1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 379 }; 380 381 /* 382 * perf_sched_events : >0 events exist 383 */ 384 385 static void perf_sched_delayed(struct work_struct *work); 386 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 387 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 388 static DEFINE_MUTEX(perf_sched_mutex); 389 static atomic_t perf_sched_count; 390 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void update_context_time(struct perf_event_context *ctx); 574 static u64 perf_event_time(struct perf_event *event); 575 576 void __weak perf_event_print_debug(void) { } 577 578 static inline u64 perf_clock(void) 579 { 580 return local_clock(); 581 } 582 583 static inline u64 perf_event_clock(struct perf_event *event) 584 { 585 return event->clock(); 586 } 587 588 /* 589 * State based event timekeeping... 590 * 591 * The basic idea is to use event->state to determine which (if any) time 592 * fields to increment with the current delta. This means we only need to 593 * update timestamps when we change state or when they are explicitly requested 594 * (read). 595 * 596 * Event groups make things a little more complicated, but not terribly so. The 597 * rules for a group are that if the group leader is OFF the entire group is 598 * OFF, irrespecive of what the group member states are. This results in 599 * __perf_effective_state(). 600 * 601 * A futher ramification is that when a group leader flips between OFF and 602 * !OFF, we need to update all group member times. 603 * 604 * 605 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 606 * need to make sure the relevant context time is updated before we try and 607 * update our timestamps. 608 */ 609 610 static __always_inline enum perf_event_state 611 __perf_effective_state(struct perf_event *event) 612 { 613 struct perf_event *leader = event->group_leader; 614 615 if (leader->state <= PERF_EVENT_STATE_OFF) 616 return leader->state; 617 618 return event->state; 619 } 620 621 static __always_inline void 622 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 623 { 624 enum perf_event_state state = __perf_effective_state(event); 625 u64 delta = now - event->tstamp; 626 627 *enabled = event->total_time_enabled; 628 if (state >= PERF_EVENT_STATE_INACTIVE) 629 *enabled += delta; 630 631 *running = event->total_time_running; 632 if (state >= PERF_EVENT_STATE_ACTIVE) 633 *running += delta; 634 } 635 636 static void perf_event_update_time(struct perf_event *event) 637 { 638 u64 now = perf_event_time(event); 639 640 __perf_update_times(event, now, &event->total_time_enabled, 641 &event->total_time_running); 642 event->tstamp = now; 643 } 644 645 static void perf_event_update_sibling_time(struct perf_event *leader) 646 { 647 struct perf_event *sibling; 648 649 for_each_sibling_event(sibling, leader) 650 perf_event_update_time(sibling); 651 } 652 653 static void 654 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 655 { 656 if (event->state == state) 657 return; 658 659 perf_event_update_time(event); 660 /* 661 * If a group leader gets enabled/disabled all its siblings 662 * are affected too. 663 */ 664 if ((event->state < 0) ^ (state < 0)) 665 perf_event_update_sibling_time(event); 666 667 WRITE_ONCE(event->state, state); 668 } 669 670 /* 671 * UP store-release, load-acquire 672 */ 673 674 #define __store_release(ptr, val) \ 675 do { \ 676 barrier(); \ 677 WRITE_ONCE(*(ptr), (val)); \ 678 } while (0) 679 680 #define __load_acquire(ptr) \ 681 ({ \ 682 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 683 barrier(); \ 684 ___p; \ 685 }) 686 687 static void perf_ctx_disable(struct perf_event_context *ctx) 688 { 689 struct perf_event_pmu_context *pmu_ctx; 690 691 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 692 perf_pmu_disable(pmu_ctx->pmu); 693 } 694 695 static void perf_ctx_enable(struct perf_event_context *ctx) 696 { 697 struct perf_event_pmu_context *pmu_ctx; 698 699 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 700 perf_pmu_enable(pmu_ctx->pmu); 701 } 702 703 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 704 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 705 706 #ifdef CONFIG_CGROUP_PERF 707 708 static inline bool 709 perf_cgroup_match(struct perf_event *event) 710 { 711 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 712 713 /* @event doesn't care about cgroup */ 714 if (!event->cgrp) 715 return true; 716 717 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 718 if (!cpuctx->cgrp) 719 return false; 720 721 /* 722 * Cgroup scoping is recursive. An event enabled for a cgroup is 723 * also enabled for all its descendant cgroups. If @cpuctx's 724 * cgroup is a descendant of @event's (the test covers identity 725 * case), it's a match. 726 */ 727 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 728 event->cgrp->css.cgroup); 729 } 730 731 static inline void perf_detach_cgroup(struct perf_event *event) 732 { 733 css_put(&event->cgrp->css); 734 event->cgrp = NULL; 735 } 736 737 static inline int is_cgroup_event(struct perf_event *event) 738 { 739 return event->cgrp != NULL; 740 } 741 742 static inline u64 perf_cgroup_event_time(struct perf_event *event) 743 { 744 struct perf_cgroup_info *t; 745 746 t = per_cpu_ptr(event->cgrp->info, event->cpu); 747 return t->time; 748 } 749 750 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 751 { 752 struct perf_cgroup_info *t; 753 754 t = per_cpu_ptr(event->cgrp->info, event->cpu); 755 if (!__load_acquire(&t->active)) 756 return t->time; 757 now += READ_ONCE(t->timeoffset); 758 return now; 759 } 760 761 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 762 { 763 if (adv) 764 info->time += now - info->timestamp; 765 info->timestamp = now; 766 /* 767 * see update_context_time() 768 */ 769 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 770 } 771 772 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 773 { 774 struct perf_cgroup *cgrp = cpuctx->cgrp; 775 struct cgroup_subsys_state *css; 776 struct perf_cgroup_info *info; 777 778 if (cgrp) { 779 u64 now = perf_clock(); 780 781 for (css = &cgrp->css; css; css = css->parent) { 782 cgrp = container_of(css, struct perf_cgroup, css); 783 info = this_cpu_ptr(cgrp->info); 784 785 __update_cgrp_time(info, now, true); 786 if (final) 787 __store_release(&info->active, 0); 788 } 789 } 790 } 791 792 static inline void update_cgrp_time_from_event(struct perf_event *event) 793 { 794 struct perf_cgroup_info *info; 795 796 /* 797 * ensure we access cgroup data only when needed and 798 * when we know the cgroup is pinned (css_get) 799 */ 800 if (!is_cgroup_event(event)) 801 return; 802 803 info = this_cpu_ptr(event->cgrp->info); 804 /* 805 * Do not update time when cgroup is not active 806 */ 807 if (info->active) 808 __update_cgrp_time(info, perf_clock(), true); 809 } 810 811 static inline void 812 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 813 { 814 struct perf_event_context *ctx = &cpuctx->ctx; 815 struct perf_cgroup *cgrp = cpuctx->cgrp; 816 struct perf_cgroup_info *info; 817 struct cgroup_subsys_state *css; 818 819 /* 820 * ctx->lock held by caller 821 * ensure we do not access cgroup data 822 * unless we have the cgroup pinned (css_get) 823 */ 824 if (!cgrp) 825 return; 826 827 WARN_ON_ONCE(!ctx->nr_cgroups); 828 829 for (css = &cgrp->css; css; css = css->parent) { 830 cgrp = container_of(css, struct perf_cgroup, css); 831 info = this_cpu_ptr(cgrp->info); 832 __update_cgrp_time(info, ctx->timestamp, false); 833 __store_release(&info->active, 1); 834 } 835 } 836 837 /* 838 * reschedule events based on the cgroup constraint of task. 839 */ 840 static void perf_cgroup_switch(struct task_struct *task) 841 { 842 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 843 struct perf_cgroup *cgrp; 844 845 /* 846 * cpuctx->cgrp is set when the first cgroup event enabled, 847 * and is cleared when the last cgroup event disabled. 848 */ 849 if (READ_ONCE(cpuctx->cgrp) == NULL) 850 return; 851 852 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 853 854 cgrp = perf_cgroup_from_task(task, NULL); 855 if (READ_ONCE(cpuctx->cgrp) == cgrp) 856 return; 857 858 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 859 perf_ctx_disable(&cpuctx->ctx); 860 861 ctx_sched_out(&cpuctx->ctx, EVENT_ALL); 862 /* 863 * must not be done before ctxswout due 864 * to update_cgrp_time_from_cpuctx() in 865 * ctx_sched_out() 866 */ 867 cpuctx->cgrp = cgrp; 868 /* 869 * set cgrp before ctxsw in to allow 870 * perf_cgroup_set_timestamp() in ctx_sched_in() 871 * to not have to pass task around 872 */ 873 ctx_sched_in(&cpuctx->ctx, EVENT_ALL); 874 875 perf_ctx_enable(&cpuctx->ctx); 876 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 877 } 878 879 static int perf_cgroup_ensure_storage(struct perf_event *event, 880 struct cgroup_subsys_state *css) 881 { 882 struct perf_cpu_context *cpuctx; 883 struct perf_event **storage; 884 int cpu, heap_size, ret = 0; 885 886 /* 887 * Allow storage to have sufficent space for an iterator for each 888 * possibly nested cgroup plus an iterator for events with no cgroup. 889 */ 890 for (heap_size = 1; css; css = css->parent) 891 heap_size++; 892 893 for_each_possible_cpu(cpu) { 894 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 895 if (heap_size <= cpuctx->heap_size) 896 continue; 897 898 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 899 GFP_KERNEL, cpu_to_node(cpu)); 900 if (!storage) { 901 ret = -ENOMEM; 902 break; 903 } 904 905 raw_spin_lock_irq(&cpuctx->ctx.lock); 906 if (cpuctx->heap_size < heap_size) { 907 swap(cpuctx->heap, storage); 908 if (storage == cpuctx->heap_default) 909 storage = NULL; 910 cpuctx->heap_size = heap_size; 911 } 912 raw_spin_unlock_irq(&cpuctx->ctx.lock); 913 914 kfree(storage); 915 } 916 917 return ret; 918 } 919 920 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 921 struct perf_event_attr *attr, 922 struct perf_event *group_leader) 923 { 924 struct perf_cgroup *cgrp; 925 struct cgroup_subsys_state *css; 926 struct fd f = fdget(fd); 927 int ret = 0; 928 929 if (!f.file) 930 return -EBADF; 931 932 css = css_tryget_online_from_dir(f.file->f_path.dentry, 933 &perf_event_cgrp_subsys); 934 if (IS_ERR(css)) { 935 ret = PTR_ERR(css); 936 goto out; 937 } 938 939 ret = perf_cgroup_ensure_storage(event, css); 940 if (ret) 941 goto out; 942 943 cgrp = container_of(css, struct perf_cgroup, css); 944 event->cgrp = cgrp; 945 946 /* 947 * all events in a group must monitor 948 * the same cgroup because a task belongs 949 * to only one perf cgroup at a time 950 */ 951 if (group_leader && group_leader->cgrp != cgrp) { 952 perf_detach_cgroup(event); 953 ret = -EINVAL; 954 } 955 out: 956 fdput(f); 957 return ret; 958 } 959 960 static inline void 961 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 962 { 963 struct perf_cpu_context *cpuctx; 964 965 if (!is_cgroup_event(event)) 966 return; 967 968 /* 969 * Because cgroup events are always per-cpu events, 970 * @ctx == &cpuctx->ctx. 971 */ 972 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 973 974 if (ctx->nr_cgroups++) 975 return; 976 977 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 978 } 979 980 static inline void 981 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 982 { 983 struct perf_cpu_context *cpuctx; 984 985 if (!is_cgroup_event(event)) 986 return; 987 988 /* 989 * Because cgroup events are always per-cpu events, 990 * @ctx == &cpuctx->ctx. 991 */ 992 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 993 994 if (--ctx->nr_cgroups) 995 return; 996 997 cpuctx->cgrp = NULL; 998 } 999 1000 #else /* !CONFIG_CGROUP_PERF */ 1001 1002 static inline bool 1003 perf_cgroup_match(struct perf_event *event) 1004 { 1005 return true; 1006 } 1007 1008 static inline void perf_detach_cgroup(struct perf_event *event) 1009 {} 1010 1011 static inline int is_cgroup_event(struct perf_event *event) 1012 { 1013 return 0; 1014 } 1015 1016 static inline void update_cgrp_time_from_event(struct perf_event *event) 1017 { 1018 } 1019 1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1021 bool final) 1022 { 1023 } 1024 1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1026 struct perf_event_attr *attr, 1027 struct perf_event *group_leader) 1028 { 1029 return -EINVAL; 1030 } 1031 1032 static inline void 1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1034 { 1035 } 1036 1037 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1038 { 1039 return 0; 1040 } 1041 1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1043 { 1044 return 0; 1045 } 1046 1047 static inline void 1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1049 { 1050 } 1051 1052 static inline void 1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1054 { 1055 } 1056 1057 static void perf_cgroup_switch(struct task_struct *task) 1058 { 1059 } 1060 #endif 1061 1062 /* 1063 * set default to be dependent on timer tick just 1064 * like original code 1065 */ 1066 #define PERF_CPU_HRTIMER (1000 / HZ) 1067 /* 1068 * function must be called with interrupts disabled 1069 */ 1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1071 { 1072 struct perf_cpu_pmu_context *cpc; 1073 bool rotations; 1074 1075 lockdep_assert_irqs_disabled(); 1076 1077 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1078 rotations = perf_rotate_context(cpc); 1079 1080 raw_spin_lock(&cpc->hrtimer_lock); 1081 if (rotations) 1082 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1083 else 1084 cpc->hrtimer_active = 0; 1085 raw_spin_unlock(&cpc->hrtimer_lock); 1086 1087 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1088 } 1089 1090 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1091 { 1092 struct hrtimer *timer = &cpc->hrtimer; 1093 struct pmu *pmu = cpc->epc.pmu; 1094 u64 interval; 1095 1096 /* 1097 * check default is sane, if not set then force to 1098 * default interval (1/tick) 1099 */ 1100 interval = pmu->hrtimer_interval_ms; 1101 if (interval < 1) 1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1103 1104 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1105 1106 raw_spin_lock_init(&cpc->hrtimer_lock); 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1108 timer->function = perf_mux_hrtimer_handler; 1109 } 1110 1111 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1112 { 1113 struct hrtimer *timer = &cpc->hrtimer; 1114 unsigned long flags; 1115 1116 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1117 if (!cpc->hrtimer_active) { 1118 cpc->hrtimer_active = 1; 1119 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1120 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1121 } 1122 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1123 1124 return 0; 1125 } 1126 1127 static int perf_mux_hrtimer_restart_ipi(void *arg) 1128 { 1129 return perf_mux_hrtimer_restart(arg); 1130 } 1131 1132 void perf_pmu_disable(struct pmu *pmu) 1133 { 1134 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1135 if (!(*count)++) 1136 pmu->pmu_disable(pmu); 1137 } 1138 1139 void perf_pmu_enable(struct pmu *pmu) 1140 { 1141 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1142 if (!--(*count)) 1143 pmu->pmu_enable(pmu); 1144 } 1145 1146 static void perf_assert_pmu_disabled(struct pmu *pmu) 1147 { 1148 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1149 } 1150 1151 static void get_ctx(struct perf_event_context *ctx) 1152 { 1153 refcount_inc(&ctx->refcount); 1154 } 1155 1156 static void *alloc_task_ctx_data(struct pmu *pmu) 1157 { 1158 if (pmu->task_ctx_cache) 1159 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1160 1161 return NULL; 1162 } 1163 1164 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1165 { 1166 if (pmu->task_ctx_cache && task_ctx_data) 1167 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1168 } 1169 1170 static void free_ctx(struct rcu_head *head) 1171 { 1172 struct perf_event_context *ctx; 1173 1174 ctx = container_of(head, struct perf_event_context, rcu_head); 1175 kfree(ctx); 1176 } 1177 1178 static void put_ctx(struct perf_event_context *ctx) 1179 { 1180 if (refcount_dec_and_test(&ctx->refcount)) { 1181 if (ctx->parent_ctx) 1182 put_ctx(ctx->parent_ctx); 1183 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1184 put_task_struct(ctx->task); 1185 call_rcu(&ctx->rcu_head, free_ctx); 1186 } 1187 } 1188 1189 /* 1190 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1191 * perf_pmu_migrate_context() we need some magic. 1192 * 1193 * Those places that change perf_event::ctx will hold both 1194 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1195 * 1196 * Lock ordering is by mutex address. There are two other sites where 1197 * perf_event_context::mutex nests and those are: 1198 * 1199 * - perf_event_exit_task_context() [ child , 0 ] 1200 * perf_event_exit_event() 1201 * put_event() [ parent, 1 ] 1202 * 1203 * - perf_event_init_context() [ parent, 0 ] 1204 * inherit_task_group() 1205 * inherit_group() 1206 * inherit_event() 1207 * perf_event_alloc() 1208 * perf_init_event() 1209 * perf_try_init_event() [ child , 1 ] 1210 * 1211 * While it appears there is an obvious deadlock here -- the parent and child 1212 * nesting levels are inverted between the two. This is in fact safe because 1213 * life-time rules separate them. That is an exiting task cannot fork, and a 1214 * spawning task cannot (yet) exit. 1215 * 1216 * But remember that these are parent<->child context relations, and 1217 * migration does not affect children, therefore these two orderings should not 1218 * interact. 1219 * 1220 * The change in perf_event::ctx does not affect children (as claimed above) 1221 * because the sys_perf_event_open() case will install a new event and break 1222 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1223 * concerned with cpuctx and that doesn't have children. 1224 * 1225 * The places that change perf_event::ctx will issue: 1226 * 1227 * perf_remove_from_context(); 1228 * synchronize_rcu(); 1229 * perf_install_in_context(); 1230 * 1231 * to affect the change. The remove_from_context() + synchronize_rcu() should 1232 * quiesce the event, after which we can install it in the new location. This 1233 * means that only external vectors (perf_fops, prctl) can perturb the event 1234 * while in transit. Therefore all such accessors should also acquire 1235 * perf_event_context::mutex to serialize against this. 1236 * 1237 * However; because event->ctx can change while we're waiting to acquire 1238 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1239 * function. 1240 * 1241 * Lock order: 1242 * exec_update_lock 1243 * task_struct::perf_event_mutex 1244 * perf_event_context::mutex 1245 * perf_event::child_mutex; 1246 * perf_event_context::lock 1247 * perf_event::mmap_mutex 1248 * mmap_lock 1249 * perf_addr_filters_head::lock 1250 * 1251 * cpu_hotplug_lock 1252 * pmus_lock 1253 * cpuctx->mutex / perf_event_context::mutex 1254 */ 1255 static struct perf_event_context * 1256 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1257 { 1258 struct perf_event_context *ctx; 1259 1260 again: 1261 rcu_read_lock(); 1262 ctx = READ_ONCE(event->ctx); 1263 if (!refcount_inc_not_zero(&ctx->refcount)) { 1264 rcu_read_unlock(); 1265 goto again; 1266 } 1267 rcu_read_unlock(); 1268 1269 mutex_lock_nested(&ctx->mutex, nesting); 1270 if (event->ctx != ctx) { 1271 mutex_unlock(&ctx->mutex); 1272 put_ctx(ctx); 1273 goto again; 1274 } 1275 1276 return ctx; 1277 } 1278 1279 static inline struct perf_event_context * 1280 perf_event_ctx_lock(struct perf_event *event) 1281 { 1282 return perf_event_ctx_lock_nested(event, 0); 1283 } 1284 1285 static void perf_event_ctx_unlock(struct perf_event *event, 1286 struct perf_event_context *ctx) 1287 { 1288 mutex_unlock(&ctx->mutex); 1289 put_ctx(ctx); 1290 } 1291 1292 /* 1293 * This must be done under the ctx->lock, such as to serialize against 1294 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1295 * calling scheduler related locks and ctx->lock nests inside those. 1296 */ 1297 static __must_check struct perf_event_context * 1298 unclone_ctx(struct perf_event_context *ctx) 1299 { 1300 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1301 1302 lockdep_assert_held(&ctx->lock); 1303 1304 if (parent_ctx) 1305 ctx->parent_ctx = NULL; 1306 ctx->generation++; 1307 1308 return parent_ctx; 1309 } 1310 1311 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1312 enum pid_type type) 1313 { 1314 u32 nr; 1315 /* 1316 * only top level events have the pid namespace they were created in 1317 */ 1318 if (event->parent) 1319 event = event->parent; 1320 1321 nr = __task_pid_nr_ns(p, type, event->ns); 1322 /* avoid -1 if it is idle thread or runs in another ns */ 1323 if (!nr && !pid_alive(p)) 1324 nr = -1; 1325 return nr; 1326 } 1327 1328 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1329 { 1330 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1331 } 1332 1333 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1334 { 1335 return perf_event_pid_type(event, p, PIDTYPE_PID); 1336 } 1337 1338 /* 1339 * If we inherit events we want to return the parent event id 1340 * to userspace. 1341 */ 1342 static u64 primary_event_id(struct perf_event *event) 1343 { 1344 u64 id = event->id; 1345 1346 if (event->parent) 1347 id = event->parent->id; 1348 1349 return id; 1350 } 1351 1352 /* 1353 * Get the perf_event_context for a task and lock it. 1354 * 1355 * This has to cope with the fact that until it is locked, 1356 * the context could get moved to another task. 1357 */ 1358 static struct perf_event_context * 1359 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1360 { 1361 struct perf_event_context *ctx; 1362 1363 retry: 1364 /* 1365 * One of the few rules of preemptible RCU is that one cannot do 1366 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1367 * part of the read side critical section was irqs-enabled -- see 1368 * rcu_read_unlock_special(). 1369 * 1370 * Since ctx->lock nests under rq->lock we must ensure the entire read 1371 * side critical section has interrupts disabled. 1372 */ 1373 local_irq_save(*flags); 1374 rcu_read_lock(); 1375 ctx = rcu_dereference(task->perf_event_ctxp); 1376 if (ctx) { 1377 /* 1378 * If this context is a clone of another, it might 1379 * get swapped for another underneath us by 1380 * perf_event_task_sched_out, though the 1381 * rcu_read_lock() protects us from any context 1382 * getting freed. Lock the context and check if it 1383 * got swapped before we could get the lock, and retry 1384 * if so. If we locked the right context, then it 1385 * can't get swapped on us any more. 1386 */ 1387 raw_spin_lock(&ctx->lock); 1388 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1389 raw_spin_unlock(&ctx->lock); 1390 rcu_read_unlock(); 1391 local_irq_restore(*flags); 1392 goto retry; 1393 } 1394 1395 if (ctx->task == TASK_TOMBSTONE || 1396 !refcount_inc_not_zero(&ctx->refcount)) { 1397 raw_spin_unlock(&ctx->lock); 1398 ctx = NULL; 1399 } else { 1400 WARN_ON_ONCE(ctx->task != task); 1401 } 1402 } 1403 rcu_read_unlock(); 1404 if (!ctx) 1405 local_irq_restore(*flags); 1406 return ctx; 1407 } 1408 1409 /* 1410 * Get the context for a task and increment its pin_count so it 1411 * can't get swapped to another task. This also increments its 1412 * reference count so that the context can't get freed. 1413 */ 1414 static struct perf_event_context * 1415 perf_pin_task_context(struct task_struct *task) 1416 { 1417 struct perf_event_context *ctx; 1418 unsigned long flags; 1419 1420 ctx = perf_lock_task_context(task, &flags); 1421 if (ctx) { 1422 ++ctx->pin_count; 1423 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1424 } 1425 return ctx; 1426 } 1427 1428 static void perf_unpin_context(struct perf_event_context *ctx) 1429 { 1430 unsigned long flags; 1431 1432 raw_spin_lock_irqsave(&ctx->lock, flags); 1433 --ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 1437 /* 1438 * Update the record of the current time in a context. 1439 */ 1440 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1441 { 1442 u64 now = perf_clock(); 1443 1444 lockdep_assert_held(&ctx->lock); 1445 1446 if (adv) 1447 ctx->time += now - ctx->timestamp; 1448 ctx->timestamp = now; 1449 1450 /* 1451 * The above: time' = time + (now - timestamp), can be re-arranged 1452 * into: time` = now + (time - timestamp), which gives a single value 1453 * offset to compute future time without locks on. 1454 * 1455 * See perf_event_time_now(), which can be used from NMI context where 1456 * it's (obviously) not possible to acquire ctx->lock in order to read 1457 * both the above values in a consistent manner. 1458 */ 1459 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1460 } 1461 1462 static void update_context_time(struct perf_event_context *ctx) 1463 { 1464 __update_context_time(ctx, true); 1465 } 1466 1467 static u64 perf_event_time(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 1471 if (unlikely(!ctx)) 1472 return 0; 1473 1474 if (is_cgroup_event(event)) 1475 return perf_cgroup_event_time(event); 1476 1477 return ctx->time; 1478 } 1479 1480 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1481 { 1482 struct perf_event_context *ctx = event->ctx; 1483 1484 if (unlikely(!ctx)) 1485 return 0; 1486 1487 if (is_cgroup_event(event)) 1488 return perf_cgroup_event_time_now(event, now); 1489 1490 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1491 return ctx->time; 1492 1493 now += READ_ONCE(ctx->timeoffset); 1494 return now; 1495 } 1496 1497 static enum event_type_t get_event_type(struct perf_event *event) 1498 { 1499 struct perf_event_context *ctx = event->ctx; 1500 enum event_type_t event_type; 1501 1502 lockdep_assert_held(&ctx->lock); 1503 1504 /* 1505 * It's 'group type', really, because if our group leader is 1506 * pinned, so are we. 1507 */ 1508 if (event->group_leader != event) 1509 event = event->group_leader; 1510 1511 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1512 if (!ctx->task) 1513 event_type |= EVENT_CPU; 1514 1515 return event_type; 1516 } 1517 1518 /* 1519 * Helper function to initialize event group nodes. 1520 */ 1521 static void init_event_group(struct perf_event *event) 1522 { 1523 RB_CLEAR_NODE(&event->group_node); 1524 event->group_index = 0; 1525 } 1526 1527 /* 1528 * Extract pinned or flexible groups from the context 1529 * based on event attrs bits. 1530 */ 1531 static struct perf_event_groups * 1532 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1533 { 1534 if (event->attr.pinned) 1535 return &ctx->pinned_groups; 1536 else 1537 return &ctx->flexible_groups; 1538 } 1539 1540 /* 1541 * Helper function to initializes perf_event_group trees. 1542 */ 1543 static void perf_event_groups_init(struct perf_event_groups *groups) 1544 { 1545 groups->tree = RB_ROOT; 1546 groups->index = 0; 1547 } 1548 1549 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1550 { 1551 struct cgroup *cgroup = NULL; 1552 1553 #ifdef CONFIG_CGROUP_PERF 1554 if (event->cgrp) 1555 cgroup = event->cgrp->css.cgroup; 1556 #endif 1557 1558 return cgroup; 1559 } 1560 1561 /* 1562 * Compare function for event groups; 1563 * 1564 * Implements complex key that first sorts by CPU and then by virtual index 1565 * which provides ordering when rotating groups for the same CPU. 1566 */ 1567 static __always_inline int 1568 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1569 const struct cgroup *left_cgroup, const u64 left_group_index, 1570 const struct perf_event *right) 1571 { 1572 if (left_cpu < right->cpu) 1573 return -1; 1574 if (left_cpu > right->cpu) 1575 return 1; 1576 1577 if (left_pmu) { 1578 if (left_pmu < right->pmu_ctx->pmu) 1579 return -1; 1580 if (left_pmu > right->pmu_ctx->pmu) 1581 return 1; 1582 } 1583 1584 #ifdef CONFIG_CGROUP_PERF 1585 { 1586 const struct cgroup *right_cgroup = event_cgroup(right); 1587 1588 if (left_cgroup != right_cgroup) { 1589 if (!left_cgroup) { 1590 /* 1591 * Left has no cgroup but right does, no 1592 * cgroups come first. 1593 */ 1594 return -1; 1595 } 1596 if (!right_cgroup) { 1597 /* 1598 * Right has no cgroup but left does, no 1599 * cgroups come first. 1600 */ 1601 return 1; 1602 } 1603 /* Two dissimilar cgroups, order by id. */ 1604 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1605 return -1; 1606 1607 return 1; 1608 } 1609 } 1610 #endif 1611 1612 if (left_group_index < right->group_index) 1613 return -1; 1614 if (left_group_index > right->group_index) 1615 return 1; 1616 1617 return 0; 1618 } 1619 1620 #define __node_2_pe(node) \ 1621 rb_entry((node), struct perf_event, group_node) 1622 1623 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1624 { 1625 struct perf_event *e = __node_2_pe(a); 1626 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1627 e->group_index, __node_2_pe(b)) < 0; 1628 } 1629 1630 struct __group_key { 1631 int cpu; 1632 struct pmu *pmu; 1633 struct cgroup *cgroup; 1634 }; 1635 1636 static inline int __group_cmp(const void *key, const struct rb_node *node) 1637 { 1638 const struct __group_key *a = key; 1639 const struct perf_event *b = __node_2_pe(node); 1640 1641 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1642 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1643 } 1644 1645 static inline int 1646 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1647 { 1648 const struct __group_key *a = key; 1649 const struct perf_event *b = __node_2_pe(node); 1650 1651 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1652 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1653 b->group_index, b); 1654 } 1655 1656 /* 1657 * Insert @event into @groups' tree; using 1658 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1659 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1660 */ 1661 static void 1662 perf_event_groups_insert(struct perf_event_groups *groups, 1663 struct perf_event *event) 1664 { 1665 event->group_index = ++groups->index; 1666 1667 rb_add(&event->group_node, &groups->tree, __group_less); 1668 } 1669 1670 /* 1671 * Helper function to insert event into the pinned or flexible groups. 1672 */ 1673 static void 1674 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1675 { 1676 struct perf_event_groups *groups; 1677 1678 groups = get_event_groups(event, ctx); 1679 perf_event_groups_insert(groups, event); 1680 } 1681 1682 /* 1683 * Delete a group from a tree. 1684 */ 1685 static void 1686 perf_event_groups_delete(struct perf_event_groups *groups, 1687 struct perf_event *event) 1688 { 1689 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1690 RB_EMPTY_ROOT(&groups->tree)); 1691 1692 rb_erase(&event->group_node, &groups->tree); 1693 init_event_group(event); 1694 } 1695 1696 /* 1697 * Helper function to delete event from its groups. 1698 */ 1699 static void 1700 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1701 { 1702 struct perf_event_groups *groups; 1703 1704 groups = get_event_groups(event, ctx); 1705 perf_event_groups_delete(groups, event); 1706 } 1707 1708 /* 1709 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1710 */ 1711 static struct perf_event * 1712 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1713 struct pmu *pmu, struct cgroup *cgrp) 1714 { 1715 struct __group_key key = { 1716 .cpu = cpu, 1717 .pmu = pmu, 1718 .cgroup = cgrp, 1719 }; 1720 struct rb_node *node; 1721 1722 node = rb_find_first(&key, &groups->tree, __group_cmp); 1723 if (node) 1724 return __node_2_pe(node); 1725 1726 return NULL; 1727 } 1728 1729 static struct perf_event * 1730 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1731 { 1732 struct __group_key key = { 1733 .cpu = event->cpu, 1734 .pmu = pmu, 1735 .cgroup = event_cgroup(event), 1736 }; 1737 struct rb_node *next; 1738 1739 next = rb_next_match(&key, &event->group_node, __group_cmp); 1740 if (next) 1741 return __node_2_pe(next); 1742 1743 return NULL; 1744 } 1745 1746 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1747 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1748 event; event = perf_event_groups_next(event, pmu)) 1749 1750 /* 1751 * Iterate through the whole groups tree. 1752 */ 1753 #define perf_event_groups_for_each(event, groups) \ 1754 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1755 typeof(*event), group_node); event; \ 1756 event = rb_entry_safe(rb_next(&event->group_node), \ 1757 typeof(*event), group_node)) 1758 1759 /* 1760 * Add an event from the lists for its context. 1761 * Must be called with ctx->mutex and ctx->lock held. 1762 */ 1763 static void 1764 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1765 { 1766 lockdep_assert_held(&ctx->lock); 1767 1768 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1769 event->attach_state |= PERF_ATTACH_CONTEXT; 1770 1771 event->tstamp = perf_event_time(event); 1772 1773 /* 1774 * If we're a stand alone event or group leader, we go to the context 1775 * list, group events are kept attached to the group so that 1776 * perf_group_detach can, at all times, locate all siblings. 1777 */ 1778 if (event->group_leader == event) { 1779 event->group_caps = event->event_caps; 1780 add_event_to_groups(event, ctx); 1781 } 1782 1783 list_add_rcu(&event->event_entry, &ctx->event_list); 1784 ctx->nr_events++; 1785 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1786 ctx->nr_user++; 1787 if (event->attr.inherit_stat) 1788 ctx->nr_stat++; 1789 1790 if (event->state > PERF_EVENT_STATE_OFF) 1791 perf_cgroup_event_enable(event, ctx); 1792 1793 ctx->generation++; 1794 event->pmu_ctx->nr_events++; 1795 } 1796 1797 /* 1798 * Initialize event state based on the perf_event_attr::disabled. 1799 */ 1800 static inline void perf_event__state_init(struct perf_event *event) 1801 { 1802 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1803 PERF_EVENT_STATE_INACTIVE; 1804 } 1805 1806 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1807 { 1808 int entry = sizeof(u64); /* value */ 1809 int size = 0; 1810 int nr = 1; 1811 1812 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1813 size += sizeof(u64); 1814 1815 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1816 size += sizeof(u64); 1817 1818 if (event->attr.read_format & PERF_FORMAT_ID) 1819 entry += sizeof(u64); 1820 1821 if (event->attr.read_format & PERF_FORMAT_LOST) 1822 entry += sizeof(u64); 1823 1824 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1825 nr += nr_siblings; 1826 size += sizeof(u64); 1827 } 1828 1829 size += entry * nr; 1830 event->read_size = size; 1831 } 1832 1833 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1834 { 1835 struct perf_sample_data *data; 1836 u16 size = 0; 1837 1838 if (sample_type & PERF_SAMPLE_IP) 1839 size += sizeof(data->ip); 1840 1841 if (sample_type & PERF_SAMPLE_ADDR) 1842 size += sizeof(data->addr); 1843 1844 if (sample_type & PERF_SAMPLE_PERIOD) 1845 size += sizeof(data->period); 1846 1847 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1848 size += sizeof(data->weight.full); 1849 1850 if (sample_type & PERF_SAMPLE_READ) 1851 size += event->read_size; 1852 1853 if (sample_type & PERF_SAMPLE_DATA_SRC) 1854 size += sizeof(data->data_src.val); 1855 1856 if (sample_type & PERF_SAMPLE_TRANSACTION) 1857 size += sizeof(data->txn); 1858 1859 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1860 size += sizeof(data->phys_addr); 1861 1862 if (sample_type & PERF_SAMPLE_CGROUP) 1863 size += sizeof(data->cgroup); 1864 1865 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1866 size += sizeof(data->data_page_size); 1867 1868 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1869 size += sizeof(data->code_page_size); 1870 1871 event->header_size = size; 1872 } 1873 1874 /* 1875 * Called at perf_event creation and when events are attached/detached from a 1876 * group. 1877 */ 1878 static void perf_event__header_size(struct perf_event *event) 1879 { 1880 __perf_event_read_size(event, 1881 event->group_leader->nr_siblings); 1882 __perf_event_header_size(event, event->attr.sample_type); 1883 } 1884 1885 static void perf_event__id_header_size(struct perf_event *event) 1886 { 1887 struct perf_sample_data *data; 1888 u64 sample_type = event->attr.sample_type; 1889 u16 size = 0; 1890 1891 if (sample_type & PERF_SAMPLE_TID) 1892 size += sizeof(data->tid_entry); 1893 1894 if (sample_type & PERF_SAMPLE_TIME) 1895 size += sizeof(data->time); 1896 1897 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1898 size += sizeof(data->id); 1899 1900 if (sample_type & PERF_SAMPLE_ID) 1901 size += sizeof(data->id); 1902 1903 if (sample_type & PERF_SAMPLE_STREAM_ID) 1904 size += sizeof(data->stream_id); 1905 1906 if (sample_type & PERF_SAMPLE_CPU) 1907 size += sizeof(data->cpu_entry); 1908 1909 event->id_header_size = size; 1910 } 1911 1912 static bool perf_event_validate_size(struct perf_event *event) 1913 { 1914 /* 1915 * The values computed here will be over-written when we actually 1916 * attach the event. 1917 */ 1918 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1919 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1920 perf_event__id_header_size(event); 1921 1922 /* 1923 * Sum the lot; should not exceed the 64k limit we have on records. 1924 * Conservative limit to allow for callchains and other variable fields. 1925 */ 1926 if (event->read_size + event->header_size + 1927 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1928 return false; 1929 1930 return true; 1931 } 1932 1933 static void perf_group_attach(struct perf_event *event) 1934 { 1935 struct perf_event *group_leader = event->group_leader, *pos; 1936 1937 lockdep_assert_held(&event->ctx->lock); 1938 1939 /* 1940 * We can have double attach due to group movement (move_group) in 1941 * perf_event_open(). 1942 */ 1943 if (event->attach_state & PERF_ATTACH_GROUP) 1944 return; 1945 1946 event->attach_state |= PERF_ATTACH_GROUP; 1947 1948 if (group_leader == event) 1949 return; 1950 1951 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1952 1953 group_leader->group_caps &= event->event_caps; 1954 1955 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1956 group_leader->nr_siblings++; 1957 1958 perf_event__header_size(group_leader); 1959 1960 for_each_sibling_event(pos, group_leader) 1961 perf_event__header_size(pos); 1962 } 1963 1964 /* 1965 * Remove an event from the lists for its context. 1966 * Must be called with ctx->mutex and ctx->lock held. 1967 */ 1968 static void 1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1970 { 1971 WARN_ON_ONCE(event->ctx != ctx); 1972 lockdep_assert_held(&ctx->lock); 1973 1974 /* 1975 * We can have double detach due to exit/hot-unplug + close. 1976 */ 1977 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1978 return; 1979 1980 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1981 1982 ctx->nr_events--; 1983 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1984 ctx->nr_user--; 1985 if (event->attr.inherit_stat) 1986 ctx->nr_stat--; 1987 1988 list_del_rcu(&event->event_entry); 1989 1990 if (event->group_leader == event) 1991 del_event_from_groups(event, ctx); 1992 1993 /* 1994 * If event was in error state, then keep it 1995 * that way, otherwise bogus counts will be 1996 * returned on read(). The only way to get out 1997 * of error state is by explicit re-enabling 1998 * of the event 1999 */ 2000 if (event->state > PERF_EVENT_STATE_OFF) { 2001 perf_cgroup_event_disable(event, ctx); 2002 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2003 } 2004 2005 ctx->generation++; 2006 event->pmu_ctx->nr_events--; 2007 } 2008 2009 static int 2010 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2011 { 2012 if (!has_aux(aux_event)) 2013 return 0; 2014 2015 if (!event->pmu->aux_output_match) 2016 return 0; 2017 2018 return event->pmu->aux_output_match(aux_event); 2019 } 2020 2021 static void put_event(struct perf_event *event); 2022 static void event_sched_out(struct perf_event *event, 2023 struct perf_event_context *ctx); 2024 2025 static void perf_put_aux_event(struct perf_event *event) 2026 { 2027 struct perf_event_context *ctx = event->ctx; 2028 struct perf_event *iter; 2029 2030 /* 2031 * If event uses aux_event tear down the link 2032 */ 2033 if (event->aux_event) { 2034 iter = event->aux_event; 2035 event->aux_event = NULL; 2036 put_event(iter); 2037 return; 2038 } 2039 2040 /* 2041 * If the event is an aux_event, tear down all links to 2042 * it from other events. 2043 */ 2044 for_each_sibling_event(iter, event->group_leader) { 2045 if (iter->aux_event != event) 2046 continue; 2047 2048 iter->aux_event = NULL; 2049 put_event(event); 2050 2051 /* 2052 * If it's ACTIVE, schedule it out and put it into ERROR 2053 * state so that we don't try to schedule it again. Note 2054 * that perf_event_enable() will clear the ERROR status. 2055 */ 2056 event_sched_out(iter, ctx); 2057 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2058 } 2059 } 2060 2061 static bool perf_need_aux_event(struct perf_event *event) 2062 { 2063 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2064 } 2065 2066 static int perf_get_aux_event(struct perf_event *event, 2067 struct perf_event *group_leader) 2068 { 2069 /* 2070 * Our group leader must be an aux event if we want to be 2071 * an aux_output. This way, the aux event will precede its 2072 * aux_output events in the group, and therefore will always 2073 * schedule first. 2074 */ 2075 if (!group_leader) 2076 return 0; 2077 2078 /* 2079 * aux_output and aux_sample_size are mutually exclusive. 2080 */ 2081 if (event->attr.aux_output && event->attr.aux_sample_size) 2082 return 0; 2083 2084 if (event->attr.aux_output && 2085 !perf_aux_output_match(event, group_leader)) 2086 return 0; 2087 2088 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2089 return 0; 2090 2091 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2092 return 0; 2093 2094 /* 2095 * Link aux_outputs to their aux event; this is undone in 2096 * perf_group_detach() by perf_put_aux_event(). When the 2097 * group in torn down, the aux_output events loose their 2098 * link to the aux_event and can't schedule any more. 2099 */ 2100 event->aux_event = group_leader; 2101 2102 return 1; 2103 } 2104 2105 static inline struct list_head *get_event_list(struct perf_event *event) 2106 { 2107 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2108 &event->pmu_ctx->flexible_active; 2109 } 2110 2111 /* 2112 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2113 * cannot exist on their own, schedule them out and move them into the ERROR 2114 * state. Also see _perf_event_enable(), it will not be able to recover 2115 * this ERROR state. 2116 */ 2117 static inline void perf_remove_sibling_event(struct perf_event *event) 2118 { 2119 event_sched_out(event, event->ctx); 2120 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2121 } 2122 2123 static void perf_group_detach(struct perf_event *event) 2124 { 2125 struct perf_event *leader = event->group_leader; 2126 struct perf_event *sibling, *tmp; 2127 struct perf_event_context *ctx = event->ctx; 2128 2129 lockdep_assert_held(&ctx->lock); 2130 2131 /* 2132 * We can have double detach due to exit/hot-unplug + close. 2133 */ 2134 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2135 return; 2136 2137 event->attach_state &= ~PERF_ATTACH_GROUP; 2138 2139 perf_put_aux_event(event); 2140 2141 /* 2142 * If this is a sibling, remove it from its group. 2143 */ 2144 if (leader != event) { 2145 list_del_init(&event->sibling_list); 2146 event->group_leader->nr_siblings--; 2147 goto out; 2148 } 2149 2150 /* 2151 * If this was a group event with sibling events then 2152 * upgrade the siblings to singleton events by adding them 2153 * to whatever list we are on. 2154 */ 2155 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2156 2157 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2158 perf_remove_sibling_event(sibling); 2159 2160 sibling->group_leader = sibling; 2161 list_del_init(&sibling->sibling_list); 2162 2163 /* Inherit group flags from the previous leader */ 2164 sibling->group_caps = event->group_caps; 2165 2166 if (!RB_EMPTY_NODE(&event->group_node)) { 2167 add_event_to_groups(sibling, event->ctx); 2168 2169 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2170 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2171 } 2172 2173 WARN_ON_ONCE(sibling->ctx != event->ctx); 2174 } 2175 2176 out: 2177 for_each_sibling_event(tmp, leader) 2178 perf_event__header_size(tmp); 2179 2180 perf_event__header_size(leader); 2181 } 2182 2183 static void sync_child_event(struct perf_event *child_event); 2184 2185 static void perf_child_detach(struct perf_event *event) 2186 { 2187 struct perf_event *parent_event = event->parent; 2188 2189 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2190 return; 2191 2192 event->attach_state &= ~PERF_ATTACH_CHILD; 2193 2194 if (WARN_ON_ONCE(!parent_event)) 2195 return; 2196 2197 lockdep_assert_held(&parent_event->child_mutex); 2198 2199 sync_child_event(event); 2200 list_del_init(&event->child_list); 2201 } 2202 2203 static bool is_orphaned_event(struct perf_event *event) 2204 { 2205 return event->state == PERF_EVENT_STATE_DEAD; 2206 } 2207 2208 static inline int 2209 event_filter_match(struct perf_event *event) 2210 { 2211 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2212 perf_cgroup_match(event); 2213 } 2214 2215 static void 2216 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2217 { 2218 struct perf_event_pmu_context *epc = event->pmu_ctx; 2219 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2220 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2221 2222 // XXX cpc serialization, probably per-cpu IRQ disabled 2223 2224 WARN_ON_ONCE(event->ctx != ctx); 2225 lockdep_assert_held(&ctx->lock); 2226 2227 if (event->state != PERF_EVENT_STATE_ACTIVE) 2228 return; 2229 2230 /* 2231 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2232 * we can schedule events _OUT_ individually through things like 2233 * __perf_remove_from_context(). 2234 */ 2235 list_del_init(&event->active_list); 2236 2237 perf_pmu_disable(event->pmu); 2238 2239 event->pmu->del(event, 0); 2240 event->oncpu = -1; 2241 2242 if (event->pending_disable) { 2243 event->pending_disable = 0; 2244 perf_cgroup_event_disable(event, ctx); 2245 state = PERF_EVENT_STATE_OFF; 2246 } 2247 2248 if (event->pending_sigtrap) { 2249 bool dec = true; 2250 2251 event->pending_sigtrap = 0; 2252 if (state != PERF_EVENT_STATE_OFF && 2253 !event->pending_work) { 2254 event->pending_work = 1; 2255 dec = false; 2256 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2257 task_work_add(current, &event->pending_task, TWA_RESUME); 2258 } 2259 if (dec) 2260 local_dec(&event->ctx->nr_pending); 2261 } 2262 2263 perf_event_set_state(event, state); 2264 2265 if (!is_software_event(event)) 2266 cpc->active_oncpu--; 2267 if (event->attr.freq && event->attr.sample_freq) 2268 ctx->nr_freq--; 2269 if (event->attr.exclusive || !cpc->active_oncpu) 2270 cpc->exclusive = 0; 2271 2272 perf_pmu_enable(event->pmu); 2273 } 2274 2275 static void 2276 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2277 { 2278 struct perf_event *event; 2279 2280 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2281 return; 2282 2283 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2284 2285 event_sched_out(group_event, ctx); 2286 2287 /* 2288 * Schedule out siblings (if any): 2289 */ 2290 for_each_sibling_event(event, group_event) 2291 event_sched_out(event, ctx); 2292 } 2293 2294 #define DETACH_GROUP 0x01UL 2295 #define DETACH_CHILD 0x02UL 2296 #define DETACH_DEAD 0x04UL 2297 2298 /* 2299 * Cross CPU call to remove a performance event 2300 * 2301 * We disable the event on the hardware level first. After that we 2302 * remove it from the context list. 2303 */ 2304 static void 2305 __perf_remove_from_context(struct perf_event *event, 2306 struct perf_cpu_context *cpuctx, 2307 struct perf_event_context *ctx, 2308 void *info) 2309 { 2310 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2311 unsigned long flags = (unsigned long)info; 2312 2313 if (ctx->is_active & EVENT_TIME) { 2314 update_context_time(ctx); 2315 update_cgrp_time_from_cpuctx(cpuctx, false); 2316 } 2317 2318 /* 2319 * Ensure event_sched_out() switches to OFF, at the very least 2320 * this avoids raising perf_pending_task() at this time. 2321 */ 2322 if (flags & DETACH_DEAD) 2323 event->pending_disable = 1; 2324 event_sched_out(event, ctx); 2325 if (flags & DETACH_GROUP) 2326 perf_group_detach(event); 2327 if (flags & DETACH_CHILD) 2328 perf_child_detach(event); 2329 list_del_event(event, ctx); 2330 if (flags & DETACH_DEAD) 2331 event->state = PERF_EVENT_STATE_DEAD; 2332 2333 if (!pmu_ctx->nr_events) { 2334 pmu_ctx->rotate_necessary = 0; 2335 2336 if (ctx->task && ctx->is_active) { 2337 struct perf_cpu_pmu_context *cpc; 2338 2339 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2340 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2341 cpc->task_epc = NULL; 2342 } 2343 } 2344 2345 if (!ctx->nr_events && ctx->is_active) { 2346 if (ctx == &cpuctx->ctx) 2347 update_cgrp_time_from_cpuctx(cpuctx, true); 2348 2349 ctx->is_active = 0; 2350 if (ctx->task) { 2351 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2352 cpuctx->task_ctx = NULL; 2353 } 2354 } 2355 } 2356 2357 /* 2358 * Remove the event from a task's (or a CPU's) list of events. 2359 * 2360 * If event->ctx is a cloned context, callers must make sure that 2361 * every task struct that event->ctx->task could possibly point to 2362 * remains valid. This is OK when called from perf_release since 2363 * that only calls us on the top-level context, which can't be a clone. 2364 * When called from perf_event_exit_task, it's OK because the 2365 * context has been detached from its task. 2366 */ 2367 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2368 { 2369 struct perf_event_context *ctx = event->ctx; 2370 2371 lockdep_assert_held(&ctx->mutex); 2372 2373 /* 2374 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2375 * to work in the face of TASK_TOMBSTONE, unlike every other 2376 * event_function_call() user. 2377 */ 2378 raw_spin_lock_irq(&ctx->lock); 2379 if (!ctx->is_active) { 2380 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2381 ctx, (void *)flags); 2382 raw_spin_unlock_irq(&ctx->lock); 2383 return; 2384 } 2385 raw_spin_unlock_irq(&ctx->lock); 2386 2387 event_function_call(event, __perf_remove_from_context, (void *)flags); 2388 } 2389 2390 /* 2391 * Cross CPU call to disable a performance event 2392 */ 2393 static void __perf_event_disable(struct perf_event *event, 2394 struct perf_cpu_context *cpuctx, 2395 struct perf_event_context *ctx, 2396 void *info) 2397 { 2398 if (event->state < PERF_EVENT_STATE_INACTIVE) 2399 return; 2400 2401 if (ctx->is_active & EVENT_TIME) { 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 2406 perf_pmu_disable(event->pmu_ctx->pmu); 2407 2408 if (event == event->group_leader) 2409 group_sched_out(event, ctx); 2410 else 2411 event_sched_out(event, ctx); 2412 2413 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2414 perf_cgroup_event_disable(event, ctx); 2415 2416 perf_pmu_enable(event->pmu_ctx->pmu); 2417 } 2418 2419 /* 2420 * Disable an event. 2421 * 2422 * If event->ctx is a cloned context, callers must make sure that 2423 * every task struct that event->ctx->task could possibly point to 2424 * remains valid. This condition is satisfied when called through 2425 * perf_event_for_each_child or perf_event_for_each because they 2426 * hold the top-level event's child_mutex, so any descendant that 2427 * goes to exit will block in perf_event_exit_event(). 2428 * 2429 * When called from perf_pending_irq it's OK because event->ctx 2430 * is the current context on this CPU and preemption is disabled, 2431 * hence we can't get into perf_event_task_sched_out for this context. 2432 */ 2433 static void _perf_event_disable(struct perf_event *event) 2434 { 2435 struct perf_event_context *ctx = event->ctx; 2436 2437 raw_spin_lock_irq(&ctx->lock); 2438 if (event->state <= PERF_EVENT_STATE_OFF) { 2439 raw_spin_unlock_irq(&ctx->lock); 2440 return; 2441 } 2442 raw_spin_unlock_irq(&ctx->lock); 2443 2444 event_function_call(event, __perf_event_disable, NULL); 2445 } 2446 2447 void perf_event_disable_local(struct perf_event *event) 2448 { 2449 event_function_local(event, __perf_event_disable, NULL); 2450 } 2451 2452 /* 2453 * Strictly speaking kernel users cannot create groups and therefore this 2454 * interface does not need the perf_event_ctx_lock() magic. 2455 */ 2456 void perf_event_disable(struct perf_event *event) 2457 { 2458 struct perf_event_context *ctx; 2459 2460 ctx = perf_event_ctx_lock(event); 2461 _perf_event_disable(event); 2462 perf_event_ctx_unlock(event, ctx); 2463 } 2464 EXPORT_SYMBOL_GPL(perf_event_disable); 2465 2466 void perf_event_disable_inatomic(struct perf_event *event) 2467 { 2468 event->pending_disable = 1; 2469 irq_work_queue(&event->pending_irq); 2470 } 2471 2472 #define MAX_INTERRUPTS (~0ULL) 2473 2474 static void perf_log_throttle(struct perf_event *event, int enable); 2475 static void perf_log_itrace_start(struct perf_event *event); 2476 2477 static int 2478 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2479 { 2480 struct perf_event_pmu_context *epc = event->pmu_ctx; 2481 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2482 int ret = 0; 2483 2484 WARN_ON_ONCE(event->ctx != ctx); 2485 2486 lockdep_assert_held(&ctx->lock); 2487 2488 if (event->state <= PERF_EVENT_STATE_OFF) 2489 return 0; 2490 2491 WRITE_ONCE(event->oncpu, smp_processor_id()); 2492 /* 2493 * Order event::oncpu write to happen before the ACTIVE state is 2494 * visible. This allows perf_event_{stop,read}() to observe the correct 2495 * ->oncpu if it sees ACTIVE. 2496 */ 2497 smp_wmb(); 2498 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2499 2500 /* 2501 * Unthrottle events, since we scheduled we might have missed several 2502 * ticks already, also for a heavily scheduling task there is little 2503 * guarantee it'll get a tick in a timely manner. 2504 */ 2505 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2506 perf_log_throttle(event, 1); 2507 event->hw.interrupts = 0; 2508 } 2509 2510 perf_pmu_disable(event->pmu); 2511 2512 perf_log_itrace_start(event); 2513 2514 if (event->pmu->add(event, PERF_EF_START)) { 2515 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2516 event->oncpu = -1; 2517 ret = -EAGAIN; 2518 goto out; 2519 } 2520 2521 if (!is_software_event(event)) 2522 cpc->active_oncpu++; 2523 if (event->attr.freq && event->attr.sample_freq) 2524 ctx->nr_freq++; 2525 2526 if (event->attr.exclusive) 2527 cpc->exclusive = 1; 2528 2529 out: 2530 perf_pmu_enable(event->pmu); 2531 2532 return ret; 2533 } 2534 2535 static int 2536 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2537 { 2538 struct perf_event *event, *partial_group = NULL; 2539 struct pmu *pmu = group_event->pmu_ctx->pmu; 2540 2541 if (group_event->state == PERF_EVENT_STATE_OFF) 2542 return 0; 2543 2544 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2545 2546 if (event_sched_in(group_event, ctx)) 2547 goto error; 2548 2549 /* 2550 * Schedule in siblings as one group (if any): 2551 */ 2552 for_each_sibling_event(event, group_event) { 2553 if (event_sched_in(event, ctx)) { 2554 partial_group = event; 2555 goto group_error; 2556 } 2557 } 2558 2559 if (!pmu->commit_txn(pmu)) 2560 return 0; 2561 2562 group_error: 2563 /* 2564 * Groups can be scheduled in as one unit only, so undo any 2565 * partial group before returning: 2566 * The events up to the failed event are scheduled out normally. 2567 */ 2568 for_each_sibling_event(event, group_event) { 2569 if (event == partial_group) 2570 break; 2571 2572 event_sched_out(event, ctx); 2573 } 2574 event_sched_out(group_event, ctx); 2575 2576 error: 2577 pmu->cancel_txn(pmu); 2578 return -EAGAIN; 2579 } 2580 2581 /* 2582 * Work out whether we can put this event group on the CPU now. 2583 */ 2584 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 2589 /* 2590 * Groups consisting entirely of software events can always go on. 2591 */ 2592 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2593 return 1; 2594 /* 2595 * If an exclusive group is already on, no other hardware 2596 * events can go on. 2597 */ 2598 if (cpc->exclusive) 2599 return 0; 2600 /* 2601 * If this group is exclusive and there are already 2602 * events on the CPU, it can't go on. 2603 */ 2604 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2605 return 0; 2606 /* 2607 * Otherwise, try to add it if all previous groups were able 2608 * to go on. 2609 */ 2610 return can_add_hw; 2611 } 2612 2613 static void add_event_to_ctx(struct perf_event *event, 2614 struct perf_event_context *ctx) 2615 { 2616 list_add_event(event, ctx); 2617 perf_group_attach(event); 2618 } 2619 2620 static void task_ctx_sched_out(struct perf_event_context *ctx, 2621 enum event_type_t event_type) 2622 { 2623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2624 2625 if (!cpuctx->task_ctx) 2626 return; 2627 2628 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2629 return; 2630 2631 ctx_sched_out(ctx, event_type); 2632 } 2633 2634 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2635 struct perf_event_context *ctx) 2636 { 2637 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2638 if (ctx) 2639 ctx_sched_in(ctx, EVENT_PINNED); 2640 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2641 if (ctx) 2642 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2643 } 2644 2645 /* 2646 * We want to maintain the following priority of scheduling: 2647 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2648 * - task pinned (EVENT_PINNED) 2649 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2650 * - task flexible (EVENT_FLEXIBLE). 2651 * 2652 * In order to avoid unscheduling and scheduling back in everything every 2653 * time an event is added, only do it for the groups of equal priority and 2654 * below. 2655 * 2656 * This can be called after a batch operation on task events, in which case 2657 * event_type is a bit mask of the types of events involved. For CPU events, 2658 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2659 */ 2660 /* 2661 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2662 * event to the context or enabling existing event in the context. We can 2663 * probably optimize it by rescheduling only affected pmu_ctx. 2664 */ 2665 static void ctx_resched(struct perf_cpu_context *cpuctx, 2666 struct perf_event_context *task_ctx, 2667 enum event_type_t event_type) 2668 { 2669 bool cpu_event = !!(event_type & EVENT_CPU); 2670 2671 /* 2672 * If pinned groups are involved, flexible groups also need to be 2673 * scheduled out. 2674 */ 2675 if (event_type & EVENT_PINNED) 2676 event_type |= EVENT_FLEXIBLE; 2677 2678 event_type &= EVENT_ALL; 2679 2680 perf_ctx_disable(&cpuctx->ctx); 2681 if (task_ctx) { 2682 perf_ctx_disable(task_ctx); 2683 task_ctx_sched_out(task_ctx, event_type); 2684 } 2685 2686 /* 2687 * Decide which cpu ctx groups to schedule out based on the types 2688 * of events that caused rescheduling: 2689 * - EVENT_CPU: schedule out corresponding groups; 2690 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2691 * - otherwise, do nothing more. 2692 */ 2693 if (cpu_event) 2694 ctx_sched_out(&cpuctx->ctx, event_type); 2695 else if (event_type & EVENT_PINNED) 2696 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2697 2698 perf_event_sched_in(cpuctx, task_ctx); 2699 2700 perf_ctx_enable(&cpuctx->ctx); 2701 if (task_ctx) 2702 perf_ctx_enable(task_ctx); 2703 } 2704 2705 void perf_pmu_resched(struct pmu *pmu) 2706 { 2707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2708 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2709 2710 perf_ctx_lock(cpuctx, task_ctx); 2711 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2712 perf_ctx_unlock(cpuctx, task_ctx); 2713 } 2714 2715 /* 2716 * Cross CPU call to install and enable a performance event 2717 * 2718 * Very similar to remote_function() + event_function() but cannot assume that 2719 * things like ctx->is_active and cpuctx->task_ctx are set. 2720 */ 2721 static int __perf_install_in_context(void *info) 2722 { 2723 struct perf_event *event = info; 2724 struct perf_event_context *ctx = event->ctx; 2725 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2726 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2727 bool reprogram = true; 2728 int ret = 0; 2729 2730 raw_spin_lock(&cpuctx->ctx.lock); 2731 if (ctx->task) { 2732 raw_spin_lock(&ctx->lock); 2733 task_ctx = ctx; 2734 2735 reprogram = (ctx->task == current); 2736 2737 /* 2738 * If the task is running, it must be running on this CPU, 2739 * otherwise we cannot reprogram things. 2740 * 2741 * If its not running, we don't care, ctx->lock will 2742 * serialize against it becoming runnable. 2743 */ 2744 if (task_curr(ctx->task) && !reprogram) { 2745 ret = -ESRCH; 2746 goto unlock; 2747 } 2748 2749 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2750 } else if (task_ctx) { 2751 raw_spin_lock(&task_ctx->lock); 2752 } 2753 2754 #ifdef CONFIG_CGROUP_PERF 2755 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2756 /* 2757 * If the current cgroup doesn't match the event's 2758 * cgroup, we should not try to schedule it. 2759 */ 2760 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2761 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2762 event->cgrp->css.cgroup); 2763 } 2764 #endif 2765 2766 if (reprogram) { 2767 ctx_sched_out(ctx, EVENT_TIME); 2768 add_event_to_ctx(event, ctx); 2769 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2770 } else { 2771 add_event_to_ctx(event, ctx); 2772 } 2773 2774 unlock: 2775 perf_ctx_unlock(cpuctx, task_ctx); 2776 2777 return ret; 2778 } 2779 2780 static bool exclusive_event_installable(struct perf_event *event, 2781 struct perf_event_context *ctx); 2782 2783 /* 2784 * Attach a performance event to a context. 2785 * 2786 * Very similar to event_function_call, see comment there. 2787 */ 2788 static void 2789 perf_install_in_context(struct perf_event_context *ctx, 2790 struct perf_event *event, 2791 int cpu) 2792 { 2793 struct task_struct *task = READ_ONCE(ctx->task); 2794 2795 lockdep_assert_held(&ctx->mutex); 2796 2797 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2798 2799 if (event->cpu != -1) 2800 WARN_ON_ONCE(event->cpu != cpu); 2801 2802 /* 2803 * Ensures that if we can observe event->ctx, both the event and ctx 2804 * will be 'complete'. See perf_iterate_sb_cpu(). 2805 */ 2806 smp_store_release(&event->ctx, ctx); 2807 2808 /* 2809 * perf_event_attr::disabled events will not run and can be initialized 2810 * without IPI. Except when this is the first event for the context, in 2811 * that case we need the magic of the IPI to set ctx->is_active. 2812 * 2813 * The IOC_ENABLE that is sure to follow the creation of a disabled 2814 * event will issue the IPI and reprogram the hardware. 2815 */ 2816 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2817 ctx->nr_events && !is_cgroup_event(event)) { 2818 raw_spin_lock_irq(&ctx->lock); 2819 if (ctx->task == TASK_TOMBSTONE) { 2820 raw_spin_unlock_irq(&ctx->lock); 2821 return; 2822 } 2823 add_event_to_ctx(event, ctx); 2824 raw_spin_unlock_irq(&ctx->lock); 2825 return; 2826 } 2827 2828 if (!task) { 2829 cpu_function_call(cpu, __perf_install_in_context, event); 2830 return; 2831 } 2832 2833 /* 2834 * Should not happen, we validate the ctx is still alive before calling. 2835 */ 2836 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2837 return; 2838 2839 /* 2840 * Installing events is tricky because we cannot rely on ctx->is_active 2841 * to be set in case this is the nr_events 0 -> 1 transition. 2842 * 2843 * Instead we use task_curr(), which tells us if the task is running. 2844 * However, since we use task_curr() outside of rq::lock, we can race 2845 * against the actual state. This means the result can be wrong. 2846 * 2847 * If we get a false positive, we retry, this is harmless. 2848 * 2849 * If we get a false negative, things are complicated. If we are after 2850 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2851 * value must be correct. If we're before, it doesn't matter since 2852 * perf_event_context_sched_in() will program the counter. 2853 * 2854 * However, this hinges on the remote context switch having observed 2855 * our task->perf_event_ctxp[] store, such that it will in fact take 2856 * ctx::lock in perf_event_context_sched_in(). 2857 * 2858 * We do this by task_function_call(), if the IPI fails to hit the task 2859 * we know any future context switch of task must see the 2860 * perf_event_ctpx[] store. 2861 */ 2862 2863 /* 2864 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2865 * task_cpu() load, such that if the IPI then does not find the task 2866 * running, a future context switch of that task must observe the 2867 * store. 2868 */ 2869 smp_mb(); 2870 again: 2871 if (!task_function_call(task, __perf_install_in_context, event)) 2872 return; 2873 2874 raw_spin_lock_irq(&ctx->lock); 2875 task = ctx->task; 2876 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2877 /* 2878 * Cannot happen because we already checked above (which also 2879 * cannot happen), and we hold ctx->mutex, which serializes us 2880 * against perf_event_exit_task_context(). 2881 */ 2882 raw_spin_unlock_irq(&ctx->lock); 2883 return; 2884 } 2885 /* 2886 * If the task is not running, ctx->lock will avoid it becoming so, 2887 * thus we can safely install the event. 2888 */ 2889 if (task_curr(task)) { 2890 raw_spin_unlock_irq(&ctx->lock); 2891 goto again; 2892 } 2893 add_event_to_ctx(event, ctx); 2894 raw_spin_unlock_irq(&ctx->lock); 2895 } 2896 2897 /* 2898 * Cross CPU call to enable a performance event 2899 */ 2900 static void __perf_event_enable(struct perf_event *event, 2901 struct perf_cpu_context *cpuctx, 2902 struct perf_event_context *ctx, 2903 void *info) 2904 { 2905 struct perf_event *leader = event->group_leader; 2906 struct perf_event_context *task_ctx; 2907 2908 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2909 event->state <= PERF_EVENT_STATE_ERROR) 2910 return; 2911 2912 if (ctx->is_active) 2913 ctx_sched_out(ctx, EVENT_TIME); 2914 2915 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2916 perf_cgroup_event_enable(event, ctx); 2917 2918 if (!ctx->is_active) 2919 return; 2920 2921 if (!event_filter_match(event)) { 2922 ctx_sched_in(ctx, EVENT_TIME); 2923 return; 2924 } 2925 2926 /* 2927 * If the event is in a group and isn't the group leader, 2928 * then don't put it on unless the group is on. 2929 */ 2930 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2931 ctx_sched_in(ctx, EVENT_TIME); 2932 return; 2933 } 2934 2935 task_ctx = cpuctx->task_ctx; 2936 if (ctx->task) 2937 WARN_ON_ONCE(task_ctx != ctx); 2938 2939 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2940 } 2941 2942 /* 2943 * Enable an event. 2944 * 2945 * If event->ctx is a cloned context, callers must make sure that 2946 * every task struct that event->ctx->task could possibly point to 2947 * remains valid. This condition is satisfied when called through 2948 * perf_event_for_each_child or perf_event_for_each as described 2949 * for perf_event_disable. 2950 */ 2951 static void _perf_event_enable(struct perf_event *event) 2952 { 2953 struct perf_event_context *ctx = event->ctx; 2954 2955 raw_spin_lock_irq(&ctx->lock); 2956 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2957 event->state < PERF_EVENT_STATE_ERROR) { 2958 out: 2959 raw_spin_unlock_irq(&ctx->lock); 2960 return; 2961 } 2962 2963 /* 2964 * If the event is in error state, clear that first. 2965 * 2966 * That way, if we see the event in error state below, we know that it 2967 * has gone back into error state, as distinct from the task having 2968 * been scheduled away before the cross-call arrived. 2969 */ 2970 if (event->state == PERF_EVENT_STATE_ERROR) { 2971 /* 2972 * Detached SIBLING events cannot leave ERROR state. 2973 */ 2974 if (event->event_caps & PERF_EV_CAP_SIBLING && 2975 event->group_leader == event) 2976 goto out; 2977 2978 event->state = PERF_EVENT_STATE_OFF; 2979 } 2980 raw_spin_unlock_irq(&ctx->lock); 2981 2982 event_function_call(event, __perf_event_enable, NULL); 2983 } 2984 2985 /* 2986 * See perf_event_disable(); 2987 */ 2988 void perf_event_enable(struct perf_event *event) 2989 { 2990 struct perf_event_context *ctx; 2991 2992 ctx = perf_event_ctx_lock(event); 2993 _perf_event_enable(event); 2994 perf_event_ctx_unlock(event, ctx); 2995 } 2996 EXPORT_SYMBOL_GPL(perf_event_enable); 2997 2998 struct stop_event_data { 2999 struct perf_event *event; 3000 unsigned int restart; 3001 }; 3002 3003 static int __perf_event_stop(void *info) 3004 { 3005 struct stop_event_data *sd = info; 3006 struct perf_event *event = sd->event; 3007 3008 /* if it's already INACTIVE, do nothing */ 3009 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3010 return 0; 3011 3012 /* matches smp_wmb() in event_sched_in() */ 3013 smp_rmb(); 3014 3015 /* 3016 * There is a window with interrupts enabled before we get here, 3017 * so we need to check again lest we try to stop another CPU's event. 3018 */ 3019 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3020 return -EAGAIN; 3021 3022 event->pmu->stop(event, PERF_EF_UPDATE); 3023 3024 /* 3025 * May race with the actual stop (through perf_pmu_output_stop()), 3026 * but it is only used for events with AUX ring buffer, and such 3027 * events will refuse to restart because of rb::aux_mmap_count==0, 3028 * see comments in perf_aux_output_begin(). 3029 * 3030 * Since this is happening on an event-local CPU, no trace is lost 3031 * while restarting. 3032 */ 3033 if (sd->restart) 3034 event->pmu->start(event, 0); 3035 3036 return 0; 3037 } 3038 3039 static int perf_event_stop(struct perf_event *event, int restart) 3040 { 3041 struct stop_event_data sd = { 3042 .event = event, 3043 .restart = restart, 3044 }; 3045 int ret = 0; 3046 3047 do { 3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3049 return 0; 3050 3051 /* matches smp_wmb() in event_sched_in() */ 3052 smp_rmb(); 3053 3054 /* 3055 * We only want to restart ACTIVE events, so if the event goes 3056 * inactive here (event->oncpu==-1), there's nothing more to do; 3057 * fall through with ret==-ENXIO. 3058 */ 3059 ret = cpu_function_call(READ_ONCE(event->oncpu), 3060 __perf_event_stop, &sd); 3061 } while (ret == -EAGAIN); 3062 3063 return ret; 3064 } 3065 3066 /* 3067 * In order to contain the amount of racy and tricky in the address filter 3068 * configuration management, it is a two part process: 3069 * 3070 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3071 * we update the addresses of corresponding vmas in 3072 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3073 * (p2) when an event is scheduled in (pmu::add), it calls 3074 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3075 * if the generation has changed since the previous call. 3076 * 3077 * If (p1) happens while the event is active, we restart it to force (p2). 3078 * 3079 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3080 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3081 * ioctl; 3082 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3083 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3084 * for reading; 3085 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3086 * of exec. 3087 */ 3088 void perf_event_addr_filters_sync(struct perf_event *event) 3089 { 3090 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3091 3092 if (!has_addr_filter(event)) 3093 return; 3094 3095 raw_spin_lock(&ifh->lock); 3096 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3097 event->pmu->addr_filters_sync(event); 3098 event->hw.addr_filters_gen = event->addr_filters_gen; 3099 } 3100 raw_spin_unlock(&ifh->lock); 3101 } 3102 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3103 3104 static int _perf_event_refresh(struct perf_event *event, int refresh) 3105 { 3106 /* 3107 * not supported on inherited events 3108 */ 3109 if (event->attr.inherit || !is_sampling_event(event)) 3110 return -EINVAL; 3111 3112 atomic_add(refresh, &event->event_limit); 3113 _perf_event_enable(event); 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * See perf_event_disable() 3120 */ 3121 int perf_event_refresh(struct perf_event *event, int refresh) 3122 { 3123 struct perf_event_context *ctx; 3124 int ret; 3125 3126 ctx = perf_event_ctx_lock(event); 3127 ret = _perf_event_refresh(event, refresh); 3128 perf_event_ctx_unlock(event, ctx); 3129 3130 return ret; 3131 } 3132 EXPORT_SYMBOL_GPL(perf_event_refresh); 3133 3134 static int perf_event_modify_breakpoint(struct perf_event *bp, 3135 struct perf_event_attr *attr) 3136 { 3137 int err; 3138 3139 _perf_event_disable(bp); 3140 3141 err = modify_user_hw_breakpoint_check(bp, attr, true); 3142 3143 if (!bp->attr.disabled) 3144 _perf_event_enable(bp); 3145 3146 return err; 3147 } 3148 3149 /* 3150 * Copy event-type-independent attributes that may be modified. 3151 */ 3152 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3153 const struct perf_event_attr *from) 3154 { 3155 to->sig_data = from->sig_data; 3156 } 3157 3158 static int perf_event_modify_attr(struct perf_event *event, 3159 struct perf_event_attr *attr) 3160 { 3161 int (*func)(struct perf_event *, struct perf_event_attr *); 3162 struct perf_event *child; 3163 int err; 3164 3165 if (event->attr.type != attr->type) 3166 return -EINVAL; 3167 3168 switch (event->attr.type) { 3169 case PERF_TYPE_BREAKPOINT: 3170 func = perf_event_modify_breakpoint; 3171 break; 3172 default: 3173 /* Place holder for future additions. */ 3174 return -EOPNOTSUPP; 3175 } 3176 3177 WARN_ON_ONCE(event->ctx->parent_ctx); 3178 3179 mutex_lock(&event->child_mutex); 3180 /* 3181 * Event-type-independent attributes must be copied before event-type 3182 * modification, which will validate that final attributes match the 3183 * source attributes after all relevant attributes have been copied. 3184 */ 3185 perf_event_modify_copy_attr(&event->attr, attr); 3186 err = func(event, attr); 3187 if (err) 3188 goto out; 3189 list_for_each_entry(child, &event->child_list, child_list) { 3190 perf_event_modify_copy_attr(&child->attr, attr); 3191 err = func(child, attr); 3192 if (err) 3193 goto out; 3194 } 3195 out: 3196 mutex_unlock(&event->child_mutex); 3197 return err; 3198 } 3199 3200 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3201 enum event_type_t event_type) 3202 { 3203 struct perf_event_context *ctx = pmu_ctx->ctx; 3204 struct perf_event *event, *tmp; 3205 struct pmu *pmu = pmu_ctx->pmu; 3206 3207 if (ctx->task && !ctx->is_active) { 3208 struct perf_cpu_pmu_context *cpc; 3209 3210 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3211 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3212 cpc->task_epc = NULL; 3213 } 3214 3215 if (!event_type) 3216 return; 3217 3218 perf_pmu_disable(pmu); 3219 if (event_type & EVENT_PINNED) { 3220 list_for_each_entry_safe(event, tmp, 3221 &pmu_ctx->pinned_active, 3222 active_list) 3223 group_sched_out(event, ctx); 3224 } 3225 3226 if (event_type & EVENT_FLEXIBLE) { 3227 list_for_each_entry_safe(event, tmp, 3228 &pmu_ctx->flexible_active, 3229 active_list) 3230 group_sched_out(event, ctx); 3231 /* 3232 * Since we cleared EVENT_FLEXIBLE, also clear 3233 * rotate_necessary, is will be reset by 3234 * ctx_flexible_sched_in() when needed. 3235 */ 3236 pmu_ctx->rotate_necessary = 0; 3237 } 3238 perf_pmu_enable(pmu); 3239 } 3240 3241 static void 3242 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3243 { 3244 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3245 struct perf_event_pmu_context *pmu_ctx; 3246 int is_active = ctx->is_active; 3247 3248 lockdep_assert_held(&ctx->lock); 3249 3250 if (likely(!ctx->nr_events)) { 3251 /* 3252 * See __perf_remove_from_context(). 3253 */ 3254 WARN_ON_ONCE(ctx->is_active); 3255 if (ctx->task) 3256 WARN_ON_ONCE(cpuctx->task_ctx); 3257 return; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3274 /* 3275 * CPU-release for the below ->is_active store, 3276 * see __load_acquire() in perf_event_time_now() 3277 */ 3278 barrier(); 3279 } 3280 3281 ctx->is_active &= ~event_type; 3282 if (!(ctx->is_active & EVENT_ALL)) 3283 ctx->is_active = 0; 3284 3285 if (ctx->task) { 3286 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3287 if (!ctx->is_active) 3288 cpuctx->task_ctx = NULL; 3289 } 3290 3291 is_active ^= ctx->is_active; /* changed bits */ 3292 3293 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 3294 __pmu_ctx_sched_out(pmu_ctx, is_active); 3295 } 3296 3297 /* 3298 * Test whether two contexts are equivalent, i.e. whether they have both been 3299 * cloned from the same version of the same context. 3300 * 3301 * Equivalence is measured using a generation number in the context that is 3302 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3303 * and list_del_event(). 3304 */ 3305 static int context_equiv(struct perf_event_context *ctx1, 3306 struct perf_event_context *ctx2) 3307 { 3308 lockdep_assert_held(&ctx1->lock); 3309 lockdep_assert_held(&ctx2->lock); 3310 3311 /* Pinning disables the swap optimization */ 3312 if (ctx1->pin_count || ctx2->pin_count) 3313 return 0; 3314 3315 /* If ctx1 is the parent of ctx2 */ 3316 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3317 return 1; 3318 3319 /* If ctx2 is the parent of ctx1 */ 3320 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3321 return 1; 3322 3323 /* 3324 * If ctx1 and ctx2 have the same parent; we flatten the parent 3325 * hierarchy, see perf_event_init_context(). 3326 */ 3327 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3328 ctx1->parent_gen == ctx2->parent_gen) 3329 return 1; 3330 3331 /* Unmatched */ 3332 return 0; 3333 } 3334 3335 static void __perf_event_sync_stat(struct perf_event *event, 3336 struct perf_event *next_event) 3337 { 3338 u64 value; 3339 3340 if (!event->attr.inherit_stat) 3341 return; 3342 3343 /* 3344 * Update the event value, we cannot use perf_event_read() 3345 * because we're in the middle of a context switch and have IRQs 3346 * disabled, which upsets smp_call_function_single(), however 3347 * we know the event must be on the current CPU, therefore we 3348 * don't need to use it. 3349 */ 3350 if (event->state == PERF_EVENT_STATE_ACTIVE) 3351 event->pmu->read(event); 3352 3353 perf_event_update_time(event); 3354 3355 /* 3356 * In order to keep per-task stats reliable we need to flip the event 3357 * values when we flip the contexts. 3358 */ 3359 value = local64_read(&next_event->count); 3360 value = local64_xchg(&event->count, value); 3361 local64_set(&next_event->count, value); 3362 3363 swap(event->total_time_enabled, next_event->total_time_enabled); 3364 swap(event->total_time_running, next_event->total_time_running); 3365 3366 /* 3367 * Since we swizzled the values, update the user visible data too. 3368 */ 3369 perf_event_update_userpage(event); 3370 perf_event_update_userpage(next_event); 3371 } 3372 3373 static void perf_event_sync_stat(struct perf_event_context *ctx, 3374 struct perf_event_context *next_ctx) 3375 { 3376 struct perf_event *event, *next_event; 3377 3378 if (!ctx->nr_stat) 3379 return; 3380 3381 update_context_time(ctx); 3382 3383 event = list_first_entry(&ctx->event_list, 3384 struct perf_event, event_entry); 3385 3386 next_event = list_first_entry(&next_ctx->event_list, 3387 struct perf_event, event_entry); 3388 3389 while (&event->event_entry != &ctx->event_list && 3390 &next_event->event_entry != &next_ctx->event_list) { 3391 3392 __perf_event_sync_stat(event, next_event); 3393 3394 event = list_next_entry(event, event_entry); 3395 next_event = list_next_entry(next_event, event_entry); 3396 } 3397 } 3398 3399 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3400 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3401 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3402 !list_entry_is_head(pos1, head1, member) && \ 3403 !list_entry_is_head(pos2, head2, member); \ 3404 pos1 = list_next_entry(pos1, member), \ 3405 pos2 = list_next_entry(pos2, member)) 3406 3407 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3408 struct perf_event_context *next_ctx) 3409 { 3410 struct perf_event_pmu_context *prev_epc, *next_epc; 3411 3412 if (!prev_ctx->nr_task_data) 3413 return; 3414 3415 double_list_for_each_entry(prev_epc, next_epc, 3416 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3417 pmu_ctx_entry) { 3418 3419 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3420 continue; 3421 3422 /* 3423 * PMU specific parts of task perf context can require 3424 * additional synchronization. As an example of such 3425 * synchronization see implementation details of Intel 3426 * LBR call stack data profiling; 3427 */ 3428 if (prev_epc->pmu->swap_task_ctx) 3429 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3430 else 3431 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3432 } 3433 } 3434 3435 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3436 { 3437 struct perf_event_pmu_context *pmu_ctx; 3438 struct perf_cpu_pmu_context *cpc; 3439 3440 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3441 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3442 3443 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3444 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3445 } 3446 } 3447 3448 static void 3449 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3450 { 3451 struct perf_event_context *ctx = task->perf_event_ctxp; 3452 struct perf_event_context *next_ctx; 3453 struct perf_event_context *parent, *next_parent; 3454 int do_switch = 1; 3455 3456 if (likely(!ctx)) 3457 return; 3458 3459 rcu_read_lock(); 3460 next_ctx = rcu_dereference(next->perf_event_ctxp); 3461 if (!next_ctx) 3462 goto unlock; 3463 3464 parent = rcu_dereference(ctx->parent_ctx); 3465 next_parent = rcu_dereference(next_ctx->parent_ctx); 3466 3467 /* If neither context have a parent context; they cannot be clones. */ 3468 if (!parent && !next_parent) 3469 goto unlock; 3470 3471 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3472 /* 3473 * Looks like the two contexts are clones, so we might be 3474 * able to optimize the context switch. We lock both 3475 * contexts and check that they are clones under the 3476 * lock (including re-checking that neither has been 3477 * uncloned in the meantime). It doesn't matter which 3478 * order we take the locks because no other cpu could 3479 * be trying to lock both of these tasks. 3480 */ 3481 raw_spin_lock(&ctx->lock); 3482 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3483 if (context_equiv(ctx, next_ctx)) { 3484 3485 perf_ctx_disable(ctx); 3486 3487 /* PMIs are disabled; ctx->nr_pending is stable. */ 3488 if (local_read(&ctx->nr_pending) || 3489 local_read(&next_ctx->nr_pending)) { 3490 /* 3491 * Must not swap out ctx when there's pending 3492 * events that rely on the ctx->task relation. 3493 */ 3494 raw_spin_unlock(&next_ctx->lock); 3495 rcu_read_unlock(); 3496 goto inside_switch; 3497 } 3498 3499 WRITE_ONCE(ctx->task, next); 3500 WRITE_ONCE(next_ctx->task, task); 3501 3502 perf_ctx_sched_task_cb(ctx, false); 3503 perf_event_swap_task_ctx_data(ctx, next_ctx); 3504 3505 perf_ctx_enable(ctx); 3506 3507 /* 3508 * RCU_INIT_POINTER here is safe because we've not 3509 * modified the ctx and the above modification of 3510 * ctx->task and ctx->task_ctx_data are immaterial 3511 * since those values are always verified under 3512 * ctx->lock which we're now holding. 3513 */ 3514 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3515 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3516 3517 do_switch = 0; 3518 3519 perf_event_sync_stat(ctx, next_ctx); 3520 } 3521 raw_spin_unlock(&next_ctx->lock); 3522 raw_spin_unlock(&ctx->lock); 3523 } 3524 unlock: 3525 rcu_read_unlock(); 3526 3527 if (do_switch) { 3528 raw_spin_lock(&ctx->lock); 3529 perf_ctx_disable(ctx); 3530 3531 inside_switch: 3532 perf_ctx_sched_task_cb(ctx, false); 3533 task_ctx_sched_out(ctx, EVENT_ALL); 3534 3535 perf_ctx_enable(ctx); 3536 raw_spin_unlock(&ctx->lock); 3537 } 3538 } 3539 3540 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3541 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3542 3543 void perf_sched_cb_dec(struct pmu *pmu) 3544 { 3545 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3546 3547 this_cpu_dec(perf_sched_cb_usages); 3548 barrier(); 3549 3550 if (!--cpc->sched_cb_usage) 3551 list_del(&cpc->sched_cb_entry); 3552 } 3553 3554 3555 void perf_sched_cb_inc(struct pmu *pmu) 3556 { 3557 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3558 3559 if (!cpc->sched_cb_usage++) 3560 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3561 3562 barrier(); 3563 this_cpu_inc(perf_sched_cb_usages); 3564 } 3565 3566 /* 3567 * This function provides the context switch callback to the lower code 3568 * layer. It is invoked ONLY when the context switch callback is enabled. 3569 * 3570 * This callback is relevant even to per-cpu events; for example multi event 3571 * PEBS requires this to provide PID/TID information. This requires we flush 3572 * all queued PEBS records before we context switch to a new task. 3573 */ 3574 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3575 { 3576 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3577 struct pmu *pmu; 3578 3579 pmu = cpc->epc.pmu; 3580 3581 /* software PMUs will not have sched_task */ 3582 if (WARN_ON_ONCE(!pmu->sched_task)) 3583 return; 3584 3585 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3586 perf_pmu_disable(pmu); 3587 3588 pmu->sched_task(cpc->task_epc, sched_in); 3589 3590 perf_pmu_enable(pmu); 3591 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3592 } 3593 3594 static void perf_pmu_sched_task(struct task_struct *prev, 3595 struct task_struct *next, 3596 bool sched_in) 3597 { 3598 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3599 struct perf_cpu_pmu_context *cpc; 3600 3601 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3602 if (prev == next || cpuctx->task_ctx) 3603 return; 3604 3605 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3606 __perf_pmu_sched_task(cpc, sched_in); 3607 } 3608 3609 static void perf_event_switch(struct task_struct *task, 3610 struct task_struct *next_prev, bool sched_in); 3611 3612 /* 3613 * Called from scheduler to remove the events of the current task, 3614 * with interrupts disabled. 3615 * 3616 * We stop each event and update the event value in event->count. 3617 * 3618 * This does not protect us against NMI, but disable() 3619 * sets the disabled bit in the control field of event _before_ 3620 * accessing the event control register. If a NMI hits, then it will 3621 * not restart the event. 3622 */ 3623 void __perf_event_task_sched_out(struct task_struct *task, 3624 struct task_struct *next) 3625 { 3626 if (__this_cpu_read(perf_sched_cb_usages)) 3627 perf_pmu_sched_task(task, next, false); 3628 3629 if (atomic_read(&nr_switch_events)) 3630 perf_event_switch(task, next, false); 3631 3632 perf_event_context_sched_out(task, next); 3633 3634 /* 3635 * if cgroup events exist on this CPU, then we need 3636 * to check if we have to switch out PMU state. 3637 * cgroup event are system-wide mode only 3638 */ 3639 perf_cgroup_switch(next); 3640 } 3641 3642 static bool perf_less_group_idx(const void *l, const void *r) 3643 { 3644 const struct perf_event *le = *(const struct perf_event **)l; 3645 const struct perf_event *re = *(const struct perf_event **)r; 3646 3647 return le->group_index < re->group_index; 3648 } 3649 3650 static void swap_ptr(void *l, void *r) 3651 { 3652 void **lp = l, **rp = r; 3653 3654 swap(*lp, *rp); 3655 } 3656 3657 static const struct min_heap_callbacks perf_min_heap = { 3658 .elem_size = sizeof(struct perf_event *), 3659 .less = perf_less_group_idx, 3660 .swp = swap_ptr, 3661 }; 3662 3663 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3664 { 3665 struct perf_event **itrs = heap->data; 3666 3667 if (event) { 3668 itrs[heap->nr] = event; 3669 heap->nr++; 3670 } 3671 } 3672 3673 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3674 { 3675 struct perf_cpu_pmu_context *cpc; 3676 3677 if (!pmu_ctx->ctx->task) 3678 return; 3679 3680 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3681 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3682 cpc->task_epc = pmu_ctx; 3683 } 3684 3685 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3686 struct perf_event_groups *groups, int cpu, 3687 struct pmu *pmu, 3688 int (*func)(struct perf_event *, void *), 3689 void *data) 3690 { 3691 #ifdef CONFIG_CGROUP_PERF 3692 struct cgroup_subsys_state *css = NULL; 3693 #endif 3694 struct perf_cpu_context *cpuctx = NULL; 3695 /* Space for per CPU and/or any CPU event iterators. */ 3696 struct perf_event *itrs[2]; 3697 struct min_heap event_heap; 3698 struct perf_event **evt; 3699 int ret; 3700 3701 if (pmu->filter && pmu->filter(pmu, cpu)) 3702 return 0; 3703 3704 if (!ctx->task) { 3705 cpuctx = this_cpu_ptr(&perf_cpu_context); 3706 event_heap = (struct min_heap){ 3707 .data = cpuctx->heap, 3708 .nr = 0, 3709 .size = cpuctx->heap_size, 3710 }; 3711 3712 lockdep_assert_held(&cpuctx->ctx.lock); 3713 3714 #ifdef CONFIG_CGROUP_PERF 3715 if (cpuctx->cgrp) 3716 css = &cpuctx->cgrp->css; 3717 #endif 3718 } else { 3719 event_heap = (struct min_heap){ 3720 .data = itrs, 3721 .nr = 0, 3722 .size = ARRAY_SIZE(itrs), 3723 }; 3724 /* Events not within a CPU context may be on any CPU. */ 3725 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3726 } 3727 evt = event_heap.data; 3728 3729 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3730 3731 #ifdef CONFIG_CGROUP_PERF 3732 for (; css; css = css->parent) 3733 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3734 #endif 3735 3736 if (event_heap.nr) { 3737 __link_epc((*evt)->pmu_ctx); 3738 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3739 } 3740 3741 min_heapify_all(&event_heap, &perf_min_heap); 3742 3743 while (event_heap.nr) { 3744 ret = func(*evt, data); 3745 if (ret) 3746 return ret; 3747 3748 *evt = perf_event_groups_next(*evt, pmu); 3749 if (*evt) 3750 min_heapify(&event_heap, 0, &perf_min_heap); 3751 else 3752 min_heap_pop(&event_heap, &perf_min_heap); 3753 } 3754 3755 return 0; 3756 } 3757 3758 /* 3759 * Because the userpage is strictly per-event (there is no concept of context, 3760 * so there cannot be a context indirection), every userpage must be updated 3761 * when context time starts :-( 3762 * 3763 * IOW, we must not miss EVENT_TIME edges. 3764 */ 3765 static inline bool event_update_userpage(struct perf_event *event) 3766 { 3767 if (likely(!atomic_read(&event->mmap_count))) 3768 return false; 3769 3770 perf_event_update_time(event); 3771 perf_event_update_userpage(event); 3772 3773 return true; 3774 } 3775 3776 static inline void group_update_userpage(struct perf_event *group_event) 3777 { 3778 struct perf_event *event; 3779 3780 if (!event_update_userpage(group_event)) 3781 return; 3782 3783 for_each_sibling_event(event, group_event) 3784 event_update_userpage(event); 3785 } 3786 3787 static int merge_sched_in(struct perf_event *event, void *data) 3788 { 3789 struct perf_event_context *ctx = event->ctx; 3790 int *can_add_hw = data; 3791 3792 if (event->state <= PERF_EVENT_STATE_OFF) 3793 return 0; 3794 3795 if (!event_filter_match(event)) 3796 return 0; 3797 3798 if (group_can_go_on(event, *can_add_hw)) { 3799 if (!group_sched_in(event, ctx)) 3800 list_add_tail(&event->active_list, get_event_list(event)); 3801 } 3802 3803 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3804 *can_add_hw = 0; 3805 if (event->attr.pinned) { 3806 perf_cgroup_event_disable(event, ctx); 3807 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3808 } else { 3809 struct perf_cpu_pmu_context *cpc; 3810 3811 event->pmu_ctx->rotate_necessary = 1; 3812 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3813 perf_mux_hrtimer_restart(cpc); 3814 group_update_userpage(event); 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 3821 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3822 { 3823 struct perf_event_pmu_context *pmu_ctx; 3824 int can_add_hw = 1; 3825 3826 if (pmu) { 3827 visit_groups_merge(ctx, &ctx->pinned_groups, 3828 smp_processor_id(), pmu, 3829 merge_sched_in, &can_add_hw); 3830 } else { 3831 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3832 can_add_hw = 1; 3833 visit_groups_merge(ctx, &ctx->pinned_groups, 3834 smp_processor_id(), pmu_ctx->pmu, 3835 merge_sched_in, &can_add_hw); 3836 } 3837 } 3838 } 3839 3840 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3841 { 3842 struct perf_event_pmu_context *pmu_ctx; 3843 int can_add_hw = 1; 3844 3845 if (pmu) { 3846 visit_groups_merge(ctx, &ctx->flexible_groups, 3847 smp_processor_id(), pmu, 3848 merge_sched_in, &can_add_hw); 3849 } else { 3850 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3851 can_add_hw = 1; 3852 visit_groups_merge(ctx, &ctx->flexible_groups, 3853 smp_processor_id(), pmu_ctx->pmu, 3854 merge_sched_in, &can_add_hw); 3855 } 3856 } 3857 } 3858 3859 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3860 { 3861 ctx_flexible_sched_in(ctx, pmu); 3862 } 3863 3864 static void 3865 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3866 { 3867 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3868 int is_active = ctx->is_active; 3869 3870 lockdep_assert_held(&ctx->lock); 3871 3872 if (likely(!ctx->nr_events)) 3873 return; 3874 3875 if (is_active ^ EVENT_TIME) { 3876 /* start ctx time */ 3877 __update_context_time(ctx, false); 3878 perf_cgroup_set_timestamp(cpuctx); 3879 /* 3880 * CPU-release for the below ->is_active store, 3881 * see __load_acquire() in perf_event_time_now() 3882 */ 3883 barrier(); 3884 } 3885 3886 ctx->is_active |= (event_type | EVENT_TIME); 3887 if (ctx->task) { 3888 if (!is_active) 3889 cpuctx->task_ctx = ctx; 3890 else 3891 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3892 } 3893 3894 is_active ^= ctx->is_active; /* changed bits */ 3895 3896 /* 3897 * First go through the list and put on any pinned groups 3898 * in order to give them the best chance of going on. 3899 */ 3900 if (is_active & EVENT_PINNED) 3901 ctx_pinned_sched_in(ctx, NULL); 3902 3903 /* Then walk through the lower prio flexible groups */ 3904 if (is_active & EVENT_FLEXIBLE) 3905 ctx_flexible_sched_in(ctx, NULL); 3906 } 3907 3908 static void perf_event_context_sched_in(struct task_struct *task) 3909 { 3910 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3911 struct perf_event_context *ctx; 3912 3913 rcu_read_lock(); 3914 ctx = rcu_dereference(task->perf_event_ctxp); 3915 if (!ctx) 3916 goto rcu_unlock; 3917 3918 if (cpuctx->task_ctx == ctx) { 3919 perf_ctx_lock(cpuctx, ctx); 3920 perf_ctx_disable(ctx); 3921 3922 perf_ctx_sched_task_cb(ctx, true); 3923 3924 perf_ctx_enable(ctx); 3925 perf_ctx_unlock(cpuctx, ctx); 3926 goto rcu_unlock; 3927 } 3928 3929 perf_ctx_lock(cpuctx, ctx); 3930 /* 3931 * We must check ctx->nr_events while holding ctx->lock, such 3932 * that we serialize against perf_install_in_context(). 3933 */ 3934 if (!ctx->nr_events) 3935 goto unlock; 3936 3937 perf_ctx_disable(ctx); 3938 /* 3939 * We want to keep the following priority order: 3940 * cpu pinned (that don't need to move), task pinned, 3941 * cpu flexible, task flexible. 3942 * 3943 * However, if task's ctx is not carrying any pinned 3944 * events, no need to flip the cpuctx's events around. 3945 */ 3946 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3947 perf_ctx_disable(&cpuctx->ctx); 3948 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3949 } 3950 3951 perf_event_sched_in(cpuctx, ctx); 3952 3953 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3954 3955 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3956 perf_ctx_enable(&cpuctx->ctx); 3957 3958 perf_ctx_enable(ctx); 3959 3960 unlock: 3961 perf_ctx_unlock(cpuctx, ctx); 3962 rcu_unlock: 3963 rcu_read_unlock(); 3964 } 3965 3966 /* 3967 * Called from scheduler to add the events of the current task 3968 * with interrupts disabled. 3969 * 3970 * We restore the event value and then enable it. 3971 * 3972 * This does not protect us against NMI, but enable() 3973 * sets the enabled bit in the control field of event _before_ 3974 * accessing the event control register. If a NMI hits, then it will 3975 * keep the event running. 3976 */ 3977 void __perf_event_task_sched_in(struct task_struct *prev, 3978 struct task_struct *task) 3979 { 3980 perf_event_context_sched_in(task); 3981 3982 if (atomic_read(&nr_switch_events)) 3983 perf_event_switch(task, prev, true); 3984 3985 if (__this_cpu_read(perf_sched_cb_usages)) 3986 perf_pmu_sched_task(prev, task, true); 3987 } 3988 3989 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3990 { 3991 u64 frequency = event->attr.sample_freq; 3992 u64 sec = NSEC_PER_SEC; 3993 u64 divisor, dividend; 3994 3995 int count_fls, nsec_fls, frequency_fls, sec_fls; 3996 3997 count_fls = fls64(count); 3998 nsec_fls = fls64(nsec); 3999 frequency_fls = fls64(frequency); 4000 sec_fls = 30; 4001 4002 /* 4003 * We got @count in @nsec, with a target of sample_freq HZ 4004 * the target period becomes: 4005 * 4006 * @count * 10^9 4007 * period = ------------------- 4008 * @nsec * sample_freq 4009 * 4010 */ 4011 4012 /* 4013 * Reduce accuracy by one bit such that @a and @b converge 4014 * to a similar magnitude. 4015 */ 4016 #define REDUCE_FLS(a, b) \ 4017 do { \ 4018 if (a##_fls > b##_fls) { \ 4019 a >>= 1; \ 4020 a##_fls--; \ 4021 } else { \ 4022 b >>= 1; \ 4023 b##_fls--; \ 4024 } \ 4025 } while (0) 4026 4027 /* 4028 * Reduce accuracy until either term fits in a u64, then proceed with 4029 * the other, so that finally we can do a u64/u64 division. 4030 */ 4031 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4032 REDUCE_FLS(nsec, frequency); 4033 REDUCE_FLS(sec, count); 4034 } 4035 4036 if (count_fls + sec_fls > 64) { 4037 divisor = nsec * frequency; 4038 4039 while (count_fls + sec_fls > 64) { 4040 REDUCE_FLS(count, sec); 4041 divisor >>= 1; 4042 } 4043 4044 dividend = count * sec; 4045 } else { 4046 dividend = count * sec; 4047 4048 while (nsec_fls + frequency_fls > 64) { 4049 REDUCE_FLS(nsec, frequency); 4050 dividend >>= 1; 4051 } 4052 4053 divisor = nsec * frequency; 4054 } 4055 4056 if (!divisor) 4057 return dividend; 4058 4059 return div64_u64(dividend, divisor); 4060 } 4061 4062 static DEFINE_PER_CPU(int, perf_throttled_count); 4063 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4064 4065 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4066 { 4067 struct hw_perf_event *hwc = &event->hw; 4068 s64 period, sample_period; 4069 s64 delta; 4070 4071 period = perf_calculate_period(event, nsec, count); 4072 4073 delta = (s64)(period - hwc->sample_period); 4074 delta = (delta + 7) / 8; /* low pass filter */ 4075 4076 sample_period = hwc->sample_period + delta; 4077 4078 if (!sample_period) 4079 sample_period = 1; 4080 4081 hwc->sample_period = sample_period; 4082 4083 if (local64_read(&hwc->period_left) > 8*sample_period) { 4084 if (disable) 4085 event->pmu->stop(event, PERF_EF_UPDATE); 4086 4087 local64_set(&hwc->period_left, 0); 4088 4089 if (disable) 4090 event->pmu->start(event, PERF_EF_RELOAD); 4091 } 4092 } 4093 4094 /* 4095 * combine freq adjustment with unthrottling to avoid two passes over the 4096 * events. At the same time, make sure, having freq events does not change 4097 * the rate of unthrottling as that would introduce bias. 4098 */ 4099 static void 4100 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4101 { 4102 struct perf_event *event; 4103 struct hw_perf_event *hwc; 4104 u64 now, period = TICK_NSEC; 4105 s64 delta; 4106 4107 /* 4108 * only need to iterate over all events iff: 4109 * - context have events in frequency mode (needs freq adjust) 4110 * - there are events to unthrottle on this cpu 4111 */ 4112 if (!(ctx->nr_freq || unthrottle)) 4113 return; 4114 4115 raw_spin_lock(&ctx->lock); 4116 4117 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4118 if (event->state != PERF_EVENT_STATE_ACTIVE) 4119 continue; 4120 4121 // XXX use visit thingy to avoid the -1,cpu match 4122 if (!event_filter_match(event)) 4123 continue; 4124 4125 perf_pmu_disable(event->pmu); 4126 4127 hwc = &event->hw; 4128 4129 if (hwc->interrupts == MAX_INTERRUPTS) { 4130 hwc->interrupts = 0; 4131 perf_log_throttle(event, 1); 4132 event->pmu->start(event, 0); 4133 } 4134 4135 if (!event->attr.freq || !event->attr.sample_freq) 4136 goto next; 4137 4138 /* 4139 * stop the event and update event->count 4140 */ 4141 event->pmu->stop(event, PERF_EF_UPDATE); 4142 4143 now = local64_read(&event->count); 4144 delta = now - hwc->freq_count_stamp; 4145 hwc->freq_count_stamp = now; 4146 4147 /* 4148 * restart the event 4149 * reload only if value has changed 4150 * we have stopped the event so tell that 4151 * to perf_adjust_period() to avoid stopping it 4152 * twice. 4153 */ 4154 if (delta > 0) 4155 perf_adjust_period(event, period, delta, false); 4156 4157 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4158 next: 4159 perf_pmu_enable(event->pmu); 4160 } 4161 4162 raw_spin_unlock(&ctx->lock); 4163 } 4164 4165 /* 4166 * Move @event to the tail of the @ctx's elegible events. 4167 */ 4168 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4169 { 4170 /* 4171 * Rotate the first entry last of non-pinned groups. Rotation might be 4172 * disabled by the inheritance code. 4173 */ 4174 if (ctx->rotate_disable) 4175 return; 4176 4177 perf_event_groups_delete(&ctx->flexible_groups, event); 4178 perf_event_groups_insert(&ctx->flexible_groups, event); 4179 } 4180 4181 /* pick an event from the flexible_groups to rotate */ 4182 static inline struct perf_event * 4183 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4184 { 4185 struct perf_event *event; 4186 struct rb_node *node; 4187 struct rb_root *tree; 4188 struct __group_key key = { 4189 .pmu = pmu_ctx->pmu, 4190 }; 4191 4192 /* pick the first active flexible event */ 4193 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4194 struct perf_event, active_list); 4195 if (event) 4196 goto out; 4197 4198 /* if no active flexible event, pick the first event */ 4199 tree = &pmu_ctx->ctx->flexible_groups.tree; 4200 4201 if (!pmu_ctx->ctx->task) { 4202 key.cpu = smp_processor_id(); 4203 4204 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4205 if (node) 4206 event = __node_2_pe(node); 4207 goto out; 4208 } 4209 4210 key.cpu = -1; 4211 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4212 if (node) { 4213 event = __node_2_pe(node); 4214 goto out; 4215 } 4216 4217 key.cpu = smp_processor_id(); 4218 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4219 if (node) 4220 event = __node_2_pe(node); 4221 4222 out: 4223 /* 4224 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4225 * finds there are unschedulable events, it will set it again. 4226 */ 4227 pmu_ctx->rotate_necessary = 0; 4228 4229 return event; 4230 } 4231 4232 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4233 { 4234 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4235 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4236 struct perf_event *cpu_event = NULL, *task_event = NULL; 4237 int cpu_rotate, task_rotate; 4238 struct pmu *pmu; 4239 4240 /* 4241 * Since we run this from IRQ context, nobody can install new 4242 * events, thus the event count values are stable. 4243 */ 4244 4245 cpu_epc = &cpc->epc; 4246 pmu = cpu_epc->pmu; 4247 task_epc = cpc->task_epc; 4248 4249 cpu_rotate = cpu_epc->rotate_necessary; 4250 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4251 4252 if (!(cpu_rotate || task_rotate)) 4253 return false; 4254 4255 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4256 perf_pmu_disable(pmu); 4257 4258 if (task_rotate) 4259 task_event = ctx_event_to_rotate(task_epc); 4260 if (cpu_rotate) 4261 cpu_event = ctx_event_to_rotate(cpu_epc); 4262 4263 /* 4264 * As per the order given at ctx_resched() first 'pop' task flexible 4265 * and then, if needed CPU flexible. 4266 */ 4267 if (task_event || (task_epc && cpu_event)) { 4268 update_context_time(task_epc->ctx); 4269 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4270 } 4271 4272 if (cpu_event) { 4273 update_context_time(&cpuctx->ctx); 4274 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4275 rotate_ctx(&cpuctx->ctx, cpu_event); 4276 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4277 } 4278 4279 if (task_event) 4280 rotate_ctx(task_epc->ctx, task_event); 4281 4282 if (task_event || (task_epc && cpu_event)) 4283 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4284 4285 perf_pmu_enable(pmu); 4286 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4287 4288 return true; 4289 } 4290 4291 void perf_event_task_tick(void) 4292 { 4293 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4294 struct perf_event_context *ctx; 4295 int throttled; 4296 4297 lockdep_assert_irqs_disabled(); 4298 4299 __this_cpu_inc(perf_throttled_seq); 4300 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4301 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4302 4303 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4304 4305 rcu_read_lock(); 4306 ctx = rcu_dereference(current->perf_event_ctxp); 4307 if (ctx) 4308 perf_adjust_freq_unthr_context(ctx, !!throttled); 4309 rcu_read_unlock(); 4310 } 4311 4312 static int event_enable_on_exec(struct perf_event *event, 4313 struct perf_event_context *ctx) 4314 { 4315 if (!event->attr.enable_on_exec) 4316 return 0; 4317 4318 event->attr.enable_on_exec = 0; 4319 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4320 return 0; 4321 4322 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4323 4324 return 1; 4325 } 4326 4327 /* 4328 * Enable all of a task's events that have been marked enable-on-exec. 4329 * This expects task == current. 4330 */ 4331 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4332 { 4333 struct perf_event_context *clone_ctx = NULL; 4334 enum event_type_t event_type = 0; 4335 struct perf_cpu_context *cpuctx; 4336 struct perf_event *event; 4337 unsigned long flags; 4338 int enabled = 0; 4339 4340 local_irq_save(flags); 4341 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4342 goto out; 4343 4344 if (!ctx->nr_events) 4345 goto out; 4346 4347 cpuctx = this_cpu_ptr(&perf_cpu_context); 4348 perf_ctx_lock(cpuctx, ctx); 4349 ctx_sched_out(ctx, EVENT_TIME); 4350 4351 list_for_each_entry(event, &ctx->event_list, event_entry) { 4352 enabled |= event_enable_on_exec(event, ctx); 4353 event_type |= get_event_type(event); 4354 } 4355 4356 /* 4357 * Unclone and reschedule this context if we enabled any event. 4358 */ 4359 if (enabled) { 4360 clone_ctx = unclone_ctx(ctx); 4361 ctx_resched(cpuctx, ctx, event_type); 4362 } else { 4363 ctx_sched_in(ctx, EVENT_TIME); 4364 } 4365 perf_ctx_unlock(cpuctx, ctx); 4366 4367 out: 4368 local_irq_restore(flags); 4369 4370 if (clone_ctx) 4371 put_ctx(clone_ctx); 4372 } 4373 4374 static void perf_remove_from_owner(struct perf_event *event); 4375 static void perf_event_exit_event(struct perf_event *event, 4376 struct perf_event_context *ctx); 4377 4378 /* 4379 * Removes all events from the current task that have been marked 4380 * remove-on-exec, and feeds their values back to parent events. 4381 */ 4382 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4383 { 4384 struct perf_event_context *clone_ctx = NULL; 4385 struct perf_event *event, *next; 4386 unsigned long flags; 4387 bool modified = false; 4388 4389 mutex_lock(&ctx->mutex); 4390 4391 if (WARN_ON_ONCE(ctx->task != current)) 4392 goto unlock; 4393 4394 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4395 if (!event->attr.remove_on_exec) 4396 continue; 4397 4398 if (!is_kernel_event(event)) 4399 perf_remove_from_owner(event); 4400 4401 modified = true; 4402 4403 perf_event_exit_event(event, ctx); 4404 } 4405 4406 raw_spin_lock_irqsave(&ctx->lock, flags); 4407 if (modified) 4408 clone_ctx = unclone_ctx(ctx); 4409 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4410 4411 unlock: 4412 mutex_unlock(&ctx->mutex); 4413 4414 if (clone_ctx) 4415 put_ctx(clone_ctx); 4416 } 4417 4418 struct perf_read_data { 4419 struct perf_event *event; 4420 bool group; 4421 int ret; 4422 }; 4423 4424 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4425 { 4426 u16 local_pkg, event_pkg; 4427 4428 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4429 int local_cpu = smp_processor_id(); 4430 4431 event_pkg = topology_physical_package_id(event_cpu); 4432 local_pkg = topology_physical_package_id(local_cpu); 4433 4434 if (event_pkg == local_pkg) 4435 return local_cpu; 4436 } 4437 4438 return event_cpu; 4439 } 4440 4441 /* 4442 * Cross CPU call to read the hardware event 4443 */ 4444 static void __perf_event_read(void *info) 4445 { 4446 struct perf_read_data *data = info; 4447 struct perf_event *sub, *event = data->event; 4448 struct perf_event_context *ctx = event->ctx; 4449 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4450 struct pmu *pmu = event->pmu; 4451 4452 /* 4453 * If this is a task context, we need to check whether it is 4454 * the current task context of this cpu. If not it has been 4455 * scheduled out before the smp call arrived. In that case 4456 * event->count would have been updated to a recent sample 4457 * when the event was scheduled out. 4458 */ 4459 if (ctx->task && cpuctx->task_ctx != ctx) 4460 return; 4461 4462 raw_spin_lock(&ctx->lock); 4463 if (ctx->is_active & EVENT_TIME) { 4464 update_context_time(ctx); 4465 update_cgrp_time_from_event(event); 4466 } 4467 4468 perf_event_update_time(event); 4469 if (data->group) 4470 perf_event_update_sibling_time(event); 4471 4472 if (event->state != PERF_EVENT_STATE_ACTIVE) 4473 goto unlock; 4474 4475 if (!data->group) { 4476 pmu->read(event); 4477 data->ret = 0; 4478 goto unlock; 4479 } 4480 4481 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4482 4483 pmu->read(event); 4484 4485 for_each_sibling_event(sub, event) { 4486 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4487 /* 4488 * Use sibling's PMU rather than @event's since 4489 * sibling could be on different (eg: software) PMU. 4490 */ 4491 sub->pmu->read(sub); 4492 } 4493 } 4494 4495 data->ret = pmu->commit_txn(pmu); 4496 4497 unlock: 4498 raw_spin_unlock(&ctx->lock); 4499 } 4500 4501 static inline u64 perf_event_count(struct perf_event *event) 4502 { 4503 return local64_read(&event->count) + atomic64_read(&event->child_count); 4504 } 4505 4506 static void calc_timer_values(struct perf_event *event, 4507 u64 *now, 4508 u64 *enabled, 4509 u64 *running) 4510 { 4511 u64 ctx_time; 4512 4513 *now = perf_clock(); 4514 ctx_time = perf_event_time_now(event, *now); 4515 __perf_update_times(event, ctx_time, enabled, running); 4516 } 4517 4518 /* 4519 * NMI-safe method to read a local event, that is an event that 4520 * is: 4521 * - either for the current task, or for this CPU 4522 * - does not have inherit set, for inherited task events 4523 * will not be local and we cannot read them atomically 4524 * - must not have a pmu::count method 4525 */ 4526 int perf_event_read_local(struct perf_event *event, u64 *value, 4527 u64 *enabled, u64 *running) 4528 { 4529 unsigned long flags; 4530 int ret = 0; 4531 4532 /* 4533 * Disabling interrupts avoids all counter scheduling (context 4534 * switches, timer based rotation and IPIs). 4535 */ 4536 local_irq_save(flags); 4537 4538 /* 4539 * It must not be an event with inherit set, we cannot read 4540 * all child counters from atomic context. 4541 */ 4542 if (event->attr.inherit) { 4543 ret = -EOPNOTSUPP; 4544 goto out; 4545 } 4546 4547 /* If this is a per-task event, it must be for current */ 4548 if ((event->attach_state & PERF_ATTACH_TASK) && 4549 event->hw.target != current) { 4550 ret = -EINVAL; 4551 goto out; 4552 } 4553 4554 /* If this is a per-CPU event, it must be for this CPU */ 4555 if (!(event->attach_state & PERF_ATTACH_TASK) && 4556 event->cpu != smp_processor_id()) { 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 /* If this is a pinned event it must be running on this CPU */ 4562 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4563 ret = -EBUSY; 4564 goto out; 4565 } 4566 4567 /* 4568 * If the event is currently on this CPU, its either a per-task event, 4569 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4570 * oncpu == -1). 4571 */ 4572 if (event->oncpu == smp_processor_id()) 4573 event->pmu->read(event); 4574 4575 *value = local64_read(&event->count); 4576 if (enabled || running) { 4577 u64 __enabled, __running, __now; 4578 4579 calc_timer_values(event, &__now, &__enabled, &__running); 4580 if (enabled) 4581 *enabled = __enabled; 4582 if (running) 4583 *running = __running; 4584 } 4585 out: 4586 local_irq_restore(flags); 4587 4588 return ret; 4589 } 4590 4591 static int perf_event_read(struct perf_event *event, bool group) 4592 { 4593 enum perf_event_state state = READ_ONCE(event->state); 4594 int event_cpu, ret = 0; 4595 4596 /* 4597 * If event is enabled and currently active on a CPU, update the 4598 * value in the event structure: 4599 */ 4600 again: 4601 if (state == PERF_EVENT_STATE_ACTIVE) { 4602 struct perf_read_data data; 4603 4604 /* 4605 * Orders the ->state and ->oncpu loads such that if we see 4606 * ACTIVE we must also see the right ->oncpu. 4607 * 4608 * Matches the smp_wmb() from event_sched_in(). 4609 */ 4610 smp_rmb(); 4611 4612 event_cpu = READ_ONCE(event->oncpu); 4613 if ((unsigned)event_cpu >= nr_cpu_ids) 4614 return 0; 4615 4616 data = (struct perf_read_data){ 4617 .event = event, 4618 .group = group, 4619 .ret = 0, 4620 }; 4621 4622 preempt_disable(); 4623 event_cpu = __perf_event_read_cpu(event, event_cpu); 4624 4625 /* 4626 * Purposely ignore the smp_call_function_single() return 4627 * value. 4628 * 4629 * If event_cpu isn't a valid CPU it means the event got 4630 * scheduled out and that will have updated the event count. 4631 * 4632 * Therefore, either way, we'll have an up-to-date event count 4633 * after this. 4634 */ 4635 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4636 preempt_enable(); 4637 ret = data.ret; 4638 4639 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4640 struct perf_event_context *ctx = event->ctx; 4641 unsigned long flags; 4642 4643 raw_spin_lock_irqsave(&ctx->lock, flags); 4644 state = event->state; 4645 if (state != PERF_EVENT_STATE_INACTIVE) { 4646 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4647 goto again; 4648 } 4649 4650 /* 4651 * May read while context is not active (e.g., thread is 4652 * blocked), in that case we cannot update context time 4653 */ 4654 if (ctx->is_active & EVENT_TIME) { 4655 update_context_time(ctx); 4656 update_cgrp_time_from_event(event); 4657 } 4658 4659 perf_event_update_time(event); 4660 if (group) 4661 perf_event_update_sibling_time(event); 4662 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4663 } 4664 4665 return ret; 4666 } 4667 4668 /* 4669 * Initialize the perf_event context in a task_struct: 4670 */ 4671 static void __perf_event_init_context(struct perf_event_context *ctx) 4672 { 4673 raw_spin_lock_init(&ctx->lock); 4674 mutex_init(&ctx->mutex); 4675 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4676 perf_event_groups_init(&ctx->pinned_groups); 4677 perf_event_groups_init(&ctx->flexible_groups); 4678 INIT_LIST_HEAD(&ctx->event_list); 4679 refcount_set(&ctx->refcount, 1); 4680 } 4681 4682 static void 4683 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4684 { 4685 epc->pmu = pmu; 4686 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4687 INIT_LIST_HEAD(&epc->pinned_active); 4688 INIT_LIST_HEAD(&epc->flexible_active); 4689 atomic_set(&epc->refcount, 1); 4690 } 4691 4692 static struct perf_event_context * 4693 alloc_perf_context(struct task_struct *task) 4694 { 4695 struct perf_event_context *ctx; 4696 4697 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4698 if (!ctx) 4699 return NULL; 4700 4701 __perf_event_init_context(ctx); 4702 if (task) 4703 ctx->task = get_task_struct(task); 4704 4705 return ctx; 4706 } 4707 4708 static struct task_struct * 4709 find_lively_task_by_vpid(pid_t vpid) 4710 { 4711 struct task_struct *task; 4712 4713 rcu_read_lock(); 4714 if (!vpid) 4715 task = current; 4716 else 4717 task = find_task_by_vpid(vpid); 4718 if (task) 4719 get_task_struct(task); 4720 rcu_read_unlock(); 4721 4722 if (!task) 4723 return ERR_PTR(-ESRCH); 4724 4725 return task; 4726 } 4727 4728 /* 4729 * Returns a matching context with refcount and pincount. 4730 */ 4731 static struct perf_event_context * 4732 find_get_context(struct task_struct *task, struct perf_event *event) 4733 { 4734 struct perf_event_context *ctx, *clone_ctx = NULL; 4735 struct perf_cpu_context *cpuctx; 4736 unsigned long flags; 4737 int err; 4738 4739 if (!task) { 4740 /* Must be root to operate on a CPU event: */ 4741 err = perf_allow_cpu(&event->attr); 4742 if (err) 4743 return ERR_PTR(err); 4744 4745 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4746 ctx = &cpuctx->ctx; 4747 get_ctx(ctx); 4748 raw_spin_lock_irqsave(&ctx->lock, flags); 4749 ++ctx->pin_count; 4750 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4751 4752 return ctx; 4753 } 4754 4755 err = -EINVAL; 4756 retry: 4757 ctx = perf_lock_task_context(task, &flags); 4758 if (ctx) { 4759 clone_ctx = unclone_ctx(ctx); 4760 ++ctx->pin_count; 4761 4762 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4763 4764 if (clone_ctx) 4765 put_ctx(clone_ctx); 4766 } else { 4767 ctx = alloc_perf_context(task); 4768 err = -ENOMEM; 4769 if (!ctx) 4770 goto errout; 4771 4772 err = 0; 4773 mutex_lock(&task->perf_event_mutex); 4774 /* 4775 * If it has already passed perf_event_exit_task(). 4776 * we must see PF_EXITING, it takes this mutex too. 4777 */ 4778 if (task->flags & PF_EXITING) 4779 err = -ESRCH; 4780 else if (task->perf_event_ctxp) 4781 err = -EAGAIN; 4782 else { 4783 get_ctx(ctx); 4784 ++ctx->pin_count; 4785 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4786 } 4787 mutex_unlock(&task->perf_event_mutex); 4788 4789 if (unlikely(err)) { 4790 put_ctx(ctx); 4791 4792 if (err == -EAGAIN) 4793 goto retry; 4794 goto errout; 4795 } 4796 } 4797 4798 return ctx; 4799 4800 errout: 4801 return ERR_PTR(err); 4802 } 4803 4804 static struct perf_event_pmu_context * 4805 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4806 struct perf_event *event) 4807 { 4808 struct perf_event_pmu_context *new = NULL, *epc; 4809 void *task_ctx_data = NULL; 4810 4811 if (!ctx->task) { 4812 struct perf_cpu_pmu_context *cpc; 4813 4814 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4815 epc = &cpc->epc; 4816 raw_spin_lock_irq(&ctx->lock); 4817 if (!epc->ctx) { 4818 atomic_set(&epc->refcount, 1); 4819 epc->embedded = 1; 4820 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4821 epc->ctx = ctx; 4822 } else { 4823 WARN_ON_ONCE(epc->ctx != ctx); 4824 atomic_inc(&epc->refcount); 4825 } 4826 raw_spin_unlock_irq(&ctx->lock); 4827 return epc; 4828 } 4829 4830 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4831 if (!new) 4832 return ERR_PTR(-ENOMEM); 4833 4834 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4835 task_ctx_data = alloc_task_ctx_data(pmu); 4836 if (!task_ctx_data) { 4837 kfree(new); 4838 return ERR_PTR(-ENOMEM); 4839 } 4840 } 4841 4842 __perf_init_event_pmu_context(new, pmu); 4843 4844 /* 4845 * XXX 4846 * 4847 * lockdep_assert_held(&ctx->mutex); 4848 * 4849 * can't because perf_event_init_task() doesn't actually hold the 4850 * child_ctx->mutex. 4851 */ 4852 4853 raw_spin_lock_irq(&ctx->lock); 4854 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4855 if (epc->pmu == pmu) { 4856 WARN_ON_ONCE(epc->ctx != ctx); 4857 atomic_inc(&epc->refcount); 4858 goto found_epc; 4859 } 4860 } 4861 4862 epc = new; 4863 new = NULL; 4864 4865 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4866 epc->ctx = ctx; 4867 4868 found_epc: 4869 if (task_ctx_data && !epc->task_ctx_data) { 4870 epc->task_ctx_data = task_ctx_data; 4871 task_ctx_data = NULL; 4872 ctx->nr_task_data++; 4873 } 4874 raw_spin_unlock_irq(&ctx->lock); 4875 4876 free_task_ctx_data(pmu, task_ctx_data); 4877 kfree(new); 4878 4879 return epc; 4880 } 4881 4882 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4883 { 4884 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4885 } 4886 4887 static void free_epc_rcu(struct rcu_head *head) 4888 { 4889 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4890 4891 kfree(epc->task_ctx_data); 4892 kfree(epc); 4893 } 4894 4895 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4896 { 4897 struct perf_event_context *ctx = epc->ctx; 4898 unsigned long flags; 4899 4900 /* 4901 * XXX 4902 * 4903 * lockdep_assert_held(&ctx->mutex); 4904 * 4905 * can't because of the call-site in _free_event()/put_event() 4906 * which isn't always called under ctx->mutex. 4907 */ 4908 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4909 return; 4910 4911 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4912 4913 list_del_init(&epc->pmu_ctx_entry); 4914 epc->ctx = NULL; 4915 4916 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4917 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4918 4919 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4920 4921 if (epc->embedded) 4922 return; 4923 4924 call_rcu(&epc->rcu_head, free_epc_rcu); 4925 } 4926 4927 static void perf_event_free_filter(struct perf_event *event); 4928 4929 static void free_event_rcu(struct rcu_head *head) 4930 { 4931 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4932 4933 if (event->ns) 4934 put_pid_ns(event->ns); 4935 perf_event_free_filter(event); 4936 kmem_cache_free(perf_event_cache, event); 4937 } 4938 4939 static void ring_buffer_attach(struct perf_event *event, 4940 struct perf_buffer *rb); 4941 4942 static void detach_sb_event(struct perf_event *event) 4943 { 4944 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4945 4946 raw_spin_lock(&pel->lock); 4947 list_del_rcu(&event->sb_list); 4948 raw_spin_unlock(&pel->lock); 4949 } 4950 4951 static bool is_sb_event(struct perf_event *event) 4952 { 4953 struct perf_event_attr *attr = &event->attr; 4954 4955 if (event->parent) 4956 return false; 4957 4958 if (event->attach_state & PERF_ATTACH_TASK) 4959 return false; 4960 4961 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4962 attr->comm || attr->comm_exec || 4963 attr->task || attr->ksymbol || 4964 attr->context_switch || attr->text_poke || 4965 attr->bpf_event) 4966 return true; 4967 return false; 4968 } 4969 4970 static void unaccount_pmu_sb_event(struct perf_event *event) 4971 { 4972 if (is_sb_event(event)) 4973 detach_sb_event(event); 4974 } 4975 4976 #ifdef CONFIG_NO_HZ_FULL 4977 static DEFINE_SPINLOCK(nr_freq_lock); 4978 #endif 4979 4980 static void unaccount_freq_event_nohz(void) 4981 { 4982 #ifdef CONFIG_NO_HZ_FULL 4983 spin_lock(&nr_freq_lock); 4984 if (atomic_dec_and_test(&nr_freq_events)) 4985 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4986 spin_unlock(&nr_freq_lock); 4987 #endif 4988 } 4989 4990 static void unaccount_freq_event(void) 4991 { 4992 if (tick_nohz_full_enabled()) 4993 unaccount_freq_event_nohz(); 4994 else 4995 atomic_dec(&nr_freq_events); 4996 } 4997 4998 static void unaccount_event(struct perf_event *event) 4999 { 5000 bool dec = false; 5001 5002 if (event->parent) 5003 return; 5004 5005 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5006 dec = true; 5007 if (event->attr.mmap || event->attr.mmap_data) 5008 atomic_dec(&nr_mmap_events); 5009 if (event->attr.build_id) 5010 atomic_dec(&nr_build_id_events); 5011 if (event->attr.comm) 5012 atomic_dec(&nr_comm_events); 5013 if (event->attr.namespaces) 5014 atomic_dec(&nr_namespaces_events); 5015 if (event->attr.cgroup) 5016 atomic_dec(&nr_cgroup_events); 5017 if (event->attr.task) 5018 atomic_dec(&nr_task_events); 5019 if (event->attr.freq) 5020 unaccount_freq_event(); 5021 if (event->attr.context_switch) { 5022 dec = true; 5023 atomic_dec(&nr_switch_events); 5024 } 5025 if (is_cgroup_event(event)) 5026 dec = true; 5027 if (has_branch_stack(event)) 5028 dec = true; 5029 if (event->attr.ksymbol) 5030 atomic_dec(&nr_ksymbol_events); 5031 if (event->attr.bpf_event) 5032 atomic_dec(&nr_bpf_events); 5033 if (event->attr.text_poke) 5034 atomic_dec(&nr_text_poke_events); 5035 5036 if (dec) { 5037 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5038 schedule_delayed_work(&perf_sched_work, HZ); 5039 } 5040 5041 unaccount_pmu_sb_event(event); 5042 } 5043 5044 static void perf_sched_delayed(struct work_struct *work) 5045 { 5046 mutex_lock(&perf_sched_mutex); 5047 if (atomic_dec_and_test(&perf_sched_count)) 5048 static_branch_disable(&perf_sched_events); 5049 mutex_unlock(&perf_sched_mutex); 5050 } 5051 5052 /* 5053 * The following implement mutual exclusion of events on "exclusive" pmus 5054 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5055 * at a time, so we disallow creating events that might conflict, namely: 5056 * 5057 * 1) cpu-wide events in the presence of per-task events, 5058 * 2) per-task events in the presence of cpu-wide events, 5059 * 3) two matching events on the same perf_event_context. 5060 * 5061 * The former two cases are handled in the allocation path (perf_event_alloc(), 5062 * _free_event()), the latter -- before the first perf_install_in_context(). 5063 */ 5064 static int exclusive_event_init(struct perf_event *event) 5065 { 5066 struct pmu *pmu = event->pmu; 5067 5068 if (!is_exclusive_pmu(pmu)) 5069 return 0; 5070 5071 /* 5072 * Prevent co-existence of per-task and cpu-wide events on the 5073 * same exclusive pmu. 5074 * 5075 * Negative pmu::exclusive_cnt means there are cpu-wide 5076 * events on this "exclusive" pmu, positive means there are 5077 * per-task events. 5078 * 5079 * Since this is called in perf_event_alloc() path, event::ctx 5080 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5081 * to mean "per-task event", because unlike other attach states it 5082 * never gets cleared. 5083 */ 5084 if (event->attach_state & PERF_ATTACH_TASK) { 5085 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5086 return -EBUSY; 5087 } else { 5088 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5089 return -EBUSY; 5090 } 5091 5092 return 0; 5093 } 5094 5095 static void exclusive_event_destroy(struct perf_event *event) 5096 { 5097 struct pmu *pmu = event->pmu; 5098 5099 if (!is_exclusive_pmu(pmu)) 5100 return; 5101 5102 /* see comment in exclusive_event_init() */ 5103 if (event->attach_state & PERF_ATTACH_TASK) 5104 atomic_dec(&pmu->exclusive_cnt); 5105 else 5106 atomic_inc(&pmu->exclusive_cnt); 5107 } 5108 5109 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5110 { 5111 if ((e1->pmu == e2->pmu) && 5112 (e1->cpu == e2->cpu || 5113 e1->cpu == -1 || 5114 e2->cpu == -1)) 5115 return true; 5116 return false; 5117 } 5118 5119 static bool exclusive_event_installable(struct perf_event *event, 5120 struct perf_event_context *ctx) 5121 { 5122 struct perf_event *iter_event; 5123 struct pmu *pmu = event->pmu; 5124 5125 lockdep_assert_held(&ctx->mutex); 5126 5127 if (!is_exclusive_pmu(pmu)) 5128 return true; 5129 5130 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5131 if (exclusive_event_match(iter_event, event)) 5132 return false; 5133 } 5134 5135 return true; 5136 } 5137 5138 static void perf_addr_filters_splice(struct perf_event *event, 5139 struct list_head *head); 5140 5141 static void _free_event(struct perf_event *event) 5142 { 5143 irq_work_sync(&event->pending_irq); 5144 5145 unaccount_event(event); 5146 5147 security_perf_event_free(event); 5148 5149 if (event->rb) { 5150 /* 5151 * Can happen when we close an event with re-directed output. 5152 * 5153 * Since we have a 0 refcount, perf_mmap_close() will skip 5154 * over us; possibly making our ring_buffer_put() the last. 5155 */ 5156 mutex_lock(&event->mmap_mutex); 5157 ring_buffer_attach(event, NULL); 5158 mutex_unlock(&event->mmap_mutex); 5159 } 5160 5161 if (is_cgroup_event(event)) 5162 perf_detach_cgroup(event); 5163 5164 if (!event->parent) { 5165 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5166 put_callchain_buffers(); 5167 } 5168 5169 perf_event_free_bpf_prog(event); 5170 perf_addr_filters_splice(event, NULL); 5171 kfree(event->addr_filter_ranges); 5172 5173 if (event->destroy) 5174 event->destroy(event); 5175 5176 /* 5177 * Must be after ->destroy(), due to uprobe_perf_close() using 5178 * hw.target. 5179 */ 5180 if (event->hw.target) 5181 put_task_struct(event->hw.target); 5182 5183 if (event->pmu_ctx) 5184 put_pmu_ctx(event->pmu_ctx); 5185 5186 /* 5187 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5188 * all task references must be cleaned up. 5189 */ 5190 if (event->ctx) 5191 put_ctx(event->ctx); 5192 5193 exclusive_event_destroy(event); 5194 module_put(event->pmu->module); 5195 5196 call_rcu(&event->rcu_head, free_event_rcu); 5197 } 5198 5199 /* 5200 * Used to free events which have a known refcount of 1, such as in error paths 5201 * where the event isn't exposed yet and inherited events. 5202 */ 5203 static void free_event(struct perf_event *event) 5204 { 5205 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5206 "unexpected event refcount: %ld; ptr=%p\n", 5207 atomic_long_read(&event->refcount), event)) { 5208 /* leak to avoid use-after-free */ 5209 return; 5210 } 5211 5212 _free_event(event); 5213 } 5214 5215 /* 5216 * Remove user event from the owner task. 5217 */ 5218 static void perf_remove_from_owner(struct perf_event *event) 5219 { 5220 struct task_struct *owner; 5221 5222 rcu_read_lock(); 5223 /* 5224 * Matches the smp_store_release() in perf_event_exit_task(). If we 5225 * observe !owner it means the list deletion is complete and we can 5226 * indeed free this event, otherwise we need to serialize on 5227 * owner->perf_event_mutex. 5228 */ 5229 owner = READ_ONCE(event->owner); 5230 if (owner) { 5231 /* 5232 * Since delayed_put_task_struct() also drops the last 5233 * task reference we can safely take a new reference 5234 * while holding the rcu_read_lock(). 5235 */ 5236 get_task_struct(owner); 5237 } 5238 rcu_read_unlock(); 5239 5240 if (owner) { 5241 /* 5242 * If we're here through perf_event_exit_task() we're already 5243 * holding ctx->mutex which would be an inversion wrt. the 5244 * normal lock order. 5245 * 5246 * However we can safely take this lock because its the child 5247 * ctx->mutex. 5248 */ 5249 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5250 5251 /* 5252 * We have to re-check the event->owner field, if it is cleared 5253 * we raced with perf_event_exit_task(), acquiring the mutex 5254 * ensured they're done, and we can proceed with freeing the 5255 * event. 5256 */ 5257 if (event->owner) { 5258 list_del_init(&event->owner_entry); 5259 smp_store_release(&event->owner, NULL); 5260 } 5261 mutex_unlock(&owner->perf_event_mutex); 5262 put_task_struct(owner); 5263 } 5264 } 5265 5266 static void put_event(struct perf_event *event) 5267 { 5268 if (!atomic_long_dec_and_test(&event->refcount)) 5269 return; 5270 5271 _free_event(event); 5272 } 5273 5274 /* 5275 * Kill an event dead; while event:refcount will preserve the event 5276 * object, it will not preserve its functionality. Once the last 'user' 5277 * gives up the object, we'll destroy the thing. 5278 */ 5279 int perf_event_release_kernel(struct perf_event *event) 5280 { 5281 struct perf_event_context *ctx = event->ctx; 5282 struct perf_event *child, *tmp; 5283 LIST_HEAD(free_list); 5284 5285 /* 5286 * If we got here through err_alloc: free_event(event); we will not 5287 * have attached to a context yet. 5288 */ 5289 if (!ctx) { 5290 WARN_ON_ONCE(event->attach_state & 5291 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5292 goto no_ctx; 5293 } 5294 5295 if (!is_kernel_event(event)) 5296 perf_remove_from_owner(event); 5297 5298 ctx = perf_event_ctx_lock(event); 5299 WARN_ON_ONCE(ctx->parent_ctx); 5300 5301 /* 5302 * Mark this event as STATE_DEAD, there is no external reference to it 5303 * anymore. 5304 * 5305 * Anybody acquiring event->child_mutex after the below loop _must_ 5306 * also see this, most importantly inherit_event() which will avoid 5307 * placing more children on the list. 5308 * 5309 * Thus this guarantees that we will in fact observe and kill _ALL_ 5310 * child events. 5311 */ 5312 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5313 5314 perf_event_ctx_unlock(event, ctx); 5315 5316 again: 5317 mutex_lock(&event->child_mutex); 5318 list_for_each_entry(child, &event->child_list, child_list) { 5319 5320 /* 5321 * Cannot change, child events are not migrated, see the 5322 * comment with perf_event_ctx_lock_nested(). 5323 */ 5324 ctx = READ_ONCE(child->ctx); 5325 /* 5326 * Since child_mutex nests inside ctx::mutex, we must jump 5327 * through hoops. We start by grabbing a reference on the ctx. 5328 * 5329 * Since the event cannot get freed while we hold the 5330 * child_mutex, the context must also exist and have a !0 5331 * reference count. 5332 */ 5333 get_ctx(ctx); 5334 5335 /* 5336 * Now that we have a ctx ref, we can drop child_mutex, and 5337 * acquire ctx::mutex without fear of it going away. Then we 5338 * can re-acquire child_mutex. 5339 */ 5340 mutex_unlock(&event->child_mutex); 5341 mutex_lock(&ctx->mutex); 5342 mutex_lock(&event->child_mutex); 5343 5344 /* 5345 * Now that we hold ctx::mutex and child_mutex, revalidate our 5346 * state, if child is still the first entry, it didn't get freed 5347 * and we can continue doing so. 5348 */ 5349 tmp = list_first_entry_or_null(&event->child_list, 5350 struct perf_event, child_list); 5351 if (tmp == child) { 5352 perf_remove_from_context(child, DETACH_GROUP); 5353 list_move(&child->child_list, &free_list); 5354 /* 5355 * This matches the refcount bump in inherit_event(); 5356 * this can't be the last reference. 5357 */ 5358 put_event(event); 5359 } 5360 5361 mutex_unlock(&event->child_mutex); 5362 mutex_unlock(&ctx->mutex); 5363 put_ctx(ctx); 5364 goto again; 5365 } 5366 mutex_unlock(&event->child_mutex); 5367 5368 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5369 void *var = &child->ctx->refcount; 5370 5371 list_del(&child->child_list); 5372 free_event(child); 5373 5374 /* 5375 * Wake any perf_event_free_task() waiting for this event to be 5376 * freed. 5377 */ 5378 smp_mb(); /* pairs with wait_var_event() */ 5379 wake_up_var(var); 5380 } 5381 5382 no_ctx: 5383 put_event(event); /* Must be the 'last' reference */ 5384 return 0; 5385 } 5386 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5387 5388 /* 5389 * Called when the last reference to the file is gone. 5390 */ 5391 static int perf_release(struct inode *inode, struct file *file) 5392 { 5393 perf_event_release_kernel(file->private_data); 5394 return 0; 5395 } 5396 5397 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5398 { 5399 struct perf_event *child; 5400 u64 total = 0; 5401 5402 *enabled = 0; 5403 *running = 0; 5404 5405 mutex_lock(&event->child_mutex); 5406 5407 (void)perf_event_read(event, false); 5408 total += perf_event_count(event); 5409 5410 *enabled += event->total_time_enabled + 5411 atomic64_read(&event->child_total_time_enabled); 5412 *running += event->total_time_running + 5413 atomic64_read(&event->child_total_time_running); 5414 5415 list_for_each_entry(child, &event->child_list, child_list) { 5416 (void)perf_event_read(child, false); 5417 total += perf_event_count(child); 5418 *enabled += child->total_time_enabled; 5419 *running += child->total_time_running; 5420 } 5421 mutex_unlock(&event->child_mutex); 5422 5423 return total; 5424 } 5425 5426 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5427 { 5428 struct perf_event_context *ctx; 5429 u64 count; 5430 5431 ctx = perf_event_ctx_lock(event); 5432 count = __perf_event_read_value(event, enabled, running); 5433 perf_event_ctx_unlock(event, ctx); 5434 5435 return count; 5436 } 5437 EXPORT_SYMBOL_GPL(perf_event_read_value); 5438 5439 static int __perf_read_group_add(struct perf_event *leader, 5440 u64 read_format, u64 *values) 5441 { 5442 struct perf_event_context *ctx = leader->ctx; 5443 struct perf_event *sub; 5444 unsigned long flags; 5445 int n = 1; /* skip @nr */ 5446 int ret; 5447 5448 ret = perf_event_read(leader, true); 5449 if (ret) 5450 return ret; 5451 5452 raw_spin_lock_irqsave(&ctx->lock, flags); 5453 5454 /* 5455 * Since we co-schedule groups, {enabled,running} times of siblings 5456 * will be identical to those of the leader, so we only publish one 5457 * set. 5458 */ 5459 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5460 values[n++] += leader->total_time_enabled + 5461 atomic64_read(&leader->child_total_time_enabled); 5462 } 5463 5464 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5465 values[n++] += leader->total_time_running + 5466 atomic64_read(&leader->child_total_time_running); 5467 } 5468 5469 /* 5470 * Write {count,id} tuples for every sibling. 5471 */ 5472 values[n++] += perf_event_count(leader); 5473 if (read_format & PERF_FORMAT_ID) 5474 values[n++] = primary_event_id(leader); 5475 if (read_format & PERF_FORMAT_LOST) 5476 values[n++] = atomic64_read(&leader->lost_samples); 5477 5478 for_each_sibling_event(sub, leader) { 5479 values[n++] += perf_event_count(sub); 5480 if (read_format & PERF_FORMAT_ID) 5481 values[n++] = primary_event_id(sub); 5482 if (read_format & PERF_FORMAT_LOST) 5483 values[n++] = atomic64_read(&sub->lost_samples); 5484 } 5485 5486 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5487 return 0; 5488 } 5489 5490 static int perf_read_group(struct perf_event *event, 5491 u64 read_format, char __user *buf) 5492 { 5493 struct perf_event *leader = event->group_leader, *child; 5494 struct perf_event_context *ctx = leader->ctx; 5495 int ret; 5496 u64 *values; 5497 5498 lockdep_assert_held(&ctx->mutex); 5499 5500 values = kzalloc(event->read_size, GFP_KERNEL); 5501 if (!values) 5502 return -ENOMEM; 5503 5504 values[0] = 1 + leader->nr_siblings; 5505 5506 /* 5507 * By locking the child_mutex of the leader we effectively 5508 * lock the child list of all siblings.. XXX explain how. 5509 */ 5510 mutex_lock(&leader->child_mutex); 5511 5512 ret = __perf_read_group_add(leader, read_format, values); 5513 if (ret) 5514 goto unlock; 5515 5516 list_for_each_entry(child, &leader->child_list, child_list) { 5517 ret = __perf_read_group_add(child, read_format, values); 5518 if (ret) 5519 goto unlock; 5520 } 5521 5522 mutex_unlock(&leader->child_mutex); 5523 5524 ret = event->read_size; 5525 if (copy_to_user(buf, values, event->read_size)) 5526 ret = -EFAULT; 5527 goto out; 5528 5529 unlock: 5530 mutex_unlock(&leader->child_mutex); 5531 out: 5532 kfree(values); 5533 return ret; 5534 } 5535 5536 static int perf_read_one(struct perf_event *event, 5537 u64 read_format, char __user *buf) 5538 { 5539 u64 enabled, running; 5540 u64 values[5]; 5541 int n = 0; 5542 5543 values[n++] = __perf_event_read_value(event, &enabled, &running); 5544 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5545 values[n++] = enabled; 5546 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5547 values[n++] = running; 5548 if (read_format & PERF_FORMAT_ID) 5549 values[n++] = primary_event_id(event); 5550 if (read_format & PERF_FORMAT_LOST) 5551 values[n++] = atomic64_read(&event->lost_samples); 5552 5553 if (copy_to_user(buf, values, n * sizeof(u64))) 5554 return -EFAULT; 5555 5556 return n * sizeof(u64); 5557 } 5558 5559 static bool is_event_hup(struct perf_event *event) 5560 { 5561 bool no_children; 5562 5563 if (event->state > PERF_EVENT_STATE_EXIT) 5564 return false; 5565 5566 mutex_lock(&event->child_mutex); 5567 no_children = list_empty(&event->child_list); 5568 mutex_unlock(&event->child_mutex); 5569 return no_children; 5570 } 5571 5572 /* 5573 * Read the performance event - simple non blocking version for now 5574 */ 5575 static ssize_t 5576 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5577 { 5578 u64 read_format = event->attr.read_format; 5579 int ret; 5580 5581 /* 5582 * Return end-of-file for a read on an event that is in 5583 * error state (i.e. because it was pinned but it couldn't be 5584 * scheduled on to the CPU at some point). 5585 */ 5586 if (event->state == PERF_EVENT_STATE_ERROR) 5587 return 0; 5588 5589 if (count < event->read_size) 5590 return -ENOSPC; 5591 5592 WARN_ON_ONCE(event->ctx->parent_ctx); 5593 if (read_format & PERF_FORMAT_GROUP) 5594 ret = perf_read_group(event, read_format, buf); 5595 else 5596 ret = perf_read_one(event, read_format, buf); 5597 5598 return ret; 5599 } 5600 5601 static ssize_t 5602 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5603 { 5604 struct perf_event *event = file->private_data; 5605 struct perf_event_context *ctx; 5606 int ret; 5607 5608 ret = security_perf_event_read(event); 5609 if (ret) 5610 return ret; 5611 5612 ctx = perf_event_ctx_lock(event); 5613 ret = __perf_read(event, buf, count); 5614 perf_event_ctx_unlock(event, ctx); 5615 5616 return ret; 5617 } 5618 5619 static __poll_t perf_poll(struct file *file, poll_table *wait) 5620 { 5621 struct perf_event *event = file->private_data; 5622 struct perf_buffer *rb; 5623 __poll_t events = EPOLLHUP; 5624 5625 poll_wait(file, &event->waitq, wait); 5626 5627 if (is_event_hup(event)) 5628 return events; 5629 5630 /* 5631 * Pin the event->rb by taking event->mmap_mutex; otherwise 5632 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5633 */ 5634 mutex_lock(&event->mmap_mutex); 5635 rb = event->rb; 5636 if (rb) 5637 events = atomic_xchg(&rb->poll, 0); 5638 mutex_unlock(&event->mmap_mutex); 5639 return events; 5640 } 5641 5642 static void _perf_event_reset(struct perf_event *event) 5643 { 5644 (void)perf_event_read(event, false); 5645 local64_set(&event->count, 0); 5646 perf_event_update_userpage(event); 5647 } 5648 5649 /* Assume it's not an event with inherit set. */ 5650 u64 perf_event_pause(struct perf_event *event, bool reset) 5651 { 5652 struct perf_event_context *ctx; 5653 u64 count; 5654 5655 ctx = perf_event_ctx_lock(event); 5656 WARN_ON_ONCE(event->attr.inherit); 5657 _perf_event_disable(event); 5658 count = local64_read(&event->count); 5659 if (reset) 5660 local64_set(&event->count, 0); 5661 perf_event_ctx_unlock(event, ctx); 5662 5663 return count; 5664 } 5665 EXPORT_SYMBOL_GPL(perf_event_pause); 5666 5667 /* 5668 * Holding the top-level event's child_mutex means that any 5669 * descendant process that has inherited this event will block 5670 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5671 * task existence requirements of perf_event_enable/disable. 5672 */ 5673 static void perf_event_for_each_child(struct perf_event *event, 5674 void (*func)(struct perf_event *)) 5675 { 5676 struct perf_event *child; 5677 5678 WARN_ON_ONCE(event->ctx->parent_ctx); 5679 5680 mutex_lock(&event->child_mutex); 5681 func(event); 5682 list_for_each_entry(child, &event->child_list, child_list) 5683 func(child); 5684 mutex_unlock(&event->child_mutex); 5685 } 5686 5687 static void perf_event_for_each(struct perf_event *event, 5688 void (*func)(struct perf_event *)) 5689 { 5690 struct perf_event_context *ctx = event->ctx; 5691 struct perf_event *sibling; 5692 5693 lockdep_assert_held(&ctx->mutex); 5694 5695 event = event->group_leader; 5696 5697 perf_event_for_each_child(event, func); 5698 for_each_sibling_event(sibling, event) 5699 perf_event_for_each_child(sibling, func); 5700 } 5701 5702 static void __perf_event_period(struct perf_event *event, 5703 struct perf_cpu_context *cpuctx, 5704 struct perf_event_context *ctx, 5705 void *info) 5706 { 5707 u64 value = *((u64 *)info); 5708 bool active; 5709 5710 if (event->attr.freq) { 5711 event->attr.sample_freq = value; 5712 } else { 5713 event->attr.sample_period = value; 5714 event->hw.sample_period = value; 5715 } 5716 5717 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5718 if (active) { 5719 perf_pmu_disable(event->pmu); 5720 /* 5721 * We could be throttled; unthrottle now to avoid the tick 5722 * trying to unthrottle while we already re-started the event. 5723 */ 5724 if (event->hw.interrupts == MAX_INTERRUPTS) { 5725 event->hw.interrupts = 0; 5726 perf_log_throttle(event, 1); 5727 } 5728 event->pmu->stop(event, PERF_EF_UPDATE); 5729 } 5730 5731 local64_set(&event->hw.period_left, 0); 5732 5733 if (active) { 5734 event->pmu->start(event, PERF_EF_RELOAD); 5735 perf_pmu_enable(event->pmu); 5736 } 5737 } 5738 5739 static int perf_event_check_period(struct perf_event *event, u64 value) 5740 { 5741 return event->pmu->check_period(event, value); 5742 } 5743 5744 static int _perf_event_period(struct perf_event *event, u64 value) 5745 { 5746 if (!is_sampling_event(event)) 5747 return -EINVAL; 5748 5749 if (!value) 5750 return -EINVAL; 5751 5752 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5753 return -EINVAL; 5754 5755 if (perf_event_check_period(event, value)) 5756 return -EINVAL; 5757 5758 if (!event->attr.freq && (value & (1ULL << 63))) 5759 return -EINVAL; 5760 5761 event_function_call(event, __perf_event_period, &value); 5762 5763 return 0; 5764 } 5765 5766 int perf_event_period(struct perf_event *event, u64 value) 5767 { 5768 struct perf_event_context *ctx; 5769 int ret; 5770 5771 ctx = perf_event_ctx_lock(event); 5772 ret = _perf_event_period(event, value); 5773 perf_event_ctx_unlock(event, ctx); 5774 5775 return ret; 5776 } 5777 EXPORT_SYMBOL_GPL(perf_event_period); 5778 5779 static const struct file_operations perf_fops; 5780 5781 static inline int perf_fget_light(int fd, struct fd *p) 5782 { 5783 struct fd f = fdget(fd); 5784 if (!f.file) 5785 return -EBADF; 5786 5787 if (f.file->f_op != &perf_fops) { 5788 fdput(f); 5789 return -EBADF; 5790 } 5791 *p = f; 5792 return 0; 5793 } 5794 5795 static int perf_event_set_output(struct perf_event *event, 5796 struct perf_event *output_event); 5797 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5798 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5799 struct perf_event_attr *attr); 5800 5801 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5802 { 5803 void (*func)(struct perf_event *); 5804 u32 flags = arg; 5805 5806 switch (cmd) { 5807 case PERF_EVENT_IOC_ENABLE: 5808 func = _perf_event_enable; 5809 break; 5810 case PERF_EVENT_IOC_DISABLE: 5811 func = _perf_event_disable; 5812 break; 5813 case PERF_EVENT_IOC_RESET: 5814 func = _perf_event_reset; 5815 break; 5816 5817 case PERF_EVENT_IOC_REFRESH: 5818 return _perf_event_refresh(event, arg); 5819 5820 case PERF_EVENT_IOC_PERIOD: 5821 { 5822 u64 value; 5823 5824 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5825 return -EFAULT; 5826 5827 return _perf_event_period(event, value); 5828 } 5829 case PERF_EVENT_IOC_ID: 5830 { 5831 u64 id = primary_event_id(event); 5832 5833 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5834 return -EFAULT; 5835 return 0; 5836 } 5837 5838 case PERF_EVENT_IOC_SET_OUTPUT: 5839 { 5840 int ret; 5841 if (arg != -1) { 5842 struct perf_event *output_event; 5843 struct fd output; 5844 ret = perf_fget_light(arg, &output); 5845 if (ret) 5846 return ret; 5847 output_event = output.file->private_data; 5848 ret = perf_event_set_output(event, output_event); 5849 fdput(output); 5850 } else { 5851 ret = perf_event_set_output(event, NULL); 5852 } 5853 return ret; 5854 } 5855 5856 case PERF_EVENT_IOC_SET_FILTER: 5857 return perf_event_set_filter(event, (void __user *)arg); 5858 5859 case PERF_EVENT_IOC_SET_BPF: 5860 { 5861 struct bpf_prog *prog; 5862 int err; 5863 5864 prog = bpf_prog_get(arg); 5865 if (IS_ERR(prog)) 5866 return PTR_ERR(prog); 5867 5868 err = perf_event_set_bpf_prog(event, prog, 0); 5869 if (err) { 5870 bpf_prog_put(prog); 5871 return err; 5872 } 5873 5874 return 0; 5875 } 5876 5877 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5878 struct perf_buffer *rb; 5879 5880 rcu_read_lock(); 5881 rb = rcu_dereference(event->rb); 5882 if (!rb || !rb->nr_pages) { 5883 rcu_read_unlock(); 5884 return -EINVAL; 5885 } 5886 rb_toggle_paused(rb, !!arg); 5887 rcu_read_unlock(); 5888 return 0; 5889 } 5890 5891 case PERF_EVENT_IOC_QUERY_BPF: 5892 return perf_event_query_prog_array(event, (void __user *)arg); 5893 5894 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5895 struct perf_event_attr new_attr; 5896 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5897 &new_attr); 5898 5899 if (err) 5900 return err; 5901 5902 return perf_event_modify_attr(event, &new_attr); 5903 } 5904 default: 5905 return -ENOTTY; 5906 } 5907 5908 if (flags & PERF_IOC_FLAG_GROUP) 5909 perf_event_for_each(event, func); 5910 else 5911 perf_event_for_each_child(event, func); 5912 5913 return 0; 5914 } 5915 5916 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5917 { 5918 struct perf_event *event = file->private_data; 5919 struct perf_event_context *ctx; 5920 long ret; 5921 5922 /* Treat ioctl like writes as it is likely a mutating operation. */ 5923 ret = security_perf_event_write(event); 5924 if (ret) 5925 return ret; 5926 5927 ctx = perf_event_ctx_lock(event); 5928 ret = _perf_ioctl(event, cmd, arg); 5929 perf_event_ctx_unlock(event, ctx); 5930 5931 return ret; 5932 } 5933 5934 #ifdef CONFIG_COMPAT 5935 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5936 unsigned long arg) 5937 { 5938 switch (_IOC_NR(cmd)) { 5939 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5940 case _IOC_NR(PERF_EVENT_IOC_ID): 5941 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5942 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5943 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5944 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5945 cmd &= ~IOCSIZE_MASK; 5946 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5947 } 5948 break; 5949 } 5950 return perf_ioctl(file, cmd, arg); 5951 } 5952 #else 5953 # define perf_compat_ioctl NULL 5954 #endif 5955 5956 int perf_event_task_enable(void) 5957 { 5958 struct perf_event_context *ctx; 5959 struct perf_event *event; 5960 5961 mutex_lock(¤t->perf_event_mutex); 5962 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5963 ctx = perf_event_ctx_lock(event); 5964 perf_event_for_each_child(event, _perf_event_enable); 5965 perf_event_ctx_unlock(event, ctx); 5966 } 5967 mutex_unlock(¤t->perf_event_mutex); 5968 5969 return 0; 5970 } 5971 5972 int perf_event_task_disable(void) 5973 { 5974 struct perf_event_context *ctx; 5975 struct perf_event *event; 5976 5977 mutex_lock(¤t->perf_event_mutex); 5978 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5979 ctx = perf_event_ctx_lock(event); 5980 perf_event_for_each_child(event, _perf_event_disable); 5981 perf_event_ctx_unlock(event, ctx); 5982 } 5983 mutex_unlock(¤t->perf_event_mutex); 5984 5985 return 0; 5986 } 5987 5988 static int perf_event_index(struct perf_event *event) 5989 { 5990 if (event->hw.state & PERF_HES_STOPPED) 5991 return 0; 5992 5993 if (event->state != PERF_EVENT_STATE_ACTIVE) 5994 return 0; 5995 5996 return event->pmu->event_idx(event); 5997 } 5998 5999 static void perf_event_init_userpage(struct perf_event *event) 6000 { 6001 struct perf_event_mmap_page *userpg; 6002 struct perf_buffer *rb; 6003 6004 rcu_read_lock(); 6005 rb = rcu_dereference(event->rb); 6006 if (!rb) 6007 goto unlock; 6008 6009 userpg = rb->user_page; 6010 6011 /* Allow new userspace to detect that bit 0 is deprecated */ 6012 userpg->cap_bit0_is_deprecated = 1; 6013 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6014 userpg->data_offset = PAGE_SIZE; 6015 userpg->data_size = perf_data_size(rb); 6016 6017 unlock: 6018 rcu_read_unlock(); 6019 } 6020 6021 void __weak arch_perf_update_userpage( 6022 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6023 { 6024 } 6025 6026 /* 6027 * Callers need to ensure there can be no nesting of this function, otherwise 6028 * the seqlock logic goes bad. We can not serialize this because the arch 6029 * code calls this from NMI context. 6030 */ 6031 void perf_event_update_userpage(struct perf_event *event) 6032 { 6033 struct perf_event_mmap_page *userpg; 6034 struct perf_buffer *rb; 6035 u64 enabled, running, now; 6036 6037 rcu_read_lock(); 6038 rb = rcu_dereference(event->rb); 6039 if (!rb) 6040 goto unlock; 6041 6042 /* 6043 * compute total_time_enabled, total_time_running 6044 * based on snapshot values taken when the event 6045 * was last scheduled in. 6046 * 6047 * we cannot simply called update_context_time() 6048 * because of locking issue as we can be called in 6049 * NMI context 6050 */ 6051 calc_timer_values(event, &now, &enabled, &running); 6052 6053 userpg = rb->user_page; 6054 /* 6055 * Disable preemption to guarantee consistent time stamps are stored to 6056 * the user page. 6057 */ 6058 preempt_disable(); 6059 ++userpg->lock; 6060 barrier(); 6061 userpg->index = perf_event_index(event); 6062 userpg->offset = perf_event_count(event); 6063 if (userpg->index) 6064 userpg->offset -= local64_read(&event->hw.prev_count); 6065 6066 userpg->time_enabled = enabled + 6067 atomic64_read(&event->child_total_time_enabled); 6068 6069 userpg->time_running = running + 6070 atomic64_read(&event->child_total_time_running); 6071 6072 arch_perf_update_userpage(event, userpg, now); 6073 6074 barrier(); 6075 ++userpg->lock; 6076 preempt_enable(); 6077 unlock: 6078 rcu_read_unlock(); 6079 } 6080 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6081 6082 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6083 { 6084 struct perf_event *event = vmf->vma->vm_file->private_data; 6085 struct perf_buffer *rb; 6086 vm_fault_t ret = VM_FAULT_SIGBUS; 6087 6088 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6089 if (vmf->pgoff == 0) 6090 ret = 0; 6091 return ret; 6092 } 6093 6094 rcu_read_lock(); 6095 rb = rcu_dereference(event->rb); 6096 if (!rb) 6097 goto unlock; 6098 6099 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6100 goto unlock; 6101 6102 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6103 if (!vmf->page) 6104 goto unlock; 6105 6106 get_page(vmf->page); 6107 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6108 vmf->page->index = vmf->pgoff; 6109 6110 ret = 0; 6111 unlock: 6112 rcu_read_unlock(); 6113 6114 return ret; 6115 } 6116 6117 static void ring_buffer_attach(struct perf_event *event, 6118 struct perf_buffer *rb) 6119 { 6120 struct perf_buffer *old_rb = NULL; 6121 unsigned long flags; 6122 6123 WARN_ON_ONCE(event->parent); 6124 6125 if (event->rb) { 6126 /* 6127 * Should be impossible, we set this when removing 6128 * event->rb_entry and wait/clear when adding event->rb_entry. 6129 */ 6130 WARN_ON_ONCE(event->rcu_pending); 6131 6132 old_rb = event->rb; 6133 spin_lock_irqsave(&old_rb->event_lock, flags); 6134 list_del_rcu(&event->rb_entry); 6135 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6136 6137 event->rcu_batches = get_state_synchronize_rcu(); 6138 event->rcu_pending = 1; 6139 } 6140 6141 if (rb) { 6142 if (event->rcu_pending) { 6143 cond_synchronize_rcu(event->rcu_batches); 6144 event->rcu_pending = 0; 6145 } 6146 6147 spin_lock_irqsave(&rb->event_lock, flags); 6148 list_add_rcu(&event->rb_entry, &rb->event_list); 6149 spin_unlock_irqrestore(&rb->event_lock, flags); 6150 } 6151 6152 /* 6153 * Avoid racing with perf_mmap_close(AUX): stop the event 6154 * before swizzling the event::rb pointer; if it's getting 6155 * unmapped, its aux_mmap_count will be 0 and it won't 6156 * restart. See the comment in __perf_pmu_output_stop(). 6157 * 6158 * Data will inevitably be lost when set_output is done in 6159 * mid-air, but then again, whoever does it like this is 6160 * not in for the data anyway. 6161 */ 6162 if (has_aux(event)) 6163 perf_event_stop(event, 0); 6164 6165 rcu_assign_pointer(event->rb, rb); 6166 6167 if (old_rb) { 6168 ring_buffer_put(old_rb); 6169 /* 6170 * Since we detached before setting the new rb, so that we 6171 * could attach the new rb, we could have missed a wakeup. 6172 * Provide it now. 6173 */ 6174 wake_up_all(&event->waitq); 6175 } 6176 } 6177 6178 static void ring_buffer_wakeup(struct perf_event *event) 6179 { 6180 struct perf_buffer *rb; 6181 6182 if (event->parent) 6183 event = event->parent; 6184 6185 rcu_read_lock(); 6186 rb = rcu_dereference(event->rb); 6187 if (rb) { 6188 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6189 wake_up_all(&event->waitq); 6190 } 6191 rcu_read_unlock(); 6192 } 6193 6194 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6195 { 6196 struct perf_buffer *rb; 6197 6198 if (event->parent) 6199 event = event->parent; 6200 6201 rcu_read_lock(); 6202 rb = rcu_dereference(event->rb); 6203 if (rb) { 6204 if (!refcount_inc_not_zero(&rb->refcount)) 6205 rb = NULL; 6206 } 6207 rcu_read_unlock(); 6208 6209 return rb; 6210 } 6211 6212 void ring_buffer_put(struct perf_buffer *rb) 6213 { 6214 if (!refcount_dec_and_test(&rb->refcount)) 6215 return; 6216 6217 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6218 6219 call_rcu(&rb->rcu_head, rb_free_rcu); 6220 } 6221 6222 static void perf_mmap_open(struct vm_area_struct *vma) 6223 { 6224 struct perf_event *event = vma->vm_file->private_data; 6225 6226 atomic_inc(&event->mmap_count); 6227 atomic_inc(&event->rb->mmap_count); 6228 6229 if (vma->vm_pgoff) 6230 atomic_inc(&event->rb->aux_mmap_count); 6231 6232 if (event->pmu->event_mapped) 6233 event->pmu->event_mapped(event, vma->vm_mm); 6234 } 6235 6236 static void perf_pmu_output_stop(struct perf_event *event); 6237 6238 /* 6239 * A buffer can be mmap()ed multiple times; either directly through the same 6240 * event, or through other events by use of perf_event_set_output(). 6241 * 6242 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6243 * the buffer here, where we still have a VM context. This means we need 6244 * to detach all events redirecting to us. 6245 */ 6246 static void perf_mmap_close(struct vm_area_struct *vma) 6247 { 6248 struct perf_event *event = vma->vm_file->private_data; 6249 struct perf_buffer *rb = ring_buffer_get(event); 6250 struct user_struct *mmap_user = rb->mmap_user; 6251 int mmap_locked = rb->mmap_locked; 6252 unsigned long size = perf_data_size(rb); 6253 bool detach_rest = false; 6254 6255 if (event->pmu->event_unmapped) 6256 event->pmu->event_unmapped(event, vma->vm_mm); 6257 6258 /* 6259 * rb->aux_mmap_count will always drop before rb->mmap_count and 6260 * event->mmap_count, so it is ok to use event->mmap_mutex to 6261 * serialize with perf_mmap here. 6262 */ 6263 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6264 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6265 /* 6266 * Stop all AUX events that are writing to this buffer, 6267 * so that we can free its AUX pages and corresponding PMU 6268 * data. Note that after rb::aux_mmap_count dropped to zero, 6269 * they won't start any more (see perf_aux_output_begin()). 6270 */ 6271 perf_pmu_output_stop(event); 6272 6273 /* now it's safe to free the pages */ 6274 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6275 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6276 6277 /* this has to be the last one */ 6278 rb_free_aux(rb); 6279 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6280 6281 mutex_unlock(&event->mmap_mutex); 6282 } 6283 6284 if (atomic_dec_and_test(&rb->mmap_count)) 6285 detach_rest = true; 6286 6287 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6288 goto out_put; 6289 6290 ring_buffer_attach(event, NULL); 6291 mutex_unlock(&event->mmap_mutex); 6292 6293 /* If there's still other mmap()s of this buffer, we're done. */ 6294 if (!detach_rest) 6295 goto out_put; 6296 6297 /* 6298 * No other mmap()s, detach from all other events that might redirect 6299 * into the now unreachable buffer. Somewhat complicated by the 6300 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6301 */ 6302 again: 6303 rcu_read_lock(); 6304 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6305 if (!atomic_long_inc_not_zero(&event->refcount)) { 6306 /* 6307 * This event is en-route to free_event() which will 6308 * detach it and remove it from the list. 6309 */ 6310 continue; 6311 } 6312 rcu_read_unlock(); 6313 6314 mutex_lock(&event->mmap_mutex); 6315 /* 6316 * Check we didn't race with perf_event_set_output() which can 6317 * swizzle the rb from under us while we were waiting to 6318 * acquire mmap_mutex. 6319 * 6320 * If we find a different rb; ignore this event, a next 6321 * iteration will no longer find it on the list. We have to 6322 * still restart the iteration to make sure we're not now 6323 * iterating the wrong list. 6324 */ 6325 if (event->rb == rb) 6326 ring_buffer_attach(event, NULL); 6327 6328 mutex_unlock(&event->mmap_mutex); 6329 put_event(event); 6330 6331 /* 6332 * Restart the iteration; either we're on the wrong list or 6333 * destroyed its integrity by doing a deletion. 6334 */ 6335 goto again; 6336 } 6337 rcu_read_unlock(); 6338 6339 /* 6340 * It could be there's still a few 0-ref events on the list; they'll 6341 * get cleaned up by free_event() -- they'll also still have their 6342 * ref on the rb and will free it whenever they are done with it. 6343 * 6344 * Aside from that, this buffer is 'fully' detached and unmapped, 6345 * undo the VM accounting. 6346 */ 6347 6348 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6349 &mmap_user->locked_vm); 6350 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6351 free_uid(mmap_user); 6352 6353 out_put: 6354 ring_buffer_put(rb); /* could be last */ 6355 } 6356 6357 static const struct vm_operations_struct perf_mmap_vmops = { 6358 .open = perf_mmap_open, 6359 .close = perf_mmap_close, /* non mergeable */ 6360 .fault = perf_mmap_fault, 6361 .page_mkwrite = perf_mmap_fault, 6362 }; 6363 6364 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6365 { 6366 struct perf_event *event = file->private_data; 6367 unsigned long user_locked, user_lock_limit; 6368 struct user_struct *user = current_user(); 6369 struct perf_buffer *rb = NULL; 6370 unsigned long locked, lock_limit; 6371 unsigned long vma_size; 6372 unsigned long nr_pages; 6373 long user_extra = 0, extra = 0; 6374 int ret = 0, flags = 0; 6375 6376 /* 6377 * Don't allow mmap() of inherited per-task counters. This would 6378 * create a performance issue due to all children writing to the 6379 * same rb. 6380 */ 6381 if (event->cpu == -1 && event->attr.inherit) 6382 return -EINVAL; 6383 6384 if (!(vma->vm_flags & VM_SHARED)) 6385 return -EINVAL; 6386 6387 ret = security_perf_event_read(event); 6388 if (ret) 6389 return ret; 6390 6391 vma_size = vma->vm_end - vma->vm_start; 6392 6393 if (vma->vm_pgoff == 0) { 6394 nr_pages = (vma_size / PAGE_SIZE) - 1; 6395 } else { 6396 /* 6397 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6398 * mapped, all subsequent mappings should have the same size 6399 * and offset. Must be above the normal perf buffer. 6400 */ 6401 u64 aux_offset, aux_size; 6402 6403 if (!event->rb) 6404 return -EINVAL; 6405 6406 nr_pages = vma_size / PAGE_SIZE; 6407 6408 mutex_lock(&event->mmap_mutex); 6409 ret = -EINVAL; 6410 6411 rb = event->rb; 6412 if (!rb) 6413 goto aux_unlock; 6414 6415 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6416 aux_size = READ_ONCE(rb->user_page->aux_size); 6417 6418 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6419 goto aux_unlock; 6420 6421 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6422 goto aux_unlock; 6423 6424 /* already mapped with a different offset */ 6425 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6426 goto aux_unlock; 6427 6428 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6429 goto aux_unlock; 6430 6431 /* already mapped with a different size */ 6432 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6433 goto aux_unlock; 6434 6435 if (!is_power_of_2(nr_pages)) 6436 goto aux_unlock; 6437 6438 if (!atomic_inc_not_zero(&rb->mmap_count)) 6439 goto aux_unlock; 6440 6441 if (rb_has_aux(rb)) { 6442 atomic_inc(&rb->aux_mmap_count); 6443 ret = 0; 6444 goto unlock; 6445 } 6446 6447 atomic_set(&rb->aux_mmap_count, 1); 6448 user_extra = nr_pages; 6449 6450 goto accounting; 6451 } 6452 6453 /* 6454 * If we have rb pages ensure they're a power-of-two number, so we 6455 * can do bitmasks instead of modulo. 6456 */ 6457 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6458 return -EINVAL; 6459 6460 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6461 return -EINVAL; 6462 6463 WARN_ON_ONCE(event->ctx->parent_ctx); 6464 again: 6465 mutex_lock(&event->mmap_mutex); 6466 if (event->rb) { 6467 if (data_page_nr(event->rb) != nr_pages) { 6468 ret = -EINVAL; 6469 goto unlock; 6470 } 6471 6472 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6473 /* 6474 * Raced against perf_mmap_close(); remove the 6475 * event and try again. 6476 */ 6477 ring_buffer_attach(event, NULL); 6478 mutex_unlock(&event->mmap_mutex); 6479 goto again; 6480 } 6481 6482 goto unlock; 6483 } 6484 6485 user_extra = nr_pages + 1; 6486 6487 accounting: 6488 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6489 6490 /* 6491 * Increase the limit linearly with more CPUs: 6492 */ 6493 user_lock_limit *= num_online_cpus(); 6494 6495 user_locked = atomic_long_read(&user->locked_vm); 6496 6497 /* 6498 * sysctl_perf_event_mlock may have changed, so that 6499 * user->locked_vm > user_lock_limit 6500 */ 6501 if (user_locked > user_lock_limit) 6502 user_locked = user_lock_limit; 6503 user_locked += user_extra; 6504 6505 if (user_locked > user_lock_limit) { 6506 /* 6507 * charge locked_vm until it hits user_lock_limit; 6508 * charge the rest from pinned_vm 6509 */ 6510 extra = user_locked - user_lock_limit; 6511 user_extra -= extra; 6512 } 6513 6514 lock_limit = rlimit(RLIMIT_MEMLOCK); 6515 lock_limit >>= PAGE_SHIFT; 6516 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6517 6518 if ((locked > lock_limit) && perf_is_paranoid() && 6519 !capable(CAP_IPC_LOCK)) { 6520 ret = -EPERM; 6521 goto unlock; 6522 } 6523 6524 WARN_ON(!rb && event->rb); 6525 6526 if (vma->vm_flags & VM_WRITE) 6527 flags |= RING_BUFFER_WRITABLE; 6528 6529 if (!rb) { 6530 rb = rb_alloc(nr_pages, 6531 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6532 event->cpu, flags); 6533 6534 if (!rb) { 6535 ret = -ENOMEM; 6536 goto unlock; 6537 } 6538 6539 atomic_set(&rb->mmap_count, 1); 6540 rb->mmap_user = get_current_user(); 6541 rb->mmap_locked = extra; 6542 6543 ring_buffer_attach(event, rb); 6544 6545 perf_event_update_time(event); 6546 perf_event_init_userpage(event); 6547 perf_event_update_userpage(event); 6548 } else { 6549 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6550 event->attr.aux_watermark, flags); 6551 if (!ret) 6552 rb->aux_mmap_locked = extra; 6553 } 6554 6555 unlock: 6556 if (!ret) { 6557 atomic_long_add(user_extra, &user->locked_vm); 6558 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6559 6560 atomic_inc(&event->mmap_count); 6561 } else if (rb) { 6562 atomic_dec(&rb->mmap_count); 6563 } 6564 aux_unlock: 6565 mutex_unlock(&event->mmap_mutex); 6566 6567 /* 6568 * Since pinned accounting is per vm we cannot allow fork() to copy our 6569 * vma. 6570 */ 6571 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6572 vma->vm_ops = &perf_mmap_vmops; 6573 6574 if (event->pmu->event_mapped) 6575 event->pmu->event_mapped(event, vma->vm_mm); 6576 6577 return ret; 6578 } 6579 6580 static int perf_fasync(int fd, struct file *filp, int on) 6581 { 6582 struct inode *inode = file_inode(filp); 6583 struct perf_event *event = filp->private_data; 6584 int retval; 6585 6586 inode_lock(inode); 6587 retval = fasync_helper(fd, filp, on, &event->fasync); 6588 inode_unlock(inode); 6589 6590 if (retval < 0) 6591 return retval; 6592 6593 return 0; 6594 } 6595 6596 static const struct file_operations perf_fops = { 6597 .llseek = no_llseek, 6598 .release = perf_release, 6599 .read = perf_read, 6600 .poll = perf_poll, 6601 .unlocked_ioctl = perf_ioctl, 6602 .compat_ioctl = perf_compat_ioctl, 6603 .mmap = perf_mmap, 6604 .fasync = perf_fasync, 6605 }; 6606 6607 /* 6608 * Perf event wakeup 6609 * 6610 * If there's data, ensure we set the poll() state and publish everything 6611 * to user-space before waking everybody up. 6612 */ 6613 6614 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6615 { 6616 /* only the parent has fasync state */ 6617 if (event->parent) 6618 event = event->parent; 6619 return &event->fasync; 6620 } 6621 6622 void perf_event_wakeup(struct perf_event *event) 6623 { 6624 ring_buffer_wakeup(event); 6625 6626 if (event->pending_kill) { 6627 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6628 event->pending_kill = 0; 6629 } 6630 } 6631 6632 static void perf_sigtrap(struct perf_event *event) 6633 { 6634 /* 6635 * We'd expect this to only occur if the irq_work is delayed and either 6636 * ctx->task or current has changed in the meantime. This can be the 6637 * case on architectures that do not implement arch_irq_work_raise(). 6638 */ 6639 if (WARN_ON_ONCE(event->ctx->task != current)) 6640 return; 6641 6642 /* 6643 * Both perf_pending_task() and perf_pending_irq() can race with the 6644 * task exiting. 6645 */ 6646 if (current->flags & PF_EXITING) 6647 return; 6648 6649 send_sig_perf((void __user *)event->pending_addr, 6650 event->attr.type, event->attr.sig_data); 6651 } 6652 6653 /* 6654 * Deliver the pending work in-event-context or follow the context. 6655 */ 6656 static void __perf_pending_irq(struct perf_event *event) 6657 { 6658 int cpu = READ_ONCE(event->oncpu); 6659 6660 /* 6661 * If the event isn't running; we done. event_sched_out() will have 6662 * taken care of things. 6663 */ 6664 if (cpu < 0) 6665 return; 6666 6667 /* 6668 * Yay, we hit home and are in the context of the event. 6669 */ 6670 if (cpu == smp_processor_id()) { 6671 if (event->pending_sigtrap) { 6672 event->pending_sigtrap = 0; 6673 perf_sigtrap(event); 6674 local_dec(&event->ctx->nr_pending); 6675 } 6676 if (event->pending_disable) { 6677 event->pending_disable = 0; 6678 perf_event_disable_local(event); 6679 } 6680 return; 6681 } 6682 6683 /* 6684 * CPU-A CPU-B 6685 * 6686 * perf_event_disable_inatomic() 6687 * @pending_disable = CPU-A; 6688 * irq_work_queue(); 6689 * 6690 * sched-out 6691 * @pending_disable = -1; 6692 * 6693 * sched-in 6694 * perf_event_disable_inatomic() 6695 * @pending_disable = CPU-B; 6696 * irq_work_queue(); // FAILS 6697 * 6698 * irq_work_run() 6699 * perf_pending_irq() 6700 * 6701 * But the event runs on CPU-B and wants disabling there. 6702 */ 6703 irq_work_queue_on(&event->pending_irq, cpu); 6704 } 6705 6706 static void perf_pending_irq(struct irq_work *entry) 6707 { 6708 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6709 int rctx; 6710 6711 /* 6712 * If we 'fail' here, that's OK, it means recursion is already disabled 6713 * and we won't recurse 'further'. 6714 */ 6715 rctx = perf_swevent_get_recursion_context(); 6716 6717 /* 6718 * The wakeup isn't bound to the context of the event -- it can happen 6719 * irrespective of where the event is. 6720 */ 6721 if (event->pending_wakeup) { 6722 event->pending_wakeup = 0; 6723 perf_event_wakeup(event); 6724 } 6725 6726 __perf_pending_irq(event); 6727 6728 if (rctx >= 0) 6729 perf_swevent_put_recursion_context(rctx); 6730 } 6731 6732 static void perf_pending_task(struct callback_head *head) 6733 { 6734 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6735 int rctx; 6736 6737 /* 6738 * If we 'fail' here, that's OK, it means recursion is already disabled 6739 * and we won't recurse 'further'. 6740 */ 6741 preempt_disable_notrace(); 6742 rctx = perf_swevent_get_recursion_context(); 6743 6744 if (event->pending_work) { 6745 event->pending_work = 0; 6746 perf_sigtrap(event); 6747 local_dec(&event->ctx->nr_pending); 6748 } 6749 6750 if (rctx >= 0) 6751 perf_swevent_put_recursion_context(rctx); 6752 preempt_enable_notrace(); 6753 6754 put_event(event); 6755 } 6756 6757 #ifdef CONFIG_GUEST_PERF_EVENTS 6758 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6759 6760 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6761 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6762 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6763 6764 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6765 { 6766 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6767 return; 6768 6769 rcu_assign_pointer(perf_guest_cbs, cbs); 6770 static_call_update(__perf_guest_state, cbs->state); 6771 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6772 6773 /* Implementing ->handle_intel_pt_intr is optional. */ 6774 if (cbs->handle_intel_pt_intr) 6775 static_call_update(__perf_guest_handle_intel_pt_intr, 6776 cbs->handle_intel_pt_intr); 6777 } 6778 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6779 6780 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6781 { 6782 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6783 return; 6784 6785 rcu_assign_pointer(perf_guest_cbs, NULL); 6786 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6787 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6788 static_call_update(__perf_guest_handle_intel_pt_intr, 6789 (void *)&__static_call_return0); 6790 synchronize_rcu(); 6791 } 6792 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6793 #endif 6794 6795 static void 6796 perf_output_sample_regs(struct perf_output_handle *handle, 6797 struct pt_regs *regs, u64 mask) 6798 { 6799 int bit; 6800 DECLARE_BITMAP(_mask, 64); 6801 6802 bitmap_from_u64(_mask, mask); 6803 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6804 u64 val; 6805 6806 val = perf_reg_value(regs, bit); 6807 perf_output_put(handle, val); 6808 } 6809 } 6810 6811 static void perf_sample_regs_user(struct perf_regs *regs_user, 6812 struct pt_regs *regs) 6813 { 6814 if (user_mode(regs)) { 6815 regs_user->abi = perf_reg_abi(current); 6816 regs_user->regs = regs; 6817 } else if (!(current->flags & PF_KTHREAD)) { 6818 perf_get_regs_user(regs_user, regs); 6819 } else { 6820 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6821 regs_user->regs = NULL; 6822 } 6823 } 6824 6825 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6826 struct pt_regs *regs) 6827 { 6828 regs_intr->regs = regs; 6829 regs_intr->abi = perf_reg_abi(current); 6830 } 6831 6832 6833 /* 6834 * Get remaining task size from user stack pointer. 6835 * 6836 * It'd be better to take stack vma map and limit this more 6837 * precisely, but there's no way to get it safely under interrupt, 6838 * so using TASK_SIZE as limit. 6839 */ 6840 static u64 perf_ustack_task_size(struct pt_regs *regs) 6841 { 6842 unsigned long addr = perf_user_stack_pointer(regs); 6843 6844 if (!addr || addr >= TASK_SIZE) 6845 return 0; 6846 6847 return TASK_SIZE - addr; 6848 } 6849 6850 static u16 6851 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6852 struct pt_regs *regs) 6853 { 6854 u64 task_size; 6855 6856 /* No regs, no stack pointer, no dump. */ 6857 if (!regs) 6858 return 0; 6859 6860 /* 6861 * Check if we fit in with the requested stack size into the: 6862 * - TASK_SIZE 6863 * If we don't, we limit the size to the TASK_SIZE. 6864 * 6865 * - remaining sample size 6866 * If we don't, we customize the stack size to 6867 * fit in to the remaining sample size. 6868 */ 6869 6870 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6871 stack_size = min(stack_size, (u16) task_size); 6872 6873 /* Current header size plus static size and dynamic size. */ 6874 header_size += 2 * sizeof(u64); 6875 6876 /* Do we fit in with the current stack dump size? */ 6877 if ((u16) (header_size + stack_size) < header_size) { 6878 /* 6879 * If we overflow the maximum size for the sample, 6880 * we customize the stack dump size to fit in. 6881 */ 6882 stack_size = USHRT_MAX - header_size - sizeof(u64); 6883 stack_size = round_up(stack_size, sizeof(u64)); 6884 } 6885 6886 return stack_size; 6887 } 6888 6889 static void 6890 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6891 struct pt_regs *regs) 6892 { 6893 /* Case of a kernel thread, nothing to dump */ 6894 if (!regs) { 6895 u64 size = 0; 6896 perf_output_put(handle, size); 6897 } else { 6898 unsigned long sp; 6899 unsigned int rem; 6900 u64 dyn_size; 6901 6902 /* 6903 * We dump: 6904 * static size 6905 * - the size requested by user or the best one we can fit 6906 * in to the sample max size 6907 * data 6908 * - user stack dump data 6909 * dynamic size 6910 * - the actual dumped size 6911 */ 6912 6913 /* Static size. */ 6914 perf_output_put(handle, dump_size); 6915 6916 /* Data. */ 6917 sp = perf_user_stack_pointer(regs); 6918 rem = __output_copy_user(handle, (void *) sp, dump_size); 6919 dyn_size = dump_size - rem; 6920 6921 perf_output_skip(handle, rem); 6922 6923 /* Dynamic size. */ 6924 perf_output_put(handle, dyn_size); 6925 } 6926 } 6927 6928 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6929 struct perf_sample_data *data, 6930 size_t size) 6931 { 6932 struct perf_event *sampler = event->aux_event; 6933 struct perf_buffer *rb; 6934 6935 data->aux_size = 0; 6936 6937 if (!sampler) 6938 goto out; 6939 6940 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6941 goto out; 6942 6943 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6944 goto out; 6945 6946 rb = ring_buffer_get(sampler); 6947 if (!rb) 6948 goto out; 6949 6950 /* 6951 * If this is an NMI hit inside sampling code, don't take 6952 * the sample. See also perf_aux_sample_output(). 6953 */ 6954 if (READ_ONCE(rb->aux_in_sampling)) { 6955 data->aux_size = 0; 6956 } else { 6957 size = min_t(size_t, size, perf_aux_size(rb)); 6958 data->aux_size = ALIGN(size, sizeof(u64)); 6959 } 6960 ring_buffer_put(rb); 6961 6962 out: 6963 return data->aux_size; 6964 } 6965 6966 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6967 struct perf_event *event, 6968 struct perf_output_handle *handle, 6969 unsigned long size) 6970 { 6971 unsigned long flags; 6972 long ret; 6973 6974 /* 6975 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6976 * paths. If we start calling them in NMI context, they may race with 6977 * the IRQ ones, that is, for example, re-starting an event that's just 6978 * been stopped, which is why we're using a separate callback that 6979 * doesn't change the event state. 6980 * 6981 * IRQs need to be disabled to prevent IPIs from racing with us. 6982 */ 6983 local_irq_save(flags); 6984 /* 6985 * Guard against NMI hits inside the critical section; 6986 * see also perf_prepare_sample_aux(). 6987 */ 6988 WRITE_ONCE(rb->aux_in_sampling, 1); 6989 barrier(); 6990 6991 ret = event->pmu->snapshot_aux(event, handle, size); 6992 6993 barrier(); 6994 WRITE_ONCE(rb->aux_in_sampling, 0); 6995 local_irq_restore(flags); 6996 6997 return ret; 6998 } 6999 7000 static void perf_aux_sample_output(struct perf_event *event, 7001 struct perf_output_handle *handle, 7002 struct perf_sample_data *data) 7003 { 7004 struct perf_event *sampler = event->aux_event; 7005 struct perf_buffer *rb; 7006 unsigned long pad; 7007 long size; 7008 7009 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7010 return; 7011 7012 rb = ring_buffer_get(sampler); 7013 if (!rb) 7014 return; 7015 7016 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7017 7018 /* 7019 * An error here means that perf_output_copy() failed (returned a 7020 * non-zero surplus that it didn't copy), which in its current 7021 * enlightened implementation is not possible. If that changes, we'd 7022 * like to know. 7023 */ 7024 if (WARN_ON_ONCE(size < 0)) 7025 goto out_put; 7026 7027 /* 7028 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7029 * perf_prepare_sample_aux(), so should not be more than that. 7030 */ 7031 pad = data->aux_size - size; 7032 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7033 pad = 8; 7034 7035 if (pad) { 7036 u64 zero = 0; 7037 perf_output_copy(handle, &zero, pad); 7038 } 7039 7040 out_put: 7041 ring_buffer_put(rb); 7042 } 7043 7044 static void __perf_event_header__init_id(struct perf_event_header *header, 7045 struct perf_sample_data *data, 7046 struct perf_event *event, 7047 u64 sample_type) 7048 { 7049 data->type = event->attr.sample_type; 7050 header->size += event->id_header_size; 7051 7052 if (sample_type & PERF_SAMPLE_TID) { 7053 /* namespace issues */ 7054 data->tid_entry.pid = perf_event_pid(event, current); 7055 data->tid_entry.tid = perf_event_tid(event, current); 7056 } 7057 7058 if (sample_type & PERF_SAMPLE_TIME) 7059 data->time = perf_event_clock(event); 7060 7061 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7062 data->id = primary_event_id(event); 7063 7064 if (sample_type & PERF_SAMPLE_STREAM_ID) 7065 data->stream_id = event->id; 7066 7067 if (sample_type & PERF_SAMPLE_CPU) { 7068 data->cpu_entry.cpu = raw_smp_processor_id(); 7069 data->cpu_entry.reserved = 0; 7070 } 7071 } 7072 7073 void perf_event_header__init_id(struct perf_event_header *header, 7074 struct perf_sample_data *data, 7075 struct perf_event *event) 7076 { 7077 if (event->attr.sample_id_all) 7078 __perf_event_header__init_id(header, data, event, event->attr.sample_type); 7079 } 7080 7081 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7082 struct perf_sample_data *data) 7083 { 7084 u64 sample_type = data->type; 7085 7086 if (sample_type & PERF_SAMPLE_TID) 7087 perf_output_put(handle, data->tid_entry); 7088 7089 if (sample_type & PERF_SAMPLE_TIME) 7090 perf_output_put(handle, data->time); 7091 7092 if (sample_type & PERF_SAMPLE_ID) 7093 perf_output_put(handle, data->id); 7094 7095 if (sample_type & PERF_SAMPLE_STREAM_ID) 7096 perf_output_put(handle, data->stream_id); 7097 7098 if (sample_type & PERF_SAMPLE_CPU) 7099 perf_output_put(handle, data->cpu_entry); 7100 7101 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7102 perf_output_put(handle, data->id); 7103 } 7104 7105 void perf_event__output_id_sample(struct perf_event *event, 7106 struct perf_output_handle *handle, 7107 struct perf_sample_data *sample) 7108 { 7109 if (event->attr.sample_id_all) 7110 __perf_event__output_id_sample(handle, sample); 7111 } 7112 7113 static void perf_output_read_one(struct perf_output_handle *handle, 7114 struct perf_event *event, 7115 u64 enabled, u64 running) 7116 { 7117 u64 read_format = event->attr.read_format; 7118 u64 values[5]; 7119 int n = 0; 7120 7121 values[n++] = perf_event_count(event); 7122 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7123 values[n++] = enabled + 7124 atomic64_read(&event->child_total_time_enabled); 7125 } 7126 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7127 values[n++] = running + 7128 atomic64_read(&event->child_total_time_running); 7129 } 7130 if (read_format & PERF_FORMAT_ID) 7131 values[n++] = primary_event_id(event); 7132 if (read_format & PERF_FORMAT_LOST) 7133 values[n++] = atomic64_read(&event->lost_samples); 7134 7135 __output_copy(handle, values, n * sizeof(u64)); 7136 } 7137 7138 static void perf_output_read_group(struct perf_output_handle *handle, 7139 struct perf_event *event, 7140 u64 enabled, u64 running) 7141 { 7142 struct perf_event *leader = event->group_leader, *sub; 7143 u64 read_format = event->attr.read_format; 7144 unsigned long flags; 7145 u64 values[6]; 7146 int n = 0; 7147 7148 /* 7149 * Disabling interrupts avoids all counter scheduling 7150 * (context switches, timer based rotation and IPIs). 7151 */ 7152 local_irq_save(flags); 7153 7154 values[n++] = 1 + leader->nr_siblings; 7155 7156 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7157 values[n++] = enabled; 7158 7159 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7160 values[n++] = running; 7161 7162 if ((leader != event) && 7163 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7164 leader->pmu->read(leader); 7165 7166 values[n++] = perf_event_count(leader); 7167 if (read_format & PERF_FORMAT_ID) 7168 values[n++] = primary_event_id(leader); 7169 if (read_format & PERF_FORMAT_LOST) 7170 values[n++] = atomic64_read(&leader->lost_samples); 7171 7172 __output_copy(handle, values, n * sizeof(u64)); 7173 7174 for_each_sibling_event(sub, leader) { 7175 n = 0; 7176 7177 if ((sub != event) && 7178 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7179 sub->pmu->read(sub); 7180 7181 values[n++] = perf_event_count(sub); 7182 if (read_format & PERF_FORMAT_ID) 7183 values[n++] = primary_event_id(sub); 7184 if (read_format & PERF_FORMAT_LOST) 7185 values[n++] = atomic64_read(&sub->lost_samples); 7186 7187 __output_copy(handle, values, n * sizeof(u64)); 7188 } 7189 7190 local_irq_restore(flags); 7191 } 7192 7193 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7194 PERF_FORMAT_TOTAL_TIME_RUNNING) 7195 7196 /* 7197 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7198 * 7199 * The problem is that its both hard and excessively expensive to iterate the 7200 * child list, not to mention that its impossible to IPI the children running 7201 * on another CPU, from interrupt/NMI context. 7202 */ 7203 static void perf_output_read(struct perf_output_handle *handle, 7204 struct perf_event *event) 7205 { 7206 u64 enabled = 0, running = 0, now; 7207 u64 read_format = event->attr.read_format; 7208 7209 /* 7210 * compute total_time_enabled, total_time_running 7211 * based on snapshot values taken when the event 7212 * was last scheduled in. 7213 * 7214 * we cannot simply called update_context_time() 7215 * because of locking issue as we are called in 7216 * NMI context 7217 */ 7218 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7219 calc_timer_values(event, &now, &enabled, &running); 7220 7221 if (event->attr.read_format & PERF_FORMAT_GROUP) 7222 perf_output_read_group(handle, event, enabled, running); 7223 else 7224 perf_output_read_one(handle, event, enabled, running); 7225 } 7226 7227 void perf_output_sample(struct perf_output_handle *handle, 7228 struct perf_event_header *header, 7229 struct perf_sample_data *data, 7230 struct perf_event *event) 7231 { 7232 u64 sample_type = data->type; 7233 7234 perf_output_put(handle, *header); 7235 7236 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7237 perf_output_put(handle, data->id); 7238 7239 if (sample_type & PERF_SAMPLE_IP) 7240 perf_output_put(handle, data->ip); 7241 7242 if (sample_type & PERF_SAMPLE_TID) 7243 perf_output_put(handle, data->tid_entry); 7244 7245 if (sample_type & PERF_SAMPLE_TIME) 7246 perf_output_put(handle, data->time); 7247 7248 if (sample_type & PERF_SAMPLE_ADDR) 7249 perf_output_put(handle, data->addr); 7250 7251 if (sample_type & PERF_SAMPLE_ID) 7252 perf_output_put(handle, data->id); 7253 7254 if (sample_type & PERF_SAMPLE_STREAM_ID) 7255 perf_output_put(handle, data->stream_id); 7256 7257 if (sample_type & PERF_SAMPLE_CPU) 7258 perf_output_put(handle, data->cpu_entry); 7259 7260 if (sample_type & PERF_SAMPLE_PERIOD) 7261 perf_output_put(handle, data->period); 7262 7263 if (sample_type & PERF_SAMPLE_READ) 7264 perf_output_read(handle, event); 7265 7266 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7267 int size = 1; 7268 7269 size += data->callchain->nr; 7270 size *= sizeof(u64); 7271 __output_copy(handle, data->callchain, size); 7272 } 7273 7274 if (sample_type & PERF_SAMPLE_RAW) { 7275 struct perf_raw_record *raw = data->raw; 7276 7277 if (raw) { 7278 struct perf_raw_frag *frag = &raw->frag; 7279 7280 perf_output_put(handle, raw->size); 7281 do { 7282 if (frag->copy) { 7283 __output_custom(handle, frag->copy, 7284 frag->data, frag->size); 7285 } else { 7286 __output_copy(handle, frag->data, 7287 frag->size); 7288 } 7289 if (perf_raw_frag_last(frag)) 7290 break; 7291 frag = frag->next; 7292 } while (1); 7293 if (frag->pad) 7294 __output_skip(handle, NULL, frag->pad); 7295 } else { 7296 struct { 7297 u32 size; 7298 u32 data; 7299 } raw = { 7300 .size = sizeof(u32), 7301 .data = 0, 7302 }; 7303 perf_output_put(handle, raw); 7304 } 7305 } 7306 7307 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7308 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7309 size_t size; 7310 7311 size = data->br_stack->nr 7312 * sizeof(struct perf_branch_entry); 7313 7314 perf_output_put(handle, data->br_stack->nr); 7315 if (branch_sample_hw_index(event)) 7316 perf_output_put(handle, data->br_stack->hw_idx); 7317 perf_output_copy(handle, data->br_stack->entries, size); 7318 } else { 7319 /* 7320 * we always store at least the value of nr 7321 */ 7322 u64 nr = 0; 7323 perf_output_put(handle, nr); 7324 } 7325 } 7326 7327 if (sample_type & PERF_SAMPLE_REGS_USER) { 7328 u64 abi = data->regs_user.abi; 7329 7330 /* 7331 * If there are no regs to dump, notice it through 7332 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7333 */ 7334 perf_output_put(handle, abi); 7335 7336 if (abi) { 7337 u64 mask = event->attr.sample_regs_user; 7338 perf_output_sample_regs(handle, 7339 data->regs_user.regs, 7340 mask); 7341 } 7342 } 7343 7344 if (sample_type & PERF_SAMPLE_STACK_USER) { 7345 perf_output_sample_ustack(handle, 7346 data->stack_user_size, 7347 data->regs_user.regs); 7348 } 7349 7350 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7351 perf_output_put(handle, data->weight.full); 7352 7353 if (sample_type & PERF_SAMPLE_DATA_SRC) 7354 perf_output_put(handle, data->data_src.val); 7355 7356 if (sample_type & PERF_SAMPLE_TRANSACTION) 7357 perf_output_put(handle, data->txn); 7358 7359 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7360 u64 abi = data->regs_intr.abi; 7361 /* 7362 * If there are no regs to dump, notice it through 7363 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7364 */ 7365 perf_output_put(handle, abi); 7366 7367 if (abi) { 7368 u64 mask = event->attr.sample_regs_intr; 7369 7370 perf_output_sample_regs(handle, 7371 data->regs_intr.regs, 7372 mask); 7373 } 7374 } 7375 7376 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7377 perf_output_put(handle, data->phys_addr); 7378 7379 if (sample_type & PERF_SAMPLE_CGROUP) 7380 perf_output_put(handle, data->cgroup); 7381 7382 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7383 perf_output_put(handle, data->data_page_size); 7384 7385 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7386 perf_output_put(handle, data->code_page_size); 7387 7388 if (sample_type & PERF_SAMPLE_AUX) { 7389 perf_output_put(handle, data->aux_size); 7390 7391 if (data->aux_size) 7392 perf_aux_sample_output(event, handle, data); 7393 } 7394 7395 if (!event->attr.watermark) { 7396 int wakeup_events = event->attr.wakeup_events; 7397 7398 if (wakeup_events) { 7399 struct perf_buffer *rb = handle->rb; 7400 int events = local_inc_return(&rb->events); 7401 7402 if (events >= wakeup_events) { 7403 local_sub(wakeup_events, &rb->events); 7404 local_inc(&rb->wakeup); 7405 } 7406 } 7407 } 7408 } 7409 7410 static u64 perf_virt_to_phys(u64 virt) 7411 { 7412 u64 phys_addr = 0; 7413 7414 if (!virt) 7415 return 0; 7416 7417 if (virt >= TASK_SIZE) { 7418 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7419 if (virt_addr_valid((void *)(uintptr_t)virt) && 7420 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7421 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7422 } else { 7423 /* 7424 * Walking the pages tables for user address. 7425 * Interrupts are disabled, so it prevents any tear down 7426 * of the page tables. 7427 * Try IRQ-safe get_user_page_fast_only first. 7428 * If failed, leave phys_addr as 0. 7429 */ 7430 if (current->mm != NULL) { 7431 struct page *p; 7432 7433 pagefault_disable(); 7434 if (get_user_page_fast_only(virt, 0, &p)) { 7435 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7436 put_page(p); 7437 } 7438 pagefault_enable(); 7439 } 7440 } 7441 7442 return phys_addr; 7443 } 7444 7445 /* 7446 * Return the pagetable size of a given virtual address. 7447 */ 7448 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7449 { 7450 u64 size = 0; 7451 7452 #ifdef CONFIG_HAVE_FAST_GUP 7453 pgd_t *pgdp, pgd; 7454 p4d_t *p4dp, p4d; 7455 pud_t *pudp, pud; 7456 pmd_t *pmdp, pmd; 7457 pte_t *ptep, pte; 7458 7459 pgdp = pgd_offset(mm, addr); 7460 pgd = READ_ONCE(*pgdp); 7461 if (pgd_none(pgd)) 7462 return 0; 7463 7464 if (pgd_leaf(pgd)) 7465 return pgd_leaf_size(pgd); 7466 7467 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7468 p4d = READ_ONCE(*p4dp); 7469 if (!p4d_present(p4d)) 7470 return 0; 7471 7472 if (p4d_leaf(p4d)) 7473 return p4d_leaf_size(p4d); 7474 7475 pudp = pud_offset_lockless(p4dp, p4d, addr); 7476 pud = READ_ONCE(*pudp); 7477 if (!pud_present(pud)) 7478 return 0; 7479 7480 if (pud_leaf(pud)) 7481 return pud_leaf_size(pud); 7482 7483 pmdp = pmd_offset_lockless(pudp, pud, addr); 7484 pmd = pmdp_get_lockless(pmdp); 7485 if (!pmd_present(pmd)) 7486 return 0; 7487 7488 if (pmd_leaf(pmd)) 7489 return pmd_leaf_size(pmd); 7490 7491 ptep = pte_offset_map(&pmd, addr); 7492 pte = ptep_get_lockless(ptep); 7493 if (pte_present(pte)) 7494 size = pte_leaf_size(pte); 7495 pte_unmap(ptep); 7496 #endif /* CONFIG_HAVE_FAST_GUP */ 7497 7498 return size; 7499 } 7500 7501 static u64 perf_get_page_size(unsigned long addr) 7502 { 7503 struct mm_struct *mm; 7504 unsigned long flags; 7505 u64 size; 7506 7507 if (!addr) 7508 return 0; 7509 7510 /* 7511 * Software page-table walkers must disable IRQs, 7512 * which prevents any tear down of the page tables. 7513 */ 7514 local_irq_save(flags); 7515 7516 mm = current->mm; 7517 if (!mm) { 7518 /* 7519 * For kernel threads and the like, use init_mm so that 7520 * we can find kernel memory. 7521 */ 7522 mm = &init_mm; 7523 } 7524 7525 size = perf_get_pgtable_size(mm, addr); 7526 7527 local_irq_restore(flags); 7528 7529 return size; 7530 } 7531 7532 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7533 7534 struct perf_callchain_entry * 7535 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7536 { 7537 bool kernel = !event->attr.exclude_callchain_kernel; 7538 bool user = !event->attr.exclude_callchain_user; 7539 /* Disallow cross-task user callchains. */ 7540 bool crosstask = event->ctx->task && event->ctx->task != current; 7541 const u32 max_stack = event->attr.sample_max_stack; 7542 struct perf_callchain_entry *callchain; 7543 7544 if (!kernel && !user) 7545 return &__empty_callchain; 7546 7547 callchain = get_perf_callchain(regs, 0, kernel, user, 7548 max_stack, crosstask, true); 7549 return callchain ?: &__empty_callchain; 7550 } 7551 7552 void perf_prepare_sample(struct perf_event_header *header, 7553 struct perf_sample_data *data, 7554 struct perf_event *event, 7555 struct pt_regs *regs) 7556 { 7557 u64 sample_type = event->attr.sample_type; 7558 u64 filtered_sample_type; 7559 7560 header->type = PERF_RECORD_SAMPLE; 7561 header->size = sizeof(*header) + event->header_size; 7562 7563 header->misc = 0; 7564 header->misc |= perf_misc_flags(regs); 7565 7566 /* 7567 * Clear the sample flags that have already been done by the 7568 * PMU driver. 7569 */ 7570 filtered_sample_type = sample_type & ~data->sample_flags; 7571 __perf_event_header__init_id(header, data, event, filtered_sample_type); 7572 7573 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7574 data->ip = perf_instruction_pointer(regs); 7575 7576 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7577 int size = 1; 7578 7579 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7580 data->callchain = perf_callchain(event, regs); 7581 7582 size += data->callchain->nr; 7583 7584 header->size += size * sizeof(u64); 7585 } 7586 7587 if (sample_type & PERF_SAMPLE_RAW) { 7588 struct perf_raw_record *raw = data->raw; 7589 int size; 7590 7591 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) { 7592 struct perf_raw_frag *frag = &raw->frag; 7593 u32 sum = 0; 7594 7595 do { 7596 sum += frag->size; 7597 if (perf_raw_frag_last(frag)) 7598 break; 7599 frag = frag->next; 7600 } while (1); 7601 7602 size = round_up(sum + sizeof(u32), sizeof(u64)); 7603 raw->size = size - sizeof(u32); 7604 frag->pad = raw->size - sum; 7605 } else { 7606 size = sizeof(u64); 7607 data->raw = NULL; 7608 } 7609 7610 header->size += size; 7611 } 7612 7613 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7614 int size = sizeof(u64); /* nr */ 7615 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7616 if (branch_sample_hw_index(event)) 7617 size += sizeof(u64); 7618 7619 size += data->br_stack->nr 7620 * sizeof(struct perf_branch_entry); 7621 } 7622 header->size += size; 7623 } 7624 7625 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7626 perf_sample_regs_user(&data->regs_user, regs); 7627 7628 if (sample_type & PERF_SAMPLE_REGS_USER) { 7629 /* regs dump ABI info */ 7630 int size = sizeof(u64); 7631 7632 if (data->regs_user.regs) { 7633 u64 mask = event->attr.sample_regs_user; 7634 size += hweight64(mask) * sizeof(u64); 7635 } 7636 7637 header->size += size; 7638 } 7639 7640 if (sample_type & PERF_SAMPLE_STACK_USER) { 7641 /* 7642 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7643 * processed as the last one or have additional check added 7644 * in case new sample type is added, because we could eat 7645 * up the rest of the sample size. 7646 */ 7647 u16 stack_size = event->attr.sample_stack_user; 7648 u16 size = sizeof(u64); 7649 7650 stack_size = perf_sample_ustack_size(stack_size, header->size, 7651 data->regs_user.regs); 7652 7653 /* 7654 * If there is something to dump, add space for the dump 7655 * itself and for the field that tells the dynamic size, 7656 * which is how many have been actually dumped. 7657 */ 7658 if (stack_size) 7659 size += sizeof(u64) + stack_size; 7660 7661 data->stack_user_size = stack_size; 7662 header->size += size; 7663 } 7664 7665 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7666 data->weight.full = 0; 7667 7668 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) 7669 data->data_src.val = PERF_MEM_NA; 7670 7671 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) 7672 data->txn = 0; 7673 7674 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) { 7675 if (filtered_sample_type & PERF_SAMPLE_ADDR) 7676 data->addr = 0; 7677 } 7678 7679 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7680 /* regs dump ABI info */ 7681 int size = sizeof(u64); 7682 7683 perf_sample_regs_intr(&data->regs_intr, regs); 7684 7685 if (data->regs_intr.regs) { 7686 u64 mask = event->attr.sample_regs_intr; 7687 7688 size += hweight64(mask) * sizeof(u64); 7689 } 7690 7691 header->size += size; 7692 } 7693 7694 if (sample_type & PERF_SAMPLE_PHYS_ADDR && 7695 filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) 7696 data->phys_addr = perf_virt_to_phys(data->addr); 7697 7698 #ifdef CONFIG_CGROUP_PERF 7699 if (sample_type & PERF_SAMPLE_CGROUP) { 7700 struct cgroup *cgrp; 7701 7702 /* protected by RCU */ 7703 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7704 data->cgroup = cgroup_id(cgrp); 7705 } 7706 #endif 7707 7708 /* 7709 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7710 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7711 * but the value will not dump to the userspace. 7712 */ 7713 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7714 data->data_page_size = perf_get_page_size(data->addr); 7715 7716 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7717 data->code_page_size = perf_get_page_size(data->ip); 7718 7719 if (sample_type & PERF_SAMPLE_AUX) { 7720 u64 size; 7721 7722 header->size += sizeof(u64); /* size */ 7723 7724 /* 7725 * Given the 16bit nature of header::size, an AUX sample can 7726 * easily overflow it, what with all the preceding sample bits. 7727 * Make sure this doesn't happen by using up to U16_MAX bytes 7728 * per sample in total (rounded down to 8 byte boundary). 7729 */ 7730 size = min_t(size_t, U16_MAX - header->size, 7731 event->attr.aux_sample_size); 7732 size = rounddown(size, 8); 7733 size = perf_prepare_sample_aux(event, data, size); 7734 7735 WARN_ON_ONCE(size + header->size > U16_MAX); 7736 header->size += size; 7737 } 7738 /* 7739 * If you're adding more sample types here, you likely need to do 7740 * something about the overflowing header::size, like repurpose the 7741 * lowest 3 bits of size, which should be always zero at the moment. 7742 * This raises a more important question, do we really need 512k sized 7743 * samples and why, so good argumentation is in order for whatever you 7744 * do here next. 7745 */ 7746 WARN_ON_ONCE(header->size & 7); 7747 } 7748 7749 static __always_inline int 7750 __perf_event_output(struct perf_event *event, 7751 struct perf_sample_data *data, 7752 struct pt_regs *regs, 7753 int (*output_begin)(struct perf_output_handle *, 7754 struct perf_sample_data *, 7755 struct perf_event *, 7756 unsigned int)) 7757 { 7758 struct perf_output_handle handle; 7759 struct perf_event_header header; 7760 int err; 7761 7762 /* protect the callchain buffers */ 7763 rcu_read_lock(); 7764 7765 perf_prepare_sample(&header, data, event, regs); 7766 7767 err = output_begin(&handle, data, event, header.size); 7768 if (err) 7769 goto exit; 7770 7771 perf_output_sample(&handle, &header, data, event); 7772 7773 perf_output_end(&handle); 7774 7775 exit: 7776 rcu_read_unlock(); 7777 return err; 7778 } 7779 7780 void 7781 perf_event_output_forward(struct perf_event *event, 7782 struct perf_sample_data *data, 7783 struct pt_regs *regs) 7784 { 7785 __perf_event_output(event, data, regs, perf_output_begin_forward); 7786 } 7787 7788 void 7789 perf_event_output_backward(struct perf_event *event, 7790 struct perf_sample_data *data, 7791 struct pt_regs *regs) 7792 { 7793 __perf_event_output(event, data, regs, perf_output_begin_backward); 7794 } 7795 7796 int 7797 perf_event_output(struct perf_event *event, 7798 struct perf_sample_data *data, 7799 struct pt_regs *regs) 7800 { 7801 return __perf_event_output(event, data, regs, perf_output_begin); 7802 } 7803 7804 /* 7805 * read event_id 7806 */ 7807 7808 struct perf_read_event { 7809 struct perf_event_header header; 7810 7811 u32 pid; 7812 u32 tid; 7813 }; 7814 7815 static void 7816 perf_event_read_event(struct perf_event *event, 7817 struct task_struct *task) 7818 { 7819 struct perf_output_handle handle; 7820 struct perf_sample_data sample; 7821 struct perf_read_event read_event = { 7822 .header = { 7823 .type = PERF_RECORD_READ, 7824 .misc = 0, 7825 .size = sizeof(read_event) + event->read_size, 7826 }, 7827 .pid = perf_event_pid(event, task), 7828 .tid = perf_event_tid(event, task), 7829 }; 7830 int ret; 7831 7832 perf_event_header__init_id(&read_event.header, &sample, event); 7833 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7834 if (ret) 7835 return; 7836 7837 perf_output_put(&handle, read_event); 7838 perf_output_read(&handle, event); 7839 perf_event__output_id_sample(event, &handle, &sample); 7840 7841 perf_output_end(&handle); 7842 } 7843 7844 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7845 7846 static void 7847 perf_iterate_ctx(struct perf_event_context *ctx, 7848 perf_iterate_f output, 7849 void *data, bool all) 7850 { 7851 struct perf_event *event; 7852 7853 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7854 if (!all) { 7855 if (event->state < PERF_EVENT_STATE_INACTIVE) 7856 continue; 7857 if (!event_filter_match(event)) 7858 continue; 7859 } 7860 7861 output(event, data); 7862 } 7863 } 7864 7865 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7866 { 7867 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7868 struct perf_event *event; 7869 7870 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7871 /* 7872 * Skip events that are not fully formed yet; ensure that 7873 * if we observe event->ctx, both event and ctx will be 7874 * complete enough. See perf_install_in_context(). 7875 */ 7876 if (!smp_load_acquire(&event->ctx)) 7877 continue; 7878 7879 if (event->state < PERF_EVENT_STATE_INACTIVE) 7880 continue; 7881 if (!event_filter_match(event)) 7882 continue; 7883 output(event, data); 7884 } 7885 } 7886 7887 /* 7888 * Iterate all events that need to receive side-band events. 7889 * 7890 * For new callers; ensure that account_pmu_sb_event() includes 7891 * your event, otherwise it might not get delivered. 7892 */ 7893 static void 7894 perf_iterate_sb(perf_iterate_f output, void *data, 7895 struct perf_event_context *task_ctx) 7896 { 7897 struct perf_event_context *ctx; 7898 7899 rcu_read_lock(); 7900 preempt_disable(); 7901 7902 /* 7903 * If we have task_ctx != NULL we only notify the task context itself. 7904 * The task_ctx is set only for EXIT events before releasing task 7905 * context. 7906 */ 7907 if (task_ctx) { 7908 perf_iterate_ctx(task_ctx, output, data, false); 7909 goto done; 7910 } 7911 7912 perf_iterate_sb_cpu(output, data); 7913 7914 ctx = rcu_dereference(current->perf_event_ctxp); 7915 if (ctx) 7916 perf_iterate_ctx(ctx, output, data, false); 7917 done: 7918 preempt_enable(); 7919 rcu_read_unlock(); 7920 } 7921 7922 /* 7923 * Clear all file-based filters at exec, they'll have to be 7924 * re-instated when/if these objects are mmapped again. 7925 */ 7926 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7927 { 7928 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7929 struct perf_addr_filter *filter; 7930 unsigned int restart = 0, count = 0; 7931 unsigned long flags; 7932 7933 if (!has_addr_filter(event)) 7934 return; 7935 7936 raw_spin_lock_irqsave(&ifh->lock, flags); 7937 list_for_each_entry(filter, &ifh->list, entry) { 7938 if (filter->path.dentry) { 7939 event->addr_filter_ranges[count].start = 0; 7940 event->addr_filter_ranges[count].size = 0; 7941 restart++; 7942 } 7943 7944 count++; 7945 } 7946 7947 if (restart) 7948 event->addr_filters_gen++; 7949 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7950 7951 if (restart) 7952 perf_event_stop(event, 1); 7953 } 7954 7955 void perf_event_exec(void) 7956 { 7957 struct perf_event_context *ctx; 7958 7959 ctx = perf_pin_task_context(current); 7960 if (!ctx) 7961 return; 7962 7963 perf_event_enable_on_exec(ctx); 7964 perf_event_remove_on_exec(ctx); 7965 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 7966 7967 perf_unpin_context(ctx); 7968 put_ctx(ctx); 7969 } 7970 7971 struct remote_output { 7972 struct perf_buffer *rb; 7973 int err; 7974 }; 7975 7976 static void __perf_event_output_stop(struct perf_event *event, void *data) 7977 { 7978 struct perf_event *parent = event->parent; 7979 struct remote_output *ro = data; 7980 struct perf_buffer *rb = ro->rb; 7981 struct stop_event_data sd = { 7982 .event = event, 7983 }; 7984 7985 if (!has_aux(event)) 7986 return; 7987 7988 if (!parent) 7989 parent = event; 7990 7991 /* 7992 * In case of inheritance, it will be the parent that links to the 7993 * ring-buffer, but it will be the child that's actually using it. 7994 * 7995 * We are using event::rb to determine if the event should be stopped, 7996 * however this may race with ring_buffer_attach() (through set_output), 7997 * which will make us skip the event that actually needs to be stopped. 7998 * So ring_buffer_attach() has to stop an aux event before re-assigning 7999 * its rb pointer. 8000 */ 8001 if (rcu_dereference(parent->rb) == rb) 8002 ro->err = __perf_event_stop(&sd); 8003 } 8004 8005 static int __perf_pmu_output_stop(void *info) 8006 { 8007 struct perf_event *event = info; 8008 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8009 struct remote_output ro = { 8010 .rb = event->rb, 8011 }; 8012 8013 rcu_read_lock(); 8014 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8015 if (cpuctx->task_ctx) 8016 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8017 &ro, false); 8018 rcu_read_unlock(); 8019 8020 return ro.err; 8021 } 8022 8023 static void perf_pmu_output_stop(struct perf_event *event) 8024 { 8025 struct perf_event *iter; 8026 int err, cpu; 8027 8028 restart: 8029 rcu_read_lock(); 8030 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8031 /* 8032 * For per-CPU events, we need to make sure that neither they 8033 * nor their children are running; for cpu==-1 events it's 8034 * sufficient to stop the event itself if it's active, since 8035 * it can't have children. 8036 */ 8037 cpu = iter->cpu; 8038 if (cpu == -1) 8039 cpu = READ_ONCE(iter->oncpu); 8040 8041 if (cpu == -1) 8042 continue; 8043 8044 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8045 if (err == -EAGAIN) { 8046 rcu_read_unlock(); 8047 goto restart; 8048 } 8049 } 8050 rcu_read_unlock(); 8051 } 8052 8053 /* 8054 * task tracking -- fork/exit 8055 * 8056 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8057 */ 8058 8059 struct perf_task_event { 8060 struct task_struct *task; 8061 struct perf_event_context *task_ctx; 8062 8063 struct { 8064 struct perf_event_header header; 8065 8066 u32 pid; 8067 u32 ppid; 8068 u32 tid; 8069 u32 ptid; 8070 u64 time; 8071 } event_id; 8072 }; 8073 8074 static int perf_event_task_match(struct perf_event *event) 8075 { 8076 return event->attr.comm || event->attr.mmap || 8077 event->attr.mmap2 || event->attr.mmap_data || 8078 event->attr.task; 8079 } 8080 8081 static void perf_event_task_output(struct perf_event *event, 8082 void *data) 8083 { 8084 struct perf_task_event *task_event = data; 8085 struct perf_output_handle handle; 8086 struct perf_sample_data sample; 8087 struct task_struct *task = task_event->task; 8088 int ret, size = task_event->event_id.header.size; 8089 8090 if (!perf_event_task_match(event)) 8091 return; 8092 8093 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8094 8095 ret = perf_output_begin(&handle, &sample, event, 8096 task_event->event_id.header.size); 8097 if (ret) 8098 goto out; 8099 8100 task_event->event_id.pid = perf_event_pid(event, task); 8101 task_event->event_id.tid = perf_event_tid(event, task); 8102 8103 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8104 task_event->event_id.ppid = perf_event_pid(event, 8105 task->real_parent); 8106 task_event->event_id.ptid = perf_event_pid(event, 8107 task->real_parent); 8108 } else { /* PERF_RECORD_FORK */ 8109 task_event->event_id.ppid = perf_event_pid(event, current); 8110 task_event->event_id.ptid = perf_event_tid(event, current); 8111 } 8112 8113 task_event->event_id.time = perf_event_clock(event); 8114 8115 perf_output_put(&handle, task_event->event_id); 8116 8117 perf_event__output_id_sample(event, &handle, &sample); 8118 8119 perf_output_end(&handle); 8120 out: 8121 task_event->event_id.header.size = size; 8122 } 8123 8124 static void perf_event_task(struct task_struct *task, 8125 struct perf_event_context *task_ctx, 8126 int new) 8127 { 8128 struct perf_task_event task_event; 8129 8130 if (!atomic_read(&nr_comm_events) && 8131 !atomic_read(&nr_mmap_events) && 8132 !atomic_read(&nr_task_events)) 8133 return; 8134 8135 task_event = (struct perf_task_event){ 8136 .task = task, 8137 .task_ctx = task_ctx, 8138 .event_id = { 8139 .header = { 8140 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8141 .misc = 0, 8142 .size = sizeof(task_event.event_id), 8143 }, 8144 /* .pid */ 8145 /* .ppid */ 8146 /* .tid */ 8147 /* .ptid */ 8148 /* .time */ 8149 }, 8150 }; 8151 8152 perf_iterate_sb(perf_event_task_output, 8153 &task_event, 8154 task_ctx); 8155 } 8156 8157 void perf_event_fork(struct task_struct *task) 8158 { 8159 perf_event_task(task, NULL, 1); 8160 perf_event_namespaces(task); 8161 } 8162 8163 /* 8164 * comm tracking 8165 */ 8166 8167 struct perf_comm_event { 8168 struct task_struct *task; 8169 char *comm; 8170 int comm_size; 8171 8172 struct { 8173 struct perf_event_header header; 8174 8175 u32 pid; 8176 u32 tid; 8177 } event_id; 8178 }; 8179 8180 static int perf_event_comm_match(struct perf_event *event) 8181 { 8182 return event->attr.comm; 8183 } 8184 8185 static void perf_event_comm_output(struct perf_event *event, 8186 void *data) 8187 { 8188 struct perf_comm_event *comm_event = data; 8189 struct perf_output_handle handle; 8190 struct perf_sample_data sample; 8191 int size = comm_event->event_id.header.size; 8192 int ret; 8193 8194 if (!perf_event_comm_match(event)) 8195 return; 8196 8197 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8198 ret = perf_output_begin(&handle, &sample, event, 8199 comm_event->event_id.header.size); 8200 8201 if (ret) 8202 goto out; 8203 8204 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8205 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8206 8207 perf_output_put(&handle, comm_event->event_id); 8208 __output_copy(&handle, comm_event->comm, 8209 comm_event->comm_size); 8210 8211 perf_event__output_id_sample(event, &handle, &sample); 8212 8213 perf_output_end(&handle); 8214 out: 8215 comm_event->event_id.header.size = size; 8216 } 8217 8218 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8219 { 8220 char comm[TASK_COMM_LEN]; 8221 unsigned int size; 8222 8223 memset(comm, 0, sizeof(comm)); 8224 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 8225 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8226 8227 comm_event->comm = comm; 8228 comm_event->comm_size = size; 8229 8230 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8231 8232 perf_iterate_sb(perf_event_comm_output, 8233 comm_event, 8234 NULL); 8235 } 8236 8237 void perf_event_comm(struct task_struct *task, bool exec) 8238 { 8239 struct perf_comm_event comm_event; 8240 8241 if (!atomic_read(&nr_comm_events)) 8242 return; 8243 8244 comm_event = (struct perf_comm_event){ 8245 .task = task, 8246 /* .comm */ 8247 /* .comm_size */ 8248 .event_id = { 8249 .header = { 8250 .type = PERF_RECORD_COMM, 8251 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8252 /* .size */ 8253 }, 8254 /* .pid */ 8255 /* .tid */ 8256 }, 8257 }; 8258 8259 perf_event_comm_event(&comm_event); 8260 } 8261 8262 /* 8263 * namespaces tracking 8264 */ 8265 8266 struct perf_namespaces_event { 8267 struct task_struct *task; 8268 8269 struct { 8270 struct perf_event_header header; 8271 8272 u32 pid; 8273 u32 tid; 8274 u64 nr_namespaces; 8275 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8276 } event_id; 8277 }; 8278 8279 static int perf_event_namespaces_match(struct perf_event *event) 8280 { 8281 return event->attr.namespaces; 8282 } 8283 8284 static void perf_event_namespaces_output(struct perf_event *event, 8285 void *data) 8286 { 8287 struct perf_namespaces_event *namespaces_event = data; 8288 struct perf_output_handle handle; 8289 struct perf_sample_data sample; 8290 u16 header_size = namespaces_event->event_id.header.size; 8291 int ret; 8292 8293 if (!perf_event_namespaces_match(event)) 8294 return; 8295 8296 perf_event_header__init_id(&namespaces_event->event_id.header, 8297 &sample, event); 8298 ret = perf_output_begin(&handle, &sample, event, 8299 namespaces_event->event_id.header.size); 8300 if (ret) 8301 goto out; 8302 8303 namespaces_event->event_id.pid = perf_event_pid(event, 8304 namespaces_event->task); 8305 namespaces_event->event_id.tid = perf_event_tid(event, 8306 namespaces_event->task); 8307 8308 perf_output_put(&handle, namespaces_event->event_id); 8309 8310 perf_event__output_id_sample(event, &handle, &sample); 8311 8312 perf_output_end(&handle); 8313 out: 8314 namespaces_event->event_id.header.size = header_size; 8315 } 8316 8317 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8318 struct task_struct *task, 8319 const struct proc_ns_operations *ns_ops) 8320 { 8321 struct path ns_path; 8322 struct inode *ns_inode; 8323 int error; 8324 8325 error = ns_get_path(&ns_path, task, ns_ops); 8326 if (!error) { 8327 ns_inode = ns_path.dentry->d_inode; 8328 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8329 ns_link_info->ino = ns_inode->i_ino; 8330 path_put(&ns_path); 8331 } 8332 } 8333 8334 void perf_event_namespaces(struct task_struct *task) 8335 { 8336 struct perf_namespaces_event namespaces_event; 8337 struct perf_ns_link_info *ns_link_info; 8338 8339 if (!atomic_read(&nr_namespaces_events)) 8340 return; 8341 8342 namespaces_event = (struct perf_namespaces_event){ 8343 .task = task, 8344 .event_id = { 8345 .header = { 8346 .type = PERF_RECORD_NAMESPACES, 8347 .misc = 0, 8348 .size = sizeof(namespaces_event.event_id), 8349 }, 8350 /* .pid */ 8351 /* .tid */ 8352 .nr_namespaces = NR_NAMESPACES, 8353 /* .link_info[NR_NAMESPACES] */ 8354 }, 8355 }; 8356 8357 ns_link_info = namespaces_event.event_id.link_info; 8358 8359 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8360 task, &mntns_operations); 8361 8362 #ifdef CONFIG_USER_NS 8363 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8364 task, &userns_operations); 8365 #endif 8366 #ifdef CONFIG_NET_NS 8367 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8368 task, &netns_operations); 8369 #endif 8370 #ifdef CONFIG_UTS_NS 8371 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8372 task, &utsns_operations); 8373 #endif 8374 #ifdef CONFIG_IPC_NS 8375 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8376 task, &ipcns_operations); 8377 #endif 8378 #ifdef CONFIG_PID_NS 8379 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8380 task, &pidns_operations); 8381 #endif 8382 #ifdef CONFIG_CGROUPS 8383 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8384 task, &cgroupns_operations); 8385 #endif 8386 8387 perf_iterate_sb(perf_event_namespaces_output, 8388 &namespaces_event, 8389 NULL); 8390 } 8391 8392 /* 8393 * cgroup tracking 8394 */ 8395 #ifdef CONFIG_CGROUP_PERF 8396 8397 struct perf_cgroup_event { 8398 char *path; 8399 int path_size; 8400 struct { 8401 struct perf_event_header header; 8402 u64 id; 8403 char path[]; 8404 } event_id; 8405 }; 8406 8407 static int perf_event_cgroup_match(struct perf_event *event) 8408 { 8409 return event->attr.cgroup; 8410 } 8411 8412 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8413 { 8414 struct perf_cgroup_event *cgroup_event = data; 8415 struct perf_output_handle handle; 8416 struct perf_sample_data sample; 8417 u16 header_size = cgroup_event->event_id.header.size; 8418 int ret; 8419 8420 if (!perf_event_cgroup_match(event)) 8421 return; 8422 8423 perf_event_header__init_id(&cgroup_event->event_id.header, 8424 &sample, event); 8425 ret = perf_output_begin(&handle, &sample, event, 8426 cgroup_event->event_id.header.size); 8427 if (ret) 8428 goto out; 8429 8430 perf_output_put(&handle, cgroup_event->event_id); 8431 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8432 8433 perf_event__output_id_sample(event, &handle, &sample); 8434 8435 perf_output_end(&handle); 8436 out: 8437 cgroup_event->event_id.header.size = header_size; 8438 } 8439 8440 static void perf_event_cgroup(struct cgroup *cgrp) 8441 { 8442 struct perf_cgroup_event cgroup_event; 8443 char path_enomem[16] = "//enomem"; 8444 char *pathname; 8445 size_t size; 8446 8447 if (!atomic_read(&nr_cgroup_events)) 8448 return; 8449 8450 cgroup_event = (struct perf_cgroup_event){ 8451 .event_id = { 8452 .header = { 8453 .type = PERF_RECORD_CGROUP, 8454 .misc = 0, 8455 .size = sizeof(cgroup_event.event_id), 8456 }, 8457 .id = cgroup_id(cgrp), 8458 }, 8459 }; 8460 8461 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8462 if (pathname == NULL) { 8463 cgroup_event.path = path_enomem; 8464 } else { 8465 /* just to be sure to have enough space for alignment */ 8466 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8467 cgroup_event.path = pathname; 8468 } 8469 8470 /* 8471 * Since our buffer works in 8 byte units we need to align our string 8472 * size to a multiple of 8. However, we must guarantee the tail end is 8473 * zero'd out to avoid leaking random bits to userspace. 8474 */ 8475 size = strlen(cgroup_event.path) + 1; 8476 while (!IS_ALIGNED(size, sizeof(u64))) 8477 cgroup_event.path[size++] = '\0'; 8478 8479 cgroup_event.event_id.header.size += size; 8480 cgroup_event.path_size = size; 8481 8482 perf_iterate_sb(perf_event_cgroup_output, 8483 &cgroup_event, 8484 NULL); 8485 8486 kfree(pathname); 8487 } 8488 8489 #endif 8490 8491 /* 8492 * mmap tracking 8493 */ 8494 8495 struct perf_mmap_event { 8496 struct vm_area_struct *vma; 8497 8498 const char *file_name; 8499 int file_size; 8500 int maj, min; 8501 u64 ino; 8502 u64 ino_generation; 8503 u32 prot, flags; 8504 u8 build_id[BUILD_ID_SIZE_MAX]; 8505 u32 build_id_size; 8506 8507 struct { 8508 struct perf_event_header header; 8509 8510 u32 pid; 8511 u32 tid; 8512 u64 start; 8513 u64 len; 8514 u64 pgoff; 8515 } event_id; 8516 }; 8517 8518 static int perf_event_mmap_match(struct perf_event *event, 8519 void *data) 8520 { 8521 struct perf_mmap_event *mmap_event = data; 8522 struct vm_area_struct *vma = mmap_event->vma; 8523 int executable = vma->vm_flags & VM_EXEC; 8524 8525 return (!executable && event->attr.mmap_data) || 8526 (executable && (event->attr.mmap || event->attr.mmap2)); 8527 } 8528 8529 static void perf_event_mmap_output(struct perf_event *event, 8530 void *data) 8531 { 8532 struct perf_mmap_event *mmap_event = data; 8533 struct perf_output_handle handle; 8534 struct perf_sample_data sample; 8535 int size = mmap_event->event_id.header.size; 8536 u32 type = mmap_event->event_id.header.type; 8537 bool use_build_id; 8538 int ret; 8539 8540 if (!perf_event_mmap_match(event, data)) 8541 return; 8542 8543 if (event->attr.mmap2) { 8544 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8545 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8546 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8547 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8548 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8549 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8550 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8551 } 8552 8553 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8554 ret = perf_output_begin(&handle, &sample, event, 8555 mmap_event->event_id.header.size); 8556 if (ret) 8557 goto out; 8558 8559 mmap_event->event_id.pid = perf_event_pid(event, current); 8560 mmap_event->event_id.tid = perf_event_tid(event, current); 8561 8562 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8563 8564 if (event->attr.mmap2 && use_build_id) 8565 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8566 8567 perf_output_put(&handle, mmap_event->event_id); 8568 8569 if (event->attr.mmap2) { 8570 if (use_build_id) { 8571 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8572 8573 __output_copy(&handle, size, 4); 8574 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8575 } else { 8576 perf_output_put(&handle, mmap_event->maj); 8577 perf_output_put(&handle, mmap_event->min); 8578 perf_output_put(&handle, mmap_event->ino); 8579 perf_output_put(&handle, mmap_event->ino_generation); 8580 } 8581 perf_output_put(&handle, mmap_event->prot); 8582 perf_output_put(&handle, mmap_event->flags); 8583 } 8584 8585 __output_copy(&handle, mmap_event->file_name, 8586 mmap_event->file_size); 8587 8588 perf_event__output_id_sample(event, &handle, &sample); 8589 8590 perf_output_end(&handle); 8591 out: 8592 mmap_event->event_id.header.size = size; 8593 mmap_event->event_id.header.type = type; 8594 } 8595 8596 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8597 { 8598 struct vm_area_struct *vma = mmap_event->vma; 8599 struct file *file = vma->vm_file; 8600 int maj = 0, min = 0; 8601 u64 ino = 0, gen = 0; 8602 u32 prot = 0, flags = 0; 8603 unsigned int size; 8604 char tmp[16]; 8605 char *buf = NULL; 8606 char *name; 8607 8608 if (vma->vm_flags & VM_READ) 8609 prot |= PROT_READ; 8610 if (vma->vm_flags & VM_WRITE) 8611 prot |= PROT_WRITE; 8612 if (vma->vm_flags & VM_EXEC) 8613 prot |= PROT_EXEC; 8614 8615 if (vma->vm_flags & VM_MAYSHARE) 8616 flags = MAP_SHARED; 8617 else 8618 flags = MAP_PRIVATE; 8619 8620 if (vma->vm_flags & VM_LOCKED) 8621 flags |= MAP_LOCKED; 8622 if (is_vm_hugetlb_page(vma)) 8623 flags |= MAP_HUGETLB; 8624 8625 if (file) { 8626 struct inode *inode; 8627 dev_t dev; 8628 8629 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8630 if (!buf) { 8631 name = "//enomem"; 8632 goto cpy_name; 8633 } 8634 /* 8635 * d_path() works from the end of the rb backwards, so we 8636 * need to add enough zero bytes after the string to handle 8637 * the 64bit alignment we do later. 8638 */ 8639 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8640 if (IS_ERR(name)) { 8641 name = "//toolong"; 8642 goto cpy_name; 8643 } 8644 inode = file_inode(vma->vm_file); 8645 dev = inode->i_sb->s_dev; 8646 ino = inode->i_ino; 8647 gen = inode->i_generation; 8648 maj = MAJOR(dev); 8649 min = MINOR(dev); 8650 8651 goto got_name; 8652 } else { 8653 if (vma->vm_ops && vma->vm_ops->name) { 8654 name = (char *) vma->vm_ops->name(vma); 8655 if (name) 8656 goto cpy_name; 8657 } 8658 8659 name = (char *)arch_vma_name(vma); 8660 if (name) 8661 goto cpy_name; 8662 8663 if (vma->vm_start <= vma->vm_mm->start_brk && 8664 vma->vm_end >= vma->vm_mm->brk) { 8665 name = "[heap]"; 8666 goto cpy_name; 8667 } 8668 if (vma->vm_start <= vma->vm_mm->start_stack && 8669 vma->vm_end >= vma->vm_mm->start_stack) { 8670 name = "[stack]"; 8671 goto cpy_name; 8672 } 8673 8674 name = "//anon"; 8675 goto cpy_name; 8676 } 8677 8678 cpy_name: 8679 strlcpy(tmp, name, sizeof(tmp)); 8680 name = tmp; 8681 got_name: 8682 /* 8683 * Since our buffer works in 8 byte units we need to align our string 8684 * size to a multiple of 8. However, we must guarantee the tail end is 8685 * zero'd out to avoid leaking random bits to userspace. 8686 */ 8687 size = strlen(name)+1; 8688 while (!IS_ALIGNED(size, sizeof(u64))) 8689 name[size++] = '\0'; 8690 8691 mmap_event->file_name = name; 8692 mmap_event->file_size = size; 8693 mmap_event->maj = maj; 8694 mmap_event->min = min; 8695 mmap_event->ino = ino; 8696 mmap_event->ino_generation = gen; 8697 mmap_event->prot = prot; 8698 mmap_event->flags = flags; 8699 8700 if (!(vma->vm_flags & VM_EXEC)) 8701 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8702 8703 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8704 8705 if (atomic_read(&nr_build_id_events)) 8706 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8707 8708 perf_iterate_sb(perf_event_mmap_output, 8709 mmap_event, 8710 NULL); 8711 8712 kfree(buf); 8713 } 8714 8715 /* 8716 * Check whether inode and address range match filter criteria. 8717 */ 8718 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8719 struct file *file, unsigned long offset, 8720 unsigned long size) 8721 { 8722 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8723 if (!filter->path.dentry) 8724 return false; 8725 8726 if (d_inode(filter->path.dentry) != file_inode(file)) 8727 return false; 8728 8729 if (filter->offset > offset + size) 8730 return false; 8731 8732 if (filter->offset + filter->size < offset) 8733 return false; 8734 8735 return true; 8736 } 8737 8738 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8739 struct vm_area_struct *vma, 8740 struct perf_addr_filter_range *fr) 8741 { 8742 unsigned long vma_size = vma->vm_end - vma->vm_start; 8743 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8744 struct file *file = vma->vm_file; 8745 8746 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8747 return false; 8748 8749 if (filter->offset < off) { 8750 fr->start = vma->vm_start; 8751 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8752 } else { 8753 fr->start = vma->vm_start + filter->offset - off; 8754 fr->size = min(vma->vm_end - fr->start, filter->size); 8755 } 8756 8757 return true; 8758 } 8759 8760 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8761 { 8762 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8763 struct vm_area_struct *vma = data; 8764 struct perf_addr_filter *filter; 8765 unsigned int restart = 0, count = 0; 8766 unsigned long flags; 8767 8768 if (!has_addr_filter(event)) 8769 return; 8770 8771 if (!vma->vm_file) 8772 return; 8773 8774 raw_spin_lock_irqsave(&ifh->lock, flags); 8775 list_for_each_entry(filter, &ifh->list, entry) { 8776 if (perf_addr_filter_vma_adjust(filter, vma, 8777 &event->addr_filter_ranges[count])) 8778 restart++; 8779 8780 count++; 8781 } 8782 8783 if (restart) 8784 event->addr_filters_gen++; 8785 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8786 8787 if (restart) 8788 perf_event_stop(event, 1); 8789 } 8790 8791 /* 8792 * Adjust all task's events' filters to the new vma 8793 */ 8794 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8795 { 8796 struct perf_event_context *ctx; 8797 8798 /* 8799 * Data tracing isn't supported yet and as such there is no need 8800 * to keep track of anything that isn't related to executable code: 8801 */ 8802 if (!(vma->vm_flags & VM_EXEC)) 8803 return; 8804 8805 rcu_read_lock(); 8806 ctx = rcu_dereference(current->perf_event_ctxp); 8807 if (ctx) 8808 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8809 rcu_read_unlock(); 8810 } 8811 8812 void perf_event_mmap(struct vm_area_struct *vma) 8813 { 8814 struct perf_mmap_event mmap_event; 8815 8816 if (!atomic_read(&nr_mmap_events)) 8817 return; 8818 8819 mmap_event = (struct perf_mmap_event){ 8820 .vma = vma, 8821 /* .file_name */ 8822 /* .file_size */ 8823 .event_id = { 8824 .header = { 8825 .type = PERF_RECORD_MMAP, 8826 .misc = PERF_RECORD_MISC_USER, 8827 /* .size */ 8828 }, 8829 /* .pid */ 8830 /* .tid */ 8831 .start = vma->vm_start, 8832 .len = vma->vm_end - vma->vm_start, 8833 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8834 }, 8835 /* .maj (attr_mmap2 only) */ 8836 /* .min (attr_mmap2 only) */ 8837 /* .ino (attr_mmap2 only) */ 8838 /* .ino_generation (attr_mmap2 only) */ 8839 /* .prot (attr_mmap2 only) */ 8840 /* .flags (attr_mmap2 only) */ 8841 }; 8842 8843 perf_addr_filters_adjust(vma); 8844 perf_event_mmap_event(&mmap_event); 8845 } 8846 8847 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8848 unsigned long size, u64 flags) 8849 { 8850 struct perf_output_handle handle; 8851 struct perf_sample_data sample; 8852 struct perf_aux_event { 8853 struct perf_event_header header; 8854 u64 offset; 8855 u64 size; 8856 u64 flags; 8857 } rec = { 8858 .header = { 8859 .type = PERF_RECORD_AUX, 8860 .misc = 0, 8861 .size = sizeof(rec), 8862 }, 8863 .offset = head, 8864 .size = size, 8865 .flags = flags, 8866 }; 8867 int ret; 8868 8869 perf_event_header__init_id(&rec.header, &sample, event); 8870 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8871 8872 if (ret) 8873 return; 8874 8875 perf_output_put(&handle, rec); 8876 perf_event__output_id_sample(event, &handle, &sample); 8877 8878 perf_output_end(&handle); 8879 } 8880 8881 /* 8882 * Lost/dropped samples logging 8883 */ 8884 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8885 { 8886 struct perf_output_handle handle; 8887 struct perf_sample_data sample; 8888 int ret; 8889 8890 struct { 8891 struct perf_event_header header; 8892 u64 lost; 8893 } lost_samples_event = { 8894 .header = { 8895 .type = PERF_RECORD_LOST_SAMPLES, 8896 .misc = 0, 8897 .size = sizeof(lost_samples_event), 8898 }, 8899 .lost = lost, 8900 }; 8901 8902 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8903 8904 ret = perf_output_begin(&handle, &sample, event, 8905 lost_samples_event.header.size); 8906 if (ret) 8907 return; 8908 8909 perf_output_put(&handle, lost_samples_event); 8910 perf_event__output_id_sample(event, &handle, &sample); 8911 perf_output_end(&handle); 8912 } 8913 8914 /* 8915 * context_switch tracking 8916 */ 8917 8918 struct perf_switch_event { 8919 struct task_struct *task; 8920 struct task_struct *next_prev; 8921 8922 struct { 8923 struct perf_event_header header; 8924 u32 next_prev_pid; 8925 u32 next_prev_tid; 8926 } event_id; 8927 }; 8928 8929 static int perf_event_switch_match(struct perf_event *event) 8930 { 8931 return event->attr.context_switch; 8932 } 8933 8934 static void perf_event_switch_output(struct perf_event *event, void *data) 8935 { 8936 struct perf_switch_event *se = data; 8937 struct perf_output_handle handle; 8938 struct perf_sample_data sample; 8939 int ret; 8940 8941 if (!perf_event_switch_match(event)) 8942 return; 8943 8944 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8945 if (event->ctx->task) { 8946 se->event_id.header.type = PERF_RECORD_SWITCH; 8947 se->event_id.header.size = sizeof(se->event_id.header); 8948 } else { 8949 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8950 se->event_id.header.size = sizeof(se->event_id); 8951 se->event_id.next_prev_pid = 8952 perf_event_pid(event, se->next_prev); 8953 se->event_id.next_prev_tid = 8954 perf_event_tid(event, se->next_prev); 8955 } 8956 8957 perf_event_header__init_id(&se->event_id.header, &sample, event); 8958 8959 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8960 if (ret) 8961 return; 8962 8963 if (event->ctx->task) 8964 perf_output_put(&handle, se->event_id.header); 8965 else 8966 perf_output_put(&handle, se->event_id); 8967 8968 perf_event__output_id_sample(event, &handle, &sample); 8969 8970 perf_output_end(&handle); 8971 } 8972 8973 static void perf_event_switch(struct task_struct *task, 8974 struct task_struct *next_prev, bool sched_in) 8975 { 8976 struct perf_switch_event switch_event; 8977 8978 /* N.B. caller checks nr_switch_events != 0 */ 8979 8980 switch_event = (struct perf_switch_event){ 8981 .task = task, 8982 .next_prev = next_prev, 8983 .event_id = { 8984 .header = { 8985 /* .type */ 8986 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8987 /* .size */ 8988 }, 8989 /* .next_prev_pid */ 8990 /* .next_prev_tid */ 8991 }, 8992 }; 8993 8994 if (!sched_in && task->on_rq) { 8995 switch_event.event_id.header.misc |= 8996 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8997 } 8998 8999 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9000 } 9001 9002 /* 9003 * IRQ throttle logging 9004 */ 9005 9006 static void perf_log_throttle(struct perf_event *event, int enable) 9007 { 9008 struct perf_output_handle handle; 9009 struct perf_sample_data sample; 9010 int ret; 9011 9012 struct { 9013 struct perf_event_header header; 9014 u64 time; 9015 u64 id; 9016 u64 stream_id; 9017 } throttle_event = { 9018 .header = { 9019 .type = PERF_RECORD_THROTTLE, 9020 .misc = 0, 9021 .size = sizeof(throttle_event), 9022 }, 9023 .time = perf_event_clock(event), 9024 .id = primary_event_id(event), 9025 .stream_id = event->id, 9026 }; 9027 9028 if (enable) 9029 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9030 9031 perf_event_header__init_id(&throttle_event.header, &sample, event); 9032 9033 ret = perf_output_begin(&handle, &sample, event, 9034 throttle_event.header.size); 9035 if (ret) 9036 return; 9037 9038 perf_output_put(&handle, throttle_event); 9039 perf_event__output_id_sample(event, &handle, &sample); 9040 perf_output_end(&handle); 9041 } 9042 9043 /* 9044 * ksymbol register/unregister tracking 9045 */ 9046 9047 struct perf_ksymbol_event { 9048 const char *name; 9049 int name_len; 9050 struct { 9051 struct perf_event_header header; 9052 u64 addr; 9053 u32 len; 9054 u16 ksym_type; 9055 u16 flags; 9056 } event_id; 9057 }; 9058 9059 static int perf_event_ksymbol_match(struct perf_event *event) 9060 { 9061 return event->attr.ksymbol; 9062 } 9063 9064 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9065 { 9066 struct perf_ksymbol_event *ksymbol_event = data; 9067 struct perf_output_handle handle; 9068 struct perf_sample_data sample; 9069 int ret; 9070 9071 if (!perf_event_ksymbol_match(event)) 9072 return; 9073 9074 perf_event_header__init_id(&ksymbol_event->event_id.header, 9075 &sample, event); 9076 ret = perf_output_begin(&handle, &sample, event, 9077 ksymbol_event->event_id.header.size); 9078 if (ret) 9079 return; 9080 9081 perf_output_put(&handle, ksymbol_event->event_id); 9082 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9083 perf_event__output_id_sample(event, &handle, &sample); 9084 9085 perf_output_end(&handle); 9086 } 9087 9088 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9089 const char *sym) 9090 { 9091 struct perf_ksymbol_event ksymbol_event; 9092 char name[KSYM_NAME_LEN]; 9093 u16 flags = 0; 9094 int name_len; 9095 9096 if (!atomic_read(&nr_ksymbol_events)) 9097 return; 9098 9099 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9100 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9101 goto err; 9102 9103 strlcpy(name, sym, KSYM_NAME_LEN); 9104 name_len = strlen(name) + 1; 9105 while (!IS_ALIGNED(name_len, sizeof(u64))) 9106 name[name_len++] = '\0'; 9107 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9108 9109 if (unregister) 9110 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9111 9112 ksymbol_event = (struct perf_ksymbol_event){ 9113 .name = name, 9114 .name_len = name_len, 9115 .event_id = { 9116 .header = { 9117 .type = PERF_RECORD_KSYMBOL, 9118 .size = sizeof(ksymbol_event.event_id) + 9119 name_len, 9120 }, 9121 .addr = addr, 9122 .len = len, 9123 .ksym_type = ksym_type, 9124 .flags = flags, 9125 }, 9126 }; 9127 9128 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9129 return; 9130 err: 9131 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9132 } 9133 9134 /* 9135 * bpf program load/unload tracking 9136 */ 9137 9138 struct perf_bpf_event { 9139 struct bpf_prog *prog; 9140 struct { 9141 struct perf_event_header header; 9142 u16 type; 9143 u16 flags; 9144 u32 id; 9145 u8 tag[BPF_TAG_SIZE]; 9146 } event_id; 9147 }; 9148 9149 static int perf_event_bpf_match(struct perf_event *event) 9150 { 9151 return event->attr.bpf_event; 9152 } 9153 9154 static void perf_event_bpf_output(struct perf_event *event, void *data) 9155 { 9156 struct perf_bpf_event *bpf_event = data; 9157 struct perf_output_handle handle; 9158 struct perf_sample_data sample; 9159 int ret; 9160 9161 if (!perf_event_bpf_match(event)) 9162 return; 9163 9164 perf_event_header__init_id(&bpf_event->event_id.header, 9165 &sample, event); 9166 ret = perf_output_begin(&handle, data, event, 9167 bpf_event->event_id.header.size); 9168 if (ret) 9169 return; 9170 9171 perf_output_put(&handle, bpf_event->event_id); 9172 perf_event__output_id_sample(event, &handle, &sample); 9173 9174 perf_output_end(&handle); 9175 } 9176 9177 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9178 enum perf_bpf_event_type type) 9179 { 9180 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9181 int i; 9182 9183 if (prog->aux->func_cnt == 0) { 9184 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9185 (u64)(unsigned long)prog->bpf_func, 9186 prog->jited_len, unregister, 9187 prog->aux->ksym.name); 9188 } else { 9189 for (i = 0; i < prog->aux->func_cnt; i++) { 9190 struct bpf_prog *subprog = prog->aux->func[i]; 9191 9192 perf_event_ksymbol( 9193 PERF_RECORD_KSYMBOL_TYPE_BPF, 9194 (u64)(unsigned long)subprog->bpf_func, 9195 subprog->jited_len, unregister, 9196 subprog->aux->ksym.name); 9197 } 9198 } 9199 } 9200 9201 void perf_event_bpf_event(struct bpf_prog *prog, 9202 enum perf_bpf_event_type type, 9203 u16 flags) 9204 { 9205 struct perf_bpf_event bpf_event; 9206 9207 if (type <= PERF_BPF_EVENT_UNKNOWN || 9208 type >= PERF_BPF_EVENT_MAX) 9209 return; 9210 9211 switch (type) { 9212 case PERF_BPF_EVENT_PROG_LOAD: 9213 case PERF_BPF_EVENT_PROG_UNLOAD: 9214 if (atomic_read(&nr_ksymbol_events)) 9215 perf_event_bpf_emit_ksymbols(prog, type); 9216 break; 9217 default: 9218 break; 9219 } 9220 9221 if (!atomic_read(&nr_bpf_events)) 9222 return; 9223 9224 bpf_event = (struct perf_bpf_event){ 9225 .prog = prog, 9226 .event_id = { 9227 .header = { 9228 .type = PERF_RECORD_BPF_EVENT, 9229 .size = sizeof(bpf_event.event_id), 9230 }, 9231 .type = type, 9232 .flags = flags, 9233 .id = prog->aux->id, 9234 }, 9235 }; 9236 9237 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9238 9239 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9240 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9241 } 9242 9243 struct perf_text_poke_event { 9244 const void *old_bytes; 9245 const void *new_bytes; 9246 size_t pad; 9247 u16 old_len; 9248 u16 new_len; 9249 9250 struct { 9251 struct perf_event_header header; 9252 9253 u64 addr; 9254 } event_id; 9255 }; 9256 9257 static int perf_event_text_poke_match(struct perf_event *event) 9258 { 9259 return event->attr.text_poke; 9260 } 9261 9262 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9263 { 9264 struct perf_text_poke_event *text_poke_event = data; 9265 struct perf_output_handle handle; 9266 struct perf_sample_data sample; 9267 u64 padding = 0; 9268 int ret; 9269 9270 if (!perf_event_text_poke_match(event)) 9271 return; 9272 9273 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9274 9275 ret = perf_output_begin(&handle, &sample, event, 9276 text_poke_event->event_id.header.size); 9277 if (ret) 9278 return; 9279 9280 perf_output_put(&handle, text_poke_event->event_id); 9281 perf_output_put(&handle, text_poke_event->old_len); 9282 perf_output_put(&handle, text_poke_event->new_len); 9283 9284 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9285 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9286 9287 if (text_poke_event->pad) 9288 __output_copy(&handle, &padding, text_poke_event->pad); 9289 9290 perf_event__output_id_sample(event, &handle, &sample); 9291 9292 perf_output_end(&handle); 9293 } 9294 9295 void perf_event_text_poke(const void *addr, const void *old_bytes, 9296 size_t old_len, const void *new_bytes, size_t new_len) 9297 { 9298 struct perf_text_poke_event text_poke_event; 9299 size_t tot, pad; 9300 9301 if (!atomic_read(&nr_text_poke_events)) 9302 return; 9303 9304 tot = sizeof(text_poke_event.old_len) + old_len; 9305 tot += sizeof(text_poke_event.new_len) + new_len; 9306 pad = ALIGN(tot, sizeof(u64)) - tot; 9307 9308 text_poke_event = (struct perf_text_poke_event){ 9309 .old_bytes = old_bytes, 9310 .new_bytes = new_bytes, 9311 .pad = pad, 9312 .old_len = old_len, 9313 .new_len = new_len, 9314 .event_id = { 9315 .header = { 9316 .type = PERF_RECORD_TEXT_POKE, 9317 .misc = PERF_RECORD_MISC_KERNEL, 9318 .size = sizeof(text_poke_event.event_id) + tot + pad, 9319 }, 9320 .addr = (unsigned long)addr, 9321 }, 9322 }; 9323 9324 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9325 } 9326 9327 void perf_event_itrace_started(struct perf_event *event) 9328 { 9329 event->attach_state |= PERF_ATTACH_ITRACE; 9330 } 9331 9332 static void perf_log_itrace_start(struct perf_event *event) 9333 { 9334 struct perf_output_handle handle; 9335 struct perf_sample_data sample; 9336 struct perf_aux_event { 9337 struct perf_event_header header; 9338 u32 pid; 9339 u32 tid; 9340 } rec; 9341 int ret; 9342 9343 if (event->parent) 9344 event = event->parent; 9345 9346 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9347 event->attach_state & PERF_ATTACH_ITRACE) 9348 return; 9349 9350 rec.header.type = PERF_RECORD_ITRACE_START; 9351 rec.header.misc = 0; 9352 rec.header.size = sizeof(rec); 9353 rec.pid = perf_event_pid(event, current); 9354 rec.tid = perf_event_tid(event, current); 9355 9356 perf_event_header__init_id(&rec.header, &sample, event); 9357 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9358 9359 if (ret) 9360 return; 9361 9362 perf_output_put(&handle, rec); 9363 perf_event__output_id_sample(event, &handle, &sample); 9364 9365 perf_output_end(&handle); 9366 } 9367 9368 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9369 { 9370 struct perf_output_handle handle; 9371 struct perf_sample_data sample; 9372 struct perf_aux_event { 9373 struct perf_event_header header; 9374 u64 hw_id; 9375 } rec; 9376 int ret; 9377 9378 if (event->parent) 9379 event = event->parent; 9380 9381 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9382 rec.header.misc = 0; 9383 rec.header.size = sizeof(rec); 9384 rec.hw_id = hw_id; 9385 9386 perf_event_header__init_id(&rec.header, &sample, event); 9387 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9388 9389 if (ret) 9390 return; 9391 9392 perf_output_put(&handle, rec); 9393 perf_event__output_id_sample(event, &handle, &sample); 9394 9395 perf_output_end(&handle); 9396 } 9397 9398 static int 9399 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9400 { 9401 struct hw_perf_event *hwc = &event->hw; 9402 int ret = 0; 9403 u64 seq; 9404 9405 seq = __this_cpu_read(perf_throttled_seq); 9406 if (seq != hwc->interrupts_seq) { 9407 hwc->interrupts_seq = seq; 9408 hwc->interrupts = 1; 9409 } else { 9410 hwc->interrupts++; 9411 if (unlikely(throttle 9412 && hwc->interrupts >= max_samples_per_tick)) { 9413 __this_cpu_inc(perf_throttled_count); 9414 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9415 hwc->interrupts = MAX_INTERRUPTS; 9416 perf_log_throttle(event, 0); 9417 ret = 1; 9418 } 9419 } 9420 9421 if (event->attr.freq) { 9422 u64 now = perf_clock(); 9423 s64 delta = now - hwc->freq_time_stamp; 9424 9425 hwc->freq_time_stamp = now; 9426 9427 if (delta > 0 && delta < 2*TICK_NSEC) 9428 perf_adjust_period(event, delta, hwc->last_period, true); 9429 } 9430 9431 return ret; 9432 } 9433 9434 int perf_event_account_interrupt(struct perf_event *event) 9435 { 9436 return __perf_event_account_interrupt(event, 1); 9437 } 9438 9439 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9440 { 9441 /* 9442 * Due to interrupt latency (AKA "skid"), we may enter the 9443 * kernel before taking an overflow, even if the PMU is only 9444 * counting user events. 9445 */ 9446 if (event->attr.exclude_kernel && !user_mode(regs)) 9447 return false; 9448 9449 return true; 9450 } 9451 9452 /* 9453 * Generic event overflow handling, sampling. 9454 */ 9455 9456 static int __perf_event_overflow(struct perf_event *event, 9457 int throttle, struct perf_sample_data *data, 9458 struct pt_regs *regs) 9459 { 9460 int events = atomic_read(&event->event_limit); 9461 int ret = 0; 9462 9463 /* 9464 * Non-sampling counters might still use the PMI to fold short 9465 * hardware counters, ignore those. 9466 */ 9467 if (unlikely(!is_sampling_event(event))) 9468 return 0; 9469 9470 ret = __perf_event_account_interrupt(event, throttle); 9471 9472 /* 9473 * XXX event_limit might not quite work as expected on inherited 9474 * events 9475 */ 9476 9477 event->pending_kill = POLL_IN; 9478 if (events && atomic_dec_and_test(&event->event_limit)) { 9479 ret = 1; 9480 event->pending_kill = POLL_HUP; 9481 perf_event_disable_inatomic(event); 9482 } 9483 9484 if (event->attr.sigtrap) { 9485 /* 9486 * The desired behaviour of sigtrap vs invalid samples is a bit 9487 * tricky; on the one hand, one should not loose the SIGTRAP if 9488 * it is the first event, on the other hand, we should also not 9489 * trigger the WARN or override the data address. 9490 */ 9491 bool valid_sample = sample_is_allowed(event, regs); 9492 unsigned int pending_id = 1; 9493 9494 if (regs) 9495 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9496 if (!event->pending_sigtrap) { 9497 event->pending_sigtrap = pending_id; 9498 local_inc(&event->ctx->nr_pending); 9499 } else if (event->attr.exclude_kernel && valid_sample) { 9500 /* 9501 * Should not be able to return to user space without 9502 * consuming pending_sigtrap; with exceptions: 9503 * 9504 * 1. Where !exclude_kernel, events can overflow again 9505 * in the kernel without returning to user space. 9506 * 9507 * 2. Events that can overflow again before the IRQ- 9508 * work without user space progress (e.g. hrtimer). 9509 * To approximate progress (with false negatives), 9510 * check 32-bit hash of the current IP. 9511 */ 9512 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9513 } 9514 9515 event->pending_addr = 0; 9516 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9517 event->pending_addr = data->addr; 9518 irq_work_queue(&event->pending_irq); 9519 } 9520 9521 READ_ONCE(event->overflow_handler)(event, data, regs); 9522 9523 if (*perf_event_fasync(event) && event->pending_kill) { 9524 event->pending_wakeup = 1; 9525 irq_work_queue(&event->pending_irq); 9526 } 9527 9528 return ret; 9529 } 9530 9531 int perf_event_overflow(struct perf_event *event, 9532 struct perf_sample_data *data, 9533 struct pt_regs *regs) 9534 { 9535 return __perf_event_overflow(event, 1, data, regs); 9536 } 9537 9538 /* 9539 * Generic software event infrastructure 9540 */ 9541 9542 struct swevent_htable { 9543 struct swevent_hlist *swevent_hlist; 9544 struct mutex hlist_mutex; 9545 int hlist_refcount; 9546 9547 /* Recursion avoidance in each contexts */ 9548 int recursion[PERF_NR_CONTEXTS]; 9549 }; 9550 9551 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9552 9553 /* 9554 * We directly increment event->count and keep a second value in 9555 * event->hw.period_left to count intervals. This period event 9556 * is kept in the range [-sample_period, 0] so that we can use the 9557 * sign as trigger. 9558 */ 9559 9560 u64 perf_swevent_set_period(struct perf_event *event) 9561 { 9562 struct hw_perf_event *hwc = &event->hw; 9563 u64 period = hwc->last_period; 9564 u64 nr, offset; 9565 s64 old, val; 9566 9567 hwc->last_period = hwc->sample_period; 9568 9569 again: 9570 old = val = local64_read(&hwc->period_left); 9571 if (val < 0) 9572 return 0; 9573 9574 nr = div64_u64(period + val, period); 9575 offset = nr * period; 9576 val -= offset; 9577 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9578 goto again; 9579 9580 return nr; 9581 } 9582 9583 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9584 struct perf_sample_data *data, 9585 struct pt_regs *regs) 9586 { 9587 struct hw_perf_event *hwc = &event->hw; 9588 int throttle = 0; 9589 9590 if (!overflow) 9591 overflow = perf_swevent_set_period(event); 9592 9593 if (hwc->interrupts == MAX_INTERRUPTS) 9594 return; 9595 9596 for (; overflow; overflow--) { 9597 if (__perf_event_overflow(event, throttle, 9598 data, regs)) { 9599 /* 9600 * We inhibit the overflow from happening when 9601 * hwc->interrupts == MAX_INTERRUPTS. 9602 */ 9603 break; 9604 } 9605 throttle = 1; 9606 } 9607 } 9608 9609 static void perf_swevent_event(struct perf_event *event, u64 nr, 9610 struct perf_sample_data *data, 9611 struct pt_regs *regs) 9612 { 9613 struct hw_perf_event *hwc = &event->hw; 9614 9615 local64_add(nr, &event->count); 9616 9617 if (!regs) 9618 return; 9619 9620 if (!is_sampling_event(event)) 9621 return; 9622 9623 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9624 data->period = nr; 9625 return perf_swevent_overflow(event, 1, data, regs); 9626 } else 9627 data->period = event->hw.last_period; 9628 9629 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9630 return perf_swevent_overflow(event, 1, data, regs); 9631 9632 if (local64_add_negative(nr, &hwc->period_left)) 9633 return; 9634 9635 perf_swevent_overflow(event, 0, data, regs); 9636 } 9637 9638 static int perf_exclude_event(struct perf_event *event, 9639 struct pt_regs *regs) 9640 { 9641 if (event->hw.state & PERF_HES_STOPPED) 9642 return 1; 9643 9644 if (regs) { 9645 if (event->attr.exclude_user && user_mode(regs)) 9646 return 1; 9647 9648 if (event->attr.exclude_kernel && !user_mode(regs)) 9649 return 1; 9650 } 9651 9652 return 0; 9653 } 9654 9655 static int perf_swevent_match(struct perf_event *event, 9656 enum perf_type_id type, 9657 u32 event_id, 9658 struct perf_sample_data *data, 9659 struct pt_regs *regs) 9660 { 9661 if (event->attr.type != type) 9662 return 0; 9663 9664 if (event->attr.config != event_id) 9665 return 0; 9666 9667 if (perf_exclude_event(event, regs)) 9668 return 0; 9669 9670 return 1; 9671 } 9672 9673 static inline u64 swevent_hash(u64 type, u32 event_id) 9674 { 9675 u64 val = event_id | (type << 32); 9676 9677 return hash_64(val, SWEVENT_HLIST_BITS); 9678 } 9679 9680 static inline struct hlist_head * 9681 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9682 { 9683 u64 hash = swevent_hash(type, event_id); 9684 9685 return &hlist->heads[hash]; 9686 } 9687 9688 /* For the read side: events when they trigger */ 9689 static inline struct hlist_head * 9690 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9691 { 9692 struct swevent_hlist *hlist; 9693 9694 hlist = rcu_dereference(swhash->swevent_hlist); 9695 if (!hlist) 9696 return NULL; 9697 9698 return __find_swevent_head(hlist, type, event_id); 9699 } 9700 9701 /* For the event head insertion and removal in the hlist */ 9702 static inline struct hlist_head * 9703 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9704 { 9705 struct swevent_hlist *hlist; 9706 u32 event_id = event->attr.config; 9707 u64 type = event->attr.type; 9708 9709 /* 9710 * Event scheduling is always serialized against hlist allocation 9711 * and release. Which makes the protected version suitable here. 9712 * The context lock guarantees that. 9713 */ 9714 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9715 lockdep_is_held(&event->ctx->lock)); 9716 if (!hlist) 9717 return NULL; 9718 9719 return __find_swevent_head(hlist, type, event_id); 9720 } 9721 9722 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9723 u64 nr, 9724 struct perf_sample_data *data, 9725 struct pt_regs *regs) 9726 { 9727 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9728 struct perf_event *event; 9729 struct hlist_head *head; 9730 9731 rcu_read_lock(); 9732 head = find_swevent_head_rcu(swhash, type, event_id); 9733 if (!head) 9734 goto end; 9735 9736 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9737 if (perf_swevent_match(event, type, event_id, data, regs)) 9738 perf_swevent_event(event, nr, data, regs); 9739 } 9740 end: 9741 rcu_read_unlock(); 9742 } 9743 9744 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9745 9746 int perf_swevent_get_recursion_context(void) 9747 { 9748 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9749 9750 return get_recursion_context(swhash->recursion); 9751 } 9752 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9753 9754 void perf_swevent_put_recursion_context(int rctx) 9755 { 9756 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9757 9758 put_recursion_context(swhash->recursion, rctx); 9759 } 9760 9761 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9762 { 9763 struct perf_sample_data data; 9764 9765 if (WARN_ON_ONCE(!regs)) 9766 return; 9767 9768 perf_sample_data_init(&data, addr, 0); 9769 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9770 } 9771 9772 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9773 { 9774 int rctx; 9775 9776 preempt_disable_notrace(); 9777 rctx = perf_swevent_get_recursion_context(); 9778 if (unlikely(rctx < 0)) 9779 goto fail; 9780 9781 ___perf_sw_event(event_id, nr, regs, addr); 9782 9783 perf_swevent_put_recursion_context(rctx); 9784 fail: 9785 preempt_enable_notrace(); 9786 } 9787 9788 static void perf_swevent_read(struct perf_event *event) 9789 { 9790 } 9791 9792 static int perf_swevent_add(struct perf_event *event, int flags) 9793 { 9794 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9795 struct hw_perf_event *hwc = &event->hw; 9796 struct hlist_head *head; 9797 9798 if (is_sampling_event(event)) { 9799 hwc->last_period = hwc->sample_period; 9800 perf_swevent_set_period(event); 9801 } 9802 9803 hwc->state = !(flags & PERF_EF_START); 9804 9805 head = find_swevent_head(swhash, event); 9806 if (WARN_ON_ONCE(!head)) 9807 return -EINVAL; 9808 9809 hlist_add_head_rcu(&event->hlist_entry, head); 9810 perf_event_update_userpage(event); 9811 9812 return 0; 9813 } 9814 9815 static void perf_swevent_del(struct perf_event *event, int flags) 9816 { 9817 hlist_del_rcu(&event->hlist_entry); 9818 } 9819 9820 static void perf_swevent_start(struct perf_event *event, int flags) 9821 { 9822 event->hw.state = 0; 9823 } 9824 9825 static void perf_swevent_stop(struct perf_event *event, int flags) 9826 { 9827 event->hw.state = PERF_HES_STOPPED; 9828 } 9829 9830 /* Deref the hlist from the update side */ 9831 static inline struct swevent_hlist * 9832 swevent_hlist_deref(struct swevent_htable *swhash) 9833 { 9834 return rcu_dereference_protected(swhash->swevent_hlist, 9835 lockdep_is_held(&swhash->hlist_mutex)); 9836 } 9837 9838 static void swevent_hlist_release(struct swevent_htable *swhash) 9839 { 9840 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9841 9842 if (!hlist) 9843 return; 9844 9845 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9846 kfree_rcu(hlist, rcu_head); 9847 } 9848 9849 static void swevent_hlist_put_cpu(int cpu) 9850 { 9851 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9852 9853 mutex_lock(&swhash->hlist_mutex); 9854 9855 if (!--swhash->hlist_refcount) 9856 swevent_hlist_release(swhash); 9857 9858 mutex_unlock(&swhash->hlist_mutex); 9859 } 9860 9861 static void swevent_hlist_put(void) 9862 { 9863 int cpu; 9864 9865 for_each_possible_cpu(cpu) 9866 swevent_hlist_put_cpu(cpu); 9867 } 9868 9869 static int swevent_hlist_get_cpu(int cpu) 9870 { 9871 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9872 int err = 0; 9873 9874 mutex_lock(&swhash->hlist_mutex); 9875 if (!swevent_hlist_deref(swhash) && 9876 cpumask_test_cpu(cpu, perf_online_mask)) { 9877 struct swevent_hlist *hlist; 9878 9879 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9880 if (!hlist) { 9881 err = -ENOMEM; 9882 goto exit; 9883 } 9884 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9885 } 9886 swhash->hlist_refcount++; 9887 exit: 9888 mutex_unlock(&swhash->hlist_mutex); 9889 9890 return err; 9891 } 9892 9893 static int swevent_hlist_get(void) 9894 { 9895 int err, cpu, failed_cpu; 9896 9897 mutex_lock(&pmus_lock); 9898 for_each_possible_cpu(cpu) { 9899 err = swevent_hlist_get_cpu(cpu); 9900 if (err) { 9901 failed_cpu = cpu; 9902 goto fail; 9903 } 9904 } 9905 mutex_unlock(&pmus_lock); 9906 return 0; 9907 fail: 9908 for_each_possible_cpu(cpu) { 9909 if (cpu == failed_cpu) 9910 break; 9911 swevent_hlist_put_cpu(cpu); 9912 } 9913 mutex_unlock(&pmus_lock); 9914 return err; 9915 } 9916 9917 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9918 9919 static void sw_perf_event_destroy(struct perf_event *event) 9920 { 9921 u64 event_id = event->attr.config; 9922 9923 WARN_ON(event->parent); 9924 9925 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9926 swevent_hlist_put(); 9927 } 9928 9929 static int perf_swevent_init(struct perf_event *event) 9930 { 9931 u64 event_id = event->attr.config; 9932 9933 if (event->attr.type != PERF_TYPE_SOFTWARE) 9934 return -ENOENT; 9935 9936 /* 9937 * no branch sampling for software events 9938 */ 9939 if (has_branch_stack(event)) 9940 return -EOPNOTSUPP; 9941 9942 switch (event_id) { 9943 case PERF_COUNT_SW_CPU_CLOCK: 9944 case PERF_COUNT_SW_TASK_CLOCK: 9945 return -ENOENT; 9946 9947 default: 9948 break; 9949 } 9950 9951 if (event_id >= PERF_COUNT_SW_MAX) 9952 return -ENOENT; 9953 9954 if (!event->parent) { 9955 int err; 9956 9957 err = swevent_hlist_get(); 9958 if (err) 9959 return err; 9960 9961 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9962 event->destroy = sw_perf_event_destroy; 9963 } 9964 9965 return 0; 9966 } 9967 9968 static struct pmu perf_swevent = { 9969 .task_ctx_nr = perf_sw_context, 9970 9971 .capabilities = PERF_PMU_CAP_NO_NMI, 9972 9973 .event_init = perf_swevent_init, 9974 .add = perf_swevent_add, 9975 .del = perf_swevent_del, 9976 .start = perf_swevent_start, 9977 .stop = perf_swevent_stop, 9978 .read = perf_swevent_read, 9979 }; 9980 9981 #ifdef CONFIG_EVENT_TRACING 9982 9983 static void tp_perf_event_destroy(struct perf_event *event) 9984 { 9985 perf_trace_destroy(event); 9986 } 9987 9988 static int perf_tp_event_init(struct perf_event *event) 9989 { 9990 int err; 9991 9992 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9993 return -ENOENT; 9994 9995 /* 9996 * no branch sampling for tracepoint events 9997 */ 9998 if (has_branch_stack(event)) 9999 return -EOPNOTSUPP; 10000 10001 err = perf_trace_init(event); 10002 if (err) 10003 return err; 10004 10005 event->destroy = tp_perf_event_destroy; 10006 10007 return 0; 10008 } 10009 10010 static struct pmu perf_tracepoint = { 10011 .task_ctx_nr = perf_sw_context, 10012 10013 .event_init = perf_tp_event_init, 10014 .add = perf_trace_add, 10015 .del = perf_trace_del, 10016 .start = perf_swevent_start, 10017 .stop = perf_swevent_stop, 10018 .read = perf_swevent_read, 10019 }; 10020 10021 static int perf_tp_filter_match(struct perf_event *event, 10022 struct perf_sample_data *data) 10023 { 10024 void *record = data->raw->frag.data; 10025 10026 /* only top level events have filters set */ 10027 if (event->parent) 10028 event = event->parent; 10029 10030 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10031 return 1; 10032 return 0; 10033 } 10034 10035 static int perf_tp_event_match(struct perf_event *event, 10036 struct perf_sample_data *data, 10037 struct pt_regs *regs) 10038 { 10039 if (event->hw.state & PERF_HES_STOPPED) 10040 return 0; 10041 /* 10042 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10043 */ 10044 if (event->attr.exclude_kernel && !user_mode(regs)) 10045 return 0; 10046 10047 if (!perf_tp_filter_match(event, data)) 10048 return 0; 10049 10050 return 1; 10051 } 10052 10053 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10054 struct trace_event_call *call, u64 count, 10055 struct pt_regs *regs, struct hlist_head *head, 10056 struct task_struct *task) 10057 { 10058 if (bpf_prog_array_valid(call)) { 10059 *(struct pt_regs **)raw_data = regs; 10060 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10061 perf_swevent_put_recursion_context(rctx); 10062 return; 10063 } 10064 } 10065 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10066 rctx, task); 10067 } 10068 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10069 10070 static void __perf_tp_event_target_task(u64 count, void *record, 10071 struct pt_regs *regs, 10072 struct perf_sample_data *data, 10073 struct perf_event *event) 10074 { 10075 struct trace_entry *entry = record; 10076 10077 if (event->attr.config != entry->type) 10078 return; 10079 /* Cannot deliver synchronous signal to other task. */ 10080 if (event->attr.sigtrap) 10081 return; 10082 if (perf_tp_event_match(event, data, regs)) 10083 perf_swevent_event(event, count, data, regs); 10084 } 10085 10086 static void perf_tp_event_target_task(u64 count, void *record, 10087 struct pt_regs *regs, 10088 struct perf_sample_data *data, 10089 struct perf_event_context *ctx) 10090 { 10091 unsigned int cpu = smp_processor_id(); 10092 struct pmu *pmu = &perf_tracepoint; 10093 struct perf_event *event, *sibling; 10094 10095 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10096 __perf_tp_event_target_task(count, record, regs, data, event); 10097 for_each_sibling_event(sibling, event) 10098 __perf_tp_event_target_task(count, record, regs, data, sibling); 10099 } 10100 10101 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10102 __perf_tp_event_target_task(count, record, regs, data, event); 10103 for_each_sibling_event(sibling, event) 10104 __perf_tp_event_target_task(count, record, regs, data, sibling); 10105 } 10106 } 10107 10108 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10109 struct pt_regs *regs, struct hlist_head *head, int rctx, 10110 struct task_struct *task) 10111 { 10112 struct perf_sample_data data; 10113 struct perf_event *event; 10114 10115 struct perf_raw_record raw = { 10116 .frag = { 10117 .size = entry_size, 10118 .data = record, 10119 }, 10120 }; 10121 10122 perf_sample_data_init(&data, 0, 0); 10123 data.raw = &raw; 10124 data.sample_flags |= PERF_SAMPLE_RAW; 10125 10126 perf_trace_buf_update(record, event_type); 10127 10128 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10129 if (perf_tp_event_match(event, &data, regs)) 10130 perf_swevent_event(event, count, &data, regs); 10131 } 10132 10133 /* 10134 * If we got specified a target task, also iterate its context and 10135 * deliver this event there too. 10136 */ 10137 if (task && task != current) { 10138 struct perf_event_context *ctx; 10139 10140 rcu_read_lock(); 10141 ctx = rcu_dereference(task->perf_event_ctxp); 10142 if (!ctx) 10143 goto unlock; 10144 10145 raw_spin_lock(&ctx->lock); 10146 perf_tp_event_target_task(count, record, regs, &data, ctx); 10147 raw_spin_unlock(&ctx->lock); 10148 unlock: 10149 rcu_read_unlock(); 10150 } 10151 10152 perf_swevent_put_recursion_context(rctx); 10153 } 10154 EXPORT_SYMBOL_GPL(perf_tp_event); 10155 10156 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10157 /* 10158 * Flags in config, used by dynamic PMU kprobe and uprobe 10159 * The flags should match following PMU_FORMAT_ATTR(). 10160 * 10161 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10162 * if not set, create kprobe/uprobe 10163 * 10164 * The following values specify a reference counter (or semaphore in the 10165 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10166 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10167 * 10168 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10169 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10170 */ 10171 enum perf_probe_config { 10172 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10173 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10174 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10175 }; 10176 10177 PMU_FORMAT_ATTR(retprobe, "config:0"); 10178 #endif 10179 10180 #ifdef CONFIG_KPROBE_EVENTS 10181 static struct attribute *kprobe_attrs[] = { 10182 &format_attr_retprobe.attr, 10183 NULL, 10184 }; 10185 10186 static struct attribute_group kprobe_format_group = { 10187 .name = "format", 10188 .attrs = kprobe_attrs, 10189 }; 10190 10191 static const struct attribute_group *kprobe_attr_groups[] = { 10192 &kprobe_format_group, 10193 NULL, 10194 }; 10195 10196 static int perf_kprobe_event_init(struct perf_event *event); 10197 static struct pmu perf_kprobe = { 10198 .task_ctx_nr = perf_sw_context, 10199 .event_init = perf_kprobe_event_init, 10200 .add = perf_trace_add, 10201 .del = perf_trace_del, 10202 .start = perf_swevent_start, 10203 .stop = perf_swevent_stop, 10204 .read = perf_swevent_read, 10205 .attr_groups = kprobe_attr_groups, 10206 }; 10207 10208 static int perf_kprobe_event_init(struct perf_event *event) 10209 { 10210 int err; 10211 bool is_retprobe; 10212 10213 if (event->attr.type != perf_kprobe.type) 10214 return -ENOENT; 10215 10216 if (!perfmon_capable()) 10217 return -EACCES; 10218 10219 /* 10220 * no branch sampling for probe events 10221 */ 10222 if (has_branch_stack(event)) 10223 return -EOPNOTSUPP; 10224 10225 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10226 err = perf_kprobe_init(event, is_retprobe); 10227 if (err) 10228 return err; 10229 10230 event->destroy = perf_kprobe_destroy; 10231 10232 return 0; 10233 } 10234 #endif /* CONFIG_KPROBE_EVENTS */ 10235 10236 #ifdef CONFIG_UPROBE_EVENTS 10237 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10238 10239 static struct attribute *uprobe_attrs[] = { 10240 &format_attr_retprobe.attr, 10241 &format_attr_ref_ctr_offset.attr, 10242 NULL, 10243 }; 10244 10245 static struct attribute_group uprobe_format_group = { 10246 .name = "format", 10247 .attrs = uprobe_attrs, 10248 }; 10249 10250 static const struct attribute_group *uprobe_attr_groups[] = { 10251 &uprobe_format_group, 10252 NULL, 10253 }; 10254 10255 static int perf_uprobe_event_init(struct perf_event *event); 10256 static struct pmu perf_uprobe = { 10257 .task_ctx_nr = perf_sw_context, 10258 .event_init = perf_uprobe_event_init, 10259 .add = perf_trace_add, 10260 .del = perf_trace_del, 10261 .start = perf_swevent_start, 10262 .stop = perf_swevent_stop, 10263 .read = perf_swevent_read, 10264 .attr_groups = uprobe_attr_groups, 10265 }; 10266 10267 static int perf_uprobe_event_init(struct perf_event *event) 10268 { 10269 int err; 10270 unsigned long ref_ctr_offset; 10271 bool is_retprobe; 10272 10273 if (event->attr.type != perf_uprobe.type) 10274 return -ENOENT; 10275 10276 if (!perfmon_capable()) 10277 return -EACCES; 10278 10279 /* 10280 * no branch sampling for probe events 10281 */ 10282 if (has_branch_stack(event)) 10283 return -EOPNOTSUPP; 10284 10285 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10286 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10287 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10288 if (err) 10289 return err; 10290 10291 event->destroy = perf_uprobe_destroy; 10292 10293 return 0; 10294 } 10295 #endif /* CONFIG_UPROBE_EVENTS */ 10296 10297 static inline void perf_tp_register(void) 10298 { 10299 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10300 #ifdef CONFIG_KPROBE_EVENTS 10301 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10302 #endif 10303 #ifdef CONFIG_UPROBE_EVENTS 10304 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10305 #endif 10306 } 10307 10308 static void perf_event_free_filter(struct perf_event *event) 10309 { 10310 ftrace_profile_free_filter(event); 10311 } 10312 10313 #ifdef CONFIG_BPF_SYSCALL 10314 static void bpf_overflow_handler(struct perf_event *event, 10315 struct perf_sample_data *data, 10316 struct pt_regs *regs) 10317 { 10318 struct bpf_perf_event_data_kern ctx = { 10319 .data = data, 10320 .event = event, 10321 }; 10322 struct bpf_prog *prog; 10323 int ret = 0; 10324 10325 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10326 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10327 goto out; 10328 rcu_read_lock(); 10329 prog = READ_ONCE(event->prog); 10330 if (prog) { 10331 if (prog->call_get_stack && 10332 (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) && 10333 !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) { 10334 data->callchain = perf_callchain(event, regs); 10335 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 10336 } 10337 10338 ret = bpf_prog_run(prog, &ctx); 10339 } 10340 rcu_read_unlock(); 10341 out: 10342 __this_cpu_dec(bpf_prog_active); 10343 if (!ret) 10344 return; 10345 10346 event->orig_overflow_handler(event, data, regs); 10347 } 10348 10349 static int perf_event_set_bpf_handler(struct perf_event *event, 10350 struct bpf_prog *prog, 10351 u64 bpf_cookie) 10352 { 10353 if (event->overflow_handler_context) 10354 /* hw breakpoint or kernel counter */ 10355 return -EINVAL; 10356 10357 if (event->prog) 10358 return -EEXIST; 10359 10360 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10361 return -EINVAL; 10362 10363 if (event->attr.precise_ip && 10364 prog->call_get_stack && 10365 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10366 event->attr.exclude_callchain_kernel || 10367 event->attr.exclude_callchain_user)) { 10368 /* 10369 * On perf_event with precise_ip, calling bpf_get_stack() 10370 * may trigger unwinder warnings and occasional crashes. 10371 * bpf_get_[stack|stackid] works around this issue by using 10372 * callchain attached to perf_sample_data. If the 10373 * perf_event does not full (kernel and user) callchain 10374 * attached to perf_sample_data, do not allow attaching BPF 10375 * program that calls bpf_get_[stack|stackid]. 10376 */ 10377 return -EPROTO; 10378 } 10379 10380 event->prog = prog; 10381 event->bpf_cookie = bpf_cookie; 10382 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10383 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10384 return 0; 10385 } 10386 10387 static void perf_event_free_bpf_handler(struct perf_event *event) 10388 { 10389 struct bpf_prog *prog = event->prog; 10390 10391 if (!prog) 10392 return; 10393 10394 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10395 event->prog = NULL; 10396 bpf_prog_put(prog); 10397 } 10398 #else 10399 static int perf_event_set_bpf_handler(struct perf_event *event, 10400 struct bpf_prog *prog, 10401 u64 bpf_cookie) 10402 { 10403 return -EOPNOTSUPP; 10404 } 10405 static void perf_event_free_bpf_handler(struct perf_event *event) 10406 { 10407 } 10408 #endif 10409 10410 /* 10411 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10412 * with perf_event_open() 10413 */ 10414 static inline bool perf_event_is_tracing(struct perf_event *event) 10415 { 10416 if (event->pmu == &perf_tracepoint) 10417 return true; 10418 #ifdef CONFIG_KPROBE_EVENTS 10419 if (event->pmu == &perf_kprobe) 10420 return true; 10421 #endif 10422 #ifdef CONFIG_UPROBE_EVENTS 10423 if (event->pmu == &perf_uprobe) 10424 return true; 10425 #endif 10426 return false; 10427 } 10428 10429 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10430 u64 bpf_cookie) 10431 { 10432 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10433 10434 if (!perf_event_is_tracing(event)) 10435 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10436 10437 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10438 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10439 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10440 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10441 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10442 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10443 return -EINVAL; 10444 10445 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10446 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10447 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10448 return -EINVAL; 10449 10450 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10451 /* only uprobe programs are allowed to be sleepable */ 10452 return -EINVAL; 10453 10454 /* Kprobe override only works for kprobes, not uprobes. */ 10455 if (prog->kprobe_override && !is_kprobe) 10456 return -EINVAL; 10457 10458 if (is_tracepoint || is_syscall_tp) { 10459 int off = trace_event_get_offsets(event->tp_event); 10460 10461 if (prog->aux->max_ctx_offset > off) 10462 return -EACCES; 10463 } 10464 10465 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10466 } 10467 10468 void perf_event_free_bpf_prog(struct perf_event *event) 10469 { 10470 if (!perf_event_is_tracing(event)) { 10471 perf_event_free_bpf_handler(event); 10472 return; 10473 } 10474 perf_event_detach_bpf_prog(event); 10475 } 10476 10477 #else 10478 10479 static inline void perf_tp_register(void) 10480 { 10481 } 10482 10483 static void perf_event_free_filter(struct perf_event *event) 10484 { 10485 } 10486 10487 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10488 u64 bpf_cookie) 10489 { 10490 return -ENOENT; 10491 } 10492 10493 void perf_event_free_bpf_prog(struct perf_event *event) 10494 { 10495 } 10496 #endif /* CONFIG_EVENT_TRACING */ 10497 10498 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10499 void perf_bp_event(struct perf_event *bp, void *data) 10500 { 10501 struct perf_sample_data sample; 10502 struct pt_regs *regs = data; 10503 10504 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10505 10506 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10507 perf_swevent_event(bp, 1, &sample, regs); 10508 } 10509 #endif 10510 10511 /* 10512 * Allocate a new address filter 10513 */ 10514 static struct perf_addr_filter * 10515 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10516 { 10517 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10518 struct perf_addr_filter *filter; 10519 10520 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10521 if (!filter) 10522 return NULL; 10523 10524 INIT_LIST_HEAD(&filter->entry); 10525 list_add_tail(&filter->entry, filters); 10526 10527 return filter; 10528 } 10529 10530 static void free_filters_list(struct list_head *filters) 10531 { 10532 struct perf_addr_filter *filter, *iter; 10533 10534 list_for_each_entry_safe(filter, iter, filters, entry) { 10535 path_put(&filter->path); 10536 list_del(&filter->entry); 10537 kfree(filter); 10538 } 10539 } 10540 10541 /* 10542 * Free existing address filters and optionally install new ones 10543 */ 10544 static void perf_addr_filters_splice(struct perf_event *event, 10545 struct list_head *head) 10546 { 10547 unsigned long flags; 10548 LIST_HEAD(list); 10549 10550 if (!has_addr_filter(event)) 10551 return; 10552 10553 /* don't bother with children, they don't have their own filters */ 10554 if (event->parent) 10555 return; 10556 10557 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10558 10559 list_splice_init(&event->addr_filters.list, &list); 10560 if (head) 10561 list_splice(head, &event->addr_filters.list); 10562 10563 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10564 10565 free_filters_list(&list); 10566 } 10567 10568 /* 10569 * Scan through mm's vmas and see if one of them matches the 10570 * @filter; if so, adjust filter's address range. 10571 * Called with mm::mmap_lock down for reading. 10572 */ 10573 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10574 struct mm_struct *mm, 10575 struct perf_addr_filter_range *fr) 10576 { 10577 struct vm_area_struct *vma; 10578 VMA_ITERATOR(vmi, mm, 0); 10579 10580 for_each_vma(vmi, vma) { 10581 if (!vma->vm_file) 10582 continue; 10583 10584 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10585 return; 10586 } 10587 } 10588 10589 /* 10590 * Update event's address range filters based on the 10591 * task's existing mappings, if any. 10592 */ 10593 static void perf_event_addr_filters_apply(struct perf_event *event) 10594 { 10595 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10596 struct task_struct *task = READ_ONCE(event->ctx->task); 10597 struct perf_addr_filter *filter; 10598 struct mm_struct *mm = NULL; 10599 unsigned int count = 0; 10600 unsigned long flags; 10601 10602 /* 10603 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10604 * will stop on the parent's child_mutex that our caller is also holding 10605 */ 10606 if (task == TASK_TOMBSTONE) 10607 return; 10608 10609 if (ifh->nr_file_filters) { 10610 mm = get_task_mm(task); 10611 if (!mm) 10612 goto restart; 10613 10614 mmap_read_lock(mm); 10615 } 10616 10617 raw_spin_lock_irqsave(&ifh->lock, flags); 10618 list_for_each_entry(filter, &ifh->list, entry) { 10619 if (filter->path.dentry) { 10620 /* 10621 * Adjust base offset if the filter is associated to a 10622 * binary that needs to be mapped: 10623 */ 10624 event->addr_filter_ranges[count].start = 0; 10625 event->addr_filter_ranges[count].size = 0; 10626 10627 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10628 } else { 10629 event->addr_filter_ranges[count].start = filter->offset; 10630 event->addr_filter_ranges[count].size = filter->size; 10631 } 10632 10633 count++; 10634 } 10635 10636 event->addr_filters_gen++; 10637 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10638 10639 if (ifh->nr_file_filters) { 10640 mmap_read_unlock(mm); 10641 10642 mmput(mm); 10643 } 10644 10645 restart: 10646 perf_event_stop(event, 1); 10647 } 10648 10649 /* 10650 * Address range filtering: limiting the data to certain 10651 * instruction address ranges. Filters are ioctl()ed to us from 10652 * userspace as ascii strings. 10653 * 10654 * Filter string format: 10655 * 10656 * ACTION RANGE_SPEC 10657 * where ACTION is one of the 10658 * * "filter": limit the trace to this region 10659 * * "start": start tracing from this address 10660 * * "stop": stop tracing at this address/region; 10661 * RANGE_SPEC is 10662 * * for kernel addresses: <start address>[/<size>] 10663 * * for object files: <start address>[/<size>]@</path/to/object/file> 10664 * 10665 * if <size> is not specified or is zero, the range is treated as a single 10666 * address; not valid for ACTION=="filter". 10667 */ 10668 enum { 10669 IF_ACT_NONE = -1, 10670 IF_ACT_FILTER, 10671 IF_ACT_START, 10672 IF_ACT_STOP, 10673 IF_SRC_FILE, 10674 IF_SRC_KERNEL, 10675 IF_SRC_FILEADDR, 10676 IF_SRC_KERNELADDR, 10677 }; 10678 10679 enum { 10680 IF_STATE_ACTION = 0, 10681 IF_STATE_SOURCE, 10682 IF_STATE_END, 10683 }; 10684 10685 static const match_table_t if_tokens = { 10686 { IF_ACT_FILTER, "filter" }, 10687 { IF_ACT_START, "start" }, 10688 { IF_ACT_STOP, "stop" }, 10689 { IF_SRC_FILE, "%u/%u@%s" }, 10690 { IF_SRC_KERNEL, "%u/%u" }, 10691 { IF_SRC_FILEADDR, "%u@%s" }, 10692 { IF_SRC_KERNELADDR, "%u" }, 10693 { IF_ACT_NONE, NULL }, 10694 }; 10695 10696 /* 10697 * Address filter string parser 10698 */ 10699 static int 10700 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10701 struct list_head *filters) 10702 { 10703 struct perf_addr_filter *filter = NULL; 10704 char *start, *orig, *filename = NULL; 10705 substring_t args[MAX_OPT_ARGS]; 10706 int state = IF_STATE_ACTION, token; 10707 unsigned int kernel = 0; 10708 int ret = -EINVAL; 10709 10710 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10711 if (!fstr) 10712 return -ENOMEM; 10713 10714 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10715 static const enum perf_addr_filter_action_t actions[] = { 10716 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10717 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10718 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10719 }; 10720 ret = -EINVAL; 10721 10722 if (!*start) 10723 continue; 10724 10725 /* filter definition begins */ 10726 if (state == IF_STATE_ACTION) { 10727 filter = perf_addr_filter_new(event, filters); 10728 if (!filter) 10729 goto fail; 10730 } 10731 10732 token = match_token(start, if_tokens, args); 10733 switch (token) { 10734 case IF_ACT_FILTER: 10735 case IF_ACT_START: 10736 case IF_ACT_STOP: 10737 if (state != IF_STATE_ACTION) 10738 goto fail; 10739 10740 filter->action = actions[token]; 10741 state = IF_STATE_SOURCE; 10742 break; 10743 10744 case IF_SRC_KERNELADDR: 10745 case IF_SRC_KERNEL: 10746 kernel = 1; 10747 fallthrough; 10748 10749 case IF_SRC_FILEADDR: 10750 case IF_SRC_FILE: 10751 if (state != IF_STATE_SOURCE) 10752 goto fail; 10753 10754 *args[0].to = 0; 10755 ret = kstrtoul(args[0].from, 0, &filter->offset); 10756 if (ret) 10757 goto fail; 10758 10759 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10760 *args[1].to = 0; 10761 ret = kstrtoul(args[1].from, 0, &filter->size); 10762 if (ret) 10763 goto fail; 10764 } 10765 10766 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10767 int fpos = token == IF_SRC_FILE ? 2 : 1; 10768 10769 kfree(filename); 10770 filename = match_strdup(&args[fpos]); 10771 if (!filename) { 10772 ret = -ENOMEM; 10773 goto fail; 10774 } 10775 } 10776 10777 state = IF_STATE_END; 10778 break; 10779 10780 default: 10781 goto fail; 10782 } 10783 10784 /* 10785 * Filter definition is fully parsed, validate and install it. 10786 * Make sure that it doesn't contradict itself or the event's 10787 * attribute. 10788 */ 10789 if (state == IF_STATE_END) { 10790 ret = -EINVAL; 10791 10792 /* 10793 * ACTION "filter" must have a non-zero length region 10794 * specified. 10795 */ 10796 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10797 !filter->size) 10798 goto fail; 10799 10800 if (!kernel) { 10801 if (!filename) 10802 goto fail; 10803 10804 /* 10805 * For now, we only support file-based filters 10806 * in per-task events; doing so for CPU-wide 10807 * events requires additional context switching 10808 * trickery, since same object code will be 10809 * mapped at different virtual addresses in 10810 * different processes. 10811 */ 10812 ret = -EOPNOTSUPP; 10813 if (!event->ctx->task) 10814 goto fail; 10815 10816 /* look up the path and grab its inode */ 10817 ret = kern_path(filename, LOOKUP_FOLLOW, 10818 &filter->path); 10819 if (ret) 10820 goto fail; 10821 10822 ret = -EINVAL; 10823 if (!filter->path.dentry || 10824 !S_ISREG(d_inode(filter->path.dentry) 10825 ->i_mode)) 10826 goto fail; 10827 10828 event->addr_filters.nr_file_filters++; 10829 } 10830 10831 /* ready to consume more filters */ 10832 kfree(filename); 10833 filename = NULL; 10834 state = IF_STATE_ACTION; 10835 filter = NULL; 10836 kernel = 0; 10837 } 10838 } 10839 10840 if (state != IF_STATE_ACTION) 10841 goto fail; 10842 10843 kfree(filename); 10844 kfree(orig); 10845 10846 return 0; 10847 10848 fail: 10849 kfree(filename); 10850 free_filters_list(filters); 10851 kfree(orig); 10852 10853 return ret; 10854 } 10855 10856 static int 10857 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10858 { 10859 LIST_HEAD(filters); 10860 int ret; 10861 10862 /* 10863 * Since this is called in perf_ioctl() path, we're already holding 10864 * ctx::mutex. 10865 */ 10866 lockdep_assert_held(&event->ctx->mutex); 10867 10868 if (WARN_ON_ONCE(event->parent)) 10869 return -EINVAL; 10870 10871 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10872 if (ret) 10873 goto fail_clear_files; 10874 10875 ret = event->pmu->addr_filters_validate(&filters); 10876 if (ret) 10877 goto fail_free_filters; 10878 10879 /* remove existing filters, if any */ 10880 perf_addr_filters_splice(event, &filters); 10881 10882 /* install new filters */ 10883 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10884 10885 return ret; 10886 10887 fail_free_filters: 10888 free_filters_list(&filters); 10889 10890 fail_clear_files: 10891 event->addr_filters.nr_file_filters = 0; 10892 10893 return ret; 10894 } 10895 10896 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10897 { 10898 int ret = -EINVAL; 10899 char *filter_str; 10900 10901 filter_str = strndup_user(arg, PAGE_SIZE); 10902 if (IS_ERR(filter_str)) 10903 return PTR_ERR(filter_str); 10904 10905 #ifdef CONFIG_EVENT_TRACING 10906 if (perf_event_is_tracing(event)) { 10907 struct perf_event_context *ctx = event->ctx; 10908 10909 /* 10910 * Beware, here be dragons!! 10911 * 10912 * the tracepoint muck will deadlock against ctx->mutex, but 10913 * the tracepoint stuff does not actually need it. So 10914 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10915 * already have a reference on ctx. 10916 * 10917 * This can result in event getting moved to a different ctx, 10918 * but that does not affect the tracepoint state. 10919 */ 10920 mutex_unlock(&ctx->mutex); 10921 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10922 mutex_lock(&ctx->mutex); 10923 } else 10924 #endif 10925 if (has_addr_filter(event)) 10926 ret = perf_event_set_addr_filter(event, filter_str); 10927 10928 kfree(filter_str); 10929 return ret; 10930 } 10931 10932 /* 10933 * hrtimer based swevent callback 10934 */ 10935 10936 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10937 { 10938 enum hrtimer_restart ret = HRTIMER_RESTART; 10939 struct perf_sample_data data; 10940 struct pt_regs *regs; 10941 struct perf_event *event; 10942 u64 period; 10943 10944 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10945 10946 if (event->state != PERF_EVENT_STATE_ACTIVE) 10947 return HRTIMER_NORESTART; 10948 10949 event->pmu->read(event); 10950 10951 perf_sample_data_init(&data, 0, event->hw.last_period); 10952 regs = get_irq_regs(); 10953 10954 if (regs && !perf_exclude_event(event, regs)) { 10955 if (!(event->attr.exclude_idle && is_idle_task(current))) 10956 if (__perf_event_overflow(event, 1, &data, regs)) 10957 ret = HRTIMER_NORESTART; 10958 } 10959 10960 period = max_t(u64, 10000, event->hw.sample_period); 10961 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10962 10963 return ret; 10964 } 10965 10966 static void perf_swevent_start_hrtimer(struct perf_event *event) 10967 { 10968 struct hw_perf_event *hwc = &event->hw; 10969 s64 period; 10970 10971 if (!is_sampling_event(event)) 10972 return; 10973 10974 period = local64_read(&hwc->period_left); 10975 if (period) { 10976 if (period < 0) 10977 period = 10000; 10978 10979 local64_set(&hwc->period_left, 0); 10980 } else { 10981 period = max_t(u64, 10000, hwc->sample_period); 10982 } 10983 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10984 HRTIMER_MODE_REL_PINNED_HARD); 10985 } 10986 10987 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10988 { 10989 struct hw_perf_event *hwc = &event->hw; 10990 10991 if (is_sampling_event(event)) { 10992 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10993 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10994 10995 hrtimer_cancel(&hwc->hrtimer); 10996 } 10997 } 10998 10999 static void perf_swevent_init_hrtimer(struct perf_event *event) 11000 { 11001 struct hw_perf_event *hwc = &event->hw; 11002 11003 if (!is_sampling_event(event)) 11004 return; 11005 11006 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11007 hwc->hrtimer.function = perf_swevent_hrtimer; 11008 11009 /* 11010 * Since hrtimers have a fixed rate, we can do a static freq->period 11011 * mapping and avoid the whole period adjust feedback stuff. 11012 */ 11013 if (event->attr.freq) { 11014 long freq = event->attr.sample_freq; 11015 11016 event->attr.sample_period = NSEC_PER_SEC / freq; 11017 hwc->sample_period = event->attr.sample_period; 11018 local64_set(&hwc->period_left, hwc->sample_period); 11019 hwc->last_period = hwc->sample_period; 11020 event->attr.freq = 0; 11021 } 11022 } 11023 11024 /* 11025 * Software event: cpu wall time clock 11026 */ 11027 11028 static void cpu_clock_event_update(struct perf_event *event) 11029 { 11030 s64 prev; 11031 u64 now; 11032 11033 now = local_clock(); 11034 prev = local64_xchg(&event->hw.prev_count, now); 11035 local64_add(now - prev, &event->count); 11036 } 11037 11038 static void cpu_clock_event_start(struct perf_event *event, int flags) 11039 { 11040 local64_set(&event->hw.prev_count, local_clock()); 11041 perf_swevent_start_hrtimer(event); 11042 } 11043 11044 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11045 { 11046 perf_swevent_cancel_hrtimer(event); 11047 cpu_clock_event_update(event); 11048 } 11049 11050 static int cpu_clock_event_add(struct perf_event *event, int flags) 11051 { 11052 if (flags & PERF_EF_START) 11053 cpu_clock_event_start(event, flags); 11054 perf_event_update_userpage(event); 11055 11056 return 0; 11057 } 11058 11059 static void cpu_clock_event_del(struct perf_event *event, int flags) 11060 { 11061 cpu_clock_event_stop(event, flags); 11062 } 11063 11064 static void cpu_clock_event_read(struct perf_event *event) 11065 { 11066 cpu_clock_event_update(event); 11067 } 11068 11069 static int cpu_clock_event_init(struct perf_event *event) 11070 { 11071 if (event->attr.type != PERF_TYPE_SOFTWARE) 11072 return -ENOENT; 11073 11074 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11075 return -ENOENT; 11076 11077 /* 11078 * no branch sampling for software events 11079 */ 11080 if (has_branch_stack(event)) 11081 return -EOPNOTSUPP; 11082 11083 perf_swevent_init_hrtimer(event); 11084 11085 return 0; 11086 } 11087 11088 static struct pmu perf_cpu_clock = { 11089 .task_ctx_nr = perf_sw_context, 11090 11091 .capabilities = PERF_PMU_CAP_NO_NMI, 11092 11093 .event_init = cpu_clock_event_init, 11094 .add = cpu_clock_event_add, 11095 .del = cpu_clock_event_del, 11096 .start = cpu_clock_event_start, 11097 .stop = cpu_clock_event_stop, 11098 .read = cpu_clock_event_read, 11099 }; 11100 11101 /* 11102 * Software event: task time clock 11103 */ 11104 11105 static void task_clock_event_update(struct perf_event *event, u64 now) 11106 { 11107 u64 prev; 11108 s64 delta; 11109 11110 prev = local64_xchg(&event->hw.prev_count, now); 11111 delta = now - prev; 11112 local64_add(delta, &event->count); 11113 } 11114 11115 static void task_clock_event_start(struct perf_event *event, int flags) 11116 { 11117 local64_set(&event->hw.prev_count, event->ctx->time); 11118 perf_swevent_start_hrtimer(event); 11119 } 11120 11121 static void task_clock_event_stop(struct perf_event *event, int flags) 11122 { 11123 perf_swevent_cancel_hrtimer(event); 11124 task_clock_event_update(event, event->ctx->time); 11125 } 11126 11127 static int task_clock_event_add(struct perf_event *event, int flags) 11128 { 11129 if (flags & PERF_EF_START) 11130 task_clock_event_start(event, flags); 11131 perf_event_update_userpage(event); 11132 11133 return 0; 11134 } 11135 11136 static void task_clock_event_del(struct perf_event *event, int flags) 11137 { 11138 task_clock_event_stop(event, PERF_EF_UPDATE); 11139 } 11140 11141 static void task_clock_event_read(struct perf_event *event) 11142 { 11143 u64 now = perf_clock(); 11144 u64 delta = now - event->ctx->timestamp; 11145 u64 time = event->ctx->time + delta; 11146 11147 task_clock_event_update(event, time); 11148 } 11149 11150 static int task_clock_event_init(struct perf_event *event) 11151 { 11152 if (event->attr.type != PERF_TYPE_SOFTWARE) 11153 return -ENOENT; 11154 11155 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11156 return -ENOENT; 11157 11158 /* 11159 * no branch sampling for software events 11160 */ 11161 if (has_branch_stack(event)) 11162 return -EOPNOTSUPP; 11163 11164 perf_swevent_init_hrtimer(event); 11165 11166 return 0; 11167 } 11168 11169 static struct pmu perf_task_clock = { 11170 .task_ctx_nr = perf_sw_context, 11171 11172 .capabilities = PERF_PMU_CAP_NO_NMI, 11173 11174 .event_init = task_clock_event_init, 11175 .add = task_clock_event_add, 11176 .del = task_clock_event_del, 11177 .start = task_clock_event_start, 11178 .stop = task_clock_event_stop, 11179 .read = task_clock_event_read, 11180 }; 11181 11182 static void perf_pmu_nop_void(struct pmu *pmu) 11183 { 11184 } 11185 11186 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11187 { 11188 } 11189 11190 static int perf_pmu_nop_int(struct pmu *pmu) 11191 { 11192 return 0; 11193 } 11194 11195 static int perf_event_nop_int(struct perf_event *event, u64 value) 11196 { 11197 return 0; 11198 } 11199 11200 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11201 11202 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11203 { 11204 __this_cpu_write(nop_txn_flags, flags); 11205 11206 if (flags & ~PERF_PMU_TXN_ADD) 11207 return; 11208 11209 perf_pmu_disable(pmu); 11210 } 11211 11212 static int perf_pmu_commit_txn(struct pmu *pmu) 11213 { 11214 unsigned int flags = __this_cpu_read(nop_txn_flags); 11215 11216 __this_cpu_write(nop_txn_flags, 0); 11217 11218 if (flags & ~PERF_PMU_TXN_ADD) 11219 return 0; 11220 11221 perf_pmu_enable(pmu); 11222 return 0; 11223 } 11224 11225 static void perf_pmu_cancel_txn(struct pmu *pmu) 11226 { 11227 unsigned int flags = __this_cpu_read(nop_txn_flags); 11228 11229 __this_cpu_write(nop_txn_flags, 0); 11230 11231 if (flags & ~PERF_PMU_TXN_ADD) 11232 return; 11233 11234 perf_pmu_enable(pmu); 11235 } 11236 11237 static int perf_event_idx_default(struct perf_event *event) 11238 { 11239 return 0; 11240 } 11241 11242 static void free_pmu_context(struct pmu *pmu) 11243 { 11244 free_percpu(pmu->cpu_pmu_context); 11245 } 11246 11247 /* 11248 * Let userspace know that this PMU supports address range filtering: 11249 */ 11250 static ssize_t nr_addr_filters_show(struct device *dev, 11251 struct device_attribute *attr, 11252 char *page) 11253 { 11254 struct pmu *pmu = dev_get_drvdata(dev); 11255 11256 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11257 } 11258 DEVICE_ATTR_RO(nr_addr_filters); 11259 11260 static struct idr pmu_idr; 11261 11262 static ssize_t 11263 type_show(struct device *dev, struct device_attribute *attr, char *page) 11264 { 11265 struct pmu *pmu = dev_get_drvdata(dev); 11266 11267 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11268 } 11269 static DEVICE_ATTR_RO(type); 11270 11271 static ssize_t 11272 perf_event_mux_interval_ms_show(struct device *dev, 11273 struct device_attribute *attr, 11274 char *page) 11275 { 11276 struct pmu *pmu = dev_get_drvdata(dev); 11277 11278 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11279 } 11280 11281 static DEFINE_MUTEX(mux_interval_mutex); 11282 11283 static ssize_t 11284 perf_event_mux_interval_ms_store(struct device *dev, 11285 struct device_attribute *attr, 11286 const char *buf, size_t count) 11287 { 11288 struct pmu *pmu = dev_get_drvdata(dev); 11289 int timer, cpu, ret; 11290 11291 ret = kstrtoint(buf, 0, &timer); 11292 if (ret) 11293 return ret; 11294 11295 if (timer < 1) 11296 return -EINVAL; 11297 11298 /* same value, noting to do */ 11299 if (timer == pmu->hrtimer_interval_ms) 11300 return count; 11301 11302 mutex_lock(&mux_interval_mutex); 11303 pmu->hrtimer_interval_ms = timer; 11304 11305 /* update all cpuctx for this PMU */ 11306 cpus_read_lock(); 11307 for_each_online_cpu(cpu) { 11308 struct perf_cpu_pmu_context *cpc; 11309 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11310 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11311 11312 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11313 } 11314 cpus_read_unlock(); 11315 mutex_unlock(&mux_interval_mutex); 11316 11317 return count; 11318 } 11319 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11320 11321 static struct attribute *pmu_dev_attrs[] = { 11322 &dev_attr_type.attr, 11323 &dev_attr_perf_event_mux_interval_ms.attr, 11324 NULL, 11325 }; 11326 ATTRIBUTE_GROUPS(pmu_dev); 11327 11328 static int pmu_bus_running; 11329 static struct bus_type pmu_bus = { 11330 .name = "event_source", 11331 .dev_groups = pmu_dev_groups, 11332 }; 11333 11334 static void pmu_dev_release(struct device *dev) 11335 { 11336 kfree(dev); 11337 } 11338 11339 static int pmu_dev_alloc(struct pmu *pmu) 11340 { 11341 int ret = -ENOMEM; 11342 11343 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11344 if (!pmu->dev) 11345 goto out; 11346 11347 pmu->dev->groups = pmu->attr_groups; 11348 device_initialize(pmu->dev); 11349 11350 dev_set_drvdata(pmu->dev, pmu); 11351 pmu->dev->bus = &pmu_bus; 11352 pmu->dev->release = pmu_dev_release; 11353 11354 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11355 if (ret) 11356 goto free_dev; 11357 11358 ret = device_add(pmu->dev); 11359 if (ret) 11360 goto free_dev; 11361 11362 /* For PMUs with address filters, throw in an extra attribute: */ 11363 if (pmu->nr_addr_filters) 11364 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11365 11366 if (ret) 11367 goto del_dev; 11368 11369 if (pmu->attr_update) 11370 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11371 11372 if (ret) 11373 goto del_dev; 11374 11375 out: 11376 return ret; 11377 11378 del_dev: 11379 device_del(pmu->dev); 11380 11381 free_dev: 11382 put_device(pmu->dev); 11383 goto out; 11384 } 11385 11386 static struct lock_class_key cpuctx_mutex; 11387 static struct lock_class_key cpuctx_lock; 11388 11389 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11390 { 11391 int cpu, ret, max = PERF_TYPE_MAX; 11392 11393 mutex_lock(&pmus_lock); 11394 ret = -ENOMEM; 11395 pmu->pmu_disable_count = alloc_percpu(int); 11396 if (!pmu->pmu_disable_count) 11397 goto unlock; 11398 11399 pmu->type = -1; 11400 if (!name) 11401 goto skip_type; 11402 pmu->name = name; 11403 11404 if (type != PERF_TYPE_SOFTWARE) { 11405 if (type >= 0) 11406 max = type; 11407 11408 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11409 if (ret < 0) 11410 goto free_pdc; 11411 11412 WARN_ON(type >= 0 && ret != type); 11413 11414 type = ret; 11415 } 11416 pmu->type = type; 11417 11418 if (pmu_bus_running) { 11419 ret = pmu_dev_alloc(pmu); 11420 if (ret) 11421 goto free_idr; 11422 } 11423 11424 skip_type: 11425 ret = -ENOMEM; 11426 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11427 if (!pmu->cpu_pmu_context) 11428 goto free_dev; 11429 11430 for_each_possible_cpu(cpu) { 11431 struct perf_cpu_pmu_context *cpc; 11432 11433 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11434 __perf_init_event_pmu_context(&cpc->epc, pmu); 11435 __perf_mux_hrtimer_init(cpc, cpu); 11436 } 11437 11438 if (!pmu->start_txn) { 11439 if (pmu->pmu_enable) { 11440 /* 11441 * If we have pmu_enable/pmu_disable calls, install 11442 * transaction stubs that use that to try and batch 11443 * hardware accesses. 11444 */ 11445 pmu->start_txn = perf_pmu_start_txn; 11446 pmu->commit_txn = perf_pmu_commit_txn; 11447 pmu->cancel_txn = perf_pmu_cancel_txn; 11448 } else { 11449 pmu->start_txn = perf_pmu_nop_txn; 11450 pmu->commit_txn = perf_pmu_nop_int; 11451 pmu->cancel_txn = perf_pmu_nop_void; 11452 } 11453 } 11454 11455 if (!pmu->pmu_enable) { 11456 pmu->pmu_enable = perf_pmu_nop_void; 11457 pmu->pmu_disable = perf_pmu_nop_void; 11458 } 11459 11460 if (!pmu->check_period) 11461 pmu->check_period = perf_event_nop_int; 11462 11463 if (!pmu->event_idx) 11464 pmu->event_idx = perf_event_idx_default; 11465 11466 /* 11467 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11468 * since these cannot be in the IDR. This way the linear search 11469 * is fast, provided a valid software event is provided. 11470 */ 11471 if (type == PERF_TYPE_SOFTWARE || !name) 11472 list_add_rcu(&pmu->entry, &pmus); 11473 else 11474 list_add_tail_rcu(&pmu->entry, &pmus); 11475 11476 atomic_set(&pmu->exclusive_cnt, 0); 11477 ret = 0; 11478 unlock: 11479 mutex_unlock(&pmus_lock); 11480 11481 return ret; 11482 11483 free_dev: 11484 device_del(pmu->dev); 11485 put_device(pmu->dev); 11486 11487 free_idr: 11488 if (pmu->type != PERF_TYPE_SOFTWARE) 11489 idr_remove(&pmu_idr, pmu->type); 11490 11491 free_pdc: 11492 free_percpu(pmu->pmu_disable_count); 11493 goto unlock; 11494 } 11495 EXPORT_SYMBOL_GPL(perf_pmu_register); 11496 11497 void perf_pmu_unregister(struct pmu *pmu) 11498 { 11499 mutex_lock(&pmus_lock); 11500 list_del_rcu(&pmu->entry); 11501 11502 /* 11503 * We dereference the pmu list under both SRCU and regular RCU, so 11504 * synchronize against both of those. 11505 */ 11506 synchronize_srcu(&pmus_srcu); 11507 synchronize_rcu(); 11508 11509 free_percpu(pmu->pmu_disable_count); 11510 if (pmu->type != PERF_TYPE_SOFTWARE) 11511 idr_remove(&pmu_idr, pmu->type); 11512 if (pmu_bus_running) { 11513 if (pmu->nr_addr_filters) 11514 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11515 device_del(pmu->dev); 11516 put_device(pmu->dev); 11517 } 11518 free_pmu_context(pmu); 11519 mutex_unlock(&pmus_lock); 11520 } 11521 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11522 11523 static inline bool has_extended_regs(struct perf_event *event) 11524 { 11525 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11526 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11527 } 11528 11529 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11530 { 11531 struct perf_event_context *ctx = NULL; 11532 int ret; 11533 11534 if (!try_module_get(pmu->module)) 11535 return -ENODEV; 11536 11537 /* 11538 * A number of pmu->event_init() methods iterate the sibling_list to, 11539 * for example, validate if the group fits on the PMU. Therefore, 11540 * if this is a sibling event, acquire the ctx->mutex to protect 11541 * the sibling_list. 11542 */ 11543 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11544 /* 11545 * This ctx->mutex can nest when we're called through 11546 * inheritance. See the perf_event_ctx_lock_nested() comment. 11547 */ 11548 ctx = perf_event_ctx_lock_nested(event->group_leader, 11549 SINGLE_DEPTH_NESTING); 11550 BUG_ON(!ctx); 11551 } 11552 11553 event->pmu = pmu; 11554 ret = pmu->event_init(event); 11555 11556 if (ctx) 11557 perf_event_ctx_unlock(event->group_leader, ctx); 11558 11559 if (!ret) { 11560 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11561 has_extended_regs(event)) 11562 ret = -EOPNOTSUPP; 11563 11564 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11565 event_has_any_exclude_flag(event)) 11566 ret = -EINVAL; 11567 11568 if (ret && event->destroy) 11569 event->destroy(event); 11570 } 11571 11572 if (ret) 11573 module_put(pmu->module); 11574 11575 return ret; 11576 } 11577 11578 static struct pmu *perf_init_event(struct perf_event *event) 11579 { 11580 bool extended_type = false; 11581 int idx, type, ret; 11582 struct pmu *pmu; 11583 11584 idx = srcu_read_lock(&pmus_srcu); 11585 11586 /* Try parent's PMU first: */ 11587 if (event->parent && event->parent->pmu) { 11588 pmu = event->parent->pmu; 11589 ret = perf_try_init_event(pmu, event); 11590 if (!ret) 11591 goto unlock; 11592 } 11593 11594 /* 11595 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11596 * are often aliases for PERF_TYPE_RAW. 11597 */ 11598 type = event->attr.type; 11599 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11600 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11601 if (!type) { 11602 type = PERF_TYPE_RAW; 11603 } else { 11604 extended_type = true; 11605 event->attr.config &= PERF_HW_EVENT_MASK; 11606 } 11607 } 11608 11609 again: 11610 rcu_read_lock(); 11611 pmu = idr_find(&pmu_idr, type); 11612 rcu_read_unlock(); 11613 if (pmu) { 11614 if (event->attr.type != type && type != PERF_TYPE_RAW && 11615 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11616 goto fail; 11617 11618 ret = perf_try_init_event(pmu, event); 11619 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11620 type = event->attr.type; 11621 goto again; 11622 } 11623 11624 if (ret) 11625 pmu = ERR_PTR(ret); 11626 11627 goto unlock; 11628 } 11629 11630 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11631 ret = perf_try_init_event(pmu, event); 11632 if (!ret) 11633 goto unlock; 11634 11635 if (ret != -ENOENT) { 11636 pmu = ERR_PTR(ret); 11637 goto unlock; 11638 } 11639 } 11640 fail: 11641 pmu = ERR_PTR(-ENOENT); 11642 unlock: 11643 srcu_read_unlock(&pmus_srcu, idx); 11644 11645 return pmu; 11646 } 11647 11648 static void attach_sb_event(struct perf_event *event) 11649 { 11650 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11651 11652 raw_spin_lock(&pel->lock); 11653 list_add_rcu(&event->sb_list, &pel->list); 11654 raw_spin_unlock(&pel->lock); 11655 } 11656 11657 /* 11658 * We keep a list of all !task (and therefore per-cpu) events 11659 * that need to receive side-band records. 11660 * 11661 * This avoids having to scan all the various PMU per-cpu contexts 11662 * looking for them. 11663 */ 11664 static void account_pmu_sb_event(struct perf_event *event) 11665 { 11666 if (is_sb_event(event)) 11667 attach_sb_event(event); 11668 } 11669 11670 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11671 static void account_freq_event_nohz(void) 11672 { 11673 #ifdef CONFIG_NO_HZ_FULL 11674 /* Lock so we don't race with concurrent unaccount */ 11675 spin_lock(&nr_freq_lock); 11676 if (atomic_inc_return(&nr_freq_events) == 1) 11677 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11678 spin_unlock(&nr_freq_lock); 11679 #endif 11680 } 11681 11682 static void account_freq_event(void) 11683 { 11684 if (tick_nohz_full_enabled()) 11685 account_freq_event_nohz(); 11686 else 11687 atomic_inc(&nr_freq_events); 11688 } 11689 11690 11691 static void account_event(struct perf_event *event) 11692 { 11693 bool inc = false; 11694 11695 if (event->parent) 11696 return; 11697 11698 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11699 inc = true; 11700 if (event->attr.mmap || event->attr.mmap_data) 11701 atomic_inc(&nr_mmap_events); 11702 if (event->attr.build_id) 11703 atomic_inc(&nr_build_id_events); 11704 if (event->attr.comm) 11705 atomic_inc(&nr_comm_events); 11706 if (event->attr.namespaces) 11707 atomic_inc(&nr_namespaces_events); 11708 if (event->attr.cgroup) 11709 atomic_inc(&nr_cgroup_events); 11710 if (event->attr.task) 11711 atomic_inc(&nr_task_events); 11712 if (event->attr.freq) 11713 account_freq_event(); 11714 if (event->attr.context_switch) { 11715 atomic_inc(&nr_switch_events); 11716 inc = true; 11717 } 11718 if (has_branch_stack(event)) 11719 inc = true; 11720 if (is_cgroup_event(event)) 11721 inc = true; 11722 if (event->attr.ksymbol) 11723 atomic_inc(&nr_ksymbol_events); 11724 if (event->attr.bpf_event) 11725 atomic_inc(&nr_bpf_events); 11726 if (event->attr.text_poke) 11727 atomic_inc(&nr_text_poke_events); 11728 11729 if (inc) { 11730 /* 11731 * We need the mutex here because static_branch_enable() 11732 * must complete *before* the perf_sched_count increment 11733 * becomes visible. 11734 */ 11735 if (atomic_inc_not_zero(&perf_sched_count)) 11736 goto enabled; 11737 11738 mutex_lock(&perf_sched_mutex); 11739 if (!atomic_read(&perf_sched_count)) { 11740 static_branch_enable(&perf_sched_events); 11741 /* 11742 * Guarantee that all CPUs observe they key change and 11743 * call the perf scheduling hooks before proceeding to 11744 * install events that need them. 11745 */ 11746 synchronize_rcu(); 11747 } 11748 /* 11749 * Now that we have waited for the sync_sched(), allow further 11750 * increments to by-pass the mutex. 11751 */ 11752 atomic_inc(&perf_sched_count); 11753 mutex_unlock(&perf_sched_mutex); 11754 } 11755 enabled: 11756 11757 account_pmu_sb_event(event); 11758 } 11759 11760 /* 11761 * Allocate and initialize an event structure 11762 */ 11763 static struct perf_event * 11764 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11765 struct task_struct *task, 11766 struct perf_event *group_leader, 11767 struct perf_event *parent_event, 11768 perf_overflow_handler_t overflow_handler, 11769 void *context, int cgroup_fd) 11770 { 11771 struct pmu *pmu; 11772 struct perf_event *event; 11773 struct hw_perf_event *hwc; 11774 long err = -EINVAL; 11775 int node; 11776 11777 if ((unsigned)cpu >= nr_cpu_ids) { 11778 if (!task || cpu != -1) 11779 return ERR_PTR(-EINVAL); 11780 } 11781 if (attr->sigtrap && !task) { 11782 /* Requires a task: avoid signalling random tasks. */ 11783 return ERR_PTR(-EINVAL); 11784 } 11785 11786 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11787 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11788 node); 11789 if (!event) 11790 return ERR_PTR(-ENOMEM); 11791 11792 /* 11793 * Single events are their own group leaders, with an 11794 * empty sibling list: 11795 */ 11796 if (!group_leader) 11797 group_leader = event; 11798 11799 mutex_init(&event->child_mutex); 11800 INIT_LIST_HEAD(&event->child_list); 11801 11802 INIT_LIST_HEAD(&event->event_entry); 11803 INIT_LIST_HEAD(&event->sibling_list); 11804 INIT_LIST_HEAD(&event->active_list); 11805 init_event_group(event); 11806 INIT_LIST_HEAD(&event->rb_entry); 11807 INIT_LIST_HEAD(&event->active_entry); 11808 INIT_LIST_HEAD(&event->addr_filters.list); 11809 INIT_HLIST_NODE(&event->hlist_entry); 11810 11811 11812 init_waitqueue_head(&event->waitq); 11813 init_irq_work(&event->pending_irq, perf_pending_irq); 11814 init_task_work(&event->pending_task, perf_pending_task); 11815 11816 mutex_init(&event->mmap_mutex); 11817 raw_spin_lock_init(&event->addr_filters.lock); 11818 11819 atomic_long_set(&event->refcount, 1); 11820 event->cpu = cpu; 11821 event->attr = *attr; 11822 event->group_leader = group_leader; 11823 event->pmu = NULL; 11824 event->oncpu = -1; 11825 11826 event->parent = parent_event; 11827 11828 event->ns = get_pid_ns(task_active_pid_ns(current)); 11829 event->id = atomic64_inc_return(&perf_event_id); 11830 11831 event->state = PERF_EVENT_STATE_INACTIVE; 11832 11833 if (parent_event) 11834 event->event_caps = parent_event->event_caps; 11835 11836 if (task) { 11837 event->attach_state = PERF_ATTACH_TASK; 11838 /* 11839 * XXX pmu::event_init needs to know what task to account to 11840 * and we cannot use the ctx information because we need the 11841 * pmu before we get a ctx. 11842 */ 11843 event->hw.target = get_task_struct(task); 11844 } 11845 11846 event->clock = &local_clock; 11847 if (parent_event) 11848 event->clock = parent_event->clock; 11849 11850 if (!overflow_handler && parent_event) { 11851 overflow_handler = parent_event->overflow_handler; 11852 context = parent_event->overflow_handler_context; 11853 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11854 if (overflow_handler == bpf_overflow_handler) { 11855 struct bpf_prog *prog = parent_event->prog; 11856 11857 bpf_prog_inc(prog); 11858 event->prog = prog; 11859 event->orig_overflow_handler = 11860 parent_event->orig_overflow_handler; 11861 } 11862 #endif 11863 } 11864 11865 if (overflow_handler) { 11866 event->overflow_handler = overflow_handler; 11867 event->overflow_handler_context = context; 11868 } else if (is_write_backward(event)){ 11869 event->overflow_handler = perf_event_output_backward; 11870 event->overflow_handler_context = NULL; 11871 } else { 11872 event->overflow_handler = perf_event_output_forward; 11873 event->overflow_handler_context = NULL; 11874 } 11875 11876 perf_event__state_init(event); 11877 11878 pmu = NULL; 11879 11880 hwc = &event->hw; 11881 hwc->sample_period = attr->sample_period; 11882 if (attr->freq && attr->sample_freq) 11883 hwc->sample_period = 1; 11884 hwc->last_period = hwc->sample_period; 11885 11886 local64_set(&hwc->period_left, hwc->sample_period); 11887 11888 /* 11889 * We currently do not support PERF_SAMPLE_READ on inherited events. 11890 * See perf_output_read(). 11891 */ 11892 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11893 goto err_ns; 11894 11895 if (!has_branch_stack(event)) 11896 event->attr.branch_sample_type = 0; 11897 11898 pmu = perf_init_event(event); 11899 if (IS_ERR(pmu)) { 11900 err = PTR_ERR(pmu); 11901 goto err_ns; 11902 } 11903 11904 /* 11905 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11906 * events (they don't make sense as the cgroup will be different 11907 * on other CPUs in the uncore mask). 11908 */ 11909 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11910 err = -EINVAL; 11911 goto err_pmu; 11912 } 11913 11914 if (event->attr.aux_output && 11915 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11916 err = -EOPNOTSUPP; 11917 goto err_pmu; 11918 } 11919 11920 if (cgroup_fd != -1) { 11921 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11922 if (err) 11923 goto err_pmu; 11924 } 11925 11926 err = exclusive_event_init(event); 11927 if (err) 11928 goto err_pmu; 11929 11930 if (has_addr_filter(event)) { 11931 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11932 sizeof(struct perf_addr_filter_range), 11933 GFP_KERNEL); 11934 if (!event->addr_filter_ranges) { 11935 err = -ENOMEM; 11936 goto err_per_task; 11937 } 11938 11939 /* 11940 * Clone the parent's vma offsets: they are valid until exec() 11941 * even if the mm is not shared with the parent. 11942 */ 11943 if (event->parent) { 11944 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11945 11946 raw_spin_lock_irq(&ifh->lock); 11947 memcpy(event->addr_filter_ranges, 11948 event->parent->addr_filter_ranges, 11949 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11950 raw_spin_unlock_irq(&ifh->lock); 11951 } 11952 11953 /* force hw sync on the address filters */ 11954 event->addr_filters_gen = 1; 11955 } 11956 11957 if (!event->parent) { 11958 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11959 err = get_callchain_buffers(attr->sample_max_stack); 11960 if (err) 11961 goto err_addr_filters; 11962 } 11963 } 11964 11965 err = security_perf_event_alloc(event); 11966 if (err) 11967 goto err_callchain_buffer; 11968 11969 /* symmetric to unaccount_event() in _free_event() */ 11970 account_event(event); 11971 11972 return event; 11973 11974 err_callchain_buffer: 11975 if (!event->parent) { 11976 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11977 put_callchain_buffers(); 11978 } 11979 err_addr_filters: 11980 kfree(event->addr_filter_ranges); 11981 11982 err_per_task: 11983 exclusive_event_destroy(event); 11984 11985 err_pmu: 11986 if (is_cgroup_event(event)) 11987 perf_detach_cgroup(event); 11988 if (event->destroy) 11989 event->destroy(event); 11990 module_put(pmu->module); 11991 err_ns: 11992 if (event->hw.target) 11993 put_task_struct(event->hw.target); 11994 call_rcu(&event->rcu_head, free_event_rcu); 11995 11996 return ERR_PTR(err); 11997 } 11998 11999 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12000 struct perf_event_attr *attr) 12001 { 12002 u32 size; 12003 int ret; 12004 12005 /* Zero the full structure, so that a short copy will be nice. */ 12006 memset(attr, 0, sizeof(*attr)); 12007 12008 ret = get_user(size, &uattr->size); 12009 if (ret) 12010 return ret; 12011 12012 /* ABI compatibility quirk: */ 12013 if (!size) 12014 size = PERF_ATTR_SIZE_VER0; 12015 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12016 goto err_size; 12017 12018 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12019 if (ret) { 12020 if (ret == -E2BIG) 12021 goto err_size; 12022 return ret; 12023 } 12024 12025 attr->size = size; 12026 12027 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12028 return -EINVAL; 12029 12030 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12031 return -EINVAL; 12032 12033 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12034 return -EINVAL; 12035 12036 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12037 u64 mask = attr->branch_sample_type; 12038 12039 /* only using defined bits */ 12040 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12041 return -EINVAL; 12042 12043 /* at least one branch bit must be set */ 12044 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12045 return -EINVAL; 12046 12047 /* propagate priv level, when not set for branch */ 12048 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12049 12050 /* exclude_kernel checked on syscall entry */ 12051 if (!attr->exclude_kernel) 12052 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12053 12054 if (!attr->exclude_user) 12055 mask |= PERF_SAMPLE_BRANCH_USER; 12056 12057 if (!attr->exclude_hv) 12058 mask |= PERF_SAMPLE_BRANCH_HV; 12059 /* 12060 * adjust user setting (for HW filter setup) 12061 */ 12062 attr->branch_sample_type = mask; 12063 } 12064 /* privileged levels capture (kernel, hv): check permissions */ 12065 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12066 ret = perf_allow_kernel(attr); 12067 if (ret) 12068 return ret; 12069 } 12070 } 12071 12072 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12073 ret = perf_reg_validate(attr->sample_regs_user); 12074 if (ret) 12075 return ret; 12076 } 12077 12078 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12079 if (!arch_perf_have_user_stack_dump()) 12080 return -ENOSYS; 12081 12082 /* 12083 * We have __u32 type for the size, but so far 12084 * we can only use __u16 as maximum due to the 12085 * __u16 sample size limit. 12086 */ 12087 if (attr->sample_stack_user >= USHRT_MAX) 12088 return -EINVAL; 12089 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12090 return -EINVAL; 12091 } 12092 12093 if (!attr->sample_max_stack) 12094 attr->sample_max_stack = sysctl_perf_event_max_stack; 12095 12096 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12097 ret = perf_reg_validate(attr->sample_regs_intr); 12098 12099 #ifndef CONFIG_CGROUP_PERF 12100 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12101 return -EINVAL; 12102 #endif 12103 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12104 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12105 return -EINVAL; 12106 12107 if (!attr->inherit && attr->inherit_thread) 12108 return -EINVAL; 12109 12110 if (attr->remove_on_exec && attr->enable_on_exec) 12111 return -EINVAL; 12112 12113 if (attr->sigtrap && !attr->remove_on_exec) 12114 return -EINVAL; 12115 12116 out: 12117 return ret; 12118 12119 err_size: 12120 put_user(sizeof(*attr), &uattr->size); 12121 ret = -E2BIG; 12122 goto out; 12123 } 12124 12125 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12126 { 12127 if (b < a) 12128 swap(a, b); 12129 12130 mutex_lock(a); 12131 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12132 } 12133 12134 static int 12135 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12136 { 12137 struct perf_buffer *rb = NULL; 12138 int ret = -EINVAL; 12139 12140 if (!output_event) { 12141 mutex_lock(&event->mmap_mutex); 12142 goto set; 12143 } 12144 12145 /* don't allow circular references */ 12146 if (event == output_event) 12147 goto out; 12148 12149 /* 12150 * Don't allow cross-cpu buffers 12151 */ 12152 if (output_event->cpu != event->cpu) 12153 goto out; 12154 12155 /* 12156 * If its not a per-cpu rb, it must be the same task. 12157 */ 12158 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 12159 goto out; 12160 12161 /* 12162 * Mixing clocks in the same buffer is trouble you don't need. 12163 */ 12164 if (output_event->clock != event->clock) 12165 goto out; 12166 12167 /* 12168 * Either writing ring buffer from beginning or from end. 12169 * Mixing is not allowed. 12170 */ 12171 if (is_write_backward(output_event) != is_write_backward(event)) 12172 goto out; 12173 12174 /* 12175 * If both events generate aux data, they must be on the same PMU 12176 */ 12177 if (has_aux(event) && has_aux(output_event) && 12178 event->pmu != output_event->pmu) 12179 goto out; 12180 12181 /* 12182 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12183 * output_event is already on rb->event_list, and the list iteration 12184 * restarts after every removal, it is guaranteed this new event is 12185 * observed *OR* if output_event is already removed, it's guaranteed we 12186 * observe !rb->mmap_count. 12187 */ 12188 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12189 set: 12190 /* Can't redirect output if we've got an active mmap() */ 12191 if (atomic_read(&event->mmap_count)) 12192 goto unlock; 12193 12194 if (output_event) { 12195 /* get the rb we want to redirect to */ 12196 rb = ring_buffer_get(output_event); 12197 if (!rb) 12198 goto unlock; 12199 12200 /* did we race against perf_mmap_close() */ 12201 if (!atomic_read(&rb->mmap_count)) { 12202 ring_buffer_put(rb); 12203 goto unlock; 12204 } 12205 } 12206 12207 ring_buffer_attach(event, rb); 12208 12209 ret = 0; 12210 unlock: 12211 mutex_unlock(&event->mmap_mutex); 12212 if (output_event) 12213 mutex_unlock(&output_event->mmap_mutex); 12214 12215 out: 12216 return ret; 12217 } 12218 12219 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12220 { 12221 bool nmi_safe = false; 12222 12223 switch (clk_id) { 12224 case CLOCK_MONOTONIC: 12225 event->clock = &ktime_get_mono_fast_ns; 12226 nmi_safe = true; 12227 break; 12228 12229 case CLOCK_MONOTONIC_RAW: 12230 event->clock = &ktime_get_raw_fast_ns; 12231 nmi_safe = true; 12232 break; 12233 12234 case CLOCK_REALTIME: 12235 event->clock = &ktime_get_real_ns; 12236 break; 12237 12238 case CLOCK_BOOTTIME: 12239 event->clock = &ktime_get_boottime_ns; 12240 break; 12241 12242 case CLOCK_TAI: 12243 event->clock = &ktime_get_clocktai_ns; 12244 break; 12245 12246 default: 12247 return -EINVAL; 12248 } 12249 12250 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12251 return -EINVAL; 12252 12253 return 0; 12254 } 12255 12256 static bool 12257 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12258 { 12259 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12260 bool is_capable = perfmon_capable(); 12261 12262 if (attr->sigtrap) { 12263 /* 12264 * perf_event_attr::sigtrap sends signals to the other task. 12265 * Require the current task to also have CAP_KILL. 12266 */ 12267 rcu_read_lock(); 12268 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12269 rcu_read_unlock(); 12270 12271 /* 12272 * If the required capabilities aren't available, checks for 12273 * ptrace permissions: upgrade to ATTACH, since sending signals 12274 * can effectively change the target task. 12275 */ 12276 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12277 } 12278 12279 /* 12280 * Preserve ptrace permission check for backwards compatibility. The 12281 * ptrace check also includes checks that the current task and other 12282 * task have matching uids, and is therefore not done here explicitly. 12283 */ 12284 return is_capable || ptrace_may_access(task, ptrace_mode); 12285 } 12286 12287 /** 12288 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12289 * 12290 * @attr_uptr: event_id type attributes for monitoring/sampling 12291 * @pid: target pid 12292 * @cpu: target cpu 12293 * @group_fd: group leader event fd 12294 * @flags: perf event open flags 12295 */ 12296 SYSCALL_DEFINE5(perf_event_open, 12297 struct perf_event_attr __user *, attr_uptr, 12298 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12299 { 12300 struct perf_event *group_leader = NULL, *output_event = NULL; 12301 struct perf_event_pmu_context *pmu_ctx; 12302 struct perf_event *event, *sibling; 12303 struct perf_event_attr attr; 12304 struct perf_event_context *ctx; 12305 struct file *event_file = NULL; 12306 struct fd group = {NULL, 0}; 12307 struct task_struct *task = NULL; 12308 struct pmu *pmu; 12309 int event_fd; 12310 int move_group = 0; 12311 int err; 12312 int f_flags = O_RDWR; 12313 int cgroup_fd = -1; 12314 12315 /* for future expandability... */ 12316 if (flags & ~PERF_FLAG_ALL) 12317 return -EINVAL; 12318 12319 err = perf_copy_attr(attr_uptr, &attr); 12320 if (err) 12321 return err; 12322 12323 /* Do we allow access to perf_event_open(2) ? */ 12324 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12325 if (err) 12326 return err; 12327 12328 if (!attr.exclude_kernel) { 12329 err = perf_allow_kernel(&attr); 12330 if (err) 12331 return err; 12332 } 12333 12334 if (attr.namespaces) { 12335 if (!perfmon_capable()) 12336 return -EACCES; 12337 } 12338 12339 if (attr.freq) { 12340 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12341 return -EINVAL; 12342 } else { 12343 if (attr.sample_period & (1ULL << 63)) 12344 return -EINVAL; 12345 } 12346 12347 /* Only privileged users can get physical addresses */ 12348 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12349 err = perf_allow_kernel(&attr); 12350 if (err) 12351 return err; 12352 } 12353 12354 /* REGS_INTR can leak data, lockdown must prevent this */ 12355 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12356 err = security_locked_down(LOCKDOWN_PERF); 12357 if (err) 12358 return err; 12359 } 12360 12361 /* 12362 * In cgroup mode, the pid argument is used to pass the fd 12363 * opened to the cgroup directory in cgroupfs. The cpu argument 12364 * designates the cpu on which to monitor threads from that 12365 * cgroup. 12366 */ 12367 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12368 return -EINVAL; 12369 12370 if (flags & PERF_FLAG_FD_CLOEXEC) 12371 f_flags |= O_CLOEXEC; 12372 12373 event_fd = get_unused_fd_flags(f_flags); 12374 if (event_fd < 0) 12375 return event_fd; 12376 12377 if (group_fd != -1) { 12378 err = perf_fget_light(group_fd, &group); 12379 if (err) 12380 goto err_fd; 12381 group_leader = group.file->private_data; 12382 if (flags & PERF_FLAG_FD_OUTPUT) 12383 output_event = group_leader; 12384 if (flags & PERF_FLAG_FD_NO_GROUP) 12385 group_leader = NULL; 12386 } 12387 12388 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12389 task = find_lively_task_by_vpid(pid); 12390 if (IS_ERR(task)) { 12391 err = PTR_ERR(task); 12392 goto err_group_fd; 12393 } 12394 } 12395 12396 if (task && group_leader && 12397 group_leader->attr.inherit != attr.inherit) { 12398 err = -EINVAL; 12399 goto err_task; 12400 } 12401 12402 if (flags & PERF_FLAG_PID_CGROUP) 12403 cgroup_fd = pid; 12404 12405 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12406 NULL, NULL, cgroup_fd); 12407 if (IS_ERR(event)) { 12408 err = PTR_ERR(event); 12409 goto err_task; 12410 } 12411 12412 if (is_sampling_event(event)) { 12413 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12414 err = -EOPNOTSUPP; 12415 goto err_alloc; 12416 } 12417 } 12418 12419 /* 12420 * Special case software events and allow them to be part of 12421 * any hardware group. 12422 */ 12423 pmu = event->pmu; 12424 12425 if (attr.use_clockid) { 12426 err = perf_event_set_clock(event, attr.clockid); 12427 if (err) 12428 goto err_alloc; 12429 } 12430 12431 if (pmu->task_ctx_nr == perf_sw_context) 12432 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12433 12434 if (task) { 12435 err = down_read_interruptible(&task->signal->exec_update_lock); 12436 if (err) 12437 goto err_alloc; 12438 12439 /* 12440 * We must hold exec_update_lock across this and any potential 12441 * perf_install_in_context() call for this new event to 12442 * serialize against exec() altering our credentials (and the 12443 * perf_event_exit_task() that could imply). 12444 */ 12445 err = -EACCES; 12446 if (!perf_check_permission(&attr, task)) 12447 goto err_cred; 12448 } 12449 12450 /* 12451 * Get the target context (task or percpu): 12452 */ 12453 ctx = find_get_context(task, event); 12454 if (IS_ERR(ctx)) { 12455 err = PTR_ERR(ctx); 12456 goto err_cred; 12457 } 12458 12459 mutex_lock(&ctx->mutex); 12460 12461 if (ctx->task == TASK_TOMBSTONE) { 12462 err = -ESRCH; 12463 goto err_locked; 12464 } 12465 12466 if (!task) { 12467 /* 12468 * Check if the @cpu we're creating an event for is online. 12469 * 12470 * We use the perf_cpu_context::ctx::mutex to serialize against 12471 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12472 */ 12473 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12474 12475 if (!cpuctx->online) { 12476 err = -ENODEV; 12477 goto err_locked; 12478 } 12479 } 12480 12481 if (group_leader) { 12482 err = -EINVAL; 12483 12484 /* 12485 * Do not allow a recursive hierarchy (this new sibling 12486 * becoming part of another group-sibling): 12487 */ 12488 if (group_leader->group_leader != group_leader) 12489 goto err_locked; 12490 12491 /* All events in a group should have the same clock */ 12492 if (group_leader->clock != event->clock) 12493 goto err_locked; 12494 12495 /* 12496 * Make sure we're both events for the same CPU; 12497 * grouping events for different CPUs is broken; since 12498 * you can never concurrently schedule them anyhow. 12499 */ 12500 if (group_leader->cpu != event->cpu) 12501 goto err_locked; 12502 12503 /* 12504 * Make sure we're both on the same context; either task or cpu. 12505 */ 12506 if (group_leader->ctx != ctx) 12507 goto err_locked; 12508 12509 /* 12510 * Only a group leader can be exclusive or pinned 12511 */ 12512 if (attr.exclusive || attr.pinned) 12513 goto err_locked; 12514 12515 if (is_software_event(event) && 12516 !in_software_context(group_leader)) { 12517 /* 12518 * If the event is a sw event, but the group_leader 12519 * is on hw context. 12520 * 12521 * Allow the addition of software events to hw 12522 * groups, this is safe because software events 12523 * never fail to schedule. 12524 * 12525 * Note the comment that goes with struct 12526 * perf_event_pmu_context. 12527 */ 12528 pmu = group_leader->pmu_ctx->pmu; 12529 } else if (!is_software_event(event)) { 12530 if (is_software_event(group_leader) && 12531 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12532 /* 12533 * In case the group is a pure software group, and we 12534 * try to add a hardware event, move the whole group to 12535 * the hardware context. 12536 */ 12537 move_group = 1; 12538 } 12539 12540 /* Don't allow group of multiple hw events from different pmus */ 12541 if (!in_software_context(group_leader) && 12542 group_leader->pmu_ctx->pmu != pmu) 12543 goto err_locked; 12544 } 12545 } 12546 12547 /* 12548 * Now that we're certain of the pmu; find the pmu_ctx. 12549 */ 12550 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12551 if (IS_ERR(pmu_ctx)) { 12552 err = PTR_ERR(pmu_ctx); 12553 goto err_locked; 12554 } 12555 event->pmu_ctx = pmu_ctx; 12556 12557 if (output_event) { 12558 err = perf_event_set_output(event, output_event); 12559 if (err) 12560 goto err_context; 12561 } 12562 12563 if (!perf_event_validate_size(event)) { 12564 err = -E2BIG; 12565 goto err_context; 12566 } 12567 12568 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12569 err = -EINVAL; 12570 goto err_context; 12571 } 12572 12573 /* 12574 * Must be under the same ctx::mutex as perf_install_in_context(), 12575 * because we need to serialize with concurrent event creation. 12576 */ 12577 if (!exclusive_event_installable(event, ctx)) { 12578 err = -EBUSY; 12579 goto err_context; 12580 } 12581 12582 WARN_ON_ONCE(ctx->parent_ctx); 12583 12584 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12585 if (IS_ERR(event_file)) { 12586 err = PTR_ERR(event_file); 12587 event_file = NULL; 12588 goto err_context; 12589 } 12590 12591 /* 12592 * This is the point on no return; we cannot fail hereafter. This is 12593 * where we start modifying current state. 12594 */ 12595 12596 if (move_group) { 12597 perf_remove_from_context(group_leader, 0); 12598 put_pmu_ctx(group_leader->pmu_ctx); 12599 12600 for_each_sibling_event(sibling, group_leader) { 12601 perf_remove_from_context(sibling, 0); 12602 put_pmu_ctx(sibling->pmu_ctx); 12603 } 12604 12605 /* 12606 * Install the group siblings before the group leader. 12607 * 12608 * Because a group leader will try and install the entire group 12609 * (through the sibling list, which is still in-tact), we can 12610 * end up with siblings installed in the wrong context. 12611 * 12612 * By installing siblings first we NO-OP because they're not 12613 * reachable through the group lists. 12614 */ 12615 for_each_sibling_event(sibling, group_leader) { 12616 sibling->pmu_ctx = pmu_ctx; 12617 get_pmu_ctx(pmu_ctx); 12618 perf_event__state_init(sibling); 12619 perf_install_in_context(ctx, sibling, sibling->cpu); 12620 } 12621 12622 /* 12623 * Removing from the context ends up with disabled 12624 * event. What we want here is event in the initial 12625 * startup state, ready to be add into new context. 12626 */ 12627 group_leader->pmu_ctx = pmu_ctx; 12628 get_pmu_ctx(pmu_ctx); 12629 perf_event__state_init(group_leader); 12630 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12631 } 12632 12633 /* 12634 * Precalculate sample_data sizes; do while holding ctx::mutex such 12635 * that we're serialized against further additions and before 12636 * perf_install_in_context() which is the point the event is active and 12637 * can use these values. 12638 */ 12639 perf_event__header_size(event); 12640 perf_event__id_header_size(event); 12641 12642 event->owner = current; 12643 12644 perf_install_in_context(ctx, event, event->cpu); 12645 perf_unpin_context(ctx); 12646 12647 mutex_unlock(&ctx->mutex); 12648 12649 if (task) { 12650 up_read(&task->signal->exec_update_lock); 12651 put_task_struct(task); 12652 } 12653 12654 mutex_lock(¤t->perf_event_mutex); 12655 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12656 mutex_unlock(¤t->perf_event_mutex); 12657 12658 /* 12659 * Drop the reference on the group_event after placing the 12660 * new event on the sibling_list. This ensures destruction 12661 * of the group leader will find the pointer to itself in 12662 * perf_group_detach(). 12663 */ 12664 fdput(group); 12665 fd_install(event_fd, event_file); 12666 return event_fd; 12667 12668 err_context: 12669 put_pmu_ctx(event->pmu_ctx); 12670 event->pmu_ctx = NULL; /* _free_event() */ 12671 err_locked: 12672 mutex_unlock(&ctx->mutex); 12673 perf_unpin_context(ctx); 12674 put_ctx(ctx); 12675 err_cred: 12676 if (task) 12677 up_read(&task->signal->exec_update_lock); 12678 err_alloc: 12679 free_event(event); 12680 err_task: 12681 if (task) 12682 put_task_struct(task); 12683 err_group_fd: 12684 fdput(group); 12685 err_fd: 12686 put_unused_fd(event_fd); 12687 return err; 12688 } 12689 12690 /** 12691 * perf_event_create_kernel_counter 12692 * 12693 * @attr: attributes of the counter to create 12694 * @cpu: cpu in which the counter is bound 12695 * @task: task to profile (NULL for percpu) 12696 * @overflow_handler: callback to trigger when we hit the event 12697 * @context: context data could be used in overflow_handler callback 12698 */ 12699 struct perf_event * 12700 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12701 struct task_struct *task, 12702 perf_overflow_handler_t overflow_handler, 12703 void *context) 12704 { 12705 struct perf_event_pmu_context *pmu_ctx; 12706 struct perf_event_context *ctx; 12707 struct perf_event *event; 12708 struct pmu *pmu; 12709 int err; 12710 12711 /* 12712 * Grouping is not supported for kernel events, neither is 'AUX', 12713 * make sure the caller's intentions are adjusted. 12714 */ 12715 if (attr->aux_output) 12716 return ERR_PTR(-EINVAL); 12717 12718 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12719 overflow_handler, context, -1); 12720 if (IS_ERR(event)) { 12721 err = PTR_ERR(event); 12722 goto err; 12723 } 12724 12725 /* Mark owner so we could distinguish it from user events. */ 12726 event->owner = TASK_TOMBSTONE; 12727 pmu = event->pmu; 12728 12729 if (pmu->task_ctx_nr == perf_sw_context) 12730 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12731 12732 /* 12733 * Get the target context (task or percpu): 12734 */ 12735 ctx = find_get_context(task, event); 12736 if (IS_ERR(ctx)) { 12737 err = PTR_ERR(ctx); 12738 goto err_alloc; 12739 } 12740 12741 WARN_ON_ONCE(ctx->parent_ctx); 12742 mutex_lock(&ctx->mutex); 12743 if (ctx->task == TASK_TOMBSTONE) { 12744 err = -ESRCH; 12745 goto err_unlock; 12746 } 12747 12748 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12749 if (IS_ERR(pmu_ctx)) { 12750 err = PTR_ERR(pmu_ctx); 12751 goto err_unlock; 12752 } 12753 event->pmu_ctx = pmu_ctx; 12754 12755 if (!task) { 12756 /* 12757 * Check if the @cpu we're creating an event for is online. 12758 * 12759 * We use the perf_cpu_context::ctx::mutex to serialize against 12760 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12761 */ 12762 struct perf_cpu_context *cpuctx = 12763 container_of(ctx, struct perf_cpu_context, ctx); 12764 if (!cpuctx->online) { 12765 err = -ENODEV; 12766 goto err_pmu_ctx; 12767 } 12768 } 12769 12770 if (!exclusive_event_installable(event, ctx)) { 12771 err = -EBUSY; 12772 goto err_pmu_ctx; 12773 } 12774 12775 perf_install_in_context(ctx, event, event->cpu); 12776 perf_unpin_context(ctx); 12777 mutex_unlock(&ctx->mutex); 12778 12779 return event; 12780 12781 err_pmu_ctx: 12782 put_pmu_ctx(pmu_ctx); 12783 event->pmu_ctx = NULL; /* _free_event() */ 12784 err_unlock: 12785 mutex_unlock(&ctx->mutex); 12786 perf_unpin_context(ctx); 12787 put_ctx(ctx); 12788 err_alloc: 12789 free_event(event); 12790 err: 12791 return ERR_PTR(err); 12792 } 12793 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12794 12795 static void __perf_pmu_remove(struct perf_event_context *ctx, 12796 int cpu, struct pmu *pmu, 12797 struct perf_event_groups *groups, 12798 struct list_head *events) 12799 { 12800 struct perf_event *event, *sibling; 12801 12802 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12803 perf_remove_from_context(event, 0); 12804 put_pmu_ctx(event->pmu_ctx); 12805 list_add(&event->migrate_entry, events); 12806 12807 for_each_sibling_event(sibling, event) { 12808 perf_remove_from_context(sibling, 0); 12809 put_pmu_ctx(sibling->pmu_ctx); 12810 list_add(&sibling->migrate_entry, events); 12811 } 12812 } 12813 } 12814 12815 static void __perf_pmu_install_event(struct pmu *pmu, 12816 struct perf_event_context *ctx, 12817 int cpu, struct perf_event *event) 12818 { 12819 struct perf_event_pmu_context *epc; 12820 12821 event->cpu = cpu; 12822 epc = find_get_pmu_context(pmu, ctx, event); 12823 event->pmu_ctx = epc; 12824 12825 if (event->state >= PERF_EVENT_STATE_OFF) 12826 event->state = PERF_EVENT_STATE_INACTIVE; 12827 perf_install_in_context(ctx, event, cpu); 12828 } 12829 12830 static void __perf_pmu_install(struct perf_event_context *ctx, 12831 int cpu, struct pmu *pmu, struct list_head *events) 12832 { 12833 struct perf_event *event, *tmp; 12834 12835 /* 12836 * Re-instate events in 2 passes. 12837 * 12838 * Skip over group leaders and only install siblings on this first 12839 * pass, siblings will not get enabled without a leader, however a 12840 * leader will enable its siblings, even if those are still on the old 12841 * context. 12842 */ 12843 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12844 if (event->group_leader == event) 12845 continue; 12846 12847 list_del(&event->migrate_entry); 12848 __perf_pmu_install_event(pmu, ctx, cpu, event); 12849 } 12850 12851 /* 12852 * Once all the siblings are setup properly, install the group leaders 12853 * to make it go. 12854 */ 12855 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12856 list_del(&event->migrate_entry); 12857 __perf_pmu_install_event(pmu, ctx, cpu, event); 12858 } 12859 } 12860 12861 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12862 { 12863 struct perf_event_context *src_ctx, *dst_ctx; 12864 LIST_HEAD(events); 12865 12866 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12867 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12868 12869 /* 12870 * See perf_event_ctx_lock() for comments on the details 12871 * of swizzling perf_event::ctx. 12872 */ 12873 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12874 12875 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12876 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12877 12878 /* 12879 * Wait for the events to quiesce before re-instating them. 12880 */ 12881 synchronize_rcu(); 12882 12883 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12884 12885 mutex_unlock(&dst_ctx->mutex); 12886 mutex_unlock(&src_ctx->mutex); 12887 } 12888 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12889 12890 static void sync_child_event(struct perf_event *child_event) 12891 { 12892 struct perf_event *parent_event = child_event->parent; 12893 u64 child_val; 12894 12895 if (child_event->attr.inherit_stat) { 12896 struct task_struct *task = child_event->ctx->task; 12897 12898 if (task && task != TASK_TOMBSTONE) 12899 perf_event_read_event(child_event, task); 12900 } 12901 12902 child_val = perf_event_count(child_event); 12903 12904 /* 12905 * Add back the child's count to the parent's count: 12906 */ 12907 atomic64_add(child_val, &parent_event->child_count); 12908 atomic64_add(child_event->total_time_enabled, 12909 &parent_event->child_total_time_enabled); 12910 atomic64_add(child_event->total_time_running, 12911 &parent_event->child_total_time_running); 12912 } 12913 12914 static void 12915 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12916 { 12917 struct perf_event *parent_event = event->parent; 12918 unsigned long detach_flags = 0; 12919 12920 if (parent_event) { 12921 /* 12922 * Do not destroy the 'original' grouping; because of the 12923 * context switch optimization the original events could've 12924 * ended up in a random child task. 12925 * 12926 * If we were to destroy the original group, all group related 12927 * operations would cease to function properly after this 12928 * random child dies. 12929 * 12930 * Do destroy all inherited groups, we don't care about those 12931 * and being thorough is better. 12932 */ 12933 detach_flags = DETACH_GROUP | DETACH_CHILD; 12934 mutex_lock(&parent_event->child_mutex); 12935 } 12936 12937 perf_remove_from_context(event, detach_flags); 12938 12939 raw_spin_lock_irq(&ctx->lock); 12940 if (event->state > PERF_EVENT_STATE_EXIT) 12941 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12942 raw_spin_unlock_irq(&ctx->lock); 12943 12944 /* 12945 * Child events can be freed. 12946 */ 12947 if (parent_event) { 12948 mutex_unlock(&parent_event->child_mutex); 12949 /* 12950 * Kick perf_poll() for is_event_hup(); 12951 */ 12952 perf_event_wakeup(parent_event); 12953 free_event(event); 12954 put_event(parent_event); 12955 return; 12956 } 12957 12958 /* 12959 * Parent events are governed by their filedesc, retain them. 12960 */ 12961 perf_event_wakeup(event); 12962 } 12963 12964 static void perf_event_exit_task_context(struct task_struct *child) 12965 { 12966 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12967 struct perf_event *child_event, *next; 12968 12969 WARN_ON_ONCE(child != current); 12970 12971 child_ctx = perf_pin_task_context(child); 12972 if (!child_ctx) 12973 return; 12974 12975 /* 12976 * In order to reduce the amount of tricky in ctx tear-down, we hold 12977 * ctx::mutex over the entire thing. This serializes against almost 12978 * everything that wants to access the ctx. 12979 * 12980 * The exception is sys_perf_event_open() / 12981 * perf_event_create_kernel_count() which does find_get_context() 12982 * without ctx::mutex (it cannot because of the move_group double mutex 12983 * lock thing). See the comments in perf_install_in_context(). 12984 */ 12985 mutex_lock(&child_ctx->mutex); 12986 12987 /* 12988 * In a single ctx::lock section, de-schedule the events and detach the 12989 * context from the task such that we cannot ever get it scheduled back 12990 * in. 12991 */ 12992 raw_spin_lock_irq(&child_ctx->lock); 12993 task_ctx_sched_out(child_ctx, EVENT_ALL); 12994 12995 /* 12996 * Now that the context is inactive, destroy the task <-> ctx relation 12997 * and mark the context dead. 12998 */ 12999 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13000 put_ctx(child_ctx); /* cannot be last */ 13001 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13002 put_task_struct(current); /* cannot be last */ 13003 13004 clone_ctx = unclone_ctx(child_ctx); 13005 raw_spin_unlock_irq(&child_ctx->lock); 13006 13007 if (clone_ctx) 13008 put_ctx(clone_ctx); 13009 13010 /* 13011 * Report the task dead after unscheduling the events so that we 13012 * won't get any samples after PERF_RECORD_EXIT. We can however still 13013 * get a few PERF_RECORD_READ events. 13014 */ 13015 perf_event_task(child, child_ctx, 0); 13016 13017 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13018 perf_event_exit_event(child_event, child_ctx); 13019 13020 mutex_unlock(&child_ctx->mutex); 13021 13022 put_ctx(child_ctx); 13023 } 13024 13025 /* 13026 * When a child task exits, feed back event values to parent events. 13027 * 13028 * Can be called with exec_update_lock held when called from 13029 * setup_new_exec(). 13030 */ 13031 void perf_event_exit_task(struct task_struct *child) 13032 { 13033 struct perf_event *event, *tmp; 13034 13035 mutex_lock(&child->perf_event_mutex); 13036 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13037 owner_entry) { 13038 list_del_init(&event->owner_entry); 13039 13040 /* 13041 * Ensure the list deletion is visible before we clear 13042 * the owner, closes a race against perf_release() where 13043 * we need to serialize on the owner->perf_event_mutex. 13044 */ 13045 smp_store_release(&event->owner, NULL); 13046 } 13047 mutex_unlock(&child->perf_event_mutex); 13048 13049 perf_event_exit_task_context(child); 13050 13051 /* 13052 * The perf_event_exit_task_context calls perf_event_task 13053 * with child's task_ctx, which generates EXIT events for 13054 * child contexts and sets child->perf_event_ctxp[] to NULL. 13055 * At this point we need to send EXIT events to cpu contexts. 13056 */ 13057 perf_event_task(child, NULL, 0); 13058 } 13059 13060 static void perf_free_event(struct perf_event *event, 13061 struct perf_event_context *ctx) 13062 { 13063 struct perf_event *parent = event->parent; 13064 13065 if (WARN_ON_ONCE(!parent)) 13066 return; 13067 13068 mutex_lock(&parent->child_mutex); 13069 list_del_init(&event->child_list); 13070 mutex_unlock(&parent->child_mutex); 13071 13072 put_event(parent); 13073 13074 raw_spin_lock_irq(&ctx->lock); 13075 perf_group_detach(event); 13076 list_del_event(event, ctx); 13077 raw_spin_unlock_irq(&ctx->lock); 13078 free_event(event); 13079 } 13080 13081 /* 13082 * Free a context as created by inheritance by perf_event_init_task() below, 13083 * used by fork() in case of fail. 13084 * 13085 * Even though the task has never lived, the context and events have been 13086 * exposed through the child_list, so we must take care tearing it all down. 13087 */ 13088 void perf_event_free_task(struct task_struct *task) 13089 { 13090 struct perf_event_context *ctx; 13091 struct perf_event *event, *tmp; 13092 13093 ctx = rcu_access_pointer(task->perf_event_ctxp); 13094 if (!ctx) 13095 return; 13096 13097 mutex_lock(&ctx->mutex); 13098 raw_spin_lock_irq(&ctx->lock); 13099 /* 13100 * Destroy the task <-> ctx relation and mark the context dead. 13101 * 13102 * This is important because even though the task hasn't been 13103 * exposed yet the context has been (through child_list). 13104 */ 13105 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13106 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13107 put_task_struct(task); /* cannot be last */ 13108 raw_spin_unlock_irq(&ctx->lock); 13109 13110 13111 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13112 perf_free_event(event, ctx); 13113 13114 mutex_unlock(&ctx->mutex); 13115 13116 /* 13117 * perf_event_release_kernel() could've stolen some of our 13118 * child events and still have them on its free_list. In that 13119 * case we must wait for these events to have been freed (in 13120 * particular all their references to this task must've been 13121 * dropped). 13122 * 13123 * Without this copy_process() will unconditionally free this 13124 * task (irrespective of its reference count) and 13125 * _free_event()'s put_task_struct(event->hw.target) will be a 13126 * use-after-free. 13127 * 13128 * Wait for all events to drop their context reference. 13129 */ 13130 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13131 put_ctx(ctx); /* must be last */ 13132 } 13133 13134 void perf_event_delayed_put(struct task_struct *task) 13135 { 13136 WARN_ON_ONCE(task->perf_event_ctxp); 13137 } 13138 13139 struct file *perf_event_get(unsigned int fd) 13140 { 13141 struct file *file = fget(fd); 13142 if (!file) 13143 return ERR_PTR(-EBADF); 13144 13145 if (file->f_op != &perf_fops) { 13146 fput(file); 13147 return ERR_PTR(-EBADF); 13148 } 13149 13150 return file; 13151 } 13152 13153 const struct perf_event *perf_get_event(struct file *file) 13154 { 13155 if (file->f_op != &perf_fops) 13156 return ERR_PTR(-EINVAL); 13157 13158 return file->private_data; 13159 } 13160 13161 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13162 { 13163 if (!event) 13164 return ERR_PTR(-EINVAL); 13165 13166 return &event->attr; 13167 } 13168 13169 /* 13170 * Inherit an event from parent task to child task. 13171 * 13172 * Returns: 13173 * - valid pointer on success 13174 * - NULL for orphaned events 13175 * - IS_ERR() on error 13176 */ 13177 static struct perf_event * 13178 inherit_event(struct perf_event *parent_event, 13179 struct task_struct *parent, 13180 struct perf_event_context *parent_ctx, 13181 struct task_struct *child, 13182 struct perf_event *group_leader, 13183 struct perf_event_context *child_ctx) 13184 { 13185 enum perf_event_state parent_state = parent_event->state; 13186 struct perf_event_pmu_context *pmu_ctx; 13187 struct perf_event *child_event; 13188 unsigned long flags; 13189 13190 /* 13191 * Instead of creating recursive hierarchies of events, 13192 * we link inherited events back to the original parent, 13193 * which has a filp for sure, which we use as the reference 13194 * count: 13195 */ 13196 if (parent_event->parent) 13197 parent_event = parent_event->parent; 13198 13199 child_event = perf_event_alloc(&parent_event->attr, 13200 parent_event->cpu, 13201 child, 13202 group_leader, parent_event, 13203 NULL, NULL, -1); 13204 if (IS_ERR(child_event)) 13205 return child_event; 13206 13207 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13208 if (IS_ERR(pmu_ctx)) { 13209 free_event(child_event); 13210 return ERR_CAST(pmu_ctx); 13211 } 13212 child_event->pmu_ctx = pmu_ctx; 13213 13214 /* 13215 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13216 * must be under the same lock in order to serialize against 13217 * perf_event_release_kernel(), such that either we must observe 13218 * is_orphaned_event() or they will observe us on the child_list. 13219 */ 13220 mutex_lock(&parent_event->child_mutex); 13221 if (is_orphaned_event(parent_event) || 13222 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13223 mutex_unlock(&parent_event->child_mutex); 13224 /* task_ctx_data is freed with child_ctx */ 13225 free_event(child_event); 13226 return NULL; 13227 } 13228 13229 get_ctx(child_ctx); 13230 13231 /* 13232 * Make the child state follow the state of the parent event, 13233 * not its attr.disabled bit. We hold the parent's mutex, 13234 * so we won't race with perf_event_{en, dis}able_family. 13235 */ 13236 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13237 child_event->state = PERF_EVENT_STATE_INACTIVE; 13238 else 13239 child_event->state = PERF_EVENT_STATE_OFF; 13240 13241 if (parent_event->attr.freq) { 13242 u64 sample_period = parent_event->hw.sample_period; 13243 struct hw_perf_event *hwc = &child_event->hw; 13244 13245 hwc->sample_period = sample_period; 13246 hwc->last_period = sample_period; 13247 13248 local64_set(&hwc->period_left, sample_period); 13249 } 13250 13251 child_event->ctx = child_ctx; 13252 child_event->overflow_handler = parent_event->overflow_handler; 13253 child_event->overflow_handler_context 13254 = parent_event->overflow_handler_context; 13255 13256 /* 13257 * Precalculate sample_data sizes 13258 */ 13259 perf_event__header_size(child_event); 13260 perf_event__id_header_size(child_event); 13261 13262 /* 13263 * Link it up in the child's context: 13264 */ 13265 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13266 add_event_to_ctx(child_event, child_ctx); 13267 child_event->attach_state |= PERF_ATTACH_CHILD; 13268 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13269 13270 /* 13271 * Link this into the parent event's child list 13272 */ 13273 list_add_tail(&child_event->child_list, &parent_event->child_list); 13274 mutex_unlock(&parent_event->child_mutex); 13275 13276 return child_event; 13277 } 13278 13279 /* 13280 * Inherits an event group. 13281 * 13282 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13283 * This matches with perf_event_release_kernel() removing all child events. 13284 * 13285 * Returns: 13286 * - 0 on success 13287 * - <0 on error 13288 */ 13289 static int inherit_group(struct perf_event *parent_event, 13290 struct task_struct *parent, 13291 struct perf_event_context *parent_ctx, 13292 struct task_struct *child, 13293 struct perf_event_context *child_ctx) 13294 { 13295 struct perf_event *leader; 13296 struct perf_event *sub; 13297 struct perf_event *child_ctr; 13298 13299 leader = inherit_event(parent_event, parent, parent_ctx, 13300 child, NULL, child_ctx); 13301 if (IS_ERR(leader)) 13302 return PTR_ERR(leader); 13303 /* 13304 * @leader can be NULL here because of is_orphaned_event(). In this 13305 * case inherit_event() will create individual events, similar to what 13306 * perf_group_detach() would do anyway. 13307 */ 13308 for_each_sibling_event(sub, parent_event) { 13309 child_ctr = inherit_event(sub, parent, parent_ctx, 13310 child, leader, child_ctx); 13311 if (IS_ERR(child_ctr)) 13312 return PTR_ERR(child_ctr); 13313 13314 if (sub->aux_event == parent_event && child_ctr && 13315 !perf_get_aux_event(child_ctr, leader)) 13316 return -EINVAL; 13317 } 13318 return 0; 13319 } 13320 13321 /* 13322 * Creates the child task context and tries to inherit the event-group. 13323 * 13324 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13325 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13326 * consistent with perf_event_release_kernel() removing all child events. 13327 * 13328 * Returns: 13329 * - 0 on success 13330 * - <0 on error 13331 */ 13332 static int 13333 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13334 struct perf_event_context *parent_ctx, 13335 struct task_struct *child, 13336 u64 clone_flags, int *inherited_all) 13337 { 13338 struct perf_event_context *child_ctx; 13339 int ret; 13340 13341 if (!event->attr.inherit || 13342 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13343 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13344 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13345 *inherited_all = 0; 13346 return 0; 13347 } 13348 13349 child_ctx = child->perf_event_ctxp; 13350 if (!child_ctx) { 13351 /* 13352 * This is executed from the parent task context, so 13353 * inherit events that have been marked for cloning. 13354 * First allocate and initialize a context for the 13355 * child. 13356 */ 13357 child_ctx = alloc_perf_context(child); 13358 if (!child_ctx) 13359 return -ENOMEM; 13360 13361 child->perf_event_ctxp = child_ctx; 13362 } 13363 13364 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13365 if (ret) 13366 *inherited_all = 0; 13367 13368 return ret; 13369 } 13370 13371 /* 13372 * Initialize the perf_event context in task_struct 13373 */ 13374 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13375 { 13376 struct perf_event_context *child_ctx, *parent_ctx; 13377 struct perf_event_context *cloned_ctx; 13378 struct perf_event *event; 13379 struct task_struct *parent = current; 13380 int inherited_all = 1; 13381 unsigned long flags; 13382 int ret = 0; 13383 13384 if (likely(!parent->perf_event_ctxp)) 13385 return 0; 13386 13387 /* 13388 * If the parent's context is a clone, pin it so it won't get 13389 * swapped under us. 13390 */ 13391 parent_ctx = perf_pin_task_context(parent); 13392 if (!parent_ctx) 13393 return 0; 13394 13395 /* 13396 * No need to check if parent_ctx != NULL here; since we saw 13397 * it non-NULL earlier, the only reason for it to become NULL 13398 * is if we exit, and since we're currently in the middle of 13399 * a fork we can't be exiting at the same time. 13400 */ 13401 13402 /* 13403 * Lock the parent list. No need to lock the child - not PID 13404 * hashed yet and not running, so nobody can access it. 13405 */ 13406 mutex_lock(&parent_ctx->mutex); 13407 13408 /* 13409 * We dont have to disable NMIs - we are only looking at 13410 * the list, not manipulating it: 13411 */ 13412 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13413 ret = inherit_task_group(event, parent, parent_ctx, 13414 child, clone_flags, &inherited_all); 13415 if (ret) 13416 goto out_unlock; 13417 } 13418 13419 /* 13420 * We can't hold ctx->lock when iterating the ->flexible_group list due 13421 * to allocations, but we need to prevent rotation because 13422 * rotate_ctx() will change the list from interrupt context. 13423 */ 13424 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13425 parent_ctx->rotate_disable = 1; 13426 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13427 13428 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13429 ret = inherit_task_group(event, parent, parent_ctx, 13430 child, clone_flags, &inherited_all); 13431 if (ret) 13432 goto out_unlock; 13433 } 13434 13435 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13436 parent_ctx->rotate_disable = 0; 13437 13438 child_ctx = child->perf_event_ctxp; 13439 13440 if (child_ctx && inherited_all) { 13441 /* 13442 * Mark the child context as a clone of the parent 13443 * context, or of whatever the parent is a clone of. 13444 * 13445 * Note that if the parent is a clone, the holding of 13446 * parent_ctx->lock avoids it from being uncloned. 13447 */ 13448 cloned_ctx = parent_ctx->parent_ctx; 13449 if (cloned_ctx) { 13450 child_ctx->parent_ctx = cloned_ctx; 13451 child_ctx->parent_gen = parent_ctx->parent_gen; 13452 } else { 13453 child_ctx->parent_ctx = parent_ctx; 13454 child_ctx->parent_gen = parent_ctx->generation; 13455 } 13456 get_ctx(child_ctx->parent_ctx); 13457 } 13458 13459 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13460 out_unlock: 13461 mutex_unlock(&parent_ctx->mutex); 13462 13463 perf_unpin_context(parent_ctx); 13464 put_ctx(parent_ctx); 13465 13466 return ret; 13467 } 13468 13469 /* 13470 * Initialize the perf_event context in task_struct 13471 */ 13472 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13473 { 13474 int ret; 13475 13476 child->perf_event_ctxp = NULL; 13477 mutex_init(&child->perf_event_mutex); 13478 INIT_LIST_HEAD(&child->perf_event_list); 13479 13480 ret = perf_event_init_context(child, clone_flags); 13481 if (ret) { 13482 perf_event_free_task(child); 13483 return ret; 13484 } 13485 13486 return 0; 13487 } 13488 13489 static void __init perf_event_init_all_cpus(void) 13490 { 13491 struct swevent_htable *swhash; 13492 struct perf_cpu_context *cpuctx; 13493 int cpu; 13494 13495 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13496 13497 for_each_possible_cpu(cpu) { 13498 swhash = &per_cpu(swevent_htable, cpu); 13499 mutex_init(&swhash->hlist_mutex); 13500 13501 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13502 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13503 13504 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13505 13506 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13507 __perf_event_init_context(&cpuctx->ctx); 13508 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13509 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13510 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13511 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13512 cpuctx->heap = cpuctx->heap_default; 13513 } 13514 } 13515 13516 static void perf_swevent_init_cpu(unsigned int cpu) 13517 { 13518 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13519 13520 mutex_lock(&swhash->hlist_mutex); 13521 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13522 struct swevent_hlist *hlist; 13523 13524 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13525 WARN_ON(!hlist); 13526 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13527 } 13528 mutex_unlock(&swhash->hlist_mutex); 13529 } 13530 13531 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13532 static void __perf_event_exit_context(void *__info) 13533 { 13534 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13535 struct perf_event_context *ctx = __info; 13536 struct perf_event *event; 13537 13538 raw_spin_lock(&ctx->lock); 13539 ctx_sched_out(ctx, EVENT_TIME); 13540 list_for_each_entry(event, &ctx->event_list, event_entry) 13541 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13542 raw_spin_unlock(&ctx->lock); 13543 } 13544 13545 static void perf_event_exit_cpu_context(int cpu) 13546 { 13547 struct perf_cpu_context *cpuctx; 13548 struct perf_event_context *ctx; 13549 13550 // XXX simplify cpuctx->online 13551 mutex_lock(&pmus_lock); 13552 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13553 ctx = &cpuctx->ctx; 13554 13555 mutex_lock(&ctx->mutex); 13556 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13557 cpuctx->online = 0; 13558 mutex_unlock(&ctx->mutex); 13559 cpumask_clear_cpu(cpu, perf_online_mask); 13560 mutex_unlock(&pmus_lock); 13561 } 13562 #else 13563 13564 static void perf_event_exit_cpu_context(int cpu) { } 13565 13566 #endif 13567 13568 int perf_event_init_cpu(unsigned int cpu) 13569 { 13570 struct perf_cpu_context *cpuctx; 13571 struct perf_event_context *ctx; 13572 13573 perf_swevent_init_cpu(cpu); 13574 13575 mutex_lock(&pmus_lock); 13576 cpumask_set_cpu(cpu, perf_online_mask); 13577 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13578 ctx = &cpuctx->ctx; 13579 13580 mutex_lock(&ctx->mutex); 13581 cpuctx->online = 1; 13582 mutex_unlock(&ctx->mutex); 13583 mutex_unlock(&pmus_lock); 13584 13585 return 0; 13586 } 13587 13588 int perf_event_exit_cpu(unsigned int cpu) 13589 { 13590 perf_event_exit_cpu_context(cpu); 13591 return 0; 13592 } 13593 13594 static int 13595 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13596 { 13597 int cpu; 13598 13599 for_each_online_cpu(cpu) 13600 perf_event_exit_cpu(cpu); 13601 13602 return NOTIFY_OK; 13603 } 13604 13605 /* 13606 * Run the perf reboot notifier at the very last possible moment so that 13607 * the generic watchdog code runs as long as possible. 13608 */ 13609 static struct notifier_block perf_reboot_notifier = { 13610 .notifier_call = perf_reboot, 13611 .priority = INT_MIN, 13612 }; 13613 13614 void __init perf_event_init(void) 13615 { 13616 int ret; 13617 13618 idr_init(&pmu_idr); 13619 13620 perf_event_init_all_cpus(); 13621 init_srcu_struct(&pmus_srcu); 13622 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13623 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13624 perf_pmu_register(&perf_task_clock, NULL, -1); 13625 perf_tp_register(); 13626 perf_event_init_cpu(smp_processor_id()); 13627 register_reboot_notifier(&perf_reboot_notifier); 13628 13629 ret = init_hw_breakpoint(); 13630 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13631 13632 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13633 13634 /* 13635 * Build time assertion that we keep the data_head at the intended 13636 * location. IOW, validation we got the __reserved[] size right. 13637 */ 13638 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13639 != 1024); 13640 } 13641 13642 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13643 char *page) 13644 { 13645 struct perf_pmu_events_attr *pmu_attr = 13646 container_of(attr, struct perf_pmu_events_attr, attr); 13647 13648 if (pmu_attr->event_str) 13649 return sprintf(page, "%s\n", pmu_attr->event_str); 13650 13651 return 0; 13652 } 13653 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13654 13655 static int __init perf_event_sysfs_init(void) 13656 { 13657 struct pmu *pmu; 13658 int ret; 13659 13660 mutex_lock(&pmus_lock); 13661 13662 ret = bus_register(&pmu_bus); 13663 if (ret) 13664 goto unlock; 13665 13666 list_for_each_entry(pmu, &pmus, entry) { 13667 if (!pmu->name || pmu->type < 0) 13668 continue; 13669 13670 ret = pmu_dev_alloc(pmu); 13671 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13672 } 13673 pmu_bus_running = 1; 13674 ret = 0; 13675 13676 unlock: 13677 mutex_unlock(&pmus_lock); 13678 13679 return ret; 13680 } 13681 device_initcall(perf_event_sysfs_init); 13682 13683 #ifdef CONFIG_CGROUP_PERF 13684 static struct cgroup_subsys_state * 13685 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13686 { 13687 struct perf_cgroup *jc; 13688 13689 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13690 if (!jc) 13691 return ERR_PTR(-ENOMEM); 13692 13693 jc->info = alloc_percpu(struct perf_cgroup_info); 13694 if (!jc->info) { 13695 kfree(jc); 13696 return ERR_PTR(-ENOMEM); 13697 } 13698 13699 return &jc->css; 13700 } 13701 13702 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13703 { 13704 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13705 13706 free_percpu(jc->info); 13707 kfree(jc); 13708 } 13709 13710 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13711 { 13712 perf_event_cgroup(css->cgroup); 13713 return 0; 13714 } 13715 13716 static int __perf_cgroup_move(void *info) 13717 { 13718 struct task_struct *task = info; 13719 13720 preempt_disable(); 13721 perf_cgroup_switch(task); 13722 preempt_enable(); 13723 13724 return 0; 13725 } 13726 13727 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13728 { 13729 struct task_struct *task; 13730 struct cgroup_subsys_state *css; 13731 13732 cgroup_taskset_for_each(task, css, tset) 13733 task_function_call(task, __perf_cgroup_move, task); 13734 } 13735 13736 struct cgroup_subsys perf_event_cgrp_subsys = { 13737 .css_alloc = perf_cgroup_css_alloc, 13738 .css_free = perf_cgroup_css_free, 13739 .css_online = perf_cgroup_css_online, 13740 .attach = perf_cgroup_attach, 13741 /* 13742 * Implicitly enable on dfl hierarchy so that perf events can 13743 * always be filtered by cgroup2 path as long as perf_event 13744 * controller is not mounted on a legacy hierarchy. 13745 */ 13746 .implicit_on_dfl = true, 13747 .threaded = true, 13748 }; 13749 #endif /* CONFIG_CGROUP_PERF */ 13750 13751 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13752