1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_call(struct perf_event *event, event_f func, void *data) 246 { 247 struct perf_event_context *ctx = event->ctx; 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 249 struct event_function_struct efs = { 250 .event = event, 251 .func = func, 252 .data = data, 253 }; 254 255 if (!event->parent) { 256 /* 257 * If this is a !child event, we must hold ctx::mutex to 258 * stabilize the the event->ctx relation. See 259 * perf_event_ctx_lock(). 260 */ 261 lockdep_assert_held(&ctx->mutex); 262 } 263 264 if (!task) { 265 cpu_function_call(event->cpu, event_function, &efs); 266 return; 267 } 268 269 if (task == TASK_TOMBSTONE) 270 return; 271 272 again: 273 if (!task_function_call(task, event_function, &efs)) 274 return; 275 276 raw_spin_lock_irq(&ctx->lock); 277 /* 278 * Reload the task pointer, it might have been changed by 279 * a concurrent perf_event_context_sched_out(). 280 */ 281 task = ctx->task; 282 if (task == TASK_TOMBSTONE) { 283 raw_spin_unlock_irq(&ctx->lock); 284 return; 285 } 286 if (ctx->is_active) { 287 raw_spin_unlock_irq(&ctx->lock); 288 goto again; 289 } 290 func(event, NULL, ctx, data); 291 raw_spin_unlock_irq(&ctx->lock); 292 } 293 294 /* 295 * Similar to event_function_call() + event_function(), but hard assumes IRQs 296 * are already disabled and we're on the right CPU. 297 */ 298 static void event_function_local(struct perf_event *event, event_f func, void *data) 299 { 300 struct perf_event_context *ctx = event->ctx; 301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 302 struct task_struct *task = READ_ONCE(ctx->task); 303 struct perf_event_context *task_ctx = NULL; 304 305 WARN_ON_ONCE(!irqs_disabled()); 306 307 if (task) { 308 if (task == TASK_TOMBSTONE) 309 return; 310 311 task_ctx = ctx; 312 } 313 314 perf_ctx_lock(cpuctx, task_ctx); 315 316 task = ctx->task; 317 if (task == TASK_TOMBSTONE) 318 goto unlock; 319 320 if (task) { 321 /* 322 * We must be either inactive or active and the right task, 323 * otherwise we're screwed, since we cannot IPI to somewhere 324 * else. 325 */ 326 if (ctx->is_active) { 327 if (WARN_ON_ONCE(task != current)) 328 goto unlock; 329 330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 331 goto unlock; 332 } 333 } else { 334 WARN_ON_ONCE(&cpuctx->ctx != ctx); 335 } 336 337 func(event, cpuctx, ctx, data); 338 unlock: 339 perf_ctx_unlock(cpuctx, task_ctx); 340 } 341 342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 343 PERF_FLAG_FD_OUTPUT |\ 344 PERF_FLAG_PID_CGROUP |\ 345 PERF_FLAG_FD_CLOEXEC) 346 347 /* 348 * branch priv levels that need permission checks 349 */ 350 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 351 (PERF_SAMPLE_BRANCH_KERNEL |\ 352 PERF_SAMPLE_BRANCH_HV) 353 354 enum event_type_t { 355 EVENT_FLEXIBLE = 0x1, 356 EVENT_PINNED = 0x2, 357 EVENT_TIME = 0x4, 358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 359 }; 360 361 /* 362 * perf_sched_events : >0 events exist 363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 364 */ 365 366 static void perf_sched_delayed(struct work_struct *work); 367 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 369 static DEFINE_MUTEX(perf_sched_mutex); 370 static atomic_t perf_sched_count; 371 372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 373 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 375 376 static atomic_t nr_mmap_events __read_mostly; 377 static atomic_t nr_comm_events __read_mostly; 378 static atomic_t nr_task_events __read_mostly; 379 static atomic_t nr_freq_events __read_mostly; 380 static atomic_t nr_switch_events __read_mostly; 381 382 static LIST_HEAD(pmus); 383 static DEFINE_MUTEX(pmus_lock); 384 static struct srcu_struct pmus_srcu; 385 386 /* 387 * perf event paranoia level: 388 * -1 - not paranoid at all 389 * 0 - disallow raw tracepoint access for unpriv 390 * 1 - disallow cpu events for unpriv 391 * 2 - disallow kernel profiling for unpriv 392 */ 393 int sysctl_perf_event_paranoid __read_mostly = 2; 394 395 /* Minimum for 512 kiB + 1 user control page */ 396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 397 398 /* 399 * max perf event sample rate 400 */ 401 #define DEFAULT_MAX_SAMPLE_RATE 100000 402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 404 405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 406 407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 409 410 static int perf_sample_allowed_ns __read_mostly = 411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 412 413 static void update_perf_cpu_limits(void) 414 { 415 u64 tmp = perf_sample_period_ns; 416 417 tmp *= sysctl_perf_cpu_time_max_percent; 418 tmp = div_u64(tmp, 100); 419 if (!tmp) 420 tmp = 1; 421 422 WRITE_ONCE(perf_sample_allowed_ns, tmp); 423 } 424 425 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 426 427 int perf_proc_update_handler(struct ctl_table *table, int write, 428 void __user *buffer, size_t *lenp, 429 loff_t *ppos) 430 { 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 432 433 if (ret || !write) 434 return ret; 435 436 /* 437 * If throttling is disabled don't allow the write: 438 */ 439 if (sysctl_perf_cpu_time_max_percent == 100 || 440 sysctl_perf_cpu_time_max_percent == 0) 441 return -EINVAL; 442 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 445 update_perf_cpu_limits(); 446 447 return 0; 448 } 449 450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 451 452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 453 void __user *buffer, size_t *lenp, 454 loff_t *ppos) 455 { 456 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 457 458 if (ret || !write) 459 return ret; 460 461 if (sysctl_perf_cpu_time_max_percent == 100 || 462 sysctl_perf_cpu_time_max_percent == 0) { 463 printk(KERN_WARNING 464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 465 WRITE_ONCE(perf_sample_allowed_ns, 0); 466 } else { 467 update_perf_cpu_limits(); 468 } 469 470 return 0; 471 } 472 473 /* 474 * perf samples are done in some very critical code paths (NMIs). 475 * If they take too much CPU time, the system can lock up and not 476 * get any real work done. This will drop the sample rate when 477 * we detect that events are taking too long. 478 */ 479 #define NR_ACCUMULATED_SAMPLES 128 480 static DEFINE_PER_CPU(u64, running_sample_length); 481 482 static u64 __report_avg; 483 static u64 __report_allowed; 484 485 static void perf_duration_warn(struct irq_work *w) 486 { 487 printk_ratelimited(KERN_INFO 488 "perf: interrupt took too long (%lld > %lld), lowering " 489 "kernel.perf_event_max_sample_rate to %d\n", 490 __report_avg, __report_allowed, 491 sysctl_perf_event_sample_rate); 492 } 493 494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 495 496 void perf_sample_event_took(u64 sample_len_ns) 497 { 498 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 499 u64 running_len; 500 u64 avg_len; 501 u32 max; 502 503 if (max_len == 0) 504 return; 505 506 /* Decay the counter by 1 average sample. */ 507 running_len = __this_cpu_read(running_sample_length); 508 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 509 running_len += sample_len_ns; 510 __this_cpu_write(running_sample_length, running_len); 511 512 /* 513 * Note: this will be biased artifically low until we have 514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 515 * from having to maintain a count. 516 */ 517 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 518 if (avg_len <= max_len) 519 return; 520 521 __report_avg = avg_len; 522 __report_allowed = max_len; 523 524 /* 525 * Compute a throttle threshold 25% below the current duration. 526 */ 527 avg_len += avg_len / 4; 528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 529 if (avg_len < max) 530 max /= (u32)avg_len; 531 else 532 max = 1; 533 534 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 535 WRITE_ONCE(max_samples_per_tick, max); 536 537 sysctl_perf_event_sample_rate = max * HZ; 538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 539 540 if (!irq_work_queue(&perf_duration_work)) { 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 542 "kernel.perf_event_max_sample_rate to %d\n", 543 __report_avg, __report_allowed, 544 sysctl_perf_event_sample_rate); 545 } 546 } 547 548 static atomic64_t perf_event_id; 549 550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 551 enum event_type_t event_type); 552 553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 554 enum event_type_t event_type, 555 struct task_struct *task); 556 557 static void update_context_time(struct perf_event_context *ctx); 558 static u64 perf_event_time(struct perf_event *event); 559 560 void __weak perf_event_print_debug(void) { } 561 562 extern __weak const char *perf_pmu_name(void) 563 { 564 return "pmu"; 565 } 566 567 static inline u64 perf_clock(void) 568 { 569 return local_clock(); 570 } 571 572 static inline u64 perf_event_clock(struct perf_event *event) 573 { 574 return event->clock(); 575 } 576 577 #ifdef CONFIG_CGROUP_PERF 578 579 static inline bool 580 perf_cgroup_match(struct perf_event *event) 581 { 582 struct perf_event_context *ctx = event->ctx; 583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 584 585 /* @event doesn't care about cgroup */ 586 if (!event->cgrp) 587 return true; 588 589 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 590 if (!cpuctx->cgrp) 591 return false; 592 593 /* 594 * Cgroup scoping is recursive. An event enabled for a cgroup is 595 * also enabled for all its descendant cgroups. If @cpuctx's 596 * cgroup is a descendant of @event's (the test covers identity 597 * case), it's a match. 598 */ 599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 600 event->cgrp->css.cgroup); 601 } 602 603 static inline void perf_detach_cgroup(struct perf_event *event) 604 { 605 css_put(&event->cgrp->css); 606 event->cgrp = NULL; 607 } 608 609 static inline int is_cgroup_event(struct perf_event *event) 610 { 611 return event->cgrp != NULL; 612 } 613 614 static inline u64 perf_cgroup_event_time(struct perf_event *event) 615 { 616 struct perf_cgroup_info *t; 617 618 t = per_cpu_ptr(event->cgrp->info, event->cpu); 619 return t->time; 620 } 621 622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 623 { 624 struct perf_cgroup_info *info; 625 u64 now; 626 627 now = perf_clock(); 628 629 info = this_cpu_ptr(cgrp->info); 630 631 info->time += now - info->timestamp; 632 info->timestamp = now; 633 } 634 635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 636 { 637 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 638 if (cgrp_out) 639 __update_cgrp_time(cgrp_out); 640 } 641 642 static inline void update_cgrp_time_from_event(struct perf_event *event) 643 { 644 struct perf_cgroup *cgrp; 645 646 /* 647 * ensure we access cgroup data only when needed and 648 * when we know the cgroup is pinned (css_get) 649 */ 650 if (!is_cgroup_event(event)) 651 return; 652 653 cgrp = perf_cgroup_from_task(current, event->ctx); 654 /* 655 * Do not update time when cgroup is not active 656 */ 657 if (cgrp == event->cgrp) 658 __update_cgrp_time(event->cgrp); 659 } 660 661 static inline void 662 perf_cgroup_set_timestamp(struct task_struct *task, 663 struct perf_event_context *ctx) 664 { 665 struct perf_cgroup *cgrp; 666 struct perf_cgroup_info *info; 667 668 /* 669 * ctx->lock held by caller 670 * ensure we do not access cgroup data 671 * unless we have the cgroup pinned (css_get) 672 */ 673 if (!task || !ctx->nr_cgroups) 674 return; 675 676 cgrp = perf_cgroup_from_task(task, ctx); 677 info = this_cpu_ptr(cgrp->info); 678 info->timestamp = ctx->timestamp; 679 } 680 681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 683 684 /* 685 * reschedule events based on the cgroup constraint of task. 686 * 687 * mode SWOUT : schedule out everything 688 * mode SWIN : schedule in based on cgroup for next 689 */ 690 static void perf_cgroup_switch(struct task_struct *task, int mode) 691 { 692 struct perf_cpu_context *cpuctx; 693 struct pmu *pmu; 694 unsigned long flags; 695 696 /* 697 * disable interrupts to avoid geting nr_cgroup 698 * changes via __perf_event_disable(). Also 699 * avoids preemption. 700 */ 701 local_irq_save(flags); 702 703 /* 704 * we reschedule only in the presence of cgroup 705 * constrained events. 706 */ 707 708 list_for_each_entry_rcu(pmu, &pmus, entry) { 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 710 if (cpuctx->unique_pmu != pmu) 711 continue; /* ensure we process each cpuctx once */ 712 713 /* 714 * perf_cgroup_events says at least one 715 * context on this CPU has cgroup events. 716 * 717 * ctx->nr_cgroups reports the number of cgroup 718 * events for a context. 719 */ 720 if (cpuctx->ctx.nr_cgroups > 0) { 721 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 722 perf_pmu_disable(cpuctx->ctx.pmu); 723 724 if (mode & PERF_CGROUP_SWOUT) { 725 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 726 /* 727 * must not be done before ctxswout due 728 * to event_filter_match() in event_sched_out() 729 */ 730 cpuctx->cgrp = NULL; 731 } 732 733 if (mode & PERF_CGROUP_SWIN) { 734 WARN_ON_ONCE(cpuctx->cgrp); 735 /* 736 * set cgrp before ctxsw in to allow 737 * event_filter_match() to not have to pass 738 * task around 739 * we pass the cpuctx->ctx to perf_cgroup_from_task() 740 * because cgorup events are only per-cpu 741 */ 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 744 } 745 perf_pmu_enable(cpuctx->ctx.pmu); 746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 747 } 748 } 749 750 local_irq_restore(flags); 751 } 752 753 static inline void perf_cgroup_sched_out(struct task_struct *task, 754 struct task_struct *next) 755 { 756 struct perf_cgroup *cgrp1; 757 struct perf_cgroup *cgrp2 = NULL; 758 759 rcu_read_lock(); 760 /* 761 * we come here when we know perf_cgroup_events > 0 762 * we do not need to pass the ctx here because we know 763 * we are holding the rcu lock 764 */ 765 cgrp1 = perf_cgroup_from_task(task, NULL); 766 cgrp2 = perf_cgroup_from_task(next, NULL); 767 768 /* 769 * only schedule out current cgroup events if we know 770 * that we are switching to a different cgroup. Otherwise, 771 * do no touch the cgroup events. 772 */ 773 if (cgrp1 != cgrp2) 774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 775 776 rcu_read_unlock(); 777 } 778 779 static inline void perf_cgroup_sched_in(struct task_struct *prev, 780 struct task_struct *task) 781 { 782 struct perf_cgroup *cgrp1; 783 struct perf_cgroup *cgrp2 = NULL; 784 785 rcu_read_lock(); 786 /* 787 * we come here when we know perf_cgroup_events > 0 788 * we do not need to pass the ctx here because we know 789 * we are holding the rcu lock 790 */ 791 cgrp1 = perf_cgroup_from_task(task, NULL); 792 cgrp2 = perf_cgroup_from_task(prev, NULL); 793 794 /* 795 * only need to schedule in cgroup events if we are changing 796 * cgroup during ctxsw. Cgroup events were not scheduled 797 * out of ctxsw out if that was not the case. 798 */ 799 if (cgrp1 != cgrp2) 800 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 801 802 rcu_read_unlock(); 803 } 804 805 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 806 struct perf_event_attr *attr, 807 struct perf_event *group_leader) 808 { 809 struct perf_cgroup *cgrp; 810 struct cgroup_subsys_state *css; 811 struct fd f = fdget(fd); 812 int ret = 0; 813 814 if (!f.file) 815 return -EBADF; 816 817 css = css_tryget_online_from_dir(f.file->f_path.dentry, 818 &perf_event_cgrp_subsys); 819 if (IS_ERR(css)) { 820 ret = PTR_ERR(css); 821 goto out; 822 } 823 824 cgrp = container_of(css, struct perf_cgroup, css); 825 event->cgrp = cgrp; 826 827 /* 828 * all events in a group must monitor 829 * the same cgroup because a task belongs 830 * to only one perf cgroup at a time 831 */ 832 if (group_leader && group_leader->cgrp != cgrp) { 833 perf_detach_cgroup(event); 834 ret = -EINVAL; 835 } 836 out: 837 fdput(f); 838 return ret; 839 } 840 841 static inline void 842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 843 { 844 struct perf_cgroup_info *t; 845 t = per_cpu_ptr(event->cgrp->info, event->cpu); 846 event->shadow_ctx_time = now - t->timestamp; 847 } 848 849 static inline void 850 perf_cgroup_defer_enabled(struct perf_event *event) 851 { 852 /* 853 * when the current task's perf cgroup does not match 854 * the event's, we need to remember to call the 855 * perf_mark_enable() function the first time a task with 856 * a matching perf cgroup is scheduled in. 857 */ 858 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 859 event->cgrp_defer_enabled = 1; 860 } 861 862 static inline void 863 perf_cgroup_mark_enabled(struct perf_event *event, 864 struct perf_event_context *ctx) 865 { 866 struct perf_event *sub; 867 u64 tstamp = perf_event_time(event); 868 869 if (!event->cgrp_defer_enabled) 870 return; 871 872 event->cgrp_defer_enabled = 0; 873 874 event->tstamp_enabled = tstamp - event->total_time_enabled; 875 list_for_each_entry(sub, &event->sibling_list, group_entry) { 876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 877 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 878 sub->cgrp_defer_enabled = 0; 879 } 880 } 881 } 882 883 /* 884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 885 * cleared when last cgroup event is removed. 886 */ 887 static inline void 888 list_update_cgroup_event(struct perf_event *event, 889 struct perf_event_context *ctx, bool add) 890 { 891 struct perf_cpu_context *cpuctx; 892 893 if (!is_cgroup_event(event)) 894 return; 895 896 if (add && ctx->nr_cgroups++) 897 return; 898 else if (!add && --ctx->nr_cgroups) 899 return; 900 /* 901 * Because cgroup events are always per-cpu events, 902 * this will always be called from the right CPU. 903 */ 904 cpuctx = __get_cpu_context(ctx); 905 906 /* 907 * cpuctx->cgrp is NULL until a cgroup event is sched in or 908 * ctx->nr_cgroup == 0 . 909 */ 910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp) 911 cpuctx->cgrp = event->cgrp; 912 else if (!add) 913 cpuctx->cgrp = NULL; 914 } 915 916 #else /* !CONFIG_CGROUP_PERF */ 917 918 static inline bool 919 perf_cgroup_match(struct perf_event *event) 920 { 921 return true; 922 } 923 924 static inline void perf_detach_cgroup(struct perf_event *event) 925 {} 926 927 static inline int is_cgroup_event(struct perf_event *event) 928 { 929 return 0; 930 } 931 932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 933 { 934 return 0; 935 } 936 937 static inline void update_cgrp_time_from_event(struct perf_event *event) 938 { 939 } 940 941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 942 { 943 } 944 945 static inline void perf_cgroup_sched_out(struct task_struct *task, 946 struct task_struct *next) 947 { 948 } 949 950 static inline void perf_cgroup_sched_in(struct task_struct *prev, 951 struct task_struct *task) 952 { 953 } 954 955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 956 struct perf_event_attr *attr, 957 struct perf_event *group_leader) 958 { 959 return -EINVAL; 960 } 961 962 static inline void 963 perf_cgroup_set_timestamp(struct task_struct *task, 964 struct perf_event_context *ctx) 965 { 966 } 967 968 void 969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 970 { 971 } 972 973 static inline void 974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 975 { 976 } 977 978 static inline u64 perf_cgroup_event_time(struct perf_event *event) 979 { 980 return 0; 981 } 982 983 static inline void 984 perf_cgroup_defer_enabled(struct perf_event *event) 985 { 986 } 987 988 static inline void 989 perf_cgroup_mark_enabled(struct perf_event *event, 990 struct perf_event_context *ctx) 991 { 992 } 993 994 static inline void 995 list_update_cgroup_event(struct perf_event *event, 996 struct perf_event_context *ctx, bool add) 997 { 998 } 999 1000 #endif 1001 1002 /* 1003 * set default to be dependent on timer tick just 1004 * like original code 1005 */ 1006 #define PERF_CPU_HRTIMER (1000 / HZ) 1007 /* 1008 * function must be called with interrupts disbled 1009 */ 1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1011 { 1012 struct perf_cpu_context *cpuctx; 1013 int rotations = 0; 1014 1015 WARN_ON(!irqs_disabled()); 1016 1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1018 rotations = perf_rotate_context(cpuctx); 1019 1020 raw_spin_lock(&cpuctx->hrtimer_lock); 1021 if (rotations) 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1023 else 1024 cpuctx->hrtimer_active = 0; 1025 raw_spin_unlock(&cpuctx->hrtimer_lock); 1026 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1028 } 1029 1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1031 { 1032 struct hrtimer *timer = &cpuctx->hrtimer; 1033 struct pmu *pmu = cpuctx->ctx.pmu; 1034 u64 interval; 1035 1036 /* no multiplexing needed for SW PMU */ 1037 if (pmu->task_ctx_nr == perf_sw_context) 1038 return; 1039 1040 /* 1041 * check default is sane, if not set then force to 1042 * default interval (1/tick) 1043 */ 1044 interval = pmu->hrtimer_interval_ms; 1045 if (interval < 1) 1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1047 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1049 1050 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1052 timer->function = perf_mux_hrtimer_handler; 1053 } 1054 1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1056 { 1057 struct hrtimer *timer = &cpuctx->hrtimer; 1058 struct pmu *pmu = cpuctx->ctx.pmu; 1059 unsigned long flags; 1060 1061 /* not for SW PMU */ 1062 if (pmu->task_ctx_nr == perf_sw_context) 1063 return 0; 1064 1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1066 if (!cpuctx->hrtimer_active) { 1067 cpuctx->hrtimer_active = 1; 1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1070 } 1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1072 1073 return 0; 1074 } 1075 1076 void perf_pmu_disable(struct pmu *pmu) 1077 { 1078 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1079 if (!(*count)++) 1080 pmu->pmu_disable(pmu); 1081 } 1082 1083 void perf_pmu_enable(struct pmu *pmu) 1084 { 1085 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1086 if (!--(*count)) 1087 pmu->pmu_enable(pmu); 1088 } 1089 1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1091 1092 /* 1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1094 * perf_event_task_tick() are fully serialized because they're strictly cpu 1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1096 * disabled, while perf_event_task_tick is called from IRQ context. 1097 */ 1098 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1099 { 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1101 1102 WARN_ON(!irqs_disabled()); 1103 1104 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1105 1106 list_add(&ctx->active_ctx_list, head); 1107 } 1108 1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1110 { 1111 WARN_ON(!irqs_disabled()); 1112 1113 WARN_ON(list_empty(&ctx->active_ctx_list)); 1114 1115 list_del_init(&ctx->active_ctx_list); 1116 } 1117 1118 static void get_ctx(struct perf_event_context *ctx) 1119 { 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1121 } 1122 1123 static void free_ctx(struct rcu_head *head) 1124 { 1125 struct perf_event_context *ctx; 1126 1127 ctx = container_of(head, struct perf_event_context, rcu_head); 1128 kfree(ctx->task_ctx_data); 1129 kfree(ctx); 1130 } 1131 1132 static void put_ctx(struct perf_event_context *ctx) 1133 { 1134 if (atomic_dec_and_test(&ctx->refcount)) { 1135 if (ctx->parent_ctx) 1136 put_ctx(ctx->parent_ctx); 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1138 put_task_struct(ctx->task); 1139 call_rcu(&ctx->rcu_head, free_ctx); 1140 } 1141 } 1142 1143 /* 1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1145 * perf_pmu_migrate_context() we need some magic. 1146 * 1147 * Those places that change perf_event::ctx will hold both 1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1149 * 1150 * Lock ordering is by mutex address. There are two other sites where 1151 * perf_event_context::mutex nests and those are: 1152 * 1153 * - perf_event_exit_task_context() [ child , 0 ] 1154 * perf_event_exit_event() 1155 * put_event() [ parent, 1 ] 1156 * 1157 * - perf_event_init_context() [ parent, 0 ] 1158 * inherit_task_group() 1159 * inherit_group() 1160 * inherit_event() 1161 * perf_event_alloc() 1162 * perf_init_event() 1163 * perf_try_init_event() [ child , 1 ] 1164 * 1165 * While it appears there is an obvious deadlock here -- the parent and child 1166 * nesting levels are inverted between the two. This is in fact safe because 1167 * life-time rules separate them. That is an exiting task cannot fork, and a 1168 * spawning task cannot (yet) exit. 1169 * 1170 * But remember that that these are parent<->child context relations, and 1171 * migration does not affect children, therefore these two orderings should not 1172 * interact. 1173 * 1174 * The change in perf_event::ctx does not affect children (as claimed above) 1175 * because the sys_perf_event_open() case will install a new event and break 1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1177 * concerned with cpuctx and that doesn't have children. 1178 * 1179 * The places that change perf_event::ctx will issue: 1180 * 1181 * perf_remove_from_context(); 1182 * synchronize_rcu(); 1183 * perf_install_in_context(); 1184 * 1185 * to affect the change. The remove_from_context() + synchronize_rcu() should 1186 * quiesce the event, after which we can install it in the new location. This 1187 * means that only external vectors (perf_fops, prctl) can perturb the event 1188 * while in transit. Therefore all such accessors should also acquire 1189 * perf_event_context::mutex to serialize against this. 1190 * 1191 * However; because event->ctx can change while we're waiting to acquire 1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1193 * function. 1194 * 1195 * Lock order: 1196 * cred_guard_mutex 1197 * task_struct::perf_event_mutex 1198 * perf_event_context::mutex 1199 * perf_event::child_mutex; 1200 * perf_event_context::lock 1201 * perf_event::mmap_mutex 1202 * mmap_sem 1203 */ 1204 static struct perf_event_context * 1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1206 { 1207 struct perf_event_context *ctx; 1208 1209 again: 1210 rcu_read_lock(); 1211 ctx = ACCESS_ONCE(event->ctx); 1212 if (!atomic_inc_not_zero(&ctx->refcount)) { 1213 rcu_read_unlock(); 1214 goto again; 1215 } 1216 rcu_read_unlock(); 1217 1218 mutex_lock_nested(&ctx->mutex, nesting); 1219 if (event->ctx != ctx) { 1220 mutex_unlock(&ctx->mutex); 1221 put_ctx(ctx); 1222 goto again; 1223 } 1224 1225 return ctx; 1226 } 1227 1228 static inline struct perf_event_context * 1229 perf_event_ctx_lock(struct perf_event *event) 1230 { 1231 return perf_event_ctx_lock_nested(event, 0); 1232 } 1233 1234 static void perf_event_ctx_unlock(struct perf_event *event, 1235 struct perf_event_context *ctx) 1236 { 1237 mutex_unlock(&ctx->mutex); 1238 put_ctx(ctx); 1239 } 1240 1241 /* 1242 * This must be done under the ctx->lock, such as to serialize against 1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1244 * calling scheduler related locks and ctx->lock nests inside those. 1245 */ 1246 static __must_check struct perf_event_context * 1247 unclone_ctx(struct perf_event_context *ctx) 1248 { 1249 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1250 1251 lockdep_assert_held(&ctx->lock); 1252 1253 if (parent_ctx) 1254 ctx->parent_ctx = NULL; 1255 ctx->generation++; 1256 1257 return parent_ctx; 1258 } 1259 1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1261 { 1262 /* 1263 * only top level events have the pid namespace they were created in 1264 */ 1265 if (event->parent) 1266 event = event->parent; 1267 1268 return task_tgid_nr_ns(p, event->ns); 1269 } 1270 1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1272 { 1273 /* 1274 * only top level events have the pid namespace they were created in 1275 */ 1276 if (event->parent) 1277 event = event->parent; 1278 1279 return task_pid_nr_ns(p, event->ns); 1280 } 1281 1282 /* 1283 * If we inherit events we want to return the parent event id 1284 * to userspace. 1285 */ 1286 static u64 primary_event_id(struct perf_event *event) 1287 { 1288 u64 id = event->id; 1289 1290 if (event->parent) 1291 id = event->parent->id; 1292 1293 return id; 1294 } 1295 1296 /* 1297 * Get the perf_event_context for a task and lock it. 1298 * 1299 * This has to cope with with the fact that until it is locked, 1300 * the context could get moved to another task. 1301 */ 1302 static struct perf_event_context * 1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1304 { 1305 struct perf_event_context *ctx; 1306 1307 retry: 1308 /* 1309 * One of the few rules of preemptible RCU is that one cannot do 1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1311 * part of the read side critical section was irqs-enabled -- see 1312 * rcu_read_unlock_special(). 1313 * 1314 * Since ctx->lock nests under rq->lock we must ensure the entire read 1315 * side critical section has interrupts disabled. 1316 */ 1317 local_irq_save(*flags); 1318 rcu_read_lock(); 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1320 if (ctx) { 1321 /* 1322 * If this context is a clone of another, it might 1323 * get swapped for another underneath us by 1324 * perf_event_task_sched_out, though the 1325 * rcu_read_lock() protects us from any context 1326 * getting freed. Lock the context and check if it 1327 * got swapped before we could get the lock, and retry 1328 * if so. If we locked the right context, then it 1329 * can't get swapped on us any more. 1330 */ 1331 raw_spin_lock(&ctx->lock); 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1333 raw_spin_unlock(&ctx->lock); 1334 rcu_read_unlock(); 1335 local_irq_restore(*flags); 1336 goto retry; 1337 } 1338 1339 if (ctx->task == TASK_TOMBSTONE || 1340 !atomic_inc_not_zero(&ctx->refcount)) { 1341 raw_spin_unlock(&ctx->lock); 1342 ctx = NULL; 1343 } else { 1344 WARN_ON_ONCE(ctx->task != task); 1345 } 1346 } 1347 rcu_read_unlock(); 1348 if (!ctx) 1349 local_irq_restore(*flags); 1350 return ctx; 1351 } 1352 1353 /* 1354 * Get the context for a task and increment its pin_count so it 1355 * can't get swapped to another task. This also increments its 1356 * reference count so that the context can't get freed. 1357 */ 1358 static struct perf_event_context * 1359 perf_pin_task_context(struct task_struct *task, int ctxn) 1360 { 1361 struct perf_event_context *ctx; 1362 unsigned long flags; 1363 1364 ctx = perf_lock_task_context(task, ctxn, &flags); 1365 if (ctx) { 1366 ++ctx->pin_count; 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1368 } 1369 return ctx; 1370 } 1371 1372 static void perf_unpin_context(struct perf_event_context *ctx) 1373 { 1374 unsigned long flags; 1375 1376 raw_spin_lock_irqsave(&ctx->lock, flags); 1377 --ctx->pin_count; 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1379 } 1380 1381 /* 1382 * Update the record of the current time in a context. 1383 */ 1384 static void update_context_time(struct perf_event_context *ctx) 1385 { 1386 u64 now = perf_clock(); 1387 1388 ctx->time += now - ctx->timestamp; 1389 ctx->timestamp = now; 1390 } 1391 1392 static u64 perf_event_time(struct perf_event *event) 1393 { 1394 struct perf_event_context *ctx = event->ctx; 1395 1396 if (is_cgroup_event(event)) 1397 return perf_cgroup_event_time(event); 1398 1399 return ctx ? ctx->time : 0; 1400 } 1401 1402 /* 1403 * Update the total_time_enabled and total_time_running fields for a event. 1404 */ 1405 static void update_event_times(struct perf_event *event) 1406 { 1407 struct perf_event_context *ctx = event->ctx; 1408 u64 run_end; 1409 1410 lockdep_assert_held(&ctx->lock); 1411 1412 if (event->state < PERF_EVENT_STATE_INACTIVE || 1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1414 return; 1415 1416 /* 1417 * in cgroup mode, time_enabled represents 1418 * the time the event was enabled AND active 1419 * tasks were in the monitored cgroup. This is 1420 * independent of the activity of the context as 1421 * there may be a mix of cgroup and non-cgroup events. 1422 * 1423 * That is why we treat cgroup events differently 1424 * here. 1425 */ 1426 if (is_cgroup_event(event)) 1427 run_end = perf_cgroup_event_time(event); 1428 else if (ctx->is_active) 1429 run_end = ctx->time; 1430 else 1431 run_end = event->tstamp_stopped; 1432 1433 event->total_time_enabled = run_end - event->tstamp_enabled; 1434 1435 if (event->state == PERF_EVENT_STATE_INACTIVE) 1436 run_end = event->tstamp_stopped; 1437 else 1438 run_end = perf_event_time(event); 1439 1440 event->total_time_running = run_end - event->tstamp_running; 1441 1442 } 1443 1444 /* 1445 * Update total_time_enabled and total_time_running for all events in a group. 1446 */ 1447 static void update_group_times(struct perf_event *leader) 1448 { 1449 struct perf_event *event; 1450 1451 update_event_times(leader); 1452 list_for_each_entry(event, &leader->sibling_list, group_entry) 1453 update_event_times(event); 1454 } 1455 1456 static struct list_head * 1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1458 { 1459 if (event->attr.pinned) 1460 return &ctx->pinned_groups; 1461 else 1462 return &ctx->flexible_groups; 1463 } 1464 1465 /* 1466 * Add a event from the lists for its context. 1467 * Must be called with ctx->mutex and ctx->lock held. 1468 */ 1469 static void 1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1471 { 1472 lockdep_assert_held(&ctx->lock); 1473 1474 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1475 event->attach_state |= PERF_ATTACH_CONTEXT; 1476 1477 /* 1478 * If we're a stand alone event or group leader, we go to the context 1479 * list, group events are kept attached to the group so that 1480 * perf_group_detach can, at all times, locate all siblings. 1481 */ 1482 if (event->group_leader == event) { 1483 struct list_head *list; 1484 1485 event->group_caps = event->event_caps; 1486 1487 list = ctx_group_list(event, ctx); 1488 list_add_tail(&event->group_entry, list); 1489 } 1490 1491 list_update_cgroup_event(event, ctx, true); 1492 1493 list_add_rcu(&event->event_entry, &ctx->event_list); 1494 ctx->nr_events++; 1495 if (event->attr.inherit_stat) 1496 ctx->nr_stat++; 1497 1498 ctx->generation++; 1499 } 1500 1501 /* 1502 * Initialize event state based on the perf_event_attr::disabled. 1503 */ 1504 static inline void perf_event__state_init(struct perf_event *event) 1505 { 1506 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1507 PERF_EVENT_STATE_INACTIVE; 1508 } 1509 1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1511 { 1512 int entry = sizeof(u64); /* value */ 1513 int size = 0; 1514 int nr = 1; 1515 1516 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1517 size += sizeof(u64); 1518 1519 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1520 size += sizeof(u64); 1521 1522 if (event->attr.read_format & PERF_FORMAT_ID) 1523 entry += sizeof(u64); 1524 1525 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1526 nr += nr_siblings; 1527 size += sizeof(u64); 1528 } 1529 1530 size += entry * nr; 1531 event->read_size = size; 1532 } 1533 1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1535 { 1536 struct perf_sample_data *data; 1537 u16 size = 0; 1538 1539 if (sample_type & PERF_SAMPLE_IP) 1540 size += sizeof(data->ip); 1541 1542 if (sample_type & PERF_SAMPLE_ADDR) 1543 size += sizeof(data->addr); 1544 1545 if (sample_type & PERF_SAMPLE_PERIOD) 1546 size += sizeof(data->period); 1547 1548 if (sample_type & PERF_SAMPLE_WEIGHT) 1549 size += sizeof(data->weight); 1550 1551 if (sample_type & PERF_SAMPLE_READ) 1552 size += event->read_size; 1553 1554 if (sample_type & PERF_SAMPLE_DATA_SRC) 1555 size += sizeof(data->data_src.val); 1556 1557 if (sample_type & PERF_SAMPLE_TRANSACTION) 1558 size += sizeof(data->txn); 1559 1560 event->header_size = size; 1561 } 1562 1563 /* 1564 * Called at perf_event creation and when events are attached/detached from a 1565 * group. 1566 */ 1567 static void perf_event__header_size(struct perf_event *event) 1568 { 1569 __perf_event_read_size(event, 1570 event->group_leader->nr_siblings); 1571 __perf_event_header_size(event, event->attr.sample_type); 1572 } 1573 1574 static void perf_event__id_header_size(struct perf_event *event) 1575 { 1576 struct perf_sample_data *data; 1577 u64 sample_type = event->attr.sample_type; 1578 u16 size = 0; 1579 1580 if (sample_type & PERF_SAMPLE_TID) 1581 size += sizeof(data->tid_entry); 1582 1583 if (sample_type & PERF_SAMPLE_TIME) 1584 size += sizeof(data->time); 1585 1586 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1587 size += sizeof(data->id); 1588 1589 if (sample_type & PERF_SAMPLE_ID) 1590 size += sizeof(data->id); 1591 1592 if (sample_type & PERF_SAMPLE_STREAM_ID) 1593 size += sizeof(data->stream_id); 1594 1595 if (sample_type & PERF_SAMPLE_CPU) 1596 size += sizeof(data->cpu_entry); 1597 1598 event->id_header_size = size; 1599 } 1600 1601 static bool perf_event_validate_size(struct perf_event *event) 1602 { 1603 /* 1604 * The values computed here will be over-written when we actually 1605 * attach the event. 1606 */ 1607 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1608 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1609 perf_event__id_header_size(event); 1610 1611 /* 1612 * Sum the lot; should not exceed the 64k limit we have on records. 1613 * Conservative limit to allow for callchains and other variable fields. 1614 */ 1615 if (event->read_size + event->header_size + 1616 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1617 return false; 1618 1619 return true; 1620 } 1621 1622 static void perf_group_attach(struct perf_event *event) 1623 { 1624 struct perf_event *group_leader = event->group_leader, *pos; 1625 1626 lockdep_assert_held(&event->ctx->lock); 1627 1628 /* 1629 * We can have double attach due to group movement in perf_event_open. 1630 */ 1631 if (event->attach_state & PERF_ATTACH_GROUP) 1632 return; 1633 1634 event->attach_state |= PERF_ATTACH_GROUP; 1635 1636 if (group_leader == event) 1637 return; 1638 1639 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1640 1641 group_leader->group_caps &= event->event_caps; 1642 1643 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1644 group_leader->nr_siblings++; 1645 1646 perf_event__header_size(group_leader); 1647 1648 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1649 perf_event__header_size(pos); 1650 } 1651 1652 /* 1653 * Remove a event from the lists for its context. 1654 * Must be called with ctx->mutex and ctx->lock held. 1655 */ 1656 static void 1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1658 { 1659 WARN_ON_ONCE(event->ctx != ctx); 1660 lockdep_assert_held(&ctx->lock); 1661 1662 /* 1663 * We can have double detach due to exit/hot-unplug + close. 1664 */ 1665 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1666 return; 1667 1668 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1669 1670 list_update_cgroup_event(event, ctx, false); 1671 1672 ctx->nr_events--; 1673 if (event->attr.inherit_stat) 1674 ctx->nr_stat--; 1675 1676 list_del_rcu(&event->event_entry); 1677 1678 if (event->group_leader == event) 1679 list_del_init(&event->group_entry); 1680 1681 update_group_times(event); 1682 1683 /* 1684 * If event was in error state, then keep it 1685 * that way, otherwise bogus counts will be 1686 * returned on read(). The only way to get out 1687 * of error state is by explicit re-enabling 1688 * of the event 1689 */ 1690 if (event->state > PERF_EVENT_STATE_OFF) 1691 event->state = PERF_EVENT_STATE_OFF; 1692 1693 ctx->generation++; 1694 } 1695 1696 static void perf_group_detach(struct perf_event *event) 1697 { 1698 struct perf_event *sibling, *tmp; 1699 struct list_head *list = NULL; 1700 1701 lockdep_assert_held(&event->ctx->lock); 1702 1703 /* 1704 * We can have double detach due to exit/hot-unplug + close. 1705 */ 1706 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1707 return; 1708 1709 event->attach_state &= ~PERF_ATTACH_GROUP; 1710 1711 /* 1712 * If this is a sibling, remove it from its group. 1713 */ 1714 if (event->group_leader != event) { 1715 list_del_init(&event->group_entry); 1716 event->group_leader->nr_siblings--; 1717 goto out; 1718 } 1719 1720 if (!list_empty(&event->group_entry)) 1721 list = &event->group_entry; 1722 1723 /* 1724 * If this was a group event with sibling events then 1725 * upgrade the siblings to singleton events by adding them 1726 * to whatever list we are on. 1727 */ 1728 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1729 if (list) 1730 list_move_tail(&sibling->group_entry, list); 1731 sibling->group_leader = sibling; 1732 1733 /* Inherit group flags from the previous leader */ 1734 sibling->group_caps = event->group_caps; 1735 1736 WARN_ON_ONCE(sibling->ctx != event->ctx); 1737 } 1738 1739 out: 1740 perf_event__header_size(event->group_leader); 1741 1742 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1743 perf_event__header_size(tmp); 1744 } 1745 1746 static bool is_orphaned_event(struct perf_event *event) 1747 { 1748 return event->state == PERF_EVENT_STATE_DEAD; 1749 } 1750 1751 static inline int __pmu_filter_match(struct perf_event *event) 1752 { 1753 struct pmu *pmu = event->pmu; 1754 return pmu->filter_match ? pmu->filter_match(event) : 1; 1755 } 1756 1757 /* 1758 * Check whether we should attempt to schedule an event group based on 1759 * PMU-specific filtering. An event group can consist of HW and SW events, 1760 * potentially with a SW leader, so we must check all the filters, to 1761 * determine whether a group is schedulable: 1762 */ 1763 static inline int pmu_filter_match(struct perf_event *event) 1764 { 1765 struct perf_event *child; 1766 1767 if (!__pmu_filter_match(event)) 1768 return 0; 1769 1770 list_for_each_entry(child, &event->sibling_list, group_entry) { 1771 if (!__pmu_filter_match(child)) 1772 return 0; 1773 } 1774 1775 return 1; 1776 } 1777 1778 static inline int 1779 event_filter_match(struct perf_event *event) 1780 { 1781 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1782 perf_cgroup_match(event) && pmu_filter_match(event); 1783 } 1784 1785 static void 1786 event_sched_out(struct perf_event *event, 1787 struct perf_cpu_context *cpuctx, 1788 struct perf_event_context *ctx) 1789 { 1790 u64 tstamp = perf_event_time(event); 1791 u64 delta; 1792 1793 WARN_ON_ONCE(event->ctx != ctx); 1794 lockdep_assert_held(&ctx->lock); 1795 1796 /* 1797 * An event which could not be activated because of 1798 * filter mismatch still needs to have its timings 1799 * maintained, otherwise bogus information is return 1800 * via read() for time_enabled, time_running: 1801 */ 1802 if (event->state == PERF_EVENT_STATE_INACTIVE && 1803 !event_filter_match(event)) { 1804 delta = tstamp - event->tstamp_stopped; 1805 event->tstamp_running += delta; 1806 event->tstamp_stopped = tstamp; 1807 } 1808 1809 if (event->state != PERF_EVENT_STATE_ACTIVE) 1810 return; 1811 1812 perf_pmu_disable(event->pmu); 1813 1814 event->tstamp_stopped = tstamp; 1815 event->pmu->del(event, 0); 1816 event->oncpu = -1; 1817 event->state = PERF_EVENT_STATE_INACTIVE; 1818 if (event->pending_disable) { 1819 event->pending_disable = 0; 1820 event->state = PERF_EVENT_STATE_OFF; 1821 } 1822 1823 if (!is_software_event(event)) 1824 cpuctx->active_oncpu--; 1825 if (!--ctx->nr_active) 1826 perf_event_ctx_deactivate(ctx); 1827 if (event->attr.freq && event->attr.sample_freq) 1828 ctx->nr_freq--; 1829 if (event->attr.exclusive || !cpuctx->active_oncpu) 1830 cpuctx->exclusive = 0; 1831 1832 perf_pmu_enable(event->pmu); 1833 } 1834 1835 static void 1836 group_sched_out(struct perf_event *group_event, 1837 struct perf_cpu_context *cpuctx, 1838 struct perf_event_context *ctx) 1839 { 1840 struct perf_event *event; 1841 int state = group_event->state; 1842 1843 perf_pmu_disable(ctx->pmu); 1844 1845 event_sched_out(group_event, cpuctx, ctx); 1846 1847 /* 1848 * Schedule out siblings (if any): 1849 */ 1850 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1851 event_sched_out(event, cpuctx, ctx); 1852 1853 perf_pmu_enable(ctx->pmu); 1854 1855 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1856 cpuctx->exclusive = 0; 1857 } 1858 1859 #define DETACH_GROUP 0x01UL 1860 1861 /* 1862 * Cross CPU call to remove a performance event 1863 * 1864 * We disable the event on the hardware level first. After that we 1865 * remove it from the context list. 1866 */ 1867 static void 1868 __perf_remove_from_context(struct perf_event *event, 1869 struct perf_cpu_context *cpuctx, 1870 struct perf_event_context *ctx, 1871 void *info) 1872 { 1873 unsigned long flags = (unsigned long)info; 1874 1875 event_sched_out(event, cpuctx, ctx); 1876 if (flags & DETACH_GROUP) 1877 perf_group_detach(event); 1878 list_del_event(event, ctx); 1879 1880 if (!ctx->nr_events && ctx->is_active) { 1881 ctx->is_active = 0; 1882 if (ctx->task) { 1883 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1884 cpuctx->task_ctx = NULL; 1885 } 1886 } 1887 } 1888 1889 /* 1890 * Remove the event from a task's (or a CPU's) list of events. 1891 * 1892 * If event->ctx is a cloned context, callers must make sure that 1893 * every task struct that event->ctx->task could possibly point to 1894 * remains valid. This is OK when called from perf_release since 1895 * that only calls us on the top-level context, which can't be a clone. 1896 * When called from perf_event_exit_task, it's OK because the 1897 * context has been detached from its task. 1898 */ 1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1900 { 1901 struct perf_event_context *ctx = event->ctx; 1902 1903 lockdep_assert_held(&ctx->mutex); 1904 1905 event_function_call(event, __perf_remove_from_context, (void *)flags); 1906 1907 /* 1908 * The above event_function_call() can NO-OP when it hits 1909 * TASK_TOMBSTONE. In that case we must already have been detached 1910 * from the context (by perf_event_exit_event()) but the grouping 1911 * might still be in-tact. 1912 */ 1913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1914 if ((flags & DETACH_GROUP) && 1915 (event->attach_state & PERF_ATTACH_GROUP)) { 1916 /* 1917 * Since in that case we cannot possibly be scheduled, simply 1918 * detach now. 1919 */ 1920 raw_spin_lock_irq(&ctx->lock); 1921 perf_group_detach(event); 1922 raw_spin_unlock_irq(&ctx->lock); 1923 } 1924 } 1925 1926 /* 1927 * Cross CPU call to disable a performance event 1928 */ 1929 static void __perf_event_disable(struct perf_event *event, 1930 struct perf_cpu_context *cpuctx, 1931 struct perf_event_context *ctx, 1932 void *info) 1933 { 1934 if (event->state < PERF_EVENT_STATE_INACTIVE) 1935 return; 1936 1937 update_context_time(ctx); 1938 update_cgrp_time_from_event(event); 1939 update_group_times(event); 1940 if (event == event->group_leader) 1941 group_sched_out(event, cpuctx, ctx); 1942 else 1943 event_sched_out(event, cpuctx, ctx); 1944 event->state = PERF_EVENT_STATE_OFF; 1945 } 1946 1947 /* 1948 * Disable a event. 1949 * 1950 * If event->ctx is a cloned context, callers must make sure that 1951 * every task struct that event->ctx->task could possibly point to 1952 * remains valid. This condition is satisifed when called through 1953 * perf_event_for_each_child or perf_event_for_each because they 1954 * hold the top-level event's child_mutex, so any descendant that 1955 * goes to exit will block in perf_event_exit_event(). 1956 * 1957 * When called from perf_pending_event it's OK because event->ctx 1958 * is the current context on this CPU and preemption is disabled, 1959 * hence we can't get into perf_event_task_sched_out for this context. 1960 */ 1961 static void _perf_event_disable(struct perf_event *event) 1962 { 1963 struct perf_event_context *ctx = event->ctx; 1964 1965 raw_spin_lock_irq(&ctx->lock); 1966 if (event->state <= PERF_EVENT_STATE_OFF) { 1967 raw_spin_unlock_irq(&ctx->lock); 1968 return; 1969 } 1970 raw_spin_unlock_irq(&ctx->lock); 1971 1972 event_function_call(event, __perf_event_disable, NULL); 1973 } 1974 1975 void perf_event_disable_local(struct perf_event *event) 1976 { 1977 event_function_local(event, __perf_event_disable, NULL); 1978 } 1979 1980 /* 1981 * Strictly speaking kernel users cannot create groups and therefore this 1982 * interface does not need the perf_event_ctx_lock() magic. 1983 */ 1984 void perf_event_disable(struct perf_event *event) 1985 { 1986 struct perf_event_context *ctx; 1987 1988 ctx = perf_event_ctx_lock(event); 1989 _perf_event_disable(event); 1990 perf_event_ctx_unlock(event, ctx); 1991 } 1992 EXPORT_SYMBOL_GPL(perf_event_disable); 1993 1994 void perf_event_disable_inatomic(struct perf_event *event) 1995 { 1996 event->pending_disable = 1; 1997 irq_work_queue(&event->pending); 1998 } 1999 2000 static void perf_set_shadow_time(struct perf_event *event, 2001 struct perf_event_context *ctx, 2002 u64 tstamp) 2003 { 2004 /* 2005 * use the correct time source for the time snapshot 2006 * 2007 * We could get by without this by leveraging the 2008 * fact that to get to this function, the caller 2009 * has most likely already called update_context_time() 2010 * and update_cgrp_time_xx() and thus both timestamp 2011 * are identical (or very close). Given that tstamp is, 2012 * already adjusted for cgroup, we could say that: 2013 * tstamp - ctx->timestamp 2014 * is equivalent to 2015 * tstamp - cgrp->timestamp. 2016 * 2017 * Then, in perf_output_read(), the calculation would 2018 * work with no changes because: 2019 * - event is guaranteed scheduled in 2020 * - no scheduled out in between 2021 * - thus the timestamp would be the same 2022 * 2023 * But this is a bit hairy. 2024 * 2025 * So instead, we have an explicit cgroup call to remain 2026 * within the time time source all along. We believe it 2027 * is cleaner and simpler to understand. 2028 */ 2029 if (is_cgroup_event(event)) 2030 perf_cgroup_set_shadow_time(event, tstamp); 2031 else 2032 event->shadow_ctx_time = tstamp - ctx->timestamp; 2033 } 2034 2035 #define MAX_INTERRUPTS (~0ULL) 2036 2037 static void perf_log_throttle(struct perf_event *event, int enable); 2038 static void perf_log_itrace_start(struct perf_event *event); 2039 2040 static int 2041 event_sched_in(struct perf_event *event, 2042 struct perf_cpu_context *cpuctx, 2043 struct perf_event_context *ctx) 2044 { 2045 u64 tstamp = perf_event_time(event); 2046 int ret = 0; 2047 2048 lockdep_assert_held(&ctx->lock); 2049 2050 if (event->state <= PERF_EVENT_STATE_OFF) 2051 return 0; 2052 2053 WRITE_ONCE(event->oncpu, smp_processor_id()); 2054 /* 2055 * Order event::oncpu write to happen before the ACTIVE state 2056 * is visible. 2057 */ 2058 smp_wmb(); 2059 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2060 2061 /* 2062 * Unthrottle events, since we scheduled we might have missed several 2063 * ticks already, also for a heavily scheduling task there is little 2064 * guarantee it'll get a tick in a timely manner. 2065 */ 2066 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2067 perf_log_throttle(event, 1); 2068 event->hw.interrupts = 0; 2069 } 2070 2071 /* 2072 * The new state must be visible before we turn it on in the hardware: 2073 */ 2074 smp_wmb(); 2075 2076 perf_pmu_disable(event->pmu); 2077 2078 perf_set_shadow_time(event, ctx, tstamp); 2079 2080 perf_log_itrace_start(event); 2081 2082 if (event->pmu->add(event, PERF_EF_START)) { 2083 event->state = PERF_EVENT_STATE_INACTIVE; 2084 event->oncpu = -1; 2085 ret = -EAGAIN; 2086 goto out; 2087 } 2088 2089 event->tstamp_running += tstamp - event->tstamp_stopped; 2090 2091 if (!is_software_event(event)) 2092 cpuctx->active_oncpu++; 2093 if (!ctx->nr_active++) 2094 perf_event_ctx_activate(ctx); 2095 if (event->attr.freq && event->attr.sample_freq) 2096 ctx->nr_freq++; 2097 2098 if (event->attr.exclusive) 2099 cpuctx->exclusive = 1; 2100 2101 out: 2102 perf_pmu_enable(event->pmu); 2103 2104 return ret; 2105 } 2106 2107 static int 2108 group_sched_in(struct perf_event *group_event, 2109 struct perf_cpu_context *cpuctx, 2110 struct perf_event_context *ctx) 2111 { 2112 struct perf_event *event, *partial_group = NULL; 2113 struct pmu *pmu = ctx->pmu; 2114 u64 now = ctx->time; 2115 bool simulate = false; 2116 2117 if (group_event->state == PERF_EVENT_STATE_OFF) 2118 return 0; 2119 2120 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2121 2122 if (event_sched_in(group_event, cpuctx, ctx)) { 2123 pmu->cancel_txn(pmu); 2124 perf_mux_hrtimer_restart(cpuctx); 2125 return -EAGAIN; 2126 } 2127 2128 /* 2129 * Schedule in siblings as one group (if any): 2130 */ 2131 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2132 if (event_sched_in(event, cpuctx, ctx)) { 2133 partial_group = event; 2134 goto group_error; 2135 } 2136 } 2137 2138 if (!pmu->commit_txn(pmu)) 2139 return 0; 2140 2141 group_error: 2142 /* 2143 * Groups can be scheduled in as one unit only, so undo any 2144 * partial group before returning: 2145 * The events up to the failed event are scheduled out normally, 2146 * tstamp_stopped will be updated. 2147 * 2148 * The failed events and the remaining siblings need to have 2149 * their timings updated as if they had gone thru event_sched_in() 2150 * and event_sched_out(). This is required to get consistent timings 2151 * across the group. This also takes care of the case where the group 2152 * could never be scheduled by ensuring tstamp_stopped is set to mark 2153 * the time the event was actually stopped, such that time delta 2154 * calculation in update_event_times() is correct. 2155 */ 2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2157 if (event == partial_group) 2158 simulate = true; 2159 2160 if (simulate) { 2161 event->tstamp_running += now - event->tstamp_stopped; 2162 event->tstamp_stopped = now; 2163 } else { 2164 event_sched_out(event, cpuctx, ctx); 2165 } 2166 } 2167 event_sched_out(group_event, cpuctx, ctx); 2168 2169 pmu->cancel_txn(pmu); 2170 2171 perf_mux_hrtimer_restart(cpuctx); 2172 2173 return -EAGAIN; 2174 } 2175 2176 /* 2177 * Work out whether we can put this event group on the CPU now. 2178 */ 2179 static int group_can_go_on(struct perf_event *event, 2180 struct perf_cpu_context *cpuctx, 2181 int can_add_hw) 2182 { 2183 /* 2184 * Groups consisting entirely of software events can always go on. 2185 */ 2186 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2187 return 1; 2188 /* 2189 * If an exclusive group is already on, no other hardware 2190 * events can go on. 2191 */ 2192 if (cpuctx->exclusive) 2193 return 0; 2194 /* 2195 * If this group is exclusive and there are already 2196 * events on the CPU, it can't go on. 2197 */ 2198 if (event->attr.exclusive && cpuctx->active_oncpu) 2199 return 0; 2200 /* 2201 * Otherwise, try to add it if all previous groups were able 2202 * to go on. 2203 */ 2204 return can_add_hw; 2205 } 2206 2207 static void add_event_to_ctx(struct perf_event *event, 2208 struct perf_event_context *ctx) 2209 { 2210 u64 tstamp = perf_event_time(event); 2211 2212 list_add_event(event, ctx); 2213 perf_group_attach(event); 2214 event->tstamp_enabled = tstamp; 2215 event->tstamp_running = tstamp; 2216 event->tstamp_stopped = tstamp; 2217 } 2218 2219 static void ctx_sched_out(struct perf_event_context *ctx, 2220 struct perf_cpu_context *cpuctx, 2221 enum event_type_t event_type); 2222 static void 2223 ctx_sched_in(struct perf_event_context *ctx, 2224 struct perf_cpu_context *cpuctx, 2225 enum event_type_t event_type, 2226 struct task_struct *task); 2227 2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2229 struct perf_event_context *ctx) 2230 { 2231 if (!cpuctx->task_ctx) 2232 return; 2233 2234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2235 return; 2236 2237 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2238 } 2239 2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2241 struct perf_event_context *ctx, 2242 struct task_struct *task) 2243 { 2244 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2245 if (ctx) 2246 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2247 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2248 if (ctx) 2249 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2250 } 2251 2252 static void ctx_resched(struct perf_cpu_context *cpuctx, 2253 struct perf_event_context *task_ctx) 2254 { 2255 perf_pmu_disable(cpuctx->ctx.pmu); 2256 if (task_ctx) 2257 task_ctx_sched_out(cpuctx, task_ctx); 2258 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2259 perf_event_sched_in(cpuctx, task_ctx, current); 2260 perf_pmu_enable(cpuctx->ctx.pmu); 2261 } 2262 2263 /* 2264 * Cross CPU call to install and enable a performance event 2265 * 2266 * Very similar to remote_function() + event_function() but cannot assume that 2267 * things like ctx->is_active and cpuctx->task_ctx are set. 2268 */ 2269 static int __perf_install_in_context(void *info) 2270 { 2271 struct perf_event *event = info; 2272 struct perf_event_context *ctx = event->ctx; 2273 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2274 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2275 bool reprogram = true; 2276 int ret = 0; 2277 2278 raw_spin_lock(&cpuctx->ctx.lock); 2279 if (ctx->task) { 2280 raw_spin_lock(&ctx->lock); 2281 task_ctx = ctx; 2282 2283 reprogram = (ctx->task == current); 2284 2285 /* 2286 * If the task is running, it must be running on this CPU, 2287 * otherwise we cannot reprogram things. 2288 * 2289 * If its not running, we don't care, ctx->lock will 2290 * serialize against it becoming runnable. 2291 */ 2292 if (task_curr(ctx->task) && !reprogram) { 2293 ret = -ESRCH; 2294 goto unlock; 2295 } 2296 2297 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2298 } else if (task_ctx) { 2299 raw_spin_lock(&task_ctx->lock); 2300 } 2301 2302 if (reprogram) { 2303 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2304 add_event_to_ctx(event, ctx); 2305 ctx_resched(cpuctx, task_ctx); 2306 } else { 2307 add_event_to_ctx(event, ctx); 2308 } 2309 2310 unlock: 2311 perf_ctx_unlock(cpuctx, task_ctx); 2312 2313 return ret; 2314 } 2315 2316 /* 2317 * Attach a performance event to a context. 2318 * 2319 * Very similar to event_function_call, see comment there. 2320 */ 2321 static void 2322 perf_install_in_context(struct perf_event_context *ctx, 2323 struct perf_event *event, 2324 int cpu) 2325 { 2326 struct task_struct *task = READ_ONCE(ctx->task); 2327 2328 lockdep_assert_held(&ctx->mutex); 2329 2330 if (event->cpu != -1) 2331 event->cpu = cpu; 2332 2333 /* 2334 * Ensures that if we can observe event->ctx, both the event and ctx 2335 * will be 'complete'. See perf_iterate_sb_cpu(). 2336 */ 2337 smp_store_release(&event->ctx, ctx); 2338 2339 if (!task) { 2340 cpu_function_call(cpu, __perf_install_in_context, event); 2341 return; 2342 } 2343 2344 /* 2345 * Should not happen, we validate the ctx is still alive before calling. 2346 */ 2347 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2348 return; 2349 2350 /* 2351 * Installing events is tricky because we cannot rely on ctx->is_active 2352 * to be set in case this is the nr_events 0 -> 1 transition. 2353 * 2354 * Instead we use task_curr(), which tells us if the task is running. 2355 * However, since we use task_curr() outside of rq::lock, we can race 2356 * against the actual state. This means the result can be wrong. 2357 * 2358 * If we get a false positive, we retry, this is harmless. 2359 * 2360 * If we get a false negative, things are complicated. If we are after 2361 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2362 * value must be correct. If we're before, it doesn't matter since 2363 * perf_event_context_sched_in() will program the counter. 2364 * 2365 * However, this hinges on the remote context switch having observed 2366 * our task->perf_event_ctxp[] store, such that it will in fact take 2367 * ctx::lock in perf_event_context_sched_in(). 2368 * 2369 * We do this by task_function_call(), if the IPI fails to hit the task 2370 * we know any future context switch of task must see the 2371 * perf_event_ctpx[] store. 2372 */ 2373 2374 /* 2375 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2376 * task_cpu() load, such that if the IPI then does not find the task 2377 * running, a future context switch of that task must observe the 2378 * store. 2379 */ 2380 smp_mb(); 2381 again: 2382 if (!task_function_call(task, __perf_install_in_context, event)) 2383 return; 2384 2385 raw_spin_lock_irq(&ctx->lock); 2386 task = ctx->task; 2387 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2388 /* 2389 * Cannot happen because we already checked above (which also 2390 * cannot happen), and we hold ctx->mutex, which serializes us 2391 * against perf_event_exit_task_context(). 2392 */ 2393 raw_spin_unlock_irq(&ctx->lock); 2394 return; 2395 } 2396 /* 2397 * If the task is not running, ctx->lock will avoid it becoming so, 2398 * thus we can safely install the event. 2399 */ 2400 if (task_curr(task)) { 2401 raw_spin_unlock_irq(&ctx->lock); 2402 goto again; 2403 } 2404 add_event_to_ctx(event, ctx); 2405 raw_spin_unlock_irq(&ctx->lock); 2406 } 2407 2408 /* 2409 * Put a event into inactive state and update time fields. 2410 * Enabling the leader of a group effectively enables all 2411 * the group members that aren't explicitly disabled, so we 2412 * have to update their ->tstamp_enabled also. 2413 * Note: this works for group members as well as group leaders 2414 * since the non-leader members' sibling_lists will be empty. 2415 */ 2416 static void __perf_event_mark_enabled(struct perf_event *event) 2417 { 2418 struct perf_event *sub; 2419 u64 tstamp = perf_event_time(event); 2420 2421 event->state = PERF_EVENT_STATE_INACTIVE; 2422 event->tstamp_enabled = tstamp - event->total_time_enabled; 2423 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2424 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2425 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2426 } 2427 } 2428 2429 /* 2430 * Cross CPU call to enable a performance event 2431 */ 2432 static void __perf_event_enable(struct perf_event *event, 2433 struct perf_cpu_context *cpuctx, 2434 struct perf_event_context *ctx, 2435 void *info) 2436 { 2437 struct perf_event *leader = event->group_leader; 2438 struct perf_event_context *task_ctx; 2439 2440 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2441 event->state <= PERF_EVENT_STATE_ERROR) 2442 return; 2443 2444 if (ctx->is_active) 2445 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2446 2447 __perf_event_mark_enabled(event); 2448 2449 if (!ctx->is_active) 2450 return; 2451 2452 if (!event_filter_match(event)) { 2453 if (is_cgroup_event(event)) 2454 perf_cgroup_defer_enabled(event); 2455 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2456 return; 2457 } 2458 2459 /* 2460 * If the event is in a group and isn't the group leader, 2461 * then don't put it on unless the group is on. 2462 */ 2463 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2464 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2465 return; 2466 } 2467 2468 task_ctx = cpuctx->task_ctx; 2469 if (ctx->task) 2470 WARN_ON_ONCE(task_ctx != ctx); 2471 2472 ctx_resched(cpuctx, task_ctx); 2473 } 2474 2475 /* 2476 * Enable a event. 2477 * 2478 * If event->ctx is a cloned context, callers must make sure that 2479 * every task struct that event->ctx->task could possibly point to 2480 * remains valid. This condition is satisfied when called through 2481 * perf_event_for_each_child or perf_event_for_each as described 2482 * for perf_event_disable. 2483 */ 2484 static void _perf_event_enable(struct perf_event *event) 2485 { 2486 struct perf_event_context *ctx = event->ctx; 2487 2488 raw_spin_lock_irq(&ctx->lock); 2489 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2490 event->state < PERF_EVENT_STATE_ERROR) { 2491 raw_spin_unlock_irq(&ctx->lock); 2492 return; 2493 } 2494 2495 /* 2496 * If the event is in error state, clear that first. 2497 * 2498 * That way, if we see the event in error state below, we know that it 2499 * has gone back into error state, as distinct from the task having 2500 * been scheduled away before the cross-call arrived. 2501 */ 2502 if (event->state == PERF_EVENT_STATE_ERROR) 2503 event->state = PERF_EVENT_STATE_OFF; 2504 raw_spin_unlock_irq(&ctx->lock); 2505 2506 event_function_call(event, __perf_event_enable, NULL); 2507 } 2508 2509 /* 2510 * See perf_event_disable(); 2511 */ 2512 void perf_event_enable(struct perf_event *event) 2513 { 2514 struct perf_event_context *ctx; 2515 2516 ctx = perf_event_ctx_lock(event); 2517 _perf_event_enable(event); 2518 perf_event_ctx_unlock(event, ctx); 2519 } 2520 EXPORT_SYMBOL_GPL(perf_event_enable); 2521 2522 struct stop_event_data { 2523 struct perf_event *event; 2524 unsigned int restart; 2525 }; 2526 2527 static int __perf_event_stop(void *info) 2528 { 2529 struct stop_event_data *sd = info; 2530 struct perf_event *event = sd->event; 2531 2532 /* if it's already INACTIVE, do nothing */ 2533 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2534 return 0; 2535 2536 /* matches smp_wmb() in event_sched_in() */ 2537 smp_rmb(); 2538 2539 /* 2540 * There is a window with interrupts enabled before we get here, 2541 * so we need to check again lest we try to stop another CPU's event. 2542 */ 2543 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2544 return -EAGAIN; 2545 2546 event->pmu->stop(event, PERF_EF_UPDATE); 2547 2548 /* 2549 * May race with the actual stop (through perf_pmu_output_stop()), 2550 * but it is only used for events with AUX ring buffer, and such 2551 * events will refuse to restart because of rb::aux_mmap_count==0, 2552 * see comments in perf_aux_output_begin(). 2553 * 2554 * Since this is happening on a event-local CPU, no trace is lost 2555 * while restarting. 2556 */ 2557 if (sd->restart) 2558 event->pmu->start(event, 0); 2559 2560 return 0; 2561 } 2562 2563 static int perf_event_stop(struct perf_event *event, int restart) 2564 { 2565 struct stop_event_data sd = { 2566 .event = event, 2567 .restart = restart, 2568 }; 2569 int ret = 0; 2570 2571 do { 2572 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2573 return 0; 2574 2575 /* matches smp_wmb() in event_sched_in() */ 2576 smp_rmb(); 2577 2578 /* 2579 * We only want to restart ACTIVE events, so if the event goes 2580 * inactive here (event->oncpu==-1), there's nothing more to do; 2581 * fall through with ret==-ENXIO. 2582 */ 2583 ret = cpu_function_call(READ_ONCE(event->oncpu), 2584 __perf_event_stop, &sd); 2585 } while (ret == -EAGAIN); 2586 2587 return ret; 2588 } 2589 2590 /* 2591 * In order to contain the amount of racy and tricky in the address filter 2592 * configuration management, it is a two part process: 2593 * 2594 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2595 * we update the addresses of corresponding vmas in 2596 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2597 * (p2) when an event is scheduled in (pmu::add), it calls 2598 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2599 * if the generation has changed since the previous call. 2600 * 2601 * If (p1) happens while the event is active, we restart it to force (p2). 2602 * 2603 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2604 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2605 * ioctl; 2606 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2607 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2608 * for reading; 2609 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2610 * of exec. 2611 */ 2612 void perf_event_addr_filters_sync(struct perf_event *event) 2613 { 2614 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2615 2616 if (!has_addr_filter(event)) 2617 return; 2618 2619 raw_spin_lock(&ifh->lock); 2620 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2621 event->pmu->addr_filters_sync(event); 2622 event->hw.addr_filters_gen = event->addr_filters_gen; 2623 } 2624 raw_spin_unlock(&ifh->lock); 2625 } 2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2627 2628 static int _perf_event_refresh(struct perf_event *event, int refresh) 2629 { 2630 /* 2631 * not supported on inherited events 2632 */ 2633 if (event->attr.inherit || !is_sampling_event(event)) 2634 return -EINVAL; 2635 2636 atomic_add(refresh, &event->event_limit); 2637 _perf_event_enable(event); 2638 2639 return 0; 2640 } 2641 2642 /* 2643 * See perf_event_disable() 2644 */ 2645 int perf_event_refresh(struct perf_event *event, int refresh) 2646 { 2647 struct perf_event_context *ctx; 2648 int ret; 2649 2650 ctx = perf_event_ctx_lock(event); 2651 ret = _perf_event_refresh(event, refresh); 2652 perf_event_ctx_unlock(event, ctx); 2653 2654 return ret; 2655 } 2656 EXPORT_SYMBOL_GPL(perf_event_refresh); 2657 2658 static void ctx_sched_out(struct perf_event_context *ctx, 2659 struct perf_cpu_context *cpuctx, 2660 enum event_type_t event_type) 2661 { 2662 int is_active = ctx->is_active; 2663 struct perf_event *event; 2664 2665 lockdep_assert_held(&ctx->lock); 2666 2667 if (likely(!ctx->nr_events)) { 2668 /* 2669 * See __perf_remove_from_context(). 2670 */ 2671 WARN_ON_ONCE(ctx->is_active); 2672 if (ctx->task) 2673 WARN_ON_ONCE(cpuctx->task_ctx); 2674 return; 2675 } 2676 2677 ctx->is_active &= ~event_type; 2678 if (!(ctx->is_active & EVENT_ALL)) 2679 ctx->is_active = 0; 2680 2681 if (ctx->task) { 2682 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2683 if (!ctx->is_active) 2684 cpuctx->task_ctx = NULL; 2685 } 2686 2687 /* 2688 * Always update time if it was set; not only when it changes. 2689 * Otherwise we can 'forget' to update time for any but the last 2690 * context we sched out. For example: 2691 * 2692 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2693 * ctx_sched_out(.event_type = EVENT_PINNED) 2694 * 2695 * would only update time for the pinned events. 2696 */ 2697 if (is_active & EVENT_TIME) { 2698 /* update (and stop) ctx time */ 2699 update_context_time(ctx); 2700 update_cgrp_time_from_cpuctx(cpuctx); 2701 } 2702 2703 is_active ^= ctx->is_active; /* changed bits */ 2704 2705 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2706 return; 2707 2708 perf_pmu_disable(ctx->pmu); 2709 if (is_active & EVENT_PINNED) { 2710 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2711 group_sched_out(event, cpuctx, ctx); 2712 } 2713 2714 if (is_active & EVENT_FLEXIBLE) { 2715 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2716 group_sched_out(event, cpuctx, ctx); 2717 } 2718 perf_pmu_enable(ctx->pmu); 2719 } 2720 2721 /* 2722 * Test whether two contexts are equivalent, i.e. whether they have both been 2723 * cloned from the same version of the same context. 2724 * 2725 * Equivalence is measured using a generation number in the context that is 2726 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2727 * and list_del_event(). 2728 */ 2729 static int context_equiv(struct perf_event_context *ctx1, 2730 struct perf_event_context *ctx2) 2731 { 2732 lockdep_assert_held(&ctx1->lock); 2733 lockdep_assert_held(&ctx2->lock); 2734 2735 /* Pinning disables the swap optimization */ 2736 if (ctx1->pin_count || ctx2->pin_count) 2737 return 0; 2738 2739 /* If ctx1 is the parent of ctx2 */ 2740 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2741 return 1; 2742 2743 /* If ctx2 is the parent of ctx1 */ 2744 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2745 return 1; 2746 2747 /* 2748 * If ctx1 and ctx2 have the same parent; we flatten the parent 2749 * hierarchy, see perf_event_init_context(). 2750 */ 2751 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2752 ctx1->parent_gen == ctx2->parent_gen) 2753 return 1; 2754 2755 /* Unmatched */ 2756 return 0; 2757 } 2758 2759 static void __perf_event_sync_stat(struct perf_event *event, 2760 struct perf_event *next_event) 2761 { 2762 u64 value; 2763 2764 if (!event->attr.inherit_stat) 2765 return; 2766 2767 /* 2768 * Update the event value, we cannot use perf_event_read() 2769 * because we're in the middle of a context switch and have IRQs 2770 * disabled, which upsets smp_call_function_single(), however 2771 * we know the event must be on the current CPU, therefore we 2772 * don't need to use it. 2773 */ 2774 switch (event->state) { 2775 case PERF_EVENT_STATE_ACTIVE: 2776 event->pmu->read(event); 2777 /* fall-through */ 2778 2779 case PERF_EVENT_STATE_INACTIVE: 2780 update_event_times(event); 2781 break; 2782 2783 default: 2784 break; 2785 } 2786 2787 /* 2788 * In order to keep per-task stats reliable we need to flip the event 2789 * values when we flip the contexts. 2790 */ 2791 value = local64_read(&next_event->count); 2792 value = local64_xchg(&event->count, value); 2793 local64_set(&next_event->count, value); 2794 2795 swap(event->total_time_enabled, next_event->total_time_enabled); 2796 swap(event->total_time_running, next_event->total_time_running); 2797 2798 /* 2799 * Since we swizzled the values, update the user visible data too. 2800 */ 2801 perf_event_update_userpage(event); 2802 perf_event_update_userpage(next_event); 2803 } 2804 2805 static void perf_event_sync_stat(struct perf_event_context *ctx, 2806 struct perf_event_context *next_ctx) 2807 { 2808 struct perf_event *event, *next_event; 2809 2810 if (!ctx->nr_stat) 2811 return; 2812 2813 update_context_time(ctx); 2814 2815 event = list_first_entry(&ctx->event_list, 2816 struct perf_event, event_entry); 2817 2818 next_event = list_first_entry(&next_ctx->event_list, 2819 struct perf_event, event_entry); 2820 2821 while (&event->event_entry != &ctx->event_list && 2822 &next_event->event_entry != &next_ctx->event_list) { 2823 2824 __perf_event_sync_stat(event, next_event); 2825 2826 event = list_next_entry(event, event_entry); 2827 next_event = list_next_entry(next_event, event_entry); 2828 } 2829 } 2830 2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2832 struct task_struct *next) 2833 { 2834 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2835 struct perf_event_context *next_ctx; 2836 struct perf_event_context *parent, *next_parent; 2837 struct perf_cpu_context *cpuctx; 2838 int do_switch = 1; 2839 2840 if (likely(!ctx)) 2841 return; 2842 2843 cpuctx = __get_cpu_context(ctx); 2844 if (!cpuctx->task_ctx) 2845 return; 2846 2847 rcu_read_lock(); 2848 next_ctx = next->perf_event_ctxp[ctxn]; 2849 if (!next_ctx) 2850 goto unlock; 2851 2852 parent = rcu_dereference(ctx->parent_ctx); 2853 next_parent = rcu_dereference(next_ctx->parent_ctx); 2854 2855 /* If neither context have a parent context; they cannot be clones. */ 2856 if (!parent && !next_parent) 2857 goto unlock; 2858 2859 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2860 /* 2861 * Looks like the two contexts are clones, so we might be 2862 * able to optimize the context switch. We lock both 2863 * contexts and check that they are clones under the 2864 * lock (including re-checking that neither has been 2865 * uncloned in the meantime). It doesn't matter which 2866 * order we take the locks because no other cpu could 2867 * be trying to lock both of these tasks. 2868 */ 2869 raw_spin_lock(&ctx->lock); 2870 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2871 if (context_equiv(ctx, next_ctx)) { 2872 WRITE_ONCE(ctx->task, next); 2873 WRITE_ONCE(next_ctx->task, task); 2874 2875 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2876 2877 /* 2878 * RCU_INIT_POINTER here is safe because we've not 2879 * modified the ctx and the above modification of 2880 * ctx->task and ctx->task_ctx_data are immaterial 2881 * since those values are always verified under 2882 * ctx->lock which we're now holding. 2883 */ 2884 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2885 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2886 2887 do_switch = 0; 2888 2889 perf_event_sync_stat(ctx, next_ctx); 2890 } 2891 raw_spin_unlock(&next_ctx->lock); 2892 raw_spin_unlock(&ctx->lock); 2893 } 2894 unlock: 2895 rcu_read_unlock(); 2896 2897 if (do_switch) { 2898 raw_spin_lock(&ctx->lock); 2899 task_ctx_sched_out(cpuctx, ctx); 2900 raw_spin_unlock(&ctx->lock); 2901 } 2902 } 2903 2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2905 2906 void perf_sched_cb_dec(struct pmu *pmu) 2907 { 2908 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2909 2910 this_cpu_dec(perf_sched_cb_usages); 2911 2912 if (!--cpuctx->sched_cb_usage) 2913 list_del(&cpuctx->sched_cb_entry); 2914 } 2915 2916 2917 void perf_sched_cb_inc(struct pmu *pmu) 2918 { 2919 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2920 2921 if (!cpuctx->sched_cb_usage++) 2922 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2923 2924 this_cpu_inc(perf_sched_cb_usages); 2925 } 2926 2927 /* 2928 * This function provides the context switch callback to the lower code 2929 * layer. It is invoked ONLY when the context switch callback is enabled. 2930 * 2931 * This callback is relevant even to per-cpu events; for example multi event 2932 * PEBS requires this to provide PID/TID information. This requires we flush 2933 * all queued PEBS records before we context switch to a new task. 2934 */ 2935 static void perf_pmu_sched_task(struct task_struct *prev, 2936 struct task_struct *next, 2937 bool sched_in) 2938 { 2939 struct perf_cpu_context *cpuctx; 2940 struct pmu *pmu; 2941 2942 if (prev == next) 2943 return; 2944 2945 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2946 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */ 2947 2948 if (WARN_ON_ONCE(!pmu->sched_task)) 2949 continue; 2950 2951 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2952 perf_pmu_disable(pmu); 2953 2954 pmu->sched_task(cpuctx->task_ctx, sched_in); 2955 2956 perf_pmu_enable(pmu); 2957 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2958 } 2959 } 2960 2961 static void perf_event_switch(struct task_struct *task, 2962 struct task_struct *next_prev, bool sched_in); 2963 2964 #define for_each_task_context_nr(ctxn) \ 2965 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2966 2967 /* 2968 * Called from scheduler to remove the events of the current task, 2969 * with interrupts disabled. 2970 * 2971 * We stop each event and update the event value in event->count. 2972 * 2973 * This does not protect us against NMI, but disable() 2974 * sets the disabled bit in the control field of event _before_ 2975 * accessing the event control register. If a NMI hits, then it will 2976 * not restart the event. 2977 */ 2978 void __perf_event_task_sched_out(struct task_struct *task, 2979 struct task_struct *next) 2980 { 2981 int ctxn; 2982 2983 if (__this_cpu_read(perf_sched_cb_usages)) 2984 perf_pmu_sched_task(task, next, false); 2985 2986 if (atomic_read(&nr_switch_events)) 2987 perf_event_switch(task, next, false); 2988 2989 for_each_task_context_nr(ctxn) 2990 perf_event_context_sched_out(task, ctxn, next); 2991 2992 /* 2993 * if cgroup events exist on this CPU, then we need 2994 * to check if we have to switch out PMU state. 2995 * cgroup event are system-wide mode only 2996 */ 2997 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2998 perf_cgroup_sched_out(task, next); 2999 } 3000 3001 /* 3002 * Called with IRQs disabled 3003 */ 3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3005 enum event_type_t event_type) 3006 { 3007 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3008 } 3009 3010 static void 3011 ctx_pinned_sched_in(struct perf_event_context *ctx, 3012 struct perf_cpu_context *cpuctx) 3013 { 3014 struct perf_event *event; 3015 3016 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3017 if (event->state <= PERF_EVENT_STATE_OFF) 3018 continue; 3019 if (!event_filter_match(event)) 3020 continue; 3021 3022 /* may need to reset tstamp_enabled */ 3023 if (is_cgroup_event(event)) 3024 perf_cgroup_mark_enabled(event, ctx); 3025 3026 if (group_can_go_on(event, cpuctx, 1)) 3027 group_sched_in(event, cpuctx, ctx); 3028 3029 /* 3030 * If this pinned group hasn't been scheduled, 3031 * put it in error state. 3032 */ 3033 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3034 update_group_times(event); 3035 event->state = PERF_EVENT_STATE_ERROR; 3036 } 3037 } 3038 } 3039 3040 static void 3041 ctx_flexible_sched_in(struct perf_event_context *ctx, 3042 struct perf_cpu_context *cpuctx) 3043 { 3044 struct perf_event *event; 3045 int can_add_hw = 1; 3046 3047 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3048 /* Ignore events in OFF or ERROR state */ 3049 if (event->state <= PERF_EVENT_STATE_OFF) 3050 continue; 3051 /* 3052 * Listen to the 'cpu' scheduling filter constraint 3053 * of events: 3054 */ 3055 if (!event_filter_match(event)) 3056 continue; 3057 3058 /* may need to reset tstamp_enabled */ 3059 if (is_cgroup_event(event)) 3060 perf_cgroup_mark_enabled(event, ctx); 3061 3062 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3063 if (group_sched_in(event, cpuctx, ctx)) 3064 can_add_hw = 0; 3065 } 3066 } 3067 } 3068 3069 static void 3070 ctx_sched_in(struct perf_event_context *ctx, 3071 struct perf_cpu_context *cpuctx, 3072 enum event_type_t event_type, 3073 struct task_struct *task) 3074 { 3075 int is_active = ctx->is_active; 3076 u64 now; 3077 3078 lockdep_assert_held(&ctx->lock); 3079 3080 if (likely(!ctx->nr_events)) 3081 return; 3082 3083 ctx->is_active |= (event_type | EVENT_TIME); 3084 if (ctx->task) { 3085 if (!is_active) 3086 cpuctx->task_ctx = ctx; 3087 else 3088 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3089 } 3090 3091 is_active ^= ctx->is_active; /* changed bits */ 3092 3093 if (is_active & EVENT_TIME) { 3094 /* start ctx time */ 3095 now = perf_clock(); 3096 ctx->timestamp = now; 3097 perf_cgroup_set_timestamp(task, ctx); 3098 } 3099 3100 /* 3101 * First go through the list and put on any pinned groups 3102 * in order to give them the best chance of going on. 3103 */ 3104 if (is_active & EVENT_PINNED) 3105 ctx_pinned_sched_in(ctx, cpuctx); 3106 3107 /* Then walk through the lower prio flexible groups */ 3108 if (is_active & EVENT_FLEXIBLE) 3109 ctx_flexible_sched_in(ctx, cpuctx); 3110 } 3111 3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3113 enum event_type_t event_type, 3114 struct task_struct *task) 3115 { 3116 struct perf_event_context *ctx = &cpuctx->ctx; 3117 3118 ctx_sched_in(ctx, cpuctx, event_type, task); 3119 } 3120 3121 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3122 struct task_struct *task) 3123 { 3124 struct perf_cpu_context *cpuctx; 3125 3126 cpuctx = __get_cpu_context(ctx); 3127 if (cpuctx->task_ctx == ctx) 3128 return; 3129 3130 perf_ctx_lock(cpuctx, ctx); 3131 perf_pmu_disable(ctx->pmu); 3132 /* 3133 * We want to keep the following priority order: 3134 * cpu pinned (that don't need to move), task pinned, 3135 * cpu flexible, task flexible. 3136 */ 3137 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3138 perf_event_sched_in(cpuctx, ctx, task); 3139 perf_pmu_enable(ctx->pmu); 3140 perf_ctx_unlock(cpuctx, ctx); 3141 } 3142 3143 /* 3144 * Called from scheduler to add the events of the current task 3145 * with interrupts disabled. 3146 * 3147 * We restore the event value and then enable it. 3148 * 3149 * This does not protect us against NMI, but enable() 3150 * sets the enabled bit in the control field of event _before_ 3151 * accessing the event control register. If a NMI hits, then it will 3152 * keep the event running. 3153 */ 3154 void __perf_event_task_sched_in(struct task_struct *prev, 3155 struct task_struct *task) 3156 { 3157 struct perf_event_context *ctx; 3158 int ctxn; 3159 3160 /* 3161 * If cgroup events exist on this CPU, then we need to check if we have 3162 * to switch in PMU state; cgroup event are system-wide mode only. 3163 * 3164 * Since cgroup events are CPU events, we must schedule these in before 3165 * we schedule in the task events. 3166 */ 3167 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3168 perf_cgroup_sched_in(prev, task); 3169 3170 for_each_task_context_nr(ctxn) { 3171 ctx = task->perf_event_ctxp[ctxn]; 3172 if (likely(!ctx)) 3173 continue; 3174 3175 perf_event_context_sched_in(ctx, task); 3176 } 3177 3178 if (atomic_read(&nr_switch_events)) 3179 perf_event_switch(task, prev, true); 3180 3181 if (__this_cpu_read(perf_sched_cb_usages)) 3182 perf_pmu_sched_task(prev, task, true); 3183 } 3184 3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3186 { 3187 u64 frequency = event->attr.sample_freq; 3188 u64 sec = NSEC_PER_SEC; 3189 u64 divisor, dividend; 3190 3191 int count_fls, nsec_fls, frequency_fls, sec_fls; 3192 3193 count_fls = fls64(count); 3194 nsec_fls = fls64(nsec); 3195 frequency_fls = fls64(frequency); 3196 sec_fls = 30; 3197 3198 /* 3199 * We got @count in @nsec, with a target of sample_freq HZ 3200 * the target period becomes: 3201 * 3202 * @count * 10^9 3203 * period = ------------------- 3204 * @nsec * sample_freq 3205 * 3206 */ 3207 3208 /* 3209 * Reduce accuracy by one bit such that @a and @b converge 3210 * to a similar magnitude. 3211 */ 3212 #define REDUCE_FLS(a, b) \ 3213 do { \ 3214 if (a##_fls > b##_fls) { \ 3215 a >>= 1; \ 3216 a##_fls--; \ 3217 } else { \ 3218 b >>= 1; \ 3219 b##_fls--; \ 3220 } \ 3221 } while (0) 3222 3223 /* 3224 * Reduce accuracy until either term fits in a u64, then proceed with 3225 * the other, so that finally we can do a u64/u64 division. 3226 */ 3227 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3228 REDUCE_FLS(nsec, frequency); 3229 REDUCE_FLS(sec, count); 3230 } 3231 3232 if (count_fls + sec_fls > 64) { 3233 divisor = nsec * frequency; 3234 3235 while (count_fls + sec_fls > 64) { 3236 REDUCE_FLS(count, sec); 3237 divisor >>= 1; 3238 } 3239 3240 dividend = count * sec; 3241 } else { 3242 dividend = count * sec; 3243 3244 while (nsec_fls + frequency_fls > 64) { 3245 REDUCE_FLS(nsec, frequency); 3246 dividend >>= 1; 3247 } 3248 3249 divisor = nsec * frequency; 3250 } 3251 3252 if (!divisor) 3253 return dividend; 3254 3255 return div64_u64(dividend, divisor); 3256 } 3257 3258 static DEFINE_PER_CPU(int, perf_throttled_count); 3259 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3260 3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3262 { 3263 struct hw_perf_event *hwc = &event->hw; 3264 s64 period, sample_period; 3265 s64 delta; 3266 3267 period = perf_calculate_period(event, nsec, count); 3268 3269 delta = (s64)(period - hwc->sample_period); 3270 delta = (delta + 7) / 8; /* low pass filter */ 3271 3272 sample_period = hwc->sample_period + delta; 3273 3274 if (!sample_period) 3275 sample_period = 1; 3276 3277 hwc->sample_period = sample_period; 3278 3279 if (local64_read(&hwc->period_left) > 8*sample_period) { 3280 if (disable) 3281 event->pmu->stop(event, PERF_EF_UPDATE); 3282 3283 local64_set(&hwc->period_left, 0); 3284 3285 if (disable) 3286 event->pmu->start(event, PERF_EF_RELOAD); 3287 } 3288 } 3289 3290 /* 3291 * combine freq adjustment with unthrottling to avoid two passes over the 3292 * events. At the same time, make sure, having freq events does not change 3293 * the rate of unthrottling as that would introduce bias. 3294 */ 3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3296 int needs_unthr) 3297 { 3298 struct perf_event *event; 3299 struct hw_perf_event *hwc; 3300 u64 now, period = TICK_NSEC; 3301 s64 delta; 3302 3303 /* 3304 * only need to iterate over all events iff: 3305 * - context have events in frequency mode (needs freq adjust) 3306 * - there are events to unthrottle on this cpu 3307 */ 3308 if (!(ctx->nr_freq || needs_unthr)) 3309 return; 3310 3311 raw_spin_lock(&ctx->lock); 3312 perf_pmu_disable(ctx->pmu); 3313 3314 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3315 if (event->state != PERF_EVENT_STATE_ACTIVE) 3316 continue; 3317 3318 if (!event_filter_match(event)) 3319 continue; 3320 3321 perf_pmu_disable(event->pmu); 3322 3323 hwc = &event->hw; 3324 3325 if (hwc->interrupts == MAX_INTERRUPTS) { 3326 hwc->interrupts = 0; 3327 perf_log_throttle(event, 1); 3328 event->pmu->start(event, 0); 3329 } 3330 3331 if (!event->attr.freq || !event->attr.sample_freq) 3332 goto next; 3333 3334 /* 3335 * stop the event and update event->count 3336 */ 3337 event->pmu->stop(event, PERF_EF_UPDATE); 3338 3339 now = local64_read(&event->count); 3340 delta = now - hwc->freq_count_stamp; 3341 hwc->freq_count_stamp = now; 3342 3343 /* 3344 * restart the event 3345 * reload only if value has changed 3346 * we have stopped the event so tell that 3347 * to perf_adjust_period() to avoid stopping it 3348 * twice. 3349 */ 3350 if (delta > 0) 3351 perf_adjust_period(event, period, delta, false); 3352 3353 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3354 next: 3355 perf_pmu_enable(event->pmu); 3356 } 3357 3358 perf_pmu_enable(ctx->pmu); 3359 raw_spin_unlock(&ctx->lock); 3360 } 3361 3362 /* 3363 * Round-robin a context's events: 3364 */ 3365 static void rotate_ctx(struct perf_event_context *ctx) 3366 { 3367 /* 3368 * Rotate the first entry last of non-pinned groups. Rotation might be 3369 * disabled by the inheritance code. 3370 */ 3371 if (!ctx->rotate_disable) 3372 list_rotate_left(&ctx->flexible_groups); 3373 } 3374 3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3376 { 3377 struct perf_event_context *ctx = NULL; 3378 int rotate = 0; 3379 3380 if (cpuctx->ctx.nr_events) { 3381 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3382 rotate = 1; 3383 } 3384 3385 ctx = cpuctx->task_ctx; 3386 if (ctx && ctx->nr_events) { 3387 if (ctx->nr_events != ctx->nr_active) 3388 rotate = 1; 3389 } 3390 3391 if (!rotate) 3392 goto done; 3393 3394 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3395 perf_pmu_disable(cpuctx->ctx.pmu); 3396 3397 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3398 if (ctx) 3399 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3400 3401 rotate_ctx(&cpuctx->ctx); 3402 if (ctx) 3403 rotate_ctx(ctx); 3404 3405 perf_event_sched_in(cpuctx, ctx, current); 3406 3407 perf_pmu_enable(cpuctx->ctx.pmu); 3408 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3409 done: 3410 3411 return rotate; 3412 } 3413 3414 void perf_event_task_tick(void) 3415 { 3416 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3417 struct perf_event_context *ctx, *tmp; 3418 int throttled; 3419 3420 WARN_ON(!irqs_disabled()); 3421 3422 __this_cpu_inc(perf_throttled_seq); 3423 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3424 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3425 3426 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3427 perf_adjust_freq_unthr_context(ctx, throttled); 3428 } 3429 3430 static int event_enable_on_exec(struct perf_event *event, 3431 struct perf_event_context *ctx) 3432 { 3433 if (!event->attr.enable_on_exec) 3434 return 0; 3435 3436 event->attr.enable_on_exec = 0; 3437 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3438 return 0; 3439 3440 __perf_event_mark_enabled(event); 3441 3442 return 1; 3443 } 3444 3445 /* 3446 * Enable all of a task's events that have been marked enable-on-exec. 3447 * This expects task == current. 3448 */ 3449 static void perf_event_enable_on_exec(int ctxn) 3450 { 3451 struct perf_event_context *ctx, *clone_ctx = NULL; 3452 struct perf_cpu_context *cpuctx; 3453 struct perf_event *event; 3454 unsigned long flags; 3455 int enabled = 0; 3456 3457 local_irq_save(flags); 3458 ctx = current->perf_event_ctxp[ctxn]; 3459 if (!ctx || !ctx->nr_events) 3460 goto out; 3461 3462 cpuctx = __get_cpu_context(ctx); 3463 perf_ctx_lock(cpuctx, ctx); 3464 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3465 list_for_each_entry(event, &ctx->event_list, event_entry) 3466 enabled |= event_enable_on_exec(event, ctx); 3467 3468 /* 3469 * Unclone and reschedule this context if we enabled any event. 3470 */ 3471 if (enabled) { 3472 clone_ctx = unclone_ctx(ctx); 3473 ctx_resched(cpuctx, ctx); 3474 } 3475 perf_ctx_unlock(cpuctx, ctx); 3476 3477 out: 3478 local_irq_restore(flags); 3479 3480 if (clone_ctx) 3481 put_ctx(clone_ctx); 3482 } 3483 3484 struct perf_read_data { 3485 struct perf_event *event; 3486 bool group; 3487 int ret; 3488 }; 3489 3490 static int find_cpu_to_read(struct perf_event *event, int local_cpu) 3491 { 3492 int event_cpu = event->oncpu; 3493 u16 local_pkg, event_pkg; 3494 3495 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3496 event_pkg = topology_physical_package_id(event_cpu); 3497 local_pkg = topology_physical_package_id(local_cpu); 3498 3499 if (event_pkg == local_pkg) 3500 return local_cpu; 3501 } 3502 3503 return event_cpu; 3504 } 3505 3506 /* 3507 * Cross CPU call to read the hardware event 3508 */ 3509 static void __perf_event_read(void *info) 3510 { 3511 struct perf_read_data *data = info; 3512 struct perf_event *sub, *event = data->event; 3513 struct perf_event_context *ctx = event->ctx; 3514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3515 struct pmu *pmu = event->pmu; 3516 3517 /* 3518 * If this is a task context, we need to check whether it is 3519 * the current task context of this cpu. If not it has been 3520 * scheduled out before the smp call arrived. In that case 3521 * event->count would have been updated to a recent sample 3522 * when the event was scheduled out. 3523 */ 3524 if (ctx->task && cpuctx->task_ctx != ctx) 3525 return; 3526 3527 raw_spin_lock(&ctx->lock); 3528 if (ctx->is_active) { 3529 update_context_time(ctx); 3530 update_cgrp_time_from_event(event); 3531 } 3532 3533 update_event_times(event); 3534 if (event->state != PERF_EVENT_STATE_ACTIVE) 3535 goto unlock; 3536 3537 if (!data->group) { 3538 pmu->read(event); 3539 data->ret = 0; 3540 goto unlock; 3541 } 3542 3543 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3544 3545 pmu->read(event); 3546 3547 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3548 update_event_times(sub); 3549 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3550 /* 3551 * Use sibling's PMU rather than @event's since 3552 * sibling could be on different (eg: software) PMU. 3553 */ 3554 sub->pmu->read(sub); 3555 } 3556 } 3557 3558 data->ret = pmu->commit_txn(pmu); 3559 3560 unlock: 3561 raw_spin_unlock(&ctx->lock); 3562 } 3563 3564 static inline u64 perf_event_count(struct perf_event *event) 3565 { 3566 if (event->pmu->count) 3567 return event->pmu->count(event); 3568 3569 return __perf_event_count(event); 3570 } 3571 3572 /* 3573 * NMI-safe method to read a local event, that is an event that 3574 * is: 3575 * - either for the current task, or for this CPU 3576 * - does not have inherit set, for inherited task events 3577 * will not be local and we cannot read them atomically 3578 * - must not have a pmu::count method 3579 */ 3580 u64 perf_event_read_local(struct perf_event *event) 3581 { 3582 unsigned long flags; 3583 u64 val; 3584 3585 /* 3586 * Disabling interrupts avoids all counter scheduling (context 3587 * switches, timer based rotation and IPIs). 3588 */ 3589 local_irq_save(flags); 3590 3591 /* If this is a per-task event, it must be for current */ 3592 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3593 event->hw.target != current); 3594 3595 /* If this is a per-CPU event, it must be for this CPU */ 3596 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3597 event->cpu != smp_processor_id()); 3598 3599 /* 3600 * It must not be an event with inherit set, we cannot read 3601 * all child counters from atomic context. 3602 */ 3603 WARN_ON_ONCE(event->attr.inherit); 3604 3605 /* 3606 * It must not have a pmu::count method, those are not 3607 * NMI safe. 3608 */ 3609 WARN_ON_ONCE(event->pmu->count); 3610 3611 /* 3612 * If the event is currently on this CPU, its either a per-task event, 3613 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3614 * oncpu == -1). 3615 */ 3616 if (event->oncpu == smp_processor_id()) 3617 event->pmu->read(event); 3618 3619 val = local64_read(&event->count); 3620 local_irq_restore(flags); 3621 3622 return val; 3623 } 3624 3625 static int perf_event_read(struct perf_event *event, bool group) 3626 { 3627 int ret = 0, cpu_to_read, local_cpu; 3628 3629 /* 3630 * If event is enabled and currently active on a CPU, update the 3631 * value in the event structure: 3632 */ 3633 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3634 struct perf_read_data data = { 3635 .event = event, 3636 .group = group, 3637 .ret = 0, 3638 }; 3639 3640 local_cpu = get_cpu(); 3641 cpu_to_read = find_cpu_to_read(event, local_cpu); 3642 put_cpu(); 3643 3644 /* 3645 * Purposely ignore the smp_call_function_single() return 3646 * value. 3647 * 3648 * If event->oncpu isn't a valid CPU it means the event got 3649 * scheduled out and that will have updated the event count. 3650 * 3651 * Therefore, either way, we'll have an up-to-date event count 3652 * after this. 3653 */ 3654 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1); 3655 ret = data.ret; 3656 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3657 struct perf_event_context *ctx = event->ctx; 3658 unsigned long flags; 3659 3660 raw_spin_lock_irqsave(&ctx->lock, flags); 3661 /* 3662 * may read while context is not active 3663 * (e.g., thread is blocked), in that case 3664 * we cannot update context time 3665 */ 3666 if (ctx->is_active) { 3667 update_context_time(ctx); 3668 update_cgrp_time_from_event(event); 3669 } 3670 if (group) 3671 update_group_times(event); 3672 else 3673 update_event_times(event); 3674 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3675 } 3676 3677 return ret; 3678 } 3679 3680 /* 3681 * Initialize the perf_event context in a task_struct: 3682 */ 3683 static void __perf_event_init_context(struct perf_event_context *ctx) 3684 { 3685 raw_spin_lock_init(&ctx->lock); 3686 mutex_init(&ctx->mutex); 3687 INIT_LIST_HEAD(&ctx->active_ctx_list); 3688 INIT_LIST_HEAD(&ctx->pinned_groups); 3689 INIT_LIST_HEAD(&ctx->flexible_groups); 3690 INIT_LIST_HEAD(&ctx->event_list); 3691 atomic_set(&ctx->refcount, 1); 3692 } 3693 3694 static struct perf_event_context * 3695 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3696 { 3697 struct perf_event_context *ctx; 3698 3699 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3700 if (!ctx) 3701 return NULL; 3702 3703 __perf_event_init_context(ctx); 3704 if (task) { 3705 ctx->task = task; 3706 get_task_struct(task); 3707 } 3708 ctx->pmu = pmu; 3709 3710 return ctx; 3711 } 3712 3713 static struct task_struct * 3714 find_lively_task_by_vpid(pid_t vpid) 3715 { 3716 struct task_struct *task; 3717 3718 rcu_read_lock(); 3719 if (!vpid) 3720 task = current; 3721 else 3722 task = find_task_by_vpid(vpid); 3723 if (task) 3724 get_task_struct(task); 3725 rcu_read_unlock(); 3726 3727 if (!task) 3728 return ERR_PTR(-ESRCH); 3729 3730 return task; 3731 } 3732 3733 /* 3734 * Returns a matching context with refcount and pincount. 3735 */ 3736 static struct perf_event_context * 3737 find_get_context(struct pmu *pmu, struct task_struct *task, 3738 struct perf_event *event) 3739 { 3740 struct perf_event_context *ctx, *clone_ctx = NULL; 3741 struct perf_cpu_context *cpuctx; 3742 void *task_ctx_data = NULL; 3743 unsigned long flags; 3744 int ctxn, err; 3745 int cpu = event->cpu; 3746 3747 if (!task) { 3748 /* Must be root to operate on a CPU event: */ 3749 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3750 return ERR_PTR(-EACCES); 3751 3752 /* 3753 * We could be clever and allow to attach a event to an 3754 * offline CPU and activate it when the CPU comes up, but 3755 * that's for later. 3756 */ 3757 if (!cpu_online(cpu)) 3758 return ERR_PTR(-ENODEV); 3759 3760 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3761 ctx = &cpuctx->ctx; 3762 get_ctx(ctx); 3763 ++ctx->pin_count; 3764 3765 return ctx; 3766 } 3767 3768 err = -EINVAL; 3769 ctxn = pmu->task_ctx_nr; 3770 if (ctxn < 0) 3771 goto errout; 3772 3773 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3774 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3775 if (!task_ctx_data) { 3776 err = -ENOMEM; 3777 goto errout; 3778 } 3779 } 3780 3781 retry: 3782 ctx = perf_lock_task_context(task, ctxn, &flags); 3783 if (ctx) { 3784 clone_ctx = unclone_ctx(ctx); 3785 ++ctx->pin_count; 3786 3787 if (task_ctx_data && !ctx->task_ctx_data) { 3788 ctx->task_ctx_data = task_ctx_data; 3789 task_ctx_data = NULL; 3790 } 3791 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3792 3793 if (clone_ctx) 3794 put_ctx(clone_ctx); 3795 } else { 3796 ctx = alloc_perf_context(pmu, task); 3797 err = -ENOMEM; 3798 if (!ctx) 3799 goto errout; 3800 3801 if (task_ctx_data) { 3802 ctx->task_ctx_data = task_ctx_data; 3803 task_ctx_data = NULL; 3804 } 3805 3806 err = 0; 3807 mutex_lock(&task->perf_event_mutex); 3808 /* 3809 * If it has already passed perf_event_exit_task(). 3810 * we must see PF_EXITING, it takes this mutex too. 3811 */ 3812 if (task->flags & PF_EXITING) 3813 err = -ESRCH; 3814 else if (task->perf_event_ctxp[ctxn]) 3815 err = -EAGAIN; 3816 else { 3817 get_ctx(ctx); 3818 ++ctx->pin_count; 3819 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3820 } 3821 mutex_unlock(&task->perf_event_mutex); 3822 3823 if (unlikely(err)) { 3824 put_ctx(ctx); 3825 3826 if (err == -EAGAIN) 3827 goto retry; 3828 goto errout; 3829 } 3830 } 3831 3832 kfree(task_ctx_data); 3833 return ctx; 3834 3835 errout: 3836 kfree(task_ctx_data); 3837 return ERR_PTR(err); 3838 } 3839 3840 static void perf_event_free_filter(struct perf_event *event); 3841 static void perf_event_free_bpf_prog(struct perf_event *event); 3842 3843 static void free_event_rcu(struct rcu_head *head) 3844 { 3845 struct perf_event *event; 3846 3847 event = container_of(head, struct perf_event, rcu_head); 3848 if (event->ns) 3849 put_pid_ns(event->ns); 3850 perf_event_free_filter(event); 3851 kfree(event); 3852 } 3853 3854 static void ring_buffer_attach(struct perf_event *event, 3855 struct ring_buffer *rb); 3856 3857 static void detach_sb_event(struct perf_event *event) 3858 { 3859 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3860 3861 raw_spin_lock(&pel->lock); 3862 list_del_rcu(&event->sb_list); 3863 raw_spin_unlock(&pel->lock); 3864 } 3865 3866 static bool is_sb_event(struct perf_event *event) 3867 { 3868 struct perf_event_attr *attr = &event->attr; 3869 3870 if (event->parent) 3871 return false; 3872 3873 if (event->attach_state & PERF_ATTACH_TASK) 3874 return false; 3875 3876 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3877 attr->comm || attr->comm_exec || 3878 attr->task || 3879 attr->context_switch) 3880 return true; 3881 return false; 3882 } 3883 3884 static void unaccount_pmu_sb_event(struct perf_event *event) 3885 { 3886 if (is_sb_event(event)) 3887 detach_sb_event(event); 3888 } 3889 3890 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3891 { 3892 if (event->parent) 3893 return; 3894 3895 if (is_cgroup_event(event)) 3896 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3897 } 3898 3899 #ifdef CONFIG_NO_HZ_FULL 3900 static DEFINE_SPINLOCK(nr_freq_lock); 3901 #endif 3902 3903 static void unaccount_freq_event_nohz(void) 3904 { 3905 #ifdef CONFIG_NO_HZ_FULL 3906 spin_lock(&nr_freq_lock); 3907 if (atomic_dec_and_test(&nr_freq_events)) 3908 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3909 spin_unlock(&nr_freq_lock); 3910 #endif 3911 } 3912 3913 static void unaccount_freq_event(void) 3914 { 3915 if (tick_nohz_full_enabled()) 3916 unaccount_freq_event_nohz(); 3917 else 3918 atomic_dec(&nr_freq_events); 3919 } 3920 3921 static void unaccount_event(struct perf_event *event) 3922 { 3923 bool dec = false; 3924 3925 if (event->parent) 3926 return; 3927 3928 if (event->attach_state & PERF_ATTACH_TASK) 3929 dec = true; 3930 if (event->attr.mmap || event->attr.mmap_data) 3931 atomic_dec(&nr_mmap_events); 3932 if (event->attr.comm) 3933 atomic_dec(&nr_comm_events); 3934 if (event->attr.task) 3935 atomic_dec(&nr_task_events); 3936 if (event->attr.freq) 3937 unaccount_freq_event(); 3938 if (event->attr.context_switch) { 3939 dec = true; 3940 atomic_dec(&nr_switch_events); 3941 } 3942 if (is_cgroup_event(event)) 3943 dec = true; 3944 if (has_branch_stack(event)) 3945 dec = true; 3946 3947 if (dec) { 3948 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3949 schedule_delayed_work(&perf_sched_work, HZ); 3950 } 3951 3952 unaccount_event_cpu(event, event->cpu); 3953 3954 unaccount_pmu_sb_event(event); 3955 } 3956 3957 static void perf_sched_delayed(struct work_struct *work) 3958 { 3959 mutex_lock(&perf_sched_mutex); 3960 if (atomic_dec_and_test(&perf_sched_count)) 3961 static_branch_disable(&perf_sched_events); 3962 mutex_unlock(&perf_sched_mutex); 3963 } 3964 3965 /* 3966 * The following implement mutual exclusion of events on "exclusive" pmus 3967 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3968 * at a time, so we disallow creating events that might conflict, namely: 3969 * 3970 * 1) cpu-wide events in the presence of per-task events, 3971 * 2) per-task events in the presence of cpu-wide events, 3972 * 3) two matching events on the same context. 3973 * 3974 * The former two cases are handled in the allocation path (perf_event_alloc(), 3975 * _free_event()), the latter -- before the first perf_install_in_context(). 3976 */ 3977 static int exclusive_event_init(struct perf_event *event) 3978 { 3979 struct pmu *pmu = event->pmu; 3980 3981 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3982 return 0; 3983 3984 /* 3985 * Prevent co-existence of per-task and cpu-wide events on the 3986 * same exclusive pmu. 3987 * 3988 * Negative pmu::exclusive_cnt means there are cpu-wide 3989 * events on this "exclusive" pmu, positive means there are 3990 * per-task events. 3991 * 3992 * Since this is called in perf_event_alloc() path, event::ctx 3993 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3994 * to mean "per-task event", because unlike other attach states it 3995 * never gets cleared. 3996 */ 3997 if (event->attach_state & PERF_ATTACH_TASK) { 3998 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3999 return -EBUSY; 4000 } else { 4001 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4002 return -EBUSY; 4003 } 4004 4005 return 0; 4006 } 4007 4008 static void exclusive_event_destroy(struct perf_event *event) 4009 { 4010 struct pmu *pmu = event->pmu; 4011 4012 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4013 return; 4014 4015 /* see comment in exclusive_event_init() */ 4016 if (event->attach_state & PERF_ATTACH_TASK) 4017 atomic_dec(&pmu->exclusive_cnt); 4018 else 4019 atomic_inc(&pmu->exclusive_cnt); 4020 } 4021 4022 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4023 { 4024 if ((e1->pmu == e2->pmu) && 4025 (e1->cpu == e2->cpu || 4026 e1->cpu == -1 || 4027 e2->cpu == -1)) 4028 return true; 4029 return false; 4030 } 4031 4032 /* Called under the same ctx::mutex as perf_install_in_context() */ 4033 static bool exclusive_event_installable(struct perf_event *event, 4034 struct perf_event_context *ctx) 4035 { 4036 struct perf_event *iter_event; 4037 struct pmu *pmu = event->pmu; 4038 4039 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4040 return true; 4041 4042 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4043 if (exclusive_event_match(iter_event, event)) 4044 return false; 4045 } 4046 4047 return true; 4048 } 4049 4050 static void perf_addr_filters_splice(struct perf_event *event, 4051 struct list_head *head); 4052 4053 static void _free_event(struct perf_event *event) 4054 { 4055 irq_work_sync(&event->pending); 4056 4057 unaccount_event(event); 4058 4059 if (event->rb) { 4060 /* 4061 * Can happen when we close an event with re-directed output. 4062 * 4063 * Since we have a 0 refcount, perf_mmap_close() will skip 4064 * over us; possibly making our ring_buffer_put() the last. 4065 */ 4066 mutex_lock(&event->mmap_mutex); 4067 ring_buffer_attach(event, NULL); 4068 mutex_unlock(&event->mmap_mutex); 4069 } 4070 4071 if (is_cgroup_event(event)) 4072 perf_detach_cgroup(event); 4073 4074 if (!event->parent) { 4075 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4076 put_callchain_buffers(); 4077 } 4078 4079 perf_event_free_bpf_prog(event); 4080 perf_addr_filters_splice(event, NULL); 4081 kfree(event->addr_filters_offs); 4082 4083 if (event->destroy) 4084 event->destroy(event); 4085 4086 if (event->ctx) 4087 put_ctx(event->ctx); 4088 4089 exclusive_event_destroy(event); 4090 module_put(event->pmu->module); 4091 4092 call_rcu(&event->rcu_head, free_event_rcu); 4093 } 4094 4095 /* 4096 * Used to free events which have a known refcount of 1, such as in error paths 4097 * where the event isn't exposed yet and inherited events. 4098 */ 4099 static void free_event(struct perf_event *event) 4100 { 4101 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4102 "unexpected event refcount: %ld; ptr=%p\n", 4103 atomic_long_read(&event->refcount), event)) { 4104 /* leak to avoid use-after-free */ 4105 return; 4106 } 4107 4108 _free_event(event); 4109 } 4110 4111 /* 4112 * Remove user event from the owner task. 4113 */ 4114 static void perf_remove_from_owner(struct perf_event *event) 4115 { 4116 struct task_struct *owner; 4117 4118 rcu_read_lock(); 4119 /* 4120 * Matches the smp_store_release() in perf_event_exit_task(). If we 4121 * observe !owner it means the list deletion is complete and we can 4122 * indeed free this event, otherwise we need to serialize on 4123 * owner->perf_event_mutex. 4124 */ 4125 owner = lockless_dereference(event->owner); 4126 if (owner) { 4127 /* 4128 * Since delayed_put_task_struct() also drops the last 4129 * task reference we can safely take a new reference 4130 * while holding the rcu_read_lock(). 4131 */ 4132 get_task_struct(owner); 4133 } 4134 rcu_read_unlock(); 4135 4136 if (owner) { 4137 /* 4138 * If we're here through perf_event_exit_task() we're already 4139 * holding ctx->mutex which would be an inversion wrt. the 4140 * normal lock order. 4141 * 4142 * However we can safely take this lock because its the child 4143 * ctx->mutex. 4144 */ 4145 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4146 4147 /* 4148 * We have to re-check the event->owner field, if it is cleared 4149 * we raced with perf_event_exit_task(), acquiring the mutex 4150 * ensured they're done, and we can proceed with freeing the 4151 * event. 4152 */ 4153 if (event->owner) { 4154 list_del_init(&event->owner_entry); 4155 smp_store_release(&event->owner, NULL); 4156 } 4157 mutex_unlock(&owner->perf_event_mutex); 4158 put_task_struct(owner); 4159 } 4160 } 4161 4162 static void put_event(struct perf_event *event) 4163 { 4164 if (!atomic_long_dec_and_test(&event->refcount)) 4165 return; 4166 4167 _free_event(event); 4168 } 4169 4170 /* 4171 * Kill an event dead; while event:refcount will preserve the event 4172 * object, it will not preserve its functionality. Once the last 'user' 4173 * gives up the object, we'll destroy the thing. 4174 */ 4175 int perf_event_release_kernel(struct perf_event *event) 4176 { 4177 struct perf_event_context *ctx = event->ctx; 4178 struct perf_event *child, *tmp; 4179 4180 /* 4181 * If we got here through err_file: fput(event_file); we will not have 4182 * attached to a context yet. 4183 */ 4184 if (!ctx) { 4185 WARN_ON_ONCE(event->attach_state & 4186 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4187 goto no_ctx; 4188 } 4189 4190 if (!is_kernel_event(event)) 4191 perf_remove_from_owner(event); 4192 4193 ctx = perf_event_ctx_lock(event); 4194 WARN_ON_ONCE(ctx->parent_ctx); 4195 perf_remove_from_context(event, DETACH_GROUP); 4196 4197 raw_spin_lock_irq(&ctx->lock); 4198 /* 4199 * Mark this even as STATE_DEAD, there is no external reference to it 4200 * anymore. 4201 * 4202 * Anybody acquiring event->child_mutex after the below loop _must_ 4203 * also see this, most importantly inherit_event() which will avoid 4204 * placing more children on the list. 4205 * 4206 * Thus this guarantees that we will in fact observe and kill _ALL_ 4207 * child events. 4208 */ 4209 event->state = PERF_EVENT_STATE_DEAD; 4210 raw_spin_unlock_irq(&ctx->lock); 4211 4212 perf_event_ctx_unlock(event, ctx); 4213 4214 again: 4215 mutex_lock(&event->child_mutex); 4216 list_for_each_entry(child, &event->child_list, child_list) { 4217 4218 /* 4219 * Cannot change, child events are not migrated, see the 4220 * comment with perf_event_ctx_lock_nested(). 4221 */ 4222 ctx = lockless_dereference(child->ctx); 4223 /* 4224 * Since child_mutex nests inside ctx::mutex, we must jump 4225 * through hoops. We start by grabbing a reference on the ctx. 4226 * 4227 * Since the event cannot get freed while we hold the 4228 * child_mutex, the context must also exist and have a !0 4229 * reference count. 4230 */ 4231 get_ctx(ctx); 4232 4233 /* 4234 * Now that we have a ctx ref, we can drop child_mutex, and 4235 * acquire ctx::mutex without fear of it going away. Then we 4236 * can re-acquire child_mutex. 4237 */ 4238 mutex_unlock(&event->child_mutex); 4239 mutex_lock(&ctx->mutex); 4240 mutex_lock(&event->child_mutex); 4241 4242 /* 4243 * Now that we hold ctx::mutex and child_mutex, revalidate our 4244 * state, if child is still the first entry, it didn't get freed 4245 * and we can continue doing so. 4246 */ 4247 tmp = list_first_entry_or_null(&event->child_list, 4248 struct perf_event, child_list); 4249 if (tmp == child) { 4250 perf_remove_from_context(child, DETACH_GROUP); 4251 list_del(&child->child_list); 4252 free_event(child); 4253 /* 4254 * This matches the refcount bump in inherit_event(); 4255 * this can't be the last reference. 4256 */ 4257 put_event(event); 4258 } 4259 4260 mutex_unlock(&event->child_mutex); 4261 mutex_unlock(&ctx->mutex); 4262 put_ctx(ctx); 4263 goto again; 4264 } 4265 mutex_unlock(&event->child_mutex); 4266 4267 no_ctx: 4268 put_event(event); /* Must be the 'last' reference */ 4269 return 0; 4270 } 4271 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4272 4273 /* 4274 * Called when the last reference to the file is gone. 4275 */ 4276 static int perf_release(struct inode *inode, struct file *file) 4277 { 4278 perf_event_release_kernel(file->private_data); 4279 return 0; 4280 } 4281 4282 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4283 { 4284 struct perf_event *child; 4285 u64 total = 0; 4286 4287 *enabled = 0; 4288 *running = 0; 4289 4290 mutex_lock(&event->child_mutex); 4291 4292 (void)perf_event_read(event, false); 4293 total += perf_event_count(event); 4294 4295 *enabled += event->total_time_enabled + 4296 atomic64_read(&event->child_total_time_enabled); 4297 *running += event->total_time_running + 4298 atomic64_read(&event->child_total_time_running); 4299 4300 list_for_each_entry(child, &event->child_list, child_list) { 4301 (void)perf_event_read(child, false); 4302 total += perf_event_count(child); 4303 *enabled += child->total_time_enabled; 4304 *running += child->total_time_running; 4305 } 4306 mutex_unlock(&event->child_mutex); 4307 4308 return total; 4309 } 4310 EXPORT_SYMBOL_GPL(perf_event_read_value); 4311 4312 static int __perf_read_group_add(struct perf_event *leader, 4313 u64 read_format, u64 *values) 4314 { 4315 struct perf_event *sub; 4316 int n = 1; /* skip @nr */ 4317 int ret; 4318 4319 ret = perf_event_read(leader, true); 4320 if (ret) 4321 return ret; 4322 4323 /* 4324 * Since we co-schedule groups, {enabled,running} times of siblings 4325 * will be identical to those of the leader, so we only publish one 4326 * set. 4327 */ 4328 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4329 values[n++] += leader->total_time_enabled + 4330 atomic64_read(&leader->child_total_time_enabled); 4331 } 4332 4333 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4334 values[n++] += leader->total_time_running + 4335 atomic64_read(&leader->child_total_time_running); 4336 } 4337 4338 /* 4339 * Write {count,id} tuples for every sibling. 4340 */ 4341 values[n++] += perf_event_count(leader); 4342 if (read_format & PERF_FORMAT_ID) 4343 values[n++] = primary_event_id(leader); 4344 4345 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4346 values[n++] += perf_event_count(sub); 4347 if (read_format & PERF_FORMAT_ID) 4348 values[n++] = primary_event_id(sub); 4349 } 4350 4351 return 0; 4352 } 4353 4354 static int perf_read_group(struct perf_event *event, 4355 u64 read_format, char __user *buf) 4356 { 4357 struct perf_event *leader = event->group_leader, *child; 4358 struct perf_event_context *ctx = leader->ctx; 4359 int ret; 4360 u64 *values; 4361 4362 lockdep_assert_held(&ctx->mutex); 4363 4364 values = kzalloc(event->read_size, GFP_KERNEL); 4365 if (!values) 4366 return -ENOMEM; 4367 4368 values[0] = 1 + leader->nr_siblings; 4369 4370 /* 4371 * By locking the child_mutex of the leader we effectively 4372 * lock the child list of all siblings.. XXX explain how. 4373 */ 4374 mutex_lock(&leader->child_mutex); 4375 4376 ret = __perf_read_group_add(leader, read_format, values); 4377 if (ret) 4378 goto unlock; 4379 4380 list_for_each_entry(child, &leader->child_list, child_list) { 4381 ret = __perf_read_group_add(child, read_format, values); 4382 if (ret) 4383 goto unlock; 4384 } 4385 4386 mutex_unlock(&leader->child_mutex); 4387 4388 ret = event->read_size; 4389 if (copy_to_user(buf, values, event->read_size)) 4390 ret = -EFAULT; 4391 goto out; 4392 4393 unlock: 4394 mutex_unlock(&leader->child_mutex); 4395 out: 4396 kfree(values); 4397 return ret; 4398 } 4399 4400 static int perf_read_one(struct perf_event *event, 4401 u64 read_format, char __user *buf) 4402 { 4403 u64 enabled, running; 4404 u64 values[4]; 4405 int n = 0; 4406 4407 values[n++] = perf_event_read_value(event, &enabled, &running); 4408 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4409 values[n++] = enabled; 4410 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4411 values[n++] = running; 4412 if (read_format & PERF_FORMAT_ID) 4413 values[n++] = primary_event_id(event); 4414 4415 if (copy_to_user(buf, values, n * sizeof(u64))) 4416 return -EFAULT; 4417 4418 return n * sizeof(u64); 4419 } 4420 4421 static bool is_event_hup(struct perf_event *event) 4422 { 4423 bool no_children; 4424 4425 if (event->state > PERF_EVENT_STATE_EXIT) 4426 return false; 4427 4428 mutex_lock(&event->child_mutex); 4429 no_children = list_empty(&event->child_list); 4430 mutex_unlock(&event->child_mutex); 4431 return no_children; 4432 } 4433 4434 /* 4435 * Read the performance event - simple non blocking version for now 4436 */ 4437 static ssize_t 4438 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4439 { 4440 u64 read_format = event->attr.read_format; 4441 int ret; 4442 4443 /* 4444 * Return end-of-file for a read on a event that is in 4445 * error state (i.e. because it was pinned but it couldn't be 4446 * scheduled on to the CPU at some point). 4447 */ 4448 if (event->state == PERF_EVENT_STATE_ERROR) 4449 return 0; 4450 4451 if (count < event->read_size) 4452 return -ENOSPC; 4453 4454 WARN_ON_ONCE(event->ctx->parent_ctx); 4455 if (read_format & PERF_FORMAT_GROUP) 4456 ret = perf_read_group(event, read_format, buf); 4457 else 4458 ret = perf_read_one(event, read_format, buf); 4459 4460 return ret; 4461 } 4462 4463 static ssize_t 4464 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4465 { 4466 struct perf_event *event = file->private_data; 4467 struct perf_event_context *ctx; 4468 int ret; 4469 4470 ctx = perf_event_ctx_lock(event); 4471 ret = __perf_read(event, buf, count); 4472 perf_event_ctx_unlock(event, ctx); 4473 4474 return ret; 4475 } 4476 4477 static unsigned int perf_poll(struct file *file, poll_table *wait) 4478 { 4479 struct perf_event *event = file->private_data; 4480 struct ring_buffer *rb; 4481 unsigned int events = POLLHUP; 4482 4483 poll_wait(file, &event->waitq, wait); 4484 4485 if (is_event_hup(event)) 4486 return events; 4487 4488 /* 4489 * Pin the event->rb by taking event->mmap_mutex; otherwise 4490 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4491 */ 4492 mutex_lock(&event->mmap_mutex); 4493 rb = event->rb; 4494 if (rb) 4495 events = atomic_xchg(&rb->poll, 0); 4496 mutex_unlock(&event->mmap_mutex); 4497 return events; 4498 } 4499 4500 static void _perf_event_reset(struct perf_event *event) 4501 { 4502 (void)perf_event_read(event, false); 4503 local64_set(&event->count, 0); 4504 perf_event_update_userpage(event); 4505 } 4506 4507 /* 4508 * Holding the top-level event's child_mutex means that any 4509 * descendant process that has inherited this event will block 4510 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4511 * task existence requirements of perf_event_enable/disable. 4512 */ 4513 static void perf_event_for_each_child(struct perf_event *event, 4514 void (*func)(struct perf_event *)) 4515 { 4516 struct perf_event *child; 4517 4518 WARN_ON_ONCE(event->ctx->parent_ctx); 4519 4520 mutex_lock(&event->child_mutex); 4521 func(event); 4522 list_for_each_entry(child, &event->child_list, child_list) 4523 func(child); 4524 mutex_unlock(&event->child_mutex); 4525 } 4526 4527 static void perf_event_for_each(struct perf_event *event, 4528 void (*func)(struct perf_event *)) 4529 { 4530 struct perf_event_context *ctx = event->ctx; 4531 struct perf_event *sibling; 4532 4533 lockdep_assert_held(&ctx->mutex); 4534 4535 event = event->group_leader; 4536 4537 perf_event_for_each_child(event, func); 4538 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4539 perf_event_for_each_child(sibling, func); 4540 } 4541 4542 static void __perf_event_period(struct perf_event *event, 4543 struct perf_cpu_context *cpuctx, 4544 struct perf_event_context *ctx, 4545 void *info) 4546 { 4547 u64 value = *((u64 *)info); 4548 bool active; 4549 4550 if (event->attr.freq) { 4551 event->attr.sample_freq = value; 4552 } else { 4553 event->attr.sample_period = value; 4554 event->hw.sample_period = value; 4555 } 4556 4557 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4558 if (active) { 4559 perf_pmu_disable(ctx->pmu); 4560 /* 4561 * We could be throttled; unthrottle now to avoid the tick 4562 * trying to unthrottle while we already re-started the event. 4563 */ 4564 if (event->hw.interrupts == MAX_INTERRUPTS) { 4565 event->hw.interrupts = 0; 4566 perf_log_throttle(event, 1); 4567 } 4568 event->pmu->stop(event, PERF_EF_UPDATE); 4569 } 4570 4571 local64_set(&event->hw.period_left, 0); 4572 4573 if (active) { 4574 event->pmu->start(event, PERF_EF_RELOAD); 4575 perf_pmu_enable(ctx->pmu); 4576 } 4577 } 4578 4579 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4580 { 4581 u64 value; 4582 4583 if (!is_sampling_event(event)) 4584 return -EINVAL; 4585 4586 if (copy_from_user(&value, arg, sizeof(value))) 4587 return -EFAULT; 4588 4589 if (!value) 4590 return -EINVAL; 4591 4592 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4593 return -EINVAL; 4594 4595 event_function_call(event, __perf_event_period, &value); 4596 4597 return 0; 4598 } 4599 4600 static const struct file_operations perf_fops; 4601 4602 static inline int perf_fget_light(int fd, struct fd *p) 4603 { 4604 struct fd f = fdget(fd); 4605 if (!f.file) 4606 return -EBADF; 4607 4608 if (f.file->f_op != &perf_fops) { 4609 fdput(f); 4610 return -EBADF; 4611 } 4612 *p = f; 4613 return 0; 4614 } 4615 4616 static int perf_event_set_output(struct perf_event *event, 4617 struct perf_event *output_event); 4618 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4619 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4620 4621 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4622 { 4623 void (*func)(struct perf_event *); 4624 u32 flags = arg; 4625 4626 switch (cmd) { 4627 case PERF_EVENT_IOC_ENABLE: 4628 func = _perf_event_enable; 4629 break; 4630 case PERF_EVENT_IOC_DISABLE: 4631 func = _perf_event_disable; 4632 break; 4633 case PERF_EVENT_IOC_RESET: 4634 func = _perf_event_reset; 4635 break; 4636 4637 case PERF_EVENT_IOC_REFRESH: 4638 return _perf_event_refresh(event, arg); 4639 4640 case PERF_EVENT_IOC_PERIOD: 4641 return perf_event_period(event, (u64 __user *)arg); 4642 4643 case PERF_EVENT_IOC_ID: 4644 { 4645 u64 id = primary_event_id(event); 4646 4647 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4648 return -EFAULT; 4649 return 0; 4650 } 4651 4652 case PERF_EVENT_IOC_SET_OUTPUT: 4653 { 4654 int ret; 4655 if (arg != -1) { 4656 struct perf_event *output_event; 4657 struct fd output; 4658 ret = perf_fget_light(arg, &output); 4659 if (ret) 4660 return ret; 4661 output_event = output.file->private_data; 4662 ret = perf_event_set_output(event, output_event); 4663 fdput(output); 4664 } else { 4665 ret = perf_event_set_output(event, NULL); 4666 } 4667 return ret; 4668 } 4669 4670 case PERF_EVENT_IOC_SET_FILTER: 4671 return perf_event_set_filter(event, (void __user *)arg); 4672 4673 case PERF_EVENT_IOC_SET_BPF: 4674 return perf_event_set_bpf_prog(event, arg); 4675 4676 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4677 struct ring_buffer *rb; 4678 4679 rcu_read_lock(); 4680 rb = rcu_dereference(event->rb); 4681 if (!rb || !rb->nr_pages) { 4682 rcu_read_unlock(); 4683 return -EINVAL; 4684 } 4685 rb_toggle_paused(rb, !!arg); 4686 rcu_read_unlock(); 4687 return 0; 4688 } 4689 default: 4690 return -ENOTTY; 4691 } 4692 4693 if (flags & PERF_IOC_FLAG_GROUP) 4694 perf_event_for_each(event, func); 4695 else 4696 perf_event_for_each_child(event, func); 4697 4698 return 0; 4699 } 4700 4701 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4702 { 4703 struct perf_event *event = file->private_data; 4704 struct perf_event_context *ctx; 4705 long ret; 4706 4707 ctx = perf_event_ctx_lock(event); 4708 ret = _perf_ioctl(event, cmd, arg); 4709 perf_event_ctx_unlock(event, ctx); 4710 4711 return ret; 4712 } 4713 4714 #ifdef CONFIG_COMPAT 4715 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4716 unsigned long arg) 4717 { 4718 switch (_IOC_NR(cmd)) { 4719 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4720 case _IOC_NR(PERF_EVENT_IOC_ID): 4721 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4722 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4723 cmd &= ~IOCSIZE_MASK; 4724 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4725 } 4726 break; 4727 } 4728 return perf_ioctl(file, cmd, arg); 4729 } 4730 #else 4731 # define perf_compat_ioctl NULL 4732 #endif 4733 4734 int perf_event_task_enable(void) 4735 { 4736 struct perf_event_context *ctx; 4737 struct perf_event *event; 4738 4739 mutex_lock(¤t->perf_event_mutex); 4740 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4741 ctx = perf_event_ctx_lock(event); 4742 perf_event_for_each_child(event, _perf_event_enable); 4743 perf_event_ctx_unlock(event, ctx); 4744 } 4745 mutex_unlock(¤t->perf_event_mutex); 4746 4747 return 0; 4748 } 4749 4750 int perf_event_task_disable(void) 4751 { 4752 struct perf_event_context *ctx; 4753 struct perf_event *event; 4754 4755 mutex_lock(¤t->perf_event_mutex); 4756 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4757 ctx = perf_event_ctx_lock(event); 4758 perf_event_for_each_child(event, _perf_event_disable); 4759 perf_event_ctx_unlock(event, ctx); 4760 } 4761 mutex_unlock(¤t->perf_event_mutex); 4762 4763 return 0; 4764 } 4765 4766 static int perf_event_index(struct perf_event *event) 4767 { 4768 if (event->hw.state & PERF_HES_STOPPED) 4769 return 0; 4770 4771 if (event->state != PERF_EVENT_STATE_ACTIVE) 4772 return 0; 4773 4774 return event->pmu->event_idx(event); 4775 } 4776 4777 static void calc_timer_values(struct perf_event *event, 4778 u64 *now, 4779 u64 *enabled, 4780 u64 *running) 4781 { 4782 u64 ctx_time; 4783 4784 *now = perf_clock(); 4785 ctx_time = event->shadow_ctx_time + *now; 4786 *enabled = ctx_time - event->tstamp_enabled; 4787 *running = ctx_time - event->tstamp_running; 4788 } 4789 4790 static void perf_event_init_userpage(struct perf_event *event) 4791 { 4792 struct perf_event_mmap_page *userpg; 4793 struct ring_buffer *rb; 4794 4795 rcu_read_lock(); 4796 rb = rcu_dereference(event->rb); 4797 if (!rb) 4798 goto unlock; 4799 4800 userpg = rb->user_page; 4801 4802 /* Allow new userspace to detect that bit 0 is deprecated */ 4803 userpg->cap_bit0_is_deprecated = 1; 4804 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4805 userpg->data_offset = PAGE_SIZE; 4806 userpg->data_size = perf_data_size(rb); 4807 4808 unlock: 4809 rcu_read_unlock(); 4810 } 4811 4812 void __weak arch_perf_update_userpage( 4813 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4814 { 4815 } 4816 4817 /* 4818 * Callers need to ensure there can be no nesting of this function, otherwise 4819 * the seqlock logic goes bad. We can not serialize this because the arch 4820 * code calls this from NMI context. 4821 */ 4822 void perf_event_update_userpage(struct perf_event *event) 4823 { 4824 struct perf_event_mmap_page *userpg; 4825 struct ring_buffer *rb; 4826 u64 enabled, running, now; 4827 4828 rcu_read_lock(); 4829 rb = rcu_dereference(event->rb); 4830 if (!rb) 4831 goto unlock; 4832 4833 /* 4834 * compute total_time_enabled, total_time_running 4835 * based on snapshot values taken when the event 4836 * was last scheduled in. 4837 * 4838 * we cannot simply called update_context_time() 4839 * because of locking issue as we can be called in 4840 * NMI context 4841 */ 4842 calc_timer_values(event, &now, &enabled, &running); 4843 4844 userpg = rb->user_page; 4845 /* 4846 * Disable preemption so as to not let the corresponding user-space 4847 * spin too long if we get preempted. 4848 */ 4849 preempt_disable(); 4850 ++userpg->lock; 4851 barrier(); 4852 userpg->index = perf_event_index(event); 4853 userpg->offset = perf_event_count(event); 4854 if (userpg->index) 4855 userpg->offset -= local64_read(&event->hw.prev_count); 4856 4857 userpg->time_enabled = enabled + 4858 atomic64_read(&event->child_total_time_enabled); 4859 4860 userpg->time_running = running + 4861 atomic64_read(&event->child_total_time_running); 4862 4863 arch_perf_update_userpage(event, userpg, now); 4864 4865 barrier(); 4866 ++userpg->lock; 4867 preempt_enable(); 4868 unlock: 4869 rcu_read_unlock(); 4870 } 4871 4872 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4873 { 4874 struct perf_event *event = vma->vm_file->private_data; 4875 struct ring_buffer *rb; 4876 int ret = VM_FAULT_SIGBUS; 4877 4878 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4879 if (vmf->pgoff == 0) 4880 ret = 0; 4881 return ret; 4882 } 4883 4884 rcu_read_lock(); 4885 rb = rcu_dereference(event->rb); 4886 if (!rb) 4887 goto unlock; 4888 4889 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4890 goto unlock; 4891 4892 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4893 if (!vmf->page) 4894 goto unlock; 4895 4896 get_page(vmf->page); 4897 vmf->page->mapping = vma->vm_file->f_mapping; 4898 vmf->page->index = vmf->pgoff; 4899 4900 ret = 0; 4901 unlock: 4902 rcu_read_unlock(); 4903 4904 return ret; 4905 } 4906 4907 static void ring_buffer_attach(struct perf_event *event, 4908 struct ring_buffer *rb) 4909 { 4910 struct ring_buffer *old_rb = NULL; 4911 unsigned long flags; 4912 4913 if (event->rb) { 4914 /* 4915 * Should be impossible, we set this when removing 4916 * event->rb_entry and wait/clear when adding event->rb_entry. 4917 */ 4918 WARN_ON_ONCE(event->rcu_pending); 4919 4920 old_rb = event->rb; 4921 spin_lock_irqsave(&old_rb->event_lock, flags); 4922 list_del_rcu(&event->rb_entry); 4923 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4924 4925 event->rcu_batches = get_state_synchronize_rcu(); 4926 event->rcu_pending = 1; 4927 } 4928 4929 if (rb) { 4930 if (event->rcu_pending) { 4931 cond_synchronize_rcu(event->rcu_batches); 4932 event->rcu_pending = 0; 4933 } 4934 4935 spin_lock_irqsave(&rb->event_lock, flags); 4936 list_add_rcu(&event->rb_entry, &rb->event_list); 4937 spin_unlock_irqrestore(&rb->event_lock, flags); 4938 } 4939 4940 /* 4941 * Avoid racing with perf_mmap_close(AUX): stop the event 4942 * before swizzling the event::rb pointer; if it's getting 4943 * unmapped, its aux_mmap_count will be 0 and it won't 4944 * restart. See the comment in __perf_pmu_output_stop(). 4945 * 4946 * Data will inevitably be lost when set_output is done in 4947 * mid-air, but then again, whoever does it like this is 4948 * not in for the data anyway. 4949 */ 4950 if (has_aux(event)) 4951 perf_event_stop(event, 0); 4952 4953 rcu_assign_pointer(event->rb, rb); 4954 4955 if (old_rb) { 4956 ring_buffer_put(old_rb); 4957 /* 4958 * Since we detached before setting the new rb, so that we 4959 * could attach the new rb, we could have missed a wakeup. 4960 * Provide it now. 4961 */ 4962 wake_up_all(&event->waitq); 4963 } 4964 } 4965 4966 static void ring_buffer_wakeup(struct perf_event *event) 4967 { 4968 struct ring_buffer *rb; 4969 4970 rcu_read_lock(); 4971 rb = rcu_dereference(event->rb); 4972 if (rb) { 4973 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4974 wake_up_all(&event->waitq); 4975 } 4976 rcu_read_unlock(); 4977 } 4978 4979 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4980 { 4981 struct ring_buffer *rb; 4982 4983 rcu_read_lock(); 4984 rb = rcu_dereference(event->rb); 4985 if (rb) { 4986 if (!atomic_inc_not_zero(&rb->refcount)) 4987 rb = NULL; 4988 } 4989 rcu_read_unlock(); 4990 4991 return rb; 4992 } 4993 4994 void ring_buffer_put(struct ring_buffer *rb) 4995 { 4996 if (!atomic_dec_and_test(&rb->refcount)) 4997 return; 4998 4999 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5000 5001 call_rcu(&rb->rcu_head, rb_free_rcu); 5002 } 5003 5004 static void perf_mmap_open(struct vm_area_struct *vma) 5005 { 5006 struct perf_event *event = vma->vm_file->private_data; 5007 5008 atomic_inc(&event->mmap_count); 5009 atomic_inc(&event->rb->mmap_count); 5010 5011 if (vma->vm_pgoff) 5012 atomic_inc(&event->rb->aux_mmap_count); 5013 5014 if (event->pmu->event_mapped) 5015 event->pmu->event_mapped(event); 5016 } 5017 5018 static void perf_pmu_output_stop(struct perf_event *event); 5019 5020 /* 5021 * A buffer can be mmap()ed multiple times; either directly through the same 5022 * event, or through other events by use of perf_event_set_output(). 5023 * 5024 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5025 * the buffer here, where we still have a VM context. This means we need 5026 * to detach all events redirecting to us. 5027 */ 5028 static void perf_mmap_close(struct vm_area_struct *vma) 5029 { 5030 struct perf_event *event = vma->vm_file->private_data; 5031 5032 struct ring_buffer *rb = ring_buffer_get(event); 5033 struct user_struct *mmap_user = rb->mmap_user; 5034 int mmap_locked = rb->mmap_locked; 5035 unsigned long size = perf_data_size(rb); 5036 5037 if (event->pmu->event_unmapped) 5038 event->pmu->event_unmapped(event); 5039 5040 /* 5041 * rb->aux_mmap_count will always drop before rb->mmap_count and 5042 * event->mmap_count, so it is ok to use event->mmap_mutex to 5043 * serialize with perf_mmap here. 5044 */ 5045 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5046 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5047 /* 5048 * Stop all AUX events that are writing to this buffer, 5049 * so that we can free its AUX pages and corresponding PMU 5050 * data. Note that after rb::aux_mmap_count dropped to zero, 5051 * they won't start any more (see perf_aux_output_begin()). 5052 */ 5053 perf_pmu_output_stop(event); 5054 5055 /* now it's safe to free the pages */ 5056 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5057 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5058 5059 /* this has to be the last one */ 5060 rb_free_aux(rb); 5061 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5062 5063 mutex_unlock(&event->mmap_mutex); 5064 } 5065 5066 atomic_dec(&rb->mmap_count); 5067 5068 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5069 goto out_put; 5070 5071 ring_buffer_attach(event, NULL); 5072 mutex_unlock(&event->mmap_mutex); 5073 5074 /* If there's still other mmap()s of this buffer, we're done. */ 5075 if (atomic_read(&rb->mmap_count)) 5076 goto out_put; 5077 5078 /* 5079 * No other mmap()s, detach from all other events that might redirect 5080 * into the now unreachable buffer. Somewhat complicated by the 5081 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5082 */ 5083 again: 5084 rcu_read_lock(); 5085 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5086 if (!atomic_long_inc_not_zero(&event->refcount)) { 5087 /* 5088 * This event is en-route to free_event() which will 5089 * detach it and remove it from the list. 5090 */ 5091 continue; 5092 } 5093 rcu_read_unlock(); 5094 5095 mutex_lock(&event->mmap_mutex); 5096 /* 5097 * Check we didn't race with perf_event_set_output() which can 5098 * swizzle the rb from under us while we were waiting to 5099 * acquire mmap_mutex. 5100 * 5101 * If we find a different rb; ignore this event, a next 5102 * iteration will no longer find it on the list. We have to 5103 * still restart the iteration to make sure we're not now 5104 * iterating the wrong list. 5105 */ 5106 if (event->rb == rb) 5107 ring_buffer_attach(event, NULL); 5108 5109 mutex_unlock(&event->mmap_mutex); 5110 put_event(event); 5111 5112 /* 5113 * Restart the iteration; either we're on the wrong list or 5114 * destroyed its integrity by doing a deletion. 5115 */ 5116 goto again; 5117 } 5118 rcu_read_unlock(); 5119 5120 /* 5121 * It could be there's still a few 0-ref events on the list; they'll 5122 * get cleaned up by free_event() -- they'll also still have their 5123 * ref on the rb and will free it whenever they are done with it. 5124 * 5125 * Aside from that, this buffer is 'fully' detached and unmapped, 5126 * undo the VM accounting. 5127 */ 5128 5129 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5130 vma->vm_mm->pinned_vm -= mmap_locked; 5131 free_uid(mmap_user); 5132 5133 out_put: 5134 ring_buffer_put(rb); /* could be last */ 5135 } 5136 5137 static const struct vm_operations_struct perf_mmap_vmops = { 5138 .open = perf_mmap_open, 5139 .close = perf_mmap_close, /* non mergable */ 5140 .fault = perf_mmap_fault, 5141 .page_mkwrite = perf_mmap_fault, 5142 }; 5143 5144 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5145 { 5146 struct perf_event *event = file->private_data; 5147 unsigned long user_locked, user_lock_limit; 5148 struct user_struct *user = current_user(); 5149 unsigned long locked, lock_limit; 5150 struct ring_buffer *rb = NULL; 5151 unsigned long vma_size; 5152 unsigned long nr_pages; 5153 long user_extra = 0, extra = 0; 5154 int ret = 0, flags = 0; 5155 5156 /* 5157 * Don't allow mmap() of inherited per-task counters. This would 5158 * create a performance issue due to all children writing to the 5159 * same rb. 5160 */ 5161 if (event->cpu == -1 && event->attr.inherit) 5162 return -EINVAL; 5163 5164 if (!(vma->vm_flags & VM_SHARED)) 5165 return -EINVAL; 5166 5167 vma_size = vma->vm_end - vma->vm_start; 5168 5169 if (vma->vm_pgoff == 0) { 5170 nr_pages = (vma_size / PAGE_SIZE) - 1; 5171 } else { 5172 /* 5173 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5174 * mapped, all subsequent mappings should have the same size 5175 * and offset. Must be above the normal perf buffer. 5176 */ 5177 u64 aux_offset, aux_size; 5178 5179 if (!event->rb) 5180 return -EINVAL; 5181 5182 nr_pages = vma_size / PAGE_SIZE; 5183 5184 mutex_lock(&event->mmap_mutex); 5185 ret = -EINVAL; 5186 5187 rb = event->rb; 5188 if (!rb) 5189 goto aux_unlock; 5190 5191 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5192 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5193 5194 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5195 goto aux_unlock; 5196 5197 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5198 goto aux_unlock; 5199 5200 /* already mapped with a different offset */ 5201 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5202 goto aux_unlock; 5203 5204 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5205 goto aux_unlock; 5206 5207 /* already mapped with a different size */ 5208 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5209 goto aux_unlock; 5210 5211 if (!is_power_of_2(nr_pages)) 5212 goto aux_unlock; 5213 5214 if (!atomic_inc_not_zero(&rb->mmap_count)) 5215 goto aux_unlock; 5216 5217 if (rb_has_aux(rb)) { 5218 atomic_inc(&rb->aux_mmap_count); 5219 ret = 0; 5220 goto unlock; 5221 } 5222 5223 atomic_set(&rb->aux_mmap_count, 1); 5224 user_extra = nr_pages; 5225 5226 goto accounting; 5227 } 5228 5229 /* 5230 * If we have rb pages ensure they're a power-of-two number, so we 5231 * can do bitmasks instead of modulo. 5232 */ 5233 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5234 return -EINVAL; 5235 5236 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5237 return -EINVAL; 5238 5239 WARN_ON_ONCE(event->ctx->parent_ctx); 5240 again: 5241 mutex_lock(&event->mmap_mutex); 5242 if (event->rb) { 5243 if (event->rb->nr_pages != nr_pages) { 5244 ret = -EINVAL; 5245 goto unlock; 5246 } 5247 5248 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5249 /* 5250 * Raced against perf_mmap_close() through 5251 * perf_event_set_output(). Try again, hope for better 5252 * luck. 5253 */ 5254 mutex_unlock(&event->mmap_mutex); 5255 goto again; 5256 } 5257 5258 goto unlock; 5259 } 5260 5261 user_extra = nr_pages + 1; 5262 5263 accounting: 5264 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5265 5266 /* 5267 * Increase the limit linearly with more CPUs: 5268 */ 5269 user_lock_limit *= num_online_cpus(); 5270 5271 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5272 5273 if (user_locked > user_lock_limit) 5274 extra = user_locked - user_lock_limit; 5275 5276 lock_limit = rlimit(RLIMIT_MEMLOCK); 5277 lock_limit >>= PAGE_SHIFT; 5278 locked = vma->vm_mm->pinned_vm + extra; 5279 5280 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5281 !capable(CAP_IPC_LOCK)) { 5282 ret = -EPERM; 5283 goto unlock; 5284 } 5285 5286 WARN_ON(!rb && event->rb); 5287 5288 if (vma->vm_flags & VM_WRITE) 5289 flags |= RING_BUFFER_WRITABLE; 5290 5291 if (!rb) { 5292 rb = rb_alloc(nr_pages, 5293 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5294 event->cpu, flags); 5295 5296 if (!rb) { 5297 ret = -ENOMEM; 5298 goto unlock; 5299 } 5300 5301 atomic_set(&rb->mmap_count, 1); 5302 rb->mmap_user = get_current_user(); 5303 rb->mmap_locked = extra; 5304 5305 ring_buffer_attach(event, rb); 5306 5307 perf_event_init_userpage(event); 5308 perf_event_update_userpage(event); 5309 } else { 5310 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5311 event->attr.aux_watermark, flags); 5312 if (!ret) 5313 rb->aux_mmap_locked = extra; 5314 } 5315 5316 unlock: 5317 if (!ret) { 5318 atomic_long_add(user_extra, &user->locked_vm); 5319 vma->vm_mm->pinned_vm += extra; 5320 5321 atomic_inc(&event->mmap_count); 5322 } else if (rb) { 5323 atomic_dec(&rb->mmap_count); 5324 } 5325 aux_unlock: 5326 mutex_unlock(&event->mmap_mutex); 5327 5328 /* 5329 * Since pinned accounting is per vm we cannot allow fork() to copy our 5330 * vma. 5331 */ 5332 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5333 vma->vm_ops = &perf_mmap_vmops; 5334 5335 if (event->pmu->event_mapped) 5336 event->pmu->event_mapped(event); 5337 5338 return ret; 5339 } 5340 5341 static int perf_fasync(int fd, struct file *filp, int on) 5342 { 5343 struct inode *inode = file_inode(filp); 5344 struct perf_event *event = filp->private_data; 5345 int retval; 5346 5347 inode_lock(inode); 5348 retval = fasync_helper(fd, filp, on, &event->fasync); 5349 inode_unlock(inode); 5350 5351 if (retval < 0) 5352 return retval; 5353 5354 return 0; 5355 } 5356 5357 static const struct file_operations perf_fops = { 5358 .llseek = no_llseek, 5359 .release = perf_release, 5360 .read = perf_read, 5361 .poll = perf_poll, 5362 .unlocked_ioctl = perf_ioctl, 5363 .compat_ioctl = perf_compat_ioctl, 5364 .mmap = perf_mmap, 5365 .fasync = perf_fasync, 5366 }; 5367 5368 /* 5369 * Perf event wakeup 5370 * 5371 * If there's data, ensure we set the poll() state and publish everything 5372 * to user-space before waking everybody up. 5373 */ 5374 5375 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5376 { 5377 /* only the parent has fasync state */ 5378 if (event->parent) 5379 event = event->parent; 5380 return &event->fasync; 5381 } 5382 5383 void perf_event_wakeup(struct perf_event *event) 5384 { 5385 ring_buffer_wakeup(event); 5386 5387 if (event->pending_kill) { 5388 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5389 event->pending_kill = 0; 5390 } 5391 } 5392 5393 static void perf_pending_event(struct irq_work *entry) 5394 { 5395 struct perf_event *event = container_of(entry, 5396 struct perf_event, pending); 5397 int rctx; 5398 5399 rctx = perf_swevent_get_recursion_context(); 5400 /* 5401 * If we 'fail' here, that's OK, it means recursion is already disabled 5402 * and we won't recurse 'further'. 5403 */ 5404 5405 if (event->pending_disable) { 5406 event->pending_disable = 0; 5407 perf_event_disable_local(event); 5408 } 5409 5410 if (event->pending_wakeup) { 5411 event->pending_wakeup = 0; 5412 perf_event_wakeup(event); 5413 } 5414 5415 if (rctx >= 0) 5416 perf_swevent_put_recursion_context(rctx); 5417 } 5418 5419 /* 5420 * We assume there is only KVM supporting the callbacks. 5421 * Later on, we might change it to a list if there is 5422 * another virtualization implementation supporting the callbacks. 5423 */ 5424 struct perf_guest_info_callbacks *perf_guest_cbs; 5425 5426 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5427 { 5428 perf_guest_cbs = cbs; 5429 return 0; 5430 } 5431 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5432 5433 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5434 { 5435 perf_guest_cbs = NULL; 5436 return 0; 5437 } 5438 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5439 5440 static void 5441 perf_output_sample_regs(struct perf_output_handle *handle, 5442 struct pt_regs *regs, u64 mask) 5443 { 5444 int bit; 5445 DECLARE_BITMAP(_mask, 64); 5446 5447 bitmap_from_u64(_mask, mask); 5448 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5449 u64 val; 5450 5451 val = perf_reg_value(regs, bit); 5452 perf_output_put(handle, val); 5453 } 5454 } 5455 5456 static void perf_sample_regs_user(struct perf_regs *regs_user, 5457 struct pt_regs *regs, 5458 struct pt_regs *regs_user_copy) 5459 { 5460 if (user_mode(regs)) { 5461 regs_user->abi = perf_reg_abi(current); 5462 regs_user->regs = regs; 5463 } else if (current->mm) { 5464 perf_get_regs_user(regs_user, regs, regs_user_copy); 5465 } else { 5466 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5467 regs_user->regs = NULL; 5468 } 5469 } 5470 5471 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5472 struct pt_regs *regs) 5473 { 5474 regs_intr->regs = regs; 5475 regs_intr->abi = perf_reg_abi(current); 5476 } 5477 5478 5479 /* 5480 * Get remaining task size from user stack pointer. 5481 * 5482 * It'd be better to take stack vma map and limit this more 5483 * precisly, but there's no way to get it safely under interrupt, 5484 * so using TASK_SIZE as limit. 5485 */ 5486 static u64 perf_ustack_task_size(struct pt_regs *regs) 5487 { 5488 unsigned long addr = perf_user_stack_pointer(regs); 5489 5490 if (!addr || addr >= TASK_SIZE) 5491 return 0; 5492 5493 return TASK_SIZE - addr; 5494 } 5495 5496 static u16 5497 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5498 struct pt_regs *regs) 5499 { 5500 u64 task_size; 5501 5502 /* No regs, no stack pointer, no dump. */ 5503 if (!regs) 5504 return 0; 5505 5506 /* 5507 * Check if we fit in with the requested stack size into the: 5508 * - TASK_SIZE 5509 * If we don't, we limit the size to the TASK_SIZE. 5510 * 5511 * - remaining sample size 5512 * If we don't, we customize the stack size to 5513 * fit in to the remaining sample size. 5514 */ 5515 5516 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5517 stack_size = min(stack_size, (u16) task_size); 5518 5519 /* Current header size plus static size and dynamic size. */ 5520 header_size += 2 * sizeof(u64); 5521 5522 /* Do we fit in with the current stack dump size? */ 5523 if ((u16) (header_size + stack_size) < header_size) { 5524 /* 5525 * If we overflow the maximum size for the sample, 5526 * we customize the stack dump size to fit in. 5527 */ 5528 stack_size = USHRT_MAX - header_size - sizeof(u64); 5529 stack_size = round_up(stack_size, sizeof(u64)); 5530 } 5531 5532 return stack_size; 5533 } 5534 5535 static void 5536 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5537 struct pt_regs *regs) 5538 { 5539 /* Case of a kernel thread, nothing to dump */ 5540 if (!regs) { 5541 u64 size = 0; 5542 perf_output_put(handle, size); 5543 } else { 5544 unsigned long sp; 5545 unsigned int rem; 5546 u64 dyn_size; 5547 5548 /* 5549 * We dump: 5550 * static size 5551 * - the size requested by user or the best one we can fit 5552 * in to the sample max size 5553 * data 5554 * - user stack dump data 5555 * dynamic size 5556 * - the actual dumped size 5557 */ 5558 5559 /* Static size. */ 5560 perf_output_put(handle, dump_size); 5561 5562 /* Data. */ 5563 sp = perf_user_stack_pointer(regs); 5564 rem = __output_copy_user(handle, (void *) sp, dump_size); 5565 dyn_size = dump_size - rem; 5566 5567 perf_output_skip(handle, rem); 5568 5569 /* Dynamic size. */ 5570 perf_output_put(handle, dyn_size); 5571 } 5572 } 5573 5574 static void __perf_event_header__init_id(struct perf_event_header *header, 5575 struct perf_sample_data *data, 5576 struct perf_event *event) 5577 { 5578 u64 sample_type = event->attr.sample_type; 5579 5580 data->type = sample_type; 5581 header->size += event->id_header_size; 5582 5583 if (sample_type & PERF_SAMPLE_TID) { 5584 /* namespace issues */ 5585 data->tid_entry.pid = perf_event_pid(event, current); 5586 data->tid_entry.tid = perf_event_tid(event, current); 5587 } 5588 5589 if (sample_type & PERF_SAMPLE_TIME) 5590 data->time = perf_event_clock(event); 5591 5592 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5593 data->id = primary_event_id(event); 5594 5595 if (sample_type & PERF_SAMPLE_STREAM_ID) 5596 data->stream_id = event->id; 5597 5598 if (sample_type & PERF_SAMPLE_CPU) { 5599 data->cpu_entry.cpu = raw_smp_processor_id(); 5600 data->cpu_entry.reserved = 0; 5601 } 5602 } 5603 5604 void perf_event_header__init_id(struct perf_event_header *header, 5605 struct perf_sample_data *data, 5606 struct perf_event *event) 5607 { 5608 if (event->attr.sample_id_all) 5609 __perf_event_header__init_id(header, data, event); 5610 } 5611 5612 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5613 struct perf_sample_data *data) 5614 { 5615 u64 sample_type = data->type; 5616 5617 if (sample_type & PERF_SAMPLE_TID) 5618 perf_output_put(handle, data->tid_entry); 5619 5620 if (sample_type & PERF_SAMPLE_TIME) 5621 perf_output_put(handle, data->time); 5622 5623 if (sample_type & PERF_SAMPLE_ID) 5624 perf_output_put(handle, data->id); 5625 5626 if (sample_type & PERF_SAMPLE_STREAM_ID) 5627 perf_output_put(handle, data->stream_id); 5628 5629 if (sample_type & PERF_SAMPLE_CPU) 5630 perf_output_put(handle, data->cpu_entry); 5631 5632 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5633 perf_output_put(handle, data->id); 5634 } 5635 5636 void perf_event__output_id_sample(struct perf_event *event, 5637 struct perf_output_handle *handle, 5638 struct perf_sample_data *sample) 5639 { 5640 if (event->attr.sample_id_all) 5641 __perf_event__output_id_sample(handle, sample); 5642 } 5643 5644 static void perf_output_read_one(struct perf_output_handle *handle, 5645 struct perf_event *event, 5646 u64 enabled, u64 running) 5647 { 5648 u64 read_format = event->attr.read_format; 5649 u64 values[4]; 5650 int n = 0; 5651 5652 values[n++] = perf_event_count(event); 5653 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5654 values[n++] = enabled + 5655 atomic64_read(&event->child_total_time_enabled); 5656 } 5657 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5658 values[n++] = running + 5659 atomic64_read(&event->child_total_time_running); 5660 } 5661 if (read_format & PERF_FORMAT_ID) 5662 values[n++] = primary_event_id(event); 5663 5664 __output_copy(handle, values, n * sizeof(u64)); 5665 } 5666 5667 /* 5668 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5669 */ 5670 static void perf_output_read_group(struct perf_output_handle *handle, 5671 struct perf_event *event, 5672 u64 enabled, u64 running) 5673 { 5674 struct perf_event *leader = event->group_leader, *sub; 5675 u64 read_format = event->attr.read_format; 5676 u64 values[5]; 5677 int n = 0; 5678 5679 values[n++] = 1 + leader->nr_siblings; 5680 5681 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5682 values[n++] = enabled; 5683 5684 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5685 values[n++] = running; 5686 5687 if (leader != event) 5688 leader->pmu->read(leader); 5689 5690 values[n++] = perf_event_count(leader); 5691 if (read_format & PERF_FORMAT_ID) 5692 values[n++] = primary_event_id(leader); 5693 5694 __output_copy(handle, values, n * sizeof(u64)); 5695 5696 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5697 n = 0; 5698 5699 if ((sub != event) && 5700 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5701 sub->pmu->read(sub); 5702 5703 values[n++] = perf_event_count(sub); 5704 if (read_format & PERF_FORMAT_ID) 5705 values[n++] = primary_event_id(sub); 5706 5707 __output_copy(handle, values, n * sizeof(u64)); 5708 } 5709 } 5710 5711 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5712 PERF_FORMAT_TOTAL_TIME_RUNNING) 5713 5714 static void perf_output_read(struct perf_output_handle *handle, 5715 struct perf_event *event) 5716 { 5717 u64 enabled = 0, running = 0, now; 5718 u64 read_format = event->attr.read_format; 5719 5720 /* 5721 * compute total_time_enabled, total_time_running 5722 * based on snapshot values taken when the event 5723 * was last scheduled in. 5724 * 5725 * we cannot simply called update_context_time() 5726 * because of locking issue as we are called in 5727 * NMI context 5728 */ 5729 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5730 calc_timer_values(event, &now, &enabled, &running); 5731 5732 if (event->attr.read_format & PERF_FORMAT_GROUP) 5733 perf_output_read_group(handle, event, enabled, running); 5734 else 5735 perf_output_read_one(handle, event, enabled, running); 5736 } 5737 5738 void perf_output_sample(struct perf_output_handle *handle, 5739 struct perf_event_header *header, 5740 struct perf_sample_data *data, 5741 struct perf_event *event) 5742 { 5743 u64 sample_type = data->type; 5744 5745 perf_output_put(handle, *header); 5746 5747 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5748 perf_output_put(handle, data->id); 5749 5750 if (sample_type & PERF_SAMPLE_IP) 5751 perf_output_put(handle, data->ip); 5752 5753 if (sample_type & PERF_SAMPLE_TID) 5754 perf_output_put(handle, data->tid_entry); 5755 5756 if (sample_type & PERF_SAMPLE_TIME) 5757 perf_output_put(handle, data->time); 5758 5759 if (sample_type & PERF_SAMPLE_ADDR) 5760 perf_output_put(handle, data->addr); 5761 5762 if (sample_type & PERF_SAMPLE_ID) 5763 perf_output_put(handle, data->id); 5764 5765 if (sample_type & PERF_SAMPLE_STREAM_ID) 5766 perf_output_put(handle, data->stream_id); 5767 5768 if (sample_type & PERF_SAMPLE_CPU) 5769 perf_output_put(handle, data->cpu_entry); 5770 5771 if (sample_type & PERF_SAMPLE_PERIOD) 5772 perf_output_put(handle, data->period); 5773 5774 if (sample_type & PERF_SAMPLE_READ) 5775 perf_output_read(handle, event); 5776 5777 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5778 if (data->callchain) { 5779 int size = 1; 5780 5781 if (data->callchain) 5782 size += data->callchain->nr; 5783 5784 size *= sizeof(u64); 5785 5786 __output_copy(handle, data->callchain, size); 5787 } else { 5788 u64 nr = 0; 5789 perf_output_put(handle, nr); 5790 } 5791 } 5792 5793 if (sample_type & PERF_SAMPLE_RAW) { 5794 struct perf_raw_record *raw = data->raw; 5795 5796 if (raw) { 5797 struct perf_raw_frag *frag = &raw->frag; 5798 5799 perf_output_put(handle, raw->size); 5800 do { 5801 if (frag->copy) { 5802 __output_custom(handle, frag->copy, 5803 frag->data, frag->size); 5804 } else { 5805 __output_copy(handle, frag->data, 5806 frag->size); 5807 } 5808 if (perf_raw_frag_last(frag)) 5809 break; 5810 frag = frag->next; 5811 } while (1); 5812 if (frag->pad) 5813 __output_skip(handle, NULL, frag->pad); 5814 } else { 5815 struct { 5816 u32 size; 5817 u32 data; 5818 } raw = { 5819 .size = sizeof(u32), 5820 .data = 0, 5821 }; 5822 perf_output_put(handle, raw); 5823 } 5824 } 5825 5826 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5827 if (data->br_stack) { 5828 size_t size; 5829 5830 size = data->br_stack->nr 5831 * sizeof(struct perf_branch_entry); 5832 5833 perf_output_put(handle, data->br_stack->nr); 5834 perf_output_copy(handle, data->br_stack->entries, size); 5835 } else { 5836 /* 5837 * we always store at least the value of nr 5838 */ 5839 u64 nr = 0; 5840 perf_output_put(handle, nr); 5841 } 5842 } 5843 5844 if (sample_type & PERF_SAMPLE_REGS_USER) { 5845 u64 abi = data->regs_user.abi; 5846 5847 /* 5848 * If there are no regs to dump, notice it through 5849 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5850 */ 5851 perf_output_put(handle, abi); 5852 5853 if (abi) { 5854 u64 mask = event->attr.sample_regs_user; 5855 perf_output_sample_regs(handle, 5856 data->regs_user.regs, 5857 mask); 5858 } 5859 } 5860 5861 if (sample_type & PERF_SAMPLE_STACK_USER) { 5862 perf_output_sample_ustack(handle, 5863 data->stack_user_size, 5864 data->regs_user.regs); 5865 } 5866 5867 if (sample_type & PERF_SAMPLE_WEIGHT) 5868 perf_output_put(handle, data->weight); 5869 5870 if (sample_type & PERF_SAMPLE_DATA_SRC) 5871 perf_output_put(handle, data->data_src.val); 5872 5873 if (sample_type & PERF_SAMPLE_TRANSACTION) 5874 perf_output_put(handle, data->txn); 5875 5876 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5877 u64 abi = data->regs_intr.abi; 5878 /* 5879 * If there are no regs to dump, notice it through 5880 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5881 */ 5882 perf_output_put(handle, abi); 5883 5884 if (abi) { 5885 u64 mask = event->attr.sample_regs_intr; 5886 5887 perf_output_sample_regs(handle, 5888 data->regs_intr.regs, 5889 mask); 5890 } 5891 } 5892 5893 if (!event->attr.watermark) { 5894 int wakeup_events = event->attr.wakeup_events; 5895 5896 if (wakeup_events) { 5897 struct ring_buffer *rb = handle->rb; 5898 int events = local_inc_return(&rb->events); 5899 5900 if (events >= wakeup_events) { 5901 local_sub(wakeup_events, &rb->events); 5902 local_inc(&rb->wakeup); 5903 } 5904 } 5905 } 5906 } 5907 5908 void perf_prepare_sample(struct perf_event_header *header, 5909 struct perf_sample_data *data, 5910 struct perf_event *event, 5911 struct pt_regs *regs) 5912 { 5913 u64 sample_type = event->attr.sample_type; 5914 5915 header->type = PERF_RECORD_SAMPLE; 5916 header->size = sizeof(*header) + event->header_size; 5917 5918 header->misc = 0; 5919 header->misc |= perf_misc_flags(regs); 5920 5921 __perf_event_header__init_id(header, data, event); 5922 5923 if (sample_type & PERF_SAMPLE_IP) 5924 data->ip = perf_instruction_pointer(regs); 5925 5926 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5927 int size = 1; 5928 5929 data->callchain = perf_callchain(event, regs); 5930 5931 if (data->callchain) 5932 size += data->callchain->nr; 5933 5934 header->size += size * sizeof(u64); 5935 } 5936 5937 if (sample_type & PERF_SAMPLE_RAW) { 5938 struct perf_raw_record *raw = data->raw; 5939 int size; 5940 5941 if (raw) { 5942 struct perf_raw_frag *frag = &raw->frag; 5943 u32 sum = 0; 5944 5945 do { 5946 sum += frag->size; 5947 if (perf_raw_frag_last(frag)) 5948 break; 5949 frag = frag->next; 5950 } while (1); 5951 5952 size = round_up(sum + sizeof(u32), sizeof(u64)); 5953 raw->size = size - sizeof(u32); 5954 frag->pad = raw->size - sum; 5955 } else { 5956 size = sizeof(u64); 5957 } 5958 5959 header->size += size; 5960 } 5961 5962 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5963 int size = sizeof(u64); /* nr */ 5964 if (data->br_stack) { 5965 size += data->br_stack->nr 5966 * sizeof(struct perf_branch_entry); 5967 } 5968 header->size += size; 5969 } 5970 5971 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5972 perf_sample_regs_user(&data->regs_user, regs, 5973 &data->regs_user_copy); 5974 5975 if (sample_type & PERF_SAMPLE_REGS_USER) { 5976 /* regs dump ABI info */ 5977 int size = sizeof(u64); 5978 5979 if (data->regs_user.regs) { 5980 u64 mask = event->attr.sample_regs_user; 5981 size += hweight64(mask) * sizeof(u64); 5982 } 5983 5984 header->size += size; 5985 } 5986 5987 if (sample_type & PERF_SAMPLE_STACK_USER) { 5988 /* 5989 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5990 * processed as the last one or have additional check added 5991 * in case new sample type is added, because we could eat 5992 * up the rest of the sample size. 5993 */ 5994 u16 stack_size = event->attr.sample_stack_user; 5995 u16 size = sizeof(u64); 5996 5997 stack_size = perf_sample_ustack_size(stack_size, header->size, 5998 data->regs_user.regs); 5999 6000 /* 6001 * If there is something to dump, add space for the dump 6002 * itself and for the field that tells the dynamic size, 6003 * which is how many have been actually dumped. 6004 */ 6005 if (stack_size) 6006 size += sizeof(u64) + stack_size; 6007 6008 data->stack_user_size = stack_size; 6009 header->size += size; 6010 } 6011 6012 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6013 /* regs dump ABI info */ 6014 int size = sizeof(u64); 6015 6016 perf_sample_regs_intr(&data->regs_intr, regs); 6017 6018 if (data->regs_intr.regs) { 6019 u64 mask = event->attr.sample_regs_intr; 6020 6021 size += hweight64(mask) * sizeof(u64); 6022 } 6023 6024 header->size += size; 6025 } 6026 } 6027 6028 static void __always_inline 6029 __perf_event_output(struct perf_event *event, 6030 struct perf_sample_data *data, 6031 struct pt_regs *regs, 6032 int (*output_begin)(struct perf_output_handle *, 6033 struct perf_event *, 6034 unsigned int)) 6035 { 6036 struct perf_output_handle handle; 6037 struct perf_event_header header; 6038 6039 /* protect the callchain buffers */ 6040 rcu_read_lock(); 6041 6042 perf_prepare_sample(&header, data, event, regs); 6043 6044 if (output_begin(&handle, event, header.size)) 6045 goto exit; 6046 6047 perf_output_sample(&handle, &header, data, event); 6048 6049 perf_output_end(&handle); 6050 6051 exit: 6052 rcu_read_unlock(); 6053 } 6054 6055 void 6056 perf_event_output_forward(struct perf_event *event, 6057 struct perf_sample_data *data, 6058 struct pt_regs *regs) 6059 { 6060 __perf_event_output(event, data, regs, perf_output_begin_forward); 6061 } 6062 6063 void 6064 perf_event_output_backward(struct perf_event *event, 6065 struct perf_sample_data *data, 6066 struct pt_regs *regs) 6067 { 6068 __perf_event_output(event, data, regs, perf_output_begin_backward); 6069 } 6070 6071 void 6072 perf_event_output(struct perf_event *event, 6073 struct perf_sample_data *data, 6074 struct pt_regs *regs) 6075 { 6076 __perf_event_output(event, data, regs, perf_output_begin); 6077 } 6078 6079 /* 6080 * read event_id 6081 */ 6082 6083 struct perf_read_event { 6084 struct perf_event_header header; 6085 6086 u32 pid; 6087 u32 tid; 6088 }; 6089 6090 static void 6091 perf_event_read_event(struct perf_event *event, 6092 struct task_struct *task) 6093 { 6094 struct perf_output_handle handle; 6095 struct perf_sample_data sample; 6096 struct perf_read_event read_event = { 6097 .header = { 6098 .type = PERF_RECORD_READ, 6099 .misc = 0, 6100 .size = sizeof(read_event) + event->read_size, 6101 }, 6102 .pid = perf_event_pid(event, task), 6103 .tid = perf_event_tid(event, task), 6104 }; 6105 int ret; 6106 6107 perf_event_header__init_id(&read_event.header, &sample, event); 6108 ret = perf_output_begin(&handle, event, read_event.header.size); 6109 if (ret) 6110 return; 6111 6112 perf_output_put(&handle, read_event); 6113 perf_output_read(&handle, event); 6114 perf_event__output_id_sample(event, &handle, &sample); 6115 6116 perf_output_end(&handle); 6117 } 6118 6119 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6120 6121 static void 6122 perf_iterate_ctx(struct perf_event_context *ctx, 6123 perf_iterate_f output, 6124 void *data, bool all) 6125 { 6126 struct perf_event *event; 6127 6128 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6129 if (!all) { 6130 if (event->state < PERF_EVENT_STATE_INACTIVE) 6131 continue; 6132 if (!event_filter_match(event)) 6133 continue; 6134 } 6135 6136 output(event, data); 6137 } 6138 } 6139 6140 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6141 { 6142 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6143 struct perf_event *event; 6144 6145 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6146 /* 6147 * Skip events that are not fully formed yet; ensure that 6148 * if we observe event->ctx, both event and ctx will be 6149 * complete enough. See perf_install_in_context(). 6150 */ 6151 if (!smp_load_acquire(&event->ctx)) 6152 continue; 6153 6154 if (event->state < PERF_EVENT_STATE_INACTIVE) 6155 continue; 6156 if (!event_filter_match(event)) 6157 continue; 6158 output(event, data); 6159 } 6160 } 6161 6162 /* 6163 * Iterate all events that need to receive side-band events. 6164 * 6165 * For new callers; ensure that account_pmu_sb_event() includes 6166 * your event, otherwise it might not get delivered. 6167 */ 6168 static void 6169 perf_iterate_sb(perf_iterate_f output, void *data, 6170 struct perf_event_context *task_ctx) 6171 { 6172 struct perf_event_context *ctx; 6173 int ctxn; 6174 6175 rcu_read_lock(); 6176 preempt_disable(); 6177 6178 /* 6179 * If we have task_ctx != NULL we only notify the task context itself. 6180 * The task_ctx is set only for EXIT events before releasing task 6181 * context. 6182 */ 6183 if (task_ctx) { 6184 perf_iterate_ctx(task_ctx, output, data, false); 6185 goto done; 6186 } 6187 6188 perf_iterate_sb_cpu(output, data); 6189 6190 for_each_task_context_nr(ctxn) { 6191 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6192 if (ctx) 6193 perf_iterate_ctx(ctx, output, data, false); 6194 } 6195 done: 6196 preempt_enable(); 6197 rcu_read_unlock(); 6198 } 6199 6200 /* 6201 * Clear all file-based filters at exec, they'll have to be 6202 * re-instated when/if these objects are mmapped again. 6203 */ 6204 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6205 { 6206 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6207 struct perf_addr_filter *filter; 6208 unsigned int restart = 0, count = 0; 6209 unsigned long flags; 6210 6211 if (!has_addr_filter(event)) 6212 return; 6213 6214 raw_spin_lock_irqsave(&ifh->lock, flags); 6215 list_for_each_entry(filter, &ifh->list, entry) { 6216 if (filter->inode) { 6217 event->addr_filters_offs[count] = 0; 6218 restart++; 6219 } 6220 6221 count++; 6222 } 6223 6224 if (restart) 6225 event->addr_filters_gen++; 6226 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6227 6228 if (restart) 6229 perf_event_stop(event, 1); 6230 } 6231 6232 void perf_event_exec(void) 6233 { 6234 struct perf_event_context *ctx; 6235 int ctxn; 6236 6237 rcu_read_lock(); 6238 for_each_task_context_nr(ctxn) { 6239 ctx = current->perf_event_ctxp[ctxn]; 6240 if (!ctx) 6241 continue; 6242 6243 perf_event_enable_on_exec(ctxn); 6244 6245 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6246 true); 6247 } 6248 rcu_read_unlock(); 6249 } 6250 6251 struct remote_output { 6252 struct ring_buffer *rb; 6253 int err; 6254 }; 6255 6256 static void __perf_event_output_stop(struct perf_event *event, void *data) 6257 { 6258 struct perf_event *parent = event->parent; 6259 struct remote_output *ro = data; 6260 struct ring_buffer *rb = ro->rb; 6261 struct stop_event_data sd = { 6262 .event = event, 6263 }; 6264 6265 if (!has_aux(event)) 6266 return; 6267 6268 if (!parent) 6269 parent = event; 6270 6271 /* 6272 * In case of inheritance, it will be the parent that links to the 6273 * ring-buffer, but it will be the child that's actually using it. 6274 * 6275 * We are using event::rb to determine if the event should be stopped, 6276 * however this may race with ring_buffer_attach() (through set_output), 6277 * which will make us skip the event that actually needs to be stopped. 6278 * So ring_buffer_attach() has to stop an aux event before re-assigning 6279 * its rb pointer. 6280 */ 6281 if (rcu_dereference(parent->rb) == rb) 6282 ro->err = __perf_event_stop(&sd); 6283 } 6284 6285 static int __perf_pmu_output_stop(void *info) 6286 { 6287 struct perf_event *event = info; 6288 struct pmu *pmu = event->pmu; 6289 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6290 struct remote_output ro = { 6291 .rb = event->rb, 6292 }; 6293 6294 rcu_read_lock(); 6295 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6296 if (cpuctx->task_ctx) 6297 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6298 &ro, false); 6299 rcu_read_unlock(); 6300 6301 return ro.err; 6302 } 6303 6304 static void perf_pmu_output_stop(struct perf_event *event) 6305 { 6306 struct perf_event *iter; 6307 int err, cpu; 6308 6309 restart: 6310 rcu_read_lock(); 6311 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6312 /* 6313 * For per-CPU events, we need to make sure that neither they 6314 * nor their children are running; for cpu==-1 events it's 6315 * sufficient to stop the event itself if it's active, since 6316 * it can't have children. 6317 */ 6318 cpu = iter->cpu; 6319 if (cpu == -1) 6320 cpu = READ_ONCE(iter->oncpu); 6321 6322 if (cpu == -1) 6323 continue; 6324 6325 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6326 if (err == -EAGAIN) { 6327 rcu_read_unlock(); 6328 goto restart; 6329 } 6330 } 6331 rcu_read_unlock(); 6332 } 6333 6334 /* 6335 * task tracking -- fork/exit 6336 * 6337 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6338 */ 6339 6340 struct perf_task_event { 6341 struct task_struct *task; 6342 struct perf_event_context *task_ctx; 6343 6344 struct { 6345 struct perf_event_header header; 6346 6347 u32 pid; 6348 u32 ppid; 6349 u32 tid; 6350 u32 ptid; 6351 u64 time; 6352 } event_id; 6353 }; 6354 6355 static int perf_event_task_match(struct perf_event *event) 6356 { 6357 return event->attr.comm || event->attr.mmap || 6358 event->attr.mmap2 || event->attr.mmap_data || 6359 event->attr.task; 6360 } 6361 6362 static void perf_event_task_output(struct perf_event *event, 6363 void *data) 6364 { 6365 struct perf_task_event *task_event = data; 6366 struct perf_output_handle handle; 6367 struct perf_sample_data sample; 6368 struct task_struct *task = task_event->task; 6369 int ret, size = task_event->event_id.header.size; 6370 6371 if (!perf_event_task_match(event)) 6372 return; 6373 6374 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6375 6376 ret = perf_output_begin(&handle, event, 6377 task_event->event_id.header.size); 6378 if (ret) 6379 goto out; 6380 6381 task_event->event_id.pid = perf_event_pid(event, task); 6382 task_event->event_id.ppid = perf_event_pid(event, current); 6383 6384 task_event->event_id.tid = perf_event_tid(event, task); 6385 task_event->event_id.ptid = perf_event_tid(event, current); 6386 6387 task_event->event_id.time = perf_event_clock(event); 6388 6389 perf_output_put(&handle, task_event->event_id); 6390 6391 perf_event__output_id_sample(event, &handle, &sample); 6392 6393 perf_output_end(&handle); 6394 out: 6395 task_event->event_id.header.size = size; 6396 } 6397 6398 static void perf_event_task(struct task_struct *task, 6399 struct perf_event_context *task_ctx, 6400 int new) 6401 { 6402 struct perf_task_event task_event; 6403 6404 if (!atomic_read(&nr_comm_events) && 6405 !atomic_read(&nr_mmap_events) && 6406 !atomic_read(&nr_task_events)) 6407 return; 6408 6409 task_event = (struct perf_task_event){ 6410 .task = task, 6411 .task_ctx = task_ctx, 6412 .event_id = { 6413 .header = { 6414 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6415 .misc = 0, 6416 .size = sizeof(task_event.event_id), 6417 }, 6418 /* .pid */ 6419 /* .ppid */ 6420 /* .tid */ 6421 /* .ptid */ 6422 /* .time */ 6423 }, 6424 }; 6425 6426 perf_iterate_sb(perf_event_task_output, 6427 &task_event, 6428 task_ctx); 6429 } 6430 6431 void perf_event_fork(struct task_struct *task) 6432 { 6433 perf_event_task(task, NULL, 1); 6434 } 6435 6436 /* 6437 * comm tracking 6438 */ 6439 6440 struct perf_comm_event { 6441 struct task_struct *task; 6442 char *comm; 6443 int comm_size; 6444 6445 struct { 6446 struct perf_event_header header; 6447 6448 u32 pid; 6449 u32 tid; 6450 } event_id; 6451 }; 6452 6453 static int perf_event_comm_match(struct perf_event *event) 6454 { 6455 return event->attr.comm; 6456 } 6457 6458 static void perf_event_comm_output(struct perf_event *event, 6459 void *data) 6460 { 6461 struct perf_comm_event *comm_event = data; 6462 struct perf_output_handle handle; 6463 struct perf_sample_data sample; 6464 int size = comm_event->event_id.header.size; 6465 int ret; 6466 6467 if (!perf_event_comm_match(event)) 6468 return; 6469 6470 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6471 ret = perf_output_begin(&handle, event, 6472 comm_event->event_id.header.size); 6473 6474 if (ret) 6475 goto out; 6476 6477 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6478 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6479 6480 perf_output_put(&handle, comm_event->event_id); 6481 __output_copy(&handle, comm_event->comm, 6482 comm_event->comm_size); 6483 6484 perf_event__output_id_sample(event, &handle, &sample); 6485 6486 perf_output_end(&handle); 6487 out: 6488 comm_event->event_id.header.size = size; 6489 } 6490 6491 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6492 { 6493 char comm[TASK_COMM_LEN]; 6494 unsigned int size; 6495 6496 memset(comm, 0, sizeof(comm)); 6497 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6498 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6499 6500 comm_event->comm = comm; 6501 comm_event->comm_size = size; 6502 6503 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6504 6505 perf_iterate_sb(perf_event_comm_output, 6506 comm_event, 6507 NULL); 6508 } 6509 6510 void perf_event_comm(struct task_struct *task, bool exec) 6511 { 6512 struct perf_comm_event comm_event; 6513 6514 if (!atomic_read(&nr_comm_events)) 6515 return; 6516 6517 comm_event = (struct perf_comm_event){ 6518 .task = task, 6519 /* .comm */ 6520 /* .comm_size */ 6521 .event_id = { 6522 .header = { 6523 .type = PERF_RECORD_COMM, 6524 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6525 /* .size */ 6526 }, 6527 /* .pid */ 6528 /* .tid */ 6529 }, 6530 }; 6531 6532 perf_event_comm_event(&comm_event); 6533 } 6534 6535 /* 6536 * mmap tracking 6537 */ 6538 6539 struct perf_mmap_event { 6540 struct vm_area_struct *vma; 6541 6542 const char *file_name; 6543 int file_size; 6544 int maj, min; 6545 u64 ino; 6546 u64 ino_generation; 6547 u32 prot, flags; 6548 6549 struct { 6550 struct perf_event_header header; 6551 6552 u32 pid; 6553 u32 tid; 6554 u64 start; 6555 u64 len; 6556 u64 pgoff; 6557 } event_id; 6558 }; 6559 6560 static int perf_event_mmap_match(struct perf_event *event, 6561 void *data) 6562 { 6563 struct perf_mmap_event *mmap_event = data; 6564 struct vm_area_struct *vma = mmap_event->vma; 6565 int executable = vma->vm_flags & VM_EXEC; 6566 6567 return (!executable && event->attr.mmap_data) || 6568 (executable && (event->attr.mmap || event->attr.mmap2)); 6569 } 6570 6571 static void perf_event_mmap_output(struct perf_event *event, 6572 void *data) 6573 { 6574 struct perf_mmap_event *mmap_event = data; 6575 struct perf_output_handle handle; 6576 struct perf_sample_data sample; 6577 int size = mmap_event->event_id.header.size; 6578 int ret; 6579 6580 if (!perf_event_mmap_match(event, data)) 6581 return; 6582 6583 if (event->attr.mmap2) { 6584 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6585 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6586 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6587 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6588 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6589 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6590 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6591 } 6592 6593 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6594 ret = perf_output_begin(&handle, event, 6595 mmap_event->event_id.header.size); 6596 if (ret) 6597 goto out; 6598 6599 mmap_event->event_id.pid = perf_event_pid(event, current); 6600 mmap_event->event_id.tid = perf_event_tid(event, current); 6601 6602 perf_output_put(&handle, mmap_event->event_id); 6603 6604 if (event->attr.mmap2) { 6605 perf_output_put(&handle, mmap_event->maj); 6606 perf_output_put(&handle, mmap_event->min); 6607 perf_output_put(&handle, mmap_event->ino); 6608 perf_output_put(&handle, mmap_event->ino_generation); 6609 perf_output_put(&handle, mmap_event->prot); 6610 perf_output_put(&handle, mmap_event->flags); 6611 } 6612 6613 __output_copy(&handle, mmap_event->file_name, 6614 mmap_event->file_size); 6615 6616 perf_event__output_id_sample(event, &handle, &sample); 6617 6618 perf_output_end(&handle); 6619 out: 6620 mmap_event->event_id.header.size = size; 6621 } 6622 6623 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6624 { 6625 struct vm_area_struct *vma = mmap_event->vma; 6626 struct file *file = vma->vm_file; 6627 int maj = 0, min = 0; 6628 u64 ino = 0, gen = 0; 6629 u32 prot = 0, flags = 0; 6630 unsigned int size; 6631 char tmp[16]; 6632 char *buf = NULL; 6633 char *name; 6634 6635 if (vma->vm_flags & VM_READ) 6636 prot |= PROT_READ; 6637 if (vma->vm_flags & VM_WRITE) 6638 prot |= PROT_WRITE; 6639 if (vma->vm_flags & VM_EXEC) 6640 prot |= PROT_EXEC; 6641 6642 if (vma->vm_flags & VM_MAYSHARE) 6643 flags = MAP_SHARED; 6644 else 6645 flags = MAP_PRIVATE; 6646 6647 if (vma->vm_flags & VM_DENYWRITE) 6648 flags |= MAP_DENYWRITE; 6649 if (vma->vm_flags & VM_MAYEXEC) 6650 flags |= MAP_EXECUTABLE; 6651 if (vma->vm_flags & VM_LOCKED) 6652 flags |= MAP_LOCKED; 6653 if (vma->vm_flags & VM_HUGETLB) 6654 flags |= MAP_HUGETLB; 6655 6656 if (file) { 6657 struct inode *inode; 6658 dev_t dev; 6659 6660 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6661 if (!buf) { 6662 name = "//enomem"; 6663 goto cpy_name; 6664 } 6665 /* 6666 * d_path() works from the end of the rb backwards, so we 6667 * need to add enough zero bytes after the string to handle 6668 * the 64bit alignment we do later. 6669 */ 6670 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6671 if (IS_ERR(name)) { 6672 name = "//toolong"; 6673 goto cpy_name; 6674 } 6675 inode = file_inode(vma->vm_file); 6676 dev = inode->i_sb->s_dev; 6677 ino = inode->i_ino; 6678 gen = inode->i_generation; 6679 maj = MAJOR(dev); 6680 min = MINOR(dev); 6681 6682 goto got_name; 6683 } else { 6684 if (vma->vm_ops && vma->vm_ops->name) { 6685 name = (char *) vma->vm_ops->name(vma); 6686 if (name) 6687 goto cpy_name; 6688 } 6689 6690 name = (char *)arch_vma_name(vma); 6691 if (name) 6692 goto cpy_name; 6693 6694 if (vma->vm_start <= vma->vm_mm->start_brk && 6695 vma->vm_end >= vma->vm_mm->brk) { 6696 name = "[heap]"; 6697 goto cpy_name; 6698 } 6699 if (vma->vm_start <= vma->vm_mm->start_stack && 6700 vma->vm_end >= vma->vm_mm->start_stack) { 6701 name = "[stack]"; 6702 goto cpy_name; 6703 } 6704 6705 name = "//anon"; 6706 goto cpy_name; 6707 } 6708 6709 cpy_name: 6710 strlcpy(tmp, name, sizeof(tmp)); 6711 name = tmp; 6712 got_name: 6713 /* 6714 * Since our buffer works in 8 byte units we need to align our string 6715 * size to a multiple of 8. However, we must guarantee the tail end is 6716 * zero'd out to avoid leaking random bits to userspace. 6717 */ 6718 size = strlen(name)+1; 6719 while (!IS_ALIGNED(size, sizeof(u64))) 6720 name[size++] = '\0'; 6721 6722 mmap_event->file_name = name; 6723 mmap_event->file_size = size; 6724 mmap_event->maj = maj; 6725 mmap_event->min = min; 6726 mmap_event->ino = ino; 6727 mmap_event->ino_generation = gen; 6728 mmap_event->prot = prot; 6729 mmap_event->flags = flags; 6730 6731 if (!(vma->vm_flags & VM_EXEC)) 6732 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6733 6734 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6735 6736 perf_iterate_sb(perf_event_mmap_output, 6737 mmap_event, 6738 NULL); 6739 6740 kfree(buf); 6741 } 6742 6743 /* 6744 * Check whether inode and address range match filter criteria. 6745 */ 6746 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6747 struct file *file, unsigned long offset, 6748 unsigned long size) 6749 { 6750 if (filter->inode != file_inode(file)) 6751 return false; 6752 6753 if (filter->offset > offset + size) 6754 return false; 6755 6756 if (filter->offset + filter->size < offset) 6757 return false; 6758 6759 return true; 6760 } 6761 6762 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6763 { 6764 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6765 struct vm_area_struct *vma = data; 6766 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6767 struct file *file = vma->vm_file; 6768 struct perf_addr_filter *filter; 6769 unsigned int restart = 0, count = 0; 6770 6771 if (!has_addr_filter(event)) 6772 return; 6773 6774 if (!file) 6775 return; 6776 6777 raw_spin_lock_irqsave(&ifh->lock, flags); 6778 list_for_each_entry(filter, &ifh->list, entry) { 6779 if (perf_addr_filter_match(filter, file, off, 6780 vma->vm_end - vma->vm_start)) { 6781 event->addr_filters_offs[count] = vma->vm_start; 6782 restart++; 6783 } 6784 6785 count++; 6786 } 6787 6788 if (restart) 6789 event->addr_filters_gen++; 6790 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6791 6792 if (restart) 6793 perf_event_stop(event, 1); 6794 } 6795 6796 /* 6797 * Adjust all task's events' filters to the new vma 6798 */ 6799 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6800 { 6801 struct perf_event_context *ctx; 6802 int ctxn; 6803 6804 /* 6805 * Data tracing isn't supported yet and as such there is no need 6806 * to keep track of anything that isn't related to executable code: 6807 */ 6808 if (!(vma->vm_flags & VM_EXEC)) 6809 return; 6810 6811 rcu_read_lock(); 6812 for_each_task_context_nr(ctxn) { 6813 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6814 if (!ctx) 6815 continue; 6816 6817 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6818 } 6819 rcu_read_unlock(); 6820 } 6821 6822 void perf_event_mmap(struct vm_area_struct *vma) 6823 { 6824 struct perf_mmap_event mmap_event; 6825 6826 if (!atomic_read(&nr_mmap_events)) 6827 return; 6828 6829 mmap_event = (struct perf_mmap_event){ 6830 .vma = vma, 6831 /* .file_name */ 6832 /* .file_size */ 6833 .event_id = { 6834 .header = { 6835 .type = PERF_RECORD_MMAP, 6836 .misc = PERF_RECORD_MISC_USER, 6837 /* .size */ 6838 }, 6839 /* .pid */ 6840 /* .tid */ 6841 .start = vma->vm_start, 6842 .len = vma->vm_end - vma->vm_start, 6843 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6844 }, 6845 /* .maj (attr_mmap2 only) */ 6846 /* .min (attr_mmap2 only) */ 6847 /* .ino (attr_mmap2 only) */ 6848 /* .ino_generation (attr_mmap2 only) */ 6849 /* .prot (attr_mmap2 only) */ 6850 /* .flags (attr_mmap2 only) */ 6851 }; 6852 6853 perf_addr_filters_adjust(vma); 6854 perf_event_mmap_event(&mmap_event); 6855 } 6856 6857 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6858 unsigned long size, u64 flags) 6859 { 6860 struct perf_output_handle handle; 6861 struct perf_sample_data sample; 6862 struct perf_aux_event { 6863 struct perf_event_header header; 6864 u64 offset; 6865 u64 size; 6866 u64 flags; 6867 } rec = { 6868 .header = { 6869 .type = PERF_RECORD_AUX, 6870 .misc = 0, 6871 .size = sizeof(rec), 6872 }, 6873 .offset = head, 6874 .size = size, 6875 .flags = flags, 6876 }; 6877 int ret; 6878 6879 perf_event_header__init_id(&rec.header, &sample, event); 6880 ret = perf_output_begin(&handle, event, rec.header.size); 6881 6882 if (ret) 6883 return; 6884 6885 perf_output_put(&handle, rec); 6886 perf_event__output_id_sample(event, &handle, &sample); 6887 6888 perf_output_end(&handle); 6889 } 6890 6891 /* 6892 * Lost/dropped samples logging 6893 */ 6894 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6895 { 6896 struct perf_output_handle handle; 6897 struct perf_sample_data sample; 6898 int ret; 6899 6900 struct { 6901 struct perf_event_header header; 6902 u64 lost; 6903 } lost_samples_event = { 6904 .header = { 6905 .type = PERF_RECORD_LOST_SAMPLES, 6906 .misc = 0, 6907 .size = sizeof(lost_samples_event), 6908 }, 6909 .lost = lost, 6910 }; 6911 6912 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6913 6914 ret = perf_output_begin(&handle, event, 6915 lost_samples_event.header.size); 6916 if (ret) 6917 return; 6918 6919 perf_output_put(&handle, lost_samples_event); 6920 perf_event__output_id_sample(event, &handle, &sample); 6921 perf_output_end(&handle); 6922 } 6923 6924 /* 6925 * context_switch tracking 6926 */ 6927 6928 struct perf_switch_event { 6929 struct task_struct *task; 6930 struct task_struct *next_prev; 6931 6932 struct { 6933 struct perf_event_header header; 6934 u32 next_prev_pid; 6935 u32 next_prev_tid; 6936 } event_id; 6937 }; 6938 6939 static int perf_event_switch_match(struct perf_event *event) 6940 { 6941 return event->attr.context_switch; 6942 } 6943 6944 static void perf_event_switch_output(struct perf_event *event, void *data) 6945 { 6946 struct perf_switch_event *se = data; 6947 struct perf_output_handle handle; 6948 struct perf_sample_data sample; 6949 int ret; 6950 6951 if (!perf_event_switch_match(event)) 6952 return; 6953 6954 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6955 if (event->ctx->task) { 6956 se->event_id.header.type = PERF_RECORD_SWITCH; 6957 se->event_id.header.size = sizeof(se->event_id.header); 6958 } else { 6959 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6960 se->event_id.header.size = sizeof(se->event_id); 6961 se->event_id.next_prev_pid = 6962 perf_event_pid(event, se->next_prev); 6963 se->event_id.next_prev_tid = 6964 perf_event_tid(event, se->next_prev); 6965 } 6966 6967 perf_event_header__init_id(&se->event_id.header, &sample, event); 6968 6969 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6970 if (ret) 6971 return; 6972 6973 if (event->ctx->task) 6974 perf_output_put(&handle, se->event_id.header); 6975 else 6976 perf_output_put(&handle, se->event_id); 6977 6978 perf_event__output_id_sample(event, &handle, &sample); 6979 6980 perf_output_end(&handle); 6981 } 6982 6983 static void perf_event_switch(struct task_struct *task, 6984 struct task_struct *next_prev, bool sched_in) 6985 { 6986 struct perf_switch_event switch_event; 6987 6988 /* N.B. caller checks nr_switch_events != 0 */ 6989 6990 switch_event = (struct perf_switch_event){ 6991 .task = task, 6992 .next_prev = next_prev, 6993 .event_id = { 6994 .header = { 6995 /* .type */ 6996 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6997 /* .size */ 6998 }, 6999 /* .next_prev_pid */ 7000 /* .next_prev_tid */ 7001 }, 7002 }; 7003 7004 perf_iterate_sb(perf_event_switch_output, 7005 &switch_event, 7006 NULL); 7007 } 7008 7009 /* 7010 * IRQ throttle logging 7011 */ 7012 7013 static void perf_log_throttle(struct perf_event *event, int enable) 7014 { 7015 struct perf_output_handle handle; 7016 struct perf_sample_data sample; 7017 int ret; 7018 7019 struct { 7020 struct perf_event_header header; 7021 u64 time; 7022 u64 id; 7023 u64 stream_id; 7024 } throttle_event = { 7025 .header = { 7026 .type = PERF_RECORD_THROTTLE, 7027 .misc = 0, 7028 .size = sizeof(throttle_event), 7029 }, 7030 .time = perf_event_clock(event), 7031 .id = primary_event_id(event), 7032 .stream_id = event->id, 7033 }; 7034 7035 if (enable) 7036 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7037 7038 perf_event_header__init_id(&throttle_event.header, &sample, event); 7039 7040 ret = perf_output_begin(&handle, event, 7041 throttle_event.header.size); 7042 if (ret) 7043 return; 7044 7045 perf_output_put(&handle, throttle_event); 7046 perf_event__output_id_sample(event, &handle, &sample); 7047 perf_output_end(&handle); 7048 } 7049 7050 static void perf_log_itrace_start(struct perf_event *event) 7051 { 7052 struct perf_output_handle handle; 7053 struct perf_sample_data sample; 7054 struct perf_aux_event { 7055 struct perf_event_header header; 7056 u32 pid; 7057 u32 tid; 7058 } rec; 7059 int ret; 7060 7061 if (event->parent) 7062 event = event->parent; 7063 7064 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7065 event->hw.itrace_started) 7066 return; 7067 7068 rec.header.type = PERF_RECORD_ITRACE_START; 7069 rec.header.misc = 0; 7070 rec.header.size = sizeof(rec); 7071 rec.pid = perf_event_pid(event, current); 7072 rec.tid = perf_event_tid(event, current); 7073 7074 perf_event_header__init_id(&rec.header, &sample, event); 7075 ret = perf_output_begin(&handle, event, rec.header.size); 7076 7077 if (ret) 7078 return; 7079 7080 perf_output_put(&handle, rec); 7081 perf_event__output_id_sample(event, &handle, &sample); 7082 7083 perf_output_end(&handle); 7084 } 7085 7086 static int 7087 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7088 { 7089 struct hw_perf_event *hwc = &event->hw; 7090 int ret = 0; 7091 u64 seq; 7092 7093 seq = __this_cpu_read(perf_throttled_seq); 7094 if (seq != hwc->interrupts_seq) { 7095 hwc->interrupts_seq = seq; 7096 hwc->interrupts = 1; 7097 } else { 7098 hwc->interrupts++; 7099 if (unlikely(throttle 7100 && hwc->interrupts >= max_samples_per_tick)) { 7101 __this_cpu_inc(perf_throttled_count); 7102 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7103 hwc->interrupts = MAX_INTERRUPTS; 7104 perf_log_throttle(event, 0); 7105 ret = 1; 7106 } 7107 } 7108 7109 if (event->attr.freq) { 7110 u64 now = perf_clock(); 7111 s64 delta = now - hwc->freq_time_stamp; 7112 7113 hwc->freq_time_stamp = now; 7114 7115 if (delta > 0 && delta < 2*TICK_NSEC) 7116 perf_adjust_period(event, delta, hwc->last_period, true); 7117 } 7118 7119 return ret; 7120 } 7121 7122 int perf_event_account_interrupt(struct perf_event *event) 7123 { 7124 return __perf_event_account_interrupt(event, 1); 7125 } 7126 7127 /* 7128 * Generic event overflow handling, sampling. 7129 */ 7130 7131 static int __perf_event_overflow(struct perf_event *event, 7132 int throttle, struct perf_sample_data *data, 7133 struct pt_regs *regs) 7134 { 7135 int events = atomic_read(&event->event_limit); 7136 int ret = 0; 7137 7138 /* 7139 * Non-sampling counters might still use the PMI to fold short 7140 * hardware counters, ignore those. 7141 */ 7142 if (unlikely(!is_sampling_event(event))) 7143 return 0; 7144 7145 ret = __perf_event_account_interrupt(event, throttle); 7146 7147 /* 7148 * XXX event_limit might not quite work as expected on inherited 7149 * events 7150 */ 7151 7152 event->pending_kill = POLL_IN; 7153 if (events && atomic_dec_and_test(&event->event_limit)) { 7154 ret = 1; 7155 event->pending_kill = POLL_HUP; 7156 7157 perf_event_disable_inatomic(event); 7158 } 7159 7160 READ_ONCE(event->overflow_handler)(event, data, regs); 7161 7162 if (*perf_event_fasync(event) && event->pending_kill) { 7163 event->pending_wakeup = 1; 7164 irq_work_queue(&event->pending); 7165 } 7166 7167 return ret; 7168 } 7169 7170 int perf_event_overflow(struct perf_event *event, 7171 struct perf_sample_data *data, 7172 struct pt_regs *regs) 7173 { 7174 return __perf_event_overflow(event, 1, data, regs); 7175 } 7176 7177 /* 7178 * Generic software event infrastructure 7179 */ 7180 7181 struct swevent_htable { 7182 struct swevent_hlist *swevent_hlist; 7183 struct mutex hlist_mutex; 7184 int hlist_refcount; 7185 7186 /* Recursion avoidance in each contexts */ 7187 int recursion[PERF_NR_CONTEXTS]; 7188 }; 7189 7190 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7191 7192 /* 7193 * We directly increment event->count and keep a second value in 7194 * event->hw.period_left to count intervals. This period event 7195 * is kept in the range [-sample_period, 0] so that we can use the 7196 * sign as trigger. 7197 */ 7198 7199 u64 perf_swevent_set_period(struct perf_event *event) 7200 { 7201 struct hw_perf_event *hwc = &event->hw; 7202 u64 period = hwc->last_period; 7203 u64 nr, offset; 7204 s64 old, val; 7205 7206 hwc->last_period = hwc->sample_period; 7207 7208 again: 7209 old = val = local64_read(&hwc->period_left); 7210 if (val < 0) 7211 return 0; 7212 7213 nr = div64_u64(period + val, period); 7214 offset = nr * period; 7215 val -= offset; 7216 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7217 goto again; 7218 7219 return nr; 7220 } 7221 7222 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7223 struct perf_sample_data *data, 7224 struct pt_regs *regs) 7225 { 7226 struct hw_perf_event *hwc = &event->hw; 7227 int throttle = 0; 7228 7229 if (!overflow) 7230 overflow = perf_swevent_set_period(event); 7231 7232 if (hwc->interrupts == MAX_INTERRUPTS) 7233 return; 7234 7235 for (; overflow; overflow--) { 7236 if (__perf_event_overflow(event, throttle, 7237 data, regs)) { 7238 /* 7239 * We inhibit the overflow from happening when 7240 * hwc->interrupts == MAX_INTERRUPTS. 7241 */ 7242 break; 7243 } 7244 throttle = 1; 7245 } 7246 } 7247 7248 static void perf_swevent_event(struct perf_event *event, u64 nr, 7249 struct perf_sample_data *data, 7250 struct pt_regs *regs) 7251 { 7252 struct hw_perf_event *hwc = &event->hw; 7253 7254 local64_add(nr, &event->count); 7255 7256 if (!regs) 7257 return; 7258 7259 if (!is_sampling_event(event)) 7260 return; 7261 7262 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7263 data->period = nr; 7264 return perf_swevent_overflow(event, 1, data, regs); 7265 } else 7266 data->period = event->hw.last_period; 7267 7268 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7269 return perf_swevent_overflow(event, 1, data, regs); 7270 7271 if (local64_add_negative(nr, &hwc->period_left)) 7272 return; 7273 7274 perf_swevent_overflow(event, 0, data, regs); 7275 } 7276 7277 static int perf_exclude_event(struct perf_event *event, 7278 struct pt_regs *regs) 7279 { 7280 if (event->hw.state & PERF_HES_STOPPED) 7281 return 1; 7282 7283 if (regs) { 7284 if (event->attr.exclude_user && user_mode(regs)) 7285 return 1; 7286 7287 if (event->attr.exclude_kernel && !user_mode(regs)) 7288 return 1; 7289 } 7290 7291 return 0; 7292 } 7293 7294 static int perf_swevent_match(struct perf_event *event, 7295 enum perf_type_id type, 7296 u32 event_id, 7297 struct perf_sample_data *data, 7298 struct pt_regs *regs) 7299 { 7300 if (event->attr.type != type) 7301 return 0; 7302 7303 if (event->attr.config != event_id) 7304 return 0; 7305 7306 if (perf_exclude_event(event, regs)) 7307 return 0; 7308 7309 return 1; 7310 } 7311 7312 static inline u64 swevent_hash(u64 type, u32 event_id) 7313 { 7314 u64 val = event_id | (type << 32); 7315 7316 return hash_64(val, SWEVENT_HLIST_BITS); 7317 } 7318 7319 static inline struct hlist_head * 7320 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7321 { 7322 u64 hash = swevent_hash(type, event_id); 7323 7324 return &hlist->heads[hash]; 7325 } 7326 7327 /* For the read side: events when they trigger */ 7328 static inline struct hlist_head * 7329 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7330 { 7331 struct swevent_hlist *hlist; 7332 7333 hlist = rcu_dereference(swhash->swevent_hlist); 7334 if (!hlist) 7335 return NULL; 7336 7337 return __find_swevent_head(hlist, type, event_id); 7338 } 7339 7340 /* For the event head insertion and removal in the hlist */ 7341 static inline struct hlist_head * 7342 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7343 { 7344 struct swevent_hlist *hlist; 7345 u32 event_id = event->attr.config; 7346 u64 type = event->attr.type; 7347 7348 /* 7349 * Event scheduling is always serialized against hlist allocation 7350 * and release. Which makes the protected version suitable here. 7351 * The context lock guarantees that. 7352 */ 7353 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7354 lockdep_is_held(&event->ctx->lock)); 7355 if (!hlist) 7356 return NULL; 7357 7358 return __find_swevent_head(hlist, type, event_id); 7359 } 7360 7361 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7362 u64 nr, 7363 struct perf_sample_data *data, 7364 struct pt_regs *regs) 7365 { 7366 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7367 struct perf_event *event; 7368 struct hlist_head *head; 7369 7370 rcu_read_lock(); 7371 head = find_swevent_head_rcu(swhash, type, event_id); 7372 if (!head) 7373 goto end; 7374 7375 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7376 if (perf_swevent_match(event, type, event_id, data, regs)) 7377 perf_swevent_event(event, nr, data, regs); 7378 } 7379 end: 7380 rcu_read_unlock(); 7381 } 7382 7383 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7384 7385 int perf_swevent_get_recursion_context(void) 7386 { 7387 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7388 7389 return get_recursion_context(swhash->recursion); 7390 } 7391 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7392 7393 void perf_swevent_put_recursion_context(int rctx) 7394 { 7395 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7396 7397 put_recursion_context(swhash->recursion, rctx); 7398 } 7399 7400 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7401 { 7402 struct perf_sample_data data; 7403 7404 if (WARN_ON_ONCE(!regs)) 7405 return; 7406 7407 perf_sample_data_init(&data, addr, 0); 7408 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7409 } 7410 7411 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7412 { 7413 int rctx; 7414 7415 preempt_disable_notrace(); 7416 rctx = perf_swevent_get_recursion_context(); 7417 if (unlikely(rctx < 0)) 7418 goto fail; 7419 7420 ___perf_sw_event(event_id, nr, regs, addr); 7421 7422 perf_swevent_put_recursion_context(rctx); 7423 fail: 7424 preempt_enable_notrace(); 7425 } 7426 7427 static void perf_swevent_read(struct perf_event *event) 7428 { 7429 } 7430 7431 static int perf_swevent_add(struct perf_event *event, int flags) 7432 { 7433 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7434 struct hw_perf_event *hwc = &event->hw; 7435 struct hlist_head *head; 7436 7437 if (is_sampling_event(event)) { 7438 hwc->last_period = hwc->sample_period; 7439 perf_swevent_set_period(event); 7440 } 7441 7442 hwc->state = !(flags & PERF_EF_START); 7443 7444 head = find_swevent_head(swhash, event); 7445 if (WARN_ON_ONCE(!head)) 7446 return -EINVAL; 7447 7448 hlist_add_head_rcu(&event->hlist_entry, head); 7449 perf_event_update_userpage(event); 7450 7451 return 0; 7452 } 7453 7454 static void perf_swevent_del(struct perf_event *event, int flags) 7455 { 7456 hlist_del_rcu(&event->hlist_entry); 7457 } 7458 7459 static void perf_swevent_start(struct perf_event *event, int flags) 7460 { 7461 event->hw.state = 0; 7462 } 7463 7464 static void perf_swevent_stop(struct perf_event *event, int flags) 7465 { 7466 event->hw.state = PERF_HES_STOPPED; 7467 } 7468 7469 /* Deref the hlist from the update side */ 7470 static inline struct swevent_hlist * 7471 swevent_hlist_deref(struct swevent_htable *swhash) 7472 { 7473 return rcu_dereference_protected(swhash->swevent_hlist, 7474 lockdep_is_held(&swhash->hlist_mutex)); 7475 } 7476 7477 static void swevent_hlist_release(struct swevent_htable *swhash) 7478 { 7479 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7480 7481 if (!hlist) 7482 return; 7483 7484 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7485 kfree_rcu(hlist, rcu_head); 7486 } 7487 7488 static void swevent_hlist_put_cpu(int cpu) 7489 { 7490 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7491 7492 mutex_lock(&swhash->hlist_mutex); 7493 7494 if (!--swhash->hlist_refcount) 7495 swevent_hlist_release(swhash); 7496 7497 mutex_unlock(&swhash->hlist_mutex); 7498 } 7499 7500 static void swevent_hlist_put(void) 7501 { 7502 int cpu; 7503 7504 for_each_possible_cpu(cpu) 7505 swevent_hlist_put_cpu(cpu); 7506 } 7507 7508 static int swevent_hlist_get_cpu(int cpu) 7509 { 7510 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7511 int err = 0; 7512 7513 mutex_lock(&swhash->hlist_mutex); 7514 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7515 struct swevent_hlist *hlist; 7516 7517 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7518 if (!hlist) { 7519 err = -ENOMEM; 7520 goto exit; 7521 } 7522 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7523 } 7524 swhash->hlist_refcount++; 7525 exit: 7526 mutex_unlock(&swhash->hlist_mutex); 7527 7528 return err; 7529 } 7530 7531 static int swevent_hlist_get(void) 7532 { 7533 int err, cpu, failed_cpu; 7534 7535 get_online_cpus(); 7536 for_each_possible_cpu(cpu) { 7537 err = swevent_hlist_get_cpu(cpu); 7538 if (err) { 7539 failed_cpu = cpu; 7540 goto fail; 7541 } 7542 } 7543 put_online_cpus(); 7544 7545 return 0; 7546 fail: 7547 for_each_possible_cpu(cpu) { 7548 if (cpu == failed_cpu) 7549 break; 7550 swevent_hlist_put_cpu(cpu); 7551 } 7552 7553 put_online_cpus(); 7554 return err; 7555 } 7556 7557 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7558 7559 static void sw_perf_event_destroy(struct perf_event *event) 7560 { 7561 u64 event_id = event->attr.config; 7562 7563 WARN_ON(event->parent); 7564 7565 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7566 swevent_hlist_put(); 7567 } 7568 7569 static int perf_swevent_init(struct perf_event *event) 7570 { 7571 u64 event_id = event->attr.config; 7572 7573 if (event->attr.type != PERF_TYPE_SOFTWARE) 7574 return -ENOENT; 7575 7576 /* 7577 * no branch sampling for software events 7578 */ 7579 if (has_branch_stack(event)) 7580 return -EOPNOTSUPP; 7581 7582 switch (event_id) { 7583 case PERF_COUNT_SW_CPU_CLOCK: 7584 case PERF_COUNT_SW_TASK_CLOCK: 7585 return -ENOENT; 7586 7587 default: 7588 break; 7589 } 7590 7591 if (event_id >= PERF_COUNT_SW_MAX) 7592 return -ENOENT; 7593 7594 if (!event->parent) { 7595 int err; 7596 7597 err = swevent_hlist_get(); 7598 if (err) 7599 return err; 7600 7601 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7602 event->destroy = sw_perf_event_destroy; 7603 } 7604 7605 return 0; 7606 } 7607 7608 static struct pmu perf_swevent = { 7609 .task_ctx_nr = perf_sw_context, 7610 7611 .capabilities = PERF_PMU_CAP_NO_NMI, 7612 7613 .event_init = perf_swevent_init, 7614 .add = perf_swevent_add, 7615 .del = perf_swevent_del, 7616 .start = perf_swevent_start, 7617 .stop = perf_swevent_stop, 7618 .read = perf_swevent_read, 7619 }; 7620 7621 #ifdef CONFIG_EVENT_TRACING 7622 7623 static int perf_tp_filter_match(struct perf_event *event, 7624 struct perf_sample_data *data) 7625 { 7626 void *record = data->raw->frag.data; 7627 7628 /* only top level events have filters set */ 7629 if (event->parent) 7630 event = event->parent; 7631 7632 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7633 return 1; 7634 return 0; 7635 } 7636 7637 static int perf_tp_event_match(struct perf_event *event, 7638 struct perf_sample_data *data, 7639 struct pt_regs *regs) 7640 { 7641 if (event->hw.state & PERF_HES_STOPPED) 7642 return 0; 7643 /* 7644 * All tracepoints are from kernel-space. 7645 */ 7646 if (event->attr.exclude_kernel) 7647 return 0; 7648 7649 if (!perf_tp_filter_match(event, data)) 7650 return 0; 7651 7652 return 1; 7653 } 7654 7655 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7656 struct trace_event_call *call, u64 count, 7657 struct pt_regs *regs, struct hlist_head *head, 7658 struct task_struct *task) 7659 { 7660 struct bpf_prog *prog = call->prog; 7661 7662 if (prog) { 7663 *(struct pt_regs **)raw_data = regs; 7664 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7665 perf_swevent_put_recursion_context(rctx); 7666 return; 7667 } 7668 } 7669 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7670 rctx, task); 7671 } 7672 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7673 7674 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7675 struct pt_regs *regs, struct hlist_head *head, int rctx, 7676 struct task_struct *task) 7677 { 7678 struct perf_sample_data data; 7679 struct perf_event *event; 7680 7681 struct perf_raw_record raw = { 7682 .frag = { 7683 .size = entry_size, 7684 .data = record, 7685 }, 7686 }; 7687 7688 perf_sample_data_init(&data, 0, 0); 7689 data.raw = &raw; 7690 7691 perf_trace_buf_update(record, event_type); 7692 7693 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7694 if (perf_tp_event_match(event, &data, regs)) 7695 perf_swevent_event(event, count, &data, regs); 7696 } 7697 7698 /* 7699 * If we got specified a target task, also iterate its context and 7700 * deliver this event there too. 7701 */ 7702 if (task && task != current) { 7703 struct perf_event_context *ctx; 7704 struct trace_entry *entry = record; 7705 7706 rcu_read_lock(); 7707 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7708 if (!ctx) 7709 goto unlock; 7710 7711 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7712 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7713 continue; 7714 if (event->attr.config != entry->type) 7715 continue; 7716 if (perf_tp_event_match(event, &data, regs)) 7717 perf_swevent_event(event, count, &data, regs); 7718 } 7719 unlock: 7720 rcu_read_unlock(); 7721 } 7722 7723 perf_swevent_put_recursion_context(rctx); 7724 } 7725 EXPORT_SYMBOL_GPL(perf_tp_event); 7726 7727 static void tp_perf_event_destroy(struct perf_event *event) 7728 { 7729 perf_trace_destroy(event); 7730 } 7731 7732 static int perf_tp_event_init(struct perf_event *event) 7733 { 7734 int err; 7735 7736 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7737 return -ENOENT; 7738 7739 /* 7740 * no branch sampling for tracepoint events 7741 */ 7742 if (has_branch_stack(event)) 7743 return -EOPNOTSUPP; 7744 7745 err = perf_trace_init(event); 7746 if (err) 7747 return err; 7748 7749 event->destroy = tp_perf_event_destroy; 7750 7751 return 0; 7752 } 7753 7754 static struct pmu perf_tracepoint = { 7755 .task_ctx_nr = perf_sw_context, 7756 7757 .event_init = perf_tp_event_init, 7758 .add = perf_trace_add, 7759 .del = perf_trace_del, 7760 .start = perf_swevent_start, 7761 .stop = perf_swevent_stop, 7762 .read = perf_swevent_read, 7763 }; 7764 7765 static inline void perf_tp_register(void) 7766 { 7767 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7768 } 7769 7770 static void perf_event_free_filter(struct perf_event *event) 7771 { 7772 ftrace_profile_free_filter(event); 7773 } 7774 7775 #ifdef CONFIG_BPF_SYSCALL 7776 static void bpf_overflow_handler(struct perf_event *event, 7777 struct perf_sample_data *data, 7778 struct pt_regs *regs) 7779 { 7780 struct bpf_perf_event_data_kern ctx = { 7781 .data = data, 7782 .regs = regs, 7783 }; 7784 int ret = 0; 7785 7786 preempt_disable(); 7787 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7788 goto out; 7789 rcu_read_lock(); 7790 ret = BPF_PROG_RUN(event->prog, &ctx); 7791 rcu_read_unlock(); 7792 out: 7793 __this_cpu_dec(bpf_prog_active); 7794 preempt_enable(); 7795 if (!ret) 7796 return; 7797 7798 event->orig_overflow_handler(event, data, regs); 7799 } 7800 7801 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7802 { 7803 struct bpf_prog *prog; 7804 7805 if (event->overflow_handler_context) 7806 /* hw breakpoint or kernel counter */ 7807 return -EINVAL; 7808 7809 if (event->prog) 7810 return -EEXIST; 7811 7812 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 7813 if (IS_ERR(prog)) 7814 return PTR_ERR(prog); 7815 7816 event->prog = prog; 7817 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 7818 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 7819 return 0; 7820 } 7821 7822 static void perf_event_free_bpf_handler(struct perf_event *event) 7823 { 7824 struct bpf_prog *prog = event->prog; 7825 7826 if (!prog) 7827 return; 7828 7829 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 7830 event->prog = NULL; 7831 bpf_prog_put(prog); 7832 } 7833 #else 7834 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7835 { 7836 return -EOPNOTSUPP; 7837 } 7838 static void perf_event_free_bpf_handler(struct perf_event *event) 7839 { 7840 } 7841 #endif 7842 7843 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7844 { 7845 bool is_kprobe, is_tracepoint; 7846 struct bpf_prog *prog; 7847 7848 if (event->attr.type == PERF_TYPE_HARDWARE || 7849 event->attr.type == PERF_TYPE_SOFTWARE) 7850 return perf_event_set_bpf_handler(event, prog_fd); 7851 7852 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7853 return -EINVAL; 7854 7855 if (event->tp_event->prog) 7856 return -EEXIST; 7857 7858 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7859 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7860 if (!is_kprobe && !is_tracepoint) 7861 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7862 return -EINVAL; 7863 7864 prog = bpf_prog_get(prog_fd); 7865 if (IS_ERR(prog)) 7866 return PTR_ERR(prog); 7867 7868 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7869 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7870 /* valid fd, but invalid bpf program type */ 7871 bpf_prog_put(prog); 7872 return -EINVAL; 7873 } 7874 7875 if (is_tracepoint) { 7876 int off = trace_event_get_offsets(event->tp_event); 7877 7878 if (prog->aux->max_ctx_offset > off) { 7879 bpf_prog_put(prog); 7880 return -EACCES; 7881 } 7882 } 7883 event->tp_event->prog = prog; 7884 7885 return 0; 7886 } 7887 7888 static void perf_event_free_bpf_prog(struct perf_event *event) 7889 { 7890 struct bpf_prog *prog; 7891 7892 perf_event_free_bpf_handler(event); 7893 7894 if (!event->tp_event) 7895 return; 7896 7897 prog = event->tp_event->prog; 7898 if (prog) { 7899 event->tp_event->prog = NULL; 7900 bpf_prog_put(prog); 7901 } 7902 } 7903 7904 #else 7905 7906 static inline void perf_tp_register(void) 7907 { 7908 } 7909 7910 static void perf_event_free_filter(struct perf_event *event) 7911 { 7912 } 7913 7914 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7915 { 7916 return -ENOENT; 7917 } 7918 7919 static void perf_event_free_bpf_prog(struct perf_event *event) 7920 { 7921 } 7922 #endif /* CONFIG_EVENT_TRACING */ 7923 7924 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7925 void perf_bp_event(struct perf_event *bp, void *data) 7926 { 7927 struct perf_sample_data sample; 7928 struct pt_regs *regs = data; 7929 7930 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7931 7932 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7933 perf_swevent_event(bp, 1, &sample, regs); 7934 } 7935 #endif 7936 7937 /* 7938 * Allocate a new address filter 7939 */ 7940 static struct perf_addr_filter * 7941 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7942 { 7943 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7944 struct perf_addr_filter *filter; 7945 7946 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7947 if (!filter) 7948 return NULL; 7949 7950 INIT_LIST_HEAD(&filter->entry); 7951 list_add_tail(&filter->entry, filters); 7952 7953 return filter; 7954 } 7955 7956 static void free_filters_list(struct list_head *filters) 7957 { 7958 struct perf_addr_filter *filter, *iter; 7959 7960 list_for_each_entry_safe(filter, iter, filters, entry) { 7961 if (filter->inode) 7962 iput(filter->inode); 7963 list_del(&filter->entry); 7964 kfree(filter); 7965 } 7966 } 7967 7968 /* 7969 * Free existing address filters and optionally install new ones 7970 */ 7971 static void perf_addr_filters_splice(struct perf_event *event, 7972 struct list_head *head) 7973 { 7974 unsigned long flags; 7975 LIST_HEAD(list); 7976 7977 if (!has_addr_filter(event)) 7978 return; 7979 7980 /* don't bother with children, they don't have their own filters */ 7981 if (event->parent) 7982 return; 7983 7984 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7985 7986 list_splice_init(&event->addr_filters.list, &list); 7987 if (head) 7988 list_splice(head, &event->addr_filters.list); 7989 7990 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7991 7992 free_filters_list(&list); 7993 } 7994 7995 /* 7996 * Scan through mm's vmas and see if one of them matches the 7997 * @filter; if so, adjust filter's address range. 7998 * Called with mm::mmap_sem down for reading. 7999 */ 8000 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8001 struct mm_struct *mm) 8002 { 8003 struct vm_area_struct *vma; 8004 8005 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8006 struct file *file = vma->vm_file; 8007 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8008 unsigned long vma_size = vma->vm_end - vma->vm_start; 8009 8010 if (!file) 8011 continue; 8012 8013 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8014 continue; 8015 8016 return vma->vm_start; 8017 } 8018 8019 return 0; 8020 } 8021 8022 /* 8023 * Update event's address range filters based on the 8024 * task's existing mappings, if any. 8025 */ 8026 static void perf_event_addr_filters_apply(struct perf_event *event) 8027 { 8028 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8029 struct task_struct *task = READ_ONCE(event->ctx->task); 8030 struct perf_addr_filter *filter; 8031 struct mm_struct *mm = NULL; 8032 unsigned int count = 0; 8033 unsigned long flags; 8034 8035 /* 8036 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8037 * will stop on the parent's child_mutex that our caller is also holding 8038 */ 8039 if (task == TASK_TOMBSTONE) 8040 return; 8041 8042 mm = get_task_mm(event->ctx->task); 8043 if (!mm) 8044 goto restart; 8045 8046 down_read(&mm->mmap_sem); 8047 8048 raw_spin_lock_irqsave(&ifh->lock, flags); 8049 list_for_each_entry(filter, &ifh->list, entry) { 8050 event->addr_filters_offs[count] = 0; 8051 8052 /* 8053 * Adjust base offset if the filter is associated to a binary 8054 * that needs to be mapped: 8055 */ 8056 if (filter->inode) 8057 event->addr_filters_offs[count] = 8058 perf_addr_filter_apply(filter, mm); 8059 8060 count++; 8061 } 8062 8063 event->addr_filters_gen++; 8064 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8065 8066 up_read(&mm->mmap_sem); 8067 8068 mmput(mm); 8069 8070 restart: 8071 perf_event_stop(event, 1); 8072 } 8073 8074 /* 8075 * Address range filtering: limiting the data to certain 8076 * instruction address ranges. Filters are ioctl()ed to us from 8077 * userspace as ascii strings. 8078 * 8079 * Filter string format: 8080 * 8081 * ACTION RANGE_SPEC 8082 * where ACTION is one of the 8083 * * "filter": limit the trace to this region 8084 * * "start": start tracing from this address 8085 * * "stop": stop tracing at this address/region; 8086 * RANGE_SPEC is 8087 * * for kernel addresses: <start address>[/<size>] 8088 * * for object files: <start address>[/<size>]@</path/to/object/file> 8089 * 8090 * if <size> is not specified, the range is treated as a single address. 8091 */ 8092 enum { 8093 IF_ACT_NONE = -1, 8094 IF_ACT_FILTER, 8095 IF_ACT_START, 8096 IF_ACT_STOP, 8097 IF_SRC_FILE, 8098 IF_SRC_KERNEL, 8099 IF_SRC_FILEADDR, 8100 IF_SRC_KERNELADDR, 8101 }; 8102 8103 enum { 8104 IF_STATE_ACTION = 0, 8105 IF_STATE_SOURCE, 8106 IF_STATE_END, 8107 }; 8108 8109 static const match_table_t if_tokens = { 8110 { IF_ACT_FILTER, "filter" }, 8111 { IF_ACT_START, "start" }, 8112 { IF_ACT_STOP, "stop" }, 8113 { IF_SRC_FILE, "%u/%u@%s" }, 8114 { IF_SRC_KERNEL, "%u/%u" }, 8115 { IF_SRC_FILEADDR, "%u@%s" }, 8116 { IF_SRC_KERNELADDR, "%u" }, 8117 { IF_ACT_NONE, NULL }, 8118 }; 8119 8120 /* 8121 * Address filter string parser 8122 */ 8123 static int 8124 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8125 struct list_head *filters) 8126 { 8127 struct perf_addr_filter *filter = NULL; 8128 char *start, *orig, *filename = NULL; 8129 struct path path; 8130 substring_t args[MAX_OPT_ARGS]; 8131 int state = IF_STATE_ACTION, token; 8132 unsigned int kernel = 0; 8133 int ret = -EINVAL; 8134 8135 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8136 if (!fstr) 8137 return -ENOMEM; 8138 8139 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8140 ret = -EINVAL; 8141 8142 if (!*start) 8143 continue; 8144 8145 /* filter definition begins */ 8146 if (state == IF_STATE_ACTION) { 8147 filter = perf_addr_filter_new(event, filters); 8148 if (!filter) 8149 goto fail; 8150 } 8151 8152 token = match_token(start, if_tokens, args); 8153 switch (token) { 8154 case IF_ACT_FILTER: 8155 case IF_ACT_START: 8156 filter->filter = 1; 8157 8158 case IF_ACT_STOP: 8159 if (state != IF_STATE_ACTION) 8160 goto fail; 8161 8162 state = IF_STATE_SOURCE; 8163 break; 8164 8165 case IF_SRC_KERNELADDR: 8166 case IF_SRC_KERNEL: 8167 kernel = 1; 8168 8169 case IF_SRC_FILEADDR: 8170 case IF_SRC_FILE: 8171 if (state != IF_STATE_SOURCE) 8172 goto fail; 8173 8174 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8175 filter->range = 1; 8176 8177 *args[0].to = 0; 8178 ret = kstrtoul(args[0].from, 0, &filter->offset); 8179 if (ret) 8180 goto fail; 8181 8182 if (filter->range) { 8183 *args[1].to = 0; 8184 ret = kstrtoul(args[1].from, 0, &filter->size); 8185 if (ret) 8186 goto fail; 8187 } 8188 8189 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8190 int fpos = filter->range ? 2 : 1; 8191 8192 filename = match_strdup(&args[fpos]); 8193 if (!filename) { 8194 ret = -ENOMEM; 8195 goto fail; 8196 } 8197 } 8198 8199 state = IF_STATE_END; 8200 break; 8201 8202 default: 8203 goto fail; 8204 } 8205 8206 /* 8207 * Filter definition is fully parsed, validate and install it. 8208 * Make sure that it doesn't contradict itself or the event's 8209 * attribute. 8210 */ 8211 if (state == IF_STATE_END) { 8212 if (kernel && event->attr.exclude_kernel) 8213 goto fail; 8214 8215 if (!kernel) { 8216 if (!filename) 8217 goto fail; 8218 8219 /* look up the path and grab its inode */ 8220 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8221 if (ret) 8222 goto fail_free_name; 8223 8224 filter->inode = igrab(d_inode(path.dentry)); 8225 path_put(&path); 8226 kfree(filename); 8227 filename = NULL; 8228 8229 ret = -EINVAL; 8230 if (!filter->inode || 8231 !S_ISREG(filter->inode->i_mode)) 8232 /* free_filters_list() will iput() */ 8233 goto fail; 8234 } 8235 8236 /* ready to consume more filters */ 8237 state = IF_STATE_ACTION; 8238 filter = NULL; 8239 } 8240 } 8241 8242 if (state != IF_STATE_ACTION) 8243 goto fail; 8244 8245 kfree(orig); 8246 8247 return 0; 8248 8249 fail_free_name: 8250 kfree(filename); 8251 fail: 8252 free_filters_list(filters); 8253 kfree(orig); 8254 8255 return ret; 8256 } 8257 8258 static int 8259 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8260 { 8261 LIST_HEAD(filters); 8262 int ret; 8263 8264 /* 8265 * Since this is called in perf_ioctl() path, we're already holding 8266 * ctx::mutex. 8267 */ 8268 lockdep_assert_held(&event->ctx->mutex); 8269 8270 if (WARN_ON_ONCE(event->parent)) 8271 return -EINVAL; 8272 8273 /* 8274 * For now, we only support filtering in per-task events; doing so 8275 * for CPU-wide events requires additional context switching trickery, 8276 * since same object code will be mapped at different virtual 8277 * addresses in different processes. 8278 */ 8279 if (!event->ctx->task) 8280 return -EOPNOTSUPP; 8281 8282 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8283 if (ret) 8284 return ret; 8285 8286 ret = event->pmu->addr_filters_validate(&filters); 8287 if (ret) { 8288 free_filters_list(&filters); 8289 return ret; 8290 } 8291 8292 /* remove existing filters, if any */ 8293 perf_addr_filters_splice(event, &filters); 8294 8295 /* install new filters */ 8296 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8297 8298 return ret; 8299 } 8300 8301 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8302 { 8303 char *filter_str; 8304 int ret = -EINVAL; 8305 8306 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8307 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8308 !has_addr_filter(event)) 8309 return -EINVAL; 8310 8311 filter_str = strndup_user(arg, PAGE_SIZE); 8312 if (IS_ERR(filter_str)) 8313 return PTR_ERR(filter_str); 8314 8315 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8316 event->attr.type == PERF_TYPE_TRACEPOINT) 8317 ret = ftrace_profile_set_filter(event, event->attr.config, 8318 filter_str); 8319 else if (has_addr_filter(event)) 8320 ret = perf_event_set_addr_filter(event, filter_str); 8321 8322 kfree(filter_str); 8323 return ret; 8324 } 8325 8326 /* 8327 * hrtimer based swevent callback 8328 */ 8329 8330 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8331 { 8332 enum hrtimer_restart ret = HRTIMER_RESTART; 8333 struct perf_sample_data data; 8334 struct pt_regs *regs; 8335 struct perf_event *event; 8336 u64 period; 8337 8338 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8339 8340 if (event->state != PERF_EVENT_STATE_ACTIVE) 8341 return HRTIMER_NORESTART; 8342 8343 event->pmu->read(event); 8344 8345 perf_sample_data_init(&data, 0, event->hw.last_period); 8346 regs = get_irq_regs(); 8347 8348 if (regs && !perf_exclude_event(event, regs)) { 8349 if (!(event->attr.exclude_idle && is_idle_task(current))) 8350 if (__perf_event_overflow(event, 1, &data, regs)) 8351 ret = HRTIMER_NORESTART; 8352 } 8353 8354 period = max_t(u64, 10000, event->hw.sample_period); 8355 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8356 8357 return ret; 8358 } 8359 8360 static void perf_swevent_start_hrtimer(struct perf_event *event) 8361 { 8362 struct hw_perf_event *hwc = &event->hw; 8363 s64 period; 8364 8365 if (!is_sampling_event(event)) 8366 return; 8367 8368 period = local64_read(&hwc->period_left); 8369 if (period) { 8370 if (period < 0) 8371 period = 10000; 8372 8373 local64_set(&hwc->period_left, 0); 8374 } else { 8375 period = max_t(u64, 10000, hwc->sample_period); 8376 } 8377 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8378 HRTIMER_MODE_REL_PINNED); 8379 } 8380 8381 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8382 { 8383 struct hw_perf_event *hwc = &event->hw; 8384 8385 if (is_sampling_event(event)) { 8386 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8387 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8388 8389 hrtimer_cancel(&hwc->hrtimer); 8390 } 8391 } 8392 8393 static void perf_swevent_init_hrtimer(struct perf_event *event) 8394 { 8395 struct hw_perf_event *hwc = &event->hw; 8396 8397 if (!is_sampling_event(event)) 8398 return; 8399 8400 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8401 hwc->hrtimer.function = perf_swevent_hrtimer; 8402 8403 /* 8404 * Since hrtimers have a fixed rate, we can do a static freq->period 8405 * mapping and avoid the whole period adjust feedback stuff. 8406 */ 8407 if (event->attr.freq) { 8408 long freq = event->attr.sample_freq; 8409 8410 event->attr.sample_period = NSEC_PER_SEC / freq; 8411 hwc->sample_period = event->attr.sample_period; 8412 local64_set(&hwc->period_left, hwc->sample_period); 8413 hwc->last_period = hwc->sample_period; 8414 event->attr.freq = 0; 8415 } 8416 } 8417 8418 /* 8419 * Software event: cpu wall time clock 8420 */ 8421 8422 static void cpu_clock_event_update(struct perf_event *event) 8423 { 8424 s64 prev; 8425 u64 now; 8426 8427 now = local_clock(); 8428 prev = local64_xchg(&event->hw.prev_count, now); 8429 local64_add(now - prev, &event->count); 8430 } 8431 8432 static void cpu_clock_event_start(struct perf_event *event, int flags) 8433 { 8434 local64_set(&event->hw.prev_count, local_clock()); 8435 perf_swevent_start_hrtimer(event); 8436 } 8437 8438 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8439 { 8440 perf_swevent_cancel_hrtimer(event); 8441 cpu_clock_event_update(event); 8442 } 8443 8444 static int cpu_clock_event_add(struct perf_event *event, int flags) 8445 { 8446 if (flags & PERF_EF_START) 8447 cpu_clock_event_start(event, flags); 8448 perf_event_update_userpage(event); 8449 8450 return 0; 8451 } 8452 8453 static void cpu_clock_event_del(struct perf_event *event, int flags) 8454 { 8455 cpu_clock_event_stop(event, flags); 8456 } 8457 8458 static void cpu_clock_event_read(struct perf_event *event) 8459 { 8460 cpu_clock_event_update(event); 8461 } 8462 8463 static int cpu_clock_event_init(struct perf_event *event) 8464 { 8465 if (event->attr.type != PERF_TYPE_SOFTWARE) 8466 return -ENOENT; 8467 8468 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8469 return -ENOENT; 8470 8471 /* 8472 * no branch sampling for software events 8473 */ 8474 if (has_branch_stack(event)) 8475 return -EOPNOTSUPP; 8476 8477 perf_swevent_init_hrtimer(event); 8478 8479 return 0; 8480 } 8481 8482 static struct pmu perf_cpu_clock = { 8483 .task_ctx_nr = perf_sw_context, 8484 8485 .capabilities = PERF_PMU_CAP_NO_NMI, 8486 8487 .event_init = cpu_clock_event_init, 8488 .add = cpu_clock_event_add, 8489 .del = cpu_clock_event_del, 8490 .start = cpu_clock_event_start, 8491 .stop = cpu_clock_event_stop, 8492 .read = cpu_clock_event_read, 8493 }; 8494 8495 /* 8496 * Software event: task time clock 8497 */ 8498 8499 static void task_clock_event_update(struct perf_event *event, u64 now) 8500 { 8501 u64 prev; 8502 s64 delta; 8503 8504 prev = local64_xchg(&event->hw.prev_count, now); 8505 delta = now - prev; 8506 local64_add(delta, &event->count); 8507 } 8508 8509 static void task_clock_event_start(struct perf_event *event, int flags) 8510 { 8511 local64_set(&event->hw.prev_count, event->ctx->time); 8512 perf_swevent_start_hrtimer(event); 8513 } 8514 8515 static void task_clock_event_stop(struct perf_event *event, int flags) 8516 { 8517 perf_swevent_cancel_hrtimer(event); 8518 task_clock_event_update(event, event->ctx->time); 8519 } 8520 8521 static int task_clock_event_add(struct perf_event *event, int flags) 8522 { 8523 if (flags & PERF_EF_START) 8524 task_clock_event_start(event, flags); 8525 perf_event_update_userpage(event); 8526 8527 return 0; 8528 } 8529 8530 static void task_clock_event_del(struct perf_event *event, int flags) 8531 { 8532 task_clock_event_stop(event, PERF_EF_UPDATE); 8533 } 8534 8535 static void task_clock_event_read(struct perf_event *event) 8536 { 8537 u64 now = perf_clock(); 8538 u64 delta = now - event->ctx->timestamp; 8539 u64 time = event->ctx->time + delta; 8540 8541 task_clock_event_update(event, time); 8542 } 8543 8544 static int task_clock_event_init(struct perf_event *event) 8545 { 8546 if (event->attr.type != PERF_TYPE_SOFTWARE) 8547 return -ENOENT; 8548 8549 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8550 return -ENOENT; 8551 8552 /* 8553 * no branch sampling for software events 8554 */ 8555 if (has_branch_stack(event)) 8556 return -EOPNOTSUPP; 8557 8558 perf_swevent_init_hrtimer(event); 8559 8560 return 0; 8561 } 8562 8563 static struct pmu perf_task_clock = { 8564 .task_ctx_nr = perf_sw_context, 8565 8566 .capabilities = PERF_PMU_CAP_NO_NMI, 8567 8568 .event_init = task_clock_event_init, 8569 .add = task_clock_event_add, 8570 .del = task_clock_event_del, 8571 .start = task_clock_event_start, 8572 .stop = task_clock_event_stop, 8573 .read = task_clock_event_read, 8574 }; 8575 8576 static void perf_pmu_nop_void(struct pmu *pmu) 8577 { 8578 } 8579 8580 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8581 { 8582 } 8583 8584 static int perf_pmu_nop_int(struct pmu *pmu) 8585 { 8586 return 0; 8587 } 8588 8589 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8590 8591 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8592 { 8593 __this_cpu_write(nop_txn_flags, flags); 8594 8595 if (flags & ~PERF_PMU_TXN_ADD) 8596 return; 8597 8598 perf_pmu_disable(pmu); 8599 } 8600 8601 static int perf_pmu_commit_txn(struct pmu *pmu) 8602 { 8603 unsigned int flags = __this_cpu_read(nop_txn_flags); 8604 8605 __this_cpu_write(nop_txn_flags, 0); 8606 8607 if (flags & ~PERF_PMU_TXN_ADD) 8608 return 0; 8609 8610 perf_pmu_enable(pmu); 8611 return 0; 8612 } 8613 8614 static void perf_pmu_cancel_txn(struct pmu *pmu) 8615 { 8616 unsigned int flags = __this_cpu_read(nop_txn_flags); 8617 8618 __this_cpu_write(nop_txn_flags, 0); 8619 8620 if (flags & ~PERF_PMU_TXN_ADD) 8621 return; 8622 8623 perf_pmu_enable(pmu); 8624 } 8625 8626 static int perf_event_idx_default(struct perf_event *event) 8627 { 8628 return 0; 8629 } 8630 8631 /* 8632 * Ensures all contexts with the same task_ctx_nr have the same 8633 * pmu_cpu_context too. 8634 */ 8635 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8636 { 8637 struct pmu *pmu; 8638 8639 if (ctxn < 0) 8640 return NULL; 8641 8642 list_for_each_entry(pmu, &pmus, entry) { 8643 if (pmu->task_ctx_nr == ctxn) 8644 return pmu->pmu_cpu_context; 8645 } 8646 8647 return NULL; 8648 } 8649 8650 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8651 { 8652 int cpu; 8653 8654 for_each_possible_cpu(cpu) { 8655 struct perf_cpu_context *cpuctx; 8656 8657 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8658 8659 if (cpuctx->unique_pmu == old_pmu) 8660 cpuctx->unique_pmu = pmu; 8661 } 8662 } 8663 8664 static void free_pmu_context(struct pmu *pmu) 8665 { 8666 struct pmu *i; 8667 8668 mutex_lock(&pmus_lock); 8669 /* 8670 * Like a real lame refcount. 8671 */ 8672 list_for_each_entry(i, &pmus, entry) { 8673 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8674 update_pmu_context(i, pmu); 8675 goto out; 8676 } 8677 } 8678 8679 free_percpu(pmu->pmu_cpu_context); 8680 out: 8681 mutex_unlock(&pmus_lock); 8682 } 8683 8684 /* 8685 * Let userspace know that this PMU supports address range filtering: 8686 */ 8687 static ssize_t nr_addr_filters_show(struct device *dev, 8688 struct device_attribute *attr, 8689 char *page) 8690 { 8691 struct pmu *pmu = dev_get_drvdata(dev); 8692 8693 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8694 } 8695 DEVICE_ATTR_RO(nr_addr_filters); 8696 8697 static struct idr pmu_idr; 8698 8699 static ssize_t 8700 type_show(struct device *dev, struct device_attribute *attr, char *page) 8701 { 8702 struct pmu *pmu = dev_get_drvdata(dev); 8703 8704 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8705 } 8706 static DEVICE_ATTR_RO(type); 8707 8708 static ssize_t 8709 perf_event_mux_interval_ms_show(struct device *dev, 8710 struct device_attribute *attr, 8711 char *page) 8712 { 8713 struct pmu *pmu = dev_get_drvdata(dev); 8714 8715 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8716 } 8717 8718 static DEFINE_MUTEX(mux_interval_mutex); 8719 8720 static ssize_t 8721 perf_event_mux_interval_ms_store(struct device *dev, 8722 struct device_attribute *attr, 8723 const char *buf, size_t count) 8724 { 8725 struct pmu *pmu = dev_get_drvdata(dev); 8726 int timer, cpu, ret; 8727 8728 ret = kstrtoint(buf, 0, &timer); 8729 if (ret) 8730 return ret; 8731 8732 if (timer < 1) 8733 return -EINVAL; 8734 8735 /* same value, noting to do */ 8736 if (timer == pmu->hrtimer_interval_ms) 8737 return count; 8738 8739 mutex_lock(&mux_interval_mutex); 8740 pmu->hrtimer_interval_ms = timer; 8741 8742 /* update all cpuctx for this PMU */ 8743 get_online_cpus(); 8744 for_each_online_cpu(cpu) { 8745 struct perf_cpu_context *cpuctx; 8746 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8747 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8748 8749 cpu_function_call(cpu, 8750 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8751 } 8752 put_online_cpus(); 8753 mutex_unlock(&mux_interval_mutex); 8754 8755 return count; 8756 } 8757 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8758 8759 static struct attribute *pmu_dev_attrs[] = { 8760 &dev_attr_type.attr, 8761 &dev_attr_perf_event_mux_interval_ms.attr, 8762 NULL, 8763 }; 8764 ATTRIBUTE_GROUPS(pmu_dev); 8765 8766 static int pmu_bus_running; 8767 static struct bus_type pmu_bus = { 8768 .name = "event_source", 8769 .dev_groups = pmu_dev_groups, 8770 }; 8771 8772 static void pmu_dev_release(struct device *dev) 8773 { 8774 kfree(dev); 8775 } 8776 8777 static int pmu_dev_alloc(struct pmu *pmu) 8778 { 8779 int ret = -ENOMEM; 8780 8781 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8782 if (!pmu->dev) 8783 goto out; 8784 8785 pmu->dev->groups = pmu->attr_groups; 8786 device_initialize(pmu->dev); 8787 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8788 if (ret) 8789 goto free_dev; 8790 8791 dev_set_drvdata(pmu->dev, pmu); 8792 pmu->dev->bus = &pmu_bus; 8793 pmu->dev->release = pmu_dev_release; 8794 ret = device_add(pmu->dev); 8795 if (ret) 8796 goto free_dev; 8797 8798 /* For PMUs with address filters, throw in an extra attribute: */ 8799 if (pmu->nr_addr_filters) 8800 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8801 8802 if (ret) 8803 goto del_dev; 8804 8805 out: 8806 return ret; 8807 8808 del_dev: 8809 device_del(pmu->dev); 8810 8811 free_dev: 8812 put_device(pmu->dev); 8813 goto out; 8814 } 8815 8816 static struct lock_class_key cpuctx_mutex; 8817 static struct lock_class_key cpuctx_lock; 8818 8819 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8820 { 8821 int cpu, ret; 8822 8823 mutex_lock(&pmus_lock); 8824 ret = -ENOMEM; 8825 pmu->pmu_disable_count = alloc_percpu(int); 8826 if (!pmu->pmu_disable_count) 8827 goto unlock; 8828 8829 pmu->type = -1; 8830 if (!name) 8831 goto skip_type; 8832 pmu->name = name; 8833 8834 if (type < 0) { 8835 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8836 if (type < 0) { 8837 ret = type; 8838 goto free_pdc; 8839 } 8840 } 8841 pmu->type = type; 8842 8843 if (pmu_bus_running) { 8844 ret = pmu_dev_alloc(pmu); 8845 if (ret) 8846 goto free_idr; 8847 } 8848 8849 skip_type: 8850 if (pmu->task_ctx_nr == perf_hw_context) { 8851 static int hw_context_taken = 0; 8852 8853 /* 8854 * Other than systems with heterogeneous CPUs, it never makes 8855 * sense for two PMUs to share perf_hw_context. PMUs which are 8856 * uncore must use perf_invalid_context. 8857 */ 8858 if (WARN_ON_ONCE(hw_context_taken && 8859 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8860 pmu->task_ctx_nr = perf_invalid_context; 8861 8862 hw_context_taken = 1; 8863 } 8864 8865 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8866 if (pmu->pmu_cpu_context) 8867 goto got_cpu_context; 8868 8869 ret = -ENOMEM; 8870 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8871 if (!pmu->pmu_cpu_context) 8872 goto free_dev; 8873 8874 for_each_possible_cpu(cpu) { 8875 struct perf_cpu_context *cpuctx; 8876 8877 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8878 __perf_event_init_context(&cpuctx->ctx); 8879 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8880 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8881 cpuctx->ctx.pmu = pmu; 8882 8883 __perf_mux_hrtimer_init(cpuctx, cpu); 8884 8885 cpuctx->unique_pmu = pmu; 8886 } 8887 8888 got_cpu_context: 8889 if (!pmu->start_txn) { 8890 if (pmu->pmu_enable) { 8891 /* 8892 * If we have pmu_enable/pmu_disable calls, install 8893 * transaction stubs that use that to try and batch 8894 * hardware accesses. 8895 */ 8896 pmu->start_txn = perf_pmu_start_txn; 8897 pmu->commit_txn = perf_pmu_commit_txn; 8898 pmu->cancel_txn = perf_pmu_cancel_txn; 8899 } else { 8900 pmu->start_txn = perf_pmu_nop_txn; 8901 pmu->commit_txn = perf_pmu_nop_int; 8902 pmu->cancel_txn = perf_pmu_nop_void; 8903 } 8904 } 8905 8906 if (!pmu->pmu_enable) { 8907 pmu->pmu_enable = perf_pmu_nop_void; 8908 pmu->pmu_disable = perf_pmu_nop_void; 8909 } 8910 8911 if (!pmu->event_idx) 8912 pmu->event_idx = perf_event_idx_default; 8913 8914 list_add_rcu(&pmu->entry, &pmus); 8915 atomic_set(&pmu->exclusive_cnt, 0); 8916 ret = 0; 8917 unlock: 8918 mutex_unlock(&pmus_lock); 8919 8920 return ret; 8921 8922 free_dev: 8923 device_del(pmu->dev); 8924 put_device(pmu->dev); 8925 8926 free_idr: 8927 if (pmu->type >= PERF_TYPE_MAX) 8928 idr_remove(&pmu_idr, pmu->type); 8929 8930 free_pdc: 8931 free_percpu(pmu->pmu_disable_count); 8932 goto unlock; 8933 } 8934 EXPORT_SYMBOL_GPL(perf_pmu_register); 8935 8936 void perf_pmu_unregister(struct pmu *pmu) 8937 { 8938 int remove_device; 8939 8940 mutex_lock(&pmus_lock); 8941 remove_device = pmu_bus_running; 8942 list_del_rcu(&pmu->entry); 8943 mutex_unlock(&pmus_lock); 8944 8945 /* 8946 * We dereference the pmu list under both SRCU and regular RCU, so 8947 * synchronize against both of those. 8948 */ 8949 synchronize_srcu(&pmus_srcu); 8950 synchronize_rcu(); 8951 8952 free_percpu(pmu->pmu_disable_count); 8953 if (pmu->type >= PERF_TYPE_MAX) 8954 idr_remove(&pmu_idr, pmu->type); 8955 if (remove_device) { 8956 if (pmu->nr_addr_filters) 8957 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8958 device_del(pmu->dev); 8959 put_device(pmu->dev); 8960 } 8961 free_pmu_context(pmu); 8962 } 8963 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8964 8965 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8966 { 8967 struct perf_event_context *ctx = NULL; 8968 int ret; 8969 8970 if (!try_module_get(pmu->module)) 8971 return -ENODEV; 8972 8973 if (event->group_leader != event) { 8974 /* 8975 * This ctx->mutex can nest when we're called through 8976 * inheritance. See the perf_event_ctx_lock_nested() comment. 8977 */ 8978 ctx = perf_event_ctx_lock_nested(event->group_leader, 8979 SINGLE_DEPTH_NESTING); 8980 BUG_ON(!ctx); 8981 } 8982 8983 event->pmu = pmu; 8984 ret = pmu->event_init(event); 8985 8986 if (ctx) 8987 perf_event_ctx_unlock(event->group_leader, ctx); 8988 8989 if (ret) 8990 module_put(pmu->module); 8991 8992 return ret; 8993 } 8994 8995 static struct pmu *perf_init_event(struct perf_event *event) 8996 { 8997 struct pmu *pmu = NULL; 8998 int idx; 8999 int ret; 9000 9001 idx = srcu_read_lock(&pmus_srcu); 9002 9003 rcu_read_lock(); 9004 pmu = idr_find(&pmu_idr, event->attr.type); 9005 rcu_read_unlock(); 9006 if (pmu) { 9007 ret = perf_try_init_event(pmu, event); 9008 if (ret) 9009 pmu = ERR_PTR(ret); 9010 goto unlock; 9011 } 9012 9013 list_for_each_entry_rcu(pmu, &pmus, entry) { 9014 ret = perf_try_init_event(pmu, event); 9015 if (!ret) 9016 goto unlock; 9017 9018 if (ret != -ENOENT) { 9019 pmu = ERR_PTR(ret); 9020 goto unlock; 9021 } 9022 } 9023 pmu = ERR_PTR(-ENOENT); 9024 unlock: 9025 srcu_read_unlock(&pmus_srcu, idx); 9026 9027 return pmu; 9028 } 9029 9030 static void attach_sb_event(struct perf_event *event) 9031 { 9032 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9033 9034 raw_spin_lock(&pel->lock); 9035 list_add_rcu(&event->sb_list, &pel->list); 9036 raw_spin_unlock(&pel->lock); 9037 } 9038 9039 /* 9040 * We keep a list of all !task (and therefore per-cpu) events 9041 * that need to receive side-band records. 9042 * 9043 * This avoids having to scan all the various PMU per-cpu contexts 9044 * looking for them. 9045 */ 9046 static void account_pmu_sb_event(struct perf_event *event) 9047 { 9048 if (is_sb_event(event)) 9049 attach_sb_event(event); 9050 } 9051 9052 static void account_event_cpu(struct perf_event *event, int cpu) 9053 { 9054 if (event->parent) 9055 return; 9056 9057 if (is_cgroup_event(event)) 9058 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9059 } 9060 9061 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9062 static void account_freq_event_nohz(void) 9063 { 9064 #ifdef CONFIG_NO_HZ_FULL 9065 /* Lock so we don't race with concurrent unaccount */ 9066 spin_lock(&nr_freq_lock); 9067 if (atomic_inc_return(&nr_freq_events) == 1) 9068 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9069 spin_unlock(&nr_freq_lock); 9070 #endif 9071 } 9072 9073 static void account_freq_event(void) 9074 { 9075 if (tick_nohz_full_enabled()) 9076 account_freq_event_nohz(); 9077 else 9078 atomic_inc(&nr_freq_events); 9079 } 9080 9081 9082 static void account_event(struct perf_event *event) 9083 { 9084 bool inc = false; 9085 9086 if (event->parent) 9087 return; 9088 9089 if (event->attach_state & PERF_ATTACH_TASK) 9090 inc = true; 9091 if (event->attr.mmap || event->attr.mmap_data) 9092 atomic_inc(&nr_mmap_events); 9093 if (event->attr.comm) 9094 atomic_inc(&nr_comm_events); 9095 if (event->attr.task) 9096 atomic_inc(&nr_task_events); 9097 if (event->attr.freq) 9098 account_freq_event(); 9099 if (event->attr.context_switch) { 9100 atomic_inc(&nr_switch_events); 9101 inc = true; 9102 } 9103 if (has_branch_stack(event)) 9104 inc = true; 9105 if (is_cgroup_event(event)) 9106 inc = true; 9107 9108 if (inc) { 9109 if (atomic_inc_not_zero(&perf_sched_count)) 9110 goto enabled; 9111 9112 mutex_lock(&perf_sched_mutex); 9113 if (!atomic_read(&perf_sched_count)) { 9114 static_branch_enable(&perf_sched_events); 9115 /* 9116 * Guarantee that all CPUs observe they key change and 9117 * call the perf scheduling hooks before proceeding to 9118 * install events that need them. 9119 */ 9120 synchronize_sched(); 9121 } 9122 /* 9123 * Now that we have waited for the sync_sched(), allow further 9124 * increments to by-pass the mutex. 9125 */ 9126 atomic_inc(&perf_sched_count); 9127 mutex_unlock(&perf_sched_mutex); 9128 } 9129 enabled: 9130 9131 account_event_cpu(event, event->cpu); 9132 9133 account_pmu_sb_event(event); 9134 } 9135 9136 /* 9137 * Allocate and initialize a event structure 9138 */ 9139 static struct perf_event * 9140 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9141 struct task_struct *task, 9142 struct perf_event *group_leader, 9143 struct perf_event *parent_event, 9144 perf_overflow_handler_t overflow_handler, 9145 void *context, int cgroup_fd) 9146 { 9147 struct pmu *pmu; 9148 struct perf_event *event; 9149 struct hw_perf_event *hwc; 9150 long err = -EINVAL; 9151 9152 if ((unsigned)cpu >= nr_cpu_ids) { 9153 if (!task || cpu != -1) 9154 return ERR_PTR(-EINVAL); 9155 } 9156 9157 event = kzalloc(sizeof(*event), GFP_KERNEL); 9158 if (!event) 9159 return ERR_PTR(-ENOMEM); 9160 9161 /* 9162 * Single events are their own group leaders, with an 9163 * empty sibling list: 9164 */ 9165 if (!group_leader) 9166 group_leader = event; 9167 9168 mutex_init(&event->child_mutex); 9169 INIT_LIST_HEAD(&event->child_list); 9170 9171 INIT_LIST_HEAD(&event->group_entry); 9172 INIT_LIST_HEAD(&event->event_entry); 9173 INIT_LIST_HEAD(&event->sibling_list); 9174 INIT_LIST_HEAD(&event->rb_entry); 9175 INIT_LIST_HEAD(&event->active_entry); 9176 INIT_LIST_HEAD(&event->addr_filters.list); 9177 INIT_HLIST_NODE(&event->hlist_entry); 9178 9179 9180 init_waitqueue_head(&event->waitq); 9181 init_irq_work(&event->pending, perf_pending_event); 9182 9183 mutex_init(&event->mmap_mutex); 9184 raw_spin_lock_init(&event->addr_filters.lock); 9185 9186 atomic_long_set(&event->refcount, 1); 9187 event->cpu = cpu; 9188 event->attr = *attr; 9189 event->group_leader = group_leader; 9190 event->pmu = NULL; 9191 event->oncpu = -1; 9192 9193 event->parent = parent_event; 9194 9195 event->ns = get_pid_ns(task_active_pid_ns(current)); 9196 event->id = atomic64_inc_return(&perf_event_id); 9197 9198 event->state = PERF_EVENT_STATE_INACTIVE; 9199 9200 if (task) { 9201 event->attach_state = PERF_ATTACH_TASK; 9202 /* 9203 * XXX pmu::event_init needs to know what task to account to 9204 * and we cannot use the ctx information because we need the 9205 * pmu before we get a ctx. 9206 */ 9207 event->hw.target = task; 9208 } 9209 9210 event->clock = &local_clock; 9211 if (parent_event) 9212 event->clock = parent_event->clock; 9213 9214 if (!overflow_handler && parent_event) { 9215 overflow_handler = parent_event->overflow_handler; 9216 context = parent_event->overflow_handler_context; 9217 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9218 if (overflow_handler == bpf_overflow_handler) { 9219 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9220 9221 if (IS_ERR(prog)) { 9222 err = PTR_ERR(prog); 9223 goto err_ns; 9224 } 9225 event->prog = prog; 9226 event->orig_overflow_handler = 9227 parent_event->orig_overflow_handler; 9228 } 9229 #endif 9230 } 9231 9232 if (overflow_handler) { 9233 event->overflow_handler = overflow_handler; 9234 event->overflow_handler_context = context; 9235 } else if (is_write_backward(event)){ 9236 event->overflow_handler = perf_event_output_backward; 9237 event->overflow_handler_context = NULL; 9238 } else { 9239 event->overflow_handler = perf_event_output_forward; 9240 event->overflow_handler_context = NULL; 9241 } 9242 9243 perf_event__state_init(event); 9244 9245 pmu = NULL; 9246 9247 hwc = &event->hw; 9248 hwc->sample_period = attr->sample_period; 9249 if (attr->freq && attr->sample_freq) 9250 hwc->sample_period = 1; 9251 hwc->last_period = hwc->sample_period; 9252 9253 local64_set(&hwc->period_left, hwc->sample_period); 9254 9255 /* 9256 * we currently do not support PERF_FORMAT_GROUP on inherited events 9257 */ 9258 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9259 goto err_ns; 9260 9261 if (!has_branch_stack(event)) 9262 event->attr.branch_sample_type = 0; 9263 9264 if (cgroup_fd != -1) { 9265 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9266 if (err) 9267 goto err_ns; 9268 } 9269 9270 pmu = perf_init_event(event); 9271 if (!pmu) 9272 goto err_ns; 9273 else if (IS_ERR(pmu)) { 9274 err = PTR_ERR(pmu); 9275 goto err_ns; 9276 } 9277 9278 err = exclusive_event_init(event); 9279 if (err) 9280 goto err_pmu; 9281 9282 if (has_addr_filter(event)) { 9283 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9284 sizeof(unsigned long), 9285 GFP_KERNEL); 9286 if (!event->addr_filters_offs) 9287 goto err_per_task; 9288 9289 /* force hw sync on the address filters */ 9290 event->addr_filters_gen = 1; 9291 } 9292 9293 if (!event->parent) { 9294 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9295 err = get_callchain_buffers(attr->sample_max_stack); 9296 if (err) 9297 goto err_addr_filters; 9298 } 9299 } 9300 9301 /* symmetric to unaccount_event() in _free_event() */ 9302 account_event(event); 9303 9304 return event; 9305 9306 err_addr_filters: 9307 kfree(event->addr_filters_offs); 9308 9309 err_per_task: 9310 exclusive_event_destroy(event); 9311 9312 err_pmu: 9313 if (event->destroy) 9314 event->destroy(event); 9315 module_put(pmu->module); 9316 err_ns: 9317 if (is_cgroup_event(event)) 9318 perf_detach_cgroup(event); 9319 if (event->ns) 9320 put_pid_ns(event->ns); 9321 kfree(event); 9322 9323 return ERR_PTR(err); 9324 } 9325 9326 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9327 struct perf_event_attr *attr) 9328 { 9329 u32 size; 9330 int ret; 9331 9332 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9333 return -EFAULT; 9334 9335 /* 9336 * zero the full structure, so that a short copy will be nice. 9337 */ 9338 memset(attr, 0, sizeof(*attr)); 9339 9340 ret = get_user(size, &uattr->size); 9341 if (ret) 9342 return ret; 9343 9344 if (size > PAGE_SIZE) /* silly large */ 9345 goto err_size; 9346 9347 if (!size) /* abi compat */ 9348 size = PERF_ATTR_SIZE_VER0; 9349 9350 if (size < PERF_ATTR_SIZE_VER0) 9351 goto err_size; 9352 9353 /* 9354 * If we're handed a bigger struct than we know of, 9355 * ensure all the unknown bits are 0 - i.e. new 9356 * user-space does not rely on any kernel feature 9357 * extensions we dont know about yet. 9358 */ 9359 if (size > sizeof(*attr)) { 9360 unsigned char __user *addr; 9361 unsigned char __user *end; 9362 unsigned char val; 9363 9364 addr = (void __user *)uattr + sizeof(*attr); 9365 end = (void __user *)uattr + size; 9366 9367 for (; addr < end; addr++) { 9368 ret = get_user(val, addr); 9369 if (ret) 9370 return ret; 9371 if (val) 9372 goto err_size; 9373 } 9374 size = sizeof(*attr); 9375 } 9376 9377 ret = copy_from_user(attr, uattr, size); 9378 if (ret) 9379 return -EFAULT; 9380 9381 if (attr->__reserved_1) 9382 return -EINVAL; 9383 9384 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9385 return -EINVAL; 9386 9387 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9388 return -EINVAL; 9389 9390 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9391 u64 mask = attr->branch_sample_type; 9392 9393 /* only using defined bits */ 9394 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9395 return -EINVAL; 9396 9397 /* at least one branch bit must be set */ 9398 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9399 return -EINVAL; 9400 9401 /* propagate priv level, when not set for branch */ 9402 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9403 9404 /* exclude_kernel checked on syscall entry */ 9405 if (!attr->exclude_kernel) 9406 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9407 9408 if (!attr->exclude_user) 9409 mask |= PERF_SAMPLE_BRANCH_USER; 9410 9411 if (!attr->exclude_hv) 9412 mask |= PERF_SAMPLE_BRANCH_HV; 9413 /* 9414 * adjust user setting (for HW filter setup) 9415 */ 9416 attr->branch_sample_type = mask; 9417 } 9418 /* privileged levels capture (kernel, hv): check permissions */ 9419 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9420 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9421 return -EACCES; 9422 } 9423 9424 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9425 ret = perf_reg_validate(attr->sample_regs_user); 9426 if (ret) 9427 return ret; 9428 } 9429 9430 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9431 if (!arch_perf_have_user_stack_dump()) 9432 return -ENOSYS; 9433 9434 /* 9435 * We have __u32 type for the size, but so far 9436 * we can only use __u16 as maximum due to the 9437 * __u16 sample size limit. 9438 */ 9439 if (attr->sample_stack_user >= USHRT_MAX) 9440 ret = -EINVAL; 9441 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9442 ret = -EINVAL; 9443 } 9444 9445 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9446 ret = perf_reg_validate(attr->sample_regs_intr); 9447 out: 9448 return ret; 9449 9450 err_size: 9451 put_user(sizeof(*attr), &uattr->size); 9452 ret = -E2BIG; 9453 goto out; 9454 } 9455 9456 static int 9457 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9458 { 9459 struct ring_buffer *rb = NULL; 9460 int ret = -EINVAL; 9461 9462 if (!output_event) 9463 goto set; 9464 9465 /* don't allow circular references */ 9466 if (event == output_event) 9467 goto out; 9468 9469 /* 9470 * Don't allow cross-cpu buffers 9471 */ 9472 if (output_event->cpu != event->cpu) 9473 goto out; 9474 9475 /* 9476 * If its not a per-cpu rb, it must be the same task. 9477 */ 9478 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9479 goto out; 9480 9481 /* 9482 * Mixing clocks in the same buffer is trouble you don't need. 9483 */ 9484 if (output_event->clock != event->clock) 9485 goto out; 9486 9487 /* 9488 * Either writing ring buffer from beginning or from end. 9489 * Mixing is not allowed. 9490 */ 9491 if (is_write_backward(output_event) != is_write_backward(event)) 9492 goto out; 9493 9494 /* 9495 * If both events generate aux data, they must be on the same PMU 9496 */ 9497 if (has_aux(event) && has_aux(output_event) && 9498 event->pmu != output_event->pmu) 9499 goto out; 9500 9501 set: 9502 mutex_lock(&event->mmap_mutex); 9503 /* Can't redirect output if we've got an active mmap() */ 9504 if (atomic_read(&event->mmap_count)) 9505 goto unlock; 9506 9507 if (output_event) { 9508 /* get the rb we want to redirect to */ 9509 rb = ring_buffer_get(output_event); 9510 if (!rb) 9511 goto unlock; 9512 } 9513 9514 ring_buffer_attach(event, rb); 9515 9516 ret = 0; 9517 unlock: 9518 mutex_unlock(&event->mmap_mutex); 9519 9520 out: 9521 return ret; 9522 } 9523 9524 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9525 { 9526 if (b < a) 9527 swap(a, b); 9528 9529 mutex_lock(a); 9530 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9531 } 9532 9533 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9534 { 9535 bool nmi_safe = false; 9536 9537 switch (clk_id) { 9538 case CLOCK_MONOTONIC: 9539 event->clock = &ktime_get_mono_fast_ns; 9540 nmi_safe = true; 9541 break; 9542 9543 case CLOCK_MONOTONIC_RAW: 9544 event->clock = &ktime_get_raw_fast_ns; 9545 nmi_safe = true; 9546 break; 9547 9548 case CLOCK_REALTIME: 9549 event->clock = &ktime_get_real_ns; 9550 break; 9551 9552 case CLOCK_BOOTTIME: 9553 event->clock = &ktime_get_boot_ns; 9554 break; 9555 9556 case CLOCK_TAI: 9557 event->clock = &ktime_get_tai_ns; 9558 break; 9559 9560 default: 9561 return -EINVAL; 9562 } 9563 9564 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9565 return -EINVAL; 9566 9567 return 0; 9568 } 9569 9570 /* 9571 * Variation on perf_event_ctx_lock_nested(), except we take two context 9572 * mutexes. 9573 */ 9574 static struct perf_event_context * 9575 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9576 struct perf_event_context *ctx) 9577 { 9578 struct perf_event_context *gctx; 9579 9580 again: 9581 rcu_read_lock(); 9582 gctx = READ_ONCE(group_leader->ctx); 9583 if (!atomic_inc_not_zero(&gctx->refcount)) { 9584 rcu_read_unlock(); 9585 goto again; 9586 } 9587 rcu_read_unlock(); 9588 9589 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9590 9591 if (group_leader->ctx != gctx) { 9592 mutex_unlock(&ctx->mutex); 9593 mutex_unlock(&gctx->mutex); 9594 put_ctx(gctx); 9595 goto again; 9596 } 9597 9598 return gctx; 9599 } 9600 9601 /** 9602 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9603 * 9604 * @attr_uptr: event_id type attributes for monitoring/sampling 9605 * @pid: target pid 9606 * @cpu: target cpu 9607 * @group_fd: group leader event fd 9608 */ 9609 SYSCALL_DEFINE5(perf_event_open, 9610 struct perf_event_attr __user *, attr_uptr, 9611 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9612 { 9613 struct perf_event *group_leader = NULL, *output_event = NULL; 9614 struct perf_event *event, *sibling; 9615 struct perf_event_attr attr; 9616 struct perf_event_context *ctx, *uninitialized_var(gctx); 9617 struct file *event_file = NULL; 9618 struct fd group = {NULL, 0}; 9619 struct task_struct *task = NULL; 9620 struct pmu *pmu; 9621 int event_fd; 9622 int move_group = 0; 9623 int err; 9624 int f_flags = O_RDWR; 9625 int cgroup_fd = -1; 9626 9627 /* for future expandability... */ 9628 if (flags & ~PERF_FLAG_ALL) 9629 return -EINVAL; 9630 9631 err = perf_copy_attr(attr_uptr, &attr); 9632 if (err) 9633 return err; 9634 9635 if (!attr.exclude_kernel) { 9636 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9637 return -EACCES; 9638 } 9639 9640 if (attr.freq) { 9641 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9642 return -EINVAL; 9643 } else { 9644 if (attr.sample_period & (1ULL << 63)) 9645 return -EINVAL; 9646 } 9647 9648 if (!attr.sample_max_stack) 9649 attr.sample_max_stack = sysctl_perf_event_max_stack; 9650 9651 /* 9652 * In cgroup mode, the pid argument is used to pass the fd 9653 * opened to the cgroup directory in cgroupfs. The cpu argument 9654 * designates the cpu on which to monitor threads from that 9655 * cgroup. 9656 */ 9657 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9658 return -EINVAL; 9659 9660 if (flags & PERF_FLAG_FD_CLOEXEC) 9661 f_flags |= O_CLOEXEC; 9662 9663 event_fd = get_unused_fd_flags(f_flags); 9664 if (event_fd < 0) 9665 return event_fd; 9666 9667 if (group_fd != -1) { 9668 err = perf_fget_light(group_fd, &group); 9669 if (err) 9670 goto err_fd; 9671 group_leader = group.file->private_data; 9672 if (flags & PERF_FLAG_FD_OUTPUT) 9673 output_event = group_leader; 9674 if (flags & PERF_FLAG_FD_NO_GROUP) 9675 group_leader = NULL; 9676 } 9677 9678 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9679 task = find_lively_task_by_vpid(pid); 9680 if (IS_ERR(task)) { 9681 err = PTR_ERR(task); 9682 goto err_group_fd; 9683 } 9684 } 9685 9686 if (task && group_leader && 9687 group_leader->attr.inherit != attr.inherit) { 9688 err = -EINVAL; 9689 goto err_task; 9690 } 9691 9692 get_online_cpus(); 9693 9694 if (task) { 9695 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9696 if (err) 9697 goto err_cpus; 9698 9699 /* 9700 * Reuse ptrace permission checks for now. 9701 * 9702 * We must hold cred_guard_mutex across this and any potential 9703 * perf_install_in_context() call for this new event to 9704 * serialize against exec() altering our credentials (and the 9705 * perf_event_exit_task() that could imply). 9706 */ 9707 err = -EACCES; 9708 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9709 goto err_cred; 9710 } 9711 9712 if (flags & PERF_FLAG_PID_CGROUP) 9713 cgroup_fd = pid; 9714 9715 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9716 NULL, NULL, cgroup_fd); 9717 if (IS_ERR(event)) { 9718 err = PTR_ERR(event); 9719 goto err_cred; 9720 } 9721 9722 if (is_sampling_event(event)) { 9723 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9724 err = -EOPNOTSUPP; 9725 goto err_alloc; 9726 } 9727 } 9728 9729 /* 9730 * Special case software events and allow them to be part of 9731 * any hardware group. 9732 */ 9733 pmu = event->pmu; 9734 9735 if (attr.use_clockid) { 9736 err = perf_event_set_clock(event, attr.clockid); 9737 if (err) 9738 goto err_alloc; 9739 } 9740 9741 if (pmu->task_ctx_nr == perf_sw_context) 9742 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9743 9744 if (group_leader && 9745 (is_software_event(event) != is_software_event(group_leader))) { 9746 if (is_software_event(event)) { 9747 /* 9748 * If event and group_leader are not both a software 9749 * event, and event is, then group leader is not. 9750 * 9751 * Allow the addition of software events to !software 9752 * groups, this is safe because software events never 9753 * fail to schedule. 9754 */ 9755 pmu = group_leader->pmu; 9756 } else if (is_software_event(group_leader) && 9757 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9758 /* 9759 * In case the group is a pure software group, and we 9760 * try to add a hardware event, move the whole group to 9761 * the hardware context. 9762 */ 9763 move_group = 1; 9764 } 9765 } 9766 9767 /* 9768 * Get the target context (task or percpu): 9769 */ 9770 ctx = find_get_context(pmu, task, event); 9771 if (IS_ERR(ctx)) { 9772 err = PTR_ERR(ctx); 9773 goto err_alloc; 9774 } 9775 9776 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9777 err = -EBUSY; 9778 goto err_context; 9779 } 9780 9781 /* 9782 * Look up the group leader (we will attach this event to it): 9783 */ 9784 if (group_leader) { 9785 err = -EINVAL; 9786 9787 /* 9788 * Do not allow a recursive hierarchy (this new sibling 9789 * becoming part of another group-sibling): 9790 */ 9791 if (group_leader->group_leader != group_leader) 9792 goto err_context; 9793 9794 /* All events in a group should have the same clock */ 9795 if (group_leader->clock != event->clock) 9796 goto err_context; 9797 9798 /* 9799 * Do not allow to attach to a group in a different 9800 * task or CPU context: 9801 */ 9802 if (move_group) { 9803 /* 9804 * Make sure we're both on the same task, or both 9805 * per-cpu events. 9806 */ 9807 if (group_leader->ctx->task != ctx->task) 9808 goto err_context; 9809 9810 /* 9811 * Make sure we're both events for the same CPU; 9812 * grouping events for different CPUs is broken; since 9813 * you can never concurrently schedule them anyhow. 9814 */ 9815 if (group_leader->cpu != event->cpu) 9816 goto err_context; 9817 } else { 9818 if (group_leader->ctx != ctx) 9819 goto err_context; 9820 } 9821 9822 /* 9823 * Only a group leader can be exclusive or pinned 9824 */ 9825 if (attr.exclusive || attr.pinned) 9826 goto err_context; 9827 } 9828 9829 if (output_event) { 9830 err = perf_event_set_output(event, output_event); 9831 if (err) 9832 goto err_context; 9833 } 9834 9835 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9836 f_flags); 9837 if (IS_ERR(event_file)) { 9838 err = PTR_ERR(event_file); 9839 event_file = NULL; 9840 goto err_context; 9841 } 9842 9843 if (move_group) { 9844 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 9845 9846 if (gctx->task == TASK_TOMBSTONE) { 9847 err = -ESRCH; 9848 goto err_locked; 9849 } 9850 9851 /* 9852 * Check if we raced against another sys_perf_event_open() call 9853 * moving the software group underneath us. 9854 */ 9855 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9856 /* 9857 * If someone moved the group out from under us, check 9858 * if this new event wound up on the same ctx, if so 9859 * its the regular !move_group case, otherwise fail. 9860 */ 9861 if (gctx != ctx) { 9862 err = -EINVAL; 9863 goto err_locked; 9864 } else { 9865 perf_event_ctx_unlock(group_leader, gctx); 9866 move_group = 0; 9867 } 9868 } 9869 } else { 9870 mutex_lock(&ctx->mutex); 9871 } 9872 9873 if (ctx->task == TASK_TOMBSTONE) { 9874 err = -ESRCH; 9875 goto err_locked; 9876 } 9877 9878 if (!perf_event_validate_size(event)) { 9879 err = -E2BIG; 9880 goto err_locked; 9881 } 9882 9883 /* 9884 * Must be under the same ctx::mutex as perf_install_in_context(), 9885 * because we need to serialize with concurrent event creation. 9886 */ 9887 if (!exclusive_event_installable(event, ctx)) { 9888 /* exclusive and group stuff are assumed mutually exclusive */ 9889 WARN_ON_ONCE(move_group); 9890 9891 err = -EBUSY; 9892 goto err_locked; 9893 } 9894 9895 WARN_ON_ONCE(ctx->parent_ctx); 9896 9897 /* 9898 * This is the point on no return; we cannot fail hereafter. This is 9899 * where we start modifying current state. 9900 */ 9901 9902 if (move_group) { 9903 /* 9904 * See perf_event_ctx_lock() for comments on the details 9905 * of swizzling perf_event::ctx. 9906 */ 9907 perf_remove_from_context(group_leader, 0); 9908 9909 list_for_each_entry(sibling, &group_leader->sibling_list, 9910 group_entry) { 9911 perf_remove_from_context(sibling, 0); 9912 put_ctx(gctx); 9913 } 9914 9915 /* 9916 * Wait for everybody to stop referencing the events through 9917 * the old lists, before installing it on new lists. 9918 */ 9919 synchronize_rcu(); 9920 9921 /* 9922 * Install the group siblings before the group leader. 9923 * 9924 * Because a group leader will try and install the entire group 9925 * (through the sibling list, which is still in-tact), we can 9926 * end up with siblings installed in the wrong context. 9927 * 9928 * By installing siblings first we NO-OP because they're not 9929 * reachable through the group lists. 9930 */ 9931 list_for_each_entry(sibling, &group_leader->sibling_list, 9932 group_entry) { 9933 perf_event__state_init(sibling); 9934 perf_install_in_context(ctx, sibling, sibling->cpu); 9935 get_ctx(ctx); 9936 } 9937 9938 /* 9939 * Removing from the context ends up with disabled 9940 * event. What we want here is event in the initial 9941 * startup state, ready to be add into new context. 9942 */ 9943 perf_event__state_init(group_leader); 9944 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9945 get_ctx(ctx); 9946 9947 /* 9948 * Now that all events are installed in @ctx, nothing 9949 * references @gctx anymore, so drop the last reference we have 9950 * on it. 9951 */ 9952 put_ctx(gctx); 9953 } 9954 9955 /* 9956 * Precalculate sample_data sizes; do while holding ctx::mutex such 9957 * that we're serialized against further additions and before 9958 * perf_install_in_context() which is the point the event is active and 9959 * can use these values. 9960 */ 9961 perf_event__header_size(event); 9962 perf_event__id_header_size(event); 9963 9964 event->owner = current; 9965 9966 perf_install_in_context(ctx, event, event->cpu); 9967 perf_unpin_context(ctx); 9968 9969 if (move_group) 9970 perf_event_ctx_unlock(group_leader, gctx); 9971 mutex_unlock(&ctx->mutex); 9972 9973 if (task) { 9974 mutex_unlock(&task->signal->cred_guard_mutex); 9975 put_task_struct(task); 9976 } 9977 9978 put_online_cpus(); 9979 9980 mutex_lock(¤t->perf_event_mutex); 9981 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9982 mutex_unlock(¤t->perf_event_mutex); 9983 9984 /* 9985 * Drop the reference on the group_event after placing the 9986 * new event on the sibling_list. This ensures destruction 9987 * of the group leader will find the pointer to itself in 9988 * perf_group_detach(). 9989 */ 9990 fdput(group); 9991 fd_install(event_fd, event_file); 9992 return event_fd; 9993 9994 err_locked: 9995 if (move_group) 9996 perf_event_ctx_unlock(group_leader, gctx); 9997 mutex_unlock(&ctx->mutex); 9998 /* err_file: */ 9999 fput(event_file); 10000 err_context: 10001 perf_unpin_context(ctx); 10002 put_ctx(ctx); 10003 err_alloc: 10004 /* 10005 * If event_file is set, the fput() above will have called ->release() 10006 * and that will take care of freeing the event. 10007 */ 10008 if (!event_file) 10009 free_event(event); 10010 err_cred: 10011 if (task) 10012 mutex_unlock(&task->signal->cred_guard_mutex); 10013 err_cpus: 10014 put_online_cpus(); 10015 err_task: 10016 if (task) 10017 put_task_struct(task); 10018 err_group_fd: 10019 fdput(group); 10020 err_fd: 10021 put_unused_fd(event_fd); 10022 return err; 10023 } 10024 10025 /** 10026 * perf_event_create_kernel_counter 10027 * 10028 * @attr: attributes of the counter to create 10029 * @cpu: cpu in which the counter is bound 10030 * @task: task to profile (NULL for percpu) 10031 */ 10032 struct perf_event * 10033 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10034 struct task_struct *task, 10035 perf_overflow_handler_t overflow_handler, 10036 void *context) 10037 { 10038 struct perf_event_context *ctx; 10039 struct perf_event *event; 10040 int err; 10041 10042 /* 10043 * Get the target context (task or percpu): 10044 */ 10045 10046 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10047 overflow_handler, context, -1); 10048 if (IS_ERR(event)) { 10049 err = PTR_ERR(event); 10050 goto err; 10051 } 10052 10053 /* Mark owner so we could distinguish it from user events. */ 10054 event->owner = TASK_TOMBSTONE; 10055 10056 ctx = find_get_context(event->pmu, task, event); 10057 if (IS_ERR(ctx)) { 10058 err = PTR_ERR(ctx); 10059 goto err_free; 10060 } 10061 10062 WARN_ON_ONCE(ctx->parent_ctx); 10063 mutex_lock(&ctx->mutex); 10064 if (ctx->task == TASK_TOMBSTONE) { 10065 err = -ESRCH; 10066 goto err_unlock; 10067 } 10068 10069 if (!exclusive_event_installable(event, ctx)) { 10070 err = -EBUSY; 10071 goto err_unlock; 10072 } 10073 10074 perf_install_in_context(ctx, event, cpu); 10075 perf_unpin_context(ctx); 10076 mutex_unlock(&ctx->mutex); 10077 10078 return event; 10079 10080 err_unlock: 10081 mutex_unlock(&ctx->mutex); 10082 perf_unpin_context(ctx); 10083 put_ctx(ctx); 10084 err_free: 10085 free_event(event); 10086 err: 10087 return ERR_PTR(err); 10088 } 10089 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10090 10091 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10092 { 10093 struct perf_event_context *src_ctx; 10094 struct perf_event_context *dst_ctx; 10095 struct perf_event *event, *tmp; 10096 LIST_HEAD(events); 10097 10098 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10099 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10100 10101 /* 10102 * See perf_event_ctx_lock() for comments on the details 10103 * of swizzling perf_event::ctx. 10104 */ 10105 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10106 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10107 event_entry) { 10108 perf_remove_from_context(event, 0); 10109 unaccount_event_cpu(event, src_cpu); 10110 put_ctx(src_ctx); 10111 list_add(&event->migrate_entry, &events); 10112 } 10113 10114 /* 10115 * Wait for the events to quiesce before re-instating them. 10116 */ 10117 synchronize_rcu(); 10118 10119 /* 10120 * Re-instate events in 2 passes. 10121 * 10122 * Skip over group leaders and only install siblings on this first 10123 * pass, siblings will not get enabled without a leader, however a 10124 * leader will enable its siblings, even if those are still on the old 10125 * context. 10126 */ 10127 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10128 if (event->group_leader == event) 10129 continue; 10130 10131 list_del(&event->migrate_entry); 10132 if (event->state >= PERF_EVENT_STATE_OFF) 10133 event->state = PERF_EVENT_STATE_INACTIVE; 10134 account_event_cpu(event, dst_cpu); 10135 perf_install_in_context(dst_ctx, event, dst_cpu); 10136 get_ctx(dst_ctx); 10137 } 10138 10139 /* 10140 * Once all the siblings are setup properly, install the group leaders 10141 * to make it go. 10142 */ 10143 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10144 list_del(&event->migrate_entry); 10145 if (event->state >= PERF_EVENT_STATE_OFF) 10146 event->state = PERF_EVENT_STATE_INACTIVE; 10147 account_event_cpu(event, dst_cpu); 10148 perf_install_in_context(dst_ctx, event, dst_cpu); 10149 get_ctx(dst_ctx); 10150 } 10151 mutex_unlock(&dst_ctx->mutex); 10152 mutex_unlock(&src_ctx->mutex); 10153 } 10154 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10155 10156 static void sync_child_event(struct perf_event *child_event, 10157 struct task_struct *child) 10158 { 10159 struct perf_event *parent_event = child_event->parent; 10160 u64 child_val; 10161 10162 if (child_event->attr.inherit_stat) 10163 perf_event_read_event(child_event, child); 10164 10165 child_val = perf_event_count(child_event); 10166 10167 /* 10168 * Add back the child's count to the parent's count: 10169 */ 10170 atomic64_add(child_val, &parent_event->child_count); 10171 atomic64_add(child_event->total_time_enabled, 10172 &parent_event->child_total_time_enabled); 10173 atomic64_add(child_event->total_time_running, 10174 &parent_event->child_total_time_running); 10175 } 10176 10177 static void 10178 perf_event_exit_event(struct perf_event *child_event, 10179 struct perf_event_context *child_ctx, 10180 struct task_struct *child) 10181 { 10182 struct perf_event *parent_event = child_event->parent; 10183 10184 /* 10185 * Do not destroy the 'original' grouping; because of the context 10186 * switch optimization the original events could've ended up in a 10187 * random child task. 10188 * 10189 * If we were to destroy the original group, all group related 10190 * operations would cease to function properly after this random 10191 * child dies. 10192 * 10193 * Do destroy all inherited groups, we don't care about those 10194 * and being thorough is better. 10195 */ 10196 raw_spin_lock_irq(&child_ctx->lock); 10197 WARN_ON_ONCE(child_ctx->is_active); 10198 10199 if (parent_event) 10200 perf_group_detach(child_event); 10201 list_del_event(child_event, child_ctx); 10202 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10203 raw_spin_unlock_irq(&child_ctx->lock); 10204 10205 /* 10206 * Parent events are governed by their filedesc, retain them. 10207 */ 10208 if (!parent_event) { 10209 perf_event_wakeup(child_event); 10210 return; 10211 } 10212 /* 10213 * Child events can be cleaned up. 10214 */ 10215 10216 sync_child_event(child_event, child); 10217 10218 /* 10219 * Remove this event from the parent's list 10220 */ 10221 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10222 mutex_lock(&parent_event->child_mutex); 10223 list_del_init(&child_event->child_list); 10224 mutex_unlock(&parent_event->child_mutex); 10225 10226 /* 10227 * Kick perf_poll() for is_event_hup(). 10228 */ 10229 perf_event_wakeup(parent_event); 10230 free_event(child_event); 10231 put_event(parent_event); 10232 } 10233 10234 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10235 { 10236 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10237 struct perf_event *child_event, *next; 10238 10239 WARN_ON_ONCE(child != current); 10240 10241 child_ctx = perf_pin_task_context(child, ctxn); 10242 if (!child_ctx) 10243 return; 10244 10245 /* 10246 * In order to reduce the amount of tricky in ctx tear-down, we hold 10247 * ctx::mutex over the entire thing. This serializes against almost 10248 * everything that wants to access the ctx. 10249 * 10250 * The exception is sys_perf_event_open() / 10251 * perf_event_create_kernel_count() which does find_get_context() 10252 * without ctx::mutex (it cannot because of the move_group double mutex 10253 * lock thing). See the comments in perf_install_in_context(). 10254 */ 10255 mutex_lock(&child_ctx->mutex); 10256 10257 /* 10258 * In a single ctx::lock section, de-schedule the events and detach the 10259 * context from the task such that we cannot ever get it scheduled back 10260 * in. 10261 */ 10262 raw_spin_lock_irq(&child_ctx->lock); 10263 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 10264 10265 /* 10266 * Now that the context is inactive, destroy the task <-> ctx relation 10267 * and mark the context dead. 10268 */ 10269 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10270 put_ctx(child_ctx); /* cannot be last */ 10271 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10272 put_task_struct(current); /* cannot be last */ 10273 10274 clone_ctx = unclone_ctx(child_ctx); 10275 raw_spin_unlock_irq(&child_ctx->lock); 10276 10277 if (clone_ctx) 10278 put_ctx(clone_ctx); 10279 10280 /* 10281 * Report the task dead after unscheduling the events so that we 10282 * won't get any samples after PERF_RECORD_EXIT. We can however still 10283 * get a few PERF_RECORD_READ events. 10284 */ 10285 perf_event_task(child, child_ctx, 0); 10286 10287 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10288 perf_event_exit_event(child_event, child_ctx, child); 10289 10290 mutex_unlock(&child_ctx->mutex); 10291 10292 put_ctx(child_ctx); 10293 } 10294 10295 /* 10296 * When a child task exits, feed back event values to parent events. 10297 * 10298 * Can be called with cred_guard_mutex held when called from 10299 * install_exec_creds(). 10300 */ 10301 void perf_event_exit_task(struct task_struct *child) 10302 { 10303 struct perf_event *event, *tmp; 10304 int ctxn; 10305 10306 mutex_lock(&child->perf_event_mutex); 10307 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10308 owner_entry) { 10309 list_del_init(&event->owner_entry); 10310 10311 /* 10312 * Ensure the list deletion is visible before we clear 10313 * the owner, closes a race against perf_release() where 10314 * we need to serialize on the owner->perf_event_mutex. 10315 */ 10316 smp_store_release(&event->owner, NULL); 10317 } 10318 mutex_unlock(&child->perf_event_mutex); 10319 10320 for_each_task_context_nr(ctxn) 10321 perf_event_exit_task_context(child, ctxn); 10322 10323 /* 10324 * The perf_event_exit_task_context calls perf_event_task 10325 * with child's task_ctx, which generates EXIT events for 10326 * child contexts and sets child->perf_event_ctxp[] to NULL. 10327 * At this point we need to send EXIT events to cpu contexts. 10328 */ 10329 perf_event_task(child, NULL, 0); 10330 } 10331 10332 static void perf_free_event(struct perf_event *event, 10333 struct perf_event_context *ctx) 10334 { 10335 struct perf_event *parent = event->parent; 10336 10337 if (WARN_ON_ONCE(!parent)) 10338 return; 10339 10340 mutex_lock(&parent->child_mutex); 10341 list_del_init(&event->child_list); 10342 mutex_unlock(&parent->child_mutex); 10343 10344 put_event(parent); 10345 10346 raw_spin_lock_irq(&ctx->lock); 10347 perf_group_detach(event); 10348 list_del_event(event, ctx); 10349 raw_spin_unlock_irq(&ctx->lock); 10350 free_event(event); 10351 } 10352 10353 /* 10354 * Free an unexposed, unused context as created by inheritance by 10355 * perf_event_init_task below, used by fork() in case of fail. 10356 * 10357 * Not all locks are strictly required, but take them anyway to be nice and 10358 * help out with the lockdep assertions. 10359 */ 10360 void perf_event_free_task(struct task_struct *task) 10361 { 10362 struct perf_event_context *ctx; 10363 struct perf_event *event, *tmp; 10364 int ctxn; 10365 10366 for_each_task_context_nr(ctxn) { 10367 ctx = task->perf_event_ctxp[ctxn]; 10368 if (!ctx) 10369 continue; 10370 10371 mutex_lock(&ctx->mutex); 10372 again: 10373 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10374 group_entry) 10375 perf_free_event(event, ctx); 10376 10377 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10378 group_entry) 10379 perf_free_event(event, ctx); 10380 10381 if (!list_empty(&ctx->pinned_groups) || 10382 !list_empty(&ctx->flexible_groups)) 10383 goto again; 10384 10385 mutex_unlock(&ctx->mutex); 10386 10387 put_ctx(ctx); 10388 } 10389 } 10390 10391 void perf_event_delayed_put(struct task_struct *task) 10392 { 10393 int ctxn; 10394 10395 for_each_task_context_nr(ctxn) 10396 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10397 } 10398 10399 struct file *perf_event_get(unsigned int fd) 10400 { 10401 struct file *file; 10402 10403 file = fget_raw(fd); 10404 if (!file) 10405 return ERR_PTR(-EBADF); 10406 10407 if (file->f_op != &perf_fops) { 10408 fput(file); 10409 return ERR_PTR(-EBADF); 10410 } 10411 10412 return file; 10413 } 10414 10415 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10416 { 10417 if (!event) 10418 return ERR_PTR(-EINVAL); 10419 10420 return &event->attr; 10421 } 10422 10423 /* 10424 * inherit a event from parent task to child task: 10425 */ 10426 static struct perf_event * 10427 inherit_event(struct perf_event *parent_event, 10428 struct task_struct *parent, 10429 struct perf_event_context *parent_ctx, 10430 struct task_struct *child, 10431 struct perf_event *group_leader, 10432 struct perf_event_context *child_ctx) 10433 { 10434 enum perf_event_active_state parent_state = parent_event->state; 10435 struct perf_event *child_event; 10436 unsigned long flags; 10437 10438 /* 10439 * Instead of creating recursive hierarchies of events, 10440 * we link inherited events back to the original parent, 10441 * which has a filp for sure, which we use as the reference 10442 * count: 10443 */ 10444 if (parent_event->parent) 10445 parent_event = parent_event->parent; 10446 10447 child_event = perf_event_alloc(&parent_event->attr, 10448 parent_event->cpu, 10449 child, 10450 group_leader, parent_event, 10451 NULL, NULL, -1); 10452 if (IS_ERR(child_event)) 10453 return child_event; 10454 10455 /* 10456 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10457 * must be under the same lock in order to serialize against 10458 * perf_event_release_kernel(), such that either we must observe 10459 * is_orphaned_event() or they will observe us on the child_list. 10460 */ 10461 mutex_lock(&parent_event->child_mutex); 10462 if (is_orphaned_event(parent_event) || 10463 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10464 mutex_unlock(&parent_event->child_mutex); 10465 free_event(child_event); 10466 return NULL; 10467 } 10468 10469 get_ctx(child_ctx); 10470 10471 /* 10472 * Make the child state follow the state of the parent event, 10473 * not its attr.disabled bit. We hold the parent's mutex, 10474 * so we won't race with perf_event_{en, dis}able_family. 10475 */ 10476 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10477 child_event->state = PERF_EVENT_STATE_INACTIVE; 10478 else 10479 child_event->state = PERF_EVENT_STATE_OFF; 10480 10481 if (parent_event->attr.freq) { 10482 u64 sample_period = parent_event->hw.sample_period; 10483 struct hw_perf_event *hwc = &child_event->hw; 10484 10485 hwc->sample_period = sample_period; 10486 hwc->last_period = sample_period; 10487 10488 local64_set(&hwc->period_left, sample_period); 10489 } 10490 10491 child_event->ctx = child_ctx; 10492 child_event->overflow_handler = parent_event->overflow_handler; 10493 child_event->overflow_handler_context 10494 = parent_event->overflow_handler_context; 10495 10496 /* 10497 * Precalculate sample_data sizes 10498 */ 10499 perf_event__header_size(child_event); 10500 perf_event__id_header_size(child_event); 10501 10502 /* 10503 * Link it up in the child's context: 10504 */ 10505 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10506 add_event_to_ctx(child_event, child_ctx); 10507 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10508 10509 /* 10510 * Link this into the parent event's child list 10511 */ 10512 list_add_tail(&child_event->child_list, &parent_event->child_list); 10513 mutex_unlock(&parent_event->child_mutex); 10514 10515 return child_event; 10516 } 10517 10518 static int inherit_group(struct perf_event *parent_event, 10519 struct task_struct *parent, 10520 struct perf_event_context *parent_ctx, 10521 struct task_struct *child, 10522 struct perf_event_context *child_ctx) 10523 { 10524 struct perf_event *leader; 10525 struct perf_event *sub; 10526 struct perf_event *child_ctr; 10527 10528 leader = inherit_event(parent_event, parent, parent_ctx, 10529 child, NULL, child_ctx); 10530 if (IS_ERR(leader)) 10531 return PTR_ERR(leader); 10532 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10533 child_ctr = inherit_event(sub, parent, parent_ctx, 10534 child, leader, child_ctx); 10535 if (IS_ERR(child_ctr)) 10536 return PTR_ERR(child_ctr); 10537 } 10538 return 0; 10539 } 10540 10541 static int 10542 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10543 struct perf_event_context *parent_ctx, 10544 struct task_struct *child, int ctxn, 10545 int *inherited_all) 10546 { 10547 int ret; 10548 struct perf_event_context *child_ctx; 10549 10550 if (!event->attr.inherit) { 10551 *inherited_all = 0; 10552 return 0; 10553 } 10554 10555 child_ctx = child->perf_event_ctxp[ctxn]; 10556 if (!child_ctx) { 10557 /* 10558 * This is executed from the parent task context, so 10559 * inherit events that have been marked for cloning. 10560 * First allocate and initialize a context for the 10561 * child. 10562 */ 10563 10564 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10565 if (!child_ctx) 10566 return -ENOMEM; 10567 10568 child->perf_event_ctxp[ctxn] = child_ctx; 10569 } 10570 10571 ret = inherit_group(event, parent, parent_ctx, 10572 child, child_ctx); 10573 10574 if (ret) 10575 *inherited_all = 0; 10576 10577 return ret; 10578 } 10579 10580 /* 10581 * Initialize the perf_event context in task_struct 10582 */ 10583 static int perf_event_init_context(struct task_struct *child, int ctxn) 10584 { 10585 struct perf_event_context *child_ctx, *parent_ctx; 10586 struct perf_event_context *cloned_ctx; 10587 struct perf_event *event; 10588 struct task_struct *parent = current; 10589 int inherited_all = 1; 10590 unsigned long flags; 10591 int ret = 0; 10592 10593 if (likely(!parent->perf_event_ctxp[ctxn])) 10594 return 0; 10595 10596 /* 10597 * If the parent's context is a clone, pin it so it won't get 10598 * swapped under us. 10599 */ 10600 parent_ctx = perf_pin_task_context(parent, ctxn); 10601 if (!parent_ctx) 10602 return 0; 10603 10604 /* 10605 * No need to check if parent_ctx != NULL here; since we saw 10606 * it non-NULL earlier, the only reason for it to become NULL 10607 * is if we exit, and since we're currently in the middle of 10608 * a fork we can't be exiting at the same time. 10609 */ 10610 10611 /* 10612 * Lock the parent list. No need to lock the child - not PID 10613 * hashed yet and not running, so nobody can access it. 10614 */ 10615 mutex_lock(&parent_ctx->mutex); 10616 10617 /* 10618 * We dont have to disable NMIs - we are only looking at 10619 * the list, not manipulating it: 10620 */ 10621 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10622 ret = inherit_task_group(event, parent, parent_ctx, 10623 child, ctxn, &inherited_all); 10624 if (ret) 10625 break; 10626 } 10627 10628 /* 10629 * We can't hold ctx->lock when iterating the ->flexible_group list due 10630 * to allocations, but we need to prevent rotation because 10631 * rotate_ctx() will change the list from interrupt context. 10632 */ 10633 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10634 parent_ctx->rotate_disable = 1; 10635 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10636 10637 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10638 ret = inherit_task_group(event, parent, parent_ctx, 10639 child, ctxn, &inherited_all); 10640 if (ret) 10641 break; 10642 } 10643 10644 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10645 parent_ctx->rotate_disable = 0; 10646 10647 child_ctx = child->perf_event_ctxp[ctxn]; 10648 10649 if (child_ctx && inherited_all) { 10650 /* 10651 * Mark the child context as a clone of the parent 10652 * context, or of whatever the parent is a clone of. 10653 * 10654 * Note that if the parent is a clone, the holding of 10655 * parent_ctx->lock avoids it from being uncloned. 10656 */ 10657 cloned_ctx = parent_ctx->parent_ctx; 10658 if (cloned_ctx) { 10659 child_ctx->parent_ctx = cloned_ctx; 10660 child_ctx->parent_gen = parent_ctx->parent_gen; 10661 } else { 10662 child_ctx->parent_ctx = parent_ctx; 10663 child_ctx->parent_gen = parent_ctx->generation; 10664 } 10665 get_ctx(child_ctx->parent_ctx); 10666 } 10667 10668 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10669 mutex_unlock(&parent_ctx->mutex); 10670 10671 perf_unpin_context(parent_ctx); 10672 put_ctx(parent_ctx); 10673 10674 return ret; 10675 } 10676 10677 /* 10678 * Initialize the perf_event context in task_struct 10679 */ 10680 int perf_event_init_task(struct task_struct *child) 10681 { 10682 int ctxn, ret; 10683 10684 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10685 mutex_init(&child->perf_event_mutex); 10686 INIT_LIST_HEAD(&child->perf_event_list); 10687 10688 for_each_task_context_nr(ctxn) { 10689 ret = perf_event_init_context(child, ctxn); 10690 if (ret) { 10691 perf_event_free_task(child); 10692 return ret; 10693 } 10694 } 10695 10696 return 0; 10697 } 10698 10699 static void __init perf_event_init_all_cpus(void) 10700 { 10701 struct swevent_htable *swhash; 10702 int cpu; 10703 10704 for_each_possible_cpu(cpu) { 10705 swhash = &per_cpu(swevent_htable, cpu); 10706 mutex_init(&swhash->hlist_mutex); 10707 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10708 10709 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10710 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10711 10712 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10713 } 10714 } 10715 10716 int perf_event_init_cpu(unsigned int cpu) 10717 { 10718 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10719 10720 mutex_lock(&swhash->hlist_mutex); 10721 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10722 struct swevent_hlist *hlist; 10723 10724 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10725 WARN_ON(!hlist); 10726 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10727 } 10728 mutex_unlock(&swhash->hlist_mutex); 10729 return 0; 10730 } 10731 10732 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10733 static void __perf_event_exit_context(void *__info) 10734 { 10735 struct perf_event_context *ctx = __info; 10736 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10737 struct perf_event *event; 10738 10739 raw_spin_lock(&ctx->lock); 10740 list_for_each_entry(event, &ctx->event_list, event_entry) 10741 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10742 raw_spin_unlock(&ctx->lock); 10743 } 10744 10745 static void perf_event_exit_cpu_context(int cpu) 10746 { 10747 struct perf_event_context *ctx; 10748 struct pmu *pmu; 10749 int idx; 10750 10751 idx = srcu_read_lock(&pmus_srcu); 10752 list_for_each_entry_rcu(pmu, &pmus, entry) { 10753 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10754 10755 mutex_lock(&ctx->mutex); 10756 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10757 mutex_unlock(&ctx->mutex); 10758 } 10759 srcu_read_unlock(&pmus_srcu, idx); 10760 } 10761 #else 10762 10763 static void perf_event_exit_cpu_context(int cpu) { } 10764 10765 #endif 10766 10767 int perf_event_exit_cpu(unsigned int cpu) 10768 { 10769 perf_event_exit_cpu_context(cpu); 10770 return 0; 10771 } 10772 10773 static int 10774 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10775 { 10776 int cpu; 10777 10778 for_each_online_cpu(cpu) 10779 perf_event_exit_cpu(cpu); 10780 10781 return NOTIFY_OK; 10782 } 10783 10784 /* 10785 * Run the perf reboot notifier at the very last possible moment so that 10786 * the generic watchdog code runs as long as possible. 10787 */ 10788 static struct notifier_block perf_reboot_notifier = { 10789 .notifier_call = perf_reboot, 10790 .priority = INT_MIN, 10791 }; 10792 10793 void __init perf_event_init(void) 10794 { 10795 int ret; 10796 10797 idr_init(&pmu_idr); 10798 10799 perf_event_init_all_cpus(); 10800 init_srcu_struct(&pmus_srcu); 10801 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10802 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10803 perf_pmu_register(&perf_task_clock, NULL, -1); 10804 perf_tp_register(); 10805 perf_event_init_cpu(smp_processor_id()); 10806 register_reboot_notifier(&perf_reboot_notifier); 10807 10808 ret = init_hw_breakpoint(); 10809 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10810 10811 /* 10812 * Build time assertion that we keep the data_head at the intended 10813 * location. IOW, validation we got the __reserved[] size right. 10814 */ 10815 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10816 != 1024); 10817 } 10818 10819 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10820 char *page) 10821 { 10822 struct perf_pmu_events_attr *pmu_attr = 10823 container_of(attr, struct perf_pmu_events_attr, attr); 10824 10825 if (pmu_attr->event_str) 10826 return sprintf(page, "%s\n", pmu_attr->event_str); 10827 10828 return 0; 10829 } 10830 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10831 10832 static int __init perf_event_sysfs_init(void) 10833 { 10834 struct pmu *pmu; 10835 int ret; 10836 10837 mutex_lock(&pmus_lock); 10838 10839 ret = bus_register(&pmu_bus); 10840 if (ret) 10841 goto unlock; 10842 10843 list_for_each_entry(pmu, &pmus, entry) { 10844 if (!pmu->name || pmu->type < 0) 10845 continue; 10846 10847 ret = pmu_dev_alloc(pmu); 10848 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10849 } 10850 pmu_bus_running = 1; 10851 ret = 0; 10852 10853 unlock: 10854 mutex_unlock(&pmus_lock); 10855 10856 return ret; 10857 } 10858 device_initcall(perf_event_sysfs_init); 10859 10860 #ifdef CONFIG_CGROUP_PERF 10861 static struct cgroup_subsys_state * 10862 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10863 { 10864 struct perf_cgroup *jc; 10865 10866 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10867 if (!jc) 10868 return ERR_PTR(-ENOMEM); 10869 10870 jc->info = alloc_percpu(struct perf_cgroup_info); 10871 if (!jc->info) { 10872 kfree(jc); 10873 return ERR_PTR(-ENOMEM); 10874 } 10875 10876 return &jc->css; 10877 } 10878 10879 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10880 { 10881 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10882 10883 free_percpu(jc->info); 10884 kfree(jc); 10885 } 10886 10887 static int __perf_cgroup_move(void *info) 10888 { 10889 struct task_struct *task = info; 10890 rcu_read_lock(); 10891 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10892 rcu_read_unlock(); 10893 return 0; 10894 } 10895 10896 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10897 { 10898 struct task_struct *task; 10899 struct cgroup_subsys_state *css; 10900 10901 cgroup_taskset_for_each(task, css, tset) 10902 task_function_call(task, __perf_cgroup_move, task); 10903 } 10904 10905 struct cgroup_subsys perf_event_cgrp_subsys = { 10906 .css_alloc = perf_cgroup_css_alloc, 10907 .css_free = perf_cgroup_css_free, 10908 .attach = perf_cgroup_attach, 10909 }; 10910 #endif /* CONFIG_CGROUP_PERF */ 10911