1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 list_for_each_entry(sibling, &leader->sibling_list, group_entry) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 728 if (cgrp_out) 729 __update_cgrp_time(cgrp_out); 730 } 731 732 static inline void update_cgrp_time_from_event(struct perf_event *event) 733 { 734 struct perf_cgroup *cgrp; 735 736 /* 737 * ensure we access cgroup data only when needed and 738 * when we know the cgroup is pinned (css_get) 739 */ 740 if (!is_cgroup_event(event)) 741 return; 742 743 cgrp = perf_cgroup_from_task(current, event->ctx); 744 /* 745 * Do not update time when cgroup is not active 746 */ 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 748 __update_cgrp_time(event->cgrp); 749 } 750 751 static inline void 752 perf_cgroup_set_timestamp(struct task_struct *task, 753 struct perf_event_context *ctx) 754 { 755 struct perf_cgroup *cgrp; 756 struct perf_cgroup_info *info; 757 758 /* 759 * ctx->lock held by caller 760 * ensure we do not access cgroup data 761 * unless we have the cgroup pinned (css_get) 762 */ 763 if (!task || !ctx->nr_cgroups) 764 return; 765 766 cgrp = perf_cgroup_from_task(task, ctx); 767 info = this_cpu_ptr(cgrp->info); 768 info->timestamp = ctx->timestamp; 769 } 770 771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 772 773 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 774 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 775 776 /* 777 * reschedule events based on the cgroup constraint of task. 778 * 779 * mode SWOUT : schedule out everything 780 * mode SWIN : schedule in based on cgroup for next 781 */ 782 static void perf_cgroup_switch(struct task_struct *task, int mode) 783 { 784 struct perf_cpu_context *cpuctx; 785 struct list_head *list; 786 unsigned long flags; 787 788 /* 789 * Disable interrupts and preemption to avoid this CPU's 790 * cgrp_cpuctx_entry to change under us. 791 */ 792 local_irq_save(flags); 793 794 list = this_cpu_ptr(&cgrp_cpuctx_list); 795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 797 798 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 799 perf_pmu_disable(cpuctx->ctx.pmu); 800 801 if (mode & PERF_CGROUP_SWOUT) { 802 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 803 /* 804 * must not be done before ctxswout due 805 * to event_filter_match() in event_sched_out() 806 */ 807 cpuctx->cgrp = NULL; 808 } 809 810 if (mode & PERF_CGROUP_SWIN) { 811 WARN_ON_ONCE(cpuctx->cgrp); 812 /* 813 * set cgrp before ctxsw in to allow 814 * event_filter_match() to not have to pass 815 * task around 816 * we pass the cpuctx->ctx to perf_cgroup_from_task() 817 * because cgorup events are only per-cpu 818 */ 819 cpuctx->cgrp = perf_cgroup_from_task(task, 820 &cpuctx->ctx); 821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 822 } 823 perf_pmu_enable(cpuctx->ctx.pmu); 824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 825 } 826 827 local_irq_restore(flags); 828 } 829 830 static inline void perf_cgroup_sched_out(struct task_struct *task, 831 struct task_struct *next) 832 { 833 struct perf_cgroup *cgrp1; 834 struct perf_cgroup *cgrp2 = NULL; 835 836 rcu_read_lock(); 837 /* 838 * we come here when we know perf_cgroup_events > 0 839 * we do not need to pass the ctx here because we know 840 * we are holding the rcu lock 841 */ 842 cgrp1 = perf_cgroup_from_task(task, NULL); 843 cgrp2 = perf_cgroup_from_task(next, NULL); 844 845 /* 846 * only schedule out current cgroup events if we know 847 * that we are switching to a different cgroup. Otherwise, 848 * do no touch the cgroup events. 849 */ 850 if (cgrp1 != cgrp2) 851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 852 853 rcu_read_unlock(); 854 } 855 856 static inline void perf_cgroup_sched_in(struct task_struct *prev, 857 struct task_struct *task) 858 { 859 struct perf_cgroup *cgrp1; 860 struct perf_cgroup *cgrp2 = NULL; 861 862 rcu_read_lock(); 863 /* 864 * we come here when we know perf_cgroup_events > 0 865 * we do not need to pass the ctx here because we know 866 * we are holding the rcu lock 867 */ 868 cgrp1 = perf_cgroup_from_task(task, NULL); 869 cgrp2 = perf_cgroup_from_task(prev, NULL); 870 871 /* 872 * only need to schedule in cgroup events if we are changing 873 * cgroup during ctxsw. Cgroup events were not scheduled 874 * out of ctxsw out if that was not the case. 875 */ 876 if (cgrp1 != cgrp2) 877 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 878 879 rcu_read_unlock(); 880 } 881 882 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 883 struct perf_event_attr *attr, 884 struct perf_event *group_leader) 885 { 886 struct perf_cgroup *cgrp; 887 struct cgroup_subsys_state *css; 888 struct fd f = fdget(fd); 889 int ret = 0; 890 891 if (!f.file) 892 return -EBADF; 893 894 css = css_tryget_online_from_dir(f.file->f_path.dentry, 895 &perf_event_cgrp_subsys); 896 if (IS_ERR(css)) { 897 ret = PTR_ERR(css); 898 goto out; 899 } 900 901 cgrp = container_of(css, struct perf_cgroup, css); 902 event->cgrp = cgrp; 903 904 /* 905 * all events in a group must monitor 906 * the same cgroup because a task belongs 907 * to only one perf cgroup at a time 908 */ 909 if (group_leader && group_leader->cgrp != cgrp) { 910 perf_detach_cgroup(event); 911 ret = -EINVAL; 912 } 913 out: 914 fdput(f); 915 return ret; 916 } 917 918 static inline void 919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 920 { 921 struct perf_cgroup_info *t; 922 t = per_cpu_ptr(event->cgrp->info, event->cpu); 923 event->shadow_ctx_time = now - t->timestamp; 924 } 925 926 /* 927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 928 * cleared when last cgroup event is removed. 929 */ 930 static inline void 931 list_update_cgroup_event(struct perf_event *event, 932 struct perf_event_context *ctx, bool add) 933 { 934 struct perf_cpu_context *cpuctx; 935 struct list_head *cpuctx_entry; 936 937 if (!is_cgroup_event(event)) 938 return; 939 940 if (add && ctx->nr_cgroups++) 941 return; 942 else if (!add && --ctx->nr_cgroups) 943 return; 944 /* 945 * Because cgroup events are always per-cpu events, 946 * this will always be called from the right CPU. 947 */ 948 cpuctx = __get_cpu_context(ctx); 949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 951 if (add) { 952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 953 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 956 cpuctx->cgrp = cgrp; 957 } else { 958 list_del(cpuctx_entry); 959 cpuctx->cgrp = NULL; 960 } 961 } 962 963 #else /* !CONFIG_CGROUP_PERF */ 964 965 static inline bool 966 perf_cgroup_match(struct perf_event *event) 967 { 968 return true; 969 } 970 971 static inline void perf_detach_cgroup(struct perf_event *event) 972 {} 973 974 static inline int is_cgroup_event(struct perf_event *event) 975 { 976 return 0; 977 } 978 979 static inline void update_cgrp_time_from_event(struct perf_event *event) 980 { 981 } 982 983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 984 { 985 } 986 987 static inline void perf_cgroup_sched_out(struct task_struct *task, 988 struct task_struct *next) 989 { 990 } 991 992 static inline void perf_cgroup_sched_in(struct task_struct *prev, 993 struct task_struct *task) 994 { 995 } 996 997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 998 struct perf_event_attr *attr, 999 struct perf_event *group_leader) 1000 { 1001 return -EINVAL; 1002 } 1003 1004 static inline void 1005 perf_cgroup_set_timestamp(struct task_struct *task, 1006 struct perf_event_context *ctx) 1007 { 1008 } 1009 1010 void 1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void 1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1017 { 1018 } 1019 1020 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1021 { 1022 return 0; 1023 } 1024 1025 static inline void 1026 list_update_cgroup_event(struct perf_event *event, 1027 struct perf_event_context *ctx, bool add) 1028 { 1029 } 1030 1031 #endif 1032 1033 /* 1034 * set default to be dependent on timer tick just 1035 * like original code 1036 */ 1037 #define PERF_CPU_HRTIMER (1000 / HZ) 1038 /* 1039 * function must be called with interrupts disabled 1040 */ 1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1042 { 1043 struct perf_cpu_context *cpuctx; 1044 int rotations = 0; 1045 1046 lockdep_assert_irqs_disabled(); 1047 1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1049 rotations = perf_rotate_context(cpuctx); 1050 1051 raw_spin_lock(&cpuctx->hrtimer_lock); 1052 if (rotations) 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1054 else 1055 cpuctx->hrtimer_active = 0; 1056 raw_spin_unlock(&cpuctx->hrtimer_lock); 1057 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1059 } 1060 1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1062 { 1063 struct hrtimer *timer = &cpuctx->hrtimer; 1064 struct pmu *pmu = cpuctx->ctx.pmu; 1065 u64 interval; 1066 1067 /* no multiplexing needed for SW PMU */ 1068 if (pmu->task_ctx_nr == perf_sw_context) 1069 return; 1070 1071 /* 1072 * check default is sane, if not set then force to 1073 * default interval (1/tick) 1074 */ 1075 interval = pmu->hrtimer_interval_ms; 1076 if (interval < 1) 1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1078 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1080 1081 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1083 timer->function = perf_mux_hrtimer_handler; 1084 } 1085 1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1087 { 1088 struct hrtimer *timer = &cpuctx->hrtimer; 1089 struct pmu *pmu = cpuctx->ctx.pmu; 1090 unsigned long flags; 1091 1092 /* not for SW PMU */ 1093 if (pmu->task_ctx_nr == perf_sw_context) 1094 return 0; 1095 1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1097 if (!cpuctx->hrtimer_active) { 1098 cpuctx->hrtimer_active = 1; 1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1101 } 1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1103 1104 return 0; 1105 } 1106 1107 void perf_pmu_disable(struct pmu *pmu) 1108 { 1109 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1110 if (!(*count)++) 1111 pmu->pmu_disable(pmu); 1112 } 1113 1114 void perf_pmu_enable(struct pmu *pmu) 1115 { 1116 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1117 if (!--(*count)) 1118 pmu->pmu_enable(pmu); 1119 } 1120 1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1122 1123 /* 1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1125 * perf_event_task_tick() are fully serialized because they're strictly cpu 1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1127 * disabled, while perf_event_task_tick is called from IRQ context. 1128 */ 1129 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1130 { 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1132 1133 lockdep_assert_irqs_disabled(); 1134 1135 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1136 1137 list_add(&ctx->active_ctx_list, head); 1138 } 1139 1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1141 { 1142 lockdep_assert_irqs_disabled(); 1143 1144 WARN_ON(list_empty(&ctx->active_ctx_list)); 1145 1146 list_del_init(&ctx->active_ctx_list); 1147 } 1148 1149 static void get_ctx(struct perf_event_context *ctx) 1150 { 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1152 } 1153 1154 static void free_ctx(struct rcu_head *head) 1155 { 1156 struct perf_event_context *ctx; 1157 1158 ctx = container_of(head, struct perf_event_context, rcu_head); 1159 kfree(ctx->task_ctx_data); 1160 kfree(ctx); 1161 } 1162 1163 static void put_ctx(struct perf_event_context *ctx) 1164 { 1165 if (atomic_dec_and_test(&ctx->refcount)) { 1166 if (ctx->parent_ctx) 1167 put_ctx(ctx->parent_ctx); 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1169 put_task_struct(ctx->task); 1170 call_rcu(&ctx->rcu_head, free_ctx); 1171 } 1172 } 1173 1174 /* 1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1176 * perf_pmu_migrate_context() we need some magic. 1177 * 1178 * Those places that change perf_event::ctx will hold both 1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1180 * 1181 * Lock ordering is by mutex address. There are two other sites where 1182 * perf_event_context::mutex nests and those are: 1183 * 1184 * - perf_event_exit_task_context() [ child , 0 ] 1185 * perf_event_exit_event() 1186 * put_event() [ parent, 1 ] 1187 * 1188 * - perf_event_init_context() [ parent, 0 ] 1189 * inherit_task_group() 1190 * inherit_group() 1191 * inherit_event() 1192 * perf_event_alloc() 1193 * perf_init_event() 1194 * perf_try_init_event() [ child , 1 ] 1195 * 1196 * While it appears there is an obvious deadlock here -- the parent and child 1197 * nesting levels are inverted between the two. This is in fact safe because 1198 * life-time rules separate them. That is an exiting task cannot fork, and a 1199 * spawning task cannot (yet) exit. 1200 * 1201 * But remember that that these are parent<->child context relations, and 1202 * migration does not affect children, therefore these two orderings should not 1203 * interact. 1204 * 1205 * The change in perf_event::ctx does not affect children (as claimed above) 1206 * because the sys_perf_event_open() case will install a new event and break 1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1208 * concerned with cpuctx and that doesn't have children. 1209 * 1210 * The places that change perf_event::ctx will issue: 1211 * 1212 * perf_remove_from_context(); 1213 * synchronize_rcu(); 1214 * perf_install_in_context(); 1215 * 1216 * to affect the change. The remove_from_context() + synchronize_rcu() should 1217 * quiesce the event, after which we can install it in the new location. This 1218 * means that only external vectors (perf_fops, prctl) can perturb the event 1219 * while in transit. Therefore all such accessors should also acquire 1220 * perf_event_context::mutex to serialize against this. 1221 * 1222 * However; because event->ctx can change while we're waiting to acquire 1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1224 * function. 1225 * 1226 * Lock order: 1227 * cred_guard_mutex 1228 * task_struct::perf_event_mutex 1229 * perf_event_context::mutex 1230 * perf_event::child_mutex; 1231 * perf_event_context::lock 1232 * perf_event::mmap_mutex 1233 * mmap_sem 1234 */ 1235 static struct perf_event_context * 1236 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1237 { 1238 struct perf_event_context *ctx; 1239 1240 again: 1241 rcu_read_lock(); 1242 ctx = READ_ONCE(event->ctx); 1243 if (!atomic_inc_not_zero(&ctx->refcount)) { 1244 rcu_read_unlock(); 1245 goto again; 1246 } 1247 rcu_read_unlock(); 1248 1249 mutex_lock_nested(&ctx->mutex, nesting); 1250 if (event->ctx != ctx) { 1251 mutex_unlock(&ctx->mutex); 1252 put_ctx(ctx); 1253 goto again; 1254 } 1255 1256 return ctx; 1257 } 1258 1259 static inline struct perf_event_context * 1260 perf_event_ctx_lock(struct perf_event *event) 1261 { 1262 return perf_event_ctx_lock_nested(event, 0); 1263 } 1264 1265 static void perf_event_ctx_unlock(struct perf_event *event, 1266 struct perf_event_context *ctx) 1267 { 1268 mutex_unlock(&ctx->mutex); 1269 put_ctx(ctx); 1270 } 1271 1272 /* 1273 * This must be done under the ctx->lock, such as to serialize against 1274 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1275 * calling scheduler related locks and ctx->lock nests inside those. 1276 */ 1277 static __must_check struct perf_event_context * 1278 unclone_ctx(struct perf_event_context *ctx) 1279 { 1280 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1281 1282 lockdep_assert_held(&ctx->lock); 1283 1284 if (parent_ctx) 1285 ctx->parent_ctx = NULL; 1286 ctx->generation++; 1287 1288 return parent_ctx; 1289 } 1290 1291 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1292 enum pid_type type) 1293 { 1294 u32 nr; 1295 /* 1296 * only top level events have the pid namespace they were created in 1297 */ 1298 if (event->parent) 1299 event = event->parent; 1300 1301 nr = __task_pid_nr_ns(p, type, event->ns); 1302 /* avoid -1 if it is idle thread or runs in another ns */ 1303 if (!nr && !pid_alive(p)) 1304 nr = -1; 1305 return nr; 1306 } 1307 1308 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1309 { 1310 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1311 } 1312 1313 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1314 { 1315 return perf_event_pid_type(event, p, PIDTYPE_PID); 1316 } 1317 1318 /* 1319 * If we inherit events we want to return the parent event id 1320 * to userspace. 1321 */ 1322 static u64 primary_event_id(struct perf_event *event) 1323 { 1324 u64 id = event->id; 1325 1326 if (event->parent) 1327 id = event->parent->id; 1328 1329 return id; 1330 } 1331 1332 /* 1333 * Get the perf_event_context for a task and lock it. 1334 * 1335 * This has to cope with with the fact that until it is locked, 1336 * the context could get moved to another task. 1337 */ 1338 static struct perf_event_context * 1339 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1340 { 1341 struct perf_event_context *ctx; 1342 1343 retry: 1344 /* 1345 * One of the few rules of preemptible RCU is that one cannot do 1346 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1347 * part of the read side critical section was irqs-enabled -- see 1348 * rcu_read_unlock_special(). 1349 * 1350 * Since ctx->lock nests under rq->lock we must ensure the entire read 1351 * side critical section has interrupts disabled. 1352 */ 1353 local_irq_save(*flags); 1354 rcu_read_lock(); 1355 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1356 if (ctx) { 1357 /* 1358 * If this context is a clone of another, it might 1359 * get swapped for another underneath us by 1360 * perf_event_task_sched_out, though the 1361 * rcu_read_lock() protects us from any context 1362 * getting freed. Lock the context and check if it 1363 * got swapped before we could get the lock, and retry 1364 * if so. If we locked the right context, then it 1365 * can't get swapped on us any more. 1366 */ 1367 raw_spin_lock(&ctx->lock); 1368 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1369 raw_spin_unlock(&ctx->lock); 1370 rcu_read_unlock(); 1371 local_irq_restore(*flags); 1372 goto retry; 1373 } 1374 1375 if (ctx->task == TASK_TOMBSTONE || 1376 !atomic_inc_not_zero(&ctx->refcount)) { 1377 raw_spin_unlock(&ctx->lock); 1378 ctx = NULL; 1379 } else { 1380 WARN_ON_ONCE(ctx->task != task); 1381 } 1382 } 1383 rcu_read_unlock(); 1384 if (!ctx) 1385 local_irq_restore(*flags); 1386 return ctx; 1387 } 1388 1389 /* 1390 * Get the context for a task and increment its pin_count so it 1391 * can't get swapped to another task. This also increments its 1392 * reference count so that the context can't get freed. 1393 */ 1394 static struct perf_event_context * 1395 perf_pin_task_context(struct task_struct *task, int ctxn) 1396 { 1397 struct perf_event_context *ctx; 1398 unsigned long flags; 1399 1400 ctx = perf_lock_task_context(task, ctxn, &flags); 1401 if (ctx) { 1402 ++ctx->pin_count; 1403 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1404 } 1405 return ctx; 1406 } 1407 1408 static void perf_unpin_context(struct perf_event_context *ctx) 1409 { 1410 unsigned long flags; 1411 1412 raw_spin_lock_irqsave(&ctx->lock, flags); 1413 --ctx->pin_count; 1414 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1415 } 1416 1417 /* 1418 * Update the record of the current time in a context. 1419 */ 1420 static void update_context_time(struct perf_event_context *ctx) 1421 { 1422 u64 now = perf_clock(); 1423 1424 ctx->time += now - ctx->timestamp; 1425 ctx->timestamp = now; 1426 } 1427 1428 static u64 perf_event_time(struct perf_event *event) 1429 { 1430 struct perf_event_context *ctx = event->ctx; 1431 1432 if (is_cgroup_event(event)) 1433 return perf_cgroup_event_time(event); 1434 1435 return ctx ? ctx->time : 0; 1436 } 1437 1438 static enum event_type_t get_event_type(struct perf_event *event) 1439 { 1440 struct perf_event_context *ctx = event->ctx; 1441 enum event_type_t event_type; 1442 1443 lockdep_assert_held(&ctx->lock); 1444 1445 /* 1446 * It's 'group type', really, because if our group leader is 1447 * pinned, so are we. 1448 */ 1449 if (event->group_leader != event) 1450 event = event->group_leader; 1451 1452 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1453 if (!ctx->task) 1454 event_type |= EVENT_CPU; 1455 1456 return event_type; 1457 } 1458 1459 static struct list_head * 1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1461 { 1462 if (event->attr.pinned) 1463 return &ctx->pinned_groups; 1464 else 1465 return &ctx->flexible_groups; 1466 } 1467 1468 /* 1469 * Add a event from the lists for its context. 1470 * Must be called with ctx->mutex and ctx->lock held. 1471 */ 1472 static void 1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1474 { 1475 lockdep_assert_held(&ctx->lock); 1476 1477 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1478 event->attach_state |= PERF_ATTACH_CONTEXT; 1479 1480 event->tstamp = perf_event_time(event); 1481 1482 /* 1483 * If we're a stand alone event or group leader, we go to the context 1484 * list, group events are kept attached to the group so that 1485 * perf_group_detach can, at all times, locate all siblings. 1486 */ 1487 if (event->group_leader == event) { 1488 struct list_head *list; 1489 1490 event->group_caps = event->event_caps; 1491 1492 list = ctx_group_list(event, ctx); 1493 list_add_tail(&event->group_entry, list); 1494 } 1495 1496 list_update_cgroup_event(event, ctx, true); 1497 1498 list_add_rcu(&event->event_entry, &ctx->event_list); 1499 ctx->nr_events++; 1500 if (event->attr.inherit_stat) 1501 ctx->nr_stat++; 1502 1503 ctx->generation++; 1504 } 1505 1506 /* 1507 * Initialize event state based on the perf_event_attr::disabled. 1508 */ 1509 static inline void perf_event__state_init(struct perf_event *event) 1510 { 1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1512 PERF_EVENT_STATE_INACTIVE; 1513 } 1514 1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1516 { 1517 int entry = sizeof(u64); /* value */ 1518 int size = 0; 1519 int nr = 1; 1520 1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1522 size += sizeof(u64); 1523 1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1525 size += sizeof(u64); 1526 1527 if (event->attr.read_format & PERF_FORMAT_ID) 1528 entry += sizeof(u64); 1529 1530 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1531 nr += nr_siblings; 1532 size += sizeof(u64); 1533 } 1534 1535 size += entry * nr; 1536 event->read_size = size; 1537 } 1538 1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1540 { 1541 struct perf_sample_data *data; 1542 u16 size = 0; 1543 1544 if (sample_type & PERF_SAMPLE_IP) 1545 size += sizeof(data->ip); 1546 1547 if (sample_type & PERF_SAMPLE_ADDR) 1548 size += sizeof(data->addr); 1549 1550 if (sample_type & PERF_SAMPLE_PERIOD) 1551 size += sizeof(data->period); 1552 1553 if (sample_type & PERF_SAMPLE_WEIGHT) 1554 size += sizeof(data->weight); 1555 1556 if (sample_type & PERF_SAMPLE_READ) 1557 size += event->read_size; 1558 1559 if (sample_type & PERF_SAMPLE_DATA_SRC) 1560 size += sizeof(data->data_src.val); 1561 1562 if (sample_type & PERF_SAMPLE_TRANSACTION) 1563 size += sizeof(data->txn); 1564 1565 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1566 size += sizeof(data->phys_addr); 1567 1568 event->header_size = size; 1569 } 1570 1571 /* 1572 * Called at perf_event creation and when events are attached/detached from a 1573 * group. 1574 */ 1575 static void perf_event__header_size(struct perf_event *event) 1576 { 1577 __perf_event_read_size(event, 1578 event->group_leader->nr_siblings); 1579 __perf_event_header_size(event, event->attr.sample_type); 1580 } 1581 1582 static void perf_event__id_header_size(struct perf_event *event) 1583 { 1584 struct perf_sample_data *data; 1585 u64 sample_type = event->attr.sample_type; 1586 u16 size = 0; 1587 1588 if (sample_type & PERF_SAMPLE_TID) 1589 size += sizeof(data->tid_entry); 1590 1591 if (sample_type & PERF_SAMPLE_TIME) 1592 size += sizeof(data->time); 1593 1594 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1595 size += sizeof(data->id); 1596 1597 if (sample_type & PERF_SAMPLE_ID) 1598 size += sizeof(data->id); 1599 1600 if (sample_type & PERF_SAMPLE_STREAM_ID) 1601 size += sizeof(data->stream_id); 1602 1603 if (sample_type & PERF_SAMPLE_CPU) 1604 size += sizeof(data->cpu_entry); 1605 1606 event->id_header_size = size; 1607 } 1608 1609 static bool perf_event_validate_size(struct perf_event *event) 1610 { 1611 /* 1612 * The values computed here will be over-written when we actually 1613 * attach the event. 1614 */ 1615 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1616 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1617 perf_event__id_header_size(event); 1618 1619 /* 1620 * Sum the lot; should not exceed the 64k limit we have on records. 1621 * Conservative limit to allow for callchains and other variable fields. 1622 */ 1623 if (event->read_size + event->header_size + 1624 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1625 return false; 1626 1627 return true; 1628 } 1629 1630 static void perf_group_attach(struct perf_event *event) 1631 { 1632 struct perf_event *group_leader = event->group_leader, *pos; 1633 1634 lockdep_assert_held(&event->ctx->lock); 1635 1636 /* 1637 * We can have double attach due to group movement in perf_event_open. 1638 */ 1639 if (event->attach_state & PERF_ATTACH_GROUP) 1640 return; 1641 1642 event->attach_state |= PERF_ATTACH_GROUP; 1643 1644 if (group_leader == event) 1645 return; 1646 1647 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1648 1649 group_leader->group_caps &= event->event_caps; 1650 1651 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1652 group_leader->nr_siblings++; 1653 1654 perf_event__header_size(group_leader); 1655 1656 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1657 perf_event__header_size(pos); 1658 } 1659 1660 /* 1661 * Remove a event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 WARN_ON_ONCE(event->ctx != ctx); 1668 lockdep_assert_held(&ctx->lock); 1669 1670 /* 1671 * We can have double detach due to exit/hot-unplug + close. 1672 */ 1673 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1674 return; 1675 1676 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1677 1678 list_update_cgroup_event(event, ctx, false); 1679 1680 ctx->nr_events--; 1681 if (event->attr.inherit_stat) 1682 ctx->nr_stat--; 1683 1684 list_del_rcu(&event->event_entry); 1685 1686 if (event->group_leader == event) 1687 list_del_init(&event->group_entry); 1688 1689 /* 1690 * If event was in error state, then keep it 1691 * that way, otherwise bogus counts will be 1692 * returned on read(). The only way to get out 1693 * of error state is by explicit re-enabling 1694 * of the event 1695 */ 1696 if (event->state > PERF_EVENT_STATE_OFF) 1697 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1698 1699 ctx->generation++; 1700 } 1701 1702 static void perf_group_detach(struct perf_event *event) 1703 { 1704 struct perf_event *sibling, *tmp; 1705 struct list_head *list = NULL; 1706 1707 lockdep_assert_held(&event->ctx->lock); 1708 1709 /* 1710 * We can have double detach due to exit/hot-unplug + close. 1711 */ 1712 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1713 return; 1714 1715 event->attach_state &= ~PERF_ATTACH_GROUP; 1716 1717 /* 1718 * If this is a sibling, remove it from its group. 1719 */ 1720 if (event->group_leader != event) { 1721 list_del_init(&event->group_entry); 1722 event->group_leader->nr_siblings--; 1723 goto out; 1724 } 1725 1726 if (!list_empty(&event->group_entry)) 1727 list = &event->group_entry; 1728 1729 /* 1730 * If this was a group event with sibling events then 1731 * upgrade the siblings to singleton events by adding them 1732 * to whatever list we are on. 1733 */ 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1735 if (list) 1736 list_move_tail(&sibling->group_entry, list); 1737 sibling->group_leader = sibling; 1738 1739 /* Inherit group flags from the previous leader */ 1740 sibling->group_caps = event->group_caps; 1741 1742 WARN_ON_ONCE(sibling->ctx != event->ctx); 1743 } 1744 1745 out: 1746 perf_event__header_size(event->group_leader); 1747 1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1749 perf_event__header_size(tmp); 1750 } 1751 1752 static bool is_orphaned_event(struct perf_event *event) 1753 { 1754 return event->state == PERF_EVENT_STATE_DEAD; 1755 } 1756 1757 static inline int __pmu_filter_match(struct perf_event *event) 1758 { 1759 struct pmu *pmu = event->pmu; 1760 return pmu->filter_match ? pmu->filter_match(event) : 1; 1761 } 1762 1763 /* 1764 * Check whether we should attempt to schedule an event group based on 1765 * PMU-specific filtering. An event group can consist of HW and SW events, 1766 * potentially with a SW leader, so we must check all the filters, to 1767 * determine whether a group is schedulable: 1768 */ 1769 static inline int pmu_filter_match(struct perf_event *event) 1770 { 1771 struct perf_event *child; 1772 1773 if (!__pmu_filter_match(event)) 1774 return 0; 1775 1776 list_for_each_entry(child, &event->sibling_list, group_entry) { 1777 if (!__pmu_filter_match(child)) 1778 return 0; 1779 } 1780 1781 return 1; 1782 } 1783 1784 static inline int 1785 event_filter_match(struct perf_event *event) 1786 { 1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1788 perf_cgroup_match(event) && pmu_filter_match(event); 1789 } 1790 1791 static void 1792 event_sched_out(struct perf_event *event, 1793 struct perf_cpu_context *cpuctx, 1794 struct perf_event_context *ctx) 1795 { 1796 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1797 1798 WARN_ON_ONCE(event->ctx != ctx); 1799 lockdep_assert_held(&ctx->lock); 1800 1801 if (event->state != PERF_EVENT_STATE_ACTIVE) 1802 return; 1803 1804 perf_pmu_disable(event->pmu); 1805 1806 event->pmu->del(event, 0); 1807 event->oncpu = -1; 1808 1809 if (event->pending_disable) { 1810 event->pending_disable = 0; 1811 state = PERF_EVENT_STATE_OFF; 1812 } 1813 perf_event_set_state(event, state); 1814 1815 if (!is_software_event(event)) 1816 cpuctx->active_oncpu--; 1817 if (!--ctx->nr_active) 1818 perf_event_ctx_deactivate(ctx); 1819 if (event->attr.freq && event->attr.sample_freq) 1820 ctx->nr_freq--; 1821 if (event->attr.exclusive || !cpuctx->active_oncpu) 1822 cpuctx->exclusive = 0; 1823 1824 perf_pmu_enable(event->pmu); 1825 } 1826 1827 static void 1828 group_sched_out(struct perf_event *group_event, 1829 struct perf_cpu_context *cpuctx, 1830 struct perf_event_context *ctx) 1831 { 1832 struct perf_event *event; 1833 1834 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 1835 return; 1836 1837 perf_pmu_disable(ctx->pmu); 1838 1839 event_sched_out(group_event, cpuctx, ctx); 1840 1841 /* 1842 * Schedule out siblings (if any): 1843 */ 1844 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1845 event_sched_out(event, cpuctx, ctx); 1846 1847 perf_pmu_enable(ctx->pmu); 1848 1849 if (group_event->attr.exclusive) 1850 cpuctx->exclusive = 0; 1851 } 1852 1853 #define DETACH_GROUP 0x01UL 1854 1855 /* 1856 * Cross CPU call to remove a performance event 1857 * 1858 * We disable the event on the hardware level first. After that we 1859 * remove it from the context list. 1860 */ 1861 static void 1862 __perf_remove_from_context(struct perf_event *event, 1863 struct perf_cpu_context *cpuctx, 1864 struct perf_event_context *ctx, 1865 void *info) 1866 { 1867 unsigned long flags = (unsigned long)info; 1868 1869 if (ctx->is_active & EVENT_TIME) { 1870 update_context_time(ctx); 1871 update_cgrp_time_from_cpuctx(cpuctx); 1872 } 1873 1874 event_sched_out(event, cpuctx, ctx); 1875 if (flags & DETACH_GROUP) 1876 perf_group_detach(event); 1877 list_del_event(event, ctx); 1878 1879 if (!ctx->nr_events && ctx->is_active) { 1880 ctx->is_active = 0; 1881 if (ctx->task) { 1882 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1883 cpuctx->task_ctx = NULL; 1884 } 1885 } 1886 } 1887 1888 /* 1889 * Remove the event from a task's (or a CPU's) list of events. 1890 * 1891 * If event->ctx is a cloned context, callers must make sure that 1892 * every task struct that event->ctx->task could possibly point to 1893 * remains valid. This is OK when called from perf_release since 1894 * that only calls us on the top-level context, which can't be a clone. 1895 * When called from perf_event_exit_task, it's OK because the 1896 * context has been detached from its task. 1897 */ 1898 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1899 { 1900 struct perf_event_context *ctx = event->ctx; 1901 1902 lockdep_assert_held(&ctx->mutex); 1903 1904 event_function_call(event, __perf_remove_from_context, (void *)flags); 1905 1906 /* 1907 * The above event_function_call() can NO-OP when it hits 1908 * TASK_TOMBSTONE. In that case we must already have been detached 1909 * from the context (by perf_event_exit_event()) but the grouping 1910 * might still be in-tact. 1911 */ 1912 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1913 if ((flags & DETACH_GROUP) && 1914 (event->attach_state & PERF_ATTACH_GROUP)) { 1915 /* 1916 * Since in that case we cannot possibly be scheduled, simply 1917 * detach now. 1918 */ 1919 raw_spin_lock_irq(&ctx->lock); 1920 perf_group_detach(event); 1921 raw_spin_unlock_irq(&ctx->lock); 1922 } 1923 } 1924 1925 /* 1926 * Cross CPU call to disable a performance event 1927 */ 1928 static void __perf_event_disable(struct perf_event *event, 1929 struct perf_cpu_context *cpuctx, 1930 struct perf_event_context *ctx, 1931 void *info) 1932 { 1933 if (event->state < PERF_EVENT_STATE_INACTIVE) 1934 return; 1935 1936 if (ctx->is_active & EVENT_TIME) { 1937 update_context_time(ctx); 1938 update_cgrp_time_from_event(event); 1939 } 1940 1941 if (event == event->group_leader) 1942 group_sched_out(event, cpuctx, ctx); 1943 else 1944 event_sched_out(event, cpuctx, ctx); 1945 1946 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1947 } 1948 1949 /* 1950 * Disable a event. 1951 * 1952 * If event->ctx is a cloned context, callers must make sure that 1953 * every task struct that event->ctx->task could possibly point to 1954 * remains valid. This condition is satisifed when called through 1955 * perf_event_for_each_child or perf_event_for_each because they 1956 * hold the top-level event's child_mutex, so any descendant that 1957 * goes to exit will block in perf_event_exit_event(). 1958 * 1959 * When called from perf_pending_event it's OK because event->ctx 1960 * is the current context on this CPU and preemption is disabled, 1961 * hence we can't get into perf_event_task_sched_out for this context. 1962 */ 1963 static void _perf_event_disable(struct perf_event *event) 1964 { 1965 struct perf_event_context *ctx = event->ctx; 1966 1967 raw_spin_lock_irq(&ctx->lock); 1968 if (event->state <= PERF_EVENT_STATE_OFF) { 1969 raw_spin_unlock_irq(&ctx->lock); 1970 return; 1971 } 1972 raw_spin_unlock_irq(&ctx->lock); 1973 1974 event_function_call(event, __perf_event_disable, NULL); 1975 } 1976 1977 void perf_event_disable_local(struct perf_event *event) 1978 { 1979 event_function_local(event, __perf_event_disable, NULL); 1980 } 1981 1982 /* 1983 * Strictly speaking kernel users cannot create groups and therefore this 1984 * interface does not need the perf_event_ctx_lock() magic. 1985 */ 1986 void perf_event_disable(struct perf_event *event) 1987 { 1988 struct perf_event_context *ctx; 1989 1990 ctx = perf_event_ctx_lock(event); 1991 _perf_event_disable(event); 1992 perf_event_ctx_unlock(event, ctx); 1993 } 1994 EXPORT_SYMBOL_GPL(perf_event_disable); 1995 1996 void perf_event_disable_inatomic(struct perf_event *event) 1997 { 1998 event->pending_disable = 1; 1999 irq_work_queue(&event->pending); 2000 } 2001 2002 static void perf_set_shadow_time(struct perf_event *event, 2003 struct perf_event_context *ctx) 2004 { 2005 /* 2006 * use the correct time source for the time snapshot 2007 * 2008 * We could get by without this by leveraging the 2009 * fact that to get to this function, the caller 2010 * has most likely already called update_context_time() 2011 * and update_cgrp_time_xx() and thus both timestamp 2012 * are identical (or very close). Given that tstamp is, 2013 * already adjusted for cgroup, we could say that: 2014 * tstamp - ctx->timestamp 2015 * is equivalent to 2016 * tstamp - cgrp->timestamp. 2017 * 2018 * Then, in perf_output_read(), the calculation would 2019 * work with no changes because: 2020 * - event is guaranteed scheduled in 2021 * - no scheduled out in between 2022 * - thus the timestamp would be the same 2023 * 2024 * But this is a bit hairy. 2025 * 2026 * So instead, we have an explicit cgroup call to remain 2027 * within the time time source all along. We believe it 2028 * is cleaner and simpler to understand. 2029 */ 2030 if (is_cgroup_event(event)) 2031 perf_cgroup_set_shadow_time(event, event->tstamp); 2032 else 2033 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2034 } 2035 2036 #define MAX_INTERRUPTS (~0ULL) 2037 2038 static void perf_log_throttle(struct perf_event *event, int enable); 2039 static void perf_log_itrace_start(struct perf_event *event); 2040 2041 static int 2042 event_sched_in(struct perf_event *event, 2043 struct perf_cpu_context *cpuctx, 2044 struct perf_event_context *ctx) 2045 { 2046 int ret = 0; 2047 2048 lockdep_assert_held(&ctx->lock); 2049 2050 if (event->state <= PERF_EVENT_STATE_OFF) 2051 return 0; 2052 2053 WRITE_ONCE(event->oncpu, smp_processor_id()); 2054 /* 2055 * Order event::oncpu write to happen before the ACTIVE state is 2056 * visible. This allows perf_event_{stop,read}() to observe the correct 2057 * ->oncpu if it sees ACTIVE. 2058 */ 2059 smp_wmb(); 2060 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2061 2062 /* 2063 * Unthrottle events, since we scheduled we might have missed several 2064 * ticks already, also for a heavily scheduling task there is little 2065 * guarantee it'll get a tick in a timely manner. 2066 */ 2067 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2068 perf_log_throttle(event, 1); 2069 event->hw.interrupts = 0; 2070 } 2071 2072 perf_pmu_disable(event->pmu); 2073 2074 perf_set_shadow_time(event, ctx); 2075 2076 perf_log_itrace_start(event); 2077 2078 if (event->pmu->add(event, PERF_EF_START)) { 2079 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2080 event->oncpu = -1; 2081 ret = -EAGAIN; 2082 goto out; 2083 } 2084 2085 if (!is_software_event(event)) 2086 cpuctx->active_oncpu++; 2087 if (!ctx->nr_active++) 2088 perf_event_ctx_activate(ctx); 2089 if (event->attr.freq && event->attr.sample_freq) 2090 ctx->nr_freq++; 2091 2092 if (event->attr.exclusive) 2093 cpuctx->exclusive = 1; 2094 2095 out: 2096 perf_pmu_enable(event->pmu); 2097 2098 return ret; 2099 } 2100 2101 static int 2102 group_sched_in(struct perf_event *group_event, 2103 struct perf_cpu_context *cpuctx, 2104 struct perf_event_context *ctx) 2105 { 2106 struct perf_event *event, *partial_group = NULL; 2107 struct pmu *pmu = ctx->pmu; 2108 2109 if (group_event->state == PERF_EVENT_STATE_OFF) 2110 return 0; 2111 2112 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2113 2114 if (event_sched_in(group_event, cpuctx, ctx)) { 2115 pmu->cancel_txn(pmu); 2116 perf_mux_hrtimer_restart(cpuctx); 2117 return -EAGAIN; 2118 } 2119 2120 /* 2121 * Schedule in siblings as one group (if any): 2122 */ 2123 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2124 if (event_sched_in(event, cpuctx, ctx)) { 2125 partial_group = event; 2126 goto group_error; 2127 } 2128 } 2129 2130 if (!pmu->commit_txn(pmu)) 2131 return 0; 2132 2133 group_error: 2134 /* 2135 * Groups can be scheduled in as one unit only, so undo any 2136 * partial group before returning: 2137 * The events up to the failed event are scheduled out normally. 2138 */ 2139 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2140 if (event == partial_group) 2141 break; 2142 2143 event_sched_out(event, cpuctx, ctx); 2144 } 2145 event_sched_out(group_event, cpuctx, ctx); 2146 2147 pmu->cancel_txn(pmu); 2148 2149 perf_mux_hrtimer_restart(cpuctx); 2150 2151 return -EAGAIN; 2152 } 2153 2154 /* 2155 * Work out whether we can put this event group on the CPU now. 2156 */ 2157 static int group_can_go_on(struct perf_event *event, 2158 struct perf_cpu_context *cpuctx, 2159 int can_add_hw) 2160 { 2161 /* 2162 * Groups consisting entirely of software events can always go on. 2163 */ 2164 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2165 return 1; 2166 /* 2167 * If an exclusive group is already on, no other hardware 2168 * events can go on. 2169 */ 2170 if (cpuctx->exclusive) 2171 return 0; 2172 /* 2173 * If this group is exclusive and there are already 2174 * events on the CPU, it can't go on. 2175 */ 2176 if (event->attr.exclusive && cpuctx->active_oncpu) 2177 return 0; 2178 /* 2179 * Otherwise, try to add it if all previous groups were able 2180 * to go on. 2181 */ 2182 return can_add_hw; 2183 } 2184 2185 static void add_event_to_ctx(struct perf_event *event, 2186 struct perf_event_context *ctx) 2187 { 2188 list_add_event(event, ctx); 2189 perf_group_attach(event); 2190 } 2191 2192 static void ctx_sched_out(struct perf_event_context *ctx, 2193 struct perf_cpu_context *cpuctx, 2194 enum event_type_t event_type); 2195 static void 2196 ctx_sched_in(struct perf_event_context *ctx, 2197 struct perf_cpu_context *cpuctx, 2198 enum event_type_t event_type, 2199 struct task_struct *task); 2200 2201 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2202 struct perf_event_context *ctx, 2203 enum event_type_t event_type) 2204 { 2205 if (!cpuctx->task_ctx) 2206 return; 2207 2208 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2209 return; 2210 2211 ctx_sched_out(ctx, cpuctx, event_type); 2212 } 2213 2214 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2215 struct perf_event_context *ctx, 2216 struct task_struct *task) 2217 { 2218 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2219 if (ctx) 2220 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2221 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2222 if (ctx) 2223 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2224 } 2225 2226 /* 2227 * We want to maintain the following priority of scheduling: 2228 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2229 * - task pinned (EVENT_PINNED) 2230 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2231 * - task flexible (EVENT_FLEXIBLE). 2232 * 2233 * In order to avoid unscheduling and scheduling back in everything every 2234 * time an event is added, only do it for the groups of equal priority and 2235 * below. 2236 * 2237 * This can be called after a batch operation on task events, in which case 2238 * event_type is a bit mask of the types of events involved. For CPU events, 2239 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2240 */ 2241 static void ctx_resched(struct perf_cpu_context *cpuctx, 2242 struct perf_event_context *task_ctx, 2243 enum event_type_t event_type) 2244 { 2245 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2246 bool cpu_event = !!(event_type & EVENT_CPU); 2247 2248 /* 2249 * If pinned groups are involved, flexible groups also need to be 2250 * scheduled out. 2251 */ 2252 if (event_type & EVENT_PINNED) 2253 event_type |= EVENT_FLEXIBLE; 2254 2255 perf_pmu_disable(cpuctx->ctx.pmu); 2256 if (task_ctx) 2257 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2258 2259 /* 2260 * Decide which cpu ctx groups to schedule out based on the types 2261 * of events that caused rescheduling: 2262 * - EVENT_CPU: schedule out corresponding groups; 2263 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2264 * - otherwise, do nothing more. 2265 */ 2266 if (cpu_event) 2267 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2268 else if (ctx_event_type & EVENT_PINNED) 2269 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2270 2271 perf_event_sched_in(cpuctx, task_ctx, current); 2272 perf_pmu_enable(cpuctx->ctx.pmu); 2273 } 2274 2275 /* 2276 * Cross CPU call to install and enable a performance event 2277 * 2278 * Very similar to remote_function() + event_function() but cannot assume that 2279 * things like ctx->is_active and cpuctx->task_ctx are set. 2280 */ 2281 static int __perf_install_in_context(void *info) 2282 { 2283 struct perf_event *event = info; 2284 struct perf_event_context *ctx = event->ctx; 2285 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2286 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2287 bool reprogram = true; 2288 int ret = 0; 2289 2290 raw_spin_lock(&cpuctx->ctx.lock); 2291 if (ctx->task) { 2292 raw_spin_lock(&ctx->lock); 2293 task_ctx = ctx; 2294 2295 reprogram = (ctx->task == current); 2296 2297 /* 2298 * If the task is running, it must be running on this CPU, 2299 * otherwise we cannot reprogram things. 2300 * 2301 * If its not running, we don't care, ctx->lock will 2302 * serialize against it becoming runnable. 2303 */ 2304 if (task_curr(ctx->task) && !reprogram) { 2305 ret = -ESRCH; 2306 goto unlock; 2307 } 2308 2309 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2310 } else if (task_ctx) { 2311 raw_spin_lock(&task_ctx->lock); 2312 } 2313 2314 if (reprogram) { 2315 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2316 add_event_to_ctx(event, ctx); 2317 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2318 } else { 2319 add_event_to_ctx(event, ctx); 2320 } 2321 2322 unlock: 2323 perf_ctx_unlock(cpuctx, task_ctx); 2324 2325 return ret; 2326 } 2327 2328 /* 2329 * Attach a performance event to a context. 2330 * 2331 * Very similar to event_function_call, see comment there. 2332 */ 2333 static void 2334 perf_install_in_context(struct perf_event_context *ctx, 2335 struct perf_event *event, 2336 int cpu) 2337 { 2338 struct task_struct *task = READ_ONCE(ctx->task); 2339 2340 lockdep_assert_held(&ctx->mutex); 2341 2342 if (event->cpu != -1) 2343 event->cpu = cpu; 2344 2345 /* 2346 * Ensures that if we can observe event->ctx, both the event and ctx 2347 * will be 'complete'. See perf_iterate_sb_cpu(). 2348 */ 2349 smp_store_release(&event->ctx, ctx); 2350 2351 if (!task) { 2352 cpu_function_call(cpu, __perf_install_in_context, event); 2353 return; 2354 } 2355 2356 /* 2357 * Should not happen, we validate the ctx is still alive before calling. 2358 */ 2359 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2360 return; 2361 2362 /* 2363 * Installing events is tricky because we cannot rely on ctx->is_active 2364 * to be set in case this is the nr_events 0 -> 1 transition. 2365 * 2366 * Instead we use task_curr(), which tells us if the task is running. 2367 * However, since we use task_curr() outside of rq::lock, we can race 2368 * against the actual state. This means the result can be wrong. 2369 * 2370 * If we get a false positive, we retry, this is harmless. 2371 * 2372 * If we get a false negative, things are complicated. If we are after 2373 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2374 * value must be correct. If we're before, it doesn't matter since 2375 * perf_event_context_sched_in() will program the counter. 2376 * 2377 * However, this hinges on the remote context switch having observed 2378 * our task->perf_event_ctxp[] store, such that it will in fact take 2379 * ctx::lock in perf_event_context_sched_in(). 2380 * 2381 * We do this by task_function_call(), if the IPI fails to hit the task 2382 * we know any future context switch of task must see the 2383 * perf_event_ctpx[] store. 2384 */ 2385 2386 /* 2387 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2388 * task_cpu() load, such that if the IPI then does not find the task 2389 * running, a future context switch of that task must observe the 2390 * store. 2391 */ 2392 smp_mb(); 2393 again: 2394 if (!task_function_call(task, __perf_install_in_context, event)) 2395 return; 2396 2397 raw_spin_lock_irq(&ctx->lock); 2398 task = ctx->task; 2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2400 /* 2401 * Cannot happen because we already checked above (which also 2402 * cannot happen), and we hold ctx->mutex, which serializes us 2403 * against perf_event_exit_task_context(). 2404 */ 2405 raw_spin_unlock_irq(&ctx->lock); 2406 return; 2407 } 2408 /* 2409 * If the task is not running, ctx->lock will avoid it becoming so, 2410 * thus we can safely install the event. 2411 */ 2412 if (task_curr(task)) { 2413 raw_spin_unlock_irq(&ctx->lock); 2414 goto again; 2415 } 2416 add_event_to_ctx(event, ctx); 2417 raw_spin_unlock_irq(&ctx->lock); 2418 } 2419 2420 /* 2421 * Cross CPU call to enable a performance event 2422 */ 2423 static void __perf_event_enable(struct perf_event *event, 2424 struct perf_cpu_context *cpuctx, 2425 struct perf_event_context *ctx, 2426 void *info) 2427 { 2428 struct perf_event *leader = event->group_leader; 2429 struct perf_event_context *task_ctx; 2430 2431 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2432 event->state <= PERF_EVENT_STATE_ERROR) 2433 return; 2434 2435 if (ctx->is_active) 2436 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2437 2438 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2439 2440 if (!ctx->is_active) 2441 return; 2442 2443 if (!event_filter_match(event)) { 2444 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2445 return; 2446 } 2447 2448 /* 2449 * If the event is in a group and isn't the group leader, 2450 * then don't put it on unless the group is on. 2451 */ 2452 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2453 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2454 return; 2455 } 2456 2457 task_ctx = cpuctx->task_ctx; 2458 if (ctx->task) 2459 WARN_ON_ONCE(task_ctx != ctx); 2460 2461 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2462 } 2463 2464 /* 2465 * Enable a event. 2466 * 2467 * If event->ctx is a cloned context, callers must make sure that 2468 * every task struct that event->ctx->task could possibly point to 2469 * remains valid. This condition is satisfied when called through 2470 * perf_event_for_each_child or perf_event_for_each as described 2471 * for perf_event_disable. 2472 */ 2473 static void _perf_event_enable(struct perf_event *event) 2474 { 2475 struct perf_event_context *ctx = event->ctx; 2476 2477 raw_spin_lock_irq(&ctx->lock); 2478 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2479 event->state < PERF_EVENT_STATE_ERROR) { 2480 raw_spin_unlock_irq(&ctx->lock); 2481 return; 2482 } 2483 2484 /* 2485 * If the event is in error state, clear that first. 2486 * 2487 * That way, if we see the event in error state below, we know that it 2488 * has gone back into error state, as distinct from the task having 2489 * been scheduled away before the cross-call arrived. 2490 */ 2491 if (event->state == PERF_EVENT_STATE_ERROR) 2492 event->state = PERF_EVENT_STATE_OFF; 2493 raw_spin_unlock_irq(&ctx->lock); 2494 2495 event_function_call(event, __perf_event_enable, NULL); 2496 } 2497 2498 /* 2499 * See perf_event_disable(); 2500 */ 2501 void perf_event_enable(struct perf_event *event) 2502 { 2503 struct perf_event_context *ctx; 2504 2505 ctx = perf_event_ctx_lock(event); 2506 _perf_event_enable(event); 2507 perf_event_ctx_unlock(event, ctx); 2508 } 2509 EXPORT_SYMBOL_GPL(perf_event_enable); 2510 2511 struct stop_event_data { 2512 struct perf_event *event; 2513 unsigned int restart; 2514 }; 2515 2516 static int __perf_event_stop(void *info) 2517 { 2518 struct stop_event_data *sd = info; 2519 struct perf_event *event = sd->event; 2520 2521 /* if it's already INACTIVE, do nothing */ 2522 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2523 return 0; 2524 2525 /* matches smp_wmb() in event_sched_in() */ 2526 smp_rmb(); 2527 2528 /* 2529 * There is a window with interrupts enabled before we get here, 2530 * so we need to check again lest we try to stop another CPU's event. 2531 */ 2532 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2533 return -EAGAIN; 2534 2535 event->pmu->stop(event, PERF_EF_UPDATE); 2536 2537 /* 2538 * May race with the actual stop (through perf_pmu_output_stop()), 2539 * but it is only used for events with AUX ring buffer, and such 2540 * events will refuse to restart because of rb::aux_mmap_count==0, 2541 * see comments in perf_aux_output_begin(). 2542 * 2543 * Since this is happening on a event-local CPU, no trace is lost 2544 * while restarting. 2545 */ 2546 if (sd->restart) 2547 event->pmu->start(event, 0); 2548 2549 return 0; 2550 } 2551 2552 static int perf_event_stop(struct perf_event *event, int restart) 2553 { 2554 struct stop_event_data sd = { 2555 .event = event, 2556 .restart = restart, 2557 }; 2558 int ret = 0; 2559 2560 do { 2561 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2562 return 0; 2563 2564 /* matches smp_wmb() in event_sched_in() */ 2565 smp_rmb(); 2566 2567 /* 2568 * We only want to restart ACTIVE events, so if the event goes 2569 * inactive here (event->oncpu==-1), there's nothing more to do; 2570 * fall through with ret==-ENXIO. 2571 */ 2572 ret = cpu_function_call(READ_ONCE(event->oncpu), 2573 __perf_event_stop, &sd); 2574 } while (ret == -EAGAIN); 2575 2576 return ret; 2577 } 2578 2579 /* 2580 * In order to contain the amount of racy and tricky in the address filter 2581 * configuration management, it is a two part process: 2582 * 2583 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2584 * we update the addresses of corresponding vmas in 2585 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2586 * (p2) when an event is scheduled in (pmu::add), it calls 2587 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2588 * if the generation has changed since the previous call. 2589 * 2590 * If (p1) happens while the event is active, we restart it to force (p2). 2591 * 2592 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2593 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2594 * ioctl; 2595 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2596 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2597 * for reading; 2598 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2599 * of exec. 2600 */ 2601 void perf_event_addr_filters_sync(struct perf_event *event) 2602 { 2603 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2604 2605 if (!has_addr_filter(event)) 2606 return; 2607 2608 raw_spin_lock(&ifh->lock); 2609 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2610 event->pmu->addr_filters_sync(event); 2611 event->hw.addr_filters_gen = event->addr_filters_gen; 2612 } 2613 raw_spin_unlock(&ifh->lock); 2614 } 2615 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2616 2617 static int _perf_event_refresh(struct perf_event *event, int refresh) 2618 { 2619 /* 2620 * not supported on inherited events 2621 */ 2622 if (event->attr.inherit || !is_sampling_event(event)) 2623 return -EINVAL; 2624 2625 atomic_add(refresh, &event->event_limit); 2626 _perf_event_enable(event); 2627 2628 return 0; 2629 } 2630 2631 /* 2632 * See perf_event_disable() 2633 */ 2634 int perf_event_refresh(struct perf_event *event, int refresh) 2635 { 2636 struct perf_event_context *ctx; 2637 int ret; 2638 2639 ctx = perf_event_ctx_lock(event); 2640 ret = _perf_event_refresh(event, refresh); 2641 perf_event_ctx_unlock(event, ctx); 2642 2643 return ret; 2644 } 2645 EXPORT_SYMBOL_GPL(perf_event_refresh); 2646 2647 static void ctx_sched_out(struct perf_event_context *ctx, 2648 struct perf_cpu_context *cpuctx, 2649 enum event_type_t event_type) 2650 { 2651 int is_active = ctx->is_active; 2652 struct perf_event *event; 2653 2654 lockdep_assert_held(&ctx->lock); 2655 2656 if (likely(!ctx->nr_events)) { 2657 /* 2658 * See __perf_remove_from_context(). 2659 */ 2660 WARN_ON_ONCE(ctx->is_active); 2661 if (ctx->task) 2662 WARN_ON_ONCE(cpuctx->task_ctx); 2663 return; 2664 } 2665 2666 ctx->is_active &= ~event_type; 2667 if (!(ctx->is_active & EVENT_ALL)) 2668 ctx->is_active = 0; 2669 2670 if (ctx->task) { 2671 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2672 if (!ctx->is_active) 2673 cpuctx->task_ctx = NULL; 2674 } 2675 2676 /* 2677 * Always update time if it was set; not only when it changes. 2678 * Otherwise we can 'forget' to update time for any but the last 2679 * context we sched out. For example: 2680 * 2681 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2682 * ctx_sched_out(.event_type = EVENT_PINNED) 2683 * 2684 * would only update time for the pinned events. 2685 */ 2686 if (is_active & EVENT_TIME) { 2687 /* update (and stop) ctx time */ 2688 update_context_time(ctx); 2689 update_cgrp_time_from_cpuctx(cpuctx); 2690 } 2691 2692 is_active ^= ctx->is_active; /* changed bits */ 2693 2694 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2695 return; 2696 2697 perf_pmu_disable(ctx->pmu); 2698 if (is_active & EVENT_PINNED) { 2699 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2700 group_sched_out(event, cpuctx, ctx); 2701 } 2702 2703 if (is_active & EVENT_FLEXIBLE) { 2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2705 group_sched_out(event, cpuctx, ctx); 2706 } 2707 perf_pmu_enable(ctx->pmu); 2708 } 2709 2710 /* 2711 * Test whether two contexts are equivalent, i.e. whether they have both been 2712 * cloned from the same version of the same context. 2713 * 2714 * Equivalence is measured using a generation number in the context that is 2715 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2716 * and list_del_event(). 2717 */ 2718 static int context_equiv(struct perf_event_context *ctx1, 2719 struct perf_event_context *ctx2) 2720 { 2721 lockdep_assert_held(&ctx1->lock); 2722 lockdep_assert_held(&ctx2->lock); 2723 2724 /* Pinning disables the swap optimization */ 2725 if (ctx1->pin_count || ctx2->pin_count) 2726 return 0; 2727 2728 /* If ctx1 is the parent of ctx2 */ 2729 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2730 return 1; 2731 2732 /* If ctx2 is the parent of ctx1 */ 2733 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2734 return 1; 2735 2736 /* 2737 * If ctx1 and ctx2 have the same parent; we flatten the parent 2738 * hierarchy, see perf_event_init_context(). 2739 */ 2740 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2741 ctx1->parent_gen == ctx2->parent_gen) 2742 return 1; 2743 2744 /* Unmatched */ 2745 return 0; 2746 } 2747 2748 static void __perf_event_sync_stat(struct perf_event *event, 2749 struct perf_event *next_event) 2750 { 2751 u64 value; 2752 2753 if (!event->attr.inherit_stat) 2754 return; 2755 2756 /* 2757 * Update the event value, we cannot use perf_event_read() 2758 * because we're in the middle of a context switch and have IRQs 2759 * disabled, which upsets smp_call_function_single(), however 2760 * we know the event must be on the current CPU, therefore we 2761 * don't need to use it. 2762 */ 2763 if (event->state == PERF_EVENT_STATE_ACTIVE) 2764 event->pmu->read(event); 2765 2766 perf_event_update_time(event); 2767 2768 /* 2769 * In order to keep per-task stats reliable we need to flip the event 2770 * values when we flip the contexts. 2771 */ 2772 value = local64_read(&next_event->count); 2773 value = local64_xchg(&event->count, value); 2774 local64_set(&next_event->count, value); 2775 2776 swap(event->total_time_enabled, next_event->total_time_enabled); 2777 swap(event->total_time_running, next_event->total_time_running); 2778 2779 /* 2780 * Since we swizzled the values, update the user visible data too. 2781 */ 2782 perf_event_update_userpage(event); 2783 perf_event_update_userpage(next_event); 2784 } 2785 2786 static void perf_event_sync_stat(struct perf_event_context *ctx, 2787 struct perf_event_context *next_ctx) 2788 { 2789 struct perf_event *event, *next_event; 2790 2791 if (!ctx->nr_stat) 2792 return; 2793 2794 update_context_time(ctx); 2795 2796 event = list_first_entry(&ctx->event_list, 2797 struct perf_event, event_entry); 2798 2799 next_event = list_first_entry(&next_ctx->event_list, 2800 struct perf_event, event_entry); 2801 2802 while (&event->event_entry != &ctx->event_list && 2803 &next_event->event_entry != &next_ctx->event_list) { 2804 2805 __perf_event_sync_stat(event, next_event); 2806 2807 event = list_next_entry(event, event_entry); 2808 next_event = list_next_entry(next_event, event_entry); 2809 } 2810 } 2811 2812 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2813 struct task_struct *next) 2814 { 2815 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2816 struct perf_event_context *next_ctx; 2817 struct perf_event_context *parent, *next_parent; 2818 struct perf_cpu_context *cpuctx; 2819 int do_switch = 1; 2820 2821 if (likely(!ctx)) 2822 return; 2823 2824 cpuctx = __get_cpu_context(ctx); 2825 if (!cpuctx->task_ctx) 2826 return; 2827 2828 rcu_read_lock(); 2829 next_ctx = next->perf_event_ctxp[ctxn]; 2830 if (!next_ctx) 2831 goto unlock; 2832 2833 parent = rcu_dereference(ctx->parent_ctx); 2834 next_parent = rcu_dereference(next_ctx->parent_ctx); 2835 2836 /* If neither context have a parent context; they cannot be clones. */ 2837 if (!parent && !next_parent) 2838 goto unlock; 2839 2840 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2841 /* 2842 * Looks like the two contexts are clones, so we might be 2843 * able to optimize the context switch. We lock both 2844 * contexts and check that they are clones under the 2845 * lock (including re-checking that neither has been 2846 * uncloned in the meantime). It doesn't matter which 2847 * order we take the locks because no other cpu could 2848 * be trying to lock both of these tasks. 2849 */ 2850 raw_spin_lock(&ctx->lock); 2851 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2852 if (context_equiv(ctx, next_ctx)) { 2853 WRITE_ONCE(ctx->task, next); 2854 WRITE_ONCE(next_ctx->task, task); 2855 2856 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2857 2858 /* 2859 * RCU_INIT_POINTER here is safe because we've not 2860 * modified the ctx and the above modification of 2861 * ctx->task and ctx->task_ctx_data are immaterial 2862 * since those values are always verified under 2863 * ctx->lock which we're now holding. 2864 */ 2865 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2866 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2867 2868 do_switch = 0; 2869 2870 perf_event_sync_stat(ctx, next_ctx); 2871 } 2872 raw_spin_unlock(&next_ctx->lock); 2873 raw_spin_unlock(&ctx->lock); 2874 } 2875 unlock: 2876 rcu_read_unlock(); 2877 2878 if (do_switch) { 2879 raw_spin_lock(&ctx->lock); 2880 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2881 raw_spin_unlock(&ctx->lock); 2882 } 2883 } 2884 2885 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2886 2887 void perf_sched_cb_dec(struct pmu *pmu) 2888 { 2889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2890 2891 this_cpu_dec(perf_sched_cb_usages); 2892 2893 if (!--cpuctx->sched_cb_usage) 2894 list_del(&cpuctx->sched_cb_entry); 2895 } 2896 2897 2898 void perf_sched_cb_inc(struct pmu *pmu) 2899 { 2900 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2901 2902 if (!cpuctx->sched_cb_usage++) 2903 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2904 2905 this_cpu_inc(perf_sched_cb_usages); 2906 } 2907 2908 /* 2909 * This function provides the context switch callback to the lower code 2910 * layer. It is invoked ONLY when the context switch callback is enabled. 2911 * 2912 * This callback is relevant even to per-cpu events; for example multi event 2913 * PEBS requires this to provide PID/TID information. This requires we flush 2914 * all queued PEBS records before we context switch to a new task. 2915 */ 2916 static void perf_pmu_sched_task(struct task_struct *prev, 2917 struct task_struct *next, 2918 bool sched_in) 2919 { 2920 struct perf_cpu_context *cpuctx; 2921 struct pmu *pmu; 2922 2923 if (prev == next) 2924 return; 2925 2926 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2927 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2928 2929 if (WARN_ON_ONCE(!pmu->sched_task)) 2930 continue; 2931 2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2933 perf_pmu_disable(pmu); 2934 2935 pmu->sched_task(cpuctx->task_ctx, sched_in); 2936 2937 perf_pmu_enable(pmu); 2938 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2939 } 2940 } 2941 2942 static void perf_event_switch(struct task_struct *task, 2943 struct task_struct *next_prev, bool sched_in); 2944 2945 #define for_each_task_context_nr(ctxn) \ 2946 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2947 2948 /* 2949 * Called from scheduler to remove the events of the current task, 2950 * with interrupts disabled. 2951 * 2952 * We stop each event and update the event value in event->count. 2953 * 2954 * This does not protect us against NMI, but disable() 2955 * sets the disabled bit in the control field of event _before_ 2956 * accessing the event control register. If a NMI hits, then it will 2957 * not restart the event. 2958 */ 2959 void __perf_event_task_sched_out(struct task_struct *task, 2960 struct task_struct *next) 2961 { 2962 int ctxn; 2963 2964 if (__this_cpu_read(perf_sched_cb_usages)) 2965 perf_pmu_sched_task(task, next, false); 2966 2967 if (atomic_read(&nr_switch_events)) 2968 perf_event_switch(task, next, false); 2969 2970 for_each_task_context_nr(ctxn) 2971 perf_event_context_sched_out(task, ctxn, next); 2972 2973 /* 2974 * if cgroup events exist on this CPU, then we need 2975 * to check if we have to switch out PMU state. 2976 * cgroup event are system-wide mode only 2977 */ 2978 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2979 perf_cgroup_sched_out(task, next); 2980 } 2981 2982 /* 2983 * Called with IRQs disabled 2984 */ 2985 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2986 enum event_type_t event_type) 2987 { 2988 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2989 } 2990 2991 static void 2992 ctx_pinned_sched_in(struct perf_event_context *ctx, 2993 struct perf_cpu_context *cpuctx) 2994 { 2995 struct perf_event *event; 2996 2997 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2998 if (event->state <= PERF_EVENT_STATE_OFF) 2999 continue; 3000 if (!event_filter_match(event)) 3001 continue; 3002 3003 if (group_can_go_on(event, cpuctx, 1)) 3004 group_sched_in(event, cpuctx, ctx); 3005 3006 /* 3007 * If this pinned group hasn't been scheduled, 3008 * put it in error state. 3009 */ 3010 if (event->state == PERF_EVENT_STATE_INACTIVE) 3011 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3012 } 3013 } 3014 3015 static void 3016 ctx_flexible_sched_in(struct perf_event_context *ctx, 3017 struct perf_cpu_context *cpuctx) 3018 { 3019 struct perf_event *event; 3020 int can_add_hw = 1; 3021 3022 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3023 /* Ignore events in OFF or ERROR state */ 3024 if (event->state <= PERF_EVENT_STATE_OFF) 3025 continue; 3026 /* 3027 * Listen to the 'cpu' scheduling filter constraint 3028 * of events: 3029 */ 3030 if (!event_filter_match(event)) 3031 continue; 3032 3033 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3034 if (group_sched_in(event, cpuctx, ctx)) 3035 can_add_hw = 0; 3036 } 3037 } 3038 } 3039 3040 static void 3041 ctx_sched_in(struct perf_event_context *ctx, 3042 struct perf_cpu_context *cpuctx, 3043 enum event_type_t event_type, 3044 struct task_struct *task) 3045 { 3046 int is_active = ctx->is_active; 3047 u64 now; 3048 3049 lockdep_assert_held(&ctx->lock); 3050 3051 if (likely(!ctx->nr_events)) 3052 return; 3053 3054 ctx->is_active |= (event_type | EVENT_TIME); 3055 if (ctx->task) { 3056 if (!is_active) 3057 cpuctx->task_ctx = ctx; 3058 else 3059 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3060 } 3061 3062 is_active ^= ctx->is_active; /* changed bits */ 3063 3064 if (is_active & EVENT_TIME) { 3065 /* start ctx time */ 3066 now = perf_clock(); 3067 ctx->timestamp = now; 3068 perf_cgroup_set_timestamp(task, ctx); 3069 } 3070 3071 /* 3072 * First go through the list and put on any pinned groups 3073 * in order to give them the best chance of going on. 3074 */ 3075 if (is_active & EVENT_PINNED) 3076 ctx_pinned_sched_in(ctx, cpuctx); 3077 3078 /* Then walk through the lower prio flexible groups */ 3079 if (is_active & EVENT_FLEXIBLE) 3080 ctx_flexible_sched_in(ctx, cpuctx); 3081 } 3082 3083 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3084 enum event_type_t event_type, 3085 struct task_struct *task) 3086 { 3087 struct perf_event_context *ctx = &cpuctx->ctx; 3088 3089 ctx_sched_in(ctx, cpuctx, event_type, task); 3090 } 3091 3092 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3093 struct task_struct *task) 3094 { 3095 struct perf_cpu_context *cpuctx; 3096 3097 cpuctx = __get_cpu_context(ctx); 3098 if (cpuctx->task_ctx == ctx) 3099 return; 3100 3101 perf_ctx_lock(cpuctx, ctx); 3102 /* 3103 * We must check ctx->nr_events while holding ctx->lock, such 3104 * that we serialize against perf_install_in_context(). 3105 */ 3106 if (!ctx->nr_events) 3107 goto unlock; 3108 3109 perf_pmu_disable(ctx->pmu); 3110 /* 3111 * We want to keep the following priority order: 3112 * cpu pinned (that don't need to move), task pinned, 3113 * cpu flexible, task flexible. 3114 * 3115 * However, if task's ctx is not carrying any pinned 3116 * events, no need to flip the cpuctx's events around. 3117 */ 3118 if (!list_empty(&ctx->pinned_groups)) 3119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3120 perf_event_sched_in(cpuctx, ctx, task); 3121 perf_pmu_enable(ctx->pmu); 3122 3123 unlock: 3124 perf_ctx_unlock(cpuctx, ctx); 3125 } 3126 3127 /* 3128 * Called from scheduler to add the events of the current task 3129 * with interrupts disabled. 3130 * 3131 * We restore the event value and then enable it. 3132 * 3133 * This does not protect us against NMI, but enable() 3134 * sets the enabled bit in the control field of event _before_ 3135 * accessing the event control register. If a NMI hits, then it will 3136 * keep the event running. 3137 */ 3138 void __perf_event_task_sched_in(struct task_struct *prev, 3139 struct task_struct *task) 3140 { 3141 struct perf_event_context *ctx; 3142 int ctxn; 3143 3144 /* 3145 * If cgroup events exist on this CPU, then we need to check if we have 3146 * to switch in PMU state; cgroup event are system-wide mode only. 3147 * 3148 * Since cgroup events are CPU events, we must schedule these in before 3149 * we schedule in the task events. 3150 */ 3151 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3152 perf_cgroup_sched_in(prev, task); 3153 3154 for_each_task_context_nr(ctxn) { 3155 ctx = task->perf_event_ctxp[ctxn]; 3156 if (likely(!ctx)) 3157 continue; 3158 3159 perf_event_context_sched_in(ctx, task); 3160 } 3161 3162 if (atomic_read(&nr_switch_events)) 3163 perf_event_switch(task, prev, true); 3164 3165 if (__this_cpu_read(perf_sched_cb_usages)) 3166 perf_pmu_sched_task(prev, task, true); 3167 } 3168 3169 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3170 { 3171 u64 frequency = event->attr.sample_freq; 3172 u64 sec = NSEC_PER_SEC; 3173 u64 divisor, dividend; 3174 3175 int count_fls, nsec_fls, frequency_fls, sec_fls; 3176 3177 count_fls = fls64(count); 3178 nsec_fls = fls64(nsec); 3179 frequency_fls = fls64(frequency); 3180 sec_fls = 30; 3181 3182 /* 3183 * We got @count in @nsec, with a target of sample_freq HZ 3184 * the target period becomes: 3185 * 3186 * @count * 10^9 3187 * period = ------------------- 3188 * @nsec * sample_freq 3189 * 3190 */ 3191 3192 /* 3193 * Reduce accuracy by one bit such that @a and @b converge 3194 * to a similar magnitude. 3195 */ 3196 #define REDUCE_FLS(a, b) \ 3197 do { \ 3198 if (a##_fls > b##_fls) { \ 3199 a >>= 1; \ 3200 a##_fls--; \ 3201 } else { \ 3202 b >>= 1; \ 3203 b##_fls--; \ 3204 } \ 3205 } while (0) 3206 3207 /* 3208 * Reduce accuracy until either term fits in a u64, then proceed with 3209 * the other, so that finally we can do a u64/u64 division. 3210 */ 3211 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3212 REDUCE_FLS(nsec, frequency); 3213 REDUCE_FLS(sec, count); 3214 } 3215 3216 if (count_fls + sec_fls > 64) { 3217 divisor = nsec * frequency; 3218 3219 while (count_fls + sec_fls > 64) { 3220 REDUCE_FLS(count, sec); 3221 divisor >>= 1; 3222 } 3223 3224 dividend = count * sec; 3225 } else { 3226 dividend = count * sec; 3227 3228 while (nsec_fls + frequency_fls > 64) { 3229 REDUCE_FLS(nsec, frequency); 3230 dividend >>= 1; 3231 } 3232 3233 divisor = nsec * frequency; 3234 } 3235 3236 if (!divisor) 3237 return dividend; 3238 3239 return div64_u64(dividend, divisor); 3240 } 3241 3242 static DEFINE_PER_CPU(int, perf_throttled_count); 3243 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3244 3245 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3246 { 3247 struct hw_perf_event *hwc = &event->hw; 3248 s64 period, sample_period; 3249 s64 delta; 3250 3251 period = perf_calculate_period(event, nsec, count); 3252 3253 delta = (s64)(period - hwc->sample_period); 3254 delta = (delta + 7) / 8; /* low pass filter */ 3255 3256 sample_period = hwc->sample_period + delta; 3257 3258 if (!sample_period) 3259 sample_period = 1; 3260 3261 hwc->sample_period = sample_period; 3262 3263 if (local64_read(&hwc->period_left) > 8*sample_period) { 3264 if (disable) 3265 event->pmu->stop(event, PERF_EF_UPDATE); 3266 3267 local64_set(&hwc->period_left, 0); 3268 3269 if (disable) 3270 event->pmu->start(event, PERF_EF_RELOAD); 3271 } 3272 } 3273 3274 /* 3275 * combine freq adjustment with unthrottling to avoid two passes over the 3276 * events. At the same time, make sure, having freq events does not change 3277 * the rate of unthrottling as that would introduce bias. 3278 */ 3279 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3280 int needs_unthr) 3281 { 3282 struct perf_event *event; 3283 struct hw_perf_event *hwc; 3284 u64 now, period = TICK_NSEC; 3285 s64 delta; 3286 3287 /* 3288 * only need to iterate over all events iff: 3289 * - context have events in frequency mode (needs freq adjust) 3290 * - there are events to unthrottle on this cpu 3291 */ 3292 if (!(ctx->nr_freq || needs_unthr)) 3293 return; 3294 3295 raw_spin_lock(&ctx->lock); 3296 perf_pmu_disable(ctx->pmu); 3297 3298 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3299 if (event->state != PERF_EVENT_STATE_ACTIVE) 3300 continue; 3301 3302 if (!event_filter_match(event)) 3303 continue; 3304 3305 perf_pmu_disable(event->pmu); 3306 3307 hwc = &event->hw; 3308 3309 if (hwc->interrupts == MAX_INTERRUPTS) { 3310 hwc->interrupts = 0; 3311 perf_log_throttle(event, 1); 3312 event->pmu->start(event, 0); 3313 } 3314 3315 if (!event->attr.freq || !event->attr.sample_freq) 3316 goto next; 3317 3318 /* 3319 * stop the event and update event->count 3320 */ 3321 event->pmu->stop(event, PERF_EF_UPDATE); 3322 3323 now = local64_read(&event->count); 3324 delta = now - hwc->freq_count_stamp; 3325 hwc->freq_count_stamp = now; 3326 3327 /* 3328 * restart the event 3329 * reload only if value has changed 3330 * we have stopped the event so tell that 3331 * to perf_adjust_period() to avoid stopping it 3332 * twice. 3333 */ 3334 if (delta > 0) 3335 perf_adjust_period(event, period, delta, false); 3336 3337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3338 next: 3339 perf_pmu_enable(event->pmu); 3340 } 3341 3342 perf_pmu_enable(ctx->pmu); 3343 raw_spin_unlock(&ctx->lock); 3344 } 3345 3346 /* 3347 * Round-robin a context's events: 3348 */ 3349 static void rotate_ctx(struct perf_event_context *ctx) 3350 { 3351 /* 3352 * Rotate the first entry last of non-pinned groups. Rotation might be 3353 * disabled by the inheritance code. 3354 */ 3355 if (!ctx->rotate_disable) 3356 list_rotate_left(&ctx->flexible_groups); 3357 } 3358 3359 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3360 { 3361 struct perf_event_context *ctx = NULL; 3362 int rotate = 0; 3363 3364 if (cpuctx->ctx.nr_events) { 3365 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3366 rotate = 1; 3367 } 3368 3369 ctx = cpuctx->task_ctx; 3370 if (ctx && ctx->nr_events) { 3371 if (ctx->nr_events != ctx->nr_active) 3372 rotate = 1; 3373 } 3374 3375 if (!rotate) 3376 goto done; 3377 3378 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3379 perf_pmu_disable(cpuctx->ctx.pmu); 3380 3381 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3382 if (ctx) 3383 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3384 3385 rotate_ctx(&cpuctx->ctx); 3386 if (ctx) 3387 rotate_ctx(ctx); 3388 3389 perf_event_sched_in(cpuctx, ctx, current); 3390 3391 perf_pmu_enable(cpuctx->ctx.pmu); 3392 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3393 done: 3394 3395 return rotate; 3396 } 3397 3398 void perf_event_task_tick(void) 3399 { 3400 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3401 struct perf_event_context *ctx, *tmp; 3402 int throttled; 3403 3404 lockdep_assert_irqs_disabled(); 3405 3406 __this_cpu_inc(perf_throttled_seq); 3407 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3408 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3409 3410 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3411 perf_adjust_freq_unthr_context(ctx, throttled); 3412 } 3413 3414 static int event_enable_on_exec(struct perf_event *event, 3415 struct perf_event_context *ctx) 3416 { 3417 if (!event->attr.enable_on_exec) 3418 return 0; 3419 3420 event->attr.enable_on_exec = 0; 3421 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3422 return 0; 3423 3424 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3425 3426 return 1; 3427 } 3428 3429 /* 3430 * Enable all of a task's events that have been marked enable-on-exec. 3431 * This expects task == current. 3432 */ 3433 static void perf_event_enable_on_exec(int ctxn) 3434 { 3435 struct perf_event_context *ctx, *clone_ctx = NULL; 3436 enum event_type_t event_type = 0; 3437 struct perf_cpu_context *cpuctx; 3438 struct perf_event *event; 3439 unsigned long flags; 3440 int enabled = 0; 3441 3442 local_irq_save(flags); 3443 ctx = current->perf_event_ctxp[ctxn]; 3444 if (!ctx || !ctx->nr_events) 3445 goto out; 3446 3447 cpuctx = __get_cpu_context(ctx); 3448 perf_ctx_lock(cpuctx, ctx); 3449 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3450 list_for_each_entry(event, &ctx->event_list, event_entry) { 3451 enabled |= event_enable_on_exec(event, ctx); 3452 event_type |= get_event_type(event); 3453 } 3454 3455 /* 3456 * Unclone and reschedule this context if we enabled any event. 3457 */ 3458 if (enabled) { 3459 clone_ctx = unclone_ctx(ctx); 3460 ctx_resched(cpuctx, ctx, event_type); 3461 } else { 3462 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3463 } 3464 perf_ctx_unlock(cpuctx, ctx); 3465 3466 out: 3467 local_irq_restore(flags); 3468 3469 if (clone_ctx) 3470 put_ctx(clone_ctx); 3471 } 3472 3473 struct perf_read_data { 3474 struct perf_event *event; 3475 bool group; 3476 int ret; 3477 }; 3478 3479 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3480 { 3481 u16 local_pkg, event_pkg; 3482 3483 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3484 int local_cpu = smp_processor_id(); 3485 3486 event_pkg = topology_physical_package_id(event_cpu); 3487 local_pkg = topology_physical_package_id(local_cpu); 3488 3489 if (event_pkg == local_pkg) 3490 return local_cpu; 3491 } 3492 3493 return event_cpu; 3494 } 3495 3496 /* 3497 * Cross CPU call to read the hardware event 3498 */ 3499 static void __perf_event_read(void *info) 3500 { 3501 struct perf_read_data *data = info; 3502 struct perf_event *sub, *event = data->event; 3503 struct perf_event_context *ctx = event->ctx; 3504 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3505 struct pmu *pmu = event->pmu; 3506 3507 /* 3508 * If this is a task context, we need to check whether it is 3509 * the current task context of this cpu. If not it has been 3510 * scheduled out before the smp call arrived. In that case 3511 * event->count would have been updated to a recent sample 3512 * when the event was scheduled out. 3513 */ 3514 if (ctx->task && cpuctx->task_ctx != ctx) 3515 return; 3516 3517 raw_spin_lock(&ctx->lock); 3518 if (ctx->is_active & EVENT_TIME) { 3519 update_context_time(ctx); 3520 update_cgrp_time_from_event(event); 3521 } 3522 3523 perf_event_update_time(event); 3524 if (data->group) 3525 perf_event_update_sibling_time(event); 3526 3527 if (event->state != PERF_EVENT_STATE_ACTIVE) 3528 goto unlock; 3529 3530 if (!data->group) { 3531 pmu->read(event); 3532 data->ret = 0; 3533 goto unlock; 3534 } 3535 3536 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3537 3538 pmu->read(event); 3539 3540 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3541 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3542 /* 3543 * Use sibling's PMU rather than @event's since 3544 * sibling could be on different (eg: software) PMU. 3545 */ 3546 sub->pmu->read(sub); 3547 } 3548 } 3549 3550 data->ret = pmu->commit_txn(pmu); 3551 3552 unlock: 3553 raw_spin_unlock(&ctx->lock); 3554 } 3555 3556 static inline u64 perf_event_count(struct perf_event *event) 3557 { 3558 return local64_read(&event->count) + atomic64_read(&event->child_count); 3559 } 3560 3561 /* 3562 * NMI-safe method to read a local event, that is an event that 3563 * is: 3564 * - either for the current task, or for this CPU 3565 * - does not have inherit set, for inherited task events 3566 * will not be local and we cannot read them atomically 3567 * - must not have a pmu::count method 3568 */ 3569 int perf_event_read_local(struct perf_event *event, u64 *value, 3570 u64 *enabled, u64 *running) 3571 { 3572 unsigned long flags; 3573 int ret = 0; 3574 3575 /* 3576 * Disabling interrupts avoids all counter scheduling (context 3577 * switches, timer based rotation and IPIs). 3578 */ 3579 local_irq_save(flags); 3580 3581 /* 3582 * It must not be an event with inherit set, we cannot read 3583 * all child counters from atomic context. 3584 */ 3585 if (event->attr.inherit) { 3586 ret = -EOPNOTSUPP; 3587 goto out; 3588 } 3589 3590 /* If this is a per-task event, it must be for current */ 3591 if ((event->attach_state & PERF_ATTACH_TASK) && 3592 event->hw.target != current) { 3593 ret = -EINVAL; 3594 goto out; 3595 } 3596 3597 /* If this is a per-CPU event, it must be for this CPU */ 3598 if (!(event->attach_state & PERF_ATTACH_TASK) && 3599 event->cpu != smp_processor_id()) { 3600 ret = -EINVAL; 3601 goto out; 3602 } 3603 3604 /* 3605 * If the event is currently on this CPU, its either a per-task event, 3606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3607 * oncpu == -1). 3608 */ 3609 if (event->oncpu == smp_processor_id()) 3610 event->pmu->read(event); 3611 3612 *value = local64_read(&event->count); 3613 if (enabled || running) { 3614 u64 now = event->shadow_ctx_time + perf_clock(); 3615 u64 __enabled, __running; 3616 3617 __perf_update_times(event, now, &__enabled, &__running); 3618 if (enabled) 3619 *enabled = __enabled; 3620 if (running) 3621 *running = __running; 3622 } 3623 out: 3624 local_irq_restore(flags); 3625 3626 return ret; 3627 } 3628 3629 static int perf_event_read(struct perf_event *event, bool group) 3630 { 3631 enum perf_event_state state = READ_ONCE(event->state); 3632 int event_cpu, ret = 0; 3633 3634 /* 3635 * If event is enabled and currently active on a CPU, update the 3636 * value in the event structure: 3637 */ 3638 again: 3639 if (state == PERF_EVENT_STATE_ACTIVE) { 3640 struct perf_read_data data; 3641 3642 /* 3643 * Orders the ->state and ->oncpu loads such that if we see 3644 * ACTIVE we must also see the right ->oncpu. 3645 * 3646 * Matches the smp_wmb() from event_sched_in(). 3647 */ 3648 smp_rmb(); 3649 3650 event_cpu = READ_ONCE(event->oncpu); 3651 if ((unsigned)event_cpu >= nr_cpu_ids) 3652 return 0; 3653 3654 data = (struct perf_read_data){ 3655 .event = event, 3656 .group = group, 3657 .ret = 0, 3658 }; 3659 3660 preempt_disable(); 3661 event_cpu = __perf_event_read_cpu(event, event_cpu); 3662 3663 /* 3664 * Purposely ignore the smp_call_function_single() return 3665 * value. 3666 * 3667 * If event_cpu isn't a valid CPU it means the event got 3668 * scheduled out and that will have updated the event count. 3669 * 3670 * Therefore, either way, we'll have an up-to-date event count 3671 * after this. 3672 */ 3673 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3674 preempt_enable(); 3675 ret = data.ret; 3676 3677 } else if (state == PERF_EVENT_STATE_INACTIVE) { 3678 struct perf_event_context *ctx = event->ctx; 3679 unsigned long flags; 3680 3681 raw_spin_lock_irqsave(&ctx->lock, flags); 3682 state = event->state; 3683 if (state != PERF_EVENT_STATE_INACTIVE) { 3684 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3685 goto again; 3686 } 3687 3688 /* 3689 * May read while context is not active (e.g., thread is 3690 * blocked), in that case we cannot update context time 3691 */ 3692 if (ctx->is_active & EVENT_TIME) { 3693 update_context_time(ctx); 3694 update_cgrp_time_from_event(event); 3695 } 3696 3697 perf_event_update_time(event); 3698 if (group) 3699 perf_event_update_sibling_time(event); 3700 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3701 } 3702 3703 return ret; 3704 } 3705 3706 /* 3707 * Initialize the perf_event context in a task_struct: 3708 */ 3709 static void __perf_event_init_context(struct perf_event_context *ctx) 3710 { 3711 raw_spin_lock_init(&ctx->lock); 3712 mutex_init(&ctx->mutex); 3713 INIT_LIST_HEAD(&ctx->active_ctx_list); 3714 INIT_LIST_HEAD(&ctx->pinned_groups); 3715 INIT_LIST_HEAD(&ctx->flexible_groups); 3716 INIT_LIST_HEAD(&ctx->event_list); 3717 atomic_set(&ctx->refcount, 1); 3718 } 3719 3720 static struct perf_event_context * 3721 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3722 { 3723 struct perf_event_context *ctx; 3724 3725 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3726 if (!ctx) 3727 return NULL; 3728 3729 __perf_event_init_context(ctx); 3730 if (task) { 3731 ctx->task = task; 3732 get_task_struct(task); 3733 } 3734 ctx->pmu = pmu; 3735 3736 return ctx; 3737 } 3738 3739 static struct task_struct * 3740 find_lively_task_by_vpid(pid_t vpid) 3741 { 3742 struct task_struct *task; 3743 3744 rcu_read_lock(); 3745 if (!vpid) 3746 task = current; 3747 else 3748 task = find_task_by_vpid(vpid); 3749 if (task) 3750 get_task_struct(task); 3751 rcu_read_unlock(); 3752 3753 if (!task) 3754 return ERR_PTR(-ESRCH); 3755 3756 return task; 3757 } 3758 3759 /* 3760 * Returns a matching context with refcount and pincount. 3761 */ 3762 static struct perf_event_context * 3763 find_get_context(struct pmu *pmu, struct task_struct *task, 3764 struct perf_event *event) 3765 { 3766 struct perf_event_context *ctx, *clone_ctx = NULL; 3767 struct perf_cpu_context *cpuctx; 3768 void *task_ctx_data = NULL; 3769 unsigned long flags; 3770 int ctxn, err; 3771 int cpu = event->cpu; 3772 3773 if (!task) { 3774 /* Must be root to operate on a CPU event: */ 3775 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3776 return ERR_PTR(-EACCES); 3777 3778 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3779 ctx = &cpuctx->ctx; 3780 get_ctx(ctx); 3781 ++ctx->pin_count; 3782 3783 return ctx; 3784 } 3785 3786 err = -EINVAL; 3787 ctxn = pmu->task_ctx_nr; 3788 if (ctxn < 0) 3789 goto errout; 3790 3791 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3792 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3793 if (!task_ctx_data) { 3794 err = -ENOMEM; 3795 goto errout; 3796 } 3797 } 3798 3799 retry: 3800 ctx = perf_lock_task_context(task, ctxn, &flags); 3801 if (ctx) { 3802 clone_ctx = unclone_ctx(ctx); 3803 ++ctx->pin_count; 3804 3805 if (task_ctx_data && !ctx->task_ctx_data) { 3806 ctx->task_ctx_data = task_ctx_data; 3807 task_ctx_data = NULL; 3808 } 3809 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3810 3811 if (clone_ctx) 3812 put_ctx(clone_ctx); 3813 } else { 3814 ctx = alloc_perf_context(pmu, task); 3815 err = -ENOMEM; 3816 if (!ctx) 3817 goto errout; 3818 3819 if (task_ctx_data) { 3820 ctx->task_ctx_data = task_ctx_data; 3821 task_ctx_data = NULL; 3822 } 3823 3824 err = 0; 3825 mutex_lock(&task->perf_event_mutex); 3826 /* 3827 * If it has already passed perf_event_exit_task(). 3828 * we must see PF_EXITING, it takes this mutex too. 3829 */ 3830 if (task->flags & PF_EXITING) 3831 err = -ESRCH; 3832 else if (task->perf_event_ctxp[ctxn]) 3833 err = -EAGAIN; 3834 else { 3835 get_ctx(ctx); 3836 ++ctx->pin_count; 3837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3838 } 3839 mutex_unlock(&task->perf_event_mutex); 3840 3841 if (unlikely(err)) { 3842 put_ctx(ctx); 3843 3844 if (err == -EAGAIN) 3845 goto retry; 3846 goto errout; 3847 } 3848 } 3849 3850 kfree(task_ctx_data); 3851 return ctx; 3852 3853 errout: 3854 kfree(task_ctx_data); 3855 return ERR_PTR(err); 3856 } 3857 3858 static void perf_event_free_filter(struct perf_event *event); 3859 static void perf_event_free_bpf_prog(struct perf_event *event); 3860 3861 static void free_event_rcu(struct rcu_head *head) 3862 { 3863 struct perf_event *event; 3864 3865 event = container_of(head, struct perf_event, rcu_head); 3866 if (event->ns) 3867 put_pid_ns(event->ns); 3868 perf_event_free_filter(event); 3869 kfree(event); 3870 } 3871 3872 static void ring_buffer_attach(struct perf_event *event, 3873 struct ring_buffer *rb); 3874 3875 static void detach_sb_event(struct perf_event *event) 3876 { 3877 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3878 3879 raw_spin_lock(&pel->lock); 3880 list_del_rcu(&event->sb_list); 3881 raw_spin_unlock(&pel->lock); 3882 } 3883 3884 static bool is_sb_event(struct perf_event *event) 3885 { 3886 struct perf_event_attr *attr = &event->attr; 3887 3888 if (event->parent) 3889 return false; 3890 3891 if (event->attach_state & PERF_ATTACH_TASK) 3892 return false; 3893 3894 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3895 attr->comm || attr->comm_exec || 3896 attr->task || 3897 attr->context_switch) 3898 return true; 3899 return false; 3900 } 3901 3902 static void unaccount_pmu_sb_event(struct perf_event *event) 3903 { 3904 if (is_sb_event(event)) 3905 detach_sb_event(event); 3906 } 3907 3908 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3909 { 3910 if (event->parent) 3911 return; 3912 3913 if (is_cgroup_event(event)) 3914 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3915 } 3916 3917 #ifdef CONFIG_NO_HZ_FULL 3918 static DEFINE_SPINLOCK(nr_freq_lock); 3919 #endif 3920 3921 static void unaccount_freq_event_nohz(void) 3922 { 3923 #ifdef CONFIG_NO_HZ_FULL 3924 spin_lock(&nr_freq_lock); 3925 if (atomic_dec_and_test(&nr_freq_events)) 3926 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3927 spin_unlock(&nr_freq_lock); 3928 #endif 3929 } 3930 3931 static void unaccount_freq_event(void) 3932 { 3933 if (tick_nohz_full_enabled()) 3934 unaccount_freq_event_nohz(); 3935 else 3936 atomic_dec(&nr_freq_events); 3937 } 3938 3939 static void unaccount_event(struct perf_event *event) 3940 { 3941 bool dec = false; 3942 3943 if (event->parent) 3944 return; 3945 3946 if (event->attach_state & PERF_ATTACH_TASK) 3947 dec = true; 3948 if (event->attr.mmap || event->attr.mmap_data) 3949 atomic_dec(&nr_mmap_events); 3950 if (event->attr.comm) 3951 atomic_dec(&nr_comm_events); 3952 if (event->attr.namespaces) 3953 atomic_dec(&nr_namespaces_events); 3954 if (event->attr.task) 3955 atomic_dec(&nr_task_events); 3956 if (event->attr.freq) 3957 unaccount_freq_event(); 3958 if (event->attr.context_switch) { 3959 dec = true; 3960 atomic_dec(&nr_switch_events); 3961 } 3962 if (is_cgroup_event(event)) 3963 dec = true; 3964 if (has_branch_stack(event)) 3965 dec = true; 3966 3967 if (dec) { 3968 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3969 schedule_delayed_work(&perf_sched_work, HZ); 3970 } 3971 3972 unaccount_event_cpu(event, event->cpu); 3973 3974 unaccount_pmu_sb_event(event); 3975 } 3976 3977 static void perf_sched_delayed(struct work_struct *work) 3978 { 3979 mutex_lock(&perf_sched_mutex); 3980 if (atomic_dec_and_test(&perf_sched_count)) 3981 static_branch_disable(&perf_sched_events); 3982 mutex_unlock(&perf_sched_mutex); 3983 } 3984 3985 /* 3986 * The following implement mutual exclusion of events on "exclusive" pmus 3987 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3988 * at a time, so we disallow creating events that might conflict, namely: 3989 * 3990 * 1) cpu-wide events in the presence of per-task events, 3991 * 2) per-task events in the presence of cpu-wide events, 3992 * 3) two matching events on the same context. 3993 * 3994 * The former two cases are handled in the allocation path (perf_event_alloc(), 3995 * _free_event()), the latter -- before the first perf_install_in_context(). 3996 */ 3997 static int exclusive_event_init(struct perf_event *event) 3998 { 3999 struct pmu *pmu = event->pmu; 4000 4001 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4002 return 0; 4003 4004 /* 4005 * Prevent co-existence of per-task and cpu-wide events on the 4006 * same exclusive pmu. 4007 * 4008 * Negative pmu::exclusive_cnt means there are cpu-wide 4009 * events on this "exclusive" pmu, positive means there are 4010 * per-task events. 4011 * 4012 * Since this is called in perf_event_alloc() path, event::ctx 4013 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4014 * to mean "per-task event", because unlike other attach states it 4015 * never gets cleared. 4016 */ 4017 if (event->attach_state & PERF_ATTACH_TASK) { 4018 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4019 return -EBUSY; 4020 } else { 4021 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4022 return -EBUSY; 4023 } 4024 4025 return 0; 4026 } 4027 4028 static void exclusive_event_destroy(struct perf_event *event) 4029 { 4030 struct pmu *pmu = event->pmu; 4031 4032 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4033 return; 4034 4035 /* see comment in exclusive_event_init() */ 4036 if (event->attach_state & PERF_ATTACH_TASK) 4037 atomic_dec(&pmu->exclusive_cnt); 4038 else 4039 atomic_inc(&pmu->exclusive_cnt); 4040 } 4041 4042 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4043 { 4044 if ((e1->pmu == e2->pmu) && 4045 (e1->cpu == e2->cpu || 4046 e1->cpu == -1 || 4047 e2->cpu == -1)) 4048 return true; 4049 return false; 4050 } 4051 4052 /* Called under the same ctx::mutex as perf_install_in_context() */ 4053 static bool exclusive_event_installable(struct perf_event *event, 4054 struct perf_event_context *ctx) 4055 { 4056 struct perf_event *iter_event; 4057 struct pmu *pmu = event->pmu; 4058 4059 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4060 return true; 4061 4062 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4063 if (exclusive_event_match(iter_event, event)) 4064 return false; 4065 } 4066 4067 return true; 4068 } 4069 4070 static void perf_addr_filters_splice(struct perf_event *event, 4071 struct list_head *head); 4072 4073 static void _free_event(struct perf_event *event) 4074 { 4075 irq_work_sync(&event->pending); 4076 4077 unaccount_event(event); 4078 4079 if (event->rb) { 4080 /* 4081 * Can happen when we close an event with re-directed output. 4082 * 4083 * Since we have a 0 refcount, perf_mmap_close() will skip 4084 * over us; possibly making our ring_buffer_put() the last. 4085 */ 4086 mutex_lock(&event->mmap_mutex); 4087 ring_buffer_attach(event, NULL); 4088 mutex_unlock(&event->mmap_mutex); 4089 } 4090 4091 if (is_cgroup_event(event)) 4092 perf_detach_cgroup(event); 4093 4094 if (!event->parent) { 4095 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4096 put_callchain_buffers(); 4097 } 4098 4099 perf_event_free_bpf_prog(event); 4100 perf_addr_filters_splice(event, NULL); 4101 kfree(event->addr_filters_offs); 4102 4103 if (event->destroy) 4104 event->destroy(event); 4105 4106 if (event->ctx) 4107 put_ctx(event->ctx); 4108 4109 exclusive_event_destroy(event); 4110 module_put(event->pmu->module); 4111 4112 call_rcu(&event->rcu_head, free_event_rcu); 4113 } 4114 4115 /* 4116 * Used to free events which have a known refcount of 1, such as in error paths 4117 * where the event isn't exposed yet and inherited events. 4118 */ 4119 static void free_event(struct perf_event *event) 4120 { 4121 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4122 "unexpected event refcount: %ld; ptr=%p\n", 4123 atomic_long_read(&event->refcount), event)) { 4124 /* leak to avoid use-after-free */ 4125 return; 4126 } 4127 4128 _free_event(event); 4129 } 4130 4131 /* 4132 * Remove user event from the owner task. 4133 */ 4134 static void perf_remove_from_owner(struct perf_event *event) 4135 { 4136 struct task_struct *owner; 4137 4138 rcu_read_lock(); 4139 /* 4140 * Matches the smp_store_release() in perf_event_exit_task(). If we 4141 * observe !owner it means the list deletion is complete and we can 4142 * indeed free this event, otherwise we need to serialize on 4143 * owner->perf_event_mutex. 4144 */ 4145 owner = READ_ONCE(event->owner); 4146 if (owner) { 4147 /* 4148 * Since delayed_put_task_struct() also drops the last 4149 * task reference we can safely take a new reference 4150 * while holding the rcu_read_lock(). 4151 */ 4152 get_task_struct(owner); 4153 } 4154 rcu_read_unlock(); 4155 4156 if (owner) { 4157 /* 4158 * If we're here through perf_event_exit_task() we're already 4159 * holding ctx->mutex which would be an inversion wrt. the 4160 * normal lock order. 4161 * 4162 * However we can safely take this lock because its the child 4163 * ctx->mutex. 4164 */ 4165 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4166 4167 /* 4168 * We have to re-check the event->owner field, if it is cleared 4169 * we raced with perf_event_exit_task(), acquiring the mutex 4170 * ensured they're done, and we can proceed with freeing the 4171 * event. 4172 */ 4173 if (event->owner) { 4174 list_del_init(&event->owner_entry); 4175 smp_store_release(&event->owner, NULL); 4176 } 4177 mutex_unlock(&owner->perf_event_mutex); 4178 put_task_struct(owner); 4179 } 4180 } 4181 4182 static void put_event(struct perf_event *event) 4183 { 4184 if (!atomic_long_dec_and_test(&event->refcount)) 4185 return; 4186 4187 _free_event(event); 4188 } 4189 4190 /* 4191 * Kill an event dead; while event:refcount will preserve the event 4192 * object, it will not preserve its functionality. Once the last 'user' 4193 * gives up the object, we'll destroy the thing. 4194 */ 4195 int perf_event_release_kernel(struct perf_event *event) 4196 { 4197 struct perf_event_context *ctx = event->ctx; 4198 struct perf_event *child, *tmp; 4199 4200 /* 4201 * If we got here through err_file: fput(event_file); we will not have 4202 * attached to a context yet. 4203 */ 4204 if (!ctx) { 4205 WARN_ON_ONCE(event->attach_state & 4206 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4207 goto no_ctx; 4208 } 4209 4210 if (!is_kernel_event(event)) 4211 perf_remove_from_owner(event); 4212 4213 ctx = perf_event_ctx_lock(event); 4214 WARN_ON_ONCE(ctx->parent_ctx); 4215 perf_remove_from_context(event, DETACH_GROUP); 4216 4217 raw_spin_lock_irq(&ctx->lock); 4218 /* 4219 * Mark this event as STATE_DEAD, there is no external reference to it 4220 * anymore. 4221 * 4222 * Anybody acquiring event->child_mutex after the below loop _must_ 4223 * also see this, most importantly inherit_event() which will avoid 4224 * placing more children on the list. 4225 * 4226 * Thus this guarantees that we will in fact observe and kill _ALL_ 4227 * child events. 4228 */ 4229 event->state = PERF_EVENT_STATE_DEAD; 4230 raw_spin_unlock_irq(&ctx->lock); 4231 4232 perf_event_ctx_unlock(event, ctx); 4233 4234 again: 4235 mutex_lock(&event->child_mutex); 4236 list_for_each_entry(child, &event->child_list, child_list) { 4237 4238 /* 4239 * Cannot change, child events are not migrated, see the 4240 * comment with perf_event_ctx_lock_nested(). 4241 */ 4242 ctx = READ_ONCE(child->ctx); 4243 /* 4244 * Since child_mutex nests inside ctx::mutex, we must jump 4245 * through hoops. We start by grabbing a reference on the ctx. 4246 * 4247 * Since the event cannot get freed while we hold the 4248 * child_mutex, the context must also exist and have a !0 4249 * reference count. 4250 */ 4251 get_ctx(ctx); 4252 4253 /* 4254 * Now that we have a ctx ref, we can drop child_mutex, and 4255 * acquire ctx::mutex without fear of it going away. Then we 4256 * can re-acquire child_mutex. 4257 */ 4258 mutex_unlock(&event->child_mutex); 4259 mutex_lock(&ctx->mutex); 4260 mutex_lock(&event->child_mutex); 4261 4262 /* 4263 * Now that we hold ctx::mutex and child_mutex, revalidate our 4264 * state, if child is still the first entry, it didn't get freed 4265 * and we can continue doing so. 4266 */ 4267 tmp = list_first_entry_or_null(&event->child_list, 4268 struct perf_event, child_list); 4269 if (tmp == child) { 4270 perf_remove_from_context(child, DETACH_GROUP); 4271 list_del(&child->child_list); 4272 free_event(child); 4273 /* 4274 * This matches the refcount bump in inherit_event(); 4275 * this can't be the last reference. 4276 */ 4277 put_event(event); 4278 } 4279 4280 mutex_unlock(&event->child_mutex); 4281 mutex_unlock(&ctx->mutex); 4282 put_ctx(ctx); 4283 goto again; 4284 } 4285 mutex_unlock(&event->child_mutex); 4286 4287 no_ctx: 4288 put_event(event); /* Must be the 'last' reference */ 4289 return 0; 4290 } 4291 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4292 4293 /* 4294 * Called when the last reference to the file is gone. 4295 */ 4296 static int perf_release(struct inode *inode, struct file *file) 4297 { 4298 perf_event_release_kernel(file->private_data); 4299 return 0; 4300 } 4301 4302 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4303 { 4304 struct perf_event *child; 4305 u64 total = 0; 4306 4307 *enabled = 0; 4308 *running = 0; 4309 4310 mutex_lock(&event->child_mutex); 4311 4312 (void)perf_event_read(event, false); 4313 total += perf_event_count(event); 4314 4315 *enabled += event->total_time_enabled + 4316 atomic64_read(&event->child_total_time_enabled); 4317 *running += event->total_time_running + 4318 atomic64_read(&event->child_total_time_running); 4319 4320 list_for_each_entry(child, &event->child_list, child_list) { 4321 (void)perf_event_read(child, false); 4322 total += perf_event_count(child); 4323 *enabled += child->total_time_enabled; 4324 *running += child->total_time_running; 4325 } 4326 mutex_unlock(&event->child_mutex); 4327 4328 return total; 4329 } 4330 4331 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4332 { 4333 struct perf_event_context *ctx; 4334 u64 count; 4335 4336 ctx = perf_event_ctx_lock(event); 4337 count = __perf_event_read_value(event, enabled, running); 4338 perf_event_ctx_unlock(event, ctx); 4339 4340 return count; 4341 } 4342 EXPORT_SYMBOL_GPL(perf_event_read_value); 4343 4344 static int __perf_read_group_add(struct perf_event *leader, 4345 u64 read_format, u64 *values) 4346 { 4347 struct perf_event_context *ctx = leader->ctx; 4348 struct perf_event *sub; 4349 unsigned long flags; 4350 int n = 1; /* skip @nr */ 4351 int ret; 4352 4353 ret = perf_event_read(leader, true); 4354 if (ret) 4355 return ret; 4356 4357 raw_spin_lock_irqsave(&ctx->lock, flags); 4358 4359 /* 4360 * Since we co-schedule groups, {enabled,running} times of siblings 4361 * will be identical to those of the leader, so we only publish one 4362 * set. 4363 */ 4364 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4365 values[n++] += leader->total_time_enabled + 4366 atomic64_read(&leader->child_total_time_enabled); 4367 } 4368 4369 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4370 values[n++] += leader->total_time_running + 4371 atomic64_read(&leader->child_total_time_running); 4372 } 4373 4374 /* 4375 * Write {count,id} tuples for every sibling. 4376 */ 4377 values[n++] += perf_event_count(leader); 4378 if (read_format & PERF_FORMAT_ID) 4379 values[n++] = primary_event_id(leader); 4380 4381 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4382 values[n++] += perf_event_count(sub); 4383 if (read_format & PERF_FORMAT_ID) 4384 values[n++] = primary_event_id(sub); 4385 } 4386 4387 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4388 return 0; 4389 } 4390 4391 static int perf_read_group(struct perf_event *event, 4392 u64 read_format, char __user *buf) 4393 { 4394 struct perf_event *leader = event->group_leader, *child; 4395 struct perf_event_context *ctx = leader->ctx; 4396 int ret; 4397 u64 *values; 4398 4399 lockdep_assert_held(&ctx->mutex); 4400 4401 values = kzalloc(event->read_size, GFP_KERNEL); 4402 if (!values) 4403 return -ENOMEM; 4404 4405 values[0] = 1 + leader->nr_siblings; 4406 4407 /* 4408 * By locking the child_mutex of the leader we effectively 4409 * lock the child list of all siblings.. XXX explain how. 4410 */ 4411 mutex_lock(&leader->child_mutex); 4412 4413 ret = __perf_read_group_add(leader, read_format, values); 4414 if (ret) 4415 goto unlock; 4416 4417 list_for_each_entry(child, &leader->child_list, child_list) { 4418 ret = __perf_read_group_add(child, read_format, values); 4419 if (ret) 4420 goto unlock; 4421 } 4422 4423 mutex_unlock(&leader->child_mutex); 4424 4425 ret = event->read_size; 4426 if (copy_to_user(buf, values, event->read_size)) 4427 ret = -EFAULT; 4428 goto out; 4429 4430 unlock: 4431 mutex_unlock(&leader->child_mutex); 4432 out: 4433 kfree(values); 4434 return ret; 4435 } 4436 4437 static int perf_read_one(struct perf_event *event, 4438 u64 read_format, char __user *buf) 4439 { 4440 u64 enabled, running; 4441 u64 values[4]; 4442 int n = 0; 4443 4444 values[n++] = __perf_event_read_value(event, &enabled, &running); 4445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4446 values[n++] = enabled; 4447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4448 values[n++] = running; 4449 if (read_format & PERF_FORMAT_ID) 4450 values[n++] = primary_event_id(event); 4451 4452 if (copy_to_user(buf, values, n * sizeof(u64))) 4453 return -EFAULT; 4454 4455 return n * sizeof(u64); 4456 } 4457 4458 static bool is_event_hup(struct perf_event *event) 4459 { 4460 bool no_children; 4461 4462 if (event->state > PERF_EVENT_STATE_EXIT) 4463 return false; 4464 4465 mutex_lock(&event->child_mutex); 4466 no_children = list_empty(&event->child_list); 4467 mutex_unlock(&event->child_mutex); 4468 return no_children; 4469 } 4470 4471 /* 4472 * Read the performance event - simple non blocking version for now 4473 */ 4474 static ssize_t 4475 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4476 { 4477 u64 read_format = event->attr.read_format; 4478 int ret; 4479 4480 /* 4481 * Return end-of-file for a read on a event that is in 4482 * error state (i.e. because it was pinned but it couldn't be 4483 * scheduled on to the CPU at some point). 4484 */ 4485 if (event->state == PERF_EVENT_STATE_ERROR) 4486 return 0; 4487 4488 if (count < event->read_size) 4489 return -ENOSPC; 4490 4491 WARN_ON_ONCE(event->ctx->parent_ctx); 4492 if (read_format & PERF_FORMAT_GROUP) 4493 ret = perf_read_group(event, read_format, buf); 4494 else 4495 ret = perf_read_one(event, read_format, buf); 4496 4497 return ret; 4498 } 4499 4500 static ssize_t 4501 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4502 { 4503 struct perf_event *event = file->private_data; 4504 struct perf_event_context *ctx; 4505 int ret; 4506 4507 ctx = perf_event_ctx_lock(event); 4508 ret = __perf_read(event, buf, count); 4509 perf_event_ctx_unlock(event, ctx); 4510 4511 return ret; 4512 } 4513 4514 static unsigned int perf_poll(struct file *file, poll_table *wait) 4515 { 4516 struct perf_event *event = file->private_data; 4517 struct ring_buffer *rb; 4518 unsigned int events = POLLHUP; 4519 4520 poll_wait(file, &event->waitq, wait); 4521 4522 if (is_event_hup(event)) 4523 return events; 4524 4525 /* 4526 * Pin the event->rb by taking event->mmap_mutex; otherwise 4527 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4528 */ 4529 mutex_lock(&event->mmap_mutex); 4530 rb = event->rb; 4531 if (rb) 4532 events = atomic_xchg(&rb->poll, 0); 4533 mutex_unlock(&event->mmap_mutex); 4534 return events; 4535 } 4536 4537 static void _perf_event_reset(struct perf_event *event) 4538 { 4539 (void)perf_event_read(event, false); 4540 local64_set(&event->count, 0); 4541 perf_event_update_userpage(event); 4542 } 4543 4544 /* 4545 * Holding the top-level event's child_mutex means that any 4546 * descendant process that has inherited this event will block 4547 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4548 * task existence requirements of perf_event_enable/disable. 4549 */ 4550 static void perf_event_for_each_child(struct perf_event *event, 4551 void (*func)(struct perf_event *)) 4552 { 4553 struct perf_event *child; 4554 4555 WARN_ON_ONCE(event->ctx->parent_ctx); 4556 4557 mutex_lock(&event->child_mutex); 4558 func(event); 4559 list_for_each_entry(child, &event->child_list, child_list) 4560 func(child); 4561 mutex_unlock(&event->child_mutex); 4562 } 4563 4564 static void perf_event_for_each(struct perf_event *event, 4565 void (*func)(struct perf_event *)) 4566 { 4567 struct perf_event_context *ctx = event->ctx; 4568 struct perf_event *sibling; 4569 4570 lockdep_assert_held(&ctx->mutex); 4571 4572 event = event->group_leader; 4573 4574 perf_event_for_each_child(event, func); 4575 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4576 perf_event_for_each_child(sibling, func); 4577 } 4578 4579 static void __perf_event_period(struct perf_event *event, 4580 struct perf_cpu_context *cpuctx, 4581 struct perf_event_context *ctx, 4582 void *info) 4583 { 4584 u64 value = *((u64 *)info); 4585 bool active; 4586 4587 if (event->attr.freq) { 4588 event->attr.sample_freq = value; 4589 } else { 4590 event->attr.sample_period = value; 4591 event->hw.sample_period = value; 4592 } 4593 4594 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4595 if (active) { 4596 perf_pmu_disable(ctx->pmu); 4597 /* 4598 * We could be throttled; unthrottle now to avoid the tick 4599 * trying to unthrottle while we already re-started the event. 4600 */ 4601 if (event->hw.interrupts == MAX_INTERRUPTS) { 4602 event->hw.interrupts = 0; 4603 perf_log_throttle(event, 1); 4604 } 4605 event->pmu->stop(event, PERF_EF_UPDATE); 4606 } 4607 4608 local64_set(&event->hw.period_left, 0); 4609 4610 if (active) { 4611 event->pmu->start(event, PERF_EF_RELOAD); 4612 perf_pmu_enable(ctx->pmu); 4613 } 4614 } 4615 4616 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4617 { 4618 u64 value; 4619 4620 if (!is_sampling_event(event)) 4621 return -EINVAL; 4622 4623 if (copy_from_user(&value, arg, sizeof(value))) 4624 return -EFAULT; 4625 4626 if (!value) 4627 return -EINVAL; 4628 4629 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4630 return -EINVAL; 4631 4632 event_function_call(event, __perf_event_period, &value); 4633 4634 return 0; 4635 } 4636 4637 static const struct file_operations perf_fops; 4638 4639 static inline int perf_fget_light(int fd, struct fd *p) 4640 { 4641 struct fd f = fdget(fd); 4642 if (!f.file) 4643 return -EBADF; 4644 4645 if (f.file->f_op != &perf_fops) { 4646 fdput(f); 4647 return -EBADF; 4648 } 4649 *p = f; 4650 return 0; 4651 } 4652 4653 static int perf_event_set_output(struct perf_event *event, 4654 struct perf_event *output_event); 4655 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4656 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4657 4658 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4659 { 4660 void (*func)(struct perf_event *); 4661 u32 flags = arg; 4662 4663 switch (cmd) { 4664 case PERF_EVENT_IOC_ENABLE: 4665 func = _perf_event_enable; 4666 break; 4667 case PERF_EVENT_IOC_DISABLE: 4668 func = _perf_event_disable; 4669 break; 4670 case PERF_EVENT_IOC_RESET: 4671 func = _perf_event_reset; 4672 break; 4673 4674 case PERF_EVENT_IOC_REFRESH: 4675 return _perf_event_refresh(event, arg); 4676 4677 case PERF_EVENT_IOC_PERIOD: 4678 return perf_event_period(event, (u64 __user *)arg); 4679 4680 case PERF_EVENT_IOC_ID: 4681 { 4682 u64 id = primary_event_id(event); 4683 4684 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4685 return -EFAULT; 4686 return 0; 4687 } 4688 4689 case PERF_EVENT_IOC_SET_OUTPUT: 4690 { 4691 int ret; 4692 if (arg != -1) { 4693 struct perf_event *output_event; 4694 struct fd output; 4695 ret = perf_fget_light(arg, &output); 4696 if (ret) 4697 return ret; 4698 output_event = output.file->private_data; 4699 ret = perf_event_set_output(event, output_event); 4700 fdput(output); 4701 } else { 4702 ret = perf_event_set_output(event, NULL); 4703 } 4704 return ret; 4705 } 4706 4707 case PERF_EVENT_IOC_SET_FILTER: 4708 return perf_event_set_filter(event, (void __user *)arg); 4709 4710 case PERF_EVENT_IOC_SET_BPF: 4711 return perf_event_set_bpf_prog(event, arg); 4712 4713 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4714 struct ring_buffer *rb; 4715 4716 rcu_read_lock(); 4717 rb = rcu_dereference(event->rb); 4718 if (!rb || !rb->nr_pages) { 4719 rcu_read_unlock(); 4720 return -EINVAL; 4721 } 4722 rb_toggle_paused(rb, !!arg); 4723 rcu_read_unlock(); 4724 return 0; 4725 } 4726 default: 4727 return -ENOTTY; 4728 } 4729 4730 if (flags & PERF_IOC_FLAG_GROUP) 4731 perf_event_for_each(event, func); 4732 else 4733 perf_event_for_each_child(event, func); 4734 4735 return 0; 4736 } 4737 4738 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4739 { 4740 struct perf_event *event = file->private_data; 4741 struct perf_event_context *ctx; 4742 long ret; 4743 4744 ctx = perf_event_ctx_lock(event); 4745 ret = _perf_ioctl(event, cmd, arg); 4746 perf_event_ctx_unlock(event, ctx); 4747 4748 return ret; 4749 } 4750 4751 #ifdef CONFIG_COMPAT 4752 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4753 unsigned long arg) 4754 { 4755 switch (_IOC_NR(cmd)) { 4756 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4757 case _IOC_NR(PERF_EVENT_IOC_ID): 4758 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4759 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4760 cmd &= ~IOCSIZE_MASK; 4761 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4762 } 4763 break; 4764 } 4765 return perf_ioctl(file, cmd, arg); 4766 } 4767 #else 4768 # define perf_compat_ioctl NULL 4769 #endif 4770 4771 int perf_event_task_enable(void) 4772 { 4773 struct perf_event_context *ctx; 4774 struct perf_event *event; 4775 4776 mutex_lock(¤t->perf_event_mutex); 4777 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4778 ctx = perf_event_ctx_lock(event); 4779 perf_event_for_each_child(event, _perf_event_enable); 4780 perf_event_ctx_unlock(event, ctx); 4781 } 4782 mutex_unlock(¤t->perf_event_mutex); 4783 4784 return 0; 4785 } 4786 4787 int perf_event_task_disable(void) 4788 { 4789 struct perf_event_context *ctx; 4790 struct perf_event *event; 4791 4792 mutex_lock(¤t->perf_event_mutex); 4793 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4794 ctx = perf_event_ctx_lock(event); 4795 perf_event_for_each_child(event, _perf_event_disable); 4796 perf_event_ctx_unlock(event, ctx); 4797 } 4798 mutex_unlock(¤t->perf_event_mutex); 4799 4800 return 0; 4801 } 4802 4803 static int perf_event_index(struct perf_event *event) 4804 { 4805 if (event->hw.state & PERF_HES_STOPPED) 4806 return 0; 4807 4808 if (event->state != PERF_EVENT_STATE_ACTIVE) 4809 return 0; 4810 4811 return event->pmu->event_idx(event); 4812 } 4813 4814 static void calc_timer_values(struct perf_event *event, 4815 u64 *now, 4816 u64 *enabled, 4817 u64 *running) 4818 { 4819 u64 ctx_time; 4820 4821 *now = perf_clock(); 4822 ctx_time = event->shadow_ctx_time + *now; 4823 __perf_update_times(event, ctx_time, enabled, running); 4824 } 4825 4826 static void perf_event_init_userpage(struct perf_event *event) 4827 { 4828 struct perf_event_mmap_page *userpg; 4829 struct ring_buffer *rb; 4830 4831 rcu_read_lock(); 4832 rb = rcu_dereference(event->rb); 4833 if (!rb) 4834 goto unlock; 4835 4836 userpg = rb->user_page; 4837 4838 /* Allow new userspace to detect that bit 0 is deprecated */ 4839 userpg->cap_bit0_is_deprecated = 1; 4840 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4841 userpg->data_offset = PAGE_SIZE; 4842 userpg->data_size = perf_data_size(rb); 4843 4844 unlock: 4845 rcu_read_unlock(); 4846 } 4847 4848 void __weak arch_perf_update_userpage( 4849 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4850 { 4851 } 4852 4853 /* 4854 * Callers need to ensure there can be no nesting of this function, otherwise 4855 * the seqlock logic goes bad. We can not serialize this because the arch 4856 * code calls this from NMI context. 4857 */ 4858 void perf_event_update_userpage(struct perf_event *event) 4859 { 4860 struct perf_event_mmap_page *userpg; 4861 struct ring_buffer *rb; 4862 u64 enabled, running, now; 4863 4864 rcu_read_lock(); 4865 rb = rcu_dereference(event->rb); 4866 if (!rb) 4867 goto unlock; 4868 4869 /* 4870 * compute total_time_enabled, total_time_running 4871 * based on snapshot values taken when the event 4872 * was last scheduled in. 4873 * 4874 * we cannot simply called update_context_time() 4875 * because of locking issue as we can be called in 4876 * NMI context 4877 */ 4878 calc_timer_values(event, &now, &enabled, &running); 4879 4880 userpg = rb->user_page; 4881 /* 4882 * Disable preemption so as to not let the corresponding user-space 4883 * spin too long if we get preempted. 4884 */ 4885 preempt_disable(); 4886 ++userpg->lock; 4887 barrier(); 4888 userpg->index = perf_event_index(event); 4889 userpg->offset = perf_event_count(event); 4890 if (userpg->index) 4891 userpg->offset -= local64_read(&event->hw.prev_count); 4892 4893 userpg->time_enabled = enabled + 4894 atomic64_read(&event->child_total_time_enabled); 4895 4896 userpg->time_running = running + 4897 atomic64_read(&event->child_total_time_running); 4898 4899 arch_perf_update_userpage(event, userpg, now); 4900 4901 barrier(); 4902 ++userpg->lock; 4903 preempt_enable(); 4904 unlock: 4905 rcu_read_unlock(); 4906 } 4907 4908 static int perf_mmap_fault(struct vm_fault *vmf) 4909 { 4910 struct perf_event *event = vmf->vma->vm_file->private_data; 4911 struct ring_buffer *rb; 4912 int ret = VM_FAULT_SIGBUS; 4913 4914 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4915 if (vmf->pgoff == 0) 4916 ret = 0; 4917 return ret; 4918 } 4919 4920 rcu_read_lock(); 4921 rb = rcu_dereference(event->rb); 4922 if (!rb) 4923 goto unlock; 4924 4925 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4926 goto unlock; 4927 4928 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4929 if (!vmf->page) 4930 goto unlock; 4931 4932 get_page(vmf->page); 4933 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4934 vmf->page->index = vmf->pgoff; 4935 4936 ret = 0; 4937 unlock: 4938 rcu_read_unlock(); 4939 4940 return ret; 4941 } 4942 4943 static void ring_buffer_attach(struct perf_event *event, 4944 struct ring_buffer *rb) 4945 { 4946 struct ring_buffer *old_rb = NULL; 4947 unsigned long flags; 4948 4949 if (event->rb) { 4950 /* 4951 * Should be impossible, we set this when removing 4952 * event->rb_entry and wait/clear when adding event->rb_entry. 4953 */ 4954 WARN_ON_ONCE(event->rcu_pending); 4955 4956 old_rb = event->rb; 4957 spin_lock_irqsave(&old_rb->event_lock, flags); 4958 list_del_rcu(&event->rb_entry); 4959 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4960 4961 event->rcu_batches = get_state_synchronize_rcu(); 4962 event->rcu_pending = 1; 4963 } 4964 4965 if (rb) { 4966 if (event->rcu_pending) { 4967 cond_synchronize_rcu(event->rcu_batches); 4968 event->rcu_pending = 0; 4969 } 4970 4971 spin_lock_irqsave(&rb->event_lock, flags); 4972 list_add_rcu(&event->rb_entry, &rb->event_list); 4973 spin_unlock_irqrestore(&rb->event_lock, flags); 4974 } 4975 4976 /* 4977 * Avoid racing with perf_mmap_close(AUX): stop the event 4978 * before swizzling the event::rb pointer; if it's getting 4979 * unmapped, its aux_mmap_count will be 0 and it won't 4980 * restart. See the comment in __perf_pmu_output_stop(). 4981 * 4982 * Data will inevitably be lost when set_output is done in 4983 * mid-air, but then again, whoever does it like this is 4984 * not in for the data anyway. 4985 */ 4986 if (has_aux(event)) 4987 perf_event_stop(event, 0); 4988 4989 rcu_assign_pointer(event->rb, rb); 4990 4991 if (old_rb) { 4992 ring_buffer_put(old_rb); 4993 /* 4994 * Since we detached before setting the new rb, so that we 4995 * could attach the new rb, we could have missed a wakeup. 4996 * Provide it now. 4997 */ 4998 wake_up_all(&event->waitq); 4999 } 5000 } 5001 5002 static void ring_buffer_wakeup(struct perf_event *event) 5003 { 5004 struct ring_buffer *rb; 5005 5006 rcu_read_lock(); 5007 rb = rcu_dereference(event->rb); 5008 if (rb) { 5009 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5010 wake_up_all(&event->waitq); 5011 } 5012 rcu_read_unlock(); 5013 } 5014 5015 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5016 { 5017 struct ring_buffer *rb; 5018 5019 rcu_read_lock(); 5020 rb = rcu_dereference(event->rb); 5021 if (rb) { 5022 if (!atomic_inc_not_zero(&rb->refcount)) 5023 rb = NULL; 5024 } 5025 rcu_read_unlock(); 5026 5027 return rb; 5028 } 5029 5030 void ring_buffer_put(struct ring_buffer *rb) 5031 { 5032 if (!atomic_dec_and_test(&rb->refcount)) 5033 return; 5034 5035 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5036 5037 call_rcu(&rb->rcu_head, rb_free_rcu); 5038 } 5039 5040 static void perf_mmap_open(struct vm_area_struct *vma) 5041 { 5042 struct perf_event *event = vma->vm_file->private_data; 5043 5044 atomic_inc(&event->mmap_count); 5045 atomic_inc(&event->rb->mmap_count); 5046 5047 if (vma->vm_pgoff) 5048 atomic_inc(&event->rb->aux_mmap_count); 5049 5050 if (event->pmu->event_mapped) 5051 event->pmu->event_mapped(event, vma->vm_mm); 5052 } 5053 5054 static void perf_pmu_output_stop(struct perf_event *event); 5055 5056 /* 5057 * A buffer can be mmap()ed multiple times; either directly through the same 5058 * event, or through other events by use of perf_event_set_output(). 5059 * 5060 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5061 * the buffer here, where we still have a VM context. This means we need 5062 * to detach all events redirecting to us. 5063 */ 5064 static void perf_mmap_close(struct vm_area_struct *vma) 5065 { 5066 struct perf_event *event = vma->vm_file->private_data; 5067 5068 struct ring_buffer *rb = ring_buffer_get(event); 5069 struct user_struct *mmap_user = rb->mmap_user; 5070 int mmap_locked = rb->mmap_locked; 5071 unsigned long size = perf_data_size(rb); 5072 5073 if (event->pmu->event_unmapped) 5074 event->pmu->event_unmapped(event, vma->vm_mm); 5075 5076 /* 5077 * rb->aux_mmap_count will always drop before rb->mmap_count and 5078 * event->mmap_count, so it is ok to use event->mmap_mutex to 5079 * serialize with perf_mmap here. 5080 */ 5081 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5082 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5083 /* 5084 * Stop all AUX events that are writing to this buffer, 5085 * so that we can free its AUX pages and corresponding PMU 5086 * data. Note that after rb::aux_mmap_count dropped to zero, 5087 * they won't start any more (see perf_aux_output_begin()). 5088 */ 5089 perf_pmu_output_stop(event); 5090 5091 /* now it's safe to free the pages */ 5092 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5093 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5094 5095 /* this has to be the last one */ 5096 rb_free_aux(rb); 5097 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5098 5099 mutex_unlock(&event->mmap_mutex); 5100 } 5101 5102 atomic_dec(&rb->mmap_count); 5103 5104 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5105 goto out_put; 5106 5107 ring_buffer_attach(event, NULL); 5108 mutex_unlock(&event->mmap_mutex); 5109 5110 /* If there's still other mmap()s of this buffer, we're done. */ 5111 if (atomic_read(&rb->mmap_count)) 5112 goto out_put; 5113 5114 /* 5115 * No other mmap()s, detach from all other events that might redirect 5116 * into the now unreachable buffer. Somewhat complicated by the 5117 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5118 */ 5119 again: 5120 rcu_read_lock(); 5121 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5122 if (!atomic_long_inc_not_zero(&event->refcount)) { 5123 /* 5124 * This event is en-route to free_event() which will 5125 * detach it and remove it from the list. 5126 */ 5127 continue; 5128 } 5129 rcu_read_unlock(); 5130 5131 mutex_lock(&event->mmap_mutex); 5132 /* 5133 * Check we didn't race with perf_event_set_output() which can 5134 * swizzle the rb from under us while we were waiting to 5135 * acquire mmap_mutex. 5136 * 5137 * If we find a different rb; ignore this event, a next 5138 * iteration will no longer find it on the list. We have to 5139 * still restart the iteration to make sure we're not now 5140 * iterating the wrong list. 5141 */ 5142 if (event->rb == rb) 5143 ring_buffer_attach(event, NULL); 5144 5145 mutex_unlock(&event->mmap_mutex); 5146 put_event(event); 5147 5148 /* 5149 * Restart the iteration; either we're on the wrong list or 5150 * destroyed its integrity by doing a deletion. 5151 */ 5152 goto again; 5153 } 5154 rcu_read_unlock(); 5155 5156 /* 5157 * It could be there's still a few 0-ref events on the list; they'll 5158 * get cleaned up by free_event() -- they'll also still have their 5159 * ref on the rb and will free it whenever they are done with it. 5160 * 5161 * Aside from that, this buffer is 'fully' detached and unmapped, 5162 * undo the VM accounting. 5163 */ 5164 5165 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5166 vma->vm_mm->pinned_vm -= mmap_locked; 5167 free_uid(mmap_user); 5168 5169 out_put: 5170 ring_buffer_put(rb); /* could be last */ 5171 } 5172 5173 static const struct vm_operations_struct perf_mmap_vmops = { 5174 .open = perf_mmap_open, 5175 .close = perf_mmap_close, /* non mergable */ 5176 .fault = perf_mmap_fault, 5177 .page_mkwrite = perf_mmap_fault, 5178 }; 5179 5180 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5181 { 5182 struct perf_event *event = file->private_data; 5183 unsigned long user_locked, user_lock_limit; 5184 struct user_struct *user = current_user(); 5185 unsigned long locked, lock_limit; 5186 struct ring_buffer *rb = NULL; 5187 unsigned long vma_size; 5188 unsigned long nr_pages; 5189 long user_extra = 0, extra = 0; 5190 int ret = 0, flags = 0; 5191 5192 /* 5193 * Don't allow mmap() of inherited per-task counters. This would 5194 * create a performance issue due to all children writing to the 5195 * same rb. 5196 */ 5197 if (event->cpu == -1 && event->attr.inherit) 5198 return -EINVAL; 5199 5200 if (!(vma->vm_flags & VM_SHARED)) 5201 return -EINVAL; 5202 5203 vma_size = vma->vm_end - vma->vm_start; 5204 5205 if (vma->vm_pgoff == 0) { 5206 nr_pages = (vma_size / PAGE_SIZE) - 1; 5207 } else { 5208 /* 5209 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5210 * mapped, all subsequent mappings should have the same size 5211 * and offset. Must be above the normal perf buffer. 5212 */ 5213 u64 aux_offset, aux_size; 5214 5215 if (!event->rb) 5216 return -EINVAL; 5217 5218 nr_pages = vma_size / PAGE_SIZE; 5219 5220 mutex_lock(&event->mmap_mutex); 5221 ret = -EINVAL; 5222 5223 rb = event->rb; 5224 if (!rb) 5225 goto aux_unlock; 5226 5227 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5228 aux_size = READ_ONCE(rb->user_page->aux_size); 5229 5230 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5231 goto aux_unlock; 5232 5233 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5234 goto aux_unlock; 5235 5236 /* already mapped with a different offset */ 5237 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5238 goto aux_unlock; 5239 5240 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5241 goto aux_unlock; 5242 5243 /* already mapped with a different size */ 5244 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5245 goto aux_unlock; 5246 5247 if (!is_power_of_2(nr_pages)) 5248 goto aux_unlock; 5249 5250 if (!atomic_inc_not_zero(&rb->mmap_count)) 5251 goto aux_unlock; 5252 5253 if (rb_has_aux(rb)) { 5254 atomic_inc(&rb->aux_mmap_count); 5255 ret = 0; 5256 goto unlock; 5257 } 5258 5259 atomic_set(&rb->aux_mmap_count, 1); 5260 user_extra = nr_pages; 5261 5262 goto accounting; 5263 } 5264 5265 /* 5266 * If we have rb pages ensure they're a power-of-two number, so we 5267 * can do bitmasks instead of modulo. 5268 */ 5269 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5270 return -EINVAL; 5271 5272 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5273 return -EINVAL; 5274 5275 WARN_ON_ONCE(event->ctx->parent_ctx); 5276 again: 5277 mutex_lock(&event->mmap_mutex); 5278 if (event->rb) { 5279 if (event->rb->nr_pages != nr_pages) { 5280 ret = -EINVAL; 5281 goto unlock; 5282 } 5283 5284 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5285 /* 5286 * Raced against perf_mmap_close() through 5287 * perf_event_set_output(). Try again, hope for better 5288 * luck. 5289 */ 5290 mutex_unlock(&event->mmap_mutex); 5291 goto again; 5292 } 5293 5294 goto unlock; 5295 } 5296 5297 user_extra = nr_pages + 1; 5298 5299 accounting: 5300 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5301 5302 /* 5303 * Increase the limit linearly with more CPUs: 5304 */ 5305 user_lock_limit *= num_online_cpus(); 5306 5307 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5308 5309 if (user_locked > user_lock_limit) 5310 extra = user_locked - user_lock_limit; 5311 5312 lock_limit = rlimit(RLIMIT_MEMLOCK); 5313 lock_limit >>= PAGE_SHIFT; 5314 locked = vma->vm_mm->pinned_vm + extra; 5315 5316 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5317 !capable(CAP_IPC_LOCK)) { 5318 ret = -EPERM; 5319 goto unlock; 5320 } 5321 5322 WARN_ON(!rb && event->rb); 5323 5324 if (vma->vm_flags & VM_WRITE) 5325 flags |= RING_BUFFER_WRITABLE; 5326 5327 if (!rb) { 5328 rb = rb_alloc(nr_pages, 5329 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5330 event->cpu, flags); 5331 5332 if (!rb) { 5333 ret = -ENOMEM; 5334 goto unlock; 5335 } 5336 5337 atomic_set(&rb->mmap_count, 1); 5338 rb->mmap_user = get_current_user(); 5339 rb->mmap_locked = extra; 5340 5341 ring_buffer_attach(event, rb); 5342 5343 perf_event_init_userpage(event); 5344 perf_event_update_userpage(event); 5345 } else { 5346 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5347 event->attr.aux_watermark, flags); 5348 if (!ret) 5349 rb->aux_mmap_locked = extra; 5350 } 5351 5352 unlock: 5353 if (!ret) { 5354 atomic_long_add(user_extra, &user->locked_vm); 5355 vma->vm_mm->pinned_vm += extra; 5356 5357 atomic_inc(&event->mmap_count); 5358 } else if (rb) { 5359 atomic_dec(&rb->mmap_count); 5360 } 5361 aux_unlock: 5362 mutex_unlock(&event->mmap_mutex); 5363 5364 /* 5365 * Since pinned accounting is per vm we cannot allow fork() to copy our 5366 * vma. 5367 */ 5368 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5369 vma->vm_ops = &perf_mmap_vmops; 5370 5371 if (event->pmu->event_mapped) 5372 event->pmu->event_mapped(event, vma->vm_mm); 5373 5374 return ret; 5375 } 5376 5377 static int perf_fasync(int fd, struct file *filp, int on) 5378 { 5379 struct inode *inode = file_inode(filp); 5380 struct perf_event *event = filp->private_data; 5381 int retval; 5382 5383 inode_lock(inode); 5384 retval = fasync_helper(fd, filp, on, &event->fasync); 5385 inode_unlock(inode); 5386 5387 if (retval < 0) 5388 return retval; 5389 5390 return 0; 5391 } 5392 5393 static const struct file_operations perf_fops = { 5394 .llseek = no_llseek, 5395 .release = perf_release, 5396 .read = perf_read, 5397 .poll = perf_poll, 5398 .unlocked_ioctl = perf_ioctl, 5399 .compat_ioctl = perf_compat_ioctl, 5400 .mmap = perf_mmap, 5401 .fasync = perf_fasync, 5402 }; 5403 5404 /* 5405 * Perf event wakeup 5406 * 5407 * If there's data, ensure we set the poll() state and publish everything 5408 * to user-space before waking everybody up. 5409 */ 5410 5411 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5412 { 5413 /* only the parent has fasync state */ 5414 if (event->parent) 5415 event = event->parent; 5416 return &event->fasync; 5417 } 5418 5419 void perf_event_wakeup(struct perf_event *event) 5420 { 5421 ring_buffer_wakeup(event); 5422 5423 if (event->pending_kill) { 5424 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5425 event->pending_kill = 0; 5426 } 5427 } 5428 5429 static void perf_pending_event(struct irq_work *entry) 5430 { 5431 struct perf_event *event = container_of(entry, 5432 struct perf_event, pending); 5433 int rctx; 5434 5435 rctx = perf_swevent_get_recursion_context(); 5436 /* 5437 * If we 'fail' here, that's OK, it means recursion is already disabled 5438 * and we won't recurse 'further'. 5439 */ 5440 5441 if (event->pending_disable) { 5442 event->pending_disable = 0; 5443 perf_event_disable_local(event); 5444 } 5445 5446 if (event->pending_wakeup) { 5447 event->pending_wakeup = 0; 5448 perf_event_wakeup(event); 5449 } 5450 5451 if (rctx >= 0) 5452 perf_swevent_put_recursion_context(rctx); 5453 } 5454 5455 /* 5456 * We assume there is only KVM supporting the callbacks. 5457 * Later on, we might change it to a list if there is 5458 * another virtualization implementation supporting the callbacks. 5459 */ 5460 struct perf_guest_info_callbacks *perf_guest_cbs; 5461 5462 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5463 { 5464 perf_guest_cbs = cbs; 5465 return 0; 5466 } 5467 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5468 5469 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5470 { 5471 perf_guest_cbs = NULL; 5472 return 0; 5473 } 5474 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5475 5476 static void 5477 perf_output_sample_regs(struct perf_output_handle *handle, 5478 struct pt_regs *regs, u64 mask) 5479 { 5480 int bit; 5481 DECLARE_BITMAP(_mask, 64); 5482 5483 bitmap_from_u64(_mask, mask); 5484 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5485 u64 val; 5486 5487 val = perf_reg_value(regs, bit); 5488 perf_output_put(handle, val); 5489 } 5490 } 5491 5492 static void perf_sample_regs_user(struct perf_regs *regs_user, 5493 struct pt_regs *regs, 5494 struct pt_regs *regs_user_copy) 5495 { 5496 if (user_mode(regs)) { 5497 regs_user->abi = perf_reg_abi(current); 5498 regs_user->regs = regs; 5499 } else if (current->mm) { 5500 perf_get_regs_user(regs_user, regs, regs_user_copy); 5501 } else { 5502 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5503 regs_user->regs = NULL; 5504 } 5505 } 5506 5507 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5508 struct pt_regs *regs) 5509 { 5510 regs_intr->regs = regs; 5511 regs_intr->abi = perf_reg_abi(current); 5512 } 5513 5514 5515 /* 5516 * Get remaining task size from user stack pointer. 5517 * 5518 * It'd be better to take stack vma map and limit this more 5519 * precisly, but there's no way to get it safely under interrupt, 5520 * so using TASK_SIZE as limit. 5521 */ 5522 static u64 perf_ustack_task_size(struct pt_regs *regs) 5523 { 5524 unsigned long addr = perf_user_stack_pointer(regs); 5525 5526 if (!addr || addr >= TASK_SIZE) 5527 return 0; 5528 5529 return TASK_SIZE - addr; 5530 } 5531 5532 static u16 5533 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5534 struct pt_regs *regs) 5535 { 5536 u64 task_size; 5537 5538 /* No regs, no stack pointer, no dump. */ 5539 if (!regs) 5540 return 0; 5541 5542 /* 5543 * Check if we fit in with the requested stack size into the: 5544 * - TASK_SIZE 5545 * If we don't, we limit the size to the TASK_SIZE. 5546 * 5547 * - remaining sample size 5548 * If we don't, we customize the stack size to 5549 * fit in to the remaining sample size. 5550 */ 5551 5552 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5553 stack_size = min(stack_size, (u16) task_size); 5554 5555 /* Current header size plus static size and dynamic size. */ 5556 header_size += 2 * sizeof(u64); 5557 5558 /* Do we fit in with the current stack dump size? */ 5559 if ((u16) (header_size + stack_size) < header_size) { 5560 /* 5561 * If we overflow the maximum size for the sample, 5562 * we customize the stack dump size to fit in. 5563 */ 5564 stack_size = USHRT_MAX - header_size - sizeof(u64); 5565 stack_size = round_up(stack_size, sizeof(u64)); 5566 } 5567 5568 return stack_size; 5569 } 5570 5571 static void 5572 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5573 struct pt_regs *regs) 5574 { 5575 /* Case of a kernel thread, nothing to dump */ 5576 if (!regs) { 5577 u64 size = 0; 5578 perf_output_put(handle, size); 5579 } else { 5580 unsigned long sp; 5581 unsigned int rem; 5582 u64 dyn_size; 5583 5584 /* 5585 * We dump: 5586 * static size 5587 * - the size requested by user or the best one we can fit 5588 * in to the sample max size 5589 * data 5590 * - user stack dump data 5591 * dynamic size 5592 * - the actual dumped size 5593 */ 5594 5595 /* Static size. */ 5596 perf_output_put(handle, dump_size); 5597 5598 /* Data. */ 5599 sp = perf_user_stack_pointer(regs); 5600 rem = __output_copy_user(handle, (void *) sp, dump_size); 5601 dyn_size = dump_size - rem; 5602 5603 perf_output_skip(handle, rem); 5604 5605 /* Dynamic size. */ 5606 perf_output_put(handle, dyn_size); 5607 } 5608 } 5609 5610 static void __perf_event_header__init_id(struct perf_event_header *header, 5611 struct perf_sample_data *data, 5612 struct perf_event *event) 5613 { 5614 u64 sample_type = event->attr.sample_type; 5615 5616 data->type = sample_type; 5617 header->size += event->id_header_size; 5618 5619 if (sample_type & PERF_SAMPLE_TID) { 5620 /* namespace issues */ 5621 data->tid_entry.pid = perf_event_pid(event, current); 5622 data->tid_entry.tid = perf_event_tid(event, current); 5623 } 5624 5625 if (sample_type & PERF_SAMPLE_TIME) 5626 data->time = perf_event_clock(event); 5627 5628 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5629 data->id = primary_event_id(event); 5630 5631 if (sample_type & PERF_SAMPLE_STREAM_ID) 5632 data->stream_id = event->id; 5633 5634 if (sample_type & PERF_SAMPLE_CPU) { 5635 data->cpu_entry.cpu = raw_smp_processor_id(); 5636 data->cpu_entry.reserved = 0; 5637 } 5638 } 5639 5640 void perf_event_header__init_id(struct perf_event_header *header, 5641 struct perf_sample_data *data, 5642 struct perf_event *event) 5643 { 5644 if (event->attr.sample_id_all) 5645 __perf_event_header__init_id(header, data, event); 5646 } 5647 5648 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5649 struct perf_sample_data *data) 5650 { 5651 u64 sample_type = data->type; 5652 5653 if (sample_type & PERF_SAMPLE_TID) 5654 perf_output_put(handle, data->tid_entry); 5655 5656 if (sample_type & PERF_SAMPLE_TIME) 5657 perf_output_put(handle, data->time); 5658 5659 if (sample_type & PERF_SAMPLE_ID) 5660 perf_output_put(handle, data->id); 5661 5662 if (sample_type & PERF_SAMPLE_STREAM_ID) 5663 perf_output_put(handle, data->stream_id); 5664 5665 if (sample_type & PERF_SAMPLE_CPU) 5666 perf_output_put(handle, data->cpu_entry); 5667 5668 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5669 perf_output_put(handle, data->id); 5670 } 5671 5672 void perf_event__output_id_sample(struct perf_event *event, 5673 struct perf_output_handle *handle, 5674 struct perf_sample_data *sample) 5675 { 5676 if (event->attr.sample_id_all) 5677 __perf_event__output_id_sample(handle, sample); 5678 } 5679 5680 static void perf_output_read_one(struct perf_output_handle *handle, 5681 struct perf_event *event, 5682 u64 enabled, u64 running) 5683 { 5684 u64 read_format = event->attr.read_format; 5685 u64 values[4]; 5686 int n = 0; 5687 5688 values[n++] = perf_event_count(event); 5689 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5690 values[n++] = enabled + 5691 atomic64_read(&event->child_total_time_enabled); 5692 } 5693 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5694 values[n++] = running + 5695 atomic64_read(&event->child_total_time_running); 5696 } 5697 if (read_format & PERF_FORMAT_ID) 5698 values[n++] = primary_event_id(event); 5699 5700 __output_copy(handle, values, n * sizeof(u64)); 5701 } 5702 5703 static void perf_output_read_group(struct perf_output_handle *handle, 5704 struct perf_event *event, 5705 u64 enabled, u64 running) 5706 { 5707 struct perf_event *leader = event->group_leader, *sub; 5708 u64 read_format = event->attr.read_format; 5709 u64 values[5]; 5710 int n = 0; 5711 5712 values[n++] = 1 + leader->nr_siblings; 5713 5714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5715 values[n++] = enabled; 5716 5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5718 values[n++] = running; 5719 5720 if (leader != event) 5721 leader->pmu->read(leader); 5722 5723 values[n++] = perf_event_count(leader); 5724 if (read_format & PERF_FORMAT_ID) 5725 values[n++] = primary_event_id(leader); 5726 5727 __output_copy(handle, values, n * sizeof(u64)); 5728 5729 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5730 n = 0; 5731 5732 if ((sub != event) && 5733 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5734 sub->pmu->read(sub); 5735 5736 values[n++] = perf_event_count(sub); 5737 if (read_format & PERF_FORMAT_ID) 5738 values[n++] = primary_event_id(sub); 5739 5740 __output_copy(handle, values, n * sizeof(u64)); 5741 } 5742 } 5743 5744 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5745 PERF_FORMAT_TOTAL_TIME_RUNNING) 5746 5747 /* 5748 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5749 * 5750 * The problem is that its both hard and excessively expensive to iterate the 5751 * child list, not to mention that its impossible to IPI the children running 5752 * on another CPU, from interrupt/NMI context. 5753 */ 5754 static void perf_output_read(struct perf_output_handle *handle, 5755 struct perf_event *event) 5756 { 5757 u64 enabled = 0, running = 0, now; 5758 u64 read_format = event->attr.read_format; 5759 5760 /* 5761 * compute total_time_enabled, total_time_running 5762 * based on snapshot values taken when the event 5763 * was last scheduled in. 5764 * 5765 * we cannot simply called update_context_time() 5766 * because of locking issue as we are called in 5767 * NMI context 5768 */ 5769 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5770 calc_timer_values(event, &now, &enabled, &running); 5771 5772 if (event->attr.read_format & PERF_FORMAT_GROUP) 5773 perf_output_read_group(handle, event, enabled, running); 5774 else 5775 perf_output_read_one(handle, event, enabled, running); 5776 } 5777 5778 void perf_output_sample(struct perf_output_handle *handle, 5779 struct perf_event_header *header, 5780 struct perf_sample_data *data, 5781 struct perf_event *event) 5782 { 5783 u64 sample_type = data->type; 5784 5785 perf_output_put(handle, *header); 5786 5787 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5788 perf_output_put(handle, data->id); 5789 5790 if (sample_type & PERF_SAMPLE_IP) 5791 perf_output_put(handle, data->ip); 5792 5793 if (sample_type & PERF_SAMPLE_TID) 5794 perf_output_put(handle, data->tid_entry); 5795 5796 if (sample_type & PERF_SAMPLE_TIME) 5797 perf_output_put(handle, data->time); 5798 5799 if (sample_type & PERF_SAMPLE_ADDR) 5800 perf_output_put(handle, data->addr); 5801 5802 if (sample_type & PERF_SAMPLE_ID) 5803 perf_output_put(handle, data->id); 5804 5805 if (sample_type & PERF_SAMPLE_STREAM_ID) 5806 perf_output_put(handle, data->stream_id); 5807 5808 if (sample_type & PERF_SAMPLE_CPU) 5809 perf_output_put(handle, data->cpu_entry); 5810 5811 if (sample_type & PERF_SAMPLE_PERIOD) 5812 perf_output_put(handle, data->period); 5813 5814 if (sample_type & PERF_SAMPLE_READ) 5815 perf_output_read(handle, event); 5816 5817 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5818 if (data->callchain) { 5819 int size = 1; 5820 5821 if (data->callchain) 5822 size += data->callchain->nr; 5823 5824 size *= sizeof(u64); 5825 5826 __output_copy(handle, data->callchain, size); 5827 } else { 5828 u64 nr = 0; 5829 perf_output_put(handle, nr); 5830 } 5831 } 5832 5833 if (sample_type & PERF_SAMPLE_RAW) { 5834 struct perf_raw_record *raw = data->raw; 5835 5836 if (raw) { 5837 struct perf_raw_frag *frag = &raw->frag; 5838 5839 perf_output_put(handle, raw->size); 5840 do { 5841 if (frag->copy) { 5842 __output_custom(handle, frag->copy, 5843 frag->data, frag->size); 5844 } else { 5845 __output_copy(handle, frag->data, 5846 frag->size); 5847 } 5848 if (perf_raw_frag_last(frag)) 5849 break; 5850 frag = frag->next; 5851 } while (1); 5852 if (frag->pad) 5853 __output_skip(handle, NULL, frag->pad); 5854 } else { 5855 struct { 5856 u32 size; 5857 u32 data; 5858 } raw = { 5859 .size = sizeof(u32), 5860 .data = 0, 5861 }; 5862 perf_output_put(handle, raw); 5863 } 5864 } 5865 5866 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5867 if (data->br_stack) { 5868 size_t size; 5869 5870 size = data->br_stack->nr 5871 * sizeof(struct perf_branch_entry); 5872 5873 perf_output_put(handle, data->br_stack->nr); 5874 perf_output_copy(handle, data->br_stack->entries, size); 5875 } else { 5876 /* 5877 * we always store at least the value of nr 5878 */ 5879 u64 nr = 0; 5880 perf_output_put(handle, nr); 5881 } 5882 } 5883 5884 if (sample_type & PERF_SAMPLE_REGS_USER) { 5885 u64 abi = data->regs_user.abi; 5886 5887 /* 5888 * If there are no regs to dump, notice it through 5889 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5890 */ 5891 perf_output_put(handle, abi); 5892 5893 if (abi) { 5894 u64 mask = event->attr.sample_regs_user; 5895 perf_output_sample_regs(handle, 5896 data->regs_user.regs, 5897 mask); 5898 } 5899 } 5900 5901 if (sample_type & PERF_SAMPLE_STACK_USER) { 5902 perf_output_sample_ustack(handle, 5903 data->stack_user_size, 5904 data->regs_user.regs); 5905 } 5906 5907 if (sample_type & PERF_SAMPLE_WEIGHT) 5908 perf_output_put(handle, data->weight); 5909 5910 if (sample_type & PERF_SAMPLE_DATA_SRC) 5911 perf_output_put(handle, data->data_src.val); 5912 5913 if (sample_type & PERF_SAMPLE_TRANSACTION) 5914 perf_output_put(handle, data->txn); 5915 5916 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5917 u64 abi = data->regs_intr.abi; 5918 /* 5919 * If there are no regs to dump, notice it through 5920 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5921 */ 5922 perf_output_put(handle, abi); 5923 5924 if (abi) { 5925 u64 mask = event->attr.sample_regs_intr; 5926 5927 perf_output_sample_regs(handle, 5928 data->regs_intr.regs, 5929 mask); 5930 } 5931 } 5932 5933 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 5934 perf_output_put(handle, data->phys_addr); 5935 5936 if (!event->attr.watermark) { 5937 int wakeup_events = event->attr.wakeup_events; 5938 5939 if (wakeup_events) { 5940 struct ring_buffer *rb = handle->rb; 5941 int events = local_inc_return(&rb->events); 5942 5943 if (events >= wakeup_events) { 5944 local_sub(wakeup_events, &rb->events); 5945 local_inc(&rb->wakeup); 5946 } 5947 } 5948 } 5949 } 5950 5951 static u64 perf_virt_to_phys(u64 virt) 5952 { 5953 u64 phys_addr = 0; 5954 struct page *p = NULL; 5955 5956 if (!virt) 5957 return 0; 5958 5959 if (virt >= TASK_SIZE) { 5960 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 5961 if (virt_addr_valid((void *)(uintptr_t)virt) && 5962 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 5963 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 5964 } else { 5965 /* 5966 * Walking the pages tables for user address. 5967 * Interrupts are disabled, so it prevents any tear down 5968 * of the page tables. 5969 * Try IRQ-safe __get_user_pages_fast first. 5970 * If failed, leave phys_addr as 0. 5971 */ 5972 if ((current->mm != NULL) && 5973 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 5974 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 5975 5976 if (p) 5977 put_page(p); 5978 } 5979 5980 return phys_addr; 5981 } 5982 5983 void perf_prepare_sample(struct perf_event_header *header, 5984 struct perf_sample_data *data, 5985 struct perf_event *event, 5986 struct pt_regs *regs) 5987 { 5988 u64 sample_type = event->attr.sample_type; 5989 5990 header->type = PERF_RECORD_SAMPLE; 5991 header->size = sizeof(*header) + event->header_size; 5992 5993 header->misc = 0; 5994 header->misc |= perf_misc_flags(regs); 5995 5996 __perf_event_header__init_id(header, data, event); 5997 5998 if (sample_type & PERF_SAMPLE_IP) 5999 data->ip = perf_instruction_pointer(regs); 6000 6001 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6002 int size = 1; 6003 6004 data->callchain = perf_callchain(event, regs); 6005 6006 if (data->callchain) 6007 size += data->callchain->nr; 6008 6009 header->size += size * sizeof(u64); 6010 } 6011 6012 if (sample_type & PERF_SAMPLE_RAW) { 6013 struct perf_raw_record *raw = data->raw; 6014 int size; 6015 6016 if (raw) { 6017 struct perf_raw_frag *frag = &raw->frag; 6018 u32 sum = 0; 6019 6020 do { 6021 sum += frag->size; 6022 if (perf_raw_frag_last(frag)) 6023 break; 6024 frag = frag->next; 6025 } while (1); 6026 6027 size = round_up(sum + sizeof(u32), sizeof(u64)); 6028 raw->size = size - sizeof(u32); 6029 frag->pad = raw->size - sum; 6030 } else { 6031 size = sizeof(u64); 6032 } 6033 6034 header->size += size; 6035 } 6036 6037 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6038 int size = sizeof(u64); /* nr */ 6039 if (data->br_stack) { 6040 size += data->br_stack->nr 6041 * sizeof(struct perf_branch_entry); 6042 } 6043 header->size += size; 6044 } 6045 6046 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6047 perf_sample_regs_user(&data->regs_user, regs, 6048 &data->regs_user_copy); 6049 6050 if (sample_type & PERF_SAMPLE_REGS_USER) { 6051 /* regs dump ABI info */ 6052 int size = sizeof(u64); 6053 6054 if (data->regs_user.regs) { 6055 u64 mask = event->attr.sample_regs_user; 6056 size += hweight64(mask) * sizeof(u64); 6057 } 6058 6059 header->size += size; 6060 } 6061 6062 if (sample_type & PERF_SAMPLE_STACK_USER) { 6063 /* 6064 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6065 * processed as the last one or have additional check added 6066 * in case new sample type is added, because we could eat 6067 * up the rest of the sample size. 6068 */ 6069 u16 stack_size = event->attr.sample_stack_user; 6070 u16 size = sizeof(u64); 6071 6072 stack_size = perf_sample_ustack_size(stack_size, header->size, 6073 data->regs_user.regs); 6074 6075 /* 6076 * If there is something to dump, add space for the dump 6077 * itself and for the field that tells the dynamic size, 6078 * which is how many have been actually dumped. 6079 */ 6080 if (stack_size) 6081 size += sizeof(u64) + stack_size; 6082 6083 data->stack_user_size = stack_size; 6084 header->size += size; 6085 } 6086 6087 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6088 /* regs dump ABI info */ 6089 int size = sizeof(u64); 6090 6091 perf_sample_regs_intr(&data->regs_intr, regs); 6092 6093 if (data->regs_intr.regs) { 6094 u64 mask = event->attr.sample_regs_intr; 6095 6096 size += hweight64(mask) * sizeof(u64); 6097 } 6098 6099 header->size += size; 6100 } 6101 6102 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6103 data->phys_addr = perf_virt_to_phys(data->addr); 6104 } 6105 6106 static void __always_inline 6107 __perf_event_output(struct perf_event *event, 6108 struct perf_sample_data *data, 6109 struct pt_regs *regs, 6110 int (*output_begin)(struct perf_output_handle *, 6111 struct perf_event *, 6112 unsigned int)) 6113 { 6114 struct perf_output_handle handle; 6115 struct perf_event_header header; 6116 6117 /* protect the callchain buffers */ 6118 rcu_read_lock(); 6119 6120 perf_prepare_sample(&header, data, event, regs); 6121 6122 if (output_begin(&handle, event, header.size)) 6123 goto exit; 6124 6125 perf_output_sample(&handle, &header, data, event); 6126 6127 perf_output_end(&handle); 6128 6129 exit: 6130 rcu_read_unlock(); 6131 } 6132 6133 void 6134 perf_event_output_forward(struct perf_event *event, 6135 struct perf_sample_data *data, 6136 struct pt_regs *regs) 6137 { 6138 __perf_event_output(event, data, regs, perf_output_begin_forward); 6139 } 6140 6141 void 6142 perf_event_output_backward(struct perf_event *event, 6143 struct perf_sample_data *data, 6144 struct pt_regs *regs) 6145 { 6146 __perf_event_output(event, data, regs, perf_output_begin_backward); 6147 } 6148 6149 void 6150 perf_event_output(struct perf_event *event, 6151 struct perf_sample_data *data, 6152 struct pt_regs *regs) 6153 { 6154 __perf_event_output(event, data, regs, perf_output_begin); 6155 } 6156 6157 /* 6158 * read event_id 6159 */ 6160 6161 struct perf_read_event { 6162 struct perf_event_header header; 6163 6164 u32 pid; 6165 u32 tid; 6166 }; 6167 6168 static void 6169 perf_event_read_event(struct perf_event *event, 6170 struct task_struct *task) 6171 { 6172 struct perf_output_handle handle; 6173 struct perf_sample_data sample; 6174 struct perf_read_event read_event = { 6175 .header = { 6176 .type = PERF_RECORD_READ, 6177 .misc = 0, 6178 .size = sizeof(read_event) + event->read_size, 6179 }, 6180 .pid = perf_event_pid(event, task), 6181 .tid = perf_event_tid(event, task), 6182 }; 6183 int ret; 6184 6185 perf_event_header__init_id(&read_event.header, &sample, event); 6186 ret = perf_output_begin(&handle, event, read_event.header.size); 6187 if (ret) 6188 return; 6189 6190 perf_output_put(&handle, read_event); 6191 perf_output_read(&handle, event); 6192 perf_event__output_id_sample(event, &handle, &sample); 6193 6194 perf_output_end(&handle); 6195 } 6196 6197 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6198 6199 static void 6200 perf_iterate_ctx(struct perf_event_context *ctx, 6201 perf_iterate_f output, 6202 void *data, bool all) 6203 { 6204 struct perf_event *event; 6205 6206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6207 if (!all) { 6208 if (event->state < PERF_EVENT_STATE_INACTIVE) 6209 continue; 6210 if (!event_filter_match(event)) 6211 continue; 6212 } 6213 6214 output(event, data); 6215 } 6216 } 6217 6218 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6219 { 6220 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6221 struct perf_event *event; 6222 6223 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6224 /* 6225 * Skip events that are not fully formed yet; ensure that 6226 * if we observe event->ctx, both event and ctx will be 6227 * complete enough. See perf_install_in_context(). 6228 */ 6229 if (!smp_load_acquire(&event->ctx)) 6230 continue; 6231 6232 if (event->state < PERF_EVENT_STATE_INACTIVE) 6233 continue; 6234 if (!event_filter_match(event)) 6235 continue; 6236 output(event, data); 6237 } 6238 } 6239 6240 /* 6241 * Iterate all events that need to receive side-band events. 6242 * 6243 * For new callers; ensure that account_pmu_sb_event() includes 6244 * your event, otherwise it might not get delivered. 6245 */ 6246 static void 6247 perf_iterate_sb(perf_iterate_f output, void *data, 6248 struct perf_event_context *task_ctx) 6249 { 6250 struct perf_event_context *ctx; 6251 int ctxn; 6252 6253 rcu_read_lock(); 6254 preempt_disable(); 6255 6256 /* 6257 * If we have task_ctx != NULL we only notify the task context itself. 6258 * The task_ctx is set only for EXIT events before releasing task 6259 * context. 6260 */ 6261 if (task_ctx) { 6262 perf_iterate_ctx(task_ctx, output, data, false); 6263 goto done; 6264 } 6265 6266 perf_iterate_sb_cpu(output, data); 6267 6268 for_each_task_context_nr(ctxn) { 6269 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6270 if (ctx) 6271 perf_iterate_ctx(ctx, output, data, false); 6272 } 6273 done: 6274 preempt_enable(); 6275 rcu_read_unlock(); 6276 } 6277 6278 /* 6279 * Clear all file-based filters at exec, they'll have to be 6280 * re-instated when/if these objects are mmapped again. 6281 */ 6282 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6283 { 6284 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6285 struct perf_addr_filter *filter; 6286 unsigned int restart = 0, count = 0; 6287 unsigned long flags; 6288 6289 if (!has_addr_filter(event)) 6290 return; 6291 6292 raw_spin_lock_irqsave(&ifh->lock, flags); 6293 list_for_each_entry(filter, &ifh->list, entry) { 6294 if (filter->inode) { 6295 event->addr_filters_offs[count] = 0; 6296 restart++; 6297 } 6298 6299 count++; 6300 } 6301 6302 if (restart) 6303 event->addr_filters_gen++; 6304 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6305 6306 if (restart) 6307 perf_event_stop(event, 1); 6308 } 6309 6310 void perf_event_exec(void) 6311 { 6312 struct perf_event_context *ctx; 6313 int ctxn; 6314 6315 rcu_read_lock(); 6316 for_each_task_context_nr(ctxn) { 6317 ctx = current->perf_event_ctxp[ctxn]; 6318 if (!ctx) 6319 continue; 6320 6321 perf_event_enable_on_exec(ctxn); 6322 6323 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6324 true); 6325 } 6326 rcu_read_unlock(); 6327 } 6328 6329 struct remote_output { 6330 struct ring_buffer *rb; 6331 int err; 6332 }; 6333 6334 static void __perf_event_output_stop(struct perf_event *event, void *data) 6335 { 6336 struct perf_event *parent = event->parent; 6337 struct remote_output *ro = data; 6338 struct ring_buffer *rb = ro->rb; 6339 struct stop_event_data sd = { 6340 .event = event, 6341 }; 6342 6343 if (!has_aux(event)) 6344 return; 6345 6346 if (!parent) 6347 parent = event; 6348 6349 /* 6350 * In case of inheritance, it will be the parent that links to the 6351 * ring-buffer, but it will be the child that's actually using it. 6352 * 6353 * We are using event::rb to determine if the event should be stopped, 6354 * however this may race with ring_buffer_attach() (through set_output), 6355 * which will make us skip the event that actually needs to be stopped. 6356 * So ring_buffer_attach() has to stop an aux event before re-assigning 6357 * its rb pointer. 6358 */ 6359 if (rcu_dereference(parent->rb) == rb) 6360 ro->err = __perf_event_stop(&sd); 6361 } 6362 6363 static int __perf_pmu_output_stop(void *info) 6364 { 6365 struct perf_event *event = info; 6366 struct pmu *pmu = event->pmu; 6367 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6368 struct remote_output ro = { 6369 .rb = event->rb, 6370 }; 6371 6372 rcu_read_lock(); 6373 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6374 if (cpuctx->task_ctx) 6375 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6376 &ro, false); 6377 rcu_read_unlock(); 6378 6379 return ro.err; 6380 } 6381 6382 static void perf_pmu_output_stop(struct perf_event *event) 6383 { 6384 struct perf_event *iter; 6385 int err, cpu; 6386 6387 restart: 6388 rcu_read_lock(); 6389 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6390 /* 6391 * For per-CPU events, we need to make sure that neither they 6392 * nor their children are running; for cpu==-1 events it's 6393 * sufficient to stop the event itself if it's active, since 6394 * it can't have children. 6395 */ 6396 cpu = iter->cpu; 6397 if (cpu == -1) 6398 cpu = READ_ONCE(iter->oncpu); 6399 6400 if (cpu == -1) 6401 continue; 6402 6403 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6404 if (err == -EAGAIN) { 6405 rcu_read_unlock(); 6406 goto restart; 6407 } 6408 } 6409 rcu_read_unlock(); 6410 } 6411 6412 /* 6413 * task tracking -- fork/exit 6414 * 6415 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6416 */ 6417 6418 struct perf_task_event { 6419 struct task_struct *task; 6420 struct perf_event_context *task_ctx; 6421 6422 struct { 6423 struct perf_event_header header; 6424 6425 u32 pid; 6426 u32 ppid; 6427 u32 tid; 6428 u32 ptid; 6429 u64 time; 6430 } event_id; 6431 }; 6432 6433 static int perf_event_task_match(struct perf_event *event) 6434 { 6435 return event->attr.comm || event->attr.mmap || 6436 event->attr.mmap2 || event->attr.mmap_data || 6437 event->attr.task; 6438 } 6439 6440 static void perf_event_task_output(struct perf_event *event, 6441 void *data) 6442 { 6443 struct perf_task_event *task_event = data; 6444 struct perf_output_handle handle; 6445 struct perf_sample_data sample; 6446 struct task_struct *task = task_event->task; 6447 int ret, size = task_event->event_id.header.size; 6448 6449 if (!perf_event_task_match(event)) 6450 return; 6451 6452 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6453 6454 ret = perf_output_begin(&handle, event, 6455 task_event->event_id.header.size); 6456 if (ret) 6457 goto out; 6458 6459 task_event->event_id.pid = perf_event_pid(event, task); 6460 task_event->event_id.ppid = perf_event_pid(event, current); 6461 6462 task_event->event_id.tid = perf_event_tid(event, task); 6463 task_event->event_id.ptid = perf_event_tid(event, current); 6464 6465 task_event->event_id.time = perf_event_clock(event); 6466 6467 perf_output_put(&handle, task_event->event_id); 6468 6469 perf_event__output_id_sample(event, &handle, &sample); 6470 6471 perf_output_end(&handle); 6472 out: 6473 task_event->event_id.header.size = size; 6474 } 6475 6476 static void perf_event_task(struct task_struct *task, 6477 struct perf_event_context *task_ctx, 6478 int new) 6479 { 6480 struct perf_task_event task_event; 6481 6482 if (!atomic_read(&nr_comm_events) && 6483 !atomic_read(&nr_mmap_events) && 6484 !atomic_read(&nr_task_events)) 6485 return; 6486 6487 task_event = (struct perf_task_event){ 6488 .task = task, 6489 .task_ctx = task_ctx, 6490 .event_id = { 6491 .header = { 6492 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6493 .misc = 0, 6494 .size = sizeof(task_event.event_id), 6495 }, 6496 /* .pid */ 6497 /* .ppid */ 6498 /* .tid */ 6499 /* .ptid */ 6500 /* .time */ 6501 }, 6502 }; 6503 6504 perf_iterate_sb(perf_event_task_output, 6505 &task_event, 6506 task_ctx); 6507 } 6508 6509 void perf_event_fork(struct task_struct *task) 6510 { 6511 perf_event_task(task, NULL, 1); 6512 perf_event_namespaces(task); 6513 } 6514 6515 /* 6516 * comm tracking 6517 */ 6518 6519 struct perf_comm_event { 6520 struct task_struct *task; 6521 char *comm; 6522 int comm_size; 6523 6524 struct { 6525 struct perf_event_header header; 6526 6527 u32 pid; 6528 u32 tid; 6529 } event_id; 6530 }; 6531 6532 static int perf_event_comm_match(struct perf_event *event) 6533 { 6534 return event->attr.comm; 6535 } 6536 6537 static void perf_event_comm_output(struct perf_event *event, 6538 void *data) 6539 { 6540 struct perf_comm_event *comm_event = data; 6541 struct perf_output_handle handle; 6542 struct perf_sample_data sample; 6543 int size = comm_event->event_id.header.size; 6544 int ret; 6545 6546 if (!perf_event_comm_match(event)) 6547 return; 6548 6549 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6550 ret = perf_output_begin(&handle, event, 6551 comm_event->event_id.header.size); 6552 6553 if (ret) 6554 goto out; 6555 6556 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6557 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6558 6559 perf_output_put(&handle, comm_event->event_id); 6560 __output_copy(&handle, comm_event->comm, 6561 comm_event->comm_size); 6562 6563 perf_event__output_id_sample(event, &handle, &sample); 6564 6565 perf_output_end(&handle); 6566 out: 6567 comm_event->event_id.header.size = size; 6568 } 6569 6570 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6571 { 6572 char comm[TASK_COMM_LEN]; 6573 unsigned int size; 6574 6575 memset(comm, 0, sizeof(comm)); 6576 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6577 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6578 6579 comm_event->comm = comm; 6580 comm_event->comm_size = size; 6581 6582 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6583 6584 perf_iterate_sb(perf_event_comm_output, 6585 comm_event, 6586 NULL); 6587 } 6588 6589 void perf_event_comm(struct task_struct *task, bool exec) 6590 { 6591 struct perf_comm_event comm_event; 6592 6593 if (!atomic_read(&nr_comm_events)) 6594 return; 6595 6596 comm_event = (struct perf_comm_event){ 6597 .task = task, 6598 /* .comm */ 6599 /* .comm_size */ 6600 .event_id = { 6601 .header = { 6602 .type = PERF_RECORD_COMM, 6603 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6604 /* .size */ 6605 }, 6606 /* .pid */ 6607 /* .tid */ 6608 }, 6609 }; 6610 6611 perf_event_comm_event(&comm_event); 6612 } 6613 6614 /* 6615 * namespaces tracking 6616 */ 6617 6618 struct perf_namespaces_event { 6619 struct task_struct *task; 6620 6621 struct { 6622 struct perf_event_header header; 6623 6624 u32 pid; 6625 u32 tid; 6626 u64 nr_namespaces; 6627 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6628 } event_id; 6629 }; 6630 6631 static int perf_event_namespaces_match(struct perf_event *event) 6632 { 6633 return event->attr.namespaces; 6634 } 6635 6636 static void perf_event_namespaces_output(struct perf_event *event, 6637 void *data) 6638 { 6639 struct perf_namespaces_event *namespaces_event = data; 6640 struct perf_output_handle handle; 6641 struct perf_sample_data sample; 6642 int ret; 6643 6644 if (!perf_event_namespaces_match(event)) 6645 return; 6646 6647 perf_event_header__init_id(&namespaces_event->event_id.header, 6648 &sample, event); 6649 ret = perf_output_begin(&handle, event, 6650 namespaces_event->event_id.header.size); 6651 if (ret) 6652 return; 6653 6654 namespaces_event->event_id.pid = perf_event_pid(event, 6655 namespaces_event->task); 6656 namespaces_event->event_id.tid = perf_event_tid(event, 6657 namespaces_event->task); 6658 6659 perf_output_put(&handle, namespaces_event->event_id); 6660 6661 perf_event__output_id_sample(event, &handle, &sample); 6662 6663 perf_output_end(&handle); 6664 } 6665 6666 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6667 struct task_struct *task, 6668 const struct proc_ns_operations *ns_ops) 6669 { 6670 struct path ns_path; 6671 struct inode *ns_inode; 6672 void *error; 6673 6674 error = ns_get_path(&ns_path, task, ns_ops); 6675 if (!error) { 6676 ns_inode = ns_path.dentry->d_inode; 6677 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6678 ns_link_info->ino = ns_inode->i_ino; 6679 path_put(&ns_path); 6680 } 6681 } 6682 6683 void perf_event_namespaces(struct task_struct *task) 6684 { 6685 struct perf_namespaces_event namespaces_event; 6686 struct perf_ns_link_info *ns_link_info; 6687 6688 if (!atomic_read(&nr_namespaces_events)) 6689 return; 6690 6691 namespaces_event = (struct perf_namespaces_event){ 6692 .task = task, 6693 .event_id = { 6694 .header = { 6695 .type = PERF_RECORD_NAMESPACES, 6696 .misc = 0, 6697 .size = sizeof(namespaces_event.event_id), 6698 }, 6699 /* .pid */ 6700 /* .tid */ 6701 .nr_namespaces = NR_NAMESPACES, 6702 /* .link_info[NR_NAMESPACES] */ 6703 }, 6704 }; 6705 6706 ns_link_info = namespaces_event.event_id.link_info; 6707 6708 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6709 task, &mntns_operations); 6710 6711 #ifdef CONFIG_USER_NS 6712 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6713 task, &userns_operations); 6714 #endif 6715 #ifdef CONFIG_NET_NS 6716 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6717 task, &netns_operations); 6718 #endif 6719 #ifdef CONFIG_UTS_NS 6720 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6721 task, &utsns_operations); 6722 #endif 6723 #ifdef CONFIG_IPC_NS 6724 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6725 task, &ipcns_operations); 6726 #endif 6727 #ifdef CONFIG_PID_NS 6728 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6729 task, &pidns_operations); 6730 #endif 6731 #ifdef CONFIG_CGROUPS 6732 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6733 task, &cgroupns_operations); 6734 #endif 6735 6736 perf_iterate_sb(perf_event_namespaces_output, 6737 &namespaces_event, 6738 NULL); 6739 } 6740 6741 /* 6742 * mmap tracking 6743 */ 6744 6745 struct perf_mmap_event { 6746 struct vm_area_struct *vma; 6747 6748 const char *file_name; 6749 int file_size; 6750 int maj, min; 6751 u64 ino; 6752 u64 ino_generation; 6753 u32 prot, flags; 6754 6755 struct { 6756 struct perf_event_header header; 6757 6758 u32 pid; 6759 u32 tid; 6760 u64 start; 6761 u64 len; 6762 u64 pgoff; 6763 } event_id; 6764 }; 6765 6766 static int perf_event_mmap_match(struct perf_event *event, 6767 void *data) 6768 { 6769 struct perf_mmap_event *mmap_event = data; 6770 struct vm_area_struct *vma = mmap_event->vma; 6771 int executable = vma->vm_flags & VM_EXEC; 6772 6773 return (!executable && event->attr.mmap_data) || 6774 (executable && (event->attr.mmap || event->attr.mmap2)); 6775 } 6776 6777 static void perf_event_mmap_output(struct perf_event *event, 6778 void *data) 6779 { 6780 struct perf_mmap_event *mmap_event = data; 6781 struct perf_output_handle handle; 6782 struct perf_sample_data sample; 6783 int size = mmap_event->event_id.header.size; 6784 int ret; 6785 6786 if (!perf_event_mmap_match(event, data)) 6787 return; 6788 6789 if (event->attr.mmap2) { 6790 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6791 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6792 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6793 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6794 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6795 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6796 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6797 } 6798 6799 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6800 ret = perf_output_begin(&handle, event, 6801 mmap_event->event_id.header.size); 6802 if (ret) 6803 goto out; 6804 6805 mmap_event->event_id.pid = perf_event_pid(event, current); 6806 mmap_event->event_id.tid = perf_event_tid(event, current); 6807 6808 perf_output_put(&handle, mmap_event->event_id); 6809 6810 if (event->attr.mmap2) { 6811 perf_output_put(&handle, mmap_event->maj); 6812 perf_output_put(&handle, mmap_event->min); 6813 perf_output_put(&handle, mmap_event->ino); 6814 perf_output_put(&handle, mmap_event->ino_generation); 6815 perf_output_put(&handle, mmap_event->prot); 6816 perf_output_put(&handle, mmap_event->flags); 6817 } 6818 6819 __output_copy(&handle, mmap_event->file_name, 6820 mmap_event->file_size); 6821 6822 perf_event__output_id_sample(event, &handle, &sample); 6823 6824 perf_output_end(&handle); 6825 out: 6826 mmap_event->event_id.header.size = size; 6827 } 6828 6829 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6830 { 6831 struct vm_area_struct *vma = mmap_event->vma; 6832 struct file *file = vma->vm_file; 6833 int maj = 0, min = 0; 6834 u64 ino = 0, gen = 0; 6835 u32 prot = 0, flags = 0; 6836 unsigned int size; 6837 char tmp[16]; 6838 char *buf = NULL; 6839 char *name; 6840 6841 if (vma->vm_flags & VM_READ) 6842 prot |= PROT_READ; 6843 if (vma->vm_flags & VM_WRITE) 6844 prot |= PROT_WRITE; 6845 if (vma->vm_flags & VM_EXEC) 6846 prot |= PROT_EXEC; 6847 6848 if (vma->vm_flags & VM_MAYSHARE) 6849 flags = MAP_SHARED; 6850 else 6851 flags = MAP_PRIVATE; 6852 6853 if (vma->vm_flags & VM_DENYWRITE) 6854 flags |= MAP_DENYWRITE; 6855 if (vma->vm_flags & VM_MAYEXEC) 6856 flags |= MAP_EXECUTABLE; 6857 if (vma->vm_flags & VM_LOCKED) 6858 flags |= MAP_LOCKED; 6859 if (vma->vm_flags & VM_HUGETLB) 6860 flags |= MAP_HUGETLB; 6861 6862 if (file) { 6863 struct inode *inode; 6864 dev_t dev; 6865 6866 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6867 if (!buf) { 6868 name = "//enomem"; 6869 goto cpy_name; 6870 } 6871 /* 6872 * d_path() works from the end of the rb backwards, so we 6873 * need to add enough zero bytes after the string to handle 6874 * the 64bit alignment we do later. 6875 */ 6876 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6877 if (IS_ERR(name)) { 6878 name = "//toolong"; 6879 goto cpy_name; 6880 } 6881 inode = file_inode(vma->vm_file); 6882 dev = inode->i_sb->s_dev; 6883 ino = inode->i_ino; 6884 gen = inode->i_generation; 6885 maj = MAJOR(dev); 6886 min = MINOR(dev); 6887 6888 goto got_name; 6889 } else { 6890 if (vma->vm_ops && vma->vm_ops->name) { 6891 name = (char *) vma->vm_ops->name(vma); 6892 if (name) 6893 goto cpy_name; 6894 } 6895 6896 name = (char *)arch_vma_name(vma); 6897 if (name) 6898 goto cpy_name; 6899 6900 if (vma->vm_start <= vma->vm_mm->start_brk && 6901 vma->vm_end >= vma->vm_mm->brk) { 6902 name = "[heap]"; 6903 goto cpy_name; 6904 } 6905 if (vma->vm_start <= vma->vm_mm->start_stack && 6906 vma->vm_end >= vma->vm_mm->start_stack) { 6907 name = "[stack]"; 6908 goto cpy_name; 6909 } 6910 6911 name = "//anon"; 6912 goto cpy_name; 6913 } 6914 6915 cpy_name: 6916 strlcpy(tmp, name, sizeof(tmp)); 6917 name = tmp; 6918 got_name: 6919 /* 6920 * Since our buffer works in 8 byte units we need to align our string 6921 * size to a multiple of 8. However, we must guarantee the tail end is 6922 * zero'd out to avoid leaking random bits to userspace. 6923 */ 6924 size = strlen(name)+1; 6925 while (!IS_ALIGNED(size, sizeof(u64))) 6926 name[size++] = '\0'; 6927 6928 mmap_event->file_name = name; 6929 mmap_event->file_size = size; 6930 mmap_event->maj = maj; 6931 mmap_event->min = min; 6932 mmap_event->ino = ino; 6933 mmap_event->ino_generation = gen; 6934 mmap_event->prot = prot; 6935 mmap_event->flags = flags; 6936 6937 if (!(vma->vm_flags & VM_EXEC)) 6938 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6939 6940 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6941 6942 perf_iterate_sb(perf_event_mmap_output, 6943 mmap_event, 6944 NULL); 6945 6946 kfree(buf); 6947 } 6948 6949 /* 6950 * Check whether inode and address range match filter criteria. 6951 */ 6952 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6953 struct file *file, unsigned long offset, 6954 unsigned long size) 6955 { 6956 if (filter->inode != file_inode(file)) 6957 return false; 6958 6959 if (filter->offset > offset + size) 6960 return false; 6961 6962 if (filter->offset + filter->size < offset) 6963 return false; 6964 6965 return true; 6966 } 6967 6968 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6969 { 6970 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6971 struct vm_area_struct *vma = data; 6972 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6973 struct file *file = vma->vm_file; 6974 struct perf_addr_filter *filter; 6975 unsigned int restart = 0, count = 0; 6976 6977 if (!has_addr_filter(event)) 6978 return; 6979 6980 if (!file) 6981 return; 6982 6983 raw_spin_lock_irqsave(&ifh->lock, flags); 6984 list_for_each_entry(filter, &ifh->list, entry) { 6985 if (perf_addr_filter_match(filter, file, off, 6986 vma->vm_end - vma->vm_start)) { 6987 event->addr_filters_offs[count] = vma->vm_start; 6988 restart++; 6989 } 6990 6991 count++; 6992 } 6993 6994 if (restart) 6995 event->addr_filters_gen++; 6996 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6997 6998 if (restart) 6999 perf_event_stop(event, 1); 7000 } 7001 7002 /* 7003 * Adjust all task's events' filters to the new vma 7004 */ 7005 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7006 { 7007 struct perf_event_context *ctx; 7008 int ctxn; 7009 7010 /* 7011 * Data tracing isn't supported yet and as such there is no need 7012 * to keep track of anything that isn't related to executable code: 7013 */ 7014 if (!(vma->vm_flags & VM_EXEC)) 7015 return; 7016 7017 rcu_read_lock(); 7018 for_each_task_context_nr(ctxn) { 7019 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7020 if (!ctx) 7021 continue; 7022 7023 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7024 } 7025 rcu_read_unlock(); 7026 } 7027 7028 void perf_event_mmap(struct vm_area_struct *vma) 7029 { 7030 struct perf_mmap_event mmap_event; 7031 7032 if (!atomic_read(&nr_mmap_events)) 7033 return; 7034 7035 mmap_event = (struct perf_mmap_event){ 7036 .vma = vma, 7037 /* .file_name */ 7038 /* .file_size */ 7039 .event_id = { 7040 .header = { 7041 .type = PERF_RECORD_MMAP, 7042 .misc = PERF_RECORD_MISC_USER, 7043 /* .size */ 7044 }, 7045 /* .pid */ 7046 /* .tid */ 7047 .start = vma->vm_start, 7048 .len = vma->vm_end - vma->vm_start, 7049 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7050 }, 7051 /* .maj (attr_mmap2 only) */ 7052 /* .min (attr_mmap2 only) */ 7053 /* .ino (attr_mmap2 only) */ 7054 /* .ino_generation (attr_mmap2 only) */ 7055 /* .prot (attr_mmap2 only) */ 7056 /* .flags (attr_mmap2 only) */ 7057 }; 7058 7059 perf_addr_filters_adjust(vma); 7060 perf_event_mmap_event(&mmap_event); 7061 } 7062 7063 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7064 unsigned long size, u64 flags) 7065 { 7066 struct perf_output_handle handle; 7067 struct perf_sample_data sample; 7068 struct perf_aux_event { 7069 struct perf_event_header header; 7070 u64 offset; 7071 u64 size; 7072 u64 flags; 7073 } rec = { 7074 .header = { 7075 .type = PERF_RECORD_AUX, 7076 .misc = 0, 7077 .size = sizeof(rec), 7078 }, 7079 .offset = head, 7080 .size = size, 7081 .flags = flags, 7082 }; 7083 int ret; 7084 7085 perf_event_header__init_id(&rec.header, &sample, event); 7086 ret = perf_output_begin(&handle, event, rec.header.size); 7087 7088 if (ret) 7089 return; 7090 7091 perf_output_put(&handle, rec); 7092 perf_event__output_id_sample(event, &handle, &sample); 7093 7094 perf_output_end(&handle); 7095 } 7096 7097 /* 7098 * Lost/dropped samples logging 7099 */ 7100 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7101 { 7102 struct perf_output_handle handle; 7103 struct perf_sample_data sample; 7104 int ret; 7105 7106 struct { 7107 struct perf_event_header header; 7108 u64 lost; 7109 } lost_samples_event = { 7110 .header = { 7111 .type = PERF_RECORD_LOST_SAMPLES, 7112 .misc = 0, 7113 .size = sizeof(lost_samples_event), 7114 }, 7115 .lost = lost, 7116 }; 7117 7118 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7119 7120 ret = perf_output_begin(&handle, event, 7121 lost_samples_event.header.size); 7122 if (ret) 7123 return; 7124 7125 perf_output_put(&handle, lost_samples_event); 7126 perf_event__output_id_sample(event, &handle, &sample); 7127 perf_output_end(&handle); 7128 } 7129 7130 /* 7131 * context_switch tracking 7132 */ 7133 7134 struct perf_switch_event { 7135 struct task_struct *task; 7136 struct task_struct *next_prev; 7137 7138 struct { 7139 struct perf_event_header header; 7140 u32 next_prev_pid; 7141 u32 next_prev_tid; 7142 } event_id; 7143 }; 7144 7145 static int perf_event_switch_match(struct perf_event *event) 7146 { 7147 return event->attr.context_switch; 7148 } 7149 7150 static void perf_event_switch_output(struct perf_event *event, void *data) 7151 { 7152 struct perf_switch_event *se = data; 7153 struct perf_output_handle handle; 7154 struct perf_sample_data sample; 7155 int ret; 7156 7157 if (!perf_event_switch_match(event)) 7158 return; 7159 7160 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7161 if (event->ctx->task) { 7162 se->event_id.header.type = PERF_RECORD_SWITCH; 7163 se->event_id.header.size = sizeof(se->event_id.header); 7164 } else { 7165 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7166 se->event_id.header.size = sizeof(se->event_id); 7167 se->event_id.next_prev_pid = 7168 perf_event_pid(event, se->next_prev); 7169 se->event_id.next_prev_tid = 7170 perf_event_tid(event, se->next_prev); 7171 } 7172 7173 perf_event_header__init_id(&se->event_id.header, &sample, event); 7174 7175 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7176 if (ret) 7177 return; 7178 7179 if (event->ctx->task) 7180 perf_output_put(&handle, se->event_id.header); 7181 else 7182 perf_output_put(&handle, se->event_id); 7183 7184 perf_event__output_id_sample(event, &handle, &sample); 7185 7186 perf_output_end(&handle); 7187 } 7188 7189 static void perf_event_switch(struct task_struct *task, 7190 struct task_struct *next_prev, bool sched_in) 7191 { 7192 struct perf_switch_event switch_event; 7193 7194 /* N.B. caller checks nr_switch_events != 0 */ 7195 7196 switch_event = (struct perf_switch_event){ 7197 .task = task, 7198 .next_prev = next_prev, 7199 .event_id = { 7200 .header = { 7201 /* .type */ 7202 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7203 /* .size */ 7204 }, 7205 /* .next_prev_pid */ 7206 /* .next_prev_tid */ 7207 }, 7208 }; 7209 7210 perf_iterate_sb(perf_event_switch_output, 7211 &switch_event, 7212 NULL); 7213 } 7214 7215 /* 7216 * IRQ throttle logging 7217 */ 7218 7219 static void perf_log_throttle(struct perf_event *event, int enable) 7220 { 7221 struct perf_output_handle handle; 7222 struct perf_sample_data sample; 7223 int ret; 7224 7225 struct { 7226 struct perf_event_header header; 7227 u64 time; 7228 u64 id; 7229 u64 stream_id; 7230 } throttle_event = { 7231 .header = { 7232 .type = PERF_RECORD_THROTTLE, 7233 .misc = 0, 7234 .size = sizeof(throttle_event), 7235 }, 7236 .time = perf_event_clock(event), 7237 .id = primary_event_id(event), 7238 .stream_id = event->id, 7239 }; 7240 7241 if (enable) 7242 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7243 7244 perf_event_header__init_id(&throttle_event.header, &sample, event); 7245 7246 ret = perf_output_begin(&handle, event, 7247 throttle_event.header.size); 7248 if (ret) 7249 return; 7250 7251 perf_output_put(&handle, throttle_event); 7252 perf_event__output_id_sample(event, &handle, &sample); 7253 perf_output_end(&handle); 7254 } 7255 7256 void perf_event_itrace_started(struct perf_event *event) 7257 { 7258 event->attach_state |= PERF_ATTACH_ITRACE; 7259 } 7260 7261 static void perf_log_itrace_start(struct perf_event *event) 7262 { 7263 struct perf_output_handle handle; 7264 struct perf_sample_data sample; 7265 struct perf_aux_event { 7266 struct perf_event_header header; 7267 u32 pid; 7268 u32 tid; 7269 } rec; 7270 int ret; 7271 7272 if (event->parent) 7273 event = event->parent; 7274 7275 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7276 event->attach_state & PERF_ATTACH_ITRACE) 7277 return; 7278 7279 rec.header.type = PERF_RECORD_ITRACE_START; 7280 rec.header.misc = 0; 7281 rec.header.size = sizeof(rec); 7282 rec.pid = perf_event_pid(event, current); 7283 rec.tid = perf_event_tid(event, current); 7284 7285 perf_event_header__init_id(&rec.header, &sample, event); 7286 ret = perf_output_begin(&handle, event, rec.header.size); 7287 7288 if (ret) 7289 return; 7290 7291 perf_output_put(&handle, rec); 7292 perf_event__output_id_sample(event, &handle, &sample); 7293 7294 perf_output_end(&handle); 7295 } 7296 7297 static int 7298 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7299 { 7300 struct hw_perf_event *hwc = &event->hw; 7301 int ret = 0; 7302 u64 seq; 7303 7304 seq = __this_cpu_read(perf_throttled_seq); 7305 if (seq != hwc->interrupts_seq) { 7306 hwc->interrupts_seq = seq; 7307 hwc->interrupts = 1; 7308 } else { 7309 hwc->interrupts++; 7310 if (unlikely(throttle 7311 && hwc->interrupts >= max_samples_per_tick)) { 7312 __this_cpu_inc(perf_throttled_count); 7313 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7314 hwc->interrupts = MAX_INTERRUPTS; 7315 perf_log_throttle(event, 0); 7316 ret = 1; 7317 } 7318 } 7319 7320 if (event->attr.freq) { 7321 u64 now = perf_clock(); 7322 s64 delta = now - hwc->freq_time_stamp; 7323 7324 hwc->freq_time_stamp = now; 7325 7326 if (delta > 0 && delta < 2*TICK_NSEC) 7327 perf_adjust_period(event, delta, hwc->last_period, true); 7328 } 7329 7330 return ret; 7331 } 7332 7333 int perf_event_account_interrupt(struct perf_event *event) 7334 { 7335 return __perf_event_account_interrupt(event, 1); 7336 } 7337 7338 /* 7339 * Generic event overflow handling, sampling. 7340 */ 7341 7342 static int __perf_event_overflow(struct perf_event *event, 7343 int throttle, struct perf_sample_data *data, 7344 struct pt_regs *regs) 7345 { 7346 int events = atomic_read(&event->event_limit); 7347 int ret = 0; 7348 7349 /* 7350 * Non-sampling counters might still use the PMI to fold short 7351 * hardware counters, ignore those. 7352 */ 7353 if (unlikely(!is_sampling_event(event))) 7354 return 0; 7355 7356 ret = __perf_event_account_interrupt(event, throttle); 7357 7358 /* 7359 * XXX event_limit might not quite work as expected on inherited 7360 * events 7361 */ 7362 7363 event->pending_kill = POLL_IN; 7364 if (events && atomic_dec_and_test(&event->event_limit)) { 7365 ret = 1; 7366 event->pending_kill = POLL_HUP; 7367 7368 perf_event_disable_inatomic(event); 7369 } 7370 7371 READ_ONCE(event->overflow_handler)(event, data, regs); 7372 7373 if (*perf_event_fasync(event) && event->pending_kill) { 7374 event->pending_wakeup = 1; 7375 irq_work_queue(&event->pending); 7376 } 7377 7378 return ret; 7379 } 7380 7381 int perf_event_overflow(struct perf_event *event, 7382 struct perf_sample_data *data, 7383 struct pt_regs *regs) 7384 { 7385 return __perf_event_overflow(event, 1, data, regs); 7386 } 7387 7388 /* 7389 * Generic software event infrastructure 7390 */ 7391 7392 struct swevent_htable { 7393 struct swevent_hlist *swevent_hlist; 7394 struct mutex hlist_mutex; 7395 int hlist_refcount; 7396 7397 /* Recursion avoidance in each contexts */ 7398 int recursion[PERF_NR_CONTEXTS]; 7399 }; 7400 7401 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7402 7403 /* 7404 * We directly increment event->count and keep a second value in 7405 * event->hw.period_left to count intervals. This period event 7406 * is kept in the range [-sample_period, 0] so that we can use the 7407 * sign as trigger. 7408 */ 7409 7410 u64 perf_swevent_set_period(struct perf_event *event) 7411 { 7412 struct hw_perf_event *hwc = &event->hw; 7413 u64 period = hwc->last_period; 7414 u64 nr, offset; 7415 s64 old, val; 7416 7417 hwc->last_period = hwc->sample_period; 7418 7419 again: 7420 old = val = local64_read(&hwc->period_left); 7421 if (val < 0) 7422 return 0; 7423 7424 nr = div64_u64(period + val, period); 7425 offset = nr * period; 7426 val -= offset; 7427 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7428 goto again; 7429 7430 return nr; 7431 } 7432 7433 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7434 struct perf_sample_data *data, 7435 struct pt_regs *regs) 7436 { 7437 struct hw_perf_event *hwc = &event->hw; 7438 int throttle = 0; 7439 7440 if (!overflow) 7441 overflow = perf_swevent_set_period(event); 7442 7443 if (hwc->interrupts == MAX_INTERRUPTS) 7444 return; 7445 7446 for (; overflow; overflow--) { 7447 if (__perf_event_overflow(event, throttle, 7448 data, regs)) { 7449 /* 7450 * We inhibit the overflow from happening when 7451 * hwc->interrupts == MAX_INTERRUPTS. 7452 */ 7453 break; 7454 } 7455 throttle = 1; 7456 } 7457 } 7458 7459 static void perf_swevent_event(struct perf_event *event, u64 nr, 7460 struct perf_sample_data *data, 7461 struct pt_regs *regs) 7462 { 7463 struct hw_perf_event *hwc = &event->hw; 7464 7465 local64_add(nr, &event->count); 7466 7467 if (!regs) 7468 return; 7469 7470 if (!is_sampling_event(event)) 7471 return; 7472 7473 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7474 data->period = nr; 7475 return perf_swevent_overflow(event, 1, data, regs); 7476 } else 7477 data->period = event->hw.last_period; 7478 7479 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7480 return perf_swevent_overflow(event, 1, data, regs); 7481 7482 if (local64_add_negative(nr, &hwc->period_left)) 7483 return; 7484 7485 perf_swevent_overflow(event, 0, data, regs); 7486 } 7487 7488 static int perf_exclude_event(struct perf_event *event, 7489 struct pt_regs *regs) 7490 { 7491 if (event->hw.state & PERF_HES_STOPPED) 7492 return 1; 7493 7494 if (regs) { 7495 if (event->attr.exclude_user && user_mode(regs)) 7496 return 1; 7497 7498 if (event->attr.exclude_kernel && !user_mode(regs)) 7499 return 1; 7500 } 7501 7502 return 0; 7503 } 7504 7505 static int perf_swevent_match(struct perf_event *event, 7506 enum perf_type_id type, 7507 u32 event_id, 7508 struct perf_sample_data *data, 7509 struct pt_regs *regs) 7510 { 7511 if (event->attr.type != type) 7512 return 0; 7513 7514 if (event->attr.config != event_id) 7515 return 0; 7516 7517 if (perf_exclude_event(event, regs)) 7518 return 0; 7519 7520 return 1; 7521 } 7522 7523 static inline u64 swevent_hash(u64 type, u32 event_id) 7524 { 7525 u64 val = event_id | (type << 32); 7526 7527 return hash_64(val, SWEVENT_HLIST_BITS); 7528 } 7529 7530 static inline struct hlist_head * 7531 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7532 { 7533 u64 hash = swevent_hash(type, event_id); 7534 7535 return &hlist->heads[hash]; 7536 } 7537 7538 /* For the read side: events when they trigger */ 7539 static inline struct hlist_head * 7540 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7541 { 7542 struct swevent_hlist *hlist; 7543 7544 hlist = rcu_dereference(swhash->swevent_hlist); 7545 if (!hlist) 7546 return NULL; 7547 7548 return __find_swevent_head(hlist, type, event_id); 7549 } 7550 7551 /* For the event head insertion and removal in the hlist */ 7552 static inline struct hlist_head * 7553 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7554 { 7555 struct swevent_hlist *hlist; 7556 u32 event_id = event->attr.config; 7557 u64 type = event->attr.type; 7558 7559 /* 7560 * Event scheduling is always serialized against hlist allocation 7561 * and release. Which makes the protected version suitable here. 7562 * The context lock guarantees that. 7563 */ 7564 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7565 lockdep_is_held(&event->ctx->lock)); 7566 if (!hlist) 7567 return NULL; 7568 7569 return __find_swevent_head(hlist, type, event_id); 7570 } 7571 7572 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7573 u64 nr, 7574 struct perf_sample_data *data, 7575 struct pt_regs *regs) 7576 { 7577 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7578 struct perf_event *event; 7579 struct hlist_head *head; 7580 7581 rcu_read_lock(); 7582 head = find_swevent_head_rcu(swhash, type, event_id); 7583 if (!head) 7584 goto end; 7585 7586 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7587 if (perf_swevent_match(event, type, event_id, data, regs)) 7588 perf_swevent_event(event, nr, data, regs); 7589 } 7590 end: 7591 rcu_read_unlock(); 7592 } 7593 7594 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7595 7596 int perf_swevent_get_recursion_context(void) 7597 { 7598 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7599 7600 return get_recursion_context(swhash->recursion); 7601 } 7602 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7603 7604 void perf_swevent_put_recursion_context(int rctx) 7605 { 7606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7607 7608 put_recursion_context(swhash->recursion, rctx); 7609 } 7610 7611 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7612 { 7613 struct perf_sample_data data; 7614 7615 if (WARN_ON_ONCE(!regs)) 7616 return; 7617 7618 perf_sample_data_init(&data, addr, 0); 7619 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7620 } 7621 7622 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7623 { 7624 int rctx; 7625 7626 preempt_disable_notrace(); 7627 rctx = perf_swevent_get_recursion_context(); 7628 if (unlikely(rctx < 0)) 7629 goto fail; 7630 7631 ___perf_sw_event(event_id, nr, regs, addr); 7632 7633 perf_swevent_put_recursion_context(rctx); 7634 fail: 7635 preempt_enable_notrace(); 7636 } 7637 7638 static void perf_swevent_read(struct perf_event *event) 7639 { 7640 } 7641 7642 static int perf_swevent_add(struct perf_event *event, int flags) 7643 { 7644 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7645 struct hw_perf_event *hwc = &event->hw; 7646 struct hlist_head *head; 7647 7648 if (is_sampling_event(event)) { 7649 hwc->last_period = hwc->sample_period; 7650 perf_swevent_set_period(event); 7651 } 7652 7653 hwc->state = !(flags & PERF_EF_START); 7654 7655 head = find_swevent_head(swhash, event); 7656 if (WARN_ON_ONCE(!head)) 7657 return -EINVAL; 7658 7659 hlist_add_head_rcu(&event->hlist_entry, head); 7660 perf_event_update_userpage(event); 7661 7662 return 0; 7663 } 7664 7665 static void perf_swevent_del(struct perf_event *event, int flags) 7666 { 7667 hlist_del_rcu(&event->hlist_entry); 7668 } 7669 7670 static void perf_swevent_start(struct perf_event *event, int flags) 7671 { 7672 event->hw.state = 0; 7673 } 7674 7675 static void perf_swevent_stop(struct perf_event *event, int flags) 7676 { 7677 event->hw.state = PERF_HES_STOPPED; 7678 } 7679 7680 /* Deref the hlist from the update side */ 7681 static inline struct swevent_hlist * 7682 swevent_hlist_deref(struct swevent_htable *swhash) 7683 { 7684 return rcu_dereference_protected(swhash->swevent_hlist, 7685 lockdep_is_held(&swhash->hlist_mutex)); 7686 } 7687 7688 static void swevent_hlist_release(struct swevent_htable *swhash) 7689 { 7690 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7691 7692 if (!hlist) 7693 return; 7694 7695 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7696 kfree_rcu(hlist, rcu_head); 7697 } 7698 7699 static void swevent_hlist_put_cpu(int cpu) 7700 { 7701 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7702 7703 mutex_lock(&swhash->hlist_mutex); 7704 7705 if (!--swhash->hlist_refcount) 7706 swevent_hlist_release(swhash); 7707 7708 mutex_unlock(&swhash->hlist_mutex); 7709 } 7710 7711 static void swevent_hlist_put(void) 7712 { 7713 int cpu; 7714 7715 for_each_possible_cpu(cpu) 7716 swevent_hlist_put_cpu(cpu); 7717 } 7718 7719 static int swevent_hlist_get_cpu(int cpu) 7720 { 7721 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7722 int err = 0; 7723 7724 mutex_lock(&swhash->hlist_mutex); 7725 if (!swevent_hlist_deref(swhash) && 7726 cpumask_test_cpu(cpu, perf_online_mask)) { 7727 struct swevent_hlist *hlist; 7728 7729 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7730 if (!hlist) { 7731 err = -ENOMEM; 7732 goto exit; 7733 } 7734 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7735 } 7736 swhash->hlist_refcount++; 7737 exit: 7738 mutex_unlock(&swhash->hlist_mutex); 7739 7740 return err; 7741 } 7742 7743 static int swevent_hlist_get(void) 7744 { 7745 int err, cpu, failed_cpu; 7746 7747 mutex_lock(&pmus_lock); 7748 for_each_possible_cpu(cpu) { 7749 err = swevent_hlist_get_cpu(cpu); 7750 if (err) { 7751 failed_cpu = cpu; 7752 goto fail; 7753 } 7754 } 7755 mutex_unlock(&pmus_lock); 7756 return 0; 7757 fail: 7758 for_each_possible_cpu(cpu) { 7759 if (cpu == failed_cpu) 7760 break; 7761 swevent_hlist_put_cpu(cpu); 7762 } 7763 mutex_unlock(&pmus_lock); 7764 return err; 7765 } 7766 7767 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7768 7769 static void sw_perf_event_destroy(struct perf_event *event) 7770 { 7771 u64 event_id = event->attr.config; 7772 7773 WARN_ON(event->parent); 7774 7775 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7776 swevent_hlist_put(); 7777 } 7778 7779 static int perf_swevent_init(struct perf_event *event) 7780 { 7781 u64 event_id = event->attr.config; 7782 7783 if (event->attr.type != PERF_TYPE_SOFTWARE) 7784 return -ENOENT; 7785 7786 /* 7787 * no branch sampling for software events 7788 */ 7789 if (has_branch_stack(event)) 7790 return -EOPNOTSUPP; 7791 7792 switch (event_id) { 7793 case PERF_COUNT_SW_CPU_CLOCK: 7794 case PERF_COUNT_SW_TASK_CLOCK: 7795 return -ENOENT; 7796 7797 default: 7798 break; 7799 } 7800 7801 if (event_id >= PERF_COUNT_SW_MAX) 7802 return -ENOENT; 7803 7804 if (!event->parent) { 7805 int err; 7806 7807 err = swevent_hlist_get(); 7808 if (err) 7809 return err; 7810 7811 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7812 event->destroy = sw_perf_event_destroy; 7813 } 7814 7815 return 0; 7816 } 7817 7818 static struct pmu perf_swevent = { 7819 .task_ctx_nr = perf_sw_context, 7820 7821 .capabilities = PERF_PMU_CAP_NO_NMI, 7822 7823 .event_init = perf_swevent_init, 7824 .add = perf_swevent_add, 7825 .del = perf_swevent_del, 7826 .start = perf_swevent_start, 7827 .stop = perf_swevent_stop, 7828 .read = perf_swevent_read, 7829 }; 7830 7831 #ifdef CONFIG_EVENT_TRACING 7832 7833 static int perf_tp_filter_match(struct perf_event *event, 7834 struct perf_sample_data *data) 7835 { 7836 void *record = data->raw->frag.data; 7837 7838 /* only top level events have filters set */ 7839 if (event->parent) 7840 event = event->parent; 7841 7842 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7843 return 1; 7844 return 0; 7845 } 7846 7847 static int perf_tp_event_match(struct perf_event *event, 7848 struct perf_sample_data *data, 7849 struct pt_regs *regs) 7850 { 7851 if (event->hw.state & PERF_HES_STOPPED) 7852 return 0; 7853 /* 7854 * All tracepoints are from kernel-space. 7855 */ 7856 if (event->attr.exclude_kernel) 7857 return 0; 7858 7859 if (!perf_tp_filter_match(event, data)) 7860 return 0; 7861 7862 return 1; 7863 } 7864 7865 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7866 struct trace_event_call *call, u64 count, 7867 struct pt_regs *regs, struct hlist_head *head, 7868 struct task_struct *task) 7869 { 7870 if (bpf_prog_array_valid(call)) { 7871 *(struct pt_regs **)raw_data = regs; 7872 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 7873 perf_swevent_put_recursion_context(rctx); 7874 return; 7875 } 7876 } 7877 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7878 rctx, task); 7879 } 7880 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7881 7882 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7883 struct pt_regs *regs, struct hlist_head *head, int rctx, 7884 struct task_struct *task) 7885 { 7886 struct perf_sample_data data; 7887 struct perf_event *event; 7888 7889 struct perf_raw_record raw = { 7890 .frag = { 7891 .size = entry_size, 7892 .data = record, 7893 }, 7894 }; 7895 7896 perf_sample_data_init(&data, 0, 0); 7897 data.raw = &raw; 7898 7899 perf_trace_buf_update(record, event_type); 7900 7901 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7902 if (perf_tp_event_match(event, &data, regs)) 7903 perf_swevent_event(event, count, &data, regs); 7904 } 7905 7906 /* 7907 * If we got specified a target task, also iterate its context and 7908 * deliver this event there too. 7909 */ 7910 if (task && task != current) { 7911 struct perf_event_context *ctx; 7912 struct trace_entry *entry = record; 7913 7914 rcu_read_lock(); 7915 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7916 if (!ctx) 7917 goto unlock; 7918 7919 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7920 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7921 continue; 7922 if (event->attr.config != entry->type) 7923 continue; 7924 if (perf_tp_event_match(event, &data, regs)) 7925 perf_swevent_event(event, count, &data, regs); 7926 } 7927 unlock: 7928 rcu_read_unlock(); 7929 } 7930 7931 perf_swevent_put_recursion_context(rctx); 7932 } 7933 EXPORT_SYMBOL_GPL(perf_tp_event); 7934 7935 static void tp_perf_event_destroy(struct perf_event *event) 7936 { 7937 perf_trace_destroy(event); 7938 } 7939 7940 static int perf_tp_event_init(struct perf_event *event) 7941 { 7942 int err; 7943 7944 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7945 return -ENOENT; 7946 7947 /* 7948 * no branch sampling for tracepoint events 7949 */ 7950 if (has_branch_stack(event)) 7951 return -EOPNOTSUPP; 7952 7953 err = perf_trace_init(event); 7954 if (err) 7955 return err; 7956 7957 event->destroy = tp_perf_event_destroy; 7958 7959 return 0; 7960 } 7961 7962 static struct pmu perf_tracepoint = { 7963 .task_ctx_nr = perf_sw_context, 7964 7965 .event_init = perf_tp_event_init, 7966 .add = perf_trace_add, 7967 .del = perf_trace_del, 7968 .start = perf_swevent_start, 7969 .stop = perf_swevent_stop, 7970 .read = perf_swevent_read, 7971 }; 7972 7973 static inline void perf_tp_register(void) 7974 { 7975 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7976 } 7977 7978 static void perf_event_free_filter(struct perf_event *event) 7979 { 7980 ftrace_profile_free_filter(event); 7981 } 7982 7983 #ifdef CONFIG_BPF_SYSCALL 7984 static void bpf_overflow_handler(struct perf_event *event, 7985 struct perf_sample_data *data, 7986 struct pt_regs *regs) 7987 { 7988 struct bpf_perf_event_data_kern ctx = { 7989 .data = data, 7990 .regs = regs, 7991 .event = event, 7992 }; 7993 int ret = 0; 7994 7995 preempt_disable(); 7996 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7997 goto out; 7998 rcu_read_lock(); 7999 ret = BPF_PROG_RUN(event->prog, &ctx); 8000 rcu_read_unlock(); 8001 out: 8002 __this_cpu_dec(bpf_prog_active); 8003 preempt_enable(); 8004 if (!ret) 8005 return; 8006 8007 event->orig_overflow_handler(event, data, regs); 8008 } 8009 8010 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8011 { 8012 struct bpf_prog *prog; 8013 8014 if (event->overflow_handler_context) 8015 /* hw breakpoint or kernel counter */ 8016 return -EINVAL; 8017 8018 if (event->prog) 8019 return -EEXIST; 8020 8021 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8022 if (IS_ERR(prog)) 8023 return PTR_ERR(prog); 8024 8025 event->prog = prog; 8026 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8027 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8028 return 0; 8029 } 8030 8031 static void perf_event_free_bpf_handler(struct perf_event *event) 8032 { 8033 struct bpf_prog *prog = event->prog; 8034 8035 if (!prog) 8036 return; 8037 8038 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8039 event->prog = NULL; 8040 bpf_prog_put(prog); 8041 } 8042 #else 8043 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8044 { 8045 return -EOPNOTSUPP; 8046 } 8047 static void perf_event_free_bpf_handler(struct perf_event *event) 8048 { 8049 } 8050 #endif 8051 8052 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8053 { 8054 bool is_kprobe, is_tracepoint, is_syscall_tp; 8055 struct bpf_prog *prog; 8056 int ret; 8057 8058 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8059 return perf_event_set_bpf_handler(event, prog_fd); 8060 8061 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8062 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8063 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8064 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8065 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8066 return -EINVAL; 8067 8068 prog = bpf_prog_get(prog_fd); 8069 if (IS_ERR(prog)) 8070 return PTR_ERR(prog); 8071 8072 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8073 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8074 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8075 /* valid fd, but invalid bpf program type */ 8076 bpf_prog_put(prog); 8077 return -EINVAL; 8078 } 8079 8080 if (is_tracepoint || is_syscall_tp) { 8081 int off = trace_event_get_offsets(event->tp_event); 8082 8083 if (prog->aux->max_ctx_offset > off) { 8084 bpf_prog_put(prog); 8085 return -EACCES; 8086 } 8087 } 8088 8089 ret = perf_event_attach_bpf_prog(event, prog); 8090 if (ret) 8091 bpf_prog_put(prog); 8092 return ret; 8093 } 8094 8095 static void perf_event_free_bpf_prog(struct perf_event *event) 8096 { 8097 if (event->attr.type != PERF_TYPE_TRACEPOINT) { 8098 perf_event_free_bpf_handler(event); 8099 return; 8100 } 8101 perf_event_detach_bpf_prog(event); 8102 } 8103 8104 #else 8105 8106 static inline void perf_tp_register(void) 8107 { 8108 } 8109 8110 static void perf_event_free_filter(struct perf_event *event) 8111 { 8112 } 8113 8114 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8115 { 8116 return -ENOENT; 8117 } 8118 8119 static void perf_event_free_bpf_prog(struct perf_event *event) 8120 { 8121 } 8122 #endif /* CONFIG_EVENT_TRACING */ 8123 8124 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8125 void perf_bp_event(struct perf_event *bp, void *data) 8126 { 8127 struct perf_sample_data sample; 8128 struct pt_regs *regs = data; 8129 8130 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8131 8132 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8133 perf_swevent_event(bp, 1, &sample, regs); 8134 } 8135 #endif 8136 8137 /* 8138 * Allocate a new address filter 8139 */ 8140 static struct perf_addr_filter * 8141 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8142 { 8143 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8144 struct perf_addr_filter *filter; 8145 8146 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8147 if (!filter) 8148 return NULL; 8149 8150 INIT_LIST_HEAD(&filter->entry); 8151 list_add_tail(&filter->entry, filters); 8152 8153 return filter; 8154 } 8155 8156 static void free_filters_list(struct list_head *filters) 8157 { 8158 struct perf_addr_filter *filter, *iter; 8159 8160 list_for_each_entry_safe(filter, iter, filters, entry) { 8161 if (filter->inode) 8162 iput(filter->inode); 8163 list_del(&filter->entry); 8164 kfree(filter); 8165 } 8166 } 8167 8168 /* 8169 * Free existing address filters and optionally install new ones 8170 */ 8171 static void perf_addr_filters_splice(struct perf_event *event, 8172 struct list_head *head) 8173 { 8174 unsigned long flags; 8175 LIST_HEAD(list); 8176 8177 if (!has_addr_filter(event)) 8178 return; 8179 8180 /* don't bother with children, they don't have their own filters */ 8181 if (event->parent) 8182 return; 8183 8184 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8185 8186 list_splice_init(&event->addr_filters.list, &list); 8187 if (head) 8188 list_splice(head, &event->addr_filters.list); 8189 8190 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8191 8192 free_filters_list(&list); 8193 } 8194 8195 /* 8196 * Scan through mm's vmas and see if one of them matches the 8197 * @filter; if so, adjust filter's address range. 8198 * Called with mm::mmap_sem down for reading. 8199 */ 8200 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8201 struct mm_struct *mm) 8202 { 8203 struct vm_area_struct *vma; 8204 8205 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8206 struct file *file = vma->vm_file; 8207 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8208 unsigned long vma_size = vma->vm_end - vma->vm_start; 8209 8210 if (!file) 8211 continue; 8212 8213 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8214 continue; 8215 8216 return vma->vm_start; 8217 } 8218 8219 return 0; 8220 } 8221 8222 /* 8223 * Update event's address range filters based on the 8224 * task's existing mappings, if any. 8225 */ 8226 static void perf_event_addr_filters_apply(struct perf_event *event) 8227 { 8228 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8229 struct task_struct *task = READ_ONCE(event->ctx->task); 8230 struct perf_addr_filter *filter; 8231 struct mm_struct *mm = NULL; 8232 unsigned int count = 0; 8233 unsigned long flags; 8234 8235 /* 8236 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8237 * will stop on the parent's child_mutex that our caller is also holding 8238 */ 8239 if (task == TASK_TOMBSTONE) 8240 return; 8241 8242 if (!ifh->nr_file_filters) 8243 return; 8244 8245 mm = get_task_mm(event->ctx->task); 8246 if (!mm) 8247 goto restart; 8248 8249 down_read(&mm->mmap_sem); 8250 8251 raw_spin_lock_irqsave(&ifh->lock, flags); 8252 list_for_each_entry(filter, &ifh->list, entry) { 8253 event->addr_filters_offs[count] = 0; 8254 8255 /* 8256 * Adjust base offset if the filter is associated to a binary 8257 * that needs to be mapped: 8258 */ 8259 if (filter->inode) 8260 event->addr_filters_offs[count] = 8261 perf_addr_filter_apply(filter, mm); 8262 8263 count++; 8264 } 8265 8266 event->addr_filters_gen++; 8267 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8268 8269 up_read(&mm->mmap_sem); 8270 8271 mmput(mm); 8272 8273 restart: 8274 perf_event_stop(event, 1); 8275 } 8276 8277 /* 8278 * Address range filtering: limiting the data to certain 8279 * instruction address ranges. Filters are ioctl()ed to us from 8280 * userspace as ascii strings. 8281 * 8282 * Filter string format: 8283 * 8284 * ACTION RANGE_SPEC 8285 * where ACTION is one of the 8286 * * "filter": limit the trace to this region 8287 * * "start": start tracing from this address 8288 * * "stop": stop tracing at this address/region; 8289 * RANGE_SPEC is 8290 * * for kernel addresses: <start address>[/<size>] 8291 * * for object files: <start address>[/<size>]@</path/to/object/file> 8292 * 8293 * if <size> is not specified, the range is treated as a single address. 8294 */ 8295 enum { 8296 IF_ACT_NONE = -1, 8297 IF_ACT_FILTER, 8298 IF_ACT_START, 8299 IF_ACT_STOP, 8300 IF_SRC_FILE, 8301 IF_SRC_KERNEL, 8302 IF_SRC_FILEADDR, 8303 IF_SRC_KERNELADDR, 8304 }; 8305 8306 enum { 8307 IF_STATE_ACTION = 0, 8308 IF_STATE_SOURCE, 8309 IF_STATE_END, 8310 }; 8311 8312 static const match_table_t if_tokens = { 8313 { IF_ACT_FILTER, "filter" }, 8314 { IF_ACT_START, "start" }, 8315 { IF_ACT_STOP, "stop" }, 8316 { IF_SRC_FILE, "%u/%u@%s" }, 8317 { IF_SRC_KERNEL, "%u/%u" }, 8318 { IF_SRC_FILEADDR, "%u@%s" }, 8319 { IF_SRC_KERNELADDR, "%u" }, 8320 { IF_ACT_NONE, NULL }, 8321 }; 8322 8323 /* 8324 * Address filter string parser 8325 */ 8326 static int 8327 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8328 struct list_head *filters) 8329 { 8330 struct perf_addr_filter *filter = NULL; 8331 char *start, *orig, *filename = NULL; 8332 struct path path; 8333 substring_t args[MAX_OPT_ARGS]; 8334 int state = IF_STATE_ACTION, token; 8335 unsigned int kernel = 0; 8336 int ret = -EINVAL; 8337 8338 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8339 if (!fstr) 8340 return -ENOMEM; 8341 8342 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8343 ret = -EINVAL; 8344 8345 if (!*start) 8346 continue; 8347 8348 /* filter definition begins */ 8349 if (state == IF_STATE_ACTION) { 8350 filter = perf_addr_filter_new(event, filters); 8351 if (!filter) 8352 goto fail; 8353 } 8354 8355 token = match_token(start, if_tokens, args); 8356 switch (token) { 8357 case IF_ACT_FILTER: 8358 case IF_ACT_START: 8359 filter->filter = 1; 8360 8361 case IF_ACT_STOP: 8362 if (state != IF_STATE_ACTION) 8363 goto fail; 8364 8365 state = IF_STATE_SOURCE; 8366 break; 8367 8368 case IF_SRC_KERNELADDR: 8369 case IF_SRC_KERNEL: 8370 kernel = 1; 8371 8372 case IF_SRC_FILEADDR: 8373 case IF_SRC_FILE: 8374 if (state != IF_STATE_SOURCE) 8375 goto fail; 8376 8377 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8378 filter->range = 1; 8379 8380 *args[0].to = 0; 8381 ret = kstrtoul(args[0].from, 0, &filter->offset); 8382 if (ret) 8383 goto fail; 8384 8385 if (filter->range) { 8386 *args[1].to = 0; 8387 ret = kstrtoul(args[1].from, 0, &filter->size); 8388 if (ret) 8389 goto fail; 8390 } 8391 8392 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8393 int fpos = filter->range ? 2 : 1; 8394 8395 filename = match_strdup(&args[fpos]); 8396 if (!filename) { 8397 ret = -ENOMEM; 8398 goto fail; 8399 } 8400 } 8401 8402 state = IF_STATE_END; 8403 break; 8404 8405 default: 8406 goto fail; 8407 } 8408 8409 /* 8410 * Filter definition is fully parsed, validate and install it. 8411 * Make sure that it doesn't contradict itself or the event's 8412 * attribute. 8413 */ 8414 if (state == IF_STATE_END) { 8415 ret = -EINVAL; 8416 if (kernel && event->attr.exclude_kernel) 8417 goto fail; 8418 8419 if (!kernel) { 8420 if (!filename) 8421 goto fail; 8422 8423 /* 8424 * For now, we only support file-based filters 8425 * in per-task events; doing so for CPU-wide 8426 * events requires additional context switching 8427 * trickery, since same object code will be 8428 * mapped at different virtual addresses in 8429 * different processes. 8430 */ 8431 ret = -EOPNOTSUPP; 8432 if (!event->ctx->task) 8433 goto fail_free_name; 8434 8435 /* look up the path and grab its inode */ 8436 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8437 if (ret) 8438 goto fail_free_name; 8439 8440 filter->inode = igrab(d_inode(path.dentry)); 8441 path_put(&path); 8442 kfree(filename); 8443 filename = NULL; 8444 8445 ret = -EINVAL; 8446 if (!filter->inode || 8447 !S_ISREG(filter->inode->i_mode)) 8448 /* free_filters_list() will iput() */ 8449 goto fail; 8450 8451 event->addr_filters.nr_file_filters++; 8452 } 8453 8454 /* ready to consume more filters */ 8455 state = IF_STATE_ACTION; 8456 filter = NULL; 8457 } 8458 } 8459 8460 if (state != IF_STATE_ACTION) 8461 goto fail; 8462 8463 kfree(orig); 8464 8465 return 0; 8466 8467 fail_free_name: 8468 kfree(filename); 8469 fail: 8470 free_filters_list(filters); 8471 kfree(orig); 8472 8473 return ret; 8474 } 8475 8476 static int 8477 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8478 { 8479 LIST_HEAD(filters); 8480 int ret; 8481 8482 /* 8483 * Since this is called in perf_ioctl() path, we're already holding 8484 * ctx::mutex. 8485 */ 8486 lockdep_assert_held(&event->ctx->mutex); 8487 8488 if (WARN_ON_ONCE(event->parent)) 8489 return -EINVAL; 8490 8491 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8492 if (ret) 8493 goto fail_clear_files; 8494 8495 ret = event->pmu->addr_filters_validate(&filters); 8496 if (ret) 8497 goto fail_free_filters; 8498 8499 /* remove existing filters, if any */ 8500 perf_addr_filters_splice(event, &filters); 8501 8502 /* install new filters */ 8503 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8504 8505 return ret; 8506 8507 fail_free_filters: 8508 free_filters_list(&filters); 8509 8510 fail_clear_files: 8511 event->addr_filters.nr_file_filters = 0; 8512 8513 return ret; 8514 } 8515 8516 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8517 { 8518 char *filter_str; 8519 int ret = -EINVAL; 8520 8521 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8522 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8523 !has_addr_filter(event)) 8524 return -EINVAL; 8525 8526 filter_str = strndup_user(arg, PAGE_SIZE); 8527 if (IS_ERR(filter_str)) 8528 return PTR_ERR(filter_str); 8529 8530 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8531 event->attr.type == PERF_TYPE_TRACEPOINT) 8532 ret = ftrace_profile_set_filter(event, event->attr.config, 8533 filter_str); 8534 else if (has_addr_filter(event)) 8535 ret = perf_event_set_addr_filter(event, filter_str); 8536 8537 kfree(filter_str); 8538 return ret; 8539 } 8540 8541 /* 8542 * hrtimer based swevent callback 8543 */ 8544 8545 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8546 { 8547 enum hrtimer_restart ret = HRTIMER_RESTART; 8548 struct perf_sample_data data; 8549 struct pt_regs *regs; 8550 struct perf_event *event; 8551 u64 period; 8552 8553 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8554 8555 if (event->state != PERF_EVENT_STATE_ACTIVE) 8556 return HRTIMER_NORESTART; 8557 8558 event->pmu->read(event); 8559 8560 perf_sample_data_init(&data, 0, event->hw.last_period); 8561 regs = get_irq_regs(); 8562 8563 if (regs && !perf_exclude_event(event, regs)) { 8564 if (!(event->attr.exclude_idle && is_idle_task(current))) 8565 if (__perf_event_overflow(event, 1, &data, regs)) 8566 ret = HRTIMER_NORESTART; 8567 } 8568 8569 period = max_t(u64, 10000, event->hw.sample_period); 8570 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8571 8572 return ret; 8573 } 8574 8575 static void perf_swevent_start_hrtimer(struct perf_event *event) 8576 { 8577 struct hw_perf_event *hwc = &event->hw; 8578 s64 period; 8579 8580 if (!is_sampling_event(event)) 8581 return; 8582 8583 period = local64_read(&hwc->period_left); 8584 if (period) { 8585 if (period < 0) 8586 period = 10000; 8587 8588 local64_set(&hwc->period_left, 0); 8589 } else { 8590 period = max_t(u64, 10000, hwc->sample_period); 8591 } 8592 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8593 HRTIMER_MODE_REL_PINNED); 8594 } 8595 8596 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8597 { 8598 struct hw_perf_event *hwc = &event->hw; 8599 8600 if (is_sampling_event(event)) { 8601 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8602 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8603 8604 hrtimer_cancel(&hwc->hrtimer); 8605 } 8606 } 8607 8608 static void perf_swevent_init_hrtimer(struct perf_event *event) 8609 { 8610 struct hw_perf_event *hwc = &event->hw; 8611 8612 if (!is_sampling_event(event)) 8613 return; 8614 8615 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8616 hwc->hrtimer.function = perf_swevent_hrtimer; 8617 8618 /* 8619 * Since hrtimers have a fixed rate, we can do a static freq->period 8620 * mapping and avoid the whole period adjust feedback stuff. 8621 */ 8622 if (event->attr.freq) { 8623 long freq = event->attr.sample_freq; 8624 8625 event->attr.sample_period = NSEC_PER_SEC / freq; 8626 hwc->sample_period = event->attr.sample_period; 8627 local64_set(&hwc->period_left, hwc->sample_period); 8628 hwc->last_period = hwc->sample_period; 8629 event->attr.freq = 0; 8630 } 8631 } 8632 8633 /* 8634 * Software event: cpu wall time clock 8635 */ 8636 8637 static void cpu_clock_event_update(struct perf_event *event) 8638 { 8639 s64 prev; 8640 u64 now; 8641 8642 now = local_clock(); 8643 prev = local64_xchg(&event->hw.prev_count, now); 8644 local64_add(now - prev, &event->count); 8645 } 8646 8647 static void cpu_clock_event_start(struct perf_event *event, int flags) 8648 { 8649 local64_set(&event->hw.prev_count, local_clock()); 8650 perf_swevent_start_hrtimer(event); 8651 } 8652 8653 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8654 { 8655 perf_swevent_cancel_hrtimer(event); 8656 cpu_clock_event_update(event); 8657 } 8658 8659 static int cpu_clock_event_add(struct perf_event *event, int flags) 8660 { 8661 if (flags & PERF_EF_START) 8662 cpu_clock_event_start(event, flags); 8663 perf_event_update_userpage(event); 8664 8665 return 0; 8666 } 8667 8668 static void cpu_clock_event_del(struct perf_event *event, int flags) 8669 { 8670 cpu_clock_event_stop(event, flags); 8671 } 8672 8673 static void cpu_clock_event_read(struct perf_event *event) 8674 { 8675 cpu_clock_event_update(event); 8676 } 8677 8678 static int cpu_clock_event_init(struct perf_event *event) 8679 { 8680 if (event->attr.type != PERF_TYPE_SOFTWARE) 8681 return -ENOENT; 8682 8683 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8684 return -ENOENT; 8685 8686 /* 8687 * no branch sampling for software events 8688 */ 8689 if (has_branch_stack(event)) 8690 return -EOPNOTSUPP; 8691 8692 perf_swevent_init_hrtimer(event); 8693 8694 return 0; 8695 } 8696 8697 static struct pmu perf_cpu_clock = { 8698 .task_ctx_nr = perf_sw_context, 8699 8700 .capabilities = PERF_PMU_CAP_NO_NMI, 8701 8702 .event_init = cpu_clock_event_init, 8703 .add = cpu_clock_event_add, 8704 .del = cpu_clock_event_del, 8705 .start = cpu_clock_event_start, 8706 .stop = cpu_clock_event_stop, 8707 .read = cpu_clock_event_read, 8708 }; 8709 8710 /* 8711 * Software event: task time clock 8712 */ 8713 8714 static void task_clock_event_update(struct perf_event *event, u64 now) 8715 { 8716 u64 prev; 8717 s64 delta; 8718 8719 prev = local64_xchg(&event->hw.prev_count, now); 8720 delta = now - prev; 8721 local64_add(delta, &event->count); 8722 } 8723 8724 static void task_clock_event_start(struct perf_event *event, int flags) 8725 { 8726 local64_set(&event->hw.prev_count, event->ctx->time); 8727 perf_swevent_start_hrtimer(event); 8728 } 8729 8730 static void task_clock_event_stop(struct perf_event *event, int flags) 8731 { 8732 perf_swevent_cancel_hrtimer(event); 8733 task_clock_event_update(event, event->ctx->time); 8734 } 8735 8736 static int task_clock_event_add(struct perf_event *event, int flags) 8737 { 8738 if (flags & PERF_EF_START) 8739 task_clock_event_start(event, flags); 8740 perf_event_update_userpage(event); 8741 8742 return 0; 8743 } 8744 8745 static void task_clock_event_del(struct perf_event *event, int flags) 8746 { 8747 task_clock_event_stop(event, PERF_EF_UPDATE); 8748 } 8749 8750 static void task_clock_event_read(struct perf_event *event) 8751 { 8752 u64 now = perf_clock(); 8753 u64 delta = now - event->ctx->timestamp; 8754 u64 time = event->ctx->time + delta; 8755 8756 task_clock_event_update(event, time); 8757 } 8758 8759 static int task_clock_event_init(struct perf_event *event) 8760 { 8761 if (event->attr.type != PERF_TYPE_SOFTWARE) 8762 return -ENOENT; 8763 8764 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8765 return -ENOENT; 8766 8767 /* 8768 * no branch sampling for software events 8769 */ 8770 if (has_branch_stack(event)) 8771 return -EOPNOTSUPP; 8772 8773 perf_swevent_init_hrtimer(event); 8774 8775 return 0; 8776 } 8777 8778 static struct pmu perf_task_clock = { 8779 .task_ctx_nr = perf_sw_context, 8780 8781 .capabilities = PERF_PMU_CAP_NO_NMI, 8782 8783 .event_init = task_clock_event_init, 8784 .add = task_clock_event_add, 8785 .del = task_clock_event_del, 8786 .start = task_clock_event_start, 8787 .stop = task_clock_event_stop, 8788 .read = task_clock_event_read, 8789 }; 8790 8791 static void perf_pmu_nop_void(struct pmu *pmu) 8792 { 8793 } 8794 8795 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8796 { 8797 } 8798 8799 static int perf_pmu_nop_int(struct pmu *pmu) 8800 { 8801 return 0; 8802 } 8803 8804 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8805 8806 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8807 { 8808 __this_cpu_write(nop_txn_flags, flags); 8809 8810 if (flags & ~PERF_PMU_TXN_ADD) 8811 return; 8812 8813 perf_pmu_disable(pmu); 8814 } 8815 8816 static int perf_pmu_commit_txn(struct pmu *pmu) 8817 { 8818 unsigned int flags = __this_cpu_read(nop_txn_flags); 8819 8820 __this_cpu_write(nop_txn_flags, 0); 8821 8822 if (flags & ~PERF_PMU_TXN_ADD) 8823 return 0; 8824 8825 perf_pmu_enable(pmu); 8826 return 0; 8827 } 8828 8829 static void perf_pmu_cancel_txn(struct pmu *pmu) 8830 { 8831 unsigned int flags = __this_cpu_read(nop_txn_flags); 8832 8833 __this_cpu_write(nop_txn_flags, 0); 8834 8835 if (flags & ~PERF_PMU_TXN_ADD) 8836 return; 8837 8838 perf_pmu_enable(pmu); 8839 } 8840 8841 static int perf_event_idx_default(struct perf_event *event) 8842 { 8843 return 0; 8844 } 8845 8846 /* 8847 * Ensures all contexts with the same task_ctx_nr have the same 8848 * pmu_cpu_context too. 8849 */ 8850 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8851 { 8852 struct pmu *pmu; 8853 8854 if (ctxn < 0) 8855 return NULL; 8856 8857 list_for_each_entry(pmu, &pmus, entry) { 8858 if (pmu->task_ctx_nr == ctxn) 8859 return pmu->pmu_cpu_context; 8860 } 8861 8862 return NULL; 8863 } 8864 8865 static void free_pmu_context(struct pmu *pmu) 8866 { 8867 /* 8868 * Static contexts such as perf_sw_context have a global lifetime 8869 * and may be shared between different PMUs. Avoid freeing them 8870 * when a single PMU is going away. 8871 */ 8872 if (pmu->task_ctx_nr > perf_invalid_context) 8873 return; 8874 8875 mutex_lock(&pmus_lock); 8876 free_percpu(pmu->pmu_cpu_context); 8877 mutex_unlock(&pmus_lock); 8878 } 8879 8880 /* 8881 * Let userspace know that this PMU supports address range filtering: 8882 */ 8883 static ssize_t nr_addr_filters_show(struct device *dev, 8884 struct device_attribute *attr, 8885 char *page) 8886 { 8887 struct pmu *pmu = dev_get_drvdata(dev); 8888 8889 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8890 } 8891 DEVICE_ATTR_RO(nr_addr_filters); 8892 8893 static struct idr pmu_idr; 8894 8895 static ssize_t 8896 type_show(struct device *dev, struct device_attribute *attr, char *page) 8897 { 8898 struct pmu *pmu = dev_get_drvdata(dev); 8899 8900 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8901 } 8902 static DEVICE_ATTR_RO(type); 8903 8904 static ssize_t 8905 perf_event_mux_interval_ms_show(struct device *dev, 8906 struct device_attribute *attr, 8907 char *page) 8908 { 8909 struct pmu *pmu = dev_get_drvdata(dev); 8910 8911 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8912 } 8913 8914 static DEFINE_MUTEX(mux_interval_mutex); 8915 8916 static ssize_t 8917 perf_event_mux_interval_ms_store(struct device *dev, 8918 struct device_attribute *attr, 8919 const char *buf, size_t count) 8920 { 8921 struct pmu *pmu = dev_get_drvdata(dev); 8922 int timer, cpu, ret; 8923 8924 ret = kstrtoint(buf, 0, &timer); 8925 if (ret) 8926 return ret; 8927 8928 if (timer < 1) 8929 return -EINVAL; 8930 8931 /* same value, noting to do */ 8932 if (timer == pmu->hrtimer_interval_ms) 8933 return count; 8934 8935 mutex_lock(&mux_interval_mutex); 8936 pmu->hrtimer_interval_ms = timer; 8937 8938 /* update all cpuctx for this PMU */ 8939 cpus_read_lock(); 8940 for_each_online_cpu(cpu) { 8941 struct perf_cpu_context *cpuctx; 8942 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8943 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8944 8945 cpu_function_call(cpu, 8946 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8947 } 8948 cpus_read_unlock(); 8949 mutex_unlock(&mux_interval_mutex); 8950 8951 return count; 8952 } 8953 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8954 8955 static struct attribute *pmu_dev_attrs[] = { 8956 &dev_attr_type.attr, 8957 &dev_attr_perf_event_mux_interval_ms.attr, 8958 NULL, 8959 }; 8960 ATTRIBUTE_GROUPS(pmu_dev); 8961 8962 static int pmu_bus_running; 8963 static struct bus_type pmu_bus = { 8964 .name = "event_source", 8965 .dev_groups = pmu_dev_groups, 8966 }; 8967 8968 static void pmu_dev_release(struct device *dev) 8969 { 8970 kfree(dev); 8971 } 8972 8973 static int pmu_dev_alloc(struct pmu *pmu) 8974 { 8975 int ret = -ENOMEM; 8976 8977 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8978 if (!pmu->dev) 8979 goto out; 8980 8981 pmu->dev->groups = pmu->attr_groups; 8982 device_initialize(pmu->dev); 8983 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8984 if (ret) 8985 goto free_dev; 8986 8987 dev_set_drvdata(pmu->dev, pmu); 8988 pmu->dev->bus = &pmu_bus; 8989 pmu->dev->release = pmu_dev_release; 8990 ret = device_add(pmu->dev); 8991 if (ret) 8992 goto free_dev; 8993 8994 /* For PMUs with address filters, throw in an extra attribute: */ 8995 if (pmu->nr_addr_filters) 8996 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8997 8998 if (ret) 8999 goto del_dev; 9000 9001 out: 9002 return ret; 9003 9004 del_dev: 9005 device_del(pmu->dev); 9006 9007 free_dev: 9008 put_device(pmu->dev); 9009 goto out; 9010 } 9011 9012 static struct lock_class_key cpuctx_mutex; 9013 static struct lock_class_key cpuctx_lock; 9014 9015 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9016 { 9017 int cpu, ret; 9018 9019 mutex_lock(&pmus_lock); 9020 ret = -ENOMEM; 9021 pmu->pmu_disable_count = alloc_percpu(int); 9022 if (!pmu->pmu_disable_count) 9023 goto unlock; 9024 9025 pmu->type = -1; 9026 if (!name) 9027 goto skip_type; 9028 pmu->name = name; 9029 9030 if (type < 0) { 9031 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9032 if (type < 0) { 9033 ret = type; 9034 goto free_pdc; 9035 } 9036 } 9037 pmu->type = type; 9038 9039 if (pmu_bus_running) { 9040 ret = pmu_dev_alloc(pmu); 9041 if (ret) 9042 goto free_idr; 9043 } 9044 9045 skip_type: 9046 if (pmu->task_ctx_nr == perf_hw_context) { 9047 static int hw_context_taken = 0; 9048 9049 /* 9050 * Other than systems with heterogeneous CPUs, it never makes 9051 * sense for two PMUs to share perf_hw_context. PMUs which are 9052 * uncore must use perf_invalid_context. 9053 */ 9054 if (WARN_ON_ONCE(hw_context_taken && 9055 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9056 pmu->task_ctx_nr = perf_invalid_context; 9057 9058 hw_context_taken = 1; 9059 } 9060 9061 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9062 if (pmu->pmu_cpu_context) 9063 goto got_cpu_context; 9064 9065 ret = -ENOMEM; 9066 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9067 if (!pmu->pmu_cpu_context) 9068 goto free_dev; 9069 9070 for_each_possible_cpu(cpu) { 9071 struct perf_cpu_context *cpuctx; 9072 9073 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9074 __perf_event_init_context(&cpuctx->ctx); 9075 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9076 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9077 cpuctx->ctx.pmu = pmu; 9078 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9079 9080 __perf_mux_hrtimer_init(cpuctx, cpu); 9081 } 9082 9083 got_cpu_context: 9084 if (!pmu->start_txn) { 9085 if (pmu->pmu_enable) { 9086 /* 9087 * If we have pmu_enable/pmu_disable calls, install 9088 * transaction stubs that use that to try and batch 9089 * hardware accesses. 9090 */ 9091 pmu->start_txn = perf_pmu_start_txn; 9092 pmu->commit_txn = perf_pmu_commit_txn; 9093 pmu->cancel_txn = perf_pmu_cancel_txn; 9094 } else { 9095 pmu->start_txn = perf_pmu_nop_txn; 9096 pmu->commit_txn = perf_pmu_nop_int; 9097 pmu->cancel_txn = perf_pmu_nop_void; 9098 } 9099 } 9100 9101 if (!pmu->pmu_enable) { 9102 pmu->pmu_enable = perf_pmu_nop_void; 9103 pmu->pmu_disable = perf_pmu_nop_void; 9104 } 9105 9106 if (!pmu->event_idx) 9107 pmu->event_idx = perf_event_idx_default; 9108 9109 list_add_rcu(&pmu->entry, &pmus); 9110 atomic_set(&pmu->exclusive_cnt, 0); 9111 ret = 0; 9112 unlock: 9113 mutex_unlock(&pmus_lock); 9114 9115 return ret; 9116 9117 free_dev: 9118 device_del(pmu->dev); 9119 put_device(pmu->dev); 9120 9121 free_idr: 9122 if (pmu->type >= PERF_TYPE_MAX) 9123 idr_remove(&pmu_idr, pmu->type); 9124 9125 free_pdc: 9126 free_percpu(pmu->pmu_disable_count); 9127 goto unlock; 9128 } 9129 EXPORT_SYMBOL_GPL(perf_pmu_register); 9130 9131 void perf_pmu_unregister(struct pmu *pmu) 9132 { 9133 int remove_device; 9134 9135 mutex_lock(&pmus_lock); 9136 remove_device = pmu_bus_running; 9137 list_del_rcu(&pmu->entry); 9138 mutex_unlock(&pmus_lock); 9139 9140 /* 9141 * We dereference the pmu list under both SRCU and regular RCU, so 9142 * synchronize against both of those. 9143 */ 9144 synchronize_srcu(&pmus_srcu); 9145 synchronize_rcu(); 9146 9147 free_percpu(pmu->pmu_disable_count); 9148 if (pmu->type >= PERF_TYPE_MAX) 9149 idr_remove(&pmu_idr, pmu->type); 9150 if (remove_device) { 9151 if (pmu->nr_addr_filters) 9152 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9153 device_del(pmu->dev); 9154 put_device(pmu->dev); 9155 } 9156 free_pmu_context(pmu); 9157 } 9158 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9159 9160 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9161 { 9162 struct perf_event_context *ctx = NULL; 9163 int ret; 9164 9165 if (!try_module_get(pmu->module)) 9166 return -ENODEV; 9167 9168 if (event->group_leader != event) { 9169 /* 9170 * This ctx->mutex can nest when we're called through 9171 * inheritance. See the perf_event_ctx_lock_nested() comment. 9172 */ 9173 ctx = perf_event_ctx_lock_nested(event->group_leader, 9174 SINGLE_DEPTH_NESTING); 9175 BUG_ON(!ctx); 9176 } 9177 9178 event->pmu = pmu; 9179 ret = pmu->event_init(event); 9180 9181 if (ctx) 9182 perf_event_ctx_unlock(event->group_leader, ctx); 9183 9184 if (ret) 9185 module_put(pmu->module); 9186 9187 return ret; 9188 } 9189 9190 static struct pmu *perf_init_event(struct perf_event *event) 9191 { 9192 struct pmu *pmu; 9193 int idx; 9194 int ret; 9195 9196 idx = srcu_read_lock(&pmus_srcu); 9197 9198 /* Try parent's PMU first: */ 9199 if (event->parent && event->parent->pmu) { 9200 pmu = event->parent->pmu; 9201 ret = perf_try_init_event(pmu, event); 9202 if (!ret) 9203 goto unlock; 9204 } 9205 9206 rcu_read_lock(); 9207 pmu = idr_find(&pmu_idr, event->attr.type); 9208 rcu_read_unlock(); 9209 if (pmu) { 9210 ret = perf_try_init_event(pmu, event); 9211 if (ret) 9212 pmu = ERR_PTR(ret); 9213 goto unlock; 9214 } 9215 9216 list_for_each_entry_rcu(pmu, &pmus, entry) { 9217 ret = perf_try_init_event(pmu, event); 9218 if (!ret) 9219 goto unlock; 9220 9221 if (ret != -ENOENT) { 9222 pmu = ERR_PTR(ret); 9223 goto unlock; 9224 } 9225 } 9226 pmu = ERR_PTR(-ENOENT); 9227 unlock: 9228 srcu_read_unlock(&pmus_srcu, idx); 9229 9230 return pmu; 9231 } 9232 9233 static void attach_sb_event(struct perf_event *event) 9234 { 9235 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9236 9237 raw_spin_lock(&pel->lock); 9238 list_add_rcu(&event->sb_list, &pel->list); 9239 raw_spin_unlock(&pel->lock); 9240 } 9241 9242 /* 9243 * We keep a list of all !task (and therefore per-cpu) events 9244 * that need to receive side-band records. 9245 * 9246 * This avoids having to scan all the various PMU per-cpu contexts 9247 * looking for them. 9248 */ 9249 static void account_pmu_sb_event(struct perf_event *event) 9250 { 9251 if (is_sb_event(event)) 9252 attach_sb_event(event); 9253 } 9254 9255 static void account_event_cpu(struct perf_event *event, int cpu) 9256 { 9257 if (event->parent) 9258 return; 9259 9260 if (is_cgroup_event(event)) 9261 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9262 } 9263 9264 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9265 static void account_freq_event_nohz(void) 9266 { 9267 #ifdef CONFIG_NO_HZ_FULL 9268 /* Lock so we don't race with concurrent unaccount */ 9269 spin_lock(&nr_freq_lock); 9270 if (atomic_inc_return(&nr_freq_events) == 1) 9271 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9272 spin_unlock(&nr_freq_lock); 9273 #endif 9274 } 9275 9276 static void account_freq_event(void) 9277 { 9278 if (tick_nohz_full_enabled()) 9279 account_freq_event_nohz(); 9280 else 9281 atomic_inc(&nr_freq_events); 9282 } 9283 9284 9285 static void account_event(struct perf_event *event) 9286 { 9287 bool inc = false; 9288 9289 if (event->parent) 9290 return; 9291 9292 if (event->attach_state & PERF_ATTACH_TASK) 9293 inc = true; 9294 if (event->attr.mmap || event->attr.mmap_data) 9295 atomic_inc(&nr_mmap_events); 9296 if (event->attr.comm) 9297 atomic_inc(&nr_comm_events); 9298 if (event->attr.namespaces) 9299 atomic_inc(&nr_namespaces_events); 9300 if (event->attr.task) 9301 atomic_inc(&nr_task_events); 9302 if (event->attr.freq) 9303 account_freq_event(); 9304 if (event->attr.context_switch) { 9305 atomic_inc(&nr_switch_events); 9306 inc = true; 9307 } 9308 if (has_branch_stack(event)) 9309 inc = true; 9310 if (is_cgroup_event(event)) 9311 inc = true; 9312 9313 if (inc) { 9314 /* 9315 * We need the mutex here because static_branch_enable() 9316 * must complete *before* the perf_sched_count increment 9317 * becomes visible. 9318 */ 9319 if (atomic_inc_not_zero(&perf_sched_count)) 9320 goto enabled; 9321 9322 mutex_lock(&perf_sched_mutex); 9323 if (!atomic_read(&perf_sched_count)) { 9324 static_branch_enable(&perf_sched_events); 9325 /* 9326 * Guarantee that all CPUs observe they key change and 9327 * call the perf scheduling hooks before proceeding to 9328 * install events that need them. 9329 */ 9330 synchronize_sched(); 9331 } 9332 /* 9333 * Now that we have waited for the sync_sched(), allow further 9334 * increments to by-pass the mutex. 9335 */ 9336 atomic_inc(&perf_sched_count); 9337 mutex_unlock(&perf_sched_mutex); 9338 } 9339 enabled: 9340 9341 account_event_cpu(event, event->cpu); 9342 9343 account_pmu_sb_event(event); 9344 } 9345 9346 /* 9347 * Allocate and initialize a event structure 9348 */ 9349 static struct perf_event * 9350 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9351 struct task_struct *task, 9352 struct perf_event *group_leader, 9353 struct perf_event *parent_event, 9354 perf_overflow_handler_t overflow_handler, 9355 void *context, int cgroup_fd) 9356 { 9357 struct pmu *pmu; 9358 struct perf_event *event; 9359 struct hw_perf_event *hwc; 9360 long err = -EINVAL; 9361 9362 if ((unsigned)cpu >= nr_cpu_ids) { 9363 if (!task || cpu != -1) 9364 return ERR_PTR(-EINVAL); 9365 } 9366 9367 event = kzalloc(sizeof(*event), GFP_KERNEL); 9368 if (!event) 9369 return ERR_PTR(-ENOMEM); 9370 9371 /* 9372 * Single events are their own group leaders, with an 9373 * empty sibling list: 9374 */ 9375 if (!group_leader) 9376 group_leader = event; 9377 9378 mutex_init(&event->child_mutex); 9379 INIT_LIST_HEAD(&event->child_list); 9380 9381 INIT_LIST_HEAD(&event->group_entry); 9382 INIT_LIST_HEAD(&event->event_entry); 9383 INIT_LIST_HEAD(&event->sibling_list); 9384 INIT_LIST_HEAD(&event->rb_entry); 9385 INIT_LIST_HEAD(&event->active_entry); 9386 INIT_LIST_HEAD(&event->addr_filters.list); 9387 INIT_HLIST_NODE(&event->hlist_entry); 9388 9389 9390 init_waitqueue_head(&event->waitq); 9391 init_irq_work(&event->pending, perf_pending_event); 9392 9393 mutex_init(&event->mmap_mutex); 9394 raw_spin_lock_init(&event->addr_filters.lock); 9395 9396 atomic_long_set(&event->refcount, 1); 9397 event->cpu = cpu; 9398 event->attr = *attr; 9399 event->group_leader = group_leader; 9400 event->pmu = NULL; 9401 event->oncpu = -1; 9402 9403 event->parent = parent_event; 9404 9405 event->ns = get_pid_ns(task_active_pid_ns(current)); 9406 event->id = atomic64_inc_return(&perf_event_id); 9407 9408 event->state = PERF_EVENT_STATE_INACTIVE; 9409 9410 if (task) { 9411 event->attach_state = PERF_ATTACH_TASK; 9412 /* 9413 * XXX pmu::event_init needs to know what task to account to 9414 * and we cannot use the ctx information because we need the 9415 * pmu before we get a ctx. 9416 */ 9417 event->hw.target = task; 9418 } 9419 9420 event->clock = &local_clock; 9421 if (parent_event) 9422 event->clock = parent_event->clock; 9423 9424 if (!overflow_handler && parent_event) { 9425 overflow_handler = parent_event->overflow_handler; 9426 context = parent_event->overflow_handler_context; 9427 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9428 if (overflow_handler == bpf_overflow_handler) { 9429 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9430 9431 if (IS_ERR(prog)) { 9432 err = PTR_ERR(prog); 9433 goto err_ns; 9434 } 9435 event->prog = prog; 9436 event->orig_overflow_handler = 9437 parent_event->orig_overflow_handler; 9438 } 9439 #endif 9440 } 9441 9442 if (overflow_handler) { 9443 event->overflow_handler = overflow_handler; 9444 event->overflow_handler_context = context; 9445 } else if (is_write_backward(event)){ 9446 event->overflow_handler = perf_event_output_backward; 9447 event->overflow_handler_context = NULL; 9448 } else { 9449 event->overflow_handler = perf_event_output_forward; 9450 event->overflow_handler_context = NULL; 9451 } 9452 9453 perf_event__state_init(event); 9454 9455 pmu = NULL; 9456 9457 hwc = &event->hw; 9458 hwc->sample_period = attr->sample_period; 9459 if (attr->freq && attr->sample_freq) 9460 hwc->sample_period = 1; 9461 hwc->last_period = hwc->sample_period; 9462 9463 local64_set(&hwc->period_left, hwc->sample_period); 9464 9465 /* 9466 * We currently do not support PERF_SAMPLE_READ on inherited events. 9467 * See perf_output_read(). 9468 */ 9469 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9470 goto err_ns; 9471 9472 if (!has_branch_stack(event)) 9473 event->attr.branch_sample_type = 0; 9474 9475 if (cgroup_fd != -1) { 9476 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9477 if (err) 9478 goto err_ns; 9479 } 9480 9481 pmu = perf_init_event(event); 9482 if (IS_ERR(pmu)) { 9483 err = PTR_ERR(pmu); 9484 goto err_ns; 9485 } 9486 9487 err = exclusive_event_init(event); 9488 if (err) 9489 goto err_pmu; 9490 9491 if (has_addr_filter(event)) { 9492 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9493 sizeof(unsigned long), 9494 GFP_KERNEL); 9495 if (!event->addr_filters_offs) { 9496 err = -ENOMEM; 9497 goto err_per_task; 9498 } 9499 9500 /* force hw sync on the address filters */ 9501 event->addr_filters_gen = 1; 9502 } 9503 9504 if (!event->parent) { 9505 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9506 err = get_callchain_buffers(attr->sample_max_stack); 9507 if (err) 9508 goto err_addr_filters; 9509 } 9510 } 9511 9512 /* symmetric to unaccount_event() in _free_event() */ 9513 account_event(event); 9514 9515 return event; 9516 9517 err_addr_filters: 9518 kfree(event->addr_filters_offs); 9519 9520 err_per_task: 9521 exclusive_event_destroy(event); 9522 9523 err_pmu: 9524 if (event->destroy) 9525 event->destroy(event); 9526 module_put(pmu->module); 9527 err_ns: 9528 if (is_cgroup_event(event)) 9529 perf_detach_cgroup(event); 9530 if (event->ns) 9531 put_pid_ns(event->ns); 9532 kfree(event); 9533 9534 return ERR_PTR(err); 9535 } 9536 9537 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9538 struct perf_event_attr *attr) 9539 { 9540 u32 size; 9541 int ret; 9542 9543 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9544 return -EFAULT; 9545 9546 /* 9547 * zero the full structure, so that a short copy will be nice. 9548 */ 9549 memset(attr, 0, sizeof(*attr)); 9550 9551 ret = get_user(size, &uattr->size); 9552 if (ret) 9553 return ret; 9554 9555 if (size > PAGE_SIZE) /* silly large */ 9556 goto err_size; 9557 9558 if (!size) /* abi compat */ 9559 size = PERF_ATTR_SIZE_VER0; 9560 9561 if (size < PERF_ATTR_SIZE_VER0) 9562 goto err_size; 9563 9564 /* 9565 * If we're handed a bigger struct than we know of, 9566 * ensure all the unknown bits are 0 - i.e. new 9567 * user-space does not rely on any kernel feature 9568 * extensions we dont know about yet. 9569 */ 9570 if (size > sizeof(*attr)) { 9571 unsigned char __user *addr; 9572 unsigned char __user *end; 9573 unsigned char val; 9574 9575 addr = (void __user *)uattr + sizeof(*attr); 9576 end = (void __user *)uattr + size; 9577 9578 for (; addr < end; addr++) { 9579 ret = get_user(val, addr); 9580 if (ret) 9581 return ret; 9582 if (val) 9583 goto err_size; 9584 } 9585 size = sizeof(*attr); 9586 } 9587 9588 ret = copy_from_user(attr, uattr, size); 9589 if (ret) 9590 return -EFAULT; 9591 9592 attr->size = size; 9593 9594 if (attr->__reserved_1) 9595 return -EINVAL; 9596 9597 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9598 return -EINVAL; 9599 9600 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9601 return -EINVAL; 9602 9603 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9604 u64 mask = attr->branch_sample_type; 9605 9606 /* only using defined bits */ 9607 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9608 return -EINVAL; 9609 9610 /* at least one branch bit must be set */ 9611 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9612 return -EINVAL; 9613 9614 /* propagate priv level, when not set for branch */ 9615 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9616 9617 /* exclude_kernel checked on syscall entry */ 9618 if (!attr->exclude_kernel) 9619 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9620 9621 if (!attr->exclude_user) 9622 mask |= PERF_SAMPLE_BRANCH_USER; 9623 9624 if (!attr->exclude_hv) 9625 mask |= PERF_SAMPLE_BRANCH_HV; 9626 /* 9627 * adjust user setting (for HW filter setup) 9628 */ 9629 attr->branch_sample_type = mask; 9630 } 9631 /* privileged levels capture (kernel, hv): check permissions */ 9632 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9633 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9634 return -EACCES; 9635 } 9636 9637 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9638 ret = perf_reg_validate(attr->sample_regs_user); 9639 if (ret) 9640 return ret; 9641 } 9642 9643 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9644 if (!arch_perf_have_user_stack_dump()) 9645 return -ENOSYS; 9646 9647 /* 9648 * We have __u32 type for the size, but so far 9649 * we can only use __u16 as maximum due to the 9650 * __u16 sample size limit. 9651 */ 9652 if (attr->sample_stack_user >= USHRT_MAX) 9653 ret = -EINVAL; 9654 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9655 ret = -EINVAL; 9656 } 9657 9658 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9659 ret = perf_reg_validate(attr->sample_regs_intr); 9660 out: 9661 return ret; 9662 9663 err_size: 9664 put_user(sizeof(*attr), &uattr->size); 9665 ret = -E2BIG; 9666 goto out; 9667 } 9668 9669 static int 9670 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9671 { 9672 struct ring_buffer *rb = NULL; 9673 int ret = -EINVAL; 9674 9675 if (!output_event) 9676 goto set; 9677 9678 /* don't allow circular references */ 9679 if (event == output_event) 9680 goto out; 9681 9682 /* 9683 * Don't allow cross-cpu buffers 9684 */ 9685 if (output_event->cpu != event->cpu) 9686 goto out; 9687 9688 /* 9689 * If its not a per-cpu rb, it must be the same task. 9690 */ 9691 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9692 goto out; 9693 9694 /* 9695 * Mixing clocks in the same buffer is trouble you don't need. 9696 */ 9697 if (output_event->clock != event->clock) 9698 goto out; 9699 9700 /* 9701 * Either writing ring buffer from beginning or from end. 9702 * Mixing is not allowed. 9703 */ 9704 if (is_write_backward(output_event) != is_write_backward(event)) 9705 goto out; 9706 9707 /* 9708 * If both events generate aux data, they must be on the same PMU 9709 */ 9710 if (has_aux(event) && has_aux(output_event) && 9711 event->pmu != output_event->pmu) 9712 goto out; 9713 9714 set: 9715 mutex_lock(&event->mmap_mutex); 9716 /* Can't redirect output if we've got an active mmap() */ 9717 if (atomic_read(&event->mmap_count)) 9718 goto unlock; 9719 9720 if (output_event) { 9721 /* get the rb we want to redirect to */ 9722 rb = ring_buffer_get(output_event); 9723 if (!rb) 9724 goto unlock; 9725 } 9726 9727 ring_buffer_attach(event, rb); 9728 9729 ret = 0; 9730 unlock: 9731 mutex_unlock(&event->mmap_mutex); 9732 9733 out: 9734 return ret; 9735 } 9736 9737 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9738 { 9739 if (b < a) 9740 swap(a, b); 9741 9742 mutex_lock(a); 9743 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9744 } 9745 9746 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9747 { 9748 bool nmi_safe = false; 9749 9750 switch (clk_id) { 9751 case CLOCK_MONOTONIC: 9752 event->clock = &ktime_get_mono_fast_ns; 9753 nmi_safe = true; 9754 break; 9755 9756 case CLOCK_MONOTONIC_RAW: 9757 event->clock = &ktime_get_raw_fast_ns; 9758 nmi_safe = true; 9759 break; 9760 9761 case CLOCK_REALTIME: 9762 event->clock = &ktime_get_real_ns; 9763 break; 9764 9765 case CLOCK_BOOTTIME: 9766 event->clock = &ktime_get_boot_ns; 9767 break; 9768 9769 case CLOCK_TAI: 9770 event->clock = &ktime_get_tai_ns; 9771 break; 9772 9773 default: 9774 return -EINVAL; 9775 } 9776 9777 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9778 return -EINVAL; 9779 9780 return 0; 9781 } 9782 9783 /* 9784 * Variation on perf_event_ctx_lock_nested(), except we take two context 9785 * mutexes. 9786 */ 9787 static struct perf_event_context * 9788 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9789 struct perf_event_context *ctx) 9790 { 9791 struct perf_event_context *gctx; 9792 9793 again: 9794 rcu_read_lock(); 9795 gctx = READ_ONCE(group_leader->ctx); 9796 if (!atomic_inc_not_zero(&gctx->refcount)) { 9797 rcu_read_unlock(); 9798 goto again; 9799 } 9800 rcu_read_unlock(); 9801 9802 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9803 9804 if (group_leader->ctx != gctx) { 9805 mutex_unlock(&ctx->mutex); 9806 mutex_unlock(&gctx->mutex); 9807 put_ctx(gctx); 9808 goto again; 9809 } 9810 9811 return gctx; 9812 } 9813 9814 /** 9815 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9816 * 9817 * @attr_uptr: event_id type attributes for monitoring/sampling 9818 * @pid: target pid 9819 * @cpu: target cpu 9820 * @group_fd: group leader event fd 9821 */ 9822 SYSCALL_DEFINE5(perf_event_open, 9823 struct perf_event_attr __user *, attr_uptr, 9824 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9825 { 9826 struct perf_event *group_leader = NULL, *output_event = NULL; 9827 struct perf_event *event, *sibling; 9828 struct perf_event_attr attr; 9829 struct perf_event_context *ctx, *uninitialized_var(gctx); 9830 struct file *event_file = NULL; 9831 struct fd group = {NULL, 0}; 9832 struct task_struct *task = NULL; 9833 struct pmu *pmu; 9834 int event_fd; 9835 int move_group = 0; 9836 int err; 9837 int f_flags = O_RDWR; 9838 int cgroup_fd = -1; 9839 9840 /* for future expandability... */ 9841 if (flags & ~PERF_FLAG_ALL) 9842 return -EINVAL; 9843 9844 err = perf_copy_attr(attr_uptr, &attr); 9845 if (err) 9846 return err; 9847 9848 if (!attr.exclude_kernel) { 9849 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9850 return -EACCES; 9851 } 9852 9853 if (attr.namespaces) { 9854 if (!capable(CAP_SYS_ADMIN)) 9855 return -EACCES; 9856 } 9857 9858 if (attr.freq) { 9859 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9860 return -EINVAL; 9861 } else { 9862 if (attr.sample_period & (1ULL << 63)) 9863 return -EINVAL; 9864 } 9865 9866 /* Only privileged users can get physical addresses */ 9867 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 9868 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9869 return -EACCES; 9870 9871 if (!attr.sample_max_stack) 9872 attr.sample_max_stack = sysctl_perf_event_max_stack; 9873 9874 /* 9875 * In cgroup mode, the pid argument is used to pass the fd 9876 * opened to the cgroup directory in cgroupfs. The cpu argument 9877 * designates the cpu on which to monitor threads from that 9878 * cgroup. 9879 */ 9880 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9881 return -EINVAL; 9882 9883 if (flags & PERF_FLAG_FD_CLOEXEC) 9884 f_flags |= O_CLOEXEC; 9885 9886 event_fd = get_unused_fd_flags(f_flags); 9887 if (event_fd < 0) 9888 return event_fd; 9889 9890 if (group_fd != -1) { 9891 err = perf_fget_light(group_fd, &group); 9892 if (err) 9893 goto err_fd; 9894 group_leader = group.file->private_data; 9895 if (flags & PERF_FLAG_FD_OUTPUT) 9896 output_event = group_leader; 9897 if (flags & PERF_FLAG_FD_NO_GROUP) 9898 group_leader = NULL; 9899 } 9900 9901 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9902 task = find_lively_task_by_vpid(pid); 9903 if (IS_ERR(task)) { 9904 err = PTR_ERR(task); 9905 goto err_group_fd; 9906 } 9907 } 9908 9909 if (task && group_leader && 9910 group_leader->attr.inherit != attr.inherit) { 9911 err = -EINVAL; 9912 goto err_task; 9913 } 9914 9915 if (task) { 9916 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9917 if (err) 9918 goto err_task; 9919 9920 /* 9921 * Reuse ptrace permission checks for now. 9922 * 9923 * We must hold cred_guard_mutex across this and any potential 9924 * perf_install_in_context() call for this new event to 9925 * serialize against exec() altering our credentials (and the 9926 * perf_event_exit_task() that could imply). 9927 */ 9928 err = -EACCES; 9929 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9930 goto err_cred; 9931 } 9932 9933 if (flags & PERF_FLAG_PID_CGROUP) 9934 cgroup_fd = pid; 9935 9936 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9937 NULL, NULL, cgroup_fd); 9938 if (IS_ERR(event)) { 9939 err = PTR_ERR(event); 9940 goto err_cred; 9941 } 9942 9943 if (is_sampling_event(event)) { 9944 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9945 err = -EOPNOTSUPP; 9946 goto err_alloc; 9947 } 9948 } 9949 9950 /* 9951 * Special case software events and allow them to be part of 9952 * any hardware group. 9953 */ 9954 pmu = event->pmu; 9955 9956 if (attr.use_clockid) { 9957 err = perf_event_set_clock(event, attr.clockid); 9958 if (err) 9959 goto err_alloc; 9960 } 9961 9962 if (pmu->task_ctx_nr == perf_sw_context) 9963 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9964 9965 if (group_leader && 9966 (is_software_event(event) != is_software_event(group_leader))) { 9967 if (is_software_event(event)) { 9968 /* 9969 * If event and group_leader are not both a software 9970 * event, and event is, then group leader is not. 9971 * 9972 * Allow the addition of software events to !software 9973 * groups, this is safe because software events never 9974 * fail to schedule. 9975 */ 9976 pmu = group_leader->pmu; 9977 } else if (is_software_event(group_leader) && 9978 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9979 /* 9980 * In case the group is a pure software group, and we 9981 * try to add a hardware event, move the whole group to 9982 * the hardware context. 9983 */ 9984 move_group = 1; 9985 } 9986 } 9987 9988 /* 9989 * Get the target context (task or percpu): 9990 */ 9991 ctx = find_get_context(pmu, task, event); 9992 if (IS_ERR(ctx)) { 9993 err = PTR_ERR(ctx); 9994 goto err_alloc; 9995 } 9996 9997 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9998 err = -EBUSY; 9999 goto err_context; 10000 } 10001 10002 /* 10003 * Look up the group leader (we will attach this event to it): 10004 */ 10005 if (group_leader) { 10006 err = -EINVAL; 10007 10008 /* 10009 * Do not allow a recursive hierarchy (this new sibling 10010 * becoming part of another group-sibling): 10011 */ 10012 if (group_leader->group_leader != group_leader) 10013 goto err_context; 10014 10015 /* All events in a group should have the same clock */ 10016 if (group_leader->clock != event->clock) 10017 goto err_context; 10018 10019 /* 10020 * Make sure we're both events for the same CPU; 10021 * grouping events for different CPUs is broken; since 10022 * you can never concurrently schedule them anyhow. 10023 */ 10024 if (group_leader->cpu != event->cpu) 10025 goto err_context; 10026 10027 /* 10028 * Make sure we're both on the same task, or both 10029 * per-CPU events. 10030 */ 10031 if (group_leader->ctx->task != ctx->task) 10032 goto err_context; 10033 10034 /* 10035 * Do not allow to attach to a group in a different task 10036 * or CPU context. If we're moving SW events, we'll fix 10037 * this up later, so allow that. 10038 */ 10039 if (!move_group && group_leader->ctx != ctx) 10040 goto err_context; 10041 10042 /* 10043 * Only a group leader can be exclusive or pinned 10044 */ 10045 if (attr.exclusive || attr.pinned) 10046 goto err_context; 10047 } 10048 10049 if (output_event) { 10050 err = perf_event_set_output(event, output_event); 10051 if (err) 10052 goto err_context; 10053 } 10054 10055 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10056 f_flags); 10057 if (IS_ERR(event_file)) { 10058 err = PTR_ERR(event_file); 10059 event_file = NULL; 10060 goto err_context; 10061 } 10062 10063 if (move_group) { 10064 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10065 10066 if (gctx->task == TASK_TOMBSTONE) { 10067 err = -ESRCH; 10068 goto err_locked; 10069 } 10070 10071 /* 10072 * Check if we raced against another sys_perf_event_open() call 10073 * moving the software group underneath us. 10074 */ 10075 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10076 /* 10077 * If someone moved the group out from under us, check 10078 * if this new event wound up on the same ctx, if so 10079 * its the regular !move_group case, otherwise fail. 10080 */ 10081 if (gctx != ctx) { 10082 err = -EINVAL; 10083 goto err_locked; 10084 } else { 10085 perf_event_ctx_unlock(group_leader, gctx); 10086 move_group = 0; 10087 } 10088 } 10089 } else { 10090 mutex_lock(&ctx->mutex); 10091 } 10092 10093 if (ctx->task == TASK_TOMBSTONE) { 10094 err = -ESRCH; 10095 goto err_locked; 10096 } 10097 10098 if (!perf_event_validate_size(event)) { 10099 err = -E2BIG; 10100 goto err_locked; 10101 } 10102 10103 if (!task) { 10104 /* 10105 * Check if the @cpu we're creating an event for is online. 10106 * 10107 * We use the perf_cpu_context::ctx::mutex to serialize against 10108 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10109 */ 10110 struct perf_cpu_context *cpuctx = 10111 container_of(ctx, struct perf_cpu_context, ctx); 10112 10113 if (!cpuctx->online) { 10114 err = -ENODEV; 10115 goto err_locked; 10116 } 10117 } 10118 10119 10120 /* 10121 * Must be under the same ctx::mutex as perf_install_in_context(), 10122 * because we need to serialize with concurrent event creation. 10123 */ 10124 if (!exclusive_event_installable(event, ctx)) { 10125 /* exclusive and group stuff are assumed mutually exclusive */ 10126 WARN_ON_ONCE(move_group); 10127 10128 err = -EBUSY; 10129 goto err_locked; 10130 } 10131 10132 WARN_ON_ONCE(ctx->parent_ctx); 10133 10134 /* 10135 * This is the point on no return; we cannot fail hereafter. This is 10136 * where we start modifying current state. 10137 */ 10138 10139 if (move_group) { 10140 /* 10141 * See perf_event_ctx_lock() for comments on the details 10142 * of swizzling perf_event::ctx. 10143 */ 10144 perf_remove_from_context(group_leader, 0); 10145 put_ctx(gctx); 10146 10147 list_for_each_entry(sibling, &group_leader->sibling_list, 10148 group_entry) { 10149 perf_remove_from_context(sibling, 0); 10150 put_ctx(gctx); 10151 } 10152 10153 /* 10154 * Wait for everybody to stop referencing the events through 10155 * the old lists, before installing it on new lists. 10156 */ 10157 synchronize_rcu(); 10158 10159 /* 10160 * Install the group siblings before the group leader. 10161 * 10162 * Because a group leader will try and install the entire group 10163 * (through the sibling list, which is still in-tact), we can 10164 * end up with siblings installed in the wrong context. 10165 * 10166 * By installing siblings first we NO-OP because they're not 10167 * reachable through the group lists. 10168 */ 10169 list_for_each_entry(sibling, &group_leader->sibling_list, 10170 group_entry) { 10171 perf_event__state_init(sibling); 10172 perf_install_in_context(ctx, sibling, sibling->cpu); 10173 get_ctx(ctx); 10174 } 10175 10176 /* 10177 * Removing from the context ends up with disabled 10178 * event. What we want here is event in the initial 10179 * startup state, ready to be add into new context. 10180 */ 10181 perf_event__state_init(group_leader); 10182 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10183 get_ctx(ctx); 10184 } 10185 10186 /* 10187 * Precalculate sample_data sizes; do while holding ctx::mutex such 10188 * that we're serialized against further additions and before 10189 * perf_install_in_context() which is the point the event is active and 10190 * can use these values. 10191 */ 10192 perf_event__header_size(event); 10193 perf_event__id_header_size(event); 10194 10195 event->owner = current; 10196 10197 perf_install_in_context(ctx, event, event->cpu); 10198 perf_unpin_context(ctx); 10199 10200 if (move_group) 10201 perf_event_ctx_unlock(group_leader, gctx); 10202 mutex_unlock(&ctx->mutex); 10203 10204 if (task) { 10205 mutex_unlock(&task->signal->cred_guard_mutex); 10206 put_task_struct(task); 10207 } 10208 10209 mutex_lock(¤t->perf_event_mutex); 10210 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10211 mutex_unlock(¤t->perf_event_mutex); 10212 10213 /* 10214 * Drop the reference on the group_event after placing the 10215 * new event on the sibling_list. This ensures destruction 10216 * of the group leader will find the pointer to itself in 10217 * perf_group_detach(). 10218 */ 10219 fdput(group); 10220 fd_install(event_fd, event_file); 10221 return event_fd; 10222 10223 err_locked: 10224 if (move_group) 10225 perf_event_ctx_unlock(group_leader, gctx); 10226 mutex_unlock(&ctx->mutex); 10227 /* err_file: */ 10228 fput(event_file); 10229 err_context: 10230 perf_unpin_context(ctx); 10231 put_ctx(ctx); 10232 err_alloc: 10233 /* 10234 * If event_file is set, the fput() above will have called ->release() 10235 * and that will take care of freeing the event. 10236 */ 10237 if (!event_file) 10238 free_event(event); 10239 err_cred: 10240 if (task) 10241 mutex_unlock(&task->signal->cred_guard_mutex); 10242 err_task: 10243 if (task) 10244 put_task_struct(task); 10245 err_group_fd: 10246 fdput(group); 10247 err_fd: 10248 put_unused_fd(event_fd); 10249 return err; 10250 } 10251 10252 /** 10253 * perf_event_create_kernel_counter 10254 * 10255 * @attr: attributes of the counter to create 10256 * @cpu: cpu in which the counter is bound 10257 * @task: task to profile (NULL for percpu) 10258 */ 10259 struct perf_event * 10260 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10261 struct task_struct *task, 10262 perf_overflow_handler_t overflow_handler, 10263 void *context) 10264 { 10265 struct perf_event_context *ctx; 10266 struct perf_event *event; 10267 int err; 10268 10269 /* 10270 * Get the target context (task or percpu): 10271 */ 10272 10273 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10274 overflow_handler, context, -1); 10275 if (IS_ERR(event)) { 10276 err = PTR_ERR(event); 10277 goto err; 10278 } 10279 10280 /* Mark owner so we could distinguish it from user events. */ 10281 event->owner = TASK_TOMBSTONE; 10282 10283 ctx = find_get_context(event->pmu, task, event); 10284 if (IS_ERR(ctx)) { 10285 err = PTR_ERR(ctx); 10286 goto err_free; 10287 } 10288 10289 WARN_ON_ONCE(ctx->parent_ctx); 10290 mutex_lock(&ctx->mutex); 10291 if (ctx->task == TASK_TOMBSTONE) { 10292 err = -ESRCH; 10293 goto err_unlock; 10294 } 10295 10296 if (!task) { 10297 /* 10298 * Check if the @cpu we're creating an event for is online. 10299 * 10300 * We use the perf_cpu_context::ctx::mutex to serialize against 10301 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10302 */ 10303 struct perf_cpu_context *cpuctx = 10304 container_of(ctx, struct perf_cpu_context, ctx); 10305 if (!cpuctx->online) { 10306 err = -ENODEV; 10307 goto err_unlock; 10308 } 10309 } 10310 10311 if (!exclusive_event_installable(event, ctx)) { 10312 err = -EBUSY; 10313 goto err_unlock; 10314 } 10315 10316 perf_install_in_context(ctx, event, cpu); 10317 perf_unpin_context(ctx); 10318 mutex_unlock(&ctx->mutex); 10319 10320 return event; 10321 10322 err_unlock: 10323 mutex_unlock(&ctx->mutex); 10324 perf_unpin_context(ctx); 10325 put_ctx(ctx); 10326 err_free: 10327 free_event(event); 10328 err: 10329 return ERR_PTR(err); 10330 } 10331 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10332 10333 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10334 { 10335 struct perf_event_context *src_ctx; 10336 struct perf_event_context *dst_ctx; 10337 struct perf_event *event, *tmp; 10338 LIST_HEAD(events); 10339 10340 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10341 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10342 10343 /* 10344 * See perf_event_ctx_lock() for comments on the details 10345 * of swizzling perf_event::ctx. 10346 */ 10347 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10348 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10349 event_entry) { 10350 perf_remove_from_context(event, 0); 10351 unaccount_event_cpu(event, src_cpu); 10352 put_ctx(src_ctx); 10353 list_add(&event->migrate_entry, &events); 10354 } 10355 10356 /* 10357 * Wait for the events to quiesce before re-instating them. 10358 */ 10359 synchronize_rcu(); 10360 10361 /* 10362 * Re-instate events in 2 passes. 10363 * 10364 * Skip over group leaders and only install siblings on this first 10365 * pass, siblings will not get enabled without a leader, however a 10366 * leader will enable its siblings, even if those are still on the old 10367 * context. 10368 */ 10369 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10370 if (event->group_leader == event) 10371 continue; 10372 10373 list_del(&event->migrate_entry); 10374 if (event->state >= PERF_EVENT_STATE_OFF) 10375 event->state = PERF_EVENT_STATE_INACTIVE; 10376 account_event_cpu(event, dst_cpu); 10377 perf_install_in_context(dst_ctx, event, dst_cpu); 10378 get_ctx(dst_ctx); 10379 } 10380 10381 /* 10382 * Once all the siblings are setup properly, install the group leaders 10383 * to make it go. 10384 */ 10385 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10386 list_del(&event->migrate_entry); 10387 if (event->state >= PERF_EVENT_STATE_OFF) 10388 event->state = PERF_EVENT_STATE_INACTIVE; 10389 account_event_cpu(event, dst_cpu); 10390 perf_install_in_context(dst_ctx, event, dst_cpu); 10391 get_ctx(dst_ctx); 10392 } 10393 mutex_unlock(&dst_ctx->mutex); 10394 mutex_unlock(&src_ctx->mutex); 10395 } 10396 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10397 10398 static void sync_child_event(struct perf_event *child_event, 10399 struct task_struct *child) 10400 { 10401 struct perf_event *parent_event = child_event->parent; 10402 u64 child_val; 10403 10404 if (child_event->attr.inherit_stat) 10405 perf_event_read_event(child_event, child); 10406 10407 child_val = perf_event_count(child_event); 10408 10409 /* 10410 * Add back the child's count to the parent's count: 10411 */ 10412 atomic64_add(child_val, &parent_event->child_count); 10413 atomic64_add(child_event->total_time_enabled, 10414 &parent_event->child_total_time_enabled); 10415 atomic64_add(child_event->total_time_running, 10416 &parent_event->child_total_time_running); 10417 } 10418 10419 static void 10420 perf_event_exit_event(struct perf_event *child_event, 10421 struct perf_event_context *child_ctx, 10422 struct task_struct *child) 10423 { 10424 struct perf_event *parent_event = child_event->parent; 10425 10426 /* 10427 * Do not destroy the 'original' grouping; because of the context 10428 * switch optimization the original events could've ended up in a 10429 * random child task. 10430 * 10431 * If we were to destroy the original group, all group related 10432 * operations would cease to function properly after this random 10433 * child dies. 10434 * 10435 * Do destroy all inherited groups, we don't care about those 10436 * and being thorough is better. 10437 */ 10438 raw_spin_lock_irq(&child_ctx->lock); 10439 WARN_ON_ONCE(child_ctx->is_active); 10440 10441 if (parent_event) 10442 perf_group_detach(child_event); 10443 list_del_event(child_event, child_ctx); 10444 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 10445 raw_spin_unlock_irq(&child_ctx->lock); 10446 10447 /* 10448 * Parent events are governed by their filedesc, retain them. 10449 */ 10450 if (!parent_event) { 10451 perf_event_wakeup(child_event); 10452 return; 10453 } 10454 /* 10455 * Child events can be cleaned up. 10456 */ 10457 10458 sync_child_event(child_event, child); 10459 10460 /* 10461 * Remove this event from the parent's list 10462 */ 10463 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10464 mutex_lock(&parent_event->child_mutex); 10465 list_del_init(&child_event->child_list); 10466 mutex_unlock(&parent_event->child_mutex); 10467 10468 /* 10469 * Kick perf_poll() for is_event_hup(). 10470 */ 10471 perf_event_wakeup(parent_event); 10472 free_event(child_event); 10473 put_event(parent_event); 10474 } 10475 10476 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10477 { 10478 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10479 struct perf_event *child_event, *next; 10480 10481 WARN_ON_ONCE(child != current); 10482 10483 child_ctx = perf_pin_task_context(child, ctxn); 10484 if (!child_ctx) 10485 return; 10486 10487 /* 10488 * In order to reduce the amount of tricky in ctx tear-down, we hold 10489 * ctx::mutex over the entire thing. This serializes against almost 10490 * everything that wants to access the ctx. 10491 * 10492 * The exception is sys_perf_event_open() / 10493 * perf_event_create_kernel_count() which does find_get_context() 10494 * without ctx::mutex (it cannot because of the move_group double mutex 10495 * lock thing). See the comments in perf_install_in_context(). 10496 */ 10497 mutex_lock(&child_ctx->mutex); 10498 10499 /* 10500 * In a single ctx::lock section, de-schedule the events and detach the 10501 * context from the task such that we cannot ever get it scheduled back 10502 * in. 10503 */ 10504 raw_spin_lock_irq(&child_ctx->lock); 10505 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10506 10507 /* 10508 * Now that the context is inactive, destroy the task <-> ctx relation 10509 * and mark the context dead. 10510 */ 10511 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10512 put_ctx(child_ctx); /* cannot be last */ 10513 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10514 put_task_struct(current); /* cannot be last */ 10515 10516 clone_ctx = unclone_ctx(child_ctx); 10517 raw_spin_unlock_irq(&child_ctx->lock); 10518 10519 if (clone_ctx) 10520 put_ctx(clone_ctx); 10521 10522 /* 10523 * Report the task dead after unscheduling the events so that we 10524 * won't get any samples after PERF_RECORD_EXIT. We can however still 10525 * get a few PERF_RECORD_READ events. 10526 */ 10527 perf_event_task(child, child_ctx, 0); 10528 10529 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10530 perf_event_exit_event(child_event, child_ctx, child); 10531 10532 mutex_unlock(&child_ctx->mutex); 10533 10534 put_ctx(child_ctx); 10535 } 10536 10537 /* 10538 * When a child task exits, feed back event values to parent events. 10539 * 10540 * Can be called with cred_guard_mutex held when called from 10541 * install_exec_creds(). 10542 */ 10543 void perf_event_exit_task(struct task_struct *child) 10544 { 10545 struct perf_event *event, *tmp; 10546 int ctxn; 10547 10548 mutex_lock(&child->perf_event_mutex); 10549 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10550 owner_entry) { 10551 list_del_init(&event->owner_entry); 10552 10553 /* 10554 * Ensure the list deletion is visible before we clear 10555 * the owner, closes a race against perf_release() where 10556 * we need to serialize on the owner->perf_event_mutex. 10557 */ 10558 smp_store_release(&event->owner, NULL); 10559 } 10560 mutex_unlock(&child->perf_event_mutex); 10561 10562 for_each_task_context_nr(ctxn) 10563 perf_event_exit_task_context(child, ctxn); 10564 10565 /* 10566 * The perf_event_exit_task_context calls perf_event_task 10567 * with child's task_ctx, which generates EXIT events for 10568 * child contexts and sets child->perf_event_ctxp[] to NULL. 10569 * At this point we need to send EXIT events to cpu contexts. 10570 */ 10571 perf_event_task(child, NULL, 0); 10572 } 10573 10574 static void perf_free_event(struct perf_event *event, 10575 struct perf_event_context *ctx) 10576 { 10577 struct perf_event *parent = event->parent; 10578 10579 if (WARN_ON_ONCE(!parent)) 10580 return; 10581 10582 mutex_lock(&parent->child_mutex); 10583 list_del_init(&event->child_list); 10584 mutex_unlock(&parent->child_mutex); 10585 10586 put_event(parent); 10587 10588 raw_spin_lock_irq(&ctx->lock); 10589 perf_group_detach(event); 10590 list_del_event(event, ctx); 10591 raw_spin_unlock_irq(&ctx->lock); 10592 free_event(event); 10593 } 10594 10595 /* 10596 * Free an unexposed, unused context as created by inheritance by 10597 * perf_event_init_task below, used by fork() in case of fail. 10598 * 10599 * Not all locks are strictly required, but take them anyway to be nice and 10600 * help out with the lockdep assertions. 10601 */ 10602 void perf_event_free_task(struct task_struct *task) 10603 { 10604 struct perf_event_context *ctx; 10605 struct perf_event *event, *tmp; 10606 int ctxn; 10607 10608 for_each_task_context_nr(ctxn) { 10609 ctx = task->perf_event_ctxp[ctxn]; 10610 if (!ctx) 10611 continue; 10612 10613 mutex_lock(&ctx->mutex); 10614 raw_spin_lock_irq(&ctx->lock); 10615 /* 10616 * Destroy the task <-> ctx relation and mark the context dead. 10617 * 10618 * This is important because even though the task hasn't been 10619 * exposed yet the context has been (through child_list). 10620 */ 10621 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10622 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10623 put_task_struct(task); /* cannot be last */ 10624 raw_spin_unlock_irq(&ctx->lock); 10625 10626 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10627 perf_free_event(event, ctx); 10628 10629 mutex_unlock(&ctx->mutex); 10630 put_ctx(ctx); 10631 } 10632 } 10633 10634 void perf_event_delayed_put(struct task_struct *task) 10635 { 10636 int ctxn; 10637 10638 for_each_task_context_nr(ctxn) 10639 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10640 } 10641 10642 struct file *perf_event_get(unsigned int fd) 10643 { 10644 struct file *file; 10645 10646 file = fget_raw(fd); 10647 if (!file) 10648 return ERR_PTR(-EBADF); 10649 10650 if (file->f_op != &perf_fops) { 10651 fput(file); 10652 return ERR_PTR(-EBADF); 10653 } 10654 10655 return file; 10656 } 10657 10658 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10659 { 10660 if (!event) 10661 return ERR_PTR(-EINVAL); 10662 10663 return &event->attr; 10664 } 10665 10666 /* 10667 * Inherit a event from parent task to child task. 10668 * 10669 * Returns: 10670 * - valid pointer on success 10671 * - NULL for orphaned events 10672 * - IS_ERR() on error 10673 */ 10674 static struct perf_event * 10675 inherit_event(struct perf_event *parent_event, 10676 struct task_struct *parent, 10677 struct perf_event_context *parent_ctx, 10678 struct task_struct *child, 10679 struct perf_event *group_leader, 10680 struct perf_event_context *child_ctx) 10681 { 10682 enum perf_event_state parent_state = parent_event->state; 10683 struct perf_event *child_event; 10684 unsigned long flags; 10685 10686 /* 10687 * Instead of creating recursive hierarchies of events, 10688 * we link inherited events back to the original parent, 10689 * which has a filp for sure, which we use as the reference 10690 * count: 10691 */ 10692 if (parent_event->parent) 10693 parent_event = parent_event->parent; 10694 10695 child_event = perf_event_alloc(&parent_event->attr, 10696 parent_event->cpu, 10697 child, 10698 group_leader, parent_event, 10699 NULL, NULL, -1); 10700 if (IS_ERR(child_event)) 10701 return child_event; 10702 10703 /* 10704 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10705 * must be under the same lock in order to serialize against 10706 * perf_event_release_kernel(), such that either we must observe 10707 * is_orphaned_event() or they will observe us on the child_list. 10708 */ 10709 mutex_lock(&parent_event->child_mutex); 10710 if (is_orphaned_event(parent_event) || 10711 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10712 mutex_unlock(&parent_event->child_mutex); 10713 free_event(child_event); 10714 return NULL; 10715 } 10716 10717 get_ctx(child_ctx); 10718 10719 /* 10720 * Make the child state follow the state of the parent event, 10721 * not its attr.disabled bit. We hold the parent's mutex, 10722 * so we won't race with perf_event_{en, dis}able_family. 10723 */ 10724 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10725 child_event->state = PERF_EVENT_STATE_INACTIVE; 10726 else 10727 child_event->state = PERF_EVENT_STATE_OFF; 10728 10729 if (parent_event->attr.freq) { 10730 u64 sample_period = parent_event->hw.sample_period; 10731 struct hw_perf_event *hwc = &child_event->hw; 10732 10733 hwc->sample_period = sample_period; 10734 hwc->last_period = sample_period; 10735 10736 local64_set(&hwc->period_left, sample_period); 10737 } 10738 10739 child_event->ctx = child_ctx; 10740 child_event->overflow_handler = parent_event->overflow_handler; 10741 child_event->overflow_handler_context 10742 = parent_event->overflow_handler_context; 10743 10744 /* 10745 * Precalculate sample_data sizes 10746 */ 10747 perf_event__header_size(child_event); 10748 perf_event__id_header_size(child_event); 10749 10750 /* 10751 * Link it up in the child's context: 10752 */ 10753 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10754 add_event_to_ctx(child_event, child_ctx); 10755 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10756 10757 /* 10758 * Link this into the parent event's child list 10759 */ 10760 list_add_tail(&child_event->child_list, &parent_event->child_list); 10761 mutex_unlock(&parent_event->child_mutex); 10762 10763 return child_event; 10764 } 10765 10766 /* 10767 * Inherits an event group. 10768 * 10769 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10770 * This matches with perf_event_release_kernel() removing all child events. 10771 * 10772 * Returns: 10773 * - 0 on success 10774 * - <0 on error 10775 */ 10776 static int inherit_group(struct perf_event *parent_event, 10777 struct task_struct *parent, 10778 struct perf_event_context *parent_ctx, 10779 struct task_struct *child, 10780 struct perf_event_context *child_ctx) 10781 { 10782 struct perf_event *leader; 10783 struct perf_event *sub; 10784 struct perf_event *child_ctr; 10785 10786 leader = inherit_event(parent_event, parent, parent_ctx, 10787 child, NULL, child_ctx); 10788 if (IS_ERR(leader)) 10789 return PTR_ERR(leader); 10790 /* 10791 * @leader can be NULL here because of is_orphaned_event(). In this 10792 * case inherit_event() will create individual events, similar to what 10793 * perf_group_detach() would do anyway. 10794 */ 10795 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10796 child_ctr = inherit_event(sub, parent, parent_ctx, 10797 child, leader, child_ctx); 10798 if (IS_ERR(child_ctr)) 10799 return PTR_ERR(child_ctr); 10800 } 10801 return 0; 10802 } 10803 10804 /* 10805 * Creates the child task context and tries to inherit the event-group. 10806 * 10807 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10808 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10809 * consistent with perf_event_release_kernel() removing all child events. 10810 * 10811 * Returns: 10812 * - 0 on success 10813 * - <0 on error 10814 */ 10815 static int 10816 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10817 struct perf_event_context *parent_ctx, 10818 struct task_struct *child, int ctxn, 10819 int *inherited_all) 10820 { 10821 int ret; 10822 struct perf_event_context *child_ctx; 10823 10824 if (!event->attr.inherit) { 10825 *inherited_all = 0; 10826 return 0; 10827 } 10828 10829 child_ctx = child->perf_event_ctxp[ctxn]; 10830 if (!child_ctx) { 10831 /* 10832 * This is executed from the parent task context, so 10833 * inherit events that have been marked for cloning. 10834 * First allocate and initialize a context for the 10835 * child. 10836 */ 10837 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10838 if (!child_ctx) 10839 return -ENOMEM; 10840 10841 child->perf_event_ctxp[ctxn] = child_ctx; 10842 } 10843 10844 ret = inherit_group(event, parent, parent_ctx, 10845 child, child_ctx); 10846 10847 if (ret) 10848 *inherited_all = 0; 10849 10850 return ret; 10851 } 10852 10853 /* 10854 * Initialize the perf_event context in task_struct 10855 */ 10856 static int perf_event_init_context(struct task_struct *child, int ctxn) 10857 { 10858 struct perf_event_context *child_ctx, *parent_ctx; 10859 struct perf_event_context *cloned_ctx; 10860 struct perf_event *event; 10861 struct task_struct *parent = current; 10862 int inherited_all = 1; 10863 unsigned long flags; 10864 int ret = 0; 10865 10866 if (likely(!parent->perf_event_ctxp[ctxn])) 10867 return 0; 10868 10869 /* 10870 * If the parent's context is a clone, pin it so it won't get 10871 * swapped under us. 10872 */ 10873 parent_ctx = perf_pin_task_context(parent, ctxn); 10874 if (!parent_ctx) 10875 return 0; 10876 10877 /* 10878 * No need to check if parent_ctx != NULL here; since we saw 10879 * it non-NULL earlier, the only reason for it to become NULL 10880 * is if we exit, and since we're currently in the middle of 10881 * a fork we can't be exiting at the same time. 10882 */ 10883 10884 /* 10885 * Lock the parent list. No need to lock the child - not PID 10886 * hashed yet and not running, so nobody can access it. 10887 */ 10888 mutex_lock(&parent_ctx->mutex); 10889 10890 /* 10891 * We dont have to disable NMIs - we are only looking at 10892 * the list, not manipulating it: 10893 */ 10894 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10895 ret = inherit_task_group(event, parent, parent_ctx, 10896 child, ctxn, &inherited_all); 10897 if (ret) 10898 goto out_unlock; 10899 } 10900 10901 /* 10902 * We can't hold ctx->lock when iterating the ->flexible_group list due 10903 * to allocations, but we need to prevent rotation because 10904 * rotate_ctx() will change the list from interrupt context. 10905 */ 10906 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10907 parent_ctx->rotate_disable = 1; 10908 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10909 10910 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10911 ret = inherit_task_group(event, parent, parent_ctx, 10912 child, ctxn, &inherited_all); 10913 if (ret) 10914 goto out_unlock; 10915 } 10916 10917 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10918 parent_ctx->rotate_disable = 0; 10919 10920 child_ctx = child->perf_event_ctxp[ctxn]; 10921 10922 if (child_ctx && inherited_all) { 10923 /* 10924 * Mark the child context as a clone of the parent 10925 * context, or of whatever the parent is a clone of. 10926 * 10927 * Note that if the parent is a clone, the holding of 10928 * parent_ctx->lock avoids it from being uncloned. 10929 */ 10930 cloned_ctx = parent_ctx->parent_ctx; 10931 if (cloned_ctx) { 10932 child_ctx->parent_ctx = cloned_ctx; 10933 child_ctx->parent_gen = parent_ctx->parent_gen; 10934 } else { 10935 child_ctx->parent_ctx = parent_ctx; 10936 child_ctx->parent_gen = parent_ctx->generation; 10937 } 10938 get_ctx(child_ctx->parent_ctx); 10939 } 10940 10941 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10942 out_unlock: 10943 mutex_unlock(&parent_ctx->mutex); 10944 10945 perf_unpin_context(parent_ctx); 10946 put_ctx(parent_ctx); 10947 10948 return ret; 10949 } 10950 10951 /* 10952 * Initialize the perf_event context in task_struct 10953 */ 10954 int perf_event_init_task(struct task_struct *child) 10955 { 10956 int ctxn, ret; 10957 10958 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10959 mutex_init(&child->perf_event_mutex); 10960 INIT_LIST_HEAD(&child->perf_event_list); 10961 10962 for_each_task_context_nr(ctxn) { 10963 ret = perf_event_init_context(child, ctxn); 10964 if (ret) { 10965 perf_event_free_task(child); 10966 return ret; 10967 } 10968 } 10969 10970 return 0; 10971 } 10972 10973 static void __init perf_event_init_all_cpus(void) 10974 { 10975 struct swevent_htable *swhash; 10976 int cpu; 10977 10978 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 10979 10980 for_each_possible_cpu(cpu) { 10981 swhash = &per_cpu(swevent_htable, cpu); 10982 mutex_init(&swhash->hlist_mutex); 10983 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10984 10985 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10986 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10987 10988 #ifdef CONFIG_CGROUP_PERF 10989 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 10990 #endif 10991 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10992 } 10993 } 10994 10995 void perf_swevent_init_cpu(unsigned int cpu) 10996 { 10997 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10998 10999 mutex_lock(&swhash->hlist_mutex); 11000 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11001 struct swevent_hlist *hlist; 11002 11003 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11004 WARN_ON(!hlist); 11005 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11006 } 11007 mutex_unlock(&swhash->hlist_mutex); 11008 } 11009 11010 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11011 static void __perf_event_exit_context(void *__info) 11012 { 11013 struct perf_event_context *ctx = __info; 11014 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11015 struct perf_event *event; 11016 11017 raw_spin_lock(&ctx->lock); 11018 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11019 list_for_each_entry(event, &ctx->event_list, event_entry) 11020 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11021 raw_spin_unlock(&ctx->lock); 11022 } 11023 11024 static void perf_event_exit_cpu_context(int cpu) 11025 { 11026 struct perf_cpu_context *cpuctx; 11027 struct perf_event_context *ctx; 11028 struct pmu *pmu; 11029 11030 mutex_lock(&pmus_lock); 11031 list_for_each_entry(pmu, &pmus, entry) { 11032 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11033 ctx = &cpuctx->ctx; 11034 11035 mutex_lock(&ctx->mutex); 11036 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11037 cpuctx->online = 0; 11038 mutex_unlock(&ctx->mutex); 11039 } 11040 cpumask_clear_cpu(cpu, perf_online_mask); 11041 mutex_unlock(&pmus_lock); 11042 } 11043 #else 11044 11045 static void perf_event_exit_cpu_context(int cpu) { } 11046 11047 #endif 11048 11049 int perf_event_init_cpu(unsigned int cpu) 11050 { 11051 struct perf_cpu_context *cpuctx; 11052 struct perf_event_context *ctx; 11053 struct pmu *pmu; 11054 11055 perf_swevent_init_cpu(cpu); 11056 11057 mutex_lock(&pmus_lock); 11058 cpumask_set_cpu(cpu, perf_online_mask); 11059 list_for_each_entry(pmu, &pmus, entry) { 11060 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11061 ctx = &cpuctx->ctx; 11062 11063 mutex_lock(&ctx->mutex); 11064 cpuctx->online = 1; 11065 mutex_unlock(&ctx->mutex); 11066 } 11067 mutex_unlock(&pmus_lock); 11068 11069 return 0; 11070 } 11071 11072 int perf_event_exit_cpu(unsigned int cpu) 11073 { 11074 perf_event_exit_cpu_context(cpu); 11075 return 0; 11076 } 11077 11078 static int 11079 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11080 { 11081 int cpu; 11082 11083 for_each_online_cpu(cpu) 11084 perf_event_exit_cpu(cpu); 11085 11086 return NOTIFY_OK; 11087 } 11088 11089 /* 11090 * Run the perf reboot notifier at the very last possible moment so that 11091 * the generic watchdog code runs as long as possible. 11092 */ 11093 static struct notifier_block perf_reboot_notifier = { 11094 .notifier_call = perf_reboot, 11095 .priority = INT_MIN, 11096 }; 11097 11098 void __init perf_event_init(void) 11099 { 11100 int ret; 11101 11102 idr_init(&pmu_idr); 11103 11104 perf_event_init_all_cpus(); 11105 init_srcu_struct(&pmus_srcu); 11106 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11107 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11108 perf_pmu_register(&perf_task_clock, NULL, -1); 11109 perf_tp_register(); 11110 perf_event_init_cpu(smp_processor_id()); 11111 register_reboot_notifier(&perf_reboot_notifier); 11112 11113 ret = init_hw_breakpoint(); 11114 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11115 11116 /* 11117 * Build time assertion that we keep the data_head at the intended 11118 * location. IOW, validation we got the __reserved[] size right. 11119 */ 11120 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11121 != 1024); 11122 } 11123 11124 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11125 char *page) 11126 { 11127 struct perf_pmu_events_attr *pmu_attr = 11128 container_of(attr, struct perf_pmu_events_attr, attr); 11129 11130 if (pmu_attr->event_str) 11131 return sprintf(page, "%s\n", pmu_attr->event_str); 11132 11133 return 0; 11134 } 11135 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11136 11137 static int __init perf_event_sysfs_init(void) 11138 { 11139 struct pmu *pmu; 11140 int ret; 11141 11142 mutex_lock(&pmus_lock); 11143 11144 ret = bus_register(&pmu_bus); 11145 if (ret) 11146 goto unlock; 11147 11148 list_for_each_entry(pmu, &pmus, entry) { 11149 if (!pmu->name || pmu->type < 0) 11150 continue; 11151 11152 ret = pmu_dev_alloc(pmu); 11153 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11154 } 11155 pmu_bus_running = 1; 11156 ret = 0; 11157 11158 unlock: 11159 mutex_unlock(&pmus_lock); 11160 11161 return ret; 11162 } 11163 device_initcall(perf_event_sysfs_init); 11164 11165 #ifdef CONFIG_CGROUP_PERF 11166 static struct cgroup_subsys_state * 11167 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11168 { 11169 struct perf_cgroup *jc; 11170 11171 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11172 if (!jc) 11173 return ERR_PTR(-ENOMEM); 11174 11175 jc->info = alloc_percpu(struct perf_cgroup_info); 11176 if (!jc->info) { 11177 kfree(jc); 11178 return ERR_PTR(-ENOMEM); 11179 } 11180 11181 return &jc->css; 11182 } 11183 11184 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11185 { 11186 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11187 11188 free_percpu(jc->info); 11189 kfree(jc); 11190 } 11191 11192 static int __perf_cgroup_move(void *info) 11193 { 11194 struct task_struct *task = info; 11195 rcu_read_lock(); 11196 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11197 rcu_read_unlock(); 11198 return 0; 11199 } 11200 11201 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11202 { 11203 struct task_struct *task; 11204 struct cgroup_subsys_state *css; 11205 11206 cgroup_taskset_for_each(task, css, tset) 11207 task_function_call(task, __perf_cgroup_move, task); 11208 } 11209 11210 struct cgroup_subsys perf_event_cgrp_subsys = { 11211 .css_alloc = perf_cgroup_css_alloc, 11212 .css_free = perf_cgroup_css_free, 11213 .attach = perf_cgroup_attach, 11214 /* 11215 * Implicitly enable on dfl hierarchy so that perf events can 11216 * always be filtered by cgroup2 path as long as perf_event 11217 * controller is not mounted on a legacy hierarchy. 11218 */ 11219 .implicit_on_dfl = true, 11220 .threaded = true, 11221 }; 11222 #endif /* CONFIG_CGROUP_PERF */ 11223