xref: /linux/kernel/events/core.c (revision 6f0310a126f1a46cac366327751bb7eb8941bdde)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 
906 	/*
907 	 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 	 * ctx->nr_cgroup == 0 .
909 	 */
910 	if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 		cpuctx->cgrp = event->cgrp;
912 	else if (!add)
913 		cpuctx->cgrp = NULL;
914 }
915 
916 #else /* !CONFIG_CGROUP_PERF */
917 
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921 	return true;
922 }
923 
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926 
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929 	return 0;
930 }
931 
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934 	return 0;
935 }
936 
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940 
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944 
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 					 struct task_struct *next)
947 {
948 }
949 
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 					struct task_struct *task)
952 {
953 }
954 
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 				      struct perf_event_attr *attr,
957 				      struct perf_event *group_leader)
958 {
959 	return -EINVAL;
960 }
961 
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 			  struct perf_event_context *ctx)
965 {
966 }
967 
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972 
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977 
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980 	return 0;
981 }
982 
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987 
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 			 struct perf_event_context *ctx)
991 {
992 }
993 
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 			 struct perf_event_context *ctx, bool add)
997 {
998 }
999 
1000 #endif
1001 
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012 	struct perf_cpu_context *cpuctx;
1013 	int rotations = 0;
1014 
1015 	WARN_ON(!irqs_disabled());
1016 
1017 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 	rotations = perf_rotate_context(cpuctx);
1019 
1020 	raw_spin_lock(&cpuctx->hrtimer_lock);
1021 	if (rotations)
1022 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 	else
1024 		cpuctx->hrtimer_active = 0;
1025 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1026 
1027 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029 
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032 	struct hrtimer *timer = &cpuctx->hrtimer;
1033 	struct pmu *pmu = cpuctx->ctx.pmu;
1034 	u64 interval;
1035 
1036 	/* no multiplexing needed for SW PMU */
1037 	if (pmu->task_ctx_nr == perf_sw_context)
1038 		return;
1039 
1040 	/*
1041 	 * check default is sane, if not set then force to
1042 	 * default interval (1/tick)
1043 	 */
1044 	interval = pmu->hrtimer_interval_ms;
1045 	if (interval < 1)
1046 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047 
1048 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049 
1050 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 	timer->function = perf_mux_hrtimer_handler;
1053 }
1054 
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057 	struct hrtimer *timer = &cpuctx->hrtimer;
1058 	struct pmu *pmu = cpuctx->ctx.pmu;
1059 	unsigned long flags;
1060 
1061 	/* not for SW PMU */
1062 	if (pmu->task_ctx_nr == perf_sw_context)
1063 		return 0;
1064 
1065 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 	if (!cpuctx->hrtimer_active) {
1067 		cpuctx->hrtimer_active = 1;
1068 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 	}
1071 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072 
1073 	return 0;
1074 }
1075 
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 	if (!(*count)++)
1080 		pmu->pmu_disable(pmu);
1081 }
1082 
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 	if (!--(*count))
1087 		pmu->pmu_enable(pmu);
1088 }
1089 
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091 
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101 
1102 	WARN_ON(!irqs_disabled());
1103 
1104 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1105 
1106 	list_add(&ctx->active_ctx_list, head);
1107 }
1108 
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111 	WARN_ON(!irqs_disabled());
1112 
1113 	WARN_ON(list_empty(&ctx->active_ctx_list));
1114 
1115 	list_del_init(&ctx->active_ctx_list);
1116 }
1117 
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122 
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125 	struct perf_event_context *ctx;
1126 
1127 	ctx = container_of(head, struct perf_event_context, rcu_head);
1128 	kfree(ctx->task_ctx_data);
1129 	kfree(ctx);
1130 }
1131 
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134 	if (atomic_dec_and_test(&ctx->refcount)) {
1135 		if (ctx->parent_ctx)
1136 			put_ctx(ctx->parent_ctx);
1137 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 			put_task_struct(ctx->task);
1139 		call_rcu(&ctx->rcu_head, free_ctx);
1140 	}
1141 }
1142 
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()	[ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()			[ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()		[ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event()	[ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *	task_struct::perf_event_mutex
1198  *	  perf_event_context::mutex
1199  *	    perf_event::child_mutex;
1200  *	      perf_event_context::lock
1201  *	    perf_event::mmap_mutex
1202  *	    mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207 	struct perf_event_context *ctx;
1208 
1209 again:
1210 	rcu_read_lock();
1211 	ctx = ACCESS_ONCE(event->ctx);
1212 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 		rcu_read_unlock();
1214 		goto again;
1215 	}
1216 	rcu_read_unlock();
1217 
1218 	mutex_lock_nested(&ctx->mutex, nesting);
1219 	if (event->ctx != ctx) {
1220 		mutex_unlock(&ctx->mutex);
1221 		put_ctx(ctx);
1222 		goto again;
1223 	}
1224 
1225 	return ctx;
1226 }
1227 
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231 	return perf_event_ctx_lock_nested(event, 0);
1232 }
1233 
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 				  struct perf_event_context *ctx)
1236 {
1237 	mutex_unlock(&ctx->mutex);
1238 	put_ctx(ctx);
1239 }
1240 
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250 
1251 	lockdep_assert_held(&ctx->lock);
1252 
1253 	if (parent_ctx)
1254 		ctx->parent_ctx = NULL;
1255 	ctx->generation++;
1256 
1257 	return parent_ctx;
1258 }
1259 
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262 	/*
1263 	 * only top level events have the pid namespace they were created in
1264 	 */
1265 	if (event->parent)
1266 		event = event->parent;
1267 
1268 	return task_tgid_nr_ns(p, event->ns);
1269 }
1270 
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273 	/*
1274 	 * only top level events have the pid namespace they were created in
1275 	 */
1276 	if (event->parent)
1277 		event = event->parent;
1278 
1279 	return task_pid_nr_ns(p, event->ns);
1280 }
1281 
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288 	u64 id = event->id;
1289 
1290 	if (event->parent)
1291 		id = event->parent->id;
1292 
1293 	return id;
1294 }
1295 
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305 	struct perf_event_context *ctx;
1306 
1307 retry:
1308 	/*
1309 	 * One of the few rules of preemptible RCU is that one cannot do
1310 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 	 * part of the read side critical section was irqs-enabled -- see
1312 	 * rcu_read_unlock_special().
1313 	 *
1314 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 	 * side critical section has interrupts disabled.
1316 	 */
1317 	local_irq_save(*flags);
1318 	rcu_read_lock();
1319 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 	if (ctx) {
1321 		/*
1322 		 * If this context is a clone of another, it might
1323 		 * get swapped for another underneath us by
1324 		 * perf_event_task_sched_out, though the
1325 		 * rcu_read_lock() protects us from any context
1326 		 * getting freed.  Lock the context and check if it
1327 		 * got swapped before we could get the lock, and retry
1328 		 * if so.  If we locked the right context, then it
1329 		 * can't get swapped on us any more.
1330 		 */
1331 		raw_spin_lock(&ctx->lock);
1332 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			rcu_read_unlock();
1335 			local_irq_restore(*flags);
1336 			goto retry;
1337 		}
1338 
1339 		if (ctx->task == TASK_TOMBSTONE ||
1340 		    !atomic_inc_not_zero(&ctx->refcount)) {
1341 			raw_spin_unlock(&ctx->lock);
1342 			ctx = NULL;
1343 		} else {
1344 			WARN_ON_ONCE(ctx->task != task);
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 	if (!ctx)
1349 		local_irq_restore(*flags);
1350 	return ctx;
1351 }
1352 
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361 	struct perf_event_context *ctx;
1362 	unsigned long flags;
1363 
1364 	ctx = perf_lock_task_context(task, ctxn, &flags);
1365 	if (ctx) {
1366 		++ctx->pin_count;
1367 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 	}
1369 	return ctx;
1370 }
1371 
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374 	unsigned long flags;
1375 
1376 	raw_spin_lock_irqsave(&ctx->lock, flags);
1377 	--ctx->pin_count;
1378 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380 
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386 	u64 now = perf_clock();
1387 
1388 	ctx->time += now - ctx->timestamp;
1389 	ctx->timestamp = now;
1390 }
1391 
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394 	struct perf_event_context *ctx = event->ctx;
1395 
1396 	if (is_cgroup_event(event))
1397 		return perf_cgroup_event_time(event);
1398 
1399 	return ctx ? ctx->time : 0;
1400 }
1401 
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407 	struct perf_event_context *ctx = event->ctx;
1408 	u64 run_end;
1409 
1410 	lockdep_assert_held(&ctx->lock);
1411 
1412 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 		return;
1415 
1416 	/*
1417 	 * in cgroup mode, time_enabled represents
1418 	 * the time the event was enabled AND active
1419 	 * tasks were in the monitored cgroup. This is
1420 	 * independent of the activity of the context as
1421 	 * there may be a mix of cgroup and non-cgroup events.
1422 	 *
1423 	 * That is why we treat cgroup events differently
1424 	 * here.
1425 	 */
1426 	if (is_cgroup_event(event))
1427 		run_end = perf_cgroup_event_time(event);
1428 	else if (ctx->is_active)
1429 		run_end = ctx->time;
1430 	else
1431 		run_end = event->tstamp_stopped;
1432 
1433 	event->total_time_enabled = run_end - event->tstamp_enabled;
1434 
1435 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 		run_end = event->tstamp_stopped;
1437 	else
1438 		run_end = perf_event_time(event);
1439 
1440 	event->total_time_running = run_end - event->tstamp_running;
1441 
1442 }
1443 
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449 	struct perf_event *event;
1450 
1451 	update_event_times(leader);
1452 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 		update_event_times(event);
1454 }
1455 
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459 	if (event->attr.pinned)
1460 		return &ctx->pinned_groups;
1461 	else
1462 		return &ctx->flexible_groups;
1463 }
1464 
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475 	event->attach_state |= PERF_ATTACH_CONTEXT;
1476 
1477 	/*
1478 	 * If we're a stand alone event or group leader, we go to the context
1479 	 * list, group events are kept attached to the group so that
1480 	 * perf_group_detach can, at all times, locate all siblings.
1481 	 */
1482 	if (event->group_leader == event) {
1483 		struct list_head *list;
1484 
1485 		event->group_caps = event->event_caps;
1486 
1487 		list = ctx_group_list(event, ctx);
1488 		list_add_tail(&event->group_entry, list);
1489 	}
1490 
1491 	list_update_cgroup_event(event, ctx, true);
1492 
1493 	list_add_rcu(&event->event_entry, &ctx->event_list);
1494 	ctx->nr_events++;
1495 	if (event->attr.inherit_stat)
1496 		ctx->nr_stat++;
1497 
1498 	ctx->generation++;
1499 }
1500 
1501 /*
1502  * Initialize event state based on the perf_event_attr::disabled.
1503  */
1504 static inline void perf_event__state_init(struct perf_event *event)
1505 {
1506 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507 					      PERF_EVENT_STATE_INACTIVE;
1508 }
1509 
1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1511 {
1512 	int entry = sizeof(u64); /* value */
1513 	int size = 0;
1514 	int nr = 1;
1515 
1516 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517 		size += sizeof(u64);
1518 
1519 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520 		size += sizeof(u64);
1521 
1522 	if (event->attr.read_format & PERF_FORMAT_ID)
1523 		entry += sizeof(u64);
1524 
1525 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1526 		nr += nr_siblings;
1527 		size += sizeof(u64);
1528 	}
1529 
1530 	size += entry * nr;
1531 	event->read_size = size;
1532 }
1533 
1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1535 {
1536 	struct perf_sample_data *data;
1537 	u16 size = 0;
1538 
1539 	if (sample_type & PERF_SAMPLE_IP)
1540 		size += sizeof(data->ip);
1541 
1542 	if (sample_type & PERF_SAMPLE_ADDR)
1543 		size += sizeof(data->addr);
1544 
1545 	if (sample_type & PERF_SAMPLE_PERIOD)
1546 		size += sizeof(data->period);
1547 
1548 	if (sample_type & PERF_SAMPLE_WEIGHT)
1549 		size += sizeof(data->weight);
1550 
1551 	if (sample_type & PERF_SAMPLE_READ)
1552 		size += event->read_size;
1553 
1554 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1555 		size += sizeof(data->data_src.val);
1556 
1557 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1558 		size += sizeof(data->txn);
1559 
1560 	event->header_size = size;
1561 }
1562 
1563 /*
1564  * Called at perf_event creation and when events are attached/detached from a
1565  * group.
1566  */
1567 static void perf_event__header_size(struct perf_event *event)
1568 {
1569 	__perf_event_read_size(event,
1570 			       event->group_leader->nr_siblings);
1571 	__perf_event_header_size(event, event->attr.sample_type);
1572 }
1573 
1574 static void perf_event__id_header_size(struct perf_event *event)
1575 {
1576 	struct perf_sample_data *data;
1577 	u64 sample_type = event->attr.sample_type;
1578 	u16 size = 0;
1579 
1580 	if (sample_type & PERF_SAMPLE_TID)
1581 		size += sizeof(data->tid_entry);
1582 
1583 	if (sample_type & PERF_SAMPLE_TIME)
1584 		size += sizeof(data->time);
1585 
1586 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587 		size += sizeof(data->id);
1588 
1589 	if (sample_type & PERF_SAMPLE_ID)
1590 		size += sizeof(data->id);
1591 
1592 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1593 		size += sizeof(data->stream_id);
1594 
1595 	if (sample_type & PERF_SAMPLE_CPU)
1596 		size += sizeof(data->cpu_entry);
1597 
1598 	event->id_header_size = size;
1599 }
1600 
1601 static bool perf_event_validate_size(struct perf_event *event)
1602 {
1603 	/*
1604 	 * The values computed here will be over-written when we actually
1605 	 * attach the event.
1606 	 */
1607 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609 	perf_event__id_header_size(event);
1610 
1611 	/*
1612 	 * Sum the lot; should not exceed the 64k limit we have on records.
1613 	 * Conservative limit to allow for callchains and other variable fields.
1614 	 */
1615 	if (event->read_size + event->header_size +
1616 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617 		return false;
1618 
1619 	return true;
1620 }
1621 
1622 static void perf_group_attach(struct perf_event *event)
1623 {
1624 	struct perf_event *group_leader = event->group_leader, *pos;
1625 
1626 	lockdep_assert_held(&event->ctx->lock);
1627 
1628 	/*
1629 	 * We can have double attach due to group movement in perf_event_open.
1630 	 */
1631 	if (event->attach_state & PERF_ATTACH_GROUP)
1632 		return;
1633 
1634 	event->attach_state |= PERF_ATTACH_GROUP;
1635 
1636 	if (group_leader == event)
1637 		return;
1638 
1639 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1640 
1641 	group_leader->group_caps &= event->event_caps;
1642 
1643 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644 	group_leader->nr_siblings++;
1645 
1646 	perf_event__header_size(group_leader);
1647 
1648 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649 		perf_event__header_size(pos);
1650 }
1651 
1652 /*
1653  * Remove a event from the lists for its context.
1654  * Must be called with ctx->mutex and ctx->lock held.
1655  */
1656 static void
1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1658 {
1659 	WARN_ON_ONCE(event->ctx != ctx);
1660 	lockdep_assert_held(&ctx->lock);
1661 
1662 	/*
1663 	 * We can have double detach due to exit/hot-unplug + close.
1664 	 */
1665 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1666 		return;
1667 
1668 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1669 
1670 	list_update_cgroup_event(event, ctx, false);
1671 
1672 	ctx->nr_events--;
1673 	if (event->attr.inherit_stat)
1674 		ctx->nr_stat--;
1675 
1676 	list_del_rcu(&event->event_entry);
1677 
1678 	if (event->group_leader == event)
1679 		list_del_init(&event->group_entry);
1680 
1681 	update_group_times(event);
1682 
1683 	/*
1684 	 * If event was in error state, then keep it
1685 	 * that way, otherwise bogus counts will be
1686 	 * returned on read(). The only way to get out
1687 	 * of error state is by explicit re-enabling
1688 	 * of the event
1689 	 */
1690 	if (event->state > PERF_EVENT_STATE_OFF)
1691 		event->state = PERF_EVENT_STATE_OFF;
1692 
1693 	ctx->generation++;
1694 }
1695 
1696 static void perf_group_detach(struct perf_event *event)
1697 {
1698 	struct perf_event *sibling, *tmp;
1699 	struct list_head *list = NULL;
1700 
1701 	lockdep_assert_held(&event->ctx->lock);
1702 
1703 	/*
1704 	 * We can have double detach due to exit/hot-unplug + close.
1705 	 */
1706 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1707 		return;
1708 
1709 	event->attach_state &= ~PERF_ATTACH_GROUP;
1710 
1711 	/*
1712 	 * If this is a sibling, remove it from its group.
1713 	 */
1714 	if (event->group_leader != event) {
1715 		list_del_init(&event->group_entry);
1716 		event->group_leader->nr_siblings--;
1717 		goto out;
1718 	}
1719 
1720 	if (!list_empty(&event->group_entry))
1721 		list = &event->group_entry;
1722 
1723 	/*
1724 	 * If this was a group event with sibling events then
1725 	 * upgrade the siblings to singleton events by adding them
1726 	 * to whatever list we are on.
1727 	 */
1728 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729 		if (list)
1730 			list_move_tail(&sibling->group_entry, list);
1731 		sibling->group_leader = sibling;
1732 
1733 		/* Inherit group flags from the previous leader */
1734 		sibling->group_caps = event->group_caps;
1735 
1736 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1737 	}
1738 
1739 out:
1740 	perf_event__header_size(event->group_leader);
1741 
1742 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743 		perf_event__header_size(tmp);
1744 }
1745 
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748 	return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750 
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753 	struct pmu *pmu = event->pmu;
1754 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756 
1757 /*
1758  * Check whether we should attempt to schedule an event group based on
1759  * PMU-specific filtering. An event group can consist of HW and SW events,
1760  * potentially with a SW leader, so we must check all the filters, to
1761  * determine whether a group is schedulable:
1762  */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765 	struct perf_event *child;
1766 
1767 	if (!__pmu_filter_match(event))
1768 		return 0;
1769 
1770 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1771 		if (!__pmu_filter_match(child))
1772 			return 0;
1773 	}
1774 
1775 	return 1;
1776 }
1777 
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782 	       perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784 
1785 static void
1786 event_sched_out(struct perf_event *event,
1787 		  struct perf_cpu_context *cpuctx,
1788 		  struct perf_event_context *ctx)
1789 {
1790 	u64 tstamp = perf_event_time(event);
1791 	u64 delta;
1792 
1793 	WARN_ON_ONCE(event->ctx != ctx);
1794 	lockdep_assert_held(&ctx->lock);
1795 
1796 	/*
1797 	 * An event which could not be activated because of
1798 	 * filter mismatch still needs to have its timings
1799 	 * maintained, otherwise bogus information is return
1800 	 * via read() for time_enabled, time_running:
1801 	 */
1802 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803 	    !event_filter_match(event)) {
1804 		delta = tstamp - event->tstamp_stopped;
1805 		event->tstamp_running += delta;
1806 		event->tstamp_stopped = tstamp;
1807 	}
1808 
1809 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1810 		return;
1811 
1812 	perf_pmu_disable(event->pmu);
1813 
1814 	event->tstamp_stopped = tstamp;
1815 	event->pmu->del(event, 0);
1816 	event->oncpu = -1;
1817 	event->state = PERF_EVENT_STATE_INACTIVE;
1818 	if (event->pending_disable) {
1819 		event->pending_disable = 0;
1820 		event->state = PERF_EVENT_STATE_OFF;
1821 	}
1822 
1823 	if (!is_software_event(event))
1824 		cpuctx->active_oncpu--;
1825 	if (!--ctx->nr_active)
1826 		perf_event_ctx_deactivate(ctx);
1827 	if (event->attr.freq && event->attr.sample_freq)
1828 		ctx->nr_freq--;
1829 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1830 		cpuctx->exclusive = 0;
1831 
1832 	perf_pmu_enable(event->pmu);
1833 }
1834 
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837 		struct perf_cpu_context *cpuctx,
1838 		struct perf_event_context *ctx)
1839 {
1840 	struct perf_event *event;
1841 	int state = group_event->state;
1842 
1843 	perf_pmu_disable(ctx->pmu);
1844 
1845 	event_sched_out(group_event, cpuctx, ctx);
1846 
1847 	/*
1848 	 * Schedule out siblings (if any):
1849 	 */
1850 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851 		event_sched_out(event, cpuctx, ctx);
1852 
1853 	perf_pmu_enable(ctx->pmu);
1854 
1855 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856 		cpuctx->exclusive = 0;
1857 }
1858 
1859 #define DETACH_GROUP	0x01UL
1860 
1861 /*
1862  * Cross CPU call to remove a performance event
1863  *
1864  * We disable the event on the hardware level first. After that we
1865  * remove it from the context list.
1866  */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869 			   struct perf_cpu_context *cpuctx,
1870 			   struct perf_event_context *ctx,
1871 			   void *info)
1872 {
1873 	unsigned long flags = (unsigned long)info;
1874 
1875 	event_sched_out(event, cpuctx, ctx);
1876 	if (flags & DETACH_GROUP)
1877 		perf_group_detach(event);
1878 	list_del_event(event, ctx);
1879 
1880 	if (!ctx->nr_events && ctx->is_active) {
1881 		ctx->is_active = 0;
1882 		if (ctx->task) {
1883 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884 			cpuctx->task_ctx = NULL;
1885 		}
1886 	}
1887 }
1888 
1889 /*
1890  * Remove the event from a task's (or a CPU's) list of events.
1891  *
1892  * If event->ctx is a cloned context, callers must make sure that
1893  * every task struct that event->ctx->task could possibly point to
1894  * remains valid.  This is OK when called from perf_release since
1895  * that only calls us on the top-level context, which can't be a clone.
1896  * When called from perf_event_exit_task, it's OK because the
1897  * context has been detached from its task.
1898  */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901 	struct perf_event_context *ctx = event->ctx;
1902 
1903 	lockdep_assert_held(&ctx->mutex);
1904 
1905 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1906 
1907 	/*
1908 	 * The above event_function_call() can NO-OP when it hits
1909 	 * TASK_TOMBSTONE. In that case we must already have been detached
1910 	 * from the context (by perf_event_exit_event()) but the grouping
1911 	 * might still be in-tact.
1912 	 */
1913 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914 	if ((flags & DETACH_GROUP) &&
1915 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1916 		/*
1917 		 * Since in that case we cannot possibly be scheduled, simply
1918 		 * detach now.
1919 		 */
1920 		raw_spin_lock_irq(&ctx->lock);
1921 		perf_group_detach(event);
1922 		raw_spin_unlock_irq(&ctx->lock);
1923 	}
1924 }
1925 
1926 /*
1927  * Cross CPU call to disable a performance event
1928  */
1929 static void __perf_event_disable(struct perf_event *event,
1930 				 struct perf_cpu_context *cpuctx,
1931 				 struct perf_event_context *ctx,
1932 				 void *info)
1933 {
1934 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1935 		return;
1936 
1937 	update_context_time(ctx);
1938 	update_cgrp_time_from_event(event);
1939 	update_group_times(event);
1940 	if (event == event->group_leader)
1941 		group_sched_out(event, cpuctx, ctx);
1942 	else
1943 		event_sched_out(event, cpuctx, ctx);
1944 	event->state = PERF_EVENT_STATE_OFF;
1945 }
1946 
1947 /*
1948  * Disable a event.
1949  *
1950  * If event->ctx is a cloned context, callers must make sure that
1951  * every task struct that event->ctx->task could possibly point to
1952  * remains valid.  This condition is satisifed when called through
1953  * perf_event_for_each_child or perf_event_for_each because they
1954  * hold the top-level event's child_mutex, so any descendant that
1955  * goes to exit will block in perf_event_exit_event().
1956  *
1957  * When called from perf_pending_event it's OK because event->ctx
1958  * is the current context on this CPU and preemption is disabled,
1959  * hence we can't get into perf_event_task_sched_out for this context.
1960  */
1961 static void _perf_event_disable(struct perf_event *event)
1962 {
1963 	struct perf_event_context *ctx = event->ctx;
1964 
1965 	raw_spin_lock_irq(&ctx->lock);
1966 	if (event->state <= PERF_EVENT_STATE_OFF) {
1967 		raw_spin_unlock_irq(&ctx->lock);
1968 		return;
1969 	}
1970 	raw_spin_unlock_irq(&ctx->lock);
1971 
1972 	event_function_call(event, __perf_event_disable, NULL);
1973 }
1974 
1975 void perf_event_disable_local(struct perf_event *event)
1976 {
1977 	event_function_local(event, __perf_event_disable, NULL);
1978 }
1979 
1980 /*
1981  * Strictly speaking kernel users cannot create groups and therefore this
1982  * interface does not need the perf_event_ctx_lock() magic.
1983  */
1984 void perf_event_disable(struct perf_event *event)
1985 {
1986 	struct perf_event_context *ctx;
1987 
1988 	ctx = perf_event_ctx_lock(event);
1989 	_perf_event_disable(event);
1990 	perf_event_ctx_unlock(event, ctx);
1991 }
1992 EXPORT_SYMBOL_GPL(perf_event_disable);
1993 
1994 void perf_event_disable_inatomic(struct perf_event *event)
1995 {
1996 	event->pending_disable = 1;
1997 	irq_work_queue(&event->pending);
1998 }
1999 
2000 static void perf_set_shadow_time(struct perf_event *event,
2001 				 struct perf_event_context *ctx,
2002 				 u64 tstamp)
2003 {
2004 	/*
2005 	 * use the correct time source for the time snapshot
2006 	 *
2007 	 * We could get by without this by leveraging the
2008 	 * fact that to get to this function, the caller
2009 	 * has most likely already called update_context_time()
2010 	 * and update_cgrp_time_xx() and thus both timestamp
2011 	 * are identical (or very close). Given that tstamp is,
2012 	 * already adjusted for cgroup, we could say that:
2013 	 *    tstamp - ctx->timestamp
2014 	 * is equivalent to
2015 	 *    tstamp - cgrp->timestamp.
2016 	 *
2017 	 * Then, in perf_output_read(), the calculation would
2018 	 * work with no changes because:
2019 	 * - event is guaranteed scheduled in
2020 	 * - no scheduled out in between
2021 	 * - thus the timestamp would be the same
2022 	 *
2023 	 * But this is a bit hairy.
2024 	 *
2025 	 * So instead, we have an explicit cgroup call to remain
2026 	 * within the time time source all along. We believe it
2027 	 * is cleaner and simpler to understand.
2028 	 */
2029 	if (is_cgroup_event(event))
2030 		perf_cgroup_set_shadow_time(event, tstamp);
2031 	else
2032 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2033 }
2034 
2035 #define MAX_INTERRUPTS (~0ULL)
2036 
2037 static void perf_log_throttle(struct perf_event *event, int enable);
2038 static void perf_log_itrace_start(struct perf_event *event);
2039 
2040 static int
2041 event_sched_in(struct perf_event *event,
2042 		 struct perf_cpu_context *cpuctx,
2043 		 struct perf_event_context *ctx)
2044 {
2045 	u64 tstamp = perf_event_time(event);
2046 	int ret = 0;
2047 
2048 	lockdep_assert_held(&ctx->lock);
2049 
2050 	if (event->state <= PERF_EVENT_STATE_OFF)
2051 		return 0;
2052 
2053 	WRITE_ONCE(event->oncpu, smp_processor_id());
2054 	/*
2055 	 * Order event::oncpu write to happen before the ACTIVE state
2056 	 * is visible.
2057 	 */
2058 	smp_wmb();
2059 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2060 
2061 	/*
2062 	 * Unthrottle events, since we scheduled we might have missed several
2063 	 * ticks already, also for a heavily scheduling task there is little
2064 	 * guarantee it'll get a tick in a timely manner.
2065 	 */
2066 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067 		perf_log_throttle(event, 1);
2068 		event->hw.interrupts = 0;
2069 	}
2070 
2071 	/*
2072 	 * The new state must be visible before we turn it on in the hardware:
2073 	 */
2074 	smp_wmb();
2075 
2076 	perf_pmu_disable(event->pmu);
2077 
2078 	perf_set_shadow_time(event, ctx, tstamp);
2079 
2080 	perf_log_itrace_start(event);
2081 
2082 	if (event->pmu->add(event, PERF_EF_START)) {
2083 		event->state = PERF_EVENT_STATE_INACTIVE;
2084 		event->oncpu = -1;
2085 		ret = -EAGAIN;
2086 		goto out;
2087 	}
2088 
2089 	event->tstamp_running += tstamp - event->tstamp_stopped;
2090 
2091 	if (!is_software_event(event))
2092 		cpuctx->active_oncpu++;
2093 	if (!ctx->nr_active++)
2094 		perf_event_ctx_activate(ctx);
2095 	if (event->attr.freq && event->attr.sample_freq)
2096 		ctx->nr_freq++;
2097 
2098 	if (event->attr.exclusive)
2099 		cpuctx->exclusive = 1;
2100 
2101 out:
2102 	perf_pmu_enable(event->pmu);
2103 
2104 	return ret;
2105 }
2106 
2107 static int
2108 group_sched_in(struct perf_event *group_event,
2109 	       struct perf_cpu_context *cpuctx,
2110 	       struct perf_event_context *ctx)
2111 {
2112 	struct perf_event *event, *partial_group = NULL;
2113 	struct pmu *pmu = ctx->pmu;
2114 	u64 now = ctx->time;
2115 	bool simulate = false;
2116 
2117 	if (group_event->state == PERF_EVENT_STATE_OFF)
2118 		return 0;
2119 
2120 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2121 
2122 	if (event_sched_in(group_event, cpuctx, ctx)) {
2123 		pmu->cancel_txn(pmu);
2124 		perf_mux_hrtimer_restart(cpuctx);
2125 		return -EAGAIN;
2126 	}
2127 
2128 	/*
2129 	 * Schedule in siblings as one group (if any):
2130 	 */
2131 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2132 		if (event_sched_in(event, cpuctx, ctx)) {
2133 			partial_group = event;
2134 			goto group_error;
2135 		}
2136 	}
2137 
2138 	if (!pmu->commit_txn(pmu))
2139 		return 0;
2140 
2141 group_error:
2142 	/*
2143 	 * Groups can be scheduled in as one unit only, so undo any
2144 	 * partial group before returning:
2145 	 * The events up to the failed event are scheduled out normally,
2146 	 * tstamp_stopped will be updated.
2147 	 *
2148 	 * The failed events and the remaining siblings need to have
2149 	 * their timings updated as if they had gone thru event_sched_in()
2150 	 * and event_sched_out(). This is required to get consistent timings
2151 	 * across the group. This also takes care of the case where the group
2152 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2153 	 * the time the event was actually stopped, such that time delta
2154 	 * calculation in update_event_times() is correct.
2155 	 */
2156 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157 		if (event == partial_group)
2158 			simulate = true;
2159 
2160 		if (simulate) {
2161 			event->tstamp_running += now - event->tstamp_stopped;
2162 			event->tstamp_stopped = now;
2163 		} else {
2164 			event_sched_out(event, cpuctx, ctx);
2165 		}
2166 	}
2167 	event_sched_out(group_event, cpuctx, ctx);
2168 
2169 	pmu->cancel_txn(pmu);
2170 
2171 	perf_mux_hrtimer_restart(cpuctx);
2172 
2173 	return -EAGAIN;
2174 }
2175 
2176 /*
2177  * Work out whether we can put this event group on the CPU now.
2178  */
2179 static int group_can_go_on(struct perf_event *event,
2180 			   struct perf_cpu_context *cpuctx,
2181 			   int can_add_hw)
2182 {
2183 	/*
2184 	 * Groups consisting entirely of software events can always go on.
2185 	 */
2186 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2187 		return 1;
2188 	/*
2189 	 * If an exclusive group is already on, no other hardware
2190 	 * events can go on.
2191 	 */
2192 	if (cpuctx->exclusive)
2193 		return 0;
2194 	/*
2195 	 * If this group is exclusive and there are already
2196 	 * events on the CPU, it can't go on.
2197 	 */
2198 	if (event->attr.exclusive && cpuctx->active_oncpu)
2199 		return 0;
2200 	/*
2201 	 * Otherwise, try to add it if all previous groups were able
2202 	 * to go on.
2203 	 */
2204 	return can_add_hw;
2205 }
2206 
2207 static void add_event_to_ctx(struct perf_event *event,
2208 			       struct perf_event_context *ctx)
2209 {
2210 	u64 tstamp = perf_event_time(event);
2211 
2212 	list_add_event(event, ctx);
2213 	perf_group_attach(event);
2214 	event->tstamp_enabled = tstamp;
2215 	event->tstamp_running = tstamp;
2216 	event->tstamp_stopped = tstamp;
2217 }
2218 
2219 static void ctx_sched_out(struct perf_event_context *ctx,
2220 			  struct perf_cpu_context *cpuctx,
2221 			  enum event_type_t event_type);
2222 static void
2223 ctx_sched_in(struct perf_event_context *ctx,
2224 	     struct perf_cpu_context *cpuctx,
2225 	     enum event_type_t event_type,
2226 	     struct task_struct *task);
2227 
2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229 			       struct perf_event_context *ctx)
2230 {
2231 	if (!cpuctx->task_ctx)
2232 		return;
2233 
2234 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235 		return;
2236 
2237 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2238 }
2239 
2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241 				struct perf_event_context *ctx,
2242 				struct task_struct *task)
2243 {
2244 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245 	if (ctx)
2246 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248 	if (ctx)
2249 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2250 }
2251 
2252 static void ctx_resched(struct perf_cpu_context *cpuctx,
2253 			struct perf_event_context *task_ctx)
2254 {
2255 	perf_pmu_disable(cpuctx->ctx.pmu);
2256 	if (task_ctx)
2257 		task_ctx_sched_out(cpuctx, task_ctx);
2258 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259 	perf_event_sched_in(cpuctx, task_ctx, current);
2260 	perf_pmu_enable(cpuctx->ctx.pmu);
2261 }
2262 
2263 /*
2264  * Cross CPU call to install and enable a performance event
2265  *
2266  * Very similar to remote_function() + event_function() but cannot assume that
2267  * things like ctx->is_active and cpuctx->task_ctx are set.
2268  */
2269 static int  __perf_install_in_context(void *info)
2270 {
2271 	struct perf_event *event = info;
2272 	struct perf_event_context *ctx = event->ctx;
2273 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2274 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2275 	bool reprogram = true;
2276 	int ret = 0;
2277 
2278 	raw_spin_lock(&cpuctx->ctx.lock);
2279 	if (ctx->task) {
2280 		raw_spin_lock(&ctx->lock);
2281 		task_ctx = ctx;
2282 
2283 		reprogram = (ctx->task == current);
2284 
2285 		/*
2286 		 * If the task is running, it must be running on this CPU,
2287 		 * otherwise we cannot reprogram things.
2288 		 *
2289 		 * If its not running, we don't care, ctx->lock will
2290 		 * serialize against it becoming runnable.
2291 		 */
2292 		if (task_curr(ctx->task) && !reprogram) {
2293 			ret = -ESRCH;
2294 			goto unlock;
2295 		}
2296 
2297 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2298 	} else if (task_ctx) {
2299 		raw_spin_lock(&task_ctx->lock);
2300 	}
2301 
2302 	if (reprogram) {
2303 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2304 		add_event_to_ctx(event, ctx);
2305 		ctx_resched(cpuctx, task_ctx);
2306 	} else {
2307 		add_event_to_ctx(event, ctx);
2308 	}
2309 
2310 unlock:
2311 	perf_ctx_unlock(cpuctx, task_ctx);
2312 
2313 	return ret;
2314 }
2315 
2316 /*
2317  * Attach a performance event to a context.
2318  *
2319  * Very similar to event_function_call, see comment there.
2320  */
2321 static void
2322 perf_install_in_context(struct perf_event_context *ctx,
2323 			struct perf_event *event,
2324 			int cpu)
2325 {
2326 	struct task_struct *task = READ_ONCE(ctx->task);
2327 
2328 	lockdep_assert_held(&ctx->mutex);
2329 
2330 	if (event->cpu != -1)
2331 		event->cpu = cpu;
2332 
2333 	/*
2334 	 * Ensures that if we can observe event->ctx, both the event and ctx
2335 	 * will be 'complete'. See perf_iterate_sb_cpu().
2336 	 */
2337 	smp_store_release(&event->ctx, ctx);
2338 
2339 	if (!task) {
2340 		cpu_function_call(cpu, __perf_install_in_context, event);
2341 		return;
2342 	}
2343 
2344 	/*
2345 	 * Should not happen, we validate the ctx is still alive before calling.
2346 	 */
2347 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2348 		return;
2349 
2350 	/*
2351 	 * Installing events is tricky because we cannot rely on ctx->is_active
2352 	 * to be set in case this is the nr_events 0 -> 1 transition.
2353 	 *
2354 	 * Instead we use task_curr(), which tells us if the task is running.
2355 	 * However, since we use task_curr() outside of rq::lock, we can race
2356 	 * against the actual state. This means the result can be wrong.
2357 	 *
2358 	 * If we get a false positive, we retry, this is harmless.
2359 	 *
2360 	 * If we get a false negative, things are complicated. If we are after
2361 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2362 	 * value must be correct. If we're before, it doesn't matter since
2363 	 * perf_event_context_sched_in() will program the counter.
2364 	 *
2365 	 * However, this hinges on the remote context switch having observed
2366 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2367 	 * ctx::lock in perf_event_context_sched_in().
2368 	 *
2369 	 * We do this by task_function_call(), if the IPI fails to hit the task
2370 	 * we know any future context switch of task must see the
2371 	 * perf_event_ctpx[] store.
2372 	 */
2373 
2374 	/*
2375 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2376 	 * task_cpu() load, such that if the IPI then does not find the task
2377 	 * running, a future context switch of that task must observe the
2378 	 * store.
2379 	 */
2380 	smp_mb();
2381 again:
2382 	if (!task_function_call(task, __perf_install_in_context, event))
2383 		return;
2384 
2385 	raw_spin_lock_irq(&ctx->lock);
2386 	task = ctx->task;
2387 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2388 		/*
2389 		 * Cannot happen because we already checked above (which also
2390 		 * cannot happen), and we hold ctx->mutex, which serializes us
2391 		 * against perf_event_exit_task_context().
2392 		 */
2393 		raw_spin_unlock_irq(&ctx->lock);
2394 		return;
2395 	}
2396 	/*
2397 	 * If the task is not running, ctx->lock will avoid it becoming so,
2398 	 * thus we can safely install the event.
2399 	 */
2400 	if (task_curr(task)) {
2401 		raw_spin_unlock_irq(&ctx->lock);
2402 		goto again;
2403 	}
2404 	add_event_to_ctx(event, ctx);
2405 	raw_spin_unlock_irq(&ctx->lock);
2406 }
2407 
2408 /*
2409  * Put a event into inactive state and update time fields.
2410  * Enabling the leader of a group effectively enables all
2411  * the group members that aren't explicitly disabled, so we
2412  * have to update their ->tstamp_enabled also.
2413  * Note: this works for group members as well as group leaders
2414  * since the non-leader members' sibling_lists will be empty.
2415  */
2416 static void __perf_event_mark_enabled(struct perf_event *event)
2417 {
2418 	struct perf_event *sub;
2419 	u64 tstamp = perf_event_time(event);
2420 
2421 	event->state = PERF_EVENT_STATE_INACTIVE;
2422 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2423 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2424 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2425 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2426 	}
2427 }
2428 
2429 /*
2430  * Cross CPU call to enable a performance event
2431  */
2432 static void __perf_event_enable(struct perf_event *event,
2433 				struct perf_cpu_context *cpuctx,
2434 				struct perf_event_context *ctx,
2435 				void *info)
2436 {
2437 	struct perf_event *leader = event->group_leader;
2438 	struct perf_event_context *task_ctx;
2439 
2440 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441 	    event->state <= PERF_EVENT_STATE_ERROR)
2442 		return;
2443 
2444 	if (ctx->is_active)
2445 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446 
2447 	__perf_event_mark_enabled(event);
2448 
2449 	if (!ctx->is_active)
2450 		return;
2451 
2452 	if (!event_filter_match(event)) {
2453 		if (is_cgroup_event(event))
2454 			perf_cgroup_defer_enabled(event);
2455 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2456 		return;
2457 	}
2458 
2459 	/*
2460 	 * If the event is in a group and isn't the group leader,
2461 	 * then don't put it on unless the group is on.
2462 	 */
2463 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2465 		return;
2466 	}
2467 
2468 	task_ctx = cpuctx->task_ctx;
2469 	if (ctx->task)
2470 		WARN_ON_ONCE(task_ctx != ctx);
2471 
2472 	ctx_resched(cpuctx, task_ctx);
2473 }
2474 
2475 /*
2476  * Enable a event.
2477  *
2478  * If event->ctx is a cloned context, callers must make sure that
2479  * every task struct that event->ctx->task could possibly point to
2480  * remains valid.  This condition is satisfied when called through
2481  * perf_event_for_each_child or perf_event_for_each as described
2482  * for perf_event_disable.
2483  */
2484 static void _perf_event_enable(struct perf_event *event)
2485 {
2486 	struct perf_event_context *ctx = event->ctx;
2487 
2488 	raw_spin_lock_irq(&ctx->lock);
2489 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 	    event->state <  PERF_EVENT_STATE_ERROR) {
2491 		raw_spin_unlock_irq(&ctx->lock);
2492 		return;
2493 	}
2494 
2495 	/*
2496 	 * If the event is in error state, clear that first.
2497 	 *
2498 	 * That way, if we see the event in error state below, we know that it
2499 	 * has gone back into error state, as distinct from the task having
2500 	 * been scheduled away before the cross-call arrived.
2501 	 */
2502 	if (event->state == PERF_EVENT_STATE_ERROR)
2503 		event->state = PERF_EVENT_STATE_OFF;
2504 	raw_spin_unlock_irq(&ctx->lock);
2505 
2506 	event_function_call(event, __perf_event_enable, NULL);
2507 }
2508 
2509 /*
2510  * See perf_event_disable();
2511  */
2512 void perf_event_enable(struct perf_event *event)
2513 {
2514 	struct perf_event_context *ctx;
2515 
2516 	ctx = perf_event_ctx_lock(event);
2517 	_perf_event_enable(event);
2518 	perf_event_ctx_unlock(event, ctx);
2519 }
2520 EXPORT_SYMBOL_GPL(perf_event_enable);
2521 
2522 struct stop_event_data {
2523 	struct perf_event	*event;
2524 	unsigned int		restart;
2525 };
2526 
2527 static int __perf_event_stop(void *info)
2528 {
2529 	struct stop_event_data *sd = info;
2530 	struct perf_event *event = sd->event;
2531 
2532 	/* if it's already INACTIVE, do nothing */
2533 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534 		return 0;
2535 
2536 	/* matches smp_wmb() in event_sched_in() */
2537 	smp_rmb();
2538 
2539 	/*
2540 	 * There is a window with interrupts enabled before we get here,
2541 	 * so we need to check again lest we try to stop another CPU's event.
2542 	 */
2543 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2544 		return -EAGAIN;
2545 
2546 	event->pmu->stop(event, PERF_EF_UPDATE);
2547 
2548 	/*
2549 	 * May race with the actual stop (through perf_pmu_output_stop()),
2550 	 * but it is only used for events with AUX ring buffer, and such
2551 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2552 	 * see comments in perf_aux_output_begin().
2553 	 *
2554 	 * Since this is happening on a event-local CPU, no trace is lost
2555 	 * while restarting.
2556 	 */
2557 	if (sd->restart)
2558 		event->pmu->start(event, 0);
2559 
2560 	return 0;
2561 }
2562 
2563 static int perf_event_stop(struct perf_event *event, int restart)
2564 {
2565 	struct stop_event_data sd = {
2566 		.event		= event,
2567 		.restart	= restart,
2568 	};
2569 	int ret = 0;
2570 
2571 	do {
2572 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573 			return 0;
2574 
2575 		/* matches smp_wmb() in event_sched_in() */
2576 		smp_rmb();
2577 
2578 		/*
2579 		 * We only want to restart ACTIVE events, so if the event goes
2580 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2581 		 * fall through with ret==-ENXIO.
2582 		 */
2583 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2584 					__perf_event_stop, &sd);
2585 	} while (ret == -EAGAIN);
2586 
2587 	return ret;
2588 }
2589 
2590 /*
2591  * In order to contain the amount of racy and tricky in the address filter
2592  * configuration management, it is a two part process:
2593  *
2594  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595  *      we update the addresses of corresponding vmas in
2596  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2597  * (p2) when an event is scheduled in (pmu::add), it calls
2598  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599  *      if the generation has changed since the previous call.
2600  *
2601  * If (p1) happens while the event is active, we restart it to force (p2).
2602  *
2603  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2605  *     ioctl;
2606  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2608  *     for reading;
2609  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610  *     of exec.
2611  */
2612 void perf_event_addr_filters_sync(struct perf_event *event)
2613 {
2614 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615 
2616 	if (!has_addr_filter(event))
2617 		return;
2618 
2619 	raw_spin_lock(&ifh->lock);
2620 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621 		event->pmu->addr_filters_sync(event);
2622 		event->hw.addr_filters_gen = event->addr_filters_gen;
2623 	}
2624 	raw_spin_unlock(&ifh->lock);
2625 }
2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627 
2628 static int _perf_event_refresh(struct perf_event *event, int refresh)
2629 {
2630 	/*
2631 	 * not supported on inherited events
2632 	 */
2633 	if (event->attr.inherit || !is_sampling_event(event))
2634 		return -EINVAL;
2635 
2636 	atomic_add(refresh, &event->event_limit);
2637 	_perf_event_enable(event);
2638 
2639 	return 0;
2640 }
2641 
2642 /*
2643  * See perf_event_disable()
2644  */
2645 int perf_event_refresh(struct perf_event *event, int refresh)
2646 {
2647 	struct perf_event_context *ctx;
2648 	int ret;
2649 
2650 	ctx = perf_event_ctx_lock(event);
2651 	ret = _perf_event_refresh(event, refresh);
2652 	perf_event_ctx_unlock(event, ctx);
2653 
2654 	return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_refresh);
2657 
2658 static void ctx_sched_out(struct perf_event_context *ctx,
2659 			  struct perf_cpu_context *cpuctx,
2660 			  enum event_type_t event_type)
2661 {
2662 	int is_active = ctx->is_active;
2663 	struct perf_event *event;
2664 
2665 	lockdep_assert_held(&ctx->lock);
2666 
2667 	if (likely(!ctx->nr_events)) {
2668 		/*
2669 		 * See __perf_remove_from_context().
2670 		 */
2671 		WARN_ON_ONCE(ctx->is_active);
2672 		if (ctx->task)
2673 			WARN_ON_ONCE(cpuctx->task_ctx);
2674 		return;
2675 	}
2676 
2677 	ctx->is_active &= ~event_type;
2678 	if (!(ctx->is_active & EVENT_ALL))
2679 		ctx->is_active = 0;
2680 
2681 	if (ctx->task) {
2682 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683 		if (!ctx->is_active)
2684 			cpuctx->task_ctx = NULL;
2685 	}
2686 
2687 	/*
2688 	 * Always update time if it was set; not only when it changes.
2689 	 * Otherwise we can 'forget' to update time for any but the last
2690 	 * context we sched out. For example:
2691 	 *
2692 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2694 	 *
2695 	 * would only update time for the pinned events.
2696 	 */
2697 	if (is_active & EVENT_TIME) {
2698 		/* update (and stop) ctx time */
2699 		update_context_time(ctx);
2700 		update_cgrp_time_from_cpuctx(cpuctx);
2701 	}
2702 
2703 	is_active ^= ctx->is_active; /* changed bits */
2704 
2705 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2706 		return;
2707 
2708 	perf_pmu_disable(ctx->pmu);
2709 	if (is_active & EVENT_PINNED) {
2710 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711 			group_sched_out(event, cpuctx, ctx);
2712 	}
2713 
2714 	if (is_active & EVENT_FLEXIBLE) {
2715 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2716 			group_sched_out(event, cpuctx, ctx);
2717 	}
2718 	perf_pmu_enable(ctx->pmu);
2719 }
2720 
2721 /*
2722  * Test whether two contexts are equivalent, i.e. whether they have both been
2723  * cloned from the same version of the same context.
2724  *
2725  * Equivalence is measured using a generation number in the context that is
2726  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727  * and list_del_event().
2728  */
2729 static int context_equiv(struct perf_event_context *ctx1,
2730 			 struct perf_event_context *ctx2)
2731 {
2732 	lockdep_assert_held(&ctx1->lock);
2733 	lockdep_assert_held(&ctx2->lock);
2734 
2735 	/* Pinning disables the swap optimization */
2736 	if (ctx1->pin_count || ctx2->pin_count)
2737 		return 0;
2738 
2739 	/* If ctx1 is the parent of ctx2 */
2740 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741 		return 1;
2742 
2743 	/* If ctx2 is the parent of ctx1 */
2744 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745 		return 1;
2746 
2747 	/*
2748 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2749 	 * hierarchy, see perf_event_init_context().
2750 	 */
2751 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752 			ctx1->parent_gen == ctx2->parent_gen)
2753 		return 1;
2754 
2755 	/* Unmatched */
2756 	return 0;
2757 }
2758 
2759 static void __perf_event_sync_stat(struct perf_event *event,
2760 				     struct perf_event *next_event)
2761 {
2762 	u64 value;
2763 
2764 	if (!event->attr.inherit_stat)
2765 		return;
2766 
2767 	/*
2768 	 * Update the event value, we cannot use perf_event_read()
2769 	 * because we're in the middle of a context switch and have IRQs
2770 	 * disabled, which upsets smp_call_function_single(), however
2771 	 * we know the event must be on the current CPU, therefore we
2772 	 * don't need to use it.
2773 	 */
2774 	switch (event->state) {
2775 	case PERF_EVENT_STATE_ACTIVE:
2776 		event->pmu->read(event);
2777 		/* fall-through */
2778 
2779 	case PERF_EVENT_STATE_INACTIVE:
2780 		update_event_times(event);
2781 		break;
2782 
2783 	default:
2784 		break;
2785 	}
2786 
2787 	/*
2788 	 * In order to keep per-task stats reliable we need to flip the event
2789 	 * values when we flip the contexts.
2790 	 */
2791 	value = local64_read(&next_event->count);
2792 	value = local64_xchg(&event->count, value);
2793 	local64_set(&next_event->count, value);
2794 
2795 	swap(event->total_time_enabled, next_event->total_time_enabled);
2796 	swap(event->total_time_running, next_event->total_time_running);
2797 
2798 	/*
2799 	 * Since we swizzled the values, update the user visible data too.
2800 	 */
2801 	perf_event_update_userpage(event);
2802 	perf_event_update_userpage(next_event);
2803 }
2804 
2805 static void perf_event_sync_stat(struct perf_event_context *ctx,
2806 				   struct perf_event_context *next_ctx)
2807 {
2808 	struct perf_event *event, *next_event;
2809 
2810 	if (!ctx->nr_stat)
2811 		return;
2812 
2813 	update_context_time(ctx);
2814 
2815 	event = list_first_entry(&ctx->event_list,
2816 				   struct perf_event, event_entry);
2817 
2818 	next_event = list_first_entry(&next_ctx->event_list,
2819 					struct perf_event, event_entry);
2820 
2821 	while (&event->event_entry != &ctx->event_list &&
2822 	       &next_event->event_entry != &next_ctx->event_list) {
2823 
2824 		__perf_event_sync_stat(event, next_event);
2825 
2826 		event = list_next_entry(event, event_entry);
2827 		next_event = list_next_entry(next_event, event_entry);
2828 	}
2829 }
2830 
2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2832 					 struct task_struct *next)
2833 {
2834 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2835 	struct perf_event_context *next_ctx;
2836 	struct perf_event_context *parent, *next_parent;
2837 	struct perf_cpu_context *cpuctx;
2838 	int do_switch = 1;
2839 
2840 	if (likely(!ctx))
2841 		return;
2842 
2843 	cpuctx = __get_cpu_context(ctx);
2844 	if (!cpuctx->task_ctx)
2845 		return;
2846 
2847 	rcu_read_lock();
2848 	next_ctx = next->perf_event_ctxp[ctxn];
2849 	if (!next_ctx)
2850 		goto unlock;
2851 
2852 	parent = rcu_dereference(ctx->parent_ctx);
2853 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2854 
2855 	/* If neither context have a parent context; they cannot be clones. */
2856 	if (!parent && !next_parent)
2857 		goto unlock;
2858 
2859 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2860 		/*
2861 		 * Looks like the two contexts are clones, so we might be
2862 		 * able to optimize the context switch.  We lock both
2863 		 * contexts and check that they are clones under the
2864 		 * lock (including re-checking that neither has been
2865 		 * uncloned in the meantime).  It doesn't matter which
2866 		 * order we take the locks because no other cpu could
2867 		 * be trying to lock both of these tasks.
2868 		 */
2869 		raw_spin_lock(&ctx->lock);
2870 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2871 		if (context_equiv(ctx, next_ctx)) {
2872 			WRITE_ONCE(ctx->task, next);
2873 			WRITE_ONCE(next_ctx->task, task);
2874 
2875 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2876 
2877 			/*
2878 			 * RCU_INIT_POINTER here is safe because we've not
2879 			 * modified the ctx and the above modification of
2880 			 * ctx->task and ctx->task_ctx_data are immaterial
2881 			 * since those values are always verified under
2882 			 * ctx->lock which we're now holding.
2883 			 */
2884 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2885 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2886 
2887 			do_switch = 0;
2888 
2889 			perf_event_sync_stat(ctx, next_ctx);
2890 		}
2891 		raw_spin_unlock(&next_ctx->lock);
2892 		raw_spin_unlock(&ctx->lock);
2893 	}
2894 unlock:
2895 	rcu_read_unlock();
2896 
2897 	if (do_switch) {
2898 		raw_spin_lock(&ctx->lock);
2899 		task_ctx_sched_out(cpuctx, ctx);
2900 		raw_spin_unlock(&ctx->lock);
2901 	}
2902 }
2903 
2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2905 
2906 void perf_sched_cb_dec(struct pmu *pmu)
2907 {
2908 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2909 
2910 	this_cpu_dec(perf_sched_cb_usages);
2911 
2912 	if (!--cpuctx->sched_cb_usage)
2913 		list_del(&cpuctx->sched_cb_entry);
2914 }
2915 
2916 
2917 void perf_sched_cb_inc(struct pmu *pmu)
2918 {
2919 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2920 
2921 	if (!cpuctx->sched_cb_usage++)
2922 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2923 
2924 	this_cpu_inc(perf_sched_cb_usages);
2925 }
2926 
2927 /*
2928  * This function provides the context switch callback to the lower code
2929  * layer. It is invoked ONLY when the context switch callback is enabled.
2930  *
2931  * This callback is relevant even to per-cpu events; for example multi event
2932  * PEBS requires this to provide PID/TID information. This requires we flush
2933  * all queued PEBS records before we context switch to a new task.
2934  */
2935 static void perf_pmu_sched_task(struct task_struct *prev,
2936 				struct task_struct *next,
2937 				bool sched_in)
2938 {
2939 	struct perf_cpu_context *cpuctx;
2940 	struct pmu *pmu;
2941 
2942 	if (prev == next)
2943 		return;
2944 
2945 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2946 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2947 
2948 		if (WARN_ON_ONCE(!pmu->sched_task))
2949 			continue;
2950 
2951 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2952 		perf_pmu_disable(pmu);
2953 
2954 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2955 
2956 		perf_pmu_enable(pmu);
2957 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2958 	}
2959 }
2960 
2961 static void perf_event_switch(struct task_struct *task,
2962 			      struct task_struct *next_prev, bool sched_in);
2963 
2964 #define for_each_task_context_nr(ctxn)					\
2965 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2966 
2967 /*
2968  * Called from scheduler to remove the events of the current task,
2969  * with interrupts disabled.
2970  *
2971  * We stop each event and update the event value in event->count.
2972  *
2973  * This does not protect us against NMI, but disable()
2974  * sets the disabled bit in the control field of event _before_
2975  * accessing the event control register. If a NMI hits, then it will
2976  * not restart the event.
2977  */
2978 void __perf_event_task_sched_out(struct task_struct *task,
2979 				 struct task_struct *next)
2980 {
2981 	int ctxn;
2982 
2983 	if (__this_cpu_read(perf_sched_cb_usages))
2984 		perf_pmu_sched_task(task, next, false);
2985 
2986 	if (atomic_read(&nr_switch_events))
2987 		perf_event_switch(task, next, false);
2988 
2989 	for_each_task_context_nr(ctxn)
2990 		perf_event_context_sched_out(task, ctxn, next);
2991 
2992 	/*
2993 	 * if cgroup events exist on this CPU, then we need
2994 	 * to check if we have to switch out PMU state.
2995 	 * cgroup event are system-wide mode only
2996 	 */
2997 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2998 		perf_cgroup_sched_out(task, next);
2999 }
3000 
3001 /*
3002  * Called with IRQs disabled
3003  */
3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3005 			      enum event_type_t event_type)
3006 {
3007 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3008 }
3009 
3010 static void
3011 ctx_pinned_sched_in(struct perf_event_context *ctx,
3012 		    struct perf_cpu_context *cpuctx)
3013 {
3014 	struct perf_event *event;
3015 
3016 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3017 		if (event->state <= PERF_EVENT_STATE_OFF)
3018 			continue;
3019 		if (!event_filter_match(event))
3020 			continue;
3021 
3022 		/* may need to reset tstamp_enabled */
3023 		if (is_cgroup_event(event))
3024 			perf_cgroup_mark_enabled(event, ctx);
3025 
3026 		if (group_can_go_on(event, cpuctx, 1))
3027 			group_sched_in(event, cpuctx, ctx);
3028 
3029 		/*
3030 		 * If this pinned group hasn't been scheduled,
3031 		 * put it in error state.
3032 		 */
3033 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034 			update_group_times(event);
3035 			event->state = PERF_EVENT_STATE_ERROR;
3036 		}
3037 	}
3038 }
3039 
3040 static void
3041 ctx_flexible_sched_in(struct perf_event_context *ctx,
3042 		      struct perf_cpu_context *cpuctx)
3043 {
3044 	struct perf_event *event;
3045 	int can_add_hw = 1;
3046 
3047 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3048 		/* Ignore events in OFF or ERROR state */
3049 		if (event->state <= PERF_EVENT_STATE_OFF)
3050 			continue;
3051 		/*
3052 		 * Listen to the 'cpu' scheduling filter constraint
3053 		 * of events:
3054 		 */
3055 		if (!event_filter_match(event))
3056 			continue;
3057 
3058 		/* may need to reset tstamp_enabled */
3059 		if (is_cgroup_event(event))
3060 			perf_cgroup_mark_enabled(event, ctx);
3061 
3062 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3063 			if (group_sched_in(event, cpuctx, ctx))
3064 				can_add_hw = 0;
3065 		}
3066 	}
3067 }
3068 
3069 static void
3070 ctx_sched_in(struct perf_event_context *ctx,
3071 	     struct perf_cpu_context *cpuctx,
3072 	     enum event_type_t event_type,
3073 	     struct task_struct *task)
3074 {
3075 	int is_active = ctx->is_active;
3076 	u64 now;
3077 
3078 	lockdep_assert_held(&ctx->lock);
3079 
3080 	if (likely(!ctx->nr_events))
3081 		return;
3082 
3083 	ctx->is_active |= (event_type | EVENT_TIME);
3084 	if (ctx->task) {
3085 		if (!is_active)
3086 			cpuctx->task_ctx = ctx;
3087 		else
3088 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3089 	}
3090 
3091 	is_active ^= ctx->is_active; /* changed bits */
3092 
3093 	if (is_active & EVENT_TIME) {
3094 		/* start ctx time */
3095 		now = perf_clock();
3096 		ctx->timestamp = now;
3097 		perf_cgroup_set_timestamp(task, ctx);
3098 	}
3099 
3100 	/*
3101 	 * First go through the list and put on any pinned groups
3102 	 * in order to give them the best chance of going on.
3103 	 */
3104 	if (is_active & EVENT_PINNED)
3105 		ctx_pinned_sched_in(ctx, cpuctx);
3106 
3107 	/* Then walk through the lower prio flexible groups */
3108 	if (is_active & EVENT_FLEXIBLE)
3109 		ctx_flexible_sched_in(ctx, cpuctx);
3110 }
3111 
3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3113 			     enum event_type_t event_type,
3114 			     struct task_struct *task)
3115 {
3116 	struct perf_event_context *ctx = &cpuctx->ctx;
3117 
3118 	ctx_sched_in(ctx, cpuctx, event_type, task);
3119 }
3120 
3121 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3122 					struct task_struct *task)
3123 {
3124 	struct perf_cpu_context *cpuctx;
3125 
3126 	cpuctx = __get_cpu_context(ctx);
3127 	if (cpuctx->task_ctx == ctx)
3128 		return;
3129 
3130 	perf_ctx_lock(cpuctx, ctx);
3131 	perf_pmu_disable(ctx->pmu);
3132 	/*
3133 	 * We want to keep the following priority order:
3134 	 * cpu pinned (that don't need to move), task pinned,
3135 	 * cpu flexible, task flexible.
3136 	 */
3137 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3138 	perf_event_sched_in(cpuctx, ctx, task);
3139 	perf_pmu_enable(ctx->pmu);
3140 	perf_ctx_unlock(cpuctx, ctx);
3141 }
3142 
3143 /*
3144  * Called from scheduler to add the events of the current task
3145  * with interrupts disabled.
3146  *
3147  * We restore the event value and then enable it.
3148  *
3149  * This does not protect us against NMI, but enable()
3150  * sets the enabled bit in the control field of event _before_
3151  * accessing the event control register. If a NMI hits, then it will
3152  * keep the event running.
3153  */
3154 void __perf_event_task_sched_in(struct task_struct *prev,
3155 				struct task_struct *task)
3156 {
3157 	struct perf_event_context *ctx;
3158 	int ctxn;
3159 
3160 	/*
3161 	 * If cgroup events exist on this CPU, then we need to check if we have
3162 	 * to switch in PMU state; cgroup event are system-wide mode only.
3163 	 *
3164 	 * Since cgroup events are CPU events, we must schedule these in before
3165 	 * we schedule in the task events.
3166 	 */
3167 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3168 		perf_cgroup_sched_in(prev, task);
3169 
3170 	for_each_task_context_nr(ctxn) {
3171 		ctx = task->perf_event_ctxp[ctxn];
3172 		if (likely(!ctx))
3173 			continue;
3174 
3175 		perf_event_context_sched_in(ctx, task);
3176 	}
3177 
3178 	if (atomic_read(&nr_switch_events))
3179 		perf_event_switch(task, prev, true);
3180 
3181 	if (__this_cpu_read(perf_sched_cb_usages))
3182 		perf_pmu_sched_task(prev, task, true);
3183 }
3184 
3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3186 {
3187 	u64 frequency = event->attr.sample_freq;
3188 	u64 sec = NSEC_PER_SEC;
3189 	u64 divisor, dividend;
3190 
3191 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3192 
3193 	count_fls = fls64(count);
3194 	nsec_fls = fls64(nsec);
3195 	frequency_fls = fls64(frequency);
3196 	sec_fls = 30;
3197 
3198 	/*
3199 	 * We got @count in @nsec, with a target of sample_freq HZ
3200 	 * the target period becomes:
3201 	 *
3202 	 *             @count * 10^9
3203 	 * period = -------------------
3204 	 *          @nsec * sample_freq
3205 	 *
3206 	 */
3207 
3208 	/*
3209 	 * Reduce accuracy by one bit such that @a and @b converge
3210 	 * to a similar magnitude.
3211 	 */
3212 #define REDUCE_FLS(a, b)		\
3213 do {					\
3214 	if (a##_fls > b##_fls) {	\
3215 		a >>= 1;		\
3216 		a##_fls--;		\
3217 	} else {			\
3218 		b >>= 1;		\
3219 		b##_fls--;		\
3220 	}				\
3221 } while (0)
3222 
3223 	/*
3224 	 * Reduce accuracy until either term fits in a u64, then proceed with
3225 	 * the other, so that finally we can do a u64/u64 division.
3226 	 */
3227 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3228 		REDUCE_FLS(nsec, frequency);
3229 		REDUCE_FLS(sec, count);
3230 	}
3231 
3232 	if (count_fls + sec_fls > 64) {
3233 		divisor = nsec * frequency;
3234 
3235 		while (count_fls + sec_fls > 64) {
3236 			REDUCE_FLS(count, sec);
3237 			divisor >>= 1;
3238 		}
3239 
3240 		dividend = count * sec;
3241 	} else {
3242 		dividend = count * sec;
3243 
3244 		while (nsec_fls + frequency_fls > 64) {
3245 			REDUCE_FLS(nsec, frequency);
3246 			dividend >>= 1;
3247 		}
3248 
3249 		divisor = nsec * frequency;
3250 	}
3251 
3252 	if (!divisor)
3253 		return dividend;
3254 
3255 	return div64_u64(dividend, divisor);
3256 }
3257 
3258 static DEFINE_PER_CPU(int, perf_throttled_count);
3259 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3260 
3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3262 {
3263 	struct hw_perf_event *hwc = &event->hw;
3264 	s64 period, sample_period;
3265 	s64 delta;
3266 
3267 	period = perf_calculate_period(event, nsec, count);
3268 
3269 	delta = (s64)(period - hwc->sample_period);
3270 	delta = (delta + 7) / 8; /* low pass filter */
3271 
3272 	sample_period = hwc->sample_period + delta;
3273 
3274 	if (!sample_period)
3275 		sample_period = 1;
3276 
3277 	hwc->sample_period = sample_period;
3278 
3279 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3280 		if (disable)
3281 			event->pmu->stop(event, PERF_EF_UPDATE);
3282 
3283 		local64_set(&hwc->period_left, 0);
3284 
3285 		if (disable)
3286 			event->pmu->start(event, PERF_EF_RELOAD);
3287 	}
3288 }
3289 
3290 /*
3291  * combine freq adjustment with unthrottling to avoid two passes over the
3292  * events. At the same time, make sure, having freq events does not change
3293  * the rate of unthrottling as that would introduce bias.
3294  */
3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3296 					   int needs_unthr)
3297 {
3298 	struct perf_event *event;
3299 	struct hw_perf_event *hwc;
3300 	u64 now, period = TICK_NSEC;
3301 	s64 delta;
3302 
3303 	/*
3304 	 * only need to iterate over all events iff:
3305 	 * - context have events in frequency mode (needs freq adjust)
3306 	 * - there are events to unthrottle on this cpu
3307 	 */
3308 	if (!(ctx->nr_freq || needs_unthr))
3309 		return;
3310 
3311 	raw_spin_lock(&ctx->lock);
3312 	perf_pmu_disable(ctx->pmu);
3313 
3314 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3315 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3316 			continue;
3317 
3318 		if (!event_filter_match(event))
3319 			continue;
3320 
3321 		perf_pmu_disable(event->pmu);
3322 
3323 		hwc = &event->hw;
3324 
3325 		if (hwc->interrupts == MAX_INTERRUPTS) {
3326 			hwc->interrupts = 0;
3327 			perf_log_throttle(event, 1);
3328 			event->pmu->start(event, 0);
3329 		}
3330 
3331 		if (!event->attr.freq || !event->attr.sample_freq)
3332 			goto next;
3333 
3334 		/*
3335 		 * stop the event and update event->count
3336 		 */
3337 		event->pmu->stop(event, PERF_EF_UPDATE);
3338 
3339 		now = local64_read(&event->count);
3340 		delta = now - hwc->freq_count_stamp;
3341 		hwc->freq_count_stamp = now;
3342 
3343 		/*
3344 		 * restart the event
3345 		 * reload only if value has changed
3346 		 * we have stopped the event so tell that
3347 		 * to perf_adjust_period() to avoid stopping it
3348 		 * twice.
3349 		 */
3350 		if (delta > 0)
3351 			perf_adjust_period(event, period, delta, false);
3352 
3353 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3354 	next:
3355 		perf_pmu_enable(event->pmu);
3356 	}
3357 
3358 	perf_pmu_enable(ctx->pmu);
3359 	raw_spin_unlock(&ctx->lock);
3360 }
3361 
3362 /*
3363  * Round-robin a context's events:
3364  */
3365 static void rotate_ctx(struct perf_event_context *ctx)
3366 {
3367 	/*
3368 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3369 	 * disabled by the inheritance code.
3370 	 */
3371 	if (!ctx->rotate_disable)
3372 		list_rotate_left(&ctx->flexible_groups);
3373 }
3374 
3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3376 {
3377 	struct perf_event_context *ctx = NULL;
3378 	int rotate = 0;
3379 
3380 	if (cpuctx->ctx.nr_events) {
3381 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3382 			rotate = 1;
3383 	}
3384 
3385 	ctx = cpuctx->task_ctx;
3386 	if (ctx && ctx->nr_events) {
3387 		if (ctx->nr_events != ctx->nr_active)
3388 			rotate = 1;
3389 	}
3390 
3391 	if (!rotate)
3392 		goto done;
3393 
3394 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3395 	perf_pmu_disable(cpuctx->ctx.pmu);
3396 
3397 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3398 	if (ctx)
3399 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3400 
3401 	rotate_ctx(&cpuctx->ctx);
3402 	if (ctx)
3403 		rotate_ctx(ctx);
3404 
3405 	perf_event_sched_in(cpuctx, ctx, current);
3406 
3407 	perf_pmu_enable(cpuctx->ctx.pmu);
3408 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3409 done:
3410 
3411 	return rotate;
3412 }
3413 
3414 void perf_event_task_tick(void)
3415 {
3416 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3417 	struct perf_event_context *ctx, *tmp;
3418 	int throttled;
3419 
3420 	WARN_ON(!irqs_disabled());
3421 
3422 	__this_cpu_inc(perf_throttled_seq);
3423 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3424 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3425 
3426 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3427 		perf_adjust_freq_unthr_context(ctx, throttled);
3428 }
3429 
3430 static int event_enable_on_exec(struct perf_event *event,
3431 				struct perf_event_context *ctx)
3432 {
3433 	if (!event->attr.enable_on_exec)
3434 		return 0;
3435 
3436 	event->attr.enable_on_exec = 0;
3437 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3438 		return 0;
3439 
3440 	__perf_event_mark_enabled(event);
3441 
3442 	return 1;
3443 }
3444 
3445 /*
3446  * Enable all of a task's events that have been marked enable-on-exec.
3447  * This expects task == current.
3448  */
3449 static void perf_event_enable_on_exec(int ctxn)
3450 {
3451 	struct perf_event_context *ctx, *clone_ctx = NULL;
3452 	struct perf_cpu_context *cpuctx;
3453 	struct perf_event *event;
3454 	unsigned long flags;
3455 	int enabled = 0;
3456 
3457 	local_irq_save(flags);
3458 	ctx = current->perf_event_ctxp[ctxn];
3459 	if (!ctx || !ctx->nr_events)
3460 		goto out;
3461 
3462 	cpuctx = __get_cpu_context(ctx);
3463 	perf_ctx_lock(cpuctx, ctx);
3464 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3465 	list_for_each_entry(event, &ctx->event_list, event_entry)
3466 		enabled |= event_enable_on_exec(event, ctx);
3467 
3468 	/*
3469 	 * Unclone and reschedule this context if we enabled any event.
3470 	 */
3471 	if (enabled) {
3472 		clone_ctx = unclone_ctx(ctx);
3473 		ctx_resched(cpuctx, ctx);
3474 	}
3475 	perf_ctx_unlock(cpuctx, ctx);
3476 
3477 out:
3478 	local_irq_restore(flags);
3479 
3480 	if (clone_ctx)
3481 		put_ctx(clone_ctx);
3482 }
3483 
3484 struct perf_read_data {
3485 	struct perf_event *event;
3486 	bool group;
3487 	int ret;
3488 };
3489 
3490 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3491 {
3492 	int event_cpu = event->oncpu;
3493 	u16 local_pkg, event_pkg;
3494 
3495 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3496 		event_pkg =  topology_physical_package_id(event_cpu);
3497 		local_pkg =  topology_physical_package_id(local_cpu);
3498 
3499 		if (event_pkg == local_pkg)
3500 			return local_cpu;
3501 	}
3502 
3503 	return event_cpu;
3504 }
3505 
3506 /*
3507  * Cross CPU call to read the hardware event
3508  */
3509 static void __perf_event_read(void *info)
3510 {
3511 	struct perf_read_data *data = info;
3512 	struct perf_event *sub, *event = data->event;
3513 	struct perf_event_context *ctx = event->ctx;
3514 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3515 	struct pmu *pmu = event->pmu;
3516 
3517 	/*
3518 	 * If this is a task context, we need to check whether it is
3519 	 * the current task context of this cpu.  If not it has been
3520 	 * scheduled out before the smp call arrived.  In that case
3521 	 * event->count would have been updated to a recent sample
3522 	 * when the event was scheduled out.
3523 	 */
3524 	if (ctx->task && cpuctx->task_ctx != ctx)
3525 		return;
3526 
3527 	raw_spin_lock(&ctx->lock);
3528 	if (ctx->is_active) {
3529 		update_context_time(ctx);
3530 		update_cgrp_time_from_event(event);
3531 	}
3532 
3533 	update_event_times(event);
3534 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3535 		goto unlock;
3536 
3537 	if (!data->group) {
3538 		pmu->read(event);
3539 		data->ret = 0;
3540 		goto unlock;
3541 	}
3542 
3543 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3544 
3545 	pmu->read(event);
3546 
3547 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3548 		update_event_times(sub);
3549 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3550 			/*
3551 			 * Use sibling's PMU rather than @event's since
3552 			 * sibling could be on different (eg: software) PMU.
3553 			 */
3554 			sub->pmu->read(sub);
3555 		}
3556 	}
3557 
3558 	data->ret = pmu->commit_txn(pmu);
3559 
3560 unlock:
3561 	raw_spin_unlock(&ctx->lock);
3562 }
3563 
3564 static inline u64 perf_event_count(struct perf_event *event)
3565 {
3566 	if (event->pmu->count)
3567 		return event->pmu->count(event);
3568 
3569 	return __perf_event_count(event);
3570 }
3571 
3572 /*
3573  * NMI-safe method to read a local event, that is an event that
3574  * is:
3575  *   - either for the current task, or for this CPU
3576  *   - does not have inherit set, for inherited task events
3577  *     will not be local and we cannot read them atomically
3578  *   - must not have a pmu::count method
3579  */
3580 u64 perf_event_read_local(struct perf_event *event)
3581 {
3582 	unsigned long flags;
3583 	u64 val;
3584 
3585 	/*
3586 	 * Disabling interrupts avoids all counter scheduling (context
3587 	 * switches, timer based rotation and IPIs).
3588 	 */
3589 	local_irq_save(flags);
3590 
3591 	/* If this is a per-task event, it must be for current */
3592 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3593 		     event->hw.target != current);
3594 
3595 	/* If this is a per-CPU event, it must be for this CPU */
3596 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3597 		     event->cpu != smp_processor_id());
3598 
3599 	/*
3600 	 * It must not be an event with inherit set, we cannot read
3601 	 * all child counters from atomic context.
3602 	 */
3603 	WARN_ON_ONCE(event->attr.inherit);
3604 
3605 	/*
3606 	 * It must not have a pmu::count method, those are not
3607 	 * NMI safe.
3608 	 */
3609 	WARN_ON_ONCE(event->pmu->count);
3610 
3611 	/*
3612 	 * If the event is currently on this CPU, its either a per-task event,
3613 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3614 	 * oncpu == -1).
3615 	 */
3616 	if (event->oncpu == smp_processor_id())
3617 		event->pmu->read(event);
3618 
3619 	val = local64_read(&event->count);
3620 	local_irq_restore(flags);
3621 
3622 	return val;
3623 }
3624 
3625 static int perf_event_read(struct perf_event *event, bool group)
3626 {
3627 	int ret = 0, cpu_to_read, local_cpu;
3628 
3629 	/*
3630 	 * If event is enabled and currently active on a CPU, update the
3631 	 * value in the event structure:
3632 	 */
3633 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3634 		struct perf_read_data data = {
3635 			.event = event,
3636 			.group = group,
3637 			.ret = 0,
3638 		};
3639 
3640 		local_cpu = get_cpu();
3641 		cpu_to_read = find_cpu_to_read(event, local_cpu);
3642 		put_cpu();
3643 
3644 		/*
3645 		 * Purposely ignore the smp_call_function_single() return
3646 		 * value.
3647 		 *
3648 		 * If event->oncpu isn't a valid CPU it means the event got
3649 		 * scheduled out and that will have updated the event count.
3650 		 *
3651 		 * Therefore, either way, we'll have an up-to-date event count
3652 		 * after this.
3653 		 */
3654 		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3655 		ret = data.ret;
3656 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3657 		struct perf_event_context *ctx = event->ctx;
3658 		unsigned long flags;
3659 
3660 		raw_spin_lock_irqsave(&ctx->lock, flags);
3661 		/*
3662 		 * may read while context is not active
3663 		 * (e.g., thread is blocked), in that case
3664 		 * we cannot update context time
3665 		 */
3666 		if (ctx->is_active) {
3667 			update_context_time(ctx);
3668 			update_cgrp_time_from_event(event);
3669 		}
3670 		if (group)
3671 			update_group_times(event);
3672 		else
3673 			update_event_times(event);
3674 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3675 	}
3676 
3677 	return ret;
3678 }
3679 
3680 /*
3681  * Initialize the perf_event context in a task_struct:
3682  */
3683 static void __perf_event_init_context(struct perf_event_context *ctx)
3684 {
3685 	raw_spin_lock_init(&ctx->lock);
3686 	mutex_init(&ctx->mutex);
3687 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3688 	INIT_LIST_HEAD(&ctx->pinned_groups);
3689 	INIT_LIST_HEAD(&ctx->flexible_groups);
3690 	INIT_LIST_HEAD(&ctx->event_list);
3691 	atomic_set(&ctx->refcount, 1);
3692 }
3693 
3694 static struct perf_event_context *
3695 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3696 {
3697 	struct perf_event_context *ctx;
3698 
3699 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3700 	if (!ctx)
3701 		return NULL;
3702 
3703 	__perf_event_init_context(ctx);
3704 	if (task) {
3705 		ctx->task = task;
3706 		get_task_struct(task);
3707 	}
3708 	ctx->pmu = pmu;
3709 
3710 	return ctx;
3711 }
3712 
3713 static struct task_struct *
3714 find_lively_task_by_vpid(pid_t vpid)
3715 {
3716 	struct task_struct *task;
3717 
3718 	rcu_read_lock();
3719 	if (!vpid)
3720 		task = current;
3721 	else
3722 		task = find_task_by_vpid(vpid);
3723 	if (task)
3724 		get_task_struct(task);
3725 	rcu_read_unlock();
3726 
3727 	if (!task)
3728 		return ERR_PTR(-ESRCH);
3729 
3730 	return task;
3731 }
3732 
3733 /*
3734  * Returns a matching context with refcount and pincount.
3735  */
3736 static struct perf_event_context *
3737 find_get_context(struct pmu *pmu, struct task_struct *task,
3738 		struct perf_event *event)
3739 {
3740 	struct perf_event_context *ctx, *clone_ctx = NULL;
3741 	struct perf_cpu_context *cpuctx;
3742 	void *task_ctx_data = NULL;
3743 	unsigned long flags;
3744 	int ctxn, err;
3745 	int cpu = event->cpu;
3746 
3747 	if (!task) {
3748 		/* Must be root to operate on a CPU event: */
3749 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3750 			return ERR_PTR(-EACCES);
3751 
3752 		/*
3753 		 * We could be clever and allow to attach a event to an
3754 		 * offline CPU and activate it when the CPU comes up, but
3755 		 * that's for later.
3756 		 */
3757 		if (!cpu_online(cpu))
3758 			return ERR_PTR(-ENODEV);
3759 
3760 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3761 		ctx = &cpuctx->ctx;
3762 		get_ctx(ctx);
3763 		++ctx->pin_count;
3764 
3765 		return ctx;
3766 	}
3767 
3768 	err = -EINVAL;
3769 	ctxn = pmu->task_ctx_nr;
3770 	if (ctxn < 0)
3771 		goto errout;
3772 
3773 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3774 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3775 		if (!task_ctx_data) {
3776 			err = -ENOMEM;
3777 			goto errout;
3778 		}
3779 	}
3780 
3781 retry:
3782 	ctx = perf_lock_task_context(task, ctxn, &flags);
3783 	if (ctx) {
3784 		clone_ctx = unclone_ctx(ctx);
3785 		++ctx->pin_count;
3786 
3787 		if (task_ctx_data && !ctx->task_ctx_data) {
3788 			ctx->task_ctx_data = task_ctx_data;
3789 			task_ctx_data = NULL;
3790 		}
3791 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3792 
3793 		if (clone_ctx)
3794 			put_ctx(clone_ctx);
3795 	} else {
3796 		ctx = alloc_perf_context(pmu, task);
3797 		err = -ENOMEM;
3798 		if (!ctx)
3799 			goto errout;
3800 
3801 		if (task_ctx_data) {
3802 			ctx->task_ctx_data = task_ctx_data;
3803 			task_ctx_data = NULL;
3804 		}
3805 
3806 		err = 0;
3807 		mutex_lock(&task->perf_event_mutex);
3808 		/*
3809 		 * If it has already passed perf_event_exit_task().
3810 		 * we must see PF_EXITING, it takes this mutex too.
3811 		 */
3812 		if (task->flags & PF_EXITING)
3813 			err = -ESRCH;
3814 		else if (task->perf_event_ctxp[ctxn])
3815 			err = -EAGAIN;
3816 		else {
3817 			get_ctx(ctx);
3818 			++ctx->pin_count;
3819 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3820 		}
3821 		mutex_unlock(&task->perf_event_mutex);
3822 
3823 		if (unlikely(err)) {
3824 			put_ctx(ctx);
3825 
3826 			if (err == -EAGAIN)
3827 				goto retry;
3828 			goto errout;
3829 		}
3830 	}
3831 
3832 	kfree(task_ctx_data);
3833 	return ctx;
3834 
3835 errout:
3836 	kfree(task_ctx_data);
3837 	return ERR_PTR(err);
3838 }
3839 
3840 static void perf_event_free_filter(struct perf_event *event);
3841 static void perf_event_free_bpf_prog(struct perf_event *event);
3842 
3843 static void free_event_rcu(struct rcu_head *head)
3844 {
3845 	struct perf_event *event;
3846 
3847 	event = container_of(head, struct perf_event, rcu_head);
3848 	if (event->ns)
3849 		put_pid_ns(event->ns);
3850 	perf_event_free_filter(event);
3851 	kfree(event);
3852 }
3853 
3854 static void ring_buffer_attach(struct perf_event *event,
3855 			       struct ring_buffer *rb);
3856 
3857 static void detach_sb_event(struct perf_event *event)
3858 {
3859 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3860 
3861 	raw_spin_lock(&pel->lock);
3862 	list_del_rcu(&event->sb_list);
3863 	raw_spin_unlock(&pel->lock);
3864 }
3865 
3866 static bool is_sb_event(struct perf_event *event)
3867 {
3868 	struct perf_event_attr *attr = &event->attr;
3869 
3870 	if (event->parent)
3871 		return false;
3872 
3873 	if (event->attach_state & PERF_ATTACH_TASK)
3874 		return false;
3875 
3876 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3877 	    attr->comm || attr->comm_exec ||
3878 	    attr->task ||
3879 	    attr->context_switch)
3880 		return true;
3881 	return false;
3882 }
3883 
3884 static void unaccount_pmu_sb_event(struct perf_event *event)
3885 {
3886 	if (is_sb_event(event))
3887 		detach_sb_event(event);
3888 }
3889 
3890 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3891 {
3892 	if (event->parent)
3893 		return;
3894 
3895 	if (is_cgroup_event(event))
3896 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3897 }
3898 
3899 #ifdef CONFIG_NO_HZ_FULL
3900 static DEFINE_SPINLOCK(nr_freq_lock);
3901 #endif
3902 
3903 static void unaccount_freq_event_nohz(void)
3904 {
3905 #ifdef CONFIG_NO_HZ_FULL
3906 	spin_lock(&nr_freq_lock);
3907 	if (atomic_dec_and_test(&nr_freq_events))
3908 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3909 	spin_unlock(&nr_freq_lock);
3910 #endif
3911 }
3912 
3913 static void unaccount_freq_event(void)
3914 {
3915 	if (tick_nohz_full_enabled())
3916 		unaccount_freq_event_nohz();
3917 	else
3918 		atomic_dec(&nr_freq_events);
3919 }
3920 
3921 static void unaccount_event(struct perf_event *event)
3922 {
3923 	bool dec = false;
3924 
3925 	if (event->parent)
3926 		return;
3927 
3928 	if (event->attach_state & PERF_ATTACH_TASK)
3929 		dec = true;
3930 	if (event->attr.mmap || event->attr.mmap_data)
3931 		atomic_dec(&nr_mmap_events);
3932 	if (event->attr.comm)
3933 		atomic_dec(&nr_comm_events);
3934 	if (event->attr.task)
3935 		atomic_dec(&nr_task_events);
3936 	if (event->attr.freq)
3937 		unaccount_freq_event();
3938 	if (event->attr.context_switch) {
3939 		dec = true;
3940 		atomic_dec(&nr_switch_events);
3941 	}
3942 	if (is_cgroup_event(event))
3943 		dec = true;
3944 	if (has_branch_stack(event))
3945 		dec = true;
3946 
3947 	if (dec) {
3948 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3949 			schedule_delayed_work(&perf_sched_work, HZ);
3950 	}
3951 
3952 	unaccount_event_cpu(event, event->cpu);
3953 
3954 	unaccount_pmu_sb_event(event);
3955 }
3956 
3957 static void perf_sched_delayed(struct work_struct *work)
3958 {
3959 	mutex_lock(&perf_sched_mutex);
3960 	if (atomic_dec_and_test(&perf_sched_count))
3961 		static_branch_disable(&perf_sched_events);
3962 	mutex_unlock(&perf_sched_mutex);
3963 }
3964 
3965 /*
3966  * The following implement mutual exclusion of events on "exclusive" pmus
3967  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3968  * at a time, so we disallow creating events that might conflict, namely:
3969  *
3970  *  1) cpu-wide events in the presence of per-task events,
3971  *  2) per-task events in the presence of cpu-wide events,
3972  *  3) two matching events on the same context.
3973  *
3974  * The former two cases are handled in the allocation path (perf_event_alloc(),
3975  * _free_event()), the latter -- before the first perf_install_in_context().
3976  */
3977 static int exclusive_event_init(struct perf_event *event)
3978 {
3979 	struct pmu *pmu = event->pmu;
3980 
3981 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3982 		return 0;
3983 
3984 	/*
3985 	 * Prevent co-existence of per-task and cpu-wide events on the
3986 	 * same exclusive pmu.
3987 	 *
3988 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3989 	 * events on this "exclusive" pmu, positive means there are
3990 	 * per-task events.
3991 	 *
3992 	 * Since this is called in perf_event_alloc() path, event::ctx
3993 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3994 	 * to mean "per-task event", because unlike other attach states it
3995 	 * never gets cleared.
3996 	 */
3997 	if (event->attach_state & PERF_ATTACH_TASK) {
3998 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3999 			return -EBUSY;
4000 	} else {
4001 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4002 			return -EBUSY;
4003 	}
4004 
4005 	return 0;
4006 }
4007 
4008 static void exclusive_event_destroy(struct perf_event *event)
4009 {
4010 	struct pmu *pmu = event->pmu;
4011 
4012 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4013 		return;
4014 
4015 	/* see comment in exclusive_event_init() */
4016 	if (event->attach_state & PERF_ATTACH_TASK)
4017 		atomic_dec(&pmu->exclusive_cnt);
4018 	else
4019 		atomic_inc(&pmu->exclusive_cnt);
4020 }
4021 
4022 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4023 {
4024 	if ((e1->pmu == e2->pmu) &&
4025 	    (e1->cpu == e2->cpu ||
4026 	     e1->cpu == -1 ||
4027 	     e2->cpu == -1))
4028 		return true;
4029 	return false;
4030 }
4031 
4032 /* Called under the same ctx::mutex as perf_install_in_context() */
4033 static bool exclusive_event_installable(struct perf_event *event,
4034 					struct perf_event_context *ctx)
4035 {
4036 	struct perf_event *iter_event;
4037 	struct pmu *pmu = event->pmu;
4038 
4039 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4040 		return true;
4041 
4042 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4043 		if (exclusive_event_match(iter_event, event))
4044 			return false;
4045 	}
4046 
4047 	return true;
4048 }
4049 
4050 static void perf_addr_filters_splice(struct perf_event *event,
4051 				       struct list_head *head);
4052 
4053 static void _free_event(struct perf_event *event)
4054 {
4055 	irq_work_sync(&event->pending);
4056 
4057 	unaccount_event(event);
4058 
4059 	if (event->rb) {
4060 		/*
4061 		 * Can happen when we close an event with re-directed output.
4062 		 *
4063 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4064 		 * over us; possibly making our ring_buffer_put() the last.
4065 		 */
4066 		mutex_lock(&event->mmap_mutex);
4067 		ring_buffer_attach(event, NULL);
4068 		mutex_unlock(&event->mmap_mutex);
4069 	}
4070 
4071 	if (is_cgroup_event(event))
4072 		perf_detach_cgroup(event);
4073 
4074 	if (!event->parent) {
4075 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4076 			put_callchain_buffers();
4077 	}
4078 
4079 	perf_event_free_bpf_prog(event);
4080 	perf_addr_filters_splice(event, NULL);
4081 	kfree(event->addr_filters_offs);
4082 
4083 	if (event->destroy)
4084 		event->destroy(event);
4085 
4086 	if (event->ctx)
4087 		put_ctx(event->ctx);
4088 
4089 	exclusive_event_destroy(event);
4090 	module_put(event->pmu->module);
4091 
4092 	call_rcu(&event->rcu_head, free_event_rcu);
4093 }
4094 
4095 /*
4096  * Used to free events which have a known refcount of 1, such as in error paths
4097  * where the event isn't exposed yet and inherited events.
4098  */
4099 static void free_event(struct perf_event *event)
4100 {
4101 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4102 				"unexpected event refcount: %ld; ptr=%p\n",
4103 				atomic_long_read(&event->refcount), event)) {
4104 		/* leak to avoid use-after-free */
4105 		return;
4106 	}
4107 
4108 	_free_event(event);
4109 }
4110 
4111 /*
4112  * Remove user event from the owner task.
4113  */
4114 static void perf_remove_from_owner(struct perf_event *event)
4115 {
4116 	struct task_struct *owner;
4117 
4118 	rcu_read_lock();
4119 	/*
4120 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4121 	 * observe !owner it means the list deletion is complete and we can
4122 	 * indeed free this event, otherwise we need to serialize on
4123 	 * owner->perf_event_mutex.
4124 	 */
4125 	owner = lockless_dereference(event->owner);
4126 	if (owner) {
4127 		/*
4128 		 * Since delayed_put_task_struct() also drops the last
4129 		 * task reference we can safely take a new reference
4130 		 * while holding the rcu_read_lock().
4131 		 */
4132 		get_task_struct(owner);
4133 	}
4134 	rcu_read_unlock();
4135 
4136 	if (owner) {
4137 		/*
4138 		 * If we're here through perf_event_exit_task() we're already
4139 		 * holding ctx->mutex which would be an inversion wrt. the
4140 		 * normal lock order.
4141 		 *
4142 		 * However we can safely take this lock because its the child
4143 		 * ctx->mutex.
4144 		 */
4145 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4146 
4147 		/*
4148 		 * We have to re-check the event->owner field, if it is cleared
4149 		 * we raced with perf_event_exit_task(), acquiring the mutex
4150 		 * ensured they're done, and we can proceed with freeing the
4151 		 * event.
4152 		 */
4153 		if (event->owner) {
4154 			list_del_init(&event->owner_entry);
4155 			smp_store_release(&event->owner, NULL);
4156 		}
4157 		mutex_unlock(&owner->perf_event_mutex);
4158 		put_task_struct(owner);
4159 	}
4160 }
4161 
4162 static void put_event(struct perf_event *event)
4163 {
4164 	if (!atomic_long_dec_and_test(&event->refcount))
4165 		return;
4166 
4167 	_free_event(event);
4168 }
4169 
4170 /*
4171  * Kill an event dead; while event:refcount will preserve the event
4172  * object, it will not preserve its functionality. Once the last 'user'
4173  * gives up the object, we'll destroy the thing.
4174  */
4175 int perf_event_release_kernel(struct perf_event *event)
4176 {
4177 	struct perf_event_context *ctx = event->ctx;
4178 	struct perf_event *child, *tmp;
4179 
4180 	/*
4181 	 * If we got here through err_file: fput(event_file); we will not have
4182 	 * attached to a context yet.
4183 	 */
4184 	if (!ctx) {
4185 		WARN_ON_ONCE(event->attach_state &
4186 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4187 		goto no_ctx;
4188 	}
4189 
4190 	if (!is_kernel_event(event))
4191 		perf_remove_from_owner(event);
4192 
4193 	ctx = perf_event_ctx_lock(event);
4194 	WARN_ON_ONCE(ctx->parent_ctx);
4195 	perf_remove_from_context(event, DETACH_GROUP);
4196 
4197 	raw_spin_lock_irq(&ctx->lock);
4198 	/*
4199 	 * Mark this even as STATE_DEAD, there is no external reference to it
4200 	 * anymore.
4201 	 *
4202 	 * Anybody acquiring event->child_mutex after the below loop _must_
4203 	 * also see this, most importantly inherit_event() which will avoid
4204 	 * placing more children on the list.
4205 	 *
4206 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4207 	 * child events.
4208 	 */
4209 	event->state = PERF_EVENT_STATE_DEAD;
4210 	raw_spin_unlock_irq(&ctx->lock);
4211 
4212 	perf_event_ctx_unlock(event, ctx);
4213 
4214 again:
4215 	mutex_lock(&event->child_mutex);
4216 	list_for_each_entry(child, &event->child_list, child_list) {
4217 
4218 		/*
4219 		 * Cannot change, child events are not migrated, see the
4220 		 * comment with perf_event_ctx_lock_nested().
4221 		 */
4222 		ctx = lockless_dereference(child->ctx);
4223 		/*
4224 		 * Since child_mutex nests inside ctx::mutex, we must jump
4225 		 * through hoops. We start by grabbing a reference on the ctx.
4226 		 *
4227 		 * Since the event cannot get freed while we hold the
4228 		 * child_mutex, the context must also exist and have a !0
4229 		 * reference count.
4230 		 */
4231 		get_ctx(ctx);
4232 
4233 		/*
4234 		 * Now that we have a ctx ref, we can drop child_mutex, and
4235 		 * acquire ctx::mutex without fear of it going away. Then we
4236 		 * can re-acquire child_mutex.
4237 		 */
4238 		mutex_unlock(&event->child_mutex);
4239 		mutex_lock(&ctx->mutex);
4240 		mutex_lock(&event->child_mutex);
4241 
4242 		/*
4243 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4244 		 * state, if child is still the first entry, it didn't get freed
4245 		 * and we can continue doing so.
4246 		 */
4247 		tmp = list_first_entry_or_null(&event->child_list,
4248 					       struct perf_event, child_list);
4249 		if (tmp == child) {
4250 			perf_remove_from_context(child, DETACH_GROUP);
4251 			list_del(&child->child_list);
4252 			free_event(child);
4253 			/*
4254 			 * This matches the refcount bump in inherit_event();
4255 			 * this can't be the last reference.
4256 			 */
4257 			put_event(event);
4258 		}
4259 
4260 		mutex_unlock(&event->child_mutex);
4261 		mutex_unlock(&ctx->mutex);
4262 		put_ctx(ctx);
4263 		goto again;
4264 	}
4265 	mutex_unlock(&event->child_mutex);
4266 
4267 no_ctx:
4268 	put_event(event); /* Must be the 'last' reference */
4269 	return 0;
4270 }
4271 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4272 
4273 /*
4274  * Called when the last reference to the file is gone.
4275  */
4276 static int perf_release(struct inode *inode, struct file *file)
4277 {
4278 	perf_event_release_kernel(file->private_data);
4279 	return 0;
4280 }
4281 
4282 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4283 {
4284 	struct perf_event *child;
4285 	u64 total = 0;
4286 
4287 	*enabled = 0;
4288 	*running = 0;
4289 
4290 	mutex_lock(&event->child_mutex);
4291 
4292 	(void)perf_event_read(event, false);
4293 	total += perf_event_count(event);
4294 
4295 	*enabled += event->total_time_enabled +
4296 			atomic64_read(&event->child_total_time_enabled);
4297 	*running += event->total_time_running +
4298 			atomic64_read(&event->child_total_time_running);
4299 
4300 	list_for_each_entry(child, &event->child_list, child_list) {
4301 		(void)perf_event_read(child, false);
4302 		total += perf_event_count(child);
4303 		*enabled += child->total_time_enabled;
4304 		*running += child->total_time_running;
4305 	}
4306 	mutex_unlock(&event->child_mutex);
4307 
4308 	return total;
4309 }
4310 EXPORT_SYMBOL_GPL(perf_event_read_value);
4311 
4312 static int __perf_read_group_add(struct perf_event *leader,
4313 					u64 read_format, u64 *values)
4314 {
4315 	struct perf_event *sub;
4316 	int n = 1; /* skip @nr */
4317 	int ret;
4318 
4319 	ret = perf_event_read(leader, true);
4320 	if (ret)
4321 		return ret;
4322 
4323 	/*
4324 	 * Since we co-schedule groups, {enabled,running} times of siblings
4325 	 * will be identical to those of the leader, so we only publish one
4326 	 * set.
4327 	 */
4328 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4329 		values[n++] += leader->total_time_enabled +
4330 			atomic64_read(&leader->child_total_time_enabled);
4331 	}
4332 
4333 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4334 		values[n++] += leader->total_time_running +
4335 			atomic64_read(&leader->child_total_time_running);
4336 	}
4337 
4338 	/*
4339 	 * Write {count,id} tuples for every sibling.
4340 	 */
4341 	values[n++] += perf_event_count(leader);
4342 	if (read_format & PERF_FORMAT_ID)
4343 		values[n++] = primary_event_id(leader);
4344 
4345 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4346 		values[n++] += perf_event_count(sub);
4347 		if (read_format & PERF_FORMAT_ID)
4348 			values[n++] = primary_event_id(sub);
4349 	}
4350 
4351 	return 0;
4352 }
4353 
4354 static int perf_read_group(struct perf_event *event,
4355 				   u64 read_format, char __user *buf)
4356 {
4357 	struct perf_event *leader = event->group_leader, *child;
4358 	struct perf_event_context *ctx = leader->ctx;
4359 	int ret;
4360 	u64 *values;
4361 
4362 	lockdep_assert_held(&ctx->mutex);
4363 
4364 	values = kzalloc(event->read_size, GFP_KERNEL);
4365 	if (!values)
4366 		return -ENOMEM;
4367 
4368 	values[0] = 1 + leader->nr_siblings;
4369 
4370 	/*
4371 	 * By locking the child_mutex of the leader we effectively
4372 	 * lock the child list of all siblings.. XXX explain how.
4373 	 */
4374 	mutex_lock(&leader->child_mutex);
4375 
4376 	ret = __perf_read_group_add(leader, read_format, values);
4377 	if (ret)
4378 		goto unlock;
4379 
4380 	list_for_each_entry(child, &leader->child_list, child_list) {
4381 		ret = __perf_read_group_add(child, read_format, values);
4382 		if (ret)
4383 			goto unlock;
4384 	}
4385 
4386 	mutex_unlock(&leader->child_mutex);
4387 
4388 	ret = event->read_size;
4389 	if (copy_to_user(buf, values, event->read_size))
4390 		ret = -EFAULT;
4391 	goto out;
4392 
4393 unlock:
4394 	mutex_unlock(&leader->child_mutex);
4395 out:
4396 	kfree(values);
4397 	return ret;
4398 }
4399 
4400 static int perf_read_one(struct perf_event *event,
4401 				 u64 read_format, char __user *buf)
4402 {
4403 	u64 enabled, running;
4404 	u64 values[4];
4405 	int n = 0;
4406 
4407 	values[n++] = perf_event_read_value(event, &enabled, &running);
4408 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4409 		values[n++] = enabled;
4410 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4411 		values[n++] = running;
4412 	if (read_format & PERF_FORMAT_ID)
4413 		values[n++] = primary_event_id(event);
4414 
4415 	if (copy_to_user(buf, values, n * sizeof(u64)))
4416 		return -EFAULT;
4417 
4418 	return n * sizeof(u64);
4419 }
4420 
4421 static bool is_event_hup(struct perf_event *event)
4422 {
4423 	bool no_children;
4424 
4425 	if (event->state > PERF_EVENT_STATE_EXIT)
4426 		return false;
4427 
4428 	mutex_lock(&event->child_mutex);
4429 	no_children = list_empty(&event->child_list);
4430 	mutex_unlock(&event->child_mutex);
4431 	return no_children;
4432 }
4433 
4434 /*
4435  * Read the performance event - simple non blocking version for now
4436  */
4437 static ssize_t
4438 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4439 {
4440 	u64 read_format = event->attr.read_format;
4441 	int ret;
4442 
4443 	/*
4444 	 * Return end-of-file for a read on a event that is in
4445 	 * error state (i.e. because it was pinned but it couldn't be
4446 	 * scheduled on to the CPU at some point).
4447 	 */
4448 	if (event->state == PERF_EVENT_STATE_ERROR)
4449 		return 0;
4450 
4451 	if (count < event->read_size)
4452 		return -ENOSPC;
4453 
4454 	WARN_ON_ONCE(event->ctx->parent_ctx);
4455 	if (read_format & PERF_FORMAT_GROUP)
4456 		ret = perf_read_group(event, read_format, buf);
4457 	else
4458 		ret = perf_read_one(event, read_format, buf);
4459 
4460 	return ret;
4461 }
4462 
4463 static ssize_t
4464 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4465 {
4466 	struct perf_event *event = file->private_data;
4467 	struct perf_event_context *ctx;
4468 	int ret;
4469 
4470 	ctx = perf_event_ctx_lock(event);
4471 	ret = __perf_read(event, buf, count);
4472 	perf_event_ctx_unlock(event, ctx);
4473 
4474 	return ret;
4475 }
4476 
4477 static unsigned int perf_poll(struct file *file, poll_table *wait)
4478 {
4479 	struct perf_event *event = file->private_data;
4480 	struct ring_buffer *rb;
4481 	unsigned int events = POLLHUP;
4482 
4483 	poll_wait(file, &event->waitq, wait);
4484 
4485 	if (is_event_hup(event))
4486 		return events;
4487 
4488 	/*
4489 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4490 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4491 	 */
4492 	mutex_lock(&event->mmap_mutex);
4493 	rb = event->rb;
4494 	if (rb)
4495 		events = atomic_xchg(&rb->poll, 0);
4496 	mutex_unlock(&event->mmap_mutex);
4497 	return events;
4498 }
4499 
4500 static void _perf_event_reset(struct perf_event *event)
4501 {
4502 	(void)perf_event_read(event, false);
4503 	local64_set(&event->count, 0);
4504 	perf_event_update_userpage(event);
4505 }
4506 
4507 /*
4508  * Holding the top-level event's child_mutex means that any
4509  * descendant process that has inherited this event will block
4510  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4511  * task existence requirements of perf_event_enable/disable.
4512  */
4513 static void perf_event_for_each_child(struct perf_event *event,
4514 					void (*func)(struct perf_event *))
4515 {
4516 	struct perf_event *child;
4517 
4518 	WARN_ON_ONCE(event->ctx->parent_ctx);
4519 
4520 	mutex_lock(&event->child_mutex);
4521 	func(event);
4522 	list_for_each_entry(child, &event->child_list, child_list)
4523 		func(child);
4524 	mutex_unlock(&event->child_mutex);
4525 }
4526 
4527 static void perf_event_for_each(struct perf_event *event,
4528 				  void (*func)(struct perf_event *))
4529 {
4530 	struct perf_event_context *ctx = event->ctx;
4531 	struct perf_event *sibling;
4532 
4533 	lockdep_assert_held(&ctx->mutex);
4534 
4535 	event = event->group_leader;
4536 
4537 	perf_event_for_each_child(event, func);
4538 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4539 		perf_event_for_each_child(sibling, func);
4540 }
4541 
4542 static void __perf_event_period(struct perf_event *event,
4543 				struct perf_cpu_context *cpuctx,
4544 				struct perf_event_context *ctx,
4545 				void *info)
4546 {
4547 	u64 value = *((u64 *)info);
4548 	bool active;
4549 
4550 	if (event->attr.freq) {
4551 		event->attr.sample_freq = value;
4552 	} else {
4553 		event->attr.sample_period = value;
4554 		event->hw.sample_period = value;
4555 	}
4556 
4557 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4558 	if (active) {
4559 		perf_pmu_disable(ctx->pmu);
4560 		/*
4561 		 * We could be throttled; unthrottle now to avoid the tick
4562 		 * trying to unthrottle while we already re-started the event.
4563 		 */
4564 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4565 			event->hw.interrupts = 0;
4566 			perf_log_throttle(event, 1);
4567 		}
4568 		event->pmu->stop(event, PERF_EF_UPDATE);
4569 	}
4570 
4571 	local64_set(&event->hw.period_left, 0);
4572 
4573 	if (active) {
4574 		event->pmu->start(event, PERF_EF_RELOAD);
4575 		perf_pmu_enable(ctx->pmu);
4576 	}
4577 }
4578 
4579 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4580 {
4581 	u64 value;
4582 
4583 	if (!is_sampling_event(event))
4584 		return -EINVAL;
4585 
4586 	if (copy_from_user(&value, arg, sizeof(value)))
4587 		return -EFAULT;
4588 
4589 	if (!value)
4590 		return -EINVAL;
4591 
4592 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4593 		return -EINVAL;
4594 
4595 	event_function_call(event, __perf_event_period, &value);
4596 
4597 	return 0;
4598 }
4599 
4600 static const struct file_operations perf_fops;
4601 
4602 static inline int perf_fget_light(int fd, struct fd *p)
4603 {
4604 	struct fd f = fdget(fd);
4605 	if (!f.file)
4606 		return -EBADF;
4607 
4608 	if (f.file->f_op != &perf_fops) {
4609 		fdput(f);
4610 		return -EBADF;
4611 	}
4612 	*p = f;
4613 	return 0;
4614 }
4615 
4616 static int perf_event_set_output(struct perf_event *event,
4617 				 struct perf_event *output_event);
4618 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4619 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4620 
4621 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4622 {
4623 	void (*func)(struct perf_event *);
4624 	u32 flags = arg;
4625 
4626 	switch (cmd) {
4627 	case PERF_EVENT_IOC_ENABLE:
4628 		func = _perf_event_enable;
4629 		break;
4630 	case PERF_EVENT_IOC_DISABLE:
4631 		func = _perf_event_disable;
4632 		break;
4633 	case PERF_EVENT_IOC_RESET:
4634 		func = _perf_event_reset;
4635 		break;
4636 
4637 	case PERF_EVENT_IOC_REFRESH:
4638 		return _perf_event_refresh(event, arg);
4639 
4640 	case PERF_EVENT_IOC_PERIOD:
4641 		return perf_event_period(event, (u64 __user *)arg);
4642 
4643 	case PERF_EVENT_IOC_ID:
4644 	{
4645 		u64 id = primary_event_id(event);
4646 
4647 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4648 			return -EFAULT;
4649 		return 0;
4650 	}
4651 
4652 	case PERF_EVENT_IOC_SET_OUTPUT:
4653 	{
4654 		int ret;
4655 		if (arg != -1) {
4656 			struct perf_event *output_event;
4657 			struct fd output;
4658 			ret = perf_fget_light(arg, &output);
4659 			if (ret)
4660 				return ret;
4661 			output_event = output.file->private_data;
4662 			ret = perf_event_set_output(event, output_event);
4663 			fdput(output);
4664 		} else {
4665 			ret = perf_event_set_output(event, NULL);
4666 		}
4667 		return ret;
4668 	}
4669 
4670 	case PERF_EVENT_IOC_SET_FILTER:
4671 		return perf_event_set_filter(event, (void __user *)arg);
4672 
4673 	case PERF_EVENT_IOC_SET_BPF:
4674 		return perf_event_set_bpf_prog(event, arg);
4675 
4676 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4677 		struct ring_buffer *rb;
4678 
4679 		rcu_read_lock();
4680 		rb = rcu_dereference(event->rb);
4681 		if (!rb || !rb->nr_pages) {
4682 			rcu_read_unlock();
4683 			return -EINVAL;
4684 		}
4685 		rb_toggle_paused(rb, !!arg);
4686 		rcu_read_unlock();
4687 		return 0;
4688 	}
4689 	default:
4690 		return -ENOTTY;
4691 	}
4692 
4693 	if (flags & PERF_IOC_FLAG_GROUP)
4694 		perf_event_for_each(event, func);
4695 	else
4696 		perf_event_for_each_child(event, func);
4697 
4698 	return 0;
4699 }
4700 
4701 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4702 {
4703 	struct perf_event *event = file->private_data;
4704 	struct perf_event_context *ctx;
4705 	long ret;
4706 
4707 	ctx = perf_event_ctx_lock(event);
4708 	ret = _perf_ioctl(event, cmd, arg);
4709 	perf_event_ctx_unlock(event, ctx);
4710 
4711 	return ret;
4712 }
4713 
4714 #ifdef CONFIG_COMPAT
4715 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4716 				unsigned long arg)
4717 {
4718 	switch (_IOC_NR(cmd)) {
4719 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4720 	case _IOC_NR(PERF_EVENT_IOC_ID):
4721 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4722 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4723 			cmd &= ~IOCSIZE_MASK;
4724 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4725 		}
4726 		break;
4727 	}
4728 	return perf_ioctl(file, cmd, arg);
4729 }
4730 #else
4731 # define perf_compat_ioctl NULL
4732 #endif
4733 
4734 int perf_event_task_enable(void)
4735 {
4736 	struct perf_event_context *ctx;
4737 	struct perf_event *event;
4738 
4739 	mutex_lock(&current->perf_event_mutex);
4740 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4741 		ctx = perf_event_ctx_lock(event);
4742 		perf_event_for_each_child(event, _perf_event_enable);
4743 		perf_event_ctx_unlock(event, ctx);
4744 	}
4745 	mutex_unlock(&current->perf_event_mutex);
4746 
4747 	return 0;
4748 }
4749 
4750 int perf_event_task_disable(void)
4751 {
4752 	struct perf_event_context *ctx;
4753 	struct perf_event *event;
4754 
4755 	mutex_lock(&current->perf_event_mutex);
4756 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4757 		ctx = perf_event_ctx_lock(event);
4758 		perf_event_for_each_child(event, _perf_event_disable);
4759 		perf_event_ctx_unlock(event, ctx);
4760 	}
4761 	mutex_unlock(&current->perf_event_mutex);
4762 
4763 	return 0;
4764 }
4765 
4766 static int perf_event_index(struct perf_event *event)
4767 {
4768 	if (event->hw.state & PERF_HES_STOPPED)
4769 		return 0;
4770 
4771 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4772 		return 0;
4773 
4774 	return event->pmu->event_idx(event);
4775 }
4776 
4777 static void calc_timer_values(struct perf_event *event,
4778 				u64 *now,
4779 				u64 *enabled,
4780 				u64 *running)
4781 {
4782 	u64 ctx_time;
4783 
4784 	*now = perf_clock();
4785 	ctx_time = event->shadow_ctx_time + *now;
4786 	*enabled = ctx_time - event->tstamp_enabled;
4787 	*running = ctx_time - event->tstamp_running;
4788 }
4789 
4790 static void perf_event_init_userpage(struct perf_event *event)
4791 {
4792 	struct perf_event_mmap_page *userpg;
4793 	struct ring_buffer *rb;
4794 
4795 	rcu_read_lock();
4796 	rb = rcu_dereference(event->rb);
4797 	if (!rb)
4798 		goto unlock;
4799 
4800 	userpg = rb->user_page;
4801 
4802 	/* Allow new userspace to detect that bit 0 is deprecated */
4803 	userpg->cap_bit0_is_deprecated = 1;
4804 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4805 	userpg->data_offset = PAGE_SIZE;
4806 	userpg->data_size = perf_data_size(rb);
4807 
4808 unlock:
4809 	rcu_read_unlock();
4810 }
4811 
4812 void __weak arch_perf_update_userpage(
4813 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4814 {
4815 }
4816 
4817 /*
4818  * Callers need to ensure there can be no nesting of this function, otherwise
4819  * the seqlock logic goes bad. We can not serialize this because the arch
4820  * code calls this from NMI context.
4821  */
4822 void perf_event_update_userpage(struct perf_event *event)
4823 {
4824 	struct perf_event_mmap_page *userpg;
4825 	struct ring_buffer *rb;
4826 	u64 enabled, running, now;
4827 
4828 	rcu_read_lock();
4829 	rb = rcu_dereference(event->rb);
4830 	if (!rb)
4831 		goto unlock;
4832 
4833 	/*
4834 	 * compute total_time_enabled, total_time_running
4835 	 * based on snapshot values taken when the event
4836 	 * was last scheduled in.
4837 	 *
4838 	 * we cannot simply called update_context_time()
4839 	 * because of locking issue as we can be called in
4840 	 * NMI context
4841 	 */
4842 	calc_timer_values(event, &now, &enabled, &running);
4843 
4844 	userpg = rb->user_page;
4845 	/*
4846 	 * Disable preemption so as to not let the corresponding user-space
4847 	 * spin too long if we get preempted.
4848 	 */
4849 	preempt_disable();
4850 	++userpg->lock;
4851 	barrier();
4852 	userpg->index = perf_event_index(event);
4853 	userpg->offset = perf_event_count(event);
4854 	if (userpg->index)
4855 		userpg->offset -= local64_read(&event->hw.prev_count);
4856 
4857 	userpg->time_enabled = enabled +
4858 			atomic64_read(&event->child_total_time_enabled);
4859 
4860 	userpg->time_running = running +
4861 			atomic64_read(&event->child_total_time_running);
4862 
4863 	arch_perf_update_userpage(event, userpg, now);
4864 
4865 	barrier();
4866 	++userpg->lock;
4867 	preempt_enable();
4868 unlock:
4869 	rcu_read_unlock();
4870 }
4871 
4872 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4873 {
4874 	struct perf_event *event = vma->vm_file->private_data;
4875 	struct ring_buffer *rb;
4876 	int ret = VM_FAULT_SIGBUS;
4877 
4878 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4879 		if (vmf->pgoff == 0)
4880 			ret = 0;
4881 		return ret;
4882 	}
4883 
4884 	rcu_read_lock();
4885 	rb = rcu_dereference(event->rb);
4886 	if (!rb)
4887 		goto unlock;
4888 
4889 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4890 		goto unlock;
4891 
4892 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4893 	if (!vmf->page)
4894 		goto unlock;
4895 
4896 	get_page(vmf->page);
4897 	vmf->page->mapping = vma->vm_file->f_mapping;
4898 	vmf->page->index   = vmf->pgoff;
4899 
4900 	ret = 0;
4901 unlock:
4902 	rcu_read_unlock();
4903 
4904 	return ret;
4905 }
4906 
4907 static void ring_buffer_attach(struct perf_event *event,
4908 			       struct ring_buffer *rb)
4909 {
4910 	struct ring_buffer *old_rb = NULL;
4911 	unsigned long flags;
4912 
4913 	if (event->rb) {
4914 		/*
4915 		 * Should be impossible, we set this when removing
4916 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4917 		 */
4918 		WARN_ON_ONCE(event->rcu_pending);
4919 
4920 		old_rb = event->rb;
4921 		spin_lock_irqsave(&old_rb->event_lock, flags);
4922 		list_del_rcu(&event->rb_entry);
4923 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4924 
4925 		event->rcu_batches = get_state_synchronize_rcu();
4926 		event->rcu_pending = 1;
4927 	}
4928 
4929 	if (rb) {
4930 		if (event->rcu_pending) {
4931 			cond_synchronize_rcu(event->rcu_batches);
4932 			event->rcu_pending = 0;
4933 		}
4934 
4935 		spin_lock_irqsave(&rb->event_lock, flags);
4936 		list_add_rcu(&event->rb_entry, &rb->event_list);
4937 		spin_unlock_irqrestore(&rb->event_lock, flags);
4938 	}
4939 
4940 	/*
4941 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4942 	 * before swizzling the event::rb pointer; if it's getting
4943 	 * unmapped, its aux_mmap_count will be 0 and it won't
4944 	 * restart. See the comment in __perf_pmu_output_stop().
4945 	 *
4946 	 * Data will inevitably be lost when set_output is done in
4947 	 * mid-air, but then again, whoever does it like this is
4948 	 * not in for the data anyway.
4949 	 */
4950 	if (has_aux(event))
4951 		perf_event_stop(event, 0);
4952 
4953 	rcu_assign_pointer(event->rb, rb);
4954 
4955 	if (old_rb) {
4956 		ring_buffer_put(old_rb);
4957 		/*
4958 		 * Since we detached before setting the new rb, so that we
4959 		 * could attach the new rb, we could have missed a wakeup.
4960 		 * Provide it now.
4961 		 */
4962 		wake_up_all(&event->waitq);
4963 	}
4964 }
4965 
4966 static void ring_buffer_wakeup(struct perf_event *event)
4967 {
4968 	struct ring_buffer *rb;
4969 
4970 	rcu_read_lock();
4971 	rb = rcu_dereference(event->rb);
4972 	if (rb) {
4973 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4974 			wake_up_all(&event->waitq);
4975 	}
4976 	rcu_read_unlock();
4977 }
4978 
4979 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4980 {
4981 	struct ring_buffer *rb;
4982 
4983 	rcu_read_lock();
4984 	rb = rcu_dereference(event->rb);
4985 	if (rb) {
4986 		if (!atomic_inc_not_zero(&rb->refcount))
4987 			rb = NULL;
4988 	}
4989 	rcu_read_unlock();
4990 
4991 	return rb;
4992 }
4993 
4994 void ring_buffer_put(struct ring_buffer *rb)
4995 {
4996 	if (!atomic_dec_and_test(&rb->refcount))
4997 		return;
4998 
4999 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5000 
5001 	call_rcu(&rb->rcu_head, rb_free_rcu);
5002 }
5003 
5004 static void perf_mmap_open(struct vm_area_struct *vma)
5005 {
5006 	struct perf_event *event = vma->vm_file->private_data;
5007 
5008 	atomic_inc(&event->mmap_count);
5009 	atomic_inc(&event->rb->mmap_count);
5010 
5011 	if (vma->vm_pgoff)
5012 		atomic_inc(&event->rb->aux_mmap_count);
5013 
5014 	if (event->pmu->event_mapped)
5015 		event->pmu->event_mapped(event);
5016 }
5017 
5018 static void perf_pmu_output_stop(struct perf_event *event);
5019 
5020 /*
5021  * A buffer can be mmap()ed multiple times; either directly through the same
5022  * event, or through other events by use of perf_event_set_output().
5023  *
5024  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5025  * the buffer here, where we still have a VM context. This means we need
5026  * to detach all events redirecting to us.
5027  */
5028 static void perf_mmap_close(struct vm_area_struct *vma)
5029 {
5030 	struct perf_event *event = vma->vm_file->private_data;
5031 
5032 	struct ring_buffer *rb = ring_buffer_get(event);
5033 	struct user_struct *mmap_user = rb->mmap_user;
5034 	int mmap_locked = rb->mmap_locked;
5035 	unsigned long size = perf_data_size(rb);
5036 
5037 	if (event->pmu->event_unmapped)
5038 		event->pmu->event_unmapped(event);
5039 
5040 	/*
5041 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5042 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5043 	 * serialize with perf_mmap here.
5044 	 */
5045 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5046 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5047 		/*
5048 		 * Stop all AUX events that are writing to this buffer,
5049 		 * so that we can free its AUX pages and corresponding PMU
5050 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5051 		 * they won't start any more (see perf_aux_output_begin()).
5052 		 */
5053 		perf_pmu_output_stop(event);
5054 
5055 		/* now it's safe to free the pages */
5056 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5057 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5058 
5059 		/* this has to be the last one */
5060 		rb_free_aux(rb);
5061 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5062 
5063 		mutex_unlock(&event->mmap_mutex);
5064 	}
5065 
5066 	atomic_dec(&rb->mmap_count);
5067 
5068 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5069 		goto out_put;
5070 
5071 	ring_buffer_attach(event, NULL);
5072 	mutex_unlock(&event->mmap_mutex);
5073 
5074 	/* If there's still other mmap()s of this buffer, we're done. */
5075 	if (atomic_read(&rb->mmap_count))
5076 		goto out_put;
5077 
5078 	/*
5079 	 * No other mmap()s, detach from all other events that might redirect
5080 	 * into the now unreachable buffer. Somewhat complicated by the
5081 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5082 	 */
5083 again:
5084 	rcu_read_lock();
5085 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5086 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5087 			/*
5088 			 * This event is en-route to free_event() which will
5089 			 * detach it and remove it from the list.
5090 			 */
5091 			continue;
5092 		}
5093 		rcu_read_unlock();
5094 
5095 		mutex_lock(&event->mmap_mutex);
5096 		/*
5097 		 * Check we didn't race with perf_event_set_output() which can
5098 		 * swizzle the rb from under us while we were waiting to
5099 		 * acquire mmap_mutex.
5100 		 *
5101 		 * If we find a different rb; ignore this event, a next
5102 		 * iteration will no longer find it on the list. We have to
5103 		 * still restart the iteration to make sure we're not now
5104 		 * iterating the wrong list.
5105 		 */
5106 		if (event->rb == rb)
5107 			ring_buffer_attach(event, NULL);
5108 
5109 		mutex_unlock(&event->mmap_mutex);
5110 		put_event(event);
5111 
5112 		/*
5113 		 * Restart the iteration; either we're on the wrong list or
5114 		 * destroyed its integrity by doing a deletion.
5115 		 */
5116 		goto again;
5117 	}
5118 	rcu_read_unlock();
5119 
5120 	/*
5121 	 * It could be there's still a few 0-ref events on the list; they'll
5122 	 * get cleaned up by free_event() -- they'll also still have their
5123 	 * ref on the rb and will free it whenever they are done with it.
5124 	 *
5125 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5126 	 * undo the VM accounting.
5127 	 */
5128 
5129 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5130 	vma->vm_mm->pinned_vm -= mmap_locked;
5131 	free_uid(mmap_user);
5132 
5133 out_put:
5134 	ring_buffer_put(rb); /* could be last */
5135 }
5136 
5137 static const struct vm_operations_struct perf_mmap_vmops = {
5138 	.open		= perf_mmap_open,
5139 	.close		= perf_mmap_close, /* non mergable */
5140 	.fault		= perf_mmap_fault,
5141 	.page_mkwrite	= perf_mmap_fault,
5142 };
5143 
5144 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5145 {
5146 	struct perf_event *event = file->private_data;
5147 	unsigned long user_locked, user_lock_limit;
5148 	struct user_struct *user = current_user();
5149 	unsigned long locked, lock_limit;
5150 	struct ring_buffer *rb = NULL;
5151 	unsigned long vma_size;
5152 	unsigned long nr_pages;
5153 	long user_extra = 0, extra = 0;
5154 	int ret = 0, flags = 0;
5155 
5156 	/*
5157 	 * Don't allow mmap() of inherited per-task counters. This would
5158 	 * create a performance issue due to all children writing to the
5159 	 * same rb.
5160 	 */
5161 	if (event->cpu == -1 && event->attr.inherit)
5162 		return -EINVAL;
5163 
5164 	if (!(vma->vm_flags & VM_SHARED))
5165 		return -EINVAL;
5166 
5167 	vma_size = vma->vm_end - vma->vm_start;
5168 
5169 	if (vma->vm_pgoff == 0) {
5170 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5171 	} else {
5172 		/*
5173 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5174 		 * mapped, all subsequent mappings should have the same size
5175 		 * and offset. Must be above the normal perf buffer.
5176 		 */
5177 		u64 aux_offset, aux_size;
5178 
5179 		if (!event->rb)
5180 			return -EINVAL;
5181 
5182 		nr_pages = vma_size / PAGE_SIZE;
5183 
5184 		mutex_lock(&event->mmap_mutex);
5185 		ret = -EINVAL;
5186 
5187 		rb = event->rb;
5188 		if (!rb)
5189 			goto aux_unlock;
5190 
5191 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5192 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5193 
5194 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5195 			goto aux_unlock;
5196 
5197 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5198 			goto aux_unlock;
5199 
5200 		/* already mapped with a different offset */
5201 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5202 			goto aux_unlock;
5203 
5204 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5205 			goto aux_unlock;
5206 
5207 		/* already mapped with a different size */
5208 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5209 			goto aux_unlock;
5210 
5211 		if (!is_power_of_2(nr_pages))
5212 			goto aux_unlock;
5213 
5214 		if (!atomic_inc_not_zero(&rb->mmap_count))
5215 			goto aux_unlock;
5216 
5217 		if (rb_has_aux(rb)) {
5218 			atomic_inc(&rb->aux_mmap_count);
5219 			ret = 0;
5220 			goto unlock;
5221 		}
5222 
5223 		atomic_set(&rb->aux_mmap_count, 1);
5224 		user_extra = nr_pages;
5225 
5226 		goto accounting;
5227 	}
5228 
5229 	/*
5230 	 * If we have rb pages ensure they're a power-of-two number, so we
5231 	 * can do bitmasks instead of modulo.
5232 	 */
5233 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5234 		return -EINVAL;
5235 
5236 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5237 		return -EINVAL;
5238 
5239 	WARN_ON_ONCE(event->ctx->parent_ctx);
5240 again:
5241 	mutex_lock(&event->mmap_mutex);
5242 	if (event->rb) {
5243 		if (event->rb->nr_pages != nr_pages) {
5244 			ret = -EINVAL;
5245 			goto unlock;
5246 		}
5247 
5248 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5249 			/*
5250 			 * Raced against perf_mmap_close() through
5251 			 * perf_event_set_output(). Try again, hope for better
5252 			 * luck.
5253 			 */
5254 			mutex_unlock(&event->mmap_mutex);
5255 			goto again;
5256 		}
5257 
5258 		goto unlock;
5259 	}
5260 
5261 	user_extra = nr_pages + 1;
5262 
5263 accounting:
5264 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5265 
5266 	/*
5267 	 * Increase the limit linearly with more CPUs:
5268 	 */
5269 	user_lock_limit *= num_online_cpus();
5270 
5271 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5272 
5273 	if (user_locked > user_lock_limit)
5274 		extra = user_locked - user_lock_limit;
5275 
5276 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5277 	lock_limit >>= PAGE_SHIFT;
5278 	locked = vma->vm_mm->pinned_vm + extra;
5279 
5280 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5281 		!capable(CAP_IPC_LOCK)) {
5282 		ret = -EPERM;
5283 		goto unlock;
5284 	}
5285 
5286 	WARN_ON(!rb && event->rb);
5287 
5288 	if (vma->vm_flags & VM_WRITE)
5289 		flags |= RING_BUFFER_WRITABLE;
5290 
5291 	if (!rb) {
5292 		rb = rb_alloc(nr_pages,
5293 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5294 			      event->cpu, flags);
5295 
5296 		if (!rb) {
5297 			ret = -ENOMEM;
5298 			goto unlock;
5299 		}
5300 
5301 		atomic_set(&rb->mmap_count, 1);
5302 		rb->mmap_user = get_current_user();
5303 		rb->mmap_locked = extra;
5304 
5305 		ring_buffer_attach(event, rb);
5306 
5307 		perf_event_init_userpage(event);
5308 		perf_event_update_userpage(event);
5309 	} else {
5310 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5311 				   event->attr.aux_watermark, flags);
5312 		if (!ret)
5313 			rb->aux_mmap_locked = extra;
5314 	}
5315 
5316 unlock:
5317 	if (!ret) {
5318 		atomic_long_add(user_extra, &user->locked_vm);
5319 		vma->vm_mm->pinned_vm += extra;
5320 
5321 		atomic_inc(&event->mmap_count);
5322 	} else if (rb) {
5323 		atomic_dec(&rb->mmap_count);
5324 	}
5325 aux_unlock:
5326 	mutex_unlock(&event->mmap_mutex);
5327 
5328 	/*
5329 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5330 	 * vma.
5331 	 */
5332 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5333 	vma->vm_ops = &perf_mmap_vmops;
5334 
5335 	if (event->pmu->event_mapped)
5336 		event->pmu->event_mapped(event);
5337 
5338 	return ret;
5339 }
5340 
5341 static int perf_fasync(int fd, struct file *filp, int on)
5342 {
5343 	struct inode *inode = file_inode(filp);
5344 	struct perf_event *event = filp->private_data;
5345 	int retval;
5346 
5347 	inode_lock(inode);
5348 	retval = fasync_helper(fd, filp, on, &event->fasync);
5349 	inode_unlock(inode);
5350 
5351 	if (retval < 0)
5352 		return retval;
5353 
5354 	return 0;
5355 }
5356 
5357 static const struct file_operations perf_fops = {
5358 	.llseek			= no_llseek,
5359 	.release		= perf_release,
5360 	.read			= perf_read,
5361 	.poll			= perf_poll,
5362 	.unlocked_ioctl		= perf_ioctl,
5363 	.compat_ioctl		= perf_compat_ioctl,
5364 	.mmap			= perf_mmap,
5365 	.fasync			= perf_fasync,
5366 };
5367 
5368 /*
5369  * Perf event wakeup
5370  *
5371  * If there's data, ensure we set the poll() state and publish everything
5372  * to user-space before waking everybody up.
5373  */
5374 
5375 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5376 {
5377 	/* only the parent has fasync state */
5378 	if (event->parent)
5379 		event = event->parent;
5380 	return &event->fasync;
5381 }
5382 
5383 void perf_event_wakeup(struct perf_event *event)
5384 {
5385 	ring_buffer_wakeup(event);
5386 
5387 	if (event->pending_kill) {
5388 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5389 		event->pending_kill = 0;
5390 	}
5391 }
5392 
5393 static void perf_pending_event(struct irq_work *entry)
5394 {
5395 	struct perf_event *event = container_of(entry,
5396 			struct perf_event, pending);
5397 	int rctx;
5398 
5399 	rctx = perf_swevent_get_recursion_context();
5400 	/*
5401 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5402 	 * and we won't recurse 'further'.
5403 	 */
5404 
5405 	if (event->pending_disable) {
5406 		event->pending_disable = 0;
5407 		perf_event_disable_local(event);
5408 	}
5409 
5410 	if (event->pending_wakeup) {
5411 		event->pending_wakeup = 0;
5412 		perf_event_wakeup(event);
5413 	}
5414 
5415 	if (rctx >= 0)
5416 		perf_swevent_put_recursion_context(rctx);
5417 }
5418 
5419 /*
5420  * We assume there is only KVM supporting the callbacks.
5421  * Later on, we might change it to a list if there is
5422  * another virtualization implementation supporting the callbacks.
5423  */
5424 struct perf_guest_info_callbacks *perf_guest_cbs;
5425 
5426 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5427 {
5428 	perf_guest_cbs = cbs;
5429 	return 0;
5430 }
5431 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5432 
5433 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5434 {
5435 	perf_guest_cbs = NULL;
5436 	return 0;
5437 }
5438 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5439 
5440 static void
5441 perf_output_sample_regs(struct perf_output_handle *handle,
5442 			struct pt_regs *regs, u64 mask)
5443 {
5444 	int bit;
5445 	DECLARE_BITMAP(_mask, 64);
5446 
5447 	bitmap_from_u64(_mask, mask);
5448 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5449 		u64 val;
5450 
5451 		val = perf_reg_value(regs, bit);
5452 		perf_output_put(handle, val);
5453 	}
5454 }
5455 
5456 static void perf_sample_regs_user(struct perf_regs *regs_user,
5457 				  struct pt_regs *regs,
5458 				  struct pt_regs *regs_user_copy)
5459 {
5460 	if (user_mode(regs)) {
5461 		regs_user->abi = perf_reg_abi(current);
5462 		regs_user->regs = regs;
5463 	} else if (current->mm) {
5464 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5465 	} else {
5466 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5467 		regs_user->regs = NULL;
5468 	}
5469 }
5470 
5471 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5472 				  struct pt_regs *regs)
5473 {
5474 	regs_intr->regs = regs;
5475 	regs_intr->abi  = perf_reg_abi(current);
5476 }
5477 
5478 
5479 /*
5480  * Get remaining task size from user stack pointer.
5481  *
5482  * It'd be better to take stack vma map and limit this more
5483  * precisly, but there's no way to get it safely under interrupt,
5484  * so using TASK_SIZE as limit.
5485  */
5486 static u64 perf_ustack_task_size(struct pt_regs *regs)
5487 {
5488 	unsigned long addr = perf_user_stack_pointer(regs);
5489 
5490 	if (!addr || addr >= TASK_SIZE)
5491 		return 0;
5492 
5493 	return TASK_SIZE - addr;
5494 }
5495 
5496 static u16
5497 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5498 			struct pt_regs *regs)
5499 {
5500 	u64 task_size;
5501 
5502 	/* No regs, no stack pointer, no dump. */
5503 	if (!regs)
5504 		return 0;
5505 
5506 	/*
5507 	 * Check if we fit in with the requested stack size into the:
5508 	 * - TASK_SIZE
5509 	 *   If we don't, we limit the size to the TASK_SIZE.
5510 	 *
5511 	 * - remaining sample size
5512 	 *   If we don't, we customize the stack size to
5513 	 *   fit in to the remaining sample size.
5514 	 */
5515 
5516 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5517 	stack_size = min(stack_size, (u16) task_size);
5518 
5519 	/* Current header size plus static size and dynamic size. */
5520 	header_size += 2 * sizeof(u64);
5521 
5522 	/* Do we fit in with the current stack dump size? */
5523 	if ((u16) (header_size + stack_size) < header_size) {
5524 		/*
5525 		 * If we overflow the maximum size for the sample,
5526 		 * we customize the stack dump size to fit in.
5527 		 */
5528 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5529 		stack_size = round_up(stack_size, sizeof(u64));
5530 	}
5531 
5532 	return stack_size;
5533 }
5534 
5535 static void
5536 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5537 			  struct pt_regs *regs)
5538 {
5539 	/* Case of a kernel thread, nothing to dump */
5540 	if (!regs) {
5541 		u64 size = 0;
5542 		perf_output_put(handle, size);
5543 	} else {
5544 		unsigned long sp;
5545 		unsigned int rem;
5546 		u64 dyn_size;
5547 
5548 		/*
5549 		 * We dump:
5550 		 * static size
5551 		 *   - the size requested by user or the best one we can fit
5552 		 *     in to the sample max size
5553 		 * data
5554 		 *   - user stack dump data
5555 		 * dynamic size
5556 		 *   - the actual dumped size
5557 		 */
5558 
5559 		/* Static size. */
5560 		perf_output_put(handle, dump_size);
5561 
5562 		/* Data. */
5563 		sp = perf_user_stack_pointer(regs);
5564 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5565 		dyn_size = dump_size - rem;
5566 
5567 		perf_output_skip(handle, rem);
5568 
5569 		/* Dynamic size. */
5570 		perf_output_put(handle, dyn_size);
5571 	}
5572 }
5573 
5574 static void __perf_event_header__init_id(struct perf_event_header *header,
5575 					 struct perf_sample_data *data,
5576 					 struct perf_event *event)
5577 {
5578 	u64 sample_type = event->attr.sample_type;
5579 
5580 	data->type = sample_type;
5581 	header->size += event->id_header_size;
5582 
5583 	if (sample_type & PERF_SAMPLE_TID) {
5584 		/* namespace issues */
5585 		data->tid_entry.pid = perf_event_pid(event, current);
5586 		data->tid_entry.tid = perf_event_tid(event, current);
5587 	}
5588 
5589 	if (sample_type & PERF_SAMPLE_TIME)
5590 		data->time = perf_event_clock(event);
5591 
5592 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5593 		data->id = primary_event_id(event);
5594 
5595 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5596 		data->stream_id = event->id;
5597 
5598 	if (sample_type & PERF_SAMPLE_CPU) {
5599 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5600 		data->cpu_entry.reserved = 0;
5601 	}
5602 }
5603 
5604 void perf_event_header__init_id(struct perf_event_header *header,
5605 				struct perf_sample_data *data,
5606 				struct perf_event *event)
5607 {
5608 	if (event->attr.sample_id_all)
5609 		__perf_event_header__init_id(header, data, event);
5610 }
5611 
5612 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5613 					   struct perf_sample_data *data)
5614 {
5615 	u64 sample_type = data->type;
5616 
5617 	if (sample_type & PERF_SAMPLE_TID)
5618 		perf_output_put(handle, data->tid_entry);
5619 
5620 	if (sample_type & PERF_SAMPLE_TIME)
5621 		perf_output_put(handle, data->time);
5622 
5623 	if (sample_type & PERF_SAMPLE_ID)
5624 		perf_output_put(handle, data->id);
5625 
5626 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5627 		perf_output_put(handle, data->stream_id);
5628 
5629 	if (sample_type & PERF_SAMPLE_CPU)
5630 		perf_output_put(handle, data->cpu_entry);
5631 
5632 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5633 		perf_output_put(handle, data->id);
5634 }
5635 
5636 void perf_event__output_id_sample(struct perf_event *event,
5637 				  struct perf_output_handle *handle,
5638 				  struct perf_sample_data *sample)
5639 {
5640 	if (event->attr.sample_id_all)
5641 		__perf_event__output_id_sample(handle, sample);
5642 }
5643 
5644 static void perf_output_read_one(struct perf_output_handle *handle,
5645 				 struct perf_event *event,
5646 				 u64 enabled, u64 running)
5647 {
5648 	u64 read_format = event->attr.read_format;
5649 	u64 values[4];
5650 	int n = 0;
5651 
5652 	values[n++] = perf_event_count(event);
5653 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5654 		values[n++] = enabled +
5655 			atomic64_read(&event->child_total_time_enabled);
5656 	}
5657 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5658 		values[n++] = running +
5659 			atomic64_read(&event->child_total_time_running);
5660 	}
5661 	if (read_format & PERF_FORMAT_ID)
5662 		values[n++] = primary_event_id(event);
5663 
5664 	__output_copy(handle, values, n * sizeof(u64));
5665 }
5666 
5667 /*
5668  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5669  */
5670 static void perf_output_read_group(struct perf_output_handle *handle,
5671 			    struct perf_event *event,
5672 			    u64 enabled, u64 running)
5673 {
5674 	struct perf_event *leader = event->group_leader, *sub;
5675 	u64 read_format = event->attr.read_format;
5676 	u64 values[5];
5677 	int n = 0;
5678 
5679 	values[n++] = 1 + leader->nr_siblings;
5680 
5681 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5682 		values[n++] = enabled;
5683 
5684 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5685 		values[n++] = running;
5686 
5687 	if (leader != event)
5688 		leader->pmu->read(leader);
5689 
5690 	values[n++] = perf_event_count(leader);
5691 	if (read_format & PERF_FORMAT_ID)
5692 		values[n++] = primary_event_id(leader);
5693 
5694 	__output_copy(handle, values, n * sizeof(u64));
5695 
5696 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5697 		n = 0;
5698 
5699 		if ((sub != event) &&
5700 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5701 			sub->pmu->read(sub);
5702 
5703 		values[n++] = perf_event_count(sub);
5704 		if (read_format & PERF_FORMAT_ID)
5705 			values[n++] = primary_event_id(sub);
5706 
5707 		__output_copy(handle, values, n * sizeof(u64));
5708 	}
5709 }
5710 
5711 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5712 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5713 
5714 static void perf_output_read(struct perf_output_handle *handle,
5715 			     struct perf_event *event)
5716 {
5717 	u64 enabled = 0, running = 0, now;
5718 	u64 read_format = event->attr.read_format;
5719 
5720 	/*
5721 	 * compute total_time_enabled, total_time_running
5722 	 * based on snapshot values taken when the event
5723 	 * was last scheduled in.
5724 	 *
5725 	 * we cannot simply called update_context_time()
5726 	 * because of locking issue as we are called in
5727 	 * NMI context
5728 	 */
5729 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5730 		calc_timer_values(event, &now, &enabled, &running);
5731 
5732 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5733 		perf_output_read_group(handle, event, enabled, running);
5734 	else
5735 		perf_output_read_one(handle, event, enabled, running);
5736 }
5737 
5738 void perf_output_sample(struct perf_output_handle *handle,
5739 			struct perf_event_header *header,
5740 			struct perf_sample_data *data,
5741 			struct perf_event *event)
5742 {
5743 	u64 sample_type = data->type;
5744 
5745 	perf_output_put(handle, *header);
5746 
5747 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5748 		perf_output_put(handle, data->id);
5749 
5750 	if (sample_type & PERF_SAMPLE_IP)
5751 		perf_output_put(handle, data->ip);
5752 
5753 	if (sample_type & PERF_SAMPLE_TID)
5754 		perf_output_put(handle, data->tid_entry);
5755 
5756 	if (sample_type & PERF_SAMPLE_TIME)
5757 		perf_output_put(handle, data->time);
5758 
5759 	if (sample_type & PERF_SAMPLE_ADDR)
5760 		perf_output_put(handle, data->addr);
5761 
5762 	if (sample_type & PERF_SAMPLE_ID)
5763 		perf_output_put(handle, data->id);
5764 
5765 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5766 		perf_output_put(handle, data->stream_id);
5767 
5768 	if (sample_type & PERF_SAMPLE_CPU)
5769 		perf_output_put(handle, data->cpu_entry);
5770 
5771 	if (sample_type & PERF_SAMPLE_PERIOD)
5772 		perf_output_put(handle, data->period);
5773 
5774 	if (sample_type & PERF_SAMPLE_READ)
5775 		perf_output_read(handle, event);
5776 
5777 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5778 		if (data->callchain) {
5779 			int size = 1;
5780 
5781 			if (data->callchain)
5782 				size += data->callchain->nr;
5783 
5784 			size *= sizeof(u64);
5785 
5786 			__output_copy(handle, data->callchain, size);
5787 		} else {
5788 			u64 nr = 0;
5789 			perf_output_put(handle, nr);
5790 		}
5791 	}
5792 
5793 	if (sample_type & PERF_SAMPLE_RAW) {
5794 		struct perf_raw_record *raw = data->raw;
5795 
5796 		if (raw) {
5797 			struct perf_raw_frag *frag = &raw->frag;
5798 
5799 			perf_output_put(handle, raw->size);
5800 			do {
5801 				if (frag->copy) {
5802 					__output_custom(handle, frag->copy,
5803 							frag->data, frag->size);
5804 				} else {
5805 					__output_copy(handle, frag->data,
5806 						      frag->size);
5807 				}
5808 				if (perf_raw_frag_last(frag))
5809 					break;
5810 				frag = frag->next;
5811 			} while (1);
5812 			if (frag->pad)
5813 				__output_skip(handle, NULL, frag->pad);
5814 		} else {
5815 			struct {
5816 				u32	size;
5817 				u32	data;
5818 			} raw = {
5819 				.size = sizeof(u32),
5820 				.data = 0,
5821 			};
5822 			perf_output_put(handle, raw);
5823 		}
5824 	}
5825 
5826 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5827 		if (data->br_stack) {
5828 			size_t size;
5829 
5830 			size = data->br_stack->nr
5831 			     * sizeof(struct perf_branch_entry);
5832 
5833 			perf_output_put(handle, data->br_stack->nr);
5834 			perf_output_copy(handle, data->br_stack->entries, size);
5835 		} else {
5836 			/*
5837 			 * we always store at least the value of nr
5838 			 */
5839 			u64 nr = 0;
5840 			perf_output_put(handle, nr);
5841 		}
5842 	}
5843 
5844 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5845 		u64 abi = data->regs_user.abi;
5846 
5847 		/*
5848 		 * If there are no regs to dump, notice it through
5849 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5850 		 */
5851 		perf_output_put(handle, abi);
5852 
5853 		if (abi) {
5854 			u64 mask = event->attr.sample_regs_user;
5855 			perf_output_sample_regs(handle,
5856 						data->regs_user.regs,
5857 						mask);
5858 		}
5859 	}
5860 
5861 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5862 		perf_output_sample_ustack(handle,
5863 					  data->stack_user_size,
5864 					  data->regs_user.regs);
5865 	}
5866 
5867 	if (sample_type & PERF_SAMPLE_WEIGHT)
5868 		perf_output_put(handle, data->weight);
5869 
5870 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5871 		perf_output_put(handle, data->data_src.val);
5872 
5873 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5874 		perf_output_put(handle, data->txn);
5875 
5876 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5877 		u64 abi = data->regs_intr.abi;
5878 		/*
5879 		 * If there are no regs to dump, notice it through
5880 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5881 		 */
5882 		perf_output_put(handle, abi);
5883 
5884 		if (abi) {
5885 			u64 mask = event->attr.sample_regs_intr;
5886 
5887 			perf_output_sample_regs(handle,
5888 						data->regs_intr.regs,
5889 						mask);
5890 		}
5891 	}
5892 
5893 	if (!event->attr.watermark) {
5894 		int wakeup_events = event->attr.wakeup_events;
5895 
5896 		if (wakeup_events) {
5897 			struct ring_buffer *rb = handle->rb;
5898 			int events = local_inc_return(&rb->events);
5899 
5900 			if (events >= wakeup_events) {
5901 				local_sub(wakeup_events, &rb->events);
5902 				local_inc(&rb->wakeup);
5903 			}
5904 		}
5905 	}
5906 }
5907 
5908 void perf_prepare_sample(struct perf_event_header *header,
5909 			 struct perf_sample_data *data,
5910 			 struct perf_event *event,
5911 			 struct pt_regs *regs)
5912 {
5913 	u64 sample_type = event->attr.sample_type;
5914 
5915 	header->type = PERF_RECORD_SAMPLE;
5916 	header->size = sizeof(*header) + event->header_size;
5917 
5918 	header->misc = 0;
5919 	header->misc |= perf_misc_flags(regs);
5920 
5921 	__perf_event_header__init_id(header, data, event);
5922 
5923 	if (sample_type & PERF_SAMPLE_IP)
5924 		data->ip = perf_instruction_pointer(regs);
5925 
5926 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5927 		int size = 1;
5928 
5929 		data->callchain = perf_callchain(event, regs);
5930 
5931 		if (data->callchain)
5932 			size += data->callchain->nr;
5933 
5934 		header->size += size * sizeof(u64);
5935 	}
5936 
5937 	if (sample_type & PERF_SAMPLE_RAW) {
5938 		struct perf_raw_record *raw = data->raw;
5939 		int size;
5940 
5941 		if (raw) {
5942 			struct perf_raw_frag *frag = &raw->frag;
5943 			u32 sum = 0;
5944 
5945 			do {
5946 				sum += frag->size;
5947 				if (perf_raw_frag_last(frag))
5948 					break;
5949 				frag = frag->next;
5950 			} while (1);
5951 
5952 			size = round_up(sum + sizeof(u32), sizeof(u64));
5953 			raw->size = size - sizeof(u32);
5954 			frag->pad = raw->size - sum;
5955 		} else {
5956 			size = sizeof(u64);
5957 		}
5958 
5959 		header->size += size;
5960 	}
5961 
5962 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5963 		int size = sizeof(u64); /* nr */
5964 		if (data->br_stack) {
5965 			size += data->br_stack->nr
5966 			      * sizeof(struct perf_branch_entry);
5967 		}
5968 		header->size += size;
5969 	}
5970 
5971 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5972 		perf_sample_regs_user(&data->regs_user, regs,
5973 				      &data->regs_user_copy);
5974 
5975 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5976 		/* regs dump ABI info */
5977 		int size = sizeof(u64);
5978 
5979 		if (data->regs_user.regs) {
5980 			u64 mask = event->attr.sample_regs_user;
5981 			size += hweight64(mask) * sizeof(u64);
5982 		}
5983 
5984 		header->size += size;
5985 	}
5986 
5987 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5988 		/*
5989 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5990 		 * processed as the last one or have additional check added
5991 		 * in case new sample type is added, because we could eat
5992 		 * up the rest of the sample size.
5993 		 */
5994 		u16 stack_size = event->attr.sample_stack_user;
5995 		u16 size = sizeof(u64);
5996 
5997 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5998 						     data->regs_user.regs);
5999 
6000 		/*
6001 		 * If there is something to dump, add space for the dump
6002 		 * itself and for the field that tells the dynamic size,
6003 		 * which is how many have been actually dumped.
6004 		 */
6005 		if (stack_size)
6006 			size += sizeof(u64) + stack_size;
6007 
6008 		data->stack_user_size = stack_size;
6009 		header->size += size;
6010 	}
6011 
6012 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6013 		/* regs dump ABI info */
6014 		int size = sizeof(u64);
6015 
6016 		perf_sample_regs_intr(&data->regs_intr, regs);
6017 
6018 		if (data->regs_intr.regs) {
6019 			u64 mask = event->attr.sample_regs_intr;
6020 
6021 			size += hweight64(mask) * sizeof(u64);
6022 		}
6023 
6024 		header->size += size;
6025 	}
6026 }
6027 
6028 static void __always_inline
6029 __perf_event_output(struct perf_event *event,
6030 		    struct perf_sample_data *data,
6031 		    struct pt_regs *regs,
6032 		    int (*output_begin)(struct perf_output_handle *,
6033 					struct perf_event *,
6034 					unsigned int))
6035 {
6036 	struct perf_output_handle handle;
6037 	struct perf_event_header header;
6038 
6039 	/* protect the callchain buffers */
6040 	rcu_read_lock();
6041 
6042 	perf_prepare_sample(&header, data, event, regs);
6043 
6044 	if (output_begin(&handle, event, header.size))
6045 		goto exit;
6046 
6047 	perf_output_sample(&handle, &header, data, event);
6048 
6049 	perf_output_end(&handle);
6050 
6051 exit:
6052 	rcu_read_unlock();
6053 }
6054 
6055 void
6056 perf_event_output_forward(struct perf_event *event,
6057 			 struct perf_sample_data *data,
6058 			 struct pt_regs *regs)
6059 {
6060 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6061 }
6062 
6063 void
6064 perf_event_output_backward(struct perf_event *event,
6065 			   struct perf_sample_data *data,
6066 			   struct pt_regs *regs)
6067 {
6068 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6069 }
6070 
6071 void
6072 perf_event_output(struct perf_event *event,
6073 		  struct perf_sample_data *data,
6074 		  struct pt_regs *regs)
6075 {
6076 	__perf_event_output(event, data, regs, perf_output_begin);
6077 }
6078 
6079 /*
6080  * read event_id
6081  */
6082 
6083 struct perf_read_event {
6084 	struct perf_event_header	header;
6085 
6086 	u32				pid;
6087 	u32				tid;
6088 };
6089 
6090 static void
6091 perf_event_read_event(struct perf_event *event,
6092 			struct task_struct *task)
6093 {
6094 	struct perf_output_handle handle;
6095 	struct perf_sample_data sample;
6096 	struct perf_read_event read_event = {
6097 		.header = {
6098 			.type = PERF_RECORD_READ,
6099 			.misc = 0,
6100 			.size = sizeof(read_event) + event->read_size,
6101 		},
6102 		.pid = perf_event_pid(event, task),
6103 		.tid = perf_event_tid(event, task),
6104 	};
6105 	int ret;
6106 
6107 	perf_event_header__init_id(&read_event.header, &sample, event);
6108 	ret = perf_output_begin(&handle, event, read_event.header.size);
6109 	if (ret)
6110 		return;
6111 
6112 	perf_output_put(&handle, read_event);
6113 	perf_output_read(&handle, event);
6114 	perf_event__output_id_sample(event, &handle, &sample);
6115 
6116 	perf_output_end(&handle);
6117 }
6118 
6119 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6120 
6121 static void
6122 perf_iterate_ctx(struct perf_event_context *ctx,
6123 		   perf_iterate_f output,
6124 		   void *data, bool all)
6125 {
6126 	struct perf_event *event;
6127 
6128 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6129 		if (!all) {
6130 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6131 				continue;
6132 			if (!event_filter_match(event))
6133 				continue;
6134 		}
6135 
6136 		output(event, data);
6137 	}
6138 }
6139 
6140 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6141 {
6142 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6143 	struct perf_event *event;
6144 
6145 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6146 		/*
6147 		 * Skip events that are not fully formed yet; ensure that
6148 		 * if we observe event->ctx, both event and ctx will be
6149 		 * complete enough. See perf_install_in_context().
6150 		 */
6151 		if (!smp_load_acquire(&event->ctx))
6152 			continue;
6153 
6154 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6155 			continue;
6156 		if (!event_filter_match(event))
6157 			continue;
6158 		output(event, data);
6159 	}
6160 }
6161 
6162 /*
6163  * Iterate all events that need to receive side-band events.
6164  *
6165  * For new callers; ensure that account_pmu_sb_event() includes
6166  * your event, otherwise it might not get delivered.
6167  */
6168 static void
6169 perf_iterate_sb(perf_iterate_f output, void *data,
6170 	       struct perf_event_context *task_ctx)
6171 {
6172 	struct perf_event_context *ctx;
6173 	int ctxn;
6174 
6175 	rcu_read_lock();
6176 	preempt_disable();
6177 
6178 	/*
6179 	 * If we have task_ctx != NULL we only notify the task context itself.
6180 	 * The task_ctx is set only for EXIT events before releasing task
6181 	 * context.
6182 	 */
6183 	if (task_ctx) {
6184 		perf_iterate_ctx(task_ctx, output, data, false);
6185 		goto done;
6186 	}
6187 
6188 	perf_iterate_sb_cpu(output, data);
6189 
6190 	for_each_task_context_nr(ctxn) {
6191 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6192 		if (ctx)
6193 			perf_iterate_ctx(ctx, output, data, false);
6194 	}
6195 done:
6196 	preempt_enable();
6197 	rcu_read_unlock();
6198 }
6199 
6200 /*
6201  * Clear all file-based filters at exec, they'll have to be
6202  * re-instated when/if these objects are mmapped again.
6203  */
6204 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6205 {
6206 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6207 	struct perf_addr_filter *filter;
6208 	unsigned int restart = 0, count = 0;
6209 	unsigned long flags;
6210 
6211 	if (!has_addr_filter(event))
6212 		return;
6213 
6214 	raw_spin_lock_irqsave(&ifh->lock, flags);
6215 	list_for_each_entry(filter, &ifh->list, entry) {
6216 		if (filter->inode) {
6217 			event->addr_filters_offs[count] = 0;
6218 			restart++;
6219 		}
6220 
6221 		count++;
6222 	}
6223 
6224 	if (restart)
6225 		event->addr_filters_gen++;
6226 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6227 
6228 	if (restart)
6229 		perf_event_stop(event, 1);
6230 }
6231 
6232 void perf_event_exec(void)
6233 {
6234 	struct perf_event_context *ctx;
6235 	int ctxn;
6236 
6237 	rcu_read_lock();
6238 	for_each_task_context_nr(ctxn) {
6239 		ctx = current->perf_event_ctxp[ctxn];
6240 		if (!ctx)
6241 			continue;
6242 
6243 		perf_event_enable_on_exec(ctxn);
6244 
6245 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6246 				   true);
6247 	}
6248 	rcu_read_unlock();
6249 }
6250 
6251 struct remote_output {
6252 	struct ring_buffer	*rb;
6253 	int			err;
6254 };
6255 
6256 static void __perf_event_output_stop(struct perf_event *event, void *data)
6257 {
6258 	struct perf_event *parent = event->parent;
6259 	struct remote_output *ro = data;
6260 	struct ring_buffer *rb = ro->rb;
6261 	struct stop_event_data sd = {
6262 		.event	= event,
6263 	};
6264 
6265 	if (!has_aux(event))
6266 		return;
6267 
6268 	if (!parent)
6269 		parent = event;
6270 
6271 	/*
6272 	 * In case of inheritance, it will be the parent that links to the
6273 	 * ring-buffer, but it will be the child that's actually using it.
6274 	 *
6275 	 * We are using event::rb to determine if the event should be stopped,
6276 	 * however this may race with ring_buffer_attach() (through set_output),
6277 	 * which will make us skip the event that actually needs to be stopped.
6278 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6279 	 * its rb pointer.
6280 	 */
6281 	if (rcu_dereference(parent->rb) == rb)
6282 		ro->err = __perf_event_stop(&sd);
6283 }
6284 
6285 static int __perf_pmu_output_stop(void *info)
6286 {
6287 	struct perf_event *event = info;
6288 	struct pmu *pmu = event->pmu;
6289 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6290 	struct remote_output ro = {
6291 		.rb	= event->rb,
6292 	};
6293 
6294 	rcu_read_lock();
6295 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6296 	if (cpuctx->task_ctx)
6297 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6298 				   &ro, false);
6299 	rcu_read_unlock();
6300 
6301 	return ro.err;
6302 }
6303 
6304 static void perf_pmu_output_stop(struct perf_event *event)
6305 {
6306 	struct perf_event *iter;
6307 	int err, cpu;
6308 
6309 restart:
6310 	rcu_read_lock();
6311 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6312 		/*
6313 		 * For per-CPU events, we need to make sure that neither they
6314 		 * nor their children are running; for cpu==-1 events it's
6315 		 * sufficient to stop the event itself if it's active, since
6316 		 * it can't have children.
6317 		 */
6318 		cpu = iter->cpu;
6319 		if (cpu == -1)
6320 			cpu = READ_ONCE(iter->oncpu);
6321 
6322 		if (cpu == -1)
6323 			continue;
6324 
6325 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6326 		if (err == -EAGAIN) {
6327 			rcu_read_unlock();
6328 			goto restart;
6329 		}
6330 	}
6331 	rcu_read_unlock();
6332 }
6333 
6334 /*
6335  * task tracking -- fork/exit
6336  *
6337  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6338  */
6339 
6340 struct perf_task_event {
6341 	struct task_struct		*task;
6342 	struct perf_event_context	*task_ctx;
6343 
6344 	struct {
6345 		struct perf_event_header	header;
6346 
6347 		u32				pid;
6348 		u32				ppid;
6349 		u32				tid;
6350 		u32				ptid;
6351 		u64				time;
6352 	} event_id;
6353 };
6354 
6355 static int perf_event_task_match(struct perf_event *event)
6356 {
6357 	return event->attr.comm  || event->attr.mmap ||
6358 	       event->attr.mmap2 || event->attr.mmap_data ||
6359 	       event->attr.task;
6360 }
6361 
6362 static void perf_event_task_output(struct perf_event *event,
6363 				   void *data)
6364 {
6365 	struct perf_task_event *task_event = data;
6366 	struct perf_output_handle handle;
6367 	struct perf_sample_data	sample;
6368 	struct task_struct *task = task_event->task;
6369 	int ret, size = task_event->event_id.header.size;
6370 
6371 	if (!perf_event_task_match(event))
6372 		return;
6373 
6374 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6375 
6376 	ret = perf_output_begin(&handle, event,
6377 				task_event->event_id.header.size);
6378 	if (ret)
6379 		goto out;
6380 
6381 	task_event->event_id.pid = perf_event_pid(event, task);
6382 	task_event->event_id.ppid = perf_event_pid(event, current);
6383 
6384 	task_event->event_id.tid = perf_event_tid(event, task);
6385 	task_event->event_id.ptid = perf_event_tid(event, current);
6386 
6387 	task_event->event_id.time = perf_event_clock(event);
6388 
6389 	perf_output_put(&handle, task_event->event_id);
6390 
6391 	perf_event__output_id_sample(event, &handle, &sample);
6392 
6393 	perf_output_end(&handle);
6394 out:
6395 	task_event->event_id.header.size = size;
6396 }
6397 
6398 static void perf_event_task(struct task_struct *task,
6399 			      struct perf_event_context *task_ctx,
6400 			      int new)
6401 {
6402 	struct perf_task_event task_event;
6403 
6404 	if (!atomic_read(&nr_comm_events) &&
6405 	    !atomic_read(&nr_mmap_events) &&
6406 	    !atomic_read(&nr_task_events))
6407 		return;
6408 
6409 	task_event = (struct perf_task_event){
6410 		.task	  = task,
6411 		.task_ctx = task_ctx,
6412 		.event_id    = {
6413 			.header = {
6414 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6415 				.misc = 0,
6416 				.size = sizeof(task_event.event_id),
6417 			},
6418 			/* .pid  */
6419 			/* .ppid */
6420 			/* .tid  */
6421 			/* .ptid */
6422 			/* .time */
6423 		},
6424 	};
6425 
6426 	perf_iterate_sb(perf_event_task_output,
6427 		       &task_event,
6428 		       task_ctx);
6429 }
6430 
6431 void perf_event_fork(struct task_struct *task)
6432 {
6433 	perf_event_task(task, NULL, 1);
6434 }
6435 
6436 /*
6437  * comm tracking
6438  */
6439 
6440 struct perf_comm_event {
6441 	struct task_struct	*task;
6442 	char			*comm;
6443 	int			comm_size;
6444 
6445 	struct {
6446 		struct perf_event_header	header;
6447 
6448 		u32				pid;
6449 		u32				tid;
6450 	} event_id;
6451 };
6452 
6453 static int perf_event_comm_match(struct perf_event *event)
6454 {
6455 	return event->attr.comm;
6456 }
6457 
6458 static void perf_event_comm_output(struct perf_event *event,
6459 				   void *data)
6460 {
6461 	struct perf_comm_event *comm_event = data;
6462 	struct perf_output_handle handle;
6463 	struct perf_sample_data sample;
6464 	int size = comm_event->event_id.header.size;
6465 	int ret;
6466 
6467 	if (!perf_event_comm_match(event))
6468 		return;
6469 
6470 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6471 	ret = perf_output_begin(&handle, event,
6472 				comm_event->event_id.header.size);
6473 
6474 	if (ret)
6475 		goto out;
6476 
6477 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6478 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6479 
6480 	perf_output_put(&handle, comm_event->event_id);
6481 	__output_copy(&handle, comm_event->comm,
6482 				   comm_event->comm_size);
6483 
6484 	perf_event__output_id_sample(event, &handle, &sample);
6485 
6486 	perf_output_end(&handle);
6487 out:
6488 	comm_event->event_id.header.size = size;
6489 }
6490 
6491 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6492 {
6493 	char comm[TASK_COMM_LEN];
6494 	unsigned int size;
6495 
6496 	memset(comm, 0, sizeof(comm));
6497 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6498 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6499 
6500 	comm_event->comm = comm;
6501 	comm_event->comm_size = size;
6502 
6503 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6504 
6505 	perf_iterate_sb(perf_event_comm_output,
6506 		       comm_event,
6507 		       NULL);
6508 }
6509 
6510 void perf_event_comm(struct task_struct *task, bool exec)
6511 {
6512 	struct perf_comm_event comm_event;
6513 
6514 	if (!atomic_read(&nr_comm_events))
6515 		return;
6516 
6517 	comm_event = (struct perf_comm_event){
6518 		.task	= task,
6519 		/* .comm      */
6520 		/* .comm_size */
6521 		.event_id  = {
6522 			.header = {
6523 				.type = PERF_RECORD_COMM,
6524 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6525 				/* .size */
6526 			},
6527 			/* .pid */
6528 			/* .tid */
6529 		},
6530 	};
6531 
6532 	perf_event_comm_event(&comm_event);
6533 }
6534 
6535 /*
6536  * mmap tracking
6537  */
6538 
6539 struct perf_mmap_event {
6540 	struct vm_area_struct	*vma;
6541 
6542 	const char		*file_name;
6543 	int			file_size;
6544 	int			maj, min;
6545 	u64			ino;
6546 	u64			ino_generation;
6547 	u32			prot, flags;
6548 
6549 	struct {
6550 		struct perf_event_header	header;
6551 
6552 		u32				pid;
6553 		u32				tid;
6554 		u64				start;
6555 		u64				len;
6556 		u64				pgoff;
6557 	} event_id;
6558 };
6559 
6560 static int perf_event_mmap_match(struct perf_event *event,
6561 				 void *data)
6562 {
6563 	struct perf_mmap_event *mmap_event = data;
6564 	struct vm_area_struct *vma = mmap_event->vma;
6565 	int executable = vma->vm_flags & VM_EXEC;
6566 
6567 	return (!executable && event->attr.mmap_data) ||
6568 	       (executable && (event->attr.mmap || event->attr.mmap2));
6569 }
6570 
6571 static void perf_event_mmap_output(struct perf_event *event,
6572 				   void *data)
6573 {
6574 	struct perf_mmap_event *mmap_event = data;
6575 	struct perf_output_handle handle;
6576 	struct perf_sample_data sample;
6577 	int size = mmap_event->event_id.header.size;
6578 	int ret;
6579 
6580 	if (!perf_event_mmap_match(event, data))
6581 		return;
6582 
6583 	if (event->attr.mmap2) {
6584 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6585 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6586 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6587 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6588 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6589 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6590 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6591 	}
6592 
6593 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6594 	ret = perf_output_begin(&handle, event,
6595 				mmap_event->event_id.header.size);
6596 	if (ret)
6597 		goto out;
6598 
6599 	mmap_event->event_id.pid = perf_event_pid(event, current);
6600 	mmap_event->event_id.tid = perf_event_tid(event, current);
6601 
6602 	perf_output_put(&handle, mmap_event->event_id);
6603 
6604 	if (event->attr.mmap2) {
6605 		perf_output_put(&handle, mmap_event->maj);
6606 		perf_output_put(&handle, mmap_event->min);
6607 		perf_output_put(&handle, mmap_event->ino);
6608 		perf_output_put(&handle, mmap_event->ino_generation);
6609 		perf_output_put(&handle, mmap_event->prot);
6610 		perf_output_put(&handle, mmap_event->flags);
6611 	}
6612 
6613 	__output_copy(&handle, mmap_event->file_name,
6614 				   mmap_event->file_size);
6615 
6616 	perf_event__output_id_sample(event, &handle, &sample);
6617 
6618 	perf_output_end(&handle);
6619 out:
6620 	mmap_event->event_id.header.size = size;
6621 }
6622 
6623 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6624 {
6625 	struct vm_area_struct *vma = mmap_event->vma;
6626 	struct file *file = vma->vm_file;
6627 	int maj = 0, min = 0;
6628 	u64 ino = 0, gen = 0;
6629 	u32 prot = 0, flags = 0;
6630 	unsigned int size;
6631 	char tmp[16];
6632 	char *buf = NULL;
6633 	char *name;
6634 
6635 	if (vma->vm_flags & VM_READ)
6636 		prot |= PROT_READ;
6637 	if (vma->vm_flags & VM_WRITE)
6638 		prot |= PROT_WRITE;
6639 	if (vma->vm_flags & VM_EXEC)
6640 		prot |= PROT_EXEC;
6641 
6642 	if (vma->vm_flags & VM_MAYSHARE)
6643 		flags = MAP_SHARED;
6644 	else
6645 		flags = MAP_PRIVATE;
6646 
6647 	if (vma->vm_flags & VM_DENYWRITE)
6648 		flags |= MAP_DENYWRITE;
6649 	if (vma->vm_flags & VM_MAYEXEC)
6650 		flags |= MAP_EXECUTABLE;
6651 	if (vma->vm_flags & VM_LOCKED)
6652 		flags |= MAP_LOCKED;
6653 	if (vma->vm_flags & VM_HUGETLB)
6654 		flags |= MAP_HUGETLB;
6655 
6656 	if (file) {
6657 		struct inode *inode;
6658 		dev_t dev;
6659 
6660 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6661 		if (!buf) {
6662 			name = "//enomem";
6663 			goto cpy_name;
6664 		}
6665 		/*
6666 		 * d_path() works from the end of the rb backwards, so we
6667 		 * need to add enough zero bytes after the string to handle
6668 		 * the 64bit alignment we do later.
6669 		 */
6670 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6671 		if (IS_ERR(name)) {
6672 			name = "//toolong";
6673 			goto cpy_name;
6674 		}
6675 		inode = file_inode(vma->vm_file);
6676 		dev = inode->i_sb->s_dev;
6677 		ino = inode->i_ino;
6678 		gen = inode->i_generation;
6679 		maj = MAJOR(dev);
6680 		min = MINOR(dev);
6681 
6682 		goto got_name;
6683 	} else {
6684 		if (vma->vm_ops && vma->vm_ops->name) {
6685 			name = (char *) vma->vm_ops->name(vma);
6686 			if (name)
6687 				goto cpy_name;
6688 		}
6689 
6690 		name = (char *)arch_vma_name(vma);
6691 		if (name)
6692 			goto cpy_name;
6693 
6694 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6695 				vma->vm_end >= vma->vm_mm->brk) {
6696 			name = "[heap]";
6697 			goto cpy_name;
6698 		}
6699 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6700 				vma->vm_end >= vma->vm_mm->start_stack) {
6701 			name = "[stack]";
6702 			goto cpy_name;
6703 		}
6704 
6705 		name = "//anon";
6706 		goto cpy_name;
6707 	}
6708 
6709 cpy_name:
6710 	strlcpy(tmp, name, sizeof(tmp));
6711 	name = tmp;
6712 got_name:
6713 	/*
6714 	 * Since our buffer works in 8 byte units we need to align our string
6715 	 * size to a multiple of 8. However, we must guarantee the tail end is
6716 	 * zero'd out to avoid leaking random bits to userspace.
6717 	 */
6718 	size = strlen(name)+1;
6719 	while (!IS_ALIGNED(size, sizeof(u64)))
6720 		name[size++] = '\0';
6721 
6722 	mmap_event->file_name = name;
6723 	mmap_event->file_size = size;
6724 	mmap_event->maj = maj;
6725 	mmap_event->min = min;
6726 	mmap_event->ino = ino;
6727 	mmap_event->ino_generation = gen;
6728 	mmap_event->prot = prot;
6729 	mmap_event->flags = flags;
6730 
6731 	if (!(vma->vm_flags & VM_EXEC))
6732 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6733 
6734 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6735 
6736 	perf_iterate_sb(perf_event_mmap_output,
6737 		       mmap_event,
6738 		       NULL);
6739 
6740 	kfree(buf);
6741 }
6742 
6743 /*
6744  * Check whether inode and address range match filter criteria.
6745  */
6746 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6747 				     struct file *file, unsigned long offset,
6748 				     unsigned long size)
6749 {
6750 	if (filter->inode != file_inode(file))
6751 		return false;
6752 
6753 	if (filter->offset > offset + size)
6754 		return false;
6755 
6756 	if (filter->offset + filter->size < offset)
6757 		return false;
6758 
6759 	return true;
6760 }
6761 
6762 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6763 {
6764 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6765 	struct vm_area_struct *vma = data;
6766 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6767 	struct file *file = vma->vm_file;
6768 	struct perf_addr_filter *filter;
6769 	unsigned int restart = 0, count = 0;
6770 
6771 	if (!has_addr_filter(event))
6772 		return;
6773 
6774 	if (!file)
6775 		return;
6776 
6777 	raw_spin_lock_irqsave(&ifh->lock, flags);
6778 	list_for_each_entry(filter, &ifh->list, entry) {
6779 		if (perf_addr_filter_match(filter, file, off,
6780 					     vma->vm_end - vma->vm_start)) {
6781 			event->addr_filters_offs[count] = vma->vm_start;
6782 			restart++;
6783 		}
6784 
6785 		count++;
6786 	}
6787 
6788 	if (restart)
6789 		event->addr_filters_gen++;
6790 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6791 
6792 	if (restart)
6793 		perf_event_stop(event, 1);
6794 }
6795 
6796 /*
6797  * Adjust all task's events' filters to the new vma
6798  */
6799 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6800 {
6801 	struct perf_event_context *ctx;
6802 	int ctxn;
6803 
6804 	/*
6805 	 * Data tracing isn't supported yet and as such there is no need
6806 	 * to keep track of anything that isn't related to executable code:
6807 	 */
6808 	if (!(vma->vm_flags & VM_EXEC))
6809 		return;
6810 
6811 	rcu_read_lock();
6812 	for_each_task_context_nr(ctxn) {
6813 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6814 		if (!ctx)
6815 			continue;
6816 
6817 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6818 	}
6819 	rcu_read_unlock();
6820 }
6821 
6822 void perf_event_mmap(struct vm_area_struct *vma)
6823 {
6824 	struct perf_mmap_event mmap_event;
6825 
6826 	if (!atomic_read(&nr_mmap_events))
6827 		return;
6828 
6829 	mmap_event = (struct perf_mmap_event){
6830 		.vma	= vma,
6831 		/* .file_name */
6832 		/* .file_size */
6833 		.event_id  = {
6834 			.header = {
6835 				.type = PERF_RECORD_MMAP,
6836 				.misc = PERF_RECORD_MISC_USER,
6837 				/* .size */
6838 			},
6839 			/* .pid */
6840 			/* .tid */
6841 			.start  = vma->vm_start,
6842 			.len    = vma->vm_end - vma->vm_start,
6843 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6844 		},
6845 		/* .maj (attr_mmap2 only) */
6846 		/* .min (attr_mmap2 only) */
6847 		/* .ino (attr_mmap2 only) */
6848 		/* .ino_generation (attr_mmap2 only) */
6849 		/* .prot (attr_mmap2 only) */
6850 		/* .flags (attr_mmap2 only) */
6851 	};
6852 
6853 	perf_addr_filters_adjust(vma);
6854 	perf_event_mmap_event(&mmap_event);
6855 }
6856 
6857 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6858 			  unsigned long size, u64 flags)
6859 {
6860 	struct perf_output_handle handle;
6861 	struct perf_sample_data sample;
6862 	struct perf_aux_event {
6863 		struct perf_event_header	header;
6864 		u64				offset;
6865 		u64				size;
6866 		u64				flags;
6867 	} rec = {
6868 		.header = {
6869 			.type = PERF_RECORD_AUX,
6870 			.misc = 0,
6871 			.size = sizeof(rec),
6872 		},
6873 		.offset		= head,
6874 		.size		= size,
6875 		.flags		= flags,
6876 	};
6877 	int ret;
6878 
6879 	perf_event_header__init_id(&rec.header, &sample, event);
6880 	ret = perf_output_begin(&handle, event, rec.header.size);
6881 
6882 	if (ret)
6883 		return;
6884 
6885 	perf_output_put(&handle, rec);
6886 	perf_event__output_id_sample(event, &handle, &sample);
6887 
6888 	perf_output_end(&handle);
6889 }
6890 
6891 /*
6892  * Lost/dropped samples logging
6893  */
6894 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6895 {
6896 	struct perf_output_handle handle;
6897 	struct perf_sample_data sample;
6898 	int ret;
6899 
6900 	struct {
6901 		struct perf_event_header	header;
6902 		u64				lost;
6903 	} lost_samples_event = {
6904 		.header = {
6905 			.type = PERF_RECORD_LOST_SAMPLES,
6906 			.misc = 0,
6907 			.size = sizeof(lost_samples_event),
6908 		},
6909 		.lost		= lost,
6910 	};
6911 
6912 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6913 
6914 	ret = perf_output_begin(&handle, event,
6915 				lost_samples_event.header.size);
6916 	if (ret)
6917 		return;
6918 
6919 	perf_output_put(&handle, lost_samples_event);
6920 	perf_event__output_id_sample(event, &handle, &sample);
6921 	perf_output_end(&handle);
6922 }
6923 
6924 /*
6925  * context_switch tracking
6926  */
6927 
6928 struct perf_switch_event {
6929 	struct task_struct	*task;
6930 	struct task_struct	*next_prev;
6931 
6932 	struct {
6933 		struct perf_event_header	header;
6934 		u32				next_prev_pid;
6935 		u32				next_prev_tid;
6936 	} event_id;
6937 };
6938 
6939 static int perf_event_switch_match(struct perf_event *event)
6940 {
6941 	return event->attr.context_switch;
6942 }
6943 
6944 static void perf_event_switch_output(struct perf_event *event, void *data)
6945 {
6946 	struct perf_switch_event *se = data;
6947 	struct perf_output_handle handle;
6948 	struct perf_sample_data sample;
6949 	int ret;
6950 
6951 	if (!perf_event_switch_match(event))
6952 		return;
6953 
6954 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6955 	if (event->ctx->task) {
6956 		se->event_id.header.type = PERF_RECORD_SWITCH;
6957 		se->event_id.header.size = sizeof(se->event_id.header);
6958 	} else {
6959 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6960 		se->event_id.header.size = sizeof(se->event_id);
6961 		se->event_id.next_prev_pid =
6962 					perf_event_pid(event, se->next_prev);
6963 		se->event_id.next_prev_tid =
6964 					perf_event_tid(event, se->next_prev);
6965 	}
6966 
6967 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6968 
6969 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6970 	if (ret)
6971 		return;
6972 
6973 	if (event->ctx->task)
6974 		perf_output_put(&handle, se->event_id.header);
6975 	else
6976 		perf_output_put(&handle, se->event_id);
6977 
6978 	perf_event__output_id_sample(event, &handle, &sample);
6979 
6980 	perf_output_end(&handle);
6981 }
6982 
6983 static void perf_event_switch(struct task_struct *task,
6984 			      struct task_struct *next_prev, bool sched_in)
6985 {
6986 	struct perf_switch_event switch_event;
6987 
6988 	/* N.B. caller checks nr_switch_events != 0 */
6989 
6990 	switch_event = (struct perf_switch_event){
6991 		.task		= task,
6992 		.next_prev	= next_prev,
6993 		.event_id	= {
6994 			.header = {
6995 				/* .type */
6996 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6997 				/* .size */
6998 			},
6999 			/* .next_prev_pid */
7000 			/* .next_prev_tid */
7001 		},
7002 	};
7003 
7004 	perf_iterate_sb(perf_event_switch_output,
7005 		       &switch_event,
7006 		       NULL);
7007 }
7008 
7009 /*
7010  * IRQ throttle logging
7011  */
7012 
7013 static void perf_log_throttle(struct perf_event *event, int enable)
7014 {
7015 	struct perf_output_handle handle;
7016 	struct perf_sample_data sample;
7017 	int ret;
7018 
7019 	struct {
7020 		struct perf_event_header	header;
7021 		u64				time;
7022 		u64				id;
7023 		u64				stream_id;
7024 	} throttle_event = {
7025 		.header = {
7026 			.type = PERF_RECORD_THROTTLE,
7027 			.misc = 0,
7028 			.size = sizeof(throttle_event),
7029 		},
7030 		.time		= perf_event_clock(event),
7031 		.id		= primary_event_id(event),
7032 		.stream_id	= event->id,
7033 	};
7034 
7035 	if (enable)
7036 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7037 
7038 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7039 
7040 	ret = perf_output_begin(&handle, event,
7041 				throttle_event.header.size);
7042 	if (ret)
7043 		return;
7044 
7045 	perf_output_put(&handle, throttle_event);
7046 	perf_event__output_id_sample(event, &handle, &sample);
7047 	perf_output_end(&handle);
7048 }
7049 
7050 static void perf_log_itrace_start(struct perf_event *event)
7051 {
7052 	struct perf_output_handle handle;
7053 	struct perf_sample_data sample;
7054 	struct perf_aux_event {
7055 		struct perf_event_header        header;
7056 		u32				pid;
7057 		u32				tid;
7058 	} rec;
7059 	int ret;
7060 
7061 	if (event->parent)
7062 		event = event->parent;
7063 
7064 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7065 	    event->hw.itrace_started)
7066 		return;
7067 
7068 	rec.header.type	= PERF_RECORD_ITRACE_START;
7069 	rec.header.misc	= 0;
7070 	rec.header.size	= sizeof(rec);
7071 	rec.pid	= perf_event_pid(event, current);
7072 	rec.tid	= perf_event_tid(event, current);
7073 
7074 	perf_event_header__init_id(&rec.header, &sample, event);
7075 	ret = perf_output_begin(&handle, event, rec.header.size);
7076 
7077 	if (ret)
7078 		return;
7079 
7080 	perf_output_put(&handle, rec);
7081 	perf_event__output_id_sample(event, &handle, &sample);
7082 
7083 	perf_output_end(&handle);
7084 }
7085 
7086 static int
7087 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7088 {
7089 	struct hw_perf_event *hwc = &event->hw;
7090 	int ret = 0;
7091 	u64 seq;
7092 
7093 	seq = __this_cpu_read(perf_throttled_seq);
7094 	if (seq != hwc->interrupts_seq) {
7095 		hwc->interrupts_seq = seq;
7096 		hwc->interrupts = 1;
7097 	} else {
7098 		hwc->interrupts++;
7099 		if (unlikely(throttle
7100 			     && hwc->interrupts >= max_samples_per_tick)) {
7101 			__this_cpu_inc(perf_throttled_count);
7102 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7103 			hwc->interrupts = MAX_INTERRUPTS;
7104 			perf_log_throttle(event, 0);
7105 			ret = 1;
7106 		}
7107 	}
7108 
7109 	if (event->attr.freq) {
7110 		u64 now = perf_clock();
7111 		s64 delta = now - hwc->freq_time_stamp;
7112 
7113 		hwc->freq_time_stamp = now;
7114 
7115 		if (delta > 0 && delta < 2*TICK_NSEC)
7116 			perf_adjust_period(event, delta, hwc->last_period, true);
7117 	}
7118 
7119 	return ret;
7120 }
7121 
7122 int perf_event_account_interrupt(struct perf_event *event)
7123 {
7124 	return __perf_event_account_interrupt(event, 1);
7125 }
7126 
7127 /*
7128  * Generic event overflow handling, sampling.
7129  */
7130 
7131 static int __perf_event_overflow(struct perf_event *event,
7132 				   int throttle, struct perf_sample_data *data,
7133 				   struct pt_regs *regs)
7134 {
7135 	int events = atomic_read(&event->event_limit);
7136 	int ret = 0;
7137 
7138 	/*
7139 	 * Non-sampling counters might still use the PMI to fold short
7140 	 * hardware counters, ignore those.
7141 	 */
7142 	if (unlikely(!is_sampling_event(event)))
7143 		return 0;
7144 
7145 	ret = __perf_event_account_interrupt(event, throttle);
7146 
7147 	/*
7148 	 * XXX event_limit might not quite work as expected on inherited
7149 	 * events
7150 	 */
7151 
7152 	event->pending_kill = POLL_IN;
7153 	if (events && atomic_dec_and_test(&event->event_limit)) {
7154 		ret = 1;
7155 		event->pending_kill = POLL_HUP;
7156 
7157 		perf_event_disable_inatomic(event);
7158 	}
7159 
7160 	READ_ONCE(event->overflow_handler)(event, data, regs);
7161 
7162 	if (*perf_event_fasync(event) && event->pending_kill) {
7163 		event->pending_wakeup = 1;
7164 		irq_work_queue(&event->pending);
7165 	}
7166 
7167 	return ret;
7168 }
7169 
7170 int perf_event_overflow(struct perf_event *event,
7171 			  struct perf_sample_data *data,
7172 			  struct pt_regs *regs)
7173 {
7174 	return __perf_event_overflow(event, 1, data, regs);
7175 }
7176 
7177 /*
7178  * Generic software event infrastructure
7179  */
7180 
7181 struct swevent_htable {
7182 	struct swevent_hlist		*swevent_hlist;
7183 	struct mutex			hlist_mutex;
7184 	int				hlist_refcount;
7185 
7186 	/* Recursion avoidance in each contexts */
7187 	int				recursion[PERF_NR_CONTEXTS];
7188 };
7189 
7190 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7191 
7192 /*
7193  * We directly increment event->count and keep a second value in
7194  * event->hw.period_left to count intervals. This period event
7195  * is kept in the range [-sample_period, 0] so that we can use the
7196  * sign as trigger.
7197  */
7198 
7199 u64 perf_swevent_set_period(struct perf_event *event)
7200 {
7201 	struct hw_perf_event *hwc = &event->hw;
7202 	u64 period = hwc->last_period;
7203 	u64 nr, offset;
7204 	s64 old, val;
7205 
7206 	hwc->last_period = hwc->sample_period;
7207 
7208 again:
7209 	old = val = local64_read(&hwc->period_left);
7210 	if (val < 0)
7211 		return 0;
7212 
7213 	nr = div64_u64(period + val, period);
7214 	offset = nr * period;
7215 	val -= offset;
7216 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7217 		goto again;
7218 
7219 	return nr;
7220 }
7221 
7222 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7223 				    struct perf_sample_data *data,
7224 				    struct pt_regs *regs)
7225 {
7226 	struct hw_perf_event *hwc = &event->hw;
7227 	int throttle = 0;
7228 
7229 	if (!overflow)
7230 		overflow = perf_swevent_set_period(event);
7231 
7232 	if (hwc->interrupts == MAX_INTERRUPTS)
7233 		return;
7234 
7235 	for (; overflow; overflow--) {
7236 		if (__perf_event_overflow(event, throttle,
7237 					    data, regs)) {
7238 			/*
7239 			 * We inhibit the overflow from happening when
7240 			 * hwc->interrupts == MAX_INTERRUPTS.
7241 			 */
7242 			break;
7243 		}
7244 		throttle = 1;
7245 	}
7246 }
7247 
7248 static void perf_swevent_event(struct perf_event *event, u64 nr,
7249 			       struct perf_sample_data *data,
7250 			       struct pt_regs *regs)
7251 {
7252 	struct hw_perf_event *hwc = &event->hw;
7253 
7254 	local64_add(nr, &event->count);
7255 
7256 	if (!regs)
7257 		return;
7258 
7259 	if (!is_sampling_event(event))
7260 		return;
7261 
7262 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7263 		data->period = nr;
7264 		return perf_swevent_overflow(event, 1, data, regs);
7265 	} else
7266 		data->period = event->hw.last_period;
7267 
7268 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7269 		return perf_swevent_overflow(event, 1, data, regs);
7270 
7271 	if (local64_add_negative(nr, &hwc->period_left))
7272 		return;
7273 
7274 	perf_swevent_overflow(event, 0, data, regs);
7275 }
7276 
7277 static int perf_exclude_event(struct perf_event *event,
7278 			      struct pt_regs *regs)
7279 {
7280 	if (event->hw.state & PERF_HES_STOPPED)
7281 		return 1;
7282 
7283 	if (regs) {
7284 		if (event->attr.exclude_user && user_mode(regs))
7285 			return 1;
7286 
7287 		if (event->attr.exclude_kernel && !user_mode(regs))
7288 			return 1;
7289 	}
7290 
7291 	return 0;
7292 }
7293 
7294 static int perf_swevent_match(struct perf_event *event,
7295 				enum perf_type_id type,
7296 				u32 event_id,
7297 				struct perf_sample_data *data,
7298 				struct pt_regs *regs)
7299 {
7300 	if (event->attr.type != type)
7301 		return 0;
7302 
7303 	if (event->attr.config != event_id)
7304 		return 0;
7305 
7306 	if (perf_exclude_event(event, regs))
7307 		return 0;
7308 
7309 	return 1;
7310 }
7311 
7312 static inline u64 swevent_hash(u64 type, u32 event_id)
7313 {
7314 	u64 val = event_id | (type << 32);
7315 
7316 	return hash_64(val, SWEVENT_HLIST_BITS);
7317 }
7318 
7319 static inline struct hlist_head *
7320 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7321 {
7322 	u64 hash = swevent_hash(type, event_id);
7323 
7324 	return &hlist->heads[hash];
7325 }
7326 
7327 /* For the read side: events when they trigger */
7328 static inline struct hlist_head *
7329 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7330 {
7331 	struct swevent_hlist *hlist;
7332 
7333 	hlist = rcu_dereference(swhash->swevent_hlist);
7334 	if (!hlist)
7335 		return NULL;
7336 
7337 	return __find_swevent_head(hlist, type, event_id);
7338 }
7339 
7340 /* For the event head insertion and removal in the hlist */
7341 static inline struct hlist_head *
7342 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7343 {
7344 	struct swevent_hlist *hlist;
7345 	u32 event_id = event->attr.config;
7346 	u64 type = event->attr.type;
7347 
7348 	/*
7349 	 * Event scheduling is always serialized against hlist allocation
7350 	 * and release. Which makes the protected version suitable here.
7351 	 * The context lock guarantees that.
7352 	 */
7353 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7354 					  lockdep_is_held(&event->ctx->lock));
7355 	if (!hlist)
7356 		return NULL;
7357 
7358 	return __find_swevent_head(hlist, type, event_id);
7359 }
7360 
7361 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7362 				    u64 nr,
7363 				    struct perf_sample_data *data,
7364 				    struct pt_regs *regs)
7365 {
7366 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7367 	struct perf_event *event;
7368 	struct hlist_head *head;
7369 
7370 	rcu_read_lock();
7371 	head = find_swevent_head_rcu(swhash, type, event_id);
7372 	if (!head)
7373 		goto end;
7374 
7375 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7376 		if (perf_swevent_match(event, type, event_id, data, regs))
7377 			perf_swevent_event(event, nr, data, regs);
7378 	}
7379 end:
7380 	rcu_read_unlock();
7381 }
7382 
7383 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7384 
7385 int perf_swevent_get_recursion_context(void)
7386 {
7387 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7388 
7389 	return get_recursion_context(swhash->recursion);
7390 }
7391 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7392 
7393 void perf_swevent_put_recursion_context(int rctx)
7394 {
7395 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7396 
7397 	put_recursion_context(swhash->recursion, rctx);
7398 }
7399 
7400 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7401 {
7402 	struct perf_sample_data data;
7403 
7404 	if (WARN_ON_ONCE(!regs))
7405 		return;
7406 
7407 	perf_sample_data_init(&data, addr, 0);
7408 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7409 }
7410 
7411 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7412 {
7413 	int rctx;
7414 
7415 	preempt_disable_notrace();
7416 	rctx = perf_swevent_get_recursion_context();
7417 	if (unlikely(rctx < 0))
7418 		goto fail;
7419 
7420 	___perf_sw_event(event_id, nr, regs, addr);
7421 
7422 	perf_swevent_put_recursion_context(rctx);
7423 fail:
7424 	preempt_enable_notrace();
7425 }
7426 
7427 static void perf_swevent_read(struct perf_event *event)
7428 {
7429 }
7430 
7431 static int perf_swevent_add(struct perf_event *event, int flags)
7432 {
7433 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7434 	struct hw_perf_event *hwc = &event->hw;
7435 	struct hlist_head *head;
7436 
7437 	if (is_sampling_event(event)) {
7438 		hwc->last_period = hwc->sample_period;
7439 		perf_swevent_set_period(event);
7440 	}
7441 
7442 	hwc->state = !(flags & PERF_EF_START);
7443 
7444 	head = find_swevent_head(swhash, event);
7445 	if (WARN_ON_ONCE(!head))
7446 		return -EINVAL;
7447 
7448 	hlist_add_head_rcu(&event->hlist_entry, head);
7449 	perf_event_update_userpage(event);
7450 
7451 	return 0;
7452 }
7453 
7454 static void perf_swevent_del(struct perf_event *event, int flags)
7455 {
7456 	hlist_del_rcu(&event->hlist_entry);
7457 }
7458 
7459 static void perf_swevent_start(struct perf_event *event, int flags)
7460 {
7461 	event->hw.state = 0;
7462 }
7463 
7464 static void perf_swevent_stop(struct perf_event *event, int flags)
7465 {
7466 	event->hw.state = PERF_HES_STOPPED;
7467 }
7468 
7469 /* Deref the hlist from the update side */
7470 static inline struct swevent_hlist *
7471 swevent_hlist_deref(struct swevent_htable *swhash)
7472 {
7473 	return rcu_dereference_protected(swhash->swevent_hlist,
7474 					 lockdep_is_held(&swhash->hlist_mutex));
7475 }
7476 
7477 static void swevent_hlist_release(struct swevent_htable *swhash)
7478 {
7479 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7480 
7481 	if (!hlist)
7482 		return;
7483 
7484 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7485 	kfree_rcu(hlist, rcu_head);
7486 }
7487 
7488 static void swevent_hlist_put_cpu(int cpu)
7489 {
7490 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7491 
7492 	mutex_lock(&swhash->hlist_mutex);
7493 
7494 	if (!--swhash->hlist_refcount)
7495 		swevent_hlist_release(swhash);
7496 
7497 	mutex_unlock(&swhash->hlist_mutex);
7498 }
7499 
7500 static void swevent_hlist_put(void)
7501 {
7502 	int cpu;
7503 
7504 	for_each_possible_cpu(cpu)
7505 		swevent_hlist_put_cpu(cpu);
7506 }
7507 
7508 static int swevent_hlist_get_cpu(int cpu)
7509 {
7510 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7511 	int err = 0;
7512 
7513 	mutex_lock(&swhash->hlist_mutex);
7514 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7515 		struct swevent_hlist *hlist;
7516 
7517 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7518 		if (!hlist) {
7519 			err = -ENOMEM;
7520 			goto exit;
7521 		}
7522 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7523 	}
7524 	swhash->hlist_refcount++;
7525 exit:
7526 	mutex_unlock(&swhash->hlist_mutex);
7527 
7528 	return err;
7529 }
7530 
7531 static int swevent_hlist_get(void)
7532 {
7533 	int err, cpu, failed_cpu;
7534 
7535 	get_online_cpus();
7536 	for_each_possible_cpu(cpu) {
7537 		err = swevent_hlist_get_cpu(cpu);
7538 		if (err) {
7539 			failed_cpu = cpu;
7540 			goto fail;
7541 		}
7542 	}
7543 	put_online_cpus();
7544 
7545 	return 0;
7546 fail:
7547 	for_each_possible_cpu(cpu) {
7548 		if (cpu == failed_cpu)
7549 			break;
7550 		swevent_hlist_put_cpu(cpu);
7551 	}
7552 
7553 	put_online_cpus();
7554 	return err;
7555 }
7556 
7557 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7558 
7559 static void sw_perf_event_destroy(struct perf_event *event)
7560 {
7561 	u64 event_id = event->attr.config;
7562 
7563 	WARN_ON(event->parent);
7564 
7565 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7566 	swevent_hlist_put();
7567 }
7568 
7569 static int perf_swevent_init(struct perf_event *event)
7570 {
7571 	u64 event_id = event->attr.config;
7572 
7573 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7574 		return -ENOENT;
7575 
7576 	/*
7577 	 * no branch sampling for software events
7578 	 */
7579 	if (has_branch_stack(event))
7580 		return -EOPNOTSUPP;
7581 
7582 	switch (event_id) {
7583 	case PERF_COUNT_SW_CPU_CLOCK:
7584 	case PERF_COUNT_SW_TASK_CLOCK:
7585 		return -ENOENT;
7586 
7587 	default:
7588 		break;
7589 	}
7590 
7591 	if (event_id >= PERF_COUNT_SW_MAX)
7592 		return -ENOENT;
7593 
7594 	if (!event->parent) {
7595 		int err;
7596 
7597 		err = swevent_hlist_get();
7598 		if (err)
7599 			return err;
7600 
7601 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7602 		event->destroy = sw_perf_event_destroy;
7603 	}
7604 
7605 	return 0;
7606 }
7607 
7608 static struct pmu perf_swevent = {
7609 	.task_ctx_nr	= perf_sw_context,
7610 
7611 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7612 
7613 	.event_init	= perf_swevent_init,
7614 	.add		= perf_swevent_add,
7615 	.del		= perf_swevent_del,
7616 	.start		= perf_swevent_start,
7617 	.stop		= perf_swevent_stop,
7618 	.read		= perf_swevent_read,
7619 };
7620 
7621 #ifdef CONFIG_EVENT_TRACING
7622 
7623 static int perf_tp_filter_match(struct perf_event *event,
7624 				struct perf_sample_data *data)
7625 {
7626 	void *record = data->raw->frag.data;
7627 
7628 	/* only top level events have filters set */
7629 	if (event->parent)
7630 		event = event->parent;
7631 
7632 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7633 		return 1;
7634 	return 0;
7635 }
7636 
7637 static int perf_tp_event_match(struct perf_event *event,
7638 				struct perf_sample_data *data,
7639 				struct pt_regs *regs)
7640 {
7641 	if (event->hw.state & PERF_HES_STOPPED)
7642 		return 0;
7643 	/*
7644 	 * All tracepoints are from kernel-space.
7645 	 */
7646 	if (event->attr.exclude_kernel)
7647 		return 0;
7648 
7649 	if (!perf_tp_filter_match(event, data))
7650 		return 0;
7651 
7652 	return 1;
7653 }
7654 
7655 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7656 			       struct trace_event_call *call, u64 count,
7657 			       struct pt_regs *regs, struct hlist_head *head,
7658 			       struct task_struct *task)
7659 {
7660 	struct bpf_prog *prog = call->prog;
7661 
7662 	if (prog) {
7663 		*(struct pt_regs **)raw_data = regs;
7664 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7665 			perf_swevent_put_recursion_context(rctx);
7666 			return;
7667 		}
7668 	}
7669 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7670 		      rctx, task);
7671 }
7672 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7673 
7674 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7675 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7676 		   struct task_struct *task)
7677 {
7678 	struct perf_sample_data data;
7679 	struct perf_event *event;
7680 
7681 	struct perf_raw_record raw = {
7682 		.frag = {
7683 			.size = entry_size,
7684 			.data = record,
7685 		},
7686 	};
7687 
7688 	perf_sample_data_init(&data, 0, 0);
7689 	data.raw = &raw;
7690 
7691 	perf_trace_buf_update(record, event_type);
7692 
7693 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7694 		if (perf_tp_event_match(event, &data, regs))
7695 			perf_swevent_event(event, count, &data, regs);
7696 	}
7697 
7698 	/*
7699 	 * If we got specified a target task, also iterate its context and
7700 	 * deliver this event there too.
7701 	 */
7702 	if (task && task != current) {
7703 		struct perf_event_context *ctx;
7704 		struct trace_entry *entry = record;
7705 
7706 		rcu_read_lock();
7707 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7708 		if (!ctx)
7709 			goto unlock;
7710 
7711 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7712 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7713 				continue;
7714 			if (event->attr.config != entry->type)
7715 				continue;
7716 			if (perf_tp_event_match(event, &data, regs))
7717 				perf_swevent_event(event, count, &data, regs);
7718 		}
7719 unlock:
7720 		rcu_read_unlock();
7721 	}
7722 
7723 	perf_swevent_put_recursion_context(rctx);
7724 }
7725 EXPORT_SYMBOL_GPL(perf_tp_event);
7726 
7727 static void tp_perf_event_destroy(struct perf_event *event)
7728 {
7729 	perf_trace_destroy(event);
7730 }
7731 
7732 static int perf_tp_event_init(struct perf_event *event)
7733 {
7734 	int err;
7735 
7736 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7737 		return -ENOENT;
7738 
7739 	/*
7740 	 * no branch sampling for tracepoint events
7741 	 */
7742 	if (has_branch_stack(event))
7743 		return -EOPNOTSUPP;
7744 
7745 	err = perf_trace_init(event);
7746 	if (err)
7747 		return err;
7748 
7749 	event->destroy = tp_perf_event_destroy;
7750 
7751 	return 0;
7752 }
7753 
7754 static struct pmu perf_tracepoint = {
7755 	.task_ctx_nr	= perf_sw_context,
7756 
7757 	.event_init	= perf_tp_event_init,
7758 	.add		= perf_trace_add,
7759 	.del		= perf_trace_del,
7760 	.start		= perf_swevent_start,
7761 	.stop		= perf_swevent_stop,
7762 	.read		= perf_swevent_read,
7763 };
7764 
7765 static inline void perf_tp_register(void)
7766 {
7767 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7768 }
7769 
7770 static void perf_event_free_filter(struct perf_event *event)
7771 {
7772 	ftrace_profile_free_filter(event);
7773 }
7774 
7775 #ifdef CONFIG_BPF_SYSCALL
7776 static void bpf_overflow_handler(struct perf_event *event,
7777 				 struct perf_sample_data *data,
7778 				 struct pt_regs *regs)
7779 {
7780 	struct bpf_perf_event_data_kern ctx = {
7781 		.data = data,
7782 		.regs = regs,
7783 	};
7784 	int ret = 0;
7785 
7786 	preempt_disable();
7787 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7788 		goto out;
7789 	rcu_read_lock();
7790 	ret = BPF_PROG_RUN(event->prog, &ctx);
7791 	rcu_read_unlock();
7792 out:
7793 	__this_cpu_dec(bpf_prog_active);
7794 	preempt_enable();
7795 	if (!ret)
7796 		return;
7797 
7798 	event->orig_overflow_handler(event, data, regs);
7799 }
7800 
7801 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7802 {
7803 	struct bpf_prog *prog;
7804 
7805 	if (event->overflow_handler_context)
7806 		/* hw breakpoint or kernel counter */
7807 		return -EINVAL;
7808 
7809 	if (event->prog)
7810 		return -EEXIST;
7811 
7812 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7813 	if (IS_ERR(prog))
7814 		return PTR_ERR(prog);
7815 
7816 	event->prog = prog;
7817 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7818 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7819 	return 0;
7820 }
7821 
7822 static void perf_event_free_bpf_handler(struct perf_event *event)
7823 {
7824 	struct bpf_prog *prog = event->prog;
7825 
7826 	if (!prog)
7827 		return;
7828 
7829 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7830 	event->prog = NULL;
7831 	bpf_prog_put(prog);
7832 }
7833 #else
7834 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7835 {
7836 	return -EOPNOTSUPP;
7837 }
7838 static void perf_event_free_bpf_handler(struct perf_event *event)
7839 {
7840 }
7841 #endif
7842 
7843 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7844 {
7845 	bool is_kprobe, is_tracepoint;
7846 	struct bpf_prog *prog;
7847 
7848 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7849 	    event->attr.type == PERF_TYPE_SOFTWARE)
7850 		return perf_event_set_bpf_handler(event, prog_fd);
7851 
7852 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7853 		return -EINVAL;
7854 
7855 	if (event->tp_event->prog)
7856 		return -EEXIST;
7857 
7858 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7859 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7860 	if (!is_kprobe && !is_tracepoint)
7861 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7862 		return -EINVAL;
7863 
7864 	prog = bpf_prog_get(prog_fd);
7865 	if (IS_ERR(prog))
7866 		return PTR_ERR(prog);
7867 
7868 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7869 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7870 		/* valid fd, but invalid bpf program type */
7871 		bpf_prog_put(prog);
7872 		return -EINVAL;
7873 	}
7874 
7875 	if (is_tracepoint) {
7876 		int off = trace_event_get_offsets(event->tp_event);
7877 
7878 		if (prog->aux->max_ctx_offset > off) {
7879 			bpf_prog_put(prog);
7880 			return -EACCES;
7881 		}
7882 	}
7883 	event->tp_event->prog = prog;
7884 
7885 	return 0;
7886 }
7887 
7888 static void perf_event_free_bpf_prog(struct perf_event *event)
7889 {
7890 	struct bpf_prog *prog;
7891 
7892 	perf_event_free_bpf_handler(event);
7893 
7894 	if (!event->tp_event)
7895 		return;
7896 
7897 	prog = event->tp_event->prog;
7898 	if (prog) {
7899 		event->tp_event->prog = NULL;
7900 		bpf_prog_put(prog);
7901 	}
7902 }
7903 
7904 #else
7905 
7906 static inline void perf_tp_register(void)
7907 {
7908 }
7909 
7910 static void perf_event_free_filter(struct perf_event *event)
7911 {
7912 }
7913 
7914 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7915 {
7916 	return -ENOENT;
7917 }
7918 
7919 static void perf_event_free_bpf_prog(struct perf_event *event)
7920 {
7921 }
7922 #endif /* CONFIG_EVENT_TRACING */
7923 
7924 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7925 void perf_bp_event(struct perf_event *bp, void *data)
7926 {
7927 	struct perf_sample_data sample;
7928 	struct pt_regs *regs = data;
7929 
7930 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7931 
7932 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7933 		perf_swevent_event(bp, 1, &sample, regs);
7934 }
7935 #endif
7936 
7937 /*
7938  * Allocate a new address filter
7939  */
7940 static struct perf_addr_filter *
7941 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7942 {
7943 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7944 	struct perf_addr_filter *filter;
7945 
7946 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7947 	if (!filter)
7948 		return NULL;
7949 
7950 	INIT_LIST_HEAD(&filter->entry);
7951 	list_add_tail(&filter->entry, filters);
7952 
7953 	return filter;
7954 }
7955 
7956 static void free_filters_list(struct list_head *filters)
7957 {
7958 	struct perf_addr_filter *filter, *iter;
7959 
7960 	list_for_each_entry_safe(filter, iter, filters, entry) {
7961 		if (filter->inode)
7962 			iput(filter->inode);
7963 		list_del(&filter->entry);
7964 		kfree(filter);
7965 	}
7966 }
7967 
7968 /*
7969  * Free existing address filters and optionally install new ones
7970  */
7971 static void perf_addr_filters_splice(struct perf_event *event,
7972 				     struct list_head *head)
7973 {
7974 	unsigned long flags;
7975 	LIST_HEAD(list);
7976 
7977 	if (!has_addr_filter(event))
7978 		return;
7979 
7980 	/* don't bother with children, they don't have their own filters */
7981 	if (event->parent)
7982 		return;
7983 
7984 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7985 
7986 	list_splice_init(&event->addr_filters.list, &list);
7987 	if (head)
7988 		list_splice(head, &event->addr_filters.list);
7989 
7990 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7991 
7992 	free_filters_list(&list);
7993 }
7994 
7995 /*
7996  * Scan through mm's vmas and see if one of them matches the
7997  * @filter; if so, adjust filter's address range.
7998  * Called with mm::mmap_sem down for reading.
7999  */
8000 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8001 					    struct mm_struct *mm)
8002 {
8003 	struct vm_area_struct *vma;
8004 
8005 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8006 		struct file *file = vma->vm_file;
8007 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8008 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8009 
8010 		if (!file)
8011 			continue;
8012 
8013 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8014 			continue;
8015 
8016 		return vma->vm_start;
8017 	}
8018 
8019 	return 0;
8020 }
8021 
8022 /*
8023  * Update event's address range filters based on the
8024  * task's existing mappings, if any.
8025  */
8026 static void perf_event_addr_filters_apply(struct perf_event *event)
8027 {
8028 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8029 	struct task_struct *task = READ_ONCE(event->ctx->task);
8030 	struct perf_addr_filter *filter;
8031 	struct mm_struct *mm = NULL;
8032 	unsigned int count = 0;
8033 	unsigned long flags;
8034 
8035 	/*
8036 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8037 	 * will stop on the parent's child_mutex that our caller is also holding
8038 	 */
8039 	if (task == TASK_TOMBSTONE)
8040 		return;
8041 
8042 	mm = get_task_mm(event->ctx->task);
8043 	if (!mm)
8044 		goto restart;
8045 
8046 	down_read(&mm->mmap_sem);
8047 
8048 	raw_spin_lock_irqsave(&ifh->lock, flags);
8049 	list_for_each_entry(filter, &ifh->list, entry) {
8050 		event->addr_filters_offs[count] = 0;
8051 
8052 		/*
8053 		 * Adjust base offset if the filter is associated to a binary
8054 		 * that needs to be mapped:
8055 		 */
8056 		if (filter->inode)
8057 			event->addr_filters_offs[count] =
8058 				perf_addr_filter_apply(filter, mm);
8059 
8060 		count++;
8061 	}
8062 
8063 	event->addr_filters_gen++;
8064 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8065 
8066 	up_read(&mm->mmap_sem);
8067 
8068 	mmput(mm);
8069 
8070 restart:
8071 	perf_event_stop(event, 1);
8072 }
8073 
8074 /*
8075  * Address range filtering: limiting the data to certain
8076  * instruction address ranges. Filters are ioctl()ed to us from
8077  * userspace as ascii strings.
8078  *
8079  * Filter string format:
8080  *
8081  * ACTION RANGE_SPEC
8082  * where ACTION is one of the
8083  *  * "filter": limit the trace to this region
8084  *  * "start": start tracing from this address
8085  *  * "stop": stop tracing at this address/region;
8086  * RANGE_SPEC is
8087  *  * for kernel addresses: <start address>[/<size>]
8088  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8089  *
8090  * if <size> is not specified, the range is treated as a single address.
8091  */
8092 enum {
8093 	IF_ACT_NONE = -1,
8094 	IF_ACT_FILTER,
8095 	IF_ACT_START,
8096 	IF_ACT_STOP,
8097 	IF_SRC_FILE,
8098 	IF_SRC_KERNEL,
8099 	IF_SRC_FILEADDR,
8100 	IF_SRC_KERNELADDR,
8101 };
8102 
8103 enum {
8104 	IF_STATE_ACTION = 0,
8105 	IF_STATE_SOURCE,
8106 	IF_STATE_END,
8107 };
8108 
8109 static const match_table_t if_tokens = {
8110 	{ IF_ACT_FILTER,	"filter" },
8111 	{ IF_ACT_START,		"start" },
8112 	{ IF_ACT_STOP,		"stop" },
8113 	{ IF_SRC_FILE,		"%u/%u@%s" },
8114 	{ IF_SRC_KERNEL,	"%u/%u" },
8115 	{ IF_SRC_FILEADDR,	"%u@%s" },
8116 	{ IF_SRC_KERNELADDR,	"%u" },
8117 	{ IF_ACT_NONE,		NULL },
8118 };
8119 
8120 /*
8121  * Address filter string parser
8122  */
8123 static int
8124 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8125 			     struct list_head *filters)
8126 {
8127 	struct perf_addr_filter *filter = NULL;
8128 	char *start, *orig, *filename = NULL;
8129 	struct path path;
8130 	substring_t args[MAX_OPT_ARGS];
8131 	int state = IF_STATE_ACTION, token;
8132 	unsigned int kernel = 0;
8133 	int ret = -EINVAL;
8134 
8135 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8136 	if (!fstr)
8137 		return -ENOMEM;
8138 
8139 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8140 		ret = -EINVAL;
8141 
8142 		if (!*start)
8143 			continue;
8144 
8145 		/* filter definition begins */
8146 		if (state == IF_STATE_ACTION) {
8147 			filter = perf_addr_filter_new(event, filters);
8148 			if (!filter)
8149 				goto fail;
8150 		}
8151 
8152 		token = match_token(start, if_tokens, args);
8153 		switch (token) {
8154 		case IF_ACT_FILTER:
8155 		case IF_ACT_START:
8156 			filter->filter = 1;
8157 
8158 		case IF_ACT_STOP:
8159 			if (state != IF_STATE_ACTION)
8160 				goto fail;
8161 
8162 			state = IF_STATE_SOURCE;
8163 			break;
8164 
8165 		case IF_SRC_KERNELADDR:
8166 		case IF_SRC_KERNEL:
8167 			kernel = 1;
8168 
8169 		case IF_SRC_FILEADDR:
8170 		case IF_SRC_FILE:
8171 			if (state != IF_STATE_SOURCE)
8172 				goto fail;
8173 
8174 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8175 				filter->range = 1;
8176 
8177 			*args[0].to = 0;
8178 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8179 			if (ret)
8180 				goto fail;
8181 
8182 			if (filter->range) {
8183 				*args[1].to = 0;
8184 				ret = kstrtoul(args[1].from, 0, &filter->size);
8185 				if (ret)
8186 					goto fail;
8187 			}
8188 
8189 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8190 				int fpos = filter->range ? 2 : 1;
8191 
8192 				filename = match_strdup(&args[fpos]);
8193 				if (!filename) {
8194 					ret = -ENOMEM;
8195 					goto fail;
8196 				}
8197 			}
8198 
8199 			state = IF_STATE_END;
8200 			break;
8201 
8202 		default:
8203 			goto fail;
8204 		}
8205 
8206 		/*
8207 		 * Filter definition is fully parsed, validate and install it.
8208 		 * Make sure that it doesn't contradict itself or the event's
8209 		 * attribute.
8210 		 */
8211 		if (state == IF_STATE_END) {
8212 			if (kernel && event->attr.exclude_kernel)
8213 				goto fail;
8214 
8215 			if (!kernel) {
8216 				if (!filename)
8217 					goto fail;
8218 
8219 				/* look up the path and grab its inode */
8220 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8221 				if (ret)
8222 					goto fail_free_name;
8223 
8224 				filter->inode = igrab(d_inode(path.dentry));
8225 				path_put(&path);
8226 				kfree(filename);
8227 				filename = NULL;
8228 
8229 				ret = -EINVAL;
8230 				if (!filter->inode ||
8231 				    !S_ISREG(filter->inode->i_mode))
8232 					/* free_filters_list() will iput() */
8233 					goto fail;
8234 			}
8235 
8236 			/* ready to consume more filters */
8237 			state = IF_STATE_ACTION;
8238 			filter = NULL;
8239 		}
8240 	}
8241 
8242 	if (state != IF_STATE_ACTION)
8243 		goto fail;
8244 
8245 	kfree(orig);
8246 
8247 	return 0;
8248 
8249 fail_free_name:
8250 	kfree(filename);
8251 fail:
8252 	free_filters_list(filters);
8253 	kfree(orig);
8254 
8255 	return ret;
8256 }
8257 
8258 static int
8259 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8260 {
8261 	LIST_HEAD(filters);
8262 	int ret;
8263 
8264 	/*
8265 	 * Since this is called in perf_ioctl() path, we're already holding
8266 	 * ctx::mutex.
8267 	 */
8268 	lockdep_assert_held(&event->ctx->mutex);
8269 
8270 	if (WARN_ON_ONCE(event->parent))
8271 		return -EINVAL;
8272 
8273 	/*
8274 	 * For now, we only support filtering in per-task events; doing so
8275 	 * for CPU-wide events requires additional context switching trickery,
8276 	 * since same object code will be mapped at different virtual
8277 	 * addresses in different processes.
8278 	 */
8279 	if (!event->ctx->task)
8280 		return -EOPNOTSUPP;
8281 
8282 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8283 	if (ret)
8284 		return ret;
8285 
8286 	ret = event->pmu->addr_filters_validate(&filters);
8287 	if (ret) {
8288 		free_filters_list(&filters);
8289 		return ret;
8290 	}
8291 
8292 	/* remove existing filters, if any */
8293 	perf_addr_filters_splice(event, &filters);
8294 
8295 	/* install new filters */
8296 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8297 
8298 	return ret;
8299 }
8300 
8301 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8302 {
8303 	char *filter_str;
8304 	int ret = -EINVAL;
8305 
8306 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8307 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8308 	    !has_addr_filter(event))
8309 		return -EINVAL;
8310 
8311 	filter_str = strndup_user(arg, PAGE_SIZE);
8312 	if (IS_ERR(filter_str))
8313 		return PTR_ERR(filter_str);
8314 
8315 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8316 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8317 		ret = ftrace_profile_set_filter(event, event->attr.config,
8318 						filter_str);
8319 	else if (has_addr_filter(event))
8320 		ret = perf_event_set_addr_filter(event, filter_str);
8321 
8322 	kfree(filter_str);
8323 	return ret;
8324 }
8325 
8326 /*
8327  * hrtimer based swevent callback
8328  */
8329 
8330 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8331 {
8332 	enum hrtimer_restart ret = HRTIMER_RESTART;
8333 	struct perf_sample_data data;
8334 	struct pt_regs *regs;
8335 	struct perf_event *event;
8336 	u64 period;
8337 
8338 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8339 
8340 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8341 		return HRTIMER_NORESTART;
8342 
8343 	event->pmu->read(event);
8344 
8345 	perf_sample_data_init(&data, 0, event->hw.last_period);
8346 	regs = get_irq_regs();
8347 
8348 	if (regs && !perf_exclude_event(event, regs)) {
8349 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8350 			if (__perf_event_overflow(event, 1, &data, regs))
8351 				ret = HRTIMER_NORESTART;
8352 	}
8353 
8354 	period = max_t(u64, 10000, event->hw.sample_period);
8355 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8356 
8357 	return ret;
8358 }
8359 
8360 static void perf_swevent_start_hrtimer(struct perf_event *event)
8361 {
8362 	struct hw_perf_event *hwc = &event->hw;
8363 	s64 period;
8364 
8365 	if (!is_sampling_event(event))
8366 		return;
8367 
8368 	period = local64_read(&hwc->period_left);
8369 	if (period) {
8370 		if (period < 0)
8371 			period = 10000;
8372 
8373 		local64_set(&hwc->period_left, 0);
8374 	} else {
8375 		period = max_t(u64, 10000, hwc->sample_period);
8376 	}
8377 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8378 		      HRTIMER_MODE_REL_PINNED);
8379 }
8380 
8381 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8382 {
8383 	struct hw_perf_event *hwc = &event->hw;
8384 
8385 	if (is_sampling_event(event)) {
8386 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8387 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8388 
8389 		hrtimer_cancel(&hwc->hrtimer);
8390 	}
8391 }
8392 
8393 static void perf_swevent_init_hrtimer(struct perf_event *event)
8394 {
8395 	struct hw_perf_event *hwc = &event->hw;
8396 
8397 	if (!is_sampling_event(event))
8398 		return;
8399 
8400 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8401 	hwc->hrtimer.function = perf_swevent_hrtimer;
8402 
8403 	/*
8404 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8405 	 * mapping and avoid the whole period adjust feedback stuff.
8406 	 */
8407 	if (event->attr.freq) {
8408 		long freq = event->attr.sample_freq;
8409 
8410 		event->attr.sample_period = NSEC_PER_SEC / freq;
8411 		hwc->sample_period = event->attr.sample_period;
8412 		local64_set(&hwc->period_left, hwc->sample_period);
8413 		hwc->last_period = hwc->sample_period;
8414 		event->attr.freq = 0;
8415 	}
8416 }
8417 
8418 /*
8419  * Software event: cpu wall time clock
8420  */
8421 
8422 static void cpu_clock_event_update(struct perf_event *event)
8423 {
8424 	s64 prev;
8425 	u64 now;
8426 
8427 	now = local_clock();
8428 	prev = local64_xchg(&event->hw.prev_count, now);
8429 	local64_add(now - prev, &event->count);
8430 }
8431 
8432 static void cpu_clock_event_start(struct perf_event *event, int flags)
8433 {
8434 	local64_set(&event->hw.prev_count, local_clock());
8435 	perf_swevent_start_hrtimer(event);
8436 }
8437 
8438 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8439 {
8440 	perf_swevent_cancel_hrtimer(event);
8441 	cpu_clock_event_update(event);
8442 }
8443 
8444 static int cpu_clock_event_add(struct perf_event *event, int flags)
8445 {
8446 	if (flags & PERF_EF_START)
8447 		cpu_clock_event_start(event, flags);
8448 	perf_event_update_userpage(event);
8449 
8450 	return 0;
8451 }
8452 
8453 static void cpu_clock_event_del(struct perf_event *event, int flags)
8454 {
8455 	cpu_clock_event_stop(event, flags);
8456 }
8457 
8458 static void cpu_clock_event_read(struct perf_event *event)
8459 {
8460 	cpu_clock_event_update(event);
8461 }
8462 
8463 static int cpu_clock_event_init(struct perf_event *event)
8464 {
8465 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8466 		return -ENOENT;
8467 
8468 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8469 		return -ENOENT;
8470 
8471 	/*
8472 	 * no branch sampling for software events
8473 	 */
8474 	if (has_branch_stack(event))
8475 		return -EOPNOTSUPP;
8476 
8477 	perf_swevent_init_hrtimer(event);
8478 
8479 	return 0;
8480 }
8481 
8482 static struct pmu perf_cpu_clock = {
8483 	.task_ctx_nr	= perf_sw_context,
8484 
8485 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8486 
8487 	.event_init	= cpu_clock_event_init,
8488 	.add		= cpu_clock_event_add,
8489 	.del		= cpu_clock_event_del,
8490 	.start		= cpu_clock_event_start,
8491 	.stop		= cpu_clock_event_stop,
8492 	.read		= cpu_clock_event_read,
8493 };
8494 
8495 /*
8496  * Software event: task time clock
8497  */
8498 
8499 static void task_clock_event_update(struct perf_event *event, u64 now)
8500 {
8501 	u64 prev;
8502 	s64 delta;
8503 
8504 	prev = local64_xchg(&event->hw.prev_count, now);
8505 	delta = now - prev;
8506 	local64_add(delta, &event->count);
8507 }
8508 
8509 static void task_clock_event_start(struct perf_event *event, int flags)
8510 {
8511 	local64_set(&event->hw.prev_count, event->ctx->time);
8512 	perf_swevent_start_hrtimer(event);
8513 }
8514 
8515 static void task_clock_event_stop(struct perf_event *event, int flags)
8516 {
8517 	perf_swevent_cancel_hrtimer(event);
8518 	task_clock_event_update(event, event->ctx->time);
8519 }
8520 
8521 static int task_clock_event_add(struct perf_event *event, int flags)
8522 {
8523 	if (flags & PERF_EF_START)
8524 		task_clock_event_start(event, flags);
8525 	perf_event_update_userpage(event);
8526 
8527 	return 0;
8528 }
8529 
8530 static void task_clock_event_del(struct perf_event *event, int flags)
8531 {
8532 	task_clock_event_stop(event, PERF_EF_UPDATE);
8533 }
8534 
8535 static void task_clock_event_read(struct perf_event *event)
8536 {
8537 	u64 now = perf_clock();
8538 	u64 delta = now - event->ctx->timestamp;
8539 	u64 time = event->ctx->time + delta;
8540 
8541 	task_clock_event_update(event, time);
8542 }
8543 
8544 static int task_clock_event_init(struct perf_event *event)
8545 {
8546 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8547 		return -ENOENT;
8548 
8549 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8550 		return -ENOENT;
8551 
8552 	/*
8553 	 * no branch sampling for software events
8554 	 */
8555 	if (has_branch_stack(event))
8556 		return -EOPNOTSUPP;
8557 
8558 	perf_swevent_init_hrtimer(event);
8559 
8560 	return 0;
8561 }
8562 
8563 static struct pmu perf_task_clock = {
8564 	.task_ctx_nr	= perf_sw_context,
8565 
8566 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8567 
8568 	.event_init	= task_clock_event_init,
8569 	.add		= task_clock_event_add,
8570 	.del		= task_clock_event_del,
8571 	.start		= task_clock_event_start,
8572 	.stop		= task_clock_event_stop,
8573 	.read		= task_clock_event_read,
8574 };
8575 
8576 static void perf_pmu_nop_void(struct pmu *pmu)
8577 {
8578 }
8579 
8580 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8581 {
8582 }
8583 
8584 static int perf_pmu_nop_int(struct pmu *pmu)
8585 {
8586 	return 0;
8587 }
8588 
8589 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8590 
8591 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8592 {
8593 	__this_cpu_write(nop_txn_flags, flags);
8594 
8595 	if (flags & ~PERF_PMU_TXN_ADD)
8596 		return;
8597 
8598 	perf_pmu_disable(pmu);
8599 }
8600 
8601 static int perf_pmu_commit_txn(struct pmu *pmu)
8602 {
8603 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8604 
8605 	__this_cpu_write(nop_txn_flags, 0);
8606 
8607 	if (flags & ~PERF_PMU_TXN_ADD)
8608 		return 0;
8609 
8610 	perf_pmu_enable(pmu);
8611 	return 0;
8612 }
8613 
8614 static void perf_pmu_cancel_txn(struct pmu *pmu)
8615 {
8616 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8617 
8618 	__this_cpu_write(nop_txn_flags, 0);
8619 
8620 	if (flags & ~PERF_PMU_TXN_ADD)
8621 		return;
8622 
8623 	perf_pmu_enable(pmu);
8624 }
8625 
8626 static int perf_event_idx_default(struct perf_event *event)
8627 {
8628 	return 0;
8629 }
8630 
8631 /*
8632  * Ensures all contexts with the same task_ctx_nr have the same
8633  * pmu_cpu_context too.
8634  */
8635 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8636 {
8637 	struct pmu *pmu;
8638 
8639 	if (ctxn < 0)
8640 		return NULL;
8641 
8642 	list_for_each_entry(pmu, &pmus, entry) {
8643 		if (pmu->task_ctx_nr == ctxn)
8644 			return pmu->pmu_cpu_context;
8645 	}
8646 
8647 	return NULL;
8648 }
8649 
8650 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8651 {
8652 	int cpu;
8653 
8654 	for_each_possible_cpu(cpu) {
8655 		struct perf_cpu_context *cpuctx;
8656 
8657 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8658 
8659 		if (cpuctx->unique_pmu == old_pmu)
8660 			cpuctx->unique_pmu = pmu;
8661 	}
8662 }
8663 
8664 static void free_pmu_context(struct pmu *pmu)
8665 {
8666 	struct pmu *i;
8667 
8668 	mutex_lock(&pmus_lock);
8669 	/*
8670 	 * Like a real lame refcount.
8671 	 */
8672 	list_for_each_entry(i, &pmus, entry) {
8673 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8674 			update_pmu_context(i, pmu);
8675 			goto out;
8676 		}
8677 	}
8678 
8679 	free_percpu(pmu->pmu_cpu_context);
8680 out:
8681 	mutex_unlock(&pmus_lock);
8682 }
8683 
8684 /*
8685  * Let userspace know that this PMU supports address range filtering:
8686  */
8687 static ssize_t nr_addr_filters_show(struct device *dev,
8688 				    struct device_attribute *attr,
8689 				    char *page)
8690 {
8691 	struct pmu *pmu = dev_get_drvdata(dev);
8692 
8693 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8694 }
8695 DEVICE_ATTR_RO(nr_addr_filters);
8696 
8697 static struct idr pmu_idr;
8698 
8699 static ssize_t
8700 type_show(struct device *dev, struct device_attribute *attr, char *page)
8701 {
8702 	struct pmu *pmu = dev_get_drvdata(dev);
8703 
8704 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8705 }
8706 static DEVICE_ATTR_RO(type);
8707 
8708 static ssize_t
8709 perf_event_mux_interval_ms_show(struct device *dev,
8710 				struct device_attribute *attr,
8711 				char *page)
8712 {
8713 	struct pmu *pmu = dev_get_drvdata(dev);
8714 
8715 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8716 }
8717 
8718 static DEFINE_MUTEX(mux_interval_mutex);
8719 
8720 static ssize_t
8721 perf_event_mux_interval_ms_store(struct device *dev,
8722 				 struct device_attribute *attr,
8723 				 const char *buf, size_t count)
8724 {
8725 	struct pmu *pmu = dev_get_drvdata(dev);
8726 	int timer, cpu, ret;
8727 
8728 	ret = kstrtoint(buf, 0, &timer);
8729 	if (ret)
8730 		return ret;
8731 
8732 	if (timer < 1)
8733 		return -EINVAL;
8734 
8735 	/* same value, noting to do */
8736 	if (timer == pmu->hrtimer_interval_ms)
8737 		return count;
8738 
8739 	mutex_lock(&mux_interval_mutex);
8740 	pmu->hrtimer_interval_ms = timer;
8741 
8742 	/* update all cpuctx for this PMU */
8743 	get_online_cpus();
8744 	for_each_online_cpu(cpu) {
8745 		struct perf_cpu_context *cpuctx;
8746 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8747 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8748 
8749 		cpu_function_call(cpu,
8750 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8751 	}
8752 	put_online_cpus();
8753 	mutex_unlock(&mux_interval_mutex);
8754 
8755 	return count;
8756 }
8757 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8758 
8759 static struct attribute *pmu_dev_attrs[] = {
8760 	&dev_attr_type.attr,
8761 	&dev_attr_perf_event_mux_interval_ms.attr,
8762 	NULL,
8763 };
8764 ATTRIBUTE_GROUPS(pmu_dev);
8765 
8766 static int pmu_bus_running;
8767 static struct bus_type pmu_bus = {
8768 	.name		= "event_source",
8769 	.dev_groups	= pmu_dev_groups,
8770 };
8771 
8772 static void pmu_dev_release(struct device *dev)
8773 {
8774 	kfree(dev);
8775 }
8776 
8777 static int pmu_dev_alloc(struct pmu *pmu)
8778 {
8779 	int ret = -ENOMEM;
8780 
8781 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8782 	if (!pmu->dev)
8783 		goto out;
8784 
8785 	pmu->dev->groups = pmu->attr_groups;
8786 	device_initialize(pmu->dev);
8787 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8788 	if (ret)
8789 		goto free_dev;
8790 
8791 	dev_set_drvdata(pmu->dev, pmu);
8792 	pmu->dev->bus = &pmu_bus;
8793 	pmu->dev->release = pmu_dev_release;
8794 	ret = device_add(pmu->dev);
8795 	if (ret)
8796 		goto free_dev;
8797 
8798 	/* For PMUs with address filters, throw in an extra attribute: */
8799 	if (pmu->nr_addr_filters)
8800 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8801 
8802 	if (ret)
8803 		goto del_dev;
8804 
8805 out:
8806 	return ret;
8807 
8808 del_dev:
8809 	device_del(pmu->dev);
8810 
8811 free_dev:
8812 	put_device(pmu->dev);
8813 	goto out;
8814 }
8815 
8816 static struct lock_class_key cpuctx_mutex;
8817 static struct lock_class_key cpuctx_lock;
8818 
8819 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8820 {
8821 	int cpu, ret;
8822 
8823 	mutex_lock(&pmus_lock);
8824 	ret = -ENOMEM;
8825 	pmu->pmu_disable_count = alloc_percpu(int);
8826 	if (!pmu->pmu_disable_count)
8827 		goto unlock;
8828 
8829 	pmu->type = -1;
8830 	if (!name)
8831 		goto skip_type;
8832 	pmu->name = name;
8833 
8834 	if (type < 0) {
8835 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8836 		if (type < 0) {
8837 			ret = type;
8838 			goto free_pdc;
8839 		}
8840 	}
8841 	pmu->type = type;
8842 
8843 	if (pmu_bus_running) {
8844 		ret = pmu_dev_alloc(pmu);
8845 		if (ret)
8846 			goto free_idr;
8847 	}
8848 
8849 skip_type:
8850 	if (pmu->task_ctx_nr == perf_hw_context) {
8851 		static int hw_context_taken = 0;
8852 
8853 		/*
8854 		 * Other than systems with heterogeneous CPUs, it never makes
8855 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8856 		 * uncore must use perf_invalid_context.
8857 		 */
8858 		if (WARN_ON_ONCE(hw_context_taken &&
8859 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8860 			pmu->task_ctx_nr = perf_invalid_context;
8861 
8862 		hw_context_taken = 1;
8863 	}
8864 
8865 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8866 	if (pmu->pmu_cpu_context)
8867 		goto got_cpu_context;
8868 
8869 	ret = -ENOMEM;
8870 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8871 	if (!pmu->pmu_cpu_context)
8872 		goto free_dev;
8873 
8874 	for_each_possible_cpu(cpu) {
8875 		struct perf_cpu_context *cpuctx;
8876 
8877 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8878 		__perf_event_init_context(&cpuctx->ctx);
8879 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8880 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8881 		cpuctx->ctx.pmu = pmu;
8882 
8883 		__perf_mux_hrtimer_init(cpuctx, cpu);
8884 
8885 		cpuctx->unique_pmu = pmu;
8886 	}
8887 
8888 got_cpu_context:
8889 	if (!pmu->start_txn) {
8890 		if (pmu->pmu_enable) {
8891 			/*
8892 			 * If we have pmu_enable/pmu_disable calls, install
8893 			 * transaction stubs that use that to try and batch
8894 			 * hardware accesses.
8895 			 */
8896 			pmu->start_txn  = perf_pmu_start_txn;
8897 			pmu->commit_txn = perf_pmu_commit_txn;
8898 			pmu->cancel_txn = perf_pmu_cancel_txn;
8899 		} else {
8900 			pmu->start_txn  = perf_pmu_nop_txn;
8901 			pmu->commit_txn = perf_pmu_nop_int;
8902 			pmu->cancel_txn = perf_pmu_nop_void;
8903 		}
8904 	}
8905 
8906 	if (!pmu->pmu_enable) {
8907 		pmu->pmu_enable  = perf_pmu_nop_void;
8908 		pmu->pmu_disable = perf_pmu_nop_void;
8909 	}
8910 
8911 	if (!pmu->event_idx)
8912 		pmu->event_idx = perf_event_idx_default;
8913 
8914 	list_add_rcu(&pmu->entry, &pmus);
8915 	atomic_set(&pmu->exclusive_cnt, 0);
8916 	ret = 0;
8917 unlock:
8918 	mutex_unlock(&pmus_lock);
8919 
8920 	return ret;
8921 
8922 free_dev:
8923 	device_del(pmu->dev);
8924 	put_device(pmu->dev);
8925 
8926 free_idr:
8927 	if (pmu->type >= PERF_TYPE_MAX)
8928 		idr_remove(&pmu_idr, pmu->type);
8929 
8930 free_pdc:
8931 	free_percpu(pmu->pmu_disable_count);
8932 	goto unlock;
8933 }
8934 EXPORT_SYMBOL_GPL(perf_pmu_register);
8935 
8936 void perf_pmu_unregister(struct pmu *pmu)
8937 {
8938 	int remove_device;
8939 
8940 	mutex_lock(&pmus_lock);
8941 	remove_device = pmu_bus_running;
8942 	list_del_rcu(&pmu->entry);
8943 	mutex_unlock(&pmus_lock);
8944 
8945 	/*
8946 	 * We dereference the pmu list under both SRCU and regular RCU, so
8947 	 * synchronize against both of those.
8948 	 */
8949 	synchronize_srcu(&pmus_srcu);
8950 	synchronize_rcu();
8951 
8952 	free_percpu(pmu->pmu_disable_count);
8953 	if (pmu->type >= PERF_TYPE_MAX)
8954 		idr_remove(&pmu_idr, pmu->type);
8955 	if (remove_device) {
8956 		if (pmu->nr_addr_filters)
8957 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8958 		device_del(pmu->dev);
8959 		put_device(pmu->dev);
8960 	}
8961 	free_pmu_context(pmu);
8962 }
8963 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8964 
8965 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8966 {
8967 	struct perf_event_context *ctx = NULL;
8968 	int ret;
8969 
8970 	if (!try_module_get(pmu->module))
8971 		return -ENODEV;
8972 
8973 	if (event->group_leader != event) {
8974 		/*
8975 		 * This ctx->mutex can nest when we're called through
8976 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8977 		 */
8978 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8979 						 SINGLE_DEPTH_NESTING);
8980 		BUG_ON(!ctx);
8981 	}
8982 
8983 	event->pmu = pmu;
8984 	ret = pmu->event_init(event);
8985 
8986 	if (ctx)
8987 		perf_event_ctx_unlock(event->group_leader, ctx);
8988 
8989 	if (ret)
8990 		module_put(pmu->module);
8991 
8992 	return ret;
8993 }
8994 
8995 static struct pmu *perf_init_event(struct perf_event *event)
8996 {
8997 	struct pmu *pmu = NULL;
8998 	int idx;
8999 	int ret;
9000 
9001 	idx = srcu_read_lock(&pmus_srcu);
9002 
9003 	rcu_read_lock();
9004 	pmu = idr_find(&pmu_idr, event->attr.type);
9005 	rcu_read_unlock();
9006 	if (pmu) {
9007 		ret = perf_try_init_event(pmu, event);
9008 		if (ret)
9009 			pmu = ERR_PTR(ret);
9010 		goto unlock;
9011 	}
9012 
9013 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9014 		ret = perf_try_init_event(pmu, event);
9015 		if (!ret)
9016 			goto unlock;
9017 
9018 		if (ret != -ENOENT) {
9019 			pmu = ERR_PTR(ret);
9020 			goto unlock;
9021 		}
9022 	}
9023 	pmu = ERR_PTR(-ENOENT);
9024 unlock:
9025 	srcu_read_unlock(&pmus_srcu, idx);
9026 
9027 	return pmu;
9028 }
9029 
9030 static void attach_sb_event(struct perf_event *event)
9031 {
9032 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9033 
9034 	raw_spin_lock(&pel->lock);
9035 	list_add_rcu(&event->sb_list, &pel->list);
9036 	raw_spin_unlock(&pel->lock);
9037 }
9038 
9039 /*
9040  * We keep a list of all !task (and therefore per-cpu) events
9041  * that need to receive side-band records.
9042  *
9043  * This avoids having to scan all the various PMU per-cpu contexts
9044  * looking for them.
9045  */
9046 static void account_pmu_sb_event(struct perf_event *event)
9047 {
9048 	if (is_sb_event(event))
9049 		attach_sb_event(event);
9050 }
9051 
9052 static void account_event_cpu(struct perf_event *event, int cpu)
9053 {
9054 	if (event->parent)
9055 		return;
9056 
9057 	if (is_cgroup_event(event))
9058 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9059 }
9060 
9061 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9062 static void account_freq_event_nohz(void)
9063 {
9064 #ifdef CONFIG_NO_HZ_FULL
9065 	/* Lock so we don't race with concurrent unaccount */
9066 	spin_lock(&nr_freq_lock);
9067 	if (atomic_inc_return(&nr_freq_events) == 1)
9068 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9069 	spin_unlock(&nr_freq_lock);
9070 #endif
9071 }
9072 
9073 static void account_freq_event(void)
9074 {
9075 	if (tick_nohz_full_enabled())
9076 		account_freq_event_nohz();
9077 	else
9078 		atomic_inc(&nr_freq_events);
9079 }
9080 
9081 
9082 static void account_event(struct perf_event *event)
9083 {
9084 	bool inc = false;
9085 
9086 	if (event->parent)
9087 		return;
9088 
9089 	if (event->attach_state & PERF_ATTACH_TASK)
9090 		inc = true;
9091 	if (event->attr.mmap || event->attr.mmap_data)
9092 		atomic_inc(&nr_mmap_events);
9093 	if (event->attr.comm)
9094 		atomic_inc(&nr_comm_events);
9095 	if (event->attr.task)
9096 		atomic_inc(&nr_task_events);
9097 	if (event->attr.freq)
9098 		account_freq_event();
9099 	if (event->attr.context_switch) {
9100 		atomic_inc(&nr_switch_events);
9101 		inc = true;
9102 	}
9103 	if (has_branch_stack(event))
9104 		inc = true;
9105 	if (is_cgroup_event(event))
9106 		inc = true;
9107 
9108 	if (inc) {
9109 		if (atomic_inc_not_zero(&perf_sched_count))
9110 			goto enabled;
9111 
9112 		mutex_lock(&perf_sched_mutex);
9113 		if (!atomic_read(&perf_sched_count)) {
9114 			static_branch_enable(&perf_sched_events);
9115 			/*
9116 			 * Guarantee that all CPUs observe they key change and
9117 			 * call the perf scheduling hooks before proceeding to
9118 			 * install events that need them.
9119 			 */
9120 			synchronize_sched();
9121 		}
9122 		/*
9123 		 * Now that we have waited for the sync_sched(), allow further
9124 		 * increments to by-pass the mutex.
9125 		 */
9126 		atomic_inc(&perf_sched_count);
9127 		mutex_unlock(&perf_sched_mutex);
9128 	}
9129 enabled:
9130 
9131 	account_event_cpu(event, event->cpu);
9132 
9133 	account_pmu_sb_event(event);
9134 }
9135 
9136 /*
9137  * Allocate and initialize a event structure
9138  */
9139 static struct perf_event *
9140 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9141 		 struct task_struct *task,
9142 		 struct perf_event *group_leader,
9143 		 struct perf_event *parent_event,
9144 		 perf_overflow_handler_t overflow_handler,
9145 		 void *context, int cgroup_fd)
9146 {
9147 	struct pmu *pmu;
9148 	struct perf_event *event;
9149 	struct hw_perf_event *hwc;
9150 	long err = -EINVAL;
9151 
9152 	if ((unsigned)cpu >= nr_cpu_ids) {
9153 		if (!task || cpu != -1)
9154 			return ERR_PTR(-EINVAL);
9155 	}
9156 
9157 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9158 	if (!event)
9159 		return ERR_PTR(-ENOMEM);
9160 
9161 	/*
9162 	 * Single events are their own group leaders, with an
9163 	 * empty sibling list:
9164 	 */
9165 	if (!group_leader)
9166 		group_leader = event;
9167 
9168 	mutex_init(&event->child_mutex);
9169 	INIT_LIST_HEAD(&event->child_list);
9170 
9171 	INIT_LIST_HEAD(&event->group_entry);
9172 	INIT_LIST_HEAD(&event->event_entry);
9173 	INIT_LIST_HEAD(&event->sibling_list);
9174 	INIT_LIST_HEAD(&event->rb_entry);
9175 	INIT_LIST_HEAD(&event->active_entry);
9176 	INIT_LIST_HEAD(&event->addr_filters.list);
9177 	INIT_HLIST_NODE(&event->hlist_entry);
9178 
9179 
9180 	init_waitqueue_head(&event->waitq);
9181 	init_irq_work(&event->pending, perf_pending_event);
9182 
9183 	mutex_init(&event->mmap_mutex);
9184 	raw_spin_lock_init(&event->addr_filters.lock);
9185 
9186 	atomic_long_set(&event->refcount, 1);
9187 	event->cpu		= cpu;
9188 	event->attr		= *attr;
9189 	event->group_leader	= group_leader;
9190 	event->pmu		= NULL;
9191 	event->oncpu		= -1;
9192 
9193 	event->parent		= parent_event;
9194 
9195 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9196 	event->id		= atomic64_inc_return(&perf_event_id);
9197 
9198 	event->state		= PERF_EVENT_STATE_INACTIVE;
9199 
9200 	if (task) {
9201 		event->attach_state = PERF_ATTACH_TASK;
9202 		/*
9203 		 * XXX pmu::event_init needs to know what task to account to
9204 		 * and we cannot use the ctx information because we need the
9205 		 * pmu before we get a ctx.
9206 		 */
9207 		event->hw.target = task;
9208 	}
9209 
9210 	event->clock = &local_clock;
9211 	if (parent_event)
9212 		event->clock = parent_event->clock;
9213 
9214 	if (!overflow_handler && parent_event) {
9215 		overflow_handler = parent_event->overflow_handler;
9216 		context = parent_event->overflow_handler_context;
9217 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9218 		if (overflow_handler == bpf_overflow_handler) {
9219 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9220 
9221 			if (IS_ERR(prog)) {
9222 				err = PTR_ERR(prog);
9223 				goto err_ns;
9224 			}
9225 			event->prog = prog;
9226 			event->orig_overflow_handler =
9227 				parent_event->orig_overflow_handler;
9228 		}
9229 #endif
9230 	}
9231 
9232 	if (overflow_handler) {
9233 		event->overflow_handler	= overflow_handler;
9234 		event->overflow_handler_context = context;
9235 	} else if (is_write_backward(event)){
9236 		event->overflow_handler = perf_event_output_backward;
9237 		event->overflow_handler_context = NULL;
9238 	} else {
9239 		event->overflow_handler = perf_event_output_forward;
9240 		event->overflow_handler_context = NULL;
9241 	}
9242 
9243 	perf_event__state_init(event);
9244 
9245 	pmu = NULL;
9246 
9247 	hwc = &event->hw;
9248 	hwc->sample_period = attr->sample_period;
9249 	if (attr->freq && attr->sample_freq)
9250 		hwc->sample_period = 1;
9251 	hwc->last_period = hwc->sample_period;
9252 
9253 	local64_set(&hwc->period_left, hwc->sample_period);
9254 
9255 	/*
9256 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9257 	 */
9258 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9259 		goto err_ns;
9260 
9261 	if (!has_branch_stack(event))
9262 		event->attr.branch_sample_type = 0;
9263 
9264 	if (cgroup_fd != -1) {
9265 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9266 		if (err)
9267 			goto err_ns;
9268 	}
9269 
9270 	pmu = perf_init_event(event);
9271 	if (!pmu)
9272 		goto err_ns;
9273 	else if (IS_ERR(pmu)) {
9274 		err = PTR_ERR(pmu);
9275 		goto err_ns;
9276 	}
9277 
9278 	err = exclusive_event_init(event);
9279 	if (err)
9280 		goto err_pmu;
9281 
9282 	if (has_addr_filter(event)) {
9283 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9284 						   sizeof(unsigned long),
9285 						   GFP_KERNEL);
9286 		if (!event->addr_filters_offs)
9287 			goto err_per_task;
9288 
9289 		/* force hw sync on the address filters */
9290 		event->addr_filters_gen = 1;
9291 	}
9292 
9293 	if (!event->parent) {
9294 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9295 			err = get_callchain_buffers(attr->sample_max_stack);
9296 			if (err)
9297 				goto err_addr_filters;
9298 		}
9299 	}
9300 
9301 	/* symmetric to unaccount_event() in _free_event() */
9302 	account_event(event);
9303 
9304 	return event;
9305 
9306 err_addr_filters:
9307 	kfree(event->addr_filters_offs);
9308 
9309 err_per_task:
9310 	exclusive_event_destroy(event);
9311 
9312 err_pmu:
9313 	if (event->destroy)
9314 		event->destroy(event);
9315 	module_put(pmu->module);
9316 err_ns:
9317 	if (is_cgroup_event(event))
9318 		perf_detach_cgroup(event);
9319 	if (event->ns)
9320 		put_pid_ns(event->ns);
9321 	kfree(event);
9322 
9323 	return ERR_PTR(err);
9324 }
9325 
9326 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9327 			  struct perf_event_attr *attr)
9328 {
9329 	u32 size;
9330 	int ret;
9331 
9332 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9333 		return -EFAULT;
9334 
9335 	/*
9336 	 * zero the full structure, so that a short copy will be nice.
9337 	 */
9338 	memset(attr, 0, sizeof(*attr));
9339 
9340 	ret = get_user(size, &uattr->size);
9341 	if (ret)
9342 		return ret;
9343 
9344 	if (size > PAGE_SIZE)	/* silly large */
9345 		goto err_size;
9346 
9347 	if (!size)		/* abi compat */
9348 		size = PERF_ATTR_SIZE_VER0;
9349 
9350 	if (size < PERF_ATTR_SIZE_VER0)
9351 		goto err_size;
9352 
9353 	/*
9354 	 * If we're handed a bigger struct than we know of,
9355 	 * ensure all the unknown bits are 0 - i.e. new
9356 	 * user-space does not rely on any kernel feature
9357 	 * extensions we dont know about yet.
9358 	 */
9359 	if (size > sizeof(*attr)) {
9360 		unsigned char __user *addr;
9361 		unsigned char __user *end;
9362 		unsigned char val;
9363 
9364 		addr = (void __user *)uattr + sizeof(*attr);
9365 		end  = (void __user *)uattr + size;
9366 
9367 		for (; addr < end; addr++) {
9368 			ret = get_user(val, addr);
9369 			if (ret)
9370 				return ret;
9371 			if (val)
9372 				goto err_size;
9373 		}
9374 		size = sizeof(*attr);
9375 	}
9376 
9377 	ret = copy_from_user(attr, uattr, size);
9378 	if (ret)
9379 		return -EFAULT;
9380 
9381 	if (attr->__reserved_1)
9382 		return -EINVAL;
9383 
9384 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9385 		return -EINVAL;
9386 
9387 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9388 		return -EINVAL;
9389 
9390 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9391 		u64 mask = attr->branch_sample_type;
9392 
9393 		/* only using defined bits */
9394 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9395 			return -EINVAL;
9396 
9397 		/* at least one branch bit must be set */
9398 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9399 			return -EINVAL;
9400 
9401 		/* propagate priv level, when not set for branch */
9402 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9403 
9404 			/* exclude_kernel checked on syscall entry */
9405 			if (!attr->exclude_kernel)
9406 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9407 
9408 			if (!attr->exclude_user)
9409 				mask |= PERF_SAMPLE_BRANCH_USER;
9410 
9411 			if (!attr->exclude_hv)
9412 				mask |= PERF_SAMPLE_BRANCH_HV;
9413 			/*
9414 			 * adjust user setting (for HW filter setup)
9415 			 */
9416 			attr->branch_sample_type = mask;
9417 		}
9418 		/* privileged levels capture (kernel, hv): check permissions */
9419 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9420 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9421 			return -EACCES;
9422 	}
9423 
9424 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9425 		ret = perf_reg_validate(attr->sample_regs_user);
9426 		if (ret)
9427 			return ret;
9428 	}
9429 
9430 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9431 		if (!arch_perf_have_user_stack_dump())
9432 			return -ENOSYS;
9433 
9434 		/*
9435 		 * We have __u32 type for the size, but so far
9436 		 * we can only use __u16 as maximum due to the
9437 		 * __u16 sample size limit.
9438 		 */
9439 		if (attr->sample_stack_user >= USHRT_MAX)
9440 			ret = -EINVAL;
9441 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9442 			ret = -EINVAL;
9443 	}
9444 
9445 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9446 		ret = perf_reg_validate(attr->sample_regs_intr);
9447 out:
9448 	return ret;
9449 
9450 err_size:
9451 	put_user(sizeof(*attr), &uattr->size);
9452 	ret = -E2BIG;
9453 	goto out;
9454 }
9455 
9456 static int
9457 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9458 {
9459 	struct ring_buffer *rb = NULL;
9460 	int ret = -EINVAL;
9461 
9462 	if (!output_event)
9463 		goto set;
9464 
9465 	/* don't allow circular references */
9466 	if (event == output_event)
9467 		goto out;
9468 
9469 	/*
9470 	 * Don't allow cross-cpu buffers
9471 	 */
9472 	if (output_event->cpu != event->cpu)
9473 		goto out;
9474 
9475 	/*
9476 	 * If its not a per-cpu rb, it must be the same task.
9477 	 */
9478 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9479 		goto out;
9480 
9481 	/*
9482 	 * Mixing clocks in the same buffer is trouble you don't need.
9483 	 */
9484 	if (output_event->clock != event->clock)
9485 		goto out;
9486 
9487 	/*
9488 	 * Either writing ring buffer from beginning or from end.
9489 	 * Mixing is not allowed.
9490 	 */
9491 	if (is_write_backward(output_event) != is_write_backward(event))
9492 		goto out;
9493 
9494 	/*
9495 	 * If both events generate aux data, they must be on the same PMU
9496 	 */
9497 	if (has_aux(event) && has_aux(output_event) &&
9498 	    event->pmu != output_event->pmu)
9499 		goto out;
9500 
9501 set:
9502 	mutex_lock(&event->mmap_mutex);
9503 	/* Can't redirect output if we've got an active mmap() */
9504 	if (atomic_read(&event->mmap_count))
9505 		goto unlock;
9506 
9507 	if (output_event) {
9508 		/* get the rb we want to redirect to */
9509 		rb = ring_buffer_get(output_event);
9510 		if (!rb)
9511 			goto unlock;
9512 	}
9513 
9514 	ring_buffer_attach(event, rb);
9515 
9516 	ret = 0;
9517 unlock:
9518 	mutex_unlock(&event->mmap_mutex);
9519 
9520 out:
9521 	return ret;
9522 }
9523 
9524 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9525 {
9526 	if (b < a)
9527 		swap(a, b);
9528 
9529 	mutex_lock(a);
9530 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9531 }
9532 
9533 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9534 {
9535 	bool nmi_safe = false;
9536 
9537 	switch (clk_id) {
9538 	case CLOCK_MONOTONIC:
9539 		event->clock = &ktime_get_mono_fast_ns;
9540 		nmi_safe = true;
9541 		break;
9542 
9543 	case CLOCK_MONOTONIC_RAW:
9544 		event->clock = &ktime_get_raw_fast_ns;
9545 		nmi_safe = true;
9546 		break;
9547 
9548 	case CLOCK_REALTIME:
9549 		event->clock = &ktime_get_real_ns;
9550 		break;
9551 
9552 	case CLOCK_BOOTTIME:
9553 		event->clock = &ktime_get_boot_ns;
9554 		break;
9555 
9556 	case CLOCK_TAI:
9557 		event->clock = &ktime_get_tai_ns;
9558 		break;
9559 
9560 	default:
9561 		return -EINVAL;
9562 	}
9563 
9564 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9565 		return -EINVAL;
9566 
9567 	return 0;
9568 }
9569 
9570 /*
9571  * Variation on perf_event_ctx_lock_nested(), except we take two context
9572  * mutexes.
9573  */
9574 static struct perf_event_context *
9575 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9576 			     struct perf_event_context *ctx)
9577 {
9578 	struct perf_event_context *gctx;
9579 
9580 again:
9581 	rcu_read_lock();
9582 	gctx = READ_ONCE(group_leader->ctx);
9583 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9584 		rcu_read_unlock();
9585 		goto again;
9586 	}
9587 	rcu_read_unlock();
9588 
9589 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9590 
9591 	if (group_leader->ctx != gctx) {
9592 		mutex_unlock(&ctx->mutex);
9593 		mutex_unlock(&gctx->mutex);
9594 		put_ctx(gctx);
9595 		goto again;
9596 	}
9597 
9598 	return gctx;
9599 }
9600 
9601 /**
9602  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9603  *
9604  * @attr_uptr:	event_id type attributes for monitoring/sampling
9605  * @pid:		target pid
9606  * @cpu:		target cpu
9607  * @group_fd:		group leader event fd
9608  */
9609 SYSCALL_DEFINE5(perf_event_open,
9610 		struct perf_event_attr __user *, attr_uptr,
9611 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9612 {
9613 	struct perf_event *group_leader = NULL, *output_event = NULL;
9614 	struct perf_event *event, *sibling;
9615 	struct perf_event_attr attr;
9616 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9617 	struct file *event_file = NULL;
9618 	struct fd group = {NULL, 0};
9619 	struct task_struct *task = NULL;
9620 	struct pmu *pmu;
9621 	int event_fd;
9622 	int move_group = 0;
9623 	int err;
9624 	int f_flags = O_RDWR;
9625 	int cgroup_fd = -1;
9626 
9627 	/* for future expandability... */
9628 	if (flags & ~PERF_FLAG_ALL)
9629 		return -EINVAL;
9630 
9631 	err = perf_copy_attr(attr_uptr, &attr);
9632 	if (err)
9633 		return err;
9634 
9635 	if (!attr.exclude_kernel) {
9636 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9637 			return -EACCES;
9638 	}
9639 
9640 	if (attr.freq) {
9641 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9642 			return -EINVAL;
9643 	} else {
9644 		if (attr.sample_period & (1ULL << 63))
9645 			return -EINVAL;
9646 	}
9647 
9648 	if (!attr.sample_max_stack)
9649 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9650 
9651 	/*
9652 	 * In cgroup mode, the pid argument is used to pass the fd
9653 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9654 	 * designates the cpu on which to monitor threads from that
9655 	 * cgroup.
9656 	 */
9657 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9658 		return -EINVAL;
9659 
9660 	if (flags & PERF_FLAG_FD_CLOEXEC)
9661 		f_flags |= O_CLOEXEC;
9662 
9663 	event_fd = get_unused_fd_flags(f_flags);
9664 	if (event_fd < 0)
9665 		return event_fd;
9666 
9667 	if (group_fd != -1) {
9668 		err = perf_fget_light(group_fd, &group);
9669 		if (err)
9670 			goto err_fd;
9671 		group_leader = group.file->private_data;
9672 		if (flags & PERF_FLAG_FD_OUTPUT)
9673 			output_event = group_leader;
9674 		if (flags & PERF_FLAG_FD_NO_GROUP)
9675 			group_leader = NULL;
9676 	}
9677 
9678 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9679 		task = find_lively_task_by_vpid(pid);
9680 		if (IS_ERR(task)) {
9681 			err = PTR_ERR(task);
9682 			goto err_group_fd;
9683 		}
9684 	}
9685 
9686 	if (task && group_leader &&
9687 	    group_leader->attr.inherit != attr.inherit) {
9688 		err = -EINVAL;
9689 		goto err_task;
9690 	}
9691 
9692 	get_online_cpus();
9693 
9694 	if (task) {
9695 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9696 		if (err)
9697 			goto err_cpus;
9698 
9699 		/*
9700 		 * Reuse ptrace permission checks for now.
9701 		 *
9702 		 * We must hold cred_guard_mutex across this and any potential
9703 		 * perf_install_in_context() call for this new event to
9704 		 * serialize against exec() altering our credentials (and the
9705 		 * perf_event_exit_task() that could imply).
9706 		 */
9707 		err = -EACCES;
9708 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9709 			goto err_cred;
9710 	}
9711 
9712 	if (flags & PERF_FLAG_PID_CGROUP)
9713 		cgroup_fd = pid;
9714 
9715 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9716 				 NULL, NULL, cgroup_fd);
9717 	if (IS_ERR(event)) {
9718 		err = PTR_ERR(event);
9719 		goto err_cred;
9720 	}
9721 
9722 	if (is_sampling_event(event)) {
9723 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9724 			err = -EOPNOTSUPP;
9725 			goto err_alloc;
9726 		}
9727 	}
9728 
9729 	/*
9730 	 * Special case software events and allow them to be part of
9731 	 * any hardware group.
9732 	 */
9733 	pmu = event->pmu;
9734 
9735 	if (attr.use_clockid) {
9736 		err = perf_event_set_clock(event, attr.clockid);
9737 		if (err)
9738 			goto err_alloc;
9739 	}
9740 
9741 	if (pmu->task_ctx_nr == perf_sw_context)
9742 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9743 
9744 	if (group_leader &&
9745 	    (is_software_event(event) != is_software_event(group_leader))) {
9746 		if (is_software_event(event)) {
9747 			/*
9748 			 * If event and group_leader are not both a software
9749 			 * event, and event is, then group leader is not.
9750 			 *
9751 			 * Allow the addition of software events to !software
9752 			 * groups, this is safe because software events never
9753 			 * fail to schedule.
9754 			 */
9755 			pmu = group_leader->pmu;
9756 		} else if (is_software_event(group_leader) &&
9757 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9758 			/*
9759 			 * In case the group is a pure software group, and we
9760 			 * try to add a hardware event, move the whole group to
9761 			 * the hardware context.
9762 			 */
9763 			move_group = 1;
9764 		}
9765 	}
9766 
9767 	/*
9768 	 * Get the target context (task or percpu):
9769 	 */
9770 	ctx = find_get_context(pmu, task, event);
9771 	if (IS_ERR(ctx)) {
9772 		err = PTR_ERR(ctx);
9773 		goto err_alloc;
9774 	}
9775 
9776 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9777 		err = -EBUSY;
9778 		goto err_context;
9779 	}
9780 
9781 	/*
9782 	 * Look up the group leader (we will attach this event to it):
9783 	 */
9784 	if (group_leader) {
9785 		err = -EINVAL;
9786 
9787 		/*
9788 		 * Do not allow a recursive hierarchy (this new sibling
9789 		 * becoming part of another group-sibling):
9790 		 */
9791 		if (group_leader->group_leader != group_leader)
9792 			goto err_context;
9793 
9794 		/* All events in a group should have the same clock */
9795 		if (group_leader->clock != event->clock)
9796 			goto err_context;
9797 
9798 		/*
9799 		 * Do not allow to attach to a group in a different
9800 		 * task or CPU context:
9801 		 */
9802 		if (move_group) {
9803 			/*
9804 			 * Make sure we're both on the same task, or both
9805 			 * per-cpu events.
9806 			 */
9807 			if (group_leader->ctx->task != ctx->task)
9808 				goto err_context;
9809 
9810 			/*
9811 			 * Make sure we're both events for the same CPU;
9812 			 * grouping events for different CPUs is broken; since
9813 			 * you can never concurrently schedule them anyhow.
9814 			 */
9815 			if (group_leader->cpu != event->cpu)
9816 				goto err_context;
9817 		} else {
9818 			if (group_leader->ctx != ctx)
9819 				goto err_context;
9820 		}
9821 
9822 		/*
9823 		 * Only a group leader can be exclusive or pinned
9824 		 */
9825 		if (attr.exclusive || attr.pinned)
9826 			goto err_context;
9827 	}
9828 
9829 	if (output_event) {
9830 		err = perf_event_set_output(event, output_event);
9831 		if (err)
9832 			goto err_context;
9833 	}
9834 
9835 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9836 					f_flags);
9837 	if (IS_ERR(event_file)) {
9838 		err = PTR_ERR(event_file);
9839 		event_file = NULL;
9840 		goto err_context;
9841 	}
9842 
9843 	if (move_group) {
9844 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9845 
9846 		if (gctx->task == TASK_TOMBSTONE) {
9847 			err = -ESRCH;
9848 			goto err_locked;
9849 		}
9850 
9851 		/*
9852 		 * Check if we raced against another sys_perf_event_open() call
9853 		 * moving the software group underneath us.
9854 		 */
9855 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9856 			/*
9857 			 * If someone moved the group out from under us, check
9858 			 * if this new event wound up on the same ctx, if so
9859 			 * its the regular !move_group case, otherwise fail.
9860 			 */
9861 			if (gctx != ctx) {
9862 				err = -EINVAL;
9863 				goto err_locked;
9864 			} else {
9865 				perf_event_ctx_unlock(group_leader, gctx);
9866 				move_group = 0;
9867 			}
9868 		}
9869 	} else {
9870 		mutex_lock(&ctx->mutex);
9871 	}
9872 
9873 	if (ctx->task == TASK_TOMBSTONE) {
9874 		err = -ESRCH;
9875 		goto err_locked;
9876 	}
9877 
9878 	if (!perf_event_validate_size(event)) {
9879 		err = -E2BIG;
9880 		goto err_locked;
9881 	}
9882 
9883 	/*
9884 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9885 	 * because we need to serialize with concurrent event creation.
9886 	 */
9887 	if (!exclusive_event_installable(event, ctx)) {
9888 		/* exclusive and group stuff are assumed mutually exclusive */
9889 		WARN_ON_ONCE(move_group);
9890 
9891 		err = -EBUSY;
9892 		goto err_locked;
9893 	}
9894 
9895 	WARN_ON_ONCE(ctx->parent_ctx);
9896 
9897 	/*
9898 	 * This is the point on no return; we cannot fail hereafter. This is
9899 	 * where we start modifying current state.
9900 	 */
9901 
9902 	if (move_group) {
9903 		/*
9904 		 * See perf_event_ctx_lock() for comments on the details
9905 		 * of swizzling perf_event::ctx.
9906 		 */
9907 		perf_remove_from_context(group_leader, 0);
9908 
9909 		list_for_each_entry(sibling, &group_leader->sibling_list,
9910 				    group_entry) {
9911 			perf_remove_from_context(sibling, 0);
9912 			put_ctx(gctx);
9913 		}
9914 
9915 		/*
9916 		 * Wait for everybody to stop referencing the events through
9917 		 * the old lists, before installing it on new lists.
9918 		 */
9919 		synchronize_rcu();
9920 
9921 		/*
9922 		 * Install the group siblings before the group leader.
9923 		 *
9924 		 * Because a group leader will try and install the entire group
9925 		 * (through the sibling list, which is still in-tact), we can
9926 		 * end up with siblings installed in the wrong context.
9927 		 *
9928 		 * By installing siblings first we NO-OP because they're not
9929 		 * reachable through the group lists.
9930 		 */
9931 		list_for_each_entry(sibling, &group_leader->sibling_list,
9932 				    group_entry) {
9933 			perf_event__state_init(sibling);
9934 			perf_install_in_context(ctx, sibling, sibling->cpu);
9935 			get_ctx(ctx);
9936 		}
9937 
9938 		/*
9939 		 * Removing from the context ends up with disabled
9940 		 * event. What we want here is event in the initial
9941 		 * startup state, ready to be add into new context.
9942 		 */
9943 		perf_event__state_init(group_leader);
9944 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9945 		get_ctx(ctx);
9946 
9947 		/*
9948 		 * Now that all events are installed in @ctx, nothing
9949 		 * references @gctx anymore, so drop the last reference we have
9950 		 * on it.
9951 		 */
9952 		put_ctx(gctx);
9953 	}
9954 
9955 	/*
9956 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9957 	 * that we're serialized against further additions and before
9958 	 * perf_install_in_context() which is the point the event is active and
9959 	 * can use these values.
9960 	 */
9961 	perf_event__header_size(event);
9962 	perf_event__id_header_size(event);
9963 
9964 	event->owner = current;
9965 
9966 	perf_install_in_context(ctx, event, event->cpu);
9967 	perf_unpin_context(ctx);
9968 
9969 	if (move_group)
9970 		perf_event_ctx_unlock(group_leader, gctx);
9971 	mutex_unlock(&ctx->mutex);
9972 
9973 	if (task) {
9974 		mutex_unlock(&task->signal->cred_guard_mutex);
9975 		put_task_struct(task);
9976 	}
9977 
9978 	put_online_cpus();
9979 
9980 	mutex_lock(&current->perf_event_mutex);
9981 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9982 	mutex_unlock(&current->perf_event_mutex);
9983 
9984 	/*
9985 	 * Drop the reference on the group_event after placing the
9986 	 * new event on the sibling_list. This ensures destruction
9987 	 * of the group leader will find the pointer to itself in
9988 	 * perf_group_detach().
9989 	 */
9990 	fdput(group);
9991 	fd_install(event_fd, event_file);
9992 	return event_fd;
9993 
9994 err_locked:
9995 	if (move_group)
9996 		perf_event_ctx_unlock(group_leader, gctx);
9997 	mutex_unlock(&ctx->mutex);
9998 /* err_file: */
9999 	fput(event_file);
10000 err_context:
10001 	perf_unpin_context(ctx);
10002 	put_ctx(ctx);
10003 err_alloc:
10004 	/*
10005 	 * If event_file is set, the fput() above will have called ->release()
10006 	 * and that will take care of freeing the event.
10007 	 */
10008 	if (!event_file)
10009 		free_event(event);
10010 err_cred:
10011 	if (task)
10012 		mutex_unlock(&task->signal->cred_guard_mutex);
10013 err_cpus:
10014 	put_online_cpus();
10015 err_task:
10016 	if (task)
10017 		put_task_struct(task);
10018 err_group_fd:
10019 	fdput(group);
10020 err_fd:
10021 	put_unused_fd(event_fd);
10022 	return err;
10023 }
10024 
10025 /**
10026  * perf_event_create_kernel_counter
10027  *
10028  * @attr: attributes of the counter to create
10029  * @cpu: cpu in which the counter is bound
10030  * @task: task to profile (NULL for percpu)
10031  */
10032 struct perf_event *
10033 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10034 				 struct task_struct *task,
10035 				 perf_overflow_handler_t overflow_handler,
10036 				 void *context)
10037 {
10038 	struct perf_event_context *ctx;
10039 	struct perf_event *event;
10040 	int err;
10041 
10042 	/*
10043 	 * Get the target context (task or percpu):
10044 	 */
10045 
10046 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10047 				 overflow_handler, context, -1);
10048 	if (IS_ERR(event)) {
10049 		err = PTR_ERR(event);
10050 		goto err;
10051 	}
10052 
10053 	/* Mark owner so we could distinguish it from user events. */
10054 	event->owner = TASK_TOMBSTONE;
10055 
10056 	ctx = find_get_context(event->pmu, task, event);
10057 	if (IS_ERR(ctx)) {
10058 		err = PTR_ERR(ctx);
10059 		goto err_free;
10060 	}
10061 
10062 	WARN_ON_ONCE(ctx->parent_ctx);
10063 	mutex_lock(&ctx->mutex);
10064 	if (ctx->task == TASK_TOMBSTONE) {
10065 		err = -ESRCH;
10066 		goto err_unlock;
10067 	}
10068 
10069 	if (!exclusive_event_installable(event, ctx)) {
10070 		err = -EBUSY;
10071 		goto err_unlock;
10072 	}
10073 
10074 	perf_install_in_context(ctx, event, cpu);
10075 	perf_unpin_context(ctx);
10076 	mutex_unlock(&ctx->mutex);
10077 
10078 	return event;
10079 
10080 err_unlock:
10081 	mutex_unlock(&ctx->mutex);
10082 	perf_unpin_context(ctx);
10083 	put_ctx(ctx);
10084 err_free:
10085 	free_event(event);
10086 err:
10087 	return ERR_PTR(err);
10088 }
10089 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10090 
10091 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10092 {
10093 	struct perf_event_context *src_ctx;
10094 	struct perf_event_context *dst_ctx;
10095 	struct perf_event *event, *tmp;
10096 	LIST_HEAD(events);
10097 
10098 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10099 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10100 
10101 	/*
10102 	 * See perf_event_ctx_lock() for comments on the details
10103 	 * of swizzling perf_event::ctx.
10104 	 */
10105 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10106 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10107 				 event_entry) {
10108 		perf_remove_from_context(event, 0);
10109 		unaccount_event_cpu(event, src_cpu);
10110 		put_ctx(src_ctx);
10111 		list_add(&event->migrate_entry, &events);
10112 	}
10113 
10114 	/*
10115 	 * Wait for the events to quiesce before re-instating them.
10116 	 */
10117 	synchronize_rcu();
10118 
10119 	/*
10120 	 * Re-instate events in 2 passes.
10121 	 *
10122 	 * Skip over group leaders and only install siblings on this first
10123 	 * pass, siblings will not get enabled without a leader, however a
10124 	 * leader will enable its siblings, even if those are still on the old
10125 	 * context.
10126 	 */
10127 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10128 		if (event->group_leader == event)
10129 			continue;
10130 
10131 		list_del(&event->migrate_entry);
10132 		if (event->state >= PERF_EVENT_STATE_OFF)
10133 			event->state = PERF_EVENT_STATE_INACTIVE;
10134 		account_event_cpu(event, dst_cpu);
10135 		perf_install_in_context(dst_ctx, event, dst_cpu);
10136 		get_ctx(dst_ctx);
10137 	}
10138 
10139 	/*
10140 	 * Once all the siblings are setup properly, install the group leaders
10141 	 * to make it go.
10142 	 */
10143 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10144 		list_del(&event->migrate_entry);
10145 		if (event->state >= PERF_EVENT_STATE_OFF)
10146 			event->state = PERF_EVENT_STATE_INACTIVE;
10147 		account_event_cpu(event, dst_cpu);
10148 		perf_install_in_context(dst_ctx, event, dst_cpu);
10149 		get_ctx(dst_ctx);
10150 	}
10151 	mutex_unlock(&dst_ctx->mutex);
10152 	mutex_unlock(&src_ctx->mutex);
10153 }
10154 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10155 
10156 static void sync_child_event(struct perf_event *child_event,
10157 			       struct task_struct *child)
10158 {
10159 	struct perf_event *parent_event = child_event->parent;
10160 	u64 child_val;
10161 
10162 	if (child_event->attr.inherit_stat)
10163 		perf_event_read_event(child_event, child);
10164 
10165 	child_val = perf_event_count(child_event);
10166 
10167 	/*
10168 	 * Add back the child's count to the parent's count:
10169 	 */
10170 	atomic64_add(child_val, &parent_event->child_count);
10171 	atomic64_add(child_event->total_time_enabled,
10172 		     &parent_event->child_total_time_enabled);
10173 	atomic64_add(child_event->total_time_running,
10174 		     &parent_event->child_total_time_running);
10175 }
10176 
10177 static void
10178 perf_event_exit_event(struct perf_event *child_event,
10179 		      struct perf_event_context *child_ctx,
10180 		      struct task_struct *child)
10181 {
10182 	struct perf_event *parent_event = child_event->parent;
10183 
10184 	/*
10185 	 * Do not destroy the 'original' grouping; because of the context
10186 	 * switch optimization the original events could've ended up in a
10187 	 * random child task.
10188 	 *
10189 	 * If we were to destroy the original group, all group related
10190 	 * operations would cease to function properly after this random
10191 	 * child dies.
10192 	 *
10193 	 * Do destroy all inherited groups, we don't care about those
10194 	 * and being thorough is better.
10195 	 */
10196 	raw_spin_lock_irq(&child_ctx->lock);
10197 	WARN_ON_ONCE(child_ctx->is_active);
10198 
10199 	if (parent_event)
10200 		perf_group_detach(child_event);
10201 	list_del_event(child_event, child_ctx);
10202 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10203 	raw_spin_unlock_irq(&child_ctx->lock);
10204 
10205 	/*
10206 	 * Parent events are governed by their filedesc, retain them.
10207 	 */
10208 	if (!parent_event) {
10209 		perf_event_wakeup(child_event);
10210 		return;
10211 	}
10212 	/*
10213 	 * Child events can be cleaned up.
10214 	 */
10215 
10216 	sync_child_event(child_event, child);
10217 
10218 	/*
10219 	 * Remove this event from the parent's list
10220 	 */
10221 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10222 	mutex_lock(&parent_event->child_mutex);
10223 	list_del_init(&child_event->child_list);
10224 	mutex_unlock(&parent_event->child_mutex);
10225 
10226 	/*
10227 	 * Kick perf_poll() for is_event_hup().
10228 	 */
10229 	perf_event_wakeup(parent_event);
10230 	free_event(child_event);
10231 	put_event(parent_event);
10232 }
10233 
10234 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10235 {
10236 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10237 	struct perf_event *child_event, *next;
10238 
10239 	WARN_ON_ONCE(child != current);
10240 
10241 	child_ctx = perf_pin_task_context(child, ctxn);
10242 	if (!child_ctx)
10243 		return;
10244 
10245 	/*
10246 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10247 	 * ctx::mutex over the entire thing. This serializes against almost
10248 	 * everything that wants to access the ctx.
10249 	 *
10250 	 * The exception is sys_perf_event_open() /
10251 	 * perf_event_create_kernel_count() which does find_get_context()
10252 	 * without ctx::mutex (it cannot because of the move_group double mutex
10253 	 * lock thing). See the comments in perf_install_in_context().
10254 	 */
10255 	mutex_lock(&child_ctx->mutex);
10256 
10257 	/*
10258 	 * In a single ctx::lock section, de-schedule the events and detach the
10259 	 * context from the task such that we cannot ever get it scheduled back
10260 	 * in.
10261 	 */
10262 	raw_spin_lock_irq(&child_ctx->lock);
10263 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10264 
10265 	/*
10266 	 * Now that the context is inactive, destroy the task <-> ctx relation
10267 	 * and mark the context dead.
10268 	 */
10269 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10270 	put_ctx(child_ctx); /* cannot be last */
10271 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10272 	put_task_struct(current); /* cannot be last */
10273 
10274 	clone_ctx = unclone_ctx(child_ctx);
10275 	raw_spin_unlock_irq(&child_ctx->lock);
10276 
10277 	if (clone_ctx)
10278 		put_ctx(clone_ctx);
10279 
10280 	/*
10281 	 * Report the task dead after unscheduling the events so that we
10282 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10283 	 * get a few PERF_RECORD_READ events.
10284 	 */
10285 	perf_event_task(child, child_ctx, 0);
10286 
10287 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10288 		perf_event_exit_event(child_event, child_ctx, child);
10289 
10290 	mutex_unlock(&child_ctx->mutex);
10291 
10292 	put_ctx(child_ctx);
10293 }
10294 
10295 /*
10296  * When a child task exits, feed back event values to parent events.
10297  *
10298  * Can be called with cred_guard_mutex held when called from
10299  * install_exec_creds().
10300  */
10301 void perf_event_exit_task(struct task_struct *child)
10302 {
10303 	struct perf_event *event, *tmp;
10304 	int ctxn;
10305 
10306 	mutex_lock(&child->perf_event_mutex);
10307 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10308 				 owner_entry) {
10309 		list_del_init(&event->owner_entry);
10310 
10311 		/*
10312 		 * Ensure the list deletion is visible before we clear
10313 		 * the owner, closes a race against perf_release() where
10314 		 * we need to serialize on the owner->perf_event_mutex.
10315 		 */
10316 		smp_store_release(&event->owner, NULL);
10317 	}
10318 	mutex_unlock(&child->perf_event_mutex);
10319 
10320 	for_each_task_context_nr(ctxn)
10321 		perf_event_exit_task_context(child, ctxn);
10322 
10323 	/*
10324 	 * The perf_event_exit_task_context calls perf_event_task
10325 	 * with child's task_ctx, which generates EXIT events for
10326 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10327 	 * At this point we need to send EXIT events to cpu contexts.
10328 	 */
10329 	perf_event_task(child, NULL, 0);
10330 }
10331 
10332 static void perf_free_event(struct perf_event *event,
10333 			    struct perf_event_context *ctx)
10334 {
10335 	struct perf_event *parent = event->parent;
10336 
10337 	if (WARN_ON_ONCE(!parent))
10338 		return;
10339 
10340 	mutex_lock(&parent->child_mutex);
10341 	list_del_init(&event->child_list);
10342 	mutex_unlock(&parent->child_mutex);
10343 
10344 	put_event(parent);
10345 
10346 	raw_spin_lock_irq(&ctx->lock);
10347 	perf_group_detach(event);
10348 	list_del_event(event, ctx);
10349 	raw_spin_unlock_irq(&ctx->lock);
10350 	free_event(event);
10351 }
10352 
10353 /*
10354  * Free an unexposed, unused context as created by inheritance by
10355  * perf_event_init_task below, used by fork() in case of fail.
10356  *
10357  * Not all locks are strictly required, but take them anyway to be nice and
10358  * help out with the lockdep assertions.
10359  */
10360 void perf_event_free_task(struct task_struct *task)
10361 {
10362 	struct perf_event_context *ctx;
10363 	struct perf_event *event, *tmp;
10364 	int ctxn;
10365 
10366 	for_each_task_context_nr(ctxn) {
10367 		ctx = task->perf_event_ctxp[ctxn];
10368 		if (!ctx)
10369 			continue;
10370 
10371 		mutex_lock(&ctx->mutex);
10372 again:
10373 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10374 				group_entry)
10375 			perf_free_event(event, ctx);
10376 
10377 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10378 				group_entry)
10379 			perf_free_event(event, ctx);
10380 
10381 		if (!list_empty(&ctx->pinned_groups) ||
10382 				!list_empty(&ctx->flexible_groups))
10383 			goto again;
10384 
10385 		mutex_unlock(&ctx->mutex);
10386 
10387 		put_ctx(ctx);
10388 	}
10389 }
10390 
10391 void perf_event_delayed_put(struct task_struct *task)
10392 {
10393 	int ctxn;
10394 
10395 	for_each_task_context_nr(ctxn)
10396 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10397 }
10398 
10399 struct file *perf_event_get(unsigned int fd)
10400 {
10401 	struct file *file;
10402 
10403 	file = fget_raw(fd);
10404 	if (!file)
10405 		return ERR_PTR(-EBADF);
10406 
10407 	if (file->f_op != &perf_fops) {
10408 		fput(file);
10409 		return ERR_PTR(-EBADF);
10410 	}
10411 
10412 	return file;
10413 }
10414 
10415 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10416 {
10417 	if (!event)
10418 		return ERR_PTR(-EINVAL);
10419 
10420 	return &event->attr;
10421 }
10422 
10423 /*
10424  * inherit a event from parent task to child task:
10425  */
10426 static struct perf_event *
10427 inherit_event(struct perf_event *parent_event,
10428 	      struct task_struct *parent,
10429 	      struct perf_event_context *parent_ctx,
10430 	      struct task_struct *child,
10431 	      struct perf_event *group_leader,
10432 	      struct perf_event_context *child_ctx)
10433 {
10434 	enum perf_event_active_state parent_state = parent_event->state;
10435 	struct perf_event *child_event;
10436 	unsigned long flags;
10437 
10438 	/*
10439 	 * Instead of creating recursive hierarchies of events,
10440 	 * we link inherited events back to the original parent,
10441 	 * which has a filp for sure, which we use as the reference
10442 	 * count:
10443 	 */
10444 	if (parent_event->parent)
10445 		parent_event = parent_event->parent;
10446 
10447 	child_event = perf_event_alloc(&parent_event->attr,
10448 					   parent_event->cpu,
10449 					   child,
10450 					   group_leader, parent_event,
10451 					   NULL, NULL, -1);
10452 	if (IS_ERR(child_event))
10453 		return child_event;
10454 
10455 	/*
10456 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10457 	 * must be under the same lock in order to serialize against
10458 	 * perf_event_release_kernel(), such that either we must observe
10459 	 * is_orphaned_event() or they will observe us on the child_list.
10460 	 */
10461 	mutex_lock(&parent_event->child_mutex);
10462 	if (is_orphaned_event(parent_event) ||
10463 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10464 		mutex_unlock(&parent_event->child_mutex);
10465 		free_event(child_event);
10466 		return NULL;
10467 	}
10468 
10469 	get_ctx(child_ctx);
10470 
10471 	/*
10472 	 * Make the child state follow the state of the parent event,
10473 	 * not its attr.disabled bit.  We hold the parent's mutex,
10474 	 * so we won't race with perf_event_{en, dis}able_family.
10475 	 */
10476 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10477 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10478 	else
10479 		child_event->state = PERF_EVENT_STATE_OFF;
10480 
10481 	if (parent_event->attr.freq) {
10482 		u64 sample_period = parent_event->hw.sample_period;
10483 		struct hw_perf_event *hwc = &child_event->hw;
10484 
10485 		hwc->sample_period = sample_period;
10486 		hwc->last_period   = sample_period;
10487 
10488 		local64_set(&hwc->period_left, sample_period);
10489 	}
10490 
10491 	child_event->ctx = child_ctx;
10492 	child_event->overflow_handler = parent_event->overflow_handler;
10493 	child_event->overflow_handler_context
10494 		= parent_event->overflow_handler_context;
10495 
10496 	/*
10497 	 * Precalculate sample_data sizes
10498 	 */
10499 	perf_event__header_size(child_event);
10500 	perf_event__id_header_size(child_event);
10501 
10502 	/*
10503 	 * Link it up in the child's context:
10504 	 */
10505 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10506 	add_event_to_ctx(child_event, child_ctx);
10507 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10508 
10509 	/*
10510 	 * Link this into the parent event's child list
10511 	 */
10512 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10513 	mutex_unlock(&parent_event->child_mutex);
10514 
10515 	return child_event;
10516 }
10517 
10518 static int inherit_group(struct perf_event *parent_event,
10519 	      struct task_struct *parent,
10520 	      struct perf_event_context *parent_ctx,
10521 	      struct task_struct *child,
10522 	      struct perf_event_context *child_ctx)
10523 {
10524 	struct perf_event *leader;
10525 	struct perf_event *sub;
10526 	struct perf_event *child_ctr;
10527 
10528 	leader = inherit_event(parent_event, parent, parent_ctx,
10529 				 child, NULL, child_ctx);
10530 	if (IS_ERR(leader))
10531 		return PTR_ERR(leader);
10532 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10533 		child_ctr = inherit_event(sub, parent, parent_ctx,
10534 					    child, leader, child_ctx);
10535 		if (IS_ERR(child_ctr))
10536 			return PTR_ERR(child_ctr);
10537 	}
10538 	return 0;
10539 }
10540 
10541 static int
10542 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10543 		   struct perf_event_context *parent_ctx,
10544 		   struct task_struct *child, int ctxn,
10545 		   int *inherited_all)
10546 {
10547 	int ret;
10548 	struct perf_event_context *child_ctx;
10549 
10550 	if (!event->attr.inherit) {
10551 		*inherited_all = 0;
10552 		return 0;
10553 	}
10554 
10555 	child_ctx = child->perf_event_ctxp[ctxn];
10556 	if (!child_ctx) {
10557 		/*
10558 		 * This is executed from the parent task context, so
10559 		 * inherit events that have been marked for cloning.
10560 		 * First allocate and initialize a context for the
10561 		 * child.
10562 		 */
10563 
10564 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10565 		if (!child_ctx)
10566 			return -ENOMEM;
10567 
10568 		child->perf_event_ctxp[ctxn] = child_ctx;
10569 	}
10570 
10571 	ret = inherit_group(event, parent, parent_ctx,
10572 			    child, child_ctx);
10573 
10574 	if (ret)
10575 		*inherited_all = 0;
10576 
10577 	return ret;
10578 }
10579 
10580 /*
10581  * Initialize the perf_event context in task_struct
10582  */
10583 static int perf_event_init_context(struct task_struct *child, int ctxn)
10584 {
10585 	struct perf_event_context *child_ctx, *parent_ctx;
10586 	struct perf_event_context *cloned_ctx;
10587 	struct perf_event *event;
10588 	struct task_struct *parent = current;
10589 	int inherited_all = 1;
10590 	unsigned long flags;
10591 	int ret = 0;
10592 
10593 	if (likely(!parent->perf_event_ctxp[ctxn]))
10594 		return 0;
10595 
10596 	/*
10597 	 * If the parent's context is a clone, pin it so it won't get
10598 	 * swapped under us.
10599 	 */
10600 	parent_ctx = perf_pin_task_context(parent, ctxn);
10601 	if (!parent_ctx)
10602 		return 0;
10603 
10604 	/*
10605 	 * No need to check if parent_ctx != NULL here; since we saw
10606 	 * it non-NULL earlier, the only reason for it to become NULL
10607 	 * is if we exit, and since we're currently in the middle of
10608 	 * a fork we can't be exiting at the same time.
10609 	 */
10610 
10611 	/*
10612 	 * Lock the parent list. No need to lock the child - not PID
10613 	 * hashed yet and not running, so nobody can access it.
10614 	 */
10615 	mutex_lock(&parent_ctx->mutex);
10616 
10617 	/*
10618 	 * We dont have to disable NMIs - we are only looking at
10619 	 * the list, not manipulating it:
10620 	 */
10621 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10622 		ret = inherit_task_group(event, parent, parent_ctx,
10623 					 child, ctxn, &inherited_all);
10624 		if (ret)
10625 			break;
10626 	}
10627 
10628 	/*
10629 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10630 	 * to allocations, but we need to prevent rotation because
10631 	 * rotate_ctx() will change the list from interrupt context.
10632 	 */
10633 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10634 	parent_ctx->rotate_disable = 1;
10635 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10636 
10637 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10638 		ret = inherit_task_group(event, parent, parent_ctx,
10639 					 child, ctxn, &inherited_all);
10640 		if (ret)
10641 			break;
10642 	}
10643 
10644 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10645 	parent_ctx->rotate_disable = 0;
10646 
10647 	child_ctx = child->perf_event_ctxp[ctxn];
10648 
10649 	if (child_ctx && inherited_all) {
10650 		/*
10651 		 * Mark the child context as a clone of the parent
10652 		 * context, or of whatever the parent is a clone of.
10653 		 *
10654 		 * Note that if the parent is a clone, the holding of
10655 		 * parent_ctx->lock avoids it from being uncloned.
10656 		 */
10657 		cloned_ctx = parent_ctx->parent_ctx;
10658 		if (cloned_ctx) {
10659 			child_ctx->parent_ctx = cloned_ctx;
10660 			child_ctx->parent_gen = parent_ctx->parent_gen;
10661 		} else {
10662 			child_ctx->parent_ctx = parent_ctx;
10663 			child_ctx->parent_gen = parent_ctx->generation;
10664 		}
10665 		get_ctx(child_ctx->parent_ctx);
10666 	}
10667 
10668 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10669 	mutex_unlock(&parent_ctx->mutex);
10670 
10671 	perf_unpin_context(parent_ctx);
10672 	put_ctx(parent_ctx);
10673 
10674 	return ret;
10675 }
10676 
10677 /*
10678  * Initialize the perf_event context in task_struct
10679  */
10680 int perf_event_init_task(struct task_struct *child)
10681 {
10682 	int ctxn, ret;
10683 
10684 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10685 	mutex_init(&child->perf_event_mutex);
10686 	INIT_LIST_HEAD(&child->perf_event_list);
10687 
10688 	for_each_task_context_nr(ctxn) {
10689 		ret = perf_event_init_context(child, ctxn);
10690 		if (ret) {
10691 			perf_event_free_task(child);
10692 			return ret;
10693 		}
10694 	}
10695 
10696 	return 0;
10697 }
10698 
10699 static void __init perf_event_init_all_cpus(void)
10700 {
10701 	struct swevent_htable *swhash;
10702 	int cpu;
10703 
10704 	for_each_possible_cpu(cpu) {
10705 		swhash = &per_cpu(swevent_htable, cpu);
10706 		mutex_init(&swhash->hlist_mutex);
10707 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10708 
10709 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10710 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10711 
10712 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10713 	}
10714 }
10715 
10716 int perf_event_init_cpu(unsigned int cpu)
10717 {
10718 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10719 
10720 	mutex_lock(&swhash->hlist_mutex);
10721 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10722 		struct swevent_hlist *hlist;
10723 
10724 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10725 		WARN_ON(!hlist);
10726 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10727 	}
10728 	mutex_unlock(&swhash->hlist_mutex);
10729 	return 0;
10730 }
10731 
10732 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10733 static void __perf_event_exit_context(void *__info)
10734 {
10735 	struct perf_event_context *ctx = __info;
10736 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10737 	struct perf_event *event;
10738 
10739 	raw_spin_lock(&ctx->lock);
10740 	list_for_each_entry(event, &ctx->event_list, event_entry)
10741 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10742 	raw_spin_unlock(&ctx->lock);
10743 }
10744 
10745 static void perf_event_exit_cpu_context(int cpu)
10746 {
10747 	struct perf_event_context *ctx;
10748 	struct pmu *pmu;
10749 	int idx;
10750 
10751 	idx = srcu_read_lock(&pmus_srcu);
10752 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10753 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10754 
10755 		mutex_lock(&ctx->mutex);
10756 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10757 		mutex_unlock(&ctx->mutex);
10758 	}
10759 	srcu_read_unlock(&pmus_srcu, idx);
10760 }
10761 #else
10762 
10763 static void perf_event_exit_cpu_context(int cpu) { }
10764 
10765 #endif
10766 
10767 int perf_event_exit_cpu(unsigned int cpu)
10768 {
10769 	perf_event_exit_cpu_context(cpu);
10770 	return 0;
10771 }
10772 
10773 static int
10774 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10775 {
10776 	int cpu;
10777 
10778 	for_each_online_cpu(cpu)
10779 		perf_event_exit_cpu(cpu);
10780 
10781 	return NOTIFY_OK;
10782 }
10783 
10784 /*
10785  * Run the perf reboot notifier at the very last possible moment so that
10786  * the generic watchdog code runs as long as possible.
10787  */
10788 static struct notifier_block perf_reboot_notifier = {
10789 	.notifier_call = perf_reboot,
10790 	.priority = INT_MIN,
10791 };
10792 
10793 void __init perf_event_init(void)
10794 {
10795 	int ret;
10796 
10797 	idr_init(&pmu_idr);
10798 
10799 	perf_event_init_all_cpus();
10800 	init_srcu_struct(&pmus_srcu);
10801 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10802 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10803 	perf_pmu_register(&perf_task_clock, NULL, -1);
10804 	perf_tp_register();
10805 	perf_event_init_cpu(smp_processor_id());
10806 	register_reboot_notifier(&perf_reboot_notifier);
10807 
10808 	ret = init_hw_breakpoint();
10809 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10810 
10811 	/*
10812 	 * Build time assertion that we keep the data_head at the intended
10813 	 * location.  IOW, validation we got the __reserved[] size right.
10814 	 */
10815 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10816 		     != 1024);
10817 }
10818 
10819 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10820 			      char *page)
10821 {
10822 	struct perf_pmu_events_attr *pmu_attr =
10823 		container_of(attr, struct perf_pmu_events_attr, attr);
10824 
10825 	if (pmu_attr->event_str)
10826 		return sprintf(page, "%s\n", pmu_attr->event_str);
10827 
10828 	return 0;
10829 }
10830 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10831 
10832 static int __init perf_event_sysfs_init(void)
10833 {
10834 	struct pmu *pmu;
10835 	int ret;
10836 
10837 	mutex_lock(&pmus_lock);
10838 
10839 	ret = bus_register(&pmu_bus);
10840 	if (ret)
10841 		goto unlock;
10842 
10843 	list_for_each_entry(pmu, &pmus, entry) {
10844 		if (!pmu->name || pmu->type < 0)
10845 			continue;
10846 
10847 		ret = pmu_dev_alloc(pmu);
10848 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10849 	}
10850 	pmu_bus_running = 1;
10851 	ret = 0;
10852 
10853 unlock:
10854 	mutex_unlock(&pmus_lock);
10855 
10856 	return ret;
10857 }
10858 device_initcall(perf_event_sysfs_init);
10859 
10860 #ifdef CONFIG_CGROUP_PERF
10861 static struct cgroup_subsys_state *
10862 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10863 {
10864 	struct perf_cgroup *jc;
10865 
10866 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10867 	if (!jc)
10868 		return ERR_PTR(-ENOMEM);
10869 
10870 	jc->info = alloc_percpu(struct perf_cgroup_info);
10871 	if (!jc->info) {
10872 		kfree(jc);
10873 		return ERR_PTR(-ENOMEM);
10874 	}
10875 
10876 	return &jc->css;
10877 }
10878 
10879 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10880 {
10881 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10882 
10883 	free_percpu(jc->info);
10884 	kfree(jc);
10885 }
10886 
10887 static int __perf_cgroup_move(void *info)
10888 {
10889 	struct task_struct *task = info;
10890 	rcu_read_lock();
10891 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10892 	rcu_read_unlock();
10893 	return 0;
10894 }
10895 
10896 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10897 {
10898 	struct task_struct *task;
10899 	struct cgroup_subsys_state *css;
10900 
10901 	cgroup_taskset_for_each(task, css, tset)
10902 		task_function_call(task, __perf_cgroup_move, task);
10903 }
10904 
10905 struct cgroup_subsys perf_event_cgrp_subsys = {
10906 	.css_alloc	= perf_cgroup_css_alloc,
10907 	.css_free	= perf_cgroup_css_free,
10908 	.attach		= perf_cgroup_attach,
10909 };
10910 #endif /* CONFIG_CGROUP_PERF */
10911