1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @func: the function to be called 136 * @info: the function call argument 137 * 138 * Calls the function @func on the remote cpu. 139 * 140 * returns: @func return value or -ENXIO when the cpu is offline 141 */ 142 static int cpu_function_call(int cpu, remote_function_f func, void *info) 143 { 144 struct remote_function_call data = { 145 .p = NULL, 146 .func = func, 147 .info = info, 148 .ret = -ENXIO, /* No such CPU */ 149 }; 150 151 smp_call_function_single(cpu, remote_function, &data, 1); 152 153 return data.ret; 154 } 155 156 static inline struct perf_cpu_context * 157 __get_cpu_context(struct perf_event_context *ctx) 158 { 159 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 160 } 161 162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 163 struct perf_event_context *ctx) 164 { 165 raw_spin_lock(&cpuctx->ctx.lock); 166 if (ctx) 167 raw_spin_lock(&ctx->lock); 168 } 169 170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 171 struct perf_event_context *ctx) 172 { 173 if (ctx) 174 raw_spin_unlock(&ctx->lock); 175 raw_spin_unlock(&cpuctx->ctx.lock); 176 } 177 178 #define TASK_TOMBSTONE ((void *)-1L) 179 180 static bool is_kernel_event(struct perf_event *event) 181 { 182 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 183 } 184 185 /* 186 * On task ctx scheduling... 187 * 188 * When !ctx->nr_events a task context will not be scheduled. This means 189 * we can disable the scheduler hooks (for performance) without leaving 190 * pending task ctx state. 191 * 192 * This however results in two special cases: 193 * 194 * - removing the last event from a task ctx; this is relatively straight 195 * forward and is done in __perf_remove_from_context. 196 * 197 * - adding the first event to a task ctx; this is tricky because we cannot 198 * rely on ctx->is_active and therefore cannot use event_function_call(). 199 * See perf_install_in_context(). 200 * 201 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 202 */ 203 204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 205 struct perf_event_context *, void *); 206 207 struct event_function_struct { 208 struct perf_event *event; 209 event_f func; 210 void *data; 211 }; 212 213 static int event_function(void *info) 214 { 215 struct event_function_struct *efs = info; 216 struct perf_event *event = efs->event; 217 struct perf_event_context *ctx = event->ctx; 218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 219 struct perf_event_context *task_ctx = cpuctx->task_ctx; 220 int ret = 0; 221 222 lockdep_assert_irqs_disabled(); 223 224 perf_ctx_lock(cpuctx, task_ctx); 225 /* 226 * Since we do the IPI call without holding ctx->lock things can have 227 * changed, double check we hit the task we set out to hit. 228 */ 229 if (ctx->task) { 230 if (ctx->task != current) { 231 ret = -ESRCH; 232 goto unlock; 233 } 234 235 /* 236 * We only use event_function_call() on established contexts, 237 * and event_function() is only ever called when active (or 238 * rather, we'll have bailed in task_function_call() or the 239 * above ctx->task != current test), therefore we must have 240 * ctx->is_active here. 241 */ 242 WARN_ON_ONCE(!ctx->is_active); 243 /* 244 * And since we have ctx->is_active, cpuctx->task_ctx must 245 * match. 246 */ 247 WARN_ON_ONCE(task_ctx != ctx); 248 } else { 249 WARN_ON_ONCE(&cpuctx->ctx != ctx); 250 } 251 252 efs->func(event, cpuctx, ctx, efs->data); 253 unlock: 254 perf_ctx_unlock(cpuctx, task_ctx); 255 256 return ret; 257 } 258 259 static void event_function_call(struct perf_event *event, event_f func, void *data) 260 { 261 struct perf_event_context *ctx = event->ctx; 262 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 263 struct event_function_struct efs = { 264 .event = event, 265 .func = func, 266 .data = data, 267 }; 268 269 if (!event->parent) { 270 /* 271 * If this is a !child event, we must hold ctx::mutex to 272 * stabilize the event->ctx relation. See 273 * perf_event_ctx_lock(). 274 */ 275 lockdep_assert_held(&ctx->mutex); 276 } 277 278 if (!task) { 279 cpu_function_call(event->cpu, event_function, &efs); 280 return; 281 } 282 283 if (task == TASK_TOMBSTONE) 284 return; 285 286 again: 287 if (!task_function_call(task, event_function, &efs)) 288 return; 289 290 raw_spin_lock_irq(&ctx->lock); 291 /* 292 * Reload the task pointer, it might have been changed by 293 * a concurrent perf_event_context_sched_out(). 294 */ 295 task = ctx->task; 296 if (task == TASK_TOMBSTONE) { 297 raw_spin_unlock_irq(&ctx->lock); 298 return; 299 } 300 if (ctx->is_active) { 301 raw_spin_unlock_irq(&ctx->lock); 302 goto again; 303 } 304 func(event, NULL, ctx, data); 305 raw_spin_unlock_irq(&ctx->lock); 306 } 307 308 /* 309 * Similar to event_function_call() + event_function(), but hard assumes IRQs 310 * are already disabled and we're on the right CPU. 311 */ 312 static void event_function_local(struct perf_event *event, event_f func, void *data) 313 { 314 struct perf_event_context *ctx = event->ctx; 315 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 316 struct task_struct *task = READ_ONCE(ctx->task); 317 struct perf_event_context *task_ctx = NULL; 318 319 lockdep_assert_irqs_disabled(); 320 321 if (task) { 322 if (task == TASK_TOMBSTONE) 323 return; 324 325 task_ctx = ctx; 326 } 327 328 perf_ctx_lock(cpuctx, task_ctx); 329 330 task = ctx->task; 331 if (task == TASK_TOMBSTONE) 332 goto unlock; 333 334 if (task) { 335 /* 336 * We must be either inactive or active and the right task, 337 * otherwise we're screwed, since we cannot IPI to somewhere 338 * else. 339 */ 340 if (ctx->is_active) { 341 if (WARN_ON_ONCE(task != current)) 342 goto unlock; 343 344 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 345 goto unlock; 346 } 347 } else { 348 WARN_ON_ONCE(&cpuctx->ctx != ctx); 349 } 350 351 func(event, cpuctx, ctx, data); 352 unlock: 353 perf_ctx_unlock(cpuctx, task_ctx); 354 } 355 356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 357 PERF_FLAG_FD_OUTPUT |\ 358 PERF_FLAG_PID_CGROUP |\ 359 PERF_FLAG_FD_CLOEXEC) 360 361 /* 362 * branch priv levels that need permission checks 363 */ 364 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 365 (PERF_SAMPLE_BRANCH_KERNEL |\ 366 PERF_SAMPLE_BRANCH_HV) 367 368 enum event_type_t { 369 EVENT_FLEXIBLE = 0x1, 370 EVENT_PINNED = 0x2, 371 EVENT_TIME = 0x4, 372 /* see ctx_resched() for details */ 373 EVENT_CPU = 0x8, 374 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 375 }; 376 377 /* 378 * perf_sched_events : >0 events exist 379 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 380 */ 381 382 static void perf_sched_delayed(struct work_struct *work); 383 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 385 static DEFINE_MUTEX(perf_sched_mutex); 386 static atomic_t perf_sched_count; 387 388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 389 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 390 391 static atomic_t nr_mmap_events __read_mostly; 392 static atomic_t nr_comm_events __read_mostly; 393 static atomic_t nr_namespaces_events __read_mostly; 394 static atomic_t nr_task_events __read_mostly; 395 static atomic_t nr_freq_events __read_mostly; 396 static atomic_t nr_switch_events __read_mostly; 397 static atomic_t nr_ksymbol_events __read_mostly; 398 static atomic_t nr_bpf_events __read_mostly; 399 static atomic_t nr_cgroup_events __read_mostly; 400 static atomic_t nr_text_poke_events __read_mostly; 401 static atomic_t nr_build_id_events __read_mostly; 402 403 static LIST_HEAD(pmus); 404 static DEFINE_MUTEX(pmus_lock); 405 static struct srcu_struct pmus_srcu; 406 static cpumask_var_t perf_online_mask; 407 408 /* 409 * perf event paranoia level: 410 * -1 - not paranoid at all 411 * 0 - disallow raw tracepoint access for unpriv 412 * 1 - disallow cpu events for unpriv 413 * 2 - disallow kernel profiling for unpriv 414 */ 415 int sysctl_perf_event_paranoid __read_mostly = 2; 416 417 /* Minimum for 512 kiB + 1 user control page */ 418 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 419 420 /* 421 * max perf event sample rate 422 */ 423 #define DEFAULT_MAX_SAMPLE_RATE 100000 424 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 425 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 426 427 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 428 429 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 430 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 431 432 static int perf_sample_allowed_ns __read_mostly = 433 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 434 435 static void update_perf_cpu_limits(void) 436 { 437 u64 tmp = perf_sample_period_ns; 438 439 tmp *= sysctl_perf_cpu_time_max_percent; 440 tmp = div_u64(tmp, 100); 441 if (!tmp) 442 tmp = 1; 443 444 WRITE_ONCE(perf_sample_allowed_ns, tmp); 445 } 446 447 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 448 449 int perf_proc_update_handler(struct ctl_table *table, int write, 450 void *buffer, size_t *lenp, loff_t *ppos) 451 { 452 int ret; 453 int perf_cpu = sysctl_perf_cpu_time_max_percent; 454 /* 455 * If throttling is disabled don't allow the write: 456 */ 457 if (write && (perf_cpu == 100 || perf_cpu == 0)) 458 return -EINVAL; 459 460 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 461 if (ret || !write) 462 return ret; 463 464 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 465 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 466 update_perf_cpu_limits(); 467 468 return 0; 469 } 470 471 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 472 473 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 474 void *buffer, size_t *lenp, loff_t *ppos) 475 { 476 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 477 478 if (ret || !write) 479 return ret; 480 481 if (sysctl_perf_cpu_time_max_percent == 100 || 482 sysctl_perf_cpu_time_max_percent == 0) { 483 printk(KERN_WARNING 484 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 485 WRITE_ONCE(perf_sample_allowed_ns, 0); 486 } else { 487 update_perf_cpu_limits(); 488 } 489 490 return 0; 491 } 492 493 /* 494 * perf samples are done in some very critical code paths (NMIs). 495 * If they take too much CPU time, the system can lock up and not 496 * get any real work done. This will drop the sample rate when 497 * we detect that events are taking too long. 498 */ 499 #define NR_ACCUMULATED_SAMPLES 128 500 static DEFINE_PER_CPU(u64, running_sample_length); 501 502 static u64 __report_avg; 503 static u64 __report_allowed; 504 505 static void perf_duration_warn(struct irq_work *w) 506 { 507 printk_ratelimited(KERN_INFO 508 "perf: interrupt took too long (%lld > %lld), lowering " 509 "kernel.perf_event_max_sample_rate to %d\n", 510 __report_avg, __report_allowed, 511 sysctl_perf_event_sample_rate); 512 } 513 514 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 515 516 void perf_sample_event_took(u64 sample_len_ns) 517 { 518 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 519 u64 running_len; 520 u64 avg_len; 521 u32 max; 522 523 if (max_len == 0) 524 return; 525 526 /* Decay the counter by 1 average sample. */ 527 running_len = __this_cpu_read(running_sample_length); 528 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 529 running_len += sample_len_ns; 530 __this_cpu_write(running_sample_length, running_len); 531 532 /* 533 * Note: this will be biased artifically low until we have 534 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 535 * from having to maintain a count. 536 */ 537 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 538 if (avg_len <= max_len) 539 return; 540 541 __report_avg = avg_len; 542 __report_allowed = max_len; 543 544 /* 545 * Compute a throttle threshold 25% below the current duration. 546 */ 547 avg_len += avg_len / 4; 548 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 549 if (avg_len < max) 550 max /= (u32)avg_len; 551 else 552 max = 1; 553 554 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 555 WRITE_ONCE(max_samples_per_tick, max); 556 557 sysctl_perf_event_sample_rate = max * HZ; 558 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 559 560 if (!irq_work_queue(&perf_duration_work)) { 561 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 562 "kernel.perf_event_max_sample_rate to %d\n", 563 __report_avg, __report_allowed, 564 sysctl_perf_event_sample_rate); 565 } 566 } 567 568 static atomic64_t perf_event_id; 569 570 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 571 enum event_type_t event_type); 572 573 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type, 575 struct task_struct *task); 576 577 static void update_context_time(struct perf_event_context *ctx); 578 static u64 perf_event_time(struct perf_event *event); 579 580 void __weak perf_event_print_debug(void) { } 581 582 extern __weak const char *perf_pmu_name(void) 583 { 584 return "pmu"; 585 } 586 587 static inline u64 perf_clock(void) 588 { 589 return local_clock(); 590 } 591 592 static inline u64 perf_event_clock(struct perf_event *event) 593 { 594 return event->clock(); 595 } 596 597 /* 598 * State based event timekeeping... 599 * 600 * The basic idea is to use event->state to determine which (if any) time 601 * fields to increment with the current delta. This means we only need to 602 * update timestamps when we change state or when they are explicitly requested 603 * (read). 604 * 605 * Event groups make things a little more complicated, but not terribly so. The 606 * rules for a group are that if the group leader is OFF the entire group is 607 * OFF, irrespecive of what the group member states are. This results in 608 * __perf_effective_state(). 609 * 610 * A futher ramification is that when a group leader flips between OFF and 611 * !OFF, we need to update all group member times. 612 * 613 * 614 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 615 * need to make sure the relevant context time is updated before we try and 616 * update our timestamps. 617 */ 618 619 static __always_inline enum perf_event_state 620 __perf_effective_state(struct perf_event *event) 621 { 622 struct perf_event *leader = event->group_leader; 623 624 if (leader->state <= PERF_EVENT_STATE_OFF) 625 return leader->state; 626 627 return event->state; 628 } 629 630 static __always_inline void 631 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 632 { 633 enum perf_event_state state = __perf_effective_state(event); 634 u64 delta = now - event->tstamp; 635 636 *enabled = event->total_time_enabled; 637 if (state >= PERF_EVENT_STATE_INACTIVE) 638 *enabled += delta; 639 640 *running = event->total_time_running; 641 if (state >= PERF_EVENT_STATE_ACTIVE) 642 *running += delta; 643 } 644 645 static void perf_event_update_time(struct perf_event *event) 646 { 647 u64 now = perf_event_time(event); 648 649 __perf_update_times(event, now, &event->total_time_enabled, 650 &event->total_time_running); 651 event->tstamp = now; 652 } 653 654 static void perf_event_update_sibling_time(struct perf_event *leader) 655 { 656 struct perf_event *sibling; 657 658 for_each_sibling_event(sibling, leader) 659 perf_event_update_time(sibling); 660 } 661 662 static void 663 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 664 { 665 if (event->state == state) 666 return; 667 668 perf_event_update_time(event); 669 /* 670 * If a group leader gets enabled/disabled all its siblings 671 * are affected too. 672 */ 673 if ((event->state < 0) ^ (state < 0)) 674 perf_event_update_sibling_time(event); 675 676 WRITE_ONCE(event->state, state); 677 } 678 679 #ifdef CONFIG_CGROUP_PERF 680 681 static inline bool 682 perf_cgroup_match(struct perf_event *event) 683 { 684 struct perf_event_context *ctx = event->ctx; 685 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 686 687 /* @event doesn't care about cgroup */ 688 if (!event->cgrp) 689 return true; 690 691 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 692 if (!cpuctx->cgrp) 693 return false; 694 695 /* 696 * Cgroup scoping is recursive. An event enabled for a cgroup is 697 * also enabled for all its descendant cgroups. If @cpuctx's 698 * cgroup is a descendant of @event's (the test covers identity 699 * case), it's a match. 700 */ 701 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 702 event->cgrp->css.cgroup); 703 } 704 705 static inline void perf_detach_cgroup(struct perf_event *event) 706 { 707 css_put(&event->cgrp->css); 708 event->cgrp = NULL; 709 } 710 711 static inline int is_cgroup_event(struct perf_event *event) 712 { 713 return event->cgrp != NULL; 714 } 715 716 static inline u64 perf_cgroup_event_time(struct perf_event *event) 717 { 718 struct perf_cgroup_info *t; 719 720 t = per_cpu_ptr(event->cgrp->info, event->cpu); 721 return t->time; 722 } 723 724 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 725 { 726 struct perf_cgroup_info *info; 727 u64 now; 728 729 now = perf_clock(); 730 731 info = this_cpu_ptr(cgrp->info); 732 733 info->time += now - info->timestamp; 734 info->timestamp = now; 735 } 736 737 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 738 { 739 struct perf_cgroup *cgrp = cpuctx->cgrp; 740 struct cgroup_subsys_state *css; 741 742 if (cgrp) { 743 for (css = &cgrp->css; css; css = css->parent) { 744 cgrp = container_of(css, struct perf_cgroup, css); 745 __update_cgrp_time(cgrp); 746 } 747 } 748 } 749 750 static inline void update_cgrp_time_from_event(struct perf_event *event) 751 { 752 struct perf_cgroup *cgrp; 753 754 /* 755 * ensure we access cgroup data only when needed and 756 * when we know the cgroup is pinned (css_get) 757 */ 758 if (!is_cgroup_event(event)) 759 return; 760 761 cgrp = perf_cgroup_from_task(current, event->ctx); 762 /* 763 * Do not update time when cgroup is not active 764 */ 765 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 766 __update_cgrp_time(event->cgrp); 767 } 768 769 static inline void 770 perf_cgroup_set_timestamp(struct task_struct *task, 771 struct perf_event_context *ctx) 772 { 773 struct perf_cgroup *cgrp; 774 struct perf_cgroup_info *info; 775 struct cgroup_subsys_state *css; 776 777 /* 778 * ctx->lock held by caller 779 * ensure we do not access cgroup data 780 * unless we have the cgroup pinned (css_get) 781 */ 782 if (!task || !ctx->nr_cgroups) 783 return; 784 785 cgrp = perf_cgroup_from_task(task, ctx); 786 787 for (css = &cgrp->css; css; css = css->parent) { 788 cgrp = container_of(css, struct perf_cgroup, css); 789 info = this_cpu_ptr(cgrp->info); 790 info->timestamp = ctx->timestamp; 791 } 792 } 793 794 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 795 796 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 797 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 798 799 /* 800 * reschedule events based on the cgroup constraint of task. 801 * 802 * mode SWOUT : schedule out everything 803 * mode SWIN : schedule in based on cgroup for next 804 */ 805 static void perf_cgroup_switch(struct task_struct *task, int mode) 806 { 807 struct perf_cpu_context *cpuctx; 808 struct list_head *list; 809 unsigned long flags; 810 811 /* 812 * Disable interrupts and preemption to avoid this CPU's 813 * cgrp_cpuctx_entry to change under us. 814 */ 815 local_irq_save(flags); 816 817 list = this_cpu_ptr(&cgrp_cpuctx_list); 818 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 819 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 820 821 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 822 perf_pmu_disable(cpuctx->ctx.pmu); 823 824 if (mode & PERF_CGROUP_SWOUT) { 825 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 826 /* 827 * must not be done before ctxswout due 828 * to event_filter_match() in event_sched_out() 829 */ 830 cpuctx->cgrp = NULL; 831 } 832 833 if (mode & PERF_CGROUP_SWIN) { 834 WARN_ON_ONCE(cpuctx->cgrp); 835 /* 836 * set cgrp before ctxsw in to allow 837 * event_filter_match() to not have to pass 838 * task around 839 * we pass the cpuctx->ctx to perf_cgroup_from_task() 840 * because cgorup events are only per-cpu 841 */ 842 cpuctx->cgrp = perf_cgroup_from_task(task, 843 &cpuctx->ctx); 844 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 845 } 846 perf_pmu_enable(cpuctx->ctx.pmu); 847 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 848 } 849 850 local_irq_restore(flags); 851 } 852 853 static inline void perf_cgroup_sched_out(struct task_struct *task, 854 struct task_struct *next) 855 { 856 struct perf_cgroup *cgrp1; 857 struct perf_cgroup *cgrp2 = NULL; 858 859 rcu_read_lock(); 860 /* 861 * we come here when we know perf_cgroup_events > 0 862 * we do not need to pass the ctx here because we know 863 * we are holding the rcu lock 864 */ 865 cgrp1 = perf_cgroup_from_task(task, NULL); 866 cgrp2 = perf_cgroup_from_task(next, NULL); 867 868 /* 869 * only schedule out current cgroup events if we know 870 * that we are switching to a different cgroup. Otherwise, 871 * do no touch the cgroup events. 872 */ 873 if (cgrp1 != cgrp2) 874 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 875 876 rcu_read_unlock(); 877 } 878 879 static inline void perf_cgroup_sched_in(struct task_struct *prev, 880 struct task_struct *task) 881 { 882 struct perf_cgroup *cgrp1; 883 struct perf_cgroup *cgrp2 = NULL; 884 885 rcu_read_lock(); 886 /* 887 * we come here when we know perf_cgroup_events > 0 888 * we do not need to pass the ctx here because we know 889 * we are holding the rcu lock 890 */ 891 cgrp1 = perf_cgroup_from_task(task, NULL); 892 cgrp2 = perf_cgroup_from_task(prev, NULL); 893 894 /* 895 * only need to schedule in cgroup events if we are changing 896 * cgroup during ctxsw. Cgroup events were not scheduled 897 * out of ctxsw out if that was not the case. 898 */ 899 if (cgrp1 != cgrp2) 900 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 901 902 rcu_read_unlock(); 903 } 904 905 static int perf_cgroup_ensure_storage(struct perf_event *event, 906 struct cgroup_subsys_state *css) 907 { 908 struct perf_cpu_context *cpuctx; 909 struct perf_event **storage; 910 int cpu, heap_size, ret = 0; 911 912 /* 913 * Allow storage to have sufficent space for an iterator for each 914 * possibly nested cgroup plus an iterator for events with no cgroup. 915 */ 916 for (heap_size = 1; css; css = css->parent) 917 heap_size++; 918 919 for_each_possible_cpu(cpu) { 920 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 921 if (heap_size <= cpuctx->heap_size) 922 continue; 923 924 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 925 GFP_KERNEL, cpu_to_node(cpu)); 926 if (!storage) { 927 ret = -ENOMEM; 928 break; 929 } 930 931 raw_spin_lock_irq(&cpuctx->ctx.lock); 932 if (cpuctx->heap_size < heap_size) { 933 swap(cpuctx->heap, storage); 934 if (storage == cpuctx->heap_default) 935 storage = NULL; 936 cpuctx->heap_size = heap_size; 937 } 938 raw_spin_unlock_irq(&cpuctx->ctx.lock); 939 940 kfree(storage); 941 } 942 943 return ret; 944 } 945 946 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 947 struct perf_event_attr *attr, 948 struct perf_event *group_leader) 949 { 950 struct perf_cgroup *cgrp; 951 struct cgroup_subsys_state *css; 952 struct fd f = fdget(fd); 953 int ret = 0; 954 955 if (!f.file) 956 return -EBADF; 957 958 css = css_tryget_online_from_dir(f.file->f_path.dentry, 959 &perf_event_cgrp_subsys); 960 if (IS_ERR(css)) { 961 ret = PTR_ERR(css); 962 goto out; 963 } 964 965 ret = perf_cgroup_ensure_storage(event, css); 966 if (ret) 967 goto out; 968 969 cgrp = container_of(css, struct perf_cgroup, css); 970 event->cgrp = cgrp; 971 972 /* 973 * all events in a group must monitor 974 * the same cgroup because a task belongs 975 * to only one perf cgroup at a time 976 */ 977 if (group_leader && group_leader->cgrp != cgrp) { 978 perf_detach_cgroup(event); 979 ret = -EINVAL; 980 } 981 out: 982 fdput(f); 983 return ret; 984 } 985 986 static inline void 987 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 988 { 989 struct perf_cgroup_info *t; 990 t = per_cpu_ptr(event->cgrp->info, event->cpu); 991 event->shadow_ctx_time = now - t->timestamp; 992 } 993 994 static inline void 995 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 996 { 997 struct perf_cpu_context *cpuctx; 998 999 if (!is_cgroup_event(event)) 1000 return; 1001 1002 /* 1003 * Because cgroup events are always per-cpu events, 1004 * @ctx == &cpuctx->ctx. 1005 */ 1006 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1007 1008 /* 1009 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1010 * matching the event's cgroup, we must do this for every new event, 1011 * because if the first would mismatch, the second would not try again 1012 * and we would leave cpuctx->cgrp unset. 1013 */ 1014 if (ctx->is_active && !cpuctx->cgrp) { 1015 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1016 1017 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1018 cpuctx->cgrp = cgrp; 1019 } 1020 1021 if (ctx->nr_cgroups++) 1022 return; 1023 1024 list_add(&cpuctx->cgrp_cpuctx_entry, 1025 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1026 } 1027 1028 static inline void 1029 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1030 { 1031 struct perf_cpu_context *cpuctx; 1032 1033 if (!is_cgroup_event(event)) 1034 return; 1035 1036 /* 1037 * Because cgroup events are always per-cpu events, 1038 * @ctx == &cpuctx->ctx. 1039 */ 1040 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1041 1042 if (--ctx->nr_cgroups) 1043 return; 1044 1045 if (ctx->is_active && cpuctx->cgrp) 1046 cpuctx->cgrp = NULL; 1047 1048 list_del(&cpuctx->cgrp_cpuctx_entry); 1049 } 1050 1051 #else /* !CONFIG_CGROUP_PERF */ 1052 1053 static inline bool 1054 perf_cgroup_match(struct perf_event *event) 1055 { 1056 return true; 1057 } 1058 1059 static inline void perf_detach_cgroup(struct perf_event *event) 1060 {} 1061 1062 static inline int is_cgroup_event(struct perf_event *event) 1063 { 1064 return 0; 1065 } 1066 1067 static inline void update_cgrp_time_from_event(struct perf_event *event) 1068 { 1069 } 1070 1071 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1072 { 1073 } 1074 1075 static inline void perf_cgroup_sched_out(struct task_struct *task, 1076 struct task_struct *next) 1077 { 1078 } 1079 1080 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1081 struct task_struct *task) 1082 { 1083 } 1084 1085 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1086 struct perf_event_attr *attr, 1087 struct perf_event *group_leader) 1088 { 1089 return -EINVAL; 1090 } 1091 1092 static inline void 1093 perf_cgroup_set_timestamp(struct task_struct *task, 1094 struct perf_event_context *ctx) 1095 { 1096 } 1097 1098 static inline void 1099 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1100 { 1101 } 1102 1103 static inline void 1104 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1105 { 1106 } 1107 1108 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1109 { 1110 return 0; 1111 } 1112 1113 static inline void 1114 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1115 { 1116 } 1117 1118 static inline void 1119 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1120 { 1121 } 1122 #endif 1123 1124 /* 1125 * set default to be dependent on timer tick just 1126 * like original code 1127 */ 1128 #define PERF_CPU_HRTIMER (1000 / HZ) 1129 /* 1130 * function must be called with interrupts disabled 1131 */ 1132 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1133 { 1134 struct perf_cpu_context *cpuctx; 1135 bool rotations; 1136 1137 lockdep_assert_irqs_disabled(); 1138 1139 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1140 rotations = perf_rotate_context(cpuctx); 1141 1142 raw_spin_lock(&cpuctx->hrtimer_lock); 1143 if (rotations) 1144 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1145 else 1146 cpuctx->hrtimer_active = 0; 1147 raw_spin_unlock(&cpuctx->hrtimer_lock); 1148 1149 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1150 } 1151 1152 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1153 { 1154 struct hrtimer *timer = &cpuctx->hrtimer; 1155 struct pmu *pmu = cpuctx->ctx.pmu; 1156 u64 interval; 1157 1158 /* no multiplexing needed for SW PMU */ 1159 if (pmu->task_ctx_nr == perf_sw_context) 1160 return; 1161 1162 /* 1163 * check default is sane, if not set then force to 1164 * default interval (1/tick) 1165 */ 1166 interval = pmu->hrtimer_interval_ms; 1167 if (interval < 1) 1168 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1169 1170 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1171 1172 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1173 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1174 timer->function = perf_mux_hrtimer_handler; 1175 } 1176 1177 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1178 { 1179 struct hrtimer *timer = &cpuctx->hrtimer; 1180 struct pmu *pmu = cpuctx->ctx.pmu; 1181 unsigned long flags; 1182 1183 /* not for SW PMU */ 1184 if (pmu->task_ctx_nr == perf_sw_context) 1185 return 0; 1186 1187 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1188 if (!cpuctx->hrtimer_active) { 1189 cpuctx->hrtimer_active = 1; 1190 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1191 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1192 } 1193 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1194 1195 return 0; 1196 } 1197 1198 void perf_pmu_disable(struct pmu *pmu) 1199 { 1200 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1201 if (!(*count)++) 1202 pmu->pmu_disable(pmu); 1203 } 1204 1205 void perf_pmu_enable(struct pmu *pmu) 1206 { 1207 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1208 if (!--(*count)) 1209 pmu->pmu_enable(pmu); 1210 } 1211 1212 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1213 1214 /* 1215 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1216 * perf_event_task_tick() are fully serialized because they're strictly cpu 1217 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1218 * disabled, while perf_event_task_tick is called from IRQ context. 1219 */ 1220 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1221 { 1222 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1223 1224 lockdep_assert_irqs_disabled(); 1225 1226 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1227 1228 list_add(&ctx->active_ctx_list, head); 1229 } 1230 1231 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1232 { 1233 lockdep_assert_irqs_disabled(); 1234 1235 WARN_ON(list_empty(&ctx->active_ctx_list)); 1236 1237 list_del_init(&ctx->active_ctx_list); 1238 } 1239 1240 static void get_ctx(struct perf_event_context *ctx) 1241 { 1242 refcount_inc(&ctx->refcount); 1243 } 1244 1245 static void *alloc_task_ctx_data(struct pmu *pmu) 1246 { 1247 if (pmu->task_ctx_cache) 1248 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1249 1250 return NULL; 1251 } 1252 1253 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1254 { 1255 if (pmu->task_ctx_cache && task_ctx_data) 1256 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1257 } 1258 1259 static void free_ctx(struct rcu_head *head) 1260 { 1261 struct perf_event_context *ctx; 1262 1263 ctx = container_of(head, struct perf_event_context, rcu_head); 1264 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1265 kfree(ctx); 1266 } 1267 1268 static void put_ctx(struct perf_event_context *ctx) 1269 { 1270 if (refcount_dec_and_test(&ctx->refcount)) { 1271 if (ctx->parent_ctx) 1272 put_ctx(ctx->parent_ctx); 1273 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1274 put_task_struct(ctx->task); 1275 call_rcu(&ctx->rcu_head, free_ctx); 1276 } 1277 } 1278 1279 /* 1280 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1281 * perf_pmu_migrate_context() we need some magic. 1282 * 1283 * Those places that change perf_event::ctx will hold both 1284 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1285 * 1286 * Lock ordering is by mutex address. There are two other sites where 1287 * perf_event_context::mutex nests and those are: 1288 * 1289 * - perf_event_exit_task_context() [ child , 0 ] 1290 * perf_event_exit_event() 1291 * put_event() [ parent, 1 ] 1292 * 1293 * - perf_event_init_context() [ parent, 0 ] 1294 * inherit_task_group() 1295 * inherit_group() 1296 * inherit_event() 1297 * perf_event_alloc() 1298 * perf_init_event() 1299 * perf_try_init_event() [ child , 1 ] 1300 * 1301 * While it appears there is an obvious deadlock here -- the parent and child 1302 * nesting levels are inverted between the two. This is in fact safe because 1303 * life-time rules separate them. That is an exiting task cannot fork, and a 1304 * spawning task cannot (yet) exit. 1305 * 1306 * But remember that these are parent<->child context relations, and 1307 * migration does not affect children, therefore these two orderings should not 1308 * interact. 1309 * 1310 * The change in perf_event::ctx does not affect children (as claimed above) 1311 * because the sys_perf_event_open() case will install a new event and break 1312 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1313 * concerned with cpuctx and that doesn't have children. 1314 * 1315 * The places that change perf_event::ctx will issue: 1316 * 1317 * perf_remove_from_context(); 1318 * synchronize_rcu(); 1319 * perf_install_in_context(); 1320 * 1321 * to affect the change. The remove_from_context() + synchronize_rcu() should 1322 * quiesce the event, after which we can install it in the new location. This 1323 * means that only external vectors (perf_fops, prctl) can perturb the event 1324 * while in transit. Therefore all such accessors should also acquire 1325 * perf_event_context::mutex to serialize against this. 1326 * 1327 * However; because event->ctx can change while we're waiting to acquire 1328 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1329 * function. 1330 * 1331 * Lock order: 1332 * exec_update_lock 1333 * task_struct::perf_event_mutex 1334 * perf_event_context::mutex 1335 * perf_event::child_mutex; 1336 * perf_event_context::lock 1337 * perf_event::mmap_mutex 1338 * mmap_lock 1339 * perf_addr_filters_head::lock 1340 * 1341 * cpu_hotplug_lock 1342 * pmus_lock 1343 * cpuctx->mutex / perf_event_context::mutex 1344 */ 1345 static struct perf_event_context * 1346 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1347 { 1348 struct perf_event_context *ctx; 1349 1350 again: 1351 rcu_read_lock(); 1352 ctx = READ_ONCE(event->ctx); 1353 if (!refcount_inc_not_zero(&ctx->refcount)) { 1354 rcu_read_unlock(); 1355 goto again; 1356 } 1357 rcu_read_unlock(); 1358 1359 mutex_lock_nested(&ctx->mutex, nesting); 1360 if (event->ctx != ctx) { 1361 mutex_unlock(&ctx->mutex); 1362 put_ctx(ctx); 1363 goto again; 1364 } 1365 1366 return ctx; 1367 } 1368 1369 static inline struct perf_event_context * 1370 perf_event_ctx_lock(struct perf_event *event) 1371 { 1372 return perf_event_ctx_lock_nested(event, 0); 1373 } 1374 1375 static void perf_event_ctx_unlock(struct perf_event *event, 1376 struct perf_event_context *ctx) 1377 { 1378 mutex_unlock(&ctx->mutex); 1379 put_ctx(ctx); 1380 } 1381 1382 /* 1383 * This must be done under the ctx->lock, such as to serialize against 1384 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1385 * calling scheduler related locks and ctx->lock nests inside those. 1386 */ 1387 static __must_check struct perf_event_context * 1388 unclone_ctx(struct perf_event_context *ctx) 1389 { 1390 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1391 1392 lockdep_assert_held(&ctx->lock); 1393 1394 if (parent_ctx) 1395 ctx->parent_ctx = NULL; 1396 ctx->generation++; 1397 1398 return parent_ctx; 1399 } 1400 1401 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1402 enum pid_type type) 1403 { 1404 u32 nr; 1405 /* 1406 * only top level events have the pid namespace they were created in 1407 */ 1408 if (event->parent) 1409 event = event->parent; 1410 1411 nr = __task_pid_nr_ns(p, type, event->ns); 1412 /* avoid -1 if it is idle thread or runs in another ns */ 1413 if (!nr && !pid_alive(p)) 1414 nr = -1; 1415 return nr; 1416 } 1417 1418 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1419 { 1420 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1421 } 1422 1423 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1424 { 1425 return perf_event_pid_type(event, p, PIDTYPE_PID); 1426 } 1427 1428 /* 1429 * If we inherit events we want to return the parent event id 1430 * to userspace. 1431 */ 1432 static u64 primary_event_id(struct perf_event *event) 1433 { 1434 u64 id = event->id; 1435 1436 if (event->parent) 1437 id = event->parent->id; 1438 1439 return id; 1440 } 1441 1442 /* 1443 * Get the perf_event_context for a task and lock it. 1444 * 1445 * This has to cope with the fact that until it is locked, 1446 * the context could get moved to another task. 1447 */ 1448 static struct perf_event_context * 1449 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1450 { 1451 struct perf_event_context *ctx; 1452 1453 retry: 1454 /* 1455 * One of the few rules of preemptible RCU is that one cannot do 1456 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1457 * part of the read side critical section was irqs-enabled -- see 1458 * rcu_read_unlock_special(). 1459 * 1460 * Since ctx->lock nests under rq->lock we must ensure the entire read 1461 * side critical section has interrupts disabled. 1462 */ 1463 local_irq_save(*flags); 1464 rcu_read_lock(); 1465 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1466 if (ctx) { 1467 /* 1468 * If this context is a clone of another, it might 1469 * get swapped for another underneath us by 1470 * perf_event_task_sched_out, though the 1471 * rcu_read_lock() protects us from any context 1472 * getting freed. Lock the context and check if it 1473 * got swapped before we could get the lock, and retry 1474 * if so. If we locked the right context, then it 1475 * can't get swapped on us any more. 1476 */ 1477 raw_spin_lock(&ctx->lock); 1478 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1479 raw_spin_unlock(&ctx->lock); 1480 rcu_read_unlock(); 1481 local_irq_restore(*flags); 1482 goto retry; 1483 } 1484 1485 if (ctx->task == TASK_TOMBSTONE || 1486 !refcount_inc_not_zero(&ctx->refcount)) { 1487 raw_spin_unlock(&ctx->lock); 1488 ctx = NULL; 1489 } else { 1490 WARN_ON_ONCE(ctx->task != task); 1491 } 1492 } 1493 rcu_read_unlock(); 1494 if (!ctx) 1495 local_irq_restore(*flags); 1496 return ctx; 1497 } 1498 1499 /* 1500 * Get the context for a task and increment its pin_count so it 1501 * can't get swapped to another task. This also increments its 1502 * reference count so that the context can't get freed. 1503 */ 1504 static struct perf_event_context * 1505 perf_pin_task_context(struct task_struct *task, int ctxn) 1506 { 1507 struct perf_event_context *ctx; 1508 unsigned long flags; 1509 1510 ctx = perf_lock_task_context(task, ctxn, &flags); 1511 if (ctx) { 1512 ++ctx->pin_count; 1513 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1514 } 1515 return ctx; 1516 } 1517 1518 static void perf_unpin_context(struct perf_event_context *ctx) 1519 { 1520 unsigned long flags; 1521 1522 raw_spin_lock_irqsave(&ctx->lock, flags); 1523 --ctx->pin_count; 1524 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1525 } 1526 1527 /* 1528 * Update the record of the current time in a context. 1529 */ 1530 static void update_context_time(struct perf_event_context *ctx) 1531 { 1532 u64 now = perf_clock(); 1533 1534 ctx->time += now - ctx->timestamp; 1535 ctx->timestamp = now; 1536 } 1537 1538 static u64 perf_event_time(struct perf_event *event) 1539 { 1540 struct perf_event_context *ctx = event->ctx; 1541 1542 if (is_cgroup_event(event)) 1543 return perf_cgroup_event_time(event); 1544 1545 return ctx ? ctx->time : 0; 1546 } 1547 1548 static enum event_type_t get_event_type(struct perf_event *event) 1549 { 1550 struct perf_event_context *ctx = event->ctx; 1551 enum event_type_t event_type; 1552 1553 lockdep_assert_held(&ctx->lock); 1554 1555 /* 1556 * It's 'group type', really, because if our group leader is 1557 * pinned, so are we. 1558 */ 1559 if (event->group_leader != event) 1560 event = event->group_leader; 1561 1562 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1563 if (!ctx->task) 1564 event_type |= EVENT_CPU; 1565 1566 return event_type; 1567 } 1568 1569 /* 1570 * Helper function to initialize event group nodes. 1571 */ 1572 static void init_event_group(struct perf_event *event) 1573 { 1574 RB_CLEAR_NODE(&event->group_node); 1575 event->group_index = 0; 1576 } 1577 1578 /* 1579 * Extract pinned or flexible groups from the context 1580 * based on event attrs bits. 1581 */ 1582 static struct perf_event_groups * 1583 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1584 { 1585 if (event->attr.pinned) 1586 return &ctx->pinned_groups; 1587 else 1588 return &ctx->flexible_groups; 1589 } 1590 1591 /* 1592 * Helper function to initializes perf_event_group trees. 1593 */ 1594 static void perf_event_groups_init(struct perf_event_groups *groups) 1595 { 1596 groups->tree = RB_ROOT; 1597 groups->index = 0; 1598 } 1599 1600 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1601 { 1602 struct cgroup *cgroup = NULL; 1603 1604 #ifdef CONFIG_CGROUP_PERF 1605 if (event->cgrp) 1606 cgroup = event->cgrp->css.cgroup; 1607 #endif 1608 1609 return cgroup; 1610 } 1611 1612 /* 1613 * Compare function for event groups; 1614 * 1615 * Implements complex key that first sorts by CPU and then by virtual index 1616 * which provides ordering when rotating groups for the same CPU. 1617 */ 1618 static __always_inline int 1619 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1620 const u64 left_group_index, const struct perf_event *right) 1621 { 1622 if (left_cpu < right->cpu) 1623 return -1; 1624 if (left_cpu > right->cpu) 1625 return 1; 1626 1627 #ifdef CONFIG_CGROUP_PERF 1628 { 1629 const struct cgroup *right_cgroup = event_cgroup(right); 1630 1631 if (left_cgroup != right_cgroup) { 1632 if (!left_cgroup) { 1633 /* 1634 * Left has no cgroup but right does, no 1635 * cgroups come first. 1636 */ 1637 return -1; 1638 } 1639 if (!right_cgroup) { 1640 /* 1641 * Right has no cgroup but left does, no 1642 * cgroups come first. 1643 */ 1644 return 1; 1645 } 1646 /* Two dissimilar cgroups, order by id. */ 1647 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1648 return -1; 1649 1650 return 1; 1651 } 1652 } 1653 #endif 1654 1655 if (left_group_index < right->group_index) 1656 return -1; 1657 if (left_group_index > right->group_index) 1658 return 1; 1659 1660 return 0; 1661 } 1662 1663 #define __node_2_pe(node) \ 1664 rb_entry((node), struct perf_event, group_node) 1665 1666 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1667 { 1668 struct perf_event *e = __node_2_pe(a); 1669 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1670 __node_2_pe(b)) < 0; 1671 } 1672 1673 struct __group_key { 1674 int cpu; 1675 struct cgroup *cgroup; 1676 }; 1677 1678 static inline int __group_cmp(const void *key, const struct rb_node *node) 1679 { 1680 const struct __group_key *a = key; 1681 const struct perf_event *b = __node_2_pe(node); 1682 1683 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1684 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1685 } 1686 1687 /* 1688 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1689 * key (see perf_event_groups_less). This places it last inside the CPU 1690 * subtree. 1691 */ 1692 static void 1693 perf_event_groups_insert(struct perf_event_groups *groups, 1694 struct perf_event *event) 1695 { 1696 event->group_index = ++groups->index; 1697 1698 rb_add(&event->group_node, &groups->tree, __group_less); 1699 } 1700 1701 /* 1702 * Helper function to insert event into the pinned or flexible groups. 1703 */ 1704 static void 1705 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1706 { 1707 struct perf_event_groups *groups; 1708 1709 groups = get_event_groups(event, ctx); 1710 perf_event_groups_insert(groups, event); 1711 } 1712 1713 /* 1714 * Delete a group from a tree. 1715 */ 1716 static void 1717 perf_event_groups_delete(struct perf_event_groups *groups, 1718 struct perf_event *event) 1719 { 1720 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1721 RB_EMPTY_ROOT(&groups->tree)); 1722 1723 rb_erase(&event->group_node, &groups->tree); 1724 init_event_group(event); 1725 } 1726 1727 /* 1728 * Helper function to delete event from its groups. 1729 */ 1730 static void 1731 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1732 { 1733 struct perf_event_groups *groups; 1734 1735 groups = get_event_groups(event, ctx); 1736 perf_event_groups_delete(groups, event); 1737 } 1738 1739 /* 1740 * Get the leftmost event in the cpu/cgroup subtree. 1741 */ 1742 static struct perf_event * 1743 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1744 struct cgroup *cgrp) 1745 { 1746 struct __group_key key = { 1747 .cpu = cpu, 1748 .cgroup = cgrp, 1749 }; 1750 struct rb_node *node; 1751 1752 node = rb_find_first(&key, &groups->tree, __group_cmp); 1753 if (node) 1754 return __node_2_pe(node); 1755 1756 return NULL; 1757 } 1758 1759 /* 1760 * Like rb_entry_next_safe() for the @cpu subtree. 1761 */ 1762 static struct perf_event * 1763 perf_event_groups_next(struct perf_event *event) 1764 { 1765 struct __group_key key = { 1766 .cpu = event->cpu, 1767 .cgroup = event_cgroup(event), 1768 }; 1769 struct rb_node *next; 1770 1771 next = rb_next_match(&key, &event->group_node, __group_cmp); 1772 if (next) 1773 return __node_2_pe(next); 1774 1775 return NULL; 1776 } 1777 1778 /* 1779 * Iterate through the whole groups tree. 1780 */ 1781 #define perf_event_groups_for_each(event, groups) \ 1782 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1783 typeof(*event), group_node); event; \ 1784 event = rb_entry_safe(rb_next(&event->group_node), \ 1785 typeof(*event), group_node)) 1786 1787 /* 1788 * Add an event from the lists for its context. 1789 * Must be called with ctx->mutex and ctx->lock held. 1790 */ 1791 static void 1792 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1793 { 1794 lockdep_assert_held(&ctx->lock); 1795 1796 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1797 event->attach_state |= PERF_ATTACH_CONTEXT; 1798 1799 event->tstamp = perf_event_time(event); 1800 1801 /* 1802 * If we're a stand alone event or group leader, we go to the context 1803 * list, group events are kept attached to the group so that 1804 * perf_group_detach can, at all times, locate all siblings. 1805 */ 1806 if (event->group_leader == event) { 1807 event->group_caps = event->event_caps; 1808 add_event_to_groups(event, ctx); 1809 } 1810 1811 list_add_rcu(&event->event_entry, &ctx->event_list); 1812 ctx->nr_events++; 1813 if (event->attr.inherit_stat) 1814 ctx->nr_stat++; 1815 1816 if (event->state > PERF_EVENT_STATE_OFF) 1817 perf_cgroup_event_enable(event, ctx); 1818 1819 ctx->generation++; 1820 } 1821 1822 /* 1823 * Initialize event state based on the perf_event_attr::disabled. 1824 */ 1825 static inline void perf_event__state_init(struct perf_event *event) 1826 { 1827 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1828 PERF_EVENT_STATE_INACTIVE; 1829 } 1830 1831 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1832 { 1833 int entry = sizeof(u64); /* value */ 1834 int size = 0; 1835 int nr = 1; 1836 1837 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1838 size += sizeof(u64); 1839 1840 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1841 size += sizeof(u64); 1842 1843 if (event->attr.read_format & PERF_FORMAT_ID) 1844 entry += sizeof(u64); 1845 1846 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1847 nr += nr_siblings; 1848 size += sizeof(u64); 1849 } 1850 1851 size += entry * nr; 1852 event->read_size = size; 1853 } 1854 1855 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1856 { 1857 struct perf_sample_data *data; 1858 u16 size = 0; 1859 1860 if (sample_type & PERF_SAMPLE_IP) 1861 size += sizeof(data->ip); 1862 1863 if (sample_type & PERF_SAMPLE_ADDR) 1864 size += sizeof(data->addr); 1865 1866 if (sample_type & PERF_SAMPLE_PERIOD) 1867 size += sizeof(data->period); 1868 1869 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1870 size += sizeof(data->weight.full); 1871 1872 if (sample_type & PERF_SAMPLE_READ) 1873 size += event->read_size; 1874 1875 if (sample_type & PERF_SAMPLE_DATA_SRC) 1876 size += sizeof(data->data_src.val); 1877 1878 if (sample_type & PERF_SAMPLE_TRANSACTION) 1879 size += sizeof(data->txn); 1880 1881 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1882 size += sizeof(data->phys_addr); 1883 1884 if (sample_type & PERF_SAMPLE_CGROUP) 1885 size += sizeof(data->cgroup); 1886 1887 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1888 size += sizeof(data->data_page_size); 1889 1890 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1891 size += sizeof(data->code_page_size); 1892 1893 event->header_size = size; 1894 } 1895 1896 /* 1897 * Called at perf_event creation and when events are attached/detached from a 1898 * group. 1899 */ 1900 static void perf_event__header_size(struct perf_event *event) 1901 { 1902 __perf_event_read_size(event, 1903 event->group_leader->nr_siblings); 1904 __perf_event_header_size(event, event->attr.sample_type); 1905 } 1906 1907 static void perf_event__id_header_size(struct perf_event *event) 1908 { 1909 struct perf_sample_data *data; 1910 u64 sample_type = event->attr.sample_type; 1911 u16 size = 0; 1912 1913 if (sample_type & PERF_SAMPLE_TID) 1914 size += sizeof(data->tid_entry); 1915 1916 if (sample_type & PERF_SAMPLE_TIME) 1917 size += sizeof(data->time); 1918 1919 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1920 size += sizeof(data->id); 1921 1922 if (sample_type & PERF_SAMPLE_ID) 1923 size += sizeof(data->id); 1924 1925 if (sample_type & PERF_SAMPLE_STREAM_ID) 1926 size += sizeof(data->stream_id); 1927 1928 if (sample_type & PERF_SAMPLE_CPU) 1929 size += sizeof(data->cpu_entry); 1930 1931 event->id_header_size = size; 1932 } 1933 1934 static bool perf_event_validate_size(struct perf_event *event) 1935 { 1936 /* 1937 * The values computed here will be over-written when we actually 1938 * attach the event. 1939 */ 1940 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1941 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1942 perf_event__id_header_size(event); 1943 1944 /* 1945 * Sum the lot; should not exceed the 64k limit we have on records. 1946 * Conservative limit to allow for callchains and other variable fields. 1947 */ 1948 if (event->read_size + event->header_size + 1949 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1950 return false; 1951 1952 return true; 1953 } 1954 1955 static void perf_group_attach(struct perf_event *event) 1956 { 1957 struct perf_event *group_leader = event->group_leader, *pos; 1958 1959 lockdep_assert_held(&event->ctx->lock); 1960 1961 /* 1962 * We can have double attach due to group movement in perf_event_open. 1963 */ 1964 if (event->attach_state & PERF_ATTACH_GROUP) 1965 return; 1966 1967 event->attach_state |= PERF_ATTACH_GROUP; 1968 1969 if (group_leader == event) 1970 return; 1971 1972 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1973 1974 group_leader->group_caps &= event->event_caps; 1975 1976 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1977 group_leader->nr_siblings++; 1978 1979 perf_event__header_size(group_leader); 1980 1981 for_each_sibling_event(pos, group_leader) 1982 perf_event__header_size(pos); 1983 } 1984 1985 /* 1986 * Remove an event from the lists for its context. 1987 * Must be called with ctx->mutex and ctx->lock held. 1988 */ 1989 static void 1990 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1991 { 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 /* 1996 * We can have double detach due to exit/hot-unplug + close. 1997 */ 1998 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1999 return; 2000 2001 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2002 2003 ctx->nr_events--; 2004 if (event->attr.inherit_stat) 2005 ctx->nr_stat--; 2006 2007 list_del_rcu(&event->event_entry); 2008 2009 if (event->group_leader == event) 2010 del_event_from_groups(event, ctx); 2011 2012 /* 2013 * If event was in error state, then keep it 2014 * that way, otherwise bogus counts will be 2015 * returned on read(). The only way to get out 2016 * of error state is by explicit re-enabling 2017 * of the event 2018 */ 2019 if (event->state > PERF_EVENT_STATE_OFF) { 2020 perf_cgroup_event_disable(event, ctx); 2021 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2022 } 2023 2024 ctx->generation++; 2025 } 2026 2027 static int 2028 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2029 { 2030 if (!has_aux(aux_event)) 2031 return 0; 2032 2033 if (!event->pmu->aux_output_match) 2034 return 0; 2035 2036 return event->pmu->aux_output_match(aux_event); 2037 } 2038 2039 static void put_event(struct perf_event *event); 2040 static void event_sched_out(struct perf_event *event, 2041 struct perf_cpu_context *cpuctx, 2042 struct perf_event_context *ctx); 2043 2044 static void perf_put_aux_event(struct perf_event *event) 2045 { 2046 struct perf_event_context *ctx = event->ctx; 2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2048 struct perf_event *iter; 2049 2050 /* 2051 * If event uses aux_event tear down the link 2052 */ 2053 if (event->aux_event) { 2054 iter = event->aux_event; 2055 event->aux_event = NULL; 2056 put_event(iter); 2057 return; 2058 } 2059 2060 /* 2061 * If the event is an aux_event, tear down all links to 2062 * it from other events. 2063 */ 2064 for_each_sibling_event(iter, event->group_leader) { 2065 if (iter->aux_event != event) 2066 continue; 2067 2068 iter->aux_event = NULL; 2069 put_event(event); 2070 2071 /* 2072 * If it's ACTIVE, schedule it out and put it into ERROR 2073 * state so that we don't try to schedule it again. Note 2074 * that perf_event_enable() will clear the ERROR status. 2075 */ 2076 event_sched_out(iter, cpuctx, ctx); 2077 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2078 } 2079 } 2080 2081 static bool perf_need_aux_event(struct perf_event *event) 2082 { 2083 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2084 } 2085 2086 static int perf_get_aux_event(struct perf_event *event, 2087 struct perf_event *group_leader) 2088 { 2089 /* 2090 * Our group leader must be an aux event if we want to be 2091 * an aux_output. This way, the aux event will precede its 2092 * aux_output events in the group, and therefore will always 2093 * schedule first. 2094 */ 2095 if (!group_leader) 2096 return 0; 2097 2098 /* 2099 * aux_output and aux_sample_size are mutually exclusive. 2100 */ 2101 if (event->attr.aux_output && event->attr.aux_sample_size) 2102 return 0; 2103 2104 if (event->attr.aux_output && 2105 !perf_aux_output_match(event, group_leader)) 2106 return 0; 2107 2108 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2109 return 0; 2110 2111 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2112 return 0; 2113 2114 /* 2115 * Link aux_outputs to their aux event; this is undone in 2116 * perf_group_detach() by perf_put_aux_event(). When the 2117 * group in torn down, the aux_output events loose their 2118 * link to the aux_event and can't schedule any more. 2119 */ 2120 event->aux_event = group_leader; 2121 2122 return 1; 2123 } 2124 2125 static inline struct list_head *get_event_list(struct perf_event *event) 2126 { 2127 struct perf_event_context *ctx = event->ctx; 2128 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2129 } 2130 2131 /* 2132 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2133 * cannot exist on their own, schedule them out and move them into the ERROR 2134 * state. Also see _perf_event_enable(), it will not be able to recover 2135 * this ERROR state. 2136 */ 2137 static inline void perf_remove_sibling_event(struct perf_event *event) 2138 { 2139 struct perf_event_context *ctx = event->ctx; 2140 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2141 2142 event_sched_out(event, cpuctx, ctx); 2143 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2144 } 2145 2146 static void perf_group_detach(struct perf_event *event) 2147 { 2148 struct perf_event *leader = event->group_leader; 2149 struct perf_event *sibling, *tmp; 2150 struct perf_event_context *ctx = event->ctx; 2151 2152 lockdep_assert_held(&ctx->lock); 2153 2154 /* 2155 * We can have double detach due to exit/hot-unplug + close. 2156 */ 2157 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2158 return; 2159 2160 event->attach_state &= ~PERF_ATTACH_GROUP; 2161 2162 perf_put_aux_event(event); 2163 2164 /* 2165 * If this is a sibling, remove it from its group. 2166 */ 2167 if (leader != event) { 2168 list_del_init(&event->sibling_list); 2169 event->group_leader->nr_siblings--; 2170 goto out; 2171 } 2172 2173 /* 2174 * If this was a group event with sibling events then 2175 * upgrade the siblings to singleton events by adding them 2176 * to whatever list we are on. 2177 */ 2178 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2179 2180 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2181 perf_remove_sibling_event(sibling); 2182 2183 sibling->group_leader = sibling; 2184 list_del_init(&sibling->sibling_list); 2185 2186 /* Inherit group flags from the previous leader */ 2187 sibling->group_caps = event->group_caps; 2188 2189 if (!RB_EMPTY_NODE(&event->group_node)) { 2190 add_event_to_groups(sibling, event->ctx); 2191 2192 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2193 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2194 } 2195 2196 WARN_ON_ONCE(sibling->ctx != event->ctx); 2197 } 2198 2199 out: 2200 for_each_sibling_event(tmp, leader) 2201 perf_event__header_size(tmp); 2202 2203 perf_event__header_size(leader); 2204 } 2205 2206 static bool is_orphaned_event(struct perf_event *event) 2207 { 2208 return event->state == PERF_EVENT_STATE_DEAD; 2209 } 2210 2211 static inline int __pmu_filter_match(struct perf_event *event) 2212 { 2213 struct pmu *pmu = event->pmu; 2214 return pmu->filter_match ? pmu->filter_match(event) : 1; 2215 } 2216 2217 /* 2218 * Check whether we should attempt to schedule an event group based on 2219 * PMU-specific filtering. An event group can consist of HW and SW events, 2220 * potentially with a SW leader, so we must check all the filters, to 2221 * determine whether a group is schedulable: 2222 */ 2223 static inline int pmu_filter_match(struct perf_event *event) 2224 { 2225 struct perf_event *sibling; 2226 2227 if (!__pmu_filter_match(event)) 2228 return 0; 2229 2230 for_each_sibling_event(sibling, event) { 2231 if (!__pmu_filter_match(sibling)) 2232 return 0; 2233 } 2234 2235 return 1; 2236 } 2237 2238 static inline int 2239 event_filter_match(struct perf_event *event) 2240 { 2241 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2242 perf_cgroup_match(event) && pmu_filter_match(event); 2243 } 2244 2245 static void 2246 event_sched_out(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2251 2252 WARN_ON_ONCE(event->ctx != ctx); 2253 lockdep_assert_held(&ctx->lock); 2254 2255 if (event->state != PERF_EVENT_STATE_ACTIVE) 2256 return; 2257 2258 /* 2259 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2260 * we can schedule events _OUT_ individually through things like 2261 * __perf_remove_from_context(). 2262 */ 2263 list_del_init(&event->active_list); 2264 2265 perf_pmu_disable(event->pmu); 2266 2267 event->pmu->del(event, 0); 2268 event->oncpu = -1; 2269 2270 if (READ_ONCE(event->pending_disable) >= 0) { 2271 WRITE_ONCE(event->pending_disable, -1); 2272 perf_cgroup_event_disable(event, ctx); 2273 state = PERF_EVENT_STATE_OFF; 2274 } 2275 perf_event_set_state(event, state); 2276 2277 if (!is_software_event(event)) 2278 cpuctx->active_oncpu--; 2279 if (!--ctx->nr_active) 2280 perf_event_ctx_deactivate(ctx); 2281 if (event->attr.freq && event->attr.sample_freq) 2282 ctx->nr_freq--; 2283 if (event->attr.exclusive || !cpuctx->active_oncpu) 2284 cpuctx->exclusive = 0; 2285 2286 perf_pmu_enable(event->pmu); 2287 } 2288 2289 static void 2290 group_sched_out(struct perf_event *group_event, 2291 struct perf_cpu_context *cpuctx, 2292 struct perf_event_context *ctx) 2293 { 2294 struct perf_event *event; 2295 2296 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2297 return; 2298 2299 perf_pmu_disable(ctx->pmu); 2300 2301 event_sched_out(group_event, cpuctx, ctx); 2302 2303 /* 2304 * Schedule out siblings (if any): 2305 */ 2306 for_each_sibling_event(event, group_event) 2307 event_sched_out(event, cpuctx, ctx); 2308 2309 perf_pmu_enable(ctx->pmu); 2310 } 2311 2312 #define DETACH_GROUP 0x01UL 2313 2314 /* 2315 * Cross CPU call to remove a performance event 2316 * 2317 * We disable the event on the hardware level first. After that we 2318 * remove it from the context list. 2319 */ 2320 static void 2321 __perf_remove_from_context(struct perf_event *event, 2322 struct perf_cpu_context *cpuctx, 2323 struct perf_event_context *ctx, 2324 void *info) 2325 { 2326 unsigned long flags = (unsigned long)info; 2327 2328 if (ctx->is_active & EVENT_TIME) { 2329 update_context_time(ctx); 2330 update_cgrp_time_from_cpuctx(cpuctx); 2331 } 2332 2333 event_sched_out(event, cpuctx, ctx); 2334 if (flags & DETACH_GROUP) 2335 perf_group_detach(event); 2336 list_del_event(event, ctx); 2337 2338 if (!ctx->nr_events && ctx->is_active) { 2339 ctx->is_active = 0; 2340 ctx->rotate_necessary = 0; 2341 if (ctx->task) { 2342 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2343 cpuctx->task_ctx = NULL; 2344 } 2345 } 2346 } 2347 2348 /* 2349 * Remove the event from a task's (or a CPU's) list of events. 2350 * 2351 * If event->ctx is a cloned context, callers must make sure that 2352 * every task struct that event->ctx->task could possibly point to 2353 * remains valid. This is OK when called from perf_release since 2354 * that only calls us on the top-level context, which can't be a clone. 2355 * When called from perf_event_exit_task, it's OK because the 2356 * context has been detached from its task. 2357 */ 2358 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2359 { 2360 struct perf_event_context *ctx = event->ctx; 2361 2362 lockdep_assert_held(&ctx->mutex); 2363 2364 event_function_call(event, __perf_remove_from_context, (void *)flags); 2365 2366 /* 2367 * The above event_function_call() can NO-OP when it hits 2368 * TASK_TOMBSTONE. In that case we must already have been detached 2369 * from the context (by perf_event_exit_event()) but the grouping 2370 * might still be in-tact. 2371 */ 2372 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2373 if ((flags & DETACH_GROUP) && 2374 (event->attach_state & PERF_ATTACH_GROUP)) { 2375 /* 2376 * Since in that case we cannot possibly be scheduled, simply 2377 * detach now. 2378 */ 2379 raw_spin_lock_irq(&ctx->lock); 2380 perf_group_detach(event); 2381 raw_spin_unlock_irq(&ctx->lock); 2382 } 2383 } 2384 2385 /* 2386 * Cross CPU call to disable a performance event 2387 */ 2388 static void __perf_event_disable(struct perf_event *event, 2389 struct perf_cpu_context *cpuctx, 2390 struct perf_event_context *ctx, 2391 void *info) 2392 { 2393 if (event->state < PERF_EVENT_STATE_INACTIVE) 2394 return; 2395 2396 if (ctx->is_active & EVENT_TIME) { 2397 update_context_time(ctx); 2398 update_cgrp_time_from_event(event); 2399 } 2400 2401 if (event == event->group_leader) 2402 group_sched_out(event, cpuctx, ctx); 2403 else 2404 event_sched_out(event, cpuctx, ctx); 2405 2406 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2407 perf_cgroup_event_disable(event, ctx); 2408 } 2409 2410 /* 2411 * Disable an event. 2412 * 2413 * If event->ctx is a cloned context, callers must make sure that 2414 * every task struct that event->ctx->task could possibly point to 2415 * remains valid. This condition is satisfied when called through 2416 * perf_event_for_each_child or perf_event_for_each because they 2417 * hold the top-level event's child_mutex, so any descendant that 2418 * goes to exit will block in perf_event_exit_event(). 2419 * 2420 * When called from perf_pending_event it's OK because event->ctx 2421 * is the current context on this CPU and preemption is disabled, 2422 * hence we can't get into perf_event_task_sched_out for this context. 2423 */ 2424 static void _perf_event_disable(struct perf_event *event) 2425 { 2426 struct perf_event_context *ctx = event->ctx; 2427 2428 raw_spin_lock_irq(&ctx->lock); 2429 if (event->state <= PERF_EVENT_STATE_OFF) { 2430 raw_spin_unlock_irq(&ctx->lock); 2431 return; 2432 } 2433 raw_spin_unlock_irq(&ctx->lock); 2434 2435 event_function_call(event, __perf_event_disable, NULL); 2436 } 2437 2438 void perf_event_disable_local(struct perf_event *event) 2439 { 2440 event_function_local(event, __perf_event_disable, NULL); 2441 } 2442 2443 /* 2444 * Strictly speaking kernel users cannot create groups and therefore this 2445 * interface does not need the perf_event_ctx_lock() magic. 2446 */ 2447 void perf_event_disable(struct perf_event *event) 2448 { 2449 struct perf_event_context *ctx; 2450 2451 ctx = perf_event_ctx_lock(event); 2452 _perf_event_disable(event); 2453 perf_event_ctx_unlock(event, ctx); 2454 } 2455 EXPORT_SYMBOL_GPL(perf_event_disable); 2456 2457 void perf_event_disable_inatomic(struct perf_event *event) 2458 { 2459 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2460 /* can fail, see perf_pending_event_disable() */ 2461 irq_work_queue(&event->pending); 2462 } 2463 2464 static void perf_set_shadow_time(struct perf_event *event, 2465 struct perf_event_context *ctx) 2466 { 2467 /* 2468 * use the correct time source for the time snapshot 2469 * 2470 * We could get by without this by leveraging the 2471 * fact that to get to this function, the caller 2472 * has most likely already called update_context_time() 2473 * and update_cgrp_time_xx() and thus both timestamp 2474 * are identical (or very close). Given that tstamp is, 2475 * already adjusted for cgroup, we could say that: 2476 * tstamp - ctx->timestamp 2477 * is equivalent to 2478 * tstamp - cgrp->timestamp. 2479 * 2480 * Then, in perf_output_read(), the calculation would 2481 * work with no changes because: 2482 * - event is guaranteed scheduled in 2483 * - no scheduled out in between 2484 * - thus the timestamp would be the same 2485 * 2486 * But this is a bit hairy. 2487 * 2488 * So instead, we have an explicit cgroup call to remain 2489 * within the time source all along. We believe it 2490 * is cleaner and simpler to understand. 2491 */ 2492 if (is_cgroup_event(event)) 2493 perf_cgroup_set_shadow_time(event, event->tstamp); 2494 else 2495 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2496 } 2497 2498 #define MAX_INTERRUPTS (~0ULL) 2499 2500 static void perf_log_throttle(struct perf_event *event, int enable); 2501 static void perf_log_itrace_start(struct perf_event *event); 2502 2503 static int 2504 event_sched_in(struct perf_event *event, 2505 struct perf_cpu_context *cpuctx, 2506 struct perf_event_context *ctx) 2507 { 2508 int ret = 0; 2509 2510 WARN_ON_ONCE(event->ctx != ctx); 2511 2512 lockdep_assert_held(&ctx->lock); 2513 2514 if (event->state <= PERF_EVENT_STATE_OFF) 2515 return 0; 2516 2517 WRITE_ONCE(event->oncpu, smp_processor_id()); 2518 /* 2519 * Order event::oncpu write to happen before the ACTIVE state is 2520 * visible. This allows perf_event_{stop,read}() to observe the correct 2521 * ->oncpu if it sees ACTIVE. 2522 */ 2523 smp_wmb(); 2524 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2525 2526 /* 2527 * Unthrottle events, since we scheduled we might have missed several 2528 * ticks already, also for a heavily scheduling task there is little 2529 * guarantee it'll get a tick in a timely manner. 2530 */ 2531 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2532 perf_log_throttle(event, 1); 2533 event->hw.interrupts = 0; 2534 } 2535 2536 perf_pmu_disable(event->pmu); 2537 2538 perf_set_shadow_time(event, ctx); 2539 2540 perf_log_itrace_start(event); 2541 2542 if (event->pmu->add(event, PERF_EF_START)) { 2543 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2544 event->oncpu = -1; 2545 ret = -EAGAIN; 2546 goto out; 2547 } 2548 2549 if (!is_software_event(event)) 2550 cpuctx->active_oncpu++; 2551 if (!ctx->nr_active++) 2552 perf_event_ctx_activate(ctx); 2553 if (event->attr.freq && event->attr.sample_freq) 2554 ctx->nr_freq++; 2555 2556 if (event->attr.exclusive) 2557 cpuctx->exclusive = 1; 2558 2559 out: 2560 perf_pmu_enable(event->pmu); 2561 2562 return ret; 2563 } 2564 2565 static int 2566 group_sched_in(struct perf_event *group_event, 2567 struct perf_cpu_context *cpuctx, 2568 struct perf_event_context *ctx) 2569 { 2570 struct perf_event *event, *partial_group = NULL; 2571 struct pmu *pmu = ctx->pmu; 2572 2573 if (group_event->state == PERF_EVENT_STATE_OFF) 2574 return 0; 2575 2576 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2577 2578 if (event_sched_in(group_event, cpuctx, ctx)) 2579 goto error; 2580 2581 /* 2582 * Schedule in siblings as one group (if any): 2583 */ 2584 for_each_sibling_event(event, group_event) { 2585 if (event_sched_in(event, cpuctx, ctx)) { 2586 partial_group = event; 2587 goto group_error; 2588 } 2589 } 2590 2591 if (!pmu->commit_txn(pmu)) 2592 return 0; 2593 2594 group_error: 2595 /* 2596 * Groups can be scheduled in as one unit only, so undo any 2597 * partial group before returning: 2598 * The events up to the failed event are scheduled out normally. 2599 */ 2600 for_each_sibling_event(event, group_event) { 2601 if (event == partial_group) 2602 break; 2603 2604 event_sched_out(event, cpuctx, ctx); 2605 } 2606 event_sched_out(group_event, cpuctx, ctx); 2607 2608 error: 2609 pmu->cancel_txn(pmu); 2610 return -EAGAIN; 2611 } 2612 2613 /* 2614 * Work out whether we can put this event group on the CPU now. 2615 */ 2616 static int group_can_go_on(struct perf_event *event, 2617 struct perf_cpu_context *cpuctx, 2618 int can_add_hw) 2619 { 2620 /* 2621 * Groups consisting entirely of software events can always go on. 2622 */ 2623 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2624 return 1; 2625 /* 2626 * If an exclusive group is already on, no other hardware 2627 * events can go on. 2628 */ 2629 if (cpuctx->exclusive) 2630 return 0; 2631 /* 2632 * If this group is exclusive and there are already 2633 * events on the CPU, it can't go on. 2634 */ 2635 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2636 return 0; 2637 /* 2638 * Otherwise, try to add it if all previous groups were able 2639 * to go on. 2640 */ 2641 return can_add_hw; 2642 } 2643 2644 static void add_event_to_ctx(struct perf_event *event, 2645 struct perf_event_context *ctx) 2646 { 2647 list_add_event(event, ctx); 2648 perf_group_attach(event); 2649 } 2650 2651 static void ctx_sched_out(struct perf_event_context *ctx, 2652 struct perf_cpu_context *cpuctx, 2653 enum event_type_t event_type); 2654 static void 2655 ctx_sched_in(struct perf_event_context *ctx, 2656 struct perf_cpu_context *cpuctx, 2657 enum event_type_t event_type, 2658 struct task_struct *task); 2659 2660 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2661 struct perf_event_context *ctx, 2662 enum event_type_t event_type) 2663 { 2664 if (!cpuctx->task_ctx) 2665 return; 2666 2667 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2668 return; 2669 2670 ctx_sched_out(ctx, cpuctx, event_type); 2671 } 2672 2673 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2674 struct perf_event_context *ctx, 2675 struct task_struct *task) 2676 { 2677 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2678 if (ctx) 2679 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2680 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2681 if (ctx) 2682 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2683 } 2684 2685 /* 2686 * We want to maintain the following priority of scheduling: 2687 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2688 * - task pinned (EVENT_PINNED) 2689 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2690 * - task flexible (EVENT_FLEXIBLE). 2691 * 2692 * In order to avoid unscheduling and scheduling back in everything every 2693 * time an event is added, only do it for the groups of equal priority and 2694 * below. 2695 * 2696 * This can be called after a batch operation on task events, in which case 2697 * event_type is a bit mask of the types of events involved. For CPU events, 2698 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2699 */ 2700 static void ctx_resched(struct perf_cpu_context *cpuctx, 2701 struct perf_event_context *task_ctx, 2702 enum event_type_t event_type) 2703 { 2704 enum event_type_t ctx_event_type; 2705 bool cpu_event = !!(event_type & EVENT_CPU); 2706 2707 /* 2708 * If pinned groups are involved, flexible groups also need to be 2709 * scheduled out. 2710 */ 2711 if (event_type & EVENT_PINNED) 2712 event_type |= EVENT_FLEXIBLE; 2713 2714 ctx_event_type = event_type & EVENT_ALL; 2715 2716 perf_pmu_disable(cpuctx->ctx.pmu); 2717 if (task_ctx) 2718 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2719 2720 /* 2721 * Decide which cpu ctx groups to schedule out based on the types 2722 * of events that caused rescheduling: 2723 * - EVENT_CPU: schedule out corresponding groups; 2724 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2725 * - otherwise, do nothing more. 2726 */ 2727 if (cpu_event) 2728 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2729 else if (ctx_event_type & EVENT_PINNED) 2730 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2731 2732 perf_event_sched_in(cpuctx, task_ctx, current); 2733 perf_pmu_enable(cpuctx->ctx.pmu); 2734 } 2735 2736 void perf_pmu_resched(struct pmu *pmu) 2737 { 2738 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2739 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2740 2741 perf_ctx_lock(cpuctx, task_ctx); 2742 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2743 perf_ctx_unlock(cpuctx, task_ctx); 2744 } 2745 2746 /* 2747 * Cross CPU call to install and enable a performance event 2748 * 2749 * Very similar to remote_function() + event_function() but cannot assume that 2750 * things like ctx->is_active and cpuctx->task_ctx are set. 2751 */ 2752 static int __perf_install_in_context(void *info) 2753 { 2754 struct perf_event *event = info; 2755 struct perf_event_context *ctx = event->ctx; 2756 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2757 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2758 bool reprogram = true; 2759 int ret = 0; 2760 2761 raw_spin_lock(&cpuctx->ctx.lock); 2762 if (ctx->task) { 2763 raw_spin_lock(&ctx->lock); 2764 task_ctx = ctx; 2765 2766 reprogram = (ctx->task == current); 2767 2768 /* 2769 * If the task is running, it must be running on this CPU, 2770 * otherwise we cannot reprogram things. 2771 * 2772 * If its not running, we don't care, ctx->lock will 2773 * serialize against it becoming runnable. 2774 */ 2775 if (task_curr(ctx->task) && !reprogram) { 2776 ret = -ESRCH; 2777 goto unlock; 2778 } 2779 2780 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2781 } else if (task_ctx) { 2782 raw_spin_lock(&task_ctx->lock); 2783 } 2784 2785 #ifdef CONFIG_CGROUP_PERF 2786 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2787 /* 2788 * If the current cgroup doesn't match the event's 2789 * cgroup, we should not try to schedule it. 2790 */ 2791 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2792 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2793 event->cgrp->css.cgroup); 2794 } 2795 #endif 2796 2797 if (reprogram) { 2798 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2799 add_event_to_ctx(event, ctx); 2800 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2801 } else { 2802 add_event_to_ctx(event, ctx); 2803 } 2804 2805 unlock: 2806 perf_ctx_unlock(cpuctx, task_ctx); 2807 2808 return ret; 2809 } 2810 2811 static bool exclusive_event_installable(struct perf_event *event, 2812 struct perf_event_context *ctx); 2813 2814 /* 2815 * Attach a performance event to a context. 2816 * 2817 * Very similar to event_function_call, see comment there. 2818 */ 2819 static void 2820 perf_install_in_context(struct perf_event_context *ctx, 2821 struct perf_event *event, 2822 int cpu) 2823 { 2824 struct task_struct *task = READ_ONCE(ctx->task); 2825 2826 lockdep_assert_held(&ctx->mutex); 2827 2828 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2829 2830 if (event->cpu != -1) 2831 event->cpu = cpu; 2832 2833 /* 2834 * Ensures that if we can observe event->ctx, both the event and ctx 2835 * will be 'complete'. See perf_iterate_sb_cpu(). 2836 */ 2837 smp_store_release(&event->ctx, ctx); 2838 2839 /* 2840 * perf_event_attr::disabled events will not run and can be initialized 2841 * without IPI. Except when this is the first event for the context, in 2842 * that case we need the magic of the IPI to set ctx->is_active. 2843 * 2844 * The IOC_ENABLE that is sure to follow the creation of a disabled 2845 * event will issue the IPI and reprogram the hardware. 2846 */ 2847 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2848 raw_spin_lock_irq(&ctx->lock); 2849 if (ctx->task == TASK_TOMBSTONE) { 2850 raw_spin_unlock_irq(&ctx->lock); 2851 return; 2852 } 2853 add_event_to_ctx(event, ctx); 2854 raw_spin_unlock_irq(&ctx->lock); 2855 return; 2856 } 2857 2858 if (!task) { 2859 cpu_function_call(cpu, __perf_install_in_context, event); 2860 return; 2861 } 2862 2863 /* 2864 * Should not happen, we validate the ctx is still alive before calling. 2865 */ 2866 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2867 return; 2868 2869 /* 2870 * Installing events is tricky because we cannot rely on ctx->is_active 2871 * to be set in case this is the nr_events 0 -> 1 transition. 2872 * 2873 * Instead we use task_curr(), which tells us if the task is running. 2874 * However, since we use task_curr() outside of rq::lock, we can race 2875 * against the actual state. This means the result can be wrong. 2876 * 2877 * If we get a false positive, we retry, this is harmless. 2878 * 2879 * If we get a false negative, things are complicated. If we are after 2880 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2881 * value must be correct. If we're before, it doesn't matter since 2882 * perf_event_context_sched_in() will program the counter. 2883 * 2884 * However, this hinges on the remote context switch having observed 2885 * our task->perf_event_ctxp[] store, such that it will in fact take 2886 * ctx::lock in perf_event_context_sched_in(). 2887 * 2888 * We do this by task_function_call(), if the IPI fails to hit the task 2889 * we know any future context switch of task must see the 2890 * perf_event_ctpx[] store. 2891 */ 2892 2893 /* 2894 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2895 * task_cpu() load, such that if the IPI then does not find the task 2896 * running, a future context switch of that task must observe the 2897 * store. 2898 */ 2899 smp_mb(); 2900 again: 2901 if (!task_function_call(task, __perf_install_in_context, event)) 2902 return; 2903 2904 raw_spin_lock_irq(&ctx->lock); 2905 task = ctx->task; 2906 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2907 /* 2908 * Cannot happen because we already checked above (which also 2909 * cannot happen), and we hold ctx->mutex, which serializes us 2910 * against perf_event_exit_task_context(). 2911 */ 2912 raw_spin_unlock_irq(&ctx->lock); 2913 return; 2914 } 2915 /* 2916 * If the task is not running, ctx->lock will avoid it becoming so, 2917 * thus we can safely install the event. 2918 */ 2919 if (task_curr(task)) { 2920 raw_spin_unlock_irq(&ctx->lock); 2921 goto again; 2922 } 2923 add_event_to_ctx(event, ctx); 2924 raw_spin_unlock_irq(&ctx->lock); 2925 } 2926 2927 /* 2928 * Cross CPU call to enable a performance event 2929 */ 2930 static void __perf_event_enable(struct perf_event *event, 2931 struct perf_cpu_context *cpuctx, 2932 struct perf_event_context *ctx, 2933 void *info) 2934 { 2935 struct perf_event *leader = event->group_leader; 2936 struct perf_event_context *task_ctx; 2937 2938 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2939 event->state <= PERF_EVENT_STATE_ERROR) 2940 return; 2941 2942 if (ctx->is_active) 2943 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2944 2945 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2946 perf_cgroup_event_enable(event, ctx); 2947 2948 if (!ctx->is_active) 2949 return; 2950 2951 if (!event_filter_match(event)) { 2952 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2953 return; 2954 } 2955 2956 /* 2957 * If the event is in a group and isn't the group leader, 2958 * then don't put it on unless the group is on. 2959 */ 2960 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2961 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2962 return; 2963 } 2964 2965 task_ctx = cpuctx->task_ctx; 2966 if (ctx->task) 2967 WARN_ON_ONCE(task_ctx != ctx); 2968 2969 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2970 } 2971 2972 /* 2973 * Enable an event. 2974 * 2975 * If event->ctx is a cloned context, callers must make sure that 2976 * every task struct that event->ctx->task could possibly point to 2977 * remains valid. This condition is satisfied when called through 2978 * perf_event_for_each_child or perf_event_for_each as described 2979 * for perf_event_disable. 2980 */ 2981 static void _perf_event_enable(struct perf_event *event) 2982 { 2983 struct perf_event_context *ctx = event->ctx; 2984 2985 raw_spin_lock_irq(&ctx->lock); 2986 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2987 event->state < PERF_EVENT_STATE_ERROR) { 2988 out: 2989 raw_spin_unlock_irq(&ctx->lock); 2990 return; 2991 } 2992 2993 /* 2994 * If the event is in error state, clear that first. 2995 * 2996 * That way, if we see the event in error state below, we know that it 2997 * has gone back into error state, as distinct from the task having 2998 * been scheduled away before the cross-call arrived. 2999 */ 3000 if (event->state == PERF_EVENT_STATE_ERROR) { 3001 /* 3002 * Detached SIBLING events cannot leave ERROR state. 3003 */ 3004 if (event->event_caps & PERF_EV_CAP_SIBLING && 3005 event->group_leader == event) 3006 goto out; 3007 3008 event->state = PERF_EVENT_STATE_OFF; 3009 } 3010 raw_spin_unlock_irq(&ctx->lock); 3011 3012 event_function_call(event, __perf_event_enable, NULL); 3013 } 3014 3015 /* 3016 * See perf_event_disable(); 3017 */ 3018 void perf_event_enable(struct perf_event *event) 3019 { 3020 struct perf_event_context *ctx; 3021 3022 ctx = perf_event_ctx_lock(event); 3023 _perf_event_enable(event); 3024 perf_event_ctx_unlock(event, ctx); 3025 } 3026 EXPORT_SYMBOL_GPL(perf_event_enable); 3027 3028 struct stop_event_data { 3029 struct perf_event *event; 3030 unsigned int restart; 3031 }; 3032 3033 static int __perf_event_stop(void *info) 3034 { 3035 struct stop_event_data *sd = info; 3036 struct perf_event *event = sd->event; 3037 3038 /* if it's already INACTIVE, do nothing */ 3039 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3040 return 0; 3041 3042 /* matches smp_wmb() in event_sched_in() */ 3043 smp_rmb(); 3044 3045 /* 3046 * There is a window with interrupts enabled before we get here, 3047 * so we need to check again lest we try to stop another CPU's event. 3048 */ 3049 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3050 return -EAGAIN; 3051 3052 event->pmu->stop(event, PERF_EF_UPDATE); 3053 3054 /* 3055 * May race with the actual stop (through perf_pmu_output_stop()), 3056 * but it is only used for events with AUX ring buffer, and such 3057 * events will refuse to restart because of rb::aux_mmap_count==0, 3058 * see comments in perf_aux_output_begin(). 3059 * 3060 * Since this is happening on an event-local CPU, no trace is lost 3061 * while restarting. 3062 */ 3063 if (sd->restart) 3064 event->pmu->start(event, 0); 3065 3066 return 0; 3067 } 3068 3069 static int perf_event_stop(struct perf_event *event, int restart) 3070 { 3071 struct stop_event_data sd = { 3072 .event = event, 3073 .restart = restart, 3074 }; 3075 int ret = 0; 3076 3077 do { 3078 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3079 return 0; 3080 3081 /* matches smp_wmb() in event_sched_in() */ 3082 smp_rmb(); 3083 3084 /* 3085 * We only want to restart ACTIVE events, so if the event goes 3086 * inactive here (event->oncpu==-1), there's nothing more to do; 3087 * fall through with ret==-ENXIO. 3088 */ 3089 ret = cpu_function_call(READ_ONCE(event->oncpu), 3090 __perf_event_stop, &sd); 3091 } while (ret == -EAGAIN); 3092 3093 return ret; 3094 } 3095 3096 /* 3097 * In order to contain the amount of racy and tricky in the address filter 3098 * configuration management, it is a two part process: 3099 * 3100 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3101 * we update the addresses of corresponding vmas in 3102 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3103 * (p2) when an event is scheduled in (pmu::add), it calls 3104 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3105 * if the generation has changed since the previous call. 3106 * 3107 * If (p1) happens while the event is active, we restart it to force (p2). 3108 * 3109 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3110 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3111 * ioctl; 3112 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3113 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3114 * for reading; 3115 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3116 * of exec. 3117 */ 3118 void perf_event_addr_filters_sync(struct perf_event *event) 3119 { 3120 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3121 3122 if (!has_addr_filter(event)) 3123 return; 3124 3125 raw_spin_lock(&ifh->lock); 3126 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3127 event->pmu->addr_filters_sync(event); 3128 event->hw.addr_filters_gen = event->addr_filters_gen; 3129 } 3130 raw_spin_unlock(&ifh->lock); 3131 } 3132 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3133 3134 static int _perf_event_refresh(struct perf_event *event, int refresh) 3135 { 3136 /* 3137 * not supported on inherited events 3138 */ 3139 if (event->attr.inherit || !is_sampling_event(event)) 3140 return -EINVAL; 3141 3142 atomic_add(refresh, &event->event_limit); 3143 _perf_event_enable(event); 3144 3145 return 0; 3146 } 3147 3148 /* 3149 * See perf_event_disable() 3150 */ 3151 int perf_event_refresh(struct perf_event *event, int refresh) 3152 { 3153 struct perf_event_context *ctx; 3154 int ret; 3155 3156 ctx = perf_event_ctx_lock(event); 3157 ret = _perf_event_refresh(event, refresh); 3158 perf_event_ctx_unlock(event, ctx); 3159 3160 return ret; 3161 } 3162 EXPORT_SYMBOL_GPL(perf_event_refresh); 3163 3164 static int perf_event_modify_breakpoint(struct perf_event *bp, 3165 struct perf_event_attr *attr) 3166 { 3167 int err; 3168 3169 _perf_event_disable(bp); 3170 3171 err = modify_user_hw_breakpoint_check(bp, attr, true); 3172 3173 if (!bp->attr.disabled) 3174 _perf_event_enable(bp); 3175 3176 return err; 3177 } 3178 3179 static int perf_event_modify_attr(struct perf_event *event, 3180 struct perf_event_attr *attr) 3181 { 3182 if (event->attr.type != attr->type) 3183 return -EINVAL; 3184 3185 switch (event->attr.type) { 3186 case PERF_TYPE_BREAKPOINT: 3187 return perf_event_modify_breakpoint(event, attr); 3188 default: 3189 /* Place holder for future additions. */ 3190 return -EOPNOTSUPP; 3191 } 3192 } 3193 3194 static void ctx_sched_out(struct perf_event_context *ctx, 3195 struct perf_cpu_context *cpuctx, 3196 enum event_type_t event_type) 3197 { 3198 struct perf_event *event, *tmp; 3199 int is_active = ctx->is_active; 3200 3201 lockdep_assert_held(&ctx->lock); 3202 3203 if (likely(!ctx->nr_events)) { 3204 /* 3205 * See __perf_remove_from_context(). 3206 */ 3207 WARN_ON_ONCE(ctx->is_active); 3208 if (ctx->task) 3209 WARN_ON_ONCE(cpuctx->task_ctx); 3210 return; 3211 } 3212 3213 ctx->is_active &= ~event_type; 3214 if (!(ctx->is_active & EVENT_ALL)) 3215 ctx->is_active = 0; 3216 3217 if (ctx->task) { 3218 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3219 if (!ctx->is_active) 3220 cpuctx->task_ctx = NULL; 3221 } 3222 3223 /* 3224 * Always update time if it was set; not only when it changes. 3225 * Otherwise we can 'forget' to update time for any but the last 3226 * context we sched out. For example: 3227 * 3228 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3229 * ctx_sched_out(.event_type = EVENT_PINNED) 3230 * 3231 * would only update time for the pinned events. 3232 */ 3233 if (is_active & EVENT_TIME) { 3234 /* update (and stop) ctx time */ 3235 update_context_time(ctx); 3236 update_cgrp_time_from_cpuctx(cpuctx); 3237 } 3238 3239 is_active ^= ctx->is_active; /* changed bits */ 3240 3241 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3242 return; 3243 3244 perf_pmu_disable(ctx->pmu); 3245 if (is_active & EVENT_PINNED) { 3246 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3247 group_sched_out(event, cpuctx, ctx); 3248 } 3249 3250 if (is_active & EVENT_FLEXIBLE) { 3251 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3252 group_sched_out(event, cpuctx, ctx); 3253 3254 /* 3255 * Since we cleared EVENT_FLEXIBLE, also clear 3256 * rotate_necessary, is will be reset by 3257 * ctx_flexible_sched_in() when needed. 3258 */ 3259 ctx->rotate_necessary = 0; 3260 } 3261 perf_pmu_enable(ctx->pmu); 3262 } 3263 3264 /* 3265 * Test whether two contexts are equivalent, i.e. whether they have both been 3266 * cloned from the same version of the same context. 3267 * 3268 * Equivalence is measured using a generation number in the context that is 3269 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3270 * and list_del_event(). 3271 */ 3272 static int context_equiv(struct perf_event_context *ctx1, 3273 struct perf_event_context *ctx2) 3274 { 3275 lockdep_assert_held(&ctx1->lock); 3276 lockdep_assert_held(&ctx2->lock); 3277 3278 /* Pinning disables the swap optimization */ 3279 if (ctx1->pin_count || ctx2->pin_count) 3280 return 0; 3281 3282 /* If ctx1 is the parent of ctx2 */ 3283 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3284 return 1; 3285 3286 /* If ctx2 is the parent of ctx1 */ 3287 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3288 return 1; 3289 3290 /* 3291 * If ctx1 and ctx2 have the same parent; we flatten the parent 3292 * hierarchy, see perf_event_init_context(). 3293 */ 3294 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3295 ctx1->parent_gen == ctx2->parent_gen) 3296 return 1; 3297 3298 /* Unmatched */ 3299 return 0; 3300 } 3301 3302 static void __perf_event_sync_stat(struct perf_event *event, 3303 struct perf_event *next_event) 3304 { 3305 u64 value; 3306 3307 if (!event->attr.inherit_stat) 3308 return; 3309 3310 /* 3311 * Update the event value, we cannot use perf_event_read() 3312 * because we're in the middle of a context switch and have IRQs 3313 * disabled, which upsets smp_call_function_single(), however 3314 * we know the event must be on the current CPU, therefore we 3315 * don't need to use it. 3316 */ 3317 if (event->state == PERF_EVENT_STATE_ACTIVE) 3318 event->pmu->read(event); 3319 3320 perf_event_update_time(event); 3321 3322 /* 3323 * In order to keep per-task stats reliable we need to flip the event 3324 * values when we flip the contexts. 3325 */ 3326 value = local64_read(&next_event->count); 3327 value = local64_xchg(&event->count, value); 3328 local64_set(&next_event->count, value); 3329 3330 swap(event->total_time_enabled, next_event->total_time_enabled); 3331 swap(event->total_time_running, next_event->total_time_running); 3332 3333 /* 3334 * Since we swizzled the values, update the user visible data too. 3335 */ 3336 perf_event_update_userpage(event); 3337 perf_event_update_userpage(next_event); 3338 } 3339 3340 static void perf_event_sync_stat(struct perf_event_context *ctx, 3341 struct perf_event_context *next_ctx) 3342 { 3343 struct perf_event *event, *next_event; 3344 3345 if (!ctx->nr_stat) 3346 return; 3347 3348 update_context_time(ctx); 3349 3350 event = list_first_entry(&ctx->event_list, 3351 struct perf_event, event_entry); 3352 3353 next_event = list_first_entry(&next_ctx->event_list, 3354 struct perf_event, event_entry); 3355 3356 while (&event->event_entry != &ctx->event_list && 3357 &next_event->event_entry != &next_ctx->event_list) { 3358 3359 __perf_event_sync_stat(event, next_event); 3360 3361 event = list_next_entry(event, event_entry); 3362 next_event = list_next_entry(next_event, event_entry); 3363 } 3364 } 3365 3366 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3367 struct task_struct *next) 3368 { 3369 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3370 struct perf_event_context *next_ctx; 3371 struct perf_event_context *parent, *next_parent; 3372 struct perf_cpu_context *cpuctx; 3373 int do_switch = 1; 3374 struct pmu *pmu; 3375 3376 if (likely(!ctx)) 3377 return; 3378 3379 pmu = ctx->pmu; 3380 cpuctx = __get_cpu_context(ctx); 3381 if (!cpuctx->task_ctx) 3382 return; 3383 3384 rcu_read_lock(); 3385 next_ctx = next->perf_event_ctxp[ctxn]; 3386 if (!next_ctx) 3387 goto unlock; 3388 3389 parent = rcu_dereference(ctx->parent_ctx); 3390 next_parent = rcu_dereference(next_ctx->parent_ctx); 3391 3392 /* If neither context have a parent context; they cannot be clones. */ 3393 if (!parent && !next_parent) 3394 goto unlock; 3395 3396 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3397 /* 3398 * Looks like the two contexts are clones, so we might be 3399 * able to optimize the context switch. We lock both 3400 * contexts and check that they are clones under the 3401 * lock (including re-checking that neither has been 3402 * uncloned in the meantime). It doesn't matter which 3403 * order we take the locks because no other cpu could 3404 * be trying to lock both of these tasks. 3405 */ 3406 raw_spin_lock(&ctx->lock); 3407 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3408 if (context_equiv(ctx, next_ctx)) { 3409 3410 WRITE_ONCE(ctx->task, next); 3411 WRITE_ONCE(next_ctx->task, task); 3412 3413 perf_pmu_disable(pmu); 3414 3415 if (cpuctx->sched_cb_usage && pmu->sched_task) 3416 pmu->sched_task(ctx, false); 3417 3418 /* 3419 * PMU specific parts of task perf context can require 3420 * additional synchronization. As an example of such 3421 * synchronization see implementation details of Intel 3422 * LBR call stack data profiling; 3423 */ 3424 if (pmu->swap_task_ctx) 3425 pmu->swap_task_ctx(ctx, next_ctx); 3426 else 3427 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3428 3429 perf_pmu_enable(pmu); 3430 3431 /* 3432 * RCU_INIT_POINTER here is safe because we've not 3433 * modified the ctx and the above modification of 3434 * ctx->task and ctx->task_ctx_data are immaterial 3435 * since those values are always verified under 3436 * ctx->lock which we're now holding. 3437 */ 3438 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3439 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3440 3441 do_switch = 0; 3442 3443 perf_event_sync_stat(ctx, next_ctx); 3444 } 3445 raw_spin_unlock(&next_ctx->lock); 3446 raw_spin_unlock(&ctx->lock); 3447 } 3448 unlock: 3449 rcu_read_unlock(); 3450 3451 if (do_switch) { 3452 raw_spin_lock(&ctx->lock); 3453 perf_pmu_disable(pmu); 3454 3455 if (cpuctx->sched_cb_usage && pmu->sched_task) 3456 pmu->sched_task(ctx, false); 3457 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3458 3459 perf_pmu_enable(pmu); 3460 raw_spin_unlock(&ctx->lock); 3461 } 3462 } 3463 3464 void perf_sched_cb_dec(struct pmu *pmu) 3465 { 3466 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3467 3468 --cpuctx->sched_cb_usage; 3469 } 3470 3471 3472 void perf_sched_cb_inc(struct pmu *pmu) 3473 { 3474 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3475 3476 cpuctx->sched_cb_usage++; 3477 } 3478 3479 /* 3480 * This function provides the context switch callback to the lower code 3481 * layer. It is invoked ONLY when the context switch callback is enabled. 3482 * 3483 * This callback is relevant even to per-cpu events; for example multi event 3484 * PEBS requires this to provide PID/TID information. This requires we flush 3485 * all queued PEBS records before we context switch to a new task. 3486 */ 3487 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3488 { 3489 struct pmu *pmu; 3490 3491 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3492 3493 if (WARN_ON_ONCE(!pmu->sched_task)) 3494 return; 3495 3496 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3497 perf_pmu_disable(pmu); 3498 3499 pmu->sched_task(cpuctx->task_ctx, sched_in); 3500 3501 perf_pmu_enable(pmu); 3502 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3503 } 3504 3505 static void perf_event_switch(struct task_struct *task, 3506 struct task_struct *next_prev, bool sched_in); 3507 3508 #define for_each_task_context_nr(ctxn) \ 3509 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3510 3511 /* 3512 * Called from scheduler to remove the events of the current task, 3513 * with interrupts disabled. 3514 * 3515 * We stop each event and update the event value in event->count. 3516 * 3517 * This does not protect us against NMI, but disable() 3518 * sets the disabled bit in the control field of event _before_ 3519 * accessing the event control register. If a NMI hits, then it will 3520 * not restart the event. 3521 */ 3522 void __perf_event_task_sched_out(struct task_struct *task, 3523 struct task_struct *next) 3524 { 3525 int ctxn; 3526 3527 if (atomic_read(&nr_switch_events)) 3528 perf_event_switch(task, next, false); 3529 3530 for_each_task_context_nr(ctxn) 3531 perf_event_context_sched_out(task, ctxn, next); 3532 3533 /* 3534 * if cgroup events exist on this CPU, then we need 3535 * to check if we have to switch out PMU state. 3536 * cgroup event are system-wide mode only 3537 */ 3538 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3539 perf_cgroup_sched_out(task, next); 3540 } 3541 3542 /* 3543 * Called with IRQs disabled 3544 */ 3545 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3546 enum event_type_t event_type) 3547 { 3548 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3549 } 3550 3551 static bool perf_less_group_idx(const void *l, const void *r) 3552 { 3553 const struct perf_event *le = *(const struct perf_event **)l; 3554 const struct perf_event *re = *(const struct perf_event **)r; 3555 3556 return le->group_index < re->group_index; 3557 } 3558 3559 static void swap_ptr(void *l, void *r) 3560 { 3561 void **lp = l, **rp = r; 3562 3563 swap(*lp, *rp); 3564 } 3565 3566 static const struct min_heap_callbacks perf_min_heap = { 3567 .elem_size = sizeof(struct perf_event *), 3568 .less = perf_less_group_idx, 3569 .swp = swap_ptr, 3570 }; 3571 3572 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3573 { 3574 struct perf_event **itrs = heap->data; 3575 3576 if (event) { 3577 itrs[heap->nr] = event; 3578 heap->nr++; 3579 } 3580 } 3581 3582 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3583 struct perf_event_groups *groups, int cpu, 3584 int (*func)(struct perf_event *, void *), 3585 void *data) 3586 { 3587 #ifdef CONFIG_CGROUP_PERF 3588 struct cgroup_subsys_state *css = NULL; 3589 #endif 3590 /* Space for per CPU and/or any CPU event iterators. */ 3591 struct perf_event *itrs[2]; 3592 struct min_heap event_heap; 3593 struct perf_event **evt; 3594 int ret; 3595 3596 if (cpuctx) { 3597 event_heap = (struct min_heap){ 3598 .data = cpuctx->heap, 3599 .nr = 0, 3600 .size = cpuctx->heap_size, 3601 }; 3602 3603 lockdep_assert_held(&cpuctx->ctx.lock); 3604 3605 #ifdef CONFIG_CGROUP_PERF 3606 if (cpuctx->cgrp) 3607 css = &cpuctx->cgrp->css; 3608 #endif 3609 } else { 3610 event_heap = (struct min_heap){ 3611 .data = itrs, 3612 .nr = 0, 3613 .size = ARRAY_SIZE(itrs), 3614 }; 3615 /* Events not within a CPU context may be on any CPU. */ 3616 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3617 } 3618 evt = event_heap.data; 3619 3620 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3621 3622 #ifdef CONFIG_CGROUP_PERF 3623 for (; css; css = css->parent) 3624 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3625 #endif 3626 3627 min_heapify_all(&event_heap, &perf_min_heap); 3628 3629 while (event_heap.nr) { 3630 ret = func(*evt, data); 3631 if (ret) 3632 return ret; 3633 3634 *evt = perf_event_groups_next(*evt); 3635 if (*evt) 3636 min_heapify(&event_heap, 0, &perf_min_heap); 3637 else 3638 min_heap_pop(&event_heap, &perf_min_heap); 3639 } 3640 3641 return 0; 3642 } 3643 3644 static int merge_sched_in(struct perf_event *event, void *data) 3645 { 3646 struct perf_event_context *ctx = event->ctx; 3647 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3648 int *can_add_hw = data; 3649 3650 if (event->state <= PERF_EVENT_STATE_OFF) 3651 return 0; 3652 3653 if (!event_filter_match(event)) 3654 return 0; 3655 3656 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3657 if (!group_sched_in(event, cpuctx, ctx)) 3658 list_add_tail(&event->active_list, get_event_list(event)); 3659 } 3660 3661 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3662 if (event->attr.pinned) { 3663 perf_cgroup_event_disable(event, ctx); 3664 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3665 } 3666 3667 *can_add_hw = 0; 3668 ctx->rotate_necessary = 1; 3669 perf_mux_hrtimer_restart(cpuctx); 3670 } 3671 3672 return 0; 3673 } 3674 3675 static void 3676 ctx_pinned_sched_in(struct perf_event_context *ctx, 3677 struct perf_cpu_context *cpuctx) 3678 { 3679 int can_add_hw = 1; 3680 3681 if (ctx != &cpuctx->ctx) 3682 cpuctx = NULL; 3683 3684 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3685 smp_processor_id(), 3686 merge_sched_in, &can_add_hw); 3687 } 3688 3689 static void 3690 ctx_flexible_sched_in(struct perf_event_context *ctx, 3691 struct perf_cpu_context *cpuctx) 3692 { 3693 int can_add_hw = 1; 3694 3695 if (ctx != &cpuctx->ctx) 3696 cpuctx = NULL; 3697 3698 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3699 smp_processor_id(), 3700 merge_sched_in, &can_add_hw); 3701 } 3702 3703 static void 3704 ctx_sched_in(struct perf_event_context *ctx, 3705 struct perf_cpu_context *cpuctx, 3706 enum event_type_t event_type, 3707 struct task_struct *task) 3708 { 3709 int is_active = ctx->is_active; 3710 u64 now; 3711 3712 lockdep_assert_held(&ctx->lock); 3713 3714 if (likely(!ctx->nr_events)) 3715 return; 3716 3717 ctx->is_active |= (event_type | EVENT_TIME); 3718 if (ctx->task) { 3719 if (!is_active) 3720 cpuctx->task_ctx = ctx; 3721 else 3722 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3723 } 3724 3725 is_active ^= ctx->is_active; /* changed bits */ 3726 3727 if (is_active & EVENT_TIME) { 3728 /* start ctx time */ 3729 now = perf_clock(); 3730 ctx->timestamp = now; 3731 perf_cgroup_set_timestamp(task, ctx); 3732 } 3733 3734 /* 3735 * First go through the list and put on any pinned groups 3736 * in order to give them the best chance of going on. 3737 */ 3738 if (is_active & EVENT_PINNED) 3739 ctx_pinned_sched_in(ctx, cpuctx); 3740 3741 /* Then walk through the lower prio flexible groups */ 3742 if (is_active & EVENT_FLEXIBLE) 3743 ctx_flexible_sched_in(ctx, cpuctx); 3744 } 3745 3746 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3747 enum event_type_t event_type, 3748 struct task_struct *task) 3749 { 3750 struct perf_event_context *ctx = &cpuctx->ctx; 3751 3752 ctx_sched_in(ctx, cpuctx, event_type, task); 3753 } 3754 3755 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3756 struct task_struct *task) 3757 { 3758 struct perf_cpu_context *cpuctx; 3759 struct pmu *pmu = ctx->pmu; 3760 3761 cpuctx = __get_cpu_context(ctx); 3762 if (cpuctx->task_ctx == ctx) { 3763 if (cpuctx->sched_cb_usage) 3764 __perf_pmu_sched_task(cpuctx, true); 3765 return; 3766 } 3767 3768 perf_ctx_lock(cpuctx, ctx); 3769 /* 3770 * We must check ctx->nr_events while holding ctx->lock, such 3771 * that we serialize against perf_install_in_context(). 3772 */ 3773 if (!ctx->nr_events) 3774 goto unlock; 3775 3776 perf_pmu_disable(pmu); 3777 /* 3778 * We want to keep the following priority order: 3779 * cpu pinned (that don't need to move), task pinned, 3780 * cpu flexible, task flexible. 3781 * 3782 * However, if task's ctx is not carrying any pinned 3783 * events, no need to flip the cpuctx's events around. 3784 */ 3785 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3786 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3787 perf_event_sched_in(cpuctx, ctx, task); 3788 3789 if (cpuctx->sched_cb_usage && pmu->sched_task) 3790 pmu->sched_task(cpuctx->task_ctx, true); 3791 3792 perf_pmu_enable(pmu); 3793 3794 unlock: 3795 perf_ctx_unlock(cpuctx, ctx); 3796 } 3797 3798 /* 3799 * Called from scheduler to add the events of the current task 3800 * with interrupts disabled. 3801 * 3802 * We restore the event value and then enable it. 3803 * 3804 * This does not protect us against NMI, but enable() 3805 * sets the enabled bit in the control field of event _before_ 3806 * accessing the event control register. If a NMI hits, then it will 3807 * keep the event running. 3808 */ 3809 void __perf_event_task_sched_in(struct task_struct *prev, 3810 struct task_struct *task) 3811 { 3812 struct perf_event_context *ctx; 3813 int ctxn; 3814 3815 /* 3816 * If cgroup events exist on this CPU, then we need to check if we have 3817 * to switch in PMU state; cgroup event are system-wide mode only. 3818 * 3819 * Since cgroup events are CPU events, we must schedule these in before 3820 * we schedule in the task events. 3821 */ 3822 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3823 perf_cgroup_sched_in(prev, task); 3824 3825 for_each_task_context_nr(ctxn) { 3826 ctx = task->perf_event_ctxp[ctxn]; 3827 if (likely(!ctx)) 3828 continue; 3829 3830 perf_event_context_sched_in(ctx, task); 3831 } 3832 3833 if (atomic_read(&nr_switch_events)) 3834 perf_event_switch(task, prev, true); 3835 } 3836 3837 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3838 { 3839 u64 frequency = event->attr.sample_freq; 3840 u64 sec = NSEC_PER_SEC; 3841 u64 divisor, dividend; 3842 3843 int count_fls, nsec_fls, frequency_fls, sec_fls; 3844 3845 count_fls = fls64(count); 3846 nsec_fls = fls64(nsec); 3847 frequency_fls = fls64(frequency); 3848 sec_fls = 30; 3849 3850 /* 3851 * We got @count in @nsec, with a target of sample_freq HZ 3852 * the target period becomes: 3853 * 3854 * @count * 10^9 3855 * period = ------------------- 3856 * @nsec * sample_freq 3857 * 3858 */ 3859 3860 /* 3861 * Reduce accuracy by one bit such that @a and @b converge 3862 * to a similar magnitude. 3863 */ 3864 #define REDUCE_FLS(a, b) \ 3865 do { \ 3866 if (a##_fls > b##_fls) { \ 3867 a >>= 1; \ 3868 a##_fls--; \ 3869 } else { \ 3870 b >>= 1; \ 3871 b##_fls--; \ 3872 } \ 3873 } while (0) 3874 3875 /* 3876 * Reduce accuracy until either term fits in a u64, then proceed with 3877 * the other, so that finally we can do a u64/u64 division. 3878 */ 3879 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3880 REDUCE_FLS(nsec, frequency); 3881 REDUCE_FLS(sec, count); 3882 } 3883 3884 if (count_fls + sec_fls > 64) { 3885 divisor = nsec * frequency; 3886 3887 while (count_fls + sec_fls > 64) { 3888 REDUCE_FLS(count, sec); 3889 divisor >>= 1; 3890 } 3891 3892 dividend = count * sec; 3893 } else { 3894 dividend = count * sec; 3895 3896 while (nsec_fls + frequency_fls > 64) { 3897 REDUCE_FLS(nsec, frequency); 3898 dividend >>= 1; 3899 } 3900 3901 divisor = nsec * frequency; 3902 } 3903 3904 if (!divisor) 3905 return dividend; 3906 3907 return div64_u64(dividend, divisor); 3908 } 3909 3910 static DEFINE_PER_CPU(int, perf_throttled_count); 3911 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3912 3913 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3914 { 3915 struct hw_perf_event *hwc = &event->hw; 3916 s64 period, sample_period; 3917 s64 delta; 3918 3919 period = perf_calculate_period(event, nsec, count); 3920 3921 delta = (s64)(period - hwc->sample_period); 3922 delta = (delta + 7) / 8; /* low pass filter */ 3923 3924 sample_period = hwc->sample_period + delta; 3925 3926 if (!sample_period) 3927 sample_period = 1; 3928 3929 hwc->sample_period = sample_period; 3930 3931 if (local64_read(&hwc->period_left) > 8*sample_period) { 3932 if (disable) 3933 event->pmu->stop(event, PERF_EF_UPDATE); 3934 3935 local64_set(&hwc->period_left, 0); 3936 3937 if (disable) 3938 event->pmu->start(event, PERF_EF_RELOAD); 3939 } 3940 } 3941 3942 /* 3943 * combine freq adjustment with unthrottling to avoid two passes over the 3944 * events. At the same time, make sure, having freq events does not change 3945 * the rate of unthrottling as that would introduce bias. 3946 */ 3947 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3948 int needs_unthr) 3949 { 3950 struct perf_event *event; 3951 struct hw_perf_event *hwc; 3952 u64 now, period = TICK_NSEC; 3953 s64 delta; 3954 3955 /* 3956 * only need to iterate over all events iff: 3957 * - context have events in frequency mode (needs freq adjust) 3958 * - there are events to unthrottle on this cpu 3959 */ 3960 if (!(ctx->nr_freq || needs_unthr)) 3961 return; 3962 3963 raw_spin_lock(&ctx->lock); 3964 perf_pmu_disable(ctx->pmu); 3965 3966 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3967 if (event->state != PERF_EVENT_STATE_ACTIVE) 3968 continue; 3969 3970 if (!event_filter_match(event)) 3971 continue; 3972 3973 perf_pmu_disable(event->pmu); 3974 3975 hwc = &event->hw; 3976 3977 if (hwc->interrupts == MAX_INTERRUPTS) { 3978 hwc->interrupts = 0; 3979 perf_log_throttle(event, 1); 3980 event->pmu->start(event, 0); 3981 } 3982 3983 if (!event->attr.freq || !event->attr.sample_freq) 3984 goto next; 3985 3986 /* 3987 * stop the event and update event->count 3988 */ 3989 event->pmu->stop(event, PERF_EF_UPDATE); 3990 3991 now = local64_read(&event->count); 3992 delta = now - hwc->freq_count_stamp; 3993 hwc->freq_count_stamp = now; 3994 3995 /* 3996 * restart the event 3997 * reload only if value has changed 3998 * we have stopped the event so tell that 3999 * to perf_adjust_period() to avoid stopping it 4000 * twice. 4001 */ 4002 if (delta > 0) 4003 perf_adjust_period(event, period, delta, false); 4004 4005 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4006 next: 4007 perf_pmu_enable(event->pmu); 4008 } 4009 4010 perf_pmu_enable(ctx->pmu); 4011 raw_spin_unlock(&ctx->lock); 4012 } 4013 4014 /* 4015 * Move @event to the tail of the @ctx's elegible events. 4016 */ 4017 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4018 { 4019 /* 4020 * Rotate the first entry last of non-pinned groups. Rotation might be 4021 * disabled by the inheritance code. 4022 */ 4023 if (ctx->rotate_disable) 4024 return; 4025 4026 perf_event_groups_delete(&ctx->flexible_groups, event); 4027 perf_event_groups_insert(&ctx->flexible_groups, event); 4028 } 4029 4030 /* pick an event from the flexible_groups to rotate */ 4031 static inline struct perf_event * 4032 ctx_event_to_rotate(struct perf_event_context *ctx) 4033 { 4034 struct perf_event *event; 4035 4036 /* pick the first active flexible event */ 4037 event = list_first_entry_or_null(&ctx->flexible_active, 4038 struct perf_event, active_list); 4039 4040 /* if no active flexible event, pick the first event */ 4041 if (!event) { 4042 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4043 typeof(*event), group_node); 4044 } 4045 4046 /* 4047 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4048 * finds there are unschedulable events, it will set it again. 4049 */ 4050 ctx->rotate_necessary = 0; 4051 4052 return event; 4053 } 4054 4055 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4056 { 4057 struct perf_event *cpu_event = NULL, *task_event = NULL; 4058 struct perf_event_context *task_ctx = NULL; 4059 int cpu_rotate, task_rotate; 4060 4061 /* 4062 * Since we run this from IRQ context, nobody can install new 4063 * events, thus the event count values are stable. 4064 */ 4065 4066 cpu_rotate = cpuctx->ctx.rotate_necessary; 4067 task_ctx = cpuctx->task_ctx; 4068 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4069 4070 if (!(cpu_rotate || task_rotate)) 4071 return false; 4072 4073 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4074 perf_pmu_disable(cpuctx->ctx.pmu); 4075 4076 if (task_rotate) 4077 task_event = ctx_event_to_rotate(task_ctx); 4078 if (cpu_rotate) 4079 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4080 4081 /* 4082 * As per the order given at ctx_resched() first 'pop' task flexible 4083 * and then, if needed CPU flexible. 4084 */ 4085 if (task_event || (task_ctx && cpu_event)) 4086 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4087 if (cpu_event) 4088 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4089 4090 if (task_event) 4091 rotate_ctx(task_ctx, task_event); 4092 if (cpu_event) 4093 rotate_ctx(&cpuctx->ctx, cpu_event); 4094 4095 perf_event_sched_in(cpuctx, task_ctx, current); 4096 4097 perf_pmu_enable(cpuctx->ctx.pmu); 4098 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4099 4100 return true; 4101 } 4102 4103 void perf_event_task_tick(void) 4104 { 4105 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4106 struct perf_event_context *ctx, *tmp; 4107 int throttled; 4108 4109 lockdep_assert_irqs_disabled(); 4110 4111 __this_cpu_inc(perf_throttled_seq); 4112 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4113 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4114 4115 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4116 perf_adjust_freq_unthr_context(ctx, throttled); 4117 } 4118 4119 static int event_enable_on_exec(struct perf_event *event, 4120 struct perf_event_context *ctx) 4121 { 4122 if (!event->attr.enable_on_exec) 4123 return 0; 4124 4125 event->attr.enable_on_exec = 0; 4126 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4127 return 0; 4128 4129 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4130 4131 return 1; 4132 } 4133 4134 /* 4135 * Enable all of a task's events that have been marked enable-on-exec. 4136 * This expects task == current. 4137 */ 4138 static void perf_event_enable_on_exec(int ctxn) 4139 { 4140 struct perf_event_context *ctx, *clone_ctx = NULL; 4141 enum event_type_t event_type = 0; 4142 struct perf_cpu_context *cpuctx; 4143 struct perf_event *event; 4144 unsigned long flags; 4145 int enabled = 0; 4146 4147 local_irq_save(flags); 4148 ctx = current->perf_event_ctxp[ctxn]; 4149 if (!ctx || !ctx->nr_events) 4150 goto out; 4151 4152 cpuctx = __get_cpu_context(ctx); 4153 perf_ctx_lock(cpuctx, ctx); 4154 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4155 list_for_each_entry(event, &ctx->event_list, event_entry) { 4156 enabled |= event_enable_on_exec(event, ctx); 4157 event_type |= get_event_type(event); 4158 } 4159 4160 /* 4161 * Unclone and reschedule this context if we enabled any event. 4162 */ 4163 if (enabled) { 4164 clone_ctx = unclone_ctx(ctx); 4165 ctx_resched(cpuctx, ctx, event_type); 4166 } else { 4167 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4168 } 4169 perf_ctx_unlock(cpuctx, ctx); 4170 4171 out: 4172 local_irq_restore(flags); 4173 4174 if (clone_ctx) 4175 put_ctx(clone_ctx); 4176 } 4177 4178 struct perf_read_data { 4179 struct perf_event *event; 4180 bool group; 4181 int ret; 4182 }; 4183 4184 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4185 { 4186 u16 local_pkg, event_pkg; 4187 4188 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4189 int local_cpu = smp_processor_id(); 4190 4191 event_pkg = topology_physical_package_id(event_cpu); 4192 local_pkg = topology_physical_package_id(local_cpu); 4193 4194 if (event_pkg == local_pkg) 4195 return local_cpu; 4196 } 4197 4198 return event_cpu; 4199 } 4200 4201 /* 4202 * Cross CPU call to read the hardware event 4203 */ 4204 static void __perf_event_read(void *info) 4205 { 4206 struct perf_read_data *data = info; 4207 struct perf_event *sub, *event = data->event; 4208 struct perf_event_context *ctx = event->ctx; 4209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4210 struct pmu *pmu = event->pmu; 4211 4212 /* 4213 * If this is a task context, we need to check whether it is 4214 * the current task context of this cpu. If not it has been 4215 * scheduled out before the smp call arrived. In that case 4216 * event->count would have been updated to a recent sample 4217 * when the event was scheduled out. 4218 */ 4219 if (ctx->task && cpuctx->task_ctx != ctx) 4220 return; 4221 4222 raw_spin_lock(&ctx->lock); 4223 if (ctx->is_active & EVENT_TIME) { 4224 update_context_time(ctx); 4225 update_cgrp_time_from_event(event); 4226 } 4227 4228 perf_event_update_time(event); 4229 if (data->group) 4230 perf_event_update_sibling_time(event); 4231 4232 if (event->state != PERF_EVENT_STATE_ACTIVE) 4233 goto unlock; 4234 4235 if (!data->group) { 4236 pmu->read(event); 4237 data->ret = 0; 4238 goto unlock; 4239 } 4240 4241 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4242 4243 pmu->read(event); 4244 4245 for_each_sibling_event(sub, event) { 4246 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4247 /* 4248 * Use sibling's PMU rather than @event's since 4249 * sibling could be on different (eg: software) PMU. 4250 */ 4251 sub->pmu->read(sub); 4252 } 4253 } 4254 4255 data->ret = pmu->commit_txn(pmu); 4256 4257 unlock: 4258 raw_spin_unlock(&ctx->lock); 4259 } 4260 4261 static inline u64 perf_event_count(struct perf_event *event) 4262 { 4263 return local64_read(&event->count) + atomic64_read(&event->child_count); 4264 } 4265 4266 /* 4267 * NMI-safe method to read a local event, that is an event that 4268 * is: 4269 * - either for the current task, or for this CPU 4270 * - does not have inherit set, for inherited task events 4271 * will not be local and we cannot read them atomically 4272 * - must not have a pmu::count method 4273 */ 4274 int perf_event_read_local(struct perf_event *event, u64 *value, 4275 u64 *enabled, u64 *running) 4276 { 4277 unsigned long flags; 4278 int ret = 0; 4279 4280 /* 4281 * Disabling interrupts avoids all counter scheduling (context 4282 * switches, timer based rotation and IPIs). 4283 */ 4284 local_irq_save(flags); 4285 4286 /* 4287 * It must not be an event with inherit set, we cannot read 4288 * all child counters from atomic context. 4289 */ 4290 if (event->attr.inherit) { 4291 ret = -EOPNOTSUPP; 4292 goto out; 4293 } 4294 4295 /* If this is a per-task event, it must be for current */ 4296 if ((event->attach_state & PERF_ATTACH_TASK) && 4297 event->hw.target != current) { 4298 ret = -EINVAL; 4299 goto out; 4300 } 4301 4302 /* If this is a per-CPU event, it must be for this CPU */ 4303 if (!(event->attach_state & PERF_ATTACH_TASK) && 4304 event->cpu != smp_processor_id()) { 4305 ret = -EINVAL; 4306 goto out; 4307 } 4308 4309 /* If this is a pinned event it must be running on this CPU */ 4310 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4311 ret = -EBUSY; 4312 goto out; 4313 } 4314 4315 /* 4316 * If the event is currently on this CPU, its either a per-task event, 4317 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4318 * oncpu == -1). 4319 */ 4320 if (event->oncpu == smp_processor_id()) 4321 event->pmu->read(event); 4322 4323 *value = local64_read(&event->count); 4324 if (enabled || running) { 4325 u64 now = event->shadow_ctx_time + perf_clock(); 4326 u64 __enabled, __running; 4327 4328 __perf_update_times(event, now, &__enabled, &__running); 4329 if (enabled) 4330 *enabled = __enabled; 4331 if (running) 4332 *running = __running; 4333 } 4334 out: 4335 local_irq_restore(flags); 4336 4337 return ret; 4338 } 4339 4340 static int perf_event_read(struct perf_event *event, bool group) 4341 { 4342 enum perf_event_state state = READ_ONCE(event->state); 4343 int event_cpu, ret = 0; 4344 4345 /* 4346 * If event is enabled and currently active on a CPU, update the 4347 * value in the event structure: 4348 */ 4349 again: 4350 if (state == PERF_EVENT_STATE_ACTIVE) { 4351 struct perf_read_data data; 4352 4353 /* 4354 * Orders the ->state and ->oncpu loads such that if we see 4355 * ACTIVE we must also see the right ->oncpu. 4356 * 4357 * Matches the smp_wmb() from event_sched_in(). 4358 */ 4359 smp_rmb(); 4360 4361 event_cpu = READ_ONCE(event->oncpu); 4362 if ((unsigned)event_cpu >= nr_cpu_ids) 4363 return 0; 4364 4365 data = (struct perf_read_data){ 4366 .event = event, 4367 .group = group, 4368 .ret = 0, 4369 }; 4370 4371 preempt_disable(); 4372 event_cpu = __perf_event_read_cpu(event, event_cpu); 4373 4374 /* 4375 * Purposely ignore the smp_call_function_single() return 4376 * value. 4377 * 4378 * If event_cpu isn't a valid CPU it means the event got 4379 * scheduled out and that will have updated the event count. 4380 * 4381 * Therefore, either way, we'll have an up-to-date event count 4382 * after this. 4383 */ 4384 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4385 preempt_enable(); 4386 ret = data.ret; 4387 4388 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4389 struct perf_event_context *ctx = event->ctx; 4390 unsigned long flags; 4391 4392 raw_spin_lock_irqsave(&ctx->lock, flags); 4393 state = event->state; 4394 if (state != PERF_EVENT_STATE_INACTIVE) { 4395 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4396 goto again; 4397 } 4398 4399 /* 4400 * May read while context is not active (e.g., thread is 4401 * blocked), in that case we cannot update context time 4402 */ 4403 if (ctx->is_active & EVENT_TIME) { 4404 update_context_time(ctx); 4405 update_cgrp_time_from_event(event); 4406 } 4407 4408 perf_event_update_time(event); 4409 if (group) 4410 perf_event_update_sibling_time(event); 4411 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4412 } 4413 4414 return ret; 4415 } 4416 4417 /* 4418 * Initialize the perf_event context in a task_struct: 4419 */ 4420 static void __perf_event_init_context(struct perf_event_context *ctx) 4421 { 4422 raw_spin_lock_init(&ctx->lock); 4423 mutex_init(&ctx->mutex); 4424 INIT_LIST_HEAD(&ctx->active_ctx_list); 4425 perf_event_groups_init(&ctx->pinned_groups); 4426 perf_event_groups_init(&ctx->flexible_groups); 4427 INIT_LIST_HEAD(&ctx->event_list); 4428 INIT_LIST_HEAD(&ctx->pinned_active); 4429 INIT_LIST_HEAD(&ctx->flexible_active); 4430 refcount_set(&ctx->refcount, 1); 4431 } 4432 4433 static struct perf_event_context * 4434 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4435 { 4436 struct perf_event_context *ctx; 4437 4438 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4439 if (!ctx) 4440 return NULL; 4441 4442 __perf_event_init_context(ctx); 4443 if (task) 4444 ctx->task = get_task_struct(task); 4445 ctx->pmu = pmu; 4446 4447 return ctx; 4448 } 4449 4450 static struct task_struct * 4451 find_lively_task_by_vpid(pid_t vpid) 4452 { 4453 struct task_struct *task; 4454 4455 rcu_read_lock(); 4456 if (!vpid) 4457 task = current; 4458 else 4459 task = find_task_by_vpid(vpid); 4460 if (task) 4461 get_task_struct(task); 4462 rcu_read_unlock(); 4463 4464 if (!task) 4465 return ERR_PTR(-ESRCH); 4466 4467 return task; 4468 } 4469 4470 /* 4471 * Returns a matching context with refcount and pincount. 4472 */ 4473 static struct perf_event_context * 4474 find_get_context(struct pmu *pmu, struct task_struct *task, 4475 struct perf_event *event) 4476 { 4477 struct perf_event_context *ctx, *clone_ctx = NULL; 4478 struct perf_cpu_context *cpuctx; 4479 void *task_ctx_data = NULL; 4480 unsigned long flags; 4481 int ctxn, err; 4482 int cpu = event->cpu; 4483 4484 if (!task) { 4485 /* Must be root to operate on a CPU event: */ 4486 err = perf_allow_cpu(&event->attr); 4487 if (err) 4488 return ERR_PTR(err); 4489 4490 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4491 ctx = &cpuctx->ctx; 4492 get_ctx(ctx); 4493 ++ctx->pin_count; 4494 4495 return ctx; 4496 } 4497 4498 err = -EINVAL; 4499 ctxn = pmu->task_ctx_nr; 4500 if (ctxn < 0) 4501 goto errout; 4502 4503 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4504 task_ctx_data = alloc_task_ctx_data(pmu); 4505 if (!task_ctx_data) { 4506 err = -ENOMEM; 4507 goto errout; 4508 } 4509 } 4510 4511 retry: 4512 ctx = perf_lock_task_context(task, ctxn, &flags); 4513 if (ctx) { 4514 clone_ctx = unclone_ctx(ctx); 4515 ++ctx->pin_count; 4516 4517 if (task_ctx_data && !ctx->task_ctx_data) { 4518 ctx->task_ctx_data = task_ctx_data; 4519 task_ctx_data = NULL; 4520 } 4521 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4522 4523 if (clone_ctx) 4524 put_ctx(clone_ctx); 4525 } else { 4526 ctx = alloc_perf_context(pmu, task); 4527 err = -ENOMEM; 4528 if (!ctx) 4529 goto errout; 4530 4531 if (task_ctx_data) { 4532 ctx->task_ctx_data = task_ctx_data; 4533 task_ctx_data = NULL; 4534 } 4535 4536 err = 0; 4537 mutex_lock(&task->perf_event_mutex); 4538 /* 4539 * If it has already passed perf_event_exit_task(). 4540 * we must see PF_EXITING, it takes this mutex too. 4541 */ 4542 if (task->flags & PF_EXITING) 4543 err = -ESRCH; 4544 else if (task->perf_event_ctxp[ctxn]) 4545 err = -EAGAIN; 4546 else { 4547 get_ctx(ctx); 4548 ++ctx->pin_count; 4549 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4550 } 4551 mutex_unlock(&task->perf_event_mutex); 4552 4553 if (unlikely(err)) { 4554 put_ctx(ctx); 4555 4556 if (err == -EAGAIN) 4557 goto retry; 4558 goto errout; 4559 } 4560 } 4561 4562 free_task_ctx_data(pmu, task_ctx_data); 4563 return ctx; 4564 4565 errout: 4566 free_task_ctx_data(pmu, task_ctx_data); 4567 return ERR_PTR(err); 4568 } 4569 4570 static void perf_event_free_filter(struct perf_event *event); 4571 static void perf_event_free_bpf_prog(struct perf_event *event); 4572 4573 static void free_event_rcu(struct rcu_head *head) 4574 { 4575 struct perf_event *event; 4576 4577 event = container_of(head, struct perf_event, rcu_head); 4578 if (event->ns) 4579 put_pid_ns(event->ns); 4580 perf_event_free_filter(event); 4581 kfree(event); 4582 } 4583 4584 static void ring_buffer_attach(struct perf_event *event, 4585 struct perf_buffer *rb); 4586 4587 static void detach_sb_event(struct perf_event *event) 4588 { 4589 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4590 4591 raw_spin_lock(&pel->lock); 4592 list_del_rcu(&event->sb_list); 4593 raw_spin_unlock(&pel->lock); 4594 } 4595 4596 static bool is_sb_event(struct perf_event *event) 4597 { 4598 struct perf_event_attr *attr = &event->attr; 4599 4600 if (event->parent) 4601 return false; 4602 4603 if (event->attach_state & PERF_ATTACH_TASK) 4604 return false; 4605 4606 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4607 attr->comm || attr->comm_exec || 4608 attr->task || attr->ksymbol || 4609 attr->context_switch || attr->text_poke || 4610 attr->bpf_event) 4611 return true; 4612 return false; 4613 } 4614 4615 static void unaccount_pmu_sb_event(struct perf_event *event) 4616 { 4617 if (is_sb_event(event)) 4618 detach_sb_event(event); 4619 } 4620 4621 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4622 { 4623 if (event->parent) 4624 return; 4625 4626 if (is_cgroup_event(event)) 4627 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4628 } 4629 4630 #ifdef CONFIG_NO_HZ_FULL 4631 static DEFINE_SPINLOCK(nr_freq_lock); 4632 #endif 4633 4634 static void unaccount_freq_event_nohz(void) 4635 { 4636 #ifdef CONFIG_NO_HZ_FULL 4637 spin_lock(&nr_freq_lock); 4638 if (atomic_dec_and_test(&nr_freq_events)) 4639 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4640 spin_unlock(&nr_freq_lock); 4641 #endif 4642 } 4643 4644 static void unaccount_freq_event(void) 4645 { 4646 if (tick_nohz_full_enabled()) 4647 unaccount_freq_event_nohz(); 4648 else 4649 atomic_dec(&nr_freq_events); 4650 } 4651 4652 static void unaccount_event(struct perf_event *event) 4653 { 4654 bool dec = false; 4655 4656 if (event->parent) 4657 return; 4658 4659 if (event->attach_state & PERF_ATTACH_TASK) 4660 dec = true; 4661 if (event->attr.mmap || event->attr.mmap_data) 4662 atomic_dec(&nr_mmap_events); 4663 if (event->attr.build_id) 4664 atomic_dec(&nr_build_id_events); 4665 if (event->attr.comm) 4666 atomic_dec(&nr_comm_events); 4667 if (event->attr.namespaces) 4668 atomic_dec(&nr_namespaces_events); 4669 if (event->attr.cgroup) 4670 atomic_dec(&nr_cgroup_events); 4671 if (event->attr.task) 4672 atomic_dec(&nr_task_events); 4673 if (event->attr.freq) 4674 unaccount_freq_event(); 4675 if (event->attr.context_switch) { 4676 dec = true; 4677 atomic_dec(&nr_switch_events); 4678 } 4679 if (is_cgroup_event(event)) 4680 dec = true; 4681 if (has_branch_stack(event)) 4682 dec = true; 4683 if (event->attr.ksymbol) 4684 atomic_dec(&nr_ksymbol_events); 4685 if (event->attr.bpf_event) 4686 atomic_dec(&nr_bpf_events); 4687 if (event->attr.text_poke) 4688 atomic_dec(&nr_text_poke_events); 4689 4690 if (dec) { 4691 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4692 schedule_delayed_work(&perf_sched_work, HZ); 4693 } 4694 4695 unaccount_event_cpu(event, event->cpu); 4696 4697 unaccount_pmu_sb_event(event); 4698 } 4699 4700 static void perf_sched_delayed(struct work_struct *work) 4701 { 4702 mutex_lock(&perf_sched_mutex); 4703 if (atomic_dec_and_test(&perf_sched_count)) 4704 static_branch_disable(&perf_sched_events); 4705 mutex_unlock(&perf_sched_mutex); 4706 } 4707 4708 /* 4709 * The following implement mutual exclusion of events on "exclusive" pmus 4710 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4711 * at a time, so we disallow creating events that might conflict, namely: 4712 * 4713 * 1) cpu-wide events in the presence of per-task events, 4714 * 2) per-task events in the presence of cpu-wide events, 4715 * 3) two matching events on the same context. 4716 * 4717 * The former two cases are handled in the allocation path (perf_event_alloc(), 4718 * _free_event()), the latter -- before the first perf_install_in_context(). 4719 */ 4720 static int exclusive_event_init(struct perf_event *event) 4721 { 4722 struct pmu *pmu = event->pmu; 4723 4724 if (!is_exclusive_pmu(pmu)) 4725 return 0; 4726 4727 /* 4728 * Prevent co-existence of per-task and cpu-wide events on the 4729 * same exclusive pmu. 4730 * 4731 * Negative pmu::exclusive_cnt means there are cpu-wide 4732 * events on this "exclusive" pmu, positive means there are 4733 * per-task events. 4734 * 4735 * Since this is called in perf_event_alloc() path, event::ctx 4736 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4737 * to mean "per-task event", because unlike other attach states it 4738 * never gets cleared. 4739 */ 4740 if (event->attach_state & PERF_ATTACH_TASK) { 4741 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4742 return -EBUSY; 4743 } else { 4744 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4745 return -EBUSY; 4746 } 4747 4748 return 0; 4749 } 4750 4751 static void exclusive_event_destroy(struct perf_event *event) 4752 { 4753 struct pmu *pmu = event->pmu; 4754 4755 if (!is_exclusive_pmu(pmu)) 4756 return; 4757 4758 /* see comment in exclusive_event_init() */ 4759 if (event->attach_state & PERF_ATTACH_TASK) 4760 atomic_dec(&pmu->exclusive_cnt); 4761 else 4762 atomic_inc(&pmu->exclusive_cnt); 4763 } 4764 4765 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4766 { 4767 if ((e1->pmu == e2->pmu) && 4768 (e1->cpu == e2->cpu || 4769 e1->cpu == -1 || 4770 e2->cpu == -1)) 4771 return true; 4772 return false; 4773 } 4774 4775 static bool exclusive_event_installable(struct perf_event *event, 4776 struct perf_event_context *ctx) 4777 { 4778 struct perf_event *iter_event; 4779 struct pmu *pmu = event->pmu; 4780 4781 lockdep_assert_held(&ctx->mutex); 4782 4783 if (!is_exclusive_pmu(pmu)) 4784 return true; 4785 4786 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4787 if (exclusive_event_match(iter_event, event)) 4788 return false; 4789 } 4790 4791 return true; 4792 } 4793 4794 static void perf_addr_filters_splice(struct perf_event *event, 4795 struct list_head *head); 4796 4797 static void _free_event(struct perf_event *event) 4798 { 4799 irq_work_sync(&event->pending); 4800 4801 unaccount_event(event); 4802 4803 security_perf_event_free(event); 4804 4805 if (event->rb) { 4806 /* 4807 * Can happen when we close an event with re-directed output. 4808 * 4809 * Since we have a 0 refcount, perf_mmap_close() will skip 4810 * over us; possibly making our ring_buffer_put() the last. 4811 */ 4812 mutex_lock(&event->mmap_mutex); 4813 ring_buffer_attach(event, NULL); 4814 mutex_unlock(&event->mmap_mutex); 4815 } 4816 4817 if (is_cgroup_event(event)) 4818 perf_detach_cgroup(event); 4819 4820 if (!event->parent) { 4821 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4822 put_callchain_buffers(); 4823 } 4824 4825 perf_event_free_bpf_prog(event); 4826 perf_addr_filters_splice(event, NULL); 4827 kfree(event->addr_filter_ranges); 4828 4829 if (event->destroy) 4830 event->destroy(event); 4831 4832 /* 4833 * Must be after ->destroy(), due to uprobe_perf_close() using 4834 * hw.target. 4835 */ 4836 if (event->hw.target) 4837 put_task_struct(event->hw.target); 4838 4839 /* 4840 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4841 * all task references must be cleaned up. 4842 */ 4843 if (event->ctx) 4844 put_ctx(event->ctx); 4845 4846 exclusive_event_destroy(event); 4847 module_put(event->pmu->module); 4848 4849 call_rcu(&event->rcu_head, free_event_rcu); 4850 } 4851 4852 /* 4853 * Used to free events which have a known refcount of 1, such as in error paths 4854 * where the event isn't exposed yet and inherited events. 4855 */ 4856 static void free_event(struct perf_event *event) 4857 { 4858 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4859 "unexpected event refcount: %ld; ptr=%p\n", 4860 atomic_long_read(&event->refcount), event)) { 4861 /* leak to avoid use-after-free */ 4862 return; 4863 } 4864 4865 _free_event(event); 4866 } 4867 4868 /* 4869 * Remove user event from the owner task. 4870 */ 4871 static void perf_remove_from_owner(struct perf_event *event) 4872 { 4873 struct task_struct *owner; 4874 4875 rcu_read_lock(); 4876 /* 4877 * Matches the smp_store_release() in perf_event_exit_task(). If we 4878 * observe !owner it means the list deletion is complete and we can 4879 * indeed free this event, otherwise we need to serialize on 4880 * owner->perf_event_mutex. 4881 */ 4882 owner = READ_ONCE(event->owner); 4883 if (owner) { 4884 /* 4885 * Since delayed_put_task_struct() also drops the last 4886 * task reference we can safely take a new reference 4887 * while holding the rcu_read_lock(). 4888 */ 4889 get_task_struct(owner); 4890 } 4891 rcu_read_unlock(); 4892 4893 if (owner) { 4894 /* 4895 * If we're here through perf_event_exit_task() we're already 4896 * holding ctx->mutex which would be an inversion wrt. the 4897 * normal lock order. 4898 * 4899 * However we can safely take this lock because its the child 4900 * ctx->mutex. 4901 */ 4902 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4903 4904 /* 4905 * We have to re-check the event->owner field, if it is cleared 4906 * we raced with perf_event_exit_task(), acquiring the mutex 4907 * ensured they're done, and we can proceed with freeing the 4908 * event. 4909 */ 4910 if (event->owner) { 4911 list_del_init(&event->owner_entry); 4912 smp_store_release(&event->owner, NULL); 4913 } 4914 mutex_unlock(&owner->perf_event_mutex); 4915 put_task_struct(owner); 4916 } 4917 } 4918 4919 static void put_event(struct perf_event *event) 4920 { 4921 if (!atomic_long_dec_and_test(&event->refcount)) 4922 return; 4923 4924 _free_event(event); 4925 } 4926 4927 /* 4928 * Kill an event dead; while event:refcount will preserve the event 4929 * object, it will not preserve its functionality. Once the last 'user' 4930 * gives up the object, we'll destroy the thing. 4931 */ 4932 int perf_event_release_kernel(struct perf_event *event) 4933 { 4934 struct perf_event_context *ctx = event->ctx; 4935 struct perf_event *child, *tmp; 4936 LIST_HEAD(free_list); 4937 4938 /* 4939 * If we got here through err_file: fput(event_file); we will not have 4940 * attached to a context yet. 4941 */ 4942 if (!ctx) { 4943 WARN_ON_ONCE(event->attach_state & 4944 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4945 goto no_ctx; 4946 } 4947 4948 if (!is_kernel_event(event)) 4949 perf_remove_from_owner(event); 4950 4951 ctx = perf_event_ctx_lock(event); 4952 WARN_ON_ONCE(ctx->parent_ctx); 4953 perf_remove_from_context(event, DETACH_GROUP); 4954 4955 raw_spin_lock_irq(&ctx->lock); 4956 /* 4957 * Mark this event as STATE_DEAD, there is no external reference to it 4958 * anymore. 4959 * 4960 * Anybody acquiring event->child_mutex after the below loop _must_ 4961 * also see this, most importantly inherit_event() which will avoid 4962 * placing more children on the list. 4963 * 4964 * Thus this guarantees that we will in fact observe and kill _ALL_ 4965 * child events. 4966 */ 4967 event->state = PERF_EVENT_STATE_DEAD; 4968 raw_spin_unlock_irq(&ctx->lock); 4969 4970 perf_event_ctx_unlock(event, ctx); 4971 4972 again: 4973 mutex_lock(&event->child_mutex); 4974 list_for_each_entry(child, &event->child_list, child_list) { 4975 4976 /* 4977 * Cannot change, child events are not migrated, see the 4978 * comment with perf_event_ctx_lock_nested(). 4979 */ 4980 ctx = READ_ONCE(child->ctx); 4981 /* 4982 * Since child_mutex nests inside ctx::mutex, we must jump 4983 * through hoops. We start by grabbing a reference on the ctx. 4984 * 4985 * Since the event cannot get freed while we hold the 4986 * child_mutex, the context must also exist and have a !0 4987 * reference count. 4988 */ 4989 get_ctx(ctx); 4990 4991 /* 4992 * Now that we have a ctx ref, we can drop child_mutex, and 4993 * acquire ctx::mutex without fear of it going away. Then we 4994 * can re-acquire child_mutex. 4995 */ 4996 mutex_unlock(&event->child_mutex); 4997 mutex_lock(&ctx->mutex); 4998 mutex_lock(&event->child_mutex); 4999 5000 /* 5001 * Now that we hold ctx::mutex and child_mutex, revalidate our 5002 * state, if child is still the first entry, it didn't get freed 5003 * and we can continue doing so. 5004 */ 5005 tmp = list_first_entry_or_null(&event->child_list, 5006 struct perf_event, child_list); 5007 if (tmp == child) { 5008 perf_remove_from_context(child, DETACH_GROUP); 5009 list_move(&child->child_list, &free_list); 5010 /* 5011 * This matches the refcount bump in inherit_event(); 5012 * this can't be the last reference. 5013 */ 5014 put_event(event); 5015 } 5016 5017 mutex_unlock(&event->child_mutex); 5018 mutex_unlock(&ctx->mutex); 5019 put_ctx(ctx); 5020 goto again; 5021 } 5022 mutex_unlock(&event->child_mutex); 5023 5024 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5025 void *var = &child->ctx->refcount; 5026 5027 list_del(&child->child_list); 5028 free_event(child); 5029 5030 /* 5031 * Wake any perf_event_free_task() waiting for this event to be 5032 * freed. 5033 */ 5034 smp_mb(); /* pairs with wait_var_event() */ 5035 wake_up_var(var); 5036 } 5037 5038 no_ctx: 5039 put_event(event); /* Must be the 'last' reference */ 5040 return 0; 5041 } 5042 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5043 5044 /* 5045 * Called when the last reference to the file is gone. 5046 */ 5047 static int perf_release(struct inode *inode, struct file *file) 5048 { 5049 perf_event_release_kernel(file->private_data); 5050 return 0; 5051 } 5052 5053 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5054 { 5055 struct perf_event *child; 5056 u64 total = 0; 5057 5058 *enabled = 0; 5059 *running = 0; 5060 5061 mutex_lock(&event->child_mutex); 5062 5063 (void)perf_event_read(event, false); 5064 total += perf_event_count(event); 5065 5066 *enabled += event->total_time_enabled + 5067 atomic64_read(&event->child_total_time_enabled); 5068 *running += event->total_time_running + 5069 atomic64_read(&event->child_total_time_running); 5070 5071 list_for_each_entry(child, &event->child_list, child_list) { 5072 (void)perf_event_read(child, false); 5073 total += perf_event_count(child); 5074 *enabled += child->total_time_enabled; 5075 *running += child->total_time_running; 5076 } 5077 mutex_unlock(&event->child_mutex); 5078 5079 return total; 5080 } 5081 5082 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5083 { 5084 struct perf_event_context *ctx; 5085 u64 count; 5086 5087 ctx = perf_event_ctx_lock(event); 5088 count = __perf_event_read_value(event, enabled, running); 5089 perf_event_ctx_unlock(event, ctx); 5090 5091 return count; 5092 } 5093 EXPORT_SYMBOL_GPL(perf_event_read_value); 5094 5095 static int __perf_read_group_add(struct perf_event *leader, 5096 u64 read_format, u64 *values) 5097 { 5098 struct perf_event_context *ctx = leader->ctx; 5099 struct perf_event *sub; 5100 unsigned long flags; 5101 int n = 1; /* skip @nr */ 5102 int ret; 5103 5104 ret = perf_event_read(leader, true); 5105 if (ret) 5106 return ret; 5107 5108 raw_spin_lock_irqsave(&ctx->lock, flags); 5109 5110 /* 5111 * Since we co-schedule groups, {enabled,running} times of siblings 5112 * will be identical to those of the leader, so we only publish one 5113 * set. 5114 */ 5115 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5116 values[n++] += leader->total_time_enabled + 5117 atomic64_read(&leader->child_total_time_enabled); 5118 } 5119 5120 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5121 values[n++] += leader->total_time_running + 5122 atomic64_read(&leader->child_total_time_running); 5123 } 5124 5125 /* 5126 * Write {count,id} tuples for every sibling. 5127 */ 5128 values[n++] += perf_event_count(leader); 5129 if (read_format & PERF_FORMAT_ID) 5130 values[n++] = primary_event_id(leader); 5131 5132 for_each_sibling_event(sub, leader) { 5133 values[n++] += perf_event_count(sub); 5134 if (read_format & PERF_FORMAT_ID) 5135 values[n++] = primary_event_id(sub); 5136 } 5137 5138 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5139 return 0; 5140 } 5141 5142 static int perf_read_group(struct perf_event *event, 5143 u64 read_format, char __user *buf) 5144 { 5145 struct perf_event *leader = event->group_leader, *child; 5146 struct perf_event_context *ctx = leader->ctx; 5147 int ret; 5148 u64 *values; 5149 5150 lockdep_assert_held(&ctx->mutex); 5151 5152 values = kzalloc(event->read_size, GFP_KERNEL); 5153 if (!values) 5154 return -ENOMEM; 5155 5156 values[0] = 1 + leader->nr_siblings; 5157 5158 /* 5159 * By locking the child_mutex of the leader we effectively 5160 * lock the child list of all siblings.. XXX explain how. 5161 */ 5162 mutex_lock(&leader->child_mutex); 5163 5164 ret = __perf_read_group_add(leader, read_format, values); 5165 if (ret) 5166 goto unlock; 5167 5168 list_for_each_entry(child, &leader->child_list, child_list) { 5169 ret = __perf_read_group_add(child, read_format, values); 5170 if (ret) 5171 goto unlock; 5172 } 5173 5174 mutex_unlock(&leader->child_mutex); 5175 5176 ret = event->read_size; 5177 if (copy_to_user(buf, values, event->read_size)) 5178 ret = -EFAULT; 5179 goto out; 5180 5181 unlock: 5182 mutex_unlock(&leader->child_mutex); 5183 out: 5184 kfree(values); 5185 return ret; 5186 } 5187 5188 static int perf_read_one(struct perf_event *event, 5189 u64 read_format, char __user *buf) 5190 { 5191 u64 enabled, running; 5192 u64 values[4]; 5193 int n = 0; 5194 5195 values[n++] = __perf_event_read_value(event, &enabled, &running); 5196 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5197 values[n++] = enabled; 5198 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5199 values[n++] = running; 5200 if (read_format & PERF_FORMAT_ID) 5201 values[n++] = primary_event_id(event); 5202 5203 if (copy_to_user(buf, values, n * sizeof(u64))) 5204 return -EFAULT; 5205 5206 return n * sizeof(u64); 5207 } 5208 5209 static bool is_event_hup(struct perf_event *event) 5210 { 5211 bool no_children; 5212 5213 if (event->state > PERF_EVENT_STATE_EXIT) 5214 return false; 5215 5216 mutex_lock(&event->child_mutex); 5217 no_children = list_empty(&event->child_list); 5218 mutex_unlock(&event->child_mutex); 5219 return no_children; 5220 } 5221 5222 /* 5223 * Read the performance event - simple non blocking version for now 5224 */ 5225 static ssize_t 5226 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5227 { 5228 u64 read_format = event->attr.read_format; 5229 int ret; 5230 5231 /* 5232 * Return end-of-file for a read on an event that is in 5233 * error state (i.e. because it was pinned but it couldn't be 5234 * scheduled on to the CPU at some point). 5235 */ 5236 if (event->state == PERF_EVENT_STATE_ERROR) 5237 return 0; 5238 5239 if (count < event->read_size) 5240 return -ENOSPC; 5241 5242 WARN_ON_ONCE(event->ctx->parent_ctx); 5243 if (read_format & PERF_FORMAT_GROUP) 5244 ret = perf_read_group(event, read_format, buf); 5245 else 5246 ret = perf_read_one(event, read_format, buf); 5247 5248 return ret; 5249 } 5250 5251 static ssize_t 5252 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5253 { 5254 struct perf_event *event = file->private_data; 5255 struct perf_event_context *ctx; 5256 int ret; 5257 5258 ret = security_perf_event_read(event); 5259 if (ret) 5260 return ret; 5261 5262 ctx = perf_event_ctx_lock(event); 5263 ret = __perf_read(event, buf, count); 5264 perf_event_ctx_unlock(event, ctx); 5265 5266 return ret; 5267 } 5268 5269 static __poll_t perf_poll(struct file *file, poll_table *wait) 5270 { 5271 struct perf_event *event = file->private_data; 5272 struct perf_buffer *rb; 5273 __poll_t events = EPOLLHUP; 5274 5275 poll_wait(file, &event->waitq, wait); 5276 5277 if (is_event_hup(event)) 5278 return events; 5279 5280 /* 5281 * Pin the event->rb by taking event->mmap_mutex; otherwise 5282 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5283 */ 5284 mutex_lock(&event->mmap_mutex); 5285 rb = event->rb; 5286 if (rb) 5287 events = atomic_xchg(&rb->poll, 0); 5288 mutex_unlock(&event->mmap_mutex); 5289 return events; 5290 } 5291 5292 static void _perf_event_reset(struct perf_event *event) 5293 { 5294 (void)perf_event_read(event, false); 5295 local64_set(&event->count, 0); 5296 perf_event_update_userpage(event); 5297 } 5298 5299 /* Assume it's not an event with inherit set. */ 5300 u64 perf_event_pause(struct perf_event *event, bool reset) 5301 { 5302 struct perf_event_context *ctx; 5303 u64 count; 5304 5305 ctx = perf_event_ctx_lock(event); 5306 WARN_ON_ONCE(event->attr.inherit); 5307 _perf_event_disable(event); 5308 count = local64_read(&event->count); 5309 if (reset) 5310 local64_set(&event->count, 0); 5311 perf_event_ctx_unlock(event, ctx); 5312 5313 return count; 5314 } 5315 EXPORT_SYMBOL_GPL(perf_event_pause); 5316 5317 /* 5318 * Holding the top-level event's child_mutex means that any 5319 * descendant process that has inherited this event will block 5320 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5321 * task existence requirements of perf_event_enable/disable. 5322 */ 5323 static void perf_event_for_each_child(struct perf_event *event, 5324 void (*func)(struct perf_event *)) 5325 { 5326 struct perf_event *child; 5327 5328 WARN_ON_ONCE(event->ctx->parent_ctx); 5329 5330 mutex_lock(&event->child_mutex); 5331 func(event); 5332 list_for_each_entry(child, &event->child_list, child_list) 5333 func(child); 5334 mutex_unlock(&event->child_mutex); 5335 } 5336 5337 static void perf_event_for_each(struct perf_event *event, 5338 void (*func)(struct perf_event *)) 5339 { 5340 struct perf_event_context *ctx = event->ctx; 5341 struct perf_event *sibling; 5342 5343 lockdep_assert_held(&ctx->mutex); 5344 5345 event = event->group_leader; 5346 5347 perf_event_for_each_child(event, func); 5348 for_each_sibling_event(sibling, event) 5349 perf_event_for_each_child(sibling, func); 5350 } 5351 5352 static void __perf_event_period(struct perf_event *event, 5353 struct perf_cpu_context *cpuctx, 5354 struct perf_event_context *ctx, 5355 void *info) 5356 { 5357 u64 value = *((u64 *)info); 5358 bool active; 5359 5360 if (event->attr.freq) { 5361 event->attr.sample_freq = value; 5362 } else { 5363 event->attr.sample_period = value; 5364 event->hw.sample_period = value; 5365 } 5366 5367 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5368 if (active) { 5369 perf_pmu_disable(ctx->pmu); 5370 /* 5371 * We could be throttled; unthrottle now to avoid the tick 5372 * trying to unthrottle while we already re-started the event. 5373 */ 5374 if (event->hw.interrupts == MAX_INTERRUPTS) { 5375 event->hw.interrupts = 0; 5376 perf_log_throttle(event, 1); 5377 } 5378 event->pmu->stop(event, PERF_EF_UPDATE); 5379 } 5380 5381 local64_set(&event->hw.period_left, 0); 5382 5383 if (active) { 5384 event->pmu->start(event, PERF_EF_RELOAD); 5385 perf_pmu_enable(ctx->pmu); 5386 } 5387 } 5388 5389 static int perf_event_check_period(struct perf_event *event, u64 value) 5390 { 5391 return event->pmu->check_period(event, value); 5392 } 5393 5394 static int _perf_event_period(struct perf_event *event, u64 value) 5395 { 5396 if (!is_sampling_event(event)) 5397 return -EINVAL; 5398 5399 if (!value) 5400 return -EINVAL; 5401 5402 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5403 return -EINVAL; 5404 5405 if (perf_event_check_period(event, value)) 5406 return -EINVAL; 5407 5408 if (!event->attr.freq && (value & (1ULL << 63))) 5409 return -EINVAL; 5410 5411 event_function_call(event, __perf_event_period, &value); 5412 5413 return 0; 5414 } 5415 5416 int perf_event_period(struct perf_event *event, u64 value) 5417 { 5418 struct perf_event_context *ctx; 5419 int ret; 5420 5421 ctx = perf_event_ctx_lock(event); 5422 ret = _perf_event_period(event, value); 5423 perf_event_ctx_unlock(event, ctx); 5424 5425 return ret; 5426 } 5427 EXPORT_SYMBOL_GPL(perf_event_period); 5428 5429 static const struct file_operations perf_fops; 5430 5431 static inline int perf_fget_light(int fd, struct fd *p) 5432 { 5433 struct fd f = fdget(fd); 5434 if (!f.file) 5435 return -EBADF; 5436 5437 if (f.file->f_op != &perf_fops) { 5438 fdput(f); 5439 return -EBADF; 5440 } 5441 *p = f; 5442 return 0; 5443 } 5444 5445 static int perf_event_set_output(struct perf_event *event, 5446 struct perf_event *output_event); 5447 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5448 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5449 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5450 struct perf_event_attr *attr); 5451 5452 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5453 { 5454 void (*func)(struct perf_event *); 5455 u32 flags = arg; 5456 5457 switch (cmd) { 5458 case PERF_EVENT_IOC_ENABLE: 5459 func = _perf_event_enable; 5460 break; 5461 case PERF_EVENT_IOC_DISABLE: 5462 func = _perf_event_disable; 5463 break; 5464 case PERF_EVENT_IOC_RESET: 5465 func = _perf_event_reset; 5466 break; 5467 5468 case PERF_EVENT_IOC_REFRESH: 5469 return _perf_event_refresh(event, arg); 5470 5471 case PERF_EVENT_IOC_PERIOD: 5472 { 5473 u64 value; 5474 5475 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5476 return -EFAULT; 5477 5478 return _perf_event_period(event, value); 5479 } 5480 case PERF_EVENT_IOC_ID: 5481 { 5482 u64 id = primary_event_id(event); 5483 5484 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5485 return -EFAULT; 5486 return 0; 5487 } 5488 5489 case PERF_EVENT_IOC_SET_OUTPUT: 5490 { 5491 int ret; 5492 if (arg != -1) { 5493 struct perf_event *output_event; 5494 struct fd output; 5495 ret = perf_fget_light(arg, &output); 5496 if (ret) 5497 return ret; 5498 output_event = output.file->private_data; 5499 ret = perf_event_set_output(event, output_event); 5500 fdput(output); 5501 } else { 5502 ret = perf_event_set_output(event, NULL); 5503 } 5504 return ret; 5505 } 5506 5507 case PERF_EVENT_IOC_SET_FILTER: 5508 return perf_event_set_filter(event, (void __user *)arg); 5509 5510 case PERF_EVENT_IOC_SET_BPF: 5511 return perf_event_set_bpf_prog(event, arg); 5512 5513 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5514 struct perf_buffer *rb; 5515 5516 rcu_read_lock(); 5517 rb = rcu_dereference(event->rb); 5518 if (!rb || !rb->nr_pages) { 5519 rcu_read_unlock(); 5520 return -EINVAL; 5521 } 5522 rb_toggle_paused(rb, !!arg); 5523 rcu_read_unlock(); 5524 return 0; 5525 } 5526 5527 case PERF_EVENT_IOC_QUERY_BPF: 5528 return perf_event_query_prog_array(event, (void __user *)arg); 5529 5530 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5531 struct perf_event_attr new_attr; 5532 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5533 &new_attr); 5534 5535 if (err) 5536 return err; 5537 5538 return perf_event_modify_attr(event, &new_attr); 5539 } 5540 default: 5541 return -ENOTTY; 5542 } 5543 5544 if (flags & PERF_IOC_FLAG_GROUP) 5545 perf_event_for_each(event, func); 5546 else 5547 perf_event_for_each_child(event, func); 5548 5549 return 0; 5550 } 5551 5552 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5553 { 5554 struct perf_event *event = file->private_data; 5555 struct perf_event_context *ctx; 5556 long ret; 5557 5558 /* Treat ioctl like writes as it is likely a mutating operation. */ 5559 ret = security_perf_event_write(event); 5560 if (ret) 5561 return ret; 5562 5563 ctx = perf_event_ctx_lock(event); 5564 ret = _perf_ioctl(event, cmd, arg); 5565 perf_event_ctx_unlock(event, ctx); 5566 5567 return ret; 5568 } 5569 5570 #ifdef CONFIG_COMPAT 5571 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5572 unsigned long arg) 5573 { 5574 switch (_IOC_NR(cmd)) { 5575 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5576 case _IOC_NR(PERF_EVENT_IOC_ID): 5577 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5578 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5579 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5580 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5581 cmd &= ~IOCSIZE_MASK; 5582 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5583 } 5584 break; 5585 } 5586 return perf_ioctl(file, cmd, arg); 5587 } 5588 #else 5589 # define perf_compat_ioctl NULL 5590 #endif 5591 5592 int perf_event_task_enable(void) 5593 { 5594 struct perf_event_context *ctx; 5595 struct perf_event *event; 5596 5597 mutex_lock(¤t->perf_event_mutex); 5598 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5599 ctx = perf_event_ctx_lock(event); 5600 perf_event_for_each_child(event, _perf_event_enable); 5601 perf_event_ctx_unlock(event, ctx); 5602 } 5603 mutex_unlock(¤t->perf_event_mutex); 5604 5605 return 0; 5606 } 5607 5608 int perf_event_task_disable(void) 5609 { 5610 struct perf_event_context *ctx; 5611 struct perf_event *event; 5612 5613 mutex_lock(¤t->perf_event_mutex); 5614 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5615 ctx = perf_event_ctx_lock(event); 5616 perf_event_for_each_child(event, _perf_event_disable); 5617 perf_event_ctx_unlock(event, ctx); 5618 } 5619 mutex_unlock(¤t->perf_event_mutex); 5620 5621 return 0; 5622 } 5623 5624 static int perf_event_index(struct perf_event *event) 5625 { 5626 if (event->hw.state & PERF_HES_STOPPED) 5627 return 0; 5628 5629 if (event->state != PERF_EVENT_STATE_ACTIVE) 5630 return 0; 5631 5632 return event->pmu->event_idx(event); 5633 } 5634 5635 static void calc_timer_values(struct perf_event *event, 5636 u64 *now, 5637 u64 *enabled, 5638 u64 *running) 5639 { 5640 u64 ctx_time; 5641 5642 *now = perf_clock(); 5643 ctx_time = event->shadow_ctx_time + *now; 5644 __perf_update_times(event, ctx_time, enabled, running); 5645 } 5646 5647 static void perf_event_init_userpage(struct perf_event *event) 5648 { 5649 struct perf_event_mmap_page *userpg; 5650 struct perf_buffer *rb; 5651 5652 rcu_read_lock(); 5653 rb = rcu_dereference(event->rb); 5654 if (!rb) 5655 goto unlock; 5656 5657 userpg = rb->user_page; 5658 5659 /* Allow new userspace to detect that bit 0 is deprecated */ 5660 userpg->cap_bit0_is_deprecated = 1; 5661 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5662 userpg->data_offset = PAGE_SIZE; 5663 userpg->data_size = perf_data_size(rb); 5664 5665 unlock: 5666 rcu_read_unlock(); 5667 } 5668 5669 void __weak arch_perf_update_userpage( 5670 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5671 { 5672 } 5673 5674 /* 5675 * Callers need to ensure there can be no nesting of this function, otherwise 5676 * the seqlock logic goes bad. We can not serialize this because the arch 5677 * code calls this from NMI context. 5678 */ 5679 void perf_event_update_userpage(struct perf_event *event) 5680 { 5681 struct perf_event_mmap_page *userpg; 5682 struct perf_buffer *rb; 5683 u64 enabled, running, now; 5684 5685 rcu_read_lock(); 5686 rb = rcu_dereference(event->rb); 5687 if (!rb) 5688 goto unlock; 5689 5690 /* 5691 * compute total_time_enabled, total_time_running 5692 * based on snapshot values taken when the event 5693 * was last scheduled in. 5694 * 5695 * we cannot simply called update_context_time() 5696 * because of locking issue as we can be called in 5697 * NMI context 5698 */ 5699 calc_timer_values(event, &now, &enabled, &running); 5700 5701 userpg = rb->user_page; 5702 /* 5703 * Disable preemption to guarantee consistent time stamps are stored to 5704 * the user page. 5705 */ 5706 preempt_disable(); 5707 ++userpg->lock; 5708 barrier(); 5709 userpg->index = perf_event_index(event); 5710 userpg->offset = perf_event_count(event); 5711 if (userpg->index) 5712 userpg->offset -= local64_read(&event->hw.prev_count); 5713 5714 userpg->time_enabled = enabled + 5715 atomic64_read(&event->child_total_time_enabled); 5716 5717 userpg->time_running = running + 5718 atomic64_read(&event->child_total_time_running); 5719 5720 arch_perf_update_userpage(event, userpg, now); 5721 5722 barrier(); 5723 ++userpg->lock; 5724 preempt_enable(); 5725 unlock: 5726 rcu_read_unlock(); 5727 } 5728 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5729 5730 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5731 { 5732 struct perf_event *event = vmf->vma->vm_file->private_data; 5733 struct perf_buffer *rb; 5734 vm_fault_t ret = VM_FAULT_SIGBUS; 5735 5736 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5737 if (vmf->pgoff == 0) 5738 ret = 0; 5739 return ret; 5740 } 5741 5742 rcu_read_lock(); 5743 rb = rcu_dereference(event->rb); 5744 if (!rb) 5745 goto unlock; 5746 5747 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5748 goto unlock; 5749 5750 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5751 if (!vmf->page) 5752 goto unlock; 5753 5754 get_page(vmf->page); 5755 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5756 vmf->page->index = vmf->pgoff; 5757 5758 ret = 0; 5759 unlock: 5760 rcu_read_unlock(); 5761 5762 return ret; 5763 } 5764 5765 static void ring_buffer_attach(struct perf_event *event, 5766 struct perf_buffer *rb) 5767 { 5768 struct perf_buffer *old_rb = NULL; 5769 unsigned long flags; 5770 5771 if (event->rb) { 5772 /* 5773 * Should be impossible, we set this when removing 5774 * event->rb_entry and wait/clear when adding event->rb_entry. 5775 */ 5776 WARN_ON_ONCE(event->rcu_pending); 5777 5778 old_rb = event->rb; 5779 spin_lock_irqsave(&old_rb->event_lock, flags); 5780 list_del_rcu(&event->rb_entry); 5781 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5782 5783 event->rcu_batches = get_state_synchronize_rcu(); 5784 event->rcu_pending = 1; 5785 } 5786 5787 if (rb) { 5788 if (event->rcu_pending) { 5789 cond_synchronize_rcu(event->rcu_batches); 5790 event->rcu_pending = 0; 5791 } 5792 5793 spin_lock_irqsave(&rb->event_lock, flags); 5794 list_add_rcu(&event->rb_entry, &rb->event_list); 5795 spin_unlock_irqrestore(&rb->event_lock, flags); 5796 } 5797 5798 /* 5799 * Avoid racing with perf_mmap_close(AUX): stop the event 5800 * before swizzling the event::rb pointer; if it's getting 5801 * unmapped, its aux_mmap_count will be 0 and it won't 5802 * restart. See the comment in __perf_pmu_output_stop(). 5803 * 5804 * Data will inevitably be lost when set_output is done in 5805 * mid-air, but then again, whoever does it like this is 5806 * not in for the data anyway. 5807 */ 5808 if (has_aux(event)) 5809 perf_event_stop(event, 0); 5810 5811 rcu_assign_pointer(event->rb, rb); 5812 5813 if (old_rb) { 5814 ring_buffer_put(old_rb); 5815 /* 5816 * Since we detached before setting the new rb, so that we 5817 * could attach the new rb, we could have missed a wakeup. 5818 * Provide it now. 5819 */ 5820 wake_up_all(&event->waitq); 5821 } 5822 } 5823 5824 static void ring_buffer_wakeup(struct perf_event *event) 5825 { 5826 struct perf_buffer *rb; 5827 5828 rcu_read_lock(); 5829 rb = rcu_dereference(event->rb); 5830 if (rb) { 5831 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5832 wake_up_all(&event->waitq); 5833 } 5834 rcu_read_unlock(); 5835 } 5836 5837 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5838 { 5839 struct perf_buffer *rb; 5840 5841 rcu_read_lock(); 5842 rb = rcu_dereference(event->rb); 5843 if (rb) { 5844 if (!refcount_inc_not_zero(&rb->refcount)) 5845 rb = NULL; 5846 } 5847 rcu_read_unlock(); 5848 5849 return rb; 5850 } 5851 5852 void ring_buffer_put(struct perf_buffer *rb) 5853 { 5854 if (!refcount_dec_and_test(&rb->refcount)) 5855 return; 5856 5857 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5858 5859 call_rcu(&rb->rcu_head, rb_free_rcu); 5860 } 5861 5862 static void perf_mmap_open(struct vm_area_struct *vma) 5863 { 5864 struct perf_event *event = vma->vm_file->private_data; 5865 5866 atomic_inc(&event->mmap_count); 5867 atomic_inc(&event->rb->mmap_count); 5868 5869 if (vma->vm_pgoff) 5870 atomic_inc(&event->rb->aux_mmap_count); 5871 5872 if (event->pmu->event_mapped) 5873 event->pmu->event_mapped(event, vma->vm_mm); 5874 } 5875 5876 static void perf_pmu_output_stop(struct perf_event *event); 5877 5878 /* 5879 * A buffer can be mmap()ed multiple times; either directly through the same 5880 * event, or through other events by use of perf_event_set_output(). 5881 * 5882 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5883 * the buffer here, where we still have a VM context. This means we need 5884 * to detach all events redirecting to us. 5885 */ 5886 static void perf_mmap_close(struct vm_area_struct *vma) 5887 { 5888 struct perf_event *event = vma->vm_file->private_data; 5889 struct perf_buffer *rb = ring_buffer_get(event); 5890 struct user_struct *mmap_user = rb->mmap_user; 5891 int mmap_locked = rb->mmap_locked; 5892 unsigned long size = perf_data_size(rb); 5893 bool detach_rest = false; 5894 5895 if (event->pmu->event_unmapped) 5896 event->pmu->event_unmapped(event, vma->vm_mm); 5897 5898 /* 5899 * rb->aux_mmap_count will always drop before rb->mmap_count and 5900 * event->mmap_count, so it is ok to use event->mmap_mutex to 5901 * serialize with perf_mmap here. 5902 */ 5903 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5904 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5905 /* 5906 * Stop all AUX events that are writing to this buffer, 5907 * so that we can free its AUX pages and corresponding PMU 5908 * data. Note that after rb::aux_mmap_count dropped to zero, 5909 * they won't start any more (see perf_aux_output_begin()). 5910 */ 5911 perf_pmu_output_stop(event); 5912 5913 /* now it's safe to free the pages */ 5914 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5915 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5916 5917 /* this has to be the last one */ 5918 rb_free_aux(rb); 5919 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5920 5921 mutex_unlock(&event->mmap_mutex); 5922 } 5923 5924 if (atomic_dec_and_test(&rb->mmap_count)) 5925 detach_rest = true; 5926 5927 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5928 goto out_put; 5929 5930 ring_buffer_attach(event, NULL); 5931 mutex_unlock(&event->mmap_mutex); 5932 5933 /* If there's still other mmap()s of this buffer, we're done. */ 5934 if (!detach_rest) 5935 goto out_put; 5936 5937 /* 5938 * No other mmap()s, detach from all other events that might redirect 5939 * into the now unreachable buffer. Somewhat complicated by the 5940 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5941 */ 5942 again: 5943 rcu_read_lock(); 5944 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5945 if (!atomic_long_inc_not_zero(&event->refcount)) { 5946 /* 5947 * This event is en-route to free_event() which will 5948 * detach it and remove it from the list. 5949 */ 5950 continue; 5951 } 5952 rcu_read_unlock(); 5953 5954 mutex_lock(&event->mmap_mutex); 5955 /* 5956 * Check we didn't race with perf_event_set_output() which can 5957 * swizzle the rb from under us while we were waiting to 5958 * acquire mmap_mutex. 5959 * 5960 * If we find a different rb; ignore this event, a next 5961 * iteration will no longer find it on the list. We have to 5962 * still restart the iteration to make sure we're not now 5963 * iterating the wrong list. 5964 */ 5965 if (event->rb == rb) 5966 ring_buffer_attach(event, NULL); 5967 5968 mutex_unlock(&event->mmap_mutex); 5969 put_event(event); 5970 5971 /* 5972 * Restart the iteration; either we're on the wrong list or 5973 * destroyed its integrity by doing a deletion. 5974 */ 5975 goto again; 5976 } 5977 rcu_read_unlock(); 5978 5979 /* 5980 * It could be there's still a few 0-ref events on the list; they'll 5981 * get cleaned up by free_event() -- they'll also still have their 5982 * ref on the rb and will free it whenever they are done with it. 5983 * 5984 * Aside from that, this buffer is 'fully' detached and unmapped, 5985 * undo the VM accounting. 5986 */ 5987 5988 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5989 &mmap_user->locked_vm); 5990 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5991 free_uid(mmap_user); 5992 5993 out_put: 5994 ring_buffer_put(rb); /* could be last */ 5995 } 5996 5997 static const struct vm_operations_struct perf_mmap_vmops = { 5998 .open = perf_mmap_open, 5999 .close = perf_mmap_close, /* non mergeable */ 6000 .fault = perf_mmap_fault, 6001 .page_mkwrite = perf_mmap_fault, 6002 }; 6003 6004 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6005 { 6006 struct perf_event *event = file->private_data; 6007 unsigned long user_locked, user_lock_limit; 6008 struct user_struct *user = current_user(); 6009 struct perf_buffer *rb = NULL; 6010 unsigned long locked, lock_limit; 6011 unsigned long vma_size; 6012 unsigned long nr_pages; 6013 long user_extra = 0, extra = 0; 6014 int ret = 0, flags = 0; 6015 6016 /* 6017 * Don't allow mmap() of inherited per-task counters. This would 6018 * create a performance issue due to all children writing to the 6019 * same rb. 6020 */ 6021 if (event->cpu == -1 && event->attr.inherit) 6022 return -EINVAL; 6023 6024 if (!(vma->vm_flags & VM_SHARED)) 6025 return -EINVAL; 6026 6027 ret = security_perf_event_read(event); 6028 if (ret) 6029 return ret; 6030 6031 vma_size = vma->vm_end - vma->vm_start; 6032 6033 if (vma->vm_pgoff == 0) { 6034 nr_pages = (vma_size / PAGE_SIZE) - 1; 6035 } else { 6036 /* 6037 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6038 * mapped, all subsequent mappings should have the same size 6039 * and offset. Must be above the normal perf buffer. 6040 */ 6041 u64 aux_offset, aux_size; 6042 6043 if (!event->rb) 6044 return -EINVAL; 6045 6046 nr_pages = vma_size / PAGE_SIZE; 6047 6048 mutex_lock(&event->mmap_mutex); 6049 ret = -EINVAL; 6050 6051 rb = event->rb; 6052 if (!rb) 6053 goto aux_unlock; 6054 6055 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6056 aux_size = READ_ONCE(rb->user_page->aux_size); 6057 6058 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6059 goto aux_unlock; 6060 6061 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6062 goto aux_unlock; 6063 6064 /* already mapped with a different offset */ 6065 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6066 goto aux_unlock; 6067 6068 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6069 goto aux_unlock; 6070 6071 /* already mapped with a different size */ 6072 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6073 goto aux_unlock; 6074 6075 if (!is_power_of_2(nr_pages)) 6076 goto aux_unlock; 6077 6078 if (!atomic_inc_not_zero(&rb->mmap_count)) 6079 goto aux_unlock; 6080 6081 if (rb_has_aux(rb)) { 6082 atomic_inc(&rb->aux_mmap_count); 6083 ret = 0; 6084 goto unlock; 6085 } 6086 6087 atomic_set(&rb->aux_mmap_count, 1); 6088 user_extra = nr_pages; 6089 6090 goto accounting; 6091 } 6092 6093 /* 6094 * If we have rb pages ensure they're a power-of-two number, so we 6095 * can do bitmasks instead of modulo. 6096 */ 6097 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6098 return -EINVAL; 6099 6100 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6101 return -EINVAL; 6102 6103 WARN_ON_ONCE(event->ctx->parent_ctx); 6104 again: 6105 mutex_lock(&event->mmap_mutex); 6106 if (event->rb) { 6107 if (event->rb->nr_pages != nr_pages) { 6108 ret = -EINVAL; 6109 goto unlock; 6110 } 6111 6112 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6113 /* 6114 * Raced against perf_mmap_close() through 6115 * perf_event_set_output(). Try again, hope for better 6116 * luck. 6117 */ 6118 mutex_unlock(&event->mmap_mutex); 6119 goto again; 6120 } 6121 6122 goto unlock; 6123 } 6124 6125 user_extra = nr_pages + 1; 6126 6127 accounting: 6128 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6129 6130 /* 6131 * Increase the limit linearly with more CPUs: 6132 */ 6133 user_lock_limit *= num_online_cpus(); 6134 6135 user_locked = atomic_long_read(&user->locked_vm); 6136 6137 /* 6138 * sysctl_perf_event_mlock may have changed, so that 6139 * user->locked_vm > user_lock_limit 6140 */ 6141 if (user_locked > user_lock_limit) 6142 user_locked = user_lock_limit; 6143 user_locked += user_extra; 6144 6145 if (user_locked > user_lock_limit) { 6146 /* 6147 * charge locked_vm until it hits user_lock_limit; 6148 * charge the rest from pinned_vm 6149 */ 6150 extra = user_locked - user_lock_limit; 6151 user_extra -= extra; 6152 } 6153 6154 lock_limit = rlimit(RLIMIT_MEMLOCK); 6155 lock_limit >>= PAGE_SHIFT; 6156 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6157 6158 if ((locked > lock_limit) && perf_is_paranoid() && 6159 !capable(CAP_IPC_LOCK)) { 6160 ret = -EPERM; 6161 goto unlock; 6162 } 6163 6164 WARN_ON(!rb && event->rb); 6165 6166 if (vma->vm_flags & VM_WRITE) 6167 flags |= RING_BUFFER_WRITABLE; 6168 6169 if (!rb) { 6170 rb = rb_alloc(nr_pages, 6171 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6172 event->cpu, flags); 6173 6174 if (!rb) { 6175 ret = -ENOMEM; 6176 goto unlock; 6177 } 6178 6179 atomic_set(&rb->mmap_count, 1); 6180 rb->mmap_user = get_current_user(); 6181 rb->mmap_locked = extra; 6182 6183 ring_buffer_attach(event, rb); 6184 6185 perf_event_init_userpage(event); 6186 perf_event_update_userpage(event); 6187 } else { 6188 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6189 event->attr.aux_watermark, flags); 6190 if (!ret) 6191 rb->aux_mmap_locked = extra; 6192 } 6193 6194 unlock: 6195 if (!ret) { 6196 atomic_long_add(user_extra, &user->locked_vm); 6197 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6198 6199 atomic_inc(&event->mmap_count); 6200 } else if (rb) { 6201 atomic_dec(&rb->mmap_count); 6202 } 6203 aux_unlock: 6204 mutex_unlock(&event->mmap_mutex); 6205 6206 /* 6207 * Since pinned accounting is per vm we cannot allow fork() to copy our 6208 * vma. 6209 */ 6210 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6211 vma->vm_ops = &perf_mmap_vmops; 6212 6213 if (event->pmu->event_mapped) 6214 event->pmu->event_mapped(event, vma->vm_mm); 6215 6216 return ret; 6217 } 6218 6219 static int perf_fasync(int fd, struct file *filp, int on) 6220 { 6221 struct inode *inode = file_inode(filp); 6222 struct perf_event *event = filp->private_data; 6223 int retval; 6224 6225 inode_lock(inode); 6226 retval = fasync_helper(fd, filp, on, &event->fasync); 6227 inode_unlock(inode); 6228 6229 if (retval < 0) 6230 return retval; 6231 6232 return 0; 6233 } 6234 6235 static const struct file_operations perf_fops = { 6236 .llseek = no_llseek, 6237 .release = perf_release, 6238 .read = perf_read, 6239 .poll = perf_poll, 6240 .unlocked_ioctl = perf_ioctl, 6241 .compat_ioctl = perf_compat_ioctl, 6242 .mmap = perf_mmap, 6243 .fasync = perf_fasync, 6244 }; 6245 6246 /* 6247 * Perf event wakeup 6248 * 6249 * If there's data, ensure we set the poll() state and publish everything 6250 * to user-space before waking everybody up. 6251 */ 6252 6253 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6254 { 6255 /* only the parent has fasync state */ 6256 if (event->parent) 6257 event = event->parent; 6258 return &event->fasync; 6259 } 6260 6261 void perf_event_wakeup(struct perf_event *event) 6262 { 6263 ring_buffer_wakeup(event); 6264 6265 if (event->pending_kill) { 6266 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6267 event->pending_kill = 0; 6268 } 6269 } 6270 6271 static void perf_pending_event_disable(struct perf_event *event) 6272 { 6273 int cpu = READ_ONCE(event->pending_disable); 6274 6275 if (cpu < 0) 6276 return; 6277 6278 if (cpu == smp_processor_id()) { 6279 WRITE_ONCE(event->pending_disable, -1); 6280 perf_event_disable_local(event); 6281 return; 6282 } 6283 6284 /* 6285 * CPU-A CPU-B 6286 * 6287 * perf_event_disable_inatomic() 6288 * @pending_disable = CPU-A; 6289 * irq_work_queue(); 6290 * 6291 * sched-out 6292 * @pending_disable = -1; 6293 * 6294 * sched-in 6295 * perf_event_disable_inatomic() 6296 * @pending_disable = CPU-B; 6297 * irq_work_queue(); // FAILS 6298 * 6299 * irq_work_run() 6300 * perf_pending_event() 6301 * 6302 * But the event runs on CPU-B and wants disabling there. 6303 */ 6304 irq_work_queue_on(&event->pending, cpu); 6305 } 6306 6307 static void perf_pending_event(struct irq_work *entry) 6308 { 6309 struct perf_event *event = container_of(entry, struct perf_event, pending); 6310 int rctx; 6311 6312 rctx = perf_swevent_get_recursion_context(); 6313 /* 6314 * If we 'fail' here, that's OK, it means recursion is already disabled 6315 * and we won't recurse 'further'. 6316 */ 6317 6318 perf_pending_event_disable(event); 6319 6320 if (event->pending_wakeup) { 6321 event->pending_wakeup = 0; 6322 perf_event_wakeup(event); 6323 } 6324 6325 if (rctx >= 0) 6326 perf_swevent_put_recursion_context(rctx); 6327 } 6328 6329 /* 6330 * We assume there is only KVM supporting the callbacks. 6331 * Later on, we might change it to a list if there is 6332 * another virtualization implementation supporting the callbacks. 6333 */ 6334 struct perf_guest_info_callbacks *perf_guest_cbs; 6335 6336 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6337 { 6338 perf_guest_cbs = cbs; 6339 return 0; 6340 } 6341 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6342 6343 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6344 { 6345 perf_guest_cbs = NULL; 6346 return 0; 6347 } 6348 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6349 6350 static void 6351 perf_output_sample_regs(struct perf_output_handle *handle, 6352 struct pt_regs *regs, u64 mask) 6353 { 6354 int bit; 6355 DECLARE_BITMAP(_mask, 64); 6356 6357 bitmap_from_u64(_mask, mask); 6358 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6359 u64 val; 6360 6361 val = perf_reg_value(regs, bit); 6362 perf_output_put(handle, val); 6363 } 6364 } 6365 6366 static void perf_sample_regs_user(struct perf_regs *regs_user, 6367 struct pt_regs *regs) 6368 { 6369 if (user_mode(regs)) { 6370 regs_user->abi = perf_reg_abi(current); 6371 regs_user->regs = regs; 6372 } else if (!(current->flags & PF_KTHREAD)) { 6373 perf_get_regs_user(regs_user, regs); 6374 } else { 6375 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6376 regs_user->regs = NULL; 6377 } 6378 } 6379 6380 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6381 struct pt_regs *regs) 6382 { 6383 regs_intr->regs = regs; 6384 regs_intr->abi = perf_reg_abi(current); 6385 } 6386 6387 6388 /* 6389 * Get remaining task size from user stack pointer. 6390 * 6391 * It'd be better to take stack vma map and limit this more 6392 * precisely, but there's no way to get it safely under interrupt, 6393 * so using TASK_SIZE as limit. 6394 */ 6395 static u64 perf_ustack_task_size(struct pt_regs *regs) 6396 { 6397 unsigned long addr = perf_user_stack_pointer(regs); 6398 6399 if (!addr || addr >= TASK_SIZE) 6400 return 0; 6401 6402 return TASK_SIZE - addr; 6403 } 6404 6405 static u16 6406 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6407 struct pt_regs *regs) 6408 { 6409 u64 task_size; 6410 6411 /* No regs, no stack pointer, no dump. */ 6412 if (!regs) 6413 return 0; 6414 6415 /* 6416 * Check if we fit in with the requested stack size into the: 6417 * - TASK_SIZE 6418 * If we don't, we limit the size to the TASK_SIZE. 6419 * 6420 * - remaining sample size 6421 * If we don't, we customize the stack size to 6422 * fit in to the remaining sample size. 6423 */ 6424 6425 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6426 stack_size = min(stack_size, (u16) task_size); 6427 6428 /* Current header size plus static size and dynamic size. */ 6429 header_size += 2 * sizeof(u64); 6430 6431 /* Do we fit in with the current stack dump size? */ 6432 if ((u16) (header_size + stack_size) < header_size) { 6433 /* 6434 * If we overflow the maximum size for the sample, 6435 * we customize the stack dump size to fit in. 6436 */ 6437 stack_size = USHRT_MAX - header_size - sizeof(u64); 6438 stack_size = round_up(stack_size, sizeof(u64)); 6439 } 6440 6441 return stack_size; 6442 } 6443 6444 static void 6445 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6446 struct pt_regs *regs) 6447 { 6448 /* Case of a kernel thread, nothing to dump */ 6449 if (!regs) { 6450 u64 size = 0; 6451 perf_output_put(handle, size); 6452 } else { 6453 unsigned long sp; 6454 unsigned int rem; 6455 u64 dyn_size; 6456 mm_segment_t fs; 6457 6458 /* 6459 * We dump: 6460 * static size 6461 * - the size requested by user or the best one we can fit 6462 * in to the sample max size 6463 * data 6464 * - user stack dump data 6465 * dynamic size 6466 * - the actual dumped size 6467 */ 6468 6469 /* Static size. */ 6470 perf_output_put(handle, dump_size); 6471 6472 /* Data. */ 6473 sp = perf_user_stack_pointer(regs); 6474 fs = force_uaccess_begin(); 6475 rem = __output_copy_user(handle, (void *) sp, dump_size); 6476 force_uaccess_end(fs); 6477 dyn_size = dump_size - rem; 6478 6479 perf_output_skip(handle, rem); 6480 6481 /* Dynamic size. */ 6482 perf_output_put(handle, dyn_size); 6483 } 6484 } 6485 6486 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6487 struct perf_sample_data *data, 6488 size_t size) 6489 { 6490 struct perf_event *sampler = event->aux_event; 6491 struct perf_buffer *rb; 6492 6493 data->aux_size = 0; 6494 6495 if (!sampler) 6496 goto out; 6497 6498 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6499 goto out; 6500 6501 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6502 goto out; 6503 6504 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6505 if (!rb) 6506 goto out; 6507 6508 /* 6509 * If this is an NMI hit inside sampling code, don't take 6510 * the sample. See also perf_aux_sample_output(). 6511 */ 6512 if (READ_ONCE(rb->aux_in_sampling)) { 6513 data->aux_size = 0; 6514 } else { 6515 size = min_t(size_t, size, perf_aux_size(rb)); 6516 data->aux_size = ALIGN(size, sizeof(u64)); 6517 } 6518 ring_buffer_put(rb); 6519 6520 out: 6521 return data->aux_size; 6522 } 6523 6524 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6525 struct perf_event *event, 6526 struct perf_output_handle *handle, 6527 unsigned long size) 6528 { 6529 unsigned long flags; 6530 long ret; 6531 6532 /* 6533 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6534 * paths. If we start calling them in NMI context, they may race with 6535 * the IRQ ones, that is, for example, re-starting an event that's just 6536 * been stopped, which is why we're using a separate callback that 6537 * doesn't change the event state. 6538 * 6539 * IRQs need to be disabled to prevent IPIs from racing with us. 6540 */ 6541 local_irq_save(flags); 6542 /* 6543 * Guard against NMI hits inside the critical section; 6544 * see also perf_prepare_sample_aux(). 6545 */ 6546 WRITE_ONCE(rb->aux_in_sampling, 1); 6547 barrier(); 6548 6549 ret = event->pmu->snapshot_aux(event, handle, size); 6550 6551 barrier(); 6552 WRITE_ONCE(rb->aux_in_sampling, 0); 6553 local_irq_restore(flags); 6554 6555 return ret; 6556 } 6557 6558 static void perf_aux_sample_output(struct perf_event *event, 6559 struct perf_output_handle *handle, 6560 struct perf_sample_data *data) 6561 { 6562 struct perf_event *sampler = event->aux_event; 6563 struct perf_buffer *rb; 6564 unsigned long pad; 6565 long size; 6566 6567 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6568 return; 6569 6570 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6571 if (!rb) 6572 return; 6573 6574 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6575 6576 /* 6577 * An error here means that perf_output_copy() failed (returned a 6578 * non-zero surplus that it didn't copy), which in its current 6579 * enlightened implementation is not possible. If that changes, we'd 6580 * like to know. 6581 */ 6582 if (WARN_ON_ONCE(size < 0)) 6583 goto out_put; 6584 6585 /* 6586 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6587 * perf_prepare_sample_aux(), so should not be more than that. 6588 */ 6589 pad = data->aux_size - size; 6590 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6591 pad = 8; 6592 6593 if (pad) { 6594 u64 zero = 0; 6595 perf_output_copy(handle, &zero, pad); 6596 } 6597 6598 out_put: 6599 ring_buffer_put(rb); 6600 } 6601 6602 static void __perf_event_header__init_id(struct perf_event_header *header, 6603 struct perf_sample_data *data, 6604 struct perf_event *event) 6605 { 6606 u64 sample_type = event->attr.sample_type; 6607 6608 data->type = sample_type; 6609 header->size += event->id_header_size; 6610 6611 if (sample_type & PERF_SAMPLE_TID) { 6612 /* namespace issues */ 6613 data->tid_entry.pid = perf_event_pid(event, current); 6614 data->tid_entry.tid = perf_event_tid(event, current); 6615 } 6616 6617 if (sample_type & PERF_SAMPLE_TIME) 6618 data->time = perf_event_clock(event); 6619 6620 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6621 data->id = primary_event_id(event); 6622 6623 if (sample_type & PERF_SAMPLE_STREAM_ID) 6624 data->stream_id = event->id; 6625 6626 if (sample_type & PERF_SAMPLE_CPU) { 6627 data->cpu_entry.cpu = raw_smp_processor_id(); 6628 data->cpu_entry.reserved = 0; 6629 } 6630 } 6631 6632 void perf_event_header__init_id(struct perf_event_header *header, 6633 struct perf_sample_data *data, 6634 struct perf_event *event) 6635 { 6636 if (event->attr.sample_id_all) 6637 __perf_event_header__init_id(header, data, event); 6638 } 6639 6640 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6641 struct perf_sample_data *data) 6642 { 6643 u64 sample_type = data->type; 6644 6645 if (sample_type & PERF_SAMPLE_TID) 6646 perf_output_put(handle, data->tid_entry); 6647 6648 if (sample_type & PERF_SAMPLE_TIME) 6649 perf_output_put(handle, data->time); 6650 6651 if (sample_type & PERF_SAMPLE_ID) 6652 perf_output_put(handle, data->id); 6653 6654 if (sample_type & PERF_SAMPLE_STREAM_ID) 6655 perf_output_put(handle, data->stream_id); 6656 6657 if (sample_type & PERF_SAMPLE_CPU) 6658 perf_output_put(handle, data->cpu_entry); 6659 6660 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6661 perf_output_put(handle, data->id); 6662 } 6663 6664 void perf_event__output_id_sample(struct perf_event *event, 6665 struct perf_output_handle *handle, 6666 struct perf_sample_data *sample) 6667 { 6668 if (event->attr.sample_id_all) 6669 __perf_event__output_id_sample(handle, sample); 6670 } 6671 6672 static void perf_output_read_one(struct perf_output_handle *handle, 6673 struct perf_event *event, 6674 u64 enabled, u64 running) 6675 { 6676 u64 read_format = event->attr.read_format; 6677 u64 values[4]; 6678 int n = 0; 6679 6680 values[n++] = perf_event_count(event); 6681 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6682 values[n++] = enabled + 6683 atomic64_read(&event->child_total_time_enabled); 6684 } 6685 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6686 values[n++] = running + 6687 atomic64_read(&event->child_total_time_running); 6688 } 6689 if (read_format & PERF_FORMAT_ID) 6690 values[n++] = primary_event_id(event); 6691 6692 __output_copy(handle, values, n * sizeof(u64)); 6693 } 6694 6695 static void perf_output_read_group(struct perf_output_handle *handle, 6696 struct perf_event *event, 6697 u64 enabled, u64 running) 6698 { 6699 struct perf_event *leader = event->group_leader, *sub; 6700 u64 read_format = event->attr.read_format; 6701 u64 values[5]; 6702 int n = 0; 6703 6704 values[n++] = 1 + leader->nr_siblings; 6705 6706 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6707 values[n++] = enabled; 6708 6709 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6710 values[n++] = running; 6711 6712 if ((leader != event) && 6713 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6714 leader->pmu->read(leader); 6715 6716 values[n++] = perf_event_count(leader); 6717 if (read_format & PERF_FORMAT_ID) 6718 values[n++] = primary_event_id(leader); 6719 6720 __output_copy(handle, values, n * sizeof(u64)); 6721 6722 for_each_sibling_event(sub, leader) { 6723 n = 0; 6724 6725 if ((sub != event) && 6726 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6727 sub->pmu->read(sub); 6728 6729 values[n++] = perf_event_count(sub); 6730 if (read_format & PERF_FORMAT_ID) 6731 values[n++] = primary_event_id(sub); 6732 6733 __output_copy(handle, values, n * sizeof(u64)); 6734 } 6735 } 6736 6737 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6738 PERF_FORMAT_TOTAL_TIME_RUNNING) 6739 6740 /* 6741 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6742 * 6743 * The problem is that its both hard and excessively expensive to iterate the 6744 * child list, not to mention that its impossible to IPI the children running 6745 * on another CPU, from interrupt/NMI context. 6746 */ 6747 static void perf_output_read(struct perf_output_handle *handle, 6748 struct perf_event *event) 6749 { 6750 u64 enabled = 0, running = 0, now; 6751 u64 read_format = event->attr.read_format; 6752 6753 /* 6754 * compute total_time_enabled, total_time_running 6755 * based on snapshot values taken when the event 6756 * was last scheduled in. 6757 * 6758 * we cannot simply called update_context_time() 6759 * because of locking issue as we are called in 6760 * NMI context 6761 */ 6762 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6763 calc_timer_values(event, &now, &enabled, &running); 6764 6765 if (event->attr.read_format & PERF_FORMAT_GROUP) 6766 perf_output_read_group(handle, event, enabled, running); 6767 else 6768 perf_output_read_one(handle, event, enabled, running); 6769 } 6770 6771 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6772 { 6773 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6774 } 6775 6776 void perf_output_sample(struct perf_output_handle *handle, 6777 struct perf_event_header *header, 6778 struct perf_sample_data *data, 6779 struct perf_event *event) 6780 { 6781 u64 sample_type = data->type; 6782 6783 perf_output_put(handle, *header); 6784 6785 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6786 perf_output_put(handle, data->id); 6787 6788 if (sample_type & PERF_SAMPLE_IP) 6789 perf_output_put(handle, data->ip); 6790 6791 if (sample_type & PERF_SAMPLE_TID) 6792 perf_output_put(handle, data->tid_entry); 6793 6794 if (sample_type & PERF_SAMPLE_TIME) 6795 perf_output_put(handle, data->time); 6796 6797 if (sample_type & PERF_SAMPLE_ADDR) 6798 perf_output_put(handle, data->addr); 6799 6800 if (sample_type & PERF_SAMPLE_ID) 6801 perf_output_put(handle, data->id); 6802 6803 if (sample_type & PERF_SAMPLE_STREAM_ID) 6804 perf_output_put(handle, data->stream_id); 6805 6806 if (sample_type & PERF_SAMPLE_CPU) 6807 perf_output_put(handle, data->cpu_entry); 6808 6809 if (sample_type & PERF_SAMPLE_PERIOD) 6810 perf_output_put(handle, data->period); 6811 6812 if (sample_type & PERF_SAMPLE_READ) 6813 perf_output_read(handle, event); 6814 6815 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6816 int size = 1; 6817 6818 size += data->callchain->nr; 6819 size *= sizeof(u64); 6820 __output_copy(handle, data->callchain, size); 6821 } 6822 6823 if (sample_type & PERF_SAMPLE_RAW) { 6824 struct perf_raw_record *raw = data->raw; 6825 6826 if (raw) { 6827 struct perf_raw_frag *frag = &raw->frag; 6828 6829 perf_output_put(handle, raw->size); 6830 do { 6831 if (frag->copy) { 6832 __output_custom(handle, frag->copy, 6833 frag->data, frag->size); 6834 } else { 6835 __output_copy(handle, frag->data, 6836 frag->size); 6837 } 6838 if (perf_raw_frag_last(frag)) 6839 break; 6840 frag = frag->next; 6841 } while (1); 6842 if (frag->pad) 6843 __output_skip(handle, NULL, frag->pad); 6844 } else { 6845 struct { 6846 u32 size; 6847 u32 data; 6848 } raw = { 6849 .size = sizeof(u32), 6850 .data = 0, 6851 }; 6852 perf_output_put(handle, raw); 6853 } 6854 } 6855 6856 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6857 if (data->br_stack) { 6858 size_t size; 6859 6860 size = data->br_stack->nr 6861 * sizeof(struct perf_branch_entry); 6862 6863 perf_output_put(handle, data->br_stack->nr); 6864 if (perf_sample_save_hw_index(event)) 6865 perf_output_put(handle, data->br_stack->hw_idx); 6866 perf_output_copy(handle, data->br_stack->entries, size); 6867 } else { 6868 /* 6869 * we always store at least the value of nr 6870 */ 6871 u64 nr = 0; 6872 perf_output_put(handle, nr); 6873 } 6874 } 6875 6876 if (sample_type & PERF_SAMPLE_REGS_USER) { 6877 u64 abi = data->regs_user.abi; 6878 6879 /* 6880 * If there are no regs to dump, notice it through 6881 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6882 */ 6883 perf_output_put(handle, abi); 6884 6885 if (abi) { 6886 u64 mask = event->attr.sample_regs_user; 6887 perf_output_sample_regs(handle, 6888 data->regs_user.regs, 6889 mask); 6890 } 6891 } 6892 6893 if (sample_type & PERF_SAMPLE_STACK_USER) { 6894 perf_output_sample_ustack(handle, 6895 data->stack_user_size, 6896 data->regs_user.regs); 6897 } 6898 6899 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 6900 perf_output_put(handle, data->weight.full); 6901 6902 if (sample_type & PERF_SAMPLE_DATA_SRC) 6903 perf_output_put(handle, data->data_src.val); 6904 6905 if (sample_type & PERF_SAMPLE_TRANSACTION) 6906 perf_output_put(handle, data->txn); 6907 6908 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6909 u64 abi = data->regs_intr.abi; 6910 /* 6911 * If there are no regs to dump, notice it through 6912 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6913 */ 6914 perf_output_put(handle, abi); 6915 6916 if (abi) { 6917 u64 mask = event->attr.sample_regs_intr; 6918 6919 perf_output_sample_regs(handle, 6920 data->regs_intr.regs, 6921 mask); 6922 } 6923 } 6924 6925 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6926 perf_output_put(handle, data->phys_addr); 6927 6928 if (sample_type & PERF_SAMPLE_CGROUP) 6929 perf_output_put(handle, data->cgroup); 6930 6931 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 6932 perf_output_put(handle, data->data_page_size); 6933 6934 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 6935 perf_output_put(handle, data->code_page_size); 6936 6937 if (sample_type & PERF_SAMPLE_AUX) { 6938 perf_output_put(handle, data->aux_size); 6939 6940 if (data->aux_size) 6941 perf_aux_sample_output(event, handle, data); 6942 } 6943 6944 if (!event->attr.watermark) { 6945 int wakeup_events = event->attr.wakeup_events; 6946 6947 if (wakeup_events) { 6948 struct perf_buffer *rb = handle->rb; 6949 int events = local_inc_return(&rb->events); 6950 6951 if (events >= wakeup_events) { 6952 local_sub(wakeup_events, &rb->events); 6953 local_inc(&rb->wakeup); 6954 } 6955 } 6956 } 6957 } 6958 6959 static u64 perf_virt_to_phys(u64 virt) 6960 { 6961 u64 phys_addr = 0; 6962 struct page *p = NULL; 6963 6964 if (!virt) 6965 return 0; 6966 6967 if (virt >= TASK_SIZE) { 6968 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6969 if (virt_addr_valid((void *)(uintptr_t)virt) && 6970 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6971 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6972 } else { 6973 /* 6974 * Walking the pages tables for user address. 6975 * Interrupts are disabled, so it prevents any tear down 6976 * of the page tables. 6977 * Try IRQ-safe get_user_page_fast_only first. 6978 * If failed, leave phys_addr as 0. 6979 */ 6980 if (current->mm != NULL) { 6981 pagefault_disable(); 6982 if (get_user_page_fast_only(virt, 0, &p)) 6983 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6984 pagefault_enable(); 6985 } 6986 6987 if (p) 6988 put_page(p); 6989 } 6990 6991 return phys_addr; 6992 } 6993 6994 /* 6995 * Return the pagetable size of a given virtual address. 6996 */ 6997 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 6998 { 6999 u64 size = 0; 7000 7001 #ifdef CONFIG_HAVE_FAST_GUP 7002 pgd_t *pgdp, pgd; 7003 p4d_t *p4dp, p4d; 7004 pud_t *pudp, pud; 7005 pmd_t *pmdp, pmd; 7006 pte_t *ptep, pte; 7007 7008 pgdp = pgd_offset(mm, addr); 7009 pgd = READ_ONCE(*pgdp); 7010 if (pgd_none(pgd)) 7011 return 0; 7012 7013 if (pgd_leaf(pgd)) 7014 return pgd_leaf_size(pgd); 7015 7016 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7017 p4d = READ_ONCE(*p4dp); 7018 if (!p4d_present(p4d)) 7019 return 0; 7020 7021 if (p4d_leaf(p4d)) 7022 return p4d_leaf_size(p4d); 7023 7024 pudp = pud_offset_lockless(p4dp, p4d, addr); 7025 pud = READ_ONCE(*pudp); 7026 if (!pud_present(pud)) 7027 return 0; 7028 7029 if (pud_leaf(pud)) 7030 return pud_leaf_size(pud); 7031 7032 pmdp = pmd_offset_lockless(pudp, pud, addr); 7033 pmd = READ_ONCE(*pmdp); 7034 if (!pmd_present(pmd)) 7035 return 0; 7036 7037 if (pmd_leaf(pmd)) 7038 return pmd_leaf_size(pmd); 7039 7040 ptep = pte_offset_map(&pmd, addr); 7041 pte = ptep_get_lockless(ptep); 7042 if (pte_present(pte)) 7043 size = pte_leaf_size(pte); 7044 pte_unmap(ptep); 7045 #endif /* CONFIG_HAVE_FAST_GUP */ 7046 7047 return size; 7048 } 7049 7050 static u64 perf_get_page_size(unsigned long addr) 7051 { 7052 struct mm_struct *mm; 7053 unsigned long flags; 7054 u64 size; 7055 7056 if (!addr) 7057 return 0; 7058 7059 /* 7060 * Software page-table walkers must disable IRQs, 7061 * which prevents any tear down of the page tables. 7062 */ 7063 local_irq_save(flags); 7064 7065 mm = current->mm; 7066 if (!mm) { 7067 /* 7068 * For kernel threads and the like, use init_mm so that 7069 * we can find kernel memory. 7070 */ 7071 mm = &init_mm; 7072 } 7073 7074 size = perf_get_pgtable_size(mm, addr); 7075 7076 local_irq_restore(flags); 7077 7078 return size; 7079 } 7080 7081 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7082 7083 struct perf_callchain_entry * 7084 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7085 { 7086 bool kernel = !event->attr.exclude_callchain_kernel; 7087 bool user = !event->attr.exclude_callchain_user; 7088 /* Disallow cross-task user callchains. */ 7089 bool crosstask = event->ctx->task && event->ctx->task != current; 7090 const u32 max_stack = event->attr.sample_max_stack; 7091 struct perf_callchain_entry *callchain; 7092 7093 if (!kernel && !user) 7094 return &__empty_callchain; 7095 7096 callchain = get_perf_callchain(regs, 0, kernel, user, 7097 max_stack, crosstask, true); 7098 return callchain ?: &__empty_callchain; 7099 } 7100 7101 void perf_prepare_sample(struct perf_event_header *header, 7102 struct perf_sample_data *data, 7103 struct perf_event *event, 7104 struct pt_regs *regs) 7105 { 7106 u64 sample_type = event->attr.sample_type; 7107 7108 header->type = PERF_RECORD_SAMPLE; 7109 header->size = sizeof(*header) + event->header_size; 7110 7111 header->misc = 0; 7112 header->misc |= perf_misc_flags(regs); 7113 7114 __perf_event_header__init_id(header, data, event); 7115 7116 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7117 data->ip = perf_instruction_pointer(regs); 7118 7119 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7120 int size = 1; 7121 7122 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7123 data->callchain = perf_callchain(event, regs); 7124 7125 size += data->callchain->nr; 7126 7127 header->size += size * sizeof(u64); 7128 } 7129 7130 if (sample_type & PERF_SAMPLE_RAW) { 7131 struct perf_raw_record *raw = data->raw; 7132 int size; 7133 7134 if (raw) { 7135 struct perf_raw_frag *frag = &raw->frag; 7136 u32 sum = 0; 7137 7138 do { 7139 sum += frag->size; 7140 if (perf_raw_frag_last(frag)) 7141 break; 7142 frag = frag->next; 7143 } while (1); 7144 7145 size = round_up(sum + sizeof(u32), sizeof(u64)); 7146 raw->size = size - sizeof(u32); 7147 frag->pad = raw->size - sum; 7148 } else { 7149 size = sizeof(u64); 7150 } 7151 7152 header->size += size; 7153 } 7154 7155 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7156 int size = sizeof(u64); /* nr */ 7157 if (data->br_stack) { 7158 if (perf_sample_save_hw_index(event)) 7159 size += sizeof(u64); 7160 7161 size += data->br_stack->nr 7162 * sizeof(struct perf_branch_entry); 7163 } 7164 header->size += size; 7165 } 7166 7167 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7168 perf_sample_regs_user(&data->regs_user, regs); 7169 7170 if (sample_type & PERF_SAMPLE_REGS_USER) { 7171 /* regs dump ABI info */ 7172 int size = sizeof(u64); 7173 7174 if (data->regs_user.regs) { 7175 u64 mask = event->attr.sample_regs_user; 7176 size += hweight64(mask) * sizeof(u64); 7177 } 7178 7179 header->size += size; 7180 } 7181 7182 if (sample_type & PERF_SAMPLE_STACK_USER) { 7183 /* 7184 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7185 * processed as the last one or have additional check added 7186 * in case new sample type is added, because we could eat 7187 * up the rest of the sample size. 7188 */ 7189 u16 stack_size = event->attr.sample_stack_user; 7190 u16 size = sizeof(u64); 7191 7192 stack_size = perf_sample_ustack_size(stack_size, header->size, 7193 data->regs_user.regs); 7194 7195 /* 7196 * If there is something to dump, add space for the dump 7197 * itself and for the field that tells the dynamic size, 7198 * which is how many have been actually dumped. 7199 */ 7200 if (stack_size) 7201 size += sizeof(u64) + stack_size; 7202 7203 data->stack_user_size = stack_size; 7204 header->size += size; 7205 } 7206 7207 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7208 /* regs dump ABI info */ 7209 int size = sizeof(u64); 7210 7211 perf_sample_regs_intr(&data->regs_intr, regs); 7212 7213 if (data->regs_intr.regs) { 7214 u64 mask = event->attr.sample_regs_intr; 7215 7216 size += hweight64(mask) * sizeof(u64); 7217 } 7218 7219 header->size += size; 7220 } 7221 7222 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7223 data->phys_addr = perf_virt_to_phys(data->addr); 7224 7225 #ifdef CONFIG_CGROUP_PERF 7226 if (sample_type & PERF_SAMPLE_CGROUP) { 7227 struct cgroup *cgrp; 7228 7229 /* protected by RCU */ 7230 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7231 data->cgroup = cgroup_id(cgrp); 7232 } 7233 #endif 7234 7235 /* 7236 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7237 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7238 * but the value will not dump to the userspace. 7239 */ 7240 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7241 data->data_page_size = perf_get_page_size(data->addr); 7242 7243 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7244 data->code_page_size = perf_get_page_size(data->ip); 7245 7246 if (sample_type & PERF_SAMPLE_AUX) { 7247 u64 size; 7248 7249 header->size += sizeof(u64); /* size */ 7250 7251 /* 7252 * Given the 16bit nature of header::size, an AUX sample can 7253 * easily overflow it, what with all the preceding sample bits. 7254 * Make sure this doesn't happen by using up to U16_MAX bytes 7255 * per sample in total (rounded down to 8 byte boundary). 7256 */ 7257 size = min_t(size_t, U16_MAX - header->size, 7258 event->attr.aux_sample_size); 7259 size = rounddown(size, 8); 7260 size = perf_prepare_sample_aux(event, data, size); 7261 7262 WARN_ON_ONCE(size + header->size > U16_MAX); 7263 header->size += size; 7264 } 7265 /* 7266 * If you're adding more sample types here, you likely need to do 7267 * something about the overflowing header::size, like repurpose the 7268 * lowest 3 bits of size, which should be always zero at the moment. 7269 * This raises a more important question, do we really need 512k sized 7270 * samples and why, so good argumentation is in order for whatever you 7271 * do here next. 7272 */ 7273 WARN_ON_ONCE(header->size & 7); 7274 } 7275 7276 static __always_inline int 7277 __perf_event_output(struct perf_event *event, 7278 struct perf_sample_data *data, 7279 struct pt_regs *regs, 7280 int (*output_begin)(struct perf_output_handle *, 7281 struct perf_sample_data *, 7282 struct perf_event *, 7283 unsigned int)) 7284 { 7285 struct perf_output_handle handle; 7286 struct perf_event_header header; 7287 int err; 7288 7289 /* protect the callchain buffers */ 7290 rcu_read_lock(); 7291 7292 perf_prepare_sample(&header, data, event, regs); 7293 7294 err = output_begin(&handle, data, event, header.size); 7295 if (err) 7296 goto exit; 7297 7298 perf_output_sample(&handle, &header, data, event); 7299 7300 perf_output_end(&handle); 7301 7302 exit: 7303 rcu_read_unlock(); 7304 return err; 7305 } 7306 7307 void 7308 perf_event_output_forward(struct perf_event *event, 7309 struct perf_sample_data *data, 7310 struct pt_regs *regs) 7311 { 7312 __perf_event_output(event, data, regs, perf_output_begin_forward); 7313 } 7314 7315 void 7316 perf_event_output_backward(struct perf_event *event, 7317 struct perf_sample_data *data, 7318 struct pt_regs *regs) 7319 { 7320 __perf_event_output(event, data, regs, perf_output_begin_backward); 7321 } 7322 7323 int 7324 perf_event_output(struct perf_event *event, 7325 struct perf_sample_data *data, 7326 struct pt_regs *regs) 7327 { 7328 return __perf_event_output(event, data, regs, perf_output_begin); 7329 } 7330 7331 /* 7332 * read event_id 7333 */ 7334 7335 struct perf_read_event { 7336 struct perf_event_header header; 7337 7338 u32 pid; 7339 u32 tid; 7340 }; 7341 7342 static void 7343 perf_event_read_event(struct perf_event *event, 7344 struct task_struct *task) 7345 { 7346 struct perf_output_handle handle; 7347 struct perf_sample_data sample; 7348 struct perf_read_event read_event = { 7349 .header = { 7350 .type = PERF_RECORD_READ, 7351 .misc = 0, 7352 .size = sizeof(read_event) + event->read_size, 7353 }, 7354 .pid = perf_event_pid(event, task), 7355 .tid = perf_event_tid(event, task), 7356 }; 7357 int ret; 7358 7359 perf_event_header__init_id(&read_event.header, &sample, event); 7360 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7361 if (ret) 7362 return; 7363 7364 perf_output_put(&handle, read_event); 7365 perf_output_read(&handle, event); 7366 perf_event__output_id_sample(event, &handle, &sample); 7367 7368 perf_output_end(&handle); 7369 } 7370 7371 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7372 7373 static void 7374 perf_iterate_ctx(struct perf_event_context *ctx, 7375 perf_iterate_f output, 7376 void *data, bool all) 7377 { 7378 struct perf_event *event; 7379 7380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7381 if (!all) { 7382 if (event->state < PERF_EVENT_STATE_INACTIVE) 7383 continue; 7384 if (!event_filter_match(event)) 7385 continue; 7386 } 7387 7388 output(event, data); 7389 } 7390 } 7391 7392 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7393 { 7394 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7395 struct perf_event *event; 7396 7397 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7398 /* 7399 * Skip events that are not fully formed yet; ensure that 7400 * if we observe event->ctx, both event and ctx will be 7401 * complete enough. See perf_install_in_context(). 7402 */ 7403 if (!smp_load_acquire(&event->ctx)) 7404 continue; 7405 7406 if (event->state < PERF_EVENT_STATE_INACTIVE) 7407 continue; 7408 if (!event_filter_match(event)) 7409 continue; 7410 output(event, data); 7411 } 7412 } 7413 7414 /* 7415 * Iterate all events that need to receive side-band events. 7416 * 7417 * For new callers; ensure that account_pmu_sb_event() includes 7418 * your event, otherwise it might not get delivered. 7419 */ 7420 static void 7421 perf_iterate_sb(perf_iterate_f output, void *data, 7422 struct perf_event_context *task_ctx) 7423 { 7424 struct perf_event_context *ctx; 7425 int ctxn; 7426 7427 rcu_read_lock(); 7428 preempt_disable(); 7429 7430 /* 7431 * If we have task_ctx != NULL we only notify the task context itself. 7432 * The task_ctx is set only for EXIT events before releasing task 7433 * context. 7434 */ 7435 if (task_ctx) { 7436 perf_iterate_ctx(task_ctx, output, data, false); 7437 goto done; 7438 } 7439 7440 perf_iterate_sb_cpu(output, data); 7441 7442 for_each_task_context_nr(ctxn) { 7443 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7444 if (ctx) 7445 perf_iterate_ctx(ctx, output, data, false); 7446 } 7447 done: 7448 preempt_enable(); 7449 rcu_read_unlock(); 7450 } 7451 7452 /* 7453 * Clear all file-based filters at exec, they'll have to be 7454 * re-instated when/if these objects are mmapped again. 7455 */ 7456 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7457 { 7458 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7459 struct perf_addr_filter *filter; 7460 unsigned int restart = 0, count = 0; 7461 unsigned long flags; 7462 7463 if (!has_addr_filter(event)) 7464 return; 7465 7466 raw_spin_lock_irqsave(&ifh->lock, flags); 7467 list_for_each_entry(filter, &ifh->list, entry) { 7468 if (filter->path.dentry) { 7469 event->addr_filter_ranges[count].start = 0; 7470 event->addr_filter_ranges[count].size = 0; 7471 restart++; 7472 } 7473 7474 count++; 7475 } 7476 7477 if (restart) 7478 event->addr_filters_gen++; 7479 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7480 7481 if (restart) 7482 perf_event_stop(event, 1); 7483 } 7484 7485 void perf_event_exec(void) 7486 { 7487 struct perf_event_context *ctx; 7488 int ctxn; 7489 7490 rcu_read_lock(); 7491 for_each_task_context_nr(ctxn) { 7492 ctx = current->perf_event_ctxp[ctxn]; 7493 if (!ctx) 7494 continue; 7495 7496 perf_event_enable_on_exec(ctxn); 7497 7498 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7499 true); 7500 } 7501 rcu_read_unlock(); 7502 } 7503 7504 struct remote_output { 7505 struct perf_buffer *rb; 7506 int err; 7507 }; 7508 7509 static void __perf_event_output_stop(struct perf_event *event, void *data) 7510 { 7511 struct perf_event *parent = event->parent; 7512 struct remote_output *ro = data; 7513 struct perf_buffer *rb = ro->rb; 7514 struct stop_event_data sd = { 7515 .event = event, 7516 }; 7517 7518 if (!has_aux(event)) 7519 return; 7520 7521 if (!parent) 7522 parent = event; 7523 7524 /* 7525 * In case of inheritance, it will be the parent that links to the 7526 * ring-buffer, but it will be the child that's actually using it. 7527 * 7528 * We are using event::rb to determine if the event should be stopped, 7529 * however this may race with ring_buffer_attach() (through set_output), 7530 * which will make us skip the event that actually needs to be stopped. 7531 * So ring_buffer_attach() has to stop an aux event before re-assigning 7532 * its rb pointer. 7533 */ 7534 if (rcu_dereference(parent->rb) == rb) 7535 ro->err = __perf_event_stop(&sd); 7536 } 7537 7538 static int __perf_pmu_output_stop(void *info) 7539 { 7540 struct perf_event *event = info; 7541 struct pmu *pmu = event->ctx->pmu; 7542 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7543 struct remote_output ro = { 7544 .rb = event->rb, 7545 }; 7546 7547 rcu_read_lock(); 7548 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7549 if (cpuctx->task_ctx) 7550 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7551 &ro, false); 7552 rcu_read_unlock(); 7553 7554 return ro.err; 7555 } 7556 7557 static void perf_pmu_output_stop(struct perf_event *event) 7558 { 7559 struct perf_event *iter; 7560 int err, cpu; 7561 7562 restart: 7563 rcu_read_lock(); 7564 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7565 /* 7566 * For per-CPU events, we need to make sure that neither they 7567 * nor their children are running; for cpu==-1 events it's 7568 * sufficient to stop the event itself if it's active, since 7569 * it can't have children. 7570 */ 7571 cpu = iter->cpu; 7572 if (cpu == -1) 7573 cpu = READ_ONCE(iter->oncpu); 7574 7575 if (cpu == -1) 7576 continue; 7577 7578 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7579 if (err == -EAGAIN) { 7580 rcu_read_unlock(); 7581 goto restart; 7582 } 7583 } 7584 rcu_read_unlock(); 7585 } 7586 7587 /* 7588 * task tracking -- fork/exit 7589 * 7590 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7591 */ 7592 7593 struct perf_task_event { 7594 struct task_struct *task; 7595 struct perf_event_context *task_ctx; 7596 7597 struct { 7598 struct perf_event_header header; 7599 7600 u32 pid; 7601 u32 ppid; 7602 u32 tid; 7603 u32 ptid; 7604 u64 time; 7605 } event_id; 7606 }; 7607 7608 static int perf_event_task_match(struct perf_event *event) 7609 { 7610 return event->attr.comm || event->attr.mmap || 7611 event->attr.mmap2 || event->attr.mmap_data || 7612 event->attr.task; 7613 } 7614 7615 static void perf_event_task_output(struct perf_event *event, 7616 void *data) 7617 { 7618 struct perf_task_event *task_event = data; 7619 struct perf_output_handle handle; 7620 struct perf_sample_data sample; 7621 struct task_struct *task = task_event->task; 7622 int ret, size = task_event->event_id.header.size; 7623 7624 if (!perf_event_task_match(event)) 7625 return; 7626 7627 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7628 7629 ret = perf_output_begin(&handle, &sample, event, 7630 task_event->event_id.header.size); 7631 if (ret) 7632 goto out; 7633 7634 task_event->event_id.pid = perf_event_pid(event, task); 7635 task_event->event_id.tid = perf_event_tid(event, task); 7636 7637 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7638 task_event->event_id.ppid = perf_event_pid(event, 7639 task->real_parent); 7640 task_event->event_id.ptid = perf_event_pid(event, 7641 task->real_parent); 7642 } else { /* PERF_RECORD_FORK */ 7643 task_event->event_id.ppid = perf_event_pid(event, current); 7644 task_event->event_id.ptid = perf_event_tid(event, current); 7645 } 7646 7647 task_event->event_id.time = perf_event_clock(event); 7648 7649 perf_output_put(&handle, task_event->event_id); 7650 7651 perf_event__output_id_sample(event, &handle, &sample); 7652 7653 perf_output_end(&handle); 7654 out: 7655 task_event->event_id.header.size = size; 7656 } 7657 7658 static void perf_event_task(struct task_struct *task, 7659 struct perf_event_context *task_ctx, 7660 int new) 7661 { 7662 struct perf_task_event task_event; 7663 7664 if (!atomic_read(&nr_comm_events) && 7665 !atomic_read(&nr_mmap_events) && 7666 !atomic_read(&nr_task_events)) 7667 return; 7668 7669 task_event = (struct perf_task_event){ 7670 .task = task, 7671 .task_ctx = task_ctx, 7672 .event_id = { 7673 .header = { 7674 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7675 .misc = 0, 7676 .size = sizeof(task_event.event_id), 7677 }, 7678 /* .pid */ 7679 /* .ppid */ 7680 /* .tid */ 7681 /* .ptid */ 7682 /* .time */ 7683 }, 7684 }; 7685 7686 perf_iterate_sb(perf_event_task_output, 7687 &task_event, 7688 task_ctx); 7689 } 7690 7691 void perf_event_fork(struct task_struct *task) 7692 { 7693 perf_event_task(task, NULL, 1); 7694 perf_event_namespaces(task); 7695 } 7696 7697 /* 7698 * comm tracking 7699 */ 7700 7701 struct perf_comm_event { 7702 struct task_struct *task; 7703 char *comm; 7704 int comm_size; 7705 7706 struct { 7707 struct perf_event_header header; 7708 7709 u32 pid; 7710 u32 tid; 7711 } event_id; 7712 }; 7713 7714 static int perf_event_comm_match(struct perf_event *event) 7715 { 7716 return event->attr.comm; 7717 } 7718 7719 static void perf_event_comm_output(struct perf_event *event, 7720 void *data) 7721 { 7722 struct perf_comm_event *comm_event = data; 7723 struct perf_output_handle handle; 7724 struct perf_sample_data sample; 7725 int size = comm_event->event_id.header.size; 7726 int ret; 7727 7728 if (!perf_event_comm_match(event)) 7729 return; 7730 7731 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7732 ret = perf_output_begin(&handle, &sample, event, 7733 comm_event->event_id.header.size); 7734 7735 if (ret) 7736 goto out; 7737 7738 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7739 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7740 7741 perf_output_put(&handle, comm_event->event_id); 7742 __output_copy(&handle, comm_event->comm, 7743 comm_event->comm_size); 7744 7745 perf_event__output_id_sample(event, &handle, &sample); 7746 7747 perf_output_end(&handle); 7748 out: 7749 comm_event->event_id.header.size = size; 7750 } 7751 7752 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7753 { 7754 char comm[TASK_COMM_LEN]; 7755 unsigned int size; 7756 7757 memset(comm, 0, sizeof(comm)); 7758 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7759 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7760 7761 comm_event->comm = comm; 7762 comm_event->comm_size = size; 7763 7764 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7765 7766 perf_iterate_sb(perf_event_comm_output, 7767 comm_event, 7768 NULL); 7769 } 7770 7771 void perf_event_comm(struct task_struct *task, bool exec) 7772 { 7773 struct perf_comm_event comm_event; 7774 7775 if (!atomic_read(&nr_comm_events)) 7776 return; 7777 7778 comm_event = (struct perf_comm_event){ 7779 .task = task, 7780 /* .comm */ 7781 /* .comm_size */ 7782 .event_id = { 7783 .header = { 7784 .type = PERF_RECORD_COMM, 7785 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7786 /* .size */ 7787 }, 7788 /* .pid */ 7789 /* .tid */ 7790 }, 7791 }; 7792 7793 perf_event_comm_event(&comm_event); 7794 } 7795 7796 /* 7797 * namespaces tracking 7798 */ 7799 7800 struct perf_namespaces_event { 7801 struct task_struct *task; 7802 7803 struct { 7804 struct perf_event_header header; 7805 7806 u32 pid; 7807 u32 tid; 7808 u64 nr_namespaces; 7809 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7810 } event_id; 7811 }; 7812 7813 static int perf_event_namespaces_match(struct perf_event *event) 7814 { 7815 return event->attr.namespaces; 7816 } 7817 7818 static void perf_event_namespaces_output(struct perf_event *event, 7819 void *data) 7820 { 7821 struct perf_namespaces_event *namespaces_event = data; 7822 struct perf_output_handle handle; 7823 struct perf_sample_data sample; 7824 u16 header_size = namespaces_event->event_id.header.size; 7825 int ret; 7826 7827 if (!perf_event_namespaces_match(event)) 7828 return; 7829 7830 perf_event_header__init_id(&namespaces_event->event_id.header, 7831 &sample, event); 7832 ret = perf_output_begin(&handle, &sample, event, 7833 namespaces_event->event_id.header.size); 7834 if (ret) 7835 goto out; 7836 7837 namespaces_event->event_id.pid = perf_event_pid(event, 7838 namespaces_event->task); 7839 namespaces_event->event_id.tid = perf_event_tid(event, 7840 namespaces_event->task); 7841 7842 perf_output_put(&handle, namespaces_event->event_id); 7843 7844 perf_event__output_id_sample(event, &handle, &sample); 7845 7846 perf_output_end(&handle); 7847 out: 7848 namespaces_event->event_id.header.size = header_size; 7849 } 7850 7851 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7852 struct task_struct *task, 7853 const struct proc_ns_operations *ns_ops) 7854 { 7855 struct path ns_path; 7856 struct inode *ns_inode; 7857 int error; 7858 7859 error = ns_get_path(&ns_path, task, ns_ops); 7860 if (!error) { 7861 ns_inode = ns_path.dentry->d_inode; 7862 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7863 ns_link_info->ino = ns_inode->i_ino; 7864 path_put(&ns_path); 7865 } 7866 } 7867 7868 void perf_event_namespaces(struct task_struct *task) 7869 { 7870 struct perf_namespaces_event namespaces_event; 7871 struct perf_ns_link_info *ns_link_info; 7872 7873 if (!atomic_read(&nr_namespaces_events)) 7874 return; 7875 7876 namespaces_event = (struct perf_namespaces_event){ 7877 .task = task, 7878 .event_id = { 7879 .header = { 7880 .type = PERF_RECORD_NAMESPACES, 7881 .misc = 0, 7882 .size = sizeof(namespaces_event.event_id), 7883 }, 7884 /* .pid */ 7885 /* .tid */ 7886 .nr_namespaces = NR_NAMESPACES, 7887 /* .link_info[NR_NAMESPACES] */ 7888 }, 7889 }; 7890 7891 ns_link_info = namespaces_event.event_id.link_info; 7892 7893 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7894 task, &mntns_operations); 7895 7896 #ifdef CONFIG_USER_NS 7897 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7898 task, &userns_operations); 7899 #endif 7900 #ifdef CONFIG_NET_NS 7901 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7902 task, &netns_operations); 7903 #endif 7904 #ifdef CONFIG_UTS_NS 7905 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7906 task, &utsns_operations); 7907 #endif 7908 #ifdef CONFIG_IPC_NS 7909 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7910 task, &ipcns_operations); 7911 #endif 7912 #ifdef CONFIG_PID_NS 7913 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7914 task, &pidns_operations); 7915 #endif 7916 #ifdef CONFIG_CGROUPS 7917 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7918 task, &cgroupns_operations); 7919 #endif 7920 7921 perf_iterate_sb(perf_event_namespaces_output, 7922 &namespaces_event, 7923 NULL); 7924 } 7925 7926 /* 7927 * cgroup tracking 7928 */ 7929 #ifdef CONFIG_CGROUP_PERF 7930 7931 struct perf_cgroup_event { 7932 char *path; 7933 int path_size; 7934 struct { 7935 struct perf_event_header header; 7936 u64 id; 7937 char path[]; 7938 } event_id; 7939 }; 7940 7941 static int perf_event_cgroup_match(struct perf_event *event) 7942 { 7943 return event->attr.cgroup; 7944 } 7945 7946 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7947 { 7948 struct perf_cgroup_event *cgroup_event = data; 7949 struct perf_output_handle handle; 7950 struct perf_sample_data sample; 7951 u16 header_size = cgroup_event->event_id.header.size; 7952 int ret; 7953 7954 if (!perf_event_cgroup_match(event)) 7955 return; 7956 7957 perf_event_header__init_id(&cgroup_event->event_id.header, 7958 &sample, event); 7959 ret = perf_output_begin(&handle, &sample, event, 7960 cgroup_event->event_id.header.size); 7961 if (ret) 7962 goto out; 7963 7964 perf_output_put(&handle, cgroup_event->event_id); 7965 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7966 7967 perf_event__output_id_sample(event, &handle, &sample); 7968 7969 perf_output_end(&handle); 7970 out: 7971 cgroup_event->event_id.header.size = header_size; 7972 } 7973 7974 static void perf_event_cgroup(struct cgroup *cgrp) 7975 { 7976 struct perf_cgroup_event cgroup_event; 7977 char path_enomem[16] = "//enomem"; 7978 char *pathname; 7979 size_t size; 7980 7981 if (!atomic_read(&nr_cgroup_events)) 7982 return; 7983 7984 cgroup_event = (struct perf_cgroup_event){ 7985 .event_id = { 7986 .header = { 7987 .type = PERF_RECORD_CGROUP, 7988 .misc = 0, 7989 .size = sizeof(cgroup_event.event_id), 7990 }, 7991 .id = cgroup_id(cgrp), 7992 }, 7993 }; 7994 7995 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7996 if (pathname == NULL) { 7997 cgroup_event.path = path_enomem; 7998 } else { 7999 /* just to be sure to have enough space for alignment */ 8000 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8001 cgroup_event.path = pathname; 8002 } 8003 8004 /* 8005 * Since our buffer works in 8 byte units we need to align our string 8006 * size to a multiple of 8. However, we must guarantee the tail end is 8007 * zero'd out to avoid leaking random bits to userspace. 8008 */ 8009 size = strlen(cgroup_event.path) + 1; 8010 while (!IS_ALIGNED(size, sizeof(u64))) 8011 cgroup_event.path[size++] = '\0'; 8012 8013 cgroup_event.event_id.header.size += size; 8014 cgroup_event.path_size = size; 8015 8016 perf_iterate_sb(perf_event_cgroup_output, 8017 &cgroup_event, 8018 NULL); 8019 8020 kfree(pathname); 8021 } 8022 8023 #endif 8024 8025 /* 8026 * mmap tracking 8027 */ 8028 8029 struct perf_mmap_event { 8030 struct vm_area_struct *vma; 8031 8032 const char *file_name; 8033 int file_size; 8034 int maj, min; 8035 u64 ino; 8036 u64 ino_generation; 8037 u32 prot, flags; 8038 u8 build_id[BUILD_ID_SIZE_MAX]; 8039 u32 build_id_size; 8040 8041 struct { 8042 struct perf_event_header header; 8043 8044 u32 pid; 8045 u32 tid; 8046 u64 start; 8047 u64 len; 8048 u64 pgoff; 8049 } event_id; 8050 }; 8051 8052 static int perf_event_mmap_match(struct perf_event *event, 8053 void *data) 8054 { 8055 struct perf_mmap_event *mmap_event = data; 8056 struct vm_area_struct *vma = mmap_event->vma; 8057 int executable = vma->vm_flags & VM_EXEC; 8058 8059 return (!executable && event->attr.mmap_data) || 8060 (executable && (event->attr.mmap || event->attr.mmap2)); 8061 } 8062 8063 static void perf_event_mmap_output(struct perf_event *event, 8064 void *data) 8065 { 8066 struct perf_mmap_event *mmap_event = data; 8067 struct perf_output_handle handle; 8068 struct perf_sample_data sample; 8069 int size = mmap_event->event_id.header.size; 8070 u32 type = mmap_event->event_id.header.type; 8071 bool use_build_id; 8072 int ret; 8073 8074 if (!perf_event_mmap_match(event, data)) 8075 return; 8076 8077 if (event->attr.mmap2) { 8078 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8079 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8080 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8081 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8082 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8083 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8084 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8085 } 8086 8087 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8088 ret = perf_output_begin(&handle, &sample, event, 8089 mmap_event->event_id.header.size); 8090 if (ret) 8091 goto out; 8092 8093 mmap_event->event_id.pid = perf_event_pid(event, current); 8094 mmap_event->event_id.tid = perf_event_tid(event, current); 8095 8096 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8097 8098 if (event->attr.mmap2 && use_build_id) 8099 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8100 8101 perf_output_put(&handle, mmap_event->event_id); 8102 8103 if (event->attr.mmap2) { 8104 if (use_build_id) { 8105 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8106 8107 __output_copy(&handle, size, 4); 8108 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8109 } else { 8110 perf_output_put(&handle, mmap_event->maj); 8111 perf_output_put(&handle, mmap_event->min); 8112 perf_output_put(&handle, mmap_event->ino); 8113 perf_output_put(&handle, mmap_event->ino_generation); 8114 } 8115 perf_output_put(&handle, mmap_event->prot); 8116 perf_output_put(&handle, mmap_event->flags); 8117 } 8118 8119 __output_copy(&handle, mmap_event->file_name, 8120 mmap_event->file_size); 8121 8122 perf_event__output_id_sample(event, &handle, &sample); 8123 8124 perf_output_end(&handle); 8125 out: 8126 mmap_event->event_id.header.size = size; 8127 mmap_event->event_id.header.type = type; 8128 } 8129 8130 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8131 { 8132 struct vm_area_struct *vma = mmap_event->vma; 8133 struct file *file = vma->vm_file; 8134 int maj = 0, min = 0; 8135 u64 ino = 0, gen = 0; 8136 u32 prot = 0, flags = 0; 8137 unsigned int size; 8138 char tmp[16]; 8139 char *buf = NULL; 8140 char *name; 8141 8142 if (vma->vm_flags & VM_READ) 8143 prot |= PROT_READ; 8144 if (vma->vm_flags & VM_WRITE) 8145 prot |= PROT_WRITE; 8146 if (vma->vm_flags & VM_EXEC) 8147 prot |= PROT_EXEC; 8148 8149 if (vma->vm_flags & VM_MAYSHARE) 8150 flags = MAP_SHARED; 8151 else 8152 flags = MAP_PRIVATE; 8153 8154 if (vma->vm_flags & VM_DENYWRITE) 8155 flags |= MAP_DENYWRITE; 8156 if (vma->vm_flags & VM_MAYEXEC) 8157 flags |= MAP_EXECUTABLE; 8158 if (vma->vm_flags & VM_LOCKED) 8159 flags |= MAP_LOCKED; 8160 if (is_vm_hugetlb_page(vma)) 8161 flags |= MAP_HUGETLB; 8162 8163 if (file) { 8164 struct inode *inode; 8165 dev_t dev; 8166 8167 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8168 if (!buf) { 8169 name = "//enomem"; 8170 goto cpy_name; 8171 } 8172 /* 8173 * d_path() works from the end of the rb backwards, so we 8174 * need to add enough zero bytes after the string to handle 8175 * the 64bit alignment we do later. 8176 */ 8177 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8178 if (IS_ERR(name)) { 8179 name = "//toolong"; 8180 goto cpy_name; 8181 } 8182 inode = file_inode(vma->vm_file); 8183 dev = inode->i_sb->s_dev; 8184 ino = inode->i_ino; 8185 gen = inode->i_generation; 8186 maj = MAJOR(dev); 8187 min = MINOR(dev); 8188 8189 goto got_name; 8190 } else { 8191 if (vma->vm_ops && vma->vm_ops->name) { 8192 name = (char *) vma->vm_ops->name(vma); 8193 if (name) 8194 goto cpy_name; 8195 } 8196 8197 name = (char *)arch_vma_name(vma); 8198 if (name) 8199 goto cpy_name; 8200 8201 if (vma->vm_start <= vma->vm_mm->start_brk && 8202 vma->vm_end >= vma->vm_mm->brk) { 8203 name = "[heap]"; 8204 goto cpy_name; 8205 } 8206 if (vma->vm_start <= vma->vm_mm->start_stack && 8207 vma->vm_end >= vma->vm_mm->start_stack) { 8208 name = "[stack]"; 8209 goto cpy_name; 8210 } 8211 8212 name = "//anon"; 8213 goto cpy_name; 8214 } 8215 8216 cpy_name: 8217 strlcpy(tmp, name, sizeof(tmp)); 8218 name = tmp; 8219 got_name: 8220 /* 8221 * Since our buffer works in 8 byte units we need to align our string 8222 * size to a multiple of 8. However, we must guarantee the tail end is 8223 * zero'd out to avoid leaking random bits to userspace. 8224 */ 8225 size = strlen(name)+1; 8226 while (!IS_ALIGNED(size, sizeof(u64))) 8227 name[size++] = '\0'; 8228 8229 mmap_event->file_name = name; 8230 mmap_event->file_size = size; 8231 mmap_event->maj = maj; 8232 mmap_event->min = min; 8233 mmap_event->ino = ino; 8234 mmap_event->ino_generation = gen; 8235 mmap_event->prot = prot; 8236 mmap_event->flags = flags; 8237 8238 if (!(vma->vm_flags & VM_EXEC)) 8239 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8240 8241 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8242 8243 if (atomic_read(&nr_build_id_events)) 8244 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8245 8246 perf_iterate_sb(perf_event_mmap_output, 8247 mmap_event, 8248 NULL); 8249 8250 kfree(buf); 8251 } 8252 8253 /* 8254 * Check whether inode and address range match filter criteria. 8255 */ 8256 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8257 struct file *file, unsigned long offset, 8258 unsigned long size) 8259 { 8260 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8261 if (!filter->path.dentry) 8262 return false; 8263 8264 if (d_inode(filter->path.dentry) != file_inode(file)) 8265 return false; 8266 8267 if (filter->offset > offset + size) 8268 return false; 8269 8270 if (filter->offset + filter->size < offset) 8271 return false; 8272 8273 return true; 8274 } 8275 8276 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8277 struct vm_area_struct *vma, 8278 struct perf_addr_filter_range *fr) 8279 { 8280 unsigned long vma_size = vma->vm_end - vma->vm_start; 8281 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8282 struct file *file = vma->vm_file; 8283 8284 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8285 return false; 8286 8287 if (filter->offset < off) { 8288 fr->start = vma->vm_start; 8289 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8290 } else { 8291 fr->start = vma->vm_start + filter->offset - off; 8292 fr->size = min(vma->vm_end - fr->start, filter->size); 8293 } 8294 8295 return true; 8296 } 8297 8298 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8299 { 8300 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8301 struct vm_area_struct *vma = data; 8302 struct perf_addr_filter *filter; 8303 unsigned int restart = 0, count = 0; 8304 unsigned long flags; 8305 8306 if (!has_addr_filter(event)) 8307 return; 8308 8309 if (!vma->vm_file) 8310 return; 8311 8312 raw_spin_lock_irqsave(&ifh->lock, flags); 8313 list_for_each_entry(filter, &ifh->list, entry) { 8314 if (perf_addr_filter_vma_adjust(filter, vma, 8315 &event->addr_filter_ranges[count])) 8316 restart++; 8317 8318 count++; 8319 } 8320 8321 if (restart) 8322 event->addr_filters_gen++; 8323 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8324 8325 if (restart) 8326 perf_event_stop(event, 1); 8327 } 8328 8329 /* 8330 * Adjust all task's events' filters to the new vma 8331 */ 8332 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8333 { 8334 struct perf_event_context *ctx; 8335 int ctxn; 8336 8337 /* 8338 * Data tracing isn't supported yet and as such there is no need 8339 * to keep track of anything that isn't related to executable code: 8340 */ 8341 if (!(vma->vm_flags & VM_EXEC)) 8342 return; 8343 8344 rcu_read_lock(); 8345 for_each_task_context_nr(ctxn) { 8346 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8347 if (!ctx) 8348 continue; 8349 8350 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8351 } 8352 rcu_read_unlock(); 8353 } 8354 8355 void perf_event_mmap(struct vm_area_struct *vma) 8356 { 8357 struct perf_mmap_event mmap_event; 8358 8359 if (!atomic_read(&nr_mmap_events)) 8360 return; 8361 8362 mmap_event = (struct perf_mmap_event){ 8363 .vma = vma, 8364 /* .file_name */ 8365 /* .file_size */ 8366 .event_id = { 8367 .header = { 8368 .type = PERF_RECORD_MMAP, 8369 .misc = PERF_RECORD_MISC_USER, 8370 /* .size */ 8371 }, 8372 /* .pid */ 8373 /* .tid */ 8374 .start = vma->vm_start, 8375 .len = vma->vm_end - vma->vm_start, 8376 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8377 }, 8378 /* .maj (attr_mmap2 only) */ 8379 /* .min (attr_mmap2 only) */ 8380 /* .ino (attr_mmap2 only) */ 8381 /* .ino_generation (attr_mmap2 only) */ 8382 /* .prot (attr_mmap2 only) */ 8383 /* .flags (attr_mmap2 only) */ 8384 }; 8385 8386 perf_addr_filters_adjust(vma); 8387 perf_event_mmap_event(&mmap_event); 8388 } 8389 8390 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8391 unsigned long size, u64 flags) 8392 { 8393 struct perf_output_handle handle; 8394 struct perf_sample_data sample; 8395 struct perf_aux_event { 8396 struct perf_event_header header; 8397 u64 offset; 8398 u64 size; 8399 u64 flags; 8400 } rec = { 8401 .header = { 8402 .type = PERF_RECORD_AUX, 8403 .misc = 0, 8404 .size = sizeof(rec), 8405 }, 8406 .offset = head, 8407 .size = size, 8408 .flags = flags, 8409 }; 8410 int ret; 8411 8412 perf_event_header__init_id(&rec.header, &sample, event); 8413 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8414 8415 if (ret) 8416 return; 8417 8418 perf_output_put(&handle, rec); 8419 perf_event__output_id_sample(event, &handle, &sample); 8420 8421 perf_output_end(&handle); 8422 } 8423 8424 /* 8425 * Lost/dropped samples logging 8426 */ 8427 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8428 { 8429 struct perf_output_handle handle; 8430 struct perf_sample_data sample; 8431 int ret; 8432 8433 struct { 8434 struct perf_event_header header; 8435 u64 lost; 8436 } lost_samples_event = { 8437 .header = { 8438 .type = PERF_RECORD_LOST_SAMPLES, 8439 .misc = 0, 8440 .size = sizeof(lost_samples_event), 8441 }, 8442 .lost = lost, 8443 }; 8444 8445 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8446 8447 ret = perf_output_begin(&handle, &sample, event, 8448 lost_samples_event.header.size); 8449 if (ret) 8450 return; 8451 8452 perf_output_put(&handle, lost_samples_event); 8453 perf_event__output_id_sample(event, &handle, &sample); 8454 perf_output_end(&handle); 8455 } 8456 8457 /* 8458 * context_switch tracking 8459 */ 8460 8461 struct perf_switch_event { 8462 struct task_struct *task; 8463 struct task_struct *next_prev; 8464 8465 struct { 8466 struct perf_event_header header; 8467 u32 next_prev_pid; 8468 u32 next_prev_tid; 8469 } event_id; 8470 }; 8471 8472 static int perf_event_switch_match(struct perf_event *event) 8473 { 8474 return event->attr.context_switch; 8475 } 8476 8477 static void perf_event_switch_output(struct perf_event *event, void *data) 8478 { 8479 struct perf_switch_event *se = data; 8480 struct perf_output_handle handle; 8481 struct perf_sample_data sample; 8482 int ret; 8483 8484 if (!perf_event_switch_match(event)) 8485 return; 8486 8487 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8488 if (event->ctx->task) { 8489 se->event_id.header.type = PERF_RECORD_SWITCH; 8490 se->event_id.header.size = sizeof(se->event_id.header); 8491 } else { 8492 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8493 se->event_id.header.size = sizeof(se->event_id); 8494 se->event_id.next_prev_pid = 8495 perf_event_pid(event, se->next_prev); 8496 se->event_id.next_prev_tid = 8497 perf_event_tid(event, se->next_prev); 8498 } 8499 8500 perf_event_header__init_id(&se->event_id.header, &sample, event); 8501 8502 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8503 if (ret) 8504 return; 8505 8506 if (event->ctx->task) 8507 perf_output_put(&handle, se->event_id.header); 8508 else 8509 perf_output_put(&handle, se->event_id); 8510 8511 perf_event__output_id_sample(event, &handle, &sample); 8512 8513 perf_output_end(&handle); 8514 } 8515 8516 static void perf_event_switch(struct task_struct *task, 8517 struct task_struct *next_prev, bool sched_in) 8518 { 8519 struct perf_switch_event switch_event; 8520 8521 /* N.B. caller checks nr_switch_events != 0 */ 8522 8523 switch_event = (struct perf_switch_event){ 8524 .task = task, 8525 .next_prev = next_prev, 8526 .event_id = { 8527 .header = { 8528 /* .type */ 8529 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8530 /* .size */ 8531 }, 8532 /* .next_prev_pid */ 8533 /* .next_prev_tid */ 8534 }, 8535 }; 8536 8537 if (!sched_in && task->state == TASK_RUNNING) 8538 switch_event.event_id.header.misc |= 8539 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8540 8541 perf_iterate_sb(perf_event_switch_output, 8542 &switch_event, 8543 NULL); 8544 } 8545 8546 /* 8547 * IRQ throttle logging 8548 */ 8549 8550 static void perf_log_throttle(struct perf_event *event, int enable) 8551 { 8552 struct perf_output_handle handle; 8553 struct perf_sample_data sample; 8554 int ret; 8555 8556 struct { 8557 struct perf_event_header header; 8558 u64 time; 8559 u64 id; 8560 u64 stream_id; 8561 } throttle_event = { 8562 .header = { 8563 .type = PERF_RECORD_THROTTLE, 8564 .misc = 0, 8565 .size = sizeof(throttle_event), 8566 }, 8567 .time = perf_event_clock(event), 8568 .id = primary_event_id(event), 8569 .stream_id = event->id, 8570 }; 8571 8572 if (enable) 8573 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8574 8575 perf_event_header__init_id(&throttle_event.header, &sample, event); 8576 8577 ret = perf_output_begin(&handle, &sample, event, 8578 throttle_event.header.size); 8579 if (ret) 8580 return; 8581 8582 perf_output_put(&handle, throttle_event); 8583 perf_event__output_id_sample(event, &handle, &sample); 8584 perf_output_end(&handle); 8585 } 8586 8587 /* 8588 * ksymbol register/unregister tracking 8589 */ 8590 8591 struct perf_ksymbol_event { 8592 const char *name; 8593 int name_len; 8594 struct { 8595 struct perf_event_header header; 8596 u64 addr; 8597 u32 len; 8598 u16 ksym_type; 8599 u16 flags; 8600 } event_id; 8601 }; 8602 8603 static int perf_event_ksymbol_match(struct perf_event *event) 8604 { 8605 return event->attr.ksymbol; 8606 } 8607 8608 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8609 { 8610 struct perf_ksymbol_event *ksymbol_event = data; 8611 struct perf_output_handle handle; 8612 struct perf_sample_data sample; 8613 int ret; 8614 8615 if (!perf_event_ksymbol_match(event)) 8616 return; 8617 8618 perf_event_header__init_id(&ksymbol_event->event_id.header, 8619 &sample, event); 8620 ret = perf_output_begin(&handle, &sample, event, 8621 ksymbol_event->event_id.header.size); 8622 if (ret) 8623 return; 8624 8625 perf_output_put(&handle, ksymbol_event->event_id); 8626 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8627 perf_event__output_id_sample(event, &handle, &sample); 8628 8629 perf_output_end(&handle); 8630 } 8631 8632 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8633 const char *sym) 8634 { 8635 struct perf_ksymbol_event ksymbol_event; 8636 char name[KSYM_NAME_LEN]; 8637 u16 flags = 0; 8638 int name_len; 8639 8640 if (!atomic_read(&nr_ksymbol_events)) 8641 return; 8642 8643 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8644 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8645 goto err; 8646 8647 strlcpy(name, sym, KSYM_NAME_LEN); 8648 name_len = strlen(name) + 1; 8649 while (!IS_ALIGNED(name_len, sizeof(u64))) 8650 name[name_len++] = '\0'; 8651 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8652 8653 if (unregister) 8654 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8655 8656 ksymbol_event = (struct perf_ksymbol_event){ 8657 .name = name, 8658 .name_len = name_len, 8659 .event_id = { 8660 .header = { 8661 .type = PERF_RECORD_KSYMBOL, 8662 .size = sizeof(ksymbol_event.event_id) + 8663 name_len, 8664 }, 8665 .addr = addr, 8666 .len = len, 8667 .ksym_type = ksym_type, 8668 .flags = flags, 8669 }, 8670 }; 8671 8672 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8673 return; 8674 err: 8675 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8676 } 8677 8678 /* 8679 * bpf program load/unload tracking 8680 */ 8681 8682 struct perf_bpf_event { 8683 struct bpf_prog *prog; 8684 struct { 8685 struct perf_event_header header; 8686 u16 type; 8687 u16 flags; 8688 u32 id; 8689 u8 tag[BPF_TAG_SIZE]; 8690 } event_id; 8691 }; 8692 8693 static int perf_event_bpf_match(struct perf_event *event) 8694 { 8695 return event->attr.bpf_event; 8696 } 8697 8698 static void perf_event_bpf_output(struct perf_event *event, void *data) 8699 { 8700 struct perf_bpf_event *bpf_event = data; 8701 struct perf_output_handle handle; 8702 struct perf_sample_data sample; 8703 int ret; 8704 8705 if (!perf_event_bpf_match(event)) 8706 return; 8707 8708 perf_event_header__init_id(&bpf_event->event_id.header, 8709 &sample, event); 8710 ret = perf_output_begin(&handle, data, event, 8711 bpf_event->event_id.header.size); 8712 if (ret) 8713 return; 8714 8715 perf_output_put(&handle, bpf_event->event_id); 8716 perf_event__output_id_sample(event, &handle, &sample); 8717 8718 perf_output_end(&handle); 8719 } 8720 8721 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8722 enum perf_bpf_event_type type) 8723 { 8724 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8725 int i; 8726 8727 if (prog->aux->func_cnt == 0) { 8728 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8729 (u64)(unsigned long)prog->bpf_func, 8730 prog->jited_len, unregister, 8731 prog->aux->ksym.name); 8732 } else { 8733 for (i = 0; i < prog->aux->func_cnt; i++) { 8734 struct bpf_prog *subprog = prog->aux->func[i]; 8735 8736 perf_event_ksymbol( 8737 PERF_RECORD_KSYMBOL_TYPE_BPF, 8738 (u64)(unsigned long)subprog->bpf_func, 8739 subprog->jited_len, unregister, 8740 prog->aux->ksym.name); 8741 } 8742 } 8743 } 8744 8745 void perf_event_bpf_event(struct bpf_prog *prog, 8746 enum perf_bpf_event_type type, 8747 u16 flags) 8748 { 8749 struct perf_bpf_event bpf_event; 8750 8751 if (type <= PERF_BPF_EVENT_UNKNOWN || 8752 type >= PERF_BPF_EVENT_MAX) 8753 return; 8754 8755 switch (type) { 8756 case PERF_BPF_EVENT_PROG_LOAD: 8757 case PERF_BPF_EVENT_PROG_UNLOAD: 8758 if (atomic_read(&nr_ksymbol_events)) 8759 perf_event_bpf_emit_ksymbols(prog, type); 8760 break; 8761 default: 8762 break; 8763 } 8764 8765 if (!atomic_read(&nr_bpf_events)) 8766 return; 8767 8768 bpf_event = (struct perf_bpf_event){ 8769 .prog = prog, 8770 .event_id = { 8771 .header = { 8772 .type = PERF_RECORD_BPF_EVENT, 8773 .size = sizeof(bpf_event.event_id), 8774 }, 8775 .type = type, 8776 .flags = flags, 8777 .id = prog->aux->id, 8778 }, 8779 }; 8780 8781 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8782 8783 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8784 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8785 } 8786 8787 struct perf_text_poke_event { 8788 const void *old_bytes; 8789 const void *new_bytes; 8790 size_t pad; 8791 u16 old_len; 8792 u16 new_len; 8793 8794 struct { 8795 struct perf_event_header header; 8796 8797 u64 addr; 8798 } event_id; 8799 }; 8800 8801 static int perf_event_text_poke_match(struct perf_event *event) 8802 { 8803 return event->attr.text_poke; 8804 } 8805 8806 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8807 { 8808 struct perf_text_poke_event *text_poke_event = data; 8809 struct perf_output_handle handle; 8810 struct perf_sample_data sample; 8811 u64 padding = 0; 8812 int ret; 8813 8814 if (!perf_event_text_poke_match(event)) 8815 return; 8816 8817 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8818 8819 ret = perf_output_begin(&handle, &sample, event, 8820 text_poke_event->event_id.header.size); 8821 if (ret) 8822 return; 8823 8824 perf_output_put(&handle, text_poke_event->event_id); 8825 perf_output_put(&handle, text_poke_event->old_len); 8826 perf_output_put(&handle, text_poke_event->new_len); 8827 8828 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8829 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8830 8831 if (text_poke_event->pad) 8832 __output_copy(&handle, &padding, text_poke_event->pad); 8833 8834 perf_event__output_id_sample(event, &handle, &sample); 8835 8836 perf_output_end(&handle); 8837 } 8838 8839 void perf_event_text_poke(const void *addr, const void *old_bytes, 8840 size_t old_len, const void *new_bytes, size_t new_len) 8841 { 8842 struct perf_text_poke_event text_poke_event; 8843 size_t tot, pad; 8844 8845 if (!atomic_read(&nr_text_poke_events)) 8846 return; 8847 8848 tot = sizeof(text_poke_event.old_len) + old_len; 8849 tot += sizeof(text_poke_event.new_len) + new_len; 8850 pad = ALIGN(tot, sizeof(u64)) - tot; 8851 8852 text_poke_event = (struct perf_text_poke_event){ 8853 .old_bytes = old_bytes, 8854 .new_bytes = new_bytes, 8855 .pad = pad, 8856 .old_len = old_len, 8857 .new_len = new_len, 8858 .event_id = { 8859 .header = { 8860 .type = PERF_RECORD_TEXT_POKE, 8861 .misc = PERF_RECORD_MISC_KERNEL, 8862 .size = sizeof(text_poke_event.event_id) + tot + pad, 8863 }, 8864 .addr = (unsigned long)addr, 8865 }, 8866 }; 8867 8868 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 8869 } 8870 8871 void perf_event_itrace_started(struct perf_event *event) 8872 { 8873 event->attach_state |= PERF_ATTACH_ITRACE; 8874 } 8875 8876 static void perf_log_itrace_start(struct perf_event *event) 8877 { 8878 struct perf_output_handle handle; 8879 struct perf_sample_data sample; 8880 struct perf_aux_event { 8881 struct perf_event_header header; 8882 u32 pid; 8883 u32 tid; 8884 } rec; 8885 int ret; 8886 8887 if (event->parent) 8888 event = event->parent; 8889 8890 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8891 event->attach_state & PERF_ATTACH_ITRACE) 8892 return; 8893 8894 rec.header.type = PERF_RECORD_ITRACE_START; 8895 rec.header.misc = 0; 8896 rec.header.size = sizeof(rec); 8897 rec.pid = perf_event_pid(event, current); 8898 rec.tid = perf_event_tid(event, current); 8899 8900 perf_event_header__init_id(&rec.header, &sample, event); 8901 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8902 8903 if (ret) 8904 return; 8905 8906 perf_output_put(&handle, rec); 8907 perf_event__output_id_sample(event, &handle, &sample); 8908 8909 perf_output_end(&handle); 8910 } 8911 8912 static int 8913 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8914 { 8915 struct hw_perf_event *hwc = &event->hw; 8916 int ret = 0; 8917 u64 seq; 8918 8919 seq = __this_cpu_read(perf_throttled_seq); 8920 if (seq != hwc->interrupts_seq) { 8921 hwc->interrupts_seq = seq; 8922 hwc->interrupts = 1; 8923 } else { 8924 hwc->interrupts++; 8925 if (unlikely(throttle 8926 && hwc->interrupts >= max_samples_per_tick)) { 8927 __this_cpu_inc(perf_throttled_count); 8928 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8929 hwc->interrupts = MAX_INTERRUPTS; 8930 perf_log_throttle(event, 0); 8931 ret = 1; 8932 } 8933 } 8934 8935 if (event->attr.freq) { 8936 u64 now = perf_clock(); 8937 s64 delta = now - hwc->freq_time_stamp; 8938 8939 hwc->freq_time_stamp = now; 8940 8941 if (delta > 0 && delta < 2*TICK_NSEC) 8942 perf_adjust_period(event, delta, hwc->last_period, true); 8943 } 8944 8945 return ret; 8946 } 8947 8948 int perf_event_account_interrupt(struct perf_event *event) 8949 { 8950 return __perf_event_account_interrupt(event, 1); 8951 } 8952 8953 /* 8954 * Generic event overflow handling, sampling. 8955 */ 8956 8957 static int __perf_event_overflow(struct perf_event *event, 8958 int throttle, struct perf_sample_data *data, 8959 struct pt_regs *regs) 8960 { 8961 int events = atomic_read(&event->event_limit); 8962 int ret = 0; 8963 8964 /* 8965 * Non-sampling counters might still use the PMI to fold short 8966 * hardware counters, ignore those. 8967 */ 8968 if (unlikely(!is_sampling_event(event))) 8969 return 0; 8970 8971 ret = __perf_event_account_interrupt(event, throttle); 8972 8973 /* 8974 * XXX event_limit might not quite work as expected on inherited 8975 * events 8976 */ 8977 8978 event->pending_kill = POLL_IN; 8979 if (events && atomic_dec_and_test(&event->event_limit)) { 8980 ret = 1; 8981 event->pending_kill = POLL_HUP; 8982 8983 perf_event_disable_inatomic(event); 8984 } 8985 8986 READ_ONCE(event->overflow_handler)(event, data, regs); 8987 8988 if (*perf_event_fasync(event) && event->pending_kill) { 8989 event->pending_wakeup = 1; 8990 irq_work_queue(&event->pending); 8991 } 8992 8993 return ret; 8994 } 8995 8996 int perf_event_overflow(struct perf_event *event, 8997 struct perf_sample_data *data, 8998 struct pt_regs *regs) 8999 { 9000 return __perf_event_overflow(event, 1, data, regs); 9001 } 9002 9003 /* 9004 * Generic software event infrastructure 9005 */ 9006 9007 struct swevent_htable { 9008 struct swevent_hlist *swevent_hlist; 9009 struct mutex hlist_mutex; 9010 int hlist_refcount; 9011 9012 /* Recursion avoidance in each contexts */ 9013 int recursion[PERF_NR_CONTEXTS]; 9014 }; 9015 9016 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9017 9018 /* 9019 * We directly increment event->count and keep a second value in 9020 * event->hw.period_left to count intervals. This period event 9021 * is kept in the range [-sample_period, 0] so that we can use the 9022 * sign as trigger. 9023 */ 9024 9025 u64 perf_swevent_set_period(struct perf_event *event) 9026 { 9027 struct hw_perf_event *hwc = &event->hw; 9028 u64 period = hwc->last_period; 9029 u64 nr, offset; 9030 s64 old, val; 9031 9032 hwc->last_period = hwc->sample_period; 9033 9034 again: 9035 old = val = local64_read(&hwc->period_left); 9036 if (val < 0) 9037 return 0; 9038 9039 nr = div64_u64(period + val, period); 9040 offset = nr * period; 9041 val -= offset; 9042 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9043 goto again; 9044 9045 return nr; 9046 } 9047 9048 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9049 struct perf_sample_data *data, 9050 struct pt_regs *regs) 9051 { 9052 struct hw_perf_event *hwc = &event->hw; 9053 int throttle = 0; 9054 9055 if (!overflow) 9056 overflow = perf_swevent_set_period(event); 9057 9058 if (hwc->interrupts == MAX_INTERRUPTS) 9059 return; 9060 9061 for (; overflow; overflow--) { 9062 if (__perf_event_overflow(event, throttle, 9063 data, regs)) { 9064 /* 9065 * We inhibit the overflow from happening when 9066 * hwc->interrupts == MAX_INTERRUPTS. 9067 */ 9068 break; 9069 } 9070 throttle = 1; 9071 } 9072 } 9073 9074 static void perf_swevent_event(struct perf_event *event, u64 nr, 9075 struct perf_sample_data *data, 9076 struct pt_regs *regs) 9077 { 9078 struct hw_perf_event *hwc = &event->hw; 9079 9080 local64_add(nr, &event->count); 9081 9082 if (!regs) 9083 return; 9084 9085 if (!is_sampling_event(event)) 9086 return; 9087 9088 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9089 data->period = nr; 9090 return perf_swevent_overflow(event, 1, data, regs); 9091 } else 9092 data->period = event->hw.last_period; 9093 9094 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9095 return perf_swevent_overflow(event, 1, data, regs); 9096 9097 if (local64_add_negative(nr, &hwc->period_left)) 9098 return; 9099 9100 perf_swevent_overflow(event, 0, data, regs); 9101 } 9102 9103 static int perf_exclude_event(struct perf_event *event, 9104 struct pt_regs *regs) 9105 { 9106 if (event->hw.state & PERF_HES_STOPPED) 9107 return 1; 9108 9109 if (regs) { 9110 if (event->attr.exclude_user && user_mode(regs)) 9111 return 1; 9112 9113 if (event->attr.exclude_kernel && !user_mode(regs)) 9114 return 1; 9115 } 9116 9117 return 0; 9118 } 9119 9120 static int perf_swevent_match(struct perf_event *event, 9121 enum perf_type_id type, 9122 u32 event_id, 9123 struct perf_sample_data *data, 9124 struct pt_regs *regs) 9125 { 9126 if (event->attr.type != type) 9127 return 0; 9128 9129 if (event->attr.config != event_id) 9130 return 0; 9131 9132 if (perf_exclude_event(event, regs)) 9133 return 0; 9134 9135 return 1; 9136 } 9137 9138 static inline u64 swevent_hash(u64 type, u32 event_id) 9139 { 9140 u64 val = event_id | (type << 32); 9141 9142 return hash_64(val, SWEVENT_HLIST_BITS); 9143 } 9144 9145 static inline struct hlist_head * 9146 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9147 { 9148 u64 hash = swevent_hash(type, event_id); 9149 9150 return &hlist->heads[hash]; 9151 } 9152 9153 /* For the read side: events when they trigger */ 9154 static inline struct hlist_head * 9155 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9156 { 9157 struct swevent_hlist *hlist; 9158 9159 hlist = rcu_dereference(swhash->swevent_hlist); 9160 if (!hlist) 9161 return NULL; 9162 9163 return __find_swevent_head(hlist, type, event_id); 9164 } 9165 9166 /* For the event head insertion and removal in the hlist */ 9167 static inline struct hlist_head * 9168 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9169 { 9170 struct swevent_hlist *hlist; 9171 u32 event_id = event->attr.config; 9172 u64 type = event->attr.type; 9173 9174 /* 9175 * Event scheduling is always serialized against hlist allocation 9176 * and release. Which makes the protected version suitable here. 9177 * The context lock guarantees that. 9178 */ 9179 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9180 lockdep_is_held(&event->ctx->lock)); 9181 if (!hlist) 9182 return NULL; 9183 9184 return __find_swevent_head(hlist, type, event_id); 9185 } 9186 9187 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9188 u64 nr, 9189 struct perf_sample_data *data, 9190 struct pt_regs *regs) 9191 { 9192 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9193 struct perf_event *event; 9194 struct hlist_head *head; 9195 9196 rcu_read_lock(); 9197 head = find_swevent_head_rcu(swhash, type, event_id); 9198 if (!head) 9199 goto end; 9200 9201 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9202 if (perf_swevent_match(event, type, event_id, data, regs)) 9203 perf_swevent_event(event, nr, data, regs); 9204 } 9205 end: 9206 rcu_read_unlock(); 9207 } 9208 9209 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9210 9211 int perf_swevent_get_recursion_context(void) 9212 { 9213 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9214 9215 return get_recursion_context(swhash->recursion); 9216 } 9217 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9218 9219 void perf_swevent_put_recursion_context(int rctx) 9220 { 9221 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9222 9223 put_recursion_context(swhash->recursion, rctx); 9224 } 9225 9226 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9227 { 9228 struct perf_sample_data data; 9229 9230 if (WARN_ON_ONCE(!regs)) 9231 return; 9232 9233 perf_sample_data_init(&data, addr, 0); 9234 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9235 } 9236 9237 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9238 { 9239 int rctx; 9240 9241 preempt_disable_notrace(); 9242 rctx = perf_swevent_get_recursion_context(); 9243 if (unlikely(rctx < 0)) 9244 goto fail; 9245 9246 ___perf_sw_event(event_id, nr, regs, addr); 9247 9248 perf_swevent_put_recursion_context(rctx); 9249 fail: 9250 preempt_enable_notrace(); 9251 } 9252 9253 static void perf_swevent_read(struct perf_event *event) 9254 { 9255 } 9256 9257 static int perf_swevent_add(struct perf_event *event, int flags) 9258 { 9259 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9260 struct hw_perf_event *hwc = &event->hw; 9261 struct hlist_head *head; 9262 9263 if (is_sampling_event(event)) { 9264 hwc->last_period = hwc->sample_period; 9265 perf_swevent_set_period(event); 9266 } 9267 9268 hwc->state = !(flags & PERF_EF_START); 9269 9270 head = find_swevent_head(swhash, event); 9271 if (WARN_ON_ONCE(!head)) 9272 return -EINVAL; 9273 9274 hlist_add_head_rcu(&event->hlist_entry, head); 9275 perf_event_update_userpage(event); 9276 9277 return 0; 9278 } 9279 9280 static void perf_swevent_del(struct perf_event *event, int flags) 9281 { 9282 hlist_del_rcu(&event->hlist_entry); 9283 } 9284 9285 static void perf_swevent_start(struct perf_event *event, int flags) 9286 { 9287 event->hw.state = 0; 9288 } 9289 9290 static void perf_swevent_stop(struct perf_event *event, int flags) 9291 { 9292 event->hw.state = PERF_HES_STOPPED; 9293 } 9294 9295 /* Deref the hlist from the update side */ 9296 static inline struct swevent_hlist * 9297 swevent_hlist_deref(struct swevent_htable *swhash) 9298 { 9299 return rcu_dereference_protected(swhash->swevent_hlist, 9300 lockdep_is_held(&swhash->hlist_mutex)); 9301 } 9302 9303 static void swevent_hlist_release(struct swevent_htable *swhash) 9304 { 9305 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9306 9307 if (!hlist) 9308 return; 9309 9310 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9311 kfree_rcu(hlist, rcu_head); 9312 } 9313 9314 static void swevent_hlist_put_cpu(int cpu) 9315 { 9316 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9317 9318 mutex_lock(&swhash->hlist_mutex); 9319 9320 if (!--swhash->hlist_refcount) 9321 swevent_hlist_release(swhash); 9322 9323 mutex_unlock(&swhash->hlist_mutex); 9324 } 9325 9326 static void swevent_hlist_put(void) 9327 { 9328 int cpu; 9329 9330 for_each_possible_cpu(cpu) 9331 swevent_hlist_put_cpu(cpu); 9332 } 9333 9334 static int swevent_hlist_get_cpu(int cpu) 9335 { 9336 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9337 int err = 0; 9338 9339 mutex_lock(&swhash->hlist_mutex); 9340 if (!swevent_hlist_deref(swhash) && 9341 cpumask_test_cpu(cpu, perf_online_mask)) { 9342 struct swevent_hlist *hlist; 9343 9344 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9345 if (!hlist) { 9346 err = -ENOMEM; 9347 goto exit; 9348 } 9349 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9350 } 9351 swhash->hlist_refcount++; 9352 exit: 9353 mutex_unlock(&swhash->hlist_mutex); 9354 9355 return err; 9356 } 9357 9358 static int swevent_hlist_get(void) 9359 { 9360 int err, cpu, failed_cpu; 9361 9362 mutex_lock(&pmus_lock); 9363 for_each_possible_cpu(cpu) { 9364 err = swevent_hlist_get_cpu(cpu); 9365 if (err) { 9366 failed_cpu = cpu; 9367 goto fail; 9368 } 9369 } 9370 mutex_unlock(&pmus_lock); 9371 return 0; 9372 fail: 9373 for_each_possible_cpu(cpu) { 9374 if (cpu == failed_cpu) 9375 break; 9376 swevent_hlist_put_cpu(cpu); 9377 } 9378 mutex_unlock(&pmus_lock); 9379 return err; 9380 } 9381 9382 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9383 9384 static void sw_perf_event_destroy(struct perf_event *event) 9385 { 9386 u64 event_id = event->attr.config; 9387 9388 WARN_ON(event->parent); 9389 9390 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9391 swevent_hlist_put(); 9392 } 9393 9394 static int perf_swevent_init(struct perf_event *event) 9395 { 9396 u64 event_id = event->attr.config; 9397 9398 if (event->attr.type != PERF_TYPE_SOFTWARE) 9399 return -ENOENT; 9400 9401 /* 9402 * no branch sampling for software events 9403 */ 9404 if (has_branch_stack(event)) 9405 return -EOPNOTSUPP; 9406 9407 switch (event_id) { 9408 case PERF_COUNT_SW_CPU_CLOCK: 9409 case PERF_COUNT_SW_TASK_CLOCK: 9410 return -ENOENT; 9411 9412 default: 9413 break; 9414 } 9415 9416 if (event_id >= PERF_COUNT_SW_MAX) 9417 return -ENOENT; 9418 9419 if (!event->parent) { 9420 int err; 9421 9422 err = swevent_hlist_get(); 9423 if (err) 9424 return err; 9425 9426 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9427 event->destroy = sw_perf_event_destroy; 9428 } 9429 9430 return 0; 9431 } 9432 9433 static struct pmu perf_swevent = { 9434 .task_ctx_nr = perf_sw_context, 9435 9436 .capabilities = PERF_PMU_CAP_NO_NMI, 9437 9438 .event_init = perf_swevent_init, 9439 .add = perf_swevent_add, 9440 .del = perf_swevent_del, 9441 .start = perf_swevent_start, 9442 .stop = perf_swevent_stop, 9443 .read = perf_swevent_read, 9444 }; 9445 9446 #ifdef CONFIG_EVENT_TRACING 9447 9448 static int perf_tp_filter_match(struct perf_event *event, 9449 struct perf_sample_data *data) 9450 { 9451 void *record = data->raw->frag.data; 9452 9453 /* only top level events have filters set */ 9454 if (event->parent) 9455 event = event->parent; 9456 9457 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9458 return 1; 9459 return 0; 9460 } 9461 9462 static int perf_tp_event_match(struct perf_event *event, 9463 struct perf_sample_data *data, 9464 struct pt_regs *regs) 9465 { 9466 if (event->hw.state & PERF_HES_STOPPED) 9467 return 0; 9468 /* 9469 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9470 */ 9471 if (event->attr.exclude_kernel && !user_mode(regs)) 9472 return 0; 9473 9474 if (!perf_tp_filter_match(event, data)) 9475 return 0; 9476 9477 return 1; 9478 } 9479 9480 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9481 struct trace_event_call *call, u64 count, 9482 struct pt_regs *regs, struct hlist_head *head, 9483 struct task_struct *task) 9484 { 9485 if (bpf_prog_array_valid(call)) { 9486 *(struct pt_regs **)raw_data = regs; 9487 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9488 perf_swevent_put_recursion_context(rctx); 9489 return; 9490 } 9491 } 9492 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9493 rctx, task); 9494 } 9495 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9496 9497 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9498 struct pt_regs *regs, struct hlist_head *head, int rctx, 9499 struct task_struct *task) 9500 { 9501 struct perf_sample_data data; 9502 struct perf_event *event; 9503 9504 struct perf_raw_record raw = { 9505 .frag = { 9506 .size = entry_size, 9507 .data = record, 9508 }, 9509 }; 9510 9511 perf_sample_data_init(&data, 0, 0); 9512 data.raw = &raw; 9513 9514 perf_trace_buf_update(record, event_type); 9515 9516 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9517 if (perf_tp_event_match(event, &data, regs)) 9518 perf_swevent_event(event, count, &data, regs); 9519 } 9520 9521 /* 9522 * If we got specified a target task, also iterate its context and 9523 * deliver this event there too. 9524 */ 9525 if (task && task != current) { 9526 struct perf_event_context *ctx; 9527 struct trace_entry *entry = record; 9528 9529 rcu_read_lock(); 9530 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9531 if (!ctx) 9532 goto unlock; 9533 9534 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9535 if (event->cpu != smp_processor_id()) 9536 continue; 9537 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9538 continue; 9539 if (event->attr.config != entry->type) 9540 continue; 9541 if (perf_tp_event_match(event, &data, regs)) 9542 perf_swevent_event(event, count, &data, regs); 9543 } 9544 unlock: 9545 rcu_read_unlock(); 9546 } 9547 9548 perf_swevent_put_recursion_context(rctx); 9549 } 9550 EXPORT_SYMBOL_GPL(perf_tp_event); 9551 9552 static void tp_perf_event_destroy(struct perf_event *event) 9553 { 9554 perf_trace_destroy(event); 9555 } 9556 9557 static int perf_tp_event_init(struct perf_event *event) 9558 { 9559 int err; 9560 9561 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9562 return -ENOENT; 9563 9564 /* 9565 * no branch sampling for tracepoint events 9566 */ 9567 if (has_branch_stack(event)) 9568 return -EOPNOTSUPP; 9569 9570 err = perf_trace_init(event); 9571 if (err) 9572 return err; 9573 9574 event->destroy = tp_perf_event_destroy; 9575 9576 return 0; 9577 } 9578 9579 static struct pmu perf_tracepoint = { 9580 .task_ctx_nr = perf_sw_context, 9581 9582 .event_init = perf_tp_event_init, 9583 .add = perf_trace_add, 9584 .del = perf_trace_del, 9585 .start = perf_swevent_start, 9586 .stop = perf_swevent_stop, 9587 .read = perf_swevent_read, 9588 }; 9589 9590 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9591 /* 9592 * Flags in config, used by dynamic PMU kprobe and uprobe 9593 * The flags should match following PMU_FORMAT_ATTR(). 9594 * 9595 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9596 * if not set, create kprobe/uprobe 9597 * 9598 * The following values specify a reference counter (or semaphore in the 9599 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9600 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9601 * 9602 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9603 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9604 */ 9605 enum perf_probe_config { 9606 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9607 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9608 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9609 }; 9610 9611 PMU_FORMAT_ATTR(retprobe, "config:0"); 9612 #endif 9613 9614 #ifdef CONFIG_KPROBE_EVENTS 9615 static struct attribute *kprobe_attrs[] = { 9616 &format_attr_retprobe.attr, 9617 NULL, 9618 }; 9619 9620 static struct attribute_group kprobe_format_group = { 9621 .name = "format", 9622 .attrs = kprobe_attrs, 9623 }; 9624 9625 static const struct attribute_group *kprobe_attr_groups[] = { 9626 &kprobe_format_group, 9627 NULL, 9628 }; 9629 9630 static int perf_kprobe_event_init(struct perf_event *event); 9631 static struct pmu perf_kprobe = { 9632 .task_ctx_nr = perf_sw_context, 9633 .event_init = perf_kprobe_event_init, 9634 .add = perf_trace_add, 9635 .del = perf_trace_del, 9636 .start = perf_swevent_start, 9637 .stop = perf_swevent_stop, 9638 .read = perf_swevent_read, 9639 .attr_groups = kprobe_attr_groups, 9640 }; 9641 9642 static int perf_kprobe_event_init(struct perf_event *event) 9643 { 9644 int err; 9645 bool is_retprobe; 9646 9647 if (event->attr.type != perf_kprobe.type) 9648 return -ENOENT; 9649 9650 if (!perfmon_capable()) 9651 return -EACCES; 9652 9653 /* 9654 * no branch sampling for probe events 9655 */ 9656 if (has_branch_stack(event)) 9657 return -EOPNOTSUPP; 9658 9659 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9660 err = perf_kprobe_init(event, is_retprobe); 9661 if (err) 9662 return err; 9663 9664 event->destroy = perf_kprobe_destroy; 9665 9666 return 0; 9667 } 9668 #endif /* CONFIG_KPROBE_EVENTS */ 9669 9670 #ifdef CONFIG_UPROBE_EVENTS 9671 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9672 9673 static struct attribute *uprobe_attrs[] = { 9674 &format_attr_retprobe.attr, 9675 &format_attr_ref_ctr_offset.attr, 9676 NULL, 9677 }; 9678 9679 static struct attribute_group uprobe_format_group = { 9680 .name = "format", 9681 .attrs = uprobe_attrs, 9682 }; 9683 9684 static const struct attribute_group *uprobe_attr_groups[] = { 9685 &uprobe_format_group, 9686 NULL, 9687 }; 9688 9689 static int perf_uprobe_event_init(struct perf_event *event); 9690 static struct pmu perf_uprobe = { 9691 .task_ctx_nr = perf_sw_context, 9692 .event_init = perf_uprobe_event_init, 9693 .add = perf_trace_add, 9694 .del = perf_trace_del, 9695 .start = perf_swevent_start, 9696 .stop = perf_swevent_stop, 9697 .read = perf_swevent_read, 9698 .attr_groups = uprobe_attr_groups, 9699 }; 9700 9701 static int perf_uprobe_event_init(struct perf_event *event) 9702 { 9703 int err; 9704 unsigned long ref_ctr_offset; 9705 bool is_retprobe; 9706 9707 if (event->attr.type != perf_uprobe.type) 9708 return -ENOENT; 9709 9710 if (!perfmon_capable()) 9711 return -EACCES; 9712 9713 /* 9714 * no branch sampling for probe events 9715 */ 9716 if (has_branch_stack(event)) 9717 return -EOPNOTSUPP; 9718 9719 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9720 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9721 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9722 if (err) 9723 return err; 9724 9725 event->destroy = perf_uprobe_destroy; 9726 9727 return 0; 9728 } 9729 #endif /* CONFIG_UPROBE_EVENTS */ 9730 9731 static inline void perf_tp_register(void) 9732 { 9733 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9734 #ifdef CONFIG_KPROBE_EVENTS 9735 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9736 #endif 9737 #ifdef CONFIG_UPROBE_EVENTS 9738 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9739 #endif 9740 } 9741 9742 static void perf_event_free_filter(struct perf_event *event) 9743 { 9744 ftrace_profile_free_filter(event); 9745 } 9746 9747 #ifdef CONFIG_BPF_SYSCALL 9748 static void bpf_overflow_handler(struct perf_event *event, 9749 struct perf_sample_data *data, 9750 struct pt_regs *regs) 9751 { 9752 struct bpf_perf_event_data_kern ctx = { 9753 .data = data, 9754 .event = event, 9755 }; 9756 int ret = 0; 9757 9758 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9759 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9760 goto out; 9761 rcu_read_lock(); 9762 ret = BPF_PROG_RUN(event->prog, &ctx); 9763 rcu_read_unlock(); 9764 out: 9765 __this_cpu_dec(bpf_prog_active); 9766 if (!ret) 9767 return; 9768 9769 event->orig_overflow_handler(event, data, regs); 9770 } 9771 9772 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9773 { 9774 struct bpf_prog *prog; 9775 9776 if (event->overflow_handler_context) 9777 /* hw breakpoint or kernel counter */ 9778 return -EINVAL; 9779 9780 if (event->prog) 9781 return -EEXIST; 9782 9783 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9784 if (IS_ERR(prog)) 9785 return PTR_ERR(prog); 9786 9787 if (event->attr.precise_ip && 9788 prog->call_get_stack && 9789 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9790 event->attr.exclude_callchain_kernel || 9791 event->attr.exclude_callchain_user)) { 9792 /* 9793 * On perf_event with precise_ip, calling bpf_get_stack() 9794 * may trigger unwinder warnings and occasional crashes. 9795 * bpf_get_[stack|stackid] works around this issue by using 9796 * callchain attached to perf_sample_data. If the 9797 * perf_event does not full (kernel and user) callchain 9798 * attached to perf_sample_data, do not allow attaching BPF 9799 * program that calls bpf_get_[stack|stackid]. 9800 */ 9801 bpf_prog_put(prog); 9802 return -EPROTO; 9803 } 9804 9805 event->prog = prog; 9806 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9807 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9808 return 0; 9809 } 9810 9811 static void perf_event_free_bpf_handler(struct perf_event *event) 9812 { 9813 struct bpf_prog *prog = event->prog; 9814 9815 if (!prog) 9816 return; 9817 9818 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9819 event->prog = NULL; 9820 bpf_prog_put(prog); 9821 } 9822 #else 9823 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9824 { 9825 return -EOPNOTSUPP; 9826 } 9827 static void perf_event_free_bpf_handler(struct perf_event *event) 9828 { 9829 } 9830 #endif 9831 9832 /* 9833 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9834 * with perf_event_open() 9835 */ 9836 static inline bool perf_event_is_tracing(struct perf_event *event) 9837 { 9838 if (event->pmu == &perf_tracepoint) 9839 return true; 9840 #ifdef CONFIG_KPROBE_EVENTS 9841 if (event->pmu == &perf_kprobe) 9842 return true; 9843 #endif 9844 #ifdef CONFIG_UPROBE_EVENTS 9845 if (event->pmu == &perf_uprobe) 9846 return true; 9847 #endif 9848 return false; 9849 } 9850 9851 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9852 { 9853 bool is_kprobe, is_tracepoint, is_syscall_tp; 9854 struct bpf_prog *prog; 9855 int ret; 9856 9857 if (!perf_event_is_tracing(event)) 9858 return perf_event_set_bpf_handler(event, prog_fd); 9859 9860 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9861 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9862 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9863 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9864 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9865 return -EINVAL; 9866 9867 prog = bpf_prog_get(prog_fd); 9868 if (IS_ERR(prog)) 9869 return PTR_ERR(prog); 9870 9871 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9872 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9873 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9874 /* valid fd, but invalid bpf program type */ 9875 bpf_prog_put(prog); 9876 return -EINVAL; 9877 } 9878 9879 /* Kprobe override only works for kprobes, not uprobes. */ 9880 if (prog->kprobe_override && 9881 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9882 bpf_prog_put(prog); 9883 return -EINVAL; 9884 } 9885 9886 if (is_tracepoint || is_syscall_tp) { 9887 int off = trace_event_get_offsets(event->tp_event); 9888 9889 if (prog->aux->max_ctx_offset > off) { 9890 bpf_prog_put(prog); 9891 return -EACCES; 9892 } 9893 } 9894 9895 ret = perf_event_attach_bpf_prog(event, prog); 9896 if (ret) 9897 bpf_prog_put(prog); 9898 return ret; 9899 } 9900 9901 static void perf_event_free_bpf_prog(struct perf_event *event) 9902 { 9903 if (!perf_event_is_tracing(event)) { 9904 perf_event_free_bpf_handler(event); 9905 return; 9906 } 9907 perf_event_detach_bpf_prog(event); 9908 } 9909 9910 #else 9911 9912 static inline void perf_tp_register(void) 9913 { 9914 } 9915 9916 static void perf_event_free_filter(struct perf_event *event) 9917 { 9918 } 9919 9920 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9921 { 9922 return -ENOENT; 9923 } 9924 9925 static void perf_event_free_bpf_prog(struct perf_event *event) 9926 { 9927 } 9928 #endif /* CONFIG_EVENT_TRACING */ 9929 9930 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9931 void perf_bp_event(struct perf_event *bp, void *data) 9932 { 9933 struct perf_sample_data sample; 9934 struct pt_regs *regs = data; 9935 9936 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9937 9938 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9939 perf_swevent_event(bp, 1, &sample, regs); 9940 } 9941 #endif 9942 9943 /* 9944 * Allocate a new address filter 9945 */ 9946 static struct perf_addr_filter * 9947 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9948 { 9949 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9950 struct perf_addr_filter *filter; 9951 9952 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9953 if (!filter) 9954 return NULL; 9955 9956 INIT_LIST_HEAD(&filter->entry); 9957 list_add_tail(&filter->entry, filters); 9958 9959 return filter; 9960 } 9961 9962 static void free_filters_list(struct list_head *filters) 9963 { 9964 struct perf_addr_filter *filter, *iter; 9965 9966 list_for_each_entry_safe(filter, iter, filters, entry) { 9967 path_put(&filter->path); 9968 list_del(&filter->entry); 9969 kfree(filter); 9970 } 9971 } 9972 9973 /* 9974 * Free existing address filters and optionally install new ones 9975 */ 9976 static void perf_addr_filters_splice(struct perf_event *event, 9977 struct list_head *head) 9978 { 9979 unsigned long flags; 9980 LIST_HEAD(list); 9981 9982 if (!has_addr_filter(event)) 9983 return; 9984 9985 /* don't bother with children, they don't have their own filters */ 9986 if (event->parent) 9987 return; 9988 9989 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9990 9991 list_splice_init(&event->addr_filters.list, &list); 9992 if (head) 9993 list_splice(head, &event->addr_filters.list); 9994 9995 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9996 9997 free_filters_list(&list); 9998 } 9999 10000 /* 10001 * Scan through mm's vmas and see if one of them matches the 10002 * @filter; if so, adjust filter's address range. 10003 * Called with mm::mmap_lock down for reading. 10004 */ 10005 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10006 struct mm_struct *mm, 10007 struct perf_addr_filter_range *fr) 10008 { 10009 struct vm_area_struct *vma; 10010 10011 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10012 if (!vma->vm_file) 10013 continue; 10014 10015 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10016 return; 10017 } 10018 } 10019 10020 /* 10021 * Update event's address range filters based on the 10022 * task's existing mappings, if any. 10023 */ 10024 static void perf_event_addr_filters_apply(struct perf_event *event) 10025 { 10026 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10027 struct task_struct *task = READ_ONCE(event->ctx->task); 10028 struct perf_addr_filter *filter; 10029 struct mm_struct *mm = NULL; 10030 unsigned int count = 0; 10031 unsigned long flags; 10032 10033 /* 10034 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10035 * will stop on the parent's child_mutex that our caller is also holding 10036 */ 10037 if (task == TASK_TOMBSTONE) 10038 return; 10039 10040 if (ifh->nr_file_filters) { 10041 mm = get_task_mm(event->ctx->task); 10042 if (!mm) 10043 goto restart; 10044 10045 mmap_read_lock(mm); 10046 } 10047 10048 raw_spin_lock_irqsave(&ifh->lock, flags); 10049 list_for_each_entry(filter, &ifh->list, entry) { 10050 if (filter->path.dentry) { 10051 /* 10052 * Adjust base offset if the filter is associated to a 10053 * binary that needs to be mapped: 10054 */ 10055 event->addr_filter_ranges[count].start = 0; 10056 event->addr_filter_ranges[count].size = 0; 10057 10058 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10059 } else { 10060 event->addr_filter_ranges[count].start = filter->offset; 10061 event->addr_filter_ranges[count].size = filter->size; 10062 } 10063 10064 count++; 10065 } 10066 10067 event->addr_filters_gen++; 10068 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10069 10070 if (ifh->nr_file_filters) { 10071 mmap_read_unlock(mm); 10072 10073 mmput(mm); 10074 } 10075 10076 restart: 10077 perf_event_stop(event, 1); 10078 } 10079 10080 /* 10081 * Address range filtering: limiting the data to certain 10082 * instruction address ranges. Filters are ioctl()ed to us from 10083 * userspace as ascii strings. 10084 * 10085 * Filter string format: 10086 * 10087 * ACTION RANGE_SPEC 10088 * where ACTION is one of the 10089 * * "filter": limit the trace to this region 10090 * * "start": start tracing from this address 10091 * * "stop": stop tracing at this address/region; 10092 * RANGE_SPEC is 10093 * * for kernel addresses: <start address>[/<size>] 10094 * * for object files: <start address>[/<size>]@</path/to/object/file> 10095 * 10096 * if <size> is not specified or is zero, the range is treated as a single 10097 * address; not valid for ACTION=="filter". 10098 */ 10099 enum { 10100 IF_ACT_NONE = -1, 10101 IF_ACT_FILTER, 10102 IF_ACT_START, 10103 IF_ACT_STOP, 10104 IF_SRC_FILE, 10105 IF_SRC_KERNEL, 10106 IF_SRC_FILEADDR, 10107 IF_SRC_KERNELADDR, 10108 }; 10109 10110 enum { 10111 IF_STATE_ACTION = 0, 10112 IF_STATE_SOURCE, 10113 IF_STATE_END, 10114 }; 10115 10116 static const match_table_t if_tokens = { 10117 { IF_ACT_FILTER, "filter" }, 10118 { IF_ACT_START, "start" }, 10119 { IF_ACT_STOP, "stop" }, 10120 { IF_SRC_FILE, "%u/%u@%s" }, 10121 { IF_SRC_KERNEL, "%u/%u" }, 10122 { IF_SRC_FILEADDR, "%u@%s" }, 10123 { IF_SRC_KERNELADDR, "%u" }, 10124 { IF_ACT_NONE, NULL }, 10125 }; 10126 10127 /* 10128 * Address filter string parser 10129 */ 10130 static int 10131 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10132 struct list_head *filters) 10133 { 10134 struct perf_addr_filter *filter = NULL; 10135 char *start, *orig, *filename = NULL; 10136 substring_t args[MAX_OPT_ARGS]; 10137 int state = IF_STATE_ACTION, token; 10138 unsigned int kernel = 0; 10139 int ret = -EINVAL; 10140 10141 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10142 if (!fstr) 10143 return -ENOMEM; 10144 10145 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10146 static const enum perf_addr_filter_action_t actions[] = { 10147 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10148 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10149 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10150 }; 10151 ret = -EINVAL; 10152 10153 if (!*start) 10154 continue; 10155 10156 /* filter definition begins */ 10157 if (state == IF_STATE_ACTION) { 10158 filter = perf_addr_filter_new(event, filters); 10159 if (!filter) 10160 goto fail; 10161 } 10162 10163 token = match_token(start, if_tokens, args); 10164 switch (token) { 10165 case IF_ACT_FILTER: 10166 case IF_ACT_START: 10167 case IF_ACT_STOP: 10168 if (state != IF_STATE_ACTION) 10169 goto fail; 10170 10171 filter->action = actions[token]; 10172 state = IF_STATE_SOURCE; 10173 break; 10174 10175 case IF_SRC_KERNELADDR: 10176 case IF_SRC_KERNEL: 10177 kernel = 1; 10178 fallthrough; 10179 10180 case IF_SRC_FILEADDR: 10181 case IF_SRC_FILE: 10182 if (state != IF_STATE_SOURCE) 10183 goto fail; 10184 10185 *args[0].to = 0; 10186 ret = kstrtoul(args[0].from, 0, &filter->offset); 10187 if (ret) 10188 goto fail; 10189 10190 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10191 *args[1].to = 0; 10192 ret = kstrtoul(args[1].from, 0, &filter->size); 10193 if (ret) 10194 goto fail; 10195 } 10196 10197 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10198 int fpos = token == IF_SRC_FILE ? 2 : 1; 10199 10200 kfree(filename); 10201 filename = match_strdup(&args[fpos]); 10202 if (!filename) { 10203 ret = -ENOMEM; 10204 goto fail; 10205 } 10206 } 10207 10208 state = IF_STATE_END; 10209 break; 10210 10211 default: 10212 goto fail; 10213 } 10214 10215 /* 10216 * Filter definition is fully parsed, validate and install it. 10217 * Make sure that it doesn't contradict itself or the event's 10218 * attribute. 10219 */ 10220 if (state == IF_STATE_END) { 10221 ret = -EINVAL; 10222 if (kernel && event->attr.exclude_kernel) 10223 goto fail; 10224 10225 /* 10226 * ACTION "filter" must have a non-zero length region 10227 * specified. 10228 */ 10229 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10230 !filter->size) 10231 goto fail; 10232 10233 if (!kernel) { 10234 if (!filename) 10235 goto fail; 10236 10237 /* 10238 * For now, we only support file-based filters 10239 * in per-task events; doing so for CPU-wide 10240 * events requires additional context switching 10241 * trickery, since same object code will be 10242 * mapped at different virtual addresses in 10243 * different processes. 10244 */ 10245 ret = -EOPNOTSUPP; 10246 if (!event->ctx->task) 10247 goto fail; 10248 10249 /* look up the path and grab its inode */ 10250 ret = kern_path(filename, LOOKUP_FOLLOW, 10251 &filter->path); 10252 if (ret) 10253 goto fail; 10254 10255 ret = -EINVAL; 10256 if (!filter->path.dentry || 10257 !S_ISREG(d_inode(filter->path.dentry) 10258 ->i_mode)) 10259 goto fail; 10260 10261 event->addr_filters.nr_file_filters++; 10262 } 10263 10264 /* ready to consume more filters */ 10265 state = IF_STATE_ACTION; 10266 filter = NULL; 10267 } 10268 } 10269 10270 if (state != IF_STATE_ACTION) 10271 goto fail; 10272 10273 kfree(filename); 10274 kfree(orig); 10275 10276 return 0; 10277 10278 fail: 10279 kfree(filename); 10280 free_filters_list(filters); 10281 kfree(orig); 10282 10283 return ret; 10284 } 10285 10286 static int 10287 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10288 { 10289 LIST_HEAD(filters); 10290 int ret; 10291 10292 /* 10293 * Since this is called in perf_ioctl() path, we're already holding 10294 * ctx::mutex. 10295 */ 10296 lockdep_assert_held(&event->ctx->mutex); 10297 10298 if (WARN_ON_ONCE(event->parent)) 10299 return -EINVAL; 10300 10301 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10302 if (ret) 10303 goto fail_clear_files; 10304 10305 ret = event->pmu->addr_filters_validate(&filters); 10306 if (ret) 10307 goto fail_free_filters; 10308 10309 /* remove existing filters, if any */ 10310 perf_addr_filters_splice(event, &filters); 10311 10312 /* install new filters */ 10313 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10314 10315 return ret; 10316 10317 fail_free_filters: 10318 free_filters_list(&filters); 10319 10320 fail_clear_files: 10321 event->addr_filters.nr_file_filters = 0; 10322 10323 return ret; 10324 } 10325 10326 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10327 { 10328 int ret = -EINVAL; 10329 char *filter_str; 10330 10331 filter_str = strndup_user(arg, PAGE_SIZE); 10332 if (IS_ERR(filter_str)) 10333 return PTR_ERR(filter_str); 10334 10335 #ifdef CONFIG_EVENT_TRACING 10336 if (perf_event_is_tracing(event)) { 10337 struct perf_event_context *ctx = event->ctx; 10338 10339 /* 10340 * Beware, here be dragons!! 10341 * 10342 * the tracepoint muck will deadlock against ctx->mutex, but 10343 * the tracepoint stuff does not actually need it. So 10344 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10345 * already have a reference on ctx. 10346 * 10347 * This can result in event getting moved to a different ctx, 10348 * but that does not affect the tracepoint state. 10349 */ 10350 mutex_unlock(&ctx->mutex); 10351 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10352 mutex_lock(&ctx->mutex); 10353 } else 10354 #endif 10355 if (has_addr_filter(event)) 10356 ret = perf_event_set_addr_filter(event, filter_str); 10357 10358 kfree(filter_str); 10359 return ret; 10360 } 10361 10362 /* 10363 * hrtimer based swevent callback 10364 */ 10365 10366 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10367 { 10368 enum hrtimer_restart ret = HRTIMER_RESTART; 10369 struct perf_sample_data data; 10370 struct pt_regs *regs; 10371 struct perf_event *event; 10372 u64 period; 10373 10374 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10375 10376 if (event->state != PERF_EVENT_STATE_ACTIVE) 10377 return HRTIMER_NORESTART; 10378 10379 event->pmu->read(event); 10380 10381 perf_sample_data_init(&data, 0, event->hw.last_period); 10382 regs = get_irq_regs(); 10383 10384 if (regs && !perf_exclude_event(event, regs)) { 10385 if (!(event->attr.exclude_idle && is_idle_task(current))) 10386 if (__perf_event_overflow(event, 1, &data, regs)) 10387 ret = HRTIMER_NORESTART; 10388 } 10389 10390 period = max_t(u64, 10000, event->hw.sample_period); 10391 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10392 10393 return ret; 10394 } 10395 10396 static void perf_swevent_start_hrtimer(struct perf_event *event) 10397 { 10398 struct hw_perf_event *hwc = &event->hw; 10399 s64 period; 10400 10401 if (!is_sampling_event(event)) 10402 return; 10403 10404 period = local64_read(&hwc->period_left); 10405 if (period) { 10406 if (period < 0) 10407 period = 10000; 10408 10409 local64_set(&hwc->period_left, 0); 10410 } else { 10411 period = max_t(u64, 10000, hwc->sample_period); 10412 } 10413 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10414 HRTIMER_MODE_REL_PINNED_HARD); 10415 } 10416 10417 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10418 { 10419 struct hw_perf_event *hwc = &event->hw; 10420 10421 if (is_sampling_event(event)) { 10422 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10423 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10424 10425 hrtimer_cancel(&hwc->hrtimer); 10426 } 10427 } 10428 10429 static void perf_swevent_init_hrtimer(struct perf_event *event) 10430 { 10431 struct hw_perf_event *hwc = &event->hw; 10432 10433 if (!is_sampling_event(event)) 10434 return; 10435 10436 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10437 hwc->hrtimer.function = perf_swevent_hrtimer; 10438 10439 /* 10440 * Since hrtimers have a fixed rate, we can do a static freq->period 10441 * mapping and avoid the whole period adjust feedback stuff. 10442 */ 10443 if (event->attr.freq) { 10444 long freq = event->attr.sample_freq; 10445 10446 event->attr.sample_period = NSEC_PER_SEC / freq; 10447 hwc->sample_period = event->attr.sample_period; 10448 local64_set(&hwc->period_left, hwc->sample_period); 10449 hwc->last_period = hwc->sample_period; 10450 event->attr.freq = 0; 10451 } 10452 } 10453 10454 /* 10455 * Software event: cpu wall time clock 10456 */ 10457 10458 static void cpu_clock_event_update(struct perf_event *event) 10459 { 10460 s64 prev; 10461 u64 now; 10462 10463 now = local_clock(); 10464 prev = local64_xchg(&event->hw.prev_count, now); 10465 local64_add(now - prev, &event->count); 10466 } 10467 10468 static void cpu_clock_event_start(struct perf_event *event, int flags) 10469 { 10470 local64_set(&event->hw.prev_count, local_clock()); 10471 perf_swevent_start_hrtimer(event); 10472 } 10473 10474 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10475 { 10476 perf_swevent_cancel_hrtimer(event); 10477 cpu_clock_event_update(event); 10478 } 10479 10480 static int cpu_clock_event_add(struct perf_event *event, int flags) 10481 { 10482 if (flags & PERF_EF_START) 10483 cpu_clock_event_start(event, flags); 10484 perf_event_update_userpage(event); 10485 10486 return 0; 10487 } 10488 10489 static void cpu_clock_event_del(struct perf_event *event, int flags) 10490 { 10491 cpu_clock_event_stop(event, flags); 10492 } 10493 10494 static void cpu_clock_event_read(struct perf_event *event) 10495 { 10496 cpu_clock_event_update(event); 10497 } 10498 10499 static int cpu_clock_event_init(struct perf_event *event) 10500 { 10501 if (event->attr.type != PERF_TYPE_SOFTWARE) 10502 return -ENOENT; 10503 10504 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10505 return -ENOENT; 10506 10507 /* 10508 * no branch sampling for software events 10509 */ 10510 if (has_branch_stack(event)) 10511 return -EOPNOTSUPP; 10512 10513 perf_swevent_init_hrtimer(event); 10514 10515 return 0; 10516 } 10517 10518 static struct pmu perf_cpu_clock = { 10519 .task_ctx_nr = perf_sw_context, 10520 10521 .capabilities = PERF_PMU_CAP_NO_NMI, 10522 10523 .event_init = cpu_clock_event_init, 10524 .add = cpu_clock_event_add, 10525 .del = cpu_clock_event_del, 10526 .start = cpu_clock_event_start, 10527 .stop = cpu_clock_event_stop, 10528 .read = cpu_clock_event_read, 10529 }; 10530 10531 /* 10532 * Software event: task time clock 10533 */ 10534 10535 static void task_clock_event_update(struct perf_event *event, u64 now) 10536 { 10537 u64 prev; 10538 s64 delta; 10539 10540 prev = local64_xchg(&event->hw.prev_count, now); 10541 delta = now - prev; 10542 local64_add(delta, &event->count); 10543 } 10544 10545 static void task_clock_event_start(struct perf_event *event, int flags) 10546 { 10547 local64_set(&event->hw.prev_count, event->ctx->time); 10548 perf_swevent_start_hrtimer(event); 10549 } 10550 10551 static void task_clock_event_stop(struct perf_event *event, int flags) 10552 { 10553 perf_swevent_cancel_hrtimer(event); 10554 task_clock_event_update(event, event->ctx->time); 10555 } 10556 10557 static int task_clock_event_add(struct perf_event *event, int flags) 10558 { 10559 if (flags & PERF_EF_START) 10560 task_clock_event_start(event, flags); 10561 perf_event_update_userpage(event); 10562 10563 return 0; 10564 } 10565 10566 static void task_clock_event_del(struct perf_event *event, int flags) 10567 { 10568 task_clock_event_stop(event, PERF_EF_UPDATE); 10569 } 10570 10571 static void task_clock_event_read(struct perf_event *event) 10572 { 10573 u64 now = perf_clock(); 10574 u64 delta = now - event->ctx->timestamp; 10575 u64 time = event->ctx->time + delta; 10576 10577 task_clock_event_update(event, time); 10578 } 10579 10580 static int task_clock_event_init(struct perf_event *event) 10581 { 10582 if (event->attr.type != PERF_TYPE_SOFTWARE) 10583 return -ENOENT; 10584 10585 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10586 return -ENOENT; 10587 10588 /* 10589 * no branch sampling for software events 10590 */ 10591 if (has_branch_stack(event)) 10592 return -EOPNOTSUPP; 10593 10594 perf_swevent_init_hrtimer(event); 10595 10596 return 0; 10597 } 10598 10599 static struct pmu perf_task_clock = { 10600 .task_ctx_nr = perf_sw_context, 10601 10602 .capabilities = PERF_PMU_CAP_NO_NMI, 10603 10604 .event_init = task_clock_event_init, 10605 .add = task_clock_event_add, 10606 .del = task_clock_event_del, 10607 .start = task_clock_event_start, 10608 .stop = task_clock_event_stop, 10609 .read = task_clock_event_read, 10610 }; 10611 10612 static void perf_pmu_nop_void(struct pmu *pmu) 10613 { 10614 } 10615 10616 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10617 { 10618 } 10619 10620 static int perf_pmu_nop_int(struct pmu *pmu) 10621 { 10622 return 0; 10623 } 10624 10625 static int perf_event_nop_int(struct perf_event *event, u64 value) 10626 { 10627 return 0; 10628 } 10629 10630 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10631 10632 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10633 { 10634 __this_cpu_write(nop_txn_flags, flags); 10635 10636 if (flags & ~PERF_PMU_TXN_ADD) 10637 return; 10638 10639 perf_pmu_disable(pmu); 10640 } 10641 10642 static int perf_pmu_commit_txn(struct pmu *pmu) 10643 { 10644 unsigned int flags = __this_cpu_read(nop_txn_flags); 10645 10646 __this_cpu_write(nop_txn_flags, 0); 10647 10648 if (flags & ~PERF_PMU_TXN_ADD) 10649 return 0; 10650 10651 perf_pmu_enable(pmu); 10652 return 0; 10653 } 10654 10655 static void perf_pmu_cancel_txn(struct pmu *pmu) 10656 { 10657 unsigned int flags = __this_cpu_read(nop_txn_flags); 10658 10659 __this_cpu_write(nop_txn_flags, 0); 10660 10661 if (flags & ~PERF_PMU_TXN_ADD) 10662 return; 10663 10664 perf_pmu_enable(pmu); 10665 } 10666 10667 static int perf_event_idx_default(struct perf_event *event) 10668 { 10669 return 0; 10670 } 10671 10672 /* 10673 * Ensures all contexts with the same task_ctx_nr have the same 10674 * pmu_cpu_context too. 10675 */ 10676 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10677 { 10678 struct pmu *pmu; 10679 10680 if (ctxn < 0) 10681 return NULL; 10682 10683 list_for_each_entry(pmu, &pmus, entry) { 10684 if (pmu->task_ctx_nr == ctxn) 10685 return pmu->pmu_cpu_context; 10686 } 10687 10688 return NULL; 10689 } 10690 10691 static void free_pmu_context(struct pmu *pmu) 10692 { 10693 /* 10694 * Static contexts such as perf_sw_context have a global lifetime 10695 * and may be shared between different PMUs. Avoid freeing them 10696 * when a single PMU is going away. 10697 */ 10698 if (pmu->task_ctx_nr > perf_invalid_context) 10699 return; 10700 10701 free_percpu(pmu->pmu_cpu_context); 10702 } 10703 10704 /* 10705 * Let userspace know that this PMU supports address range filtering: 10706 */ 10707 static ssize_t nr_addr_filters_show(struct device *dev, 10708 struct device_attribute *attr, 10709 char *page) 10710 { 10711 struct pmu *pmu = dev_get_drvdata(dev); 10712 10713 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10714 } 10715 DEVICE_ATTR_RO(nr_addr_filters); 10716 10717 static struct idr pmu_idr; 10718 10719 static ssize_t 10720 type_show(struct device *dev, struct device_attribute *attr, char *page) 10721 { 10722 struct pmu *pmu = dev_get_drvdata(dev); 10723 10724 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10725 } 10726 static DEVICE_ATTR_RO(type); 10727 10728 static ssize_t 10729 perf_event_mux_interval_ms_show(struct device *dev, 10730 struct device_attribute *attr, 10731 char *page) 10732 { 10733 struct pmu *pmu = dev_get_drvdata(dev); 10734 10735 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10736 } 10737 10738 static DEFINE_MUTEX(mux_interval_mutex); 10739 10740 static ssize_t 10741 perf_event_mux_interval_ms_store(struct device *dev, 10742 struct device_attribute *attr, 10743 const char *buf, size_t count) 10744 { 10745 struct pmu *pmu = dev_get_drvdata(dev); 10746 int timer, cpu, ret; 10747 10748 ret = kstrtoint(buf, 0, &timer); 10749 if (ret) 10750 return ret; 10751 10752 if (timer < 1) 10753 return -EINVAL; 10754 10755 /* same value, noting to do */ 10756 if (timer == pmu->hrtimer_interval_ms) 10757 return count; 10758 10759 mutex_lock(&mux_interval_mutex); 10760 pmu->hrtimer_interval_ms = timer; 10761 10762 /* update all cpuctx for this PMU */ 10763 cpus_read_lock(); 10764 for_each_online_cpu(cpu) { 10765 struct perf_cpu_context *cpuctx; 10766 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10767 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10768 10769 cpu_function_call(cpu, 10770 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10771 } 10772 cpus_read_unlock(); 10773 mutex_unlock(&mux_interval_mutex); 10774 10775 return count; 10776 } 10777 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10778 10779 static struct attribute *pmu_dev_attrs[] = { 10780 &dev_attr_type.attr, 10781 &dev_attr_perf_event_mux_interval_ms.attr, 10782 NULL, 10783 }; 10784 ATTRIBUTE_GROUPS(pmu_dev); 10785 10786 static int pmu_bus_running; 10787 static struct bus_type pmu_bus = { 10788 .name = "event_source", 10789 .dev_groups = pmu_dev_groups, 10790 }; 10791 10792 static void pmu_dev_release(struct device *dev) 10793 { 10794 kfree(dev); 10795 } 10796 10797 static int pmu_dev_alloc(struct pmu *pmu) 10798 { 10799 int ret = -ENOMEM; 10800 10801 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10802 if (!pmu->dev) 10803 goto out; 10804 10805 pmu->dev->groups = pmu->attr_groups; 10806 device_initialize(pmu->dev); 10807 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10808 if (ret) 10809 goto free_dev; 10810 10811 dev_set_drvdata(pmu->dev, pmu); 10812 pmu->dev->bus = &pmu_bus; 10813 pmu->dev->release = pmu_dev_release; 10814 ret = device_add(pmu->dev); 10815 if (ret) 10816 goto free_dev; 10817 10818 /* For PMUs with address filters, throw in an extra attribute: */ 10819 if (pmu->nr_addr_filters) 10820 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10821 10822 if (ret) 10823 goto del_dev; 10824 10825 if (pmu->attr_update) 10826 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10827 10828 if (ret) 10829 goto del_dev; 10830 10831 out: 10832 return ret; 10833 10834 del_dev: 10835 device_del(pmu->dev); 10836 10837 free_dev: 10838 put_device(pmu->dev); 10839 goto out; 10840 } 10841 10842 static struct lock_class_key cpuctx_mutex; 10843 static struct lock_class_key cpuctx_lock; 10844 10845 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10846 { 10847 int cpu, ret, max = PERF_TYPE_MAX; 10848 10849 mutex_lock(&pmus_lock); 10850 ret = -ENOMEM; 10851 pmu->pmu_disable_count = alloc_percpu(int); 10852 if (!pmu->pmu_disable_count) 10853 goto unlock; 10854 10855 pmu->type = -1; 10856 if (!name) 10857 goto skip_type; 10858 pmu->name = name; 10859 10860 if (type != PERF_TYPE_SOFTWARE) { 10861 if (type >= 0) 10862 max = type; 10863 10864 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10865 if (ret < 0) 10866 goto free_pdc; 10867 10868 WARN_ON(type >= 0 && ret != type); 10869 10870 type = ret; 10871 } 10872 pmu->type = type; 10873 10874 if (pmu_bus_running) { 10875 ret = pmu_dev_alloc(pmu); 10876 if (ret) 10877 goto free_idr; 10878 } 10879 10880 skip_type: 10881 if (pmu->task_ctx_nr == perf_hw_context) { 10882 static int hw_context_taken = 0; 10883 10884 /* 10885 * Other than systems with heterogeneous CPUs, it never makes 10886 * sense for two PMUs to share perf_hw_context. PMUs which are 10887 * uncore must use perf_invalid_context. 10888 */ 10889 if (WARN_ON_ONCE(hw_context_taken && 10890 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10891 pmu->task_ctx_nr = perf_invalid_context; 10892 10893 hw_context_taken = 1; 10894 } 10895 10896 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10897 if (pmu->pmu_cpu_context) 10898 goto got_cpu_context; 10899 10900 ret = -ENOMEM; 10901 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10902 if (!pmu->pmu_cpu_context) 10903 goto free_dev; 10904 10905 for_each_possible_cpu(cpu) { 10906 struct perf_cpu_context *cpuctx; 10907 10908 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10909 __perf_event_init_context(&cpuctx->ctx); 10910 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10911 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10912 cpuctx->ctx.pmu = pmu; 10913 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10914 10915 __perf_mux_hrtimer_init(cpuctx, cpu); 10916 10917 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10918 cpuctx->heap = cpuctx->heap_default; 10919 } 10920 10921 got_cpu_context: 10922 if (!pmu->start_txn) { 10923 if (pmu->pmu_enable) { 10924 /* 10925 * If we have pmu_enable/pmu_disable calls, install 10926 * transaction stubs that use that to try and batch 10927 * hardware accesses. 10928 */ 10929 pmu->start_txn = perf_pmu_start_txn; 10930 pmu->commit_txn = perf_pmu_commit_txn; 10931 pmu->cancel_txn = perf_pmu_cancel_txn; 10932 } else { 10933 pmu->start_txn = perf_pmu_nop_txn; 10934 pmu->commit_txn = perf_pmu_nop_int; 10935 pmu->cancel_txn = perf_pmu_nop_void; 10936 } 10937 } 10938 10939 if (!pmu->pmu_enable) { 10940 pmu->pmu_enable = perf_pmu_nop_void; 10941 pmu->pmu_disable = perf_pmu_nop_void; 10942 } 10943 10944 if (!pmu->check_period) 10945 pmu->check_period = perf_event_nop_int; 10946 10947 if (!pmu->event_idx) 10948 pmu->event_idx = perf_event_idx_default; 10949 10950 /* 10951 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10952 * since these cannot be in the IDR. This way the linear search 10953 * is fast, provided a valid software event is provided. 10954 */ 10955 if (type == PERF_TYPE_SOFTWARE || !name) 10956 list_add_rcu(&pmu->entry, &pmus); 10957 else 10958 list_add_tail_rcu(&pmu->entry, &pmus); 10959 10960 atomic_set(&pmu->exclusive_cnt, 0); 10961 ret = 0; 10962 unlock: 10963 mutex_unlock(&pmus_lock); 10964 10965 return ret; 10966 10967 free_dev: 10968 device_del(pmu->dev); 10969 put_device(pmu->dev); 10970 10971 free_idr: 10972 if (pmu->type != PERF_TYPE_SOFTWARE) 10973 idr_remove(&pmu_idr, pmu->type); 10974 10975 free_pdc: 10976 free_percpu(pmu->pmu_disable_count); 10977 goto unlock; 10978 } 10979 EXPORT_SYMBOL_GPL(perf_pmu_register); 10980 10981 void perf_pmu_unregister(struct pmu *pmu) 10982 { 10983 mutex_lock(&pmus_lock); 10984 list_del_rcu(&pmu->entry); 10985 10986 /* 10987 * We dereference the pmu list under both SRCU and regular RCU, so 10988 * synchronize against both of those. 10989 */ 10990 synchronize_srcu(&pmus_srcu); 10991 synchronize_rcu(); 10992 10993 free_percpu(pmu->pmu_disable_count); 10994 if (pmu->type != PERF_TYPE_SOFTWARE) 10995 idr_remove(&pmu_idr, pmu->type); 10996 if (pmu_bus_running) { 10997 if (pmu->nr_addr_filters) 10998 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10999 device_del(pmu->dev); 11000 put_device(pmu->dev); 11001 } 11002 free_pmu_context(pmu); 11003 mutex_unlock(&pmus_lock); 11004 } 11005 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11006 11007 static inline bool has_extended_regs(struct perf_event *event) 11008 { 11009 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11010 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11011 } 11012 11013 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11014 { 11015 struct perf_event_context *ctx = NULL; 11016 int ret; 11017 11018 if (!try_module_get(pmu->module)) 11019 return -ENODEV; 11020 11021 /* 11022 * A number of pmu->event_init() methods iterate the sibling_list to, 11023 * for example, validate if the group fits on the PMU. Therefore, 11024 * if this is a sibling event, acquire the ctx->mutex to protect 11025 * the sibling_list. 11026 */ 11027 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11028 /* 11029 * This ctx->mutex can nest when we're called through 11030 * inheritance. See the perf_event_ctx_lock_nested() comment. 11031 */ 11032 ctx = perf_event_ctx_lock_nested(event->group_leader, 11033 SINGLE_DEPTH_NESTING); 11034 BUG_ON(!ctx); 11035 } 11036 11037 event->pmu = pmu; 11038 ret = pmu->event_init(event); 11039 11040 if (ctx) 11041 perf_event_ctx_unlock(event->group_leader, ctx); 11042 11043 if (!ret) { 11044 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11045 has_extended_regs(event)) 11046 ret = -EOPNOTSUPP; 11047 11048 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11049 event_has_any_exclude_flag(event)) 11050 ret = -EINVAL; 11051 11052 if (ret && event->destroy) 11053 event->destroy(event); 11054 } 11055 11056 if (ret) 11057 module_put(pmu->module); 11058 11059 return ret; 11060 } 11061 11062 static struct pmu *perf_init_event(struct perf_event *event) 11063 { 11064 int idx, type, ret; 11065 struct pmu *pmu; 11066 11067 idx = srcu_read_lock(&pmus_srcu); 11068 11069 /* Try parent's PMU first: */ 11070 if (event->parent && event->parent->pmu) { 11071 pmu = event->parent->pmu; 11072 ret = perf_try_init_event(pmu, event); 11073 if (!ret) 11074 goto unlock; 11075 } 11076 11077 /* 11078 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11079 * are often aliases for PERF_TYPE_RAW. 11080 */ 11081 type = event->attr.type; 11082 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 11083 type = PERF_TYPE_RAW; 11084 11085 again: 11086 rcu_read_lock(); 11087 pmu = idr_find(&pmu_idr, type); 11088 rcu_read_unlock(); 11089 if (pmu) { 11090 ret = perf_try_init_event(pmu, event); 11091 if (ret == -ENOENT && event->attr.type != type) { 11092 type = event->attr.type; 11093 goto again; 11094 } 11095 11096 if (ret) 11097 pmu = ERR_PTR(ret); 11098 11099 goto unlock; 11100 } 11101 11102 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11103 ret = perf_try_init_event(pmu, event); 11104 if (!ret) 11105 goto unlock; 11106 11107 if (ret != -ENOENT) { 11108 pmu = ERR_PTR(ret); 11109 goto unlock; 11110 } 11111 } 11112 pmu = ERR_PTR(-ENOENT); 11113 unlock: 11114 srcu_read_unlock(&pmus_srcu, idx); 11115 11116 return pmu; 11117 } 11118 11119 static void attach_sb_event(struct perf_event *event) 11120 { 11121 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11122 11123 raw_spin_lock(&pel->lock); 11124 list_add_rcu(&event->sb_list, &pel->list); 11125 raw_spin_unlock(&pel->lock); 11126 } 11127 11128 /* 11129 * We keep a list of all !task (and therefore per-cpu) events 11130 * that need to receive side-band records. 11131 * 11132 * This avoids having to scan all the various PMU per-cpu contexts 11133 * looking for them. 11134 */ 11135 static void account_pmu_sb_event(struct perf_event *event) 11136 { 11137 if (is_sb_event(event)) 11138 attach_sb_event(event); 11139 } 11140 11141 static void account_event_cpu(struct perf_event *event, int cpu) 11142 { 11143 if (event->parent) 11144 return; 11145 11146 if (is_cgroup_event(event)) 11147 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11148 } 11149 11150 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11151 static void account_freq_event_nohz(void) 11152 { 11153 #ifdef CONFIG_NO_HZ_FULL 11154 /* Lock so we don't race with concurrent unaccount */ 11155 spin_lock(&nr_freq_lock); 11156 if (atomic_inc_return(&nr_freq_events) == 1) 11157 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11158 spin_unlock(&nr_freq_lock); 11159 #endif 11160 } 11161 11162 static void account_freq_event(void) 11163 { 11164 if (tick_nohz_full_enabled()) 11165 account_freq_event_nohz(); 11166 else 11167 atomic_inc(&nr_freq_events); 11168 } 11169 11170 11171 static void account_event(struct perf_event *event) 11172 { 11173 bool inc = false; 11174 11175 if (event->parent) 11176 return; 11177 11178 if (event->attach_state & PERF_ATTACH_TASK) 11179 inc = true; 11180 if (event->attr.mmap || event->attr.mmap_data) 11181 atomic_inc(&nr_mmap_events); 11182 if (event->attr.build_id) 11183 atomic_inc(&nr_build_id_events); 11184 if (event->attr.comm) 11185 atomic_inc(&nr_comm_events); 11186 if (event->attr.namespaces) 11187 atomic_inc(&nr_namespaces_events); 11188 if (event->attr.cgroup) 11189 atomic_inc(&nr_cgroup_events); 11190 if (event->attr.task) 11191 atomic_inc(&nr_task_events); 11192 if (event->attr.freq) 11193 account_freq_event(); 11194 if (event->attr.context_switch) { 11195 atomic_inc(&nr_switch_events); 11196 inc = true; 11197 } 11198 if (has_branch_stack(event)) 11199 inc = true; 11200 if (is_cgroup_event(event)) 11201 inc = true; 11202 if (event->attr.ksymbol) 11203 atomic_inc(&nr_ksymbol_events); 11204 if (event->attr.bpf_event) 11205 atomic_inc(&nr_bpf_events); 11206 if (event->attr.text_poke) 11207 atomic_inc(&nr_text_poke_events); 11208 11209 if (inc) { 11210 /* 11211 * We need the mutex here because static_branch_enable() 11212 * must complete *before* the perf_sched_count increment 11213 * becomes visible. 11214 */ 11215 if (atomic_inc_not_zero(&perf_sched_count)) 11216 goto enabled; 11217 11218 mutex_lock(&perf_sched_mutex); 11219 if (!atomic_read(&perf_sched_count)) { 11220 static_branch_enable(&perf_sched_events); 11221 /* 11222 * Guarantee that all CPUs observe they key change and 11223 * call the perf scheduling hooks before proceeding to 11224 * install events that need them. 11225 */ 11226 synchronize_rcu(); 11227 } 11228 /* 11229 * Now that we have waited for the sync_sched(), allow further 11230 * increments to by-pass the mutex. 11231 */ 11232 atomic_inc(&perf_sched_count); 11233 mutex_unlock(&perf_sched_mutex); 11234 } 11235 enabled: 11236 11237 account_event_cpu(event, event->cpu); 11238 11239 account_pmu_sb_event(event); 11240 } 11241 11242 /* 11243 * Allocate and initialize an event structure 11244 */ 11245 static struct perf_event * 11246 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11247 struct task_struct *task, 11248 struct perf_event *group_leader, 11249 struct perf_event *parent_event, 11250 perf_overflow_handler_t overflow_handler, 11251 void *context, int cgroup_fd) 11252 { 11253 struct pmu *pmu; 11254 struct perf_event *event; 11255 struct hw_perf_event *hwc; 11256 long err = -EINVAL; 11257 11258 if ((unsigned)cpu >= nr_cpu_ids) { 11259 if (!task || cpu != -1) 11260 return ERR_PTR(-EINVAL); 11261 } 11262 11263 event = kzalloc(sizeof(*event), GFP_KERNEL); 11264 if (!event) 11265 return ERR_PTR(-ENOMEM); 11266 11267 /* 11268 * Single events are their own group leaders, with an 11269 * empty sibling list: 11270 */ 11271 if (!group_leader) 11272 group_leader = event; 11273 11274 mutex_init(&event->child_mutex); 11275 INIT_LIST_HEAD(&event->child_list); 11276 11277 INIT_LIST_HEAD(&event->event_entry); 11278 INIT_LIST_HEAD(&event->sibling_list); 11279 INIT_LIST_HEAD(&event->active_list); 11280 init_event_group(event); 11281 INIT_LIST_HEAD(&event->rb_entry); 11282 INIT_LIST_HEAD(&event->active_entry); 11283 INIT_LIST_HEAD(&event->addr_filters.list); 11284 INIT_HLIST_NODE(&event->hlist_entry); 11285 11286 11287 init_waitqueue_head(&event->waitq); 11288 event->pending_disable = -1; 11289 init_irq_work(&event->pending, perf_pending_event); 11290 11291 mutex_init(&event->mmap_mutex); 11292 raw_spin_lock_init(&event->addr_filters.lock); 11293 11294 atomic_long_set(&event->refcount, 1); 11295 event->cpu = cpu; 11296 event->attr = *attr; 11297 event->group_leader = group_leader; 11298 event->pmu = NULL; 11299 event->oncpu = -1; 11300 11301 event->parent = parent_event; 11302 11303 event->ns = get_pid_ns(task_active_pid_ns(current)); 11304 event->id = atomic64_inc_return(&perf_event_id); 11305 11306 event->state = PERF_EVENT_STATE_INACTIVE; 11307 11308 if (task) { 11309 event->attach_state = PERF_ATTACH_TASK; 11310 /* 11311 * XXX pmu::event_init needs to know what task to account to 11312 * and we cannot use the ctx information because we need the 11313 * pmu before we get a ctx. 11314 */ 11315 event->hw.target = get_task_struct(task); 11316 } 11317 11318 event->clock = &local_clock; 11319 if (parent_event) 11320 event->clock = parent_event->clock; 11321 11322 if (!overflow_handler && parent_event) { 11323 overflow_handler = parent_event->overflow_handler; 11324 context = parent_event->overflow_handler_context; 11325 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11326 if (overflow_handler == bpf_overflow_handler) { 11327 struct bpf_prog *prog = parent_event->prog; 11328 11329 bpf_prog_inc(prog); 11330 event->prog = prog; 11331 event->orig_overflow_handler = 11332 parent_event->orig_overflow_handler; 11333 } 11334 #endif 11335 } 11336 11337 if (overflow_handler) { 11338 event->overflow_handler = overflow_handler; 11339 event->overflow_handler_context = context; 11340 } else if (is_write_backward(event)){ 11341 event->overflow_handler = perf_event_output_backward; 11342 event->overflow_handler_context = NULL; 11343 } else { 11344 event->overflow_handler = perf_event_output_forward; 11345 event->overflow_handler_context = NULL; 11346 } 11347 11348 perf_event__state_init(event); 11349 11350 pmu = NULL; 11351 11352 hwc = &event->hw; 11353 hwc->sample_period = attr->sample_period; 11354 if (attr->freq && attr->sample_freq) 11355 hwc->sample_period = 1; 11356 hwc->last_period = hwc->sample_period; 11357 11358 local64_set(&hwc->period_left, hwc->sample_period); 11359 11360 /* 11361 * We currently do not support PERF_SAMPLE_READ on inherited events. 11362 * See perf_output_read(). 11363 */ 11364 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11365 goto err_ns; 11366 11367 if (!has_branch_stack(event)) 11368 event->attr.branch_sample_type = 0; 11369 11370 pmu = perf_init_event(event); 11371 if (IS_ERR(pmu)) { 11372 err = PTR_ERR(pmu); 11373 goto err_ns; 11374 } 11375 11376 /* 11377 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11378 * be different on other CPUs in the uncore mask. 11379 */ 11380 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11381 err = -EINVAL; 11382 goto err_pmu; 11383 } 11384 11385 if (event->attr.aux_output && 11386 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11387 err = -EOPNOTSUPP; 11388 goto err_pmu; 11389 } 11390 11391 if (cgroup_fd != -1) { 11392 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11393 if (err) 11394 goto err_pmu; 11395 } 11396 11397 err = exclusive_event_init(event); 11398 if (err) 11399 goto err_pmu; 11400 11401 if (has_addr_filter(event)) { 11402 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11403 sizeof(struct perf_addr_filter_range), 11404 GFP_KERNEL); 11405 if (!event->addr_filter_ranges) { 11406 err = -ENOMEM; 11407 goto err_per_task; 11408 } 11409 11410 /* 11411 * Clone the parent's vma offsets: they are valid until exec() 11412 * even if the mm is not shared with the parent. 11413 */ 11414 if (event->parent) { 11415 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11416 11417 raw_spin_lock_irq(&ifh->lock); 11418 memcpy(event->addr_filter_ranges, 11419 event->parent->addr_filter_ranges, 11420 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11421 raw_spin_unlock_irq(&ifh->lock); 11422 } 11423 11424 /* force hw sync on the address filters */ 11425 event->addr_filters_gen = 1; 11426 } 11427 11428 if (!event->parent) { 11429 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11430 err = get_callchain_buffers(attr->sample_max_stack); 11431 if (err) 11432 goto err_addr_filters; 11433 } 11434 } 11435 11436 err = security_perf_event_alloc(event); 11437 if (err) 11438 goto err_callchain_buffer; 11439 11440 /* symmetric to unaccount_event() in _free_event() */ 11441 account_event(event); 11442 11443 return event; 11444 11445 err_callchain_buffer: 11446 if (!event->parent) { 11447 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11448 put_callchain_buffers(); 11449 } 11450 err_addr_filters: 11451 kfree(event->addr_filter_ranges); 11452 11453 err_per_task: 11454 exclusive_event_destroy(event); 11455 11456 err_pmu: 11457 if (is_cgroup_event(event)) 11458 perf_detach_cgroup(event); 11459 if (event->destroy) 11460 event->destroy(event); 11461 module_put(pmu->module); 11462 err_ns: 11463 if (event->ns) 11464 put_pid_ns(event->ns); 11465 if (event->hw.target) 11466 put_task_struct(event->hw.target); 11467 kfree(event); 11468 11469 return ERR_PTR(err); 11470 } 11471 11472 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11473 struct perf_event_attr *attr) 11474 { 11475 u32 size; 11476 int ret; 11477 11478 /* Zero the full structure, so that a short copy will be nice. */ 11479 memset(attr, 0, sizeof(*attr)); 11480 11481 ret = get_user(size, &uattr->size); 11482 if (ret) 11483 return ret; 11484 11485 /* ABI compatibility quirk: */ 11486 if (!size) 11487 size = PERF_ATTR_SIZE_VER0; 11488 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11489 goto err_size; 11490 11491 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11492 if (ret) { 11493 if (ret == -E2BIG) 11494 goto err_size; 11495 return ret; 11496 } 11497 11498 attr->size = size; 11499 11500 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11501 return -EINVAL; 11502 11503 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11504 return -EINVAL; 11505 11506 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11507 return -EINVAL; 11508 11509 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11510 u64 mask = attr->branch_sample_type; 11511 11512 /* only using defined bits */ 11513 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11514 return -EINVAL; 11515 11516 /* at least one branch bit must be set */ 11517 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11518 return -EINVAL; 11519 11520 /* propagate priv level, when not set for branch */ 11521 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11522 11523 /* exclude_kernel checked on syscall entry */ 11524 if (!attr->exclude_kernel) 11525 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11526 11527 if (!attr->exclude_user) 11528 mask |= PERF_SAMPLE_BRANCH_USER; 11529 11530 if (!attr->exclude_hv) 11531 mask |= PERF_SAMPLE_BRANCH_HV; 11532 /* 11533 * adjust user setting (for HW filter setup) 11534 */ 11535 attr->branch_sample_type = mask; 11536 } 11537 /* privileged levels capture (kernel, hv): check permissions */ 11538 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11539 ret = perf_allow_kernel(attr); 11540 if (ret) 11541 return ret; 11542 } 11543 } 11544 11545 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11546 ret = perf_reg_validate(attr->sample_regs_user); 11547 if (ret) 11548 return ret; 11549 } 11550 11551 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11552 if (!arch_perf_have_user_stack_dump()) 11553 return -ENOSYS; 11554 11555 /* 11556 * We have __u32 type for the size, but so far 11557 * we can only use __u16 as maximum due to the 11558 * __u16 sample size limit. 11559 */ 11560 if (attr->sample_stack_user >= USHRT_MAX) 11561 return -EINVAL; 11562 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11563 return -EINVAL; 11564 } 11565 11566 if (!attr->sample_max_stack) 11567 attr->sample_max_stack = sysctl_perf_event_max_stack; 11568 11569 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11570 ret = perf_reg_validate(attr->sample_regs_intr); 11571 11572 #ifndef CONFIG_CGROUP_PERF 11573 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11574 return -EINVAL; 11575 #endif 11576 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11577 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11578 return -EINVAL; 11579 11580 out: 11581 return ret; 11582 11583 err_size: 11584 put_user(sizeof(*attr), &uattr->size); 11585 ret = -E2BIG; 11586 goto out; 11587 } 11588 11589 static int 11590 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11591 { 11592 struct perf_buffer *rb = NULL; 11593 int ret = -EINVAL; 11594 11595 if (!output_event) 11596 goto set; 11597 11598 /* don't allow circular references */ 11599 if (event == output_event) 11600 goto out; 11601 11602 /* 11603 * Don't allow cross-cpu buffers 11604 */ 11605 if (output_event->cpu != event->cpu) 11606 goto out; 11607 11608 /* 11609 * If its not a per-cpu rb, it must be the same task. 11610 */ 11611 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11612 goto out; 11613 11614 /* 11615 * Mixing clocks in the same buffer is trouble you don't need. 11616 */ 11617 if (output_event->clock != event->clock) 11618 goto out; 11619 11620 /* 11621 * Either writing ring buffer from beginning or from end. 11622 * Mixing is not allowed. 11623 */ 11624 if (is_write_backward(output_event) != is_write_backward(event)) 11625 goto out; 11626 11627 /* 11628 * If both events generate aux data, they must be on the same PMU 11629 */ 11630 if (has_aux(event) && has_aux(output_event) && 11631 event->pmu != output_event->pmu) 11632 goto out; 11633 11634 set: 11635 mutex_lock(&event->mmap_mutex); 11636 /* Can't redirect output if we've got an active mmap() */ 11637 if (atomic_read(&event->mmap_count)) 11638 goto unlock; 11639 11640 if (output_event) { 11641 /* get the rb we want to redirect to */ 11642 rb = ring_buffer_get(output_event); 11643 if (!rb) 11644 goto unlock; 11645 } 11646 11647 ring_buffer_attach(event, rb); 11648 11649 ret = 0; 11650 unlock: 11651 mutex_unlock(&event->mmap_mutex); 11652 11653 out: 11654 return ret; 11655 } 11656 11657 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11658 { 11659 if (b < a) 11660 swap(a, b); 11661 11662 mutex_lock(a); 11663 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11664 } 11665 11666 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11667 { 11668 bool nmi_safe = false; 11669 11670 switch (clk_id) { 11671 case CLOCK_MONOTONIC: 11672 event->clock = &ktime_get_mono_fast_ns; 11673 nmi_safe = true; 11674 break; 11675 11676 case CLOCK_MONOTONIC_RAW: 11677 event->clock = &ktime_get_raw_fast_ns; 11678 nmi_safe = true; 11679 break; 11680 11681 case CLOCK_REALTIME: 11682 event->clock = &ktime_get_real_ns; 11683 break; 11684 11685 case CLOCK_BOOTTIME: 11686 event->clock = &ktime_get_boottime_ns; 11687 break; 11688 11689 case CLOCK_TAI: 11690 event->clock = &ktime_get_clocktai_ns; 11691 break; 11692 11693 default: 11694 return -EINVAL; 11695 } 11696 11697 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11698 return -EINVAL; 11699 11700 return 0; 11701 } 11702 11703 /* 11704 * Variation on perf_event_ctx_lock_nested(), except we take two context 11705 * mutexes. 11706 */ 11707 static struct perf_event_context * 11708 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11709 struct perf_event_context *ctx) 11710 { 11711 struct perf_event_context *gctx; 11712 11713 again: 11714 rcu_read_lock(); 11715 gctx = READ_ONCE(group_leader->ctx); 11716 if (!refcount_inc_not_zero(&gctx->refcount)) { 11717 rcu_read_unlock(); 11718 goto again; 11719 } 11720 rcu_read_unlock(); 11721 11722 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11723 11724 if (group_leader->ctx != gctx) { 11725 mutex_unlock(&ctx->mutex); 11726 mutex_unlock(&gctx->mutex); 11727 put_ctx(gctx); 11728 goto again; 11729 } 11730 11731 return gctx; 11732 } 11733 11734 /** 11735 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11736 * 11737 * @attr_uptr: event_id type attributes for monitoring/sampling 11738 * @pid: target pid 11739 * @cpu: target cpu 11740 * @group_fd: group leader event fd 11741 */ 11742 SYSCALL_DEFINE5(perf_event_open, 11743 struct perf_event_attr __user *, attr_uptr, 11744 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11745 { 11746 struct perf_event *group_leader = NULL, *output_event = NULL; 11747 struct perf_event *event, *sibling; 11748 struct perf_event_attr attr; 11749 struct perf_event_context *ctx, *gctx; 11750 struct file *event_file = NULL; 11751 struct fd group = {NULL, 0}; 11752 struct task_struct *task = NULL; 11753 struct pmu *pmu; 11754 int event_fd; 11755 int move_group = 0; 11756 int err; 11757 int f_flags = O_RDWR; 11758 int cgroup_fd = -1; 11759 11760 /* for future expandability... */ 11761 if (flags & ~PERF_FLAG_ALL) 11762 return -EINVAL; 11763 11764 /* Do we allow access to perf_event_open(2) ? */ 11765 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11766 if (err) 11767 return err; 11768 11769 err = perf_copy_attr(attr_uptr, &attr); 11770 if (err) 11771 return err; 11772 11773 if (!attr.exclude_kernel) { 11774 err = perf_allow_kernel(&attr); 11775 if (err) 11776 return err; 11777 } 11778 11779 if (attr.namespaces) { 11780 if (!perfmon_capable()) 11781 return -EACCES; 11782 } 11783 11784 if (attr.freq) { 11785 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11786 return -EINVAL; 11787 } else { 11788 if (attr.sample_period & (1ULL << 63)) 11789 return -EINVAL; 11790 } 11791 11792 /* Only privileged users can get physical addresses */ 11793 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11794 err = perf_allow_kernel(&attr); 11795 if (err) 11796 return err; 11797 } 11798 11799 err = security_locked_down(LOCKDOWN_PERF); 11800 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11801 /* REGS_INTR can leak data, lockdown must prevent this */ 11802 return err; 11803 11804 err = 0; 11805 11806 /* 11807 * In cgroup mode, the pid argument is used to pass the fd 11808 * opened to the cgroup directory in cgroupfs. The cpu argument 11809 * designates the cpu on which to monitor threads from that 11810 * cgroup. 11811 */ 11812 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11813 return -EINVAL; 11814 11815 if (flags & PERF_FLAG_FD_CLOEXEC) 11816 f_flags |= O_CLOEXEC; 11817 11818 event_fd = get_unused_fd_flags(f_flags); 11819 if (event_fd < 0) 11820 return event_fd; 11821 11822 if (group_fd != -1) { 11823 err = perf_fget_light(group_fd, &group); 11824 if (err) 11825 goto err_fd; 11826 group_leader = group.file->private_data; 11827 if (flags & PERF_FLAG_FD_OUTPUT) 11828 output_event = group_leader; 11829 if (flags & PERF_FLAG_FD_NO_GROUP) 11830 group_leader = NULL; 11831 } 11832 11833 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11834 task = find_lively_task_by_vpid(pid); 11835 if (IS_ERR(task)) { 11836 err = PTR_ERR(task); 11837 goto err_group_fd; 11838 } 11839 } 11840 11841 if (task && group_leader && 11842 group_leader->attr.inherit != attr.inherit) { 11843 err = -EINVAL; 11844 goto err_task; 11845 } 11846 11847 if (flags & PERF_FLAG_PID_CGROUP) 11848 cgroup_fd = pid; 11849 11850 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11851 NULL, NULL, cgroup_fd); 11852 if (IS_ERR(event)) { 11853 err = PTR_ERR(event); 11854 goto err_task; 11855 } 11856 11857 if (is_sampling_event(event)) { 11858 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11859 err = -EOPNOTSUPP; 11860 goto err_alloc; 11861 } 11862 } 11863 11864 /* 11865 * Special case software events and allow them to be part of 11866 * any hardware group. 11867 */ 11868 pmu = event->pmu; 11869 11870 if (attr.use_clockid) { 11871 err = perf_event_set_clock(event, attr.clockid); 11872 if (err) 11873 goto err_alloc; 11874 } 11875 11876 if (pmu->task_ctx_nr == perf_sw_context) 11877 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11878 11879 if (group_leader) { 11880 if (is_software_event(event) && 11881 !in_software_context(group_leader)) { 11882 /* 11883 * If the event is a sw event, but the group_leader 11884 * is on hw context. 11885 * 11886 * Allow the addition of software events to hw 11887 * groups, this is safe because software events 11888 * never fail to schedule. 11889 */ 11890 pmu = group_leader->ctx->pmu; 11891 } else if (!is_software_event(event) && 11892 is_software_event(group_leader) && 11893 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11894 /* 11895 * In case the group is a pure software group, and we 11896 * try to add a hardware event, move the whole group to 11897 * the hardware context. 11898 */ 11899 move_group = 1; 11900 } 11901 } 11902 11903 /* 11904 * Get the target context (task or percpu): 11905 */ 11906 ctx = find_get_context(pmu, task, event); 11907 if (IS_ERR(ctx)) { 11908 err = PTR_ERR(ctx); 11909 goto err_alloc; 11910 } 11911 11912 /* 11913 * Look up the group leader (we will attach this event to it): 11914 */ 11915 if (group_leader) { 11916 err = -EINVAL; 11917 11918 /* 11919 * Do not allow a recursive hierarchy (this new sibling 11920 * becoming part of another group-sibling): 11921 */ 11922 if (group_leader->group_leader != group_leader) 11923 goto err_context; 11924 11925 /* All events in a group should have the same clock */ 11926 if (group_leader->clock != event->clock) 11927 goto err_context; 11928 11929 /* 11930 * Make sure we're both events for the same CPU; 11931 * grouping events for different CPUs is broken; since 11932 * you can never concurrently schedule them anyhow. 11933 */ 11934 if (group_leader->cpu != event->cpu) 11935 goto err_context; 11936 11937 /* 11938 * Make sure we're both on the same task, or both 11939 * per-CPU events. 11940 */ 11941 if (group_leader->ctx->task != ctx->task) 11942 goto err_context; 11943 11944 /* 11945 * Do not allow to attach to a group in a different task 11946 * or CPU context. If we're moving SW events, we'll fix 11947 * this up later, so allow that. 11948 */ 11949 if (!move_group && group_leader->ctx != ctx) 11950 goto err_context; 11951 11952 /* 11953 * Only a group leader can be exclusive or pinned 11954 */ 11955 if (attr.exclusive || attr.pinned) 11956 goto err_context; 11957 } 11958 11959 if (output_event) { 11960 err = perf_event_set_output(event, output_event); 11961 if (err) 11962 goto err_context; 11963 } 11964 11965 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11966 f_flags); 11967 if (IS_ERR(event_file)) { 11968 err = PTR_ERR(event_file); 11969 event_file = NULL; 11970 goto err_context; 11971 } 11972 11973 if (task) { 11974 err = down_read_interruptible(&task->signal->exec_update_lock); 11975 if (err) 11976 goto err_file; 11977 11978 /* 11979 * Preserve ptrace permission check for backwards compatibility. 11980 * 11981 * We must hold exec_update_lock across this and any potential 11982 * perf_install_in_context() call for this new event to 11983 * serialize against exec() altering our credentials (and the 11984 * perf_event_exit_task() that could imply). 11985 */ 11986 err = -EACCES; 11987 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11988 goto err_cred; 11989 } 11990 11991 if (move_group) { 11992 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11993 11994 if (gctx->task == TASK_TOMBSTONE) { 11995 err = -ESRCH; 11996 goto err_locked; 11997 } 11998 11999 /* 12000 * Check if we raced against another sys_perf_event_open() call 12001 * moving the software group underneath us. 12002 */ 12003 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12004 /* 12005 * If someone moved the group out from under us, check 12006 * if this new event wound up on the same ctx, if so 12007 * its the regular !move_group case, otherwise fail. 12008 */ 12009 if (gctx != ctx) { 12010 err = -EINVAL; 12011 goto err_locked; 12012 } else { 12013 perf_event_ctx_unlock(group_leader, gctx); 12014 move_group = 0; 12015 } 12016 } 12017 12018 /* 12019 * Failure to create exclusive events returns -EBUSY. 12020 */ 12021 err = -EBUSY; 12022 if (!exclusive_event_installable(group_leader, ctx)) 12023 goto err_locked; 12024 12025 for_each_sibling_event(sibling, group_leader) { 12026 if (!exclusive_event_installable(sibling, ctx)) 12027 goto err_locked; 12028 } 12029 } else { 12030 mutex_lock(&ctx->mutex); 12031 } 12032 12033 if (ctx->task == TASK_TOMBSTONE) { 12034 err = -ESRCH; 12035 goto err_locked; 12036 } 12037 12038 if (!perf_event_validate_size(event)) { 12039 err = -E2BIG; 12040 goto err_locked; 12041 } 12042 12043 if (!task) { 12044 /* 12045 * Check if the @cpu we're creating an event for is online. 12046 * 12047 * We use the perf_cpu_context::ctx::mutex to serialize against 12048 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12049 */ 12050 struct perf_cpu_context *cpuctx = 12051 container_of(ctx, struct perf_cpu_context, ctx); 12052 12053 if (!cpuctx->online) { 12054 err = -ENODEV; 12055 goto err_locked; 12056 } 12057 } 12058 12059 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12060 err = -EINVAL; 12061 goto err_locked; 12062 } 12063 12064 /* 12065 * Must be under the same ctx::mutex as perf_install_in_context(), 12066 * because we need to serialize with concurrent event creation. 12067 */ 12068 if (!exclusive_event_installable(event, ctx)) { 12069 err = -EBUSY; 12070 goto err_locked; 12071 } 12072 12073 WARN_ON_ONCE(ctx->parent_ctx); 12074 12075 /* 12076 * This is the point on no return; we cannot fail hereafter. This is 12077 * where we start modifying current state. 12078 */ 12079 12080 if (move_group) { 12081 /* 12082 * See perf_event_ctx_lock() for comments on the details 12083 * of swizzling perf_event::ctx. 12084 */ 12085 perf_remove_from_context(group_leader, 0); 12086 put_ctx(gctx); 12087 12088 for_each_sibling_event(sibling, group_leader) { 12089 perf_remove_from_context(sibling, 0); 12090 put_ctx(gctx); 12091 } 12092 12093 /* 12094 * Wait for everybody to stop referencing the events through 12095 * the old lists, before installing it on new lists. 12096 */ 12097 synchronize_rcu(); 12098 12099 /* 12100 * Install the group siblings before the group leader. 12101 * 12102 * Because a group leader will try and install the entire group 12103 * (through the sibling list, which is still in-tact), we can 12104 * end up with siblings installed in the wrong context. 12105 * 12106 * By installing siblings first we NO-OP because they're not 12107 * reachable through the group lists. 12108 */ 12109 for_each_sibling_event(sibling, group_leader) { 12110 perf_event__state_init(sibling); 12111 perf_install_in_context(ctx, sibling, sibling->cpu); 12112 get_ctx(ctx); 12113 } 12114 12115 /* 12116 * Removing from the context ends up with disabled 12117 * event. What we want here is event in the initial 12118 * startup state, ready to be add into new context. 12119 */ 12120 perf_event__state_init(group_leader); 12121 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12122 get_ctx(ctx); 12123 } 12124 12125 /* 12126 * Precalculate sample_data sizes; do while holding ctx::mutex such 12127 * that we're serialized against further additions and before 12128 * perf_install_in_context() which is the point the event is active and 12129 * can use these values. 12130 */ 12131 perf_event__header_size(event); 12132 perf_event__id_header_size(event); 12133 12134 event->owner = current; 12135 12136 perf_install_in_context(ctx, event, event->cpu); 12137 perf_unpin_context(ctx); 12138 12139 if (move_group) 12140 perf_event_ctx_unlock(group_leader, gctx); 12141 mutex_unlock(&ctx->mutex); 12142 12143 if (task) { 12144 up_read(&task->signal->exec_update_lock); 12145 put_task_struct(task); 12146 } 12147 12148 mutex_lock(¤t->perf_event_mutex); 12149 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12150 mutex_unlock(¤t->perf_event_mutex); 12151 12152 /* 12153 * Drop the reference on the group_event after placing the 12154 * new event on the sibling_list. This ensures destruction 12155 * of the group leader will find the pointer to itself in 12156 * perf_group_detach(). 12157 */ 12158 fdput(group); 12159 fd_install(event_fd, event_file); 12160 return event_fd; 12161 12162 err_locked: 12163 if (move_group) 12164 perf_event_ctx_unlock(group_leader, gctx); 12165 mutex_unlock(&ctx->mutex); 12166 err_cred: 12167 if (task) 12168 up_read(&task->signal->exec_update_lock); 12169 err_file: 12170 fput(event_file); 12171 err_context: 12172 perf_unpin_context(ctx); 12173 put_ctx(ctx); 12174 err_alloc: 12175 /* 12176 * If event_file is set, the fput() above will have called ->release() 12177 * and that will take care of freeing the event. 12178 */ 12179 if (!event_file) 12180 free_event(event); 12181 err_task: 12182 if (task) 12183 put_task_struct(task); 12184 err_group_fd: 12185 fdput(group); 12186 err_fd: 12187 put_unused_fd(event_fd); 12188 return err; 12189 } 12190 12191 /** 12192 * perf_event_create_kernel_counter 12193 * 12194 * @attr: attributes of the counter to create 12195 * @cpu: cpu in which the counter is bound 12196 * @task: task to profile (NULL for percpu) 12197 */ 12198 struct perf_event * 12199 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12200 struct task_struct *task, 12201 perf_overflow_handler_t overflow_handler, 12202 void *context) 12203 { 12204 struct perf_event_context *ctx; 12205 struct perf_event *event; 12206 int err; 12207 12208 /* 12209 * Grouping is not supported for kernel events, neither is 'AUX', 12210 * make sure the caller's intentions are adjusted. 12211 */ 12212 if (attr->aux_output) 12213 return ERR_PTR(-EINVAL); 12214 12215 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12216 overflow_handler, context, -1); 12217 if (IS_ERR(event)) { 12218 err = PTR_ERR(event); 12219 goto err; 12220 } 12221 12222 /* Mark owner so we could distinguish it from user events. */ 12223 event->owner = TASK_TOMBSTONE; 12224 12225 /* 12226 * Get the target context (task or percpu): 12227 */ 12228 ctx = find_get_context(event->pmu, task, event); 12229 if (IS_ERR(ctx)) { 12230 err = PTR_ERR(ctx); 12231 goto err_free; 12232 } 12233 12234 WARN_ON_ONCE(ctx->parent_ctx); 12235 mutex_lock(&ctx->mutex); 12236 if (ctx->task == TASK_TOMBSTONE) { 12237 err = -ESRCH; 12238 goto err_unlock; 12239 } 12240 12241 if (!task) { 12242 /* 12243 * Check if the @cpu we're creating an event for is online. 12244 * 12245 * We use the perf_cpu_context::ctx::mutex to serialize against 12246 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12247 */ 12248 struct perf_cpu_context *cpuctx = 12249 container_of(ctx, struct perf_cpu_context, ctx); 12250 if (!cpuctx->online) { 12251 err = -ENODEV; 12252 goto err_unlock; 12253 } 12254 } 12255 12256 if (!exclusive_event_installable(event, ctx)) { 12257 err = -EBUSY; 12258 goto err_unlock; 12259 } 12260 12261 perf_install_in_context(ctx, event, event->cpu); 12262 perf_unpin_context(ctx); 12263 mutex_unlock(&ctx->mutex); 12264 12265 return event; 12266 12267 err_unlock: 12268 mutex_unlock(&ctx->mutex); 12269 perf_unpin_context(ctx); 12270 put_ctx(ctx); 12271 err_free: 12272 free_event(event); 12273 err: 12274 return ERR_PTR(err); 12275 } 12276 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12277 12278 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12279 { 12280 struct perf_event_context *src_ctx; 12281 struct perf_event_context *dst_ctx; 12282 struct perf_event *event, *tmp; 12283 LIST_HEAD(events); 12284 12285 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12286 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12287 12288 /* 12289 * See perf_event_ctx_lock() for comments on the details 12290 * of swizzling perf_event::ctx. 12291 */ 12292 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12293 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12294 event_entry) { 12295 perf_remove_from_context(event, 0); 12296 unaccount_event_cpu(event, src_cpu); 12297 put_ctx(src_ctx); 12298 list_add(&event->migrate_entry, &events); 12299 } 12300 12301 /* 12302 * Wait for the events to quiesce before re-instating them. 12303 */ 12304 synchronize_rcu(); 12305 12306 /* 12307 * Re-instate events in 2 passes. 12308 * 12309 * Skip over group leaders and only install siblings on this first 12310 * pass, siblings will not get enabled without a leader, however a 12311 * leader will enable its siblings, even if those are still on the old 12312 * context. 12313 */ 12314 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12315 if (event->group_leader == event) 12316 continue; 12317 12318 list_del(&event->migrate_entry); 12319 if (event->state >= PERF_EVENT_STATE_OFF) 12320 event->state = PERF_EVENT_STATE_INACTIVE; 12321 account_event_cpu(event, dst_cpu); 12322 perf_install_in_context(dst_ctx, event, dst_cpu); 12323 get_ctx(dst_ctx); 12324 } 12325 12326 /* 12327 * Once all the siblings are setup properly, install the group leaders 12328 * to make it go. 12329 */ 12330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12331 list_del(&event->migrate_entry); 12332 if (event->state >= PERF_EVENT_STATE_OFF) 12333 event->state = PERF_EVENT_STATE_INACTIVE; 12334 account_event_cpu(event, dst_cpu); 12335 perf_install_in_context(dst_ctx, event, dst_cpu); 12336 get_ctx(dst_ctx); 12337 } 12338 mutex_unlock(&dst_ctx->mutex); 12339 mutex_unlock(&src_ctx->mutex); 12340 } 12341 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12342 12343 static void sync_child_event(struct perf_event *child_event, 12344 struct task_struct *child) 12345 { 12346 struct perf_event *parent_event = child_event->parent; 12347 u64 child_val; 12348 12349 if (child_event->attr.inherit_stat) 12350 perf_event_read_event(child_event, child); 12351 12352 child_val = perf_event_count(child_event); 12353 12354 /* 12355 * Add back the child's count to the parent's count: 12356 */ 12357 atomic64_add(child_val, &parent_event->child_count); 12358 atomic64_add(child_event->total_time_enabled, 12359 &parent_event->child_total_time_enabled); 12360 atomic64_add(child_event->total_time_running, 12361 &parent_event->child_total_time_running); 12362 } 12363 12364 static void 12365 perf_event_exit_event(struct perf_event *child_event, 12366 struct perf_event_context *child_ctx, 12367 struct task_struct *child) 12368 { 12369 struct perf_event *parent_event = child_event->parent; 12370 12371 /* 12372 * Do not destroy the 'original' grouping; because of the context 12373 * switch optimization the original events could've ended up in a 12374 * random child task. 12375 * 12376 * If we were to destroy the original group, all group related 12377 * operations would cease to function properly after this random 12378 * child dies. 12379 * 12380 * Do destroy all inherited groups, we don't care about those 12381 * and being thorough is better. 12382 */ 12383 raw_spin_lock_irq(&child_ctx->lock); 12384 WARN_ON_ONCE(child_ctx->is_active); 12385 12386 if (parent_event) 12387 perf_group_detach(child_event); 12388 list_del_event(child_event, child_ctx); 12389 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12390 raw_spin_unlock_irq(&child_ctx->lock); 12391 12392 /* 12393 * Parent events are governed by their filedesc, retain them. 12394 */ 12395 if (!parent_event) { 12396 perf_event_wakeup(child_event); 12397 return; 12398 } 12399 /* 12400 * Child events can be cleaned up. 12401 */ 12402 12403 sync_child_event(child_event, child); 12404 12405 /* 12406 * Remove this event from the parent's list 12407 */ 12408 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12409 mutex_lock(&parent_event->child_mutex); 12410 list_del_init(&child_event->child_list); 12411 mutex_unlock(&parent_event->child_mutex); 12412 12413 /* 12414 * Kick perf_poll() for is_event_hup(). 12415 */ 12416 perf_event_wakeup(parent_event); 12417 free_event(child_event); 12418 put_event(parent_event); 12419 } 12420 12421 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12422 { 12423 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12424 struct perf_event *child_event, *next; 12425 12426 WARN_ON_ONCE(child != current); 12427 12428 child_ctx = perf_pin_task_context(child, ctxn); 12429 if (!child_ctx) 12430 return; 12431 12432 /* 12433 * In order to reduce the amount of tricky in ctx tear-down, we hold 12434 * ctx::mutex over the entire thing. This serializes against almost 12435 * everything that wants to access the ctx. 12436 * 12437 * The exception is sys_perf_event_open() / 12438 * perf_event_create_kernel_count() which does find_get_context() 12439 * without ctx::mutex (it cannot because of the move_group double mutex 12440 * lock thing). See the comments in perf_install_in_context(). 12441 */ 12442 mutex_lock(&child_ctx->mutex); 12443 12444 /* 12445 * In a single ctx::lock section, de-schedule the events and detach the 12446 * context from the task such that we cannot ever get it scheduled back 12447 * in. 12448 */ 12449 raw_spin_lock_irq(&child_ctx->lock); 12450 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12451 12452 /* 12453 * Now that the context is inactive, destroy the task <-> ctx relation 12454 * and mark the context dead. 12455 */ 12456 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12457 put_ctx(child_ctx); /* cannot be last */ 12458 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12459 put_task_struct(current); /* cannot be last */ 12460 12461 clone_ctx = unclone_ctx(child_ctx); 12462 raw_spin_unlock_irq(&child_ctx->lock); 12463 12464 if (clone_ctx) 12465 put_ctx(clone_ctx); 12466 12467 /* 12468 * Report the task dead after unscheduling the events so that we 12469 * won't get any samples after PERF_RECORD_EXIT. We can however still 12470 * get a few PERF_RECORD_READ events. 12471 */ 12472 perf_event_task(child, child_ctx, 0); 12473 12474 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12475 perf_event_exit_event(child_event, child_ctx, child); 12476 12477 mutex_unlock(&child_ctx->mutex); 12478 12479 put_ctx(child_ctx); 12480 } 12481 12482 /* 12483 * When a child task exits, feed back event values to parent events. 12484 * 12485 * Can be called with exec_update_lock held when called from 12486 * setup_new_exec(). 12487 */ 12488 void perf_event_exit_task(struct task_struct *child) 12489 { 12490 struct perf_event *event, *tmp; 12491 int ctxn; 12492 12493 mutex_lock(&child->perf_event_mutex); 12494 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12495 owner_entry) { 12496 list_del_init(&event->owner_entry); 12497 12498 /* 12499 * Ensure the list deletion is visible before we clear 12500 * the owner, closes a race against perf_release() where 12501 * we need to serialize on the owner->perf_event_mutex. 12502 */ 12503 smp_store_release(&event->owner, NULL); 12504 } 12505 mutex_unlock(&child->perf_event_mutex); 12506 12507 for_each_task_context_nr(ctxn) 12508 perf_event_exit_task_context(child, ctxn); 12509 12510 /* 12511 * The perf_event_exit_task_context calls perf_event_task 12512 * with child's task_ctx, which generates EXIT events for 12513 * child contexts and sets child->perf_event_ctxp[] to NULL. 12514 * At this point we need to send EXIT events to cpu contexts. 12515 */ 12516 perf_event_task(child, NULL, 0); 12517 } 12518 12519 static void perf_free_event(struct perf_event *event, 12520 struct perf_event_context *ctx) 12521 { 12522 struct perf_event *parent = event->parent; 12523 12524 if (WARN_ON_ONCE(!parent)) 12525 return; 12526 12527 mutex_lock(&parent->child_mutex); 12528 list_del_init(&event->child_list); 12529 mutex_unlock(&parent->child_mutex); 12530 12531 put_event(parent); 12532 12533 raw_spin_lock_irq(&ctx->lock); 12534 perf_group_detach(event); 12535 list_del_event(event, ctx); 12536 raw_spin_unlock_irq(&ctx->lock); 12537 free_event(event); 12538 } 12539 12540 /* 12541 * Free a context as created by inheritance by perf_event_init_task() below, 12542 * used by fork() in case of fail. 12543 * 12544 * Even though the task has never lived, the context and events have been 12545 * exposed through the child_list, so we must take care tearing it all down. 12546 */ 12547 void perf_event_free_task(struct task_struct *task) 12548 { 12549 struct perf_event_context *ctx; 12550 struct perf_event *event, *tmp; 12551 int ctxn; 12552 12553 for_each_task_context_nr(ctxn) { 12554 ctx = task->perf_event_ctxp[ctxn]; 12555 if (!ctx) 12556 continue; 12557 12558 mutex_lock(&ctx->mutex); 12559 raw_spin_lock_irq(&ctx->lock); 12560 /* 12561 * Destroy the task <-> ctx relation and mark the context dead. 12562 * 12563 * This is important because even though the task hasn't been 12564 * exposed yet the context has been (through child_list). 12565 */ 12566 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12567 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12568 put_task_struct(task); /* cannot be last */ 12569 raw_spin_unlock_irq(&ctx->lock); 12570 12571 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12572 perf_free_event(event, ctx); 12573 12574 mutex_unlock(&ctx->mutex); 12575 12576 /* 12577 * perf_event_release_kernel() could've stolen some of our 12578 * child events and still have them on its free_list. In that 12579 * case we must wait for these events to have been freed (in 12580 * particular all their references to this task must've been 12581 * dropped). 12582 * 12583 * Without this copy_process() will unconditionally free this 12584 * task (irrespective of its reference count) and 12585 * _free_event()'s put_task_struct(event->hw.target) will be a 12586 * use-after-free. 12587 * 12588 * Wait for all events to drop their context reference. 12589 */ 12590 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12591 put_ctx(ctx); /* must be last */ 12592 } 12593 } 12594 12595 void perf_event_delayed_put(struct task_struct *task) 12596 { 12597 int ctxn; 12598 12599 for_each_task_context_nr(ctxn) 12600 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12601 } 12602 12603 struct file *perf_event_get(unsigned int fd) 12604 { 12605 struct file *file = fget(fd); 12606 if (!file) 12607 return ERR_PTR(-EBADF); 12608 12609 if (file->f_op != &perf_fops) { 12610 fput(file); 12611 return ERR_PTR(-EBADF); 12612 } 12613 12614 return file; 12615 } 12616 12617 const struct perf_event *perf_get_event(struct file *file) 12618 { 12619 if (file->f_op != &perf_fops) 12620 return ERR_PTR(-EINVAL); 12621 12622 return file->private_data; 12623 } 12624 12625 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12626 { 12627 if (!event) 12628 return ERR_PTR(-EINVAL); 12629 12630 return &event->attr; 12631 } 12632 12633 /* 12634 * Inherit an event from parent task to child task. 12635 * 12636 * Returns: 12637 * - valid pointer on success 12638 * - NULL for orphaned events 12639 * - IS_ERR() on error 12640 */ 12641 static struct perf_event * 12642 inherit_event(struct perf_event *parent_event, 12643 struct task_struct *parent, 12644 struct perf_event_context *parent_ctx, 12645 struct task_struct *child, 12646 struct perf_event *group_leader, 12647 struct perf_event_context *child_ctx) 12648 { 12649 enum perf_event_state parent_state = parent_event->state; 12650 struct perf_event *child_event; 12651 unsigned long flags; 12652 12653 /* 12654 * Instead of creating recursive hierarchies of events, 12655 * we link inherited events back to the original parent, 12656 * which has a filp for sure, which we use as the reference 12657 * count: 12658 */ 12659 if (parent_event->parent) 12660 parent_event = parent_event->parent; 12661 12662 child_event = perf_event_alloc(&parent_event->attr, 12663 parent_event->cpu, 12664 child, 12665 group_leader, parent_event, 12666 NULL, NULL, -1); 12667 if (IS_ERR(child_event)) 12668 return child_event; 12669 12670 12671 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12672 !child_ctx->task_ctx_data) { 12673 struct pmu *pmu = child_event->pmu; 12674 12675 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12676 if (!child_ctx->task_ctx_data) { 12677 free_event(child_event); 12678 return ERR_PTR(-ENOMEM); 12679 } 12680 } 12681 12682 /* 12683 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12684 * must be under the same lock in order to serialize against 12685 * perf_event_release_kernel(), such that either we must observe 12686 * is_orphaned_event() or they will observe us on the child_list. 12687 */ 12688 mutex_lock(&parent_event->child_mutex); 12689 if (is_orphaned_event(parent_event) || 12690 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12691 mutex_unlock(&parent_event->child_mutex); 12692 /* task_ctx_data is freed with child_ctx */ 12693 free_event(child_event); 12694 return NULL; 12695 } 12696 12697 get_ctx(child_ctx); 12698 12699 /* 12700 * Make the child state follow the state of the parent event, 12701 * not its attr.disabled bit. We hold the parent's mutex, 12702 * so we won't race with perf_event_{en, dis}able_family. 12703 */ 12704 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12705 child_event->state = PERF_EVENT_STATE_INACTIVE; 12706 else 12707 child_event->state = PERF_EVENT_STATE_OFF; 12708 12709 if (parent_event->attr.freq) { 12710 u64 sample_period = parent_event->hw.sample_period; 12711 struct hw_perf_event *hwc = &child_event->hw; 12712 12713 hwc->sample_period = sample_period; 12714 hwc->last_period = sample_period; 12715 12716 local64_set(&hwc->period_left, sample_period); 12717 } 12718 12719 child_event->ctx = child_ctx; 12720 child_event->overflow_handler = parent_event->overflow_handler; 12721 child_event->overflow_handler_context 12722 = parent_event->overflow_handler_context; 12723 12724 /* 12725 * Precalculate sample_data sizes 12726 */ 12727 perf_event__header_size(child_event); 12728 perf_event__id_header_size(child_event); 12729 12730 /* 12731 * Link it up in the child's context: 12732 */ 12733 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12734 add_event_to_ctx(child_event, child_ctx); 12735 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12736 12737 /* 12738 * Link this into the parent event's child list 12739 */ 12740 list_add_tail(&child_event->child_list, &parent_event->child_list); 12741 mutex_unlock(&parent_event->child_mutex); 12742 12743 return child_event; 12744 } 12745 12746 /* 12747 * Inherits an event group. 12748 * 12749 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12750 * This matches with perf_event_release_kernel() removing all child events. 12751 * 12752 * Returns: 12753 * - 0 on success 12754 * - <0 on error 12755 */ 12756 static int inherit_group(struct perf_event *parent_event, 12757 struct task_struct *parent, 12758 struct perf_event_context *parent_ctx, 12759 struct task_struct *child, 12760 struct perf_event_context *child_ctx) 12761 { 12762 struct perf_event *leader; 12763 struct perf_event *sub; 12764 struct perf_event *child_ctr; 12765 12766 leader = inherit_event(parent_event, parent, parent_ctx, 12767 child, NULL, child_ctx); 12768 if (IS_ERR(leader)) 12769 return PTR_ERR(leader); 12770 /* 12771 * @leader can be NULL here because of is_orphaned_event(). In this 12772 * case inherit_event() will create individual events, similar to what 12773 * perf_group_detach() would do anyway. 12774 */ 12775 for_each_sibling_event(sub, parent_event) { 12776 child_ctr = inherit_event(sub, parent, parent_ctx, 12777 child, leader, child_ctx); 12778 if (IS_ERR(child_ctr)) 12779 return PTR_ERR(child_ctr); 12780 12781 if (sub->aux_event == parent_event && child_ctr && 12782 !perf_get_aux_event(child_ctr, leader)) 12783 return -EINVAL; 12784 } 12785 return 0; 12786 } 12787 12788 /* 12789 * Creates the child task context and tries to inherit the event-group. 12790 * 12791 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12792 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12793 * consistent with perf_event_release_kernel() removing all child events. 12794 * 12795 * Returns: 12796 * - 0 on success 12797 * - <0 on error 12798 */ 12799 static int 12800 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12801 struct perf_event_context *parent_ctx, 12802 struct task_struct *child, int ctxn, 12803 int *inherited_all) 12804 { 12805 int ret; 12806 struct perf_event_context *child_ctx; 12807 12808 if (!event->attr.inherit) { 12809 *inherited_all = 0; 12810 return 0; 12811 } 12812 12813 child_ctx = child->perf_event_ctxp[ctxn]; 12814 if (!child_ctx) { 12815 /* 12816 * This is executed from the parent task context, so 12817 * inherit events that have been marked for cloning. 12818 * First allocate and initialize a context for the 12819 * child. 12820 */ 12821 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12822 if (!child_ctx) 12823 return -ENOMEM; 12824 12825 child->perf_event_ctxp[ctxn] = child_ctx; 12826 } 12827 12828 ret = inherit_group(event, parent, parent_ctx, 12829 child, child_ctx); 12830 12831 if (ret) 12832 *inherited_all = 0; 12833 12834 return ret; 12835 } 12836 12837 /* 12838 * Initialize the perf_event context in task_struct 12839 */ 12840 static int perf_event_init_context(struct task_struct *child, int ctxn) 12841 { 12842 struct perf_event_context *child_ctx, *parent_ctx; 12843 struct perf_event_context *cloned_ctx; 12844 struct perf_event *event; 12845 struct task_struct *parent = current; 12846 int inherited_all = 1; 12847 unsigned long flags; 12848 int ret = 0; 12849 12850 if (likely(!parent->perf_event_ctxp[ctxn])) 12851 return 0; 12852 12853 /* 12854 * If the parent's context is a clone, pin it so it won't get 12855 * swapped under us. 12856 */ 12857 parent_ctx = perf_pin_task_context(parent, ctxn); 12858 if (!parent_ctx) 12859 return 0; 12860 12861 /* 12862 * No need to check if parent_ctx != NULL here; since we saw 12863 * it non-NULL earlier, the only reason for it to become NULL 12864 * is if we exit, and since we're currently in the middle of 12865 * a fork we can't be exiting at the same time. 12866 */ 12867 12868 /* 12869 * Lock the parent list. No need to lock the child - not PID 12870 * hashed yet and not running, so nobody can access it. 12871 */ 12872 mutex_lock(&parent_ctx->mutex); 12873 12874 /* 12875 * We dont have to disable NMIs - we are only looking at 12876 * the list, not manipulating it: 12877 */ 12878 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12879 ret = inherit_task_group(event, parent, parent_ctx, 12880 child, ctxn, &inherited_all); 12881 if (ret) 12882 goto out_unlock; 12883 } 12884 12885 /* 12886 * We can't hold ctx->lock when iterating the ->flexible_group list due 12887 * to allocations, but we need to prevent rotation because 12888 * rotate_ctx() will change the list from interrupt context. 12889 */ 12890 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12891 parent_ctx->rotate_disable = 1; 12892 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12893 12894 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12895 ret = inherit_task_group(event, parent, parent_ctx, 12896 child, ctxn, &inherited_all); 12897 if (ret) 12898 goto out_unlock; 12899 } 12900 12901 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12902 parent_ctx->rotate_disable = 0; 12903 12904 child_ctx = child->perf_event_ctxp[ctxn]; 12905 12906 if (child_ctx && inherited_all) { 12907 /* 12908 * Mark the child context as a clone of the parent 12909 * context, or of whatever the parent is a clone of. 12910 * 12911 * Note that if the parent is a clone, the holding of 12912 * parent_ctx->lock avoids it from being uncloned. 12913 */ 12914 cloned_ctx = parent_ctx->parent_ctx; 12915 if (cloned_ctx) { 12916 child_ctx->parent_ctx = cloned_ctx; 12917 child_ctx->parent_gen = parent_ctx->parent_gen; 12918 } else { 12919 child_ctx->parent_ctx = parent_ctx; 12920 child_ctx->parent_gen = parent_ctx->generation; 12921 } 12922 get_ctx(child_ctx->parent_ctx); 12923 } 12924 12925 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12926 out_unlock: 12927 mutex_unlock(&parent_ctx->mutex); 12928 12929 perf_unpin_context(parent_ctx); 12930 put_ctx(parent_ctx); 12931 12932 return ret; 12933 } 12934 12935 /* 12936 * Initialize the perf_event context in task_struct 12937 */ 12938 int perf_event_init_task(struct task_struct *child) 12939 { 12940 int ctxn, ret; 12941 12942 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12943 mutex_init(&child->perf_event_mutex); 12944 INIT_LIST_HEAD(&child->perf_event_list); 12945 12946 for_each_task_context_nr(ctxn) { 12947 ret = perf_event_init_context(child, ctxn); 12948 if (ret) { 12949 perf_event_free_task(child); 12950 return ret; 12951 } 12952 } 12953 12954 return 0; 12955 } 12956 12957 static void __init perf_event_init_all_cpus(void) 12958 { 12959 struct swevent_htable *swhash; 12960 int cpu; 12961 12962 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12963 12964 for_each_possible_cpu(cpu) { 12965 swhash = &per_cpu(swevent_htable, cpu); 12966 mutex_init(&swhash->hlist_mutex); 12967 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12968 12969 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12970 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12971 12972 #ifdef CONFIG_CGROUP_PERF 12973 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12974 #endif 12975 } 12976 } 12977 12978 static void perf_swevent_init_cpu(unsigned int cpu) 12979 { 12980 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12981 12982 mutex_lock(&swhash->hlist_mutex); 12983 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12984 struct swevent_hlist *hlist; 12985 12986 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12987 WARN_ON(!hlist); 12988 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12989 } 12990 mutex_unlock(&swhash->hlist_mutex); 12991 } 12992 12993 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12994 static void __perf_event_exit_context(void *__info) 12995 { 12996 struct perf_event_context *ctx = __info; 12997 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12998 struct perf_event *event; 12999 13000 raw_spin_lock(&ctx->lock); 13001 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13002 list_for_each_entry(event, &ctx->event_list, event_entry) 13003 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13004 raw_spin_unlock(&ctx->lock); 13005 } 13006 13007 static void perf_event_exit_cpu_context(int cpu) 13008 { 13009 struct perf_cpu_context *cpuctx; 13010 struct perf_event_context *ctx; 13011 struct pmu *pmu; 13012 13013 mutex_lock(&pmus_lock); 13014 list_for_each_entry(pmu, &pmus, entry) { 13015 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13016 ctx = &cpuctx->ctx; 13017 13018 mutex_lock(&ctx->mutex); 13019 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13020 cpuctx->online = 0; 13021 mutex_unlock(&ctx->mutex); 13022 } 13023 cpumask_clear_cpu(cpu, perf_online_mask); 13024 mutex_unlock(&pmus_lock); 13025 } 13026 #else 13027 13028 static void perf_event_exit_cpu_context(int cpu) { } 13029 13030 #endif 13031 13032 int perf_event_init_cpu(unsigned int cpu) 13033 { 13034 struct perf_cpu_context *cpuctx; 13035 struct perf_event_context *ctx; 13036 struct pmu *pmu; 13037 13038 perf_swevent_init_cpu(cpu); 13039 13040 mutex_lock(&pmus_lock); 13041 cpumask_set_cpu(cpu, perf_online_mask); 13042 list_for_each_entry(pmu, &pmus, entry) { 13043 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13044 ctx = &cpuctx->ctx; 13045 13046 mutex_lock(&ctx->mutex); 13047 cpuctx->online = 1; 13048 mutex_unlock(&ctx->mutex); 13049 } 13050 mutex_unlock(&pmus_lock); 13051 13052 return 0; 13053 } 13054 13055 int perf_event_exit_cpu(unsigned int cpu) 13056 { 13057 perf_event_exit_cpu_context(cpu); 13058 return 0; 13059 } 13060 13061 static int 13062 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13063 { 13064 int cpu; 13065 13066 for_each_online_cpu(cpu) 13067 perf_event_exit_cpu(cpu); 13068 13069 return NOTIFY_OK; 13070 } 13071 13072 /* 13073 * Run the perf reboot notifier at the very last possible moment so that 13074 * the generic watchdog code runs as long as possible. 13075 */ 13076 static struct notifier_block perf_reboot_notifier = { 13077 .notifier_call = perf_reboot, 13078 .priority = INT_MIN, 13079 }; 13080 13081 void __init perf_event_init(void) 13082 { 13083 int ret; 13084 13085 idr_init(&pmu_idr); 13086 13087 perf_event_init_all_cpus(); 13088 init_srcu_struct(&pmus_srcu); 13089 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13090 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13091 perf_pmu_register(&perf_task_clock, NULL, -1); 13092 perf_tp_register(); 13093 perf_event_init_cpu(smp_processor_id()); 13094 register_reboot_notifier(&perf_reboot_notifier); 13095 13096 ret = init_hw_breakpoint(); 13097 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13098 13099 /* 13100 * Build time assertion that we keep the data_head at the intended 13101 * location. IOW, validation we got the __reserved[] size right. 13102 */ 13103 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13104 != 1024); 13105 } 13106 13107 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13108 char *page) 13109 { 13110 struct perf_pmu_events_attr *pmu_attr = 13111 container_of(attr, struct perf_pmu_events_attr, attr); 13112 13113 if (pmu_attr->event_str) 13114 return sprintf(page, "%s\n", pmu_attr->event_str); 13115 13116 return 0; 13117 } 13118 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13119 13120 static int __init perf_event_sysfs_init(void) 13121 { 13122 struct pmu *pmu; 13123 int ret; 13124 13125 mutex_lock(&pmus_lock); 13126 13127 ret = bus_register(&pmu_bus); 13128 if (ret) 13129 goto unlock; 13130 13131 list_for_each_entry(pmu, &pmus, entry) { 13132 if (!pmu->name || pmu->type < 0) 13133 continue; 13134 13135 ret = pmu_dev_alloc(pmu); 13136 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13137 } 13138 pmu_bus_running = 1; 13139 ret = 0; 13140 13141 unlock: 13142 mutex_unlock(&pmus_lock); 13143 13144 return ret; 13145 } 13146 device_initcall(perf_event_sysfs_init); 13147 13148 #ifdef CONFIG_CGROUP_PERF 13149 static struct cgroup_subsys_state * 13150 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13151 { 13152 struct perf_cgroup *jc; 13153 13154 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13155 if (!jc) 13156 return ERR_PTR(-ENOMEM); 13157 13158 jc->info = alloc_percpu(struct perf_cgroup_info); 13159 if (!jc->info) { 13160 kfree(jc); 13161 return ERR_PTR(-ENOMEM); 13162 } 13163 13164 return &jc->css; 13165 } 13166 13167 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13168 { 13169 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13170 13171 free_percpu(jc->info); 13172 kfree(jc); 13173 } 13174 13175 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13176 { 13177 perf_event_cgroup(css->cgroup); 13178 return 0; 13179 } 13180 13181 static int __perf_cgroup_move(void *info) 13182 { 13183 struct task_struct *task = info; 13184 rcu_read_lock(); 13185 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13186 rcu_read_unlock(); 13187 return 0; 13188 } 13189 13190 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13191 { 13192 struct task_struct *task; 13193 struct cgroup_subsys_state *css; 13194 13195 cgroup_taskset_for_each(task, css, tset) 13196 task_function_call(task, __perf_cgroup_move, task); 13197 } 13198 13199 struct cgroup_subsys perf_event_cgrp_subsys = { 13200 .css_alloc = perf_cgroup_css_alloc, 13201 .css_free = perf_cgroup_css_free, 13202 .css_online = perf_cgroup_css_online, 13203 .attach = perf_cgroup_attach, 13204 /* 13205 * Implicitly enable on dfl hierarchy so that perf events can 13206 * always be filtered by cgroup2 path as long as perf_event 13207 * controller is not mounted on a legacy hierarchy. 13208 */ 13209 .implicit_on_dfl = true, 13210 .threaded = true, 13211 }; 13212 #endif /* CONFIG_CGROUP_PERF */ 13213