 * lowest 3 bits of size, which should be always zero at the moment. 7127 * This raises a more important question, do we really need 512k sized 7128 * samples and why, so good argumentation is in order for whatever you 7129 * do here next. 7130 */ 7131 WARN_ON_ONCE(header->size & 7); 7132 } 7133 7134 static __always_inline int 7135 __perf_event_output(struct perf_event *event, 7136 struct perf_sample_data *data, 7137 struct pt_regs *regs, 7138 int (*output_begin)(struct perf_output_handle *, 7139 struct perf_event *, 7140 unsigned int)) 7141 { 7142 struct perf_output_handle handle; 7143 struct perf_event_header header; 7144 int err; 7145 7146 /* protect the callchain buffers */ 7147 rcu_read_lock(); 7148 7149 perf_prepare_sample(&header, data, event, regs); 7150 7151 err = output_begin(&handle, event, header.size); 7152 if (err) 7153 goto exit; 7154 7155 perf_output_sample(&handle, &header, data, event); 7156 7157 perf_output_end(&handle); 7158 7159 exit: 7160 rcu_read_unlock(); 7161 return err; 7162 } 7163 7164 void 7165 perf_event_output_forward(struct perf_event *event, 7166 struct perf_sample_data *data, 7167 struct pt_regs *regs) 7168 { 7169 __perf_event_output(event, data, regs, perf_output_begin_forward); 7170 } 7171 7172 void 7173 perf_event_output_backward(struct perf_event *event, 7174 struct perf_sample_data *data, 7175 struct pt_regs *regs) 7176 { 7177 __perf_event_output(event, data, regs, perf_output_begin_backward); 7178 } 7179 7180 int 7181 perf_event_output(struct perf_event *event, 7182 struct perf_sample_data *data, 7183 struct pt_regs *regs) 7184 { 7185 return __perf_event_output(event, data, regs, perf_output_begin); 7186 } 7187 7188 /* 7189 * read event_id 7190 */ 7191 7192 struct perf_read_event { 7193 struct perf_event_header header; 7194 7195 u32 pid; 7196 u32 tid; 7197 }; 7198 7199 static void 7200 perf_event_read_event(struct perf_event *event, 7201 struct task_struct *task) 7202 { 7203 struct perf_output_handle handle; 7204 struct perf_sample_data sample; 7205 struct perf_read_event read_event = { 7206 .header = { 7207 .type = PERF_RECORD_READ, 7208 .misc = 0, 7209 .size = sizeof(read_event) + event->read_size, 7210 }, 7211 .pid = perf_event_pid(event, task), 7212 .tid = perf_event_tid(event, task), 7213 }; 7214 int ret; 7215 7216 perf_event_header__init_id(&read_event.header, &sample, event); 7217 ret = perf_output_begin(&handle, event, read_event.header.size); 7218 if (ret) 7219 return; 7220 7221 perf_output_put(&handle, read_event); 7222 perf_output_read(&handle, event); 7223 perf_event__output_id_sample(event, &handle, &sample); 7224 7225 perf_output_end(&handle); 7226 } 7227 7228 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7229 7230 static void 7231 perf_iterate_ctx(struct perf_event_context *ctx, 7232 perf_iterate_f output, 7233 void *data, bool all) 7234 { 7235 struct perf_event *event; 7236 7237 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7238 if (!all) { 7239 if (event->state < PERF_EVENT_STATE_INACTIVE) 7240 continue; 7241 if (!event_filter_match(event)) 7242 continue; 7243 } 7244 7245 output(event, data); 7246 } 7247 } 7248 7249 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7250 { 7251 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7252 struct perf_event *event; 7253 7254 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7255 /* 7256 * Skip events that are not fully formed yet; ensure that 7257 * if we observe event->ctx, both event and ctx will be 7258 * complete enough. See perf_install_in_context(). 7259 */ 7260 if (!smp_load_acquire(&event->ctx)) 7261 continue; 7262 7263 if (event->state < PERF_EVENT_STATE_INACTIVE) 7264 continue; 7265 if (!event_filter_match(event)) 7266 continue; 7267 output(event, data); 7268 } 7269 } 7270 7271 /* 7272 * Iterate all events that need to receive side-band events. 7273 * 7274 * For new callers; ensure that account_pmu_sb_event() includes 7275 * your event, otherwise it might not get delivered. 7276 */ 7277 static void 7278 perf_iterate_sb(perf_iterate_f output, void *data, 7279 struct perf_event_context *task_ctx) 7280 { 7281 struct perf_event_context *ctx; 7282 int ctxn; 7283 7284 rcu_read_lock(); 7285 preempt_disable(); 7286 7287 /* 7288 * If we have task_ctx != NULL we only notify the task context itself. 7289 * The task_ctx is set only for EXIT events before releasing task 7290 * context. 7291 */ 7292 if (task_ctx) { 7293 perf_iterate_ctx(task_ctx, output, data, false); 7294 goto done; 7295 } 7296 7297 perf_iterate_sb_cpu(output, data); 7298 7299 for_each_task_context_nr(ctxn) { 7300 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7301 if (ctx) 7302 perf_iterate_ctx(ctx, output, data, false); 7303 } 7304 done: 7305 preempt_enable(); 7306 rcu_read_unlock(); 7307 } 7308 7309 /* 7310 * Clear all file-based filters at exec, they'll have to be 7311 * re-instated when/if these objects are mmapped again. 7312 */ 7313 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7314 { 7315 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7316 struct perf_addr_filter *filter; 7317 unsigned int restart = 0, count = 0; 7318 unsigned long flags; 7319 7320 if (!has_addr_filter(event)) 7321 return; 7322 7323 raw_spin_lock_irqsave(&ifh->lock, flags); 7324 list_for_each_entry(filter, &ifh->list, entry) { 7325 if (filter->path.dentry) { 7326 event->addr_filter_ranges[count].start = 0; 7327 event->addr_filter_ranges[count].size = 0; 7328 restart++; 7329 } 7330 7331 count++; 7332 } 7333 7334 if (restart) 7335 event->addr_filters_gen++; 7336 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7337 7338 if (restart) 7339 perf_event_stop(event, 1); 7340 } 7341 7342 void perf_event_exec(void) 7343 { 7344 struct perf_event_context *ctx; 7345 int ctxn; 7346 7347 rcu_read_lock(); 7348 for_each_task_context_nr(ctxn) { 7349 ctx = current->perf_event_ctxp[ctxn]; 7350 if (!ctx) 7351 continue; 7352 7353 perf_event_enable_on_exec(ctxn); 7354 7355 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7356 true); 7357 } 7358 rcu_read_unlock(); 7359 } 7360 7361 struct remote_output { 7362 struct perf_buffer *rb; 7363 int err; 7364 }; 7365 7366 static void __perf_event_output_stop(struct perf_event *event, void *data) 7367 { 7368 struct perf_event *parent = event->parent; 7369 struct remote_output *ro = data; 7370 struct perf_buffer *rb = ro->rb; 7371 struct stop_event_data sd = { 7372 .event = event, 7373 }; 7374 7375 if (!has_aux(event)) 7376 return; 7377 7378 if (!parent) 7379 parent = event; 7380 7381 /* 7382 * In case of inheritance, it will be the parent that links to the 7383 * ring-buffer, but it will be the child that's actually using it. 7384 * 7385 * We are using event::rb to determine if the event should be stopped, 7386 * however this may race with ring_buffer_attach() (through set_output), 7387 * which will make us skip the event that actually needs to be stopped. 7388 * So ring_buffer_attach() has to stop an aux event before re-assigning 7389 * its rb pointer. 7390 */ 7391 if (rcu_dereference(parent->rb) == rb) 7392 ro->err = __perf_event_stop(&sd); 7393 } 7394 7395 static int __perf_pmu_output_stop(void *info) 7396 { 7397 struct perf_event *event = info; 7398 struct pmu *pmu = event->ctx->pmu; 7399 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7400 struct remote_output ro = { 7401 .rb = event->rb, 7402 }; 7403 7404 rcu_read_lock(); 7405 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7406 if (cpuctx->task_ctx) 7407 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7408 &ro, false); 7409 rcu_read_unlock(); 7410 7411 return ro.err; 7412 } 7413 7414 static void perf_pmu_output_stop(struct perf_event *event) 7415 { 7416 struct perf_event *iter; 7417 int err, cpu; 7418 7419 restart: 7420 rcu_read_lock(); 7421 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7422 /* 7423 * For per-CPU events, we need to make sure that neither they 7424 * nor their children are running; for cpu==-1 events it's 7425 * sufficient to stop the event itself if it's active, since 7426 * it can't have children. 7427 */ 7428 cpu = iter->cpu; 7429 if (cpu == -1) 7430 cpu = READ_ONCE(iter->oncpu); 7431 7432 if (cpu == -1) 7433 continue; 7434 7435 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7436 if (err == -EAGAIN) { 7437 rcu_read_unlock(); 7438 goto restart; 7439 } 7440 } 7441 rcu_read_unlock(); 7442 } 7443 7444 /* 7445 * task tracking -- fork/exit 7446 * 7447 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7448 */ 7449 7450 struct perf_task_event { 7451 struct task_struct *task; 7452 struct perf_event_context *task_ctx; 7453 7454 struct { 7455 struct perf_event_header header; 7456 7457 u32 pid; 7458 u32 ppid; 7459 u32 tid; 7460 u32 ptid; 7461 u64 time; 7462 } event_id; 7463 }; 7464 7465 static int perf_event_task_match(struct perf_event *event) 7466 { 7467 return event->attr.comm || event->attr.mmap || 7468 event->attr.mmap2 || event->attr.mmap_data || 7469 event->attr.task; 7470 } 7471 7472 static void perf_event_task_output(struct perf_event *event, 7473 void *data) 7474 { 7475 struct perf_task_event *task_event = data; 7476 struct perf_output_handle handle; 7477 struct perf_sample_data sample; 7478 struct task_struct *task = task_event->task; 7479 int ret, size = task_event->event_id.header.size; 7480 7481 if (!perf_event_task_match(event)) 7482 return; 7483 7484 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7485 7486 ret = perf_output_begin(&handle, event, 7487 task_event->event_id.header.size); 7488 if (ret) 7489 goto out; 7490 7491 task_event->event_id.pid = perf_event_pid(event, task); 7492 task_event->event_id.tid = perf_event_tid(event, task); 7493 7494 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7495 task_event->event_id.ppid = perf_event_pid(event, 7496 task->real_parent); 7497 task_event->event_id.ptid = perf_event_pid(event, 7498 task->real_parent); 7499 } else { /* PERF_RECORD_FORK */ 7500 task_event->event_id.ppid = perf_event_pid(event, current); 7501 task_event->event_id.ptid = perf_event_tid(event, current); 7502 } 7503 7504 task_event->event_id.time = perf_event_clock(event); 7505 7506 perf_output_put(&handle, task_event->event_id); 7507 7508 perf_event__output_id_sample(event, &handle, &sample); 7509 7510 perf_output_end(&handle); 7511 out: 7512 task_event->event_id.header.size = size; 7513 } 7514 7515 static void perf_event_task(struct task_struct *task, 7516 struct perf_event_context *task_ctx, 7517 int new) 7518 { 7519 struct perf_task_event task_event; 7520 7521 if (!atomic_read(&nr_comm_events) && 7522 !atomic_read(&nr_mmap_events) && 7523 !atomic_read(&nr_task_events)) 7524 return; 7525 7526 task_event = (struct perf_task_event){ 7527 .task = task, 7528 .task_ctx = task_ctx, 7529 .event_id = { 7530 .header = { 7531 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7532 .misc = 0, 7533 .size = sizeof(task_event.event_id), 7534 }, 7535 /* .pid */ 7536 /* .ppid */ 7537 /* .tid */ 7538 /* .ptid */ 7539 /* .time */ 7540 }, 7541 }; 7542 7543 perf_iterate_sb(perf_event_task_output, 7544 &task_event, 7545 task_ctx); 7546 } 7547 7548 void perf_event_fork(struct task_struct *task) 7549 { 7550 perf_event_task(task, NULL, 1); 7551 perf_event_namespaces(task); 7552 } 7553 7554 /* 7555 * comm tracking 7556 */ 7557 7558 struct perf_comm_event { 7559 struct task_struct *task; 7560 char *comm; 7561 int comm_size; 7562 7563 struct { 7564 struct perf_event_header header; 7565 7566 u32 pid; 7567 u32 tid; 7568 } event_id; 7569 }; 7570 7571 static int perf_event_comm_match(struct perf_event *event) 7572 { 7573 return event->attr.comm; 7574 } 7575 7576 static void perf_event_comm_output(struct perf_event *event, 7577 void *data) 7578 { 7579 struct perf_comm_event *comm_event = data; 7580 struct perf_output_handle handle; 7581 struct perf_sample_data sample; 7582 int size = comm_event->event_id.header.size; 7583 int ret; 7584 7585 if (!perf_event_comm_match(event)) 7586 return; 7587 7588 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7589 ret = perf_output_begin(&handle, event, 7590 comm_event->event_id.header.size); 7591 7592 if (ret) 7593 goto out; 7594 7595 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7596 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7597 7598 perf_output_put(&handle, comm_event->event_id); 7599 __output_copy(&handle, comm_event->comm, 7600 comm_event->comm_size); 7601 7602 perf_event__output_id_sample(event, &handle, &sample); 7603 7604 perf_output_end(&handle); 7605 out: 7606 comm_event->event_id.header.size = size; 7607 } 7608 7609 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7610 { 7611 char comm[TASK_COMM_LEN]; 7612 unsigned int size; 7613 7614 memset(comm, 0, sizeof(comm)); 7615 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7616 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7617 7618 comm_event->comm = comm; 7619 comm_event->comm_size = size; 7620 7621 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7622 7623 perf_iterate_sb(perf_event_comm_output, 7624 comm_event, 7625 NULL); 7626 } 7627 7628 void perf_event_comm(struct task_struct *task, bool exec) 7629 { 7630 struct perf_comm_event comm_event; 7631 7632 if (!atomic_read(&nr_comm_events)) 7633 return; 7634 7635 comm_event = (struct perf_comm_event){ 7636 .task = task, 7637 /* .comm */ 7638 /* .comm_size */ 7639 .event_id = { 7640 .header = { 7641 .type = PERF_RECORD_COMM, 7642 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7643 /* .size */ 7644 }, 7645 /* .pid */ 7646 /* .tid */ 7647 }, 7648 }; 7649 7650 perf_event_comm_event(&comm_event); 7651 } 7652 7653 /* 7654 * namespaces tracking 7655 */ 7656 7657 struct perf_namespaces_event { 7658 struct task_struct *task; 7659 7660 struct { 7661 struct perf_event_header header; 7662 7663 u32 pid; 7664 u32 tid; 7665 u64 nr_namespaces; 7666 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7667 } event_id; 7668 }; 7669 7670 static int perf_event_namespaces_match(struct perf_event *event) 7671 { 7672 return event->attr.namespaces; 7673 } 7674 7675 static void perf_event_namespaces_output(struct perf_event *event, 7676 void *data) 7677 { 7678 struct perf_namespaces_event *namespaces_event = data; 7679 struct perf_output_handle handle; 7680 struct perf_sample_data sample; 7681 u16 header_size = namespaces_event->event_id.header.size; 7682 int ret; 7683 7684 if (!perf_event_namespaces_match(event)) 7685 return; 7686 7687 perf_event_header__init_id(&namespaces_event->event_id.header, 7688 &sample, event); 7689 ret = perf_output_begin(&handle, event, 7690 namespaces_event->event_id.header.size); 7691 if (ret) 7692 goto out; 7693 7694 namespaces_event->event_id.pid = perf_event_pid(event, 7695 namespaces_event->task); 7696 namespaces_event->event_id.tid = perf_event_tid(event, 7697 namespaces_event->task); 7698 7699 perf_output_put(&handle, namespaces_event->event_id); 7700 7701 perf_event__output_id_sample(event, &handle, &sample); 7702 7703 perf_output_end(&handle); 7704 out: 7705 namespaces_event->event_id.header.size = header_size; 7706 } 7707 7708 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7709 struct task_struct *task, 7710 const struct proc_ns_operations *ns_ops) 7711 { 7712 struct path ns_path; 7713 struct inode *ns_inode; 7714 int error; 7715 7716 error = ns_get_path(&ns_path, task, ns_ops); 7717 if (!error) { 7718 ns_inode = ns_path.dentry->d_inode; 7719 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7720 ns_link_info->ino = ns_inode->i_ino; 7721 path_put(&ns_path); 7722 } 7723 } 7724 7725 void perf_event_namespaces(struct task_struct *task) 7726 { 7727 struct perf_namespaces_event namespaces_event; 7728 struct perf_ns_link_info *ns_link_info; 7729 7730 if (!atomic_read(&nr_namespaces_events)) 7731 return; 7732 7733 namespaces_event = (struct perf_namespaces_event){ 7734 .task = task, 7735 .event_id = { 7736 .header = { 7737 .type = PERF_RECORD_NAMESPACES, 7738 .misc = 0, 7739 .size = sizeof(namespaces_event.event_id), 7740 }, 7741 /* .pid */ 7742 /* .tid */ 7743 .nr_namespaces = NR_NAMESPACES, 7744 /* .link_info[NR_NAMESPACES] */ 7745 }, 7746 }; 7747 7748 ns_link_info = namespaces_event.event_id.link_info; 7749 7750 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7751 task, &mntns_operations); 7752 7753 #ifdef CONFIG_USER_NS 7754 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7755 task, &userns_operations); 7756 #endif 7757 #ifdef CONFIG_NET_NS 7758 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7759 task, &netns_operations); 7760 #endif 7761 #ifdef CONFIG_UTS_NS 7762 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7763 task, &utsns_operations); 7764 #endif 7765 #ifdef CONFIG_IPC_NS 7766 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7767 task, &ipcns_operations); 7768 #endif 7769 #ifdef CONFIG_PID_NS 7770 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7771 task, &pidns_operations); 7772 #endif 7773 #ifdef CONFIG_CGROUPS 7774 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7775 task, &cgroupns_operations); 7776 #endif 7777 7778 perf_iterate_sb(perf_event_namespaces_output, 7779 &namespaces_event, 7780 NULL); 7781 } 7782 7783 /* 7784 * cgroup tracking 7785 */ 7786 #ifdef CONFIG_CGROUP_PERF 7787 7788 struct perf_cgroup_event { 7789 char *path; 7790 int path_size; 7791 struct { 7792 struct perf_event_header header; 7793 u64 id; 7794 char path[]; 7795 } event_id; 7796 }; 7797 7798 static int perf_event_cgroup_match(struct perf_event *event) 7799 { 7800 return event->attr.cgroup; 7801 } 7802 7803 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7804 { 7805 struct perf_cgroup_event *cgroup_event = data; 7806 struct perf_output_handle handle; 7807 struct perf_sample_data sample; 7808 u16 header_size = cgroup_event->event_id.header.size; 7809 int ret; 7810 7811 if (!perf_event_cgroup_match(event)) 7812 return; 7813 7814 perf_event_header__init_id(&cgroup_event->event_id.header, 7815 &sample, event); 7816 ret = perf_output_begin(&handle, event, 7817 cgroup_event->event_id.header.size); 7818 if (ret) 7819 goto out; 7820 7821 perf_output_put(&handle, cgroup_event->event_id); 7822 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7823 7824 perf_event__output_id_sample(event, &handle, &sample); 7825 7826 perf_output_end(&handle); 7827 out: 7828 cgroup_event->event_id.header.size = header_size; 7829 } 7830 7831 static void perf_event_cgroup(struct cgroup *cgrp) 7832 { 7833 struct perf_cgroup_event cgroup_event; 7834 char path_enomem[16] = "//enomem"; 7835 char *pathname; 7836 size_t size; 7837 7838 if (!atomic_read(&nr_cgroup_events)) 7839 return; 7840 7841 cgroup_event = (struct perf_cgroup_event){ 7842 .event_id = { 7843 .header = { 7844 .type = PERF_RECORD_CGROUP, 7845 .misc = 0, 7846 .size = sizeof(cgroup_event.event_id), 7847 }, 7848 .id = cgroup_id(cgrp), 7849 }, 7850 }; 7851 7852 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7853 if (pathname == NULL) { 7854 cgroup_event.path = path_enomem; 7855 } else { 7856 /* just to be sure to have enough space for alignment */ 7857 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 7858 cgroup_event.path = pathname; 7859 } 7860 7861 /* 7862 * Since our buffer works in 8 byte units we need to align our string 7863 * size to a multiple of 8. However, we must guarantee the tail end is 7864 * zero'd out to avoid leaking random bits to userspace. 7865 */ 7866 size = strlen(cgroup_event.path) + 1; 7867 while (!IS_ALIGNED(size, sizeof(u64))) 7868 cgroup_event.path[size++] = '\0'; 7869 7870 cgroup_event.event_id.header.size += size; 7871 cgroup_event.path_size = size; 7872 7873 perf_iterate_sb(perf_event_cgroup_output, 7874 &cgroup_event, 7875 NULL); 7876 7877 kfree(pathname); 7878 } 7879 7880 #endif 7881 7882 /* 7883 * mmap tracking 7884 */ 7885 7886 struct perf_mmap_event { 7887 struct vm_area_struct *vma; 7888 7889 const char *file_name; 7890 int file_size; 7891 int maj, min; 7892 u64 ino; 7893 u64 ino_generation; 7894 u32 prot, flags; 7895 7896 struct { 7897 struct perf_event_header header; 7898 7899 u32 pid; 7900 u32 tid; 7901 u64 start; 7902 u64 len; 7903 u64 pgoff; 7904 } event_id; 7905 }; 7906 7907 static int perf_event_mmap_match(struct perf_event *event, 7908 void *data) 7909 { 7910 struct perf_mmap_event *mmap_event = data; 7911 struct vm_area_struct *vma = mmap_event->vma; 7912 int executable = vma->vm_flags & VM_EXEC; 7913 7914 return (!executable && event->attr.mmap_data) || 7915 (executable && (event->attr.mmap || event->attr.mmap2)); 7916 } 7917 7918 static void perf_event_mmap_output(struct perf_event *event, 7919 void *data) 7920 { 7921 struct perf_mmap_event *mmap_event = data; 7922 struct perf_output_handle handle; 7923 struct perf_sample_data sample; 7924 int size = mmap_event->event_id.header.size; 7925 u32 type = mmap_event->event_id.header.type; 7926 int ret; 7927 7928 if (!perf_event_mmap_match(event, data)) 7929 return; 7930 7931 if (event->attr.mmap2) { 7932 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7933 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7934 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7935 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7936 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7937 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7938 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7939 } 7940 7941 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7942 ret = perf_output_begin(&handle, event, 7943 mmap_event->event_id.header.size); 7944 if (ret) 7945 goto out; 7946 7947 mmap_event->event_id.pid = perf_event_pid(event, current); 7948 mmap_event->event_id.tid = perf_event_tid(event, current); 7949 7950 perf_output_put(&handle, mmap_event->event_id); 7951 7952 if (event->attr.mmap2) { 7953 perf_output_put(&handle, mmap_event->maj); 7954 perf_output_put(&handle, mmap_event->min); 7955 perf_output_put(&handle, mmap_event->ino); 7956 perf_output_put(&handle, mmap_event->ino_generation); 7957 perf_output_put(&handle, mmap_event->prot); 7958 perf_output_put(&handle, mmap_event->flags); 7959 } 7960 7961 __output_copy(&handle, mmap_event->file_name, 7962 mmap_event->file_size); 7963 7964 perf_event__output_id_sample(event, &handle, &sample); 7965 7966 perf_output_end(&handle); 7967 out: 7968 mmap_event->event_id.header.size = size; 7969 mmap_event->event_id.header.type = type; 7970 } 7971 7972 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7973 { 7974 struct vm_area_struct *vma = mmap_event->vma; 7975 struct file *file = vma->vm_file; 7976 int maj = 0, min = 0; 7977 u64 ino = 0, gen = 0; 7978 u32 prot = 0, flags = 0; 7979 unsigned int size; 7980 char tmp[16]; 7981 char *buf = NULL; 7982 char *name; 7983 7984 if (vma->vm_flags & VM_READ) 7985 prot |= PROT_READ; 7986 if (vma->vm_flags & VM_WRITE) 7987 prot |= PROT_WRITE; 7988 if (vma->vm_flags & VM_EXEC) 7989 prot |= PROT_EXEC; 7990 7991 if (vma->vm_flags & VM_MAYSHARE) 7992 flags = MAP_SHARED; 7993 else 7994 flags = MAP_PRIVATE; 7995 7996 if (vma->vm_flags & VM_DENYWRITE) 7997 flags |= MAP_DENYWRITE; 7998 if (vma->vm_flags & VM_MAYEXEC) 7999 flags |= MAP_EXECUTABLE; 8000 if (vma->vm_flags & VM_LOCKED) 8001 flags |= MAP_LOCKED; 8002 if (is_vm_hugetlb_page(vma)) 8003 flags |= MAP_HUGETLB; 8004 8005 if (file) { 8006 struct inode *inode; 8007 dev_t dev; 8008 8009 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8010 if (!buf) { 8011 name = "//enomem"; 8012 goto cpy_name; 8013 } 8014 /* 8015 * d_path() works from the end of the rb backwards, so we 8016 * need to add enough zero bytes after the string to handle 8017 * the 64bit alignment we do later. 8018 */ 8019 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8020 if (IS_ERR(name)) { 8021 name = "//toolong"; 8022 goto cpy_name; 8023 } 8024 inode = file_inode(vma->vm_file); 8025 dev = inode->i_sb->s_dev; 8026 ino = inode->i_ino; 8027 gen = inode->i_generation; 8028 maj = MAJOR(dev); 8029 min = MINOR(dev); 8030 8031 goto got_name; 8032 } else { 8033 if (vma->vm_ops && vma->vm_ops->name) { 8034 name = (char *) vma->vm_ops->name(vma); 8035 if (name) 8036 goto cpy_name; 8037 } 8038 8039 name = (char *)arch_vma_name(vma); 8040 if (name) 8041 goto cpy_name; 8042 8043 if (vma->vm_start <= vma->vm_mm->start_brk && 8044 vma->vm_end >= vma->vm_mm->brk) { 8045 name = "[heap]"; 8046 goto cpy_name; 8047 } 8048 if (vma->vm_start <= vma->vm_mm->start_stack && 8049 vma->vm_end >= vma->vm_mm->start_stack) { 8050 name = "[stack]"; 8051 goto cpy_name; 8052 } 8053 8054 name = "//anon"; 8055 goto cpy_name; 8056 } 8057 8058 cpy_name: 8059 strlcpy(tmp, name, sizeof(tmp)); 8060 name = tmp; 8061 got_name: 8062 /* 8063 * Since our buffer works in 8 byte units we need to align our string 8064 * size to a multiple of 8. However, we must guarantee the tail end is 8065 * zero'd out to avoid leaking random bits to userspace. 8066 */ 8067 size = strlen(name)+1; 8068 while (!IS_ALIGNED(size, sizeof(u64))) 8069 name[size++] = '\0'; 8070 8071 mmap_event->file_name = name; 8072 mmap_event->file_size = size; 8073 mmap_event->maj = maj; 8074 mmap_event->min = min; 8075 mmap_event->ino = ino; 8076 mmap_event->ino_generation = gen; 8077 mmap_event->prot = prot; 8078 mmap_event->flags = flags; 8079 8080 if (!(vma->vm_flags & VM_EXEC)) 8081 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8082 8083 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8084 8085 perf_iterate_sb(perf_event_mmap_output, 8086 mmap_event, 8087 NULL); 8088 8089 kfree(buf); 8090 } 8091 8092 /* 8093 * Check whether inode and address range match filter criteria. 8094 */ 8095 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8096 struct file *file, unsigned long offset, 8097 unsigned long size) 8098 { 8099 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8100 if (!filter->path.dentry) 8101 return false; 8102 8103 if (d_inode(filter->path.dentry) != file_inode(file)) 8104 return false; 8105 8106 if (filter->offset > offset + size) 8107 return false; 8108 8109 if (filter->offset + filter->size < offset) 8110 return false; 8111 8112 return true; 8113 } 8114 8115 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8116 struct vm_area_struct *vma, 8117 struct perf_addr_filter_range *fr) 8118 { 8119 unsigned long vma_size = vma->vm_end - vma->vm_start; 8120 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8121 struct file *file = vma->vm_file; 8122 8123 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8124 return false; 8125 8126 if (filter->offset < off) { 8127 fr->start = vma->vm_start; 8128 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8129 } else { 8130 fr->start = vma->vm_start + filter->offset - off; 8131 fr->size = min(vma->vm_end - fr->start, filter->size); 8132 } 8133 8134 return true; 8135 } 8136 8137 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8138 { 8139 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8140 struct vm_area_struct *vma = data; 8141 struct perf_addr_filter *filter; 8142 unsigned int restart = 0, count = 0; 8143 unsigned long flags; 8144 8145 if (!has_addr_filter(event)) 8146 return; 8147 8148 if (!vma->vm_file) 8149 return; 8150 8151 raw_spin_lock_irqsave(&ifh->lock, flags); 8152 list_for_each_entry(filter, &ifh->list, entry) { 8153 if (perf_addr_filter_vma_adjust(filter, vma, 8154 &event->addr_filter_ranges[count])) 8155 restart++; 8156 8157 count++; 8158 } 8159 8160 if (restart) 8161 event->addr_filters_gen++; 8162 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8163 8164 if (restart) 8165 perf_event_stop(event, 1); 8166 } 8167 8168 /* 8169 * Adjust all task's events' filters to the new vma 8170 */ 8171 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8172 { 8173 struct perf_event_context *ctx; 8174 int ctxn; 8175 8176 /* 8177 * Data tracing isn't supported yet and as such there is no need 8178 * to keep track of anything that isn't related to executable code: 8179 */ 8180 if (!(vma->vm_flags & VM_EXEC)) 8181 return; 8182 8183 rcu_read_lock(); 8184 for_each_task_context_nr(ctxn) { 8185 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8186 if (!ctx) 8187 continue; 8188 8189 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8190 } 8191 rcu_read_unlock(); 8192 } 8193 8194 void perf_event_mmap(struct vm_area_struct *vma) 8195 { 8196 struct perf_mmap_event mmap_event; 8197 8198 if (!atomic_read(&nr_mmap_events)) 8199 return; 8200 8201 mmap_event = (struct perf_mmap_event){ 8202 .vma = vma, 8203 /* .file_name */ 8204 /* .file_size */ 8205 .event_id = { 8206 .header = { 8207 .type = PERF_RECORD_MMAP, 8208 .misc = PERF_RECORD_MISC_USER, 8209 /* .size */ 8210 }, 8211 /* .pid */ 8212 /* .tid */ 8213 .start = vma->vm_start, 8214 .len = vma->vm_end - vma->vm_start, 8215 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8216 }, 8217 /* .maj (attr_mmap2 only) */ 8218 /* .min (attr_mmap2 only) */ 8219 /* .ino (attr_mmap2 only) */ 8220 /* .ino_generation (attr_mmap2 only) */ 8221 /* .prot (attr_mmap2 only) */ 8222 /* .flags (attr_mmap2 only) */ 8223 }; 8224 8225 perf_addr_filters_adjust(vma); 8226 perf_event_mmap_event(&mmap_event); 8227 } 8228 8229 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8230 unsigned long size, u64 flags) 8231 { 8232 struct perf_output_handle handle; 8233 struct perf_sample_data sample; 8234 struct perf_aux_event { 8235 struct perf_event_header header; 8236 u64 offset; 8237 u64 size; 8238 u64 flags; 8239 } rec = { 8240 .header = { 8241 .type = PERF_RECORD_AUX, 8242 .misc = 0, 8243 .size = sizeof(rec), 8244 }, 8245 .offset = head, 8246 .size = size, 8247 .flags = flags, 8248 }; 8249 int ret; 8250 8251 perf_event_header__init_id(&rec.header, &sample, event); 8252 ret = perf_output_begin(&handle, event, rec.header.size); 8253 8254 if (ret) 8255 return; 8256 8257 perf_output_put(&handle, rec); 8258 perf_event__output_id_sample(event, &handle, &sample); 8259 8260 perf_output_end(&handle); 8261 } 8262 8263 /* 8264 * Lost/dropped samples logging 8265 */ 8266 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8267 { 8268 struct perf_output_handle handle; 8269 struct perf_sample_data sample; 8270 int ret; 8271 8272 struct { 8273 struct perf_event_header header; 8274 u64 lost; 8275 } lost_samples_event = { 8276 .header = { 8277 .type = PERF_RECORD_LOST_SAMPLES, 8278 .misc = 0, 8279 .size = sizeof(lost_samples_event), 8280 }, 8281 .lost = lost, 8282 }; 8283 8284 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8285 8286 ret = perf_output_begin(&handle, event, 8287 lost_samples_event.header.size); 8288 if (ret) 8289 return; 8290 8291 perf_output_put(&handle, lost_samples_event); 8292 perf_event__output_id_sample(event, &handle, &sample); 8293 perf_output_end(&handle); 8294 } 8295 8296 /* 8297 * context_switch tracking 8298 */ 8299 8300 struct perf_switch_event { 8301 struct task_struct *task; 8302 struct task_struct *next_prev; 8303 8304 struct { 8305 struct perf_event_header header; 8306 u32 next_prev_pid; 8307 u32 next_prev_tid; 8308 } event_id; 8309 }; 8310 8311 static int perf_event_switch_match(struct perf_event *event) 8312 { 8313 return event->attr.context_switch; 8314 } 8315 8316 static void perf_event_switch_output(struct perf_event *event, void *data) 8317 { 8318 struct perf_switch_event *se = data; 8319 struct perf_output_handle handle; 8320 struct perf_sample_data sample; 8321 int ret; 8322 8323 if (!perf_event_switch_match(event)) 8324 return; 8325 8326 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8327 if (event->ctx->task) { 8328 se->event_id.header.type = PERF_RECORD_SWITCH; 8329 se->event_id.header.size = sizeof(se->event_id.header); 8330 } else { 8331 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8332 se->event_id.header.size = sizeof(se->event_id); 8333 se->event_id.next_prev_pid = 8334 perf_event_pid(event, se->next_prev); 8335 se->event_id.next_prev_tid = 8336 perf_event_tid(event, se->next_prev); 8337 } 8338 8339 perf_event_header__init_id(&se->event_id.header, &sample, event); 8340 8341 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8342 if (ret) 8343 return; 8344 8345 if (event->ctx->task) 8346 perf_output_put(&handle, se->event_id.header); 8347 else 8348 perf_output_put(&handle, se->event_id); 8349 8350 perf_event__output_id_sample(event, &handle, &sample); 8351 8352 perf_output_end(&handle); 8353 } 8354 8355 static void perf_event_switch(struct task_struct *task, 8356 struct task_struct *next_prev, bool sched_in) 8357 { 8358 struct perf_switch_event switch_event; 8359 8360 /* N.B. caller checks nr_switch_events != 0 */ 8361 8362 switch_event = (struct perf_switch_event){ 8363 .task = task, 8364 .next_prev = next_prev, 8365 .event_id = { 8366 .header = { 8367 /* .type */ 8368 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8369 /* .size */ 8370 }, 8371 /* .next_prev_pid */ 8372 /* .next_prev_tid */ 8373 }, 8374 }; 8375 8376 if (!sched_in && task->state == TASK_RUNNING) 8377 switch_event.event_id.header.misc |= 8378 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8379 8380 perf_iterate_sb(perf_event_switch_output, 8381 &switch_event, 8382 NULL); 8383 } 8384 8385 /* 8386 * IRQ throttle logging 8387 */ 8388 8389 static void perf_log_throttle(struct perf_event *event, int enable) 8390 { 8391 struct perf_output_handle handle; 8392 struct perf_sample_data sample; 8393 int ret; 8394 8395 struct { 8396 struct perf_event_header header; 8397 u64 time; 8398 u64 id; 8399 u64 stream_id; 8400 } throttle_event = { 8401 .header = { 8402 .type = PERF_RECORD_THROTTLE, 8403 .misc = 0, 8404 .size = sizeof(throttle_event), 8405 }, 8406 .time = perf_event_clock(event), 8407 .id = primary_event_id(event), 8408 .stream_id = event->id, 8409 }; 8410 8411 if (enable) 8412 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8413 8414 perf_event_header__init_id(&throttle_event.header, &sample, event); 8415 8416 ret = perf_output_begin(&handle, event, 8417 throttle_event.header.size); 8418 if (ret) 8419 return; 8420 8421 perf_output_put(&handle, throttle_event); 8422 perf_event__output_id_sample(event, &handle, &sample); 8423 perf_output_end(&handle); 8424 } 8425 8426 /* 8427 * ksymbol register/unregister tracking 8428 */ 8429 8430 struct perf_ksymbol_event { 8431 const char *name; 8432 int name_len; 8433 struct { 8434 struct perf_event_header header; 8435 u64 addr; 8436 u32 len; 8437 u16 ksym_type; 8438 u16 flags; 8439 } event_id; 8440 }; 8441 8442 static int perf_event_ksymbol_match(struct perf_event *event) 8443 { 8444 return event->attr.ksymbol; 8445 } 8446 8447 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8448 { 8449 struct perf_ksymbol_event *ksymbol_event = data; 8450 struct perf_output_handle handle; 8451 struct perf_sample_data sample; 8452 int ret; 8453 8454 if (!perf_event_ksymbol_match(event)) 8455 return; 8456 8457 perf_event_header__init_id(&ksymbol_event->event_id.header, 8458 &sample, event); 8459 ret = perf_output_begin(&handle, event, 8460 ksymbol_event->event_id.header.size); 8461 if (ret) 8462 return; 8463 8464 perf_output_put(&handle, ksymbol_event->event_id); 8465 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8466 perf_event__output_id_sample(event, &handle, &sample); 8467 8468 perf_output_end(&handle); 8469 } 8470 8471 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8472 const char *sym) 8473 { 8474 struct perf_ksymbol_event ksymbol_event; 8475 char name[KSYM_NAME_LEN]; 8476 u16 flags = 0; 8477 int name_len; 8478 8479 if (!atomic_read(&nr_ksymbol_events)) 8480 return; 8481 8482 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8483 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8484 goto err; 8485 8486 strlcpy(name, sym, KSYM_NAME_LEN); 8487 name_len = strlen(name) + 1; 8488 while (!IS_ALIGNED(name_len, sizeof(u64))) 8489 name[name_len++] = '\0'; 8490 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8491 8492 if (unregister) 8493 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8494 8495 ksymbol_event = (struct perf_ksymbol_event){ 8496 .name = name, 8497 .name_len = name_len, 8498 .event_id = { 8499 .header = { 8500 .type = PERF_RECORD_KSYMBOL, 8501 .size = sizeof(ksymbol_event.event_id) + 8502 name_len, 8503 }, 8504 .addr = addr, 8505 .len = len, 8506 .ksym_type = ksym_type, 8507 .flags = flags, 8508 }, 8509 }; 8510 8511 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8512 return; 8513 err: 8514 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8515 } 8516 8517 /* 8518 * bpf program load/unload tracking 8519 */ 8520 8521 struct perf_bpf_event { 8522 struct bpf_prog *prog; 8523 struct { 8524 struct perf_event_header header; 8525 u16 type; 8526 u16 flags; 8527 u32 id; 8528 u8 tag[BPF_TAG_SIZE]; 8529 } event_id; 8530 }; 8531 8532 static int perf_event_bpf_match(struct perf_event *event) 8533 { 8534 return event->attr.bpf_event; 8535 } 8536 8537 static void perf_event_bpf_output(struct perf_event *event, void *data) 8538 { 8539 struct perf_bpf_event *bpf_event = data; 8540 struct perf_output_handle handle; 8541 struct perf_sample_data sample; 8542 int ret; 8543 8544 if (!perf_event_bpf_match(event)) 8545 return; 8546 8547 perf_event_header__init_id(&bpf_event->event_id.header, 8548 &sample, event); 8549 ret = perf_output_begin(&handle, event, 8550 bpf_event->event_id.header.size); 8551 if (ret) 8552 return; 8553 8554 perf_output_put(&handle, bpf_event->event_id); 8555 perf_event__output_id_sample(event, &handle, &sample); 8556 8557 perf_output_end(&handle); 8558 } 8559 8560 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8561 enum perf_bpf_event_type type) 8562 { 8563 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8564 int i; 8565 8566 if (prog->aux->func_cnt == 0) { 8567 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8568 (u64)(unsigned long)prog->bpf_func, 8569 prog->jited_len, unregister, 8570 prog->aux->ksym.name); 8571 } else { 8572 for (i = 0; i < prog->aux->func_cnt; i++) { 8573 struct bpf_prog *subprog = prog->aux->func[i]; 8574 8575 perf_event_ksymbol( 8576 PERF_RECORD_KSYMBOL_TYPE_BPF, 8577 (u64)(unsigned long)subprog->bpf_func, 8578 subprog->jited_len, unregister, 8579 prog->aux->ksym.name); 8580 } 8581 } 8582 } 8583 8584 void perf_event_bpf_event(struct bpf_prog *prog, 8585 enum perf_bpf_event_type type, 8586 u16 flags) 8587 { 8588 struct perf_bpf_event bpf_event; 8589 8590 if (type <= PERF_BPF_EVENT_UNKNOWN || 8591 type >= PERF_BPF_EVENT_MAX) 8592 return; 8593 8594 switch (type) { 8595 case PERF_BPF_EVENT_PROG_LOAD: 8596 case PERF_BPF_EVENT_PROG_UNLOAD: 8597 if (atomic_read(&nr_ksymbol_events)) 8598 perf_event_bpf_emit_ksymbols(prog, type); 8599 break; 8600 default: 8601 break; 8602 } 8603 8604 if (!atomic_read(&nr_bpf_events)) 8605 return; 8606 8607 bpf_event = (struct perf_bpf_event){ 8608 .prog = prog, 8609 .event_id = { 8610 .header = { 8611 .type = PERF_RECORD_BPF_EVENT, 8612 .size = sizeof(bpf_event.event_id), 8613 }, 8614 .type = type, 8615 .flags = flags, 8616 .id = prog->aux->id, 8617 }, 8618 }; 8619 8620 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8621 8622 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8623 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8624 } 8625 8626 void perf_event_itrace_started(struct perf_event *event) 8627 { 8628 event->attach_state |= PERF_ATTACH_ITRACE; 8629 } 8630 8631 static void perf_log_itrace_start(struct perf_event *event) 8632 { 8633 struct perf_output_handle handle; 8634 struct perf_sample_data sample; 8635 struct perf_aux_event { 8636 struct perf_event_header header; 8637 u32 pid; 8638 u32 tid; 8639 } rec; 8640 int ret; 8641 8642 if (event->parent) 8643 event = event->parent; 8644 8645 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8646 event->attach_state & PERF_ATTACH_ITRACE) 8647 return; 8648 8649 rec.header.type = PERF_RECORD_ITRACE_START; 8650 rec.header.misc = 0; 8651 rec.header.size = sizeof(rec); 8652 rec.pid = perf_event_pid(event, current); 8653 rec.tid = perf_event_tid(event, current); 8654 8655 perf_event_header__init_id(&rec.header, &sample, event); 8656 ret = perf_output_begin(&handle, event, rec.header.size); 8657 8658 if (ret) 8659 return; 8660 8661 perf_output_put(&handle, rec); 8662 perf_event__output_id_sample(event, &handle, &sample); 8663 8664 perf_output_end(&handle); 8665 } 8666 8667 static int 8668 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8669 { 8670 struct hw_perf_event *hwc = &event->hw; 8671 int ret = 0; 8672 u64 seq; 8673 8674 seq = __this_cpu_read(perf_throttled_seq); 8675 if (seq != hwc->interrupts_seq) { 8676 hwc->interrupts_seq = seq; 8677 hwc->interrupts = 1; 8678 } else { 8679 hwc->interrupts++; 8680 if (unlikely(throttle 8681 && hwc->interrupts >= max_samples_per_tick)) { 8682 __this_cpu_inc(perf_throttled_count); 8683 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8684 hwc->interrupts = MAX_INTERRUPTS; 8685 perf_log_throttle(event, 0); 8686 ret = 1; 8687 } 8688 } 8689 8690 if (event->attr.freq) { 8691 u64 now = perf_clock(); 8692 s64 delta = now - hwc->freq_time_stamp; 8693 8694 hwc->freq_time_stamp = now; 8695 8696 if (delta > 0 && delta < 2*TICK_NSEC) 8697 perf_adjust_period(event, delta, hwc->last_period, true); 8698 } 8699 8700 return ret; 8701 } 8702 8703 int perf_event_account_interrupt(struct perf_event *event) 8704 { 8705 return __perf_event_account_interrupt(event, 1); 8706 } 8707 8708 /* 8709 * Generic event overflow handling, sampling. 8710 */ 8711 8712 static int __perf_event_overflow(struct perf_event *event, 8713 int throttle, struct perf_sample_data *data, 8714 struct pt_regs *regs) 8715 { 8716 int events = atomic_read(&event->event_limit); 8717 int ret = 0; 8718 8719 /* 8720 * Non-sampling counters might still use the PMI to fold short 8721 * hardware counters, ignore those. 8722 */ 8723 if (unlikely(!is_sampling_event(event))) 8724 return 0; 8725 8726 ret = __perf_event_account_interrupt(event, throttle); 8727 8728 /* 8729 * XXX event_limit might not quite work as expected on inherited 8730 * events 8731 */ 8732 8733 event->pending_kill = POLL_IN; 8734 if (events && atomic_dec_and_test(&event->event_limit)) { 8735 ret = 1; 8736 event->pending_kill = POLL_HUP; 8737 8738 perf_event_disable_inatomic(event); 8739 } 8740 8741 READ_ONCE(event->overflow_handler)(event, data, regs); 8742 8743 if (*perf_event_fasync(event) && event->pending_kill) { 8744 event->pending_wakeup = 1; 8745 irq_work_queue(&event->pending); 8746 } 8747 8748 return ret; 8749 } 8750 8751 int perf_event_overflow(struct perf_event *event, 8752 struct perf_sample_data *data, 8753 struct pt_regs *regs) 8754 { 8755 return __perf_event_overflow(event, 1, data, regs); 8756 } 8757 8758 /* 8759 * Generic software event infrastructure 8760 */ 8761 8762 struct swevent_htable { 8763 struct swevent_hlist *swevent_hlist; 8764 struct mutex hlist_mutex; 8765 int hlist_refcount; 8766 8767 /* Recursion avoidance in each contexts */ 8768 int recursion[PERF_NR_CONTEXTS]; 8769 }; 8770 8771 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8772 8773 /* 8774 * We directly increment event->count and keep a second value in 8775 * event->hw.period_left to count intervals. This period event 8776 * is kept in the range [-sample_period, 0] so that we can use the 8777 * sign as trigger. 8778 */ 8779 8780 u64 perf_swevent_set_period(struct perf_event *event) 8781 { 8782 struct hw_perf_event *hwc = &event->hw; 8783 u64 period = hwc->last_period; 8784 u64 nr, offset; 8785 s64 old, val; 8786 8787 hwc->last_period = hwc->sample_period; 8788 8789 again: 8790 old = val = local64_read(&hwc->period_left); 8791 if (val < 0) 8792 return 0; 8793 8794 nr = div64_u64(period + val, period); 8795 offset = nr * period; 8796 val -= offset; 8797 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8798 goto again; 8799 8800 return nr; 8801 } 8802 8803 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8804 struct perf_sample_data *data, 8805 struct pt_regs *regs) 8806 { 8807 struct hw_perf_event *hwc = &event->hw; 8808 int throttle = 0; 8809 8810 if (!overflow) 8811 overflow = perf_swevent_set_period(event); 8812 8813 if (hwc->interrupts == MAX_INTERRUPTS) 8814 return; 8815 8816 for (; overflow; overflow--) { 8817 if (__perf_event_overflow(event, throttle, 8818 data, regs)) { 8819 /* 8820 * We inhibit the overflow from happening when 8821 * hwc->interrupts == MAX_INTERRUPTS. 8822 */ 8823 break; 8824 } 8825 throttle = 1; 8826 } 8827 } 8828 8829 static void perf_swevent_event(struct perf_event *event, u64 nr, 8830 struct perf_sample_data *data, 8831 struct pt_regs *regs) 8832 { 8833 struct hw_perf_event *hwc = &event->hw; 8834 8835 local64_add(nr, &event->count); 8836 8837 if (!regs) 8838 return; 8839 8840 if (!is_sampling_event(event)) 8841 return; 8842 8843 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8844 data->period = nr; 8845 return perf_swevent_overflow(event, 1, data, regs); 8846 } else 8847 data->period = event->hw.last_period; 8848 8849 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8850 return perf_swevent_overflow(event, 1, data, regs); 8851 8852 if (local64_add_negative(nr, &hwc->period_left)) 8853 return; 8854 8855 perf_swevent_overflow(event, 0, data, regs); 8856 } 8857 8858 static int perf_exclude_event(struct perf_event *event, 8859 struct pt_regs *regs) 8860 { 8861 if (event->hw.state & PERF_HES_STOPPED) 8862 return 1; 8863 8864 if (regs) { 8865 if (event->attr.exclude_user && user_mode(regs)) 8866 return 1; 8867 8868 if (event->attr.exclude_kernel && !user_mode(regs)) 8869 return 1; 8870 } 8871 8872 return 0; 8873 } 8874 8875 static int perf_swevent_match(struct perf_event *event, 8876 enum perf_type_id type, 8877 u32 event_id, 8878 struct perf_sample_data *data, 8879 struct pt_regs *regs) 8880 { 8881 if (event->attr.type != type) 8882 return 0; 8883 8884 if (event->attr.config != event_id) 8885 return 0; 8886 8887 if (perf_exclude_event(event, regs)) 8888 return 0; 8889 8890 return 1; 8891 } 8892 8893 static inline u64 swevent_hash(u64 type, u32 event_id) 8894 { 8895 u64 val = event_id | (type << 32); 8896 8897 return hash_64(val, SWEVENT_HLIST_BITS); 8898 } 8899 8900 static inline struct hlist_head * 8901 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8902 { 8903 u64 hash = swevent_hash(type, event_id); 8904 8905 return &hlist->heads[hash]; 8906 } 8907 8908 /* For the read side: events when they trigger */ 8909 static inline struct hlist_head * 8910 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8911 { 8912 struct swevent_hlist *hlist; 8913 8914 hlist = rcu_dereference(swhash->swevent_hlist); 8915 if (!hlist) 8916 return NULL; 8917 8918 return __find_swevent_head(hlist, type, event_id); 8919 } 8920 8921 /* For the event head insertion and removal in the hlist */ 8922 static inline struct hlist_head * 8923 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8924 { 8925 struct swevent_hlist *hlist; 8926 u32 event_id = event->attr.config; 8927 u64 type = event->attr.type; 8928 8929 /* 8930 * Event scheduling is always serialized against hlist allocation 8931 * and release. Which makes the protected version suitable here. 8932 * The context lock guarantees that. 8933 */ 8934 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8935 lockdep_is_held(&event->ctx->lock)); 8936 if (!hlist) 8937 return NULL; 8938 8939 return __find_swevent_head(hlist, type, event_id); 8940 } 8941 8942 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8943 u64 nr, 8944 struct perf_sample_data *data, 8945 struct pt_regs *regs) 8946 { 8947 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8948 struct perf_event *event; 8949 struct hlist_head *head; 8950 8951 rcu_read_lock(); 8952 head = find_swevent_head_rcu(swhash, type, event_id); 8953 if (!head) 8954 goto end; 8955 8956 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8957 if (perf_swevent_match(event, type, event_id, data, regs)) 8958 perf_swevent_event(event, nr, data, regs); 8959 } 8960 end: 8961 rcu_read_unlock(); 8962 } 8963 8964 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8965 8966 int perf_swevent_get_recursion_context(void) 8967 { 8968 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8969 8970 return get_recursion_context(swhash->recursion); 8971 } 8972 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8973 8974 void perf_swevent_put_recursion_context(int rctx) 8975 { 8976 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8977 8978 put_recursion_context(swhash->recursion, rctx); 8979 } 8980 8981 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8982 { 8983 struct perf_sample_data data; 8984 8985 if (WARN_ON_ONCE(!regs)) 8986 return; 8987 8988 perf_sample_data_init(&data, addr, 0); 8989 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8990 } 8991 8992 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8993 { 8994 int rctx; 8995 8996 preempt_disable_notrace(); 8997 rctx = perf_swevent_get_recursion_context(); 8998 if (unlikely(rctx < 0)) 8999 goto fail; 9000 9001 ___perf_sw_event(event_id, nr, regs, addr); 9002 9003 perf_swevent_put_recursion_context(rctx); 9004 fail: 9005 preempt_enable_notrace(); 9006 } 9007 9008 static void perf_swevent_read(struct perf_event *event) 9009 { 9010 } 9011 9012 static int perf_swevent_add(struct perf_event *event, int flags) 9013 { 9014 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9015 struct hw_perf_event *hwc = &event->hw; 9016 struct hlist_head *head; 9017 9018 if (is_sampling_event(event)) { 9019 hwc->last_period = hwc->sample_period; 9020 perf_swevent_set_period(event); 9021 } 9022 9023 hwc->state = !(flags & PERF_EF_START); 9024 9025 head = find_swevent_head(swhash, event); 9026 if (WARN_ON_ONCE(!head)) 9027 return -EINVAL; 9028 9029 hlist_add_head_rcu(&event->hlist_entry, head); 9030 perf_event_update_userpage(event); 9031 9032 return 0; 9033 } 9034 9035 static void perf_swevent_del(struct perf_event *event, int flags) 9036 { 9037 hlist_del_rcu(&event->hlist_entry); 9038 } 9039 9040 static void perf_swevent_start(struct perf_event *event, int flags) 9041 { 9042 event->hw.state = 0; 9043 } 9044 9045 static void perf_swevent_stop(struct perf_event *event, int flags) 9046 { 9047 event->hw.state = PERF_HES_STOPPED; 9048 } 9049 9050 /* Deref the hlist from the update side */ 9051 static inline struct swevent_hlist * 9052 swevent_hlist_deref(struct swevent_htable *swhash) 9053 { 9054 return rcu_dereference_protected(swhash->swevent_hlist, 9055 lockdep_is_held(&swhash->hlist_mutex)); 9056 } 9057 9058 static void swevent_hlist_release(struct swevent_htable *swhash) 9059 { 9060 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9061 9062 if (!hlist) 9063 return; 9064 9065 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9066 kfree_rcu(hlist, rcu_head); 9067 } 9068 9069 static void swevent_hlist_put_cpu(int cpu) 9070 { 9071 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9072 9073 mutex_lock(&swhash->hlist_mutex); 9074 9075 if (!--swhash->hlist_refcount) 9076 swevent_hlist_release(swhash); 9077 9078 mutex_unlock(&swhash->hlist_mutex); 9079 } 9080 9081 static void swevent_hlist_put(void) 9082 { 9083 int cpu; 9084 9085 for_each_possible_cpu(cpu) 9086 swevent_hlist_put_cpu(cpu); 9087 } 9088 9089 static int swevent_hlist_get_cpu(int cpu) 9090 { 9091 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9092 int err = 0; 9093 9094 mutex_lock(&swhash->hlist_mutex); 9095 if (!swevent_hlist_deref(swhash) && 9096 cpumask_test_cpu(cpu, perf_online_mask)) { 9097 struct swevent_hlist *hlist; 9098 9099 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9100 if (!hlist) { 9101 err = -ENOMEM; 9102 goto exit; 9103 } 9104 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9105 } 9106 swhash->hlist_refcount++; 9107 exit: 9108 mutex_unlock(&swhash->hlist_mutex); 9109 9110 return err; 9111 } 9112 9113 static int swevent_hlist_get(void) 9114 { 9115 int err, cpu, failed_cpu; 9116 9117 mutex_lock(&pmus_lock); 9118 for_each_possible_cpu(cpu) { 9119 err = swevent_hlist_get_cpu(cpu); 9120 if (err) { 9121 failed_cpu = cpu; 9122 goto fail; 9123 } 9124 } 9125 mutex_unlock(&pmus_lock); 9126 return 0; 9127 fail: 9128 for_each_possible_cpu(cpu) { 9129 if (cpu == failed_cpu) 9130 break; 9131 swevent_hlist_put_cpu(cpu); 9132 } 9133 mutex_unlock(&pmus_lock); 9134 return err; 9135 } 9136 9137 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9138 9139 static void sw_perf_event_destroy(struct perf_event *event) 9140 { 9141 u64 event_id = event->attr.config; 9142 9143 WARN_ON(event->parent); 9144 9145 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9146 swevent_hlist_put(); 9147 } 9148 9149 static int perf_swevent_init(struct perf_event *event) 9150 { 9151 u64 event_id = event->attr.config; 9152 9153 if (event->attr.type != PERF_TYPE_SOFTWARE) 9154 return -ENOENT; 9155 9156 /* 9157 * no branch sampling for software events 9158 */ 9159 if (has_branch_stack(event)) 9160 return -EOPNOTSUPP; 9161 9162 switch (event_id) { 9163 case PERF_COUNT_SW_CPU_CLOCK: 9164 case PERF_COUNT_SW_TASK_CLOCK: 9165 return -ENOENT; 9166 9167 default: 9168 break; 9169 } 9170 9171 if (event_id >= PERF_COUNT_SW_MAX) 9172 return -ENOENT; 9173 9174 if (!event->parent) { 9175 int err; 9176 9177 err = swevent_hlist_get(); 9178 if (err) 9179 return err; 9180 9181 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9182 event->destroy = sw_perf_event_destroy; 9183 } 9184 9185 return 0; 9186 } 9187 9188 static struct pmu perf_swevent = { 9189 .task_ctx_nr = perf_sw_context, 9190 9191 .capabilities = PERF_PMU_CAP_NO_NMI, 9192 9193 .event_init = perf_swevent_init, 9194 .add = perf_swevent_add, 9195 .del = perf_swevent_del, 9196 .start = perf_swevent_start, 9197 .stop = perf_swevent_stop, 9198 .read = perf_swevent_read, 9199 }; 9200 9201 #ifdef CONFIG_EVENT_TRACING 9202 9203 static int perf_tp_filter_match(struct perf_event *event, 9204 struct perf_sample_data *data) 9205 { 9206 void *record = data->raw->frag.data; 9207 9208 /* only top level events have filters set */ 9209 if (event->parent) 9210 event = event->parent; 9211 9212 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9213 return 1; 9214 return 0; 9215 } 9216 9217 static int perf_tp_event_match(struct perf_event *event, 9218 struct perf_sample_data *data, 9219 struct pt_regs *regs) 9220 { 9221 if (event->hw.state & PERF_HES_STOPPED) 9222 return 0; 9223 /* 9224 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9225 */ 9226 if (event->attr.exclude_kernel && !user_mode(regs)) 9227 return 0; 9228 9229 if (!perf_tp_filter_match(event, data)) 9230 return 0; 9231 9232 return 1; 9233 } 9234 9235 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9236 struct trace_event_call *call, u64 count, 9237 struct pt_regs *regs, struct hlist_head *head, 9238 struct task_struct *task) 9239 { 9240 if (bpf_prog_array_valid(call)) { 9241 *(struct pt_regs **)raw_data = regs; 9242 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9243 perf_swevent_put_recursion_context(rctx); 9244 return; 9245 } 9246 } 9247 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9248 rctx, task); 9249 } 9250 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9251 9252 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9253 struct pt_regs *regs, struct hlist_head *head, int rctx, 9254 struct task_struct *task) 9255 { 9256 struct perf_sample_data data; 9257 struct perf_event *event; 9258 9259 struct perf_raw_record raw = { 9260 .frag = { 9261 .size = entry_size, 9262 .data = record, 9263 }, 9264 }; 9265 9266 perf_sample_data_init(&data, 0, 0); 9267 data.raw = &raw; 9268 9269 perf_trace_buf_update(record, event_type); 9270 9271 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9272 if (perf_tp_event_match(event, &data, regs)) 9273 perf_swevent_event(event, count, &data, regs); 9274 } 9275 9276 /* 9277 * If we got specified a target task, also iterate its context and 9278 * deliver this event there too. 9279 */ 9280 if (task && task != current) { 9281 struct perf_event_context *ctx; 9282 struct trace_entry *entry = record; 9283 9284 rcu_read_lock(); 9285 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9286 if (!ctx) 9287 goto unlock; 9288 9289 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9290 if (event->cpu != smp_processor_id()) 9291 continue; 9292 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9293 continue; 9294 if (event->attr.config != entry->type) 9295 continue; 9296 if (perf_tp_event_match(event, &data, regs)) 9297 perf_swevent_event(event, count, &data, regs); 9298 } 9299 unlock: 9300 rcu_read_unlock(); 9301 } 9302 9303 perf_swevent_put_recursion_context(rctx); 9304 } 9305 EXPORT_SYMBOL_GPL(perf_tp_event); 9306 9307 static void tp_perf_event_destroy(struct perf_event *event) 9308 { 9309 perf_trace_destroy(event); 9310 } 9311 9312 static int perf_tp_event_init(struct perf_event *event) 9313 { 9314 int err; 9315 9316 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9317 return -ENOENT; 9318 9319 /* 9320 * no branch sampling for tracepoint events 9321 */ 9322 if (has_branch_stack(event)) 9323 return -EOPNOTSUPP; 9324 9325 err = perf_trace_init(event); 9326 if (err) 9327 return err; 9328 9329 event->destroy = tp_perf_event_destroy; 9330 9331 return 0; 9332 } 9333 9334 static struct pmu perf_tracepoint = { 9335 .task_ctx_nr = perf_sw_context, 9336 9337 .event_init = perf_tp_event_init, 9338 .add = perf_trace_add, 9339 .del = perf_trace_del, 9340 .start = perf_swevent_start, 9341 .stop = perf_swevent_stop, 9342 .read = perf_swevent_read, 9343 }; 9344 9345 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9346 /* 9347 * Flags in config, used by dynamic PMU kprobe and uprobe 9348 * The flags should match following PMU_FORMAT_ATTR(). 9349 * 9350 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9351 * if not set, create kprobe/uprobe 9352 * 9353 * The following values specify a reference counter (or semaphore in the 9354 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9355 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9356 * 9357 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9358 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9359 */ 9360 enum perf_probe_config { 9361 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9362 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9363 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9364 }; 9365 9366 PMU_FORMAT_ATTR(retprobe, "config:0"); 9367 #endif 9368 9369 #ifdef CONFIG_KPROBE_EVENTS 9370 static struct attribute *kprobe_attrs[] = { 9371 &format_attr_retprobe.attr, 9372 NULL, 9373 }; 9374 9375 static struct attribute_group kprobe_format_group = { 9376 .name = "format", 9377 .attrs = kprobe_attrs, 9378 }; 9379 9380 static const struct attribute_group *kprobe_attr_groups[] = { 9381 &kprobe_format_group, 9382 NULL, 9383 }; 9384 9385 static int perf_kprobe_event_init(struct perf_event *event); 9386 static struct pmu perf_kprobe = { 9387 .task_ctx_nr = perf_sw_context, 9388 .event_init = perf_kprobe_event_init, 9389 .add = perf_trace_add, 9390 .del = perf_trace_del, 9391 .start = perf_swevent_start, 9392 .stop = perf_swevent_stop, 9393 .read = perf_swevent_read, 9394 .attr_groups = kprobe_attr_groups, 9395 }; 9396 9397 static int perf_kprobe_event_init(struct perf_event *event) 9398 { 9399 int err; 9400 bool is_retprobe; 9401 9402 if (event->attr.type != perf_kprobe.type) 9403 return -ENOENT; 9404 9405 if (!capable(CAP_SYS_ADMIN)) 9406 return -EACCES; 9407 9408 /* 9409 * no branch sampling for probe events 9410 */ 9411 if (has_branch_stack(event)) 9412 return -EOPNOTSUPP; 9413 9414 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9415 err = perf_kprobe_init(event, is_retprobe); 9416 if (err) 9417 return err; 9418 9419 event->destroy = perf_kprobe_destroy; 9420 9421 return 0; 9422 } 9423 #endif /* CONFIG_KPROBE_EVENTS */ 9424 9425 #ifdef CONFIG_UPROBE_EVENTS 9426 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9427 9428 static struct attribute *uprobe_attrs[] = { 9429 &format_attr_retprobe.attr, 9430 &format_attr_ref_ctr_offset.attr, 9431 NULL, 9432 }; 9433 9434 static struct attribute_group uprobe_format_group = { 9435 .name = "format", 9436 .attrs = uprobe_attrs, 9437 }; 9438 9439 static const struct attribute_group *uprobe_attr_groups[] = { 9440 &uprobe_format_group, 9441 NULL, 9442 }; 9443 9444 static int perf_uprobe_event_init(struct perf_event *event); 9445 static struct pmu perf_uprobe = { 9446 .task_ctx_nr = perf_sw_context, 9447 .event_init = perf_uprobe_event_init, 9448 .add = perf_trace_add, 9449 .del = perf_trace_del, 9450 .start = perf_swevent_start, 9451 .stop = perf_swevent_stop, 9452 .read = perf_swevent_read, 9453 .attr_groups = uprobe_attr_groups, 9454 }; 9455 9456 static int perf_uprobe_event_init(struct perf_event *event) 9457 { 9458 int err; 9459 unsigned long ref_ctr_offset; 9460 bool is_retprobe; 9461 9462 if (event->attr.type != perf_uprobe.type) 9463 return -ENOENT; 9464 9465 if (!capable(CAP_SYS_ADMIN)) 9466 return -EACCES; 9467 9468 /* 9469 * no branch sampling for probe events 9470 */ 9471 if (has_branch_stack(event)) 9472 return -EOPNOTSUPP; 9473 9474 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9475 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9476 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9477 if (err) 9478 return err; 9479 9480 event->destroy = perf_uprobe_destroy; 9481 9482 return 0; 9483 } 9484 #endif /* CONFIG_UPROBE_EVENTS */ 9485 9486 static inline void perf_tp_register(void) 9487 { 9488 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9489 #ifdef CONFIG_KPROBE_EVENTS 9490 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9491 #endif 9492 #ifdef CONFIG_UPROBE_EVENTS 9493 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9494 #endif 9495 } 9496 9497 static void perf_event_free_filter(struct perf_event *event) 9498 { 9499 ftrace_profile_free_filter(event); 9500 } 9501 9502 #ifdef CONFIG_BPF_SYSCALL 9503 static void bpf_overflow_handler(struct perf_event *event, 9504 struct perf_sample_data *data, 9505 struct pt_regs *regs) 9506 { 9507 struct bpf_perf_event_data_kern ctx = { 9508 .data = data, 9509 .event = event, 9510 }; 9511 int ret = 0; 9512 9513 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9514 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9515 goto out; 9516 rcu_read_lock(); 9517 ret = BPF_PROG_RUN(event->prog, &ctx); 9518 rcu_read_unlock(); 9519 out: 9520 __this_cpu_dec(bpf_prog_active); 9521 if (!ret) 9522 return; 9523 9524 event->orig_overflow_handler(event, data, regs); 9525 } 9526 9527 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9528 { 9529 struct bpf_prog *prog; 9530 9531 if (event->overflow_handler_context) 9532 /* hw breakpoint or kernel counter */ 9533 return -EINVAL; 9534 9535 if (event->prog) 9536 return -EEXIST; 9537 9538 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9539 if (IS_ERR(prog)) 9540 return PTR_ERR(prog); 9541 9542 event->prog = prog; 9543 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9544 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9545 return 0; 9546 } 9547 9548 static void perf_event_free_bpf_handler(struct perf_event *event) 9549 { 9550 struct bpf_prog *prog = event->prog; 9551 9552 if (!prog) 9553 return; 9554 9555 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9556 event->prog = NULL; 9557 bpf_prog_put(prog); 9558 } 9559 #else 9560 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9561 { 9562 return -EOPNOTSUPP; 9563 } 9564 static void perf_event_free_bpf_handler(struct perf_event *event) 9565 { 9566 } 9567 #endif 9568 9569 /* 9570 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9571 * with perf_event_open() 9572 */ 9573 static inline bool perf_event_is_tracing(struct perf_event *event) 9574 { 9575 if (event->pmu == &perf_tracepoint) 9576 return true; 9577 #ifdef CONFIG_KPROBE_EVENTS 9578 if (event->pmu == &perf_kprobe) 9579 return true; 9580 #endif 9581 #ifdef CONFIG_UPROBE_EVENTS 9582 if (event->pmu == &perf_uprobe) 9583 return true; 9584 #endif 9585 return false; 9586 } 9587 9588 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9589 { 9590 bool is_kprobe, is_tracepoint, is_syscall_tp; 9591 struct bpf_prog *prog; 9592 int ret; 9593 9594 if (!perf_event_is_tracing(event)) 9595 return perf_event_set_bpf_handler(event, prog_fd); 9596 9597 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9598 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9599 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9600 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9601 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9602 return -EINVAL; 9603 9604 prog = bpf_prog_get(prog_fd); 9605 if (IS_ERR(prog)) 9606 return PTR_ERR(prog); 9607 9608 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9609 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9610 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9611 /* valid fd, but invalid bpf program type */ 9612 bpf_prog_put(prog); 9613 return -EINVAL; 9614 } 9615 9616 /* Kprobe override only works for kprobes, not uprobes. */ 9617 if (prog->kprobe_override && 9618 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9619 bpf_prog_put(prog); 9620 return -EINVAL; 9621 } 9622 9623 if (is_tracepoint || is_syscall_tp) { 9624 int off = trace_event_get_offsets(event->tp_event); 9625 9626 if (prog->aux->max_ctx_offset > off) { 9627 bpf_prog_put(prog); 9628 return -EACCES; 9629 } 9630 } 9631 9632 ret = perf_event_attach_bpf_prog(event, prog); 9633 if (ret) 9634 bpf_prog_put(prog); 9635 return ret; 9636 } 9637 9638 static void perf_event_free_bpf_prog(struct perf_event *event) 9639 { 9640 if (!perf_event_is_tracing(event)) { 9641 perf_event_free_bpf_handler(event); 9642 return; 9643 } 9644 perf_event_detach_bpf_prog(event); 9645 } 9646 9647 #else 9648 9649 static inline void perf_tp_register(void) 9650 { 9651 } 9652 9653 static void perf_event_free_filter(struct perf_event *event) 9654 { 9655 } 9656 9657 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9658 { 9659 return -ENOENT; 9660 } 9661 9662 static void perf_event_free_bpf_prog(struct perf_event *event) 9663 { 9664 } 9665 #endif /* CONFIG_EVENT_TRACING */ 9666 9667 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9668 void perf_bp_event(struct perf_event *bp, void *data) 9669 { 9670 struct perf_sample_data sample; 9671 struct pt_regs *regs = data; 9672 9673 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9674 9675 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9676 perf_swevent_event(bp, 1, &sample, regs); 9677 } 9678 #endif 9679 9680 /* 9681 * Allocate a new address filter 9682 */ 9683 static struct perf_addr_filter * 9684 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9685 { 9686 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9687 struct perf_addr_filter *filter; 9688 9689 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9690 if (!filter) 9691 return NULL; 9692 9693 INIT_LIST_HEAD(&filter->entry); 9694 list_add_tail(&filter->entry, filters); 9695 9696 return filter; 9697 } 9698 9699 static void free_filters_list(struct list_head *filters) 9700 { 9701 struct perf_addr_filter *filter, *iter; 9702 9703 list_for_each_entry_safe(filter, iter, filters, entry) { 9704 path_put(&filter->path); 9705 list_del(&filter->entry); 9706 kfree(filter); 9707 } 9708 } 9709 9710 /* 9711 * Free existing address filters and optionally install new ones 9712 */ 9713 static void perf_addr_filters_splice(struct perf_event *event, 9714 struct list_head *head) 9715 { 9716 unsigned long flags; 9717 LIST_HEAD(list); 9718 9719 if (!has_addr_filter(event)) 9720 return; 9721 9722 /* don't bother with children, they don't have their own filters */ 9723 if (event->parent) 9724 return; 9725 9726 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9727 9728 list_splice_init(&event->addr_filters.list, &list); 9729 if (head) 9730 list_splice(head, &event->addr_filters.list); 9731 9732 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9733 9734 free_filters_list(&list); 9735 } 9736 9737 /* 9738 * Scan through mm's vmas and see if one of them matches the 9739 * @filter; if so, adjust filter's address range. 9740 * Called with mm::mmap_sem down for reading. 9741 */ 9742 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9743 struct mm_struct *mm, 9744 struct perf_addr_filter_range *fr) 9745 { 9746 struct vm_area_struct *vma; 9747 9748 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9749 if (!vma->vm_file) 9750 continue; 9751 9752 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9753 return; 9754 } 9755 } 9756 9757 /* 9758 * Update event's address range filters based on the 9759 * task's existing mappings, if any. 9760 */ 9761 static void perf_event_addr_filters_apply(struct perf_event *event) 9762 { 9763 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9764 struct task_struct *task = READ_ONCE(event->ctx->task); 9765 struct perf_addr_filter *filter; 9766 struct mm_struct *mm = NULL; 9767 unsigned int count = 0; 9768 unsigned long flags; 9769 9770 /* 9771 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9772 * will stop on the parent's child_mutex that our caller is also holding 9773 */ 9774 if (task == TASK_TOMBSTONE) 9775 return; 9776 9777 if (ifh->nr_file_filters) { 9778 mm = get_task_mm(event->ctx->task); 9779 if (!mm) 9780 goto restart; 9781 9782 down_read(&mm->mmap_sem); 9783 } 9784 9785 raw_spin_lock_irqsave(&ifh->lock, flags); 9786 list_for_each_entry(filter, &ifh->list, entry) { 9787 if (filter->path.dentry) { 9788 /* 9789 * Adjust base offset if the filter is associated to a 9790 * binary that needs to be mapped: 9791 */ 9792 event->addr_filter_ranges[count].start = 0; 9793 event->addr_filter_ranges[count].size = 0; 9794 9795 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9796 } else { 9797 event->addr_filter_ranges[count].start = filter->offset; 9798 event->addr_filter_ranges[count].size = filter->size; 9799 } 9800 9801 count++; 9802 } 9803 9804 event->addr_filters_gen++; 9805 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9806 9807 if (ifh->nr_file_filters) { 9808 up_read(&mm->mmap_sem); 9809 9810 mmput(mm); 9811 } 9812 9813 restart: 9814 perf_event_stop(event, 1); 9815 } 9816 9817 /* 9818 * Address range filtering: limiting the data to certain 9819 * instruction address ranges. Filters are ioctl()ed to us from 9820 * userspace as ascii strings. 9821 * 9822 * Filter string format: 9823 * 9824 * ACTION RANGE_SPEC 9825 * where ACTION is one of the 9826 * * "filter": limit the trace to this region 9827 * * "start": start tracing from this address 9828 * * "stop": stop tracing at this address/region; 9829 * RANGE_SPEC is 9830 * * for kernel addresses: <start address>[/<size>] 9831 * * for object files: <start address>[/<size>]@</path/to/object/file> 9832 * 9833 * if <size> is not specified or is zero, the range is treated as a single 9834 * address; not valid for ACTION=="filter". 9835 */ 9836 enum { 9837 IF_ACT_NONE = -1, 9838 IF_ACT_FILTER, 9839 IF_ACT_START, 9840 IF_ACT_STOP, 9841 IF_SRC_FILE, 9842 IF_SRC_KERNEL, 9843 IF_SRC_FILEADDR, 9844 IF_SRC_KERNELADDR, 9845 }; 9846 9847 enum { 9848 IF_STATE_ACTION = 0, 9849 IF_STATE_SOURCE, 9850 IF_STATE_END, 9851 }; 9852 9853 static const match_table_t if_tokens = { 9854 { IF_ACT_FILTER, "filter" }, 9855 { IF_ACT_START, "start" }, 9856 { IF_ACT_STOP, "stop" }, 9857 { IF_SRC_FILE, "%u/%u@%s" }, 9858 { IF_SRC_KERNEL, "%u/%u" }, 9859 { IF_SRC_FILEADDR, "%u@%s" }, 9860 { IF_SRC_KERNELADDR, "%u" }, 9861 { IF_ACT_NONE, NULL }, 9862 }; 9863 9864 /* 9865 * Address filter string parser 9866 */ 9867 static int 9868 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9869 struct list_head *filters) 9870 { 9871 struct perf_addr_filter *filter = NULL; 9872 char *start, *orig, *filename = NULL; 9873 substring_t args[MAX_OPT_ARGS]; 9874 int state = IF_STATE_ACTION, token; 9875 unsigned int kernel = 0; 9876 int ret = -EINVAL; 9877 9878 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9879 if (!fstr) 9880 return -ENOMEM; 9881 9882 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9883 static const enum perf_addr_filter_action_t actions[] = { 9884 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9885 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9886 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9887 }; 9888 ret = -EINVAL; 9889 9890 if (!*start) 9891 continue; 9892 9893 /* filter definition begins */ 9894 if (state == IF_STATE_ACTION) { 9895 filter = perf_addr_filter_new(event, filters); 9896 if (!filter) 9897 goto fail; 9898 } 9899 9900 token = match_token(start, if_tokens, args); 9901 switch (token) { 9902 case IF_ACT_FILTER: 9903 case IF_ACT_START: 9904 case IF_ACT_STOP: 9905 if (state != IF_STATE_ACTION) 9906 goto fail; 9907 9908 filter->action = actions[token]; 9909 state = IF_STATE_SOURCE; 9910 break; 9911 9912 case IF_SRC_KERNELADDR: 9913 case IF_SRC_KERNEL: 9914 kernel = 1; 9915 /* fall through */ 9916 9917 case IF_SRC_FILEADDR: 9918 case IF_SRC_FILE: 9919 if (state != IF_STATE_SOURCE) 9920 goto fail; 9921 9922 *args[0].to = 0; 9923 ret = kstrtoul(args[0].from, 0, &filter->offset); 9924 if (ret) 9925 goto fail; 9926 9927 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9928 *args[1].to = 0; 9929 ret = kstrtoul(args[1].from, 0, &filter->size); 9930 if (ret) 9931 goto fail; 9932 } 9933 9934 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9935 int fpos = token == IF_SRC_FILE ? 2 : 1; 9936 9937 filename = match_strdup(&args[fpos]); 9938 if (!filename) { 9939 ret = -ENOMEM; 9940 goto fail; 9941 } 9942 } 9943 9944 state = IF_STATE_END; 9945 break; 9946 9947 default: 9948 goto fail; 9949 } 9950 9951 /* 9952 * Filter definition is fully parsed, validate and install it. 9953 * Make sure that it doesn't contradict itself or the event's 9954 * attribute. 9955 */ 9956 if (state == IF_STATE_END) { 9957 ret = -EINVAL; 9958 if (kernel && event->attr.exclude_kernel) 9959 goto fail; 9960 9961 /* 9962 * ACTION "filter" must have a non-zero length region 9963 * specified. 9964 */ 9965 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9966 !filter->size) 9967 goto fail; 9968 9969 if (!kernel) { 9970 if (!filename) 9971 goto fail; 9972 9973 /* 9974 * For now, we only support file-based filters 9975 * in per-task events; doing so for CPU-wide 9976 * events requires additional context switching 9977 * trickery, since same object code will be 9978 * mapped at different virtual addresses in 9979 * different processes. 9980 */ 9981 ret = -EOPNOTSUPP; 9982 if (!event->ctx->task) 9983 goto fail_free_name; 9984 9985 /* look up the path and grab its inode */ 9986 ret = kern_path(filename, LOOKUP_FOLLOW, 9987 &filter->path); 9988 if (ret) 9989 goto fail_free_name; 9990 9991 kfree(filename); 9992 filename = NULL; 9993 9994 ret = -EINVAL; 9995 if (!filter->path.dentry || 9996 !S_ISREG(d_inode(filter->path.dentry) 9997 ->i_mode)) 9998 goto fail; 9999 10000 event->addr_filters.nr_file_filters++; 10001 } 10002 10003 /* ready to consume more filters */ 10004 state = IF_STATE_ACTION; 10005 filter = NULL; 10006 } 10007 } 10008 10009 if (state != IF_STATE_ACTION) 10010 goto fail; 10011 10012 kfree(orig); 10013 10014 return 0; 10015 10016 fail_free_name: 10017 kfree(filename); 10018 fail: 10019 free_filters_list(filters); 10020 kfree(orig); 10021 10022 return ret; 10023 } 10024 10025 static int 10026 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10027 { 10028 LIST_HEAD(filters); 10029 int ret; 10030 10031 /* 10032 * Since this is called in perf_ioctl() path, we're already holding 10033 * ctx::mutex. 10034 */ 10035 lockdep_assert_held(&event->ctx->mutex); 10036 10037 if (WARN_ON_ONCE(event->parent)) 10038 return -EINVAL; 10039 10040 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10041 if (ret) 10042 goto fail_clear_files; 10043 10044 ret = event->pmu->addr_filters_validate(&filters); 10045 if (ret) 10046 goto fail_free_filters; 10047 10048 /* remove existing filters, if any */ 10049 perf_addr_filters_splice(event, &filters); 10050 10051 /* install new filters */ 10052 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10053 10054 return ret; 10055 10056 fail_free_filters: 10057 free_filters_list(&filters); 10058 10059 fail_clear_files: 10060 event->addr_filters.nr_file_filters = 0; 10061 10062 return ret; 10063 } 10064 10065 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10066 { 10067 int ret = -EINVAL; 10068 char *filter_str; 10069 10070 filter_str = strndup_user(arg, PAGE_SIZE); 10071 if (IS_ERR(filter_str)) 10072 return PTR_ERR(filter_str); 10073 10074 #ifdef CONFIG_EVENT_TRACING 10075 if (perf_event_is_tracing(event)) { 10076 struct perf_event_context *ctx = event->ctx; 10077 10078 /* 10079 * Beware, here be dragons!! 10080 * 10081 * the tracepoint muck will deadlock against ctx->mutex, but 10082 * the tracepoint stuff does not actually need it. So 10083 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10084 * already have a reference on ctx. 10085 * 10086 * This can result in event getting moved to a different ctx, 10087 * but that does not affect the tracepoint state. 10088 */ 10089 mutex_unlock(&ctx->mutex); 10090 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10091 mutex_lock(&ctx->mutex); 10092 } else 10093 #endif 10094 if (has_addr_filter(event)) 10095 ret = perf_event_set_addr_filter(event, filter_str); 10096 10097 kfree(filter_str); 10098 return ret; 10099 } 10100 10101 /* 10102 * hrtimer based swevent callback 10103 */ 10104 10105 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10106 { 10107 enum hrtimer_restart ret = HRTIMER_RESTART; 10108 struct perf_sample_data data; 10109 struct pt_regs *regs; 10110 struct perf_event *event; 10111 u64 period; 10112 10113 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10114 10115 if (event->state != PERF_EVENT_STATE_ACTIVE) 10116 return HRTIMER_NORESTART; 10117 10118 event->pmu->read(event); 10119 10120 perf_sample_data_init(&data, 0, event->hw.last_period); 10121 regs = get_irq_regs(); 10122 10123 if (regs && !perf_exclude_event(event, regs)) { 10124 if (!(event->attr.exclude_idle && is_idle_task(current))) 10125 if (__perf_event_overflow(event, 1, &data, regs)) 10126 ret = HRTIMER_NORESTART; 10127 } 10128 10129 period = max_t(u64, 10000, event->hw.sample_period); 10130 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10131 10132 return ret; 10133 } 10134 10135 static void perf_swevent_start_hrtimer(struct perf_event *event) 10136 { 10137 struct hw_perf_event *hwc = &event->hw; 10138 s64 period; 10139 10140 if (!is_sampling_event(event)) 10141 return; 10142 10143 period = local64_read(&hwc->period_left); 10144 if (period) { 10145 if (period < 0) 10146 period = 10000; 10147 10148 local64_set(&hwc->period_left, 0); 10149 } else { 10150 period = max_t(u64, 10000, hwc->sample_period); 10151 } 10152 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10153 HRTIMER_MODE_REL_PINNED_HARD); 10154 } 10155 10156 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10157 { 10158 struct hw_perf_event *hwc = &event->hw; 10159 10160 if (is_sampling_event(event)) { 10161 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10162 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10163 10164 hrtimer_cancel(&hwc->hrtimer); 10165 } 10166 } 10167 10168 static void perf_swevent_init_hrtimer(struct perf_event *event) 10169 { 10170 struct hw_perf_event *hwc = &event->hw; 10171 10172 if (!is_sampling_event(event)) 10173 return; 10174 10175 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10176 hwc->hrtimer.function = perf_swevent_hrtimer; 10177 10178 /* 10179 * Since hrtimers have a fixed rate, we can do a static freq->period 10180 * mapping and avoid the whole period adjust feedback stuff. 10181 */ 10182 if (event->attr.freq) { 10183 long freq = event->attr.sample_freq; 10184 10185 event->attr.sample_period = NSEC_PER_SEC / freq; 10186 hwc->sample_period = event->attr.sample_period; 10187 local64_set(&hwc->period_left, hwc->sample_period); 10188 hwc->last_period = hwc->sample_period; 10189 event->attr.freq = 0; 10190 } 10191 } 10192 10193 /* 10194 * Software event: cpu wall time clock 10195 */ 10196 10197 static void cpu_clock_event_update(struct perf_event *event) 10198 { 10199 s64 prev; 10200 u64 now; 10201 10202 now = local_clock(); 10203 prev = local64_xchg(&event->hw.prev_count, now); 10204 local64_add(now - prev, &event->count); 10205 } 10206 10207 static void cpu_clock_event_start(struct perf_event *event, int flags) 10208 { 10209 local64_set(&event->hw.prev_count, local_clock()); 10210 perf_swevent_start_hrtimer(event); 10211 } 10212 10213 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10214 { 10215 perf_swevent_cancel_hrtimer(event); 10216 cpu_clock_event_update(event); 10217 } 10218 10219 static int cpu_clock_event_add(struct perf_event *event, int flags) 10220 { 10221 if (flags & PERF_EF_START) 10222 cpu_clock_event_start(event, flags); 10223 perf_event_update_userpage(event); 10224 10225 return 0; 10226 } 10227 10228 static void cpu_clock_event_del(struct perf_event *event, int flags) 10229 { 10230 cpu_clock_event_stop(event, flags); 10231 } 10232 10233 static void cpu_clock_event_read(struct perf_event *event) 10234 { 10235 cpu_clock_event_update(event); 10236 } 10237 10238 static int cpu_clock_event_init(struct perf_event *event) 10239 { 10240 if (event->attr.type != PERF_TYPE_SOFTWARE) 10241 return -ENOENT; 10242 10243 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10244 return -ENOENT; 10245 10246 /* 10247 * no branch sampling for software events 10248 */ 10249 if (has_branch_stack(event)) 10250 return -EOPNOTSUPP; 10251 10252 perf_swevent_init_hrtimer(event); 10253 10254 return 0; 10255 } 10256 10257 static struct pmu perf_cpu_clock = { 10258 .task_ctx_nr = perf_sw_context, 10259 10260 .capabilities = PERF_PMU_CAP_NO_NMI, 10261 10262 .event_init = cpu_clock_event_init, 10263 .add = cpu_clock_event_add, 10264 .del = cpu_clock_event_del, 10265 .start = cpu_clock_event_start, 10266 .stop = cpu_clock_event_stop, 10267 .read = cpu_clock_event_read, 10268 }; 10269 10270 /* 10271 * Software event: task time clock 10272 */ 10273 10274 static void task_clock_event_update(struct perf_event *event, u64 now) 10275 { 10276 u64 prev; 10277 s64 delta; 10278 10279 prev = local64_xchg(&event->hw.prev_count, now); 10280 delta = now - prev; 10281 local64_add(delta, &event->count); 10282 } 10283 10284 static void task_clock_event_start(struct perf_event *event, int flags) 10285 { 10286 local64_set(&event->hw.prev_count, event->ctx->time); 10287 perf_swevent_start_hrtimer(event); 10288 } 10289 10290 static void task_clock_event_stop(struct perf_event *event, int flags) 10291 { 10292 perf_swevent_cancel_hrtimer(event); 10293 task_clock_event_update(event, event->ctx->time); 10294 } 10295 10296 static int task_clock_event_add(struct perf_event *event, int flags) 10297 { 10298 if (flags & PERF_EF_START) 10299 task_clock_event_start(event, flags); 10300 perf_event_update_userpage(event); 10301 10302 return 0; 10303 } 10304 10305 static void task_clock_event_del(struct perf_event *event, int flags) 10306 { 10307 task_clock_event_stop(event, PERF_EF_UPDATE); 10308 } 10309 10310 static void task_clock_event_read(struct perf_event *event) 10311 { 10312 u64 now = perf_clock(); 10313 u64 delta = now - event->ctx->timestamp; 10314 u64 time = event->ctx->time + delta; 10315 10316 task_clock_event_update(event, time); 10317 } 10318 10319 static int task_clock_event_init(struct perf_event *event) 10320 { 10321 if (event->attr.type != PERF_TYPE_SOFTWARE) 10322 return -ENOENT; 10323 10324 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10325 return -ENOENT; 10326 10327 /* 10328 * no branch sampling for software events 10329 */ 10330 if (has_branch_stack(event)) 10331 return -EOPNOTSUPP; 10332 10333 perf_swevent_init_hrtimer(event); 10334 10335 return 0; 10336 } 10337 10338 static struct pmu perf_task_clock = { 10339 .task_ctx_nr = perf_sw_context, 10340 10341 .capabilities = PERF_PMU_CAP_NO_NMI, 10342 10343 .event_init = task_clock_event_init, 10344 .add = task_clock_event_add, 10345 .del = task_clock_event_del, 10346 .start = task_clock_event_start, 10347 .stop = task_clock_event_stop, 10348 .read = task_clock_event_read, 10349 }; 10350 10351 static void perf_pmu_nop_void(struct pmu *pmu) 10352 { 10353 } 10354 10355 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10356 { 10357 } 10358 10359 static int perf_pmu_nop_int(struct pmu *pmu) 10360 { 10361 return 0; 10362 } 10363 10364 static int perf_event_nop_int(struct perf_event *event, u64 value) 10365 { 10366 return 0; 10367 } 10368 10369 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10370 10371 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10372 { 10373 __this_cpu_write(nop_txn_flags, flags); 10374 10375 if (flags & ~PERF_PMU_TXN_ADD) 10376 return; 10377 10378 perf_pmu_disable(pmu); 10379 } 10380 10381 static int perf_pmu_commit_txn(struct pmu *pmu) 10382 { 10383 unsigned int flags = __this_cpu_read(nop_txn_flags); 10384 10385 __this_cpu_write(nop_txn_flags, 0); 10386 10387 if (flags & ~PERF_PMU_TXN_ADD) 10388 return 0; 10389 10390 perf_pmu_enable(pmu); 10391 return 0; 10392 } 10393 10394 static void perf_pmu_cancel_txn(struct pmu *pmu) 10395 { 10396 unsigned int flags = __this_cpu_read(nop_txn_flags); 10397 10398 __this_cpu_write(nop_txn_flags, 0); 10399 10400 if (flags & ~PERF_PMU_TXN_ADD) 10401 return; 10402 10403 perf_pmu_enable(pmu); 10404 } 10405 10406 static int perf_event_idx_default(struct perf_event *event) 10407 { 10408 return 0; 10409 } 10410 10411 /* 10412 * Ensures all contexts with the same task_ctx_nr have the same 10413 * pmu_cpu_context too. 10414 */ 10415 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10416 { 10417 struct pmu *pmu; 10418 10419 if (ctxn < 0) 10420 return NULL; 10421 10422 list_for_each_entry(pmu, &pmus, entry) { 10423 if (pmu->task_ctx_nr == ctxn) 10424 return pmu->pmu_cpu_context; 10425 } 10426 10427 return NULL; 10428 } 10429 10430 static void free_pmu_context(struct pmu *pmu) 10431 { 10432 /* 10433 * Static contexts such as perf_sw_context have a global lifetime 10434 * and may be shared between different PMUs. Avoid freeing them 10435 * when a single PMU is going away. 10436 */ 10437 if (pmu->task_ctx_nr > perf_invalid_context) 10438 return; 10439 10440 free_percpu(pmu->pmu_cpu_context); 10441 } 10442 10443 /* 10444 * Let userspace know that this PMU supports address range filtering: 10445 */ 10446 static ssize_t nr_addr_filters_show(struct device *dev, 10447 struct device_attribute *attr, 10448 char *page) 10449 { 10450 struct pmu *pmu = dev_get_drvdata(dev); 10451 10452 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10453 } 10454 DEVICE_ATTR_RO(nr_addr_filters); 10455 10456 static struct idr pmu_idr; 10457 10458 static ssize_t 10459 type_show(struct device *dev, struct device_attribute *attr, char *page) 10460 { 10461 struct pmu *pmu = dev_get_drvdata(dev); 10462 10463 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10464 } 10465 static DEVICE_ATTR_RO(type); 10466 10467 static ssize_t 10468 perf_event_mux_interval_ms_show(struct device *dev, 10469 struct device_attribute *attr, 10470 char *page) 10471 { 10472 struct pmu *pmu = dev_get_drvdata(dev); 10473 10474 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10475 } 10476 10477 static DEFINE_MUTEX(mux_interval_mutex); 10478 10479 static ssize_t 10480 perf_event_mux_interval_ms_store(struct device *dev, 10481 struct device_attribute *attr, 10482 const char *buf, size_t count) 10483 { 10484 struct pmu *pmu = dev_get_drvdata(dev); 10485 int timer, cpu, ret; 10486 10487 ret = kstrtoint(buf, 0, &timer); 10488 if (ret) 10489 return ret; 10490 10491 if (timer < 1) 10492 return -EINVAL; 10493 10494 /* same value, noting to do */ 10495 if (timer == pmu->hrtimer_interval_ms) 10496 return count; 10497 10498 mutex_lock(&mux_interval_mutex); 10499 pmu->hrtimer_interval_ms = timer; 10500 10501 /* update all cpuctx for this PMU */ 10502 cpus_read_lock(); 10503 for_each_online_cpu(cpu) { 10504 struct perf_cpu_context *cpuctx; 10505 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10506 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10507 10508 cpu_function_call(cpu, 10509 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10510 } 10511 cpus_read_unlock(); 10512 mutex_unlock(&mux_interval_mutex); 10513 10514 return count; 10515 } 10516 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10517 10518 static struct attribute *pmu_dev_attrs[] = { 10519 &dev_attr_type.attr, 10520 &dev_attr_perf_event_mux_interval_ms.attr, 10521 NULL, 10522 }; 10523 ATTRIBUTE_GROUPS(pmu_dev); 10524 10525 static int pmu_bus_running; 10526 static struct bus_type pmu_bus = { 10527 .name = "event_source", 10528 .dev_groups = pmu_dev_groups, 10529 }; 10530 10531 static void pmu_dev_release(struct device *dev) 10532 { 10533 kfree(dev); 10534 } 10535 10536 static int pmu_dev_alloc(struct pmu *pmu) 10537 { 10538 int ret = -ENOMEM; 10539 10540 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10541 if (!pmu->dev) 10542 goto out; 10543 10544 pmu->dev->groups = pmu->attr_groups; 10545 device_initialize(pmu->dev); 10546 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10547 if (ret) 10548 goto free_dev; 10549 10550 dev_set_drvdata(pmu->dev, pmu); 10551 pmu->dev->bus = &pmu_bus; 10552 pmu->dev->release = pmu_dev_release; 10553 ret = device_add(pmu->dev); 10554 if (ret) 10555 goto free_dev; 10556 10557 /* For PMUs with address filters, throw in an extra attribute: */ 10558 if (pmu->nr_addr_filters) 10559 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10560 10561 if (ret) 10562 goto del_dev; 10563 10564 if (pmu->attr_update) 10565 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10566 10567 if (ret) 10568 goto del_dev; 10569 10570 out: 10571 return ret; 10572 10573 del_dev: 10574 device_del(pmu->dev); 10575 10576 free_dev: 10577 put_device(pmu->dev); 10578 goto out; 10579 } 10580 10581 static struct lock_class_key cpuctx_mutex; 10582 static struct lock_class_key cpuctx_lock; 10583 10584 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10585 { 10586 int cpu, ret, max = PERF_TYPE_MAX; 10587 10588 mutex_lock(&pmus_lock); 10589 ret = -ENOMEM; 10590 pmu->pmu_disable_count = alloc_percpu(int); 10591 if (!pmu->pmu_disable_count) 10592 goto unlock; 10593 10594 pmu->type = -1; 10595 if (!name) 10596 goto skip_type; 10597 pmu->name = name; 10598 10599 if (type != PERF_TYPE_SOFTWARE) { 10600 if (type >= 0) 10601 max = type; 10602 10603 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10604 if (ret < 0) 10605 goto free_pdc; 10606 10607 WARN_ON(type >= 0 && ret != type); 10608 10609 type = ret; 10610 } 10611 pmu->type = type; 10612 10613 if (pmu_bus_running) { 10614 ret = pmu_dev_alloc(pmu); 10615 if (ret) 10616 goto free_idr; 10617 } 10618 10619 skip_type: 10620 if (pmu->task_ctx_nr == perf_hw_context) { 10621 static int hw_context_taken = 0; 10622 10623 /* 10624 * Other than systems with heterogeneous CPUs, it never makes 10625 * sense for two PMUs to share perf_hw_context. PMUs which are 10626 * uncore must use perf_invalid_context. 10627 */ 10628 if (WARN_ON_ONCE(hw_context_taken && 10629 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10630 pmu->task_ctx_nr = perf_invalid_context; 10631 10632 hw_context_taken = 1; 10633 } 10634 10635 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10636 if (pmu->pmu_cpu_context) 10637 goto got_cpu_context; 10638 10639 ret = -ENOMEM; 10640 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10641 if (!pmu->pmu_cpu_context) 10642 goto free_dev; 10643 10644 for_each_possible_cpu(cpu) { 10645 struct perf_cpu_context *cpuctx; 10646 10647 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10648 __perf_event_init_context(&cpuctx->ctx); 10649 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10650 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10651 cpuctx->ctx.pmu = pmu; 10652 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10653 10654 __perf_mux_hrtimer_init(cpuctx, cpu); 10655 10656 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10657 cpuctx->heap = cpuctx->heap_default; 10658 } 10659 10660 got_cpu_context: 10661 if (!pmu->start_txn) { 10662 if (pmu->pmu_enable) { 10663 /* 10664 * If we have pmu_enable/pmu_disable calls, install 10665 * transaction stubs that use that to try and batch 10666 * hardware accesses. 10667 */ 10668 pmu->start_txn = perf_pmu_start_txn; 10669 pmu->commit_txn = perf_pmu_commit_txn; 10670 pmu->cancel_txn = perf_pmu_cancel_txn; 10671 } else { 10672 pmu->start_txn = perf_pmu_nop_txn; 10673 pmu->commit_txn = perf_pmu_nop_int; 10674 pmu->cancel_txn = perf_pmu_nop_void; 10675 } 10676 } 10677 10678 if (!pmu->pmu_enable) { 10679 pmu->pmu_enable = perf_pmu_nop_void; 10680 pmu->pmu_disable = perf_pmu_nop_void; 10681 } 10682 10683 if (!pmu->check_period) 10684 pmu->check_period = perf_event_nop_int; 10685 10686 if (!pmu->event_idx) 10687 pmu->event_idx = perf_event_idx_default; 10688 10689 /* 10690 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10691 * since these cannot be in the IDR. This way the linear search 10692 * is fast, provided a valid software event is provided. 10693 */ 10694 if (type == PERF_TYPE_SOFTWARE || !name) 10695 list_add_rcu(&pmu->entry, &pmus); 10696 else 10697 list_add_tail_rcu(&pmu->entry, &pmus); 10698 10699 atomic_set(&pmu->exclusive_cnt, 0); 10700 ret = 0; 10701 unlock: 10702 mutex_unlock(&pmus_lock); 10703 10704 return ret; 10705 10706 free_dev: 10707 device_del(pmu->dev); 10708 put_device(pmu->dev); 10709 10710 free_idr: 10711 if (pmu->type != PERF_TYPE_SOFTWARE) 10712 idr_remove(&pmu_idr, pmu->type); 10713 10714 free_pdc: 10715 free_percpu(pmu->pmu_disable_count); 10716 goto unlock; 10717 } 10718 EXPORT_SYMBOL_GPL(perf_pmu_register); 10719 10720 void perf_pmu_unregister(struct pmu *pmu) 10721 { 10722 mutex_lock(&pmus_lock); 10723 list_del_rcu(&pmu->entry); 10724 10725 /* 10726 * We dereference the pmu list under both SRCU and regular RCU, so 10727 * synchronize against both of those. 10728 */ 10729 synchronize_srcu(&pmus_srcu); 10730 synchronize_rcu(); 10731 10732 free_percpu(pmu->pmu_disable_count); 10733 if (pmu->type != PERF_TYPE_SOFTWARE) 10734 idr_remove(&pmu_idr, pmu->type); 10735 if (pmu_bus_running) { 10736 if (pmu->nr_addr_filters) 10737 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10738 device_del(pmu->dev); 10739 put_device(pmu->dev); 10740 } 10741 free_pmu_context(pmu); 10742 mutex_unlock(&pmus_lock); 10743 } 10744 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10745 10746 static inline bool has_extended_regs(struct perf_event *event) 10747 { 10748 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10749 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10750 } 10751 10752 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10753 { 10754 struct perf_event_context *ctx = NULL; 10755 int ret; 10756 10757 if (!try_module_get(pmu->module)) 10758 return -ENODEV; 10759 10760 /* 10761 * A number of pmu->event_init() methods iterate the sibling_list to, 10762 * for example, validate if the group fits on the PMU. Therefore, 10763 * if this is a sibling event, acquire the ctx->mutex to protect 10764 * the sibling_list. 10765 */ 10766 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10767 /* 10768 * This ctx->mutex can nest when we're called through 10769 * inheritance. See the perf_event_ctx_lock_nested() comment. 10770 */ 10771 ctx = perf_event_ctx_lock_nested(event->group_leader, 10772 SINGLE_DEPTH_NESTING); 10773 BUG_ON(!ctx); 10774 } 10775 10776 event->pmu = pmu; 10777 ret = pmu->event_init(event); 10778 10779 if (ctx) 10780 perf_event_ctx_unlock(event->group_leader, ctx); 10781 10782 if (!ret) { 10783 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10784 has_extended_regs(event)) 10785 ret = -EOPNOTSUPP; 10786 10787 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10788 event_has_any_exclude_flag(event)) 10789 ret = -EINVAL; 10790 10791 if (ret && event->destroy) 10792 event->destroy(event); 10793 } 10794 10795 if (ret) 10796 module_put(pmu->module); 10797 10798 return ret; 10799 } 10800 10801 static struct pmu *perf_init_event(struct perf_event *event) 10802 { 10803 int idx, type, ret; 10804 struct pmu *pmu; 10805 10806 idx = srcu_read_lock(&pmus_srcu); 10807 10808 /* Try parent's PMU first: */ 10809 if (event->parent && event->parent->pmu) { 10810 pmu = event->parent->pmu; 10811 ret = perf_try_init_event(pmu, event); 10812 if (!ret) 10813 goto unlock; 10814 } 10815 10816 /* 10817 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10818 * are often aliases for PERF_TYPE_RAW. 10819 */ 10820 type = event->attr.type; 10821 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10822 type = PERF_TYPE_RAW; 10823 10824 again: 10825 rcu_read_lock(); 10826 pmu = idr_find(&pmu_idr, type); 10827 rcu_read_unlock(); 10828 if (pmu) { 10829 ret = perf_try_init_event(pmu, event); 10830 if (ret == -ENOENT && event->attr.type != type) { 10831 type = event->attr.type; 10832 goto again; 10833 } 10834 10835 if (ret) 10836 pmu = ERR_PTR(ret); 10837 10838 goto unlock; 10839 } 10840 10841 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10842 ret = perf_try_init_event(pmu, event); 10843 if (!ret) 10844 goto unlock; 10845 10846 if (ret != -ENOENT) { 10847 pmu = ERR_PTR(ret); 10848 goto unlock; 10849 } 10850 } 10851 pmu = ERR_PTR(-ENOENT); 10852 unlock: 10853 srcu_read_unlock(&pmus_srcu, idx); 10854 10855 return pmu; 10856 } 10857 10858 static void attach_sb_event(struct perf_event *event) 10859 { 10860 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10861 10862 raw_spin_lock(&pel->lock); 10863 list_add_rcu(&event->sb_list, &pel->list); 10864 raw_spin_unlock(&pel->lock); 10865 } 10866 10867 /* 10868 * We keep a list of all !task (and therefore per-cpu) events 10869 * that need to receive side-band records. 10870 * 10871 * This avoids having to scan all the various PMU per-cpu contexts 10872 * looking for them. 10873 */ 10874 static void account_pmu_sb_event(struct perf_event *event) 10875 { 10876 if (is_sb_event(event)) 10877 attach_sb_event(event); 10878 } 10879 10880 static void account_event_cpu(struct perf_event *event, int cpu) 10881 { 10882 if (event->parent) 10883 return; 10884 10885 if (is_cgroup_event(event)) 10886 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10887 } 10888 10889 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10890 static void account_freq_event_nohz(void) 10891 { 10892 #ifdef CONFIG_NO_HZ_FULL 10893 /* Lock so we don't race with concurrent unaccount */ 10894 spin_lock(&nr_freq_lock); 10895 if (atomic_inc_return(&nr_freq_events) == 1) 10896 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10897 spin_unlock(&nr_freq_lock); 10898 #endif 10899 } 10900 10901 static void account_freq_event(void) 10902 { 10903 if (tick_nohz_full_enabled()) 10904 account_freq_event_nohz(); 10905 else 10906 atomic_inc(&nr_freq_events); 10907 } 10908 10909 10910 static void account_event(struct perf_event *event) 10911 { 10912 bool inc = false; 10913 10914 if (event->parent) 10915 return; 10916 10917 if (event->attach_state & PERF_ATTACH_TASK) 10918 inc = true; 10919 if (event->attr.mmap || event->attr.mmap_data) 10920 atomic_inc(&nr_mmap_events); 10921 if (event->attr.comm) 10922 atomic_inc(&nr_comm_events); 10923 if (event->attr.namespaces) 10924 atomic_inc(&nr_namespaces_events); 10925 if (event->attr.cgroup) 10926 atomic_inc(&nr_cgroup_events); 10927 if (event->attr.task) 10928 atomic_inc(&nr_task_events); 10929 if (event->attr.freq) 10930 account_freq_event(); 10931 if (event->attr.context_switch) { 10932 atomic_inc(&nr_switch_events); 10933 inc = true; 10934 } 10935 if (has_branch_stack(event)) 10936 inc = true; 10937 if (is_cgroup_event(event)) 10938 inc = true; 10939 if (event->attr.ksymbol) 10940 atomic_inc(&nr_ksymbol_events); 10941 if (event->attr.bpf_event) 10942 atomic_inc(&nr_bpf_events); 10943 10944 if (inc) { 10945 /* 10946 * We need the mutex here because static_branch_enable() 10947 * must complete *before* the perf_sched_count increment 10948 * becomes visible. 10949 */ 10950 if (atomic_inc_not_zero(&perf_sched_count)) 10951 goto enabled; 10952 10953 mutex_lock(&perf_sched_mutex); 10954 if (!atomic_read(&perf_sched_count)) { 10955 static_branch_enable(&perf_sched_events); 10956 /* 10957 * Guarantee that all CPUs observe they key change and 10958 * call the perf scheduling hooks before proceeding to 10959 * install events that need them. 10960 */ 10961 synchronize_rcu(); 10962 } 10963 /* 10964 * Now that we have waited for the sync_sched(), allow further 10965 * increments to by-pass the mutex. 10966 */ 10967 atomic_inc(&perf_sched_count); 10968 mutex_unlock(&perf_sched_mutex); 10969 } 10970 enabled: 10971 10972 account_event_cpu(event, event->cpu); 10973 10974 account_pmu_sb_event(event); 10975 } 10976 10977 /* 10978 * Allocate and initialize an event structure 10979 */ 10980 static struct perf_event * 10981 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10982 struct task_struct *task, 10983 struct perf_event *group_leader, 10984 struct perf_event *parent_event, 10985 perf_overflow_handler_t overflow_handler, 10986 void *context, int cgroup_fd) 10987 { 10988 struct pmu *pmu; 10989 struct perf_event *event; 10990 struct hw_perf_event *hwc; 10991 long err = -EINVAL; 10992 10993 if ((unsigned)cpu >= nr_cpu_ids) { 10994 if (!task || cpu != -1) 10995 return ERR_PTR(-EINVAL); 10996 } 10997 10998 event = kzalloc(sizeof(*event), GFP_KERNEL); 10999 if (!event) 11000 return ERR_PTR(-ENOMEM); 11001 11002 /* 11003 * Single events are their own group leaders, with an 11004 * empty sibling list: 11005 */ 11006 if (!group_leader) 11007 group_leader = event; 11008 11009 mutex_init(&event->child_mutex); 11010 INIT_LIST_HEAD(&event->child_list); 11011 11012 INIT_LIST_HEAD(&event->event_entry); 11013 INIT_LIST_HEAD(&event->sibling_list); 11014 INIT_LIST_HEAD(&event->active_list); 11015 init_event_group(event); 11016 INIT_LIST_HEAD(&event->rb_entry); 11017 INIT_LIST_HEAD(&event->active_entry); 11018 INIT_LIST_HEAD(&event->addr_filters.list); 11019 INIT_HLIST_NODE(&event->hlist_entry); 11020 11021 11022 init_waitqueue_head(&event->waitq); 11023 event->pending_disable = -1; 11024 init_irq_work(&event->pending, perf_pending_event); 11025 11026 mutex_init(&event->mmap_mutex); 11027 raw_spin_lock_init(&event->addr_filters.lock); 11028 11029 atomic_long_set(&event->refcount, 1); 11030 event->cpu = cpu; 11031 event->attr = *attr; 11032 event->group_leader = group_leader; 11033 event->pmu = NULL; 11034 event->oncpu = -1; 11035 11036 event->parent = parent_event; 11037 11038 event->ns = get_pid_ns(task_active_pid_ns(current)); 11039 event->id = atomic64_inc_return(&perf_event_id); 11040 11041 event->state = PERF_EVENT_STATE_INACTIVE; 11042 11043 if (task) { 11044 event->attach_state = PERF_ATTACH_TASK; 11045 /* 11046 * XXX pmu::event_init needs to know what task to account to 11047 * and we cannot use the ctx information because we need the 11048 * pmu before we get a ctx. 11049 */ 11050 event->hw.target = get_task_struct(task); 11051 } 11052 11053 event->clock = &local_clock; 11054 if (parent_event) 11055 event->clock = parent_event->clock; 11056 11057 if (!overflow_handler && parent_event) { 11058 overflow_handler = parent_event->overflow_handler; 11059 context = parent_event->overflow_handler_context; 11060 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11061 if (overflow_handler == bpf_overflow_handler) { 11062 struct bpf_prog *prog = parent_event->prog; 11063 11064 bpf_prog_inc(prog); 11065 event->prog = prog; 11066 event->orig_overflow_handler = 11067 parent_event->orig_overflow_handler; 11068 } 11069 #endif 11070 } 11071 11072 if (overflow_handler) { 11073 event->overflow_handler = overflow_handler; 11074 event->overflow_handler_context = context; 11075 } else if (is_write_backward(event)){ 11076 event->overflow_handler = perf_event_output_backward; 11077 event->overflow_handler_context = NULL; 11078 } else { 11079 event->overflow_handler = perf_event_output_forward; 11080 event->overflow_handler_context = NULL; 11081 } 11082 11083 perf_event__state_init(event); 11084 11085 pmu = NULL; 11086 11087 hwc = &event->hw; 11088 hwc->sample_period = attr->sample_period; 11089 if (attr->freq && attr->sample_freq) 11090 hwc->sample_period = 1; 11091 hwc->last_period = hwc->sample_period; 11092 11093 local64_set(&hwc->period_left, hwc->sample_period); 11094 11095 /* 11096 * We currently do not support PERF_SAMPLE_READ on inherited events. 11097 * See perf_output_read(). 11098 */ 11099 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11100 goto err_ns; 11101 11102 if (!has_branch_stack(event)) 11103 event->attr.branch_sample_type = 0; 11104 11105 pmu = perf_init_event(event); 11106 if (IS_ERR(pmu)) { 11107 err = PTR_ERR(pmu); 11108 goto err_ns; 11109 } 11110 11111 /* 11112 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11113 * be different on other CPUs in the uncore mask. 11114 */ 11115 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11116 err = -EINVAL; 11117 goto err_pmu; 11118 } 11119 11120 if (event->attr.aux_output && 11121 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11122 err = -EOPNOTSUPP; 11123 goto err_pmu; 11124 } 11125 11126 if (cgroup_fd != -1) { 11127 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11128 if (err) 11129 goto err_pmu; 11130 } 11131 11132 err = exclusive_event_init(event); 11133 if (err) 11134 goto err_pmu; 11135 11136 if (has_addr_filter(event)) { 11137 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11138 sizeof(struct perf_addr_filter_range), 11139 GFP_KERNEL); 11140 if (!event->addr_filter_ranges) { 11141 err = -ENOMEM; 11142 goto err_per_task; 11143 } 11144 11145 /* 11146 * Clone the parent's vma offsets: they are valid until exec() 11147 * even if the mm is not shared with the parent. 11148 */ 11149 if (event->parent) { 11150 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11151 11152 raw_spin_lock_irq(&ifh->lock); 11153 memcpy(event->addr_filter_ranges, 11154 event->parent->addr_filter_ranges, 11155 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11156 raw_spin_unlock_irq(&ifh->lock); 11157 } 11158 11159 /* force hw sync on the address filters */ 11160 event->addr_filters_gen = 1; 11161 } 11162 11163 if (!event->parent) { 11164 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11165 err = get_callchain_buffers(attr->sample_max_stack); 11166 if (err) 11167 goto err_addr_filters; 11168 } 11169 } 11170 11171 err = security_perf_event_alloc(event); 11172 if (err) 11173 goto err_callchain_buffer; 11174 11175 /* symmetric to unaccount_event() in _free_event() */ 11176 account_event(event); 11177 11178 return event; 11179 11180 err_callchain_buffer: 11181 if (!event->parent) { 11182 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11183 put_callchain_buffers(); 11184 } 11185 err_addr_filters: 11186 kfree(event->addr_filter_ranges); 11187 11188 err_per_task: 11189 exclusive_event_destroy(event); 11190 11191 err_pmu: 11192 if (is_cgroup_event(event)) 11193 perf_detach_cgroup(event); 11194 if (event->destroy) 11195 event->destroy(event); 11196 module_put(pmu->module); 11197 err_ns: 11198 if (event->ns) 11199 put_pid_ns(event->ns); 11200 if (event->hw.target) 11201 put_task_struct(event->hw.target); 11202 kfree(event); 11203 11204 return ERR_PTR(err); 11205 } 11206 11207 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11208 struct perf_event_attr *attr) 11209 { 11210 u32 size; 11211 int ret; 11212 11213 /* Zero the full structure, so that a short copy will be nice. */ 11214 memset(attr, 0, sizeof(*attr)); 11215 11216 ret = get_user(size, &uattr->size); 11217 if (ret) 11218 return ret; 11219 11220 /* ABI compatibility quirk: */ 11221 if (!size) 11222 size = PERF_ATTR_SIZE_VER0; 11223 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11224 goto err_size; 11225 11226 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11227 if (ret) { 11228 if (ret == -E2BIG) 11229 goto err_size; 11230 return ret; 11231 } 11232 11233 attr->size = size; 11234 11235 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11236 return -EINVAL; 11237 11238 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11239 return -EINVAL; 11240 11241 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11242 return -EINVAL; 11243 11244 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11245 u64 mask = attr->branch_sample_type; 11246 11247 /* only using defined bits */ 11248 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11249 return -EINVAL; 11250 11251 /* at least one branch bit must be set */ 11252 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11253 return -EINVAL; 11254 11255 /* propagate priv level, when not set for branch */ 11256 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11257 11258 /* exclude_kernel checked on syscall entry */ 11259 if (!attr->exclude_kernel) 11260 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11261 11262 if (!attr->exclude_user) 11263 mask |= PERF_SAMPLE_BRANCH_USER; 11264 11265 if (!attr->exclude_hv) 11266 mask |= PERF_SAMPLE_BRANCH_HV; 11267 /* 11268 * adjust user setting (for HW filter setup) 11269 */ 11270 attr->branch_sample_type = mask; 11271 } 11272 /* privileged levels capture (kernel, hv): check permissions */ 11273 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11274 ret = perf_allow_kernel(attr); 11275 if (ret) 11276 return ret; 11277 } 11278 } 11279 11280 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11281 ret = perf_reg_validate(attr->sample_regs_user); 11282 if (ret) 11283 return ret; 11284 } 11285 11286 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11287 if (!arch_perf_have_user_stack_dump()) 11288 return -ENOSYS; 11289 11290 /* 11291 * We have __u32 type for the size, but so far 11292 * we can only use __u16 as maximum due to the 11293 * __u16 sample size limit. 11294 */ 11295 if (attr->sample_stack_user >= USHRT_MAX) 11296 return -EINVAL; 11297 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11298 return -EINVAL; 11299 } 11300 11301 if (!attr->sample_max_stack) 11302 attr->sample_max_stack = sysctl_perf_event_max_stack; 11303 11304 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11305 ret = perf_reg_validate(attr->sample_regs_intr); 11306 11307 #ifndef CONFIG_CGROUP_PERF 11308 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11309 return -EINVAL; 11310 #endif 11311 11312 out: 11313 return ret; 11314 11315 err_size: 11316 put_user(sizeof(*attr), &uattr->size); 11317 ret = -E2BIG; 11318 goto out; 11319 } 11320 11321 static int 11322 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11323 { 11324 struct perf_buffer *rb = NULL; 11325 int ret = -EINVAL; 11326 11327 if (!output_event) 11328 goto set; 11329 11330 /* don't allow circular references */ 11331 if (event == output_event) 11332 goto out; 11333 11334 /* 11335 * Don't allow cross-cpu buffers 11336 */ 11337 if (output_event->cpu != event->cpu) 11338 goto out; 11339 11340 /* 11341 * If its not a per-cpu rb, it must be the same task. 11342 */ 11343 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11344 goto out; 11345 11346 /* 11347 * Mixing clocks in the same buffer is trouble you don't need. 11348 */ 11349 if (output_event->clock != event->clock) 11350 goto out; 11351 11352 /* 11353 * Either writing ring buffer from beginning or from end. 11354 * Mixing is not allowed. 11355 */ 11356 if (is_write_backward(output_event) != is_write_backward(event)) 11357 goto out; 11358 11359 /* 11360 * If both events generate aux data, they must be on the same PMU 11361 */ 11362 if (has_aux(event) && has_aux(output_event) && 11363 event->pmu != output_event->pmu) 11364 goto out; 11365 11366 set: 11367 mutex_lock(&event->mmap_mutex); 11368 /* Can't redirect output if we've got an active mmap() */ 11369 if (atomic_read(&event->mmap_count)) 11370 goto unlock; 11371 11372 if (output_event) { 11373 /* get the rb we want to redirect to */ 11374 rb = ring_buffer_get(output_event); 11375 if (!rb) 11376 goto unlock; 11377 } 11378 11379 ring_buffer_attach(event, rb); 11380 11381 ret = 0; 11382 unlock: 11383 mutex_unlock(&event->mmap_mutex); 11384 11385 out: 11386 return ret; 11387 } 11388 11389 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11390 { 11391 if (b < a) 11392 swap(a, b); 11393 11394 mutex_lock(a); 11395 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11396 } 11397 11398 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11399 { 11400 bool nmi_safe = false; 11401 11402 switch (clk_id) { 11403 case CLOCK_MONOTONIC: 11404 event->clock = &ktime_get_mono_fast_ns; 11405 nmi_safe = true; 11406 break; 11407 11408 case CLOCK_MONOTONIC_RAW: 11409 event->clock = &ktime_get_raw_fast_ns; 11410 nmi_safe = true; 11411 break; 11412 11413 case CLOCK_REALTIME: 11414 event->clock = &ktime_get_real_ns; 11415 break; 11416 11417 case CLOCK_BOOTTIME: 11418 event->clock = &ktime_get_boottime_ns; 11419 break; 11420 11421 case CLOCK_TAI: 11422 event->clock = &ktime_get_clocktai_ns; 11423 break; 11424 11425 default: 11426 return -EINVAL; 11427 } 11428 11429 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11430 return -EINVAL; 11431 11432 return 0; 11433 } 11434 11435 /* 11436 * Variation on perf_event_ctx_lock_nested(), except we take two context 11437 * mutexes. 11438 */ 11439 static struct perf_event_context * 11440 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11441 struct perf_event_context *ctx) 11442 { 11443 struct perf_event_context *gctx; 11444 11445 again: 11446 rcu_read_lock(); 11447 gctx = READ_ONCE(group_leader->ctx); 11448 if (!refcount_inc_not_zero(&gctx->refcount)) { 11449 rcu_read_unlock(); 11450 goto again; 11451 } 11452 rcu_read_unlock(); 11453 11454 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11455 11456 if (group_leader->ctx != gctx) { 11457 mutex_unlock(&ctx->mutex); 11458 mutex_unlock(&gctx->mutex); 11459 put_ctx(gctx); 11460 goto again; 11461 } 11462 11463 return gctx; 11464 } 11465 11466 /** 11467 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11468 * 11469 * @attr_uptr: event_id type attributes for monitoring/sampling 11470 * @pid: target pid 11471 * @cpu: target cpu 11472 * @group_fd: group leader event fd 11473 */ 11474 SYSCALL_DEFINE5(perf_event_open, 11475 struct perf_event_attr __user *, attr_uptr, 11476 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11477 { 11478 struct perf_event *group_leader = NULL, *output_event = NULL; 11479 struct perf_event *event, *sibling; 11480 struct perf_event_attr attr; 11481 struct perf_event_context *ctx, *uninitialized_var(gctx); 11482 struct file *event_file = NULL; 11483 struct fd group = {NULL, 0}; 11484 struct task_struct *task = NULL; 11485 struct pmu *pmu; 11486 int event_fd; 11487 int move_group = 0; 11488 int err; 11489 int f_flags = O_RDWR; 11490 int cgroup_fd = -1; 11491 11492 /* for future expandability... */ 11493 if (flags & ~PERF_FLAG_ALL) 11494 return -EINVAL; 11495 11496 /* Do we allow access to perf_event_open(2) ? */ 11497 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11498 if (err) 11499 return err; 11500 11501 err = perf_copy_attr(attr_uptr, &attr); 11502 if (err) 11503 return err; 11504 11505 if (!attr.exclude_kernel) { 11506 err = perf_allow_kernel(&attr); 11507 if (err) 11508 return err; 11509 } 11510 11511 if (attr.namespaces) { 11512 if (!capable(CAP_SYS_ADMIN)) 11513 return -EACCES; 11514 } 11515 11516 if (attr.freq) { 11517 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11518 return -EINVAL; 11519 } else { 11520 if (attr.sample_period & (1ULL << 63)) 11521 return -EINVAL; 11522 } 11523 11524 /* Only privileged users can get physical addresses */ 11525 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11526 err = perf_allow_kernel(&attr); 11527 if (err) 11528 return err; 11529 } 11530 11531 err = security_locked_down(LOCKDOWN_PERF); 11532 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11533 /* REGS_INTR can leak data, lockdown must prevent this */ 11534 return err; 11535 11536 err = 0; 11537 11538 /* 11539 * In cgroup mode, the pid argument is used to pass the fd 11540 * opened to the cgroup directory in cgroupfs. The cpu argument 11541 * designates the cpu on which to monitor threads from that 11542 * cgroup. 11543 */ 11544 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11545 return -EINVAL; 11546 11547 if (flags & PERF_FLAG_FD_CLOEXEC) 11548 f_flags |= O_CLOEXEC; 11549 11550 event_fd = get_unused_fd_flags(f_flags); 11551 if (event_fd < 0) 11552 return event_fd; 11553 11554 if (group_fd != -1) { 11555 err = perf_fget_light(group_fd, &group); 11556 if (err) 11557 goto err_fd; 11558 group_leader = group.file->private_data; 11559 if (flags & PERF_FLAG_FD_OUTPUT) 11560 output_event = group_leader; 11561 if (flags & PERF_FLAG_FD_NO_GROUP) 11562 group_leader = NULL; 11563 } 11564 11565 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11566 task = find_lively_task_by_vpid(pid); 11567 if (IS_ERR(task)) { 11568 err = PTR_ERR(task); 11569 goto err_group_fd; 11570 } 11571 } 11572 11573 if (task && group_leader && 11574 group_leader->attr.inherit != attr.inherit) { 11575 err = -EINVAL; 11576 goto err_task; 11577 } 11578 11579 if (task) { 11580 err = mutex_lock_interruptible(&task->signal->exec_update_mutex); 11581 if (err) 11582 goto err_task; 11583 11584 /* 11585 * Reuse ptrace permission checks for now. 11586 * 11587 * We must hold exec_update_mutex across this and any potential 11588 * perf_install_in_context() call for this new event to 11589 * serialize against exec() altering our credentials (and the 11590 * perf_event_exit_task() that could imply). 11591 */ 11592 err = -EACCES; 11593 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11594 goto err_cred; 11595 } 11596 11597 if (flags & PERF_FLAG_PID_CGROUP) 11598 cgroup_fd = pid; 11599 11600 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11601 NULL, NULL, cgroup_fd); 11602 if (IS_ERR(event)) { 11603 err = PTR_ERR(event); 11604 goto err_cred; 11605 } 11606 11607 if (is_sampling_event(event)) { 11608 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11609 err = -EOPNOTSUPP; 11610 goto err_alloc; 11611 } 11612 } 11613 11614 /* 11615 * Special case software events and allow them to be part of 11616 * any hardware group. 11617 */ 11618 pmu = event->pmu; 11619 11620 if (attr.use_clockid) { 11621 err = perf_event_set_clock(event, attr.clockid); 11622 if (err) 11623 goto err_alloc; 11624 } 11625 11626 if (pmu->task_ctx_nr == perf_sw_context) 11627 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11628 11629 if (group_leader) { 11630 if (is_software_event(event) && 11631 !in_software_context(group_leader)) { 11632 /* 11633 * If the event is a sw event, but the group_leader 11634 * is on hw context. 11635 * 11636 * Allow the addition of software events to hw 11637 * groups, this is safe because software events 11638 * never fail to schedule. 11639 */ 11640 pmu = group_leader->ctx->pmu; 11641 } else if (!is_software_event(event) && 11642 is_software_event(group_leader) && 11643 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11644 /* 11645 * In case the group is a pure software group, and we 11646 * try to add a hardware event, move the whole group to 11647 * the hardware context. 11648 */ 11649 move_group = 1; 11650 } 11651 } 11652 11653 /* 11654 * Get the target context (task or percpu): 11655 */ 11656 ctx = find_get_context(pmu, task, event); 11657 if (IS_ERR(ctx)) { 11658 err = PTR_ERR(ctx); 11659 goto err_alloc; 11660 } 11661 11662 /* 11663 * Look up the group leader (we will attach this event to it): 11664 */ 11665 if (group_leader) { 11666 err = -EINVAL; 11667 11668 /* 11669 * Do not allow a recursive hierarchy (this new sibling 11670 * becoming part of another group-sibling): 11671 */ 11672 if (group_leader->group_leader != group_leader) 11673 goto err_context; 11674 11675 /* All events in a group should have the same clock */ 11676 if (group_leader->clock != event->clock) 11677 goto err_context; 11678 11679 /* 11680 * Make sure we're both events for the same CPU; 11681 * grouping events for different CPUs is broken; since 11682 * you can never concurrently schedule them anyhow. 11683 */ 11684 if (group_leader->cpu != event->cpu) 11685 goto err_context; 11686 11687 /* 11688 * Make sure we're both on the same task, or both 11689 * per-CPU events. 11690 */ 11691 if (group_leader->ctx->task != ctx->task) 11692 goto err_context; 11693 11694 /* 11695 * Do not allow to attach to a group in a different task 11696 * or CPU context. If we're moving SW events, we'll fix 11697 * this up later, so allow that. 11698 */ 11699 if (!move_group && group_leader->ctx != ctx) 11700 goto err_context; 11701 11702 /* 11703 * Only a group leader can be exclusive or pinned 11704 */ 11705 if (attr.exclusive || attr.pinned) 11706 goto err_context; 11707 } 11708 11709 if (output_event) { 11710 err = perf_event_set_output(event, output_event); 11711 if (err) 11712 goto err_context; 11713 } 11714 11715 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11716 f_flags); 11717 if (IS_ERR(event_file)) { 11718 err = PTR_ERR(event_file); 11719 event_file = NULL; 11720 goto err_context; 11721 } 11722 11723 if (move_group) { 11724 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11725 11726 if (gctx->task == TASK_TOMBSTONE) { 11727 err = -ESRCH; 11728 goto err_locked; 11729 } 11730 11731 /* 11732 * Check if we raced against another sys_perf_event_open() call 11733 * moving the software group underneath us. 11734 */ 11735 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11736 /* 11737 * If someone moved the group out from under us, check 11738 * if this new event wound up on the same ctx, if so 11739 * its the regular !move_group case, otherwise fail. 11740 */ 11741 if (gctx != ctx) { 11742 err = -EINVAL; 11743 goto err_locked; 11744 } else { 11745 perf_event_ctx_unlock(group_leader, gctx); 11746 move_group = 0; 11747 } 11748 } 11749 11750 /* 11751 * Failure to create exclusive events returns -EBUSY. 11752 */ 11753 err = -EBUSY; 11754 if (!exclusive_event_installable(group_leader, ctx)) 11755 goto err_locked; 11756 11757 for_each_sibling_event(sibling, group_leader) { 11758 if (!exclusive_event_installable(sibling, ctx)) 11759 goto err_locked; 11760 } 11761 } else { 11762 mutex_lock(&ctx->mutex); 11763 } 11764 11765 if (ctx->task == TASK_TOMBSTONE) { 11766 err = -ESRCH; 11767 goto err_locked; 11768 } 11769 11770 if (!perf_event_validate_size(event)) { 11771 err = -E2BIG; 11772 goto err_locked; 11773 } 11774 11775 if (!task) { 11776 /* 11777 * Check if the @cpu we're creating an event for is online. 11778 * 11779 * We use the perf_cpu_context::ctx::mutex to serialize against 11780 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11781 */ 11782 struct perf_cpu_context *cpuctx = 11783 container_of(ctx, struct perf_cpu_context, ctx); 11784 11785 if (!cpuctx->online) { 11786 err = -ENODEV; 11787 goto err_locked; 11788 } 11789 } 11790 11791 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11792 err = -EINVAL; 11793 goto err_locked; 11794 } 11795 11796 /* 11797 * Must be under the same ctx::mutex as perf_install_in_context(), 11798 * because we need to serialize with concurrent event creation. 11799 */ 11800 if (!exclusive_event_installable(event, ctx)) { 11801 err = -EBUSY; 11802 goto err_locked; 11803 } 11804 11805 WARN_ON_ONCE(ctx->parent_ctx); 11806 11807 /* 11808 * This is the point on no return; we cannot fail hereafter. This is 11809 * where we start modifying current state. 11810 */ 11811 11812 if (move_group) { 11813 /* 11814 * See perf_event_ctx_lock() for comments on the details 11815 * of swizzling perf_event::ctx. 11816 */ 11817 perf_remove_from_context(group_leader, 0); 11818 put_ctx(gctx); 11819 11820 for_each_sibling_event(sibling, group_leader) { 11821 perf_remove_from_context(sibling, 0); 11822 put_ctx(gctx); 11823 } 11824 11825 /* 11826 * Wait for everybody to stop referencing the events through 11827 * the old lists, before installing it on new lists. 11828 */ 11829 synchronize_rcu(); 11830 11831 /* 11832 * Install the group siblings before the group leader. 11833 * 11834 * Because a group leader will try and install the entire group 11835 * (through the sibling list, which is still in-tact), we can 11836 * end up with siblings installed in the wrong context. 11837 * 11838 * By installing siblings first we NO-OP because they're not 11839 * reachable through the group lists. 11840 */ 11841 for_each_sibling_event(sibling, group_leader) { 11842 perf_event__state_init(sibling); 11843 perf_install_in_context(ctx, sibling, sibling->cpu); 11844 get_ctx(ctx); 11845 } 11846 11847 /* 11848 * Removing from the context ends up with disabled 11849 * event. What we want here is event in the initial 11850 * startup state, ready to be add into new context. 11851 */ 11852 perf_event__state_init(group_leader); 11853 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11854 get_ctx(ctx); 11855 } 11856 11857 /* 11858 * Precalculate sample_data sizes; do while holding ctx::mutex such 11859 * that we're serialized against further additions and before 11860 * perf_install_in_context() which is the point the event is active and 11861 * can use these values. 11862 */ 11863 perf_event__header_size(event); 11864 perf_event__id_header_size(event); 11865 11866 event->owner = current; 11867 11868 perf_install_in_context(ctx, event, event->cpu); 11869 perf_unpin_context(ctx); 11870 11871 if (move_group) 11872 perf_event_ctx_unlock(group_leader, gctx); 11873 mutex_unlock(&ctx->mutex); 11874 11875 if (task) { 11876 mutex_unlock(&task->signal->exec_update_mutex); 11877 put_task_struct(task); 11878 } 11879 11880 mutex_lock(¤t->perf_event_mutex); 11881 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11882 mutex_unlock(¤t->perf_event_mutex); 11883 11884 /* 11885 * Drop the reference on the group_event after placing the 11886 * new event on the sibling_list. This ensures destruction 11887 * of the group leader will find the pointer to itself in 11888 * perf_group_detach(). 11889 */ 11890 fdput(group); 11891 fd_install(event_fd, event_file); 11892 return event_fd; 11893 11894 err_locked: 11895 if (move_group) 11896 perf_event_ctx_unlock(group_leader, gctx); 11897 mutex_unlock(&ctx->mutex); 11898 /* err_file: */ 11899 fput(event_file); 11900 err_context: 11901 perf_unpin_context(ctx); 11902 put_ctx(ctx); 11903 err_alloc: 11904 /* 11905 * If event_file is set, the fput() above will have called ->release() 11906 * and that will take care of freeing the event. 11907 */ 11908 if (!event_file) 11909 free_event(event); 11910 err_cred: 11911 if (task) 11912 mutex_unlock(&task->signal->exec_update_mutex); 11913 err_task: 11914 if (task) 11915 put_task_struct(task); 11916 err_group_fd: 11917 fdput(group); 11918 err_fd: 11919 put_unused_fd(event_fd); 11920 return err; 11921 } 11922 11923 /** 11924 * perf_event_create_kernel_counter 11925 * 11926 * @attr: attributes of the counter to create 11927 * @cpu: cpu in which the counter is bound 11928 * @task: task to profile (NULL for percpu) 11929 */ 11930 struct perf_event * 11931 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11932 struct task_struct *task, 11933 perf_overflow_handler_t overflow_handler, 11934 void *context) 11935 { 11936 struct perf_event_context *ctx; 11937 struct perf_event *event; 11938 int err; 11939 11940 /* 11941 * Grouping is not supported for kernel events, neither is 'AUX', 11942 * make sure the caller's intentions are adjusted. 11943 */ 11944 if (attr->aux_output) 11945 return ERR_PTR(-EINVAL); 11946 11947 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11948 overflow_handler, context, -1); 11949 if (IS_ERR(event)) { 11950 err = PTR_ERR(event); 11951 goto err; 11952 } 11953 11954 /* Mark owner so we could distinguish it from user events. */ 11955 event->owner = TASK_TOMBSTONE; 11956 11957 /* 11958 * Get the target context (task or percpu): 11959 */ 11960 ctx = find_get_context(event->pmu, task, event); 11961 if (IS_ERR(ctx)) { 11962 err = PTR_ERR(ctx); 11963 goto err_free; 11964 } 11965 11966 WARN_ON_ONCE(ctx->parent_ctx); 11967 mutex_lock(&ctx->mutex); 11968 if (ctx->task == TASK_TOMBSTONE) { 11969 err = -ESRCH; 11970 goto err_unlock; 11971 } 11972 11973 if (!task) { 11974 /* 11975 * Check if the @cpu we're creating an event for is online. 11976 * 11977 * We use the perf_cpu_context::ctx::mutex to serialize against 11978 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11979 */ 11980 struct perf_cpu_context *cpuctx = 11981 container_of(ctx, struct perf_cpu_context, ctx); 11982 if (!cpuctx->online) { 11983 err = -ENODEV; 11984 goto err_unlock; 11985 } 11986 } 11987 11988 if (!exclusive_event_installable(event, ctx)) { 11989 err = -EBUSY; 11990 goto err_unlock; 11991 } 11992 11993 perf_install_in_context(ctx, event, event->cpu); 11994 perf_unpin_context(ctx); 11995 mutex_unlock(&ctx->mutex); 11996 11997 return event; 11998 11999 err_unlock: 12000 mutex_unlock(&ctx->mutex); 12001 perf_unpin_context(ctx); 12002 put_ctx(ctx); 12003 err_free: 12004 free_event(event); 12005 err: 12006 return ERR_PTR(err); 12007 } 12008 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12009 12010 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12011 { 12012 struct perf_event_context *src_ctx; 12013 struct perf_event_context *dst_ctx; 12014 struct perf_event *event, *tmp; 12015 LIST_HEAD(events); 12016 12017 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12018 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12019 12020 /* 12021 * See perf_event_ctx_lock() for comments on the details 12022 * of swizzling perf_event::ctx. 12023 */ 12024 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12025 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12026 event_entry) { 12027 perf_remove_from_context(event, 0); 12028 unaccount_event_cpu(event, src_cpu); 12029 put_ctx(src_ctx); 12030 list_add(&event->migrate_entry, &events); 12031 } 12032 12033 /* 12034 * Wait for the events to quiesce before re-instating them. 12035 */ 12036 synchronize_rcu(); 12037 12038 /* 12039 * Re-instate events in 2 passes. 12040 * 12041 * Skip over group leaders and only install siblings on this first 12042 * pass, siblings will not get enabled without a leader, however a 12043 * leader will enable its siblings, even if those are still on the old 12044 * context. 12045 */ 12046 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12047 if (event->group_leader == event) 12048 continue; 12049 12050 list_del(&event->migrate_entry); 12051 if (event->state >= PERF_EVENT_STATE_OFF) 12052 event->state = PERF_EVENT_STATE_INACTIVE; 12053 account_event_cpu(event, dst_cpu); 12054 perf_install_in_context(dst_ctx, event, dst_cpu); 12055 get_ctx(dst_ctx); 12056 } 12057 12058 /* 12059 * Once all the siblings are setup properly, install the group leaders 12060 * to make it go. 12061 */ 12062 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12063 list_del(&event->migrate_entry); 12064 if (event->state >= PERF_EVENT_STATE_OFF) 12065 event->state = PERF_EVENT_STATE_INACTIVE; 12066 account_event_cpu(event, dst_cpu); 12067 perf_install_in_context(dst_ctx, event, dst_cpu); 12068 get_ctx(dst_ctx); 12069 } 12070 mutex_unlock(&dst_ctx->mutex); 12071 mutex_unlock(&src_ctx->mutex); 12072 } 12073 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12074 12075 static void sync_child_event(struct perf_event *child_event, 12076 struct task_struct *child) 12077 { 12078 struct perf_event *parent_event = child_event->parent; 12079 u64 child_val; 12080 12081 if (child_event->attr.inherit_stat) 12082 perf_event_read_event(child_event, child); 12083 12084 child_val = perf_event_count(child_event); 12085 12086 /* 12087 * Add back the child's count to the parent's count: 12088 */ 12089 atomic64_add(child_val, &parent_event->child_count); 12090 atomic64_add(child_event->total_time_enabled, 12091 &parent_event->child_total_time_enabled); 12092 atomic64_add(child_event->total_time_running, 12093 &parent_event->child_total_time_running); 12094 } 12095 12096 static void 12097 perf_event_exit_event(struct perf_event *child_event, 12098 struct perf_event_context *child_ctx, 12099 struct task_struct *child) 12100 { 12101 struct perf_event *parent_event = child_event->parent; 12102 12103 /* 12104 * Do not destroy the 'original' grouping; because of the context 12105 * switch optimization the original events could've ended up in a 12106 * random child task. 12107 * 12108 * If we were to destroy the original group, all group related 12109 * operations would cease to function properly after this random 12110 * child dies. 12111 * 12112 * Do destroy all inherited groups, we don't care about those 12113 * and being thorough is better. 12114 */ 12115 raw_spin_lock_irq(&child_ctx->lock); 12116 WARN_ON_ONCE(child_ctx->is_active); 12117 12118 if (parent_event) 12119 perf_group_detach(child_event); 12120 list_del_event(child_event, child_ctx); 12121 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12122 raw_spin_unlock_irq(&child_ctx->lock); 12123 12124 /* 12125 * Parent events are governed by their filedesc, retain them. 12126 */ 12127 if (!parent_event) { 12128 perf_event_wakeup(child_event); 12129 return; 12130 } 12131 /* 12132 * Child events can be cleaned up. 12133 */ 12134 12135 sync_child_event(child_event, child); 12136 12137 /* 12138 * Remove this event from the parent's list 12139 */ 12140 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12141 mutex_lock(&parent_event->child_mutex); 12142 list_del_init(&child_event->child_list); 12143 mutex_unlock(&parent_event->child_mutex); 12144 12145 /* 12146 * Kick perf_poll() for is_event_hup(). 12147 */ 12148 perf_event_wakeup(parent_event); 12149 free_event(child_event); 12150 put_event(parent_event); 12151 } 12152 12153 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12154 { 12155 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12156 struct perf_event *child_event, *next; 12157 12158 WARN_ON_ONCE(child != current); 12159 12160 child_ctx = perf_pin_task_context(child, ctxn); 12161 if (!child_ctx) 12162 return; 12163 12164 /* 12165 * In order to reduce the amount of tricky in ctx tear-down, we hold 12166 * ctx::mutex over the entire thing. This serializes against almost 12167 * everything that wants to access the ctx. 12168 * 12169 * The exception is sys_perf_event_open() / 12170 * perf_event_create_kernel_count() which does find_get_context() 12171 * without ctx::mutex (it cannot because of the move_group double mutex 12172 * lock thing). See the comments in perf_install_in_context(). 12173 */ 12174 mutex_lock(&child_ctx->mutex); 12175 12176 /* 12177 * In a single ctx::lock section, de-schedule the events and detach the 12178 * context from the task such that we cannot ever get it scheduled back 12179 * in. 12180 */ 12181 raw_spin_lock_irq(&child_ctx->lock); 12182 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12183 12184 /* 12185 * Now that the context is inactive, destroy the task <-> ctx relation 12186 * and mark the context dead. 12187 */ 12188 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12189 put_ctx(child_ctx); /* cannot be last */ 12190 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12191 put_task_struct(current); /* cannot be last */ 12192 12193 clone_ctx = unclone_ctx(child_ctx); 12194 raw_spin_unlock_irq(&child_ctx->lock); 12195 12196 if (clone_ctx) 12197 put_ctx(clone_ctx); 12198 12199 /* 12200 * Report the task dead after unscheduling the events so that we 12201 * won't get any samples after PERF_RECORD_EXIT. We can however still 12202 * get a few PERF_RECORD_READ events. 12203 */ 12204 perf_event_task(child, child_ctx, 0); 12205 12206 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12207 perf_event_exit_event(child_event, child_ctx, child); 12208 12209 mutex_unlock(&child_ctx->mutex); 12210 12211 put_ctx(child_ctx); 12212 } 12213 12214 /* 12215 * When a child task exits, feed back event values to parent events. 12216 * 12217 * Can be called with exec_update_mutex held when called from 12218 * install_exec_creds(). 12219 */ 12220 void perf_event_exit_task(struct task_struct *child) 12221 { 12222 struct perf_event *event, *tmp; 12223 int ctxn; 12224 12225 mutex_lock(&child->perf_event_mutex); 12226 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12227 owner_entry) { 12228 list_del_init(&event->owner_entry); 12229 12230 /* 12231 * Ensure the list deletion is visible before we clear 12232 * the owner, closes a race against perf_release() where 12233 * we need to serialize on the owner->perf_event_mutex. 12234 */ 12235 smp_store_release(&event->owner, NULL); 12236 } 12237 mutex_unlock(&child->perf_event_mutex); 12238 12239 for_each_task_context_nr(ctxn) 12240 perf_event_exit_task_context(child, ctxn); 12241 12242 /* 12243 * The perf_event_exit_task_context calls perf_event_task 12244 * with child's task_ctx, which generates EXIT events for 12245 * child contexts and sets child->perf_event_ctxp[] to NULL. 12246 * At this point we need to send EXIT events to cpu contexts. 12247 */ 12248 perf_event_task(child, NULL, 0); 12249 } 12250 12251 static void perf_free_event(struct perf_event *event, 12252 struct perf_event_context *ctx) 12253 { 12254 struct perf_event *parent = event->parent; 12255 12256 if (WARN_ON_ONCE(!parent)) 12257 return; 12258 12259 mutex_lock(&parent->child_mutex); 12260 list_del_init(&event->child_list); 12261 mutex_unlock(&parent->child_mutex); 12262 12263 put_event(parent); 12264 12265 raw_spin_lock_irq(&ctx->lock); 12266 perf_group_detach(event); 12267 list_del_event(event, ctx); 12268 raw_spin_unlock_irq(&ctx->lock); 12269 free_event(event); 12270 } 12271 12272 /* 12273 * Free a context as created by inheritance by perf_event_init_task() below, 12274 * used by fork() in case of fail. 12275 * 12276 * Even though the task has never lived, the context and events have been 12277 * exposed through the child_list, so we must take care tearing it all down. 12278 */ 12279 void perf_event_free_task(struct task_struct *task) 12280 { 12281 struct perf_event_context *ctx; 12282 struct perf_event *event, *tmp; 12283 int ctxn; 12284 12285 for_each_task_context_nr(ctxn) { 12286 ctx = task->perf_event_ctxp[ctxn]; 12287 if (!ctx) 12288 continue; 12289 12290 mutex_lock(&ctx->mutex); 12291 raw_spin_lock_irq(&ctx->lock); 12292 /* 12293 * Destroy the task <-> ctx relation and mark the context dead. 12294 * 12295 * This is important because even though the task hasn't been 12296 * exposed yet the context has been (through child_list). 12297 */ 12298 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12299 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12300 put_task_struct(task); /* cannot be last */ 12301 raw_spin_unlock_irq(&ctx->lock); 12302 12303 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12304 perf_free_event(event, ctx); 12305 12306 mutex_unlock(&ctx->mutex); 12307 12308 /* 12309 * perf_event_release_kernel() could've stolen some of our 12310 * child events and still have them on its free_list. In that 12311 * case we must wait for these events to have been freed (in 12312 * particular all their references to this task must've been 12313 * dropped). 12314 * 12315 * Without this copy_process() will unconditionally free this 12316 * task (irrespective of its reference count) and 12317 * _free_event()'s put_task_struct(event->hw.target) will be a 12318 * use-after-free. 12319 * 12320 * Wait for all events to drop their context reference. 12321 */ 12322 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12323 put_ctx(ctx); /* must be last */ 12324 } 12325 } 12326 12327 void perf_event_delayed_put(struct task_struct *task) 12328 { 12329 int ctxn; 12330 12331 for_each_task_context_nr(ctxn) 12332 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12333 } 12334 12335 struct file *perf_event_get(unsigned int fd) 12336 { 12337 struct file *file = fget(fd); 12338 if (!file) 12339 return ERR_PTR(-EBADF); 12340 12341 if (file->f_op != &perf_fops) { 12342 fput(file); 12343 return ERR_PTR(-EBADF); 12344 } 12345 12346 return file; 12347 } 12348 12349 const struct perf_event *perf_get_event(struct file *file) 12350 { 12351 if (file->f_op != &perf_fops) 12352 return ERR_PTR(-EINVAL); 12353 12354 return file->private_data; 12355 } 12356 12357 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12358 { 12359 if (!event) 12360 return ERR_PTR(-EINVAL); 12361 12362 return &event->attr; 12363 } 12364 12365 /* 12366 * Inherit an event from parent task to child task. 12367 * 12368 * Returns: 12369 * - valid pointer on success 12370 * - NULL for orphaned events 12371 * - IS_ERR() on error 12372 */ 12373 static struct perf_event * 12374 inherit_event(struct perf_event *parent_event, 12375 struct task_struct *parent, 12376 struct perf_event_context *parent_ctx, 12377 struct task_struct *child, 12378 struct perf_event *group_leader, 12379 struct perf_event_context *child_ctx) 12380 { 12381 enum perf_event_state parent_state = parent_event->state; 12382 struct perf_event *child_event; 12383 unsigned long flags; 12384 12385 /* 12386 * Instead of creating recursive hierarchies of events, 12387 * we link inherited events back to the original parent, 12388 * which has a filp for sure, which we use as the reference 12389 * count: 12390 */ 12391 if (parent_event->parent) 12392 parent_event = parent_event->parent; 12393 12394 child_event = perf_event_alloc(&parent_event->attr, 12395 parent_event->cpu, 12396 child, 12397 group_leader, parent_event, 12398 NULL, NULL, -1); 12399 if (IS_ERR(child_event)) 12400 return child_event; 12401 12402 12403 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12404 !child_ctx->task_ctx_data) { 12405 struct pmu *pmu = child_event->pmu; 12406 12407 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12408 GFP_KERNEL); 12409 if (!child_ctx->task_ctx_data) { 12410 free_event(child_event); 12411 return ERR_PTR(-ENOMEM); 12412 } 12413 } 12414 12415 /* 12416 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12417 * must be under the same lock in order to serialize against 12418 * perf_event_release_kernel(), such that either we must observe 12419 * is_orphaned_event() or they will observe us on the child_list. 12420 */ 12421 mutex_lock(&parent_event->child_mutex); 12422 if (is_orphaned_event(parent_event) || 12423 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12424 mutex_unlock(&parent_event->child_mutex); 12425 /* task_ctx_data is freed with child_ctx */ 12426 free_event(child_event); 12427 return NULL; 12428 } 12429 12430 get_ctx(child_ctx); 12431 12432 /* 12433 * Make the child state follow the state of the parent event, 12434 * not its attr.disabled bit. We hold the parent's mutex, 12435 * so we won't race with perf_event_{en, dis}able_family. 12436 */ 12437 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12438 child_event->state = PERF_EVENT_STATE_INACTIVE; 12439 else 12440 child_event->state = PERF_EVENT_STATE_OFF; 12441 12442 if (parent_event->attr.freq) { 12443 u64 sample_period = parent_event->hw.sample_period; 12444 struct hw_perf_event *hwc = &child_event->hw; 12445 12446 hwc->sample_period = sample_period; 12447 hwc->last_period = sample_period; 12448 12449 local64_set(&hwc->period_left, sample_period); 12450 } 12451 12452 child_event->ctx = child_ctx; 12453 child_event->overflow_handler = parent_event->overflow_handler; 12454 child_event->overflow_handler_context 12455 = parent_event->overflow_handler_context; 12456 12457 /* 12458 * Precalculate sample_data sizes 12459 */ 12460 perf_event__header_size(child_event); 12461 perf_event__id_header_size(child_event); 12462 12463 /* 12464 * Link it up in the child's context: 12465 */ 12466 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12467 add_event_to_ctx(child_event, child_ctx); 12468 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12469 12470 /* 12471 * Link this into the parent event's child list 12472 */ 12473 list_add_tail(&child_event->child_list, &parent_event->child_list); 12474 mutex_unlock(&parent_event->child_mutex); 12475 12476 return child_event; 12477 } 12478 12479 /* 12480 * Inherits an event group. 12481 * 12482 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12483 * This matches with perf_event_release_kernel() removing all child events. 12484 * 12485 * Returns: 12486 * - 0 on success 12487 * - <0 on error 12488 */ 12489 static int inherit_group(struct perf_event *parent_event, 12490 struct task_struct *parent, 12491 struct perf_event_context *parent_ctx, 12492 struct task_struct *child, 12493 struct perf_event_context *child_ctx) 12494 { 12495 struct perf_event *leader; 12496 struct perf_event *sub; 12497 struct perf_event *child_ctr; 12498 12499 leader = inherit_event(parent_event, parent, parent_ctx, 12500 child, NULL, child_ctx); 12501 if (IS_ERR(leader)) 12502 return PTR_ERR(leader); 12503 /* 12504 * @leader can be NULL here because of is_orphaned_event(). In this 12505 * case inherit_event() will create individual events, similar to what 12506 * perf_group_detach() would do anyway. 12507 */ 12508 for_each_sibling_event(sub, parent_event) { 12509 child_ctr = inherit_event(sub, parent, parent_ctx, 12510 child, leader, child_ctx); 12511 if (IS_ERR(child_ctr)) 12512 return PTR_ERR(child_ctr); 12513 12514 if (sub->aux_event == parent_event && child_ctr && 12515 !perf_get_aux_event(child_ctr, leader)) 12516 return -EINVAL; 12517 } 12518 return 0; 12519 } 12520 12521 /* 12522 * Creates the child task context and tries to inherit the event-group. 12523 * 12524 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12525 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12526 * consistent with perf_event_release_kernel() removing all child events. 12527 * 12528 * Returns: 12529 * - 0 on success 12530 * - <0 on error 12531 */ 12532 static int 12533 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12534 struct perf_event_context *parent_ctx, 12535 struct task_struct *child, int ctxn, 12536 int *inherited_all) 12537 { 12538 int ret; 12539 struct perf_event_context *child_ctx; 12540 12541 if (!event->attr.inherit) { 12542 *inherited_all = 0; 12543 return 0; 12544 } 12545 12546 child_ctx = child->perf_event_ctxp[ctxn]; 12547 if (!child_ctx) { 12548 /* 12549 * This is executed from the parent task context, so 12550 * inherit events that have been marked for cloning. 12551 * First allocate and initialize a context for the 12552 * child. 12553 */ 12554 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12555 if (!child_ctx) 12556 return -ENOMEM; 12557 12558 child->perf_event_ctxp[ctxn] = child_ctx; 12559 } 12560 12561 ret = inherit_group(event, parent, parent_ctx, 12562 child, child_ctx); 12563 12564 if (ret) 12565 *inherited_all = 0; 12566 12567 return ret; 12568 } 12569 12570 /* 12571 * Initialize the perf_event context in task_struct 12572 */ 12573 static int perf_event_init_context(struct task_struct *child, int ctxn) 12574 { 12575 struct perf_event_context *child_ctx, *parent_ctx; 12576 struct perf_event_context *cloned_ctx; 12577 struct perf_event *event; 12578 struct task_struct *parent = current; 12579 int inherited_all = 1; 12580 unsigned long flags; 12581 int ret = 0; 12582 12583 if (likely(!parent->perf_event_ctxp[ctxn])) 12584 return 0; 12585 12586 /* 12587 * If the parent's context is a clone, pin it so it won't get 12588 * swapped under us. 12589 */ 12590 parent_ctx = perf_pin_task_context(parent, ctxn); 12591 if (!parent_ctx) 12592 return 0; 12593 12594 /* 12595 * No need to check if parent_ctx != NULL here; since we saw 12596 * it non-NULL earlier, the only reason for it to become NULL 12597 * is if we exit, and since we're currently in the middle of 12598 * a fork we can't be exiting at the same time. 12599 */ 12600 12601 /* 12602 * Lock the parent list. No need to lock the child - not PID 12603 * hashed yet and not running, so nobody can access it. 12604 */ 12605 mutex_lock(&parent_ctx->mutex); 12606 12607 /* 12608 * We dont have to disable NMIs - we are only looking at 12609 * the list, not manipulating it: 12610 */ 12611 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12612 ret = inherit_task_group(event, parent, parent_ctx, 12613 child, ctxn, &inherited_all); 12614 if (ret) 12615 goto out_unlock; 12616 } 12617 12618 /* 12619 * We can't hold ctx->lock when iterating the ->flexible_group list due 12620 * to allocations, but we need to prevent rotation because 12621 * rotate_ctx() will change the list from interrupt context. 12622 */ 12623 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12624 parent_ctx->rotate_disable = 1; 12625 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12626 12627 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12628 ret = inherit_task_group(event, parent, parent_ctx, 12629 child, ctxn, &inherited_all); 12630 if (ret) 12631 goto out_unlock; 12632 } 12633 12634 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12635 parent_ctx->rotate_disable = 0; 12636 12637 child_ctx = child->perf_event_ctxp[ctxn]; 12638 12639 if (child_ctx && inherited_all) { 12640 /* 12641 * Mark the child context as a clone of the parent 12642 * context, or of whatever the parent is a clone of. 12643 * 12644 * Note that if the parent is a clone, the holding of 12645 * parent_ctx->lock avoids it from being uncloned. 12646 */ 12647 cloned_ctx = parent_ctx->parent_ctx; 12648 if (cloned_ctx) { 12649 child_ctx->parent_ctx = cloned_ctx; 12650 child_ctx->parent_gen = parent_ctx->parent_gen; 12651 } else { 12652 child_ctx->parent_ctx = parent_ctx; 12653 child_ctx->parent_gen = parent_ctx->generation; 12654 } 12655 get_ctx(child_ctx->parent_ctx); 12656 } 12657 12658 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12659 out_unlock: 12660 mutex_unlock(&parent_ctx->mutex); 12661 12662 perf_unpin_context(parent_ctx); 12663 put_ctx(parent_ctx); 12664 12665 return ret; 12666 } 12667 12668 /* 12669 * Initialize the perf_event context in task_struct 12670 */ 12671 int perf_event_init_task(struct task_struct *child) 12672 { 12673 int ctxn, ret; 12674 12675 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12676 mutex_init(&child->perf_event_mutex); 12677 INIT_LIST_HEAD(&child->perf_event_list); 12678 12679 for_each_task_context_nr(ctxn) { 12680 ret = perf_event_init_context(child, ctxn); 12681 if (ret) { 12682 perf_event_free_task(child); 12683 return ret; 12684 } 12685 } 12686 12687 return 0; 12688 } 12689 12690 static void __init perf_event_init_all_cpus(void) 12691 { 12692 struct swevent_htable *swhash; 12693 int cpu; 12694 12695 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12696 12697 for_each_possible_cpu(cpu) { 12698 swhash = &per_cpu(swevent_htable, cpu); 12699 mutex_init(&swhash->hlist_mutex); 12700 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12701 12702 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12703 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12704 12705 #ifdef CONFIG_CGROUP_PERF 12706 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12707 #endif 12708 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12709 } 12710 } 12711 12712 static void perf_swevent_init_cpu(unsigned int cpu) 12713 { 12714 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12715 12716 mutex_lock(&swhash->hlist_mutex); 12717 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12718 struct swevent_hlist *hlist; 12719 12720 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12721 WARN_ON(!hlist); 12722 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12723 } 12724 mutex_unlock(&swhash->hlist_mutex); 12725 } 12726 12727 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12728 static void __perf_event_exit_context(void *__info) 12729 { 12730 struct perf_event_context *ctx = __info; 12731 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12732 struct perf_event *event; 12733 12734 raw_spin_lock(&ctx->lock); 12735 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12736 list_for_each_entry(event, &ctx->event_list, event_entry) 12737 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12738 raw_spin_unlock(&ctx->lock); 12739 } 12740 12741 static void perf_event_exit_cpu_context(int cpu) 12742 { 12743 struct perf_cpu_context *cpuctx; 12744 struct perf_event_context *ctx; 12745 struct pmu *pmu; 12746 12747 mutex_lock(&pmus_lock); 12748 list_for_each_entry(pmu, &pmus, entry) { 12749 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12750 ctx = &cpuctx->ctx; 12751 12752 mutex_lock(&ctx->mutex); 12753 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12754 cpuctx->online = 0; 12755 mutex_unlock(&ctx->mutex); 12756 } 12757 cpumask_clear_cpu(cpu, perf_online_mask); 12758 mutex_unlock(&pmus_lock); 12759 } 12760 #else 12761 12762 static void perf_event_exit_cpu_context(int cpu) { } 12763 12764 #endif 12765 12766 int perf_event_init_cpu(unsigned int cpu) 12767 { 12768 struct perf_cpu_context *cpuctx; 12769 struct perf_event_context *ctx; 12770 struct pmu *pmu; 12771 12772 perf_swevent_init_cpu(cpu); 12773 12774 mutex_lock(&pmus_lock); 12775 cpumask_set_cpu(cpu, perf_online_mask); 12776 list_for_each_entry(pmu, &pmus, entry) { 12777 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12778 ctx = &cpuctx->ctx; 12779 12780 mutex_lock(&ctx->mutex); 12781 cpuctx->online = 1; 12782 mutex_unlock(&ctx->mutex); 12783 } 12784 mutex_unlock(&pmus_lock); 12785 12786 return 0; 12787 } 12788 12789 int perf_event_exit_cpu(unsigned int cpu) 12790 { 12791 perf_event_exit_cpu_context(cpu); 12792 return 0; 12793 } 12794 12795 static int 12796 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12797 { 12798 int cpu; 12799 12800 for_each_online_cpu(cpu) 12801 perf_event_exit_cpu(cpu); 12802 12803 return NOTIFY_OK; 12804 } 12805 12806 /* 12807 * Run the perf reboot notifier at the very last possible moment so that 12808 * the generic watchdog code runs as long as possible. 12809 */ 12810 static struct notifier_block perf_reboot_notifier = { 12811 .notifier_call = perf_reboot, 12812 .priority = INT_MIN, 12813 }; 12814 12815 void __init perf_event_init(void) 12816 { 12817 int ret; 12818 12819 idr_init(&pmu_idr); 12820 12821 perf_event_init_all_cpus(); 12822 init_srcu_struct(&pmus_srcu); 12823 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12824 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12825 perf_pmu_register(&perf_task_clock, NULL, -1); 12826 perf_tp_register(); 12827 perf_event_init_cpu(smp_processor_id()); 12828 register_reboot_notifier(&perf_reboot_notifier); 12829 12830 ret = init_hw_breakpoint(); 12831 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12832 12833 /* 12834 * Build time assertion that we keep the data_head at the intended 12835 * location. IOW, validation we got the __reserved[] size right. 12836 */ 12837 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12838 != 1024); 12839 } 12840 12841 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12842 char *page) 12843 { 12844 struct perf_pmu_events_attr *pmu_attr = 12845 container_of(attr, struct perf_pmu_events_attr, attr); 12846 12847 if (pmu_attr->event_str) 12848 return sprintf(page, "%s\n", pmu_attr->event_str); 12849 12850 return 0; 12851 } 12852 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12853 12854 static int __init perf_event_sysfs_init(void) 12855 { 12856 struct pmu *pmu; 12857 int ret; 12858 12859 mutex_lock(&pmus_lock); 12860 12861 ret = bus_register(&pmu_bus); 12862 if (ret) 12863 goto unlock; 12864 12865 list_for_each_entry(pmu, &pmus, entry) { 12866 if (!pmu->name || pmu->type < 0) 12867 continue; 12868 12869 ret = pmu_dev_alloc(pmu); 12870 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12871 } 12872 pmu_bus_running = 1; 12873 ret = 0; 12874 12875 unlock: 12876 mutex_unlock(&pmus_lock); 12877 12878 return ret; 12879 } 12880 device_initcall(perf_event_sysfs_init); 12881 12882 #ifdef CONFIG_CGROUP_PERF 12883 static struct cgroup_subsys_state * 12884 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12885 { 12886 struct perf_cgroup *jc; 12887 12888 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12889 if (!jc) 12890 return ERR_PTR(-ENOMEM); 12891 12892 jc->info = alloc_percpu(struct perf_cgroup_info); 12893 if (!jc->info) { 12894 kfree(jc); 12895 return ERR_PTR(-ENOMEM); 12896 } 12897 12898 return &jc->css; 12899 } 12900 12901 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12902 { 12903 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12904 12905 free_percpu(jc->info); 12906 kfree(jc); 12907 } 12908 12909 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 12910 { 12911 perf_event_cgroup(css->cgroup); 12912 return 0; 12913 } 12914 12915 static int __perf_cgroup_move(void *info) 12916 { 12917 struct task_struct *task = info; 12918 rcu_read_lock(); 12919 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12920 rcu_read_unlock(); 12921 return 0; 12922 } 12923 12924 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12925 { 12926 struct task_struct *task; 12927 struct cgroup_subsys_state *css; 12928 12929 cgroup_taskset_for_each(task, css, tset) 12930 task_function_call(task, __perf_cgroup_move, task); 12931 } 12932 12933 struct cgroup_subsys perf_event_cgrp_subsys = { 12934 .css_alloc = perf_cgroup_css_alloc, 12935 .css_free = perf_cgroup_css_free, 12936 .css_online = perf_cgroup_css_online, 12937 .attach = perf_cgroup_attach, 12938 /* 12939 * Implicitly enable on dfl hierarchy so that perf events can 12940 * always be filtered by cgroup2 path as long as perf_event 12941 * controller is not mounted on a legacy hierarchy. 12942 */ 12943 .implicit_on_dfl = true, 12944 .threaded = true, 12945 }; 12946 #endif /* CONFIG_CGROUP_PERF */ 12947